
KernTune:

Self-tuning Linux Kernel Performance

Using Support Vector Machines

by

Long Yi

A thesis submitted in partial fulfillment of the requirements

for the degree of Magister of Computer Science

in the Department of Computer Science, University of the Western Cape

Supervisor: James Connan

November 15, 2006

www.etd.ac.za

Table of Contents

List of Tables . v

List of Figures . vi

Keywords . vii

Abstract . viii

Declaration . ix

Acknowledgements . x

Glossary . xi

Chapter 1 Introduction . 1

1.1 Background and Motivation . 1

1.2 Research Problem . 2

1.3 Research Aim . 2

1.4 Approach and Methodology . 2

1.5 Thesis Outline . 3

1.6 Summary . 3

Chapter 2 SVM Classification and Prediction 4

2.1 Review of SVMs . 4

2.1.1 Linear SVM . 6

2.1.2 Non-linear SVM . 8

2.2 SVM Classification . 12

2.3 The SVM Tool LibSVM . 13

2.3.1 Converting data . 14

2.3.2 Scaling data . 15

2.3.3 Selecting a kernel . 15

ii

www.etd.ac.za

2.3.4 Setting kernel parameters . 16

2.3.5 Training and predicting . 17

2.4 Summary . 17

Chapter 3 Linux Kernel Optimisation 18

3.1 Operating system optimisation and GNU/Linux 18

3.2 Overview of Linux kernel . 19

3.3 Exploring /proc . 22

3.4 Kernel Optimisation . 26

3.4.1 Overview of the Kernel Parameters 26

3.4.2 Using sysctl . 30

3.5 Summary . 32

Chapter 4 Approach and Methodology 33

4.1 Understanding System Classes . 33

4.2 The Monitor-Classify-Adjust Cycle 38

4.2.1 Monitoring a system . 39

4.2.2 Classifying a System Class . 43

4.2.3 Adjusting System Parameters 46

4.3 Related Work . 50

4.4 Summary . 51

Chapter 5 System Implementation 52

5.1 Design goals for KernTune . 53

5.2 Overview of KernTune . 54

5.3 Data Collection: The monitor . 55

5.4 Data Processing: The classifier . 57

5.5 System Tuning: The adjustor . 58

5.6 Summary . 60

Chapter 6 Experimental Results and Conclusions 61

6.1 Experimental Details . 61

iii

www.etd.ac.za

6.2 Classification Results . 66

6.3 Performance Results . 67

6.4 Conclusions . 70

6.5 Future Work . 71

6.6 Summary . 72

Bibliography . 73

Appendix A /proc file-system . 76

iv

www.etd.ac.za

List of Tables

4.1 Performance factors . 37

4.2 Performance objects . 40

4.3 Performance counters . 42

4.4 Tuned values for web servers 46

4.5 Tuned values for ftp servers . 48

4.6 Tuned values for database servers 49

6.1 Machine . 62

6.2 Gentoo Server . 62

6.3 SUSE Workload Generator . 62

6.4 Workload Simulation . 63

6.5 Sample Training Set . 64

6.6 Workload Statistic . 65

6.7 Classification Results . 66

6.8 Overhead of KernTune . 66

6.9 Performance Results (10 times) 67

6.10 Web Server Results (10 times) 68

6.11 Ftp Server Results (10 times) 69

6.12 Database Server Results (10 times) 70

v

www.etd.ac.za

List of Figures

Figure 2.1 A linear / non-linear classification 5

Figure 2.2 Mapping from input space to feature space 6

Figure 2.3 A linear SVM . 7

Figure 2.4 The kernel mapping . 9

Figure 2.5 An classification example generated by pcSVMDemo 10

Figure 2.6 The non-linear SVM classification with linear kernel 11

Figure 2.7 The non-linear SVM classification with polynomial kernel . . . 11

Figure 2.8 The non-linear SVM classification with RBF kernel 12

Figure 2.9 The example of training data from the heart-scale file . . . 15

Figure 3.1 The structure of a GNU/Linux operating system 19

Figure 3.2 The components of the kernel 21

Figure 3.3 The content of /proc . 23

Figure 4.1 One server serves users with different requirements 34

Figure 4.2 The monitor-classify-adjust (MCA) cycle 38

Figure 4.3 The training set used by KernTune 45

Figure 5.1 Overview of KernTune . 54

Figure 5.2 The structure of monitoring 56

Figure 5.3 The structure of classifying . 57

Figure 5.4 The structure of adjusting . 59

Figure 6.1 KernTune Test Bed . 63

Figure 6.2 Accuracy of Classification . 67

Figure 6.3 Overhead of Classification . 69

vi

www.etd.ac.za

Keywords

Support Vector Machine

Linux Kernel

Operating System

Optimisation

Performance

Benchmark

Machine Learning

Workload

Open Source

System Profiler

vii

www.etd.ac.za

Abstract

Self-tuning has been an elusive goal for operating systems and is becoming a pressing

issue for modern operating systems. Well-trained system administrators are able to

tune an operating system to achieve better system performance for a specific system

class. Unfortunately, the system class can change when the running applications

change. Our model for self-tuning operating system is based on a monitor-classify-

adjust loop. The idea of this loop is to continuously monitor certain performance

metrics, and whenever these change, the system determines the new system class

and dynamically adjusts tuning parameters for this new class. This thesis describes

KernTune, a prototype tool that identifies the system class and improves system

performance automatically. A key aspect of KernTune is the notion of Artificial

Intelligence (AI) oriented performance tuning. It uses a support vector machine

(SVM) to identify the system class, and tunes the operating system for that specific

system class. This thesis presents design and implementation details for KernTune.

It shows how KernTune identifies a system class and tunes the operating system for

improved performance.

viii

www.etd.ac.za

Declaration

I declare that KernTune: Self-tuning Linux Kernel Performance Using Support Vec-

tor Machines is my own work, that it has not been submitted for any degree or

examination in any other university, and that all the sources I have used or quoted

have been indicated and acknowledged by complete references.

Signed

Date

ix

www.etd.ac.za

Acknowledgements

I wish to convey my greatest gratitude to my supervisor Mr. James Connan. It is he

who has guided me all the way in my master’s study in South Africa. Many thanks

to my faculty staff Prof. IM Venter, Ms. Verna Connan and Ms. Rene Abbott for

their selfless assistance. My lab colleagues and friends Pavan Rallabandi, Wilson Wu

are truly worthy of my love and thanks because they give me good advice and most

constructive criticism. Last, but certainly not least, thousands of hugs to my family.

They never made light of my difficulties in accomplishing this study, and indeed, are

endlessly patient and concerned about me and my work.

x

www.etd.ac.za

Glossary

AGP A bus specification by Intel which gives low-cost
3D graphics cards faster access to main memory on
personal computers than the usual PCI bus.

AGP Accelerated Graphics Port. A bus specification by
Intel which gives low-cost 3D graphics cards faster
access to main memory on personal computers than
the usual PCI bus.

DHCP Dynamic Host Configuration Protocol. A protocol
that provides a means to dynamically allocate IP
addresses to computers on a local area network.

DNS A general-purpose distributed, replicated, data
query service chiefly used on Internet for translat-
ing hostnames into Internet addresses.

FTP A client-server protocol which allows a user on one
computer to transfer files to and from another com-
puter over a TCP/IP network. Also the client pro-
gram the user executes to transfer files.

I/O Communication between a computer and its users,
its storage devices, other computers (via a network)
or the outside world.

IDE Integrated Drive Electronics.

IPC Exchange of data between one process and another,
either within the same computer or over a network.
It implies a protocol that guarantees a response to
a request.

IRQ Interrupt request. The name of an input found on
many processors which causes the processor to sus-
pend normal instruction execution temporarily and
to start executing an interrupt handler routine.

xi

www.etd.ac.za

IRQ Interrupt request. The name of an input found on
many processors which causes the processor to sus-
pend normal instruction execution temporarily and
to start executing an interrupt handler routine.

PCI A standard for connecting peripherals to a personal
computer, designed by Intel and released around
Autumn 1993.

PCI Peripheral Component Interconnect. A standard
for connecting peripherals to a personal computer,
designed by Intel and released around Autumn
1993.

SMP Symmetric Multiprocessing is a multiprocessor
computer architecture where two or more identical
processors are connected to a single shared main
memory.

TCP Transmission Control Protocol. The most common
transport layer protocol used on Ethernet and the
Internet.

UDP User Datagram Protocol Internet standard network
layer, transport layer and session layer protocols
which provide simple but unreliable datagram ser-
vices.

xii

www.etd.ac.za

Chapter 1

Introduction

In this chapter, we provide the motivation and background behind the automatic

optimisation of an operating system. We begin with a discussion of some of the

difficulties of automatic operating system optimisation and the benefits of automatic

optimisation technology which inspired our research. We then describe the research

problem and aims. Thereafter, our approach and methodology are explained. Finally,

the organisation of the thesis and summary are presented.

1.1 Background and Motivation

In today’s networking world, a mission-critical server requires consistently good per-

formance [2]. To this end, almost all operating systems which run on such a critical

server are managed by system administrators who should be skillful and experienced

in tuning operating systems by adjusting system configuration and performance pa-

rameters of the operating system to run a specific system workload. This involves

system capacity planning, performance metrics, workload characteristics, system set-

tings, etc. Skillful system administrators are scarce and expensive. As computer

hardware becomes cheaper and free critical computer software becomes more viable,

e.g., Linux, Samba, Mysql, Apache, the total cost of ownership for building and

maintaining a mission-critical server becomes more and more dominated by the cost

of human resources. Furthermore, with the increasing number of new applications

and services, a modern operating system offers more system parameters with larger

ranges for more system classes than ever before. This situation serves as our motiva-

tion for a new generation of automatic optimisation technology for operating systems.

The potential benefits of the automatic optimisation technology will be amplified as

future applications and operating systems become more complex.

1

www.etd.ac.za

2

1.2 Research Problem

Operating System optimisation is often regarded as a black art [3]: adjusting system

configuration settings and operational parameters of an operating system for a specific

system class, in order to achieve the best possible performance. Many operating

systems offer many parameters for this purpose, there are typically 5 to 50 tunable

system parameters just for adjusting computer memory behaviour. However, virtually

no help is provided in choosing the settings of these parameters in an intelligent way.

The default settings are often meaningless for various system workloads, and product

manuals are usually hard to read and do not give sufficient guidelines. Frequently,

it is possible for a well-trained system administrator to tune the operating system

using some so-called “rules of thumb”, but these rules must by no means be applied

blindly as their validity may depend critically on specific system workloads and system

classes. Therefore, an automatic tool with a knowledgeable library or self-learning

capacity is required for doing such optimisation. Our main question addressed in

our research is: “How to automatically adjust the system parameters of an operating

system for various system workloads in an intelligent way?”

1.3 Research Aim

The aim of our research is to apply machine learning to build a performance tool that

permits the automatic adjustment of system parameters with little or no intervention

from system administrators or users. We have developed a monitor-classify-adjust

loop control model to achieve this objective.

1.4 Approach and Methodology

We have developed a methodology for the automatic adjustment of system parame-

ters by a monitor-classify-adjust loop control which employs support vector machine

(SVM) technology [8] to determine system classes dynamically. The classifying mod-

ule in the loop control automatically builds a system class classifier by learning a

pre-classified set of classes. The method we propose here is inspired by recent work

in Linux kernel optimisation: “Tuning the kernel with a genetic algorithm”, by Jake

Moilane [16]. His idea is to “generate a ‘population’ defined with unique strings of

www.etd.ac.za

3

‘chromosomes’, to test each of these chromosome strings for ‘fitness’, to select a subset

of the chromosome strings with the best fitness and use them to create new chromo-

somes, to apply random mutation to a small subset, and finally to start the process

all over again. Over time, all the chromosomes should ‘evolve’ toward having the

best possible fitness, as defined by the algorithm.” Our method differs from Moilane’s

by not evolving the solution over time. Instead, we have predefined an optimal set

of system settings for each possible system class [17, 21, 23, 24, 9, 14]. The system

is monitored periodically and when the SVM detects a change in system class, the

approriate optimisations for that class are applied.

1.5 Thesis Outline

The thesis is structured as follows. The next chapter reviews SVMs and describes

basic information and background of SVMs. Following that, in Chapter 3, we explore

the /proc file-system and present optimisation techniques for the Linux kernel. In

Chapter 4, we present our approach and methodology. Next, we describe our im-

plementation details. In the last chapter, we present our experimental results and

conclusions.

1.6 Summary

Operating system automatic optimisation aims to adjust system settings and opera-

tional system parameters to a specific system class automatically in order to achieve

the best possible performance. The way to achieve this aim is studied in this thesis.

This chapter mainly overviews the background, motivation, problem and approach

of the research in turn. Background knowledge of support vector machines will be

reviewed in the next chapter.

www.etd.ac.za

Chapter 2

SVM Classification and Prediction

In the previous chapter, the main concerns were outlined to clarify the research prob-

lem, methodology and aim. Literature relevant to the research on SVM classification

will be reviewed in this chapter. We first briefly introduce basic ideas behind SVM

classification. Then we discuss SVM classification and prediction. Next, we present

LibSVM, a popular open source tool for SVM classification and regression. Finally,

we present a summary.

2.1 Review of SVMs

In the last few years, there has been a surge of interest in Support Vector Machines

(SVMs), a new generation learning system based on recent advances in statistical

learning theory. SVMs have empirically been shown to deliver good generalisation

performance in real-world applications such as text categorisation [15], hand-written

character recognition [19], image classification [18], object detection [20], speaker

identification [30], etc. SVMs show a competitive performance on problems where

data is sparse (few data) and noisy (many features). SVMs were first introduced in

the early 1990s by Vapnik [29] as a binary classification tool and are rapidly growing

in popularity due to many attractive features, and promising empirical performance.

Support Vector Machines (SVMs) are a set of related supervised learning methods

used for classification and regression. Their common factor is the use of a technique

known as the “kernel trick” to apply linear classification techniques to non-linear

classification problems.

Suppose we want to classify some data points into two classes. We are interested in

whether we can separate them by a hyperplane. A hyperplane is a geometrical concept.

It is a generalisation of the concept of a plane. We also want to choose a hyperplane

that separates the data points clearly, with maximum distance to the closest data

point from both classes, this distance is called the margin. We desire this margin as

4

www.etd.ac.za

5

Figure 2.1: (a) A linear classification (b) A non-linear classification

large as possible since we can more accurately classify a new point when the separation

between the two classes is greater. If such a hyperplane exists, the hyperplane is

clearly of interest and is known as the maximum-margin hyperplane or the optimal

hyperplane, as are the vectors that are closest to this hyperplane, which are called the

support vectors. The basic idea behind SVMs is to learn a decision hyperplane that

separates the data points with maximum margin. In linear classification cases, the

algorithm aims to find a linear decision hyperplane that can separate the data points

with maximum margin. In non-linear cases, the algorithm maps the data points into

a higher dimensional space and thus finds a decision hyperplane that can separate

the data points linearly. Figure 2.1 shows a classic example for linear classification.

In this example, the objects: circles and squares, belong either to class A—circles

or B—squares. The separating line defines a boundary between class A and B. Any

new object added to this example would be classified as class A or class B. The

above is the simplest example. Unfortunately, most real-world problems are not that

simple. Most problems involve non-linear separable data for which there does not exist

a hyperplane that can successfully separate one class from another. More complex

structures are needed to make an optimal hyperplane. This situation is illustrated by

Figure 2.1 (b).

Compared to Figure 2.1 (a), it is clear that a curve not a straight line, forms the

separation between circles and squares. The curve is more complex than the line. One

solution of the inseparability problem is to map the data into a higher dimensional

www.etd.ac.za

6I n p u t S p a c e F e a t u r e S p a c e

Figure 2.2: Mapping from input space to feature space

space and find a separating hyperplane there. SVM is particularly suitable to solve

such problems. Rather than drawing a curve between the two classes, SVM maps

the data into a higher dimensional space by using a kernel function and then draws

a separating hyperplane there. Figure 2.2 shows the idea behind SVM non-linear

classification.

This higher dimensional space is called the feature space and the original train-

ing set is called the input space. With an appropriately chosen feature space, any

consistent input space can be separated linearly. In Figure 2.2, the original objects

in the input space have been mapped into the feature space by using a set of known

functions as the kernel which maps the input data into a different space—the feature

space—where a hyperplane can be used to do the separation. Note that in the feature

space, the mapped objects are linearly separable. Thus, instead of drawing a complex

curve in the input space to separate the circles and squares, we find an optimal line in

the feature space that separates the two classes linearly. A more detailed introductory

review on SVM can be found at [29].

2.1.1 Linear SVM

We begin explaining SVMs with a simple linear example. A linear SVM is illustrated

in Figure 2.3. The circles and squares represent two classes in Figure 2.3. We can

find many decision lines that can separate the classes in Figure 2.3. We are interested

in finding one that allows us to have maximum separation between the classes. This

www.etd.ac.za

7HH 1 H 2

Figure 2.3: A linear SVM

separation is referred to as the margin. In Figure 2.3, the linear SVM will return the

bold solid line, H, over other possible lines. This line is determined by first finding

two parallel lines—H1 and H2—such that these lines separate the points into two

classes, and pass through at least one point—a support vector—of one of two classes.

In Figure 2.3, the goal of the linear SVMs is to find a hyperplane, i.e. a decision line

with maximum margin.

Consider a linear training set with N training data points in R
2:

{x1, y1}, {x2, y2}, . . . , {xN , yN},

where

xi ∈ R
2 and yi ∈ {+1,−1}.

In the above, xi represents the point to be classified and yi is the class to which xi

belongs. We want to find one decision line H : w · x − b = 0, the bold solid line,

which separates the two classes maximally and two lines H1: w ·x− b = +1 and H2:

w · x − b = −1, the dashed lines, parallel to H with equal distances. Furthermore,

we want the margin, the distance between H1 and H2, to be a maximal margin and

there to be no data points between H1 and H2. For any decision line H and the

corresponding H1 and H2, there always exists w to make H : w · x − b = 0, H1:

w ·x− b = +1 and H2: w ·x− b = −1. Recall that the distance from a point (x0, y0)

to a line Ax+By + C = 0 is
Ax0 +By0 + C√

A2 +B2
.

www.etd.ac.za

8

So the distance from a point on H to H1 is w·x−b
||w||

= 1

||w||
and the distance between H1

and H2 is 2

||w||
. In order to get a maximal margin, we should minimise ||w|| = wTw

with the condition that there are no data points between H1 and H2: w ·xi−b ≥ +1,

for positive data yi = 1; w · xi − b ≤ −1, for negative data yi = −1. These two

conditions can be combined as yi(w · xi − b) ≥ 1. So our problem can be formulated

as:

min
w,b

1

2
wTw,

subject to

yi(w · xi − b) ≥ 1.

This is a convex, quadratic programming problem with constraints yi(w·xi−b) ≥ 1

for positive data and yi(w · xi − b) ≤ −1 for negative data. Moreover, the margin is

only decided by the support vectors and other data points can be removed or moved

around as long as they do not cross the area between H1 and H2. This problem can

be dealt with by introducing Lagrange multipliers a1, a2, . . . , aN ≥ 0 and the following

Lagrangian:

L(w, b, a) =
1

2
wTw −

N∑

i=1

ai · (yi · (w · xi + b) − 1).

2.1.2 Non-linear SVM

But what if the decision boundary which separates the classes is not linear? In

Figure 2.4, we can map the data points into a higher dimensional space and thus the

data points can be separated linearly. In Figure 2.4, the function ψ should map the

data into a higher dimensional space so that B1 and B2 can be separated linearly.

We call the function K(xi, xj) = ψ(xi)
T · ψ(xj) the kernel. The kernel function

transforms the data into a higher dimensional space and enables it to be separated

linearly. The goal of the non-linear SVM is to find the separating hyperplane in a

higher dimensional space. There are four basic kernel functions where the γ, r and d

are kernel parameters:

• K(xi, xj) = (xi)
T · (xj)

• K(xi, xj) = (γ(xi)
T · (xj) + r)d, γ > 0

• K(xi, xj) = exp(−γ||xi − xj ||2), γ > 0

www.etd.ac.za

9

Figure 2.4: The kernel mapping

• K(xi, xj) = tanh(γ(xi)
T · (xj) + r), γ > 0

Many kernel functions can be used in SVM mapping, but only a few of them have

been found that work well in a wide variety of applications. Choosing an appropriate

kernel function is important, since the kernel function defines the feature space in

which the training set will be mapped. The performance of the SVM is very closely

tied to the choice of the optimal kernel functions [13]. There has been much research

over the last few years on algorithms to help choose the best kernel for a given problem

with a certain set of features [31]. Most of these methods are based on simple heuristic

knowledge of the input data and there is no standardised method to obtain the best

kernel. Hence, the choice of the optimal kernel is a trial and error procedure in

most scenarios [8]. The default and recommended kernel function is the Radial Basis

Function (RBF) [13]. It is by far the most popular choice of kernels used in SVMs.

This is mainly because of their localised and finite responses across the entire range

of the real X-axis. The RBF kernel unlike the linear kernel, can handle non-linear

cases. The reasons we choose the RBF as our recommended kernel over others are:

1. The RBF kernel can handle non-linear and linear cases. With certain parame-

ters, the RBF kernel can behave like the linear kernel and the sigmoid kernel;

2. The number of kernel parameters influences the complexity of SVM model

selection. The RBF kernel has fewer kernel parameters. More kernel parameters will

bring more complexity into SVM model selection;

3. Another advantage of the RBF kernel is less numerical difficulties. The com-

puting of the polynomial kernel function could go to infinity.

www.etd.ac.za

10

Figure 2.5: An classification example generated by pcSVMDemo

We use one of the most common kernel functions, Gaussian RBF kernel as our

kernel, which is also the default RBF kernel supported by LibSVM.

Figure 2.5 is an example automatically generated by pcSVMDemo using the circle

generator. The ideal hyperplane between the two classes, green and red, should be a

circle.

Figures 2.6–2.8 show the results with the SVM tested under different kernel types

on the same example. We start with the simple linear kernel. Figure 2.6 shows a

linear classification between the two classes when applying the linear kernel to data

that is not linearly separable. It fails to apply the linear kernel correctly. We notice

that the linear kernel performs quite well for data that is linearly separable. But,

it does not cope with non-linear data giving many errors. Figure 2.7 shows another

successful classification with a few support vectors. Figure 2.8 also shows a successful

classification, but with more support vectors. Comparing Figure 2.7 with Figure 2.8,

we notice that the performance of the SVM with the RBF kernel is not as good as

the SVM with the polynomial kernel—the hyperplane in Figure 2.7 is more like a

circle. This indicates that the polynomial kernel is more suitable for the example in

this case.

www.etd.ac.za

11

Figure 2.6: The non-linear SVM classification with linear kernel

Figure 2.7: The non-linear SVM classification with polynomial kernel

www.etd.ac.za

12

Figure 2.8: The non-linear SVM classification with RBF kernel

We compared the performance for three of the four basic types of kernels consid-

ered: linear, polynomial and RBF. We notice from the results that the SVM with

the polynomial kernel performs the best classification compared to the other two ker-

nels. When we compare Figure 2.7 and Figure 2.8 it is also clear that the SVM with

polynomial kernel uses the least number of support vectors.

2.2 SVM Classification

The SVM is a supervised classification technique for creating a classifier from training

data. The training data consist of pairs of input objects typically vectors, and desired

outputs. The output can be a continuous value—called regression, or can be class

labels of the input object—called classification. Since the primary interest of our

research is SVM classification, we will ignore SVM regression and focus on SVM

classification.

SVM classification usually involves two kinds of data, training data and testing

data. The training data includes some training examples. Each of those examples

contains one label and several attributes. The testing data includes testing examples

which each of them contains several attributes. Using the training set, the SVM

classifier would distinguish between the members and non-members of a given class.

www.etd.ac.za

13

Having learned the features of the class, the SVM can predict new objects as members

or as non-members of the class. The goal of SVM classification is to predict the label

of testing instances which are only given by attributes in the testing set by learning

from the training instances in the training set. To achieve this, the SVM learns a

separating hyperplane from the training data by using the kernel function to map the

data point into a higher dimensional space.

2.3 The SVM Tool LibSVM

LibSVM (Library for Support Vector Machines) [5] is a simple and easy-to-use open

source implementation for SVM. It was developed by Chang and Li and contains

C-support vector classification (C-SVC) [7], v-support vector classification (v-SVC)

[19], e-support vector regression (e-SVR) [19], and v-support vector regression (v-

SVR) [28]. It supports multi-class classification, weighted SVM for unbalanced data,

cross-validation and automatic model selection. It has interfaces for Python, R,

Splus, MATLAB, Perl, Ruby, and LabVIEW. Users can easily link it with their

own programs. It includes four kernels: Linear, Polynomial, Radial Basis Function,

and Sigmoid. The goal of LibSVM is to help users to easily use SVM as a tool.

Recommended Procedure for using LibSVM

This is a recommended procedure of using LibSVM:

1. Convert the data to the format that LibSVM requires

2. Scale the data

3. Select a kernel

4. Find the optimal parameter values for the kernel

5. Train on the training data and predict the testing data

We will discuss this procedure in detail in the following sections.

www.etd.ac.za

14

2.3.1 Converting data

LibSVM requires that each data instance in the training set and the testing set

are represented as real numbers. So we must convert textitlabel and attribute into

numeric data format. For example, we have three classes Web Servers, FTP Servers

and Database Servers and each of them has three attributes (the programs’ name):

Web Servers: apache, tomcat, netscape-enterprise

FTP Servers: proftp, pureftp, vsftp

Database Servers: mysql, postgres, oracle

The data above can be represented as:

1: 610.0, 648.0, 1985.0

2: 667.0, 774.0, 563.0

3: 566.0, 887.0, 630.0

We are using (1, 2, 3) to represent (Web Servers, FTP Servers, Database Servers)

three different classes. The rest of numbers above are the sum of the corresponding

ASCII codes. (e.g, apache = ‘a’ + ‘p’ + ‘a’ + ‘c’ + ‘h’ + ‘e’ = 97 + 112 + 97 + 99

+ 104 + 101 = 610)

The format of training and testing set file is:

(label 1) (index 1):(value 1) (index 2):(value 2) ... (index N): (value N)

(label 2) (index 1):(value 1) (index 2):(value 2) ... (index N): (value N)

...

(label N) (index 1):(value 1) (index 2):(value 2) ... (index N): (value N)

“label” is the target value of the training data. For classification, it should be an

integer which identifies a class. The labels in the testing data files are only used to

calculate accuracy or errors. “index” is an integer starting from 1. The indices must

be in ascending order. “value” is a real number. Thus, the example above should be

represented like this:

1 1:610.0 2:648.0 3:1985.0

2 1:667.0 2:774.0 3:563.0

3 1:566.0 2:887.0 3:630.0

www.etd.ac.za

15

Figure 2.9: The example of training data from the heart-scale file

Figure 2.9 is an example of the training data format from the heart-scale file in

the LibSVM-2.71 software package.

2.3.2 Scaling data

Scaling data is very important before applying LibSVM. [25] explains why we scale

data while using Neural Networks, and most of the considerations also apply to SVM

[13]. The benefit of scaling data is first, avoid large numeric ranges by scaling all

attributes in a smaller range, usually it is between 0 and 1, or −1 and 1. And second,

we can also avoid large numerical calculation and speed the LibSVM processing.

Third, large attribute values might cause numerical problems in the linear kernel and

the polynomial kernel. The testing data and training data should be scaled in the

same way before applying LibSVM. For example, if we scaled the first attribute of

training data from [−10,+10] to [−1,+1] and if the first attribute of testing data is

in [−11,+8], we must scale the testing data to [−1.1,+0.8].

2.3.3 Selecting a kernel

LibSVM handles four basic kernel functions: Linear, Polynomial, Radial Basis Func-

tion (RBF), and Sigmoid. Since the performance of the SVMs is very closely tied to

the kernel functions, the selection of an appropriate kernel function is important. A

standardised method for obtaining the appropriate kernel does not exist. The choice

www.etd.ac.za

16

of the kernel is a trial and error procedure in most cases. The LibSVM default recom-

mended kernel function is the RBF kernel. Section 2.1.2 explained the reasons why

we choose the RBF kernel as the recommended kernel.

2.3.4 Setting kernel parameters

There are a few parameters in the four basic kernel functions. See Section 2.1.2.

Each of the kernel functions has different parameters. The accuracy of the SVM

is largely dependent on the selection of the kernel parameters. After choosing a

kernel function, we should find optimal parameter values for the kernel parameters.

Therefore, a common way is to:

1. Separate training data into several random training sets;

2. Set values of the parameters to train the separated subsets and predict other

subsets to calculate the accuracy;

3. Change the values and calculate the accuracy until getting good accuracy;

4. Apply the optimal parameter values to the kernel function;

This whole process is called cross validation [5].

There are many possible values for each of the parameters. Cross validation is

a direct way to try different values for parameters. We usually try the values by

increasing or decreasing in exponential order until we get the best cross validation

accuracy. This process is called grid search. For example, there are two parameters in

the RBF kernel: C and γ. We apply a grid-search on C and γ using cross validation.

Basically pairs of (C, γ) are tried and the one with the best cross-validation accuracy

is picked. The method of trying exponentially growing sequences of C and γ is a

practical procedure to find the optimal parameters (C = 2−5, 2−3, . . . , 215, γ =

21, 23, . . . , 215).

The procedure of grid search is computationally expensive because the model

must be evaluated at many points within the grid for each of the parameters. For

example, if a grid search is used with 10 search intervals in a RBF kernel function (two

parameters), then the model must be evaluated at 10 × 10 = 100 grid points. There

are several methods that can save computational cost. However, there are two reasons

that LibSVM prefers the simple grid search approach. One is that psychologically we

may not feel safe to use methods which avoid doing an exhaustive parameter search

www.etd.ac.za

17

by approximations or heuristics. The other reason is that the computational time of

seeking optimal parameters is not much more than that of other methods since there

are only two parameters [13].

2.3.5 Training and predicting

There are three important executable files in the LibSVM software package: svmtrain,

svmscale and svmpredict. They are for training on the training data, scaling the

training and testing data, and predicting the testing data respectively. We scale both

the training data and the testing data using svmtrain, train on the training data using

svmtrain and then use svmpredict to predict the testing data.

The file heart-scale is provided as an example for classification in the LibSVM-

2.71 software package. Type svm-train heart-scale, and the program will read

the training data file heart-scale and output the model file heart-scale.model.

If you have a testing data file called heart-scale.t, the command is: svm-predict

heart-scale.t heart-scale.model output to see the prediction accuracy on the

testing data. The output file contains the predicted class label [13]. The class label

is the result of the SVM classification.

2.4 Summary

A loop control called monitor-classify-adjust is built into the KernTune. The clas-

sifying module in the loop learns the system type using SVM technology. In this

chapter, the basic idea of SVMs has been reviewed. The goal of SVM is to learn

a separating hyperplane between classes by mapping the data points into a higher

dimensional space. The adjusting module in the loop adjusts operating system set-

tings and operational system parameters to a specific workload in order to achieve the

best possible performance. In the next chapter, the skills and knowledge of operating

system optimisation for performance will be presented.

www.etd.ac.za

Chapter 3

Linux Kernel Optimisation

KernTune provides a monitor-classify-adjust loop control for automatic collection

and management of system profile information. In the previous chapter, we reviewed

the SVM technology used in the classifying module of the loop. In this chapter, we

focus on the GNU/Linux operating system optimisation knowledge that the adjusting

module of the loop requires.

3.1 Operating system optimisation and GNU/Linux

Operating system optimisation is the manipulation of system parameters in order to

achieve maximal possible performance, or reach a target workload for an acceptable

cost within given constraints. Operating system optimisation commonly refers to the

collection of system information, handling and management of system parameters on

a running operating system.

In our research, we have chosen GNU/Linux, a free, popular UNIX clone as our

experimental operating system. It is licensed under the GNU Public License (GPL).

The source code for the Linux kernel is freely available to anyone. The GPL is a

widely used license from the Free Software Foundation (FSF). If one modifies the

source code which is protected under GPL, one is obliged to release your modified

code. The complete definition of GPL can be found at [11].

Linux is the name given to the Linux kernel by its creator, Linus Torvalds and it

was initially created in 1991. In common usage, Linux refers to the entire operating

system which is based on the Linux kernel and GNU software. The development of

the kernel has evolved rapidly with the assistance of developers around the world

since it was first released [33]. Linux is the kernel, an essential part of an operating

system, which refers to the low-level system software that provides an abstraction

layer between hardware and software. It enables the operating system to manage all

the hardware and resources such as: hardware devices—CPU, memory, disk, display

18

www.etd.ac.za

19

Figure 3.1: The structure of a GNU/Linux operating system

cards, etc., memory assignment, data store, processes, workload balance, networking,

running applications and security. A complete Linux operating system is composed

of GNU software and the Linux kernel. The GNU project is lead by the FSF and its

goal is to create free software and also develop the GNU operating system. Because

all Linux distributions rely on a lot of important software from the GNU project, like

GNU Emacs, the GNU Debugger, the GNU Compiler Collection, the GNU C library,

GNOME desktop environment and so on, the FSF ask that the Linux system to be

referred as “GNU/Linux” [33].

The KernTune program uses the GNU/Linux operating system as our research

base because it is open source, efficient, well-documented and this makes it ideal for

research and experimentation [4].

3.2 Overview of Linux kernel

The kernel is the core part of a GNU/Linux operating system. The other parts of

the system cannot run on a machine if the kernel does not participate as part of the

entire system [1]. As such, it makes sense to discuss the kernel in the context of an

entire system. Figure 3.1 shows the structured overview of a GNU/Linux operating

system. The GNU/Linux operating system is composed of four major subsystems:

www.etd.ac.za

20

1. Applications. The set of user software in use on a GNU/Linux system. Ap-

plications allow users to perform one or more specific tasks. Typical applications

include word processors, spreadsheets, business programs, databases and games. The

applications installed on the GNU/Linux depend on what the machine is used for

[33].

2. Shell. It is typically considered part of a GNU/Linux system and it provides

an operating interface through which users can interact with the system and issue

commands. It is the utility that processes user requests [33].

3. Kernel. A single executable program, loaded into memory at boot time and

remaining there until the system is powered down. The kernel abstracts hardware

devices and acts as an intermediary between the hardware and shell and provides

hardware devices, memory and processor management functions, e.g. handling in-

terrupt requests from hardware devices, sharing memory and using the processor(s)

among processes, etc. User applications can interface with the kernel through system

calls [33].

4. Hardware. All the possible physical devices in a computer, for example, pro-

cessor, memory, hard disk, network cards, etc [33].

Each of the layers in Figure 3.1 can only communicate with adjacent layers. In

addition, the dependencies between layers are from top to bottom: higher layers

depend on lower layers. Since the primary interest of this research is the kernel, we

will ignore the application, shell and hardware layers and focus on the kernel layer

only.

The kernel is the heart of a GNU/Linux operating system. It has two main tasks:

1. To serve low level hardware requirements;

2. To provide an environment for running programs.

The function of the kernel is to present a virtual machine for user processes and

hide the underlying hardware [26]. The kernel (1) controls and mediates access to

hardware, (2) implements and supports fundamental abstractions—processes, files,

devices etc., (3) allocates and releases system resources—memory, CPU, disk, de-

scriptors, etc., (4) enforces security and protection, and (5) responds to user requests

for service—system calls. In addition, the kernel (6) supports a multi-tasking com-

puting environment that is transparent to user processes. Each process acts as if it is

www.etd.ac.za

21

F i l e S y s t e m sN e t w o r k i n gD e v i c e D r i v e r s
S c h e d u l e rM e m o r yM a n a g e m e n tI P C

Figure 3.2: The components of the kernel

the only process running on the computer, with exclusive use of memory and other

hardware resources. The kernel actually runs multiple processes concurrently and

rapidly switches back and forth among the processes. Figure 3.2 shows the divided

components of the kernel.

Ivan Bowman [1] divides the Linux kernel into five logically divided components.

We regard device drivers as an essential component of the kernel and regard its

components to be:

1. Process scheduler. It controls the way of processes access the processor. The

scheduler applies a policy to ensure that each process on the computer gets its fair

share of the processor[23].

2. Memory manager. It keeps track of the whole memory map, allocates and

de-allocates memory to processes, and manages swapping between main memory and

disk. It permits multiple processes to share the main memory simultaneously [23].

3. Interprocess communication (IPC). It allows one process to communicate with

another process. It is required in all modern operating systems [23].

4. File System. Its job is to keep track of the whole disk map, to allocate and de-

allocate sectors to files, and to manage files and directories. In addition, it abstracts

the various hardware devices’ details by presenting a common file interface [23].

www.etd.ac.za

22

5. Device Drivers. They control different hardware devices. They issue commands

to the devices, interact with them and provide interfaces to the devices that are simple

and easy to access.

6. Networking. It provides access to network function using several networking

protocols [23].

We will discuss the optimisation parameters of the various kernel components in

Section 3.4.

3.3 Exploring /proc

The /proc file-system is a real-time reflection of the running system kept in memory

and represented in a hierarchal manner [10]. The job of the /proc file-system is to

track the information of the system and running processes and to provide an easy way

to view such information. The /proc is a pseudo file-system residing in the virtual

memory and it does not exist on any physical media. The premise behind the /proc

file-system is to view the state of the system and information of currently running

processes by easily reading from related files in the /proc instead of having difficult

to understand system calls. For security reasons, the content of the /proc can only

be read or written to users with the appropriate authority. The /proc file-system can

provide information such as:

• Viewing hardware information

• Viewing kernel runtime status and memory/disk/network statistical informa-

tion

And can modify information such as:

• Modifying kernel runtime parameters

• Modifying memory, disk, network parameters

Figure 3.3 shows the content of the /proc file-system with the Linux kernel 2.4.29

on a GNU/Linux system. The following list [10, 17] briefly describes the files and

directories in the /proc file-system seen in Figure 3.3.

www.etd.ac.za

23

Figure 3.3: The content of /proc

www.etd.ac.za

24

• loadavg

————————————————————————————–

Example of cat loadavg

0.00 0.00 0.00 3/57 28964

————————————————————————————–

This file contains system load information about the kernel. The first three

entries represent the average number of active tasks on the system that were

actually running over the last 1, 5, and 15 minutes. The next entry is the

number of currently runnable processes that are scheduled to run rather than

being blocked in the kernel and the total number of processes on the system.

The final entry is the process ID of the process that ran most recently.

• uptime

————————————————————————————–

Example of cat /proc/uptime

1588073.71 1009804.77

————————————————————————————–

This file contains the time in seconds since the system was booted and the total

time used by processes rather than the idle time of the system. Both of these

values are given as floating point values, in seconds.

• meminfo

————————————————————————————–

Example of cat /proc/meminfo

total: used: free: shared: buffers: cached:

Mem: 262873088 68243456 194629632 0 1445888 35373056

Swap: 518180864 37249024 480931840

MemTotal: 256712 kB

MemFree: 190068 kB

MemShared: 0 kB

Buffers: 1412 kB

www.etd.ac.za

25

Cached: 26620 kB

SwapCached: 7924 kB

Active: 21780 kB

Inactive: 34780 kB

HighTotal: 0 kB

HighFree: 0 kB

LowTotal: 256712 kB

LowFree: 190068 kB

SwapTotal: 506036 kB

SwapFree: 469660 kB

————————————————————————————–

MemTotal : Total usable physical memory. Physical memory minus the memory

reserved for the kernel

MemFree: Sum of LowFree + HighFree

MemShared : always zero

Buffers : Memory in buffer cache

Cached : Memory in the pagecache (diskcache) minus SwapCache

SwapCache: Memory that was swapped out, is now swapped back in but is still

also in the swap file

Active: Memory that has been used recently and usually will not be released

unless absolutely necessary.

HighTotal : The total amount of memory in the high region.

LowTotal : The total amount of low memory region.

LowFree: The amount of free memory of the low memory region. This is the

memory that the kernel can address directly.

SwapTotal : The total amount of swap memory.

SwapFree: The total amount of free swap memory.

• See Appendix A

www.etd.ac.za

26

The contents of the /proc file-system is used by the monitoring module of Kern-

Tune which grabs the data from the particular files in the /proc directories and for-

mats it as the input for the classifying module of KernTune. The monitoring module

collects information from /proc/stat, /proc/loadavg, /proc/meminfo, /proc/net/dev,

/proc/net/tcp and all the numbered directories.

3.4 Kernel Optimisation

Another important part of the /proc file-system is the directory /proc/sys. This

directory not only provides information of the running kernel, it also allows admin-

istrators to modify the value of the parameters that the kernel uses to determine

behaviour. The files in /proc/sys can be used to monitor and to optimise general

and miscellaneous operation of the Linux kernel. Unlike most other directories in

the /proc file-system, /proc/sys variables are typically wirable, and are used to ad-

justing the running kernel rather than simply monitoring currently running processes

and system information. To change the value of a parameter, simply apply the new

value to the related file using the echo or the sysctl command. We will focus on

/proc/sys/kernel, /proc/sys/fs, /proc/sys/vm, and /proc/sys/net, which are

used to tune the kernel, file-system, virtual memory and disk buffers, and networking

respectively. The 2.4.29 kernel has many parameters that can be used for improving

performance [22]. In the remainder of this section, we present several areas of sysctl

that can result in large performance improvements.

3.4.1 Overview of the Kernel Parameters

The following definitions of the kernel parameters are taken from Linux kernel 2.4.29

documents which can be found in the kernel source package [34]. The list below shows

the kernel parameters that are most relevant to performance [32, 21].

• /proc/sys/net/ipv4/inet peer gc maxtime

Minimum interval between garbage collection passes. This interval is in effect

under low or absent memory pressure on the pool. Measured in jiffies1

1A jiffy is a unit of time that depends on the speed of the processor.

www.etd.ac.za

27

• /proc/sys/net/ipv4/inet peer gc mintime

Minimum interval between garbage collection passes. This interval is in effect

under high memory pressure on the pool. Default is 10, measured in jiffies.

• /proc/sys/net/ipv4/inet peer maxttl

The maximum time-to-live for the inet peer entries. New entries will expire

after this period of time. Default is 600, measured in jiffies.

• /proc/sys/net/ipv4/inet peer minttl

The minimum time-to-live for inet peer entries. Set to a high-enough value to

cover fragment time to live in the reassembling side of fragmented packets. This

minimum time must be smaller than net.ipv4.inet peer threshold. Default

is 120, measured in jiffies.

• /proc/sys/net/ipv4/inet peer threshold

The approximate size of the storage. Starting from this threshold entries will

be threwn aggressively. This threshold also determines entries’ time-to-live and

time intervals between garbage collection passes. More entries, less time-to-live,

less GC interval.

• /proc/sys/vm/hugetlb pool

The hugetlb feature works the same way as bigpages, but after hugetlb al-

locates memory, the physical memory only can be access by hugetlb or shm

allocated with SHM HUGETLB. It is normally used with databases such as Oracle

or DB2. The default is 0.

• /proc/sys/vm/inactive clean percent

Designates the percent of inactive memory that should be cleaned. The default

is 5%.

• /proc/sys/vm/pagetable cache

The kernel keeps a number of page tables in per-processor caches. pagetable cache

bounds the number of pages in each cache. This helps a lot on SMP systems.

The cache size for each processor lies between the low and the high value. On

www.etd.ac.za

28

a low-memory, single CPU system one can safely set both these values to 0 so

that memory is never wasted by caching. On SMP systems it assists the system

to do fast pagetable allocations without having to acquire the kernel memory

lock. For large and normal systems, the default settings are reasonable. For

small systems, with a memory smaller than 16MB ram, it is advantageous to

set both values to 0 so that there is no cache. The default values are: 25 50.

• /proc/sys/fs/file-nr

The kernel allocates file handles dynamically, but as yet it doesn’t free them

again. The three values in file-nr denote the number of allocated file han-

dles, the number of used file handles and the maximum number of file handles.

When the allocated file handles come close to the maximum, but the number

of actually used ones is far behind, you’ve encountered a peak in your usage of

file handles and you don’t need to increase the maximum.

• /proc/sys/fs/file-max

The value in file-max denotes the maximum number of file-handles that the

Linux kernel will allocate. When you get lots of error messages about running

out of file handles, you might want to increase this limit.

• /proc/sys/vm/bdflush

This file controls the operation of the bdflush kernel daemon. The source code

of this struct can be found in fs/buffer.c. It currently contains 9 integer

values, of which 6 are actually used by the kernel: nfract, ndirty, dummy2,

dummy3, interval, age buffer, sync, stop bdflush, dummy5. The default are:

30 500 0 0 500 3000 60 20 0 for 100 HZ.

• /proc/sys/vm/kswapd

The kernel swapout daemon, kswapd, is that piece of the kernel that frees

memory when it gets fragmented or full. Since every system is different, you’ll

probably want some control over this piece of the system. The numbers in this

page correspond to the numbers in the struct pager daemon—tries base,

tries min, swap cluster. The tries base and swap cluster probably have

the largest influence on system performance.

www.etd.ac.za

29

• /proc/sys/net/ipv4/tcp max syn backlog

Maximal number of remembered connection requests, which still did not receive

an acknowledgement from connecting client. Default value is 1024 for systems

with more than 128Mb of memory, and 128 for low memory machines. If server

suffers of overload, try to increase this number.

• /proc/sys/net/ipv4/ip local port range

Defines the local port range that is used by TCP and UDP to choose the local

port. The first number is the first, the second the last local port number. The

default values depend on the amount of memory available on the system: larger

than 128Mb 32768–61000, smaller than 128Mb 1024–4999 or even less. This

number defines the number of active connections, which this system can issue

simultaneously to systems not supporting TCP extensions (timestamps). With

tcp tw recycle enabled, i.e. by default, range 1024–4999 is enough to issue up

to 2000 connections per second to systems supporting timestamps.

• /proc/sys/net/ipv4/tcp wmem

min: Amount of memory reserved for send buffers for TCP socket. Default:

4K.

default : Amount of memory allowed for send buffers for TCP socket by default.

Default: 16K.

max : Maximal amount of memory allowed for automatically selected send

buffers for TCP socket. Default: 128K.

• /proc/sys/net/ipv4/tcp rmem

min: Minimal size of receive buffer used by TCP sockets. It is guaranteed to

each TCP socket, even under moderate memory pressure. Default: 8K.

default : default size of receive buffer used by TCP sockets. Default: 87380

bytes.

max : maximal size of receive buffer allowed for automatically selected receiver

buffers for TCP socket. Default: 87380 ×2 bytes.

www.etd.ac.za

30

• /proc/sys/net/ipv4/tcp keepalive time

How often TCP sends out keepalive messages when keepalive is enabled. De-

fault: 2 hours.

• /proc/sys/net/core/wmem max

Maximum buffer size for the send queue for any protocol, including IPv4.

• /proc/sys/net/core/rmem max

Maximum buffer size for the read queue for any protocol, including IPv4.

The following lists the kernel parameters that are relevant but not typically used

in performance tuning [32, 21].

• /proc/sys/kernel/panic

The value in this file represents the number of seconds the kernel waits before

rebooting on a panic. When you use the software watchdog, the recommended

setting is 60.

• /proc/sys/kernel/pid max

Determines the maximum pid that a process can allocate. Default is 32768.

• /proc/sys/net/ipv4/tcp tw recycle

Enable fast recycling TIME-WAIT sockets. Default value is 0. It should not be

changed without the advice/request of technical experts.

• /proc/sys/vm/overcommit ratio

Percentage of memory that is allowed for over commit. Default is 50%.

3.4.2 Using sysctl

sysctl is an interface that exports the ability to tune kernel parameters in a running

Linux system. It is easy to make changes to the kernel parameters by issuing the

sysctl command. For example, to modify the file-max kernel parameter, root can

alter the value of the parameter with two different commands:

www.etd.ac.za

31

• using echo command

cat /proc/sys/fs/file-max

26188

echo 30000 > /proc/sys/fs/file-max

cat /proc/sys/fs/file-max

30000

• using the sysctl command

sysctl fs.file-max

fs.file-max = 26188

sysctl -w fs.file-max=30000

fs.file-max = 30000

sysctl fs.file-max

fs.file-max = 30000

Notice that using the echo command can easily introduce errors, so we prefer

using sysctl because it checks the consistency of the parameter before it makes

change. The system call sysctl to programmers is available. It is an alternative way

to change parameters rather than modifying parameters by using read/write system

calls. The advantage of sysctl is that it is faster, as no fork is executed nor any

directory look-up. KernTune uses the sysctl instead of operating parameter files

directly. To use sysctl in a C program, the header file linux/sysctl.h must be

included. The declaration is like this:

————————————————————————————–

int sysctl (int *name, int nlen, void *oldval, size t *oldlenp, void

*newval, size t newlen);

• name is a integer pointer that points to an array of integers: each of the elements

of the array identifies a sysctl item.

• nlen is a integer indicates the number of elements which are stored in the array.

www.etd.ac.za

32

• oldval is an integer pointer that points to a data buffer where the old value of

the parameter must be stored.

• oldlenp is a size t pointer that points to the length of the oldval.

• newval is an integer pointer that points to a data buffer that hosts the new

value of the parameter.

• newlen an integer indicates the length of newval.

————————————————————————————–

3.5 Summary

The adjusting module in the monitor-classify-adjust loop which is built into Kern-

Tune adjusts operating system settings and operational system parameters for best

possible performance. In this chapter, we explored the /proc file-system and ex-

plained how to optimise general and miscellaneous operations of the kernel using

sysctl. Then we presented several kernel parameters that can result in large perfor-

mance improvements, which will be used in KernTune, and we described sysctl. In

the next chapter, our approach and methodology of automatic system performance

tuning technology will be presented.

www.etd.ac.za

Chapter 4

Approach and Methodology

In this chapter, we present our approach and methodology for the automatic adjust-

ment of system settings. The optimisation strategy used by KernTune is dependent

on the functions performed by the server. Thus, the monitoring tool needs to collect

the appropriate system information to allow us to identify the class of system that

needs to be optimised. We then describe how this information is used by the SVM to

classify the system class. Next, we discuss the kernel parameters KernTune will use

to improve system performance and the recommended values of these parameters for

various system classes. Finally, we present a summary of this chapter.

4.1 Understanding System Classes

To optimise system performance, it is important to first understand the intended use

of the system and the performance constraints of the particular system. Once the

system classes have been identified, particular attention can be focused on the specific

performance characteristics of each class. Figure 4.1 shows one server delivering

services to users with different requirements.

Below is a list of common services:

• Ftp servers

The role of the ftp server is to receive requests from users, store data or send the

requested data back. The basic requests include upload, download and update

data, list files, change directory, etc. Therefore, the critical performance issue

of the ftp server is the speed of data transfer. The networking subsystems of the

kernel handles the data transfer. The memory subsystem handles tasks such as

network buffers and disk I/O caching which also greatly influence performance.

When a user requests a file, the ftp server must initially locate, then read and

send the file back to the user. Therefore the disk subsystem will potentially

33

www.etd.ac.za

34I n t e r n e tI S P 1 I S P 2
W e b S e r v e rF T P S e r v e rD a t a b a s e S e r v e r. . .

H T T P R e q u e s tF T P R e q u e s tS Q L R e q u e s t. . . H T T P A n s w e rF T P A n s w e rS Q L A n s w e r. . .

Figure 4.1: One server serves users with different requirements

influence performance. Processor speed or quantity typically has little impact

on ftp server performance [33].

The subsystem that has the most impact on ftp server performance is the net-

work subsystem [32].

• Print servers

The role of the print server is to manage a large number of print requests and

queues, and send the data to the appropriate printer. The print server keeps

data in memory and waits for slower printers to produce output. Therefore,

the critical performance issues are the speed of data transfer and memory ca-

pacity. The printer server spools print jobs via a disk and the spool directory

is located on a physical drive. Therefore the disk subsystem will also impact

performance [33].

The subsystem that has the most impact on print server performance is the

memory subsystem [32].

• Database servers

The role of the database server is to store, search, retrieve and update data from

disk. The database server handles a large number of random disk I/O requests

www.etd.ac.za

35

and computational activities. Paging will occur between disk and memory if

the server does not have sufficient memory, which will result in large amounts of

disk I/O. Therefore, the critical performance issues of the database server are

memory capacity and disk I/O. The database queries, insert/remove/update

operations and replication require intensive CPU time. Therefore, the CPU

processing capacity is another important factor for database servers [33].

The subsystem that has the most impact on database servers performance is

the memory subsystem [32].

• E-mail servers

The role of the e-mail server is to store and distribute electronic mail messages.

E-mail servers use memory to keep database buffers. Paging will occur if there is

not enough memory. Therefore, the disk subsystem is important to the server’s

performance. As the e-mail server also has to deliver mail, check e-mail address

in the list and route the message accordingly, the processor’s capacity is also

important. High speed and stable network between e-mail servers and their

clients are required when the clients are receiving large e-mails [33].

The most important subsystem for e-mail servers is the memory subsystem [32].

• Web servers

The role of the web server is to host web pages and run web applications. The

performance issues of the web server depends on the web site’s content. There

are two kinds of web site. A dynamic site allows Internet users to register, log

on and query from its database. A static site only accepts user requests and

returns the requested web pages. A dynamic site requires more CPU cycles to

process user requests and produce dynamic pages. Memory is very important in

dynamic sites because the web server must have adequate memory for caching

and for processing dynamic pages. Because of high hit ratio and transferral of

large objects, like pictures, music, flash pages, etc., the network is also very

important in both types of web sites [33].

If web site content is static, the subsystem that has the most impact on the

web servers’ performance is the network subsystem. If the web server is not

www.etd.ac.za

36

static, the subsystem that has the most impact on web servers’ performance is

the memory subsystem [32].

• Groupware servers

The role of the groupware server is to cooperage, share and exchange informa-

tion in a user community. The groupware server generally supports folder/file

access, scheduling, calendaring and work flow applications. These functions

usually require significant CPU power similar to an e-mail server. Memory

is used for caching database buffers and a special memory cache is designed

to increase the data access rate. Therefore, the groupware server should have

enough memory to reduce paging between memory and disk. Groupware servers

are client/server database applications and their performance characteristics are

similar to database servers. Therefore, the disk subsystem is also an important

performance factor [33].

The most important subsystem is the memory subsystem [32].

• Multimedia servers

The role of the multimedia server is to provide concurrent video streams to

multiple users through intranet or the Internet. The multimedia server requires

high-speed networking and fast disk I/O because of the large data transfers.

If compression/decompression of the data is required, then CPU power and

memory capacity are important factors as well [33].

The most important subsystem is the network subsystem [32].

• Terminal servers

The role of the terminal server is to enable multiple users to access a server and

run applications on the server through a network. The terminal server executes

the user requested application and sends screen updates and results back to

the user. As the application and all the processing are run on the server, the

terminal server requires powerful CPUs and sufficient memory. The terminal

server processes concurrent users with large numbers of requests through the

network, therefore, the network is another important subsystem [33].

www.etd.ac.za

37

The subsystem that has the most significant influence on performance is the

memory subsystem [32].

• DNS servers

The role of the Domain Name System (DNS) server is to translate between

domain names and IP addresses. The DNS server utilises memory to cache

files and resolve names to IP addresses or other information associated with the

names. A high-speed network between the DNS server and other DNS servers

is required when the server fails in order to find the name in its database [33].

The most important subsystem is the network subsystem [32].

• DHCP servers

The role of the Dynamic Host Configuration Protocol (DHCP) server is to man-

age and administer IP addresses and other related configurations. The DHCP

server also provides a mechanism for allocating IP addresses to client hosts.

The DHCP server responds and distributes the configuration information, such

as a valid IP address, to clients. A high-speed network is required for transfer-

ring the configuration and related information. The disk subsystem is another

important factor which impacts performance [33].

The most important subsystem is the network subsystem [32].

Table 4.1 lists all the important subsystems which most significantly influence

performance in the above system classes.

Table 4.1: Performance factors

System Class Performance Factor

Ftp server Network, memory and disk

Print server Memory and disk

Database server Memory and processor

E-mail server Memory, processor and network

Web server Network and memory

continued on next page

www.etd.ac.za

38

 The
Classifying
 Module

 The
Monitoring
 Module

 The
Adjusting
 Module

Figure 4.2: The monitor-classify-adjust (MCA) cycle

continued from previous page

System Class Performance Factor

Groupware server Memory, processor and disk

Multimedia server Network, disk and processor

Terminal server Memory, processor and network

DNS server Network and memory

DHCP server Network and disk

4.2 The Monitor-Classify-Adjust Cycle

The main principle that we pursue in the KernTune project is the concept of an on-line

control cycle called monitor-classify-adjust. The system continuously monitors certain

performance data and analyses the necessary data using SVM. Whenever change is

detected the system dynamically adjusts kernel parameters to improve performance.

While this principle seems very simple, applying it to real systems is problematic.

It is unclear which kernel parameters should be considered for each system class.

Furthermore, system load also has to be taken into account to adjust the parameters.

To address these problems, we apply SVM technology and divide the control cycle

into three modules: monitor, classify, and adjust, the MCA cycle for short. Figure 4.2

shows this cycle:

www.etd.ac.za

39

• Keep observing the status of the running system (monitor);

• Employing SVM techniques to classify the system class (classify);

• Adjusting system parameters for the particular system class (adjust).

The monitoring module observes performance metrics and the system workload

that can be viewed as indicators for a shift of system class. In order to implement this

module, we first need to identify which parameters to observe. While disk throughput

and CPU times are objects of system metrics, they do not give enough clues to classify

a system. In addition to these observation, we investigated which performance metrics

should be used in order to identify the system class. Furthermore, the data could also

guide us in choosing the appropriate values for the kernel parameters. The purpose

of the classifying module is to assess the performance objects of the various system

classes. The classifying module needs a mathematical model for classification of the

system classes. Performance tuning should be adjusted only when we identify a system

class successfully. SVM classification has been used in the classifying module as the

mathematical model. The critical role of this module is to interpret information. It

takes the output from the monitoring module and provides input for the adjusting

module. The last module in the three-module cycle is the adjusting module. When

the classifying module returns a system class, we can determine which parameters

to be adjusted and by how much. The adjusting module adjusts the kernel settings

based on known tuning rules or practical experiments.

4.2.1 Monitoring a system

Through monitoring, KernTune obtains performance data that is useful in classifying

system classes and in tuning these systems. The monitoring module in the monitor-

classify-adjust cycle ensures that KernTune always has up-to-date information about

how the computer is operating. The performance data provides KernTune information

about the behaviour of system components at runtime, which is useful for determining

the system class. When KernTune has performance data for the system over a range

of activities and loads, KernTune can determine the system class. The system runtime

data represents a system class. In addition, this system class provides a reference point

for KernTune to tune the system. The following subsections describe the scope and

www.etd.ac.za

40

type of performance data collected, the design of the performance data architecture,

and the methods of data collection used by the monitoring module.

Scope and Type of Performance Data

In general, performance monitoring illustrates how the system, including the operat-

ing system and any applications or services uses the resources of the system.

KernTune collects data about system resources, such as disks, memory, processors,

and network components. In addition, KernTune also collects information about

applications and services that might be running on the system, such as application or

service name and ports used by services. The monitoring module obtains performance

data, system resources and application information using the /proc file-system. When

the monitoring module read the /proc file-system for performance data, the module

collects the data from the appropriate directories and files in the /proc file-system,

such as the loadavg, uptime, meminfo, /proc/net/, stat, numbered directories, etc.

As an option, the Linux kernel supports collecting performance data using the sysctl

system call. KernTune prefers reading the data directly from the /proc file-system.

Performance Objects and Counters

By default, operating systems have numerous performance objects corresponding to

hardware or other resources in the system. Table 4.2 shows the default performance

objects in a Linux system [12].

Table 4.2: Performance objects

Object Name Description

Cache Reports activity for the file-system cache, an

area of physical memory that holds recently

used data.

Memory Reports usage of random access memory

(RAM), the part of computer hardware that

used to store code and data.

continued on next page

www.etd.ac.za

41

continued from previous page

Object Name Description

Network Reports rates at which bytes and packets are

sent and received by the network adapters.

Swap Reports usage of the swap file-system, swaps

data between memory and disk.

Disk Reports usage of hard disks, the part of com-

puter hardware that stores programs and

data.

Processor Reports activity of the processor, the part

of computer hardware that executes program

instructions.

System Reports statistics for system-wide counters

that track processor time, file operations,

process information and so on.

TCP Reports the rates at which Transmission

Control Protocol (TCP) segments are sent

and received using the TCP.

UDP Reports the rates at which User Datagram

Protocol (UDP) datagrams are sent and re-

ceived using UDP.

Each object has counters that are used to measure various aspects of the system’s

performance, such as read/write rates of disk, the usage of memory, transfer rates

of the network interface, or the utilisation of the processor(s). Depending on how a

counter is defined, its values might be described in one of the following ways:

1. Instantaneous counters, display the most recent measurement;

2. Averaging counters, measure a value over time and display the average of the last

two measurements.

Table 4.3 describes performance counters and their descriptions [12, 24].

www.etd.ac.za

42

Table 4.3: Performance counters

Performance Counter Description

Avg. Disk Bytes Read/sec The rate at which bytes are read

Avg. Disk Bytes Write/sec The rate at which bytes are written

Avg. Disk IO Read Operation/sec The rate of disk I/O reads requests

Avg. Disk IO Write Operation/sec The rate of disk I/O writes requests

Pages in/sec The rate at which the disk was read to resolve

hard page faults

Pages out/sec The rate at which pages are written to disk

to free up space in physical memory

Memory free(MB) Free physical memory in megabytes

Swap pages in/sec The rate at which pages are read from swap

Swap pages out/sec The rate at which pages are written to swap

Swap free(MB) Free swap space in megabytes

% User Time Represents the time spent in the CPU by the

user’s application

Bytes Received/sec The rate at which bytes are read from net-

work adapters

Bytes Sent/sec The rate at which bytes are sent to network

adapters

Packets Received/sec The rate at which packets are read from net-

work adapters

Packets Sent/sec The rate at which packets are sent to network

adapters

TCP Bytes Received/sec The rate at which bytes are read from the

network by TCP

TCP Bytes Sent/sec The rate at which bytes are sent to the net-

work by TCP

TCP Packets Received/sec The rate at which packets read from the net-

work by TCP

continued on next page

www.etd.ac.za

43

continued from previous page

Performance Counters Description

TCP Packets Sent/sec The rate at which packets are sent to the

network by TCP

UDP Bytes Received/sec The rate at which bytes are read from the

network by UDP

UDP Bytes Sent/sec The rate at which bytes are sent to the net-

work by UDP

UDP Packets Received/sec The rate at which packets are read from the

network by UDP

UDP Packets Sent/sec The rate at which packets are sent to the

network by UDP

KernTune samples data periodically rather than collecting it continuously. This

collection method has the advantage of keeping overhead low, but it might occasion-

ally overestimate or underestimate values when activity falls outside the sampling

interval. The objective of KernTune is to improve system performance with minimal

additional overhead. This objective is very important for KernTune.

4.2.2 Classifying a System Class

Classifying system classes is the core part of the monitor-classify-adjust cycle for

KernTune. KernTune uses performance data collected by the monitoring module

as input to the classifying module. The classifying module in the monitor-classify-

adjust cycle automatically builds a system class classifier by learning a pre-classified

system class set using the SVM technology. This system class is used as input to the

adjusting module described in the next section. A system class can change when any

new application or service starts running. The classifying module employs a SVM

and the pre-classified set to develop a system class classifier that can classify the new

classes. SVMs are particularly well suited to this type of classification. See Sections

2.1 and 2.2.

This section describes how to identify a system class using SVM technology, and

shows how the classifying module uses the data from the monitoring module for

www.etd.ac.za

44

classification. The following subsections include the pre-classified system class set,

the input of the classifying module, and the method of classification used by the

classifying module.

Training Pre-classified System Class Sets

A pre-classified system class set is a set of pre-classified examples which contains one

system class and several system attributes. The use of SVM classification begins with

training on the set of pre-classified examples. Figure 4.3 shows an acceptable training

set for KernTune.

Each line of the training set describes an instance of a system class. The data

presented in each of the columns are: the identification number of the system class,

the name of the active program, the port number of the active service, the processor

usage, the physical memory usage, the swap usage, the number of blocks read from

the disk, the number of blocks written to the disk, the number of packets received by

the network interface, the number of packets transmitted by the network interface.

The pre-classified system class set is constructed manually and used as training

set for the classifying module. The collection is a set of 1000 items (class:attributes),

that have been pre-classified manually into 10 categories. These 10 categories are:

ftp servers, printer servers, database servers, e-mail servers, web servers, groupware

servers, multimedia servers, terminal servers, DNS servers and DHCP servers. The

set is stored in text format and can be used as the testing set in later experiments

and trial tests.

Input of The Classifying Module

The SVM in the classifying module uses the pre-classified examples to determine the

set of parameters required for proper discrimination. The SVM then encodes these

parameters into a model called a system class classifier. Once an effective classifier

is developed, it is used to classify new classes into the same predefined classes. We

modified the libsvm source code to accept the input of the training set so that the

SVM can interpret each sample of the set in the context in which it was generated.

www.etd.ac.za

45

Figure 4.3: The training set used by KernTune

www.etd.ac.za

46

4.2.3 Adjusting System Parameters

The Linux kernel offers a variety of parameters to system administrators for tweaking

the performance of a system. Adjusting these parameters for specific system usage is

difficult, because the effect on the system and the applications (or services running on

it needs to be extensively tested. There are no hard and best rules on adjusting these

parameters as they are very dependent on the system class. Our approach of finding

the ‘right’ value of the parameters is simply to experiment. We wrote a script to adjust

the value periodically and measured its effect until we found the ‘right’ value for the

target system class. These values are examined on our test machine. This section

describes the parameters that can achieve the most improvement in performance and

their best possible values for three system classes: web server class, ftp server class

and database server class.

Suggested Values for Web Servers

Table 4.4 shows the best possible values of the kernel parameters for the web server

system class. The suggested values are come from [9, 14, 24, 34, 32].

Table 4.4: Tuned values for web servers

Parameter Suggested Value

net.ipv4.inet peer gc maxtime 240

net.ipv4.inet peer gc mintime 80

net.ipv4.inet peer maxttl 500

net.ipv4.inet peer minttl 80

net.ipv4.inet peer threshold 65644

vm.hugetlb pool 4608

vm.inactive clean percent 30

vm.pagecache 50 100

vm.bdflush 30 500 0 0 500 3000 80 20 0

vm.kswapd 1024 32 64

net.ipv4.tcp max syn backlog 8192

continued on next page

www.etd.ac.za

47

continued from previous page

Parameter Suggested Value

net.ipv4.ip local port range 16384 65536

net.ipv4.tcp wmem 4096 131072 262144

net.ipv4.tcp rmem 4096 87380 174760

net.ipv4.tcp keepalive time 1800

net.core.wmem max 262144

net.core.rmem max 103424

net.ipv4.ip forward 0

net.ipv4.conf.all.rp filter 1

net.ipv4.conf.lo.rp filter 1

net.ipv4.conf.eth0.rp filter 1

net.ipv4.conf.default.rp filter 1

net.ipv4.conf.all.accept redirects 0

net.ipv4.conf.lo.accept redirects 0

net.ipv4.conf.eth0.accept redirects 0

net.ipv4.conf.default.accept redirects 0

net.ipv4.conf.all.accept redirects 0

net.ipv4.conf.lo.accept redirects 0

net.ipv4.conf.eth0.accept redirects 0

net.ipv4.conf.default.accept redirects 0

net.ipv4.tcp fin timeout 15

net.ipv4.tcp window scaling 0

net.ipv4.tcp sack 0

net.ipv4.tcp timestamps 0

net.ipv4.icmp echo ignore broadcasts 1

net.ipv4.icmp ignore bogus error responses 1

net.ipv4.conf.all.log martians 1

net.ipv4.tcp max tw buckets 1440000

net.ipv4.tcp sack 0

continued on next page

www.etd.ac.za

48

continued from previous page

Parameter Suggested Value

net.ipv4.tcp timestamps 0

Suggested Values for Ftp Servers

Table 4.5 shows the best possible values of the kernel parameters for the ftp server

system class. The suggested values come from [9, 14, 24, 34, 32].

Table 4.5: Tuned values for ftp servers

Parameter Suggested Value

net.ipv4.inet peer gc maxtime 240

net.ipv4.inet peer gc mintime 80

net.ipv4.inet peer maxttl 500

net.ipv4.inet peer minttl 80

net.ipv4.inet peer threshold 65644

vm.hugetlb pool 4608

vm.inactive clean percent 30

vm.pagecache 50 100

vm.bdflush 30 500 0 0 500 3000 80 20 0

vm.kswapd 1024 32 64

net.ipv4.tcp max syn backlog 1024

net.ipv4.ip local port range 32768 61000

net.ipv4.tcp wmem 4096 87380 174760

net.ipv4.tcp rmem 4096 131072 262144

net.ipv4.tcp keepalive time 1800

net.core.wmem max 103424

net.core.rmem max 262144

net.ipv4.tcp sack 0

net.ipv4.tcp timestamps 0

www.etd.ac.za

49

Suggested Values for Database Servers

Table 4.6 shows the best possible values of the kernel parameters for the database

server system class. The suggested values are come from [9, 14, 24, 34, 32].

Table 4.6: Tuned values for database servers

Parameter Suggested Value

net.ipv4.inet peer gc maxtime 240

net.ipv4.inet peer gc mintime 80

net.ipv4.inet peer maxttl 500

net.ipv4.inet peer minttl 80

net.ipv4.inet peer threshold 65644

vm.hugetlb pool 4608

vm.inactive clean percent 30

vm.pagecache 50 100

vm.bdflush 30 500 0 0 500 3000 60 20 0

vm.kswapd 1024 32 64

net.ipv4.tcp max syn backlog 1024

net.ipv4.ip local port range 1024 4999

net.ipv4.tcp wmem 4096 87380 8388608

net.ipv4.tcp rmem 4096 87380 8388608

net.ipv4.tcp keepalive time 7200

net.core.wmem max 8388608

net.core.rmem max 8388608

kernel.shmmax 268435456

kernel.msgmni 1024

fs.file-max 8192

kernel.sem 250 32000 32 1024

kernel.sem 500 512000 64 2048

kernel.msgmni 2048

kernel.msgmax 64000

continued on next page

www.etd.ac.za

50

continued from previous page

Parameters Values

net.ipv4.tcp tw reuse 1

net.ipv4.tcp tw recycle 1

4.3 Related Work

There are a number of tools in automatic Linux kernel optimisation. In this section

we review some relevant tools and explain how they differ from KernTune.

KernTune enables systems to evolve with changes in usage. This functionality is

currently not provided by any other tool. KernTune builds on technology originally

developed for classification. Several existing tools adjust kernel parameters for the

purpose of improving performance. These tools differ from KernTune in two im-

portant ways. First, though these tools are based on the designer’s knowledge and

experience of adjusting the kernel parameters for improving performance, the users

of the tools need to know the purpose of the system (the system class). In KernTune,

we employ SVM technology to classify the system class. A further difference between

KernTune and earlier tuning tools is that KernTune is designed specifically for au-

tomatic tuning and optimisation. It runs as a daemon in the background and keeps

track of usage changes.

Powertweak-Linux [27] is a kernel tuning tool that improves Linux system per-

formance. It uses the /proc file-system, and hdparm tool to tweak systems. Like

KernTune, this tool also performs optimisations on systems by known tuning rules.

Powertweak-Linux was designed for Linux systems and can either apply manual op-

timisation or tuning rules. KernTune uses machine learning, parameter-driven and

system-class-specific optimisations to improve system performance.

The most recent tool for tuning the Linux kernel is the kernel patches developed by

Jake Moilanen [16]. He implements an automatic optimisation module in the Linux

kernel. It supports continuous tuning of the kernel by applying a Genetic Algorithm.

There are substantial similarities between Moilanen’s patches and KernTune. Both

Moilanen’s patches and KernTune use a Machine Learning method to the tune sys-

tems while causing very little overhead. The primary difference between the two tools

www.etd.ac.za

51

is how they are applied. In KernTune we have focused on classification, whereas the

emphasis of Moilanen’s patch has been on chromosomes. Another difference is that

Moilanen’s patch works in the kernel as a module and KernTune runs out of the

kernel as a daemon.

SarCheck [6] is another performance analysis and tuning tool for Linux systems.

It produces recommendations and explanations for tuning the kernel with supporting

graphs and tables. It uses the resulting information to drive administrators schedule

optimisation. Although KernTune design does not produce recommendations for

tuning the kernel, it is not required to do so. The goal of KernTune is to tune real

systems. Though the goal of SarCheck is different from KernTune, the two tools share

many similarities: both tools continuously collect system information and use the

information to guide further operations. The main differences between the two tools

are that SarCheck produces recommendations and suggestions for tuning the kernel, it

collects system information, and produces the optimisation recommendations, rather

than applying the optimisation as in KernTune. KernTune also supports automatic

optimisation.

4.4 Summary

Understanding system classes is important for parameter-driven, system-class-specific

optimisation. In this chapter, we first introduced the importance of understanding

system classes and discussed the different system classes. Next, we presented the

monitor-classify-adjust cycle which is based on SVM technology and built into Kern-

Tune. The purpose of the cycle is to identify the system class. Once the system

class has been identified, KernTune performs specific optimisation by applying class

specific rules to tune the system performance. Last we discussed related work on

Linux kernel optimisation. In the next chapter, we will discuss the design goals for

KernTune and its implementation details.

www.etd.ac.za

Chapter 5

System Implementation

KernTune is a combination of performance tuning and SVM technology that pro-

vides a practical tool for operating system optimisation needed to support continued

improvements in system performance. A major obstacle to operating system op-

timisation is obtaining high-quality system information that represents the current

system usage. Ideally, such information should be representative of how an operating

system is used on a machine. Given the current operating system architecture, it is

not practical for end-users to obtain and use such information, as typical users do

not know how to generate the information and would not be able to optimise their

systems if they did. The KernTune tool addresses this problem, using the monitor-

classify-adjust cycle to collect, process, and apply information to optimise a system

automatically.

This chapter describes our implementation of KernTune for GNU/Linux systems.

Our implementation is composed of three components: the Monitor, the Classifier

and the Adjustor. The monitor is a monitoring component that implements con-

tinuous, low-overhead collection and system information monitoring. The classifier

is a classifying component that translates system information and classifies the sys-

tem class, including computing the best possible system class from the classification

results. The adjustor is an adjusting component that implements optimisation, choos-

ing kernel parameters and adjusting system settings to the specific system class. In

this chapter we focus on the first two components, the monitor and the classifier.

Although some discussion of the adjustor is needed to provide context for the rest of

the work, a detailed description of specific system optimisations is outside the scope

of this thesis. In Section 5.1, we introduce the design goals of KernTune and describe

how they are incorporated into a complete system for automatic system optimisa-

tion. Section 5.2 gives an overview of KernTune. The subsections that follow focus

52

www.etd.ac.za

53

on the main components of KernTune, namely the monitor for performance data col-

lection (Section 5.3), the classifier that provides data processing (Section 5.4), and

the adjustor that implements system optimisations (Section 5.5). Finally, we give our

summary.

5.1 Design goals for KernTune

We designed our KernTune tool to meet a number of requirements that we believe

are necessary for mainstream systems:

• Optimisation should happen on the machine where the application or service

is running. For complex systems, there can be substantial variation in how

the operating system is used for different requirements. Given these variations

between system classes, automatic optimisation will be most effective if it can

process information specific to the system and the machine.

• Optimisation should not happen only once. In a real computing environment,

system usage changes according to various requirements. The application or

service running in the morning might not be used by end-users in the evening.

The end-users could require another service instead of the morning one. Al-

though re-optimisation for this requirement is reasonable, it is not practical for

a dynamically changing system. To enable optimisation continuously, we as-

sume that the system information represents the class of system and base all

optimisations on this system class. In practice, a user-level daemon is usually

used for this.

• Optimisation must be transparent to the user. We assume that the people

who use computers do not have much background in the field of computers or

system tuning. Optimisation should be transparent in that the user does not

need to understand or participate in the optimisation process. Transparency

also implies that the optimisations must achieve consistent performance benefits

with no negative performance impact.

The KernTune tool is designed to address all these requirements. It automatically

collects and analyses system information and uses that to optimise the kernel. Our

www.etd.ac.za

54

T h e M o n i t o r
T h e C l a s s i fi e r T h e A d j u s t o r

Figure 5.1: Overview of KernTune

prototype implementation of KernTune supports automatic optimisation for Intel

x86-based computers running the Linux kernel. We built several custom system tools

to collect performance data, test results and made small modifications to LibSVM to

support automatic collection and classification. The main component of KernTune is

based on the Library for Support Vector Machines (LibSVM) [5]. We have extended

this library to support system-specific optimisations. Practical considerations led us

to choose a GNU/Linux operating systems for our initial implementation.

5.2 Overview of KernTune

Our initial design targets a single server environment. KernTune provides a monitor-

classify-adjust cycle control for SVM-based and system-specific optimisation. An

important feature of KernTune is that optimisation occurs on the system where the

applications are running. The optimisation occurs only when the applications or

services have already changed.

The major components of KernTune and their relationships are represented schemat-

ically in Figure 5.1. Optimisations in KernTune are applied without the use of Linux

kernel source code. To achieve this goal we explore the /proc file-system that presents

www.etd.ac.za

55

the state of a running GNU/Linux system. Prior work on Linux kernel tuning was

implemented by Jake Moilane [16]. His goals were to modify the kernel source and

applying a Genetic Algorithm (GA) to kernel optimisation. An important aspect of

our design is that the monitor-classify-adjust cycle is machine and operating system

independent. Though we are aware of prior work on automatic kernel optimisation,

we have chosen not to modify the Linux kernel, focusing instead on the problem

of using SVM-based optimisations to improve system performance. The traditional

method for providing a viable tool for self-optimisation is to define a series of optimi-

sation rules that build a knowledge-based database to support various system classes.

Our method is to apply the SVM technology to build a system tool (KernTune) that

permits automatic adjustment of system settings.

KernTune has three major software components: the monitor, the classifier and

the adjustor. the monitor collects system information for use by the classifier. The

monitor collects system information with very low overhead, leaving subsequent pro-

cessing to the classifier. The classifier is a user-level daemon that provides system

settings management as well as information analysis to classify system classes and

decide when to invoke the adjustor. The adjustor implements the optimisations pro-

vided by KernTune. The current version of our Adjustor supports three different

system-class optimisations: web server class, ftp server class and database server

class.

5.3 Data Collection: The monitor

All the optimisations require system-specific information, including the active appli-

cation information and performance counters. The monitor automatically collects

this information. The data collection is implemented in the monitor, the output of

the monitor is the input of the classifier. In this section we describe the design of the

monitor and some of the interesting problems we encountered in its implementation.

Figure 5.2 shows the structure of the monitoring procedure.

One key goal of the monitor is low system overhead. Our monitor achieves this

goal by using a subset of the performance counters and the active application informa-

tion, rather than collecting all performance and application data. A straightforward

approach for system data collection is real-time collection. Although this approach

www.etd.ac.za

56

T h e M o n i t o r
T h e d a t a f o r c l a s s i fi c a t i o n

/ p r o c / n e t / d e v/ p r o c / l o a d a v g / p r o c / u p t i m e / p r o c / s t a t/ p r o c / m e m i n f o/ p r o c / n e t / t c p / p r o c / n e t / u d p

Figure 5.2: The structure of monitoring

has the advantage that it is well understood, the system overhead incurred during the

monitor execution would be substantial. If too little data is collected, it would be

difficult to ensure that the resulting data was representative of the system class. By

collecting performance counters and the active application information on the system

continuously, we assure that the data accurately reflects how the system is used.

After collecting the system data from /proc file-system, we combine the individ-

ual performance counters from each performance object to generate a single basic

output file. The monitor sums the counters from each performance object for each

kernel module to create an aggregate file. This file includes the active application

name, its open port number, and other system performance counters such as pro-

cessor time, memory usage, packets sent/sec, etc. See Section 4.3. The selection of

performance counters is a general problem for performance tools and is not unique to

our methodology. In conventional performance tools, complete system information is

collected. It is a large data collection and results in system overhead. By contrast

KernTune only collects a very small amount of important performance counters and

the active application information. We believe that our method is appropriate, even

though complete data collection can give better classification results.

The overhead of our current monitor satisfies our main subjective performance

www.etd.ac.za

57

T h e C l a s s i fi e r
T h e c l a s s i fi c a t i o n r e s u l t

T h e o r i g i n a l d a t a f r o m t h e M o n i t o rT h e f o r m a t t e d d a t a t o t h e C l a s s i fi e r

Figure 5.3: The structure of classifying

goal: it is unnoticeable. Measurements of our current Monitor implementation show

the overhead of system profiling is typically below 1% of CPU usage. Given this level

of performance, we have chosen to defer further work on reducing monitor overhead

and focus on the other functionality required for automatic optimisation.

5.4 Data Processing: The classifier

The classifier is implemented as a user-level daemon that periodically reads and

processes the raw data samples generated by the monitor. Whereas the monitor is

responsible for data collection, the classifier performs data translation and processing.

The goals of this processing are twofold: to transform the raw data samples into a

compact form that can be used directly by LibSVM and to decide when to invoke an

optimisation. In our work to date, we have primarily focused on transforming raw

data for use by LibSVM. Figure 5.3 shows the structure of the classifying procedure.

The classifier translates the monitor output file into the LibSVM file format and

identifies the system class in the translated file by applying LibSVM. In the conversion

from raw data to the LibSVM file format, each sample has to be translated into

numeric values that the LibSVM library can recognise. The translated data provides

www.etd.ac.za

58

the information needed by LibSVM to identify the system class. LibSVM maps

the translated data to an intermediate form that the LibSVM engine can process.

The monitor output file must be scaled. To understand the need for scaling, see

Section 2.3.3. Scaling the data by invoking LibSVM interface gives more accurate

classification and speeds up LibSVM processing.

From the optimisation point of view, operating systems are logically composed of

multiple modules, typically with CPU, memory, file-system, disk I/O and networking.

The number of performance counters used, results in increasing the classification

accuracy. We use the term sample set to refer to the output from the monitor. When

processing the sample set, the classifier invoke the svm predict interface of LibSVM

and outputs a result file containing the class of system being recognised. A sample set

may not include enough information to perform an accurate classification. This makes

it desirable for the classifier to process multiple sample sets from the monitor and

combine the results into a single, more accurate, result for the adjustor. The method

of combining the results is simple, as each result of the classification is represented as

one system class. The classifier sums all the results and concludes the best possible

system class.

5.5 System Tuning: The adjustor

The adjustor applies optimisations using the system class from the classifier. For this

thesis, the adjustor implemented three different system-class optimisations, namely

the Web Server, Ftp Server and Database Server classes. The input to the adjustor

is the system class which has already been identified by the classifier. Using a set

of suggested kernel values, the adjustor performed optimisations through the sysctl

system call. The rest of this section provides a brief description of the optimisa-

tions implemented by the adjustor. Figure 5.4 shows the structure of the adjusting

procedure.

In our implementation the adjustor is the simplest of the three components: when

the classifier gives us a clear recommendation on which parameter should be adjusted

and by how much, we merely have to change the parameter. However, this simple

adjustment may cause technical problems: dynamically changing parameters could

cause system instability while the system is performing a high workload. To address

www.etd.ac.za

59

T h e A d j u s t o r
T h e t u n e d k e r n e l

T h e s y s t e m c l a s si d e n t i fi e d b y t h eC l a s s i fi e r T h e t u n i n g r u l e s a n ds k i l l s

Figure 5.4: The structure of adjusting

this problem, an adaptable mechanism is necessary for the high-workload condition.

We provide an extra workload check before adjusting the parameters, to make sure

the adjustment is under a low-workload. The optimisations do not have to include all

tuning parameters since the parameters are used only to direct optimisation toward

the most important parts of the system. Our KernTune Adjustor is currently imple-

mented as a composition of tuning rules which optimise the most important kernel

components for the system class. Considering system overhead and complexity, we

have chosen to adjust the most important parameters that impact on the performance

rather than adjusting every parameter in the kernel.

Since these optimisations make some system components run faster at the ex-

pense of others, a potential pitfall of the optimisation is that system might perform

worse when running more interactive applications on the system. This problem could

be avoided by introducing more system characteristics which represent more system

classes into the training set, for example, adding the port numbers of applications or

services to the sample set. This scheme is used by the monitor and the classifier.

www.etd.ac.za

60

5.6 Summary

KernTune makes it possible to optimise systems by applying SVM technology to a

small number of samples. Our implementation shows that SVMs are an effective tool

for system-class classification. The overhead of the monitor is our main consideration

of the implementation because KernTune is supposed to be a performance tuning

tool. If KernTune slowed down the system, the main purpose of this thesis would be

useless. The 1% overhead of CPU usage satisfies our performance goal, and we will

present our overhead test details in the next chapter.

www.etd.ac.za

Chapter 6

Experimental Results and Conclusions

This chapter describes our experiments to evaluate automatic SVM-based optimisa-

tion with KernTune. After describing the experimental system and workloads, we

present two sets of results. One set of experiments—Section 6.2—documents the

correctness of classification in KernTune. The second set of experiments—Section

6.3—quantifies the effectiveness of optimisation in the KernTune Adjustor. We re-

port the results, both in terms of correctness of classification and effectiveness of

optimisation. Our experimental results show that the correctness of classification

using SVM is as high 90% and the optimisations applied by KernTune achieve sub-

stantial performance improvements for our test workloads. The main criteria upon

which KernTune should be evaluated is its correctness for SVM classification. This

chapter also discusses issues relating to making KernTune more practical. Then our

conclusions and future work will be presented.

6.1 Experimental Details

Our KernTune prototype tool used the Linux kernel 2.4.29. We ran our experiments

on two Intel x86-based PCs. One machine represented a server from one of our

chosen system classes. The other machine was a workload generator to simulate

a real computing environment. The two systems both include a 512 KB second-

level cache and 256 MB of main memory and they have exactly the same hardware

configuration. System information was collected by the monitor every 10 seconds,

producing 1 sample set every 10 seconds. The target experimental system is based on

Gentoo Linux version 2004.2. The workload-generator system is based on SUSE Linux

10.0. Table 6.1 lists our hardware environment for the two experimented machines.

Table 6.2 and Table 6.3 list our software environment for the experiment.

61

www.etd.ac.za

62

Table 6.1: Machine

Hardware Description

Processor Intel P4 1.6GHz, 512KB L2 cache

Memory 256M

Hard Disk IDE 20GB, 2048KB Cache

Network Adapter Intel PRO/100, 100 Mbps Full duplex

Table 6.2: Gentoo Server

Software Description

Operating System Gentoo Linux version 2004.2

Linux Kernel Version 2.4.29 with /proc support

Compiler gcc 3.3.3

File System Linux Ext2

Performance Tool perfmon 1.0, KernTune 1.0

Web server Apache 2.0.52

Ftp Server ProFtpd 1.2.10

Database Server Mysql 4.0.24

Benchmark Tool unixbench-4.1.0

Table 6.3: SUSE Workload Generator

Software Description

Operating System SUSE Linux 10.0

Linux Kernel Version 2.6.13-15 with /proc support

Compiler gcc 4.0.2

File System Linux ReiserFS

Workload Generator http load, dkftpbench-0.45, sql-bench

Benchmark Tool time, httperf-0.8, dkftpbench-0.45, sql-bench

We used three workloads a web server workload, an ftp server workload and a

www.etd.ac.za

63

K e r n T u n ed k f t p b e n c hh t t p _ l o a d
m y s q l t e s t C l a s s i fi c a t i o nR e s u l t s P e r f o r m a n c eR e s u l t s

N e t w o r k
S U S E B o x G e n t o o B o x

S Q L W o r k l o a dG e n e r a t o rF T P W o r k l o a dG e n e r a t o rW E B W o r k l o a dG e n e r a t o r
Figure 6.1: KernTune Test Bed

database workload for the three system classes in this study. Figure 6.1 shows our

experimental environment for KernTune.

Table 6.4 gives a description of each workload generator, and Table 6.5 describes

some of training samples we used. Table 6.6 gives summary statistics for the work-

loads. All experiments for this thesis were run in single-system-class mode. Two

factors limited our choice of workloads. First, the system workload must be easily

simulated by existing tools. As a research performance tool, KernTune does not sup-

port a full set of system classes and workloads. Second, a benchmark tool for the

workload must be readily available. As a result we were unable to simulate workloads

for many popular system classes. We also excluded similar training samples within a

class, as they will not effect the SVM processing in the classifier significantly.

Table 6.4: Workload Simulation

System Class Workload Generator

continued on next page

www.etd.ac.za

64

continued from previous page

System Class Workload Generator

web server http load runs multiple http fetches in par-

allel, to simulate a web server workload. It

can also be considered a web server bench-

mark tool. Example:

./http load -rate 10 -seconds 30 urls

ftp server dkftpbench is an ftp benchmark tool. It can

be used as a ftp server workload generator.

Example:

./dkftpbench -n1 -hxxx.xxx.xxx.xxx

-t30 -v -uftp -pftp -fbigfile

database server The mysql test suit is a database bench-

mark suite for mysql. It includes test insert,

test select, test connect and test create

tools. They can be found in the mysql pack-

age. They can also be used as sql simulation

generators to simulate database workloads.

Example:

./test insert;./test select

Table 6.5: Sample Training Set

Class Name Port CPU Mem Swap Read Write Received Sent

1 660 80 0.00 0.68 0.11 0 0 100 100

1 660 80 0.00 0.68 0.11 0 0 106 100

1 660 80 0.00 0.68 0.11 0 0 100 100

1 660 80 0.00 0.68 0.11 0 0 101 100

1 660 80 0.00 0.68 0.11 0 0 100 100

1 660 80 0.00 0.68 0.11 0 0 111 110

1 660 80 0.00 0.68 0.11 0 0 100 100

continued on next page

www.etd.ac.za

65

continued from previous page

Class Name Port CPU Mem Swap Read Write Received Sent

1 660 80 0.00 0.68 0.11 0 0 100 100

1 660 80 0.00 0.68 0.11 0 0 101 100

1 660 80 0.00 0.68 0.11 0 0 100 100

2 767 21 0.00 0.57 0.00 0 0 8 2

2 767 21 0.00 0.57 0.00 0 0 0 0

2 767 21 0.00 0.57 0.00 0 0 2 2

2 767 21 0.00 0.57 0.00 0 0 4 4

2 767 21 0.00 0.57 0.00 0 0 5 3

2 767 21 0.00 0.57 0.00 0 0 2 2

2 767 21 0.00 0.57 0.00 0 0 3 0

2 767 21 0.00 0.57 0.00 0 0 2 2

2 767 21 0.00 0.57 0.00 0 0 11 7

3 666 3306 100.00 0.46 0.00 0 0 7 0

3 666 3306 100.00 0.45 0.00 0 0 0 0

3 666 3306 100.00 0.85 0.00 0 0 6 0

3 666 3306 100.00 0.45 0.00 0 0 9 10

3 666 3306 100.00 0.85 0.00 0 0 9 10

3 666 3306 100.00 0.44 0.00 0 0 0 0

3 666 3306 100.00 0.44 0.00 0 256 7 0

3 666 3306 100.00 0.44 0.00 0 0 0 0

3 666 3306 100.00 0.43 0.00 0 0 2 0

3 666 3306 100.00 0.40 0.00 104 32 0 0

Table 6.6: Workload Statistic

Workload Generator Number of Users Total Time

http load 1 1000

dkftpbench 1 1000

mysql test 1 1000

www.etd.ac.za

66

6.2 Classification Results

Table 6.7 shows our classification experimental results for the three system-class work-

loads. It gives the number of testing attempts and the system classes identified by

the classifier. The accuracy is the ratio of correct classification against the total num-

ber of test attempts. There are two accuracy results in the table. One is calculated

from a training set including only 40 samples. The other is calculated from a bigger

training set with 400 samples. Our comparative experiment results demonstrate that

increasing effective training samples improves the classification results of the SVM

significantly. Classification using SVM technology achieves a high accuracy, depend-

ing on system class. However, more training samples will need more CPU time to

analyse and calculate, this would lead to a high overhead of the system. Our experi-

ence with SVM suggests that an effective and small training set is needed to obtain

better accuracy of classification. To determine the trade-off between the appropriate

number of training samples and system overhead is important. Our experiments show

that using up to 2000 samples causes tolerable overhead. Table 6.8 lists the overhead

in the 400-sample case. Figure 6.2 plots the accuracy of classification for each class

as the number of samples are varied. Figure 6.3 plots the overhead as the number of

samples are varied. We developed perfmon for monitoring system performance and

it is also a part of the monitor.

Table 6.7: Classification Results

System Class Test Tool Attempts 40 Samples 400 Samples

Web Server http load 1000 57.8 89.8

Ftp Server dkftpbench 1000 66.7 96.2

Database Server test insert 1000 77.8 97.9

Table 6.8: Overhead of KernTune

System Class KernTune-off (CPU%) KernTune (CPU%) Overhead%

Web Server 0.00 0.99 0.99%

Ftp Server 1.98 2.97 0.99%

www.etd.ac.za

67

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0T r a i n i n g S a m p l e s02 04 06 08 01 0 0

A ccuracyo
fC l assifi cati on(%) F t p S e r v e rD a t a b a s e S e r v e r

Figure 6.2: Accuracy of Classification

System Class KernTune-off (CPU%) KernTune (CPU%) Overhead%

Database Server 85.15 87.13 1.98%

6.3 Performance Results

KernTune optimised the system, and then we benchmarked the optimised system.

Table 6.9 shows optimisation results of the three system classes. Each optimisation

improvement given in tables 6.9 are computed from the average of ten tests in 6.10,

6.11 and 6.12. Table 6.9 shows that in each case the optimised system performs

better that the original system. The optimisation results show that the benefits of

SVM-based and parameter-driven optimisation are significant.

Table 6.9: Performance Results

System Class Test Tool Improvement

Web server time, httperf 6.16%

Ftp server time, dkftpbench 2.19%

www.etd.ac.za

68

System Class Test Tool Improvement

Database server time, test-insert 8.04%

Table 6.10 shows the optimisation results of web server class. The test tool is

httperf. The test command below:

time httperf --wsess=1000,50,0 --rate=200 --server=xxx.xxx.xxx.xxx \
--uri=/index.html

means that 200 sessions are generated in one second and 1000 session will be created.

Each session has 50 requests and each request is sent to fetch index.html file which

located on the ftp server xxx.xxx.xxx.xxx. The time program is used to compute the

CPU time. The result is the time of CPU costs, smaller is better.

Table 6.10: Web Server Results

Test Tool KernTune-Off KernTune-On Improvement

1 time, httperf 50.956 47.283 7.2%

2 time, httperf 50.993 47.043 7.7%

3 time, httperf 50.453 47.843 5.2%

4 time, httperf 50.879 47.409 6.0%

5 time, httperf 51.334 48.943 4.7%

6 time, httperf 50.339 47.463 5.7%

7 time, httperf 50.421 47.579 5.6%

8 time, httperf 50.842 47.085 7.4%

9 time, httperf 50.563 47.467 6.1%

10 time, httperf 50.675 47.636 6.0%

Table 6.11 shows the optimisation results of ftp server class. Our test tool is

dkftpbench. The test command below:

time dkftpbench -hxxx.xxx.xxx.xxx -uftp -pftp -n500 -t60 -fx1000k.dat

means that a 1000 KB file named x1000k.dat is fetched by 500 users in 60 seconds.

The time program is used to compute the CPU time. The result is the time of CPU

costs, smaller is better.

www.etd.ac.za

69

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0T r a i n i n g S a m p l e s02
46
81 0

O verh ead ofC l assifi cati on(%)
D a t a b a s e S e r v e rW e b S e r v e rF t p S e r v e r

Figure 6.3: Overhead of Classification

Table 6.11: Ftp Server Results

Test Tool KernTune-Off KernTune-On Improvement

1 time, dkftpbench 62.070 60.093 3.2%

2 time, dkftpbench 61.278 60.061 2.0%

3 time, dkftpbench 61.630 60.092 2.5%

4 time, dkftpbench 60.929 60.034 1.5%

5 time, dkftpbench 61.422 60.053 2.2%

6 time, dkftpbench 60.708 60.016 1.1%

7 time, dkftpbench 60.776 60.011 1.3%

8 time, dkftpbench 61.653 60.082 2.5%

9 time, dkftpbench 61.756 60.025 2.8%

10 time, dkftpbench 61.755 60.021 2.8%

Table 6.12 shows the optimisation results of database server. We used the test

tool test-insert. The test command is:

Command: time test-insert

The test-insert is an SQL test script that can be found at the installation package

of mysql. The time program is used to compute the CPU time. The result is the

time of CPU costs, smaller is better.

www.etd.ac.za

70

Table 6.12: Database Server Results

Test Tool KernTune-Off KernTune-On Improvement

1 time, test-insert 36.263 33.656 7.2%

2 time, test-insert 36.871 33.491 9.2%

3 time, test-insert 36.123 33.131 8.3%

4 time, test-insert 36.443 33.154 9.0%

5 time, test-insert 36.754 33.212 9.6%

6 time, test-insert 36.278 33.512 7.6%

7 time, test-insert 36.218 33.625 7.2%

8 time, test-insert 36.389 33.643 7.5%

9 time, test-insert 36.261 33.712 7.0%

10 time, test-insert 36.411 33.589 7.8%

6.4 Conclusions

Our study has demonstrated that automatic optimisation based on SVM technology

is both efficient and effective. In our experience of developing KernTune, we found

some issues that need to be resolved to make KernTune more practical. Our cur-

rent KernTune uses a training set to train the SVM classifier. Finding and testing

a good training set with minimal samples for all different system classes is very dif-

ficult, especially in a complex networking environment. The samples must be able

to represent the different system usage concisely to reduce the time and overhead of

SVM processing. As more system classes evolve in the future, this would lead to even

more samples. It is not possible to collect those training samples manually. A tool

should be developed to collect the samples automatically. Our current KernTune uses

the SVM method for classifying system classes. The classification results will decide

when to optimise the system. We achieved high classification accuracy with a small

training set. We did not optimise the SVM classification procedure and the training

set in this study. We believe that providing optimisation for the SVM process with

carefully tested training samples can achieve more accurate classification. Optimising

SVM also includes choosing better feature vectors for training sets, scaling training

www.etd.ac.za

71

data, choose a better kernel function, etc. As more system classes should be consid-

ered in the real computing world, this would bring a bigger training set and more

complex training samples to the SVM processing. The continuous collection of system

information and SVM processing can lead to overhead issues with KernTune. This

issue must be fully resolved if the overhead approaches the performance improvement,

since KernTune is a tuning tool to make a system run faster, and not to slow down the

system. KernTune must achieve a balance between good classification accuracy and

the load caused by the SVM processing. The KernTune tool has a major practical

drawback, however, as it requires new training samples when applying it to a new

system class. Another possibility is to develop a tool to generate samples for new

classes.

This thesis describes a tool for continuous low-overhead monitoring, classifying

and adjusting to meet the requirements of automatic optimisation. We achieve these

low overheads through SVM-based statistical sampling and by deferring SVM pro-

cessing to available idle CPU cycles. Our results show that continuous optimisation

can be achieved with very low overhead and that the resulting optimisations are ef-

fective. As modern operating systems become increasingly complex, the importance

of these automatic optimisations will increase. The research combines aspects of both

operating systems and machine learning. Our KernTune demonstrates how a practi-

cal tool for automatic optimisation can be implemented for GNU/Linux systems. It

brings a new application to the SVM area and a new approach to operating system

automatic optimisation.

6.5 Future Work

The following is a list of future work:

• Develop a tool to collect the training samples automatically.

• Tune the SVM classification and make the SVM processing faster.

• Scale and tune training sets to train SVM.

• Introduce more system classes to KernTune and generate data for the classes.

• Discover and incorporate more system optimisation techniques into KernTune.

www.etd.ac.za

72

• Optimise the SVM library—LIBSVM—built into KernTune or replace it with

a better one.

• Learn system loads and collect samples in a real and complex computing envi-

ronment.

• Improve test skills by introducing industry-standard test suits.

• Add the Linux kernel-2.6.x support to KernTune and bring KernTune to other

operating systems.

• Optimise KernTune itself and reduce its overhead to the system.

6.6 Summary

We described details of our experiments, and gave our experimental results in this

chapter. Results in this chapter are computed from the average of ten experiments.

We achieved a very high classification accuracy in the first set. The second set shows

our optimisation is significant. Overall, the results demonstrate that the SVM-based

optimisation of KernTune is both efficient and effective. There are some issues that

still need to be resolved. One of the most important issues is the trade-off between

the accuracy of classification and the number of training samples. More training

samples are needed to improve the accuracy, but increasing the samples will lead to

system overhead. We then discussed some other issues that must be resolved before

making KernTune practical. These issues are left as future work. This new research

introduces opportunities to apply machine learning to operating systems.

www.etd.ac.za

Bibliography

[1] Ivan Bowman. Conceptual architecture of the linux kernel, 1998. Available at
http://plg.uwaterloo.ca/~itbowman/CS746G/a1.

[2] H. Briceno. Design techniques for building fast servers, 1996. Available at
http://citeseer.ist.psu.edu/briceno96design.html.

[3] Bill Calkins. Inside Solaris 9. NRG–Voices. QUE, Nov 2002.

[4] Philip Carinhas. Linux fundamentals, 2001. Available at ftp://fortuitous

.com/pub/training/lf 08.26.2001.ps.gz.

[5] C. Chang and C. Lin. LibSVM: a library for support vector machines, 2001.
Available at http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.ps.gz.

[6] Aptitune Corporation. SarCheck, 1996. Available at http://www.sarcheck.com.

[7] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine
Learning, 20(3):273–297, 1995. Available at http://citeseer.ist.psu.edu/

cortes95supportvector.html.

[8] Nello Cristianini. Support vector and kernel machines, 2001. Available at
http://www.support-vector.net/icml-tutorial.pdf.

[9] Phillip Ezolt. Optimizing Linux Performance. O’Reilly, 2005.

[10] Jay Fink. An Overview of the Proc Filesystem, 1999. Available at
http://csislabs.palomar.edu/Student/csis227/ AnOverviewoftheProc

Filesystem.doc.

[11] FSF. GNU Public License, 2006. Available at http://www.gnu.org/licenses/
gpl.html.

[12] Mike Loukides Gian-Paolo D. Musumeci. System Performance Tuning, 2nd Edi-
tion. O’Reilly Media, 2002.

[13] Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin. A practical guide to
support vector classification.
Available at http://www.csie.ntu .edu.tw/~cjlin/papers/guide/guide.pdf.

[14] Matthew D. Sherer Jason R Fink. Linux Performance Tuning and Capacity
Planning. Sams, 2001.

73

www.etd.ac.za

74

[15] Thorsten Joachims. Transductive inference for text classification using support
vector machines. In Ivan Bratko and Saso Dzeroski, editors, Proceedings of
ICML-99, 16th International Conference on Machine Learning, pages 200–209,
Bled, SL, 1999. Morgan Kaufmann Publishers, San Francisco, US. Available at
http://citeseer.ist.psu.edu/joachims99transductive.html.

[16] Jake Moilanen. Linux: Tuning the kernel with a genetic algorithm, Jan 2005.
Available at http://kerneltrap.org/node/4493.

[17] Terry Dawson Olaf Kirch. Linux Network Administrator’s Guide, Second Edition.
O’Reilly, 2000.

[18] E. Osuna, R. Freund, and F. Girosi. Training support vector machines:an ap-
plication to face detection, 1997. Available at http://citeseer.ist.psu.edu/
osuna97training.html.

[19] B. Scholkopf S. Kah-Kay C. J. Burges F. Girosi P. Niyogi T. Poggio and V. Vap-
nik. Comparing support vector machines with gaussian kernels to radial basis
function classifiers. IEEE Trans, 45:2758–2765, Nov 1997.

[20] Massimiliano Pontil and Alessandro Verri. Support vector machines for 3d
object recognition. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 20(6):637–646, 1998. Available at http://citeseer.ist.psu.edu/

pontil98support.html.

[21] Dustin Puryear. Linux Kernel Tuning Using System Control, November
2003. Available at http://www.samag.com/documents/s=8920/sam0311a/

0311a.htm.

[22] Alessandro Rubini. The sysctl Interface, 1997. Available at http://www

.linuxjournal.com/article/2365.

[23] David A Rusling. The linux kernel, 1999. Available at http://tldp.org/

LDP/tlk/tlk.html.

[24] Badari Pulavarty Sandra K. Johnson, Gerrit Huizenga. Performance Tuning for
Linux(R) Servers. IBM Press, 2005.

[25] Warren S. Sarle. Neural network FAQr. Available at ftp://ftp.sas.com/pub/
neural/FAQ.html.

[26] Andrew Tanenbaum. Modern Operating Systems. Prentice Hall, 2 edition, Feb
2001.

[27] Arjan van de Ven. Powertweak Linux, 2003. Available at http://powertweak

.sourceforge.net.

[28] Vladimir N. Vapnik. Statistical Learning Theory. Adaptive and Learning Systems
for Sigal Processing. Wiley and Sons, Sep 1998.

www.etd.ac.za

75

[29] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer, Nov
1999.

[30] V. Wan and W. Campbell. Support vector machines for speaker verifica-
tion and identification, 2000. Available at http://citeseer.ist.psu.edu/

wan00support.html.

[31] Huan-Jun Liu Yao-Nan Wang and Xiao-Fen Lu. A method to choose kernel
function and its parameters for support vector machines. IEEE, 7:4277–4280,
2005.

[32] David Watts, Martha Centeno, Raymond Phillips, and Luciano Magalhes Tome.
Tuning Red Hat Enterprise Linux on IBM Eserver xSeries Servers. IBM
Corp., 2004. Available at http://www.redbooks.ibm.com/redpapers/pdfs/

redp3861.pdf.

[33] Wikipedia. Wikipedia, 2006. Available at http://en.wikipedia.org/wiki/

keyword.

[34] Linus Torvalds with the assistance of developers around the world. linux-2.4.29
source, 2005. Available at http://www.kernel.org/pub/linux/kernel/v2.4/
linux-2.4.29.tar.bz2.

www.etd.ac.za

Appendix A

/proc file-system

• kmsg

This file is used by klogd to log kernel information and it includes hardware

and kernel information.

• version

————————————————————————————–

Example of cat /proc/version

Linux version 2.4.29 (root@long) (gcc version 3.3.3 20040412 (Gentoo

Linux 3.3.3-r6, ssp-3.3.2-2, pie-8.7.6)) #8 Sun Jul 3 10:38:34 GMT

2005

————————————————————————————–

This file contains the kernel version. It also includes information about the

build of the kernel: the user name of the user who compiled the kernel, the host

name of the machine on which the kernel was compiled, the date that the kernel

was compiled , and the compiler version that was used for compiling the kernel.

• cpuinfo

————————————————————————————–

Example of cat /proc/cpuinfo

processor : 0

vendor_id : GenuineIntel

cpu family : 15

model : 2

model name : Intel(R) Pentium(R) 4 CPU 1.60GHz

stepping : 4

76

www.etd.ac.za

77

cpu MHz : 1594.855

cache size : 512 KB

fdiv_bug : no

hlt_bug : no

f00f_bug : no

coma_bug : no

fpu : yes

fpu_exception : yes

cpuid level : 2

wp : yes

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov

bogomips : 3139.17

————————————————————————————–

This file contains information about the system’s processor(s). It has informa-

tion about the processor number, the vendor, CPU family, model, stepping, and

flags etc.

• pci

————————————————————————————–
Example of cat /proc/pci

PCI devices found:

Bus 0, device 0, function 0:

Host bridge: Intel Corp. 82845 845 (Brookdale) Chipset Host Bridge (rev 3).

Prefetchable 32 bit memory at 0xf8000000 [0xfbffffff].

Bus 0, device 1, function 0:

PCI bridge: Intel Corp. 82845 845 (Brookdale) Chipset AGP Bridge (rev 3).

Master Capable. Latency=32. Min Gnt=10.

Bus 0, device 30, function 0:

PCI bridge: Intel Corp. 82801BA/CA/DB/EB PCI Bridge (rev 18).

Master Capable. No bursts. Min Gnt=2.

Bus 0, device 31, function 0:

ISA bridge: Intel Corp. 82801BA ISA Bridge (LPC) (rev 18).

Bus 0, device 31, function 1:

IDE interface: Intel Corp. 82801BA IDE U100 (rev 18).

I/O at 0xffa0 [0xffaf].

Bus 0, device 31, function 2:

USB Controller: Intel Corp. 82801BA/BAM USB (Hub \#1) (rev 18).

IRQ 11.

www.etd.ac.za

78

I/O at 0xef40 [0xef5f].

Bus 0, device 31, function 3:

SMBus: Intel Corp. 82801BA/BAM SMBus (rev 18).

IRQ 9.

I/O at 0xefa0 [0xefaf].

Bus 0, device 31, function 4:

USB Controller: Intel Corp. 82801BA/BAM USB (Hub \#2) (rev 18).

IRQ 10.

I/O at 0xef80 [0xef9f].

Bus 0, device 31, function 5:

Multimedia audio controller: Intel Corp. 82801BA/BAM AC’97 Audio (rev 18).

IRQ 9.

I/O at 0xe800 [0xe8ff].

I/O at 0xef00 [0xef3f].

Bus 1, device 0, function 0:

VGA compatible controller: nVidia Corporation NV5M64 [RIVA TNT2 Model 64/Model 64 Pro] (rev 21).

IRQ 11.

Master Capable. Latency=32. Min Gnt=5.Max Lat=1.

Non-prefetchable 32 bit memory at 0xfd000000 [0xfdffffff].

Prefetchable 32 bit memory at 0xf2000000 [0xf3ffffff].

Bus 2, device 8, function 0:

Ethernet controller: Intel Corp. 82801BA/BAM/CA/CAM Ethernet Controller (rev 3).

IRQ 11.

Master Capable. Latency=32. Min Gnt=8.Max Lat=56.

Non-prefetchable 32 bit memory at 0xfeaff000 [0xfeafffff].

I/O at 0xdf00 [0xdf3f].

————————————————————————————–

This file lists the devices attached to the PCI bus or buses. These are actual

PCI expansion cards and may also include devices built into the system’s moth-

erboard, plus AGP graphics cards. The file includes the device type, the device

and vendor ID, the device name, IRQ, etc. It also includes features offered by

the device and the resources used by the device.

• self/

————————————————————————————–

Example of ls /proc/self/

cmdline cwd environ exe fd maps mem mounts root stat statm status

————————————————————————————–

This file is a symbolic link to the /proc numbered directory corresponding to

the current running process.

• net/

Descriptions about the network layer(s).

• scsi/

www.etd.ac.za

79

Contains files with information on individual scsi devices

• mount

————————————————————————————–

Example of cat /proc/mounts/

rootfs / rootfs rw 0 0

/dev/root / ext2 rw,noatime 0 0

none /proc proc rw 0 0

none /dev/shm tmpfs rw 0 0

————————————————————————————–

This file lists all the file-systems which have been mounted on the system. Each

line lists the mounted device, the mount point, the file-system class and the

flags of accessing the file-systems.

• kcore

This is a core dump file (memory snapshot) for the kernel.

• modules

This file lists the information about the kernel modules loaded in the kernel.

• stat

————————————————————————————–

Example of cat /proc/stat

cpu 51340588 5003346 1782103 101438756

cpu0 51340588 5003346 1782103 101438756

page 5260525 5889524

swap 138248 251312

intr 170538937 159564793 17311 0 0 0 0 0 0 0 0 19 9860204 793978 0 302630 2

disk_io: (3,0):(303494,152939,10521050,150555,11779048)

ctxt 2293995924

btime 1147706605

processes 29261

www.etd.ac.za

80

————————————————————————————–

cpu: The total of all separate CPU statistics. The four numbers following cpu

are: user, nice, system and idle usage. These are given as in jiffers.

cpu0 : If the system only have on CPU. The four numbers following cpu are:

user, nice, system and idle usage. These are given as in jiffers.

page: The number of pages read and the number of pages written

swap: The number of pages read from swap and the number of pages written

to swap

intr : The number of interrupts. The first number is the total number of inter-

rupts for all IRQs. The following numbers are the number of interrupts for each

IRQ.

disk io: The transfer data and I/O operations for each disk. The first pair is

the (majoy, minor) disk number. The remaining are the total number of I/O

operations, read I/O operations, read I/O sectors, write I/O operations and

write I/O sectors.

ctxt : The number of context switches.

btime: The up time in seconds of the system.

processes: The number of processes that have run since the system was booted.

• devices

————————————————————————————–

Example of cat /proc/devices

Character devices:

1 mem

2 pty

3 ttyp

4 ttyS

5 cua

7 vcs

10 misc

www.etd.ac.za

81

14 sound

128 ptm

136 pts

162 raw

180 usb

226 drm

Block devices:

3 ide0

22 ide1

————————————————————————————–

This file lists major device numbers of the character and block devices on the

system.

• interrupts

————————————————————————————–

Example of cat /proc/interrupts

CPU0

0: 159693886 XT-PIC timer

1: 17311 XT-PIC keyboard

2: 0 XT-PIC cascade

9: 0 XT-PIC Intel ICH2

10: 19 XT-PIC usb-uhci

11: 9875179 XT-PIC usb-uhci, eth0

12: 793978 XT-PIC PS/2 Mouse

14: 302644 XT-PIC ide0

15: 2 XT-PIC ide1

NMI: 0

ERR: 0

————————————————————————————–

This file lists the interrupts assigned to devices.

www.etd.ac.za

82

• filesystems

————————————————————————————–

Example of cat /proc/filesystems

nodev rootfs

nodev bdev

nodev proc

nodev sockfs

nodev tmpfs

nodev shm

nodev pipefs

ext2

nodev ramfs

vfat

iso9660

nodev devpts

————————————————————————————–

This file lists all the file-system classes known to the current kernel. Note that

the contents of the file list only file-system classes that are currently loaded into

the kernel.

• /ide

————————————————————————————–

Example of ls /proc/ide

drivers hda hdc ide0 ide1 piix

————————————————————————————–

This directory contains ide0 and ide1 which corresponds to the primary and

secondary IDE controllers on the system. The subdirectories of ide0 and ide1

contains physical devices which are attached to the controllers.

• ksyms

This file lists kernel symbols exported by the kernel.

www.etd.ac.za

83

• dma

This file lists the DMA channels occupied by the system.

• ioports

This file lists all the i/o ports used by the system.

• smp

This file lists information about each CPU on the system.

• cmdline

————————————————————————————–

Example of cat /proc/cmdline

BOOT IMAGE=kernel-2.4.29 ro root=303

————————————————————————————–

This file describes the command line parameters passed to the kernel at boot

time.

• sys/

Important kernel and network information

• locks

This file describes all the files currently locked in the system.

• numbered directories

————————————————————————————–

Example of ls /proc/1518

cmdline cwd environ exe fd maps mem mounts root stat statm status

————————————————————————————–

These directories contain the information of running processes on the system.

The name of each directory is the process ID of the corresponding process.

These directories exist in the file-system only if the corresponding process exist

www.etd.ac.za

84

on the system. Each directory contains several files providing information about

the corresponding process. Each process directory contains these entries:

cmdline: the command to start the process and the arguments given to it.

cwd: a symbolic link that points to the working directory of the current process.

environ: the environment of the process.

exe: a symbolic link that points to the program image of the process.

fd: a directory that contains the file descriptors opened by the process.

maps: information about the files which mapped into the process’s address.

root: a symbolic link that points to the root directory.

stat: statistical information about the process.

statm: information about the memory used by the process.

status: statistical information about the process in a readable format.

• net/dev

————————————————————————————–
Example of cat /proc/net/dev

Inter-| Receive | Transmit

face |bytes packets errs drop fifo frame compressed multicast|bytes packets errs drop fifo colls carrier compressed

lo: 41407 560 0 0 0 0 0 0 41407 560 0 0 0 0 0 0

eth0:1516507022 10072918 0 0 0 0 0 0 204142743 5083396 0 0 0 0 0 0

dummy0: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

————————————————————————————–

This file contains details of data received and transmitted through the con-

figured network interfaces. Each line of the file describes a logical network

interface. The meanings of each of the columns are:

bytes: The total number of bytes transmitted or received by the network in-

terface.

packets: The total number of packets transmitted or received by the network

interface.

errs: The total number of errors detected by the network device driver.

drop: The total number of packets dropped by the network device driver.

www.etd.ac.za

85

fifo: The number of FIFO (First In First Out) buffer errors.

frame: The number of packet framing errors.

colls: The number of collisions detected by the network interface.

compressed: The number of compressed packets transmitted or received by the

network device driver.

carrier: The number of carrier losses detected by the network device driver.

multicast: The number of multicast frames transmitted or received by the

network device driver.

• net/tcp

————————————————————————————–

Example of cat /proc/net/tcp

sl local_address rem_address st tx_queue rx_queue tr tm_when retrnsmt uid timeout inode

0: 0100007F:0CEA 00000000:0000 0A 00000000:00000000 00:00000000 00000000 0 0 1418 1 cfd4eb80 300 0 0 2 -1

1: 00000000:0050 00000000:0000 0A 00000000:00000000 00:00000000 00000000 0 0 1431 1 cf087880 300 0 0 2 -1

2: 00000000:0015 00000000:0000 0A 00000000:00000000 00:00000000 00000000 21 0 1592 1 ce142080 300 0 0 2 -1

3: 00000000:0016 00000000:0000 0A 00000000:00000000 00:00000000 00000000 0 0 1414 1 cfd4e800 300 0 0 2 -1

4: 00000000:01BB 00000000:0000 0A 00000000:00000000 00:00000000 00000000 0 0 1428 1 cf087500 300 0 0 2 -1

5: 102710AC:0016 4A9810AC:05FB 01 00000000:00000000 02:000852ED 00000000 0 0 1272171 3 c9e9a880 24 4 11 2 2

————————————————————————————–

This file contains TCP socket information of the kernel. Each line represents

one open socket. The meanings of each of the columns are:

sl: The numeric labels start from 0.

local address: The local IP address and port number for the socket. They

are represented as hexadecimal numbers.

rem address: The remote IP address and port number for the socket. They

are represented the same as for the local address.

st: The status of the socket.

tx queue:rx queue: The size of the transmit and receive queues.

tr:tm when: Whether a timer is active for this socket and the time remaining

before timeout occurs.

www.etd.ac.za

86

retrnsmt: Unused.

uid: The user ID that owns the socket.

time-out: Unused.

inode: A number that can be identified by the Linux virtual file-system.

• net/udp

This file contains UDP socket information of the kernel. The format of the file

is the same as tcp.

• net/raw

This file contains RAW socket information of the kernel. The format of the file

is the same as tcp.

www.etd.ac.za

	Title
	Contents
	Keywords
	Abstract
	Acknowledgements
	Chapter one: Introduction
	1.1 Background and Motivation
	1.2 Research Problem
	1.3 Research Aim
	1.4 Approach and Methodology
	1.5 Thesis Outline
	1.6 Summary

	1.1 Background and Motivation
	1.2 Research Problem
	1.3 Research Aim
	1.4 Approach and Methodology
	Chapter tw: SVM Classification and Prediction
	2.1 Review of SVMs
	2.1.1 Linear SVM
	2.1.2 Non-linear SVM

	2.2 SVM Classification
	2.3 The SVM Tool LibSVM
	2.3.1 Converting data
	2.3.2 Scaling data
	2.3.3 Selecting a kernel
	2.3.4 Setting kernel parameters
	2.3.5 Training and predicting

	2.4 Summary

	2.1 Review of SVMs
	2.2 SVM Classification
	Chapter three: Linux Kernel Optimisation
	3.1 Operating system optimisation and GNU/Linux
	3.2 Overview of Linux kernel
	3.3 Exploring /proc
	3.4 Kernel Optimisation
	3.4.1 Overview of the Kernel Parameters
	3.4.2 Using sysctl

	3.5 Summary

	3.1 Operating system optimisation and GNU/Linux
	3.2 Overview of Linux kernel
	3.3 Exploring /proc
	3.4 Kernel Optimisation
	Chapter four: Approach and Methodology
	4.1 Understanding System Classes
	4.2 The Monitor-Classify-Adjust Cycle
	4.2.1 Monitoring a system
	4.2.2 Classifying a System Class
	4.2.3 Adjusting System Parameters

	4.3 Related Work
	4.4 Summary

	4.1 Understanding System Classes
	4.2 The Monitor-Classify-Adjust Cycle
	4.3 Related Work
	4.4 Summary
	Chapter five: System Implementation
	5.1 Design goals for KernTune
	5.2 Overview of KernTune
	5.3 Data Collection: The monitor
	5.4 Data Processing: The classifier
	5.5 System Tuning: The adjustor
	5.6 Summary

	5.1 Design goals for KernTune
	5.2 Overview of KernTune
	5.3 Data Collection: The monitor
	5.4 Data Processing: The classifier
	5.5 System Tuning: The adjustor
	Chapter six: Experimental Results and Conclusions
	6.1 Experimental Details
	6.2 Classification Results
	6.3 Performance Results
	6.4 Conclusions
	6.5 Future Work
	6.6 Summary

	6.1 Experimental Details
	6.2 Classification Results
	6.3 Performance Results
	6.4 Conclusions
	6.5 Future Work
	6.6 Summary
	Bibliography
	Appendices

