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Abstract

This research is on a comparative evaluation of 3D and spatio-temporal deep learning

methods for crime classification and prediction using the Chicago crime dataset, which

has 7.29 million records, collected from 2001 to 2020. In this study, crime classification

experiments are carried out using two 3D deep learning algorithms, i.e., 3D Convolu-

tional Neural Network and the 3D Residual Network. The crime classification models

are evaluated using accuracy, F1 score, Area Under Receiver Operator Curve (AUROC),

and Area Under Curve - Precision-Recall (AUCPR). The effectiveness of spatial grid res-

olutions on the performance of the classification models is also evaluated during training,

validation and testing. The classification experiment results show that the 3D ResNet-18

achieved the best performance with an accuracy of 0.9984, F1 score of 0.9942, AUROC

of 0.9999 and AUCPR of 0.9933, whereas the 3D CNN achieved an accuracy of 0.9946,

F1 score of 0.9764, AUROC of 0.9998, and AUCPR of 0.9766 during testing, with a

spatial resolution of 16 pixels.

The crime prediction experiments are carried out using three Spatio-temporal deep learn-

ing, i.e., the Spatio Temporal Residual Network (ST-ResNet), the Deep Multi-View

Spatio-temporal Network (DMVST-Net), and the Spatio Temporal Dynamic Network

(STD-Net). The crime prediction models are evaluated using the Root Mean Square Er-

ror (RMSE) and Mean Absolute Error (MAE). The prediction experiment results show

that the STD-Net achieved the best results of the three approaches RMSE of 0.2870, and

MAE of 0.2093. The ST-ResNet and DMVST-Net also showed considerable promise.

The ST-ResNet achieved an RMSE of 0.4033 and an MAE of 0.3278 while the DMVST-

Net achieved an RMSE of 0.4171 and an MAE of 0.3455.

Future work will include training these algorithms with various crime datasets, which are

augmented with external data such as climate and socioeconomic data. Hyperparameter

optimization of these algorithms using techniques, such as evolutionary computation,

will also be explored.
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Chapter 1

Introduction

1.1 Orientation of the Study

Crime is an ever-present issue in any society. Crime refers to any punishable conduct

that the state authorities consider unlawful [11]. Crime is generally classified by crimi-

nologists into five primary types [12], namely: violent crime, property crime, white-collar

crime, organized crime, and consensual crime. Fig. 1.1 illustrates the major categories

of crime and the related examples.

Figure 1.1: Major Categories of Crime

Venezuela, Papua New Guinea, and South Africa have the highest crime rates in the

world, according to data from 2021 [13]. Venezuela tops the list with the highest crime

index of 84.36. The crime originates from corruption, a defective court system, and lax

weapons control. Papua New Guinea has the second-highest crime rate in the world,

1
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Chapter 1 Introduction 2

with a crime index of 80.04 attributable to violent crimes, which are largely driven by

the country’s social, economic, and political developments. South Africa’s present crime

index is 77.29. It is the third highest in the world. The causes of the crimes include

high levels of poverty, inequality, social isolation, unemployment, and the normalizing

of violence.

Crime prevention is one of the distinguishing qualities of a healthy society. One of the

most well-known and visible aims of the police and other agencies includes predicting

where and what crime will be committed, and crime prediction is essential since it speeds

up the process of investigating crimes and decreases crime rates. Predicting crime events

consumes a considerable amount of money and effort for police forces. Anticipating crime

events helps the police to respond more proactively and distribute patrol resources more

effectively [14].

Machine learning is revolutionizing how governments prevent, detect, and respond to

crime. Predictive algorithms, such as the PredPol software, created in Santa Cruz [1],

are becoming increasingly important to some law enforcement organizations. These al-

gorithms use machine learning coupled with past crime data to forecast crime hotspots

before crime happens. This can generally be referred to as crime forecasting. Crime

forecasting opens up completely new avenues of crime prevention. Fig. 1.2 shows a map

of Chicago with forecasted crime hotspots generated by Predpol; the potential hotspots

are indicated by squares with red borders. For clarity, a hotspot on the bottom-right of

the figure is magnified to clearly demonstrate the area indicated.

Forecasting using machine learning models can be subdivided in two main categories,

relating to the nature of the intended target output: (i) classification which involves

forecasting a discrete-valued output e.g. the type of crime committed in a specific area;

and (ii) regression which involves forecasting a continuous-valued output e.g. the num-

ber of crime incidents that will be committed in a specific area. For ease of reference,

the task of regression will henceforth be referred to as “prediction” in this thesis. To

carry out classification, a machine learning model uses the training set to draw sepa-

rating boundaries between the intended categories in a given feature space, which can

then be used to classify a new unseen sample with the same features into one of the

intended categories. In contrast, prediction requires for a line to be fitted to a given

continuous-valued target output in a given feature space; the fit-line can then be used

to predict the value of a new unseen sample with the same features.

Based on the above discussion, and to provide complete clarity, the following terms used

http://etd.uwc.ac.za/ 
 



Chapter 1 Introduction 3

Figure 1.2: Crime hotspots (red squares) in Chicago predicted by the PredPol soft-
ware using machine learning [1]

in this thesis are defined: “crime forecasting” refers to the general task of either classifi-

cation or prediction of crime incidents, while “crime classification” refers to forecasting a

discrete-valued output, e.g. the category of crime committed such as theft, assault, bur-

glary while “crime prediction” refers to forecasting a continuous-valued output, e.g. the

number of crime incidents in a given area, the number of thefts in a given time period etc.

A variety of statistical learning approaches such as Auto-Regressive Moving Average,

and standard machine learning techniques have been used for crime forecasting. Of the

machine learning techniques, Random Forest, Support Vector Machines (SVMs), and

Classification and Regression Trees (CART) have been shown to achieve highly accurate

results [15]. Deep learning, a subfield of machine learning that is currently the state-of-

the-art, has demonstrated superior forecasting accuracy in several domains as compared

to standard machine learning approaches. For example, the study in [16] showed that

deep learning was able to out-perform SVMs, RF, and K Nearest Neighbours for crime

forecasting.

In general, deep learning has shown great promise and state-of-the-art performance in a

variety of classification and prediction scenarios, such as image classification, computer

vision, speech recognition and financial forecasting. A deep learning model mainly takes

the form of a deep neural network (DNN), which is a neural network with numerous

hidden layers, usually also including one or more specialized structures for efficient and

http://etd.uwc.ac.za/ 
 



Chapter 1 Introduction 4

effective spatial processing and/or temporal processing.

The specialized structures used in DNNs include: Recurrent Neural Networks (RNNs)

which are specifically designed to model temporal dependencies in sequential data, and

thereby make accurate predictions [17]; and Convolutional Neural Networks (CNNs),

which are superior at mining spatial information and have demonstrated a high accu-

racy in a variety of fields involving data with spatial dimensions such as images [18].

CNNs are widely used in image processing/recognition and computer vision in general.

Traditionally, CNNs were designed to process data with two spatial dimensions, such as

images. These CNNs are therefore sometimes referred to as 2D CNNs. Subsequently, 3D

CNNs have been proposed. 3D CNNs have the ability to process data with three spatial

dimensions such as 3D images and Lidar images, or data with two spatial dimensions

and a time dimension such as videos and weather data.

Deep learning algorithms have recently been applied to spatio-temporal data in do-

mains such as taxi demand forecasting, city crowd flow forecasting, and crime forecast-

ing [4, 19–21]. Spatio-temporal data has a time dimension as well as spatial dimensions.

Crime data is inherently spatio-temporal in nature whereby a crime incident has spatial

dimensions e.g. longitude and latitude where the crime took place, as well as a time

dimension i.e. the time and date at which the crime took place or was reported. In

domains involving spatio-temporal data, a deep learning model that has both RNN and

a 2D CNN component is commonly used [22]; the 2D CNN is typically used to learn

spatial characteristics of the data, whereas the RNN is used to learn temporal charac-

teristics of the data [3].

RNNs and CNNs are potentially layered and arranged in many contiguous layers to en-

hance prediction performance in a given domain based on the spatial and/or temporal

nature of the data in the domain. There is great flexibility in the arrangement (also

referred to as “architecture”) of DNNs. The architecture of a DNN has a direct influ-

ence on the capabilities of the DNN, in terms of: (i) predictive performance i.e. how

accurately the model can classify or predict data; (ii) type of output i.e. whether the

model is designed to achieve classification or prediction; and (iii) domain of application

i.e. whether the model applies to static, spatial, temporal and/or spatio-temporal do-

mains. For this reason, innovations in the architecture of DNNs is an active field of

research, and has resulted in many unique DNN models that have shown promise in

various domains.

The Spatio Temporal Residual Network (ST-ResNet) proposed in [3] has currently shown

the most promise specifically for crime prediction according to several studies [19, 21, 22].

http://etd.uwc.ac.za/ 
 



Chapter 1 Introduction 5

Two other spatio-temporal deep learning architectures i.e. the Spatio-temporal Dy-

namic Network (STD-Net) proposed very recently in [23] and the Deep Multi View

Spatio-temporal Network (DMVST-Net) proposed in [4] are also promising architec-

tures for prediction, and have shown greater promise than the ST-ResNet in several

spatio-temporal domains unrelated to crime prediction [4, 5, 21]. To the best of our

knowledge, these techniques have not been applied to crime prediction, and it is therefore

desirable to investigate the application of these approaches to crime prediction. Given

that these architectures are specifically designed to cater for spatio-temporal data, they

are collectively referred to as “spatio-temporal deep learning” techniques in this thesis.

Comparing the three spatio-temporal deep learning techniques is therefore one area of

focus of this research.

A second area of focus of this research pertains to crime classification. 3D CNNs were

initially proposed for action classification by Ji et al. [2] and were shown to be more

easily applicable to the classification of spatio-temporal data, in this case action se-

quences, than 2D CNNs [24]. Later, Hara et al. [10] proposed merging 3D CNNs into

residual neural networks (ResNets) to allow for a much deeper architecture by avoid-

ing overfitting on numerous parameters. One of the models that they developed that

showed excellent classification promise was the 3D ResNet-18 (or 3D ResNet in short).

Given that these architectures i.e. the 3D CNN and 3D ResNet both make use of 3D

CNNs to provide spatio-temporal processing capabilities, they are collectively referred

to as “3D deep learning” techniques in this thesis. As such, the second area of focus of

this research is to compare 3D deep learning techniques as applied to crime classification.

The Chicago crime dataset will be used in this research [7]. The dataset is constantly

updated with crimes committed in Chicago in the United States dating back to 2001.

It contains more than 7 million records which include incident information such as loca-

tion, type, description, date, among others. A total of 32 types of crime are represented

and recorded in the dataset. It has been used in a good deal of crime forecasting studies

[16, 25–27].

For the task of comparing spatio-temporal deep learning techniques towards crime pre-

diction, the aim is to use the Chicago dataset to train these techniques to predict the

number of times a certain crime type will happen in a given area on a training subset

of the data, and subsequently evaluate the techniques on a testing subset of the data.

For the task of comparing 3D deep learning techniques towards crime classification,

the aim is to use the Chicago dataset to train these techniques to classify whether a
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given crime type has taken place at a given location at a given time on a training sub-

set of the data, and subsequently evaluate the techniques on a testing subset of the data.

As part of the classification process, a spatial grid of a given resolution will be used to

subdivide the Chicago area into a given number of sub-areas; the goal of classification

will then be to predict whether a given crime type will take place in a given sub-area

i.e. grid cell. The resolution of the spatial grid, henceforth referred to as “spatial res-

olution”, will likely directly affect the classification accuracy of the 3D deep learning

methods used and will be investigated as well.

1.2 Problem Statement

The ST-ResNet is currently the most advanced deep learning technique for crime pre-

diction, according to the findings in [19, 21, 22]. Newer spatio-temporal deep learning

methods such as STD-Net and DMVST-Net are available and that have not been applied

to crime prediction to the knowledge of the researcher. It is desirable to investigate and

compare the application of these techniques to crime prediction.

In terms of crime classification, it is also desirable to investigate and compare the ap-

plication of 3D CNNs and 3D ResNets to crime classification. As part of this objective,

crime maps will be subdivided into a spatial grid using a given spatial resolution. The

goal of classification will then be to determine whether a given crime type takes place

in each grid cell. The effect of the spatial resolution on classification accuracy needs to

be investigated.

1.3 Research Question

Based on the discussion in the Section 1.1, the following over-arching research question

can be formulated: “How effective are 3D and spatio-temporal deep learning techniques

for crime forecasting?” This main research question can be broken into the following

sub-questions:

1. Crime classification:

1.1. How effective are 3D deep learning techniques for crime classification on the

Chicago crime dataset?

1.2. What is the effect of spatial resolution on the performance of 3D deep learning

algorithms for crime classification?
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2. Crime prediction:

2.1. How effective are spatio-temporal deep learning techniques for crime predic-

tion on the Chicago crime dataset?

1.4 Research Objectives

The following objectives are set out in which, once met, will lead to answers to each of

the research sub-questions in the previous section, which in turn will finally help provide

an answer to the main question:

1. Carry out a literature review to explore various applications of statistical learn-

ing, traditional machine learning,3D and spatio-temporal deep learning techniques,

with a focus on the reported effectiveness of the techniques in each application.

This will demonstrate the effectiveness of the deep learning techniques over statis-

tical and machine learning techniques, as well as providing a context for various

applications of these deep learning techniques in the literature.

2. Implement the selected 3D deep learning techniques.

3. Implement the selected spatio-temporal deep learning techniques.

4. Compare the effectiveness of the 3D deep learning techniques implemented in the

previous objective towards crime classification on the Chicago crime dataset. This

will provide an answer to research sub-question 1.1.

5. Further to the previous objective, analyze and determine the effect of spatial grid

resolution on 3D deep learning techniques towards crime classification. This will

provide an answer to research sub-question 1.2.

6. Compare the effectiveness of the spatio-temporal deep learning techniques imple-

mented in the previous objective towards crime classification on the Chicago crime

dataset. This will provide an answer to the remaining research sub-question 2.1.

Having met all objectives and answered all research sub-questions, an answer will then

be provided for the main research question set out in the previous section.

1.5 Contributions

This thesis has made the following important contributions to the field of crime fore-

casting:
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1. It has applied two new spatio-temporal deep learning techniques, namely the

DMVST-Net and STD-Net, to the task of crime prediction, which has not been

carried out before.

2. Furthermore, these two techniques were compared with a spatio-temporal deep

learning technique i.e. ST-ResNet which has been shown to provide state-of-the-

art performance for crime prediction. The results showed that the STD-Net out-

performs the ST-ResNet, and in so doing, the state-of-the-art in this context has

been re-defined in this thesis.

3. The thesis has applied two 3D deep learning techniques, namely 3D CNN and 3D

ResNet, to the task of crime classification, which has not been attempted before.

4. The 3D deep learning techniques were both shown to be highly effective for the

task of crime classification. The 3D ResNet was further shown to out-perform the

3D CNN.

5. The effect of the spatial resolution size was investigated, and it was established

that a smaller resolution size consistently out-performs larger sizes.

1.6 Limitations

The research will not cover criminal profiling, and does not use any information about

individuals, or populations and their characteristics, as this information has restricted

access by governments.

1.7 Dissertation Outline

The remainder of the thesis is organised as follows.

Chapter 2: Literature Review. This chapter reviews relevant research on general fore-

casting and, where possible, crime forecasting using statistical learning, conventional

machine learning, and deep learning methods. In so doing, it aims to explore the effec-

tiveness of each set of techniques. To this end, for each study considered, the research

methods including the forecasting technique(s), datasets and assessment measures used,

as well as the resulting findings are detailed and analysed. This will help demonstrate

the relevance of 3D and spatio-temporal techniques towards meeting research objective

1.

Chapter 3: 3D and Spatio-Temporal Deep Learning. This chapter provides a detailed

description of the selected 3D and spatio-temporal deep learning algorithms implemented

and compared in this research. This theoretical background serves as an underpinning
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Chapter 1 Introduction 9

for the implementation of these techniques, in line with objectives 2 and 3, and the

experiments subsequently carried out and described in the chapters that follow.

Chapter 4: Experimental Setup. This chapter provides details of the experimental

setup in terms of the programming language used, the deep learning framework and

API, the platform on which the experiments were carried out, the crime dataset used,

the data preprocessing steps and the algorithm optimization carried out. In so doing,

objectives 2 and 3 are partially met.

Chapter 5: 3D Deep Learning for Crime Classification. This chapter evaluates the ef-

fectiveness of the selected 3D deep learning methods, namely 3D ResNet and 3D CNN,

for crime classification. The chapter details the experiment carried out, including ex-

perimental design, data preprocessing, algorithm configuration, and evaluation metrics

utilized. In so doing, objective 2 is fully met. Also, an analysis of the experiment is car-

ried out, thereby meeting objective 4 and 5. Therefore, the chapter provides an answer

to research sub-questions 1.1. and 1.2.

Chapter 6: Spatio-temporal Deep Learning Techniques for Crime Prediction. This

chapter is similar in structure to Chapter 5. The chapter evaluates the effectiveness of

the selected spatio-temporal deep learning methods, namely ST-ResNet, DMVST-Net,

and STD-Net, for crime prediction. As with Chapter 5, a detailed description of the

experiment carried out, including experimental design, data preprocessing, algorithm

configuration and evaluation metrics utilized, is provided. This ensures that objective 3

is fully met. A detailed analysis of the experiment is then carried out, which ensures that

objective 6 is met. As such, the chapter provides an answer to the research sub-question

2.1.

Chapter 7: Conclusion and Future Work. This chapter summarizes the findings from

the experiments conducted and provides an answer to the main research question based

on answers to the research sub-questions obtained previously. The chapter also sum-

marizes the contributions made by this research and closes with recommendations for

further research.
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Chapter 2

Literature Review

This chapter presents prominent research studies that have used statistical learning,

traditional machine learning, and the deep learning techniques under consideration in

this research i.e. the 3D and spatio-temporal deep learning techniques specified in the

previous chapter.

Where possible and relevant, the focus will be placed on applications of these techniques

to crime forecasting, but where studies on crime forecasting are limited, other relevant

applications involving spatio-temporal data may also be discussed, as necessary e.g.

human action recognition, crowd flow prediction, and taxi demand prediction, among

others, which are all examples of applications involving spatio-temporal data.

The chapter’s structure is as follows: Section 2.1 analyses the studies that focused on

relevant applications of statistical models and statistical learning methods; Section 2.2

investigates relevant studies comparing conventional machine learning methods such as

Random Forest and Näıve Bayes. Section 2.3 presents studies related to the 3D deep

learning techniques selected in this research i.e. 3D CNNs and 3D ResNets; and Sec-

tion 2.4 details relevant studies that used the spatio-temporal deep learning techniques

selected in this research i.e. ST-ResNet, STD-Net and DMVST-Net; finally, the chapter

concludes in Section 2.6.

2.1 Statistical Learning Techniques

Li et al. 2018 [28] analysed and predicted urban crime in China on a spatio-temporal

scale. They acquired training data from a city’s Public Security Bureau. Each entry in

the dataset included the following attributes: a record’s unique ID; the time the crime

occurred; further details such as the name of the person and property. The dataset

included 2,708 records that were collected between August 2015 and March 2018. Their

10
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preprocessing methods included the definition of entities with particular meanings de-

rived from the Chinese text.

The entities included location, institution names, criminal occurrences, the goods in-

volved, and monetary values. The Named Entity Recognition (NER) resolved errors

in the structured data during its extraction [28]. For crime prediction, they examined

the Auto-Regressive Integrated Moving Average (ARIMA), the Global Model (GM), the

Pooled Model (PM), and the Hierarchical Model (HM). The rate of error analysis of the

prediction results from the ARIMA model was lower than 5% compared to the other

three models.

Kumar et al. [29] predicted the yearly crime rate in India using Time Series Models such

as ARIMA and Exponential Smoothing. The tests utilized data from India’s National

Crime Record Bureau spanning the years 1953 to 2013. For time series modelling, the

statistical package R was utilized. They used the Box-Jenkins technique for time series

modelling. The technique had three phases: model selection, testing, and forecasting.

They used exponential smoothing, a technique that is based on current results having

a higher weight than older values, which diminish as the observation ages. Using the

Mean Absolute Error (MAE), Mean Absolute Squared Error (MASE), and Mean Abso-

lute Percentage Error (MAPE) metrics, the ARIMA model compared to the Holt Linear

model.

Alves et al. [30] suggested a random forest regressor to predict crime and quantify the

impact of urban variables on homicide in order to understand and predict crime. They

discovered that deducing causality from data was difficult. Many linear models predicted

crime based connections between crime and urban indicators. However, because of the

non-Gaussian distributions and multicollinearity in urban indicators, it was difficult to

determine the impact of certain urban indicators on crime.

Alves et al. [30] discovered that machine learning ensemble-based methods were effec-

tive for predicting crime. They used a dataset from DATASUS which is the Department

of Informatics and Public Health Systems in Brazil. Based on the relationship of the

dataset to crime, they chose potential crime prediction factors from the dataset. The

prediction factors were child labour, the old population, the female population, the gross

domestic product (GDP), illiteracy, family income, the male population, the population,

sanitation, and unemployment. In their study, random forest algorithms had two main

parameters that controlled the trade-off between bias and variance errors: the number

of trees in the forest and the maximum tree-depth. These parameters controlled the

trade-off between bias and variance errors in the forest. Stratified k-fold cross-validation
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with k set to 10, was used to estimate the validation curves for a range of values of

the parameters number of trees and maximum depth, in order to identify the set of

parameters that prevented over- and under-fitting of the data.

Agarwal et al. [31] conducted a study on statistical models for crime prediction They

utilized crime statistics from Indian states between the years 2001 and 2013 for their re-

search purpose. They used crime statistics from 2001 to 2011 to forecast crimes in 2012

and 2013. There was a comparison between projected values and real crime data from

2012 and 2013. The NCRB website and Open Government Data (OGD) provided the

crime dataset. The information acquired from these sites was in Microsoft Excel format,

which was then converted to CSV format. The dataset included crime information for

districts in India between 2001 and 2013. The crime statistics included many areas such

as the number of murders, rapes, thefts, and so on, as well as the total IPC Crimes for

each district in India.

The effectiveness of the three statistical models for crime prediction was evalauated.

These models are: Weighted Moving Average (WMA), Functional Coefficient Regres-

sion (FCR), and Arithmetic-Geometric Progression (AGP). They found that the AGP

was most suited for predicting crime, since it achieved the highest accuracy for the

dataset of Indian districts.

2.2 Traditional Machine Learning Techniques

Almaw et al. [32] suggested analysing and predicting crime data using ensemble tech-

niques. They developed a model for crime prediction using N-ensemble learning. There

are two types of N-ensemble learning techniques: one-ensemble and three-ensemble learn-

ing. Denver open data site provided the dataset. The data collected had 19 character-

istics and contained 127,799 records during a two-year period. Preprocessing of the

data included identifying desirable characteristics, verifying missing numbers, finding

outliers, and removing noise from the crime data.

The following methods were compared for classifying data: Näıve Bayes, J48, Random

Tree, Bagging, Bagging plus Random Tree, and Stacking (J48 with Random Tree). Ac-

curacy and F1 score evaluated the models’ performance. The study provided a list

of the outcomes of the experiment for each algorithm. Their research found that the

Random Tree outperforms the Näıve Bayes classifier with an accuracy of 82.02%, while

Näıve Bayes classifier achieved an accuracy of 53.64%. The J48 achieved an accuracy

of 76.8926%. They utilized a method called classifier selection by accuracy to identify
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classifiers that were merged to achieve optimal performance. The Näıve Bayes classifier

performs poorly in comparison to the J48 and random tree classifiers, it was excluded

from creating the ensemble.

Bappee et al. [33] presented a machine learning model for categorizing crime and pre-

dicting it using geographical data. The model tried to forecast the association between

criminal activity and geographic areas. Their research focused on a crime dataset from

Nova Scotia (NS). They concentrated on four distinct types of crime: those involving

alcohol, violence, property crime, and motor vehicle crime. Furthermore, they predicted

crime using two geographical features: geocoding and crime hotspots. The spatial data

for open street map (OSM) was retrieved using a reverse geocoding technique. They for-

mulated crime hotspots characteristics using a density-based clustering method. They

compared Linear Regression (LR), Support Vector Machine (SVM), and Random For-

est (RF) classifiers, as well as an Ensemble with all prior classifiers. The accuracy was

measured using the Area Under Receiver Operator Characteristic (AUROC). Ten-fold

cross validation was performed and the data into training and test sets. The Ensemble

method achieved the highest accuracy and AUROC values.

Kim et al. [34] compared the KNN classifier to boosted Decision Trees for crime analy-

sis. The study examined crime statistics from the Vancouver Police Department (VPD)

spanning 15 years. The VPD crime dataset contained about 560 000 entries, which were

collected between 2003 and 2018. They preprocessed the data in two ways. First, every

neighbourhood was allocated a unique identification number and every crime, a unique

identification number. A binary number was assigned to the neighbourhood and the day

of the week. A “1” was recorded when a specific crime occurred in the neighbourhood

on that day, and “0” was recorded if there was no crime.

Identical methods and settings were used in all data preparation processes, as well as

the identical validation procedures for both data preprocessing processes. They used a

5-fold cross validation procedure to assess the performance of the classifiers. Although

the KNN model achieved an accuracy of 40.1% while training for 2209 seconds on the

data preprocessed by the first approach, the model achieved an accuracy of 39.9% while

training for 101.73 seconds on the data preprocessed by the second approach, which is a

significant improvement over the first approach. A boost decision tree obtained an ac-

curacy of 41.9% on the data preprocessed by the first approach after training for 906.63

seconds, whereas a boost decision tree achieved an accuracy of 43.2% after training for

459.26 seconds on the data preprocessed by the second method [34].
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Vural et al. [35] proposed a Näıve Bayes method for categorizing criminal activity. They

used crime prediction to identify the criminal who was most likely to commit a certain

crime incident using the history of crime events together with incident-level crime data.

They used characteristics such as the date and place of the event, the crime type, the

criminal identification (ID) number, and the names of associates in the incident-level

crime data. Actual crime data could not be obtained due to confidentiality laws and

regulations, as a result they created a synthetic dataset using the latest techniques to

simulate the dataset they needed. They cross validated the suggested system. The ex-

periment used a comparison between Näıve Bayes classifier and a Decision Tree. The

Näıve Bayes had an accuracy of 81.66%, the Näıve Bayes algorithm produced the best

results.

Khan et al. [36] developed a system for predictive policing on counterfeit street crime

such as mobile theft and snatching, as well as simulated outcomes of machine learn-

ing models using various algorithm methods and their performance comparison. They

gathered data from government databases from the years 2005 to 2013. Their data pre-

processing procedures included various steps such as identifying potential and unusable

attributes, replacing and filling in missing information in records with a default mean,

model-derived or global constant values, removing records with incomplete information,

grouping related attributes to obtain more meaningful information, and so on. Google

Maps collected coordinates with an approximate error of 20 meters in order to locate,

monitor, and map crimes. They also utilized K-means clustering and the Näıve Bayes

classifier to predict crimes.

Yadav et al. [37] suggested utilizing the Classification and Regression Trees (CART)

method to predict the resolution that was provided for crimes that happened in San

Francisco between 2003 and 2015. The offences occurred between 2003 and 2015. They

obtained information in this dataset from the San Francisco Police Department’s Crime

Incident Reporting System. The San Francisco crime dataset included both numerical

and nominal information. They performed data preparation in order to convert nominal

data into numeric data, which was accomplished via the use of a classification method.

The study revealed 57 occurrences of redundant or missing data out of a total of 878049

instances.

In addition, Yadav et al. [37] deleted the 57 occurrences from the dataset. When the

timestamp column included the date, year, and time of each occurrence of a crime, it

was separated into five distinct features as part of the preprocessing phase. These five

features were as follows: date, month, year, hour, and minute. They conducted a com-

parison of the CART methods with the Multi-Layer Preceptron (MLP), the KNN, and
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the Gaussian Näıve Bayes procedures. The accuracy and the area under the receiver

operating characteristic curve (AUROC) were the two measures that were used to as-

sess the quality of the classifiers. The CART method produced the best accuracy and

AUROC.

Matijosaitiene et al. [38] used machine learning techniques to predict motor vehicle theft

in Manhattan and New York. They used time series analysis, hotspot analysis, linear

regression, elastic-net, support vector machines with radial and linear kernels, deci-

sion trees, bagged CART, Random Forest (RF), and stochastic gradient boosting. The

dataset was obtained from the New York Open data NYPD Complaint Map,” which

included 25 variables, 478 805 samples. Theft from a motor vehicle was categorised as

larceny. It included both grand and petty larceny, as per New York Penal Law. Com-

paring thefts from motor cars in Manhattan to other crimes, the annual proportion of

theft from motor vehicles throughout Manhattan was less than 6%, with 99.5% of all

them occurring on the street. Moreover, they discovered that parking lots, both public

and private, accounted for 0.496% of all instances, with the remainder of urban areas

accounting for just 0.1%.

In the crime dataset that they used, each committed crime had the following attributes:

latitude and longitude, crime type, the date, and time. Police records of the reported

crime contained the date and time; circumstances of the crime; address; description of

the premises; and other variables. The level of granularity in criminal classification was

very fine. In the case of theft from a motor vehicle, there are many classifications: grand

larceny from vehicle, petty larceny from vehicle, theft of vehicle accessories, and so on.

They did not consider fine granularity, and as a result, they overlooked minor crimes,

such as theft of a car accessory or other comparable crimes [38]. The data was grouped

by crime categories into larger groupings, such as theft from a motor vehicle, burglary,

and so on, using only crime data from the years 2015, 2016, and 2017. They considered

crime data from the last two to three years sufficient for conducting crime analytics and

generating predictions/forecasts, particularly when the urban planning and development

context related to crime [38].

In addition, Matijosaitiene et al. [38] used the R programming language to aggregate the

new variable “day of the week”. Following that, they conducted data reduction to ensure

that only the variables of interest such as: the unique ID, the crime category, the date,

and time, the day of the week, and the latitude and longitude. They used time series

analysis to determine the pattern in the number of thefts that occurred throughout the

day and night. In order to detect geographic patterns in thefts, they utilized ArcGIS

with Python for the hot spot analysis (Getis-Ord Gi) in order to find hot spots. This
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was accomplished using a Gi-statistic, also known as a z-score, for each studied feature

or independent variable in the dataset that was imported into ArcGIS software.

Additionally, in the context of the neighbouring features, the computed Gi-statistic

uncovers spatial clusters of high (statistically significant positive large z-score) or low

(statistically significant negative small z-score values), as well as statistically significant

positive small z-score values [38]. They cross validated the dataset repeatedly using 10-

fold cross validation in order to choose the best prediction model. They also performed

three repetitions, which resulted in a more reliable estimate of the models. R-squared

error (RMSE) and root mean squared error (RMSE)(R2) methods were used to compare

the models. The Stochastic Gradient Boosting technique achieved the best performance

with RMSE of 0.610 and R2 of 0.619.

Shi et al. [39] carried out a study on predicting property-related crime using a random for-

est method based on genetic algorithm optimization. They utilized a significant amount

of official data and 75-dimensional characteristics to create large-scale data resources

that influence property-related crime. An algorithm known as GA-RF was developed in

order to establish a warning task for property-related crime. They merged bagging and

random subspace methods in the random forest algorithm. In the process, they created

a sophisticated classification method based on the integration of decision trees.

They classified the variables influencing property-related crime as economic, transporta-

tion, factors influencing property-related crime population, area, energy, and facility

elements, with a total of 75 possible environmental indicators. As the study object,

they selected 331 streets and towns in a city [39]. They collected environmental vari-

ables linked to the property-related crime of embezzlement via open and professional

channels. The data collected included 1,277,814 instances of property-related crime

with 75 different feature parameters.

At the same time, the data distribution divided the areas into six levels: highest, higher,

high, low, lower, and lowest. They proposed the Genetic Algorithm-Random Forest

(GA-RF) algorithm for predicting the trend of property-related crime, using the genetic

algorithm to search the decision tree of random forest and generate the most beneficial

decision tree combination, to promote the precision of integrated classification. These

decision tree knots formed the new integrated classifier. The GA-RF algorithms achieved

the best results in terms of accuracy, precision, recall, and F1 score when compared with

the following algorithms: RF, XGBoost, SVM bagging, NB, ADABoost, and PAR-RF

algorithms.
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Alparslan et al. [40] used a combination of unsupervised and supervised learning tech-

niques to predict crime at specific locations and times. They used a crime dataset with

about 1.3 million samples. They utilized the 80/20 training and testing sets, from which

they received about 838860 samples for training and, 262030 samples for testing. The

years covered by the data collection spanned from 2006 to 2015. They used K-Means

technique to create yearly clusters of the crime incidents, then stacked the cluster cen-

tres. Thereafter, they computed the Euclidean distance between each crime location

and the cluster centres and added the distance of the features then trained the KNN,

Näıve Bayes, Decision Tree, Random Forest, Logistic Regression, SVM, and MLP on

the preprocessed data. For evaluating each model’s performance, they used accuracy.

The Random Forest algorithm achieved the highest accuracy.

Gupta et al. [41] used data mining and machine learning techniques in the study to pre-

dict crime patterns. They got their criminal data from India’s National Crime Records

Bureau which was collected over two decades. They analysed crime patterns and trends

using time series analysis. They predicted future crime rates using machine learning

methods. The data visualized, and charted time series using the RapidMiner tool. They

compared Support Vector Regressor (SVR), the Decision Tree Regressor, and the Ran-

dom Forest Regressor. The R2 metric evaluated the models’ performance. The SVR

outperformed the other models.

Zaidi et al. [15] used a criminal classification method in crime predictions. They used the

Cross-Industry Process for Data Mining (CRISP-DM) approach, which allowed them to

repeat stages until they achieved an acceptable result. They used data comprehension,

data preparation, modelling, and assessments. They conducted the experiment in col-

laboration with the Waikato Environment for Knowledge Analysis (WEKA). They used

the University of California at Irvine crime and communities dataset, which was acquired

from the UCI Machine Learning Research Repository. There were 147 characteristics in

the dataset, and there were 2,216 criminal instances.

Zaidi et al. [15] chose 12 characteristics that were most relevant to the data and elimi-

nated rows that had missing values throughout the data preparation phase. They also

developed a new characteristic, dubbed “Crime Category,” which served as the nominal

feature for the output of the forecast. “Crime Category” was limited to just three levels

of severity, which were labelled as “Low”, “Medium”, and “High”, respectively. They

evaluated the accuracy, precision, recall, and F1 score measures of the Random Forest

against those of the SVM to see which was superior. In their study, the Random Forest

algorithm produced the best results.
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Hossain et al. [42] experimented on crime prediction utilizing spatio-temporal data. The

experiment was performed using a crime dataset acquired from the open dataset of the

San Francisco Police Department (SFPD). The collection contained statistics on crimes

that happened in San Francisco between 1/1/2003 and 5/13/2015. The dataset con-

tained an 8,780,049-row CSV file. They classified the dataset into characteristics such

as date, time, and location. The incident’s criminal classification was the target desig-

nation. The target label correlated with characteristics such as the crime description

and resolution.

The San Francisco crime dataset contained 39 distinct kinds of offences which were re-

ferred to as classes. Hossain et al. [42] discovered that few crimes occur on a regular

basis, while others are very uncommon. Larceny or stealing were the most prevalent

crime, occurring 174900 times, while trespassing was the least prevalent crime, occur-

ring six times. They discovered that 14 crime classes were committed more than 10,000

times, whereas 14 crime classes were committed fewer than 2,000 times. This demon-

strated the unequal allocation of courses.

Hossain et al. [42] preprocessed the dataset using the Python package scikit-learn (sklearn).

Certain properties in the CSV files included both text and numeric values. To enable

the usage of machine learning on this dataset, they transformed the text characteris-

tics to numeric values. To convert strings to numeric values, they used Python module

NumPy. They also used string data types for attributes such as “Day”, “Category”,

and “Address” columns. They converted text input to numeric data using the sklearn

preprocessing tool.

After sorting items in ascending alphabetical order, the preprocessing program assigned

an integer value to each unique item [42]. A Date-time attribute is also a string data

type that may be transformed to a date-time object, from which four more properties

can be obtained: “Hour”, “Date”, “Month”, and ”Year”. To prevent overfitting and

achieve more realistic accuracy, they divided the data into two parts: testing and train-

ing. The training set included all elements in addition to the goal label. The testing

dataset included the characteristics used to predict the target label using a machine

learning model.

Additionally, Hossain et al. [42] utilized scikit-learn model selection package, which in-

cluded a class called “test train split”, which divided the original dataset into a testing

and training set. They utilized the default setting for the size of the test dataset, which

was 25% of the original dataset. They further compared the accuracy of Decision Tree,

KNN, Adaboost, and Random Forest. They used the scikit-learn package to balance the
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dataset, oversampling and under sampling methods such as SMOTE and the imblearn

function. The Random Forest method produced the best results, with an accuracy of

73.89% while oversampling the data and 99.16% when undersampling the data.

Kumar et al. [43] conducted an experiment using a KNN algorithm to predict crime.

Their model tried to predict the type of crime that will occur, when, where, and at what

time the crime occurred. Preprocessing of the crime data included eliminating any null

values and superfluous columns. The dataset used was a variation of the original, which

was acquired via scraping the police website of Indore, Madhya Pradesh. It was pro-

cessed several times, and they omitted information such as the police station’s name and

location, the station’s number, the complainant’s name and address, and the defendant’s

name and address. The Extra Trees Classifier function determined the significance of

features, which assisted them to ignore superfluous characteristics. The ensemble learn-

ing method used an Extra Trees Classifier as anything that takes a given quantity of

data and determined the relative significance of each feature individually. The com-

pleted dataset had four attributes: the hour, the day of the year, the city’s longitude

and latitude. They divided the dataset into 80% for training and 20% for testing. They

used the KNN classifier for the experiment because it is a supervised machine learning

technique which is effective for classification issues [43].

The KNN algorithm works by calculating the distance between a query and all the in-

stances in the data, choosing the closest examples to the query, and then voting on

the most frequent label. The technique is non-parametric, which means that it makes

no assumptions about the distribution of the main data. To put it simply, the type of

data determined the model’s structure. They evaluated their model using the accuracy,

MAE, and RMSE measures. Their KNN model had an accuracy of 0.9951, an MAE of

0.0064, and a root-mean-square error of 0.0802.

2.3 Conventional Deep Learning Techniques

Stec et al. [16] targeted at using deep neural networks to predict the following day’s crime

count in a fine-grain city division. They generated predictions using crime statistics from

Chicago and Portland, as well as other datasets including weather, demographic data,

and public transit. They used the city of Chicago’s data portal to acquire the city’s

crime statistics. The crime statistics for Portland came from the National Institute of

Justice’s Real-Time Crime Forecasting. The criminal databases included about 6 mil-

lion entries dated as far back as 2001. The collected crime dataset included many useful

variables, including longitude, latitude, beat, and district. Their ‘O’ model divided the
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crime counts into ten bins and predicted the most probable bin for each geographical

area on a daily basis.

Stec et al. [16] used sophisticated neural network architectures, including modifications

tailored to the geographical and temporal dimensions of the crime prediction issue. They

examined four distinct network architectures: Feed Forward Neural Networks (FFN),

Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and Re-

current Convolutional Neural Networks (RNN+CNN). They evaluated the performance

of the various models using accuracy and Mean Absolute Scaled Error (MASE). The

RNN+CNN combination produced the best results, with MASE values of 0.74 and 0.77

for Chicago and Portland, respectively, and accuracy values of 75.6% and 65.3% for

Chicago and Portland, respectively.

Seo et al. [44] used Partially Generative Neural Networks (PGNN) as an automated

method for identifying and predicting gang-related crimes. They chose PGNN because

of its capacity to categorize crimes correctly when there is complete and partial informa-

tion. They utilized data from the Los Angeles Police Department (LAPD). The dataset

included various kinds of crimes committed in 2014, 2015, and 2016. Each crime record

included associated modus operandi codes (mocodes), which provided some identifica-

tion of the crime’s distinctive behaviours or characteristics. Seo et al. [44] used a mocode

in LAPD crime statistics to identify gang-related crimes. Each crime in the dataset in-

cluded a collection of categories, textual, and numerical attributes/features collected by

police personnel or other analytical procedures. However, certain characteristics were

not applied to some crimes, and police officers regarded these as “blank” entries. PGNN

was compared with Logistic Regression (LR), Support Vector Machine (SVM), Decision

Tree (DT), and Neural networks (NN) in their experiment. They used cross validation

to determine the best hyperparameters for each machine learning model. They also used

AUROC as an assessment measure in the study. The PGNN achieved the best results.

Lim et al. [45] developed a criminal network hidden links prediction model using Deep

Reinforcement learning (DRL). They utilized DRL methods to create a hidden or miss-

ing link prediction model for a criminal network based on Social Network Analysis (SNA)

metrics. DRL methods were trained with relatively little datasets via self-simulation,

and were used to the features of a criminal network with many missing or concealed

edges. They tested the link prediction DRL model against the gradient boosting ma-

chine (GBM) model, both of which were based on a binary classification task.

To link predictions, Lim et al. [45] used the GBM model as the baseline model in con-

trast to the DRL model. They also utilized the UCINET cocaine smuggling dataset,
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which included a dichotomous adjacency matrix of Hartford drug users. The UCINET

cocaine smuggling dataset includes four distinct criminal network groupings, namely

Juanes, Mambo, Jake, and Acero. The Area Under the Curve (AUC) was chosen as

the assessment measure since it is unaffected by class imbalance and is a widely used

method for assessing classifier performance. Lim et al. [45] split each criminal group

dataset into training and test sets in a 75:25 ratio. Thereafter, they designed both the

GBM and DRL link prediction models using the training data.

Their study further used a test set, to evaluate the final model in terms of the binary

classification function’s performance [45]. The SNA measurements utilized in the fea-

ture matrix design. They transferred the trained GBM and DRL link prediction models,

the SNA link prediction metrics for the criminal network to a feature matrix. In the

three criminal network datasets, the DRL link prediction model outperformed the GBM

baseline model.

Lin et al. [46] presented a grid-based crime prediction model based on 84 different kinds of

geographical features. They acquired the geographical information by combining crime

(theft) statistics for Taoyuan City in Taiwan with the Google Places API. The Taiwan

government’s open data portal provided statistics for vehicle theft for Taoyuan City.

They collected data from January 2015 and April 2018, during that time there were 220

criminal occurrences each month. They compared four machine learning algorithms:

Random Decision Forest, Deep Neural Networks (DNN), Support Vector Machine, and

K-Nearest Neighbor. Accuracy, precision, and recall methods were used as performance

metrics. To validate the algorithm’s accuracy, they computed the Mean Average (MA)

F1 score, which was utilized as the performance criteria. Across the board, the DNN

method exhibited the best performance.

Stalidis et al. [19] proved that techniques based on deep learning outperform the best-

performing current conventional methods for crime classification and prediction. They

evaluated the efficacy of various parameters in deep learning architectures and provided

guidance on how to configure them for better performance in crime classification and ul-

timately crime prediction. They utilized five distinct datasets from Kaggle that included

over a decade’s worth of criminal incident records. These five datasets included criminal

event records from the police departments of Seattle, Minneapolis, Philadelphia, San

Francisco, and the District of Columbia.

Stalidis et al. [19] classified the data into 10 crime categories, including “Homicide”,

“Robbery”, “Arson”, “Vice”, “Motor Vehicle”, “Narcotics”, “Assault”, “Theft”, “Bur-

glary”, and “Other”, and assigned to each dataset. The “Other” category consisted
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of crimes that did not fit into any other categories. They compared 10 algorithms:

Combined Cleaning and Resampling (CCR-Boost), Spatio-temporal Residual Networks

(ST-ResNet), Decision Trees, Näıve Bayes, Logit Boost, Random Forests, SVM, KNN,

and a Multi-Layer Preceptron (MLP). To assess the model’s performance, the F1 score,

AUROC, Area Under the Precision Recall Curve (AUCPR), and Prediction Accuracy

Index (PAI) were employed. According to their tests, the ST-ResNet exhibited the best

performance.

Yi et al. [25] used a Neural Network-based Continuous Conditional Random Field (NN-

CCRF) machine learning model and presented a method for fine-grained crime pre-

diction. The neural network uses Long Short-Term Memory (LSTM) as the unitary

potential, which is combined with a Stacked De-noising Auto-Encoder (SDAE) to learn

spatial correlations between areas. Between 2013 and 2015, they gathered 1,072,208

crime records in Chicago and 1,417,083 in New York (NY) City. Each crime record

correlated with a timestamp, a location, and a crime category.

To predict a fine-grained crime rate throughout the city, Yi et al. [25] classified crime

data into N discrete areas, each of which is a 1 Km by 1 Km grid, resulting in 35 (7× 9)

and 63 (7×9) grids for Chicago and New York, respectively. To address such data spar-

sity issues, they grouped comparable crime categories into groups (crime against person

or property). Linear Regression (LR), Long Short-Term Memory (LSTM), Conditional

Random Field RNN (CRFasRNN), and NN-CCRF were compared. The Route Mean

Square Error (RMSE) was used to assess each technique’s performance. The NN-CCRF

model exhibited the best performance.

Elluri et al. [47] presented models for smart policing that are based on machine learning.

They used statistical analysis and machine learning algorithms to predict several crimes

types in New York City using 2018 crime statistics. They sourced the dataset from the

open data site for New York City. Each year, the crime dataset included approximately

220,000 entries. They integrated meteorological and temporal characteristics such as

cloud cover, illumination, and time of day in order to determine the weather’s relevance

to crime statistics. They preprocessed the data by replacing zero or null values with a

“NA” and then extracted the best feature subsets using forward and backward feature

selection methods.

They collected 17 characteristics of crime, including meteorological and temporal, for

algorithm training and testing following the feature section [47]. They trained and tested

conventional algorithms using RapidMiner, a data science tool. They implemented var-

ious neural networks using a four-layer architecture consisting of an input layer with 17
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input neurons based on the best 17 features, a CNN/RNN layer with 32 neurons based

on the algorithm type, a fully connected layer with 256 neurons, and finally an output

layer with two neurons for two classes. They used a 20% drop-out for the layer of deep

neural networks and a 50% drop-out for the fully connected layer [47].

Lastly, the network was trained in 32-bit micro batches. They utilized binary cross

entropy as the loss function for the networks. To improve the network, use the Adam

optimizer. They used Python’s Keras and TensorFlow libraries for deep learning. The

model’s performance was evaluated using the AUC and Cohen’s Kappa criteria. They

used 5-fold cross validation to train and evaluate the models. The SVM, Decision Tree,

Neural Network, MLP, Logistic Regression, Random Forest, CNN, Simple RNN, LSTM,

and Gated Recurrent Units (GRU) were all compared. They discovered that the LSTM

model had the highest AUC and kappa values for prediction. Additionally, they ob-

served that weather-related characteristics had a minimal impact on crime prediction

and therefore removed meteorological datasets from the model performance assessment

for crime prediction [47].

Wang et al. [48] used an ST-ResNet model for real-time crime predictions on an hourly

timeframe. They examined all kinds of crime committed in Los Angeles during the last

six months of 2015. There were 104,957 crimes in total. Due to the poor geographical

and temporal regularity of the crime data, they conducted both spatial and temporal

regularization of the data. Each crime record included information on the crime’s start

and finish timings, as well as its location. They referred to the time slot as the start time

of each event. Geographically, these crimes occurred between the latitude and longitude

intervals [33.3427°, 34.6837°] and [-118.8551°, -117.7157°], respectively. The geographical

distribution is very diverse.

Wang et al. [48] further discovered that a sizable part of the region had a little crime,

[33.6927◦, 34.3837◦] × [−118.7051◦,−118.1157◦]. They created a 1616 lattice by parti-

tioning a specific area. They also addressed the lack of spatial regularity in the data

preparation phase by using a super resolution method utilizing cubic spline interpola-

tion. In addition, they resolved by a factor of two in each dimension for computing effi-

ciency and substantially enhanced spatial regularity by the cubic spline super resolution.

One advantage of this preprocessing was that it enhances the signal without sacrific-

ing information related to the crime data. They experimented with two distinct deep

learning structures: one with convolution layers and one without. In the second model,

they used an ensemble of ResNet to learn the time series on each grid, without taking

into account the transition of crimes across grids. The first model which recorded crime
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dynamics using convolutional layers, was more dynamic. They integrated all charac-

teristics in both networks with the crime data using a parametric-matrix based fusion

method. Thereafter, they designed the models using Keras on top of Theano software.

Their models included external variables such as weather and vacations. They adopted

trend, periodic, and adjacent characteristics due to the periodic pattern and self-exciting

property of crimes. These characteristics time intervals were indicated as: weekly, daily,

and hourly, respectively. The RMSE was used to assess the models’ accuracy. In the

top 25 predictions, the ST-ResNet produced the best results.

Wang et al. [22] expanded on their tests on real-time crime prediction in Los Angeles

using the ST-ResNet model and suggested several enhancements to the model’s accu-

racy and performance on mobile devices. They utilized the Los Angeles crime dataset,

which included information dating back to 2015, as well as external meteorological data

obtained from Weather Underground. They used Root-Mean-Square Error (RMSE) as

model assessment. They also compared ST-ResNet model with HA, KNN, and ARIMA

models. ST-ResNet provided the best findings, with an inaccuracy rate of 0.659% on

crime density.

Chun et al. [49] conducted a study to develop a deep learning crime prediction model.

They used the DNN on the person’s criminal charge history to predict the crime and its

nature at an individual level. They utilized a dataset of criminal cases from 1997 to 2017.

The dataset had six elements: “Person ID,” “Crime Code,” “Age”, “Gender”, “Race,”

and “Booking Date”. The crime dataset included 16,841 distinct individuals, 63,133

arrest records, and 42 distinct crime categories. Their model predicted the amount of

crime during a five-year period. They developed their crime prediction deep neural net-

work using TensorFlow. To prevent overfitting, they also used L2 regularisation. For

multi-label output, the network utilized a loss function of cross entropy, a learning rate

of 0.005, gradient descent as an optimizer, and the softmax loss function. They used

accuracy and F1 score measures to compare their model against the SVM. In the multi-

class criminal classification exercise, their DNN outperformed the SVM method.

Duan et al. [50] tested deep Convolutional Neural Networks for spatio-temporal crime

prediction. In an effort to use deep CNNs for automatically crime-referenced feature

extraction, they suggested a new Spatio-temporal Crime Network (STCN). They also

utilized the “311 crime dataset” from New York City, which included information from

2010 to 2015. This dataset included information on 10 million complaints. They ex-

cluded around 0.12 million complaint data because they lacked locations or were outside

the sector limits. As a result, the final dataset included 9.75 million records. They
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transformed the dataset input feature maps to 2D image-like arrays.

According to Duan et al. [50], the model captured low-level spatio-temporal relationships

for criminal events by running these feature maps through a series of two convolution

layers. To prevent the STCN network from overfitting, they created inception blocks

and fractal blocks. They compared STCN’s performance of three baseline models: SVM,

Random Forest, and Shallow Fully Connected Neural Network (SFCNN). TensorFlow

1.01 and CUDA 8.0 were used to construct STCN and SFCNN. The learning parameters

used a Gaussian distribution that included the mean and standard deviation (0, 0.02).

They used the F1 score and AUC to assess the models. With an F1 score of 0.88 and

an AUC of 0.92, their suggested that STCN model outweighed the baseline models.

2.4 3D Deep Learning Techniques

This section details studies that used 3D deep learning techniques, specifically 3D CNNs

in Subsection 2.4.1 and 3D ResNet in Subsection 2.4.2.

2.4.1 3D Convolutional Neural Network

Ji et al. [2] developed 3D CNN for automatic human detection in surveillance footage.

They utilized the TRECVID 2008 development dataset, which is composed of 49-hour

video recordings shot at London Gatwick Airport. They concentrated on the recognition

of three action kinds in their experiments (CellToEar, ObjectPut, and Pointing). Each

action was categorised as one-against-rest, and additional negative samples were created

from actions that did not fall into one of these three categories. During the experiment,

they evaluated models using precision, recall, and AUC. In terms of performance, the

3D CNN outperformed 2D CNN in terms of accuracy, recall, and AUC.

Zunair et al. [24] used 3D CNNs for TB prediction. They created a 17-layer 3D CNN

with four 3D convolutional layers, two of which had 64 filters, followed by 128 and 256

filters, all with a kernel size of 3 × 3 × 3. Following each convolutional layer comes a

max-pooling layer with a stride of 2 and ReLU activation, which is followed by a batch

normalization layer. Their feature extraction block was essentially made up of four

convolutional, max-pooling, and batch normalization modules. The feature extraction

block’s final output was flattened and sent to a fully connected layer with 512 neurons.

They utilized a 60% effective dropout rate. The output was then routed to a dense layer

of two neurons activated with softmax for the binary classification task. They employed

a total of 10,658,498 learnable parameters.
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The dataset was provided by ImageCLEF Tuberculosis 2019, and it included 335 3D CT

chest-scans with annotation of high and low provided by a medical doctor, as well as

lung segmentation masks, and clinically relevant metadata that included the following

binary measures: disability, relapse, TB symptoms, comorbidity, bacillary, drug resis-

tance, higher education, ex-prisoner, alcoholic, smoking. The dataset had 218 individual

chest CT images for training, with the remaining 117 saved for final assessment on the

ImageCLEF evaluation platform. The CT images each had a dimension of 512 × 512

pixels and the depth size ranges from around 50 to 400, and it stores raw voxel intensity

in Hounsfield units (HU). The TB prediction was a binary classification problem. Area

Under the ROC Curve and accuracy metrics were used to evaluate the models. They

reported 73% AUC and binary classification accuracy of 67.5% on the test set, which

outperformed other approaches which supported only image information [24].

2.4.2 3D Residual Network

Hara et al. [10] proposed that for action recognition training, 3D residual networks

(with 18 layers) be used to learn spatio-temporal properties. The ActivityNet and Ki-

netics datasets were used. There were samples from 200 human action classes in the

ActivityNet dataset, with an average of 137 untrimmed videos per class and 1.41 ac-

tivity occurrences per video. The overall length of the video was 849 hours, and there

were 28,108 activity occasions. The dataset was divided into three subsets at random:

training, validation, and testing, with 50% of the data used for training and 25% for

validation and testing. To train their 3D ResNet-18 network, they used the stochastic

gradient descent (SGD) approach.

To achieve data augmentation, they randomly produced training samples from videos in

the training data during training. They used uniform sampling to select the temporal

positions of each sample. Around the selected temporal positions, 16 frame clips were

created. The goal of their experiment was to train their 3D ResNet-18 network to the

point where, post model training, it could distinguish actions in videos. To generate

input clips, they used the sliding window method, in which each video is split into non-

overlapped 16 frame clips. Each clip was cropped with the largest scale possible around

a central spot. To detect activities in videos, they computed class probabilities for each

clip using the training model and averaged them over all clips. The 3D ResNet-18 tech-

nique outperformed C3D and ImageNet in terms of classification accuracy.

Zhang et al. [20] suggested a 3D residual network for joint atrophy localisation and

Alzheimer’s disease diagnosis using self-attention. They acquired their training dataset

through the website of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [20].
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Their algorithm outperformed 3D VGG-Net, 3D ResNet-18, and 3D ResNet 34 in terms

of accuracy, sensitivity, specificity, and AUC.

Akintoye et al. [51] built on the work in [20] by introducing a hybrid parallelization

method for increasing the efficiency of a self-attention 3D Residual network (3D ResAt-

tNet) for diagnosing Alzheimer’s Disease (AD) by using data from the ADNI website.

They compared the 3D ResAttNet with 34 layers against seven state-of-the-art models

in a parallel environment over several GPUs, including a 3D CNN. They used speedup,

accuracy and training time metrics to evaluate the performance of the models. Their

model produced the best classification results.

2.5 Spatio-temporal Deep Learning Techniques

This section details studies that used spatio-temporal deep learning techniques, specifi-

cally ST-ResNet in Subsection 2.5.1, DMVST-Net in Subsection 2.5.2 and STD-Net in

Subsection 2.5.3.

2.5.1 ST-ResNet

Zhang et al. [3] implemented the ST-ResNet to the prediction of crowd flow at the city

level. They used the trajectories and climatic data from Beijing taxicabs, as well as

data from New York City bike trajectories. When normalizing the data, they utilized

min-max normalization to scale the data, and one-hot coding to translate metadata day

of the week, holidays, and weather conditions into a binary vector. The RMSE method

was used to evaluate the model. They applied the tanh activation function to the final

step in the ST-ResNet architecture.

They used Python libraries, TensorFlow and Theano frameworks for the experiments.

There are residual units in all the convolutional layers of the network design. The first

convolutional layer made use of 64 filters of different shapes and sizes of 3 × 3. The

second convolutional layer used 2 filters of size 3×3. The batch size was 32. They chose

90% of the training data for training each model, and the remaining 10% was used as

the validation set [3]. The validation set halted the training method for each model early

based on the best validation score obtained from the validation set. When measured in

terms of RMSE, the performance of ST-ResNet was compared to that of HA, ARIMA,

Seasonal Autoregressive Moving Average (SARIMA), Vector Auto-Regression (VAR),

Spatio-temporal Artificial Neural Network (ST-ANN), and Deep Spatio-temporal net-

work (Deep ST). The ST-ResNet demonstrated the achieved the lowest RMSE.
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2.5.2 DMVST-Net

Yao et al. [4] used the Deep Multi-View Spatial-Temporal Network (DMVST-Net) to

analyse a massive dataset of online taxi requests obtained from Didi Chuxing, one of

China’s major online car-hailing providers. The dataset contained 1.8 million records

and the features included temporal information, such as the average demand value over

the previous four years, spatial information, such as the longitude and latitude of region

centre intervals, meteorological information, such as weather conditions, and event in-

formation, such as holidays. They considered the size of each region and established it

as follows: 9× 9, which coincided to 6 km × 6 km grids. The spatial view had 3 layers

which had 64 filters, each with a size of 3× 3.

In their study, the sequential network had 8 layers, which is equal to 4 hours for the

LSTM [4]. The graph embedding output dimension was set to 32. The semantic view’s

output dimension was set to 6. They employed the Sigmoid function as the activation

function for the final prediction network’s fully linked layer. ReLU was used to acti-

vate functionality in other fully connected layers. Batch normalization was used in the

local CNN network. The batch size in the experiment was set to 64. The first 90% of

the samples were selected for training each model, and the remaining 10% constituted

the validation set for parameter tuning. They also used the early-stop technique in all

of their tests. Early-stop round and maximum epoch were set to 10 and 100 in the

experiment, according to their values in the study. Model evaluation is based on the

mean average percentage error (MAPE) and the rooted mean square error (RMSE).

The DMVST-Net model outperformed the following models: HA (Historical average),

ARIMA, Linear regression, MLP, XGBoost, and ST-ResNet.

2.5.3 STD-Net

Ali et al. [5] developed a deep hybrid spatio-temporal neural network (DHSTNet), which

is made of recurrent and convolutional networks, to anticipate citywide traffic popula-

tion flows by using Spatio-temporal patterns. This network consisted of recurrent and

convolutional networks. They used two large-scale world datasets, namely TaxiBj and

BikeNYC. They used Min-Max normalization approach to standardize the data in these

datasets. Each dataset contained information on the weather and flow trajectories.

During the preprocessing step for the TaxiBJ dataset, they separated the entire city

map into a number of 32 × 32 rectangular sections and set the duration of each phase

to 30 minutes. Similarly, they partitioned the entire city map into 8 × 16 rectangular
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sections for the BikeNYC dataset and set the duration of each period to 1 hour.

The Min-Max normalization approach standardized the data in these datasets. Dur-

ing the evaluation process, the result was re-normalized in order to provide a normal

value, which was then compared to the ground truth. During the preprocessing step,

the one-hot coding technique converted the external features to metadata (such as Day-

OfWeek, Weekend/Weekday), holidays, and weather conditions into a binary vector in

the external features. Normalization between min and max to scale the wind speed and

temperature between min and max [0, 1]. They also applied MinMax normalization

to the existing baselines before comparing them with the DHSTNet [5]. The models

applied Keras 2.1.0 and TensorFlow 1.2.1 frameworks.

In the experiment, the batch size was 64. The learning rate was 0.001. They added a

drop out layer with a drop out rate of 0.25 drop-out rate in order to alleviate the overfit-

ting problem. RMSE and MAPE methodologies were used to assess the model’s overall

performance and accuracy. They further evaluated the performance of their model to

the following models HA, ARIMA, LinUOTD, XGBoost, MLP, ConvLSTM, STDN, and

ST-ResNet. They found that their proposed model outperformed all the baseline models.

Zhang et al. [21] presented a model for attention-based supply and demand in au-

tonomous vehicles. They analyzed data from a Chinese online car-hailing service, and

they analysed it. For the city of Beijing, the dataset comprised taxi order data, taxi tra-

jectory data, and weather data. The taxi order data included the request start location,

request end location, request start time, and request finish time, as well as the request

start and end times. For every 2 seconds, the taxi data trajectory included the following

information: position, speed, and direction. For every 30 minutes, the weather data

featured information about the weather such as rainy, sunny, and cloudy conditions.

They have divided the city into sections 20 km × 10 km regions.

In addition, each time interval is 30 minutes long. They grouped the information on

traffic speed, volume, journal distance, demand, and supply for every 30 minutes. Using

the 30-minute time period, they further divided the dataset into training and testing

datasets in a 5:3 ratio. They predicted the outcome of the next 30 minutes based on the

preceding 2.5 hours. If the data covered several days and historical data for prediction

was present, they limited the duration to 5 days. All sizes of convolution kernels were

limited to 3× 3. The size of each region considered was set as 5× 5.

Zhang et al. [21] created 64 batches, and the learning rate was 0.001. The residual net-

work consisted of four layers, whereas the completely linked network consisted of three
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levels. They evaluated the model performance using the Mean Average Percentage Error

(MAPE), Mean Absolute Error (MAE), and Rooted Mean Square Error (RMSE) ap-

proaches. They compared their model’s performance to that of baseline models such as

ARIMA, LSTM, ConvLSTM, Reduced-ConvLSTM, ST-ResNet, DMVST-Net, STDN,

and Reduced-STDN. Among the baseline models, the STDN produced the best results,

with a MAPE of 21.08%, a root-mean-square error of 0.1634, and an MAE of 0.1348.

Awan et al. [23] devised a hybrid neural network (STD-Net) to simulate dynamic spatio-

temporal correlations for the prediction of urban traffic flows. They analysed traffic flow

data from BikeNYC and TaxiBj. Their suggested STD-Net framework consisted of four

primary components: temporal proximity, period volume, weekly volume, and external

influences. They combined the usage of a hybrid spatial-temporal network (HSTN) to

improve the prediction of urban population traffic flows, specifically inflow and outflow.

They employed the CNN to model the spatial dependency around the areas in the STD-

Net architecture.

Moreover, Awan et al. [23] used an LSTM network to simulate sequential temporal de-

pendency, which resolved vanishing gradient and recurrent neural network problems.

Their network’s key components comprised a convolutional-LSTM (ConvLSTM) net-

work that substituted the kernel size with a convolutional network. The STD-Net was

designed to extract spatio-temporal dependencies in urban crowd flows by focusing on

hidden features. This technique accounted for both spatial and temporal information

contained in the data. The designed hybrid neural network emphasised on hidden fea-

tures in order to capture both spatial and temporal information on urban crowd flows.

After loading numerous layers of the deep hybrid model, the result for the model’s last

layer was stored. They devised a framework for the deep hybrid neural network that

separated the DNN into two sub-DNNs [23]. The first sub-DNN used CNN to capture

spatial characteristics, while the second used an LSTM network to learn temporal fea-

tures over time. After that, the three outputs were infused as Zfusion. The Zfusion was

also infused with the the external branch as Xext output. As the last step, both the

external and the spatial features were infused together.

The activation function used in the last layer of the STD-Net architecture was the

tanh activation function, which had a value between -1 and 1. To balance the data

between -1 and 1, min-max normalization was applied. The metadata for external

characteristics changed utilizing one-shot coding schemes such as weather, weekday,

holiday, and weekend. Additionally, they normalised these external features using the

Min-Max method to balance the temperature and wind and to keep them within the
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range [0, 1]. Thereafter, they constructed their STD-Net model in Python on PyTorch

using Keras 2.0.1 and TensorFlow 2.1.6. They used two convolutional layers to obtain

a reduced file size. i.e., (4× 8× 16) in all components. They reduced the drop out rate

to 0.25 in order to avoid overfitting. They compared their proposed STD-Net model

against ten industry-standard models, including HA, SARIMA, ARIMA, ST-ANN, VAR,

DeepST, DeepST-CPTM, ST-ResNet, STDN, and MST3D. The root-mean-square error

and the MAPE were used to analyse these models. Their models outperformed the

baseline models by a factor of 5.34 and a factor of 17.4 respectively.

2.6 Conclusion

For the purposes of classification and prediction, this chapter detailed studies that used

statistical and traditional machine learning approaches, as well as selected 3D and spatio-

temporal deep learning techniques. Where possible, it also discussed datasets used, in-

cluding crime datasets, data preprocessing procedures, and metrics for classification and

prediction, including those applied specficially to crime forecasting. In addition, the

chapter presented the performance of spatio-temporal deep learning in other domains,

such as taxi demand prediction.

For crime prediction and other spatio-temporal domains, the experiments cited above

revealed that deep learning techniques outperform both statistical learning and classical

machine learning techniques, demonstrating superiority of deep learning over statistical

and classical machine learning techniques.

Furthermore, it was shown that while the ST-ResNet was frequently used to forecast

crime with promising results, and is the current state-of-the-art technique for crime pre-

diction, two recently developed spatio-temporal deep learning techniques. Specifically,

the STD-Net and the DMVST-Net significantly out-performed the ST-ResNet when ap-

plied to other domains with spatio-temporal data, such as taxi demand forecasting and

crowd flow forecasting. This demonstrates the importance of comparing these newer

techniques to the ST-ResNet in the domain of crime prediction, to establish the tech-

nique that is the best fit for the task.

As such, at this point that research objective 1 has been successfully met.

The next chapter provides a theoretical discussion on the 3D and spatio-temporal deep

learning techniques dealt with in this chapter.
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Chapter 3

3D and Spatio-Temporal Deep

Learning

This chapter provides a detailed description of the selected 3D and spatio-temporal deep

learning techniques. These techniques are implemented and compared in this research

in the context of crime forecasting. Therefore, there is a need for a deep theoretical

understanding of each of these techniques. This will serve as a foundation for the imple-

mentation of these techniques as a precursor to their comparison in subsequent chapters,

in line with objectives 2 and 3. Section 3.1 describes 3D deep learning techniques, and

Section 3.2 discusses spatio-temporal deep learning techniques. The chapter is concluded

in Section 3.3.

3.1 3D Deep Learning

This section focuses on providing a theoretical description of the selected 3D deep learn-

ing techniques, namely 3D CNNs in Section 3.1.1 and 3D ResNet in Section 3.1.2.

3.1.1 3D CNN

A 3D convolution consists of moving a 3D kernel, with the cube joined together using

several adjacent frames. The feature maps in the convolution layer link with different

adjacent frames in the previous layer. Then the subsequent temporal information is

collected in the next layer. A formal representation of the feature map resulting from a

3D convolution is given by:

vxyzij = tanh

(
bij +

∑
m

Pi−1∑
p=0

Qi−1∑
q=0

Ri−1∑
r=0

wpqr
ijmv

(x+p)(y+q)(z+r)
(i−1)m

)
(3.1)

where (x, y, z ) is the value of the position on the j th feature map in the ith layer; Ri

represents the size of the 3D kernel along the temporal dimension, and wpqr
ijm is the value
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of the kernel at point (p, q, r), linked to the mth feature map in the previous layer.

Fig. 3.1 illustrates a 3D convolution.

Figure 3.1: 3D convolution [2]

This 3D convolution is the basis of the development of 3D CNN architecture. Fig. 3.2

presents an overview of the 3D CNN architecture [2].

Figure 3.2: 3D CNN Architecture [2]

Fig. 3.2 shows that there are seven frames of size 60× 40 centred on the current frame

as inputs to the 3D CNN model. Multiple channels of information are generated from

the input frames using a series of hard-wired kernels. As a result, the second layer con-

sists of 33 feature maps divided into five distinct channels indicated by g, gradient-x,

gradient-y, optflow-x, and optflow-y. The g channel contains pixel values of the seven

input frames. The gradient-x and gradient-y channels include feature maps generated

by calculating gradients in the horizontal and vertical directions on each of the seven

input frames, respectively. The optflow-x and optflow-y channels contains the optical

flow fields along the horizontal and vertical directions, calculated from adjacent input

frames. This hard-wired layer encodes the prior knowledge about these features, and this

approach results in excellent performance than random initialization. 3D convolutions
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are applied with a kernel size of 7×7×3 (7×7 on each of the five channels individually,

and size 3 in the spatial dimension and size 3 in the temporal dimension). To expand

the number of feature maps, each location layered distinct sets of convolutions, result-

ing in two distinct sets of feature maps in the C2 layer, each consisted of 23 feature maps.

The S3 layer in Fig. 3.2 indicates how subsampling was performed, then 2× 2 subsam-

pling applied to each of the feature maps in the C2 layer, which results in the same

number of feature maps with a lower spatial resolution. The next convolution layer C4

applies convolution with a kernel size of 7 × 6 × 3 on each of the five channels in each

of the two sets of feature maps. Three convolutions, with different kernels used at each

location to increase the number of feature maps, results in six unique sets of feature

maps in the C4 layer, each containing 13 feature maps.

The next layer S5 applies 3×3 subsampling on each feature map in the C4 layer, which

results in the same number of feature maps with a lower spatial resolution. At this

point, the temporal dimension is very low (3 for g, gradient-x, gradient-y, and 2 for

optflow-x and optflow-y). Therefore, this layer only performs convolutions. The size of

the convolution kernel is 7×4 so that the sizes of the output feature maps reduces to 1×1.

The C6 layer consists of 128 feature maps of size 1 × 1, and each of them links to all

78 feature maps in the S5 layer. The seven input frames transform into a single output

frame using several layers of convolution and subsampling as indicated by the 128D

feature vector which captures the motion data in the input frames. This layer consists

of the same number of units as the number of actions, with each unit being linked ex-

tensively to each of the 128 units of the C6 layer, which is the output layer.

Trainable parameters are randomly determined using the online error back-propagation.

Inputs for CNN models are restricted to a few contiguous frames. As a result, there are

benefits that can be derived from the encoded high-level motion information which is

integrated into 3D CNN models. To this end, the 3D CNN model is regularized by a

sample of features as auxiliary outputs, as shown in Fig. 3.3. For each training map,

a new feature is created by vector encoding the long-term map information that was

not included in the CNN’s input frame cube. The CNN learns a feature vector that is

similar to this feature. This is accomplished by attaching a number of auxiliary output

units to the CNN’s final hidden layer and clamping the calculated feature vectors to

the auxiliary units during training. This boosts the information included in the hidden

layer to be near the high-level motion characteristic as much as possible.
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Figure 3.3: The regularized 3D CNN Architecture [2]

3.1.2 3D ResNet-18

Residual Neural Networks (ResNets) [52] serve as the foundation for the 3D ResNet-

18 [10]. ResNets have shortcut systems that allow a signal to bypass some layers. The

connections pass through the gradient flows of networks from later layers to early layers,

facilitating the training of extremely deep networks. Fig. 3.4 shows the residual block,

which is an element of ResNets. The connections bypass a signal from the top of the

block to the lower block. ResNets consist of various residual blocks.

Figure 3.4: Residual block (Skip connections pass a signal from the top of the block
to the tail. Signals are summed at the tail).
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Table 3.1 shows the 3D ResNet-18 architecture. The difference between the 3D ResNet-

18 and original ResNets [52] is determined by the number of dimensions of convolutional

kernels and pooling. The 3D ResNet-18 mounts 3D convolution and 3D pooling. The

sizes of convolutional kernels are 3×3×3. The 3D ResNet-18 consists of 20 convolution

layers. The temporal stride of the first convolution layer is 1, similar to C3D [53].

The network uses inputs such as 16 frame RGB clips. The sizes of input feature are

3×16×112×112. The convolution layers with a stride of 2 which carries out input down-

sampling when the number of feature maps increases. The work in [54] used identity

shortcuts with zero-padding (type A) to avoid increasing the number of parameters.

Table 3.1: 3D ResNet-18 Architecture [10]

Layer Name Architecture

conv1 7× 7× 7, 64 stride 1(T ) 2(XY )

conv2 x

3× 3× 3 max pool, stride 2[
3× 3× 3, 64

3× 3× 3, 64

]
× 2

conv3 x

[
3× 3× 3, 128

3× 3× 3, 128

]
× 2

conv 4x

[
3× 3× 3, 256

3× 3× 3, 256

]
× 2

conv 5x up to conv 20x

[
3× 3× 3, 512

3× 3× 3, 512

]
× 2

3.2 Spatio-Temporal Deep Learning

This section details the architecture of the selected spatio-temporal deep learning tech-

niques as follows: Section 3.2.1 describes the ST-ResNet; Section 3.2.2 discusses the

DMVST-Net; and Section 3.2.3 details the STD-Net.
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3.2.1 ST-ResNet

The Spatio-temporal Residual Network (ST-ResNet) is a spatial-temporal extension of

the ResNet [55], tailored for spatio-temporal prediction. Fig. 3.5 summarizes the ST-

ResNet architecture, as proposed by Zhang et al., [3]. The architecture has four main

components that model the temporal trend, period, closeness and external influence.

Figure 3.5: ST-ResNet Architecture, adopted from Zhang et al., [3]

The trend, period and closeness components have layers of convolutional neural networks

followed by residual unit sequences. These three-component structures encapsulate the

spatial interdependence of proximate and distant areas. The external component ex-

tracts features from external datasets.

The trend, period, closeness components include of three subcomponents, that is, a

convolution and residual unit, and fusion. These subcomponents are described as follows;

1. Convolutions (Conv1 and Conv2): CNNs have shown powerful ability to hi-

erarchically capture the spatial structural information [52]. In order to capture the

spatial dependency of crime incidents in any region, the CNN design is multi lay-

ered because one convolution only accounts for spatially close dependencies, which

are limited by the size of their kernels. The same problem occurs in the video

sequence generating task, where the input and output has the same resolution

in [56]. To avoid the loss of resolution through sub-sampling while maintaining
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distant dependencies, convolutions are one of the methods that can be used [57].

As shown in Fig. 3.6, there are three multiple levels of feature maps that are con-

nected with a few convolutions.

Figure 3.6: ST-ResNet Convolutions [3].

Each node in the high-level feature map is dependent on nine nodes in the middle-

level feature map, which in turn rely on all nodes in the lower-level feature map, or

input maps. This means that a single convolution detects spatially close relation-

ships naturally, but a stack of convolutions detects distant, even spatial or region-

level dependencies. The closeness component of Fig. 3.5 adopts a few two-channel

flows matrices of intervals in real time to model temporal closeness dependence.

Let the real-time fragment be [Xt−lc , Xt−lc+1, ..., Xt−1], which is also known as the

closeness dependent sequence. They are first concatenated along with the first

axis, i.e. time interval, as one tensor X
(0)
c ∈ R2lc×I×J , which is followed by a

convolution shown in Fig.ure 3.5 as:

X(1)
c = f

(
W (1)

c ∗X(0)
c + b(1)c

)
, (3.2)

where * represents the convolution; f is an activation function; W
(1)
c , bc(1) are the

trainable parameters in the first layer.

2. Residual Unit (ResUnit 1, ..., ResUnit L): Rectified Linear Units (ReLU)

and regularization have been used to improve the effectiveness of deep CNN’s [58–

60]. ResNets are equipped with skip connections, which allow a signal to be trans-

mitted from one layer to another without interruption. Identical shortcut connec-

tions, also known as skip connections, are those that pass across the gradient flows

of networks from later layers to earlier layers, hence reducing the amount of time

required to train very deep networks. Fig. 3.7 illustrates how the residual unit was

implemented in the ST-ResNet.
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Figure 3.7: ST-ResNet Residual Unit [3].

A ResNet can consist of multiple residual units. The skip connections passed

through a signal from the top of the block to the tail. Alternatively, in order to

construct a deep network in order to capture large spatio-temporal dependencies,

it is necessary to build a wider network. In [3] the input size is 32 × 32, and

the kernel size of convolution is maintained to 3 × 3. In order to design spatio-

temporal dependencies, i.e. each node in a high-level layer relies on all input

nodes, it needs more than 15 consecutive convolutional layers. Residual learning

is extremely successful for training deep neural networks [53]. In the ST-ResNet

shown in Fig. 3.5, L residual units are stacked upon the convolutional layers as

follows,

X(l+1)
c = X(1)

c + F (X(l)
c ; θ(l)c ), l = 1, ..., L, (3.3)

where F represents a residual function, i.e., a combination of ReLU and convolu-

tion. Batch Normalization (BN)[53] is added before ReLU. A convolutional layer

is appended on top of the Lth residual unit. With 2 convolutions and L residual

units, the output of the closeness component of Fig. 3.5 is X
(L+2)
c .

The period and trend subcomponents are constructed in the similar fashion to

the aforementioned operations. Assuming that there are lp time intervals from

the period fragment and the period is p. Then, the period dependent sequence is

[X(t−lp)·p, X(lp−1)·p, ..., Xt−p], with the convolutional operation and L residual units

like in Eqn. 3.2 and 3.3, and the output of the period component is X
(L+2)
p .

The output of the trend component isX
(L+2)
q with the input, [X(t−lq)·p, X(lq−1)·q, ...,

Xt−q], where lq is the length of the trend dependent sequence and q is the trend

span. Note that p and q are actually two different types of periods. In the de-

tailed implementation, p is equal to one-day that describes daily periodicity, and

q is equal to one-week that reveals the weekly trend.

3. Fusion: The outputs of trend, period and closeness components are combined

using parameter-matrix based fusion to give XRes. Fig. 3.8 shows details of the

ST-ResNet fusion step. The parameter matrix allocates unique weights to the
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results of each component in each region by using:

XRes = Wc ·X(L+2)
c +Wp ·X(L+2)

p +Wq ·X(L+2), (3.4)

Figure 3.8: ST-ResNet Fusion [3]

3.2.2 DMVST-Net

Yao et al., [4] developed the Deep Multi-View Spatio-Temporal Network (DMVST-Net)

framework, in order to make spatio-temporal predictions in the domain of taxi demand

prediction. In this domain, the DMVST-Net outperformed the ST-ResNet by a signifi-

cant margin. DMVST-Net is a multi-view model that takes into account several factors

such as spatial, temporal and semantic relations at the same time. The DMVST-Net

integrated these three views to form a combined network architecture. Fig. 3.9 shows

the summary of the network architecture. The network can be described in terms of the

spatial view, temporal view, semantic view, predictive component and loss function.

Figure 3.9: DMVST-Net Architecture, adopted from Yao et al., [4]
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The components of the DMVST-Net can be described as follows:

1. Spatial View: The spatial view is composed of a local CNN, which only considers

spatially nearby regions. Fig. 3.10 shows the architecture of the spatial component.

Figure 3.10: DMVST-Net Spatial View Component [4]

As shown in Fig. 3.9, at each time interval t, the surrounding neighborhood of

location i is denoted by S × S, where S controls the spatial granularity. Zero

padding was implemented for location at boundaries of different locations. As a

result, an image is expressed as a tensor having one channel Y t
i ∈ RS×S×1, for

each location i and time interval t. The local CNN takes Y i
t as input Y i,0

t and

feeds it into k convolutional layers. The transformation at each layer k is defined

as follows:

Y i,k
t = f(Y i,k−1

t ·W k
t + bkt ) (3.5)

where (·) denotes the convolutional operation and f(·) is the rectified linear unit

(ReLU) activation function, defined by

f(z) = max(0, z); (3.6)

Wk
t and bkt are two sets of parameters in the k th convolution layer. The parameters

W 1,...,K
t and b1,...,Kt are shared across all regions i ∈ L to make the computation

tractable. After K convolution layers, a flattened layer is used to transform the

output Y i,K
t ∈ RS×S×λ to a feature vector sit ∈ RS2λ for region i and time interval

t. At last, a fully connected layer is used to reduce the dimension of spatial

representations sit, which is defined as:

ŝit = f(W fc
t sit + bfct ) (3.7)

where W fc
t and bfct are two learnable parameter sets at time interval t. Finally,

for each time interval t, we get the ŝit ∈ Rd as the representation for region i.

2. Temporal View: The temporal view frames the sequential relationships inherent

in demand time series. The temporal view is represented by a Long Short-Term
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Memory (LSTM) network. LSTM [61] is a form of neural network structure that

enables the modelling of sequential dependencies through the recursive applica-

tion of a transition function on the input’s hidden state vector. It is designed to

solve the challenges of the classical Recurrent Neural Network’s (RNN) gradient,

expanding or disappearing after long sequence training [17]. Fig. 3.11 shows the

architecture of the temporal component.

Figure 3.11: DMVST-Net Temporal View Component [4]

LSTM learns sequential correlations stably by maintaining a memory cell ct in a

time interval t, which can be regarded as an accumulation of previous sequential

information. In each time interval, the LSTM takes the following inputs: (i)

temporal information, git, (ii) the number of time intervals, hit−1 and (iii) memory

cells, cit−1. All information accumulates in the memory cell, and then gets activated

at the input gate Iit . In addition, LSTM has a forget gate f i
t . When the forget

gate is activated, the network is capable of erasing the preceding memory cell ct−1.

Also, the output gate oit controls the output of the memory cell. In this study, the

architecture of LSTM is formulated as follows:

Iit = σ
(
Wig

i
t + Uih

i
t−1 + bi

)
,

f i
t = σ

(
Wfg

i
t + Uih

i
t−1 + bf

)
,

oit = σ
(
Wog

i
t + Uih

i
t−1 + bo

)
,

θit = tanh
(
Wgg

i
t + Uih

i
t−1 + bg

)
,

cit = f i
t · cit−1 + iit · θit,

hit = oit · tanh(cit)

(3.8)

where (·) represents the Hadamard product and tanh is the hyperbolic tangent

function. Both of these functions are element-wise. W a, U a, ba (a ∈ {i, f, o, g})
are trainable parameters. As shown in Fig. 3.9 the temporal component takes
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representations from the spatial view and concatenates them with context features.

This is represented by the following equation:

git = ŝit + eit (3.9)

where (+) denotes the concatenation operator, therefore, git ∈ Rr+d.

3. Semantic View: It makes logical sense that locations with similar functions

would have similar crime patterns; for example, low-density residential regions

may have a low rate of house break-ins, whereas high-density residential areas

may have a higher rate of theft events. It is possible that similar places are not

always adjacent to one another in space. As a result, the graph maps locations

sites that show functional (semantic) similarity among regions. Fig. 3.12 shows

the architecture of the semantic component.

Figure 3.12: DMVST-Net Semantic View Component [4]

The semantic graph of location is given by G = (V,E,D), where the set of locations

L are nodes V = L, E ∈ V × V is the edge set, and D is a set of similarity on all

the edges. Dynamic Time Warping (DTW) is used to measure the similarity ωij

between node (location) i and node (location) j which is given by

ωij = exp(−αDTW (i, j)) (3.10)

where α is the parameter that controls the decay rate of the distance, andDTW (i, j)

is the dynamic time warping distance between the demand patterns of two loca-

tions. The demand patterns determined the use of an average weekly demand

time series. Full connections are evident on the graph, as they are symbolised by

the dots in the middle for every two regions. An embedding method is used on

the graph in order to encode each node into a low-dimensional vector while still

keeping the structural information. For each node i (location), the embedding

method outputs the embedded feature vector mi. In addition, in order to co-train

the embedded mi with the whole network architecture, the feature vector mi is

fed to a fully connected layer, which is defined as

m̂i = f(Wfem
i + bfe) (3.11)
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where Wfe and bfe are both learnable parameters.

4. Predictive Component: This component is used to give a prediction at time

t+1 given the data has details up until time t. The three views and joined together

by concatenating m̂i with the output hit of LSTM:

qit = hit · m̂i (3.12)

The output of LSTM hit contains both effects of temporal and spatial views. Then

qit input is fed into the fully connected network to get the final prediction value

ŷit+1 for each region. The final prediction function is defined by

ŷit+1 = f(Wffq
i + bff ) (3.13)

where Wff and bff are learnable parameters. σ(x) is a Sigmoid function defined

as

σ(x) = 1/(1 + e−x) (3.14)

The output of the model is in the range [0, 1], as the demand values adjust. Later,

the readjusted prediction is used to get actual demand values.

5. Loss Function: The type of loss function is a cost function, which is a mapping

“cost” function between events or values of one or more variables and a real number

conceptually expressing some measure of the cost of the occurrence. The cost

function calculates the distance between the current output of the algorithm and

the expected output. The loss function is defined as:

L(θ) =

N∑
t=1

(
(yit+1 − ŷit+1)

2 + γ
(yit+1 − ŷit+1

yit+1

)2)
(3.15)

where θ are all learnable parameters in the DMVST-Net and γ is a hyperparameter.

3.2.3 STD-Net

The Spatio-temporal Dynamic Network (STD-Net) architecture was proposed by Ali et

al., [5]. Fig. 3.13 shows an architecture of the STD-Net, that is structured around four

primary components: temporal closeness, period volume, weekly volume, and external

influences.The architecture is designed to accurately predict a target region with low

correlations. Using a CNN to simulate the spatial dependency between nearby regions.
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Figure 3.13: STD-Net Architecture, adopted from Ali et al., [5]

To simulate the sequential temporal dependency, an LSTM network is used to solve the

problems of the typical recurrent neural network and the vanishing gradient problem.

The most important components of the STD-Net network are the convolutional-LSTMs

(ConvLSTMs), which replace the kernel size in LSTM with convolutional operations.

The designed network extracts spatio-temporal dependencies by focusing on hidden fea-

tures. This technique deals with both spatial and temporal information contained within

the data. The hybrid neural network captures both spatial and temporal information

by focusing on hidden features. There are two sub-DNNs in the deep hybrid neural

network. In contrast to the first DNN, which collects spatial features using CNN, the

second DNN learns temporal features over a period of time using LSTM. Furthermore,

the first three attributes outputs form a single output Zfusion.

The CNN part of the ConvLSTM is used to extract spatial data. The CNN is quite

effective at spatial data extraction, while the input data also contains temporal infor-

mation, this directly impacts the accuracy of the prediction. Sun et al., [62] proposed

the use of a recurrent neural network (RNN) to simultaneously capture the temporal

information in order to accurately explore the temporal information.

In the STD-Net, the LSTM is used in conjunction with regular RNN to handle the van-

ishing gradient problem and to do time series feature exploration. The LSTM determines

three distinct components, namely proximity, period, and trend, which are illustrated

by various inputs for closeness, period, and trend. The mathematical formulation for

the STD-Net model is given by
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it = σ
(
Wyi ∗ Yr,t +Wdi ∗ Yr,t +Wri · Ct−1 + bi

)
,

ft = σ
(
Wyf ∗ Yr,t +Wdf ∗ Yc,t +Wri · Ct−1 + bf

)
,

Ct = ft · Ct−1 + it · tanh
(
Wyr ∗ Yr,t +Wdr ∗ Yr,t−1 + bc

)
,

ot = σ
(
Wyo ∗ Yr,t +Who ∗ Yc,t−1 +Wro · Ct + bo

)
,

Yr,t = ot · tanh(Ct),

(3.16)

where * denotes the convolutional operation and · represents the Hadamard product,

and Wyi, Wdi, Wyf , Wdf , Wyr, Wdr, Wyo, Who, Wro, bi, bf , bc, bo are training param-

eters. The variables it, ft, Ct and ot represented the input, forget, and output gates,

respectively. Similarly, the designed structure determines the period volume and weekly

volume branch using the same process as previously described. Given that lp is a time

intervals of daily segments and d denotes a daily segment. The daily dependent sequence

is given by [Yt−lp×p, Yt−lp−1×p, ..., Yt−1] and the output of the daily segments is Y
(L+2)
p,t .

The daily dependent sequence of trend component, [Yt−lw×t, Yt−(lt−1)×w, ..., Yt−1], and

weekly component output is Y
(L+2)
w,t , where lw represents the daily dependent sequence

length of trend segment and w denotes the trend. The main components of the STD-Net

described as follows:

1. Convolutional and Residual Unit: The ConvLSTM was designed in such a

way that it extracted the spatial and temporal dependencies of any area. It proved

the fact that deep convolutional neural networks (DNN) improve the effectiveness

of training by using a well-known activation function, such as the ReLU, as well

as some regularization procedures that have already been implemented in [58, 63].

Similarly, the DNN explores big location dependencies. The kernel size set is 3×3

and input size is 32× 32 for crime data. In the STD-Net model, L residual units

with both CNN-LSTM are stacked together. Batch normalization method is used

to apply to the network layers [58, 63]. Batch normalization method is applied

before residual units (ReLU). Convolutions and ConvLSTM layers are added on

top of the residual unit. The output of closeness component with ConvLSTM,

convolutions and L residual units is YExt(l+2).

2. Fusion: The fusion step is the last major step in the STD-Net architecture.

Fig. 3.14 shows the steps taken in fusing the components, then passing the re-

sults to fully connected layers. The three components (closeness, period volume,

and weekly volume) are infused using the parametric based fusion method.
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Figure 3.14: STD-Net Fusion steps [5]

The parametric fusion method is given by

Zfusion = Wr · Yr,t +Wp · Yp,t +Ww · Yw,t (3.17)

where (·) represented the Hadamard product, while Ww, Wp, and Wr learnable

parameters that modify the degrees which are affected through weekly volume,

period volume, and temporal closeness. The result of the three components are

combined. At time interval t, the predicted value indicates as Yr,t. The Yr,t, Yp,t,

and Yw,t represented closeness, period, and weekly components respectively. The

STD-Net model was trained to predict zt from four properties, i.e., weekly, period,

closeness and external components respectively by reducing the value of Mean

Squared Error (MSE) between the ground truth and predicted crimes at time

interval t.

3.3 Conclusion

This chapter discussed the architectures of the selected deep learning models in detail.

This provided an understanding of how each technique works as a theoretical base for

the implementation of these techniques in this research.

The 3D deep learning techniques described were the 3D CNNs and 3D ResNet. The

spatio-temporal techniques detailed were the ST-ResNet, DMVST-Net and STD-Net.

The next chapter provides details of the experimental setup used to evaluate and compare

the deep learning techniques in crime forecasting.
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Experimental Setup

This chapter discusses the setup of the experiments carried out to provide answers to

the research questions. As part of the setup to the experiments, the implementation of

various components was also carried out. This included implementing the deep learning

models as well as preprocessing, splitting and formatting the data in preparation for

training and/or testing with the various deep learning models. As such, the chapter

details steps carried out to initially address research objectives 2 and 3.

This chapter is organised as follows; Section 4.1 provides information about the pro-

gramming language that was utilized and why it was selected. Section 4.2 describes

the deep learning framework used in the implementation and experiments. Section 4.3

discusses features of the deep learning application program interface and the hardware

that was used in the experiments. Section 4.4 describes the Chicago crime dataset used

in addition to the data prepossessing, splitting and formatting procedures that were

performed. Section 4.6 closes the chapter with a conclusion.

4.1 Programming Language

Python is an interpreted high-level general-purpose programming language. With the

usage of considerable indentation, its design philosophy prioritizes code readability. Its

language elements and object-oriented approach are intended to assist programmers in

writing clear, logical codes for small and large-scale projects [64]. Python is a dynami-

cally typed and garbage-collected programming language. This programming language

supports a variety of programming paradigms, including structured (especially proce-

dural), object-oriented, and functional programming. In recognition of its extensive

standard library, it is frequently referred to as a “batteries included” language. [65].

Python is characterised by the following features and benefits [66];

48
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• Independence across platforms: Unlike other programming languages, developers

prefer Python because of its ability to run on many platforms without the need

to modify the code. Python is compatible with a variety of operating systems,

including Windows, Linux, and macOS, and hence requires little or no customiza-

tion. Due to the fact that the platforms are fully compatible with the Python,

there is little to no need for a Python expert to explain the code of the software.

Python’s simplicity of executability makes it simple to share software, and it also

makes it possible to develop and run standalone applications using the language.

Python is the only programming language that can be used to create the software

from start to finish. It is advantageous for developers because other programming

languages require additional programming languages before a project can be con-

sidered complete. Python’s platform independence saves time and resources for

developers to execute a single project.

• Consistency and simplicity : Most software developers who seek simplicity and

consistency in their work will find Python quite useful. The Python code is short

and legible, making the presenting process much easier. Unlike other program-

ming languages, a developer may write a code quickly and concisely. It enables

developers to gather feedback from other developers in the community in order to

improve the software or product. Python’s simplicity allows beginners to master it

quickly and with less effort. Furthermore, experienced developers find it simple to

build solid and effective systems, allowing them to focus their efforts on improving

their creativity and solving real-world problems with machine learning.

• Frameworks and libraries variety : The environment, libraries, and the frameworks

are essential components of a proper programming language. Python frameworks

and libraries provide a dependable environment that considerably decreases the

amount of time spent developing a software. A library is essentially a collection of

pre-written codes that developers can utilize to expedite coding when working on

large projects, such as web applications. For instance, Python contains a modular

machine learning library known as PyBrain, which contains easy-to-use algorithms

for machine learning tasks. The best and most dependable coding solutions neces-

sitate a well-structured and well-tested environment, which is provided by Python

frameworks and libraries, among other things.

• Support for Machine Learning : Because of its higher simplicity and consistency

than other programming languages, Python has algorithm for automating opera-

tions. Furthermore, the presence of an active Python community makes it simple

for developers to discuss projects and provide ideas to improve their codes.
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4.2 Deep Learning Framework

Deep learning frameworks provide building blocks for developing, training, and verifying

deep neural networks by utilizing a high-level programming interface to communicate

with the deep neural network. CUDDA Deep Neural Network (CuDNN), NVIDIA Col-

lective Communications Library (NCCL), and NVIDIA Data Loading Library (DALI)

are GPU-accelerated libraries that are widely used for deep learning frameworks such as

MXNet, PyTorch and TensorFlow to enable high-performance multi-GPU accelerated

training [67]. TensorFlow is a Google-developed open-source library designed primarily

for deep learning applications. Additionally, it supports conventional machine learning.

TensorFlow originally performed huge numerical computations without regard for deep

learning. However, it has recently proved to be extremely useful for developing deep

learning models, and as a result, Google open-sourced it. TensorFlow accepts data in

the form of multidimensional arrays called tensors. Multidimensional arrays are ex-

tremely useful when working with enormous volumes of data. TensorFlow uses nodes

and edges in data flow graphs. Due to the graph-based execution mechanism, it is much

easier to distribute TensorFlow code across a cluster of computers when using GPUs [6].

TensorFlow framework has the following benefits;

• C++ and Python Application Program Interface Support : Prior to the develop-

ment of libraries, the machine learning and deep learning coding mechanisms were

far more sophisticated. This library implements a high-level API, which eliminates

the need for sophisticated coding to create a neural network, configure a neuron,

or program a neuron. The library keeps track of all these functions. Additionally,

TensorFlow integrates with Java and R.

• CPUs and GPUs Computing Devices Support : Deep learning applications are quite

difficult, requiring a large amount of computing throughout the training process.

It takes a long time due to the big data set and involves multiple iterative pro-

cesses, mathematical calculations, and matrix multiplications, among other things.

If these tasks were performed on a standard Central Processing Unit (CPU), they

would take much longer. Graphical Processing Units (GPUs) are popular in the

context of games, which require a high-resolution screen and image. Originally,

GPUs were built for this function. They are, however, used to develop deep learn-

ing applications. One of TensorFlow’s primary advantages is that it works on

both GPUs and CPUs. Additionally, it compiles faster than other deep learning

libraries, such as Keras [68] and Torch [69].

When programming with TensorFlow, the primary object that is changed and passed

around is the Tensor. Tensor is a multidimensional generalization of vectors and ma-

trices. Tensors are arrays of data with variable dimensions and rankings that are sent
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into the neural network as input. Throughout deep learning, particularly during the

training phase, vast amounts of data are encountered in a highly convoluted manner.

Tensors helps if the data is placed, used, or stored compactly, since it has multidimen-

sional arrays. When tensors hold data and are fed into a neural network, it results in

the following output, as illustrated in Fig. 4.1.

Figure 4.1: Output of Neural Network when fed a Tensor [6]

A tensor can be defined in terms of dimensions and ranks. A tensor can be expressed

in terms of 1-dimension, 2-dimension, or 3-dimension. Fig. 4.2, 4.3, and 4.4 illustrate

the various dimensions.

Figure 4.2: 1-dimesional Tensor Tensor [6]

Figure 4.3: 2-dimensional Tensor Tensor [6]

Tensor ranks are the number of dimensions used to represent the data; this means tensors

are simply mathematical objects that can be used to describe physical properties, much

like scalars and vectors. They represent the number of dimensions used to represent the

data. In fact, tensors are a generalized version of scalars and vectors. It is defined as the
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Figure 4.4: 3-dimensional Tensor Tensor [6]

rank (or order) of a tensor by the number of directions (and thus the dimensionality of

the array) that are necessary to describe the tensor. Examples include features that can

be fully expressed by a single direction (first rank) and properties that require multiple

directions (second rank) of a 3 × 1 column vector, as well as features that need two

directions (second rank tensors), can be expressed with nine digits 3 × 3 matrix. As

such, in general, a nth rank tensor can be discussed by 3n coefficients [70]. In this study,

the deep neural networks are trained using 3-dimensional tensors with a rank of 3.

4.3 Deep Learning API and Experimental Platform

A deep learning application programming interface (API) is a machine learning library

built on top of a deep learning framework, such as TensorFlow, that is intended to

reduce the cognitive load associated with developing and training deep learning mod-

els [71]. Keras is an open-source Python interface for deep learning. This work uses

Keras version 2.4.0, which is supported by the TensorFlow backend.

A hyper threaded Linux virtual machine hosted on Azure Cloud Services [72], with 8

virtual CPUs, is used. Each virtual CPU has 128 GB of RAM, and a processor speed

of 2.3 GHz.

4.4 Dataset used in this study

This section describes the dataset used in this work (Section 4.4.1), as well as the data

preprocessing (Section 4.4.2) and splitting into training and testing subsets (Section

4.4.3) carried out on the dataset.

4.4.1 Dataset Description

This research used the crime dataset from Chicago Data portal [7]. The dataset consists

of crime incident reports dating back to 2001 for the City of Chicago, which has 7.29

million entries that are mapped on a heatmap in Fig. 4.5.
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Figure 4.5: Heatmap of Incidents in Chicago Crime Dataset [7]

Each reported incident consists of location information about latitude, longitude, X

and Y coordinates, district, time and crime category, e.t.c. The dataset has 22 feature

columns and 32 unique crime types. The Table 4.1 describes the features and data types

of the feature columns in the crime dataset.

Table 4.1: Column description of the Chicago crime dataset

Column Name Description Type

ID Unique identifier for the record. Number
Case Number Unique Records Division Number Plain Text

Date Date when the incident occurred. Date & Time
Block The address. Plain Text
IUCR Unifrom Crime Reporting code. Plain Text

Primary Type The primary description of the IUCR code. Plain Text
Description The secondary description of the IUCR code. Plain Text

Location Description Description of the location. Plain Text
Arrest Indicates whether an arrest was made. Checkbox

Domestic Indicates whether the incident was domestic. Checkbox
Beat Indicates the beat. Plain Text

District Indicates the police district. Plain Text
Ward The ward. Number

Community Area Indicates the community. Plain Text
FBI Code Indicates the FBI crime code. Plain Text

X Coordinate The x coordinate of the location. Number
Y Coordinate The y coordinate of the location. Number

Year Year the incident occurred. Number
Updated On Date and time the record was last updated. Date & Time

Latitude The latitude of the location. Number
Longitude The longitude of the location. Number
Location The location. Location
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All feature columns are categorised into three groups namely: crime type, spatial, and

temporal features as shown in Table 4.2. The unique identifiers of the crime incident,

such as the ID, Case Number, feature columns, do not impact crime prediction. There-

fore, they are not included in the related features in Table 4.2. The columns that identify

the crimes similarly are Primary Type, IUCR, Description, Domestic, FBI code. These

“crime type” columns are combined to enrich the crime-identifier feature. The Loca-

tion Description, Beat, Ward, District, Community Area, X Coordinate, Y Coordinate,

Latitude, Longitude, Location, Block, feature columns all describe the spatial features of

the crime incident to a different degree of specificity. Lastly, the Date, Year, Updated

On, feature columns describe the date and time the crime occurrence happened, as well

as the date and time of the documented incident, all of which described the temporal

aspects. The overall number of criminal episodes varied, as illustrated in Fig. 4.6, which

shows the frequency of criminal incidences in each community area from 2001 to date.

Table 4.2: Related Feature Columns in Chicago Crime Dataset

Feature Category Related Feature Columns

Type

Primary Type
IUCR
Description
Domestic
FBI code

Spatial

Location Description
Beat
Ward
District
Community Area
X Coordinate
Y Coordinate
Latitude
Longitude
Location
Block

Temporal
Date
Year
Updated On

Furthermore, Fig. 4.7 demonstrates the crime types with the largest number of reported

incidences as follows: theft, battery and criminal damage. This is determined by putting

together all the criminal occurrences that occurred between 2001 and 2020. This demon-

strates dataset imbalance, because the total number of crime incidents per category is

not equal, and as a result, the prediction model does not perform well when predicting.
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Figure 4.6: Incidents Per Location in Chicago Crime Dataset [7]

Figure 4.7: Total Number of Incidents in Chicago Crime Dataset [7]

Fig. 4.8 indicates the top three site descriptions such as street, residence and apartments

where the majority of reported crimes occurred. This gives an overview of the effects,

of the location description on crime prediction.

Figure 4.8: Total Number of Incidents Per Location Description in Chicago Crime
Dataset [7]
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4.4.2 Preprocessing

In the data preprocessing phase, two Python libraries are mainly used, namely;

• Pandas: an open-source Python-based data analysis and manipulation tool.

• Sci-kit Learn: an open-source Python-based machine learning library.

The data preprocessing consists of the following steps;

1. Feature selection: This involves reducing the feature space of the dataset by se-

lecting potentially salient features and discarding other features. This is described

in Section 4.4.2.1.

2. Drop missing rows: Rows with missing information are discarded in this step. This

is discussed in Section 4.4.2.2.

3. Label encoding: In this step, one-hot encoding is applied to the classification data.

This is detailed in Section 4.4.2.3.

4. Converting spatio-temporal data into image-like data. This is described in Section

4.4.2.4.

5. Feature scaling: This is a procedure applied to data in order to speed up training

and increase the likelihood of convergence. This is discussed in Section 4.4.2.5.

4.4.2.1 Feature Selection

The initial step in the data preprocessing phase is feature selection, which helps the deep

learning algorithms to train more quickly. Simplifying a model through feature selection

decreases its complexity and makes it easier to interpret. Selecting the appropriate sub-

set enhances model accuracy. Therefore, a few related feature columns train the deep

learning algorithms. Table 4.3 is a transposed table that shows a sample of two rows of

the dataset with all 22 features.

The selected features are Crime Type, Longitude, Latitude, and Date. The Crime Type

is the class of the crime which the models predict. The Longitude and Latitude, are

criminal incident areas. The Date feature column contains details of the time, day,

month, and year when the incident was documented. Table 4.4 shows a sample of the

dataset with the selected feature columns.
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Table 4.3: Sample 2 Rows of Crime Dataset (Transposed) Before Feature Selection

Features 1st Record 2nd Record

ID 12014684 12012127
Case Number JD189901 JD189186
Date 03/17/2020 09:30:00 PM 03/18/2020 02:03:00 AM
Block 039XX N LECLAIRE AVE 039XX W JACKSON BLVD
IUCR 0820 0910
Primary Type THEFT MOTOR VEHICLE THEFT
Description $500 AND UNDER AUTOMOBILE
Location Description STREET APARTMENT
Arrest False False
Domestic False True
Beat 1634 1132
District 16 11
Ward 45.0 28.0
Community Area 15.0 26.0
FBI Code 06 07
X Coordinate 1141659.0 1150196.0
Y Coordinate 1925649.0 1898398.0
Year 2020 2020
Updated On 03/25/2020 03:45:43 PM 03/25/2020 03:47:29 PM
Latitude 41.952052 41.87711
Longitude -87.75466 -87.72399
Location (41.952051946, -87.754660372) (41.877110187, -87.723989719)

Table 4.4: Sample of Crime Dataset After Feature Selection

Primary Type Date Longitude Latitude

DECEPTIVE PRACTICE 06/25/2020 03:59:00 PM -87.680412 41.955957
NARCOTICS 01/15/2020 12:22:32 PM -87.654806 41.791444
OTHER OFFENSE 11/17/2020 04:30:00 PM -87.681111 41.826677
BATTERY 12/31/2020 05:15:00 AM -87.688750 41.917656
CRIMINAL DAMAGE 02/08/2020 08:30:00 PM -87.639608 41.722820
THEFT 09/12/2020 10:50:00 AM -87.565044 41.753071
ASSAULT 06/30/2020 09:51:00 AM -87.639963 41.740926
THEFT 07/25/2020 03:00:00 PM -87.795150 41.789739
BATTERY 05/15/2020 08:07:00 PM -87.729569 41.975517
ASSAULT 01/26/2020 05:28:00 AM -87.604816 41.736422
BATTERY 03/01/2020 08:10:00 AM -87.614347 41.777639
DECEPTIVE PRACTICE 11/30/2020 09:00:00 AM -87.592465 41.712860
CRIMINAL TRESPASS 01/09/2020 06:27:00 PM -87.620274 41.893204
OTHER OFFENSE 03/26/2020 11:05:00 AM -87.798886 41.922909
BURGLARY 06/22/2020 02:43:00 AM -87.662831 41.689491
WEAPONS VIOLATION 06/20/2020 11:41:00 PM -87.678200 41.835807
THEFT 02/09/2020 01:15:00 PM -87.767662 41.887265
BATTERY 06/06/2020 05:00:00 PM -87.666186 41.904004
MOTOR VEHICLE THEFT 10/10/2020 09:40:00 PM -87.726638 41.882028
ROBBERY 01/09/2020 07:35:00 PM -87.670907 41.977065
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Table 4.5: Sample of Crime Dataset with Missing Information

Primary Type Date Longitude Latitude

NARCOTICS 09/01/2020 09:00:00 AM NaN NaN
THEFT 10/08/2020 04:00:00 PM NaN NaN
DECEPTIVE PRACTICE 11/24/2020 12:01:00 AM NaN NaN
THEFT 09/11/2020 05:00:00 PM NaN NaN
THEFT 11/16/2020 09:00:00 AM NaN NaN
THEFT 11/06/2020 08:05:00 AM NaN NaN
DECEPTIVE PRACTICE 06/03/2020 05:50:00 PM -87.694878 41.982229
OTHER OFFENSE 12/15/2020 08:34:00 AM NaN NaN
DECEPTIVE PRACTICE 08/03/2020 08:40:00 PM -87.714285 41.871776
ASSAULT 12/01/2020 12:01:00 AM NaN NaN
ARSON 10/09/2020 12:49:00 AM NaN NaN
OTHER OFFENSE 03/29/2020 05:55:00 PM NaN NaN
THEFT 08/20/2020 01:05:00 PM NaN NaN
THEFT 03/08/2020 03:00:00 AM NaN NaN
DECEPTIVE PRACTICE 07/21/2020 10:00:00 AM NaN NaN
DECEPTIVE PRACTICE 03/11/2020 01:40:00 PM -87.698608 41.745308
DECEPTIVE PRACTICE 08/06/2020 06:10:00 PM -87.616613 41.754280
DECEPTIVE PRACTICE 06/01/2020 08:00:00 AM -87.642643 41.937684
DECEPTIVE PRACTICE 09/21/2020 06:40:00 PM -87.601656 41.779781
THEFT 06/09/2020 05:00:00 PM NaN NaN

4.4.2.2 Drop Missing Rows

The following step in the data preprocessing phase includes eliminating all rows with

missing data. Table 4.5 indicates a sample of records that lack critical information.

When Pandas reads a dataset that has missing data, the default value is NaN. The

records that lack information are removed since the incidents are documented with

location data as shown in Table 4.5.

4.4.2.3 Label Encoding

The dataset is then label encoded to convert categorical variables to numerical values.

The LabelEncoder technique, as defined in sci-kit learn machine learning library, is used

to for this task. The LabelEncoder method is used to convert a label to a value between

0 and, Nclasses − 1 where N is the number of distinct labels. If a label is repeated, it

is assigned the same value as assigned earlier. Table 4.6 shows a sample of the dataset

after label encoding preprocessing step.

4.4.2.4 Conversion of Spatio-temporal Data to Image-like Data

The next stage of data preprocessing is the conversion of the spatio-temporal data to

image-like format. The data is prepared for training using spatio-temporal deep learn-

ing algorithms. These strategies for deep learning are necessary for image-like data
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Table 4.6: Sample of Crime Dataset After Label Encoding “Primary Type” Column

Primary Type Date Longitude Latitude

7 11/05/2020 12:00:00 AM -87.633829 41.778099
1 10/28/2020 06:30:00 PM -87.560801 41.755430
4 11/08/2020 11:59:00 AM -87.752200 41.906760
3 10/03/2020 03:30:00 PM -87.739415 41.804959
7 04/22/2020 12:03:00 AM -87.600322 41.750752
4 04/13/2020 02:41:00 PM -87.625944 41.708186
3 03/04/2020 06:30:00 PM -87.611462 41.891990
1 06/03/2020 06:00:00 PM -87.754647 41.933254
7 01/29/2020 12:45:00 AM -87.603743 41.654377
3 10/01/2020 04:34:00 PM -87.625817 41.866811
5 10/24/2020 01:45:00 PM -87.635970 41.722834
7 08/06/2020 10:25:00 AM -87.663945 41.769472
3 10/05/2020 12:00:00 PM -87.710010 41.980202
7 07/10/2020 01:00:00 AM -87.682111 41.771432
3 07/01/2020 06:00:00 AM -87.587054 41.745510
5 06/18/2020 03:00:00 AM -87.611231 41.748897
0 03/01/2020 05:25:00 PM -87.626343 41.867429
0 02/01/2020 04:00:00 AM -87.663734 41.988105
3 10/02/2020 09:00:00 AM -87.683287 41.883937
3 06/19/2020 12:00:00 AM -87.813444 41.937970

because they extract spatial information using CNNs. The image-like data would be

a five-dimensional NumPy array with the shape: (batch size, date, latitude, longitude,

crime type).

The batch size refers to the number of training samples used in a single training iteration.

The date reflects the crime incident’s temporal information, the latitude, and longitude

indicate the crime incident’s spatial information, and the crime type is the crime that

occurred. The following is a summary of the procedures taken to turn the spatio-

temporal data into image-like data:

1. Spatial Feature Binning : Feature binning [73] is a subset of feature engineering that

deals with the transformation of a continuous variable to a categorical variable.

Binning or discretization is a technique for converting a continuous or numerical

variable into a categorical feature. Continuous variable binning adds nonlinearity

and tends to improve model performance. It can also be used to find missing

numbers or outliers.

Binning can either be supervised or unsupervised. There are two ways for un-

supervised binning, namely: Equal Width Binning and Equal Frequency Binning.

Supervised binning has one technique called Entropy-based Binning. The study
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uses unsupervised learning binning methods. In unsupervised binning, a numer-

ical or continuous variable transforms into categorical bins without taking the

target class label into account [74].

Using unsupervised learning binning techniques, the Equal Width binning method

generates grids of equal length from the dataset. It classifies the continuous vari-

able into many groups with bins or ranges of equal width, demonstrated by

w =
[max−min

x

]
(4.1)

where the categories are [min,min+w−1], [min+w,min+2w−1], [min+2w,min+

3w− 1], ..., [min+ (x− 1)w,max]. Parameter x is the number of categories; w is

the width of a category; and max, min are the maximum and minimum of the list.

Pandas binning method performed the spatial feature binning. Table 4.7 demon-

strates a sample of the dataset before spatial feature binning.

Table 4.7: Sample of Crime Dataset Before Spatial Feature Binning

Primary Type Date Longitude Latitude

5 10/29/2020 02:00:00 PM -87.680739 41.765743
7 11/25/2020 11:15:00 PM -87.606357 41.762215
2 06/08/2020 07:20:00 PM -87.670976 41.999113
0 08/17/2020 11:30:00 AM -87.644325 41.948347
0 09/03/2020 04:30:00 PM -87.789972 41.911574
0 02/15/2020 12:37:00 AM -87.646580 41.946212
1 05/31/2020 01:00:00 PM -87.629831 41.739918
2 09/04/2020 01:20:00 PM -87.637460 41.777216
7 08/06/2020 04:15:00 PM -87.605225 41.750832
0 09/18/2020 08:30:00 AM -87.697588 41.930897
7 08/09/2020 12:27:00 AM -87.563411 41.753584
0 07/17/2020 01:00:00 PM -87.637131 41.670583
2 04/27/2020 12:15:00 PM -87.621020 41.737553
7 12/09/2020 06:20:00 PM -87.704483 41.867562
6 03/06/2020 01:00:00 PM -87.548047 41.751529
2 03/24/2020 01:22:00 PM -87.716451 41.859938
5 11/13/2020 10:33:00 PM -87.722228 41.961017
7 04/08/2020 10:30:00 AM -87.619329 41.830607
0 10/16/2020 12:41:00 PM -87.644457 41.903033
3 10/01/2020 05:00:00 AM -87.632285 41.767969

Table 4.8 shows a sample of the dataset after spatial feature binning is performed,

and the grids sizes are, 16× 16 i.e. the longitude and latitude are in range (0-16).
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Table 4.8: Sample of Crime Dataset After Spatial Feature Binning

Primary Type Date Longitude Latitude

8 02/23/2020 06:30:00 AM 8 11
7 11/10/2020 05:00:00 PM 14 3
8 05/02/2020 03:00:00 PM 11 0
3 06/06/2020 02:00:00 PM 10 2
7 04/28/2020 10:01:00 AM 8 8
7 11/02/2020 08:38:00 PM 6 10
1 12/09/2020 11:27:00 PM 9 4
1 10/01/2020 10:00:00 PM 10 13
7 06/23/2020 08:17:00 PM 10 5
3 10/15/2020 08:00:00 AM 9 2
6 07/28/2020 02:53:00 PM 7 9
4 01/02/2020 11:45:00 AM 8 10
0 02/07/2020 09:50:00 PM 11 10
7 03/19/2020 09:51:00 AM 10 5
0 01/16/2020 09:00:00 PM 11 10
0 05/06/2020 12:58:00 PM 12 4
8 01/06/2020 12:00:00 PM 8 9
3 05/05/2020 10:30:00 PM 1 14
7 05/13/2020 05:54:00 PM 6 10
2 07/03/2020 05:45:00 PM 7 11

2. Generating Input and Output Arrays: The aim of this process is to establish an

input array (image) of shape (batch size, date, latitude, longitude, crime type),

and an output image of shape (batch size, date, crime type). Listing 4.1 is a

code snippet which illustrates each incident map dimension corresponding to the

features of the final dataset after data preprocessing.

Listing 4.1: Code Snippet to Represent the Dimensions of a Crime Incident Map

1 import numpy as np

2 crime_incident_map = np.array(

3 [ # batch size

4 [ # date

5 [ # latitude

6 [ # longitude

7 [

8 # crime type

9 ],

10 ],

11 ],

12 ],

13 ]

14 )
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Listing 4.2 is a Python code snippet which generates the input and output arrays.

Listing 4.2: Converting Spatio-temporal Data to Image-like Data

1 import numpy as np

2

3 inputs = list()

4 outputs = list()

5

6 # NB: batch_items are crime incidents grouped in batches of 30-days

7 for batch_number , batch in batch_items:

8

9 # Define input and output dimensions

10 input_sample = np.zeros((

11 date ,

12 latitude ,

13 longitude ,

14 crime_type

15 ))

16

17 output_sample = numpy.zeros(crime_type)

18

19 # Populate Numpy arrays with 30-day spatio -temporal data

20 for day , batch_crimes in batch:

21 for crime , data in batch_crimes.groupby(crime_type):

22 for _, row in data.iterrows ():

23 input_sample[day , row.latitude , row.longitude] += 1

24 output_sample[crime] = crime

25

26 inputs.append(input_sample)

27 outputs.append(output_sample)

28

29 # Expand and combine the 30-day interval data

30 inputs = [np.expand_dims(d, axis =0) for d in np.array(inputs)]

31 inputs = np.concatenate(inputs , axis =0)

32

33 outputs = [np.expand_dims(d, axis =0) for d in np.array(outputs)]

34 outputs = np.concatenate(outputs , axis =0)

The spatial resolution of the resultant dataset is sufficient for crime analysis at the block

level. In order to be consistent with the grid resolution ranges that were employed in

[75], the finer block size resolution would have grids of 40 × 40 cells. Even with a finer

resolution, the resulting grids are quite sparse, particularly for crime types with some

incidents. Neighbourhoods have a coarser resolution, with cells that are approximately

the size of their cell edges l ≈ 800m, leading to grids of 16 × 16 cells. Rather than
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altering the number of cells to match the actual distances between cities, the research

area where the dataset is collected is overlaid with a fixed number of cells. The ultimate

goal of crime prediction is to establish a system in which potential hotspots are predicted

in advance by analysing recent instances. Thus, incident maps collect historical episodes

I of timespan t of 1 day, and for a period T of 30 days. As a result, 30 daily incident

maps are utilized to predict future crimes. To aggregate events, the study uses a daily

time period xi so that enough temporal detail can be extracted while the time series

populates sufficiently.

4.4.2.5 Feature Scaling

The last step in the data preprocessing phase is feature scaling. When neural networks

use gradient descent as an optimization strategy, data must be scaled. The gradient de-

scent step size is affected by the feature value, X. The discrepancy in feature ranges will

result in distinct step sizes for each feature. It is critical to scale the data before feeding

it to the model so that the gradient descent moves smoothly towards the minima and

that the gradient descent steps updates features at the same rate. Having features of

similar scale helps the gradient descent’s convergence. All characteristics will be trans-

lated into the range [0,1] in this stage, indicating that the minimum and maximum value

of a feature/variable will be determined by 0 and 1, respectively. Fig 4.9 demonstrates

how data point can be normalized by Min-Max scaling.

Figure 4.9: Min-Max scaling effect on features [8]

Variables assessed at different scales may not contribute equally to the model fitting

and learning function and may result in bias. To address this possible issue, feature-

wise normalization, such as Min-Max Scaling, is typically utilized prior to model fitting.

This is especially important in deep learning techniques, where back-propagation can
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be more reliable and even faster when input features are min-max scaled (or scaled in

general) versus using the original unscaled data. The Min-Max scaling formula is given

by

X ′ =
X −Xmin

Xmax −Xmin
(4.2)

where X ′ is the new value, X is the original value, if Xmax is the maximum value of the

column, and Xmin is the minimum value of the column. The MinMaxScalar from the

sci-kit learn is used for feature scaling the crime dataset.

4.4.3 Data Splitting

The risk in the training process is that the model will overfit to the training set. For

example, the model may learn an extremely specialized function that works well on the

training data but fails to generalize to data it has never seen before.

Figure 4.10: Example Overfitted Model [9]

If the model is hyper-specified to the training data, the loss function on the training

data continues to exhibit decreasing values. The loss function on the held-out validation

set, on the other hand, gradually increases. This is seen in the plot in Fig. ?? with

two curves displaying the loss function values as training continues. This indicates that

the model isn’t learning very well and is instead of memorizing the training data. This

suggests that the model will not perform well when presented with new data that it has

never previously encountered. The train, validation, and testing segments help avoid
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overfitting data. The training set is the largest corpus of data in the dataset, and it is

used to train the model. It is also known as the test set. It is a separate component

of the dataset that is utilized during training to gain an idea of how well the model

performs on photos that are not being used in training. During training, it is a usual

practice to report validation metrics, such as validation loss, on a continuous basis after

each training period.

It is possible to tell when the model has achieved the best performance on the validation

set by looking at these measures. After training experiments are complete, and results

are recorded, it will be possible to predict how the model will perform on the validation

set. In light of the fact that the validation set is utilized in model development, it is criti-

cal to maintain a completely independent strong control of data, namely the test set [75].

In this work, the dataset is split as follows: 60% is used for training; 10% for validation;

and 30 % for testing. The train test split method in sci-kit learn was used for data

splitting.

4.5 The Optimization Function

In this study, both the 3D and Spatio-temporal deep learning models are trained by

using the Adam optimizer [76]. Deep learning relies heavily on stochastic gradient-

based optimization. Many deep learning issues can be framed as the optimization of a

scalar parameter objective function that requires maximum or minimization. Gradient

descent is a relatively efficient optimization method if the function has different param-

eters, because computing first-order partial derivatives with respect to all parameters

has the same processing complexity as evaluating the function [76]. Objective functions

are frequently stochastic. Many objective functions, for example, are built on a sum of

sub-functions assessed at distinct data sub-samples; in this instance, optimization can be

made more efficient by executing gradient steps with regard to individual sub-functions,

i.e. stochastic gradient descent (SGD) or ascent.

SGD is an efficient and effective optimization method, playing a key role in many deep

learning techniques [63]. Additionally, objectives may have noise sources other than

data subsampling, such as dropout regularization [77]. All of these noisy objectives

require effective stochastic optimization approaches. The Adam optimizer optimized

stochastic objectives with large parameter spaces. Higher-order optimization methods

are inappropriate in these instances. Therefore, the discussion in this study is limited

to first-order methods. The Adam optimizer is an excellent example of these methods,
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and it consumes little memory.

4.6 Conclusion

The experimental design used in this research was described in this chapter. The exper-

imental setup included the programming language utilized, the deep learning framework

and API, the experimental platform, dataset analysis, data preparation stages, and a

model optimization function for 3D and spatio-temporal deep learning models.

The programming language used to implement the deep learning algorithms was Python.

Python was chosen because of its benefits of being independent across platforms, con-

sistency and simplicity, rich frameworks and libraries and support for machine learning.

TensorFlow deep learning framework was used for developing, training the neural net-

works, under the hood of a Keras deep learning API. The experiments were carried out

on a threaded Linux virtual machine hosted on Azure Cloud Services. The crime data

was preprocessed using Pandas data analytics and sci-kit learn machine learning Python

libraries. All of these elements formed part of the implementation in line with research

objectives 2 and 3.

The next two chapters describe the procedures followed to further prepare the data

ahead of classification or prediction, the process of optimization of the models trained,

and the results that were obtained by testing the optimized models.
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Chapter 5

3D Deep Learning for Crime

Classification

This chapter describes the experimentation carried out to compare the 3D deep learning

methods for crime classification. This is in line with research objective 4 which aims to

provide an answer to research sub-question 1.1., and research objective 5 which aims to

provide an answer to research sub-question 1.2.

The chapter begins by presenting further preprocessing steps that were carried out on

the dataset to make the data suitable for crime classification (Section 5.1). The chapter

further presents the evaluation metrics used to evaluate the results (Section 5.2), as

well as describing the hyperparameter settings used to train the two 3D deep learning

methods compared (Section 5.3). Finally, experiments are carried out and the ensuing

results and findings are presented (Section 5.4). The chapter is concluded in Section 5.5.

5.1 Data Preprocessing for Crime Classification

Section 4.4 described preprocessing procedures for the crime data. In order to use the

data for crime classification, the dataset is further preprocessed by selecting records in

the three-year period (2017-2020) for training using the 3D deep learning algorithms.

Fig. 5.1 shows the different samples of 10 crime types and their total occurrences. The

dataset is filtered for a single crime type, i.e., “Theft”, to suit a binary classification

problem. All records with dates when “Theft” was reported are considered as the positive

class, and the remaining records, when “Theft” was not recorded, are considered as the

negative class. Thereafter, label encoding is performed on the crime type, i.e., the

positive class was encoded with 1, and 0 for the negative class. Fig. 5.2 indicates results

of the dataset for “Theft” as the chosen positive class. Spatial grid resolution ranges are

adopted from [19]. These ranges are 16× 16, 24× 24, 32× 32, and 40× 40 cells. The

67

http://etd.uwc.ac.za/ 
 



Chapter 5 3D Deep Learning for Crime Classification 68

model evaluates past recorded events to predict whether “Theft” incidents happened

in a given area in the particular month. Thus, past crime incidents are grouped into

incident maps I of time span t of 1 day, and for a period T of 30 days. Therefore, 30

daily incident maps are used as input to forecast “Theft” incidents for the next period.

A daily timespan for incidents so that enough temporal details can be extracted while

the time series was adequately populated.

Figure 5.1: Total incidents in Chicago crime dataset for period 2017-2020

Figure 5.2: Total Theft incidents in Chicago Crime Dataset Recorded from 2017 to
2020
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5.2 Classification Performance Metrics

The metrics used for crime classification are as follows:

1. Accuracy : It is the measurement used to determine which model is best at identi-

fying relationships and patterns between variables in a dataset based on the input,

or training, data. Accuracy is calculated using

Accuracy =
TP + TN

TP + TN + FP + FN
(5.1)

where TP is the True Positive values, TN is the True Negative values, FP is the

False Positive values and FN is the False Negative values.

2. F1 score: It is the harmonic mean of precision and recall. F1 score is preferred

over Accuracy because it provides a much more objective view of the results, even

with class imbalances. F1 score is defined as

F1 score = 2× Precision×Recall

Precision+Recall
(5.2)

where Precision tells us how many out of all instances that were predicted to belong

to class X, actually belonged to class X, i.e. the fraction of relevant instances among

the retrieved instances. Precision specifies how reliable a prediction of the positive

class by the classifier is, while recall specifies how comprehensive the classifier

is in locating all the available instances of the positive class in the test set [78].

Precision is defined as

Precision =
TP

TP + FP
(5.3)

Recall is the number of correct positive results divided by the number of positive

results that should have been returned, that is, it is an expression of how many

instances of class X were predicted correctly. Recall is defined as

Recall =
TP

TP + FN
(5.4)

3. Area under a Precision-Recall Curve (AUCPR): This is a valuable performance

metric for imbalanced data in a problem scenario where finding positive examples

is important.

4. Area under the Receiver Operating Characteristic (AUROC ): The area under the

ROC curve shows the trade-off between true positive rate (TPR) and false positive
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rate (FPR) across different decision threshold values. TPR and FPR are defined

as

TPR =
TP

TP + FN
(5.5)

and

FPR =
FP

FP + TN
(5.6)

respectively.

5.3 Hyperparameter Settings

In the experiments, for both the 3D CNN and the 3D ResNet-18, the following parame-

ters are used: a fixed convolutional filter size of 3×3; 100 training epochs; a batch size of

30; a learning rate of 0.01; and a temporal sliding window length of 30. The binary cross

entropy function is used as the loss function. The Adam optimizer is used to optimize

the loss function for training. The last layer is a dense layer which has 1 output node

and uses a sigmoid activation function. The choice of these hyperparameters was guided

by [2, 10, 19].

One hyperparameter that is not fixed and is the subject of investigation is the spatial

resolution. One objective of this study is to evaluate the effect of different spatial

resolutions on the performance of both 3D deep learning models for crime classification

on the Chicago dataset. The resolutions that are compared vary from a minimum of p

= 16 (i.e., a grid of 16 × 16 cells) to a maximum of p = 40 cells per grid, with a step

size of p = 8 cells.

5.4 Crime Classification Results

This section evaluates the performance of the 3D deep learning methods using the afore-

mentioned metrics in Section 5.2. The results are then compared and the effect of varying

the spatial resolution is explored. The models are trained and tested over 4 different

spatial resolutions i.e. 16, 24, 32 and 40 pixels. The results are then analysed and

concluded. Section 5.4.1 discusses the performance of the 3D algorithms during training

and Section 5.4.2 discusses the performance during testing.

5.4.1 Training Results

The 3D algorithms were trained over 100 epochs. The complexity, training loss and

validation loss of these algorithms are discussed in the following subsections.
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5.4.1.1 Model Complexity

Model complexity refers to the number of features included in a predictive or classifi-

cation model. This can be determined by assessing model structure or model structure

layout [79, 80]. Tables A.1, A.2, A.3 and A.4 in Appendix A show the architecture and

complexity details of the 3D CNN model with spatial resolutions of 16, 24, 32, and 40

pixels respectively. Each of these tables show details of the network topology in terms

of types of layers, output shapes produced by the layers and the number of parameters

that are generated by each layer. The 3D CNN has a total of 17 layers, which consist of

1 input layer 4 convolutional layers, 3 activation layers, 3 dropout layers, 2 max-pooling

layers, 1 flatten layer and 2 dense layers.

The input layer passes all the inputs into the network shape. The output shape of

the input layer is (batch size, latitude, longitude, crime type), where latitude and lon-

gitude refer to the horizontal and vertical grid index, respectively, within the spatial

grid consisting of 16, 24, 32 or 40 cells. The first 2 activation layers have ReLU acti-

vation functions, and the last activation layer uses a sigmoid function with an output

shape of 1. The max pooling layers reduce the number of training parameters, thereby

controlling model overfitting. In max pooling, the maximum value of each kernel in

each depth slice is captured and passed on to the next layer. They also make the 3D

CNN model invariant to distortion of the input data. To prevent overfitting during train-

ing, dropout layers randomly choose a fraction of units and set them to 0 at each update.

The flatten layer converts the input to a lower dimension. The dense layers are regu-

lar fully connected neural network layers. These dense layers feed all outputs from the

previous layer to all its neurons, with each neuron providing one output to the next

layer. The input, activation, max pooling, dropout, flatten, and dense layers do not

introduce any trainable or non-trainable parameters to the network architecture. Non-

trainable parameters are not optimizable during the learning process using gradient

descent. There are no non-trainable parameters for the 3D CNN because all weights of

the layers are updated during training with backpropagation. In general, as the spatial

resolution increases, the dimensionality of the input shape also increases, thereby caus-

ing the output shapes to be different for each 3D CNN architecture. Furthermore, as the

spatial resolution increases, the number of parameters in the network also increase. The

interested reader may confirm these trends in Tables A.1 to Table A.4 in Appendix A.

Table B.1, B.2, B.3 and B.4 in Appendix B show the architecture and complexity of

the 3D ResNet-18 model with spatial resolutions of 16, 24, 32, and 40 pixels respec-

tively. These tables also detail network topology, the output shape of each layer and the
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number of parameters that each network layer outputs. The network topology of the 3D

ResNet is composed of 67 layers which include: 1 input layer, 20 convolutional layers,

17 batch normalization layers, 17 activation layers, 8 add layers, 1 max pooling layer, 1

average pooling layer, 1 flatten layer and 1 dense layer. Similar to the 3D CNN model,

the activation layers all use ReLU activation function in all the layers except the last

activation layer, which uses a sigmoid function. The 3D ResNet-18 also has an input,

max pooling, flatten a dense layer which perform the same functions as described for

the 3D CNN model architecture, and all which introduce no trainable or non-trainable

parameters.

Batch normalization is a technique for training very deep neural networks that stan-

dardizes the inputs to a layer for each mini-batch. This has the effect of stabilizing the

learning process and dramatically reducing the number of training epochs required to

train deep networks. Hence, the batch normalization layer enables every convolution

layer of the network to do learning more independently [81]. This layer normalizes the

output of the previous layers. The activations scale the input layer in normalization.

These batch normalization layers help the 3D ResNet-18 to efficiently regularized and

avoid overfitting [82]. These layers are typically placed before activation layers or after

convolution layers to standardize the inputs or outputs. The parameters generated by

the batch normalization layer are non-trainable parameters.

The add layer “adds” a list of inputs. It takes as input a list of tensors, all the same

shape, and returns a single tensor with the same shape as the inputs. This layer does

not generate any parameters. The average pooling layer down-samples the input along

its spatial dimensions, i.e. height and width. It does this by taking the average value

over an input window for each channel of the input. The average pooling layer does not

introduce any parameters.

Increasing the spatial resolution from 16 to 40 pixels has no effect on the number of total

parameters, number of trainable parameters and number of non-trainable parameters.

It only affects the shape of the inputs and outputs in the network. Therefore, it can be

concluded that spatial resolution has negligible effect on the model complexity of the 3D

ResNet-18. A high model complexity, in terms of model topology and number of train-

able parameters, can enable a model to be efficient and to generally exhibit very a good

predictive performance. On the downside, a high complexity can lead to overfitting, i.e.

poor predictive performance during testing [80].

Considering the model complexity of the two 3D algorithms in terms of trainable pa-

rameters comparatively, the 3D ResNet-18 generally has a higher complexity than the
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3D CNN. Also, the 3D CNN’s number of trainable parameters is affected more when

varying the spatial resolution, whilst the 3D ResNet-18 trainable parameters remain

constant. Both the 3D networks have methods of coping with overfitting by the use

of layers such as batch normalization, max pooling and dropout layers. Therefore, all

things considered, the 3D ResNet-18 is expected to exhibit better performance than the

3D CNN network based on the model complexity. Table 5.1 summarizes the network

topology of the two 3D algorithms.

Table 5.1: Network Topology of 3D deep learning methods

Method
Layer 3D CNN 3D ResNet-18

Input 1 1
Convolutional 4 20
Activation 3 17
Add 0 8
Max Pooling 3 1
Average Pooling 0 1
Dropout 3 0
Batch Normalization 0 17
Flatten 1 1
Dense 2 1

Total Layers 17 67

5.4.1.2 Training and Validation Loss

Training loss is the error on the training set of data. The training loss describes how

well the model fits the training data. It can be seen that the 3D ResNet-18 converges

faster than the 3D CNN in every case on the training cycle. This is because residual

networks tend to learn equally or better than regular CNNs [83]. For spatial resolutions

16, 24 and 32 pixels, it is observed that the 3D ResNet-18 converges down to zero and

the 3D CNN converges to at or below the 0.2 mark. The models with a spatial resolution

of 40 are an exception to this trend, whereby the 3D ResNet-18 and 3D CNN converge

to the 0.6 mark. Repeated runs of the training procedure produced a similar outcome.

While it is challenging to determine exactly why this takes place, one possible reason for

this may be attributed to the larger spatial resolution size which may exceed an implicit

threshold in which numerous crimes are being placed into fewer increasingly larger grid

cells, resulting is increased relative difficulty of the classification problem. It remains to

be seen whether this significantly impacts the testing results, which are discussed in a

later section.
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Validation loss provides an indication during training of how well the model can perform

on unseen data. The validation results show comparisons of the validation losses of the

3D algorithms at different spatial resolutions sizes. Very similar to the training loss

curves observed previously, it is evident from these results that the 3D ResNet-18 also

generalises better than the 3D CNN. It is also notable that at a spatial resolution of

40 pixels, the validation loss of the two models converge to the 0.6 mark as with the

training curves, as has been discussed before.

(a) Training loss at 16 pixels of spatial resolution

(b) Validation loss at 16 pixels of spatial resolution

Figure 5.3: Training and loss of 3D algorithms at 16 pixels of spatial resolution
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(a) Training loss at 24 pixels of spatial resolution

(b) Validation loss at 24 pixels of spatial resolution

Figure 5.4: Training and loss of 3D algorithms at 24 pixels of spatial resolution
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(a) Training loss at 32 pixels of spatial resolution

(b) Validation loss at 32 pixels of spatial resolution

Figure 5.5: Training and loss of 3D algorithms at 32 pixels of spatial resolution

http://etd.uwc.ac.za/ 
 



Chapter 5 3D Deep Learning for Crime Classification 77

(a) Training loss at 40 pixels of spatial resolution

(b) Validation loss at 40 pixels of spatial resolution

Figure 5.6: Training and loss of 3D algorithms at 40 pixels of spatial resolution
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5.4.1.3 Training Time

The time taken to train each of the 3D algorithms at different spatial resolutions is

shown in Fig. 5.7. It is evident that the 3D ResNet-18, which is the more complex

model, takes more time to train than the 3D CNN. Furthermore, increasing the spatial

resolution increases the training time of both models.

Figure 5.7: Training Time For 3D Algorithms

5.4.2 Testing Results

The testing results describe the accuracy, F1 score, AUCPR and AUROC results of the

3D algorithms at different spatial resolutions. Table 5.2 shows the accuracy results for

the 3D algorithms at different spatial resolutions. The accuracy of the winning algo-

rithm is highlighted in bold.

Table 5.2: Accuracy for 3D Deep Learning Algorithms

Spatial Accuracy
Resolution 3D CNN 3D ResNet-18

16 0.9946 0.9984
24 0.9926 0.9961
32 0.9922 0.9945
40 0.9910 0.9920

From the accuracy results, it is immediately observed that all of the results are near-

perfect and very close. Considering the convergence graphs of the models with spatial

resolution 40 observed previously, this indicates that the relevant models are still able

to provide excellent testing results. This is a very encouraging result.

Comparing the two 3D deep learning methods for each spatial resolution size, it is evi-

dent that the 3D ResNet-18 exhibits the best accuracy across all spatial resolutions. In
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terms of spatial resolution, the highest accuracies for both models is achieved with a

spatial resolution size of 16 pixels, and as the spatial resolution increases, the accuracy of

both models is decreases, although by only very minute amounts. This contradicts how

most CNN networks perform for image classification, i.e. what should be observed is for

a higher spatial resolution size to result in higher accuracy, but these results show the

opposite [84]. However, this decrease in crime classification performance as the spatial

resolution increases is consistent with those in [19].

Table 5.3 shows the F1 score results for the 3D algorithms at different spatial resolutions.

The F1 score of the winning algorithm is highlighted in bold. The F1 score results

confirm that the 3D ResNet-18 exhibits the best F1 score across all spatial resolutions.

In terms of spatial resolution, the highest F1 scores for both models is achieved with

16 pixels, and as the resolution is increases the F1 score for both models decreases by a

very small amount. The F1 score results are consistent with those in [19].

Table 5.3: F1 score for 3D Deep Learning Algorithms

Spatial F1 Score
Resolution 3D CNN 3D ResNet-18

16 0.9764 0.9942
24 0.9731 0.9888
32 0.9659 0.9933
40 0.9525 0.9913

Table 5.4 shows the AUCPR results for the 3D algorithms at different spatial resolutions.

The AUCPR of the winning algorithm is highlighted in bold. Once again, it is observed

that the AUCPR results of the 3D ResNet-18 are best across all spatial resolutions.

Also, in terms of spatial resolution, the greatest AUCPR for both models is achieved

with 16 pixels, and as the spatial resolution is increasing the AUCPR for both models

is decreasing.

Table 5.4: AUCPR for 3D Deep Learning Algorithms

Spatial AUCPR
Resolution 3D CNN 3D ResNet-18

16 0.9766 0.9933
24 0.9734 0.9888
32 0.9666 0.9933
40 0.9526 0.9913
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Table 5.5 shows the AUROC results for the 3D algorithms at different spatial resolutions.

The AUROC of the winning algorithm is highlighted in bold. The AUROC results

confirm finally that the 3D ResNet-18 has dominated the 3D CNN at all the spatial

resolutions. Also, it is observed that the AUROC for the 3D ResNet-18 is the same

across all spatial resolutions. From these results it can be seen that the spatial resolution

only affects the AUROC of the 3D CNN, although only by a minute amouont, i.e. when

the spatial resolution increases, the AUROC decreases by a very small amount. The

best results for the 3D CNN are achieved when the spatial resolution is 16 pixels.

Table 5.5: AUROC for 3D Deep Learning Algorithms

Spatial AUROC
Resolution 3D CNN 3D ResNet-18

16 0.9998 0.9999
24 0.9997 0.9999
32 0.9985 0.9999
40 0.9966 0.9999

Based on the training results, it is evident that the 3D ResNet-18 is a far more complex

model than the 3D CNN and this complexity helps it to learn and validate better than

the 3D CNN as shown by the training and validation loss results. The accuracy, F1

score, AUCPR and AUROC for both models obtained are very high which indicates

that both models perform very well for the binary classification problem at hand. In

addition, the 3D ResNet-18 has shown better results in terms of F1 score, AUCPR and

AUROC, than the 3D CNN at different spatial resolutions. Although increasing the

spatial resolution made the feature maps sparser, it is evident from the results that

there is a very slight deterioration in the performance of both models. The performance

results of the 3D ResNet-18 over the 3D CNN are consistent with those observed in

other domains [20, 51].

5.5 Conclusion

This chapter presented the experimentation carried out to compare the 3D deep learn-

ing methods for crime classification. This included a description of: the further prepro-

cessing steps taken to prepare the dataset for crime classification, the metrics used to

evaluate the models, and the hyperparameter settings used to train the models.

The 3D CNN and 3D ResNet were trained and tested with four spatial resolution sizes.

Two comparisons were carried out: (i) a comparison of the effectiveness of the two 3D
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deep learning methods; and (ii) a comparison of the effect of the different spatial reso-

lution sizes on classification. In so doing, research objectives 4 and 5 were successfully

achieved. In response to research sub-question 1.1., it is stated that the results showed

that both 3D deep learning techniques were very effective on the Chicago dataset, but

the 3D ResNet exhibited a comparatively better effectiveness than the 3D CNN.

In response to research sub-question 1.2., it is stated that, of the four spatial resolution

sizes compared, i.e. squares of sides 16, 24, 32 and 40, all the resolution sizes resulted

in comparable and near-perfect classification performance, but a clear and consistent

trend was observed whereby a smaller spatial resolution results in a marginally better

classification performance than a larger spatial resolution size which is consistent with

the results in [19].

As such, both research sub-questions have been answered. The next chapter focuses on

the comparison of three spatio-temporal deep learning methods for crime prediction.
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Chapter 6

Spatio-temporal Deep Learning

for Crime Prediction

This chapter describes the experimentation carried out to compare the spatio-temporal

deep learning methods for crime prediction, in line with the final research objective 6

which aims to provide an answer to the final research sub-question 2.1.

The chapter starts with a description of the appropriate evaluation metrics used to

evaluate the results in this experiment (Section 6.1), in addition to a description of the

hyperparameter settings used to train the three spatio-temporal deep learning methods

compared (Section 6.2). The chapter then describes the experiments and the ensuing

results and findings (Section 6.3). The chapter is concluded in Section 6.4.

6.1 Crime Prediction Metrics

The metrics used for crime prediction are described as follows;

1. Root Mean Square Error (RMSE): It is a quadratic scoring rule which measures

the average magnitude of the error. RMSE refers to the difference between forecast

and corresponding observed values, which are each squared and then averaged over

the sample. Finally, the square root of the average is taken. Since the errors are

squared before they are averaged, the RMSE gives a relatively high weight to large

errors. This means the RMSE is most useful when large errors are particularly

undesirable. RMSE was calculated by using

RMSE =

√
1

n
Σn
i=1

(di − fi
σi

)2
(6.1)
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where n is the number of observations, di is the actual observations time series, fi

is the estimated time series, and σi is the standard deviation.

2. Mean Absolute Error (MAE): It measures the average magnitude of the errors in

a set of forecasts, without considering their direction. It measures accuracy for

continuous variables. The equation was given in the library references. When

expressed in words, the MAE is the average over the verification sample of the ab-

solute values of the differences between the forecast and the corresponding obser-

vation. The MAE is a linear score, which means that all the individual differences

are weighted equally in the average. MAE was calculated by using

1

n

n∑
i=1

|yi − xi| (6.2)

where n is the number of observations, yi is the actual value and xi is the predicted

value.

6.2 Hyperparameter Settings

In the experiments, the hyperparameters are based on the performance on the validation

set. Table 6.1 has the details for the hyperparameters used for all the spatio-temporal

algorithms. The choice of these hyperparameters was guided by [4, 5, 19].

Table 6.1: Hyperparameter Settings for Spatio-temporal Deep Learning Techniques

Parameter Value

Convolution Kernel Size 3× 3

Convolution Filters 64

Spatial Grid Size 16× 16

CNN Dropout 0.5

Temporal Sliding Window 30

LSTM Dropout 0.5

Learning Rate 0.01

http://etd.uwc.ac.za/ 
 



Chapter 6 Spatio-temporal Deep Learning for Crime Prediction 84

For spatial information, the convolution kernel sizes to 3 × 3 with 64 filters. The size

of each neighbourhood considered was set as 16 × 16. The number of layers we set

as K = 3. The fixed length of the temporal sliding window was a value of 30, that

is, the spatio-temporal networks would extract information of crime incidents that were

reported in a period of 30 days. The batch size in our experiment was set to 64. Learning

rate was set as 0.001. Both dropout and recurrent dropout rate in LSTM layers was set

as 0.5. Early stopping callbacks are used to stop the training when the training loss in

the next training step is greater than the previous step for a set threshold. λ is set as

0.5 to balance start and end volume. The models were trained over 100 epochs.

6.3 Crime Prediction Results

In this section, the results of the performance of the ST-ResNet, DMVST-Net and STD-

Net for crime prediction based on the Chicago crime dataset are provided. Section 6.3.1

discusses the performance of the spatio-temporal algorithms during training and gives

an analysis of the training and validation losses. Section 6.3.2 gives an analysis of the

performance of the spatio-temporal models on the test set using the aforementioned

metrics in Section 6.1.

6.3.1 Training and Validation Results

This section evaluates the performance of the spatio-temporal algorithms during train-

ing over 10 epochs. The decision to use 10 epochs was arrived at by following the work

in [3, 4]. Furthermore, preliminary training showed that the losses converge after two

epochs. Fig. 6.1, 6.2, and 6.3 show results of the training and validation losses for the

different spatio-temporal models. In these graphs, the green line depicts the loss during

training, while the yellow line depicts the loss during validation.

From the graphs, it is evident that loss during training drops in each training iteration,

hence the ST-ResNet, the DMVST-Net and the STD-Net algorithms are all able to

interpret the data points well during training. Likewise, the validation curve for each

model converges to a lower value after each epoch.

Another observation is that the validation losses are lower than the training losses for

all the models. This indicates that all models are not overfitting the training data and

might perform well during testing with new data. It was also evident that the STD-Net

converges to the lowest training and validation losses after training over 100 epochs. On

the other hand, the validation losses are all below 0.2 for all algorithms, therefore the

models are able to generalise well.
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Figure 6.1: ST-ResNet Training and Validation Loss

Figure 6.2: DMVST-Net Training and Validation Loss

Figure 6.3: STD-Net Training and Validation Loss
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6.3.2 Test Results

Fig. 6.4 shows the MAE achieved by the spatio-temporal models. Since MAE is the

magnitude of difference between the prediction of an observation and the true value

of that observation, it can help to identify the model which will perform better for

predicting crime. A good MAE is considered to be one with a very low value. The

STD-Net achieved the lowest MAE with a value of 0.2093, followed by the ST-ResNet

with a MAE of 0.3278 and lastly the DMVST-Net with 0.3455. This indicates that a

given prediction output (in number of crimes) by all three of the models has a very low

error e.g. for the STD-Net, a given predicted output n can be represented as n± 0.2093

crime incidents, which indicates that the output is correct to a fraction of a single crime,

which is a very confident result. The same is true for the ST-ResNet and DMVST-Net.

Figure 6.4: Comparison of MAE for Crime Prediction for the Spatio-temporal Deep
Learning Techniques

Fig. 6.5 shows the RMSE achieved by the spatio-temporal models. Since RMSE is the

standard deviation of prediction errors, a low RMSE would indicate that the models are

accurate at predicting crime. It should also be noted that the RMSE differs from the

MAE in that it is more sensitive to outliers and will therefore penalize outliers more.

From the RMSE results, it is observed that all three models have very low values; the

STD-Net once again obtained the lowest value of 0.287, followed by the ST-ResNet with

0.4033 and lastly the DMVST-Net with 0.4171. This is a very encouraging result that

indicates that all three models are robust to outliers.

The STD-Net once again emerges as the most accurate model, whereby a given pre-

dicted output n by the STD-Net can be represented as n±0.287 crime incidents, clearly

demonstrating an accurate output.
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Figure 6.5: Comparison of RMSE for Crime Prediction for the Spatio-temporal Deep
Learning Techniques

From the MAE and RMSE results, it is noticeable that the MAE results for all the

models are lower but almost equal to their corresponding RMSE results. This is at-

tributed to the fact that the RMSE is more sensitive to outliers than the MAE. All

the spatio-temporal models have similar structures and components. All these models

have achieved low MAE and RMSE results. However, the STD-Net was clearly the best

performing algorithm based on the MAE and RMSE.

The STD-Net achieves the best performance results due to its ability to explicitly model

spatial dependency and sequential temporal dependency better than the ST-ResNet and

DMVST-Net. These results are consistent with the results achieved in the prediction of

citywide traffic crowd flows [5] and supply-demand prediction for autonomous vehicles

[21].

6.4 Conclusion

This chapter presented the experimentation carried out to compare the spatio-temporal

deep learning methods for crime prediction. This included a description of the metrics

used to evaluate the models and the hyperparameter settings used to train the models.

The three spatio-temporal deep learning techniques, i.e. the ST-ResNet, DMVST-Net

and STD-Net, were trained and tested on the Chicago crime dataset. Then, the three

techniques were compared in terms of effectiveness towards crime prediction. In so do-

ing, the final research objective 6 was successfully achieved.
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In response to the final research sub-question 2.1., it is stated that all three spatio-

temporal techniques successfully predicted crime on the Chicago dataset with low er-

ror values; the ST-ResNet, which is considered as the state-of-the-art for crime pre-

diction, was out-performed by the STD-Net with a noticeable reduction in error; the

DMVST-Net, while providing low error, did not out-perform either the ST-ResNet or

the STD-Net. Noting that STD-Net and DMVST-Net have not, to the knowledge of the

researcher, been applied to crime prediction, these results and findings are consistent

with the results found in related studies [3, 5, 21, 23] of the same three spatio-temporal

deep learning techniques compared in other spatio-temporal prediction domains.

The STD-Net outperforms the ST-ResNet and DMVST-Net due to its ability to suffi-

ciently model spatial dependency and sequential temporal dependency, this is consistent

with results achieved in other spatial-temporal domains [5, 21].

The next chapter concludes the thesis with an answer to the main research question

posed in Chapter 1.
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Chapter 7

Conclusion and Future Work

This research aimed to investigate the use of deep learning techniques for crime fore-

casting. Effective crime forecasting can be very beneficial to law enforcement. One

application of this is to help assign law enforcement resources to crime hotspots and

potentially prevent crime incidents before they occur.

Given the prevalent success of deep learning techniques in a variety of domains, includ-

ing spatio-temporal forecasting domains, this research mainly aimed to investigate the

question posed as “How effective are 3D and spatio-temporal deep learning techniques

for crime forecasting?”

It was not known how effective 3D deep learning techniques, specifically the 3D CNN

and 3D ResNet, are in the context of crime classification. Also, it was desired to in-

vestigate the effect of various spatial resolution sizes when preparing the dataset for

classification in the domain of crime classification. These problems were represented in

research sub-questions 1.1. and 1.2.

Furthermore, while the ST-ResNet spatio-temporal deep learning technique has been

applied to crime prediction in the literature with state-of-the-art results, it was not

known how this compares to other newer spatio-temporal deep learning techniques,

specifically the DMVST-Net and STD-Net, which have been highly successful in other

spatio-temporal forecasting domains in the literature. This problem was represented in

research sub-question 2.1.

7.1 Conclusions

A series of experiments were carried out to investigate and answer the aforementioned

sub-questions, towards obtaining an answer to the main research question.

89
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In response to research sub-question 1.1., it was stated that the results showed that

both 3D deep learning techniques were very effective on the Chicago dataset, but the

3D ResNet exhibited a comparatively better effectiveness than the 3D CNN.

In response to research sub-question 1.2., it was stated that, of the four spatial resolution

sizes compared, i.e. squares of side 16, 24, 32 and 40, all the resolution sizes resulted

in comparable and near-perfect classification performance, but a clear and consistent

trend was observed whereby a smaller spatial resolution results in a marginally better

classification performance than a larger spatial resolution size.

In response to the final research sub-question 2.1., it was stated that all three spatio-

temporal techniques successfully predicted crime on the Chicago dataset with low error

values; the ST-ResNet, which was previously considered as the state-of-the-art for crime

prediction, was out-performed by the STD-Net with a noticeable reduction in error;

the DMVST-Net, while providing a sufficiently low error, did not outperform either the

ST-ResNet or the STD-Net. Noting that STD-Net and DMVST-Net have not, to the

knowledge of the researcher, been applied to crime prediction, these results and find-

ings are consistent with the results found in related studies [3, 5, 23] of the same three

spatio-temporal deep learning techniques compared in other spatio-temporal prediction

domains.

Having obtained these findings, a response to the main research question is stated as:

the 3D and spatio-temporal deep learning techniques investigated are all highly effective

for crime forecasting, but the 3D ResNet is most effective for crime classification and

the STD-Net is most effective for crime prediction; and finally, the results indicate that

a smaller spatial resolution enhances the effectiveness of deep learning techniques for

crime forecasting.

It is the hope of the researcher that these results and findings will be of benefit to other

researchers in the field or related fields, and that this research can help facilitate the

uptake of these technologies in law enforcement to help mitigate the rampant crime that

is endemic in South Africa and the world at large.

The next section concludes this chapter and the thesis as a whole with directions for

future work.
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7.2 Directions for Future Work

The following directions for future work:

• Explore the possibility of adding external data to these frameworks, similar to

worldly semantics, socioeconomic, climate, road guides and focal points in the

region, and evaluate how this impacts the performance of the 3D and spatio-

temporal models for crime forecasting.

• Evaluate the ability of the models to generalise across different crime datasets.

• Explore optimization of hyperparameters by using techniques such as evolutionary

computation.

• Evaluate the ability of 3D deep learning model to perform multi-class crime clas-

sification using different crime datasets.
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Appendix A

3D CNN Architectures

Table A.1: 3D CNN Architecture with Spatial Resolution of 16 Pixels

3D CNN Architecture (16 Pixels)
Layer Type Output Shape No. Parameters

input 1 Input (None, 30, 16, 16, 1) 0
conv3d 1 3D Convolution (None, 30, 16, 16, 32) 896
activation 1 Activation (None, 30, 16, 16, 32) 0
conv3d 2 3D Convolution (None, 30, 16, 16, 32) 27680
activation 2 Activation (None, 30, 16, 16, 32) 0
max pooling3d 1 3D Max Pooling (None, 10, 6, 6, 32) 0
dropout 1 Dropout (None, 10, 6, 6, 32) 0
conv3d 3 3D Convolution (None, 10, 6, 6, 64) 55360
activation 3 Activation (None, 10, 6, 6, 64) 0
conv3d 4 3D Convloution (None, 10, 6, 6, 64) 110656
activation 4 Activation (None, 10, 6, 6, 64) 0
max pooling3d 2 3D Max Pooling (None, 4, 2, 2, 64) 0
dropout 2 Dropout (None, 4, 2, 2, 64) 0
flatten 1 Flatten (None, 1024) 0
dense 1 Dense (None, 512) 524800
dropout 3 Dropout (None, 512) 0
dense 2 Dense (None, 1) 513

Total Parameters 719,905
Trainable Parameters 719,905
Non-trainable Parameters 0
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Table A.2: 3D CNN Architecture with Spatial Resolution of 24 Pixels

3D CNN Architecture (24 Pixels)
Layer Type Output Shape No. Parameters

input 1 Input (None, 30, 24, 24, 1) 0
conv3d 1 3D Convolution (None, 30, 24, 24, 32) 896
activation 1 Activation (None, 30, 24, 24, 32) 0
conv3d 2 3D Convolution (None, 30, 24, 24, 32) 27680
activation 2 Activation (None, 30, 24, 24, 32) 0
max pooling3d 1 3D Max Pooling (None, 10, 8, 8, 32) 0
dropout 1 Dropout (None, 10, 8, 8, 32) 0
conv3d 3 3D Convolution (None, 10, 8, 8, 64) 55360
activation 3 Activation (None, 10, 8, 8, 64) 0
conv3d 4 3D Convloution (None, 10, 8, 8, 64) 110656
activation 4 Activation (None, 10, 8, 8, 64) 0
max pooling3d 2 3D Max Pooling (None, 4, 3, 3, 64) 0
dropout 2 Dropout (None, 4, 3, 3, 64) 0
flatten 1 Flatten (None, 2304) 0
dense 1 Dense (None, 512) 1180160
dropout 3 Dropout (None, 512) 0
dense 2 Dense (None, 1) 513

Total Parameters 1,375,265
Trainable Parameters 1,375,265
Non-trainable Parameters 0

Table A.3: 3D CNN Architecture with Spatial Resolution of 32 Pixels

3D CNN Architecture (32 Pixels)
Layer Type Output Shape No. Parameters

input 1 Input (None, 30, 32, 32, 1) 0
conv3d 1 3D Convolution (None, 30, 32, 32, 32) 896
activation 1 Activation (None, 30, 32, 32, 32) 0
conv3d 2 3D Convolution (None, 30, 32, 32, 32) 27680
activation 2 Activation (None, 30, 32, 32, 32) 0
max pooling3d 1 3D Max Pooling (None, 10, 11, 11, 32) 0
dropout 1 Dropout (None, 10, 11, 11, 32) 0
conv3d 3 3D Convolution (None, 10, 11, 11, 32) 55360
activation 3 Activation (None, 10, 11, 11, 32) 0
conv3d 4 3D Convloution (None, 10, 11, 11, 32) 110656
activation 4 Activation (None, 10, 11, 11, 32) 0
max pooling3d 2 3D Max Pooling (None, 4, 4, 4, 64) 0
dropout 2 Dropout (None, 4, 4, 4, 64) 0
flatten 1 Flatten (None, 4096) 0
dense 1 Dense (None, 512) 2097664
dropout 3 Dropout (None, 512) 0
dense 2 Dense (None, 1) 513

Total Parameters 2,292,769
Trainable Parameters 2,292,769
Non-trainable Parameters 0
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Table A.4: 3D CNN Architecture with Spatial Resolution of 40 Pixels

3D CNN Architecture (40 Pixels)
Layer Type Output Shape No. Parameters

input 1 Input (None, 30, 40, 40, 1) 0
conv3d 1 3D Convolution (None, 30, 40, 40, 32) 896
activation 1 Activation (None, 30, 40, 40, 32) 0
conv3d 2 3D Convolution (None, 30, 40, 40, 32) 27680
activation 2 Activation (None, 30, 40, 40, 32) 0
max pooling3d 1 3D Max Pooling (None, 10, 14, 14, 32) 0
dropout 1 Dropout (None, 10, 14, 14, 32) 0
conv3d 3 3D Convolution (None, 10, 14, 14, 32) 55360
activation 3 Activation (None, 10, 14, 14, 32) 0
conv3d 4 3D Convloution (None, 10, 14, 14, 32) 110656
activation 4 Activation (None, 10, 14, 14, 32) 0
max pooling3d 2 3D Max Pooling (None, 4, 5, 5, 64) 0
dropout 2 Dropout (None, 4, 5, 5, 64) 0
flatten 1 Flatten (None, 6400) 0
dense 1 Dense (None, 512) 3277312
dropout 3 Dropout (None, 512) 0
dense 2 Dense (None, 1) 513

Total Parameters 3,472,417
Trainable Parameters 3,472,417
Non-trainable Parameters 0
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Table B.1: 3D ResNet-18 Architecture with Spatial Resolution of 16 Pixels

3D ResNet-18 Architecture (16 Pixels)
Layer Type Output Shape No. Parameters

input 1 Input (None, 30, 16, 16, 1) 0
conv3d 1 3D Convolution (None, 15, 8, 8, 64) 22016
batch normalization 1 Batch Normalization (None, 15, 8, 8, 64) 256
activation 1 Activation (None, 15, 8, 8, 64) 0
max pooling3d 1 3D Max Pooling (None, 8, 4, 4, 64) 0
conv3d 2 3D Convolution (None, 8, 4, 4, 64) 110656
batch normalization 2 Batch Normalization (None, 8, 4, 4, 64) 256
activation 2 Activation (None, 8, 4, 4, 64) 0
conv3d 3 3D Convolution (None, 8, 4, 4, 64) 110656
add 1 Add (None, 8, 4, 4, 64) 0
batch normalization 3 Batch Normalization (None, 8, 4, 4, 64) 256
activation 3 Activation (None, 8, 4, 4, 64) 0
conv3d 4 3D Convolution (None, 8, 4, 4, 64) 110656
batch normalization 4 Batch Normalization (None, 8, 4, 4, 64) 256
activation 4 Activation (None, 8, 4, 4, 64) 0
conv3d 5 3D Convolution (None, 8, 4, 4, 64) 110656
add 2 Add (None, 8, 4, 4, 64) 0
batch normalization 5 Batch Normalization (None, 8, 4, 4, 64) 256
activation 5 Activation (None, 8, 4, 4, 64) 0
conv3d 6 3D Convolution (None, 4, 2, 2, 128) 221312
batch normalization 6 Batch Normalization (None, 4, 2, 2, 128) 512
activation 6 Activation (None, 4, 2, 2, 128) 0
conv3d 8 3D Convolution (None, 4, 2, 2, 128) 8320
conv3d 7 3D Convolution (None, 4, 2, 2, 128) 442496
add 3 Add (None, 4, 2, 2, 128) 0
batch normalization 7 Batch Normalization (None, 4, 2, 2, 128) 512
activation 7 Activation (None, 4, 2, 2, 128) 0
conv3d 9 3D Convolution (None, 4, 2, 2, 128) 442496
batch normalization 8 Batch Normalization (None, 4, 2, 2, 128) 512
activation 8 Activation (None, 4, 2, 2, 128) 0
conv3d 10 3D Convolution (None, 4, 2, 2, 128) 442496
add 4 Add (None, 4, 2, 2, 128) 0
batch normalization 9 Batch Normalization (None, 4, 2, 2, 128) 512
activation 9 Activation (None, 4, 2, 2, 128) 0
conv3d 11 3D Convolution (None, 2, 1, 1, 256) 884992
batch normalization 10 Batch Normalization (None, 2, 1, 1, 256) 1024
activation 10 Activation (None, 2, 1, 1, 256) 0
conv3d 13 3D Convolution (None, 2, 1, 1, 256) 33024
conv3d 12 3D Convolution (None, 2, 1, 1, 256) 1769728
add 5 Add (None, 2, 1, 1, 256) 0
batch normalization 11 Batch Normalization (None, 2, 1, 1, 256) 1024
activation 11 Activation (None, 2, 1, 1, 256) 0
conv3d 14 3D Convolution (None, 2, 1, 1, 256) 1769728
batch normalization 12 Batch Normalization (None, 2, 1, 1, 256) 1024
activation 12 Activation (None, 2, 1, 1, 256) 0
conv3d 15 3D Convolution (None, 2, 1, 1, 256) 1769728
add 6 Add (None, 2, 1, 1, 256) 0
batch normalization 13 Batch Normalization (None, 2, 1, 1, 256) 1024
activation 13 Activation (None, 2, 1, 1, 256) 0
conv3d 16 conv3d 16 (None, 1, 1, 1, 512) 3539456
batch normalization 14 Batch Normalization (None, 1, 1, 1, 512) 2048
activation 14 Activation (None, 1, 1, 1, 512) 0
conv3d 18 3D Convolution (None, 1, 1, 1, 512) 131584
conv3d 17 3D Convolution (None, 1, 1, 1, 512) 7078400
add 7 Add (None, 1, 1, 1, 512) 0
batch normalization 15 Batch Normalization (None, 1, 1, 1, 512) 2048
activation 15 Activation (None, 1, 1, 1, 512) 0
conv3d 19 3D Convolution (None, 1, 1, 1, 512) 7078400
batch normalization 16 Batch Normalization (None, 1, 1, 1, 512) 2048
activation 16 Activation (None, 1, 1, 1, 512) 0
conv3d 20 3D Convolution (None, 1, 1, 1, 512) 7078400
add 8 Add (None, 1, 1, 1, 512) 0
batch normalization 17 Batch Normalization (None, 1, 1, 1, 512) 2048
activation 17 Activation (None, 1, 1, 1, 512) 0
average pooling3d 1 3D Average Pooling (None, 1, 1, 1, 512) 0
flatten 1 Flatten (None, 512) 0
dense 1 Dense (None, 1) 513

Total Parameters 33,171,329
Trainable Parameters 33,163,521
Non-trainable Parameters 7,808
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Table B.2: 3D ResNet-18 Architecture with Spatial Resolution of 24 Pixels

3D ResNet-18 Architecture (24 Pixels)
Layer Type Output Shape No. Parameters

input 1 Input (None, 30, 24, 24, 1) 0
conv3d 1 3D Convolution (None, 15, 12, 12, 6) 22016
batch normalization 1 Batch Normalization (None, 15, 12, 12, 6) 256
activation 1 Activation (None, 15, 12, 12, 6) 0
max pooling3d 1 3D Max Pooling (None, 8, 6, 6, 64) 0
conv3d 2 3D Convolution (None, 8, 6, 6, 64) 110656
batch normalization 2 Batch Normalization (None, 8, 6, 6, 64) 256
activation 2 Activation (None, 8, 6, 6, 64) 0
conv3d 3 3D Convolution (None, 8, 6, 6, 64) 110656
add 1 Add (None, 8, 6, 6, 64) 0
batch normalization 3 Batch Normalization (None, 8, 6, 6, 64) 256
activation 3 Activation (None, 8, 6, 6, 64) 0
conv3d 4 3D Convolution (None, 8, 6, 6, 64) 110656
batch normalization 4 Batch Normalization (None, 8, 6, 6, 64) 256
activation 4 Activation (None, 8, 6, 6, 64) 0
conv3d 5 3D Convolution (None, 8, 6, 6, 64) 110656
add 2 Add (None, 8, 6, 6, 64) 0
batch normalization 5 Batch Normalization (None, 8, 6, 6, 64) 256
activation 5 Activation (None, 8, 6, 6, 64) 0
conv3d 6 3D Convolution (None, 4, 3, 3, 128) 221312
batch normalization 6 Batch Normalization (None, 4, 3, 3, 128) 512
activation 6 Activation (None, 4, 3, 3, 128) 0
conv3d 8 3D Convolution (None, 4, 3, 3, 128) 8320
conv3d 7 3D Convolution (None, 4, 3, 3, 128) 442496
add 3 Add (None, 4, 3, 3, 128) 0
batch normalization 7 Batch Normalization (None, 4, 3, 3, 128) 512
activation 7 Activation (None, 4, 3, 3, 128) 0
conv3d 9 3D Convolution (None, 4, 3, 3, 128) 442496
batch normalization 8 Batch Normalization (None, 4, 3, 3, 128) 512
activation 8 Activation (None, 4, 3, 3, 128) 0
conv3d 10 3D Convolution (None, 4, 3, 3, 128) 442496
add 4 Add (None, 4, 3, 3, 128) 0
batch normalization 9 Batch Normalization (None, 4, 3, 3, 128) 512
activation 9 Activation (None, 4, 3, 3, 128) 0
conv3d 11 3D Convolution (None, 2, 2, 2, 256) 884992
batch normalization 10 Batch Normalization (None, 2, 2, 2, 256) 1024
activation 10 Activation (None, 2, 2, 2, 256) 0
conv3d 13 3D Convolution (None, 2, 2, 2, 256) 33024
conv3d 12 3D Convolution (None, 2, 2, 2, 256) 1769728
add 5 Add (None, 2, 2, 2, 256) 0
batch normalization 11 Batch Normalization (None, 2, 2, 2, 256) 1024
activation 11 Activation (None, 2, 2, 2, 256) 0
conv3d 14 3D Convolution (None, 2, 2, 2, 256) 1769728
batch normalization 12 Batch Normalization (None, 2, 2, 2, 256) 1024
activation 12 Activation (None, 2, 2, 2, 256) 0
conv3d 15 3D Convolution (None, 2, 2, 2, 256) 1769728
add 6 Add (None, 2, 2, 2, 256) 0
batch normalization 13 Batch Normalization (None, 2, 2, 2, 256) 1024
activation 13 Activation (None, 2, 2, 2, 256) 0
conv3d 16 conv3d 16 (None, 1, 1, 1, 512) 3539456
batch normalization 14 Batch Normalization (None, 1, 1, 1, 512) 2048
activation 14 Activation (None, 1, 1, 1, 512) 0
conv3d 18 3D Convolution (None, 1, 1, 1, 512) 131584
conv3d 17 3D Convolution (None, 1, 1, 1, 512) 7078400
add 7 Add (None, 1, 1, 1, 512) 0
batch normalization 15 Batch Normalization (None, 1, 1, 1, 512) 2048
activation 15 Activation (None, 1, 1, 1, 512) 0
conv3d 19 3D Convolution (None, 1, 1, 1, 512) 7078400
batch normalization 16 Batch Normalization (None, 1, 1, 1, 512) 2048
activation 16 Activation (None, 1, 1, 1, 512) 0
conv3d 20 3D Convolution (None, 1, 1, 1, 512) 7078400
add 8 Add (None, 1, 1, 1, 512) 0
batch normalization 17 Batch Normalization (None, 1, 1, 1, 512) 2048
activation 17 Activation (None, 1, 1, 1, 512) 0
average pooling3d 1 3D Average Pooling (None, 1, 1, 1, 512) 0
flatten 1 Flatten (None, 512) 0
dense 1 Dense (None, 1) 513

Total Parameters 33,171,329
Trainable Parameters 33,163,521
Non-trainable Parameters 7,808
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Table B.3: 3D ResNet-18 Architecture with Spatial Resolution of 32 Pixels

3D ResNet-18 Architecture (32 Pixels)
Layer Type Output Shape No. Parameters

input 1 Input (None, 30, 32, 32, 1) 0
conv3d 1 3D Convolution (None, 15, 16, 16, 6) 22016
batch normalization 1 Batch Normalization (None, 15, 16, 16, 6) 256
activation 1 Activation (None, 15, 16, 16, 6) 0
max pooling3d 1 3D Max Pooling (None, 8, 8, 8, 64) 0
conv3d 2 3D Convolution (None, 8, 8, 8, 64) 110656
batch normalization 2 Batch Normalization (None, 8, 8, 8, 64) 256
activation 2 Activation (None, 8, 8, 8, 64) 0
conv3d 3 3D Convolution (None, 8, 8, 8, 64) 110656
add 1 Add (None, 8, 8, 8, 64) 0
batch normalization 3 Batch Normalization (None, 8, 8, 8, 64) 256
activation 3 Activation (None, 8, 8, 8, 64) 0
conv3d 4 3D Convolution (None, 8, 8, 8, 64) 110656
batch normalization 4 Batch Normalization (None, 8, 8, 8, 64) 256
activation 4 Activation (None, 8, 8, 8, 64) 0
conv3d 5 3D Convolution (None, 8, 8, 8, 64) 110656
add 2 Add (None, 8, 8, 8, 64) 0
batch normalization 5 Batch Normalization (None, 8, 8, 8, 64) 256
activation 5 Activation (None, 8, 8, 8, 64) 0
conv3d 6 3D Convolution (None, 4, 4, 4, 128) 221312
batch normalization 6 Batch Normalization (None, 4, 4, 4, 128) 512
activation 6 Activation (None, 4, 4, 4, 128) 0
conv3d 8 3D Convolution (None, 4, 4, 4, 128) 8320
conv3d 7 3D Convolution (None, 4, 4, 4, 128) 442496
add 3 Add (None, 4, 4, 4, 128) 0
batch normalization 7 Batch Normalization (None, 4, 4, 4, 128) 512
activation 7 Activation (None, 4, 4, 4, 128) 0
conv3d 9 3D Convolution (None, 4, 4, 4, 128) 442496
batch normalization 8 Batch Normalization (None, 4, 4, 4, 128) 512
activation 8 Activation (None, 4, 4, 4, 128) 0
conv3d 10 3D Convolution (None, 4, 4, 4, 128) 442496
add 4 Add (None, 4, 4, 4, 128) 0
batch normalization 9 Batch Normalization (None, 4, 4, 4, 128) 512
activation 9 Activation (None, 4, 4, 4, 128) 0
conv3d 11 3D Convolution (None, 2, 2, 2, 256) 884992
batch normalization 10 Batch Normalization (None, 2, 2, 2, 256) 1024
activation 10 Activation (None, 2, 2, 2, 256) 0
conv3d 13 3D Convolution (None, 2, 2, 2, 256) 33024
conv3d 12 3D Convolution (None, 2, 2, 2, 256) 1769728
add 5 Add (None, 2, 2, 2, 256) 0
batch normalization 11 Batch Normalization (None, 2, 2, 2, 256) 1024
activation 11 Activation (None, 2, 2, 2, 256) 0
conv3d 14 3D Convolution (None, 2, 2, 2, 256) 1769728
batch normalization 12 Batch Normalization (None, 2, 2, 2, 256) 1024
activation 12 Activation (None, 2, 2, 2, 256) 0
conv3d 15 3D Convolution (None, 2, 2, 2, 256) 1769728
add 6 Add (None, 2, 2, 2, 256) 0
batch normalization 13 Batch Normalization (None, 2, 2, 2, 256) 1024
activation 13 Activation (None, 2, 2, 2, 256) 0
conv3d 16 conv3d 16 (None, 1, 1, 1, 512) 3539456
batch normalization 14 Batch Normalization (None, 1, 1, 1, 512) 2048
activation 14 Activation (None, 1, 1, 1, 512) 0
conv3d 18 3D Convolution (None, 1, 1, 1, 512) 131584
conv3d 17 3D Convolution (None, 1, 1, 1, 512) 7078400
add 7 Add (None, 1, 1, 1, 512) 0
batch normalization 15 Batch Normalization (None, 1, 1, 1, 512) 2048
activation 15 Activation (None, 1, 1, 1, 512) 0
conv3d 19 3D Convolution (None, 1, 1, 1, 512) 7078400
batch normalization 16 Batch Normalization (None, 1, 1, 1, 512) 2048
activation 16 Activation (None, 1, 1, 1, 512) 0
conv3d 20 3D Convolution (None, 1, 1, 1, 512) 7078400
add 8 Add (None, 1, 1, 1, 512) 0
batch normalization 17 Batch Normalization (None, 1, 1, 1, 512) 2048
activation 17 Activation (None, 1, 1, 1, 512) 0
average pooling3d 1 3D Average Pooling (None, 1, 1, 1, 512) 0
flatten 1 Flatten (None, 512) 0
dense 1 Dense (None, 1) 513

Total Parameters 33,171,329
Trainable Parameters 33,163,521
Non-trainable Parameters 7,808
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Table B.4: 3D ResNet-18 Architecture with Spatial Resolution of 40 Pixels

3D ResNet-18 Architecture (40 Pixels)
Layer Type Output Shape No. Parameters

input 1 Input (None, 30, 40, 40, 1) 0
conv3d 1 3D Convolution (None, 15, 20, 20, 6) 22016
batch normalization 1 Batch Normalization (None, 15, 20, 20, 6) 256
activation 1 Activation (None, 15, 20, 20, 6) 0
max pooling3d 1 3D Max Pooling (None, 8, 10, 10, 64) 0
conv3d 2 3D Convolution (None, 8, 10, 10, 64) 110656
batch normalization 2 Batch Normalization (None, 8, 10, 10, 64) 256
activation 2 Activation (None, 8, 10, 10, 64) 0
conv3d 3 3D Convolution (None, 8, 10, 10, 64) 110656
add 1 Add (None, 8, 10, 10, 64) 0
batch normalization 3 Batch Normalization (None, 8, 10, 10, 64) 256
activation 3 Activation (None, 8, 10, 10, 64) 0
conv3d 4 3D Convolution (None, 8, 10, 10, 64) 110656
batch normalization 4 Batch Normalization (None, 8, 10, 10, 64) 256
activation 4 Activation (None, 8, 10, 10, 64) 0
conv3d 5 3D Convolution (None, 8, 10, 10, 64) 110656
add 2 Add (None, 8, 10, 10, 64) 0
batch normalization 5 Batch Normalization (None, 8, 10, 10, 64) 256
activation 5 Activation (None, 8, 10, 10, 64) 0
conv3d 6 3D Convolution (None, 4, 5, 5, 128) 221312
batch normalization 6 Batch Normalization (None, 4, 5, 5, 128) 512
activation 6 Activation (None, 4, 5, 5, 128) 0
conv3d 8 3D Convolution (None, 4, 5, 5, 128) 8320
conv3d 7 3D Convolution (None, 4, 5, 5, 128) 442496
add 3 Add (None, 4, 5, 5, 128) 0
batch normalization 7 Batch Normalization (None, 4, 5, 5, 128) 512
activation 7 Activation (None, 4, 5, 5, 128) 0
conv3d 9 3D Convolution (None, 4, 5, 5, 128) 442496
batch normalization 8 Batch Normalization (None, 4, 5, 5, 128) 512
activation 8 Activation (None, 4, 5, 5, 128) 0
conv3d 10 3D Convolution (None, 4, 5, 5, 128) 442496
add 4 Add (None, 4, 5, 5, 128) 0
batch normalization 9 Batch Normalization (None, 4, 5, 5, 128) 512
activation 9 Activation (None, 4, 5, 5, 128) 0
conv3d 11 3D Convolution (None, 2, 3, 3, 256) 884992
batch normalization 10 Batch Normalization (None, 2, 3, 3, 256) 1024
activation 10 Activation (None, 2, 3, 3, 256) 0
conv3d 13 3D Convolution (None, 2, 3, 3, 256) 33024
conv3d 12 3D Convolution (None, 2, 3, 3, 256) 1769728
add 5 Add (None, 2, 3, 3, 256) 0
batch normalization 11 Batch Normalization (None, 2, 3, 3, 256) 1024
activation 11 Activation (None, 2, 3, 3, 256) 0
conv3d 14 3D Convolution (None, 2, 3, 3, 256) 1769728
batch normalization 12 Batch Normalization (None, 2, 3, 3, 256) 1024
activation 12 Activation (None, 2, 3, 3, 256) 0
conv3d 15 3D Convolution (None, 2, 3, 3, 256) 1769728
add 6 Add (None, 2, 3, 3, 256) 0
batch normalization 13 Batch Normalization (None, 2, 3, 3, 256) 1024
activation 13 Activation (None, 2, 3, 3, 256) 0
conv3d 16 conv3d 16 (None, 1, 2, 2, 512) 3539456
batch normalization 14 Batch Normalization (None, 1, 2, 2, 512) 2048
activation 14 Activation (None, 1, 2, 2, 512) 0
conv3d 18 3D Convolution (None, 1, 2, 2, 512) 131584
conv3d 17 3D Convolution (None, 1, 2, 2, 512) 7078400
add 7 Add (None, 1, 2, 2, 512) 0
batch normalization 15 Batch Normalization (None, 1, 2, 2, 512) 2048
activation 15 Activation (None, 1, 2, 2, 512) 0
conv3d 19 3D Convolution (None, 1, 2, 2, 512) 7078400
batch normalization 16 Batch Normalization (None, 1, 2, 2, 512) 2048
activation 16 Activation (None, 1, 2, 2, 512) 0
conv3d 20 3D Convolution (None, 1, 2, 2, 512) 7078400
add 8 Add (None, 1, 2, 2, 512) 0
batch normalization 17 Batch Normalization (None, 1, 2, 2, 512) 2048
activation 17 Activation (None, 1, 2, 2, 512) 0
average pooling3d 1 3D Average Pooling (None, 1, 1, 1, 512) 0
flatten 1 Flatten (None, 512) 0
dense 1 Dense (None, 1) 513

Total Parameters 33,171,329
Trainable Parameters 33,163,521
Non-trainable Parameters 7,808
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