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ABSTRACT 

Developing an integrated remotely-sensed framework for the detection and monitoring 

of seasonally-flooded wetlands in semi-arid environments of southern Africa 

Siyamthanda Gxokwe 

PhD thesis, Department of Earth Science, University of the Western Cape 

Wetlands are among the most important ecosystems on earth; they cover approximately 4-6% 

of the earth’s surface and offer critical eco-hydrological services. However, these ecosystems 

are under threat from anthropogenic activities, droughts and climate variability, as well as 

from global environmental change. It is estimated that over 60% of the world’s wetlands have 

been lost due to climate change and variability, as well as other anthropogenic influences. 

There is, therefore, a need for their routine monitoring and assessment to ensure the 

sustainable use and management of these systems on a national, regional and local scale, and 

prevent their further degradation and loss. This study aimed at developing an integrated cloud-

computing-based, remotely-sensed framework for the detection and monitoring of small and 

seasonally-flooded wetlands along the semi-arid Limpopo Transboundary River Basin of 

southern Africa, which was previously a challenging task when using the traditional 

assessment and monitoring methods. The availability of cloud-computing platforms, like the 

Google Earth Engine (GEE) and the presence of advanced image-processing algorithms is 

perceived to offer unique opportunities for improving the detection and monitoring of small 

and seasonally-flooded wetlands in semi-arid environments. More specifically, four key 

objectives were set: firstly, the capability of the GEE and advanced machine-learning 

algorithms were explored for characterising and mapping small and seasonally-flooded 

wetlands in semi-arid environments. Secondly, an evaluation was conducted on the volume 

of freely-available archival remote sensing data in the GEE catalogue that is capable of 

monitoring small and seasonally-flooded wetlands in semi-arid southern Africa. Thirdly, the 

potential of using the GEE cloud-computing platform was assessed for the monitoring of the 

long-term variations in the selected eco-hydrological attributes of seasonally-flooded 

wetlands in semi-arid southern Africa. Finally, the GEE techniques and machine-learning 

algorithms for the large-scale monitoring of the impacts of adjacent land use and land cover 

changes on seasonally-flooded wetlands in the area were upscaled. The findings of the study 

underscore the relevance of the GEE and its advanced image-processing techniques for 

detecting and monitoring the eco-hydrological dynamics of small and seasonally-flooded 
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wetlands in semi-arid areas. The integration of multi-temporal spatial data, and the synergic 

use of spectral data and remotely-sensed indices, such as the Normalised Difference 

Vegetation Index, the Normalised Difference Water Index and the Normalised Difference 

Phenology Index (NDVI, NDWI and NDPI) allowed for the increased enhancement of 

wetland features. The study also noted that the Random Forest, the Support Vector Machine 

and the Classification and Regression Tree are the most appropriate GEE machine-learning 

algorithms for detecting and monitoring these systems. Furthermore, a significant volume of 

remotely-sensed data was retrieved, capable of monitoring small and seasonally-flooded 

wetlands in semi-arid areas. In addition, the integration of multi-source spatial data, such as 

the Synthetic Aperture Radar and Landsat series datasets, improved the detection and 

monitoring of these wetlands. Overall, this work provides the necessary baseline framework 

for the eco-hydrological monitoring and assessment of wetlands in semi-arid data-scarce 

environments. However, it was noted that the large-scale monitoring of these systems on the 

GEE present challenges associated with computational time costs, which results in 

computational time-out errors. The study therefore recommends split and parallel processing 

for the larger-scale mapping and monitoring of these systems.  

                                                                                                                 October 2022 

                                                                                                                                                    

 

 

 

 

 

 

 

 

https://etd.uwc.ac.za/



iii 
 

PREFACE 1 

The goal of the study was to develop an integrated cloud-based, remotely-sensed framework 

for the detection and monitoring of small and seasonally-flooded wetlands in the semi-arid 

environments of southern Africa. The approach of the study included a succession of 

independent, but linked, papers which form the different chapters of this thesis. This thesis 

comprises of seven chapters, with four chapters that are conceptualised as stand-alone research 

papers that address the objectives of the study, which are listed in Chapter one, and one review 

paper, which is presented as chapter two.   

Each chapter reads independently from the rest of the thesis, but draws conclusions that are 

linked and relevant to the scope of the whole thesis. Although the structure of this thesis 

conforms to the standards of the University of the Western Cape, a degree of repetition is 

certain, given the shared thread of the papers.  

• Chapter 1: Gives a general introduction, background and contextualisation of the 

study.     

• Chapter 2: This chapter is based on publication 1 and provides a detailed review of the 

progress, challenges and future research directions regarding the use of freely-available 

multispectral datasets for understanding the dynamics of wetlands within semi-arid 

environments.  

• Chapter 3: This chapter addresses objective 1 of the study, which presents the findings 

on the characterisation and mapping of two small seasonally-flooded wetlands in the 

Limpopo Transboundary Basin in South Africa, using new-generational Sentinel-2 

data, coupled with advanced machine-learning algorithms on the Google Earth Engine 

cloud-computing platform are presented. This chapter is based on publication 2.   

• Chapter 4: This chapter addresses objective 2 of the study, which presents the findings 

on an evaluation of the available and useful remotely-sensed data in the Google Earth 

Engine catalogue for monitoring the long-term eco-hydrological dynamics of the small, 

seasonally-flooded wetlands in semi-arid South Africa. This chapter is based on 

manuscript 1.  

• Chapter 5: This chapter addresses objective 3 which presents the findings on the use 

of cloud-computing artificial intelligence techniques for monitoring the long-term 

variations in the eco-hydrological dynamics of small seasonally-flooded wetlands in 

semi-arid South Africa. This chapter is based on publication 3.  
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• Chapter 6: This chapter addresses objective 4 of the study, which presents findings on 

the use of multi-source data, coupled with cloud-computing techniques, to assess the 

large-scale impacts of land use and land cover changes on seasonally-flooded wetlands 

in semi-arid southern Africa. This chapter is based on manuscript 2 

• Chapter 7: Provides a synthesis of the study, as well as the conclusions and 

recommendations. 
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CHAPTER 1 

GENERAL INTRODUCTION 
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1.1 Background and Problem Statement  

Wetlands are some of the most critical ecosystems on earth. They cover about 4-6% of the 

earth’s surface and occur at the transition zones between terrestrial and aquatic ecosystems 

(Tooth et al., 2002; Li et al., 2015). These ecosystems offer critical eco-hydrological services, 

which are categorised as provisioning, regulating and cultural services. The provisioning 

services include the provision of water for domestic use and livestock, raw materials and the 

production of wild food and medicine (Day et al., 2010; McCartney and Houghton-Carr, 2009; 

Thamaga et al., 2022). Regulation services include, amongst other things, flood attenuation, 

groundwater recharge, carbon sequestration, sediment retention, waste treatment and pest and 

pathogen regulations (Cape et al., 2015; Day et al., 2010). The cultural provisions include 

providing opportunities for cultural activities and heritage, as well as for recreational use and 

social amenities (Ewart-Smith et al., 2006; Ghobadi et al., 2012; Turpie and Malan, 2010). 

Despite offering such important services, over 60% of wetlands globally have been lost due to 

anthropogenic activities and climate variability and change (Millennium Ecosystem 

Assessment Programme, 2005). 

Wetlands in semi-arid areas are largely small and intermittently flooded (mostly <10 ha -2500 

ha) (Liu et al., 2015); they are therefore more susceptible to climate variability and 

anthropogenic influences. It has been reported that a significant proportion of the wetland 

systems in arid environments have been lost, due to anthropogenic influences, climate change 

and variability (Gebresllassie et al., 2014; Guo et al., 2017; Uluocha and Okeke, 2004), and 

that over 50% of the wetlands in semi-arid South Africa have been lost to date (Adeeyo et al. 

2022; Barbier, 1993; Ewart-smith et al. 2006; Turpie and Malan, 2010). It has also been 

reported that over 30% of the wetlands in semi-arid China have been lost over the past 50 years, 

mostly due to anthropogenic influences (Chen and Liu, 2015). The same has been observed in 

semi-arid Ethiopia, where wetland degradation has been observed due to the unregulated use 

and over-utilisation of these systems by the surrounding communities (Bahilu and Tadesse, 

2017). The sustainable use and management of wetlands on a national, regional and local scale 

is therefore necessary, in order to prevent further degradation and loss.  

The basis for the sustainable use and management of wetlands hinges on the frequent 

monitoring and assessment of their extent, their status and the environmental impacts over time 

and space. This provides the baseline information that will inform the preventative measures 

and protection policies. Conventional traditional field mapping and assessment methods for 
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wetlands have previously provided baseline information on these systems; however, using 

these approaches for monitoring presents many difficulties, including their high cost and lack 

of accessibility of these wetlands for in situ monitoring (de Roeck et al., 2008). In addition, the 

traditional field assessments used relatively complex methods to compile wetland inventories, 

thus giving incomparable and inconsistent results (Rabelo et al., 2007).  

Advances in remote sensing techniques have resulted in an increase in the use of robust 

geospatial techniques, with data inputs from different satellite sensors like MODIS, Landsat, 

IKONO, AVHRR, etc., for mapping and understanding the eco-hydrological dynamics of 

different wetland systems (Ozesmi and Bauer, 2002). The advantages of remote sensing 

techniques for monitoring wetland eco-hydrological dynamics include their cost-effectiveness, 

the fact that wetlands located in inaccessible sites can be accessed and that changes in wetland 

dynamics can be monitored at no cost, over a longer period of time and over a larger spatial 

extent (Mishra, 2014). However, the isolated nature of small and seasonally-flooded wetlands 

located in drylands presents challenges that are associated with the spatial resolution of the 

type of remotely-sensed data that are used, where coarse- to medium-resolution data, like 

MODIS, result in these wetlands being either missed or confused with other landcover classes 

during the classification process (Gómez-Rodríguez et al., 2010). This results in inaccurate 

information being derived regarding their extent and eco-hydrological dynamics. Moreover, 

the unavailability of cloud-free images for certain parts of the year further complicates the 

detection and monitoring of these wetlands from the coarse- to medium-resolution remote 

sensing data across the seasons (Mwita, 2013; Sakané et al., 2011).   

Various studies have demonstrated how the sensor characteristics of different remote sensing 

products and cloud coverage influence the detection and monitoring of small and seasonally-

flooded wetlands, particularly when using freely-available data. For example, Powell et al. 

(2019) used Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper plus (ETM+), 

coupled with LiDAR data, to map the wetland types in the semi-arid Barwon-Darling 

River floodplain in New South Wales. Although the study achieved acceptable overall 

accuracies, it failed to distinguish certain wetland types that were located along the boundaries 

of the other landcover classes. This was attributed mainly to the sensing characteristics of the 

remotely-sensed data that were used. A study by Mwita et al. (2012) examined the potential of 

the optical Landsat-7, coupled with ALOS-PALSAR data and Shuttle Radar Topographical 

Mission Digital Elevation (SRTM -DEM), to map semi-arid seasonally-flooded wetlands in 

Laikipia and Pangani in the humid Mt Kenya and Usambara Highlands in Tanzania. The results 
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also showed acceptable overall accuracies; however, they failed to delineate the semi-arid 

inland valley systems that were long, narrow and fragmented. This was also attributed to the 

sensing characteristics of the remotely-sensed data that were used, wetland size, as well as the 

use of dry season images because of unavailable cloud-free wet season scenes. Dry season 

images influenced the detection of wetland features, due to the absence of surface inundation 

and healthy wetland vegetation at the time when the images were acquired. These studies by 

Mwita et al., (2012) and Powell et al., (2019) demonstrate some challenges that are associated 

with the remote sensing of small and seasonally-flooded wetlands in semi-arid environments. 

They also demonstrate that mapping these systems at an improved precision, presents 

challenges that are associated with the sensing characteristics of the commonly-used coarse- to 

mid-resolution products, as well as the lack of seamless cloud-free remotely-sensed data that 

can enable the better detection and monitoring of these systems. There is therefore a need to 

develop robust methodologies and frameworks for improving the detection and monitoring of 

small and seasonally-flooded wetlands. These will integrate the strengths of remotely-sensed 

data from different sources and time periods, with different spectral characteristics, water and 

vegetation indices, as well as contextual parameters, which will further enhance the detection 

and monitoring of these systems. Currently, remotely-sensed frameworks for detecting 

wetlands rely either on a single date image analysis, or they are based on the spectral 

characteristics or indices, as stand-alone model input parameters (Amani et al., 2021; 

Mahdianpari et al., 2020). There is therefore a need to integrate these variables for the improved 

detection and monitoring of small and seasonally-flooded wetlands in semi-arid areas. 

Generating precise routine spatial and explicit wetland scale information will accurately inform 

the conservation, planning and management of these systems, which has been overlooked by 

the existing wetland management and conservation strategies in these regions, due to the lack 

of appropriate data.  

1.2 Research Question  

To what extent can integrated multisource data, coupled with a synergy of spectral 

characteristics, vegetation and water indices, enhance the detection and monitoring of small 

and seasonally-flooded wetlands that are located in semi-arid environments? 

1.3 Main Hypothesis 

In this study, it is hypothesised that the development of an integrated remotely-sensed 

framework, recently introduced cloud-computing platforms, such as Google Earth Engine and 
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its advanced processing algorithms, with higher-resolution and freely-available optical data 

and spectral indices synergies, has the potential to improve the remote detection and 

monitoring of small and seasonally-flooded wetlands in semi-arid environments.      

1.4 Aim and Objectives  

1.4.1 Aim 

The main aim of this study was to develop an integrated cloud-computing-based, remote 

sensing framework for the detection and monitoring of small seasonally-flooded wetland along 

the semi-arid basin of southern Africa, using the Limpopo Transboundary River Basin as the 

study case. 

1.4.2 Objectives  

The objectives of this thesis are as follows: 

1. to assess the capabilities of the Google Earth Engine cloud-computing platform and its 

advanced processing algorithms in characterising and mapping the wetlands types in 

semi-arid southern Africa;  

2. to evaluate the amount of freely-available archival remote sensing data that are capable 

of monitoring small and seasonally-flooded wetlands in semi-arid southern Africa;  

3. to assess the potential of using the Google Earth Engine cloud-computing platform to 

monitor the long-term variations in the selected eco-hydrological attributes of 

seasonally-flooded wetlands in semi-arid southern Africa; and 

4. to evaluate the use of the Google Earth Engine platform and its advanced machine-

learning algorithm in the large-scale monitoring of the impacts of adjacent land-use and 

land-cover changes in seasonally-flooded wetlands in semi-arid southern Africa.  

 1.5 Description of the Study Area  

The study was conducted in the Limpopo Transboundary River Basin (LTRB) (Figure 1.1), 

which is shared by four countries in southern Africa, namely, Botswana, Mozambique, 

Zimbabwe and South Africa. The basin covers a total surface area of 412 938 km2 and drains 

to northern South Africa, eastern Botswana, southern Zimbabwe and a bisect of southern 

Mozambique (Chapman, 2017; Dzurume et al., 2021). The LTRB is characterised by semi-arid 

climate conditions with the annual precipitation varying between 200 mm and 1 500 mm, and 

averaging about 500 mm. Ninety-five percent (95%) of this precipitation is received during the 

period from October to April. Evaporation in the LTRB varies between 800 mm/year to 2 000 
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mm/year, with an average of 1 970 mm/year (Mosase et al., 2019; Mosase and Ahiablame, 

2018). The hydrology of the LTRB is represented by a number of major rivers, including the 

Crocodile and Marico Rivers in South Africa, the Notwane River in Botswana and the Sheshe 

River between Zimbabwe and Botswana, which are all tributaries of the Limpopo River that 

runs between these four countries. Several inter-basin transfer schemes also contribute water 

to the LTRB (Mosase et al., 2019; Chapman, 2017). The basin is mostly dominated by mixed 

land cover types, which include forested lands, built-up areas, savannah, mixed grasslands and 

croplands. Although the study focuses on the LTRB, in some sections of this thesis, individual 

wetlands, such as the Lindani valley bottom (Figure 1.1c) and the Nylsvley floodplain (Figure 

1.1d), were used as case studies.   

The Lindani valley bottom wetland is located between 24°03′01.36″E and 28°41′43.37″S 

within the boundaries of the Lindani Private Game Reserve at Vaalwater, in the Limpopo 

Province of South Africa. The wetland covers an area of about 28 ha and receives water mostly 

from the local rainfall, and groundwater seeps from several springs in the area. The dominant 

vegetation species include the Oryza longistaminata (rice grass), Phragmites australis 

(common reeds), Scirpoides dioecus (Kunth), as well as Cynodon dyctolon (Bermuda grass). 

The Nylsvley floodplain is a Ramsar-protected system that is located at 24°39′17″S and 

28°41′28″E near the towns of Mookgopong and Modemolle in the Limpopo Province of South 

Africa. The wetland forms a 70 km-long floodplain along the Mogalakwena River, which is a 

tributary of the Limpopo River (Dzurume, 2021). The dominant vegetation species in the 

Nylsvley floodplain include common grass species, such as Oryza longistaminata (rice grass) 

and Phragmites australis (common reeds), and tree species, such as Acacia tortilis, Acacia 

nilotica and Acacia karoo. The Nylsvley floodplain receives most of its inflow from seasonal 

rivers, such as the Olifantsspruit and the Groot and Klein Nyl (Dzurume, 2021). Although the 

Nylsvley is 70 km long, the study focused in the upper middle reach of the system located 

within the boundaries of the Nylsvley nature reserve.  
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Figure 1.1 Locality of the Limpopo Transboundary River Basin as the selected case study 

wetlands 
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CHAPTER 2 

MULTISPECTRAL REMOTE SENSING OF WETLANDS IN SEMI-

ARID AND ARID AREAS: A REVIEW ON THE APPLICATIONS, 
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Abstract 

Wetlands are ranked as very diverse ecosystems, and they cover about 4-6% of the global land 

surface. They occupy the transition zones between the aquatic and terrestrial environments, 

and share the characteristics of both zones. Wetlands play a critical role in the hydrological 

cycle, sustaining peoples’ livelihoods, the aquatic life and biodiversity. The poor management 

of wetlands results in the loss of critical ecosystem goods and services. Globally, wetlands are 

degrading at a rapid rate, due to environmental change and anthropogenic activities. This 

requires holistic monitoring, assessment and management of wetlands to prevent their further 

degradation and loss. Remote sensing data offer an opportunity to assess changes in the status 

of these wetlands, including their spatial coverage. Thus far, a number of studies have used 

remotely-sensed data to assess and monitor the wetland status in semi-arid and arid regions. A 

literature search shows a significant increase in the number of papers published during the 

2000-2020 period, with most of them being in the semi-arid regions of Australia and China, 

and a few in sub-Saharan Africa. This chapter reviews the progress that has been made in the 

use of remote sensing for detecting and monitoring the semi-arid and arid wetlands, and it 

focuses particularly on gaining new insights by using freely-available multispectral sensors. It 

begins by describing the important characteristics of wetlands in semi-arid and arid regions 

that require monitoring, in order to improve their management. Secondly, the use of freely-

available multispectral imagery for compiling the wetland inventories is reviewed. Thirdly, the 

challenges of using freely-available multispectral imagery in the mapping and monitoring of 

wetland dynamics, like inundation, vegetation cover and extent, are examined. Lastly, 

algorithms for image classification as well as challenges associated with their uses and possible 

future research are summarised. There are, however, concerns regarding whether the spatial 

and temporal resolution of some of the remote sensing data enable the accurate monitoring of 

wetlands of varying sizes. Furthermore, it was noted that there were challenges associated with 

the both the spatial and spectral resolutions of data, used when mapping and monitoring 

wetlands. However, advancements in remote sensing and data analytics provide new 

opportunities for further research into the monitoring and assessment of wetlands across 

various scales. 

Keywords: Data integration, inundation; multispectral imagery; semi-arid; seasonal wetland; 

vegetation dynamics 
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2.1 Introduction  

There are several definitions of wetlands and most of them include abiotic and biotic factors, 

hydrological regimes, geomorphology and vegetation factors that control their existence. The 

Ramsar Convention definition is widely-used and includes these factors. However, this 

definition excludes areas with marine water greater than six meters at low tide. Wetlands exist 

where soils are saturated or inundated with water for varying durations and at different 

frequencies (Day et al., 2010). The Ramsar definition of wetlands includes not only those 

systems falling within the traditional concept of wetlands, such as mangrove swamps, peat 

bogs, tidal flats and water meadows, but also many other natural and man-made features, like 

flooded gravel peats, reservoirs, rice paddies and coastal beaches (Bowman, 2002). While it 

does not refer to the hydrological system, the definition includes components of the natural 

inland systems, and it pre-dates the recent conceptual developments and management of coastal 

and water systems (Shine and Klemm, 1999).   

In North America, wetlands are defined as “lands that are either inundated by shallow water 

less than 2 meters deep during low water events, or that have soils that are saturated long 

enough during the growing season to become anoxic and that support specialised wetland 

plants (hydrophytes)” (Rochefort et al., 2012). Unlike the Ramsar definition, the North 

American definition takes into consideration the fact that wetland water can be at the soil 

surface, or below it, in some seasons. Several definitions of wetlands are used in South Africa, 

such as those used in the National Water Act (36 of 1998) and by SANBI (the South African 

National Biodiversity Institute). The South African National Water Act (SANWA) (36 of 1998) 

defines wetlands as “areas which are transitional between terrestrial and aquatic systems, where 

the water table is usually at, or near, the surface, or the land is periodically covered with shallow 

water and which in normal circumstances supports, or would support, vegetation typically 

adapted to life in saturated soils” (Ewart-Smith et al., 2006).  For the purposes of this review, 

the Ramsar definition of wetlands will be used, as it is accepted globally. Since different 

countries have different wetland definitions, some ecosystems that are not considered as 

wetlands, based on the Ramsar definition, will be included.     

Wetlands are ranked among the very diverse ecosystems that cover a proportion of about 4-6% 

of the land surface (Tooth et al., 2002; Li et al., 2015), and they provide an array of ecosystem 

services, which are categorised as provisioning, regulating and cultural services. The 

provisioning services include the provision of water for livestock and domestic use, raw 

materials, as well as genetic resources, and the production of wild foods and medicine, 
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(McCartney and Houghton-Carr, 2009). The regulating services include carbon sequestration, 

flood attenuation, groundwater replenishment, sediment retention, waste treatment and the 

regulation of pests and pathogens (Day et al., 2010). Cultural services include providing 

opportunities for cultural activities and heritage, recreational use and social interaction 

(Ghobadi et al., 2012; Turpie and Malan, 2010) 

Globally, wetlands have been undergoing changes that result from natural and human 

anthropogenic causes (Fang et al., 2019). The natural causes include the severe droughts 

experienced in certain parts of the world, which have led to the drying and degradation of 

wetlands (Fang et al., 2019). The anthropogenic causes include the conversion of wetlands to 

agricultural land and pollution. There are, however, uncertainties regarding the global extent 

of wetland losses (Hu et al., 2017). These uncertainties are caused by inconsistencies in the 

data on the spatial changes in wetlands and the various sizes of these systems (Davidson, 2014). 

Liu et al. (2017) reported that natural wetlands in semi-arid China have been lost over the past 

50 years and that about 30% of these systems disappeared between 1990 and 2000, mostly due 

to anthropogenic causes. In Africa, wetlands are considered to be among the threatened and 

degraded ecosystems (Landmann et al., 2010), while in the semi-arid parts of South Africa, at 

least 50% of all wetlands have been eradicated in some catchments (Day et al., 2010). Riddell 

et al., (2012) highlighted the fact that about 30-60% of the wetland losses in South Africa have 

been experienced in several major catchments, due to poor land-use management practices, 

which is also the case across sub-Saharan Africa. Uluocha and Okeke (2004) reported that 

wetlands in semi-arid Nigeria, which were previously recharging the groundwater systems, are 

undergoing degradation at an alarming rate, without any measures being taken to protect them.  

Given the significance of the ecological services provided by wetlands, it is imperative that 

they are sustainably managed. One of the key elements for the sustainable management of 

wetlands is the continuous  monitoring of the changes in their eco-hydrological dynamics 

(Slagter et al., 2020). This is a challenge for wetlands in semi-arid and arid areas, as most 

wetlands are seasonal or temporary, and they are inaccessible because of their remoteness 

(Schmid et al., 2004; Li et al., 2015). Remote sensing offers a unique opportunity for providing 

information about wetlands in a spatially-explicit manner, where other monitoring  programs 

are not available (Chen and Liu, 2015), and it offers input data from various satellite sensors, 

ranging from multispectral to hyperspectral sensors. There are, however, concerns about 

whether the spatial and temporal resolution of some of the remote sensing data enables the 

https://etd.uwc.ac.za/



12 
 

accurate  detection and monitoring of wetlands of varying sizes, especially in semi-arid and 

arid areas ( Li et al., 2019).   

A significant number of reviews have been published on the remote sensing of wetlands. These 

reviews highlight the major progress that has been made on the use of remote sensing data, 

which ranges from low spatial resolution to hyperspectral imagery for inventorying wetlands 

in different climatic zones (Guo et al., 2017;  Klemas, 2014; Dronova, 2015; Amler et al., 2015; 

Adam et al., 2010; Adeli et al., 2020; Wohlfart et al., 2018;  Klemas, 2013; Kuenzer et al., 

2011). Although these reviews have shown the progress in the use of various remotely-sensed 

data for inventorying different wetland types, geographical locations and climatic zones, they 

did not only focus on the application of freely-available multispectral data in the remote sensing 

of wetlands in semi-arid and arid areas. The reviews by Guo et al. (2017) and Dronova (2015) 

incorporated semi-arid and arid studies in their reviews; however, they also included wetlands 

in humid areas. In addition, they included studies on the hyperspectral remote sensing of 

wetlands and either focused on only one aspect of wetland ecosystem type or the application 

of only one type of multispectral data. Reviews by Adeli et al. (2020) and Wohlfart et al. (2018) 

focused only on  the application of Synthetic Aperture Rader (SAR) on the remote sensing of 

different wetland types, while Kuenzer et al., (2011)  and Klemas (2013) focused on the remote 

sensing of one specific wetland type, namely, the coastal marsh. Adam et al., (2010) provided 

a comprehensive review on the status of remote sensing applications for differentiating and 

mapping the biochemical and biophysical parameters of wetland vegetation. With all of the 

above as a background, this chapter seeks to provide a comprehensive review of the progress 

and development of remote sensing in the detection and monitoring of semi-arid and arid 

wetlands. Attention is drawn to new insights in the detection and monitoring of all wetland 

types located within the semi-arid and arid regions, using freely-available multispectral data.  

In order to achieve the objective of this chapter, a literature search was conducted by using 

search engines, such as Google Scholar, Scopus and the Web of Sciences, to get an overview 

of the remote sensing applications on wetlands. The targeted journals were internationally- 

recognised, peer-reviewed journals that covered Geographical Information System (GIS), 

Remote Sensing and Water Resource Science. The journal information was supplemented by 

books and reports from the European Union (EU), the South African Water Research 

Commission (WRC), the International Union for Conservation of Nature (IUCN), the African 

Union (AU) and the South African National Biodiversity Institute (SANBI), amongst others. 

The search criteria were used to find studies that were published between the years 2000 and 
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2020. For the Level 1 search, the key words ‘Remote sensing’ and ‘wetlands’ were used to find 

publications from within the specified time-frame. A total of 32 500 publications were 

retrieved. These included 17 500 from Google Scholar, 8 500 from Scopus and 6 500 from the 

Web of Science. The above articles were further subjected to a Level 2 search, or screening, 

using the key words ‘Multispectral sensors’, ‘Semi-arid wetlands’ and ‘Arid’, and the year 

range of 2000-2020. A total of 6 380 were retrieved from the Google Scholar articles, 3 870 

from Scopus and 3 200 from Web of Science. Further screening was conducted on these articles 

using the keywords ‘Wetlands inundation and extent’, ‘Wetlands vegetation cover’, ‘Wetlands 

degradation extent’, ‘Land use Land cover changes’, ‘Wetlands monitoring challenges’ and 

‘Wetland classification’, ‘Sentinel’, ‘SAR’, ‘Landsat’, ‘MODIS’ and ‘RADAR’ on Level 3, 

and a total of 196 articles within the scope of this review were retrieved.  

2.2 Semi-arid and Arid Wetlands Characteristics and Key Monitoring and Management 

Challenges   

Semi-arid and arid areas (Figure 2.1) host a diverse range of perennial to non-perennial 

wetlands, with most of them being visible during the wet season (Fang et al., 2019). These 

wetlands include swamps, peatlands, marshes and floodplains (Day et al., 2010; Powell et al., 

2019; Tooth et al., 2002). The existence of wetlands in semi-arid and arid areas is controlled 

by a positive surface water balance for the whole, or part, of the year, and inundation is mostly 

due to the frequent rainfall from the upper humid basins. Groundwater also contributes to the 

inundation of wetlands in semi-arid areas (Hollis, 1990; Tooth et al., 2002). Outflows from 

wetlands are usually higher, due to the high evaporation rates experienced over prolonged dry 

periods in semi-arid and arid regions (Hollis, 1990). The dominating vegetation species that 

characterise each of these wetlands vary according to their locality. In semi-arid South Africa, 

the common wetland vegetation species include the short grass family species, such as 

Cynodon dyctolon, and common reeds, such as Phragmites australis. These species are able to 

adapt to inundation, drying and sediment deposition. In some seasons, the semi-arid and arid 

wetlands soils tend to be oxygenated, due to the episodic nature of the inundation. For this 

reason, these wetlands tend to  host  more animal species than other wetlands that are 

permanently inundated (Sieben et al., 2016;  Li et al., 2015; Jenkins et al., 2005).  

Despite the ecological significance of semi-arid and arid wetlands, their conservation has not 

been prioritised (Minckley et al., 2013), due to their ephemeral nature and small size (Li et al., 

2015), and this results in their poor management, their degradation and a loss of the species 

and ecosystem services that they provide (Chen and Liu, 2015). Gebresllassie et al. (2014) 
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reported that the lack of policies to protect wetlands in semi-arid Ethiopia has resulted in the 

loss of socio-economic services provided by these systems. The regular monitoring of their 

eco-hydrological dynamics (Liu et al., 2017) is critical for formulating appropriate 

management measures. The frequent monitoring of semi-arid and arid wetland systems 

presents some challenges, which are associated with the methods that are used and the wetland 

type. Traditional field monitoring methods provided baseline information about semi-arid and 

arid wetlands; however, due to the cost of these methods, regular monitoring has not been 

possible, which has created problems in the tracking of the changes that occur within these 

wetlands over time (Powell et al., 2019).   

Remote sensing images from satellite sensors, such as Landsat and MODIS, provide cost-

effective datasets for wetland monitoring, in both space and time. However, these sensors have 

a limitation, based on their spatial resolution, since most semi-arid and arid wetlands  are fairly 

small, namely <10 and 2 500 ha (Li et al., 2015), they are confined to small depressions and 

they have no definite boundaries. These wetlands  merge with the surrounding terrestrial 

ecosystems (Day et al., 2010), which poses a challenge when mapping their spatial extent by 

using optical sensors, especially during the dry period when the surrounding and wetland 

vegetation are not very healthy; this results in a similar spectral reflectance of the soils and 

other land-cover classes. Rapinel et al. (2019) reported that the inventorying and 

characterisation of wetlands in semi-arid and arid areas is limited to mostly small basins. 

Furthermore,  Cape et al. (2015) reported that the semi-arid wetlands are lost over a short period 

of time because of anthropogenic activities, including the over-exploitation of their water for 

irrigation. This necessitates the development of an integrated and cost-effective monitoring and 

management approach, which will enable the generation of information for wetlands of 

different sizes, thus informing the management strategies for wetlands in semi-arid and arid 

areas.  
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Figure 2.1 Global extent of semi-arid and arid areas, with a number of studies in each region 

(modified from Scanlon et al., 2010) 

2.3 Commonly-used, Freely-available Multispectral data for Semi-arid and Arid 

Wetland Inventories  

Over the past few decades, different types of wetlands, ranging from inland freshwater 

marshes, coastal tidal marshes, mangrove ecosystems and forested wetlands or swamps, have 

been studied by using remotely-sensed datasets with different spatial, spectral and temporal 

resolutions (Ozesmi and Bauer, 2002). The number of studies conducted in semi-arid and arid 

areas on the application of freely-available multispectral datasets for inventorying wetlands has 

increased exponentially, which is evident by the number of publications between 2000 and 

2020 (R2 = 0.76) (Figure 2.2a). A significant increase was noted between 2008 and 2020, with 

the highest number of publications in 2020. An analysis of the number of publications per 

region reveals that most of them were from the semi-arid Australia and China (Figure 2.1), 

with a total of 30 and 38 publications, respectively, while the semi-arid India and North Africa 

had the lowest number of publications (Figure 2.1). In all these studies, the commonly-used 

data sources were the Landsat Thematic Mapper (TM), the Landsat Enhanced Thematic 

Mapper Plus (ETM+), the Landsat Operational Land Imager (OLI), the Moderate Resolution 

Imaging Spectroradiometer (MODIS), the Landsat Multispectral Scanner System (MSS) and 

the Synthetic Aperture Radar in the form of Sentinel-1 and ALOS PALSAR. There has been 

an increase in the use of Landsat OLI for mapping different aspects of semi-arid and arid 

wetlands. The justification is that Landsat 8 OLI uses the push-broom feature, which has 

improved the noise-to-signal ratio; this is an advantage, when compared to Landsat TM and 
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ETM+. The most studied wetland aspect was their characterisation, which includes wetland 

classification and mapping, as well as inundation (Figure 2.2b).  

 

Figure 2.1 The number of remote sensing publications on semi-arid and arid wetlands (a) and 

the number of publications per area of focus (b). Characterisation includes 

studies on classification and wetland mapping, an impact analysis includes 

studies focusing of both climatic and anthropogenic impacts on wetlands, and 

an LC analysis refers to all studies on the wetland cover change analysis 

(n=196). 
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Table 2.1 Commonly-used, freely-available sensors specifications for wetland inventories (modified from Ozesmi and Bauer, 2002) 

Resolution Landsat MSS Landsat TM Landsat ETM+ Landsat OLI Sentinel-1 Sentinel-2 MODIS 

Spectral bands 

(µm) 

Band 1 

Band 2 

Band 3 

Band 4 

Band 5 

Band 6 

Band 7 

Band 8 

Band 8A 

Band 9 

Band 10 

Band 11 

Band 12 

Band 19 

Band 31 

Band 32 

 

 

 

 

 

0.5-0.6 

0.6-0.7 

0.7-0.8 

0.8-1.1 

 

 

 

 

0.45-0.52 

0.52-0.62 

0.63-0.69 

0.76-0.90 

1.55-1.75 

10.4-12.5 

2.08-2.35 

 

 

 

 

0.45-0.515 

0.525-0.605 

0.63-0.69 

0.775-0.90 

1.55-1.75 

10.4-12.5 

2.08-2.35 

0.52-0.9 

 

 

0.43-0.45 

0.45-0.51 

0.53-0.59 

0.64-0.67 

0.85-0.88 

1.57-1.65 

2.11-2.29 

0.50-0.68 

 

1.36-1.38 

10.6-11.19 

11.5-12.5 

 

 

C-band (3.75-75 

cm) 

 

 

0.443 

0.490 

0.560 

0.665 

0.705 

0.740 

0.783 

0.842 

0.865 

0.945 

1.375 

1.610 

2.190 

 

 

 

 

 

 

0.62-0.67 

0.841-0.876 

0.459-0.479 

0.545-0.565 

1.23-1.25 

1.628-1.652 

2.105-2.155 

 

 

0.438-0.448 

 

 

 

0.915-0.965 

10.78-11.28 

11.77-12.27 

Temporal  180 days 16 days 16 days 16 days 12 days 5 days 1-2 days 

Spatial (pixel-

sizes) 

80 m 30 m & 120 for 

Band 6 

30 m, 15 m B8 

& 60 m B6 

30m B1-7 & 9 

15m B8 

100m B10-11 

5m X 5m 60m B1,9,10 

10m B2,3,4,8 

20m- 

B5,6,7,11,12 

250m B1-2, 

500m B8-36 

1000m B8-36 

Period  1972-1992 1982-Present 2003-Present 2013- Present 2014-present for 

1A 

2016-present 

For 1B 

2015-Present 

For 2A and 

2017 for 2B 

2000-present for 

Terra 

2002- present 

for Aqua 
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Although the multispectral sensors in Table 2.1 have been providing crucial information on 

wetlands, at no cost, with the repeated coverage over the large spatial areas, fine-detailed 

wetland detection is still a major challenge (Schmid et al., 2005; Gallant 2015), especially for 

the fairly small semi-arid and arid wetlands (<10 ha) with varied vegetation and other land-

cover characteristics. This results in some of the wetlands being missed, or confused with other 

land-cover classes, during classification. Various studies have been undertaken to establish the 

use of these sensors in order to understand the different dynamics of wetlands in semi-arid and 

arid areas. These studies include Li et al., (2015), Landmann et al., (2010), Powell et al., (2019) 

and Chen et al., (2013), amongst others. Powell et al., (2019) demonstrated the use of Landsat 

TM and ETM+ datasets, coupled with digital elevation and LIDAR data, which were set to 

classify and map the land-cover classes of the semi-arid wetland in Barwon-Darling River 

system, using the stochastic gradient-boasting algorithm and the fractional cover model. The 

study identified five land-cover classes, which included tree-dominated forest and woodlands, 

shrub lands, vegetated swamps and non-flood-dependent terrestrial communities, with an 

overall accuracy of 88%. However, the study failed to distinguish between the certain types of 

wetland located at the boundaries of the drier wetlands, from the Landsat TM and TM+ images 

that were used. Li et al., (2015) evaluated the use of MODIS derived spectral indices for 

monitoring the hydrological dynamics of a small seasonally-flooded wetland (1 364 ha) in 

semi-arid southern Spain. An analysis of the relationship between the MODIS inundation area 

and the field-measured water levels showed a positive linear relationship between the two 

variables, with a R2 determinant of 0.96, which suggests the success of the MODIS dataset for 

monitoring the hydrological dynamics of seasonal wetlands. However, the study focused on a 

single seasonal wetland, with only varying soil characteristics. The other semi-arid and arid 

seasonal wetlands have other diverging characteristics e.g. marshes with dense emergent 

vegetation, and even smaller in size and they are cover only a few MODIS pixels. 

Chen et al., (2013) used a MODIS dataset with a 250 m resolution, coupled with the daily field 

water levels, to investigate the applicability of the MODIS time series dataset for monitoring 

the wetland cover dynamics over time. Four land-cover classes were identified, namely, water, 

mudflats, submerged and emergent vegetation, with an overall accuracy of 80.18% and a 

Kappa coefficient of 0.734. There were, however, omission errors of about 30%, where water 

was confused with other classes, such as mudflats and the emergent vegetation. Much of this 

water was located at the interface of the mudflats and other classes. Landmann et al., (2010) 

also used MODIS, coupled with the topographical landform dataset, to map the basic wetland 
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classes in semi-arid Burkina Faso and Mali. The results showed a total of five wetland classes 

that covered a total area of 9 350 km2, but they demonstrated low accuracies for the mapped 

land-cover classes. Although the studies demonstrated the success of these freely-available 

datasets in the detection and mapping of different wetland-cover classes, the finely-detailed 

differentiations between the wetland classes were a major challenge. The use of pixel- and sub-

pixel-based approaches offer a great opportunity to improve the accuracy of wetland cover 

detection and monitoring from freely-available multispectral data. These approaches provide 

an analysis of the spectral characteristics of each class within a pixel, as such pixels with the 

same spectral characteristics are grouped together as one object. This has the potential to 

minimise the spectral confusion between classes. In the case of wetlands, however, the 

challenge is that wetlands vary spatially and temporally; the inner wetland may be permanently 

inundated, when compared to the seasonally-inundated edges of the same wetland, but the 

temporal pattern of the entire system is what distinguishes it from other landscapes. Using the 

pixel-based approach will, however, not permit the capture of that temporal pattern (Halabisky 

et al., 2018). In addition, wetlands have similar spectral characteristics to other landscapes i.e.  

a flooded wetland may resemble the shadows of trees, hills and other features, since these have 

a low surface reflectance. 

The use of an Object-Based Image analysis (OBIA) offers the opportunity to improve wetland 

detection and classification, despite the inherent computational costs, which are higher than 

those of a pixel-based approach. The introduction of cloud-computing systems, such as Google 

Earth Engine (GEE), NASA Earth Exchange and Amazon web services, amongst others, 

presents an opportunity to simplify the use of the OBIA approach in wetland mapping, thus 

improving the accuracy of the classification. In addition, the use of fine spatial resolution 

images from commercial sensors may also assist in improving the classification accuracy.   

2.4 Mapping Semi-arid and Arid Wetland Vegetation, using Freely-available 

Multispectral Images 

Wetland vegetation provides a habitat for a variety of aquatic animal species (Adam et al., 

2010). Changes in the condition of the wetland vegetation can be used as a proxy for the early 

signs of any chemical and physical wetland degradation (Mishra, 2014). The assessment of 

wetland vegetation is considered to be an important aspect for evaluating the ecological status 

of a particular wetland (Bhatnagar et al., 2020; Martínez-López et al., 2014; Thakur et al., 

2012), and the management of wetland biodiversity relies heavily on the accurate assessment 
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of its vegetation (Sieben et al., 2016). The assessment of wetland vegetation includes an 

understanding of its components, such as its structure, species types and composition. The use 

of optical freely-available multispectral remote sensing data for understanding the wetland 

vegetation components is a common practice for semi-arid and arid wetland inventories, and 

most studies have successfully mapped wetland vegetation by using this type of dataset e.g. 

Gong et al. (2014), Landmann et al. (2013) and Thakur et al. (2012). The challenge, however, 

lies with the spatial resolution of these datasets, which is often too coarse to accurately map 

the mixed vegetation in small semi-arid and arid wetlands.  

The spectral reflectance of vegetation types in a mixed-vegetated wetland are similar, and they 

are usually combined with the spectral reflectance from the underlying soils, water and top of 

the atmospheric effects, which results in complications during the classification process 

(Gallant, 2015). In addition, steep environmental gradients cause short ecotones and sharp 

demarcations between vegetation species in the wetlands and result in a high spectral and 

spatial variability, thus presenting difficulties in the identification of the boundaries between 

the vegetation communities and types during optical mapping (Adam et al., 2010; Gallant, 

2015). Therefore, the use of optical freely-available multispectral imagery may present 

challenges with regard to separating and understanding the wetland vegetation components, 

such as the different species types, their composition and structure, due to their low to medium 

spatial and spectral resolution. McCarthy et al., (2005) mapped the eco-regions of the 

Okavango Delta in Botswana from the Landsat TM imagery, using Maximum Likelihood 

Classification (MLC) and Rule Based Classification (RBC) with 6 and 10 classes. The results 

showed an overall accuracy of 46% and a Kappa co-efficient of 0.37 for all 10 classes, based 

on the MLC, an overall accuracy of 63% and Kappa co-efficient of 0.59, based on the RBC for 

all 10 classes, and an overall accuracy of 74% and Kappa co-efficient of 0.67, based on RBC 

6 class map. Based on these findings, the study deemed Landsat TM to be unsatisfactory for 

the classification of land-cover classes, including the wetland vegetation, in the Okavango 

Delta.  

The spectral reflectance of vegetation types in a mixed-vegetated wetland are similar, and they 

are usually combined with the spectral reflectance from the underlying soils, water and top of 

the atmospheric effects, which results in complications during the classification process 

(Gallant, 2015). In addition, steep environmental gradients cause short ecotones and sharp 

demarcations between the vegetation species in the wetlands, which results in a high spectral 

and spatial variability, thus making it difficult to identify the boundaries between the vegetation 
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communities and types during the optical mapping (Adam et al., 2010; Gallant, 2015). 

Therefore, the use of optical freely-available multispectral imagery may present challenges for 

separating and understanding the components of wetland vegetation, such as the different 

species types and their composition and structure, due to their low to medium spatial and 

spectral resolution. McCarthy et al., (2005) mapped the eco-regions of the Okavango Delta in 

Botswana from the Landsat TM imagery, using the Maximum Likelihood Classification 

(MLC) and Rule-Based Classification (RBC) with 6 and 10 classes. The results showed an 

overall accuracy of 46% and a Kappa co-efficient of 0.37 for all 10 classes, based on the MLC, 

an overall accuracy of 63% and a Kappa co-efficient of 0.59, based on the RBC for the 10 

classes, and an overall accuracy of 74% and a Kappa co-efficient of 0.67, based on the RBC 6 

class map. Based on these findings, the study deemed Landsat TM to be unsatisfactory for the 

classification of the land-cover classes, including the wetland vegetation in the Okavango 

Delta.  

Carreño et al. (2008) utilised Landsat TM and ETM+ to assess the spatiotemporal changes in 

the area and the internal components of the Mar Menor coastal wetland in semi-arid Spain, 

from 1984 to 2001. The results for the classification of land-cover classes showed three natural 

vegetation sub-classes, namely, the salt steppe, salt marsh and reed bed. A user accuracy of 

90% was achieved for the salt marshes and 80% for both the reed beds and salt marshes, based 

on the 1984 image, while a user accuracy of 62% was reported for the salt steppe, 96.5% for 

the salt marshes and 76.92% for the reed beds, respectively, based on the 1997 image. The 

study reported high commission errors for salt steppe (37.5%) based on the 1997 image. This 

was attributed to the spatial resolution of the Landsat images that were used. Mazzarino (2014) 

used Landsat 5 TM-derived NDVI to investigate the multi-decadal (1985-2010) vegetation 

dynamics of the Andean wetland system in the Nuñoa watershed. The classification results 

showed that two classes which were named wetland (characterised by wetland vegetation) and 

a non-wetland, with an accuracy of 93% for the wetland system and 87% for non-wetland 

system. Although the Landsat 5 TM that was used in the study proved to be successful in the 

separation of the non-wetland and wetland areas, the images that were used represented the dry 

season, when the wetland was not inundated and when the vegetation classes can be easily 

identified.  

The literature (Carreño et al., 2008; Mazzarino, 2014; McCarthy et al., 2005) shows the success 

of the application of multispectral images for mapping the vegetation of semi-arid wetlands; 

however, mapping vegetation communities and specific species in the finest detail, is still a 
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major gap that requires the use of high spatial resolution satellite images. In an attempt to 

resolve this issue, the fusion of different datasets, which combine the strengths of the different 

sensors, has the potential to improve the mapping of wetland vegetation. Data fusion may, 

however, cause a distortion of the information, as a result of the mismatching of different-sized 

pixels in the fused data, thus lowering the quality of the produced image.     

2.5 Mapping Wetland Inundation by using Freely-available Multispectral Images 

Inundation plays a critical role in expressing the hydrological dynamics of wetlands (Li et al., 

2015). Having an understanding of this process plays a key role in water management, in 

ecosystems assessment and in biodiversity conservation (Klein et al., 2014).  The use of in-situ 

gauge datasets has been the backbone for the current understanding of surface water dynamics, 

including wetland inundation (Huang et al., 2011). However, it presents challenges because 

most wetlands in semi-arid and arid areas are not gauged, partly due to their episodic nature 

(Li et al., 2015; Jenkins et al., 2005). Advancements in the remote sensing approaches and 

products improves the mapping of surface water features, including the changes in inundation. 

The most utilised products include Landsat TM, Landsat ETM+ and MODIS. The use of freely-

available, medium-spatial resolution products, like MODIS, presents difficulties when 

mapping the inundation of heterogeneous seasonally-flooded wetlands, when the water is 

beneath the vegetation, and when they are small in size and have very dynamic eco-

hydrological changes, especially during the dry season (Chen et al., 2013). This is evident in 

studies by Klein et al., (2014), Xie et al. (2016) and Moser et al., (2014). 

Moser et al., (2014) used the MODIS time series dataset to establish the spatio-temporal 

variability of the water coverage of a semi-arid wetland in sub-Saharan West Africa, and the 

coverage of surface water was slightly over-estimated. Klein et al. (2014) evaluated the spatial 

extent of the seasonal water bodies in semi-arid central Asia from 1968-2001, by using the 

coupled AVHRR and MODIS multispectral data. The accuracy assessment showed an overall 

classification accuracy of 0.83, based on the AVHRR data, and an accuracy of 0.91, based on 

the MODIS data. Lower accuracies were observed for the month of April in the northern region 

of the basin, including the Tengiz-Kolgalzhyn lake system, and they were attributed to the 

presence of ice and snow. In addition, water masks were over-estimated, due to the course 

spatial resolution of the datasets, particularly at the interface of the land and water surfaces. 

Xie et al. (2016) used Landsat (TM, ETM+ and OLI), coupled with the Gravity Recovery and 

Climate Experiment datasets, to investigate the hydrological dynamics and ecosystem 
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functioning of the Coongie Lake in arid central Australia, over a 24-year period. The analysis 

of the flooding extent indicated a variable water regime, with episodes of long-term droughts 

and short periods of flooding over the Coongie Lake. Although the study successfully mapped 

the inundation dynamics of the Lake, there were uncertainties regarding the magnitude of the 

monthly inundation derived from the Landsat images. Klein et al., (2014), Moser et al., (2014) 

and Xie et al., (2016) demonstrated the capabilities of the freely-available multispectral 

datasets for mapping and understanding the inundation of semi-arid and arid wetlands; 

however, it was noted that the presence of other wetland features influenced the level of 

accuracy when mapping inundation by using coarse spatial resolution images, such as MODIS. 

In addition, the issue of spectral confusion between the water and soils at their boundaries 

remained unresolved, as such water pixels were over-estimated. When attempting to resolve 

the issue of spectral mixing between wetland water and soils at the boundaries of these two 

classes, the use of high spatial resolution images is likely to improve the latter. Moreover, the 

use of the Synthetic Aperture Rader (SAR) dataset has the potential to improve the detection 

of inundation patterns, since the sensor has the ability to penetrate the wetland vegetation 

canopy.  

2.6 Mapping Land-use and Land-cover Changes Impacts of Semi-arid and using Freely-

available Multispectral Images 

An understanding of Land use and Land cover changes (LULC) assists with the development 

of effective environmental management strategies to counteract the degradation and loss of 

wetlands (Valdez and Ruiz-Luna 2016; Zhang et al., 2011), and an LULC change analysis is 

pertinent for the better understanding of land dynamics (Mwita et al., 2012). Studies have 

revealed that changes in the LULC are significant drivers for wetland degradation. Alam et al., 

(2011) reported that the continuous inflow of sediment loads and nutrients in the Hokar Sar 

wetlands in India has led to their degradation. The inflow of sediments was attributed to 

changes in the LULC, due to the anthropogenic activities in the upper basin from 1986-2005. 

Martínez-López et al., (2014) also noted that the expansion of irrigated lands in the semi-arid 

Mediterranean catchments has altered the input of water and nutrients to lowland wetlands, 

which has resulted in their degradation. The regular monitoring of the LULC is necessary for 

developing measures to manage the degradation of wetlands (Butt et al., 2015). Data from 

different satellite sensors, such as the multispectral MODIS and Landsat, have been widely 

used and are recognised as powerful tools for studying and monitoring the dynamic impacts of 
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LULC changes on the wetlands in semi-arid and arid environments. The challenge, however, 

is the detect these impacts with adequate precision (Schmid et al., 2005).   

Peter et al., (2020) used four decades of Landsat data to assess the impact of anthropogenic 

activities and climate variability on the spatiotemporal patterns of Lake Babati in Tanzania. 

The study achieved an overall classification accuracy of 87%. The extent of the water surface 

area was not accurately captured, due to the unavailability of continuous usable Landsat data 

which was caused by a significant cloud cover for most of the year. Wang et al., (2011) used 

Landsat data, coupled with topographical land cover maps, to investigate the shrinkage and 

fragmentation of marshes in West Songnen in China for the period between 1954 and 2008. 

The study reported an overall classification accuracy of 90%.  Mwita (2013) used Landsat 

MSS, TM, ETM and ETM+ over a 30-year period with a sequence of 10 years (1976-2003) to 

assess the land use and land cover dynamics of the Rumuruti and Malindi wetlands in Kenya 

and Tanzania. The classification achieved an overall accuracy of between 88.28% and 95.17%, 

respectively, for both wetlands. Although the overall accuracy results were higher, the 

producer’s accuracy for the open water class for the 1976 scene was low (33.3%) for both 

wetlands. This was attributed to the spatial resolution of the Landsat MSS that was used in 

1976. Although other studies by Mwita (2013), Peter et al., (2020) and Wang et al., (2011) 

reported high classification accuracies, there were challenges associated with the type of data 

used in these studies. In an attempt to avoid the issue of cloud cover, as reported by Peter et 

al., (2020), the use of the SAR dataset proved to be the solution, as the sensor can penetrate 

through the cloud cover. 

2.7 Low to Medium vs High Resolution Remote Sensing for Wetland Monitoring and 

Assessment   

Low to medium spatial resolution remote sensing datasets are characterised by their pixel size, 

which ranges between 30 and > 200 meters. These datasets have been successfully used in 

many wetland inventories in different climatic zones globally. This is because they are readily-

available, come at no cost and provide mostly timeous datasets, thus providing the opportunity 

to monitor changes in wetlands over a longer period of time. Despite the highlighted advantages 

of low to medium spatial resolution data, their application is somehow challenging, especially 

on wetlands with an aerial extent of less than 1-ha (Adeli et al., 2020; Dronova, 2015). 

Advancements in the development of satellite technology have led to the introduction of new-

generation multispectral sensors, which are both spaceborne and airborne, with high spatial 

resolution datasets (<10 meters pixel size) (see Table 2.2). The sensors are unique, with 
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improved sensing characteristics, including the presence of strategically-positioned spectral 

bands e.g. red-edge and near-infra red II, as well as an improved signal-to-noise ratio, amongst 

others (Shoko et al., 2016). They are freely available and come with a fine spatial resolution 

with strategically-organized bands that can detect the finer wetland features. These sensors 

have been explored in vegetation monitoring, as well as biomass and surface water mapping 

studies, and the findings have been commendable (Shoko et al., 2016). It is upon this premise 

that these datasets are likely to improve the monitoring and understanding of wetlands and 

wetland dynamics in semi-arid and arid areas, which was previously a challenging task when 

using broadband sensors, as the majority have an aerial extent of below 1-ha (Adeli et al., 

2020). However, the challenge is the cost implications of some of these datasets, because most 

of them expensive. For example, high spatial resolution datasets from sensors, such as 

Worldview-2, QuickBird and RapidEye, amongst others, are very costly to acquire, thus 

making it difficult to map semi-arid and arid wetlands that are distributed in resource-limited 

environments.  
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Table 2.2 Selected low to high spatial resolution sensors for wetland monitoring and assessment (freely-available data sensors are highlighted in 

bold) 

Sensor Pixel size (m) Bands Revisit time Acquisition cost Scale of Application Spatial Resolution 

AVHRR 1100 5 1 Readily available Regional to global Low 

Hyperspectral <1 >100 - Very expensive Plot High 

IKONOS 4 5 1-2 Expensive Local High 

Landsat TM 30 7 16 Readily available Local to regional Medium 

Landsat ETM+ 30 8,11 16 Readily available Local to regional Medium 

Landsat MSS 80 4 180 Readily available Local to regional Low 

Landsat OLI 30 11 16 Readily available Local to regional Medium 

MERIS 300 15 3 Readily available Regional Low 

MODIS 500,1000 7 1 Readily available Regional to global Low 

QuickBird 2.4 5 1-3.5 Expensive Local High 

RapidEye 5 5 5.5 Expensive Local High 

Sentinel-2 10,20,60 13 5 Readily available  Local to regional High/medium 

SPOT 10,20 4 26 Readily available Local to regional High 

Worldview-2 <1 8 1 Very expensive Local High 

Sentinel-1 5m 1 12 Readily available  Local to regional high 
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2.8 Available Satellite Image Processing Techniques for Accurate Wetland Monitoring 

Mapping wetlands with optical sensors is challenging, since wetlands have a heterogenous 

mixture of land-cover classes, which may produce a similar spectral reflectance thus  resulting 

in complications during the classification process (Amani et al., 2017; Gallant, 2015). In 

addition, wetlands are highly dynamic with regards to the presence of water, plants and land 

surface, which alters their reflectance and energy back-scattering properties. The classification 

of wetlands can be achieved through a pixel-based analysis or an Object-Based Image Analysis 

(OBIA). In a pixel-based classification, pixels are analysed by their spectral information and 

they require imagery that extend beyond the visible spectrum (Halabisky, 2011). Although the 

pixel-based classification has been used for a long time (Amani et al., 2017), this approach 

does not fully utilise the spatial information of the multispectral imagery. Unlike a pixel-based 

classification, OBIA aggregates the pixels with similar characteristics into objects or segments, 

which are then classified by using analyst rules, machine-learning algorithms and statistical 

approaches (Halabisky et al,. 2018). One of the advantages of using OBIA over the pixel-based 

approach is that additional features, such as the shape, size and texture, are considered during 

the classification process, and it reduces the within class spectral variation,  thus improving the 

accuracy of the classification outputs (Blaschke, 2010). Although OBIA is the most preferred 

approach, one of the limitations in wetland mapping is that there is no clear standard for the 

pre-classification assessment of the segmentation effects on the final outcomes, in either the 

wetlands or other heterogeneous landscapes (Dronova, 2015).  

Different machine-learning algorithms are available for classifying wetlands using remotely-

sensed data. These include supervised machine-learning algorithms, such as K-Nearest 

Neighbor (KNN), Support Vector Machine (SVM), Maximum Likelihood Classification 

(MLC), Random Forest (RF), Artificial Neural Network and Classification and Regression 

Tree (CART), as well as the Unsupervised K-means and ISODATA. The selection of an 

appropriate algorithm depends on the objective of the classification. A number of studies have 

used these algorithms to study wetland systems in semi-arid and arid areas. The supervised 

machine-learning algorithms have been proved to perform better than the unsupervised 

classification algorithms (Table 2.3). However, despite their better performance, these 

algorithms have some limitations. For example, ANN and SVM were reported to be too 

difficult to automate and require the adjustment of a large number of parameters (Shoko et al., 

2016), while RF sometimes tends to overfit and for every data set the size of a tree can take up 

memory (Na et al., 2010). The availability of image processing techniques, such as the Google 
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Earth Engine and image processing on cloud, simplifies the use of supervised machine-learning 

algorithms. However, according to the literature, these platforms have been under-utilized in 

the remote sensing of semi-arid and arid wetlands, using the freely-available multispectral 

sensors.    

Table 2.3 Available algorithms for wetlands remote sensing 

Algorithm Remote sensing data Performance range Reference 

RF Landsat TM, Sentinel 

1A, 2A, MODIS, 

LiDAR, SAR, ALOS-

PALSAR, RADARSAT 

 80% - 98% (Dubeau et al., 2017; Fu 

et al., 2017; Judah and 

Hu, 2019; Millard and 

Richardson, 2013; 

Shoko et al., 2016; Tian 

et al., 2016; Westra and 

de Wulf, 2007) 

CART Landsat TM, Sentinel-

1A, 2A, PALSAR, 

Landsat ETM+ 

89.2 % -92% (Na et al., 2010; Simioni 

et al., 2020;  Corcoran  

et al., 2013; Otukei and 

Blaschke 2010) 

MLC Landsat TM, MODIS, 

Landsat MSS, Landsat 

ETM+ 

83.6% - 94% (Frohn et al., 2011; Na 

et al., 2010; Otukei and 

Blaschke, 2010; 

Ramachandra and 

Kumar, 2008; Westra 

and de Wulf, 2007) 

SVM Sentinel-2,1A, Landsat 

OLI 

75% -87% (Abdi, 2020; Berberoglu 

et al., 2004; Cao et al., 

2018; Hakdaoui et al., 

2019; Otukei and 

Blaschke, 2010; Simioni 

et al., 2020) 

ANN Sentinel-2, Landsat TM, 

ETM+, OLI 

90% - 96% (Berberoglu et al., 2004; 

Simioni et al., 2020; 

Soltani et al., 2020; 

Westra and de Wulf, 

2007) 

KNN Sentinel-2, Landsat TM, 

ETM+, OLI, 

RADARSAT-2, 

Sentinel-1 

83% - 97% (Cao et al., 2018; Judah 

and Hu, 2019; Simioni 

et al., 2020; Soltani et 

al., 2020) 

Unsupervised 

classification  

Landsat TM, ETM+, 

MSS, Sentinel-2 

82% - 96% (Na et al., 2010; 

Ramachandra and 

Kumar, 2008; Simioni et 

al. 2020) 

 

2.9 Summary of Key Challenges and Future Research Directions  

Although the semi-arid and arid wetland systems tend to host most invertebrate and vertebrate 

species that would not survive in the surrounding landscapes, their conservation is still 
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overlooked. Remote sensing approaches offer an opportunity to understand these wetlands 

from various aspects, ranging from their characterisation, inundation, vegetation, extent and 

land cover changes. The majority of these studies used the freely-available multispectral 

sensors, such as Sentinel-2 MODIS and Landsat (MSS, TM, ETM+, OLI). Although progress 

has been made regarding the use of freely-available multispectral sensors for understanding the 

dynamics of wetlands in semi-arid and arid areas, it is still challenging to map these wetlands 

with the finest precision, because of their complex edaphic nature and small hydrological 

gradients. Moreover, the spatial resolution of these freely-available multispectral sensors limits 

the detection and monitoring of these wetlands.  

Wetlands are complex systems, and understanding their eco-hydrological dynamics cannot be 

based solely on a single data source or validated by using the in-situ measured data. In most 

arid and semi-arid environments, in-situ datasets are limited. In addition, the sharing of such 

data among different institutions in most of these regions is poor, particularly in the sub-

Saharan Africa. The availability and free opening of numerous spatial data sources with 

varying sensing characteristics e.g. the global mapper Landsat series, Sentinel Copernicus and 

freely-available Radar and weather dataset products, offer opportunities to improve the 

mapping of wetlands, where in-situ data are limited. This provides new opportunities for the 

monitoring and assessment of fairly small semi-arid and arid wetlands, which were previously 

ignored, due to the lack of the required spatial data. This challenge, or knowledge gap, can 

easily be addressed by exploring different spatial dataset integration techniques, which was 

previously a challenging task with the broadband and coarse spatial resolution multispectral 

datasets. Improvements in data analytic techniques, such as the introduction of advanced 

computer processing methods, also provide new opportunities for the detection and monitoring 

of wetlands.   

The literature shows that the introduction of advanced machine-learning algorithms and cloud-

computing, such as the Google Earth Engine (GEE) and Petascale image-processing techniques 

amongst other, provide new avenues for multisource data integration and fusion (Mahdianpari 

et al., 2019). Although few studies have explored the applicability of these techniques in 

vegetation monitoring and other related fields of study, there is need for future studies to shift 

towards embracing these methods to enhance the detection and monitoring of wetlands, 

particularly in data-poor regions. One advantage of these techniques is the quick processing of 

large datasets. However, challenges, such as inadequate network and internet connectivity, as 

well as the lack of high-performance computing systems for cloud-computing and the lack of 
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skilled personnel, limit the application of such techniques, especially in developing countries, 

which are mostly in sub-Saharan Africa and other parts of the world. Despite some of the 

highlighted challenges, this review advocates a paradigm shift in satellite data applications for 

wetland monitoring, by embracing multi-data and advanced data processing techniques to 

improve our understanding of these systems.  

2.10 Conclusion 

The current review was aimed at providing a comprehensive overview of the progress and 

development of multispectral remote sensing for the detection and monitoring of semi-arid and 

arid wetlands. The literature search showed that there has been great improvement in the use 

of freely-available multispectral datasets for monitoring semi-arid and arid wetlands, but more 

is required for the monitoring and assessment of smaller wetlands in these regions. This is 

evident by the number of studies that were published between the period of 2000-2020, and the 

significant increase between 2008 and 2020. Although there has been a significant increase in 

the number of published papers that focus on the use of freely-available multispectral datasets 

for the remote sensing of semi-arid and arid wetlands, it was noted that the monitoring of key 

wetland aspects presented some challenges, mainly due to spectral mixing and the poor data 

quality for determining the inherent wetland characteristics. These challenges include mapping 

inaccuracies, which were either attributed to the poor spatial resolution of the wetlands, the 

inadequate validation data, or the incorrect classification method that was used. Therefore, the 

introduction of advanced machine-learning algorithms and cloud-computing systems, such as 

the Google Earth Engine and Petascale, provide a great opportunity for improving the 

monitoring and assessment of wetlands, particularly in data-poor regions and in semi-arid or 

arid environments. Thus far, the use of these machine-learning algorithms and cloud-

computing techniques, as well as data integration methods for semi-arid and arid wetlands, is 

still in its infancy, but the increased application of these methods provides a new window of 

hope. Further investigations are therefore required to assess the use of these programs and 

platforms for understanding the distribution, dynamics and the status of wetlands in semi-arid 

and arid regions, to enhance their management and conservation, as well as to safe-guard their 

ecosystem goods and services and, above all, their livelihoods. 
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CHAPTER 3 

LEVERAGING GOOGLE EARTH ENGINE PLATFORM TO 

CHARACTERISE AND MAP SMALL SEASONALLY-FLOODED 

WETLANDS IN THE SEMI-ARID ENVIRONMENTS OF SOUTH 

AFRICA 
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Abstract  

Although significant scientific research strides have been made in mapping the spatial extent 

and eco-hydrological dynamics of wetlands in semi-arid environments, the focus on small 

wetlands remains a challenge. This is due to the characteristics of the remote sensing platforms 

and the lack of robust data-processing techniques. Advancements in data analytic tools, such 

as the introduction of the Google Earth Engine (GEE) platform, provide unique opportunities 

for the improved assessment of small and scattered wetlands. This study thus assessed the 

capability of the GEE cloud-computing platform for characterising small and seasonally-

flooded wetlands, using the new generation Sentinel-2 data from 2016 to 2020. More 

specifically, the study assessed the spectral separability of different land-cover classes for the 

two different wetlands that were detected, by using Sentinel-2 multi-year composite water and 

vegetation indices, and it identified the most suitable GEE machine-learning algorithm for 

accurately detecting and mapping semi-arid seasonally wetlands. This was achieved by using 

the object-based Random Forest (RF), Support Vector Machine (SVM), Classification and 

Regression Tree (CART) and Naïve Bayes (NB) advanced algorithms in GEE. The results 

demonstrated the capability of the GEE platform to characterise wetlands with an acceptable 

accuracy. All algorithms showed superiority in the mapping of the two wetlands, except for the 

NB method, which had lowest overall classification accuracy. These findings underscore the 

relevance of the GEE platform, Sentinel-2 data and the advanced algorithms for characterising 

small and seasonally-flooded semi-arid wetlands. 

Keywords: Limpopo River Basin; object-based classification; machine-learning 

algorithm; wetland mapping; wetland condition  
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3.1 Introduction  

Wetlands play a critical role in the hydrological cycle and they sustain peoples’ livelihoods, 

the aquatic life and the biodiversity. They occupy the transition zones between the aquatic and 

terrestrial environments and share the characteristics of both zones (Gxokwe et al., 2020). 

Wetlands cover about 4-6% of the global land surface and are ranked amongst the most diverse 

ecosystems on earth (Mahdianpari et al., 2019). Semi-arid areas are dominated by small 

seasonally- or intermittently-flooded wetlands, with the flooded area depending on the balance 

between the precipitation and evapotranspiration (Ruiz, 2008). They often host more 

invertebrates than permanently-inundated systems because of their oxygenated period, as a 

result of the episodic inundation. However, their conservation is not prioritised (Chen and Liu, 

2015), mainly because of their small size and ephemeral nature, which causes them to be 

neglected by the monitoring and management programmes, and has led to loss of inherent 

ecosystems goods and services provision ( Li et al., 2015).  

The abundance and quality of wetlands in semi-arid environments are reported to be declining 

globally, due to climate change and variability, as well as poor land management practices 

(Mahdianpari et al., 2019). Gebresllassie et al. (2014) reported significant wetland losses in 

semi-arid Ethiopia, due to lack of policies to safeguard these systems, which has resulted in the 

loss of socio-economic services. It has been reported that about 30% of the wetlands in the 

semi-arid parts of China have been lost over the past 50 years, due to anthropogenic activities, 

with most of them disappearing between 1990 and 2000 (Liu et al., 2017), while over 50% of 

wetlands in South Africa have been eradicated in some catchments, due to climate change and 

anthropogenic activities (Day et al., 2010). Given the significance of the ecological services 

provided by wetlands, it is imperative that these systems are sustainably managed.  

The basis for the sustainable management of wetlands hinges on the frequent monitoring of 

their eco-hydrological dynamics, in order to derive consistent and comparable information, 

which is lacking in most semi-arid regions, especially in sub-Saharan Africa (Mahdianpari et 

al., 2019). The availability of earth observation data offers an opportunity to map and monitor 

wetlands in a spatially-explicit manner in different climatic regions that lack monitoring 

systems (Gxokwe et al., 2020). The challenge, however, is that these data come in a range of 

spatial, spectral and temporal resolutions, which presents difficulties when coarse- to medium-

resolution data, such as the Moderate Resolution Imaging Spectroradiometer (MODIS), are 

used to map semi-arid wetlands. 
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Wetlands in semi-arid regions are mostly heterogeneous, with no definitive boundaries and 

they are spectrally similar to the surrounding landscapes. This results in difficulties when 

coarse- to medium-spatial resolution data are used to separate these systems from the 

surrounding landscapes (Mahdianpari et al., 2020). High-resolution data, such as Wordview-2 

and Satellite Pour I’Obeservation de la Terre (SPOT 6-7), are commercially-available; they 

require complex processing algorithms and are therefore not feasible for monitoring the spatial 

characteristics of semi-arid wetlands over large areas and over time (Gxokwe et al., 2020). 

Advancements in data analytic tools and platforms and the development of cloud-computing 

platforms, such as Microsoft Azure (MA), Amazon Web Services (AWS) and Google Earth 

Engine (GEE), provide opportunities for wetland monitoring and assessments across various 

scales. The AWS was launched in 2006 and contains several remote sensing data, ranging from 

Sentinel-1, Sentinel-2, Landsat 8, National Oceanographic and Atmospheric Administration 

(NOAA) and the  Advanced High-Resolution Rapid Refresh Model (AHRRRM) (Tamiminia 

et al., 2020). Although AWS provides unique benefits by providing access to a large suite of 

machine-learning algorithms and artificial intelligence, the platform offers pay-as-you-go 

services. Microsoft Azure was launched in 2010 for building, deploying and managing 

applications, as well as services, through Microsoft-managed data centres. The platform 

consists of advanced machine-learning algorithms, like Landsat and Sentinel-2 data, for only 

North America, from 2013 to the present, as well as MODIS data, from 2000 to present.  

The recently-introduced GEE platform offers parallelised processing on Google Cloud, which 

enables the processing of a stack of images at once, rather than relying on a single image. The 

platform host a 40-year petabyte scale of pre-processed remotely-sensed data, which includes 

Landsat, MODIS, National Oceanographic and Atmospheric Administration Advanced Very 

High-Resolution Radiometer (NOAA AVHRR), Sentinel 1, 2, 3 and 5-P, and Advanced Land 

Observing Satellite (ALOS) data, as well as advanced machine-learning algorithms (Amani et 

al., 2020). The other data-types  available on the GEE cloud-computing platform include 

climate and geophysical data, as well as ready-to-use products, such as the Normalised 

Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) (Gorelick et 

al., 2017).  

Although the GEE was launched over a decade ago, its application in remote sensing of 

wetlands, including the small seasonally-flooded systems in semi-arid regions, is still limited. 

A review by Tamiminia et al., (2020) reported 13 wetlands and mangroves studies that utilised 
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the GEE platform between the year 2010 and 2019 in all climatic zones, with most of them 

using Landsat 8 data. A review by Kumar and Mutanga (2018) also reported that 8% of the 

studies (out of the 300 identified articles) utilised the GEE platform for wetlands and 

hydrologically-related research globally. The most recent studies by Mahdianpari et al., (2020; 

2019) used the GEE to monitor semi-arid wetlands in Canada, with reasonable accuracies 

(70%-90%); however, the studies focused on large-scale mapping. Due to the strengths of the 

GEE cloud-computing platform, there is a need to fully explore its capabilities in mapping and 

for determining the characteristics of semi-arid wetlands on a site-specific scale. This is 

particularly relevant in sub-Saharan Africa, where small wetlands are poorly documented; 

however, the application of the GEE in small and seasonally-flooded wetlands is still lacking, 

and the data on these systems are inconsistent and incomparable, due to the limited research.  

Owing to this background, the overarching goal of this chapter was to characterise and map 

two small and seasonally-flooded wetlands (Nylsvley floodplain and Lindani valley bottom) in 

the semi-arid Limpopo Transboundary River Basin in South Africa, using the GEE cloud-

computing platform and the multi-year Sentinel-2 composite data. More specifically, the 

objectives were: (1) to assess the spectral separability of the different wetland-cover classes 

detected, using the GEE and multi-year Sentinel-2 composite derivatives; (2) to evaluate the 

capability of the GEE cloud-computing platform to produce customised wetland cover maps 

with a reasonable accuracy, using the high-resolution Sentinel-2 data, and (3) to identify a 

suitable GEE machine-learning algorithm for accurately detecting and mapping semi-arid 

seasonally-flooded wetlands characteristics, using the multi-year Sentinel 2 composite data.   

3.2 Materials and Methods  

3.2.1  Field data  

Land cover field data were collected towards the end of the dry season and at the beginning of 

the wet season between the 28th of September 2020 and the 1st of October 2020. The collected 

data included 600 ground-truth points that were collected on both wetlands, with their locations 

being determined by using a hand-held Geographical Positioning System (GPS) with an error 

margin of less than 3.5 m. The points were collected by using a stratified random sampling 

approach. This approach involved the division of the population into smaller sub-groups, based 

on certain attributes named strata, and random sampling was implemented on the strata (Ding 

et al., 1998). Stratified random sampling was selected because of the possibility that each 

sample is equally likely to occur. During the implementation of the stratified random sampling 
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in this study, the wetlands were subdivided into 30 m x 30 m quadrants, based on the size of 

the studied wetlands. The quadrants were 12 m apart, in order to minimise the overlapping of 

samples on the satellite image. In each quadrant, a minimum of 20 ground-truth points was 

collected, depending on the dominating landcover classes. Moreover, the wetland vegetation 

communities were visually identified on site and then grouped as either the short or long grass 

species, based on their structural features (canopy height and cover). The collected data were 

used in the GEE wetland model training and validating satellite derived wetland-cover classes.     
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3.2.2 Remote sensing data acquisition and processing  

 

Figure 3.1 Steps taken to characterise and map the two wetlands, using GEE 
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The acquisition and processing of remotely-sensed data in this study were executed by 

following the steps shown in Figure 3.1. The Sentinel-2 MultiSpectral Instrument (MSI), level 

2A (COPERNICUS/S2_SR/20151128T002653_20151128T102149_T56MNN) Surface 

reflectance images were acquired from the GEE database and used in this study. These products 

are already atmospherically corrected by using the Sen2cor toolbox, and they contain twelve 

UINT16 spectral bands that are scaled by 10000, as well as three QA bands, where one (QA60) 

is a bitmask band with cloud mask information. The image stack was filtered to represent the 

period of 2016-01-01 to 2020-12-31, and by the boundaries of the selected wetland using the 

codes ee.Filter.Date () and Image.filterBounds (). This period was chosen because a drought 

was reported in the Limpopo Basin in 2016, which caused significant changes in most surface 

water systems, including the wetlands in the area. This study aimed to establish whether the 

drought-induced changes within the wetlands could be determined. Two-hundred-and-ninety-

six (296) images were obtained after the filtering process. The acquired image stack was then 

normalised for illumination effects (i.e. shade) and the minimisation of clouds, using median 

compositing. The median composite works by reducing a stack of images through the 

calculation of the median of all the values at each pixel across the stack of all matching bands, 

thus minimising the effects of shades and clouds (Mahdianpari et al., 2019). The median 

composite in this study was executed by using the code ”Median ()” on the GEE. This was then 

used to calculate the Normalised Difference Vegetation Index (NDVI), the Normalised 

Difference Water Index (NDWI) and the Modified Soil Adjusted Vegetation Index 2 (MSAVI-

2), using the equations given in Table 3.1. The NDVI is one of the most widely-used vegetation 

indices in wetland studies, due to its sensitivity to photosynthetically-active biomass; it can 

also discriminate between vegetation and non-vegetation, as well as wetlands from non-

wetland features (Liu and Huete, 1995). The NDWI was selected due to its sensitivity to open 

water, which enables  discrimination between the water and land surfaces (McFeeters, 1996).   

MSAVI-2 was chosen to improve the limitations of the NDVI. In addition to the extracted 

indices, the Near Infrared (NIR), Red, Green and Blue bands were selected and concatenated 

to the NDVI, NDWI and MSAVI-2 outputs to produce an image with only the bands for 

wetland classification. The NIR band was chosen because of its usefulness for distinguishing 

water from the land surface, as well as its ability to discern the biomass content of vegetation 

and its health, because water absorbs strong NIR light, while vegetation strongly reflects NIR 

light. The Red band was chosen because of its ability to delineate the wetland classes and to 

detect chlorophyll absorption in vegetation. The Blue band has the ability to differentiate 

between the soils and vegetation. The produced composite with integrated indices was then 
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subjected to an Object-Based Image Analysis (OBIA), which was selected because of its 

superiority over a pixel-based classification, as shown in various wetlands mapping studies 

(e.g. Berhane et al., 2018; Kamal and Phinn, 2011; Kaplan and Avdan, 2017). Moreover, the 

approach not only relies on the spectral characteristics of each pixel, but it also considers other 

pixel characteristics, such as the size, shape and contextual information, thus improving the 

spectral separability within the classes of the heterogeneous wetlands (Halabisky, 2011). The 

first step in OBIA is image segmentation. The process involves partitioning the image into 

multiple discreet and non-overlapping segments, based on a specific criterion (Dlamini et al., 

2021). In this process, individual pixels are merged to produce larger objects. This increases 

the discrimination of spectrally-similar objects by using the texture, shape and contextual 

features and prevents the ‘salt and pepper’ noise in the final classification map (Dlamini et al., 

2021a; Mahdianpari et al., 2020). In this study, a Simple Non-Iterative Clustering (SNIC) 

algorithm was used to segment the composite. The SNIC algorithm was chosen because of its 

simplicity, its memory efficiency, its processing speed, as well as its ability to incorporate the 

connectivity between pixels after the algorithm has been initiated (Achanta and Süsstrunk, 

2017). The SNIC algorithm starts the process of image segmentation by initialising the centroid 

pixels on a regular grid image; the dependency of each pixel is then established relative to the 

centroids, by using the distance in a five-dimensional space of colour and spatial coordinates. 

In particular, the distance integrates the normalised spatial and colour distances to produce 

uniform super pixels (Achanta and Süsstrunk, 2017). The candidate pixel is selected, based on 

the shortest distance from the centroid (Achanta and Süsstrunk, 2017). The SNIC algorithm 

was executed by using the code ‘ee.Algorithms.Image.Segmantation.SNIC ()’ on the GEE and 

the output was an image with super pixels, calculated textures, areas, sizes and perimeters of 

all the super pixels.  
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Table 3.1 Optical features extracted from the remotely-sensed data used 

 

3.2.3 Adopted wetland classification scheme  

Satellite image classification was executed by using the Random Forest (RF), Support Vector 

Machine (SVM), Classification and Regression Tree (CART) and Naïve Bayes (NB) 

algorithms. The RF is an ensemble classifier, which consists of a combination of tree 

classifiers, and each classifier is generated by using the random factor, which is sampled 
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independently from the input vector data. Each tree casts a unit vote for a popular class to 

classify an input vector (Ao et al., 2019; Pal, 2005). An advantage of the RF algorithm is its 

ability to handle large differentiations within the land-cover classes, and the noise in data can 

be neutralised (Slagter et al., 2020). Moreover, the algorithm does not require an understanding 

of the data distribution, unlike the parametric classification algorithms, such as the maximum 

likelihood, where the data distribution needs to be known. The SVM applies a sophisticated 

kernel function to classify the datasets with a complex decision surface. One of its strengths is 

that the uncertainty in the model structure is decreased and, similar to RF, the algorithm does 

not rely on the data distribution (Oommen et al., 2008). CART is a tree-based classification 

algorithm that measures the dependent relationship of one variable on other variables (Simioni 

et al., 2020). An advantage of CART is its ability to naturally model the non-linear boundaries 

because of its hierarchical structure. NB forms part of simple probabilistic classifiers, which is 

based on applying the Bayes theorem with a strong independence assumption between the 

features (Shelestov et al., 2017a; Simioni et al., 2020). An advantage of the NB algorithm 

includes its ability to solve multi-class prediction problems, it is time-saving and it has less 

training data requirements. The four algorithms were chosen because of their above 

advantages, in addition to their acceptable performance that was demonstrated in several land 

cover studies (e.g. Dlamini et al., 2021; Rana and Venkata Suryanarayana, 2020; Rodriguez-

Galiano et al., 2012; Simioni et al., 2020; Slagter et al., 2020). Moreover, studies such as Hayri 

Kesikoglu et al., (2019) and Tian et al., (2016) reported that the application of the above 

algorithms on mapping semi-arid wetlands is limited, hence they were selected. Prior to 

classification, the algorithms were trained by using 70% of the field data. The data were 

randomly split in R-studio to produce a 70% training set, as well as a 30% validation set. The 

code that was used to split the data in R-studio is ‘wasdt = sort(sample(nrow(data), 

nrow(data)*.7))’. After splitting, the data were converted to GIS files in Esri ArcGIS 10.2, and 

they were then imported to GEE for model training and validation. The training of the 

classifiers was executed by using the code ‘ee.Classifier.train ()’. Classification using the latter 

algorithms was then implemented on the segmented image by using the code ‘Image.classify()’ 

in GEE. 

3.2.4 Accuracy assessment  

Three evaluation indices were used to evaluate the performance of the classification algorithms. 

These were the Overall Accuracy (OA), the producer’s accuracy and the user’s accuracy. In 

addition, line plots, as well as Jeffries-Matusita (JM) distances, were used to establish the 
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separability of different wetland classes, by using the selected spectral bands. JM is a 

parametric criterion that ranges between 0 and 2. This criterion uses distances (Equations 3.1 

and 3.2) between the class means, and the distribution of values from the means, to assess the 

separability of one class from the other (Dabboor et al., 2014;  Wang et al., 2018). Distances 

approaching 2 indicate a greater average distance between two classes and that they are 

therefore separable, using the data type. The OA was used to measure the efficiency of the used 

algorithms and it was quantified as the ratio of the total correctly-labelled samples and the total 

number of testing samples. The producer’s accuracy was used to measure the probability of the 

reference sample being correctly classified on the map. The user’s accuracy was used as an 

indicator of the probability that a classified pixel in the wetland cover classification map 

accurately represents that category on the ground. The accuracy assessments with the latter 

indices were computed and executed in GEE.  The JM distance presented in Dabboor et al. 

(2014) is given as: 

               𝐽𝑀 = 2 (1 − 𝑒−𝐵)                                                                (3.1) 

where B is the Bhattacharyya distance and is quantified as:  

𝐵 =
1

8
(𝜇𝑖 − 𝜇𝑗)

𝑇
(

Σ𝑖+Σ𝑗

2
)

−1

(𝜇𝑖 − 𝜇𝑗) +
1

2
ln (

|(Σ𝑖+Σ𝑗)/2|

√|Σ𝑖||Σ𝑖|
)                     (3.2) 

where 𝜇𝑖 and Σ𝑖 are the mean and covariance matrix of class i and 𝜇𝑗 and Σ𝑗 are the mean and 

covariance of class j. In evaluating the classification accuracy of the output image, using the 

latter indices, the codes ‘Image.accuracy()’ for OA, ‘Image.producersAccuracy()’ for the 

producer’s accuracy and ‘Image.consumersAccuracy()’ for the user’s accuracy were 

implemented in the GEE. During the implementation of the latter codes, the validation vector 

data were first imported to the GEE and used to sample out the corresponding regions on the 

classified image by using the code ‘Image.sampleRegions()’. The sampled regions were then 

used in the latter codes as input image to test the accuracy of the classification outputs. The 

line plots and JM distances were implemented by using a series of interconnected codes 

presented in the supplementary material.  

3.3 Results  

3.3.1 Class separability results from the spectral data used 

Line plots (Figure 3.2) showing the spectral reflectance values per class of the studied wetlands 

indicate that most wetland classes are not distinguishable when using Band 2, Band 3 and Band 
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4 for both wetlands, except the long grass in the Nylsvley flood plain, which was discernible 

from the rest of the classes by using B4 and B8. The results also indicated that the water class 

in the Lindani valley bottom has a high spectral reflectance in the NIR region, although a low 

reflectance was anticipated in this spectral region.  

 

Figure 3.2 Wetland cover class spectral reflectance values for a) the Lindani valley bottom 

and b) the Nylsvley floodplain, using pixel values extracted from the training 

data 

The JM distances obtained from the multi-year median composite (Tables 3.2 and 3.3) indicate 

that the wetland features were hardly distinguishable from the single optical bands for both 

wetlands. The least distinguishable classes were the bare surface and water from the Lindani 

valley bottom, as well as the bare surface and short grass from the Nylsvley floodplain. The 

JM distances for all the least distinguishable classes did not exceed 1.4 for both wetlands. The 

results also showed that the synergic use of all optical features significantly increased the 

separability between the classes, with the JM distances exceeding 1.8 for both wetland classes.   
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Table 3.2 JM distances between wetland-cover classes in the Lindani valley bottom 

Optical 

features 

D1 D2 D3 D4 D5 D6 

NIR 0.0016 0.0131 0.1036 0.0135 1.272 0.1398 

Red 0.3146 0.4311 0.5635 0.0502 0.1576 0.0314 

Green 0.4331 0.6508 0.8978 0.0600 0.2714 0.0966 

Blue 0.4675 0.6381 0.8861 0.0418 0.2193 0.0858 

NDVI 0.2728 0.3044 0.6300 0.0385 0.1823 0.1127 

NDWI 0.3478 0.4028 0.4346 0.0036 0.0168 0.0089 

MSAVI2 0.3124 0.3509 0.6849 0.0041 0.1948 0.1187 

ALL 2 2 2 2 2 2 

** D1: Long grass and short grass, D2: Long grass and bare surface, D3: Long grass and 

water, D4: Short grass and water, D5: Short grass and water, D6: Bare surface and water 

Table 3.3 JM distances between wetland-cover classes in the Nylsvley floodplain 

Optical features D1 D2 D3 

NIR 0.2586 0.3839 0.0342 

Red 0.6208 0.5998 0.0016 

Green 0.6913 0.5289 0.0226 

Blue 0.7211 0.5828 0.0251 

NDVI 0.5663 0.5534 0.0358 

NDWI 0.6675 0.3876 0.1351 

MSAVI2 0.5986 0.0038 0.0524 

ALL 2 2 1.990 

**D1: Short grass and long grass, D2: Long grass and bare surface, D3: Bare surface and 

short grass 

3.3.2 Classification results and accuracies  

Four GEE algorithms were applied to a median composite of Sentinel-2 images to produce 

custom maps for two seasonally-flooded wetlands of variable sizes in the LTRB. Figures 3.6 

and 3.7 show the custom maps for the studied wetlands. The Overall Accuracies, based on the 

algorithms used, ranged between 20% and 80% for both wetlands, with Random Forest (RF) 
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having a high OA for both the Lindani valley bottom and the Nylsvley floodplain (68.80% and 

80.55%), and Naïve Bayes (NB) having low OA values for both wetlands (29.50% and 

25.00%) (Figure 3.3).  The other algorithms had a reasonable accuracy, with the Support Vector 

Machine (SVM) attaining 66.60% for Lindani and 62.29% for Nylsvley. The Classification 

and Regression Tree (CART) achieved an OA of 62.30% for Lindani and 75.00% for Nylsvley, 

thus proving the superiority of RF among the other algorithms used in this study.     

 

Figure 3.3 Overall accuracy comparison between the algorithms used for the two studied 

wetlands 

Figures 3.6 and 3.7 show the distribution of wetland-cover classes at a 10 m spatial resolution. 

The maps illustrate the fine separation between the wetland classes for all the algorithms. 

However, the water class could not be detected for the Nylsvley floodplain, due to the 

unavailability of training data representing this class. The areas of the various land cover types 

in Figure 3.4 show that, based on all the algorithms, except NB, the most dominating class in 

the Lindani valley bottom is short grass, consisting of Cynodon dyctolon and Oryza 

longistaminata. In contrast, the NB identified water as being the most dominant class. The area 

of the short grass ranged between 5 ha and 25 ha, with the NB model identifying the smallest 

area for this cover type. The producer’s and user’s accuracies for the dominating short grass 

ranged between 20% and 91%, with NB model having the lowest producer’s accuracy (Figure 

3.5), and the user’s accuracy was from 60% to 80%, with SVM having the lowest accuracy. 

The least dominating classes in the Lindani valley bottom wetland were the water and bare 
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surface with areas, with a range of 0.3-5.0 ha for the bare surface and 0.2-10.0 ha for water. 

The producer’s accuracies for these two classes ranged between 0% and 75% for water and 0% 

and 30% for the bare surface. The SVM algorithm achieved a 0% producer’s accuracy for both 

classes. The user’s accuracy for the two classes was from 0% to 75% for the bare surface and 

0% to 50% for water. The SVM algorithm had a 0% user’s accuracy for both classes (Figure 

3.5). The dominating landcover class in the Nylsvley floodplain was bare surface, with an 

estimated area ranging from 362 ha to 495 ha. The CART algorithm estimated the lowest area. 

The least-dominating class was long grass, comprising mainly the common reed species, such 

as Phragmites australis. The area for the least dominating wetland cover class ranged between 

130 ha and 352 ha. The highest area was estimated by CART, and the lowest by NB. The 

producer’s accuracy for the dominating class ranged between 62% and 88%, with the highest 

being attained by the NB and the lowest by the SVM model. The producer’s accuracy for the 

least-dominating class ranged between 33% and 66.6%, with the highest attained by NB model 

and the lowest by the CART and RF models. The user’s accuracy for the most dominating class 

ranged between 22% and 71%, with the highest recorded by SVM and CART, and the lowest 

by the NB model. The user’s accuracy for the least dominating class ranged between 20% and 

66.6%, with the highest recorded by RF and the lowest by CART.      

 

Figure 3.4 Wetland cover class areas for a) the Lindani valley bottom and b) the Nylsvley 

floodplain 
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Figure 3.5 Producer’s and user’s accuracies for the two wetlands classes 
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Figure 3.6 Lindani valley bottom Sentinel-2 derived wetland-cover classes, based on the 

four used algorithms 
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Figure 3.6 Nylsvley floodplain Sentinel 2-derived wetland cover classes, based on the 

four algorithms used 

3.4 Discussion 

The accurate detection and monitoring of small seasonal and heterogeneous wetlands in semi-

arid regions is important for understanding the eco-hydrological dynamics of these systems, as 

most of these wetlands, particularly in sub-Saharan Africa, offer socio-economic benefits to 

the surrounding communities (Gardner et al., 2009; Kabii and Kabii, 2005; Thamaga et al., 

2021). Advancements in data analytic tools provide unique opportunities to improve the 

detection and monitoring of semi-arid wetlands of variable sizes, which were not feasible when 

using the traditional remote sensing techniques. The introduction of cloud-computing 

platforms, such as the Google Earth Engine (GEE), offers advantages, such as advanced 

machine-learning algorithms and parallel processing, memory efficiency and a fast image 

processing power. This study sought to assess the capabilities of the GEE cloud-computing 

platform for characterising and mapping semi-arid seasonally-flooded wetlands on a site-
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specific scale, as well as suggesting a suitable GEE machine-learning algorithm for 

characterising and mapping such systems. 

In general, the results demonstrate the capabilities of the Google Earth Engine cloud-computing 

platform for characterising and mapping the semi-arid wetland systems of variable sizes with 

acceptable overall accuracies. In addition, the RF, CART and SVM algorithms proved to be 

superior to the NB model, with low OA values for both the studied wetlands. Although higher 

OA values were obtained using the latter algorithms, low producer’s and user’s accuracies were 

reported in the Lindani valley bottom for the bare and water classes, especially when using 

SVM model. The contributing factors of the low producer’s and user’s accuracies for the two 

classes were the few training and validation sample points representing these classes, due to 

less than a pixel spatial coverage for each class within the wetland boundary. Fewer training 

and validation points tend to reduce the level of accuracy during classification (Zhen et al., 

2013; Corcoran et al., 2015; Mahdianpari et al., 2020). In addition to the few training and 

validation data points, the multi-year images used during the computation of the median 

composite did not consider seasonality and the yearly differences, which may have reduced the 

producer’s and user’s accuracies. The study by Noi Phan et al., (2020) analysed the impact of 

different composition methods, as well as the input images, on the classification accuracy of 

the different landcover classes using GEE. The results showed that the temporal aggregation 

that was considered during median compositing produced high accuracy values for the 

classification outputs. This demonstrates the significance of temporal aggregations during the 

median compositing stage. Although the results underscore the relevance of the GEE cloud-

computing platform for characterising and mapping small seasonally-flooded wetlands in the 

semi-arid regions, there are some limitations associated with its use. These include the 

computational restrictions, where the large trainings required by complex machine-learning 

algorithms cannot be performed, due to space limitations, the unavailability of complex and 

accurate image segmentation algorithms, as well as restricted image-processing tools. 

Moreover, the algorithms that were used have limitations, such as the slow training and 

biasness when dealing with categorical data, in the case of RF, under-performance when 

dealing with large data, in the case of SVM, more time required to train the model, in the case 

of CART, and the dependencies amongst the classes that cannot be modelled, when using NB.   

The class spectral separability results show that the use of single optical bands and indices for 

differentiating between the wetland classes for all bands, was not feasible in this case, although 

spectral bands, such as NIR and Red, are known to be useful in wetland delineation, vegetation, 
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soil and geology studies (Amani et al., 2018). Water was expected to be easily-discernible from 

other classes, as it is known to have a strong NIR adsorption and a Low NIR reflectance, which 

makes it easy to discriminate it from other classes, such as the vegetation and soils, which 

reflect more light in the NIR region. A study by Amani et al., (2018) reported the great 

separability of wetland-cover classes, when using the NIR band, particularly in the shallow 

waters of Newfoundland in semi-arid Canada. The Red band is known to be useful for detecting 

chlorophyll absorption in vegetation, as well as the composition of soils, where soils with rich 

iron oxide will have a stronger reflectance and healthy vegetation will absorb red light, making 

it easy to separate these classes from the water.  The results of Amani et al., (2019) showed 

that the shallow water of the Newfoundland wetlands in Canada were discernible from the 

other classes, such as the soils and vegetation, by using the Red Band; however, it was 

highlighted that it may not be easy to discriminate these classes in some instances, due to 

similarities in  their spectral reflectance.   

The synergic use of all spectral features significantly increased the separability of different 

classes, with JM distances of above 1.9, for both wetlands. However, the logical expectation 

was that vegetation and water in the NIR region would have a strong reflectance and adsorption, 

but in the case of the Lindani valley bottom, water had a stronger reflectance in this spectral 

region. This could be due to the submerged and floating wetland vegetation that interfered with 

the water signals, thus causing the stronger reflectance of water in the NIR region (de Vries et 

al., 2017). In addition, materials at the bottom of the shallow waters are known to affect the 

absorption and reflectance of light by shallow waters (Vinciková et al., 2015). This could also 

be the case for this wetland with shallow water. Jones (2015) reported increased errors in 

mapping the spatial extent of water in areas within the greater Everglades, where the vegetation 

is floating. This showed the problem of discriminating between water and vegetation in such 

wetlands. In this study, both wetlands had short and long grass classes, with higher reflectance 

values in the visible red-light region, which is indicative of water-stressed vegetation. Water-

stressed vegetation is known to have stronger reflectance signals in the visible red-light region 

(Adam et al., 2010; MacArthur, 1975). Caturegli et al. (2020) assessed the effects of water 

stress on the spectral reflectance of Bermuda grass (Cynodon dyctolon) under controlled 

laboratory conditions. The results showed an increase in red light reflectance with the 

increasing water stress, thus proving that water-stressed vegetation has a stronger reflectance 

in the visible red-light region. The indices were found to be the least useful for separating the 

classes for both wetlands, partly because the seasonality and yearly differences were not 
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considered during the median compositing of the selected images. In most cases, the maximum 

NDVI values tend to correspond to the growing season. A study by Wang et al., (2020) 

examined the response of the maximum NDVI values to precipitation during the period of 

active growth, from 2000 to 2013, in the Alpine grassland site of the Tibetan Plateau. The 

results showed a positive linear relationship between the precipitation and the maximum NDVI, 

thus proving that NDVI is most useful during the peak growing season.  

The findings of this chapter prove that the GEE platform and advanced machine-learning 

algorithm have the potential to improve the detection and monitoring of small seasonally-

flooded wetlands in semi-arid regions, using the Sentinel-2 multi-year composite image. This 

has previously been a daunting task, when using the conventional mapping methodologies and 

optical data. In addition, the results demonstrated that the most detectable wetland features 

were mostly wetland vegetation communities, although there were some challenges relating to 

accuracy, particularly for the Lindani valley bottom system. The study provides baseline 

information and new insights into enhancing small and seasonally-flooded wetlands from 

optical data at a reasonable accuracy and moderately high-resolution, thus underscoring the 

significance of freely-available optical data for monitoring semi-arid, seasonally-flooded 

systems. This is important for semi-arid regions with limited data access, particularly in sub-

Saharan Africa, where less attention is given to these systems due to the limited information 

regarding their status, even though they serve as an important source of water for most 

communities. The findings also contribute towards the ongoing global wetland monitoring 

programmes, such as Wetland Monitoring and Assessment Services for Transboundary Basins 

in Southern Africa (WeMAST), which is funded by European Union-Africa Global Monitoring 

for Environmental Security (EU Africa GMES). This programme aims to develop an integrated 

platform for wetland assessment and monitoring that will support the sustainable management 

of transboundary basins. Furthermore, the study contributes to Goal 6.6 of the Sustainable 

Development, which seeks to halt the degradation and destruction of ecosystems, including 

wetlands, and to assist in the recovery of the already-degraded systems.    

3.5 Conclusion and Recommendations  

The current study was aimed at characterising and mapping two seasonally-flooded wetlands 

in the Limpopo Transboundary River Basin, with the objective of assessing the usefulness of 

the GEE cloud-computing platform in producing maps of the studied wetlands, as well as 

suggesting possible GEE algorithms for the detection and mapping of such systems. The main 
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findings indicate the capabilities of GEE in mapping seasonal semi-arid wetland systems of 

variable size, with a reasonable overall accuracy, and that the RF, CART and SVM algorithms 

are superior to the NB model. Although reasonable overall accuracies were attained, there were 

poor producer’s and user’s accuracies for some classes, such as the water and bare surfaces, 

especially for the Lindani valley bottom wetland. This can be attributed to less than a pixel of 

spatial coverage of these classes within the perimeter of the wetlands, which results in them 

being difficult to detect with the highest precision, using Sentinel-2 composite data. In addition, 

the seasonality and yearly difference were not considered, which could have significantly 

affected the results, because some features, such as water, tend to correspond to the seasonal 

changes, especially for semi-arid areas. It is therefore recommended that temporal variability 

be considered, in order to capture the peak growing season of the systems and to better enhance 

the wetland features. Spectral confusion was also observed between water and some wetland 

vegetation, which resulted in a higher reflectance of water in the NIR region. In order to avoid 

this, the study recommends the integration of Synthetic Aperture Radar (SAR) data with the 

optical data, since these data can penetrate through forested vegetation, thus minimising the 

effect of floating vegetation in the detection of the water class. Moreover, the testing of other 

machine-learning algorithms, such as the Artificial Neural Network (ANN), as well as the 

inclusion of Short-wave infrared and thermal bands, is recommended. In addition, there is a 

need to evaluate the available remotely-sensed data and its capability in long-term monitoring 

of small and seasonally-flooded wetlands located in semi-arid environments.    
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CHAPTER 4 

AVAILABLE SATELLITE DATA CAPABLE OF MONITORING 

SMALL AND SEASONALLY-FLOODED WETLANDS IN SEMI-ARID 

SOUTHERN AFRICA 
 

 

Photo: Courtesy of NASA 2020 
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Abstract  

The use of remote sensing for the time-series monitoring of wetlands remains an attractive and 

practical tool for monitoring the eco-hydrological dynamics of wetlands, given its ability to 

overcome the challenges associated with in-situ data availability. Nonetheless, obtaining 

seamless and cloud-free, time-sensitive data for the accurate routine monitoring of wetlands 

condition remains a challenge. This study thus evaluated the amount of satellite scenes 

available on in the Google Earth Engine (GEE) catalogue that are capable of monitoring the 

seasonal eco-hydrological dynamics of small and seasonally-flooded wetlands in the semi-arid 

environments of southern Africa, over a 20-year period (2000-2020). The Nylsvley floodplain 

was thus used as a case study. More specifically, the study assessed all the available products 

on the GEE platform (Landsat TM, ETM+, OLI, Sentinel- 1 and 2), and the identified images 

were then filtered and screened, based on varying cloud cover percentages (i.e. 0%, 1-10%, 11-

25%, 26-50%) on the GEE platform. The screening and filtering results showed a good number 

of satellite products available on this platform. Approximately 1 376 images were found for 

the period under study. The Landsat series data had 492 images and Sentinel-1 had 394 images, 

whereas Sentinel-2 had 490 images. Sentinel-2 and Landsat-7 had the highest number (69% 

and 76%) of images, with a cloud cover percentage range of 0-20%. However, images with a 

cloud cover percentage of above 26% were not included in the analysis. In addition, the use of 

satellite images with 0% cloud cover yielded an Overall Accuracy (OA) ranging between 69-

72%, a 1-10% cloud cover had an OA ranging between 68-70% and an 11-25% cloud cover 

had an OA ranging between 69-80.55% for both the dry and wet seasons. Generally, the 

classification results indicated satisfactory overall accuracies (68-80%) for all the scenes, 

although there were some inaccuracies for some classes (bare surface and long grass), 

particularly when using Landsat-7 scenes. The results indicated that there is a reasonable 

amount of archival satellite data available that is capable of monitoring small and seasonally-

flooded wetlands, which provide useful insights into the eco-hydrological dynamics of these 

ecosystems. In addition, the use of cloud-computing platforms, such as the Google Earth 

Engine (GEE), provide a unique opportunity to address the problems associated with big data 

filtering, processing and analytics, and which will enhance environmental monitoring and 

assessments. 

Keywords: Archival satellite data; Cloud cover; Cloud-computing; Satellite data 

availability; Spatial data filtering; Wetland condition 
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4.1 Introduction  

The significance of wetland functions has always been recognised by the scientific community. 

Despite this, over 50% of wetlands globally have been degraded and lost during the 20th and 

21st century, due to environmental change and anthropogenic factors (Davidson, 2014). There 

is, therefore, an urgent need for holistic intervention, in order to prevent their further 

degradation and loss, especially in the semi-arid environments where most of these systems 

serve as important sources of water and other ecological services to the surrounding 

communities (Collins et al., 2014). The basis for proper interventions is centred on an 

understanding of the dynamic changes that occur in wetlands over time, which requires the 

frequent monitoring of their eco-hydrological dynamics.  

Currently, wetland inventory data (geospatially referenced information on their status, extent, 

characteristics and functions) is inconsistent, scanty, incomparable and incomplete; it is usually 

outdated and non-existent for most regions, which makes it difficult to track wetland changes 

over time, especially in semi-arid sub-Saharan African regions where wetland data inventories 

are limited (Halabisky, 2011; Hird et al., 2017). The lack of frequent monitoring and 

assessment results in there being limited explicit, reliable and current spatial and temporal 

information about the wetland characteristics (Thamaga et al., 2021). The use of remote sensing 

in the time-series monitoring of wetlands remains an attractive and feasible tool for 

understanding these systems, since it can overcome the main issues associated with coverage 

and accessibility, when compared to the traditional onsite monitoring approaches. The 

challenge, however, is obtaining time-sensitive data and the generation of precise and accurate 

information about wetlands (Wang and Yésou 2018). Significant efforts have been devoted to 

developing time-sensitive remote sensing databases and approaches for the long-term 

monitoring of wetlands (Hird et al., 2017); for example, in Wang and Yésou (2018), Huang et 

al., (2018) and Gallant (2015). 

The availability of freely-accessible, high-resolution archival optical data, such as the Sentinel-

2 and Landsat series data, offer an unprecedented opportunity for the time-sensitive and multi-

decadal analysis and monitoring of all wetland systems at improved spatial, spectral and 

temporal resolutions (Kandus et al., 2018). Moreover, the introduction of cloud-based 

platforms, like the Google Earth Engine (GEE), provides an opportunity to address the 

problems associated with huge satellite data filtering, processing and analysis by a great 

number of users (Hird et al., 2017; Inman and Lyons, 2020; Kandus et al., 2018; Thamaga et 
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al., 2021). Currently, the GEE hosts 40 years of peta-bytes of remotely-sensed data, like 

Sentinel-1,2,3 and 5P, Landsat 4-8, Moderate Resolution Image Spectroradiometer (MODIS), 

Advanced Land Observing Satellite (ALOS), as well as the National Oceanographic and 

Atmospheric Administration Advanced Very High-Resolution Radiometer (NOAA AVHRR), 

that is freely available, as well as advanced machine-learning algorithms. This makes the GEE 

cloud-computing platform more relevant in the study of natural resources, such as wetlands in 

most regions and over longer periods of time. However, challenges and uncertainties relating 

to the continuity of data still exist (Wang and Yésou, 2018). Furthermore, the capability (in 

terms of the image quality) of the remotely-sensed data that are accessible on these platforms, 

for monitoring the long-term wetland eco-hydrological dynamics, remains unknown, 

particularly in cloud-prone areas (Wua et al., 2019). 

Several studies have utilised these platforms in several long-term environmental monitoring 

programmes, such as global forest mapping and earth surface water monitoring, amongst others 

(Hansen, 2013; Pekel et al., 2016; Yamazaki and Trigg, 2016); nonetheless, wetlands are 

among the most under-represented systems using these platforms (Wua et al., 2019). The long-

term comprehensive monitoring of wetlands is critical for their sustainable management, and 

thus for achieving the Sustainable Development Goals (SDG), such as SDG 6.6, which are 

aimed at ensuring the conservation and restoration of freshwater ecosystems, including 

wetlands, by monitoring their status and change over time. The long-term monitoring of 

wetlands also contributes to SDG 6.4, which emphasises the monitoring of freshwater 

availability, environmental requirements, as well as water use. This is done in order to analyse, 

in detail,  the water scarcity issue and its impact on both the economy and the population, and 

to encourage people to consider the health of ecosystems (Kates et al., 2005). Programmes such 

as the African Space Policy, Space, Science and Technology, National and Regional Space 

Strategies and Science, Technology, and Innovation Strategy for Africa (STISA) advocate the 

use of space science technology tools for monitoring the sustainable use of natural resources, 

including wetlands. The main challenge with the space monitoring of environmental change 

are the limited consistent earth observation data that are available for some regions, particularly 

in semi-arid sub-Saharan Africa, which makes it difficult to track environmental changes in 

these regions over time. This study is largely motivated by the lack of data consensus on the 

usefulness of remotely-sensed satellite data in environmental and ecological monitoring, 

particularly in data-scarce environments like sub-Saharan Africa. Thus far, the capability of 

remotely-sensed data for resolving pertinent environmental and ecological questions is 

https://etd.uwc.ac.za/



58 
 

contested by diverse non-remote sensing communities and policy-makers, mainly due to the 

incompleteness, or the lack of, seamless cloud-free days for the most part of the year. This has 

thus restricted the use of multispectral remotely-sensed data in the dry season, which hampers 

the full-cycle understanding of wetlands throughout the year (in both the wet and dry seasons).  

Owing to this background, this chapter is aimed at evaluating the number of satellite images 

available in the GEE catalogue that are capable of monitoring small and seasonally-flooded 

wetlands located in semi-arid environments of southern Africa over a 20-year period (2000-

2020), using the upper middle reach of Nylsvley floodplain as a case study. The specific 

objectives are: 1) to establish the number of optical scenes available with different cloud cover 

ranges for various remotely-sensed products, and 2) to determine how slight variations in the 

cloud cover ranges (0%, 1-10%, 11-25%) affect the monitoring of wetland eco-hydrological 

dynamics across different seasons. 

4.2 Materials and Methods  

4.2.1 Ground truth data collection  

The collection of ground truth data was conducted from the 28th of September 2020 to the 01st 

of October 2020 in the upper middle reach of the Nylsvley floodplain located within the 

boundaries of the Nylsvley nature reserve. The collated data included 300 ground control 

points, which represented the location of different wetland cover data (vegetation types and 

bare surface (open space)), by using a hand-held Geographical Positioning System (GPS), with 

an error margin of ± 3.65 m. The field data that were collected coincided with the dry season 

images used in this study. The wet season data were from the high-resolution Google Earth 

images (November-April). Three-hundred-and-twenty wet season points, representing the 

location of the same wetland-cover classes, were also collected. These were guided by the dry 

season field sampled points. The observed wetland cover data included the short wetland grass 

vegetation, comprised of Oryza longistaminata (rice grass) and Cynodon dyctolon (Bermuda 

grass), the long wetland grass vegetation, comprised of mainly Phragmites australis (common 

reeds), and the bare surface. Water could not be identified, as there was no surface inundation 

visible during that period and it also not identifiable from the wet season Google Earth images, 

due to the presence of dense wetland vegetation. The field points representing the locations of 

the above-mentioned landcover classes were collected by using the stratified random-sampling 

approach. During the collection of these points, the floodplain was sub-divided into 900 m2 

quadrants, based on the size of the wetland (13.69 km2), as well as the heterogeneity in the 
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landcover observed in the wetland. A minimum of 20 random points in each quadrant were 

gathered, depending on the mixing in the identified landcover types. The quadrants were 

separated 12 m apart because of the size of the section of the Nylsvley under study, in order to 

reduce the overlaps in the collected ground truth points. The collected field points were then 

used in the grid-point intercept approach to establish the dominating landcover classes within 

each pixel, and they were used to label the area covered by the particular pixel. The data 

collected from field work and the Google Earth images representing both seasons were split 

into 70% training and 30% validation reference data and they were used to train (70%) and 

validate (30%) the GEE model. 

4.2.2 Remotely-sensed data collection and analysis    

The collection and processing of remotely-sensed data was executed on the GEE platform by 

using the steps presented in Figure 4.1. The initial step involved the manual identification of 

various remotely-sensed optical products that are available on the GEE platform for mapping 

small and seasonally-flooded wetlands in the semi-arid environments of southern Africa. The 

identified products were then filtered by date (01-01-2000 to 31-12-2020) to obtained the 

images available within the period of interest (2000-2020). Further, the images of all the 

identified products were clipped, using the Nylsvley floodplain boundary. This was done to 

obtain images that covered the studied wetland. The images obtained, as per the products 

identified in the GEE, are presented in Table 4.2. Due to the spatial resolution of Moderate 

Resolution Imaging Spectroradiometer (MODIS) (250 m for Bands 1-2, 500 m for Bands 3-7 

and 1 km for Bands 8-36), these products were excluded from this study, as the study monitors 

small and seasonally-flooded wetlands, which are poorly detected or completely masked-out 

by this data type, because of its coarse resolution vis-à-vis wetland size. The images obtained 

were further filtered by the cloud coverage, based on the following ranges: 0% representing no 

cloud coverage, 1-10% representing a low cloudy coverage, 11-25% representing a moderate 

cloud coverage and 26-50% representing a high cloud coverage. This gave an indication of the 

number of archival images available within each cloud-cover range. The next step was to 

process the available images, in order to illustrate the capability of detecting the studied 

wetland under different cloud-cover conditions and in different seasons. In this stage, image 

classification was only restricted to composites with limited cloud coverage (0%, 1-10% and 

11-25%), as the use of images with cloud cover above 25% is not recommended. Prior to the 

processing stage, dry (May-October) and wet (November-April) season image stacks of 

Sentinel- 2 level 1C and Landsat-7, which represent each cloud cover range, were chosen. The 
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above-mentioned products were selected because of the large number of scenes available for 

these products after filtering. Although the study focused on the available images over a 20-

year period (2000-2020), the chosen images for the classification, to test the impact of different 

cloud-cover ranges on the classification outputs, were collected over a 5-year period (2016-

2020) for both the dry and wet seasons, because Sentinel-2 products were unavailable before 

2016. A total of 71 and 86 dry and wet season scenes were obtained for Landsat-7 and Sentinel-

2 Level 1C, representing the 5-year period. During the processing stage of the Landsat-7 and 

Sentinel-2 scenes, the acquired images were first reduced and normalised for the illumination 

and clouds effects, using the median composite algorithm, which reduces a stack of images by 

the computation of median values across the matching bands of a pixel in an image stack, and 

consequently reduces the cloud cover and illumination effects (Gorelick et al., 2017). 

Traditional classification approaches require cloud-masking before image-processing, to 

improve the accuracy of the classification. In this study, it was noted that a significant 

proportion of the studied wetland area was lost when the clouds were masked out; hence, the 

selection of median compositing approach to minimise the clouds and to consequently reduce 

the stack of images. This approach has been successfully adopted in literature (Mahdianpari et 

al., 2020; Mudereri et al., 2021). The produced median composites were then used to compute 

indices, such as the Normalized Difference Vegetation Index (NDVI), the Normalized 

Difference Water Index (NDWI) and the Modified Soil Adjusted Vegetation Index 2 

(MSAVI2) (see Table 4.1). NDVI was selected because of its sensitivity to photosynthetically-

active biomass (Mahdianpari et al., 2020), and it can therefore differentiate between vegetated 

and non-vegetated areas, as well as wetland and non-wetland areas (White et al., 2016; 

Zaitunah et al., 2018). mNDWI was chosen because of its sensitivity to open water and it can 

differentiate between open water and land surface ( Chen et al., 2014). MSAVI-2 was selected 

to improve the NDVI limitations. The indices were then added as extra bands to the selected 

near-infrared and visible bands (red, green and blue), to enhance the wetland features.  

The images with extra NDVI, mNDWI and MSAVI2 bands were then used in an Object-Based 

Image Analysis (OBIA). OBIA was selected because of its superiority over pixel-based image 

classification in several wetland studies, such as those of Mahdianpari et al., (2019) and Pande-

Chhetri et al., (2017), amongst others. The initial step to object-based classification is image 

segmentation, which partitions the image into multiple objects that are discreet and non-

overlapping, by using a specified criterion, therefore increasing the separability of spectrally-

similar classes and minimising the ‘salt and pepper’ effects on the output image (Mahdianpari 
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et al., 2019). Image segmentation was implemented in this study by using a Simple Non- 

Iterative Clustering (SNIC) algorithm. The SNIC algorithm was selected because it is simple, 

memory-efficient and it can integrate the connection between pixels after it has been 

implemented. The SNIC initiates the image segmentation by the initialisation of centroids in a 

regular gridded image, and then the dependency of each pixel relative to the centroids is 

determined by using the calculated distance in five dimensions of colour and the spatial 

coordination of the pentagon, by forming super pixels. The calculated distance joins the 

normalised spatial and colour distances to compute the unvarying super-pixels. The next 

candidate pixel to be added to a cluster is determined by its shortest distance to the centroids 

(Gorelick et al., 2017). The output from the SNIC were super-pixels, which were used in 

computing their contextual parameters, such as the area, standard deviation (texture), height 

and perimeters, amongst others. The contextual parameters, super pixels, optical features and 

indices were then concatenated to produce an image that was later used as an input during the 

classification process.  

Table 4.1 Indices extracted from the time series Landsat-7 and Sentinel-2 data 

Data Data 

extracted 

Formula Reference 

 

 

Landsat-7, 

Sentinel-2  

 NDVI 

 

 NDWI 

 

 

 NDPI 

 

𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛
 

 

𝑁𝐼𝑅 − (0.74 × 𝑅𝑒𝑑 + 0.26 × 𝑆𝑊𝐼𝑅1)

𝑁𝐼𝑅 + (0.74 × 𝑅𝑒𝑑 + 0.26 × 𝑆𝑊𝐼𝑅1)
 

Tucker, (1979) 

 

McFeeters, (1996) 

 

Wang et al. (2017) 
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Figure 4.1 Steps taken to execute the classifications using GEE (Red box indicates the 

image stack not included in the classification) 
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4.2.3 Image classification  

The classification of the images in this study was implemented by using the Random Forest 

algorithm on the GEE platform. The algorithm is an ensemble classifier consisting of many 

trees. Each tree casts a unit vote to split the samples. The algorithm was chosen, firstly, because 

it is capable of handling large differentiations between the landcover classes, thus neutralising 

the data noise, and secondly, because of its superiority to other GEE algorithms in studies e.g. 

Simioni et al., (2020). Moreover, the selection of the RF was informed by a study by Gxokwe 

et al., (2021), which assessed the performance of different GEE machine-learning algorithms 

in the mapping of semi-arid wetlands including the studied. In that research, RF was among 

the best-performing algorithms, with a high overall and class accuracies; therefore, it was 

selected for this study. Prior to classification, the collected field data were randomly split into 

70% training and 30% validation data on the R-Studio. The principle behind the splitting of 

data to 70/30 was to ensure that they represented a large training dataset, while the remaining 

data were preserved, in order to compute accurate statistics. After splitting, the training and 

validation data points were then imported and converted to shapefiles on Esri ArcGIS, and then 

imported to the GEE platform, in order to train and validate the Random Forest model. 

4.2.4 Accuracy assessment  

The derived classification maps were assessed for their accuracy. This was achieved by using 

30% of the data (300 points for the dry season and 350 for the wet season) for each season, 

which was randomly split in R-studio. The 30% of the 300 field-collected points were used to 

validate the dry season classification outputs, and the 30% of the 350 points derived from the 

high-resolution Google Earth images were used to validate the wet season classification 

outputs. Prior to the accuracy assessment, the 30% points were first imported to ESRI 10.2 

ArcGIS, and then converted to shapefiles (validation vectors). The validation vector files were 

exported from ArcGIS and imported to the GEE platform and then used to sample out the 

corresponding regions to the location of those points on the classified images. The sampled 

regions, coupled with the validation vectors, were then used to compute the producer’s and 

user’s accuracies. The error matrix was also extracted by using the sampled regions and 

validation vectors, and then used to provide a comprehensive evaluation of the commission 

and omission errors amongst the classification results and training data, including evidence of 

how the classification errors had occurred. 
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4.3 Results  

4.3.1  Image availability  

Table 4.2 shows the total number of remotely-sensed images filtered in the GEE catalogue for 

the Nylsvley floodplain for various optical and active sensors, between the period of 2000 and 

2020. The results indicated that the Sentinel-1 GRD C-Band had the most (394) images 

available, when compared to the other optical data. For the Landsat 5 thematic mapper, only a 

few images (44) were recorded. Moreover, the results also reveal that there were no Landsat 4 

images available for the specified time-frame. Filtering by the cloud-cover percentage 

indicated that most optical products had a higher total number of images with a clear cloud 

coverage (0%), except for Sentinel-2 level 2A, which had no cloud-free images available for 

the specified time-frame. Landsat-7 and Sentinel-2 level 1C had the most images, with no cloud 

coverage. Moreover, the study noted that as the cloud cover percentage increased during the 

filtering process, the total number of images decreased significantly, especially for the 26-50% 

range products, such as Landsat-8 and Landsat-5. However, satellite image scenes with a cloud-

cover percentage above 25% were excluded from the analysis. 

Table 4.2 Satellite images available for the Nylsvley floodplain between 2000 and 2020 

per cloud-cover percentage 

Remote sensing 

product  

# of images   0%  1- 10%  11-25% 

 

26- 50% 

 

>50% 

 

Landsat 4  0 0 0 0 0 0 

Landsat 5 44 13 13 4 3 11 

Landsat 7 284 109* 77* 31* 37 30 

Landsat 8  164 11 88 18 4 43 

Sentinel-2 level 2A 148 0 82 14 11 41 

Sentinel-2 MSI 

level 1C 

342 109* 103* 29*     27 

 

26 

Sentinel-1 GRD C-

Band (SAR) 

394 - - - - - 

* this denotes images that were used for further processing 

https://etd.uwc.ac.za/



65 
 

4.3.2 Classification results  

The classification results, based on dry and wet season Sentinel-2 Level 1C and Landsat-7 

composites with variable cloud coverage, are presented in Figures 4.2 and 4.3. The results show 

the spatial distribution of three wetland-cover classes, namely, short grass, long grass and the 

bare surface. Short grass consists of mainly Oryza longistaminata (rice grass) and Cynodon 

dyctolon (Bermuda grass), and long-grass consists of mainly Phragmites australis (common 

reeds). The water class could not be detected because of the unavailable training and validation 

data resulting from the absence of surface inundation during the field visits. Moreover, the 

dense wetland vegetation resulting in difficulties in detecting water from the high-resolution 

Google Earth image. Although water could not be detected, the presence of vegetation, such as 

Phragmites australis, indicated that the soils were semi-saturated. Based on the Sentinel-2 dry 

season composites, the most dominating class was short grass, except for the composite with 

0% cloud cover, where long grass was the most dominating and short grass the least 

dominating. The least dominating class for the other composites was long grass. Based on the 

wet season Sentinel-2 composites, the most dominating class was short grass for all the 

composites, except the composite with 0% cloud coverage, where the dominating class was 

long grass. The least dominating class was the bare surface for all the wet season composites. 

The results based on the Landsat-7 composites showed that the most dominating class is short 

grass for all the dry season composites, except for the composite with 11-25% cloud coverage, 

where long grass dominates the most. The least dominating class varied, based on the dry 

season composites. The results based on the dry season composites showed that for composites 

with a cloud cover of 1-10%, long grass was the least dominating class. In addition, composites 

with a cloud coverage of 0% and 11-25% showed that short grass was the least dominating 

class. The wet season Landsat-7 composites showed that the most dominating class was long 

grass for data with a 0% cloud cover and 1-10% cloud coverage. Satellite image composites 

with 11-25% cloud cover indicate that the bare surface is the most dominating class. 

Furthermore, the short grass was identified as the dominating class in the composite with a 

cloud coverage 0% and 11-25%. The least dominating class for the wet season varied, 

depending on the composite image that was used. The bare surface was reported to be the least 

dominating class for a 0% cloud-cover composite. For the composite satellite data with a cloud-

cover range of 1-10%, short grass was the least dominating class reported. The least dominating 

class for satellite composite data with a cloud coverage of 11-25% was long grass and the bare 

surface. 

https://etd.uwc.ac.za/



66 
 

 

 

Figure 4.2 Landcover classes for the Nylsvley floodplain in different seasons and cloud 

cover between 2016 and 2017, based on Sentinel-2 Level 1C, a) 0% cloud cover, 

b) 1-10% cloud cover, and c) 11-25% cloud cover 
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Figure 4.3 Landcover classes for the Nylsvley floodplain at different seasons and cloud 

cover between 2016 and 2017, based on Landsat 7, a) 0% cloud cover, b) 1-

10% cloud cover, and c) 11-25% cloud cover 
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4.3.3 Accuracy assessment results  

Figure 4.4 shows the overall accuracy results for the classifications based on a) the Sentinel-2 

level 1C data and b) the Landsat-7 data, for both the wet and dry seasons between 2016 and 

2017. The results show overall accuracies that are within an acceptable range. Based on the 

Sentinel-2 data, the results show that the overall accuracies ranged between 72% and 80.55% 

for the wet season and between 77% and 80.55% for the dry season. The highest overall 

accuracy, based on Sentinel-2 optical data type, was observed for the dry season composite, 

with a cloud-cover range of 11-25%, and the lowest was observed for the wet season composite, 

with a cloud cover range of 11-25%. The Landsat-7 composite data produced overall accuracies 

ranging between 72% and 77% for both the wet and dry seasons, respectively. The highest 

overall accuracies were observed for both the dry and wet season composites, with a cloud-

cover range of 11-25%, and the lowest was observed for the wet season composite, with a 1-

10% cloud cover.  

 

 

Figure 4.4 Overall accuracies based on a) Sentinel-2 level 1C and b) Landsat 7 data 

The PA and UA for the three mapped wetland-cover classes ranged between 33.3% to 92% 

and 33.3% to 100% for the wet season, and between 33.3% to 100% and 25% to 100% for dry 

season, based on the Sentinel-2 composites (Tables 4.3 and 4.4). Moreover, the results showed 

that the long grass landcover class had the lowest PA and UA for both the dry and wet season 

composites, and that the short grass class had the highest PA and UA, in most cases. A similar 

case was observed for the PA of this class, for the dry season composite with 1-10% cloud 

cover range, where this accuracy improved significantly to 100%. Based on the Landsat 

composites, the PA and UA ranged between 33.3% and 100%, and between 40% and 84.61% 
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for the dry season composites. Long grass had the lowest PA and UA in most cases, while short 

grass had the highest PA and UA. The wet season composites reported a PA and UA ranging 

between 37.3% and 92%, and 33.3% and 100%. In most cases, the long grass had the lowest 

PA and UA, except for the composite data with an 11-25% cloud cover, which reported a PA 

of 100%. Moreover, the composite with a 1-10% cloud coverage reported a UA of 100% for 

long-grass, while short grass had the highest PA and UA, in most cases.  

Table 4.3 Producer’s and user’s accuracies per cloud cover range for dry season scenes 

 

Table 4.4 Producer’s and user’s accuracies per cloud cover range for wet season scenes 

 

 

Pontius’ commission and omission error results, based on Sentinel-2 level 1C composite data 

for both dry and wet seasons, are presented in Figure 4.5. The results indicate that, for both 

seasons and for the composites with different cloud cover ranges, short grass had the lowest 

commission and omission errors, when compared to the bare surface and long grass, which had 

Remote sensing 

product  

Landcover type  PA 

(0%) 

PA  

(1-10%) 

PA 

(11-25%) 

UA 

(0%) 

UA 

(1-10%)  

UA 

(11-25%) 

 

Sentinel-2 

level 1C 

Short grass 95 96 84 88.46 88.8 75 

Long grass 66.6 42.3 33.3 66.6 33.3 33.3 

Bare surface 62.5 62.5 37.5 71.43 62.5 60 

 

Landsat-7 

Short grass 84 92 84 84 82.14 91 

Long grass 33.3 33.3 100 33.3 100 37.5 

Bare surface 50 50 50 50 57.14 80 

Remote 

sensing 

product  

Landcover 

type  

PA 

(0%) 

PA 

(1-10%) 

PA  

(11-25%) 

UA 

(0%)  

UA 

(1-10%)  

UA 

(11-25%) 

 

Sentinel-2 

level 1C 

Short 

grass 

84 84 92 91.3 87.5 85.19 

Long grass 66.6 100 33.3 66.6 42.86 100 

Bare 

surface 

75 35.7 62.5 60 60 62.5 

 

Landsat-7 

Short 

grass 

88 92 92 84.61 76 85.18 

Long grass 66.6 33.3 66.6 40 50 50 

Bare 

surface 

37.5 37.5 37.5 60 75 60 
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high commission and omission errors, in most cases. More specifically, the long grass had 

higher commission and omission errors. Moreover, a higher error of omission was observed 

for this class when the dry season composite with an 11-25% cloud coverage was used, where 

the reported omission error was 66.6%. The bare surface class had a high error of omission, 

when the dry season composite, with a cloud coverage ranging between 1-10%, was used. The 

wet season Sentinel-2 composite data also showed that the long grass had high commission 

and omission errors in all cases, with the recorded errors being above 50%. The results also 

showed that the bare surface reported a high omission error for the wet season composite data 

with a cloud coverage of 11-25%. The error of commission and omission, based on Landsat-7 

dry and wet season composites, are presented in Figure 4.6. The results show that short grass 

had low commission and omission errors, for all cases, with reported errors below 20% for 

both dry and wet season composites. The results also showed that the bare surface and long 

grass had high commission and omission errors, in most cases, with errors exceeding 50%. 

More specifically, long grass had the highest commission and omission errors for the dry 

season Landsat-7 composite, ranging between 60% and 66%, except for the dry season 

composite with a 0% cloud coverage, where the error of omission was 33.3%. Moreover, bare 

surface and long grass class had a commission and omission errors above 50%, in most cases, 

except for the case of composite data with a 1-10% cloud cover, where the commission error 

for both was below 45%. In addition, the bare surface had a low commission error for the wet 

season composite data with cloud cover of 11-25%. An omission error of 0% was also noted 

for the same composite data for long grass. 
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Figure 4.5 Pontius commission and omission errors for different seasons and cloud cover 

between 2016 and 2017, based on Sentinel-2 level 1C, a) 0% cloud cover, b) 1-

10% cloud cover, and c) 11-25% cloud cover  
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Figure 4.6 Pontius commission and omission errors for different seasons and cloud cover 

between 2016 and 2017, based on Landsat 7, a) 0% cloud cover, b) 1-10% cloud 

cover, and c) 11-25% cloud cover 
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4.4 Discussion  

This study sought to determine the number of archival remotely-sensed optical images 

available on the GEE cloud-computing platform that are capable of monitoring small and 

seasonally-flooded wetlands in the semi-arid environments of southern Africa over a 20-year 

period (2000–2020). The results showed that various optical remote-sensing products are 

available on the GEE platform. These images range from Landsat 4-5-7-8, Sentinel-1-2 and 

MODIS. The results have shown that Landsat-7 data has the highest number of images 

available, followed by Sentinel-2 level 1C. This can be attributed to the fact that Landsat-7 was 

launched in 1999 and has been acquiring spatial data since then. Although data from this sensor 

became freely-available after 2008, the GEE catalogue hosts a range of Landsat-7 data, dating 

from 1999-01-01 to the present. Moreover, Sentinel-2 level 1C and Sentinel-1 C-Band 

Synthetic Aperture Rader (SAR) Ground Range Detected (GRD) were also reported to have a 

high number of images available in the GEE catalogue. This is mainly due to the high temporal 

resolution of both Sentinel-1 and -2. The temporal resolution for Sentinel-1 and -2 is 6 and 10 

days, with Sentinel-2 having a constellation revisit time of five days, thus resulting in more 

images being collected by these optical sensors (Thamaga and Dube, 2018). The collection of 

these products in the GEE catalogue date back to the year 2013. Although, there are large 

quantities of Sentinel-1 and Sentinel-2 scenes in the GEE catalogue, these data do not provide 

continuous and timely long-term monitoring, since it has only been available from 2014 to the 

current date (Schott et al., 2012). This is a problem, because the long-term back-tracking of the 

wetland changes over longer terms (20 years) is not possible with such data, as it only became 

available after 2013. The filtering by date results also showed that there were no images 

available for Landsat 4 between the year 2000 and 2020. This can be attributed to the life-span 

of this sensor. Landsat 4 was launched in 1982 and has been in operation since then, until 1993; 

therefore, the GEE catalogue hosts Landsat-4 images corresponding to the life-span of the 

sensor (Schott et al., 2012; Thamaga and Dube, 2018). The results also suggest that the Landsat 

5 product had a low image count, which can be attributed to the life-span of the sensor, as well 

as the temporal resolution of the data. Landsat has been in operation since it was launched in 

1984, until 2012, and it has been collecting data on a repeated 16-day cycle (Markham and 

Helder, 2012). These results reveal that the long-term monitoring of wetlands is feasible when 

using Landsat-7 products, as it offers continuous data, from before 2000 to the present. 

However, the issues relating to the spatial resolution of Landsat-7 data persist, especially when 

monitoring the small and seasonally-flooded wetlands of the semi-arid environments, as the 
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strips in some of the images, which were caused by the failing of Scan Line Corrector, resulted 

in the loss of about 22% of the Landsat-7 data. There are, therefore, trade-offs between the 

long-term monitoring of wetlands and the accurate analysis of their characteristics.  

Among the other factors influencing the long-term monitoring of wetlands by using remote 

sensing products, is the availability of good remotely-sensed data for minimum cloud coverage. 

Satellite data filtering by the cloud-cover percentage showed that there are a high number of 

remotely-sensed images with a clear cloud coverage (0%) for most products. This was expected 

for semi-arid regions because these regions are characterised mostly by cirrus clouds, which 

are scattered in different zones and which result in most regions being clear most of the time 

(Schott et al., 2012). Moreover, the times at which most images are collected may result in the 

collection of more cloud-free scenes.  

The classification results indicated a high overall accuracy for all remotely-sensed products, 

seasons and cloud-cover percentages. Although this is the case, a low PA and UA were 

observed for some classes, such as long grass and bare surface, particularly with the Landsat 7 

composite data. This may be due to the limited number of training and validation points for 

these classes, resulting from low spatial coverage of the classes in the floodplain. Various 

studies, e.g. Corcoran et al., (2013), Jing et al., (2010), Mahdianpari et al., (2019) and Schott 

et al., (2012), reported that limited training and validation data may influence the level of the 

class accuracy during classification and validation. Moreover, the spatial resolution of the data 

that are used may have contributed to the low PA and UA for the classes, particularly for 

Landsat 7, which has a spatial resolution of 30 m. A report by the FGDC (Federal Geographic 

Data Committee (FGDC) (1992) indicated that the identification of an object on a Landsat 

image requires at least 9 pixels, which is a total area of about 0.9 ha and, at most, 25 pixels. 

This is also evident in a study by Dvorett et al., (2016), who reported that 30 m resolution 

Landsat 7 images were unsuccessful in detecting many small wetlands in the sand-dune eco-

region of Oklahoma, which were previously mapped manually on the National Wetland 

Inventory map for the region. However, Thakur et al., (2012) showed the effectiveness of 

Landsat 7 data in mapping the semi-arid Macquarie Marshes in Australia; it had a higher 

producer’s and user’s accuracies, which revealed that additional factors, such as the wetland 

size, need to be carefully considered before selecting Landsat data to study such systems. The 

high commission and omission errors reported in this study further confirm the under-

estimation of the bare and long grass classes for both products, especially when using wet 

season composites with a cloud coverage of 11-25%. Clouds are known to reduce the quality 
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of a remotely-sensed image, therefore various authors, such a Li et al., (2007; 2020) suggested 

that an image should not exceed 10% of the cloud coverage and that a single data image will 

certainly be affected by a high proportion of haze and clouds, thus degrading the quality of the 

classification outputs. The study further assessed the usability of various images with varying 

cloud coverage. The results showed that there were quite a lot of classifications errors for some 

classes, such as for a bare surface and long grass, when composite satellite data with a cloud 

cover of 11-25% for both the Sentinel-2 and Landsat-7 scenes. This was expected, although 

median compositing was implemented to minimise the illumination and cloud effects, as it does 

not mask out the clouds (Gorelick et al., 2017), which therefore became a limitation in this 

study. These results corroborate the findings of Shen et al., (2018), who reported the 

misclassifications of some wetlands classes due to the use of poor-quality images (>20% cloud 

cover). 

The findings of the study prove that there are a large number of good quality (0-20% cloud 

cover) optical remote sensing scenes available in the GEE catalogue for monitoring small and 

seasonally-flooded wetlands in semi-arid environments. Moreover, the findings underscore the 

relevance of Landsat-7 data in the long-term monitoring of small and seasonally-flooded 

wetlands in semi-arid environments. However, some class inaccuracies were associated with 

the limited training and validation data, as well as the spatial resolution of the Landsat-7 data, 

thus necessitating the careful consideration of the training data and the classification algorithm, 

to achieve the optimum results. The study provides new insights into the available and useable 

data accessed via the GEE catalogue for monitoring small and seasonally-flooded wetlands in 

semi-arid areas, which was previously unknown for such regions. This is important for semi-

arid regions with limited data, such as sub-Saharan Africa, where limited attention is given to 

these wetlands, due to the lack of available information, even though these systems serve as 

important water sources and provide other eco-hydrological benefits for the surrounding 

communities. In particular, the results indicate the possibilities of long-term monitoring and 

assessment of small and seasonally-flooded wetlands in semi-arid regions by using optical data, 

specifically Landsat on the GEE cloud-computing platform, as it offers consistent and 

continuous data, which makes it easy to track changes over the longer term. Moreover, the 

availability of more images with a cloud cover of less than (25%) indicate that the available 

data are of good quality, and that the monitoring and assessment of these systems will therefore 

have an acceptable accuracy, even though certain issues associated with spatial resolution may 

influence their accuracy. The results also show that careful attention needs to be given to the 
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seasonal differences, when selecting images, as some wetland features tend to be more 

separable in some seasons than in others (i.e. water is more visible during the wet season than 

when there is a bare surface).  

Overall, the results show that the remote sensing of small and seasonally-flooded wetlands, 

using time-series optical data that are available on GEE platform, is the most feasible approach 

for generating information on the spatio-temporal changes of these systems over time, in semi-

arid regions. Thus, the issues associated with limited data can be addressed, as well as the 

knowledge gaps about their eco-hydrological dynamics. The results also show that images with 

a cloud cover of less than 25% can assist in monitoring the status of small and seasonally-

flooded wetlands, in the absence of the high-resolution data. Furthermore, the results highlight 

the relevance of remote sensing data in the monitoring of wetlands; there are currently 

conflicting arguments and debates with conflicting argument currently because of the spatial 

resolution of these data, as well as the availability of good quality images, in terms of their 

cloud coverage. This study therefore improves the confidence and trust of non-remote 

communities and policy makers, regarding the usefulness of remote sensing in natural 

resources management. Moreover, the study contributes to the current global wetland research 

programme, such as the Wetland Monitoring and Assessment Services for Transboundary 

Basins in southern Africa (WeMAST), which is funded by European Union-Africa Global 

Monitoring for Environmental Security (EU Africa GMES), and which focuses on establishing 

integrated wetland inventorying platforms that will inform the sustainable management and 

utilisation of wetlands in transboundary basins in southern Africa. Moreover, the study informs 

the Sustainable Development Goal (SDG) 6.6, the objective of which is to halt the degradation 

and destruction of all ecosystems, including wetlands, and to rehabilitate those that are already 

degraded. In addition, SDG 6.4 emphasises the need to monitor the availability of freshwater, 

the environmental requirements, as well as water use, with the aim of properly analysing the 

water-scarcity issue and the impact that it has on both the economy and the population. It also 

stresses the need to consider the health of ecosystems. This study achieves the contributions of 

the latter SDGs by providing knowledge about freely-available and usable data types that are 

accessible for monitoring the long-term changes of small seasonally-flooded wetlands in semi-

arid regions. It will therefore assist in the consistent tracking of any negative changes in these 

systems over time, and it will address the issues that are associated with their degradation and 

their protection. 
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4.5 Conclusion and Recommendations 

This chapter was aimed at evaluating the number of archival optical images available in the 

GEE catalogue that are capable of monitoring small and seasonally-flooded wetlands in the 

semi-arid environments of South Africa over a 20-year period (2000–2020), using the Nylsvley 

floodplain as a case study. The findings showed that a significant number of optical products 

are available on the platform and that the majority of these are of good quality (0-20% cloud 

cover). Moreover, the findings underscore the relevance of Landsat-7 data scenes with a cloud 

cover of 0%, 1-10% and 11-25% for the long-term monitoring of small and seasonally-flooded 

wetlands in semi-arid environments, although there were some class inaccuracies, particularly 

in long grass and bare surfaces and with high cloud coverage (11-25%). These can be attributed 

to limited training and validation data, the spatial resolution of the data used particularly 

Landsat, as well as the effect of cloud cover from some of the retrieved scenes. Although the 

Landsat series data provide a timely monitoring framework for studying the long-term changes 

in such wetlands, the study recommends the use of multisource data for monitoring these 

changes in semi-arid wetlands, in order to address the inherent spatial gaps. Moreover, the 

study recommends that the careful selection of images with a cloud cover of less than 25% 

should be considered, as it was noted that cloud cover contributed to the misclassification of 

some image scenes. 
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CHAPTER 5 

USING CLOUD-COMPUTING TECHNIQUES TO MONITOR LONG-

TERM VARIATIONS IN ECO-HYDROLOGICAL DYNAMICS OF THE 

SMALL SEASONALLY-FLOODED WETLANDS IN SEMI-ARID 

SOUTH AFRICA 
 

 

Photo: Courtesy of Tatenda Dzurume 2020 

 

This chapter is based on the following publication:  

Gxokwe, S., Dube T., Mazvimavi, D., Grenfell, M.C. 2022. Using cloud-computing techniques 

to monitor long-term variations in eco-hydrological dynamics of the small seasonally-flooded 

wetlands in semi-arid South Africa. Journal of Hydrology. 612 (2022): DOI: 

https://doi.org/10.1016/j.jhydrol.2022.128080 (IF = 6.708) 

 

https://etd.uwc.ac.za/

https://doi.org/10.1016/j.jhydrol.2022.128080


79 
 

Abstract 

Wetlands in drylands have high inter- and intra-annual eco-hydrological variations that are 

driven, to a great extent, by climate variability and anthropogenic influences. The Ramsar 

Convention on Wetlands encourages the development of frameworks for national action and 

international cooperation with regard to the conservation and wise use of wetlands and their 

resources, on a local, national and regional scale. However, the implementation of these 

frameworks remains a challenge. This is mainly due to the limited high-resolution data and 

suitable big data-processing techniques for assessing and monitoring the eco-hydrological 

dynamics of wetlands on a large spatial scale, particularly in the sub-Saharan African region. 

The availability of cloud-computing platforms, such Google Earth Engine (GEE), offers unique 

big data handling and processing opportunities for these challenges to be addressed. In this 

study, the GEE cloud-computing platform was applied to monitor the long-term eco-

hydrological dynamics of a seasonally-flooded part of the Nylsvley floodplain wetland 

complex in north-eastern South Africa, over a 20-year period (2000–2020). The specific 

objectives of the study were: 1) to evaluate the wetland eco-hydrological dynamics by using 

20-year multi-date Landsat composite data, coupled with the Random Forest machine-learning 

algorithm; and 2) to establish the major drivers of wetland eco-hydrological changes by using 

selected spectral indices (i.e. the Normalised Difference Vegetation Index: NDVI, the 

Normalised Difference Water Index: NDWI and the Normalised Difference Phenology Index: 

NDPI), coupled with the climate data. The ecohydrology of the wetland changed over time, 

with some classes increasing twice as much as the previous measurements, while others 

decreased significantly during the study period. Notably, the bare surface class increased at a 

rate of 230% and 350% between 2006-2010 and 2016-2020, respectively. Moreover, the 

indices showed a similar trend throughout the 20-year period, with NDWI having the lowest 

values, namely, less than zero in all cases. This implied that there was no surface inundation, 

although the presence of some wetland vegetation indicates that there were seasonal to semi-

permanent soil-saturation conditions. A comparative analysis of the climate data and remotely-

sensed indices showed that the annual changes of precipitation and evapotranspiration were the 

main drivers of the eco-hydrological variations in wetlands. The findings of the study 

underscore the relevance of cloud-computing artificial intelligence techniques, and particularly 

the GEE platform, for evaluating the eco-hydrological dynamics of wetland systems in semi-

arid southern Africa, which are deteriorating due to their unsustainable use and poor 
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management, as a result of the limited amount of available knowledge on these changes over 

time. 

Keywords: Artificial intelligence; Dryland wetland; Ephemeral wetland; Machine-learning 

algorithm; Wetland condition; Wetland management  

5.1 Introduction   

Semi-arid areas commonly host small intermittently-flooded wetlands, which are highly 

sensitive to climate variability and anthropogenic influences (The Wetlands in Dry Lands 

Research Network, 2014). Anthropogenic influences and climate variability are the major 

causes of the high inter- and intra-annual eco-hydrological variability in these systems. In many 

cases, the disappearance of surface inundation during the dry season makes such wetlands 

susceptible to habitat destruction and loss (Blanckenberg et al., 2020). Semi-arid wetlands have 

been reported to be declining at an alarming rate globally, mostly due to the erratic rainfall, 

climate change and their high utilisation by the surrounding communities (Thamaga et al., 

2021). Reports in Ethiopia, which is predominantly arid, indicate that several seasonal wetlands 

have been lost (Bahilu and Tadesse, 2017). This has been attributed to the unregulated and 

over-utilization of these systems, which have had a negative impact on the condition of the 

wetlands. It has been reported that over 30% of wetlands in China have been lost over the past 

50 years, due to anthropogenic activities (Liu et al., 2017). The estimates of wetland loss in 

South Africa range from 50 to 58%, but the full extent of the transformation is difficult to 

quantify over large spatial scales necessary to inform national policy responses (van Deventer 

et al., 2019). There is therefore an urgent need for interventions, in order to halt the further 

degradation of these important ecosystems.  

In order to sustain these systems, programs such as the South Africa’s National Biodiversity 

Assessment (van Deventer et al., 2019) and Working for Wetlands (Dini and Bahadur, 2016) 

have been devoted to promoting the conservation, wise use and restoration of all wetlands on 

a local, national and regional scale. There are also several regional and international efforts that 

are aimed at reversing the degradation of wetlands, through the dissemination of information 

and the involvement of local communities in establishing proper management plans (Rebelo, 

2010). These efforts are, however, hindered by a lack of data on the eco-hydrological dynamics 

of wetlands, on an appropriate spatial and temporal scale, particularly in the sub-Saharan 

African region (Gxokwe et al., 2020; Thamaga et al., 2021).  

https://etd.uwc.ac.za/



81 
 

Projects such as the current Wetland Monitoring and Assessment Services for Transboundary 

Basins in Southern Africa (WeMAST), which is funded by the European Union–Africa Global 

Monitoring for Environmental Security (EU Africa GMES), have been initiated to ensure the 

effectiveness of monitoring and assessment of wetlands by using earth observation data. Such 

data provide opportunities for producing detailed wetland inventories and understanding 

wetland dynamics on a scale that is relevant for the management of wetlands of varying sizes 

(van Deventer et al., 2019). Moreover, the availability of cloud-computing platforms, such as 

the Google Earth Engine (GEE), supports the efforts of regional wetland analyses by using 

earth observation data. The availability of over 40 years of petabytes of remotely-sensed and 

freely-accessible data, coupled with the advanced machine-learning algorithms on the GEE 

platform, makes it possible to consistently monitor the small to large wetlands and track their 

changes over time (Gorelick et al., 2017). This therefore provides much-needed information 

about the eco-hydrological dynamics of wetlands, which can be used to develop management 

actions.    

Although the GEE cloud-computing platform offers numerous advantages for addressing the 

issue of limited and inconsistent data for wetland monitoring, its use for monitoring the long-

term changes in the eco-hydrological dynamics of semi-arid wetlands requires further 

evaluation (Wua et al., 2019). Studies that have utilised this platform for the long-term 

monitoring of environmental change have included the mapping of forests, crops and open 

water (Kumar and Mutanga, 2018; Tamiminia et al., 2020), and the most recent studies that 

have used the GEE in wetland mapping have demonstrated the potential  of this platform for 

wetland studies (Gxokwe et al., 2021; Zhou et al., 2019). Although these studies have 

underscored the relevance of utilising GEE for investigating small and seasonally-flooded 

wetlands, they have not considered the longer-term changes that can be assessed by using the 

time-series analysis in GEE.  

There is therefore a need to assess the applicability of the GEE and multi-source spatial data 

for monitoring the long-term changes in the eco-hydrological dynamics of wetlands in semi-

arid environments, particularly in sub-Saharan Africa. This will help to develop consistent and 

comparable wetland inventories across the region, and it will advance the understanding of the 

drivers of wetland dynamics (including the anthropogenic stressors that contribute to the 

degradation and loss of wetlands); it will also enhance the local, regional and international 

wetland conservation and management programme. Moreover, the long-term monitoring of 

eco-hydrological dynamics is critical for preventing and managing the loss of wetland 
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ecosystem services (Millennium Ecosystem Assessment, 2005). This chapter therefore aims to 

assess the use of the GEE cloud-computing platform for monitoring the long-term variations 

in the eco-hydrological dynamics of small and seasonally-flooded wetlands in a semi-arid 

region of South Africa over a 20-year period (2000-2020), by using the upper middle reach of 

the Nylsvley floodplain as a case study. The specific objectives are: 1) to evaluate the spatio-

temporal variations in the eco-hydrological dynamics of wetlands, using time-series Landsat 

composite data, coupled with the GEE machine-learning algorithms; and 2) to establish the 

major drivers of the eco-hydrological changes in the studied systems, by using remotely-sensed 

metrics, coupled with climate data.      

5.2 Materials and Methods  

5.2.1 Field data collection  

Field data were collected between 28-09-2020 and 1-10-2020 in the upper middle reach of the 

Nylsvley floodplain located within the boundaries of the Nylsvley nature reserve. A total of 

300 ground truth points, which represented the different landcover classes, were collected 

during field surveys, by using a hand-held Geographical Positioning System (GPS) with an 

error margin of less than 3.65 m. The land cover that was observed included classes, such as 

the bare surfaces, the short wetland grass species, comprised of Cynodon dyctolon (Bermuda 

grass) and Oryza longistaminata (Rice grass), as well as the long wetland grass species, 

comprised of only Phragmites australis (Common reeds). These vegetation communities were 

visually identified in the field. The floodplain was completely dry during the field visits; 

therefore, no water was detected. The collected field data coincided with the months of some 

images that were acquired during the study time periods. The ground truth points were collected 

following a stratified random sampling approach. Consequently, the floodplain was then sub-

divided into 30 m x 30 m quadrants, which were spaced about 10 m apart. These quadrants 

were chosen because of the pixel size of the remotely-sensed data that were used, as well as 

the size of the studied floodplain. This is supported by a number of remote sensing studies, 

such as Mudereri et al., (2021) and Thamaga and Dube (2018). A minimum of 20 points were 

randomly collected from each quadrant, depending on the heterogeneity of the landcover 

identified in each quadrant and the accessibility of some sections within the wetland. The field 

data were supplemented by 350 more points that were randomly extracted from higher-

resolution Google Earth images and which coincided with the dates of some of the remotely-

sensed images that were used. The data gathered from field visits and the higher-resolution 

Google Earth images were comprised of 552 points, which represented the short grass species, 
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68 points representing the bare surface and 30 points representing the long grass species. The 

collected points were then randomly split on the R-studio into 70% for training (386 points for 

short grass, 48 points for bare surface and 21 points for long grass) and 30 % for validation 

(136 points for short grass, 20 points for bare surface and 9 points for long grass) for the 

classification of images by using the Random Forest model.    

5.2.2 Ancillary data  

The 2000-2020 monthly rainfall and temperature data for the Mookgopong Weather Station, 

located at -24.42745 and 28.59419 north-west of the Nylsvley floodplain, were collected from 

the South African Agricultural Research Council. The station is located at an altitude of 820 m 

towards the higher elevation areas, and 26 km away from the studied floodplain. Due to the 

unavailability of  evapotranspiration data, the evapotranspiration rates were estimated by using 

the following Equation 5.1 (Hargreaves and Samani, 1985): 

𝐸 = 1.25 × 0.0023 × 𝑅𝑎𝑇𝑟
0.5(𝑇𝑎 + 17.8)                                                       (5.1) 

where E is the potential evapotranspiration rate (mm/day), Ra is extra-terrestrial radiation (mm 

equivalent per day), Tr is monthly temperature range (°C) and Ta is average daily temperature 

for the month (°C).  The evapotranspiration rates were used as the daily rates for a month. Other 

methods, such as the Penman-Monteith equation, could not be used because the solar radiation, 

wind speed and relative humidity were not available for the study area.       

5.2.3 Remote sensing data acquisition and processing  

The steps followed during the acquisition and processing of the remote sensing data are 

presented in Figure 5.1. Prior to the image classification, remotely-sensed products were 

extracted from the GEE catalogue, and Landsat-7 ETM+ was chosen because it has been 

available the longest on the platform. Although it is reported in literature that Landsat-7 ETM+ 

was adversely  affected by the failure of the Scan Line Corrector (SLC)  (Dube and Mutanga, 

2015) after the 31st of  May 2003, the stripes caused by the failed SLC did not affect the area 

covered by the wetland that was studied. The data collected were then filtered by the wetland 

boundaries and the date, using the codes ‘Image.filterBounds ()’ and ‘ee. Filter.Date ()’ on the 

GEE cloud-computing platform. After filtering the images by their dates and boundaries, they 

were then filtered by cloud cover. Images with a clear cloud coverage (0%) were selected 

because of the size (13.69 km2) of the studied wetland, while images with cloud cover were 

excluded, since cloud masking would result in severe error propagation. The ‘ee.Filter.eq 
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(‘CLOUD_COVER’, 0)’ code was used to filter the images with cloud cover. The number of 

images obtained from the filtering process are presented in Table 5.1.  The cloud-free images 

were then grouped in 5-year intervals, with the first interval being from 2000 to 2005, the 

second and third intervals from 2006 -2010 and 2011-2015, respectively, and the last interval 

from 2016 and 2020. After the grouping of the images, wetland indices, such as the Normalised 

Difference Vegetation Index (NDVI), the Normalised Difference Water Index (NDWI) and the 

Normalised Difference Phenology Index (NDPI), were computed for all the images obtained 

in each interval, using the equations presented in the supplementary material (Table A). They 

were then extracted to assess their variations over time, since they are used as a proxy for the 

eco-hydrological dynamics. NDVI was chosen because of its sensitivity to photosynthetically-

active biomass, which enables the discrimination between wetland and non-wetland areas, as 

well as vegetated and non-vegetated areas (Liu and Huete, 1995). The NDWI was chosen 

because of its sensitivity to open water, as it can discriminate between water and non-water 

areas. Although it was noted that the system under study had very limited open water, the 

NDWI was used to capture the pixels that may have open water during any time period. The 

NDPI, which was recently developed by Wang et al., (2017), and it uses the weighted 

combination of Red and Short-Wave Infrared (SWIR) bands instead of using the red band, as 

in the NDVI. The weighted combination is almost equal to the value of the Near Infrared band 

(NIR) for different soils and is sensitive to vegetation. Moreover, the NDPI considers the 

absorption of the leaf water content in the SWIR band, which can thus account for variations 

in the canopy water content. This helps to improve the separability of soil and vegetation with 

the varying leaf water content, which was previously a daunting task, when using NDVI, and 

which is why the NDPI was chosen. Furthermore, the abovementioned indices were computed 

from the time series data and then used to assess the eco-hydrological dynamics of the wetland 

over time. In addition, visible (Red, Green and Blue) NIR and SWIR bands were extracted 

from the grouped images representing each interval, and concatenated to the extracted indices 

to form images with only the appropriate band combinations, which enhances the wetland 

features more. The concatenated images were then composited per interval to form single 

images that represented each interval, by using the median composite algorithm in GEE, which 

reduces a stack of images by calculating a median across the matching bands, thus minimising 

the illumination effects, such as shade, as well as the effects of cloud cover (Gorelick et al., 

2017; Mahdianpari et al., 2020). The derived composite images were then subjected to the 

Object-Based Image Analysis (OBIA), which was chosen because of its superiority over a 

pixel-based analysis. Various studies (e.g. Mahdianpari et al., 2019; Pande-Chhetri et al., 2017) 
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have shown that OBIA relies not only on the spectral characteristics, but it also considers the 

contextual information (the height, texture, area, perimeter, etc.) of a pixel, which helps to 

improve the discrimination of wetland classes. The initial step in OBIA is image segmentation, 

which involves the partitioning of the image into multiple discreet and non-overlapping objects, 

based on a specific criterion. This maximises the separability of different landcover classes and 

prevents the ‘salt and pepper’ effect on the final classified image (Dlamini et al., 2021a). A 

Simple Non-Iterative Clustering (SNIC) Algorithm was then used to partition the composite 

images. The SNIC undertakes image segmentation by initialising the centroids in a regular 

gridded image, and then the dependency of each pixel is established, relative to the centroids, 

by using the distance in the five-dimensional space of colour and spatial coordinates. The 

distance joins the normalised spatial and colour distances to produce a uniform super pixel. 

The candidate pixel is added to the cluster, based on its shortest distance to the centroid 

(Achanta and Süsstrunk, 2017). This algorithm was selected because of its simplicity and 

memory efficiency, as well as its ability to incorporate connectivity between the pixels after 

the initiation of the algorithm. The SNIC algorithm was implemented using the code 

‘ee.Algorithms.Image.Segmantation.SNIC()’ and the outputs were images with super pixels, 

as well as the contextual information of those pixels, such as the area, texture (standard 

deviation), perimeter and height. These were then integrated into the selected spectral bands 

and used as an input concatenate images in the selected machine-learning algorithm.    

Table 5.1 Number of remotely-sensed images with no cloud cover obtained per time 

intervals with their details 

Period No. of images obtained Remote sensing product 

2000 - 2005 26 Landsat (ETM+) 

2006 - 2010 20 Landsat (ETM+) 

2011 - 2015 25 Landsat (ETM+) 

2016 - 2020 37 Landsat (ETM+) 
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Figure 5.1 Image classification process using the GEE cloud-computing platform  
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5.2.4 Adopted wetland classification approach  

The classification of the acquired images was executed by using the Random Forest (RF) 

machine-learning algorithm on the GEE cloud-computing platform. The RF algorithm is an 

ensemble non-parametric classifier that consists of many different trees from subsets of 

randomly-selected training data (Dlamini et al., 2021). Each tree casts a unit vote to decide on 

the final class of the object. The algorithm was selected because of its ability to handle the large 

differences between landcover classes, thereby neutralising the noise in the dataset (Simioni et 

al., 2020). Moreover, the selection of the RF algorithm in this study was informed by the study 

of Gxokwe et al., (2021), which identified RF as an appropriate GEE algorithm for classifying 

small and seasonally-flooded wetlands. Comparatively, the RF algorithms produced highest 

overall producer’s and user’s accuracies. Prior to the classification, the ground truth points 

were split on R-studio to 70% training and 30% validation samples. The split training data were 

then imported and converted to vector files in a GIS environment and imported to the GEE to 

train the classifier. The training of the RF classifier was executed by using the code 

‘ee.Classifier.train()’. In training the object-based RF model, the grid search value for the mtry 

parameter varied from 1 and 5. The grid search value for the ntree parameter was varied from 

500 to 10 000, with an interval of 500. The ranges were selected, based on those in similar 

studies (e.g. Dlamini et al., 2021; Gxokwe et al., 2021; Ryan et al., 2014). The search yielded 

100 combinations of mtry and ntree values, and the optimum values (1 500 ntree and 5 mtry) 

from these combinations were finally used as the RF model input parameters for classifying 

the Landsat-7 composite images. The classification of the remotely-sensed image composites 

was then executed by using the code ‘Image.classify()’.   

5.2.5 Accuracy assessment  

The accuracy assessment was executed by using three metrices, namely, the Overall Accuracy 

(OA), the User’s Accuracy (UA) and the Producer’s Accuracy (PA). The OA measures the 

overall correctly-classified pixels (Story and Congalton, 1986) and UA measures the 

probability that a classified pixel of a particular category belongs to that category on the ground, 

while PA measures  how well the reference groundcover type pixels were classified (Story and 

Congalton, 1986). The OA was implemented by using the code ‘Image.accuracy()’ in GEE, 

while PA and UA were implemented by using the codes ‘Image.producersAccuracy’ and 

‘Image.consumersAccuracy()’. During the implementation of the above-mentioned algorithms 

in GEE, the validation vector produced from the 30% field data was first imported to the 

https://etd.uwc.ac.za/



88 
 

platform, and the zones on the classified image that corresponded to the vector points were 

sampled by using the code ‘Image.sampleRegions()’. The sampled zones, as well as the 

validation vector points, were then used as input files for the latter algorithms to compute each 

accuracy metric (OA, UA and PA). 

5.2.6 Change analysis, variations and major drivers  

In order to assess the eco-hydrological changes in the wetlands, the area covered by each land 

cover class was estimated from the classified image per interval Moreover, the rate of change 

for each class (RAC) was established by using the method of Shen et al. (2019) (see Equation 

5.2).  

𝑅𝐴𝐶 = (
𝐸𝐴 − 𝐼𝐴

𝐼𝐴
) × 100%                                                                    (5.2) 

where RAC is given as the rate of change of the wetland area; EA is the area of the period 

considered (it refers to the areas in years 2000-2005, 2006-2010, 2011-2015 and 2016-2020); 

and IA is the initial wetland area (it refers to the total area for the period of 2000-2005 calculated 

as the sum of the surface areas covered by the identified wetland classes). The variations in 

eco-hydrological dynamics were established by analysing the NDVI, NDWI and NDPI time 

series, which were used as a proxy for the eco-hydrological dynamics of the wetland.  

5.3 Results  

The changes in spatial distribution of the wetland-cover classes for the time periods are 

presented in Figure 5.2. The water class could not be identified by using the object-based RF 

model because the training and validation data for this class were unavailable. This was because 

there was no visible spatial coverage of the class during the ground-truthing period, which may 

have been caused by short-term surface inundation. Moreover, the indices that were used could 

detect no water classes, mainly because of the forested vegetation within the wetland, as well 

as the spatial resolution of the data used. Although water could not be detected, most of the 

identified vegetation species, such as Phragmites australis, are associated with the presence of 

semi-permanent saturated wetland soils, which provided eco-hydrological information about 

the Nylsvley floodplain. This is supported by the findings of Kotze and O’Connor (2000), who 

reported that species such as Phragmites australis, were associated with the wettest zones 

within the studied wetland, therefore implying that ecohydrology information could be deduced 

from this type of species.   
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The class distribution shows that short grass was the most dominant class, except for the period 

2016 to 2020, when the bare surface was the most dominant class. Long grass was the least 

dominant class for all the cases, except for the 4th period (2016-2020), where short grass was 

the least dominant. The visual assessment of the changes from the derived spatial distribution 

maps of the wetland classes shows variations in these classes over time. These results show 

that classes, such as short grass and long grass, declined between Periods 1 and 2 (2000-2005 

and 2006-2010). However, a resurgence was observed in these classes during Period 3 (2011-

2015). For the bare surface, an increase was noted for the entire monitoring period, except for 

Period 3 (2011-2015), where a decline of about 1.5 km2 was noted. A sharp decline in the 

spatial distribution of short and long grass were observed for the Period 4 (2016–2020), and 

that for the bare surface sharply increased for the same period.  

The class area results, which are shown in Figure 5.3, corroborate the visual observations of 

the spatial distribution of the identified wetland classes during fieldwork. The results show that 

the short grass class had the highest surface area for Periods 1, 2 and 3 (2000-2005, 2006-2010 

and 2011-2015), with surface areas ranging between 5 km2 and 8 km2, respectively. Long grass 

had the lowest surface area for the above-mentioned periods, which ranged between 0.1 km2 to 

0.5 km2, respectively. During Period 4 (2016–2020), the bare surface had the highest surface 

area of 4.8 km2 and short grass had the lowest (1.5 km2). 
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5.3.1 Variations in the eco-hydrological dynamics  

 

Figure 5.2 Spatial distribution of wetland classes for the studied periods (Period 1: 2000-

2005, Period 2: 2006-2010, Period 3: 2011-2015 and Period 4: 2016-2020), 

produced by using Object-based Random Forest classification of Landsat-7 data 

The results of the rate of change per class are shown in Table 5.2. Drastic changes occurred at 

a high rate in the wetland-cover classes between the periods. The results show that the short 

grass declined at a rate of about 38% between Periods 1 and 2 (2000-2005 and 2006-2010), 

whereas it increased for the other classes at a rate of 228% and 230%, particularly for the bare 

surface, which doubled, compared to Period 1 (2000–2005). Although a decline in short grass 

was observed for the above-mentioned periods, there was a 51% increase in this class during 

Period 3 (2011-2015). The bare surface and long grass decreased at a rate of 69% and 46%, 
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respectively, for Period 3 (2011-2015). Furthermore, the results show that the short grass 

declined by 81%, while it doubled for the other classes such as long grass.   

Table 5.2 Rate of change of the Nylsvley floodplain between the periods 

Class Rate of change 

from P1 to P2 (%) 

Rate of Change 

from P2 to P3 (%) 

Rate of Change 

from P3 to P4 (%) 

Short grass -38 51 -81 

Long grass 228 -46 896 

Bare surface 230 -69 350 

*P1: 2000 -2005, P2: 2006-2010, P3: 2011-2015 & P4: 2016-2020 

 

Figure 5.3 Nylsvley floodplain land cover surface areas per time periods (Period 1: 2000-

2005, Period 2: 2006-2010, Period 3: 2011-2015 and Period 4: 2016-2020)  

There were no major changes in the temporal variations of NDVI, NDPI and NDWI for the 

Nylsvley floodplain (Supplementary material: Figure A).  However, the NDWI had low values 

of less than 0 throughout, which implies that no surface inundation that was detected. In most 

cases, NDPI and NDVI had values greater than 0, particularly for the 2000-2005, 2006-2010 

and 2016-2020 time periods (Supplementary material: Figure A), which implies that vegetation 

was detected, although it was not healthy.  

 

https://etd.uwc.ac.za/



92 
 

5.3.2 Accuracy assessment  

The accuracy assessment results showed that the OA (Figure 5.3) for all the periods were within 

an acceptable range of between 72% and 78%, with 2011-2015 and 2016-2020 having the 

highest values, and 2006-2010 having the lowest.  

 

Figure 5.3 Overall accuracy for the classified image composites for each period (Period 1: 

2000-2005, Period 2: 2006-2010, Period 3: 2011-2015 and Period 4: 2016-

2020) 

The class accuracy results are presented in Table 5.3. The results show that the PA ranged 

between 33% and 88% for all the periods, and that short grass had the highest PA in all the 

cases and long grass had the lowest PA, particularly for Periods 1 and 2 (2000-2005 and 2006-

2010), during which the PA was 33%. For Periods 3 and 4 (2011-2015 and 2016–2020), the 

bare surface had the lowest PA, with 37.5% for both periods. The UA results ranged from 40% 

to 100%, with long grass having the highest UA for Periods 1 and 2 (2000-2005 and 2006-

2010). The lowest UA was for the bare surface during Period 1 (2006-2010), with 40% (Table 

5.3).  

 

 

 

 

https://etd.uwc.ac.za/



93 
 

Table 5.3 Error metrices results for classified image composites representing Period 1: 

2000-2005, Period 2: 2006-2010, Period 3: 2011-2015 and Period 4: 2016-2020 

 

Period 

 

 

Class 

 

PA (%) 

 

UA (%) 

 

2000 - 2005 

Short grass 88 78.57 

Long grass 33.3 100 

Bare surface 50 57.14 

 

2006 - 2010 

Short grass 84 84 

Long grass 33.3 100 

Bare surface 50 40 

 

2011 -2015 

Short grass 92 85.18 

Long grass 66.6 66.6 

Bare surface 37.5 50 

 

2016 - 2020 

Short grass 92 88.46 

Long grass 66.6 50 

Bare surface 37.5 50 

 

5.3.3 Drivers of eco-hydrological variations  

Statistical summary of the NDVI, NDWI and NDPI results for all the periods are presented in 

the supplementary material (see Figure B). The results indicate that the indices data are mostly 

asymmetric (mostly positively skewed) for most of the time periods, except for some NDWI 

data, for example, Period 2 in 2006 and Period 3 in 2014, where the data show a symmetric 

distribution (bell-curved). In most cases, the data also show larger variations with large ranges 

(stretched whiskers), except for some years, such as 2003 in Period 1 (2000 -2005), where the 

whiskers for NDVI, NDWI and NDPI are squeezed, as well as 2008 and 2009 in Period 2 (2006 

-2010), where the whiskers are short. The outliers were observed for the NDVI, NDWI and 

NDPI data for the year 2004 in Periods 1 and 4 for the years 2017, 2018 and 2019. For Period 

3, outliers were observed for NDVI during the year 2015. In addition, an inverse relationship 

between the biomass (indices) and the annual ET rate (Figure 5.5) was also noted. The NDPI 

decreased considerably during the years when the ET increased e.g. 2002 and 2004 (Figure 

5.5a).  
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Figure 5.4 The relationship between biomass (indices) and annual ET rates for a) Period 

1: 2000-2005, b) Period 2: 2006- 2010, c) Period 3: 2011-2015 and d) Period 

4: 2016-2020 

The biomass indices, except for NDPI, tended to increase, as expected, with the annual amount 

of precipitation e.g. from 2007 to 2009 (Figure 5.6). However, this relationship is not evident 

during some years, such as Period 1 from 2002 to 2004.  A wetland typically stores both surface 

and subsurface water and, therefore, a decrease in rainfall in a single year, such as in 2002 and 

2003, may not have a significant effect on the growth of plants, as they may be utilising water 

that is already in storage.   
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5.4 Discussion  

This study assessed the use of the GEE cloud-computing platform for monitoring the long-term 

(2000-2020) variations in the eco-hydrological dynamics of the small and seasonally-flooded 

wetlands in a semi-arid environment of South Africa, using the Nylsvley floodplain as a case 

study. The main classification results showed that the following three landcover classes could 

be identified: a) short grass vegetation, characterised by species such as Cynodon dyctolon and 

Oryza longistaminata; b) long grass species, such as Phragmites australis; and c) bare surfaces. 

These land-cover classes represent the zones with a semi-permanent soil saturation, as shown 

by the presence of Phragmites australis, and temporary to seasonal saturation, as represented 

by short grass (Oryza longistaminata) (Kotze and O’Connor, 2000). While the Nylsvley 

floodplain may generally be considered as a seasonally-flooded system, the results of this study 

show that the system contains both seasonal and semi-permanent hydro-periods because of the 

presence of the abovementioned wetland vegetation species, which are viewed as indicators of 

an environment with semi-permanent saturated soils and seasonal inundation. The water class 

could not be detected, as the training and validation data for this class were unavailable, 

because of the absence of surface inundation during the period of ground truthing. Moreover, 

the remotely-sensed spectral indices that were used failed to detect the presence of water, 

mostly due to the dense vegetation in parts of the studied system, as well as the spatial 

resolution of the Landsat-7 ETM+, which was selected because of the length of its image 

records and the number of good-quality images (Table B in supplementary material) that are 

available for this product in the GEE catalogue.   

The accuracy assessment results showed that the overall accuracy was within the acceptable 

range of 69%-79%. However, there were some inaccuracies for the bare surface and long grass 

classes for some periods. These can be mostly attributed to the spatial resolution of the 

remotely-sensed product used, which resulted in significant spectral mixing between the 

classes. Several studies (e.g. Dvorett et al., 2016; Gxokwe et al., 2021), have demonstrated that 

the spatial resolution of the remotely-sensed data does impact the accuracy of classification 

results significantly, particularly when mapping small areas, such as the wetlands in this study. 

Moreover, the Federal Geographic Data Committee report (1992) highlighted that, with the 

Landsat data that are used in this study, the accurate identification of an object requires at least 

9 pixels, which covers a total surface area of about 0.9 ha and, at most, 25 pixels. The limited 

training data of the bare surface and long grass species, relative to the short grass species, due 

to the spatial coverage of these classes within the wetland, led to an unequal distribution of 
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training points, which affected the ability of the training data to adequately characterise the 

classes of interest.  

Due to the small size of the bare surface and long grass within the wetland, fewer points were 

collected for these classes, than for short grass, thus resulting in an imbalance in the training 

samples. These imbalances are likely to have caused inaccuracies in the classification of the 

bare surface and long grass, as opposed to that of short grass, which had more training data. 

Several studies (e.g. Millard and Richardson, 2013; Ustuner et al., 2016; Xia et al., 2019) have 

demonstrated that an unequal distribution, or imbalance, in the training data is likely to 

influence the classification accuracy of the classes in such a way that the over-represented 

classes may dominate the under-represented classes, which may result in classification 

inaccuracies for the under-represented classes. However, the imbalances in training samples in 

this case did not result from a sampling error, but rather, from the lower number of training 

points available for the bare surface and long grass, which was caused by the small areal 

coverage of land-cover classes in the area under study.  

The spatiotemporal variation results showed that eco-hydrological conditions varied from one 

period to another; some of the classes changed to more than double the previous area, and some 

dropped significantly to half of the previous period. The results indicated that, in most cases, 

the bare surface increased significantly for periods, such as 2006-2010 and 2016-2020. This 

can be attributed mostly to the seasonal changes, as most images used for these periods were 

collected during the dry season (Addendum A), which is the leaf-off season. Few suitable 

images were available for the wet (leaf-on) season, due to the frequent cloud cover. Moreover, 

below average precipitation was received in the LTRB during 2016-2017, which significantly 

impacted most ecosystems, including the wetlands in the area (Gxokwe et al., 2021) and which 

therefore explains the domination of the bare surface. This is also evident in Figure A in the 

supplementary material. The temporal variations in the indices results showed a similar trend 

between NDVI, NDWI and NDPI, and the floodplain was dry most of the time. These findings 

corroborate those of Nhamo et al., (2017), who reported high seasonal variabilities in the 

wetland of the Witbank Catchment in South Africa, although they focused on the inundation 

dynamics on a larger scale than in this study.  

As expected, there was an inverse relationship between the ET and wetland biomass for all the 

periods. This is because ET tends to contribute to the water losses in wetlands, particularly in 

semi-arid regions, which therefore results in a loss of the available moisture in wetlands and 
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therefore contributes to the decline in the NDWI values for the wetlands. Due to the decline in 

moisture content available in the wetland, some vegetation become less healthy, because water 

stress results in a decline in the NDVI and NDPI values. Al-Shehhi et al., (2011) monitored the 

effects of a variable soil moisture content using the MODIS-derived NDVI for different 

vegetation species in Abu Dhabi. The findings showed that, with the increasing evaporation 

rates, less healthy vegetation dominated the studied area, due to the plants wilting, which 

resulted in decreased NDVI values. These results corroborate the findings of the current study, 

although the focus was not only on wetland vegetation. West et al., (2018) also studied the 

vegetation response to the varying soil moisture contents, using Sentinel-2 data, and the results 

showed a strong correlation between a Sentinel-2-derived NDVI and the soil moisture content, 

which therefore supports the findings of the current study.  

A comparative analysis of the annual precipitation with average NDVI, NDWI and NDPI 

values showed that with an increase in the annual precipitation, the indices also increased for 

all the time periods, except for 2000-2001, where the indices showed a delayed response to the 

varying annual precipitation. The delayed response could have resulted from the use of dry 

season images, which corresponds to the leaf-off season for vegetation and the low-flow period 

for inundation. The study by Chen et al., (2020) evaluated the vegetation response to 

precipitation anomalies in the semi-arid Inner Mongolia Plateau of China over a 34-year period, 

using the Advanced Very High-Resolution Radiometer (AVHRR)-derived NDVI and multi-

source precipitation data. The findings of the study showed that there is a time-lag in the 

vegetation’s response to precipitation, although the duration is not visible.   

This study has shown that the annual variations in the rainfall and evapotranspiration rates are 

the major drivers for the eco-hydrological dynamics of the Nylsvley floodplain. The annual 

rainfall will also influence the availability of both soil water and groundwater, which influence 

the vegetation growth in a wetland. These findings corroborate those of Birkhead et al., (2007), 

who modelled the hydraulic behaviour of the Nylsvley floodplain by using field-measured 

climate data, coupled with LIDAR data. The study identified the ET and annual rainfall as the 

driving factors of the eco-hydrological changes in the floodplain.  

Overall, the findings underscore the relevance of cloud-computing artificial intelligence 

platforms, such as GEE, for monitoring the long-term variations in the eco-hydrological 

dynamics of semi-arid wetlands in the sub-Saharan region, by providing information on their 

degradation rates and losses, which are currently unknown for these regions. These findings 
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are critical for the development of sustainable use and management frameworks of small and 

seasonally-flooded wetlands in semi-arid regions. They also provide useful alternative ways 

and robust methodologies to generate routine and continuous wetland information about these 

changes, which was previously a daunting task when using traditional mapping and monitoring 

techniques. This will therefore help to develop the local- and global-scale frameworks and 

assist in setting up conservation policies and the use of effective management practices in 

wetlands, particularly in data-scarce regions with semi-arid climates and semi-permanent 

wetlands with a varying ecohydrology, which may typically be over-exploited during the dry 

periods.  

The study also informs the ongoing efforts of various projects, for example, those of the Global 

Monitoring Environment and Security (GMES)-Africa, which is hosted by southern African 

Science Services Centre for Climate Change and Adaptive Land Management, and which 

promotes the use of earth observation data for assessing, monitoring and managing wetlands 

in transboundary basins, to prevent the loss of ecosystems services, which are beneficial to the 

communities living in the vicinity of these systems. This study also contributes towards 

achieving the key priority areas of Agenda 2063 of the African Union, which seeks to preserve 

at least 17% of the terrestrial and inland waters (including wetlands) and 10% of the marine 

areas by 2023. It also contributes to achieving Sustainable Development Goal (SDG 6.6), 

which advocates the prevention of the destruction and degradation of all ecosystems, and the 

rehabilitation of those that have already been destroyed (Sudmanns et al., 2020).   

5.5 Conclusion and Recommendation 

This study utilised remotely-sensed data, which is accessible on the GEE platform, coupled 

with advanced machine-learning algorithms, to monitor the long-term eco-hydrological 

dynamics of semi-permanent wetlands (over a 20-year period), using the Nylsvley floodplain 

in Limpopo, South Africa, as a case study. The findings of the study showed that the 

ecohydrology of the wetland varied over time and space. For example, the bare surface 

increased twice as much as the previous measurement period, whereas the short grass decreased 

significantly during Period 2. Moreover, the remotely-sensed-derived spectral indices showed 

a similar trend throughout the 20-year period, with NDWI having minimum values of less than 

zero, in all cases, which implies that there was no surface inundation. However, the presence 

of some wetland vegetation indicated that there were seasonal to semi-permanent soil-

saturation conditions. The results also showed that the annual rainfall and ET were the major 
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drivers of the eco-hydrological dynamics of the Nylsvley floodplain. These findings underscore 

the relevance of using cloud-computing artificial intelligence techniques, coupled with optical 

remotely-sensed data, for monitoring the changes in the ecohydrology of small and seasonally-

flooded wetlands, which is critical for the sustainable use and management of the systems in 

these regions. They provide useful alternative ways and robust methodologies to generate long- 

term baseline information about these changes over time, which was previously a daunting task 

when using traditional mapping and monitoring techniques. This study will therefore help to 

develop local- and global-scale frameworks that will assist in setting up conservation policies, 

and in the application of effective management practices in wetlands, particularly in data-scarce 

regions with semi-arid climates and semi-permanent wetlands with a varying ecohydrology 

that may typically be over-exploited during the dry periods. While the study offers new 

opportunities to generate continuous high-resolution, wetland-scale information, it is 

recommended that the potential of this platform for the large-scale monitoring of the impacts 

of adjacent land use and land cover changes to these systems should be investigated, as these 

systems are most likely to be influenced by the land use changes that occur on a regional and 

local level.  
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CHAPTER 6 

LARGE-SCALE ANALYSIS OF LAND USE LAND COVER CHANGES 

ON SEASONALLY-FLOODED WETLANDS EXTENT IN SEMI-ARID 

SOUTHERN AFRICA 
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Abstract 

Although significant research strides have been made in the analysis and modelling of Land 

Use Land Cover (LULC) changes, at various scales, the attention has been focused on the 

impact of individual aspects of LULC changes on wetlands or larger protected systems, rather 

than on the over-utilised small and seasonally-flooded systems. It is therefore imperative that 

LULC changes, and their impact on wetlands, be monitored at all levels, and in wetlands of 

varying size and nature, in order to properly inform the future wetland conservation strategies. 

Although Earth Observations (EO) data offer useful opportunities for addressing the issues 

associated with the monitoring of LULC changes and their impact on wetlands, they are still 

contested by the non-remote sensing community because of unavailability of seamless and 

cloud-free data throughout the year, which creates difficulties in continuous monitoring of the 

environment. Improvements in remote sensing data analytic tools, such as the introduction of 

various cloud-computing platforms, offer the opportunity to address the limitations of EO data 

with their advanced processing power and algorithms, which allow for the integration of multi-

source and multitemporal data and which may improve environmental monitoring. Therefore, 

this study analysed the impact of large-scale LULC changes on the extent of semi-arid wetlands 

over a 20-year period, using the Limpopo Transboundary Basin in southern Africa as a case 

study. The specific objectives were: 1) to examine the LULC changes at the studied basin over 

a 20-year period, using time series multisource remotely-sensed data (Landsat-5 TM, Landsat-

8 Operational Land Imager (OLI) and Sentinel-1), coupled with the Random Forest machine-

learning algorithm; and 2) to assess the relationship between the LULC transitions and the 

extent of the wetlands, by using land-cover class area changes. Overall, 9 land-cover classes 

were characterised; these included shrublands, croplands, bare surface, wetlands, sparse 

vegetation, grasslands, built-up area and savanna grasslands. The shrubland was the most 

dominating class throughout the study periods, covering between 76% and 82% of the total 

surface area of the basin, while wetlands and sparse vegetation were the least dominating 

classes, with the proportions ranging between 0.9% and 2%, and 0.3% and 0.04%, respectively. 

The results showed an overall accuracy within an acceptable range (77% -78%), although some 

classes, such as wetlands and sparse vegetation, presented low class accuracies for some of the 

periods. This was attributed to the unbalanced training and validation data caused by the low 

spatial coverage of these classes. It was also observed that wetlands and sparse vegetation 

continued to decline at an average rate of 19% and 44%, while shrublands, croplands and 

savanna grasslands continued to increase at an average rate of 0.4%, 12.4% and 4.25%, 
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respectively. Most of the wetland area (40%) was replaced by built-up areas, indicating that 

urbanization is a major driving factor that is leading to the loss of wetlands in the area. The 

study provides new insights into the diminishing state of the semi-arid wetlands in southern 

Africa, particularly in the LTRB. These findings are critical for environmental planners and 

conservation specialists, as they provide the baseline information that is required for 

developing proper strategies and that will assist in curbing the negative impacts that these 

LULC cover changes have on wetlands. Moreover, the study provides robust, cost-effective 

and efficient ways to assist the generation of acceptable and precise knowledge, to inform the 

LULC management policies, as well as wetlands conservation and management strategies, on 

a larger scale.   

Keywords: Big data analytic; Dryland wetland; Google Earth Engine; Wetland condition; 

Wetland loss; Wetland management 
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6.1 Introduction  

Over the years, Land Use and Land Cover (LULC) changes have become a cause for concern 

to nature conservationists and decision planners, due to their disproportionate growth and 

impact on natural ecosystems, such as wetlands (Kulithalai et al., 2021). These changes are 

mostly the result of anthropogenic activities, such as urbanisation, artisanal mining and 

agricultural land expansion, which may lead to severe environmental concerns, such ecological 

change, climate variability, biodiversity losses, as well as water and air contamination. These 

LULC changes result in a decline in the productivity and quality of wetlands and an increase 

in the wetland stress, such as a deterioration in the water quality and a shrinkage in the extent 

of the wetland, as well as the deterioration of its vegetation health. It has been reported that 

over 60% of the global wetlands are degraded, due to human-induced pressure associated with 

LULC changes (Millennium Ecosystem Assessment, 2005). This has resulted in the loss of the 

critical ecosystems goods and services provided by wetlands to the surrounding communities 

(Alam et al., 2011; Martínez-López et al., 2014). Various studies have demonstrated the 

impacts of adjacent LULC changes on the condition and loss of wetlands (e.g. Singh and Lin, 

2015; Mohammadimanesh et al., 2018; Chen et al., 2020; Sakané et al., 2011; Thamaga et al., 

2022; Dzurume, 2021); however, these studies have focused mostly on the impacts, in relation 

to the wetland water quality and vegetation dynamics, or the impacts on a smaller scale, such 

as at a sub-basin level. The attention has also mostly been drawn to the impacts on large 

protected systems, rather than on the over-utilised, small and seasonally-flooded wetlands 

(Thamaga et al., 2022), which has, in turn, resulted in these wetlands being replaced by other 

land cover types, thus causing a loss of the ecosystem goods and services that they provide. It 

is therefore imperative that a large-scale analysis of the LULC changes and their impacts on 

all wetlands of varying sizes and of a different nature, be monitored, in order to properly inform 

the conservation policies on the sustainable use of wetland systems.  

The large-scale analysis and monitoring of the impacts of LULC changes on wetlands presents 

challenges that are largely associated with finances. Moreover, in transboundary basins, 

challenges like the differences in LULC management policies and the reconciliation of basin 

boundary politics, present difficulties in symmetrically LULC changes monitoring and impacts 

on wetlands. The availability of Earth Observation (EO) data and remote sensing approaches 

offers the opportunities to address these challenges; however, the use of EO data in 

environmental monitoring has been contested by the non-remote sensing community simply 

because of the lack of seamless and cloud-free data for some parts of the year, which therefore 

https://etd.uwc.ac.za/



104 
 

restricts the use of EO data in environmental monitoring. Improvements in remote sensing data 

analytic tools, such as the introduction of cloud-computing platforms like Google Earth Engine, 

offer unprecedented opportunities to address these issues, through their specialised multi-

source and multi-temporal, data-filtering, integration and -processing algorithms (Wang and 

Yésou 2018), which enhances the monitoring of environmental changes when using EO data.  

Significant research strides have been made in the analysis of LULC changes and wetlands by 

using the newly-available cloud-computing platforms, such as the Google Earth Engine. For 

example, studies like those of Mahdianpari et al., (2020; 2019), Shelestov et al., (2017b; 

2017a), Shafizadeh-Moghadam et al., (2021) and Ji et al.,(2020) have used these platforms to 

successfully analyse the LULC changes and impacts with reasonable accuracy in different parts 

of the world, although their focus has been either on one land-cover aspect, on the impacts on 

large protected systems, or the impacts at a sub-basin level. It is therefore imperative that the 

LULC changes, and their impacts on all wetlands of varying sizes and of a different nature, are 

monitored on a larger scale. This will help to properly inform wetland management 

programmes on the trends of wetlands ecosystems, and it will enable the setting up of proper 

conservation policies that will safe guide the sustainable use of all wetlands of different nature 

and of varying sizes.        

Owing to this background, this chapter is aimed at analysing the impacts of LULC changes on 

the extent of semi-arid wetlands systems at regional scale over a 20-year period, using the 

Limpopo Transboundary Basin in southern Africa as a case study. Specifically, the objectives 

are: 1) to examine the LULC changes at the transboundary basin over a 20-year period, using 

time series multisource remotely-sensed data, coupled with GEE advanced machine-learning 

algorithms; and 2) to assess the LULC transitions and their impacts on the extent of the 

wetlands between the studied time periods, using a land cover class area change analysis.  

6.2 Materials and Methods  

6.2.1 Ground truth data collection  

The ground truth data for this study were collected from field-based surveys and the review of 

the records of different land-cover products, from sources such as the South African 

Biodiversity Institute (SANBI), the European Space Agency Global land cover data, as well as 

the Copernicus global land cover data. The field points were collected during the period 

between 28-09-2020 and 1-10-2020, which coincided with the dates of some images that were 

used in this study. The data were collected by using a hand-held Geographical Positioning 
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System (GPS) with an error margin of less than 3.65 m. The data consisted of 428 ground truth 

points that represent the 9 land-cover classes presented in Table 6.1. The data were collected 

by using the stratified random sampling approach where the region was subdivided into 900 

m2 plot sizes, and a minimum of 20 points representing the different land-cover classes (see 

Table 6.1) were gathered in each plot. This was informed by a number of related studies (e.g. 

Mtengwana et al., 2020; Thamaga and Dube, 2018; Mudereri et al., 2021). In addition, the 

900m2 plots were spaced 1 km apart, to avoid the overlap of the collected samples. The field-

collected ground truth points were further supplemented by points extracted from the land-

cover products by SANBI (with a 30 m resolution), Copernicus (with a 100 m resolution) and 

the European Space Agency (with a 300 m resolution), as well as the previous land-use data 

collected by the South African Water Research Commission. The extracted data also coincided 

with the dates of some of the images used in this study. A total of 1 495 points representing the 

same land-cover classes as the field collected. The 1 495 points collected from the field surveys, 

as well as the records and reviews that were collected, were later randomly split into 70% 

training and 30% testing data, to train the pixel-based RF model on the GEE platform.    

 

Table 6.1 Number of training and test points for LULC analysis 

Land-cover classes 

identified  

field samples  Total training 

points  

Total validation 

points  

Forest  133 93 40 

Shrublands  582 408 174 

Grasslands  157 110 47 

Croplands 134 94 40 

Wetlands  50 35 15 

Sparse Vegetation 20 15 5 

Bare surface  176 123 53 

Built-up area  95 66 29 

Open water  137 96 41 
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6.3.2 Pre-preparation and processing of optical remotely-sensed data  

 

 

Figure 6.1 Steps followed on the GEE to process the remotely-sensed data used in this 

study 
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The steps that were followed to process the acquired data are presented in Figure 6.1. During 

this process, multisource data that were acquired in GEE catalogue were used. The remotely-

sensed data included Landsat 8 data, which represented the 2016-2020 period, Sentinel-1 data, 

which represented the same period as Landsat 8, and Landsat 5 data, which represented the 

2000-2005, 2006-2010 and 2011-2015 periods. Landsat products were chosen because of their 

continued availability on the GEE platform, which allowed for the continuous monitoring of 

the impacts of LULC change on the wetlands over a longer term and at a larger spatial scale. 

Sentinel-1 data were chosen to better enhance some LULC classes, such as forested wetlands, 

which may not be enhanced by the Landsat data only. Moreover, the study sought to 

demonstrate whether multisource data integration improves the LULC classification. Prior to 

the classification, the remotely-sensed Landsat data were pre-processed. During the pre-

processing stage, the images were firstly clipped to the extent of the transboundary basin. After 

clipping the images, stacks representing each time period (Period 1: 2000-2005, Period 2: 2006-

2010, Period 3: 2011-2015 and Period 4: 2016-2020) were mosaicked to produce an image 

scene that represented each time period. After the mosaicking of the images, cloud-masking 

and shadows removal were initiated on each composite. This was executed by using the Quality 

Assurance (QA) bands that are included in these products. These bands assist with indicating 

those pixels that are affected by instrument artefacts or by cloud contamination. During the 

process of cloud- and shadow-removal in this study, the QA bits were firstly computed, in order 

to get a single band image with the cloud and shadow scores. The cloud and shadow masks 

were then created by using a single band image with the cloud and shadow scores. The masks 

were then applied on the mosaicked images, in order to remove the cloudy and shadow pixels. 

After the removal of the clouds and shadows, the Landsat 5 and 8 bands were resampled to a 

10 m spatial resolution, since the study wanted to also integrate Sentinel-1 data, with a spatial 

resolution ranging from 10 m, 20 m and 25 m, to better enhance the LULC features. The 

resampling of the Landsat bands was executed by using the nearest-neighbour resampling 

method, which was informed by a number of related studies (e.g. Mtengwana et al., 2020; 

Thamaga and Dube, 2018, amongst others). After resampling, the images were further used to 

compute the Normalized Difference Vegetation Index (NDVI), the Normalized Difference 

Phenology Index (NDPI), the modified Normalized Difference Water Index (mNDWI) and the 

Normalized Difference Built-up Index (NDBI) by using the equations presented in Table 6.2. 

The NDVI was selected because it is sensitive to photosynthetically-active biomass, thus 

making it easy to discriminate between the wetland and non-wetland areas, as well as the 

vegetated and non-vegetated areas (Liu and Huete, 1995). The NDPI was selected because of 
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its ability to provide information on the vegetation water content, since it uses a weighted 

combination of Red and Short-Wave Infrared (SWIR), thus making it easy to differentiate 

between vegetation that is healthy and non-healthy, as well as the bare soils (Wang et al., 2017). 

The mNDWI was selected because of its ability to accurately extract open water features better 

than the standard Normalized Difference Water Index (NDWI), as reported in the study by 

Maswanganye et al., (2022). The NDBI was selected because of its success in mapping urban 

areas in various studies (e.g. Karanam and BabuNeela, 2018, amongst others). All the 

computed indices were added to their respective mosaicked images as extra bands and these 

images were then used in a pixel-based classification.  

6.2.3 Pre-preparation and processing of Synthetic Aperture Radar data 

This study used the already pre-processed Sentinel-1 GRD data, which are available in the GEE 

catalogue. The steps that were used to pre-process the data are made available in the GEE 

User’s Guide and are similar to those of the ESA SNAP Sentinel-1 toolbox. These steps include 

updating the orbit metadata, GRD border noise removal, thermal noise removal, radiometric 

calibration, terrain correction, the conversion of the back-scattering intensity to normalised 

back-scattering coefficients, incidence angle correction and speckle reduction. In this study, 

the pre-processed Sentinel-1 data were firstly clipped to the boundary of the transboundary 

basin and filtered by their metadata properties, such as transmitter-receiver polarization, the 

instrument mode and orbit properties. The transmitter-receiver polarization used in this study 

were the vertically-transmitted, vertically-received SAR back-scattering coefficients (σ0
VV) and 

the vertically-transmitted, horizontally-received SAR back-scattering coefficients (σ0
VH). σ0

VV 

was used because of its sensitivity to soil moisture and its ability to discriminate between 

flooded and non-flooded vegetation, thus enhancing the detection of the wetland areas (Adeli 

et al., 2020). σ0
VH was used because of its cross-polarization  which is known to be produced 

by volume scattering within the vegetation canopy and has a higher sensitivity to vegetation 

structures (Adeli et al., 2020).  The instrument mode that was chosen was wide swath (IW) 

because of the size of the transboundary basin studies, and for both ascending and descending 

orbits. After filtering by metadata properties, the σ0
VH and σ0

VV were segregated using the orbit 

properties (ascending and descending), and the mean values for each polarisation and orbit 

property were computed. The computed mean σ0
VH and σ0

VV values were then merged for each 

orbital property and used to compute the SAR ratio, the Dual Polarisation Radar Vegetation 

Index (dual-pol RV), as well as Dual Polarimetric Synthetic Aperture Radar Vegetation Index 

(DPSVI), by using the equations presented in Table 6.2. The SAR ratio was computed because 
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was proven to be useful in the mapping of pasture lands, as demonstrated by Nicolau et al., 

(2021); thus , it will assist in discriminating such land cover from the other types. The dual-pol 

RV was chosen because the Sentinel-1 data used in this study has dual polarisation (VV, VH). 

Moreover, the index has been proved to be successful in retrieving soil moisture information 

by Li and Wang (2018) and Trudel et al., (2012). DPSVI was chosen because it calculates the 

rate of depolarisation in terms of the vertical dual depolarisation index, thus discriminating 

between the bare surface and vegetated areas (Mandal et al., 2020). The merged mean values 

for σ0
VH and σ0

VV, and the above-mentioned SAR indices were later added to the resampled 

Landsat-8 data, in order to test the potential of the integrated SAR and optical data for 

improving the classification accuracy.   

Table 6.2 Spectral indices extracted from the SAR and optical remotely-sensed data 

Remote sensing data Indices extracted Reference 

Dual Polarisation 

Synthetic Aperture 

Radar   

𝑑𝑢𝑎𝑙_𝑝𝑜𝑙 𝑅𝑉 =
4𝜎0𝑉𝑉

𝜎0𝑉𝑉 + 𝜎0𝑉𝐻
 

(Mandal et al., 

2020) 

Synthetic Aperture 

Radar Ratio 

(SAR_ratio) 

𝑆𝐴𝑅𝑟𝑎𝑡𝑖𝑜 =
𝜎0𝑉𝑉

𝜎0𝑉𝐻
 

(Mahdianpari et 

al., 2020) 

Dual Polarimetric 

Synthetic Aperture 

Radar Vegetation 

Index (DPSVI) 

𝐷𝑃𝑆𝑉𝐼 =
𝜎0𝑉𝑉 + 𝜎0𝑉𝐻

𝜎0𝑉𝑉
 

(Periasamy, 

2018) 

Normalised 

Difference 

Vegetation Index 

(NDVI) 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

(Tucker, 1979) 

Modified 

Normalised 

Difference Water 

Index (mNDWI)   

𝑚𝑁𝐷𝑊𝐼 =
𝐺𝑟𝑒𝑒𝑛 − 𝑆𝑊𝐼𝑅1

𝐺𝑟𝑒𝑒𝑛 + 𝑆𝑊𝐼𝑅1
 

(Xu, 2006) 

Normalised 

Difference 

𝑁𝐷𝑃𝐼

=
𝑁𝐼𝑅 − (0.74 × 𝑅𝑒𝑑 + 0.26 × 𝑆𝑊𝐼𝑅1)

𝑁𝐼𝑅 + (0.74 × 𝑅𝑒𝑑 + 0.26 × 𝑆𝑊𝐼𝑅1)
 

(Wang et al., 

2017) 
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Phenology Index 

(NDPI) 

Normalised 

Difference Built-up 

Index  

𝑁𝐷𝐵𝐼 =  
𝑆𝑊𝐼𝑅 − 𝑁𝐼𝑅

𝑆𝑊𝐼𝑅 + 𝑁𝐼𝑅
 

(Zha et al., 

2003) 

 

6.2.4 Pixel-based image analyses  

In this chapter, pixel-based image analyses were implemented on the mosaicked images, 

although various studies (e.g.  Mahdianpari et al., 2020; Amani et al., 2017; Dlamini et al., 

2021) proved that the use of pixel-based images may result in significant spectral mixing 

between the various classes during the classification process, which may result in inaccuracies. 

In this study, a pixel-based analysis was chosen simply because an object-based analysis in 

large-scale mapping is associated with high computational costs, which results in 

computational time-out errors on the GEE platform (Gorelick et al., 2017; Shafizadeh-

Moghadam et al., 2021); therefore, the implementation of pixel-based may reduce the high 

computational time costs. The pixel-based analysis was implemented on the Random Forest 

(RF) machine-learning algorithm, which is an ensemble classifier consisting of many different 

trees that are formulated from the subsets of randomly-selected training data (Dlamini et al., 

2021b).  In separating the land-cover classes, each tree casts a unit vote and the object with the 

highest number of votes will be classified as a particular class. The selection of  RF was based 

on its performance in a number of related studies (e.g. Simioni et al., 2020; Gxokwe et al., 

2021; Dlamini et al., 2021). During the implementation of the pixel-based RF model, the 1 428 

ground truth points representing different landcover classes in Table 6.1 were randomly split 

into 70% training and 30% validation data in the GEE. The 70/30 split was informed by a 

number of related studies (e.g. Dzurume et al., 2021; Thamaga and Dube, 2018; Gxokwe et al., 

2021). The 70% training points were then used to sampled out the regions corresponding to the 

location of these points. The sampled regions and the points were then used to train the RF 

classifier, and the classifier was used to classify the mosaiced images. During this process, the 

search for the input mtry and ntree parameters for the RF model varied between 1 to 5 for mtry, 

and 15 000 for the ntree parameter. The ntree search interval was 500. The selection of these 

ranges for the mtry and ntree parameters was informed by other similar studies (e.g. Adam et 

al., 2014; Simioni et al., 2020). The search yielded 300 combinations of mtry and ntree values 
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from several iterations, and the optimum values that yielded the higher overall accuracies were 

used. 

6.2.5 Accuracy assessment 

The accuracy assessment in this chapter was implemented by using five accuracy metrices, 

namely, the Overall Accuracy (OA), the Producer’s Accuracy (PA), the User’s Accuracy (UA), 

the Commission Errors (CE) and the Omission Errors (OE). The OA gave an indication of the 

correctly-classified pixels, while PA and UA gave an indication of how well the ground cover-

type pixels were classified, as well as the probability that the classified pixel represents the 

actual feature on the ground (Story and Congalton, 1986). CE gave a review of the incorrectly-

classified sites, while OE gave an indication of the number of sites that were omitted from the 

correctly-classified classes on a map (Mtengwana et al., 2020). During the implementation of 

the above-mentioned metrices, the remaining 30% of the data were used to sample regions on 

a classified image. The regions were then used with validation points as input GEE files to 

calculate the OA, UA and PA algorithms on this platform. Moreover, the files were used to 

extract the error matrix, which was then used to calculate the CE and OE.  

6.2.5 Land use and land cover change analysis 

To assess the changes in the LULC for the transboundary basin, the land cover maps were 

exported from the GEE and then imported into the GIS environment, and the class areas were 

extracted for all the time periods. After importing, the raster maps, showing the spatial 

distribution of each class, were then converted to vector files on the platform, and the class 

areas were extracted and utilised to assess the landcover transitions between the studied time 

periods, by using the Sankey diagram. Sankey diagrams visualise the flow from various nodes 

in a network. This diagram is mostly applied in the energy flow and materials. Although this 

is the case, various studies (e.g. Cuba, 2015; de Alban et al., 2018; Spruce et al., 2020) have  

successfully used Sankey diagrams  to visualise the LULC transitions between the different 

time periods, which is why they were used in this study.  The Sankey diagram was plotted 

using the e! Sankey software. In addition to the Sankey diagram, the percentage gains and 

losses were also calculated for each class, in relation to the total surface area of the 

transboundary basin.  
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6.3 Results  

6.3.1 Accuracy assessment results  

Figure 6.2 shows the Overall Accuracy (OA) results for the classification of the mosaicked 

image representing the studied time periods (Period 1: 2000-2005, Period 2: 2006-2010, Period 

3: 2011-2015, Period 4: 2016-2020). The results show that the OA values were within an 

acceptable range, namely, between 79% and 87%. The highest OA value was observed for 

Period 1 (2000-2005), which had an OA value of 86.59%, and the lowest OA was observed for 

Period 2 (2006-2010), which had an OA value of 79.64%.  

 

Figure 6.2 Overall accuracy for each time period (Period 1: 2000-2005, Period 2: 2006-

2010, Period 3: 2011-2015 and Period 4: 2016-2020) 

The producer’s and user’s accuracy results per time period are presented in Figure 6.3. The 

results show that the bare surface, shrublands and open water classes had a higher producer’s 

and user’s accuracy than all the other classes, for all the time periods. The producer’s and user’s 

accuracy for these classes were above 70% for all the time periods. Although other classes, 

such as the built-up and forest presented a higher producer’s and user’s accuracy (>60%) for 

some periods, such as 2000-2005, these classes also reported a low producer’s and user’s 

accuracy for the 2006-2010 and 2011-2015 time periods. The bare surface also reported a low 

producer’s accuracy (<20%) for the 2016-2020 time period. Croplands presented an acceptable 

producer’s and user’s accuracy ranging between 50% and 60% for all time periods, except for 

the 2006-2010 time period, where both of these metrices were below 40%.  The wetlands class 

had the lowest producer’s and user’s accuracy, which ranged between 30% to 45% for the all 
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periods. Further, sparse vegetation had a producer’s and user’s accuracy of less than 20% for 

all the cases.   

 

Figure 6.3 User’s and producer’s accuracy per studied time period. a) Period 1 (2000-

2005), b) Period 2 (2006-2010), c) Period 3 (2011-2015) and d) Period 4 

(2016-2020) 

The Pontius commission and omission error results are presented in Figure 6.4; they show that 

classes, such as sparse vegetation and wetlands, had high commission and omission errors of 

above 50% for most of the time periods, which is indicative of the possible misclassification 

of these classes. Moreover, classes such as grasslands, presented high commission and 

omission errors of above 60% for the 2011-2015 and 2016-2020 time periods, while the forest 

class presented omission errors that were above 50% for the 2011-2015 and 2016-2020 time 

periods. Classes, such as shrublands, croplands, open water, built up and bare surfaces, reported 

low commission errors (<30%) for all the time periods, except for the 2006-2010 time period, 

where built-up areas reported a commission error of above 50%.   
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Figure 6.4 Pontius commission and omission errors for each class per time period. a) 

Period 1 (2000-2005), b) Period 2 (2006-2010), c) Period 3 (2011-2015) and d) 

Period 4 (2016-2020) 

6.3.2 Land cover change analysis 

The spatial distribution of different wetland-cover classes, based on the pixel-based 

classification for each time period, is shown in Figure 6.5. The results show that shrubland was 

the most dominating land cover class for all the study periods, with the class areas ranging 

between 36 548 811.54 ha and 3 491 650.28 ha. Wetlands and sparse vegetation were found to 

be the least dominating classes for all the time periods. The class areas ranged between 14 

511.2 ha and 32 241 ha for wetlands, while the sparse vegetation ranged between 21.33 ha and 

4 937.4 ha, with the lowest being recorded for Period 4 (2016-2020) for both classes (Table 

6.3). The results also indicated a continued pattern of growth in croplands, savanna grasslands 

and shrublands from Period 1 (2000-2005) to Period 4 (2016-2020). Built-up areas and bare 

surfaces exhibited a growth pattern between Period 1 (2000-2005) and Period 2 (2006-2010). 

Although built-up areas exhibited a pattern of growth between Periods 1 and 2, an anomaly 

was observed for this class between Periods 2 and 4, where the area continued to decline. This 

anomaly was probably due to classification errors.  
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Table 6.3 Land cover class areas (ha) per time period 

Landcover 2000-2005 2006-2010 2011-2015 2016-2020 

Savanna 

grasslands  

3095709.93 

 

3481055.01 

 

3487177.13 

 

3491650.28 

 

Shrublands  36548811.54 

 

36779118.3 

 

36842378.4 

 

37224435.17 

 

Grasslands 1193094.27 

 

1432914.3 

 

1454202.18 

 

1539978.93 

 

Croplands 1254567.78 

 

1623800.97 

 

1681331.32 

 

1754400.24 

 

Wetlands 32241 

 

31401 

 

14901.85 

 

14511.2 

 

Sparse 

vegetation 

4937.4 

 

4066.11 

 

3440.14 

 

21.33 

 

Bare surface  1795877.37 

 

2108955.33 

 

1379135.16 

 

366324.66 

 

Built-up 682773.66 

 

1020318.03 

 

523968.66 

 

480733.02 

 

Open water  470450.25 

 

395702.55 

 

372540.96 

 

231446.07 

 

*hectares (ha) 

 

 

 

 

 

 

 

 

 

 

https://etd.uwc.ac.za/



116 
 

 

Figure 6.5 Spatial distribution of LULC cover classes, based on the pixel-based classification for the study time periods 
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6.3.3 LULC transitions and impacts on the extent of wetlands  

Figure 6.6 shows the LULC transitions between the time periods, and the major transitions 

(>20% loss or gain) are labelled in their respective proportions. The results showed that major 

transitions were observed for classes such as wetlands, sparse vegetation grasslands, as well as 

the bare surface between Period 1 (2000-2005) and Period 2 (2006-2010). During the 

abovementioned time periods, about 40% of the wetland areas was replaced by built-up areas, 

61% of sparse vegetation was replaced by savanna grasslands, 40% of the grasslands was also 

replaced by savanna grasslands, and 20% of the bare surface was replaced by croplands. 

Between Period 2 (2006-2010) and Period 3 (2011-2015), major transitions occurred between 

the sparse vegetation and savanna grasslands, the grasslands and savanna grasslands, the bare 

surface and croplands, as well as the built-up and bare surface. In between these time periods, 

61% of the sparse vegetation was replaced by savanna grasslands, 37% of the grasslands was 

replaced by savanna grasslands, 25% of the bare surface was replaced by croplands and 20% 

of built-up areas was replaced by bare surface. The results also show that between Period 3 

(2011-2015) and Period 4 (2016-2020), major LULC transitions were observed between the 

bare surface and croplands, the built-up area and croplands, the wetlands and shrublands, the 

grasslands and savanna grassland, as well as the sparse vegetation and savanna grasslands. The 

results indicate that between the abovementioned time periods, about 36% of bare surface was 

replaced by croplands and 32% of the built-up area was replaced by croplands. In addition, 

46% of grasslands was replaced by savanna grasslands, 63% of sparse vegetation was replaced 

by savanna grasslands and about 30% of the wetland area was replaced by shrublands. Figure 

6.6 also shows a continuous decline in the wetland area and sparse vegetation, while other 

landcover classes, such as croplands, savanna grasslands and shrublands, increased 

continuously between the Period 1 and Period 4 time periods, which are indicated by the size 

of the combined arrows.  
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Figure 6.6 LULC transitions between the time periods, with the major transition labelled with the respective proportions
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6.4 Discussion  

This study analysed the impacts of the large-scale LULC changes on the extent of semi-arid 

wetlands in southern Africa over a 20-year period (2000-2020), using the Limpopo 

Transboundary River Basin as a case study. The classification results yielded a total of 9 land-

cover classes, which included savanna grasslands, shrublands, grasslands, croplands, wetlands, 

sparse vegetation, bare surface and built-up areas, with shrublands being the dominating class 

for all the time periods, while wetlands and sparse vegetation were the least dominating. The 

wetlands were expected to be the least dominating because the study used dry season images, 

because of the unavailability of images with a minimum cloud coverage. Since semi-arid areas 

are dominated by small and intermittently-flooded systems, which tend to merge with the 

surrounding terrestrial ecosystem (Day et al., 2010; Fang et al., 2019), they may not have been 

picked from the images that were used because they were not visible at the time when these 

images were captured. A sub-basin study that was conducted within the LTRB in Mozambique, 

using the dry season Landsat 5 and 7 and ASTER images for the years 1999-2003, also reported 

a low spatial coverage of water bodies, including wetlands, for the regions,  in response to the 

seasonal variability (Pereira, 2004).  

The results also showed that the shrublands, savanna grasslands and croplands continued to 

increase, while the wetlands and sparse vegetation continued to decline. Moreover, they 

indicate that about 40% of the wetlands were converted to built-up areas, which shows that the 

continued decline was mainly driven by built-up expansion (anthropogenic activities) caused 

by the increasing population, which increases the demand for land, in order to further develop 

the residential areas. This has also been reported in a number of LULC analyses in the LTRB, 

at a sub-basin level. For example, a study by Thamaga et al., (2022) analysed the impacts of 

the LULC changes on unprotected systems in one of the sub-basins of the LTRB located on 

the South African side. The results showed that urbanisation was one of the major drivers for 

wetlands loss, thus corroborating the findings of the current study. Another study by Sibanda 

and Ahmed (2021) modelled the impacts of the LULC changes on the extent of wetlands in the 

Shashe Catchment, a sub-basin of the LTRB that is located on the Zimbabwean side. The 

results showed that some of the wetland areas were replaced by built-up areas, which they also 

corroborate the findings of this study. Other studies from different parts of the semi-arid Africa 

and beyond (e.g. Marambanyika et al., 2017; Mwita, 2013; Chikodzi and Mufori, 2018) also 

reported the impact of LULC changes on wetlands, particularly urbanisation, although these 

studies were not conducted on a larger scale. The other major LULC transition observed in this 
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study was between the bare surface and cropland areas. This can be attributed to the planting 

cycles of different crops and their growth stages. For some periods, the plant species were not 

fully-grown, which resulting in a low canopy cover that exposed the bare surface (Ziter et al., 

2019). In this study, the images were collected on different dates as such, for some dates the 

crops were more mature than others. This finding was also reported in a study by Sibanda and 

Ahmed (2021). The explanation for the transition between wetlands, grasslands and shrublands 

is the prolonged moisture availability in the wetland soils, which favours the growth of different 

types of vegetation, including grasslands and shrublands, particularly because the study area is 

semi-arid (Day et al., 2010).   

The Overall Accuracies (OA) for all the time periods were within an acceptable range, and 

were between 78% and 87%. However, some classes, such as wetlands and sparse vegetation, 

reported high commission and omission errors, as well as low producer’s and user’s accuracies 

for some time periods. These errors could have resulted from the dates on which the images 

were used and the spatial resolution of the data used. In this study, the cloud-free images that 

were used were mostly available for the dry season, and semi-arid wetlands are mostly seasonal 

and tend to merge with the surrounding terrestrial ecosystems during the dry season (Day et 

al., 2010), which makes them difficult to monitor when using dry season images as some of 

the wetlands features, such as the surface inundation, are not clearly visible and some wetland 

vegetation species are not healthy.  

In addition, an imbalance in the training and validation data, which was caused by the low 

spatial coverage of wetlands and sparse vegetation, could have resulted in high commission 

and omission errors, as well as low producer’s and user’s accuracy. Imbalanced training data 

tend to introduce biasness during classification towards the class that is mostly represented in 

the dataset resulting in a high accuracy for that particular class and low accuracies for the under-

represented classes. Studies by Millard and Richardson (2013), Ustuner et al., (2016) and 

Amani et al., (2021) have shown that an imbalance in the training data tends to introduce 

biasness in the classification outputs, where the under-represented classes are likely to be 

classified more inaccurately than the represented classes. In this study, wetlands and sparse 

vegetation had the lowest number of training and validation points, resulting from the limited 

spatial coverage of these classes in the Limpopo Transboundary River Basin (LTRB). This 

could therefore have introduced a bias towards the other classes that had a high number of 

training and validation points, thus causing these classes to be classified more accurately than 

the wetland and sparse vegetation class. 
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Overall, this chapter provides new insights about the diminishing state of semi-arid wetlands 

in southern Africa, particularly in the LTRB. These findings are critical for environmental 

planners and conservation specialists, as they provide the baseline information that is required 

to develop proper strategies and that will assist in curbing the negative impacts that these LULC 

cover changes have on wetlands. In particular, the conservation status of the small and 

seasonally-flooded wetlands is currently overlooked because of their size and their intermittent 

nature, despite the fact that they provide significant eco-hydrological services to the 

surrounding communities. Proper and inclusive wetland management strategies on a regional 

scale, such as those in transboundary basins, require adequate integrated data collection, 

reliable information and reviews. On a larger scale, for example in transboundary basins, the 

collection of proper data that produce reliable information and that will inform proper LULC 

management policies, is hindered by the limited resources. This chapter therefore provides 

robust, cost-effective and efficient methodologies that can assist in the generation of the 

required knowledge that is acceptable and precise, which can inform the LULC management 

policies, as well as wetland conservation and management strategies, on a larger scale.   

6.5 Conclusions  

This chapter analysed the impacts of large-scale LULC changes impacts on the semi-arid 

wetlands systems in southern Africa over a 20-year period (2000-2005), using the Limpopo 

Transboundary River Basin (LTRB) as a case study.  The findings showed that 9 land-cover 

classes were characterised. These included savanna grasslands, shrublands, croplands, 

grasslands, wetlands, sparse vegetation, bare surface and built-up areas. Shrublands were found 

to be the most dominating class throughout the study periods and covered proportion ranging 

between 76% and 82% of the study area, while wetlands and sparse vegetation class were the 

least dominating classes, covering between 0.9% and 2%, and 0.3% and 0.04% of the study 

area, respectively. It was also observed that the wetlands and sparse vegetation continued to 

decline at an average rate of 19% and 44%, while shrublands, croplands and savanna grasslands 

continued to increase at an average rate of 0.4%, 12.4% and 4.25%, respectively. Most of the 

wetland area (40%) was replaced by built-up area, which indicates that urbanisation is a major 

driving factor in the loss of wetlands in the area. The accuracy analysis results showed that the 

OA was within an acceptable range (77%-86%), although some classes, such as wetlands and 

sparse vegetation, reported a lower accuracy, which is attributed to the unbalanced training and 

validation data that was caused by the low spatial coverage of these classes in the LTRB. This 

study provides new insights into the diminishing state of the semi-arid wetlands in southern 
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Africa, particularly in the LTRB. These findings are critical for environmental planners and 

conservation specialists, as they provide baseline information for the development of proper 

strategies that will help to curb the negative impact that these LULC cover changes have on 

the wetlands. Moreover, the chapter provides robust, cost-effective and efficient ways to assist 

with the generation of the required, acceptable and precise knowledge for informing the LULC 

management policies, wetlands conservation and management strategies on a larger scale.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://etd.uwc.ac.za/



123 
 

CHAPTER 7 

AN INTEGRATED REMOTE-SENSING FRAMEWORK FOR THE 

DETECTION AND MONITORING OF SMALL SEASONALLY-

FLOODED WETLANDS IN SEMI-ARID SOUTHERN AFRICA: A 

SYNTHESIS 

7.1 Introduction  

This work aimed at developing an integrated remotely-sensed framework that will assist in the 

detection and monitoring of small and seasonally-flooded wetlands in semi-arid southern 

Africa. The data, methodologies and results in this study have direct implications for 

conservation planning and for the management and wiser use of wetlands in semi-arid 

environments, particularly in data-scarce regions like southern Africa. They will provide cost-

effective and feasible methodologies for generating information on the condition and extent of 

the wetlands. Moreover, the study demonstrates how the improved remote sensing approaches, 

such as introduction of cloud-computing platforms like GEE, are cost-effective and efficient 

tools for assessing and monitoring the changes in small and seasonally-flooded wetlands 

located in semi-arid areas, which was previously a daunting task when using the traditional 

classification approaches because of the intermittent nature and size of these wetlands. The 

realisation of the overall goal of this study was achieved by means of a series of interlinking 

manuscripts and publications that address the main objectives of the study outlined in Chapter 

One. These publications and manuscripts are outlined as follows:  

1) A review on the progress, challenges and future research direction of the multispectral 

remote sensing of wetlands in semi-arid and arid areas.  

2) Leveraging the recently-available GEE cloud-computing platform to characterise and 

map small and seasonally-flooded wetlands in the semi-arid environments of South 

Africa. This publication addresses objective one of the studies.  

3) Available remotely-sensed data in the GEE catalogue, which are capable of monitoring 

the long-term variations in the eco-hydrological dynamics of small and seasonally-

flooded wetlands in semi-arid South Africa. This manuscript addresses objective two 

of the study. 

4) Using cloud-computing techniques to monitor the long-term variations in eco-

hydrological dynamics of small and seasonally-flooded wetlands in semi-arid South 

Africa. This publication addresses objective three of the study.  
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5) Exploring the capabilities of the GEE cloud-computing platform and its advanced 

machine-learning algorithms for the long-term monitoring of the impacts of LULC 

changes on semi-arid wetland systems, on a regional scale. This manuscript addresses 

objective four of the study.  

7.2 A Review of the Progress, Challenges and Future Research Directions of the 

Multispectral Remote Sensing of Wetlands in Semi-arid and Arid Areas 

This section focused on providing a comprehensive review on the progress, challenges and the 

future research directions in the remote sensing of small seasonally-flooded wetlands (<10 ha 

–2 500 ha) in semi-arid and arid areas, using freely-available multispectral remotely-sensed 

data. Although a significant number of reviews have been published on the use of remote 

sensing for the monitoring and assessment of wetlands in different parts of the world and in 

different climatic zones, none of them have focused only on semi-arid and arid systems (Adam 

et al., 2010; Dronova, 2015; Guo et al., 2017; Klemas, 2014). This review therefore focused 

on the multispectral remote sensing of wetlands found within semi-arid and arid areas. A 

systematic analysis of the papers published between 2000-2020, which is within the scope of 

this review, showed an increasing trend (R2 = 0.76) in the number of studies published during 

that period, with most of them increasing significantly after the year 2008. This was attributed 

to the fact that most remotely-sensed data, such as the Landsat series, became freely-available 

to all users after 2008 (Zhu et al., 2019). The characterisation (mapping and classification), 

inundation and vegetation of wetlands were the most-studied aspects, while their extent and 

the land use land cover changes where the least-studied aspects. The spatial distribution 

analyses in this study revealed that most of them were conducted in semi-arid China, India, 

Australia and Canada. Although significant research strides have been made with regard to the 

use of freely-available multispectral data for studying small and seasonally-flooded wetlands 

in semi-arid areas, the review noted that challenges, such as mapping these wetlands with the 

highest precision, is still an issue of concern, because some of them have been missed or 

confused with other land-cover features. This has resulted in the conservation status of these 

systems being overlooked, as the information on their eco-hydrological dynamics at an 

appropriate spatial scale is limited. The review also noted that improvements in remote sensing 

techniques, such as the introduction of big data analytic tools such as the Google Earth Engine 

(GEE), offer unique opportunities to address the issues relating to the assessment and 

monitoring of small and seasonally-flooded wetlands. With their advanced processing power, 

data analysis tools and algorithms offer the benefit of improving the assessment and monitoring 
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of these systems. However, the application of such tools in the mapping, monitoring and 

understanding of small and seasonally-flooded wetlands is still in its infancy in semi-arid areas, 

particularly in the sub-Saharan African region. This study therefore took advantage of the 

readily-available GEE cloud-computing platform and its benefits to assess and monitor the 

small and seasonally-flooded in semi-arid southern Africa, with the aim of improving the 

detection and monitoring of these systems by using freely-available, remotely-sensed data.  

7.3 The Characterisation and Mapping of Small Seasonally-flooded Wetlands in the 

Semi-arid Environments of South Africa, using the Google Earth Engine 

Although the Google Earth Engine offers the benefit of improving the detection and monitoring 

of small and seasonally-flooded wetlands in semi-arid areas, its application to these systems 

and other wetland types is still in its infancy. This section is based on publication two which 

addresses objective one of the study, and was informed by the literature review papers of 

Tamiminia et al., (2020) and Kumar and Mutanga (2018), which indicated that the use of the 

GEE platform wetlands studies is still in its infancy. Based on that, it therefore explored the 

use of this platform in the characterisation and mapping of small and seasonally-flooded 

wetlands in the semi-arid environment of South Africa, using two seasonal systems, namely 

the Nylsvley floodplain and the Lindani valley bottom, as case study wetlands. In order to 

achieve its main goal, this study assessed the spectral separability of different wetland-cover 

classes that were detected in the field surveys, by using the GEE and multi-year Sentinel-2 

composite derivatives, coupled with the Jeffries Matusita (JM) distances, to evaluate the 

capabilities of the GEE cloud-computing platform in producing customised wetland cover 

maps at a reasonable accuracy, using the high-resolution Sentinel-2 data and its advanced 

machine-learning algorithms (Random Forest (RF), Support Vector Machine (SVM), 

Classification Regression Tree (CART), as well as Naïve Bayes (NB)). It also identified a 

suitable GEE machine-learning algorithm for accurately detecting and mapping the 

characteristics of semi-arid seasonally-flooded wetlands, using the multi-year Sentinel 2 

composite data.   

The classification results yielded overall accuracies that were within an acceptable range, for 

both systems (69%-78%), although some classes, such as bare surface long grass and water, 

reported low class accuracies for some algorithms, such as NB. Moreover, the spectral 

separability results showed that the synergic use of spectral data (Visible Red, Green and Blue, 

as well as the Near-infrared), coupled with the vegetation and water indices (NDWI, NDVI 
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and MSAVI2), improved the separability of different wetland classes with JM distances of 

around 2. The comparative analysis of the overall accuracies, as well as the class accuracies, 

showed that RF outperformed the other algorithms for the Lindani valley bottom, while RF, 

CART and SVM outperformed the NB in the case of the Nylsvley floodplain. Based on these 

findings this section concluded that, these results underscore the relevance of the GEE with its 

advanced machine-learning algorithms (RF, SVM and CART), coupled with the synergy of 

visible bands Near-infrared, as well as vegetation and water indices in improving the 

characterisation and mapping of small and seasonally-flooded wetlands in semi-arid 

environments, which was a challenge based on traditional mapping techniques.  

7.4 Available Remotely-sensed Data in the GEE Catalogue, which are capable of 

Monitoring the Long-term Variations in the Eco-hydrological Dynamics of Small 

and Seasonally-flooded Wetlands in Semi-arid South Africa 

Freely-available, higher-resolution multispectral data offer unprecedented opportunities to 

monitor the long-term changes in the eco-hydrological dynamics of small and seasonally-

flooded wetlands in semi-arid areas. However, obtaining time-sensitive data and the generation 

of precise and accurate information on the wetland dynamics still presents some challenges. 

The availability of cloud-computing platforms, such as the GEE, offers an opportunity to 

address the issues associated with data availability, as it hosts 40 years of peta bytes of freely-

available, remotely-sensed data, ranging from coarse to finer resolution data  (Gorelick et al., 

2017). Moreover, these platforms offer specialised data processing, filtering and integration 

features, which provide an opportunity to improve the classification of wetlands from remotely-

sensed data. Although these platforms offer such benefits, uncertainties with respect to data 

continuity still exist (Wang and Yésou, 2018). Moreover, the capabilities of the available data, 

in terms of the image quality (cloud-free) for monitoring small and seasonally-flooded 

wetlands is unknown, particularly for cloud-prone areas (Wua et al., 2019). This section was 

based on manuscript one and addressed objective two of the study which was aimed at 

evaluating the available remotely-sensed data in the GEE catalogue that are capable of 

monitoring the long-term (2000-2020) variations in the eco-hydrological dynamics of small 

and seasonally-flooded wetlands in semi-arid southern Africa, using the Nylsvley floodplain 

as a case study. In order to realise this goal, the chapter established the number of scenes 

available, with different cloud-cover ranges, for various remotely-sensed products on the GEE, 

using specialised filtering algorithms. The study also determined how slight variations in the 

cloud-cover ranges (0%, 1-10%, 11-25%) affected the monitoring of the wetland eco-
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hydrological dynamics across different seasons, by using multi-year Landsat-7 and Sentinel-2 

composite images representing each season, as well as the Random Forest machine-learning 

algorithm.  

The results showed that approximately 1 376 images were found for the period under study. 

These included 492 images for Landsat series data, 394 images for Sentinel-1 and 490 images 

for Sentinel-2. The Moderate Resolution Imaging Spectroradiometer (MODIS) was not 

included in the analysis because of the spatial resolution of the data, which makes it impossible 

to detect small and seasonally-flooded wetlands. Sentinel-2 and Landsat-7 had the highest 

number of images (69% and 76%) with a cloud-cover percentage range of 0-20%, while other 

products, such as Landsat 4, 5 and 8, had the lowest number of images. In determining the 

effects and impacts of cloud cover on wetlands detection, only images with a cloud cover of 

less than 26% and products with the most scene were used (Landsat-7 and Sentinel-2). The use 

of satellite images with 0% cloud-cover yielded an Overall Accuracy (OA) of between 69-

72%, 1-10% had an OA ranging between 68-70%, and 11-25% had an OA ranging between 

69-80.55%, for both the dry and wet seasons. Generally, the classification results indicated 

satisfactory overall accuracies (68-80%) for all the scenes, although there were some 

inaccuracies for some classes (e.g. bare surfaces and long grass), particularly when using 

Landsat-7 scenes, and this was associated with the sensing characteristics of the data used. 

Based on these findings this chapter concluded that there is a reasonable amount of satellite 

data available that are capable of monitoring small and seasonally-flooded wetlands, which 

will provide useful insights into the eco-hydrological dynamics of these ecosystems. In 

addition, the use of cloud-computing platforms, such as the Google Earth Engine (GEE), 

provide a unique opportunity for addressing the problems associated with big data filtering, 

processing and analytics, in order to improve the monitoring and assessment of these critical 

ecosystems.  

7.5 Monitoring the Long-term Variations in the Eco-hydrological Dynamics of Small 

and Seasonally-flooded Wetlands in Semi-arid South Africa, using Cloud-

computing Techniques 

This section was based on the publication four which addressed objective three of the study 

focusing on assessing the potential of cloud-computing techniques, particularly the Google 

Earth Engine, in monitoring the long-term variations in the eco-hydrological dynamics of small 

and seasonally-flooded wetlands in semi-arid South Africa. In order to realise this goal, the 
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chapter evaluated the spatio-temporal variations in the eco-hydrological dynamics of wetlands 

by using time-series Landsat composite data, coupled with the Random Forest machine-

learning algorithm, and established the major drivers of the eco-hydrological changes in the 

studied systems by using remotely-sensed metrics (NDVI, NDWI and NDPI), coupled with 

climate data. The chapter was motivated by the lack of critical data on wetland eco-

hydrological dynamics at an appropriate spatial and temporal scale, which hinders the setting 

up of proper management plans for the wiser use and conservation of wetlands in semi-arid 

and arid areas, particularly in the sub-Saharan African region. Moreover, although the 

availability of cloud-computing platforms, such as the Google Earth Engine, offer numerous 

advantages for addressing the issues of limited and inconsistent data for wetland monitoring, 

the use of this platform for monitoring the long-term changes in the eco-hydrological dynamics 

of semi-arid wetlands requires further evaluation (Wua et al., 2019). Studies that have utilised 

this platform for the long-term monitoring of environmental change, include those on forest 

mapping, crop mapping and open water mapping (Kumar and Mutanga, 2018; Tamiminia et 

al., 2020). The most recent studies that have utilised the GEE in wetland mapping have 

demonstrated the potential value of the platform in wetland science (Gxokwe et al., 2021; Zhou 

et al., 2019). Although these studies underscore the relevance of the GEE for investigating 

small seasonally-flooded wetlands, they did not consider the longer-term changes that can be 

assessed by using the time-series analysis in the GEE platform. This study therefore assessed 

the use of the platform for monitoring the long-term variations in the eco-hydrological 

dynamics of small and seasonally-flooded wetlands that are found in semi-arid southern Africa. 

The results showed that the eco-hydrology of the studied system changed over time; where 

some wetland-cover classes increased twice as much as in the previous measurements, and 

others decreased significantly during the study period. Notably, the bare surface class increased 

at a rate of 230% and 350% between 2006-2010 and 2016-2020, respectively. The indices also 

showed similar trends throughout the 20-year period, with NDWI having the lowest values of 

less than zero in all cases, which implies that there was no surface inundation; however, the 

presence of some wetland vegetation indicates seasonal to semi-permanent soil saturation 

conditions. A comparative analysis of the climate data and remotely-sensed indices revealed 

that annual changes in the precipitation and evapotranspiration were the main drivers of 

wetland eco-hydrological variations. This section, concluded that the findings demonstrated 

the usefulness of the GEE and its advanced machine-learning algorithms for monitoring the 

eco-hydrological dynamics of small seasonally-flooded wetlands in semi-arid environments 
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over a long period of time. This information is critical for setting up appropriate measures for 

the conservation and wiser use of these wetlands, as it provides robust methodologies that will 

provide an understanding of their status.  

7.6 Assessing Large-scale LULC Changes and Impacts on Wetlands using Cloud-

computing and Multisource Remotely-sensed Data    

An analysis of the impacts of LULC changes on the semi-arid wetlands on a larger scale, over 

a 20-year period, were conducted in the Limpopo Transboundary River Basin in southern 

Africa. The study was motivated by the limited number of studies that have focused on 

understanding the impacts of LULC changes on semi-arid wetlands, on a larger scale (Thamaga 

et al., 2022). It was noted that the existing studies focus either on one aspect of LULC change, 

or on its impact on large and protected systems, but they have overlooked the small and 

seasonally-flooded wetlands, despite the fact that these provide critical eco-hydrological 

services to the surrounding communities (Thamaga et al., 2022). The study utilised the Google 

Earth Engine platform and its advanced machine learning techniques, coupled with multisource 

remotely-sensed data (Sentinel-1, Landsat 5 and 8), to examine the LULC changes between 

2000-2020 and how they relate to the extent of the wetlands in the LTRB. This chapter was 

based on manuscript three, which addressed objective four of the study outlined in chapter one.  

This section identified 9 landcover classes, namely, shrublands, croplands, bare surfaces, 

wetlands, sparse vegetation, grasslands, built-up areas and savanna grasslands. Shrubland was 

the most dominating class throughout the study period, covering between 76% and 82% of the 

LTRB surface area, while wetlands and sparse vegetation were the least dominating, covering 

between 0.9% and 2% and 0.3% and 0.04%, respectively. The overall accuracies were within 

an acceptable range (77%-78%), although some classes, such as wetlands and sparse 

vegetation, presented low class accuracies for some periods. This was attributed to the 

unbalanced training and validation data caused by the low spatial coverage of these classes in 

the studied area. It was also observed that wetlands and sparse vegetation continued to decline 

at an average rate of 19% and 44%, respectively, while shrublands, croplands and savanna 

grasslands continued to increase at an average rate of 0.4%, 12.4% and 4.25%, respectively. 

Most of the wetland area (40%) was replaced by built-up area, which indicates that urbanisation 

is a major driving factor in the loss of wetlands in the area. This section concluded that the 

findings provide new insights into the diminishing state of small and seasonally-flooded 

wetlands in semi-arid areas, which are critical for conservation planners, as they provide them 
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with the baseline information required to develop proper strategies that will assist in curbing 

the negative impacts of these LULC cover changes in wetlands. Moreover, the study 

demonstrated the benefits of data integration on the GEE platform, which provides robust and 

efficient ways of generating the required knowledge with acceptable precision, in order to 

properly inform the LULC management policies, as well as the wetlands conservation and 

management strategies.   

7.7 Overall Implications of the Results of Semi-arid Wetland Detection and 

Monitoring, using Remotely-sensed Data   

The study demonstrated how integrated remote sensing and the cloud-computing platform can 

assist in improving the detection and monitoring of small seasonally-flooded wetlands in the 

semi-arid environments of southern Africa, which was previously a daunting task when using 

the traditional mapping techniques. The overall implications of the investigation into the 

detection and monitoring of semi-arid seasonal flooded wetlands using remote sensing based 

on the findings of the study are as follows:  

The first section on the characterisation and mapping of small and seasonally-flooded wetlands 

demonstrated the feasibility of the GEE and its advanced data processing algorithms for 

mapping the wetlands in these regions. More specifically, it showed that the use of multi-data 

images composited from the median algorithm allowed for the integration of the strengths from 

different scenes, in order to better enhance the wetlands features, rather than relying on a single 

data image. It also assisted in the minimisation of the effects of clouds and haze, and it 

demonstrated that an object-based analysis and the synergic use of spectral bands (Visible Red, 

Green and Blue as well as Near-infrared band), as well as water and vegetation indices, greatly 

enhanced the detection of different wetland features. It also proved that the Random Forest 

(RF), the Support Vector Machine (SVM), as well as the Classification and Regression Tree 

(CART) machine-learning algorithms that are implemented in an object-based analysis, will 

most likely improve the detection and monitoring of small and seasonally-flooded wetlands. 

The second section of this thesis demonstrated the available remotely-sensed data on the GEE 

cloud-computing platform that can be used to monitor the eco-hydrological changes of small 

and seasonally-flooded wetlands. Based on these findings, it was noted that a reasonable 

amount of remotely-sensed Landsat and Sentinel-1 and 2 good-quality data are available for 

the long-term monitoring of small and seasonally-flooded wetlands. It was also demonstrated 

that careful attention should be given, when selecting images for analysing these wetlands, as 
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some wetland features become more visible than others in certain seasons. In addition, the 

cloud cover of the selected images should be clear (less than 20%), as this is one of the major 

of sources of error during the classification of these wetlands. 

The third section demonstrated the feasibility of the GEE and its advanced machine-learning 

algorithms, particularly RF, in the monitoring of long-term eco-hydrological variations and 

their drivers. The findings of this section revealed that the addition of the Normalized 

Difference Phenology Index (NDPI) to the synergy of Visible Red, Green, Blue, Near-infrared 

bands, NDVI and NDWI, improved the detection and monitoring of the eco-hydrological 

dynamics of these wetlands. In this study, NDPI allowed for the better detection of moisture 

and vegetation water content, as well as the separation of the bare soil from the unhealthy short 

wetland vegetation. This also allowed for the inference whether the wetlands are really 

seasonally, semi-permanent or permanently saturated.  

The last section of this study demonstrated how the integration of multisource data on the 

Google Earth Engine is beneficial for monitoring the large-scale impacts of LULC changes on 

these wetlands. The findings revealed that multi-source and multitemporal data integrations, 

such as the combination of Synthetic Aperture Rader data (Sentinel-1) and optical products 

like Landsat-8, improved the monitoring of the LULC changes and their impact on wetlands in 

semi-arid areas. Overall this study provides an overall guiding framework, for the improved 

detection and monitoring wetlands using cloud computing approaches, in particular GEE 

coupled with freely available remotely-sensed data- a previously daunting from traditional 

image processing analysis.   

7.8 Overall Recommendations 

Although the study noted that the GEE platform offers new ways for improving the detection 

and monitoring of small and seasonally-flooded wetlands, there are still challenges associated 

with the use of the GEE, for example the computational time costs, particularly for a large-

scale analysis, which can result in computational time-out errors. The study recommends the 

evaluation of the splits and parallel processing of the images, which has not been applied much, 

although researchers like Shafizadeh-Moghadam et al., (2021) who used the GEE platform for 

large-scale mapping and recommended the approach. It also has implications for the use of 

classified thematic layers after the parallel process split images have been merged. It is 

therefore necessary to consider the following future research: 
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• An exploration into the application of methodologies, such as the deep Artificial Neural 

Networks (ANN) and Convolutional Neural Network (CNN) on the GEE cloud-

computing platform for the detection and monitoring of semi-arid wetlands. 

• An analysis of the impacts of the groundwater level changes and the impacts of the eco-

hydrological dynamics of semi-arid wetlands, on a regional scale, using GEE, as some 

of these systems are groundwater fed.     

• The study also recommends an exploration into the use of Synthetic Aperture Radar 

(SAR) data for the assessment and monitoring of small and seasonally-flooded 

wetlands, as it not influenced by cloud coverage and it is able to penetrate through 

forested vegetation cover, because of its wavelengths.  
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APPENDICES 

Chapter 5 appendix  

Table A. Indices extracted from the time series Landsat-7 data  

Data Data 

extracted 

Formula Reference 

 

 

Landsat-7 

 NDVI 

 

 NDWI 

 

 

 NDPI 

 

𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛
 

 

𝑁𝐼𝑅 − (0.74 × 𝑅𝑒𝑑 + 0.26 × 𝑆𝑊𝐼𝑅1)

𝑁𝐼𝑅 + (0.74 × 𝑅𝑒𝑑 + 0.26 × 𝑆𝑊𝐼𝑅1)
 

Tucker, (1979) 

 

McFeeters, (1996) 

 

Wang et al. (2017) 

*NDVI: Normalised Difference Vegetation Index, NDWI: Normalised Difference Water 

Index, NDPI: Normalised Difference Phenology Index 

 

 

 

 

 

 

 

 

https://etd.uwc.ac.za/



157 
 

 
Figure A. Variations in NDVI, NDWI and NDPI for the studies time periods (Period 1: 

2000-2005, Period 2: 2006-2010, Period 3: 2011-2015 and Period 4:2016-2020) 
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Figure B. Statistical summaries of NDVI, NDWI and NDPI extracted from the Landsat 

image stacks representing the time periods (Period 1: 2000-2005, Period 2: 

2006-2010, Period 3: 2011-2015 and Period 4: 2016-2020) 
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Table B. Dates of images obtained and used in this study (Period 1: 2000-2005, Period 

2: 2006-2010, Period 3: 2011-2015 and Period 4:2016-2020) 

 

2000-2005 2006-2010 2011-2015 2016-2020 

23/04/2000  10/05/ 2006 24/05/ 

2011 

 15/02/2016 

14/09/2000 26/05/ 2006 12/08/ 

2011 

02/03/ 2016 

16/10/2000 13/07/ 2006 13/09/ 

2011 

 09/08/ 2016 

03/12/2000 29/07/ 2006 03/01/ 

2012 

25/08/2016 

26/04/ 2001 22/02/ 2007 10/05/2012  28/10/2016 

16/08/2001 11/04/2007  26/05/ 

2012 

 29/11/2016 

01/09/2001  13/04/2007 11/06/2012  24/05/ 2017 

17/09/ 2001 29/05/ 2007  27/06/ 

2012 

 9/06/ 2017 

03/10/ 2001 18/09/ 2007 01/10/ 

2012 

25/06/2017 

 07/01/2002 05/11/ 2007 27/04/ 

2013 

 27/07/2017 

 28/03/ 2002 31/05/ 2008 14/06/2013  12/08/ 2017 

 16/06/ 2002  03/10/ 2008 30/06/ 

2013 

 13/09/ 2017 

03/08/2002 31/03/2009 16/07/2013  15/10/ 2017 

 22/10/ 2002 03/06/ 2009 17/10/2013 31/10/ 2017 

23/11/ 2002 21/06/2009  5/11/2013  18/12/ 2017 

15/03/2003 06/09/2009 30/04/2014  19/01/2018 

22/08/ 2003 26/11/2009  

16/05/2014 

 25/04/ 2018 

 08/08/2004 02/03/2010 01/06/2014  28/06/2018 

24/08/2004 09/08/2010 03/07/2014  30/07/ 2018 

09/09/2004  26/09/2010 19/07/ 

2014 

 16/09/ 2018 

30/12/2004   03/05/ 

2015 

 02/10/ 2018 

21/04/2005   19/05/ 

2015 

22/01/ 2019 

23/05/2005    

07/09/2015 

14/05/2019 

08/06/2005   24/09/2015  15/06/ 2019 

27/08/2005   29/12/ 

2015 

01/07/2019 

12/09/2005     17/07/ 2019 

28/09/2005      03/09/ 2019 

      06/11/ 2019 

      26/01/ 2020 
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       30/04/ 2020 

       16/05/ 2020 

      01/06/2020 

      03/07/2020 

      19/07/2020 

       04/09 2020 

       23/10/2020 

       24/11/2020 
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