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ABSTRACT

MSc Statistics Thesis, Department of Statistics, University of the Western Cape.

Estimation of population distributions, from samples which are contaminated
by measurement errors, is a common problem. This study considers the prob-
lem of estimating the population distribution of independent random variables
Xi, from error-contaminated samples ~i (.j = 1, ... ,n) such that Yi = Xi + f·.i,

where E is the measurement error, which is assumed independent of X. The
measurement error ( is also assumed to be normally distributed. Since the
observed distribution function is a convolution of the error distribution with
the true underlying distribution, estimation of the latter is often referred to
as a deconvolution problem. A thorough study of the relevant deconvolution
literature in statistics is reported.

We also deal with the specific case when X is assumed to follow a truncated
Pareto form. If observations are subject to Gaussian errors, then the observed
Y is distributed as the convolution of the finite-support Pareto and Gaus-
sian error distributions. The convolved probability density function (PDF)
and cumulative distribution function (CDF) of the finite-support Pareto and
Gaussian distributions are derived.

The intention is to draw more specific connections bet.ween certain deconvolu-
tion methods and also to demonstrate the application of the statistical theory
of estimation in the presence of measurement error.

A parametric methodology for deconvolution when the underlying distribution
is of the Pareto form is developed.

Maximum likelihood estimation (MLE) of the parameters of the convolved dis-
tributions is considered. Standard errors of the estimated parameters are cal-
culated from the inverse Fisher's information matrix and a jackknife method.

Probability-probability (P-P) plots and Kolmogorov-Smirnov (K-S) goodness-
of-fit tests are used to evaluate the fit of the posited distribution. A bootstrap-
ping method is used to calculate the critical values of the K-S test statistic,
which are not available.
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·Simulated data are used to validate the methodology. A real-life application
of the methodology is illustrated by fitting convolved distributions to astro-
nomical data

March 1, 2010
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Chapter 1

General Introduction and
Objectives

1.1 Introduction

A statistical problem which is common in many areas of research such as econo-
metrics, astronomy, public health or biostatistics is the need to derive population
properties from samples which are contaminated by measurement errors. In the
statistical literature, a sample is defined as a subset of a population. Typically,
"population" is the conceptual totality of objects under consideration. Samples are
selected from the population and statistics are calculated from the samples so that
one can make inferences or extrapolations from the sample to the population. In
this study, the sample values are measured, but subject to measurement errors.
The observed contaminated sample values are then used to estimate the underlying
population (i.e., general) properties. An example includes density or distribution
estimation of a variable X given data Y. Estimation of these values is known to
be problematic if the variable X is measured with errors. Previous work with this
problem generally has used the assumption that the measurement errors have a

Gaussian distribution (Eltinge, 1999). Problems of this nature are commonly called
measurement error problems, and statistical models and methods for analysing such
sample data are called measurement error models (Stefanski, 2000).

The first part of this study reviews the literature op nonparametrie density/distribution
estimation based on contaminated samples. Some relevant references are Mendel-

1
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sohn and Rice (1982), Stefanski and Carroll (1990), Masry and Rice (1992), Efro-
movich (1997), Carroll and Hall (2004), Chen et al. (2003), Devroye (1989) amongst
others. The second part is concerned with parametric estimation methods. The a.p-
proach is to assume a certain distribution family for the observed contaminated
sample values and estimate t.he parameters of the specific family member. Chap-
ter 4 contains an extensive discussion of the parametric method. In the statistical
literature, researchers often focus on the theoretical underpinnings whereas here,
the focus is only the methodology and theory of reasonably immediate practical
relevance.

1.2 Measurement error problems

The model for a variable X measured with error c is.
(1.1 )

where

(i) X is the underlying variable of interest

(ii) Y is the observed value

(iii) to is the difference between the underlying variable X and the observation Y;
to is also ca.lled measurement error and assumed to be independent of X.

In many areas of application, statistically meaningful models are defined in terms of
variables X that for some reason are not directly observable. In such situations, it
is common for substitute variables Y to be observable instead. The substitution of
the variable Y for X complicates the statistical analysis of the observed data when
the purpose of analysis is inference about a model defined in terms of X (Stefanski,
2000). Problems of this nature are commonly called measurement error problems.

Some examples include, measurements of systolic blood pressure (Stefanski, 2000);
environmental risk factors, case-control studies of disease and serum hormone lev-
els, food intake records, 24-hour recalls and biomarkers (Carroll, 1997). Other more
detailed examples of measurement error problems have been given by Carroll et al.

(1995) and Meister (2009).

2
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Generally, there are two statistical methods for estimating the underlying population
properties. One is the parametric approach and the other is a nonparametrie one.

1.2.1 The nonparametrie approach

The nonparametrie method does not specify a particular family of distributions.
There is a particularly extensive literature on solving the problem posed by model
(1.1), where one wishes to estimate the distribution function of X.

Suppose the underlying variable X has the probability density function (PDF) f xC),
and E has the PDF ffC)' The random variable Y in (1.1) has the PDF .{yO given
by the convolution integral

fy(y) =1:ff(Y - x)fx(x) dx (1.2)

(Mood et al., 1974). The corresponding cumulative distribution function (CDF) of
Y can be expressed as

Fy(y) =1:f,(y - :r;)Fx(x) d.']; (1.3)

(Billingsley, 1994 and Gaffey, 1959). The form of ffC) is usually assumed to be
known.

The problem is to estimate the density fxO and/or the CDF FxC) given obser-
vations {Yl, Y2," . ,Yn.} and the density ff(')' The estimation of fxC) in (1.2) and
FxC) in (1.3) is referred to as the deconvolution problem. Measurement error prob-
lems are sometimes called deconvolution problems.

Density deconvolution has been addressed by several authors, including amongst

others Carroll and Hall (1988), Fan (1992), Liu and Taylor (1989), Stefanski and
Carroll (1990), Carroll and Hall (2004) using kernel methods. Turlach and Hazelton
(2008) proposed an approach to density deconvolution, based on the use of weighted
kernel estimators. Masry and Rice (1992) address the problem using estimates of
the derivatives of the convoluted density. Cordy and Thomas (1997), Mendelsohn

and Rice (1982), Chen et al. (2003) treated the settings where distribution function
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can be expressed as a finite sum of known distribution functions. Gaffey (1959) and
Stefanski and Bay (1996) considered estimating the distribution Fx in the presence
of normally distributed measurement error.

The methodologies for several nonpara.metric deconvolution methods used to esti-
mate the density fx (.) and the distribution Jj'x (-) are briefly discussed in Chapter
')d.

1.2.2 The parametric approach

The parametric approach is to assume a certain distribution family for the observed
contaminated sample values and estimate the parameters of the specific family mem-
ber. Specifically, the general forms of the densities J x (-) and Jf (-) in (1.2) are (as-
sumed) known, but one wants to estimate some para.meters in one or both densities.
In Chapter 4, we deal with a specific case where X has a power-law (i.e., Pareto)
form. The parameters of the distribution of X, given data y and assuming Gaussian
errors (. are estimated. The standard method of maximum likelihood for parameter
estimation is indicated, and developed here.

1.3 Assumptions

In order to construct any estimation method to analyse the effect of measurement
error, one needs to make some assumptions about the process which generates the
differences between the underlying variable of interest X and the observed value Y.

The two critical common assumptions that underlie the measurement error model
are as follows:

(i) The independence between the random variables X and (., This describes that
the targeted random variable X does not have any effect or influence on the
measurement error (.,

(ii) The measurement error (. is known to have a normal distribution with zero
mean and variance (J2. The normal error variance (J2, which may be unknown,

is assumed constant across the observations.

These assumptions have been documented in all studies related to deconvolution
problems. Therefore, except where otherwise stated, these assumptions are made

4
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throughout this research project.

1.4 Motivation of the Study

The work presented in this project was motivated by an application of statistical
theory to the Astronomy and more precisely to the statistical analysis of masses of
giant molecular clouds. That is, the estimation of the distribution of the masses of
molecular clouds in the galaxy M33 and the Large Magelianic Cloud (LMC), and to
the mass distribution of H I (neutron hydrogen) clouds in the LMC. The analysis
is presented in Chapter 5. Refer to Rosolowsky (2005) for a clear review of the
importance of the mass spectra of giant molecular clouds.

1.5 Objectives

In summary, the work presented in this project aims to:

1. provide a review of the statistical literature on deconvolution of distribution
functions;

2. draw more specific connections between certa.in t.echniques;

3. contrast the various methods;

4. develop methodology for deconvolution when the underlying distribution is
known to be of power-law (i.e. Pareto) form;

5. apply the methodology to the estimation of the distribution of the masses of
giant molecular and H I clouds.

1.6 Project Structure

Basic definitions of the methods used here are introduced in Chapter 2.

Chapter :3 consists of a study of the relevant deconvolution literature. The selection
of the methods proposed in the literature is primarily based on three criteria namely
popularity, appealing logic, and simplicity. The, various methods are described in
Chapter 3 in summarised form. Parametric estimation based on a. sample drawn

,I)
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from a population with a truncated Pareto distribution is dealt with in Chapter 4.

An application of the methodology to real data is reported in Chapter 0.

This project will conclude in Chapter () with recommendations and outlooks for
possible extensions.

Computer programs, which were used to obtain the results reported, are given in
the Appendices. Coding of the numerical routines is in MATLAB.
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Chapter 2

Basic Definitions

The definitions given below are very useful.

2.1 Empirical distribution function

The CDF of the random variable Y is defined as Fy(y) = P(Y ::; y) and is estimated
from the sample by the empirical distribution function (EDF)

1 .
- (number of observations ::; y)
ti

L:?=l I(Yj ::; y)
n

where 1("0 ::; y) is an indicator function which assumes the value one, when the
inequality is satisfied and zero when it is not. Therefore, in one dimension, the EDF
is a step function with jumps of size l/n at every point.

2.2 Kernel function

The kernel function J( is a weighting function used in nonparametrie density es-
timation (Silverman, 1986). The function J( is usually, but not always, piecewise
continuous, bounded, symmetric around zero, and for convenience often integrates
to one. Kernel functions can be probability density functions, such as the norma.!
density.

7
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2.3 Goodness-of-fit of a statistical model

The goedness-of-fit of a statistical model describes how well the model fits the data.
Probability-Probability (P-P) and Quantile-Quantile (Q-Q) plots are the most. com-
monly used informal goodness-of-fit tests. Both P-P and Q-Q plots arc used to sec
if a given set of data follows some specified distribution. Those plots should bo
approximately linear if t.hc specified distribution is the correct statistical model.

There are a number of statistical tests which can be performed that are more formal
- the Kolmogorov-Smirnov (K-S), Anderson-Darling, Cramer-von-Mises are prob-
ably the best known. All three of these statistics measure discrepancy between the
theoretical and empirical CDFs, and in that sense are quantitative (rather than vi-
sual) methods. Another well known goodness-of-fit test is the Chi-square (X2). It
compares the observed and predicted numbers of data elements in selected interva.ls.

2.3.1 Probability-Probability plot

The probability-probability plot is constructed using the theoretical CDF, Fy(y), of
the specified statistical model. FY(Y(j)) is plotted against the empirical CDF defined,
in Section 2.1, where Y(j) is the j"ho ordered sample observation (j = 1,2, ... ,n).
Parameters which occur in Fy(y) are replaced by estimated values. The same applies
to other procedures discussed below.

2.3.2 Quantile-Quantile plot

For the quantile-quantile plot - Yei) is plotted against the quantile FyI [U - O.5)jn].

2.3.3 The Kolrnogorov-Srnirnov test

The Kolmogorov-Smirnov test is based on the empirical CDF. The K-S test statistic
is the maximum difference between the theoretical CDF and the empirical CDF:

D = sup IFy(y) - Fn(Y)1
u
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2.3.4 The Anderson-Darling test

The Anderson-Darling test is a modification of the K-S test. The test statistic is

A2 = -71, - S

where
n (2j - 1)

S =L 71, [log FY(Y(j)) + log (1 - FY(Y(n+l-.i))) ] .
.i=l

This test is one-sided, like those described in subsections 2.3.:3, 2.:~.5 and 2.:3.6.

2.3.5 The Cramer-von-Mises test

The Cramer-von-Mises test is also based on the empirical CDF. The test statistic is

2 1 n [(2j _ 1) ] 2T = nW = - + ~ - FY(Y(i))1271, ~ 271, .
.i=l

where

Tables of critical values (CVs) of these tests can be found in several texts. These
CVs are valid when the distribution parameters are known. When the parameters
are estimated from the data, these CVs are only approximate. One solution is to use
a Monte Carlo method, which is based on generating a large number of distribution
functions with the same population parameters and calculating the test statistic for
each of the test cases, from which empirical values for quantiles can be extracted.
This also applies to the tests in subsections 2.:3.:3,2.:3,4 and 2.:3.0.

2.3.6 Chi-square test

The Chi-square goodness-of-fit test is applied to binned (i.e. grouped) data. This
test is very simple to perform but has problems related to the choice of the number of
intervals to use. Another disadvantage of the X2 test is that it requires a sufficiently
large sample size in order for the X2 approximation to be valid. The X2 test is based
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on the following test statistic:

2:8(O-Ei 2T = .7 J XE '" 8-m-1
j=l .7

where OJ and E, are respectively the observed and expected numbers of data ele-
ments in the j-th of the B bins, and m is the number of estimated parameters. In
the present context the expected frequency is calculated by

where Yu is the upper limit for bin j and Yl is the lower limit for bin j.

lO
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Chapter 3

Literature Review

This chapter, provides a description of various deconvolution procedures proposed
in the literature. Both density and distribution estimation methods are reviewed in
this chapter. The selection of the methods proposed is primarily based on popularity,
appealing logic, and simplicity.

3.1 Nonparametric density estimation

3.1.1 Deconvolution kernel density estimator

The most popular approach to deconvolution is the use of a kernel estimator of [x ,
obtained by applying the Fourier inversion formula to the empirical characteristic
function of X. Contributions to the methodology have come from Liu and Taylor
(1989), Carroll and Hall (1988), Stefanski and Carroll (1990), Fan (1992) amongst
others. This technique can only be used if the density ff is fully specified and the
characteristic function corresponding to the density t. is non-zero everywhere. The
procedure is explained as follows:

The characteristic function of the random variable X is given by

'f'x(t) = E (eitX) = .l:eil.x fx(x) dx

and the inverse transform is

II
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1 JOO -.fx(x) = - e-1,txrpx(t)dt
21T -00

(3.1 )

where E(-) denotes the expected value, i is the imaginary unit (i =H) and t is a

real number.
Under the assumption that t: and X are independent, the characteristic function of
the density [v is given by

Then the characteristic function of X is

rpy (t)
rpx(t) = -( ) ,rp, t

The problem now is to estimate the density [x . Substituting in C_U) the density

fx becomes

and its estimator.

Ïx(x) = 2_ roo e-uxcf;y(t) dt.
21T .J -00 rp,(t)

The characteristic function rpy(t) ca.n be estimated by

(3,2)

where cf;n(t) = n-1 I:,7=1 eil.Yj is the estima.ted empirical characteristic function cor-
responding to fy, rp1< (t) is the characteristic function corresponding to the kernel
function K and b is a smoothing parameter called the ba.ndwidth: b > 0, The op-
timal selection of b is not obvious. One common way is to choose the bandwidth b
that minimises the asymptotic mean integrated squared error. But the asymptotic

mean integrated squared error also depends on the true underlying density lx- One
can consider alternative ways of selecting the bandwidth b. In the kernel estimator,

the bandwidth b is treated as a function depending on the observations

12
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(Meister, 2009). Therefore, the observations (Yl, ... , Yn) are used twice. First, to
select the bandwidth, and, then, to estimate the density fx where the b has been
inserted. The fully data-driven methods, such as, cross validation and bootstrap-
ping, can also be used for bandwidth selection. Cross validation is one of the most
popular data-driven methods of bandwidth selection for the kernel estimator, in
general Diggle and Hall (1993) considered cross validation in the deconvolution
kernel estimation.

Substituting <{;y(t) in (:3.2) the density estimator

(3.3)

follows. If the function 'PK(bt)/'Pf(t) is integrable then the density estimator ix in
(:3.:3)can be represented in kernel form as

ix(x) = ]_ i» (x - Yi)
nb b

.i=1

(3.4)

where
I«z) = .l.Joo e-if.z 'PK(t) dt.

27r -00 'Pf(t/b)

The deconvolution kernel density estimator in eJA) is just an ordinary kernel es-
tirriator but. with specific kernel function (:3.5). Furthermore, the kernel I< has to
be carefully chosen, to guarantee that the integral exists (Procnca, 2003). The
interested reader is referred to Stefanski and Carroll (1990) for details.

(3.5)

Remarks

1. Under the assumption that the measurement error is known to belong to the
normal family with zero mean and variance a2, the characteristic function

•
corresponding to the error densi ty i. is

2. Stefanski and Carroll (1990) used the sine kernel I«y) = (7rYtl sin(y) having
the characteristic function 'P1< (t) = I (-1, 1)(t) for Gaussian errors to ensure

1:1
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the existence of the estimator. I(-1,1) represents an indicator function (step

function).

3. Dela.igle (2008) used a kernel with characteristic function

'PK(t) = (1 - e)3 . I( -1, l)(t).

4. In Liu and Taylor (1989) the estimation of the characteristic function 'Py(t)
•was also based on a kernel density estimate of Jy, but with finite limits of

integration in (:3.2).

3.1.2 Simple deconvolving kernel density estimator

A simple dcconvolving kernel density estimator (Prcenca, 2003) avoids the typi-
cal numerical integration, making calculations much easier. The idea behind the
proposed estimator is to replace the kernel function in (:3.5) by the approximate
deconvolving kernel equal to

2

K*(z) = ¢(z) - ;b2 ¢"(z) (3.6)

where ¢(z) is the standard normal density function and ¢"(z) is its second derivative.
Consequently, a simple deconvolving kernel density estimator is

}x(x) = ~ tK* (x - Yi)
nb b

j=1

where K*(·) is symmetric and .r .ix(.r)dx = 1.

3.1.3 Low-order approximations in deconvolution

Some recent studies (e.g. by Carroll and Hall, 2004) argue that finding consistent

estimators for the deconvolution problem is a goal that is often unattainable and,
in practice, one may obtain better practical results by constructing a less ambitious
low-order approximation of [x, and accurately estimate that approximation rather
than the density [x- The kernel methods proposed by Carroll and Hall (2004) are
based on the observation that one can express the expected value of a kernel estima-

tor of Ix as a series expansion in expectations of kernel estimators of derivatives of
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the density fy and that coefficients in the series depend only on moment. derivatives
of the distribution of E.

The (ordinary) kernel density estimators of iv and fx are given by

respectively. Note that the Xj are not observable, therefore ix cannot be computed
directly from the data. Nonetheless, Carroll and Hall (2004) constructed an approx-
imation to ix. The method is explained as follows:

Assume that all central moments /-I'k of the distribution of E are finite and that the
kernel K is an analytic function. That is, all derivatives of kernel J( are defined on
the whole real line. Denoting the k-th derivative of f by f(k), an estimation of the
rth-order approximation to the expected value of if), given by

is
ii~~(x) = i~k)(X) +L Sri~dl+ ...+d,,+k)(x)

v~l

(3.7)

where

and ilk is an estimator of (or another type of approximation to) /-I'k.

The assumption that the error E is symmetric (e.g., normal) leads to /-I'd = 0 for odd
d, and only approximations of even order are relevant. Then (::~.7) simplifies to

f'(k) ( ) - f'(k) ( ) + " S f'(2d1 +...+2d,,+k) ( )X,2r X - Y x L_; (2r) y X
v~l

Hi
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where

The high order approximations can be expressed in terms of standard kernel densi ty
estimators as

f'(k) ( ) = _1_ ~ K(k) (x - YJ)
. X,r x nbk+l L...J r b

.i=l

based on adjusted kernels

Kr(x) = K(x) +I:SrK(d1+ ...+dv) (x).
v~l

The second-, fourth- and sixth-order approximations to E {.it) (x)} (assuming that
the error density is symmetric), are given by

Kk)(X) - 11'2.if'+2)(x);
2

f'(k) ( ) + _!_ ('2 _ ' ) f'(k+4)( ).X,2 x 24 J.L2 J.L4 y X ,

f'(k) () 1 (90 ,3 30" A) fA(k+6)( )X,4 X - 720 11'2- J.L211'4+ J.L6 ,y :r .

The first of these equations is commonly used in kernel density estimation, where it
is usually assumed that r = 2. That is, the finite moment is J.L2= a2, therefore the
estimator (approximation) proposed becomes

A A 1 2 '(2)fx(x) = Jy(x) - 2a fy (x). (3.8)

Remember that jy is the error-free kernel density estimator of Jy, given earlier,
and can be calculated from the observed data. jf') is its second derivative. The

only unknown in (:3.8) is a2. Oelaigle (2008) studied the properties of this low-order
approximation developed by Carroll and Hall (2004) and estimated the unknowns
via the empirical variance of the difference of replicated observations. On the other
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hand, these parameters can be estimated by the method of moments via instrumental
variables; see Delaigle (2008) for more details.

Remarks

1. A low-order approximation in deconvolution does not require any estimation
of the characteristic function, which expresses detailed properties of the error
distri bu tion.

2. The technique enables estimation of the derivative of Jx , as well a.s J x itself.

3.1.4 Density derivative deconvolution

This technique is based on estimating the derivatives of .fy and expanding the inverse
characteristic function CPr (t) in a power series a.nd integrating term by term. From
the inverse transform the 2kth derivative of [v becomes

and for Gaussian errors with zero mean and known variance a2,

The characteristic function corresponding to J x becomes

and the density

Ix (x) = 2~1:e-'" lt,(~!cI'y(t)] dt

00 2kL ;k!(-1)kJ~2k)(x)
k=O

(3.9)

follows. In principle, one can use (:3.9) to form estimates of Jx from estimates of the
derivatives of Jy, though in practice the sum must be truncated - see examples with
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illustrations (truncating the sum at k = 1 and k = 2) in Masry and Rice (1992).
Also, in practice, the characteristic function <py (t) can be estimated from the kernel
density of [v , specified earlier as rpy(t) = rpn(t)<pJ«bt). Therefore the estimator of
fx becomes

00 2k, ,ok '(2k)fx(x) = Z:: ~kl (-1) fy (:r).2 ,.
k=O

(3.10)

Truncating the Sum at k = 1 in (:3.10), the resulting estimator is equivalent to the
one in (3.8). In this case the error variance 02 is assumed known.

3.1.5 Deconvolution via differentiation

Deconvolution via differentiation may be based on representing fx in terms of Her-
mite polynomials generated by the error density I, (Masry and Rice, 1992). The
density estimate ix has the orthogonal series expansion given by

00

ix(x) =L Q'kHk(''r),

k=O

(3.11)

where
, 1 '(kl ( )
ak = k! fy \0 ,

and .if)(O) is the kth derivative kernel estimates of fy(O). The proposed estimator
is analogous to the orthogonal series method proposed by Ca.rroll and Hall (2004).

3.1.6 Spline estimators

The proposed estimator (Chen, et al., 2003) is a spline (piecewise polynomial) func-
tion that transforms the variable X into a standard normal The transformation
to normality makes distribution estimation more efficient for a large class of distri-
butions frequently encountered in practice (Chen, et al., 2003). The method uses
two estimators, namely a weighted normal quantile regression estimator and a max-
imum likelihood estimator. A weighted quantile regression estimator is used as the
starting value for the nonlinear optimization procedure of the maximum likelihood
estimator. It is required that the MLE or final estimator be in a neighbourhood of
the initial estimator or weighted quantile regression estimeiot. The proposed esti-
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rnators are transformed semi-parametric spline estimators that have a parametric
form with the number of parameters chosen as a function of the data" The Akaike

Information Criterion (AIC) may be used for order selection. The proposed estima-
tor is constructed as follows:

Let SC) represent a monotonic spline function, i.e., SC) is restricted to be a nonde-
creasing function. The spline function (grafted polynomial) can be written as

S(t) = pT w(t) (3.12)

where P is the unknown parameter vector and w(t) is a vector of polynomial com-
ponents. Assume that S(X) has the standard normal distribution, that is, the CDF
of X is

Fx(::r;) = <1>[S(.1:)]. (3.13)

Under assumption 0.1;3), the convolution integral of Y given in (1.2) becomes

jy(y) = .l:f((y - .1:)<1>' [S(x)] S'(x)d.1:

where <1> is the CDF of the normal distribution, and primes denote first derivatives.
The weighted quantile regression spline estimator of P is obtained in two major
steps:

(i) weight estimation: EDF of X is obtained.

(ii) quantile regression: EDF of X is smoothed by normal transformation with a
cubic spline.

Furthermore, let So(x) be the grafted polynomial described in (::U2) with parameter
vector Po. Let the weighted quantile regression estimator of fx(x) be

fwqr(x) = <1>' [p~w(x)] p~W/(X),

where Po is the weighted quantile estimator of Po. A mixture scheme was considered
to locate the joinpoints (knots) of Po. The numper of joint points used by Po was
selected by AIC. See Chen et al. (2003) for further discussion of weighted quantile
regression.
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The maximum likelihood estimator of fx is in the interval

[L(x ).iwqr(x), U(x )fwqr(:r)]

for 0 < L(.x) < 1 and U(x) > 1. Then one can get.

L(x)Sb(x) ::; 8'(x) ::; U(x)Sb('x).

where So is the estimated spline transformation of the initial estimator with parame-
ter PO' The maximum likelihood spline estimator can be obtained from the following
nonlinear optimization problem with linear constraints (Chen et al., 2003):

n

maxLlog{fy(y.i)} subject to L(-)Sb(-) < pTw'(-) < U(·)Sb
P .1=1

where
(3.14)

3.1.7 Bayesian method

The deconvolution problem can be viewed in the format of an empirical Bayes prob-
lem (Stefanski and Carroll, 1990).

The model requires specifying a likelihood and a prior distribution for the parame-
ters, the latter representing knowledge about the parameters prior to data collection
(Carroll, 1997). The product of the prior and likelihood is the joint density of the
data and the parameters. Using Bayes's Theorem, one can in principle obtain the
posterior density, i.e., the conditional density of the parameters given the data ..
The posterior summarizes all of the information about the values of the parameters
(Carroll, 1997).

3.2 Nonparametric distribution estimation

3.2.1 The CDF based on kernel methods

The distribution function Fx may be estimated by integrating the density [x-

Therefore, e.g. the kernel density estimator in (3.4) has the corresponding dis-
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tribution function

Fx(x) = ~tw (x - ~j)
n b

)=1

where

w(u) = .{~ K(t)dt.

3.2.2 Distribution derivative deconvolution

A similar approach to subsection :U.4 is based on deriving an inversion formula
for Fx (instead of Ix) in terms of the derivatives of Fv ; the derivatives are then
replaced by the difference quotients of the empirical distribution function Fn. The
analogue of the inverse transform in (3.9) can be expressed as

n 2k
F ()="~(_1)kF(2k)()

X Y L,; 2kk! y Y
k=O

(3.15)

(Gaffey, 1959), and from (1.:3) the 2k-th convolution integral of Fv is

(2k) 1 loo (y - .-c) {(y - .-c)2}Fy (y) =..,J2a H2k In exp - 2 2 Fx(x)d.-c,V'1i( 20')2k+l._00 . v20' (J

•
where Hk(Y) is the kth Hermite polynomial, given as

(Pollard, 1953). The estimator of Fx is obtained by replacing F~2k) in CU5) by the
2k-th difference quotients F~2k) of the empirical distribution. The estimator of F x ,
for a sample of size n, will then be

(3.16)

The sum can be further approximated by truncating at a small value of k such as
k = 1. See Gaffey (1959) for further discussion about t.he proposed estimator.
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3.2.3 Mixture modelling method

The mixture modelling method concerns modelling a statistical distribution by a
mixture (or weighted sum) of other distributions. The idea is to describe the vari-
able of interest X in terms of flexible distribution functions, which cover a wide
range of possibilities including the normal distribution (Carroll, 1997).

Cordy. and Thomas (1997) modelled Fx as a. mixture of a finite number of known
distributions and estimated the unknown proportions using the EM algorithm. Rep-
resent Fx as a mixture

m

Fx = 2::PkFk
k=1

where the Fk are known distribution functions (also called component distributions);
Pk are unknown nonnegative constants satisfing I:~~IPk = 1; and m > 2 is the
number of components.
Under the mixture model, the distribution of Y can be expressed as

m.

Fy = 2::Pk (Pk * Jf)
k=l

where Jf is the normal density with mean zero and known variance (72 and * denotes
convolution. The log-likelihood function for the mixing proportion p = (PI, ... ,PmY

(3.17)

based on the data y is given by

(3.18)

where Jk is the corresponding density function of Fi; The EM algorithm is quite
simple to apply for the estimation of mixing proportions (Cordy and Thomas, 1997).
The sufficient statistics for p from the complete data are the counts

ek = the number of sample values from population k.

Given a prior estimate of p, say pold, a.n updated estimate is obtained through the

following step:

E step: For k = 1, ... ,m calculate the conditional expecta.tions
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M step: Calculate the maximum likelihood estimate of p, pnew, from the estimates

ê1, ... .c.:
new _ c /Pk - k n.

Once the final estimat.e, say p = (PI, ... ,pm)T, of p is obtained, the corresponding
estimate of Fx is given by

m.

Fx(t) = '2)JkFk(t).
10=1

Remarks

A simple choice for the component distributions is to take them to be normal with
. 2common vanance, CJc .

The choice of the number, tri, of components and the value of CJ~ can have a large
impact on the performance of the result.ing estimator.
It was also noted by Cordy and Thomas (1997) that. the variance of Fx usua.lly
increases as mincreases.
On the other hand, when m is too small, the mixture model may provide only a.

poor approximation to the true dist.ribution, in which ca.se the bias of Fx will be
unacceptably large. Refer to Cordy and Thomas (1997) regarding the choice of Flo
and m for this problem.
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Chapter 4

Fitting Pareto distributions to
Data with Errors

4.1 Introduction

In many practical cases, information from a sample is used to draw conclusions
about unknown population parameters. This is one of the most important tasks
of statisticians. Usually researchers draw a random sample from a population and
make some assumptions about the sample observations. For example, the assump-
tion that the sample observations are drawn from one of a known parametric family
of distributions (e.g., the normal densit.y function), is common in statistics. The
density funct.ion .{y(-) underlying the sample could then be estimated by finding
estimates of its mean fl' and variance a2 from the set of observations {Yl, Y2, ... , Vn}
and substituting these estimates into the formula for the norma'! density. This is
called a parametric approach. However, if thé sample observations {Yl, Y2,' .. ,Yn}
are subject to measurement errors, the estimation of fl' and a2 by fitting a normal
density to contamina.ted observations Y.i is not entirely appropriate.

Let the measured values be Y.i = Xj + ei (j = 1, ... ,n), where :ri are the true (i.e.,
error-free) va.lues of the quantity of interest, and e.i are errors. The distribution of
Yj = x.i + ej is given by the convolution integral in (1.2). Tha.t is, the measurements
Yj have now a convolved PDF. Consider the case where X is normal, but is observed
subject to Gaussian measurement errors with mean zero. The convolution of the

normal densities .fx (-) and Jf (-) with means J.tx and J.tf = 0 and variances a~ and
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2" l densitv with d vari 2 2 211, IS agam a norma ensity, WIt mean I'. = IJ.x an variance 11 = I1x + I1c'

4.1.1 Pareto distribution

A Pareto distribution is a simple model for positive data with a power-law probabil-
ity tail. Some examples from ht t.p :Ih~n.wi kipedia org/wi.kUPan,t;o dj st.r j but 1 on
include the distribution of income and wealth among individuals, the sizes of human
settlements, file size distribution of internet traffic which uses the TCP protocol, the
values of oil reserves in oil fields, the length distribution in jobs assigned to super-
computers, sizes of sand particles and sizes of meteorites. The examples from the
field of astronomy are the masses of molecular clouds, stellar initial mass functions,
etc. Refer to Koen and Kondlo (2009) for more examples in this field. The trun-
cated version of the Pareto distribution has a wide range of applications in several
fields in data analysis (Zaninetti and Ferraro, 2008). In astronomy and many phys-
ical and social sciences, the parameters of the truncated Pareto are estimated to
draw inference about the processes underlying the phenomena - that is, to test
theoretical models and to scale up the local observations to global patterns (White
et al., 2008). Therefore, it is very important that these parameters be estimated
accurately (White et al., 2008 and Zaninetti and Ferraro, 2008). Often power-law
indices, and other distributional parameters, are.estimated by fitting the truncated
Pareto form to a set of observations. This is also not appropriate if the measure-
ments are contaminated by substantial measurement errors. A methodology for
error-contaminated observations is derived and developed in the following sections.

4.2 Convolved Pareto distribution

The PDF of the truncated Pareto distribution is given by

-a-l

( )
0,:1:

fx x = L -a _ U -a a > 0, and 0 < L ~ x ~ U (4.1 )

and the zero mean Gaussian error density as

1 [e2
]f(.(e) = --exp --(JJ21r 2112

- 00 < e < 00;

2"
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where a2 is not necessarily known. Also of interest is the CDF corresponding to
(4.1) :

{

0
_ l-(L/x)"

Fx(x) - l-(L/~)"

.T < L

L~x~U
x> U

(4.2)

Since the values of x are bounded in the interval [L, UJ, the probability density
function in (4.1) is known as the truncated Pareto density. The somewhat non-
standard term "finite-support Pareto distribution" (FSPD) will be used in this thesis
to designate a Pareto distribution defined on [L, UJ, as opposed to the standard
Pareto form with support [L, 00). In reality, the support does not range from L to
00 but over a finite range. Accelerated life testing with samples censored is a good
example (Nadarajah and Kotz 2006). For this reason, the focus is on the FSPD
version of the Pareto distribution. The term "truncated Pareto distribution" will be
reserved for data subject to truncation, i.e., subject to physical restrictions which
constrain observations to lie in an interval [L; 1/,]. Truncated distributions arise in
many practical situations.
The convolved PDF of the FSPD and Gaussian error distributions is

jy(y) = 1:fx(x)f,(y - .T) dx

Q, 1 lU -a-l [1 (y.:__.T) 2] d------ x exp -- -- x
L-a - U:» aV2ii L 2 a (4.3)

and the corresponding convolved CDF is

Fy(y) = 1~jy(t) dt

L-o, ~ U-a .IU x-a-1 [~(y: .T)] dx (4.4)

where ~(.) is the CDF of the standard normal distribution. Alternatively, the con-
volved CDF can be derived from (L~),Le.

Fy(y) = .l:FX(X).ff(Y - x) dx

~ 1 _ (~/U)" a~ 1" [1 - (Llx)"1 exp [-~ (y : x) '] dz + '" (y ~ U) .

2fi
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Also of interest is the standard Pareto distribution, i.e., .'E is in the interval [L,oo)
and its PDF is given by

a> 0, and L> 0 (4.5)

and the corresponding CDF by

x 2 L.

The convolved PDF and CDF of a standard Pareto and Gaussian error distributions
are

Jy(y) aa~f x-·-Iexp H(y:x)'] dx

~ (y : L) _ a~ f x-· exp H (y : x) '] dz. (4.6)

For computational purposes, 1>(-) can be calculated by a special function called the
error function:

1> (y : x) = ~ [1 + erf (~~) ]

which is convenient for numerical work.

4.3 Unknown parameters

In practical application, the unknowns are the specific parameter values. These are
the lower limit L, upper limit U, power-law index a (also known as the e:rponent)
and the Gaussian error variance (72.

There are several parameter estimation techniques. However, some of the techniques

could lead to bias and inaccurate estimates. From a statistical point of view, the
method of maximum likelihood is more robust and yields estimators with good sta-
tistical properties. Recent relevant references are Goldstein et al. (2004), Zaninetti

and Ferraro (2008), White, et al. (2008). The standard errors for the estimated
parameters are derived from both the inverse Fisher information matrix and the

jackknife methods.
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The fit of the derived distributions is then assessed using different, methods: graph-
ical assessment (probability-probability plot) and goodness-of-fit tests (Chi-squared
and Kolmogorov-Smirnov). A bootstrapping method is used to calculate the criti-
cal values of the Kolmogorov-Smirnov test statistic, which are not available for real
data ..

4.4 Estimation method

4.4.1 Maximum likelihood estimation

Maximum likelihood estimation (MLE) is one of the preferred methods for esti-
mating parameter values. MLE can only be used if the form of the underlying
distribution is known. The method is based on maximising the likelihood of the
observed sample given the statistical model. Specifically, MLE finds the parameter
values that maximise the product of the PDFs at each of the observed values (as-
suming the observations are independent). The method was pioneered by Sir R. A.
Fisher between the years 1912 and 1922.

Let 8 = [L, U, a, al' represent the vector of parameters and ê = [L, (J, a" al' the vector
of estimates. Then, for independent observations {Yl, Y2, ... , Yn}, the likelihood for
the density jy(y; 8) is of the form

n

f(Yl,Y2,'" ,Yn;8) = II!Y(Y.i;8).
j=1

(4.7)

The likelihood function of the PDF given in (4.3) is

It is equivalent but often mathematically easier to ma.ximise the log-likelihood func-
tion instead of the likelihood function itself. The log-likelihood function correspond-
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ing to (4.8) is given by

L = log(€) = Tl, [log(a,) - 10g(L -0. - U-a.) - log(a) - ~ IOg(27r)]

n /v [ 1 ( ) 2]+ f;log./r., x-a-1exp -2 yj~X dx. (4.9)

According to the method of maximum likelihood the estimates of L, U, a and a are
chosen so as to maximize the observed likelihood function in (4.8), or equivalently,
the log-likelihood function in (4.D). The maximum likelihood estimators of e are the
simultaneous solutions of the m equations:

OLaf} = 0, k = 1,2, ... ,m.
k:

(4.10)

The derivatives are given in Appendix A. Solving for L, U, a, and a from the first
partial derivatives in Appendix A is difficult. Alternatively, the best values of the
parameters can be obtained by direet numerical maximisation of the log-likelihood
function in (4.9). This is relatively easy using a mathematical and engineering cal-
culation computer language such as MATLAB, MAPLE or MATHEMATICA. The
procedure was implemented in MATLAB. The program is in Appendix C.

The maximum likelihood estimates of the parameters for the standard Pareto dis-
tribution in (4.5) and the FSPD in (4.1) are given by:

L min(xl, X2,' .. ,xn)

a ~ n It.(IOgx(j)-logt) r
for U f-t 00 and

L min (.'.C[ ,X2, ... ,xn)

U maxtz}, X2, ... ,xn) and a, solves
n

L [log ·'.CUl- log L]
.i=l

(4.11)
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where r = L/U, for finite U. The last part of equation (4.11), for 0., is implicit
(Aban, et al. 2006). The maximum likelihood estimates of the parameters of con-
volved standard Pareto and Gaussian error distributions are not provided in this
study. The interested reader is referred to Koen and Kondlo (2009) for the latter.

We note in a passing that estimates for L and U of form (4.10) do not apply to
the standard Pareto distribution since derivatives with respect to L and U are not
defined in that case.

4.5 Measures of statistical, accuracy

Standard errors may be used to provide an indication of the size of the uncertainty
and to provide approximate confidence intervals. The standard errors of the para.m-
eter estimates are calculated by two different methods: from the Fisher information
matrix and by a jackknife procedure. The bootstrap method can also be used to
calculate the standard errors of the parameter estimates.

4.5.1 Fisher information matrix

The Fisher information matrix of the estimates has elements

F· = -E [~]
t) ae e

1. J
i,j = 1, ... , m, (4.12)

where m is the dimension of the parameter vector e. Evaluating the expectations in
(4.12) is tedious. Alternatively, an approximation in the form of the empirical infor-
mation follows by substituting directly the observed data into the second derivatives.
Then the Fisher information matrix has elements

i,j = 1, ... ,m.

The standard errors are the square roots of the diagonal elements of [Fij r1. The
second derivatives for this Fisher information matrix are in Appendix A. The pro-
cedure was implemented in MATLAB - see the program in Appendix C.
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4.5.2 The jackknife method

The jackknife and bootstrap are nonparametrie computer-intensive techniques for
estimating (e.g.) standard errors of the estimated parameters. The jackknife pro-
cedure consists of taking subsamples of the original sample of n. independent obser-
vations by omitting a single observation at a time. Thus, each subsample consists
of n - 1 observations formed by deleting a different observation from the Rampje.
Parameter estimates are then calculated from these subsamples. Standard errors are
determined from the variability across the n sets of parameter estimates. A more
detailed description of the jackknife method proceeds as follows:

Let f} be the vector of parameter estimates obtained by MLE from the sample
observations {Yl, ... ,Yn,}. Divide the sample into 09 subgroups (at random if 09 < n)
of size k. Then from each subgroup, re-estimate f} from the remaining (09 - l)k
observations. This provides the 09 partial estimates (j( -.il, j = 1, ... , g. Form the
pseudo-values (the jackknife replications)

e.j = gê - (g - l)êt-·il.

The jackknife estimate of e is the average of the jackknife replications e•.i, that is

1 9 '-

e(.J) = -L e.j = gê - (g - l)ê;
o9.i=1

where
- 1 9ê = -L êt-·i).

9 j=l

The corresponding estimated covariance matrix is

19~ g- '"' IC.l(e) = - ~ (e •.i - e(.J)) (e •.i - e(.J)) .
9 j=1

(4.13)

The procedure was implemented in MATLAB with k
MATLAB program in Appendix C.

1; i.e. 9 = n. See the

:n
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4.5.3 The bootstrap method

In case of bootstrapping, pseudo-samples of size n are produced by drawing with
replacement from the original n data elements. The number of pseudo-samples
would typically be of the order of a thousand or more, hence computing time would
be exorbitant for the problem under discussion. The procedure is as follows:
Draw B independent. bootstrap samples yi, of size n from the sample observations
{Yl, ... , Yn.}· Estimate the parameters e for each yi,. This provides B bootstrap

~ ~
replicates of e i.e., ei, for b = 1, ... , B. For each component ei of the vector e, order
the bootstrap replicates such that ê:(l) ~ ... ~ ê:(B)' The lower and upper confidence
bounds are B· et and B· (1- et) ordered elements. The estimated confidence interval

of ei is

The estimated covariance ma.trix is

(4.14)

-;;:..* B ~
where e = B-1 Lb=l eb' Efron and Tibshirani (1993) is a readable introduction to
both the bootstrap and jackknife methods.

4.6 Simulation study

A simple experiment is used to validate the proposed methodology. Datasets of sizes
n = 50 and n = 300 are drawn from a FSPD and normal deviates of fixed dispersion
are added. Assumed parameter values L = 3, U = 6, a. = 1.5 and a = 0.4 are used.

4.6.1 The effects of measurement errors

Histograms in Figure 4.1 show some of the pitfalls caused by the presence of mea-
surement errors. The top panel shows a histogram of a sample from a FSPD. A
histogram of the same data, with added measurement errors, is given in the bottom
panel. Two effects are clearly visible: the contaminated data extend beyond the
interval [L, U] over which the pure data occur, and the shape of the dist.ribution is
changed. The first effect will clearly bias estimates of the lower and upper limits,
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Figure 4.1: The top histogram is for 300 simulated data elements from a FSPD
with L = 3, U = 6 and a = 1.5. Zero mean Gaussia.n measurement
errors with CJ = 0.4 were added to give the convolved distribution in
the bottom panel. The error-contaminated data "spill" out of the
interva.l [L, Ulo

while the second will lead to biased estimates of the power law exponent: in partic-
ular, since the data are spread over a wider interval, the value of index a estimated
from contaminated data may generally be too small.

The convolved PDF in (4.:3) could differ substantially from the FSPD in (4.1). The
probability-probability plots based on these forms can be compared to distinguish
the difference between the distributions (4.:3) a.nd (4.1).

4.6.2 Assessing quality of fit of t.he model

Without some assessment of goodness-of-fit of the model the parameter estimates
have very limited meaning. We illustrate the importance of verifying that the sta-
tistical model fitted to the data is appropriate - making use of the goodness-of-fit
tests described in section 2.:3 of Chapter 2.
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An informal goodness-of-fit test, the P-P plot, is used to demonstrate the impor-
tance of verifying that the statistical model fitted to the data is appropriate. The
theoretical distribution values are obtained by first estimating the parameters oe-
curing in the theoretical CDFs (i.e., L, U, a, and I)); Fy(·) can then be explicity
evaluated in each observation value Yj. See Chapter 2 for extensive discussion. The
data used in the histrogram above were used to create Figure 4.2. The nonlinear
form in the top panel, corresponding to the FSPD, i.e., assuming zero measurement
errors, convincingly demonstrates that the distribution (4.2) does not describe the
data .. On the other hand, the bottom panel shows that (4.4) is a good model for the
data. Note that for plots values of the parameters estimated from (.:1.11) and CU))
have been substituted in order to calculate the CDFs in (4.2) and (4.4).

MLEs and the corresponding as% confidence intervals for L, U, a, and I) from the
data with measurement errors are given in Table 4.1. Note that the convolved PDF
in (4.3) fitted to the data gives favourable results with true parameter values L = 3,
U = 6, a = 1.5, and I) = 0.4, in particular for larger ti.

The Kolmogorov-Smirnov and other goodness-of-fit tests discussed in Chapter 2 are
not distribution-free in this context, therefore percentage points need to be found
either by a Monte-Carlo method or bootstrapping. The Kolmogorov-Smirnov test,
is selected because it is widely used in practice. The percentage points for the
Kolmogorov-Smirnov test statistic are obtained by bootstrapping.

MLE L U Q, IJ K-S p-values
'Tl, = 50 3.0919 6.4370 1.6971 0.4455 0.980
Cl [2.67; 3.38] [5.73; 7.25] [1.3E-7; 3.99] [4.6E-8; 0.59]
'Tl, = 300 3.0258 5.9989 1.6048 0.3967 1.00
Cl [2.85; 3.19] [5.79; 6.22] [0.60; 2.78] [0.29; 0.48]

Table 4.1: MLEs for two different sample sizes (n = 50 and n = 300) are pro-
vided. Confidence intervals at 95% level calculated from B = 1000
bootstrap samples. Percentage points of the K-S statistic (obtained
from bootstrapping) are given in the last column.

P-values of the K-S statistic given in Table 4.1 indicate lack of statistical significance.
They are larger than expected: for n = 50 and 'Tl, = 300, the p-values are respectively
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Figure 4.2: Probability-probability plots for a simulated dataset, consisting of
300 values distributed according to (4.:3). The plot in the top panel
is based on the (incorrect) assumption that there is no measurement
error; the plot in the bottom panel incorporates Gaussian measure-
ment errors.

0.98 and 1.00. This means that 98% or 100% of the percentage points calculated
from B = 1000 bootstrap samples are larger than the actual K-S test statistic.

4.6.3 Bootstrapping - sample size

Figure 4.3 shows the histrogra.m of the bootstrap estimates for 11, = 50. The results

have been confirmed by 200 Monte Carlo simulat.ions. Figure 4.4 shows the his-
togram of the bootstrap replications for 11, = 300.

An excessive amount of computer time is needed for large sample sizes (11, a few
hundred or more) - primarily required for the maximisation of the log-likelihood
function in (4.9).
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Figure 4.3: Distributions of the estimated parameters for the Tl, = 50 sample,
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4.6.4 Comparison of covariance matrices

We also compare the covariance matrix results calculated from the inverse Fisher
information matrix, bootstrapping and the jackknife method for the n = 50 sa.mple.
For the parameter vector [t (;a a], the respective covariance matrices are

0.0419 0.0084 0.1974 0.0150

CF =
0.0084 0.2319 0.3020 -0.0201

0.1974 0.3020 1.8221 0.0490

0.0150 -0.0201 0.0490 0.0181

0.0495 0.1127 0.2982 0.0372

CB =
0.1127 0.2712 0.6806 0.0845
0.2982 0.6806 1.9091 0.2202

0.0372 0.0845 0.2202 0.0297

~f)
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Figure 4.4: As for Figure 4.:3 , but for a sample size n = 300. The distributions
are much closer to normal than for n = 50.

CJ =

0.0684 0.0945 0.3910 0.0351
0.0945 0.3293 0.8853 0.0417
0.3910 0.8853 3.3338 0.1824
0.0351 0.0417 0.1824 0.0338

The agreement is reasonable, especially between the matrices calcula.ted from the
nonpara.metric computer-intensive techniques (Jackknife and Bootstrap). The stan-
da.rd errors from the matrices are compared in Table 4.2 ..

L U a a
s.e(Fish) 0.205 0.482 1.350 0.135
s.e(Boot) 0.223 0.521 1.382 0.172
s.e( Jack) 0.262 0.574 1.826 0.184

Table 4.2: The standard errors calculated from the Fisher information, the boot-
strap and jackknife matrices
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4.6.5 Deconvolving density functions

The aim in deconvolution is to recover the unknown density functions from con-
taminated observations. An example when X is a normal random variable can be
seen in Figure 4.r). The estimat.ed density is not. far from the true density of X.

The method used is the non parametric penalised contrast estimator for adaptive
density deconvolution proposed by Comte, et al. (2006). The method is based on
model selection, more precisely by minimisation of a penalised contrast function.
The method requires the error variance a to be chosen. The error density, which
was taken to be N(O, 1), is assumed to be fully known.

0.15

---true
- - - estimate0.35

0.3

0.25

0.2

0.1

0.05

O~ __~ ~ L- __~ -L ~ ___J -L L_ __ ~

-2.5 -2 -1.5 -1 -0.5 o 0.5 1.5 2 2.5

Figure 4.5: A simulated example with X (the true density) a standard normal
random variable. The Gaussian error distribution is taken to have
mean zero and variance equal to one. The sample size is n = 500.
A nonparametric penalised adaptive method is used.

Consider the case when X is of Pareto form. Unlike the case when X is normal, the
resulting estimator could differ very significantly from the FSPD. As an illustration,
the nonparametrie deconvolution and parametric methods were applied to simulated
data of the same form as discussed above (FSPD plus noise), with sample size
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n = 300. The results are shown in Figure ,j .6.

Probability density functions
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Figure 4.6: The nonparametrically deconvolved distribution is compared to the
true underlying FSPD and the parametrically deconvolved distribu-
tions. The true parameter values 'are L = 3, U = 6, a. = 1.5 and
(J = 0.4.

Notes

The shape of the nonparametrie density estimate in Figure 4.G is not appropriate.
Neither is the method designed to estimate the finite interval over which the FSPD
is defined. Note also that a small difference in the specified error variance values
could lead to completely different deconvolved density estimates. Therefore, the

choice of the error variance is very critical in this problem.

Application of nonparametrie methods is much less restricted than parametric meth-
ods, due to fewer assumptions made. However, if the assumptions made in para-

metric methods are correct, parametric methods can produce more accurate and
precise estimates as they did in the above examples. They are said to have more
statistical power. But, if those assumptions are incorrect, parametric methods can
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be very misleading.

The power of a statistical test is the probability that the test will reject a false null
hypothesis (that is will not make a Type II error). As power increases, the chances
of a Type II error decreases.

4.7 Testing for specific power-law distributional
forms

Some specific distributional forms of (4.:3) are often of interest. Several types of null
hypotheses could also be of interest. Some are

(i) There may be theoretical models, or other datasets, which suggest particular
parameter values, and one may be interested in testing for conformity with
these. A common example is to test whether the power-law exponent Q, = c,
for specified c.

(ii) The other type of null hypothesis involves whether a simplified distributional
form, such as an unrestricted Pareto or FSPD in (4.5) or (4.1), rather than
the distributional form of (4.:3), provides an adequate description of the data.
Three example are: U --+ 00, for which (4.:3) reduces to (4.6); 17 = 0 for which
(4.:3) reduces to FSPD in (4.1); and U --+ 00 , 17 = 0 which provides the
standard power-law distributional form in (4.5).

Hypotheses can often be tested by likelihood ratio test statistics

2 [max L (Hl) - max L (Ho)] rv X~

where Ho and HI denote the null and alternative hypotheses respectively. The max-
ima of the log-likelihood are determined under both hypotheses. The statistic has

an asymptotic X~ distribution, with degrees of freedom d equal to the number of
constraints imposed by Ho. Hypotheses of the form (i) can be tested by this proce-
dure.

The same procedure cannot be used for hypotheses like those in (ii), since required
regularity conditions are not satisfied (Koen and Kondlo, 2009). Model selection is
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a simple way of viewing the problem for these hypotheses. In that case information
criteria such as Akaike and Bayes for the competing models can be compared. The
Akaike and Bayes Information Criterion are

AlG

BIG

-2£ + 2K + 2K(K + 1)
n- K-1

-2£ + Klogn

where J( is the number of model parameters. The likelihood term in these criteria
measures how well the model fits the data; since it appears as the negative of the
likelihood, the term is small for good fit. The remaining terms arc a measure of
the model complexity - simple models (i.e., small values of K) are preferred. It is
therefore desirable to have both terms as small as possible, i.e. the "best" model is
that which minimises the information criterion.

In practice, the AlG is usually best when increased model complexity leads to incre-
mentally better fits, while the BIG performs best for data which can be modelled
very well with simple models. The model probabilities are

6..,
Pi = " 6..LJ 7.

where
6.. = exp [-~ (IC - lG . )]1. 2 7. mm.

and i indexes the model, and IGmin is the minimum value of the information criterion
(either AlG or BIG). The model with the largest probability is then selected. For
extensive discussion and application to the problem under consideration consult
Koen and Kondlo (2009).

4.8 Truncation of the Pareto distribution

Restriction of the distributional form of (~Ul) to the interval [u, lj where -00 < i ::;
L < U ::;u < 00 may arise. The PDF of the truncated density Jy is given as

jy(y)
tr(Y) = Fy(u) _ Fy(l) l < Y ::; u (4.15)
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and its corresponding CDF by

Truncated distributions can also be seen as conditional distributions .•

The likelihood for the truncated convolved density tr(Y; B) in (-1.IS) is of the form:

and the log-likelihood

n.

Cr = L log jy(Yj; e) - TI, log [Fy(v,) - Fy(l)]
j=1

(4.16)

where

n.L log [jy(Yi; e)] =
.i=l

TI, [log(,6) - 10g(0') - ~ 10g(2/T)]

and

log [Fy(v,) - Fy(l)] (rU 1 { (v. - :1::) (l - ::r) }log ,6) + log.f L x-o.- <p -0'- - <p -0'- dx

where,6 = al (L -a - u-a). Therefore the log-likelihood becomes

TI,

Cr = -TI, log( 0') - 2' log(2/T)

r {( 11, - x) (l - x) }- TI, log JJJ x-a-1 <p -0'- - <p -0'- dx

~ lU -0.-1 l"-X)2}+ Z:: log x exp - 2 dx
L . 20'

j=1

(4.17)

The first and second partial derivatives of the log-likelihood in (4.17) are given in
appendix B.
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4.9 A computational detail .

Evaluation of the log-likelihood is computationally expensive, since n convolution
integrals need to be calculated. A problem arises when integrating a concentrated
function such as exp [-0.5(y - .1,;)2] with respect to .1,; over a. wide interval. The
Matlab built-in functions "quad" or "quadl'' do not subdivide the integration inter-
val finely enough and misses where t.he integrand is non-zero. This can easily be
seen by integrating the function above over the interval [-50,50] (assume y = 0).
The answer should of course be ~, but "quad" gives 7.9E-19 and "quadl'' gives
2.3E-22. The solution is to identify the sub-interval over which the integrand is
non-negligible, and to restrict the integration to this sub-interval only.

Limiting the integration domain is particularly pertinent in the case of the unre-
stricted Pa.reto distribution, for which the upper limit U -t 00 .. Fortunately, nu-
merical determination of the interval over which the integra.nd is non-negligible is
straightforward.

4:1
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Chapter 5

Analysis of real data

5.1 Introduction

The developed methodology is applied to the estimation of the distribution of the
masses of giant molecular clouds (GMCs) in the galaxy M33 and in the Large Mag-
ellanic Cloud (LMC), and to the mass distribution of H I clouds in the LMC. GMCs
and H I clouds are massive clouds of interstellar gas and dust observable by radio
telescope. The mass of the cloud is determined from the intensity of its radio radia-
tion at a wavelength of 21-cm. The method used to measure cloud masses is subject
to measurement errors (Rosolowsky, 2005).

The intention is to demonstrate the application of the theory, rather than to derive
definitive results. Therefore, for example, questions regarding the quality of pub-
lished data are not addressed (Koen and Kondlo, 2009).

Satisfactory results of fitting convolved distributions to GMC masses in the two
galaxies are demonstrated below.

5.2 GMCs in M33

The data analysed in this section were drawn from Engargiola et al. (2003). There
are 148 GMCs in their catalogue. The results of fitting the convolved distributions
to the masses of GMCs in the galaxy M33 are shown in Table 5.1.
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The estimated exponent a = 1.33 is in good agreement with the Engargiola et al.
(2003) estimate of 1.6 ± 0.3, but their lower mass limit L = 4 is rathor different from
the value i = 6.9382 obtained here. The estimated measurement error a = 3.48
is bound to be a severe underestimate of the errors in the largest clouds. Since
there are many more small clouds than large, it seems safe to assume that a will be
determined primarily by masses close to L.

The probability-probability plot in Figure 5.1 is approximately linear, indicating
that the data come from the convolved distribution.

The estimated covariance matrices obtained from Fisher information and the jack-
knife are

0.4200 0.4655 0.1343 0.2259

CF=
0.4655 24.7046 0.2617 0.3783
0.1343 0.2617 0.0687 0.0803
0.2259 0.3783 0.0803 0.3197

and
0.5480 0.0638 0.1670 0.3181

CJ =
0.0638 6.3346 -0.0332 0.0625
0.1670 _:_0.0332 0.0749 0.1030
0.3181 0.0625 0.1030 0.3133

There appears to be reasonable agreement, except for covariances involving (J. We
speculate that this is due to the structure of the Pareto fit.ting problem: much more
data are required for accurate estimation of U, •since only the largest (and there-
fore most scanty) data determine the value of (J. This means that large sample
approximations (such as Fisher information) of covariances of (J will be poorer than

L U a. a
MLE 6.9382 77.7202 1.3336 3.4755
8.é(Fish) 0.6480 4.9704 0.2622 0.5654
8.é(Jack) 0.7403 2.5169 0.2737 0.5598

Table 5.1: The results of fitting the convolved distribution to the masses of
GMCs in the galaxy M33. The estimated parameters with associ-
ated standard errors are provided. The unit of mass is 104 solar
masses.
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Figure 5.1: Probability-probability plot for the galaxy M33 data .

.
covariances involving other parameters. If this is correct, then the jackknife covari-
ance matrix is preferred for datasets of this order.

The significance levels of X2 goodness-of-fit statistics for various numbers of binning
intervals are given in Table 5.2.

number of bins X:l statistic p-values
B = 10 0.50
B = 15 0.66
B = 20 0.28

Table 5.2: The significance levels of x2 goodness-of-fit statistics for various bin-
ning intervals - Engargiola et al. (2003) data.

5.3 H I clouds in the LMC

There are 195 H I cloud masses in the catalogue of Kim et al. (2007). The modelling
results are presented in Table G.3.

4fi
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L U a (7

MLE 3.47 2915,9 0,56 0,82
5.ë(Fish) 0,195 14,846 0,054 0,178
5.ë( J a,ck) 0,183 1409.4 0.051 0.169

Table 5.3: The results of fitting the convolved distribution to the masses of H I
clouds in the LMC. The estimated parameters with a.ssocia.ted stan-
dard errors are provided. The unit of mass is 103 solar masses.

Table 5.4: Five largest masses of the LMC H I clouds. The unit of mass is 10:3
solar masses,

Interestingly, there is a larger difference between the asymptotic and the jackknife
standard error estimates than we saw in Table 5.1, despite the dataset being larger.
A contributory factor is the extent of the high mass tail of the LMC H I cloud dis-
tribution (see Table 5.4): the 190 lowest masses are in the interval 2.2 - 550.4 x 103

solar masses.

This isolation of the large mass value (the second largest mass is 1496 x 103 solar
masses) accounts for the very large standard errors of (; in Table 5.:l. Removing the
largest mass, M(195), docs not. affect the estimates for Land (J, by much (L = 3.66
and Q, = 0.60), but the estimated measurement error is increased to lj = 0.98, and
(; is dramatically reduced to 1501.

The estimated exponent a = 0.56 is in reasonable agreement with the value 0.68
found by Kim et al. (2007) for the same dataset. The linear form of the probability-

probability plot in Figure 5.2 indicates that the estimated distribution fits the data
very well.

The significance levels of X2 goodness-of-fit statistics are given in Table G.f).
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Figure 5.2: Probability-probability plot for the LMC data.

5.4 GMCs in the LMC
A feature of the catalogue of GMC masses in the LMC (Fukui el al., 2008) is that
values are only given to one significant digit. There arc only 21 distinct values
among the 230 masses in the catalogue, ranging from 0.1 to 100 x 105 solar masses.
It is therefore not possible to compare the theoretical and the empirical distributions
using statistics such as goodness-of-fit tests. The MLEs are presented in Table 5.6.
Figure 5.:3 contains a P-P plot for these data.

number of bins X2 statistic p-va.lues
B = 10 0.30
B = 15 0.60
B = 20 0.63

Table 5.5: The significance levels of X2 goodness-of-fit statistics for various bin-
ning intervals - Kim et al. (2007) data ..
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Figure 5.3: Probability-probability plot for the LMC data ..

I L u I CL I a I
I MLE 0.4491 100.4950 I 0.8196 I 0.1616 I

Table 5.6: The results of fitting the convolved distribution to the masses of
GMCs in the LMC. The estimated parameters are provided. The
unit of mass is 105 solar masses.
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Chapter 6

Conclusion

Deconvolution is a useful statistical method for estimating an unknown distribu-
tion in the presence of measurement error. The most widely used nonparametrie
deconvolution estimator in the literature is the deconvoluting kernel density estima.-
tor. The assumption that the measurement errors have a Gaussian distribution is
common. Few studies deal with the case of unknown measurement errors properties.

Researchers from other fields of study, such as astronomy, econometrics, etc. have
not always fully rea.lised the usefulness of deconvolution methods. Astronomers of-
ten rely on work by Lucy (1974), performed more than 30 years ago to tackle this
problem.

The assumption of power-law probability distributions is common in the astronomi-
cal literature. The methodology for deconvolution when the underlying distribution
is known to be of power-law form is developed in this thesis. Satisfactory results
were found by MLE.

The model for the measurement errors is obviously very restrictive. It seems very

likely that in most settings measurement errors will depend on the true values of
the variable. For example, in the case of GMCs a model such as CJ = Q, + bx with Q,

and b constant, seems reasonable (Rosolowsky, 2005). This complicates the analysis,
since CJ can no longer be treated as a constant - it must be included in the inte-
grand. Also, measurement errors cause the data to "spill" from the interval [L, Uj,
particularly near the lower limit L where the probability density .fx (.) is largest.
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This cause the tailing off of data with decreasing .t:(x < L), giving the impression of
data incompleteness. The point is illustrated in Figure ,1.1, which shows histograms
for simulated data with and without, measurement errors. The data in the bottom
panel appears to be complete over [3,6.5], and incomplete for smaller y. In actual

fact there is no incompleteness. Determination of completeness limits is therefore
not entirely straightforward. A brute force way of dealing with this is to select a
conservative completeness interval, and to ignore all data outside the interval In
this regard, the likelihood function given in section 4.8 (and appendix B) would be
useful. The price paid is that the analysis is more complicated - furthermore, if
the completeness interval is too small, it may no longer be possible to determine a
lower limit L and an upper limit U.

Comparison of the computation times of the covariance matrices CF and CJ is also
of interest. The time taken to compute the covariance matrices CF and CJ for the
Engargiola et al. (2003) dataset with n = 148 were, respectively, 4.7 seconds and
6.2 hours (Acer 3273 WXMi, clock speed 1.66 GHz, 80 GB HOD). The computation
time of CJ could be speeded up considerably by relaxing the convergence criteria in-
voked when maximising likelihoods, but it would still be orders of magnitude larger
than the time required to calculate CF. For larger n, the computational time of
CF rises slowly (most of it expended on the calculation of integrals in Appendix
A), while the computation of CJ becomes prohibitive for datasets of the order of a
few hundreds. Therefore, the Fisher information matrix (constituted of the second
partial derivatives in Appendix A) would be very useful in such instances.

A simulation based method of inference for parametric measurement error mod-
els called Simulation-Extrapolation (SIMEX) first proposed by Cook and Stefanski
(1994) and elaborated upon by Stefanski and Bay (1996), could also be useful.
SIMEX estimates are obtained by adding additional measurement error to the data
in a resampling stage, establishing a trend of measurement error induced bias versus

the variance of the added measurement error, and extrapolating this trend back to
the case of no measurement error. This methodology has not been exploited for

parametric density deconvolu tion.

Other possible extensions will be to look at (i) other distributions; (ii) truncated
samples and (iii) the case where a is no longer treated as constant, that is, where it

,1)1
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depends on the true values of x.
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Appendix A: The derivatives of the log-likelihood
function in (4.9).

The following defnitions are useful in both Appendices A and B below:

E(Yi, x) { (y _ X)'}exp _ .1
20'2

K(:r) = w(v,:x)_wC~x)

lo (Yj) lU x-a-1E(Yj,x)dx

II (Yj) lU x-a-1 (logx)E(Yj,x)dx

12 (Yi) = IU x-a-1 (log X)2 E(Y.i, x) dx
.L

13(Yj) = IU .,£-0.-1 (Yj - x)2 E(Yj, x) dx
.L

14 (Yj) = IU X-a-1 (Yj - X)2 (log z ) E(Yj, x) dx
.LU ·

h(Yi) 1 .,£-0.-1 (Yj - X)4 E(Y.i, .'£) dx

h lU .,£-0.-1 K(x) dx

The first partial derivatives of the log-likelihood function C in (4.9) a.re:

ac

ac = Tl, ( o,L-a-l ) _ L -0.-1 ~ E(Y.i, L)
Bl: L-a - U:= f;;: IO(Yi)

U-a-1 t E(Y.i, U) _ Tl, ( o,U-0.-1 )

j=1 IO(Y.i) L-a - U:=

~ _ Tl, [U-a(lo U) _ L -0.(10 L)] _ ~ Il (Yi)
aL-a - U:= g g s: I ( .)

j=1 0 Yl

ac
au

aa
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The second partial derivatives are

82[
F14 =--8L8CJ

82[

F24 = 8U8CJ
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nL-a-1 (1- a log L) naL-a-l (U-alogU - L-o. log L)
L-a - U-a [L-a - u-a]2

_ L-o.-] {tE(Y.i,L)It~Y.i) _ tlOgLE(y.i,L)}
.i=1 [Io(Yj)] .i=] IO(YJ)

U-o.-1 {t E(Y.i' U)I32(Y·i) _ log U t E(Yj, U)}
.i=l [IO(Yi)] .i=l Io(y})

nU-o.-1 (1- alogU) na,U-o.-l (U-o.logU - L-o.logL)+ + ---_:__--=--....,,------=---'-
L-o. - U-o. [L-o. - U-0.]2

Note that the second partial derivatives are used in the following information matrix

Appendix B: The derivatives of the log-likelihood
function Lr in (4.17)

The first partial derivatives of the log-likelihood function L; are

a.cr = L -0.-1 [nI«L) _ t E(Y.i, L)]
ot. h i=l IO(Yi)

a.cr = U-0.-1 [t E(Y.i, U) _ nI«U)]
au j=1 IO(Yi) Ie

a.cr = nJ~ x-a-1 (log.1:) I< (.1:)d.1:_ t II (Y.i)
aa le j=1 lo (Y.i)

a.cr = _~ + 2_t h(Yi) _ 71, .rl~ .1:-0.-1I<tj(X) d.'C
Bo a a3._ IO(Yj) h

}-I •

nl
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The second partial derivatives are

DaDU
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where the derivatives of K(x) with respect to the parameters: a, L and U are:

KdL)

Ku(U)

1 {It/, 2 Il 2 } 1= 4v'21r E(t, x) (t - x) dt - E(t, x) (t - .&) dt - -;;K(.x)
a 21T . -00 • -00

3~{ r E(t,L)(t-L)dt-jl E(t,L)(t-L)dt}
a 21T .J -00 -00

3~ { r E(t, U) (t - U) dt - Il E(t, U) (t - U) dt}
a 21T .J -00 • -00

2 1 {f11. 4 fl 4 }= -;;K (z) + 7v'21r E (t, x) (t - x) dt - E (t, x) (t - .&) dt
a 21T . -00 • -00

- 5~ { r E(t, x) (t - X)2 dt - jl E(t, x) (t - .X)2 dt}
a 21T .J -00 -00
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Appendix C: MATLAB programs

I Algorithm 1: Simulations I

1. For a given model Y = X + E, where the variable X follows a Pareto PDF given
in (4.1) and E "'-' N(O, (12).

2. Let z = Fx(.'"C), then x = (L-o. - z(L-O - u-a.))-l/O" refer to (4.2). Given the

parameter vector values [L, U, a], desired sample size nand z "'-' U(O,l); .1.: in (2)
above returns the un-contaminated simulated -data.
3. Adding the Gaussian error with mean zero and variance (12 to .1.:. The error-

contaminated data Y = .1.: + E is produced.

--------- The Matlab code of Algorithm 1---------

function [Yl = SimuPareto(n,params)
S1o**************************************************************************
S10 inputs: desired sample size n and the parameter vector values [L, U, asigma]
L = paramsf l ): S10 lower limit
U = params(2); S10 upper limit
a = params(3);
sigma = params(4);

% exponent or power indices
S10 error standard deviation

S1o**************************************************************************
z = rand(n,l); % vector of uniformly distributed pseudo-random numbers.
x =((1.' (-a) - z.*(L ." (-a) - U ." (-a))) .. (-1./a));
e = sigma*randn(n,l);
Y = x + e;
%**************************************************************************

% The histograms
subplot(2,1, 1) ,hist(x)
title('UN-CONTAMINATED DATA')
subplot(2, 1,2) ,hist(Y)
title('ERROR-CONTAMINATED DATA')
return
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I Algorithm 2: MLEs of the log-likelihood function given in (4.9) I
The Matlab codes below minimises the negative log-likelihood function with respect
to unknown parameters of the convolved PDF. It accepts initial estimates (params)
and returns the estimated parameter vector (paramsEst) obtained by optimization
(minimization or maximization) procedure.

-------- The Matlab code of Algorithm 2:-------

function [paramsEst, Funval, exi tflag, ou tput] = MAXlikclihood (data, params)
910**************************************************************************

% fminserach = minimize the scalar function loglikfnct, starting at initial (para.ms).
% Funva.l is the value of the function loglikfnct at the solution paramsEst.
910 exitflag = describe the exit condition of fminsearch:
910 1 fminsearch converge to a solution paramsEst
% 0 Maximum number of function evalua.tions or iterations was reached

% -1 Algorithm was terminated by the output function
% output = returns structure output that contains information about. the optimiza-

tion
910**************************************************************************

[paramsEst,Funva.l,exitflag,output] = fminsearchlfploglikfnct.params.] ].data);

return
910**************************************************************************

function [loglikhod] = loglikfnct(para.ms,data)

% loglikfnct(params,data) function returns the negative log-likelihood value
910**************************************************************************
z = sort( data);

n = length(z);
910
%

assigning data to variable z

sample size
910**************************************************************************
910 initial estimates

L = params(l); % Lower limit

ss
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U = params(2);
a = params(3);
sigma = paramaf 4);

%
%
%

Upper limit
exponent
error standard deviation

%**************************************************************************

% Terminate if the conditions are not met

if (a < OIIL < OIIU < Lil sigma < 0)
loglikhod = 1.0e+20;
return
end
%**************************************************************************

% First find the limits of the function only where the integrand is non zero.

re = l.e-8;
tol = l.e-8;

% relative error

for i = 1: n
x = z(i);
Y = integrand2(x,z(i),a,sigma);

while y > re
x = x - 0.5*sigma;
y = integrand2(x,z(i),a,sigma);
end
LI = x; % lower limits
%*************************************************************************

% Note that lower and upper limits must be in the interva.l [L, Ulo
%*************************************************************************

if (LI < L)

Llim = L;
else

Llim = LI;

f)f)
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end
~*************************************************************************

x = z(i);
y = integrand2(x,z(i),a,sigm8o);

while y > re
x = x + O.5*sigma;
y = integrand2(x, z(i), c.sigma):
end
UI = x; % upper limits
~**********************************************************************

if (UI> U)

Ulim = U;
else
Ulim = UI; end
~**************************************************************************

D(i) = qu8odl(@integr8ond2,Llim,Ulim,tol,[],z(i),a,sigma);
end
~**************************************************************************

~ function body

B = n*log(a) - n*log(L' (-a) - U' (-a));
A = -n*log(sigma) - (n/2)*log(2*pi);
C = sum(log(O));
loglike = (A + B) + C;
loglikhod = -loglike;
return

~ negative log-likelihood

~**************************************************************************

function y = integrand2(x,z,a,sigma)
~ integral part of the log-likelihood function.

y = (x.1-a - 1)).*exp((-1/2).*((z - x)./sigma). '2);
return
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Algorithm 3: Information matrix and standard errors of the estimates
The Matlab codes below calculates information matrix and standard errors of the
estimated parameter vector [L, U, 0" sigma] obtained by algorithm 2.

--------- The Matlab code of Algorithm 3a-------
function [covmatrix,stderrors] = infomatrix( data,paramsEst)

% function [covmatrix,stderrors] = infomatrixt data,paramsEst)
% input: data and estimated parameters
% output: Covariance matrix and standard errors of the parameter est.imates
%**************************************************************************

L = paramsEst(l);
U = paramsEst(2);
a = paramsEst(3);
sigma = paramsEst( 4);

z = sort(data);
n = length(data);
%**************************************************************************
for i = l:n
alpf(i) = quad(@integrand2,L,U, [J,[J,z(i),a,sigma);

pbl = (a. A2*LA(_a_2)*UA(_a) - a*L.A(-2*a-2).+ a*L. A(-a-2)*U. A(-a));
be = L. A (-a) _ U. A (-a);
pL = n*(pbljbc. A2);

palpL(i) = -L. A(-a-2).*(-a.-l).*exp(-lj2*(z(i)-L). A2 .jsigma .. A2) _ ...
L. A(-a-l).*((z(i)-L).jsigma .. A2).*exp(-lj2*(z(i)-L). A2.jsigma .. A2);

alpL(i) = (-L. A(-a-l).*exp(-lj2*(z(i)-L). A2.jsigma .. A2)). A2;

pL2 = (palpL.*alpf - alpL).j(alpf. A2);
%**************************************************************************
pbu = (aA2*UA(-a_2)*V(_a) - a*UA(-2*a-2) + a*UA (-a-2)*LA (-a));
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pU = n*(pbu/bc" 2);

palpU(i) = U" (-a-2).*(-a-l).*exp(-1/2*(z(i)-U). "'2./sigma .. 2) + ...
U' (-a-I). *((z(i)- U). /sigma .: 2). *exp( -1/2* (z(i)- U) .. 2./sigma .: 2);

alpU(i) = (U' (-a-l).*exp(-1/2*(z(i)-U).· 2./sigma .." 2)) .. 2;

pU2 = (palpU.*a.lpf - alpU)./(alpf .. 2);
S1o**************************************************************************
pba = (L' (-a)*U' (-a))*(log(L) - log(U))' 2;
pA = n*(-a'(-2) + pba/(bc'2));

a.lpa2(i) = quad(@apart21,L,U, [J,[],z(i),a,sigma);

alpal(i) = (quad(@apartl,L,U, [],[],z(i),a,sigma)) .. 2;

pA2 = (alpa2.*alpf - alpal)./(alpf .. 2);
%**************************************************************************

pS = n*sigma' (-2);

alpsl(i) = quad(@sigpart11,L,U, [],[J,z(i),a,sigma);

alps2(i) = quad(@sigpart21,L,U, [],[],z(i),a,sigma);

alps3(i) = (quad(@sigpart31,L,U, [J,[J,z(i),a,sigma)) .• 2;

pS2 = ((a.lpsl + a.lps2).*a.lpf - alps3).j(a.lpf .. 2);
S1o**************************************************************************
pblu = -a ' 2*L' (-a-l)*U' (-a.-I);

pLU = n*(pblu/bc' 2);

palpLU(i) = L' (-a-l).*U· (-a-l).*exp(-1/2.*((z(i)-L).· 2./sigma ." 2 + ...
(z(i)- U) .. 2.jsigma .: 2));
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pLU2 = palpLU.j(alpf. '2);
~**************************************************************************

pbla = L' (-2*a-1) + (L' (-a-1)*U' (-a))*((a*log(L) - a*log(U)) - 1);
pLA = n*(pblajbc' 2);

palpLA1(i) = L' (-a-l).*log(L).*exp(-lj2.*(z(i)-L). '2.jsigma. '2);

a.lpLA2(i) = -L' (-a-l).*exp(-lj2*(z(i)-L). '2.jsigma. '2);

a.lpLA3(i) = quad(@apartl,L,U, [J,[J,z(i),a,sigma);

pLA2 = ((pa.lpLAl.*alpf) - (a.lpLA2.*alpLA3)).j(alpf. '2);
~**************************************************************************

palpLSl(i) = -L' (-a-l).*((z(i) -L).' 2.jsigma' 3).*exp(-lj2.*(z(i)-L).' 2.jsigma. '2);

alpLS2(i) = -L '(-a-1).*exp(-lj2*(z(i)-L).' 2.jsigma. '2);

alpLS3(i) = quad(@sigpart31,L,U, [],[J,z(i),a,sigma);

pLS2 = ((palpLSl.*a.lpf) - (alpLS2.*alpLS3)).j(alpf. '2);
~**************************************************************************

pbua = U' (-2*a-1) + (U' (-a-1)*L '(-a))*(a*log(U) - a*log(L) - 1);
pUA = n*(pbuajbc' 2);

pa.lpUAl(i) = -U' (-a-l).*log(U).*exp(-lj2.*(z(i)-U).' 2.jsigma.. '2);

alpUA2(i) = U' (-a-1).*exp(-lj2*(z(i)-U) ." 2.jsigma.. '2);

alpUA3(i) = quad(@apartl,L,U, [],[],z(i),a,sigma);

.
pUA2 = ((palpUAl.*alpf) - (a.lpUA2.*alpUA3)).j(alpf. '2);
S1a**************************************************************************

palpUS 1(i) = U' (-a-1). *(( z(i ) -U). '2.jsigma '3). *exp(-1 j2. *(z(i)- U). '2.jsigma. '2);

a.lpUS2(i) = U' (-a-l).*exp(-lj2*(z(i)-U).' 2.jsigma. '2);
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a.lpUS3(i) = quad(@sigpart31,L,U, [],[],z(i),a,sigrna);

pUS2 = ((palpUS1.*alpf) - (alpUS2.*alpUS3)).j(alpf. '2);
w**************************************************************************/0 .

alpASl(i) = quad(@sigpart41,L,U, [],[],z(i),a,sigrna);

alpAS2(i) = quad(@sigpart31,L,U, [],[],z(i),a,sigrna);

•
alpAS3(i) = quad(@apartl,L,U, [],[],z(i) .a.sigma);

pAS2 = ((a.lpAS1.*alpf) - (alpAS2.*alpAS3)).j(a.lpf. '2);
910**************************************************************************
end
xL = (-l).*(pL + surn(pL2));
xU = (-l).*(pU + surn(pU2));
xA = (-l).*(pA + surn(pA2));
xS = (-l).*(pS + surn(pS2));
xLU = (-l).*(pLU + surn(pLU2));
xLA = (-l).*(pLA + surn(pLA2));
xLS = (-1).*surn(pLS2);
xUa = (-l).*(pUA + surn(pUA2));
xUs = (-1).*sum(pUS2);
xAS = (-1).*surn(pAS2);

covrnatrix = inv([xL xLU xLA xLS;xLU xU xUa xUs;xLA xUa xA xAS;xLS xUs
xAS xS]);

stderrors = sqrt( diag(invrnatrix));
return
910**************************************************************************

function y = integrandztx.z.a.sigma)
y = (x. '(-a - 1)).*exp((-lj2).*((z - x).jsigrn8o). '2);

return
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S1o**************************************************************************

function yl = apart IIx.z.a.sigma)
yl = (-x. '(-a - 1)).*(log(x)).*exp((-1/2).*((z -x)./sigma). '2);

return
S1o**************************************************************************

function y3 = apart21(x,z,a,sigma)
y3 = (x.' (-a - l)).*((log(x)). '2).*exp((-1/2).*((z - x)./sigma). '2);

return
S1o**************************************************************************
function y4 = sigpartll(x,z,a,sigma)
y4 = (-3.*x. '(-a - l).*(((z-x). '2).jsigma .. '4) ...
.*exp((-1/2).*((z - x)./sigma). '2));
return
S1o**************************************************************************

function y5 = sigpart21 (x.z.a.sigrna)
y5 = x. '(-a - l).*((z-x). '4)./(sigma. '6).*(exp((-1/2).*((z -x)./sigma). '2));

return
S1o**************************************************************************•

function y6 = sigpart31 (x.z.a.sigma)
y6 = (x. '(-a _ l)).*(((z-x). '2)./(sigma). '3).*exp((-1/2).*((z -x).jsigma). '2);

return
S1o**************************************************************************

function y7 = sigpart41 (x.z.a.sigma)
y7 = (-x. ' (-a - 1)). *(1og(x)). *( ((z-x). '2)./ (sigma). '3). *exp( (-1/2). *( (z -x)./sigma).
, 2);

return

-------- The Matlab code of Algorithm 3b-------

function [schat.lack] = jackfnct( data,paramsEst)
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S1o**************************************************************************

S10 function [sehat] = jack(data,paramsEst) estimates the standard errors
S10 of the paramsEst [L,U.a.sigma]
S10 using jackknife method
S10 input - data and estimated parameter vector of [L,U .a.sigma]
S10 Outputs: Standard errros of the estimates

S10 Created by Lwando Kondlo
S10 March 2008
S10
S10 References:
% Efron, B. Bootstrap Methods. Another Look at the Jackknife.
S10 The Annals of Statistics, Vol. 7, pp. 1-26, 1979.
S1o**************************************************************************
z = sort(data);
n = length(z);

reps = zeros(n,l); S10 initialize jackknife replications
reps2 = zeros(n,l);
reps3 = zeros(n,l);
reps4 = zeros(n,l);
S1o**************************************************************************

for i = 1 : n
zt = z; % store temporary vector
zt(i) = lJ; S10 leave i-th point out (jackknife sa.mple)
Ls = MAXlikelihood(zt,paramsEst);
reps(i) = Ls(l, 1); %jackknife replica.tes of pa.ramsEst

reps2(i) = Ls(1,2);
reps3(i) = Ls(1,3);
reps4(i) = Ls(1,4);
end
S1o**************************************************************************
S10 jackknife estimate
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mureps = mean(reps);
mureps2 = mean(reps2);
mureps3 = mean(reps3);
mureps4 = mean(reps4);
S1o**************************************************************************

S10 get the estimate of the standard error

sehat l = sqrt((n-l)jn *sum((reps - mureps) .. 2));
sehat2 = sqrt((n-l)jn *sum((reps2 - mureps2) .. 2));
sehat3 = sqrt((n-l)jn *sum((reps3 - mureps3). '2));
sehat4 = sqrt((n-l)jn *sum((reps4 - mureps4J .. 2));
S1o**************************************************************************

sehat.Iack = [sehat l sehat2 sehat3 sehat-l];
return

I Algorithm 4: Probability-probability plots I
The Matlab code below plots the Probability-probability plots of the convolved CDF
given the estimated parameter vector [L, U, a., sigma] obta.ined by algorithm 2 and

dataset.

-------- The Matlab code of Algorithm 4

function ppplots(paramsEst,data)

S10 ppplots(paramsEst,data) returns the Probability-probability plots

z = sort( data);
n = length(z);

L = paramsEst(l);
U = paramsEst(2);
a. = paramsEst(3);
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sigma = paramsEst (4);
910**************************************************************************

for i = 1 : n
intepart(i) = quad(@CDFfuntra.il,L,U,[],[],z(i),a,sigma);
constant = a/(L A(-a)- UA(_a));

emp(i) = (i./n);
end
910**************************************************************************
k = 0:0.5:1;
G2 = emp';
G1 = (constant.*intepart)';
plot(G2,G 1,'+' .k.k ,'r', 'LineWidth' ,2)
legend('probabilities', 'straight line');
xlabel('Empirica.l CDFs')
ylabel('Theoretica.l CDFs')
return
910**************************************************************************

function y = CDFfuntrail(P,z,a,sigma)

910 integral part of the CDF function
910 *****************************************.*********************************

N = length(P);
for j = l:N;
x = P(.i);
k = (z - x)./(sqrt(2).*sigma);
CDFnorm = 0.5.*(1 + erf(k));
v = (x. A(-a-1)).*CDFnorm;

u(j) = x;
y(j) = v;

end
return

7,f)
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I Algorithm 5: convolved CDF graph and K-S test statistic I
The Matlab code below calculates the K-S test statistic and plots the graph of the
convolved CDF, given the estimated parameter vector [L, U, a, sigma] obtained by

algorithm 2 and dataset.

-------- The Matlab code of Algorithm 5-------

function [FI] = CDFParetoNorm(paramsEst,data);
910**************************************************************************
z = sort( data(:));
n = length(z);
~**************************************************************************

910 estimates
L = paramsEst(I);
U = paramsEst(2);
a = paramsEst(3);
sigma = paramsEst( 4);
S1a**************************************************************************

•
910 Tolerance parameter for quadrature algorithm (quad or lobbato-quadl)

tolr = 1.e-6;
910**************************************************************************
~ for loop
for i = I : n
D(i) =(quad(@CDFfuntrail,L, U ,tolr, [],z(i) .a.sigmal);
jj = find(z <= z(i));
empir2(i) = length (jj).jn;
end
910**************************************************************************
constant = aj (L A (-8.)- U A (-a,));
G = (constant.*D);
910**************************************************************************
F = G';
emp2 = empir2';
~**************************************************************************

plot(z,F, 'b-' ,z,emp2, '-r', 'LineWidth' ,2)

7f)
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legend('Theoretical CDF','Empirica.l CDF');
xlabel('observe random variables')
y label( 'Probabili ties')
S1o**************************************************************************

Fl = [F emp2];
kol = max( abs( emp2 - F))
return

S10 kolmogorov-smirnov value

Algorithm 6: Bootstrapping critical values of the K-S test statistic
The Matlab code below returns the critical values of the K-8 test sta.tistic given the
estimated parameter vector [L, U, a, sigma] obtained by algorithm 2, dataset and
number of bootstrap replicates, nboot.

--------- The Matlab code of Algorithm 6--------·

function [K8valeus paramsEst 1] = K8bootscriticaiV (data.nboot.paramslist)

z = sort(data)'; % input data
n = length(z);
S1o**************************************************************************

for i=l:nboot,
a = ceil(n*rand(n,l));
zt = z(a);

paramsEstO = Maxlikelihood(zt,paramsEst);
ztt = CDFParetoNorm(paramsEstO,zt);

D = ma.x(abs(ztt(:,2) - ztt(:,l)));
Dx = abs(ztt(:,2) - ztt(:,l));

jj = find(Dx == D);
xx = length (jj);
S1o**************************************************************************

parL(i) = paramsEstO(:,l);
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parU(i) = paramsEstO(:,2);
parati) = paramsEstO(:,3);
pars(i) = paramsEstO(:,4);
end;
%**************************************************************************

KSvaleus = sort(mxll)';
paramsEstL = sort(parL)';
paramsEstU = sort(parU)';
paramslista = sort(para)';
paramsEsts = sort(pars)';
paramsEstl = [paramsEstL paramsEst U paramslista paramsEsts];
return

7R
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