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ABSTRACT

This study sought to identify and fit the appropriate extreme value distribution to

flood data, using the method of maximum likelihood. To examine the uncertainty of

the estimated parameters and evaluate the goodness of fit of the model identified. The

study revealed that the three parameter Weibull and the generalised extreme value

(GEV) distributions fit the data very well. Standard errors for the estimated

parameters were calculated from the empirical information matrix. An upper limit to

the flood levels followed from the fitted distribution.
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Chapter 1

Introduction

1.1 Introduction

Increases in rare events both natural and human in nature are being observed in recent

years all over the world. An example of that is the flooding in Venezuela in 1999 due

to extreme rainfall [Coles; 2001]. The increased interest in studying these extreme

natural events is to mitigate their impact on humans and properties. Statistics which is

a science of decision making based on data is one of the fields involved in studying

extreme events. "Extreme value theory is that part of statistics concerned with the

probabilistic and statistical questions related to these very low or very high values in a

sequence of random variables and in stochastic processes" [Smith; 2004]. Extreme

value theory has long been applied to the study of these rare events and has been

proven to be reliable in fitting models to historical data. In particular, in hydrology the

question of return periods of severe floods is always answered using extreme value

distributions. The application of the extreme value theory has been used in diverse

fields such as finance, environmental studies, economics and meteorology. In

Namibia extreme value theory has been applied in the environmental fields of

hydrology. This study, applies extreme value theory to the observed annual maximum

flood height for the Zambezi River at Katima Mulilo.

1.2 Problem statement

Namibia is a semi arid country with more than half of its land as a desert, and the

other being a wet area, prone to floods that can be either negative or positive for the

north eastern parts of the country. Flooding is viewed as negative as it always destroys

maize crops cultivated in the fertile flood plains. The positive aspect of flooding is

that with more water it means more fish will be caught after the flood and fish is an

important part of the diet for the people living in the Caprivi region .. The Zambezi

River is one of the largest perennial rivers in Southern Africa and serves as a natural

border between Namibia and Zambia. The origin of this river is located in Zambia and

its catchments can be found in both Zambia and Angola. This river is characterized by
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seasonal floods due to rainfall in the upper catchments and its drainage area covers

much of eastern Caprivi therefore making the area prone to seasonal floods that

always damage crops and properties in the region.

The aim of this research project is to estimate parameters for the distribution of annual

maximum flood levels for the Zambezi River at Katima Mulilo. The estimation of

parameters will be done by using the maximum likelihood method. The study aims to

explore data of the Zambezi's annual maximum flood heights at Katima Mulilo by

. means of fitting the Gumbel, Weibull and the generalized extreme value distributions

and evaluating their goodness of fit. Extreme value theory can be a tool that can be

used to study the distribution of droughts (or minimum flood level) which is the

opposite to studying the maximum flood heights. Therefore extreme value theory can

be one of the tools that can be constantly utilised in order to improve planning for the

alleviation of problems due to both the abundance and scarcity of water. The

understanding of the form of the distribution of the observed flood water level can

lead to better estimation and forecasting of future flood levels of the Zambezi River.

1.3 Importance and benefits

The results obtained in this study will be very useful for policy-makers in the fields of

hydrology and water management, especially with respect to the estimated

distribution function of annual maximum floods for the Zambezi River. The study can

serve as a bench mark for comparison with similar studies based on other models not

covered in this analysis. The study will also lay the foundation for future research on

the subject and can be expanded as more data becomes available.

1.4 Research objectives

1. The study aims to contribute to knowledge about the underlying distribution of

observed floods for the Zambezi River.

2. Use statistical techniques such as extreme value theory and model selection to fit

the data of annual maximum flood water level for the Zambezi River. The

following distributions will be considered: Gumbel, Weibull and the generalized

extreme value distribution (GEV).
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3. Estimate parameters for the model by method of maximum likelihood (ML) and

evaluate the goodness of fit of the models and standard errors of the estimated

parameters.

4. The study aims to lay a foundation for future research on maximum flood water

levels for the Zambezi River at Katima Mulilo.

1.5 Research design and analysis

Firstly, the general concepts of extreme value theory will be discussed. Secondly, the

quantitative analysis of data will be carried out. The time series data on water levels

for the Zambezi River was collected from the Ministry of Agriculture and Water and

Rural Development's department of Hydrology. The Matlab software and a Microsoft

excel spreadsheet was used for data analysis.

1.6 Data

For the purposes of this study, annual maximum flood water levels covering the time

period from 1965 to 2003 will be investigated. This is an uninterrupted thirty-nine

year period. For the observed data set to be assumed independent and identically

distributed (iid), the block maxima method will be used [Smith; 1984]. The block

maxima method provides for samples to be taken from blocks of one year and

assumed to be iid. Further discussion of block maxima is given in Chapter 2. The

Zambezi River records contain some missing data for the entire period of observation

[1935-2003], hence the choice to start from 1965.

1.7 Limitations

In this research project only the block maximum method of extreme value analysis

could be explored. In a more comprehensive thesis or mini-thesis additional analyses

could be explored. The sample size of 39 measurements of annual maximum flood

levels also limited the type of conclusions that could be drawn from this study. The

non-inclusion of covariates in the study also limited the optimal use of other

information for a better understanding of the effects of other external factors on

flooding over the Zambezi River at Katima Mulilo.
12
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Chapter 2

Literature Review

2.1 Introduction

This chapter starts by defining concepts used in this research project. It also discusses

in short the theories related to the fitting of extreme value distributions and the

underlying assumptions for modelling these distributions. Understanding of the

concepts discussed in this chapter is imperative in the appreciation of the whole

document and the steps used in this study.

2.2 Definition of concepts

2.2.1 Extreme value theory (EVT) [Kotz S. et al.; 1985:608]

The brief historical development of extreme value is given in the encyclopedia edited

by Kotz, S. et al. states that the basic theory of extreme value was first developed by

Fréchet in 1927 and by Fisher & Tippet in 1928 but was formalized by Gnedenko in

1943.

Suppose there exists an independent and identically distributed (iid) sequence of

random variables X J' X 2' whose cumulative distribution function (CDF) is:

F(x) = Prf X, < x}

also Mn = maxï.X. , , Xn) which is the nth sample maximum of the process

and Mil has a CDF: Pr{M n ~ x} = [F(xW (i)

Equation (i) states that for any fixed x for which F(x) < 1,we have Pr{M
II

~ x} ~ 0 as

n ~ 00 which is not useful. However sequences of constants an' bil exist such that

{
M -b }Pr '~n n~x=[H(anx+bIlW~H(x)

is independent of n. According to extreme value theory H(x) must be one of the three

possible forms of distributions. The importance of this result is that irrespective of
13
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what the original distribution F is, the asymptotic distribution of X (II) is any of the

three forms of the extreme value distribution. This theory is analogous to the

asymptotic normality of sample means, invariant with respect to the underlying

population.

In their simplest forms the three types of the extreme value distribution are:

1. F(x)=exp(-e·X), all x

{
O,

2. F(x) =
expï-x"),

x c O

x >0, a>O

3. F(x) = {exp(_lx1a),
1,

x <0, a>O

x>O

where equation (1) corresponds to the Gumbel distribution, (2) is called the Fréchet

distribution and (3) is the Weibull distribution.

2.2.2 Generalized extreme value distribution (GEV) [Smith; 2004:8]

The three types of the extreme value distribution mentioned above have been

combined by Von Mises and Jenkinson into a single distribution:

F (x) = exp{- ( I+ Ii x ~ A ) *}. where A is the location parameter. IJ is the scale

parameter and jJ is the shape parameter. When the limit jJ = ° the GEV corresponds

to the Gumbel distribution, jJ < ° corresponds to the Fréchet distribution and jJ> °
corresponds to the Wei bull distribution and has finite upper limit.

]4
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2.3 Overview of extreme value theory

The following literature review on the applications of extreme value theory gives a

summary of the use of extreme value theory by researchers around the world. The

usefulness of this theory is in studying data that seem to contain outliers that are real

observed values that may normally be removed from the set as they appear to distort

the results. Extreme value theory is currently applied in at least two forms, the oldest

form of block maxima and the recent method of peaks over threshold method (POT).

The difference between these two methods lies in that the block maxima depends on

grouping the series of observed data into blocks according to time. In this case it can

be a day or month but the natural, and often used, block in hydrology is a year. A

single maximum value represents a series of observed values for analysis. The peak

over threshold method relies on first setting a level such that all measurements above

the earmarked threshold will constitute the sample to be studied. Both methods have

their pros and cons. One of the advantages of block maxima is that the chosen sample

values can be assumed to be independent. The advantage of the POT method is that

more efficient use of available information is made as more cases will be included in

the sample. The disadvantage of the block maxima method is that it restricts the scope

of inferences that can be made from such a study, as the only inference that can be

made relates to the variation between blocks only and nothing can be said about the

variations within the blocks. This is especially of concern when dealing with

environmental phenomena which are mostly affected by differences due to

seasonality. The POT method's disadvantages are due to the subjectivity in choosing a

threshold level. This can result in two different conclusions on the same observed data

depending on the level chosen.

This research project is based on the block maxima principle, because this method has

a more meaningful explanation in hydrological practice, where the annual maximum

flood level can be assumed to be from an independent and identical distribution.

Though this cannot be fully justified, models based on this method are more close to

the definition that extreme value distributions has been designed to follow [Kotz, et

al.; 1985]. The interest is in studying the year to year variation in the flood levels

measured at Katima Mulilo. The distribution will be fitted based on past data on flood

water levels. The unknown distribution can be fitted based on past data using the
15
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method of maximum likelihood estimation. Though there are many factors that

influence flooding, the fitted model does not claim to cover all, as this is just an

idealized way to study some natural random event such as maximum flood levels.

The question of fitting distributions to flood water levels by hydrologists arises from

the need to find such distributions which could be used as tools in decision making.

Suppose the mean flood level for the past six years was 45 meters, the question that

might be asked by the hydrologist is: what is the expected next flood level? Fitting of

distributions could help to answer such a question. The following quote from Pericchi

and Rodriguez-Itube summarizes the reasons for the interest in applying extreme

value theory in engineering practice. "The concern of civil engineers lies in the largest

or the smallest values which a design variable may take during a certain length of

time" [Pericchi & Rodriguez-Itube; 1985]. The work of the hydrologist of fitting

distributions forms part of planning in some engineering designs such as the building

of dams, bridges and flood protection walls. Fitting of extreme value distributions is

an exercise that according to Pericchi and Rodriguez-Itube has a number of

uncertainties which seems to be ignored in practice. The uncertainties as outlined by

Pericchi and Rodriguez-Itube are:

1. Natural uncertainty, the uncertainty in the random process that is generating the

occurrence of the extreme event.

2. Parameter uncertainty, the uncertainty related to the estimation of parameters of

the model of the stochastic process due to limited data.

3. Model uncertainty, the lack of certainty that a particular probabilistic model of

the stochastic process is true.

The first of the three issues cannot be reduced in practice, but the last two can be

reduced by judicious choice of methods of parameter estimation and the family of

distributions to which the data are believed to belong to. The method of maximum

likelihood parameter estimation is one of the methods where uncertainty in the

estimated parameters of the distribution can be quantified. The method of comparing

the fitted distribution to the expected quantiles based on the observed data also gives

an indication as to how uncertain the model is in modelling the event of interest,

based on historic data.

16
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Research studies on the application of extreme value theory in the environmental

fields in Namibia exists, but studies conducted in other countries will also be used. In

the book edited by Finkenstad and Rootzen, Smith writes "extreme value theory is

concerned with the probabilistic and statistical questions related to very high and very

low values in sequences of random variables and in stochastic processes" [Smith;

2004:2]. The application of extreme value theory therefore could be of benefit to the

private sector engineers, financial institutions and government agencies in Namibia

tasked with planning and designing infrastructure and management systems in the

country. Observed random extreme events such as the occurrence of extreme floods,

heavy rainfall, the value-at-risk (VaR) of stocks, are examples which can be modelled

well by extreme value distributions with relevant results for Namibia.

A report appeared in the Namibian newspaper of 19 January 2004, about flooding in

one of the suburbs in Windhoek due to heavy rainfall which caused much damage to

property and endangered people's lives. The story highlights one example where

authorities and engineers were caught off guard with regards to planning for rare

events such as these. The concerned suburb which was flooded is known to be built in

a low lying area near a riverbed and the developers for this housing project seem to

have built without regards to the possibility that the houses built were below the flood

level. This oversight cost the developers a lot of money. This situation went by

without any mention of calculating the chances of the flood being predicted based on

the analysis of historical rainfall figures of the area.

The hydrological flood study relating to Namibia is a regional study, which combines

annual maximum flood data from different sites according to proximity or spatial

measures [Mkhandi & Kachroo; 1996, Ware & Lad; 2003]. One of the perceived

advantages of these regionalized studies is that the combining of data from many sites

help to increase the sample size. The problem of small samples in hydrology is due to

the changing nature of physical processes. An extreme event today might no longer be

as extreme if a more extreme event takes place the next day, leading to a need to

change all past inferences. The disadvantage of regional studies is that the more

heterogeneous a region is, the less reliable the estimate derived by such methods. On

the other hand these studies have more appeal in practice due to scarcity of data, due

to the low availability of recording stations for sites of interest. Estimates based on
17

http://uwc.ac.za



regional studies can be used for un-gauged sites by simple transformation of the

regional parameters to estimate parameters for the location of interest.

The study where the fitting of models to the distributions of floods in Namibia is that

of Mkhandi and Kachroo [1996]. This study recommended a Pearson-three model

with probability weighted moments and the Log-Pearson (gamma three) model with

method of moment parameter estimation to be used. The study of Mkhandi and

Kachroo used moment based estimation methods which are considered unreliable due

to poor sampling properties of the second and higher order sample moments [Ware

and Lad; 2003].

This study will use the maximum likelihood method to estimate parameters, as this

method meets the property of efficiency and consistency [Kotz; 1985:611]. Extreme

value theory is being applied extensively in the hydrology field in other parts of the

world and hence the need to start exploring its use in Namibia as well.

18
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Chapter 3

Model estimation

3.1 Introduction

This chapter will outline the steps followed in model estimation by the maximum

likelihood (ML) method. The maximum likelihood method is discussed further in

Section 3.3. In practice everyone analyzing time series data should construct time

plots. Time plots are important tools used for checking obvious patterns in the data.

For example, Figure 3.1 is a plot of the annual maximum flood water levels recorded

at Katima Mulilo, a town in north-eastern Namibia, over the period from 1965 to

2003. The plot does not show any pronounced systematic changes or patterns over the

period recorded. From such data it might be possible to obtain an estimate of the

maximum flood level that is likely to happen at Katima Mulilo over the next 10 or

100 years. In order to answer these questions one needs to fit a probability distribution

to the observed data for the particular river. The next section starts with the initial step

in fitting probability distributions which entails identifying a probability model that

fits the observed data.

41,---,----.---,----,---,----,---,----,

.5J39

."
D

~38
E
~i37
'i
::J
c
~36

35L_--~--_L--_J----L_--~._~~~--~
1965 1970 1975 1980 1985 1990 1995 2000 2005

Year

Figure 3.1 Annual maximum flood levels at Katima Mulilo, Namibia.
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3.2 Model diagnostics

One of the methods advocated by the literature on extreme value theory for model

identification is that of using the Gumbel QQ (Quantile-Quantile) plots. This standard

method is a useful way of choosing among the three types of extreme value

distributions. The method works as follows: let X (j) be the set of ordered

observations. Plotting X (j) against -log [-log U-0.5/n)], it is expected that the

resulting graph will be a straight line if the Gumbel distribution is a good fit. If the

plot shows a downward curvature then the Weibull distribution will be a better fit for

the data, otherwise if the curvature is upward then the data follows the Fretchet

distribution [Smith; 1984:445].

The motivation for the plot is now discussed for the Gumbel distribution. Suppose we

have a sample of ordered values X (1)' X (2) ,•••••••••• , X (n) from some distribution. The

standard Gumbel Cumulative Distribution Function (CDF) is defined as [Smith;

1984:438],

H(x) = exp{-exp(-x)}, - 00 < x < 00

Taking the logarithm on both sides of the above expression,

log H(x) = -exp(x)

Taking the negative on both sides,

-log H(x) = exp(x)

Taking the logarithm again,

10g[-logH(x)] =-x

Multiplying by negative on both sides,

-log[-logH(x)] = x

Using the estimator

[ ] j-0.5
H xc') = ,} n

20
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- IOg[-IOg( j -n0.5)] = x(jl ....••. (ii)

Quantities given by the left hand side of this equation are referred to as "Reduced

values". When the ordered values x(j) are plotted against the reduced values the

resulting graph is expected to be a straight line if the data follows the Gumbel

distribution. Similar transformations of the standard CDFs for the Weibull distribution

are done and plotted for visual inspection. Figure 3.2 shows the QQ plot for the

Zambezi annual maximum flood water levels at Katima Mulilo. From the plot it is

evident that the Gumbel distribution is not a good fit for the Zambezi flood height

data as the resulting QQ plots shows a downward curvature, which suggests a Weibull

distribution. The only good fit for the Zambezi annual maximum flood water level is

the Weibull distribution as the QQ plot is approximately linear over most of its

domain as shown in Figure 3.3. This suggests fitting the Weibull distribution to the

data.

41r----.----~~--.---~,---~----~--~

...
......

•3~2L-~L-~1----LO----~--~2----~3----~4----~5
Reduced values

ii 40
1
.!:
u 39
j
-a
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~ 38
E
~
.~ 37
E
"'ii
::J
C

~ 36

...
............ ......

.............,
r
/...

..t...
#""

Figure 3.2 Gumbel QQ plot for the Zambezi annual maximum flood water level
at Katima Mulilo
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Figure 3.3 Weibull QQ plot for the Zambezi annual maximum flood water level
at Katima Mulilo

3.3 Maximum likelihood estimation with observed information matrix

Once it is known which of the three distributions is a good representation of our

observed data, the task of estimation of the parameters for the probability distribution

follows. This section will show the steps involved in using the method of maximum

likelihood (ML). The method of maximum likelihood is one of the types of estimation

methods for unknown parameters, when fitting a model to observed data. The method

is preferable due to its adaptability to model change [Coles; 2001 :3]. Though there is

software, it is essential to convince oneself as to how the software is able to find the

solution and this involves understanding the programme doing the computation, and

verifying that the output is indeed appropriate. The following are the steps taken

before using the computer software Matlab in finding the ML estimate.

22
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3.3.1 Weibull maximum likelihood estimation

The three parameter Weibull CDF is given by [Castillo; 2004:201];

F(X)=eXP[_(t~x)P] (iii)

where A ~ 0, J > 0 and jJ are the position, scale and shape parameters respectively.

The Weibull PDF is defined as follows after taking the derivative of the CDF function

given above;

( )
P-I (( )P]jJ A-X A-X .

f(x) = J ---y- *exp - ---y- (IV)

In the present case the unit of time is one year and Xs represents the annual maximum

value for each of the n years. The corresponding negative log likelihood is:

( )

p
A-X

Lx(A,J,jJ) =-nlogjJ+njJlog8-(jJ-l)~)og(A-x)+ L --' (v)
i i J

where x ~ A, J > 0, jJ > 0 .

Equation (v) is the one used to solve for the unknown parameters, by using Matlab

script files to minimize this non linear function. See Appendix F for the Weibull script

file. The script file works by first specifying the function given in equation (v) above

and then using the Matlab's built in function called "fminsearch" to minimize Lx. The

use of the negative log likelihood is dictated by the availability of the minimization

facility "fminsearch": standard Matlab does not have a maximization routine.

One of the advantages of likelihood-based estimation is that the method facilitates the

calculation of the standard errors of the estimated parameters. [Smith; 2004:17]. The

standard errors are a measure of precision and can be derived from the observed

information matrix. The information matrix is an n x n matrix derived by taking the
23
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second partial derivatives of the log likelihood function with respect to the parameters

estimated. The true information matrix is approximated by the empirical information

matrix. This is accomplished by replacing expected values of random variables by

sample values. The first partial derivatives of equation (v) are:

( )
P-l

DA =-(jJ-l)I 1 + IP A-Xi
(A - XJ is is

n (A-X )(A-X )PDp =- jJ +nlogiS- Ilog(A-xJ+ Ilog 6 6

The second partial derivatives from equation (v) follow;

D2 =-I 1 + I{P(~)P_IIO (A-Xi)+(A-Xi)P-l _!_}
Ap (A - Xi ) s 0 g 0 s s

24

http://uwc.ac.za



The variance-covariance matrix is a symmetric matrix from the equations above,

where the inverse of lois the observed information matrix. The square roots of the

diagonal elements form the standard errors for estimated parameters. The Matlab

script file for calculating the empirical information matrix as given in Appendix F.

Similar steps are followed in fitting the GEV and Gumbel distributions shown in

Section 3.3.2 and 3.3.3.

3.3.2 GEV maximum likelihood estimation

Figure 3.2 indicates that the data are probably best fitted by a Weibull distribution.

This can be verified by first fitting a GEV distribution, which encompasses all three

extreme value distribution families, to the data.

The CDF for the GEV is given [Smith; 2004: 16] by:

The PDF of the GEV follows after taking the derivative of CDF above,

The negative log likelihood for the GEV distribution is

( 1) [ (X -1)] [ (X. -l)]-fpL = n log s+ 1+ jJ ~ log 1+ jJ 5 + ~ 1+ jJ 5 ' (vii)

provided that, 1+ jJ( Xi ~
1)> 0, for i = 1, ,n.
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Equation (vii) is the function that needs to be maximized with respect to the

parameters (1, 6, jJ). It is quite complicated to work out the first and second

partial derivatives of the log likelihood for the GEV. The results as given in Castillo

et al. (2004) are therefore simply quoted in Appendix A.

3.3.3 Gumbel maximum likelihood estimation

For completeness, results for the Gumbel distribution are also repeated.

The CDF for the two parameter maximal Gumbel distribution is [Castillo; 2004: 16]:

The PDF is,

g(x)~ !exp( -( x~'<)}x{ -e {<~')J.. . (vii).

The negative log likelihood follows,

L Is:"'" [(Xi -1)] ""'(Xi -1) ...=n ogu+ ~exp - -6- + ~ -6- , (viii),

The variance-covariance matrix is,

where
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1 [(x. -A)]mIl =~"82exp - 6 '

n (x. -A) [ (x. -A)](x -A) [ (x. -A)] (x _,1)2m22=-"82+~2~-~2exp-6 ~+~exP-6 'J4 '

nl", [(x. -A)]ml2 = m21 ="82+ J3L,.exp - 6 (Xi -A-J)

In the case of the Gumbel distribution equation (viii) is to be minimized. The inverse

of 19 is the empirical information matrix. The square roots of the diagonals entries

of 1;1 are approximate standard errors for the estimated parameters.

3.4 Matlab results

The results found when using Matlab script files for minimizing the negative log

likelihood functions with respect to unknown parameters in equations (v), (vii) and

(viii) are shown in Table 3.1. The table shows the parameter estimates together with

the estimated standard errors in parentheses. Since the GEV is a re-parametrisation of

the three standard distributionsal form (Gumbel, Freehet and Weibull), transformed

GEV parameters suitable for comparison with the estimated Weibull parameters are

also given. The agreement is, as could be expected, excellent. The steps used to

calculate the standard errors of the transformed GEV parameters are given in

Appendix A.

Once the results for the parameters are found, there is still a need for confirming

which one of the three distributions does the observed flood water levels for the

Zambezi at Katima Mulilo fit. This can be done by observing the sign of the shape

parameter for the GEV distribution or by using the hypothesis testing method of

likelihood ratio testing.

Table 3.1 shows that the estimate for GEV's shape parameter beta is greater than zero,

indicating that our data set can be modelled well by the Weibull distribution. This

confirms the result found earlier from the QQ plots, that the Weibull is a better fit for
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the Zambezi data. The WeibuIl distribution is known to have a finite upper limit

[Castillo; 2004]. The value of lambda for the Weibull distribution in Table 3.1 is the

estimated upper limit for the maximum flood that can be reached in any year for the

Zambezi River flood level. The values for the parameter estimates in Table 3.1 are

given as point estimates. Table 3.2 provides 95% confidence intervals for the

parameter estimates given in Table 3.1.

Table 3.1 Matlab results of parameter estimates and standard errors obtained
from fitting the Zambezi flood level data using the ML method

PARAMETER LAMBDA DELTA BETA
DISTRIBUTION
GEV 37.6373 1.5659 0.4418
STD error (0.2662) (0.1952) (0.0686)

Weibull 41.1819 3.5446 2.2636
STD error (0.4956) (0.6267) (0.5302)
Transformed 41.1817 3.5444 2.2635
GEV parameters
STD error (0.2399) (0.3813) (0.3512)
Gumbel 37.2851 1.4820 -
STD error (0.3985) (0.2752)

The formula for computing the approximate confidence intervals is,

1\ 1\ 1\ 1\ 1\

¢J± Za * STDerror, where ¢J = (A, 8, jJ).
2

The example of the GEV 95% confidence interval for lambda based on the formula

above is:

Lower limit = 37.6373-1.96*0.2662=37.116

Upper limit = 37.6373+ 1.96*0.2662=38.159

Therefore the 95% Cl for lambda is (37.116, 38.159).

The results in Table 3.2 below show that the confidence intervals for the GEVare

narrower than the ones for Weibull distribution. This is due to the difference in the
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standard errors which are smaller for the GEV than for the Weibull distribution. The

confidence interval for beta of the GEV distribution does not include zero which is an

indication that the data fits the Weibull distribution.

To confirm the adequacy of the fitted model for the observed flood over the Zambezi

we use residual plots, i.e order statistics against the expected values F'-I (~ ). Figure

3.4 shows the residual plot based on the Weibull distribution. The residual plot, based

on the estimated parameters, is close to linear, with a single outlier at the lowest flood

level. This confirms that the statistical model is satisfactory.

Table 3.2 95% confidence intervals for the parameter estimates

PARAMETER LAMBDA DELTA BETA
DISTRIBUTION

GEV (37.116, 38.159) (1.183, 1.948) (0.307, 0.576)

Weibull (40.211, 42.153) (2.316, 4.773) (1.224, 3.303)

Transformed (40.711, 41.652) (1.951, 4.292) (1.575, 2.952)
GEV parameter
Gumbel (26.504, 38.066) (0.9426, 2.0214) -

41
**'"40 *

OJ I! 1** *-g 39
0
0;:: ,'-Ee38 "".#·x ",,-oj'
(00 **E I"! 37 .*ë **i *i36 *~ *
11 *035

3435 36 37 38 39 40 41
Expected values

Figure 3.4 Residual plot for the Zambezi River flood water level based on the

Weibull distribution
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3.5 Likelihood ratio testing

Likelihood ratio testing is a hypothesis testing technique which can be used to assess

the suitability of one of the three types of extreme value distribution. This test is based

on comparing the likelihoods evaluated at parameter estimates for the distributions

being tested.

Ho: jJ = 0 The observed data follows the Gumbel distribution;

HI : jJ > 0 The observed data follows the Weibull distribution;

Test statistics: D=2{74.29-69.25} =10.08

where the values 74.29 and 69.25 are the negative log-likelihoods associated with the

Gumbel and Weibull distributions respectively.

Since D> .%12 (0.0 1)= 6.635, the null hypothesis is rejected at the 1% level of

significance, therefore the Weibull distribution is preferred.
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Chapter 4

Summary of results and conclusion

4.1 Introduction

This last chapter attempts to suggest some policy measures to strengthen Namibia's

preparedness for extreme events in the light of empirical evidence. The

recommendations are based on the findings in the previous chapter.

4.2 Measures to adopt on extreme value distribution modeling

The results in Chapter 3 indicated that the distribution of annual maximum flood

measurements for the Zambezi River follows the Weibull distribution. The result of

fitting the residual plot indicates that the three parameter Weibull distribution makes a

reasonable fit. Though the Weibull distribution does not fit very well at the lowest

point it remains a good fit at the upper levels. The difference between the QQ plot of

the data (Figure 3.3) and the residual plot (Figure 3.4) is due to the number of

parameters being fitted: the QQ plot is based on two parameters while the residual is

based on the three estimated parameters. Therefore there is a need to review the

statistical models targeted at modelling of extreme flood over the Zambezi River at

Katima Mulilo to be compared with the following results to see if they are still

appropriate. It is vital to compare these results as the methodology has improved. It is

observed that the flood level possible for the Zambezi River at Katima Mulilo can be

as high as 42.153 meters. Although, no flood as high as this has been observed so far

for the Zambezi River, this does not exclude the chances of it happening hence the

need to be prepared for such a high level of inundation of water. The ability of

existing structures able to withstand such levels should be verified.

4.3 Conclusion

This paper set out to fit extreme value distributions to the observed flood water level

data over the Zambezi at Katima Mulilo in Namibia. A comparison of the method

used in this project to those being currently used in modelling the Zambezi River

flood distributions is needed. Methods that include covariates such as the amount of

rainfall received in the upper catchments, and other factors that seem to influence the

distribution of flood water levels on the Zambezi River, is advocated.
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Appendices

Appendix A

Step for calculation of the standard errors of the transformed GEV parameter

estimates in Table 3.1

Newton's approximation formula is given as

[J(A, tS,P) - J(An, tSo,Po)]2 z [~~ (A - An) + ~~ (tS - tSo) + ~~ (P - PO)]2

var[f(A,J,P)l ~(~rVar(A)+(~)' var(b) +( ~~JVar(p)+2(~)(;~ )c0V(A,b)+

{~)( ~~ }OV(A,P) + {~)( ~ }OV(J, P)

Decoding by .t,
given by

, s:
1. A = A + p'

tS' and P' the GEV parameters, the transformed parameters are

For example, applying the approximation formula above to the function in number

two:

tS'
let s =%, and f is. P) = p' then ,

, ()2 (' )2 ( )( ')tS I • tS • 1 -tS .,
var[ tS] = var[-, ] z -, vare tS ) + - -. -2 var(p) + 2 -, -, -, cov( tS , P )

P P (P ) P (P t

Similar steps were followed for the functions in 1 and 3 above.

Parameter estimates from the GEV and the empirical information matrix are used to
complete the calculations.
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Appendix B

Elements of the Fisher information matrix of the GEV distribution, from Castillo
et al. (2004).

m" ={ ~:;)=;, p,
m22 = E(- a

2

;) = ~{1-2r(2- fJ)+ p}ss s fJ

m =E(- a2L)=..!!:_{tr2 +(I_r _ _!_)2 + 2q +L}
33 afJ2 fJ2 6 fJ fJ fJ2

m" = m" ={a~~)= o~p{p-r(2- p))

mn = m" = E( - a~~) = - ;Aq + ; )

m =m =E(- a2L )=__!!__[1- _ {1-r(2-fJ)}
23 32 a&JfJ §fJ2 r fJ

where
~

r(u) = f yU-1 e -Y dy is the Gamma function;
o

",(U) -_ d IOdgur(U),'f' is the Psi function;

p = (1- fJ)2 r(1- 2fJ),

q = T(Z - fJ)[If/(1- fJ) _ (11\
and r = 0.5772157 is Euler's constant.
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Appendix C

Database of maximum flood water level of the Zambezi River at Katima Mulilo:
Namibia, 1965-20031,

Year Flood level
(Meters)

1965 37.78
1966 39.67
1967 38.6
1968 39.69
1969 40.79
1970 39.55
1971 38.32
1972 37.04
1973 36.03
1974 37.87
1975 39.77
1976 39.75
1977 38.07
1978 40.39
1979 39.97
1980 38.38
1981 38.72
1982 36.43
1983 35.68
1984 37.05
1985 37.11
1986 38.27
1987 37.59
1988 38.12
1989 38.93
1990 35.37
1991 37.69
1992 35.02
1993 39.06
1994 37.35
1995 36.54
1996 35.07
1997 36.52
1998 38.9
1999 38.67
2000 38.97
2001 38.93
2002 36.78
2003 39.24

I Source: Republic of Namibia: Ministry of Agriculture, Water and Rural Development, Dept of Water
Affairs, Hydrology Division.
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Appendix D

Matlab script files used to minimize the negative log likelihood function with

respect to unknown parameters of the Gumbel distribution, and for calculation

of the observed information matrix.

function gnll=gevlikeG(params l ,x)
n=numel(x);
glambda=params 1(1);
gsigma=params 1(2);
if glambdacêlgsigmacïï

gnll=l.Oe20;
else
z=(x-glambda)./gsigma;
gnll=n *log(gsigma)+sum( exp( -z) )+sum(z);
end

function paramEs 1=gevrnleG(x,params 1)
[paramEsl,fval]=fminsearch(@gevlikeG,paramsl,[],x)

function guminfomatrix(x,paramEs 1)
n=numel(x);
lambda=paramEs 1(1,1);
sigma=paramEsl(I,2);
z=(x-lambda)./sigma;
z2=(x-lambda)./(sigma*sigma);
zl=(x-lambda)./(sigma*sigma*sigma);
gd21d21am=-sum(exp( -z))*( l./(sigma*sigma));
gd21dlarnsig=-sum( exp( -z). *zl-exp( -z)*( l./sigma*sigma))-(n./(sigma*sigma));
gd21d2sig=(n./(sigma*sigma))-(sum( (exp( -z)). *(zl. *z 1)-2 *exp( -z), *zl))-2*sum(zl);
guJ=[gd21d21am gd21dlamsig;gd21dlamsig gd21d2sig]
guinl=inv(gul)
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Appendix E

Two Matlab script files for minimizing the negative log likelihood function with

respect to the unknown parameters of the generalized extreme value (GEV)

distribution. The third script file is used to calculate the observed information

matrix.

function gnll=gevlikel(params,x)
n=numel(x);
glambda=params( I);
gsigma=params(2);
gk=params(3);
if gk <Olglambda<Olgsigma<Olmax(x»(gsigma./gk)+glambda

gnll=1.0e20;
else
z=(x-glambda)./gsigma;

zI=( I./gk)*log( I-gk*(z»;
gnll=n*log(gsigma)-( l-gk)*sum(z I)+sum(exp(z 1»;

end

function paramEs=gevmle(x,params)
[paramEs,fval]=fminsearch(@gevlikel,params,[],x)

function gevinfomatrix(x,paramEs)
gsigma=paramEs( I ,2);
gk=paramEs(I,3);
y=psi(x);
p=«I-gk)"2)*gamma( 1-2*gk);
q=(gamma(2-gk»*«psi( l-gk»-« l-gkj/gkj);
yI=-psi(1);
n=numel(x);
mIl=(nI(gsigma*gsigma»*p;
m22=(n/(gsigma*gsigma*gk* gk»*( 1-2*(gamma(2-gk) )+p);
m33=(nI(gk*gk»*( (pi"2/6)+( l-y 1-(I/gk»"2+(2*q/gk)+(p/(gk*gk»);
mI2=(n/(gsigma*gsigma*gk»*(p-(gamma(2-gk»);
mI3=( -nl(gsigma*gk»*( q+(p/gk»;
m23=(nI(gsigma* gk*gk»*( I-yl-« I-(gamma(2-gk) »/gk)-q-(p/gk»;
gI=[mll mI2 ml3;ml2 m22 m23;m13 m23 m33]
ginleinvïgl)
Stderror=sqrtf diag(ginl)'
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Appendix F

Matlab script files for minimizing the negative Weibull log likelihood function

and for calculating the observed information matrix.

function nlleweiblikeztpars,x)
n=numel(x);
lambda=pars(l);
sigma=pars(2);
beta=pars~3);

if sigmaculbetaculmaxïxjc-lambda
nll=1.0e20;

else
z=(lambda-x);

z I=(z./sigma).l\beta;
nll=-n*log(beta)+(n*beta*log(sigma))-«beta-l )*sum(log(z)))+sum(z 1);

end

function pares=wmle(x,pars)
[pares, value ]=fminsearch(@weiblike2,pars,[],x)

function weibinfomatrix(x,pares)
n=numel(x);
lambda=pares(l,I);
sigma=pares( 1,2);
beta=pares(l,3);
z=lambda-x;
zl=z./sigma;
z2=z I.l\beta;
z3=z I.I\(beta-l);
z4=z./(sigma*sigma); ,
z5=zl.l\(beta-2);
z6=z./(sigma*sigma*sigma);
dldlam=(beta-l) *sum( z.1\-2)-sum( z3 *beta./sigma);
dldbet=(n./beta)+n. *log(sigma)+sum(z)-sum(z2. *log(z 1));
dldsig=-(n*beta./sigma)+sum«beta*z3. *z)./sigma*sigma);
d2Id21am=( (beta-I )*sum(z./\- 2) )+sum( (z5. *(beta*beta-beta) )./(sigma *sigma));
d2Id2bet=(n/(beta*beta))+sum(z2. *(log(zl). *log(z 1)));
d2Id2sig=-«n*beta)./(sigma*sigma))+sum«(beta*beta-beta). *z5. *z4. *z4)+(2*beta. *z3. *z6));
d2Idlambet=-sum(1./z)+sum«(beta.*z3.*log(zl))./sigma)+(z3./sigma));
d21dlamsig=-sum( « (beta *beta-
beta). *z. *z5)./(sigma*sigma*sigma))+«beta. *z3)./(sigma *sigma)));
d21dbetsig=(n./sigma)-sum«z4. *z3)+(beta. *z4. *z3. *log(z 1)));
I=[d21d21am d21dlamsig d21dlambet;d21dlamsig d21d2sig d21dbetsig;d21dlambet d21dbetsig
d2ld2bet]
I1=inv(I)
stderroresqrtï diag(I 1))'
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