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Abstract 

Medical science has made substantial progress toward diagnosing, understanding the pathogenesis, and 

treating various causative agents of infectious disease; however, novel microbial pathogens continue 

to emerge, and existing pathogens continue to evolve alternative means to thrive in ever-changing 

environments. Various infectious disease etiological agents originate from animal reservoirs, and many 

have, over time, acquired the ability to cross the species barrier and alter their host range. The 

emergence and re-emergence of zoonotic pathogens is reported to be a consequence of changes in 

several factors, including ecological, behavioural, and socioeconomic variables which are arguably 

impossible to control. Computational methods with the capacity to evaluate large datasets, are 

considered invaluable tools for predicting and tracking disease outbreaks and are especially powerful 

when combined with machine learning techniques. These predictive methods may be integral, not only 

as early warning systems for outbreak preparedness, but also in the monitoring of intervention 

effectiveness during epidemics or pandemics. This study aimed to develop a machine learning model 

which would allow for prediction of potentially zoonotic organisms, by using viral surface proteins 

which facilitate viral entry into host cells, as the data input for training. Sequence data and metadata 

was obtained from UniProtKB, transformed into a machine-readable format, using frequency chaos 

game representation (FCGR). A deep convolution neural network model was developed which 

identified sequence patterns consistent with viruses which infect humans. The model achieved 96.78% 

accuracy, 0.97 F1 score and 0.93 MCC on unseen data, outperforming machine learning models found 

in literature. 

Keywords: Convolutional Neural Network, Deep learning, Frequency Chaos Game Representation, 

Machine learning, Prediction Model, Species Cross-over, Viral Protein Sequences, Viral Zoonosis. 
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Chapter 1: Introduction, aims and objectives 

1.1. Introduction 

Humans, animals, and pathogens live in a dynamic, interactive, and interconnected environment 

whereby the health of one affects the other (Calistri et al., 2013). A holistic approach to this ecological 

interdependence is referred to as One Health and has been defined as a multidisciplinary initiative, at 

global and national levels, to guarantee relatively optimal health for humans, animals, and the 

environment (Calistri et al., 2013; Hitziger et al., 2018; Pettan-Brewer et al., 2021). Population growth 

coupled with alterations in the environment have resulted in very close human and animal (wild and 

domestic) contact (Brierley and Fowler, 2021; Faburay, 2015; Taylor and Vaisman, 2010). This 

proximity relationship is postulated to be a driver of increased emergence and re-emergence of 

infectious diseases through zoonosis, a phenomenon whereby infectious microorganisms from animals 

cross the species barrier and infect humans (Dallas et al., 2019). Zoonotic diseases have been a major 

economic burden and public health concern on a global scale (Dallas et al., 2019; Smith et al., 2014). 

Economic impacts which may result from epidemic or pandemic response measures to prevent 

spreading of the disease, include, but are not limited to, trade and travel restrictions and increased 

spending on resources (Cantas and Suer, 2014; Madhav et al., 2017). 

Two conceptual frameworks, which guide the dynamics of cross-species events, are the pyramid and 

the pinhole models. The pyramid model defines spill-over as a gradual process consisting of multiple 

stages whereby a pathogen migrates from a reservoir host through several intermediate hosts, and 

ultimately establishes itself as a human specific pathogen (Brierley et al., 2016; Warren and Sawyer, 

2019). The pinhole model, however, describes zoonosis as a bottleneck event, where only a very small 

number of viruses from reservoirs may become zoonotic and as such, spill-over would be relatively 

difficult to achieve (Warren and Sawyer, 2019). The virus discovery curve indicates that there is a 

significant number of viruses which are yet to be discovered (Anthony et al., 2013; Woolhouse et al., 

2008). However, there is little indication of which, if any, of these newly discovered organisms, could 

be pathogenic, and potentially result in zoonotic events (Anthony et al., 2013; Carroll et al., 2018; 

Woolhouse et al., 2008). 

Public health research priorities toward emerging infectious diseases are largely focused on the 

detection and surveillance of emerging infectious diseases (EIDs), as well as the identification of 
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factors which are drivers of transmission, for public safety and mitigation of disease impacts (Carroll 

et al., 2018; Temmam et al., 2014). Surveillance methods are also used throughout infectious disease 

outbreaks to trace the spread of infection, with the intent to limit disease spread, and monitor 

effectiveness of applied interventions (Baum et al., 2017; Carroll et al., 2018). In addition to traditional 

surveillance efforts, various models, using statistical and machine learning tools, have been developed 

to predict cross-species spill-over of novel and re-emerging pathogens, as well as transmission 

dynamics, once an outbreak has occurred (Han et al., 2015; Royce and Fu, 2020). These models 

incorporate ecological, demographic, and biogeographic data as covariates for robust algorithm 

development, to predict potentially zoonotic pathogens or identify existing reservoirs and new potential 

hosts (Han et al., 2015; Wardeh et al., 2020b). These predictive methods may be integral in early 

warning systems, allowing nations to prepare for an outbreak, limit human casualties and reduce 

economic burden, which is of particular importance in low-to-middle income countries (LMICs) 

(Madhav et al., 2017). More recently, the analysis of pathogen and host protein interaction networks 

has also been included in AI-based efforts, to predict species cross-over events, at the molecular level 

(Kösesoy et al., 2021; Yan et al., 2019). 

Research of host-pathogen protein-protein interactions (PPIs) often addresses several interactions at 

once, which is by no means a trivial task, nor without limitations. For example, there may be 

intracellular protein interactions, but no receptor interactions for a predicted virus-host protein 

interacting pair. The former may be useful in understanding pathogenesis but may not be indicative of 

a potential cross-species event mediated by cell receptor binding (Cho and Son, 2019). To circumvent 

this limitation, virus-receptor PPI models have been developed which are used to predict cross-species 

events (Cho and Son, 2019; Yan et al., 2019). However, studies are limited by the availability of 

experimentally derived and validated PPIs, thereby limiting the amount of available input data for 

machine learning models to produce robust, translatable, and reproducible models (Bae and Son, 2011; 

Cho and Son, 2019; Yan et al., 2019). Furthermore, PPI studies rely on defined pre-existing interactions 

which may be unable to predict viral host switching in which a previously unknown host receptor is 

targeted for entry into host cells (Deng et al., 2021; Kösesoy et al., 2021). 

Investigation of virus receptors to identify patterns signifying zoonotic potential have also been 

explored in studies such as those by Qiang and Kou (2019), on Influenza A proteins, and Qiang et al. 

(2020) on genomes and spike proteins in coronaviruses. These studies are however, limited to a specific 

viral species, prompting the need for a predictive model which uses virus surface proteins regardless 
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of pathogen species. This study aims to fill this gap by developing a machine learning model to predict 

potential for cross species events using surface protein patterns across a broad range of viral species. 

To summarise the thesis, surface protein sequences of viruses which have been reported to infect 

humans and those which do not infect humans were obtained from UniProtKB and sequence data was 

transformed into machine readable frequency chaos game representation (FCGR) images in preparation 

for machine leaning. A convolutional neural network (CNN) model was created and allowed for pattern 

learning in the training data with respect to the defined positive or negative classes. The trained CNN 

binary classification model was then tested on unseen data and as a proof of concept, the model was 

used to predict the zoonotic potential of 4 viruses, two of which are reportedly known to infect humans, 

and two which have thus far, not been reported to infect humans. This study presents a proof-of-concept 

approach for building viral zoonosis prediction using FCGR images of protein sequences and CNNs. 

The findings suggest the presence of protein sequence patterns consistent with viral zoonotic potential, 

with the model producing accurate predictions on unseen data. The model developed in this study may 

assist in identifying potentially zoonotic viruses based on sequence data extracted from pathogen 

surveillance programs, and the results of which may be used to inform public health policy makers and 

support mitigation of potential epidemics and pandemics. 
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1.2. Aims and objectives 

To achieve the research aims of this study, namely, 1) create an AI based model, trained on viral surface 

protein sequences, which can predict viruses with the potential to cross the species barrier, and 2) proof-

of-concept testing of the model and approach using unseen data, the following objectives were 

undertaken. 

1. Identify viruses reported to have crossed the species barrier and infect humans 

2. Identify viruses in other hosts which have not been reported to infect humans 

3. Obtain metadata and amino acid sequences of the viruses reported to have crossed the species 

barrier 

4. Obtain metadata and amino acid sequences of the viruses which have not been reported to infect 

humans 

5. Define positive and negative classes 

6. Transform the amino acid sequences into machine readable sequences 

7. Train a convolutional neural network on the sequence data 

8. Evaluate the model on unseen data 

9. Proof of concept prediction and evaluation of model using selected unseen sequence data 
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Chapter 2: Literature Review 

Infectious diseases have been an overwhelming burden on civilisations throughout recorded history 

(Madhav et al., 2017; Wolfe et al., 2007; Woolhouse and Gaunt, 2007). One of the many negative 

consequences of infectious disease outbreaks is the massive socio-economic impact and imposed 

disruptions to normalcy. Depending on the scale, impact and region, an outbreak can result in varying 

scales of economic, social, and political disruptions (Madhav et al., 2017). Aside from the economic 

devastation of disease outbreaks, immeasurable costs to society, attributed to the loss of human life 

occurs, with infectious diseases being documented to account for approximately 60 million deaths each 

year (Languon and Quaye, 2019). Several infectious diseases which have recently appeared as 

outbreaks, have been termed emerging infectious diseases (EIDs) (Piret and Boivin, 2021). Emerging 

infectious diseases are defined in literature as those which infect the human population for the first time 

or have geographic distribution in previously unaffected locations (Bogich et al., 2012; Engering et al., 

2013; Funk et al., 2013; NIH, 2007; Taylor et al., 2001). At the time of writing this thesis, two and a 

half years had passed since the emergence of a new severe acute respiratory syndrome coronavirus 2 

(SARS-Cov2) resulting in a persistent pandemic (Haider et al., 2020; Rothan and Byrareddy, 2020). 

2.1. Emerging infectious diseases enablers 

Emerging (and re-emerging) infectious diseases (EIDs) present an increasing threat to public health 

and studies have indicated that the majority of these EIDs are zoonotic in origin (Bogich et al., 2012; 

Engering et al., 2013; Jones et al., 2008). Identifying the exact animal origins of zoonoses is a complex 

task, despite the use of sophisticated molecular biology techniques (Kerr et al., 2015). In a study by 

Wolfe et al. (2007), the authors illustrated that animal origins of infectious disease agents varied 

significantly between temperate and tropical regions. It was observed that in tropical regions, a 

significant number of zoonotic diseases appeared to originate from wildlife rather than from 

domesticated animals, and that the opposite phenomenon occurred in temperate regions (Han et al., 

2015; Wolfe et al., 2007). The diversity of organisms, including insects and pathogens, increases 

toward the equator, therefore, deforestation and land encroachment in these regions may cause shifts 

in wildlife habitats (Brierley et al., 2016; Horby et al., 2014). These changes can subsequently facilitate 

an increased interaction between wildlife and domesticated animals, thereby allowing wildlife 

pathogens to adapt to, and inhabit new environmental niches (Horby et al., 2014). This may expand the 

potential host range of pathogens and indirectly expose human hosts to wildlife-based pathogens, thus 

resulting in outbreaks (Brierley et al., 2016; Kilpatrick and Randolph, 2012; Loh et al., 2013). 
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Aside from geographical location, several factors have been proposed as drivers, or enablers, of the 

emergence and re-emergence of infectious diseases (Brierley et al., 2016; Woolhouse and Gowtage-

Sequeria, 2005). Modernisation and globalization activities are commonly associated enablers of EID 

events. Socio-economic drivers such as environment encroachment, fossil fuel extraction, animal 

production systems, global trade, wildlife trade, international travel and population expansion have 

been associated with the emergence and re-emergence of infectious diseases by facilitating increased 

opportunities for transmission (Brierley et al., 2016; Kilpatrick and Randolph, 2012; Smith and Wang, 

2013). Both domestic and wildlife animal production systems are thought to enable food-borne disease 

outbreaks (Karesh et al., 2012; Kilpatrick and Randolph, 2012; Smith and Wang, 2013) and these are 

particularly related to practices such as animal slaughter, meat and by-product processing, packaging, 

transportation, and preparation, prior to consumption (Karesh et al., 2012). 

Events related to climate change and pathogen evolution have also been proposed as additional enablers 

of infectious disease emergence by promoting pathogen richness (French and Holmes, 2020). 

Alterations in climate conditions impact wildlife and vector ecology, resulting in the formation of new 

inter-species relationships, which may facilitate species crossover events resulting in zoonoses with 

pandemic potential (Brierley et al., 2016; Faburay, 2015; French and Holmes, 2020). An example of 

this is the 1993 and 1997 Hantavirus outbreaks in the Southwestern United States, which were 

attributed to heavy snow and rainfall leading to changes in the abundance of infected rodents (CDC, 

2020). The rodents migrated to areas with adequate vegetation, which was a shared space with humans, 

thereby enabling Hantavirus spill-over (Horby et al., 2014). 

In addition to behavioural and social drivers, the increased interaction between phylogenetically related 

organisms, or hosts, may serve as an additional enabling factor for species crossover events. Pathogens 

may require relatively few (or no) mutations to adapt to a different host due to the similarity of 

immunological and molecular systems in closely related host species (Brierley et al., 2016). Olival et 

al. (2017) demonstrated that taxonomic relatedness affected the sharing of pathogens among species 

and, similarly, Wardeh et al. (2020b) indicated that host taxonomy affected which pathogens were 

shared between hosts. 

2.2. Frameworks for investigating emerging infectious diseases 

Clearly, a multitude of factors are considered as EID drivers, and as such, research of EID epidemiology 

spanning multiple disciplines requires collaborative efforts (Salyer et al., 2017; Zinsstag et al., 2012). 
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The co-dependency of animal, environment and human health requires cooperative frameworks to 

study and understand the intricacies of their interactions, and overall health (Salyer et al., 2017). 

The need for such frameworks which intersect animal and human medicine for public health benefit 

and species conservation, traces back to the works of Rudolf Virchow, and later Calvin Schwabe 

(Zinsstag et al., 2012). It was in the mid-80s that Schwabe coined the term “One Medicine” in his book 

entitled Veterinary Medicine and Human Health as a descriptive term for the framework (Lee and 

Brumme, 2013; Zinsstag et al., 2012). He argued that “the critical needs of man include the combating 

of diseases, ensuring enough food, adequate environmental quality and a society in which humane 

values prevail” (Lee and Brumme, 2013). The increased prevalence of zoonosis, coupled to research 

demonstrating the interconnectivity between driving factors and EID incidence, has motivated for the 

emergence of the transdisciplinary field of One Health, demonstrated in Figure 1 (Lee and Brumme, 

2013; Loh et al., 2013; Zinsstag et al., 2012; Zinsstag et al., 2011). 

 

 

Figure 1:  One Medicine as initially described by Schwabe (taken from Zinsstag et al. (2011)). 

 

One Health is defined as a global collaborative and multi-sectorial approach which aims to collate 

concepts from three pillar disciplines -human health, animal health and environmental health - and 

prevent or mitigate epidemic or pandemic risks (Baum et al., 2017; Cassidy, 2018; Karesh et al., 2012; 

Lee and Brumme, 2013; Lerner and Berg, 2017; Loh et al., 2013; Roger et al., 2016). The One Health 

concept is not limited to zoonotic disease, and involves food safety and health services delivery, 

amongst others (Baum et al., 2017; Zinsstag et al., 2012). Figure 2 depicts the evolution of One Health, 
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listing fields and outcomes of the framework, and include research, surveillance, control programs and 

policy framework development (Baum et al., 2017). 

 

 

Figure 2:  One Health characteristics identified during a workshop in 2015: Network for Evaluation of One Health, 

http://neoh.onehealthglobal.net (taken from Rüegg et al. (2017)). 

 

A parallel framework termed EcoHealth, formulated by disease ecologists exists, and is an ecosystems 

approach to health with a focus on environmental and socio-economic issues (Roger et al., 2016). 

Attempts have been made to collate the EcoHealth and One Health frameworks (Lerner and Berg, 

2017; Roger et al., 2016). While EcoHealth is outside of the scope of this study, the reader is directed 

to studies by Lerner and Berg (2017) and Roger et al. (2016) which provide extensive comparison of 

the frameworks mentioned above. 

2.3. Modelling zoonotic spill-over 

Researchers have attempted to model the dynamics of zoonotic spill-over, from the point of exposure 

to epidemic spread, and human exclusivity (Madhav et al., 2017; Morse et al., 2012; Warren and 

Sawyer, 2019). The models describe the process of pathogen migration from their primary hosts 

(reservoir hosts) to humans, however, it is important to note that these models are not ubiquitous, and 
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follow different patterns depending on the pathogen group (viruses, bacteria, fungi, etc.) (Warren and 

Sawyer, 2019; Woolhouse et al., 2012). This study primarily focuses on viral pathogens and as such, 

only spill-over models which are applicable to viral pathogens will be discussed further. 

Emerging infectious disease (EID) research frequently demonstrates that viral pathogens are common 

aetiological agents of infectious disease (Warren and Sawyer, 2019; Woolhouse et al., 2012). Viruses 

are microscopic parasites capable of infecting single cells and consisting of a simple protein capsid 

which encases the genomic material (Madhav et al., 2017). Substantial viral diversity has already been 

characterised from a multitude of environmental niches, with many more still yet to be discovered 

(Carroll et al., 2018). Viruses are highly diverse in morphology and transmissibility, and coupled with 

their relatively large host range, viral infectious agents account for a significant number of zoonoses 

(Olival et al., 2017; Parrish et al., 2008; Siegel, 2018) with approximately 75% of zoonotic infectious 

diseases estimated to be caused by viruses (Carroll et al., 2018; Haider et al., 2020). 

Woolhouse et al. (2012) described a 4-level pyramid zoonosis model, in which the first level represents 

the initial point of exposure of a new host, to a novel pathogen, from an animal reservoir. This first 

level is a commonly occurring event, termed ‘chatter’ (Madhav et al., 2017; Woolhouse et al., 2012). 

Successful infection of the new host is not guaranteed at this level, however, pathogens which 

successfully bridge this step, advance to infect the new host – this is represented as the second level of 

the pyramid. Level 3 represents a subset of pathogens that not only infect the new host but can also be 

transmitted between individuals of the host. Finally, level 4 of the model represents pathogens that 

have gained sufficient transmissibility to ignite an infectious disease outbreak with potential epidemic 

or pandemic consequences. Sufficient transmissibility is further argued to be an epidemiological state 

of R0 > 1, a state whereby a primary case can potentially generate more than one secondary case 

(Woolhouse et al., 2012). 

A 5-stage zoonosis model by Madhav et al. (2017) defines the degree of zoonotic adaptation as a 

continuum, spanning initial enzootic infections (stage 1), to end-stage specialized human transmission 

(stage 5). The intermediate stages of the continuum represent the emergence of pathogens which are 

not well adapted to human hosts and as such, infections result in a series of localized outbreaks, defined 

as stuttering chains (Engering et al., 2013; Madhav et al., 2017; Royce and Fu, 2020). Pathogens which 

progress past stage 3, are arguably the most alarming as they can cause prolonged transmission chains 

in the human host (Madhav et al., 2017). 
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The zoonosis emergence framework detailed by Brierley et al. (2016) describes a 4-step process and 

includes the enabling drivers and additional factors which allow for the pathogen to progress to the 

next step. The authors apply the model to the emergence of viruses from bat reservoirs to human hosts 

and the first step represents the exclusive pathogen occurrence in the natural host, bats in this case. 

Initial pathogen sharing with the new human host is represented in the second step and in the third, 

which is cyclic in nature, shows the disease propagation cycle moving between endemic and epidemic 

sub-stages until it is reported as emerging (owing to diagnostic capacity and reporting capacity of the 

events in the propagation cycle) (Step 4). 

Plowright et al. (2015) model the zoonosis model with context to Hendra virus spill-over from bats. It 

begins with the pathogen being present in the reservoir host and being shed by the reservoir in 

environments shared by an intermediate host, in the case of Hendra virus, horses (Plowright et al., 

2015). The pathogen then survives in the external environment prior to transmission to the intermediate 

host via a suitable route, such as the inhalation of the virus from grazing fields (Plowright et al., 2015). 

Contact of horses and humans then allows transfer of the aetiological agent into human hosts. Thus far, 

human to human transmission of Hendra Virus has not been reported (Plowright et al., 2015). 

Several other models (see Figure 3 and Figure 4) have been presented by various authors, (Bogich et 

al., 2012; Epstein and Field, 2015; Karesh et al., 2012; Morse et al., 2012; Wolfe et al., 2007), however, 

they are ultimately derivations of two rather simplified and competing models, the pyramid model and 

the pinhole model, described in Figure 5. 
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Figure 3:  Variants of the pyramid (left) and pinhole (right) model as described by Brierley et al. (2016). 
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Figure 4:  Pinhole model variant illustrated by Epstein and Field (2015). 

 

 

 

 

Figure 5:  The classic pyramid model and the pinhole model which shows bottlenecks to animal virus progression to 

sustained inter-human transmission (taken from Warren and Sawyer (2019)). 
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As the name suggests, the pyramid model of zoonosis is depicted as a triangle with dissections 

representing stages in the spill-over event. In addition to sections of the spill-over process, it further 

describes the diversity of pathogens in each section with the base representing the theoretical total 

diversity of viral pathogens in animal populations and the apex representing the viral diversity which 

have gained exclusivity in human hosts. The 4 levels described in Woolhouse et al. (2012) and the 5 

stages in Madhav et al. (2017) are both derivations of the pyramid model (Warren and Sawyer, 2019). 

While this model provides an excellent depiction of the steps required by viruses to cross the species 

barrier and adapt to infect humans, it does not, however, illustrate the complexity and rareness of 

zoonotic events (Warren and Sawyer, 2019). The pinhole model, a modification of the pyramid model, 

addresses the infrequency of zoonosis and visually depicts how an exceedingly small fraction of animal 

viruses can gain the ability to adapt to, and replicate in human hosts (Warren and Sawyer, 2019). 

There is a plethora of animal, human and environmental microorganisms currently known, and an even 

greater number which have not yet been discovered. These organisms are, in fact, integral components 

in the ecosystem (Enard et al., 2016; French and Holmes, 2020). Several relationships exist which have 

the potential to facilitate the interchange of microorganisms; however, only a small proportion are 

capable of species or niche crossover (French and Holmes, 2020; Warren and Sawyer, 2019; 

Woolhouse and Gowtage-Sequeria, 2005). Successful zoonosis events require numerous favourable 

conditions which include pathogen evolvability, frequent gene reassortment or recombination, and 

quasi-species formation, amongst others (Engering et al., 2013). 

Even then, the above conditions require supplemental factors such as a viable transmission route and 

innate host factors, such as phylogenetic relatedness and tissue tropism, for successful zoonosis (Olival 

et al., 2017; Warren and Sawyer, 2019). It has been postulated that evolutionary trade-offs exist, in 

which host natural selection for resistance to one viral species, could in fact result in susceptibility to 

another viral species, supporting re-emergence, or the breakthrough of novel virus strains which 

previously could not infect humans (Brierley et al., 2016; Daugherty and Malik, 2012; Enard et al., 

2016; Kerr et al., 2015; McBee et al., 2015; Woolhouse et al., 2013). 

Despite these multiple barriers, zoonotic pathogens continue their emergence, and considering the 

discovery curve, described by Woolhouse et al. (2012), the existence of novel pathogens which are yet 

to be discovered, increases the probability of zoonosis and disease outbreak events (Carroll et al., 2018). 
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2.4. Emerging infectious disease surveillance and modelling 

Public health research priorities toward emerging infectious diseases are largely focused on the 

detection and surveillance of EIDs, as well as the identification of factors driving transmission, to 

intervene for public safety and mitigate the effects of disease (Carroll et al., 2018; Temmam et al., 

2014). Detection efforts are focused on deployment of analytical, laboratory-based methods for 

identification of microorganisms, ranging from traditional culturing to modern molecular and “-omics” 

techniques (Carroll et al., 2018; Sandle, 2016; Temmam et al., 2014). Surveillance efforts include the 

screening of microbes from various sources with the aim to identify potential infectious agents prior to 

human host transmission, either directly or indirectly through intermediate animal hosts (Carroll et al., 

2018; Cuervo-Soto et al., 2018; Temmam et al., 2014). Surveillance methods are also used throughout 

infectious disease outbreaks to trace the spread of infection and with the intent to mitigate spread of 

the disease. 

In addition to traditional surveillance efforts, various statistical and machine learning (ML) models 

which make use of different covariates and prediction targets, have been developed to predict cross-

species spill-over of novel and re-emerging infectious agents, as well as transmission dynamics once 

an outbreak has occurred (Eid et al., 2016; Han et al., 2015; Royce and Fu, 2020). These models 

incorporate ecological, demographic, and biogeographic data as covariates for robust algorithm designs 

to predict potential zoonotic pathogens or identify reservoirs and potential hosts. Analysis of pathogen 

and host interaction networks have also been included in machine learning based efforts. Wardeh et al. 

(2020b) used mammalian viral traits and network features in machine learning algorithm development 

to predict potential mammalian hosts of known viruses. The same authors also used shared pathogen 

networks and machine learning to predict reservoirs of zoonotic pathogens (Wardeh et al., 2020b). In 

their efforts, they demonstrate the importance of host phylogeny in pathogen sharing and quantify the 

extent of pathogen sharing between humans and other mammals. 

Each year, several mathematical models are used to predict strains of concern for influenza, to 

manufacture vaccines against the predicted strains (Ray and Reich, 2018). Studies such as the one by 

Eng et al. (2017) have built computational models with machine learning tools to predict zoonotic 

influenza strains, by using host tropism signatures of avian zoonotic and human influenza strains. More 

recently, a study by Qiang and Kou (2019) used ML approaches and protein sequences to predict avian 

influenza interspecies transmission. 
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Bats and rodents are considered one of the most species-rich mammalian taxa and are known to harbour 

several potentially zoonotic diseases (Han et al., 2015; Olival et al., 2017). Work undertaken by Han 

et al. (2015) resulted in the creation of a model to predict rodent species which may be reservoir hosts 

of undiscovered zoonoses, using the biogeographic and ecological data of rodents. They obtained 

prediction accuracies in the 90th percentile and in addition, identified over 150 new hyper-reservoir 

rodent species. Notably, the analyses further indicated that viral taxa represented the majority of 

zoonotic agents in rodents, followed by protozoans. 

While ecological models examine species crossover events at a broader scale, they lack information on 

a molecular scale. In addition, they also tend to focus on a few host or pathogen species, which may 

not translate well for more general application and prediction (Han et al., 2015; Olival et al., 2017; 

Wardeh et al., 2020b). Royce and Fu (2020) used the knowledge that intermediate hosts allow passage 

of otherwise rare diseases (allowing for greater adaptability to human hosts), to develop a mathematical 

model of the disease dynamics between reservoir and human hosts. The authors used epidemiology 

modelling and ecology, as well as the basic reproductive number of the pathogen, as the model 

parameters (Royce and Fu, 2020). Their findings indicate that even pathogens which have an R0 < 1 in 

the intermediate host, may still have greater capacity to establish in a human host (Royce and Fu, 2020). 

While this model may be more generalisable, only a limited number of host and pathogen traits, such 

as biogeography, were used (Royce and Fu, 2020). Additional approaches to surveillance and 

development of EID models at the molecular scale, have leveraged interspecies protein interactions 

between viruses and hosts. 

2.5. Modelling zoonosis at the molecular scale: protein-protein 
interactions 

Viruses do not genetically encode the necessary machinery for replication and as such, require ‘help’ 

from a living host (NIH, 2007; Madhav et al., 2017). Viral invasion into host cells differs at the 

molecular level depending on the virus family in question (Letko et al., 2020; Madhav et al., 2017), 

however, the initial step of invasion is similar, albeit with differences in macromolecular component 

interactions (Liang and Bushman, 2021; Madhav et al., 2017; Sanjuán and Domingo-Calap, 2016). As 

a first step toward cellular entry, viral surface proteins require compatible host receptors for attachment 

and entry (Alguwaizani et al., 2018; Driscoll et al., 2009; Dyer et al., 2010). Post-entry, a myriad of 

protein-protein interactions between host and viral agent, may defend the host from infection, or 

facilitate viral infection (Alguwaizani et al., 2018; Doolittle and Gomez, 2011; Dyer et al., 2010). 
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Pathogen-host protein-protein interactions (PPIs) have been investigated in single viral species, and 

such studies have been valuable in the elucidation of intracellular pathway interactions in viral 

infections, aiding a greater understanding of cellular inter-communication and interactions in diseased 

states (Eid et al., 2016; Kösesoy et al., 2021; Yan et al., 2019). Pathogen-host protein-protein 

interactions research additionally provides a fundamental basis which can be applied to elucidate 

mechanisms of pathogenesis (Driscoll et al., 2009). Historically, PPI studies have been conducted 

experimentally in the laboratory (Deng et al., 2021; Qi et al., 2010) and these experimental studies tend 

to be laborious and expensive (Alguwaizani et al., 2018; Deng et al., 2021). As a result, computational 

methods to study PPIs have been developed, to increase throughput. 

Computational methods used for protein-protein interaction studies make use of machine learning and 

deep learning to examine existing interactions and relationships, with a view to predict if a viral 

pathogen has the potential to interact with human proteins, and possibly, infect human hosts. 

Computational methods may be sequence based (Alguwaizani et al., 2018; Cui et al., 2012), structure 

based (de Chassey et al., 2013; Doolittle and Gomez, 2011), domain based (Dyer et al., 2007; Zheng 

et al., 2014) or motif-based (Evans et al., 2009; Zhang et al., 2017). With earlier studies in this domain 

being limited to a single species (Doolittle and Gomez, 2011; Kim et al., 2017; Mei and Zhao, 2018; 

Wuchty, 2011), recent studies have attempted to create models which have applicability across multiple 

species (Deng et al., 2021; Eid et al., 2016; Kösesoy et al., 2021). 

While PPI studies model out the transition from level 1 to level 2 of the pyramid model, addressing 

several interactions at once is not a trivial task, and is not without limitations. For example, many 

interactions may be positive for intracellular proteins, but not for surface receptors, which is arguably 

the most important initial interaction in viral infection. Several computational methods applied to the 

study of PPI have been reviewed by Soyemi et al. (2018), and the below sections will focus on 

sequence-based methodologies. 

Gussow et al. (2020) conducted an in-depth molecular analysis of coronaviruses to assess enhanced 

pathogenicity. Using comparative genomics and machine learning, the authors identified signatures 

present in key genomic regions, such as the nucleocapsid protein and the spike glycoprotein, which 

appear to be associated with higher case fatality rate and host switching. A recent study by Brierley 

and Fowler (2021) sought to predict the animal hosts (reservoir and intermediate) of coronaviruses. 

Here, machine learning techniques were applied to analyse whole genome sequences and 

compositional biases of the viral spike glycoprotein. The study demonstrated how evolutionary signals 
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in spike glycoproteins were as informative as whole genome sequences. Similarly, coronavirus spike 

protein sequences were used by Qiang et al. (2020) to aid prediction of species cross-over from non-

human hosts of this viral taxa, and results from this work suggested that SARS-CoV-2 taxonomic 

relatives may indeed be of concern and should potentially be monitored. Cross species zoonotic 

transmission is a serious concern for public health as they may result in emerging and re-emerging 

infectious diseases. 

2.6. Literature review summary 

Efforts to predict, and ultimately inform public health policy, have been made at the ecological scale. 

Additional molecular methods in the form of PPI studies have been included, however, these appear to 

be limited to specific viral species, such as Influenza viruses in Ray and Reich (2018) and Qiang and 

Kou (2019) and are generated from small datasets which impacts applicability and translatability to a 

broader scope of pathogens. Furthermore, PPI studies focusing on receptor analysis make use of 

existing receptor-pathogen interactions, and as such may not be able to detect emerging pathogens 

which use different host receptors. Therefore, there is a need to create robust predictive models for 

species crossover events which identifies patterns consistent with zoonosis and may, ultimately, be 

used to inform public health policy to mitigate potential epidemics and pandemics. 
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Chapter 3: Methods and Materials 

A summary of the workflow used in this study is shown in Figure 6. Simply, data was obtained from 

online databases and pre-processed. Thereafter the resultant data was transformed into a machine-

readable format, and machine learning activities commenced, and in addition, a reproducible Nextflow 

pipeline was created (see Appendix I). Detailed methods are provided below, and all software 

dependencies have been specified in a singularity image definition file included in the supporting 

material (see Appendix II). 

3.1. Data acquisition 

Data obtained from the UniProtKB Knowledge Database (The UniProt Consortium et al., 2021) was 

accessed through the UniProtKB website (https://www.uniprot.org/uniprot/) on the 21st of September 

2021. Using the “View by” section on the website navigation panel, “Keywords” was selected - which 

produced a list of dropdown items such as molecular function, domain, and biological process, to 

mention a few. The “biological process” dropdown was expanded to show additional dropdown 

options, of which “Virus entry into host cell” was selected, which can directly be accessed through 

https://www.uniprot.org/keywords/KW-1160. A panel on the lefthand side of the page provided a key 

map indicating the number of items in total for the keyword alongside the number of reviewed and 

unreviewed items pertaining to the keyword. The UniProtKB key map was used to obtain a data table 

containing the protein entries. Relevant data table fields were selected, prior to downloading in tabular 

format, and included; Entry, Entry name, Status, Protein names, Organism, Length, Taxonomic lineage 

IDs, Taxonomic lineage, and Virus hosts. The dataset is referred to as KW-1160 through this study. 

The corresponding protein sequences were also obtained in FASTA format. 
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Figure 6:  A summary outline of the workflow used in this study. 
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3.2. Data cleaning and imputation 

The KW-1160 dataset was examined to determine the need for pre-processing and cleaning. A script 

was written using the Python programming language to automate the cleaning step (see Appendix IV), 

and 16 CPUs and 32GB of RAM were required for this process. The KW-1160 dataset was standardised 

using the ete3 toolkit Python package (Huerta-Cepas et al., 2016), a phylogenetic analysis package with 

access to the NCBI taxonomy database. During the standardisation process, the Taxonomic lineage IDs 

column of the KW-1160 dataset was standardised to the taxonomic IDs in the NCBI database. The 

virus species names, contained in the Organism column, were also standardised to the names used in 

the NCBI taxonomy database. 

The virus organism taxonomic super kingdom and family was obtained from the NCBI database, using 

ete3 toolkit, and was added to the existing dataset in newly created columns. Microorganisms other 

than viruses were removed from the KW-1160 dataset. Furthermore, the dataset was intermittently 

grouped by virus species names and missing host information. A copy of the data was kept with only 

viral organism taxonomic identifiers and UniProtKB entry fields. 

Additional data was obtained from NCBI Virus (Hatcher et al., 2017), Enhanced Infectious Disease 

Database (EID2) (Wardeh et al., 2015) and Virus-Host database (Mihara et al., 2016). NCBI Virus was 

accessed through https://www.ncbi.nlm.nih.gov/labs/virus/vssi/ on the 21st of September 2021. The 

“All proteins” option was used to obtain the data table and the species, host and molecule type columns 

were selected. The data table was then downloaded in comma-separated-value (CSV) format. Data 

from EID2 was downloaded as accompanying data from the study by Wardeh et al. (2015). To obtain 

the CSV file with species interactions, datasets were pre-processed to only include viruses, through 

filtering on the cargo classification column. Data from Virus-Host DB was accessed through 

https://www.genome.jp/virushostdb/ on the 21st of September 2021 and selected data was downloaded 

in tab-separated-value (tsv) file format. 

Host information for viruses without this metadata was first imputed from other records in the KW-

1160 dataset. Data from external sources was also used for imputation of missing host information in 

the KW-1160 dataset. The data from the external sources was first standardised to use the NCBI 

taxonomy names, followed by extraction of corresponding taxonomic IDs. The host data was also 

standardised to match the nomenclature in the KW-1160 dataset, in the format [host name TaxID:ID]. 

Following standardisation of the data, each of the datasets were merged with the KW-1160 dataset, 
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using a left-inner join, such that only records with a matching taxonomic ID would be imputed. Records 

which still contained missing host information following imputation, were removed from the data. 

A column named Infects human was added to the dataset. The column contained binary data indicating 

whether the taxonomic ID for Homo sapiens (9606) was present in the list of host names in the virus 

hosts column. The rows matching the parameter were to be the positive data, labelled ‘human true’ in 

the Infects human column, and the rows which do not match the parameter were to be the negative data, 

labelled ‘human false’ in the Infects human column. Additional fields were added to the KW-1160 

dataset which contained virus host taxonomic Superkingdom and Kingdom. 

The FASTA file containing the protein sequences was then linked to the filtered UniProtKB data. The 

sequences were mapped to their corresponding data, based on the protein UniProtKB entry identifier 

in the Entry column of the dataset. The grouping of the KW-1160 dataset was then reversed using the 

copy created initially, as a reference. 

The FASTA sequence headers contained the protein entry, protein name and virus species name. The 

protein names in the KW-1160 dataset were replaced with the protein names in the FASTA headers as 

a more simplified nomenclature. The headers were then modified using the information in the KW-

1160 tabular data. Following modification, the header now contained the infection status, human-true 

or human-false, based on the information from the Infects human field. It also contained the unique 

entry, protein name and the name of the virus. 

3.3. Sample size determination and train-test data splitting 

Two organisms known to have crossed the species barrier and 2 others known to have not crossed the 

species barrier were removed from the initial dataset for later use in the model as proof of concept and 

their sequences were saved, these are referred to as the POC data. The majority class, based on the 

Infects human field, was randomly down-sampled to be 67% more than the minority class using the 

imbalanced-learn Python package (Lemaȋtre and Nogueira, 2017). The KW-1160 dataset was then 

saved as a compressed CSV file. Thereafter, the KW-1160 data was randomly split into training and 

test data at a ratio of 80:20, respectively. The training and test data was saved as sequences, in the 

FASTA file format, in separate train and test directories. 
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3.4. Sequence encoding 

To convert the FASTA sequences into machine readable input, frequency chaos game representation 

(FCGR) was utilised. A script was written in the R programming language to automate the process (see 

Appendix IV). The sequence headers were first edited to remove unwanted meta-characters such as a 

forward slash (/) and the pipe character (|) as some of the header information was to be used in naming 

the outputs. Frequency chaos game representation was then performed on the POC, training and testing 

sequences using the kaos R package (Löchel et al., 2020). The resolution parameter was set to 100, the 

mode parameter was set to ‘matrix’ to produce a frequency matrix, and the ‘labels’ parameter was set 

to false. The resulting plots were saved as portable network graphics (PNG) images of 224x224 pixels 

(width x height). The images were saved in human-true and human-false sub-directories, in each of the 

train and test directories, as this is the format required by the machine learning Python package (keras) 

used in this study. The POC data was not saved in directories. To increase efficiency, asynchronous 

and parallel programming was implemented making use of later and parallel R packages, respectively 

(Zhao, 2016). A computational cluster compute node with 32 CPUs and 40GB of RAM was used for 

this process. 

3.5. Deep Learning, hyperparameter searching and model architecture 

Deep learning using convolutional neural networks (CNNs) was used to build the classification model. 

To deduce the number, and types, of layers to include in the model, hyperparameter tuning was 

performed. The hyperparameters chosen for building the classification model were; number of 2D 

convolution layers (between 1 and 3 layers), number of units in the convolution layer (between 48 and 

128 units), threshold of evaluation metrics (between 0.5 and 0.9), optimizers (RMSProp and Adam), 

and optimizer learning rate (0.001 to 0.019 with an incremental value of 0.002). The Keras-tuner 

Python package was used to implement Bayesian hyperparameter search (O’Malley et al., 2019). 

The model was created using the keras package (Chollet et al., 2015) and the TensorFlow (Tensorflow 

Developers, 2022) package as a backend in the Python programming language (see Appendix IV). The 

hyperparameters obtained from the hyperparameter search were used to construct and compile the 

model. 
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3.5.1. Model training and validation 

The model was trained using the training data FCGR images. Twenty percent of the training data was 

used to validate the model on every epoch. The model was set to train for 50 epochs in data batches of 

64 images. Furthermore, the images were shuffled on each iteration. Model checkpoints were created 

only saving the best overall model through all the epochs. The model was trained on the Ilifu cluster 

using a computational node with 16 CPUs, 32GB of RAM and a 12GB GPU. Memory growth for the 

GPU was enabled to prevent training failure due to memory. The training was further adapted to use 

multiple GPUs with TensorFlow mirrored distribute strategy, should more GPUs be needed. 

3.5.2. Model evaluation and proof of concept 

The model was tested using the test data. The performance metrics of accuracy, precision, recall, f1 

score, area under the receiver operating characteristic curve (ROC-AUC) and the Matthews correlation 

coefficient (MCC), true positive values, false positive values, true negative values, and false negative 

values, were captured. Furthermore, the model was used for proof-of-concept prediction using the POC 

samples. 
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Chapter 4: Results and Discussion 

Several epidemics and pandemics are linked to host switching by viral pathogens, originally established 

in an animal host or reservoir (Parrish et al., 2008). Epizootic and zoonotic disease are driven by spill-

over of a pathogen to a previously unexposed, non-susceptible host and when these events occur, the 

resultant outbreaks can have devastating consequences (Parrish et al., 2008). Despite the clear threats 

to public health and biosecurity which are caused by emergence and re-emergence of zoonotic diseases, 

many host crossover events are not detected, or reported, and the modelling of infectious disease to 

predict spill-over remains constrained by several challenges (Glennon et al., 2019; Roberts et al., 2021). 

Computational approaches have been used to predict zoonotic potential of pathogenic species from a 

biological perspective (Cho and Son, 2019; Qiang and Kou, 2019) and in this study, a machine learning 

approach was used to develop a model capable of learning protein sequence patterns of viral pathogens. 

Considering that host specificity is critically dependent on viral interaction with host cells, receptor 

binding (and changes thereof) inevitably plays a vital role (Parrish et al., 2008), and as such, viral 

proteins involved in pathways of host cell entry were used to train, validate, and evaluate the model. 

The positive dataset used in this study consisted of viral pathogens known to infect human hosts, while 

those documented to not have a human host formed the negative dataset. The trained model could then 

be used to predict if an unknown virus would be capable of infecting a human host cell, based on 

consistency of protein sequence patterns, learned during model training. 

4.1. Dataset description and exploratory data analysis 

Machine learning is a sub-field of artificial intelligence primarily focused on enabling machines to 

learn patterns from large scale empirical data and convert the knowledge into usable models, without 

any explicit programming (Edgar and Manz, 2017; Thessen, 2016; Woolf, 2009). High quality data is 

important in data analytics as it often determines the quality of the subsequent analysis (Chu et al., 

2016). Furthermore, machine learning classification models are sensitive to data quality, therefore 

high-quality data is a priority for generation of robust models (Klie et al., 2022). In this study, sequence 

data and accompanying metadata was obtained from a comprehensive and trusted database resource 

for protein sequences and annotation data (The UniProt Consortium et al., 2021). The data consisted 

of a total of 358333 data entries and 9 fields. The metadata fields selected for ML activities in this 

study are shown in Table 1. 

Table 1: Details of the metadata fields of the data obtained from UniProt. 
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Field Description 

Entry UniProt unique entry identifiers. 

Entry name 
UniProt unique entry identifiers and an abbreviation of the virus name separated by an 

underscore 

Status 
Records of whether the data was reviewed and annotated by UniProtKB curators (reviewed) 

or Computer-annotated (unreviewed). 

Protein names The names of the protein associated with the entry. 

Organism 
Refers to the organism of which the protein was extracted. Includes isolates and location of 

which it was identified. 

Length The amino acid length of the protein sequence associated with the entry. 

Taxonomic lineage 

IDs 
Refers to the taxonomic ID of the species in question. 

Taxonomic lineage 

(SPECIES) 
The organism genus and species name without the any additional information. 

Virus hosts 
A list of hosts of the virus in question separated by a semi-colon. At the end of each name, 

the host taxonomic ID is given in the format [Tax: ID]. 

 

The Organism field was selected to identify the host organism from which the virus was isolated or 

identified; however, inconsistencies and missing labels in the data points were observed. For example, 

a West Nile virus entry did not contain strain, isolate, and date information, which was present in an 

Influenza A virus entry. The observed inconsistencies may be due to the metadata simply not being 

collected, individual reporting errors when uploading the information to the database, and errors from 

the UniProtKB automated annotation, a phenomenon which is often observed even if gold standards 

are used (Klie et al., 2022). Additionally, there may be protein entries which have been computationally 

predicted and therefore lacking the additional information which is otherwise captured in 

experimentally derived entries. Generally, with consistent data, the information can be extracted by 

matching consistent patterns. However, with the observed inconsistencies, it would require special data 

mining algorithms to efficiently extract the required data, which is by no means a trivial task. Due to 

time limitations, this was not performed in this study, and is noted to be a limitation, as greater data 

consistency could have resulted in generation of a more specific model of better quality. 

Two thousand, five hundred and nineteen (2519) protein names were represented in the data. However, 

numerous entries contained long and ambiguous nomenclature, for example, entry L7WIQ8 for HIV1 

contained the protein named ‘Envelope glycoprotein gp160 (Env polyprotein) [Cleaved into: Surface 
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protein gp120 (SU) (Glycoprotein 120) (gp120); Transmembrane protein gp41 (TM) (Glycoprotein 41) 

(gp41)]’. To resolve the ambiguity with respect to nomenclature, the names defined in the FASTA 

headers of the sequences were used. This was necessary because the protein names were used in 

downstream processes. Additionally, entries in the KW-1160 dataset with the same protein name were 

observed to have different amino acid lengths. This may be due to the submission of partial sequences 

by different researchers. For example, entries A0A7G4JM42 and Q67278 for Influenza A virus 

Nucleoprotein had 426 and 468 amino acids, respectively. This protein is known to have a length of 

468 amino acids (Reid et al., 2004). These data occurrences were not, however, excluded from the 

dataset as they may introduce sequence variation, in a similar manner to strain level genetic variations, 

thereby lessening model bias. 

In order to classify the positive and negative dataset, the Virus hosts field was used to indicate whether 

a viral pathogen was documented to have a human host. The prime objective of the model was to 

predict pathogens with the potential to cross the species barrier and infect humans, and as such, viruses 

which are reported to successfully infect humans would be classified as positive (with the assumption 

that they did not originate in the human host) and others, classified as negative. It should be noted that 

the holistic OneHealth approach was undertaken in this study, with plant and non-eukaryotic pathogens 

included in the negative training dataset, to enrich the data used for training. Explorative analysis was 

performed to ensure consistency in the data prior to downstream use, however, this revealed incomplete 

data, shown in Figure 7. A total of 237573 entries with missing data was observed, of which 53 were 

from manually annotated records, i.e., those which have been extracted from literature and curator 

evaluated (The UniProt Consortium et al., 2021). The majority of records (237520) with incomplete 

metadata was observed in unreviewed records i.e., those which await full manual annotation (The 

UniProt Consortium et al., 2021). This was an important observation as the existence of incomplete 

data would have a negative impact on classification and, ultimately, the model (Li et al., 2021). Li et 

al. (2021) investigated the impact of data cleaning on machine learning classification and recommend 

that machine learning researchers and engineers prioritize evaluation of the data fed into models. 

Furthermore, Frenay and Verleysen (2014) also identified that erroneous labels negatively impact 

machine learning models. 
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Figure 7:  Visual representation of missing data in the KW-1160 dataset prior to data cleaning. Purple bands indicate 

records in the dataset which have data missing. A: The total number of records with missing information in the KW-1160 

dataset (237573 missing records). B: Missing data from the KW-1160 dataset classified as reviewed (53 missing records). 

C: Missing data in the KW-1160 dataset classified as unreviewed (237520 missing records). 

 

Exploratory data analysis performed in this study also revealed that the data did not exclusively contain 

entries from viral pathogens. This was a relatively surprising observation as the dataset was expected 

to contain only viral data, based on the search criteria used to obtain the data. This is a noted ontology 

weakness in EMBL-EBI gene ontology (GO) Annotation blacklist (https://www.ebi.ac.uk/QuickGO 

/term/GO:0046718) which is used by the UniProtKB database for annotation (The UniProt Consortium 

et al., 2021). 

Interestingly, Nucleoprotein from Influenza viruses, was classified along with other proteins which 

facilitate viral entry into host cells, in the UniProt database (e.g., entries A0A7G4JM42 and Q67278). 

This protein encapsidates the viral RNA but has been reported as a determinant of host switching and 

host specificity (Long et al., 2019; Selman et al., 2012). While this entry was included in the study, this 
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highlights that filtering data to simply exclude non-viral sequences, may still result in erroneous 

inclusion of incorrectly curated and annotated entries. 

There is an enormous amount of data in databases, and it continues to grow; however, manual curation 

remains slow and automated annotation, and curation, is error prone (Klie et al., 2022). Therefore, it is 

recommended that data checking be implemented in the initial stages of data mining prior to use, even 

when data is obtained from highly trusted resources. 

Figure 8 shows the distribution of all micro-organisms in the dataset. There was a total of 7903 Virus 

species from 182 families and 6833 Bacterial species from 799 families. Additionally, there were 115 

organisms from the Eukaryota (85 families), 7 from Archaea (7 families), 15 metagenomes, 2 

uncultured organisms and 2 plasmids. This study specifically examined viral pathogens and as such, 

any entries which were not classified in the Virus superkingdom were removed prior to commencing 

downstream activities. 

 

 

Figure 8:  The taxonomic super kingdoms of the microorganisms observed in the KW-1160 dataset and the number of 

families and species of each super kingdom. On the x-axis is the super kingdom of the parasitic organism and on the y-

axis is the number of species or families. 

 

https://etd.uwc.ac.za/



 

 29 

4.2. Data imputation and cleaning 

Missing data is reported to be a commonly observed challenge in statistical analysis and machine 

learning which introduces bias into analyses, and as such, several techniques have been developed in 

an attempt to minimise the impact of missing data (Johnson and Khoshgoftaar, 2019; Liu, 2016). The 

most common of these approaches includes; 1) continuation of analysis with missing data without any 

adjustment, 2) removal of missing data, and 3) imputation of missing data with suitable estimates 

(Piquero and Carmichael, 2005). The deep learning approach to machine learning used in this study is 

negatively impacted by missing data, and as such data imputation with suitable data from external 

databases was used to complete the data (Li et al., 2021). Data size and data variation have been shown 

to have a significant impact in performance for image classification tasks (Keshari et al., 2020). Smaller 

datasets often result in models with poor generalization and high overfitting (Keshari et al., 2020) and 

as such, removal of missing data from the current dataset would have resulted in a significant reduction 

of the dataset size, from 358333 to 2373 records, and was not a feasible option in this study. Instead, a 

strategy of data imputation with suitable estimates was employed in this work. 

Data obtained from NCBI Virus (Hatcher et al., 2017), Virus-Host DB (Mihara et al., 2016) and EID2 

(Wardeh et al., 2015) was used for imputation. Tables 2, 3 and 4 detail the fields selected for use from 

each of the databases. These data sources are considered secondary databases because they obtain data 

from primary, archival, databases such as GeneBank which contains experimental results, directly 

submitted by researchers. Additionally, these databases also use computational and manual analysis to 

derive knowledge from the primary databases (The UniProt Consortium, 2021). 

 

Table 2: Information contained in the data fields selected from the data obtained from NCBI 

Field Description 

Species The genus and species name of the virus. 

Molecule_type 
The type of nucleic acid material, DNA or RNA, contained in the virus. The data goes to further 

classify them based on their strand types, single or double stranded. Viruses with unknown molecule 

types are labelled as unknown. 

Host 
The genus and species name of the host, each row has only one host. However, viruses with multiple 

hosts are repeated, each time with a different host. 

 

 
Table 3: Details of the data fields selected from the data obtained from the Virus-Host 
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Field Description 

virus 

tax id 
The taxonomic identifier of the virus. 

virus 

name 
The genus and species name of the virus. 

host tax 

id 
The taxonomic identifier of the host, each row has only one host and viruses with multiple hosts are 

repeated, each time with a different host. 

host 

name 

The genus and species name of the host, each row has only one host. However, viruses with multiple hosts 

are repeated, each time with a different host. If the species name is unknown only the genus name is given 

followed by sp. 

 

 
Table 4: Detailed information on the data fields used from the data obtained from EID2 

Field Description 

Cargo 
The genus and species name of the virus. Viruses with multiple hosts are repeated, each time with a different 

host. 

Carrier 
The genus and species name of the host, each row has only one host. Similar to the Virus Host DB dataset, if 

the species name is unknown only the genus name is given followed by sp. 

 

 

Due to the use of multiple data sources, there was a need for standardization across the datasets to 

maintain consistency and interoperability (Bhalla et al., 2017). Taxonomic IDs are regularly updated 

in the NCBI taxonomic database, and as such, data records created at different time periods may have 

different identifiers. However, the NCBI taxonomic database archives all taxonomic IDs when updated 

(Schoch et al., 2020). The ete3 toolkit used in this study downloads the NCBI taxonomy database, 

enabling local storage of a fixed taxonomic database. All taxonomic records were translated to the 

version downloaded in the ete3 toolkit to allow interoperability between the datasets used. 

The NCBI Virus database is a secondary database which obtains RefSeq records as soon as they are 

updated (Hatcher et al., 2017). In addition, the database contains records from literature, is subjected 

to automated and manually curation, and was the first data source used for imputation activities in this 

study. Virus host DB, which manually curates data from multiple databases, such as RefSeq and 

ViralZone, was used for the second round of imputation (Mihara et al., 2016). The EID2 was used for 

a third imputation pass, and contained data from primary databases such as RefSeq, with additional 

records extracted from PubMed (Wardeh et al., 2015). 
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Figure 9 depicts the decrease in missing data at the end of each imputation pass from the various 

databases. The attempted imputation from other records in the KW-1160 data had no impact and this 

was to be expected, under the assumption that the automated curation algorithm used by UniProtKB 

conducts a similar operation to the one performed in this study. The NCBI Virus dataset was expected 

to contribute significantly, however, a small impact was observed. The expected impact of imputation, 

versus what was observed, may be explained by database development and redundancy, especially 

given that primary databases are known to contain data redundancy (Chen et al., 2017) and that NCBI 

Virus curates data directly from RefSeq. The Virus-Host DB provided the most notable contribution 

as seen in Figure 9. This observation may be due to the manual curation activities of this database, as 

the data is also collected from primary databases such as NCBI and EBI (Mihara et al., 2016), thereby 

containing higher quality data compared to the other databases used. Following imputation from the 2 

databases it was expected that the last database used, EID2, would only have a small impact, and this 

was indeed the case. 

 

 

Figure 9:  Visual representation of the change in data dimension through the varying imputation steps. The figure depicts 

the reduction of missing values following each data imputation pass. On the y-axis is the record counts of missing values 

and on the x-axis is the dataset used for imputation. The first bar represents missing data in the KW-1160 dataset prior to 

imputation. The remaining bars are labelled on the x-axis. The labels represent the database used for imputation. 
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Explorative data analysis and data cleaning was initially performed on a local machine prior to 

obtaining access to a high-performance computational environment. When performing imputation on 

a local machine, high resource usage was observed, often resulting in malfunction and shutdown. This 

was due to memory (RAM) limitations which resulted from performing the operations on over 300000 

records. Dimensionality reduction (DR) is a technique which reduces data dimensions but retains 

significant patterns within the data (Nguyen and Holmes, 2019). Feature extraction and feature 

selection are 2 common types of DR, each with different algorithms (Nguyen and Holmes, 2019). 

Feature selection methods include filter, wrapper and hybrid algorithms while feature extraction 

methods include simple data grouping, principal component analysis (PCA) and correspondence 

analysis (CA) (Nguyen and Holmes, 2019). The reader is referred to Nguyen and Holmes, 2019 for in-

depth reviews of DR methods. To circumvent the computational limitations, basic DR was used, and 

the data was grouped by virus species taxonomic identifiers. This reduced the records from 358333 to 

approximately 7000. A copy of the dataset, was made prior to dimensionality reduction, retaining only 

the entry and virus species taxonomic identifier fields. This copy was later used to revert the data back 

to the original dimensionality. 

Table 5 details the contents of KW-1160 following pre-processing, with 40772 records which still 

contained incomplete metadata, being removed. The discarding of this proportion of records was 

considered to have a relatively small impact when compared to the option of complete removal of data 

records with incomplete information prior to imputation and cleaning (Section 4.1, page 24).  

Table 5: Details of the data fields in the KW-1160 dataset after data cleaning 
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Field Description 

Entry UniProtKB unique entry identifiers. 

Species name The genus and species name of the virus. 

Species 

taxonomic ID 
The taxonomic identifier of the virus. 

Species family The name of the taxonomic family virus. 

Virus hosts 
A list of hosts of the virus in question separated by a semi-colon. At the end of each name, the host 

taxonomic ID is given in the format [Tax: ID]. 

Virus hosts ID A list of hosts of the virus in question separated by a semi-colon. 

Host kingdom 
The taxonomic kingdom of the virus hosts. If there are 2 viruses hosts of different kingdoms they 

are included as a semi-colon separated list. 

Host 

superkingdom 
The taxonomic super kingdom of the virus hosts. If there are 2 viruses hosts of different kingdoms 

they are included as a semi-colon separated list. 

Molecule type 
The type of nucleic acid material, DNA or RNA, contained in the virus. The data goes to further 

classify them based on their strand types, single or double stranded. Viruses with unknown 

molecule types are labelled as unknown. 

Infects human 
The infection status of the virus in question. Records with a human-true label correspond to viruses 

which have a human host and records with human-false label correspond to viruses which do not 

have a human host. 

 

The study aimed to produce a predictive model which informs if a given viral sequence entry infects, 

or could potentially infect, a human host. Such a model would have either a positive, or negative, class 

and required strict labelling of the training data (Alaeddine and Jihene, 2020). To define the classes, 

all viral entries reported to have a human host were considered as the positive data class (labelled 

human-true), even if the viral pathogen infected additional non-human hosts. All entries with no 

reported human host, irrespective of the scope of hosts, were considered as the negative data class 

(labelled human false). 

 

4.3. Undersampling and splitting 

A class imbalance was observed in the data, whereby the positive class had substantially more data 

points (278791 entries) when compared to the negative class (38770 entries). While the imbalance was 

remarkably high, the observation was consistent with existing literature which demonstrates that non-

human infection events are understudied and are often not reported, and as such, until such issues are 

addressed, a bias is unavoidable (Glennon et al., 2019; Parvez and Parveen, 2017). Class imbalance is 
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a common problem in machine learning and random undersampling (RUS) of the majority class, and 

random oversampling (ROS) of the minority class, are techniques often used to approach data 

imbalance in statistics and machine learning (Hasanin et al., 2019; Johnson and Khoshgoftaar, 2020). 

However, there are no specific values to employ for either ROS or RUS. Random undersampling (RUS) 

was used in this study to reduce redundancy while maintaining variation in the dataset, and due to 

randomized selection, all proteins would be represented even if the majority class was down sampled. 

A small-scale study was conducted, and the results obtained were used to ascertain the undersampling 

ratio for the main study. Three models were trained using data of varying proportions derived from the 

KW-1160 dataset, and following evaluation, the most optimal model, in terms of performance, was 

used to inform the undersampling ratio. One dataset was an undersampled derivative with the majority 

class being only two-thirds (67%) greater than the minority class (ZoonosisTwoThirds - 57862 entries 

for the positive and 38768 entries for the negative class). The second undersampled derivative dataset 

represented equal proportions of the majority and minority class, containing 38768 data points for each. 

The third dataset represented the complete KW-1160 dataset with no modifications (ZoonosisFull - 

278789 entries for the positive and 38768 entries for the negative class). 

Table 6 shows the performance of the models on test data. As indicated by Chicco and Jurman (2020), 

if a high accuracy model is observed and is accompanied by a low MCC, it indicates the likelihood of 

the model being trained on imbalanced data, and this was indeed observed for the complete KW-1160 

dataset with no modifications (ZoonosisFull). The 67% RUS method used in ZoonosisTwoThirds 

model was selected as the favourable sampling method as it allowed for the presence of an adequate 

volume of data that exhibits the least amount of dataset imbalance, and which is not too low to introduce 

overfitting of the model. Overfitting, or model variance, in statistics and machine learning is defined 

as a phenomenon whereby a machine learning model perfectly fits training data, achieving high training 

accuracy, but fails to generalise on unseen data, and subsequently achieves low validation or test 

accuracy (Edgar and Manz, 2017). 

 

Table 6: Evaluation metrics of the models obtained from training at different sample sizes. 
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Name Accuracy 
True 

Positive 
False 

Positive 
True 

Negative 
False 

Negative 
MCC 

F1 

Score 
ROC-

AUC 

ZoonosisFull 93.57 94,772 1,767 12,092 5,575 0.74 0.96 0.97 

ZoonosisTwoThirds 95.37 20,274 775 13,061 844 0.90 0.96 0.99 

ZoonosisOne2One 97.14 13,211 129 13,917 671 0.94 0.97 1.00 

 

 

4.4. Training, validation, and testing datasets 

Machine learning models ‘learn’ on larger training data and are evaluated on smaller test data 

(Schilling, 2016). In some cases, evaluation during model training is implemented to detect poor 

performance, using a separate, smaller dataset, referred to as the validation dataset, (Schilling, 2016). 

Model training can be a time and resource consuming process, and as such, early detection of poor 

performance allows early termination of model training, followed by adjustment of the model 

architecture (Schilling, 2016). In this study, the train-to-test ratio of 80:20, a ratio that is commonly 

used (Alaeddine and Jihene, 2020; Wu et al., 2018), resulted in 77304 randomly selected entries being 

selected for use in training and 19326, for testing. Twenty percent (20%) of the training data was later 

defined as validation data at the beginning of training. 

4.5. Sequence feature encoding 

Machine learning algorithms often require machine readable, numeric or byte data, as input (Modarresi 

and Munir, 2018) and efforts have been made in bioinformatics and protein engineering to represent 

text-based FASTA protein sequences as machine readable input, while maintaining sequence integrity 

(Jing et al., 2020). Chaos game representation (CGR) is a sequence representation scheme inspired by 

chaos theory in physics, originally proposed by Jeffrey (1990), as a visual representation scheme for 

DNA sequences. Frequency chaos game representation (FCGR) is an adaptation of the original CGR 

method and has been modified to accommodate protein sequences (Löchel et al., 2020). Another 

variant of CGR proposed by Mu et al. (2019), called DCGR, incorporates amino acid physiochemical 

attributes, which are important determinants of protein structure, interaction, and function. However, 

the latter is implemented in MATLAB, a proprietary software, and requires privileged access. As such, 

FCGR was used in this study as it is an open-source source software which is easy to implement. 
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Frequency chaos game representation, employed in this study, generated greyscale images of 224x224 

pixels. Examples of the generated features for 4 entries are shown in Figure 10. The FCGR image is a 

large icosagon, which contains twenty edges and twenty icosagons (Löchel et al., 2020), with the edges 

representing each of the 20 standard amino acids. 

 

Figure 10:  The frequency chaos game representation (FCGR) of 4 virus surface proteins. A: Influenza B virus 

Nucleoprotein (560aa). B: Human orthopneumovirus Major surface glycoprotein G (315aa). C: Simian immunodeficiency 

virus Envelope glycoprotein gp160 (865aa). D: Influenza A virus Hemagglutinin (566aa). 

 

The FCGR implementation automatically detects the sequence type from a given input and the 

generated image only includes 20 letters corresponding to the standard proteinogenic amino acids 

(Steward, 2019). However, sequencing errors occasionally occur in the sequencing of protein isolates 

such that an amino acid cannot be clearly identified (Pietrzyk et al., 2013; Searle et al., 2004; Vyatkina 

et al., 2015). A precise distinction between aspartic acid or asparagine, or glutamic acid or glutamine 

is often an issue when sequencing by chromatography, mass spectrometry, and X-ray crystallography 

(Pietrzyk et al., 2013). Such errors may result in the presence of different letter representations - B 

(aspartic acid [A] or asparagine [N]), J (leucine [U] or isoleucine [W]), X (unknown amino acid), Z 
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(glutamic acid [G] or glutamine [Q]) - in the sequenced proteins. There is no record of how the software 

handles these cases and it is assumed that these letters are omitted by the FCGR software. However, 

this may not be a significant issue as a majority of proteins in databases are translated from nucleic 

acid sequences (The UniProt Consortium, 2021). Although the software supports other letters when the 

alphabet parameter is set to ‘LETTER’, for upper case letters, or ‘letter’, for lower case letters, this 

would require experimentation with the scaling factor to prevent the production of unexpected or 

erroneous results (Löchel et al., 2020). 

There are two additional, recently discovered amino acids; selenocysteine, and pyrrolysine, represented 

by the letters U and O, respectively (Lopez and Mohiuddin, 2022). Pyrrolysine has only been found in 

proteins from several methanogenic organisms such as archaea and bacteria (Rother and Krzycki, 

2010), and selenocysteines are present in proteins which facilitate redox reactions (Mariotti et al., 2018; 

Rother and Krzycki, 2010). It is not clear how FCGR would deal with these amino acids should they 

occur in a given protein sequence, and while this was not of high concern in this study, which was 

focussed on viral proteins, it is an important consideration when FCGR is applied to studies involving 

proteins containing these unique amino acids. Additional consideration with FCGR is related to the 

protein sequence length. The FCGR software has not been tested on peptides and smaller protein 

sequences (Löchel et al., 2020), and as such, the effects of smaller sequence lengths are unclear and 

further research into FCGR performance in relation to sequence length should be investigated. 

Considering that the data used in this study contained sequences of varying lengths, it is possible that 

shorter sequences may have had poor representation. 

The implementation of FCGR with the kaos package was slow, due to the large number of sequences, 

as well as the existence of sequences with long lengths, in the dataset. The low performance was due 

to a bottleneck effect, created when the FCGR images were saved (Goranova et al., 2015). Saving 

images is considered a part of input-output operations and increasing the speed at which this operation 

occurs, requires the use of multiple threads in a central processing unit (CPU) (Goranova et al., 2015). 

The R programming language does not support multiple thread operations, however, processing on 

multiple CPUs through additional packages such as parallel and foreach is possible (Zhao, 2016). 

Multiprocessing was implemented using parallel, demonstrating a significant increase in performance. 

Studies have indicated that the use of asynchronous programming in single thread programming 

languages, such as the R programming language (Goranova et al., 2015; Zhao, 2016), may offer 

significant performance improvement especially with input-output operations. In synchronous 
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programming, tasks are run in a sequential manner such that a task cannot begin before the prior task 

has run to completion. In asynchronous programming, a new task is initiated while awaiting completion 

of the current task in operation. When all the tasks are completed, the remaining sequential tasks are 

executed, making the entire process more efficient (Abadi et al., 2016; Goranova et al., 2015). The 

coupling of multiprocessing and asynchronous programming in this study, resulted in significant 

performance improvements to the FCGR (see Appendix VII for benchmark results). 

4.6. Model architecture 

Deep learning applies non-linear transformations through layered networks, termed artificial neural 

networks (ANNs) (Valueva et al., 2020; Vargas et al., 2018). A convolution neural network (CNN, or 

ConvNet) is a type of ANN often used in computer vision to analyse images (Valueva et al., 2020). 

Convolutional neural networks were used in this study due to their exceptional image classification 

capability, particularly for the FCGR images. The FCGR image features output in this study were 

greyscale and as such 2D CNNs were used for training. There is no convention for building CNN 

models due to varying performances of different model architectures, and as such, it is the researcher’s 

or engineer’s task to find an optimal model architecture for a given dataset (Lu et al., 2019). This is 

often complicated by the presence of a multitude of parameters which require adjustment (Sarawagi 

and Ganguli, 2021; Klein et al., 2017) and can include the number of layers to use, number of nodes 

within each layer, and in some instances, the parameter itself may have values which require 

adjustments, such as the learning rate of an optimizer (Sarawagi and Ganguli, 2021). Hyperparameter 

optimization is an approach used to identify the best parameters from a defined set of values (Klein et 

al., 2017; Lu et al., 2019). 

Bayesian hyperparameter optimization was the optimisation approach used in this study due to 

efficiency, and lower resource consumption (Klein et al., 2017). The search space, defined as the set 

of all possible values (Lu et al., 2019), in this study is summarised in Table 7. Deep learning models 

produce probability values when given certain input, and as such a threshold hyperparameter value was 

included to help classify output values, such that entries with a probability value above the threshold 

would be classified as positive and entries with a probability value lower than the threshold would be 

classified as negative. The hyperparameter search space size was 19440, composed of 5 node values, 

3 kernel sizes, 3 pool sizes, 8 threshold values, 9 learning rate values, 3 layers, and 2 optimisers. The 

search was implemented for 500 trials, 500 combinations of hyperparameters, and training for 2 epochs 

per trial, with validation at the end of each epoch. One seventh (5538 samples) of the data was used to 
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search for hyperparameters. Five-hundred (500) trials were executed on this reduced data, to prevent 

the cessation of trails prior to completion due to limited GPU memory, even when distributed across 

multiple GPUs. While RUS evaluation determined that the ZoonosisTwoThird dataset was the optimal 

sampling methodology, the ZoonosisOne2One dataset was used for the hyperparameter optimisations 

as it was assumed that a balanced dataset would give equal importance for both the positive and 

negative class because the trials ran for a limited number of epochs. 

 

Table 7: The hyperparameter search space summary. Minimum and Maximum refer to the lowest and highest 

hyperparameter values, respectively, for numeric hyperparameters. Step refers to the increment value from the minimum to 

the maximum value for numeric input. 

Hyperparameters Minimum Maximum Step 

Nodes 48 128 16    

Kernel size 1 3 1    

Pool size 1 3 1    

Optimizer     Adam RMSprop 

Threshold 0.5 0.9 0.05    

Learning rate 0.001 0.019 0.002    

Layers    1 Conv layer 2 Conv layers 3 Conv layers 

 

 

The trials were rated based on the MCC score obtained from the validation at each training iteration 

such that the combination of hyperparameters with the highest MCC would have a high rating. 

Bayesian hyperparameter optimization employs Bayes theorem, using prior values to inform the next 

choice of parameters (Dewancker et al., 2016). Only 5 of the 8 threshold values were used, 3 of the 9 

learning rate values, and the hyperparameter values for nodes, kernel size, pool size and layers were all 

exhausted. The best values for each hyperparameter were often repeated indicating that their inclusion 

consistently produced high performing models. The top 10 hyperparameter sets are shown in Table 8, 

with the best hyperparameters for our model being: 1 Conv layer with 128 units, kernel size of 2, a max 

pool with a pool size of 2 and an Adam optimizer with 0.019 learning rate and metrics would be 

measured at a threshold of 0.5. 
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Table 8: The top 10 combinations of hyperparameters. The results for all 500 trials can be found in Appendix V 

Nodes Kernel size Pool size Optimizer Threshold Learning rate Layers Validation MCC 

128 2 2 Adam 0.5 0.0190 1 Conv layer 0.8145 

128 2 2 Adam 0.5 0.0190 1 Conv layer 0.8133 

48 3 3 RMSprop 0.5 0.0190 1 Conv layer 0.8124 

48 3 3 RMSprop 0.5 0.0190 1 Conv layer 0.8118 

128 2 2 Adam 0.5 0.0190 1 Conv layer 0.8058 

48 3 3 RMSprop 0.5 0.0190 1 Conv layer 0.8056 

48 3 3 RMSprop 0.5 0.0190 1 Conv layer 0.8050 

128 2 2 Adam 0.5 0.0190 1 Conv layer 0.8046 

48 3 3 RMSprop 0.5 0.0190 1 Conv layer 0.8043 

48 3 3 RMSprop 0.5 0.0190 1 Conv layer 0.8032 

 

Figure 11 visually represents the final model architecture. L2 regularisation is a regularisation method 

which prevents a model from overfitting when trained with highly correlated and high-dimensionality 

data (Alaeddine and Jihene, 2020; Ghojogh and Crowley, 2019; Humayoo and Cheng, 2019). The 

model in this study was trained on proteins of the same broad classification (surface proteins) and as 

such some highly correlated regions were expected in relation to the conserved regions of the proteins 

(Rudd et al., 2017; Shiliaev et al., 2016). The rectified linear unit (ReLu) activation function was used 

in the neural network to improve model efficiency by addressing inherent neural network problems 

such as the vanishing gradient problem (Alaeddine and Jihene, 2020; Lin and Shen, 2018). The binary 

classification implemented in this study required the use of a sigmoid activation in the output layer 

(Alaeddine and Jihene, 2020; Korotcov et al., 2017; Thakkar et al., 2018). 
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Figure 11:  Visual representation of the model architecture. Each box represents a layer in the model architecture. The text 

in the box is the type of layer. 

 

4.7. Model training 

In this study, deep learning was implemented using the keras package on a TensorFlow backend to 

allow for distributed operations, using multiple graphics processing units (GPUs) to amplify the model 

training process. Deep learning models use an iterative learning approach whereby patterns are 

identified and refined during a subsequent training cycle, and this continues for a predefined number 

of iterations (Sarawagi and Ganguli, 2021). The model was trained in batches of 64 images for 50 

epochs with validation at each epoch. The loss function used for the model was a binary cross-entropy 

loss which is recommended for binary classification (Ho and Wookey, 2020; Shrestha and Mahmood, 

2019).  

Hinton et al. (2012) showed that models can adapt to data, resulting in overfitting. As a result, El Korchi 

and Ghanou (2019) proposed a data centred approach to prevent overfitting, whereby samples of the 

training data are randomly drawn at the start of each epoch. This can also be referred to as data shuffling 

and is included as a parameter in the keras package used in this study. As such, data shuffling was 

implemented at the start of each training iteration to allow for rigorous training of the model. 

When training a model, a plateau is reached, after which, continuation of the learning process may 

result in further overfitting. This commonly occurs when the model is allowed to train for too many 

epochs (Sarawagi and Ganguli, 2021) and in this study, model checkpoints were generated with every 

epoch to monitor the best model across all epochs. For example, if the model performance was high at 
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the end of the 12th epoch, the checkpoint would not be updated until an improved model was observed, 

and if no improvement was observed, at the end of training, the best model would be the one generated 

on the 12th epoch. The best model in this study, based on the Mathews correlation coefficient (MCC) 

obtained from model validation, was selected for further performance evaluation, discussed in Section 

4.8 below. 

4.8. Model evaluation 

The performance of a model is commonly measured by its overall accuracy - the ratio of correct 

classifications to the total number of samples - when tested on previously unseen data. However, 

accuracy may be prone to bias and is therefore not always considered the best metric (Chicco and 

Jurman, 2020). In cases of data imbalance, accuracy may appear highly sensitive because a model may 

simply ‘guess’ outcomes that favour the majority class and provides the assumption that a model is 

performing well. As an example, if there are 100 test inputs with 85 from the positive class, and 15 

from the negative class, a ‘guessing’ model which classified all points as positive, would achieve 85% 

accuracy (Alaeddine and Jihene, 2020; Chicco and Jurman, 2020). Additional metrics such as the F1 

score and MCC, which consider the rate of the positive and negative classes with minimal bias, are 

therefore recommended metrics for evaluation, in addition to accuracy (Chicco et al., 2021; Chicco and 

Jurman, 2020). These metrics use true positive values, false positive values, true negative values, and 

false negative values to inform their results (Chicco and Jurman, 2020). As such, F1 score and MCC 

metrics were used to evaluate the performance of the model in this study. Furthermore, the receiver 

operating characteristics (ROC) is another metric often used to visually compare several models, where 

the area under the receiver operating curve (ROC-AUC) is a single value which summarises the ROC 

metric (Fawcett, 2006; Tharwat, 2021). The ROC-AUC metric was also included in this study to allow 

comparison with future studies. 

Figure 12 depicts the accuracy and loss (error rate), observed for our model during the training phase. 

Notably, poor performance was observed during the first 12 epochs of training, which may be due to 

the model first learning the distribution of the data. There was a significant improvement in 

performance which plateaued in subsequent epochs past the 12th epoch. The accuracy and loss of the 

training and validation data were comparable from the 13th training epoch indicating consistent 

performance with no overfitting. The best model was obtained on the 48th epoch which achieved 

96.80% accuracy and 0.92 MCC on validation data. 
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Figure 12:  Accuracy and loss of the model during training. A: The accuracy of the model during the training epochs. On 

the x-axis is the epoch and on the y-axis is the percentage accuracy. B: The loss (error rate) of model during training 

during the training epochs. On the x-axis is the epoch and on the y-axis is the loss. 

 

 

A small difference in the accuracy and MCC obtained during training on the training data (99.38%) 

and on test data (96.78%) was observed, which further indicated model consistency with no overfitting. 

The high accuracy obtained with the very simplistic single convolution layer model used in this study 

shows the excellent capability of convolution neural networks, coupled with the FCGR features. 

Furthermore, we believe the model offers high quality performance because of the significantly large 

dataset (total of 96630) used in this study, when compared to the quantity of data used in previous 

studies such as the 10 host receptor protein sequences in Bae and Son (2011), 211 interaction pairs in 

Yan et al. (2019), and 277 host receptor protein sequences in Cho and Son (2019). Additionally, the 

training data used in this study consisted of a highly diverse dataset, which included viruses reported 

to infect plants as well as those reported to infect non-eukaryote organisms. Our study also 

demonstrates that improving data cleaning methods can significantly help improve the analysis and 

build better performing models. 

Taken together, these results suggest the presence of consistent patterns in surface proteins of viruses 

reported to infect humans which differ from surface proteins of viruses which do not infect humans. 

From a biological perspective, this is expected, as host range is determined by successful infection 
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(Carlson et al., 2019; Wardeh et al., 2020a; Wells et al., 2020), and virus-host cellular protein-protein 

interactions are a key mechanism (Kerr et al., 2015; Kösesoy et al., 2021; Parvez and Parveen, 2017). 

The question we ask is, if mutation-based evolution of the viral surface proteins is a key predictor of 

potential species cross-over events, would a model, such as presented in this study, be a suitable early-

stage surveillance tool to monitor such events? Furthermore, we surmise that it is possible that a similar 

approach can be followed to design a model which predicts epizootic events for hosts other than 

humans, and particularly for animals of domestic and agricultural importance. In addition, the approach 

is flexible enough to support multi-category classification, with a simple modification of the final layer 

in the model architecture, such that a single model could potentially predict cross-species likelihood 

for several hosts rather than for a single host. Such a model would be a valuable application of machine 

learning into the One Health initiative, moving the focus from solely humans to other host organisms. 

Efforts are continually being made by the deep learning community to identify points of high activation 

in deep neural networks to inform the use of the patterns identified by the deep learning model 

(Kindermans et al., 2017; Liang et al., 2021; Linardatos et al., 2020). These approaches include guided 

backpropagation (Liang et al., 2021), Deep Taylor (Alber et al., 2018), PatternNet (Kindermans et al., 

2017), Pattern Attribution (Kindermans et al., 2017) amongst others. These approaches could not, 

however, be used in our study as they have been designed for multiple classification models (Alber et 

al., 2018), whereas this study focused on a binary classification model. The ability to understanding 

the patterns identified by the neural network would be invaluable as they may prompt refined studies 

in drug discovery and vaccine development, for example. 

4.9. Analysis pipeline and optimization 

For reproducible research and the adoption of our approach in future studies, a Nextflow pipeline was 

developed (see Appendix I). Nextflow allows for seamless integration of multiple analysis tools, e.g., 

Python scripts, R scripts, Bash scripts and others, into a single pipeline (Di Tommaso et al., 2017; Song 

et al., 2021). The pipeline is designed in such a way that multiple entry points are available, e.g., with 

the ‘EncodeTrain’ entry point, feature encoding and model training can be initiated, avoiding the data 

cleaning steps, and with the ‘TestOnly’ entry point, an existing model is tested on defined test data. 

Moreover, if a user has different data pre-processing steps, as well as different encoding steps from the 

ones used in this study, user defined steps can be integrated into the pipeline. Additionally, custom 

configuration has been added to support the user’s computational environment. 
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4.10. Proof of concept 

When tested on unseen data, the model obtained an accuracy score of 96.78% from a test dataset of 

19326 protein sequences. There were 11245 true positive predictions, 259 false positive predictions, 

7469 true negative predictions, and 353 false negative predictions. The F1 metric and the MCC were 

0.97 and 0.93, respectively, and the ROC-AUC was 0.99. This indicates that our model is robust and 

reliable, and performed remarkably well on previously unseen data. 

Interestingly, five notable phage portal protein (PP) entries from bacterial- and plant- hosts were 

observed in the false positive predictions, namely, A0A0K2FHA1 (Achromobacter phage phiAxp-2), 

A7TWJ1 (Staphylococcus virus tp310-2), I7HHN4 (Helicobacter virus KHP30), I7KR94 (Yersinia 

virus R1RT), and M4QNQ7 (Tetraselmis viridis virus S20). Portal proteins have a low sequence 

similarity, but highly conserved functionality, playing a role in bi-directional viral DNA passage 

(Lokareddy et al., 2017). These phage portal proteins are being considered as potential antiviral drug 

targets in herpes simplex virus infections (Dedeo et al., 2019). The ‘plasticity’ of phage PP may explain 

the erroneous classification by the model, due to the presence of signatures consistent with proteins 

involved in viral entry into human host cells. This observation may indeed be of interest for further 

investigation, as false positives in this dataset may contain entries which could be considered for 

therapeutic experimentation as in Dedeo et al. (2019). The other false positives may be as a result of 

protein similarity; however, this does not eliminate the possibility that some of the false positives may 

be of future concern, having the capability to bind to human host cells, but still lacking machinery for 

sustained infection and replication. 

A surprising observation in the false negative class was erroneous classification of 31 Human 

Immunodeficiency Virus (HIV) entries. This was unexpected as HIV is an established, long-term 

endemic virus with characteristic signatures of viruses with reported human hosts. Investigation of 

some of the HIV entries such as A0A2P1DQ38, Q7SPP5, and A0A2P1DR91 showed the warning 

“Lacks conserved residue(s) required for the propagation of feature annotation”, according to 

UniProtKB. Computationally derived feature annotation is reliant on existing knowledge and 

annotations based on sequence homology, result in errors which are propagated in databases and give 

rise to contradictory interpretations of the data (Holliday et al., 2017; Zaru et al., 2020). Despite the 

annotation artifacts, the classification of the HIV entries as false negatives does demonstrate high 

specificity of the model and may indicate that the FCGR features elucidate important details present, 

or absent, in protein sequences. 
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Due to time constraints, we could not thoroughly investigate each erroneous entry, however, we 

hypothesize other possible explanations which may contribute to incorrect predictions, such as inherent 

model bias, and labelling errors resulting from pre-processing and imputation. Another possible 

explanation for incorrect predictions was thought to be small sequence lengths as they may have 

possibly had poor FCGR representations as discussed in Section 4.5. However, entries with small 

sequence lengths in the test data were correctly predicted suggesting that sequence length did not 

contribute to erroneous classifications. This observation warrants further investigation which may 

explain erroneous classification, so that adjustments can be made in future. 

Four entries from A0A1W5YKT3 (Bat coronavirus, Spike glycoprotein), A0A0P0KH07 (Human 

coronavirus 229E, Spike glycoprotein), Q5EED8 (Human immunodeficiency virus 1, Envelope 

glycoprotein), and A0A0M4Q8U3 (Influenza D virus, Nucleoprotein) were tested on the model. The 

Bat coronavirus and Influenza D virus were correctly predicted as non-human infecting viruses with 

probability scores of 0.0010 and 0.00042, respectively, which are below the threshold of 0.5. The 

significantly low probability scores may indicate that the proteins do not have signatures associated 

with sequences from viruses which have been reported to infect humans and may also indicate that 

these viruses potentially require substantial sequence evolution to permit future species barrier cross-

over. The Bat coronavirus is indicated to have 101 hosts in the KW-1160 dataset and the low probability 

score obtained from the model, coupled with the wide host range of this virus, illustrates the complexity 

and rareness of zoonotic events, thus possibly supporting the pinhole model (Warren and Sawyer, 

2019). However, the selected entry for the POC may be a strain which has not undergone mutations to 

allow species crossover. This represents one notable limitation of the study which pertains to metadata 

availability and consistency in the databases. For example, a specific strain may have capacity to infect 

several hosts, but in a database, may appear to infect fewer host species. This phenomenon may be due 

to research priority, based on perceived host ‘value’ (human vs. horse). In this way, even if the virus 

can infect additional hosts, systemic bias in data representation and data priority exists. It is hoped that 

with the increased research in One Health, that research priority will become less skewed. It is further 

recommended that standardised minimal metadata be developed, and database submissions include 

information such as isolate and strain. This would produce a more comprehensive dataset, and 

subsequently, a significantly better model capable of strain level prediction. 

Compared to other models, such as those developed by Bae and Son (2011), Cho and Son (2019), and 

Yan et al. (2019), our model performed significantly better. The previous models often focus on virus-
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host interactions (Yan et al., 2019) and analysis of host receptor similarity (Bae and Son, 2011; Cho 

and Son, 2019) which may limit the utility of the latter model, particularly if a virus emerges and uses 

a different host receptor to those already known. Our model learns patterns present in viral surface 

proteins such that even if a new virus emerges, targeting an uncommon host receptor, the viral protein 

patterns will still be detected. To our knowledge, no other study found in our literature searches has 

used FCGR of virus surface proteins and CNNs to produce a machine learning model with a view to 

potentially predict viral species cross-over events. 
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Chapter 5: Conclusion and future research 

5.1. Conclusion 

Below, key research findings, limitations and future directions pertaining to this study are summarised. 

The observed increase of epidemic and pandemic events has prompted the need to understand emerging 

infectious disease outbreaks, with the view to predict and mitigate future incidents. This study used 

machine learning tools to build a predictive model for zoonosis, by examining the existence of patterns 

in viral protein sequences linked to entry into host cells. Sequence data and associated metadata was 

collected from the UniProtKB public database. However, additional processing was required to enrich 

the data, particularly with respect to observed missing values in the dataset. The study has further 

demonstrated the inherent data bias which exists across databases, and as such, it is recommended that 

researchers carefully evaluate data inputs, even when attained from trusted, curated resources. It was 

also demonstrated in this study that data cleaning and imputation can reduce the inherent bias and 

improve inputs for the creation of robust models. 

This study presents a proof-of-concept approach for building viral zoonosis prediction using FCGR 

images of protein sequences and convolutional neural networks. To our knowledge, this is the first 

study which uses FCGR images of viral proteins and CNNs for predictive modelling of species 

crossover events. Using this approach, we demonstrate the capability of generating extremely robust 

models with outstanding performance metrics. However, the model has not been compared to other 

models using common test data and may have biases which have not been observed and documented 

herein. The model developed in this study suggests the existence of patterns in sequences of virus 

surface proteins which interact with host cells at the initial stage of infection, and which may be 

indicative of zoonotic potential. This model could possibly aid in identifying zoonotic viruses, using 

sequence data extracted from pathogen surveillance programs, as input into the model. Although not 

explored in this study, the approach has the capability of allowing visualisation of the patterns identified 

by the model. While this study has promising findings, there are several limitations, which have been 

noted. 

5.2. Future research 

Future research would be strengthened through the incorporation of data with clear evidence of 

zoonosis to generating an improved model. This study developed a binary classification model which 

limits cross-species prediction to human hosts, and as such, we suggest that future studies include other 
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host organisms by building a multi-categorical model representing the varying host species, in line with 

a holistic One Health approach. Furthermore, the studies may be extended to include other pathogenic 

microorganisms to broaden the zoonotic scope. Several areas of research are investigating FCGR 

images and pattern analysis for biological inference, and as such, a more refined methodology could 

strengthen the current model, and increase the reliability and subsequent use of ML technologies in 

public health related research and pathogen surveillance. 
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Appendices 

Appendix I: Nextflow pipeline 

Description: 

The pipeline is complimentary to this thesis. It serves as a template to reproduce the method used in 

the thesis. It consists of binary and configuration directories named bin and conf, respectively. The bin 

directory consists of executable scripts used in the pipeline and the conf directory consists of 

configuration files for running the pipeline on different computational platforms. A global 

configuration file named nextflow.config is also included which, however, is not placed in the conf 

directory. The nextflow.config file also contains pipeline parameters. Pipeline parameters can also be 

provided using the params.yml file provided. Two directories, namely modules and workflows, contain 

the Nextflow scripts used to execute the various pipeline processes. Finally, a main Nextflow script is 

included which serves as the entry point for the pipeline thereby abstracting users from the multiple 

scripts. The pipeline is also available on github where its usage is described. 

File: 

• Zoon0PredV 

GitHub Link: 

• https://www.github.com/Rudolph-afk/Zoon0PredV 

  

https://etd.uwc.ac.za/

https://www.github.com/Rudolph-afk/Zoon0PredV
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Appendix II: Containers definition and software dependencies 

Singularity images were used for reproducing the environment used in this study. Two singularity 

containers were used and the software dependencies are listed in the definition files. 

FCGR Singularity image definition 

Description: 

Singularity image definition for the container used for frequency chaos game representation (FCGR) 

(see Section 4.5) 

Files: 

• FCGR_container.def 

Data processing and model processing Singularity image definition 

Description: 

Singularity image definition file for the container used for data cleaning, imputation, model training 

and evaluation (see Chapter 3:). 

Files: 

• tensorflow_container.def 

  

https://etd.uwc.ac.za/
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Appendix III: Downloaded data 

The data downloaded from various databases used in the study (see Section 3.2). 

UniProtKB 

Description: 

Data downloaded from UniProtKB as FASTA and accompanying tabular metadata. 

File: 

• KW-1160.fasta 

• KW-1160.tab.gz 

NCBI Virus 

Description: 

Data downloaded from NCBI Virus as a comma-separated-value tabular file. 

File: 

• NCBIVirus.csv 

EID2 

Description: 

Data obtained from EID2 as a comma-separated-value tabular file. 

File: 

• SpeciesInteractions_EID2.csv 

Virus-Host DB 

Description: 

Data obtained from Virus-Host DB as a tab-separated-value tabular file. 

File: 

• virushostdb.tsv 

https://etd.uwc.ac.za/
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Taxonomy database 

Description: 

Taxonomic database downloaded by the ete3 toolkit package. 

File: 

• taxdump.tar.gz 

  

https://etd.uwc.ac.za/
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Appendix IV: Python and R scripts used in the pipeline 

FCGR 

Description: 

The script containing the code used to implement FCGR. The dependencies are all listed in the FCGR 

Singularity image definition (see Appendix II:). 

File: 

• chaos_game_representation_of_protein_sequences.R 

Data cleaning and imputation 

Description: 

The script containing code used to clean the KW-1160 data obtained from UniProt. The script also 

includes code written to execute the imputation passes. 

File: 

• data_cleaning.py 

Hyperparameter search 

Description: 

Contains the code executed for hyperparameter search algorithm used in the thesis. The script takes no 

parameters and returns a CSV file with results of the hyperparameter search. 

File: 

• hyperparameter_search.py 

Evaluation metrics utility functions 

Description: 

A script containing utility functions used to define the metrics used when evaluating the model in this 

study. 

File: 

https://etd.uwc.ac.za/
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• metrics_helper.py 

Model architecture 

Description: 

A script containing the model architecture as described in Section 4.6. Additionally, it contains a utility 

function to load a trained model. 

File: 

• model_definition.py 

Model testing 

Description: 

Script used to evaluate the performance of the model created in the study. 

File: 

• test_zoonosis_model.py 

Model training and validation 

Description: 

The script used to train the model defined in this study. 

File: 

• train_zoonosis_model.py 

Data cleaning and imputation utility functions 

Description: 

A script containing utility functions used for data cleaning and imputation. 

File: 

• zoonosis_helper_functions.py 
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Appendix V: Model hyperparameter search results 

Description: 

Hyperparameter tuning was executed for 500 trials. This appendix shows results for all 500 trails 

executed. 

Files: 

• hyperparameter_results.csv 
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 72 

Appendix VI: Generated model 

Description: 

The model is complimentary to the thesis as it is the overall output. The model is saved as multiple 

files by the keras package and using it required installation of TensorFlow, version 2.6.0 and above, 

which is packaged with the latest version of the keras package. 

Files: 

• model 
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Appendix VII:  FCGR Benchmark Results 

Description: 

Frequency chaos game representation benchmark results. Elapsed refers to the time taken to execute 

the function. Type refers to the name given to the type of execution used. Tests refers to the number 

benchmarking test which were executed. 

 

Type Tests Elapsed 

Asynchronous FCGR 100 1,326.52 

Parallel + Asynchronous FCGR 100 148.19 

Parallel FCGR: foreach 100 142.15 

Parallel FCGR: parallel 100 207.59 

Synchronous FCGR 100 1,228.46 
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