Geochemical and petrographic evidence for the Vredefort proximal impact ejecta in the Northern Cape, South Africa

By

Floyd Danger Mautle

Thesis

Submitted in fulfilment of the requirements for the degree of Magister of Scientiae in Applied Geology in the Faculty of Natural Sciences at the University of the Western Cape

Supervisor: Dr Matthew Huber

Co-supervisor: Dr Elizaveta Kovaleva

Department of Earth Science
January 2022

Keywords

Hypervelocity meteorite impact events
Vredefort ejecta
Impact accretionary lapilli
Vredefort impact structure
Proximal impact ejecta
Wolhaarkop Breccia
Maremane Dome
Doornfontein Conglomerate Member

UNIVERSITY of the
WESTERN CAPE

Abstract
 Petrographic and geochemical evidence for the Vredefort proximal impact ejecta in the Northern Cape, South Africa
 F.D Mautle

 MSc thesis, Department of Earth Science, University of the Western Cape

 MSc thesis, Department of Earth Science, University of the Western Cape}

The advancement of the understanding of hypervelocity impacts lies in discovering impact structures and both proximal and distal impact ejecta. This study uses petrographic and geochemical techniques to investigate the occurrence of Vredefort proximal impact ejecta in the Paleoproterozoic Maremane Dome, South Africa.

Anomalous spherical objects ca. 15 mm in apparent diameter have been observed near the top of the Doornfontein Conglomerate Member in the Maremane Dome, South Africa. The objects were previously described as pisolites formed by laterization. The Doornfontein Conglomerate Member was thought to be a conglomerate unit formed by erosion and karstification of the Maremane Dome during the tectonic uplift. However, these interpretations appear to not fully explain most observations in the Doornfontein Conglomerate Member and anomalous objects and are therefore a concern.

Through petrographic techniques intergraded with geochemical techniques, this work investigated 24 drill core samples with the anomalous objects from the Doornfontein Conglomerate Member in the Maremane Dome to test the hypothesis that the samples could be related to the Vredefort structure. The drill core samples are clay-rich and ferruginised matrix-supported breccias. The samples occur between the Hartley Formation (1.93 Ga) and Ongeluk Formation ($2.22 \pm 13 \mathrm{Ga}$), implying that the samples may occur within a permissible
 between the centre of the crater and final rim of the crater) from the centre of the Vredefort structure, suggesting that the samples may occur within an expected distance from the Vredefort structure for Vredefort proximal impact ejecta. The samples appear to be similar to impact breccias in the Stac Fada impact ejecta layer. The anomalous objects in the samples appear to be accretionary lapilli and resemble accretionary lapilli formed by impact processes based on their large size, typically darker crusts and lithic rock fragments aligned typically parallel to the margins. The occurrence of the accretionary lapilli at the top of the Doornfontein Conglomerate Member is also analogous to the occurrence of accretionary lapilli at the top of the impact breccias in the Stac Fada impact ejecta layer.

Based on optical microscopy and scanning electron microscopy, the samples contain potential shocked quartz and zircon grains with possible planar deformation features and planar fractures induced by impacts. Low siderophile element abundances, especially $\mathrm{Ni}, \mathrm{Co}, \mathrm{Cr}$ and Ir, were detected in the samples using instrumental neutron activation analysis, but Ir was only detected in a single sample, measuring 0.58 ppb . Although the siderophile element abundances are low, they may result from an impact because the siderophile element abundances appear to be lowered and diluted by ferruginisation and hydrothermal fluids, which appear to have crystallised rutile and anatase determined by Raman spectroscopy.

Due to the absence of sediment reworking, varying thickness and continuous intergradation without a grain size change in the lithofacies identified for the samples and the sample's similarity to the impact breccias in the Stac Fada impact ejecta layer, the samples are suggested to have been emplaced as a ground-hugging density current ejecta that propagated outwards from the Vredefort impact site, forming the Vredefort proximal impact ejecta.

The proposed Vredefort proximal impact ejecta is the first described occurrence of the proximal impact ejecta associated with this impact structure. This is also true for the
continuous ejecta blanket of the Vredefort structure. The proposed discovery of the Vredefort proximal impact ejecta and continuous ejecta blanket of the Vredefort structure will provide a glimpse of the Vredefort impact ejecta's record because a considerable amount of this record is still unknown.

Declaration

I declare that Petrographic and geochemical evidence for the Vredefort proximal impact ejecta in the Northern Cape, South Africa is my own work, that it has not been submitted for any degree or examination in any other university, and that all the sources I have used or quoted have been indicated and acknowledged by complete references.

Full name: Floyd Danger Mautle

Acknowledgements

The author would like to thank the following people:

- My late grandmother, Catherine "Stutla" Mautle
- My late grandfather, Danger Masokwane
- My grandmother, Merry Masokwane
- My parents, Herman and Selina
- My siblings, Bopang, Orapeleng and Sebati
- My uncle, Vincent Masokwane
- My aunt, Finky Masokwane
- Bopaki Mautle
- Elizaveta Kovaleva
- Matthew Huber
- Masibulele Zintwana
- Jonathan Hainsworth
- Andre van Heerden
- Christian Koeberl
- Dmitry Zamyatin
- Sakkie van Niekerk
- Marius Burger
- Mbongiseni Mabuza

The author would also like to thank Boart Longyear for funding this project and the University of the Free State Research Master's Tuition Fee Bursary, and the University of the Western Cape Postgraduate Financial Assistance for their financial assistance. The author would also like to acknowledge DSI-NRF CIMERA for funding the author's field trips and scanning electron microscopy analyses.

V
Contents
Chapter 1: Introduction 1
1.1 Impact cratering 1
1.2 Shock metamorphism 3
1.3 Proximal and distal impact ejecta 3
1.4 Accretionary lapilli 4
1.5 Meteorite geochemical signatures 6
1.6 Vredefort impact structure 7
1.7 Focus on the geology of the research area 8
1.8 Aims 9
Chapter 2: Geological Setting 10
2.1 Regional Geology 10
2.2 Study Areas 13
2.2.1 Khumani Mine 14
2.2.2 Turner Exploration Camp 14
Chapter 3: Methodology 16
3.1 Sampling 16
3.1.1 Khumani Mine 16
3.1.2 Turner Exploration Camp 16
3.2 Petrography 16
3.2.1 Optical Microscopy 16
3.2.2 Scanning Electron Microscopy 16
3.3 Geochemistry 17
3.3.1 X-Ray Fluorescence Spectroscopy 17
3.3.2 Instrumental Neutron Activation Analysis 17
3.3.3 Raman Spectroscopy 17
Chapter 4: Results 19
4.1 Khumani Mine 19
4.1.1 Sample description 19
4.1.2 Petrography 21
4.1.3 Geochemistry 26
4.2 Turner Exploration Camp 38
4.2.1 Sample description. 38
4.2.2 Petrography 41
4.2.3 Geochemistry 50
4.3 Wolhaarkop Breccia and accretionary lapilli in the field 62
4.4 Summary of the results 64
Chapter 5: Discussion 66
5.1 Estimations of the distribution of Vredefort impact ejecta 66
5.1.1 Estimations using the Chicxulub structure 66
5.1.2 Estimations using the Earth Impact Effects Program 66
5.2 Radiometric age constraints 68
5.3 Lithofacies 68
5.4 Accretionary lapilli 68
5.5 Shocked mineral grains 70
5.6 Meteorite geochemical signatures 71
5.6.1 Chondrites and achondrites 71
5.6.2 Iron enrichment 72
5.6.3 Rutile and anatase 73
5.7 Formation of the Vredefort proximal impact ejecta 74
5.7.1 Accretionary lapilli formation 74
5.8 Wolhaarkop Breccia 78
5.9 Stratigraphic correlation 79
5.10 Ejecta from the largest terrestrial impact structures 80
Chapter 6: Conclusion 81
7. References 83
8. Appendix 93
8.1 Appendix A - Khumani Mine 93
Appendix A. 1 - Sample photos 93
Appendix A. 2 - Thin section photos 95
Appendix A. 3 - Scanning electron microscopy photomicrographs 96
8.2 Appendix B - Turner Exploration Camp 98
Appendix B. 1 - Sample photos 98
Appendix B. 2 - Thin section photos 104
Appendix B. 3 - Scanning electron microscopy photomicrographs 105
Appendix B. 4 - Raman spectroscopy photomicrographs and data 113
Appendix B. 5 - Rutile and anatase values 162

Tables

Table 1: Sample and accretionary lapilli descriptions based on sampling results. 28
Table 2: Descriptions of the samples and accretionary lapilli based on sampling results..... 29
Table 3: Major and trace element compositions of the samples .. 30
Table 4: Measured Fe (wt.\%) abundances for the samples... 30
Table 5: Major and trace element compositions of the samples .. 31
Table 6: Estimates of the transient crater diameter, transient crater depth and final crater diameter of the Vredefort structure

Preface

It took two years to complete this thesis at the University of the Free State and the University of the Western Cape at the Department of Geology and Department of Earth Science, respectively. This thesis contains six chapters, in which Chapter 1 introduces hypervelocity impact events, shock metamorphism, meteorite geochemical signatures, accretionary lapilli and the thesis aims. Chapter 2 describes the study areas and their regional geological setting. Chapter 3 describes how sampling was conducted and provides the petrographic and geochemical methods used for this study. Chapter 4 provides the results of sampling, petrography and geochemistry. Chapter 5 discusses, interprets and implicates the results, and Chapter 6 concludes the work.

Chapter 1: Introduction

Hypervelocity impact events occur when impactors such as meteorites, asteroids, and comets, collide with the surface of solid planetary bodies, i.e., terrestrial planets, asteroids and natural satellites of gaseous planets (Shoemaker, 1977; French, 1998; Glass \& Simonson, 2013; Osinski \& Pierazzo, 2013; Flamini et al. 2019). Hypervelocity impact events are the most common processes affecting the planetary surfaces in the Solar System and typically result in the formation of impact craters and impact structures on the surface of the solid planetary bodies (Figure 1A) (Taylor, 1992; French, 1998). One of the earliest pieces of evidence for the occurrence of impact craters was found during the Galileo era after Galileo discovered abundant impact craters on the surface of the Moon (French, 1998). However, the most definitive evidence for impact craters was provided during the 1900s by exploring the Solar System using humans and spacecrafts (Figure 1A). The Apollo mission crew provided highquality images of the surface and impact craters of the Moon (Taylor, 1992). Moreover, spacecraft imaging indicated that impact craters are the most abundant geographic features on solid planetary bodies (Taylor, 1982).

Impact structures also occur on Earth (Figure 1B). There are currently about 200 impact structures recognised on Earth, which are incorporated in the Earth Impact Database (Schmieder \& Kring, 2020). The largest three are the 2.02 Ga Vredefort structure (South Africa) with a ~ 180 to 300 km diameter, 1.85 Ga Sudbury structure (Canada) with a $\sim 260 \mathrm{~km}$ diameter, and 65 Ma Chicxulub structure (Mexico) with a diameter of $\sim 180 \mathrm{~km}$ (French, 1998). It is likely that the number of impact structures on Earth was higher than known today because the Earth's surface is constantly renewed by plate tectonic processes, volcanic eruptions, redeposition, and aeolian, hydrologic, and biogenic erosions ((Stöffler et al. 2006; Komatsu et al. 2014). In addition, the ocean covers roughly 75% of the Earth's surface and can thus obscure the record of impact structures on Earth (French, 1998).

Figure 1: (A) A heavily cratered surface of Mercury in the northwest quadrant near the equator. The image was taken by the Mercury Messenger spacecraft (Glass \& Simonson, 2013). (B) A bowl-shaped Meteor Crater (50 000 years old) with a 1.2 km diameter in Arizona, USA (Reimold \& Gibson, 2010).

1.1 Impact cratering

The formation of impact craters initiates immediately when the impactor strikes the surface (Figure 2) and comprises three stages: (1) contact and compression stage; (2) excavation stage, and; (3) modification stage (Melosh, 1989). The stages naturally follow each other smoothly, grading into one another. During the compression stage, the impactor strikes the surface and compresses the target rocks to shock pressures as high as >100 GPa (GPa; Gigapascals) (Figure 2) (Melosh, 1989; French, 1998). The compression and kinetic energy of the impactor form hemispherical shock waves that propagate through the target rocks at speeds faster than the speed of sound (Figure 2). The compression causes shock metamorphism, melting and vaporisation of the target rocks and the impactor (Figure 2) (Gault
et al. 1968). The vaporised impactor and target rock material form an impact plume and can expand outwards at velocities similar to those of the impact (Figure 2) (Melosh, 1989). The duration of the contact and compression stage is up to 1.0 seconds (Melosh, 1989; French, 1998).

Figure 2: A section showing the excavation flow lines and shock pressures at the point of impact (Melosh, 1989). Shock pressure isobars (pressure in GPa) form within the target surface and radiate outwards from the point of impact. The pressure peaks between the impactor and target surface and declines outward, creating concentric hemispherical zones of varying shock effects (located on the right side). These hemispherical zones cause melting (>50 GPa), shock deformation features ($5-50 \mathrm{GPa}$), and fracturing and brecciation (1-5 GPa). During the excavation stage, two processes occur: (1) ejection of fragments and impact ejecta (upward-pointing arrows over the surface) and; (2) sub-surface flow of target rocks and formation of the transient crater (arrows cutting isobars on the left side). Figure adapted from Melosh (1989).
During the excavation stage, a rarefaction or tensional wave that unloads the high shock pressure forms behind the shock wave that propagates into the impactor (Ahrens \& O'Keefe, 1972). Furthermore, during this stage, the crater starts to open up and form by ejecting target material outwards from the impact site and creating an excavation flow around the centre of the forming crater (Figure 2) (Melosh, 1989; Grieve, 1991). The flow directions differ with position within the target rocks, where along the upper levels, the rocks are displaced primarily upwards and outwards (Figure 2). In the lower levels, the rocks are displaced primarily downwards and outwards (Figure 2). These movements ultimately form a bowl-shaped depression, referred to as the transient cavity or transient crater, within the target surface (Figure 2) (Maxwell, 1977; Grieve et al. 1977; Melosh, 1989). Compared to the contact and compression stage, the duration of the excavation stage is from a few seconds to 100 seconds (Melosh, 1989; French, 1998).

During the modification stage, the transient crater is modified into three different types of structures, namely simple craters, complex craters, and multiring basins (French, 1998). Simple craters develop as bowl-shaped depressions and are the smallest structures (Melosh, 1989), and complex craters are larger structures and more complex in form (Grieve al. 1977; Grieve, 1991). Multiring basins form by impactors that are tens to hundreds of kilometres across (Melosh, 1989). The duration of this stage is less than 60 seconds for small structures and a few minutes for large structures (Melosh, 1989; French, 1998).

1.2 Shock metamorphism

As shock waves propagate from the impact point, they subject the target rocks to severe physical conditions. As a result, distinct shock-metamorphic features develop in the target rocks (Figure 2) (Melosh, 1989; French, 1998). The shock-metamorphic features are used as evidence for an impact origin to identify impact structures and rocks of impact origin (Figure 2) (Stoffler \& Langenhorst, 1994; Grieve et al. 1995; French, 1998; Guillaume-Feignon et al. 2020). The most widely used and accepted shock-metamorphic features for identifying impact structures and rocks that underwent shock-metamorphism are planar deformation features (PDFs) in shocked mineral grains, especially silicate minerals (typically quartz and feldspar) (French \& Short, 1968; Stoffler \& Langenhorst, 1994; French \& Koeberl, 2010). Planar deformation features (PDFs) are multiple sets of closely spaced, narrow, and parallel planar regions of amorphous material. Individual PDFs are usually 2 to $10 \mu \mathrm{~m}$ spaced and usually <2 to $3 \mu \mathrm{~m}$ narrow (French, 1998). A type of PDFs referred to as decorated PDFs are also accepted as evidence for shock-metamorphism (Figure 3) (French, 1998). Decorated PDFs occur mainly in altered and geologically old rocks and form when PDF-bearing amorphous silica recrystallises back to quartz, forming trails of small fluid inclusions along original PDF planes (Figure 3) (French, 1998; Cannon et al. 2010).

Shock-metamorphic features such as planar fractures are also a diagnostic criterion for identifying rocks and minerals that underwent shock metamorphism (Figure 2). Planar fractures mainly occur in quartz grains and represent parallel sets of multiple planar cracks or cleavages (Robertson et al. 1968; Stoffler \& Langenhorst, 1994; Grieve et al. 1996; French et al. 1997). Individual planar fractures are usually 5.0 to $10 \mu \mathrm{~m}$ wide and 15 to $20 \mu \mathrm{~m}$ spaced (French, 1998).

Figure 3: (A) Shocked quartz grain (cross-polarised light) with multiple sets of decorated PDFs with arrays of small fluid inclusions. This sample (CSF-66-39) is from a granite gneiss inclusion in the Onaping Formation, Sudbury structure. (B) Quartz grain (cross-polarised light) with multiple sets of decorated PDFs with trails of small fluid inclusions within original PDF planes. This sample (DCR-11-63B) is from a Precambrian basement gneiss in Canada's Carswell Lake structure. Both images are obtained from French (1998).

1.3 Proximal and distal impact ejecta

Impactites are rocks formed by impact processes and can occur in proximal and distal impact ejecta (Figure 2) (French, 1998). Impact ejecta is any target material, often mixed with impactor material, deposited beyond the transient crater's rim and consists of melt droplets, melt fragments, accretionary lapilli, and solid ejecta (Schulte et al. 2010). Proximal and distal impact ejecta often contains evidence of impact in the form of shock-metamorphic features and meteorite geochemical signatures. Proximal impact ejecta is ejecta deposited close to the impact crater, and distal impact ejecta is ejecta deposited further from the impact crater (Figure 2) (Melosh, 1989). Using the crater radius method (R_{c}; the distance between the centre of the crater and the final rim of the crater), about half of the impact ejecta settles within $2 \mathrm{R}_{\mathrm{c}}$ from the centre of the impact crater to form a continuous ejecta blanket (French, 1998). Roughly
90% of impact ejecta accumulates in $<5 \mathrm{R}_{\mathrm{c}}$, forming proximal impact ejecta. In comparison, distal impact ejecta occurs at $>5 R_{c}$ and forms about 10% of ejecta.

Impact ejecta provides valuable information about the history of impact bombardment on Earth even when the source impact structures themselves have not been identified (French, 1998). Impact ejecta can reveal unknown and missing information about the effects of impact events on, for example, the biology, environment and geology on Earth. Impact ejecta deposits have been used to directly link impact events with atmospheric, biological and oceanic events present in the stratigraphic record in which they occur (French, 1998). A notable example is the Phanerozoic Chicxulub structure, where an ejecta blanket consisting of proximal ejecta and distal ejecta from the structure was identified before discovering the actual structure. The ejecta blanket and Chicxulub impact event were correlated with the mass extinction event at the Cretaceous-Paleogene (K-Pg) boundary at about 66.05 Ma (Alvarez et al. 1980; Smit \& Hertogen, 1980; Sprain et al. 2018). The K-Pg event formed a thin clay layer that has been identified in more than 350 marine and terrestrial sites across the globe, containing shockmetamorphic features and high abundances of siderophile elements, especially Ir (Smit, 1999; Claeys et al. 2002). The layer also has accretionary lapilli and impact spherules (Gradstein et al. 2012).

Another example is the $1199 \pm 70 \mathrm{Ma}$ Stac Fada impact ejecta breccia layer in Scotland which is emplaced similar to ignimbrites from a volcano and was thus once interpreted to be volcanically derived (Lawson, 1972) but is now thought as an impact ejecta deposit sourced from an impact crater that has never been discovered (Amor et al. 2008). The Stac Fada impact ejecta layer is recognised to be of impact origin primarily because it contains shocked quartz grains and an extraterrestrial chromium isotope signature (Amor et al. 2008). The Stac Fada ejecta layer consists of massive suevites grading upwards without a contact into massive suevites with accretionary lapilli and accretionary lapilli fragments overlayed by a clastsupported dust pellet thin layer (Branney \& Brown, 2011). Although it is now thought that the emplacement of the sequence is by an impact density current, the sequence resembles ignimbrites with accretionary lapilli emplaced by pyroclastic density currents at volcanoes.

Impact ejecta has also been discovered from the Sudbury structure in a proximal to distal impact ejecta layer of breccia at 10 locations 500 to 700 km east of the Sudbury structure in the Paleoproterozoic iron ranges of northern Michigan, USA (Cannon et al. 2010; Huber \& Koeberl, 2017). Evidence for an association with the Sudbury structure is from radiometric age constraints of 1875 Ma and 1830 Ma from pre-and post-impact events in the breccia layer (Cannon et al. 2010). Sudbury ejecta also occurs in sites in Minnesota in USA and Ontario in Canada and, together with that from the ten sites, form an extensive ejecta layer (Addison et al. 2005). This layer shows variations in thicknesses, lithology, and sedimentary settings. As a result of these variations and others, most of the sites where Sudbury ejecta occurs were previously described and interpreted to have formed by typical terrestrial processes, but PDFs in shocked quartz grains indicate that the layer is a product of an impact (Cannon et al. 2010). The breccia layer also contains accretionary lapilli at most sites. It has been proposed that the layer may be used as a timeline that correlates stratigraphic sequences of separated iron ranges, the correlation which has been debated for a long time (Cannon et al. 2010).

1.4 Accretionary lapilli

Accretionary lapilli are a size classification of pyroclastic rocks and are by definition between 2 and 64 mm in diameter (Figure 4) (Fisher \& Waters, 1970; Schmincke et al. 1973; Schumacher \& Schmincke, 1995; Neuendorf et al. 2005). Pyroclastic rocks greater than 64 mm in diameter are called "bombs" when viscous and "blocks" when solid (Fisher \& Waters, 1970; Schmincke et al. 1973; Schumacher \& Schmincke, 1995; Neuendorf et al. 2005).

Accretionary lapilli are typically spherical to subspherical and have a concentric structure (concentrically zoned) consisting of nuclei, mantles and crusts (Figure 4) (Warme et al. 2002). The crusts are the outer rims, mantles are the main bodies, and nuclei are the central cores of the accretionary lapilli (Figure 4) (Warme et al. 2002). The grain size of accretionary lapilli usually grades outwards from coarse-grained nuclei to fine or very fine-grained crusts and mantles (Figure 4) (Warme et al. 2002).

Accretionary lapilli (impact accretionary lapilli) can form by the aggregation of particles by impact processes and are regarded as a special type of impact ejecta (Figure 4) (Moore \& Peck, 1992; Warme et al. 2002; Cannon et al. 2010; Huber \& Koeberl, 2017). Accretionary lapilli can also form by the aggregation of particles as a result of volcanic processes (volcanic accretionary lapilli) and form accretionary lapilli that are almost indistinguishable from those formed by impact processes (Figure 4) (Fisher \& Waters, 1970; Schmincke et al. 1973; Schumacher \& Schmincke, 1995; Neuendorf et al. 2005; Glass \& Simonson, 2013). As a result, models for forming volcanic accretionary lapilli have been used to describe the formation of impact accretionary lapilli (Pope et al. 2005; Glass \& Simonson, 2013).

Reimer (1983a) attributed five forces to forming accretionary lapilli: (1) electrostatic attraction; (2) capillary pressure of pore fluids; (3) crystallisation of dissolved matter; (4) van der Waals forces, and; (5) sintering at high temperature. However, impact and volcanic accretionary lapilli form under different mechanisms and conditions (Mueller et al. 2018). A few models have been provided to explain the formation of impact and volcanic accretionary lapilli. The formation of volcanic accretionary lapilli is thought to occur in a turbulent volcanic plume or ash cloud with a high moisture content by the accretion of ash around particles or nuclei (Fisher \& Waters, 1970; Schmincke et al. 1973; Reimer, 1983a; Fisher \& Schmincke, 1984; Gilbert \& Lane, 1994). The ash cloud is derived from the generation of large volumes of volcanic ash into the atmosphere, which can have an initial velocity as high as $500 \mathrm{~m} . \mathrm{s}^{-1}$ and contain particles with diameters greater than $10 \mu \mathrm{~m}$ (Huber \& Koeberl, 2017). Through rain moving between dry eruption clouds, ash can bound together to form accretionary lapilli (Fisher \& Schmincke, 1984). Alternatively, the particles in a laterally expanding and rising, turbulent wet ash clouds of base surges can agglomerate to form accretionary lapilli (Fisher \& Schmincke, 1984). The formation of volcanic accretionary lapilli has also been proposed to occur by the agglomeration of raindrops and grains rolling downslope in ash deposits (Reimer, 1983a).

Similar to volcanic accretionary lapilli, a few models have been provided to explain the formation of impact accretionary lapilli. The Yancey and Guillemetter (2008) and Johnson and Melosh (2014) models propose that the distal accretionary lapilli from the Chicxulub crater were formed by the aggregation of particles within a cooling impact ejecta plume. Grieve et al. (2010) attributes the accretionary lapilli in the Onaping Formation (fallback eject) in the Sudbury crater to have formed by a melt-fuel coolant interaction (MFCI). This implies that water from the surrounding flowed into the crater and caused phreatomagmatic eruptions promoting the aggregation of particles. The formation of accretionary lapilli in the Ries Crater has been interpreted as the fallback of melt-rich impact breccia, forming suevite during deposition and the collapse of un-lithified suevitic breccias under the influence of gravity (Graup, 1981; Stöffler et al. 2013).

There are only very few best examples of impact accretionary lapilli, and they include the Sudbury crater ($\sim 260 \mathrm{~km}$ in diameter; accretionary lapilli discovered both within the fallback ejecta and $\sim 400-700 \mathrm{~km}$ from the centre of the crater; Addison et al. 2005), Chicxulub impact crater ($\sim 180 \mathrm{~km}$ in diameter; accretionary lapilli found $\sim 500-1800 \mathrm{~km}$ from the crater; Yancey \& Guillemette, 2008), Ries crater ($\sim 24 \mathrm{~km}$ in diameter; accretionary lapilli discovered in within-
crater suevites; Graup, 1981), Tookoonooka crater ($\sim 55 \mathrm{~km}$ in diameter; accretionary lapilli found in the proximal ejecta blanket; Bron \& Gostin, 2012), Alamo breccia (the diameter of the crater is unclear; accretionary lapilli discovered in the proximal ejecta blanket; Warmer \& Kuehner, 1998), and Stac Fada breccia (the diameter of the crater is unclear; accretionary lapilli found in the proximal ejecta blanket; (Amor et al. 2008).

Figure 4: (A) Volcanic accretionary lapilli from Madras, Oregon (Moore \& Peck, 1962). Note the concentric structures of the accretionary lapilli and that they consist of nuclei, mantles and crusts. (B) The dark red to brown spherical particles in the rock are impact accretionary lapilli and occur within an iron-rich matrix (Huber \& Koeberl, 2017). The sample is from the McClure site, Sudbury impact layer. (C) A photomicrograph of an impact accretionary lapillus from Connors Creek in the Sudbury impact layer (Cannon et al. 2010). Note the internal zonation of the accretionary lapillus. (D) A photomicrograph of Alamo impact accretionary lapilli, which are deformed, circular, and fragmented (Warme et al. 2002).

1.5 Meteorite geochemical signatures

During an impact event, unique meteorite geochemical signatures may be imprinted on impactites and used to corroborate an impact origin of suspected impactites even if they lack shock-metamorphic features. The recognised meteorite geochemical signatures for this purpose are siderophile elements, namely platinum group elements (PGE's) (PGE's; Pt, Ir, Os, Ru and Rh) and Ni, Co and Cr (Tagle \& Hecht, 2006; French \& Koeberl, 2010; Koeberl, 2014). The presence of high Ir concentrations within suspected impactites is most commonly used and cited as evidence for impact (Koeberl, 2002; Koeberl, 2014). These siderophile elements are used for this purpose because their concentrations in meteorites are generally high while very low in terrestrial crustal rocks (100 to 1000 times lower) (Koeberl, 2002; Koeberl, 2014). High abundances in Cr and chondritic ratios (Ni/Co, Ni/Cr and $\mathrm{Co} / \mathrm{Cr}$) are widely used to identify chondritic impactors (Palme et al. 1978; Koeberl, 2014).

1.6 Vredefort impact structure

As stated above, of the 200 impact structures recognised on Earth, the Vredefort structure is one of them. The Vredefort structure is 2020 ± 5 million years old and is the oldest known structure on Earth (Leroux et al. 1994; Kamo et al. 1996; Koeberl et al. 1996). The structure occurs roughly 120 km southwest of Johannesburg, South Africa. The Vredefort structure is estimated to have been formed by a meteorite with a 10 to 15 km diameter (McCarthy \& Rubidge, 2005; Morrow, 2009). The impact excavated $\sim 70000 \mathrm{~km}^{2}$ volume of the crust, caused a magnitude 14 seismic event and released 100 million megatons of energy (McCarthy \& Rubidge, 2005). The Vredefort structure comprises a central core of a mostly uplifted crystalline basement about 45 km in diameter, consisting of mainly granitoid gneisses and incorporates highly metamorphosed shales, ironstones, and mafic to ultramafic lavas (Reimold \& Gibson, 2010). The Vredefort structure is recognised as an eroded residue of a very complex impact crater based on its circular configuration, uplifted central core and occurrences of shatter cones, high-pressure quartz polymorphs (coesite and stishovite) and shock planar micro-deformation features in quartz and zircon grains (Wieland et al. 2005). The original crater was about 300 km across, but the structure is today vastly eroded, with 5 to 11 km of the vertical material eroded (McCarthy et al. 1990; Gibson \& Wallmach, 1995; French, 1998; Gibson, 2002).

The rocks of the Vredefort structure are excellently exposed in the northern and north-western parts of the structure but are mostly buried below younger rock formations in the south and south-east parts (Reimold \& Gibson, 2010). In these parts, the surface cover is extensive fertile soil that developed from underneath shales and dolerite intrusions of the 300-180 million-year-old Karoo Supergroup. However, it has been corroborated by geophysical investigations and other geological studies that the older rocks occur close to the surface under this cover. This central region is enclosed by a roughly 20 km extensive collar, consisting of usually vertical, or overturned, sedimentary and volcanic rock layers of the Dominion Group (3.074 Ga), as well as the Witwatersrand (2.650-2.710 Ga), Ventersdorp ($\sim 2.710 \mathrm{Ga}$), and Transvaal (2.650-2.150 Ga) Supergroups (Reimold \& Gibson, 2010).

The Vredefort structure has been studied in considerable detail, especially after it was confirmed that it was formed by a meteorite impact in the mid-1990s (Kamo et al. 1996). Some studies focused on identifying Vredefort impact ejecta, whether proximal impact ejecta or distal impact ejecta and so far, only two Vredefort distal impact ejecta have been discovered. The first is within the Grænsesø impact spherule layer in Greenland, but due to poor chronological constraints, this layer could also be related to the Sudbury impact (Chadwick et al. 2001). The Grænses \varnothing impact spherule layer also has insufficient indicators for a meteorite impact, namely PGE's, shock-metamorphic features and a low Ir concentration of 0.02 ppb . The second Vredefort distal impact ejecta deposit was discovered in the Zaonega Formation in Russia based on a moderate Ir concentration of 0.75 ppb and a meteoritic Ru/lr ratio of 2 (Huber et al. 2014). The age of the Zaonega Formation is variously constrained at $1.975 \pm 0.024 \mathrm{Ga}$ ($\mathrm{Sm}-\mathrm{Nd}$), $1.980 \pm 0.057 \mathrm{Ga}(\mathrm{Pb}-\mathrm{Pb})$, and $2.050 \mathrm{Ga}(\mathrm{Re}-\mathrm{Os})$ and, as such, occurs within the $\sim 2.02 \mathrm{Ga}$ age of the Vredefort impact (Huber et al. 2014).

Although Vredefort distal impact ejecta has been discovered, Vredefort proximal impact ejecta has never been discovered. Compared to the Chicxulub impact structure, a structure of this magnitude should probably have produced proximal impact ejecta as part of an impact ejecta layer over a regional to a global distance of Earth. Compared to the Vredefort meteorite, the Chicxulub structure was formed by an impactor with a 10 to 12 km diameter (Hilderbrand et al. 1991; Sharpton et al. 1993; Morgan \& Warner, 2002; Claeys, 2006). The ejecta formed by the Chicxulub impact was distributed worldwide, marking the K-Pg stratigraphic boundary (Claeys et al. 2002; Smit, 2003). The continuous impact ejecta blanket of the Chicxulub
structure occurs from the crater margin to Belize, well over 400 km from the crater rim (Ocampo et al. 2002). Given its large-scale parameters compared to the Chicxulub impact, the Vredefort impact event would have probably formed impact ejecta that would have potentially been distributed worldwide and at least identifiable from the crater margin of the Vredefort structure to several hundreds of kilometres away from the crater margin.

1.7 Focus on the geology of the research area

Anomalous spherical to subspherical, dark red to brown concentric objects ca. 15 mm in apparent diameter are found in the Maremane Dome of the Transvaal Supergroup, Northern Cape province in South Africa. The anomalous objects have been observed in drill cores and outcrops at different locations along strike for more than 60 km (Gutzmer \& Beukes, 1998). The objects have previously been interpreted as hematite-rich pisolites formed by laterization. The anomalous objects occur in the Doornfontein Conglomerate Member, which is part of the Gamagara Formation and interpreted to be a conglomerate unit consisting of conglomerates and shales. The Doornfontein Conglomerate Member has previously been interpreted to have formed by erosion and karstification of the Maremane Dome during the tectonic uplift (Grobbelaar et al. 1995; Carney \& Mienie, 2003). The base of the Doornfontein Conglomerate Member has an erosional unconformity referred to as the pre-Gamagara unconformity. Underlying the Doornfontein Conglomerate Member is the Wolhaarkop Breccia, which is a breccia unit belonging to the Ghaap Group and interpreted as a collapse breccia formed by the collapse of banded iron formations of the Asbestos Hills sub-group into sinkholes formed by the dissolution and karstification of the dolomites of the Ghaap Group (Carney \& Mienie, 2003; Smith \& Beukes, 2016). The Doornfontein Conglomerate Member, anomalous objects and Wolhaarkop Breccia stratigraphically occur between the 1.93 Ga (Cornell et al. 1998) andesitic lavas of the Hartley Formation and $2.22 \pm 13 \mathrm{Ga}$ (Cornell et al. 1996) Ongeluk Formation. Thus, the deposits occur within a permissible window of time of formation of the Vredefort structure ($\sim 2.02 \mathrm{Ga}$). They also occur within an expected distance from the Vredefort structure for the Vredefort proximal impact ejecta. More information with figures about the Gamagara Formation, Doornfontein Conglomerate Member and Wolhaarkop Breccia will be provided in Chapter 2.

Although the above interpretations are geologically sound, they appear to be controversial because they do not fully explain the observations and occurrences of the anomalous objects and features characterising the Doornfontein Conglomerate Member and Wolhaarkop Breccia. The following reasons force us to reconsider the existing interpretations of the formation of the cited geological formations:

- The Wolhaarkop Breccia appears to possess the following characteristics: (1) consists of inclusion of local rocks as clasts in a clay-rich matrix; (2) shows alteration of the local substrate during deposition, and; (3) consists of two types of breccias, namely the upper polymict breccia and lower monomict breccia. These characteristics are similar to those of breccias formed by impact processes and may similarly suggest that impact processes may have played a role in forming the Wolhaarkop Breccia. In addition, there are identical outcrops along strike throughout the Maremane Dome, which would require an enormous cave system that would somehow collapse symmetrically across the entire 150 km long section, which is unrealistic.
- The Doornfontein Conglomerate Member appears not to be a conglomerate unit consisting of conglomerates and shales and formed by erosion and karstification. Instead, the Doornfontein Conglomerate Member appears to consist of angular clasts of shale, quartz, hematite, chert and serpentine, angular very-grained lithic rock fragments and the anomalous spherical to subspherical objects in a clay-rich matrix forming a matrix-supported breccia. The matrix-supported breccia is similar to breccias formed by impact processes.
- The anomalous objects' large size and concentric structure suggest that they are not pisolites formed by laterization. Instead, the anomalous objects resemble accretionary lapilli.

1.8 Aims

This study will investigate drill core samples from the Doornfontein Conglomerate Member in the Maremane Dome to determine their possible association with the Vredefort structure. The investigation uses petrographic and geochemical methods, describing the lithology, mineralogy, geochemistry and petrography of the Doornfontein Conglomerate Member and anomalous objects to better understand how they formed. The investigation focuses on examining shocked mineral grains in the samples, especially quartz and zircon grains, and shock-metamorphic features, mainly PDFs and planar fractures, in shocked grains. The investigation also analysed the samples for meteorite geochemical signatures, precisely Ir, Ni, Co and Cr. The Wolhaarkop Breccia was only be investigated by direct observations of outcrops in the field and drill cores. The final goal of the study was to test the hypothesis that these deposits could be from the Vredefort structure. (The anomalous concentric objects will be referred to as accretionary lapilli starting from Chapter 2).

Chapter 2: Geological Setting

The drill core samples in this study are collected from the Doornfontein Conglomerate Member in the Maremane Dome in the Griqualand West Basin of the Transvaal Supergroup, South Africa. The Transvaal Supergroup was deposited in a vast epeiric sea on top of the Kaapvaal Craton from ~ 2.7 to 2.0 Ga (Beukes, 1983). The Transvaal Supergroup is $\sim 15 \mathrm{~km}$ thick and contains chemical and clastic sedimentary rocks and volcanic rocks preserved in three discrete basins: (1) Transvaal Basin; (2) Griqualand West Basin, and; (3) Kanye Basin (Figure 5) (Beukes, 1983).

Figure 5: A simplified geological map of the Transvaal Supergroup (Smith \& Beukes, 2016). Note the Transvaal, Griqualand and Kanye basins and their respective locations.

2.1 Regional Geology

The Griqualand West Basin (Figure 6 \& Figure 7), to which the Maremane Dome belongs, lies on the southwestern margin of the Kaapvaal Craton. At $\sim 2.4 \mathrm{Ga}$, the Kheis orogeny along the western margin of the Kaapvaal Craton deformed the Griqualand West Basin and formed large-scale, open folding of the Transvaal Supergroup (Carney \& Mienie, 2003). This deformation event initiated the first phase of the Maremane double-plunging anticline (Maremane Dome) (Figure 6) (Carney \& Mienie, 2003; Smith \& Beukes, 2016). More compression from the Kheis orogeny between 2.0 and 1.7 Ga resulted in intense erosion of pre-existing structures on the edge of the Kaapvaal Craton (Visser, 1998). The Maremane anticline underwent more uplift, erosion and karstification and facilitated the deposition of the Gamagara Formation and the formation of the Olifantshoek Group (Carney \& Mienie, 2003). Coeval with the uplift and erosion, dissolution and karstification occurred in dolomites of the Ghaap Group (Figure 6 \& Figure 7). The dolomites locally formed deep sinkholes, resulting in the overlying banded iron formations of the Asbestos Hills sub-group collapsing into them (Figure 6 \& Figure 7) (Carney \& Mienie, 2003; Smith \& Beukes, 2016). The collapse formed the Wolhaarkop Breccia, which occurs between the dolomites of the Campbell Rand subgroup and the banded iron formations of the Asbestos Hills sub-group (Figure 7).

The Gamagara Formation is considered the base of the ~ 2.1 to 1.83 Ga Olifantshoek Group and unconformably overlie the Ghaap Group (Figure 6 \& Figure 7) (Van Schalkwyk \& Beukes, 1986; Friese \& Alchin, 2007). The Gamagara Formation consists of, from base to top, the Doornfontein Conglomerate Member, Sishen Shale Member, Marthaspoort Quartzite Member, and Paling Shale Member and is also known as Lucknow and Mapedi Formations (Figure 7) (Grobbelaar et al. 1995). The Doornfontein Conglomerate Member consists of shales and conglomerates (Figure 7) and shows upward-fining cycles (Van Schalkwyk \& Beukes, 1986). The Sishen Shale Member consists of interbedded shales (Figure 7) and shows a transgression cycle (Grobbelaar et al. 1995). The base of the Doornfontein Conglomerate Member has an erosional unconformity referred to as the pre-Gamagara unconformity (Figure 6 \& Figure 7). Two additional transgression cycles are shown by the Marthaspoort Quartzite Member and Paling Shale Member. The Gamagara Formation has been thrusted over by the Makganyene Formation (Postmasburg Group) (de Villiers \& Visser, 1977) and Ongeluk Formation (Postmasburg Group) (Figure 6) (Schütte, 1992). Stratigraphically, the Gamagara Formation is overlain by andesitic lavas of the Hartley Formation (Figure 7) dated 1.93 Ga (Cornell et al. 1998). The Ongeluk Formation also consists of andesitic lavas dated $2.22 \pm 13 \mathrm{Ga}$ (Cornell et al. 1996).

The Maremane Dome (Figure 6) contains significant amounts of high-grade iron ore and is mainly comprised of dolomites of the Campbell Rand sub-group and iron deposits of the Asbestos Hills sub-group (da Silva, 2011). There are four types of iron ores identified in the Maremane Dome, namely high-grade laminated iron ore (52.9% of total ore), massive iron ore (28.8% of total ore), breccia iron ore (9.8% of total ore) and conglomeratic iron ore (8.6% of total ore) (Carney \& Mienie, 2003; Smith \& Beukes, 2016).

UNIVERSITY of the
 WESTERN CAPE

Figure 6: Simplified geological map of the Griqualand West Basin. Note the Maremane Dome and locations of the study areas, Khumani Mine (green star) and Turner Exploration Camp (yellow star) in the Gamagara Formation of the Griqualand West Basin. Figure modified after Grobbelaar et al. (1995).

Figure 7: Simplified stratigraphy of the Griqualand West Basin. Observe that the drill core samples for this study are collected from the Doornfontein Conglomerate Member.

2.2 Study Areas

The drill core samples in this study are from Khumani Mine near Sishen and Turner Exploration Camp near Postmasburg in the Northern Cape (Figure 6 \& Figure 8). The samples from Khumani Mine are $\sim 447 \mathrm{~km}$ from the centre of the Vredefort structure, whereas those from Turner Exploration Camp are $\sim 459 \mathrm{~km}$ away. The lower and upper diameter limits of the Vredefort structure are 180 km and 300 km , respectively (Morrow, 2009). Using the 180 km diameter, the samples from Khumani Mine are 4.9 crater radii from the centre of the Vredefort
structure and 5.1 crater radii away for Turner Exploration Camp (Figure 8). Using the 300 km diameter, the samples from Khumani Mine are 3.0 crater radii from the centre of the Vredefort structure and 3.1 crater radii away for Turner Exploration Camp (Figure 8).

2.2.1 Khumani Mine

The drill core samples from Khumani Mine form part of a drill core that Assmang Limited drilled near the northern margin of the Maremane Dome (Figure 6). The hole number of the drill core is ACK1_21, and the depth is from 0 to 160.57 m and at $27^{\circ} 52^{\prime} 23.40^{\prime \prime} \mathrm{S} 22^{\circ} 59^{\prime} 57.80^{\prime \prime} \mathrm{E}$. From the bottom to the top, the drill core intersected the Wolhaarkop Breccia (depth from 158.68 to 160.57 m), Doornfontein Conglomerate Member (depth from 103.14 to 158.68 m), Sishen Shale Member (depth from 86 to 103.14 m), Marthaspoort Quartzite Member, Paling Shale Member and Kalahari Tertiary cover. The accretionary lapilli (anomalous objects) are found at depth ~ 106 to 107 m and form part of the Doornfontein Conglomerate Member.

2.2.2 Turner Exploration Camp

The drill core samples from Turner Exploration Camp form part of a drill core that Shango Solutions drilled near the southern margin of the Maremane Dome next to the Aucampsrus Wolhaarkop Inlier (Figure 6). The hole number of the drill core is TN00002, and the depth is from 0 to 104 m and at $28^{\circ} 14^{\prime} 13.90^{\prime \prime} \mathrm{S} 22^{\circ} 54^{\prime} 44.60^{\prime \prime} \mathrm{E}$. From the bottom to the top, the drill core intersected the Wolhaarkop Breccia (depth from 87 to 104 m), Doornfontein Conglomerate Member (depth from 45 to 87 m), Sishen Shale Member (depth from 42 to 45 m), Marthaspoort Quartzite Member, and Nelani Formation. The accretionary lapilli (anomalous objects) at this site are found at depth ~ 60 to 71 m and form part of the Doornfontein Conglomerate Member.

Figure 8:Simplified geological map of the Vredefort impact structure and Griqualand West Basin. The solid lines represent the 300 km upper diameter limit of the Vredefort structure, and the broken lines represent the 180 km lower diameter limit of the Vredefort structure. Note the locations of Khumani Mine (green star) and Turner Exploration Camp (yellow star) in the Griqualand West Basin. The samples from Khumani Mine are $\sim 447 \mathrm{~km}$ from the centre of the Vredefort structure, whereas those from Turner Exploration Camp are $\sim 459 \mathrm{~km}$ away. Using the 180 km diameter, the samples from Khumani Mine are 4.9 crater radii from the centre of the Vredefort structure and 5.1 crater radii away for Turner Exploration Camp. Furthermore, using the 300 km diameter, the samples from Khumani Mine are 3.0 crater radii from the centre of the Vredefort structure and 3.1 crater radii away for Turner Exploration Camp. Figure modified after Grobbelaar et al. (1995) and Turtle and Pierazzo (1998).

Chapter 3: Methodology

This chapter describes how sampling was conducted and provides petrographic and geochemical methods used for this study.

3.1 Sampling

A total of 24 representative drill core samples were selected for collection. Six samples were collected from Khumani Mine on the 15th of October 2020, and the remaining 18 from Turner Exploration Camp on the 16th of October 2020.

3.1.1 Khumani Mine

The drill core samples from Khumani Mine are ACKS1, ACKS2, ACKS3, ACKS4, ACKS5, and ACKS6, occur from depth 106 to 108 m and form part of the Doornfontein Conglomerate Member (Figure 6 \& Figure 7). The samples ACKS1, ACKS2 and ACKS3 have accretionary lapilli.

3.1.2 Turner Exploration Camp

The drill core samples from Turner Exploration Camp are TNS1 to TNS18, occur from depth ~ 60 to 86 m and form part of the Doornfontein Conglomerate Member (Figure 6 \& Figure 7). The samples TNS1, TNS2, TNS3, TNS4 and TNS5 have accretionary lapilli. The samples from both study areas and the Wolhaarkop Breccia from Turner Exploration Camp were initially examined by direct observations at the study areas to determine their lithology, composition, and texture. The samples were further examined by direct observations back at the University of the Free State to examine their other characteristics, including the number of accretionary lapilli in each sample. Furthermore, Fe (wt.\%) abundances of the samples from Khumani Mine were estimated at the University of the Free State based on direct estimations of how much Fe each sample contains. Fe (wt.\%) abundances of the samples from Turner Exploration Camp were provided to this study by Jonathan Hainsworth, an official from Turner Exploration Camp. The assay method used to analyse the drill core at Turner Exploration Camp is XRF Fused Bead at the Société Générale de Surveillance (SGS) Laboratory, located at United Manganese of Kalahari (UMK) Mine near Hotazel in the Northern Cape Province, South Africa.

3.2 Petrography

The petrographic instruments used for this study are optical microscopy and scanning electron microscopy.

3.2.1 Optical Microscopy

In geology, optical microscopy is used to identify rocks, minerals, and other geological features using $30 \mu \mathrm{~m}$ thin sections. For this study, optical microscopy was used at the University of the Western Cape to examine 24 thin sections for shocked mineral grains, especially quartz and zircon grains and shock-metamorphic features, mainly PDFs and planar fractures in quartz and zircon. Optical microscopy was further used to determine the thin sections' mineral compositions and petrographic characteristics. The thin sections were studied in cross polarised light and plane polarised light, and their photomicrographs were taken.

3.2.2 Scanning Electron Microscopy

Scanning Electron Microscopy (SEM) uses thin sections for imaging by scanning a specimen with a beam of electrons and displaying the signal from the electron detector as images on a computer monitor (Reed, 2005). Based on a detection mode, either compositional or topographic data can be obtained. Secondary-Electron (SE) images provide topographic
information, while backscattered-electron (BSE) images provide compositional (Z-contrast) information about the specimen (Reed, 2005). For elemental mapping and analysis, an EDS (energy dispersive spectroscopy) is used.

SEM was used in this study to examine the polished thin sections. Accordingly, the SEM instrument Zeiss Merlin Gemini 2 was used at Stellenbosch University in South Africa to examine carbon-coated thin sections of the samples TNS1 and TNS18 in BSE. Overview BSE images and compositional EDS maps of these thin sections and carbon-coated thin sections of the samples ACKS1 and TNS2 were also obtained. The petrographic characteristics and mineral compositions of the thin sections were also examined. The SEM instrument was operated under a 9.3 to 9.5 mm working distance and a 10 to 20 kV excitation voltage.

3.3 Geochemistry

Three geochemical methods, namely X-ray fluorescence spectroscopy, instrumental neutron activation analysis and Raman spectroscopy, were used to analyse the samples.

3.3.1 X-Ray Fluorescence Spectroscopy

X-Ray Fluorescence (XRF) spectroscopy is an analytical method where fluoresced X-rays emitted by a sample are presented with either wavelength-dispersive or energy-dispersive detector systems. The wavelength of the emitted X-rays determines elements, and the intensity of the emitted X-rays determines their concentrations. Thus, XRF is an analytical instrument used for qualitative and quantitative geochemical analysis. For more information about XRF, see Gill (1997) and Verma (2007). The samples in this study were analysed for major elements and trace elements using XRF spectroscopy at the University of Vienna, Austria. For sample preparation, the samples were crushed in an agate mortar and pestle and ground to a homogenous powder in an agate ball mill. Water, carbon dioxide, and other volatiles were released from the powder using powder aliquots dried at $110^{\circ} \mathrm{C}$ in a muffle furnace. Loss of ignition (LOI) was determined at $110^{\circ} \mathrm{C}, 850^{\circ} \mathrm{C}$ and $1050^{\circ} \mathrm{C}$ and the ignited powder was mixed with lithium metaborate flux, and the subsequent melt dissolved in HNO_{3}. Fusion discs were used to analyse major elements and pressed powder pellets for trace elements.

3.3.2 Instrumental Neutron Activation Analysis

Instrumental Neutron Activation Analysis (INAA) is an analytical method that requires no chemical preparations of samples (Taylor, 2001). In INAA, a sample is subjected to a high flux of neutrons in a nuclear reactor and releases radioactive isotopes that usually decay by beta decay (Taylor, 2001). The emission of radioactive isotopes and radioactive decay for each element is known, so utilising this information, INAA is used for qualitative and quantitative analysis of isotopes. INAA was used at the University of Vienna to analyse the 24 samples in this study for meteorite geochemical signatures (trace elements), especially $\mathrm{Ir}, \mathrm{Ni}, \mathrm{Co}$ and Cr , and major elements. For sample preparation, the samples were first crushed in plastic sample bags, then crushed using a jaw crusher and later crushed to powder with an automatic agate mill. Aliquots were placed into polyethylene vials, irradiated within a nuclear reactor and left to cool before they were cleaned with hot water, NaOH and HCl to eliminate contamination. See Koeberl (1993) and Koeberl and Huber (2000) for more information about sample preparation and analytical procedures for INAA.

3.3.3 Raman Spectroscopy

Raman spectroscopy is an analytical technique that uses focused or non-focused laser radiation to illuminate a specimen, usually a thin section, to provide information about atomic bonds (Foucher et al. 2021). Raman spectroscopy is generally integrated with an optical microscope to enable the localisation of interest areas and perform analyses at the micrometre
scale (Foucher et al. 2021). During the illumination, Raman spectra are generated for which the footprint can vary from roughly one micron to hundreds of microns in a cross-section diameter (Raman \& Krishnan, 1928; Lewis \& Edwards, 2001; Edwards et al. 2013). Raman spectra are two sets of wavelength-shifted bands occurring at the frequency of the incident laser radiation from the Rayleigh line, in which the long-wavelength set of Raman bands consists of the Strokes Raman spectrum, whereas the low-wavelength set consists of the antiStrokes Raman spectrum and is weaker in intensity than the Strokes Raman spectrum (Edwards, 2000; Edwards \& Carter, 2001; Edwards et al. 2013).

Titanium dioxide

Titanium dioxide $\left(\mathrm{TiO}_{2}\right)$, the only naturally occurring titanium oxide (Ti-oxide) at atmospheric pressure, has three polymorphs: (1) rutile; (2) anatase and; (3) brookite and can hold a wide range of minor elements, which reflect their crystallisation environments (Meinhold, 2010; Adlakha et al. 2020). Rutile is a stable phase, but both anatase and brookite are metastable (Curnan \& Kitchin, 2015; Plavsa et al. 2018; Adlakha et al. 2020; Pinto et al. 2020). Rutile has been found in high-and low-temperature conditions, but anatase has only been found in lowtemperature environments (Adlakha et al. 2020). Regardless of polymorph stability, rutile is the most frequent Ti-oxide polymorph in the Earth's crust (Meinhold, 2010). It can be found in metamorphic rocks ranging from greenschist to granulite and eclogite; in sedimentary rocks as detrital and authigenic grains; in igneous rocks, mainly evolved granitic rocks; and in hydrothermally altered rocks and metallic mineral deposits (Černý et al. 1989; Schandl et al. 1990; Scott, 2005; Agangi et al. 2019). Naturally occurring rutile and its chemical variability have been studied for a long time, particularly concerning the substitution of Ti by high field strength elements (HFSE), like Nb and Ta, of which it is a significant host stage (Pinto et al. 2020). Therefore, the chemical element contents of rutile provide a tool for understanding geochemically fingerprinting processes like magmatism or metamorphism (Foley et al. 2002; Win et al. 2017). In comparison to metamorphic and magmatic origins, hydrothermal rutile has received fewer studies, as seen by the scarcity of references (Rabbia et al. 2009; Cabral et al. 2011; Cabral et al. 2013; Shulaker et al. 2015). The studies compared the results of various thermometric techniques used to study rutile crystallisation in hydrothermal quartz-dominated veins. Because Ti is insoluble in most aqueous fluids, rutile is usually resistant to hydrothermal modification once it has crystalised (Pinto et al. 2020).

Because of its relationship with low-temperature and aqueous environments such as diagenetic sedimentary systems, anatase has not received the same level of interest from geoscientists as rutile (Brindley \& Robinson, 1947; Nagelschmidt et al. 1949; Raman \& Jackson, 1965). Anatase is a common authigenic mineral in siliciclastic sedimentary rocks, and it is most likely formed by the breakdown of detrital titaniferous minerals such as Ti-rich oxides, biotite, and titanite (Morad \& Aldahan, 1986; Pe-Piper et al. 2011). The temperatureinduced phase transition of anatase to rutile has been studied under various experimental conditions, but there are no investigations on rutile to anatase conversions in the scientific literature (Pinto et al. 2020).

Part of the goal of this study was to use Raman spectroscopy to analyse the thin sections TNS1 and TNS18 to identify different naturally-occurring TiO_{2} polymorphs, specifically rutile and anatase, and evaluate them in relation to hydrothermal activity and alteration in the samples. Target zones were marked on the thin section for analysis. A Horiba LabRAM HR800 Evo Raman Microscope was used to gather the Raman spectra of the targeted phases at the Zavaritsky Institute of Geology and Geochemistry Ural Branch of the Russian Academy of Science in Russia. The chosen objective was paired with a He-Ne laser source with an excitation of 633 nm , granting $600 \mathrm{gr} / \mathrm{mm}$.

Chapter 4: Results

This chapter provides results for sampling, petrography and geochemistry. The samples from both study areas have been categorised into three lithofacies based on their lithology and composition, namely Unit A, Unit B and Unit C. Unit C is only found in the samples from Turner Exploration Camp.

4.1 Khumani Mine

The samples from Khumani Mine are described below, and their results are presented in Table 1 for sample and accretionary lapilli descriptions for sampling. For more information on Khumani Mine, see Appendix A. 1 for sample photos, Appendix A. 2 for thin section photos and Appendix A. 3 for scanning electron microscopy photomicrographs.

4.1.1 Sample description

The samples from Khumani Mine are from the Doornfontein Conglomerate Member. The samples are ferruginous, dark red to brown, and matrix-supported breccias with angular clasts of quartz, shale, hematite, chert, and serpentine (Figure 9). The matrix is clay-rich, with the clasts varying from 1 to 3 mm in size. Pyrite clasts, joints dipping at $\sim 40^{\circ}$ and quartz veins seldomly occur within the samples. The breccias show no signs of sediment reworking and form Unit A occurring from depth 108 to 155 m . From depth 105 to 108 m , the matrix of the breccias contains ferruginous, spherical to subspherical and dark red to brown accretionary lapilli. The accretionary lapilli constitute a component of an accretionary lapilli-rich breccia called Unit B and overlie Unit A. Unit B transitions above Unit A seamlessly without a grade change or contact.

Figure 9: A photograph of sampled drill core at Khumani Mine.

Accretionary lapilli

The observed accretionary lapilli have been categorised into four types based on their form: (1) nucleated accretionary lapilli; (2) non-nucleated accretionary lapilli; (3) accretionary lapilli with irregular margins, and; (4) accretionary lapilli fragments (Figure 10). The composition of
the accretionary lapilli is hematite, but small amounts of quartz occur in some accretionary lapilli. Some accretionary lapilli, especially nucleated accretionary lapilli, contain angular, very fine-grained lithic rock fragments.

Figure 10: (A-D) Photographs of dark red to brown samples with accretionary lapilli collected from Khumani Mine. The samples are ferruginous, clay-rich, matrix-supported breccias; the black arrows indicate the accretionary lapilli. (A) Spherical to subspherical, dark red to brown nucleated accretionary lapilli with a concentric structure consisting of nuclei, mantles and crusts. (A \& B) Spherical non-nucleated accretionary lapilli with a concentric structure consisting of mantles, crusts and no nuclei. (C) Accretionary lapilli with irregular margins (irregular accretionary lapilli) with a concentric structure comprised of mantles, crusts and no nuclei. Note subtle concentric layering formed by alternating hematite- and quartz-rich concentric layers. (D) Non-nucleated accretionary lapilli surrounded by irregular accretionary lapilli.

Nucleated accretionary lapilli

The nucleated accretionary lapilli are the most common accretionary lapilli in the samples and consist of a concentric structure comprising nuclei, mantles, and crusts (Figure 10). However, the concentric structure of some of the nucleated accretionary lapilli does not have a crust. The nucleated accretionary lapilli are spherical to subspherical and have long and short apparent diameters that vary between 8.0 and 15 mm and 5.0 and 14 mm , respectively (Figure 10). The nuclei of the nucleated accretionary lapilli are on-centre, and their long and short apparent diameters vary from 1.0 to 9.0 mm and 1.0 to 7.0 mm , accordingly (Figure 10). The nuclei are subround to round, spherical to subspherical, and composed of hematite, but a few are composed of very fine-grained quartz grains (Figure 10). Approximately 3.0 mm thick, very fine-grained lithic rock fragments rarely occur in some nuclei.

The nucleated accretionary lapilli typically have coarse-grained nuclei, medium-grained mantles and fine-grained crusts and result in the accretionary lapilli grading outward in grain size. They also usually have a sharp transition between the nuclei and the mantles. The concentric structure of the nucleated accretionary lapilli also consists of alternating hematiteand quartz-rich concentric layers that typically occur in the mantles and less in the crusts. The concentric layers can reach five layers within individual mantles and crust. The mantles consist of hematite, and their apparent thickness varies from 2.0 to 5.0 mm (Figure 10). The crusts vary from 1.0 to 5.0 mm in apparent thickness and are typically darker than the mantles and nuclei (Figure 10).

Non-nucleated accretionary lapilli

The second most common accretionary lapilli in the samples are non-nucleated accretionary lapilli. The non-nucleated accretionary lapilli are similar to nucleated accretionary lapilli in that they consist of a concentric structure comprising mantles, crusts and no nuclei (Figure 10). The non-nucleated accretionary lapilli are dark red to brown, consist of only hematite and are one of the largest accretionary lapilli in the samples (Figure 10). The largest example is roughly 30 mm in apparent diameter, which is close to bomb size (Neuendorf et al. 2005), and the smallest example is $\sim 10 \mathrm{~mm}$ in apparent diameter (Figure 10). The non-nucleated accretionary lapilli are typically well-round and spherical (Figure 10). The mantles of the nonnucleated accretionary lapilli are fine-grained, ~ 10 to 20 mm , while the crusts are very finegrained and 3.0 to 7.0 mm in apparent thickness (Figure 10). Both the mantles and crusts are composed of hematite, and some crusts are darker than the mantles.

Irregular accretionary lapilli

The accretionary lapilli with irregular margins are typically subspherical, deformed, distorted, and the largest observed accretionary lapilli in the samples (Figure 10). For easy reference, the accretionary lapilli with irregular margins are referred to as irregular accretionary lapilli in this study. The long and short apparent diameters of the irregular accretionary lapilli vary from 15 to 40 mm and 10 to 35 mm , respectively (Figure 10). Although the irregular accretionary lapilli are close to bomb size (Neuendorf et al. 2005), they are typically $\sim 25 \mathrm{~mm}$ in apparent diameter. The irregular accretionary lapilli have a concentric structure with mantles, crusts and nuclei (Figure 10). However, the concentric structure of most of the irregular accretionary lapilli only has mantles, crusts and no nucleus. The mantles typically have about 15 hematite-rich concentric layers, which also form part of the concentric structure, whereas the crusts contain a few concentric layers, less than 10. A few quartz-rich concentric layers also occur (Figure 10). The mantles are medium-grained and vary from 10 to 35 mm , and the crusts are finegrained and vary from 4.0 to 10 mm in apparent thickness (Figure 10). The crusts are typically the darkest component of the accretionary lapilli.

The accretionary lapilli fragments are the least common accretionary lapilli in the samples and are derived from broken accretionary lapilli, especially crusts and mantles. The accretionary lapilli fragments are angular and subspherical.

4.1.2 Petrography

The results of petrography for the samples from Khumani Mine are described in this section and provided in Table 2 for sample and accretionary lapilli descriptions for optical microscopy.

Optical Microscopy

The thin sections prepared from Khumani Mine samples are ferruginous and opaque under optical microscopy; therefore, their examination with this instrument was complicated. However, SEM and photographs of the thin sections were used to assist in describing the thin sections. The thin sections are matrix-supported breccias with a clay-rich matrix containing angular clasts of hematite, mica, feldspar, a few fine-grained lithic rock fragments and rarely amorphous silica. Similar to the above sample description section, the breccias form Unit A. Ferruginous, dark red to brown accretionary lapilli forming Unit B and overlying Unit A were also observed with optical microscopy (Figure 11 \& Figure 12). Shocked grains and PDFs were not identified in the thin sections.

Accretionary lapilli

The accretionary lapilli identified with optical microscopy are nucleated accretionary lapilli and irregular accretionary lapilli (Figure 11 to Figure 12). Although the accretionary lapilli are widely ferruginous and overprinted by hematite, they preserve their concentric structure. The accretionary lapilli are composed of hematite, but coarse- to very fine-grained amorphous
silica rarely occur in some accretionary lapilli (Figure 11). The identified nucleated accretionary lapilli are spherical to subspherical and round, and their long and short apparent diameters vary from 4.0 to 30 mm and 4.0 to 25 mm , respectively (Figure 11). The nuclei of the nucleated accretionary lapilli are typically well round and spherical to subspherical, and their long apparent diameters vary from 4.0 to 6.0 mm , and their short apparent diameters from 2.0 to 4.0 mm (Figure 11). The nuclei rarely incorporate angular, very fine-grained lithic rock fragments about 2.0 mm thick (Figure 11). The nucleated accretionary lapilli typically have a sharp to gradual transition from coarse-grained in the nuclei to medium-grained in the mantles (Figure 11). A sharp to gradual contact also occurs from medium-grained mantles to finegrained crusts. The mantles and crusts are 2.0 to 4.0 mm and 1.0 to 2.0 mm thick, respectively (Figure 11). Five to sixteen alternating hematite- and quartz-rich, $\sim 1.0 \mathrm{~mm}$ thick concentric layers occur in most mantles and rarely in the crusts. The crusts are typically the darkest component of the accretionary lapilli (Figure 11).

The characteristics of the irregular accretionary lapilli could not be sufficiently determined due to the widespread alteration and opaqueness of the thin sections. However, the irregular accretionary lapilli are the largest observed accretionary lapilli in the thin sections, measuring $>30 \mathrm{~mm}$ in size (Figure 12). Almost all the observed irregular accretionary lapilli have a concentric structure consisting of mantles, crusts and rarely nuclei (Figure 12). The concentric structure of the irregular accretionary lapilli also consists of about 20 alternating hematite- and quartz-rich concentric layers commonly in the mantles and less common in the crusts (Figure 12).

Figure 11: (A-B) Photographs of the thin sections prepared from the samples ACKS1 (A) and ACKS6 (B) with accretionary lapilli. The marked arrows on the left side of the thin sections indicate the direction facing upwards. The thin sections are extensively altered and overprinted by hematite, but the concentric structure of the accretionary lapilli is still present. (A) A spherical nucleated accretionary lapillus with a nucleus, mantle and no crust. Observe the several concentric layering formed by concentric layers predominantly composed of hematite and less quartz. (B) A subspherical nucleated accretionary lapillus with a nucleus, mantle and crust. Notice the
very fine-grained lithic rock fragment in the nucleus, several concentric layers in the mantle and a few concentric layers in the crust

arrows on the thin sections indicate which direction the thin section is facing upwards. (A-B) Irregular accretionary lapilli with crusts, mantles and no nuclei. The mantles and crusts have several concentric layers. (C) Non-nucleated accretionary lapilli consisting of mantles, crusts and no nuclei. The crusts and mantle contain several concentric layers composed of hematite. (D) A subspherical irregular accretionary lapillus.

Scanning Electron Microscopy

Two accretionary lapilli (Unit B) ~10 mm in apparent diameter in the thin section ACKS1 were examined and analysed using SEM, and the results are described in this section (Figure 13 \& Figure 14). The two accretionary lapilli identified are nucleated and non-nucleated (Figure 13 \& Figure 14). The non-nucleated accretionary lapillus contains a concentric structure consisting of a mantle, crust and no nucleus (Figure 13). The crust is the finest-grained component of the accretionary lapillus, and the mantle is the coarsest-grained component. Thus, the concentric structure fines outward in grain size from the mantle to the crust. The accretionary lapillus also has a sharp to gradational contact between the mantle and crust (Figure 13). The accretionary lapillus is extensively altered and overprinted by Fe (hematite), and as a result, the crust and mantle are composed virtually of Fe , less Si and Al , and depleted in K (Figure 13). The crust and mantle contain entrained lithic rock fragments aligned typically parallel to the margins (Figure 13). The concentric structure of the non-nucleated accretionary lapillus also consists of alternating Si (quartz)- and Fe (hematite)-rich concentric layering in the mantle and crust (Figure 13). The concentric layering is thinner in the crust and thicker in the mantle.

Figure 13: SEM images of a non-nucleated accretionary lapillus from the sample ACKS1. (A) A BSE image showing that the accretionary lapillus is very fine-grained and consists of a mantle and crust with several concentric layers. Note that the concentric layers are thinner in the crust and thicker in the mantle. The accretionary lapillus has a sharp to gradational contact between the mantle and crust. The accretionary lapillus contains entrained lithic rock fragments aligned roughly parallel to the margin of the accretionary lapillus. (B) A compositional EDS map indicating the accretionary lapillus is composed of Fe (hematite) and less Si and Al, whereas K is depleted. The concentric layering is formed by alternating Si- and Fe-rich concentric layers.

Compared to the non-nucleated accretionary lapillus, the observed nucleated accretionary lapillus is also extensively altered and overprinted by Fe (hematite) and has a concentric structure consisting of a nucleus, mantle, and crust (Figure 13 \& Figure 14). The accretionary
lapillus is composed less of Si and Al and depleted in K (Figure 14). The concentric structure of the nucleated accretionary lapillus fines outward in grain size from coarse-grained in the nucleus to fine-grained in the crust, whereas the mantle is medium-grained (Figure 14). The concentric structure also has several concentric layerings in the mantle and crust formed by alternating Si (quartz)-, Fe (hematite)- and Al-rich layers (Figure 14). The accretionary lapillus is also similar to the non-nucleated accretionary lapillus in that it has sharp to gradational contacts between the mantle and crust and between the nucleus and mantle (Figure 13 \& Figure 14). The crust appears to contain entrained lithic rock fragments aligned parallel to the margins (Figure 14).

Figure 14: SEM images of a nucleated accretionary lapillus from the sample ACKS1. (A) A BSE image of the accretionary lapillus with a nucleus, mantle and crust. Note that concentric layering occurs in both the mantle and crust. The accretionary lapillus is fine-grained and contains entrained lithic rock fragments aligned roughly parallel to the margin. A sharp contact occurs between the nucleus and mantle and between the mantle and crust. (B) A compositional EDS map showing that the accretionary lapillus is composed of predominantly Fe (hematite), low Si and AI and depleted in K. The concentric layering is formed by alternating Si- and Fe-rich concentric layers.

4.1.3 Geochemistry

This section describes the major elements, trace elements and rare earth elements results of the samples from Khumani Mine. The results are presented in Table 3 for XRF analysis, Table 4 for the measured Fe (wt. \%) abundances and Table 5 for INAA analysis.

Major elements

The measured Fe ($\mathrm{wt} . \%$) abundances indicate that the samples are low-grade ores with Fe abundances varying from 25.0 (ACKS1, ACKS2, ACKS4 and ACS6) to 35.0 wt. \% (ACKS3 and ACKS5) and averaging ~ 33.0 wt. \%. The $\mathrm{Fe}_{2} \mathrm{O}_{3}$ abundances from XRF analysis range from 20.0 (ACKS3) to $56.0 \mathrm{wt} \$.$% (ACKS4) and have an average of 42.7 \mathrm{wt}$ \%. Similar to the measured Fe abundances, the $\mathrm{Fe}_{2} \mathrm{O}_{3}$ abundances indicate that the samples are low-grade ores. According to the XRF analysis, the sample's second and third predominant oxides are $\mathrm{Al}_{2} \mathrm{O}_{3}$ and SiO_{2}. The $\mathrm{Al}_{2} \mathrm{O}_{3}$ abundances range between 20.0 (ACKS4) and 35.0 wt. \% (ACKS3) and average $\sim 25.2 \mathrm{wt} . \%$. The SiO_{2} abundances vary from 18.0 (ACKS4) to $34.0 \mathrm{wt} . \%$ (ACKS3) and have an average of 23.8 \%. The samples ACKS2, ACKS4 and ACKS6 contain the same SiO_{2} abundances of $20.0 \mathrm{wt} . \%$ and constitute the second-highest SiO_{2} abundances. The samples also contain $\mathrm{TiO}_{2}, \mathrm{CaO}$ and $\mathrm{K}_{2} \mathrm{O}$, but the abundances of these major oxides are low. The TiO_{2} abundances range from 0.59 (ACKS2) to $1.0 \mathrm{wt} . \%$ (ACKS1) and average ~ 0.75 wt. \%. The CaO abundances vary between 0.049 (ACKS1) and $0.037 \mathrm{wt} . \%$ (ACKS2) and have
an average of $0.044 \mathrm{wt} . \%$. The $\mathrm{K}_{2} \mathrm{O}$ abundances range from 1.0 (ACKS2) to $2.0 \mathrm{wt} . \%$ (ACKS1), and average $\sim 1.6 \mathrm{wt} \$.$% . The INAA results indicate that the samples have \mathrm{Fe}$ abundances that range from 18.3 (ACKS3) to 48.6 wt. \% (ACKS4) and have an Fe abundance average of 33.3 wt . \%. The INAA Fe abundances also indicate that the samples are low-grade ores.

Plots showing major element variations vs depth for the samples are presented in Figure 15 for XRF analysis and Figure 16 for the measured Fe and INAA Fe abundances. Based on the plots for the XRF analysis, the samples show a general compositional trend in which samples with high abundances of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ inversely have low abundances of $\mathrm{SiO}_{2}, \mathrm{TiO}_{2}, \mathrm{~K} 2 \mathrm{O}, \mathrm{CaO}$ and $\mathrm{Al}_{2} \mathrm{O}_{3}$ (Figure 15). The trend is corroborated by the sample's Harker diagrams showing oxide variation patterns (Figure 17 \& Figure 18). The patterns show a positive correlation between SiO_{2} and $\mathrm{TiO}_{2}, \mathrm{~K}_{2} \mathrm{O}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{Al}_{2} \mathrm{O}_{3}$, and $\mathrm{P}_{2} \mathrm{O}_{5}$ (Figure 17) and a negative correlation between $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{SiO}_{2}, \mathrm{TiO}_{2}, \mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{~K}_{2} \mathrm{O}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{Al}_{2} \mathrm{O}_{3}$, and CaO (Figure 18) for the samples. The patterns also show a positive correlation between $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{Na}_{2} \mathrm{O}$ for the samples (Figure 18).

Major elements patterns for the samples are given in Figure 19A. The patterns are analogous to the PAAS (Average Post-Archaean Australian Shale) and UC (Upper Crust) patterns which are plotted for comparison (Figure 19A). The patterns show that the samples are enriched in $\mathrm{SiO}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{K}_{2} \mathrm{O}$ (Figure 19A). Although anomalously enriched in $\mathrm{Fe}_{2} \mathrm{O}_{3}$, the patterns indicate that the samples have TiO_{2} abundances roughly similar to those of $\mathrm{Fe}_{2} \mathrm{O}_{3}$. The samples are slightly depleted in $\mathrm{Na}_{2} \mathrm{O}$ and prominently depleted in CaO . Compared to the PAAS and UC, the samples have higher patterns and abundances of $\mathrm{SiO}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Fe}_{2} \mathrm{O}_{3}$ and TiO_{2} and lower patterns and abundances of $\mathrm{CaO}, \mathrm{K}_{2} \mathrm{O}$ and $\mathrm{Na}_{2} \mathrm{O}$ (Figure 19A).

Trace elements

The trace elements of interest in the samples for this study are $\mathrm{Ir}, \mathrm{Ni}, \mathrm{Co}$ and Cr . These elements have low abundances in the samples compared to meteorites (Glass \& Simonson, 2013). Ni abundances range to 53.0 ppm (ACKS3) in the samples and are undetected in ACKS6. The abundances of Co vary from 5.73 (ACKS2) to 10.3 ppm (ACKS4) and Cr from 202 (ACKS3) to 552 ppm (ACKS1). Ir is undetected in the samples (Figure 16). The Ni, Co, and Cr abundance averages are $\sim 43.3 \mathrm{ppm}, 8.87 \mathrm{ppm}$, and 353 ppm , respectively. The highest $\mathrm{Ni} / \mathrm{Cr}, \mathrm{Ni} / \mathrm{Co}$, and $\mathrm{Co} / \mathrm{Cr}$ ratios are $0.26,9.32$ and 0.04 , respectively, and their averages are $0.14,5.47$ and 0.03 , respectively. Plots showing trace elements and $\mathrm{Fe}(w t . \%)$ variations vs depth for the samples from Khumani Mine are presented in Figure 16.

Rare Earth elements

Extended trace elements patterns for the samples are shown in Figure 19B. The patterns are similar for most of the samples and are similar to the PAAS and UC patterns. Compared to the PAAS and UC, the samples have slightly higher patterns and abundances of extended trace elements (Figure 19B). The samples are prominently enriched in $\mathrm{S}, \mathrm{V}, \mathrm{Cr}, \mathrm{Ni}, \mathrm{Sr}, \mathrm{Zr}$ and Ba and slightly depleted in $\mathrm{Sc}, \mathrm{Co}, \mathrm{Y}, \mathrm{Nb}$, and Zn (Figure 19B). For comparison, the PAAS and UC are enriched in $\mathrm{V}, \mathrm{Ni}, \mathrm{Sr}, \mathrm{Zr}, \mathrm{Ba}$ and Zn and slightly depleted in $\mathrm{Sc}, \mathrm{Co}, \mathrm{Y}, \mathrm{Nb}$ and Cu .

Chondrite-normalized patterns for the samples, PAAS and UC, are presented in Figure 19C. The PAAS and UC patterns are plotted for comparison to the samples. The patterns indicate that the samples are enriched in HREE (Eu, Gd, Tm, Yb and Lu), depleted in LREE (La, Ce, Nd and Sm) and have positive Eu and Ce anomalies (Figure 19C). The PAAS and UC are also enriched in HREE, depleted in LREE and have positive Eu and Ce anomalies (Figure 19C). However, compared to the PAAS and UC, the samples have lower patterns and abundances of HREE and LREE, including the Eu and Ce anomalies.

Table 1: Sample and accretionary lapilli descriptions based on sampling results of Khumani Mine and Turner Exploration Camp samples.

	Sample	Lithology		Accretionary lapilli						
		Depth (m)	Rock type	Occurrence	Composition	Colour	Shape	Long axis	Short axis	Nucleus
Khumani Mine	ACKS1	106.42-106.57	Breccia	Present	Hematite	Dark red to brown	Spherical to subspherical	9-15 mm	9-15 mm	Nucleated
	ACKS1			Present	Hematite	Dark red to brown	Subspherical to irregular	9-15 mm	$9-15 \mathrm{~mm}$	Non-nucleated
	ACKS2	$\begin{aligned} & 106.57-106.62 \\ & 106.62-106.69 \end{aligned}$	Breccia	Present	Hematite	Dark red to brown	Spherical to subspherical	$5-30 \mathrm{~mm}$	$5-28 \mathrm{~mm}$	Non-nucleated
	ACKS3		Breccia	Present	Hematite	Dark red to brown	Spherical to subspherical	$4-31 \mathrm{~mm}$	$5-22 \mathrm{~mm}$	Nucleated
	ACKS3			Present	Hematite	Dark red to brown	Spherical to subspherical	$4-31 \mathrm{~mm}$	5-22 mm	Nucleated
	ACKS4	106.69-106.80	Breccia	Present	Hematite	Dark red to brown	Irregular/subspherical	$9-15 \mathrm{~mm}$	$8-12 \mathrm{~mm}$	Absent
	ACKS5	106.8-106.93	Breccia	Present	Hematite	Dark red to brown	Irregular/subspherical	6-14 mm	6-13 mm	Absent
	ACKS6	107.03-107.09	Breccia	Present	Hematite	Dark red to brown	Spherical to subspherical	6-29 mm	$5-20 \mathrm{~mm}$	Nucleated
	TNS1	69.01-69.10	Paleosol	Present	Hematite	Brown	Angular fragment	5 mm	1 mm	Absent
	TNS2	69.10-69.15	Breccia	Present	Hematite	Dark red to brown	Spherical to subspherical	3-11 mm	$2-5 \mathrm{~mm}$	Nucleated
	TNS3	70.08-70.13	Breccia	Present	Hematite	Dark red to brown	Spherical to subspherical	$4-9 \mathrm{~mm}$	$3-6 \mathrm{~mm}$	Nucleated
	TNS4	70.23-70.28	Breccia	Present	Hematite	Dark red to brown	Spherical to subspherical	$6-9 \mathrm{~mm}$	$3-5 \mathrm{~mm}$	Nucleated
	TNS4			Present	Hematite	Dark red to brown	Spherical to subspherical	$6-9 \mathrm{~mm}$	$3-5 \mathrm{~mm}$	Non-nucleated
	TNS5	70.66-70.70	Breccia	Present	Hematite	Dark red to brown	Angular fragments	2-10 mm	$1-3 \mathrm{~mm}$	Absent
	TNS5	70.66-70.70	Breccia	Present	Hematite	Dark red to brown	Spherical to subspherical	$4-20 \mathrm{~mm}$	2-3 mm	Nucleated
	TNS6	70.81-70.87	Breccia	Absent		-				
Turner Exploration Camp	TNS7	71.20-71.23	Breccia	Absent						
	TNS8	72.77-72.82	Breccia	Absent						
	TNS9	74.13-74.23	Breccia	Absent	11.	11.11				
	TNS10	74.52-74.58	Breccia	Absent						
	TNS11	75.08-75.13	Breccia	Absent	T					
	TNS12	75.42-75.46	Breccia	Absent						
	TNS13	76.44-76.49	Breccia	Absent						
	TNS14	77.67-77.73	Breccia	Absent						
	TNS15	78.17-78.30	Breccia	Absent						
	TNS16	79.00-79.05	Breccia	Absent						
	TNS17	80.92-80.95	Breccia	Absent						
	TNS18	86.73-86.87	Breccia	Absent						

Table 2: Descriptions of the samples and accretionary lapilli from Khumani Mine and Turner Exploration Camp based on sampling results.

Table 3: Major and trace element compositions of Khumani Mine and Turner Exploration Camp samples. The compositions are obtained from XRF analyses of the samples. Major elements are presented as wt.\% and trace elements as ppm. The MHC (Mount Holyoke College) standard, data from Dyar et al. (2019), is used for normalizing major and trace elements in certain geochemistry diagrams in this study. The PAAS (Post-Archaean Australian Shale) and UC (Upper Crust), data from Taylor and McLennan (1995), are used for comparison in certain geochemistry graphs in this study

Samples	Khumani Mine						Turner Exploration Camp																		PAAS	UC	MHC
	ACKS1	ACKS2	ACKS3	ACKS4	ACKS5	ACKS6	TNS1	TNS2	TNS3	TNS4	TNS5	TNS6	TNS7	TNS8	TNS9	TNS10	TNS11	TNS12	TNS13	TNS14	TNS15	TNS16	TNS17	TNS18			
SiO_{2}	31,0	20,0	34,0	18,0	20,0	20,0	43,0	21,0	32,0	30,0	32,0	20,0	23,0	11,0	18,0	6,2	7,8	5,4	18,0	9,5	3,1	6,2	59,0	65,0	62,8		58,5
TiO_{2}	1,0	0,6	1,0	0,6	0,7	0,6	2,0	0,4	0,9	1,2	0,9	0,2	0,8	0,4	1,0	0,3	0,3	0,3	1,1	0,4	0,3	0,5	0,7	1,1	1	0,5	1,2
$\mathrm{Al}_{2} \mathrm{O}_{3}$	31,0	22,0	35,0	20,0	21,0	22,0	35,0	23,0	32,0	32,0	33,0	22,0	25,0	14,0	22,0	9,1	13,0	9,1	20,0	13,0	6,8	9,0	14,0	22,0	18,9	15,2	13,5
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	27,0	51,0	20,0	56,0	51,0	51,0	5,7	50,0	24,0	28,0	24,0	52,0	44,0	71,0	53,0	82,0	76,0	83,0	55,0	73,0	88,0	82,0	22,0	5,9	7,2	5	8
MnO	0,02	0,04	0,02	0,05	0,05	0,05	n.d.	0,02	0,01	0,01	0,01	0,02	0,02	n.d.	n.d.	n.d.	0,02	0,02	0,01	0,01	n.d.	n.d.	n.d.	n.d.	0,1	0,08	0,2
MgO	0,05	0,04	0,04	0,03	0,04	0,04	0,14	0,03	0,03	0,03	0,03	0,03	0,02	n.d.	0,01	0,02	n.d.	n.d.	0,03	0,04	n.d.	n.d.	0,04	0,08	2,2	2,2	5,6
CaO	0,05	0,04	0,05	0,04	0,05	0,05	0,08	0,02	0,03	0,04	0,02	0,03	0,03	0,03	0,03	0,03	0,03	0,02	0,05	0,07	0,03	0,04	0,03	0,05	1,3	4,2	,
$\mathrm{Na}_{2} \mathrm{O}$	0,06	0,10	0,05	0,10	0,11	0,09	0,25	0,08	0,04	0,05	0,04	0,07	0,07	0,04	0,09	0,03	0,04	0,03	0,11	0,06	0,04	0,04	0,08	0,14	1,2	3,9	2,7
$\mathrm{K}_{2} \mathrm{O}$	2,00	1,00	1,60	1,10	1,80	1,80	3,70	0,22	0,15	0,17	0,11	0,19	0,14	0,10	0,25	0,11	0,20	0,17	0,33	0,23	0,09	0,11	0,69	1,80	3,7	3,4	2,2
$\mathrm{P}_{2} \mathrm{O}_{5}$	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,4	0,2	0,2	0,1	0,1	0,16		0,16
$\mathrm{H}_{2} \mathrm{O}$	7,9	5,0	8,9	4,2	4,2	4,4	9,2	4,8	9,7	8,2	9,2	4,2	6,0	3,4	4,6	2,0	2,5	1,9	5,2	2,9	1,4	1,8	2,5	3,7			
LOI	7,9	5,0	8,9	4,2	4,2	4,3	9,2	4,8	9,7	8,2	9,2		6,0	3,4	4,6	2,0	2,5	1,9	5,2	2,9	1,4	1,8	2,5	3,7			
Total	100,2	99,9	100,7	100,2	99,0	100,1	99,2	99,7	99,0	99,8	99,3	98,8	99,2	100,0	99,2	99,8	100,0	100,0	100,0	99,6	99,9	99,8	99,1	99,8			
As	29,7	43,9	28,3	47,7	35,3	57,1	33,3	38,3	48,7	38,2	28,4	55,7	45,3	41,8	59,9	66,0	41,3	37,4	19,1	139,5	63,7	79,1	6,4	8,1		1,5	
Ba	212,9	251,3	210,7	270,4	254,4	303,7	326,7	56,9	68,4	65,1	52,1	58,6	70,3	43,8	71,5	49,9	42,6	51,5	99,0	19,5 97,4	46,9	59,1	58,3	80,3	650,0	1,5	618,1
Ce	105,3	66,4	69,7	56,1	55,5	57,5	171,6	61,1	93,8	90,4	84,5	55,5	67,9	54,2	104,5	36,3	49,6	38,0	79,9	64,2	50,3	69,7	54,2	81,8	80,0	64,0	220,7
Co	13,2	12,2	11,4	13,2	15,4	12,0	9,0	10,5	5,7	7,2	7,8	7,7	8,9	6,2	9,7	7,6	9,2	7,2	8,6	9,1	10,4	11,7	5,3	1,9	23,0	10,0	749,5
Cr	478,8	431,2	199,2	274,3	313,9	343,0	1761,6	483,6	484,4	355,6	356,7	141,9	159,3	178,5	213,2	145,6	171,9	139,5	302,4	309,1	213,1	242,7	160,9	184,9	110,0	35,0	459,6
Cu	65,7	52,5	66,1	52,9	44,2	51,2	66,7	41,5	24,1	29,8	29,0	49,0	39,0	42,2	36,9	49,3	44,5	50,6	34,4	41,3	53,3	49,4	15,2	17,3	50,0	25,0	555,3
Ga	16,5	16,1	17,3	16,8	23,4	17,9	34,3	15,6	15,1	17,2	15,1	13,5	14,1	15,0	17,7	14,7	16,2	11,9	30,1	21,3	16,7	15,7	11,5	15,1			198,7
La	44,0	18,3	29,6	16,0	19,0	18,1	83,8	19,3	40,7	37,4	34,4	10,3	34,4	16,7	36,4	9,6	18,1	12,2	40,8	19,6	4,8	20,0	18,2	38,9	38,0	30,0	192,7
Mo	2,0	4,1	1,3	3,6	2,8	3,8	2,7	1,7	0,8	0,9	1,1	4,1	2,5	4,8	3,1	4,2	4,0	3,2	4,0	4,6	6,4	4,2	0,1	0,7			644,4
Nb	15,6	10,2	15,6	10,0	10,1	11,1	35,0	8,2	17,2	20,1	16,1	2,9	13,2	7,2	19,2	4,7	5,3	5,1	17,9	6,0	3,9	7,4	6,3	13,1	19,0	25,0	193,8
Nd	24,2	12,8	16,4	16,0	8,8	11,6	56,4	22,9	26,8	31,2	22,6	15,2	29,9	22,5	26,5	18,0	5,9	11,5	23,6	21,1	12,5	29,5	21,0	25,1	32,0	26,0	31,2
Ni	41,8	51,2	45,1	46,1	47,5	40,4	66,5	18,2	17,3	16,7	20,5	24,0	17,6	17,2	16,4	18,6	20,9	14,6	24,4	42,9	31,2	59,5	9,8	12,1	55,0	20,0	397,6
Pb	27,6	20,3	17,4	20,9	19,8	23,5	36,5	22,2	22,7	21,7	21,1	12,8	23,2	12,1	23,5	8,0	14,0	18,4	36,9	8,6	7,4	5,9	6,9	13,8			189,0
Rb	38,9	20,4	34,1	22,1	37,9	37,7	142,2	10,4	8,4	10,7	6,6	11,6	9,2	6,4	14,5	7,2	9,1	8,0	14,6	19,0	7,4	8,9	14,2	39,8	160,0		157,3
Sc	23,8	24,5	20,0	26,7	26,1	26,5	32,0	20,3	20,3	25,1	22,5	14,7	22,0	21,2	29,7	+16,7	15,7	17,3	26,7	22,4	16,6	18,1	15,6	13,9	16,0	10,0	346,5
Sn	9,5	10,0	9,2	10,5	11,1	9,7	12,7	9,4	8,2	6,9	-10,2	-10,7	10,3	12,4	12,3	10,6	10,4	14,1	14,1	9,8	12,5	13,8	7,0	9,9			633,1
Sr	433,7	363,3	496,2	354,5	323,3	360,7	390,8	411,7	512,2	811,1	433,6	976,3	947, 2	712,6	1032,4	671,7	555,6	416,9	640,1	2758,9	1000,6	1274,6	300,2	174,3	200,0		411,2
Ta	0,4	<1	1,0	0,8	<1	1,5	3,6	<1	<1	<1	2,5	2,2			2,1	<1	<1	<1	<1	<1	<1	<1	0,7	0,8		2,2	1,7
Th	20,8	15,6	17,7	13,2	14,4	16,3	40,5	14,0	21,4	21,8	19,2	7,0	16,3	10,7	23,6	8,7	10,4	8,8	21,3	14,9	8,2	11,8	8,8	15,5	14,6	10,7	7,9
U	2,9	4,4	3,7	4,7	3,7	6,6	15,1	2,9	4,0	7,5	4,3	5,7	5,4	2,9	6,0	4,2	3,8	4,1	7,0	13,1	4,5	9,9	2,5	2,4	3,1	2,8	1,8
v	271,0	504,9	217,4	538,8	441,3	600,3	121,0	203,6	98,2	162,8	162,2	267,8	144,0	221,5	187,0	127,6	110,8	119,9	275,6	157,1	250,3	206,6	175,9	84,1	150,0	60,0	149,4
w	1,0	5,9	1,4	8,5	2,2	9,3	5,0	3,5	1,2	2,9	2,4	3,7	<1	2,1	5,7	3,8	<1	10,1	6,2	6,1	2,7	8,4	<1	-			84,2
Y	15,9	11,0	15,6	12,1	12,7	12,5	48,1	14,5	23,5	26,6	22,0	6,2	16,7	10,2	24,4	6,8	7,6	7,7	20,9	18,6	10,2	18,7	10,6	17,2	27,0	22,0	163,9
Zn	2,6	6,2	2,5	7,6	4,6	5,9	26,8	4,9	3,2	3,1	3,7	8,6	4,9	5,2	4,9	7,7	5,7	9,5	5,2	5,8	5,7	7,8	1,6	2,0	85,0	71,0	33,9
Zr	323,3	171,4	286,9	217,7	243,0	231,6	2305,5	638,2	942,0	686,8	766,3	135,5	338,9	213,4	518,7	117,4	120,1	140,0	360,6	236,6	160,8	392,9	178,8	286,6	210,0		327,9

Table 4: Measured Fe (wt. \%) abundances for the samples from Khumani Mine and essay Fe (wt. \%) abundances for the samples from Turner Exploration Camp from Jonathan Hainsworth.

Sample	Khumani Mine						Turner Exploration Camp																	
	ACKS1	ACKS2	ACKS3	ACKS4	ACKS5	ACKS6	TNS1	TNS2	TNS3	TNS4	TNS5	TNS6	TNS7	TNS8	TNS9	TNS10	TNS11	TNS12	TNS13	TNS14	TNS15	TNS16	TNS17	TNS18
Fe (wt.\%)	25,0	25,0	35,0	25,0	35,0	25,0	3,0	35,0	20,0	51,0	32,0	50,0	52,0	50,0	50,0	50,0	50,0	50,0	48,0	53,0	56,0	52,0	21,0	10,0

 geochemistry diagrams in this study.

Samples	Khumani Mine						Turner Exploration Camp																		PAAS	uc	MHC
	ACKS1	ACKS2	ACKS3	ACKS4	ACKS5	ACKS6	TNS1	TNS2	TNS3	TNS4	TNS5	TNS6	TNS7	TNS8	TNS9	TNS10	TNS11	TNS12	TNS13	TNS14	TNS15	TNS16	TNS17	TNS18			
Na	284,5	225,1	256,7	266,6	282,7	281,4	1490,5	172,4	184,3	243,7	194,7	191,1	208,5	119,2	197,6	130,1	138,1	135,8	239,6	248,6	181,1	151,7	167,2	418,8			
K ($\mathrm{wt} \mathrm{\%}$)	1,8	0,8	1,4	1,0	1,5	1,6	3,5	0,1	0,2	0,1	0,1	0,2	<0.2	0,1	0,2	0,1	0,1	0,1	0,2	0,2	<0.1	<0.1	0,3	1,1			
Sc	28,1	24,4	23,6	28,3	26,3	30,9	51,3	23,5	28,3	31,3	24,8	18,4	25,4	21,3	29,9	18,8	17,9	16,8	28,6	22,8	17,3	17,9	13,1	17,9	16,0	11,0	346,5
Cr	487,2	367,5	201,8	260,9	279,8	324,9	1967,5	447,7	505,0	357,4	337,6	153,5	155,6	166,2	193,0	138,1	167,1	118,9	263,7	274,0	199,1	195,6	134,1	199,6	110,0	35,0	459,6
$\mathrm{Fe}(\mathrm{wt} \%)$	21,5	39,0	18,3	48,6	39,2	42,7	3,4	46,7	20,3	28,7	23,1	58,3	42,3	51,8	47,2	62,6	58,9	56,7	40,8	56,8	67,4	58,2	12,9	3,3			
co	8,1	9,4	5,7	10,3	10,3	9,2	9,9	2,1	1,9	1,4	2,0	2,0	1,6	1,4	1,6	1,9	1,5	1,6	2,7	4,8	4,2	4,7	2,1	1,9	23,0	10,0	749,5
Ni	50,2	50,4	53,4	31,1	39,3	<64	107,7	<57	22,2	<40	26,9	<66	<62	<62	<41	<63	<41	<33	<62	44,3	36,6	63,1	13,6	28,6	55,0	20,0	397,6
Zn	<22	<18	<17	<23	<12	<19	55,1	<16	<23	<14	<17	<18	<21	<19	<12	<15	<11	<7	<18	<14	<3.8	<14	<14	<9	85,0	71,0	33,9
Ga	30,1	50,5	27,4	62,4	18,0	142,6	22,5	147,4	26,5	92,5	66,0	90,4	69,5	26,0	125,4	64,3	25,9	61,9	138,0	62,5	89,3	188,4	15,5	14,1			198,7
As	34,4	49,6	29,6	54,4	36,4	62,5	34,5	36,4	45,9	38,2	29,7	59,0	46,7	39,2	47,4	74,7	37,3	41,5	16,3	124,5	62,8	87,5	5,7	9,0		1,5	2,3
Se	<3.1	<3.5	<2.9	<3.8	<2.1	<3.7	2,6	<3.4	<3.3	<2.4	<3.1	<3.6	<3.6	<3.6	<2.4	<3.6	<2.3	<1.8	<3.6	<2.6	<3.9	<3.4	<2.4	<1.3			970,3
Br	<1	0,6	0,4	1,0	0,4	0,5	<1.2	0,2	<1	0,4	<0.9	<2	0,4	0,3	0,7	0,9	0,6	0,8	<1.2	1,1	1,4	0,9	0,4	0,5			67,4
Rb	40,5	23,5	50,3	23,2	23,1	40,4	145,1	80,6	<11	30,2	23,2	132,8	11,8	<16	75,1	22,8	171,6	40,9	37,5	92,9	141,2	93,3	18,2	40,1	160,0	112,0	157,3
Sr	381,6	225,2	344,6	238,1	224,5	237,4	314,1	243,6	405,0	535,9	269,4	655,3	741,0	543,0	631,7	530,4	435,9	274,7	358,8	1909,0	724,4	796,6	247,2	123,8	200,0	350,0	411,2
Zr	221,8	103,8	172,0	158,0	162,0	162,5	1699,8	357,8	536,6	384,5	399,1	118,9	204,8	149,5	252,4	92,0	90,0	112,4	200,4	168,5	129,3	223,5	137,5	180,3	210,0	190,0	327,9
Sb	1,1	2,4	1,6	1,5	1,6	3,6	0,5	3,6	0,8	1,7	2,2	2,0	1,4	1,8	3,3	3,3	1,4	3,0	2,5	1,7	2,0	3,7	0,9	1,1		0,2	0,4
Cs	1,2	0,9	1,2	1,0	1,1	0,7	3,7	0,3	0,4	0,4	0,3	0,5	0,4	0,4	0,3	0,3	0,3	0,3	0,7	0,4	0,4	0,4	0,5	1,0	15,0	3,7	543,7
Ba	125,2	144,7	129,4	148,4	128,5	184,5	279,4	18,8	<44	44,8	28,2	<68	35,3	<56	5,7	31,7	<61	48,9	54,8	51,0	22,9	<47	25,4	46,3	650,0	550,0	618,1
La	38,6	16,3	26,8	16,5	15,3	16,5	97,2	15,8	37,9	30,7	26,9	10,2	23,9	13,7	-27,6	11,5	9,8	9,4	29,7	15,1	6,7	13,9	14,6	36,5	38,0	30,0	192,7
Ce	89,0	35,3	57,1	40,8	35,3	36,9	197,5	37,1	82,7	64,1	51,8	24,7	51,6	32,5	57,3	27,5	26,2	20,5	52,7	34,2	14,3	31,0	39,3	73,2	80,0	64,0	220,7
Nd	21,7	9,5	15,7	9,1	8,8	12,1	58,0	11,5	24,3	16,1	13,0	7,3	16,9	9,7	18.5	8,0	6,8	9,1	13,1	11,1	3,9	7.8	12,1	19,2	32,0	26,0	31,2
Sm	3,3	1,9	2,8	2,0	1,8	2,0	10,9	2,4	4,5	3,5	3,0	2,0	3,9	2,2		1,7	1,3	1,4	3,0	3,4	1,3	2,7	2,5	3,7	5,6	4,5	
Eu	0,7	0,4	0,6	0,4	0,4	0,4	2,1	0,6	1,0	0,8	0,7	0,5	0,9	0,5	[10,8	0,4	0,3	0,3	0,7	0,9	0,4	0,6	0,6	0,8	1,1	0,9	1,1
Gd	4,1	2,3	2,8	2,1	1,4	1,9	9,7	2,4	4,0	3,4	3,3	<1.6	3,2	2,2	3,4	2,2	1,3	1,5	2,7	3,3	<1.8	2,6	1,9	3,1	4,7	3,8	5,8
тb	0,4	<0.1	0,4	0,3	0,3	<0.1	1,2	0,4	0,6	0,6	0,4	0,3	0,5	0,3	0,5	<0.1	0,2	0,2	0,4	0,7	0,3	0,6	0,4	0,5	0,8	0,6	1,0
Tm	0,4	0,2	0,2	0,3	0,2	0,2	0,9	0,3	0,4	0.5	0,3	0,2	0,5	0,4	0,3	0,6	0,3	0,1	0,4	0,5	0,3	0,3	0,2	0,4	0,4	0,3	0,5
Yb	1,7	1,0	1,4	1,2	1,1	1,2	7,4	1,5	3,1	2,7	2,2	0,6	1,7	1,0	2,1	0,8	0,7	0,7	2,0	1,8	1,0	1,7	1,5	2,1	2,8	2,2	3,3
Lu	0,3	0,2	0,3	0,2	0,2	0,2	1,3	0,3	0,5	0,5	0,4	0,1	0,3	0,2	0,4	0,1	0,1	0,1	0,4	0,3	0,2	0,3	0,2	0,3	0,4	0,3	0,5
Hf	8,5	3,8	6,6	5,6	5,7	5,6	70,2	14,5	26,6	17,2	17,0	2,9	8,6	4,7	10,8	2,4	2,7	2,8	7,7	5,2	3,4	7,6	5,3	7,5	5,0	5,8	6,2
Ta	1,5	0,9	1,6	1,0	0,9	1,0	4,0	0,8	1,6	1,9	1,4	0,3	1,3	0,7	1,6	0,5	0,5	0,5	1,6	0,8	0,5	0,6	0,8	1,4		2,2	1,7
w	n.d.	2,8	2,9	n.d.	n.d.	2,4	6,4	2,6	n.d.	3,8	4,5	n.d.	n.d.	n.d.	3,8	1,0	n.d.	1,7	6,1	n.d.	n.d.	1,9	n.d.	2,9			84,2
$\mathrm{Os}(\mathrm{ppb})$	<534	<968	<855	<694	<507	<950	<1561	<1026	${ }_{<614}$	<911	<901	<656	-662	<609	<1119	<822	<585	<814	<991	<715	<670	<1149	<366	${ }_{5} 754$			
Ir (ppb)	<3	<4.2	<3.4	<3.4	<1.9	<4.1	<6.3	<4.1	<3.2	<2.96	<3.8	<3.2	<3.1	<3.1	<2.5	<3.4	0,6	<1.8	<4.1	<2.4	<3.2	<3.5	<2.3	<1.9			
$\mathrm{Au}(\mathrm{ppb})$	<1	<1.7	<1.3	<2	<1	<2.0	<2.4	<2.1	<1	<1.9	<1.6	<2	2,1	<1	<2.1	<1.4	<1	0,4	<2.1	<2	<2	<2.3	<1	0,9			
Th	19,7	12,4	16,6	12,5	10,6	12,8	40,3	10,8	19,2	17,8	14,8	4,4	13,4	7,7	16,8	7,4	7,2	7,3	17,8	9,2	5,7	7,8	8,9	15,1	14,6	10,7	7,9
\cup	2,1	2.5	1,7	3,2	1,7	2,9	14.5	1,8	2,3	2,8	2,0	2,0	2,3	1,4	2.5	1.8	1,5	2,3	2,9	2.8	1,8	2,3	1,3	1,5	3,1	2,8	1,8

UNIVERSITY of the
WESTERN CAPE

Figure 15: Plots showing major elements (oxides) variations vs depth for the samples from Khumani Mine. From top to bottom, the samples are ACKS1, ACKS2, ACKS3, ACKS4, ACKS5, and ACKS6. Note that the samples with high abundances of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ inversely have low abundances of $\mathrm{SiO}_{2}, \mathrm{TiO}_{2}, \mathrm{~K} 2 \mathrm{O}, \mathrm{CaO}$ and $\mathrm{Al}_{2} \mathrm{O}_{3}$.

Figure 16: Plots showing trace elements and Fe (wt.\%) variations vs depth for the samples from Khumani Mine.

Figure 17: SiO_{2} vs $\mathrm{TiO}_{2}, \mathrm{~K}_{2} \mathrm{O}, \mathrm{Na}_{2} \mathrm{O}, \overline{\mathrm{Al}}_{2} \mathrm{O}_{3}, \mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ Harker diagrams for the samples from Khumani Mine. The dotted lines represent linear regression lines/correlations for the Harker diagrams. Note the positive correlations between SiO_{2} and $\mathrm{TiO}_{2}, \mathrm{~K}_{2} \mathrm{O}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{Al}_{2} \mathrm{O}_{3}$, and $\mathrm{P}_{2} \mathrm{O}_{5}$ and a negative correlation between SiO_{2} and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ for the samples.

Figure 18: $\mathrm{Fe}_{2} \mathrm{O}_{3}$ vs $\mathrm{SiO}_{2}, \mathrm{TiO}_{2}, \mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{~K}_{2} \mathrm{O}, \mathrm{Al}_{2} \mathrm{O}_{3}$ and CaO Harker diagrams for the samples from Khumani Mine. The dotted lines represent linear regression lines/correlations for the Harker diagrams. Observe the negative correlations between $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{SiO}_{2}, \mathrm{TiO}_{2}, \mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{~K}_{2} \mathrm{O}, \mathrm{Al}_{2} \mathrm{O}_{3}$, and CaO and a positive correlation between $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{Na}_{2} \mathrm{O}$ for the samples.

Figure 19: (A) Major element patterns and (B) extended trace element patterns compiled from XRF data, and (C) chondrite-normalized rare earth element patterns compiled from INAA data for the samples from Khumani Mine. Observe that the patterns are similar for most samples and are similar to the PAAS (Post-Archaean Australian

Shale) and UC (Upper Crust). Major, trace, and rare earth element values are from Dyer et al. (2019) and are used for normalising and presented in Table 3. The PAAS (Post-Archaean Australian Shale) and UC (Upper Crust), data from Taylor and McLennan (1995) and shown in Table 3, are plotted for comparison.

UNIVERSITY of the
WESTERN CAPE

4.2 Turner Exploration Camp

The samples from Turner Exploration Camp are described below, and their results are given in Table 1 for sample and accretionary lapilli descriptions for sampling. For more information on Turner Exploration Camp, see Appendix B. 1 for sample photos, Appendix B. 2 for thin section photos, Appendix B. 3 for scanning electron microscopy photomicrographs and Appendix B. 4 for Raman spectroscopy photomicrographs and data.

4.2.1 Sample description

The Wolhaarkop Breccia, investigated at Turner Exploration Camp, is 17 m thick in the drill core (Figure 20) and consists of two types of breccias, namely the upper polymict breccia and lower monomict breccia (Figure 21). The polymict breccia is clast-supported, red to maroon and consists of angular clasts of quartz, banded iron formation, jasper, hematite and other clasts in a chert matrix. The monomict breccia is generally matrix-supported, grey to black and consists of white angular clasts of quartz in a chert matrix. Compared to the Doornfontein Conglomerate Member, the Wolhaarkop Breccia appears to be less ferruginous and overprinted by hematite and rarely contains disseminated pyrite and joints dipping at $\sim 70^{\circ}$. The observed Wolhaarkop Breccia in Khumani Mine drill core is $\sim 2 \mathrm{~m}$ thick.

Figure 20: A photograph of the drill core containing the polymict Wolhaarkop Breccia at Turner Exploration Camp.

Figure 21: A photograph of the drill core that contains the monomict Wolhaarkop Breccia at Turner Exploration Camp.

Overlying the Wolhaarkop Breccia is the Doornfontein Conglomerate Member, to which the samples from Turner Exploration Camp were collected (Figure 22). The samples from Turner Exploration Camp are similar to those from Khumani Mine. The samples from Turner Exploration Camp are ferruginous, matrix-supported breccias with angular clasts of shale, quartz, hematite, chert and serpentine, and angular, very fine-grained lithic rock fragments (Figure 22). The breccias are dark red to brown and have a clay-rich matrix with the clasts ranging to 3 mm in thickness (Figure 22). The breccias show an absence of sediment reworking. Disseminated pyrite clasts, quartz veins, and joints dipping at $\sim 35^{\circ}$ occasionally occur within the breccias. The breccias form Unit A occurring between depths of 72.0 and 89.0 m . The breccias also contain spherical to subspherical, dark red to brown accretionary lapilli and angular accretionary lapilli fragments from depth 69.0 to 72.0 m (Figure 23). The accretionary lapilli-rich breccias form Unit B overlying Unit A, which seamlessly transitions into Unit B without a grain size change or contact. A cream-white paleosol forming Unit C occurring at depth 68.0 to 69.0 m and overlying Unit B was also sampled (Figure 24). The paleosol transitions above Unit B by a sharp contact and has compaction features and stylolites (Figure 24). The paleosol is weathered, clay-rich and composed of quartz, chert, chlorite, serpentine, and rarely hematite. As a result, the paleosol is neither ferruginous nor overprinted by hematite (Figure 24).

Figure 22: A photograph of the sampled drill core at Turner Exploration Camp.

Accretionary lapilli

The observed accretionary lapilli from this site are nearly all nucleated, whereas the rest are accretionary lapilli fragments (Figure 23). The accretionary lapilli are ferruginous and overprinted by hematite (Figure 23). As a result, most of the accretionary lapilli are composed of hematite and rarely very fine-grained quartz. Nucleated accretionary lapilli rarely contain very-fine grained lithic rock fragments.

Nucleated accretionary lapilli

The nucleated accretionary lapilli occur as dispersed and discrete bodies and are the smallest concentrically zoned accretionary lapilli in this study (Figure 23). The nucleated accretionary lapilli are well round to round and spherical to subspherical, but most are round and spherical (Figure 23). The long and short apparent diameters of the nucleated accretionary lapilli vary from 7.0 to 14.0 mm and 3.0 to 12.0 mm , respectively. The concentric structure of the nucleated accretionary lapilli typically fines outward from coarse-grained in the nuclei to finegrained in the crusts, whereas the mantles are medium-grained (Figure 23). The long and short apparent diameters of the nuclei vary from 2.0 to 11.0 mm and 1.0 to 7.0 mm , respectively. The nuclei are roughly on the centre, well-round to round and spherical to spherical, but round and subspherical nuclei are prevalent (Figure 23). The nucleated accretionary lapilli always have a sharp contact between the nuclei and the mantles (Figure
23). Although the concentric structure of the nucleated accretionary lapilli fines outward from the nucleus to the crust, some mantles are coarser-grained than the nuclei. The mantles are 2.0 to 7.0 mm thick, and most consist of very fine-grained quartz, while a few consist of hematite (Figure 23). The crusts are 2.0 to 5.0 mm thick, finer-grained than the mantles and composed of hematite (Figure 23). The crusts are the darkest component of the accretionary lapilli (Figure 23). In most nucleated accretionary lapilli, a sharp contact is present between the crusts and mantles. A few, less than 10, hematite-rich concentric layers occur in most mantles and seldomly in the crusts (Figure 23). A few concentric layers are quartz-rich (Figure 23).

The observed accretionary lapilli fragments (Figure 23) in the samples are similar to those observed in the samples from Khumani Mine. As their name suggests, the accretionary lapilli fragments are derived from fragmented or broken accretionary lapilli, especially crusts and mantles (Figure 23). The accretionary lapilli fragments vary between 2.0 and 3.0 mm in thickness and are typically angular and subspherical, and occur as discrete bodies in the matrix (Figure 23).

Figure 23: (A-D) Photographs of ferruginous samples with accretionary lapilli from Turner Exploration Camp; the black arrows indicate the accretionary lapilli. The samples are clay-rich matrix-supported breccias and are cut by chert hydrothermal veins. (A) Nucleated accretionary lapilli with nuclei, mantles, and crusts. The nuclei and mantles consist of hematite and quartz, and the crusts consist of hematite. (B) Accretionary lapilli fragments are derived from broken accretionary lapilli, especially crusts and mantles. Note a nucleated lapillus with several, less than 10 concentric layers, in the mantle. (C) A nucleated accretionary lapillus and an accretionary lapillus fragment. (D) A nucleated accretionary lapillus.

Figure 24: The paleosol from Turner Exploration Camp. Observe the compaction features and stylolites in the paleosol.

4.2.2 Petrography

This section describes the results of petrography for the samples from Turner Exploration Camp. The samples' optical microscopy examination results are provided in Table 2 for sample and accretionary lapilli descriptions.

Optical Microscopy

Almost all the thin sections prepared from Turner Exploration Camp samples are ferruginous and opaque, and, as a result, the thin sections were difficult to examine with optical microscopy. SEM and photographs of the thin sections were used to describe the thin sections further. The thin sections indicate that the samples are clay-rich, matrix-supported breccias (Unit A) with a matrix composed of rutile, chlorite, mica, carbonate and rarely amorphous silica. Angular clasts of hematite, zircon, feldspar and very fine-grained lithic rock fragments also occur in the matrix. The breccias also contain nucleated accretionary lapilli and accretionary lapilli fragments (Unit B), which are entirely composed of hematite and seldomly amorphous silica (Figure 25 \& Figure 26A). The paleosol (Unit C) contains round to angular potential shocked and un-shocked zircon and quartz grains in a clay-rich and weathered matrix composed of rutile, chlorite, serpentine, and rarely hematite (Figure 26B). An unaltered accretionary lapillus fragment occurs in the matrix of the paleosol (Figure 26B).

Accretionary lapilli

The observed accretionary lapilli in the breccias are nucleated and fragmented (Figure 25). The nucleated accretionary lapilli preserve their concentric structure, although it is clear they underwent extensive ferruginisation (Figure 25). The nucleated accretionary lapilli are wellround to round, vary in shape from spherical to subspherical, and their long and short apparent diameters range from 4.0 to 10.0 mm and 3.0 to 8.0 mm , respectively (Figure 25). The nuclei of the nucleated accretionary lapilli are well-round to round and typically spherical and less subspherical and have 1.0 to 5.0 mm apparent diameters (Figure 25). All the nuclei are composed of hematite except a few nuclei composed of quartz. Rare nuclei incorporate angular fine-grained lithic rock fragments. The mantles of the nucleated accretionary lapilli are 3.0 to 5.0 mm thick and often contain up to 6 concentric layers formed by alternating hematiteand quartz-rich concentric layers (Figure 25). The crusts of the nucleated accretionary lapilli are 1.0 to 2.0 mm thick and infrequently contain concentric layers (Figure 25). The nucleated accretionary lapilli grade outward in grain size from coarse-grained in the nuclei to fine-grained in the crusts. The mantles are medium-grained, and the crusts are the darkest component of the accretionary lapilli (Figure 25).

The accretionary lapilli fragments are angular and typically subspherical and have long and short thicknesses that vary from 2.0 to 10.0 mm and 1.0 to 5.0 mm , respectively (Figure 26A). The accretionary lapilli fragments appear to be derived from the crusts and mantles of fragmented accretionary lapilli.

Shocked mineral grains

A high abundance of potential shocked quartz and zircon grains have been found in three thin sections: (1) as discrete grains in the matrix of the thin section TNS1 (paleosol) (Figure 27) and; (2) as discrete grains in the matrix of the thin sections TNS17 and TNS18 (Figure 28). The shocked grains are present within more than half of the thin sections. Some shocked zircon grains have potential planar fractures forming parallel and closely spaced fractures (Figure 27). The planar fractures are 1.0 to $3.0 \mu \mathrm{~m}$ wide, spaced 2.0 to $5.0 \mu \mathrm{~m}$ and have two sets (Figure 27). Some quartz grains have potential decorated PDFs with trails of small fluid inclusions (Figure 28). The decorated PDFs appear to be poorly preserved, and the occurrence of well-preserved decorated PDFs appears to be typically low. The best-preserved PDFs have 1 to 3 sets, but single sets appear prevalent (Figure 28). The width and spacing of the best-preserved PDFs are respectively $\sim 2.0 \mu \mathrm{~m}$ and 3.5 to $6.0 \mu \mathrm{~m}$. Some shocked quartz grains appear to have PDFs with multiple sets.

Figure 25: Photographs of a thin section with nucleated and non-nucleated accretionary lapilli prepared from the sample TNS2 from Turner Exploration Camp. Besides the thin arrows indicating the accretionary lapilli, the thick arrows on the thin sections indicate the direction facing upwards. The accretionary lapilli are extensively altered and overprinted by hematite and contain a concentric structure. The left annotated photograph shows the spherical shape, mantle, crust, and nucleus of the nucleated accretionary lapillus.

Figure 26: Photographs of the thin sections prepared from the samples TNS4 (A) and TNS1 (B) from Turner Exploration Camp. The black and white arrows indicate the accretionary lapilli in the thin sections. Besides the thin arrows indicating the accretionary lapilli, the thick arrows on the thin sections indicate which direction the thin section is facing upwards. (A) Accretionary lapilli fragments in a thin section that is extensively altered and overprinted by hematite. (B) A thin section of the paleosol (TNS1) showing compaction features and stylolites. An unaltered accretionary lapillus fragment occurs in the paleosol. Compared to the rest of the samples, this sample is not altered or overprinted by hematite.

Figure 27: A transmitted light, plane-polarized light photomicrograph of a possible shocked zircon grain with one set of possible planar features that crosscut the growth zoning. The shocked zircon is in thin section TNS1.

Figure 28: (A-C) Transmitted light, cross-polarized light photomicrographs of potential shocked quartz grains with potential decorated PDFs, samples from Turner Exploration Camp. The white arrows show the decorated PDFs. (A) A prominent set of decorated PDFs showing trails of small fluid inclusions. (B) A quartz grain with a single set of decorated PDFs with trails of small fluid inclusions. (C) A quartz grain with a single set of decorated PDFs infilled with hematite.

Scanning Electron Microscopy

The SEM results for the thin sections TNS1, TNS2 and TNS18 are described below (Figure 29 to Figure 35). The thin section TNS18 is a clay-rich, matrix-supported breccia (Unit A) with grains of quartz, zircon and fine-grained mica (Figure 29 to Figure 31A). The grains range from subangular to angular, and some have irregular margins, but the grains are typically angular (Figure 31A). The grains range from ~ 10 to $90 \mu \mathrm{~m}$ in thickness and occur in a matrix consisting of euhedral acicular fine-grained mica and acicular ilmenite (Figure 29 to Figure 31A). Some parts of the matrix contain amorphous silica, and some zircon grains are metamict (Figure 31B). A hydrothermally deposited vein rich in Fe-oxide cuts across the thin section (Figure 32A). The thin section TNS2 forms Unit B and will be discussed below.

The thin section TNS1 is a clay-rich and weathered paleosol (Unit C) with typically well-round and rarely angular grains of zircon, quartz, and ilmenite (Figure 32 to Figure 35). Some of the zircon grains are metamict (Figure 34A). The grains range in size from ~ 10 to $100 \mu \mathrm{~m}$ and occur in a matrix consisting of phyllosilicates and acicular fine-grained mica (Figure 32 to Figure 35). An unaltered accretionary lapillus fragment is incorporated in this thin section and contains Al-silicate and Fe-oxide and appears to be cut by a hydrothermal vein (Figure 32). Another hydrothermal vein occurs within this thin section. The matrix also contains potential shocked zircon grains, with some having potential planar fractures, which are 2.0 to $5.0 \mu \mathrm{~m}$ wide and spaced 1.0 to $10 \mu \mathrm{~m}$ (Figure 35).

Figure 29: (A-D) SEM Photomicrographs of the sample TNS18; the white arrows show the minerals. Note the angular grains of quartz and zircon occurring in a matrix comprised of acicular fine-grained mica and acicular ilmenite. Also, note the hydrothermal vein rich in Fe-oxide in (B).

Figure 30: (A-B) SEM photomicrographs of the sample TNS18. (A) Angular grains of quartz with irregular margins in a matrix consisting of acicular fine-grained mica. (B) Acicular fine-grained mica.

Figure 31: (A-B) SEM photomicrographs of zircon grains in the sample TNS18. (A) A zircon grain. (B) A fragmented zircon grain.

Figure 32: (A-B) SEM photomicrographs with an accretionary lapillus fragment in the sample TNS1. (A) Note the zircon grain and others indicated by the white arrow and the accretionary lapillus fragment. The grey minerals next to the zircon grains are ilmenites. (B) Observe the zircon grains next to the accretionary lapillus fragment.

Figure 33: (A-B) SEM photomicrographs of the sample TNS1; the white arrows indicate the minerals. (A) Subangular to angular zircon grains in a fine-grained matrix. (B) Round to subangular and subspherical grains of zircon and ilmenite in a fine-grained matrix consisting of acicular fine-grained mica.

Figure 34: (A \& B) SEM photomicrographs of the sample TNS1. (A) A metamict zircon. (B) A zircon grain.

Figure 35: SEM photomicrographs of a zircon grain with potential planar fractures in the sample TNS1. (A) A BSE image of the zircon grain. (B) An orientation contrast image of the zircon grain with two sets of suspected planar features.

Accretionary lapilli

Using SEM, a nucleated accretionary lapillus and non-nucleated accretionary lapillus (Unit B) have been identified in the thin section TNS2 (Figure 36 \& Figure 37). The nucleated accretionary lapillus is subspherical and has a $\sim 15 \mathrm{~mm}$ long diameter and $\sim 10 \mathrm{~mm}$ short diameter (Figure 36). The nucleated accretionary lapillus contains the typical components of accretionary lapilli, i.e., a concentric structure with a nucleus, mantle and crust (Figure 36). The concentric structure of the nucleated accretionary lapillus fines outward in grain size from the nucleus, the coarsest-grained component, to the crust, the finest-grained component of the accretionary lapillus (Figure 36). The mantle is medium-grained and contains several concentric layerings, while the crust contains a few concentric layerings (Figure 36). The mantle, crust, and nucleus have gradual to sharp contacts between them (Figure 36). The crust is the darkest component of the accretionary lapillus and contains lithic rock fragments aligned parallel to the margins (Figure 36). The nucleated accretionary lapillus is extensively altered and overprinted by Fe (hematite), and as a result, it has a high abundance of Fe , less Si and Al and is depleted in K (Figure 36). The highest Fe abundances occur in the crust and progressively decrease towards the nucleus (Figure 36). In comparison, the highest Si and AI
abundances occur in the nucleus and progressively decrease towards the crust (Figure 36). The concentric layering consists of alternating Si - and Fe-rich concentric layers (Figure 36).

The non-nucleated accretionary lapillus has $\sim 15 \mathrm{~mm}$ long and $\sim 10 \mathrm{~mm}$ short diameters and is slightly distorted, forming a subspherical body (Figure 37). It has a concentric structure consisting of a mantle, crust and no nucleus (Figure 37). The crust is the finest-grained component, and the mantle is the coarsest-grained component of the accretionary lapillus (Figure 37). Thus, the accretionary lapillus fines outward in grain size from the mantle to the crust. The crust and mantle contain lithic rock fragments, which are typically aligned parallel to the margin. The concentric structure also consists of concentric layering in the mantle and the crust (Figure 37). The concentric layering is thicker than that in the nucleated accretionary lapillus (Figure 37). Compared to the nucleated accretionary lapillus, the non-nucleated accretionary lapillus is also altered and predominated by Fe , less Si and Al and is depleted in K (Figure 37). Most of the concentric layering in the non-nucleated accretionary lapillus is formed by concentric layers consisting of Fe and rarely Si (Figure 37). The matrix around the nucleated and non-nucleated accretionary lapilli appears unaltered and predominated by Si and less Fe and Al (Figure 38). The matrix also appears to contain coarse to medium grains of SiO_{2} (Figure 38).

Figure 36: SEM images of the sample TNS2 with a subspherical nucleated accretionary lapillus. (A) A BSE image of the nucleated accretionary lapillus consisting of a nucleus, mantle and crust. The crust is the finest-grained component of the accretionary lapillus and contains concentric layering. The nucleus is the coarsest-grained component of the accretionary lapillus, followed by the mantle. Thus, the accretionary lapillus grades outward in grain size from the nucleus to the crust. Note gradual to sharp contacts between the nucleus and mantle and the mantle and crust. (B) A compositional EDS map of the nucleated accretionary lapillus, where Fe is highly concentrated in the crust compared to the mantle and nucleus. Si and AI are highly concentrated in the mantle and nucleus compared to the crust.

Figure 37: SEM images of the sample TNS2 with a non-nucleated accretionary lapillus. (A) A BSE image of the non-nucleated accretionary lapillus consisting of a mantle, crust and concentric layering. The coarsest-grained component of the accretionary lapillus is the mantle, whereas the crust is the finest-grained component. The accretionary lapillus has a sharp to gradual contact between the crust and the mantle. The accretionary lapillus contains entrained lithic rock fragments aligned roughly parallel to the crust's margins. (B) A compositional EDS map showing that the non-nucleated accretionary lapillus contains a high abundance of Fe. The concentric layering is formed by alternating Si- and Fe-rich concentric layers. The matrix around the accretionary lapillus appears to be less Fe-rich.

Figure 38: SEM images of the sample TNS2 showing the matrix around the accretionary lapilli. (A) A BSE image showing a quartz-vein in the matrix. (A) A compositional EDS map indicating that the matrix is predominated by Si and AI and less Fe.

4.2.3 Geochemistry

This section describes the geochemistry of the samples from Turner Exploration Camp, focusing on the major elements, trace elements and rare earth elements. The results of XRF, Fe assay and INAA for the samples are provided in Table 3, Table 4 and Table 5, respectively. This section will also describe titanium dioxide polymorphs in the samples analysed with Raman spectroscopy.

Major elements

Based on the XRF results, the most predominant major elements (oxides) in the samples are, in order of abundance: $\mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{SiO}_{2}$ and $\mathrm{Al}_{2} \mathrm{O}_{3}$. The $\mathrm{Fe}_{2} \mathrm{O}_{3}$ abundances in the samples from this site are the highest in this study, ranging from 5.7 (TNS1) to $88.0 \mathrm{wt} . \%$ (TNS15) and average $\sim 51.0 \mathrm{wt} . \%$. The SiO_{2} abundances vary from 3.1 (TNS15) to $65.0 \mathrm{wt}$. \% (TNS18), and average $\sim 22.8 \mathrm{wt} . \%$. The highest $\mathrm{Al}_{2} \mathrm{O}_{3}$ abundance is 35.0 wt . \% (TNS18), the lowest is $6.8 \mathrm{wt} . \%$ (TNS15), and the average for $\mathrm{Al}_{2} \mathrm{O}_{3}$ abundances is $\sim 19.7 \mathrm{wt} . \%$. The samples also contain other oxides, namely $\mathrm{TiO}_{2}, \mathrm{CaO}$ and $\mathrm{K}_{2} \mathrm{O}$. The TiO_{2} abundances vary between 0.16 (TNS6) and $2.0 \mathrm{wt} . \%$ (TNS1), and their average is $0.71 \mathrm{wt} . \%$. The CaO abundances are less than 0.1 wt. \%, averaging $\sim 0.037 \mathrm{wt} . \%$. The CaO vary from 0.024 (TNS2) to $0.079 \mathrm{wt} \$.$% (TNS1). The$ $\mathrm{K}_{2} \mathrm{O}$ abundances vary from 0.093 (TNS15) to 3.7 wt . \% (TNS1), and their average is ~ 0.49 wt.\%.

The assay Fe (wt.\%) abundances of the samples range from 3.0 (TNS1) to 56 wt. \% (TNS15) and have an average of $40.8 \mathrm{wt} . \%$. The Fe abundances indicate that the samples are lowgrade ores. The INAA Fe abundances of the samples vary from 3.34 (TNS18) to $67.4 \mathrm{wt} . \%$ (TNS15) and have an average of $41.1 \mathrm{wt} . \%$. Based on the INAA Fe abundances, all the samples are low-grade ores except the sample TNS10, which has an Fe abundance of 62.6 $\mathrm{wt} . \%$ and is a medium-grade ore.

Plots showing major elements variations vs depth for the samples from Turner Exploration Camp are presented in Figure 39 for XRF results and Figure 40 for assay Fe abundances and INAA Fe abundances. The samples show a compositional trend, where samples with high abundances of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ inversely have low abundances of $\mathrm{SiO}_{2}, \mathrm{TiO}_{2}, \mathrm{~K}_{2} \mathrm{O}, \mathrm{CaO}$ and $\mathrm{Al}_{2} \mathrm{O}_{3}$ (Figure 41). The compositional trend is supported by the sample's Harker diagrams, where the Harker diagram patterns show a positive correlation between SiO_{2} and $\mathrm{TiO}_{2}, \mathrm{~K}_{2} \mathrm{O}, \mathrm{Na}_{2} \mathrm{O}$, and $\mathrm{Al}_{2} \mathrm{O}_{3}$, and a negative correlation between SiO_{2} and $\mathrm{P}_{2} \mathrm{O}_{5}$ for the samples (Figure 41 \& Figure 42). The patterns also show a negative correlation between $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{SiO}_{2}, \mathrm{TiO}_{2}, \mathrm{P}_{2} \mathrm{O}_{5}$, $\mathrm{K}_{2} \mathrm{O}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{Al}_{2} \mathrm{O}_{3}$, and CaO and a positive correlation between $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{P}_{2} \mathrm{O}_{5}$ for the samples (Figure 42).

Plotted major element patterns for the samples and the PAAS and UC are provided in Figure 43A. The patterns are similar for most samples and are similar to the PAAS and UC. The patterns show that the samples are anomalously enriched in $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and subsequently enriched in $\mathrm{SiO}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{TiO}_{2}$ and $\mathrm{K}_{2} \mathrm{O}$ (Figure 43A). The samples are slightly depleted in $\mathrm{Na}_{2} \mathrm{O}$ and prominently depleted in CaO . The PAAS and UC are enriched in $\mathrm{SiO}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{CaO}$ and $\mathrm{Na}_{2} \mathrm{O}$ and slightly depleted in $\mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{TiO}_{2}$ and $\mathrm{K}_{2} \mathrm{O}$ (Figure 43A). Compared to the PAAS and UC, the samples have higher patterns and abundances of $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Fe}_{2} \mathrm{O}_{3}$ and TiO_{2} and lower patterns and abundances of $\mathrm{SiO}_{2}, \mathrm{CaO}, \mathrm{K}_{2} \mathrm{O}$ and $\mathrm{Na}_{2} \mathrm{O}$ (Figure 43A).

Trace elements

Plots showing trace elements variations vs depth for the samples from Turner Exploration Camp are given in Figure 40. The trace elements of interest for this study are $\mathrm{Ir}, \mathrm{Ni}, \mathrm{Cr}$ and Co. These elements have the highest abundances in the sample TNS1 but are low in abundance compared to meteorites (Figure 40) (Glass \& Simonson, 2013). The highest Ni
abundance is 108 ppm (TNS1), whereas Ni is below detection limits in 10 samples. Co varies in abundance from 1.42 (TNS4 and TNS8) to 9.93 ppm (TNS1), and Cr from 119 (TNS12) to 1968 ppm (TNS1) (Figure 40). The Ni, Co, and Cr abundances averages are $43.0 \mathrm{ppm}, 2.74$ ppm and 332 ppm , respectively. Ir is only detected in the sample TNS11 and has a concentration of $0,58 \mathrm{ppb}$. The $\mathrm{Ni} / \mathrm{Co}, \mathrm{Ni} / \mathrm{Cr}$, and $\mathrm{Co} / \mathrm{Cr}$ ratios are very similar across the samples and range to $13.5,0.32$ and 0.02 , respectively. The $\mathrm{Ni} / \mathrm{Co}, \mathrm{Ni} / \mathrm{Cr}$, and $\mathrm{Co} / \mathrm{Cr}$ ratios averages are respectively $\sim 1.0, \sim 0.13$, and 0.01 .

Rare Earth elements

Extended trace element patterns for the samples from this site indicate that the samples generally have higher patterns and higher enrichments of extended trace elements than the PAAS and UC (Figure 43B). The patterns also show that the samples are enriched in V, Ni, Cu, Zn and Ba and anomalously enriched in Sr and Zr (Figure 43B). The samples are slightly depleted in $\mathrm{Sc}, \mathrm{Cr}, \mathrm{Y}$ and Nb and have prominent depletions in Co (Figure 43B). In contrast, the PAAS and UC are enriched in $\mathrm{V}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{Y}, \mathrm{Nb}$ and Ba and slightly depleted in Sc, Cr, $\mathrm{Co}, \mathrm{Cu}, \mathrm{Sr}, \mathrm{Zr}$ and Ba (Figure 43B).

Chondrite-normalised patterns for the samples, PAAS and UC, are shown in Figure 43C. The patterns show that the samples are enriched in HREE (Eu, Gd, Tm, Yb and Lu), depleted in LREE (La, Ce, Nd and Sm) and have high positive Eu and Ce anomalies (Figure 43C). The PAAS and UC are also enriched in HREE, depleted in LREE and have high positive Eu and Ce anomalies (Figure 43C). However, the samples have slightly higher patterns and abundances of HREE, lower patterns and abundances of LREE and slightly higher Eu and Ce anomalies (Figure 43C).

Titanium dioxide

Raman spectroscopy analysis of grains in the analysed thin sections revealed two TiO_{2} polymorphs, rutile and anatase, depicted in Figure 44 and Figure 45, respectively. Brookite was not found in any of the analysed thin sections. Rutile is found in small but frequent grains in the weathered, clay-rich paleosol (TNS1) and ferruginous, matrix-supported breccia (TNS18). Under reflected light, the rutile is white to light brown and occurs as single, subrounded to sub-angular grains with longer diameters ranging from about 7 to $50 \mu \mathrm{~m}$ (Figure 44). The rutile is fine-grained and euhedral to subhedral grains with even boundaries, but some have partly corroded rims and cracks. A few rutiles are blocky, elongate, and finegrained, while a few appear to be coarse-grained. Anatase has also been discovered in the weathered, clay-rich paleosol and ferruginous, matrix-supported breccia. Under reflected light, anatase is white to light brown, occurring as fine-grained evenly distributed grains, but some appear to form clusters (Figure 45). In thin section, anatase is distinguishable from rutile by its texture, which is generally subhedral to anhedral and fine-grained with even to uneven grain boundaries. Some anatase grains are spotty and porous with patchy growth, while some occur as irregular anhedral to lath-like disseminations.

Figure 46 and Figure 47 display the Raman spectra for the aforementioned respective rutile and anatase phases in the samples TNS1 and TNS18. The Raman spectra for rutile are focused on the 0 to $1200 \mathrm{~cm}-1$ range with Challagulla et al. (2017) used to identify rutile and differentiate it from anatase or other TiO_{2} phases. The Raman spectra for rutile show three peaks around 252, 446, and $609 \mathrm{~cm}^{-1}$, as shown in Figure 46. The wide $252 \mathrm{~cm}^{-1}$ peak is aligned with the $252 \mathrm{~cm}^{-1}$ rutile peak in Challagulla et al. (2017). The peak at $446 \mathrm{~cm}^{-1}$ is the most intense peak under consideration and correlates to Challagulla et al. (2017) rutile's 446 cm^{-1} peak, which is also the most intense. Finally, the peak at $609 \mathrm{~cm}^{-1}$ is nearly symmetric and corresponds with the $609 \mathrm{~cm}^{-1}$ rutile peak described in Challagulla et al. (2017). Thus, the mentioned rutile peaks are typical of rutile peaks in the literature. Compared to rutile, the
anatase Raman spectra focus on the 0 to $1200 \mathrm{~cm}^{-1}$ range, with Challagulla et al. (2017) being used to determine anatase and distinguish anatase from rutile or other TiO_{2} phases. Figure 47 illustrates the Raman spectra of anatase, which show five peaks about 145, 199, 399, 520, and $640 \mathrm{~cm}^{-1}$. The $145 \mathrm{~cm}^{-1}$ peak is the most intense and aligned with the $145 \mathrm{~cm}^{-1}$ peak in Challagulla et al. (2017). The $199 \mathrm{~cm}^{-1}$ peak, which is the smallest, correlates with the $199 \mathrm{~cm}^{-}$ ${ }^{1}$ peak in Challagulla et al. (2017). The 399 and $520 \mathrm{~cm}^{-1}$ peaks are respectively the third and four most intense, aligning with the 399 and $520 \mathrm{~cm}^{-1}$ peaks in Challagulla et al. (2017). The last and second most intense peak at $640 \mathrm{~cm}^{-1}$ is consistent with that in Challagulla et al. (2017).

Figure 39: Plots showing major elements (oxides) variations vs depth for the samples from Turner Exploration Camp. From top to bottom, the samples are TNS1 to TNS18. Observe that the samples with high abundances of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ inversely have low abundances of $\mathrm{SiO}_{2}, \mathrm{TiO}_{2}, \mathrm{~K}_{2} \mathrm{O}, \mathrm{CaO}$ and $\mathrm{Al}_{2} \mathrm{O}_{3}$.

Figure 40: Plots showing trace elements and Fe (wt.\%) variations vs depth for the samples from Turner Exploration Camp.

Figure 41: SiO_{2} vs $\mathrm{TiO}_{2}, \mathrm{~K}_{2} \mathrm{O}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ Harker diagrams for the samples from Turner Exploration Camp. The dotted lines represent linear regression lines/correlations for the Harker diagrams. Note the samples' positive correlations between SiO_{2} and $\mathrm{TiO}_{2}, \mathrm{~K}_{2} \mathrm{O}, \mathrm{Na}_{2} \mathrm{O}$ and $\mathrm{Al}_{2} \mathrm{O}_{3}$, and the negative correlations between SiO_{2} and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{P}_{2} \mathrm{O}_{5}$.

Figure 42: $\mathrm{Fe}_{2} \mathrm{O}_{3}$ vs $\mathrm{SiO}_{2}, \mathrm{TiO}_{2}, \mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{~K}_{2} \mathrm{O}, \mathrm{Al}_{2} \mathrm{O}_{3}$ and CaO Harker diagrams for the samples from Turner Exploration Camp. The dotted lines represent linear regression lines/correlations for the Harker diagrams. Note the negative correlations between $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{SiO}_{2}, \mathrm{TiO}_{2}, \mathrm{~K}_{2} \mathrm{O}, \mathrm{Al}_{2} \mathrm{O}_{3}$, and CaO and the samples' positive correlation between Fe 2 O 3 and P2O5.

Figure 43: (A) Major element patterns and (B) extended trace element patterns compiled from XRF data, and (C) chondrite-normalized rare earth element patterns compiled from INAA data for the samples from Turner Exploration

Camp. Note that the patterns are similar for most samples and are similar to the PAAS (Post-Archaean Australian Shale) and UC (Upper Crust). Major, trace and rare earth element values from Dyer et al. (2019) are used for normalising and presented in Table 1. The PAAS (Post-Archaean Australian Shale) and UC (Upper Crust), data from Taylor and McLennan (1995) and shown in Table 1, are plotted for comparison.

Figure 44: Raman spectroscopy photomicrographs of rutile grains in samples TNS18 (A \& B) and TNS1 (C \& D) under reflected light. The rutile grains are white to light brown and occur as single, subrounded to sub-angular grains. Furthermore, the rutile grains are fine-grained and euhedral with even boundaries.

Figure 45: Raman spectroscopy photomicrographs of anatase grains in samples TNS18 (A) and TNS1 (B, C \& D) under reflected light. The anatase grains are white to light brown, fine-grained and dispersed grains with even to uneven boundaries. The grains appear to be generally subhedral to anhedral. The anatase grain in C appears to be porous with patchy growth.

Figure 46: Raman spectra of (A) rutile and (B) anatase grains from sample TNS1. (A) Raman spectra of rutile grains with Challagulla et al. (2017) plotted to identify the rutile grains in the sample and differentiate them from anatase and any other titanium dioxide grains. (B) Raman spectra of anatase grains with Challagulla et al. (2017) plotted to identify the anatase grains in the sample and distinguish them from rutile grains. The rutile and anatase values for Challagulla et al. 2017 are provided in the appendix and can also be accessed on the RRUFF Database.

Figure 47: Raman spectra of (A) rutile and (B) anatase grains from sample TNS18. (A) Raman spectra of rutile grains with Challagulla et al. (2017) plotted for comparison and to identify rutile grains in the sample and differentiate them from those of anatase and other titanium dioxide grains. (B) Raman spectra of anatase grains with Challagulla et al. (2017) plotted to identify anatase grains in the sample. The rutile and anatase values for Challagulla et al. 2017 are provided in Appendix B. 5 and can also be accessed on the RRUFF Database.

4.3 Wolhaarkop Breccia and accretionary lapilli in the field

A field trip was undertaken to Turner Exploration Camp and near Khumani Mine towards the completion of this study to further investigate the accretionary lapilli, Doornfontein Conglomerate Member and Wolhaarkop Breccia in the field. The outcrops were only investigated in the field without further petrographic or geochemical investigations. In outcrop, the Wolhaarkop Breccia conforms to the descriptions of the Wolhaarkop Breccia in the drill core at Turner Exploration Camp. The Wolhaarkop Breccia consists of two types of breccias, namely the upper polymict breccia and lower monomict breccia (Figure 48 \& Figure 49). The polymict breccia is generally poorly-sorted, clast-supported and consists of locally derived angular rocks of quartz, banded iron formation, jasper, hematite and other rocks in a chert matrix (Figure 48). The monomict breccia is well-sorted, clast- to matrix-supported and consists of locally derived angular rocks of quartz in a chert matrix (Figure 49). The rocks forming the clasts in the polymictic breccia range from a few centimetres to meters thick, and most are tens of cm thick (Figure 48). In comparison, the clasts in the monomict breccia are a few cm thick and are generally smaller than those in the polymict breccia (Figure 49).

Figure 48: (A-B) Field photographs of the outcrops of the polymict Wolhaarkop Breccia in Kathu in the Northern Cape Province, South Africa. The breccia is red to maroon, clast-supported with a chert matrix. Observe the angular clasts of quartz, BIF, jasper and hematite clasts in the breccia.

Figure 49: A field photograph of the outcrop of the monomict Wolhaarkop Breccia in Kathu in the Northern Cape Province, South Africa. The breccia is grey to black, matrix-supported with a chert matrix. Note the white angular clasts of quartz in the matrix.

The observed accretionary lapilli in the field form part of the Doornfontein Conglomerate Member overlying the Wolhaarkop Breccia. The observed accretionary lapilli are nucleated, non-nucleated, irregular and fragmented accretionary lapilli (Figure 50 \& Figure 51). Although the accretionary lapilli are altered by hematite, their concentric structure is preserved. The nucleated accretionary lapilli are $\sim 15 \mathrm{~mm}$ in apparent diameter, typically spherical and have a concentric structure consisting of nuclei, mantles and crusts (Figure 50 to Figure 51). The concentric structure also consists of concentric layering formed by alternating Fe- (hematite) and Si (quartz)-rich layers in the mantles and crusts. The nuclei are the coarsest-grained component of the accretionary lapilli, the mantles are medium-grained, and the crusts are the finest-grained component. Thus, the concentric structure fines outward in grain size from the nuclei to the crusts. The nucleated accretionary lapilli are the most common accretionary lapilli in outcrop, and the non-nucleated accretionary lapilli are the second most common. However, the non-nucleated accretionary lapilli are very rare (Figure 50 \& Figure 51).

The non-nucleated accretionary lapilli are $\sim 17 \mathrm{~mm}$ in apparent diameter and typically spherical. The concentric structure of the non-nucleated accretionary lapilli does not contain nuclei; instead, it only contains mantles and crusts. The concentric structure fines outward in grain size from coarse-grained in the mantles to fine-grained in the crusts. The concentric structure also has several alternating Fe-rich and Si-rich concentric layers in the mantles and crusts. The irregular accretionary lapilli are the third most common accretionary lapilli, but they are rare. The accretionary lapilli fragments are also scarce and appear to be typically subspherical and angular.

Figure 50: (A-B) Field photographs of the outcrops of the spherical accretionary lapilli in the Doornfontein Conglomerate Member in the Maremane Dome. The outcrops are in Kathu in the Northern Cape, South Africa, and their coordinates are $S 27^{\circ} 49^{\prime} 50.45007^{\prime \prime}$, E $23^{\circ} 0^{\prime} 29.3719^{\prime \prime}$. The black pen on the figures is used for scale.

Figure 51: (A-B) Field photographs of the outcrops of the spherical accretionary lapilli in Kathu in the Northern Cape, South Africa. The coordinates of the outcrops are S $27^{\circ} 49^{\prime} 50.45007^{\prime \prime}, E 23^{\circ} 0^{\prime} 29.3719^{\prime \prime}$. The money coin and hammer on the figures are used for scale.

4.4 Summary of the results

The samples from both study areas have been categorised into three distinct lithofacies: (1) Unit A; (2) Unit B, and; (3) Unit C. The lithofacies from both study areas have been correlated and are presented in Figure 52. All the units appear to show no sediment reworking and poor sorting of the clasts. Unit A is a ferruginous, clay-rich and matrix-supported breccia consisting of angular clasts of quartz, hematite, chert, carbonate and serpentine and angular lithic rock fragments (Figure 52). Unit A contains potential shocked quartz grains with possible decorated PDFs and potentially shocked zircon grains containing planar microstructures. Unit A is the thickest unit, measuring $\sim 50 \mathrm{~m}$ in thickness and does not contain accretionary lapilli (Figure 52). Unit B is a ferruginous, $\sim 2 \mathrm{~m}$ thick, clay-rich and matrix-supported breccia (Figure 52). Unit B is indistinguishable from Unit A, except it contains ferruginous accretionary lapilli and accretionary lapilli fragments with no identified shocked mineral grains (Figure 52). Unit B transitions above Unit A seamlessly without a grade distinction or contact. Unit C is the upper unit, $\sim 2 \mathrm{~m}$ thick and consists of a weathered, clay-rich paleosol composed of zircon, rutile, quartz, chert, chlorite, and serpentine (Figure 52). Unit C also possibly contains shocked quartz grains with potential decorated PDFs and potentially shocked zircon grains with planar fractures. Unit C only occurs in the samples from Turner Exploration Camp and is neither altered nor overprinted by hematite (Figure 52).

The accretionary lapilli in Unit B (Figure 52) are categorised into three types, namely nucleated, non-nucleated and irregular accretionary lapilli. Accretionary lapilli fragments, which are derived from broken accretionary lapilli, are also found in Unit B. The nucleated accretionary lapilli are spherical to subspherical, range up to 15 mm in apparent diameter and have a concentric structure with nuclei, mantles and crusts. The crusts are typically darker
than the mantles and nuclei. The non-nucleated accretionary lapilli are spherical to subspherical and vary from 10 to 30 mm in apparent diameter. They also have a concentric structure consisting of crusts, mantles and no nuclei. The crusts and mantles of some of the nucleated and non-nucleated accretionary lapilli contain entrained lithic rock fragments aligned parallel to the margins. The irregular accretionary lapilli have irregular margins and are the largest in this study, measuring between 15 and 40 mm and 10 and 35 mm across their long and short apparent diameters, respectively. The irregular accretionary lapilli also have a concentric structure, but some appear not to have a concentric structure. Several, less than 20, alternating Si (quartz)- and Fe (hematite)-rich concentric layers occur in the mantles and crusts of most of the nucleated, non-nucleated and irregular accretionary lapilli.

Chapter 5: Discussion

As stated in Chapter 1, this study aims to investigate a possible association of drill core samples from the Doornfontein Conglomerate Member in the Maremane Dome with the Vredefort structure. The drill core samples contain anomalous objects (accretionary lapilli) and are from Khumani Mine (ACKS sample series) and Turner Exploration Camp (TN sample series). This study also investigates a possible association of the Wolhaarkop Breccia in the Maremane Dome with the Vredefort structure.

5.1 Estimations of the distribution of Vredefort impact ejecta

5.1.1 Estimations using the Chicxulub structure

The distribution of Vredefort impact ejecta can be roughly estimated based on similarities between the Chicxulub and Vredefort impact events. The Vredefort structure is estimated to have been formed by a meteorite with a 10 to 15 km diameter (McCarthy \& Rubidge, 2005; Morrow, 2009). The impact excavated $\sim 70000 \mathrm{~km}^{2}$ volume of the crust, caused a magnitude 14 seismic event and released 100 million megatons of energy (McCarthy \& Rubidge, 2005). In comparison, the Chicxulub structure was formed by either an asteroid or comet with a 10 to 12 km diameter (Hilderbrand et al. 1991; Sharpton et al. 1993; Morgan \& Warner, 2002; Claeys, 2006). The diameter of the transient crater cavity of the Chicxulub structure varied between 80 and 110 km , reached a depth of at least $\sim 30 \mathrm{~km}$ and excavated the crust (Yucatan crust) to a depth of at least $\sim 15 \mathrm{~km}$ (Morgan \& Warner, 2002; Pierazzo \& Melosh, 1999; Morgan et al. 2000). The ejecta formed by the Chicxulub impact was distributed worldwide, marking the K-Pg stratigraphic boundary (Claeys et al. 2002; Smit, 2003). The continuous impact ejecta blanket of the Chicxulub structure occurs from the crater margin to Belize, well over 400 km from the crater rim (Ocampo et al. 2002).

Given its large-scale parameters compared to the Chicxulub impact, the Vredefort impact would have possibly had a transient crater cavity with an 80 to 150 km diameter. The impact depth of the Vredefort impact would have probably been 35 to 50 km in depth, and the excavation 20 to 55 km in depth. Based on these estimations, the continuous impact ejecta blanket of the Vredefort structure would have probably been distributed worldwide and at least identifiable from the crater margin of the Vredefort structure to over possibly 600 km away from the crater margin. Based on the estimations, Vredefort proximal impact ejecta would occur at Turner Exploration Camp and Khumani Mine, which occur respectively at $\sim 459 \mathrm{~km}$ and $\sim 447 \mathrm{~km}$ from the centre of the Vredefort structure.

5.1.2 Estimations using the Earth Impact Effects Program

A web-based computer program, the Earth Impact Effects Program by Collins et al. (2005), was used in this study to also estimate the distribution of Vredefort impact ejecta. As Collins et al. (2005) calls attention to it, please keep in mind that the results of this program are estimates based on existing knowledge of impact processes and should be used with caution. For estimations, this study used a constant impactor density of $4000 \mathrm{~kg} . \mathrm{m}^{-3}$ based on the density of $3000-4000 \mathrm{~kg} . \mathrm{m}^{-3}$ for most meteorites (Britt \& Consolmagno, 2003) and a constant impactor velocity of $18 \mathrm{~km} . \mathrm{s}^{-1}$ based on an average velocity of $18 \mathrm{~km} . \mathrm{s}^{-1}$ for asteroids (O'Keefe \& Ahrens, 1977; Collins et al. 2005). An average distance of 458 km calculated between Khumani Mine and Turner Exploration Camp and the Vredefort structure is used. An impact angle varying between 45 and 60° is used based on a steeply-inclined impact angle of 45 to 60° suggested for the Chicxulub impact (Collins et al. 2020). A Vredefort meteorite diameter ranging from 10 to 15 km is used based on the estimated Vredefort meteorite diameter of 10 to 15 km (McCarthy \& Rubidge, 2005; Morrow, 2009).

As displayed in Table 6, calculations based on a Vredefort meteorite with a 10 km diameter and an impact angle of 45° suggest that the impact would have a transient crater diameter of 69.7 km , a transient crater depth of 24.6 km and a final crater with a 122 km diameter. The thickness of the impact ejecta is 2.19 m , and the mean fragment size is 1.47 cm . A Vredefort meteorite with a 12 km diameter and an impact angle of 50° would have a transient crater with an 82.5 km diameter and depth of 29.2 km and a final crater with a diameter of 147 km . The thickness of the impact ejecta would be 4.31 m with a mean fragment size of 1.79 cm . The impact would have a transient crater diameter of 95.2 km , a transient depth of 33.7 km , and a final crater diameter of 173 km , according to calculations based on a Vredefort meteorite with a 14 km diameter and a 55° impact angle. The impact ejecta is 7.62 m thick with a mean fragment diameter of 2.11 cm . A 15 km diameter Vredefort meteorite with a 60° impact angle would form a 102 km transient crater with a depth of 36.2 km and leave a 188 km diameter final crater. The impact ejecta would be 10.2 km thick with a mean fragment size of 2.3 cm . At the specified distance (458 km) from the impact structure, irrespective of the changing diameter of the Vredefort structure and impact angle, there would be a fine dusting of impact ejecta with occasional large fragments and ejecta would arrive 5.31 minutes after the impact. These estimations using the Earth Impact Effects Program are similar to those provided by using similarities between the Chicxulub and Vredefort impacts and suggest that ejecta would occur at Turner Exploration Camp and Khumani Mine.

Table 6: Estimates of the transient crater diameter, transient crater depth and final crater diameter of the Vredefort structure using the Earth Impact Effects Program by Collins et al. (2005). The table also provides information about the estimated other characteristics of the Vredefort impact ejecta. For the estimates, the impact angle and meteorite/impactor diameter change from 45 to 60° and 10 to 15 km , respectively. An impactor density of 4000 $\mathrm{kg} . \mathrm{m}^{-3}$ and an impactor velocity of $18 \mathrm{~km} \cdot \mathrm{~s}^{-1}$ are constant with an average distance of 458 km .

	Impact angle $=$ 45°	Meteorite diameter $=10 \mathrm{~km}$	Impact angle $=$ 50°	Meteorite diameter $=12 \mathrm{~km}$	Impact angle $=$ 55°	Meteorite diameter $=14 \mathrm{~km}$	Impact angle = 60°	Meteorite diameter $=15 \mathrm{~km}$
Transient crater diameter	69.7 km			$.5 \mathrm{~km}$	95.2 km		102 km	
Transient crater depth	24.6 km		.2 km		$33.7 \mathrm{~km}$		36.2 km	
Final crater diameter	122 km		$147 \mathrm{~km}$		$173 \mathrm{~km}$		188 km	
Arrival of ejecta	5.31 minutes		5.31 minutes		5.31 minutes		5.31 minutes	
Thickness of ejecta	2.19 m		4.31 m		7.62 m		10.2 m	
$\begin{gathered} \text { Mean } \\ \text { fragment } \\ \text { size } \end{gathered}$	1.47 cm		1.79 cm		2.11 cm		2.3 cm	

As shown in Figure 8, the drill core samples from Khumani Mine are $\sim 447 \mathrm{~km}$ from the centre of the Vredefort structure, whereas those from Turner Exploration Camp are $\sim 459 \mathrm{~km}$ away. Using the 180 km lower diameter limit of the Vredefort structure (Morrow, 2009), the samples from Khumani Mine are found to be 4.9 crater radii from the centre of the Vredefort structure and 5.1 crater radii away for Turner Exploration Camp (Figure 8). Using the 300 km upper diameter limit of the Vredefort structure (Morrow, 2009), the samples from Khumani Mine are 3.0 crater radii from the centre of the Vredefort structure and 3.1 crater radii away for Turner Exploration Camp (Figure 8). Thus, samples appear to occur within an expected distance from the Vredefort structure for Vredefort proximal impact ejecta.

5.2 Radiometric age constraints

The samples stratigraphically occur between the 1.93 Ga (Cornell et al. 1998) andesitic lavas of the Hartley Formation and $2.22 \pm 13 \mathrm{Ga}$ (Cornell et al. 1996) Ongeluk Formation. Therefore, the lava formations incorporate the 2.02 Ga age (Kamo et al. 1996; French, 1998) of the Vredefort structure and suggest that the samples occur within a permissible window of time of formation of the Vredefort structure.

5.3 Lithofacies

The samples have been categorised into three distinct lithofacies: (1) Unit A, (2) Unit B, and (3) Unit C (Figure 52). The lithofacies are similar to lithofacies, thickness variations, and accretionary lapilli in the ~ 1.2 Ga Stac Fada impact ejecta in Scotland (Lawson, 1972; Sanders \& Johnston, 1989; Turnbull et al. 1996; Amor et al. 2008; Branney \& Brown, 2011). The lithofacies in the Stac Fada impact ejecta are divided into divisions A, B and C, but only divisions A and B are applicable to this study. Division A is the lowermost division and ranges between 4 and 10 m in thickness (Sanders \& Johnston, 1989; Amor et al. 2008; Branney \& Brown, 2011). Division A consists mainly of a clay-rich, matrix-supported suevite with poorly sorted angular fragments and former melt fragments. The division contains no accretionary lapilli and passes smoothly into Division B without a gradational or sharp contact (Branney \& Brown, 2011). Division B overlies Division A and is indistinguishable from Division A, except it contains accretionary lapilli up to 15 mm in diameter, accretionary lapilli fragments and other aggregates. The division ranges from 1 to 3 m in thickness, and the accretionary lapilli are mostly matrix-supported (Lawson, 1972; Branney \& Brown, 2011). Similar to Division A, Division B is a matrix-supported breccia containing angular lithic rock fragments and former melt fragments.

5.4 Accretionary lapilli

This study has referred the anomalous objects in the samples as accretionary lapilli (Figure 10 to Figure 23). Based on the size and internal structure of the anomalous objects (accretionary lapilli), this study would like to argue that the anomalous objects are not pisolites formed by laterization. By definition, pisolites are sedimentary rocks formed by nearly spherical pisoliths (or pisoids) and vary in diameter from 2.0 to 10 mm (Figure 53) (Palache et al. 1963; Scholle \& Ulmer-Scholle, 2003; Lascelles, 2016). Pisoliths typically occur near the surface in extremely weathered terrains and consist of nuclei with aggregated particles such as hematite, quartz or lithic fragments enclosed by a cortex formed by one or more concentric layers (Figure 53). The concentric layers of the cortex usually have colloform banding (Palache et al. 1963; Scholle \& Ulmer-Scholle, 2003; Simonson, 2003; Lascelles, 2016). Pisoliths usually have radial sprays that diverge outward from nuclei (Figure 53) (Simonson, 2003). Pisoliths are generally thought to form by the modification of concretions rich in sesquioxide in the soil or saprolite of intensely weathered terrains, and the concentric layers of the cortex form either in situ or during subsequent erosion (Morris, 1994; Eggleton \& Taylor, 2006). Pisoliths from glauconite grains in greensands have been described to have been formed by replacement and centripetal deposition of iron oxides (Nahon et al. 1980). Pisoliths associated with iron ore, often referred to as pisolitic iron ore, are interpreted to be fluvial deposits (Morris \& Ramanaidou, 2007). However, the precise formation mechanism for pisoliths in the soil is unknown, and the current formation models are speculative because pisoliths have never been observed forming in the soil (Lascelles, 2016).

Figure 53: Impact accretionary lapilli, volcanic accretionary lapilli, and pisolites/pisoliths. (A) Impact accretionary lapilli from Stac Fada Member in Scotland with a concentric structure consisting of nuclei, mantles and crusts (Osinski et al. 2021). (B) A sample with impact accretionary lapilli from Hillcrest Part from the Sudbury impact ejecta (Huber \& Koeberl, 2017). (C) A photomicrograph of a carbonate impact accretionary lapillus, where (1) indicates the nucleus, (2) a graded mantle and (3) the crust (Morgan, 2006). (D) A volcanic accretionary lapilli-rich layer in the Tumbiana Formation of the Hamersley Basin in Australia (Glass \& Simonson, 2013). (E) An ultrafine accretionary lapillus with a nucleus, mantle and crust from the Oruanui ignimbrite proximal facies in New Zealand (Kósik et al. 2019). (F) A volcanic accretionary lapillus showing a concentric structure with a nucleus, mantle and crust from the Tumbiana Formation in the Hamersley Basin (Glass \& Simonson, 2013). (G) A pisolitic dolomite polished slab in New Mexico from Yates Formation in the USA (Scholle, 1999). Note the reverse grading of grains and the fitting fabric, where grains have interlocking boundaries caused by compromised outer growth. (H \& I) Pisoliths from Jacaranda pit in Australia. (H) A complex pisolith from Jacaranda with a cortex surrounding an inner core and outer core. (I) Pisoliths from Jacaranda with scour and fill (indicated by the arrow). Figures (H\&I) were obtained from Taylor (2008).

The described characteristics of pisoliths/pisolites (Figure 53) appear not to be observed in the anomalous objects sampled here. In contrast to pisolites, the observed anomalous objects appear to most likely resemble accretionary lapilli formed by the aggregation of particles by impact and volcanic processes referred to as impact accretionary lapilli and volcanic accretionary lapilli (Figure 53). Impact and volcanic accretionary lapilli are typically indistinguishable from each other. Impact and volcanic accretionary lapilli are commonly spherical and have a concentric structure comprised of nuclei, mantles, and crusts (Figure 53) (Gilbert \& Lane, 1994; Schumacher \& Schmincke, 1995; Warme et al. 2002; Bron, 2010; Glass
\& Simonson, 2013). The concentric structure typically fines outward in grain size from the nuclei to the crusts, and the accretionary lapilli usually have inclusions of lithic rock fragments or grains. Impact accretionary lapilli may additionally have meteorite geochemical signatures and lithic rock fragments with shock-metamorphic features (Warme et al. 2002; Yancey \& Guillemette, 2008; Cannon et al. 2010; Bron, 2010; Huber \& Koeberl, 2017). Furthermore, the crusts of impact accretionary lapilli are typically darker than the mantles and nuclei and usually have lithic rock fragments or matrix mineral grains aligned parallel to the margins (King \& King, 1980). Due to the rigidity of their formation, the nuclei of volcanic accretionary lapilli typically consist of unsorted ash, lack a concentric structure and tangential mineral grains (Moore \& Peck, 1962; Graup, 1981). Impact accretionary lapilli are likely to be larger than volcanic accretionary lapilli because of the energy scale difference between impact events and volcanism (Bron, 2010). During an impact event, impact ejecta is launched from an impact crater at an initial velocity of $\sim 5 \mathrm{~km} . \mathrm{s}^{-1}$ and less than $500 \mathrm{~m} . \mathrm{s}^{-1}$ for volcanic ejecta (Huber \& Koeberl, 2017). Pope et al. (1999) observed an accretionary block with a 4.5 m diameter in the Chicxulub structure, attesting to the large energy-scale of impact events. Gilbert and Lane (1994) estimated a maximum size range of 0.7 to 20 mm for volcanic accretionary lapilli formed in an ash cloud with a 0.5 to 10 km thickness. Given the cited characteristics of volcanic and impact accretionary lapilli, the proposed accretionary lapilli potentially fit the description of accretionary lapilli formed by impact processes.

5.5 Shocked mineral grains

The samples in Unit A and Unit C from Turner Exploration Camp have been found to contain possible shocked zircon and quartz grains. Some of the shocked quartz grains have potential decorated PDFs with a single set that appear to be the most common. The spacing of the PDFs is 3.5 to $6.0 \mu \mathrm{~m}$, with the decorated PDFs adhering to the definition of PDFs. By definition, PDFs are planar deformation features with multiple sets of closely spaced, narrow, and parallel planar regions of amorphous material. Individual PDFs are usually 2.0 to $10 \mu \mathrm{~m}$ spaced and usually <2.0 to $3.0 \mu \mathrm{~m}$ narrow (French \& Short, 1968; Stoffler \& Langenhorst, 1994; French \& Koeberl, 2010). The observed decorated PDFs are similar to those identified in several impactites and impact structures worldwide, for example, the decorated PDFs identified in breccia beds of the Sudbury impact ejecta by Cannon et al. (2010) in the USA (Figure 54). The width of well-preserved PDFs in the breccia beds is 1.0 to $2.0 \mu \mathrm{~m}$, and the spacing is 5.0 to $10.0 \mu \mathrm{~m}$. The PDFs have 1 to 3 sets, but single sets are prevalent (Cannon et al. 2010). Leroux (2005) identified similar decorated PDFs in the Ries Crater in Germany. Leroux (2005) noted that most decorated PDFs in the Ries Crater have widths between 0.01 and $0.1 \mu \mathrm{~m}$ and a spacing between 0.1 and $0.3 \mu \mathrm{~m}$. The decorated PDFs in this study are also comparable to those in the 1.87-1.90 Ga (Nironen, 2003) Keurusselkä structure in Finland identified by Ferrière et al. (2010). Ferrière et al. (2010) described the decorated PDFs in the Keurusselkä structure to have fluid inclusions, a spacing between 2.0 and $10 \mu \mathrm{~m}$ and multiple sets, but two sets are the most common. The PDFs were used as evidence to confirm the impact origin of the Keurusselkä structure.

Some shocked zircon grains in this study have possible planar fractures that developed parallel and closely spaced planes (Figure 27 to Figure 38). Based on their characteristics, the observed planar fractures conform to the description of planar fractures formed by shock metamorphism. Accordingly, planar fractures formed in mineral grains such as quartz and zircon by shock metamorphism are parallel sets of multiple planar cracks or cleavages in which individual planar fractures are usually 5.0 to $10 \mu \mathrm{~m}$ wide and 15 to $20 \mu \mathrm{~m}$ spaced (Robertson et al. 1968; Stoffler \& Langenhorst, 1994; Grieve et al. 1996; French et al. 1997).

Figure 54: Planar deformation features in quartz grains in the USA's breccia beds of the Sudbury impact ejecta. (A) PDFs in Baraga Basin, outcrop at Huron River. (B) PDFs in Baraga Basin, drill core close to Huron River. The figures are obtained from Cannon et al. (2010).

5.6 Meteorite geochemical signatures

In this study, Ir is only detected in one sample and measures 0.58 ppb (Table 5). The fact that Ir is not detected in great abundance and is only detected in one sample does not mean that there is no possibility that the samples are of impact origin. The Ir detected abundance is similar to those measured in impact structures and impactites worldwide. For example, proximal impact ejecta from the Chicxulub structure contains less than 1.0 ppb Ir abundances, often varying from 0.8 to 1.0 ppb (Smit, 1999; Claeys et al. 2002; Goderis et al. 2013; Sprain et al. 2018). Breccias close to the crater rim of the Chicxulub structure contain little to absent Ir abundances (Smit, 1999). Samples from the peak ring of the Chicxulub structure contain Ir abundances of ~ 1.0 ppb (Smit, 1999; Claeys et al. 2002; Goderis et al. 2013; Sprain et al. 2018). The detected Ir is also comparable to that of 0.75 ppb measured in a Vredefort distal impact ejecta layer in the Zaonega Formation in Russia by Huber et al. (2014). The Zaonega Formation's Ir abundance is used only for comparison and not for testing because the calculated Ru/Ir ratio of 2 for the Zaonega Formation is meteoritic, whereas none is calculated in this study. A low Ir of 0.02 ppb was measured in another Vredefort distal impact ejecta layer in the Grænsesø impact spherule layer in Greenland by Chadwick et al. (2001). Although the Ir abundances are low, they are still slightly higher compared to typical upper continental crustal Ir abundances of ~ 0.04 ppb (Smit, 1999; Goderis et al. 2013; Chen et al. 2016). However, it should be noted that although the detected Ir in this study is low, we do not attempt to claim that it is a high abundance when it is not. Nonetheless, the samples appear to meet the diagnostic criteria for identifying impactites and impact structures and appear comparable to impactites and impact structures across the world. The results may suggest that the samples are associated with the Vredefort structure and possibly form part of the Vredefort proximal impact ejecta.

5.6.1 Chondrites and achondrites

The low Ir and other siderophile elements, precisely Ni, Cr and Co , abundances in the samples (proposed Vredefort proximal impact ejecta) and low Ir abundances in the Vredefort distal impact ejecta layers may potentially suggest that the causative meteorite contained low abundances of these elements (Table 5) (Schmidt et al. 2018). Thus, it is possible to deduce the type of causative meteorite for these Vredefort impact ejecta deposits. There are three main types of meteorites: (1) iron meteorites, (2) stony-iron meteorites, and; (3) stony meteorites (Glass \& Simonson, 2013). Most meteorite falls on Earth are stony meteorites and
are categorised into two types, namely chondrites and achondrites. Chondrites are primitive meteorites from undifferentiated asteroids, whereas achondrites, irons and stony-iron meteorites are from differentiated asteroids and other planetary bodies (Glass \& Simonson, 2013). Both achondrites and chondrites have several sub-groups based on their minerals, compositions and structures. Chondrites are mainly subdivided into ordinary, enstatite, and carbonaceous chondrites, whereas achondrites are primarily subdivided into eucrite, howardite, diogenite, shergottite, nakhlite and chassignite (Glass \& Simonson, 2013). Chondrites generally have high abundances of siderophile elements. The averages for Ir, Ni, Cr and Co abundances between ordinary, carbonaceous and enstatite chondrites are ~ 560 ppb, $\sim 15216 \mathrm{ppb}, \sim 3315 \mathrm{ppb}$ and $\sim 714 \mathrm{ppb}$, respectively (Glass \& Simonson, 2013). In comparison, achondrites have very low abundances of siderophile elements. The averages for Ir , Ni, Cr and Co abundances between eucrite, diogenite, shergottite, nakhlite and chassignite are $\sim 0.66 \mathrm{ppb}, \sim 139 \mathrm{ppm}, \sim 3088 \mathrm{ppb}$ and $\sim 46 \mathrm{ppb}$, respectively (Glass \& Simonson, 2013).

Based on the Ir , Ni, Cr and Co abundances for meteorites, it is possible that the meteorite that resulted in the formation of the proposed Vredefort proximal impact ejecta and Vredefort distal impact ejecta may have been an achondrite rather than a chondrite.

5.6.2 Iron enrichment

Alternatively, ferruginisation and alteration by hydrothermal activities may have reduced the abundances of $\mathrm{Ir}, \mathrm{Ni}, \mathrm{Cr}$ and Co in the samples by diluting them with hematite and other fluids after deposition into the Maremane Dome (Schmidt et al. 2018). The samples forming the proposed Vredefort proximal impact ejecta are predominated by $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and subsequently predominated by SiO_{2} and $\mathrm{Al}_{2} \mathrm{O}_{3}$ (Table 3). The samples show a positive correlation between SiO_{2} and $\mathrm{TiO}_{2}, \mathrm{~K}_{2} \mathrm{O}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{Al}_{2} \mathrm{O}_{3}$, and $\mathrm{P}_{2} \mathrm{O}_{5}$ and a negative correlation between $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{SiO}_{2}, \mathrm{TiO}_{2}, \mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{~K}_{2} \mathrm{O}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{Al}_{2} \mathrm{O}_{3}$, and CaO . However, the samples from Khumani Mine show a positive correlation between $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{Na}_{2} \mathrm{O}$ (Figure 18), and those from Turner Exploration Camp show a negative correlation between SiO_{2} and $\mathrm{P}_{2} \mathrm{O}_{5}$ (Figure 41) and a positive correlation between $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{P}_{2} \mathrm{O}_{5}$ (Figure 42).

The observed oxide abundances and correlations are similar to those observed by Smith and Beukes (2016) in iron ores of the Transvaal Supergroup. Smith and Beukes (2016) noted a strong enrichment in $\mathrm{Fe}_{2} \mathrm{O}_{3}$ (from $\sim 33-46$ to $\sim 73-98 \mathrm{wt} . \%$) in the iron ores after comparing them with their unaltered precursor banded iron formations. Smith and Beukes (2016) also noted a prominent decrease in SiO_{2} from ~ 46 to less than $4.0 \mathrm{wt} . \%$ from the unaltered banded iron formations to the ores. The decline indicates drastic leaching of SiO_{2} and enrichment of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ by supergene and/or hydrothermal fluids during ore formation. Cannon et al. (2010) reported comparable abundances in the Sudbury impact ejecta, where an SiO_{2} abundance of $60.28 \mathrm{wt} . \%$ and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ of $24.2 \mathrm{wt} . \%$ were measured. In addition, very high SiO_{2} abundances ($\sim 95 \mathrm{wt} . \%$) and low abundances of other oxides, including $\mathrm{Fe}_{2} \mathrm{O}_{3}$, were measured. The very high SiO_{2} abundances are thought to indicate prominent secondary silicification or immobilization of SiO_{2} by iron-rich fluids during ore formation (Cannon et al. 2010). Although they occur in small abundances compared to this study, Smith and Beukes (2016) also observed a drastic enrichment in $\mathrm{Al}_{2} \mathrm{O}_{3}$ in iron ores in the Maremane Dome from unaltered banded iron formations ($\sim 0.1-0.3 \mathrm{wt} . \%$) to the iron ores ($\sim 1.2-1.5 \mathrm{wt} . \%$). The cause for this enrichment is thought to reflect $\mathrm{Al}_{2} \mathrm{O}_{3}$ immobility during supergene weathering leading to a residual upgrade in $\mathrm{Al}_{2} \mathrm{O}_{3}$. An enrichment by hydrothermal processes is also proposed for the $\mathrm{Al}_{2} \mathrm{O}_{3}$ upgrade (Smith \& Beukes, 2016).

The observations by Smith and Beukes (2016) and Cannon et al. (2010) may suggest that the Vredefort proximal impact ejecta underwent enrichment of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and mobilization and
removal of $\mathrm{SiO}_{2}, \mathrm{TiO}_{2}, \mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{~K} 2 \mathrm{O}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{Al}_{2} \mathrm{O}_{3}$, and CaO by iron-rich hydrothermal fluids during ore formation post-deposition and post-impact. However, samples with low abundances of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and high abundances of SiO_{2} may suggest silicification or immobilization of SiO_{2} by the iron-rich hydrothermal fluids post-deposition and post-impact. In addition, samples with low abundances of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and high abundances of $\mathrm{Al}_{2} \mathrm{O}_{3}$ may suggest immobilization or upgrade of $\mathrm{Al}_{2} \mathrm{O}_{3}$ by iron-rich hydrothermal fluids.

5.6.3 Rutile and anatase

The origin of rutile and anatase phases in the samples can be attempted to be determined by using the mineral textures, assemblages, and mineral compositions of rutile and anatase phases in the samples (Hanaor \& Sorrell, 2011; Adlakha et al. 2020; Pinto et al. 2020). Rutile has almost homogenous textures and nearly identical grains characterized by euhedral to subhedral grains with even boundaries, implying that the grains crystallized in less than several events, likely a single event, suggesting to be of the same origin (Adlakha et al. 2020). The textures are intact and fresh and may suggest that rutile post-dates the hydrothermal activity that ferruginised the samples crystallizing hematite. The rutile's euhedral and evenly distributed grains are similar to those in other hydrothermal rocks, in which rutile formed over a short period of time (Adlakha et al. 2020). Because hematite is hydrothermal and nondetrital, both rutile and hematite must have crystallised after the deposition of the Vredefort proximal impact ejecta. However, the round shape of rutile grains additionally suggests a detrital origin, which would predate ferruginisation (Adlakha et al. 2020). The presence of other heavy minerals such as zircon in this study also suggests the detrital origin of rutile (Adlakha et al. 2020). Suppose they are truly detrital, to acquire such moderate grain sizes with longer diameters ranging from about 7 to $50 \mu \mathrm{~m}$. In that case, they may have likely recrystallized and/or undergone Oswald ripening during hydrothermal activity. Ti is generally immobile during hydrothermal activity and metamorphism, but as a result of the breakdown or modification of precursor Ti-bearing minerals, such as ilmenite and rutile, both hydrothermal and metamorphic rutile can form (Hanaor \& Sorrell, 2011; Adlakha et al. 2020; Pinto et al. 2020).

Similar to rutile, anatase is also generally homogenous and identical in the thin sections. Anatase grains are fine-grained, subhedral to anhedral and evenly distributed in the sample. Some anatase grains are spotty and porous and generally have corroded borders with uneven boundaries. These textural relationships show that in a coupled polymorphic dissolutionprecipitation process, anatase precipitation occurred after the dissolution of rutile substrate content (Pinto et al. 2020). In fact, Smith et al. (2009) linked the prevalence of anatase in terrestrial environments to low-temperature aqueous environments, linking structural hydration and/or adsorption of other surface components to anatase's lower grain size compared to rutile. This remark is supported by the observations of hydrothermal alteration products in the analysed samples. It is also likely that rutile transformed to anatase through a thermodynamic temperature-induced phase transition, but studies investigating such transitions are scarce (Pinto et al. 2020). The Raman analysis findings of this study, when combined with the observed mineral textural and compositional relationships, point toward hydrothermal environmental conditions underpinning anatase (Morad \& Aldahan, 1986; PePiper et al. 2011; Pinto et al. 2020). Such a hydrothermal origin for anatase and rutile may suggest that on the titanium dioxide temperature-pressure phase transition reaction graph depicted in Hanaor and Sorrell (2011), both anatase and rutile may have crystallized concurrently at about 0 to 10 kbars and 490 to $600^{\circ} \mathrm{C}$. Such hydrothermal fluids that crystallized rutile and anatase from solution are similar to the above ferruginisation and alternation events because they would have also possibly lowered the concentrations of Ir , Ni , Co and Cr in the samples by diluting them (Schmidt et al. 2018).

5.7 Formation of the Vredefort proximal impact ejecta

It is necessary to present a model explaining the occurrence and formation of the proposed Vredefort proximal impact ejecta in the Maremane Dome. The Vredefort structure consists of the Central Group and West Rand Group of the Witwatersrand Supergroup, Ventersdorp Supergroup, Pretoria Group of the Transvaal Supergroup and an Archean basement granite (Figure 8) (Bisschoff, 1982; Bisschoff, 1988; Kamo et al. 1996; Reimold \& Gibson, 2010). These sequences were likely the target rocks for the Vredefort impact event and deposited as part of the impact ejecta. The Witwatersrand Supergroup is a 2.9 Ga intracratonic succession positioned in the centre of the Kaapvaal Craton and consists of conglomerates, tillites, mudstones, banded ironstones, quartzite and lava deposits (McCarthy \& Rubidge, 2005; Tucker et al. 2016). The Ventersdorp Supergroup was formed from 2.729 to 2.665 Ga on the Kaapvaal Craton and is a volcano-sedimentary sequence reaching 8 km in thickness (Cornell, 1978; Tyler, 1979). The supergroup comprises lavas, pyroclastics, lacustrine siliciclastics and carbonate sedimentary rocks (van der Westhuizen et al. 2006). The Transvaal Supergroup was deposited in a vast epeiric sea on top of the Kaapvaal Craton from ~2.7 to 2.0 Ga (Beukes, 1983). The Transvaal Supergroup is $\sim 15 \mathrm{~km}$ thick and contains chemical and clastic sedimentary rocks and volcanic rocks preserved in three discrete basins: (1) Transvaal Basin; (2) Griqualand West Basin, and; (3) Kanye Basin (Beukes, 1983).

Because of their close similarity, this study uses a model proposed by Branney and Brown (2011) for the emplacement of Stac Fada impact ejecta to explain the emplacement of the proposed Vredefort proximal impact ejecta. The possible absence of sediment reworking in units A, B and C may suggest that the units have a common impact origin (Amor et al. 2008; Branney \& Brown, 2011). The close resemblance and continuous intergradation without a grain-size break between units A and B may also suggest a common impact origin (Amor et al. 2008; Branney \& Brown, 2011). The varying irregular thicknesses in units A and B may suggest emplacement by a type of lateral density current (Figure 55A) (Scott et al. 1996; Branney \& Brown, 2011). The relatively poor sorting of the clasts in unit A is comparable with that of density current deposits (Walker, 1871; Branney \& Kokelaar, 1992). In comparison, the sorting of the breccias may be too poor to be comparable with fallout deposits (Branney \& Brown, 2011). In addition, fallout deposits do not usually have varying thicknesses (Sparks et al. 1997). Ballistic sedimentation may have assisted ejecta deposition, but it appears that it cannot be attributed as the unit's primary emplacement process. This is because impact sedimentary structures such as scour marks or substrate deformation structures from ballistic deposits (Melosh, 1989) have not been identified in the units. Also, the grain sizes and thicknesses of ballistic deposits decrease rapidly with increasing distance from the source crater. This decrease in grain size and thickness does not appear to occur in the units when comparing samples from Turner Exploration Camp and Khumani Mine with each other. Finally, the breccia in this study is consistent with a larger impact but not with a cave collapse model.

5.7.1 Accretionary lapilli formation

The occurrence of accretionary lapilli and accretionary lapilli fragments at the top of Unit B and an accretionary lapillus fragment in Unit C also supports a density current origin for the units (Figure 55A). The nuclei, consisting of coarse-grained particles, reflect the first stages of particle aggregation in a buoyant impact plume (Figure 55B) (Warme et al. 2002; Bron, 2010; Branney \& Brown, 2011). The mantles and crusts, consisting of finer-grained particles, reflect a subsequent growth stage during transport in a ground-hugging density current (Figure 55C) (Warme et al. 2002; Bron, 2010; Branney \& Brown, 2011). The mantles and crusts are likely to have formed under conditions of increased temperature due to a lower altitude and high content of hot-melt particles in the ground-hugging part of the density current (Figure 55C) (Warme et al. 2002; Bron, 2010; Branney \& Brown, 2011). This may have resulted in a
reduction of binding forces and the binding (adhering) of only finer-grained particles to the developing aggregate (Figure 55C) (Branney \& Brown, 2011). Consequently, coarse-grained particles in the density current did not bind to the surfaces of the aggregates.

The absence of accretionary lapilli in Unit A (Figure 55) may be attributed to a time delay between the initial deposition of the density current and the first occurrence of accretionary lapilli in Unit B (Branney \& Brown, 2011). Such a delay is supposed to occur and is likely a result of a few events: (1) the formation of a buoyant impact plume and its rise into the atmosphere (Figure 55A); (2) the aggregation of moist particles into aggregates in the plume (Figure 55B), and; (3) the growth and compaction of the aggregates in the ground-hugging part of the density current and formation of the accretionary lapilli (Figure 55C) (Gilbert \& Lane, 1994; Brown et al. 2010; Branney \& Brown, 2011). Consequently, by the time the first accretionary lapilli form in the density current, Unit A would already be deposited.

Figure 55: (A-C) Models intended to represent the emplacement of the Vredefort proximal impact ejecta by a ground-hugging density current. (A) During an impact, an impact plume consisting of hot ejecta material, abundant volatiles from the target rocks and groundwater forms and traps the air as it penetrates the atmosphere (Branney \& Brown,
2011). The ejecta material falls to the surface as an ejecta curtain spreading rapidly from the impact sites as a density current (Branney \& Brown, 2011). (B) As a result of the upper zone of the density current entraining atmospheric air, the density current expands and generates a buoyant dust plume (Branney \& Brown, 2011). Within this expanding and rising plume, ash particles start to accrete. (C) Once the particles become aggregates and too large to be carried by the turbulence in the plume, they fall to lower parts of the density current, where they will dry out, accrete mantles and crusts (Branney \& Brown, 2011). In this way, they become accretionary lapilli and get deposited with the breccias from the bottom of the current. The models are adapted and modified from Branney and Brown (2011).

5.8 Wolhaarkop Breccia

The Wolhaarkop Breccia unconformably underlies the Doornfontein Conglomerate Member (proposed Vredefort proximal impact ejecta). According to the accepted formation model, the Wolhaarkop Breccia was formed by dissolution and karstification of the dolomites of the Ghaap Group (Figure 6 \& Figure 7) (Carney \& Mienie, 2003; Smith \& Beukes, 2016). According to the model, the dolomites locally formed deep sinkholes, resulting in the overlying banded iron formations of the Asbestos Hills sub-group collapsing into them (Figure 6 \& Figure 7) (Carney \& Mienie, 2003; Smith \& Beukes, 2016). However, the formation model appears to be lacking and missing some details because it does not fully explain the observations and features of the Wolhaarkop Breccia. The model does not appear to mention that the Wolhaarkop Breccia consists of two types of breccias, namely the upper polymict breccia and lower monomict breccia. The polymict breccia consists of locally derived angular rocks of quartz, banded iron formation, jasper, hematite and other rocks in a chert matrix. The monomict breccia consists of locally derived angular rocks of quartz in a chert matrix. The rocks forming the clasts in the polymictic breccia range from a few centimetres to meters thick, and most are tens of cm thick (Figure 49). In comparison, the clasts in the monomict breccia are a few cm thick and are generally smaller than those in the polymict breccia (Figure 48). In addition, there are identical outcrops along strike throughout the Maremane Dome, which would require an enormous cave system that would somehow collapse symmetrically across the entire 150 km long section, which is unrealistic. The model also appears not to mention that the formation of the Wolhaarkop Breccia caused alteration and deformation of the local substrate.

Nevertheless, the above characteristics of the Wolhaarkop Breccia, namely the inclusion of local rocks, alteration of the local substrate and rapid decrease in grain size from the polymict breccia to the monomict breccia, may alternatively suggest that the Wolhaarkop Breccia was deposited by ballistic sedimentation. Ballistic sedimentation usually forms scour marks or substrate deformation structures, deforms the local substrate and causes the inclusion of local rocks (Melosh, 1989). This interpretation is possibly supported by the similarity of the Wolhaarkop Breccia to impact ejecta deposited by ballistic sedimentation from a few terrestrial impact structures. An excellent example is the Bunte Breccia, the continuous impact ejecta blanket of the Ries Crater (Hörz et al. 1983). The Bunte Breccia is interpreted to have been emplaced by ballistic sedimentation (Hörz et al. 1983). Ballistic emplacement of ejecta typically causes secondary cratering, the inclusion of local rocks and alteration of the local substrate (Oberbeck, 1975; Osinski, 2007). These characteristics are observed in the Bunte Breccia, which deformed the local substrate and consists of primary ejecta sourced from the transient crater (~ 31 vol\%) and local rocks (~ 69 vol\%) (Hörz et al. 1983; Osinski, 2007).

Similar to the Wolhaarkop Breccia, which is overlain by the Vredefort proximal impact ejecta, the Bunte Breccia is overlain by impact ejecta layers (von Engelhardt, 1990). The Bunte Breccia is overlain by a series of impact breccias (polymict crystalline breccias), impact meltbearing breccias (suevites), and impact melt rocks (Engelhardt \& Graup, 1984; von Engelhardt, 1990; Osinski, 2007). Similar to the Vredefort proximal impact ejecta, the impact breccias and impact melt rocks have been proposed to have been emplaced as either pyroclastic flows (Newsom et al. 1986; Bringemeier, 1994) or as ground-hugging impact meltrich flows (Osinski, 2004). The emplacement mechanisms are consistent with several field observations, including a temporal time lag between the emplacement of the Bunte Breccia and the overlying breccias and impact melt rocks (Hörz et al. 1983). Thus, the formation of the ejecta deposits involved a two-stage emplacement mechanism (Hörz et al. 1983; Osinski, 2007).

The Wolhaarkop Breccia is also similar to impact ejecta occurring beyond the final crater rim of the Chicxulub structure consisting of two main types of ejecta deposits: (1) a polymict impact breccia, which is similar to the Bunte Breccia and interpreted to represent a continuous impact
ejecta blanket and; (2) suevite deposits overlying the continuous breccia, which are analogous to the Vredefort proximal impact ejecta (Kring, 2005).

Given that it shares similar characteristics with the continuous impact ejecta blankets of the Ries crater (namely ballistic sedimentation and overlain by impact ejecta layers) and the Chicxulub structure (namely polymict breccia and overlain by suevite deposits), the Wolhaarkop Breccia may hint that it may represent a continuous impact ejecta blanket of the Vredefort structure overlain by the proposed Vredefort proximal impact ejecta. A proposed erosional unconformity (pre-Gamagara unconformity) occurs between the base of the Doornfontein Conglomerate Member (proposed Vredefort proximal impact ejecta) and Wolhaarkop Breccia (proposed continuous impact ejecta blanket of the Vredefort structure), and it is estimated to be 2.2 to 2.0 Ga (Carney \& Mienie, 2003; da Silva, 2011). As suggested for the emplacement of the Bunte Breccia and the overlying breccias and impact melt rocks (Hörz et al. 1983), this unconformity may alternatively represent a temporal time lag between the emplacement of the continuous impact ejecta blanket of the Vredefort structure and Vredefort proximal impact ejecta.

5.9 Stratigraphic correlation

It is clear that after the proposed Vredefort proximal impact ejecta was emplaced, it was extensively altered and heavily enriched in iron (hematite), which resulted in the formation of one of the world's largest iron ore deposits (da Silva, 2011). This iron enrichment is highly concentrated at the base of the Doornfontein Conglomerate Member (proposed Vredefort proximal impact ejecta) and is associated with the pre-Gamagara unconformity (Carney \& Mienie, 2003; da Silva, 2011). This is why iron exploration in the Maremane Dome requires identifying and correlating the pre-Gamagara unconformity (Beukes \& Gutzmer, 2008). Although iron ore resources occur in large quantities in the Maremane Dome, they are limited (da Silva, 2011). Thus, further exploration of the resources in the Maremane Dome is critical to meet local and international demands (Gutzmer et al. 2005). However, when attempting to identify and correlate the pre-Gamagara unconformity to locate ore resources in the Maremane Dome, the pre-Gamagara unconformity often causes problems and leads to misidentification of the ore resources (da Silva, 2011). This is because of two main reasons:
(1) Conglomerates (proposed to be impact breccias) associated with high-grade iron ore deposits at the base of the Olifantshoek Group are classified as part of the Doornfontein Conglomerate Member in the Maremane Dome and as part of the Mapedi Formation outside the Maremane Dome (Beukes \& Smit, 1987; da Silva, 2011). In addition, because iron-rich conglomerates in the Neylan Formation and Volop Formation of the Olifantshoek Group are similar to conglomerates in the Doornfontein Conglomerate Member, they are often confused with each other.
(2) As a result of the Kheis orogeny, the Olifantshoek Group is folded and thrusted (Beukes \& Smit, 1987; Van Niekerk, 2006). The folding and thrusting intensified towards the western margin of the Kaapvaal Craton and resulted in the duplication of the Olifantshoek Group by thrust sheets dipping to the west. Consequently, the hanging walls and footwalls of various red bed units in the thrust sheet are ambiguously correlated.

This study suggests using accretionary lapilli for stratigraphic correlations and as a time marker to combat incorrectly identifying and correlating the pre-Gamagara unconformity in the Maremane Dome. The accretionary lapilli are readily identifiable and occur above the iron ore resources, so the iron ore resources will be easily detectable.

5.10 Ejecta from the largest terrestrial impact structures

The largest impact structures on Earth, the Vredefort structure, Sudbury structure and Chicxulub structure, all have identified impact ejecta. The Sudbury impact ejecta has been identified in a breccia layer with accretionary lapilli in northern Michigan, USA (Cannon et al. 2010; Huber \& Koeberl, 2017). The Sudbury impact ejecta also occurs in sites in Minnesota in USA and Ontario in Canada (Addison et al. 2005). The Chicxulub impact caused the mass extinction at the Cretaceous-Paleogene (K-Pg) boundary at about 66.05 Ma (Alvarez et al. 1980; Smit \& Hertogen, 1980; Sprain et al. 2018). The K-Pg event formed a thin clay layer that has been identified in more than 350 marine and terrestrial sites across the globe (Smit, 1999; Claeys et al. 2002). The layer also contains accretionary lapilli and impact spherules with shocked mineral grains (Gradstein et al. 2012).

Chapter 6: Conclusion

Detailed petrographic and geochemical investigations of 24 drill core samples from the Doornfontein Conglomerate Member in the Maremane Dome, South Africa, suggest that the Doornfontein Conglomerate Member might be an impact breccia similar to impact breccias in the Stac Fada impact ejecta layer in Scotland. The investigations also suggest that the ca. 15 mm spherical anomalous objects in the samples from the top of the Doornfontein Conglomerate Member are accretionary lapilli and resemble accretionary lapilli formed by impact processes rather than by volcanic processes. The occurrence of the accretionary lapilli at the top of the Doornfontein Conglomerate Member is also analogous to the occurrence of accretionary lapilli at the top of the impact breccias in the Stac Fada impact ejecta layer.

Based on impact ejecta modelling, the samples are $<5 R_{c}$ from the centre of the Vredefort structure and occur within an expected distance for Vredefort proximal impact ejecta. Based on radiometric age constraints, the samples are confined between the 1.93 Ga andesitic lavas of the Hartley Formation and $2.22 \mathrm{Ga} \pm 13 \mathrm{Ga}$ Ongeluk Formation. Therefore, this study suggests that the Doornfontein Conglomerate Member and anomalous objects are associated
 from the Vredefort structure for Vredefort proximal impact ejecta. Due to the sample's absence of sediment reworking, varying thickness, continuous intergradation without a grain size change and similarity to the impact breccias in the Stac Fada impact ejecta layer, the Doornfontein Conglomerate Member is suggested to have been emplaced as a groundhugging density current ejecta that propagated outwards from the Vredefort impact site.

The Wolhaarkop Breccia underlying the Doornfontein Conglomerate Member in the Maremane Dome, South Africa, was also investigated by direct observations of outcrops in the field and drill cores. The investigation mainly analysed and examined the sedimentological characteristics of the Wolhaarkop Breccia. The investigation results suggest that the Wolhaarkop Breccia is similar to ballistically emplaced continuous impact ejecta blankets underlying ground-hugging impact ejecta layers. The results specifically suggest that the Wolhaarkop Breccia is similar to continuous impact ejecta blankets of the Ries Crater (Bunte Breccia) and Chicxulub structure (polymict breccia). As a result of these similarities, the inclusion of local rocks in the Wolhaarkop Breccia, alteration of the local substrate during the deposition of the Wolhaarkop Breccia and the overlying proposed Vredefort proximal impact ejecta, the Wolhaarkop Breccia is suggested to have formed by ballistic emplacement and be a continuous impact ejecta blanket of the Vredefort structure.

The proposed Vredefort proximal impact ejecta layer and continuous impact ejecta blanket of the Vredefort structure add to the two already discovered Vredefort distal impact ejecta layers occurring in the Zaonega Formation in Russia (Huber et al. 2014) and Grænsesø impact spherule layer in Greenland (Chadwick et al. 2001). The Vredefort proximal impact ejecta layer will also add to the three Precambrian distal impact ejecta layers discovered in the Griqualand West Basin of the Kaapvaal Craton, namely the Kuruman (2.46-2.52 Ga), Monteville (2.602.65 Ga) and Reivilo (2.56 Ga) distal impact ejecta layers (Simonson \& Harnik, 2000). The Barberton Greenstone Belt, which occurs on the Kaapvaal Craton, contains four Precambrian impact ejecta layers, namely the S1 (3.47 Ga), S2 (3.26 Ga), S3 (3.24 Ga) and S4 (3.34 Ga) impact ejecta layers (Simonson \& Harnik, 2000). Thus, the Kaapvaal Craton contains an additional impact ejecta layer and now contains possible impact ejecta layers from 3.47 Ga to 2.02 Ga (Simonson \& Harnik, 2000).

The discovery of the proposed Vredefort proximal impact ejecta and continuous impact ejecta blanket of the Vredefort structure will improve our understanding of impact processes and their effects. This can be achieved by using them to study impact cratering mechanics and the
deposition and formation of impact ejecta, especially proximal impact ejecta. The deposits also provide an excellent opportunity to investigate possible atmospheric, environmental, and biosphere changes that may have occurred during their emplacement. This will assist in advancing our understanding of the early geological record of the Earth and allow impact processes to be integrated with the broader geology.
To enhance in proving the existence of the proposed Vredefort proximal impact ejecta and its model of formation, future studies will have to identify precise shock-metamorphic features, namely PDFs and planar fractures in shocked mineral grains of the Doornfontein Conglomerate Member. The studies will also have to find significant abundances of meteorite geochemical signatures, especially $\mathrm{Ir}, \mathrm{Ni}, \mathrm{Co}$ and Cr , in the Doornfontein Conglomerate Member. The Wolhaarkop Breccia will also require identifying the same shock-metamorphic features and meteorite geochemical signatures for it to be further proven as a continuous impact ejecta blanket of the Vredefort structure.

7. References

Addison, W., Brumpton, G., Vallini, D., McNaughton, N., Davis, D., Kissin, S., Fralick, P., \& Hammond, A., 2005. Discovery of distal ejecta from the 1850 Ma Sudbury impact event. Geology, Volume 33, p. 193-196.

Adlakha, E., Hattori, K., Kerr, M., \& Boucher, B., 2020. The origin of Ti-oxide minerals below and within the eastern Athabasca Basin, Canada. American Mineralogist, Volume 105, p. 1875-1888.

Agangi, A., Reddy, S.M., Plavsa, D., Fougerouse, D., Clark, C., Roberts, M., and Johnson, T.E., 2019. Antimony in rutile as a pathfinder for orogenic gold deposits. Ore Geology Reviews, Volume 106, p. 1-11.

Ahrens, T., \& O'Keefe, J., 1972. Shock melting and vaporization of Lunar rocks and minerals. Moon, Volume 4, p. 214-249.

Amor, K, S., Hesselbo, P., Porcelli, D., Thackray, S., \& Parnell, J., 2008. A Precambrian proximal ejecta blanket from Scotland. Geology, Volume 36, p. 303-306.

Beukes, N., \& Gutzmer, J., 2008. Origin and paleoenvironmental significance of major iron formations at the Archean-Paleoproterozoic boundary. In: S. Hagemann, C., Rosiere, J., Gutzmer \& N., Beukes, eds. Banded iron formation-related high-grade iron ore. s.I.:Reviews in Economic Geology, Automated Graphic Systems, p. 5-47.

Beukes, N. J., 1983. Paleoenvironmental setting of iron-formations in the depositional basin of the Transvaal Supergroup, South Africa. In: A. Trendall \& R., Morris, eds. Iron-formations Facts and Problems. Amsterdam, Netherlands: Elsevier, p. 131-209.

Beukes, N., \& Smit, C., 1987. New evidence for thrust faulting in Griqualand West, South Africa: implications for stratigraphy and the age of the red beds. Transactions of the Geological Society of South Africa, Volume 90, p. 378-394.

Branney, M., \& Brown, R., 2011. Impactoclastic density current emplacement of terrestrial meteorite-impact ejecta and the formation of dust pellets and accretionary lapilli: Evidence from Stac Fada, Scotland. Journal of Geology, Volume 119, p. 275-292.

Branney, M., \& Kokelaar, B., 1992. A reappraisal of ignimbrite emplacement-progressive aggradation and changes from particulate to non-particulate flow during emplacement of highgrade ignimbrite. Bulletin of Volcanology, Volume 54, p. 504-520.

Brindley, G., \& Robinson, K., 1947. Note on the occurrence of anatase in some fire clay deposits. Mineral Magazine, Volume 28, p. 244-247.

Britt, D., \& Consolmagno, G., 2003. Stony meteorite porosities and densities: A review of the data through 2001. Meteoritics \& Planetary Science, Volume 38, p. 1161-1180.

Bron, K., 2010. Accretionary and melt impactoclasts from the Tookoonooka impact event, Australia. The Geological Society of America Special Paper 465, p. 219-244.

Brown, R., Branney, M., Maher, C., \& Davila-Harris, P., 2010. Origin of accretionary lapilli within ground-hugging density currents: evidence from pyroclastic couplets on Tenerife. Bulletin of the Geological Society of America, Volume 122, p. 305-320.

Cabral, A., Eugster, O., Brauns, M., Lehmann, B., Rosel, D., Zack, T., de Abreu, F.R., Pernicka, E., Barth, M., 2013. Direct dating of gold by radiogenic helium: Testing the method on gold from Diamantina, Minas Gerais, Brazil. Geology, Volume 41, p. 163-166.

Cabral, A., Lehmann, B., Tupinambá, M., Wiedenbeck, M., \& Brauns, M.,2011. Geology, mineral chemistry and tourmaline B isotopes of the Córrego Bom Sucesso area, southern Serra do Espinhaço, Minas Gerais, Brazil: implications for Au-Pd-Pt exploration in quartzitic terrain. Journal of Geochemical Exploration, Volume 110, p. 260-277.

Cannon, W., Schulz, K., W.J, H. J., \& Kring, D., 2010. The Sudbury impact layer in the Paleoproterozoic iron ranges of northern Michigan, USA. GSA Bulletin, Volume 122, p. 5075.

Carney, M., \& Mienie, P., 2003. A geological comparison of the Sishen and Sishen South (Welgevonden) iron ore deposits, Northern Cape Province, South Africa. Applied Earth Sciences (Trans. Inst. Min. Metall. B), Volume 112, p. B81-B88.

Černý, P., Chapman, R., Göd, R., Niedermayr, G., Wise, M.A.,1989. Exsolution intergrowths of titanian ferrocolumbite and niobian rutile from the Weinebene spodumene pegmatites, Carinthia, Austria. Mineralogy and Petrology, Volume 40, p. 197-206.

Chadwick, B., Claeys, P., \& Simonson, B., 2001. New evidence for a large Palaeoproterozoic impact: Spherules in a dolomite layer in the Ketilidian orogen, South Greenland. Journal of the Geological Society, Volume 158, p. 331-340.

Challagulla, S., Tarafder, K., Ganesan, R., \& Roy, S., 2017. Structure sensitive photocatalytic reduction of nitroarenes over TiO2. Scientific Report, Volume 7, p. 1-11.

Chen, K, R., Walker, J., Rudnick, R.L., Gao, S., Gaschnig, R.M., Puchtel, I.S., Tang, M., \& Hu, Z-C., 2016. Platinum-group element abundances and Re-Os isotopic systematics of the upper continental crust through time: Evidence from glacial diamictites. Geochimica et Cosmochimica Acta, Volume 191, p. 1-16.

Claeys, P., Kiessling, W., \& Alvarez, W., 2002. Distribution of Chicxulub ejecta at the Cretaceous-Tertiary boundary. Special Paper of the Geological Society of America, Volume 356, p. 55-68.

Collins, G., Melosh, J., \& Marcus, R., 2005. Earth Impact Effects Program: A Web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth. Meteoritics \& Planetary Science, Volume 40, p. 817-840.

Collins, G., Patel, S.N., Davison, T.M., Rae, A.S.P., Morgan, J.V., \& Gulick, P.S.P., 2020. A steeply-inclined trajectory for the Chicxulub impact. Nature Communications, Volume 11, p. 1-10.

Cornell, D., 1978. Petrographical studies at T'Kuip: evidence for metamorphism and metasomatic alteration of volcanic formations beneath the Transvaal volcanosedimentary pile, Transactions of the Geological Society of South Africa, Volume 81, p. 261-270.

Cornell, D., Armstrong, R., \& Walraven, F., 1998. Geochronology of the Proterozoic Hartley Basalt formation, South Africa: constraints on the Kheis tectogenesis and the Kaapvaal Craton's earliest Wilson Cycle. Journal of African Earth Sciences, Volume 26, p. 5-27.

Cornell, D., Schütte, S., \& Eglington, B., 1996. The Ongeluk basaltic andesite formation in Griqualand West, South Africa: submarine alteration in a 2222 Ma Proterozoic sea. Precambrian Research, Volume 79, p. 101-123.

Curnan, M., \& Kitchin, J., 2015. Investigating the energetic ordering of stable and metastable TiO2 polymorphs using DFT+U and hybrid functionals. The Journal of Physical Chemistry, Volume 119, p. 060-21.
da Silva, R., 2011. Distribution and geochronology of unconformity-bound sequences in Paleoproterozoic Elim-Olifantshoek red beds: implications for timing of formation of Sishentype iron ore and heavy carbonate carbon isotope excursion. University of Johannesburg (Unpublished MSc thesis).
de Villiers, P., \& Visser, J., 1977. The glacial beds of the Griqualand West Supergroup as revealed by four deep boreholes between Postmasburg and Sishen. Canadian Journal of Earth Science, Volume 13, p. 1161-1185.

Dyar, M., Ytsma, C., \& Lepore, K., 2019. Standards for geochemical analysis of major, minor, and trace elements in rock powders. The Woodlands, Texas, 50th Lunar and Planetary Science Conference.

Edwards, H., 2000. Spectra-structure correlations in Raman spectroscopy. In: J., Chalmers \& P., Griffiths, eds. Handbook of Vibrational Spectroscopy. Vol. 3. Chichester: John Wiley \& Sons, p. 1838-1918.

Edwards, H., \& Carter, E., 2001. Biological applications of Raman spectroscopy. In: H., Gremlich \& Y., B, eds. Infrared and Raman Spectroscopy of Biological Molecules. Vol. 24. New York: M. Dekker, p. 421-476.

Edwards, H., Hutchinson, I.B., Ingley, R., Parnell, R., Vítek, P., Jehlička, J.,2013. Raman Spectroscopic Analysis of Geological and Biogeological Specimens of Relevance to the ExoMars Mission. Astrobiology, Volume 13, p. 543-549.

Eggleton, T., \& Taylor, G., 2006. Pisoliths - formed by accretion or internal reorganisation? Conference 765 Proceedings 2006 Regolith Symposia: Dispersion and consolidation of ideas. Perth, CRC LEME.

Engelhardt, W., \& Graup, G., 1984. Suevite of the Ries crater Germany: Source rocks and implications for cratering mechanics. Geologische Rundschau, Volume 73, p. 447-81.

Ferrière, L., Raiskila, S., Osinski, G., \& Pesonen, L., 2010. The Keurusselka" impact structure, Finland-Impact origin confirmed by characterization of planar deformation features in quartz grains. Meteoritics \& Planetary Science, Volume 45, p. 434-446.

Fisher, R., \& Schmincke, H., 1984. Pyroclastic Rocks. In: Berlin: Springer-Verlag.
Flamini, E., Di Martino, M., \& Coletta, A., eds., 2019. In: Encyclopedic Atlas of Terrestrial Impact Craters. Cham, Switzerland: Springer Nature Switzerland AG, p. 129.

Foley, S., Tiepolo, M., \& Vannucci, R., 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, Volume 417, p. 837-840.

Foucher, F., Bost, N., Janiec, S., Fonte, A., Le Breton, N., Perron, P., Bouquin, M., Lebas, F., Viso, M., Chazalnoël, P., Courtade, F., Villenave, M., \& Westall, F., 2021. LithoSpace: An Idea for an Automated System for in situ Petrographic Thin Section Preparation on Mars and Other Extraterrestrial Rocky Bodies. Frontiers in Astronomy and Space Sciences, Volume 8, p. 120.

French, B., 1998. A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures. In: Traces of Catastrophe. Houston, Texas: Lunar and Planetary Institute.

French, B., 1998. Traces of catastrophe: A handbook of shock-metamorphic effects in terrestrial meteorite impact structures. In: Houston TX, USA: Lunar and Planetary Institute, p. 70-90.

French, B., \& Koeberl, C., 2010. The Convincing Identification of Terrestrial Meteorite Impact Structures: What Works, What Doesn't and Why. Earth Science Reviews, Volume 98, p. 123170.

French, B. M., Koeberl, C., Gilmour, I., Shirey, S.B., Dons, J., Naterstad, J., 1997. The Gardnos impact structure, Norway: Petrology and geochemistry of target rocks and impactites. Geochimica et Cosmochimica Acta, Volume 61, p. 873-904.

French, B., \& Short, N., 1968. Shock metamorphism of natural materials. In: Baltimore, Maryland: Mono Book Corporation, p. 644.

Friese, A., \& Alchin, D., 2007. New insights into the formation, structural development, and preservation of iron ore deposits in the Northern Cape Province, South Africa. Iron Ore 2007 Conference, The Australasian Institute of Mining and Metallurgy. Perth, Western Australia. p. 85-97.

Gault, D., Quaide, W., \& Oberbeck, V., 1968. Impact cratering mechanics and structures. In: B., French \& N., Short, eds. Shock Metamorphism of Natural Materials. Baltimore, MD: Mono Book Corporation, p. 87-99.

Gibson, R., 2002. Impact-induced melting of Archean granulites in the Vredefort dome, South Africa. I: Anatexis of metapelitic granulites. Journal of Metamorphic Geology, Volume 20, p. 57-70.

Gibson, R., \& Wallmach, T., 1995. Low pressure-high temperature metamorphism in the Vredefort dome, South Africa: Anticlockwise pressure-temperature path followed by rapid decompression. Geological Journal, Volume 30, p. 319-331.

Glass, B., \& Simonson, B., 2013. In: Distal impact ejecta layers: A record of large impacts in sedimentary deposits. Heidelberg, Germany: Springer, p. 2-100, 716.

Goderis, S., Tagle, R.,Belza, J.,Smit, J.,Montanari, A.,Vanhaecke, F.,Erzinger, J.,Claeys, P.,2013. Reevaluation of siderophile element abundances and ratios across the CretaceousPaleogene ($\mathrm{K}-\mathrm{Pg}$) boundary: Implications for the nature of the projectile. Geochimica et Cosmochimica Acta, Volume 120, p. 417-446.

Gradstein, F., Ogg, J., Schmitz, M., \& Ogg, G., 2012. The Geologic Time Scale. Elsevier, 2012.

Graup, G., 1981. Terrestrial chondrules, glass spherules, and accretionary lapilli from the suevite, Ries Crater, Germany. Earth and Planetary Science Letters, Volume 55, p. 407-418.

Grieve, R., 1991. Terrestrial impact: the record in the rocks. Meteoritics, Volume 26, p. 175194.

Grieve, R. A. F., Langenhorst, F., \& Stöffler, D., 1996. Shock metamorphism of quartz in nature and experiment: II. Significance in geoscience. Meteoritics \& Planetary Science, 31(1), p. 635.

Grieve, R., Ames, D., Morgan, J., \& Artemieva, N., 2010. The evolution of the Onaping Formation at the Sudbury impact structure. Meteoritics \& Planetary Science, Volume 45, p. 759-782.

Grieve, R., Dence, M., \& Robertson, P., 1977. Cratering process: As interpreted from the occurrence of impact melt. In: D., Roddy, R., Pepin \& R., Merrill, eds. Impact and Explosion Cratering: Planetary and Terrestrial Implications. New York: Pergamon, p. 791-814.

Grieve, R., Rupert, J., Smith, J., \& Therriault, A., 1995. The record of terrestrial impact cratering. Geological Society of America Today, Volume 5, p. 189-196.

Grobbelaar, W.,Burger, M.A., Pretorius, A.I., Marais, W., van Niekerk, I.J.M.,1995. Stratigraphic and structural setting of the Griqualand West and the Olifantshoek Sequences at Black Rock, Beeshoek and Rooinekke Mines, Griqualand West, South Africa. Mineralium Deposita, Volume 30, p. 152161.

Guillaume-Feignon, G., Ferrière, L., Leroux, H., \& Koeberl, C., 2020. Characterization of shocked quartz grains from Chicxulub peak ring granites and shock pressure estimates. Meteoritics \& Planetary Science, Volume 55, p. 1-18.

Gutzmer, J., \& Beukes, N., 1998. Earliest laterites and possible evidence for terrestrial vegetation in the Early Proterozoic. Geology, Volume 26, p. 263-266.

Gutzmer, J., Beukes, N., De Kock, M., \& Netshiozi, S., 2005. Origin of high-grade iron ores at the Thabazimbi deposit, South Africa. Conference Proceedings Iron Ore 2005, Aus IMM, Publication Series 8, Volume 8, p. 99-100.

Hanaor, D., \& Sorrell, C., 2011. Review of the anatase to rutile phase transformation. Journal of Materials Science, Volume 46, p. 855-874.

Hilderbrand, A., Penfield, G., Kring, D., \& Pilkington, M., 1991. Chicxulub crater: a possible Cretaceous/Tertiary boundary impact crater on the Yucatan Peninsula, Mexico. Geology, Volume 19, p. 867-871.

Hörz, F., Ostertag, R., \& Rainey, D., 1983. Bunte breccia of the Ries: Continous deposits of large impact crater. Reviews of Geophysical Space Physics, Volume 21, p. 1667-1725.

Huber, M.S., Crne, A.E., McDonald, I., Hecht, I., Melezhik, V.A., \& Koeberl, C., 2014. Impact spherules from Karelia, Russia: Possible ejecta from the 2.02 Ga Vredefort impact event. Geology, Volume 42, p. 375-378.

Huber, M., \& Koeberl, C., 2017. Accretionary lapilli from the Sudbury impact event. Meteoritics \& Planetary Science, Volume 52, p. 1257-1276.

Kamo, S., Reimold, W., Krogh, T., \& Colliston, W., 1996. A 2.023 Ga age for the Vredefort impact event and a first report of shock metamorphosed zircons in pseudotachylitic breccias and granophyre. Earth and Planetary Science Letters, Volume 144, p. 369-387.

King, T., \& King, E., 1980. Accretionary dark rims in unequilibrated chondrites. Icarus, Volume 48, p. 460-472.

Koeberl, C., 2002. Mineralogical and geochemical aspects of impact craters. Mineralogical Magazine, Volume 66, p. 745-768.

Koeberl, C., 2014. The geochemistry and cosmochemistry of impacts. Elsevier, Volume 2 of Treatise on Geochemistry, p. 73-118.

Koeberl, C., Reimold, W., \& Shirley, S., 1996. Re-Os isotope and geochemical study of the Vredefort granophyre: Clues to the origin of the Vredefort structure, South Africa. Geology, Volume 24, p. 913-916.

Komatsu, G., Senthil Kumar, P., Goto, K., Sekine, Y., Giri, C., Matsui, T.,2014. Drainage systems of Lonar Crater, India: Contributions to Lonar Lake hydrology and crater degradation. Planetary and Space Science, Volume 95, p. 45-55.

Kósik, S.,Voloschina, M.,Zemeny, A., Cronin, S.J., Németh, K., Procter, J.N., Zernack, A.,2019. Field Trip Guide for the Fifth International - Volcanism in a rapidly changing environment relating to an atypical plate margin. In: Abstract Volume and Field Guide of the IAVCEI Field Trip Guide for the Fifth International. s.I.: Geoscience Society of New Zealand Miscellaneous Publication 152, p. 175.

Kring, D., 2005. Hypervelocity collisions into continental crust composed of sediments and an underlying crystalline basement: Comparing the Ries ($\sim 24 \mathrm{~km}$) and Chicxulub ($\sim 180 \mathrm{~km}$) impact craters. Chemie der Erde, Volume 65, p. 1-46.
Lascelles, D., 2016. The origin of terrestrial pisoliths and pisolitic iron ore deposits: Raindrops and sheetwash in a semi-arid environment. Sedimentary Geology, Volume 341, p. 232-244.

Lawson, D., 1972. Torridonian volcanic sediments. Scottish Journal of Geology, Volume 8, p. 345-362.

Leroux, H., Reimold, W., \& Doukhan, J., 1994. A TEM investigation of shock metamorphism in quartz from the Vredefort dome, South Africa. Tectonophysics, Volume 230, p. 223-239.

Lewis, I., \& Edwards, H., 2001. Handbook of Raman Spectroscopy: From Research Laboratory to the Process Line. In: New York: CRC Press.

McCarthy, T., \& Rubidge, B., 2005. The Story Of Earth \& Life: A Southern African Perspective on a 4.6-Billion-Year Journey. In: South Africa: Penguin Random House, p. 121-138.

McCarthy, T., Stanistreet, I., \& Robb, L., 1990. Geological studies related to the origin of the Witwatersrand basin and its mineralization-An introduction and a strategy for research and exploration. South African Journal of Geology, Volume 93, p. 1-4.

Meinhold, G., 2010. Rutile and its applications in Earth sciences. Earth-Science Reviews, Volume 102, p. 1-28.

Melosh, H., 1989. Impact Cratering: A Geologic Process. In: New York: Oxford University Press, p. 245.

Moore, J., \& Peck, D., 1962. Accretionary lapilli in volcanic rocks of the western continental United States. Journal of Geology, Volume 70, p. 182-193.

Morad, S., \& Aldahan, A., 1986. Alteration of detrital Fe-Ti oxides in sedimentary rocks. Geological Society of America Bulletin, Volume 97, p. 567-578.

Morgan, M., 2006. Carbonate impact accretionary lapilli: genesis, impact history, and interpretations related to the origin of the Upper Devonian Alamo Breccia, Nevada. Published thesis at Colorado School of Mines, p. 1-228.

Morris, R., 1994. Detrital iron deposits of the Hamersley Province: CSIRO Division of Exploration and Mining, Perth: Restricted Report 76R.

Morris, R., \& Ramanaidou, E., 2007. Genesis of the channel iron deposits (CID) of the Pilbara Region, Western Australia. Australian Journal of Earth Sciences, Volume 54, p. 733-756.

Morrow, J., 2009. Geology of the Vredefort impact structure: A guide to sites of interest, by Roger L. Gibson and Wolf Uwe Reimold. Meteoritics \& Planetary Science, Volume 4, p. 623624.

Mueller, S.B., Kueppers, U., Huber, MS., Hess, K., Poesges, G., Ruthensteiner, B., \& Dingwell, D.B., 2018. Aggregation in particle rich environments: a textural study of examples
from volcanic eruptions, meteorite impacts, and fluidized bed processing. Bulletin of Volcanology, Volume 80, p. 1-17.

Nagelschmidt, G., Donnely, H. \& Marcom, A., 1949. On the occurrence of anatase in sedimentary kaolin. Mineral Magazine, Volume 28, p. 492-495.

Nahon, D., Carozzi, A., \& Parron, C., 1980. Lateritic weathering as a mechanism for the generation of ferruginous ooids. Journal of Sedimentary Petrology, Volume 50, p. 1287-1298.

Neuendorf, K., Mehl, J. J., \& Jackson, J., 2005. Glossary of Geology (5th ed.). In: Alexandria, Virginia: American Geological Institute, p. 779.

Newsom, H., Sewards, T., Keil, K. \& Graup, G., 1986. Fluidization and hydrothermal alteration of the suevite deposit at the Ries Crater, West Germany, and implications for Mars. Journal of Geophysical Research Atmospheres, Volume 91, p. 239.

Nironen, M., 2003. Central Finland Granitoid Complex-Explanation to a map. Report of Investigation 157. Geological Survey of Finland, p. 45.

Oberbeck, V., 1975. The role of ballistic erosion and sedimentation in lunar stratigraphy. Reviews of geophysics and space physics, Volume 13, p. 337-362.

Ocampo, A., Pope, K. \& Fischer, A., 2002. Ejecta blanket deposits of the Chicxulub crater from Albion Island, Belize. In: s.I.: Geological Society of America Special Paper 356, p. 55-69.

Osinski, G., 2004. Impact melt rocks from the Ries impact structure, Germany: An origin as impact melt flows?. Earth and Planetary Science Letters, Volume 226, p. 529-543.

Osinski, G., 2007. Impact melt emplacement: Observations from Earth, Moon and Mars. s.I., Workshop on Impact Cratering 2.

Osinski, G.,Ferrière, L., Hill, P.J.A., Prave, A.R., Preston, L.J., Singleton, A., Pickersgill, A.E., 2021. The Mesoproterozoic Stac Fada Member, NW Scotland: An impact origin confirmed but refined. Journal of the Geological Society, Volume 178.

Palache, C., Berman, H., \& Frondel, C., 1963. The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, vol. 3,. In: C. Frondel, ed. Silica Materials edition 7. New York: Wiley, p. 153.

Palme, H., M, J., Takahashi, H., \& Anders, E., 1978. Meteoritic material at five large impact craters. Geochimica et Cosmochimica Acta, Volume 42, p. 3.

Pe-Piper, G., Karim, A., \& Piper, D., 2011. Authigenesis of titania minerals and the mobility of Ti: new evidence from pro-deltaic sandstones, Cretaceous Scotian Basin, Canada. Journal of Sedimentary Research, Volume 81, p. 762-773.

Pinto, A.,Sanchez-Pastor, N., Callegari, I., Pracejus, B., Scharf, A.,2020. Challenges to rutilebased geoscientific tools: low temperature polymorphic TiO2 transformations and corresponding reactive pathways. Nature, p. 1-14.

Plavsa, D., Reddy, S.M., Agangi, A., Clark, C., Kylander-Clark, A., Tiddy, C.J.,2018. Microstructural, trace element and geochronological characterization of TiO2 polymorphs and implications for mineral exploration. Chemical Geology, Volume 476, p. 130-149.

Pope, K., Ocampo, A.C., Fischer, A.G., Vega, F.J., Ames, D.E., King, D.T., Jr., Fouke, B.W., Wachtman, R.J., Kletetschka, G.,2005. Chicxulub impact ejecta deposits in southern Quintana

Roo, Mexico, and central Belize. In: T., Kenkmann, ed. Large meteorite impacts III. s.I.: Geological Society of America Special Paper 384, p. 171-190.

Rabbia, O., Hernandez, L.B., French, D.H., King, R.W., Ayers, J.C.,2009. The El Teniente porphyry Cu-Mo deposit from a hydrothermal rutile perspective. Mineralium Deposita, Volume 44, p. 849-866.

Raman, C., \& Krishnan, K., 1928. A new type of secondary radiation. Nature, Volume 121, p. 501-502.

Raman, K., \& Jackson, M., 1965. Rutile and anatase determination in soils and sediments. American Mineralogist, Volume 50, p. 1086-1092.

Reed, S., 2005. Electron microprobe analysis and scanning electron microscopy in geology second edition. In: Cambridge: Cambridge University Press, p. 1-6.

Reimer, T., 1983a. Accretionary lapilli is volcanic ash falls: physical factors governing their formation. In: T., Peryt, ed. Coated grains. Berlin: Springer-Verlag, p. 56-68.

Reimold, W., \& Gibson, R., 2010. Meteorite Impact! The Danger from Space and South Africa's Mega-Impact The Vredefort Structure (Geoparks of the World), 3rd edition. In: 3rd ed. Berlin: Springer-Verlag, p. 30-132.

Robertson, P., Dence, M., \& Vos, M., 1968. Deformation in rock-forming minerals from Canadian craters. In: B., French \& N., Short, eds. Shock Metamorphism of Natural Materials. Baltimore: Mono Book Corporation, p. 433-452.

Schandl, E., Davis, D., \& Krogh, T., 1990. Are the alteration halos of massive sulfide deposits syngenetic? Evidence from U-Pb dating of hydrothermal rutile at the Kidd volcanic center, Abitibi subprovince, Canada. Geology, Volume 18, p. 505-508.

Schmidt, G., Goresy, A., \& Palme, H., 2018. Extraterrestrial platinum group elements in impactites and misleading Ni/Cr, Ni/Co and Cr/Co element ratios for projectile identification. Moscow, 81th Annual Meeting of the Meteoritical Society.

Schmieder, M., \& Kring, D., 2020. Earth's Impact Events Through Geologic Time: A List of Recommended Ages for Terrestrial Impact Structures and Deposits. Astrobiology, Volume 20, p. 91-141.

Schmincke, H., Fisher, R., \& Waters, A., 1973. Antidune and chute and pool structures in the base surge deposits of the Laacher See area, Germany. Sedimentology, Volume 20, p. 553574.

Scholle, P., 1999. New Mexico Bureau of Geology and Mineral Resources. [Online] Available at: geoinfo.nmet.edu/tour/federal/parks/permianreef/stops/pmstop1 4.html [Accessed 24 March 2022].

Schulte, P.,Alegret, L.,Arenillas, I.,Arz, J.A.,Barton, P.J.,Bown, P.R.,Bralower, T.J.,Christeson, G.L.,Claeys, P.,Cockell, C.S.,Collins, G.S.,Deutsch, A.,Goldin, T.J.,Goto, K.,Grajales-Nishimura, J.M.,Grieve, R.A.F.,Gulick, S.P.S.,Koeberl, C.,2010. The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary. Science, Volume 327, p. 1214-1218.

Schütte, S., 1992. Ongeluk volcanism in relation to the Kalahari manganese deposits. PhD thesis (unpublished) University of Natal.

Scott, K., 2005. Rutile geochemistry as a guide to porphyry Cu-Au mineralization, Northparkes, new South Wales, Australia. Geochemistry: Exploration, Environment Analysis, Volume 7, p. 353-361.

Scott, W.E., Hoblitt, R.P., Torres, R.C., Self, S., Martinez, M.L., \& Nillos, T.J., 1996. Pyroclastic flows of the June 15, 1991, climactic eruption of Mount Pinatubo. In: C., Newhall \& S., Punongbayan, eds. Fire and mud: eruptions of Pinatubo, Philippines. Seattle: University of Washington Press, p. 545-570.

Sharpton, V.L., Burke, K., Camargo-Zanoguera, A., Hall, S.A., Marín, L., Suáarez-Reynoso, G., Quezada-Muñeton, J.M., Spudis, P.D., \& Fucugauchi, J.U., 1993. Chicxulub multiring impact basin: Size and other characteristics derived from gravity analysis. Science, Volume 261, p. 1564-1567.

Shulaker, D., Schmitt, A., Zack, T., \& Bindeman, I., 2015. In-situ oxygen isotope and trace element geothermometry of rutilated quartz from Alpine fissures. American Mineralogist, Volume 100, p. 915-925.

Simonson, B., 2003. Petrographic criteria for recognizing certain types of impact spherules in well-preserved Precambrian successions. Astrobiology, Volume 49-65, p. 3.

Simonson, B., \& Harnik, P., 2000. Have distal impact ejecta changed through geologic time?. Geology, Volume 28, p. 975-978.

Smith, A., \& Beukes, N., 2016. Palaeoproterozoic banded iron formation-hosted high-grade hematite iron ore deposits of the Transvaal Supergroup, South Africa. IUGS, 39(2), p. 270283.

Smith, S., Stevens, R., Liu, S., Li, G., Navrosky, A., Boerio-Boates, J., Woodfield, B.F.,2009. Heat capacities and thermodynamic functions of TiO2 anatase and rutile: Analysis of phase stability. American Mineralogist, Volume 94, p. 236-243.

Smit, J., 1999. The global stratigraphy of the Cretaceous-Tertiary boundary impact ejecta. Annual Review of Earth and Planetary Sciences, Volume 27, p. 75-113.

Sparks, R.S.J., Bursik, M.I., Carey, S.M., Gilbert, J.S., Glazer, L.S., Sigurdsson, H., \& Woods, A.W., 1997. Volcanic plumes. In: Chichester: Wiley, p. 574.

Sprain, C., Renne, P., Clemens, W., \& Wilson, G., 2018. Calibration of chron C29r: New highprecision geochronologic and paleomagnetic constraints from the Hell Creek region, Montana. Bulletin of the Geological Society of America, Volume 130, p. 1615-1644.

Stöffler, D., Artemieva, N.A., Wünnemann, K., Reimold, U.W., Jacob, J., Hansen, B.K., \& Summerson, A.T., 2013. Ries crater and suevite revisited-Observations and modelling Part I: Observations. Meteoritics \& Planetary Science, Volume 48, p. 515-589.

Stoffler, D., \& Langenhorst, F., 1994. Shock Metamorphism of Quartz in Nature and Experiment: I Basic Observation and Theory. Meteoritics, Volume 29, p. 155-181.

Stöffler, D., Ryder, G., \& Ivanov, B., 2006. Cratering history and lunar chronology. Reviews in Mineralogy and Geochemistry, Volume 60, p. 519 - 596.

Tagle, R., \& Hecht, L., 2006. Geochemical identification of projectiles in impact rocks. Meteoritics \& Planetary Science, 41(1721-1735).

Taylor, H., 2001. In: Inductively Coupled Plasma-Mass Spectrometry. London: Academic Press, p. 2-3, 16-23.

Taylor, S., 1982. In: Planetary Science: A Lunar Perspective. Houston, Texas: Lunar and Planetary Institute, p. 481.

Taylor, S., 1992. Solar System Evolution: A New Perspective. In: New York: Cambridge University, p. 307.

Tucker, R., Viljoen, R., \& Viljoen, M., 2016. A review of the Witwatersrand Basin - The world's greatest goldfields. Episodes, Volume 39, p. 105-133.

Turnbull, M., Whitehouse, M., \& Moorbath, S., 1996. New isotopic age determinations for the Torridonian, N.W. Scotland. Journal of the Geological Society, Volume 153, p. 955-964.

Tyler, N., 1979. Stratigraphy, geochemistry and correlation of the Ventsdorp Supergroup in the Derdepoort area, west-central Transvaal. Transactions of the Geological Society of South Africa, Volume 82, p. 133-147.
van der Westhuizen, W., de Bruiyn, H., \& Meinjes, P., 2006. The Ventersdorp Supergroup. In: M., Johnson, C., Anhaeusser \& R., Thomas, eds. The Geology of South Africa. s.I.: Geological Society of South Africa Johanessburg and the Council for Geoscience Pretoria, p. 187-208.

Van Niekerk, H., 2006. The origin of the Kheis Terrane and its relationship with the Archean Kaapvaal Craton and the Grenvillian Namaqua Province in southern Africa. Unpublished PhD. Thesis. The University of Johannesburg.

Van Schalkwyk, J., \& Beukes, N., 1986. The Sishen iron ore deposit, Griqualand West. In: C., Anhaeusser \& S., Maske, eds. Mineral Deposits of Southern Africa. Johannesburg: Geological Society of South Africa, p. 931-956.

Visser, D., 1998. The geotectonic evolution of South Africa and offshore areas. Explanation of 1:1 000000 structure map of South Africa. Pretoria: Council for Geoscience.
von Engelhardt, W., 1990. Distribution, petrography and shock metamorphism of the ejecta of the Ries crater in Germany - a review. Tectonophysics, Volume 171, p. 259-273.

Walker, G., 1871. Grain size characteristics of pyroclastic deposits. Journal of Geology, Volume 79, p. 696-714.

Warme, J., Morgan, M. \& Kuehner, H.-C., 2002. Impact-generated carbonate accretionary lapilli in the Late Devonian Alamo Breccia. Geological Society of America Special Paper, Volume 356, p. 489-504.

Wieland, F., Gibson, R., \& Reimold, W., 2005. Structural analysis of the collar of the Vredefort Dome, South Africa-Significance for impact-related deformation and central uplift formation. Meteoritics \& Planetary Science, 40(9-10), p. 1537-1554.

Win, M., Enami, M., Kato, T., \& Thu, Y., 2017. A mechanism for Nb incorporation in rutile and application of Zr -in-rutile thermometry: a case study from granulite facies paragneisses of the Mogok metamorphic belt, Myanmar. Mineral Magazine, Volume 81, p. 1503-1521.
8. Appendix
8.1 Appendix A - Khumani Mine

Appendix A. 1 - Sample photos

A.1.1: Four pieces of ACKS1.

A.1.2: ACKS2.

A.1.3: ACKS3.

A.1.4: ACKS4.

A.1.5: ACKS5.

A.1.6: ACKS6.

Appendix A. 2 - Thin section photos

A.2.1: Four thin section photos of the four pieces of ACKS1.

A.2.2: As indicated on the thin sections, these are thin section photos of ACKS2 and ACK3.

A.2.3: Thin section photos of ACKS4.

A.2.4: As indicated on the thin sections, these are thin section photos of ACKS5 and three sample pieces of ACKS6.
Appendix A. 3 - Scanning electron microscopy photomicrographs

Al $K \alpha 1$

A.3.1: Compositional EDS maps of an accretionary lapillus of ACKS1.

8.2 Appendix B - Turner Exploration Camp

Appendix B. 1 - Sample photos

B.1.1: TNS1

B.1.2: TNS2

B.1.3: TNS3

B.1.4: TNS4.

B.1.5: TNS5

B.1.6: TNS6

B.1.7: TNS7

B.1.8: TNS8

B.1.9: TNS9

B.1.10: TNS10

B.1.11: TNS11

B.1.12: TNS12

B.1.13: TNS13

B.1.14: TNS14

B.1.15: TNS15

B.1.16: TNS16

B.1.18: TNS18

Appendix B. 2 - Thin section photos

B.2.1: As indicated on the thin sections, these are thin section photos of TNS1, TNS2, TNS4, TNS6, TNS7, TNS8, TNS9 and TNS10. ERSI I I of the

B.2.2: As indicated on the thin sections, these are thin section photos of TNS11, TNS12, TNS14, TNS14, TNS15, TNS16, TNS17 and TNS18.

Appendix B. 3 - Scanning electron microscopy photomicrographs

B.3.1: BSE images of zircon, quartz and ilmenite in TNS1.

A.3.2: BSE images of quartz, zircon and ilmenite in TNS1. An accretionary lapillus is also depicted.

A.3.3: BSE images of zircon grains on the first row and potential rutile grains on the second row in TNS1.

A.3.4: BSE images of quartz and zircon grains in a fine-grained matrix consisting of acicular ilmenite in TNS18.

A.3.5: BSE images of the matrix of TNS18.

A.3.6: BSE images of matrix of TNS18.

A.3.7: Zircon grain in TNS18.

A.3.8: Zircon grains in TNS18.

B.3.9: Compositional EDS maps of a nucleated accretionary lapillus in TNS2.

B.3.10: Compositional EDS maps of a nucleated accretionary lapillus in TNS2.

UNIVERSITY of the
WESTERN CAPE

B.3.11: Compositional EDS maps of part of the matrix in TNS2.

UNIVERSITY of the
WESTERN CAPE

Appendix B. 4 - Raman spectroscopy photomicrographs and data

B.4.1: Rutile and anatase grains in TNS1 under reflected light.

B.4.2: Rutile and anatase grains in TNS1 under reflected light.

B.4.3: Rutile and anatase grains in TNS1 under reflected light.

B.4.4: Rutile and anatase grains in TNS18 under reflected light.

B.4.5: Rutile and anatase grains in TNS18 under reflected light.
B.4.6: Table showing the Raman shift of the first 15 of 32 analysed grains of TNS1.

TNS1	Turner Exploration Campe															
	Intensity (A.U)	Raman shift (cm^{-1})														
		Grain 1	Grain 2	Grain 3	Grain 4	Grain 5	Grain 6	Grain 7	Grain 8	Grain 9	Grain 10	Grain 11	Grain 12	Grain 13	Grain 14	Grain 15
	-38,6	24,0	15,0	31,0	23,0	29,0	25,0	25,0	22,0	13,0	21,0	35,0	25,0	24,0	25,0	21,0
	-37,3	24,0	17,0	17,0	21,0	25,0	24,0	15,0	17,0	17,0	13,0	25,0	17,0	20,0	21,0	21,0
	-35,9	21,0	19,0	29,0	27,0	29,0	19,0	29,0	24,0	23,0	27,0	36,0	27,0	25,0	21,0	19,0
	-34,6	27,0	24,0	27,0	25,0	28,0	29,0	27,0	25,0	29,0	21,0	32,0	24,0	29,0	24,0	19,0
	-33,3	20,0	21,0	21,0	24,0	30,0	15,0	33,0	23,0	23,0	26,0	35,0	27,0	24,0	28,0	21,0
	-32,0	21,0	23,0	27,0	21,0	30,0	27,0	28,0	27,0	23,0	26,0	38,0	31,0	26,0	21,0	23,0
	-30,7	21,0	21,0	11,0	23,0	21,0	27,0	23,0	28,0	29,0	25,0	33,0	28,0	23,0	26,0	19,0
	-29,4	27,0	23,0	21,0	23,0	21,0	23,0	23,0	25,0	27,0	19,0	21,0	25,0	28,0	25,0	26,0
	-28,1	25,0	23,0	19,0	23,0	31,0	25,0	29,0	22,0	25,0	22,0	34,0	23,0	24,0	27,0	21,0
	-26,8	22,0	27,0	26,0	25,0	27,0	29,0	19,0	23,0	25,0	25,0	34,0	24,0	22,0	25,0	19,0
	-25,5	15,0	20,0	22,0	24,0	24,0	27,0	24,0	27,0	23,0	21,0	37,0	27,0	29,0	23,0	25,0
	-24,2	21,0	24,0	25,0	26,0	27,0	27,0	23,0	24,0	26,0	27,0	42,0	28,0	27,0	25,0	26,0
	-22,9	25,0	23,0	23,0	23,0	23,0	27,0	24,0	22,0	21,0	24,0	33,0	17,0	19,0	25,0	25,0
	-21,6	25,0	28,0	27,0	19,0	32,0	26,0	27,0	19,0	27,0	19,0	34,0	24,0	28,0	23,0	15,0
	-20,3	21,0	21,0	21,0	18,0	26,0	28,0	21,0	21,0	29,0	16,0	37,0	24,0	27,0	27,0	26,0
	-19,0	25,0	27,0	25,0	29,0	31,0	21,0	25,0	25,0	22,0	25,0	32,0	26,0	21,0	19,0	19,0
	-17,7	28,0	26,0	25,0	21,0	23,0	23,0	27,0	24,0	31,0	23,0	34,0	26,0	34,0	23,0	24,0
	-16,4	22,0	19,0	23,0	31,0	31,0	23,0	25,0	24,0	19,0	25,0	38,0	23,0	31,0	23,0	22,0
	-15,1	26,0	22,0	18,0	23,0	28,0	33,0	27,0	30,0	29,0	24,0	36,0	22,0	26,0	28,0	26,0
	-13,8	24,0	23,0	25,0	30,0	30,0	28,0	25,0	33,0	23,0	21,0	35,0	27,0	27,0	19,0	23,0
	-12,5	17,0	24,0	26,0	27,0	25,0	32,0	21,0	27,0	32,0	23,0	35,0	23,0	25,0	19,0	28,0
	-11,2	27,0	25,0	29,0	23,0	35,0	31,0	31,0	25,0	27,0	24,0	43,0	27,0	25,0	28,0	25,0
	-9,8	23,0	25,0	27,0	25,0	29,0	36,0	24,0	29,0	27,0	30,0	40,0	31,0	27,0	20,0	29,0
	-8,5	21,0	23,0	23,0	25,0	33,0	28,0	31,0	28,0	38,0	29,0	35,0	23,0	25,0	24,0	27,0
	-7,2	29,0	26,0	34,0	23,0	31,0	35,0	29,0	33,0	33,0	39,0	35,0	31,0	28,0	23,0	29,0
	-5,9	33,0	17,0	35,0	39,0	37,0	31,0	45,0	36,0	37,0	30,0	51,0	35,0	37,0	26,0	35,0
	-4,6	31,0	28,0	51,0	47,0	59,0	53,0	47,0	53,0	55,0	52,0	63,0	53,0	55,0	31,0	53,0
	-3,3	67,0	49,0	219,0	227,0	214,0	231,0	239,0	277,0	229,0	234,0	258,0	229,0	245,0	73,0	244,0
	-2,0	156,0	159,0	682,0	671,0	654,0	704,0	677,0	761,0	699,0	665,0	713,0	630,0	628,0	164,0	615,0
	-0,7	285,0	308,0	1247,0	1248,0	1259,0	1280,0	1225,0	1400,0	1282,0	1188,0	1255,0	1119,0	1135,0	266,0	1128,0
	0,6	359,0	405,0	1664,0	1680,0	1775,0	1769,0	1571,0	1795,0	1769,0	1603,0	1527,0	1476,0	1669,0	335,0	1568,0
	1,9	271,0	302,0	1289,0	1320,0	1271,0	1288,0	1239,0	1372,0	1369,0	1220,0	1210,0	1199,0	1231,0	298,0	1166,0
	3,2	195,0	198,0	757,0	903,0	909,0	859,0	715,0	824,0	976,0	865,0	801,0	736,0	811,0	185,0	769,0
	4,5	69,0	83,0	254,0	266,0	275,0	284,0	265,0	251,0	281,0	235,0	239,0	199,0	238,0	58,0	219,0
	5,8	23,0	23,0	43,0	42,0	52,0	51,0	47,0	43,0	41,0	48,0	57,0	37,0	43,0	31,0	47,0
	7,1	25,0	23,0	33,0	38,0	41,0	38,0	42,0	33,0	40,0	32,0	42,0	34,0	37,0	27,0	39,0
	8,4	21,0	25,0	30,0	27,0	36,0	25,0	30,0	31,0	31,0	31,0	46,0	30,0	27,0	28,0	29,0
	9,7	23,0	26,0	31,0	25,0	32,0	29,0	29,0	36,0	38,0	33,0	41,0	33,0	35,0	26,0	34,0
	11,0	23,0	29,0	29,0	31,0	35,0	30,0	35,0	30,0	29,0	25,0	37,0	27,0	35,0	23,0	20,0
	12,3	29,0	28,0	26,0	21,0	31,0	23,0	29,0	27,0	33,0	30,0	44,0	29,0	29,0	26,0	25,0
	13,6	23,0	31,0	21,0	30,0	31,0	29,0	28,0	30,0	25,0	26,0	46,0	27,0	26,0	31,0	24,0
	14,9	15,0	24,0	23,0	29,0	31,0	32,0	27,0	27,0	32,0	27,0	40,0	30,0	26,0	26,0	31,0
	16,2	26,0	25,0	25,0	25,0	33,0	31,0	31,0	27,0	27,0	23,0	46,0	28,0	28,0	24,0	30,0
	17,5	25,0	29,0	29,0	27,0	31,0	31,0	24,0	25,0	28,0	28,0	39,0	27,0	24,0	27,0	33,0
	18,8	23,0	25,0	26,0	30,0	31,0	31,0	27,0	30,0	28,0	26,0	39,0	35,0	23,0	26,0	28,0
	20,1	13,0	25,0	27,0	29,0	41,0	30,0	27,0	29,0	29,0	23,0	37,0	31,0	27,0	28,0	30,0
	21,3	26,0	22,0	27,0	25,0	36,0	21,0	29,0	32,0	25,0	24,0	42,0	19,0	26,0	24,0	28,0
	22,6	25,0	28,0	28,0	23,0	35,0	24,0	29,0	29,0	30,0	23,0	37,0	27,0	24,0	21,0	26,0
	23,9	30,0	23,0	23,0	27,0	29,0	29,0	31,0	29,0	32,0	22,0	45,0	31,0	23,0	26,0	19,0
	25,2	25,0	26,0	28,0	32,0	30,0	30,0	30,0	27,0	32,0	31,0	49,0	25,0	31,0	23,0	23,0
	26,5	26,0	26,0	20,0	22,0	25,0	23,0	27,0	27,0	32,0	23,0	46,0	26,0	33,0	29,0	31,0
	27,8	25,0	27,0	26,0	30,0	33,0	28,0	17,0	25,0	25,0	30,0	39,0	27,0	29,0	33,0	21,0
	29,1	23,0	29,0	21,0	32,0	35,0	33,0	28,0	23,0	36,0	21,0	41,0	29,0	28,0	29,0	25,0
	30,4	19,0	28,0	30,0	29,0	40,0	27,0	27,0	29,0	28,0	32,0	35,0	25,0	31,0	31,0	15,0
	31,7	27,0	25,0	32,0	29,0	25,0	33,0	25,0	27,0	27,0	31,0	55,0	30,0	27,0	28,0	31,0
	33,0	23,0	23,0	23,0	31,0	44,0	35,0	31,0	30,0	27,0	-31,0	49,0	29,0	28,0	35,0	32,0
	34,3	21,0	20,0	29,0	28,0	39,0	29,0	25,0	27,0	36,0	27,0	53,0	31,0	30,0	24,0	25,0
	35,6	29,0	26,0	25,0	29,0	44,0	32,0	23,0	34,0	35,0	30,0	61,0	35,0	31,0	29,0	25,0
	36,9	21,0	28,0	31,0	31,0	37,0	31,0	32,0	33,0	38,0	31,0	59,0	38,0	35,0	26,0	29,0
	38,2	30,0	25,0	31,0	38,0	46,0	43,0	45,0	27,0	41,0	24,0	82,0	39,0	39,0	39,0	25,0
	39,5	30,0	34,0	38,0	35,0	58,0	48,0	39,0	43,0	49,0	31,0	93,0	42,0	47,0	40,0	40,0
	40,8	20,0	38,0	40,0	59,0	76,0	74,0	55,0	50,0	71,0	49,0	165,0	65,0	47,0	51,0	40,0
	42,1	29,0	44,0	59,0	82,0	95,0	91,0	66,0	61,0	88,0	62,0	235,0	93,0	81,0	63,0	64,0
	43,4	43,0	51,0	79,0	110,0	155,0	138,0	97,0	88,0	136,0	79,0	346,0	133,0	109,0	81,0	78,0
	44,7	41,0	76,0	107,0	153,0	255,0	195,0	135,0	118,0	185,0	111,0	554,0	185,0	151,0	119,0	111,0
	46,0	60,0	102,0	155,0	235,0	360,0	279,0	189,0	175,0	265,0	153,0	812,0	268,0	217,0	159,0	154,0
	47,2	71,0	130,0	214,0	307,0	498,0	372,0	251,0	224,0	377,0	195,0	1091,0	327,0	283,0	225,0	209,0
	48,5	92,0	162,0	262,0	391,0	622,0	477,0	336,0	282,0	473,0	253,0	1398,0	419,0	392,0	266,0	251,0
	49,8	109,0	195,0	316,0	469,0	752,0	562,0	389,0	335,0	585,0	294,0	1661,0	509,0	452,0	325,0	303,0
	51,1	119,0	212,0	357,0	518,0	858,0	649,0	459,0	403,0	679,0	339,0	1920,0	561,0	505,0	356,0	361,0
	52,4	136,0	244,0	413,0	612,0	966,0	733,0	519,0	450,0	759,0	361,0	2160,0	636,0	587,0	427,0	398,0
	53,7	158,0	277,0	445,0	668,0	1025,0	807,0	535,0	491,0	861,0	403,0	2368,0	685,0	629,0	456,0	417,0
	55,0	164,0	271,0	477,0	697,0	1139,0	869,0	604,0	529,0	898,0	447,0	2554,0	759,0	689,0	490,0	458,0
	56,3	164,0	293,0	512,0	743,0	1193,0	924,0	617,0	563,0	963,0	473,0	2741,0	792,0	740,0	533,0	490,0
	57,6	181,0	324,0	550,0	796,0	1315,0	947,0	653,0	605,0	1010,0	501,0	2822,0	833,0	771,0	541,0	521,0
	58,9	189,0	327,0	571,0	802,0	1309,0	1006,0	678,0	601,0	1014,0	526,0	2899,0	866,0	771,0	589,0	527,0
	60,2	191,0	344,0	591,0	823,0	1355,0	1033,0	718,0	625,0	1033,0	559,0	3041,0	916,0	812,0	610,0	523,0
	61,5	202,0	355,0	584,0	868,0	1422,0	1059,0	698,0	629,0	1088,0	553,0	3109,0	908,0	848,0	599,0	556,0
	62,7	202,0	352,0	549,0	860,0	1409,0	1087,0	701,0	649,0	1099,0	549,0	3097,0	891,0	861,0	617,0	559,0
	64,0	209,0	345,0	595,0	851,0	1415,0	1066,0	695,0	643,0	1126,0	553,0	3151,0	904,0	866,0	617,0	549,0
	65,3	208,0	383,0	601,0	876,0	1465,0	1059,0	727,0	631,0	1146,0	563,0	3199,0	927,0	877,0	632,0	543,0
	66,6	219,0	373,0	629,0	905,0	1515,0	1116,0	774,0	686,0	1169,0	628,0	3275,0	958,0	909,0	678,0	597,0
	67,9	243,0	395,0	648,0	965,0	1596,0	1181,0	815,0	712,0	1224,0	654,0	3480,0	1040,0	965,0	675,0	620,0
	69,2	266,0	419,0	707,0	1045,0	1701,0	1254,0	851,0	763,0	1294,0	713,0	3732,0	1118,0	995,0	733,0	661,0
	70,5	267,0	481,0	792,0	1137,0	1875,0	1387,0	930,0	880,0	1381,0	792,0	4086,0	1220,0	1117,0	824,0	749,0
	71,8	335,0	511,0	847,0	1227,0	2095,0	1561,0	1016,0	957,0	1539,0	910,0	4364,0	1347,0	1278,0	874,0	805,0
	73,1	366,0	570,0	950,0	1375,0	2294,0	1669,0	1135,0	1041,0	1715,0	1005,0	4840,0	1490,0	1385,0	946,0	938,0
	74,3	393,0	618,0	1079,0	1483,0	2503,0	1817,0	1243,0	1171,0	1893,0	1088,0	5137,0	1612,0	1497,0	1056,0	961,0
	75,6	417,0	652,0	1118,0	1591,0	2644,0	1977,0	1334,0	1269,0	1940,0	1155,0	5472,0	1741,0	1631,0	1129,0	1043,0
	76,9	475,0	673,0	1217,0	1706,0	2824,0	2041,0	1412,0	1331,0	2100,0	1216,0	5712,0	1795,0	1687,0	1226,0	1107,0
	78,2	477,0	731,0	1264,0	1783,0	3000,0	2186,0	1484,0	1446,0	2225,0	1256,0	6038,0	1878,0	1768,0	1265,0	1181,0
	79,5	545,0	759,0	1353,0	1860,0	3131,0	2227,0	1541,0	1489,0	2303,0	1334,0	6168,0	1952,0	1888,0	1339,0	1225,0
	80,8	542,0	754,0	1415,0	1961,0	3265,0	2315,0	1629,0	1521,0	2349,0	1403,0	6352,0	2058,0	1939,0	1395,0	1293,0
	82,1	603,0	831,0	1389,0	1989,0	3305,0	2487,0	1668,0	1604,0	2482,0	1453,0	6585,0	2095,0	2051,0	1427,0	1355,0
	83,4	631,0	867,0	1466,0	2106,0	3533,0	2522,0	1743,0	1675,0	2563,0	1477,0	6708,0	2148,0	2102,0	1501,0	1375,0
	84,6	627,0	866,0	1559,0	2153,0	3618,0	2615,0	1818,0	1713,0	2575,0	1477,0	6771,0	2176,0	2169,0	1553,0	1452,0

84,6	627,0	866,0	1559,0	2153,0	3618,0	2615,0	1818,0	1713,0	2575,0	1477,0	6771,0	2176,0	2169,0	1553,0	1452,0
85,9	665,0	882,0	599,0	2181,0	3715,0	2621,0	1819,0	1791,0	2682,0	1492,0	3,0	2150,0	2205,0	1578,0	1467,0
87,2	685,0	892,0	1609,0	2214,0	3734,0	2693,0	1865,0	1790,0	2747,0	1501,0	6912,0	2206	288	1,0	1464,0
88,5	722,0	937,0	1619,0	2227,0	3831,0	2739,0	1924,0	1805,0	2752,0	1502,0	7050,0	2234,0	2294,0	1724,0	1491,
89,8	741,0	942,0	1663,0	2360,0	3880,0	2794,0	1942,0	1853,0	2808,0	1501,0	7045,0	2233,0	2247,0	1705,0	1561,0
91,1	763,0	985,0	1701,0	2365,0	4060,0	2864,0	2012,0	1923,0	2872,0	1459,0	7113,0	2271,0	2370,0	1807,0	1591,0
92,4	813,0	1031,0	1741,0	2414,0	4169,0	2905,0	2105,0	1921,0	2903,0	1521,0	7172,0	2262,0	2472,0	1837,0	1649,0
93,6	831,0	1045,0	1774,0	2513,0	4220,0	3005,0	2139,0	2022,0	2933,0	1528,0	7144,0	2275,0	2451,0	1895,0	1672,0
94,9	892,0	1056,0	1782,0	2518,0	4357,0	2993,0	2139,0	2035,0	3023,0	1478,0	7255,0	2287,0	2527,0	1961,0	1709,0
96,2	903,0	1104,0	1827,0	2593,0	4446,0	3097,0	2135,0	2073,0	3015,0	1496,0	7267,0	2346,0	2591,0	2056,0	1689,
97,5	957,0	1096,0	1803,0	2615,0	4497,0	3107,0	2198,0	2113,0	3116,0	1456,0	7312,0	2357,0	2625,0	2115,0	1757,0
98,8	1015,0	1157,0	1889,0	2653,0	4721,0	3206,0	2202,0	2160,0	3150,0	1451,0	7388,0	2395,0	2710,0	2188,0	1822,0
100,1	1015,0	1201,0	1920,0	2676,0	4838,0	3249,0	2268,0	2196,0	3212,0	1449,0	7461,0	2456,0	2678,0	2215,0	1815,0
101,3	1065,0	1235,0	1949,0	2795,0	4933,0	3288,0	2301,0	2199,0	3201,0	1434,0	7606,0	2470,0	2751,0	2303,0	1874,0
102,6	1163,0	1264,0	1972,0	2797,0	5050,0	3415,0	2263,0	2240,0	3285,0	1430,0	7484,0	2420,0	2804,0	2441,0	1889,0
103,9	1175,0	1350,0	2029,0	2845,0	5115,0	3428,0	2357,0	2268,0	3314,0	1393,0	7603,0	2437,0	2829,0	2506,0	1923,0
105,2	1255,0	1391,0	2049,0	2853,0	5232,0	441,0	2391,0	2301,0	3391,0	1452,0	7541,0	2393,0	2909,0	2615,0	1967,0
106,5	1365,0	1411,0	2103,0	2927,0	5451,0	591,0	2475,0	2368,0	3462,0	1405,0	7700,0	2367,0	2943,0	2754,0	1983,0
107,8	1439,0	1488,0	2105,0	3006,0	5525,0	3567,0	2490,0	2398,0	3467,0	1437,0	7669,0	2385,0	3018,0	2836,0	2034,0
109,0	1485,0	1553,0	2141,0	3082,0	5685,0	3665,0	2577,0	2449,0	3535,0	1425,0	7610,0	2340,0	3074,0	2955,0	2067,0
110,3	1573,0	1622,0	2188,0	3106,0	5817,0	3675,0	2581,0	2493,0	3568,0	1419,0	7713,0	2318,0	3095,0	3139,0	2133,0
111,6	1641,0	1686,0	2199,0	3163,0	6025,0	3779,0	2607,0	2495,0	3575,0	1450,0	7737,0	2325,0	3199,0	3228,0	2144,0
112,9	1756,0	1773,0	2297,0	3231,0	6123,0	3855,0	2663,0	2558,0	3671,0	1385,0	7788,0	2378,0	3251,0	3383,0	2200,0
114,2	1849,0	1863,0	2339,0	3244,0	6397,0	3835,0	2721,0	2592,0	3669,0	1349,0	7797,0	2391,0	3324,0	3545,0	2183,0
115,5	1945,0	1983,0	2336,0	3325,0	6531,0	979,0	2740,0	2623,0	3736,0	1394,0	7740,0	2422,0	3393,0	3726,0	2273,0
116,7	2093,0	2113,0	2410,0	3374,0	6828,0	3955,0	2792,0	2684,0	3788,0	1424,0	7769,0	2365,0	3449,0	3971,0	2352,0
118,0	2221,0	2221,0	2433,0	3400,0	7023,0	4128,0	2853,0	2744,0	3857,0	1417,0	7825,0	2436,0	3613,0	4221,0	2409,0
119,3	2388,0	2401,0	2445,0	3428,0	7307,0	4131,0	2855,0	2767,0	3884,0	1422,0	7797,0	2486,0	3689,0	4481,0	2431,0
120,6	2647,0	2610,0	2487,0	3499,0	7717,0	4206,0	2905,0	2801,0	3960,0	1411,0	7938,0	2471,0	3784,0	4898,0	2430,0
121,9	2887,0	2814,0	2532,0	3530,0	8028,0	4294,0	2982,0	2818,0	3998,0	1395,0	7953,0	2448,0	3791,0	5256,0	2483,0
123,1	3161,0	3097,0	2546,0	3595,0	8431,0	4291,0	3002,0	2881,0	4035,0	1422,0	8134,0	2460,0	3993,0	5753,0	2512,0
124,4	3534,0	3359,0	2569,0	3575,0	8857,0	4385,0	2992,0	2895,0	4041,0	1420,0	8214,0	2526,0	4112,0	6314,0	2550,0
125,7	3920,0	3833,0	2618,0	3677,0	9435,0	4425,0	3087,0	2877,0	4065,0	1402,0	8333,0	2506,0	4201,0	7060,0	2511,0
127,0	4447,0	4281,0	2644,0	3731,0	10035,0	4449,0	3102,0	2961,0	4082,0	1413,0	8529,0	2503,0	4307,0	7943,0	2552,0
128,2	5104,0	4873,0	2649,0	3745,0	10959,0	4579,0	3110,0	2905,0	4232,0	1406,0	8675,0	2590,0	4533,0	8923,0	2527,0
129,5	5920,0	5613,0	2687,0	3753,0	11924,0	4569,0	3131,0	2963,0	4165,0	1389,0	8784,0	2674,0	4765,0	10203,0	2668,0
130,8	6936,0	6583,0	2648,0	3798,0	13108,0	4635,0	3140,0	2982,0	4187,0	1412,0	9074,0	2822,0	5063,0	11916,0	2709,0
132,1	8278,0	7828,0	2683,0	3841,0	14699,0	4740,0	3190,0	3013,0	4199,0	1416,0	9475,0	2819,0	5413,0	14083,0	2715,0
133,4	10095,0	9523,0	2738,0	3856,0	16475,0	4829,0	3192,0	3048,0	4251,0	1403,0	9958,0	2829,0	5911,0	17054,0	2666,0
134,6	12569,0	12045,0	2739,0	3906,0	19097,0	4961,0	3215,0	3071,0	4261,0	1387,0	10493,0	2780,0	6526,0	20831,0	2671,0
135,9	16047,0	15407,0	2756,0	3876,0	22431,0	5098,0	3237,0	3089,0	4319,0	1408,0	11354,0	2829,0	7137,0	26131,0	2645,0
137,2	21120,0	20209,0	2762,0	3866,0	27116,0	5283,0	3209,0	3131,0	4299,0	1414,0	12455,0	2897,0	8284,0	33419,0	2669,0
138,5	28434,0	27309,0	2701,0	3988,0	33107,0	5551,0	3318,0	3093,0	4369,0	1378,0	14327,0	2907,0	9825,0	43326,0	2615,0
139,7	38033,0	36883,0	2807,0	4024,0	40607,0	5833,0	3337,0	3179,0	4427,0	1437,0	16721,0	3079,0	11792,0	55751,0	2673,0
141,0	50613,0	48167,0	2723,0	4009,0	50461,0	6178,0	3343,0	3251,0	4507,0	1396,0	19873,0	3202,0	14069,0	64940,0	2732,0
142,3	62842,0	58958,0	2833,0	4051,0	60273,0	6566,0	3447,0	3329,0	4499,0	1406,0	23524,0	3210,0	16386,0	64940,0	2697,0
143,6	64940,0	63245,0	2820,0	4143,0	64940,0	6793,0	3459,0	3261,0	4610,0	1406,0	25722,0	3222,0	17885,0	64940,0	2744,0
144,9	64940,0	58717,0	2833,0	4172,0	64940,0	6744,0	3457,0	3309,0	4571,0	1429,0	24949,0	3105,0	17868,0	64940,0	2686,0
146,1	54235,0	47711,0	2870,0	4133,0	64940,0	6449,0	3377,0	3312,0	4629,0	1451,0	21941,0	2935,0	16563,0	64940,0	2727,0
147,4	40896,0	35622,0	2811,0	4109,0	59829,0	6274,0	3437,0	3277,0	4615,0	1447,0	18498,0	2797,0	14146,0	62403,0	2680,0
148,7	29946,0	25885,0	2846,0	4157,0	49990,0	5890,0	3403,0	3316,0	4536,0	1461,0	15578,0	2728,0	11802,0	48997,0	2681,0
150,0	21931,0	18911,0	2853,0	4099,0	40617,0	5613,0	3451,0	3317,0	4517,0	1456,0	13640,0	2620,0	9876,0	38077,0	2676,0
151,2	16584,0	14076,0	2881,0	4094,0	32937,0	5436,0	3411,0	3305,0	4489,0	1440,0	12112,0	2572,0	8395,0	30156,0	2683,0
152,5	12725,0	10912,0	2877,0	4168,0	27087,0	5248,0	3425,0	3337,0	4551,0	1459,0	11145,0	2513,0	7336,0	23992,0	2699,0
153,8	10019,0	8582,0	2837,0	4134,0	22646,0	5163,0	3421,0	3334,0	4507,0	1488,0	10379,0	2527,0	6491,0	19379,0	2617,0
155,1	8025,0	6947,0	2841,0	4140,0	19190,0	5051,0	3429,0	3346,0	4531,0	1501,0	9805,0	2445,0	5967,0	15834,0	2705,0
156,3	6659,0	5691,0	2871,0	4159,0	16491,0	5019,0	3413,0	3401,0	4547,0	1496,0	9420,0	2460,0	5614,0	13159,0	2712,0
157,6	5480,0	4909,0	2913,0	4157,0	14500,0	4978,0	3421,0	3359,0	4490,0	1513,0	9118,0	2434,0	5231,0	11002,0	2668,0
158,9	4618,0	4142,0	2860,0	4091,0	12993,0	4986,0	3457,0	3372,0	4487,0	1541,0	8894,0	2410,0	4964,0	9373,0	2683,0
160,1	3935,0	3598,0	2861,0	4115,0	11629,0	4843,0	3448,0	3385,0	4469,0	1523,0	8730,0	2416,0	4777,0	8073,0	2692,0
161,4	3406,0	3162,0	2851,0	4097,0	10657,0	4921,0	3465,0	3409,0	4501,0	1541,0	8613,0	2445,0	4614,0	7108,0	2708,0
162,7	2977,0	2783,0	2885,0	4172,0	9897,0	4908,0	3453,0	3436,0	4476,0	1536,0	8465,0	2398,0	4465,0	6204,0	2682,0
164,0	2619,0	2508,0	2851,0	4123,0	9125,0	4810,0	3508,0	3375,0	4431,0	1581,0	8333,0	2407,0	4338,0	5535,0	2665,0
165,2	2319,0	2287,0	2809,0	4166,0	8559,0	4814,0	3449,0	3417,0	4479,0	1553,0	8292,0	2409,0	4209,0	4965,0	2621,0
166,5	2071,0	2069,0	2852,0	4148,0	8143,0	4769,0	3403,0	3424,0	4429,0	1530,0	8310,0	2408,0	4125,0	4424,0	2630,0
167,8	1899,0	1899,0	2852,0	4111,0	7739,0	4838,0	3435,0	3445,0	4482,0	1566,0	8194,0	2382,0	4081,0	4025,0	2676,0
169,1	1685,0	1741,0	2856,0	4179,0	7395,0	4791,0	3443,0	3413,0	4477,0	1571,0	8087,0	2390,0	4027,0	3629,0	2643,0
170,3	1573,0	1635,0	2778,0	4195,0	7111,0	4731,0	3468,0	3421,0	4438,0	1552,0	8143,0	2406,0	3921,0	3369,0	2649,0
171,6	1417,0	1533,0	2751,0	4157,0	6899,0	4809,0	3441,0	3453,0	4482,0	1491,0	8087,0	2386,0	3961,0	3079,0	2629,0
172,9	1295,0	1473,0	2792,0	4179,0	6628,0	4727,0	3475,0	3389,0	4388,0	1534,0	8064,0	2411,0	3923,0	2845,0	2625,0
174,1	1213,0	1377,0	2777,0	4194,0	6357,0	4813,0	3467,0	3491,0	4386,0	1553,0	8061,0	2366,0	3887,0	2710,0	2617,0
175,4	1124,0	1271,0	2710,0	4109,0	6348,0	4711,0	3462,0	3403,0	4415,0	1524,0	8111,0	2398,0	3907,0	2501,0	2634,0
176,7	1042,0	1227,0	2723,0	4143,0	6103,0	4737,0	3469,0	3383,0	4407,0	1533,0	8065,0	2440,0	3889,0	2350,0	2628,0
178,0	995,0	1157,0	2715,0	4071,0	5947,0	4734,0	3463,0	3375,0	4403,0	1544,0	7940,0	2401,0	3921,0	2226,0	2615,0
179,2	898,0	1094,0	2754,0	4114,0	5813,0	4715,0	3437,0	3375,0	4359,0	1539,0	7920,0	2444,0	3839,0	2105,0	2581,0
180,5	843,0	1032,0	2644,0	4073,0	5690,0	4704,0	3387,0	3366,0	4361,0	1544,0	7968,0	2375,0	3727,0	1997,0	2575,0
181,8	806,0	969,0	2658,0	4028,0	5581,0	4653,0	3357,0	3330,0	4302,0	1592,0	7837,0	2390,0	3749,0	1863,0	2562,0
183,0	737,0	944,0	2647,0	3997,0	5513,0	4621,0	3366,0	3316,0	4301,0	1558,0	7978,0	2404,0	3752,0	1763,0	2553,0
184,3	707,0	899,0	2619,0	3915,0	5343,0	4594,0	3380,0	3265,0	4225,0	1546,0	7913,0	2461,0	3693,0	1663,0	2571,0
185,6	661,0	866,0	2601,0	3905,0	5221,0	4579,0	3317,0	3195,0	4253,0	1563,0	7917,0	2450,0	3601,0	1612,0	2553,0
186,8	643,0	852,0	2586,0	3865,0	5207,0	4541,0	3249,0	3199,0	4208,0	1585,0	7926,0	2426,0	3631,0	1533,0	2535,0
188,1	607,0	791,0	2577,0	3847,0	5124,0	4524,0	3307,0	3149,0	4189,0	1611,0	7901,0	2452,0	3611,0	1512,0	2579,0
189,4	611,0	802,0	2515,0	3797,0	5079,0	4501,0	3271,0	3087,0	4111,0	1617,0	7932,0	2495,0	3551,0	1431,0	2541,0
190,6	561,0	804,0	2559,0	3751,0	5069,0	4481,0	3213,0	3062,0	4100,0	1655,0	8045,0	2476,0	3589,0	1473,0	2550,0
191,9	597,0	861,0	2507,0	3801,0	5071,0	4503,0	3191,0	3081,0	4131,0	1695,0	8100,0	2533,0	3575,0	1522,0	2508,0
193,2	661,0	980,0	2533,0	3689,0	5170,0	4521,0	3209,0	3059,0	4129,0	1709,0	8179,0	2515,0	3616,0	1611,0	2536,0
194,4	839,0	1162,0	2512,0	3749,0	5358,0	4523,0	3219,0	3022,0	4019,0	1754,0	8383,0	2526,0	3567,0	1880,0	2552,0
195,7	1150,0	1464,0	2499,0	3792,0	5635,0	4493,0	3214,0	3006,0	4132,0	1825,0	8613,0	2600,0	3663,0	2159,0	2521,0
197,0	1447,0	1633,0	2507,0	3759,0	5849,0	4451,0	3204,0	2988,0	4105,0	1929,0	8610,0	2568,0	3719,0	2427,0	2553,0
198,2	1505,0	1480,0	2522,0	3782,0	5959,0	4535,0	3237,0	3001,0	4071,0	2086,0	8603,0	2552,0	3766,0	2453,0	2553,0
199,5	1189,0	1213,0	2537,0	3748,0	5776,0	4512,0	3253,0	2993,0	4129,0	2365,0	8389,0	2604,0	3725,0	2227,0	2549,0
200,8	896,0	1007,0	2467,0	3750,0	5575,0	4479,0	3240,0	2948,0	4074,0	2949,0	8225,0	2580,0	3675,0	1944,0	2537,0
202,0	699,0	874,0	2525,0	3743,0	5271,0	4532,0	3218,0	2944,0	4103,0	4046,0	8195,0	2619,0	3614,0	1681,0	2583,0
203,3	610,0	786,0	2517,0	3745,0	5164,0	4493,0	3262,0	2905,0	4120,0	4381,0	8091,0	2578,0	3565,0	1456,0	2590,0
204,6	547,0	734,0	2478,0	3807,0	4972,0	4527,0	3235,0	2957,0	4113,0	3228,0	8027,0	2528,0	3600,0	1332,0	2560,0
205,8	491,0	706,0	2471,0	3790,0	4947,0	4558,0	3277,0	2974,0	4101,0	2490,0	8118,0	2539,0	3533,0	1275,0	2592,0
207,1	450,0	663,0	2527,0	3777,0	4865,0	4517,0	3291,0	2955,0	4065,0	2296,0	8090,0	2522,0	3571,0	1153,0	2575,0
208,4	417,0	643,0	2483,0	3824,0	4799,0	4553,0	3295,0	2995,0	4119,0	2234,0	8071,0	2517,0	3515,0	1120,0	2551,0
209,6	399,0	645,0	2500, 0	3793,0	4805,0	4602,0	3292,0	2963,0	4185,0	2351,0	8081,0	2544,0	3572,0	1089,0	2611,0
210,9	396,0	607,0	2533,0	3834,0	4755,0	4617,0	3361,0	2957,0	4119,0	2417,0	8088,0	2587,0	3591,0	1019,0	2636,

2,2	383,0	595,0	2513,0	3835,0	4765,0	4586,0	3301,0	2994,0	4227,0	2577,0	8079,0	2608,0	3546,0	4,0	2584,0
213,4	358,0	595,0	2541,0	911,0	4673,0	4571,0	305,0	3046,0	4199,0	2656,0	10,0	632,0	3551,0	4,0	2621,0
214,7	335,0	617,0	2527,0	3777,0	4753,0	4661,0	3323,0	3005,0	4105,0	2622,0	8072,0	2677,0	3584,0	927,0	2652,0
216,0	346,0	586,0	2551,0	3900,0	4718,0	4683,0	3323,0	2991,0	4163,0	2477,0	8188,0	2577,0	3601,0	912,0	2645,0
217,2	343,0	575,0	2561,0	3936,0	4657,0	4657,0	3381,0	3066,0	4221,0	2506,0	8190,0	2548,0	3529,0	887,0	2631,0
218,5	323,0	582,0	2593,0	3995,0	4659,0	4698,0	3351,0	3064,0	4204,0	2708,0	8185,0	2479,0	3547,0	890,0	2665,0
219,8	315,0	564,0	2565,0	3939,0	4702,0	4734,0	3357,0	3127,0	4201,0	2996,0	8114,0	2499,0	3571,0	839,0	2662,0
221,0	303,0	547,0	2543,0	3941,0	4712,0	4789,0	3465,0	3176,0	4239,0	3430,0	8090,0	2498,0	3611,0	835,0	2681,0
222,3	311,0	541,0	2556,0	3995,0	4754,0	4711,0	3463,0	3134,0	4279,0	4130,0	8072,0	2475,0	3625,0	847,0	2717,0
223,5	296,0	541,0	2641,0	3996,0	4703,0	4839,0	3448,0	3253,0	4278,0	4913,0	8088,0	2572,0	3587,0	809,0	2707,0
224,8	285,0	539,0	2643,0	3955,0	4689,0	4801,0	3467,0	3257,	4331,0	5533,0	8055,0	2527,0	3641,0	814,0	2705
226,1	295,0	535,0	2641,0	4015,0	4719,0	4773,0	3553,0	3281,0	4290,0	4875,0	8140,0	2538,0	3652,0	784,0	2744,0
227,3	285,0	551,0	2601,0	4077,0	4729,0	4847,0	3573,0	3315,0	4324,0	3756,0	8039,0	2541,0	3692,0	771,0	2753,0
228,6	277,0	518,0	2649,0	4074,0	4731,0	4856,0	3561,0	3303,0	4312,0	2947,0	8103,0	2521,0	3677,0	777,0	2728,0
229,8	281,0	535,0	2666,0	4098,0	4728,0	4787,0	3589,0	3246,0	4408,0	2426,0	8088,0	2499,0	3703,0	745,0	2759,0
231,1	265,0	522,0	2645,0	4053,0	4781,0	4880,0	3572,0	3232,0	4423,0	2115,0	8152,0	2481,0	3669,0	737,0	2801,0
232,4	276,0	521,0	2713,0	4102,0	4734,0	4910,0	3591,0	3195,0	4377,0	1931,0	8107,0	2525,0	3689,0	735,0	2755,0
233,6	264,0	500,0	697,0	4174,0	4791,0	4977,0	597,0	3219,0	4422,0	1796,0	8119,0	2490,	3710,0	40,0	2797
234,9	265,0	517,0	715,0	4207,0	4803,0	4973,0	620,0	3233,0	4410,0	1724,0	8188,0	2592,0	3706,0	729,0	2809
236,2	255,0	516,0	2643,0	4179,0	4779,0	4967,0	3590,0	3227,0	4452,0	1657,0	8118,0	2521,0	3762,0	726,0	2843,0
237,4	268,0	531,0	2639,0	4195,0	4697,0	4959,0	3613,0	3213,0	4436,0	1583,0	8168,0	2550,0	3767,0	721,0	2852,0
238,7	255,0	511,0	2709,0	4262,0	4857,0	4995,0	3613,0	3202,0	4504,0	1600,0	8282,0	2570,0	3793,0	738,0	2857,0
239,9	245,0	528,0	2753,0	4225,0	4777,0	5030,0	3615,0	3203,0	4507,0	1509,0	8182,0	2614,0	3787,0	740,0	2909,0
241,2	233,0	517,0	2757,0	4241,0	4847,0	5077,0	3629,0	3226,0	4437,0	1495,0	8210,0	2603,0	3799,0	709,0	2846,0
242,5	246,0	522,0	2721,0	4215,0	4859,0	5076,0	3672,0	3193,0	4446,0	1499,0	8182,0	2590,0	3805,0	710,0	2881,0
243,7	243,0	514,0	2775,0	4264,0	4893,0	4983,0	3601,0	3253,0	4484,0	1465,0	8252,0	2613,0	3742,0	721,0	2905,0
245,0	252,0	501,0	2770,0	4266,0	4939,0	5081,0	3643,0	3258,0	4576,0	1433,0	8198,0	2676,0	3838,0	704,0	2913,0
246,2	237,0	512,0	2751,0	4235,0	4924,0	5077,0	3667,0	3258,0	4514,0	1438,0	8257,0	2659,0	3795,0	699,0	2910,0
247,5	247,0	512,0	2803,0	4267,0	4892,0	5045,0	3667,0	3245,0	4568,0	1413,0	8304,0	2591,0	3685,0	712,0	2887,0
248,7	250,0	508,0	2761,0	4319,0	4925,0	5088,0	3611,0	3272,0	4453,0	1381,0	8357,0	2622,0	3776,0	689,0	2943,0
250,0	243,0	538,0	2749,0	4313,0	4833,0	5107,0	3643,0	3257,0	4562,0	1394,0	8335,0	2631,0	3735,0	685,0	2917,0
251,3	245,0	503,0	2779,0	4301,0	4807,0	4955,0	3638,0	3313,0	4521,0	1363,0	8323,0	2630,0	3804,0	687,0	2871,0
252,5	242,0	530,0	2812,0	4324,0	4803,0	5095,0	3607,0	3276,0	4547,0	1391,0	8365,0	2616,0	3814,0	694,0	2883,0
253,8	253,0	517,0	2817,0	4301,0	4887,0	5047,0	3661,0	3258,0	4582,0	1394,0	8484,0	2628,0	3771,0	719,0	2874,0
255,0	235,0	522,0	2759,0	4282,0	4929,0	5078,0	3695,0	3273,0	4596,0	1372,0	8501,0	2694,0	3763,0	697,0	2855,0
256,3	247,0	519,0	2812,0	4324,0	4913,0	5072,0	3679,0	3255,0	4531,0	1344,0	8443,0	2666,0	3750,0	715,0	2838,0
257,5	245,0	507,0	2775,0	4311,0	4933,0	5003,0	3627,0	3251,0	4459,0	1364,0	8572,0	2699,0	3761,0	689,0	2845,0
258,8	237,0	513,0	2802,0	4255,0	4952,0	5008,0	3624,0	3269,0	4643,0	1321,0	8681,0	2714,0	3730,0	700,0	2819,0
260,1	239,0	549,0	2819,0	4336,0	4869,0	4979,0	3632,0	3223,0	4582,0	1355,0	9006,0	2787,0	3730,0	709,0	2859,0
261,3	239,0	545,0	2851,0	4217,0	4933,0	5007,0	3648,0	3267,0	4617,0	1326,0	9238,0	2828,0	3766,0	719,0	2837,0
262,6	247,0	529,0	2813,0	4284,0	4924,0	5019,0	3667,0	3247,0	4597,0	1343,0	9675,0	2848,0	3791,0	725,0	2883,0
263,8	264,0	541,0	2813,0	4275,0	4938,0	5058,0	3595,0	3256,0	4613,0	1310,0	9618,0	2919,0	3753,0	735,0	2828,0
265,1	265,0	556,0	2787,0	4275, 0	4958,0	4999,0	3599,0	3253,0	4591,0	1369,0	9144,0	2910,0	3763,0	719,0	2824,0
266,3	243,0	523,0	2822,0	4237,0	4928,0	5020,0	3611,0	3277,0	4652,0	1384,0	8882,0	2929,0	3788,0	742,0	2858,0
267,6	263,0	560,0	2749,0	4257,0	4968,0	5065,0	3621,0	3259,0	4573,0	1373,0	8766,0	2949,0	3802,0	756,0	2875,0
268,8	250,0	543,0	2821,0	4253,0	4976,0	4973,0	3559,0	3282,0	4660,0	1365,0	8663,0	2960,0	3767,0	693,0	2845,0
270,1	255,0	561,0	2778,0	4171,0	4961,0	4995,0	3543,0	3282,0	4543,0	1359,0	8622,0	2823,0	3799,0	765,0	2851,0
271,4	263,0	558,0	2857,0	4354,0	4957,0	5033,0	3591,0	3293,0	4516,0	1328,0	8554,0	2895,0	3703,0	733,0	2880
272,6	247,0	551,0	2855,0	4233,0	4979,0	5011,0	3633,0	3281,0	4633,0	1343,0	8547,0	2844,0	3811,0	735,0	854
273,9	257,0	564,0	2791,0	4265,0	4997,0	5013,0	3613,0	3375,0	4596,0	1358,0	8574,0	2829,0	3798,0	729,0	2847,0
275,1	269,0	569,0	2846,0	4279,0	4954,0	5005,0	3636,0	3329,0	4588,0	1359,0	8592,0	2794,0	3749,0	764,0	2839,0
276,4	267,0	561,0	2865,0	4243,0	4993,0	4922,0	3629,0	3295,0	4558,0	1326,0	8627,0	2764,0	3790,0	754,0	2855,0
277,6	264,0	547,0	2831,0	4245,0	5021,0	4995,0	3632,0	3343,0	4581,0	1355,0	8528,0	2681,0	3761,0	753,0	2871,0
278,9	278,0	559,0	2853,0	4280,0	4999,0	4957,0	3573,0	3335,0	4646,0	1335,0	8505,0	2683,0	3738,0	736,0	2898,0
280,1	269,0	568,0	2842,0	4287,0	4963,0	5031,0	3641,0	3390,0	4649,0	1338,0	8515,0	2645,0	3840,0	745,0	2874,0
281,4	278,0	590,0	2885,0	4251,0	5002,0	4987,0	3653,0	3327,0	4633,0	1311,0	8487,0	2610,0	3779,0	765,0	2827,0
282,6	286,0	579,0	2887,0	4268,0	4961,0	5011,0	3674,0	3366,0	4665,0	1328,0	8522,0	2639,0	3767,0	749,0	2874,0
283,9	297,0	618,0	2903,0	4291,0	4985,0	5003,0	3681,0	3412,0	4608,0	1343,0	8512,0	2593,0	3813,0	763,0	2831,0
285,1	279,0	587,0	2895,0	4332,0	5031,0	5023,0	3635,0	3369,0	4703,0	1334,0	8578,0	2587,0	3816,0	762,0	2827,0
286,4	314,0	611,0	2908,0	4287,0	5046,0	5055,0	3650,0	3446,0	4681,0	1374,0	8609,0	2587,0	3789,0	753,0	2849,0
287,6	313,0	632,0	2939,0	4285,0	5037,0	4963,0	3670,0	3498,0	4632,0	1347,0	8540,0	2591,0	3825,0	785,0	2869,0
288,9	318,0	615,0	2897,0	4334,0	5055,0	4993,0	3641,0	3497,0	4663,0	1366,0	8594,0	2557,0	3803,0	796,0	2894,0
290,1	329,0	605,0	2919,0	4325,0	5114,0	5031,0	3677,0	3614,0	4649,0	1357,0	8665,0	2564,0	3838,0	801,0	2854,0
291,4	335,0	640,0	2940,0	4375,0	5091,0	5050,0	3762,0	3634,0	4661,0	1349,0	8587,0	2555,0	3807,0	816,0	2855,0
292,6	340,0	675,0	2961,0	4395,0	5158,0	5062,0	3745,0	3664,0	4679,0	1349,0	8636,0	2537,0	3818,0	818,0	2949,0
293,9	331,0	669,0	2949,0	4332,0	5095,0	5051,0	3760,0	3727,0	4700, 0	1418,0	8724,0	2546,0	3861,0	837,0	2884,0
295,1	323,0	699,0	3006,0	4388,0	5163,0	5001,0	3775,0	3625,0	4745,0	1373,0	8640,0	2586,0	3883,0	824,0	2877,0
296,4	346,0	669,0	2929,0	4422,0	5178,0	5017,0	3779,0	3628,0	4746,0	1349,0	8708,0	2605,0	3900,0	834,0	2851,0
297,6	358,0	681,0	2969,0	4391,0	5099,0	5028,0	3787,0	3634,0	4751,0	1378,0	8630,0	2535,0	3851,0	811,0	2893,0
298,9	359,0	711,0	2999,0	4429,0	5136,0	5001,0	3777,0	3611,0	4724,0	1406,0	8787,0	2612,0	3902,0	861,0	2909,0
300,1	353,0	721,0	2974,0	4391,0	5209,0	5013,0	3853,0	3635,0	4741,0	1409,0	8700, 0	2575,0	3873,0	855,0	2907,0
301,4	371,0	732,0	2976,0	4459,0	5226,0	5076,0	3809,0	3612,0	4768,0	1408,0	8740,0	2568,0	3927,0	855,0	2942,0
302,6	377,0	736,0	3001,0	4385,0	5199,0	5084,0	3844,0	3599,0	4791,0	1417,0	8689,0	2590,0	3938,0	857,0	2889,0
303,9	368,0	731,0	3009,0	4484,0	5225,0	5109,0	3810,0	3614,0	4794,0	1394,0	8758,0	2574,0	3961,0	886,0	2935,0
305,1	373,0	750,0	3035,0	4429,0	5215,0	5108,0	3679,0	3583,0	4778,0	1373,0	8758,0	2584,0	3884,0	879,0	2950,0
306,4	398,0	754,0	2971,0	4433,0	5293,0	5076,0	3799,0	3627,0	4784,0	1433,0	8735,0	2616,0	3946,0	884,0	2889,0
307,6	387,0	740,0	3023,0	4511,0	5245,0	5218,0	3779,0	3567,0	4854,0	1435,0	8765,0	2567,0	3954,0	902,0	3004,0
308,9	394,0	745,0	3005,0	4534,0	5261,0	5133,0	3789,0	3574,0	4841,0	1449,0	8758,0	2545,0	3977,0	904,0	2938,0
310,1	400,0	750,0	3008,0	4519,0	5255,0	5176,0	3859,0	3585,0	4820,0	1441,0	8806,0	2592,0	4017,0	891,0	3001,0
311,4	419,0	773,0	3006,0	4500, 0	5297,0	5199,0	3859,0	3616,0	4759,0	1448,0	8905,0	2567,0	4051,0	906,0	2966,0
312,6	405,0	790,0	3042,0	4457,0	5270,0	5231,0	3869,0	3635,0	4863,0	1461,0	8890,0	2600,0	4048,0	871,0	3012,0
313,9	399,0	787,0	3051,0	4572,0	5347,0	5215,0	3851,0	3652,0	4902,0	1475,0	8830,0	2661,0	4017,0	907,0	2977,0
315,1	416,0	802,0	3079,0	4557,0	5344,0	5284,0	3879,0	3587,0	4890,0	1453,0	8860,0	2594,0	4081,0	881,0	3031,0
316,4	419,0	781,0	3059,0	4599,0	5417,0	5294,0	3853,0	3672,0	4870,0	1489,0	8909,0	2615,0	4087,0	905,0	2971,0
317,6	398,0	797,0	3029,0	4559,0	5327,0	5253,0	3899,0	3641,0	4942,0	1528,0	8895,0	2670,0	4087,0	929,0	3065,0
318,9	409,0	800,0	3033,0	4558,0	5335,0	5253,0	3878,0	3703,0	4829,0	1529,0	8984,0	2636,0	4099,0	945,0	3000,0
320,1	422,0	793,0	3053,0	4572,0	5309,0	5271,0	3861,0	3631,0	4869,0	1545,0	8807,0	2648,0	4088,0	927,0	2971,0
321,4	391,0	786,0	3015,0	4595,0	5392,0	5289,0	3892,0	3673,0	4865,0	1563,0	8958,0	2635,0	4114,0	927,0	3046,0
322,6	412,0	804,0	3064,0	4587,0	5349,0	5268,0	3909,0	3637,0	4809,0	1575,0	9033,0	2647,0	4149,0	936,0	3084,0
323,8	416,0	803,0	3087,0	4619,0	5368,0	5271,0	3897,0	3678,0	4922,0	1614,0	8950,0	2714,0	4132,0	939,0	3039,0
325,1	407,0	792,0	3023,0	4575,0	5387,0	5269,0	3853,0	3613,0	4881,0	1626,0	9022,0	2703,0	4119,0	887,0	3095,0
326,3	410,0	771,0	3056,0	4623,0	5324,0	5347,0	3891,0	3666,0	4901,0	1703,0	8984,0	2710,0	4142,0	947,0	3062,0
327,6	399,0	771,0	3036,0	4615,0	5352,0	5266,0	3875,0	3616,0	4851,0	1715,0	8934,0	2775,0	4180,0	921,0	3064,0
328,8	395,0	769,0	3039,0	4515,0	5420,0	5169,0	3881,0	3618,0	4894,0	1730,0	8986,0	2754,0	4149,0	933,0	3081,0
330,1	406,0	781,0	3013,0	4551,0	5321,0	5273,0	3857,0	3637,0	4956,0	1789,0	9082,0	2827,0	4198,0	939,0	3051,0
331,3	407,0	784,0	3035,0	4571,0	5407,0	5221,0	3867,0	3622,0	4836,0	1819,0	8991,0	2925,0	4196,0	919,0	3052,0
332,6	395,0	791,0	3039,0	4595,0	5402,0	5259,0	3811,0	3589,0	4857,0	1842,0	9051,0	2924,0	4217,0	958,0	3117,0
333,8	411,0	786,0	3021,0	4562,0	5385,0	5365,0	3861,0	3580,0	4915,0	1919,0	9060,0	2981,0	4256,0	944,0	3135,0
335,0	414,0	799,0	3048,0	4589,0	5369,0	5287,0	3894,0	3644,0	4833,0	1939,0	9113,0	3096,0	4248,0	937,0	3109,0
336,3	405,0	802,0	2997,0	4621,0	5381,0	5233,0	3833,0	3658,0	4826,0	2057,0	9079,0	3004,0	4193,0	932,0	3129,0

337,5	405,0	810,0	3015,0	4548,0	5399,0	5306,0	3922,0	3617,0	4903,0	2081,0	9124,0	3014,0	4174,0	959,0	3105,0
338,8	399,0	805,0	3049,0	4637,0	5436,0	5273,0	3867,0	3622,0	4916,0	2209,0	9121,0	3005,0	4213,0	947,0	3117,0
340,0	409,0	818,0	3042,0	4583,0	5455,0	5357,0	3884,0	3591,0	4857,0	2342,0	9144,0	2915,0	4199,0	967,0	3124,0
341,3	428,0	814,0	3033,0	4519,0	5357,0	5194,0	3920,0	3675,0	4901,0	2485,0	9138,0	2921,0	4209,0	953,0	3083,0
342,5	432,0	820,0	2973,0	4646,0	5349,0	5249,0	3854,0	3543,0	4839,0	2639,0	9120,0	2888,0	4190,0	2,0	132,
343,7	421,0	811,0	3015,0	4608,0	5428,0	5337,0	3899,0	3573,0	4801,0	2877,0	9141,0	2892,0	221	, 0	3097,0
345,0	444,0	841,0	3063,0	4550,0	5473,0	5312,0	3901,0	3604,0	4877,0	3145,0	9193,0	2847,0	4157	1005,	3138
346,2	433,0	835,0	3008,0	4601,0	5497,0	5307,0	3847,0	3572,0	4854,0	3459,0	9224,0	2861,	4129,	992	3077
347,5	438,0	816,0	3059,0	4613,0	5429,0	5313,0	3881,0	3570,0	4897,0	3917,0	9324,0	2792,0	4182,0	976,0	3077,0
348,7	461,0	847,0	3032,0	4623,0	5431,0	5285,0	3889,0	3552,0	4815,0	4546,0	9312,0	2829,0	4188,0	1011,0	3066,0
349,9	443,0	853,0	3018,0	4565,0	5501,0	5331,0	3892,0	3564,0	4902,0	5359,0	9202,0	2814,0	4160,0	1029,0	3078,0
351,2	480,0	867,0	2978,0	4595,0	5500,0	5299,0	3913,0	3562,0	4841,0	6449,0	9235,0	2834,0	4155,0	1027,0	3051,0
352,4	453,0	884,0	2979,0	4603,0	5485,0	5225,0	3877,0	3535,0	4793,0	7881,0	9314,0	2875,0	4194,0	1049,0	3022,0
353,7	517,0	900,0	3047,0	4573,0	5487,0	5317,0	3897,0	3543,0	4885,0	9468,0	9299,0	2890,0	4140,0	067	073
354,9	483,0	894,0	3042,0	4539,0	5524,0	5312,0	3897,0	3545,0	4862,0	10655,0	9312,0	2951,	4190	1082	3085,0
356,2	500,0	942,0	3043,0	4604,0	5580,0	5313,0	3914,0	3493,0	4808,0	10782,0	9287,0	2942,0	4195,0	1088,0	3095,0
357,4	531,0	939,0	3044,0	4501,0	5552,0	5324,0	3904,0	3542,0	4819,0	9755,0	9358,0	2920,0	4185,0	1121,0	3035,0
358,6	551,0	985,0	3010,0	4566,0	5559,0	5197,0	3884,0	3529,0	4837,0	8188,0	9269,0	2874,0	4205,0	1129,0	3097,0
359,9	551,0	986,0	2993,0	4659,0	5570,0	5310,0	3889,0	3541,0	4913,0	6500,0	9343,0	2816,0	4246,0	1176,0	3077,0
361,1	572,0	989,0	2984,0	4537,0	5574,0	5284,0	3967,0	3507,0	4851,0	5243,0	9395,0	2798,0	4255,0	1199,0	3074,0
362,3	587,0	1016,0	2988,0	4594,0	5613,0	5293,0	3805,0	3491,0	4828,0	4388,0	9403,0	2850,0	4266,0	1249,0	3102,0
363,6	617,0	1053,0	2999,0	4571,0	5597,0	5306,0	3917,0	3475,0	4795,0	3687,0	9442,0	2724,0	4204,0	1258,0	3019,0
364,8	642,0	1097,0	2941,0	4511,0	5721,0	5299,0	3927,0	3493,0	4803,0	3307,0	9487,0	2799,0	4234,0	1259,0	3041,0
366,1	694,0	1135,0	2973,0	4573,0	5735,0	5324,0	3913,0	3517,0	4862,0	3001,0	9365,0	2778,0	4213,0	1342,0	3101,0
367,3	710,0	1185,0	2995,0	4591,0	5797,0	5327,0	3918,0	3501,0	4825,0	2715,0	9404,0	2793,0	4165,0	1363,0	3058,0
368,5	735,0	1233,0	3004,0	4546,0	5813,0	5312,0	3873,0	3540,0	4829,0	2501,0	9417,0	2743,0	4250,0	1408,0	3026,0
369,8	741,0	1292,0	2959,0	4556,0	5838,0	5345,0	3957,0	3567,0	4821,0	2351,0	9558,0	2763,0	4275,0	1490,0	3067,0
371,0	821,0	1340,0	2996,0	4533,0	5912,0	5327,0	3901,0	3502,0	4811,0	2247,0	9517,0	2720,0	4327,0	1544,0	3038,0
372,3	865,0	1395,0	3007,0	4562,0	5993,0	5410,0	3881,0	3552,0	4807,0	2129,0	9474,0	2704,0	4287,0	1601,0	3075,0
373,5	926,0	1459,0	3045,0	4555,0	6076,0	5391,0	3901,0	3548,0	4864,0	2048,0	9515,0	2772,0	4376,0	1702,0	3105,0
374,7	975,0	1573,0	2983,0	4619,0	6096,0	5365,0	4020,0	3542,0	4803,0	1993,0	9555,0	2722,0	4352,0	1789,0	3101,0
376,0	1047,0	1685,0	3011,0	4571,0	6232,0	5394,0	3946,0	3569,0	4845,0	1939,0	9497,0	2785,0	4433,0	1905,0	3073,0
377,2	1129,0	1813,0	3027,0	4672,0	6279,0	5410,0	3945,0	3561,0	4851,0	1905,0	9607,0	2728,0	4439,0	2005,0	3084,0
378,4	1245,0	1954,0	3033,0	4593,0	6419,0	5488,0	3935,0	3510,0	4863,0	1869,0	9606,0	2777,0	4460,0	2132,0	3097,0
379,7	1380,0	2087,0	3001,0	4631,0	6573,0	5405,0	3961,0	3612,0	4906,0	1799,0	9715,0	2772,0	4475,0	2297,0	3165,0
380,9	1487,0	2283,0	2991,0	4658,0	6779,0	5459,0	4095,0	3639,0	4865,0	1782,0	9816,0	2792,0	4520,0	2459,0	3155,0
382,1	1643,0	2493,0	2977,0	4701,0	6878,0	5548,0	4070,0	3643,0	4913,0	1728,0	9686,0	2753,0	4637,0	2665,0	3143,0
383,4	1832,0	2716,0	3057,0	4673,0	7047,0	5564,0	4101,0	3662,0	4945,0	1736,0	9781,0	2779,0	4641,0	2853,0	3161,0
384,6	2025,0	2978,0	3077,0	4734,0	7287,0	5551,0	4162,0	3660,0	4945,0	1725,0	9900,0	2744,0	4756,0	3103,0	3191,0
385,8	2182,0	3305,0	3113,0	4805,0	7505,0	5697,0	4197,0	3710,0	4997,0	1708,0	9961,0	2746,0	4797,0	3312,0	3147,0
387,1	2441,0	3629,0	3102,0	4809,0	7662,0	5732,0	4237,0	3735,0	4943,0	1693,0	9953,0	2824,0	4862,0	3556,0	3229,0
388,3	2676,0	3983,0	3093,0	4876,0	7866,0	5735,0	4249,0	3735,0	5029,0	1728,0	10011,0	2800,0	4938,0	3817,0	3313,0
389,5	2916,0	4329,0	3178,0	4880,0	8133,0	5804,0	4284,0	3807,0	5049,0	1725,0	10105,0	2759,0	4944,0	4140,0	3267,0
390,8	3149,0	4717,0	3158,0	4939,0	8269,0	5839,0	4288,0	3829,0	5083,0	1711,0	10186,0	2797,0	5141,0	4364,0	3315,0
392,0	3412,0	5073,0	3218,0	4942,0	8492,0	5881,0	4403,0	3839,0	5155,0	1700,0	10220,0	2821,0	5138,0	4631,0	3366,0
393,3	3675,0	5444,0	3213,0	5022,0	8648,0	5951,0	4419,0	3836,0	5169,0	1668,0	10311,0	2808,0	5220,0	4833,0	3395,0
394,5	3853,0	5729,0	3223,0	5063,0	8883,0	5968,0	4393,0	3922,0	5211,0	1607,0	10409,0	2852,0	5267,0	5040,0	3419,0
395,7	3949,0	5925,0	3233,0	5117,0	9057,0	6035,0	4508,0	4015,0	5303,0	1587,0	10386,0	2831,0	5387,0	5133,0	3401,0
396,9	4056,0	5991,0	3278,0	5220,0	8971,0	6195,0	4576,0	4062,0	5305,0	1588,0	10446,0	2842,0	5381,0	5157,0	3450,0
398,2	3996,0	5951,0	3285,0	5188,0	8974,0	6197,0	4615,0	4083,0	5287,0	1549,0	10556,0	2886,0	5492,0	5049,0	3507,0
399,4	3928,0	5769,0	3373,0	5269,0	8929,0	6202,0	4715,0	4145,0	5335,0	1539,0	10564,0	2861,0	5488,0	4913,0	3485,0
400,6	3632,0	5376,0	3333,0	5295,0	8800,0	6218,0	4684,0	4246,0	5426,0	1548,0	10392,0	2815,0	5462,0	4658,0	3596,0
401,9	3373,0	4955,0	3386,0	5409,0	8631,0	6397,0	4779,0	4283,0	5476,0	1509,0	10450,0	2889,0	5408,0	4354,0	3649,0
403,1	3062,0	4457,0	3398,0	5475,0	8461,0	6411,0	4845,0	4269,0	5539,0	1457,0	10395,0	2828,0	5492,0	4071,0	3678,0
404,3	2764,0	4064,0	3425,0	5525,0	8324,0	6526,0	4853,0	4381,0	5517,0	1528,0	10366,0	2892,0	5413,0	3740,0	3691,0
405,6	2475,0	3617,0	3452,0	5595,0	8107,0	6582,0	4985,0	4425,0	5595,0	1499,0	10281,0	2857,0	5391,0	3392,0	3757,0
406,8	2200,0	3173,0	3436,0	5663,0	8062,0	6631,0	4978,0	4525,0	5693,0	1475,0	10154,0	2861,0	5515,0	3123,0	3754,0
408,0	1952,0	2873,0	3492,0	5693,0	7864,0	6727,0	5057,0	4560,0	5700,	1468,0	10247,0	2878,0	5473,0	2880,0	3781,0
409,3	1731,0	2623,0	3561,0	5733,0	7623,0	6725,0	5087,0	4639,0	5730,0	1492,0	10209,0	2883,0	5477,0	2619,0	3827,0
410,5	1561,0	2375,0	3505,0	5881,0	7553,0	6817,0	5167,0	4701,0	5757,0	1505,0	10139,0	2891,0	5519,0	2426,0	3887,0
411,7	1434,0	2171,0	3580,0	5857,0	7479,0	6879,0	5213,0	4719,0	5842,0	1491,0	10128,0	2887,0	5490,0	2277,0	3871,0
413,0	1289,0	1931,0	3531,0	5976,0	7407,0	6915,0	5240,0	4761,0	5838,0	1522,0	10053,0	2899,0	5533,0	2102,0	3914,0
414,2	1175,0	1843,0	3594,0	6027,0	7426,0	7003,0	5275,0	4819,0	5851,0	1529,0	10183,0	2891,0	5599,0	1970,0	3964,0
415,4	1093,0	1712,0	3586,0	6073,0	7269,0	7015,0	5321,0	4851,0	5912,0	1480,0	10052,0	2907,0	5611,0	1851,0	4081,0
416,6	1014,0	1571,0	3613,0	6107,0	7196,0	7156,0	5399,0	4785,0	5901,0	1513,0	10063,0	2913,0	5606,0	1760,0	4041,0
417,9	937,0	1497,0	3632,0	6289,0	7203,0	7142,0	5452,0	4928,0	6051,0	1500,0	10054,0	2914,0	5718,0	1667,0	4111,0
419,1	901,0	1408,0	3691,0	6286,0	7224,0	7285,0	5449,0	4951,0	5995,0	1497,0	10022,0	2993,0	5751,0	1606,0	4185,0
420,3	845,0	1369,0	3697,0	6366,0	7212,0	7380,0	5567,0	5025,0	6070,0	1519,0	9988,0	2992,0	5755,0	1533,0	4227,0
421,6	787,0	1273,0	3635,0	6403,0	7237,0	7437,0	5600,0	5033,0	6154,0	1510,0	10041,0	2915,0	5755,0	1487,0	4229,0
422,8	769,0	1276,0	3697,0	6441,0	7175,0	7488,0	5619,0	4988,0	6199,0	1525,0	9997,0	2982,0	5823,0	1453,0	4281,0
424,0	736,0	1210,0	3721,0	6493,0	7257,0	7655,0	5696,0	5101,0	6220,0	1499,0	10079,0	2967,0	5872,0	1367,0	4360,0
425,3	705,0	1149,0	3703,0	6582,0	7231,0	7628,0	5705,0	5084,0	6281,0	1529,0	10057,0	2985,0	5992,0	1344,0	4283,0
426,5	688,0	1160,0	3751,0	6643,0	7206,0	7765,0	5817,0	5149,0	6243,0	1546,0	10042,0	3019,0	5944,0	1325,0	4419,0
427,7	651,0	1093,0	3745,0	6623,0	7264,0	7732,0	5797,0	5085,0	6294,0	1578,0	10069,0	3061,0	5976,0	1284,0	4482,0
428,9	608,0	1080,0	3727,0	6647,0	7259,0	7847,0	5899,0	5105,0	6357,0	1574,0	10022,0	3129,0	6046,0	1227,0	4528,0
430,2	595,0	1040,0	3798,0	6788,0	7246,0	7878,0	5954,0	5126,0	6373,0	1640,0	10007,0	3103,0	6031,0	1226,0	4527,0
431,4	571,0	1007,0	3789,0	6769,0	7275,0	7903,0	5970,0	5152,0	6337,0	1669,0	10175,0	3136,0	6155,0	1203, 0	4608,0
432,6	544,0	979,0	3786,0	6795,0	7265,0	7951,0	5923,0	5216,0	6291,0	1669,0	10138,0	3157,0	6237,0	1198,0	4557,0
433,8	547,0	968,0	3744,0	6871,0	7245,0	7973,0	6013,0	5156,0	6354,0	1765,0	10202,0	3246,0	6192,0	1161,0	4589,0
435,1	534,0	942,0	3718,0	6838,0	7266,0	8025,0	6042,0	5163,0	6389,0	1846,0	10017,0	3243,0	6199,0	1130,0	4611,0
436,3	520,0	905,0	3754,0	6836,0	7256,0	8154,0	6057,0	5190,0	6436,0	1945,0	10216,0	3346,0	6227,0	1131,0	4648,0
437,5	519,0	889,0	3715,0	6893,0	7295,0	8206,0	6125,0	5141,0	6442,0	2058,0	10139,0	3413,0	6232,0	1094,0	4626,0
438,7	493,0	881,0	3697,0	6909,0	7298,0	8203,0	6103,0	5177,0	6480,0	2032,0	10073,0	3442,0	6308,0	1110,0	4624,0
440,0	479,0	878,0	3679,0	7024,0	7325,0	8193,0	6067,0	5234,0	6488,0	2025,0	10155,0	3475,0	6240,0	1085,0	4581,0
441,2	501,0	892,0	3741,0	6946,0	7282,0	8279,0	6041,0	5168,0	6458,0	1949,0	10162,0	3372,0	6300,0	1070,0	4690,0
442,4	499,0	880,0	3684,0	6871,0	7279,0	8239,0	6025,0	5182,0	6440,0	1842,0	10159,0	3252,0	6269,0	1079,0	4573,0
443,6	468,0	879,0	3660,0	6908,0	7343,0	8203,0	6153,0	5215,0	6473,0	1736,0	10158,0	3201,0	6237,0	1056,0	4685,0
444,9	477,0	843,0	3625,0	6915,0	7295,0	8176,0	6166,0	5093,0	6398,0	1704,0	10112,0	3136,0	6331,0	1056,0	4641,0
446,1	465,0	849,0	3627,0	6847,0	7180,0	8109,0	6020,0	5133,0	6355,0	1609,0	10143,0	3096,0	6306,0	1027,0	4552,0
447,3	482,0	843,0	3575,0	6789,0	7236,0	8103,0	6033,0	5116,0	6402,0	1582,0	10106,0	3095,0	6256,0	1012,0	4579,0
448,5	464,0	853,0	3587,0	6739,0	7253,0	8112,0	6004,0	5012,0	6185,0	1560,0	10285,0	3047,0	6227,0	1013,0	4512,0
449,8	454,0	840,0	3566,0	6721,0	7146,0	8071,0	5951,0	4983,0	6240,0	1532,0	10252,0	3076,0	6186,0	1003,0	4568,0
451,0	441,0	829,0	3525,0	6578,0	7095,0	7898,0	5841,0	4885,0	6266,0	1502,0	10155,0	3085,0	6189,0	1032,0	4424,0
452,2	452,0	838,0	3515,0	6466,0	6994,0	7773,0	5719,0	4869,0	6131,0	1471,0	10296,0	3077,0	6124,0	1000,0	4471,0
453,4	434,0	813,0	3440,0	6362,0	6944,0	7709,0	5661,0	4749,0	6048,0	1477,0	10177,0	3080,0	5991,0	999,0	4316,0
454,7	449,0	860,0	3473,0	6307,0	6803,0	7601,0	5565,0	4707,0	5944,0	1457,0	10341,0	3071,0	5981,0	1010,0	4330,0
455,9	425,0	859,0	3357,0	6165,0	6779,0	7471,0	5505,0	4571,0	5893,0	1445,0	10242,0	3045,0	5851,0	1011,0	4243,0
457,1	441,0	824,0	3360,0	6093,0	6728,0	7274,0	5393,0	4467,0	5833,0	1455,0	10288,0	3133,0	5787,0	1021,0	4268,0
458,3	437,0	779,0	3331,0	5873,0	6661,0	7244,0	5237,0	4387,0	5753,0	1427,0	10317,0	3139,0	5681,0	997,0	4129,0
459,6	430,0	813,0	3292,0	5809,0	6519,0	7040,0	5092,0	4361,0	5688,0	1471,0	10341,0	3126,0	5637,0	1005,0	4051

460,8	423,0	818,0	3287,0	5605,0	6425,0	6835,0	5029,0	4261,0	5589,0	1429,0	10273,0	3206,0	5491,0	1002,0	4008,
462,0	443,0	816,0	3195,0	5582,0	6333,0	6719,0	4927,0	4189,0	5514,0	1422,0	10343,0	3211,0	5452,0	1012,0	3921,0
463,2	427,0	832,0	3187,0	5425,0	6281,0	6588,0	4865,0	4073,0	5492,0	1428,0	10409,0	3235,0	5273,0	1015,0	3850,0
464,4	446,0	839,0	3156,0	5331,0	6201,0	6499,0	4787,0	4045,0	5419,0	1414,0	10329,0	3209,0	5205,0	1031,0	3770,0
465,7	455,0	811,0	3128,0	5285,0	6171,0	6357,0	4610,0	3937,0	5281,0	1472,0	10450,0	3215,0	5155,0	1038,0	3732,0
466,9	457,0	834,0	3114,0	5107,0	6055,0	6259,0	4534,0	3914,0	5187,0	1437,0	10491,0	3142,0	5070	1021,	3677
468,1	463,0	859,0	3065,0	5056,0	6007,0	6124,0	4413,0	3851,0	5252,0	1429,0	10511,	3147,	4923	1033,	3598
469,3	442,0	844,0	3039,0	4915,0	5977,0	6046,0	4362,0	3755,0	5151,0	1460,0	10546,0	3104,0	4886	1027,	349
470,5	460,0	865,0	3003,0	4841,0	5969,0	5839,0	4301,0	3734,0	5079,0	1409,0	10522,0	3140,0	4803,0	1062,0	3459,
471,8	451,0	837,0	2995,0	4830,0	5825,0	5768,0	4207,0	3591,0	4982,0	1468,0	10545,0	3125,0	4778,0	1007,0	3422,0
473,0	488,0	869,0	2982,0	4745,0	5786,0	5733,0	4154,0	3619,0	5003,0	1465,0	10516,0	3094,0	4698,0	1072,0	3402,0
474,2	453,0	883,0	2976,0	4645,0	5806,0	5703,0	4074,0	3595,0	4965,0	1440,0	10635,0	3028,0	4637,0	1055,0	3297,0
475,4	500,0	890,0	2955,0	4551,0	5763,0	5509,0	4008,0	3535,0	4923,0	1439,0	10599,0	3082,0	4541,0	1081,0	3304,0
476,6	494,0	917,0	2883,0	4495,0	5687,0	5503,0	3976,0	3476,0	4877,0	1475,0	10541,0	3068,0	4515,0	1105,0	3260,0
477,9	534,0	916,0	2887,0	4463,0	5666,0	5415,0	3885,0	3408,0	4835,0	1487,0	10666,0	3044,0	4516,0	1107,0	3183
479,1	517,0	917,0	2848,0	4473,0	5669,0	5291,0	3823,0	3360,0	4795,0	1489,0	10660,0	3042,0	4419,0	1115,0	3195,0
480,3	527,0	972,0	2864,0	4378,0	5622,0	5372,0	3751,0	3379,0	4743,0	1469,0	10695,0	2980,0	4495,0	1151,0	3143,0
481,5	543,0	957,0	2859,0	4331,0	5549,0	5258,0	3820,0	3344,0	4751,0	1459,0	10678,0	3054,0	4395,0	1158,0	3159,0
482,7	570,0	993,0	2875,0	4307,0	5613,0	5163,0	3763,0	3262,0	4742,0	1448,0	10646,0	3018,0	4482,0	1171,0	3091,0
484,0	573,0	1021,0	2841,0	4226,0	5626,0	5198,0	3663,0	3303,0	4653,0	1461,0	10713,0	3003,0	4265,0	1207,0	3041,0
485,2	587,0	1037,0	2840,0	4147,0	5549,0	5125,0	3652,0	3247,0	4628,0	1469,0	10705,0	3012,0	4351,0	1235,0	3065,0
486,4	608,0	1067,0	2797,0	4120,0	5569,0	5022,0	3623,0	3227,0	4654,0	1462,0	10622,0	2989,0	4336,0	1219,0	3032
487,6	625,0	1077,0	2721,0	4125,0	5606,0	4985,0	3595,0	3198,0	4610,0	1438,0	10730,0	3014,0	4257,0	1284,0	3007
488,8	633,0	1105,0	2792,0	4069,0	5634,0	4996,0	3611,0	3196,0	4584,0	1442,0	10748,0	2940,0	4206,0	1325,0	2994,0
490,0	672,0	1162,0	2767,0	4078,0	5623,0	5009,0	3509,0	3128,0	4628,0	1441,0	10756,0	2959,0	4200, 0	1367,0	2971,0
491,3	723,0	1226,0	2747,0	4000,0	5582,0	4897,0	3500,0	3131,0	4595,0	1450,0	10734,0	2968,0	4234,0	1385,0	2911,0
492,5	725,0	1239,0	2707,0	4023,0	5573,0	4871,0	3431,0	3086,0	4457,0	1460,0	10766,0	2950,0	4153,0	1424,0	2900,0
493,7	797,0	1292,0	2719,0	4003,0	5678,0	4887,0	3454,0	3105,0	4492,0	1411,0	10814,0	2958,0	4207,0	1510,0	2885,0
494,9	813,0	1353,0	2703,0	3965,0	5656,0	4822,0	3379,0	3058,0	4488,0	1414,0	10773,0	2901,0	4121,0	1527,0	2859,0
496,1	857,0	1452,0	2704,0	3956,0	5743,0	4805,0	3410,0	3092,0	4420,0	1427,0	10751,0	2929,0	4176,0	1607,0	2838,0
497,3	907,0	1482,0	2680,0	3946,0	5750,0	4822,0	3341,0	3043,0	4419,0	1409,0	10782,0	2952,0	4214,0	1677,0	2844,0
498,6	973,0	1579,0	2696,0	3919,0	5819,0	4801,0	3335,0	2997,0	4477,0	1403,0	10833,0	2936,0	4213,0	1752,0	2821,0
499,8	1088,0	1749,0	2688,0	3869,0	5978,0	4780,0	3358,0	3026,0	4401,0	1377,0	10929,0	2953,0	4201,0	1910,0	2833,0
501,0	1183,0	1850,0	2681,0	3855,0	6102,0	4803,0	3348,0	3027,0	4415,0	1382,0	10866,0	2881,0	4215,0	2017,0	2805,0
502,2	1253,0	2007,0	2683,0	3867,0	6109,0	4726,0	3299,0	2951,0	4407,0	1430,0	10912,0	2938,0	4199,0	2176,0	2807,0
503,4	1406,0	2202,0	2652,0	3915,0	6279,0	4689,0	3335,0	3011,0	4405,0	1392,0	10987,0	2918,0	4226,0	2338,0	2799,0
504,6	1515,0	2367,0	2679,0	3817,0	6428,0	4723,0	3332,0	2937,0	4369,0	1411,0	11030,0	2908,0	4241,0	2520,0	2821,0
505,9	1747,0	2737,0	2674,0	3804,0	6646,0	4684,0	3357,0	2988,0	4466,0	1395,0	11138,0	2937,0	4346,0	2735,0	2781,0
507,1	1958,0	3034,0	2676,0	3802,0	6787,0	4737,0	3307,0	2943,0	4386,0	1394,0	11146,0	2902,0	4310,0	3031,0	2778,0
508,3	2193,0	3407,0	2625,0	3766,0	7018,0	4723,0	3347,0	3012,0	4372,0	1453,0	11167,0	2955,0	4338,0	3273,0	2799,0
509,5	2499,0	3811,0	2643,0	3743,0	7180,0	4651,0	3224,0	2906,0	4368,0	1373,0	11278,0	2918,0	4436,0	3566,0	2755,0
510,7	2771,0	4234,0	2643,0	3777,0	7435,0	4751,0	3265,0	2942,0	4432,0	1415,0	11412,0	2915,0	4484,0	3835,0	2782,0
511,9	2991,0	4622,0	2611,0	3741,0	7437,0	4743,0	3314,0	2933,0	4384,0	1401,0	11397,0	2920,0	4441,0	4097,0	2802,0
513,1	3173,0	4897,0	2659,0	3781,0	7597,0	4736,0	3318,0	2881,0	4390,0	1392,0	11346,0	2965,0	4540,0	4234,0	2774,0
514,3	3287,0	5076,0	2635,0	3803,0	7685,0	4697,0	3282,0	2904,0	4384,0	1398,0	11429,0	2940,0	4527,0	4319,0	2781,0
515,6	3367,0	5194,0	2645,0	3805,0	7599,0	4729,0	3287,0	2945,0	4365,0	1406,0	11539,0	2949,0	4578,0	4384,0	2799,0
516,8	3325,0	5185,0	2639,0	3789,0	7555,0	4721,0	3259,0	2972,0	4423,0	1428,0	11443,0	2923,0	4561,0	4285,0	2803,0
518,0	3286,0	5121,0	2647,0	3721,0	7518,0	4727,0	3283,0	2901,0	4438,0	1380,0	11501,0	2893,0	4538,0	4245,0	2811,0
519,2	3175,0	4937,0	2647,0	3754,0	7467,0	4723,0	3297,0	2968,0	4425,0	1390,0	11498,0	2929,0	4535,0	4074,0	2801,0
520,4	3037,0	4703,0	2565,0	3791,0	7299,0	4749,0	3288,0	2915,0	4448,0	1402,0	11481,0	2922,0	4459,0	3949,0	2798,0
521,6	2855,0	4449,0	2630,0	3751,0	7219,0	4763,0	3269,0	2937,0	4425,0	1393,0	11430,0	2937,0	4379,0	3771,0	2796,0
522,8	2689,0	4173,0	2690,0	3810,0	6981,0	4756,0	3283,0	2964,0	4419,0	1414,0	11598,0	2937,0	4438,0	3557,0	2811,0
524,0	2479,0	3911,0	2659,0	3830,0	6965,0	4693,0	3291,0	2962,0	4463,0	1413,0	11559,0	2951,0	4414,0	3358,0	2761,0
525,3	2337,0	3639,0	2662,0	3813,0	6886,0	4709,0	3284,0	2915,0	4453,0	1407,0	11441,0	2948,0	4307,0	3147,0	2796,0
526,5	2176,0	3375,0	2645,0	3809,0	6669,0	4752,0	3317,0	2953,0	4456,0	1402,0	11469,0	2926,0	4333,0	2958,0	2820,0
527,7	2027,0	3157,0	2655,0	3826,0	6517,0	4719,0	3315,0	2935,0	4471,0	1382,0	11328,0	2935,0	4405,0	2779,0	2769,0
528,9	1861,0	2913,0	2686,0	3815,0	6541,0	4709,0	3293,0	2968,0	4430,0	1389,0	11521,0	2939,0	4326,0	2663,0	2853,0
530,1	1764,0	2765,0	2671,0	3838,0	6341,0	4647,0	3340,0	2969,0	4485,0	1412,0	11322,0	2970,0	4291,0	2519,0	2803,0
531,3	1577,0	2578,0	2683,0	3741,0	6264,0	4753,0	3285,0	3001,0	4475,0	1397,0	11293,0	2890,0	4255,0	2393,0	2804,0
532,5	1462,0	2423,0	2655,0	3792,0	6190,0	4718,0	3349,0	3034,0	4491,0	1398,0	11297,0	2899,0	4271,0	2269,0	2831,0
533,7	1399,0	2267,0	2663,0	3891,0	6187,0	4777,0	3361,0	2973,0	4485,0	1376,0	11357,0	2949,0	4306,0	2167,0	2792,0
534,9	1309,0	2129,0	2680,0	3839,0	6057,0	4655,0	3319,0	2960,0	4427,0	1397,0	11269,0	2909,0	4227,0	2072,0	2809,0
536,1	1207,0	2016,0	2678,0	3888,0	6047,0	4740,0	3340,0	2948,0	4474,0	1411,0	11297,0	3002,0	4259,0	1960,0	2765,0
537,4	1158,0	1937,0	2675,0	3877,0	5993,0	4730,0	3343,0	3009,0	4483,0	1397,0	11312,0	2942,0	4245,0	1891,0	2801,0
538,6	1090,0	1821,0	2691,0	3862,0	5984,0	4727,0	3377,0	2969,0	4521,0	1409,0	11292,0	2892,0	4231,0	1757,0	2829,0
539,8	1085,0	1752,0	2736,0	3896,0	5900,0	4783,0	3359,0	3047,0	4515,0	1455,0	11266,0	2876,0	4241,0	1737,0	2821,0
541,0	978,0	1657,0	2711,0	3937,0	5920,0	4756,0	3384,0	3013,0	4550,0	1406,0	11265,0	2913,0	4269,0	1709,0	2855,0
542,2	959,0	1592,0	2682,0	3870,0	5781,0	4759,0	3360,0	3062,0	4465,0	1446,0	11318,0	2964,0	4245,0	1652,0	2893,0
543,4	919,0	1489,0	2710,0	3879,0	5885,0	4825,0	3414,0	3053,0	4526,0	1415,0	11272,0	2894,0	4283,0	1557,0	2843,0
544,6	841,0	1441,0	2719,0	3936,0	5807,0	4767,0	3415,0	3001,0	4556,0	1410,0	11207,0	2924,0	4268,0	1541,0	2846,0
545,8	846,0	1419,0	2666,0	3953,0	5750,0	4832,0	3427,0	3095,0	4559,0	1417,0	11321,0	2924,0	4221,0	1498,0	2847,0
547,0	811,0	1367,0	2739,0	4003,0	5795,0	4816,0	3361,0	3070,0	4607,0	1391,0	11435,0	2911,0	4249,0	1417,0	2891,0
548,2	759,0	1319,0	2686,0	3975,0	5812,0	4743,0	3414,0	3088,0	4572,0	1407,0	11355,0	2950,0	4258,0	1435,0	2854,0
549,4	769,0	1291,0	2693,0	3966,0	5799,0	4821,0	3409,0	3050,0	4583,0	1379,0	11440,0	2929,0	4240,0	1370,0	2894,0
550,6	723,0	1264,0	2754,0	3983,0	5767,0	4819,0	3381,0	3077,0	4604,0	1399,0	11349,0	2958,0	4249,0	1358,0	2873,0
551,9	687,0	1189,0	2713,0	3964,0	5762,0	4821,0	3449,0	3120,0	4594,0	1391,0	11335,0	2889,0	4263,0	1344,0	2841,0
553,1	665,0	1174,0	2742,0	4024,0	5811,0	4852,0	3465,0	3131,0	4592,0	1376,0	11414,0	2929,0	4230,0	1291,0	2857,0
554,3	653,0	1169,0	2753,0	4027,0	5757,0	4855,0	3415,0	3078,0	4605,0	1387,0	11390,0	2899,0	4360,0	1275,0	2837,0
555,5	647,0	1145,0	2693,0	4019,0	5787,0	4903,0	3471,0	3096,0	4645,0	1416,0	11480,0	2934,0	4300,0	1263,0	2899,0
556,7	645,0	1107,0	2769,0	4003,0	5780,0	4835,0	3457,0	3108,0	4675,0	1377,0	11402,0	2909,0	4291,0	1243,0	2896,0
557,9	621,0	1125,0	2754,0	4071,0	5759,0	4855,0	3503,0	3083,0	4601,0	1382,0	11459,0	2943,0	4271,0	1215,0	2917,0
559,1	597,0	1095,0	2759,0	4060,0	5689,0	4894,0	3497,0	3077,0	4673,0	1379,0	11498,0	2953,0	4309,0	1197,0	2956,0
560,3	587,0	1062,0	2697,0	4071,0	5795,0	4952,0	3499,0	3143,0	4724,0	1381,0	11501,0	2910,0	4289,0	1216,0	2877,0
561,5	573,0	1045,0	2768,0	4120,0	5777,0	4974,0	3479,0	3144,0	4779,0	1371,0	11569,0	2896,0	4321,0	1160,0	2906,0
562,7	578,0	1023,0	2754,0	4161,0	5791,0	4977,0	3553,0	3183,0	4720,0	1394,0	11607,0	2906,0	4333,0	1157,0	2921,0
563,9	595,0	1013,0	2771,0	4198,0	5829,0	4929,0	3517,0	3154,0	4687,0	1387,0	11558,0	2914,0	4371,0	1171,0	2954,0
565,1	555,0	1013,0	2797,0	4188,0	5850,0	5005,0	3525,0	3195,0	4765,0	1359,0	11587,0	2928,0	4384,0	1168,0	2949,0
566,3	552,0	1005,0	2785,0	4203,0	5853,0	5035,0	3589,0	3211,0	4786,0	1359,0	11612,0	2949,0	4411,0	1151,0	2969,0
567,5	519,0	988,0	2727,0	4187,0	5886,0	5041,0	3615,0	3239,0	4815,0	1348,0	11582,0	2943,0	4433,0	1136,0	2911,0
568,7	545,0	985,0	2775,0	4247,0	5894,0	5048,0	3576,0	3163,0	4806,0	1350,0	11661,0	2914,0	4382,0	1133,0	2975,0
569,9	551,0	970,0	2781,0	4260,0	5871,0	5069,0	3575,0	3183,0	4765,0	1352,0	11703,0	2892,0	4422,0	1145,0	2991,0
571,1	544,0	955,0	2709,0	4257,0	5883,0	5033,0	3599,0	3222,0	4821,0	1334,0	11698,0	2985,0	4464,0	1120,0	2997,0
572,3	559,0	954,0	2762,0	4255,0	5899,0	5105,0	3541,0	3248,0	4775,0	1354,0	11671,0	2861,0	4457,0	1125,0	3002,0
573,5	512,0	937,0	2777,0	4241,0	5957,0	5097,0	3629,0	3249,0	4885,0	1297,0	11735,0	2959,0	4426,0	1129,0	2985,0
574,7	539,0	924,0	2790,0	4221,0	5929,0	5138,0	3617,0	3220,0	4786,0	1334,0	11646,0	2924,0	4468,0	1124,0	2998,0
575,9	527,0	927,0	2799,0	4295,0	5897,0	5098,0	3672,0	3273,0	4841,0	1308,0	11710,0	2940,0	4443,0	1179,0	2965,0
577,2	507,0	919,0	2740,0	4327,0	5970,0	5071,0	3643,0	3268,0	4855,0	1349,0	11701,0	2942,0	4462,0	1163,0	3005,0
578,4	527,0	943,0	2749,0	4327,0	5993,0	5169,0	3651,0	3280,0	4901,0	1309,0	11746,0	2933,0	4479,0	1145,0	2993,0
579,6	527,0	903,0	2755,0	4359,0	6059,0	5213,0	3648,0	3294,0	4851,0	1309,0	11769,0	2925,0	4479,0	1123,0	3006,0
580,8	511,0	903,0	2752,0	4383,0	5985,0	5241,0	3685,0	3287,0	4906,0	1297,0	11733,0	2927,0	4546,0	1113,0	3000,0

582,0	531,0	914,0	2719,0	4432,0	6029,0	5211,0	3685,0	3235,0	4855,0	1325,0	11728,0	2907,0	4520,0	1133,0	3039,0
583,2	550,0	937,0	2755,0	4393,0	6049,0	5289,0	3699,0	3285,0	4948,0	1326,0	11817,0	2901,0	4549,0	1129,0	3073,0
584,4	535,0	902,0	2744,0	4454,0	6073,0	5254,0	3727,0	3298,0	4874,0	1312,0	11770,0	2911,0	4535,0	1133,0	3140,0
585,6	527,0	918,0	2741,0	4443,0	6129,0	5336,0	3761,0	3322,0	4965,0	1265,0	11827,0	2955,0	4560,0	1130,0	3055,0
586,8	525,0	907,0	2747,0	4399,0	6097,0	5285,0	3759,0	3312,0	4943,0	1329,0	11790,0	2921,0	4642,0	1168,0	395,0
588,0	551,0	907,0	2751,0	4549,0	6197,0	5328,0	3759,0	3365,0	4971,0	1304,0	11896,	2932	4634	1152,0	3123,0
589,2	564,0	914,0	2777,0	4544,0	6258,0	5421,0	3869,0	3336,0	4935,0	1336,0	11887,0	2954,	4663,0	1179,0	3131,0
590,4	543,0	903,0	2722,0	4587,0	6210,0	5423,0	3841,0	3347,0	5016,0	1302,0	11959,0	2946,	4676	1192,	3113,0
591,6	561,0	957,0	2739,0	4632,0	6319,0	5521,0	3837,0	3388,0	4992,0	1343,0	12042,0	2954,0	4741,0	1195,0	3188
592,8	591,0	924,0	2763,0	4609,0	6406,0	5567,0	3967,0	3424,0	4978,0	1327,0	11889,0	2914,0	4775,0	1212,0	3193,0
594,0	578,0	925,0	2703,0	4716,0	6433,0	5551,0	3907,0	3416,0	5066,0	1316,0	12066,0	2940,0	4831,0	1219,0	3171,0
595,2	582,0	961,0	2759,0	4753,0	6430,0	5623,0	3993,0	3391,0	5106,0	1322,0	11999,0	2965,0	4893,0	1278,0	3246,0
596,4	595,0	954,0	2785,0	4737,0	6534,0	5661,0	4074,0	3479,0	5088,0	1331,0	12073,0	2996,0	4897,0	1280,0	3247,0
597,6	600,0	976,0	2758,0	4799,0	6581,0	5675,0	4077,0	3548,0	5109,0	1334,0	12158,0	2948,0	4907,0	1282,0	3302,0
598,8	619,0	1003,0	2753,0	4890,0	551,0	5729,0	4190,0	3525,	5165,0	1320,0	12184,0	2988,	4929,0	仿,	3307,0
600,0	631,0	983,0	2743,0	4893,0	6697,0	5777,0	4119,0	3535,0	5159,0	1323,0	12180,0	2969,0	4939,0	1376,0	3337,0
601,2	651,0	1030,0	2712,0	4879,0	6778,0	5838,0	4132,0	3547,0	5207,0	1295,0	12197,0	3024,0	5011,0	1420,0	3329,0
602,4	667,0	1017,0	2784,0	4976,0	6876,0	5922,0	4237,0	3569,0	5219,0	1342,0	12308,0	3005,0	5054,0	1438,0	3393,0
603,6	716,0	1043,0	2809,0	5002,0	6897,0	5927,0	4264,0	3627,0	5263,0	1342,0	12301,0	3029,0	5182,0	1494,0	3394,0
604,8	727,0	1086,0	2739,0	5005,0	7020,0	5999,0	4199,0	3633,0	5207,0	1318,0	12269,0	3005,0	5165,0	1524,0	3440,0
606,0	779,0	1102,0	2771,0	5019,0	7087,0	6070,0	4280,0	3610,0	5327,0	1364,0	12438,0	3022,0	5203,0	1607,0	3469,0
607,2	780,0	1132,0	2780,0	5085,0	7144,0	6056,0	4302,0	3635,0	5246,0	1360,0	12272,0	3035,0	5276,0	1627,0	3441
608,3	809,0	1151,0	2699,0	5116,0	7233,0	6049,0	4313,0	3703,0	5352,0	1397,0	12339,0	3025,0	5267,0	1699,0	3425,0
609,5	853,0	1171,0	2803,0	5143,0	7354,0	6077,0	4326,0	3715,0	5289,0	1369,0	12489,0	3030,0	5241,0	1787,0	3479,0
610,7	906,0	1232,0	2799,0	5163,0	7325,0	6047,0	4352,0	3691,0	5297,0	1377,0	12695,0	3081,0	5312,0	1857,0	3459,0
611,9	953,0	1320,0	2771,0	5162,0	7489,0	6086,0	4372,0	3636,0	5336,0	1322,0	12585,0	3044,0	5312,0	1947,0	3481,0
613,1	1033,0	1336,0	2763,0	5154,0	7561,0	6057,0	4329,0	3669,0	5336,0	1342,0	12718,0	3058,0	5247,0	2077,0	3469,0
614,3	1091,0	1380,0	2739,0	5068,0	7635,0	6016,0	4287,0	3645,0	5199,0	1403,0	12676,0	3060,0	5281,0	2163,0	3450,0
615,5	1165,0	1475,0	2729,0	5021,0	7607,0	5949,0	4225,0	3613,0	5195,0	1369,0	12796,0	3088,0	5276,0	2301,0	3399,0
616,7	1279,0	1529,0	2756,0	4994,0	7729,0	5962,0	4187,0	3537,0	5236,0	1375,0	12772,0	3049,0	5253,0	2469,0	381,0
617,9	1346,0	1635,0	2668,0	4990,0	7847,0	5879,0	4158,0	3505,0	5232,0	1374,0	12824,0	3008,0	5286,0	2612,0	3361,0
619,1	1430,0	1761,0	2703,0	4824,0	8020,0	5815,0	4146,0	3466,0	5142,0	1389,0	12910,0	3059,0	5176,0	2804,0	3360,0
620,3	1547,0	1869,0	2672,0	4836,0	8069,0	5781,0	4051,0	3411,0	5141,0	1389,0	12927,0	3049,0	5216,0	2987,0	3286,0
621,5	1691,0	1998,0	2716,0	4719,0	8252,0	5720,0	3999,0	3406,0	5055,0	1391,0	12957,0	3101,0	5147,0	3273,0	3256,0
622,7	1887,0	2147,0	2649,0	4657,0	8359,0	5655,0	3910,0	3249,0	5022,0	1380,0	13084,0	3096,0	5137,0	3521,0	3227,0
623,9	2060,0	2353,0	2679,0	4580,0	8555,0	5563,0	3795,0	3282,0	4983,0	1399,0	13177,0	3066,0	5157,0	3876,0	3189,0
625,1	2274,0	2559,0	2650,0	4517,0	8847,0	5511,0	3799,0	3262,0	4942,0	1414,0	13237,0	3089,0	5129,0	4259,0	3130,0
626,3	2531,0	2791,0	2581,0	4417,0	9049,0	5431,0	3670,0	3156,0	4906,0	1419,0	13255,0	3125,0	5178,0	4596,0	3077,0
627,5	2811,0	3080,0	2551,0	4357,0	9255,0	5359,0	3667,0	3081,0	4811,0	1401,0	13316,0	3112,0	5181,0	5015,0	3068,0
628,7	3193,0	3337,0	2581,0	4283,0	9594,0	5237,0	3601,0	3081,0	4777,0	1403,0	13511,0	3111,0	5149,0	5522,0	2984,0
629,9	3516,0	3731,0	2584,0	4216,0	9833,0	5213,0	3503,0	2983,0	4731,0	1434,0	13569,0	3150,0	5179,0	5952,0	2953,0
631,1	3881,0	4093,0	2531,0	4108,0	10248,0	5134,0	3466,0	2941,0	4611,0	1398,0	13833,0	3095,0	5237,0	6491,0	2881,0
632,3	4279,0	4516,0	2536,0	4101,0	10541,0	5101,0	3402,0	2947,0	4646,0	1422,0	13841,0	3142,0	5353,0	7066,0	2813,0
633,4	4691,0	4867,0	2534,0	3974,0	10780,0	5086,0	3324,0	2941,0	4628,0	1401,0	13932,0	3113,0	5287,0	7543,0	344,0
634,6	5053,0	5244,0	2515,0	3933,0	11031,0	4935,0	3269,0	2908,0	4587,0	1431,0	14086,0	3183,0	5320,0	7903,0	2824,0
635,8	5374,0	5509,0	2516,0	3913,0	11101,0	4909,0	3283,0	2823,0	4497,0	1416,0	14185,0	3198,0	5319,0	8175,0	2778,0
637,0	5593,0	5825,0	2453,0	3826,0	10997,0	4867,0	3215,0	2786,0	4485,0	1435,0	14304,0	3184,0	5326,0	8247,0	2752,0
638,2	5710,0	5928,0	2493,0	3786,0	10962,0	4846,0	3190,0	2774,0	4510,0	1444,0	14284,0	3181,0	5265,0	8312,0	2721,0
639,4	5615,0	5994,0	2487,0	3729,0	10861,0	4753,0	3140,0	2763,0	4411,0	1444,0	14274,0	3195,0	5252,0	8157,0	2655,0
640,6	5553,0	5799,0	2467,0	3700,0	10615,0	4763,0	3061,0	2755,0	4437,0	1469,0	14257,0	3142,0	5225,0	7994,0	2708,0
641,8	5318,0	5689,0	2479,0	3646,0	10474,0	4703,0	3083,0	2713,0	4429,0	1428,0	14124,0	3190,0	5154,0	7690,0	2670,0
643,0	5026,0	5347,0	2447,0	3605,0	10125,0	4685,0	3009,0	2706,0	4366,0	1428,0	14156,0	3163,0	5086,0	7375,0	2641,0
644,2	4676,0	4981,0	2448,0	3519,0	9892,0	4649,0	2984,0	2689,0	4312,0	1414,0	14089,0	3121,0	4981,0	6933,0	2636,0
645,4	4351,0	4579,0	2475,0	3538,0	9633,0	4515,0	2970,0	2675,0	4405,0	1400,0	13928,0	3134,0	4924,0	6345,0	2621,0
646,6	4009,0	4319,0	2415,0	3567,0	9227,0	4489,0	2955,0	2630,0	4302,0	1411,0	13849,0	3139,0	4795,0	6038,0	2620,0
647,7	3725,0	3936,0	2437,0	3509,0	9007,0	4503,0	2925,0	2651,0	4347,0	1374,0	13753,0	3107,0	4721,0	5643,0	2619,0
648,9	3325,0	3590,0	2430,0	3482,0	8715,0	4503,0	2937,0	2644,0	4338,0	1391,0	13713,0	3090,0	4704,0	5249,0	2591,0
650,1	3060,0	3287,0	2457,0	3403,0	8318,0	4457,0	2911,0	2636,0	4259,0	1388,0	13751,0	3142,0	4604,0	4862,0	2601,0
651,3	2815,0	3052,0	2511,0	3449,0	8121,0	4444,0	2891,0	2673,0	4238,0	1399,0	13574,0	3085,0	4491,0	4542,0	2623,0
652,5	2541,0	2812,0	2493,0	3435,0	7884,0	4404,0	2833,0	2628,0	4297,0	1385,0	13564,0	3064,0	4457,0	4218,0	2575,0
653,7	2380,0	2591,0	2465,0	3389,0	7669,0	4381,0	2847,0	2612,0	4235,0	1402,0	13463,0	3109,0	4363,0	3935,0	2535,0
654,9	2147,0	2403,0	2493,0	3399,0	7455,0	4301,0	2825,0	2642,0	4294,0	1391,0	13373,0	3092,0	4340,0	3667,0	2577,0
656,1	2015,0	2245,0	2478,0	3374,0	7326,0	4347,0	2849,0	2604,0	4263,0	1431,0	13366,0	3118,0	4311,0	3499,0	2561,0
657,3	1872,0	2118,0	2441,0	3407,0	7129,0	4346,0	2779,0	2621,0	4217,0	1356,0	13472,0	3038,0	4228,0	3281,0	2541,0
658,5	1724,0	1971,0	2464,0	3375,0	6959,0	4305,0	2895,0	2617,0	4245,0	1389,0	13465,0	3027,0	4271,0	3077,0	2566,0
659,6	1613,0	1875,0	2435,0	3307,0	6857,0	4320,0	2835,0	2693,0	4240,0	1373,0	13318,0	3087,0	4215,0	2894,0	2563,0
660,8	1513,0	1787,0	2476,0	3367,0	6711,0	4304,0	2840,0	2583,0	4241,0	1376,0	13303,0	3092,0	4170,0	2743,0	2542,0
662,0	1404,0	1691,0	2494,0	3287,0	6612,0	4330,0	2797,0	2588,0	4252,0	1340,0	13392,0	3070,0	4177,0	2597,0	2555,0
663,2	1303,0	1623,0	2419,0	3364,0	6533,0	4333,0	2805,0	2613,0	4216,0	1372,0	13279,0	3073,0	4137,0	2417,0	2572,0
664,4	1257,0	1503,0	2478,0	3375,0	6468,0	4267,0	2809,0	2592,0	4204,0	1338,0	13389,0	3033,0	4056,0	2310,0	2569,0
665,6	1147,0	1467,0	2479,0	3357,0	6377,0	4259,0	2823,0	2616,0	4214,0	1351,0	13280,0	3075,0	4095,0	2220,0	2598,0
666,8	1110,0	1391,0	2479,0	3353,0	6195,0	4237,0	2803,0	2589,0	4215,0	1359,0	13470,0	3041,0	4044,0	2070,0	2564,0
668,0	1029,0	1350,0	2504,0	3357,0	6168,0	4299,0	2794,0	2621,0	4234,0	1349,0	13402,0	3066,0	4058,0	2025,0	2559,0
669,1	1001,0	1295,0	2506,0	3403,0	6173,0	4286,0	2808,0	2612,0	4288,0	1330,0	13400,0	3118,0	4070,0	1944,0	2576,0
670,3	935,0	1258,0	2483,0	3343,0	6043,0	4273,0	2780,0	2585,0	4245,0	1361,0	13532,0	3111,0	4003,0	1857,0	2610,0
671,5	886,0	1202,0	2503,0	3307,0	6064,0	4195,0	2794,0	2588,0	4275,0	1339,0	13410,0	3042,0	3989,0	1760,0	2549,0
672,7	852,0	1151,0	2429,0	3311,0	5992,0	4175,0	2781,0	2569,0	4207,0	1351,0	13493,0	3094,0	4007,0	1735,0	2564,0
673,9	810,0	1148,0	2488,0	3338,0	5953,0	4271,0	2808,0	2575,0	4217,0	1348,0	13443,0	3051,0	4057,0	1664,0	2597,0
675,1	793,0	1091,0	2513,0	3390,0	5880,0	4246,0	2784,0	2576,0	4330,0	1357,0	13499,0	3136,0	3998,0	1599,0	2588,0
676,3	749,0	1039,0	2488,0	3333,0	5798,0	4286,0	2771,0	2576,0	4238,0	1317,0	13541,0	3134,0	3959,0	1527,0	255,0
677,4	715,0	1042,0	2508,0	3381,0	5843,0	4283,0	2815,0	2535,0	4220,0	1341,0	13512,0	3114,0	3970,0	1498,0	2657,0
678,6	699,0	1051,0	2530,0	3325,0	5713,0	4287,0	2770, 0	2547,0	4245,0	1369,0	13590,0	3086,0	3989,0	1472,0	2571,0
679,8	661,0	983,0	2501,0	3324,0	5727,0	4256,0	2717,0	2527,0	4199,0	1311,0	13570,0	3112,0	3979,0	1405,0	2611,0
681,0	645,0	965,0	2539,0	3345,0	5707,0	4278,0	2803,0	2573,0	4243,0	1350,0	13617,0	3134,0	3957,0	1387,0	2601,0
682,2	638,0	953,0	2559,0	3335,0	5691,0	4249,0	2759,0	2574,0	4303,0	1335,0	13691,0	3124,0	3947,0	1338,0	2640,0
683,4	631,0	949,0	2520,0	3325,0	5634,0	4257,0	2799,0	2520,0	4294,0	1340,0	13671,0	3136,0	4001,0	1299,0	2619,0
684,6	563,0	913,0	2557,0	3315,0	5635,0	4243,0	2815,0	2562,0	4265,0	1350,0	13741,0	3132,0	3942,0	1281,0	2619,0
685,7	587,0	896,0	2545,0	3319,0	5557,0	4257,0	2791,0	2531,0	4271,0	1319,0	13774,0	3131,0	4018,0	1282,0	2579,0
686,9	531,0	897,0	2479,0	3365,0	5582,0	4289,0	2777,0	2575,0	4259,0	1359,0	13780,0	3228,0	3950,0	1209,0	2617,0
688,1	540,0	853,0	2525,0	3342,0	5585,0	4315,0	2773,0	2567,0	4313,0	1360,0	13780,0	3165,0	4000,0	1227,0	2599,0
689,3	532,0	869,0	2501,0	3325,0	5573,0	4292,0	2755,0	2543,0	4268,0	1386,0	13868,0	3142,0	3981,0	1194,0	2629,0
690,5	497,0	839,0	2527,0	3337,0	5510,0	4325,0	2796,0	2535,0	4322,0	1375,0	13853,0	3204,0	3925,0	1173,0	2631,0
691,7	486,0	837,0	2568,0	3333,0	5470,0	4266,0	2738,0	2561,0	4282,0	1369,0	13958,0	3170,0	4014,0	1117,0	2644,0
692,8	483,0	841,0	2531,0	3303,0	5559,0	4245,0	2782,0	2533,0	4333,0	1386,0	13933,0	3228,0	3954,0	1125,0	2651,0
694,0	481,0	843,0	2502,0	3293,0	5427,0	4247,0	2788,0	2529,0	4259,0	1387,0	14081,0	3179,0	3985,0	1096,0	2639,0
695,2	467,0	818,0	2544,0	3289,0	5466,0	4308,0	2753,0	2522,0	4269,0	1373,0	14113,0	3212,0	3943,0	1097,0	2655,0
696,4	468,0	789,0	2541,0	3287,0	5457,0	4340,0	2785,0	2474,0	4309,0	1376,0	14090,0	3224,0	4001,0	1066,0	2650,0
697,6	455,0	795,0	2531,0	3311,0	5447,0	4226,0	2744,0	2483,0	4297,0	1373,0	14153,0	3232,0	3995,0	1071,0	2668,0
698,8	449,0	805,0	2535,0	3233,0	5478,0	4319,0	2757,0	2515,0	4292,0	1405,0	14100,0	3276,0	3934,0	1033,0	2650,0
699,9	448,0	801,0	2508,0	3305,0	5376,0	4252,0	2730,0	2541,0	4260,0	1425,0	14263,0	3235,0	3987,0	1001,0	2691

701,1	403,0	772,0	2535,0	3296,0	5443,0	4257,0	2711,0	2463,0	4238,0	1407,0	14313,0	3209,0	3925,0	1005,0	2675,0
702,3	417,0	770,0	2497,0	3348,0	5404,0	4239,0	2746,0	2509,0	4294,0	1415,0	14288,0	3238,0	3917,0	1003,0	2663,0
703,5	387,0	789,0	2546,0	3301,0	5384,0	4278,0	2709,0	2519,0	4253,0	1385,0	14345,0	3320,0	3931,0	983,0	2645,0
704,7	413,0	729,0	2496,0	3297,0	5370,0	4169,0	2701,0	2499,0	4280,0	1389,0	14490,0	3270,0	3918,0	951,0	2601,0
5,8	388,0	741,0	2535,0	3273,0	5351,0	4202,0	2655,0	2483,0	4308,0	1377,0	14503,0	3303,0	3903,0	967,0	2643,0
707,0	55,0	753	2513,0	3237,0	5329,0	4149,0	2735,0	2459,0	4238,0	1337,0	14501,	267,	3946,	957,0	2607,0
8,2	75,0	726,	2587,0	3257,0	5339,0	4181,0	2693,0	2459,0	4264,0	1385,0	14597,	13,	3940,	935,0	2637,0
9,4	381,0	717,0	2503, 0	3220,0	5292,0	4181,0	2666,0	2493,0	4279,0	1350,0	14479,0	3255,0	3916	927,0	638,
710,6	361,0	702,0	2533,0	3143,0	5289,0	4115,0	2713,0	2481,0	4214,0	1369,0	14530,0	3305,0	3871,0	930,0	2617,0
711,8	356,0	679,0	2500,0	3148,0	5285,0	4135,0	2674,0	2397,0	4242,0	1354,0	14455,0	3295,0	3872,0	889,0	2627,0
712,9	362,0	686,0	2501,0	3144,0	5246,0	4160,0	2627,0	2421,0	4222,0	1342,0	14455,0	3328,0	3905,0	905,0	2606,0
714,1	331,0	681,0	2477,0	3166,0	5207,0	4136,0	2643,0	2446,0	4231,0	1359,0	14389,0	3250,0	3857,0	889,0	2523,0
5,3	323,0	673,0	2473,0	3171,0	5207,0	4145,0	2603,0	2413,0	4149,0	1362,0	14399,0	3250,0	3897,0	894,0	2563,0
6,5	29,0	674	2488,0	3159,0	5210,0	4083,0	2585,0	2405,0	4200, 0	1332,0	14486,0	3222,	3847,0	867,0	2562,0
7,6	322,0	657,0	2491,0	3149,0	5221,0	4133,0	2610,0	2395,0	41	1377,0	14481,	3243,0	855	848,0	2559,0
718,8	313,0	656,0	2446,0	3095,0	5111,0	4053,0	2596,0	2369,0	4169,0	1363,0	14496,0	3227,0	3894,0	859,0	2560,0
720,0	329,0	655,0	2487,0	3088,0	5159,0	4090,0	2581,0	2343,0	4115,0	1357,0	14368,0	3229,0	3843,0	857,0	2499,0
721,2	307,0	631,0	2450,0	3093,0	5127,0	3991,0	2542,0	2361,0	4165,0	1370,0	14434,0	3238,0	3787,0	832,0	2532,0
722,4	305,0	634,0	2430,0	3050,0	5067,0	3994,0	2569,0	2372,0	4102,0	1350,0	14407,0	3254,0	3814,0	824,0	2523,0
723,5	295,0	630,0	2479,0	3046,0	5083,0	4027,0	2548,0	2323,0	4103,0	1359,0	14305,0	3280,0	3821,0	825,0	2502,0
724,7	295,0	627,0	2405,0	3079,0	5025,0	3976,0	2554,0	2340,0	4112,0	1351,0	14457,0	3259,0	3749,0	821,0	2502,0
725,9	305,0	609,0	2401,0	3025,0	5007,0	3965,0	2527,0	2336,0	4106,0	1321,0	14418,0	3222,0	3801,0	825,0	2471,0
727,1	278,0	618	2446,0	2992,0	5003,0	3966,0	2511,0	2299,0	4112,0	1337,0	14503,0	3283,0	3758,0	841,0	2491,0
728,3	283,0	610,0	2381,0	3004,0	5012,0	3958,0	2488,0	2274,0	4087,0	1335,0	14452,0	3255,0	3796,0	809,0	2454,0
729,4	282,0	600,0	2425,0	2977,0	5024,0	3933,0	2461,0	2276,0	4063,0	1342,0	14440,0	3244,0	3703,0	817,0	2465,0
730,6	285,0	589,0	2415,0	2956,0	5009,0	3934,0	2421,0	2256,0	4043,0	1334,0	14475,0	3194,0	3751,0	793,0	2452,0
731,8	286,0	601,0	2389,0	2944,0	4937,0	3896,0	2446,0	2262,0	4021,0	1356,0	14518,0	3231,0	3744,0	786,0	2446,0
733,0	272,0	594,0	2364,0	2878,0	4954,0	3868,0	2430,0	2284,0	4042,0	1348,0	14530,0	3284,0	3710,0	801,0	2459,0
734,1	267,0	601,0	2347,0	2929,0	4950,0	3849,0	2426,0	2237,0	4037,0	1333,0	14550,0	3250,0	3712,0	791,0	2435,0
735,3	275,0	596,0	2404,0	2913,0	4946,0	3794,0	2381,0	2231,0	4053,0	1342,0	14580,0	3274,0	3696,0	804,0	2442,0
736,5	261,0	610,0	2368,0	2899,0	4928,0	3841,0	2414,0	2163,0	3977,0	1299,0	14606,0	3263,0	3752,0	790,0	2396,0
737,7	265,0	588,0	2375,0	2839,0	4861,0	3863,0	2377,0	2240,0	3993,0	1333,0	14579,0	3327,0	3667,0	795,0	2379,0
738,8	256,0	576,0	2362,0	2821,0	4856,0	3793,0	2379,0	2239,0	4009,0	1316,0	14705,0	3348,0	3702,0	778,0	2374,0
740,0	246,0	562,0	2350,0	2884,0	4883,0	3843,0	2372,0	2185,0	3966,0	1332,0	14619,0	3322,0	3718,0	761,0	2369,0
741,2	249,0	596,0	2370,0	2811,0	4838,0	3820,0	2378,0	2193,0	3897,0	1297,0	14665,0	3318,0	3674,0	765,0	2378,0
742,4	260,0	553,0	2361,0	2827,0	4809,0	3719,0	2357,0	2137,0	3943,0	1317,0	14637,0	3336,0	3623,0	757,0	2413,0
743,5	241,0	605,0	2321,0	2859,0	4853,0	3736,0	2341,0	2170,0	3923,0	1292,0	14651,0	3350,0	3698,0	772,0	2369,0
744,7	243,0	594,0	2311,0	2807,0	4787,0	3693,0	2320,0	2175,0	3949,0	1316,0	14730,0	3329,0	3624,0	745,0	2380,0
745,9	257,0	577,0	2340,0	2801,0	4784,0	3737,0	2345,0	2183,0	3945,0	1327,0	14744,0	3403,0	3593,0	758,0	2385,0
747,1	238,0	554,0	2335,0	2747,0	4789,0	3723,0	2357,0	2165,0	3891,0	1312,0	14870,0	3397,0	3647,0	755,0	2353,0
748,2	251,0	588,0	2358,0	2763,0	4783,0	3723,0	2293,0	2156,0	3858,0	1319,0	14823,0	3329,0	3587,0	743,0	2391,0
749,4	249,0	596,0	2327,0	2796,0	4792,0	3725,0	2317,0	2165,0	3902,0	1306,0	14985,0	3419,0	3627,0	753,0	2379,0
0,6	245,0	574,0	2319,0	2761,0	4759,0	3758,0	2333,0	2173,0	3875,0	1283,0	14911,0	3368,0	3624,0	760,0	2346,0
751,8	253,0	576,0	2263,0	2736,0	4808,0	3733,0	2265,0	2157,0	3904,0	1313,0	14972,0	3388,0	3639,0	779,0	2346,0
752,9	251,0	585,0	2255,0	2765,0	4787,0	3723,0	2299,0	2111,0	3880,0	1339,0	14988,0	3381,0	3630,0	760,0	2348,0
754,1	244,0	575,0	2284,0	2730,0	4793,0	3692,0	2286,0	2120,0	3779,0	1299,0	14944,0	3374,0	3620,0	749,0	2323,0
755,3	257,0	579,0	2259,0	2746,0	4703,0	3741,0	2288,0	2128,0	3921,0	1297,0	15084,0	3336,0	3645,0	744,0	2299,0
756,4	229,0	589,0	2308,0	2730,0	4786,0	3733,0	2296,0	2117,0	3876,0	1317,0	15140,0	3313,0	3603,0	763,0	2310,0
757,6	235,0	565,0	2310,0	2709,0	4717,0	3581,0	2261,0	2139,0	3875,0	1286,0	15134,0	3351,0	3585,0	757,0	2295,0
758,8	240,0	587,0	2295,0	2703,0	4765,0	3593,0	2283,0	2137,0	3899,0	1294,0	15206,0	3355,0	3569,0	755,0	2280,0
0,0	249,0	571,0	2293,0	2697,0	4815,0	3664,0	2241,0	2127,0	3829,0	1336,0	15196,0	3308,0	3608,0	765,0	2348,0
761,1	213,0	570,0	2280,0	2703,0	4737,0	3683,0	2241,0	2123,0	3870,0	1281,0	15288,0	3356,0	3570,0	742,0	2285,0
762,3	233,0	575,0	2267,0	2716,0	4709,0	3661,0	2210,0	2127,0	3888,0	1294,0	15320,0	3327,0	3567,0	745,0	2313,0
763,5	255,0	577,0	2241,0	2707,0	4736,0	3653,0	2258,0	2088,0	3849,0	1295,0	15258,0	3301,0	3583,0	768,0	2302,0
764,7	252,0	560,0	2315,0	2697,0	4793,0	3611,0	2240,0	2090,0	3864,0	1315,0	15276,0	3339,0	3579,0	763,0	2317,0
765,8	249,0	609,0	2272,0	2673,0	4814,0	3643,0	2228,0	2069,0	3860,0	1315,0	15420,0	3332,0	3561,0	760,0	2230,0
767,0	238,0	609,0	2311,0	2658,0	4751,0	3625,0	2267,0	2105,0	3867,0	1316,0	15400,0	3314,0	3546,0	783,0	2285,0
768,2	238,0	596,0	2299,0	2665,0	4794,0	3654,0	2203,0	2105,0	3847,0	1332,0	15530,0	3281,0	3541,0	783,0	2288,0
9,3	259,0	618,0	2289,0	2704,0	4846,0	3640,0	2213,0	2075,0	3832,0	1335,0	15458,0	3325,0	3527,0	763,0	2263,0
0,5	267,0	582,0	2327,0	2679,0	4774,0	3598,0	2173,0	2113,0	3855,0	1297,0	15473,0	3316,0	3574,0	725,0	2278,0
771,7	258,0	3,0	2267,0	2640,0	4847,0	3654,0	2233,0	2080,0	3865,0	1301,0	15537,0	3311,0	3555,0	802,0	2271,0
772,8	255,0	613,0	2281,0	2673,0	4798,0	3571,0	2190,0	2145,0	3814,0	1294,0	15585,0	3315,0	3600,0	784,0	2243,0
774,0	246,0	621,0	2290,0	2675,0	4848,0	3652,0	2235,0	2108,0	3835,0	1299,0	15669,0	3361,0	3591,0	777,0	2243,0
775,2	281,0	621,0	2265,0	2671,0	4782,0	3605,0	2212,0	2060,0	3841,0	1360,0	15639,0	3335,0	3543,0	785,0	225,0
776,4	271,0	608,0	2277,0	2611,0	4800,0	3651,0	2233,0	2090,0	3871,0	1335,0	15563,0	3333,0	3597,0	786,0	2241,0
777,5	277,0	633,0	2300,0	2719,0	4811,0	3595,0	2185,0	2115,0	3835,0	1340,0	15737,0	3356,0	3595,0	801,0	2299,0
778,7	276,0	632,0	2285,0	2636,0	4825,0	3599,0	2199,0	2094,0	3865,0	1345,0	15724,0	3301,0	3575,0	820,0	2197,0
779,9	278,0	642,0	2301,0	2681,0	4822,0	3600,0	2176,0	2085,0	3829,0	1339,0	15730,0	3333,0	3577,0	800,0	2254,0
781,0	288,0	657,0	2292,0	2630,0	4799,0	3565,0	2199,0	2078,0	3805,0	1358,0	15778,0	3379,0	3601,0	801,0	2231,0
782,2	295,0	677,0	2253,0	2654,0	4833,0	3561,0	2167,0	2087,0	3884,0	1330,0	15815,0	3352,0	3581,0	813,0	2275,0
783,4	278,0	639,0	2258,0	2631,0	4749,0	3561,0	2142,0	2135,0	3864,0	1333,0	15870,0	3336,0	3603,0	813,0	2293,0
784,5	294,0	659,0	2248,0	2598,0	4864,0	3591,0	2175,0	2087,0	3843,0	1330,0	15940,0	3340,0	3597,0	821,0	2241,0
785,7	301,0	662,0	2271,0	2679,0	4816,0	3567,0	2183,0	2103,0	3825,0	1318,0	15907,0	3387,0	3583,0	817,0	2265,0
786,9	313,0	693,0	2229,0	2653,0	4830,0	3537,0	2140,0	2066,0	3817,0	1335,0	15958,0	3415,0	3623,0	817,0	2266,0
788,0	287,0	671,0	2245,0	2635,0	4813,0	3551,0	2181,0	2083,0	3830,0	1327,0	15971,0	3421,0	3584,0	831,0	2237,0
789,2	299,0	685,0	2188,0	2628,0	4846,0	3560,0	2150,0	2063,0	3854,0	1295,0	15974,0	3427,0	3570,0	849,0	2239,0
790,4	313,0	688,0	2255,0	2603,0	4812,0	3543,0	2161,0	2079,0	3799,0	1327,0	15986,0	3397,0	3588,0	826,0	2177,0
791,5	316,0	701,0	2257,0	2605,0	4783,0	3571,0	2151,0	2065,0	3831,0	1330,0	16114,0	3402,0	3602,0	840,0	2241,0
792,7	314,0	696,0	2234,0	2599,0	4786,0	3549,0	2124,0	2071,0	3831,0	1316,0	16107,0	3432,0	3615,0	814,0	2245,0
793,9	303,0	712,0	2220,0	2582,0	4769,0	3539,0	2163,0	2080,0	3798,0	1320,0	16041,0	3442,0	3588,0	829,0	2255,0
795,0	314,0	712,0	2224,0	2591,0	4789,0	3543,0	2157,0	2064,0	3808,0	1319,0	16224,0	3448,0	3567,0	830,0	2240,0
796,2	315,0	711,0	2182,0	2571,0	4789,0	3571,0	2134,0	2071,0	3794,0	1334,0	16228,0	3400,0	3571,0	845,0	2191,0
797,4	325,0	694,0	2196,0	2537,0	4812,0	3501,0	2154,0	2063,0	3840,0	1307,0	16138,0	3401,0	3545,0	835,0	2215,0
798,5	306,0	693,0	2166,0	2545,0	4784,0	3495,0	2117,0	2047,0	3798,0	1297,0	16164,0	3384,0	3515,0	814,0	2187,0
799,7	293,0	685,0	2196,0	2575,0	4736,0	3481,0	2139,0	2047,0	3741,0	1330,0	16047,0	3379,0	3541,0	813,0	2195,0
800,9	305,0	687,0	2169,0	2575,0	4768,0	3463,0	2120,0	2044,0	3759,0	1295,0	16215,0	3415,0	3526,0	835,0	2188,0
802,0	301,0	695,0	2178,0	2542,0	4731,0	3481,0	2059,0	2044,0	3749,0	1328,0	16198,0	3383,0	3532,0	822,0	2145,0
803,2	301,0	703,0	2140,0	2533,0	4657,0	3401,0	2037,0	2030,0	3681,0	1332,0	16289,0	3309,0	3533,0	829,0	2131,0
804,4	311,0	675,0	2149,0	2443,0	4692,0	3429,0	2054,0	1986,0	3711,0	1325,0	16333,0	3341,0	3504,0	813,0	2162,0
805,5	295,0	647,0	2134,0	2520,0	4650,0	3401,0	2082,0	1996,0	3713,0	1325,0	16320,0	3390,0	3512,0	811,0	2197,0
806,7	295,0	669,0	2131,0	2467,0	4631,0	3401,0	2063,0	2009,0	3703,0	1313,0	16287,0	3403,0	3500,0	809,0	2113,0
807,8	305,0	680,0	2149,0	2498,0	4656,0	3392,0	2059,0	2022,0	3730,0	1331,0	16375,0	3373,0	3435,0	807,0	2157,0
809,0	288,0	658,0	2125,0	2489,0	4631,0	3362,0	2001,0	1911,0	3671,0	1341,0	16436,0	3335,0	3447,0	794,0	2071,0
810,2	269,0	643,0	2106,0	2479,0	4522,0	3347,0	2061,0	1976,0	3664,0	1357,0	16384,0	3320,0	3486,0	795,0	2119,0
811,3	283,0	651,0	2107,0	2452,0	4581,0	3368,0	1991,0	1947,0	3643,0	1344,0	16435,0	3369,0	3481,0	799,0	2077,0
812,5	270,0	629,0	2065,0	2409,0	4577,0	3345,0	2005,0	1962,0	3675,0	1325,0	16478,0	3357,0	3431,0	795,0	2079,0
813,7	267,0	665,0	2066,0	2455,0	4507,0	3335,0	1979,0	1945,0	3682,0	1311,0	16477,0	3362,0	3410,0	776,0	2104,0
814,8	277,0	648,0	2042,0	2394,0	4557,0	3291,0	1986,0	1927,0	3562,0	1349,0	16449,0	3377,0	3400,0	785,0	2005,0
816,0	274,0	628,0	2038,0	2333,0	4492,0	3295,0	1993,0	1911,0	3573,0	1357,0	16613,0	3322,0	3403,0	791,0	2079,0
817,2	261,0	620,0	2013,0	2305,0	4497,0	3271,0	1958,0	1931,0	3599,0	1363,0	16450,0	3348,0	3401,0	755	2050,0

819,5	261,0	607,0	2008,0	2366,0	4431,0	3177,0	1929,0	1894,0	3581,0	1345,0	16508,0	3338,	3364,0	776	2017
820,6	251,0	604,0	1989,0	2331,0	4393,0	3181,0	1907,0	1876,0	3541,0	1351,0	16611,0	3360,0	3346,0	770,0	2026,0
821,8	241,0	602,0	1988,0	2342,0	4381,0	3224,0	1910,0	1834,0	3569,0	1363,0	16623,0	3396,0	3377,0	749,0	2025,0
823,0	257,0	599,0	1996,0	2307,0	4313,0	3191,0	1924,0	1821,0	3491,0	1350,0	16640,0	3346,0	3348,0	715,0	2031,0
824,1	235,0	609,0	1968,0	2316,0	4329,0	3142,0	1890,0	1805,0	3563,0	1383,0	16607,0	3338,0	3317,0	738,0	1963,0
825,3	245,0	591,0	1952,0	2268,0	4336,0	3090,0	1876,0	1855,0	3496,0	1374,0	16648,0	3361,0	3294,0	739,0	1936,0
826,4	247,0	605,0	1867,0	2286,0	4325,0	3088,0	1869,0	1818,0	3480,0	1391,0	16817,0	3314,0	3331,0	760,	1941,
827,6	258,0	614,0	1891,0	2238,0	4287,0	3066,0	1838,0	1829,0	3441,0	1371,0	16774,0	3307,0	3341,0	723,0	1927,0
828,8	237,0	579,0	1927,0	2237,0	4198,0	3072,0	1821,0	1784,0	3377,0	1346,0	16768,0	3393,0	3306,0	760,0	1932,
829,9	249,0	592,0	1852,0	2217,0	4241,0	2993,0	1807,0	1786,0	3428,0	1325,0	16894,0	3367,0	3327,0	728,0	1926,
831,1	249,0	604,0	1869,0	2183,0	4204,0	3050,0	1811,0	1736,0	3382,0	1344,0	16854,0	3391,0	3258,0	735,0	1938,0
832,2	237,0	605,0	1887,0	2161,0	4173,0	2992,0	1768,0	1725,0	3370,0	1350,0	16964,0	3396,0	3281,0	737,0	1881,0
833,4	233,0	607,0	1852,0	2158,0	4143,0	2970,0	1787,0	1714,0	3297,0	1356,0	17062,0	3349,0	3206,0	734,0	1917,0
834,6	221,0	589,0	1827,0	2115,0	4131,0	2947,0	1735,0	1703,0	3353,0	1350,0	17002,0	3408,0	3248,0	731,0	1883,0
835,7	233,0	587,0	1793,0	2041,0	4148,0	2901,0	1715,0	1691,0	3353,0	1352,0	16994,0	3392,0	3207,0	729,0	1828,0
836,9	239,0	600,0	1799,0	2055,0	4089,0	2959,0	1710,0	1693,0	3298,0	1345,0	17242,0	3347,0	3189,0	731,0	1845,
838,0	218,0	598,0	1786,0	2082,0	4105,0	2876,0	1711,0	1655,0	3264,0	1377,0	17110,0	3388,0	3226,0	723,0	1813,0
839,2	237,0	579,0	1763,0	2030,0	4105,0	2910,0	1687,0	1632,0	3268,0	1353,0	17231,0	3407,0	3171,0	730,0	1811,0
840,4	221,0	599,0	1771,0	2013,0	4009,0	2822,0	1637,0	1628,0	3229,0	1364,0	17436,0	3429,0	3157,0	720,0	1789,0
841,5	219,0	601,0	1754,0	1983,0	4031,0	2848,0	1637,0	1628,0	3151,0	1382,0	17440,0	3405,0	3161,0	728,0	1783,0
842,7	224,0	583,0	1727,0	2016,0	3999,0	2813,0	1647,0	1616,0	3189,0	1360,0	17395,0	3400,0	3177,0	706,0	1767,0
843,8	226,0	592,0	1716,0	1925,0	3967,0	2812,0	1613,0	1591,0	3189,0	1369,0	17370,0	3363,0	3129,0	728,0	1757,0
845,0	223,0	581,0	1704,0	1971,0	3978,0	2739,0	1585,0	1570,0	3124,0	1291,0	17475,0	3392,0	3146,0	721,0	1747,0
846,2	227,0	582,0	1691,0	1942,0	3945,0	2787,0	1559,0	1553,0	3124,0	1330,0	17507,0	3434,0	3119,0	707,0	1763,0
847,3	214,0	592,0	1651,0	1877,0	3866,0	2695,0	1558,0	1542,0	3109,0	1306,0	17500,0	3451,0	3112,0	709,0	1707,0
848,5	216,0	573,0	1649,0	1910,0	3865,0	2742,0	1535,0	1513,0	3114,0	1327,0	17589,0	3414,0	3074,0	705,0	1706,0
849,6	221,0	569,0	1622,0	1867,0	3887,0	2671,0	1513,0	1475,0	3088,0	1341,0	17683,0	3424,0	3073,0	687,0	1671,0
850,8	211,0	586,0	1614,0	1827,0	3834,0	2673,0	1516,0	1491,0	3105,0	1348,0	17716,0	3435,0	3096,0	697,0	1683,0
851,9	209,0	574,0	1587,0	1787,0	3868,0	2648,0	1545,0	1475,0	3035,0	1323,0	17735,0	3447,0	3043,0	685,0	1679,0
853,1	213,0	560,0	1590,0	1819,0	3857,0	2665,0	1478,0	1440,0	2967,0	1327,0	17709,0	3471,0	3072,0	677,0	1670,0
854,3	222,0	569,0	1571,0	1803,0	3734,0	2631,0	1474,0	1427,0	2991,0	1336,0	17676,0	3404,0	3026,0	692,0	1627,0
855,4	213,0	566,0	1548,0	1762,0	3731,0	2546,0	1451,0	1404,0	3030,0	1353,0	17837,0	3456,0	3012,0	702,0	1625,0
856,6	221,0	575,0	1540,0	1727,0	3698,0	2568,0	1427,0	1431,0	3009,0	1321,0	17843,0	3474,0	3051,0	713,0	1627,0
857,7	212,0	551,0	1553,0	1726,0	3727,0	2525,0	1433,0	1388,0	2970,0	1366,0	18038,0	3445,0	2965,0	686,0	1598,0
858,9	213,0	570,0	1519,0	1704,0	3686,0	2488,0	1393,0	1390,0	2910,0	1331,0	18068,0	3501,0	2937,0	680,0	1529,0
860,0	219,0	547,0	1507,0	1685,0	3696,0	2466,0	1390, 0	1339,0	2910,0	1341,0	18080,0	3496,0	2951,0	688,0	1559,0
861,2	211,0	564,0	1489,0	1665,0	3629,0	2477,0	1384,0	1332,0	2895,0	1352,0	18044,0	3516,0	2989,0	681,0	1545,0
862,3	201,0	565,0	1493,0	1626,0	3611,0	2458,0	1345,0	1327,0	2916,0	1340,0	17992,0	3465,0	2967,0	687,0	1511,0
863,5	197,0	563,0	1439,0	1626,0	3617,0	2428,0	1305,0	1301,0	2866,0	1355,0	18132,0	3565,0	2919,0	703,0	1523,0
864,7	203,0	559,0	1435,0	1607,0	3601,0	2407,0	1378,0	1278,0	2865,0	1337,0	18237,0	3499,0	2950,0	689,0	1512,0
865,8	207,0	585,0	1440,0	1593,0	3564,0	2355,0	1305,0	1265,0	2885,0	1329,0	18301,0	3522,0	2932,0	674,0	1534,0
867,0	208,0	570,0	1407,0	1556,0	3498,0	2387,0	1287,0	1254,0	2834,0	1377,0	18319,0	3507,0	2899,0	677,0	1483,0
868,1	193,0	557,0	1405,0	1566,0	3531,0	2376,0	1253,0	1243,0	2835,0	1326,0	18250,0	3476,0	2941,0	675,0	1504,0
869,3	203,0	549,0	1391,0	1550,0	3537,0	2333,0	1277,0	1243,0	2813,0	1352,0	18311,0	3551,0	2883,0	673,0	1465,0
870,4	202,0	534,0	1381,0	1545,0	3497,0	2375,0	1271,0	1207,0	2770,0	1362,0	18462,0	3542,0	2867,0	675,0	1447,0
871,6	187,0	554,0	1391,0	1541,0	3519,0	2327,0	1221,0	1213,0	2734,0	1351,0	18446,0	3480,0	2915,0	669,0	1469,0
872,7	204,0	551,0	1347,0	1507,0	3525,0	2314,0	1243,0	1211,0	2709,0	1350,0	18511,0	3497,0	2890,0	647,0	1449,0
873,9	204,0	542,0	1356,0	1484,0	3489,0	2257,0	1193,0	1184,0	2784,0	1361,0	18514,0	3505,0	2909,0	645,0	1461,0
875,0	188,0	539,0	1362,0	1497,0	3469,0	2281,0	1251,0	1183,0	2722,0	1320,0	18548,0	3503,0	2901,0	642,0	1439,0
876,2	185,0	549,0	1324,0	1484,0	3425,0	2253,0	1226,0	1149,0	2747,0	1340,0	18568,0	3544,0	2872,0	657,0	1405,0
877,3	181,0	543,0	1329,0	1439,0	3394,0	2197,0	1197,0	1146,0	2708,0	1330,0	18556,0	3553,0	2839,0	653,0	1425,0
878,5	184,0	545,0	1304,0	1407,0	3371,0	2219,0	1181,0	1135,0	2762,0	1351,0	18437,0	3506,0	2837,0	645,0	1399,0
879,6	189,0	545,0	1283,0	1443,0	3444,0	2219,0	1182,0	1172,0	2676,0	1337,0	18690,0	3574,0	2787,0	639,0	1407,0
880,8	181,0	518,0	1316,0	1454,0	3408,0	2235,0	1136,0	1135,0	2656,0	1341,0	18679,0	3577,0	2778,0	657,0	1395,0
881,9	182,0	547,0	1285,0	1434,0	3375,0	2179,0	1185,0	1127,0	2647,0	1352,0	18758,0	3543,0	2861,0	637,0	1384,0
883,1	183,0	547,0	1297,0	1402,0	3362,0	2159,0	1139,0	1130,0	2614,0	1313,0	18706,0	3489,0	2846,0	645,0	1380,0
884,3	181,0	545,0	1288,0	1375,0	3367,0	2173,0	1143,0	1097,0	2633,0	1301,0	18595,0	3520,0	2810,0	634,0	1346,0
885,4	174,0	526,0	1274,0	1373,0	3287,0	2154,0	1149,0	1113,0	2623,0	1329,0	18652,0	3547,0	2804,0	627,0	1379,0
886,6	172,0	531,0	1263,0	1375,0	3317,0	2155,0	1113,0	1085,0	2614,0	1331,0	18713,0	3520,0	2789,0	634,0	1361,0
887,7	181,0	524,0	1262,0	1375,0	3287,0	2124,0	1095,0	1083,0	2595,0	1346,0	18763,0	3522,0	2750,0	629,0	1376,0
888,9	176,0	516,0	1227,0	1350,0	3321,0	2162,0	1109,0	1085,0	2576,0	1337,0	18897,0	3514,0	2759,0	623,0	1346,0
890,0	179,0	525,0	1257,0	1371,0	3311,0	2130,0	1103,0	1064,0	2608,0	1329,0	18766,0	3525,0	2770,0	627,0	1392,0
891,2	161,0	524,0	1244,0	1307,0	3290,0	2110,0	1101,0	1068,0	2607,0	1336,0	18748,0	3514,0	2787,0	634,0	1329,0
892,3	165,0	514,0	1222,0	1340,0	3237,0	2093,0	1061,0	1059,0	2570,0	1298,0	18850,0	3459,0	2783,0	601,0	1325,0
893,5	168,0	514,0	1216,0	1321,0	3293,0	2110,0	1076,0	1048,0	2593,0	1339,0	18797,0	3564,0	2735,0	638,0	1325,0
894,6	185,0	517,0	1222,0	1307,0	3255,0	2124,0	1040,0	1037,0	2525,0	1327,0	18993,0	3554,0	2765,0	609,0	1356,0
895,8	167,0	519,0	1208,0	1297,0	3214,0	2108,0	1077,0	1015,0	2523,0	1338,0	18818,0	3506,0	2765,0	600,0	1332,0
896,9	172,0	529,0	1206,0	1269,0	3245,0	2084,0	1065,0	1035,0	2582,0	1339,0	18928,0	3519,0	2735,0	607,0	1344,0
898,1	157,0	495,0	1217,0	1289,0	3199,0	2073,0	1051,0	1014,0	2496,0	1311,0	18973,0	3561,0	2731,0	622,0	1299,0
899,2	175,0	522,0	1214,0	1275,0	3230,0	2050,0	1071,0	1015,0	2552,0	1307,0	18995,0	3567,0	2717,0	589,0	1315,0
900,4	168,0	498,0	1199,0	1280,0	3213,0	2005,0	1057,0	1026,0	2477,0	1311,0	18981,0	3561,0	2767,0	615,0	1287,0
901,5	162,0	542,0	1187,0	1235,0	3163,0	2011,0	1040,0	1000,0	2536,0	1306,0	19121,0	3584,0	2671,0	608,0	1314,0
902,6	160,0	518,0	1210,0	1261,0	3177,0	2059,0	1055,0	1005,0	2479,0	1332,0	19025,0	3547,0	2745,0	603,0	1268,0
903,8	153,0	504,0	1173,0	1253,0	3247,0	2047,0	1035,0	1008,0	2568,0	1302,0	19242,0	3548,0	2789,0	612,0	1319,0
904,9	160,0	507,0	1153,0	1231,0	3164,0	2051,0	1033,0	987,0	2481,0	1347,0	19188,0	3564,0	2730,0	605,0	1276,0
906,1	155,0	504,0	1157,0	1236,0	3226,0	2044,0	1019,0	969,0	2483,0	1326,0	19136,0	3603,0	2769,0	602,0	1311,0
907,2	157,0	513,0	1161,0	1271,0	3145,0	1949,0	1009,0	951,0	2457,0	1322,0	19221,0	3680,0	2758,0	600,0	1305,0
908,4	163,0	512,0	1188,0	1234,0	3156,0	2009,0	1007,0	993,0	2519,0	1344,0	19289,0	3599,0	2697,0	597,0	1282,0
909,5	167,0	489,0	1181,0	1228,0	3167,0	2025,0	1018,0	981,0	2488,0	1363,0	19324,0	3579,0	2747,0	615,0	1301,0
910,7	151,0	506,0	1153,0	1205,0	3195,0	2005,0	1017,0	962,0	2509,0	1331,0	19316,0	3642,0	2757,0	593,0	1313,0
911,8	147,0	491,0	1154,0	1201,0	3176,0	2004,0	1017,0	991,0	2484,0	1356,0	19409,0	3629,0	2742,0	593,0	1303,0
913,0	163,0	510,0	1158,0	1195,0	3175,0	2029,0	1002,0	979,0	2514,0	1323,0	19467,0	3636,0	2749,0	593,0	1294,0
914,1	151,0	501,0	1187,0	1219,0	3191,0	2011,0	1028,0	961,0	2482,0	1370,0	19377,0	3664,0	2691,0	607,0	1301,0
915,3	149,0	487,0	1133,0	1209,0	3174,0	2016,0	996,0	975,0	2462,0	1346,0	19475,0	3630,0	2786,0	600,0	1315,0
916,4	152,0	507,0	1149,0	1249,0	3163,0	1983,0	979,0	980,0	2450,0	1370,0	19525,0	3618,0	2784,0	599,0	1301,0
917,6	163,0	501, 0	1141,0	1229,0	3170,0	1970,0	1001,0	981,0	2474,0	1376,0	19634,0	3676,0	2728,0	591,0	1283,0
918,7	155,0	500,0	1167,0	1189,0	3139,0	2019,0	995,0	981,0	2471,0	1362,0	19671,0	3679,0	2800,0	590,0	1279,0
919,9	160,0	522,0	1136,0	1209,0	3213,0	2023,0	1005,0	948,0	2455,0	1339,0	19698,0	3667,0	2743,0	605,0	1276,0
921,0	157,0	491,0	1127,0	1213,0	3123,0	2006,0	1023,0	933,0	2471,0	1360,0	19733,0	3666,0	2745,0	592,0	1309,0
922,1	171,0	490,0	1127,0	1216,0	3151,0	1953,0	969,0	962,0	2510,0	1381,0	19749,0	3658,0	2731,0	587,0	1305,0
923,3	143,0	489,0	1155,0	1203,0	3205,0	1971,0	970,0	953,0	2443,0	1381,0	19872,0	3646,0	2756,0	596,0	1289,0
924,4	153,0	509,0	1141,0	1221,0	3184,0	1983,0	989,0	949,0	2447,0	1375,0	19912,0	3702,0	2768,0	616,0	1314,0
925,6	148,0	512,0	1117,0	1195,0	3191,0	2015,0	1003,0	961,0	2453,0	1381,0	19911,0	3682,0	2771,0	602,0	1240,0
926,7	148,0	499,0	1159,0	1206,0	3204,0	1971,0	971,0	955,0	2431,0	1373,0	20055,0	3634,0	2780,0	603,0	1283,0
927,9	155,0	463,0	1132,0	1193,0	3189,0	1974,0	967,0	957,0	2425,0	1355,0	19969,0	3718,0	2753,0	593,0	1268,
929,0	150,0	500,0	1155,0	1203,0	3209,0	1990,0	973,0	945,0	2489,0	1374,0	20064,0	3713,0	2747,0	611,0	1280,0
930,2	135,0	491,0	1123,0	1189,0	3204,0	2009,0	992,0	962,0	2437,0	1355,0	20163,0	3693,0	2715,0	601,0	1290,0
931,3	150,0	498,0	1137,0	1198,0	3243,0	2001,0	976,0	955,0	2493,0	1381,0	20166,0	3686,0	2795,0	591,0	1283,0
932,4	159,0	499,0	1158,0	1203,0	3169,0	1969,0	988,0	947,0	2462,0	1345,0	20332,0	3727,0	2757,0	597,0	1299,0
933,6	157,0	493,0	1122,0	1199,0	3222,0	1980,0	965,0	944,0	2415,0	1386,0	20406,0	3722,0	2791,0	610,0	1267,

934,7	141,0	490,0	1156,0	1232,0	3241,0	1986,0	996,0	971,0	2493,0	1385,0	20440,0	3721,0	2779,0	600,0	1265,0
935,9	150,0	486,0	1139,0	1183,0	3161,0	1993,0	993,0	957,0	2483,0	1403,0	20442,0	3738,0	2794,0	591,0	1294,0
937,0	144,0	517,0	1151,0	1205,0	3189,0	1978,0	964,0	965,0	2491,0	1389,0	20376,0	3721,0	2769,0	584,0	1265,0
938,2	143,0	485,0	1149,0	1179,0	3220,0	1977,0	959,0	957,0	2443,0	1368,0	20535,0	3745,0	2786,0	621,0	1292,
939,3	146,0	498,0	1155,0	1180,0	3213,0	2009,0	981,0	937,0	2457,0	1369,0	20696,0	3778,0	2795,0	619,0	1275,
940,4	144,0	501,0	1145,0	1175,0	3222,0	2011,0	976,0	947,0	2473,0	1411,0	20599,0	3777,0	2779,0	587,0	1295,
941,6	151,0	488,0	1138,0	1217,0	3212,0	2001,0	943,0	968,0	2456,0	1394,0	20715,0	3774,0	2816,0	591,0	1284,
942,7	153,0	483,0	1124,0	1192,0	3186,0	2005,0	985,0	949,0	2502,0	1421,0	20789,0	3730,0	2785,0	597,0	1263,0
943,9	147,0	492,0	1144,0	1205,0	3231,0	1985,0	975,0	961,0	2472,0	1398,0	20679,0	3727,0	2786,0	590,0	1270,0
945,0	144,0	501,0	1151,0	1200, 0	3217,0	1963,0	965,0	934,0	2499,0	1426,0	20690,0	3743,0	2756,0	605,0	1272,0
946,1	137,0	509,0	1135,0	1173,0	3220,0	1989,0	983,0	953,0	2469,0	1411,0	20721,0	3736,0	2799,0	610,0	1273,0
947,3	143,0	509,0	1109,0	1163,0	3187,0	1951,0	953,0	930,0	2484,0	1416,0	20563,0	3777,0	2808,0	586,0	1252,
948,4	145,0	502,0	1157,0	1173,0	3185,0	1957,0	952,0	933,0	2443,0	1383,0	20679,0	3721,0	2724,0	601,0	1292
949,6	149,0	490,0	1115,0	1173,0	3163,0	1967,0	961,0	909,0	2473,0	1447,0	20849,0	3817,0	2749,0	589,0	1285,
950,7	145,0	481,0	1139,0	1116,0	3208,0	1962,0	955,0	954,0	2422,0	1396,0	20878,0	3750,0	2747,0	598,0	1263,
951,8	136,0	510,0	1137,0	1165,0	3216,0	1964,0	987,0	955,0	2414,0	1434,0	20757,0	3762,0	2792,0	598,0	1267,0
953,0	136,0	487,0	1112,0	1158,0	3156,0	1979,0	943,0	918,0	2471,0	1407,0	20832,0	3733,0	2780,0	581,0	1279,0
954,1	139,0	498,0	1127,0	1168,0	3185,0	1968,0	953,0	935,0	2463,0	1424,0	20865,0	3802,0	2762,0	601,0	1256,0
955,3	137,0	469,0	1123,0	1192,0	3191,0	1992,0	956,0	936,0	2450,0	1436,0	20842,0	3769,0	2741,0	587,0	1281,0
956,4	143,0	486,0	1121,0	1170,0	3159,0	1951,0	938,0	929,0	2458,0	1416,0	20858,0	3709,0	2771,0	595,0	1271,
957,5	148,0	472,0	1113,0	1129,0	3170,0	1940,0	931,0	908,0	2423,0	1426,0	20945,0	3750,0	2791,0	602,0	1287.
958,7	143,0	498,0	1109,0	1151,0	3173,0	1937,0	962,0	931,0	2474,0	1442,0	20953,0	3702,0	2801,0	601,0	1271,
959,8	129,0	465,0	1145,0	1164,0	3171,0	1983,0	947,0	932,0	2432,0	1411,0	20989,0	3769,0	2771,0	587,0	1262,0
961,0	143,0	495,0	1154,0	1125,0	3190,0	1960,0	915,0	929,0	2497,0	1461,0	20902,0	3744,0	2756,0	595,0	1272,0
962,1	138,0	502,0	1109,0	1133,0	3185,0	1905,0	950,0	931,0	2478,0	1482,0	21122,0	3810,0	2798,0	587,0	1273,0
963,2	135,0	483,0	1109,0	1153,0	3195,0	1957,0	937,0	917,0	2439,0	1507,0	21111,0	3792,0	2785,0	590,0	1225,0
964,4	134,0	477,0	1160,0	1163,0	3234,0	1890,0	941,0	889,0	2421,0	1519,0	21148,0	3720,0	2770,0	593,0	1267,
965,5	125,0	466,0	1140,0	1135,0	3179,0	1947,0	941,0	918,0	2404,0	1587,0	21400,0	3765,0	2794,0	589,0	1268,
966,7	141,0	471,0	1109,0	1169,0	3197,0	1970,0	954,0	917,0	2432,0	1608,0	21193,0	3773,0	2808,0	585,0	1263,
967,8	137,0	467,0	1097,0	1140,0	3182,0	1946,0	946,0	901,0	2421,0	1690,0	21311,0	3740,0	2800,0	578,0	1263,0
968,9	133,0	490,0	1133,0	1132,0	3183,0	1963,0	942,0	903,0	2429,0	1759,0	21157,0	3788,0	2814,0	588,0	1261,0
970,1	136,0	479,0	1106,0	1138,0	3195,0	1922,0	937,0	915,0	2466,0	1915,0	21391,0	3842,0	2799,0	575,0	1267,0
971,2	143,0	495,0	1110,0	1158,0	3164,0	1933,0	930,0	937,0	2459,0	2091,0	21499,0	3895,0	2793,0	569,0	1269,0
972,3	136,0	496,0	1096,0	1150,0	3170,0	1905,0	948,0	904,0	2461,0	2312,0	21549,0	3930,0	2829,0	592,0	1273,0
973,5	135,0	486,0	1133,0	1134,0	3187,0	1919,0	941,0	867,0	2430,0	2269,0	21712,0	4034,0	2791,0	588,0	1245,0
974,6	132,0	483,0	1115,0	1129,0	3151,0	1965,0	933,0	927,0	2471,0	2081,0	21887,0	4039,0	2852,0	601,0	1261,0
975,8	135,0	487,0	1133,0	1167,0	3195,0	1919,0	942,0	911,0	2474,0	1910,0	21969,0	3987,0	2842,0	589,0	1233,0
976,9	136,0	482,0	1113,0	1143,0	3228,0	1972,0	925,0	939,0	2467,0	1831,0	22066,0	4022,0	2884,0	586,0	1282,0
978,0	134,0	466,0	1138,0	1151,0	3227,0	1947,0	922,0	923,0	2462,0	1757,0	22198,0	3992,0	2859,0	591,0	1294,0
979,2	125,0	504,0	1132,0	1163,0	3200,0	2001,0	941,0	920,0	2438,0	1715,0	22354,0	3968,0	2829,0	604,0	1312,0
980,3	135,0	477,0	1134,0	1145,0	3263,0	1957,0	947,0	936,0	2477,0	1688,0	22445,0	3950,0	2873,0	615,0	1296,0
981,4	129,0	491,0	1112,0	1168,0	3219,0	1995,0	944,0	947,0	2461,0	1653,0	22490,0	3980,0	2893,0	590,0	1315,0
982,6	138,0	491,0	1147,0	1163,0	3239,0	1987,0	941,0	927,0	2481,0	1662,0	22541,0	3945,0	2907,0	597,0	1313,0
983,7	134,0	493,0	1157,0	1181,0	3224,0	1950,0	901,0	944,0	2465,0	1617,0	22547,0	3963,0	2888,0	589,0	1293,0
984,8	139,0	485,0	1176,0	1163,0	3293,0	1979,0	942,0	941,0	2491,0	1654,0	22702,0	3985,0	2894,0	580,0	1317,0
986,0	130,0	500,0	1164,0	1173,0	3258,0	1969,0	948,0	971,0	2481,0	1662,0	22737,0	4005,0	2941,0	581,0	1309,0
987,1	146,0	493,0	1138,0	1157,0	3308,0	1993,0	963,0	931,0	2513,0	1711,0	22850,0	3999,0	2908,0	598,0	1315,0
988,2	137,0	516,0	1125,0	1155,0	3320,0	1983,0	963,0	933,0	2517,0	1753,0	22820,0	3966,0	2903,0	603,0	1326,
989,4	135,0	481,0	1157,0	1169,0	3294,0	1999,0	945,0	929,0	2470,0	1734,0	22926,0	4026,0	2956,0	595,0	1285,
990,5	134,0	505,0	1109,0	1168,0	3241,0	2004,0	977,0	934,0	2460,0	1788,0	23000,0	4002,0	2898,0	593,0	1294,
991,6	141,0	499,0	1150,0	1158,0	3293,0	2034,0	964,0	942,0	2522,0	1869,0	22893,0	4037,0	2891,0	626,0	1279,0
992,8	133,0	494,0	1163,0	1128,0	3289,0	2015,0	934,0	938,0	2495,0	1909,0	23222,0	4042,0	2945,0	607,0	1320,0
993,9	129,0	485,0	1170,0	1160,0	3271,0	2015,0	944,0	933,0	2496,0	1987,0	23208,0	4101,0	2916,0	610,0	1299,0
995,0	137,0	490,0	1139,0	1135,0	3297,0	2002,0	939,0	967,0	2493,0	2139,0	23197,0	4119,0	2887,0	605,0	1335,0
996,2	140,0	517,0	1161,0	1184,0	3285,0	1961,0	941,0	921,0	2488,0	2262,0	2324,0	4101,0	2918,0	607,0	1329,0
997,3	131,0	497,0	1174,0	1157,0	3307,0	2012,0	952,0	939,0	2505,0	2479,0	23213,0	4113,0	2906,0	577,0	1329,0
998,4	139,0	490,0	1156,0	1190,0	3287,0	2009,0	927,0	933,0	2492,0	2801,0	23154,0	4153,0	2962,0	609,0	1309,
999,6	135,0	494,0	1132,0	1179,0	3282,0	1974,0	952,0	938,0	2457,0	3221,0	23276,0	4234,0	2952,0	593,0	1307,0
1000,7	130,0	528,0	1135,0	1195,0	3285,0	2017,0	931,0	905,0	2509,0	3811,0	23373,0	4248,0	2981,0	609,0	1314,0
1001,8	135,0	511,0	1135,0	1167,0	3319,0	1983,0	956,0	926,0	2490,0	4607,0	23485,0	4305,0	2997,0	604,0	1278,0
1003,0	128,0	499,0	1143,0	1174,0	3327,0	1999,0	934,0	919,0	2517,0	5750,0	23674,0	4384,0	2968,0	600,0	1292,0
1004,1	125,0	509,0	1129,0	1190,0	3288,0	1991,0	921,0	935,0	2482,0	6896,0	23725,0	4630,0	2914,0	612,0	1333,
1005,2	123,0	508,0	1134,0	1181,0	3265,0	1962,0	935,0	894,0	2472,0	7511,0	23607,0	4939,0	2955,0	600,0	1285,0
1006,4	133,0	505,0	1125,0	1180,0	3349,0	2007,0	962,0	947,0	2483,0	6859,0	23734,0	5438,0	2948,0	601,0	1309,0
1007,5	137,0	491,0	1146,0	1145,0	3301,0	2003,0	901,0	929,0	2530,0	5648,0	23717,0	5790,0	2957,0	601,0	1308,0
1008,6	141,0	505,0	1157,0	1151,0	3267,0	1953,0	944,0	917,0	2505,0	4497,0	23834,0	5598,0	2921,0	616,0	1303,0
1009,8	125,0	487,0	1164,0	1160,0	3309,0	1999,0	953,0	931,0	2518,0	3590,0	23966,0	5011,0	2984,0	596,0	1303,0
1010,9	143,0	510,0	1137,0	1181,0	3318,0	2011,0	938,0	930,0	2488,0	3061,0	24128,0	4641,0	2948,0	603,0	1310,0
1012,0	123,0	498,0	1153,0	1177,0	3326,0	2016,0	935,0	951,0	2492,0	2711,0	24090,0	4441,0	2996,0	603,0	1322,0
1013,2	141,0	499,0	1181,0	1173,0	3321,0	2007,0	943,0	927,0	2503,0	2474,0	24404,0	4395,0	3014,0	612,0	1323,0
1014,3	133,0	501,0	1141,0	1151,0	3308,0	1998,0	933,0	922,0	2451,0	2253,0	24142,0	4326,0	2983,0	628,0	1329,0
1015,4	134,0	485,0	1157,0	1173,0	3343,0	2019,0	917,0	957,0	2513,0	2134,0	24298,0	4245,0	3025,0	611,0	1327,0
1016,5	133,0	511,0	1171,0	1136,0	3373,0	2029,0	957,0	932,0	2540,0	1999,0	24525,0	4246,0	2969,0	603,0	1320,0
1017,7	131,0	506,0	1158,0	1176,0	3347,0	2033,0	940,0	921,0	2501,0	1949,0	24392,0	4161,0	3004,0	612,0	1358,0
1018,8	133,0	481,0	1161,0	1167,0	3317,0	1977,0	935,0	909,0	2504,0	1861,0	24571,0	4286,0	3034,0	599,0	1303,0
1019,9	135,0	512,0	1187,0	1164,0	3339,0	2024,0	958,0	917,0	2567,0	1849,0	24566,0	4240,0	3043,0	615,0	1288,0
1021,1	129,0	506,0	1164,0	1155,0	3335,0	2011,0	937,0	961,0	2496,0	1749,0	24741,0	4294,0	2985,0	621,0	1321,0
1022,2	126,0	500,0	1155,0	1175,0	3322,0	2040,0	947,0	973,0	2540,0	1694,0	24771,0	4184,0	3027,0	613,0	1340,0
1023,3	141,0	492,0	1172,0	1159,0	3340,0	2004,0	960,0	943,0	2549,0	1718,0	24951,0	4297,0	3062,0	613,0	1341,0
1024,4	132,0	511,0	1184,0	1187,0	3352,0	1994,0	947,0	947,0	2543,0	1660,0	24976,0	4254,0	3038,0	625,0	1347,0
1025,6	141,0	507,0	1154,0	1173,0	3348,0	2053,0	966,0	961,0	2550,0	1645,0	25053,0	4287,0	3054,0	636,0	1354,0
1026,7	133,0	493,0	1181,0	1170,0	3322,0	1983,0	936,0	936,0	2515,0	1603,0	2524,0	4211,0	3069,0	634,0	1358,0
1027,8	131,0	509,0	1159,0	1167,0	3361,0	2030,0	951,0	946,0	2536,0	1631,0	25305,0	4302,0	3041,0	627,0	1365,0
1029,0	129,0	508,0	1185,0	1178,0	3349,0	2016,0	935,0	947,0	2556,0	1553,0	25344,0	4289,0	3035,0	626,0	1354,0
1030,1	129,0	511,0	1194,0	1175,0	3392,0	2031,0	901,0	968,0	2485,0	1553,0	25511,0	4277,0	3050,0	642,0	1387,0
1031,2	135,0	523,0	1195,0	1185,0	3375,0	2024,0	952,0	943,0	2548,0	1545,0	25591,0	4387,0	3099,0	623,0	1367,0
1032,3	137,0	511,0	1169,0	1167,0	3385,0	2045,0	957,0	933,0	2549,0	1601,0	25553,0	4317,0	3025,0	639,0	1387,0
1033,5	135,0	512,0	1206,0	1173,0	3415,0	2076,0	915,0	917,0	2508,0	1575,0	25623,0	4386,0	3083,0	642,0	1344,0
1034,6	136,0	509,0	1167,0	1201,0	3359,0	2029,0	941,0	976,0	2555,0	1556,0	25769,0	4385,0	3063,0	635,0	1354,0
1035,7	128,0	512,0	1161,0	1163,0	3393,0	2022,0	940,0	974,0	2537,0	1541,0	25929,0	4370,0	3079,0	641,0	1406,0
1036,8	147,0	517,0	1195,0	1191,0	3381,0	2029,0	953,0	962,0	2508,0	1585,0	25879,0	4305,0	3037,0	646,0	1375,0
1038,0	139,0	524,0	1161,0	1175,0	3416,0	2041,0	941,0	964,0	2565,0	1553,0	25943,0	4392,0	3100,0	622,0	1342,0
1039,1	135,0	513,0	1193,0	1211,0	3434,0	2031,0	951,0	960,0	2541,0	1537,0	26221,0	4428,0	3116,0	645,0	1369,
1040,2	129,0	511,0	1203,0	1161,0	3457,0	2038,0	945,0	962,0	2543,0	1566,0	26309,0	4404,0	3107,0	650,0	1364,0
1041,3	135,0	490,0	1175,0	1163,0	3422,0	2025,0	939,0	957,0	2587,0	1570,0	26344,0	4403,0	3128,0	651,0	1357,0
1042,5	133,0	505,0	1168,0	1176,0	3405,0	2034,0	963,0	972,0	2543,0	1556,0	26256,0	4399,0	3080,0	643,0	1374,0
1043,6	129,0	521,0	1197,0	1197,0	3410,0	2046,0	951,0	975,0	2549,0	1536,0	26389,0	4458,0	3139,0	650,0	1374,0
1044,7	131,0	518,0	1207,0	1164,0	3428,0	2085,0	951,0	961,0	2541,0	1561,0	26530,0	4417,0	3067,0	637,0	1367,0
1045,8 1047,0	127,0 125,0	505,0 519,0	1199,0 1201,0	1202,0 1175,0	3431,0 3441,0	2075,0 2055,0	935,0 965,0	957,0 988,0	2553,0 2586,0	1530,0 1543,0	26644,0 26834,0	4414,0 4484,0	3087,0 3113,0	635,0 665,0	1355,0

1048,1	132,0	520,0	1196,0	1193,0	3443,0	2033,0	925,0	960,0	2555,0	1513,0	26802,0	4441,0	3110,0	645,0	1385,0
1049,2	140,0	521,0	1200, 0	1161,0	3433,0	2046,0	951,0	971,0	2578,0	1519,0	26807,0	4434,0	3142,0	642,0	1388,0
1050,3	128,0	525,0	1193,0	1186,0	3458,0	2038,0	946,0	969,0	2593,0	1535,0	26980,0	4512,0	3106,0	643,0	1367,0
1051,5	127,0	517,0	1216,0	1200, 0	3440,0	2044,0	961,0	947,0	2542,0	1542,0	26905,0	4494,0	3115,0	649,0	1373,0
1052,6	135,0	522,0	1169,0	1208,0	3456,0	2024,0	951,0	951,0	2600,0	1524,0	26958,0	4543,0	3124,0	631,0	1371,0
1053,7	139,0	528,0	1189,0	1172,0	3480,0	2057,0	947,0	988,0	2561,0	1528,0	27307,0	4525,0	3140,0	663,0	1393,0
1054,8	131,0	516,0	1195,0	1191,0	3456,0	2063,0	969,0	973,0	2519,0	1542,0	27185,0	4544,0	3105,0	665,0	1385,0
1056,0	135,0	498,0	1195,0	1193,0	3424,0	2032,0	929,0	976,0	2625,0	1565,0	27385,0	4531,0	3111,0	659,0	1353,0
1057,1	137,0	527,0	1181,0	1199,0	3423,0	2063,0	971,0	976,0	2543,0	1544,0	27415,0	4630,0	3142,0	670,0	1378,0
1058,2	128,0	511,0	1195,0	198,0	3367,0	2054,0	952,0	943,0	2511,0	1552,0	27519,0	4543,0	3135,0	665,0	1408,0
1059,3	140,0	537,0	1209,0	1187,0	3465,0	2060,0	956,0	967,0	2587,0	1507,0	27626,0	4562,0	3200,0	659,0	1333,0
1060,5	121,0	506,0	1218,0	1215,0	3436,0	2057,0	941,0	973,0	2546,0	1506,0	27658,0	4556,0	3131,0	649,0	1391,0
1061,6	129,0	532,0	1217,0	1206,0	3409,0	2053,0	951,0	980,0	2598,0	1525,0	27753,0	4480,0	3141,0	676,0	1381,0
1062,7	131,0	495,0	1199,0	1223,0	3434,0	2020,0	960,0	941,0	2588,0	1530,0	28018,0	4589,0	3172,0	659,0	1399,0
1063,8	126,0	507,0	1194,0	1201,0	3440,0	2058,0	941,0	969,0	2539,0	1515,0	27930,0	4583,0	3154,0	667,0	1351,0
1064,9	131,0	521,0	1214,0	1209,0	3455,0	2054,0	949,0	988,0	2548,0	1515,0	28040,0	4631,0	3138,0	685,0	1407,0
1066,1	141,0	529,0	1207,0	1185,0	3439,0	2013,0	977,0	1005,0	2581,0	1509,0	28096,0	4628,0	3163,0	668,0	1401,0
1067,2	123,0	519,0	1185,0	1191,0	3420,0	2044,0	962,0	1003,0	2594,0	1529,0	28231,0	4664,0	3170,0	658,0	1393,0
1068,3	125,0	526,0	1208,0	1187,0	3411,0	2043,0	965,0	971,0	2602,0	1494,0	28270,0	4623,0	3183,0	671,0	1390,0
1069,4	127,0	532,0	1205,0	1207,0	3478,0	2041,0	974,0	973,0	2510,0	1570,0	28556,0	4625,0	3169,0	641,0	1401,0
1070,5	135,0	507,0	1197,0	1189,0	3456,0	2093,0	961,0	989,0	2523,0	1544,0	28541,0	4717,0	3139,0	645,0	1395,0
1071,7	129,0	527,0	1208,0	1197,0	3460,0	2011,0	970,0	973,0	2533,0	1542,0	28621,0	4626,0	3171,0	663,0	1394,0
1072,8	135,0	515,0	1193,0	1933,0	3436,0	2011,0	966,0	1005,0	2581,0	1518,0	28727,0	4642,0	3146,0	665,0	1397,0
1073,9	129,0	533,0	1216,0	1225,0	3492,0	2021,0	965,0	981,0	2509,0	1517,0	28990,0	4644,0	3184,0	669,0	1370,0
1075,0	132,0	522,0	1226,0	1183,0	3411,0	2014,0	953,0	969,0	2574,0	1521,0	2890,0	4718,0	3131,0	678,0	1402,0
1076,1	127,0	511,0	1228,0	1193,0	3470,0	2036,0	964,0	974,0	2602,0	1511,0	28942,0	4704,0	3149,0	678,0	1379,0
1077,3	134,0	526,0	1197,0	1218,0	3495,0	2040,0	959,0	994,0	2550,0	1511,0	29052,0	4760,0	3189,0	691,0	1395,0
1078,4	126,0	501,0	1185,0	1190,0	3465,0	2031,0	960,0	965,0	2576,0	1556,0	29175,0	4771,0	3174,0	684,0	1412,0
1079,5	123,0	532,0	1211,0	1194,0	3451,0	2041,0	977,0	974,0	2591,0	1521,0	29407,0	4704,0	3154,0	678,0	1434,0
1080,6	135,0	519,0	1182,0	1214,0	3497,0	2057,0	955,0	996,0	2579,0	1528,0	29491,0	4737,0	3174,0	665,0	1383,0
1081,7	140,0	543,0	1197,0	1215,0	3466,0	2071,0	976,0	974,0	2583,0	1498,0	29614,0	4741,0	3189,0	655,0	1397,0
1082,9	135,0	531,0	1207,0	1216,0	3429,0	2039,0	929,0	980,0	2612,0	1495,0	29678,0	4756,0	3168,0	691,0	1424,0
1084,0	128,0	518,0	1207,0	1219,0	3495,0	2025,0	972,0	971,0	2587,0	1565,0	29736,0	4797,0	3234,0	703,0	1349,0
1085,1	121,0	529,0	1195,0	1197,0	3497,0	2077,0	944,0	1026,0	2570,0	1482,0	29854,0	4848,0	3197,0	702,0	1403,0
1086,2	123,0	542,0	1199,0	1197,0	3500,0	2078,0	949,0	985,0	2559,0	1511,0	29932,0	4774,0	3217,0	697,0	1371,0
1087,3	115,0	533,0	1216,0	1933,0	3489,0	2055,0	964,0	996,0	2575,0	1516,0	30260,0	4821,0	3192,0	691,0	1427,0
1088,5	119,0	526,0	1173,0	1201,0	3470,0	2040,0	975,0	1011,0	2555,0	1543,0	30310,0	4763,0	3204,0	685,0	1404,0
1089,6	115,0	537,0	1208,0	1205,0	3445,0	2071,0	981,0	1006,0	2593,0	1498,0	30423,0	4850,0	3197,0	683,0	1399,0
1090,7	125,0	531,0	1201,0	1219,0	3475,0	2067,0	972,0	997,0	2582,0	1515,0	30630,0	4827,0	3241,0	695,0	1451,0
1091,8	123,0	535,0	1226,0	1224,0	3461,0	2089,0	993,0	1021,0	2565,0	1524,0	30707,0	4858,0	3235,0	729,0	1420,0
1092,9	131,0	549,0	1213,0	1231,0	3444,0	2076,0	972,0	985,0	2561,0	1549,0	30952,0	4806,0	3237,0	677,0	1425,0
1094,0	127,0	526,0	1231,0	1197,0	3511,0	2081,0	941,0	1009,0	2586,0	1541,0	31096,0	4859,0	3213,0	706,0	1436,0
1095,2	128,0	559,0	1241,0	1191,0	3515,0	2045,0	963,0	1005,0	2579,0	1564,0	31104,0	4816,0	3306,0	697,0	1418,0
1096,3	123,0	537,0	1238,0	1225,0	3516,0	2045,0	933,0	1009,0	2657,0	1525,0	31248,0	4949,0	3219,0	717,0	1427,0
1097,4	133,0	546,0	1217,0	1229,0	3520,0	2038,0	967,0	1008,0	2617,0	1538,0	31479,0	4879,0	3229,0	699,0	1436,0
1098,5	124,0	547,0	1213,0	1237,0	3502,0	2072,0	985,0	1016,0	2597,0	1543,0	31538,0	4923,0	3248,0	708,0	1418,0
1099,6	127,0	533,0	1212,0	1213,0	3498,0	2079,0	967,0	1022,0	2607,0	1541,0	31899,0	4964,0	3277,0	733,0	1399,0
1100, 7	131,0	543,0	1259,0	1238,0	3503,0	2077,0	955,0	1041,0	2612,0	1523,0	31993,0	4943,0	3296,0	698,0	1448,0
1101,9	129,0	546,0	1228,0	1260,0	3475,0	2079,0	975,0	1020,0	2631,0	1505,0	32151,0	4934,0	3275,0	718,0	1439,0
1103,0	129,0	552,0	1204,0	1249,0	3517,0	2119,0	997,0	1013,0	2610,0	1561,0	32326,0	5029,0	3270,0	710,0	1466,0
1104,1	139,0	526,0	1223,0	1234,0	3493,0	2113,0	948,0	1021,0	2583,0	1536,0	32449,0	5005,0	3313,0	705,0	1449,0
1105,2	127,0	551,0	1210,0	1252,0	3572,0	2099,0	972,0	1010,0	2577,0	1530,0	32574,0	4997,0	3279,0	727,0	1446,0
1106,3	125,0	541,0	1241,0	1219,0	3594,0	2113,0	972,0	1011,0	2615,0	1560,0	32962,0	5044,0	3270,0	704,0	1472,0
1107,4	126,0	538,0	1245,0	1227,0	3579,0	2088,0	968,0	1038,0	2643,0	1555,0	33016,0	5008,0	3305,0	722,0	1487,0
1108,5	128,0	544,0	1241,0	1237,0	3581,0	2116,0	991,0	1041,0	2645,0	1543,0	33226,0	5024,0	3301,0	733,0	1485,0
1109,7	128,0	551,0	1224,0	1260,0	3543,0	2113,0	988,0	1030,0	2669,0	1574,0	33316,0	5051,0	3319,0	732,0	1485,0
1110,8	137,0	534,0	1281,0	1274,0	3551,0	2101,0	991,0	1033,0	2631,0	1566,0	33619,0	5045,0	3327,0	722,0	1484,0
1111,9	131,0	567,0	1233,0	1225,0	3551,0	2117,0	993,0	1041,0	2678,0	1592,0	33778,0	5069,0	3373,0	723,0	1485,0
1113,0	133,0	558,0	1271,0	1263,0	3584,0	2113,0	999,0	1055,0	2709,0	1512,0	33990,0	5090,0	3333,0	733,0	1522,0
1114,1	132,0	540,0	1249,0	1272,0	3611,0	2118,0	981,0	1035,0	2669,0	1588,0	34154,0	5093,0	3361,0	736,0	1473,0
1115,2	117,0	551,0	1234,0	1255,0	3548,0	2127,0	-999,0	1039,0	2672,0	1599,0	34284,0	5086,0	3366,0	743,0	1490,0
1116,3	132,0	560,0	1243,0	1270,0	3577,0	2113,0	984,0	1059,0	2626,0	1565,0	34695,0	5139,0	3366,0	731,0	1472,0
1117,5	127,0	548,0	1265,0	1245,0	3613,0	2143,0	969,0	1041,0	2651,0	1505,0	34736,0	5171,0	3415,0	733,0	1481,0
1118,6	123,0	562,0	1293,0	1263,0	3619,0	2143,0	1026,0	1046,0	2677,0	1551,0	34899,0	5158,0	3367,0	715,0	1516,0
1119,7	135,0	572,0	1249,0	1295,0	3619,0	2141,0	1003,0	1040,0	2694,0	1557,0	35010,0	5153,0	3393,0	743,0	1523,0
1120,8	135,0	562,0	1269,0	1293,0	3674,0	2149,0	1009,0	1070,0	2671,0	1550,0	35238,0	5179,0	3424,0	766,0	1509,0
1121,9	139,0	543,0	1299,0	1268,0	3697,0	2151,0	1015,0	1061,0	2690,0	1575,0	35486,0	5243,0	3463,0	749,0	1529,0
1123,0	132,0	563,0	1249,0	1286,0	3628,0	2140,0	1005,0	1059,0	2665,0	1586,0	35709,0	5221,0	3432,0	746,0	1526,0
1124,1	121,0	561,0	1301,0	1284,0	3663,0	2149,0	1019,0	1093,0	2683,0	1575,0	35912,0	5232,0	3423,0	731,0	1496,0
1125,2	129,0	565,0	1283,0	1271,0	3687,0	2167,0	1013,0	1079,0	2689,0	1579,0	36118,0	5242,0	3452,0	749,0	1540,0
1126,4	127,0	574,0	1305,0	1279,0	3708,0	2229,0	1037,0	1071,0	2712,0	1564,0	36195,0	5367,0	3445,0	757,0	1555,0
1127,5	121,0	574,0	1274,0	1307,0	3667,0	2162,0	979,0	1081,0	2691,0	1569,0	36244,0	5244,0	3415,0	760,0	1524,0
1128,6	121,0	559,0	1279,0	1305,0	3688,0	2162,0	1025,0	1060,0	2701,0	1571,0	36529,0	5197,0	3403,0	763,0	1531,0
1129,7	127,0	575,0	1284,0	1308,0	3695,0	2139,0	997,0	1062,0	2728,0	1557,0	36666,0	5230,0	3464,0	743,0	1525,0
1130,8	123,0	567,0	1300,0	1303,0	3665,0	2186,0	1050,0	1082,0	2699,0	1579,0	36944,0	5309,0	3529,0	775,0	1497,0
1131,9	138,0	565,0	1295,0	1307,0	3666,0	2181,0	1005,0	1087,0	2729,0	1552,0	36987,0	5277,0	3500,0	773,0	1533,0
1133,0	132,0	564,0	1305,0	1282,0	3740,0	2221,0	1017,0	1094,0	2725,0	1536,0	37195,0	5309,0	3478,0	763,0	1540,0
1134,1	135,0	570,0	1287,0	1319,0	3736,0	2198,0	1017,0	1107,0	2703,0	1588,0	37389,0	5274,0	3534,0	755,0	1522,0
1135,2	131,0	579,0	1311,0	1341,0	3747,0	2187,0	1031,0	1083,0	2708,0	1585,0	37519,0	5301,0	3515,0	761,0	1581,0
1136,3	129,0	567,0	1309,0	1307,0	3733,0	2190,0	1045,0	1100,0	2746,0	1563,0	37538,0	5361,0	3491,0	780,0	1559,0
1137,5	133,0	574,0	1319,0	1311,0	3765,0	2227,0	1021,0	1087,0	2719,0	1595,0	37786,0	5348,0	3497,0	806,0	1564,0
1138,6	135,0	559,0	1307,0	1300,0	3780,0	2207,0	1029,0	1088,0	2762,0	1594,0	37832,0	5328,0	3531,0	791,0	1549,0
1139,7	126,0	582,0	1304,0	1298,0	3739,0	2196,0	1049,0	1103,0	2741,0	1581,0	38096,0	5379,0	3507,0	761,0	1560,0
1140,8	130,0	535,0	1333,0	1313,0	3761,0	2239,0	1051,0	1076,0	2707,0	1557,0	37932,0	5324,0	3494,0	791,0	1535,0
1141,9	125,0	566,0	1343,0	1339,0	3766,0	2217,0	1023,0	1065,0	2705,0	1574,0	38193,0	5383,0	3592,0	769,0	1565,0
1143,0	137,0	584,0	1331,0	1341,0	3723,0	2215,0	1028,0	1106,0	2709,0	1575,0	38436,0	5410,0	3557,0	761,0	1559,0
1144,1	140,0	584,0	1307,0	1325,0	3777,0	2201,0	1049,0	1134,0	2685,0	1597,0	38477,0	5404,0	3547,0	794,0	1586,0
1145,2	136,0	584,0	1332,0	1330,0	3786,0	2230,0	1055,0	1087,0	2764,0	1537,0	38626,0	5391,0	3547,0	783,0	1593,0
1146,3	143,0	585,0	1322,0	1341,0	3765,0	2222,0	1063,0	1086,0	2742,0	1576,0	38652,0	5408,0	3607,0	771,0	1592,0
1147,4	132,0	561,0	1316,0	1327,0	3778,0	2250,0	1031,0	1079,0	2728,0	1620,0	38808,0	5443,0	3542,0	791,0	1549,0
1148,5	135,0	603,0	1327,0	1359,0	3775,0	2233,0	1059,0	1098,0	2770,0	1582,0	39138,0	5351,0	3622,0	775,0	1585,0
1149,7	138,0	589,0	1347,0	1342,0	3790,0	2239,0	1040,0	1095,0	2715,0	1576,0	38841,0	5364,0	3589,0	767,0	1573,0
1150,8	135,0	579,0	1310,0	1351,0	3778,0	2243,0	1052,0	1099,0	2713,0	1595,0	39301,0	5377,0	3629,0	788,0	1579,0
1151,9	138,0	595,0	1325,0	1341,0	3770,0	2231,0	1035,0	1083,0	2765,0	1609,0	39149,0	5377,0	3564,0	791,0	1571,0
1153,0	125,0	579,0	1319,0	1349,0	3766,0	2239,0	1021,0	1097,0	2723,0	1607,0	39311,0	5388,0	3623,0	797,0	1613,0
1154, 1	129,0	587,0	1324,0	1361,0	3740,0	2229,0	1021,0	1087,0	2741,0	1631,0	39147,0	5450,0	3579,0	777,0	1599,0
1155,2	134,0	579,0	1325,0	1384,0	3805,0	2249,0	1063,0	1102,0	2796,0	1587,0	39439,0	5424,0	3641,0	765,0	1596,0
1156,3	125,0	587,0	1334,0	1364,0	3856,0	2238,0	1091,0	1122,0	2793,0	1601,0	39562,0	5444,0	3619,0	783,0	1595,0
1157,4	137,0	581,0	1351,0	1374,0	3725,0	2250,0	1073,0	1117,0	2765,0	1624,0	39613,0	5359,0	3630,0	791,0	1575,0
1158,5	135,0	572,0	1343,0	1385,0	3767,0	2239,0	1072,0	1109,0	2763,0	1586,0	39656,0	5417,0	3597,0	792,0	1593,0

1159,6	134,0	581,0	1313,0	1352,0	3852,0	2210,0	1039,0	1103,0	2784,0	1594,0	39603,0	5450,0	3672,0	775,0	1599,0
1160,7	135,0	582,0	1309,0	1343,0	3733,0	2222,0	1047,0	1133,0	2817,0	1590,0	39785,0	5434,0	3641,0	793,0	1605,0
1161,8	143,0	585,0	1355,0	1352,0	3815,0	2217,0	1071,0	1067,0	2772,0	1577,0	39736,0	5491,0	3651,0	776,0	1607,0
1162,9	132,0	581,0	1325,0	1347,0	3821,0	2254,0	1043,0	1126,0	2737,0	1603,0	39904,0	5478,0	3603,0	809,0	1618,0
1164,0	133,0	612,0	1329,0	1393,0	3821,0	2269,0	1061,0	1135,0	2753,0	1610,0	39878,0	5415,0	3652,0	810,0	1650,0
1165,1	123,0	580,0	1343,0	1341,0	3815,0	2189,0	1063,0	1139,0	2807,0	1600,0	40024,0	5467,0	3713,0	794,0	1621,0
1166,3	139,0	587,0	1370,0	1373,0	3857,0	2252,0	1059,0	1099,0	2722,0	1598,0	39958,0	5424,0	3668,0	796,0	1619,0
1167,4	135,0	585,0	1359,0	1398,0	3894,0	2267,0	1059,0	1107,0	2752,0	1583,0	40038,0	5455,0	3691,0	784,0	1635,0
1168,5	130,0	571,0	1374,0	1389,0	3831,0	2285,0	1076,0	1122,0	2779,0	1608,0	40160,0	5403,0	3751,0	774,0	1625,0
1169,6	139,0	592,0	1380,0	1372,0	3836,0	2228,0	1095,0	1134,0	2753,0	1597,0	39997,0	5457,0	3701,0	795,0	1629,0
1170,7	123,0	582,0	1370,0	1361,0	3826,0	2245,0	1051,0	1139,0	2817,0	1620,0	40236,0	5461,0	3698,0	819,0	1649,0
1171,8	136,0	593,0	1349,0	1370,0	3846,0	2267,0	1086,0	1150,0	2748,0	1597,0	40257,0	5437,0	3741,0	821,0	1633,0
1172,9	131,0	590,0	1381,0	1405,0	3845,0	2233,0	1041,0	1117,0	2797,0	1596,0	40153,0	5462,0	3693,0	792,0	1655,0
1174,0	127,0	589,0	1362,0	1359,0	3849,0	2286,0	1083,0	1126,0	2759,0	1565,0	40263,0	5418,0	3648,0	805,0	1623,0
1175,1	127,0	580,0	1349,0	1370,0	3816,0	2295,0	1088,0	1127,0	2773,0	1615,0	40398,0	5459,0	3706,0	781,0	1653,0
1176,2	133,0	599,0	1385,0	1365,0	3875,0	2258,0	1089,0	1117,0	2770,0	1623,0	40238,0	5537,0	3738,0	812,0	1619,0
1177,3	137,0	579,0	1372,0	1393,0	3839,0	2257,0	1090,0	1126,0	2752,0	1620,0	40616,0	5486,0	3719,0	799,0	1623,0
1178,4	136,0	579,0	1366,0	1387,0	3901,0	2262,0	1086,0	1128,0	2825,0	1641,0	40310,0	5452,0	3741,0	819,0	1625,0
1179,5	135,0	586,0	1367,0	1383,0	3937,0	2315,0	1097,0	1105,0	2754,0	1629,0	40484,0	5476,0	3794,0	781,0	1674,0
1180,6	133,0	582,0	1400,0	1375,0	3898,0	2255,0	1105,0	1160,0	2779,0	1620,0	40400,0	5550,0	3763,0	811,0	1635,0
1181,7	130,0	598,0	1383,0	1418,0	3897,0	2320,0	1071,0	1174,0	2772,0	1630,0	40455,0	5539,0	3767,0	815,0	1664,0
1182,8	129,0	591,0	1383,0	1385,0	3935,0	2314,0	1105,0	1136,0	2823,0	1651,0	40635,0	5555,0	3795,0	805,0	1637,0
1183,9	130,0	571,0	1384,0	1414,0	3929,0	2317,0	1109,0	1117,0	2800,0	1633,0	40707,0	5507,0	3749,0	821,0	1638,0
1185,0	132,0	591,0	1353,0	1424,0	3909,0	2303,0	1116,0	1132,0	2805,0	1596,0	40664,0	5560,0	3776,0	808,0	1686,0
1186,1	138,0	594,0	1390,0	1407,0	3968,0	2279,0	1111,0	1151,0	2771,0	1667,0	40746,0	5575,0	3866,0	810,0	1667,0
1187,2	134,0	580,0	1417,0	1451,0	3957,0	2326,0	1105,0	1149,0	2763,0	1661,0	40840,0	5519,0	3858,0	828,0	1651,0
1188,3	133,0	581,0	1382,0	1414,0	3905,0	2315,0	1083,0	1160,0	2791,0	1629,0	40899,0	5578,0	3829,0	787,0	1649,0
1189,4	141,0	565,0	1373,0	1399,0	3949,0	2340,0	1090,0	1165,0	2807,0	1621,0	40872,0	5588,0	3827,0	805,0	1655,0

B.4.7: Table showing the Raman shift of the last 17 of 32 analysed grains of TNS1.

TNS1	Turner Exploration Campe																
	Intensity (A.U)	Raman shift (cm^{-1})															
		Grain 16	Grain 17	Grain 18	Grain 19	Grain 20	Grain 21	Grain 23	Grain 24	Grain 25	Grain 26	Grain 27	Grain 28	Grain 29	Grain 30	Grain 31	Grain 32
	-38,6	26,0	20,0	25,0	27,0	21,0	27,0	22,0	20,5	26,5	22,5	26,0	21,0	25,0	29,0	24,5	23,5
	-37,3	19,0	19,0	21,0	26,5	26,0	24,0	22,0	21,5	20,5	21,0	18,5	19,0	21,5	16,5	20,5	20,5
	-35,9	23,0	24,0	29,0	26,0	27,0	29,0	20,5	27,0	28,0	24,5	25,0	22,0	25,5	21,5	24,5	27,5
	-34,6	27,0	29,0	21,0	26,5	27,5	25,5	28,0	20,5	25,0	24,0	26,5	21,0	24,5	21,5	26,0	20,0
	-33,3	25,0	23,0	28,0	30,5	28,5	27,0	23,5	22,0	24,5	19,5	28,0	28,0	23,0	24,0	26,5	27,0
	-32,0	24,0	21,0	34,0	27,5	23,5	27,0	23,0	24,0	25,5	27,0	24,0	24,0	25,5	21,5	26,0	25,0
	-30,7	18,0	28,0	21,0	24,0	25,0	32,0	21,0	22,0	27,5	25,5	23,0	21,5	26,5	23,5	26,0	26,0
	-29,4	28,0	22,0	25,0	27,5	23,0	23,0	20,5	23,0	23,0	24,0	16,0	22,0	26,5	21,0	24,5	20,5
	-28,1	27,0	21,0	22,0	26,0	27,0	28,5	28,0	23,0	28,5	27,5	22,5	23,0	25,5	24,0	22,0	19,0
	-26,8	23,0	26,0	26,0	32,0	26,5	24,5	32,0	23,5	25,0	27,0	24,5	25,0	27,5	26,0	25,0	24,0
	-25,5	26,0	24,0	20,0	25,5	27,5	28,5	26,0	23,5	24,5	24,5	26,5	22,5	25,0	24,0	23,0	23,0
	-24,2	20,0	23,0	21,0	26,5	25,0	25,0	27,0	24,0	20,5	25,0	19,0	21,0	23,0	25,0	28,5	24,0
	-22,9	17,0	24,0	21,0	33,0	30,5	24,0	19,5	23,5	25,5	25,0	27,0	20,0	22,0	22,5	21,5	23,0
	-21,6	28,0	21,0	25,0	27,0	25,0	21,0	25,0	26,0	27,5	26,5	25,0	27,5	26,0	22,5	20,0	26,0
	-20,3	21,0	24,0	27,0	26,0	29,5	25,0	25,0	26,0	29,5	29,0	24,5	23,0	20,0	22,5	19,0	21,0
	-19,0	26,0	21,0	23,0	32,0	26,0	26,0	25,0	24,0	25,0	23,5	25,5	22,0	26,5	24,5	28,5	26,5
	-17,7	24,0	23,0	23,0	31,0	22,5	26,0	25,5	22,5	21,5	28,0	25,0	28,0	25,0	24,5	24,0	21,0
	-16,4	24,0	21,0	25,0	28,5	23,0	29,0	20,0	31,0	24,0	25,5	28,0	24,5	25,5	23,5	27,0	24,5
	-15,1	29,0	27,0	25,0	27,5	27,5	23,0	25,5	27,5	26,5	29,5	26,0	27,5	25,5	18,0	25,5	26,5
	-13,8	27,0	23,0	25,0	22,0	24,5	27,0	26,0	24,0	24,0	24,5	25,5	23,0	26,0	25,0	27,0	28,0
	-12,5	33,0	23,0	25,0	28,0	26,0	29,5	28,0	20,0	20,0	28,5	23,5	29,0	28,0	25,0	25,0	23,0
	-11,2	23,0	21,0	22,0	26,5	24,5	24,5	28,5	27,0	27,5	29,0	29,0	27,0	26,5	24,5	26,0	26,5
	-9,8	33,0	21,0	27,0	31,0	25,0	34,0	30,0	27,0	29,5	30,5	27,0	24,5	26,0	29,5	26,0	33,0
	-8,5	25,0	26,0	28,0	32,5	29,5	30,0	32,0	25,5	31,0	27,5	26,5	28,0	26,5	26,0	27,5	28,5
	$-7,2$	30,0	25,0	32,0	26,5	28,0	29,0	31,0	29,5	32,0	33,5	29,0	30,0	34,5	27,0	31,0	29,5
	-5,9	32,0	37,0	21,0	28,0	29,0	36,5	35,0	33,5	36,5	32,5	32,5	35,5	37,0	34,5	36,5	36,0
	-4,6	58,0	60,0	39,0	42,0	33,5	51,0	55,5	54,0	62,5	55,5	50,0	52,5	56,5	55,0	57,0	52,0
	-3,3	268,0	281,0	95,0	107,0	98,0	245,0	284,0	271,5	285,5	281,5	267,0	264,5	310,0	287,5	306,0	278,0
	-2,0	720,0	610,0	227,0	254,0	186,0	711,5	698,0	620,0	647,0	727,5	639,5	609,0	730,5	635,5	719,5	654,0
	$-0,7$	1311,0	1161,0	390,0	460,5	362,0	1341,0	1290,0	1263,5	1257,0	1345,0	1190,0	1132,0	1349,0	1140,0	1279,0	1205,5
	0,6	1790,0	1605,0	503,0	562,5	451,5	1562,5	1705,0	1727,5	1570,0	1752,5	1427,5	1369,5	1689,5	1459,0	1585,0	1434,0
	1,9	1285,0	1023,0	406,0	403,0	353,0	1218,0	1291,5	1156,0	1103,0	1192,0	1149,5	1178,5	1260,5	1114,5	1213,0	1108,5
	3,2	854,0	749,0	255,0	253,0	234,0	782,0	897,0	833,0	786,5	918,0	758,5	792,0	879,5	741,0	783,0	802,5
	4,5	222,0	196,0	78,0	86,0	72,0	190,0	197,5	182,0	180,0	176,0	165,0	157,5	159,0	159,0	170,0	168,5
	5,8	42,0	37,0	30,0	39,5	31,5	36,0	49,0	46,5	42,5	35,0	41,5	37,5	44,0	38,5	41,5	39,5
	7,1	36,0	37,0	34,0	36,0	31,5	36,0	34,0	-29,5	35,5	34,0	32,0	33,5	31,0	31,0	31,0	33,0
	8,4	34,0	29,0	26,0	31,5	27,0	28,5	34,0	33,5	31,0	30,0	23,0	27,0	26,0	25,5	32,0	34,5
	9,7	23,0	29,0	23,0	33,5	31,0	23,5	33,0	25,5	34,0	29,5	24,0	30,0	33,5	30,5	28,5	25,5
	11.0	29,0	25,0	27,0	37,5	28,0	32,0	28,0	30,0	28,0	26,0	29,5	27,5	30,0	27,5	24,0	24,0
	12,3	28,0	27,0	31,0	33,5	28,0	26,0	25,5	26,5	29,0	32,0	21,0	28,0	32,0	28,5	27,5	26,5
	13,6	28,0	26,0	26,0	33,5	25,5	31,5	29,0	29,5	32,0	29,0	22,5	28,5	28,0	28,5	33,0	24,0
	14,9	29,0	24,0	30,0	37,0	24,5	27,0	31,5	25,0	25.5	34,0	23,0	28,0	28,5	23,0	26,0	26,0
	16,2	23,0	25,0	29,0	32,0	28,5	32,0	28,0	29,5	28.0	26,0	27,0	23,5	25,0	27,5	28,5	29,0
	17,5	31,0	24,0	33,0	35,5	27,0	31,0	30,5	30,0	24,5	31,0	28,0	25,0	28,0	22,0	24,0	27,0
	18,8	27,0	23,0	27,0	36,0	28,5	33,0	28,0	27,5	26,0	28,0	28,0	25,0	23,5	30,0	29,5	26,5
	20,1	30,0	23,0	27,0	32,5	32,0	23,5	31,0	26,0	27,0	26,5	21,5	27,0	31,0	25,5	28,0	34,0
	21,3	27,0	28,0	33,0	34,0	28,5	28,0	28,0	20,0	28,0	25,0	27,5	25,0	20,0	26,0	28,5	25,5
	22,6	29,0	25,0	35,0	37,0	30,0	25,0	28,0	30,0	27,0	29,5	25,5	28,5	27,5	24,5	26,5	24,5
	23,9	29,0	31,0	33,0	38,0	31,5	29,0	30,5	26,5	27,5	27,0	25,5	25,5	22,5	28,0	28,0	20,0
	25,2	24,0	25,0	33,0	35,0	26,0	28,0	26,5	26,5	29,0	26,0	20,0	26,5	31,5	22,0	34,0	29,0
	26,5	30,0	25,0	27,0	40,0	36,0	31,0	29,0	21,0	29,0	31,0	20,0	25,5	24,5	23,0	26,5	24,0
	27,8	22,0	23,0	33,0	33,5	29,5	31,0	30,5	30,0	28,0	30,5	25,5	26,0	26,0	25,0	25,0	26,0
	29,1	27,0	27,0	35,0	39,0	27,0	32,5	25,5	27,5	29,0	30,0	22,5	23,0	30,0	27,0	26,0	27,5
	30,4	26,0	27,0	36,0	36,0	30,0	34,0	33,5	29,0	25,5	31,0	26,0	21,0	29,5	30,5	33,5	30,5
	31,7	23,0	25,0	32,0	38,0	31,5	28,5	30,0	24,5	30,0	28,5	21,0	27,0	33,0	25,5	23,0	27,0
	33,0	25,0	25,0	37,0	45,5	31,0	29,0	32,5	33,0	33,0	30,0	31,5	27,5	26,0	27,0	33,5	29,0
	34,3	28,0	31,0	47,0	41,5	33,5	33,0	29,5	30,0	30,5	32,5	24,0	25,0	25,5	23,0	28,0	28,5
	35,6	32,0	26,0	39,0	47,0	35,5	36,5	30,5	29,5	35,0	29,5	27,0	27,5	27,5	27,0	31,5	34,5
	36,9	25,0	25,0	45,0	51,0	34,0	34,5	32,5	31,0	32,5	37,0	22,5	31,5	34,5	22,5	33,0	30,5
	38,2	29,0	32,0	49,0	62,0	39,0	45,0	34,5	34,5	37,0	38,0	29,0	29,5	30,0	29,0	39,0	34,0
	39,5	41,0	34,0	70,0	82,0	46,0	47,5	42,5	35,0	49,0	55,5	29,5	32,0	38,5	22,0	46,5	43,5
	40,8	51,0	38,0	99,0	123,5	56,0	67,5	57,0	45,5	64,5	68,0	32,0	35,0	40,5	31,5	64,0	53,5
	42,1	64,0	45,0	141,0	178,0	70,0	89,0	76,5	62,0	85,5	89,0	30,0	40,0	58,0	30,0	84,5	70,0
	43,4	91,0	55,0	227,0	276,5	95,0	135,5	106,5	97,0	130,0	142,0	51,5	45,0	72,5	47,5	119,5	95,5
	44,7	135,0	83,0	347,0	396,0	137,0	197,5	164,5	141,5	178,5	201,5	63,5	66,0	103,0	53,5	172,0	135,0
	46,0	206,0	115,0	496,0	574,0	190,5	296,0	229,0	205,5	262,5	292,5	77,5	86,0	143,5	76,0	247,5	200,0
	47,2	257,0	159,0	659,0	764,0	261,0	392,0	313,5	269,0	353,5	415,0	107,0	109,0	178,0	93,0	340,0	265,0
	48,5	353,0	207,0	831,0	972,5	329,5	489,0	394,0	347,5	452,0	507,0	127,5	134,5	219,5	109,0	418,5	318,0
	49,8	421,0	247,0	1018,0	1159,0	405,5	591,0	472,0	426,5	550,0	603,5	147,5	159,0	268,5	122,0	514,5	404,5
	51,1	489,0	278,0	1139,0	1328,0	464,0	685,5	537,0	481,0	641,0	697,5	165,0	175,5	298,0	144,5	571,0	466,0
	52,4	545,0	309,0	1327,0	1525,0	519,5	746,0	620,5	534,0	704,5	798,0	183,0	199,0	330,5	159,5	644,0	490,0
	53,7	593,0	341,0	1449,0	1640,0	583,0	841,5	672,5	610,5	792,0	842,5	198,0	221,0	362,5	158,0	679,0	557,0
	55,0	625,0	368,0	1586,0	1771,5	637,0	891,5	721,0	651,5	836,5	905,0	213,5	236,5	382,5	182,0	734,5	599,5
	56,3	657,0	401,0	1631,0	1886,5	670,0	948,5	792,5	682,5	868,0	967,0	221,0	236,0	416,0	196,0	796,0	634,5
	57,6	689,0	420,0	1744,0	1988,5	715,0	972,5	820,5	710,0	926,5	1027,0	241,0	267,5	424,5	201,0	840,5	661,0
	58,9	723,0	446,0	1791,0	2067,0	764,5	1027,5	847,0	765,0	976,0	1057,5	247,5	276,5	455,0	216,0	871,0	688,5
	60,2	731,0	447,0	1861,0	2119,5	777,0	1042,0	873,5	775,0	982,5	1085,0	261,0	285,0	455,0	228,5	901,5	701,5
	61,5	771,0	481,0	1869,0	2148,0	791,0	1064,0	869,5	801,0	980,5	1106,5	271,0	286,5	475,0	223,5	908,0	720,5
	62,7	747,0	467,0	1927,0	2156,0	811,0	1066,5	880,5	800,0	981,0	1123,0	265,0	288,0	483,5	235,0	926,5	731,0
	64,0	739,0	459,0	1961,0	2249,0	824,5	1079,0	879,5	816,5	985,0	1115,0	268,0	283,0	483,0	225,0	920,5	727,5
	65,3	761,0	461,0	2024,0	2269,5	838,0	1088,5	904,5	813,5	1009,0	1121,0	280,0	304,0	483,0	242,0	917,0	737,0
	66,6	811,0	489,0	2037,0	2354,0	882,0	1130,5	940,0	822,5	1060,0	1160,0	304,5	323,0	529,5	246,0	974,0	780,0
	67,9	845,0	528,0	2167,0	2508,0	916,0	1182,5	975,0	883,0	1113,5	1239,5	337,5	380,5	558,5	294,0	1016,0	798,5
	69,2	922,0	591,0	2327,0	2678,5	985,5	1300,5	1063,0	929,5	1202,0	1317,0	409,0	438,0	646,0	354,5	1109,5	880,5
	70,5	1001,0	657,0	2562,0	2936,5	1084,0	1397,5	1158,0	1014,0	1318,5	1460,5	489,5	561,0	738,0	459,5	1198,5	973,5
	71.8	1102,0	769,0	2732,0	3189,0	1167,5	1540,0	1271,5	1148,0	1464,0	1647,5	606,5	681,5	867,0	567,0	1353,0	1061,0
	73,1	1227,0	851,0	3014,0	3478,0	1328,5	1673,5	1400,0	1250,5	1601,0	1799,5	733,0	825,0	990,5	682,0	1461,0	1139,0
	74,3	1364,0	967,0	3165,0	3703,0	1402,0	1809,5	1533,0	1367, 5	1731,5	1964,0	849,0	967,5	1078,0	790,0	1589,0	1253,0
	75,6	1477,0	1069,0	3435,0	3961,0	1494,5	1951,0	1644,0	1434,5	1853,0	2063,0	943,5	1061,5	1198,0	900,0	1710,5	1351,0
	76,9	1619,0	1137,0	3581,0	4144,5	1606,0	2058,0	1735,0	1540,5	1959,0	2194,0	1027,0	1181,0	1291,0	975,0	1776,0	1403,0
	78,2	1657,0	1214,0	3707,0	4364,0	1694,0	2153,5	1838,0	1607, 5	2044,5	2340,5	1114,5	1259,5	1366,0	1070,5	1861,0	1474,0
	79.5	1744,0	1275,0	3894,0	4534,5	1784,0	2249,5	1934,5	1687,0	2172,0	2368,0	1176,5	1388,0	1441,5	1140,0	1976,0	1522,0
	80,8	1835,0	1347,0	4048,0	4660,0	1865,0	2304,0	1967,0	1743,0	2250,0	2513,0	1243,5	1460,5	1539,5	1210,5	2055,0	1623,0
	82,1	1926,0	1407,0	4134,0	4824,5	1927,0	2394,5	2086,5	1820,0	2357,5	2625,5	1350,0	1521,0	1593,0	1285,5	2143,0	1662,5
	83,4	2030,0	1474,0	4230,0	4983,5	2019,0	2535,0	2184,0	1900,0	2420,5	2743,5	1412,0	1598,0	1647,0	1341,0	2193,0	1748,0
	84,6	2055,0	1476,0	4312,0	5107,5	2043,5	2553,5	2200,0	1952,5	2506,0	2794,5	1446,0	1649,5	1706,0	1404,5	2236,5	1778,5

85,9	2145,0	1576,0	414,0	5224,0	2149,0	2610,0	2268,5	1977,0	2557,5	2860,5	1449,5	1667,0	1743,5	1389,0	2312,0	
,2	2189,0	1553,0	4430,0	5342,0	2191,0	2631,5	2294,5	2005,5	2581,5	2893,5	1495,5	1692,5	1787,0	1430,	2378,0	5,0
88,5	2241,0	1571,0	4531,0	5338,5	2245,0	2663,5	2318,0	2010,0	2635,5	2938,5	1528,5	1720,0	1823,0	1446,0	2396,5	1832,0
89,8	2294,0	1583,0	4539,0	5475,0	2314,0	2714,0	2352,0	2047,5	2677,0	2962,5	1570,5	1766,0	1828,0	1474,5	2448,5	1904,5
91,1	2341,0	1625,0	4643,0	5633,5	2375,0	2747,5	2425,0	2124,5	2736,5	3007,0	1560,0	1803,5	1895,5	1531,0	2487,0	1939,0
92,4	2415,0	1661,0	4688,0	5677,0	2442,0	2758,5	2516,0	2155,5	2787,5	3067,5	1614,0	1863,5	1921,0	1562,5	2530,5	1999,0
93,6	2457,0	1701,0	4736,0	5815,5	2510,5	2829,5	2532,0	2180,5	2871,5	3062,0	1658,5	1894,0	1967,0	1600,5	2633,0	2037,0
94,9	2504,0	1742,0	4761,0	5926,0	2603,5	2893,0	2578,5	2214,0	2907,0	3124,5	1676,0	1917,0	2022,0	1633,0	2652,5	2063,0
96,2	2496,0	1789,0	4825,0	6054,0	2653,0	2915,5	2634,0	2243,0	2973,0	3146,0	1697,5	1943,5	2061,0	1667,0	2691,0	2059,5
97,5	2567,0	1795,0	4903,0	6157,5	2762,0	2936,5	2672,5	2276,5	3029,5	3172,5	1777,0	1991,0	2132,0	1673,5	2703, 0	2093,0
98,8	2535,0	1825,0	4908,0	6321,5	2851,5	2966,0	2750,0	2293,0	3065,5	3130,0	1789,5	2045,5	2164,5	1730,5	2772,0	2158,0
100,1	2586,0	1843,0	5043,0	6399,5	2936,0	3017,0	2750,0	2332,5	3113,5	3226,0	1843,5	2126,5	2205,0	1774,0	2795,0	2192,5
101,3	2628,0	1911,0	5048,0	6544,0	3049,5	3074,5	2810,5	2368,0	3220,5	3224,0	1836,5	2119,5	2262,5	1781,0	2872,0	2212,0
102,6	2629,0	1969,0	5189,0	6743,0	3142,5	3095,0	2851,0	2424,0	3283,5	3249,5	1870,0	2149,0	2299,5	1830,5	2843,5	2276,5
103,9	2631,0	1960,0	5137,0	6821,5	3250,0	3057,5	2865,0	2420,0	3285,5	3272,5	1896,5	2193,0	2344,5	1840,5	2920,5	2293,0
105,2	2656,0	2034,0	5290,0	7003,0	3398,0	3028,0	2995,0	2454,5	3353,0	3285,5	1915,5	2216,5	2400,0	1844,5	2946,0	2307,0
106,5	2685,0	2013,0	5439,0	7235,0	3476,0	3050,5	3013,5	2520,5	3427,5	3268,5	1931,0	2209,0	2443,5	1862,0	3013,0	2399,0
107,8	2670,0	1959,0	5397,0	7378,5	3648,0	3035,5	3070,5	2495,0	3485,5	3306,5	1912,5	2244,0	2483,0	1883,0	3067,0	2416,0
109,0	2706,0	2047,0	5560,0	7600,0	3836,5	3023,5	3111,0	2580,0	3564,0	3320,0	1898,0	2248,5	2525,5	1892,0	3135,5	2484,5
10,3	2673,0	2006,0	5573,0	7795,5	3962,5	3018,0	3169,0	2637,0	3590,0	3299,5	1908,5	2228,0	2548,0	1873,5	3176,5	2508,5
111,6	2745,0	2050,0	5680,0	8095,5	4107,0	3042,5	3218,5	2637,0	3673,0	3362,5	1872,0	2211,0	2584,0	1874,5	3243,5	2521,0
112,9	2718,0	2018,0	5842,0	8289,5	4386,0	3036,5	3310,0	2652,0	3703,0	3361,5	1951,5	2231,5	2619,5	1841,0	3280,5	2555,0
114,2	2707,0	2021,0	5833,0	8579,0	4573,5	3042,5	3328,5	2726,0	3784,0	3348,0	1927,5	2211,0	2719,0	1867,0	3355,5	2648,5
115,5	2704,0	1993,0	6046,0	8881,5	4810,0	3047,0	3370,0	2762,0	3835,0	3433,5	1942,5	2253,0	2781,5	1889,0	3388,0	2682,5
116,7	2759,0	2074,0	6083,0	9223,0	5117,0	3092,0	3452,0	2782,0	3884,0	3455,0	1967,0	2295,0	2840,0	1881,0	3463,0	2764,0
118,0	2677,0	2014,0	6323,0	9703,0	5427,0	3101,5	3472,5	2805,5	3979,5	3468,5	1989,0	2279,0	2908,0	1922,5	3511,0	2794,5
119,3	2722,0	2017,0	6547,0	10156,5	5846,5	3077,5	3501,0	2863,5	4033,5	3555,5	1986,0	2279,0	3049,0	1926,0	3553,5	2853,5
120,6	2709,0	2061,0	6683,0	10715,5	6260,5	3082,0	3551,5	2862,5	4102,0	3548,0	1995,5	2305,5	3118,0	1912,0	3578,0	2892,5
121,9	2653,0	2117,0	6910,0	11403,0	6765,0	3071,5	3599,0	2929,5	4100,0	3577,0	1980,0	2283,0	3268,0	1914,0	3653,5	2950,5
123,1	2636,0	2109,0	7281,0	12278,0	7394,5	3066,5	3619,5	2986,0	4172,0	3635,0	1977,0	2339,0	3410,0	1924,5	3763,5	2992,0
124,4	2569,0	2105,0	7588,0	13144,5	8189,0	3118,5	3655,5	2949,0	4210,0	3658,5	1996,0	2334,5	3634,0	1945,0	3765,5	3059,0
125,7	2563,0	2112,0	8039,0	14380,5	9095,0	3098,0	3731,5	2988,5	4264,0	3644,0	2001,0	2327,5	3807,5	1933,5	3849,0	3091,0
127,0	2590,0	2127,0	8421,0	15825,0	10242,5	3118,5	3759,5	3025,5	4257,5	3742,5	2015,0	2343,0	4090,0	1942,0	3911,0	3187,0
128,2	2550,0	2148,0	9125,0	17583,0	11519,5	3108,0	3789,0	3050,5	4302,0	3803,0	2025,0	2348,5	4409,5	1941,5	4024,5	3222,0
129,5	2559,0	2146,0	9836,0	19753,0	13352,0	3154,0	3824,0	3071,0	4393,0	3895,5	1998,5	2356,5	4765,5	1962,0	4119,0	3368,0
130,8	2495,0	2139,0	10780,0	22529,5	15425,0	3201,0	3871,5	3092,0	4390,0	4021,0	2087,5	2362,5	5311,0	1991,5	4193,5	3462,0
132,1	2512,0	2171,0	12041,0	26224,5	18402,0	3214,0	3909,0	3053,0	4459,0	4073,0	2070,5	2459,0	5919,5	1980,0	4323,5	3575,5
133,4	2458,0	2189,0	13653,0	30969,0	22302,5	3241,5	3863,5	3072,0	4475,0	4208,0	2080, 0	2438,5	6734,0	2021,0	4467,0	3665,0
134,6	2495,0	2193,0	15921,0	37635,0	27527,5	3187,0	3914,0	3114,5	4450,5	4400,5	2113,0	2479,5	7818,5	2004,5	4648,0	3842,0
135,9	2451,0	2177,0	18788,0	46834,5	35141,0	3169,0	3944,5	3139,0	4501,0	4507,0	2146,5	2555,0	9244,5	2027,0	4913,0	4042,0
137,2	2506,0	2224,0	22842,0	59543,0	45387,0	3188,0	3964,0	3113,5	4493,0	4806,5	2163,0	2624,0	11345,0	2063,0	5219,0	4312,5
138,5	2448,0	2246,0	28214,0	64940,0	60529,0	3242,5	3988,0	3170,0	4559,5	5245,0	2223,5	2677,5	14110,5	2080,5	5689,0	4728,5
139,7	2535,0	2275,0	35304,0	64940,0	64940,0	3304,0	4031,5	3243,5	4546,5	5851,0	2281,5	2765,5	17677,5	2083,5	6307,5	5205,5
141,0	2797,0	2271,0	43121,0	64940,0	64940,0	3481,0	4056,0	3231,0	4637,0	6634,5	2364,5	2887,0	21807,5	2092,5	6881,0	5773,5
142,3	3351,0	2248,0	50415,0	64940,0	64940,0	3902,5	4103,5	3275,0	4649,0	7466,0	2370,0	2958,0	25769,0	2109,0	7541,0	6228,5
143,6	3793,0	2272,0	54819,0	64940,0	64940,0	4194,0	4195,5	3338,5	4684,0	7898,0	2399,5	3090,0	28235,0	2123,0	8011,0	6442,0
144,9	3353,0	2292,0	54216,0	64940,0	64940,0	3761,5	4191,0	3313,0	4695,5	7420,5	2389,5	3135,5	28317,0	2095,5	7980,0	6360,5
146, 1	2778,0	2265,0	48991,0	64940,0	64940,0	3455,5	4136,0	3321.5	4656,0	6558,0	2375,5	3161,5	25766,0	2112,5	7630,0	5954,5
147,4	2521,0	2317,0	41371,0	64940,0	64940,0	3231,0	4180,0	3283,0	4683,5	5768,5	2306,0	3091,5	21736,0	2108,5	7083,0	5512,0
148,7	2414,0	2299,0	33659,0	64940,0	64940,0	3128,0	4157,0	3273,5	4630,0	5091,5	2287,5	2919,5	17756,5	2107,5	6484,0	4948,0
150,0	2325,0	2277,0	27293,0	62608,0	49953,5	3068,5	4123,5	3247,0	4658,0	4640,0	2227,0	2840,5	14344,5	2112,5	5908,0	4540,0
151,2	2294,0	2271,0	22412,0	48924,5	37419,0	2985,0	4126,0	3236,0	4593,0	4278,5	2218,0	2782,5	11608,5	2093,0	5491,0	4286,0
152,5	2293,0	2290,0	18546,0	39022,5	28796,5	2950,5	4134,5	3250,0	4632,5	4057,0	2219,0	2724,5	9595,5	2088,5	5216,0	4019,0
153,8	2283,0	2268,0	15637,0	31709,0	22720,0	2898,0	4175,0	3234,0	4670,5	3890,5	2179,5	2648,0	8074,5	2110,0	4982,0	3820,0
155,1	2223,0	2309,0	13609,0	26392,5	18397,0	2906,5	4175,0	3244,5	4647,0	3671,5	2157,5	2596,0	6894,0	2060,0	4770,5	3750,0
156,3	2235,0	2320,0	11909,0	22395,0	15107,5	2888,5	4133,0	3270,5	4680,0	3577,5	2180,0	2573,0	6037,5	2101,0	4679,5	3581,0
157,6	2217,0	2318,0	10712,0	19307,5	12732,0	2873,0	4165,0	3280,5	4665,0	3539,0	2137,0	2555,5	5345,0	2101,5	4561,5	3559,0
158,9	2195,0	2310,0	9725,0	16960,5	10845,0	2840,0	4205,5	3251,5	4610,0	3469,5	2149,5	2536,0	4798,0	2102,0	4471,0	3468,5
160,1	2211,0	2229,0	8906,0	15126,5	9395,0	2864,0	4223,0	3256,5	4624,5	3423,5	2122,5	2505,5	4361,5	2089,0	4453,0	3454,5
161,4	2185,0	2294,0	8199,0	13525,5	8155,0	2866,5	4178,0	3208,5	4669,5	3383,5	2141,5	2514,0	4024,0	2095,0	4338,0	3432,0
162,7	2215,0	2314,0	7719,0	12203,0	7222,5	2899,0	4172,0	3244,5	4641,0	3363,0	2140,5	2525,5	3768,0	2086,5	4294,0	3376,5
164,0	2224,0	2276,0	7363,0	11224,5	6449,0	2875,0	4174,5	3242,5	4616,5	3341,5	2169,5	2426,0	3539,0	2101,5	4345,0	3360,0
165,2	2254,0	2334,0	6979,0	10428,0	5805,0	2864,0	4133,0	3208,0	4587,0	3269,0	2137,5	2481,5	3334,0	2109,5	4257,0	3308,0
166,5	2245,0	2308,0	6741,0	9673,0	5263,0	2899,5	4182,5	3177,0	4599,5	3286,5	2126,5	2440,0	3186,0	2090,5	4253,5	3332,5
167,8	2277,0	2326,0	6447,0	9156,0	4785,5	2910,5	4146,0	3200,5	4623,5	3257,0	2124,0	2488,0	3033,5	2120,0	4203,5	3304,5
169,1	2266,0	2325,0	6338,0	8637,0	4446,5	2910,0	4192,0	3187,0	4635,5	3263,0	2101,0	2475,0	2942,0	2075,0	4230,5	3307, 5
170,3	2281,0	2321,0	6084,0	8144,5	4063,0	2943,5	4185,0	3172,0	4610,5	3270,5	2137,5	2442,5	2823,0	2083,0	4234,5	3339,5
171,6	2335,0	2295,0	5933,0	7824,0	3779,5	2963,0	4181,5	3177,0	4556,0	3284,0	2130,0	2443,5	2755,5	2091,0	4222,5	3296,5
172,9	2387,0	2359,0	5735,0	7422,5	3600,0	2993,5	4177,0	3181,0	4542,5	3248,0	2113,5	2435,0	2689,0	2083,5	4179,0	3296,0
174,1	2355,0	2313,0	5677,0	7161,5	3319,0	3027,0	4181,5	3187,0	4585,5	3309,5	2126,5	2425,5	2584,0	2065,0	4197,5	3322,5
175,4	2419,0	2324,0	5599,0	6943,0	3165,0	3012,0	4217,5	3187,0	4555,0	3315,5	2129,0	2429,5	2533,5	2067,0	4193,0	3306,0
176,7	2463,0	2262,0	5502,0	6706,5	3001,5	3046,0	4178,5	3182,5	4538,5	3312,0	2095,5	2421,0	2469,0	2048,5	4226,0	3273,0
178,0	2523,0	2225,0	5423,0	6499,5	2862,0	3089,0	4150,5	3117,0	4509,0	3350,0	2066,0	2404,5	2400,5	2053,0	4194,0	3281,0
179,2	2575,0	2251,0	5317,0	6380,0	2722,5	3119,0	4135,5	3122,0	4479,0	3367,5	2065,5	2408,5	2348,5	2029,0	4129,0	3291,5
180,5	2645,0	2247,0	5276,0	6136,5	2588,5	3182,0	4123,5	3120,0	4497,5	3419,0	2049,5	2343,0	2315,5	2022,0	4089,5	3228,0
181,8	2629,0	2221,0	5288,0	6003,0	2452,0	3258,0	4090,5	3108,0	4410,5	3388,5	2017,5	2300,5	2256,5	2008, 0	4105,5	3215,5
183,0	2753,0	2233,0	5235,0	5941,5	2377,5	3278,0	4071,0	3076,0	4407,0	3425,0	2020,0	2343,0	2249,0	1983,0	4035,0	3199,0
184,3	2775,0	2188,0	5139,0	5812,0	2304,0	3302,5	3980,0	3054,0	4384,5	3482,5	2000,5	2307,5	2188,5	1974,0	4005,0	3201,5
185,6	2814,0	2196,0	5115,0	5654,5	2188,5	3362,0	4011,0	3044,5	4315,0	3475,0	2002,0	2276,5	2138,5	1963,0	3960,0	3158,5
186,8	2882,0	2157,0	5065,0	5555,0	2129,0	3408,5	3965,5	3069,5	4312,0	3538,5	1964,5	2276,0	2121,5	1935,0	3943,5	3152,0
188,1	2929,0	2105,0	5025,0	5509,0	2079,0	3446,5	3957,5	3032,0	4281,0	3567,0	1963,0	2262,0	2063,5	1900,0	3869,0	3128,0
189,4	2999,0	2101,0	5012,0	5454,0	2025,0	3509,0	3926,0	3043,0	4330,5	3629,5	1937,0	2222,5	2050,0	1900,0	3861,0	3106,5
190,6	3045,0	2099, 0	5015,0	5515,0	1997,5	3507,0	3925,5	3044,0	4270,5	3682,5	1909,0	2199,0	2031,0	1844,5	3867,0	3112,0
191,9	3103,0	2103,0	5087,0	5639,0	2087,0	3600,0	3898,0	3023,5	4261,0	3699,0	1905,0	2176,0	2040,5	1840,5	3876,0	3096,5
193,2	3161,0	2029,0	5159,0	5848,0	2272,0	3683,5	3850,0	3021,0	4240,0	3792,0	1886,0	2184,5	2095,0	1834,0	3854,5	3083,0
194,4	3136,0	2025,0	5249,0	6375,5	2651,0	3708,0	3900,0	2996,5	4240,5	3849,0	1852,0	2149,0	2159,0	1825,0	3821,5	3069,0
195,7	3251,0	2035,0	5503,0	7082,0	3308,0	3785,5	3870,5	3002,5	4277,5	3917,0	1854,5	2152,5	2218,0	1793,5	3877,5	3107,5
197,0	3301,0	2035,0	5623,0	7496,0	3955,5	3854,5	3877,5	3003,5	4251,0	3976,0	1809,0	2111,5	2294,0	1770,5	3843,0	3126,5
198,2	3315,0	2012,0	5687,0	7391,5	3935,0	3836,5	3858,0	3030,5	4277,5	4046,5	1864,5	2120,5	2351,5	1784,0	3877,0	3127,5
199,5	3363,0	2005,0	5587,0	6861,5	3362,0	3887,5	3853,5	3020,5	4324,0	3980,5	1818,0	2092,0	2225,5	1789,0	3813,0	3096,0
200,8	3423,0	1992,0	5427,0	6297,0	2734,5	3918,0	3853,5	3057,0	4228,5	4041,5	1825,0	2053,0	2114,5	1769,0	3819,5	3097,5
202,0	3466,0	1983,0	5259,0	5827,5	2305,0	3948,5	3868,5	3042,5	4295,0	4085,5	1800,5	2090,0	2028,0	1783,0	3805,0	3088,0
203,3	3493,0	1991,0	5129,0	5543,0	2052,0	3989,5	3896,5	3077,0	4282,5	4104,0	1796,0	2078,0	1943,0	1754,5	3826,0	3114,5
204,6	3541,0	1994,0	5059,0	5327,5	1947,0	4004,0	3870,5	3068,5	4316,5	4151,5	1761,0	2071,0	1918,0	1731,0	3820,0	3071,0
205,8	3540,0	1974,0	4942,0	5198,0	1810,0	4037,5	3862,0	3081,5	4308,0	4196,5	1788,5	2078,5	1867,0	1725,5	3815,5	3069,0
207,1	3657,0	2000, 0	4908,0	5103,5	1764,0	4079,5	3930,0	3077,0	4330,0	4232,0	1788,5	2046,5	1865,5	1737,5	3779,0	3114,5
208,4	3737,0	1963,0	4918,0	5031,5	1683,0	4173,0	3919,5	3089,0	4348,5	4249,0	1793,5	2022,0	1847,0	1724,0	3809,5	3064,5
209,6	3733,0	1995,0	4863,0	4968,5	1659,5	4150,5	3933,5	3094,5	4353,5	4323,0	1789,0	2045,0	1821,5	1701,0	3820,0	3082,5
210,9	3795,0	2017,0	4823,0	4983,0	1620,0	4211,5	3934,0	3115,5	4383,0	4341,0	1773,0	2053,0	1818,0	1752,5	3858,5	3108,5
212,2	3826,0	1972,0	4844,0	4901,5	1581,0	4302,5	3992,0	3119,0	4387,0	4373,0	1784,5	2042,5	1794,0	1740,0	3834,0	3089,0

213,4	3890,0	1980,0	4803,0	4886,0	1574,5	4300, 0	3957,0	3165,0	4394,5	4424,0	1759,0	2041,0	1773,5	1701,5	3856,0	3114,0
214,7	3912,0	1961,0	4895,0	4846,0	1537,0	4337,0	3956,0	3177,0	4415,5	4491,0	1785,0	2014,0	1770,0	1710,5	3916,5	3121,0
216,0	3943,0	1930,0	4882,0	4831,5	1516,5	4347,5	4015,5	3182,5	4399,0	4527,0	1760,0	2003,5	1762,0	1709,5	3908,5	3148,5
217,2	4009,0	1942,0	4825,0	4797,0	1511,5	4401,5	3942,0	3212,0	4431,5	4575,0	1739,0	1966,5	1695,5	1690,5	3849,5	3148,5
218,5	4039,0	1909,0	4821,0	4752,5	1460,5	4467,5	4041,5	3236,5	4489,0	4561,0	1720,0	1970,5	1743,0	1673,0	3906,0	3159,5
219,8	4111,0	1905,0	4776,0	4746,5	1447,5	4432,0	4079,5	3277,0	4519,5	4597,0	1732,5	1954,0	1708,5	1665,0	3927,5	3155,5
221,0	4081,0	1869,0	4822,0	4688,5	1482,0	4538,5	4070,5	3309,5	4543,0	4639,5	1721,0	1920,	1708,0	1671	3901,0	3166,0
222,3	4160,0	1907,0	4786,0	4744,5	1450,5	4541,0	4069,0	3346,5	4553,5	4673,0	1685,5	1921,	1673,0	1639	3936,	3165,0
223,5	4213,0	1885,0	4791,0	4662,5	1438,5	4531,5	4124,0	3412,0	4557,5	4685,5	1667,5	1900,5	1663,5	1625,0	3991,0	3161,0
224,8	4283,0	1857,0	4807,0	4639,5	1412,5	4580,0	4076,0	3450,5	4514,0	4749,5	1671,5	1880,0	1632,5	1588,5	3966,0	3175,5
226,1	4264,0	1845,0	4794,0	4675,0	1395,0	4625,5	4135,5	3520,5	4590,5	4717,0	1658,5	1876,0	1614,0	1595,0	4008,5	3228,0
227,3	4301,0	1819,0	4853,0	4674,0	1405,5	4623,5	4141,5	3505,0	4592,5	4799,5	1644,0	1868,0	1605,0	1600,0	3989,5	3254,0
228,6	4381,0	1842,0	4809,0	4630,0	1374,0	4673,0	4139,5	3473,0	4621,5	4802,5	1639,0	1868,0	1621,5	1571,5	3990,0	3230,5
229,8	4385,0	1796,0	4707,0	4635,0	1375,0	4683,5	4148,0	3440,5	4616,5	4827,5	1627,0	1815,0	1608,0	1592,0	4043,0	3247,5
231,1	4425,0	1837,0	4762,0	4620,0	1354,5	4705,5	4219,5	3468,5	4659,5	4872,0	1645,0	1824,0	1606,0	1566,	4033,	3262,5
232,4	4461,0	1809,0	4778,0	4615,5	1365,5	4732,5	4215,5	3388,0	4682,0	4849,5	1601,0	1857,0	1589,0	1574,5	4058,5	3248,0
233,6	4477,0	1811,0	4775,0	4627,0	1363,5	4756,5	4238,0	3463,5	4687,0	4881,0	1595,5	1811,5	1573,0	1526,5	4051,5	3265,5
234,9	4525,0	1780,0	4800,0	4587,0	1340,0	4772,0	4216,0	3430,0	4723,5	4934,5	1614,5	1833,5	1621,5	1565,0	4091,0	3337,0
236,2	4547,0	1770,0	4776,0	4620,0	1344,5	4813,5	4261,5	3400,0	4763,5	4941,0	1597,0	1822,5	1574,0	1563,5	4104,0	3316,5
237,4	4559,0	1761,0	4851,0	4605,5	1304,5	4740,0	4246,0	3377,0	4787,0	4981,5	1609,5	1815,0	1571,0	1537,5	4108,0	3306,5
238,7	4531,0	1717,0	4708,0	4592,5	1354,0	4806,0	4300,0	3430,0	4811,5	4929,0	1613,0	1786,0	1572,0	1554,5	4129,0	3358,0
239,9	4547,0	1761,0	4773,0	4605,0	1330,0	4806,5	4303,0	3438,5	4832,5	4947,0	1579,0	1773,5	1539,0	1551,5	4095,0	3347,0
241,2	4471,0	1719,0	4829,0	4633,5	1308,0	4818,0	4294,0	3452,5	4827,0	4984,0	1576,0	1756,0	1561,5	1544,5	4130,5	3346,5
242,5	4543,0	1791,0	4791,0	4614,5	1328,0	4806,5	4295,5	3464,5	4864,5	4956,0	1594,0	1769,0	1525,5	1538,0	4138,0	3386,0
243,7	4535,0	1775,0	4809,0	4588,5	1323,0	4785,0	4300,0	3498,5	4835,5	4967,0	1586,5	1777,5	1560,5	1496,5	4116,5	3412,0
245,0	4531,0	1726,0	4863,0	4606,0	1285,0	4746,0	4321,0	3453,5	4854,5	4915,0	1587,0	1783,0	1532,0	1510,5	4169,5	3364,5
246,2	4437,0	1737,0	4885,0	4600,0	1319,5	4768,0	4310,5	3504,0	4868,0	4921,0	1581,0	1740,5	1504,0	1508,5	4140,0	3366,0
247,5	4398,0	1781,0	4846,0	4602,0	1309,5	4708,0	4348,5	3466,5	4899,5	4842,5	1557,0	1791,0	1533,0	1499,0	4135,5	3375,0
248,7	4368,0	1711,0	4808,0	4618,5	1309,5	4676,0	4358,5	3474,5	4833,0	4851,0	1557,0	1757,5	1549,5	1526,5	4148,5	3381,0
250,0	4267,0	1729,0	4777,0	4605,5	1296,0	4642,0	4362,0	3463,5	4863,0	4797,0	1572,0	1751,0	1511,5	1482,0	4124,5	3336,0
251,3	4224,0	1723,0	4843,0	4657,0	1299,0	4616,5	4417,5	3497,0	4942,5	4755,0	1547,5	1756,5	1520,5	1516,0	4176,5	3390,0
252,5	4125,0	1773,0	4872,0	4645,0	1339,0	4631,5	4340,5	3466,0	4897,0	4738,0	1545,0	1746,0	1539,5	1480,0	4166,5	3352,0
253,8	4097,0	1717,0	4829,0	4617,5	1307,0	4612,0	4328,0	3495,5	4893,0	4726,0	1567,5	1709,0	1502,5	1481,0	4160,5	3356,0
255,0	3997,0	1728,0	4851,0	4599,5	1315,0	4561,0	4353,0	3462,5	4878,5	4638,0	1550,5	1739,0	1515,0	1472,0	4169,5	3382,0
256,3	3999,0	1738,0	4843,0	4659,0	1305,0	4527,0	4344,5	3471,5	4899,0	4648,5	1560,5	1703,0	1509,5	1493,5	4144,0	3339,0
257,5	3941,0	1730,0	4875,0	4646,0	1319,5	4535,0	349,0	3506,5	4885,0	4639,0	1533,0	1739,0	1515,5	1454,0	4147,0	3355,0
258,8	3897,0	1728,0	4801,0	4646,0	1330,0	4520,0	379,5	3472,5	4900,0	4581,0	1529,5	1688,5	1519,0	1446,0	4199,0	3322,0
260,1	3801,0	1715,0	4827,0	4666,5	1306,5	4498,0	4329,0	3469,5	4849,5	4614,0	1534,0	1728,0	1530,5	1482,0	4193,5	3353,5
261,3	3754,0	1767,0	4841,0	4695,5	1319,0	4553,5	4339,5	3524,5	4836,0	4589,0	1532,0	1706,0	1508,0	1460,5	4164,0	3382,5
262,6	3734,0	1715,0	4873,0	4704,0	1319,0	4588,5	4370,0	3455,5	4867,0	4608,5	1530,0	1750,5	1487,0	1463,5	4142,5	3357,0
263,8	3656,0	1741,0	4858,0	4659,0	1340,0	4583,0	4376,0	3482,0	4878,0	4619,0	1552,5	1706,0	1516,0	1476,0	4161,5	3395,0
265,1	3637,0	1705,0	4865,0	4740,5	1317,5	4517,5	4324,5	3497,5	4874,0	4688,5	1540,5	1744,0	1533,5	1493,5	4234,0	3439,0
266,3	3605,0	1739,0	4884,0	4695,0	1327,5	4487,0	4359,0	3486,0	4936,5	4704,0	1524,0	1702,0	1515,0	1465,5	4168,0	3419,5
267,6	3573,0	1760,0	4893,0	4715,0	1338,0	4471,0	4375,5	3444,0	4885,0	4642,0	1556,5	1748,0	1537,5	1478,5	4185,0	3420,0
268,8	3563,0	1760,0	898,0	4676,0	1355,5	4427,0	4385,5	3485,0	4892,5	4549,0	1531,5	1742,0	1534,5	1483,0	4190,5	3429,5
270,1	3497,0	1729,0	4850,0	4702,5	1318,0	4304,0	4315,5	3431,5	4920,0	4461,5	1542,0	1716,0	1497,5	1483,5	4186,0	3402,0
271,4	3439,0	1685,0	4881,0	4750,5	1360,5	4309,0	4409,0	3434,0	4895,5	4415,0	1514,0	1717,0	1549,0	1485,5	4224,0	3424,0
272,6	3435,0	1703,0	4837,0	4752,5	1340,5	4221,0	4338,0	3485.5	4873,0	4360,5	1531,0	1727,0	1504,0	1497,5	4211,5	3420,0
273,9	3437,0	1747,0	4891,0	4757,0	1355,0	4159,5	4377,5	3494,0	4916,5	4318,0	1515,5	1702,5	1543,5	1469,0	4179,0	з380,0
275,1	3379,0	1719,0	4917,0	4722,0	1335,5	4150,5	4388,5	3548,5	4901, 5	4279,0	1534,5	1724,5	1502, 5	1459,0	4196,5	3378,5
276,4	3377,0	1741,0	4931,0	4765,0	1351,0	4069,0	4362,0	3461,0	4883,5	4212,0	1550,5	1707,0	1536,5	1445,0	4207,5	3355,0
277,6	3318,0	1735,0	4929,0	4771,5	1354,5	4076,0	4404,0	3518,5	4900,5	4165,0	1547,0	1717,0	1540,5	1473,5	4193,0	3381,5
278,9	3263,0	1763,0	4914,0	4804,0	1350,0	3986,5	4418,0	3547,5	4911,0	4152,0	1515,5	1734,0	1548,0	1473,0	4197,5	3381,5
280,1	3266,0	1714,0	4923,0	4820,5	1362,5	3935,5	4347,0	3524,5	4918,0	4073,5	1527,0	1708,0	1542,5	1467,0	4295,0	3389,5
281,4	3203,0	1749,0	4890,0	4799,5	1335,0	3926,5	4403,0	3522,5	4876,0	4045,0	1552,0	1690,0	1559,0	1471,0	4263,0	3309,0
282,6	3191,0	1738,0	4936,0	4803,5	1345,0	3888,5	4396,5	3562,0	4893,0	4062,5	1512,0	1697,5	1540,0	1457,5	4240,0	3409,0
283,9	3175,0	1762,0	4951,0	4803,0	1383,5	3837,0	4401,5	3548,0	4922,5	3984,0	1554,0	1712,5	1534,0	1457,5	4232,0	3387,0
285,1	3145,0	1759,0	4964,0	4855,0	1374,0	3807,5	4433,5	3546,5	4968,0	3949,0	1542,0	1726,0	1557,0	1480,0	4273,0	3406,5
286,4	3093,0	1773,	4997,0	4890,5	1375,5	3786,0	4415,5	3564,5	4947,0	3930,5	1520,0	1711,0	1539,5	1486,0	4308,5	3389,5
287,6	63,0	1773,0	4974,0	4912,0	1390,5	3747,5	4415,5	3594,5	4911,0	3897,5	1515,0	14,0	1564,0	509,5	4262,5	3422,0
288,9	3077,0	1738,0	4967,0	4899,5	1392,0	3724,5	4464,5	3609,5	4960,0	3892,0	1568,0	1717,5	1556,5	1476,0	4333,0	3420,5
290,1	3061,0	1721,0	4977,0	4875,0	1406,5	3719,5	4423,0	3624,0	4893,5	3870,0	1556,0	1746,0	1558,5	1481,0	4360,5	3420,5
291,4	3026,0	1761,0	5052,0	4969,0	1409,0	3678,5	4449,5	3631,0	4991,0	3812,5	1555,0	1744,5	1597,5	1483,0	4365,5	3447,0
292,6	2975,0	1801,0	4939,0	4988,0	1402,0	3646,5	4423,0	3663,5	4930,0	3771,5	1518,5	1732,0	1549,5	1473,0	4355,5	3456,0
293,9	2959,0	1779,0	5035,0	4965,5	1436,0	3633,0	4489,0	3684,0	4945,0	3761,5	1552,0	1723,5	1575,5	1476,0	4370,5	3449,0
295,1	2861,0	1791,0	5021,0	4999,5	1421,5	3622,5	4465,5	3718,0	5019,5	3706,0	1564,0	1760,5	1593,0	1465,0	4343,0	3483,0
296,4	2913,0	1795,0	5083,0	5055,0	1434,5	3589,0	4521,0	3697,0	4994,5	3711,0	1555,5	1736,0	1594,0	1488,0	4398,5	3488,5
297,6	2881,0	1826,0	5038,0	5082,5	1449,0	3563,5	4508,5	3677,5	5030,0	3694,0	1575,5	1713,5	1606,5	1480,5	4439,5	3492,0
298,9	2871,0	1814,0	5071,0	5108,0	1455,5	3548,0	4492,5	3679,0	5032,5	3695,0	1563,0	1771,0	1595,0	1501,5	4450,5	3510,5
300,1	2864,0	1843,0	5047,0	5071,0	1452,0	3534,5	4530,0	3665,5	5012,0	3668,5	1579,0	1767,5	1623,5	1522,0	4413,5	3501,0
301,4	2899,0	1831,0	5099,0	5112,5	1445,0	3565,0	4510,0	3668,5	4992,0	3678,5	1614,5	1753,5	1620,0	1524,5	4429,0	3479,0
302,6	2857,0	1813,0	5076,0	5144,5	1468,0	3548,5	4528,5	3662,5	5008,5	3653,5	1572,0	1782,5	1630,5	1506,5	4452,5	3499,0
303,9	2873,0	1822,0	5081,0	5135,5	1465,5	3545,5	4501,5	3656,5	5039,5	3642,0	1584,0	1721,0	1617,0	1526,0	4427,0	3517,5
305,1	2860,0	1835,0	5148,0	5089,5	1477,5	3555,5	4554,0	3606,5	5034,0	3633,5	1603,0	1784,5	1654,0	1513,0	4433,5	3531,5
306,4	2809,0	1852,0	5080,0	5131,0	1477,5	3613,0	4513,0	3616,5	5036,0	3651,0	1585,0	1781,5	1650,0	1541,0	4459,5	3554,0
307,6	2859,0	1858,0	5109,0	5152,5	1481,5	3580,0	4518,0	3605,0	5050,0	3677,0	1601,0	1775,0	1653,5	1542,0	4511,0	3529,5
308,9	2902,0	1875,0	5164,0	5186,0	1478,5	3622,0	4591,0	3566,0	5065,0	3692,5	1602,0	1776,0	1685,0	1546,0	4479,5	3515,5
310,1	2869,0	1825,0	5201,0	5230,5	1478,0	3551,5	4601,5	3622,5	5048,5	3682,0	1616,5	1779,0	1639,0	1529,0	4574,0	3549,5
311,4	2916,0	1875,0	5149,0	5232,5	1494,0	3587,5	4604,5	3572,5	5085,0	3711,0	1599,5	1784,0	1671,5	1541,5	4528,0	3588,5
312,6	2941,0	1880,0	5122,0	5255,0	1482,0	3613,0	4663,5	3605,5	5102,0	3744,0	1585,0	1782,0	1650,0	1529,5	4530,5	3560,5
313,9	2918,0	1833,0	5199,0	5279,5	1520,0	3673,5	4644,5	3629,5	5144,0	3721,5	1635,0	1809,5	1671,5	1525,0	4602,5	3638,5
315,1	2959,0	1831,0	5197,0	5256,0	1496,5	3641,5	4715,5	3593,0	5057,0	3694,5	1621,5	1804,0	1704,0	1557,5	4577,0	3612,5
316,4	2955,0	1869,0	5211,0	5330,5	1509,0	3652,5	4711,5	3586,0	5153,5	3685,0	1619,5	1813,5	1695,0	1551,5	4632,0	3634,5
317,6	2995,0	1880,0	5172,0	5259,0	1537,0	3710,5	4680,0	3585,0	5096,5	3744,5	1616,0	1787,0	1677,0	1544,5	4665,0	3674,0
318,9	2998,0	1871,0	5173,0	5316,0	1525,5	3694,0	4732,5	3615,5	5210,5	3770,0	1621,0	1792,0	1693,5	1538,5	4588,5	3662,0
320,1	2971,0	1875,0	5204,0	5284,0	1533,0	3687,5	4682,5	3610,5	5116,5	3748,0	1616,0	1785,5	1679,0	1573,0	4579,0	3685,0
321,4	2999,0	1890,0	5233,0	5274,0	1518,5	3727,5	4705,0	3612,0	5183,0	3773,0	1644,0	1831,5	1736,0	1561,5	4612,0	3658,0
322,6	2993,0	1865,0	5229,0	5273,0	1556,0	3719,0	4738,5	3631,0	5215,5	3799,5	1622,0	1837,5	1708,0	1562,0	4653,5	3691,0
323,8	2986,0	1895,0	5248,0	5263,0	1533,5	3736,5	4739,5	3612,0	5132,0	3828,5	1626,5	1836,5	1703,5	1590,0	4644,0	3671,5
325,1	3023,0	1881,0	5201,0	5279,0	1536,0	3759,0	4721,5	3589,0	5123,0	3788,5	1608,5	1822,0	1709,5	1581,5	4603,0	3696,0
326,3	2970,0	1903,0	5228,0	5258,0	1521,0	3779,5	4719,0	3604,5	5178,5	3826,5	1611,5	1833,0	1701,0	1544,0	4607,0	3686,5
327,6	3024,0	1926,0	5233,0	5325,0	1536,0	3784,5	4735,5	3596,5	5155,0	3856,5	1638,0	1853,5	1698,0	1564,0	4639,5	3709,5
328,8	3019,0	1926,0	5225,0	5299,0	1521,5	3819,5	4693,5	3599,5	5156,0	3925,5	1631,0	1838,0	1701,0	1590,0	4633,0	3748,5
330,1	2957,0	1923,0	5250,0	5283,0	1547,0	3810,0	4708,0	3528,5	5165,0	3936,5	1644,5	1804,5	1718,5	1558,5	4555,0	3758,5
331,3	3020,0	1888,0	5293,0	5337,0	1482,0	3888,0	4739,0	3580,5	5185,0	4006,5	1631,5	1844,0	1723,0	1556,0	4621,5	3718,0
332,6	3002,0	1921,0	5277,0	5337,5	1530,0	3921,5	4709,0	3596,5	5202,0	4025,5	1645,0	1856,5	1729,5	1578,0	4664,5	3768,5
333,8	3003,0	1911,0	5265,0	5323,5	1518,0	3876,5	4687,0	3622,0	5197,0	4140,5	1660,0	1816,5	1730,0	1593,0	4626,0	3787,0
335,0	2951,0	1929,0	5292,0	5358,5	1548,5	3931,5	4750,0	3557,0	5218,0	4130,5	1629,5	1846,0	1720,5	1609,5	4630,0	3805,5
336,3	2973,0	1905,0	5268,0	5355,0	1527,0	3967,0	4717,0	3595,0	5206,0	4198,0	1666,0	1836,5	1721,5	1586,0	4675,5	3818,0
337,5	2977,0	1903,0	5320,0	5385,0	1549,5	3962,5	4705,0	3587,5	5237,5	4114,0	1657,5	1852,0	1723,5	1577,0	4656,0	3806,5

8,8	3007,0	1911,0	5310,0	5384,0	1554,5	3966,5	4759,0	3568,0	5202,0	4074,5	1655,5	1854,0	1718,0	1590,5	4668,0	3771,0
340,0	3031,0	1912,0	5283,0	5374,0	1566,0	3895,5	4698,5	3599,0	5204,5	4045,5	1632,0	1856,5	1726,0	1580,0	4661,5	3757,5
341,3	3031,0	1914,0	5327,0	5401,0	1539,5	3899,5	4756,0	3598,0	5147,5	4046,5	1657,0	1858	1761,0	603	4666	3761,0
342,5	3026,0	1938,0	5348,0	5434,0	1565,5	3890,0	4750,0	3567,0	5203,0	3957,5	1678,5	1840,5	1761,5	1561,0	4630,0	3707
343,7	3044,0	1951,0	5306,0	5402,0	1555,0	3891,5	4763,5	3592,5	5226,5	3946,0	1671,5	1860,5	1749,0	1608,5	4672,0	3703,5
345,0	3051,0	1945,0	5342,0	5469,5	1547,0	3871,5	4692,0	3631,5	5198,0	3950,0	1683,0	1871,0	1761,0	1581,0	4638,5	3715,5
346,2	3040,0	1919,0	5388,0	5476,5	1530,0	3940,0	4723,5	3640,5	5208,0	3979,0	1674,0	1915,5	1765,5	1626,5	4594,0	3716,5
347,5	3083,0	1939,0	5342,0	5523,5	1568,0	3884,0	4765,0	3579,5	5218,0	3962,0	1664,5	1862,0	1772,0	1587,0	4599,0	3701,5
348,7	3096,0	1931,0	5368,0	5479,0	1561,0	3952,5	4719,0	3595,0	5244,5	4014,5	1670,5	1880,0	1758,5	1614,0	4627,0	3688,0
349,9	3067,0	1953,0	5453,0	5556,0	1623,5	3902,5	4704,5	3623,0	5261,0	3934,5	1638,0	1848,0	1776,0	1601,0	4636,5	3683,5
351,2	3029,0	1945,0	5359,0	5529,5	1602,0	3955,0	4695,5	3609,5	5183,0	3987,5	1648,0	1860,0	1772,5	1600,0	4599,0	3695,5
352,4	3125,0	1929,0	5424,0	5614,5	1598,0	3944,0	4691,0	3592,0	5223,0	4010,5	1667,5	1876,0	1757,5	1611,5	4620,0	3717,0
353,7	3098,0	1871,0	5483,0	5576,5	1614,0	3945,0	4748,5	3618,0	5214,5	4031,5	1690,5	1881,0	1784,0	1609,0	4618,0	3651,5
354,9	3119,0	1961,0	5431,0	5666,0	1627,5	3970,0	4722,0	3583,0	5199,5	3992,5	1665,5	1880,0	1785,5	1574,5	4609,0	3666,5
356,2	3132,0	1920,0	5431,0	5673,0	1621,0	3975,0	4755,5	3570,5	5205,5	4024,0	1686,5	1892,5	1838,0	1603,5	4569,0	3640,0
357,4	3161,0	1935,0	5470,0	5754,0	1648,5	3999,0	4761,0	3600,0	5230,0	4008,5	1691,0	1880,0	1850,5	1612,5	4637,0	3705,0
358,6	3181,0	1959,0	5373,0	5830,5	1669,0	4022,0	4751,0	3608,5	5185,0	4098,5	1691,0	1884,0	1827,5	1629,0	4594,0	3701,0
359,9	3194,0	1953,0	5507,0	5782,0	1686,5	4014,0	4708,0	3584,0	5238,5	4066,5	1682,5	1910,0	1865,0	1615,0	4567,0	3691,0
361,1	3128,0	1980,0	5513,0	5892,5	1699,5	4010,5	4737,5	3582,5	5275,5	4087,0	1685,0	1918,0	1861,0	1619,0	4616,0	3724,5
362,3	3179,0	1955,0	5536,0	5955,5	1685,0	4064,0	4728,0	3606,0	5217,5	4067,0	1678,5	1901,5	1893,5	1629,5	4597,0	3671,0
363,6	3221,0	1935,0	5592,0	6028,0	1706,0	4049,0	4674,0	3617,0	5200,0	4103,5	1698,0	1894,5	1862,5	1621,0	4629,5	3691,5
364,8	3173,0	1953,0	5593,0	6024,5	1739,0	4051,5	4687,0	3593,5	5230,0	4083,0	1693,0	1878,5	1892,5	1643,0	4602,0	3745,0
366,1	3212,0	1974,0	5618,0	6156,0	1750,0	4045,5	4725,5	3607,5	5236,5	4062,0	1713,0	1908,0	1900,0	1624,5	4640,5	3712,0
367,3	3221,0	1981,0	5626,0	6206,0	1814,0	4079,0	4726,5	3627,0	5214,0	4128,5	1694,5	1910,0	1955,5	1639,0	4658,5	3736,5
368,5	3189,0	1980,0	5697,0	6342,0	1833,5	4051,5	4736,5	3586,0	5256,0	4108,5	1691,5	1915,0	1968,5	1614,0	4638,5	3771,0
369,8	3216,0	1993,0	5641,0	6470,0	1855,5	4072,5	4770,0	3639,0	5271,5	4097,0	1698,5	1942,0	1974,0	1660,5	4687,5	3707,0
371,0	3221,0	1939,0	5755,0	6550,0	1878,5	4092,0	4710,0	3632,0	5279,0	4096,0	1708,0	1930,5	2026,0	1634,0	4639,0	3742,0
372,3	3181,0	2003,0	5753,0	6751,0	1935,0	4134,5	4727,0	3625,0	5284,0	4159,5	1665,5	1932,5	2062,0	1616,0	4654,0	3740,0
373,5	3171,0	1929,0	5711,0	6907,5	1976,0	4096,0	4778,0	3585,0	5276,0	4116,0	1674,0	1918,0	2098,5	1615,5	4607,0	3743,0
374,7	3171,0	1963,0	5870,0	7120,5	2008,0	4136,0	4729,0	3600,5	5286,0	4128,0	1679,5	1932,0	2083,5	1614,0	4722,5	3734,0
376,0	3183,0	1986,0	5852,0	7259,5	2070,0	4096,5	4764,5	3634,5	5301,5	4184,5	1677,0	1890,0	2116,5	1619,5	4692,5	3739,5
377,2	3189,0	1925,0	6040,0	7545,5	2145,0	4147,5	4803,0	3662,0	5270,0	4160,0	1682,0	1899,5	2152,5	1601,0	4700, 0	3784,0
378,4	3194,0	1946,0	6048,0	7817,0	2201,5	4191,0	4820,0	3677,0	5316,0	4143,0	1653,0	1877,0	2231,0	1604,0	4769,5	3842,0
379,7	3230,0	1976,0	6139,0	8103,0	2308,0	4173,0	4835,5	3684,0	5312,5	4172,5	1663,5	1855,0	2251,0	1587,0	4786,0	3831,0
380,9	3137,0	1962,0	6227,0	8525,5	2402,5	4143,0	4825,5	3671,5	5373,0	4216,5	1667,0	1876,0	2343,0	1595,5	4828,5	3869,0
382,1	3215,0	1996,0	6317,0	8914,0	2545,5	4153,0	4884,0	3705,0	5400,5	4252,5	1643,5	1865,5	2396,0	1598,0	4818,5	3877,5
383,4	3200,0	1943,0	6398,0	9246,5	2671,0	4203,0	4917,5	3707,0	5407,5	4231,0	1651,0	1879,0	2510,5	1568,5	4906,5	3923,5
384,6	3231,0	1950,0	6511,0	9771,0	2825,0	4261,5	4961,0	3736,5	5427,0	4312,5	1625,0	1868,5	2541,0	1584,5	4894,0	3982,0
385,8	3265,0	1947,0	6684,0	10266,0	2990,5	4280,5	4945,5	3729,0	5475,0	4327,5	1652,0	1838,0	2614,0	1582,0	4977,0	3996,0
387,1	3256,0	1921,0	6809,0	10847,5	3155,5	4267,5	5016,5	3791,0	5541,5	4354,0	1630,0	1853,5	2694,5	1594,5	4962,0	3980,0
388,3	3306,0	1937,0	7041,0	11403,5	3316,5	4309,5	5058,0	3762,0	5586,0	4438,0	1647,0	1862,0	2798,0	1571,0	5046,5	4060,0
389,5	3288,0	1956,0	7200, 0	11972,5	3538,5	4315,0	5085,5	3786,5	5590,0	4422,0	1626,0	1852,5	2884,0	1581,0	5047,0	4120,5
390,8	3281,0	1947,0	7296,0	12631,5	3716,0	4375,0	5119,5	3785,0	5607,0	4479,5	1643,0	1843,5	2964,5	1574,0	5168,5	4121,0
392,0	3295,0	1913,0	7508,0	13130,0	3921,0	4380,5	5190,5	3862,0	5646,5	4510,0	1654,0	1836,5	3072,5	1568,5	5213,5	4180,0
393,3	3341,0	1909,0	7606,0	13609,0	4079,5	4383,0	5210,0	3858,5	5711,0	4564,5	1646,5	1819,0	3143,5	1567,0	5276,0	4234,0
394,5	3365,0	1961,0	7722,0	13935,5	4281,0	4457,0	5294,0	3875,5	5785,0	4599,0	1611,0	1816,0	3176,5	1555,0	5314,0	4258,0
395,7	3425,0	1913,0	7799,0	14121,5	4360,5	4494,5	5253,0	3939,5	5802,0	4686,5	1641,0	1859,5	3193,0	1549,5	5367,5	4329,0
396,9	3402,0	1937,0	7732,0	14175,0	4372,0	4586,0	5377,0	3953,5	5849,0	4737,5	1641,0	1829,5	3219,5	1572,0	5410,0	4363,0
398,2	3427,0	1939,0	7689,0	13954,5	4309,5	4601,0	5416,5	3975,5	5870,5	4720,5	1629,5	1837,5	3137,5	1563,0	5438,5	4403,0
399,4	3431,0	1921,0	7664,0	13652,0	4247,5	4663,0	5544,0	4004,0	5992,0	4787,5	1631,0	1856,5	3093,5	1543,0	5529,0	4409,0
400,6	3474,0	1944,0	7532,0	13038,5	4041,0	4715,0	5461,5	4044.0	6077,0	4830,0	1637,5	1834,0	3049,5	1548,5	5576,0	4476,0
401,9	3552,0	1916,0	7299,0	12400,5	3841,0	4733,5	5561,0	4064,0	6096,0	4863,5	1605,5	1852,5	2956,5	1555,0	5637,5	4497,5
403,1	3604,0	1947,0	7117,0	11742,5	3616,0	4857,5	5593,5	4094,5	6190,0	4917,0	1634,0	1845,5	2815,0	1549,5	5651,0	4517,5
404,3	3559,0	1924,0	6989,0	11034,0	3360,5	4877,0	5718,0	4127,0	6263,0	4990,0	1645,0	1851,0	2688,0	1543,0	5695,0	4571,0
405,6	3673,0	1954,0	6838,0	10358,0	3163,5	4968,5	5787,5	4188,5	6258,5	5019,0	1614,0	1825,5	2589,5	1571,0	5779,5	4649,5
406,8	3758,0	1927,0	6733,0	9800,0	2940,0	4988,5	5869,5	4193,5	6329,0	5091,5	1609,0	1825,5	2516,0	1543,5	5745,0	4631,0
408,0	3785,0	1941,0	6658,0	9300,5	2776,5	5151,5	5873,0	4239,5	6387,5	5215,5	1618,0	1832,5	2406,5	1551,0	5874,0	4710,5
409,3	3881,0	1911,0	6503,0	8868,0	2574,0	5197,5	5940,5	4246,5	6441,0	5220,5	1632,5	1832,0	2318,0	1563,0	5902,0	4724,5
410,5	3948,0	1930,0	6356,0	8450,0	2461,0	5294,0	5964,0	4291,0	6539,0	5356,5	1645,0	1837,0	2247,5	1543,0	5894,5	4755,0
411,7	4042,0	1911,0	6280,0	8049,5	2319,0	5409,0	6023,5	4345,5	6569,0	5413,0	1640,5	1845,0	2207,0	1568,0	5957,5	4782,5
413,0	4093,0	1910,0	6250,0	7829,5	2236,5	5537,5	6131,0	4349,5	6626,0	5492,0	1587,0	1817,5	2141,5	1557,5	5977,5	4820,5
414,2	4151,0	1909,0	6145,0	7531,0	2164,0	5601,5	6169,5	4365,5	6682,5	5560,5	1648,5	1854,5	2105,0	1581,5	6031,0	4842,0
415,4	4274,0	1949,0	6097,0	7357,5	2076,5	5742,0	6192,0	4375,0	6651,0	5708,5	1632,5	1820,0	2064,0	1563,0	6098,5	4944,5
416,6	4373,0	1920,0	6072,0	7166,5	2001,5	5873,5	6310,0	4446,0	6822,5	5822,0	1666,0	1808,0	2033,5	1558,5	6101,5	4933,0
417,9	4421,0	1899,0	6023,0	6913,5	1959,0	6014,5	6351,0	4461,5	6830,5	5983,5	1635,0	1833,5	1995,0	1580,5	6153,0	4972,5
419,1	4608,0	1935,0	5954,0	6847,5	1959,5	6173,0	6301,0	4471,0	6976,0	6084,5	1604,5	1835,0	1963,0	1571,5	6193,0	5032,0
420,3	4683,0	1886,0	5979,0	6743,0	1914,0	6312,5	6460,0	4569,0	6925,0	6230,0	1623,0	1822,0	1938,0	1554,5	6250,0	5137,0
421,6	4869,0	1935,0	5969,0	6608,5	1847,0	6447,5	6525,0	4568,5	7020,0	6364,0	1618,5	1815,5	1943,0	1560,0	6311,0	5115,0
422,8	4984,0	1930,0	5995,0	6511,0	1815,5	6645,5	6569,0	4596,0	7079,5	6518,5	1619,5	1810,0	1922,5	1575,0	6302,0	5161,5
424,0	5135,0	1942,0	5925,0	6464,5	1800,5	6775,5	6630,5	4635,0	7124,5	6711,0	1633,5	1800,0	1901,0	1564,0	6331,0	5170,0
425,3	5259,0	1934,0	5896,0	6369,0	1777,0	7027,5	6663,5	4612,0	7160,0	6893,0	1609,5	1822,0	1868,5	1558,0	6400,5	5290,5
426,5	5406,0	1924,0	5910,0	6314,5	1757,5	7274,0	6695,0	4656,0	7257,0	7022,5	1632,0	1805,0	1878,5	1560,5	6450,0	5313,0
427,7	5565,0	1889,0	5846,0	6292,5	1726,0	7389,0	6735,5	4737,0	7305,0	7300,0	1635,5	1796,0	1843,5	1565,5	6465,5	5338,0
428,9	5706,0	1926,0	5935,0	6207,5	1730,5	7647,0	6749,5	4736,5	7332,0	7495,5	1593,5	1819,5	1874,5	1548,5	6533,5	5379,0
430,2	5845,0	1913,0	5893,0	6146,0	1683,5	7873,0	6809,5	4742,0	7363,0	7654,0	1605,0	1770,0	1843,5	1580,0	6511,5	5400,5
431,4	6077,0	1909,0	5873,0	6123,5	1675,0	8134,0	6791,0	4777,5	7382,0	7918,5	1605,5	1796,0	1844,5	1560,5	6522,5	5426,5
432,6	6242,0	1895,0	5842,0	6057,5	1672,0	8393,5	6854,5	4822,0	7390,0	8099,5	1587,0	1793,5	1811,5	1529,5	6606,0	5447,5
433,8	6386,0	1914,0	5896,0	6077,5	1675,5	8685,0	6930,5	4853,5	7367,0	8388,5	1606,0	1804,5	1779,0	1542,0	6557,5	5478,0
435,1	6609,0	1919,0	5928,0	5957,5	1652,5	8865,5	6941,5	4849,5	7490,0	8530,5	1584,0	1799,0	1768,0	1540,5	6636,5	5490,0
436,3	6690,0	1905,0	5942,0	5930,0	1654,0	9061,5	6930,0	4890,0	7475,5	8766,5	1595,0	1793,0	1787,5	1532,0	6643,5	5532,0
437,5	6912,0	1909,0	5905,0	5934,5	1656,0	9327,5	6871,5	4920,5	7482,5	8986,0	1599,0	1787,0	1792,5	1528,5	6702,0	5584,0
438,7	7107,0	1885,0	5955,0	5927,5	1610,5	9626,5	6962,5	4912,0	7486,0	9200,0	1597,5	1776,5	1797,0	1542,0	6671,5	5547,0
440,0	7195,0	1880,0	5954,0	5917,5	1644,5	9812,5	6968,0	4955,5	7501,5	9377,5	1585,5	1774,5	1777,0	1535,0	6652,5	5576,0
441,2	7359,0	1877,0	5880,0	5889,0	1605,0	9943,5	6990,0	4908,5	7474,0	9562,5	1591,5	1787,0	1780,0	1548,5	6689,5	5667,0
442,4	7545,0	1904,0	5955,0	5981,0	1609,0	10177,5	6966,0	4947,5	7465,0	9730,5	1589,5	1788,0	1772,0	1538,5	6685,5	5615,5
443,6	7701,0	1898,0	5938,0	5918,0	1622,0	10313,5	6987,5	4938,5	7445,0	9814,5	1605,0	1769,0	1752,5	1526,5	6681,0	5628,5
444,9	7749,0	1881,0	5912,0	5858,0	1587,0	10450,0	6943,0	4881,5	7388,0	10006,5	1566,5	1768,5	1726,5	1539,5	6650,0	5545,0
446,1	7792,0	1891,0	5887,0	5861,0	1606,5	10535,5	6957,0	4924,0	7437,0	10076,0	1568,5	1754,0	1760,0	1513,5	6564,5	5583,5
447,3	7847,0	1874,0	5888,0	5834,0	1581,0	10687,5	6859,5	4872,0	7407,5	10210,5	1584,5	1769,5	1748,0	1537,0	6534,5	5602,0
448,5	7841,0	1893,0	6009,0	5851,5	1593,0	10701,5	6824,0	4856,5	7288,5	10180,0	1573,0	1778,0	1763,0	1517,5	6553,5	5559,5
449,8	7781,0	1865,0	5948,0	5884,5	1623,0	10626,0	6791,5	4826,5	7228,0	10193,0	1583,0	1787,0	1745,0	1549,5	6470,0	5512,0
451,0	7668,0	1909,0	5911,0	5802,0	1572,0	10531,5	6733,0	4821,5	7159,0	10048,0	1581,0	1765,0	1752,0	1539,5	6449,0	5457,5
452,2	7601,0	1880,0	5868,0	5841,5	1589,0	10375,5	6650,5	4729,0	7136,0	9971,5	1599,0	1739,0	1724,0	1531,0	6324,0	5411,5
453,4	7365,0	1909,0	5884,0	5831,0	1612,0	10182,0	6557,0	4712,0	6988,0	9748,5	1591,5	1770,0	1736,0	1514,0	6265,0	5356,5
454,7	7218,0	1912,0	5910,0	5809,0	1585,5	9930,5	6444,5	4582,0	6885,0	9511,0	1600,0	1779,5	1766,0	1491,0	6152,0	5245,5
455,9	6951,0	1873,0	5878,0	5830,0	1578,5	9615,5	6354,0	4595,0	6844,0	9222,0	1574,0	1776,0	1749,5	1540,5	6083,0	5167,0
457,1	6757,0	1932,0	5812,0	5794,5	1595,5	9325,0	6243,5	4534,0	6715,0	9004,0	1593,5	1785,0	1726,5	1530,0	5985,0	5138,5
458,3	6471,0	1881,0	5807,0	5760,5	1600,0	9009,5	6180,0	4444,0	6592,0	8721,5	1598,5	1761,0	1747,0	1526,5	5881,5	5074,5
459,6	6285,0	1899,0	5805,0	5806,5	1588,5	8645,5	6051,5	4394,5	6569,0	8392,5	1591,5	1747,5	1749,0	1532,0	5823,5	4989,0
460,8	6020,0	1925,0	5842,0	5822,5	1593,5	8312,0	5906,0	4308,5	6361,5	8090,5	1585,5	1780,0	1761,0	1556,0	5704,5	4922,0

462,0	5682,0	1903,0	5815,0	5840,5	1594,5	7944,0	5838,5	4253,5	6309,0	7771,0	1583,5	1803,0	1758,0	1544,5	5610,5	4777,0
463,2	5538,0	1921,0	5872,0	5831,5	1600,0	7688,5	5687,0	4178,0	6263,5	7384,0	1610,5	1791,5	1739,0	1554,0	5472,0	4743,0
464,4	5288,0	1887,0	5807,0	5806,0	1587,0	7313,5	5653,5	4135,0	6099,5	7083,0	1607,5	1806,0	1778,0	1556	5384,0	4613,0
465,7	5060,0	1929,0	5779,0	5876,5	1593,5	6961,0	5527,0	4092,5	6002,0	6733,0	1591,0	1776,0	1760,0	1562,0	5348,0	4543,0
466,9	4850,0	1944,0	5817,0	5846,0	1625,0	6706,5	5458,0	4087,0	5968,0	6551,0	1597,0	1804,0	1777,5	1539,5	5206,5	4434,5
468,1	4663,0	1958,0	5793,0	5841,0	1595,0	6422,5	5342,0	4008,5	5893,0	6249,0	1618,5	1826,5	1770,5	1582,5	5171,5	4383,5
469,3	4490,0	1921,0	5754,0	5848,5	1620,0	6134,0	5277,5	3961,0	5787,5	5988,0	1631,0	1834,0	1782,5	1571,0	5071,5	4304,5
470,5	4304,0	1914,0	5795,0	5899,5	1606,0	5907,5	5224,0	3928,0	5658,5	5710,5	1622,0	1821,0	1823,0	1571,0	4978,5	4253,5
471,8	4123,0	1953,0	5720,0	5889,0	1600,0	5717,5	5126,5	3917,0	5620,5	5524,0	1627,0	1823,5	1820,5	1586,5	4947,0	4180,0
473,0	3973,0	1943,0	5714,0	5894,5	1635,5	5447,5	5079,0	3807,0	5565,0	5344,5	1620,0	1807,5	1828,0	1554,5	4872,0	4103,5
474,2	3839,0	1975,0	5800,0	5930,5	1633,5	5292,0	5017,0	3821,0	5478,0	5123,5	1618,0	1810,5	1796,0	1554,0	4846,5	4073,0
475,4	3757,0	1959,0	5750,0	5965,0	1666,0	5142,0	4944,0	3783,5	5447,0	4990,0	1642,5	1854,0	1843,5	1586,5	4792,0	3983,5
476,6	3657,0	1951,0	5773,0	5946,5	1639,0	4979,0	4908,5	3728,0	5384,5	4862,5	1591,5	1852,0	1836,5	1585,0	4743,5	3988,5
477,9	3508,0	2003,0	5867,0	5974,5	1648,0	4861,0	4871,5	3712,5	5357,0	4773,5	1629,0	1820,0	1843,0	1568,0	4683,0	3905,0
479, 1	3404,0	1994,0	5795,0	6061,0	1652,5	4714,0	4817,0	3698,0	5304,0	4624,0	1644,0	1817,5	1850,0	1590,5	4647,0	3880,0
480,3	3360,0	1929,0	5754,0	6032,0	1682,0	4644,5	4717,5	3634,0	5282,0	4486,0	1635,0	1857,0	1857,0	1590,5	4631,5	3875,5
481,5	3288,0	1971,0	5725,0	6103,5	1683,0	4550,5	4705,0	3666,0	5239,0	4458,0	1640,5	1807,5	1853,5	1601,0	4539,5	3855,5
482,7	3188,0	1979,0	5797,0	6170,0	1692,5	4464,0	4722,5	3614,0	5206,5	4372,5	1641,5	1868,5	1855,0	1593,0	4570,5	3756,5
484,0	3155,0	1925,0	5796,0	6162,5	1691,5	4377,0	4655,0	3601,0	5138,5	4228,5	1654,5	1833,0	1886,5	1587,0	4501,0	3762,5
485,2	3093,0	2026,0	5809,0	6155,0	1696,0	4314,5	4592,5	3611,5	5109,5	4158,5	1633,0	1836,0	1906,0	1608,0	4457,5	3709,5
486,4	2985,0	1990,0	5842,0	6226,0	1697,5	4221,0	4562,5	3564,5	5038,5	4106,5	1664,0	1870,5	1910,0	1591,0	4402,0	3660,5
487,6	2957,0	2009,0	5857,0	6289,5	1746,0	4144,5	4551,5	3552,5	5015,0	4025,0	1644,0	1884,0	1926,0	1597,5	4411,0	3654,5
488,8	2926,0	2021,0	5835,0	6372,0	1728,0	4071,5	4496,5	3570,0	5009,0	4014,0	1674,0	1886,5	1950,0	1608,5	4413,5	3658,5
490,0	2893,0	1973,0	5895,0	6463,0	1772,0	4058,5	4505,5	3523,5	4994,0	3962,0	1680,0	1873,0	1956,5	1598,0	4397,5	3639,0
491,3	2863,0	2035,0	5851,0	6529,5	1792,5	3986,5	4451,0	3532,0	4959,5	3884,0	1665,5	1907,0	1970,5	1602,5	4322,0	3588,0
492,5	2796,0	2042,0	5913,0	6648,0	1803,5	3971,5	4407,5	3514,0	4934,0	3883,5	1686,5	1876,0	2010,0	1623,0	4362,5	3605,0
493,7	2795,0	2045,0	5942,0	6741,0	1841,0	3919,0	4460,0	3491,0	4959,5	3863,0	1685,0	1914,0	2010,0	1631,0	4335,0	3552,0
494,9	2697,0	2040,0	6035,0	6841,0	1851,5	3891,5	4400,0	3511,5	4981,5	3808,5	1685,5	1877,0	2057,5	1594,5	4321,0	3602,0
496, 1	2779,0	2067,0	6012,0	6938,5	1908,0	3842,5	4390,0	3486,0	4881,0	3769,0	1656,0	1907,0	2084,5	1621,5	4263,0	3590,5
497,3	2723,0	2042,0	6031,0	7126,0	1910,5	3819,0	4328,5	3483,5	4855,5	3765,0	1672,0	1917,5	2114,0	1652,0	4290, 5	3549,5
498,6	2697,0	2035,0	6053,0	7225,0	1966,0	3823,0	4361,0	3423,5	4853,5	3784,0	1679,0	1901,5	2188,5	1629,0	4280,5	3544,5
499,8	2693,0	2027,0	6149,0	7488,5	2028,5	3768,5	4313,0	3459,0	4775,0	3745,0	1696,5	1927,5	2200,5	1656,0	4238,0	3517,0
501,0	2689,0	2057,0	6206,0	7761,5	2075,5	3772,5	4303,5	3474,0	4829,5	3749,5	1682,5	1917,0	2269,0	1679,5	4262,0	3511,0
502,2	2696,0	2036,0	6304,0	8053,0	2118,0	3762,5	4282,5	3443,0	4799,5	3719,5	1703,5	1905,0	2322,5	1642,5	4264,5	3537,5
503,4	2693,0	2086,0	6370,0	8381,5	2225,0	3739,0	4328,0	3405,0	4777,0	3719,0	1706,0	1920,5	2360,5	1667,0	4259,5	3486,5
504,6	2649,0	2069,0	6473,0	8780,0	2323,5	3704,0	4303,0	3454,5	4767,0	3703,5	1732,0	1954,5	2465,5	1662,0	4250,0	3508,5
505,9	2627,0	2094,0	6640,0	9274,5	2476,0	3713,5	4233,0	3400,0	4753,5	3705,0	1709,0	1943,0	2568,0	1640,0	4261,5	3530,5
507,1	2687,0	2057,0	6752,0	9800,5	2642,5	3761,5	4263,5	3438,5	4769,0	3724,5	1719,5	1944,5	2664,0	1657,0	4233,0	3531,5
508,3	2691,0	2075,0	6953,0	10297,5	2787,0	3734,0	4261,5	3410,0	4785,0	3708,0	1735,0	1941,0	2763,5	1668,5	4243,5	3548,0
509,5	2731,0	2051,0	7111,0	11048,5	2928,0	3763,0	4263,0	3417,0	4768,0	3766,0	1699,5	1946,0	2819,5	1636,5	4300,0	3574,0
510,7	2693,0	2057,0	7177,0	11550,0	3122,0	3747,5	4268,0	3469,0	4773,5	3756,0	1730,0	1959,0	2941,5	1672,0	4277,0	3550,0
511,9	2718,0	2040,0	7357,0	11984,5	3295,5	3718,0	4254,0	3446,5	4778,0	3778,5	1732,0	1972,0	2961,0	1691,5	4280,5	3534,5
513,1	2709,0	2100,0	7434,0	12346,0	3425,5	3771,0	4277,0	-3396,0	4789,5	3751,0	1725,5	1980,5	3036,5	1654,5	4283,0	3569,0
514,3	2696,0	2093,0	7497,0	12587,0	3478,0	3734,0	4236,0	3404,5	4788,0	3798,0	1742,5	1960,5	3052,0	1679,0	4319,5	3521,5
515,6	2704,0	2059,0	7504,0	12520,5	3460,5	3743,5	4241,5	3406,5	4774,0	3802,0	1734,5	1982,5	3051,0	1660,5	4334,5	3570,0
516,8	2731,0	2109,0	7461,0	12403,5	3411,0	3747,5	4274,0	3463,0	4774,5	3786,0	1732,0	1964,0	3020,0	1682,0	4311,0	3591,5
518,0	2730,0	2076,0	7491,0	12306,0	3401,0	3746,0	4314,5	3438,5	4776,5	3777,0	1733,5	1976,5	3004,0	1683,0	4311,5	3579,0
519,2	2735,0	2078,0	7370,0	12023,0	3339,5	3706,5	4316,0	3459,0	4809,5	3789,0	1735,5	1982,5	2926,5	1673,5	4339,0	3575,0
520,4	2735,0	2060,0	7353,0	11652,5	3230,5	3752,0	4258,0	3451,0	4760,5	3807, 5	1735,0	1998,0	2901,0	1676,0	4292,5	3563,5
521,6	2771,0	2101,0	7244,0	11317,0	3125,0	3741,5	4321,0	3436,0	4806,5	3767,5	1733,0	1983,5	2843,0	1714,5	4283,5	3564,0
522,8	2758,0	2111,0	7119,0	10920,0	2974,0	3706,0	4296,0	3468,5	4765,5	3787,0	1756,0	1981,5	2788,0	1699,0	4324,0	3567,0
524,0	2757,0	2087,0	7040,0	10491,0	2910,0	3708,0	4358,0	3472,0	4813,5	3764,0	1747,5	1974,0	2687,0	1715,0	4308, 0	3552,5
525,3	2739,0	2095,0	6924,0	10113,0	2799,5	3720,0	4337,5	3484,5	4829,0	3776,5	1749,5	2003,0	2685,0	1732,0	4306,5	3593,5
526,5	2760,0	2087,0	6843,0	9736,0	2694,5	3690,0	4322,5	3508,0	4848,0	3733,0	1751,0	1970,0	2609,0	1690,5	4330,5	3562,0
527,7	2757,0	2065,0	6715,0	9460,0	2602,0	3720,0	4343,0	3472,0	4833,0	3741,5	1733,0	2042,5	2530,0	1698,5	4275,5	3547,0
528,9	2747,0	2117,0	6624,0	9117,5	2505,0	3721,5	4319,0	3510,0	4816,5	3727,0	1761,5	2037,0	2527,5	1714,0	4318,0	3541,5
530,1	2781,0	2071,0	6594,0	8806,5	2413,5	3727,0	4326,5	3487,0	4797,0	3727,5	1743,0	2016,0	2419,0	1711,5	4275,5	3558,5
531,3	2786,0	2089,0	6456,0	8560,5	2328,0	3721,5	4317,0	3521,0	4803,5	3677,5	1763,5	1991,0	2416,5	1750,0	4344,5	3551,0
532,5	2799,0	2134,0	6423,0	8297,0	2296,5	3724,0	4317,0	3489,0	4814,5	3697,0	1740,5	1988,5	2398,0	1720,5	4309,0	3529,5
533,7	2808,0	2015,0	6330,0	8083,5	2220,5	3677,5	4351,0	3549,5	4853,0	3633,0	1742,0	1989,0	2335,5	1704,0	4258,0	3536,5
534,9	2823,0	2115,0	6195,0	7844,5	2159,5	3709,5	4342,0	3507,0	4864,0	3666,5	1761,0	2016,5	2329,0	1727,5	4267,0	3577,5
536,1	2856,0	2097,0	6251,0	7745,0	2160,0	3733,0	4384,0	3550,0	4837,0	3685,5	1788,5	2009,5	2304,5	1707,5	4300,5	3535,0
537,4	2867,0	2137,0	6145,0	7573,5	2042,0	3706,5	4355,0	3516,0	4792,5	3683,5	1771,0	2029,0	2247,0	1744,5	4310,0	3538,0
538,6	2887,0	2099,0	6197,0	7417,5	2055,0	3720,5	4348,0	3529,0	4879,0	3689,5	1751,0	2027,0	2233,0	1727,0	4303,0	3551,5
539,8	2875,0	2113,0	6171,0	7306,0	2023,0	3721,0	4379,5	3563,5	4918,0	3674,5	1771,5	2014,5	2202,0	1714,0	4317,0	3555,5
541,0	2912,0	2103,0	6115,0	7155,0	1999,0	3718,0	4421,5	3574,0	4865,5	3640,5	1789,0	2030,5	2162,5	1723,0	4294,5	3569,0
542,2	2923,0	2061,0	6042,0	7100,5	1974,0	3752,5	4411,0	3588,0	4896,0	3670,0	1741,5	2063,5	2185,5	1768,0	4339,0	3613,5
543,4	2964,0	2045,0	6078,0	7000,5	1939,0	3773,5	4457,5	3558,5	4914,0	3677,0	1761,0	2027,5	2172,0	1760,0	4338,5	3612,0
544,6	3015,0	2081,0	5991,0	6893,5	1911,5	3738,0	4419,0	3627,5	4914,5	3657,5	1753,0	2008,0	2122,5	1722,0	4342,5	3598,0
545,8	3043,0	2099,0	6008,0	6820,5	1892,5	3773,5	4423,5	3632,0	4925,5	3689,0	1794,5	1997,0	2135,5	1765,0	4366,5	3617,0
547,0	3139,0	2124,0	5977,0	6770,5	1887,0	3804,5	4476,0	3618,0	4923,5	3692,0	1777,0	2007,0	2106,0	1723,0	4359,5	3617,0
548,2	3140,0	2050,0	5984,0	6705,0	1891,0	3819,5	4433,0	3641,0	4957,5	3707,5	1760,0	2005,5	2090,5	1716,0	4385,5	3625,0
549,4	3220,0	2076,0	5970,0	6611,5	1848,0	3829,0	4486,0	3633,5	4937,0	3730,5	1745,0	2005,0	2024,5	1715,0	4389,0	3587,5
550,6	3232,0	2058,0	5908,0	6548,0	1822,0	3894,0	4534,5	3618,0	4981,0	3741,5	1752,5	2032,0	2094,5	1710,0	4410,0	3630,5
551,9	3259,0	2080,0	5944,0	6478,5	1809,0	3871,0	4486,5	3687,0	4974,0	3782,0	1777,0	2006,5	2049,0	1682,0	4433,5	3604,0
553,1	3318,0	2079,0	5953,0	6448,5	1830,0	3952,0	4474,0	3683,5	4933,0	3795,0	1750,0	2020,5	2016,0	1697,5	4425,0	3638,0
554,3	3374,0	2128,0	5905,0	6413,0	1805,0	3954,5	4573,0	3757,0	4985,0	3764,0	1727,5	2013,0	2044,5	1701,0	4407,0	3628,5
555,5	3473,0	2067,0	5932,0	6372,5	1783,0	3979,5	4554,0	3707,0	4980,5	3828,5	1763,5	2004,5	2026,0	1719,5	4489,0	3616,0
556,7	3549,0	2111,0	5914,0	6361,5	1795,5	4000, 5	4552,5	3740,0	5015,0	3858,0	1750,5	1990,0	2016,5	1679,5	4448,0	3666,5
557,9	3590,0	2042,0	5870,0	6307,5	1766,0	4072,5	4561,5	3757,0	5038,5	3893,0	1747,0	2001,0	1987,5	1691,0	4512,0	3673,5
559,1	3721,0	2065,0	5904,0	6270,0	1780,5	4136,5	4566,0	3797,0	5040,0	3862,5	1754,0	1964,0	1998,0	1697,5	4481,5	3703,0
560,3	3793,0	2013,0	5815,0	6231,0	1758,0	4157,0	4621,0	3828,0	5071,5	3926,0	1718,0	1988,0	1974,0	1720,0	4497,0	3722,0
561,5	3918,0	2021,0	5867,0	6197,0	1764,5	4174,0	4604,5	3779,5	5091,5	3963,0	1706,0	1975,0	1990,5	1702,0	4549,0	3655,5
562,7	4021,0	2052,0	5788,0	6134,5	1788,5	4248,5	4607,5	3840,0	5102,5	4013,0	1720,0	1967,0	1972,5	1683,5	4535,0	3723,0
563,9	4082,0	2072,0	5860,0	6156,0	1754,5	4297,0	4633,0	3810,5	5085,0	4027,5	1728,5	1946,0	1958,0	1691,5	4600,5	3746,5
565,1	4213,0	2016,0	5867,0	6234,5	1798,0	4378,0	4633,5	3842,5	5087,0	4082,0	1733,5	1971,0	1971,0	1685,5	4521,5	3729,0
566,3	4326,0	2045,0	5908,0	6177,5	1769,0	4429,5	4629,0	3872,5	5072,5	4162,5	1709,0	1960,5	1962,5	1679,5	4591,0	3764,0
567,5	4450,0	2054,0	5883,0	6091,5	1775,0	4469,0	4696,0	3920,5	5156,0	4137,5	1699,0	1977,0	1957,0	1662,5	4622,0	3760,0
568,7	4604,0	2041,0	5894,0	6202,5	1762,0	4591,0	4675,0	3926,5	5123,5	4245,0	1691,5	1936,0	1934,0	1655,0	4571,5	3755,5
569,9	4663,0	2030,0	5896,0	6144,5	1738,5	4620,0	4659,0	3928,0	5184,5	4295,0	1693,0	1941,0	1945,5	1661,5	4586,0	3787,0
571,1	4787,0	2003,0	5916,0	6206,5	1777,5	4744,5	4704,5	3941,0	5240,5	4368,5	1698,5	1936,0	1920,0	1635,5	4645,0	3754,0
572,3	5039,0	1997,0	5863,0	6109,0	1768,5	4796,0	4735,5	3922,5	5152,5	4396,5	1656,5	1921,0	1928,0	1664,0	4642,0	3745,5
573,5	5196,0	1999,0	5855,0	6171,0	1786,0	4856,0	4764,5	3987,0	5216,0	4490,5	1666,5	1924,5	1923,0	1642,0	4638,5	3779,0
574,7	5343,0	2016,0	5869,0	6187,0	1803,5	4942,0	4727,5	4004,0	5187,0	4537,0	1644,5	1905,5	1948,5	1640,5	4650,0	3822,0
575,9	5486,0	1965,0	5925,0	6137,5	1780,5	5039,0	4759,0	4026,5	5203,0	4573,5	1684,5	1895,0	1910,0	1652,0	4713,0	3823,0
577,2	5735,0	2010,0	5964,0	6145,5	1809,0	5155,5	4767,0	4028,0	5202,5	4657,0	1664,5	1920,5	1914,5	1637,0	4707,0	3837,0
578,4	5848,0	1995,0	5865,0	6206,5	1799,5	5236,0	4803,5	4048,0	5243,0	4727,0	1647,5	1894,0	1922,0	1611,5	4671,0	3875,5
579,6	6108,0	2016,0	5898,0	6159,0	1806,5	5317,5	4808,5	4069,0	5234,0	4827,5	1643,0	1916,5	1930,0	1611,5	4701,5	3847,0
580,8	6349,0	2014,0	5915,0	6082,0	1805,0	5495,0	4836,5	4083,0	5159,0	4966,5	1691,0	1899,0	1906,0	1618,5	4733,0	3894,0
582,0	6535,0	1999,0	5904,0	6123,0	1825,0	5575,0	4790,5	4108,5	5248,5	5021,5	1659,0	1901,0	1913,0	1617,0	4747,5	3888,0

583,2	6753,0	1992,0	5952,0	6175,0	1855,0	5704,0	4827,0	4155,0	5234,0	5109,5	1658,5	1888,0	1945,0	1604,	4788,	3918,0
584,4	6965,0	1991,0	5981,0	6156,5	1843,5	5846,5	4875,0	4129,0	5283,5	5238,0	1661,0	1901,5	1920,0	1607,0	4782,0	3915,5
585,6	7214,0	2006,0	5946,0	6152,5	1840,0	5998,5	4864,5	4181,5	5285,0	5351,0	1667,0	1896,0	1916,0	1612,5	4814,5	3899,0
586,8	7484,0	1971,0	5980,0	6207,5	1900,0	6104,0	4920,0	4171,5	5280,0	5472,5	1632,5	1882,0	1927,5	1588,0	4839,0	3987,0
588,0	7743,0	1965,0	5978,0	6151,0	1880,5	6280,5	4938,0	4194,0	5334,0	5531,0	1667,0	1877,0	1920,0	1603,0	4875,0	3948,0
589,2	8018,0	1957,0	5985,0	6228,0	1921,5	6393,5	4904,0	4252,0	5283,5	5722,0	1664,5	1861,5	1940,5	1613,5	4866,5	3977,5
590,4	8447,0	1973,0	5995,0	6248,0	1923,5	6594,5	5000,0	4257,5	5384,0	5793,0	1638,5	1890,5	1931,5	1612,5	4904,5	3983,0
591,6	8661,0	1951,0	6074,0	6327,0	1935,0	6755,0	4984,0	4299,0	5369,5	5925,0	1664,0	1882,0	1898,5	1591,0	4930,5	4032,0
592,8	8984,0	1971,0	6060,0	6322,0	1958,5	6920,0	5000,0	4333,0	5390,5	6131,5	1625,0	1896,0	1948,0	1597,0	4911,0	4038,5
594,0	9366,0	1981,0	6093,0	6360,5	1998,0	7159,5	5068,0	4341,0	5458,5	6260,5	1642,0	1874,5	1931,0	1589,0	4969,0	4090,0
595,2	9730,0	1995,0	6071,0	6375,5	2051,0	7318,0	5073,0	4444,5	5451,5	6425,0	1656,5	1880,0	1938,5	1589,5	5021,0	4069,0
596,4	10095,0	2033,0	6090,0	6433,0	2080,0	7528,0	5145,5	4446,5	5554,0	6614,0	1639,0	1898,0	1944,0	1587,0	5053,0	4144,0
597,6	10521,0	1985,0	6107,0	6526,0	2093,5	7790,5	5180,0	4421,0	5560,0	6774,0	1658,0	1890,5	1948,0	1570,0	5066,5	4186,0
598,8	10925,0	1979,0	6185,0	6517,5	2140,5	8019,5	5215,5	4534,5	5576,5	6929,5	1638,5	1881,0	1971,0	1572,0	5159,5	4199,5
600,0	11417,0	1983,0	6211,0	6575,0	2180,0	8231,5	5256,5	4530,0	5626,5	7099,0	1633,5	1895,0	1990,5	1614,5	5188,5	4253,0
601,2	11805,0	2001,0	6251,0	6754,5	2212,5	8508,0	5280,0	4589,5	5643,5	7289,0	1658,5	1891,5	1997,0	1589,5	5238,0	4269,5
602,4	12246,0	1975,0	6217,0	6771,0	2292,0	8701,5	5309,0	4649,0	5682,0	7479,0	1635,0	1899,0	1979,0	1591,5	5226,0	4336,5
603,6	12549,0	2029,0	6353,0	6770,5	2295,0	8896,5	5395,0	4696,5	5733,5	7662,0	1612,5	1894,0	1971,0	1589,5	5325,5	4365,0
604,8	12975,0	1972,0	6382,0	6909,0	2395,0	9079,0	5401,0	4691,0	5727,5	7806,0	1656,0	1900,0	2057,0	1574,0	5319,5	4406,5
606,0	13399,0	1965,0	6449,0	6950,5	2460,0	9242,0	5456,5	4768,0	5755,5	7922,5	1672,5	1880,5	2061,5	1616,0	5375,5	4420,0
607,2	13725,0	2023,0	6469,0	7100,5	2532,5	9460,0	5452,5	4796,0	5792,0	8089,0	1655,5	1878,0	2051,5	1598,0	5392,0	4450,5
608,3	13969,0	1974,0	6530,0	7162,5	2583,0	9593,5	5452,0	4748,0	5745,5	8198,0	1643,5	1884,5	2072,5	1604,5	5400,5	4467, 5
609,5	14331,0	2021,0	6541,0	7308,0	2691,5	9733,5	5482,0	4783,0	5738,0	8274,0	1641,5	1866,5	2141,0	1579,0	5359,0	4451,5
610,7	14541,0	2002,0	6631,0	7502,0	2802,5	9802,0	5442,0	4803,0	5758,0	8310,0	1653,0	1922,5	2129,0	1595,0	5387,0	4465,0
611,9	14675,0	1985,0	6656,0	7621,0	2909,0	9824,0	5408,5	4812,0	5786,0	8306,0	1658,0	1896,0	2157,0	1622,0	5358,0	4449,0
613,1	14667,0	2006,0	6787,0	7782,5	3036,0	9850,0	5447,0	4783,0	5737,5	8236,5	1655,5	1883,5	2218,5	1604,0	5345,0	4453,0
614,3	14530,0	1993,0	6765,0	7987,0	3183,0	9786,0	5453,5	4780,0	5704,0	8200,5	1643,0	1898,5	2235,0	1620,0	5355,0	4446,0
615,5	14493,0	1995,0	6922,0	8187,0	3360,5	9584,5	5391,5	4731,5	5683,0	8095,5	1650,0	1920,0	2288,0	1576,5	5350,5	4387,0
616,7	14291,0	2029,0	6983,0	8400,0	3539,5	9521,5	5364,0	4757,5	5683,0	7981,5	1665,0	1889,0	2349,0	1599,0	5318,5	4354,0
617,9	13995,0	2025,0	7096,0	8699,0	3772,0	9282,5	5225,0	4706,5	5635,0	7775,0	1643,0	1896,5	2361,0	1595,5	5232,5	4311,5
619,1	13629,0	2025,0	7161,0	8941,5	4026,5	9147,5	5202,0	4656,0	5584,5	7580,0	1645,0	1908,5	2417,5	1583,5	5189,5	4266,0
620,3	13283,0	1974,0	7301,0	9442,5	4282,0	8928,0	5123,5	4641,5	5440,0	7412,5	1667,0	1914,0	2534,5	1598,0	5130,5	4223,0
621,5	12872,0	2005,0	7425,0	9736,5	4589,5	8629,0	5125,0	4617,0	5495,0	7238,5	1634,0	1900,0	2608,5	1620,5	5088,0	4202,0
622,7	12399,0	2009,0	7597,0	10226,0	4954,0	8364,5	5052,0	4578,0	5378,0	6996,0	1673,5	1918,0	2698,5	1621,0	5011,0	4138,5
623,9	12023,0	2000,0	7819,0	10769,0	5384,5	8153,5	4983,0	4490,0	5371,0	6812,5	1678,5	1876,0	2775,5	1623,5	5039,0	4117,5
625,1	11427,0	2001,0	7942,0	11301,5	5825,5	7893,5	4871,0	4442,5	5289,5	6575,5	1651,5	1938,0	2874,5	1599,0	4991,0	4059,5
626,3	11080,0	1999,0	8184,0	12052,5	6436,5	7635,5	4832,5	4386,0	5202,0	6360,0	1687,0	1928,5	2996,5	1623,0	4949,5	4050,5
627,5	10612,0	2037,0	8474,0	12716,5	7009,0	7385,0	4785,5	4309,5	5144,5	6169,5	1665,0	1934,0	3079,5	1632,0	4841,5	4027,0
628,7	10079,0	1983,0	8676,0	13563,5	7739,5	7096,5	4717,0	4283,0	5129,5	5957,5	1675,5	1922,0	3271,0	1637,5	4862,0	3946,5
629,9	9685,0	2023,0	8997,0	14373,0	8529,5	6853,0	4645,0	4246,5	5007,5	5786,5	1688,0	1946,5	3410,5	1618,0	4736,5	3937,5
631,1	9167,0	2015,0	9322,0	15293,5	9353,0	6593,5	4579,0	4191,5	5007,0	5683,0	1683,0	1950,0	3512,5	1628,5	4718,5	3942,5
632,3	8818,0	1965,0	9531,0	16228,5	10208,0	6496,0	4529,0	4097,5	4969,0	5524,5	1685,5	1952,5	3679,5	1638,5	4778,0	3883,5
633,4	8389,0	2021,0	9674,0	17024,0	11077,0	6297,5	4521,5	4104,0	-4920,5	5351,5	1700,5	1952,0	3792,0	1618,5	4728,0	3895,0
634,6	8131,0	2020,0	10058,0	17854,5	11916,0	6120,0	4462,5	4064,5	4891,0	5197,0	1648,0	1916,0	3909,0	1598,0	4697,0	3890,5
635,8	7737,0	1991,0	10242,0	18352,5	12610,0	5959,5	4428,0	4019,0	4820,5	5119,5	1701,0	1939,5	3945,5	1649,5	4655,5	3854,0
637,0	7447,0	2010,0	10285,0	18678,5	13141,5	5780,5	4409,5	3994,5	4800,0	4956,5	1690,5	1937,0	4031,5	1636,5	4602,0	3804,5
638,2	7067,0	1981,0	10267,0	18788,5	13314,0	5594,0	4364.5	3925,5	4765,5	4888,5	1672,0	1928,0	3998,0	1642,0	4619,0	3820,0
639,4	6859,0	1981,0	10199,0	18641,5	13433,0	5523,0	4307,0	3948.5	4821,5	4754,0	1681,5	1933,0	3972,0	1610,5	4560,5	3771,5
640,6	6585,0	2002,0	10065,0	18272,5	13157,5	5342,0	4276,0	3882,5	4738,0	4670,5	1687,0	1923,5	3907,0	1625,5	4548,0	3743,0
641,8	6227,0	1973,0	9943,0	17629,5	12683,0	5228,0	4237,5	3903,0	4694,0	4556,0	1656,0	1931,0	3823,5	1597,0	4522,5	3667,0
643,0	6089,0	1998,0	9606,0	17046,5	12006,0	5132,5	4191,5	3851,5	4647,5	4422,5	1656,0	1946,0	3691,5	1598,0	4448,5	3656,0
644,2	5866,0	1985,0	9313,0	16221,5	11255,0	4991,5	4214,0	3823,5	4653,0	4332,5	1672,5	1965,0	3557,5	1611,0	4426,0	3639,5
645,4	5690,0	2037,0	9186,0	15320,0	10479,0	4911,5	4166,5	3836,0	4624,0	4213,0	1681,5	1940,5	3453,0	1606,0	4366,0	3598,0
646,6	5456,0	1988,0	8908,0	14597,5	9711,5	4802,0	4139,0	3777,0	4629,0	4092,5	1640,0	1880,0	3380,0	1575,0	4314,5	3566,0
647,7	5285,0	1967,0	8659,0	13805,0	8991,0	4714,5	4165,5	3788,0	4576,0	4056,0	1643,0	1903,5	3228,0	1599,5	4310,0	3505,5
648,9	5071,0	1979,0	8489,0	13071,0	8309,0	4687,5	4156,0	3770,5	4555,0	3971,5	1623,5	1899,0	3104,0	1568,0	4281,5	3529,5
650,1	5046,0	1949,0	8214,0	12529,0	7696,5	4552,5	4178,5	3738,0	4554,5	3860,5	1620,0	1882,0	3007,0	1594,5	4259,5	3529,0
651,3	4907,0	2017,0	8046,0	11895,5	7048,0	4540,5	4112,5	3681,5	4541,0	3782,0	1655,0	1898,0	2917,0	1582,0	4215,5	3484,5
652,5	4739,0	1994,0	7712,0	11329,5	6557,5	4452,5	4117,0	3710,0	4584,0	3709,0	1620,0	1878,5	2819,0	1562,0	4180,5	3419,0
653,7	4712,0	1937,0	7627,0	10857,5	6074,0	4414,5	4079,5	3703,5	4575,0	3656,0	1636,5	1835,0	2724,0	1565,0	4118,5	3396,0
654,9	4598,0	1967,0	7507,0	10398,0	5688,0	4331,5	4114,0	3714,5	4553,0	3623,5	1631,5	1852,5	2617,5	1572,0	4152,0	3394,0
656,1	4509,0	1992,0	7306,0	10014,5	5291,5	4310,5	4105,0	3662,5	4578,0	3566,5	1618,5	1845,5	2589,0	1547,5	4144,0	3431,0
657,3	4402,0	1943,0	7202,0	9602,5	4991,0	4269,0	4094,5	3689,5	4596,0	3535,0	1614,5	1884,0	2517,0	1578,0	4108,5	3392,0
658,5	4311,0	1961,0	7150,0	9284,5	4678,5	4260,5	4105,5	3662,0	4538,0	3538,5	1576,5	1863,5	2447,5	1551,0	4080,5	3391,0
659,6	4239,0	1962,0	6964,0	9013,5	4440,5	4184,5	4112,0	3667,0	4577,5	3485,0	1607,5	1857,0	2397,0	1543,0	4136,5	3366,5
660,8	4219,0	1935,0	6817,0	8763,0	4198,5	4161,0	4061,0	3669,0	4564,0	3403,0	1602,5	1854,5	2364,5	1540,0	4062,0	3346,0
662,0	4049,0	1995,0	6816,0	8490,0	4007,0	4130,0	4075,5	3629,0	4527,0	3375,0	1619,0	1826,0	2323,5	1531,0	4065,5	3379,0
663,2	3995,0	1968,0	6728,0	8317,5	3832,0	4093,0	4125,5	3691,5	4524,5	3376,0	1577,5	1801,0	2283,0	1535,0	4066,5	3355,5
664,4	4008,0	1976,0	6697,0	8090,5	3669,0	4053,0	4057,0	3693,0	4541,5	3321,0	1596,0	1818,0	2238,5	1520,5	4043,0	3324,0
665,6	3861,0	1947,0	6545,0	7905,5	3501,0	4034,0	4046,5	3599,0	4559,5	3332,5	1602,0	1824,0	2223,0	1555,5	4065,5	3319,5
666,8	3787,0	1996,0	6491,0	7816,5	3351,0	3999,0	4074,5	3673,0	4600,5	3275,0	1580,0	1859,5	2185,5	1539,5	4039,5	3298,0
668,0	3815,0	1933,0	6497,0	7626,0	3253,5	3949,5	4127,0	3652,5	4586,0	3310,5	1572,5	1780,5	2169,5	1535,0	4029,0	3386,0
669,1	3755,0	1979,0	6413,0	7476,5	3119,0	3957,0	4076,5	3691,5	4570,0	3304,0	1601,0	1845,0	2133,5	1528,0	3993,0	3294,5
670,3	3702,0	1990, 0	6413,0	7323,0	3018,0	3923,5	4094,5	3609,5	4574,0	3267,5	1590,5	1835,0	2102,0	1551,0	3977,0	3332,0
671,5	3725,0	1971,0	6307,0	7213,5	2934,5	3953,0	4062,5	3647,5	4579,5	3226,0	1572,5	1817,0	2070,0	1555,0	4017,5	3312,0
672,7	3602,0	1937,0	6338,0	7153,5	2841,5	3906,0	4097,0	3607,0	4655,0	3266,0	1581,5	1815,0	2034,5	1505,5	3995,5	3325,0
673,9	3649,0	1977,0	6263,0	6979,5	2725,5	3917,0	4117,5	3592,0	4588,0	3214,0	1574,0	1801,0	2036,0	1552,0	3990,5	3279,5
675,1	3545,0	1984,0	6290,0	6903,5	2632,5	3888,0	4072,0	3662,0	4577,0	3195,0	1567,5	1800,0	2004,0	1551,0	4015,5	3321,0
676,3	3473,0	1961,0	6238,0	6864,0	2590,0	3914,0	4064,5	3674,0	4613,5	3218,0	1615,0	1805,0	2026,0	1536,5	4015,0	3318,5
677,4	3524,0	1907,0	6197,0	6799,0	2550,5	3882,5	4107,5	3663,5	4651,0	3210,5	1563,0	1803,0	1976,0	1532,0	3984,5	3336,5
678,6	3503,0	1988,0	6123,0	6728,0	2445,5	3868,0	4098,0	3635,5	4648,5	3199,0	1596,5	1811,0	1979,0	1539,0	4009,0	3324,0
679,8	3489,0	1965,0	6195,0	6633,0	2404,5	3835,5	4109,0	3629,5	4638,5	3180,5	1556,0	1814,0	1961,5	1516,5	4062,0	3338,5
681,0	3433,0	1999,0	6186,0	6614,0	2408,5	3825,0	4133,5	3614,0	4629,0	3209,5	1583,0	1812,5	1960,0	1485,0	4006,0	3309,5
682,2	3349,0	1967,0	6127,0	6592,0	2296,5	3825,0	4113,0	3600,0	4654,0	3182,0	1582,0	1785,5	1938,5	1554,0	4017,0	3341,5
683,4	3358,0	2007,0	6155,0	6456,0	2312,0	3858,0	4097,0	3590,0	4606,0	3218,5	1583,5	1785,0	1945,5	1528,0	4050,0	3344,5
684,6	3358,0	2019,0	6167,0	6410,0	2237,5	3832,5	4142,5	3630,5	4652,5	3200,5	1593,5	1811,0	1922,5	1548,0	4013,0	3314,5
685,7	3299,0	1996,0	6024,0	6407,0	2210,0	3806,5	4148,5	3648,5	4639,5	3177,0	1580,0	1819,0	1909,0	1546,5	3998,5	3291,5
686,9	3276,0	1952,0	6110,0	6370,0	2169,0	3828,5	4098,5	3622,5	4667,0	3165,5	1591,5	1800,0	1908,0	1538,5	4024,5	3321,5
688,1	3219,0	2002,0	6070,0	6292,0	2155,0	3819,0	4119,0	3644,5	4655,0	3205,0	1578,0	1790,0	1940,0	1516,0	4002,0	3311,0
689,3	3217,0	2021,0	6078,0	6406,0	2112,0	3809,0	4127,0	3656,5	4657,0	3200,5	1583,0	1803,0	1924,5	1557,0	4019,0	3367,0
690,5	3231,0	1973,0	6111,0	6257,5	2089,0	3852,0	4104,0	3645,0	4703,0	3229,5	1565,0	1829,5	1894,5	1530,0	4031,5	3316,5
691,7	3177,0	1999,0	5990,0	6274,5	2049,0	3815,0	4115,5	3665,5	4643,5	3202,5	1584,0	1803,0	1898,0	1546,0	4015,5	3304,5
692,8	3105,0	2028,0	6074,0	6252,0	2037,5	3832,0	4155,5	3637,0	4660,0	3173,0	1599,5	1818,0	1910,5	1539,0	3996,5	3314,5
694,0	3137,0	2002,0	5977,0	6226,0	1986,0	3829,5	4131,5	3608,5	4717,5	3216,0	1589,0	1820,5	1923,0	1546,5	4018,0	3329,5
695,2	3111,0	2030,0	6014,0	6183,0	2006,5	3781,0	4155,0	3665,0	4656,5	3212,0	1595,0	1824,0	1889,0	1539,0	4043,5	3319,5
696,4	3090,0	1993,0	5986,0	6172,5	1942,0	3823,5	4128,0	3646,0	4671,0	3217,0	1628,0	1815,0	1886,0	1587,0	4022,5	3302,0
697,6	3049,0	1995,0	6068,0	6175,5	1934,5	3780,0	4105,0	3610,0	4688,0	3199,5	1611,0	1856,5	1889,0	1564,0	4000,0	3329,5
698,8	2975,0	1985,0	6028,0	6150,5	1908,5	3795,0	4141,0	3620,5	4691,0	3219,5	1586,0	1812,5	1877,0	1536,5	4028,5	3303,5
699,9	2954,0	1990,0	6084,0	6124,5	1916,0	3804,0	4147,5	3622,5	4660,0	3207,5	1588,0	1861,0	1874,0	1568,0	3943,0	3303,0
701,	2937,0	2015,0	5926,0	6114,5	1881,5	3759,0	4133,0	3627,5	4724,0	3199,0	1583,0	1841,5	1889,0	1548,0	3968,0	3327,5

702,3	2934,0	2027,0	6044,0	6077,0	1881,0	3778,0	4117,5	3656,0	4661,5	3193,0	1597,0	1835,5	1873,5	1571,0	3966,0	3280,0
703,5	887,0	2047,0	80,0	6031,5	1879,0	3732,0	4134,0	3612,0	4664,5	3133,0	1628,0	1848,5	1855,0	1575,0	3979,0	3298,0
704,7	859,0	2049,0	5970,0	5990,0	1841,5	3712,0	4111,5	3562,0	4590,0	3125,0	1621,0	1842,5	1890,5	97,0	03,	0
705,8	2801,0	2034,0	5947,0	6048,0	1843,0	3749,5	4090,5	3617,5	4721,0	3130,5	1610,5	1846,5	1878,0	1582,0	3978,5	3293
707,0	2735,0	2048,0	6001,0	5975,0	1814,0	3710,5	4094,0	3595,0	4652,0	3167,5	1615,5	1846,5	1876,0	1573,0	3993,0	3288,5
708,2	2766,0	2055,0	6041,0	5943,0	1802,5	3685,5	4047,0	3584,5	4624,0	3128,5	1601,0	1820,5	1877,5	1580,0	3956,5	3298,0
709,4	2708,0	2052,0	5965,0	5915,0	1806,0	3688,5	4061,5	3564,0	4625,0	3077,0	1602,5	1842,0	1874,0	1567,0	3957,0	3273,0
710,6	2641,0	2066,0	5981,0	5937,5	1799,5	3694,5	4100,5	3586,0	4601,0	3083,5	1629,5	1826,5	1860,5	1583,0	3928,5	3287,0
711,8	2649,0	2053,0	6018,0	5930,0	1764,5	3583,5	4034,5	3563,5	4628,0	3047,0	1624,0	1859,5	1861,0	1593,0	3917,0	3309,0
712,9	2612,0	2044,0	5976,0	5873,0	1741,0	3570,0	4062,0	3538,0	4553,0	3072,5	1610,5	1846,0	1855,0	1572,0	3940,0	3291,5
714,1	2523,0	2067,0	5900,0	5900,0	1735,0	3572,0	4049,0	3561,0	4591,0	3053,5	1595,0	1825,0	1841,5	1567,0	3902,5	3246,0
715,3	2525,0	2057,0	5910,0	5766,5	1729,5	3545,5	4028,0	3551,0	4555,5	2998,5	1595,0	1853,5	1871,5	1569,0	3879,5	3255,0
716,5	2474,0	2038,0	5979,0	5821,5	1722,0	3530,5	4054,0	3524,0	4580,5	2981,0	1597,0	1829,0	1856,5	1576,5	3862,5	3253,0
717,6	2459,0	2045,0	5921,0	5856,0	1709,5	3504,5	4008,5	3524,5	4570,5	2950,5	1583,0	1815,0	1852,0	1579,0	3861,5	3211,0
718,8	2427,0	2079,0	5937,0	5776,0	1709,0	3480,5	3960,5	3500,5	4548,5	2973,5	1587,5	1839,5	1835,0	1535,0	3870,5	3230,5
720,0	2396,0	2048,0	5997,0	5859,0	1683,5	3488,5	3988,0	3452,0	4542,5	2931,0	1599,5	1833,0	1822,0	1550,5	3873,0	3209,5
721,2	2315,0	2055,0	5807,0	5771,0	1656,5	3453,5	3959,5	3459,5	4493,0	2898,0	1585,0	1863,0	1833,0	1563,0	3874,5	3229,5
722,4	2290,0	2033,0	5891,0	5784,5	1692,5	3407,5	3962,5	3526,0	4507,0	2935,5	1606,0	1832,5	1847,0	1538,0	3825,5	3183,0
723,5	2273,0	2073,0	5930,0	5755,0	1641,5	3417,0	3922,0	3467,0	4473,0	2844,0	1605,0	1838,0	1809,0	1566,0	3795,5	3188,5
724,7	2267,0	2078,0	5871,0	5755,0	1650,5	3398,5	3934,5	3467,5	4450,0	2886,5	1560,0	1821,5	1807,0	1548,0	3837,5	3191,0
725,9	2193,0	2073,0	5890,0	5754,0	1663,5	3353,5	3917,5	3461,0	4459,0	2871,0	1607,0	1842,0	1798,0	1553,5	3790,0	3158,5
727,1	2152,0	2040,0	5880,0	5735,0	1635,0	3378,0	3916,0	3427,0	4452,5	2849,5	1593,0	1821,5	1813,5	1555,0	3775,0	3151,5
728,3	2121,0	2057,0	5857,0	5711,0	1623,5	3368,0	3887,0	3390,5	4416,5	2812,0	1574,5	1846,0	1811,5	1525,0	3795,5	3186,5
729,4	2093,0	2043,0	5827,0	5724,5	1639,0	3363,0	3871,0	3416,5	4387,5	2806,0	1589,5	1819,5	1791,5	1545,5	3757,5	3084,0
730,6	2082,0	2063,0	5815,0	5673,5	1636,5	3355,0	3871,5	3412,5	4439,0	2779,5	1598,5	1800,5	1813,0	1545,5	3761,0	3095,0
731,8	2017,0	2034,0	5841,0	5669,5	1597,0	3306,0	3827,0	3373,5	4320,0	2778,5	1568,0	1810,5	1792,0	1554,0	3758,0	3096,5
733,0	2049,0	2023,0	5781,0	5661,5	1605,5	3256,5	3873,5	3386,5	4387,5	2793,5	1564,0	1827,5	1803,0	1559,0	3701,5	3087,0
734,1	2006,0	2041,0	5798,0	5679,5	1606,5	3293,5	3827,0	3340,0	4362,0	2795,5	1591,0	1804,0	1806,5	1518,0	3705,5	3102,0
735,3	1962,0	2054,0	5814,0	5643,5	1591,0	3259,5	3836,0	3325,5	4320,0	2780,0	1566,0	1830,5	1800,0	1524,5	3759,0	3098,5
736,5	1961,0	2073,0	5769,0	5655,0	1596,0	3233,5	3801,5	3329,5	4316,0	2725,0	1564,5	1823,0	1792,0	1539,5	3702,5	3090,0
737,7	1926,0	2026,0	5837,0	5611,0	1620,5	3273,5	3793,0	3325,5	4304,5	2740,0	1560,0	1802,5	1790,0	1534,5	3675,0	3109,5
738,8	1903,0	2013,0	5802,0	5649,0	1588,5	3219,5	3820,0	3333,0	4320,0	2788,0	1550,5	1817,5	1797,5	1545,5	3728,5	3090,0
740,0	1863,0	2055,0	5823,0	5623,5	1575,5	3234,5	3791,0	3308,0	4319,5	2742,0	1548,5	1839,0	1774,0	1525,0	3659,5	3086,0
741,2	1860,0	2069,0	5805,0	5605,5	1584,5	3228,0	3813,5	3303,0	4273,0	2750,0	1575,0	1836,0	1786,0	1526,5	3646,0	3045,0
742,4	1834,0	2033,0	5820,0	5638,0	1575,5	3243,0	3779,0	3307,5	4285,0	2750,0	1570,0	1809,0	1810,5	1548,0	3645,5	3053,0
743,5	1815,0	1989,0	5771,0	5594,5	1568,0	3201,0	3784,5	3290,0	4303,0	2732,5	1568,5	1778,5	1798,0	1535,0	3628,5	3027,5
744,7	1775,0	2045,0	5792,0	5589,0	1565,5	3201,5	3775,0	3290,5	4301,0	2726,5	1547,0	1810,0	1789,0	1521,0	3585,0	3080,0
745,9	1763,0	2015,0	5797,0	5614,0	1577,5	3233,0	3731,5	3310,0	4240,0	2730,0	1576,0	1828,5	1797,0	1559,5	3642,5	3078,5
747,1	1733,0	2003,0	5856,0	5603,0	1577,0	3216,5	3737,5	3309,5	4237,5	2713,5	1580,5	1836,5	1798,5	1565,5	3622,5	3061,5
748,2	1773,0	2072,0	5790,0	5598,0	1558,0	3206,5	3707,5	3232,0	4277,0	2678,0	1572,5	1838,0	1811,0	1530,0	3564,0	3041,0
749,4	1725,0	2021,0	5813,0	5650,0	1571,5	3217,0	3706,5	3211,0	4225,0	2695,0	1557,0	1808,5	1806,0	1558,0	3571,0	3048,5
750,6	1723,0	1993,0	5827,0	5614,0	1573,0	3219,5	3722,0	3277,0	4249,5	2713,5	1588,0	1808,5	1807,5	1547,0	3626,5	3051,0
751,8	1663,0	2020,0	5848,0	5595,5	1563,5	3198,5	3692,0	3261,0	4249,5	2680,5	1600,0	1812,5	1824,0	1556,0	3623,5	3024,5
752,9	1677,0	2033,0	5798,0	5673,5	1584,5	3176,5	3713,5	3241,5	4199,5	2639,0	1588,5	1820,5	1800,5	1550,0	3569,0	2987,5
754,1	1667,0	2011,0	5808,0	5617,5	1575,5	3186,0	3708,5	3269,0	4223,0	2622,5	1580,0	1841,5	1793,0	1560,0	3557,5	3018,5
755,3	1623,0	2013,0	5854,0	5614,5	1570,5	3182,0	3684,0	3240,0	4161,5	2650,0	1567,0	1849,5	1814,5	1570,5	3588,5	3020,0
756,4	1632,0	2013,0	5787,0	5650,0	1576,5	3167,0	3703,5	3200,5	4164,0	2626,0	1581,0	1848,5	1804,0	1524,0	3561,5	2996,0
757,6	1611,0	2032,0	5849,0	5650,0	1553,0	3187,0	3729,0	3230,0	4184,0	2640,0	1560,0	1831,0	1782,5	1558,0	3551,5	2976,5
758,8	1617,0	1990,0	5835,0	5698,5	1569,0	3141,5	3646,0	3237,0	4200, 5	2595,5	1566,0	1825,0	1778,0	1565,5	3585,5	2983,0
760,0	1569,0	2001,0	5879,0	5648,5	1550,5	3142,0	3672,0	3234.0	4194,5	2588,5	1582,0	1827,0	1812,0	1532,0	3564,5	2955,0
761,1	1622,0	2041,0	5796,0	5659,0	1568,0	3145,5	3706,0	3256,0	4173,0	2572,0	1579,0	1814,0	1788,5	1544,5	3537,0	3019,0
762,3	1605,0	2041,0	5865,0	5697,5	1567,0	3153,0	3655,5	3201,0	4133,0	2617,0	1572,5	1821,0	1820,0	1543,5	3548,0	2960,0
763,5	1589,0	2003,0	5911,0	5641,0	1581,0	3160,5	3643,5	3205,5	4189,0	2546,0	1572,5	1822,5	1797,0	1549,0	3586,5	2992,0
764,7	1593,0	2031,0	5855,0	5678,5	1560,5	3121,0	3719,5	3254,5	4180,5	2555,5	1541,0	1822,0	1809,0	1505,5	3544,0	2982,0
765,8	1575,0	2040,0	5857,0	5669,0	1592,0	3143,0	3644,0	3186,0	4163,0	2573,0	1536,5	1811,5	1809,5	1544,0	3591,0	3002,0
767,0	1549,0	2034,0	5835,0	5664,0	1572,0	3113,0	3656,0	3222,5	4174,0	2561,5	1537,5	1808,5	1786,5	1545,0	3571,5	2978,0
768,2	1569,0	1975,0	5869,0	5716,0	1584,5	3117,0	3692,0	3185,0	4161,5	2606,0	1541,5	1797,0	1809,0	1519,5	3542,0	2945,0
769,3	1502,0	2025,0	5938,0	5698,5	1583,0	3146,0	3650,0	3233,5	4191,0	2577,5	1569,0	1816,5	1771,0	1529,0	3569,5	2983,5
770,5	1549,0	2001,0	5919,0	5734,0	1580,5	3124,5	3677,5	3221,0	4169,5	2525,0	1548,5	1816,0	1843,0	1535,5	3567,0	2957,5
771,7	1553,0	2025,0	5901,0	5699,5	1579,5	3119,5	3667,5	3202,5	4201,5	2545,5	1553,0	1819,5	1835,0	1522,0	3576,5	2932,5
772,8	1538,0	2031,0	5832,0	5668,5	1598,5	3132,0	3631,0	3201,0	4191,5	2576,0	1560,5	1825,5	1814,5	1548,5	3577,5	2945,5
774,0	1523,0	2021,0	5902,0	5760,5	1587,5	3092,0	3664,0	3198,0	4175,5	2567,0	1572,0	1816,0	1829,5	1520,5	3531,0	3006,0
775,2	1496,0	2017,0	5965,0	5747,0	1606,0	3106,5	3640,0	3208,5	4210,0	2587,5	1545,0	1831,5	1856,0	1521,0	3532,0	2959,5
776,4	1507,0	2047,0	5928,0	5791,0	1590,0	3140,0	3688,0	3199,0	4186,5	2586,5	1553,5	1815,5	1817,5	1521,0	3541,0	2953,0
777,5	1501,0	2016,0	5906,0	5770,5	1619,0	3124,5	3678,0	3217,0	4192,0	2558,5	1559,0	1803,0	1808,0	1537,0	3553,5	2959,5
778,7	1503,0	2097,0	5891,0	5808,5	1614,5	3127,0	3659,0	3240,0	4148,5	2582,5	1554,0	1790,0	1824,5	1532,5	3539,5	2992,0
779,9	1502,0	2063,0	5890,0	5809,0	1646,5	3133,5	3675,0	3215,0	4109,5	2601,0	1554,5	1796,5	1836,0	1513,5	3511,0	2980,5
781,0	1505,0	2039,0	5985,0	5814,5	1639,0	3147,0	3662,0	3197,0	4156,5	2592,0	1532,0	1778,0	1789,0	1531,5	3565,0	2968,5
782,2	1493,0	2059,0	5886,0	5834,5	1606,5	3123,5	3657,5	3196,0	4148,0	2591,5	1564,5	1806,0	1812,5	1513,5	3538,5	2968,0
783,4	1463,0	2033,0	5859,0	5838,0	1620,5	3158,0	3649,5	3203,0	4144,0	2611,5	1556,5	1797,0	1830,0	1533,5	3552,0	2952,0
784,5	1486,0	2024,0	5952,0	5836,0	1642,5	3177,5	3659,5	3202,0	4187,5	2604,5	1558,0	1801,5	1832,0	1540,0	3522,0	2921,0
785,7	1500,0	2009,0	5947,0	5797,5	1650,5	3169,5	3651,5	3219,5	4097,5	2596,0	1533,0	1801,0	1826,0	1528,5	3568,5	2949,0
786,9	1459,0	2004,0	5970,0	5874,0	1668,5	3172,5	3606,5	3166,0	4153,5	2642,0	1539,5	1823,0	1830,0	1518,5	3520,0	2980,0
788,0	1494,0	2067,0	5957,0	5849,5	1651,5	3156,0	3613,0	3172,0	4139,0	2646,5	1541,5	1814,0	1806,5	1518,0	3528,0	2959,0
789,2	1447,0	2071,0	5950,0	5846,0	1622,0	3146,5	3629,5	3146,0	4112,5	2687,5	1532,5	1806,0	1829,5	1521,5	3519,5	2996,0
790,4	1445,0	2021,0	5941,0	5873,5	1632,0	3158,0	3601,0	3201,0	4093,5	2647,0	1498,5	1818,5	1847,5	1491,0	3499,5	2942,0
791,5	1497,0	2033,0	6003,0	5850,0	1660,5	3198,0	3613,5	3197,0	4089,5	2680,5	1511,0	1782,0	1806,5	1511,0	3544,0	2933,0
792,7	1379,0	2049,0	5984,0	5874,0	1628,5	3194,0	3622,5	3191,0	4123,0	2666,5	1535,0	1788,0	1839,0	1518,0	3528,0	2956,0
793,9	1497,0	2041,0	5991,0	5847,0	1638,0	3178,0	3604,0	3172,5	4089,0	2663,5	1518,0	1754,5	1797,0	1508,5	3560,5	2987,0
795,0	1448,0	2006,0	5975,0	5896,5	1646,0	3167,5	3610,5	3156,0	4112,5	2669,5	1540,0	1783,0	1825,0	1513,5	3497,5	2944,5
796,2	1441,0	1997,0	5867,0	5868,0	1629,0	3150,5	3582,0	3167,5	4057,0	2679,0	1505,5	1765,0	1840,5	1484,5	3541,0	2947,0
797,4	1456,0	2059,0	5941,0	5876,5	1648,0	3145,0	3579,5	3155,0	4069,0	2668,5	1520,5	1745,5	1841,0	1501,0	3478,5	2957,5
798,5	1420,0	2025,0	5981,0	5897,5	1632,0	3148,5	3614,5	3136,0	4049,5	2619,5	1512,0	1756,5	1844,5	1472,0	3498,5	2953,5
799,7	1439,0	1993,0	5937,0	5843,0	1644,0	3153,5	3572,0	3121,0	4034,0	2656,5	1495,0	1753,5	1785,0	1506,5	3499,0	2906,5
800,9	1428,0	2029,0	5920,0	5789,0	1637,0	3129,5	3544,5	3101,0	3973,0	2617,5	1498,5	1737,5	1805,5	1481,5	3497,5	2903, 0
802,0	1455,0	2055,0	5945,0	5866,0	1609,0	3136,5	3532,5	3096,5	3984,5	2619,0	1513,0	1777,5	1799,5	1473,0	3482,0	2915,0
803,2	1461,0	2032,0	5967,0	5737,0	1632,5	3121,0	3529,5	3088,0	4007,5	2613,5	1496,0	1727,0	1799,0	1485,0	3526,5	2904,5
804,4	1379,0	2006,0	5891,0	5817,5	1621,5	3123,5	3527,5	3106,0	3993,5	2562,0	1508,0	1703,5	1827,5	1470,0	3452,0	2871,0
805,5	1423,0	2000,0	5908,0	5807,5	1607,5	3132,0	3480,0	3062,0	3948,0	2569,0	1491,5	1753,5	1810,0	1484,0	3466,0	2900,0
806,7	1372,0	2013,0	5945,0	5807,5	1620,0	3103,5	3517,5	3082,0	3985,0	2574,0	1498,5	1767,0	1806,0	1493,0	3441,0	2843,0
807,8	1369,0	2001,0	5915,0	5776,0	1607,5	3184,0	3494,5	3047,0	3919,5	2558,5	1483,5	1737,5	1787,0	1461,5	3432,0	2837,5
809,0	1369,0	2008,0	5955,0	5846,0	1625,0	3084,5	3504,0	3063,5	3883,5	2548,0	1491,5	1752,0	1795,0	1461,0	3432,5	2821,0
810,2	1381,0	2003,0	5919,0	5777,5	1595,0	3105,0	3448,5	3035,5	3902,5	2527,5	1509,0	1736,0	1816,5	1483,5	3429,5	2821,0
811,3	1380,0	2011,0	5917,0	5793,0	1589,5	3077,0	3454,5	3030,0	3907,5	2518,5	1505,0	1757,5	1810,0	1463,0	3411,0	2821,5
812,5	1372,0	2019,0	5875,0	5781,5	1584,5	3071,5	3455,0	3013,0	3834,0	2476,0	1448,0	1737,0	1797,5	1490,0	3412,0	2811,0
813,7	1391,0	2027,0	5923,0	5771,0	1553,0	3080,0	3413,0	3006,5	3822,5	2493,5	1469,5	1729,0	1782,5	1458,0	3397,5	2792,5
814,8	1363,0	2007,0	5862,0	5746,5	1590,5	3054,0	3390,0	2929,0	3806,5	2484,0	1484,0	1743,0	1770,0	1489,0	3396,0	2791,0
816,0	1344,0	2017,0	5849,0	5710,0	1589,0	3033,5	3414,5	2985,0	3762,0	2456,5	1491,5	1730,0	1783,0	1460,5	3382,0	2783,5
817,2	1321,0	2025,0	5885,0	5724,5	1534,5	3037,0	3387,0	2950,0	3792,5	2412,0	1487,5	1733,5	1789,0	1467,5	3337,5	2780,5
818,3	1335,0	1981,0	5923,0	5715,0	1570,5	3083,0	3378,0	2959,0	3757,0	2438,0	1468,5	1706,0	1765,0	1467,5	3290,0	2774,0

$\stackrel{0}{\infty}$ 1328，0 $2021,0 \quad 5889,0$ 820,6
821,8 821,8
823,0
824,1
825,3
826,4 826,4
827,6
828,8 828,8
829,9 832,2
833,4 8345,7
836,9
838 838,0
839,2
840,4 841,5
842,7
843,8

845,0 $\begin{array}{ll}1328,0 & 2021,0 \\ 1345,0 & 1993,0\end{array}$ | 1331,0 | 2013,0 | 5849,0 |
| :--- | :--- | :--- |
| 13939 | | |
| 139,0 | 202,0 | 586,0 | 5747,5

5699,5 $\begin{array}{ll}1537,5 & 3042,0 \\ 1566,0 & \\ 15639\end{array}$
42，0 337
3373，5
2931，
53740

$3740,0 \quad 2398,0$ $\begin{array}{lll} & & \\ 21,0 & 2398,0 & 1468,5 \\ 2380,5 & 1483,0\end{array}$ | 68,5 | 17 |
| :--- | :--- |
| 83,0 | 17 | 1736,0

1703,0
$\begin{array}{llll}1780,0 & 1469,0 & 3309,5 & 2742,5\end{array}$
 $\begin{array}{llll}1310,0 & 2014,0 & 5866,0 & 582,0 \\ 1319,0 & 2034,0 & 585\end{array}$

5695,0	1571,0	3009,0						
5704,0	1555,5	3019,0						
5699,5	1559,0	3002,0		$\begin{array}{lll}1273,0 & 2018,0 & 5795,0 \\ 1303,0 & 2037,0 & 5838,0\end{array}$ $\begin{array}{lll}1303,0 & 2037,0 & 5838,0 \\ 1261,0 & 2021,0 & 5823,0\end{array}$ $\begin{array}{lll}1261,0 & 2021,0 & 5823,0 \\ 1277,0 & 2040,0 & 5936,0\end{array}$ $\begin{array}{llll}1289,0 & 2054,0 & 5860,0 & 5 \\ 1295,0 & 2036,0 & 5876,0 & 5\end{array}$		1566,0	3038,0	3314,5
:---	:---	:---	:---					
3236,5								
1565,5	3013,5	3251,5		1267，0 $\begin{array}{lll}1267,0 & 2016,0 & 5878,0 \\ 1210,0 & 2041,0 & 5871,0 \\ 1191,0 & 2045,0 & 585\end{array}$				

2906，5
$\begin{array}{ll}3648,0 & 23 \\ 3687,5 & 23\end{array}$ 2906,0

2854,5 | | 1565,5 | 3013,5 | 3251,5 | 2853,0 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 58,0 | 1560,0 | 3009,0 | 3207,5 | 2850,0 | |
| 1552,5 | 2950,5 | 3170,5 | 284,0 | 355 | | $\begin{array}{lll}1181,0 & 2045,0 & 5858,0\end{array}$

348,0	2358,0	1478,0
358,5	2337,5	1448,0
359,5	2359,0	1494,0
353,0	2347,0	1470,0

1743,0
1712,0
$\begin{array}{lllll}1787,0 & 1465,0 & 3285,5 & 2738,5 \\ 1784,5 & 1461,0 & 3227,5 & 2733,5\end{array}$ $\begin{array}{llll}1784,5 & 1461,0 & 3227,5 & 2733,5 \\ 1771,5 & 1457,0 & 3231,0 & 2701,5\end{array}$ $\begin{array}{lllllll}172753,0 & 1804,5 & 1460,0 & 3234,5 & 2661,5\end{array}$ $\begin{array}{llllll}460,0 & 1724,5 & 1773,0 & 1443,5 & 3215,0 & 2686,5 \\ 489,5 & 1698,5 & 1770,0 & 1435,0 & 3198, & 265,0\end{array}$ $\begin{array}{llllll}1489,5 & 1698,5 & 1770,0 & 1435,0 & 3196,0 & 2625,0 \\ 1478,0 & 1708,5 & 1790,5 & 1462,5 & 3177,0 & 26365\end{array}$ $\begin{array}{lllllllll}844,0 & 3557,0 & 2266,5 & 1478,0 & 1708,5 & 1790,5 & 1462,5 & 3177,0 & 2636,5 \\ 838,5 & 3515,0 & 2258,5 & 1479,5 & 1708,5 & 1790,0 & 1465,5 & 3175,0 & 2632,5 \\ 812,5 & 3478,0 & 2266,0 & 1484,0 & 1685,5 & 1770,0 & 1464,5 & 3169,5 & 2665,5 \\ 8803,0 & 3500,5 & 2226,0 & 1479,0 & 1727,5 & 1787,0 & 1455,0 & 3133,0 & 2661,5\end{array}$ $\begin{array}{llllllllllllllllllllll} & \end{array}$ $\begin{array}{lll}11706,0 & 2023,0 & 5904,0 \\ 1158,0 & 2013,0 & 5827,0\end{array}$ $\begin{array}{llll}1090,0 & 2057,0 & 5803,0 & 5 \\ 1085,0 & 2025,0 & 5881,0 & 571 \\ 1063,0 & 2035,0 & 58370 & \end{array}$高言 ふ～～～㘣 1063,0
1051,0

1013,0
1003,0
970,0
857,7
858,9
860,
861, ジ ジ in莮畜畧 （ธ）
\qquad ＋

934,7	645,0	2270,0	5871,0	5559,0	1442,0	3030,0	2407,5	2203,0	2541,0	1941,0	1546,5	1804	1915,	550,	480	8,5
935,9	625,0	2213,0	5906,0	5622,5	1478,5	3065,5	2406,0	2214,0	2516,0	1967,0	1552,0	1855,0	1927,5	1569,0	2491,5	2104,0
937,0	632,0	2235,0	5921,0	5667,5	1472,5	3062,0	2378,5	2261,5	2509,0	1933,0	1571,0	1837,5	1908,0	1565,0	2487,5	2107,5
938,2	633,0	2233,0	5974,0	5542,0	1497,0	3050,0	2422,0	2231,0	2516,0	1974,0	1580,0	1828,5	1922,0	1567,0	2507,5	2141,0
939,3	625,0	2268,0	5927,0	5623,0	1484,0	3092,5	2398,5	2206,0	2512,0	1988,5	1586,5	1811,5	1905,0	1562,0	2465,5	2103,0
940,4	633,0	2253,0	5955,0	5608,5	1476,0	3067,5	2401,0	2238,0	2537,5	1954,5	1586,0	1857,5	1910,0	1556,5	2549,5	2062,0
941,6	648,0	2267,0	5969,0	5536,0	1480,0	3101,0	2374,5	2238,0	2483,5	1965,5	1586,5	1835,5	1933,0	1583	2501,5	2129,0
942,7	631,0	2265,0	5913,0	5612,0	1483,0	3082,0	2399,5	2232,0	2512,0	1970,5	1574,5	1850,5	1933,0	1578,0	2459,5	2105,5
943,9	641,0	2273,0	5957,0	5585,5	1481,0	3114,5	2398,0	2214,0	2517,0	1970,5	1570,5	1860,5	1943,0	1579,0	2484,5	2115,5
945,0	607,0	2277,0	5854,0	5516,5	1492,0	3102,5	2407,0	2240,0	2508,5	1977,0	1567,5	1837,5	1945,0	1537,5	2485,5	2088,0
946,1	621,0	2241,0	5919,0	5579,0	1468,0	3115,0	2376,5	2254,5	2534,0	1951,0	1567,5	1836,0	1938,0	1578,5	2487,0	2121,5
947,3	592,0	2275,0	5930,0	5539,0	1474,5	3060,0	2394,5	2226,0	2531,0	1953,0	1594,0	1846,5	1940,0	1588,0	2478,5	2115,0
948,4	609,0	2283,0	5931,0	5523,5	1447,5	3070,0	2341,5	2222,0	2521,5	1940,5	1598,0	1828,0	1951,5	1583,5	2511,5	2095,5
949,6	621,0	2237,0	5945,0	5544,0	1463,5	3105,5	2383,5	2201,0	2482,5	1945,5	1577,0	1858,0	1928,5	1584,0	2476,5	2112,0
950,7	620,0	2259,0	5891,0	5544,5	1458,0	3089,0	2434,5	225,0	2467,0	1933,5	1588,0	1871,5	1925,0	1573,5	2497,0	2108,5
951,8	02,0	2277,0	5811,0	5552,5	1472,0	3074,5	2417,5	2228,5	2502,0	1960,5	1570,5	1851,0	1949,0	1572,5	2499,0	2103,0
953,0	623,0	2274,0	5881,0	5512,5	1476,5	3054,0	2389,5	2216,5	2520,0	1939,5	1556,5	1854,5	1941,0	1600,0	2453,5	2102,5
954,1	613,0	2272,0	5907,0	5523,5	1470,0	3065,0	2410,5	2237,0	2541,0	1979,0	1585,5	1862,5	1924,5	1578,5	2498,0	2090,0
955,3	594,0	2276,0	5890,0	5526,5	1453,0	3055,5	2429,5	2200,0	2498,0	1930,0	1570,0	1848,5	1958,0	1585,5	2518,5	2097,5
956,4	611,0	2245,0	5883,0	5518,0	1454,0	3078,0	2372,0	2243,0	2520,0	1948,5	1602,5	1872,5	1965,5	1604,5	2473,0	2090,0
957,5	612,0	2291,0	5971,0	5537,0	1457,5	3104,0	2410,0	2234,5	2500,0	1967,0	1590,5	1860,0	1962,5	1581,0	2476,0	2109,5
958,7	573,0	2276,0	5904,0	5513,5	1452,5	3090,5	2393,5	2191,0	2511,0	1956,0	1579,0	1873,5	1946,0	1574,0	2508,5	2087,5
959,8	603,0	2299,0	5837,0	5512,0	1482,5	3084,5	2391,0	2256,5	2524,5	1919,0	1615,5	1862,0	1961,5	1601,0	2519,5	2118,0
961,0	602,0	2324,0	5857,0	5503,0	1457,0	3080,5	2416,0	2220,0	2551,5	1929,0	1614,5	1896,5	1975,5	1594,0	2467,0	2077,0
962,1	603,0	2275,0	5961,0	5501,5	1473,0	3083,0	2389,5	2224,0	2520,0	1911,0	1606,0	1892,0	1966,0	1575,0	2492,0	2132,0
963,2	588,0	2261,0	5840,0	5509,0	1470,0	3119,5	2395,5	2198,5	2499,5	1912,5	1630,0	1867,0	1949,5	1597,0	2472,0	2146,5
964,4	589,0	2289,0	5860,0	5490,0	1482,0	3078,5	2371,0	2266,0	2521,0	1911,5	1607,5	1864,5	1971,5	1592,5	2487,0	2082,0
965,5	574,0	2263,0	5918,0	5490,5	1490,5	3101,5	2390,0	2235,0	2498,0	1942,0	1580,5	1880,0	1983,0	1589,0	2467,5	2091,5
966,7	586,0	2336,0	5914,0	5470,5	1469,0	3124,0	2396,5	2223,5	2518,0	1928,0	1616,0	1873,5	1998,5	1600,0	2508,0	2102,5
967,8	575,0	2299,0	5840,0	5534,5	1445,5	3093,0	2405,5	2215,5	2450,0	1941,0	1620,5	1862,0	1971,0	1593,0	2476,5	2125,5
968,9	579,0	2305,0	5859,0	5472,5	1458,0	3126,5	2388,0	2213,0	2481,0	1898,0	1594,0	1893,0	1991,5	1605,5	2503,0	2082,5
970,1	602,0	2315,0	5843,0	5519,5	1460,5	3139,5	2400,5	2234,0	2507,0	1916,5	1599,5	1897,0	1995,0	1595,0	2460,5	2094,5
971,2	590,0	2303,0	5816,0	5473,0	1487,5	3196,5	2371,5	2209,0	2524,0	1920,0	1603,5	1889,5	1982,5	1614,0	2504,0	2113,5
972,3	573,0	2326,0	5899,0	5485,5	1469,5	3187,5	2341,0	2249,5	2525,5	1923,5	1621,5	1905,5	2013,0	1629,0	2478,0	2098,0
973,5	589,0	2328,0	5889,0	5517,0	1500,5	3228,0	2412,5	2241,0	2519,0	1934,0	1627,5	1913,5	1970,0	1643,0	2515,0	2107,5
974,6	599,0	2356,0	5909,0	5540,0	1474,0	3244,0	2425,0	2258,0	2508,5	1947,0	1646,5	1926,0	2042,5	1634,0	2485,5	2147,0
975,8	581,0	2339,0	5999,0	5574,5	1475,5	3232,5	2409,0	2278,0	2499,5	1962,5	1656,0	1941,0	2032,5	1631,0	2534,0	2124,5
976,9	578,0	2378,0	5984,0	5596,5	1500,0	3241,5	2416,5	2263,5	2556,0	1956,0	1671,5	1924,0	2058,0	1676,0	2565,5	2156,0
978,0	557,0	2379,0	6011,0	5603,5	1501,5	3292,0	2422,5	2294,0	2562,0	1945,0	1661,5	1989,5	2035,0	1685,0	2555,5	2176,5
979,2	579,0	2401,0	6028,0	5603,5	1518,5	3222,0	2395,0	2266,5	2597,0	2003,5	1663,5	1991,0	2057,0	1671,0	2546,0	2157,5
980,3	579,0	2401,0	6013,0	5607,5	1500,5	3261,5	2471,5	2306,0	2574,0	1997,0	1693,0	1983,0	2067,0	1698,0	2547,5	2167,5
981,4	565,0	2413,0	6039,0	5702,5	1486,0	3270,5	2444,0	2313,0	2553,5	1982,0	1709,5	1996,0	2079,0	1690,5	2555,0	2169,0
982,6	587,0	2411,0	6027,0	5605,0	1502,5	3259,5	2471,0	2316,5	2595,5	2002,0	1699,5	1961,5	2078,5	1679,0	2541,0	2204,5
983,7	576,0	2437,0	6014,0	5665,5	1498,5	3259,0	2481,5	2273,5	2561,5	1980,0	1701,0	1989,0	2086,0	1677,5	2574,5	2184,5
984,8	582,0	2441,0	6042,0	5604,5	1514,0	3294,0	2476,5	2318,5	2570,0	2001,0	1703,5	2006,0	2108,0	1692,5	2578,5	2189,0
986,0	579,0	2483,0	6087,0	5686,5	1507,0	3321,0	2475,0	2287,0	2584,5	2007,5	1701,5	1981,5	2104,5	1678,0	2603,5	2166,5
987,1	578,0	2431,0	6015,0	5683,5	1522,0	3286,5	2484,0	2304.0	2596,0	1975,5	1685,0	1996,0	2084,5	1702,5	2525,0	2186,5
988,2	585,0	2482,0	6047,0	5637,5	1474,0	3252,0	2490,0	2296,5	2633,5	1987,0	1715,0	1976,0	2082,5	1692,5	2536,0	2166,5
989,4	571,0	2427,0	6052,0	5673,0	1518,0	3257,5	2469,0	2305,0	2575,0	2007,5	1687,5	2012,0	2114,0	1699,0	2553,5	2201,0
990,5	555,0	2486,0	6087,0	5681,0	1491,5	3315,0	2471,5	2327,0	2576,5	1988,0	1694,0	1993,0	2092,0	1715,0	2567,5	2198,0
991,6	561,0	2447,0	6096,0	5678,5	1512,0	3302,5	2503,5	2323,0	2621,0	1993,0	1719,5	2005,0	2099,0	1718,0	2562,5	2214,0
992,8	564,0	2475,0	6081,0	5717,0	1506,0	3334,5	2491,0	2324,0	2589,0	1991,0	1718,0	2001,0	2116,0	1702,0	2613,0	2224,0
993,9	559,0	2512,0	6110,0	5708,0	1506,5	3317,0	2469,0	2334,5	2572,0	2014,5	1724,5	2019,0	2116,5	1716,0	2575,5	2193,5
995,0	543,0	2465,0	6172,0	5630,0	1511,5	3356,0	2481,0	2345,0	2610,5	1985,0	1700,5	2001,0	2120,5	1695,0	2598,0	2205,0
996,2	568,0	2483,0	6091,0	5620,5	1504,5	3333,5	2497,0	2335,5	2596,0	2012,0	1723,5	1996,5	2105,0	1706,0	2499,0	2199,0
997,3	552,0	2499,0	6121,0	5688,0	1511,0	3380,5	2508,0	2323,5	2587,0	1991,0	1709,0	1998,5	2107,5	1725,5	2562,0	2213,0
998,4	561,0	2475,0	6068,0	5700,5	1500,0	-3358,5	2463,5	2321,5	2631,0	2018,0	1705,5	2007,5	2121,5	1716,0	2580,0	2221,0
999,6	562,0	2482,0	6083,0	5636,5	1503,0	3359,0	2483,0	2362.5	2615,0	2024,0	1732,0	2029,0	2140,5	1699,5	2619,5	2199,0
1000,7	536,0	2487,0	6128,0	5715,5	1518,5	3370,0	2534,5	2363,0	2620,0	2011,0	1697,0	2029,0	2132,0	1715,5	2588,5	2237,5
1001,8	555,0	2477,0	6096,0	5708,0	1491,0	3363,5	2500,0	2364,5	2619,0	2024,0	1713,0	2036,0	2131,5	1719,0	2581,5	2234,0
1003,0	561,0	2482,0	6138,0	5702,5	1510,0	3416,5	2502,5	2338,0	2604,0	2024,5	1713,5	2055,0	2166,5	1742,5	2572,5	2213,0
1004,1	540,0	2470,0	6060,0	5713,5	1503,0	3399,0	2495,5	2344,5	2630,0	2033,0	1731,5	2028,0	2122,0	1734,0	2578,0	2248,0
1005,2	541,0	2490,0	6154,0	5704,0	1491,0	3442,5	2500,0	2351,0	2607,5	2028,0	1719,0	1986,0	2135,5	1728,0	2589,0	2218,0
1006,4	573,0	2519,0	6109,0	5652,0	1533,0	3439,0	2514,0	2374,5	2613,0	2016,5	1681,0	2025,5	2148,0	1706,0	2616,0	2209,0
1007,5	552,0	2518,0	6104,0	5737,5	1509,0	3431,5	2517,0	2342,0	2600,0	2042,5	1702,5	2021,0	2147,5	1710,5	2653,5	2224,0
1008,6	517,0	2495,0	6142,0	5712,5	1513,0	3445,5	2485,0	2321,5	2639,5	2011,5	1723,5	2046,5	2137,0	1743,5	2614,5	2227,0
1009,8	565,0	2467,0	6066,0	5732,5	1513,0	3467,5	2505,5	2335,5	2642,5	2030,0	1749,5	2028,5	2114,0	1723,5	2596,5	2241,5
1010,9	533,0	2548,0	6062,0	5751,0	1536,0	3483,0	2521,0	2366,5	2635,5	2033,5	1732,0	2024,0	2150,5	1696,5	2642,5	2233,0
1012,0	549,0	2487,0	6068,0	5684,0	1492,5	3477,0	2519,5	2358,5	2651,0	1992,5	1738,5	2039,0	2122,5	1707,0	2617,5	2241,5
1013,2	527,0	2533,0	6145,0	5761,5	1523,0	3487,5	2530,0	2352,5	2612,0	2046,5	1755,5	2048,5	2135,5	1723,0	2596,0	2253,0
1014,3	537,0	2522,0	6104,0	5719,5	1524,0	3494,5	2548,5	2379,5	2621,0	2044,0	1748,0	2033,0	2186,0	1744,5	2625,5	2272,5
1015,4	535,0	2543,0	6101,0	5745,0	1527,0	3520,5	2514,5	2345,5	2653,0	2062,5	1734,0	2058,0	2165,5	1732,0	2641,5	2240,0
1016,5	538,0	2517,0	6090,0	5745,0	1516,0	3485,0	2502,0	2370,5	2597,5	2049,0	1753,5	2031,0	2159,5	1766,5	2627,5	2251,0
1017,7	537,0	2533,0	6161,0	5726,5	1528,0	3491,5	2536,5	2368,5	2635,0	2055,5	1732,0	2059,0	2176,5	1734,5	2621,0	2240,5
1018,8	517,0	2515,0	6157,0	5733,0	1532,0	3548,5	2508,5	2398,0	2668,5	2044,0	1776,0	2025,0	2204,5	1739,0	2670,5	2207,0
1019,9	538,0	2527,0	6171,0	5799,0	1526,0	3550,0	2554,0	2356,0	2681,0	2062,0	1780,0	2061,0	2213,5	1752,5	2674,0	2276,5
1021,1	545,0	2558,0	6191,0	5716,5	1539,0	3551,0	2515,5	2356,0	2651,5	2083,0	1764,0	2030,5	2160,5	1753,5	2644,5	2263,0
1022,2	544,0	2500,0	6224,0	5783,0	1543,0	3567,0	2517,0	2365,0	2649,5	2018,0	1768,0	2064,5	2142,0	1730,0	2652,0	2250,0
1023,3	528,0	2575,0	6197,0	5831,0	1534,5	3614,0	2548,0	2386,5	2694,0	2076,0	1782,0	2068,0	2169,5	1744,0	2694,5	2268,0
1024,4	539,0	2560,0	6174,0	5775,5	1561,5	3630,0	2557,5	2408,0	2699,0	2063,5	1765,5	2057,5	2184,5	1746,5	2649,5	2248,0
1025,6	526,0	2559,0	6156,0	5786,0	1545,0	3621,5	2567,0	2404,0	2676,5	2065,0	1791,0	2055,0	2195,0	1755,0	2687,5	2296,5
1026,7	556,0	2533,0	6202,0	5772,0	1505,0	3636,5	2530,5	2382,5	2653,0	2079,5	1810,0	2058,0	2189,0	1786,0	2683,0	2300,0
1027,8	553,0	2553,0	6196,0	5781,5	1553,0	3652,0	2524,5	2401,0	2710,5	2080,0	1778,5	2058,5	2230,5	1786,0	2632,0	2271,0
1029,0	544,0	2533,0	6256,0	5818,0	1553,5	3674,5	2541,0	2403,5	2667,0	2090,0	1749,0	2074,5	2199,0	1754,0	2663,5	2284,0
1030,1	552,0	2603,0	6237,0	5782,5	1543,5	3690,0	2555,0	2405,5	2699,5	2118,5	1783,5	2091,0	2220,0	1775,5	2657,0	2291,0
1031,2	529,0	2565,0	6203,0	5799,0	1536,0	3640,5	2560,0	2421,5	2700,0	2090,5	1780,5	2091,0	2249,5	1758,0	2682,0	2296,0
1032,3	529,0	2610,0	6217,0	5785,0	1563,5	3677,0	2540,5	2428,0	2708,5	2100, 5	1817,5	2097,0	2240,0	1751,5	2700, 5	2301,0
1033,5	516,0	2598,0	6213,0	5793,0	1537,5	3692,5	2553,0	2400,5	2700,0	2076,5	1793,0	2095,0	2210,0	1770,0	2670,0	2283,0
1034,6	534,0	2592,0	6282,0	5834,0	1544,0	3783,5	2574,0	2410,0	2692,5	2126,0	1790,0	2088,0	2252,0	1792,5	2666,0	2295,5
1035,7	519,0	2576,0	6180,0	5853,0	1549,0	3712,5	2561,5	2431,5	2702,0	2143,5	1798,0	2073,0	2181,0	1795,0	2694,5	2312,0
1036,8	517,0	2585,0	6219,0	5810,0	1548,5	3769,5	2570,0	2449,0	2682,5	2124,0	1792,5	2092,0	2249,5	1777,5	2687,5	2319,0
1038,0	509,0	2615,0	6267,0	5834,5	1549,0	3795,0	2558,5	2431,0	2706,0	2126,0	1824,0	2061,5	2273,5	1785,5	2684,5	2305,5
1039,1	513,0	2603,0	6243,0	5804,0	1547,0	3834,5	2588,0	2433,0	2733,0	2147,5	1813,0	2098,0	2244,5	1786,0	2661,0	2305,0
1040,2	519,0	2618,0	6305,0	5836,0	1573,0	3827,5	2586,0	2407,0	2719,0	2105,5	1817,0	2086,0	2251,0	1796,5	2681,5	2344,5
1041,3	513,0	2641,0	6242,0	5830,0	1525,5	3809,5	2610,0	2412,0	2714,5	2136,5	1828,5	2110,0	2277,5	1811,0	2686,5	2333,5
1042,5	527,0	2602,0	6169,0	5819,5	1552,5	3857,0	2608,5	2445,0	2695,0	2132,0	1794,5	2106,5	2250,5	1804,5	2700,0	2336,0
1043,6	528,0	2601,0	6198,0	5841,5	1577,5	3913,0	2619,0	2448,5	2705,0	2164,0	1829,0	2103,5	2226,5	1806,5	2732,0	2340,0
1044,7	539,0	2599,0	6215,0	5885,5	1549,0	3828,5	2588,5	2442,5	2744,0	2159,0	1801,0	2122,0	2262,5	1821,5	2703,0	2356,0
1045,8	539,0	2631,0	6205,0	5802,0	1557,0	3887,5	2610,5	2399,0	2738,5	2173,0	1822,5	2131,5	2272,0	1799,0	2694,0	2339,0
1047,0	517,0	2627,0	6217,0	5856,5	1545,0	3890,0	2588,0	2444,0	2734,5	2153,5	1811,5	2126,5	2277,0	1824,0	2725,5	2348,0

1048,1	522,0	2635,0	6279,0	5811,0	1565,0	3958,0	2604,5	2429,0	2782,0	2159,0	1843,5	2123,5	2293,0	1810,5	2708,5	2334,0
1049,2	527,0	2579,0	6257,0	5854,0	1570,5	3986,0	2572,5	2470,5	2714,0	2205,0	1826,0	2109,0	2262,0	1800,0	2714,0	2323,0
1050,3	497,0	2627,0	6235,0	5848,0	1538,0	4001,5	2584,5	2420,5	2726,0	2193,0	1823,5	2139,5	2252,0	1814,5	2730,0	2327,0
1051,5	525,0	2684,0	6253,0	5817,0	1576,0	3988,5	2606,0	2422,0	2751,5	2175,0	1831,0	2148,0	2280,5	1797,5	2720,5	2343,0
1052,6	538,0	2587,0	6269,0	5833,0	1548,0	4048,5	2609,0	2464,5	2735,0	2169,0	1831,0	2149,0	2263,0	1812,5	2692,0	2334,5
1053,7	515,0	2645,0	6263,0	5877,0	1583,0	4015,0	2597,0	2415,0	2748,5	2172,5	1863,0	2131,0	2297,0	1793,5	2746,5	2338,5
1054,8	510,0	2671,0	6235,0	5825,0	1554,0	4036,5	2607,0	2442,5	2722,5	2182,0	1803,5	2110,0	2253,	1814,0	2695,5	2328
1056,0	518,0	2670,0	6246,0	5812,5	1546,0	4028,0	2623,5	2442,5	2716,5	2152,5	1860,5	2141,0	2258,5	1849,0	2705,0	2325,5
1057,1	527,0	2675,0	6215,0	5824,5	1555,5	4113,0	2597,5	2447,5	2762,0	2171,0	1839,0	2135,5	2286,0	1808,0	2686,5	2351,0
1058,2	513,0	2694,0	6235,0	5849,0	1568,0	4135,5	2627,5	2491,5	2770,5	2187,5	1846,5	2132,0	2278,5	1813,0	2721,0	2325,5
1059,3	526,0	2685,0	6266,0	5882,0	1569,5	4097,5	2614,0	2463,5	2728,0	2211,5	1810,0	2149,0	2301,5	1813,5	2713,0	2352,0
1060,5	508,0	2639,0	6185,0	5822,5	1545,5	4138,0	2647,0	2456,0	2738,5	2197,5	1826,0	2136,0	2309,5	1834,0	2733,5	2337,0
1061,6	511,0	2695,0	6239,0	5796,0	1556,0	4117,5	2607,5	2461,5	2756,0	2199,0	1817,0	2142,0	2314,0	1818,5	2721,0	2361,5
1062,7	521,0	2689,0	6201,0	5846,5	1579,5	4159,5	2626,0	2453,0	2746,0	2191,0	1831,0	2146,0	2333,5	1825,0	2724,0	2308,0
1063,8	515,0	2683,0	6171,0	5851,0	1552,0	4214,5	2623,0	2457,5	2709,5	2199,0	1833,0	2156,0	2304,5	1827,5	2770,5	2332,0
1064,9	518,0	2705,0	6253,0	5840,0	1557,0	4171,0	2583,5	2436,5	2749,5	2215,0	1800,0	2154,0	2304,5	1847,5	2745,5	2330,0
1066,1	493,0	2736,0	6252,0	5876,0	1546,5	4211,5	2632,0	2470,0	2756,0	2200,5	1848,5	2147,5	2299,0	1807,0	2705,0	2346,0
1067,2	491,0	2717,0	6160,0	5809,0	1558,0	4224,5	2636,0	2467,0	2746,0	2203,0	1856,0	2128,5	2319,5	1838,5	2732,0	2371,0
1068,3	508,0	2730,0	6232,0	5846,5	1555,0	4246,5	2653,5	2469,0	2777,5	2201,0	1845,5	2168,5	2312,0	1837,5	2708,5	2370,0
1069,4	507,0	2705,0	6249,0	5809,5	1559,0	4297,0	2617,0	2434,5	2784,0	2205,5	1845,0	2166,5	2297,0	1841,0	2729,5	2401,5
1070,5	495,0	2743,0	6209,0	5845,5	1600,5	4311,5	2635,5	2456,5	2800,0	2205,5	1822,5	2123,0	2311,0	1853,5	2742,5	2384,5
1071,7	518,0	2758,0	6260,0	5813,0	1585,5	4272,5	2627,0	2483,5	2742,0	2249,0	1853,0	2145,5	2316,5	1843,0	2760,0	2347,5
1072,8	507,0	2695,0	261,0	5805,0	1547,0	4330,5	2653,0	2462,5	2744,0	2231,0	1858,5	2137,0	2324,5	1837,0	2755,0	2346,5
1073,9	515,0	2807,0	6176,0	5842,0	1585,5	4331,0	2627,5	2477,5	2799,0	2213,0	1858,5	2148,5	2328,5	1825,5	2727,5	2396,0
1075,0	499,0	2800,0	6313,0	5823,0	1573,5	4349,0	2602,0	2438,0	2774,0	2222,0	1879,5	2139,5	2342,5	1821,0	2730,0	2355,5
1076,1	500,0	2794,0	6244,0	5808,5	1532,5	4382,0	2610,0	2464,0	2765,0	2234,5	1852,0	2154,0	2310,0	1822,0	2733,0	2361,5
1077,3	493,0	2747,0	6244,0	5829,0	1585,5	4401,0	2647,5	2479,0	2776,5	2239,5	1836,5	2149,0	2325,0	1830,0	2728,0	2407,0
1078,4	512,0	2859,0	6218,0	5858,5	1579,5	4366,0	2651,5	2459,5	2808,5	2235,0	1847,0	2168,0	2278,0	1840,0	2735,0	2335,0
1079,5	495,0	2800,0	6185,0	5858,5	1561,0	4443,0	2637,5	2487,0	2760,0	2257,0	1877,0	2148,0	2334,0	1851,0	2735,0	2365,0
1080,6	507,0	2832,0	6223,0	5846,0	1566,0	4449,0	2653,0	2478,0	2749,0	2238,0	1868,5	2163,5	2356,5	1858,5	2712,0	2375,5
1081,7	498,0	2854,0	6231,0	5808,0	1569,0	4390,0	2653,0	2455,5	2753,5	2274,0	1866,0	2172,5	2346,0	1852,5	2733,0	2379,5
1082,9	509,0	2861,0	6228,0	5822,5	1572,5	4469,5	2661,0	2497,0	2770,0	2268,5	1872,0	2156,5	2330,0	1861,0	2768,5	2377,5
1084,0	503, 0	2858,0	6225,0	5829,5	1577,5	4491,0	2614,0	2493,5	2790,5	2215,5	1877,0	2178,0	2329,5	1833,0	2748,0	2388,5
1085,1	492,0	2875,0	6205,0	5864,0	1566,0	4510,5	2641,0	2520,5	2798,0	2285,5	1871,5	2192,5	2321,0	1868,5	2760,0	2383,0
1086,2	501,0	2915,0	6253,0	5858,0	1564,0	4515,5	2632,5	2473,0	2752,5	2267,0	1881,0	2180,0	2333,0	1855,0	2799,5	2396,0
1087,3	491,0	2914,0	6283,0	5836,5	1570,0	4554,0	2637,0	2497,5	2791,0	2244,0	1875,5	2171,5	2336,0	1847,5	2760,5	2413,0
1088,5	497,0	2925,0	6270,0	5847,0	1550,5	4517,5	2668,0	2462,5	2794,0	2285,5	1878,0	2182,0	2353,0	1877,5	2754,5	2382,5
1089,6	490,0	2931,0	6270,0	5827,0	1554,0	4596,0	2705,0	2483,0	2794,0	2263,5	1921,5	2193,0	2337,0	1877,0	2782,5	2367,5
1090,7	488,0	2981,0	6275,0	5868,0	1572,0	4575,0	2676,5	2503,5	2796,5	2274,5	1886,0	2195,5	2388,0	1883,5	2746,0	2393,0
1091,8	496,0	2987,0	6286,0	5892,0	1600, 0	4605,0	2662,5	2489,5	2758,0	2261,0	1899,0	2214,0	2400,0	1894,5	2735,5	2406,5
1092,9	502,0	3003,0	6295,0	5847,5	1564,5	4607,0	2662,0	2480,0	2806,0	2250,0	1890,5	2229,0	2385,5	1903,0	2749,5	2392,0
1094,0	490,0	2983,0	6238,0	5873,0	1582,5	4615,0	2658,0	2522,0	2845,0	2291,5	1905,0	2212,5	2398,5	1884,0	2754,0	2430,0
1095,2	490,0	3075,0	6332,0	5839,0	1608,5	4603,0	2652,5	2541,0	2836,0	2279,5	1901,5	2228,0	2437,0	1898,5	2767,0	2423,5
1096,3	465,0	3029,0	6268,0	5839,0	1589,5	4685,5	2633,5	2511,0	2811,5	2303,0	1906,0	2212,5	2403,0	1915,5	2782,0	2403,0
1097,4	488,0	3061,0	6349,0	5912,5	1584,0	4665,5	2672,0	2520,0	2828,0	2291,5	1916,0	2210,5	2427,5	1920,0	2792,5	2435,5
1098,5	482,0	3069,0	6336,0	5871,5	1597,5	4726,0	2673,5	2501,5	2801,0	2277,5	1952,5	2225,0	2419,5	1942,5	2799,0	2431,5
1099,6	481,0	3089,0	6303,0	5839,5	1594,5	4739,5	2677,5	2526,0	2805,0	2330,0	1955,0	2240,0	2441,0	1930,5	2751,0	2431,0
1100,7	495,0	3111,0	6293,0	5920,0	1598,0	4728,5	2685,5	2554,0	2826,0	2318,0	1949,5	2283,5	2464,0	1956,0	2809,0	2448,0
1101,9	491,0	3133,0	6333,0	5904,0	1594,5	4713,5	2686,5	2541,5	2843,5	2340,5	1937,0	2281,0	2441,5	1942,0	2826,5	2446,0
1103,0	504,0	3160,0	6276,0	5891,0	1577,0	4776,5	2676,5	2528,0	2811,5	2320,5	1971,0	2259,0	2486,0	1941,5	2787,5	2464,0
1104,1	485,0	3188,0	6332,0	5915,0	1573,5	4765,0	2724,0	2524,5	2859,0	2330,5	1936,5	2270,5	2484,5	1971,0	2800, 0	2446,0
1105,2	516,0	3155,0	6385,0	5976,0	1629,0	4839,0	2718,0	2579,0	2858,5	2361,5	1943,0	2311,5	2438,5	1972,0	2798,0	2435,5
1106,3	478,0	3209,0	6389,0	5898,0	1608,0	4811,5	2733,5	2548,0	2836,0	2367,0	1980,0	2292,5	2525,0	1968,5	2833,5	2494,0
1107,4	485,0	3222,0	6350,0	5955,0	1620,5	4816,5	2745,0	2555,5	2838,0	2345,5	1964,5	2301,0	2526,0	1977,0	2810,5	2447,5
1108,5	510,0	3227,0	6367,0	5960,0	1603,5	4899,5	2726,0	2556,0	2864,0	2345,5	1961,5	2351,5	2516,0	1979,5	2808,0	2499,0
1109,7	524,0	3227,0	6421,0	5924,0	1607,0	4830,5	2752,0	2568,0	2901,5	2337,5	1994,5	2353,0	2528,0	2019,0	2853,5	2479,5
1110,8	463,0	3291,0	6394,0	6008,5	1639,0	4853,5	2719,5	2554,5	2882,0	2385,5	1983,0	2369,5	2547,5	1981,0	2877,0	2505,0
1111,9	500,0	3328,0	6390,0	5989,0	1601,0	4839,0	2735,5	2569.5	2896,0	2368,5	2022,0	2349,0	2540,5	2046,5	2839,0	2483,0
1113,0	481,0	3307,0	6467,0	5972,5	1630,5	4925,0	2734,5	2577,0	2897,0	2375,5	2010,5	2361,5	2563,0	2035,0	2850,5	2499,0
1114,1	503, 0	3373,0	6448,0	5978,0	1616,0	4913,5	2765,0	2567,0	2892,0	2400,0	2010,5	2349,0	2603,5	2017,0	2864,0	2523,0
1115,2	502,0	3377,0	6414,0	5990,5	1626,0	4966,0	2747,0	2560,5	2912,5	2382,0	2042,0	2409,5	2616,0	2033,0	2868,5	2493,5
1116,3	486,0	3415,0	6425,0	6004,0	1637,5	4946,0	2793,5	2587,0	2930,5	2395,0	2053,0	2392,0	2604,0	2014,5	2852,0	2500,5
1117,5	473,0	3395,0	6435,0	6014,5	1651,0	4980,0	2773,0	2618,5	2923,0	2404,5	2061,5	2397,0	2634,5	2072,0	2848,0	2482,0
1118,6	511,0	3455,0	6477,0	6024,0	1648,0	4958,5	2793,5	2633,5	2941,0	2407,0	2054,5	2418,5	2669,0	2060,0	2864,5	2534,0
1119,7	493,0	3429,0	6486,0	6024,0	1630,5	4995,5	2800,0	2615,5	2894,0	2411,5	2065,0	2448,5	2652,5	2056,5	2888,5	2554,0
1120,8	495,0	3493,0	6463,0	6027,5	1615,5	4986,0	2780,0	2594,0	2938,5	2422,0	2056,0	2439,5	2694,0	2071,0	2877,5	2537,5
1121,9	507,0	3556,0	6450,0	6057,0	1647,0	5007,5	2838,5	2618,5	2921,5	2366,0	2064,0	2451,0	2640,0	2074,0	2934,0	2551,0
1123,0	496,0	3505,0	6483,0	6039,5	1637,5	5000,5	2749,5	2595,5	2963,0	2422,5	2073,5	2451,0	2702,0	2109,0	2887,5	2569,0
1124,1	483,0	3519,0	6450,0	6057,0	1660,5	5038,0	2852,0	2630,5	2972,0	2441,0	2114,0	2476,0	2735,0	2112,5	2910,0	2564,5
1125,2	485,0	3527,0	6543,0	6068,5	1648,5	5106,0	2839,5	2614,5	2956,0	2428,0	2117,5	2449,0	2708,0	2105,0	2906,0	2559,0
1126,4	509,0	3570,0	6575,0	6080,5	1682,5	5076,0	2834,0	2636,5	2973,5	2396,0	2125,0	2483,0	2733,5	2163,0	2947,0	2545,5
1127,5	491,0	3581,0	6591,0	6110,0	1671,0	5046,0	2826,0	2644,0	2977,5	2441,5	2127,0	2451,5	2742,5	2140,0	2927,0	2573,5
1128,6	477,0	3599,0	6599,0	6103,5	1690,5	5048,0	2859,0	2662,5	2961,0	2452,0	2146,0	2503,0	2748,5	2120,0	2902,0	2571,5
1129,7	505,0	3659,0	6538,0	6137,5	1683,0	5090,0	2839,0	2623,5	2983,5	2418,0	2146,5	2478,0	2771,0	2161,0	2943,0	2585,0
1130,8	481,0	3633,0	6504,0	6094,5	1653,0	5057,0	2864,0	2646,5	2978,5	2461,5	2161,0	2530,0	2782,5	2134,0	2952,0	2568,5
1131,9	495,0	3683,0	6538,0	6108,5	1673,0	5135,5	2836,5	2633,0	3022,0	2464,5	2158,0	2568,0	2806,0	2199,5	2940,0	2594,5
1133,0	521,0	3701,0	6604,0	6134,5	1710,5	5086,0	2849,0	2684,0	3016,5	2462,0	2151,5	2542,0	2790,0	2155,0	2957,5	2623,5
1134,1	501,0	3743,0	6619,0	6096,0	1696,5	5086,0	2848,0	2640,0	2999,5	2490,0	2184,0	2583,0	2816,0	2177,0	2996,0	2585,5
1135,2	491,0	3669,0	6669,0	6172,0	1701,5	5145,0	2844,0	2672,0	3046,0	2486,0	2175,0	2545,5	2854,0	2165,5	2978,5	2612,0
1136,3	500,0	3790,0	6601,0	6167,0	1706,0	5134,0	2862,5	2663,5	3025,0	2450,0	2193,5	2554,0	2836,0	2188,0	2957,0	2615,5
1137,5	510,0	3767,0	6629,0	6177,0	1705,0	5178,0	2877,5	2699,0	3068,5	2485,5	2191,0	2547,0	2865,0	2228,0	2997,0	2622,0
1138,6	508,0	3709,0	6635,0	6168,5	1713,0	5162,5	2879,0	2684,0	3044,0	2507,5	2202,0	2598,5	2873,0	2230,0	3018,0	2649,5
1139,7	511,0	3789,0	6648,0	6182,0	1678,5	5160,5	2869,5	2682,0	3037,0	2474,5	2188,0	2589,0	2881,0	2212,5	2979,0	2621,0
1140,8	492,0	3865,0	6629,0	6159,0	1703,0	5168,0	2857,5	2703,0	3053,5	2490,0	2212,0	2586,0	2939,5	2260,	2968,5	2636,0
1141,9	513,0	3855,0	6638,0	6149,5	1707,5	5192,0	2905,0	2715,5	3065,0	2479,0	2225,0	2600,5	2934,5	2247,5	2994,0	2669,0
1143,0	507,0	3901,0	6663,0	6152,0	1718,5	5223,0	2883,5	2705,5	3048,5	2465,5	2240,0	2630,5	2948,0	2230,5	3018,5	2641,0
1144,1	493,0	3876,0	6639,0	6177,0	1716,5	5210,0	2889,0	2713,0	3101,0	2504,0	2242,5	2646,0	2956,0	2245,5	3035,5	2633,5
1145,2	509,0	3879,0	6672,0	6164,5	1741,0	5250,0	2909,5	2694,5	3083,5	2511,5	2238,0	2657,5	2946,5	2233,0	3035,0	2651,0
1146,3	502,0	3941,0	6668,0	6176,5	1726,0	5175,0	2912,0	2726,0	3049,5	2475,5	2232,0	2677,5	2946,5	2261,0	3036,5	2647,0
1147,4	480,0	3945,0	6679,0	6191,5	1716,5	5222,5	2900,5	2732,0	3048,0	2467,0	2290,5	2684,0	2956,0	2277,5	3027,5	2651,5
1148,5	503,0	3951,0	6638,0	6194,0	1728,0	5225,0	2942,5	2728,0	3063,0	2556,0	2286,0	2639,0	2997,0	2291,5	3030,0	2645,5
1149,7	519,0	3957,0	6663,0	6217,5	1716,0	5261,0	2885,5	2690,0	3079,5	2494,5	2279,0	2689,5	3007,5	2295,0	3028,0	2675,5
1150,8	519,0	4019,0	6683,0	6185,5	1701,5	5197,0	2933,5	2735,0	3082,0	2485,0	2293,0	2689,0	2988,0	2289,5	3024,5	2669,0
1151,9	496,0	4008,0	6673,0	6181,0	1694,0	5236,5	2911,0	2702,0	3092,5	2502,5	2294,0	2687,0	3021,0	2291,0	3042,0	2701,5
1153,0	512,0	4043,0	6655,0	6178,0	1745,5	5160,0	2921,0	2729,5	3081,0	2493,0	2321,5	2688,0	3007,5	2299,0	3019,5	2684,0
1154,1	496,0	4024,0	6718,0	6184,5	1715,5	5199,0	2930,0	2763,0	3123,0	2494,5	2275,5	2720,0	3062,5	2307,5	3042,5	2681,0
1155,2	495,0	4084,0	6660,0	6191,5	1753,0	5227,5	2962,5	2720,5	3082,5	2518,5	2287,5	2724,5	3046,5	2303,0	3008,0	2696,5
1156,3	496,0	4049,0	6670,0	6241,0	1735,0	5288,0	2944,0	2739,0	3087,0	2511,0	2302,0	2736,5	3039,0	2307,5	3000,0	2709,0
1157,4	497,0	4087,0	6674,0	6142,0	1719,0	5252,0	2910,5	2722,0	3105,5	2527,5	2300,5	2707,0	3054,0	2314,0	3064,5	2675,0
1158,5	515,0	4068,0	6668,0	6155,5	1744,0	5205,0	2902,5	2713,5	3149,5	2499,5	2326,0	2730,5	3085,0	2309,0	3081,0	2689,0

1159,6	508,0	4089,0	6673,0	6174,5	1704,0	5260,5	2940,0	2733,5	3126,5	2519,0	2368,0	2710,5	3090,0	2369,5	3074,0	2724,0
1160,7	504,0	4163,0	6713,0	6137,5	1765,5	5272,5	2982,0	2759,5	3112,0	2520,0	2330,5	2762,5	3122,0	2341,0	3061,0	2709,5
1161,8	513,0	4205,0	6633,0	6161,5	1746,5	5250,0	2908,0	2764,0	3111,0	2515,0	2341,0	2771,0	3119,5	2370,0	3039,0	2698,5
1162,9	511,0	4229,0	6677,0	6168,0	1733,0	5268,0	2962,0	2759,5	3123,5	2518,0	2334,5	2758,5	3137,5	2377,0	3024,5	2729,0
1164,0	533,0	4145,0	6696,0	6128,0	1756,0	5305,0	2975,0	2768,5	3140,0	2540,5	2360,5	2763,0	3127,0	2356,0	3084,5	2753,5
1165,1	522,0	4197,0	6686,0	6184,5	1712,0	5289,0	2993,0	2796,5	3119,0	2488,0	2340,5	2803,0	3132,5	2386,0	3067,0	2711,0
1166,3	514,0	4231,0	6658,0	6149,0	1756,5	5295,0	2965,0	2728,0	3121,0	2491,0	2369,5	2779,0	3197,0	2356,0	3069,0	2707,5
1167,4	495,0	4279,0	6631,0	6139,0	1745,5	5311,0	2943,5	2785,0	3167,5	2489,0	2342,0	2765,0	3176,0	2371,5	3071,0	2738,5
1168,5	508,0	4266,0	6670,0	6209,0	1743,0	5258,0	2948,0	2799,5	3143,5	2505,0	2372,0	2799,5	3171,5	2406,0	3070,0	2719,5
1169,6	465,0	4304,0	6647,0	6177,0	1751,5	5316,0	2977,5	2781,0	3110,0	2531,5	2357,5	2765,5	3207,0	2384,5	3082,5	2743,0
1170,7	501,0	4253,0	6668,0	6148,5	1751,0	5341,0	3011,5	2767,5	3125,0	2499,0	2378,0	2781,5	3225,0	2410,5	3099,0	2758,0
1171,8	510,0	4315,0	6640,0	6225,5	1749,0	5318,0	2955,0	2798,0	3144,0	2516,0	2361,5	2811,0	3223,5	2417,5	3084,5	2735,5
1172,9	497,0	4308,0	6716,0	6186,5	1743,0	5273,5	2995,0	2805,0	3145,0	2547,5	2406,5	2866,5	3210,5	2392,0	3131,0	2748,0
1174,0	524,0	4273,0	6624,0	6234,0	1737,0	5304,5	3013,0	2792,5	3167,5	2542,5	2392,0	2830,0	3225,0	2412,0	3115,5	2784,0
1175,1	505,0	4319,0	6732,0	6187,0	1742,5	5352,5	2991,0	2778,5	3132,5	2531,5	2414,0	2852,0	3273,5	2416,0	3113,0	2775,5
1176,2	503,0	4342,0	6645,0	6179,5	1777,0	5349,0	2979,5	2804,5	3191,5	2556,0	2423,0	2842,0	3267,0	2453,0	3111,5	2786,5
1177,3	493,0	4293,0	6734,0	6174,0	1764,0	5353,0	3000,0	2807,0	3159,0	2515,0	2407,5	2868,0	3265,5	2462,0	3111,0	2792,0
1178,4	513,0	4344,0	6682,0	6233,0	1754,0	5317,0	3004,0	2778,5	3198,0	2513,0	2443,5	2871,0	3273,0	2450,0	3124,5	2766,0
1179,5	514,0	4387,0	6777,0	6188,5	1745,0	5337,5	3041,5	2800,5	3185,5	2516,5	2450,0	2860,5	3265,0	2439,0	3138,5	2782,0
1180,6	513,0	4383,0	6668,0	6192,5	1758,0	5373,0	2986,0	2827,0	3224,5	2576,5	2457,0	2899,0	3285,0	2438,0	3173,0	2816,5
1181,7	495,0	4390,0	6765,0	6234,5	1766,5	5421,5	3038,0	2813,5	3201,0	2559,0	2447,5	2916,0	3333,5	2457,0	3130,0	2797,5
1182,8	508,0	4386,0	6735,0	6248,0	1789,0	5404,5	3058,0	2826,0	3266,5	2545,5	2439,0	2873,0	3296,0	2437,0	3194,5	2838,0
1183,9	514,0	4398,0	6711,0	6206,5	1746,0	5340,5	3073,0	2849,5	3230,0	2561,0	2469,0	2910,5	3331,0	2477,0	3149,0	2819,5
1185,0	504,0	4365,0	6685,0	6212,5	1773,5	5374,0	3072,5	2834,0	3213,0	2589,0	2481,5	2907,0	3374,0	2453,5	3140,5	2838,0
1186,1	529,0	4419,0	6747,0	6244,0	1759,5	5429,0	3078,0	2858,5	3242,5	2557,5	2488,0	2900,0	3371,5	2492,0	3159,0	2813,0
1187,2	534,0	4467,0	6766,0	6209,5	1772,0	5341,0	3092,5	2863,0	3239,0	2534,0	2470,5	2915,0	3351,0	2485,5	3185,5	2841,5
1188,3	519,0	4409,0	6807,0	6253,5	1772,0	5412,0	3066,0	2883,5	3240,0	2572,5	2484,0	2938,0	3381,5	2522,0	3214,0	2829,5
1189,4	515,0	4435,0	6759,0	6197,5	1775,0	5368,0	3086,5	2863,0	3262,5	2613,5	2457,0	2925,0	3404,5	2497,5	3194,5	2853,5

B.4.8: Table showing the Raman shifts of the first 15 of 32 analysed grains of TNS18.

TNS18	Turner Exploration Campe															
	Intensity (A.U)	Raman shift (cm^{-1})														
		Grain 1	Grain 2	Grain 3	Grain 4	Grain 5	Grain 6	Grain 7	Grain 8	Grain 9	Grain 10	Grain 11	Grain 12	Grain 13	Grain 14	Grain 15
	-38,6	21,0	25,0	19,0	30,0	26,0	28,0	24,0	27,0	23,0	22,0	23,0	21,0	25,0	17,0	22,0
	-37,3	26,0	17,0	24,0	26,0	20,0	21,0	17,0	24,0	21,0	15,0	25,0	17,0	19,0	21,0	19,0
	-35,9	26,0	28,0	23,0	25,0	24,0	25,0	17,0	31,0	29,0	32,0	24,0	28,0	32,0	25,0	26,0
	-34,6	29,0	28,0	28,0	25,0	33,0	21,0	29,0	28,0	30,0	29,0	25,0	24,0	27,0	19,0	24,0
	-33,3	17,0	21,0	21,0	25,0	26,0	20,0	27,0	28,0	24,0	29,0	24,0	31,0	23,0	22,0	28,0
	-32,0	30,0	23,0	25,0	27,0	21,0	23,0	25,0	26,0	23,0	28,0	31,0	23,0	25,0	23,0	21,0
	-30,7	19,0	22,0	23,0	31,0	22,0	23,0	29,0	31,0	27,0	23,0	23,0	30,0	25,0	28,0	23,0
	-29,4	25,0	33,0	26,0	27,0	23,0	15,0	32,0	25,0	24,0	23,0	21,0	27,0	22,0	19,0	27,0
	-28,1	19,0	24,0	21,0	30,0	26,0	22,0	26,0	32,0	21,0	24,0	27,0	23,0	27,0	24,0	25,0
	-26,8	23,0	27,0	26,0	25,0	23,0	23,0	23,0	21,0	17,0	21,0	27,0	22,0	28,0	21,0	22,0
	-25,5	28,0	24,0	25,0	31,0	22,0	25,0	30,0	25,0	23,0	28,0	21,0	21,0	26,0	29,0	25,0
	-24,2	19,0	25,0	28,0	32,0	26,0	17,0	25,0	27,0	21,0	25,0	23,0	23,0	25,0	18,0	26,0
	-22,9	24,0	23,0	26,0	23,0	26,0	26,0	29,0	29,0	25,0	28,0	24,0	25,0	23,0	26,0	23,0
	-21,6	17,0	27,0	24,0	22,0	26,0	25,0	29,0	26,0	21,0	27,0	26,0	9,0	23,0	26,0	26,0
	-20,3	25,0	24,0	23,0	22,0	21,0	26,0	25,0	26,0	27,0	29,0	21,0	25,0	27,0	25,0	26,0
	-19,0	15,0	29,0	26,0	20,0	31,0	25,0	21,0	30,0	27,0	27,0	24,0	23,0	29,0	23,0	27,0
	-17,7	23,0	25,0	21,0	28,0	23,0	21,0	29,0	29,0	19,0	27,0	25,0	22,0	25,0	20,0	29,0
	-16,4	27,0	30,0	28,0	23,0	22,0	19,0	25,0	23,0	21,0	25,0	27,0	27,0	25,0	25,0	29,0
	-15,1	28,0	21,0	28,0	31,0	21,0	21,0	29,0	23,0	23,0	20,0	23,0	26,0	22,0	28,0	23,0
	-13,8	24,0	33,0	27,0	29,0	20,0	24,0	21,0	21,0	21,0	28,0	23,0	24,0	29,0	23,0	29,0
	-12,5	27,0	24,0	27,0	27,0	28,0	26,0	33,0	28,0	29,0	23,0	23,0	27,0	26,0	23,0	27,0
	-11,2	23,0	29,0	27,0	27,0	26,0	21,0	30,0	33,0	22,0	27,0	30,0	27,0	31,0	26,0	33,0
	-9,8	25,0	28,0	28,0	28,0	25,0	23,0	31,0	26,0	27,0	21,0	23,0	24,0	25,0	26,0	23,0
	-8,5	24,0	31,0	25,0	31,0	22,0	29,0	29,0	31,0	23,0	30,0	27,0	29,0	25,0	27,0	30,0
	-7,2	27,0	34,0	31,0	25,0	30,0	27,0	27,0	31,0	32,0	23,0	26,0	29,0	29,0	30,0	32,0
	-5,9	21,0	30,0	32,0	25,0	29,0	32,0	31,0	36,0	35,0	35,0	33,0	31,0	33,0	31,0	36,0
	$-4,6$	60,0	59,0	47,0	52,0	51,0	39,0	41,0	47,0	42,0	43,0	43,0	31,0	37,0	38,0	45,0
	-3,3	179,0	181,0	153,0	139,0	121,0	121,0	132,0	133,0	121,0	119,0	117,0	134,0	131,0	141,0	145,0
	$-2,0$	386,0	368,0	353,0	331,0	338,0	309,0	340,0	354,0	329,0	343,0	309,0	331,0	324,0	305,0	355,0
	$-0,7$	615,0	633,0	609,0	628,0	581,0	549,0	565,0	573,0	552,0	605,0	515,0	569,0	563,0	546,0	588,0
	0,6	728,0	785,0	785,0	795,0	767,0	739,0	733,0	729,0	690,0	743,0	759,0	770,0	826,0	769,0	819,0
	1,9	545,0	581,0	625,0	595,0	575,0	589,0	579,0	614,0	539,0	581,0	567,0	629,0	643,0	644,0	663,0
	3,2	307,0	331,0	336,0	338,0	350,0	340,0	333,0	335,0	312,0	365,0	337,0	379,0	362,0	368,0	395,0
	4,5	81,0	98,0	119,0	116,0	104,0	96,0	110,0	111,0	103,0	109,0	114,0	132,0	142,0	131,0	145,0
	5,8	27,0	36,0	28,0	29,0	35,0	32,0	32,0	38,0	29,0	33,0	34,0	35,0	37,0	28,0	43,0
	7,1	31,0	27,0	37,0	29,0	29,0	29,0	29,0	35,0	31,0	23,0	36,0	27,0	29,0	29,0	33,0
	8,4	22,0	23,0	28,0	30,0	31,0	27,0	24,0	31,0	25,0	32,0	22,0	32,0	30,0	26,0	28,0
	9,7	25,0	19,0	26,0	25,0	21,0	28,0	32,0	34,0	27,0	28,0	19,0	28,0	25,0	23,0	32,0
	11,0	22,0	29,0	23,0	23,0	26,0	24,0	31,0	33,0	27,0	34,0	26,0	30,0	31,0	24,0	27,0
	12,3	32,0	23,0	24,0	33,0	23,0	26,0	32,0	30,0	25,0	29,0	25,0	21,0	27,0	23,0	31,0
	13,6	22,0	26,0	23,0	32,0	28,0	25,0	25,0	29,0	24,0	31,0	27,0	36,0	30,0	27,0	25,0
	14,9	23,0	27,0	24,0	27,0	23,0	21,0	25,0	27,0	23,0	27,0	28,0	31,0	28,0	21,0	26,0
	16,2	25,0	29,0	27,0	28,0	26,0	22,0	32,0	32,0	21,0	28,0	28,0	25,0	26,0	25,0	33,0
	17,5	25,0	25,0	27,0	29,0	25,0	19,0	22,0	28,0	13,0	23,0	22,0	25,0	20,0	27,0	21,0
	18,8	22,0	24,0	27,0	27,0	26,0	27,0	28,0	33,0	24,0	34,0	22,0	30,0	34,0	29,0	29,0
	20,1	27,0	29,0	31,0	19,0	29,0	19,0	25,0	35,0	25,0	25,0	29,0	26,0	31,0	24,0	29,0
	21,3	17,0	19,0	27,0	27,0	32,0	27,0	31,0	30,0	27,0	33,0	28,0	29,0	31,0	27,0	36,0
	22,6	17,0	31,0	27,0	25,0	25,0	22,0	29,0	27,0	27,0	30,0	27,0	15,0	23,0	23,0	25,0
	23,9	25,0	27,0	27,0	33,0	27,0	27,0	29,0	26,0	19,0	31,0	27,0	28,0	30,0	23,0	35,0
	25,2	21,0	27,0	31,0	27,0	27,0	21,0	31,0	33,0	29,0	27,0	28,0	33,0	31,0	19,0	25,0
	26,5	25,0	30,0	17,0	26,0	25,0	26,0	-36,0	-31,0	21,0	27,0	31,0	27,0	27,0	25,0	34,0
	27.8	19,0	31,0	25,0	25,0	28,0	19,0	29,0	28,0	() 19,0	31,0	29,0	25,0	27,0	27,0	34,0
	29,1	31,0	27,0	29,0	33,0	21,0	21,0	33,0	33,0	-25,0	21,0	17,0	23,0	27,0	25,0	31,0
	30,4	20,0	29,0	26,0	26,0	25,0	19,0	31,0	29,0	27,0	26,0	24,0	29,0	36,0	25,0	27,0
	31,7	31,0	25,0	29,0	29,0	(26,0	25,0	33,0	37,0	23,0	-30,0	23,0	30,0	27,0	29,0	29,0
	33,0	23,0	31,0	25,0	25,0	29,0	27,0	34,0	35,0	22,0	27,0	28,0	31,0	33,0	23,0	33,0
	34,3	31,0	24,0	25,0	31,0	23,0	24,0	29,0	31,0	25,0	31,0	29,0	21,0	33,0	25,0	30,0
	35,6	23,0	25,0	27,0	32,0	24,0	29,0	32,0	29,0	30,0	31,0	26,0	34,0	37,0	23,0	33,0
	36,9	25,0	23,0	29,0	29,0	27,0	21,0	40,0	38,0	25,0	32,0	31,0	25,0	27,0	29,0	35,0
	38,2	21,0	29,0	29,0	33,0	32,0	27,0	42,0	43,0	27,0	35,0	37,0	33,0	39,0	37,0	41,0
	39,5	30,0	37,0	32,0	36,0	33,0	23,0	41,0	41,0	23,0	33,0	33,0	34,0	41,0	35,0	41,0
	40,8	33,0	37,0	43,0	44,0	35,0	32,0	47,0	47,0	29,0	47,0	37,0	46,0	49,0	41,0	55,0
	42,1	35,0	53,0	43,0	45,0	41,0	35,0	75,0	65,0	41,0	63,0	51,0	61,0	62,0	56,0	76,0
	43,4	46,0	59,0	63,0	58,0	47,0	31,0	105,0	97,0	51,0	87,0	69,0	87,0	85,0	82,0	99,0
	44,7	49,0	75,0	89,0	78,0	69,0	40,0	128,0	140,0	74,0	115,0	97,0	113,0	119,0	117,0	157,0
	46,0	70,0	98,0	123,0	104,0	87,0	63,0	194,0	183,0	97,0	151,0	113,0	150,0	164,0	157,0	209,0
	47,2	87,0	120,0	158,0	134,0	105,0	73,0	250,0	227,0	107,0	212,0	157,0	201,0	227,0	213,0	276,0
	48,5	101,0	150,0	186,0	162,0	131,0	89,0	332,0	289,0	139,0	260,0	195,0	260,0	283,0	287,0	341,0
	49,8	121,0	189,0	231,0	184,0	154,0	98,0	389,0	354,0	160,0	321,0	232,0	314,0	341,0	309,0	399,0
	51,1	136,0	193,0	235,0	218,0	181,0	117,0	453,0	389,0	185,0	350,0	267,0	353,0	404,0	370,0	486,0
	52,4	143,0	230,0	272,0	253,0	193,0	117,0	493,0	449,0	208,0	410,0	281,0	399,0	438,0	413,0	515,0
	53,7	163,0	239,0	295,0	266,0	213,0	139,0	531,0	481,0	227,0	439,0	326,0	441,0	483,0	459,0	603,0
	55,0	174,0	267,0	310,0	290,0	217,0	134,0	590,0	536,0	250,0	474,0	332,0	484,0	539,0	497,0	617,0
	56,3	182,0	282,0	322,0	309,0	215,0	141,0	638,0	571,0	271,0	498,0	381,0	523,0	573,0	550,0	685,0
	57,6	195,0	292,0	346,0	324,0	241,0	147,0	667,0	553,0	272,0	539,0	379,0	556,0	609,0	550,0	703,0
	58,9	197,0	291,0	353,0	341,0	263,0	160,0	682,0	604,0	267,0	562,0	372,0	579,0	622,0	581,0	721,0
	60,2	218,0	306,0	356,0	351,0	269,0	164,0	717,0	641,0	287,0	561,0	414,0	615,0	654,0	589,0	749,0
	61,5	209,0	322,0	366,0	357,0	280,0	159,0	736,0	645,0	273,0	586,0	400,0	597,0	651,0	630,0	770,0
	62,7	208,0	303,0	371,0	362,0	287,0	168,0	718,0	667,0	301,0	596,0	394,0	626,0	711,0	588,0	784,0
	64,0	215,0	323,0	359,0	359,0	278,0	163,0	752,0	660,0	304,0	596,0	403,0	635,0	688,0	607,0	803,0
	65,3	203,0	340,0	368,0	366,0	299,0	162,0	765,0	725,0	313,0	607,0	403,0	651,0	704,0	610,0	830,0
	66,6	205,0	345,0	404,0	375,0	306,0	175,0	799,0	718,0	307,0	655,0	433,0	669,0	729,0	644,0	861,0
	67,9	230,0	366,0	421,0	395,0	316,0	181,0	834,0	773,0	319,0	692,0	455,0	669,0	781,0	665,0	899,0
	69,2	251,0	380,0	455,0	423,0	345,0	195,0	901,0	872,0	375,0	717,0	487,0	739,0	832,0	715,0	989,0
	70,5	269,0	430,0	459,0	481,0	372,0	220,0	980,0	918,0	395,0	777,0	545,0	811,0	898,0	794,0	1059,0
	71,8	301,0	493,0	524,0	547,0	427,0	245,0	1056,0	1049,0	434,0	885,0	603,0	881,0	958,0	853,0	1153,0
	73,1	335,0	514,0	581,0	598,0	469,0	265,0	1176,0	1152,0	495,0	951,0	657,0	984,0	1064,0	950,0	1240,0
	74.3	343,0	563,0	597,0	659,0	497,0	273,0	1243,0	1271,0	527,0	1046,0	687,0	1050,0	1193,0	1036,0	1355,0
	75,6	381,0	628,0	660,0	698,0	538,0	308,0	1330,0	1410,0	578,0	1120,0	736,0	1097,0	1213,0	1098,0	1381,0
	76,9	402,0	656,0	710,0	725,0	587,0	324,0	1417,0	1498,0	602,0	1189,0	788,0	1183,0	1311,0	1157,0	1473,0
	78,2	413,0	681,0	729,0	777,0	613,0	347,0	1491,0	1561,0	649,0	1261,0	847,0	1225,0	1388,0	1197,0	1539,0
	79,5	428,0	725,0	739,0	822,0	675,0	347,0	1506,0	1635,0	657,0	1314,0	850,0	1281,0	1455,0	1276,0	1612,0
	80,8	425,0	748,0	773,0	855,0	700,0	346,0	1597,0	1705,0	674,0	1345,0	907,0	1327,0	1530,0	1341,0	1653,0
	82,1	443,0	799,0	791,0	897,0	715,0	375,0	1684,0	1804,0	720,0	1450,0	901,0	1371,0	1608,0	1378,0	1766,0
	83,4	457,0	797,0	812,0	908,0	735,0	365,0	1724,0	1895,0	708,0	1449,0	967,0	1417,0	1629,0	1401,0	1832,0
	84,6	453,0	829,0	815,0	955,0	770,0	395,0	1777,0	1908,0	749,0	1474,0	971,0	1475,0	1675,0	1476,0	1841,0

489,0	868,0	857,0	983,0	809,0	385,0	1869,0	2028,0	758,0	1531,0	1038,0	1476,0	1776,0	1494,0	1927,0
471,0	88,0	2,0	038,0	826,0	369,0	1880,0	2135,0	756,0	1551,0	1006,0	1545,0	1779,0	1505	1967
471,0	902,0	877,0	1069,0	41,0	394,0	1934,0	2216,0	769,0	1605,0	1027,0	1558,0	1859,0	1536,0	2014
492,0	943,0	78,0	1039,0	55,0	396,0	1960,0	2227,0	764,0	1693,0	1044,0	1635,0	1881,0	1541,0	2035,0
493,0	919,0	876,0	1092,0	843,0	402,0	1991,0	2326,0	783,	1702,0	1061,0	1662,0	1926,0	1612,0	2120,0
490,0	988,0	895,0	147,0	5,0	405,0	2036,	2338,0	768,	1746,0	1085,0	1700,	1982,	1619	2171,0
489,0	01,	935,0	76,0	899,0	406,0	28,0	422,0	798,0	46	88	1706,0	2049,0	1638,0	2181,0
489,0	004,	940,0	1205,0	939,0	411,0	2187,0	509,	809,0	1828,0	1120,0	175,0	2074,0	1670,0	2281,0
492,0	1039,0	930,0	1230,0	941,0	389,0	2265,0	2599,0	789,0	1868,0	172,0	1813,0	2 137,0	1669,0	347,0
475,0	1085,0	962,0	287,	971,0	392,0	39,	645,0	7,0	1924,0	1153,0	1879,	194,0	694,	365
507,0	1091,0	957,0	1358,0	1003,0	400,0	2405,0	2745,0	812,0	1937,0	1179,0	1853,0	2287,0	1692,0	2448,0
497,0	1151,0	4,0	1383,0	1070,0	98,0	2467,0	2872,0	811,0	2046,0	1173,0	1925,0	2338,0	1717,0	2531,0
507,0	1174,0	962,0	1425,0	1061,0	400,0	2522,0	2923,0	798,0	2060,0	1243,0	1990,0	2409,0	1728,0	2613,0
498,0	1187,0	9,0	1453,0	1089,0	395,0	2605,0	3079,0	822,0	2101,0	1257,0	2073,0	2462,0	1679,0	2660,0
501,0	1238,0	954,0	479,0	131,0	3,0	2689,0	3241,0	10,0	2164,0	1287,0	2107,0	2496,0	1734,0	2735
499,0	272,	958,0	69,0	157,0	406,0	823,	339,0	28,0	212,	299,	187,	625,	1751,0	2807,0
479,0	1316,0	975,0	1617,0	1207,0	409,0	2908,0	3476,0	808,0	230	1332,0	2222,0	2733,0	1692,0	2902,0
513,0	1338	979,0	89	259,0	406,0	2968 ,	642,0	,0	2382,0	328,0	305,0	833,0	757,	032,
507,0	1386,	981,0	1735,	1271,0	7,0	3147	3805,	804,	2425,	1443,	2407	2940	744,	3136
520,0	1473,0	1003,0	830,	1350,0	415,0	3245,0	4012,0	821,	2545,	1470	2503,0	3031,0	1757,0	3272,0
499,0	1507,0	969,0	18880	1407,0	405,0	3361,0	4217,0	832,0	2670,0	1520,0	2583,0	3117,0	1765,0	3377
533,0	1565,0	9,0	2007,0	1475,0	7,0	3522,0	4423,0	829,0	2761,0	1568,0	2662,0	3272,0	1772,0	3519,0
487,0	1669,0	015,0	2064,0	1525,0	397,0	3710,0	4754,0	40,	2823,0	1635,0	2756,0	3491,0	1749,0	3670,0
512,0	1745,0	9,0	233,0	669,0	432,0	3848,	010,0	32,0	2965,	1704	911,	673,0	779,0	865,0
493,0	1845,	1002,0	2363,0	707,0		4116,0	5368,0	24,0	3202	1770,0	3002,0	838,	1758,0	4103,0
530,0	2016,	5,0	522,	795,0	418,0	4413,0	28,0	843,0	3377	875,0	295,0	099,0	1814,0	375,
529,0	2154,	009,0	2763,	1977,0	431,0	4659	296,	868,0	3629,	1978	3469	4349	1770	4692,0
51	2333,	023,0	2967,0	2067,0	441,0	5039	6707	872,0	3863,	2123	3706,0	4727	1783,0	5098,0
535	2534,0	1022,0	3178,0	2318,0	443,0	5455	7506,0	847,	4210,0	2249,	3984,0	5118,0	1799	5331,0
537.	2761,0	1033,0	3539,	2531,0	3,0	5987	8356,0	69,	4537.	2460	4347,	5 575,0	1758,0	0
52	3095,0	033,0	3867,0	2767,0	461,0	6611	9 231,	893,0	4956	2681,0	4799,	6194,	1800,0	630,0
533,0	89,	1032,0	4334,0	081,0	74,0	7380,0	10509	26,0	5 501,0	2961,0	353,	938	1802,0	436,0
549,0	905,	1053,0	4977,0	555,0		8198,	013	04,0	6261	3 307,0	6041	93,	812,	403,0
571,0	4503,	1096,0	5693,0	047,0	475,0	9443	13969	33,0	698	305,	901,0	799,0	773,	582
55	5172,0	054,	6610,	4625,0	495,0	10961	16369	946,0	121,	4314	8004,0	10215,0	1785,0	11 097,0
545,0	6186	068	816,	479,	521,0	1295	694,	975,0	9461	5149	9300,	11947	1818	13148,0
5,0	7570,	1079,	9383	537	531,0	1560	186	973,0	11402	6195	11 172,	14172	1827	1585
9,0	9311,	1095,0	11549,	925,0	560,0	1916	532	1016	13985	669,	13816	17359	882,	561,0
617,0	11966	069,	14 537,0	9985	623,0	241	39527	10	577	9853	779	1563	866	825,0
661,0	15692,	097,0	102	13034	680,0	31237	52531	1061,0	263	870	2463	27734,0	1899,0	32568,0
703, 0	21001,	175,0	508	17187		40982	6494	1146	29	188	567	6580	992	501
765,0	28315,	1224,0	34665	23113	,	4247,0	64940	124	3940	22 486,	38921,0	48369,	082,	32
862,0	36473,	348,0	46048,0	30975,0	964,0	54940,0	64940,0	1322	50672	27285,0	49 599,	63 485,	265	440,0
891,0	42 907,0	429,0	57 307,0	38917,0	087,0	64940,0	64940,0	1415,0	61424,	30445,0	59662,0	64940	2422,0	64940,0
1,0	44607,0	1462,0	62 965,0	42843,0	1144,0	64940,0	64940,0	1446,0	64940,0	29 987,0	64899.5	64 940,	2547,0	64940,0
861,0	40919,0	1359,0	58831,0	40 101,0	1092,0	64940	64940	1425,	64940	26259,0	63 200,	6494	2430	940,0
785,0	32827,0	1233,	47874,0	32837,0	1002,0	64940	64940	1337,0	57600	20845	54359,	64940,0	303,	,0
735,0	24873,	144,0	35	597,	909,0	63507	64940,	1193	45863	15	42 487,0	62 101,0	2029,0	61 599,0
689,0	18193,	085,0	26353,0	9960	763,0	481610	58757,	1099	3497	11569	1281810	17	1942,0	477,0
647,0	13485	664	292,	13299	707,0	36033	43231,	1051,	26251	8819,0	997,	5367	1835,0	33 429,0
637,0	10219,	038,0	14 678,	9981	65	27295	32343	979	19976	6827	18269	26 652,	797,	25087
58	7938,0	983,0	11 584,0	7865,0	589,0	21159,0	25030,0	950,0	15 537,0	5567,0	14360,0	20567,0	1737,0	19 516,0
577	6361,0	1011,0	076,0	6203,0	567,0	16779,0	19941,0	921,0	12357,0	4570,0	11 417,0	16 209,0	1744,0	15 341,0
593,0	5235,0	981,0	7403,0	5122,0	543,0	13561,0	16138,0	911,0	10074,0	3875,0	9290,0	13097,0	1731,0	
55	4331,	4,0	148,	4320	521,0	11245	13 352	896,0	8274	261,	7793,	10 791,0	717,0	10349,0
545,0	3669	957,0	139,	3595	507,0	9522	11 261,0	930,0	7080	2938	6568,	26,	1671,	8758,0
552,0	188	2,0	426	3134,0	484,0	8059	9601,0	875,0	6131,	26	5712,	79	707	7490,0
547,0	2754	985,0	3831,0	2693,0	487,0	7022,0	8301,0	898,0	5265,	2367,	4964	6707,0	686,	6544
548,0	2480	968,0	3392,0	2419,0	477,0	6181,0	7309,0	875,0	4674	2090	4381	5826	658	5743,0
	2201,	88,0	3033,0	2109,0	473,0	5 500,0	6398,0	872,0	4177,0	1913,	3907	5247,0	1644,	5095
	1989,0	989,0	2661,0	1946,0	459,0	4930,0	5802,0	849,0	3820	1789	3540,0	4631,0	1669,	4645,0
	1824,0	956,0	2414,0	1760,0	471,0	4421,0	5166,0	883,0	3481	1687	3225,0	4220,0	1671,0	4162,0
543,0	1697,0	6,0	2 233,	1589,0	467,0	4014,0	692,	871,0	3142	1614	2973	3873,	1704,	876,
	1555,	964,0	558,	511,0	455,0	775	295,		931,	1543	2782	3469,	1675	
550,0	417,	9,0	852,	387,	454,0	489,	976,	865,0	2732	1460	2600	3247,	692,	343,
534,0	1381,0	989,0	1746,0	287,0	441,0	357,0	3636,0	861,0	2543	1396	2423	3034	688	3110,0
52	1301,	976,0	1638	250,0	447,0	2997	3404	836	2453	1321	2307	2855,	1703,0	2888,0
4,0	1246,0	1005,0	1549,	169,0	426,0	2855	3226,0	848,0	2293	1300	2205,	2683,0	1705	2738,0
521,0	1155,0	975,0	1429,	117,0	1,0	2680	2969,0	841,0	2183	1255	2086	2 531,0	1720,	2606,0
519,0	1110,	993,0	1357,	1026,0	432,0	2552	2 797,0	823,	2065	1217	2024	2379,0	1741,0	2501,0
523,0	1042,0	009,0	1285,	1022,0	415,0	2507,	672,0	328,0	2007	1175	1887	2246,0	1761,	383,0
539,0	1020,0	032,0	264,0	5,0	23,0	331,0	487,0	835,0	919,	180,	847	176,0	1778	261,0
499,0	984,0	028,0	158,	3,0	415,0	244,0	367,0	86,	1856,	1137	1758	2 102,0	1817	178,0
525,0	953,	070,0	1149,	86,0	420,0	2139,0	2279,0	838,0	1776,	1092,0	1700,0	1973,0	1817,	2124,0
539,0	911,0	1042,0	1087,0	869,0	419,0	2109,0	2 184,0	831,0	1714,	1086,0	1671,0	1920,0	1853,0	2049,0
523,0	861,0	1066,0	1045,0	58,0	421,0	1979,	2076,0	861,0	1647,	1068,0	1595,0	1839,0	1865,0	1987,0
523,0	857,0	1079,0	997,0	6,0	417,0	1876,	1990,0	827,0	1627,0	1015,0	1555,0	1793,0	1889,0	1889,0
501,0	830,0	1051,0	947,0	76,0	414,0	1869,	1949,0	859,0	1622,	1003,0	1565,	1760,0	1928,0	1845,0
526,0	810,0	1092,0	53,0	36,0	2,0	1812,	906,0	33,	563,	1034,0	1524,0	711,0	1940,0	1807
527,0	814,0	1114,0	33,	59,0	413,0	808,0	840,0	迷,	545,	1,	489,	639,0	989,	797,0
521,0	805,0	1113,0	95,0	35,0	39,0	760,	831,0	84,0	1528,0	8,	428,	1646,0	2006,	787,
520,0	804,0	1098,0	895,0	741,0	418,0	1827,0	1851,0	853,0	1536,0	1021,0	1435,0	1640,0	2006,0	1726,0
545,0	829,0	1156,0	915,0	761,0	414,0	1854,0	2056,0	855,0	1517,0	1062,0	1495,0	1660,0	2051,0	1821,0
523,0	903,0	1154,0	1017,0	15,0	389,0	1955,0	2349,0	885,	1676,	1117,0	1588,0	1777,0	2040,0	1931,0
533,0	1087,0	1192,0	1177,0	937,0	437,0	2248,0	2877,0	852,0	1828,0	1272,0	1769,0	2050,0	2103,0	2255,0
528,0	1325,0	1194,0	1500,0	1151,0	415,0	2542,0	3 398,0	900,0	2097,0	1359,0	2009,0	2463,0	2143,0	2715,0
557,0	1442,0	1 190,0	1747,0	439,0	6,0	2848,	607,0	872,	2254,0	1376	2 236,	2786,0	2161,	3086
531,0	1366,0	1201,0	1705,0	1301,0	441,0	2848,	3 362,0	881,0	289,0	1334,0	2263,	2772,0	190,	051,0
501,0	1159,0	1215,0	1392,0	1102,0	403,0	2539,0	2793,0	860,0	2100,0	1193,0	2064,0	2544,0	188,	2627,0
501,0	1006,0	1244,0	1125,0	935,0	446,0	2261,0	2 249,0	869,0	1876,0	1114,0	1822,0	2153,0	2241,0	2260,0
537,0	905,0	1264,0	1001,0	807,0	409,0	1972,0	1937,0	870,0	1646,0	1040,0	1611,0	1894,0	2254,0	1958,0
531,0	819,0	1230,0	905,0	732,0	432,0	1799,0	1733,0	868,0	1544,0	989,0	1477,0	1688,0	2318,0	1783,0
534,0	800,0	1247,0	831,0	748,0	435,0	1681,0	1625,0	910,0	1452,0	1002,0	1377,0	1606,0	2298,0	1682,0
539,0	763,0	1292,0	844,0	705,0	431,0	1615,0	1568,0	887,0	1416,0	1011,0	1313,0	1532,0	2338,0	1599,0
528,0	781,0	1270,0	783,0	78,0	436,0	1560,	1492,0	884,0	1405,0	973,0	1357,0	1455,0	2372,0	1560,
545,0	742,0	1295,0	763,0	660,0	469,0	1505,0	1469,0	889,0	1343,0	966,0	1343,0	1422,0	2425,	1520,0
548,0	719,0	1319,0	720,0	66,0	438,0	1482,0	1404,0	871,0	1336,0	929,0	1288,0	1393,0	2408,0	1491,0
551,0	714,0	1329,0	727,0	623,0	441,0	1436,0	1386,0	882,0	1287,0	959,0	1262,0	1387,0	2447,0	1481,0
558,0	691,0	1329,0	734,0	645,0	467,0	1427,0	1376,0	893,0	1337,0	954,0	1209,0	1361,0	2493,0	1467,0
544,0	690,0	1357,0	727,0	607,0	473,0	1450,0	1355,0	877,0	1276,0	980,0	1226,0	1329,0	2529,0	1465

214,7	564,0	673,0	1350,0	715,0	631,0	463,0	1408,0	1337,0	886,0	1245,0	903,0	1237,0	1329,0	2508,0	1409,0
216,0	561,0	689,0	1386,0	687,0	619,0	515,0	1404,0	1289,0	896,0	1219,0	929,0	1215,0	1285,0	2561,0	1446,0
217,2	569,0	681,0	1386,0	677,0	629,0	529,0	1329,0	1290,0	860,0	1231,0	911,0	1184,0	1280,0	2589,0	1385,0
218,5	561,0	624,0	1348,0	665,0	600,0	580,0	1338,0	1260,0	878,0	1217,0	930,0	1175,0	1260,0	2557,0	1411,0
219,8	606,0	641,0	1375,0	658,0	612,0	631,0	1321,0	1279,0	909,0	1234,0	912,0	1175,0	1280,0	2582,0	1380,0
221,0	615,0	634,0	1407,0	649,0	649,0	717,0	1330,0	1245,0	880,0	1222,0	908,0	1191,0	1202,0	2612,0	1353,0
222,3	697,0	603,0	1424,0	632,0	651,0	906,0	1308,0	1243,0	938,0	1189,0	937,0	1152,0	1238,0	2642,0	1379,0
223,5	802,0	637,0	1449,0	636,0	673,0	1145,0	1287,0	1199,0	999,0	1194,0	942,0	1161,0	1221,0	2659,0	360,0
224,8	906,0	627,0	1415,0	672,0	720,0	1553,0	1261,0	1 199,0	1000,0	120,0	973,0	1157,0	1248,0	2668,0	1341,0
226,1	983,0	615,0	1417,0	626,0	805,0	1853,0	1269,0	1200,0	1089,0	1181,0	994,0	1171,0	1221,0	2664,0	1332,0
227,3	1009,0	604,0	1486,0	640,0	870,0	1928,0	1286,0	1220,0	1138,0	1173,0	977,0	1133,0	1224,0	2690,0	1328,0
228,6	911,0	618,0	1444,0	627,0	821,0	1605,0	1276,0	1179,0	1059,0	1189,0	978,0	1126,0	1217,0	2742,0	1324,0
229,8	799,0	579,0	1444,0	635,0	729,0	1225,0	1269,0	196,0	1002,0	1161,0	954,0	1388,0	1218,0	2734,0	1329,0
231,1	708,0	606,0	1449,0	614,0	670,0	956,0	1239,0	1163,0	959,0	1137,0	917,0	1120,0	1208,0	2708,0	1269,0
232,4	673,0	588,0	1420,0	597,0	587,0	783,0	1240,0	1165,0	907,0	1134,0	878,0	1116,0	1183,0	2711,0	1326,0
233,6	609,0	586,0	1433,0	583,0	593,0	673,0	1262,0	1157,0	946,0	1167,0	914,0	1091,0	1169,0	2760,0	1263,0
234,9	618,	609,0	1437,0	603,0	594,0	599,0	1267,0	1337,0	930,0	1158,0	898,0	1112,0	1177,0	2799,0	1290,0
236,2	634,0	600,0	1448,0	627,0	584,0	591,0	1237,0	146,0	896,0	1161,0	898,0	1118,0	1199,0	2707,0	1268,0
237,4	595,0	573,0	1443,0	621,0	567,0	569,0	1240,0	1139,0	917,0	1136,0	882,0	1107,0	1146,0	2771,0	1303,0
238,7	620,0	595,0	1452,0	620,0	594,0	579,0	1212,0	1116,0	902,0	1152,0	909,0	1090,0	1168,0	2718,0	1285,0
239,9	643,0	586,0	1452,0	599,0	569,0	553,0	1234,0	1144,0	923,0	1126,0	926,0	1094,0	1149,0	2752,0	1276,0
241,2	645,0	580,0	1450,0	585,0	584,0	577,0	1236,0	1137,0	947,0	1154,0	874,0	1114,0	1184,0	2733,0	1249,0
242,5	695,0	594,0	1459,0	607,0	601,0	627,0	1227,0	146,0	966,0	1155,0	938,0	1095,0	1157,0	2761,0	1283,0
243,7	713,0	571,0	1467,0	608,0	594,0	676,0	1237,0	1121,0	988,0	1173,0	977,0	1110,0	1183,0	2749,0	1316,0
245,0	778,0	595,0	1450,0	639,0	649,0	728,0	1222,0	1 155,0	1008,0	1126,0	1024,0	1106,0	1178,0	2721,0	1300,0
246,2	753,0	582,0	1426,0	605,0	615,0	737,0	1227,0	1142,0	1046,0	1132,0	1037,0	1100,0	1161,0	2747,0	1293,0
247,5	794,0	572,0	1414,0	594,0	630,0	699,0	1239,0	1121,0	1053,0	1152,0	1062,0	1108,0	1138,0	2741,0	1311,0
248,7	699,0	594,0	1438,0	581,0	609,0	630,0	1218,0	1117,0	995,0	1179,0	1011,0	1096,0	1166,0	2719,0	1283,0
250,0	673,0	587,0	1427,0	579,0	583,0	581,0	1216,0	1081,0	954,0	1131,0	965,0	1108,0	1152,0	2663,0	1287,0
251,3	649,0	577,0	1406,0	598,0	567,0	547,0	1217,0	1139,0	947,0	1144,0	941,0	1093,0	1179,0	2646,0	1267,0
252,5	607,0	593,0	1391,0	595,0	569,0	541,0	1222,0	1092,0	899,0	1128,0	930,0	1091,0	1157,0	2665,0	1243,0
253,8	593,0	574,0	1342,0	593,0	554,0	493,0	1224,0	1106,0	891,0	1120,0	887,0	1094,0	1148,0	2597,0	1310,0
255,0	605,0	596,0	1369,0	624,0	570,0	498,0	1224,0	1089,0	912,0	1160,0	880,0	1124,0	1183,0	2511,0	1274,0
256,3	610,0	583,0	1411,0	607,0	575,0	515,0	1224,0	1106,0	902,0	1168,0	885,0	1109,0	1156,0	2523,0	1323,0
257,5	585,0	585,0	1373,0	616,0	569,0	499,0	1236,0	1113,0	899,0	1165,0	873,0	1119,0	1147,0	2496,0	1320,0
258,8	599,0	610,0	1361,0	577,0	586,0	508,0	1248,0	1139,0	887,0	1155,0	887,0	1123,0	1152,0	2527,0	1320,0
260,1	563,0	613,0	1351,0	638,0	591,0	473,0	1282,0	1126,0	926,0	1189,0	868,0	1105,0	1184,0	2534,0	1315,0
261,3	601,0	623,0	1388,0	623,0	583,0	519,0	1271,0	1126,0	933,0	1214,0	903,0	1154,0	1164,0	2466,0	1381,0
262,6	599,0	571,0	1343,0	632,0	583,0	489,0	1273,0	1114,0	926,0	1244,0	882,0	1144,0	1188,0	2512,0	1367,0
263,8	587,0	630,0	1351,0	623,0	604,0	493,0	1284,0	1113,0	945,0	1207,0	887,0	1144,0	1198,0	2476,0	1380,0
265,1	603,0	630,0	1354,0	634,0	575,0	506,0	1300,0	1123,0	947,0	1186,0	901,0	1155,0	1187,0	2410,0	1344,0
266,3	598,0	638,0	1363,0	659,0	587,0	510,0	1310,0	1155,0	961,0	1216,0	889,0	1157,0	1176,0	2406,0	1381,0
267,6	619,0	585,0	1360,0	636,0	617,0	505,0	1269,0	1 144,0	946,0	1226,0	912,0	1163,0	1200,0	2429,0	1340,0
268,8	623,0	622,0	1345,0	618,0	598,0	535,0	1307,0	1132,0	945,0	1204,0	908,0	1144,0	1188,0	2397,0	1331,0
270,1	613,0	608,0	1327,0	650,0	585,0	539,0	1289,0	1170,0	929,0	1193,0	900,0	1180,0	1155,0	2437,0	1330,0
271,4	617,0	609,0	1304,0	641,0	623,0	537,0	1264,0	1147,0	941,0	1170,0	896,0	1148,0	1183,0	2372,0	1332,0
272,6	639,0	625,0	1318,0	634,0	594,0	557,0	1280,0	1160,0	949,0	1183,0	888,0	1136,0	1188,0	2364,0	1376,0
273,9	641,0	612,0	1305,0	632,0	581,0	575,0	1251,0	1147,0	926,0	1159,0	899,0	1145,0	1167,0	2307,0	1382,0
275,1	645,0	591,0	1306,0	615,0	600,0	605,0	1257,0	1146,0	932,0	1160,0	895,0	1132,0	1160,0	2347,0	1358,0
276,4	661,0	601,0	1265,0	631,0	583,0	599,0	1281,0	1137,0	946,0	1170,0	930,0	1136,0	1144,0	2297,0	1370,0
277,6	695,0	604,0	1269,0	656,0	604,0	619,0	1265,0	1164,0	977,0	1176,0	921,0	1 199,0	1164,0	2273,0	1371,0
278,9	715,0	619,0	1260,0	621,0	589,0	700,0	1301,0	1162,0	939,0	1193,0	921,0	1173,0	1171,0	2300,0	1359,0
280,1	721,0	613,0	1272,0	628,0	598,0	711,0	1271,0	1184,0	945,0	1201,0	937,0	1165,0	1170,0	2208,0	1382,0
281,4	762,0	628,0	1218,0	635,0	597,0	774,0	1264,0	1 152,0	1004,0	1204,0	971,0	1187,0	1160,0	2222,0	1369,0
282,6	787,0	631,0	1217,0	627,0	623,0	811,0	1308,0	1169,0	990,0	1215,0	964,0	1168,0	1170,0	2218,0	1394,0
283,9	838,0	616,0	1218,0	642,0	607,0	885,0	1296,0	1216,0	1025,0	1204,0	980,0	1180,0	1202,0	2231,0	1395,0
285,1	890,0	613,0	1202,0	649,0	637,0	985,0	1284,0	1220,0	1037,0	1186,0	1002,0	1171,0	1 198,0	2221,0	1396,0
286,4	979,0	625,0	1197,0	637,0	641,0	1140,0	1297,0	1211,0	1051,0	1217,0	1059,0	1194,0	1188,0	2216,0	1407,0
287,6	1124,0	633,0	1232,0	653,0	655,0	1339,0	1335,0	1224,0	1140,0	1197,0	1057,0	1208,0	1 184,0	2201,0	1427,0
288,9	1274,0	651,0	1213,0	679,0	713,0	1541,0	1328,0	1256,0	1245,0	1203,0	1133,0	1189,0	1225,0	2199,0	1478,0
290,1	1446,0	665,0	1204,0	661,0	782,0	1968,0	1354,0	1313,0	1326,0	1225,0	1243,0	1231,0	1236,0	2171,0	1472,0
291,4	1690,0	647,0	1177,0	685,0	845,0	2271,0	1356,0	1312,0	1443,0	1266,0	1350,0	1232,0	1253,0	2146,0	1502,0
292,6	1807,0	670,0	1214,0	691,0	942,0	2599,0	1369,0	1334,0	1561,0	1265,0	1506,0	1268,0	1281,0	2204,0	1459,0
293,9	1829,0	678,0	1240,0	703,0	964,0	2591,0	1412,0	1313,0	1656,0	1250,0	1547,0	1275,0	1293,0	2197,0	1557,0
295,1	1788,0	685,0	1189,0	732,0	937,0	2433,0	1386,0	1344,0	1579,0	1273,0	1548,0	1271,0	1279,0	2169,0	1525,0
296,4	1622,0	668,0	1165,0	723,0	905,0	2163,0	1437,0	1361,0	1547,0	1251,0	1488,0	1296,0	1263,0	2150,0	1581,0
297,6	1505,0	699,0	1171,0	732,0	861,0	1947,0	1418,0	1336,0	1465,0	1306,0	1495,0	1299,0	1303,0	2165,0	1602,0
298,9	1447,0	693,0	1182,0	724,0	847,0	1825,0	1433,0	1347,0	1418,0	1272,0	1461,0	1308,0	1291,0	2155,0	1600,0
300,1	1358,0	705,0	1182,0	725,0	859,0	1675,0	1462,0	1374,0	1388,0	1309,0	1416,0	1291,0	1305,0	2134,0	1598,0
301,4	1253,0	698,0	1167,0	727,0	807,0	1574,0	1435,0	1378,0	1323,0	1299,0	1324,0	1320,0	1271,0	2088,0	1624,0
302,6	1144,0	725,0	1143,0	716,0	774,0	1413,0	1462,0	1373,0	1260,0	1313,0	1291,0	1312,0	1264,0	2089,0	1601,0
303,9	1049,0	711,0	1189,0	744,0	757,0	1209,0	1451,0	1380,0	1196,0	1317,0	1246,0	1339,0	1251,0	2129,0	1641,0
305,1	931,0	719,0	1164,0	742,0	751,0	1079,0	1456,0	1370,0	1132,0	1331,0	1148,0	1327,0	1258,0	2051,0	1642,0
306,4	908,0	731,0	1138,0	733,0	665,0	977,0	1474,0	1354,0	1082,0	1316,0	1106,0	1330,0	1290,0	2045,0	1654,0
307,6	813,0	726,0	1160,0	737,0	682,0	823,0	1463,0	1385,0	1054,0	1325,0	1077,0	1336,0	1260,0	2087,0	1612,0
308,9	777,0	707,0	1143,0	734,0	674,0	779,0	1497,0	1406,0	1011,0	1329,0	1006,0	1356,0	1273,0	2049,0	1666,0
310,1	723,0	717,0	1119,0	765,0	656,0	731,0	1504,0	1394,0	990,0	1343,0	1017,0	1338,0	1265,0	2081,0	1695,0
311,4	705,0	721,0	1162,0	749,0	666,0	687,0	1488,0	1380,0	996,0	1347,0	981,0	1349,0	1289,0	2092,0	1727,0
312,6	695,0	737,0	1182,0	737,0	641,0	647,0	1539,0	1388,0	974,0	1330,0	1006,0	1357,0	1294,0	2054,0	1732,0
313,9	669,0	760,0	1168,0	762,0	631,0	606,0	1530,0	1403,0	965,0	1373,0	960,0	1410,0	1257,0	2093,0	1697,0
315,1	651,0	749,0	1176,0	780,0	609,0	585,0	1544,0	1374,0	944,0	1365,0	979,0	1386,0	1270,0	2088,0	1724,0
316,4	621,0	744,0	1124,0	759,0	637,0	564,0	1538,0	1419,0	940,0	1321,0	953,0	1364,0	1290,0	2094,0	1702,0
317,6	635,0	715,0	1172,0	754,0	638,0	534,0	1547,0	1431,0	908,0	1361,0	941,0	1378,0	1272,0	2108,0	1724,0
318,9	632,0	752,0	1175,0	778,0	634,0	546,0	1536,0	1415,0	933,0	1357,0	949,0	1394,0	1263,0	2107,0	1712,0
320,1	632,0	748,0	1199,0	789,0	628,0	529,0	1529,0	1405,0	911,0	1386,0	981,0	1408,0	1318,0	2103,0	1694,0
321,4	613,0	730,0	1166,0	772,0	623,0	519,0	1533,0	1395,0	902,0	1346,0	966,0	1378,0	1252,0	2101,0	1746,0
322,6	594,0	741,0	1203,0	780,0	634,0	505,0	1527,0	1396,0	893,0	1376,0	949,0	1389,0	1275,0	2095,0	1697,0
323,8	607,0	745,0	1176,0	770,0	648,0	489,0	1560,0	1408,0	931,0	1345,0	935,0	1382,0	1288,0	2093,0	1700,0
325,1	603,0	731,0	1204,0	763,0	631,0	498,0	1540,0	1429,0	907,0	1357,0	918,0	1386,0	1281,0	2151,0	1718,0
326,3	585,0	749,0	1171,0	778,0	636,0	499,0	1544,0	1427,0	910,0	1371,0	933,0	1394,0	1285,0	2109,0	1730,0
327,6	605,0	747,0	1201,0	787,0	625,0	489,0	1504,0	1434,0	911,0	1367,0	928,0	1362,0	1304,0	2106,0	1721,0
328,8	617,0	739,0	1155,0	781,0	623,0	490,0	1545,0	1419,0	941,0	1352,0	914,0	1438,0	1300,0	2101,0	1739,0
330,1	592,0	717,0	1179,0	818,0	657,0	475,0	1528,0	1400,0	925,0	1386,0	937,0	1409,0	1270,0	2090,0	1704,0
331,3	591,0	728,0	1230,0	765,0	637,0	482,0	1501,0	1399,0	917,0	1331,0	928,0	1385,0	1273,0	2143,0	1695,0
332,6	577,0	752,0	1225,0	800,0	639,0	471,0	1542,0	1392,0	932,0	1360,0	949,0	1365,0	1272,0	2160,0	1733,0
333,8	598,0	751,0	1198,0	800,0	651,0	473,0	1516,0	1462,0	942,0	1399,0	950,0	1372,0	1307,0	2160,0	1733,0
335,0	596,0	757,0	1215,0	800,0	665,0	473,0	1513,0	1417,0	943,0	1408,0	954,0	1414,0	1287,0	2129,0	1717,0
336,3	614,0	743,0	1239,0	789,0	642,0	471,0	1502,0	1435,0	922,0	1393,0	918,0	1388,0	1340,0	2177,0	1713,0
337,5	586,0	745,0	1222,0	786,0	669,0	443,0	1531,0	1397,0	962,0	1381,0	940,0	1405,0	1302,0	2127,0	1717,0
338,8	599	747,0	1237	802,0	675,0	45	40,0	1441,0	934,0	14	939,0	1404,0	1297,0	2196,0	1742,0

340,0	576,0	754,0	1249,0	817,0	656,0	463,0	1574,0	1441,0	937,0	1412,0	940,0	1404,0	1282,0	2097,0	1708,0
341,3	589,0	786,0	1234,0	793,0	643,0	465,0	1585,0	1478,0	934,0	1365,0	964,0	1421,0	1292,0	2184,0	1766,0
342,5	588,0	797,0	1215,0	808,0	605,0	455,0	1541,0	1478,0	936,0	1400,0	946,0	1422,0	1319,0	2165,0	1758,0
343,7	589,0	768,0	1230,0	796,0	653,0	457,0	1569,0	1457,0	931,0	1400,0	948,0	1430,0	1301,0	2187,0	1777,0
345,0	602,0	765,0	1230,0	807,0	650,0	481,0	1578,0	1478,0	942,0	1411,0	964,0	1431,0	1312,0	2196,0	1775,0
346,2	575,0	783,0	1237,0	810,0	666,0	456,0	1571,0	1468,0	910,0	1400,0	927,0	1431,0	1317,0	2222,0	1834,0
347,5	567,0	804,0	1252,0	831,0	633,0	450,0	1560,0	1485,0	911,0	1398,0	950,0	1467,0	1320,0	2248,0	1758
348,7	591,0	819,0	1227,0	817,0	657,0	467,0	1614,0	1539,0	940,0	1420,0	943,0	1451,0	1322,	2199,0	1848
349,9	604,0	798,0	1258,0	816,0	676,0	471,0	1643,0	1520,0	912,0	1424,0	954,0	1485,0	1310,0	2230,0	1891,0
351,2	597,0	790,0	1229,0	843,0	631,0	459,0	1615,0	1537,0	919,0	1439,0	969,0	1504,0	1324,0	2272,0	1874,0
352,4	599,0	831,0	1255,0	863,0	645,0	477,0	1602,0	1547,0	920,0	1453,0	967,0	1550,0	1361,0	2236,0	1892,0
353,7	593,0	856,0	1245,0	845,0	666,0	478,0	1669,0	1591,0	928,0	1469,0	983,0	1531,0	1364,0	2233,0	1918,0
354,9	608,0	883,0	1257,0	873,0	670,0	489,0	1670,0	1573,0	925,0	1476,0	991,0	1572,0	1359,0	2267,0	1957,0
356,2	610,0	871,0	1292,0	912,0	690,0	485,0	1675,0	1593,0	915,0	1482,0	1018,0	1588,0	1362,0	2265,0	2010,0
357,4	592,0	879,0	1298,0	908,0	695,0	464,0	1699,0	1649,0	938,0	1519,0	993,0	1602,0	1398,0	2299,0	2060,0
358,6	593,0	879,0	1251,0	913,0	697,0	459,0	1742,0	1651,0	920,0	1530,0	995,0	1597,0	1384,0	2302,0	2059,0
359,9	613,0	904,0	1269,0	943,0	722,0	496,0	1747,0	1682,0	936,0	1548,0	1015,0	1625,0	1401,0	2345,0	2114,0
361,1	594,0	939,0	1288,0	919,0	697,0	459,0	1756,0	1758,0	910,0	1551,0	1046,0	1678,0	1410,0	2313,0	2112,0
362,3	612,0	936,0	1261,0	922,0	687,0	476,0	1767,0	1775,0	936,0	1536,0	1026,0	1696,0	1429,0	2325,0	2134,0
363,6	610,0	943,0	1277,0	957,0	717,0	476,0	1848,0	1788,0	907,0	1624,0	1041,0	1720,0	1413,0	2260,0	2 206,0
364,8	603,0	996,0	1275,0	1005,0	715,0	485,0	1895,0	1840,0	930,0	1618,0	1049,0	1777,0	1418,0	2303,0	2291,0
366,1	607,0	1003,0	1279,0	1021,0	717,0	496,0	1925,0	1863,0	920,0	1656,0	1059,0	1805,0	1427,0	2330,0	2341,0
367,3	616,0	1063,0	1277,0	1076,0	731,0	497,0	1979,0	1977,0	928,0	1682,0	1088,0	1877,0	1413,0	2332,0	2411,0
368,5	623,0	1064,0	1281,0	1086,0	743,0	501,0	2023,0	1963,0	953,0	1722,0	1062,0	1918,0	1471,0	2315,0	2483,0
369,8	621,0	1130,0	1277,0	1131,0	793,0	489,0	2092,0	2046,0	956,0	1766,0	1092,0	2030,0	1497,0	2372,0	2612,0
371,0	619,0	1179,0	1284,0	1176,0	797,0	515,0	2157,0	2132,0	943,0	1813,0	1093,0	2109,0	1544,0	2335,0	2692,0
372,3	639,0	1242,0	1276,0	1231,0	777,0	509,0	2204,0	2255,0	949,0	1864,0	1129,0	2135,0	1554,0	2298,0	2867,0
373,5	635,0	1240,0	1301,0	1285,0	815,0	512,0	2301,0	2301,0	939,0	1918,0	1139,0	2290,0	1553,0	2330,0	2951,0
374,7	668,0	1337,0	1287,0	1343,0	844,0	519,0	2428,0	2449,0	964,0	2003,0	1222,0	2 402,0	1625,0	2347,0	3162,0
376,0	653,0	1406,0	1325,0	1422,0	897,0	537,0	2501,0	2605,0	956,0	2090,0	1224,0	2518,0	1690,0	2384,0	3 291,0
377,2	651,0	1489,0	1311,0	1462,0	907,0	537,0	2601,0	2727,0	942,0	2158,0	1281,0	2693,0	1674,0	2316,0	3555,0
378,4	647,0	1616,0	1281,0	1587,0	919,0	517,0	2804,0	2891,0	978,0	2241,0	1353,0	2744,0	1715,0	2377,0	3792,0
379,7	673,0	1719,0	1323,0	1723,0	965,0	544,0	2955,0	3132,0	963,0	2377,0	1374,0	2969,0	1817,0	2362,0	4092,0
380,9	683,0	1821,0	1315,0	1818,0	1015,0	553,0	3177,0	3 331,0	964,0	2493,0	1441,0	3164,0	1859,0	2414,0	4375,0
382,1	671,0	1973,0	1303,0	1947,0	1071,0	565,0	3350,0	3634,0	986,0	2634,0	1493,0	3396,0	1958,0	2436,0	4802,0
383,4	688,0	2187,0	1318,0	2139,0	1139,0	553,0	3541,0	3845,0	965,0	2821,0	1592,0	3641,0	2048,0	2459,0	5153,0
384,6	682,0	2343,0	1315,0	2301,0	1169,0	565,0	3882,0	4195,0	957,0	3009,0	1624,0	3908,0	2129,0	2428,0	5 537,0
385,8	702,0	2574,0	1334,0	2514,0	1274,0	577,0	4 120,0	4572,0	1002,0	3270,0	1749,0	4130,0	2265,0	2447,0	6013,0
387,1	721,0	2813,0	1353,0	2646,0	1355,0	581,0	4441,0	4944,0	986,0	3467,0	1816,0	4511,0	2366,0	2501,0	6646,0
388,3	719,0	2999,0	1352,0	2919,0	1402,0	585,0	4860,0	5397,0	970,0	3719,0	1931,0	4905,0	2471,0	2528,0	7219,0
389,5	701,0	3287,0	1360,0	3147,0	1528,0	604,0	5187,0	5827,0	992,0	4001,0	2027,0	5265,0	2608,0	2486,0	7776,0
390,8	717,0	3482,0	1358,0	3405,0	1569,0	622,0	5534,0	6184,0	1006,0	4269,0	2117,0	5557,0	2747,0	2579,0	8446,0
392,0	725,0	3677,0	1398,0	3675,0	1703,0	614,0	5917,0	6627,0	1010,0	4533,0	2196,0	5969,0	2880,0	2563,0	9079,0
393,3	729,0	3925,0	1388,0	3932,0	1779,0	642,0	6239,0	7052,0	1014,0	4743,0	2310,0	6267,0	2980,0	2564,0	9525,0
394,5	756,0	4165,0	1396,0	4 001,0	1816,0	647,0	6579,0	7261,0	1030,0	4955,0	2377,0	6549,0	3043,0	2587,0	10084,0
395,7	762,0	4288,0	1420,0	4191,0	1901,0	676,0	6760,0	7393,0	1052,0	5069,0	2393,0	6719,0	3153,0	2635,0	10 367,0
396,9	827,0	4235,0	1418,0	4207,0	1871,0	704,0	6776,0	7411,0	1066,0	5121,0	2409,0	6791,0	3168,0	2690,0	10397,0
398,2	831,0	4202,0	1435,0	4158,0	1893,0	725,0	6759,0	7307,0	1036,0	5096,0	2334,0	6788,0	3168,0	2667,0	10446,0
399,4	873,0	4065,0	1479,0	4076,0	1837,0	778,0	6617,0	7012,0	1095,0	4982,0	2317,0	6547,0	3053,0	2760,0	10 083,0
400,6	905,0	3795,0	1489,0	3824,0	1773,0	785,0	6199,0	6585,0	1089,0	4738,0	2248,0	6247,0	3005,0	2769,0	9572,0
401,9	966,0	3523,0	1512,0	3610,0	1667,0	883,0	5904,0	6154,0	1121,0	4509,0	2167,0	5815,0	2841,0	2817,0	8823,0
403,1	1046,0	3210,0	1540,0	3241,0	1539,0	963,0	5556,0	5591,0	1181,0	4235,0	2094,0	5331,0	2664,0	2884,0	8235,0
404,3	1086,0	2907,0	1539,0	2952,0	1557,0	1054,0	5052,0	5125,0	1230,0	3844,0	2036,0	4941,0	2574,0	2931,0	7427,0
405,6	1194,0	2667,0	1543,0	2684,0	1415,0	1116,0	4581,0	4593,0	1299,0	3539,0	2016,0	4559,0	2376,0	2993,0	6670,0
406,8	1277,0	2397,0	1566,0	2451,0	1377,0	1233,0	4232,0	4202,0	1358,0	3293,0	1999,0	4051,0	2261,0	3024,0	6133,0
408,0	1386,0	2153,0	1585,0	2228,0	1329,0	1351,0	3869,0	3801,0	1414,0	3006,0	1995,0	3753,0	2178,0	3048,0	5401,0
409,3	1447,0	1961,0	1676,0	2013,0	1292,0	1477,0	3578,0	3 487,0	1476,0	2837,0	2029,0	3465,0	2063,0	3166,0	4996,0
410,5	1542,0	1827,0	1659,0	1869,0	1271,0	1525,0	3 318,0	3218,0	1579,0	2601,0	2045,0	3135,0	1967,0	3197,0	4578,0
411,7	1503,0	1709,0	1634,0	1742,0	1229,0	1550,0	3030,0	2993,0	1592,0	2458,0	2059,0	3011,0	1877,0	3246,0	4203,0
413,0	1483,0	1557,0	1687,0	1623,0	1214,0	1477,0	2855,0	2773,0	1560,0	2362,0	2043,0	2793,0	1821,0	3357,0	3896,0
414,2	1392,0	1493,0	1737,0	1519,0	1153,0	1414,0	2726,0	2641,0	1531,0	2239,0	1920,0	2609,0	1784,0	3430,0	3626,0
415,4	1291,0	1379,0	1752,0	1399,0	1116,0	1301,0	2572,0	2509,0	1496,0	2128,0	1850,0	2476,0	1730,0	3504,0	33900
416,6	1209,0	1327,0	1825,0	1349,0	1051,0	1170,0	2429,0	2356,0	1395,0	2035,0	1712,0	2375,0	1663,0	3586,0	3222,0
417,9	1131,0	1264,0	1828,0	1288,0	978,0	1069,0	2367,0	2218,0	1303,0	1949,0	1601,0	2264,0	1626,0	3678,0	3085,0
419,1	1042,0	1206,0	1834,0	1236,0	896,0	968,0	2252,0	2162,0	1221,0	1911,0	1473,0	2186,0	1581,0	3746,0	2997,0
420,3	976,0	1161,0	1885,0	1 192,0	909,0	900,0	2165,0	2062,0	1182,0	1834,0	1420,0	2114,0	1588,0	3846,0	2809,0
421,6	910,0	1116,0	1952,0	1159,0	879,0	819,0	2138,0	2013,0	1174,0	1820,0	1363,0	2033,0	1554,0	3 908,0	2686,0
422,8	911,0	1091,0	1994,0	1116,0	835,0	771,0	2068,0	1942,0	1157,0	1766,0	1273,0	1990,0	1507,0	4015,0	2602,0
424,0	846,0	1084,0	2009,0	1096,0	823,0	721,0	2019,0	1867,0	1067,0	1701,0	1253,0	1945,0	1512,0	4102,0	2506,0
425,3	813,0	1009,0	2030,0	1071,0	822,0	735,0	1981,0	1882,0	1074,0	1707,0	1188,0	1883,0	1473,0	4228,0	2489,0
426,5	796,0	1002,0	2122,0	1018,0	773,0	641,0	1916,0	1811,0	1061,0	1676,0	1191,0	1847,0	1462,0	4316,0	2422,0
427,7	768,0	970,0	2180,0	1032,0	780,0	647,0	1886,0	1740,0	1045,0	1648,0	1166,0	1804,0	1457,0	4437,0	2333,0
428,9	754,0	958,0	2262,0	983,0	771,0	642,0	1839,0	1696,0	1024,0	1617,0	1155,0	1762,0	1401,0	4619,0	2252,0
430,2	750,0	919,0	2236,0	973,0	755,0	606,0	1846,0	1724,0	1038,0	1594,0	1098,0	1745,0	1429,0	4749,0	2249,0
431,4	712,0	919,0	2377,0	955,0	769,0	612,0	1798,0	1661,0	1011,0	1556,0	1084,0	1718,0	1368,0	4850,0	2188,0
432,6	711,0	882,0	2425,0	937,0	727,0	597,0	1772,0	1658,0	1027,0	1562,0	1067,0	1719,0	1399,0	5023,0	2137,0
433,8	720,0	875,0	2414,0	939,0	732,0	587,0	1722,0	1562,0	1022,0	1523,0	1056,0	1666,0	1387,0	5198,0	2087,0
435,1	709,0	902,0	2514,0	917,0	725,0	571,0	1744,0	1630,0	1017,0	1504,0	1083,0	1672,0	1374,0	5337,0	2067,0
436,3	709,0	865,0	2563,0	907,0	721,0	541,0	1699,0	1565,0	981,0	1515,0	1051,0	1601,0	1383,0	5471,0	2031,0
437,5	707,0	894,0	2660,0	876,0	734,0	579,0	1691,0	1591,0	978,0	1502,0	1022,0	1580,0	1345,0	5616,0	1999,0
438,7	695,0	878,0	2721,0	875,0	693,0	563,0	1652,0	1547,0	990,0	1492,0	1020,0	1598,0	1378,0	5767,0	1998,0
440,0	706,0	838,0	2747,0	873,0	695,0	565,0	1685,0	1497,0	1019,0	1470,0	1001,0	1579,0	1338,0	5899,0	1987,0
441,2	697,0	831,0	2781,0	838,0	718,0	573,0	1628,0	1534,0	1001,0	1498,0	995,0	1593,0	1362,0	6034,0	1934,0
442,4	693,0	849,0	2797,0	859,0	692,0	553,0	1658,0	1504,0	983,0	1451,0	997,0	1579,0	1368,0	6130,0	1910,0
443,6	701,0	846,0	2843,0	849,0	705,0	547,0	1652,0	1524,0	1006,0	1444,0	1034,0	1574,0	1326,0	6265,0	1954,0
444,9	667,0	833,0	2879,0	853,0	670,0	557,0	1626,0	1486,0	982,0	1434,0	1014,0	1534,0	1344,0	6384,0	1919,0
446,1	685,0	831,0	2903,0	854,0	697,0	563,0	1645,0	1502,0	982,0	1464,0	1043,0	1593,0	1335,0	6358,0	1911,0
447,3	694,0	810,0	2875,0	847,0	706,0	547,0	1607,0	1455,0	981,0	1457,0	1012,0	1571,0	1344,0	6369,0	1915,0
448,5	687,0	831,0	2861,0	818,0	687,0	554,0	1648,0	1478,0	982,0	1469,0	1000,0	1564,0	1346,0	6357,0	1899,0
449,8	680,0	819,0	2895,0	846,0	689,0	549,0	1607,0	1479,0	970,0	1452,0	1017,0	1499,0	1369,0	6323,0	1901,0
451,0	696,0	851,0	2817,0	855,0	695,0	540,0	1608,0	1472,0	977,0	1456,0	1030,0	1553,0	1358,0	6281,0	1856,0
452,2	680,0	817,0	2781,0	838,0	697,0	539,0	1627,0	1479,0	1007,0	1417,0	1023,0	1519,0	1326,0	6156,0	1814,0
453,4	664,0	833,0	2739,0	817,0	701, 0	548,0	1629,0	1448,0	979,0	1467,0	976,0	1503,0	1353,0	6055,0	1842,0
454,7	681,0	823,0	2679,0	794,0	675,0	536,0	1583,0	1456,0	986,0	1443,0	1031,0	1500,0	1358,0	5893,0	1862,0
455,9	669,0	831,0	2631,0	839,0	716,0	534,0	1615,0	1485,0	1010,0	1441,0	1001,0	1486,0	1339,0	5665,0	1802,0
457,1	669,0	821,0	2534,0	839,0	681,0	543,0	1619,0	1450,0	1010,0	1394,0	1022,0	1519,0	1355,0	5513,0	1864,0
458,3	674,0	871,0	2477,0	838,0	693,0	540,0	1590,0	1455,0	1037,0	1424,0	1040,0	1513,0	1359,0	5258,0	1840,0
459,6	703,0	880,0	2349,0	857,0	726,0	555,0	1621,0	1481,0	1038,0	1425,0	1053,0	1503,0	1361,0	5066,0	1837,0
460,8 462,0	659,0	932,0	2287,0 2267,0	863,0	705,0	539,0	1603,0 1597,0	1484,0	1037,0 1064,0	1418,0	1095,0	1512,0	1401,0	4879,0	1823,0

463,2	667,0	1028,0	2196,0	886,0	748,0	545,0	1640,0	1463,0	1041,0	1459,0	1139,0	1536,0	1412,0	4477,0	1868,0
464,4	661,0	1056,0	2086,0	900,0	756,0	562,0	1660,0	1490,0	1115,0	1464,0	1238,0	1544,0	1435,0	4297,0	1805,0
465,7	653,0	1058,0	2060,0	889,0	741,0	501,0	1612,0	1509,0	1100,0	1461,0	1241,0	1531,0	1436,0	4070,0	1845,0
466,9	673,0	1037,0	1961,0	897,0	733,0	529,0	1635,0	1514,0	1102,0	1462,0	1210,0	1573,0	1446,0	3809,0	2,0
468,1	666,0	995,0	1878,0	880,0	754,0	537,0	1644,0	1526,0	1100,0	1484,0	1186,0	1535,0	1438,0	3749,0	1862,0
469,3	667,0	951,0	1826,0	864,0	718,0	521,0	1638,0	1539,0	1093,0	1454,0	1173,0	1565,0	1404,0	3544,	875,0
470,5	687,0	933,0	1721,0	829,0	704,0	523,0	1637,0	1549,0	1036,0	1483,0	1121,0	1549,0	1381,0	3426,0	1920,0
471,8	680,0	914,0	1692,0	862,0	708,0	542,0	1664,0	1563,0	1003,0	1469,0	1094,0	1502,0	1401,0	3279,0	1906,0
473,0	667,0	904,0	1594,0	887,0	701,0	537,0	1664,0	1564,0	1000,0	1511,0	1068,0	1567,0	1345,0	3149,0	1926,0
474,2	673,0	890,0	1563,0	879,0	720,0	513,0	1674,0	1556,0	1021,0	1479,0	1052,0	1552,0	1379,0	3045,0	1912,0
475,4	629,0	891,0	1535,0	892,0	718,0	541,0	1708,0	1560,0	1003,0	1511,0	1067,0	1555,0	1367,0	2949,0	1947,0
476,6	649,0	882,0	1493,0	894,0	711,0	513,0	1756,0	1588,0	1000,0	1468,0	1036,0	1597,0	1399,0	2835,0	1954,0
477,9	681,0	894,0	1450,0	897,0	703,0	546,0	1707,0	1583,0	980,0	1517,0	1063,0	1586,0	393,	786,0	1939,0
479,1	666,0	82,	1427,0	895,0	715,0	549,0	1743,0	1667,0	967,0	1514,0	1025,0	1635,0	1389,0	665,0	0
480,3	677,0	907,0	1405,0	924,0	696,0	559,0	1745,0	1629,0	1009,0	1524,0	1059,0	1598,0	1394,0	2621,0	2016,0
481,5	707,0	923,0	1391,0	915,0	723,0	539,0	1785,0	1650,0	1013,0	1544,0	1040,0	1626,0	1415,0	2512,0	2064,0
482,7	673,0	923,0	1336,0	961,0	741,0	580,0	1793,0	1697,0	999,0	1529,0	1068,0	1700,0	1426,0	2510,0	2064,0
484,0	705,0	917,0	1334,0	931,0	714,0	573,0	1822,0	1730,0	998,0	1559,0	1074,0	1706,0	1417,0	2451,0	2139,0
485,2	689,0	954,0	1295,0	944,0	744,0	580,0	1857,0	1757,0	1003,0	1610,0	1063,0	1716,0	1451,0	2391,0	2189,0
486,4	691,0	937,0	1273,0	968,0	757,0	589,0	1898,0	1740,0	982,0	1627,0	1068,0	1727,0	1444,0	2331,0	2198,0
487,6	731,0	983,0	1296,0	992,0	733,0	596,0	1866,0	1813,0	996	1629,0	1077,0	1730,0	1423,0	338,0	280,0
488,8	695,0	998,0	1229,0	020,0	736,0	595,0	1950,0	1808,0	997,0	1651,0	1126,0	1816,0	1445,0	2265,0	324,0
490,0	734,0	1008,0	1261,0	1022,0	756,0	623,0	1971,0	1847,0	1006,0	1691,0	1134,0	1857,0	1489,0	2256,0	2379,0
491,3	719,0	1040,0	1233,0	1036,0	794,0	650,0	2049,0	1961,0	998,0	1733,0	1154,0	1875,0	1470,0	2227,0	2405,0
492,5	745,0	1042,0	1215,0	1102,0	790,0	668,0	2107,0	1995,0	1042,0	1770,0	1141,0	1981,0	1491,0	2179,0	2483,0
493,7	753,0	1076,0	1229,0	1114,0	813,0	649,0	2122,0	2047,0	1028,0	1796,0	1154,0	2009,0	1531,0	2127,0	2577,0
494,9	765,0	1135,0	1205,0	1165,0	850,0	698,0	2266,0	2177,0	1044,0	1857,0	1173,0	2072,0	1488,0	2141,0	2679,0
496,1	759,0	1203,0	1223,0	1189,0	855,0	705,0	2292,0	2215,0	1031,0	1877,0	1242,0	2127,0	1548,0	2145,0	2802,0
497,3	760,0	1232,0	1201,0	1288,0	827,0	708,0	2356,0	22890	996,0	1965,0	1228,0	2 209,0	1611,0	2107,0	2937,0
498,6	752,0	1272,0	1193,0	1307,0	897,0	711,0	2547,0	2422,0	1022,0	2061,0	1246,0	2338,0	1617,0	2116,0	3122,0
499,8	744,0	1363,0	1236,0	1374,0	901,0	709,0	2599,0	2553,0	1023,0	2114,0	1286,0	2465,0	1643,0	2099,0	3251,0
501,0	744,0	1451,0	1182,0	1465,0	925,0	689,0	2772,0	2734,0	999,0	2192,0	1332,0	2579,0	1690,0	2116,0	3458,0
502,2	759,0	1550,0	1169,0	1567,0	959,0	664,0	2952,0	2915,0	1011,0	2315,0	1342,0	2735,0	1738,0	2085,0	3721,0
503,4	733,0	1681,0	1174,0	1715,0	996,0	672,0	3112,0	3149,0	1012,0	2514,0	1397,0	2875,0	1815,0	2081,0	4045,0
504,6	691,0	1833,0	1187,0	1820,0	1011,0	663,0	3412,0	3383,0	993,0	2645,0	1462,0	3110,0	1878,0	2075,0	4412,0
505,9	733,0	1993,0	1199,0	1983,0	1110,0	635,0	3669,0	3732,0	995,0	2841,0	1529,0	3464,0	2002,0	2043,0	4821,0
507,1	681,0	2210,0	1150,0	2186,0	1157,0	627,0	3999,0	4017,0	991,0	3052,0	1602,0	3711,0	2083,0	2057,0	5313,0
508,3	700,0	2425,0	1198,0	2423,0	1219,0	619,0	4375,0	4528,0	959,0	3284,0	1719,0	4088,0	2 205,0	2013,0	5921,0
509,5	698,0	2652,0	1165,0	2691,0	1346,0	589,0	4825,0	4951,0	974,0	3603,0	1817,0	4464,0	2320,0	2004,0	6497,0
510,7	690,0	2919,0	1171,0	2976,0	1421,0	589,0	5180,0	5425,0	993,0	3863,0	1883,0	4872,0	2431,0	2035,0	7170,0
511,9	675,0	3092,0	1133,0	3177,0	1471,0	581,0	5597,0	5749,0	972,0	4149,0	1939,0	5280,0	2543,0	2021,0	7777,0
513,1	670,0	3266,0	1172,0	3330,0	1531,0	588,0	5949,0	5992,0	984,0	4357,0	1998,0	5535,0	2603,0	2043,0	8143,0
514,3	666,0	3333,0	1155,0	3507,0	1541,0	577,0	6102,0	6166,0	973,0	4514,0	1972,0	5710,0	2662,0	2042,0	8471,0
515,6	681,0	3358,0	1164,0	3482,0	1537,0	576,0	6211,0	6105,0	950,0	4626,0	2003,0	5797,0	2668,0	2015,0	8675,0
516,8	681,0	3350,0	1171,0	3427,0	1507,0	563,0	6347,0	6153,0	949,0	4553,0	1973,0	5832,0	2660,0	2031,0	8547,0
518,0	679,0	3255,0	1194,0	3380,0	1544,0	558,0	6177,0	6040,0	981,0	4566,0	1955,0	5737,0	2621,0	2021,0	8491,0
519,2	669,0	3115,0	1190,0	3297,0	1504,0	559,0	6104,0	5858,0	957,0	4412,0	1888,0	5645,0	2591,0	2008,0	8203,0
520,4	672,0	3019,0	1164,0	3143,0	1421,0	543,0	5834,0	5551,0	970,0	4335,0	1855,0	5352,0	2523,0	2002,0	7919,0
521,6	677,0	2892,0	1174,0	2965,0	1369,0	541,0	5663,0	5344,0	973,0	4163,0	1769,0	5185,0	2440,0	2043,0	7445,0
522,8	673,0	2679,0	1150,0	2848,0	1331,0	554,0	5375,0	5045,0	976,0	3971,0	1702,0	4969,0	2387,0	1985,0	7162,0
524,0	651,0	2536,0	1139,0	2681,0	1277,0	533,0	5100,0	4717,0	968,0	3765,0	1644,0	4653,0	2223,0	2018,0	6654,0
525,3	673,0	2398,0	1168,0	2523,0	1214,0	548,0	4761,0	4445,0	955,0	3556,0	1608,0	4390,0	2203,0	2012,0	6276,0
526,5	653,0	2266,0	1161,0	2339,0	1163,0	555,0	4508,0	4182,0	960,0	3407,0	1603,0	4115,0	2122,0	2012,0	5830,0
527,7	671,0	2137,0	1140,0	2258,0	1093,0	522,0	4204,0	3920,0	952,0	3 254,0	1521,0	3868,0	2079,0	1977,0	5415,0
528,9	675,0	1956,0	1132,0	2 104,0	1071,0	522,0	4031,0	3681,0	954,0	3063,0	1463,0	3638,0	1974,0	2025,0	5185,0
530,1	676,0	1906,0	1163,0	1949,0	1021,0	544,0	3750,0	3 455,0	944,0	29600	1362,0	3473,0	2120,0	1971,0	4792,0
531,3	642,0	1761,0	1127,0	1852,0	1017,0	505,0	3587,0	3 306,0	940,0	2730,0	1367,0	3 245,0	1887,0	2003,0	4560,0
532,5	641,0	1675,0	1158,0	1741,0	982,0	509,0	3364,0	3123,0	926,0	2636,0	1284,0	3151,0	1829,0	1971,0	4286,0
533,7	649,0	1563,0	1141,0	1675,0	917,0	527,0	3244,0	2999,0	955,0	2539,0	1277,0	2980,0	1775,0	1987,0	4 109,0
534,9	660,0	1525,0	1127,0	1577,0	901,0	503,0	3 106,0	2827,0	948,0	2453,0	1249,0	2851,0	1774,0	1979,0	3858,0
536,1	625,0	1452,0	1128,0	1544,0	893,0	545,0	2980,0	2725,0	954,0	2372,0	1220,0	2691,0	1704,0	1990,0	3741,0
537,4	647,0	1403,0	1149,0	1463,0	857,0	513,0	2846,0	2587,0	930,0	2303,0	1217,0	2619,0	1681,0	1975,0	3541,0
538,6	651,0	1337,0	1148,0	1421,0	858,0	521,0	2733,0	2547,0	953,0	2191,0	1191,0	2504,0	1657,0	1998,0	3343,0
539,8	655,0	1307,0	1165,0	1383,0	839,0	525,0	2667,0	2424,0	968,0	2144,0	1160,0	2402,0	1652,0	1983,0	3227,0
541,0	651,0	1257,0	1134,0	1313,0	829,0	529,0	2565,0	2359,0	927,0	2090,0	1142,0	2372,0	1588,0	1959,0	3128,0
542,2	654,0	1211,0	1139,0	1265,0	797,0	535,0	2479,0	2278,0	909,0	2041,0	1157,0	2294,0	1552,0	1944,0	3018,0
543,4	665,0	1194,0	1178,0	1221,0	780,0	524,0	2429,0	22520	952,0	1977,0	1139,0	2186,0	1591,0	1990,0	2973,0
544,6	657,0	1144,0	1155,0	1207,0	795,0	507,0	2329,0	2165,0	939,0	1979,0	1085,0	2137,0	1523,0	1987,0	2835,0
545,8	649,0	1117,0	1149,0	1163,0	755,0	511,0	2258,0	2062,0	954,0	1899,0	1114,0	2087,0	1526,0	1993,0	2758,0
547,0	657,0	1073,0	1180,0	1158,0	752,0	517,0	2221,0	2019,0	943,0	1924,0	1074,0	1986,0	1478,0	1983,0	2695,0
548,2	657,0	1027,0	1168,0	1111,0	748,0	515,0	2183,0	1952,0	965,0	1809,0	1107,0	1969,0	1487,0	2009,0	2576,0
549,4	649,0	1039,0	1146,0	1082,0	749,0	528,0	2131,0	1989,0	964,0	1786,0	1080,0	1979,0	1474,0	2033,0	2526,0
550,6	674,0	1014,0	1161,0	1079,0	730,0	537,0	2076,0	1927,0	933,0	1732,0	1073,0	1910,0	1468,0	2013,0	2476,0
551,9	670,0	995,0	1173,0	1058,0	713,0	530,0	2061,0	1851,0	923,0	1774,0	1026,0	1859,0	1498,0	2037,0	2452,0
553,1	646,0	985,0	1235,0	1024,0	742,0	519,0	1990,0	1862,0	954,0	1682,0	1070,0	1851,0	1438,0	2081,0	2400,0
554,3	659,0	985,0	1191,0	1001,0	738,0	545,0	1965,0	1819,0	951,0	1664,0	1027,0	1840,0	1474,0	2085,0	2325,0
555,5	677,0	941,0	1169,0	1003,0	740,0	517,0	1950,0	1790,0	930,0	1686,0	1031,0	1792,0	1447,0	2086,0	2292,0
556,7	673,0	944,0	1175,0	989,0	689,0	543,0	1956,0	1749,0	947,0	1616,0	1060,0	1747,0	1440,0	2149,0	2239,0
557,9	673,0	937,0	1199,0	981,0	706,0	548,0	1965,0	1754,0	964,0	1630,0	1026,0	1763,0	1422,0	2123,0	2231,0
559,1	673,0	924,0	1183,0	963,0	687,0	523,0	1923,0	1746,0	926,0	1627,0	1030,0	1706,0	1440,0	2151,0	2177,0
560,3	671,0	909,0	1248,0	931,0	695,0	537,0	1903,0	1697,0	942,0	1621,0	1009,0	1677,0	1406,0	2166,0	2153,0
561,5	685,0	912,0	1218,0	912,0	719,0	572,0	1865,0	1709,0	953,0	1596,0	1010,0	1650,0	1427,0	2194,0	2122,0
562,7	686,0	897,0	1255,0	922,0	708,0	533,0	1862,0	1717,0	934,0	1567,0	1036,0	1682,0	1391,0	2194,0	2120,0
563,9	685,0	871,0	1271,0	936,0	717,0	563,0	1836,0	1717,0	969,0	1572,0	1051,0	1638,0	1409,0	2279,0	2073,0
565,1	692,0	874,0	1262,0	910,0	692,0	551,0	1794,0	1681,0	962,0	1592,0	1004,0	1648,0	1441,0	2252,0	2084,0
566,3	671,0	869,0	1270,0	871,0	682,0	559,0	1792,0	1678,0	955,0	1559,0	1021,0	1600,0	1392,0	2292,0	2084,0
567,5	714,0	881,0	1316,0	907,0	701,0	543,0	1812,0	1688,0	946,0	1563,0	1019,0	1622,0	1387,0	2337,0	2062,0
568,7	700,0	851,0	1303,0	899,0	686,0	540,0	1793,0	1650,0	969,0	1575,0	1023,0	1598,0	1387,0	2351,0	2021,0
569,9	718,0	896,0	1303,0	905,0	712,0	573,0	1749,0	1646,0	989,0	1569,0	1014,0	1613,0	1455,0	2424,0	2012,0
571,1	683,0	855,0	1325,0	894,0	698,0	569,0	1773,0	1649,0	950,0	1546,0	1021,0	1574,0	1439,0	2383,0	1998,0
572,3	711,0	837,0	1313,0	867,0	694,0	574,0	1750,0	1661,0	978,0	1555,0	991,0	1556,0	1431,0	2464,0	1986,0
573,5	696,0	851,0	1349,0	904,0	714,0	601,0	1743,0	1648,0	950,0	1547,0	1034,0	1568,0	1413,0	2517,0	1938,0
574,7	712,0	846,0	1379,0	888,0	707,0	571,0	1786,0	1632,0	964,0	1558,0	1017,0	1591,0	1413,0	2593,0	1980,0
575,9	721,0	831,0	1416,0	908,0	718,0	599,0	1709,0	1624,0	989,0	1515,0	1042,0	1521,0	1435,0	2591,0	1998,0
577,2	733,0	838,0	1416,0	893,0	705,0	587,0	1786,0	1610,0	957,0	1524,0	1035,0	1559,0	1416,0	2625,0	1948,0
578,4	716,0	847,0	1456,0	858,0	711,0	587,0	1723,0	1619,0	979,0	1499,0	1048,0	1572,0	1440,0	2714,0	1953,0
579,6	724,0	812,0	1453,0	902,0	728,0	604,0	1741,0	1645,0	970,0	1533,0	1009,0	1542,0	1421,0	2778,0	1922,0
580,8	720,0	859,0	1447,0	862,0	728,0	600,0	1716,0	1625,0	986,0	1530,0	1011,0	1551,0	1430,0	2814,0	1945,0
582,0	723,0	821,0	1507,0	876,0	723,0	624,0	1734,0	1675,0	957,0	1542,0	1050,0	1551,0	1477,0	2861,0	1944,0
583,2	721,0	827,0	1542,0	877,0	707,0	614,0	1726,0	1667,0	974,0	1514,0	1056,0	1536,0	1454,0	2866,0	1912,0

584,4	761,0	847,0	1563,0	890,0	727,0	629,0	1726,0	1662,0	970,0	1519,0	1067,0	1565,0	1464,0	3007,0	1932,0
585,6	760,0	857,0	1572,0	877,0	39,0	629,0	1748,0	1661,0	963,0	1530,0	1073,0	1537,0	1464,0	3038,0	1933,0
586,8	782,0	0,0	1577,0	853,0	716,0	651,0	1774,0	1702,0	991,0	1509,0	1090,0	1553,0	1476,0	3112,0	1943,0
588,0	760	861,0	1625,0	912,0	717,0	641,0	1732,0	1687,0	970,0	1564,0	1092,0	1551,0	94,0	3 237,0	,
589,2	787,0	821,0	1651,0	895	740	653	1758,0	1689,0	996,0	1541,0	1071,0	1582,	1484,0	3229,	1942
590,4	791,0	840,0	1697,0	892,0	738,0	665,0	1770,0	1725,0	1017,0	1556,0	1074,0	1579,	1499,0	3365	1930,0
591,6	789,0	817,0	1756,0	910,0	761,0	676,0	1764,0	1732,0	1021,0	1573,0	1097,0	1545,	1495,0	3409,0	1971,0
592,8	802,0	885,0	1773,0	924,0	766,0	678,0	1791,0	1762,0	1032,0	1592,0	1111,0	1566,0	1543,0	3500,0	2035,0
594,0	811,0	870,0	1806,0	937,0	786,0	701,0	1805,0	1767,0	1026,0	1580,0	1137,0	1601,0	1557,0	3580,0	1997,0
595,2	838,0	867,0	1843,0	933,0	785,0	730,0	1804,0	1782,0	1012,0	1612,0	1175,0	1624,0	1553,0	3696,0	1947,0
596,4	868,0	880,0	1875,0	950,0	808,0	769,0	1813,0	1815,0	1049,0	1588,0	1160,0	1587,0	1589,0	3811,0	1986,0
597,6	875,0	901,0	1950,0	973,0	815,0	761,0	1834,0	1871,0	1048,0	1620,0	1174,0	1626,	1623,0	3891	2015,0
598,8	90	896	1961,0	974,0	3,0	790,0	1887,0	1914,0	1071,0	1623,0	12	1653,0	649,0	4017,0	2006,0
600,0	94	907,0	2016,0	1000,0	832,0	797,0	1941,0	1979,0	1093,0	1631,0	1226,0	1681,	1637	41910	2045,0
601,2	951,0	912,0	2074,0	1012,0	883,0	858,0	1946,0	1949,0	1096,0	1670,0	1241,0	1724,0	1707,0	4273,0	2117,0
602,4	983,0	944,0	2137,0	1031,0	901,0	911,0	1960,0	2041,0	1108,0	1672,0	1288,0	1703,0	1728,0	4403,0	2127,0
603,6	1038,0	973,0	2131,0	1063,0	915,0	931,0	1964,0	2097,0	1110,0	1733,0	1308,0	1737,0	1744,0	4434,0	2119,0
604,8	1050,0	964,0	2189,0	1091,0	939,0	965,0	2017,0	2158,0	1164,0	1745,0	1349,0	1764,0	1804,0	4610,0	2204,0
606,0	1110,0	999,0	2219,0	1109,0	981,0	1019,0	2097,0	2214,0	1192,0	1751,0	1416,0	1792,0	1885,0	4643,0	2238,0
607,2	1182,0	1003,0	2274,0	095,0	1009,0	079,0	2116,0	2246,0	1207,0	1831,0	1466,0	1798,0	1880,0	4763,0	2308,0
608,3	1 199,0	026,0	2305,0	123,0	1041,0	120,0	2160,0	2372,0	1247,0	1845,0	1577,0	1882,0	1972,0	778,0	0
609,5	1240,0	1076,0	22660	198,0	1055,0	172,0	2233,0	2435,0	1280,0	1891,0	1585,0	1870,0	1975,0	4904,	369,0
610,7	1262,0	1091,0	2314,0	1239,0	1119,0	1206,0	2300,0	2567,0	1311,0	1943,0	1618,0	1980,0	2075,0	4909,0	2536,0
611,9	1267,0	1159,0	2296,0	1290,0	1137,0	1241,0	2344,0	2669,0	1314,0	1991,0	1699,0	2002,0	2113,0	4943,0	2604,0
613,1	1263,0	1199,0	2289,0	1347,0	1208,0	1252,0	2463,0	2809,0	1334,0	2069,0	1721,0	2056,0	2215,0	4915,0	2657,0
614,3	1241,0	1245,0	2283,0	1379,0	1231,0	1210,0	2561,0	2967,0	1324,0	2114,0	1755,0	2130,0	2355,0	4860,0	2788,0
615,5	1195,0	1281,0	2250,0	1466,0	1285,0	1171,0	2663,0	3085,0	1307,0	2 206,0	1800,0	2221,0	2447,0	4824,0	2853,0
616,7	1195,0	1345,0	2227,0	1562,0	1327,0	1124,0	2757,0	3 306,0	1267,0	2335,0	1804,0	2294,0	2488,0	4754,0	2970,0
617,9	1145,0	1386,0	2135,0	1630,0	1351,0	1094,0	2960,0	354,0	1226,0	2402,0	1825,0	2396,0	2673,0	4583,0	3135,0
619,1	1085,0	1485,0	2117,0	1729,0	1438,0	1041,0	3051,0	3725,0	1219,0	2519,0	1859,0	2475,0	2828,0	4521,0	3316,0
620,3	1073,0	1571,0	2090,0	1830,0	1488,0	989,0	3273,0	4114,0	1169,0	2597,0	1870,0	2644,0	2970,0	4422,0	3478,0
621,5	1065,0	1682,0	2003,0	1980,0	1570,0	967,0	3434,0	4407,0	1166,0	2796,0	1909,0	2757,0	3162,0	4359,0	3696,0
622,7	1052,0	1818,0	1982,0	2151,0	1672,0	934,0	3713,0	4785,0	1128,0	2968,0	1948,0	2944,0	3 426,0	4181,0	3918,0
623,9	1029,0	1949,0	1907,0	2271,0	1791,0	918,0	3982,0	5168,0	1143,0	3158,0	2057,0	3133,0	3639,0	4060,0	4249,0
625,1	1016,0	2055,0	1825,0	2484,0	1938,0	89,0	4306,0	5736,0	1112,0	3394,0	2145,0	3313,0	4005,0	3907,0	4589,0
626,3	990,0	2282,0	1823,0	2751,0	2083,0	884,0	4671,0	6342,0	1155,0	3 689,0	2320,0	3602,0	4281,0	3760,0	4959,0
627,5	967,0	2462,0	1752,0	3001,0	2185,0	901,0	5004,0	6972,0	1117,0	3934,0	2482,0	3903,0	4660,0	3598,0	5403,0
628,7	966,0	2663,0	1705,0	3272,0	2444,0	866,0	5497,0	7804,0	1137,0	4280,0	2625,0	4214,0	5090,0	3550,0	5763,0
629,9	973,0	2987,0	1645,0	3579,0	2617,0	855,0	5963,0	8507,0	1112,0	4664,0	2819,0	4552,0	5565,0	3400,0	6337,0
631,1	971,0	3167,0	1618,0	3982,0	2865,0	864,0	6415,0	9335,0	1117,0	5017,0	2963,0	4965,0	6088,0	3284,0	6941,0
632,3	990,0	3481,0	1553,0	4344,0	3228,0	883,0	7034,0	10251,0	1094,0	5 367,0	31760	5432,0	6571,0	3188,0	7524,0
633,4	983,0	3822,0	1520,0	4714,0	3391,0	861,0	7611,0	11 196,0	1146,0	5823,0	3408,0	5682,0	7038,0	3111,0	8158,0
634,6	974,0	4017,0	1483,0	5029,0	3611,0	885,0	8111,0	11984,0	1119,0	6173,0	3578,0	6131,0	7458,0	2999,	8679,0
635,8	977,0	4229,0	1472,0	5302,0	3809,0	870,0	8573,0	12 535,0	1145,0	6512,0	3639,0	6346,0	7969,0	2902,0	9177,0
637,0	981,0	4368,0	1436,0	5559,0	3957,0	873,0	8799,0	13063,0	1157,0	6767,0	3808,0	6600,0	8205,0	2853,0	9521,0
638,2	1000,0	4481,0	1395,0	5743,0	3969,0	855,0	9041,0	13251,0	1110,0	6917,0	3821,0	6768,0	8283,0	2725,0	9 697,0
639,4	931,0	4417,0	1369,0	5585,0	4055,0	899,0	9088,0	13 191,0	1128,0	6877,0	3787,0	6753,0	8361,0	2694,0	9640,0
640,6	1000,0	4299,0	1344,0	5499,0	3959,0	875,0	8967,0	12840,0	1146,0	6851,0	3730,0	6592,0	8259,0	2640,0	9481,0
641,8	1012,0	4103,0	1291,0	5292,0	3787,0	909,0	8535,0	12321,0	1118,0	6 601,0	3555,0	6491,0	7964,0	2546,0	9109,0
643,0	1002,0	3881,0	1283,0	5013,0	3619,0	901,0	8263,0	11657,0	1140,0	6353,0	3 397,0	6185,0	7610,0	2515,0	8722,0
644,2	1049,0	3703,0	1247,0	4729,0	3 397,0	914,0	7850,0	10778,0	1129,0	6023,0	3 197,0	5813,	7165,0	2442	086,0
645,4	1003,0	3400,0	1232,0	4388,0	3190,0	924,0	7354,0	10005,0	1125,0	5653,0	3060,0	5529,0	6717,0	346,0	7529
646,6	1041,0	3179,0	1230,0	4050,0	2988,0	915,0	6789,0	9277,0	1159,0	5334,0	2860,0	5136,0	6277,0	2308,0	6964,0
647,7	1039,0	2968,0	1217,0	3783,0	2783,0	935,0	6334,0	8499,0	1119,0	4899,0	2719,0	4796,0	5797,0	2322,0	6485,0
648,9	1031,0	2751,0	1208,0	3 495,0	2529,0	947,0	5929,0	7762,0	1122,0	4557,0	2583,0	4544,0	5430,0	2261,0	6032,0
650,1	1074,0	2523,0	1162,0	3233,0	2392,0	926,0	5507,0	71860	1152,0	4302,0	2414,0	4 151,0	5037,0	2199,0	5609,0
651,3	1055,0	2341,0	1129,0	2983,0	2185,0	983,0	5139,0	6582,0	1143,0	3 987,0	2334,0	3960,0	4 700,0	2211,0	5251,0
652,5	1093,0	2197,0	1139,0	2740,0	2069,0	966,0	4809,0	6113,0	1133,0	3735,0	2 200,0	3664,0	4374,0	2167,0	4730,0
653,7	1111,0	2048,0	1149,0	2600,0	1997,0	982,0	4435,0	5619,0	1147,0	3581,0	2065,0	3465,0	4118,0	129,0	4484,0
654,9	1085,0	1945,0	1125,0	2395,0	1857,0	979,0	4210,0	5215,0	193,0	3 346,0	2028,0	3273,	3810,0	2083	4216,
656,1	1065,0	1785,0	1129,0	2242,0	1787,0	987,0	3929,0	4877,0	1158,0	3 202,0	1946,0	3072,0	3674,0	2081,0	3959,0
657,3	1084,0	1707,0	1125,0	2091,0	1643,0	979,0	3737,0	4573,0	1166,0	2973,0	1863,0	2927,0	3429,0	2050,0	3750,0
658,5	1099,0	1619,0	1094,0	2016,0	1621,0	999,0	3533,0	4280,0	1160,0	2825,0	1831,0	2743,0	3265,0	2055,0	3557,0
659,6	1 100,0	1531,0	1086,0	1893,0	1519,0	984,0	3336,0	4047,0	1147,0	2712,0	1776,0	2656,0	3035,0	2023,0	3346,0
660,8	1098,0	1441,0	1082,0	1798,0	1448,0	991,0	3178,0	3820,0	1150,0	2636,0	1749,0	2530,0	2968,0	1979,0	3211,0
662,0	1 101,0	1383,0	1096,0	1698,0	1386,0	953,0	3023,0	3607,0	1120,0	2501,0	1659,0	2457,0	2834,0	1978,0	3110,0
663,2	1045,0	1360,0	1089,0	1621,0	1335,0	935,0	2919,0	3421,0	1121,0	2405,0	1626,0	2297,0	2679,0	1988,0	2938,0
664,4	983,0	1301,0	1067,0	1533,0	1315,0	932,0	2812,0	3229,0	1128,0	2333,0	1561,0	2273,0	2570,0	1979,0	2830,0
665,6	1022,0	1233,0	1045,0	1492,0	1217,0	911,0	2709,0	3118,0	1138,0	2237,0	1537,0	2122,0	2469,0	1913,0	2684,0
666,8	1015,0	1221,0	1056,0	1405,0	1201,0	886,0	2604,0	2973,0	1105,0	2165,0	1468,0	2103,0	2374,0	1916,0	2632,0
668,0	987,0	1167,0	1058,0	1374,0	1157,0	850,0	2513,0	2837,0	1110,0	2138,0	1483,0	2064,0	2296,0	1911,0	2533,0
669,1	960,0	1110,0	1039,0	1324,0	1134,0	834,0	2413,0	2709,0	1079,0	2025,0	1435,0	1974,0	2303,0	1923,0	2486,0
670,3	931,0	1045,0	1042,0	1252,0	1056,0	822,0	2372,0	2588,0	1051,0	1951,0	1356,0	1921,0	2174,0	1927,0	2442,0
671,5	913,0	1052,0	1044,0	1218,0	1044,0	785,0	2252,0	2511,0	1044,0	1974,0	1331,0	1891,0	2132,0	1865,0	2332,0
672,7	903,0	1008,0	1057,0	1165,0	1024,0	753,0	2201,0	2408,0	1056,0	1881,0	1298,0	1850,0	2060,0	1873,0	2297,0
673,9	864,0	994,0	1033,0	1157,0	939,0	755,0	2206,0	2362,0	1023,0	1859,0	1240,0	1808,0	2027,0	1859,0	2192,0
675,1	867,0	1007,0	1038,0	1149,0	957,0	735,0	2113,0	2306,0	1020,0	1822,0	1251,0	1730,0	1970,0	1859,0	2182,0
676,3	830,0	945,0	1044,0	1101,0	919,0	687,0	2038,0	2215,0	1005,0	1770,0	1209,0	1748,0	1919,0	1833,0	2097,0
677,4	822,0	963,0	1029,0	1053,0	895,0	687,0	2012,0	2139,0	1020,0	1730,0	1192,0	1681,0	1880,0	1842,0	2036,0
678,6	806,0	909,0	1045,0	1055,0	889,0	683,0	1960,0	2113,0	1006,0	1709,0	1190,0	1654,0	1815,0	1837,0	2048,0
679,8	801,0	910,0	1030,0	1017,0	886,0	635,0	1985,0	2005,0	984,0	1709,0	1130,0	1616,0	1753,0	1870,0	1984,0
681,0	783,0	892,0	1037,0	997,0	833,0	646,0	1892,0	2027,0	1006,0	1661,0	1146,0	1613,0	1808,0	1835,0	1957,0
682,2	757,0	891,0	1038,0	970,0	852,0	634,0	1886,0	1958,0	978,0	1623,0	1093,0	1582,0	1762,0	1854,0	1982,0
683,4	749,0	853,0	1036,0	965,0	827,0	615,0	1859,0	1939,0	991,0	1642,0	1117,0	1564,0	1736,0	1853,0	1908,0
684,6	749,0	860,0	1039,0	954,0	807,0	609,0	1825,0	1881,0	963,0	1634,0	1093,0	1532,0	1684,0	1834,0	1877,0
685,7	725,0	833,0	1006,0	944,0	771,0	612,0	1811,0	1842,0	961,0	1618,0	1068,0	1544,0	1661,0	1837,0	1859,0
686,9	750,0	855,0	1074,0	927,0	781,0	587,0	1751,0	1797,0	983,0	1556,0	1062,0	1486,0	1628,0	1814,0	1815,0
688,1	727,0	823,0	1033,0	888,0	753,0	591,0	1774,0	1747,0	980,0	1553,0	1022,0	1459,0	1639,0	1830,0	1825,0
689,3	717,0	823,0	1032,0	899,0	743,0	563,0	1757,0	1735,0	954,0	1535,0	1038,0	1471,0	1590,0	1792,0	1793,0
690,5	719,0	820,0	1033,0	895,0	757,0	559,0	1707,0	1698,0	937,0	1541,0	998,0	1470,0	1567,0	1823,0	1812,0
691,7	744,0	823,0	1001,0	887,0	751,0	543,0	1704,0	1696,0	955,0	1499,0	1005,0	1481,0	1587,0	1825,0	1800,0
692,8	705,0	799,0	1005,0	876,0	734,0	547,0	1697,0	1646,0	940,0	1514,0	1008,0	1470,0	1544,0	1774,0	1772,0
694,0	696,0	784,0	1036,0	849,0	730,0	539,0	1670,0	1648,0	971,0	1482,0	1012,0	1410,0	1551,0	1783,0	1717,0
695,2	707,0	774,0	1032,0	853,0	737,0	529,0	1678,0	1612,0	957,0	1516,0	997,0	1425,0	1496,0	1809,0	1739,0
696,4	685,0	801,0	1037,0	835,0	720,0	520,0	1647,0	1617,0	939,0	1491,0	991,0	1465,0	1553,0	1780,0	1712,0
697,6	671,0	780,0	1043,0	821,0	709,0	537,0	1639,0	1572,0	936,0	1450,0	974,0	1416,0	1480,0	1762,0	1711,0
698,8	697,0	781,0	1037,0	795,0	669,0	523,0	1625,0	1568,0	960,0	1518,0	979,0	1374,0	1509,0	1770,0	1721,0
699,9	675,0	785,0	1028,0	838,0	683,0	487,0	1627,0	1531,0	941,0	1448,0	989,0	1368,0	1472,0	1731,0	1689,0
701,1	681,0	755,0	1039,0	793,0	692,0	515,0	1599,0	1553,0	970,0	1444,0	941,0	1388,0	1499,0	1748,0	1658,0
702,3	680,0	743,0	1027,0	803,0	683,0	515,0	1593,0	1494,0	989,0	1435,0	966,0	1379,0	1479,0	1729,0	1658,0

703,5	649,0	712,0	1007,0	805,0	706,0	509,0	1581,0	1506,0	921,0	1399,0	957,0	1325,0	1464,0	1748,0	1645,0
704,7	656,0	759,0	999,0	800,0	714,0	495,0	1591,0	1504,0	935,0	1419,0	911,0	1342,0	1442,0	1720,0	1610,0
705,8	643,0	741,0	971,0	795,0	684,0	491,0	1581,0	1454,0	927,0	1460,0	933,0	1331,0	1422,0	1748,0	1640,0
707,0	627,0	723,0	981,0	768,0	677,0	498,0	1557,0	1438,0	942,0	1425,0	923,0	1301,0	1428,0	1715,0	1609,0
708,2	666,0	715,0	990,0	790,0	677,0	455,0	1553,0	1398,0	939,0	1388,0	895,0	1304,0	1396,0	1680,0	1554,0
709,4	656,0	701,0	1013,0	755,0	633,0	471,0	1505,0	1394,0	942,0	1387,0	907,0	1315,0	1430,0	1680,0	1562,0
710,6	642,0	701,0	985,0	755,0	652,0	476,0	1513,0	1393,0	908,0	1364,0	932,	1312,	1401,	1659,	564
711,8	635,0	706,0	979	742	656,0	486,0	1496,0	1408,0	928,0	1361,0	904,0	1281,0	1375,	1633,	153
712,9	659,0	699,0	984,0	727,0	656,0	457,0	1490,0	1374,0	924,0	1361,0	913,0	1278,0	1350,0	1641,0	1503,0
714,1	621,0	675,0	951,0	718,0	646,0	462,0	1490,0	1369,0	938,0	1343,0	885,0	1278,0	1371,0	1636,0	1512,0
715,3	610,0	678,0	999,0	718,0	639,0	463,0	1490,0	1335,0	917,0	1347,0	902,0	1257,0	1333,0	1646,0	1486,0
716,5	634,0	693,0	971,0	719,0	629,0	459,0	1457,0	1303,0	908,0	1327,0	859,0	1237,0	1362,0	1602,0	1451,0
717,6	646,0	661,0	966,0	729,0	617,0	438,0	1443,0	1315,0	914,0	1308,0	846,0	1262,0	1310,0	1634,0	1476,0
718,8	615,0	670,0	935,0	699,0	595,0	431,0	1420,0	1280,0	907,0	1319,0	866,0	1256,0	1347,0	1561,0	1478,0
720,0	613,0	656,0	961,0	707,0	609,0	453,0	1409,0	1308,0	925,0	1299,0	851,0	1260,0	1327,0	1580,0	144
721,2	595,0	667,0	940,0	679,0	635,0	429,0	1412,0	1273,0	885,0	1330,0	871,0	1224,0	1324,0	1562,0	1407,0
722,4	611,0	648,0	919,0	688,0	611,0	415,0	1392,0	1287,0	893,0	1274,0	861,0	1195,0	1295,0	1533,0	1433,0
723,5	607,0	635,0	937,0	697,0	611,0	434,0	1380,0	1257,0	903,0	1301,0	880,0	1210,0	1308,0	1551,0	1394,0
724,7	608,0	663,0	907,0	686,0	592,0	419,0	1366,0	1279,0	893,0	1287,0	852,0	1184,0	1317,0	1530,0	1440,0
725,9	600,0	622,0	898,0	668,0	610,0	405,0	1384,0	1266,0	875,0	1279,0	870,0	1199,0	1316,0	1484,0	1418,0
727,1	591,0	641,0	901,0	675,0	598,0	427,0	1375,0	1225,0	915,0	1285,0	834,0	1175,0	1288,0	1494,0	1359,0
728,3	579,0	644,0	912,0	681,0	575,0	407,0	1370,0	1220,0	899,0	1274,0	872,0	1161,0	1305,0	1509,0	1423,0
729,4	604,0	640,0	911,0	660,0	589,0	397,0	1398,0	1230,0	887,0	1266,0	849,0	1157,0	1266,0	1477,0	1372
730,6	607,0	627,0	909,0	655,0	597,0	410,0	1359,0	1222,0	893,0	1256,0	840,0	1148,0	1253,0	1464,0	1378,0
731,8	584,0	625,0	887,0	657,0	579,0	395,0	1323,0	1222,0	887,0	1245,0	832,0	1149,0	1275,0	1467,0	1364,0
733,0	594,0	610,0	909,0	652,0	595,0	383,0	1355,0	1203,0	887,0	1247,0	824,0	1164,0	1279,0	1445,0	1380,0
734,1	592,0	643,0	889,0	679,0	572,0	414,0	1349,0	1212,0	869,0	1251,0	819,0	1148,0	1266,0	1397,0	1317,0
735,3	561,0	625,0	870,0	668,0	574,0	404,0	1318,0	1179,0	873,0	1238,0	830,0	1136,0	1261,0	1404,0	1345,0
736,5	583,0	637,0	877,0	641,0	572,0	393,0	1312,0	1174,0	892,0	1253,0	809,0	1153,0	1248,0	1406,0	1334,0
737,7	579,0	627,0	900,0	641,0	566,0	397,0	1337,0	1177,0	878,0	1228,0	842,0	1145,0	1240,0	1426,0	1353,0
738,8	593,0	610,0	854,0	674,0	564,0	383,0	1338,0	1175,0	894,0	1239,0	831,0	1130,0	1258,0	1393,0	1350,0
740,0	575,0	617,0	879,0	643,0	564,0	400,0	1327,0	1157,0	879,0	1251,0	803,0	1121,0	1227,0	1401,0	1327,0
741,2	587,0	611,0	844,0	650,0	573,0	380,0	1319,0	1159,0	893,0	1262,0	821,0	1161,0	1254,0	1394,0	1320,0
742,4	585,0	617,0	863,0	643,0	560,0	377,0	1327,0	1163,0	881,0	1232,0	805,0	1139,0	1245,0	1348,0	1311,0
743,5	565,0	613,0	836,0	644,0	569,0	389,0	1283,0	1173,0	897,0	1224,0	834,0	1133,0	1240,0	1348,0	1326,0
744,7	571,0	627,0	871,0	630,0	567,0	408,0	1300,0	1156,0	879,0	196,0	826,0	1151,0	1218,0	1331,0	1311,0
745,9	553,0	604,0	857,0	650,0	569,0	391,0	1298,0	1165,0	892,0	1235,0	815,0	1103,0	1243,0	1370,0	1322,0
747,1	566,0	584,0	887,0	639,0	583,0	397,0	1281,0	1146,0	881,0	1222,0	817,0	1151,0	1208,0	1327,0	1303,0
748,2	581,0	614,0	854,0	643,0	575,0	375,0	1331,0	1109,0	849,0	1207,0	815,0	1129,0	1232,0	1354,0	1284,0
749,4	563,0	601,0	844,0	631,0	554,0	371,0	1328,0	1150,0	889,0	1255,0	809,0	1107,0	1250,0	1331,0	1318,0
750,6	557,0	607,0	857,0	628,0	558,0	389,0	1291,0	1161,0	888,0	1221,0	819,0	1105,0	1253,0	1312,0	1304,0
751,8	564,0	595,0	851,0	645,0	583,0	388,0	1304,0	1121,0	856,0	1237,0	811,0	1155,0	1206,0	1303,0	1328,0
752,9	586,0	589,0	844,0	647,0	551,0	380,0	1327,0	1139,0	896,0	1238,0	818,0	1135,0	1240,0	1340,0	1300,0
754,1	579,0	571,0	857,0	639,0	547,0	383,0	1264,0	1163,0	903,0	1197,0	800,0	1121,0	1196,0	1320,0	1315,0
755,3	561,0	585,0	825,0	636,0	550,0	361,0	1303,0	1124,0	880,0	1214,0	795,0	1128,0	1186,0	1312,0	1320,0
756,4	568,0	607,0	839,0	633,0	566,0	388,0	1292,0	1164,0	882,0	1221,0	771,0	1135,0	1216,0	1328,0	1303,0
757,6	577,0	597,0	835,0	632,0	561,0	394,0	1313,0	1151,0	875,0	1231,0	794,0	1137,0	1230,0	1318,0	1307,0
758,8	545,0	594,0	821,0	614,0	563,0	355,0	1340,0	1152,0	857,0	1229,0	797,0	1113,0	1262,0	1319,0	1345,0
760,0	572,0	632,0	825,0	626,0	564,0	365,0	1296,0	1146,0	859,0	1243,0	818,0	1112,0	1209,0	1291,0	1329,0
761,1	569,0	594,0	779,0	641,0	559,0	379,0	1321,0	1120,0	865,0	1251,0	790,0	1154,0	1237,0	1301,0	1311,0
762,3	557,0	625,0	19,0	648,0	553,0	387,0	1323,0	1117,0	851,0	1237,0	764,0	1133,0	1240,0	1278,0	1339,0
763,5	573,0	597,0	15,0	629,0	552,0	381,0	1343,0	1143,0	887,0	1244,0	813,0	1146,0	1220,0	1315,0	1321,0
764,7	567,0	592,0	834,0	637,0	541,0	381,0	1297,0	1131,0	848,0	1239,0	817,0	1142,0	1209,0	1283,0	1351,0
765,8	571,0	611,0	821,0	637,0	571,0	349,0	1317,0	1152,0	892,0	1248,0	786,0	1162,0	1222,0	1276,0	1355,0
767,0	575,0	615,0	815,0	625,0	553,0	369,0	1340,0	1119,0	864,0	1216,0	828,0	1156,0	1232,0	1268,0	1327,0
768,2	569,0	617,0	805,0	625,0	564,0	383,0	1323,0	1145,0	855,0	1253,0	793,0	1157,0	1191,0	1275,0	1353,0
769,3	562,0	633,0	811,0	660,0	529,0	363,0	1347,0	1148,0	852,0	1229,0	804,0	1147,0	1244,0	1273,0	1352,0
770,5	557,0	613,0	800,0	631,0	554,0	373,0	1341,0	1161,0	880,0	1260,0	834,0	1140,0	1217,0	1282,0	1340,0
771,7	567,0	01,0	16,0	636,0	544,0	381,0	1324,0	1185,0	861,0	1259,0	788,0	1170,0	1241,0	1285,0	1357,0
772,8	567,0	626,0	85,0	658,0	551,0	364,0	1356,0	1185,0	882,0	1240,0	780,0	1197,0	1216,0	1248,0	1368,0
774,0	570,0	628,0	775,0	640,0	546,0	365,0	1353,0	1152,0	873,0	1241,0	805,0	1158,0	1205,0	1247,0	1370,0
775,2	543,0	621,0	839,0	645,0	530,0	363,0	1348,0	1170,0	847,0	1265,0	790,0	1196,0	1209,0	1279,0	1426,0
776,4	581,0	601,0	791,0	662,0	544,0	375,0	1371,0	1178,0	865,0	1250,0	800,0	1177,0	1228,0	1250,0	1394,0
777,5	569,0	623,0	814,0	655,0	556,0	370,0	1392,0	1186,0	851,0	1284,0	817,0	1182,0	1223,0	1233,0	1423,0
778,7	571,0	611,0	787,0	666,0	570,0	375,0	1375,0	1184,0	854,0	1266,0	814,0	1214,0	1214,0	1256,0	1404,0
779,9	573,0	643,0	787,0	674,0	536,0	376,0	1368,0	197,0	859,0	1277,0	814,0	1190,0	1228,0	1242,0	1458,0
781,0	574,0	639,0	820,0	666,0	580,0	365,0	1376,0	1214,0	877,0	1284,0	807,0	1 199,0	1234,0	1275,0	1466,0
782,2	569,0	644,0	795,0	689,0	546,0	359,0	1373,0	1200,0	844,0	1284,0	816,0	1205,0	1267,0	1249,0	1438,0
783,4	567,0	633,0	799,0	665,0	551,0	364,0	1393,0	1205,0	847,0	1265,0	837,0	1196,0	1247,0	1231,0	1436,0
784,5	569,0	656,0	807,0	688,0	558,0	377,0	1360,0	1219,0	881,0	1275,0	807,0	1184,0	1245,0	1285,0	1458,0
785,7	583,0	663,0	822,0	665,0	563,0	384,0	1402,0	1256,0	893,0	1282,0	813,0	1251,0	1251,0	1258,0	1446,0
786,9	573,0	645,0	824,0	686,0	572,0	389,0	1398,0	1245,0	892,0	1304,0	813,0	1205,0	1259,0	1259,0	1470,0
788,0	555,0	684,0	787,0	700,0	565,0	383,0	1397,0	1252,0	854,0	1306,0	812,0	1207,0	1264,0	1256,0	1467,0
789,2	559,0	653,0	791,0	671,0	572,0	363,0	1426,0	1253,0	877,0	1306,0	855,0	1244,0	1288,0	1221,0	1494,0
790,4	570,0	665,0	802,0	708,0	553,0	371,0	1419,0	1224,0	884,0	1300,0	857,0	1211,0	1255,0	1253,0	1478,0
791,5	555,0	675,0	802,0	689,0	575,0	378,0	1423,0	1289,0	889,0	1296,0	843,0	1266,0	1270,0	1236,0	1480,0
792,7	559,0	652,0	826,0	707,0	577,0	367,0	1441,0	1279,0	858,0	1327,0	817,0	1230,0	1253,0	1244,0	1494,0
793,9	574,0	685,0	794,0	691,0	533,0	379,0	1436,0	1260,0	883,0	1333,0	841,0	1244,0	1270,0	1260,0	1490,0
795,0	571,0	661,0	804,0	725,0	574,0	369,0	1395,0	1259,0	849,0	1302,0	853,0	1265,0	1224,0	1222,0	1487,0
796,2	583,0	645,0	800,0	691,0	585,0	379,0	1405,0	1257,0	858,0	1300,0	839,0	1239,0	1271,0	1263,0	1502,0
797,4	588,0	660,0	782,0	717,0	558,0	397,0	1436,0	1223,0	858,0	1267,0	829,0	1244,0	1268,0	1255,0	1493,0
798,5	577,0	653,0	796,0	691,0	570,0	369,0	1435,0	1219,0	852,0	1290,0	826,0	1226,0	1267,0	1219,0	1497,0
799,7	569,0	651,0	791,0	675,0	578,0	373,0	1422,0	1241,0	851,0	1307,0	834,0	1231,0	1212,0	1215,0	1494,0
800,9	563,0	652,0	780,0	687,0	565,0	374,0	1393,0	1248,0	843,0	1286,0	842,0	1217,0	1248,0	1202,0	1462,0
802,0	587,0	672,0	771,0	667,0	562,0	384,0	1381,0	1230,0	867,0	1293,0	814,0	1232,0	1255,0	1228,0	1446,0
803,2	589,0	635,0	769,0	676,0	588,0	381,0	1368,0	1207,0	890,0	1294,0	818,0	1229,0	1247,0	1215,0	1470,0
804,4	591,0	634,0	759,0	677,0	567,0	395,0	1375,0	1224,0	851,0	1265,0	814,0	1197,0	1234,0	1212,0	1467,0
805,5	567,0	657,0	778,0	695,0	553,0	389,0	1368,0	1246,0	870,0	1294,0	813,0	1220,0	1230,0	1220,0	1457,0
806,7	582,0	663,0	775,0	660,0	541,0	383,0	1376,0	1222,0	872,0	1295,0	808,0	1210,0	1246,0	1194,0	1431,0
807,8	596,0	637,0	780,0	646,0	539,0	375,0	1381,0	1222,0	861,0	1256,0	814,0	1208,0	1240,0	1209,0	1458,0
809,0	597,0	665,0	759,0	651,0	564,0	392,0	1366,0	1 199,0	863,0	1279,0	812,0	1 199,0	1212,0	1183,0	1429,0
810,2	567,0	628,0	747,0	644,0	543,0	389,0	1344,0	1199,0	871,0	1272,0	836,0	1183,0	1232,0	1192,0	1425,0
811,3	585,0	627,0	769,0	661,0	544,0	389,0	1379,0	1176,0	856,0	1261,0	819,0	1197,0	1230,0	1214,0	1392,0
812,5	582,0	635,0	756,0	651,0	532,0	393,0	1339,0	1216,0	868,0	1241,0	811,0	1161,0	1239,0	1182,0	1415,0
813,7	582,0	591,0	733,0	681,0	534,0	378,0	1352,0	1144,0	854,0	1269,0	809,0	1185,0	1207,0	1196,0	1413,0
814,8	592,0	644,0	753,0	641,0	549,0	400,0	1362,0	1171,0	858,0	1234,0	803,0	1158,0	1242,0	1212,0	1392,0
816,0	581,0	627,0	749,0	643,0	545,0	377,0	1343,0	1158,0	848,0	1227,0	821,0	1190,0	1218,0	1163,0	1379,0
817,2	599,0	644,0	738,0	632,0	539,0	379,0	1373,0	1161,0	850,0	1258,0	815,0	1136,0	1202,0	1164,0	1386,0
818,3	580,0	604,0	747,0	647,0	529,0	408,0	1331,0	1133,0	876,0	1224,0	810,0	1175,0	1209,0	1196,0	1370,0
819,5	577,0	622,0	755,0	634,0	557,0	373,0	1311,0	1149,0	861,0	1214,0	810,0	1128,0	1219,0	1163,0	1372,0

820,6	585,0	598,0	735,0	617,0	538,0	395,0	1307,0	1112,0	854,0	1230,0	810,0	1178,0	1204,	175,	1353,0
821,8	581,0	617,0	750,0	601,0	537,0	387,0	1325,0	1138,0	866,0	1237,0	794,0	1160,0	1208,0	1160,0	1336,0
823,0	588,0	620,0	739,0	635,0	519,0	402,0	1340,0	1139,0	832,0	1215,0	796,0	1158,0	1217,0	1161,0	1364,0
824,1	595,0	589,0	730,0	633,0	524,0	351,0	1308,0	1134,0	855,0	1208,0	778,0	1154,0	1191,0	1156,0	1359,0
825,3	585,0	589,0	742,0	622,0	509,0	373,0	1292,0	1114,0	893,0	1215,0	781,0	1131,0	1206,0	1145,0	1323,0
826,4	594,0	605,0	726,0	620,0	551,0	375,0	1267,0	1150,0	825,0	1210,0	796,0	1164,0	1199,0	1156,0	1359,0
827,6	609,0	596,0	730,0	655,0	527,0	379,0	1305,0	1096,0	837,0	1227,0	820,0	1127,0	1197,0	1132,0	1383,0
828,8	585,0	609,0	756,0	593,0	496,0	394,0	1283,0	1105,0	849,0	1249,0	820,0	1102,0	1202,0	1160,0	308,
829,9	585,0	607,0	746,0	610,0	540,0	367,0	1285,0	1117,0	845,0	1 192,0	787,0	1155,0	1191,0	1122,0	1299,0
831,1	567,0	609,0	721,0	595,0	556,0	380,0	1293,0	1123,0	849,0	1225,0	763,0	1128,0	1187,0	1124,0	1308
832,2	569,0	587,0	718,0	613,0	531,0	373,0	1332,0	1103,0	830,0	1221,0	770,0	1126,0	1195,0	1122,0	1322,0
833,4	577,0	602,0	729,0	617,0	511,0	378,0	1281,0	1115,0	833,0	1216,0	779,0	1136,0	1165,0	1130,0	1304,0
834,6	567,0	570,0	734,0	633,0	524,0	353,0	1260,0	1100,0	842,0	1220,0	777,0	1137,0	1184,0	1107,0	1299,0
835,7	570,0	597,0	720,0	587,0	524,0	371,0	1286,0	1108,0	856,0	1 195,0	794,0	1129,0	1200, 0	1109,0	1328,0
836,9	565,0	608,0	697,0	596,0	525,0	375,0	1301,0	1108,0	850,0	1209,0	779,0	1126,0	1173,0	1094,0	1314,0
838,0	563,0	587,0	710,0	610,0	523,0	375,0	1266,0	1092,0	858,0	1204,0	780,0	1144,0	1201,0	1083,0	1283
839,2	547,	553,0	698,0	593,0	541,0	347,0	1301,0	1 109,0	865,0	1204,0	800,0	1123,0	1176,0	1068,0	12
840,4	569,0	594,0	709,0	621,0	533,0	362,0	1264,0	1103,0	841,0	1231,0	767,0	1109,0	1181,0	1075,0	1288,0
841,5	572,0	585,0	708,0	617,0	524,0	360,0	1304,0	1093,0	846,0	1 193,0	780,0	1131,0	1177,0	1079,0	1283,0
842,7	571,0	584,0	705,0	597,0	503,0	362,0	1268,0	1113,0	850,0	1206,0	773,0	1121,0	1223,0	1076,0	1314,0
843,8	559,0	583,0	682,0	606,0	523,0	366,0	1298,0	1084,0	829,0	1189,0	810,0	1105,0	1178,0	1083,0	1282,0
845,0	557,0	575,0	732,0	584,0	515,0	354,0	1265,0	1107,0	820,0	1 168,0	782,0	1 109,0	1183,0	1067,0	1288,0
846,2	584,0	576,0	746,0	592,0	523,0	353,0	1274,0	1090,0	853,0	193,0	798,0	1107,0	1197,0	1056,0	1315,0
847,3	553,0	565,0	750,0	584,0	518,0	355,0	1260,0	1082,0	828,0	197,0	787,0	1119,0	1192,0	1079,0	1299,0
848,5	567,0	583,0	681,0	567,0	514,0	357,0	1250,0	1077,0	848,0	1188,0	759,0	1111,0	1200,0	1060,0	1282,0
849,6	550,0	561,0	701,0	589,0	536,0	348,0	1265,0	1075,0	861,0	1204,0	794,0	1096,0	1164,0	1027,0	1287,0
850,8	570,0	574,0	707,0	606,0	534,0	339,0	1282,0	1086,0	836,0	1207,0	790,0	1115,0	1171,0	1039,0	1263,0
851,9	537,0	575,0	715,0	588,0	505,0	315,0	1268,0	1076,0	846,0	1216,0	772,0	1104,0	1196,0	1044,0	1263,0
853,1	546,0	583,0	698,0	596,0	517,0	345,0	1280,0	1069,0	839,0	1244,0	757,0	1111,0	1176,0	1050,0	1288,0
854,3	564,0	545,0	719,0	606,0	515,0	349,0	1281,0	1059,0	847,0	1195,0	768,0	1092,0	1159,0	1050,0	1277,0
855,4	564,0	561,0	683,0	603,0	497,0	352,0	1264,0	1100,0	854,0	1190,0	764,0	1105,0	1176,0	1015,0	1287,0
856,6	567,0	559,0	689,0	575,0	512,0	336,0	1268,0	1026,0	840,0	1199,0	773,0	1087,0	1166,0	1009,0	1281,0
857,7	553,0	578,0	667,0	596,0	507,0	340,0	1281,0	1067,0	836,0	1203,0	775,0	1080,0	1187,0	1059,0	1274,0
858,9	561,0	554,0	691,0	580,0	492,0	347,0	1264,0	1061,0	852,0	1197,0	777,0	1110,0	1194,0	1024,0	1273,0
860,0	561,0	560,0	693,0	608,0	526,0	357,0	1272,0	1058,0	825,0	1176,0	767,0	1102,0	1172,0	997,0	1246,0
861,2	550,0	574,0	691,0	591,0	519,0	355,0	1277,0	1077,0	827,0	1221,0	786,0	1120,0	1193,0	1028,0	1297,0
862,3	557,0	576,0	687,0	589,0	509,0	360,0	1246,0	1044,0	843,0	1169,0	775,0	1108,0	1224,0	1023,0	1237,0
863,5	547,0	566,0	689,0	582,0	517,0	343,0	1238,0	1065,0	849,0	1 181,0	779,0	1082,0	1179,0	1029,0	1269,0
864,7	568,0	571,0	701,0	561,0	504,0	355,0	1248,0	1081,0	844,0	1198,0	772,0	1092,0	1216,0	992,0	1268,0
865,8	537,0	557,0	695,0	555,0	507,0	341,0	1240,0	1045,0	860,0	1193,0	780,0	1083,0	1169,0	981,0	1279,0
867,0	558,0	574,0	701,0	580,0	487,0	344,0	1226,0	1062,0	838,0	1200,0	771,0	1078,0	1195,0	1011,0	1230,0
868,1	547,0	531,0	680,0	593,0	495,0	339,0	1233,0	1067,0	857,0	1214,0	751,0	1064,0	1150,0	987,0	1248,0
869,3	561,0	542,0	696,0	598,0	530,0	355,0	1237,0	1057,0	852,0	1175,0	767,0	1119,0	1181,0	972,0	1271,0
870,4	563,0	560,0	688,0	575,0	517,0	321,0	1234,0	1051,0	850,0	1176,0	766,0	1066,0	1195,0	981,0	1245,0
871,6	570,0	548,0	666,0	597,0	518,0	349,0	1236,0	1059,0	839,0	1181,0	759,0	1101,0	1177,0	1000,0	1262,0
872,7	561,0	557,0	677,0	582,0	528,0	353,0	1246,0	1059,0	840,0	1159,0	770,0	1056,0	1155,0	969,0	1222,0
873,9	553,0	544,0	673,0	557,0	503,0	343,0	1224,0	1025,0	832,0	1172,0	761,0	1094,0	1184,0	86,0	1251,0
875,0	541,0	560,0	677,0	577,0	503,0	341,0	1226,0	1043,0	839,0	1159,0	758,0	1069,0	1197,0	976,0	1244,0
876,2	545,0	536,0	682,0	574,0	525,0	323,0	1253,0	1039,0	855,0	1147,0	765,0	1065,0	1165,0	989,0	1216,0
877,3	550,0	544,0	685,0	569,0	501, 0	351,0	1260,0	1029,0	851,0	1172,0	767,0	1054,0	1136,0	1002,0	1245,0
878,5	551,0	555,0	680,0	586,0	495,0	339,0	1230,0	1037,0	832,0	1174,0	762,0	1086,0	1160,0	983,0	1241,0
879,6	554,0	573,0	651,0	567,0	500,0	340,0	1225,0	1014,0	847,0	1166,0	758,0	1052,0	1182,0	991,0	1219,0
880,8	570,0	546,0	674,0	568,0	479,0	356,0	1247,0	1026,0	830,0	1152,0	753,0	1046,0	1169,0	966,0	1228,0
881,9	573,0	542,0	679,0	543,0	494,0	339,0	1184,0	1017,0	835,0	1179,0	761,0	1028,0	1167,0	957,0	1207,0
883,1	562,0	539,0	636,0	555,0	473,0	337,0	1225,0	1013,0	845,0	1156,0	771,0	1031,0	1161,0	946,0	1163,0
884,3	581,0	523,0	664,0	566,0	511,0	347,0	1203,0	1026,0	839,0	1143,0	745,0	1048,0	1191,0	942,0	1201,0
885,4	556,0	539,0	682,0	567,0	497,0	325,0	1218,0	1027,0	824,0	1125,0	764,0	1038,0	1157,0	957,0	1180,0
886,6	546,0	547,0	657,0	521,0	513,0	342,0	1191,0	1000,0	831,0	1169,0	744,0	1053,0	1150,0	979,0	1197,0
887,7	560,0	565,0	665,0	539,0	489,0	323,0	1190,0	1000,0	808,0	1 172,0	736,0	1047,0	1157,0	917,0	1179,0
888,9	553,0	546,0	656,0	541,0	506,0	327,0	1190,0	980,0	847,0	1170,0	773,0	1041,0	1159,0	966,0	1174,0
890,0	546,0	529,0	646,0	561,0	489,0	325,0	1208,0	1006,0	830,0	1143,0	754,0	1017,0	1150,0	952,0	1174,0
891,2	571,0	520,0	663,0	537,0	488,0	345,0	1219,0	995,0	812,0	1121,0	727,0	1036,0	1155,0	978,0	1199,0
892,3	551,0	535,0	647,0	552,0	510,0	341,0	1164,0	988,0	833,0	1151,0	746,0	995,0	1159,0	933,0	1182,0
893,5	538,0	539,0	659,0	576,0	472,0	346,0	1189,0	985,0	813,0	1135,0	725,0	1033,0	1155,0	974,0	1156,0
894,6	550,0	537,0	657,0	569,0	502,0	324,0	1172,0	995,0	818,0	1137,0	728,0	1040,0	1104,0	941,0	1190,0
895,8	558,0	512,0	653,0	553,0	505,0	334,0	1180,0	972,0	835,0	1129,0	736,0	1047,0	1125,0	946,0	1177,0
896,9	550,0	525,0	656,0	541,0	521,0	345,0	1164,0	976,0	828,0	1110,0	759,0	1005,0	1138,0	916,0	1172,0
898,1	539,0	536,0	658,0	544,0	492,0	338,0	1181,0	986,0	818,0	1115,0	723,0	1019,0	1116,0	941,0	1175,0
899,2	535,0	535,0	644,0	556,0	480,0	331,0	1179,0	990,0	841,0	1110,0	711,0	1039,0	1164,0	936,0	1145,0
900,4	550,0	524,0	625,0	518,0	491,0	329,0	1149,0	973,0	800,0	1121,0	729,0	1011,0	1133,0	936,0	1135,0
901,5	531,0	523,0	639,0	530,0	477,0	325,0	1171,0	973,0	814,0	1135,0	744,0	1016,0	1125,0	929,0	1187,0
902,6	538,0	525,0	640,0	536,0	482,0	325,0	1183,0	990,0	823,0	1102,0	718,0	1011,0	1133,0	919,0	1169,0
903,8	558,0	511,0	650,0	564,0	482,0	337,0	1171,0	996,0	833,0	1 103,0	720,0	1003,0	1102,0	920,0	1179,0
904,9	543,0	499,0	649,0	545,0	472,0	326,0	1163,0	998,0	824,0	1120,0	737,0	1018,0	1130,0	902,0	1147,0
906,1	531,0	520,0	642,0	544,0	473,0	324,0	1168,0	974,0	806,0	1136,0	750,0	993,0	1126,0	931,0	1157,0
907,2	547,0	513,0	657,0	557,0	490,0	325,0	1160,0	969,0	799,0	1111,0	732,0	999,0	1109,0	923,0	1148,0
908,4	539,0	532,0	628,0	555,0	503,0	329,0	1166,0	977,0	826,0	1116,0	722,0	996,0	1132,0	931,0	1164,0
909,5	543,0	524,0	627,0	543,0	489,0	321,0	1158,0	980,0	835,0	1099,0	722,0	1002,0	1094,0	901,0	1146,0
910,7	537,0	503,0	627,0	536,0	484,0	331,0	1157,0	966,0	808,0	1125,0	727,0	997,0	1135,0	935,0	1139,0
911,8	541,0	516,0	626,0	542,0	496,0	325,0	1170,0	966,0	811,0	1116,0	730,0	976,0	1105,0	892,0	1128,0
913,0	551,0	521,0	657,0	537,0	489,0	326,0	1148,0	977,0	835,0	1100,0	734,0	1007,0	1130,0	946,0	1111,0
914,1	546,0	517,0	665,0	564,0	498,0	344,0	1159,0	978,0	818,0	1121,0	739,0	985,0	1108,0	912,0	1146,0
915,3	563,0	494,0	637,0	538,0	500,0	326,0	1173,0	974,0	823,0	1098,0	769,0	978,0	1120,0	911,0	1142,0
916,4	529,0	522,0	643,0	551,0	486,0	327,0	1175,0	987,0	823,0	1153,0	735,0	974,0	1108,0	939,0	1149,0
917,6	547,0	518,0	641,0	540,0	472,0	317,0	1162,0	973,0	835,0	1138,0	741,0	980,0	1082,0	909,0	1128,0
918,7	536,0	499,0	640,0	533,0	477,0	336,0	1157,0	990,0	811,0	1114,0	696,0	995,0	1138,0	914,0	1147,0
919,9	563,0	499,0	624,0	549,0	485,0	318,0	1176,0	982,0	842,0	1098,0	710,0	994,0	1127,0	907,0	1116,0
921,0	541,0	510,0	654,0	528,0	503,0	321,0	1187,0	976,0	816,0	1120,0	734,0	1001,0	1103,0	909,0	1138,0
922,1	522,0	525,0	654,0	525,0	483,0	326,0	1138,0	971,0	815,0	1078,0	736,0	973,0	1127,0	913,0	1108,0
923,3	530,0	516,0	640,0	534,0	485,0	312,0	1147,0	960,0	834,0	1107,0	740,0	975,0	1113,0	910,0	1126,0
924,4	543,0	513,0	640,0	532,0	491,0	323,0	1159,0	951,0	809,0	1117,0	745,0	971,0	1084,0	901,0	1137,0
925,6	555,0	509,0	610,0	534,0	486,0	320,0	1151,0	972,0	818,0	1126,0	725,0	962,0	1121,0	903,0	1149,0
926,7	539,0	509,0	647,0	542,0	489,0	333,0	1157,0	948,0	817,0	1112,0	708,0	983,0	1131,0	914,0	1136,0
927,9	523,0	519,0	645,0	533,0	488,0	327,0	1148,0	974,0	813,0	1100,0	724,0	995,0	1129,0	918,0	1140,0
929,0	543,0	512,0	676,0	507,0	481,0	318,0	1146,0	955,0	834,0	1095,0	706,0	987,0	1132,0	892,0	1134,0
930,2	548,0	496,0	608,0	531,0	493,0	322,0	1179,0	975,0	857,0	1118,0	712,0	992,0	1119,0	918,0	1137,0
931,3	551,0	522,0	648,0	527,0	470,0	336,0	1158,0	963,0	820,0	1094,0	715,0	984,0	1102,0	909,0	1100,0
932,4	548,0	505,0	653,0	535,0	469,0	319,0	1188,0	956,0	815,0	1157,0	730,0	1012,0	1106,0	901,0	1119,0
933,6	544,0	537,0	656,0	517,0	495,0	331,0	1174,0	950,0	822,0	1112,0	711,0	1000,0	1132,0	916,0	1136,0
934,7	533,0	507,0	629,0	505,0	503,0	328	115	963,0	820,0	1122,0	728,0	976,0	110	909,0	1150,0

935,9	535,0	495,0	633,0	529,0	472,0	309,0	1135,0	941,0	823,0	1112,0	720,0	989,0	1103,0	898,0	1134,0
937,0	544,0	512,0	663,0	538,0	462,0	326,0	1154,0	937,0	830,0	1113,0	734,0	960,0	1111,0	899,0	1101,0
938,2	534,0	523,0	627,0	528,0	487,0	299,0	1136,0	989,0	797,0	1188,0	757,0	986,0	1141,0	897,0	1148,0
939,3	517,0	494,0	630,0	517,0	466,0	317,0	1135,0	958,0	816,0	1097,0	717,0	943,0	1114,0	927,0	1124,0
940,4	541,0	513,0	639,0	540,0	485,0	326,0	1138,0	949,0	833,0	1102,0	720,0	967,0	1153,0	925,0	1128,0
941,6	547,0	529,0	636,0	517,0	466,0	313,0	1155,0	937,0	823,0	1107,0	713,0	951,0	1103,0	909,0	1075,0
942,7	531,0	528,0	645,0	530,0	481,0	328,0	1157,0	946,0	833,0	1116,0	753,0	982,0	1096,0	901,0	1099,0
943,9	550,0	524,0	627,0	523,0	485,0	299,0	1156,0	942,0	812,0	1118,0	717,0	964,0	1131,0	888,0	1079,0
945,0	535,0	511,0	642,0	517,0	490,0	316,0	1144,0	948,0	787,0	1100,0	730,0	973,0	1123,0	909,0	1097,0
946,1	536,0	521,0	630,0	530,0	464,0	324,0	1164,0	960,0	815,0	1100,0	721,0	975,0	1118,0	867,0	1097,0
947,3	541,0	517,0	629,0	528,0	483,0	324,0	1142,0	951,0	811,0	1099,0	710,0	980,0	1120,0	884,0	1085,0
948,4	551,0	513,0	625,0	510,0	483,0	326,0	1126,0	950,0	821,0	1091,0	719,0	974,0	1128,0	903,0	1113,0
949,6	551,0	488,0	621,0	523,0	468,0	318,0	1142,0	945,0	802,0	1092,0	710,0	954,0	1130,0	867,0	1103,0
950,7	530,0	507,0	625,0	540,0	458,0	309,0	1119,0	932,0	819,0	1089,0	696,0	991,0	1126,0	896,0	1117,0
951,8	515,0	493,0	628,0	518,0	475,0	307,0	1148,0	976,0	814,0	1118,0	697,0	977,0	1114,0	893,0	1086,0
953,0	551,0	508,0	644,0	505,0	483,0	312,0	1139,0	959,0	804,0	1080,0	712,0	975,0	1116,0	888,0	1112,0
954,1	547,0	505,0	643,0	529,0	487,0	327,0	1132,0	955,0	840,0	1089,0	710,0	962,0	1087,0	893,0	1077,0
955,3	527,0	527,0	632,0	514,0	464,0	325,0	1126,0	962,0	796,0	1088,0	725,0	972,0	1098,0	861,0	1074,0
956,4	513,0	504,0	622,0	510,0	480,0	323,0	1132,0	930,0	803,0	1095,0	711,0	952,0	1078,0	878,0	1085,0
957,5	538,0	488,0	635,0	522,0	489,0	320,0	1114,0	933,0	782,0	1113,0	719,0	952,0	1116,0	869,0	1078,0
958,7	539,0	513,0	617,0	493,0	465,0	334,0	1138,0	930,0	782,0	1061,0	714,0	971,0	1130,0	895,0	1074,0
959,8	537,0	477,0	640,0	519,0	483,0	323,0	1112,0	926,0	812,0	1 107,0	702,0	953,0	1123,0	897,0	1078,0
961,0	528,0	497,0	645,0	514,0	490,0	328,0	1098,0	911,0	791,0	1035,0	711,0	972,0	1089,0	873,0	1078,0
962,1	544,0	499,0	623,0	526,0	460,0	317,0	1113,0	943,0	811,0	1097,0	703,0	922,0	1122,0	865,0	1082,0
963,2	547,0	492,0	639,0	508,0	485,0	319,0	1140,0	932,0	807,0	1087,0	697,0	935,0	1121,0	874,0	1057,0
964,4	543,0	493,0	621,0	504,0	473,0	320,0	1115,0	929,0	791,0	1075,0	717,0	929,0	1099,0	875,0	1058,0
965,5	526,0	500,0	639,0	503,0	481,0	305,0	1106,0	929,0	815,0	1094,0	705,0	911,0	1100,0	848,0	1068,0
966,7	515,0	491,0	640,0	522,0	456,0	315,0	1109,0	902,0	801,0	1101,0	713,0	955,0	1104,0	866,0	1082,0
967,8	532,0	510,0	628,0	532,0	465,0	301,0	1118,0	893,0	829,0	1091,0	715,0	954,0	1108,0	859,0	1070,0
968,9	540,0	492,0	645,0	519,0	462,0	324,0	1118,0	936,0	807,0	1092,0	703,0	952,0	1103,0	839,0	1093,0
970,1	540,0	495,0	615,0	507,0	475,0	315,0	1094,0	900,0	815,0	1066,0	698,0	926,0	1118,0	843,0	1084,0
971,2	540,0	492,0	627,0	521,0	467,0	304,0	1105,0	917,0	821,0	1073,0	703,0	936,0	1115,0	874,0	1061,0
972,3	542,0	518,0	612,0	521,0	500,0	324,0	1112,0	924,0	823,0	1090,0	697,0	956,0	1091,0	861,0	1084,0
973,5	541,0	506,0	625,0	531,0	487,0	318,0	1145,0	926,0	800,0	1084,0	725,0	952,0	1129,0	875,0	1078,0
974,6	559,0	507,0	622,0	514,0	473,0	317,0	1138,0	920,0	791,0	1097,0	694,0	950,0	1116,0	867,0	1073,0
975,8	555,0	511,0	627,0	515,0	468,0	310,0	1094,0	922,0	817,0	1098,0	707,0	950,0	1106,0	863,0	1063,0
976,9	531,0	499,0	619,0	511,0	494,0	319,0	1141,0	938,0	833,0	1096,0	709,0	934,0	1122,0	869,0	1098,0
978,0	541,0	500,0	622,0	515,0	473,0	337,0	1154,0	933,0	853,0	1098,0	730,0	945,0	1101,0	866,0	1119,0
979,2	537,0	507,0	654,0	513,0	478,0	323,0	1138,0	912,0	795,0	1117,0	700,0	972,0	1103,0	865,0	1092,0
980,3	549,0	479,0	658,0	531,0	498,0	326,0	1150,0	952,0	817,0	1102,0	731,0	961,0	1129,0	889,0	1084,0
981,4	537,0	505,0	619,0	525,0	506,0	333,0	1131,0	965,0	808,0	1107,0	731,0	978,0	1138,0	876,0	1070,0
982,6	531,0	497,0	651,0	514,0	488,0	317,0	1157,0	925,0	849,0	1086,0	720,0	937,0	1113,0	870,0	1091,0
983,7	545,0	523,0	636,0	539,0	484,0	327,0	1155,0	941,0	819,0	1115,0	727,0	983,0	1128,0	879,0	1087,0
984,8	527,0	512,0	659,0	509,0	498,0	325,0	1139,0	927,0	841,0	1117,0	739,0	963,0	1114,0	879,0	1102,0
986,0	547,0	487,0	632,0	537,0	479,0	315,0	1151,0	918,0	797,0	1083,0	723,0	991,0	1139,0	867,0	1083,0
987,1	549,0	525,0	662,0	522,0	494,0	328,0	1160,0	917,0	855,0	1111,0	733,0	949,0	1125,0	891,0	1084,0
988,2	543,0	535,0	656,0	541,0	484,0	317,0	1128,0	902,0	857,0	1121,0	723,0	959,0	1108,0	897,0	1117,0
989,4	541,0	521,0	654,0	511,0	497,0	309,0	1136,0	945,0	840,0	1110,0	711,0	967,0	1116,0	873,0	1095,0
990,5	549,0	515,0	650,0	547,0	489,0	329,0	1135,0	935,0	835,0	1105,0	707,0	985,0	1116,0	890,0	1 109,0
991,6	552,0	515,0	671,0	537,0	472,0	322,0	1147,0	942,0	830,0	1110,0	744,0	966,0	1158,0	869,0	1111,0
992,8	555,0	505,0	645,0	514,0	475,0	333,0	1141,0	937,0	826,0	1085,0	736,0	950,0	1138,0	923,0	1100,0
993,9	541,0	517,0	658,0	523,0	507,0	320,0	1156,0	950,0	835,0	1119,0	707,0	973,0	1141,0	889,0	1097,0
995,0	549,0	535,0	652,0	509,0	506,0	320,0	1136,0	931,0	826,0	1111,0	709,0	967,0	1157,0	915,0	1109,0
996,2	560,0	530,0	637,0	535,0	515,0	311,0	1171,0	936,0	851,0	1137,0	728,0	961,0	1139,0	889,0	1113,0
997,3	541,0	510,0	645,0	551,0	488,0	321,0	1161,0	947,0	851,0	1113,0	728,0	989,0	1135,0	877,0	1089,0
998,4	529,0	537,0	673,0	523,0	488,0	337,0	1148,0	952,0	847,0	1121,0	731,0	948,0	1143,0	866,0	1093,0
999,6	533,0	531,0	645,0	532,0	505,0	322,0	1142,0	931,0	837,0	1152,0	727,0	966,0	1477,0	898,0	1066,0
1000, 7	545,0	522,0	659,0	540,0	517,0	313,0	1133,0	935,0	850,0	1132,0	748,0	974,0	1140,0	874,0	1086,0
1001,8	535,0	535,0	653,0	541,0	499,0	330,0	1144,0	949,0	835,0	1115,0	718,0	980,0	1142,0	875,0	1087,0
1003,0	551,0	523,0	640,0	527,0	509,0	331,0	1126,0	948,0	851,0	1092,0	730,0	959,0	1140,0	882,0	1116,0
1004,1	558,0	530,0	667,0	526,0	509,0	319,0	1156,0	965,0	811,0	1127,0	727,0	958,0	1120,0	856,0	1109,0
1005,2	559,0	525,0	650,0	533,0	512,0	331,0	1157,0	940,0	824,0	1134,0	747,0	960,0	1 142,0	880,0	1081,0
1006,4	564,0	515,0	671,0	535,0	502,0	341,0	1180,0	954,0	840,0	1128,0	726,0	975,0	1176,0	888,0	1113,0
1007,5	539,0	513,0	655,0	525,0	487,0	335,0	1167,0	961,0	844,0	1127,0	739,0	935,0	1127,0	880,0	1083,0
1008,6	545,0	531,0	658,0	537,0	485,0	331,0	1142,0	944,0	842,0	1120,0	739,0	965,0	1159,0	884,0	1108,0
1009,8	533,0	523,0	655,0	549,0	489,0	325,0	1153,0	930,0	855,0	1112,0	739,0	970,0	1139,0	888,0	1113,0
1010,9	551,0	530,0	648,0	508,0	509,0	323,0	1137,0	928,0	854,0	1143,0	727,0	983,0	1176,0	889,0	1113,0
1012,0	565,0	534,0	668,0	543,0	512,0	340,0	1194,0	950,0	858,0	1128,0	734,0	981,0	1154,0	890,0	1100,0
1013,2	567,0	537,0	662,0	530,0	499,0	335,0	1158,0	934,0	854,0	1119,0	732,0	979,0	1121,0	885,0	1090,0
1014,3	541,0	533,0	673,0	536,0	506,0	337,0	1186,0	938,0	841,0	1140,0	720,0	975,0	1152,0	889,0	1110,0
1015,4	573,0	528,0	677,0	551,0	507,0	345,0	1167,0	925,0	839,0	1113,0	720,0	930,0	1153,0	892,0	1094,0
1016,5	559,0	517,0	659,0	551,0	501,0	324,0	1177,0	952,0	843,0	1130,0	728,0	969,0	1161,0	907,0	1075,0
1017,7	588,0	518,0	677,0	555,0	513,0	348,0	1184,0	942,0	837,0	1138,0	704,0	967,0	1149,0	874,0	1122,0
1018,8	561,0	517,0	664,0	532,0	497,0	361,0	1169,0	956,0	853,0	1138,0	737,0	976,0	1124,0	880,0	1118,0
1019,9	561,0	549,0	687,0	545,0	491,0	353,0	1154,0	938,0	848,0	1153,0	737,0	943,0	1164,0	884,0	1086,0
1021,1	587,0	525,0	662,0	568,0	508,0	351,0	1157,0	972,0	855,0	1109,0	748,0	958,0	1154,0	895,0	1105,0
1022,2	579,0	532,0	664,0	546,0	523,0	346,0	1189,0	950,0	864,0	1102,0	727,0	979,0	1159,0	898,0	1102,0
1023,3	594,0	533,0	684,0	513,0	524,0	357,0	1180,0	960,0	843,0	1134,0	758,0	965,0	1158,0	903,0	1093,0
1024,4	581,0	533,0	688,0	548,0	541,0	362,0	1188,0	969,0	829,0	1114,0	755,0	970,0	1182,0	889,0	1080,0
1025,6	586,0	540,0	674,0	541,0	520,0	366,0	1168,0	947,0	883,0	1155,0	731,0	953,0	1138,0	898,0	1122,0
1026,7	574,0	533,0	659,0	543,0	543,0	376,0	1173,0	947,0	869,0	1136,0	752,0	969,0	1178,0	872,0	1080,0
1027,8	583,0	527,0	675,0	543,0	524,0	378,0	1161,0	948,0	893,0	1158,0	705,0	1002,0	1147,0	897,0	1112,0
1029,0	580,0	524,0	682,0	543,0	530,0	367,0	1187,0	954,0	865,0	1142,0	746,0	983,0	1188,0	895,0	1093,0
1030,1	582,0	533,0	691,0	521,0	532,0	373,0	1170,0	961,0	875,0	1179,0	764,0	983,0	1179,0	926,0	1110,0
1031,2	589,0	535,0	690,0	544,0	530,0	366,0	1202,0	968,0	890,0	1129,0	736,0	980,0	1174,0	902,0	1133,0
1032,3	587,0	540,0	665,0	549,0	528,0	369,0	1189,0	956,0	865,0	1140,0	766,0	1002,0	1 184,0	878,0	1107,0
1033,5	589,0	516,0	685,0	533,0	533,0	369,0	1162,0	957,0	902,0	1139,0	766,0	954,0	1172,0	898,0	1105,0
1034,6	594,0	536,0	677,0	566,0	524,0	389,0	1156,0	1000,0	869,0	1140,0	731,0	965,0	1199,0	889,0	1102,0
1035,7	609,0	515,0	674,0	554,0	535,0	389,0	1195,0	960,0	883,0	1150,0	785,0	991,0	1180,0	909,0	1083,0
1036,8	620,0	550,0	657,0	527,0	535,0	389,0	1168,0	949,0	878,0	1151,0	760,0	981,0	1161,0	902,0	1127,0
1038,0	581,0	521,0	700,0	571,0	539,0	389,0	1205,0	990,0	887,0	1128,0	771,0	956,0	1190,0	910,0	1115,0
1039,1	590,0	548,0	709,0	552,0	521,0	377,0	1184,0	953,0	907,0	1151,0	768,0	992,0	1169,0	886,0	1108,0
1040,2	613,0	532,0	700,0	568,0	524,0	378,0	1175,0	955,0	900,0	1117,0	750,0	982,0	1191,0	892,0	1129,0
1041,3	617,0	571,0	673,0	551,0	531,0	386,0	1181,0	961,0	882,0	1140,0	755,0	982,0	1186,0	891,0	1119,0
1042,5	595,0	539,0	683,0	556,0	554,0	397,0	1192,0	954,0	890,0	1135,0	771,0	1004,0	1184,0	885,0	1135,0
1043,6	616,0	541,0	726,0	550,0	577,0	391,0	1160,0	975,0	917,0	1156,0	761,0	987,0	1203,0	881,0	1135,0
1044,7	603,0	533,0	690,0	554,0	549,0	411,0	1184,0	968,0	882,0	1139,0	764,0	968,0	1190,0	904,0	1102,0
1045,8	603,0	537,0	681,0	552,0	529,0	398,0	1182,0	958,0	897,0	1154,0	745,0	964,0	1179,0	906,0	1119,0
1047,0 1048,1	603,0 615,0	551,0 554,0	708,0 709,0	583,0 551,0	562,0 534,0	$4{ }^{4017,0}$	1205,0 1200,0	953,0 995,0	877,0 886,0	1136,0 1139,0	781,0	979,0 971,0	1177,0 1195,0	903,0 887,0	1127,0

1160,7	615,0	595,0	789,0	616,0	622,0	428,0	1261,0	1000,0	973,0	1232,0	799,0	994,0	1243,0	913,0	1147,0
1161,8	632,0	599,0	813,0	591,0	641,0	400,0	1280,0	1033,0	945,0	1238,0	781,0	1042,0	1306,0	929,0	1131,0
1162,9	619,0	630,0	810,0	633,0	636,0	411,0	1268,0	1011,0	964,0	1197,0	791,0	999,0	1283,0	910,0	1164,0
1164,0	630,0	605,0	814,0	631,0	615,0	418,0	1256,0	1006,0	952,0	1231,0	809,0	1017,0	1285,0	918,0	1133,0
1165,1	627,0	608,0	817,0	616,0	637,0	410,0	1262,0	981,0	970,0	1260,0	777,0	1005,0	1263,0	889,0	1132,0
1166,3	638,0	631,0	809,0	616,0	632,0	403,0	1263,0	1042,0	996,0	1242,0	790,0	1006,0	1266,0	907,0	1176,0
1167,4	627,0	626,0	816,0	621,0	647,0	409,0	1273,0	1013,0	989,0	1235,0	764,0	1008,0	1266,0	915,0	1146,0
1168,5	653,0	607,0	773,0	621,0	631,0	423,0	1279,0	1023,0	974,0	1236,0	759,0	1001,0	1261,0	948,0	1142,0
1169,6	605,0	610,0	798,0	611,0	647,0	431,0	1318,0	1023,0	952,0	1236,0	772,0	1032,0	1250,0	886,0	1164,0
1170,7	639,0	614,0	817,0	610,0	641,0	440,0	1280,0	989,0	982,0	1232,0	791,0	1040,0	1276,0	923,0	1109,0
1171,8	617,0	605,0	779,0	603,0	650,0	403,0	1265,0	1010,0	967,0	1250,0	784,0	1014,0	1297,0	919,0	1121,0
1172,9	640,0	598,0	764,0	606,0	664,0	418,0	1288,0	1028,0	961,0	1213,0	779,0	1033,0	1263,0	912,0	1145,0
1174,0	625,0	624,0	821,0	617,0	640,0	427,0	1300,0	1009,0	984,0	1232,0	775,0	1012,0	1287,0	908,0	1133,0
1175,1	639,0	597,0	803,0	631,0	643,0	426,0	1259,0	1018,0	985,0	1237,0	793,0	1002,0	1253,0	906,0	1100,0
1176,2	653,0	607,0	808,0	601,0	642,0	415,0	1252,0	1017,0	983,0	1180,0	782,0	1002,0	1313,0	902,0	1124,0
1177,3	639,0	614,0	797,0	628,0	615,0	429,0	1279,0	1008,0	970,0	1237,0	784,0	1005,0	1300,0	910,0	1148,0
1178,4	649,0	619,0	815,0	601,0	633,0	423,0	1266,0	988,0	930,0	1225,0	783,0	1029,0	1255,0	901,0	1140,0
1179,5	633,0	605,0	837,0	627,0	646,0	436,0	1276,0	1049,0	998,0	1251,0	788,0	1008,0	1307,0	911,0	1118,0
1180,6	638,0	628,0	808,0	637,0	626,0	428,0	1283,0	1008,0	979,0	1227,0	772,0	997,0	1283,0	903,0	1159,0
1181,7	623,0	611,0	816,0	632,0	653,0	433,0	1297,0	1043,0	966,0	1238,0	778,0	1017,0	1279,0	900,0	1140,0
1182,8	623,0	645,0	810,0	621,0	670,0	436,0	1280,0	1012,0	969,0	1247,0	786,0	1044,0	1277,0	939,0	1102,0
1183,9	625,0	615,0	806,0	621,0	651,0	443,0	1261,0	1022,0	980,0	1241,0	792,0	1018,0	1266,0	924,0	1160,0
1185,0	629,0	640,0	814,0	633,0	631,0	437,0	1307,0	1016,0	964,0	1248,0	776,0	1019,0	1295,0	934,0	1161,0
1186,1	663,0	629,0	808,0	637,0	633,0	457,0	1302,0	1005,0	985,0	1207,0	778,0	1006,0	1296,0	922,0	1143,0
1187,2	649,0	628,0	805,0	649,0	645,0	432,0	1319,0	1004,0	961,0	1224,0	806,0	1021,0	1265,0	922,0	1150,0
1188,3	641,0	631,0	825,0	640,0	654,0	454,0	1275,0	1017,0	1009,0	1225,0	779,0	1002,0	1270,0	913,0	1149,0
1189,4	654,0	619,0	858,0	624,0	650,0	429,0	1299,0	1007,0	979,0	1228,0	811,0	1004,0	1322,0	937,0	1145,0

B.4.9: Table showing the Raman shifts of the last 17 of 32 analysed grains of TNS18.

TNS18	Intensity (A.U)	Turner Exploration Campe															
		Raman shift (cm^{-1})															
		Grain 16	Grain 17	Grain 18	Grain 19	Grain 20	Grain 21	Grain 22	Grain 23	Grain 24-01	Grain 24-02	Grain 26	Grain 28	Grain 29	Grain 30	Grain 31	Grain 32
	-38,6	19	24	24	24	25	23	22	21	22	25	20	19	21	23	24	21
	-37,3	23	24	21	17	17	24	17	21	19	19	17	15	17	19	25	22
	-35,9	30	27	25	26	24	19	25	27	27	19	26	27	21	25	23	31
	-34,6	23	33	23	27	23	23	21	21	22	25	29	27	24	28	23	21
	-33,3	27	22	25	28	22	22	27	25	21	22	26	25	21	33	24	23
	-32,0	31	27	23	23	25	21	23	25	26	23	27	23	21	21	24	24
	-30,7	30	22	20	21	25	21	17	27	17	25	27	23	22	19	24	17
	-29,4	23	28	28	17	20	25	18	25	21	25	27	23	25	19	26	21
	-28,1	26	21	26	22	22	24	23	26	21	25	25	17	19	25	19	24
	-26,8	23	19	27	26	21	27	22	23	21	28	21	23	22	19	22	19
	-25,5	33	23	24	26	23	24	26	25	17	17	21	23	21	21	25	25
	-24,2	23	25	25	21	23	24	20	25	24	28	28	25	20	16	26	18
	-22,9	29	19	25	22	20	23	22	26	19	28	21	24	17	21	23	19
	-21,6	25	29	17	24	25	25	24	17	29	23	22	17	20	22	24	27
	-20,3	26	26	25	23	21	17	25	23	21	21	28	19	19	23	25	22
	-19,0	23	28	29	23	21	22	19	27	25	24	24	27	17	26	25	25
	-17,7	25	23	23	21	27	20	27	21	22	27	29	25	22	27	23	22
	-16,4	21	29	29	23	27	26	19	25	24	25	21	21	21	26	16	27
	-15,1	30	24	24	23	23	24	24	23	19	21	30	23	25	21	27	22
	-13,8	31	26	32	23	23	19	17	28	26	22	21	19	23	19	23	23
	-12,5	23	27	27	25	19	25	28	24	19	19	23	25	25	21	23	20
	-11,2	25	22	23	26	26	25	23	27	29	27	27	23	21	25	21	31
	-9,8	32	29	29	24	25	23	24	25	27	25	26	25	29	21	27	19
	-8,5	31	22	23	26	25	18	25	28	21	28	21	26	23	24	23	27
	-7,2	31	33	29	17	17	25	31	27	23	31	25	25	24	21	23	21
	-5,9	31	31	29	27	21	27	25	29	28	28	25	28	24	27	19	32
	-4,6	41	51	39	35	33	33	37	39	42	38	38	41	35	41	38	37
	-3,3	129	125	118	112	116	99	103	115	103	110	119	131	121	125	136	129
	$-2,0$	333	319	298	291	313	284	285	286	279	287	291	299	330	292	323	332
	-0,7	529	503	515	541	541	485	542	544	509	536	576	556	623	540	557	619
	0,6	801	781	732	757	803	825	815	771	801	825	827	787	869	732	805	903
	1,9	688	635	623	643	631	653	689	683	717	745	733	659	828	641	725	611
	3,2	349	363	341	368	355	335	385	360	387	375	385	380	443	411	449	441
	4.5	150	145	157	138	162	144	176	169	184	174	155	171	183	153	153	121
	5,8	35	41	29	33	38	35	34	27	36	37	34	37	29	30	35	36
	7,1	32	29	29	23	21	32	- 28	- 23	- 29	29	29	27	29	27	25	27
	8,4	33	28	26	27	25	26	24	- 30	- 27	22	30	28	25	29	22	23
	9,7	30	35	29	28	26	-27	28	25	- 22	$\square-26$	26	23	24	25	19	27
	11,0	31	27	28	27	25	23	30	24	31	25	25	29	19	25	22	27
	12,3	29	31	23	24	23	26	24	26	26	21	24	27	25	26	21	25
	13,6	33	30	24	23	27	16	- 21	31	- 21	21	25	25	23	25	25	25
	14,9	35	31	29	29	19	29	29	26	23	29	24	23	24	21	28	20
	16,2	26	28	28	22	22	24	19	24	23	24	26	16	21	25	23	27
	17,5	24	29	22	27	23	22	26	21	25	23	24	23	26	23	30	27
	18,8	40	23	24	26	25	17	16	33	22	21	24	25	21	21	25	19
	20,1	29	32	24	19	19	21	24	27	27	25	29	21	26	23	25	21
	21,3	31	28	21	25	27	19	25	25	22	29	21	17	28	19	23	26
	22,6	31	34	23	26	25	24	19	15	28	26	23	27	25	29	25	25
	23,9	34	31	25	22	30	19	27	29	25	19	30	25	24	19	29	25
	25,2	26	31	27	26	25	25	21	30	31	27	27	29	25	27	29	28
	26,5	27	34	28	23	24	21	21	28	24	27	31	24	21	21	19	25
	27,8	28	32	26	25	27	23	21	33	28	27	25	21	24	27	26	25
	29,1	39	25	27	26	24	23	22	30	23	21	25	21	25	21	25	26
	30,4	35	31	28	25	25	${ }^{22}$	21	${ }^{26}$	27	23	26	24	24	19	24	21
	31,7	40	29	27	17		24		31	17	27	27	17	21	23	21	14
	33,0	36	34	24	28	26	29	27	31	27	34	25	27	23	25	32	35
	34,3	38	33	27	21	21	26	23	19	24	23	28	25	22	29	27	28
	35,6	38	35	31	27		23	21	33	23	31	21	23	19	23	25	29
	36,9	38	41	19	21	+ 23	- 17	29	24	24	31	32	30	28	29	29	25
	38,2	41	43	30	25	30	21	25	33	30	30	33	26	22	34	31	30
	39,5	51	56	25	27	31	22	23	29	32	31	31	25	29	29	34	32
	40,8	72	69	41	34	41	24	25	40	35	36	35	27	25	37	51	37
	42,1	94	107	47	39	43	30	29	39	46	43	52	35	35	46	65	48
	43,4	143	165	67	45	56	31	35	55	53	58	63	44	27	68	93	63
	44,7	199	247	95	56	84	39	42	68	65	83	77	51	38	92	124	90
	46,0	285	329	136	74	109	50	43	95	95	110	123	63	37	141	194	116
	47,2	401	400	190	93	144	61	54	115	121	159	162	83	49	193	235	156
	48,5	512	517	203	109	183	79	73	153	155	199	183	101	61	245	281	194
	49,8	631	625	261	123	224	89	86	175	197	230	223	133	62	296	372	230
	51,1	722	698	286	139	252	96	99	205	210	272	249	139	76	345	417	248
	52,4	805	761	331	173	274	105	105	240	245	292	286	174	71	387	452	278
	53,7	910	823	363	175	308	93	109	257	259	311	315	187	85	414	495	308
	55,0	987	876	373	183	331	120	120	267	274	351	311	199	83	451	544	333
	56,3	1057	942	401	193	354	121	134	284	307	378	344	220	91	465	560	332
	57,6	1112	986	411	207	351	121	125	333	318	380	353	225	83	484	592	353
	58,9	1130	993	429	211	368	126	135	319	331	405	371	229	105	493	609	361
	60,2	1183	1051	448	228	371	134	132	355	340	413	371	257	92	507	659	385
	61,5	1213	1034	449	215	391	141	130	354	345	425	375	229	108	516	636	379
	62,7	1217	1056	460	232	400	135	143	358	352	423	383	247	107	523	666	383
	64,0	1226	1103	463	229	391	144	141	350	345	431	398	242	100	520	651	386
	65,3	1247	1093	465	240	398	137	129	343	353	413	394	233	108	524	687	398
	66,6	1287	1135	494	257	426	140	136	379	382	447	414	259	111	546	706	401
	67,9	1380	1174	477	260	431	135	145	397	407	478	428	265	111	605	763	447
	69,2	1446	1317	548	288	469	165	155	421	440	494	465	286	111	627	812	463
	70,5	1579	1386	593	322	537	163	178	458	463	537	487	301	134	715	865	527
	71.8	1738	1459	673	362	559	187	196	520	522	580	539	337	143	839	964	581
	73,1	1911	1569	710	377	664	206	205	549	591	640	588	347	145	948	1065	621
	74,3	2055	1697	763	428	712	217	232	602	651	705	665	398	167	1094	1141	659
	75,6	2192	1766	821	463	774	254	247	638	669	740	726	403	186	1213	1195	729
	76,9	2341	1894	857	483	816	262	262	679	709	797	737	425	198	1281	1297	801
	78,2	2474	1969	892	507	860	254	275	716	757	834	795	466	201	1409	1321	832
	79.5	2545	2044	946	526	891	284	280	749	777	849	824	473	221	1467	1407	862
	80,8	2696	2105	969	542	964	283	279	791	815	876	878	495	230	1587	1454	940
	82,1	2789	2138	980	569	967	283	294	834	859	911	917	507	228	1629	1526	943
	83,4	2894	2193	1020	569	1009	298	290	841	867	959	924	519	252	1734	1590	990
	84,6	2938	2245	1064	581	1097	315	295	871	889	951	983	525	242	1831	1607	1010

 D | D D D D

䧲
349 앙 8嵒苜

2655

 -
 1103
1085
1115
11069
1064
1114

保

1117

$\begin{array}{ll}1227 & 6 \\ 1231 & 621\end{array}$

${ }^{\circ} \infty$
$\stackrel{+}{A}$
ス

为

合
岂 ${ }^{9}$俞

1159,6	2360	1828	737	822	550	319	291	394	1083	871	312	571	316	913	1232	400
1160,7	2358	1853	729	813	561	319	301	379	1081	844	315	580	320	906	1248	405
1161,8	2368	1822	743	815	564	313	295	403	1077	854	321	584	303	886	1235	412
1162,9	2371	1855	759	809	577	331	302	406	1105	867	308	587	328	894	1201	410
1164,0	2344	1777	717	820	575	311	308	401	1098	855	316	563	291	902	1221	404
1165,1	2372	1842	729	820	575	329	308	387	1111	859	307	571	325	887	1235	419
1166,3	2357	1848	755	821	563	314	301	401	1088	875	299	563	313	893	1225	411
1167,4	2333	1839	734	827	548	337	311	403	1097	839	295	585	310	879	1227	394
1168,5	2336	1863	741	797	558	315	308	404	1079	871	299	569	317	913	1228	390
1169,6	2344	1854	745	837	554	326	329	413	1103	867	302	584	321	900	1219	383
1170, ${ }^{\text {a }}$	2320	1847	739	809	549	325	294	408	1077	887	305	590	327	919	1251	384
1171,8	2371	1822	766	817	567	334	300	393	1092	875	298	591	309	891	1260	403
1172,9	2337	1817	735	836	543	309	311	415	1052	876	311	586	313	907	1207	395
1174,0	2315	1851	744	812	563	343	311	419	1096	852	304	581	315	896	1213	393
1175,1	2349	1864	751	803	577	322	317	408	1101	881	306	585	324	901	1265	388
1176,2	2358	1864	743	840	531	322	317	402	1110	873	312	591	325	891	1222	409
1177,3	2360	1871	751	845	567	339	320	428	1108	865	289	589	328	879	1236	414
1178,4	2341	1826	734	839	561	339	308	425	1070	855	299	587	319	900	1236	403
1179,5	2375	1844	763	809	548	329	310	410	1093	886	295	585	329	877	1236	398
1180,6	2320	1862	738	827	559	343	325	403	1116	871	314	598	328	883	1231	406
1181,7	2368	1852	742	813	577	331	319	420	1103	879	291	590	317	897	1261	413
1182,8	2339	1829	769	818	575	351	335	433	1089	876	289	603	327	907	1248	394
1183,9	2383	1871	741	813	589	331	325	422	1100	903	298	585	324	913	1248	385
1185,0	2349	1855	752	807	564	347	325	425	1093	881	292	584	338	897	1231	422
1186,1	2378	1890	755	830	560	337	327	432	1117	897	313	612	329	893	1260	413
1187,2	2362	1896	759	819	582	346	325	426	1098	910	298	584	337	920	1238	419
1188,3	2337	1865	769	813	545	348	329	435	1063	906	306	605	331	912	1254	413
1189,4	2317	1867	739	822	569	352	342	427	1113	892	297	589	329	888	1262	408

Appendix B. 5 - Rutile and anatase values

B.5.1: Anatase values from the RRUFF Database.

851,2	12937,3	1044,1	3170,1
853,2	12716,0	1046,0	3178,6
855,1	12525,9	1047,9	3163,7
857,0	12302,3	1049,9	3096,2
859,0	12066,6	1051,8	3055,1
860,9	11873,8	1053,7	3071,0
862,8	11642,8	1055,7	3059,6
864,7	11479,5	1057,6	3004,8
866,7	11222,6	1059,5	2948,2
868,6	11013,7	1061,4	2884,8
870,5	10840,5	1063,4	2834,2
872,4	10617,0	1065,3	2796,6
874,4	10343,8	1067,2	2775,3
876,3	10074,0	1069,2	2781,8
878,2	9811,1	1071,1	2772,2
880,2	9564,5	1073,0	2736,7
882,1	9334,2	1074,9	2709,2
884,0	9129,8	1076,9	2698,6
885,9	8963,4	1078,8	2667,8
887,9	8780,9	1080,7	2606,5
889,8	8554,5	1082,7	2557,7
891,7	8360,6	1084,6	2522,2
893,7	8232,9	1086,5	2512,1
895,6	8099,4	1088,4	2537,4
897,5	7946,1	1090,4	2526,1
899,4	7792,8	1092,3	2469,4
901,4	7627,9	1094,2	2420,2
903,3	7488,7	1096,2	2380,6
905,2	7420,5	1098,1	2350,2
907,2	7331,5	1100,0	2329,2
909,1	7152,3	1101,9	2320,8
911,0	6984,9	1103,9	2325,7
912,9	6899,0	1105,8	2292,0
914,9	6822,1	1107,7	2284,2
916,8	6698,8	1109,7	2265,0
918,7	6577,6	1111,6	2233,0
920,7	6499,6	1113,5	2219,9
922,6	6434,5	1115,4	2167,3
924,5	6361,5	1117,4	2133,9
926,4	6283,1	1119,3	2117,9
928,4	6207,	1121,2	2107,3
930,3	6123,6	1123,2	2100,5
932,2	6005,1	1125,1	2094,8
934,2	5880,3	1127,0	2084,5
936,1	5799,1	1128,9	2041,4
938,0	5733,5	1130,9	1980,8
939,9	5618,6	1132,8	1944,1
941,9	5488,6	1134,7	1925,2
943,8	5441,4	1136,7	1917,9
945,7	5321,2	1138,6	1912,4
947,7	5330,2	1140,5	1878,0
949,6	5164,5	1142,4	1841,3
951,5	5082,6	1144,4	1860,2
953,4	5069,2	1146,3	1889,7
955,4	5052,1	1148,2	1862,3
957,3	5029,5	1150,1	1816,0
959,2	4986,2	1152,1	1792,7
961,2	4923,7	1154,0	1777,5
963,1	4865,9	1155,9	1752,8
965,0	4812,2	1157,9	1731,8
966,9	4756,7	1159,8	1731,9
968,9	4699,3	1161,7	1731,7
970,8	4618,9	1163,6	1715,4
972,7	4564,6	1165,6	1694,4
974,7	4508,2	1167,5	1665,1
976,6	4441,6	1169,4	1649,5
978,5	4410,1	1171,4	1679,2
980,4	4357,7	1173,3	1691,5
982,4	4318,2	1175,2	1645,2
984,3	4294,9	1177,1	1605,4
986,2	4236,2	1179,1	1591,2
988,2	4135,9	1181,0	1587,5
990,1	4066,9	1182,9	1593,2
992,0	4038,1	1184,9	1605,4
993,9	4010,0	1186,8	1632,0
995,9	3979,3	1188,7	1647,0
997,8	3928,4	1190,6	1644,0
999,7	3852,0	1192,6	1640,6
1001,7	3789,1	1194,5	1642,5
1003,6	3745,3	1196,4	1626,1
1005,5	3712,6	1198,4	1582,3
1007,4	3691,1	1200, 3	1569,9
1009,4	3674,9		
1011,3	3668,1		
1013,2	3637,9		
1015,2	3570,2		
1017,1	3522,1		
1019,0	3505,0		
1020,9	3495,3		
1022,9	3497,8		
1024,8	3480,3		
1026,7	3425,3		
1028,7	3390,8		
1030,6	3395,1		
1032,5	3389,8		
1034,4	3368,5		
1036,4	3342,0		
1038,3	3313,3		
1040,2 1042,2	$\begin{aligned} & 3275,1 \\ & 3211,2 \end{aligned}$		

B.5.2: Rutile values from the RRUFF Database.

