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Abstract

This research investigates the creation of an audio-based character recognition system

that is able to segment, process and recognise uppercase English letters continuously

drawn by the user on a given writing surface such as a table-top using a generic writ-

ing implement. The aim is to make use of the microphones on a single smartphone to

capture the acoustic signal generated by the user as they draw letters on the writing

surface, followed by the application of audio segmentation to subdivide the audio signal

into segments corresponding to each letter, and finally the application of a combination

of the Mel-Frequency Cepstral Coefficients feature descriptor and Support Vector Ma-

chines to recognise the segmented letters.

The aim is to also host the system in a cloud-based environment that can be easily ac-

cessible by any device via a web browser. Such a system would be light-weight, portable

and easily accessible. Most importantly, it would provide smartphone users with an

additional means of interacting with the device, namely, the ability to write/draw on

the surface next to the smartphone and have the characters captured and used on the

smartphone in various ways.

The main challenges to the creation of such a system are: the limitation on the number of

microphones available on the given smartphone; the transmission of the acoustic signals

through the air, which is less efficient than transmission through solids; and the difficulty

to isolate and insulate ambient noise. Therefore, this research aims to determine whether

the proposed techniques are sufficient to achieve high accuracy character recognition

when using the two microphones on a single smartphone as an audio capture source.
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Chapter 1

Introduction

1.1 Background and Motivation

Research in the field of Human-Computer Interaction (HCI) investigates alternative and

novel means of interacting with computers and computational devices in a less traditional

way i.e. alternatives to using e.g. a mouse and keyboard.

HCI research encompasses research into various ways that humans may interact with

computers. These can be broken down into two broad areas. The first area of HCI is

visual-based HCI which involves the use of a camera or multiple cameras, various visual

technologies, combined with computer vision methods to send data, perform an action

or elicit some response on a computer or device that the user is interacting with. Two

examples of this area of HCI are hand tracking and facial recognition [13].

Audio-based HCI is the second area of HCI research that is of interest. Audio-based HCI

makes use of microphones to capture one or more audio signals, combined with audio

processing techniques to be able to interpret the signal that it is receiving. Finally this

can be used to elicit a response on a computer or device. The most common example

of audio-based HCI is a personal assistant on modern smartphones. In this case, the

signal received and processed is speech-based audio. Speech-based HCI is a sub-field

of audio-based HCI. Apart from speech-based HCI, audio-based HCI can also take the

form of non-speech-based HCI which involves research into capturing, processing and

utilising non-speech audio signals to elicit some response from a computer. An example

of this is the use of audio signals used to determine touch location / pattern / shape

[27, 28].

This research builds on previous research done by Wu et al. [27, 28] which proposed

1
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the use of transducer microphones connected to a personal computer (PC) to capture

and process sound emitted by a hard surface such as a table, when drawn on by a hard

instrument, such as a chopstick or pencil. In their case, the transducers were physically

attached to the writing surface with glue. Their system then used the audio signals

emitted by the hard surface and captured by the microphones to carry out processing

to be able to successfully recognise all 26 uppercase letters of the Roman alphabet when

physically drawn on the writing surface by the writing instrument.

Their system proved to be robust and beneficial in providing a novel means of non-

speech-based HCI. One limitation of the system was that its use is limited to PCs which

have the required input port(s) for the microphone transducers used. The system also

assumes that each recording consists of the audio signal of a single drawn character, and

doesn’t include any strategy to automatically segment audio signals into constituent

letters; this was left to future work.

Smartphones have become commonplace in the world today, so much so that it is rare

to find someone that does not own, or is not using, one. In a 2014 study by the World

Bank, it was seen that 97% of the world population was using a mobile phone [22].

The main ways of interacting with these devices include: touch such as typing on the

touch screen or pressing buttons; vision in the form of unlocking the device with facial

recognition; and audio—specifically speech-based audio—in the form of speaking to the

virtual assistant or other speech-based applications. There are also other sensors on

a smartphone such as: GPS; accelerometer; a light sensor to name a few. There is

currently no standard way to control or interact with smartphone devices by means of

non-speech audio input.

Research into ways of leveraging the microphones on smartphones for non-speech-based

HCI can prove to be beneficial and leverage the microphone sensors on these devices

more comprehensively.

Based on the above, this research focuses on extending Wu et al.’s work by developing a

non-speech-based HCI system focused around smartphones. The proposed system aims

to capture and process sound emitted by a hard surface—“the writing surface”—such

as a table, when drawn on by a hard instrument, such as a chopstick or pencil. The

aim is to use the microphones already built into a smartphone to capture the audio

signals emitted by the hard surface and carry out processing to first segment letters

in an audio signal potentially consisting of multiple letters, and then recognise all 26

uppercase letters of the Roman alphabet. As such, this research constitutes a significant

advancement over Wu et al.’s work.

For the purposes of this research, the smartphone used will be a Samsung Galaxy Note
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10 plus, which is the smartphone that is available. This smartphone, like many others,

consists of a microphone on the bottom end of the device, and another on the top end

of the device. These microphones are both capable of a recording quality as high as

256kbps at a rate of 48kHz. Given the ubiquity of smartphones in today’s world means

that the proposed system and its associated novel means of HCI will be more widely and

readily available, without the need for any extra hardware to be carried around. The

approach will have a low barrier to entry because of these factors to users which do not

have the extra hardware required.

An ideal use-case of such a system is a user being provided the ability to write a piece

of intended text on the table next to the smartphone e.g. their full name and surname,

or a message, and have the hand-written text subsequently processed and appropriately

captured on the smartphone as input. This would provide users with a new flexible form

of interaction with smartphones.

One important aspect to this research problem is the question of the number of mi-

crophones that are required to ensure effective recognition by the system. Two mi-

crophones provide two positions from which to capture the sound source, and the un-

derlying machine learning apparatus can then automatically triangulate and infer the

two-dimensional location of the strokes in the sound source in time. This is important

when trying to distinguish between sounds with the same number of strokes but different

shapes e.g. “A” and “H”.

To this end, Wu et al. [27, 28] investigated and compared the use of one-, two- and three-

microphone configurations and found that two microphones were sufficient to obtain high

accuracy recognition even on data from unseen test subjects, which was a phenomenal

result. However, it is important to bear in mind differences in the hardware setup that

Wu et al.’s used versus the setup proposed in this research, all of which increase the

complexity of the research problem in this research:

1. Limitation on the number of microphones: Wu et al.’s setup made it possible

to readily add or remove microphones, whereas the proposed setup is limited to

using a maximum of two microphones embedded into the mobile phone.

2. Medium for the propagation of sound: Wu et al.’s project made use of

microphones that were physically attached to the writing surface by means of

adhesive. This was a major advantage since sound is known to propagate through

solids more effectively and efficiently than through the air [26]. In contrast, the

setup proposed in this research makes use of the microphones on a mobile phone

that has simply been placed on—and not attached to—the writing surface. As

such the sound from the writing surface will mostly be captured through the air.
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So while the proposed setup is significantly more natural, flexible and convenient,

it is expected to make the recognition problem proportionally more challenging.

3. Noise insulation: Wu et al. attached a relatively large amount of cotton wool to

the top of their microphones in order to isolate sources of noise in the environment

above and around the writing surface. This was possible due to the fact that their

microphones were attached to the writing surface. This kind of noise insulation

will not be possible with the proposed setup since, as mentioned, the sound from

the writing surface will be captured by the microphones on the mobile phone

primarily through the air. Noise is therefore unavoidably expected to affect the

recognition accuracy of the system, with the benefit of a natural, flexible and

convenient hardware setup.

Based on this discussion, it remains to be seen whether the use of the two microphones

on the single smartphone will be sufficient to obtain high accuracy handwritten character

recognition. High accuracy recognition in this context takes two forms. The first form

involves accurately recognizing newly drawn characters by test subjects whose writing

is familiar to the system due to the system having been trained on other samples from

these test subjects i.e. semi-seen test samples. In practice, this would mean that a new

user using the system would be required to carry out a once-off pre-training procedure in

order to allow the system to learn these patterns and provide a high accuracy recognition.

This is not unrealistic provided that the pre-training procedure is once-off and relatively

short.

The second, and more advantageous, form of high accuracy recognition involves the sys-

tem accurately recognizing characters drawn by test subjects that have been previously

completely unseen to the system i.e. unseen test samples. This will mean that there

will be no need for a pre-training procedure.

It remains to be seen whether the proposed hardware setup will be sufficient for high

accuracy on unseen test samples, or whether it will require a pre-training procedure.

Either way, the system would be considered to be useful since a once-off pre-training

procedure would not be unreasonable or unrealistic if the final system is sufficiently

accurate and provides a novel enhanced means of interacting with the mobile phone.

The audio processing component of the proposed system is broken up into 3 parts: a

letter segmentation algorithm which splits words into letters for classification; a feature

descriptor which is able to extract a standardised feature vector that is ready for clas-

sification; and classification using a classifier that has been trained to recognize letters

based on the features extracted from the segmented letters.
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For the purposes of this research, users will be allowed to continuously write letters,

without manual intervention with the system. To allow a user to be able to write

continuous words, a segmentation algorithm needs to be developed. The algorithm

involves detecting the spaces between the letters that have been written. To this end,

the assumption made in this research is that the pause between letters will be longer

than the pause between strokes within a single letter.

For the purposes of this research, a dataset will have to be collected and used. The

size of this dataset will be relatively small i.e. on the order of a few 1000 samples.

While deep learning techniques were considered for use, it was determined that such

techniques require medium-to-large datasets in order to properly generalize. Trained on

small datasets, such as the one collected in this research, they are expected to overfit

the datatset and fail to generalize. Therefore, when making use of small datasets, it is

more appropriate to make use of “traditional” classification techniques which make use

of a feature descriptor and a classifier.

According to Logan[16], the mel-frequency cepstral coefficients (MFCC) feature descrip-

tor has been successful in many audio processing applications due to the way that it

is able to represent the speech amplitude spectrum in a compact form. The MFCC is

considered to be very robust when it comes to speech and non-speech classification and

is well suited to this research.

Once the features have been extracted, a classifier is trained on these features and sub-

sequently used for classification of testing/unseen samples on an on-going basis. There

are numerous classifiers that have been used in related works including: Support Vector

Machines (SVMs), Convolutional Neural Networks (CNN) and K-Nearest Neighbours

(KNN)[9, 18, 27, 28, 30]. All of these papers achieved similar accuracy.

For the purposes of this research, and following on the phenomenal success of Wu et al.’s

system, it was decided to use SVMs, which have been shown to combine with the MFCC

very well. SVMs are highly flexible classifiers capable of non-linear classification. They

come with the significant benefit of always converging to a minimum and having a very

low parameter complexity as compared to many other classification techniques, including

neural networks [25]. They have been utilised in a wide variety of fields using small-to-

medium sized datasets including: facial recognition and classification, text classification.
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1.2 Research Question

Based on the discussion in Section 1.1, the following research question can be formu-

lated: “How accurately can handwritten words be segmented and recognized using audio

captured by microphones on a smartphone using the proposed techniques i.e. MFCC

coupled with SVMs?” This main research question can be broken down into research

sub-questions as below:

1. How effectively can letters be segmented and extracted from an audio signal?

2. How accurately can the segmented letters be recognized?

3. Is it sufficient to capture audio input by the microphones on a single smartphone

in order to achieve accurate segmentation and recognition of handwritten letters

using the proposed techniques i.e. MFCC coupled with SVMs?

1.3 Research Progression and Research Objectives

The following research objectives will guide the progression of the research towards an-

swering each of the research sub-questions towards answering the main research question:

1. Implement an audio capturing application to record audio from a smartphone as

a user draws handwritten letters.

2. Implement an audio segmentation algorithm to analyze the captured audio to

locate and segment the letters drawn.

3. Implement the MFCC feature descriptor and apply it to the audio signal of each

segmented letter.

4. Collect a handwritten data set of uppercase characters “A” to “Z” as performed

by various users.

5. Train a SVM classifier on a training sample of the handwritten data set to recognize

the upper-case letters using MFCC features.

6. Test the classifier on a testing sample of the handwritten data set to determine

the effectiveness of the letter recognition approach.
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1.4 Premises

The following assumptions are made beforehand to be able to create a realistic scope

for the research and provide key pointers and ideas for future work.

1. Recognition will be done on upper case Roman alphabet letters.

2. A single fixed surface will be used for the collection of the data set.

3. Fixed stroke patterns will be used by all training and testing subjects.

4. A relatively consistent stroke speed will also be used by all training and testing

subjects.

5. The same room will be used for gathering the datasets and testing the system.

1.5 Thesis Outline

The rest of the thesis is structured as the below.

Chapter 2: Related Work. This chapter provides an in depth look into the previous

work that has been conducted in line with the main research question. It describes the

techniques and classifiers implemented and their accompanying results are compared to

provide context for the current research.

Chapter 3: Tools and Techniques for Handwriting Recognition This chapter will go

into detail on each individual step in this research and the details behind each. The

steps that will be explained include: audio signal capture; audio segmentation; feature

extraction; and classification.

Chapter 4: System Design and Implementation. This chapter will provide a compre-

hensive and in-depth discussion into the implementation of each part of the proposed

system i.e. audio capture, letter segmentation, feature extraction, letter recognition and

dictionary lookup. In each part, a detailed discussion on the algorithms, processes and

techniques used relevant to that part will be described. Therefore, this chapter also de-

tails the data set collected and methods used to train and optimize the SVM classifier.

In so doing, this chapter describes how research objectives 1–5 are met.

Chapter 5: Experimental Results and Analysis. This chapter describes the experiments

conducted, results obtained and subsequent analyses carried out to meet the remaining

research objective 6 towards arriving at answers to all of the research sub-questions 1–3,

and ultimately arriving at an answer to the main research question.
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Chapter 6: Conclusion. This chapter concludes the thesis by summarizing the findings

and providing directions for future work.
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Chapter 2

Literature Review

The aim of this chapter is to provide context to this research and to go into more

detail on the information discussed in the previous chapter. The research objectives

1 to 6 detailed in the previous chapter involved the implementation of a sequence of

components that collectively form the system proposed in this research, capturing audio

data, finding an effective and accurate way of segmenting the audio signal into relevant

parts; finding the most effective way of extracting features from the segmented audio;

and devising a method to accurately recognize the segmented audio.

Accordingly, after providing an overview of the studies selected for inclusion in this re-

search in Section 2.1, the literature survey presented in this chapter is then sub-divided,

and corresponds to, these objectives, whereby Sections 2.2 to 2.5 the following aspects of

the related studies, respectively: audio capture; audio segmentation; feature extraction;

and classification and recognition. Given that various research studies have generally

mixed and matched different methods and techniques for each of these objectives, struc-

turing this chapter in this way provides a framework to organize and analyze the studies

systematically. The chapter concludes with a summary of the related work and recap of

what has been discussed.

2.1 Overall Objectives

To aid in providing context of each piece of literature reviewed, the overall objective of

each piece of literature will be covered below.

Wu et al. [27, 28] created a novel non-speech-based HCI system which aimed to capture

and process sound emitted by a generic stylus to be able to recognise seven fundamental

9
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shapes, digits 0–9 and the uppercase letters ‘A’ through ‘Z’. They did not use a smart-

phone, but instead carried out recognition of audio captured by transducer microphones

attached to the writing surface and insulated from noise by means of cotton wool. A

similar setup was used by Moerira et al. [21] where they did not opt to use a smartphone

for audio capture but rather a low-cost hardware system which focused more on sensory

perception of objects and surfaces, which was trained to recognize 3 fundamental shape

gestures: circle, square and triangle.

With reference to the above papers and the additional hardware, which was required,

Schrapel et al. [23] developed a specialised sensory writing pen, Pentelligence, which

was able to sense the motions; sound emissions on the pen tip while various shapes were

drawn by the pen; and pressure of the pen when impacting the surface. The reasoning

behind this was the finding that users often prefer to write on physical paper as opposed

to tablets with styluses [4]. They therefore believed that there was a gap between analog

and digital. They tested their system on digits 0–9.

Li and Hammond [15] identified, at the time, that a secondary device such as a stylus

or writing tablet, either of which are costly and not readily available, was required to

capture drawing gestures and interact with the computer in this way. They identified

the possibility of using a smartphone, which was a more readily available alternative,

to interact with a computer via sound, however they utilised an Apple Macbook Air

microphone for collecting training data and tested their system with a standard iPhone

and Android phones. They implemented their proposed smartphone-based system to

recognize 26 hand-sketched characters (‘A’–‘Z’).

The work of Li and Hammond was further extended by Chen et al.[5], the latter of which

shared the sentiment of utilising technology which was readily available to perform tasks

which otherwise required extra pieces of hardware. Chen et al. created a software called

Ipanel which allowed them to control their smartphones with common gestures on a

surface adjacent to their smartphone. The gestures they were able to recognise were

click, flip, scroll and zoom. In addition to these gestures, the application also aimed to

recognise the 10 handwritten digits and the 26 handwritten alphabet characters.

Luo et al. [18] identified a limitation with current smartphones which is that, when

they are being used, part of the screen is blocked from view by the user’s hand as it

interacts with the screen. They therefore identified that creating an innovative means

of interacting with the phone is required to overcome this limitation. As with other

studies in this review, they proposed smartphone interaction through audio signals,

which allows control of the smartphone without the need to touch the smartphone itself,

and this overcomes the limitation of blocking the user’s view of the screen. They created
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a system built for the Android smartphone operating system which was able to recognize

7 common gestures, namely: click, flip, left/right, scroll up/down and zoom in/out.

Zhou et al. [30] believed that the shrinking size of smartphone screens would eventually

become an issue and that utilising a smartphone via additional means separate to the

body of the smartphone, such as voice and handwriting input, would be more convenient

and useful. They further believed that handwriting input is more suitable for drawing

and writing mathematical expressions. Therefore, they proposed to create a system to

recognize 26 free-style letters of the alphabet in lowercase drawn on the right-hand side

of a smartphone located 20cm away.

Finally, Yu et al.’s research [31] focused on creating a system to explore the possibility of

eavesdropping on a user’s handwriting using a smartphone placed on the writing surface.

This problem was identified because of the research done by Asonov and Agrawal [1],

Zhuang et al. [32], Berger et al. [3] and Halevi and Saxena [10], all of whom identified the

possibility of the sound of typing on a keyboard being prone to eavesdropping via acoustic

signals. Accordingly, Yu et al. focused on using the audio captured by a smartphone

placed on the same desk on which a user (eavesdropping victim) was writing and using

the audio signals captured to recognise the user’s handwriting. Their implementation

aimed to recognize all 26 uppercase characters.

The sections that follow provide greater detail on these studies in terms of their means of:

audio capture; audio segmentation (if applicable); feature extraction; and classification

and recognition.

2.2 Audio Capture

A wide range of audio capture mechanisms have been used, which are detailed in this

section. There are several factors to discuss when it comes to audio capture, including:

the actual device used to capture audio (covered in Section 2.2.1), the implement/de-

vice used to generate the sound (covered in Section 2.2.2), the surface on which the

implement/device generates the sound (covered in Section 2.2.2), and the mechanism/-

physical setup in which the capturing device and sound emitting implement are arranged

(covered in Section 2.2.3). A discussion of the findings of the section are summarised in

Section 2.2.4.



http://etd.uwc.ac.za/

Chapter 2 Literature Review 12

Signal Success Rate (%)

Raw time signal 33.0
FFT signal 15.0

Envelope signal 65.0
Time scaled envelope signal 90.0

Table 2.1: Success rate results for Moreira et al. [21]

2.2.1 Recording Devices

This section explains the various recording devices that were used in previous works and

the benefits and shortcomings of each. The devices will get progressively more advanced

as the discussion progresses.

Wu et al. [27, 28] utilised piezoelectric transducer microphones connected to a computer

to capture audio. The justification of the approach was the low cost of the implemen-

tation, as well as the small size and portability of the setup which made it relatively

mobile. One of the research questions investigated by Wu et al. was to find the optimal

number of microphones that are ideal in recognising handwritten characters with a high

accuracy. To this end, they investigated the use of one, two and three microphones.

They found that a larger number of microphones would be able to help in differentiating

the trajectories of strokes in characters, but that even a single microphone was sufficient

to provide a high accuracy recognition on even unseen data and users. Increasing the

number of microphones from one to two to three saw an increase of ±2% per microphone

on semi-seen data, and ±1% for unseen data.

Moreira et al. [21] mirrored Wu et al. in designing a low-cost system which was able

to produce acceptable results. Instead of piezoelectric microphones, they utilised a

microphone connected to a stethoscope. The stethoscope was used to produce a less

noisy signal from the environment. The stethoscope had a dual lumen design while the

microphone was a mini-Electret microphone with dimensions of 0.16 × 0.06 inches. The

microphone array was then connected to a conditioning circuit by Adafruit MAX4466

which acts to filter and amplify the signal. As seen in Table 2.1, the results were highly

dependent on the different audio processing algorithms that were used which included:

the raw time signal; Fast Fourier Transformed (FFT) signal; envelope signal; and time-

scaled envelope signal. They found that the limitation with their microphone setup was

the impact that any small variations in microphone array placement made significant

changes to the signal characteristics, which required extra placement care to be able to

repeat their results.

Another possible recording device which is readily available is the single microphone on
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a laptop. Li et al. [17] investigated using the microphone embedded on a laptop to

turn a laptop screen into a writing pad. To achieve this, an acoustic signal of varying

frequencies is emitted by the two speakers on the laptop. Then, by utilising the Doppler

frequency shift of acoustic signals, the distortion in the original acoustic signal captured

by the microphone is used to track movements on the screen. Li et al. [17] were able to

utilise the two speakers on the laptop combined with the single microphone to achieve

a recognition accuracy of over 90%. This indicates that there is a possibility of using

a single microphone to triangulate the direction and location of a writing implement to

recognise a handwritten character. It was stated that a limitation to this implementation

is the requirement of constantly having a sound emitted by the speakers of the laptop

for the approach to work, thereby rendering the speakers occupied and unavailable for

any other use.

The microphones on smartphones were a predominant means of audio capture in the

literature, as they are commonplace and readily available. Therefore, the upcoming

paragraphs focus on the recording devices in the literature that provide more context

on the viability of smartphones in this research.

With the reason for using a smartphone being as stated above, being able to allow

anyone to use the system becomes quite important. This leads to questioning whether

any smartphone would be applicable and able to record audio effectively enough to

answer the research questions. Smartphones have different microphones that record at

different audio qualities. These factors were taken into consideration by Zhou et al. [30],

who identified that modern smartphones have two microphones, a primary microphone

on the bottom and a secondary microphone on the top of the smartphone. However,

they indicated that they would be utilising the primary microphone for processing of

handwritten sound. They left the investigation of whether the secondary microphone

can be utilised to eliminate noise to future work. They tested multiple smartphones

recording at a sampling rate of 44100Hz. Sampling rate is defined as the number of

samples recorded per second from a continuous audio signal by a recording device.

They found that a high enough accuracy (90% and above) was achieved when using

their proposed Neural Network implementation for classification.

Chen et al. [5] shared this sentiment and set out to identify finger strokes on a surface

with a consumer-off-the-shelf (COTS) smartphone. They compared a ZTE nubia, Mo-

torola MT887 and Samsung G3568V and achieved 92.1%, 89.5% and 90.5% accuracies,

respectively. The small differences in accuracy were attributed to potential differences

in microphone qualities. There was no mention of utilising both microphones on the

ZTE Nubia Z9 mini that was used, so it is assumed the phone was utilised in its de-

fault configuration i.e. bottom microphone as primary and top microphone for noise
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cancellation. They discussed the potential of utilizing both microphones independently

combined with time-difference-of-arrival (TDoA) to track the user’s strokes more accu-

rately, but this was left to future work. They tested multiple combinations of feature

descriptors and machine learning techniques and found that the single microphone on

the devices yielded sufficient results with the best combination of techniques achieving a

92.25% accuracy, consisting of Convolutional Neural Networks (CNN) and spectrogram

images.

Yu et al. [31] took the smart device approach even further when attempting to recog-

nize handwritten strokes using a smartwatch. Smartwatches are equipped with multiple

sensors, with particular focus being placed on the use of the accelerometer and micro-

phone. The acceleration parameters of a stroke pattern provided by the accelerometer

are used to combat near field noise i.e. the accelerometer is used for noise reduction.

The microphone is used as the primary audio capture device in a similar manner to

other studies mentioned thus far. The system captures audio signals and acceleration

data from the smartwatch and transmits them to the smartphone for processing. The

smartwatch sampling rate is 22050Hz, which is half the sampling rate of other recording

devices in the literature. Yu et al. [31] concluded that under certain conditions they

were able to achieve an accuracy of 50-60%, which showed an indication that it is possi-

ble to use a smartwatch and smartphone combination to capture, process and recognize

handwritten audio signals with an acceptable accuracy.

Haishi et al. [9] expanded on Yu et al.’s work and attempted to modify the hardware

setup to potentially improve the results by removing the need to use the gyroscopic

signals from the smartwatch. Like Yu et al.’s, they chose the use of a smartwatch

because of the additional complexity and hardware features provided by smartwatches

over smartphones. They stated that a smartphone has two microphones which help in

improving the localization accuracy, also stating that a smartphone can be placed closer

to the origin of the acoustic signals therefore potentially further improving on accuracy.

A seen accuracy of 81.03% and an unseen accuracy of 74.83% were achieved.

To summarise the outcome of this section: a single smartphone can achieve sufficiently

high accuracy, although the physical setup and the processing component play a vital

role in the accuracy obtained; and the smartphone type does affect the accuracy but

does appears to be far less of a contributing factor in this regard than the physical setup

and the processing component.
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Writing Implement Success

Key 0.859
Pen 0.868

Finger 0.783

Table 2.2: Success results for Li et al. [15] using different writing implements.

2.2.2 Impact of Writing Implements and Surfaces on Audio Capture

The previous section explained the different audio capture devices used. This section

will go into detail on each of the different writing implements used in the literature.

Writing implements may include the following: finger, pen, pencil, keys etc. The writing

implement may have an impact on the recognition accuracy of the audio recognition

system, as may the writing surface used.

The most common implement used in the literature is a pen, as it serves multiple use

cases such as: capturing one’s own writing on a desk; or snooping on another person as

they are writing. Li and Hammond [15] explored the performance of their system with

different writing implements: a key; a pen; and a fingernail. Table 2.2 shows the results

for each writing implement.

It can be seen in the table that the key and pen had very similar results, whereas the

use of a finger had somewhat lower accuracy. This finding may be explained by the fact

that a finger produces a much quieter sound than a key or a pen and therefore emits

less information that can be captured by the microphone and processed. Given that the

pen and key yield similar results, it can be said that a hard writing tool combined with

a hard surface is beneficial in yielding successful results in this kind of application.

Haishi et al. [9] tested their system with four different types of pens on three different

surfaces, with the results shown in figure 2.1. Observing the figure, the impact of the

surface is very clear and consistent where it is observed that surfaces which are hard,

i.e. wooden pad and plastic pad, provide a higher accuracy than surfaces which absorb

some of the acoustic signal emitted i.e. notebook. This trend is consistent regardless of

the type of pen used.

With regards to differences in the pens used, it can be observed in the figure that the

three pens to the right of the graph performed very similarly, whereas the 0.38 gel pen

provided a slightly higher overall accuracy than all three others pen used.
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Figure 2.1: Impact of different surfaces and writing implements depicted by Haishi
et al. [9]

2.2.3 Writing location

Writing location can be defined as the region near the audio capture device one which a

user writes. Writing location becomes increasingly important when using a smartphone

due to the placement of the microphones. Chen et al. [5] compared the different writing

locations respective to the position of the smartphone, namely: top; left side; right-

side; and underneath the smartphone. The results are illustrated in Figure 2.2 and

it is illustrated that the best positions are “R2” and “R4”. This could be attributed

to the fact that most English characters are written top to bottom, which means that

the microphone is able to deduce the trajectory of the stroke instead of only the sound

moving away from the microphone.

2.2.4 Discussion on Audio Capture

Most of the literature focuses on utilising a smartphone to capture audio the user is

writing on a wooden surface or on a hard notebook with a pen. Smartphones can provide

sufficiently high accuracy recognition. The number of microphones used does affect the

recognition accuracy, although some studies appear to have successfully leveraged only

a single smartphone microphone. The greatest impact on audio capture is the writing

implement and writing surface, both of which affect the loudness and sharpness of the
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Figure 2.2: Results of various writing locations conducted by Chen et al. [5].

acoustic signal, which in turn affects the ability to accurately recognize handwriting.

Finally, the writing location is equally important, where the best location appears to be

on either side of the smartphone.

2.3 Audio Segmentation

This section will go into detail on implementations of audio segmentation in the litera-

ture where applicable. Audio segmentation aims to extract portions of an audio signal

corresponding to individual characters.

Chen et al. [5] developed a segmentation algorithm to be able to split the acoustic

signal effectively on each letter. The algorithm they developed is shown in Algorithm

1. A sliding window Wa set to 20ms is used which yields 884 sample points from a

44kHz signal. The expected stroke period—the minimum gap to be observed between

strokes—is assumed to be fixed at 600ms which is assumed to be the typical maximum

period for a single stroke.

An empirical noise threshold Aϵ = 0.02 is used for a typical office environment and it was

stated that this value is environment-specific and needs to be updated according to the

environment of the testing. The sliding window Wa is used to calculate the accumulated

energy A(t) which is compared to Aϵ to determine a touch peak which is taken to be the

approximate start of a stroke. A segment of 50ms before and 950ms after each touch

peak is extracted for processing and recognition. Gesture input tests were conducted
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to evaluate their segmentation algorithm and it was found that the system was able

to achieve a low false-alarm rate of 1.15% even with an increasing level of noise up to

61.5dB in a cafe environment, which is a noisy environment.

Algorithm 1 Algorithm for segmentation by Chen et al [5].

Input: The acoustic signal x(t), the width of moving average window Wa, the width
of signal piece Wg and three temporal thresholds T1, T2, T3

Output: The segment of each operation
−→
tg .

1: for t ∈ x(t) do
2: A(t) =

∑t+Wa
n=t E(n)

3: if A(t) > Aϵ then
4: for i > t & i < t+ T1 do
5: if A(t) < A(i) then
6: break;
7: end if
8: i++;
9: end for

10: if i == t+Wg then
11: t is the time of a Peak;
12:

−→
tg = (t - 50ms, t + 950ms), record

−→
tg ;

13: t = t + Wg;
14: end if
15: t++;
16: end if
17: end for

Zhou et al. [30] implemented a thresholding approach but included three thresholds

in their implementation: the maximum length of a burst noise segment; the time gap

between letters; and the time gap between words.

Luo et al. [18] took the thresholding approach even further by implementing a dual-

threshold scheme. This involved combining zero-crossing rate (ZCR) and short time

energy (STE) to perform the segmentation. The acoustic signals were divided into 256

samples, each 32ms in length. Luo et al. [18] defined short term energy En of an acoustic

signal x(n) as in Equation 2.1.

En =

∞∑
m=−∞

[x(m) · w(n−m)]2 (2.1)

where w is the window function and n and m are the end and start indices of a given

window as it slides over the audio signal. ZCR is used to indicate the number of times

a frame of a signal crosses the zero level of a signal, and it was defined as in Equation

2.2.
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Zn =
1

2

∞∑
m=−∞

|sgn[x(m)]− sgn[x(m− 1)] · w(n−m) (2.2)

where sgn is a function denoted as in Equation 2.3.

sgn[x(n)] =

1 x(n) ≥ 0

−1 x(n) < 0
(2.3)

Chen et al. [29] proposed an approach similar to Luo et al. [18] with a dual-threshold

scheme and found similar success with their results.

2.3.1 Discussion on Audio Segmentation

The audio segmentation techniques discussed make use of threshold schemes to mark

the start and end of salient segments in an audio stream, with the number and type of

thresholds varying. One main method observed was to use a threshold as an upper-bound

to ambient noise, and this threshold was applied to a sliding window. Furthermore,

making an assumption about the gaps between strokes and the gaps between letters

drawn is necessary to separate and segment the individual letters.

In this research, the audio segmentation used will make use of these thresholding con-

cepts.

2.4 Feature Extraction Techniques

This section will go into detail on the feature extraction techniques that were used in the

related studies. Feature extraction can be described as the process applied to a sample

to obtain key salient characteristics of that sample which can be used to recognize or

classify it by means of a classifier.

The following subsections describe prominent feature extraction techniques used in the

related studies. A discussion on these techniques follows.

2.4.1 Mel-Frequency Cepstral Coefficients Feature Extraction

An effective audio feature extraction method is the MFCC. This technique is one of

the most popular in audio recognition due to its robustness and the way it attempts
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to mimic human hearing. As a brief description of its function: MFCC is a means of

representing the short-term power spectrum of sound, based on a linear cosine transform

of a log spectrum on a nonlinear Mel scale of frequency [18]. The extraction process is

shown in Figure 2.3. The steps in the figure are explained below [18]:

• Pre-emphasis: A process of passing the acoustic signal through a high-pass filter

to raise the high-frequency portion and flatten the spectrum of the acoustic signal.

• Windowing: A sliding window/frame that is passed over the audio signal. A

Hamming window is applied to the window/frame to increase the continuity of the

left and right ends of the frame.

• Fast Fourier Transform: FFT is applied to each frame of the signal, in order to

transform the distribution of energy into frequencies and calculate the periodogram

of the power spectrum.

• Mel-filter bank: A process of applying the Mel filterbank to the power spectrum,

and then summing the energy in each filter.

• Logarithm energy: All filterbank energies are then passed through a logarithmic

function to convert them from the linear spectrum to the logarithmic spectrum.

• Discrete cosine transform (DCT): DCT is applied to the log filterbank energies to

obtain and return the DCT coefficients.

Figure 2.3: MFCC feature extraction as described by Luo et al. [18]

According to Luo et al. [18], the performance of the MFCC feature extractor decreases as

the ambient noise increases. This led them to implementing the Cochlear filter cepstral

coefficients (CFCC) and creating a hybrid of MFCC and CFCC which improved their
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accuracy. For the purposes of this research, MFCC will be sufficient as the ambient

noise will remain low in an office environment based on Premise 5 set out in Chapter 1.

Yin et al. [29] implemented MFCC with their Ubiquitous Writer system which allowed

them to recognise cursive handwriting. The approach involved frequency components in

the range of 0Hz to 10kHz, which is where the Mel filter banks were applied. The number

of MFCCs for each sound frame was set to 12 and the logarithmic energy was calculated

per frame. These coefficients were then combined with a K-Nearest Neighbours (KNNs)

algorithm for classification. This ultimately led to achieving an average accuracy of

greater than 90% in environments with an ambient noise level of 45dB and below. As

the ambient noise increased and exceeded levels of 70dB, the accuracy decreased to 65%.

This confirmed the findings of Luo et al. [18] who stated that the performance of the

MFCC would likely decrease as the ambient noise increased.

Li and Hammond[15] also implemented the MFCC feature descriptor. Their implemen-

tation used a window size of 256 and the coefficient values used were the first 12 values,

except for the first coefficient which was removed as it proved to have a negative effect

on their results. An 80% accuracy was achieved with their combination of MFCC and

dynamic time warping (DTW).

2.4.2 Spectrogram Feature Extraction

Chen et al.[5] identified that an acoustic signal represented as a Spectrogram is highly

distinguishable across various writing operations using a finger as the writing implement.

This led to Chen et al. creating Spectrogram images of the acoustic signal and combining

them with a CNN, thereby achieving an accuracy of 92.25%. The Spectrograms were

64 × 64 in size, which can readily be processed by a graphics processing unit (GPU).

They compared their Spectrogram and CNN approach to various combinations of feature

extraction and classification. Their results are shown in Figure 2.4.

Figure 2.4: Results of different combinations of feature extraction and classification
by Chen et al. [5].

Observing the figure, it is seen that their approach yields better results than other

techniques, but they state that latency can be an issue when used on a smartphone that

does not have a powerful GPU to support the Spectrogram and CNN approach.
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2.4.3 Discussion on Feature Extraction Techniques

The above section explained two common feature extraction techniques used in the

previous literature. The discussion showed that the MFCC descriptor has been tried

and tested and is therefore a good option. The MFCC descriptor is commonplace among

audio recognition applications because of its robustness and ability to mimic the human

hearing mechanism. The alternative presented in the above findings is the use of an

image-based approach i.e. Spectrograms, which display the processed signal as an image

in the time–frequency domain. While this option may potentially provide a higher

accuracy, it suffers from latency issues in the absence of a capable GPU. It may therefore

not be suitable for use on smartphones at the current time.

As such, the intention is to use the MFCC feature descriptor in this research.

2.5 Classification and Recognition

Classification is the final step in the process of audio recognition. This section will go

into detail on the classification methods that were implemented previous studies. Many

different approaches were used for classification. These approaches along with studies

that used them are covered in each of the subsections below.

2.5.1 Template Matching

Template matching is a generic term for a group of methods that match an input sample

to a series of pre-registered templates in the same format and determine the template

that best matches the input. This is used to determine the class to which the input

belongs.

Li and Hammond [15] implemented template matching using DTW, which allowed them

to match 26 handwritten Roman characters with a fixed stroke pattern with varying

speeds. The DTW algorithm was used to calculate the distance D between the input A

and each previously computed template B to determine the best match. This is shown

below in Equation 2.4.

D(A,B) =
1

N
min
F

[

k∑
k=1

d(c(k)) ∗ w(k)] (2.4)
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where c(k) is the mapping between the candidate and the template at time index k,

w(k) is the weighting function, N is the normalized value which in the case of Li and

Hammond [15] is the mean amplitude of the input signal, and the aim is to find the

optimal path of F to minimize D(A,B).

They achieved results of 80% and above in their testing and stated that future work

could include a greater noise removal system as their system performed poorly in noisy

and/or public environments. The characters that were the most common source of

misclassification errors can be seen in Figure 2.5, where the left column represents the

ground-truth character and the right column represents the incorrectly predicted char-

acter. They stated that the factors contributing to these misclassified cases could be

similarities in the number of strokes, combined with the stroke ordering, of letters.

Figure 2.5: Common misclassified characters found by Li and Hammond [15]: left
column represents the ground-truth character and the right column represents the cor-

responding incorrectly predicted character.

2.5.2 Support Vector Machines

Support vector machines (SVMs) are commonly used in the previous works in acoustic

signal recognition which makes them a focal point in this research. SVMs were originally

developed by Cortes and Vapnik [7]. SVMs were originally intended to be used for

binary classification but they were later adapted to multi-class classification problems.

According to Meyer [20], SVMs compute the optimal hyperplane between classes by

maximizing the margin between the points of either class closest to the opposing class.

These points lie on the margin and are called support vectors, and the mid-point of the

margin is the optimal hyperplane. This can be shown in Figure 2.6.

As explained by Hearst et al. [11], a key idea of Support Vector Machines is to map

training data non-linearly onto a higher-dimensional feature space via a kernel function.

This makes it possible to compute the separating hyperplane in the input space without

explicitly calculating the mapping in the feature space. This was illustrated by Hearst

et al. [11] in Figure 2.7.
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Figure 2.6: SVM Classification as illustrated by Meyer [20].

Figure 2.7: The idea of SVMs as explained by Hearst et al. [11] which shows the
creation of a non-linear hyperplane in input space by mapping training data onto a

higher-dimensional feature space via a kernel function.

In the literature, there are various different applications of SVMs, either as the primary

classification method or as a comparative technique to other classification methods.

The following paragraphs will go into detail of the results of previous studies and the

comparisons of SVMs to other classification methods.

Wu et al.[27, 28] implemented an SVM for their audio-based digit recognition system,

which aimed at recognizing the 26 uppercase letters which were written on a surface next

to a set of transducer microphones as mentioned in Section 2.2.1. The system yielded a

91% accuracy on a semi-seen dataset with 5 test subjects.

Another set of testing was carried out with 3 additional subjects, each of which wrote

each letter 6 times. This was called the unseen test dataset as these subjects were not

utilised in the training phase at all. This dataset yielded a 77% accuracy across all
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Classification Method Training Samples Accuracy (%) Time (s)

SVM (C=0.5, γ=0.08)

5 73.00 0.34
10 84.00 0.50
15 91.30 0.66
5 93.20 0.78

KNN (k=7)

5 57.00 0.09
10 80.00 0.16
15 90.00 0.29
5 91.10 0.36

Table 2.3: Comparison of KNN and SVMs as conducted by Luo et al. [18].

unseen test subjects.

Luo et al. [18] implemented an SVM as their primary classification method. An RBF

kernel was chosen to be able to achieve a nonlinear mapping. The RBF kernel was noted

as being particularly suitable due to having a small number of optimizable parameters.

They compared an SVM to KNNs, and found that they were able to achieve a higher

accuracy of 93.2% with the SVM as compared to 91.1% with KNNs, when training on

7 gestures with 20 samples each.

The results of the comparative experiment can be seen in Table 2.3. They concluded that

SVMs have a better performance, especially when the number of samples is relatively

small, and the training time for SVMs increases at a slower rate than that of KNNs,

even if the training time of KNNs is lower to begin with.

Haishi et al. [9] implemented a smartwatch as their primary recording device as men-

tioned previously. In their research they decided to conduct a comparison between

popular classification methods: KNNs, SVMs and CNNs. Given that their system was

designed for smartwatches, they required the classification process to be particularly

efficient. They therefore determined the time cost of letter recognition along with the

accuracy. Their dataset consisted of 10 subjects writing an essay consisting of 300 words

in uppercase. The results of their experimentation can be seen in Table 2.4.

Table 2.4 shows that CNNs and SVMs are very efficient when compared to KNNs when

comparing time in seconds, but KNNs and CNNs provide a higher accuracy compared

to SVMs in this application.

Method Accuracy (%) Time (s)

KNN 80.00 3.00
SVM 60.00 0.30
CNN 82.00 0.10

Table 2.4: Results of letter recognition by Haishi et al. [9].
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Figure 2.8: Word clusters by Yu et al. [31]

Yu et al. [31] proposed the use of “recognition clusters” whereby letters were clustered

into three groups, each of which is recognized separately to improve on accuracy. The

clusters can be seen in figure 2.8. The clusters allowed them to build specialized SVMs

per cluster of letters. This was done by segmenting the audio signal not only by words

but also calculating the number of strokes in each letter. This allowed them to select

which SVM to use for prediction. For training, they had 2 subjects write 26 Roman

characters 20 times, and for testing 3 subjects wrote each character 20 times. During

training it was stated that the location of writing and smartphone were fixed.

The system was tested in three different ways: testing on the training data in the same

location that training data was collected; testing with unseen data in the same location

that training data was collected and labelled; and testing with unseen data in a different

location to the one training data was collected. The results obtained by the system are

summarised in Figure 2.9 which shows: 26.79% for unseen data with different writing

locations; 43.01% for seen data, with a different writing location (Case 1); and 64.94%

for seen data in the same writing location (Case 2).

Observing Table 2.5, it can be seen that using either unseen data or using an unseen

location results in a significant reduction in accuracy. A complete breakdown of the

accuracies per recognised letter is provided in Figure 2.9, and the figure shows a large

amount of variation in accuracy across letters, as a result of similarities in the number

or pattern of strokes in various letters.

Zhou et al. [30] compared SVMs, KNNs and a custom-built classification algorithm

consisting of an Inception-LSTM network, which is a neural network combined with

time series modelling. The inputs into their Inception-LSTM comprised of short-time

power spectral density (stPSD) features. They obtained a 28.7% accuracy with the SVM

Method Accuracy (%)

Data Unseen + Loc Unseen 26.79
Data Seen + Loc Unseen 43.01
Data Seen + Loc Seen 64.94

Table 2.5: Results of letter recognition by Yu et al. [31].
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Figure 2.9: Recognition accuracy by Yu et al. [31] in 3 different scenarios.

as opposed to 16.5% and 73.8% for their KNN and Inception-LSTM implementations

respectively. The big difference in accuracy can be attributed to the fact that their users

were allowed to write with differing stroke patterns; the SVM struggled to differentiate

between single stroke versus multi-stroke characters and the ordering of the characters.

Chen et al. [5] implemented their IPanel system which uses the images of spectrograms

combined with a CNN for classification. This method was first compared to a range

of other implementations including an SVM and MFCC combination. These results

were shown previously and are illustrated in Figure 2.4. One of the conclusions in that

application was that the SVM and MFCC combination may not be able to effectively

distinguish between a very large number of classes, in that case 43 different types of

actions (10 digits, 26 alphabetical characters and 7 gestures) that they were attempting

to recognise, and in such cases a different setup may be required.

2.5.3 Neural Networks

This section explains the approaches in the literature that utilised Neural Networks, and

their potential pros and cons.
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Figure 2.10: Neural Network configurations by Schrapel et al. [23]

Schrapel et al. [23] utilised a neural network for their Pentelligence handwriting recogni-

tion system as their classification method of choice. Their reasoning was that a template

matching approach would not be sufficient as there are multiple different ways that peo-

ple would write various characters, with a different number of strokes and/or a differing

stroke pattern. A good example is the number ’5’ which can be written in many ways.

Another factor in their decision was the fact that it is challenging to conduct feature se-

lection for audio because the microphone can provide noisy data. A neural network, they

argued, would be able to solve this problem by automatically weighting and selecting

features.

A training dataset of 6169 handwritten digit samples was collected. The different fea-

tures of the writing included audio, motion, and handwriting. They compared four

different neural network configurations, with different input features, namely: audio

only; motion and pen pressure; audio and pen pressure; and all three features combined.

The configuration of the four networks, along with the types of input and the number

of neurons on the hidden layers of each associated network, can be seen in Figure 2.10.

The average accuracy achieved by each configuration is summarised in Table 2.6.

Schrapel et al. identified the potential of overfitting and therefore utilized dropout which

randomly removes a set of selected neurons and their connections. A 25% dropout rate

achieved the greatest results which implies there was an element of overfitting that was

being corrected.

As shown in Table 2.6, utilising only Motion Pressure achieved the greatest accuracy.

This led to their final classification system first recognizing an unknown digit using

the motion and pressure data and utilizing the audio data to validate the prediction.

They were able to achieve an overall accuracy of 78.3%. It is important to note that

these results were achieved using a specialized writing device with several sensors which
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allowed the utilisation of more features than with a simple writing implement such as a

pen combined with a microphone.

2.5.4 Discussion on Classification and Recognition

This section aimed to introduce the various methods of classifying and recognizing hand-

written characters. The discussion showed that a range of different classifiers have been

used in previous studies, with varying levels of success. Ultimately, it appears that the

context of use is important to consider, as are aspects of the hardware setup such as

the writing implement, writing surface and audio capture device, as well as the feature

descriptor used. Based on this and based on the success registered by Wu et al., this

research aims to use SVMs coupled with MFCCs and the hardware setup explained

previously, to investigate the extent to which this can be successful.

As discussed, SVMs have been used in a variety of studies. The results are mixed and

vary between 90% and 60% accuracy. This depends on the context of use and a range of

factors as described previously. For fixed stroke patterns and a moderately large number

of classes, as is the case in this research, they hold promise, and are therefore used in

this research.

2.6 Summary

This chapter aimed to explain previously implemented systems which utilise similar

techniques that would be required in this research.

After providing an overview of the studies selected for inclusion in this research, the

literature survey detailed the following aspects of the related studies: audio capture;

audio segmentation; feature extraction; and classification and recognition.

With respect to audio capture, it was found that many related studies focused on utilising

a smartphone to capture audio as written on a hard surface with a pen. Smartphones, as

an audio capture device, were found to be capable of providing sufficiently high accuracy

Network Accuracy (%)

Motion & Pressure 79.2
Audio only 58.4

Audio & Pressure 60.4
All features 60.6

Table 2.6: Results of the four network configurations by Schrapel et al. [23].
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recognition. It was also seen that the greatest impact on audio capture is the writing

implement and writing surface, both of which affect the loudness and sharpness of the

acoustic signal, which in turn affect the ability to accurately recognize handwriting.

Finally, the writing location was found to be equally important, where the best location

appears to be on either side of the smartphone.

In terms of audio segmentation, the audio segmentation techniques discussed were found

to make use of thresholding schemes to mark the start and end of salient segments in

an audio stream, with the number and type of thresholds varying. One main method

observed was to use a threshold as an upper-bound to ambient noise, and this threshold

was applied to a sliding window. Furthermore, assuming about the gaps between strokes

and the gaps between letters drawn is necessary to separate and segment the individual

letters. In this research, the audio segmentation used will make use of these thresholding

concepts.

The discussion on feature Extraction techniques explained two common feature extrac-

tion techniques used in the previous literature. The discussion showed that the MFCC

descriptor has been tried and tested and is therefore a good option. The MFCC de-

scriptor is commonplace among audio recognition applications because of its robustness

and ability to mimic the human hearing mechanism. The alternative presented was the

use of an image-based approach i.e. Spectrograms, which displays the processed signal

as an image in the time–frequency domain. While this option may potentially provide

a higher accuracy, it suffers from latency issues in the absence of a capable GPU and is

therefore not suitable for use on smartphones at the current time. As such, the intention

is to use the MFCC feature descriptor in this research.

Finally, the discussion on classification and recognition aimed to introduce the various

methods of classifying and recognizing handwritten characters. The discussion showed

that a range of different classifiers have been used in previous studies, with varying

levels of success. SVMs were shown to have been used in a variety of studies with

results varying between 60% and 90% accuracy.

Ultimately, the discussion made it apparent that the context of use is important to

consider, as are aspects of the hardware setup such as the writing implement, writing

surface and audio capture device, as well as the feature descriptor used. Based on this,

and based on the success registered by Wu et al., this research aims to use SVMs coupled

with MFCCs and the hardware setup explained previously, to investigate the extent to

which this can be successful. For fixed stroke patterns and a moderately large number

of classes, as is the case in this research, they hold promise, and are therefore used in

this research.
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The next chapter discusses the different tools and techniques required and used in this

research to implement the proposed handwriting recognition system.
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Chapter 3

Tools and Techniques for

Handwriting Recognition

This chapter will outline the different tools and techniques required and used in this

research to implement the proposed handwriting recognition system, inline with the

research question and sub-questions posed in Chapter 1.

Similar to the previous chapter, the organization of this discussion on tools and tech-

niques corresponds to tools and techniques pertaining to the research objectives set out

in Chapter 1, where each objective can be considered to be a task to be implemented

towards realizing the final proposed smartphone-based handwriting recognition system.

Accordingly, the tasks in the overall system are depicted in Figure 3.1 and the rest of

the chapter will be sub-divided according to the tasks in the figure, where each section

will delve into the tools and techniques used to achieve each of these tasks. Sections

3.1 through 3.4.1, respectively, discuss tools and techniques towards the following tasks:

audio signal capture; audio segmentation; feature extraction; and classification.

At the end of this chapter, the reader will be able to understand the techniques and

tools used in this research ahead of the implementation in the next chapter.

3.1 Audio Signal Capture

The first step in the process of recognising handwritten characters is capturing audio

emitted on an intended writing surface. This section will showcase an example of what

a handwritten signal looks like when depicted as a sound wave. This provides a baseline

32
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Figure 3.1: Overview of the proposed handwriting recognition system.

of what the audio signal starts off as before it is processed in subsequent steps of the

process in the handwriting recognition system.

Figure 3.2 is a visualization of the raw audio signal of 10 consecutive handwritten ‘B’s

as captured by a single microphone. The ‘B’s in the signal are represented by spikes in

the audio signal, the first four of which have been demarcated by the red region lines,

separated by brief regions of flat or near-flat signal between the bulges, representing the

brief silences between the letters. The audio gap is left between each letter in order to

make it easier to segment the audio into 10 separate audio signals. The reason for this

is to allow a user to write a continuous string of letters without stopping in order to

make the system more readily usable in a real-world scenario.

It is also important to note, by observing the figure, that there is a wide visual variation

between the acoustic patterns of each ‘B’ drawn, although there are also some common
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Figure 3.2: Visualization of the raw audio signal of 10 consecutive handwritten ‘B’s
as captured by a single microphone. The regions of the audio signal corresponding to

the first four ’B’s have been indicated by the read region lines.

features.

3.2 Audio Segmentation

This section explains how audio segmentation is carried out. The goal of audio seg-

mentation in this context is to split the audio signal into separate salient parts, in this

case the parts of the input audio signal corresponding to each of the hand-drawn let-

ters, which can then be individually classified and recognized. The audio segmentation

algorithm utilised in this research was proposed by Robert [12]. This method will be

explained below.

An overview of the algorithm follows. The audio segmentation strategy devises a means

of separating letters by assuming that the user will observe a brief silence between

written letters. The algorithm then works by detecting key points of silence in the input

audio signal as determined by an empirically determined silence threshold measured

in decibels-relative-to-full-scale (dBFS)[19] which is applied to a sliding window that

the algorithm slides over the audio signal. The key points of silence are combined into

ranges that specify ranges of silence in the input signal. Points of non-silence, in this

case corresponding to written letters, are then taken as ranges in which silence is not

observed in the input signal.
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Based on the above description, assume that the dBFS of the input signal S is repre-

sented by D which is a set of dBFS values corresponding to each sample in the input

signal given by {Di|i ∈ {1, 2, . . . , Ns}} with Ns representing the number of samples in

S. The first step in the process is then to determine the set of indices K of key samples

at which silence is observed in the signal; an index k is in K if the root-mean-square of

the signal dBFS starting from k over a window of length L falls below a pre-determined

silence threshold Tl as follows:

K =

k if

[√√√√ 1

L

k+L∑
i=l

D2
i

]
< Tl


∀ k ∈

{
1, (sL + 1), (2 · sL + 1), (3 · sL + 1), . . . ,

(⌊
(Ns − L)

sL

⌋
· sL + 1

)} (3.1)

Where sL is a step size by which to increment the position of the sliding window, the

value of which is typically set to the number of samples corresponding to 1ms in the

audio signal.

Once the points K are detected, the indices in K corresponding to the start and stop

indices of continuous silent ranges R = {(l1, r1), (l2, r2), . . . , (lNR
, rNR

)} are determined.

This is done by scanning through indices k ∈ K and taking any index k to be the start

lz = k of a new range number z, and (k − 1) to be end point r(z−1) = (k − 1) of the

previous range number (z − 1) if k − (k − 1) > sL i.e. if there a jump in index greater

than the sliding window step size.

Having done this, the start and stop indices of silent portions in the input audio signal

have been obtained in R. Accordingly, the portions of the audio signal that corre-

spond to non-silence N are taken to be the samples that start at the end of each silent

range and stop at the beginning of the next silent range i.e. N = {(r1 + 1, l2), (r2 +

1, l3), . . . , (rNR
, N)}. These indices are used to subdivide the original audio signal into

the constituent non-silent segments
{
(Sr1+1, . . . , Sl2), (Sr2+1, . . . , Sl3), . . . , (SrNR

, . . . , SNs)
}

for further processing. An example of the audio signal of a segmented ‘B’ is shown in

Figure 3.3.

3.3 Feature Extraction

The feature extraction technique used in this research is the Mel-Frequency Cepstral

Coefficients (MFCC). The purpose of the MFCC process is to convert a signal from the
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Figure 3.3: An example of a single B extracted from the audio signal in Figure 3.2

time domain to the frequency domain in the form of a frequency spectrum by means

of a Fourier transform, followed by converting the frequency spectrum into a spectrum

of spectrums, known as a cepstrum. Figure 3.4 was provided in a previous chapter

but has been repeated here for convenience. The figure depicts the main steps involved

in computing the MFCC feature descriptor given an audio signal. The following sub-

sections follow the progression through the steps in the figure and go into detail to

explain each step and provide examples of the output of each step.

Figure 3.4: MFCC feature extraction process as described by Luo et al. [18]
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3.3.1 Pre-emphasis

Pre-emphasis is the process of passing the acoustic signal through a high-pass filter in

order to emphasize the higher frequencies of the audio signal. Assuming that S(0) is

the audio input signal corresponding to a single handwritten letter segmented from the

original audio recording as previously described—with the newly introduced superscript

(0) indicating that the audio signal segment is initially unprocessed—and assuming that

S(0) consists of Ns equally spaced sampling points indexed by the symbol n given by

S(0) = {S(0)
n |n ∈ {1, 2, . . . , Ns}}, the result of applying pre-emphasis to S(0) is S(1) as

expressed in Equation 3.2.

S(1)
n = S(0)

n − βS(1)
n ∀ n ∈ {0, 1, . . . , (Ns − 1)} (3.2)

Where β represents a pre-emphasis factor typically set to a value between 0.9 and 1.0,

with a value of β = 0.97 used in this case. An example of pre-emphasis applied to Figure

3.3 can be seen in Figure 3.5

Figure 3.5: Example of the audio signal in Figure 3.3 after pre-emphasis.

3.3.2 Framing and Windowing

The pre-emphasised audio signal is segmented into smaller overlapping blocks/frames

of typically 25ms in length, where consecutive frames typically overlap each other by

10ms. While these values may be adjusted, they are the most commonly used values

with the MFCC feature descriptor and are therefore used in this research.
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Figure 3.6: Framing on top of the pre-emphasized signal in Figure 3.5.

An example of framing can be seen in Figure 3.6. The figure illustrates how the signal

is split into individual overlapping frames, visually represented by the different coloured

rectangles, each of which has a length of 25ms. To be precise, it should be noted that

the resulting frame length denoted by Ns, given an input signal sampled at 44.1kHz, is

given by Ns = ⌈0.025s× 44100Hz⌉ = 1103 samples. Accordingly, the notation Fj,k will

be used to refer to the kth sample in frame index j, noting that each frame consists of

Ns samples.

Each frame is then convolved with a Hamming window. This windowing operation is

designed to taper the start and end of the signal to 0, and keep the continuity of the

signal, in order to produce a signal that conforms to the requirements of subsequent

steps in the process. The Hamming window function W can be found in equation 3.3.

W (k) = 0.54− 0.46 cos

(
2kπ

Ns − 1

)
, ∀ k = {0, 1, 2, . . . , (Ns − 1)} (3.3)

where the length of the Hamming window is set to Ns in order to align with the frames

with which it will be convolved, and k is the sample index within the Hamming window

given by k ∈ {0, 1, . . . , (Ns − 1)}. The following equation, Equation 3.4 describes the

application of the Hamming window to obtain the windowed frames S
(2)
j,k for all frames

j:
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S
(2)
j,k = W (k) ∗ Fj,k, ∀ k ∈ {0, 1, 2, . . . , (Ns − 1)} (3.4)

Figure 3.7: Example of a Hamming window that is applied to an audio signal: (Top)
The original audio signal; (Bottom) Result of applying the Hamming window to the

signal.

The result of applying this process to the audio signal on the top of Figure 3.7 is shown

in the bottom of the same figure.

3.3.3 Fast Fourier Transform

The Fast Fourier Transform (FFT) is an efficient implementation of the discrete Fourier

transform (DFT) for converting an audio signal from the time domain to the frequency

domain. Converting the signal into the frequency domain is required in subsequent steps

of the MFCC feature descriptor and also corresponds to human hearing. The FFT is

applied to each frame resulting from the previous step in the process. The application of

the FFT to each frame j is defined in Equation 3.5. Of note is the change in indexing of

the resulting S from k to f indicating a change from the time domain to the frequency

domain.

S
(3)
j,f =

Ns−1∑
k=0

fp exp

[
−i2π

pk

Ns

]
∀ k ∈ {0, 1, 2, . . . , Nk} (3.5)

where fp is the p-th frequency and Nk is the number of FFT bins to use in the com-

putation which is typically set to Nk =
(
Ns
2 − 1

)
. This is followed by a computation
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of estimates of the spectral power at each frequency in each frame ȷ which is given by

Equation 3.6:

S
(4)
j,f =

1

Ns

∣∣ S(3)
j,f

∣∣2. (3.6)

The result of applying this process to the audio signal in Figure 3.8a can be seen in

Figures 3.8b and 3.8c.

Figure 3.8: a) Shows the individual frame after a Hamming window has been applied
b) the resulting frequency spectrum after FFT c) an illustration of the spectral power

of the frame.
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3.3.4 Mel Scale Filtering

Mel-scale filtering uses a series of triangular filters which mimic the way humans perceive

sound. The filtering scheme is based on a non-linear frequency scale called the Mel-scale,

which is a psychoacoustic measure of pitch as judged by humans [6].

The first step in Mel-scale filtering is to assign each frequency of the power spectrum into

sets of weighted bins on the Mel scale. This is done by taking the smallest and largest

frequencies in the spectrum and converting them to the Mel scale, followed by segmenting

the converted frequency range into a desired number of equally spaced segments called

bins, also referred to as Mel filters. To transform a frequency f into the Mel-scale, the

following formula shown in Equation 3.7 is used.

m = 2595log(1 +
f

700
) (3.7)

The Mel-scale is logarithmic which means that equally sized bin widths in the Mel-scale,

once converted back into the frequency domain, yield actual bin widths that increase

proportional to the frequency.

To convert from the Mel-scale back to the frequency domain, Equation 3.8 is used.

f = 700(10
m

2595 − 1) (3.8)

Assuming that a total of Nq Mel filters are desired to be used, this gives rise to exactly

(Nq + 2) bin boundaries which demarcate the extent of each Mel bin. The boundaries

can be denoted as {d0, d1, . . . dNq , dNq+1}. Accordingly, the following piece-wise defined

function MF q(f) defines the Nq Mel filters:

MF q(f) =



0 if f < dq−1

f − dq−1

dm − dq−1
if dq−1 ≤ f < dq

dq+1 − f

dq+1 − dm
if dm < f ≤ dq+1

0 if f > dq+1

(3.9)

The image in Figure 3.9 illustrates the resulting filterbanks when using Nq = 10 filters,
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and it can be observed that the width of the filters increase as the frequency of the

spectrum increases to the right. Practically speaking, a typical value of Nq = 26 is used

in most applications.

Figure 3.9: Illustration of Mel filterbanks where Nq = 10.

3.3.5 Logarithmic function

Each calculated filter is then applied to the power spectral energy S
(4)
j,f of each frame j

produced in Equation 3.6 and the result is compressed to a logarithmic scale as shown in

Equation 3.10. This has the effect of compressing the filter energy of each filter, thereby

obtaining the perceived loudness of each filter on a logarithmic scale.

S
(5)
j,q = log

[ f∑
f=0

mS
(4)
j,f ·MF q(f)

]
∀ q ∈ {1, . . . , Nq} (3.10)

It is once again useful to note the change of indexing from f in S(4) to q in S(5), indicating

that the result corresponds to Mel filters Nq.

3.3.6 Discrete Cosine Transform

The next step is to apply the Discrete Cosine Transform (DCT) to each log-filter energy

to obtain a spectrum of the log-filter spectrum i.e. a spectrum of the spectrum, referred

to as “cepstrum”. Equation 3.11 summarizes this process.

S
(6)
j,c =

Nq∑
q=1

S
(5)
j,q cos[

c(2q − 1)π

2Nq
], ∀ c ∈ {0, 1, 2, . . . , Nq} (3.11)
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where c is the cepstrum index. It should be noted that the newly formed S
(6)
j,c comprises

of a series of cepstrum values or coefficients, which are the cepstral coefficients (CCs)

in the MFCC feature descriptor. In practice, a value of Nq = 26 yields 26 CCs, and

of these only the first 13 are used, since the second set of 13 CCs represent extremely

fast-paced changes in the underlying audio signal which are not considered to be useful.

3.3.7 Delta Features

The previously calculated CCs describe only the power spectrum within each individual

frame. It has been found that speech audio also contains the trajectories of the CCs

over time i.e. across frames. Therefore, a means of computing a representation of these

trajectories and appending them to the previously calculated CCs provides a feature

vector containing more information that is potentially useful. One representation of the

dynamic changes between frames are the first and second derivatives denoted as ∆S
(6)
j,c

and ∆2S
(6)
j,c , respectively. Assuming a large enough sampling rate, these derivatives can

be approximated by:

∆S
(6)
j,c = S

(6)
j+1,c − S

(6)
j−1,c, ∆2S

(6)
j,c = ∆S

(6)
j+1,c −∆S

(6)
j−1,c (3.12)

The final feature vector Vj for a given frame j is then constructed by concatenating the

CCs and the first and second derivatives as shown below:

V⃗j = [S
(6)
j,c , ∆S

(6)
j,c , ∆2S

(6)
j,c ] ∀ c ∈ {0, 1, 2, . . . , Nq} (3.13)

Finally, the feature vector for the entire original audio sequence V⃗ is constructed by

concatenating the feature vectors V⃗j for all frames j as follows:

V⃗ = [V⃗j ] ∀ j (3.14)

3.4 Classification Using Support Vector Machines

Support Vector Machines (SVMs) are a classification algorithm which aim to determine

a decision boundary with the greatest margin between points of two classes in a given

feature space. Figure 3.10 shows a basic binary linear support vector classification

problem. Assuming that the black and white circles in the figure represent data samples



http://etd.uwc.ac.za/

Chapter 3 Tools and Techniques for Handwriting Recognition 44

expressed in terms of two arbitrary features X1 and X2, and that the samples represent

two target classes—black and white—belonging to a positive class and negative class,

respectively. There are numerous potential decision boundaries that can be used to

separate the points of the two classes. Three example decision boundaries have been

depicted in the figure and denoted as lines H1, H2 and H3. There are two important

factors to consider when evaluating decision boundaries. The first is that some decision

boundaries may effectively separate samples of the two classes, such as H2 and H3,

while other may not, such as H1. The second factor to consider with respect to decision

boundaries is that the degree of separation achieved by some boundaries may be better,

e.g. H3, than others, e.g. H2.

It can be seen that H3 separates the points of the two classes more effectively than H2.

In this example, H3 is, in fact, known as the maximum margin classifier which because

it separates the two classes while ensuring the maximum possible distance between

points of the two classes. The premise of SVMs is to achieve this maximum margin

decision boundary. To achieve this, SVMs determine the data samples of either class

that are closest to the opposing class, known as support vectors, and draw a boundary

that maximally separates these points, hence the name Support Vector Machine. The

support vectors are therefore defined as the the subset of data points in each class which

assist in the definition of the maximum margin classifier.

Figure 3.10: Example of linear SVM classification

The example in Figure 3.10 is a simple linear classification problem as the points in the

two classes are linearly separable. In a real world example, data is not always readily

linearly separable. One of the strengths of SVMs is the ability to readily map the

data onto a higher-dimensional feature space in which data which is normally linearly
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inseparable becomes separable. This is done by means of SVM kernels. The four most

common kernel functions are defined as:

Linear Kernel:

k(x, y) = (xT y) (3.15)

Polynomial Kernel:

k(x, y) = (γXT y + b)d, γ > 0 (3.16)

Radial Basis Function (RBF) or Gaussian kernel:

k(x, y) = exp(−γ||x− y||2), γ > 0 (3.17)

Sigmoid Kernel:

k(x, y) = tanh(γ(xT y) + b), γ > 0 (3.18)

In the above equations, γ and d are kernel parameters and the performance of SVMs

depend on utilizing an appropriate kernel and corresponding parameters. In previous

works, the RBF kernel was shown to outperform the linear kernel, and it is generally

better than the sigmoid kernel [14]. The RBF kernel is comparable to the polynomial

kernel but because of the optimization complexity of the polynomial kernel, the RBF

kernel is the optimum choice for this research, because of its performance combined with

its efficiency.

3.4.1 Optimization

Not all datasets are created equal, therefore parameter optimization is required to accli-

matize the classifier to the dataset being used to ensure the best results. The optimiza-

tion method in this research is grid search. Grid search is used to optimize RBF kernel

parameters γ and C using cross validation to find the best hyper-parameter combination

that provides the best training cross-validation accuracy.

K-fold cross validation is done by splitting the dataset into K subsets. Iteratively, one

subset is used as a test set and it is then tested against the classifier training on the

data of the remaining (K− 1) training sets. A final cross-validation accuracy across all

K subsets is then obtained by taking an average.
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Combining the concepts of grid search optimization and K-fold cross validation, the op-

timization process then involves determining cross-validation accuracies for a range of γ

and C pairs on a grid and determining the pair with the highest cross validation accu-

racy which is selected for training the final SVM classifier model. A typical optimization

parameter range for γ and C is C ∈ (2−5, 2−3, ..., 215) and γ ∈ (2−15, 2−13, ..., 23), which

is the range used in this research. In terms of K-fold cross-validation, in this research

K=10 was used.

Figure 3.11: Example of grid search to find optimal training parameters as explained
by Syarif et al. [24].

Figure 3.11 shows the process of grid search optimization and at the end of the process,

the optimal γ and C are obtained and can then be used to train the final model. Grid

search optimization is generally beneficial and is mostly capable of locating good op-

timum parameters. The technique is however weighed down by processing speed as it

is resource intensive. When deployed on a CPU, the procedure can be extremely time-

consuming. However, with the introduction of the LIBSVM-GPU library [2], the speed

of the procedure is increased considerably by leveraging parallel processing on Nvidia
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GPUs. The improvement is visually illustrated in Figure 3.12 in which it can be seen

that the CPU version of LIBSVM takes exponentially longer to process as the number

of training samples increases, whereas the GPU version experiences a slight linear in-

crease in time, due to the ability to parallel process samples simultaneously. With the

increased optimization performance in grid search cross validation when using a GPU,

iterating across parameter pairs becomes easier, which makes it possible to explore a

larger number of options and find a more optimal set of parameters in a reasonable

amount of time.

Figure 3.12: Performance comparison between standard LIBSVM and LIBSVM-GPU
as illustrated by Athanasopoulos et al. [2]

3.5 Summary

This chapter explained the different techniques that are utilised in this research to be

able to segment audio signals from subjects writing multiple Roman alphabet letters at

a time, extract features from each segmented letter and classify each of them.
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Chapter 4

Design and Implementation

This chapter details the steps that were taken to implement the system in this research

to meet the research objectives set out in Chapter 1. The goal of this chapter is to assist

the reader in understanding the steps that were taken with the possibility of replicating

the results that were obtained in the following chapter.

The rest of the chapter is organized as follows: Section 4.1 describes the setup used to

capture audio, including the recording device, the recording application and the envi-

ronment used to collect data for experimentation; Section 4.2 discusses the procedures

used to process the audio, including segmenting audio signals into constituent words,

followed by the feature extraction; Section 4.3 describes the dataset collected and the

process of training and optimizing the SVM classifier on the dataset; the chapter is then

concluded.

4.1 Audio Capture

The audio capture task in the proposed system is carried out by means of a smartphone.

Most modern smartphones have 2 microphones—one on the bottom, and another on

the top—to remove ambient noise from the signal. The following subsections provide

further detail on the audio capture of the proposed system.

4.1.1 Recording Device

For the purposes of this research, a Samsung Galaxy Note 10 Plus smartphone was

selected and utilised as the recording device. Along with the recording device, another

important factor is the writing location. Referring to Figure 4.1, the writing location for

48
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Figure 4.1: Various possible writing locations, adapted from Chen et al. [5]

this research was on the right-hand side of the smartphone, indicated as Region “R2”

in the figure. As explained in Chapter 2, Chen et al. found that this location is suitable

for this task. Furthermore, this location facilitated the writing task because all of the

test subjects were right-handed, which led to a more natural writing position relative to

the position of the smartphone.

4.1.2 Recording Application

To complete research objective 1 set out in Chapter 1, a mechanism to utilise the micro-

phones on the smartphone for further processing by the proposed system needed to be

developed. To be able to do this effectively, the default recording app on a smartphone

would not be sufficient as it is a stand-alone app that can not be easily integrated into

the proposed system. Recording with this app would also result in recording latency

making it generally unsuitable. For this reason, a web app was developed which can be

accessed from the mobile browser on the smartphone. A screenshot of the web app is

provided in Figure 4.2.

The web app consists of an HTML web page, with a JavaScript recording framework

which requests access to the microphone of the device on which the web app is running.

To process the audio data, there is a Flask Python application hosted using Amazon Web

Services (AWS) Lambda with AWS API Gateway to allow .wav files to be uploaded to

AWS S3 which is a cloud storage system. Once the data file is uploaded to AWS S3, an

AWS Lambda function is triggered which takes the audio recording and splits it into the

individual letters, and these are then saved into a folder labelled with the appropriate

letter. This is how the data collection was conducted in an efficient manner. The data

collection and pre-processing process can be seen in Figure 4.3.
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Figure 4.2: Screenshot of the recording application created for the purposes of this
research.

Figure 4.3: Data collection process used in this research.
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Having completed the development of this application, research objective 1 outlined in

Chapter 1 was successfully achieved.

4.1.3 Environment, Surface and Recording Implement

This subsection describes the conditions under which the datasets for this research were

collected. The first aspect of this is the environment in which the data was collected.

The main factors for choosing an environment to collect data were ease of access and

accessibility to test subjects. Therefore the most logical place to collect data would be

the workplace of this researcher. The meeting room at the researcher’s workplace, seen

in Figure 4.4, was used. The room is quiet and large with curtains against the walls

which absorb a small amount of the outside noise. It is important to note that the

room was not completely insulated from outside noise in order to keep the conditions as

natural to a real-world usage as possible.

Figure 4.4: Environment used for data collection.

Section 2.2.2 in Chapter 2 discussed the fact that the writing surface has an impact on

the outcome of the results and it was illustrated that the surface with the best results

is one that provides the greatest decibel level from writing on its surface. A close-up

image of the writing surface used in this research—the meeting room table—can be seen

in Figure 4.5.

The writing implement used by all the test subjects was required to give off an audible

sound signature which can be adequately received by the smartphone microphones.

Therefore a wooden chopstick as shown in Figure 4.6 was used and the test subjects

would use the back of this chopstick to write. The back of the chopstick emits a deeper

more audible sound which is not as sharp as the thinner tip.
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Figure 4.5: Close-up of the writing surface used in data collection.

Figure 4.6: Writing implement used by the test subjects in data collection.

The conditions under which each test subject was required to record data were setup

to ensure a consistent recording process, but there were some shortcomings. Multiple

attempts were required to allow the subjects to correctly and accurately write each letter

multiple times in the correct stroke pattern without stopping the recording.

4.2 Audio Processing

Audio processing is the next step in the process and it is arguably the most important

step once the dataset has been collected. This section will go into the implementation

details of the each audio processing technique explained in Chapter 3.

4.2.1 Audio Segmentation

The process of audio segmentation is essential because of the continuous recording

method that is implemented in this research. Different people have different speeds

of writing. An example of a signal captured using the system can be seen in Figure 4.7

which consists of 10 ‘B’s written consecutively with brief gaps between them.
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Figure 4.7: Example of 10 ‘B’s writing by a user as shown previously in Figure 3.2

The audio segmentation is conducted using the algorithm explained in Section 3.2. To

accurately extract each individual character from a single audio signal, writers were

required to observe a brief pause between letters. This allows the audio segmentation

algorithm to be able to differentiate between silence between strokes and silence between

letters. To detect silence, a threshold value Tl = −16 dBFS, minimum silence length

L = 1000 ms, and step size sL = 1 ms, were used. The output of the segmentation is

depicted in Figure 4.8.

Figure 4.8: Each individual ‘B’ extracted from the signal in Figure 4.7.

The process of splitting the audio signal on silence is implemented upon data collection

as explained earlier, and also in real-time during testing and in the final live system

implementation steps to ensure consistency. Once a subject has completed writing a

series of characters, the file is then automatically sent to a process which attempts to

create individual audio files.
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At this stage, it can be said that Objective 2 set out in Chapter 1 has been achieved

with a high segmentation success.

4.2.2 Feature Extraction

The feature extraction portion of the audio processing procedure utilises the MFCC

feature extraction process explained and outlined in the previous chapter. For this

implementation of MFCC, an FFT size of Nk = 2048 was used. Furthermore, the

number of Mel filters Nq = 26 was used. As an example, the resultant MFCC feature

vector for an individual letter ‘A’ can be seen in Figure 4.9.

Figure 4.9: Resultant feature vector of MFCC feature extraction applied to a single
‘A’ character.

As such, at this stage Objective 3 set out in Chapter 1, to be able to successfully

implement MFCC on segmented letters, has been achieved.

4.3 Classification

Once all of the MFCC feature vectors for the training dataset have been created, the

next step is to begin classification using the SVM classifier. The following subsections

describe the process and details of the dataset; optimization implementation; the training

phase; and the testing phase of the system. A description of the dataset and how it was

collected will be provided; the optimization method and any shortcomings therein; the

results of the training phase; and finally the results of the initial testing phase which is

designed to provide a benchmark for whether the resultant model is able to generalise

and perform well.
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4.3.1 Classes and Data

The objective of this research is to be able to recognize handwritten characters. In

the case of this research the classes are defined as the 26 different handwritten English

upppercase letters which are written by different users. In accordance with Premise 3 set

out in Chapter 1, the stroke patterns of letters used by users to record the dataset are

pre-defined and have been taken from the English Deaf-blind Alphabet Manual, which is

used to write English characters on a deaf-blind person’s hand [8]. The stroke patterns

can be seen in Figure 4.10.

Figure 4.10: Deaf-blind stroke orderings required by users in data collection and
testing.

It can be observed in Figure 4.10 that there are groups of letters which are drawn

similarly and can cause complexity in classification. One example are the letters ‘I’ and

‘J’ which are drawn in a single stroke, with the only difference being a curve at the end

of ‘J’.
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4.3.2 Training and Testing Datasets

Initially, a dataset consisting of 5 different subjects (Subjects 1–5) was collected. Each

subject was required to write each of the 26 letters of the alphabet 10 times i.e. 5

subjects × 26 letters × 10 samples = 1300 samples in total initially.

It should be noted that the 10 samples per letter written by each subject were written

continuously in a single recording and then automatically segmented into 10 constituent

letters as explained before. With the 10-letter batches, a limitation was uncovered with

the first and last letter of each recording. The limitation of the first letter is the pos-

sibility that the subject started writing before the recording had actually started thus

possibly resulting in the first letter being only partially recorded. The limitation of the

last letter is the possibility that the subject made an extra noise or pushed the phone

when attempting to stop the recording possibly resulting in added background noise

and/or a deformed audio signature of the last letter. To counter these possible limita-

tions, the first and last letter of each 10-batch recording were removed thus resulting in

a total of 5 subjects × 26 letters × 8 samples = 1040 samples.

The dataset was then split into 2 groups; 5 of the 8 samples of each of the 5 subjects

per letter were used to train the classifier i.e. 5 subjects × 26 letters × 5 samples =

650 recordings for training. The remaining 3 samples per subject per letter were used

as a testing set. As explained in Chapter 1, this testing set can be considered to be

a “semi-seen” testing set since the samples are completely unseen to the classifier, but

other samples of the same test subjects and letters have been seen by the classifier during

training. The results on the semi-seen testing set provides an indication of the ability

of the classifier to recognize characters drawn by a user after carrying out a once-off

pre-training procedure to allow the system to learn the user’s drawing patterns.

An additional dataset consisting of 3 completely new test subjects (Subjects 6–8) was

collected. The collection of the data was done in the same way as with the training /

semi-seen dataset i.e. the subjects were required to write each of the 26 characters 10

times, and the first and last character of each recording were ignored. This resulted in

a new dataset with 3 subjects × 26 letters × 8 samples = 624 audio recordings. This

dataset was used entirely as an unseen dataset to test the robustness of the resultant

classifier to completely new and unseen users without any pre-training procedure. This

is summarized below:

1. Training data: 26 classes × 5 subjects × 5 recordings per class = 650 samples.

2. Semi-seen data: 26 classes × 5 subjects × 3 recordings per class = 390 samples.
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Dataset Subjects Classes Samples Total

Training 1–5 26 1–5 650
Semi-Seen 1–5 26 6–8 390
Unseen 6–8 26 1–8 624

Table 4.1: Training, semi-seen and unseen datasets.

3. Unseen data: 26 classes × 3 subjects × 8 recordings per class = 624 samples.

The 3 datasets are summarized in Table 4.1.

At this stage, Objective 4 set out in Chapter 1, to collect a dataset of uppercase hand-

written characters, can be considered to be achieved.

4.3.3 Optimization

The optimization step is required to find the best parameters, C and γ, for the RBF

kernel. Optimization was carried using 10-fold cross validation via grid search, as ex-

plained in Section 3.4.1 in the previous Chapter. Optimization was carried out on an

Nvidia Geforce GTX 1080ti GPU with 11GB VRAM at a frequency of 1582MHz.

The optimization method was to use the default parameter optimization range for grid

search i.e. C ∈ {2−5, 2−3, 2−1, . . . , 211, 213, 215} and γ = {2−15, 2−13, 2−11, . . . , 2−1, 21, 23}.
The initial grid search optimization yielded a contour plot which can be seen in Fig-

ure 4.11. Upon observation, it was seen that highest-performing parameter pairs were

saturated on the bottom-right of the graph. It is was therefore decided to adjust the

ranges of both parameters to explore combinations extending downwards and to the

right where a possibly greater set of optimal results may be found. Therefore, the C

and γ parameter search range was adjusted to C ∈ {20, 21, 22, . . . , 211, 212, 213} and

γ = {2−20, 2−19, 2−18, . . . , 2−7, 2−6, 2−5}, and this led to obtaining the optimization con-

tour plot which can be seen in Figure 4.12.

For completeness, the results of the grid search parameter optimization can be seen in

Table 4.2, which shows the C, γ pairs and their respective cross validation accuracy.

Ultimately, the optimal parameter pair obtained with the optimization procedure were

C = 25 and γ = 2−13 with a cross validation accuracy of 83.2%. Observing Table

4.2, it can be seen that a number of parameter pairs corresponding to log2 γ = −13

and log2C ≥ 5 provide the optimal cross validation accuracy of 83.2%. The pair with

the smallest value of C was selected as this represents the parameter with the most

regularisation, ensuring a sufficiently complex underlying model.



http://etd.uwc.ac.za/

Chapter 4 Design and Implementation 58

lo
g
2
C

lo
g
2
γ

-2
0

-1
9

-1
8

-1
7

-1
6

-1
5

-1
4

-1
3

-1
2

-1
1

-1
0

-9
-8

-7
-6

-5

0
31
.1

31
.1

31
.2

31
.2

31
.4

31
.2

33
.7

42
.3

54
.3

65
.4

6
8
.6

6
6
.2

5
6
.3

4
4
.6

2
5
.4

8
.0

1
31
.1

31
.1

31
.2

31
.2

32
.0

34
.3

44
.0

59
.1

72
.0

76
.2

7
6
.2

7
0
.0

5
8
.8

4
6
.0

2
9
.4

8
.3

2
31
.1

31
.1

31
.2

31
.7

34
.5

45
.5

60
.5

74
.3

78
.6

81
.2

7
7
.1

7
0
.0

5
8
.8

4
6
.0

2
9
.4

8
.3

3
31
.1

31
.2

31
.7

34
.3

46
.0

61
.2

74
.9

79
.4

82
.3

81
.4

7
7
.1

7
0
.0

5
8
.8

4
6
.0

2
9
.4

8
.3

4
31
.2

31
.7

34
.2

46
.6

62
.3

75
.5

79
.8

82
.9

82
.5

81
.4

7
7
.1

7
0
.0

5
8
.8

4
6
.0

2
9
.4

8
.3

5
31
.7

34
.0

46
.5

62
.3

75
.4

80
.0

82
.8

8
3
.2

82
.5

81
.4

7
7
.1

7
0
.0

5
8
.8

4
6
.0

2
9
.4

8
.3

6
34
.2

46
.5

62
.5

74
.8

79
.8

82
.8

83
.1

83
.2

82
.5

81
.4

7
7
.1

7
0
.0

5
8
.8

4
6
.0

2
9
.4

8
.3

7
46
.6

62
.5

74
.9

79
.5

82
.3

83
.1

83
.1

83
.2

82
.5

81
.4

7
7
.1

7
0
.0

5
8
.8

4
6
.0

2
9
.4

8
.3

8
62
.5

74
.8

79
.7

81
.7

82
.5

83
.1

83
.1

83
.2

82
.5

81
.4

7
7
.1

7
0
.0

5
8
.8

4
6
.0

2
9
.4

8
.3

9
74
.8

79
.5

81
.7

82
.2

82
.5

83
.1

83
.1

83
.2

82
.5

81
.4

7
7
.1

7
0
.0

5
8
.8

4
6
.0

2
9
.4

8
.3

10
79
.5

81
.5

82
.3

82
.2

82
.5

83
.1

83
.1

83
.2

82
.5

81
.4

7
7
.1

7
0
.0

5
8
.8

4
6
.0

2
9
.4

8
.3

11
81
.5

82
.2

82
.3

82
.2

82
.5

83
.1

83
.1

83
.2

82
.5

81
.4

7
7
.1

7
0
.0

5
8
.8

4
6
.0

2
9
.4

8
.3

12
82
.2

82
.2

82
.3

82
.2

82
.5

83
.1

83
.1

83
.2

82
.5

81
.4

7
7
.1

7
0
.0

5
8
.8

4
6
.0

2
9
.4

8
.3

13
82
.2

82
.2

82
.3

82
.2

82
.5

83
.1

83
.1

83
.2

82
.5

81
.4

7
7
.1

7
0
.0

5
8
.8

4
6
.0

2
9
.4

8
.3

T
a
b
l
e
4
.2
:
C
ro
ss
-v
al
id
at
io
n
ac
cu
ra
cy

of
ea
ch

C
an

d
γ
p
ar
am

et
er

p
ai
r
ev
al
u
at
ed

in
th
e
gr
id
-s
ea
rc
h
op

ti
m
is
at
io
n
p
ro
ce
d
u
re
.



http://etd.uwc.ac.za/

Chapter 4 Design and Implementation 59

Figure 4.11: Original contour plot from grid-search utilising the conventional C and
γ optimization range.

Figure 4.12: Contour plot from grid-search utilising the adjusted range of C and γ.

Accordingly, Objective 5 has been met at this stage.

4.4 Model Hosting

One additional benefit of the system implemented in this research is that once the model

has been generated, it is placed on the cloud to make it accessible by the smartphone.
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In the interest of keeping costs down, a low cost solution was implemented which in-

corporated storing the raw model file on Amazon S3 and retrieve it on demand when

a request is sent to the web server with an audio file ready to be classified. With this

approach the model is available to anyone that wishes to classify audio signals, although

this has not been tested on smartphones other than the one selected for use in this re-

search. A shortcoming to this approach is that the latency for the request to be sent to

the server and back to the smartphone is around 5–10 seconds, which can be improved

in future works.

4.5 Summary

This chapter described the implementation of the proposed audio letter recognition

system. This was done in a number of steps, including the method of capturing the

input audio, the procedures used to segment the audio and extract features from it, the

process of training the classifier, including a description of the datasets used for training

and testing, and finally the setup used to host the system on the cloud. In so doing,

Research Objectives 1–5 have been achieved.

The next chapter focuses on meeting the remaining objectives, thereby concluding the

research.
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Chapter 5

Experimental Results and

Analysis

This chapter details the experiments carried out to assess key components of the pro-

posed system, along with analysing the results obtained to be able to complete the

remaining research objective 6, thereby answering the research sub-questions and the

main research question set out Chapter 1.

All experiments were conducted using the Python programming language and environ-

ment on a PC running Windows 10, with the following hardware: Intel Core i7 8700k

running at 3.70GHz with 16GB DRR4 3200MHz RAM and an Nvidia Geforce GTX

1080ti GPU with 11GB VRAM at a frequency of 1582MHz, noting that the GPU was

not used during testing but rather during the optimization step during implementation

explained in the previous chapter. Testing was conducted on the recording device men-

tioned previously, namely the Samsung Galaxy Note 10 plus, using the web application

explained previously, utilizing the model hosted on the cloud. Results were then saved

as the unseen test subjects were conducting the tests.

For ease of reference, Table 4.1 from the previous chapter has been repeated here in Table

5.1 since the table summarises the datasets that will be used throughout this chapter.

These datasets have been explained in the previous chapter in detail. Similarly, the

stroke patterns illustrated in Figure 4.10 have been repeated in Figure 5.1 for ease of

reference.

The chapter is organised as follows: Section 5.1 outlines the results of the audio segmen-

tation component of the research to determine whether the system is able to segment

audio files consisting of multiple letters into their constituent letters; Section 5.2 pro-

vides the results of the letter recognition experimentation on the semi-seen and unseen

61
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Figure 5.1: Deaf-blind stroke orderings required by users in training and testing.

datasets as explained in the previous chapter; Section 5.3 then compares the proposed

system to related studies; the chapter is then concluded.

5.1 Audio Segmentation Results and Analysis

To be able to measure the performance of the audio segmentation, it is first required

to outline the objective behind this component of the system in this research. Audio

segmentation is required to allow the user to be able to write freely without having to

start and stop the recording between letters in a word; where the audio segmentation

will be tasked at subdividing the audio recording into the constituent letters.

Dataset Subjects Classes Samples Total

Training 1–5 26 1–5 650
Semi-Seen 1–5 26 6–8 390
Unseen 6–8 26 1–8 624

Table 5.1: Training, semi-seen and unseen datasets.
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Letter
Segmentation Success Rate (%)
Subject 6 Subject 7 Subject 8

A 100 100 100
B 100 100 100
C 100 100 100
D 100 100 100
E 100 100 100
F 100 100 100
G 100 100 100
H 100 100 100
I 100 100 100
J 100 100 100
K 100 100 100
L 100 100 100
M 100 100 100
N 100 100 100
O 100 100 100
P 100 100 100
Q 100 100 100
R 100 100 100
S 100 100 100
T 100 100 100
U 100 100 100
V 100 100 100
W 100 100 100
X 100 100 100
Y 100 100 100
Z 100 100 100

Table 5.2: Results from audio segmentation per unseen test subject.

It was decided to configure the audio segmentation component to subdivide an audio

recording approximately, and allow the classifier to learn and adapt to any variations in

this regard as well.

Accordingly, for the purposes of this research, the success of the audio segmentation

component will be determined by comparing the number of letters written by a subject,

and the number of audio files that are generated from such a recording i.e. if a subject

writes 10 letter A’s, there should be a resulting 10 ”.wav” files generated for processing

and classification thus yielding an audio segmentation hit rate of 100%. This was done

for all samples of Subjects 6–8 of the Unseen data set.

The results of the segmentation success rate are shown in Table 5.2 and it can be seen

that the audio segmentation process achieved 100% success across all subjects in the

experiment.

This means that data collection and final testing can take place efficiently as each audio
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sample can be split up without any manual intervention, and without having to manually

and frequently carry out stoppages between letters.

Accordingly, it can be stated that Objective 2 set out in Chapter 1 has been successfully

achieved. In response to research sub-question 1, it can be stated that the proposed audio

segmentation strategy is 100% effective at segmenting audio recordings into constituent

letters.

5.2 Letter Recognition Results and Analysis

Letter recognition in this context can be described as the ability to pass the audio

recording of a single letter, as segmented by the audio segmentation component, into

the classifier model and return a prediction corresponding to the correct ground truth

of that letter.

To determine what is deemed an acceptable recognition accuracy for both test datasets,

it is crucial to first contextualise the classification problem in terms of the number of

classes and the associated probability of correctly predicting a class. As such, it should

be considered that the probability of correctly guessing a given letter—out of the total

26 letters—at random is given by 1
26 which approximates to 4%. Statistically speaking,

therefore, any result obtained above this percentage would result in the classifier being

considered to be better than random guessing and therefore effective. However, for this

research, a recognition accuracy of greater than 60% will be considered to be acceptable.

This is significantly higher than the random guessing accuracy, but also means that the

resultant classifier is correct the majority of the time.

The following subsections describe the results and corresponding analysis on the semi-

seen set in Section 5.2.1 and the unseen set in Section 5.2.2. In each case, the results of

the classifier will be evaluated by carrying out the following analyses in order:

• An analysis of the overall accuracy, precision, recall and f1 score of the classifier,

across all subjects and letters.

• An analysis of the accuracy per letter class in order to determine the robustness

of the classifier to variations across classes.

• An analysis of the accuracy per subject in order to determine the robustness of

the classifier to variations across test subjects.
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Figure 5.2: Results of semi-seen testing per letter across all test subjects, sorted in
descending order of accuracy.

5.2.1 Semi-Seen Testing Results and Analysis

The semi-seen test set consists of unseen samples of subjects of whom other samples

were used during training. Practically speaking, these results provide an indication of

the ability of the classifier to recognize characters drawn by a user after carrying out

a once-off pre-training procedure to allow the classifier to adapt to the user’s drawing

patterns.

The complete set of results obtained for every subject for every letter is provided in

Table A.1 in Appendix A. The results have been provided in the form of the number of

correctly recognised samples given that the number of samples per subject-letter entry

was 3.

Overall, the results of the semi-seen testing for precision, recall and f1 score were 83.6%,

82.3% and 82.9%, respectively, with an overall accuracy of 82.3%. These results are

extremely encouraging, and significantly surpass the 60% criterion mentioned previously.

Figure 5.2 illustrates the accuracy of each letter across all test subjects, sorted in de-

scending order of accuracy. It can be seen that: five letters achieve a perfect 100%

accuracy, with a further three letters exceeding 90% accuracy; eight letters achieve be-

tween 70-80% accuracy; only three letters achieve below 70% accuracy. While there is

variation across letters, overall, 23 of the 26 letters exceed 70% accuracy, which is an
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Figure 5.3: Confusion matrix of semi-seen testing results across all subjects.

excellent result. This indicates strong robustness to the letters in general. Only one

letter drops below the 60% criterion which is the letter “T”.

To analyse this further, Figure 5.3 provides a confusion matrix for the experiment.

The main feature of note in the matrix is the observation that “T” was consistently

incorrectly predicted as “X”, and “Y” in all incorrectly predicted cases, 4 and 3 times

respectively. This is not surprising given that the stroke patterns of the three letters

are similar in direction as well as number of strokes as shown in Figure 5.1. This is

further confirmed by the observation that “X” and “Y” are also confused with “T”

in all of their misclassified samples. It is encouraging to note that this challenge only

significantly affected one letter “T”, which indicates that the system can still provide

excellent overall usability.

Figure 5.4 depicts the average accuracy for each subject across all letters. It is very
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encouraging to note that, on average, no outlier is observed and the accuracies across

subjects are very close, with a range of only about 8%. The accuracies ranged from

85.9% for Subject 4 to 78.2% for Subject 2, all significantly higher than the criterion

accuracy of 60% decided on earlier. This indicates strong robustness in the proposed

system to variations in test subjects, given that pre-defined stroke patterns from the

English deaf-blind Alphabet Manual [8] were used.

Figure 5.4: Results of semi-seen testing per subject across all classes.

As it stands, it can be stated that Research Objective 6 has been partially achieved

because the tests so far have only been against semi-seen data. Furthermore, as a

partial response to Research Sub-question 2, it can be stated that, if the user carries

out a pre-training / handwriting registration procedure with the classifier, the proposed

system can provide very high accuracy recognition that is robust to variations in test

subjects and letters.

Furthermore, as a partial response to Research Sub-question 3, it can be stated that if the

user carries out a pre-training / handwriting registration procedure with the classifier,

with the feature extraction and classification techniques used, the microphones on a

single smartphone are sufficient to achieve accurate segmentation and recognition of

handwritten letters.
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5.2.2 Unseen Testing Results and Analysis

Unseen testing is utilised to test how well the model can generalize to previously unseen

conditions, in this case new subjects that were not used during model training. For this,

the previously explained unseen dataset was used.

It should be noted that it was expected for this experiment to be challenging given the

three factors explained in Chapter 1, namely, the limitation on the number of micro-

phones, the fact that the medium for the propagation of sound in this case is through

the air, and a lack of noise insulation. Therefore, while it was hoped for the system to

perform well with unseen data/subjects, it was expected for this to be a challenge, and

this question was a main subject of investigation in this study.

The complete set of results obtained for every subject for every letter is provided in

Table A.2 in Appendix A in the form of the number of correctly recognised samples,

given that the number of samples per subject-letter entry was 8. The same results have

been provided as accuracies in Table A.3 in Appendix A.

The results of the unseen testing for precision, recall and f1 score were 56.2%, 53.7%,

and 54.9% respectively, with an overall accuracy of 53.7%. This accuracy falls slightly

below the criterion of 60% set out earlier in the chapter. It should be noted that this was

expected, as explained previously, but is still higher than the random-guessing accuracy

previously discussed. As such, while it may not meet the self-made requirement of 60%

in its current form, it can still be considered to be a promising result, given that the

classifier still shows significant effectiveness, statistically speaking.

Figure 5.5 summarises the accuracy of each letter class per unseen test subject, sorted

in descending order of accuracy. It can be observed in the graph that there is a wide

variation in accuracy across letters in this case, and the reduction in average accuracy

can be attributed to specific letters, rather than a deterioration in general. Specifically,

it is observed that half of the letters achieved above the criterion accuracy of 60%, with

“B”, “Z”, “G”, “K” and “Y” achieving greater than 80%, and “I” achieving just above

90% accuracy. The second half of the letters were at or below 50% accuracy, with the

letters with the lowest accuracies being “C”, “O” and “V”. It is quite clear that, without

any pre-training, some letters are more easily recognisable to the classifier than others.

It is important to note that the accuracy all of the letters are significantly higher than

the statistical accuracy of random guessing, even if only half of the letters achieve an

acceptable accuracy. This indicates that the system holds promise.

To analyse the factors behind the lower accuracy of some letters, a confusion matrix

was created in a heat map format to show the relationship between the predicted and
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Figure 5.5: Results of unseen testing per letter across all test subjects, sorted in
descending order of accuracy.

the true class labels. This confusion matrix can be seen in Figure 5.6. Observing

the confusion matrix, it can be seen that, outside of the main diagonal, other entries

(representing incorrect classifications) are generally either 0, low in count, or with a

few entries lighting up brightly, representing cases in which a specific letter has been

consistently—as opposed to randomly—confused with another letter. It is therefore clear

from this confusion matrix that, rather than generally struggling to correctly classify

some letters, the classifier displays consistency in confusing some letters with other

letters.

To analyse this further, Table 5.3 summarises the letters which did not meet the accept-

able recognition accuracy of 60% (“Letter”), along with letters they were most promi-

nently confused with (“Prominent Confusions”), as well as the the number of strokes in

the letter (“Strokes in Letter”) and strokes in the corresponding letter(s) it was most

prominently confused with (“Strokes in Prominent Confusions”). For all but two cases

in the table, it can be seen that the number of strokes in the letter and in the letter(s)

with which it was consistently confused with are the same.

This leads to the belief that one main reason for the confusion between these letters can

be attributed to the similarity in their stroke counts e.g. ”C”, ”S” and ”Z” all share a

single stroke pattern, as do ”O” and ”G” which follow a single stroke pattern along the

same trajectories until the last segment with regards to ”G”. Many other examples can
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Figure 5.6: Confusion matrix across all subjects in unseen testing.

be seen in Table 5.3. It appears that, in the absence of pre-training on the test subjects’

unique writing style, some letters with similar stroke counts and stroke patterns become

difficult to predict by the system. These findings are similar to the findings of Li and

Hammond [15] and Wu et al. [27, 28] in which letters with a similar number of strokes

were commonly misclassified, especially under unseen conditions.

Another possible factor for the reduction in recognition accuracy for some letters can be

attributed to the angle of the writing implement used (shown in Figure 4.6 in Chapter 4;

because of the tapered shape, varying the angle of the implement while writing/drawing

leads to variations in the pitch and depth of the acoustic signal produced. So, while the

experiment on semi-seen data clearly showed that the classifier can learn these variations,

it appears that new variations in this respect are not easily identifiable with a dataset

of the size used in this research. It is likely that the use of a significantly larger dataset

for training will help provide more robustness to such variations on unseen data, and
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Letter
Prominent
Confusions

Strokes in
Letter

Strokes in
Prominent
Confusions

C S, Z 1 1, 1
D K 2 2
H E 3 4
J C, I 1 1, 1
L C 1 1
O A, G 1 2, 1
S C 1 1
T X 2 2
V U 1 1
W U 1 1
X Y 2 2

Table 5.3: Letters in the unseen testing experiment which did not meet the acceptable
recognition accuracy of 60% (left column), along with letters they were most confused

with (right column).

this is a key area of future research in this regard.

Figure 5.7: Results of unseen testing per subject across all classes.

The results of each individual test subject across all letters can be seen in Figure 5.7.

The main feature of note in the figure is the fact that the average accuracies across

unseen test subjects, while lower than those observed with the semi-seen dataset, were

approximately consistent. The accuracies ranged from 59.1% for Subject 8 to 50.0% for

Subject 6. It is quite encouraging to note that, despite the circumstances, the range in
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accuracy across test subjects—approximately 9%—was low and was almost the same as

that in the semi-seen testing. The fact that the range in accuracy in this case is almost

identical to the range in the semi-seen experiment indicates robustness in the system.

This strengthens the belief that, with a much larger training dataset, it is likely that the

classifier will be able to learn subtle variations and better scale to unseen test subjects.

At this point, it can be stated that Research Objective 6 has been fully achieved. Fur-

thermore, completing the previous partial response to Research Sub-question 2, it can

be further stated that, if no pre-training / handwriting registration procedure is carried

out: the proposed system can provide an accuracy that is above the criterion accuracy of

60% for half of the 26 letters, but lower than the criterion accuracy for the other half of

the 26 letters, with a high level of robustness to variations in test subjects. Furthermore,

is is likely that the use of a larger training dataset can help increase the accuracy and

reduce the variation in accuracy across letters with unseen test subjects.

Furthermore, as a partial response to Research Sub-question 3, it can be stated that,

with the feature extraction and classification techniques used, the microphones on a

single smartphone may not be enough, where additional microphones perhaps from an

additional smartphone may be instrumental in increasing the accuracy of the system on

unseen data.

5.3 Comparison of the Proposed Approach to Related Stud-

ies

Table 5.4 was created to compare the proposed system to other implementations in the

literature. For clarity, the different columns used in the table are defined as is, where

‘Overall Accuracy‘ is defined as the final unseen accuracy results obtained by the study,

and ‘User Dependency‘ is the level of variation of the system accuracy across unseen

test subjects.

From Table 5.4 that the proposed system did not out-perform any of the related studies

in terms of the overall accuracy. As mentioned in the previous section, it is very likely

that training on a larger dataset may improve the unseen accuracy of the proposed

system, but this can be investigated in future. It can be seen that Yu et al.’s system

[31] corresponds very closely to the proposed system in every category, and their system

obtains an accuracy that is about 10% higher, and can be considered to be approximately

in the same range as the proposed system.
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Other systems far surpassed the proposed system, as well as Yu et al.’s system in accu-

racy, and this is attributed to three factors: (a) better audio collection with less noise, as

in the case of Wu et al. [27, 28], Schrapel et al. [23] and Li and Hammond [15]; (b) fewer

recognised classes, as in the case of Luo et al. [18] and Moreira et al. [21]; or (c) different

and potentially more capable feature extraction and/or classification techniques, as in

the case of Chen et al. [5] and Zhou et al. [30].

This sheds light on Research Sub-question 3, and it is clear from the related studies that

the microphones on a single smartphone are sufficient to achieve accurate segmentation

and recognition of handwritten letters, but this is provided that at least one of the three

factors mentioned previously are incorporated into the system.

Ultimately, given that the intended hardware setup is fixed i.e. smartphone-based,

and the number of classes are also fixed, it is evident that an investigation of other

types of feature extraction and/or classification techniques, such as various deep learning

techniques, is the main important area of investigation in future.

As a final response to Research Sub-question 3, it can be stated that the microphones

on a single smartphone are sufficient to achieve accurate segmentation and recognition

of handwritten letters: (a) with the feature extraction and classification techniques used

in the proposed system, provided that the user carries out a pre-training / handwriting

registration procedure with the classifier; or (b) with at least one of the three factors

mentioned previously incorporated into the system.

5.4 Summary

This chapter detailed the experiments carried out to assess key components of the pro-

posed system, along with analysing the results obtained to be able to complete the

remaining research objective 6, thereby answering the research sub-questions and the

main research question set out Chapter 1.

The first experiment carried out aimed to assess the effectiveness of the audio segmen-

tation component of the system. It was found that, within the intended use, the audio

segmentation component was able to successfully segment 100% of the audio segments

in every recording across all test subjects. This means that data collection and final

testing can take place efficiently as each audio sample can be split up without any man-

ual intervention, and without having to manually and frequently carry out stoppages

between letters.
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Accordingly, it was stated that Objective 2 set out in Chapter 1 was successfully

achieved, and in response to research sub-question 1, it was stated that the proposed

audio segmentation strategy is 100% effective at segmenting audio recordings into con-

stituent letters.

The second experiment carried out aimed to assess the accuracy of the proposed system

with respect to recognising the 26 letters on the semi-seen dataset, in order to determine

obtain an indication of the ability of the classifier to recognize characters drawn by a

user after carrying out a once-off pre-training procedure to allow the classifier to adapt

to the user’s drawing patterns.

Overall, it was found that the system provided an excellent accuracy of 82.3% across all

letters and test subjects. It was also found that the system found it easier to recognise

some letters, but was very robust to variations in test subjects. It was therefore stated

that Research Objective 6 had been partially achieved. Furthermore, a partial response

to Research Sub-question 2 was formulated as: if the user carries out a pre-training /

handwriting registration procedure with the classifier, the proposed system can provide

very high accuracy recognition that is robust to variations in test subjects and letters.

A third and final experiment aimed to assess the accuracy of the proposed system with

respect to recognising the 26 letters on the unseen dataset, to obtain an indication of

the system’s ability to adapt to previously unseen test subjects.

Overall, it was found that the system provided an accuracy of 53.7% across all letters and

test subjects, which was somewhat lower than the target criterion accuracy of 60%. A

closer analysis revealed that the reduction in accuracy was mostly attributed to specific

letters that were confused with other letters with the same number of strokes. It was

very encouraging to note that the classifier remained robust to variations in test subjects

in this experiment. It was also determined that training on a much larger training set

would most likely improve on the accuracy of the system on unseen test subjects.

It was then stated that Research Objective 6 had been fully achieved, and as a completion

to the previous partial response to Research Sub-question 2, it was further stated that: if

no pre-training / handwriting registration procedure is carried out, the proposed system

can provide an accuracy that is above the criterion accuracy of 60% for half of the 26

letters, but lower than the criterion accuracy for the other half of the 26 letters, with a

high level of robustness to variations in test subjects. Furthermore, is is likely that the

use of a larger training dataset can help increase the accuracy and reduce the variation

in accuracy across letters with unseen test subjects.

Finally, a comparison of the proposed system to systems in the related studies revealed
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that the related systems out-performed the proposed system. It was identified that this

was as a result of the related systems either making use of more sophisticated and/or

effective audio collection and noise insulation techniques; recognising fewer classes; or

making use of more effective feature extraction and/or classification techniques. It was

resolved to investigate the use of other feature extraction and classification techniques

in future.

Finally, a response to Research Sub-question 3 was formulated as follows: the micro-

phones on a single smartphone are sufficient to achieve accurate segmentation and recog-

nition of handwritten letters: (a) with the feature extraction and classification techniques

used in the proposed system, provided that the user carries out a pre-training / hand-

writing registration procedure with the classifier; or (b) with at least one of the three

factors mentioned previously incorporated into the system.

The next chapter concludes the thesis.
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Conclusion

This research investigated the viability of utilizing a smartphone to capture the acoustic

signals of a user writing uppercase English letters on a hard surface using a wooden

utensil, and segmenting and classifying the letters. To this end, an audio segmentation

and recognition system was implemented, including the collection of datasets required

for the implementation.

The audio segmentation component aimed to allow the user to continuously write let-

ters, and automatically segment the letters to provide a realistic and natural writing

experience to the end user of the system. Segmented letters were processed with the

MFCC feature descriptor, followed by classification by an SVM classifier to determine

the character drawn. An additional feature of this research was the online-based archi-

tecture of the system: the system was hosted online to make it accessible from anywhere

on any device via the web browser.

The main research question was phrased as “How accurately can handwritten words

be segmented and recognized using audio captured by microphones on a smartphone

using the proposed techniques i.e. MFCC coupled with SVMs?”. Having obtained

responses to the Research Sub-questions in the previous chapter, a response to the main

research question can now be formulated as follows: it is possible to effectively segment

handwritten words in the audio captured from the microphones of a smartphone with

a high accuracy; it is also possible to use the proposed techniques to recognise the

segmented letters with a high accuracy if the user carries out a pre-training / handwriting

registration procedure with the classifier, but the accuracy deteriorates in the absence

of such a pre-training / handwriting registration procedure.

It is important to note that it is imperative to investigate the use of a larger training set

in future to determine whether this can help improve on the accuracy of the proposed

77
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system on unseen data.

The next section provides directions for future work.

6.1 Future Work

The following section will outline some ideas for future work.

1. Investigating potentially effective feature extraction and/or classifica-

tion techniques: One main area of investigation is the use of deep learning

techniques such as LSTMs and CNNs which have shown significant promise in

related studies.

2. Dictionary Lookup: Explore the performance of using some form of dictionary

correction on each individually written word in an attempt to correct incorrectly

recognised letters and thereby potentially improve the recognition accuracy. A

fuzzy matching algorithm or a Levenstein distance method may be good algorithms

to investigate.

3. Remove stroke restrictions: Investigate the possibility of removing the required

stroke pattern and ordering to possibly enhance the robustness of the system under

different conditions.

4. Larger training dataset: Investigate the the use of a larger training dataset to

potentially help increase the accuracy and reduce the variation in accuracy across

letters and unseen test subjects.

6.2 Concluding Comments

This experience has provided the researcher with many ups and downs and shown that

anything is possible when some hard work is put in.
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Additional Results

Letter
Correctly recognised count (out of 3)

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

A 2 2 2 2 3
B 3 3 3 3 3
C 3 1 3 2 2
D 2 3 2 1 3
E 0 3 2 3 3
F 3 3 3 3 3
G 3 3 3 3 3
H 1 3 2 2 3
I 3 3 3 3 2
J 3 0 3 2 2
K 3 2 1 3 3
L 2 3 3 2 2
M 3 3 3 3 3
N 3 3 3 3 3
O 3 1 2 3 3
P 3 1 2 3 3
Q 2 3 3 2 2
R 3 3 3 3 2
S 2 1 1 3 3
T 3 0 2 3 0
U 2 3 2 3 3
V 3 3 3 3 2
W 2 3 2 2 2
X 3 3 3 2 2
Y 3 2 3 3 0
Z 3 3 3 2 2

Table A.1: Number of correctly recognised samples (out of 3) for each subject for
each letter class on the semi-seen dataset.
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Letter
Correctly recognised count (out of 8)
Subject 6 Subject 7 Subject 8

A 4 6 6
B 8 5 5
C 2 0 1
D 0 5 2
E 4 8 4
F 7 8 6
G 4 7 6
H 2 2 5
I 8 6 8
J 1 1 4
K 4 4 3
L 3 2 7
M 5 6 6
N 7 6 6
O 0 0 3
P 4 0 1
Q 3 8 8
R 6 6 4
S 7 3 6
T 3 2 1
U 2 3 7
V 2 0 1
W 6 0 3
X 5 4 6
Y 5 7 7
Z 6 5 7

Table A.2: Number of correctly recognised samples (out of 8) for each subject for
each letter class on the unseen dataset.
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Letter
Correctly recognised (%)

Subject 6 Subject 7 Subject 8

A 50 75 75
B 100 62 62
C 25 0 12
D 0 62 25
E 50 100 50
F 88 100 75
G 50 88 75
H 25 25 62
I 100 75 100
J 12 12 50
K 50 50 38
L 38 25 88
M 62 75 75
N 88 75 75
O 0 0 38
P 50 0 12
Q 38 100 100
R 75 75 50
S 88 38 75
T 38 25 12
U 25 38 88
V 25 0 12
W 75 0 38
X 62 50 75
Y 62 88 88
Z 75 62 88

Average 51.9 50.0 59.1

Table A.3: Percentage of correctly recognised samples (out of 8) for each subject for
each letter class on the unseen dataset.
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