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ABSTRACT

Scientific workflows are denoted by interdependent tasks and computations that are aimed at

achieving some scientific objectives. The scheduling of these workflows involve the allocation of the

tasks to particular computational resources, traditionally on the cloud infrastructure. This process

is, however, very challenging. It is associated with high computation and communication costs

because scientific workflows are data-intensive and computationally complex.

In recent years, there has been overwhelming interest in using population-based optimization al-

gorithms such as Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) for scientific

workflow scheduling, predominantly, in the cloud environments. Cloud infrastructure provides cost

efficiency, high speed, excellent accessibility, elasticity, virtualization capabilities and sporadic batch

processing. Pegasus workflows, such as Montage, Cybershake, Epigenomics, LIGO and SIPHT, are

used in all these studies. Makespan and cost are used as the optimization objectives, while other

equally important objectives, such energy consumption and load balancing, are not usually ad-

dressed. Furthermore, the canonical PSO, which is popularly used in most of these works suffer

from premature convergence.

As demand grows, the cloud computing paradigm faces challenges such as high latency which leads

to low quality of service (QoS). Fog computing, a decentralized computing infrastructure, located

between the end devices and the cloud, has been proposed as the solution to address the limitations

of cloud infrastructure. This emerging three-tier network, that incorporates end-devices, fog devices

and cloud devices, is yet to be fully utilized for scientific workflow scheduling. Therefore this work

adopts this futuristic network.

To deal with aforementioned problems, the first phase of this work proposes a weighted sum ob-

jective function which incorporates four objectives: makespan, cost, energy and load balancing for
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cloud and fog tiers. A comparative performance evaluation of PSO, GA, GA-PSO and DE, which

has been used for scientific workflow scheduling for the first time in this work, is then performed.

The FogWorkflowSim Toolkit is used for the evaluation process, with the objectives serving as

performance metrics. The GA-PSO algorithm exhibits better performance compared to the other

approaches.

In the second phase, the Multi-Swarm Particle Swarm Optimization (MS-PSO) algorithm is pro-

posed in order to deal with PSO’s problem of premature convergence. Simulation results show that

the proposed Multi-Swarm based PSO algorithm outperforms the canonical PSO by at least 10%

on all scientific workflows. It also competes fairly well against the other approaches and it is more

stable and reliable. The Multi-Swarm based PSO only ranks second to the canonical PSO, in terms

of execution time.

In the third phase, a more modern Differential Evolution (DE) variant known as SHADE is applied

to workflow scheduling and it is compared with the canonical DE. The SHADE variant outperformed

the canonical DE by at least 10%, for each performance metric, on all scientific workflow instances.

In future, multiple species, incorporating population update mechanisms from several algorithmic

frameworks (MS-PSO, DE, GA), will be studied. Hybdridization of the algorithms proposed in

this work with dynamic approaches and multi-objective reinforcement learning-based techniques

will be also investigated.

Keywords: Scientific Workflows, PSO, Genetic Algorithms, Differential Evolution, Fog Comput-

ing, Cloud Computing
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Chapter 1

INTRODUCTION

1.1 Background and Orientation of the Study

Over the recent decades, there has been a rapid adoption of cloud computing services in various

industries due to the value found in producing, storing and processing of massive amounts of data

[2, 3]. Cloud computing provides computing resources such as compute, storage and networking

services on-demand over the internet [4, 5]. Some of the benefits of cloud computing are cost

efficiency, high speed, excellent accessibility, elasticity, virtualization capabilities and sporadic batch

processing. These characteristics have made the cloud computing paradigm the ideal choice for

implementing scientific workflows [6, 7]. Historically, the execution of scientific workflows were

performed on High Performance Computing (HPC) [8] and distributed systems [9, 10].

Scientific workflows are denoted by interdependent tasks and computations that are used in various

scientific domains. However, scheduling of scientific workflows in a distributed environment is a

challenging problem and is considered NP-complete. Due to the data-intensive and computation-

ally complex nature of scientific workflows, there are high computation and communication costs

involved with the scheduling of these workflows, which entails the allocation of interdependent

tasks in the workflow to the available virtual machines in the cloud [11]. Therefore, various opti-

mization techniques have been proposed for efficient scheduling of tasks or workflows on the cloud

infrastructure. Over the years, there has been a rapidly growing interest in the use of population-

based algorithms such as Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) in the

scheduling of scientific workflows in the cloud [12, 13, 14, 15].

1
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However, as the demand for cloud services grow, the classic cloud computing paradigm faces several

challenges such as high latency and low quality of service (QoS). Fog computing has been proposed

as the solution to address these limitations [2, 16]. The fog computing paradigm is an extension

of the cloud computing model and acts as an intermediate layer bringing limited capabilities of

processing, storage and networking services closer to the end devices in a distributed manner. Any

device with computing, storage and networking capabilities can be considered a fog device [17, 16].

Fog devices have the following advantages over their cloud counterparts: lower latency, improved

user experience, higher security, and energy efficiency. The purpose of the fog layer is to improve

efficiency, performance and reduce the amount of data transferred to the cloud for processing and

storage. Therefore, some workflow tasks can be sent to fog devices for processing, instead of

transferring them to the cloud, thus reducing network traffic and latency [18].

The cloud-fog computing paradigm provides a great platform for applications that are latency-

sensitive and are characterized by complex data and long sessions of distributed computing such

as the execution of scientific workflows. Hence, the application and development of optimization

algorithms for efficient workflow scheduling on the emerging three-tier cloud-fog architecture, while

meeting various QoS objectives, is an important challenge and it is a largely unexplored area of

research.

1.2 Problem Statement

The research problem being addressed in this work is four-pronged, and is hereby presented as

follows:

• Most studies on population-based optimization approaches for scientific workflow scheduling

are based on the traditional two layered architecture, comprising the cloud servers and end

devices [12, 13, 14, 15]; there are very few studies on the more progressive three-tier cloud-fog

framework [12, 19].

• Most studies have focused only on makespan and cost, as the optimization objectives. Other

equally important objectives such as energy consumption and load balancing among the

computational elements are not usually incorporated in the algorithm.
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• The canonical PSO, which has been used in many scientific workflow scheduling algorithms

[20, 15], suffers from premature convergence [12, 21]. This creates sub-optimal solutions.

• After PSO, GA is the other popular population-based algorithm in scientific workflow schedul-

ing; there is a dearth in literature on the use of Differential Evolution (DE) in this domain.

This technique has, however, been equally successful in other application domains such as

deep learning [22, 23], energy systems [24, 25], and robotics [26, 27]. This clearly highlights

the enormous potential of DE.

1.3 Research Objectives

The main objective of this research is the development and comparison of population-based multi-

objective algorithms for workflow scheduling in cloud-fog environments. The sub-objectives of this

study are as follows:

1. To develop a weighted sum-based objective function incorporating four objectives for the

optimization process: makespan, cost, energy consumption and load of a virtual machine

(VM) on the respective cloud and fog layers.

2. To implement and compare several canonical population-based algorithms for scientific work-

flow scheduling in the three-layered architecture, incorporating fog and cloud servers.

3. To develop and implement Multi-Swarm PSO for scientific workflow scheduling and compare

it with the canonical PSO.

4. To develop and implement the DE variant known as Success-History-based Adaptive Differen-

tial Evolution (SHADE) for scientific workflow scheduling and compare it with the canonical

DE.

5. To evaluate the performance of the algorithms proposed in this study using the FogWork-

flowSim simulator [28].
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1.4 Significance of the Study

This study will demonstrate the effectiveness of different population-based algorithms for workflow

scheduling in cloud-fog environments to enable faster and more efficient processing of scientific

workflows, and quicker response times for critical use cases. Furthermore, the incorporation of

crucial objectives such as energy consumption and load balancing in cloud-fog architectures will

illustrate the importance of considering the environmental impact of running data centers, given

the recent high adoption of multi-tier computing networks. This work will also open a new frontier

of knowledge in the area of population-based multi-objective optimization and its application to

workflow scheduling in cloud-fog environments.

1.5 Limitations

This study uses the simulator known as FogWorkflowSim [28] for the simulation of scientific work-

flow execution in a cloud-fog environment due to the high economic cost associated with setting

up a real-life cloud-fog implementation. The simulations are repeated several times for purposes of

credibility and to ensure reliability of the results.

1.6 Delimitations

The scientific workflows used in this case are only those from the Pegasus workflow management

system [29]. These workflows are output files containing a respective workflow’s task dependencies,

run-times and task sizes which are based on real-life workflow executions. These workflows are

chosen since they are well-known and have important real world scientific applications in their

respective fields [1]. Furthermore, they have been widely used in practice for research endeavours.

1.7 Contributions

The main contribution of this work is the evaluation, comparison and efficacy of population-based

optimization approaches to scientific workflow scheduling in a three-tier cloud-fog environment

setup. Specifically, the contributions of this study can be presented as follows:
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1. A weighted sum-based objective function is developed incorporating four crucial objectives:

makespan, cost, energy consumption, and load balancing.

2. This work proposes a Multi-Swarm PSO-based algorithm for workflow scheduling with the aim

of addressing the known issue of premature convergence with the canonical PSO algorithm.

3. A survey on recent state-of-the-art multi-swarm PSO-based approaches.

4. Introduction of the DE algorithm to the workflow scheduling problem.

5. A popular DE variant, known as SHADE, is implemented for scientific workflow scheduling

and its performance is compared with the canonical DE.

These contributions have led to the following publications:

1. D. Subramoney and C. N. Nyirenda, ”Multi-Swarm PSO Algorithm for Static Workflow

Scheduling in Cloud-Fog Environments,” in IEEE Access, vol. 10, pp. 117199-117214, 2022.

2. D. Subramoney and C. Nyirenda, “Success-History-based Differential Evolution (SHADE)

for Scientific Workflow Scheduling in Cloud-Fog Environments,” in Southern Africa Telecom-

munication Networks and Applications Conference (SATNAC) 2022, 2022, pp. 132–137.

3. D. Subramoney and C. Nyirenda, “PSO-based workflow scheduling: A comparative evalu-

ation of cloud and cloud-fog environments,” in Southern Africa Telecommunication Networks

and Applications Conference (SATNAC) 2021, 2021, pp. 258–263.

4. D. Subramoney and C. N. Nyirenda, “A comparative evaluation of population-based opti-

mization algorithms for workflow scheduling in cloud-fog environments,” in 2020 IEEE Sym-

posium Series on Computational Intelligence (SSCI). IEEE, 2020, pp. 760–767.

1.8 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 presents the literature review on scientific

workflows along with a discussion of population-based algorithms applied to the workflow scheduling

problem. The cloud-fog paradigm is also reviewed. Finally, a brief overview is presented on the

evolution of simulation frameworks used to conduct performance evaluations.
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Chapter 3 presents the population-based algorithms for workflow scheduling. The construction

of the weighted sum based objective function is also presented. Furthermore, the scheduling opti-

mization process is discussed, followed by the simulations conducted and the results. Chapter 4

proposes a Multi-Swarm PSO (MS-PSO) algorithm for workflow scheduling in cloud-fog environ-

ments. The expansion of the weighted sum objective function is described, followed by a review of

the state-of-the-art Multi-Swarm algorithms. Finally, the performance evaluation and discussion

of the results is presented.

Chapter 5 proposes the Success-History-based Differential Evolution (SHADE) approach to the

scientific workflow scheduling problem in cloud-fog environments. The SHADE variant is described

followed by the simulation environment. Finally, the simulation results along with a discussion is

presented. Chapter 6 concludes the research and discusses future perspectives.
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Chapter 2

Literature Review

2.1 Introduction

This chapter presents a comprehensive review related to this study and it is organized as fol-

lows: section 2.2 presents the basics of scientific workflows in literature. Section 2.3 discusses

the Cloud-Fog environments while Section 2.4 presents population-based algorithms. Sections 2.5

presents population-based approaches to workflow scheduling. Section 2.6 discusses various simu-

lation frameworks. Finally, Section 2.7 concludes the chapter.

2.2 Basics of Scientific Workflows

Workflow applications are generally modelled as a Direct Acyclic Graph (DAG) [12, 13, 14], defined

by tuple G = (T,E), where T = {t1, t2, . . . , tn} denotes the set of n tasks and E is the set of

edges, representing the temporal dependencies or precedence constraints between pairs of tasks in

a workflow. An edge can be visualised by using inter-task data, dij =< ti, tj >∈ E, where dij is a

positive value representing the output data from task ti which serves as input to task tj . Therefore,

the execution of task tj will only start after the execution of task ti has been completed. Task ti is

the parent task while task tj is the child task. The very first task to start executing in a graph does

not have a parent; it is known as an entry task tentry. At the other end, the final task in a graph

does not have any child and it is known as exit task texit. Fig 2.1 illustrates a sample structure of

a workflow model. The tasks of the workflow placed horizontally on the same level can execute in

7
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parallel order. In this example, tasks t2, t3 and t4 can execute in a parallel order.

Figure 2.1: Sample workflow model with seven tasks

2.2.1 Components of workflows

The basic structures or components of workflows are shown in Fig 2.2. The final structure of a

scientific workflow is usually composed of a combination of such components.

• Process - The simplest structure that operates on some input data to produce an output.

• Pipeline - It is composed of several data processing jobs combined sequentially. In this

structure, each job in the pipeline processes the output of the previous stage and the output

produced is used as input for the next stage in the pipeline.

• Data distribution - This may either produce output data that is used by multiple jobs or

may operate on large datasets and divide them into smaller subsets to be processed by other

jobs in the workflow. The partitioning leads to increased parallelism in the later stages of the

workflow and is one of the main reasons for partitioning the data.

• Data aggregation - The jobs aggregate and processes the outputs of several individual jobs
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Figure 2.2: Basic workflow structures [1]

and generate a combined data product. As data aggregation jobs operate on several individual

data inputs, it can potentially consume huge processing time. These jobs represent a reduction

in the parallelism of the workflow.

• Data redistribution - There are instances where data aggregated from a previous stage are

redistributed to multiple jobs in a following stage. The data redistribution jobs may be

potential processing bottlenecks, however the parallelism is once again achieved in future

stages.

2.2.2 Characterization of Scientific Workflows

This study uses five well-known scientific workflows [1] from various scientific domains for the

effective evaluation of the proposed algorithms. These scientific workflows are published by the

Pegasus project [29], where the Direct Acyclic Graph (DAG) is represented in an Extensible Markup

Language (XML) file for the respective workflow. The workflows are composed of a number of tasks,

dependencies, run-times and data required to be transferred between different tasks. Fig. 2.3 shows

a simplified graphical structure of the workflows. These workflows are described as follows:

1. Montage workflow : Montage was created by the National Aeronautics and Space Adminis-

tration (NASA)/Infrared Processing and Analysis Center (IPAC) Science Archive as an open

source toolkit. This workflow is an astronomy application that creates custom mosaics of the
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Figure 2.3: Structure of scientific workflows: (a) Montage, (b) CyberShake, (c) Epigenomics, (d)

LIGO and (e) SIPHT.

sky with multiple input images.

2. CyberShake workflow : This is used by the Southern California Earthquake Center (SCEC) to

characterize earthquake hazards threatening a region, using the Probabilistic Seismic Hazard

Analysis (PSHA) technique.

3. Epigenomics workflow : This is used in the field of bioinformatics to automate the different

operations in genome sequence processing. The workflow is also being used by the Epigenome

Center in the processing of production DNA methylation and histone modification data.

4. LIGO Inspiral Analysis workflow : Is the Laser Interferometer Gravitational Wave Obser-
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vatory (LIGO) for the detection of gravitational waves produced by various events in the

universe as per Einstein’s theory of general relativity. It is used to analyze the data obtained

from the merging of compact binary systems such as binary neutron stars and black holes.

5. Sipht workflow : This is the bioinformatics project at Harvard University for conducting a

wide search for small untranslated RNAs (sRNAs) that regulate several processes such as

secretion or virulence in bacteria. This workflow automates the search for sRNA encoding-

genes of all the bacterial replications in the National Center for Biotechnology Information

(NCBI) database.

The next sub-section compares the cloud and fog computing paradigms.

2.3 Cloud-Fog Computing Environments

The classic cloud computing model offers many benefits to users in terms of improved reliability,

reduced cost, elimination of hardware maintenance and administration, and a pay-as-you-use billing

model [7]. Although these are notable advantages, cloud computing faces several challenges such as

high latency, high bandwidth and potential network failures. The centralized and remote processing

in cloud computing may also not be suitable for certain types of networks such as sensor networks

and Internet of Things (IoT) [16]. These services are known as location-aware services and require

location dependent processing with low latency. In order to overcome these challenges, a new

computing model has been recently proposed, known as fog computing [17, 30, 31], where the

capabilities of the cloud are located either at the network edge or very close to it. Table 2.1

summarizes the main differences between cloud and fog computing. It can be observed that cloud

computing has limitations with respect to QoS demanded by real time applications requiring almost

immediate response by the cloud servers.

In the three-layer architecture, specifically the cloud-fog environment setup used for workflow

scheduling in this research, computational resources are of three types, namely cloud servers, fog

servers and end devices as illustrated in Fig. 2.4. Each of the resources consist of computing and

storage capabilities along with memory, bandwidth and power requirements. The resources in the

cloud and fog are represented as virtual machines (VMs). The end device is also included because

for some small tasks, transferring them to the fog and cloud servers does not make sense from an
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Table 2.1: Comparison between cloud and fog model

Requirement Cloud model Fog model

Latency High Low

Location of servers Within the Internet At the edge of the local network

Distance between client and server Multiple hops One hop

Attack on data High probability Low probability

Location awareness No Yes

Deployment Centralized Distributed

economic and resource utilization perspective.

Figure 2.4: Cloud-Fog paradigm for workflow scheduling
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2.4 Population-based Algorithms

Population-based algorithms are a category of metaheuristic algorithms that involve multiple candi-

date solutions evolving concurrently [20, 32]. These algorithms are known to produce better results

than deterministic algorithms with regards to quality, and find approximate solutions faster than

traditional exhaustive algorithms in terms of the computation time. Population-based techniques

often use population characteristics to guide the search process which is a collective behavior of

decentralized, self-organizing agents in a population or swarm [33].

The following sub-sections review the different population-based optimization algorithms that are

evaluated in this work for scheduling scientific workflows.

2.4.1 Particle Swarm Optimization

Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm intro-

duced by Kennedy and Eberhart [33]. The technique is used to solve optimization problems from

drawing inspiration by the social behavior of bird flocking, fish schooling and other animal societies

that cooperate and share information to improve their position without relying on a leader. Over

the years, the PSO algorithm has been successfully applied in a variety of fields, such as constrained

mixed-variable optimization problems [34] and wireless sensor networks [35].

This technique uses a population of N individuals, represented as particles in the H-dimensional

solution space. The current position of the i-th particle is represented as xi = (xi,1, xi,2, . . . , xi,H)

and it’s velocity is represented as vi = (vi,1, vi,2, . . . , vi,H). The quality of each particle is measured

using a defined fitness function depending on the optimization problem. Each particle’s movement

is based on its best known personal position pBesti, and also moves towards the best known

global position gBest for the entire swarm. This process leads the swarm to the best position over

a number of iterations in the search process. At the k-th iteration, the elements of the particle’s

velocity and position are updated by using

vi,h = ωvi,h + c1r1(pBesti,h − xi,h) + c2r2(gBesth − xi,h) (2.1)

xi,h = xi,h + vi,h, (2.2)
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where h = 1, 2, . . . ,H; ω is the inertia weight; r1 and r2 are random numbers between (0,1); and

c1 and c2 are the learning factors.

Algorithm 1: PSO Algorithm

1 Input: N , c1, c2, ω, and G;

2 Output: gBest and F (gBest);

3 Randomly generate N particles;

4 F (gBest)← 0;

5 for i← 1, N do

6 Compute the fitness function value, F (xi), for particle i;

7 pBesti ← xi;

8 F (pBesti)← F (xi);

9 if F (xi) > F (gBest) then

10 gBest← xi;

11 F (gBest)← F (xi);

12 k ← 0;

13 while k ≤ G do

14 for i← 1, N do

15 Update vi and xi by using Eq. 2.1 and Eq. 2.2;

16 Compute the fitness function value, F (xi);

17 if F (xi) > F (pBesti) then

18 pBesti ← xi;

19 F (pBesti)← F (xi);

20 if F (xi) > F (gBest) then

21 gBest← xi;

22 F (gBest)← F (xi);

23 k ← k + 1;

Algorithm 1 illustrates the PSO optimization process. Parameters, N and G, denote the number of

particles and the number of generations respectively, while the other parameters have already been

defined above. The algorithm starts with the initialization of N , c1, c2, ω, and G. It then proceeds

by creating N particles, each of which is evaluated. The fitness function value is evaluated, and the
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personal and global best values are determined. Thereafter, the algorithm goes into an iterative

process for G generations. It updates the global best and the personal best values whenever it gets

better values.

The PSO algorithm has received much attention from many researchers due to its relative simplicity,

short run time and fast convergence [12], however PSO is also known to suffer from premature

convergence, especially in high-dimensional search spaces.

2.4.2 Genetic Algorithm

Genetic algorithms (GA) [36] are a class of population-based algorithms that start with a pop-

ulation of randomly generated individuals, represented as chromosomes, and are advanced over

a number of iterations toward better solutions by applying genetic operators such as selection,

crossover and mutation analogous to the genetic processes occurring in nature. The standard ge-

netic algorithm first encodes the parameters to generate a certain number of individuals to create

the initial population. The algorithm uses the fitness function as the criterion to evaluate the

performance of each individual. Genetic operators are used in the creation of new generation of

individuals. After creating a new generation of the population at each iteration, the algorithm

performs a fitness evaluation of the new individuals. The elitism procedure is applied in order to

generate the new population by merging the initial population and children. After creating a new

generation of the population, the algorithm keeps on performing genetic operations in order to

generate new offsprings; the fitness functions for each of the offsprings are evaluated and the best

individuals are maintained. This process continues until the end condition is met upon which the

individual with the best fitness is returned. GA has been applied to a broad range of optimization

problems in various domains such as supply chain management [37], data mining [38], astrophysics

[39], polymer science and engineering [40, 41], among others.

Algorithm 2 illustrates an overview of the GA optimization process. The parameters, N and G,

denote the number of chromosomes and the number of generations respectively. The algorithm

starts with the initialization of N , G, crossover rate and mutation rate. On line 3, N chromosomes

are generated, each of which are evaluated using a fitness function. Then, from line 5, the algorithm

goes into an iterative process for G generations, passing the chromosomes between the following

three genetic operators.
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Selection: Chromosomes are selected to be included in the next generation of the population for

the following iteration. Some chromosomes are excluded in the evolutionary process due to fitness

or randomness of the selection mechanism.

Crossover: It is used to generate new chromosomes by changing the position of the genes for two

selected chromosomes. The crossover operator is performed by selecting a random number in the

range of the chromosome genes. This number represents a division point of each chromosome,

dividing it into two parts. Finally, the crossover produces an offspring chromosome combining two

parts of both chromosomes genes.

Mutation: It is used to modify the new chromosomes that are produced from the crossover operator

with better fitness than the existing chromosomes. The mutation operator modifies the chosen

chromosome from the selection operator, and the chance of the mutation is based on the mutation

rate parameter. The mutation method begins with a number that is randomly generated to be less

than or equal to the mutation rate.

Algorithm 2: GA Algorithm

1 Input: N , G, crossover rate, mutation rate;

2 Output: The fittest solution found;

3 Randomly generate N chromosomes;

4 Perform fitness evaluation;

5 while stopping criteria not met do

6 Selection;

7 Crossover;

8 Mutation;

9 Fitness evaluation of new population;

10 if elitism then

11 population[0] = fittest;

12 Next generation

GA has better exploratory capabilities than PSO; it, however, suffers from the problem of slow

convergence. Hence, latest research has been focusing on hybridizing more than one standard

algorithm to improve performance. [14, 42, 43].
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2.4.3 Differential Evolution

Differential Evolution (DE) is a population-based algorithm proposed by Storn and Price [44].

It uses difference vectors between individuals in order to efficiently explore the search space. It

begins by randomly generating the initial population, where each individual is a candidate solution

represented as a vector of real numbers, within the boundaries [xminj , xmaxj ] : xi,j , i = 1 · · ·NP, j =

1 · · ·H, where H is the problem dimension and NP is the population size.

The mutation, crossover and selection operations are applied during the evolution process of DE.

The mutation operation generates a mutant vector vi for each target vector xi by using

vi,j = xr1,j + F (xr2,j − xr3,j), (2.3)

where r1, r2, and r3 are randomly chosen indices from [1,NP], F is the scaling factor in the range

[0, 1] and r1 ̸= r2 ̸= r3 ̸= i.

The crossover operation combines the mutant vector vi with the target vector xi to produce a trial

vector ui by using the crossover probability CR ∈ [0, 1]. Therefore, the elements of the trial vector

that are randomly chosen components from the mutant vector are presented by

ui,j =


vi,j if rand(0, 1) ≤ CR or j = jrand

xi,j , otherwise,

(2.4)

where jrand is a randomly chosen index from [1, H]. In the selection operation, each trial individual

produced as a result is compared with the corresponding individual in the current population. If the

new individual’s fitness is better than the current one, the new individual will replace the current

one in the next generation, otherwise the old one will remain. The process is continuously repeated

where the strong individuals are retained, and the inferior individuals are eliminated, which guides

the search to a near optimal solution.

Algorithm 3 illustrates the pseudo-code for the DE algorithm. Parameter G denotes the index of

the current generation, while the other parameters have already been defined above. The algorithm

starts with the initialization of NP, CR, F and G. It then proceeds to generate the first generation

of solutions, represented by population P . After that the algorithm goes into an iterative process

until a stopping criterion is satisfied. In the mutation step on line 9, the mutated vector v is

produced from the vectors of selected individuals. In the following crossover step, a trial vector u is
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created by selection of elements, either from the mutated vector v or the original vector x. Finally,

the fitness f(u) of a trial vector is evaluated by an objective function and compared to the fitness

f(x) of the corresponding vector with the stronger one selected for the next generation.

Algorithm 3: DE Algorithm

1 Input: NP, CR, F , and termination criteria;

2 Output: xbest as the best found solution;

3 G = 0, xbest = {};

4 Randomly generate population P = (x1,G,...,xNP,G);

5 Pnew = {}, xbest = best from population P ;

6 while stopping criteria not met do

7 for i← 1 , NP do

8 xi,G = P [i];

9 vi,G by mutation (2.3);

10 ui,G by crossover (2.4);

11 if f(ui,G) < f(xi,G) then

12 xi,G+1 = ui,G;

13 else

14 xi,G+1 = xi,G;

15 Pnew ← xi,G+1

16 P = Pnew, Pnew = {}, xbest = best from population P ;

17 G← G+ 1

It can be seen from the DE algorithm that there are three control parameters, which have to

be manually set namely, NP, CR and F . The setting of these parameters is important for the

performance of DE [45, 46, 47]. However, the fine-tuning of the control parameter values is time-

consuming, therefore, many latest DE variants use self-adaptation mechanisms to determine these

parameters [48, 49, 50, 51].
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2.5 Population-based approaches to Workflow Scheduling

Over the recent years, various workflow scheduling algorithms have been proposed based on dif-

ferent optimization techniques with single objective, bi-objective or multiple conflicting objectives

[14, 15, 20, 52]. In this subsection, a review of the literature is presented on workflow scheduling

strategies which are designed using population-based approaches to achieve better workflow execu-

tion performance. Most of these approaches are based on meta-heuristic approaches for workflow

scheduling on the traditional cloud environment.

A novel Particle Swarm Optimization (PSO) algorithm for workflow scheduling, was proposed in

[12]. The updates to the canonical PSO algorithm attempted to address the issue of premature

convergence, but the study only considers makespan and cost as objectives for scheduling on the

cloud. The work in [13] presented a multi-objective workflow scheduling algorithm in the cloud

environment. The focus was on the cloud architecture but it also only considered makespan and

cost as objectives, excluding other important objectives like energy minimization. A hybrid GA-

PSO algorithm was proposed in [14]. In the first stage, the GA is applied to the entire generated

population for the first half of the total iterations, to evolve towards the optimal solution. The

PSO is applied to the population for the following half of the iterations, whereby the resulting

chromosomes are passed to the PSO algorithm for the second half of the iterations. The workflow

scheduling was done in a cloud environment and considered makespan, cost and load balancing as

objectives in their optimization. On the other hand, the work in [19] presented a multi-objective

approach for data intensive workflows scheduling in the fog paradigm, which considered the response

time, the cost and reliability as objectives. However, the multi-objective algorithm was based only

on NSGA-II and only considered the three aforementioned objectives.

An Objective Discrete PSO for workflow scheduling in cloud computing was proposed in [53]. It was

based on a Dynamic Voltage and Frequency Scaling (DVFS) technique for energy minimization.

This work only considered the following objectives: makespan, cost and energy. A multi-objective

optimization based workflow scheduling strategy based on PSO is presented in [54]. The objectives

were reducing execution time and cost of the workflow while meeting deadline and budget QoS

constraints. The work in [42] proposed a hybrid meta-heuristic cloud-based algorithm to minimize

makespan and balance load on the cloud VMs. The hybrid algorithm was a combination of GA and

PSO, in order to take advantage of the exploratory capabilities of GA and the faster convergence rate
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of the PSO. In, [55] another hybrid heuristic for scheduling workflows was developed. This technique

first prioritized the tasks then GA was used for improving the mapping of tasks to VMs. The

experiments were conducted for makespan, failure rate and load balancing of resources on a cloud

paradigm. The work in [56] proposed a bi-objective hybrid workflow scheduling technique composed

of the Gravitational Search Algorithm (GSA) with a Heterogeneous Earliest Finish Time (HEFT)

heuristic. The hybridization of GSA and HEFT utilizes the exploitation abilities of both these

algorithms in order to find better solutions. However, only two objectives were considered namely,

makespan and total computational cost. Furthermore, the classic cloud computing paradigm was

used in this work.

In [57], a Reliability-Driven (RD) reputation technique was used to measure the reliability of a VM.

Then, the RD reputation was used in the proposed algorithm called Look-Ahead Genetic Algorithm

(LAGA) to optimize the makespan and the reliability. However, crucial workflow scheduling ob-

jectives such as cost and energy consumption were not considered in this study. Another workflow

scheduling algorithm, called Granularity Score Scheduling (GSS) was developed in [58]. The GSS

was compared with two well-known algorithms known as HEFT [59] and Performance Effective

Task Scheduling (PETS) [60]. The simulation results show that the GSS outperformed HEFT and

PETS; however, only two objectives, makespan and VM utilization, were used. Other important

objectives such as cost, energy and load balancing were not considered.

In [61], a Catfish-PSO scheduling algorithm was used to minimize both makespan and execution.

The algorithm performed better than the canonical PSO, especially for larger scientific workflows;

however, only two objectives were considered. Furthermore, the traditional two-tier cloud archi-

tecture was used. A PSO-based budget constrained workflow scheduling algorithm in a cloud

environment was proposed in [62], with the objective of minimizing makespan while adhering to

the constraint of a user’s budget. The algorithm does, however, have a high run time in order to

produce solutions for extra-large sized workflows. In [63], a bi-objective based heuristic based upon

the HEFT algorithm was developed. The algorithm minimizes execution time and cost under dead-

line and budget constraints. The simulation results show that it performed much better compared

to another HEFT based technique [64]. The algorithm did not consider energy consumption or the

VM load distribution on the cloud.

In [65], an algorithm, based on the canonical PSO, was proposed with the aim of efficiently dis-

tributing tasks among cloud resources to reduce monetary cost and makespan. The run time of the
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algorithm was, however, high compared to other optimization methods. Another multi-objective

PSO based scheduling technique for multi-cloud environments was proposed in [66]. The objectives

are makespan and cost with a reliability constraint. A coding strategy was employed to generate

the workflow task schedules. Then, thresholds were used to ensure that the particles are within the

boundary of the constraints. A dynamic workflow scheduling strategy was presented in [67], that

was developed by combining artificial neural networks with the NSGA-II algorithm. The study

aimed to minimize makespan, cost, energy and imbalance on the cloud. In [68], another dynamic

workflow scheduling technique was presented, which found the partial critical paths of a workflow

using the Intelligent Water Drops (IWD) algorithm. The IWD used the critical paths found to

allocate workflow tasks to suitable VM instances on the cloud, in order to minimize makespan and

resource utilization while meeting the deadline constraint. An online workflow scheduling policy for

the cloud architecture was developed in [69]. The objectives considered were reducing makespan,

cost and assignment of workloads to unreliable VMs. Also, monetary and budget constraints were

considered in this study. In [70], an energy-aware real-time workflow scheduling heuristic was pro-

posed. The objectives were the minimization of energy and cost of the workflow. The heuristic was

run over different real-time workflows on the cloud environment with various QoS requirements.

Based on the review of the state-of-art workflow scheduling techniques, it can be seen that most

of these strategies focus on bi-objective optimization by minimizing only makespan and cost of the

workflow, without considering other important objectives such as energy consumption and load

balancing. Furthermore, most of these works do not consider the fog processing layer which has

desirable characteristics for the processing of large workloads like scientific workflows. Furthermore,

the canonical PSO, which is usually characterised by premature convergence is the mostly used

approach for scientific workflow scheduling; other emerging population-based techniques such as

Differential Evolution have not been explored in this domain. This research has been motivated by

all of these observations.

2.6 Simulation Frameworks

Simulation tools have been widely used by researchers to model network infrastructures. In par-

ticular, there are currently many simulation toolkits for cloud and fog environments [71, 72, 73].

The CloudSim toolkit [74] is one of the most used toolkits to model and simulate the traditional
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cloud computing environment. However, CloudSim can only simulate the execution of simple inde-

pendent tasks and hence, it does not cater for the execution of interdependent tasks as required by

scientific workflows. Therefore, WorkflowSim [71] was proposed, as an extension of CloudSim with

the capability of executing workflows on the cloud. It also provides support for evaluating different

computational offloading strategies and workflows of different structures, however WorkflowSim

does not support simulation of a cloud-fog model.

As fog computing is a recently proposed computing paradigm, the available simulation toolkits

are not very rich in functionality and each of the toolkits target specific metrics and objectives

[72, 73]. The iFogSim toolkit as proposed in [75] is one of the most popular tools that can be used

to model a fog network topology and the associated fog resources in different layers. Similar to

CloudSim, iFogSim provides the capability to simulate the execution of independent tasks. It also

supports computational offloading strategies which determine the specific layer that the tasks will

be offloaded for processing. However, iFogSim does not support the execution of workflow tasks

that are characterized by complex dependencies.

Since this work focuses on workflow scheduling on a three tier cloud-fog environment, the afore-

mentioned simulators could not be used without extensive code changes to the toolkit. Therefore,

the recently proposed FogWorkFlowSim [28] is used in this work. FogWorkflowSim combines the

functionality of iFogSim [75] and WorkflowSim [71], providing a cloud-fog computing environment

and workflow system. Furthermore, the FogWorkFlowSim [28] is chosen for this work as it pro-

vides a suitable simulation framework to implement and evaluate the performance of canonical and

novel techniques for workflow scheduling. This simulator also does not require extensive setup or

updating low-level configuration which enables experiments to be easily repeatable and conducted

in a controlled manner.

2.7 Chapter Summary

This chapter started with presenting the concept of workflows and, in particular, scientific workflows

from different application domains. Then, the cloud-fog computing paradigm is described along

with the differences between the cloud and fog processing tiers. An overview of three well-known

population-based algorithms used for the performance evaluations in this work is given namely,

PSO, GA and DE. Furthermore, many population-based approaches applied to workflow scheduling
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specifically, is reviewed from literature. It is observed that the majority of the techniques focused

on optimizing the scheduling of workflows on the traditional cloud architecture, with two to three

objectives at most, excluding crucial objectives. Finally, a summary of the evolution of simulation

frameworks to model cloud and fog environments is presented. The next chapter presents the

comparison of population-based algorithms for workflow scheduling in cloud-fog environments. The

various simulations and discussion of the results are also presented.
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Chapter 3

Population-based Algorithms for

Workflow Scheduling in Cloud-Fog

Environments

3.1 Introduction

This chapter presents a comparative evaluation of four population-based optimization algorithms

for workflow scheduling in cloud-fog environments. These algorithms are as follows: PSO, GA,

DE and GA-PSO. The GA-PSO from [14] is implemented and DE is newly introduced to workflow

scheduling. FogWorkflowSim [28] is used as the simulation environment with the makespan, cost

and energy consumption serving as performance metrics. This chapter is organized as follows:

Section 3.2 presents the mathematical formulations for makespan, cost and energy consumption

along with the weighted sum based objective function. Section 3.3 discusses the workflow schedul-

ing optimization process. Section 3.4 presents the environment setup of the different simulations

conducted, results and discussion. Finally, Section 3.5 concludes the chapter.

24



http://etd.uwc.ac.za/

Section 3.2. Formulation of the objective function Page 25

3.2 Formulation of the objective function

In the cloud-fog environment setup presented here, there are m computational resources which are

of three types, namely cloud servers, fog servers and end devices. Each of the resources consists

of computing and storage capabilities along with memory, bandwidth and power requirements.

The resources in the cloud and fog are represented as virtual machines (VMs). The end device is

included as well because for some small tasks, transferring them to the fog and cloud servers does

not make sense from an economic and resource utilization perspective. The selection of the optimal

resource is determined by three objectives as outlined below.

3.2.1 Makespan

The makespan of a workflow can be defined as the total execution time for the completion of an

entire workflow. Thus, makespan MS is calculated as follows:

MS = max{FTti , ti ∈ T} −min{STti , ti ∈ T} (3.1)

where STti and FTti are the starting time and finishing times respectively for task ti in a particular

workflow.

3.2.2 Cost

This metric consists of computation cost and communication cost. Computation costs apply for

all the three computational resource types while communication costs are not included when the

tasks are executed on the end device. The computational cost [12] when using computing resource

r is defined as

CEr
i = pr · (FTti − STti), (3.2)

where pr is the unit processing cost. The communication cost refers to the data transfer cost of a

task output of size dij from the resource processing task i to the resource allocated to process task

j is determined by

CCij = trcij · dij , (3.3)
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where trcij is the unit cost of communication from the resource, where task i is mapped, to the

resource, where task j is mapped; trcij = 0 when the two tasks are executed on the same resource.

Therefore, the total cost TC is

TC =

n∑
i=1

n∑
j=1

CCij +

m∑
r=1

n∑
i=1

CEr
i . (3.4)

3.2.3 Energy Consumption

The energy consumption model [53] is constructed using active Eactive and idle Eidle components.

The former refers to the energy consumed when a task is being executed while the latter is the

energy used when a resource is idling. The active energy is calculated by

Eactive =
n∑

i=1

αfiv
2
i (FTti − STti), (3.5)

where α is a constant; fi and vi are the frequency and supply voltage for the resource on which task

i is being executed. During the idle, the resource goes into sleep mode, where the voltage supply

level and the relative frequency are at the lowest level. Therefore, the energy consumed during the

idle period is determined by using [53]:

Eidle =

m∑
j=1

∑
idlejk∈IDLEjk

αfmin iv
2
min iLjk, (3.6)

where IDLEjk is a set of idling slots on resource j, fmin i and vmin i refer to the frequency and

lowest supply voltage on resource j respectively; Ljk is the duration of idling time for idlejk. The

total energy TE consumed on the cloud-fog system for the execution of the entire workflow is

TE = Eactive + Eidle. (3.7)

Therefore, weighted sum objective function, that incorporates makespan, cost and energy consump-

tion, is defined by:
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F (p) = w1 · MSnorm + w2 · TCnorm

+ w3 · TEnorm,

(3.8)

where p is the assignment of the n tasks of a workflow to the m available computing resources.

MSnorm, TCnorm and TEnorm are the normalized makespan, total cost and total energy respec-

tively; w1, w2 and w3 are the respective weights that determine the contribution of each of them to

the overall objective function. Equal weighted coefficients are used here to obtain a balanced con-

tribution of the three objectives since all are equally important in a good solution. Normalization

is used here in order to eliminate any biases in the realized objective function.

3.3 The Workflow Scheduling Optimization Process

This section begins by describing how the workflow tasks are mapped to the available resources and

how this mapping is used to generate a solution vector. The second part describes the optimization

process based on GA, PSO, DE and GA-PSO.

3.3.1 Mapping of workflow tasks to computational resources and generation of

the solution vector

The workflows in this work can be scheduled for execution at the source end device, at the fog server

or at the cloud server. Each of these computation resources has its own computational power and

access bandwidth with respect to the end node. The end nodes do not offload their tasks to fellow

end nodes; they can only offload their tasks to fog and cloud servers. Therefore, in the scheduling

of workflows, only one representative end device for each of the end nodes is incorporated in the

encoding process.

Workflow scheduling in cloud-fog computing environments is a discrete problem, hence natural

numbers are used to encode the individuals for each populated-based algorithm. In the case of the

GA, PSO and DE, the individuals represented by the chromosome, particle and agent respectively,

are mapped to possible task-resource schedules. The dimension or length of each individual is n,

which is the total number of tasks in the workflow; each position in the individual’s vector is a
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positive integer representing the task number. The value assigned to this position is the virtual

machine ID that is allocated to execute the task. The ID numbers are selected from the virtual

machines available on the three layers of the cloud-fog architecture. Suppose a workflow has 10

tasks which are scheduled for execution on six available virtual machines, specifically one end

device, two fog nodes and three cloud servers. In this instance, the individual’s length is 10 and

each element is an integer between 1 and 5. An example task assignment of this individual can be

expressed as p = {4,5,1,6,2,3,4,5,1,6}. Fig. 3.1 shows a graphical illustration of this example. A

tabular representation of the individual’s schedule is illustrated in Table 3.1 and Table 3.2.

Figure 3.1: Example of a task-resource mapping on the cloud-fog environment

Table 3.1: Example of the Individual’s encoded schedule

Task number 1 2 3 4 5 6 7 8 9 10

VM ID 4 5 1 6 2 3 4 5 1 6

Table 3.2: Example of the Task-Resource Allocation on the Cloud-Fog Layers

VM Layer Cloud Cloud Cloud Fog Fog End

VM ID 1 2 3 4 5 6

Assigned Task 3,9 5 6 1,7 2,8 4,10
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3.3.2 The Optimization Process

The implementation of the four optimization algorithms are described in this subsection. The

candidate solutions are generally called vectors for all algorithms. Specifically, in PSO parlance,

these vectors are called particles and in GA, they are called chromosomes. Fig. 3.2 shows the

generic flowchart for a population-based scheduling algorithm.

Figure 3.2: Flowchart of a generic population-based algorithm for workflow scheduling

In the initialization step, a population of P individuals of length n is initialized with random integer

values depicting the possible VM unto which the corresponding task would be assigned. Then, the

workflow simulation for each individual is carried out; this is followed by the determination of

the three performance metrics, namely: makespan MS, cost TC and energy TE as described in

Section 3.2. The minimum and maximum values values of the metrics (MSmin, MSmax, TCmin,

TCmax, TEmin and TEmax) are determined for this initial population, and based on these values,

normalized metrics are calculated for each vector by using
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MSnorm =
MSi −MSmin

MSmax −MSmin

TCnorm =
TCi − TCmin

TCmax − TCmin

TEnorm =
TEi − TEmin

TEmax − TEmin

(3.9)

where MSi, TCi and TEi are the makespan, cost and energy values for vector i ∈ {1, ..., P}. The

fitness function Fi for the individual is determined by using the weighted sum objective function in

(3.8). After this, the other post initialization processes are more specific for each algorithm. In the

GA approach, the worst and the best solutions for the population are saved. In the PSO approach,

∀i ∈ {1, ...P}, pBesti = Fi and gBesti = min{pBesti}. In the DE approach, the best solution for

the population is saved.

In the second step, algorithm specific routines are applied to the population as follows:

1. In the GA approach, selection, crossover and mutation operators are applied in order to

generate a new pool of potential solutions that are evaluated on a workflow simulation. The

fitness values for all chromosomes are determined. The elements of the best chromosome and

its fitness value are saved. Elitism is applied to truncate the pool of potential solutions to

only the best ones, in preparation for the iteration.

2. In the DE approach, mutation and crossover are performed. The fitness values for all chromo-

somes are determined. The elements of the best agent and its fitness value are saved. Some of

the well performing offsprings replace some agents in the original solution, thereby creating

room for further improvements in the next iteration.

3. In the PSO approach, the particle’s positions are updated using the PSO equations in (2.1)

and (2.2). The fitness values for all particles are determined. The elements of the best particle

and its fitness value are saved. If the new particle positions give a better fitness value than

its pbest, the pbest is updated to the particle’s new position; the fitness value is updated

accordingly. If one of the particles’ updated pbest is better than the gbest, the gbest is

updated accordingly, in preparation for the next iteration.
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4. The GA-PSO approach applies GA’s update mechanism for the first half of the iteration.

The PSO update process is applied until the end. If the maximum number of iterations has

not been reached, the algorithm goes back to the second step. This process keeps on getting

repeated for each of these algorithms until the maximum number of iterations is reached.

Then the best solution with the lowest fitness value is saved in step 3.

The GA and PSO codes are already incorporated into the FogWorkflowSim Simulator [28]. The

DE and GA-PSO algorithms, as well as the weighted sum based objective function proposed have

been integrated for this work.

3.4 Simulations

Two sets of simulation experiments are conducted in this section. The first set, which is presented in

subsection 3.4.1, focuses on a comparative evaluation of GA, PSO, GA-PSO and DE for the problem

of scientific workflow scheduling. The second set, which focuses on the comparative evaluation of

performance of the PSO algorithm under cloud and cloud-fog environments, is presented in section

3.4.2.

The simulations are conducted using the FogWorkflowSim simulator which is executed using the

Eclipse Java IDE. The hardware used is a Dell-Inspiron laptop with the system specifications as

shown below in Table 3.3.

Table 3.3: System Specifications

Specification Description

Processor Intel(R) Core(TM) i5-5200U CPU @ 2.20GHz

Installed memory (RAM) 16GB

System type 64-bit Operating System, x64-based processor

Operating System Windows 10 Professional

The following parameter settings of the experiments are applicable to both subsection 3.4.1 and

3.4.2: The population size is set to 50 for each algorithm. The PSO learning factors C1 = C2 = 2.

The PSO inertia weight is 1. The number of iterations for all algorithms is 100. The weighted

coefficients w1, w2 and w3 are equal.
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3.4.1 Comparative Evaluation of GA, PSO, GA-PSO and DE for Scientific

Workflow Scheduling

This subsection presents a comparative evaluation of GA, PSO, GA-PSO and DE as workflow

scheduling optimization tools. In the simulations conducted in this subsection, each of these tech-

niques are used to produce a solution vector which is an optimized task-resource mapping for

scheduling a scientific workflow according to eq. (3.8). The comparative evaluation of the perfor-

mance objectives for the realized solution vectors will provide scientific practitioners from various

industry and research domains insight into which algorithm may be more suited to their use case and

hence, offers optimal scheduling. This will enable these workflows to be scheduled more efficiently

and reduce economic cost associated with utilizing cloud and fog infrastructure.

The parameter settings of the experiments conducted here are as follows: The GA crossover and

mutation rates are 0.8 and 0.1 respectively. The DE crossover probability is 0.4 and the differential

weight is 1.2. The algorithms are evaluated using three scientific workflows namely Montage,

Epigenomics and CyberShake, with three different task amounts per workflow. The simulations

are performed 10 times for each workflow to get the average performance of the algorithms. Three

end devices, 5 fog VMs and 5 cloud VMs are used. The characteristics for each server on the three

cloud-fog layers along with the parameter settings for the simulation environment are shown in

Table 3.4.

Table 3.4: Parameter Settings of Cloud-Fog Computing Environment

Parameters End device Fog node Cloud server

Processing rate (MIPS) 1000 1300 1600

Task execution cost ($) 0 0.48 0.96

Communication cost ($) 0 0.01 0.02

Working power (mW) 700 800 1600

Idle power (mW) 30 400 1300

Uplink bandwidth (Mbps) 20 10 1

Downlink bandwidth (Mbps) 40 10 10

In Figs. 3.3-3.5 show the results for makespan, cost and energy consumption for the Montage

workflow. As expected, all the metrics increase as the number of tasks increases. Results show that

PSO is exhibiting poorer performance compared to the other three approaches. On the other hand,
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all the three other approaches exhibit similar levels of performance. This is probably because of

PSO’s well-known problem of premature convergence and getting trapped in the local minimum.

Clearly, the GA-PSO algorithm, which adopts the GA approach in the first half of the run and the

PSO approach in the latter iterations, seems to benefit from the GA’s ability to see a wide range

of solutions, courtesy of the random mutation and crossover operators.

Figure 3.3: Makespan for Montage

Figure 3.4: Total cost for Montage

In Figs. 3.6-3.8 show the results for makespan, cost and energy consumption for the Epigenomics

workflow. The metrics for 24 and 47 tasks is very low but it springs up when the number of tasks

increases to 100. For instance, makespan increases from less than 10 sec for 24 and 47 tasks to

beyond 50 sec at 100 tasks; cost increases from less than $10 000 for 24 and 47 tasks to beyond
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Figure 3.5: Energy consumption for Montage

$50 000 at 100 tasks; energy increases from less than 50 000J for 24 and 47 tasks to beyond 250

000J at 100 tasks. This is due to the map jobs in the Epigenomics workflow [1] responsible for

aligning sequences with the reference genome, which become significantly more computationally

intensive with higher runtimes as the number of tasks increase. In terms of performance, PSO is

still exhibiting poorer performance compared to the other three approaches. There is, however,

improvement in terms of energy consumption as it performs better than the other approaches for

that metric.

Figure 3.6: Makespan for Epigenomics

In Figs. 3.9-3.11 show the results for makespan, cost and energy consumption for the CyberShake
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Figure 3.7: Total cost for Epigenomics

Figure 3.8: Energy consumption for Epigenomics

workflow. In Fig. 3.9, the makespan performance remains fairly constant for all algorithms. GA-

PSO exhibits the best performance for all tasks while PSO seems to perform better than in the

previous two workflows. DE’s makespan increases as the number of tasks increases. In Fig. 3.10,

GA-PSO generally continues to perform better than the other approaches for 30 and 50 tasks. DE’s

cost goes down drastically as the number tasks increases. It looks like the DE algorithm allocates

more tasks to the end devices as the number of tasks increases thereby reducing the cost greatly.

There are very low data transmission and computation costs due to less usage of cloud and fog

servers. This leads to high energy consumption on the end devices as shown by Fig. 3.11.
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Figure 3.9: Makespan for CyberShake

Figure 3.10: Total cost for CyberShake

The general outcome of these results is that there is no single algorithm that stands out among

these algorithms even though the GA-PSO approach seems to exhibit slightly better performance.

This shows that there is room for improvement if hybrid algorithms are proposed for the workflow

scheduling problem. In terms of practical implementation, the solution vector realized from the

optimization process can be downloaded into the end device as a lookup table for scheduling the

workflows.
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Figure 3.11: Energy consumption for CyberShake

3.4.2 Comparative Evaluation of PSO-based Scientific Workflow Scheduling in

Cloud and Cloud-Fog Environments

This subsection presents the performance evaluation of the canonical PSO algorithm, applied to

both the traditional cloud and the emerging three-tier cloud-fog environment. These experiments

are carried out to compare the PSO workflow scheduling performance under the two environments,

and to investigate the incorporation of the fog layer for the execution of workflows and its effect on

processing efficiency and energy consumption.

Table 3.5: Parameter Settings Of Simulation Environment

Parameters Fog Server Cloud Server

Processing rate (MIPS) 1000 2000

Task execution cost ($) 0.48 0.96

Communication cost ($) 0.01 0.02

Working power (mW) 700 1700

Idle power (mW) 200 1200

Uplink bandwidth (Mbps) 500 300

Downlink bandwidth (Mbps) 800 500

The parameter settings of the experiments conducted here are as follows: The Montage, CyberShake

and Epigenomics scientific workflows with 500 tasks each are used as input. The simulations are
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performed 10 times for each workflow and environment setup. The number of cloud servers and

fog servers are 10 and 6, respectively. The characteristics of each server on the two tiers along with

the parameter settings for the simulation environment are shown in Table 3.5.

In Figs. 3.12-3.14, the results for makespan, cost and energy consumption for the Montage workflow

for 500 tasks are illustrated. The makespan is lower for the cloud-fog environment, as expected,

due to the 6 additional fog servers used in the simulation. The cost metric is significantly better in

the cloud-fog layers. This is likely due to the reduced processing and data transfer costs associated

with the fog layer. The energy consumption is also reduced in cloud-fog as the larger size of the

cloud requires more energy to remain online, and utilizing the fog with the cloud enables more

efficient and distributed processing of the workflow tasks.

Figure 3.12: Makespan for Montage

In Figs. 3.15-3.17, the results for makespan, cost and energy consumption for the CyberShake

workflow for 500 tasks are illustrated. The performance metric comparative results for the cloud

and cloud-fog are similar to what was observed for the Montage workflow, however, the metric values

are significantly higher. This is because the CyberShake workflow task sizes and task runtimes are

much higher compared to Montage.

In Figs. 3.18-3.20, the results for makespan, cost and energy consumption for the Epigenomics

workflow for 500 tasks are illustrated. The performance metric comparative results for the cloud

and cloud-fog are similar to what was observed for the CyberShake workflow, with significantly high
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Figure 3.13: Total cost for Montage

Figure 3.14: Energy consumption for Montage
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Figure 3.15: Makespan for CyberShake

Figure 3.16: Total cost for CyberShake
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Figure 3.17: Energy consumption for CyberShake

metric values. Also, this is due to the Epigenomics workflow responsible for aligning sequences with

the reference genome [1], which become significantly more computationally intensive with higher

runtimes as the number of tasks increase. In terms of performance, PSO is still exhibiting better

performance on the cloud-fog environment compared to the traditional cloud.

Figure 3.18: Makespan for Epigenomics

The results show that the cloud-fog environment performed better than the cloud especially in
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Figure 3.19: Total cost for Epigenomics

Figure 3.20: Energy consumption for Epigenomics

terms of overall cost and energy consumption. Therefore, the incorporation of the fog layer for the

execution of workflows has the potential to improve processing efficiency justifying the benefits of

the emerging cloud-fog computing paradigm. The adoption of the fog layer becomes more important

for workflow scheduling as the demand for cloud services grow, since increases in latency and

bandwidth requirements of the cloud will make the scheduling of large-scale workflows impractical.
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3.5 Chapter Summary

In this chapter, the formulation of the objective function made up of makespan, cost and energy is

presented along with the workflow scheduling optimization process. The mapping of workflow tasks

to computational resources and generation of the solution vector is also discussed. The results show

that the hybrid combination of the GA-PSO algorithm exhibits slightly better performance than the

standard algorithms. In addition, the comparative evaluation of cloud and cloud-fog environments

using PSO indicate that the incorporation of the fog layer for the execution of workflows has the

potential to improve processing efficiency and reduce energy consumption, motivating the cloud-fog

computing paradigm. The next chapter will present the proposed Multi-Swarm PSO for scientific

workflow scheduling in cloud-fog environments.
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Chapter 4

Multi-Swarm PSO for Workflow

Scheduling in Cloud-Fog

Environments

4.1 Introduction

This chapter presents a Multi-Swarm Particle Swarm Optimization (MS-PSO) algorithm to improve

the scheduling of scientific workflows in cloud-fog environments. MS-PSO seeks to address the

canonical PSO’s problem of premature convergence, which leads it to suboptimal solutions. In

MS-PSO, particles are divided into several swarms, with each swarm having its own cognitive and

social learning coefficients. This work also expands the weighted sum objective presented in chapter

3 to include load balancing for cloud and fog tiers. The MS-PSO approach is compared with the

canonical PSO, Genetic Algorithm (GA), Differential Evolution (DE) and GA-PSO. This chapter is

organized as follows: section 4.2 presents the addition of load balancing to the objective function.

Section 4.3 presents a brief review of the state-of-the-art MS-PSO algorithms and techniques.

Section 4.4 describes the proposed Multi-objective Workflow Scheduling based on MS-PSO while

Section 4.5 discusses the performance evaluation. Finally, Section 4.6 concludes the chapter.

44
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4.2 The addition of load balancing to the objective function

Load balancing of the respective cloud and fog layers is added to the objective function presented

in Chapter 3. Load balancing can be defined as the calculation of the standard deviation of the

load of all the VMs. The aim is to ensure that all the VMs have almost equal loads. So, minimizing

the standard deviation of the VMs produces improved load management among the VMs. The

load of a VM is determined by the ratio between the length or size of the tasks executed by a

VM and capacity of the VM. The fog layer VM characteristics are different compared to the cloud.

Therefore to ensure fair overall load distribution, the standard deviation of the load is calculated

independently for the cloud and fog layers. The end device is excluded when balancing the load on

the cloud-fog environment.

Let c and f denote the number of VMs in the cloud and fog layers respectively. Hence, load

balancing on the cloud is defined by

LBC =

√∑c
i=1(LCi −ALC)2

c
(4.1)

where LCi refers to the load of the i-th VM on the cloud, and ALC is the average load of all the

VMs on the cloud layer. Similarly, the load balancing on the fog is defined by

LBF =

√∑f
i=1(LFi −ALF)2

f
(4.2)

where LFi refers to the load of the i-th VM on the fog, and ALF is the average load of all the VMs

on the fog layer. Therefore, using the four aforementioned objectives, the weighted sum objective

function is defined by:

F (p) = w1 ·MSnorm + w2 · TCnorm + w3 · TEnorm

+ w4 · LBCnorm + w5 · LBFnorm
(4.3)

where p is the assignment of the n tasks of a workflow to the m available computing resources

presented in Chapter 3. The parameters LBCnorm and LBFnorm are the load balancing among

cloud VMs, and load balancing among fog nodes respectively; w∗ is the coefficient weight. Equal

weights are used in the performance evaluations to obtain an equal contribution of each objective i.e.

w∗ = 0.2. Normalization removes any biases in the objective function and also ensures that there
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is a balanced contribution from all the objectives. To obtain the normalized objective function

parameters in equation (4.3), objective function values LBCi and LBFi are defined for the ith

potential solution. Similarly for makespan, cost and energy, the normalized objective for load

balancing are defined by

LBCnorm =
LBCi − LBCmin

LBCmax − LBCmin

LBFnorm =
LBFi − LBFmin

LBFmax − LBFmin

(4.4)

where the max and min values represent the maximum and minimum of the objectives; these are

determined from the initial population of the algorithms.

Now that this section has defined the objective function (Eq. (4.3)), the next section presents

the multi-objective workflow scheduling based on the proposed multi-swarm PSO optimization

algorithm.

4.3 A brief review of the state-of-the-art MS-PSO algorithms and

techniques

In recent years, there have been many efforts to break down the PSO algorithm into sub-swarms,

and a brief overview of some of the most notable ones is presented as follows:

a) Dynamic multi-swarm PSO [76] : This is arguably the first highly notable multi-swarm

PSO approach. It divides the population into many small dynamic swarms which are evolved in a

similar fashion; these swarms are regrouped frequently thereby exchanging information among the

swarms. This multi-swarm PSO exhibited better performance than several PSO variants on a set

of shifted rotated benchmark functions.

b) The Socio-Cognitively Inspired PSO [77] : This approach divides the PSO swarm into

sub-swarms, called species because they have unique evolution mechanisms. The particles get

inspired by the global and the local optima, but they also share their knowledge of optimal locations

with neighboring particles belonging to other species. Experiments were conducted with various

proportions of different species in the population to find the best setting.
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c) HCLDMS-PSO [78] : The heterogeneous comprehensive learning and dynamic multi-swarm

particle swarm optimizer with two mutation operators (HCLDMS-PSO) modifies the traditional

dynamic multi-swarm PSO [76] by adding a comprehensive learning (CL) strategy, where the global

optimal experience of the whole population is conducted to generate an exploitation sub-population

exemplar.

d) HIDMS-PSO [79] : The Heterogeneous Improved Dynamic Multi-Swarm PSO (HIDMS-PSO)

is also an extension of the traditional dynamic multi-swarm PSO [76]. The population is initially

divided into two sub-populations, with the first one being further divided into sub-swarms. The

particles in these sub-swarms are guided heterogeneously. On the other hand, the second sub-

population is guided homogeneously by using the classical PSO update mechanism.

e) DMS-GPSO [80] : The dynamic multi-swarm global particle swarm optimization (DMS-

GPSO) segments the evolutionary process into an initial stage and a final stage. In the initial

stage, the population is divided into a global sub-swarm and multiple dynamic sub-swarms. The

global sub-swarm focuses on exploitation, guided by the globally optimal particle. On the other

hand, multiple sub-swarms focus on exploration, guided by the best particle in the neighborhood.

In the final stage, the elite particles stored in an archive are combined with the DMS sub-swarms

to form a single population with the aim of improving exploitation capabilities.

f) DMS-PSO-GD [81] : The Dynamic Multi-Swarm Particle Swarm Optimization with Global

Detection Mechanism (DMS-PSO-GD) has some similarities to the DMS-GPSO [80] in the sense

that it also divides the population into two kinds of sub-swarms: several same-sized dynamic sub-

swarms and a global sub-swarm. This algorithm, however, uses the variances and average fitness

values of dynamic sub-swarms to measure the distribution of the particles, in order to detect the

dominant and the optimal particle.

g) PSOMAS [82] : In the Particle Swarm Optimization with Multiple Adaptive Sub-swarms

(PSOMAS) algorithm, each sub-swarm is evolved by a completely different variant of the single

swarm PSO algorithm, such as Comprehensive Learning PSO [83] and Cooperative PSO [84]. This

work also uses an adaptive strategy to reduce usage of computational resources.

h) Chain and Hypercube Communication Topologies for multiswarm-PSOs [85] : The

chain and hypercube topologies have been proposed with the aim of limiting communication be-

tween swarms in order to increase per-swarm exploration over different parts of the search space.
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A comparison of these techniques with the simple cross-over strategy showed that the chain topol-

ogy exhibited a better error performance. The computational complexities of these techniques is,

however, not discussed.

4.4 Multi-objective Workflow Scheduling Based on MS-PSO

Scientific workflow scheduling is a computationally complex exercise. Therefore, the multi-swarm

PSO optimization algorithm tailored for this problem must be simple and characterized by a low

computational complexity. In light of this understanding, this work adopts the Socio-Cognitively

Inspired PSO [77] due to its apparent simplicity. Furthermore, in this approach, the swarms or

species are evolved differently from each other. The particles’ position and velocity are updated by

the different rules specific to a swarm. They, however, exchange information with the neighboring

swarms. This behavior is very intuitive from natural point of view because in the real world, a

variety of different species of a particular animal usually exist in an ecosystem simultaneously.

The competition for territory and survival creates the need for inter-swarm communication. There-

fore, the evolution of the individuals is affected by other swarms’ rules thereby promoting infor-

mation sharing among swarms and cooperative development of the all species. In the proposed

MS-PSO algorithm, each swarm is initialized with particles that belong to a particular type of

species. The species in each swarm has its own algorithm for calculating the velocity. In stead of

using the neighborhood’s best position in the third term as in [77], entire swarm’s best position is

used. Therefore, at every k-th iteration, the elements of velocity vs
i of the i-th particle in the s-th

swarm are updated by using

vs
i,h = ωvs

i,h +A(pBestsi,h − xi,h)

+B(sBestsh − xi,h) + C(gBesth − xi,h),
(4.5)

where pBestsi is known as the personal best position for the i-th particle in the s-th swarm; sBests

is the best position in the s-th swarm and gBest is the global best position found across all swarms.

A, B and C are the learning factor coefficients in the range [0,1] which are different for each swarm

according to its class of species. The elements of position xs
i of the i-th particle are updated by

using

xs
i,h = xs

i,h + vs
i,h, (4.6)
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The five types of species, considered in this work, are presented as follows:

• Normal Species: This species represents the canonical PSO, where the particle’s decisions are

affected by the particle’s best solution and a swarm’s best solution, with each given the same

weighted coefficient.

• Local and Global Species: This species is influenced only by its own best and global best

position for all swarms.

• Swarm only Species: This species is influenced only by the swarm’s best position.

• Global only species: This species is influenced only by the global best position for all swarms.

• Random species: This species employs randomness, where all three parameters in the PSO

velocity function (Eq. (4.5)) are taken into consideration. For each iteration, the coefficient

weights of the parameters are uniformly distributed random number in the range (0,1).

Table 4.1 shows the parameters for the five species. Once the position of a particle in the swarm

has been updated according to equations (4.5) and (4.6), it’s fitness value is determined according

to equation (4.3). If the new fitness value is better than the previous one, then the respective best

values are updated by the current values.

Table 4.1: Settings of the cognitive and social learning coefficients for different species

Species Type Particle (A) Swarm (B) All Swarms (C)

Normal 1 1 0

Local & Global 1 0 1

Swarm only 0 1 0

Global only 0 0 1

Random random random random

Algorithm 4 illustrates the Multi-Swarm PSO-based optimization process. The input to the al-

gorithm is the workflow wf and all the available cloud-fog VMs, while the output is the task-VM

mapping schedule - gBest and F (gBest). Parameters N , S and G denote the number of particles,

the number of swarms, and the number of generations respectively.

The algorithm starts with the initialization of the values of the following parameters: N , S, A, B,
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Algorithm 4: The Proposed Multi-Swarm PSO-based Algorithm

1 Input: Workflow wf composed of t tasks and all available cloud-fog VMs;

2 Output: Task-VM mapping schedule - gBest and F (gBest);

3 Initialize N , S, A, B, C, ω, and G; Randomly generate N particles; Divide the N particles

into S subswarms of equal sizes;

4 F (gBest)← 0;

5 for s← 1, S do

6 F (sBests)← 0 ;

7 for i← 1, N/S do

8 Invoke the Fogworkflowsim workflow scheduler; Compute the fitness function value,

F (xs
i ), for particle i in swarm s, by using equation (4.3) in Section IV;

9 pBestsi ← xs
i ; F (pBestsi )← F (xs

i ) ;

10 if F (xs
i ) > F (sBests) then

11 sBests ← xs
i ; F (sBests)← F (xs

i );

12 if F (xs
i ) > F (gBest) then

13 gBest← xs
i ; F (gBest)← F (xs

i );

14 k ← 0;

15 while k ≤ G do

16 for s← 1, S do

17 for i← 1, N/S do

18 (1) Update vs
i and xs

i by using equations (4.5) and (4.6), and species-specific

parameters from Table 4.1;

19 (2) Invoke the Fogworkflowsim workflow scheduler;

20 (3) Compute the fitness function value, F (xs
i ), by using the Weighted Sum

Objective Function (equation (4.3) in Section IV);

21 if F (xs
i ) > F (pBestsi ) then

22 pBestsi ← xs
i ; F (pBestsi )← F (xs

i );

23 if F (xs
i ) > F (sBests) then

24 sBests ← xs
i ; F (sBests)← F (xs

i );

25 if F (xs
i ) > F (gBest) then

26 gBest← xs
i ; F (gBest)← F (xs

i );

27 k ← k + 1;
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C, ω, and G. In the next step, N particles are created and divided into S swarms of equal sizes

and the fitness value of the best global position F (gBest) is initialized to 0.

Between line 7 and line 19, the fitness values of the particles in each swarm are determined according

to equation (4.3), by running the respective workflow scheduling simulation on Fogworkflowsim [28].

The pBestsi , sBests and gBest values are determined among all the swarms. Once this process

is completed, each of the swarms/species is evolved by swarm/species-specific parameter settings

presented in Table 4.1 in an iterative process until G generations are reached. This happens from

21 to line 36. At every iteration, the computation goes through two loops: 1) the outer loop for

the swarms; 2) the inner loop for the individual particles in a particular swarm. Within the inner

loop, there are three steps:

1. The update of the particle’s velocity and position by using equations (4.5) and (4.6), and

species-specific parameters from Table 4.1.

2. The invokation of the Fogworkflowsim workflow scheduler to determine the fitness of the

particle determined in the first step.

3. The calculation of the fitness function value, F (xs
i ), by using the Weighted Sum Objective

Function (equation (4.3), in Section IV).

From line 27 to line 35, the newly determined fitness value F (xs
i ) for a particle i in swarm s

is compared with the three best fitness values associated with the particle at personal, swarm,

and global levels F (pBestsi ), F (sBests) and F (gBest) respectively). The values for pBestsi ,

F (pBestsi ), sBests, F (sBests), gBest, and F (gBest) are updated, whenever better values are

found in each case.

4.5 Performance Evaluation

This section begins by describing simulation environment setup on the FogWorkflowSim Toolkit.

This is followed by the experimental results and discussion of the comparative evaluation of MS-

PSO, GA, PSO, GA-PSO and DE as scheduling algorithms for scientific workflows is conducted

with makespan, cost, load balancing, and energy as performance metrics. The number of tasks has

been increased to a maximum of 500 in each case.



http://etd.uwc.ac.za/

Section 4.5. Performance Evaluation Page 52

4.5.1 Simulation Environment

The overall setup of the experiments and the simulation environment is described here. The sim-

ulations are conducted using FogWorkflowSim [28]. The performance of the proposed MS-PSO is

evaluated on five scientific workflow types, as described previously and the results are compared

with four other population-based algorithms, namely, standard GA, PSO, DE and GA-PSO pro-

posed in [14]. The final parameter settings for all the experiments are based on preliminary runs.

The population size = 50 for each algorithm.

Table 4.2: Parameter Settings Of Cloud-Fog Environment

Parameters End Device Fog VM Cloud VM

Processing rate (MIPS) 500 1000 2000

Task execution cost ($) 0 0.48 0.96

Communication cost ($) 0 0.01 0.02

Working power (mW) 200 700 1700

Idle power (mW) 50 200 1200

Uplink bandwidth (Mbps) 800 500 300

Downlink bandwidth (Mbps) 1000 800 500

The MS-PSO learning factors A, B and C are set according to Table 4.1, with S = 5 and each

containing 10 particles. The inertia weight ω = 1. The classical PSO learning factors C1 = C2 =

2, with inertia weight ω = 1. The GA algorithm’s crossover and mutation rates are 0.8 and 0.1,

respectively. The DE crossover probability = 0.9 and the differential weight = 0.8. The number of

iterations for all algorithms is 100. The simulations are executed 10 times for each workflow and

task volume to get the average performance of the algorithms. The simulator is setup with one end

device, six fog VMs and ten cloud VMs. The characteristics for each VM on the three cloud-fog

layers along with the environment settings are shown in Table 4.2.

4.5.2 Simulation Results and Discussion

The performance of the proposed algorithm is compared with the canonical PSO and the GA,

DE and GA-PSO, which are the three other population-search based algorithms for cloud based

workflow scheduling. All the algorithms are executed on the same simulation environment setup.
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The respective fitness evolution graphs and run-times for each algorithm are recorded and presented.

Finally, the comparison of the results is presented in terms of the following performance metrics:

makespan, cost, energy and load balancing on the cloud and fog respectively.

Fig. 4.1 shows the evolution of the fitness value for each scientific workflow with 300 tasks and the

overall quality of the task schedule produced by the algorithms considering all the performance

metrics. For the Montage workflow, as shown in Fig. 4.1(a), the MS-PSO approach closely follows

the DE approach, which achieves the best fitness value. On the other hand the canonical PSO

approach exhibits the worst performance closely followed by the GA approach. In the case of

Cybershake (Fig. 4.1(b)), the rest of the algorithms apart from the PSO approach achieve the

similar fitness value. The GA and the DE approaches seem to converge faster than the rest of the

algorithms. The Epigenomics workflow, in Fig. 4.1(c), exhibits a similar pattern to the Montage

workflow (see Fig. 4.1(a)) in the sense that MS-PSO and DE achieve the lowest fitness values, while

GA and PSO achieves the highest values. In Fig. 4.1(d), the MS-PSO again follows the DE, GA-

PSO and GA algorithms, which are the best performing approaches, closely. The SIPHT workflow,

Fig. 4.1(e), shows a similar pattern. In all these cases, all algorithms seem to converge by the 30th

iteration.

From the results in Fig. 4.1, it can clearly be seen that the final fitness value of the proposed

MS-PSO is much smaller than the canonical PSO and very similar to the other algorithms. This

indicates that the MS-PSO has the ability to find near-optimal solutions, while the canonical PSO

easily falls into a local optima. The MS-PSO benefits from the multi-species approach where the

particle’s velocity update in each swarm is calculated differently, enabling a more exploratory global

search with the capability to easily jump local optima.

Fig. 4.2 - Fig. 4.6 shows the average performance metric results of the task schedules realized by

the five algorithms for five workflow types under 100, 300, and 500 tasks. Fig. 4.2 shows that

the Montage workflow achieves the shortest makespan of the five workflows. At 100 tasks, all the

algorithms exhibit a similar performance. At 300 tasks, PSO is the worst while DE is the best

approach. The rest of the algorithms lie in between. At 500 tasks, DE joins PSO as the worst

performing algorithms, while GA and GA-PSO achieve the best performance. The MS-PSO shows

stability and reliability.

In the Cybershake workflow, the PSO algorithm is the worst at 100 and 300 tasks, and it is joined
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Figure 4.1: Comparison of fitness value evolution

by PSO, GA-PSO and GA at 500 tasks. At the other end, the rest of the algorithms perform

equally at 100 tasks. The DE is the best at 300 tasks and it is joined by the MS-PSO at 500 tasks.

Again, the proposed MS-PSO exhibits a better performance than the canonical PSO and it is more
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Figure 4.2: Comparison of makespan for the different algorithms

stable than the rest of the algorithms. In the Epigenomics workflow, performance is more or less

the same at 100 tasks. At 300 tasks, PSO is the worst, while DE is the best. At 500 tasks, PSO is

still the worst while the rest of the algorithms perform more or less in a similar manner.

In the LIGO workflow, DE is the best, while the rest of the approaches exhibit similar performance,

at 100 tasks. At 300 tasks, the DE is the worst, while the MS-PSO is the best. At 500 tasks, PSO

is the worst, while the rest of the algorithms exhibit similar performance. Finally, in the SIPHT

workflow, PSO has worst makespan at 100 tasks, while the rest of the algorithms exhibit a similar

performance. At 300 tasks, PSO is joined by DE with the worst makespan. The MS-PSO and

GA-PSO achieve the best makespan values. At 500 tasks, PSO still performs poorly, while the rest

of the algorithms perform similarly.

The proposed MS-PSO approach clearly outperforms the canonical PSO approach, while competing

fairly well with the other approaches. It comes out on top in several instances, while performing
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closer to the top in many cases. Amongst the competitors, DE and GA-PSO produce the best

results on several instances, but they also register the worst results in a number of cases. The

proposed MS-PSO approach is, therefore, stable and more reliable. This can be attributed to the

use of different velocity update mechanisms in the sub-swarms. This helps to guarantee efficiency

in times of when some sub-swarms become unstable or are stuck in the local minima. The MS-PSO

generally achieves better results than the GA-PSO. This suggests that the parallel approach of

combining algorithms might probably generate good results, as opposed to the serial approach in

the GA-PSO approach.

Fig. 4.3 illustrates a comparative evaluation based on cost. The Montage workflow yields the

lowest makespan and as a result, it also registers the lowest cost. At 100 tasks, MS-PSO, PSO

and GA-PSO achieve the lowest cost, while GA and DE are the worst in terms of cost. There is,

however, similar performance among the algorithms when the tasks are increased to 300 and 500.

For the Cybershake workflow, MS-PSO has the lowest cost at 100 tasks, while PSO has the highest

cost. When the number of tasks is increased to 300, DE yields the lowest cost, while PSO still

has the highest cost. The proposed MS-PSO ranks between the two extremes. At 500 tasks, PSO

remains with the highest cost, while the rest of the algorithms have similar cost values. For the

Epigenomics workflow, the performance is more or less the same for all algorithms for all tasks.

The same applies to the LIGO workflow. For the SIPHT workflow, all algorithms register similar

costs for 100 and 500 tasks. For 300 tasks, only the PSO yields a high cost while the rest of the

algorithms have similar costs. On the overall cost analysis, the PSO gives the highest cost, while

the proposed MS-PSO still competes fairly well with the rest of the algorithms. MS-PSO and DE

come out on top once.

Fig. 4.4 illustrates a comparative evaluation based on energy consumption. As expected, the Mon-

tage workflow consumes the lowest amount of energy under all tasks. At 100 tasks, all algorithms

have similar energy consumption, while PSO and the DE are the worst and the best performing

algorithms when the number of tasks is increased to 300. At 500 tasks, the DE becomes the worst

algorithm while GA and GA-PSO are the best; MS-PSO and PSO exhibit similar performance.

For the Cybershake workflow, MS-PSO has the lowest energy consumption at 100 tasks, while

the rest of the algorithms exhibit similar performance. At 300 tasks, DE yields the lowest energy

consumption, while PSO still has the highest energy consumption. The proposed MS-PSO ranks

between the two extremes. At 500 tasks, MS-PSO gives the best performance, closely followed by
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Figure 4.3: Comparison of cost for the different algorithms

DE. The rest of the algorithms have similar energy values.

For the Epigenomics workflow, PSO consumes the highest amount of energy while the rest of the

algorithms show similar energy consumption for 100 and 500 tasks. At 300 tasks, the trend is the

same, but DE yields slightly better performance than the other algorithms. For the LIGO workflow,

DE slightly outperforms the rest of the algorithms for 100 tasks. On the other hand, PSO consumes

the highest energy, while the rest of the algorithms yield similar energy consumption values for 300

and 500 tasks. For the SIPHT workflow, all algorithms register similar costs for 100 and 500 tasks.

For 300 tasks, only the PSO yields the highest energy consumption while DE has a slightly lower

energy consumption than the other three competitors.

On the overall energy analysis, the proposed MS-PSO and DE yield the lowest energy consumption

on several instances. Ironically, DE also registers the highest energy consumption on one instance.

This further confirms the fact that the DE algorithm is unstable and unreliable. This stems from the

fact that it uses one homogeneous population. Therefore, the possibility of premature convergence
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Figure 4.4: Comparison of energy consumption for the different algorithms

is always there.

Fig. 4.5 illustrates a comparative evaluation based on load balancing on the cloud resources. For

the Montage workflow, all algorithms register similar load balancing performance for 100 tasks.

At 300 tasks, PSO and the DE are the worst and the best performing algorithms, respectively.

On the other hand, GA performs best at 500 tasks, with PSO, GA-PSO and DE exhibiting the

worst performance. MS-PSO’s load balancing performance is in between the two extremes. For

the Cybershake workflow, MS-PSO and PSO have the best and worst performance for 100 tasks,

respectively. At 300 tasks, DE and PSO have the best and worst performance, while at 500 tasks

DE and MS-PSO have the best performance. For the Epigenomics workflow, PSO has the worst

performance while the rest of the algorithms show similar performance for 100 tasks. The DE yields

better performance than the other algorithms for 300 and 500 tasks. For the LIGO workflow, all

algorithms except PSO, exhibit similar performance for all tasks. For the SIPHT workflow, PSO

and MS-PSO have the worst performance while the rest of the algorithms register similar costs for
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100 tasks. For 300 tasks, PSO and DE have the best and worst performance, while at 500 tasks,

only PSO performs badly.

Figure 4.5: Comparison of load balancing on the cloud for the different algorithms

In the overall analysis on load balancing on the cloud, DE yields the best performance on most

instances while MS-PSO ranks second. Nevertheless DE yields the worst performance on one

instance. This further confirms the problem of instability as previously explained.

Fig. 4.6 illustrates a comparative evaluation based on load balancing on the fog resources. For the

Montage workflow, when the number of workflow tasks is set to 100, MS-PSO achieves the best load

balancing performance, with the GA giving the worst performance. PSO performs slightly poorly,

while the rest of the algorithms perform similarly for 300 and 500 tasks. For the Cybershake

workflow, DE and PSO have the best and worst performance for 100 tasks. At 300 tasks, all

algorithms have similar performance, while DE and GA have the best and worst performance for

500 tasks. For the Epigenomics workflow, GA-PSO and PSO have the best and worst performance

for 100 and 500 tasks. On the other hand, DE and PSO have the best and worst performance
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for 300 tasks. For the LIGO workflow, GA-PSO and PSO have the best and worst performance

for 100 tasks. At 300 tasks, DE slightly outperforms GA-PSO to emerge as the best performing

algorithm, while ony PSO performs badly at 500 tasks. For the SIPHT workflow, PSO has the

worst performance; the MS-PSO follows PSO closely, while the rest of the algorithms register

similar costs for 100 tasks. For 300 tasks, PSO and DE have the best and worst performance, while

at 500 tasks, just like in the case of cloud-based load balancing, only PSO performs badly.

Figure 4.6: Comparison of load balancing on the fog for the different algorithms

In the overall analysis on load balancing on the fog devices, DE yields the best performance on

most instances while GA-PSO and MS-PSO rank second and third respectively.

Having compared the algorithms based on various performance metrics, it is also important to con-

sider the computational times of the algorithms. Therefore, Table 4.3 shows a comparison of the

average execution times of the algorithms for the five scientific workflows using different number

of tasks. GA and DE have the worst execution times. On the other hand, the approaches that

incorporate PSO have much better execution times, with the canonical PSO clearly outperforming
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Table 4.3: The average execution time of the algorithms

Workflow Number of tasks Algorithm runtime /sec

MS-PSO PSO GA GA-PSO DE

Montage 100 14.961 10.656 25.247 16.523 25.424

300 56.456 51.279 76.009 60.241 77.302

500 158.644 153.408 192.513 165.19 194.139

CyberShake 100 14.422 10.395 24.174 15.908 24.266

300 48.333 42.252 61.028 49.897 69.346

500 130.358 115.924 145.265 133.29 144.698

Epigenomics 100 13.061 10.819 24.107 15.344 24.37

300 56.405 51.78 71.793 58.782 76.651

500 178.086 171.654 209.732 184.292 207.713

LIGO 100 13.233 10.407 35.116 17.892 36.117

300 59.88 55.063 76.776 64.797 79.474

500 170.164 161.873 196.134 174.329 201.607

SIPHT 100 109.573 104.274 125.372 112.439 120.545

300 368.48 362.949 392.557 373.915 390.109

500 740.411 730.311 777.945 747.912 782.624
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the rest of the algorithms in all cases. This highlights the computational and implementation sim-

plicity of the canonical PSO technique. The proposed MS-PSO algorithm inherits those attributes,

albeit at a slightly increased computational cost due to the addition of the third term that captures

the contribution of the best position for each swarm and determining each swarms’ best performing

particle for every iteration. However, the canonical PSO produced the lowest quality of solutions

as shown in Fig. 4.1 - Fig. 4.6. It is noteworthy that as the workflow size increases, the MS-PSO

offers a good trade-off between algorithm execution time and quality of solutions produced. This is

crucial especially for large-scale scientific workflow applications where long running times can have

a significant impact on financial cost and energy when generating task schedules for a cloud-fog

environment.

These results show that the canonical PSO algorithm performs the worst on all the workflow

instances due to PSO’s well-known problem of premature convergence, which leads it to getting

trapped in a local optima. The MS-PSO algorithm, on the other hand, outperforms the canonical

PSO for the five scientific workflows and competes fairly well with the other algorithms. The MS-

PSO also exhibits stability; it has rarely offered the worst performance. This demonstrates the high

reliability of the MS-PSO approach. The MS-PSO benefits from the variety of cognitive and social

learning coefficients of the different swarms when determining the velocity for each particle, hence

the algorithm is able to escape local optima. The results are affected by the characteristics of the

workflow instances. When the number of tasks for the respective workflow instance is higher, the

metric values are also generally higher as the run times and data sizes of the workflow DAG are

significantly higher.

4.6 Chapter Summary

This chapter presented a multi-swarm Particle Swarm Optimisation (MS-PSO) approach for scien-

tific workflow scheduling in cloud-fog environments. This approach is motivated by the problem of

premature convergence in the PSO technique. This chapter also developed the concept of load bal-

ancing, both for the fog and the cloud resources, and incorporated it in the weighted multi-objective

mechanism. The state-of-the-art multi-swarm PSO algorithms have also been reviewed with the

aim of determining the best approach for implementing a multi-swarm PSO technique for scientific

workflow scheduling. The resulting MS-PSO uses multiple swarms of different species of particles to
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improve exploration of the search space and avoid premature convergence. Finally, simulations are

performed with five scientific workflows using the FogWorkflowSim tool. The proposed algorithm

is compared to the canonical PSO, GA, DE and GA-PSO. The following performance metrics are

used: makespan, cost, energy consumption, and load balancing on the fog as well as on the cloud

resources. Results show that the proposed MS-PSO generally outperforms the canonical PSO on

all scientific workflows and under all performance metrics. The proposed MS-PSO generally per-

forms better than GA and GA-PSO. It competes fairly well against DE and more importantly it

is more stable and reliable than DE. In terms of computational complexity, the proposed MS-PSO

only ranks second to PSO, while DE has the worst execution time. These results show that the

proposed MS-PSO technique is exhibiting much better overall performance compared to the com-

petitors. The next chapter presents the application of a DE variant, known as SHADE, to scientific

workflow scheduling.
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Chapter 5

Success-History-based Differential

Evolution (SHADE) for Scientific

Workflow Scheduling in Cloud-Fog

Environments

5.1 Introduction

This chapter presents the application of the Success-History-based Adaptive Differential Evolution

(SHADE) algorithm to the problem of scientific workflow scheduling in a cloud-fog environment.

The weighted sum objective function that incorporates makespan, cost and energy as described in

Chapter 3 is used. The simulations compare the SHADE mechanism with the canonical Differential

Evolution (DE). The following scientific workflows are used: Montage, CyberShake, SIPHT, LIGO

and Epigenomics. Section 5.2 presents the details of the SHADE variant used in this work. Section

5.3 presents the simulation environment setup with the algorithm parameters. Then Section 5.4

discusses the simulation results. Finally, Section 5.5 concludes the chapter.
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5.2 Description of SHADE variant - DISH

This work uses the SHADE variant proposed in [47]. This algorithm introduced the distance based

parameter adaptation to the SHADE algorithm in order to address the premature convergence of

SHADE–based algorithms. As a result, the algorithm utilizes a longer exploration search, especially

in higher dimensional search spaces. Furthermore, the modification proposed in [47] to the original

scaling factor and crossover rate parameters in SHADE rewards the exploration capabilities more.

In this section, the major aspects of the SHADE algorithm are presented before specifically present-

ing the distance parameter adaptation mechanism, described as DISH (DIstance Based Parameter

Adaptation for Success-History based Differential Evolution).

5.2.1 SHADE

In order to get rid of the need to fine-tune the control parameters F and CR, the SHADE algorithm

[86, 87] was proposed. SHADE maintains two historical memories MF and MCR for successful

scaling factor and crossover rate values with their update mechanism. The various steps of the

SHADE algorithm are presented as follows.

Initialization

The initial population is generated randomly just like in the case of the canonical DE [44]. In

addition, historical memories are preset to 0.5 for both scaling factor and crossover rate parameters.

Furthermore, an external archive of inferior solutions A has to be initialized to ∅. Once the

initialization process is completed, the rest of the steps (mutation, crossover, selection, historical

memory updates) are taken until the stopping criterion is reached.

Mutation

The SHADE algorithm replaces the mutation in Eq. 2.3, with

vi,j = xi,j + Fi(xpbest,jxi,j) + Fi(xr1,jxr2,j), (5.1)
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where pbest is an index of one of the p× 100% best individuals and pbest ̸= r1 ̸= r2. The scaling

factor value Fi is given by

Fi = C(MF,r, 0.1), (5.2)

where MF,r is a randomly selected value from historical data of MF values. This happens because

index r is randomly generated from the range [1,Hm]), where Hm is the memory size of historical

data. Function C() is the Cauchy distribution, which is implemented in such a way that 0.0 ≤ Fi ≤

1.0.

Crossover and Selection

The crossover operation is similar to the canonical DE operation in Section 2.4, in Chapter 2. The

only difference is in how the CR is determined. In the SHADE approach, the historical data saved

in MCR is utilized by using the Gaussian distribution illustrated by

CRi = N (MCR,r, 0.1), (5.3)

where MCR,r is a randomly selected value from MCR and CRi ∈ [0, 1]. Once the crossover has

taken place, the selection process is conducted in the same manner as in the canonical DE.

5.2.2 Historical Memory Updates

The historical memories MF and MCR keep successful values F and CR from the mutation and

crossover processes; values that produce a trial individual better than the original individual are

deemed to be successful. These F and CR values are stored in SF and SCR respectively. Fur-

thermore, the corresponding goal function improvements S∆fi , where ∆fi = |f(ui) − f(xi)|, are

calculated. The memory cells are updated using the values calculated with weighted Lehmer mean

[88]:

meanwL =

∑|S|
j=1wjS

2
j∑|S|

j=1wjSj

, (5.4)

where wj =
S∆fi∑|S|

k=1 S∆fk

and S = SF or S = SCR. The new values for MF and MCR values after

generation g for one of the memory cells h are given by

Mg+1
F,h = 0.5(Mg

F,h +meanwL,F ) (5.5)
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and

Mg+1
CR,h = 0.5(Mg

CR,h +meanwL,CR) (5.6)

5.2.3 Further Improvements to the SHADE Algorithms

There have been many improvements to the SHADE algorithm [89, 90, 87, 91]. In this section,

only the linear decrease in population and the distance-based parameter adaptation mechanisms

are discussed.

Linear Decrease in Population Size

Linear population reduction was introduced to SHADE in order to enhance exploitation in later

stages of the evolution. The resulting algorithm from this update is LSHADE [87]. At every

generation, LSHADE calculates the new population by using

NPg+1 = round

(
E(NPmin −NPmax)

Emax
+ NPmax

)
, (5.7)

where NPmin and NPmax are the minimum and initial population sizes respectively, while E

and Emax are the current and maximum number of objective function evaluations. When the

new population size is lower than the previous value, the worst individuals are removed from the

population.

Distance-based Parameter Adaptation Mechanism

The distance-based parameter adaptation mechanism, proposed in [47], was motivated by the

observation that the original adaptation mechanism for scaling factor and crossover rate values

promotes exploitation over exploration. According to [47], this phenomenon can lead to premature

convergence, which could be a problem, especially in higher dimensions. To prevent this problem,

they proposed a Euclidean distance-based mechanism, where CR and F values connected with the

individual that moved the farthest will have the highest weight and H is the problem dimension:

wk =

√∑H
j=1(uk,j,g − xk,j,g)2∑|SCR|

m=1

√∑H
m=1(um,j,g − xm,j,g)2

. (5.8)
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Algorithm 5: SHADE Algorithm [47]

1 Input: NPinit,Hm, and termination criteria;

2 Output: xbest as the best found solution;

3 NP = NPinit, G = 0,xbest = {}, k = 1, pmin = 2/NP, A = ∅;

4 Randomly generate population P = (x1,G,...,xNP,G);

5 Set MF and MCR, Pnew = {}, xbest = best from population P ;

6 while stopping criteria not met do

7 SF = ∅, SCR = ∅;

8 for i← 1 , NP do

9 Set Fi by (5.2) and CRi by (5.3), xi,G = P [i], pi = U [pmin, 0.2];

10 vi,G by mutation (2.3), ui,G by crossover (2.4);

11 if f(ui,G) < f(xi,G) then

12 xi,G+1 = ui,G, A← xi,G, SF ← Fi, SCR ← CRi;

13 else

14 xi,G+1 = xi,G;

15 if |A| > NP then

16 Randomly delete |A| −NP individuals from A;

17 Pnew ← xi,G+1

18 Calculate NPnew according to (5.7);

19 if NPnew < NP then

20 Sort individuals in P according to their objective function values and remove NP -

NPnew worst ones;

21 NP = NPnew;

22 if SF ̸= ∅, SCR ̸= ∅ then

23 Update MF,k and MCR,k with Lehmer mean computed by (5.4) and distance-based

weights in (5.8), k++;

24 if k > Hm then

25 k = 1;

26 P = Pnew, Pnew = {}, xbest = best from population P ;

27 G← G+ 1
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The code for the SHADE variant is available online (https://github.com/wikkiw/DISH). Algorithm

5 depicts the pseudo-code of the SHADE optimization process. Specifically, on line 24, the DISH

mechanism presented in equation (5.8) is invoked.

The main drawback of this SHADE variant is a slightly higher computational complexity for cal-

culating the weights for historical memory updates. However, time complexity measurements in

[47] have shown that this does not impact the overall computation time. In addition, the distance

method is based on the Euclidean distance between the trial and the original individual which

slightly increases the complexity of the weight calculation, nevertheless, the overall complexity of

the algorithm is similar.

5.3 Simulation Environment

The simulations are performed using the FogWorkflowSim simulator and are performed on a com-

puter with 64-bit Windows 10 operating system, Intel(R) Core(TM) i5-5200U CPU @ 2.20GHz

and 16 GB RAM. The population size is set to 50 for each algorithm. The canonical DE crossover

probability is 0.4 and the scaling factor is 1.2. The number of iterations is 100. The algorithms are

evaluated using the five scientific workflows previously described, with three different task amounts

per workflow. The simulations are performed 10 times for each workflow to get the average per-

formance of the algorithms. The number of cloud VMs, fog VMs and end devices are 5, 5 and 1,

respectively. The computational capacity of a device or VM is measured in million instructions

per second (MIPS). The processing capacity of the end device is 1000 MIPS, each fog VM is 1300

MIPS and that of a cloud VM is 1600 MIPS. The task execution cost is 0.48 and 0.96 for the fog

and cloud VMs respectively.

5.4 Simulation Results and Discussion

In Figures 5.1-5.3, the results are shown for makespan, cost and energy consumption for the Montage

workflow. The results show that the canonical DE is exhibiting poorer performance compared to

the SHADE variant across the three performance metrics and task amounts.

The better performance exhibited by SHADE is likely due to the distance-based parameter adapta-
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tion mechanism which enables a better exploratory ability and avoidance of premature convergence.

As expected, all the performance metric values are higher as the workflow task amount increases.

The metrics for 20 tasks is very low but it rises sharply when the number of tasks increases to 100.

Specifically, in Fig. 5.2, cost increases from less than $100 for 20 tasks to beyond $200 at 100 tasks.

In Fig. 5.3, energy increases from less than 600J for 20 tasks to beyond 1200J at 100 tasks.

Figure 5.1: Makespan for Montage

Figure 5.2: Cost for Montage

In Figures 5.4-5.9, the results are shown for makespan, cost and energy consumption for the

CyberShake and Epigenomics workflow, respectively. The results are similar to what has been
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Figure 5.3: Energy consumption for Montage

observed for the Montage workflow, whereby the canonical DE is exhibiting poorer performance

compared to DISH. However, the metric values obtained for CyberShake and Epigenomics are much

higher. This is due to the higher workflow task sizes and runtimes compared to Montage.

On the other hand, in Fig. 5.5, the cost decreases from over $30 000 for 30 tasks to less than $15

000 at 100 tasks. The cost goes down considerably as the number of tasks increases. It looks like,

for CyberShake in particular, the DE and DISH algorithms allocate more tasks to the end device

as the number of tasks increases thereby reducing the cost. There are low costs due to less usage

of cloud and fog servers. This leads to high energy consumption due to increased usage of the end

device as shown by Fig. 5.6, where the energy consumption increases from less than 250 000J for

30 tasks to over 500 000J at 100 tasks.

In Figs. 5.7-5.9, similar to what was observed in Chapter 3, the metrics for Epigenomics on 24

and 47 tasks is very low but it rises significantly when the number of tasks increases to 100. The

map jobs in the Epigenomics workflow [1] become significantly more computationally intensive as

the number of tasks increases. Makespan increases from less than 10 sec for 24 and 47 tasks to

beyond 50 sec at 100 tasks; cost increases from less than $5 000 for 24 and 47 tasks to beyond

$40 000 at 100 tasks; energy increases from less than 50 000J for 24 and 47 tasks to beyond 250

000J at 100 tasks. The DISH algorithm also displays improved performance as the workflow size

increases. It outperforms the canonical DE by nearly 20% for Epigenomics, at 100 tasks, for the



http://etd.uwc.ac.za/

Section 5.4. Simulation Results and Discussion Page 72

Figure 5.4: Makespan for CyberShake

Figure 5.5: Cost for CyberShake
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Figure 5.6: Energy consumption for CyberShake

Figure 5.7: Makespan for Epigenomics



http://etd.uwc.ac.za/

Section 5.4. Simulation Results and Discussion Page 74

Figure 5.8: Cost for Epigenomics

Figure 5.9: Energy consumption for Epigenomics
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three performance metrics. This is due to the better exploratory capability of DISH.

In Figures 5.10-5.15, the results are shown for makespan, cost and energy consumption for the

LIGO workflow. Similarly to the observations for the other workflows, the results show that the

canonical DE is exhibiting poorer performance compared to the DISH algorithm. The performance

metric values are higher as the workflow task amount increases. The metrics for 30 tasks is low

but it rises considerably when the number of tasks increases to 100.

Figure 5.10: Makespan for LIGO

Figure 5.11: Cost for LIGO

Specifically for the LIGO workflow, in Fig. 5.10, makespan increases from less than 200 sec for 30
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Figure 5.12: Energy consumption for LIGO

Figure 5.13: Makespan for SIPHT
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Figure 5.14: Cost for SIPHT

Figure 5.15: Energy consumption for SIPHT
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tasks to beyond 250 sec at 100 tasks. In Fig. 5.11, cost increases from less than $4000 for 30 tasks

to beyond $8000 at 100 tasks. In Fig. 5.12, energy consumption increases from less than 6000J for

30 tasks to over 10 000J at 100 tasks.

Figures 5.13-5.15 show the results for makespan, cost and energy consumption for the SIPHT

workflow. In Fig. 5.14, cost increases from less than $4000 for 30 tasks to beyond $7000 at 100

tasks. In Fig. 5.15, energy consumption increases from less than 8000J for 30 tasks to over 10 000J

at 100 tasks.

Overall, the results indicate that the performance of the DISH is better than that of the canonical

DE. The DISH algorithm also seems to show better performance as the workflow task amount

increases, hence the DISH algorithm may be more suitable for large-scale workflow scheduling

where the solution vector is of a high dimension.

5.5 Chapter Summary

This chapter investigated the application of the canonical DE and a DE variant, known as SHADE,

to the problem of workflow scheduling in cloud-fog environments. Simulations are conducted on

the five well-known scientific workflows with different sizes. The results obtained indicate that the

SHADE variant outperformed the canonical DE for all workflow instances and it has the potential

to improve workflow processing efficiency and reduce energy consumption. The SHADE variant

also displayed better performance than the canonical DE, especially for the workflow instances with

higher task amounts. The next chapter summarizes and concludes this study. The possible future

work is also presented.
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Chapter 6

Conclusion and Future Works

6.1 Introduction

This Chapter presents the concluding remarks as well as recommendations for future work. It is

organised as follows. Section 6.1 presents concluding remarks, while section 6.2 presents future

perspectives.

6.2 Conclusion

The main aim of this work was to develop population-based multi-objective algorithms for schedul-

ing scientific workflows in the emerging three-tier architecture, that incorporates end-devices, fog de-

vices and cloud-devices. Unlike the traditional two-tier cloud infrastructure, the cloud-fog paradigm

helps to reduce processing latency; this is an excellent attribute for the execution of complex sci-

entific workflows.

The work begins by presenting a comprehensive literature review focusing on the following is-

sues: the basics of scientific workflows, cloud-fog environments; the theoretical foundations for

population-based algorithms such as Particle Swarm Optimisation (PSO), Genetic Algorithm (GA),

and Differential Evolution (DE); the applications of population-based algorithms to scientific work-

flows; and simulation frameworks. The gaps, identified in the literature review, set the platform

for the contributions emanating from this work.
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Pegasus workflows, such as Montage, Cybershake, Epigenomics, LIGO and SIPHT, were used in

this work. The FogWorkflowSim simulator [28] was used as the platform for implementing and

testing the population-based algorithms for scientific workflow scheduling throughout this work.

The results of this work can divided in three phases.

The first phase started with the development of a weighted sum-based objective function for work-

flow scheduling, by combining makespan, computation and communication costs, and energy con-

sumed in active as well as in idle mode on all the computation devices; this helped to ensure that

a holistic view of energy consumption is incorporated in the optimization process. The Differential

Evolution (DE) algorithm was introduced to this simulator for the very first time, courtesy of this

work. Two sets of experiments were conducted.

In the first set, a comprehensive evaluation of PSO, GA, DE and GA-PSO on the workflow schedul-

ing problem in the three-tier cloud-fog environment, was conducted. Makespan, cost and energy

were used as objectives to evaluate the quality of the solutions. The results show that the GA-PSO

algorithm performed slightly better than the standard approaches. Although the number of tasks

per workflow was limited to 100, this performance showed the potential of hybrid algorithms that

synergistically combine the good attributes of the standard algorithms to improve performance. In

the second set of experiments, a performance evaluation of the canonical PSO algorithm, applied

to both the traditional cloud and the emerging three-tier cloud-fog environment, was conducted.

The cloud-fog environment yielded lower makespan, cost, and energy consumption. This clearly

shows the efficacy of the advantages of running scientific workflows in cloud-fog environments.

In the second phase, the objective function was further expanded to incorporate load balancing

on the fog as well as on the cloud resources to ensure workloads are distributed evenly for more

efficient processing of workflows. A brief survey on the state-of-the Multi-Swarm PSO algorithms

and techniques was implemented. Then the work proceeded to develop a Multi-Swarm based PSO

algorithm to address the issue of premature convergence with the canonical PSO. The proposed

MS-PSO outperforms the canonical PSO by atleast 10% on all scientific workflows and under all

performance metrics. It also competes fairly well against the other approaches and it is more

stable and reliable. This provides insight into how the improvements of the standard algorithms,

that retain the good attributes, can improve the scheduling of workflows. The number of task per

workflow was increased to 500.
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In the third phase, this research applied a modern DE variant known as SHADE to workflow

scheduling and compared it with the canonical DE. The SHADE variant outperformed the canonical

DE by atleast 10%, for each performance metric, on all scientific workflow instances. The SHADE

variant also displayed better performance than the canonical DE for the large workflow instances,

indicating that it may be more suitable for large-scale workflow scheduling.

6.3 Future Works

In terms of future work, the following can be pursued:

• The number of tasks in each of the scientific workflows can be increased to over 1000, specif-

ically the evaluation of large-scale scientific workflows. This will require more computing

resources.

• The optimization objectives can be expanded to include reliability and fault tolerance, and

the incorporation of deadline and budget constraints.

• Development of a multiple species population-based algorithm, incorporating population up-

date mechanisms from several algorithmic frameworks (MS-PSO, DE, GA), for scientific work-

flow scheduling. This will incorporate the positive attributes of all algorithms.

• A framework that hybridizes population-based scheduling mechanisms with concepts drawn

from dynamic scientific workflow scheduling [92] and multi-objective reinforcement learning-

based scientific workflow scheduling [93] can also be investigated.
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