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Abstract 

Wetlands have been recognised as one of the most intrinsically valuable and 

threatened ecosystems in the world. Global estimates indicate that wetlands are 

being lost or transformed at a rapid rate, exacerbated by projected climate change 

impacts. This has prompted the need to improve wetland mapping to address the 

conservation and management of these ecosystems effectively. However, this 

remains a challenge. Current mapping approaches estimates of wetland extent 

vastly underestimate the true extent. Ancillary data has been acknowledged to 

improve the accuracy of mapping the distribution of wetlands. This study adds to 

the growing body of knowledge on wetland mapping while incorporating present 

and projected climate change scenarios. The purpose of the study was to model 

the current and potential future wetland distribution for the different climate 

change scenarios in the Western Cape, South Africa. The study combines 

Geographic Information Systems (GIS), field survey, environmental modelling, 

and spatial statistical analyses. The overall wetland density for the study area is 

seven wetlands/10 km2; however, the distribution is uneven. There is an increase 

in overall wetland density from east to west and north to south, and follows a 

similar pattern as the aridity gradient. A Principal Component Analysis (PCA) 

was used to remove redundant and highly correlated environmental variables. The 

wetland dataset was divided into a training and verification dataset, 70% and 30%, 

respectively. The outcomes of the logistic regression model was used to create 

raster layers to map the probabilities of wetland occurrence in the study area. 

Model validation included two datasets; a digital verification dataset and a field 

verification dataset. The final model output predicted wetland presence 

distribution well, with area under receiver operating characteristic curve (AUC  

ROC) values of 0.687 (SE± 0.006) and 0.643 (SE± 0.021) for the digital and field 

verification datasets, respectively. The potential change in the distribution of 

wetlands was modelled under the climate change scenarios based on the 

Representative Concentration Pathways (RCP) 4.5 and RCP 8.5 for the near- 

(2050) and far- (2070) future to determine the spatial differences between the 

current and future distributions. The change analysis indicated a potential loss in 

wetland distribution for 2050 is between  62-90 % and 71-98% for 2070 under 
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RCP 4.5 and RCP 8.5 climate change scenarios, respectively. The findings of this 

study demonstrate the potential of using predictive modelling techniques with 

readily available environmental variables as an important reference for future 

studies to improve the mapping of wetland distribution at a regional scale. 

Keywords: GIS, logistic regression, predictive modelling, principal component 

analysis, RCP 4.5, RCP 8.5, wetland mapping. 
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Chapter One: General introduction and theoretical background  

1.1 Introduction 

Wetlands are valuable natural ecosystems that occupy about 6% of the world's 

land cover (Maltby and Acreman, 2011; Mitsch et al. 2015). Wetlands are areas 

that experience periodic or continuous inundation to a shallow depth and have 

saturated soils where plants and other biological activities are adapted to wet 

conditions (Tooth et al. 2015). They provide a series of ecosystems services that 

benefit the environment, biota and humans, such as flood attenuation, water 

purification, wildlife habitat, climate change mitigation, tourism and recreation 

and provision of resources for human consumption (Kotze et al. 2009). The 

development and survival of human society depend on wetlands due to their rich 

natural resources (Turner et al. 2000). Despite this, there has been rapid 

degradation and loss of wetlands throughout the world due to climate change and 

anthropogenic activities (Davidson, 2016; Mitsch and Hernandez, 2013; Schuyt, 

2005). The combined and cumulative effects of wetland fragmentation and loss, 

the disruption to the ecosystems, and the effects of climate change have 

contributed to their degradation. Recognition of the value and importance of 

wetlands and their interdependence with surrounding ecosystems have 

emphasised the proper management and conservation practices of these systems 

(Hiestermann and Rivers-Moore, 2015).  

The risk of threat and loss of a wetland is primarily attributed to insufficient 

understanding of the complexity and spatial relations between surface water, 

groundwater and wetland vegetation (Murphy et al. 2007). Climate change is 

projected to impact the hydrological regime, precipitation patterns, local changes 

in temperature and consequently changes in evapotranspiration patterns, as well as 

the frequency and intensity of extreme events (Engelbrecht and Engelbrecht, 

2016; Junk et al. 2013).  

Aridity is a complex variable related to changes in climate parameters. It states the 

ratio between the mean annual precipitation and the average annual potential 

evapotranspiration to determine the long-term state of dryness or average water 
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stress of the environment (Chevalier and Chase, 2016; UNEP, 1997). 

Furthermore, spatial and temporal regional aridity gradients influence the 

distribution and extent of wetlands in a landscape (Fay et al. 2016; Metz and 

Tielbörger, 2015).  

The effective management of wetlands necessitates the development of 

knowledge inventories that include location, size, type, ecological condition, 

which are integrative of scientific wetland information and socio-economic 

concerns (Murphy et al. 2007). Wetland inventories provide baseline wetland data 

that can be built upon and serve several purposes such as guiding policy-making 

and prioritising the response of wetlands to guide the management, assessment 

and monitoring of specific wetlands. (Davidson et al. 2018; Hiestermann and 

Rivers-Moore, 2015; Rebelo et al. 2009).  

Comprehensive spatial wetland inventories, which include information on the 

distribution, size, classification and connectivity in the landscape, are the way 

forward for best wetland management practice (Fay et al. 2016; Murphy et al. 

2007). Mapping wetlands in their current distribution, type, and size has proven 

difficult due to the many factors that influence their presence in the landscape. 

The mapping and classification of wetlands is an abstract of the actual on-ground 

wetland distribution. In actuality, these environments form a portion of the 

continuum of soil hydrological condition that traverses a landscape (Murphy et al. 

2007).  

Environmental modelling is an important tool for developing research and 

understanding and a tool for simulation and predictions. Modelling allows for the 

integration of different components, and it provides an abstraction of reality. The 

abstraction is a simple representation of those complex reality components 

considered important for modelling (Wainwright and Mulligan, 2004). Modelling 

helps improve wetland inventory through predicting wetland distribution and 

extent. Furthermore, predicting the effects of climate change on wetlands can 

benefit from environmental modelling by providing an understanding and 

subsequent design of management techniques to increase wetland resilience to 

climate change (Erwin, 2009).  
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1.2 Rationale for the study 

In South Africa, there is high variability and the mean annual rainfall and 

evaporation rates across the country. There is less than 100 mm to 1 500 mm of 

rainfall per annum in the west and east, respectively. The mean annual 

evaporation varies geographically from 800 mm to 2 000 mm (DWS, 2015; 

Kohler, 2016). The mean annual rainfall is 450 mm, which is substantially lower 

than the global average rainfall of 860 mm per annum and classifies the country as 

semi-arid and the freshwater resources under immense pressure. Wetlands in 

South Africa are a particularly important resource for their regulatory and 

provisioning benefits (Schuyt, 2005; Sinchembe and Ellery, 2010). Despite South 

African being one of the signatories of the Ramsar Convention, which provide the 

framework for the protection of wetlands, historically, there has been poor 

monitoring and conservation of wetlands. This finding is consistent with Driver et 

al. (2012) and Sinchembe and Ellery (2010), as more than half of the country's 

wetlands have undergone severe degradation or destruction. 

Currently, wetlands constitute only 2.2% of South African land cover (van 

Deventer et al. 2020). This small area of wetland coverage provides high-value 

ecosystem services  (Driver et al. 2012). The loss and degradation of wetlands are 

likely to encumber future socio-economic development, and poor and rural 

communities are more vulnerable because people's livelihoods and survival are 

intrinsically linked to the resource (MEA, 2005). 

Gaps in data to accurately quantify wetlands' spatial and temporal distribution at 

different scales and their response to the effects of projected climate change is a 

major challenge for environmental managers and decision-makers. This 

information is critical in informing decision-makers where wetlands are in the 

landscape and prioritising conservation efforts based on the wetland type and 

ecological condition of these ecosystems. The inventory will serve as a 

fundamental baseline study for more comprehensive plans for planning and 

decision-making with regard to policies and development. The inventory of 

wetlands is dependent on several factors that influence the occurrence and status 

of the wetland in the landscape (Hiestermann and Rivers-Moore, 2015). Wetlands 
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coverage is vast and often located in inaccessible areas, resulting in difficulty 

using conventional site-specific methods as they are time-consuming, labour 

intensive, expensive and spatially restrictive (Tallis and Polasky, 2009). 

Additionally, dynamic climate-related data are less common for wetland 

modelling to determine water availability and the net local water availability 

(Nyandwi et al. 2016). Therefore there is a need to improve inventory in terms of 

current and projected future wetlands distribution.     

Recent Intergovernmental Panel on Climate Change (IPCC) models for climate 

change depict a decrease in rainfall and an increase in temperature for South 

Africa (IPCC, 2014). The temperatures in the Western Cape are projected to 

drastically increase by 4-6°C and a reduction in winter rainfall of about 20% by 

2100 (Engelbrecht and Engelbrecht, 2016; Engelbrecht et al. 2009). The aridity 

gradient across the Western Cape is of spatial and temporal importance for the 

current climate and projected climate change scenarios. The Western Cape is 

expected to incur the following impacts under climate change projections: 

significant reductions in the supply of water and associated effects on wetlands; 

rising sea-level; loss of species in the biodiversity hotspots; increase in 

evapotranspiration; increases in the frequency of wildfires; as well as several 

effects on livelihood in the province (Dallas and Rivers-Moore, 2014; Driver et al. 

2012; Pasquini et al. 2013).  

The focus of this study is to determine the distribution of wetlands across the 

aridity gradient in the Western Cape in its current distribution and predicted future 

distribution under various climate change scenarios. The findings of the study will 

be a valuable resource to inform future research and planning of conservation 

efforts.  

1.3 Aim and objectives 

The aim of this study was to model the probability of current and future 

geographical wetland distributions under present climate conditions and predicted 

climate change scenarios in the Western Cape, South Africa using logistic 

regression.  
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The objectives of the study are as follows: 

1. To determine the variation in the density of wetlands along the aridity 

gradient in the Western Cape.  

2. To identify mutually independent environmental variables associated with 

the presence of wetlands in the Western Cape.  

3. To develop probability maps of current and future wetland distribution 

under the current climate conditions and predicted climate change 

scenarios Representative Concentration Pathways (RCP) 4.5 and RCP 8.5 

using a logistic regression model.  

4. To determine the predicted loss/gain of wetland distribution extent for the 

current climate change scenarios.  

1.4 Research questions  

The study addresses the following questions:  

1. What is the change in wetland density along the aridity gradient in the 

Western Cape? 

2. What is the effect of each independent environmental variable in 

determining the presence of wetlands? 

3. What is the current potential geographical distribution of wetlands in the 

Western Cape? 

4. What are the suitable areas for wetland distribution under the climate 

change scenarios for the near- (2050) and far- future (2070)? 

5. What will the change be from the current potential wetland distribution 

according to the RCP 4.5 and RCP 8.5 climate scenarios in 2050 and 

2070? 

1.5 Thesis structure 

Chapter One (this chapter) provides a brief introduction to the research project 

and provides an overview of the importance of wetlands in a global and South 

African context regarding the current and projected wetland distribution under 

climate change scenarios. It further explains the need for accurate mapping of the 

distribution of wetlands. The aims and objectives of the study are outlined. 

http://etd.uwc.ac.za/ 
 



 

 6 

Chapter Two reviews the literature and key concepts upon which the study is 

based. Key areas reviewed in this chapter include wetland formation, 

environmental modelling techniques used to model wetlands, a status quo of 

wetlands in the Western Cape, and the impact of climate change on wetland 

distribution.  

Chapter Three describes the regional setting and study area in the Western Cape 

Province.  

Chapter Four describes the research design and methodology implemented to 

achieve the aim and objectives of the study. 

Chapter Five presents the findings of the wetland distribution probability maps for 

current and future climate change scenarios in the study area. Furthermore, the 

chapter includes the results of model evaluation and wetland distribution change 

analysis.   

Chapter Six discusses the results acquired from the study and the accuracy of the 

resultant probability layers using the logistic regression model. The relevance of 

the results was discussed and how it pertains to current research and relation to 

previous research undertaken in South Africa and internationally. Lastly, the 

chapter summarises the concluding remarks of the study and recommendations for 

future research.  
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Chapter Two: Literature review  

2.1 Introduction 

The distribution of wetlands varies both spatially and temporally. An inventory of 

wetland distribution and characteristics is fundamental for informed planning, 

decision-making and management of these resources. Identification of the 

presence of wetlands is important. This chapter presents a review of relevant 

literature, key concepts and principles which form the foundation of the research 

project. The purpose of the review is to introduce important literature on wetlands, 

to determine the findings of current knowledge on a global, national and local 

scale in terms of wetland inventory, planning for climate change and the 

environmental modelling thereof. Several studies have focused on the wetland 

inventory in its current distribution however, there is a limited number of 

published works related to the potential change in the distribution of wetlands in 

terms of climate change. Particularly, in relation to a decrease in rainfall and an 

increase in temperature conditions as projected for the Western Cape Province of 

South Africa. The methods of using logistic regression model in wetland 

distribution modelling in the study aims to further explore its application.  

2.2 Definition of wetlands 

The definition used in this thesis follows the South African National Water Act 

(NWA) No. 36 of 1998: 18, wherein a wetlands is described as “land which is 

transitional between terrestrial and aquatic systems, where the water table is 

usually at or near the surface, or the land is periodically covered with shallow 

water, and which land in normal circumstances supports or would support 

vegetation typically adapted to life in saturated soil” (NWA 36 of 1998). The 

NWA received international attention as it was the first piece of legislation in 

South Africa that made it mandatory for planning and developing of water 

resources to consider its impact on wetlands and rivers (de Moor and Day, 2013).  

Despite this, the NWA focuses more on the need to maintain wetlands and rivers 

in a ‘sustainably usable’ state rather than the explicit conservation of wetlands and 

as a result it is not as successful as anticipated (de Moor and Day, 2013).  

http://etd.uwc.ac.za/ 
 



 

 8 

2.3 Classification of wetlands 

Wetland classification systems categorise wetlands that have a set of similar 

general characteristics into groups and subgroups. These characteristics include 

chemical, ecological, geomorphological and hydrological (Cowardin et al. 1979). 

Wetland classification provides a starting point for wetland inventory (Finlayson 

and van der Valk, 1995).  

South Africa uses the hydrogeomorphic (HGM) classification system developed 

by Ollis et al. (2013) that catalogues wetlands by their position in the landscape 

such as on a crest, slope or valley and according to the way in which water moves 

in, through and out of a wetland system. These include floodplains, channelled 

valley bottoms, unchannelled valley bottoms, wetland flats, depression (including 

lakes), hillslope seep and seepage wetlands (Figure 2.1). For detailed description 

of HGM wetland types refer to Ollis et al. (2013). 
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Figure 2.1: The different hydrogeomorphic types (Ollis et al. 2013).  
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2.4 Wetland formation 

The formation of wetlands can be determined by natural and/or anthropogenic 

factors. Both factors play an important role in the formation mechanism of 

wetlands. For the purposes of the study, we will focus on the natural factors. 

Wetland formation occurs as a result of many abiotic and biotic factors. There are 

three main components that are often included in wetland definitions either by 

themselves or in conjunction and can be considered diagnostic (Maltby and 

Acreman, 2011; Mitsch, 2005): 1) the predominant presence and dynamics of 

water either at or above the surface or within the root zone; 2) unique soil or 

sediment conditions that differ from adjacent non-wetland (terrestrial or fully 

aquatic) areas; and 3) vegetation (and generally animals) are specifically adapted 

to permanently or seasonally wet conditions (Figure 2.2).   

These components are as a result of the interaction between the physical factors, 

which in turn influence the distribution of wetlands in a landscape. The interaction 

between the physical factors occurs at various spatio-temporal scales ranging from 

the regional setting which is influenced by the climate, the water catchment which 

is influenced by the hydrology and topography, and the site specific environment 

of the wetland that is dependent on the geomorphology and soil properties. 

Hydrology is the primary factor that determine the degree to which wetlands exist. 

The wetland structure, processes and functions is determined by different 

hydrological regimes and results in several different HGM wetland types (Maltby 

and Acreman, 2011). The hydrology affects the physicochemical environment 

including soils. Consequently, the interaction between hydrology and the 

physiochemical environment determine the type and quantity of biota, including 

vegetation is found in a wetland. The biota, in turn, cause feedbacks that modify 

the hydrology and physicochemical environment (Mitsch, 2005). The inundation 

of water into the system for a prolonged or significant duration of the hydrological 

regime characterises and is the dependent variable in the formation and 

development of wetlands (Turner et al. 2000). Generally, wetlands are more 

abundant in cool, wet climates than in hot, drier climates. This is because the 

water balance in cool, wet climates tend to be more favourable to wetland 

formation and persistance i.e. experience less evapotranspiration and more rainfall 
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resulting is less water loss than from the land than hot, drier climates (Mitsch and 

Gosselink, 2007).  

The geomorphology of a landscape determines where wetlands are likely to be 

present as it influences how water moves in, through and out of the soil (Kolka 

and Thompson, 2007; Ollis et al. 2013). Depressions and flat gently sloping 

terrains are likely to have a higher abundance of wetlands than steep sloping 

landscapes. The geomorphic setting is important as it is a product of the water 

source and hydrodynamics (such as unidirectional flow, reversing flow) although 

it also constrains the water source and hydrodynamics (National Research 

Council, 1995).  

 

Figure 2.2: The three main components of wetlands and their principal cause of 

wetlands – climate and landscape geomorphology commonly used in wetland 

definitions (Mitsch and Gosselink, 2000).  
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2.5 South African wetland distribution 

South Africa is predominantly classified as a semi-arid, water stressed country. 

Approximately 70% of the countries falls in the arid to semi-arid climatic region 

of South Africa (Schulze, 1997). The country lies in the temperate region of the 

globe and the climate is influenced by variations caused by factors such as 

elevation, proximity to the ocean and relief features such as mountain ranges 

(Mabaya et al. 2011). Consequently, approximately 65% of the country 

characterised by an average rainfall of 450 mm per year almost half of the global 

average of approximately 860 mm per year. While the driest areas located to the 

west, make up 21% of the country receives less than 200 mm (Lakhraj-Govender 

and Grab, 2019; Otieno and Ochieng, 2004). The average potential 

evapotranspiration is relatively high as a result of high average annual 

temperatures, and far exceeds the rainfall over most of the country (Schulze, 

1997).  

In a global context, the country’s water resources are limited and scarce. This is 

attributed to the uneven distribution of natural availability of water combined with 

strong seasonal rainfall. The mountainous regions of South Africa off the southern 

and eastern coastal plains create a rain shadow across the interior regions. This 

results in a mostly dry interior and the leeward side of the escarpment that creates 

high water yield areas (Bradshaw and Cowling, 2014; DEA, 2016).   

As previously discussed in Section 2.2 wetlands are more abundant in regions that 

have a positive water balance, where rainfall exceeds atmospheric water demands 

than in regions with a negative water balance, where the converse is true. The 

atmospheric demand for water can be quantified using potential 

evapotranspiration as an indicator, where solar radiation provides the energy that 

drives evapotranspiration. Global wetland distribution is generally favoured 

towards regions that have a positive water balance and topographic impact of the 

recent glaciation event (approximately 8000 years ago) (Ellery et al. 2009; Mitsch 

and Gosselink, 2000). Despite this, wetlands do occur in regions with a negative 

water balance as a result of other factors. The southern African landscape is 

situated at an unusually high mean elevation despite the landscape being ancient, 
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with relatively no tectonic activity in recent years and has not been significantly 

shaped by the recent glaciation event which affected the landscape of most other 

regions. Further to this, the interior and western margin of the country is classified 

as dryland (MAP:PET < 0.65; UNEP, 1997). as there is a negative water balance 

experienced resulting from low rainfall combined with high potential 

evapotranspiration due to high temperatures and southern and eastern margins of 

the country have a narrow humid zone. Thus, these conditions vastly differ from 

those experienced in the northern temperate regions (Ellery et al. 2009; Schulze, 

1997).  

The presence of wetlands in South Africa is considered unlikely due to the 

country’s position in a long–term cycle of incision from the Miocene uplift with 

the development of a well-integrated drainage network in addition to a 

combination of factors previously mentioned. Despite this, South Africa has 

diverse range of perennial, seasonal and ephemeral wetlands in diverse settings. 

The diversity of wetlands in the country occurs due to differences in climate, 

drainage, geology, and anthropogenic activity to a lesser extent (Ellery et al. 2009; 

Tooth and McCarthy, 2007).  

According to Midgley et al. (2005) there is an aridity gradient following an east to 

west trajectory in South Africa that extends from sub-humid to semi-arid in the 

eastern interior, and an increase in aridity from arid to hyper arid in the west. 

Many of South African wetlands are not sustained by rainfall alone, and their 

water source is generally supplemented to an extent with either surface input 

and/or groundwater discharge. Rainfall remains an important factor in sustaining 

inland wetlands as the rainfall becomes runoff (surface or river flow) when it falls 

in different parts of the catchment, and/or adds to groundwater recharge that 

enters into the wetland via subsurface flow, and rainfall may fall directly into the 

wetland. The inputs into the wetland from rainfall and its contribution to runoff 

and the atmospheric water demand is used to determine the water balance of a 

wetland. Despite the climate constraints, the majority of the wetlands in South 

Africa exist where a local positive near-surface or surface water balance that 

persists throughout the year or for a portion of the year generally occur as part of 
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the river drainage network  (Ellery et al. 2009; Grenfell et al. 2019; Tooth and 

McCarthy, 2007).  

The South African landscape like other dryland landscapes are shaped by the 

long-term geomorphological processes and changes in the earth’s surface material 

and the concentration of flow accumulation at or near the surface creates suitable 

conditions for wetland formation (Grenfell et al. 2019; Tooth et al. 2015). The 

formation and dynamics of wetlands in South Africa are as a result of geological 

controls and geomorphic processes of erosion and deposition on the landscape 

(Ellery et al. 2009).  

The deposition process is the movement of mass, for instance downslope sediment 

movement, and is predominantly gravity-driven, moves from a higher to lower 

elevations however, tectonic uplift can result in the upward movement of 

sediment from lower to higher elevations. When there is mass accumulation in the 

landscape that contains the wetland to create features such as rivers channel levees 

it is classified as primarily depositional, conversely, it is classified as erosional 

when the sediment mass is being removed to create features such as gullies. 

Generally, wetlands act as sediment sinks accumulating sediment over a long 

period resulting in large amounts of sediments that may store significant amounts 

of carbon, rather than sediment sources (Tooth et al. 2015). Steep slopes indicate 

higher energy flow and lower rates of deposition, while gentle slopes have 

reduced energy flow allowing for higher rates of deposition, therefore wetlands 

are more likely to be found in latter conditions. While erosion is a natural process 

of a wetland, when exacerbated by some disruption such as human activity may 

threaten the health and existence of the wetland (Ellery et al. 2009).  

Erosion-resistant lithologies (e.g. basalt, dolerite, quartzite) are important for the 

formation of wetlands, as it erodes at a slower rate than the surrounding 

lithologies that may weather more readily (e.g. sandstones and mudstones). This 

impedes the movement of water away from the site, which subsequently reduces 

the slope gradient and the energy of water flow, allowing for conditions suitable 

for wetland formation (Ellery et al. 2009; Grenfell et al. 2019).  

http://etd.uwc.ac.za/ 
 



 

 15 

Tooth and McCarthy (2007) acknowledges there are other types of wetlands that 

are not linked to river drainage network. These wetlands are primarily fed by local 

rainfall or groundwater discharge as a result segregation from the riverine inputs 

or the wetland formation and functions are not associated with the drainage 

network such as depression and seep wetlands, however, the extent of these 

wetlands are generally smaller and are localised landscape features. The variations 

in the key components (i.e. climate, geomorphology and hydrology) responsible 

for wetland formation result in wide distribution of wetlands across South Africa.  

The importance of wetlands in semi-arid regions such as South Africa is 

emphasised for several reasons including: their ability to retain large amounts of 

water during the dry season, thus resulting in the a moderately high and stable 

water table and an oasis for wildlife during these periods; they provide a crucial 

habitat, foraging and/or breeding grounds for wildlife and are particularly 

important from a migratory bird species perspective as the wetlands provide the 

southern terminals; further more wetlands play a significant role for flood 

retention and climate regulation (MEA, 2005; Orimoloye et al. 2020). Wetlands 

provide an array of other ecosystem goods and services, however it is beyond the 

scope of the study to provide a detailed overview, refer to Kotze et al. (2009) for a 

more comprehensive explanation. The ecosystem goods and services further 

emphasise the importance of wetlands, and the need for accurate  inventory and 

mapping of wetlands.  

2.6 Climate change and impacts 

The Intergovernmental Panel on Climate Change (IPCC) (2014) defines climate 

change as an identifiable change in the state of climate using the mean and 

variability of the climates properties to statistically quantify the change, and  

usually persist for an extended amount of time. Climate change is both attributed 

to the natural climate variability and influenced by anthropogenic activities that 

either directly or indirectly causes changes in the composition of the atmosphere 

observed over a long period, thus climate change refers to both natural and 

anthropogenically induced changes. Global climate change has become an 
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imminent reality in today’s world where widespread impact is already being 

experienced by humans and natural systems.  

The global mean surface temperature is expected to rise over the 21st century and 

is primarily attributed to cumulative carbon dioxide emissions warming is largely 

attributed to the cumulative carbon dioxide emissions (IPCC, 2014). There are 

four RCPs based on the Coupled Model Intercomparison Project Phase 5 (CMIP5) 

models of the IPCC Fifth Assessment Report 5 (IPCC AR5) describe the 

pathways of greenhouse gas (GHG) emissions and atmospheric concentrations, air 

pollutant emissions and land use and are used to make projections (IPCC, 2014).  

The RCP scenarios include: a mitigation scenario RCP 2.6, slowly declining 

emissions scenario RCP 4.5, a stabilising emissions scenario RCP 6.0, and a high 

emissions, business as usual scenario RCP 8.5. Global mean surface temperature 

is likely to increase by 1.1-2.6 ℃ under RCP 4.5 and 2.6-4.8 ℃ under RCP 8.5 

between 2050 and 2100 (IPCC, 2014). The Paris Agreement under the United 

Nations Framework Convention on Climate Change (UNFCCC), referred to as the 

Paris Agreement, is an international treaty adopted in 2015 and aimed to reduce 

the global emissions that contribute to climate change to prevent global 

temperatures from exceeding 2℃, which has been further revised to 1.5 ℃ 

(UNFCCC, 2015). Increases in global mean temperature up to 1.5℃ by 2100 will 

result in several climate related changes regionally these include an increase in 

extreme temperatures, increase in the frequency, intensity and magnitude of heavy 

precipitation, and an increase in the frequency and/or intensity of drought in some 

regions (IPCC, 2014). The current year, 2020 marks a pivotal year in terms of 

climate change to limit the trajectory to remain at below a 1.5℃ pre-industrial 

levels as countries will be updating their Nationally Determined Contributions 

which states their mandate to reduce their emissions (Ourbak and Tubiana, 2017).  

2.6.1 Climate change in South Africa 

Climate change is of significant concern in South Africa. Global Climate Models 

(GCMs) and downscaled models predictions for South Africa suggest that climate 

change is not uniform and is more likely to impact strongly on the western regions 

of the country, than on the eastern regions (Engelbrecht et al. 2015; Engelbrecht 
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and Engelbrecht, 2016). Climate change is anticipated to result  in increased in 

mean annual temperatures, an increase in extreme precipitation events and 

droughts as well as a change in the rainfall patterns in both the direction and the 

magnitude, many of which South Africa is already experiencing (Ziervogel et al. 

2014).  

2.6.2 Climate change in the Western Cape Province 

The Western Cape Province of South Africa is expected to experience a change in 

the rainfall pattern with an anticipated decrease in the overall rainfall, an increase 

in rainfall variability and an increase in temperature. This further results in an 

increase in the divide between mean annual precipitation and potential 

evapotranspiration, which will in turn result in a changes to the current aridity of 

the landscape, likely to drive changes in the distribution of species, increased 

wildfire as well as exacerbate pest outbreak (Blamey et al. 2014; Davis-Reddy 

and Vincent, 2017; Engelbrecht et al. 2009). The is a projected overall rise in 

surface temperature by 0.3-0.7℃, and an increase in summer maximum 

temperature and minimum temperature by 1.5-2.25℃ and 1-2℃, respectively 

based on the RCP 8.5 scenario. The trajectory of rainfall is harder to model than 

temperature, however there is consensus that there will be a decrease in total 

winter rainfall of the region (Blamey et al. 2014). This is further confirmed by 

studies conducted by Engelbrecht et al. (2013) and MacKellar et al. (2014) that 

detected an increase in the inter-annual rainfall variability since the late 1960s and 

an increase in the intensity and magnitude of drought, and a decrease in rainfall 

and the number of rainfall days over parts of the South Africa, respectively. 

2.6.3 Climate change and wetlands 

According to the IPCC (2014) climate change poses an increased risk to the 

composition, structure and function of marine, terrestrial and freshwater 

ecosystems including wetlands. Song and Zhang (2018) argues that the climate 

change and anthropogenic activities are the driving factors causing changes to 

wetlands. Climate change is likely to cause changes to the multiple drivers of 

wetland formation and function increasing the likelihood of abrupt changes to the 

wetland that are of a large magnitude and difficult or expensive to reverse or 
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irreversible entirely. It is anticipated in lieu of strong conservation and 

management approaches to wetlands, their continued loss and degradation is 

projected. This will reduce the capacity of wetlands to provide climate regulation 

services such as buffer the effects of climate change and contribute climate 

adaptation as well as the regelation of the microclimate of an area thus providing a 

natural buffer of resilience (Kelvin et al. 2017; Kotze et al. 2009; Kuşçu Şimşek 

and Ödül, 2018). Wetlands are vulnerable to the effects of climate change as their 

ability to adapt to changing environmental conditions is slow (Erwin, 2009). 

Currently, a limited number of studies have focused on projecting the potential 

distribution of wetlands to inform effective planning (Xue et al. 2018). The need 

for proper wetland management and conservation is highlighted in light of climate 

change, which in turn emphasises the need for improved the mapping and 

inventory.  

2.7 Wetland mapping 

The misuse and poor management of wetlands persist throughout the world 

despite the governance of international agreements, national policies and 

strategies aimed the wise use and conservation of these ecosystems. The 

continued degradation and loss of wetlands are related to information failures in 

mapping and inventory which provides the baseline on which more 

comprehensive wetland studies are based (Turner et al. 2000). Wetland maps 

provide information on the location, size and type of wetlands. These maps are an 

essential starting point to developing knowledge inventories used to inform the 

effective wetland management and policy targets, best practice guidelines in 

addition to the integration of wetland knowledge socio-economic considerations 

for planning (Begg, 1986; Finlayson and van der Valk, 1995). Finlayson et al. 

(1999: 132) defines wetland inventory as a “collection and/or collation of core 

information for wetland management, including the provision of an information 

base for specific assessment and monitoring activities.” Mapping of wetlands and 

their subsequent inventory started in the late 1970s when land uses were being 

assigned various categories and wetlands were being integrated into legislation for 

their conservation and management (Mitsch and Gosselink, 2007). Planners use 
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wetland inventories that are spatially explicit as an instructive source of 

information.  

The importance the wise use, conservation and restoration of wetlands and their 

protection and restoration have been included in the Sustainable Development 

Goals (SDGs) Goal 6 – ensuring availability and sustainable management of 

water and sanitation for all. In addition, the role of wetland mapping and 

subsequent inventory are important to indicator 6.6.1 of the SDGs which relates to 

the long-term monitoring of the changes in the extent of water-related ecosystems 

(Ramsar Convention on Wetlands, 2018). The Ramsar Convention on Wetlands 

promotes all Contracting Parties to create national inventories of wetlands. 

Mapping wetlands is complex, due to the different types of wetlands, the various 

landscapes they are found in, and variability in their spatial extent due to their 

hydroperiod as perennial, seasonal or ephemeral (Nhamo et al. 2017).  

Wetland mapping has utilised several different techniques. The most suited 

technique or combination of techniques are selected based on trial and the degree 

of detail of the map (Hiestermann, 2014). The mapping techniques include: field 

verification survey, aerial photography, satellite remote sensing and 

environmental modelling, although to a limited extent. These techniques have 

been used both internationally as well as locally in South Africa.  

Field verification 

The commonly used traditional technique that yields the highest accuracy is the 

field verification technique with reference to an aerial photograph, where wetlands 

are physically ground-truthed by the researcher or consultant by traversing the 

perimeter of the wetland using a Global Positioning System (GPS) device or a 

map of the study area to record the boundary and other important elements of the 

wetland that should be noted for example, a weir, furthermore, soil samples were 

collected using a soil auger at various points to verify the boundary of the 

wetland. However, despite the high accuracy of this technique, it is laborious, 

time consuming, expensive and requires accessibility to the site which is difficult 

due to remote, uneven and unstable terrain sometimes resulting large portions of 

the landscape left under-mapped (Rivers-Moore et al. 2020). The constraints of 
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field verification mapping make it an unfeasible option when mapping vast 

expanses and inaccessibility to many of the wetlands. 

Aerial photography and satellite imagery techniques 

Over the past century stride have been made in the field of remote sensing, 

particularly in the last twenty years including the new remote sensors, increased 

data handling capabilities and image processing and analysis techniques which 

has rapidly advanced wetland mapping and inventory (Cracknell, 2018; Klemas, 

2013). The use of remote sensing products such as aerial photography, Light 

Detection and Ranging, satellite hyperspectral imagery, and satellite multispectral 

scanners such as Landsat, provide a viable option to wetland mapping as it 

reduces the amount of fieldwork required, ability to cover large areas resulting in 

less costly data collection, it is less time consuming and is relatively accurate 

(Adam et al. 2010; Nhamo et al. 2017). The technique of using remote sensing 

applications is advantageous as it can map areas that are difficult to access on foot 

and the most comparative advantage lies with change detection in near real-time 

manner as the sensors record imagery of vast expanses of land within defined time 

frames (Nhamo et al. 2017).  

Aerial photography 

The application of aerial photography in wetlands mapping has been vast and 

based primarily on manual visual interpretation of the imagery including or 

excluding visual enhancements (Scarpace et al. 1981). This technique is often 

time-consuming and requires an expert to visually detect where wetlands are and 

either physically draw in the boundaries onto a hardcopy map resulting in 

constraints to knowledge sharing or using heads-up digitising which can also be 

done using satellite imagery.  

Manual heads-up digitising 

Manual heads-up digitising is the method of scanning an image or map onto a 

geographic information system (GIS) using a mouse as a digitiser to trace the 

features in the image, and are stored as coordinates in either point, line or polygon 

format (Longley et al. 2015). Another challenge with heads-up digitising is 
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comparably lower levels of detail regarding the wetland boundary and confidence 

in data, furthermore, the technique is strenuous and time-consuming, and may 

contain source map errors and operational errors (Job et al. 2018; Tsoulos and 

Skopeliti, 2000).  

Satellite remote sensing  

The wide application of satellite remote sensing has been extensively viewed and 

is the most common technique used map wetlands at a regional scale  (Guo et al. 

2017; Mahdianpari et al. 2020; Rebelo et al. 2009). Wetlands can be delineated 

using various classification methods such as supervised, unsupervised and semi-

automated classification using hyperspectral imagery and various multispectral 

imagery. Examples of multispectral imagery used in wetland mapping include 

Landsat, Quickbird, System Pour l’Observation de la Terre, aerial photographs 

(Guo et al. 2017). Furthermore, LiDAR data has been used in conjunction with 

multispectral imagery to map wetlands. LiDAR is used to detect inundation in 

wetlands during the dry season when the vegetation is less by producing high 

level inundation maps. However, the frequent use of LiDAR data is not feasible 

due to limited data availability and high costs (Huang et al. 2014). The accuracy 

of remote sensing is greatly improved when used together with ancillary data 

(Hiestermann and Rivers-Moore, 2015). Ancillary data is used to assist the 

analysis and classification process and is data from sources other than remote 

sensing (ESRI, 2017). A combination of these techniques are used in determining 

the global wetland inventory. According to Finlayson et al. (1999) the global 

estimate derived from national sources of a total 1,280 million hectares of 

wetlands is inaccurate and an underestimation of reality despite being much 

higher than previous estimations. 

2.7.1 Wetland mapping in South Africa 

The wetland classification system developed by Ollis et al. (2013) provided the 

basis to national wetland inventory (NWI) and mapping. The South African 

Inventory of Inland Aquatic Ecosystems (SAIIAE) is the NWI of South Africa 

and is repository of the country’s national wetland information. The SAIIAE 

forms part of the National Biodiversity Assessment (NBA) and is updated at 
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regular intervals using a combination of datasets that were derived using different 

techniques, at various resolutions, extents and from different sources (Job et al. 

2018). A wetland inventory requires a continuous process to identify new 

wetlands, and improve the extent and resolution of those already identified. There 

have been five iterations of the SAIIAE National Wetland Map with the most 

recent revision referred to as National Wetland Map 5 (NWM5) in 2018 (van 

Deventer et al. 2020). 

The NVM5 contains information about the location, size as well as the ecosystem 

types. The ecosystem types includes estuarine and inland aquatic ecosystems. 

Furthermore, inland aquatic ecosystems is made up of rivers and inland wetlands. 

For the purposes of the study, only inland wetlands will be considered. Significant 

measures were taken to improve the representation of inland wetlands in the 

NWM5 and the percentage of inland wetlands that make up the landcover in 

South Africa increased to 2.2% and have been mapped as part of the SAIIAE. The 

findings of the NWM5 indicated that spatial extent and representation of estuarine 

and aquatic ecosystem, inland wetlands in particular was improved. Although, 

significant steps need to be made towards improving the confidence level of the 

inland wetland representation in the next update of the NWM (van Deventer et al. 

2020).  

2.8 Environmental modelling 

Environmental modelling is a representation of real world space and time 

processes and is becoming increasingly more relevant for scientist and 

environmental engineers (Chaulya and Prasad, 2016; Scholz, 2016). A GIS is 

primarily used to manage the spatial interactions and topographic rules as well as 

provide input variables that is often environmental ancillary data which is 

required for the models. Further to this, GIS provides visualisation and analyses of 

the of the output data (Chaulya and Prasad, 2016). Scholz (2016) demonstrates the 

use of an environmental modelled solution that can be applied to solve real world 

solutions. Machine learning is one of the techniques used in environmental 

modelling and will be employed in the study, it is an application of artificial 

intelligence that provides the model with the ability to learn and improve 
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automatically without being programmed explicitly for this reason (Dietterich et 

al. 2010).  

The machine learning techniques such as logistic regression models can be used to 

spatially interpolate environmental variables (Gibert and Sànchez-Marrè, 2011). 

The model uses ancillary data which takes the form of probability maps as an 

outcome that is easily interpretable as values ranging between 0 and 1, and their 

accuracy can be tested using verification data (Hiestermann and Rivers-Moore, 

2015). The logistic regression models are binary in nature with discrete outcomes. 

However, Rivers-Moore et al. (2020) suggests that conditional probabilities would 

be more informative to mapped wetlands rather than discrete classifications. Thus, 

the probability maps will provide of probability values for each cell expressed as a 

percentage for the occurrence of wetlands. These predictive models are 

anticipated to be used in conjunction with traditional approaches to wetland 

mapping.  

According to Schuwirth et al. (2019) it has become increasingly important to have 

a succinct understanding of the various predicted ecological consequences to 

support environmental management decisions, this can be achieved by the use of 

environmental models. Examples of the use of environmental models are the 

spatial planning for species conservation, wetland conservation and management, 

biodiversity protection, habitat restoration and management of ecosystem 

services.  

2.8.1 Logistic regression 

Logistic regression models is a type of multivariate analysis used to solve 

problems of binary classification by forecasting the probability of the binary event 

(presence or absence) occurrence that this based on the coefficients of a number of 

explanatory variables (independent variables) (Hoffman, 2015). The purpose of 

the logistic regression model is to provide a model of best fit to draw correlations 

between the presence and absence of the dependent variable, in the case of the 

study, wetland occurrence and a suite of explanatory variables that can be a 

combination of continuous and discrete data (Pal and Talukdar, 2018). The model 

requires an equal number of presence and absence points to obtain a more 
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comprehensive sampling pattern. The model is developed using the logistic 

regression equation and translated into spatially explicit layers that represents the 

probability of occurrence in a given study area. There have been two studies in 

South Africa using logistic regression models in the subtropical region of 

KwaZulu-Natal and in the all-year round rainfall region of Port Elizabeth to 

determine the occurrence of wetlands at different scales (Hiestermann and Rivers-

Moore, 2015; Melly et al. 2017). The findings of both studies are in agreement 

regarding the prediction accuracy of the wetland occurrence differs between 

different HGM wetland types. 

2.8.2 Other environmental modelling techniques used 

There have been a number of environmental modelling techniques have been used 

to map wetlands such as Bayesian network models (BN), multivariate adaptive 

regression splines (MARS) and MaxEnt models are machine learning techniques. 

The technique of using BN models in environmental research is still in its infancy 

as it has not been extensively used however, it is becoming increasingly popular 

(Hiestermann, 2014). The Bayesian network uses Bayes theorem to predict and 

describe the classification, additionally, conditional probabilities are characteristic 

of BN models allowing for readily interpretable classifiers using logic that is 

important to decision making (Friedman et al. 1997; Park et al. 2018). In South 

Africa, two studies based on the BN model of wetland occurrence were conducted 

in the KwaZulu-Natal (Hiestermann and Rivers-Moore, 2015), and wetland 

occurrence and HGM wetland types in City of Cape Town and Drakenstein local 

municipality (Rivers-Moore et al. 2020). Both studies had good predictive 

capacity. 

The MARS has the capability to model the complex relationship between the 

predictor and explanatory variables without the need for strong model 

assumptions. Furthermore, MARS uses build tree and basic functions to determine 

important independent variables when several predictor variables are under 

consideration, and is not a time consuming modelling process which is useful for 

modelling large datasets (Friedman, 1991; Lee et al. 2006).  A study across based 

on the National Resource Inventory of southern United States was develop a 
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probability map indicating the risk of wetland loss as a function of wetland 

features and landscape context using MARS, the finding were that the model had 

substantial predictive ability across the study area (Gutzwiller and Flather, 2011). 

The MaxEnt model a popular species distribution model  that has been used to 

model wetland distribution. The model is based on the principle of maximum 

entropy, where the selected model is the one with the most widespread 

distribution with regards to uncertainty (Harremoës and Topsøe, 2001). Chignell 

et al. (2018) used MaxEnt to create a probability map to the occurrence of wetland 

and riparian distribution across the Colorado watershed, with the results for 

MaxEnt indicating a high accuracy. Additionally, a study related to the small, 

valley-bottom palmiet wetlands used MaxEnt to predict the potential distribution 

of this wetland community (Rebelo et al. 2017).  

A study by Collins (2018) was conducted to improve on the findings of the 

NWM4 using a country-wide digital elevation model (DEM) and 2013 SPOT 5 

imagery to model the extent of wetlands to determine the wetland probable extent, 

using a combination of the percentile filter tool from the Whitebox GIS and flow 

accumulation maps from ArcGIS and the mapping process was facilitated using 

several python scripts. The wetland probability map outcome of the study showed 

a significant accuracy in wetland presence, improved coverage as compared to the 

NWM4. However, there was low agreement with reference dataset and did not 

account for 70.4% of the reference dataset was not mapped in the prediction 

resulting in concerns over the models ability to predict the true presence of 

wetlands. The study recommends the inclusion of a wetland probability map 

determined by either Bayesian statistics or logistic regression will make important 

contributions to mapping  (Collins, 2018).  

2.9 Conclusion 

Chapter two which encompasses the literature review of the study has illustrated 

the complexities in wetlands that range from definition, formation, classification 

and the subsequent mapping and knowledge inventorying of these systems. 

Numerous techniques have been used to map wetlands and their performance in 

accuracy, time, complexity and expense factor of each of the techniques were 
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reviewed. Often techniques are used in conjunction with one another. Increased 

recognition about the importance of wetlands and their role in buffering the 

effects of climate change have highlighted the need for more robust inventory, 

starting with accuracy of the spatial location, extent and type of wetland. The 

importance of improved mapping subsequently leads to improved inventory, and 

allows for better informed decision-making regarding effective and strongly 

relevant conservation and management and the drafting of wetland related 

policies. The starting point to achieve the aforementioned items, remains as more 

accurate and comprehensive wetland mapping. 

Currently, global estimates of wetland inventory have been severely 

underestimated, however this may be due to highly heterogenous environmental 

factors as well as different regions and countries following different definitions. 

The latest NWM5 repository of wetland information in South Africa estimates 

that inland wetlands cover only 2.2%, and has seen improvement in the 

representation and spatial extent. However, van Deventer et al. (2020) notes that 

the confidence level of the representation of inland wetlands needs to be 

significantly improved in the next update of the NWM. The approach of using 

environmental modelling to map wetlands and as ancillary data to complement the 

more traditional approaches to mapping has been widely recognised and is 

gaining more attention as a baseline tool. Several environmental modelling 

techniques were reviewed and the merits and disadvantages of each were 

presented. The review highlighted the need for ancillary data derived from 

environmental modelling techniques to complement traditional approaches in 

mapping wetlands. Additionally, it emphasised the need for mapping wetland 

distribution with respect to the future projected climate change scenarios to 

effectively inform decision making. The study focuses on the research gap of 

using the environmental modelling machine learning techniques, logistic 

regression to map the probability of wetland distribution in the current climate as 

well as the potential wetland distribution in future climate change scenarios for 

three municipalities in the Western Cape.  
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Chapter Three: Study area  

3.1 Introduction 

This chapter presents a description of the Western Cape Province of South Africa 

and the study area, which includes the City of Cape Town, Breede Valley and 

Drakenstein Municipalities. The selection of the study area was based on the 

climate and its vulnerability to climate change. The prominent physiographic 

characteristics of the study area were described in terms of location, topology, 

climate, hydrology and geology.   

3.2 Location  

The Western Cape province is located on the south-western tip of South Africa 

between coordinates 30 to 35° South and 15 to 25° East. The Western Cape is one 

of nine provinces, neighbouring the Northern Cape and Eastern Cape provinces to 

the north and east, respectively and bordered seaward by the warm Indian Ocean 

in the south and the cold Atlantic Ocean in the west. The province is divided into 

one metropolitan municipality and five district municipalities which are further 

subdivided into 24 local municipalities. The study area encompasses the City of 

Cape Town metropolitan municipality and Breede Valley and Drakenstein local 

municipalities (Figure 3.1). The Cape Winelands District Municipality governs 

the latter two municipalities. The climate and geology of the province are 

typically distinct due to vast differences in topography (DEA, 2011). 
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Figure 3.1: The location of the study area in the Western Cape province of South 

Africa.  

3.3 Topography 

The Western Cape province has high topographic heterogeneity, with the Cape 

Fold Belt an L-shaped mountain range that extends along the length of the 

province and dominates the topography of the region (Figure 3.2). The Cape Fold 

Belt comprises two distinct belts: a north-south trending Atlantic belt and an east-

west trending southern belt. The belts converge in the southwest,  inland of Cape 

Town (Partridge et al. 2010). The lower-lying coastal areas are separated from the 

inland plateau by an escarpment that lies along the boundary of the Western Cape 

province and the Northern Cape province. Thus, the Cape Fold Belt act as 

geographic barriers to create an orographic effect that contributes to the distinct 

climate zones and forms important water catchments. This high climatic variation 

is due to several factors, including noticeable differences in altitude and distinct 

geology and soil types over short distances (Midgley et al. 2005; van Niekerk and 

Joubert, 2011). 
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3.4 Climate  

The majority of the extent of South Africa is considered a semi-arid country and 

has a complex climate (Schulze, 1997). The main factors that determine the 

climate include the latitudinal location of the country (~ 22-34°S) at the interface 

of the tropical, subtropical and temperate atmospheric circulation systems; the 

migration of the Intertropical Convergence Zone; the altitude of the interior 

plateau; and influence of the ocean circulation systems which creates three distinct 

rainfall zones (Nicholson, 2000; Tyson and Preston-White, 2000). The majority of 

South Africa, with the exception of the southwest of the country, lies within the 

summer rainfall zone (SRZ). The Western Cape province lies predominantly 

within the winter rainfall zone (WRZ) and a relatively small aseasonal rainfall 

zone (ARZ) (Chase and Quick, 2018; Tyson and Preston-White, 2000). The study 

area lies mainly in the WRZ, with a small portion to the east that extends into the 

ARZ (Figure 3.2). The climate, particularly the rainfall of the Western Cape 

province, is influenced by the diverse oceanic and atmospheric circulation 

systems brought by the intersection of the cold Atlantic Ocean and the warm 

Indian Ocean at the coastal landmass of the province (Chase and Thomas, 2007).  

The WRZ is characterised by warm, dry summers and mild, wet winters and 

extends over the southwestern and west coast of the province (Ziervogel et al. 

2014). The WRZ receives predominantly frontal induced rainfall between the 

austral winter months of May and September. The northward displacement of the 

South Atlantic high-pressure system (called South Atlantic Anticyclone) carries 

cold fronts and, combined with the persistent westerly winds over the cold 

Benguela current, produces eighty percent of the rainfall in the region. 

Conversely, dry conditions are experienced in the WRZ in the austral summer 

months. This is a result of the southward shift of the well-developed South 

Atlantic anticyclone, which blocks the westward movement of easterly waves that 

bring summer rainfall to the SRZ and the polar frontal systems that bring rainfall 

to the WRZ (Du Plessis and Schloms, 2017; Matthews et al. 2016). There is a 

marked increase in aridity and decrease in rainfall as the influence of the polar 

frontal systems decreases as one moves northwards (Matthews et al. 2016).  
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The ARZ is a narrow transitional zone of approximately 400 km, which receives 

winter and summer rainfall and lies between WRZ and SRZ along the southern 

coast (Chase and Thomas, 2007; Engelbrecht et al. 2015). The zone has a high 

variation in the frequency, intensity and amount of rainfall and consists of both 

the South Coast region and the Karoo region, as described by van Niekerk and 

Joubert (2011). The South Coast region extends eastward from Cape Agulhas and 

experiences all-year rainfall, most frequently occurring as bimodal rainfall during 

the transitional seasons of autumn and spring. Rainfall occurs due to the 

movement of warm, moist air from the Indian Ocean, which creates ridging high-

pressure cells and cut-off lows (Bradshaw and Cowling, 2014; van Niekerk and 

Joubert, 2011). The Karoo region is confined to the inland plateau of South 

Africa, separated by the Cape Fold Belt that forms a natural barrier between the 

two regions that lie within the ARZ. Rainfall in the Karoo region is relatively 

evenly distributed throughout the seasons, with a late summer maximum in the 

form of erratic thundershowers (van Niekerk and Joubert, 2011).  

There is substantial variation in the amount and intensity of rainfall both spatially 

and temporally in the Western Cape province. Rainfall decreases towards the 

interior of the province, and the Cape Fold Belt Mountains, like many 

mountainous areas, create a localised orographic effect along the entire belt. This 

phenomenon results in an exception to the general trends.  There is most notably 

an increase in annual rainfall with an increase in elevation. The mean annual 

rainfall is approximately 400 mm/year. However, rainfall can range from a high of 

3 000 mm/year in the mountainous regions to a low of less than 200 mm/year in 

low-lying regions and the interior (Lakhraj-Govender and Grab, 2019). There is a 

range of climatic gradients in the province including, aridity and rainfall gradients 

(Figure 3.2). The aridity gradient exists with a steep transition from the south to 

north, with areas to the north being considerably drier. The rainfall seasonality 

gradient is found from the east to west, with an increase in summer rainfall in 

areas east of the province. Furthermore, the rainfall seasonality with altitude 

gradient (0-2 325 m above mean sea level) is a less well-known trend. The higher 

altitude of mountainous areas experiences substantially higher amounts of 
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summer rainfall and are often classified as all-year rainfall zones than the adjacent 

lower altitude plains (Meadows, 2003; Midgley et al. 2005).  

 

Figure 3.2: Topographic map of the Western Cape province, which represents the 

Cape Fold Belt mountains (indicated by the solid yellow line), the climatic 

regions (indicated by red dash line – winter rainfall zone (WRZ), aseasonal 

rainfall zone (ARZ) and summer rainfall zone (SRZ)), the pressure systems and 

ocean currents that influence climate in the province (adapted from Chase and 

Quick, 2018).  

3.5 Hydrology  

There is high variability and availability in the number of water resources in the 

Western Cape province. According to Midgley et al. (2005), hydrology in the 

province is largely influenced by the interplay between the topography and 

geology, the location and orientation of the Cape Fold Belt, and to some extent, 

regional sea-surface temperatures that create the WRZ climate. The natural barrier 

of the Cape Fold Belt creates interior rain shadows due to the orographic effect. 

These physiographic characteristics control the complex groundwater-surface 
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water interactions that result in the differences in hydrology across the province. 

Two main drainage patterns traverse the province; in the east, the Breede River, 

also known as Breë River, and Gouritz River flows south into the Cape Fold Belt 

and drains into the Indian Ocean. Conversely, in the west, the Berg River and 

Olifants River drains into the Atlantic Ocean. The province’s characteristic trellis 

drainage patterns are influenced by the geological structure (Partridge et al. 2010).  

The study area presents the administrative boundary of the Breede Valley, City of 

Cape Town, and Drakenstein municipalities. The quaternary catchments found 

within and which intersect the study area boundary were taken into consideration 

to account for the hydrological boundaries (Figure 3.3). 

 

Figure 3.3: The quaternary catchments that lie within the study area (Middleton 

and Bailey, 2011).  

3.6 Geology and soils  

The geology of the Western Cape province is diverse and complex. The rock 

types in the province consist mostly of sedimentary rock such as sandstone, 

limestone and shale. Although to a smaller extent, igneous rock such as granite, 

basalt and andesite make up the mountain ranges from Paarl to Piketberg. The 
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Cape Fold Belt mountains are a prominent feature in the geology of the Western 

Cape Province, which has been formed due to the collision of the ancient 

Falklands Plateau and the African plate, creating a convergence boundary. The 

Paleozoic Cape Supergroup outcrops dominate the Cape Fold Belt. The 

predominant geological associations in the province consist of the Adelaide 

Subgroup, Ecca Group, Cape Supergroup, including the sandstones of the Table 

Mountain Group (TMG) and the Bokkeveld Group, Malmesbury Group, 

Vanrhynsdorp Group, Namaqua Metamorphic Complex, Enon Malmesbury 

Group, and several types of alluvial and coastal deposits (Figure 3.4) (Blewett and 

Phillips, 2016; SACS, 1980). 

The weathering, folding and faulting in the Cape Fold Belt create fractured rock 

aquifers and fractured and intergranular aquifers in the TMG sandstones and 

quartzites, and the varying metamorphic group of the Malmesbury Group and in 

primary aquifers on sandy plains. In contrast, shale and silestone have limited 

groundwater discharge. Groundwater is stored in the fractures, joints and cavities 

of the rock mass, and the availability of water is dependent on the interconnection 

and nature of the fractures (Colvin et al. 2007). The availability of groundwater is 

important for the formation of most wetlands - where groundwater and surface 

water flow are concentrated or drainage inhibited due to impermeable rock mass 

(Tooth et al. 2015).  

The high variation in lithology and climatic gradients within the region creates a 

rugged, uneven topography with highly diverse soil characteristics. Soil types are 

dependent on the parent material of an area. The dominant soil type is substrates 

derived from the Malmesbury Group (Western Cape Provincial Spatial 

Development Framework, 2005). The combination of these environmental 

variables supports the diversity of vegetation types found in the Western Cape.  

The vegetation distribution of the Western Cape is strongly determined by soil 

type, which indicates the underlying geology (Bradshaw and Cowling, 2014). 

Change in the type of vegetation distribution passing from one geologic formation 

to another is typically distinct. Fynbos distribution is associated with granite, 

ferricrete and highly leached, nutrient-poor sandstone substrates of the Cape Fold 
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Belt and adjacent sand plains. The distribution of renosterveld relates closely to 

shales and sandstones, and succulent karoo vegetation is determined by shales 

from Bokkeveld and Cape Supergroup (Mucina and Rutherford, 2006; Rebelo et 

al. 2006). 

 

Figure 3.4: Geology of the hydrological boundary of the study area (CGS, 2019).  
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Chapter Four: Methodology  

4.1 Introduction 

This chapter presents an outline of the research design, approach and methods 

used to achieve the objectives of this study. The methods of data collection, 

variable selection, and analysis of variables are described, followed by the 

methods used to build, and evaluate the wetland prediction models. Lastly, the 

predicted change in wetland distribution was investigated.  

4.2 Research design 

The study followed a quantitative empirical research method that uses a quasi-

experimental research design. A combination of descriptive and explanatory 

research was used to address the study aim and objectives described in Chapter 1 

(Leedy et al. 2015). The first objective of the study was to determine the current 

distribution of wetlands in relation to aridity and required an analysis of the 

density of wetlands along the aridity gradient. Analyses to achieve the second 

objective of the study required the elimination of redundant variables to identify 

mutually independent environmental variables associated with wetlands. The third 

and fourth objectives required environmental modelling techniques to map the 

current and predicted future wetland distribution and evaluate the potential 

wetland loss and/or gain under the climate change scenarios RCP 4.5 and RCP 

8.5. The study excluded rivers as their characteristics, functionality and ecosystem 

services differ from those of the other HGM wetland types. The remaining HGM 

wetland types defined as Level 4 of the Classification System in Ollis et al. (2013) 

were included in this study (Figure 2.1).  

4.3 Aridity index and wetlands 

The status quo of wetland distribution along the aridity gradient was assessed 

using the National Wetland Map 5 (NWM5) dataset (Van Deventer et al. 2020) 

for the City of Cape Town metropolitan municipality, Drakenstein municipality 

and Breede Valley municipality. The NWM5 shapefile was clipped using the clip 

tool in ArcGIS 10.6 (ESRI, 2017) to the extent of the study area. The north-south 

aridity gradient that traverses the study area was used to map the current 
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distribution of wetlands. Aridity is a complex concept and represents an interplay 

of atmospheric and land surface processes (Greve et al. 2019). According to the 

classification proposed by UNEP (1997), the aridity index (AI) is defined as the 

ratio of mean annual precipitation (MAP) to mean annual potential 

evapotranspiration (MAE). Furthermore, the AI provides a measure of the dryness 

of a region.  

Aridity	Index	(AI) = MAP
MAE			 

The wetland dataset was superimposed onto the global aridity index (Trabucco 

and Zomer, 2019) raster layer to extract the AI values in ArcGIS 10.6 (ESRI, 

2017) to determine the number of wetlands and HGM wetland types found in each 

aridity class. The global aridity dataset was calculated using MAP from the 

WorldClim dataset (Hijmans et al. 2005) and the MAE was evaluated based on 

the Global-PET database (Trabucco and Zomer, 2019). The aridity index has been 

categorised into a generalised climate classification scheme that defines dryland 

and non-dryland regions and further subdivided into climate classes (Table 4.1).  

Table 4.1: The climate classification scheme of the aridity index values (UNEP, 

1997).  

AI value Climate class 

Dryland subtypes 

< 0.03 Hyper arid 

0.03 – 0.2 Arid 

0.2 – 0.5 Semi-arid 

0.5 – 0.65 Dry sub-humid 

Non-drylands 

> 0.65 Humid 

 

The purpose was to provide a descriptive overview of the current distribution of 

wetlands in relation to aridity in the study area. Following this initial overview, 

environmental modelling techniques were used to model the current and projected 

wetland distribution under the climate change scenarios. 
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4.4 Environmental modelling  

4.4.1 Research approach  

The flow chart summarises the methods and approaches followed to achieve 

objectives 2-4 (Figure 4.1). 
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Figure 4.1: A flow chart illustrating the methodology for the logistic regression 

model used to generate the probability layers of wetland distribution in the study 

area.  (PCA = Principal Component Analysis, RCP = Representative 

Concentration Pathways, AUC ROC = Area under receiver operating 

characteristic curve).  
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4.4.2 Variable selection  

The dependent variable (response variable) for the study is the probability of 

wetland presence in the landscape. The independent variables (predictor variables) 

are represented by an array of environmental variables outlined in Table 4.2 and 

comprised of variables that were identified to contribute directly or indirectly to 

wetland formation and persistence as reviewed in  Chapter 2: Literature Review. 

Mitsch and Gosselink (2000) describes the main components of hydrology, 

physiochemical environment, biota, climate and geomorphology that affect the 

formation and function of wetlands. The datasets used in the study are described 

below.  

4.4.2.1 Field verification dataset 

A field verification survey was conducted between February - May 2019 and used 

as a verification dataset to test the performance of the model. The survey provides 

a representation of wetland types in the study area. A set of criteria was met prior 

to the selection of sites, this included the location (representing the different 

regions), avoidance of wetland systems that were artificially created or 

significantly altered or disturbed, and accessibility to the site. A desktop exercise 

was conducted to select sampling sites prior to the field survey. The create 

random points tool in data management toolbox in ArcGIS 10.6 (ESRI, 2017), 

which automatically generates a specified number of random points within the 

constraining extent provided was used to determine wetland presence and absence 

sites. The absence points generated was in proportion to the number of wetlands 

found in the study area. The NWM5 layer was used as a baseline to identify 

wetland presence points and the random points that intersected the layer were 

considered for selection. Thereafter the NWM5 layer was added to Google Earth 

Pro (Google Earth Pro, 2021) satellite imagery and sampling sites were selected. 

To prevent the detection of the same wetland twice, absence points did not 

overlap with identified potential wetland presence points, and points were a 

minimum of 150 m apart.  

The GPS location of each point were identified in the field using the desktop 

exercise as a reference using a Garmin GPSMAP 65S handheld device with an 
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accuracy of 3m. Other information was recorded on field data sheets included the 

observed HGM wetland type, time, photograph and additional notes that were 

considered important. A total of 730 sites, of which 398 sites were known wetland 

areas (wetland presence) and 332 were non-wetland areas (wetland absence), were 

assessed across the study area. Lastly, the limitations associated with the sampling 

design and data collection were that in some cases, sample sites were excluded 

due to inaccessibility and alternative sampling sites were assessed.  

4.4.2.2 Collation of the wetland and environmental variables dataset 

Collation of wetland dataset  

The wetland dataset consists of three existing datasets which included coverage 

for the City of Cape Town metropolitan municipality (n = 7,272; City of Cape 

Town, 2017), Drakenstein municipality (n = 4,238; Day et al. 2009) and the 

National Wetland Map 5 (NWM5) shapefile was clipped using the clip tool in 

ArcGIS 10.6 (ESRI, 2017) for wetland presence in the Breede Valley 

municipality (n =357; Van Deventer et al. 2020). The City of Cape Town and 

Drakenstein wetland datasets were used for modelling in their respective 

municipalities as they have a high confidence and spatial resolution due to 

extensive ground-truthing exercises.   

The model used the wetland dataset (wetland presence) (n = 11,867) referred to 

above, and a non-wetland (wetland absence) point dataset was created for the 

study area using the random point generator in ArcGIS 10.6 (ESRI, 2017).  

A total of 12,000 wetland absence points were generated and was done in 

proportion to the number of wetlands found with the study area. Similar to what 

was done for the field verification dataset, the points were a minimum of 150 m 

apart to mitigate counting the same wetland twice. This dataset was used to train 

and test the model.   

Environmental variables  

The environmental variables necessary for determining wetland presence in a 

landscape consisted of four broad themes climate, hydrology, geology and soil 

variables, and DEM-derived topographic variables were selected as the maximal 
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dataset (Table 4.2). A brief description of the variables are provided in Section 

4.4.2.3.  A list of assumptions and limitations related to environmental variables is 

presented below: 

• Several of the datasets were extrapolated and model-derived. Therefore, it 

is possible that the errors of these datasets were compounded when 

constructing the model.  

• Some of the datasets lacked substantial information or metadata on how 

the variable was derived thus the strengths and weaknesses of the input 

variables could not be determined. 

• The datasets were collated from several institutions and organisations 

resulting in layers with different data formats at various projections, 

extents and resolutions.  

• Therefore, standardisation of all the datasets was required. The 

standardisation process used map algebra for computation which 

potentially resulted in the original errors of the datasets being 

compounded. 

• Lastly, there are several uncertainties related to the projection of climate 

change scenarios.  
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Table 4.2: List of input environmental variables used in maximal and optimal modelling process.   
 Environmental variable Abbreviation Units Data type Source Cell size 

C
lim

at
e 

Annual mean temperature bio1 °C Continuous Raster Hijmans et al. 2005 0.8 km 
Mean diurnal range (Mean of monthly (Tmax – Tmin) bio2 °C Continuous Raster Hijmans et al. 2005 0.8 km 
Isothermality (bio2 / bio7) (Í100) bio3 °C Continuous Raster Hijmans et al. 2005 0.8 km 
Temperature seasonality (standard deviation Í100) bio4 °C Continuous Raster Hijmans et al. 2005 0.8 km 
Maximum temperature of warmest month  bio5 °C Continuous Raster Hijmans et al. 2005 0.8 km 
Minimum temperature of coldest month bio6 °C Continuous Raster Hijmans et al. 2005 0.8 km 
Temperature annual range (bio5 – bio6) bio7 °C Continuous Raster Hijmans et al. 2005 0.8 km 
Mean temperature of wettest quarter bio8 °C Continuous Raster Hijmans et al. 2005 0.8 km 
Mean temperature of driest quarter bio9 °C Continuous Raster Hijmans et al. 2005 0.8 km 
Mean temperature of warmest quarter bio10 °C Continuous Raster Hijmans et al. 2005 0.8 km 
Mean temperature of coldest quarter bio11 °C Continuous Raster Hijmans et al. 2005 0.8 km 
Potential evapotranspiration ET0 mm Continuous Raster Trabucco & Zomer, 2019 0.8 km 

H
yd

ro
lo

gy
 

Annual precipitation bio12 mm Continuous Raster Hijmans et al. 2005 0.8 km 
Precipitation of wettest month bio13 mm Continuous Raster Hijmans et al. 2005 0.8 km 
Precipitation of driest month bio14 mm Continuous Raster Hijmans et al. 2005 0.8 km 
Precipitation seasonality (Coefficient of variation) bio15 mm Continuous Raster Hijmans et al. 2005 0.8 km 
Precipitation of wettest quarter bio16 mm Continuous Raster Hijmans et al. 2005 0.8 km 
Precipitation of driest quarter bio17 mm Continuous Raster Hijmans et al. 2005 0.8 km 
Precipitation of warmest month bio18 mm Continuous Raster Hijmans et al. 2005 0.8 km 
Precipitation of coldest month bio19 mm Continuous Raster Hijmans et al. 2005 0.8 km 
Depth to groundwater gw_depth m Continuous Raster Murray, 2005 1.0 km 

G
eo

lo
gy

 a
nd

 
so

ils
 

Geology group geology_group n/a Nominal Vector CGS, 2019 2.5 km 
Geology formation geology_form n/a Nominal Vector CGS, 2019 2.5 km 
Soils soil_type n/a Nominal Vector Land Type Survey Staff, 2006 2.5 km 
Soil depth soil_depth m Ordinal Vector Land Type Survey Staff, 2006 2.5 km 
Clay content clay_content % Ordinal Vector Land Type Survey Staff, 2006 2.5 km 

D
EM

-d
er

iv
ed

 Elevation elevation m Continuous Raster CGA, 2019 5 m 
Slope (degrees) slope degree Continuous Raster DEM-derived, 2019 20 m 
Aspect aspect degree Continuous Raster DEM-derived, 2019 20 m 
Flow accumulation flowacc n/a Continuous Raster DEM-derived, 2019 20 m 
Flow direction  flowdir degree Continuous Raster DEM-derived, 2019 20 m 
Landform   landform n/a Nominal Raster DEM-derived, 2019 20 m 
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4.4.2.3 Description of environmental variables  

Climate variables  

Nineteen biologically-meaningful climate (bioclimatic) variables were 

downloaded from the WorldClim version 1.4 dataset at a resolution of 

approximately 1 km (Hijmans et al. 2005). The bioclimatic variables were derived 

from interpolation of monthly averages of rainfall and temperature recorded at 

weather stations throughout the world and can be used to better understand 

distribution responses to climate change (Fick and Hijmans, 2017). Please refer to 

Fick and Hijmans (2017), Hijmans et al. (2005), and O’Donnell and Ignizio 

(2012) for a full description of the bioclimatic variables. 

The bioclimatic variables for 2050 and 2070 were derived from the commonly 

used general circulation model (GCM), the Model for Interdisciplinary Research 

on Climate-Earth System Model (MIROC-ESM) (Watanabe et al. 2011). The 

MIROC-ESM is based on the Coupled Model Intercomparison Project Phase 5 

(CMIP5) model and it was selected because it is one of the major models has 

contributed to the IPCC AR5. The climate change modelling data for the RCP 4.5 

and RCP 8.5 emission scenarios were selected to model the future wetland 

distribution under the MIROC-ESM.  

Hydrology variables  

Interactions between climate and hydrology are related to the atmospheric demand 

and as a result influences the water availability in a wetland. The depth to 

groundwater variable was derived from the water level data collected as part of 

the Groundwater Resource Assessment Phase 2 (GRA2) national scale project 

(Murray, 2005). The aim of GRA2 was to quantify South Africa’s groundwater 

resources. The variable is presented as a continuous raster dataset with a 1×1 km 

resolution of mean depth to ground water expressed as metres below ground level 

(mbgl) (Allwright et al. 2013). The depth to groundwater determines the local 

water table, and the interaction between groundwater and surface water plays a 

vital role in wetland formation and persistence (Tooth and McCarthy, 2007).  

http://etd.uwc.ac.za/ 
 



 

 44 

Potential evapotranspiration (PET) variable was derived from the global 

reference evapotranspiration dataset. Trabucco and Zomer (2019) describes PET 

as a measure of the  atmospheres ability to remove water through the 

evapotranspiration process.  The Penman-Monteith equation was used to estimate 

PET using evapotranspiration for reference crop, net radiation at the crop surface, 

soil heat flux density, mean daily air temperature, the wind speed, the saturation 

vapour pressure and the actual vapour pressure.  

Geology and soil variables  

The geology and soil are important factors in the formation of wetlands (refer to 

Section 2.2.1: Wetland formation and Section 3.6). The geology group and 

geology formation variables were extracted from the digital 1:250 000 geological 

series of maps for South Africa from the Council of Geosciences (formerly 

Geological Survey of South Africa) (CGS, 2019). The soil type, soil depth and 

clay class variables were derived from the digital 1:250 000 land types of South 

Africa map and soil inventory datasets.  The datasets formed part of the national 

Land Type Survey and were obtained from the Agricultural Research Council-

Institute for Soil, Climate and Water (Land Type Survey Staff, 2006). The Land 

Type Survey was compiled based on approximately 400 000 soil observations, 

2500 modal soil profiles and 10 000 series identification samples, which provided 

quantitative data about the range of soil properties across South Africa. The soils 

variables were based on the broad soil patterns in the area and soil depth variable 

provides an estimation of the depth to which plant roots are active. The clay 

content variable was based on the average clay content expressed as a percentage 

of clay in the topsoil and classified into distinct classes. Clay content is an 

important component contributing to the role of wetlands as sediment sinks and it 

is an ideal substrate for wetland vegetation to develop (Lambrechts and MacVicar, 

2004; Paterson et al. 2015).  

Digital elevation model (DEM ) derived variables 

The DEM obtained was Stellenbosch University’s digital elevation model 

(SUDEM) model at a 5 m spatial resolution (CGA, 2019). The SUDEM was 

generated by a combination of two DEMs. The first DEM was derived from 
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interpolated 20m (vertical interval) contours and spot height data shown on the 

South African 1:50 000 topographical map series. The interpolated surface was 

used to fill the sinks in the 30 m resolution Shuttle Radar Topography Mission 

(SRTM) DEM; thereafter a patented weighting scheme was used to fuse the two 

DEMs. The resultant SUDEM maximises accuracy (CGA, 2019). DEMs are 

described by Pakoksung and Takagi (2016) as important tools that provide a 

digital representation of terrain and topographic parameterisation for widespread 

application. Furthermore, the DEM was used to derive several other topographic 

variables such as aspect, flow accumulation, flow direction, landform and slope to 

conduct the terrain analyses.  

The flow direction is important to understand the hydrological characteristics of a 

landscape. The variable was calculated using the D8 single-flow algorithm to 

determine the direction of flow out of each cell. Thereafter, the flow direction was 

used to determine the flow accumulation into each cell, by accumulating the 

weight of all the cells that flow into the downslope neighbouring cells in the raster 

output. The flow direction and flow accumulation variables were derived using 

the hydrology toolbox in ArcGIS 10.6 (ESRI, 2017).  

The aspect variable is measured in clockwise degrees from north, where flat areas 

are allocated a value of -1 as there is no downslope direction and identifies the 

maximum rate of change in value from each cell to its neighbours. Aspect can be 

considered to be the slope orientation and was calculated using the flow 

accumulation and flow direction variables. The slope variable identifies the 

steepness of each cell of the input surface. The slope was derived using the DEM 

as the input variable to the slope tool in the Spatial Analyst toolbox in ArcGIS 

10.6. The resultant output raster layer was calculated as the rise divided by the 

run, multiplied by 100 to express the slope as percent rise. Flatter terrain has 

lower slope values whereas, steeper terrain has higher slope values (ESRI, 2017).  

The topography of the earth comprises a complexity of various geomorphic 

features. These specific geomorphic features are defined as landforms. The 

landform variable was derived using the topography toolbox in ArcGIS 10.6 

(ESRI, 2017). Landform classification provides important information about a 
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complex landscape. The first step was to calculate the topographic position index 

(TPI) based on the Jenness algorithm to identify different features (Jenness, 2006; 

Weiss, 2001). The TPI presents the change in elevation at a cell and the mean 

elevation of the neighbouring cells that surround it. A positive TPI value denotes 

that the cell is higher than the neighbouring cell e.g. ridges, the converse applies 

to cells with negative TPI values e.g. valleys, and TPI values near zero indicate 

flat areas or areas that have a constant slope (Nair et al. 2018). The TPI grid value 

were determined from two different neighbourhood sizes. A 50 m and 200 m 

neighbourhood were used to classify small features like streams and drainage, as 

well as large mountains and canyons, respectively. Thereafter, the landform 

classification tool was used to classify the various landforms using the TPI grids 

(Tagil and Jenness, 2008). The landforms of the earth’s landscape provides 

valuable information in detecting where wetlands can be found (Ellery et al. 2009; 

Tooth et al. 2015).  

4.4.3 Building a wetland database with associated environmental variables 

The wetland database prepared for the logistic regression model was a collation of 

wetland (wetland presence) and non-wetland (wetland absence) point datasets and 

extracted statistical values from the associated environmental variables. The first 

step to building the wetland database was to standardise the layers to the same 

spatial projection, extent, data format and resolution. The spatial projection of all 

layers was standardised into the projected coordinate system World Geodetic 

System 84 Universal Transverse Mercator Zone 34 South (WGS 84 UTM Zone 

34S) and the study area extent. The data format of the layers were standardised by 

converting the vector data (polygons, polylines or point features to raster using the 

conversion toolbox and feature to raster tool. Lastly, the spatial resolution of the 

layers was resampled to 20 m using two resampling techniques to interpolate the 

raster layers. The cubic convolution resampling technique was best suited to 

address continuous data by fitting a smooth curve through the centres of the 

nearest 16 cells to the output cell to determine its value. Whereas, the nearest 

neighbour resampling technique was used to interpolate categorical data as it 

preserves the original values of the input raster (ESRI, 2017). Environmental 

variables that contain categorical data were allocated numerical values to 
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understand the analytical differences between wetland presence and absence 

points.  

The wetland database was randomly split into a training and verification dataset to 

mitigate overfitting of the model (Aguilera et al. 2011; Hiestermann and Rivers-

Moore, 2015). Splitting of the wetland database was achieved by using the field 

calculator in ArcGIS 10.6 to generate random values in a new field of the 

attributes table. Next, the ‘select by attributes tool’ was used to select 70% of the 

database as the wetland training dataset and the remaining 30% of the database as 

the digital verification dataset to test the models (ESRI, 2017). The ratio of 

wetland presence and wetland absence points for the datasets were roughly equal. 

The training dataset was used to calibrate the models, and the verification dataset 

was used to validate the accuracy of the models (Hao et al. 2020). The statistical 

values of each environmental variable were extracted to the wetland presence and 

absence points of the training dataset using ArcGIS 10.6 (ESRI, 2017; 

Hiestermann and Rivers-Moore, 2015). The training dataset was exported as excel 

spreadsheets for further editing and compilation. Building the wetland database 

was the foundation for the successive steps to develop the model.  

4.4.4 Model development  

4.4.4.1 Elimination of redundant variables 

This step aimed to systematically eliminate redundant variables to derive a 

maximal dataset for input into the model. Redundant variables have high 

collinearity and multicollinearity levels that hinders statistical analysis as it is 

challenging to understand the effect of a particular independent variable on a 

dependent variable (Booth et al. 1994). Thirty-two environmental variables were 

identified and sourced for the modelling of wetland distribution. A Principal 

component analysis (PCA) and correlation matrix were used refine the suite of 

environmental variables.  

The Kasier-Meyer-Olkin (KMO) measure of sampling adequacy and Bartlett’s 

test of sphericity were used to determine the usefulness of a PCA. The purpose of 

these tests were to verify that PCA can reduce the dataset in a meaningful way. 
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The Bartlett’s sphericity test was used to determine if the correlation matrix is an 

identity matrix (this means that each variable correlate only with itself) at p < 

0.05 and indicates whether there are relationships among variables (Hair et al. 

2010). The KMO values ranges from 0 to 1. A threshold value of >0.5 mean that 

the variables are sufficiently interdependent for PCA to be applied (Field, 2013). 

The PCA was conducted on the Multivariate Statistical Package version 3.2 

(MVSP 3.2) to  refined suite environmental variables had the greatest predictive 

power to determine the likelihood of wetland distribution.  

The PCA technique is used to increase the interpretability of large datasets by 

reducing the size and complexity of the dataset while maintaining majority of the 

information (Jolliffe and Cadima, 2016). PCA creates a set of orthogonal 

variables called principal components which are linear functions of the original 

variables in the dataset such that it successively maximizes variance. The 

principal components represent the important information extracted from the 

dataset and provides a visual representation of the similarity of observations and 

variables as points in Euclidean biplot maps (Abdi and Williams, 2010). 

PCA is a multivariate statistical technique commonly used in exploratory data 

analysis and predictive modelling using ordinal data (Hess and Hess, 2018). The 

five nominal variables were excluded from this step and later added to the 

maximal model, these variables included geology groups, geology formation, soil 

type, clay content and landform.  

The dataset was centred and standardised before the PCA was run because the 

variables in the dataset were measured on different scales and orders of 

magnitude. The optimal number of principal components that account for the most 

variation in the dataset was selected based on Jolliffe’s rule (Jolliffe, 1972). The 

rule is a modification of Kaiser-Guttman’s rule (Kaiser, 1960) which is to retain 

principal components whose eigenvalues are greater than 0.7 instead of greater 

than 1 in order to better incorporate the effects of sample variance (Jolliffe and 

Cadima, 2016). The elimination of variables was an iterative process that analysed 

the biplots for the similarity of observation and the variable loading of each 

variable. Variable loadings were used to determine collinearities between 
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variables. Higher variable loadings have the least unexplained variability while 

lower variable loadings are associated with high levels collinearity and small 

changes in the data values may lead to large changes in the estimates of the 

coefficients. The magnitude of the effect of a variable on the presence of wetlands 

are represented as the vector length in the biplot. The angle-based measure, cosine 

similarity measure determines the similarity between two vectors from the 

orientation between them by calculating the cosine angle between two non-zero 

vectors (Booth et al. 1994). Consequently, in cases where there is a no or a small 

angle between two or more vectors, the variable with the lowest variable loading 

would be considered redundant and removed. This was conducted with due 

consideration to the potential importance of variables to wetland distribution, and 

its interaction with other variables. 

After the elimination of variables, the PCA was rerun to test the collinearity of the 

dataset. This was cross referenced with the correlation matrix by eliminating 

variables that exceed the collinearity threshold of r > 0.85. The techniques 

provided rigorous testing and elimination of redundant variables. The resultant set 

of refined variables was then combined with the previously excluded categorical 

variables to provide the maximal model for input into the logistic regression 

model.  

4.4.4.2 Logistic regression model 

Logistic regression is a type of Generalised linear model (GLM) suitable to 

analyse binary response data. The model was run using a binomial distribution 

and logit-link function, for the selection of variables to be included in the final 

model to estimate the probability of wetland distribution (Meyer and Laud, 2002). 

A logistic regression model was used to determine the relationship between the 

probability of wetland presence in the landscape and environmental variables. The 

maximal dataset (complete wetland locations with associated environmental 

variables) was saved as a text file. The statistical software package R version 4.0.0 

(R Core Team, 2020) was used to compute the model. 

The modelling process involved two steps, namely running a GLM and 

performing stepwise selection of the models. The GLM was formulated by Nelder 
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and Wedderburn (1972) and it is an extension of the classic linear regression 

model to wider class of response types.  

The GLM consists of three components: 1) the random component which refers to 

the probability distribution of the dependent variable, ", 2) the systematic 

component specifies parameter η which assumes magnification of the variance of 

each independent variable (#!, … , #") as a function of its linear predictors 

(&!, &#, … , &$), and 3) the link function (η(.)) of the independent variables, which 

links the random and systematic component, '()) = , (McCullagh and Nelder, 

1989; Neuhaus and McCulloch, 2011).  

The GLM is expressed using the following equation, where &% is the " intercept 

(constant value) in the linear predictor: 

,(") = ) = &% +	/&$#$

&

$'!
	

The logistic regression is based on the logit-link function ('())), which is 

described as: 

'()) = log	
)

1 − )	

The optimal and most parsimonious GLM was identified using the Akaike 

Information Criterion (AIC) (Akaike, 1973) as a measure of goodness-of-fit of 

each model relative to each of the other models, using a stepwise logistic 

regression. The model with the lowest AIC was the most parsimonious and best-

fit model within the collection of models considered. The parsimonious model 

explained the most variance with the minimum number of parameters.  

The stepwise LR model used the binary dependent variable (wetland 

presence/absence) and the significant continuous and categorical independent 

variables (environmental variables) from the GLM and fit the model using the 

maximum likelihood estimation (Crawley, 2012; Rawlings et al. 1998). A 

stepwise logistic regression allows for simplification of a more complex model. 

The stepwise selection is a combination of both backward elimination and 
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forward selection procedures (Crawley, 2012; Quinn and Keough, 2002). The 

logistic regression model is expressed as the following equation: 

5$ = 	
6(!)("*"

1 + 6(!)("*"
	

where	5$ is the probability of outcome for the binary dependent variable where 

the estimated probability is one binary outcome category rather than a continuous 

outcome, in this case it represents the probability of a wetland is present; 6 is the 

exponential function; and &% and &! are the environmental variables to be 

estimated and #! is the value of each independent variable weighted by its 

respective beta coefficient (&). &% is the " intercept (constant value) and &! is the 

regression coefficient (Hosmer and Lemeshow, 2000; Quinn and Keough, 2002). 

The regression coefficients &! provide important information about the 

relationship between the independent variables and the dependent variable. The 

logit-link function transforms the binary dependent variable, wetland 

presence/absence from discrete outcomes of 0 or 1 into a continuous probability 

that varies between 0 to 1.  

4.4.4.3 Developing the probability maps 

The aim of the final step of the model development process was to create 

probability maps of wetland distribution using ArcGIS 10.6 (ESRI, 2017). Spatial 

modelling of the final logistic regression model used the Raster Calculator Tool in 

the Spatial Analyst toolbox. Building the model followed four steps: 1) 

multiplication of independent variables raster layers and related coefficients, 2) 

the linear predictor equation grid, 3) the exponent grid, and 4) probability grid. 

The raster layers of environmental variables identified as significant in the LR 

model were multiplied by their corresponding regression coefficient, to create 

new raster layers. The resultant raster layers and the modelled constant value 

(intercept) were used to scale the linear predictor in accordance with the LR 

equation above to create an equation grid. The exponential grid was calculated 

using the sum of the equation grid and the base 10 exponential function. This was 

followed by the calculation of the probability grid (;) using the inverse logistic 

transformation to obtain probability values for each of the cells in the grid 
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between 0 and 1, according to the equation below, which is effectively based on 

the logistic regression equation: 

; = 	
6+,-./$0&	23$4

1 + 6+,-./$0&	23$4 	

Values closer to 1 indicate a high likelihood of a wetland being present, 

conversely values that are closer to 0 indicate a high likelihood of a wetland being 

absent (Quinn and Keough, 2002). The probability maps were reclassified into 

discrete binary values of 0 and 1 for the current distribution of wetlands, by 

implementing different thresholds. The probability values above this threshold 

were indicated by wetland presence. Conversely, probabilities below the threshold 

represented wetland absence.  

The climate change component of the study involved modelling wetland 

distribution for four future climate change scenarios (RCP 4.5-2050, RCP 4.5-

2070, RCP 8.5-2050, and RCP 8.5-2070). The environmental variables in the final 

LR model, which represents the equation for the current wetland distribution were 

substituted with the raster layers corresponding to the projected environmental 

variables for the future climate change scenarios. Future wetland distributions 

were predicted using the future environmental variables following the same GIS 

LR steps used in the predict the current distribution to create the spatial grid to 

calculate the predicted future wetland distribution. The probability maps for future 

predictions of wetland distribution was modelled using the binary coding 1 for 

wetland presence and 0 for wetland absence. The probability layers were then 

extracted to the study area extent using the extract by mask tool in the Spatial 

Analyst toolbox of ArcGIS 10.6 (ESRI, 2017).  

4.4.5 Model evaluation and validation  

The final step of the environmental modelling process was to evaluate the 

robustness of the model by conducting an accuracy assessment. Two independent 

verification datasets were used in the evaluation of the model namely, the digital 

verification dataset which is the remaining 30% of the wetland database (n = 

7,041) and the field verification dataset (n = 730). The wetland verification 

datasets were used to extract values from the probability raster layer that was 

http://etd.uwc.ac.za/ 
 



 

 53 

created for the current distribution of wetlands in ArcGIS 10.6. These datasets 

were then exported as a text file and inputted into statistical software package R 

(R Core Team, 2020).  

The performance of the model was determined using the quantitative, threshold 

independent evaluation metric, area under the Receiver Operating Characteristic 

curve (AUC ROC). AUC ROC analysis is widely used to determine the overall 

accuracy of prediction models with meaningful interpretations (Fielding and Bell, 

1997; Hanley and McNeil, 1982). It is a measure of discrimination that reflects 

the model’s ability to correctly discriminate between presence and absence. The 

ROC curve was generated by plotting the sensitivity against the 1 – specificity for 

all possible thresholds (Fielding and Bell, 1997; Phillips et al. 2006). The AUC 

ROC  values range from 0 to 1 and follows the evaluation criteria: poor (0.5-0.6), 

fair (0.6-0.7), good (0.7-0.8), very good (0.8-0.9) and excellent (0.90-1.00). The 

AUC ROC values below 0.5 represents a model with random discrimination, and 

a value of one represents perfect discrimination (Hosmer and Lemeshow, 2000).  

Sensitivity is the true positive (TP) rate of predictions refers to the percentage of 

correctly identified wetland presence correctly identified by the model and 

represents the absence of omission error. Specificity, known as the true negative 

(TN) rate of predictions, refers to the percentage of wetland absence correctly 

identified by the model as non-wetland area. Thus 1-specificity refers to the false 

positive (FP) rate and represents commission error (Phillips et al. 2006). The 

accuracy was calculated as the overall success of the probability layer. The 

measures were defined using the following equations:  

<6=>?@?A?@" = 	
B;

B; + CD 

<E6F?G?F?@" = 	
BD

BD + C; 

HFFIJJKF" = 	
BD + B;

BD + B; + CD + C; 

Where, TP are the true positives and TN are true negatives, and FP are false 

positives and FN are false negatives. The evaluation techniques were used to 
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determine the model performance and accuracy. The model with the highest levels 

of sensitivity, specificity, accuracy, and AUC ROC was selected as the final 

probability layer (Hiestermann and Rivers-Moore, 2015). 

4.4.6 Changes in wetland distribution  

The trends in the change of wetland distribution were calculated and compared 

using the Raster Calculator Tool in the Spatial Analyst toolbox. The binary raster 

layers for the current and future of wetland distributions were added together to 

calculate the overall wetland distribution. The distribution change was calculated 

from the from the current distribution for RCP 4.5 and RCP 8.5 for 2050 and 2070 

time periods. The resultant raster layer represents areas that would remain suitable 

for wetland distribution received a value of two; a loss of wetland distribution had 

a value of one, and a value of zero indicates areas not suitable for wetland 

distribution (Zhang et al. 2018). The potential loss of wetland distribution was 

expressed as a percentage (%). Percentage loss of wetland distribution was 

calculated based on the number of cells (each cell is 20m2 spatial resolution) for 

each value, multiplied by the spatial resolution of the layer, and multiplied by 100 

(Çoban et al. 2020; Zhang et al. 2018). 

http://etd.uwc.ac.za/ 
 



 55 

Chapter Five: Results  

5.1 Introduction  

This chapter aims to present the results used to address the objectives of this 

study. The chapter starts with a description of the wetland density variation across 

the aridity gradient of the study area. Detailed analysis of the correlated 

environmental variables is performed. This is followed by a presentation of the 

logistic regression model, probability layer output and model performance and 

verification. Lastly, the chapter concludes with the change analysis results of 

wetland distribution for the different time periods under two climate change 

scenarios.  

5.2 Wetland density and the aridity gradient  

The variation in wetland density in the study area was based on the NWM5 

(Figure 5.1). The resultant map and data must be analysed taking into 

consideration that the NWM5 dataset is an assemblage of datasets collected from 

various sources at different spatial and temporal scales using different mapping 

techniques. General trends on wetland density along the aridity gradient were 

deduced from observations. There is an overall wetland density of 7.00 wetlands 

per 10 km2 in the study area; however, the distribution is uneven. This is 

evidenced by the increase in overall wetland density from east to west and north 

to south and follows a similar pattern as the aridity gradient (Figure 5.1/Figure 

5.2). Wetland density hotspots coincide with the dry sub-humid and semi-arid 

conditions found in the City of Cape Town and Drakenstein municipalities. The 

Breede Valley Municipality had the lowest wetland density and the highest 

aridity.   
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Figure 5.1: Wetland density across the study area.  

 

Figure 5.2: An aridity index map showing wetlands in the study area.    
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The total coverage of wetlands in the study area is 376.59 km2 (37,659 ha), which 

accounts for less than 1% of the total extent of the study area. The number and 

size of the wetlands varied within the aridity class and among other aridity 

classes. The majority of the wetlands were found in the semi-arid region (Figure 

5.3). The dominant HGM wetland types in the study area were seeps, depressions, 

and channelled bottom wetlands, respectively, contributing to approximately 43% 

of the total wetland coverage. The number of seeps contributed to roughly 50% of 

the total density of wetlands. Despite the significant abundance of seep wetlands, 

this type covers a small extent (22%) of the total wetland area. The least 

frequently occurring HGM wetland type was wetland flats that contributed to less 

than 1% of the total wetland area. There were no wetlands flats found in the dry 

sub-humid region and a limited number in the arid region. Wetland flats were 

most abundant in the semi-arid regions.   

Table 5.1: The number of HGM wetland types within the aridity classes.  
HGM wetland type 

AI classes  CVB Depression Wetland 
flat 

Floodplain Seep UVB Total 

Arid 11 6 3 0 19 5 44 

Semi-arid 586 1703 49 290 3383 535 6546 

Dry sub-humid  33 5 0 1 337 12 388 

Total  630 1714 52 291 3739 552 6978 

  

Floodplain wetlands covered the largest extent across the study area, 

approximately 12,930 ha. The HGM wetland type was not found in the arid 

regions and contributed to a limited extent (1.78 ha) to wetland area in the dry 

sub-humid region. The unchanneled valley bottom wetland density was the 

highest in the semi-arid region and contributed to approximately 19% of the total 

extent. Lastly, depression wetlands were the second most abundant HGM wetland 

type across the study area and semi-arid regions but had a relatively small 

contribution of 4% to the total wetland area. The results of the variance in wetland 

density across the study areas is explained in further detail in Chapter 6.  
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a) Arid  

Aridity class 
b) Dry sub-humid  

Aridity class 

c)   

Figure 5.3: The overall wetland area (ha) per hydrogeomorphic wetland type 

(CVB – channelled valley bottom wetland, UVB – unchanneled valley bottom 

wetland) for the aridity classes, a) arid, b) dry sub-humid, and c) semi-arid.  

5.3 Statistical analysis of environmental variables 

Twenty-seven ordinal environmental variables from the original dataset were 

extracted as the dataset for this component of the study. Bartlett’s Test of 

Sphericity was significant, p < 0.001, which indicates that it is appropriate to 

apply PCA. This was cross-referenced with the KMO statistic of 0.88, which is 
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higher than the threshold value (KMO test > 0.5) and suggests that the maximal 

ordinal dataset had high correlations among variables (Table 5.2).  

Table 5.2 The Kaiser-Meyer-Olkin (KMO) and Bartlett’s test of sphericity results. 

Kaiser-Meyer-Olkin measure of sampling adequacy  0.881 

Bartlett’s test of 

sphericity 

Chi-Square 719,329.993 

Degrees of freedom 378 

Significance <0.001 

 

The application of the PCA reduced the number of environmental variables from 

27 to six through an iterative elimination process. The maximal PCA was 

explained by the cumulative variance of 76.24% and an eigenvalue of 4.12 

(Figure 5.4).  

Following the first iteration of PCA, six variables were eliminated due to their 

short vector length, which is indicative of their low contribution towards 

determining the effect of wetland presence or absence. Variables included aspect, 

flow accumulation, flow direction, bio3, bio15 and groundwater depth.  

In the second run of the PCA, the rainfall variables bio16, bio18 and bio19 were 

removed due to the high correlation (r < 0.86) between the variables and bio17. 

Variable bio17 was retained as it had a longer vector length, indicating that the 

variables contribution to determining the model's outcome was better than the 

others.  

The third PCA found a high correlation (r>0.85) between bio12, bio13, bio14 and 

bio17 and their vectors lie at the same angle. Variables bio12, bio13, and bio14 

was removed due to the shorter vector lengths, and the lower variable loadings 

reinforced the elimination.  

The outcome of the fourth iteration of the PCA indicated a strong correlation 

(r>0.94) between bio2, bio4, bio7 and PET and their vectors lie along a similar 

angle. The PCA retained bio7 as it had a longer vector length and had a higher 

variable loading of 0.17.  
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In the fifth PCA rerun, the temperature variables bio1, bio5, bio9 and bio10 had 

high levels of correlation (r > 0.92), and bio10 was retained as it had the highest 

variable loading.     

 

Figure 5.4: An Euclidean biplot of the maximal dataset (refer to Table 4.2 for the 

description of variables) of the Principal Component Analysis. 

The final iteration of the PCA eliminated soil depth because the variable was the 

shorter vector length when compared to bio6. Lastly, a strong negative correlation 

(r > -0.93) between elevation and bio8 and bio11 resulted in the elimination of 

bio11 and elevation variables. The optimal PCA accounted for 83.05% of the 

cumulative variance of the dataset in the first two axes (Figure 5.5). The objective 

to remove the interdependency of variables from the dataset was satisfied.  

The final PCA was presented in Table 5.3. Axis one accounted for 54.30% of the 

variance. The variable loadings that contributed the most to determining wetland 

presence were bio8, bio10 and bio17 with -0.509, -0.485 and 0.424, respectively. 

The highest variable loadings in axis two were attributed to bio7 and bio6, with 

0.729 and -0.547, respectively.  
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Figure 5.5: The final PCA illustrated as an Euclidean biplot showing the refined 

suite of ordinal variables (refer to Table 4.2 for the description of variables).  

Table 5.3: The variable loadings for the refined suite of variables for Axis 1 and 

Axis 2.  

PCA variable loadings Axis 1 Axis 2 

bio6 -0.369 -0.547 

bio7 -0.124 0.729 

bio8 -0.509 -0.159 

bio10 -0.485 0.284 

bio17 0.424 -0.23 

slope 0.419 0.102 

 

Following the elimination of redundant variables, the nominal variables were 

added to the refined dataset to make the complete maximal dataset that will be 

used to model the distribution of wetlands. 

5.4 Logistic regression model  
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The LR model was fitted using the maximal dataset, which consisted of 11 

environmental variables that were used to generate the wetland distribution model 

(Table 5.4). The variables in the maximal LR model that were found to make a 

significant contribution to building the model were bio6, bio8, bio10, bio17, 

slope, soil type and clay content. Based on the coefficients of the model, bio10 

followed by bio6 had the largest contribution to determining the presence of 

wetlands; however, the variables were also associated with high standard errors. 

The bio7, geology group, and geology form variables were not significant 

(p>0.05) to contribute to the generation of the model.  

Table 5.4: The coefficients and standard errors for variables used in the logistic 

regression model. The p-values are highly significant at 0.001. 

 Coefficient Standard error p-value 

Intercept 2.7689628 0.4294954 < 0.0001 

bio6 0.4863637 0.1531111 0.00149 

bio7 -0.1089010 0.0798126 0.17242 

bio8 -1.2544117 0.0691687 < 0.0001 

bio10 0.6047105 0.0972870 < 0.0001 

bio17 0.0214296 0.0016100 < 0.0001 

slope -0.0427102 0.0026598 < 0.0001 

landform  -0.1423172 0.0057177 < 0.0001 

geology group 0.0128833 0.0103282 0.21225 

geology formation -0.0004304 0.0006013 0.47415 

soil type -0.0301904 0.0030565 < 0.0001 

clay content -0.2258114 0.0263599 < 0.0001 

AIC 20603 
Note: The result is significant at p ≤0.05. 

 

Variables that did not contribute to building the model were removed, and the 

stepwise LR model was run. Four models iterations were conducted as part of the 

stepwise selection process (Table 5.5).  
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Table 5.5: Comparison of the logistic regression models generated in the stepwise 

selection process.    

 LR 1 LR 2 LR 3 LR 4 

No. of variables  11 10 9 8 

AIC value  20,602.74 20,601.25 20,600.57 20,600.1 

 

The selection of all the environmental variables identified in the model was 

necessary for the formation and persistence of wetlands. The most parsimonious 

model was LR 4, with an AIC value of 20,600.1 and included eight variables that 

were all statistically significant, p < 0.001 (Table 5.5 and Table 5.6). The 

coefficients from the final LR model reiterated the findings of the optimal model 

indicate that bio6 and bio10 were the most important environmental variables to 

predict wetland distribution. 

Table 5.6: The coefficients and standard errors for variables used in final logistic 

regression model. The p-values are highly significant at 0.001.  

 Coefficient Standard error p-value 

Intercept 2.477413 0.386722 < 0.0001 

bio6 0.677977 0.035404 < 0.0001 

bio8 -1.292794 0.054859 < 0.0001 

bio10 0.475064 0.025278 < 0.0001 

bio17 0.021465 0.001603 < 0.0001 

slope -0.043278 0.002626 < 0.0001 

landform -0.141929 0.005710 < 0.0001 

soil type  -0.029772 0.003024 < 0.0001 

clay content -0.224008 0.026011 < 0.0001 
Note: The result is significant at p ≤0.05. 

 

A LR equation was fit in ArcGIS 10.6 using the coefficients from the model to 

spatialise the probability of wetland distribution in a final raster layer. Each cell 

value in the raster indicates the probability of wetland distribution as a continuous 

probability from 0 to 1, where values approaching 1 indicate a higher chance of 

predicting wetland presence. The probability values were expressed as a 
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percentage in the results. The probability of wetland distribution in the study area 

is represented in Figure 5.6.  

 

Figure 5.6: The wetland probability layer for the current wetland distribution in 

the study area. Blue circles represented dense wetland areas, and a red circle 

represented low wetland density areas.  

From visual inspection, the wetland probability layer distinctly identified the arid 

region of the Breede Valley Municipality (33°3’S 20°2’E) as low wetland density 

is represented by a red circle and the two areas that indicate dense wetland regions 

is indicated by the blue circles in Figure 5.6. The two areas that represent a high 

density of wetlands are the wetland system associated with the Eerste River 

(34°0’S 18°9’E) and seep wetlands that litter the Cape Fold Belt Mountains on Du 

Toits Kloof (33°7’S 19°1’E). Both dense wetland areas coincide with the 

transitional zone between semi-arid and dry sub-humid regions.  

Three thresholds values were applied to reclassify the probability layer for 

probabilities ranging from above 60%, 70% and 80% to represent the study area 
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(Figure 5.7). The probability layer at a 90% threshold was not illustrated because 

the number of wetlands represented above the threshold was severely 

underestimated. By contrast, the binary probability layer created for above 60% of 

probability values indicates an overestimation of wetland presence in the study 

area (Figure 5.7, c). 

a)  

b)  

c)  

Figure 5.7: The probability maps of wetland distribution at different thresholds, a) 

above 80%, b) above 70%, and c) above 60%.  
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5.5 Model performance and evaluation  

In this study, the field verification dataset and the digital verification dataset (the 

remaining 30% of the total wetland dataset) were used to evaluate the models. The 

AUC ROC evaluation metric was used to assess the accuracy of the model. The 

AUC ROC was calculated with a score of 0.643 (SE ± 0.021) and 0.687 (SE± 

0.0063) for the field verification and digital verification datasets, respectively 

(Figure 5.8). The sensitivity, specificity and overall accuracy was calculated for 

the verification datasets. Both datasets had sensitivity below 0.5 which indicates 

the model had challenges correctly identifying true positive rate resulting in an 

absence of omission error. Based on the AUC ROC values, the models ability to 

detect the true negative rate and the overall accuracy values indicates that the 

model performed better than a random model and had a fair performance. 

However the predictions were more accurate for the digital verification dataset 

than the field verification dataset (Table 5.7).  

 

Figure 5.8: The area under receiver operating characteristic curve analysis of the 

model on the field verification dataset indicated in black and the green line 

represents the digital verification dataset.  
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Table 5.7: The model performance statistics for the LR model at a probability of 

60%.  

 Field verification dataset Digital verification dataset 

Sensitivity 0.435 0.446 

Specificity 0.699 0.785 

Overall accuracy 0.555 0.645 

 

5.6 Changes in wetland distribution  

The current and predicted wetland distribution was compared for the 2050 and 

2070 time periods under the RCP 4.5 and RCP 8.5 climate change scenarios 

(Figure 5.9/Table 5.8). The modelled current wetland distribution is 

approximately 394.17 km2 (39416 Ha). Overall, the predicted wetland distribution 

decreased substantially for the future scenarios and time periods. According to the 

RCP 4.5 climate change scenario, there is a 62-71% loss between the 2050 and 

2070. In the RCP 8.5 scenario there is predicted to be a large loss of wetlands 

between 90-98%. The impact of the RCP 8.5 scenarios on the change in wetland 

distribution was evident when compared to the RCP 4.5 scenarios. Approximately 

only 9-49% of the current wetland distribution will remain suitable.  
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a) RCP 4.5 – 2050  b) RCP 8.5 – 2050 

  
b) RCP 8.5 – 2050 d) RCP 8.5 – 2070 

Figure 5.9: Wetland distribution and change in wetland distribution for the 2050 

and 2070 and the RCP 4.5 and RCP 8.5 climate change scenarios. The code for 

suitability change is given by 0 - not suitable, 1 - loss of wetland distribution, 2 - 

remains the suitable for current and future scenarios.  

Table 5.8: Spatial analysis of the change in wetland distributions from current 

distribution to its future potential distributions in 2050 and 2070.   

 2050 2070 

 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 

Loss of Wetlands (%) 62.34 90.27 71.36 98.43 

Loss of habitat (km2) 245.73 355.81 281.29 388 

Not suitable (km2) 7330.55 7341.12 7300.65 7152 

Remain suitable (km2) 159.19 38.53 153.53 195 
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Chapter Six: Discussion and Conclusions 

The discussion chapter provides a comprehensive explanation of the results of the 

current and predicted wetland distribution. In addition to the description of the 

current wetland distribution variation along the aridity gradient of the study area, 

the study aimed to firstly determine the current predicted wetland distribution 

using logistic regression and evaluate the findings, and secondly determine the 

change in predicted wetland distribution under climate change. These two 

modelling objectives are evaluated in relation to the risks of wetland loss due to 

climate change and its implications.  

6.1 Wetland distribution across the aridity gradient  

The study assessed the variation of wetland density along the aridity gradient to 

understand the distribution of wetlands in the study area. The results indicate that 

the study area has a high density of wetlands and the distribution is relatively 

uneven. This is a result of the change in aridity classes over a short distance and 

high topographic heterogeneity. The steep north-south aridity gradient in the 

Western Cape is enforced by the rainfall seasonality gradient that extends from 

east to west and a temperature gradient that increases from the pole to the equator 

(Midgley et al. 2005; Tyson, 1999). Tooth et al. (2015) and Mitsch and Gosselink 

(2007) highlight the role of geomorphology, hydrology and long-term climate 

factors that control wetland formation and development. The diverse topography 

of the Cape Fold Belt mountains creates local climate conditions, such as the 

orographic effect that creates a band of humid conditions over the mountain range 

(DEA, 2011).  

Seep wetlands were the dominant HGM wetland type found primarily in dry sub-

humid conditions that persist over the Cape Fold Belt mountains, although their 

extent is limited. This finding supports the suggestion of Ellery et al. (2009) that 

these wetlands are likely to be found in areas with relatively higher rainfall and 

lower rates of potential evaporation than is the case in drier areas with fewer 

wetlands. A similar pattern was noted for wetland density across the study area. 

The abundance of depression wetlands similarly had a small total wetland extent. 
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The small extent of depression wetlands is often a result of the wetland being 

isolated on a closed or near-closed elevation contour that is not connected to an 

outlet drainage network (Ellery et al. 2009; Ollis et al. 2013). Wetland flats were 

the least frequently occurring wetlands and can be attributed to the rugged 

topography of the landscape. This HGM wetland type was found in semi-arid 

conditions as one moves from the Drakenstein Municipality to the Breede Valley 

Municipality, where the topography is relatively level. The distribution of valley 

bottom wetlands was linked to the trellis drainage patterns and influenced by the 

geology of the study area (Partridge et al. 2010). Floodplain wetlands (sensu Ollis 

et al. 2013) were distinctly absent from the arid region and contributed to a 

limited extent to the dry sub-humid region. The absence or near absence of 

floodplains from these regions indicates the importance of topography and 

lithology controls on the formation of the HGM wetland type (Tooth et al. 2004). 

Ollis et al. (2013) explain that floodplain wetlands are generally found in broad 

valleys with a gentle slope. These landscape features are mostly uncommon in the 

dry sub-humid region of the study area due to the Cape Fold Belt mountains and 

associated narrow coastal plains relative to the east of South Africa. 

In conclusion, Tooth (2013) argues that geology is an important control on some 

HGM wetland types and overrides the effects of climate in some cases. Findings 

from Chase and Quick (2018) and Engelbrecht and Engelbrecht (2016) predict 

that climate conditions will become warmer and drier across the Western Cape; 

this suggests that the aridity gradient will likely shift southwards due to 

displacement of the polar frontal systems that brings rainfall to the WRZ.  

6.2 Verification of the probability layer for current and future wetland 

distribution 

A logistic regression model was used to map the predicted current wetland 

distribution, and the future wetland distribution for 2050 and 2070 under the RCP 

4.5 and RCP 8.5 climate change scenarios. The technique has previously been 

used to map wetland distribution in South Africa and internationally at different 

spatial scales and resolutions (Grant, 2005; Hiestermann and Rivers-Moore, 2015; 

Melly et al. 2017). The probability layer of the current wetland distribution 
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consisted of continuous probability values ranging from 0-98%. The AUC ROC 

value provided a measure of the overall accuracy that is comparable among 

different models (Ling et al. 2003). The AUC ROC of the probability layer was 

between 0.643-0.687, and overall accuracy of 64.5% indicated that the model had 

a fair performance and was compared to the findings of other studies (Table 6.1). 

The threshold values of the probability layer above 80% and 70% underestimated 

wetland distribution, while a value of 60% overestimated wetland distribution. 

Overestimation of wetland distribution could be a result of spatial autocorrelation 

among the wetland presence and absence dataset used in the model (Ishihama et 

al. 2010).  

Table 6.1: The area under receiver operating characteristic curve (AUC ROC) 

values and overall accuracy of other wetland distribution models. (LR = logistic 

regression; BN = Bayesian Network) 

Study Description AUC ROC 
value 

Overall 
accuracy (%) 

Melly et al. (2017) 
LR model for Nelson Mandela Bay 
Metropolitan (NMBM) Municipality 
in Gqeberha 

0.69 66 

Rivers-Moore et al. 
(2020) 

BN model for predicting HGM 
wetland type in the Western Cape - 68 

Grant (2005) 
LR model for assessing the 
occurrence of vernal pools in 
Massachusetts, USA 

- 64.8 

Zhong et al. (2021) MaxEnt model to predict wetland 
distribution in Northeast China 0.85 - 

Rebelo et al. 
(2017) 

MaxEnt model to predict palmiet 
wetlands in the Cape Floristic Region 
(CFR) of South Africa 

0.81 - 

Hiestermann and 
Rivers-Moore 

(2015) 

LR wetland distribution model for 
KwaZulu-Natal (KZN) 0.84 - 

Hiestermann and 
Rivers-Moore 

(2015) 

BN model for KZN 
0.85 - 
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The poor performance of the LR model compared to other studies in KZN and 

NMBM Municipality is possibly due to the physical characteristics of the region. 

The Hiestermann and Rivers-Moore (2015) LR model was based on a study area 

in the SRZ with relatively low evapotranspiration rates, where the climate and 

topography are more or less consistent for most of the study area. Similarly, the 

LR model for the Nelson Mandela Bay Municipality (NMBM) took place in the 

ARZ with relatively consistent climatic conditions and topography throughout the 

study area (Melly et al. 2017). Whereas the LR model performed for this study 

had steep changes in climate as evidenced by the aridity gradient that traverses the 

study area and high topographic heterogeneity, making it difficult to predict the 

distribution of wetlands. 

Other important factors that influenced model performance was the quality of the 

environmental variables dataset used to build the models. For example, most of 

the data used in this study were international and national datasets at a low spatial 

resolution (~ 0.8 – 2.5 km for environmental variables) which contributed to the 

low model performance. Local datasets are beneficial, such as the 

hydrogeomorphic soils dataset used in the LR and BN models (Hiestermann and 

Rivers-Moore, 2015). The bioclimatic variables had a low spatial resolution, and 

there were high levels of correlation among some of the variables (refer to Section 

5.3: Statistical analysis of environmental variables). This was further emphasised 

by the high standard errors of the bioclimatic variables that are evident in the final 

LR model. Despite this, the optimal dataset retained these variables alongside 

other variables in the model to account for the complex interactions necessary for 

wetland formation and persistence (Melly et al. 2017).  

Similar to the studies conducted by Melly et al. (2017) and Rebelo et al. (2017), 

prediction success increased for wetlands above a size threshold of 1 hectare. 

Several small wetlands (< 1 ha) occurred throughout the study area and accounted 

for the difficulty in estimating wetland presence through the modelling process. 

The fair model performance can further be attributed to the fact that only one data 

location point at the centroid of the wetland was used to train and test the model, 

which may result in the location point lying cell with a low probability value. 

Furthermore, the climatic regions, slope and input datasets vary among the studies 
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and may not be comparable. These observations are consistent with those of 

Hiestermann and Rivers-Moore (2015) and Melly et al. (2017), indicating that a 

buffer of an appropriate size must be used when extracting the probability values 

to test the performance of the model (Valavi et al. 2018).  

Lastly, the model performed poorly compared to Rebelo et al. (2017) study on 

palmiet wetland distribution using the MaxEnt approach and could result from the 

study focusing on a specific HGM wetland type. In contrast, this study looked at 

determining the distribution of wetlands for all HGM wetland types. Rivers-

Moore et al. (2020) had a similar result when looking specifically at different 

HGM wetland types. The accuracy may improve if the LR model was run per 

HGM type or by removing an HGM wetland type from the current model (Melly 

et al. 2017). Overall the model performance in terms of accuracy and the AUC 

ROC evaluation metric was above the threshold of 0.5 and used a field 

verification dataset to validate the model.  

6.3 Changes in predicted wetland distribution under climate change and 

implications  

In this study, the current and future wetland distribution was modelled for the 

2050 and 2070 time periods under the RCP 4.5 and RCP 8.5 climate change 

scenarios using the final LR model. The LR model revealed the optimal dataset of 

environmental variables were all statistically significant (p < 0.05) and contained 

the following variables bio6, bio8, bio10, bio17, slope, landform, soil type and 

clay content. The slope, landform, soil type and clay content variables are 

geomorphic variables that change over centennial to millennial timescales and, 

therefore, will not significantly change over the time period considered for 

modelling of future wetland distribution (Tooth et al. 2015). They do however, 

determine the structure of the wetland setting, and will determine the resilience of 

wetlands to other process changes (Tooth, 2018), although this is beyond the 

scope of the present study to consider. Variables bio6, bio8, bio10, bio17 are 

bioclimatic variables, and projections indicate that these variables will change 

according to the climate change scenarios over relatively short timescales 

(Hijmans et al. 2005). The temperature variables bio6, bio8 and bio10 are 
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expected to increase overall, and the hydrology variable bio17, which is 

precipitation in the driest quarter of the year, is anticipated decrease based on 

projections of a warmer and drier climate over the Western Cape (Engelbrecht and 

Engelbrecht, 2016). Temperature variables contributed the most in determining 

wetland presence in the model (Table 5.6). The position within the topography 

(landforms) is also important to predict wetland distribution in connection with its 

effects on the microclimate (Çoban et al. 2020; Dobrowski, 2011). According to 

Zhong et al. (2021), models that include climate variables and relevant non-

climate variables are able to provide a more holistic representation of distribution.  

The current wetland distribution was compared to the predicted future wetland 

distributions under RCP 4.5 and RCP 8.5. The results confirmed that there would 

be a significant change in wetland distribution, although the nature of the change 

depends on the respective climate change scenario. Considering that many 

wetlands are dependent on a positive water balance, the future climate conditions 

will become less suitable for wetland distribution and will result in a severe loss 

of wetlands. This is consistent with the climate projections for the region 

(Engelbrecht et al. 2015; Engelbrecht and Engelbrecht, 2016). Shifts towards a 

drier and warmer climate will result in a reduction in inundation of some wetlands 

and drying up of others, particularly those that are rainwater dependent (Ellery et 

al. 2009; Sandi et al. 2020). Climate change is an important factor that will 

influence the loss and fragmentation of wetlands (Çoban et al. 2020; Pearson and 

Dawson, 2003). Areas that remained suitable for wetland distribution coincided 

with the mountain ranges found in the study area and suggest that the mountain's 

complex topography provides a buffer to the effects of climate change (Albrich et 

al. 2020). In summary, the results presented for this study provide quantifiable 

spatial projections of wetland distribution and analysis of change and wetland 

resilience under different climate change scenarios to support decision-making 

(Figure 5.6 and Table 5.8). The study recommends that wetlands with low 

probabilities in the future climate change scenarios are prioritised for wetland 

conservation planning (Xu and Chen, 2019). Although it may not be possible to 

provide more water to these wetlands, all efforts should be made to prevent 
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increases in anthropogenic hydrological stressors in their surface and subsurface 

catchment areas.  

6.4 Conclusion and Recommendations 

The study aimed to develop a logistic regression model of current and future 

wetland distribution using environmental variables. Based on the findings of the 

study, the following conclusions were drawn. The wetland density increases with 

a decrease in aridity gradient in the study area. The most abundant HGM wetland 

type was seep wetlands found predominantly in the dry sub-humid region. 

Redundant ordinal environmental variables were eliminated using a PCA. The LR 

had a fair performance in predicting wetland distributions, with an AUC ROC 

value greater than 0.64. The bioclimatic variables, specifically the climate 

variables, had a higher contribution to predicting wetland distribution than the 

geomorphic variables, possibly due to the generally steep and well-dissected 

terrain of the region which does not typically favour wetland persistence. 

Modelling the current and future wetland distribution and predicting the potential 

loss of wetlands and change in suitable wetland distribution indicated an overall 

decline in distribution for 2050 and 2070 under the RCP 4.5 and RCP 8.5 climate 

change scenarios. In conclusion, the model and approach used in this study 

provide a valuable reference for future studies , and a point of departure for the 

refinement of approaches to modelling the effects of climate change on wetland 

distribution. The results will help improve the conservation of wetlands and 

protect rare and endangered wildlife dependent on wetlands for survival.  

The limitations and recommendations of the study were addressed. Limitations to 

the study were to increase the number of wetlands sampled during the wetland 

verification exercise, particularly towards the arid spectrum of the aridity gradient. 

In addition, the availability of high-resolution bioclimatic variables for current 

and future climate change scenarios was limiting in the study. The limitations 

identified in this study can be improved through future research. It is 

recommended that research improve the ground-truthing exercises of wetland 

sites on the inland arid landscape of the ARZ and improve the availability of high-

resolution input layers (Hiestermann and Rivers-Moore, 2015).  
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Further development of environmental modelling using additional environmental 

parameters and remote sensing techniques could be investigated. Finally, it is 

recommended that the LR model for the potential current and future wetland 

distributions be extended to model the distributions according to HGM wetland 

type (Hiestermann and Rivers-Moore, 2015; Melly et al. 2017; Rivers-Moore et 

al. 2020). The new probability layers would provide specific information on each 

HGM wetland type and shifts in distribution due to climate change. 
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