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Abstract

In recent history there have been several advances in cosmology, which has significantly
shaped our understanding of the Universe. The current leading theory is called ΛCDM,
which can successfully model the expansion of the Universe from a primordial state
and describe the dynamics of its contents, thereby resulting in the large-scale structure
present today. The model is based on general relativity, that describes gravitational
interaction as the curvature of a four-dimensional manifold called space-time. However,
despite the many successes of ΛCDM, there are a number of things that need further
investigation.

The Cosmic Microwave Background (CMB) is the oldest observable radiation in
the Universe, and this cosmological relic contains a detectable structure. The process
leading up to the CMB determines the initial conditions of ΛCDM, but is still poorly
understood. It is widely accepted that inflation was responsible for the rapid expansion
after the Big Bang, although this is yet to be verified experimentally. The distribution
of the primordial potential is imprinted on ultra-large scales of the matter distribution,
which offers an important insight into uncovering this mystery.

In addition to the primordial Universe, there are other concepts that still puzzle us in
ΛCDM itself. The fact that we have been unable to directly detect and explain these dark
components (that make up around 96% of the Universe) has prompted several theorists
to consider alternative cosmological models. Therefore, testing general relativity
and ΛCDM is still an essential part of cosmological research. A key observational
discriminant between general relativity and modified theories of gravity is the rate at
which the large-scale structure grows from small perturbations. The relativistic effects
(or light-cone effects) expected in general relativity also offer an independent test of
the gravitational model.

The present experiments are not extensive or sensitive enough to make detections
that can result in a definitive conclusion, however great advancements are expected
from the telescopes of tomorrow. The next-generation of cosmological surveys will
observe larger cosmic volumes with greater sensitivity than ever before, enabling us to
access more information on the primordial Universe, peculiar velocity fields, as well as
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relativistic effects. In addition to probing deeper in redshift over a larger sky area, the
surveys will also create complementary data sets of dark matter tracers. By combining
the information from different observations via multi-tracer cross-correlations, we can
suppresses cosmic variance and more precisely measure cosmological parameters.

The distribution of galaxies are analysed using the angular power spectrum. The
Cℓ is observed in redshift space, therefore it includes relativistic effects without ap-
proximation and avoids the need for an Alcock-Packzynski correction. It also naturally
incorporates wide-angle effects, and cosmic evolution is included through relatively
narrow redshift bin widths. We also include the cross-correlations between bins, and
utilise a “hybrid approximation” when the total number of bins is computationally
unfeasible.

We use a Fisher Matrix analysis to forecast constraints on cosmological parameters
expected from future spectroscopic galaxy surveys. In our forecasts we only consider
linear scales. We also consider the uncertainty of several parameters, by marginalising
over the amplitude of primordial fluctuations, the dark energy equation of state
parameter, the clustering bias in each redshift bin, as well as other standard cosmological
parameters.

As opposed to an exhaustive study of future surveys, we attempt to fill the redshift
range 0 < z ≲ 3 with the potentially best contemporaneous spectroscopic surveys.
We considered large-scale structure surveys in the optical, near-infrared and radio.
Specifically, the neutral Hydrogen (HI) surveys in radio from the Square Kilometre
Array Observatory (SKAO), the optical galaxy survey of Dark Energy Spectroscopic
Instrument’s Bright Galaxy Sample (DESI BGS), as well as the Euclid-like Hα survey
in near-infrared. We also consider the combination of these surveys, specifically two
pairs of 21cm and galaxy surveys: one pair at low redshift and one at high redshift.

An exciting prospect for future surveys is the detection of a non-Gaussian distribu-
tion in the primordial potential field, i.e. non-zero fNL. The accurate measurement of
fNL will enable us to determine whether the early Universe originated from a single- or
multi-field inflationary model. We forecast the expected precision on fNL and find that
the full combination of surveys could deliver σ(fNL) ∼ 1.5.

The observed power spectrum includes relativistic effects, which in addition to
testing gravity can produce a signal similar to primordial non-Gaussianity. Therefore,
it is important to accurately model such influences and establish how well we can
distinguish between fNL and light-cone effects. We consider the detectability of lensing
magnification and other relativistic effects. The result from the full survey combination
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shows we can detect the Doppler effect with a signal-to-noise ratio ∼8, and measure
the lensing convergence contribution at ∼2% precision.

Furthermore, we assess the bias on the best-fit values of fNL and other cosmological
parameters, from neglecting these light-cone effects. We conclude that lensing magnifi-
cation at higher redshifts must be included in the modelling of spectroscopic surveys.
If lensing is neglected in the analysis, this produces a bias of more than 1σ – not only
on fNL, but also on the standard cosmological parameters.

General relativity and its classical modifications have distinctive effects on the
clustering of galaxies and their peculiar velocities. This implies that the growth rate of
large-scale structure provides a powerful consistency test of the standard cosmological
model and a probe of possible deviations from general relativity. We extract information
on the growth index γ via the observational effect of redshift space distortions. We
show that the signal-to-noise on γ increases as the redshift bin-width is decreased.
Shot noise per bin also increases – but this is compensated by the increased number
of auto- and cross-spectra. Neglecting cross-bin correlations increases the errors by
∼ 40 − 150%. We find that a DESI-like BGS survey and an HI intensity mapping
survey with the SKAO precursor MeerKAT deliver similar errors of ∼ 4 − 6%, while a
Euclid-like survey and an SKAO intensity mapping survey give ∼ 3% errors.

Additionally, we forecast constraints on the growth rate from a combination of
next-generation spectroscopic surveys. In the overlap survey volumes, we use a multi-
tracer analysis to significantly reduce the effect of cosmic variance. The non-overlap
individual survey volumes are included in the Fisher Matrix analysis in order to utilise
the entire observed volume. We find that combining the surveys improves the error on
γ from the best single-tracer by up to ∼50%, delivering a precision of ∼ 1.3%.
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Chapter 1

Introduction

Cosmology is a branch of astronomy dedicated to describing the Universe from its
origin to the large-scale structures observed today. More specifically it describes the
contents, geometry and dynamics of the cosmos, as well as how these properties evolve
over time. In recent decades the scientific community has developed a well established
theoretical model that can accurately describe the evolution of the Universe by using
only 6 cosmological parameters, called ΛCDM or the standard model of cosmology.
The model is named after the exotic components needed to explain the dynamics of
the Universe: dark energy Λ accounts for the late time accelerated expansion, and
Cold Dark Matter (CDM) is required to model the clustering of galaxies. Additionally,
the model assumes that dark energy and dark matter are uncoupled. ΛCDM has been
meticulously tested in different epochs on different physical scales, using a variety of
cosmological probes.

The era of so-called “precision cosmology” started in the early 90’s, when the Cosmic
Background Explorer (COBE) detected the anisotropies on the Cosmic Microwave
Background (CMB) [6]. In subsequent years, additional experiments were able to
improve measurements of the temperature fluctuations on the surface of last scattering,
which contributed a wealth of information to our understanding of the Universe. For
example Wilkinson Microwave Anisotropy Probe (WMAP), Boomerang and most
recently Planck [7–10]. Many of the best constraints on the ΛCDM result from the
CMB measurements, but they are not exclusive.

Numerous cosmological surveys are underway or planned that probe the large-scale
structure (LSS) of the Universe at much later times, such as Galaxy And Mass Assembly
(GAMA), Sloan Digital Sky Survey (SDSS), Dark Energy Survey (DES) and Euclid,
to mention a few [11–21]. These surveys are considering the spatial distribution of
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2 Introduction

galaxies, which are expected to be strongly correlated to the anisotropies observed in
the CMB. Therefore all the data-sets are consistent with ΛCDM and we should be
able to constrain this model by considering both early- and late-time probes.

The significant difference between the CMB and LSS is the number of scales one
can possibly extract. The CMB signal originates from a thin shell produced around the
epoch of recombination, whereas the LSS gives us a three-dimensional insight into the
nature of the Universe. Therefore we expect to extract more cosmological information
from the LSS as compared to the CMB, however, only recently the LSS has delivered
constraints comparable to that of the CMB. The reason is that the instrumentation to
date is not sensitive enough to utilise all the information available at late times.

We are entering a new era in the study of the large-scale structure of the Universe.
Not only will we map the sky over larger areas, but we will also go much deeper in
redshift. The increasing volumes would provide access to the ultra-large scales necessary
to measure the effects of primordial non-Gaussianity in the large-scale structure, which
is an important scientific driver of future surveys. Primordial non-Gaussianity of the
different types (local, equilateral, folded) provides an exquisite window into the physics
of the very early Universe (see e.g. [22] for a review). These types of primordial
non-Gaussianity have been constrained by the Planck survey [10], which is the current
state-of-the-art.

Einstein’s theory of gravity and its modifications (see e.g. the reviews [23–25]) leave
distinctive imprints on the clustering of matter and its peculiar velocity. Identifying
the statistical effect of peculiar velocities on the distribution of matter provides a
powerful test of the cosmological model as well as the theory of gravity. Furthermore,
relativistic contributions, like lensing magnification and Doppler effect can also be used
as independent tests of general relativity.

In addition to the growing volumes, we will also probe the sky in different frequency
ranges, creating complementary sets of dark matter tracers. The multiple tracers can
be combined by using the multi-tracer technique [26] to minimise the effect of cosmic
variance. Although the technique was initially proposed to measure local primordial
non-Gaussianity without cosmic variance, its potential to better constrain the growth
rate of LSS was shown by [27]. Also, the multi-tracers proves a compelling method to
extract information on contributions from light-cone effects, such as lensing and the
Doppler effect.
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3

The structure of the thesis is as follows: chapter 1 gives a brief overview of the
standard cosmological model, growth of the large-scale structure and observational
light-cone effects. The statistical methods applied to analyse the galaxy distributions
is reviewed in chapter 2, as well as the multi-tracer technique and the Fisher Matrix
analysis. The technical details of modelling cosmological surveys and which dark matter
tracers we considered is described in chapter 3. In chapter 4 and chapter 5 we give the
main results of the thesis, which are the constraints from future spectroscopic surveys
and their combinations on: growth rate of large-scale structure formation, primordial
non-Gaussianity and relativistic effects. The thesis is briefly summarised in chapter 6.

Standard model of cosmology

Fig. 1.1 An illustration of the expansion of the Universe assuming the standard
cosmological model ΛCDM. Credit: Dana Berry, NASA/WMAP Science Team

The following section serves as a short review of the standard cosmological model and
perturbation theory. We cover the primordial Universe up to large-scale structure
formation, as well as the observational light-cone effects. For further details, please
refer to the well-known textbooks of [28–30].

According to ΛCDM, the Universe is homogeneous and isotropic which presently
consists of:
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4 Introduction

• Baryons and photons (4%). Only a small amount of the energy density in the
Universe can be explained through ordinary atomic matter and radiation, such as
baryons, photons and neutrinos.

• Dark Matter (26%). A significant portion is attributed to a hypothetical new
particle (or set of particles), known as Dark Matter (DM). This type of matter has not
been directly detected but have been inferred by gravitational interactions.

• Dark Energy: (70%). The remaining energy content is the vacuum energy Λ, which
is responsible for the accelerated expansion of the Universe at late-times. This energy
density is independent of time and referred to as the cosmological constant.

1.1 General relativity

The standard model of cosmology is based on General Relativity (GR) which links
the geometry of the spacetime with the energy density contained in the Universe.
The curvature of the four-dimensional manifold determines the geodesics and hence
trajectory of free-falling particles. This information is contained within the Einstein
tensor

Gµν = Rµν − 1
2Rgµν , (1.1)

where the spacetime metric is denoted by gµν . This tensor is conserved under the
covariant derivative by construction: Gν

µ;ν = 0. Einstein’s tensor is expressed in terms
of the Ricci tensor

Rµν = Rα
µαν = −Rα

µνα (1.2)

and Ricci scalar
R = Rµνg

µν , (1.3)

which are computed from the contraction of Riemann curvature tensor of the manifold:

Rµ
ναβ = ∂αΓµνβ − ∂βΓµνα + ΓµσαΓσνβ − ΓµσβΓσνα . (1.4)

The Christoffel symbol in the above equation is expressed in terms of the metric:

Γµαβ = 1
2g

µν (gνα,β + gνβ,α − gβα,ν) . (1.5)

The dynamics of the contents of the Universe can be approximated by assuming
that it is described by a perfect cosmological fluid. Therefore the energy-momentum

http://etd.uwc.ac.za/ 



1.2 Friedmann equations 5

tensor depends only on the pressure p and density ρ of the fluid:

Tµν = ρ uµuν + p (uµuν + gµν) , (1.6)

in the background the four-velocity uµ = δµ0 , and the conservation of energy and
momentum is imposed by setting T νµ;ν = 0. The theory of GR is defined by the Einstein
field equations (EFE):

Gµν = 8πGTµν , (1.7)

where G is Newton’s gravitational constant, and we use units where the speed of
light is c = 1, unless otherwise specified. Therefore the gravitational potential of the
Newtonian limit is recovered in the weak field and slow motion approximation. The
implication of (1.7) is that not only does the curvature of spacetime determine the
motion of the cosmological fluid, but the energy density of the fluid itself influences
the geometry of spacetime.

1.2 Friedmann equations

The Cosmological Principle (CP) states that the spatial distribution of matter in the
Universe is statistically homogeneous and isotropic when viewed on large enough scales.
The implication of the CP is that the spacetime manifold is spherically symmetric, and
expands in all directions equally according to a scale factor a(t). In a flat Universe we
can express such a metric as

ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2

)
, (1.8)

which is known as the Friedmann, Lemaître, Robertson and Walker (FLRW) metric
[31]. The expansion of the Universe is denoted by the Hubble rate, which is defined as
the rate of change of the scale factor with respect to time, such that H = ȧ/a in units
of km s−1Mpc−1. In a conformal coordinate system the Hubble rate is

H = a′

a
= aH, (1.9)

where the prime denotes the derivative with respect to conformal time dη = a−1dt. The
dynamics of the background expansion of a spatially flat Universe can be computed
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6 Introduction

using (1.7), which results in the set of Friedmann equations:

H2 = 8πG
3 ρa2 + Λ

3 a
2 ,

H′ = −8πG
6 a2(ρ+ 3p) + Λ

3 a
2 ,

ρ′ + 3H(ρ+ p) = 0 .

(1.10)

In ΛCDM, the contribution from Dark Energy (DE) is assumed constant and denoted
by Λ. It is often convenient to express the energy density of each component i in terms
of the unitless energy density: Ωi = ρi/ρc, where ρc = 3H2/(8πG) is known as the
critical density. The total energy density of the Universe is therefore

Ωtot ≡ 8πGρ
3H2 + Λ

3H2 = Ωm + ΩΛ = 1 . (1.11)

The surveys that we are considering in this thesis are observing a period significantly
later than the matter-radiation equality, therefore we can safely neglect the contribution
of radiation from photons and neutrinos. Note that the matter density is a combination
of visible baryonic matter and cold DM: Ωm = Ωcdm + Ωb. Let the present-time
parameter values be denoted by the subscript 0. The evolution of the expansion of the
Universe is expressed in terms of the well known form of the Hubble rate

H2(a) = H2
0

(
Ωm0 a

−3 + ΩΛ0
)
. (1.12)

1.3 Redshift, distance and volume

During the expansion of the Universe the electromagnetic radiation is stretched, which
alters the wavelength of the emission. Let us consider the wavelength of an emission
λe, which is detected by the observer as λo, then the redshift is defined in terms of the
ratio of these quantities

1 + z = λo
λe
. (1.13)

The redshift is related to the scale factor via a = (1 + z)−1, hence serves as an indicator
of both the distance to the source, as well as the time when the photon was emitted.

A vital part of cosmology is to accurately determine distances to the objects being
observed. The proper distance ∆s is the magnitude the of separation between two
four-positions ∆x at a constant time ∆t = 0, computed using the metric i.e. FLRW in
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1.3 Redshift, distance and volume 7

Fig. 1.2 The comoving distance (x-axis) as a function of scale factor (y-axis) given in
conformal coordinates. The past light-cone (orange) indicates the current observable
Universe. The event horizon (red) and particle horizon (blue) limits possible interactions.
The Hubble radius cH−1 is shown in green. Based on Figure 1 in [32].

ΛCDM (1.8). The proper distance is dependent on the scale factor and hence cosmic
time, therefore at the moment when the photons are detected this distance has likely
changed significantly. Practically, we are more interested in where the source is at
present-time. This notion leads us to the necessity to distinguish between proper and
comoving distance.

The comoving distance χ enables us to factor out the expansion of the Universe by
considering infinitesimal radial displacements along the light-ray, therefore providing a
measure of distance that is independent of time

χ(z) =
∫ z

0

c dz′

H(z′) . (1.14)

The comoving distance in conformal coordinates is illustrated in Figure 1.2. A
light-like interval is defined by the spacetime interval ∆s2 = 0, since by (1.8) the
distance covered ∆x = c∆t. Information cannot propagate faster than the speed of
light and therefore an observer cannot perceive anything beyond this boundary. If the
proper distance between source and observer exceeds the Hubble radius cH−1 (green),
the photons will not be detected. This separation is the threshold at which spacetime
expands at the speed of light. The particle horizon (blue) is the maximum distance an
emitted photon can travel in a given time.
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8 Introduction

Fig. 1.3 Left: The angular diameter distance DA to an object with surface area A
subtends a solid angle of ∆Ω. Right: The observed flux is inversely proportional to r2,
which enables us to infer the luminosity distance DL to standard candles1.

Intuitively we all know that the further away an object is the smaller it will appear,
since the angle of incidence from the incoming light-ray is reduced. From this principle
one can infer the range to an object provided that we know the size of the target
beforehand. An object with know size is referred to as standard ruler. Let us consider
a distant object of proper area A subtend a solid angle ∆Ω at the observer, as in
Figure 1.3 (left), then the comoving angular diameter distance DA is defined by

D2
A = A

∆Ω . (1.15)

In FLRW cosmology DA is related to the comoving distance by

DA(z) = χ(z)
1 + z

, (1.16)

where the (1+z) factor takes into account the expansion of the Universe in the traversal
direction.

Alternatively, we can determine the range to a source via the luminosity distance DL.
This method is based on the principle that a receding emitter will appear fainter with
increasing distance. Consider a fixed number of photons homogeneously distributed
on a spherical shell of radius r, radiated by a source of luminosity L. As the photons
propagate through spacetime, the surface area of the sphere increases and hence the
number of photons per area is reduced, see Figure 1.3 (right). The surface energy
density of the photons is referred to as flux F , which is related to L by the surface

1Credit: https://commons.wikimedia.org/w/index.php?curid=3816716
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1.4 Perturbation theory 9

area of a sphere
F = L

4πr2 in units of ergs s−1

cm2 . (1.17)

Therefore if the luminosity of the source is known, we can infer the distance to the
so-called standard candle by measuring the flux at the observer. This distance is
referred to as luminosity distance DL ≡ r, which is related to the comoving distance
by

DL(z) = (1 + z)χ(z) . (1.18)

Note that flux is measured in ergs s−1/cm2 and the luminosity is measured in ergs s−1,
therefore since DL has units of Mpc, one has to covert units Mpc to cm in (1.17)2.

The proper volume element dV at the source is related to the observed volume via

dV
a3 = χ2

H
dz dΩo . (1.19)

The sky area of a survey Ωsky is frequently referred to in terms of the fraction of sky
observed, fsky = Ωsky/4π. The comoving volume of a redshift bin centered at zi with a
bin-width ∆z is given by

Vc(zi,∆z) = 4πfsky

∫ χb

χa
χ2 dχ , (1.20)

where the limits of integration correspond to the boundaries of the z-bin. Explicitly,

χa = χ (zi − ∆z/2) and χb = χ (zi + ∆z/2) .

1.4 Perturbation theory

The approximation of isotropy and homogeneity becomes increasingly ineffective as we
transition to smaller scales. However, the small deviations from the FLRW background
that make up the LSS may be modelled using linear perturbation theory.

The term perturbation hails from the Latin verb turbare, which means “to trouble”
or “to disturb”. The prefix per amplifies the action, so perturbare means to thoroughly
trouble, or to disturb severely. In fluid mechanics, any solution θ of the fluid equations
that is slightly altered from some background solution θ̄, is said to be a perturbation
of the original solution,

θ(η,x) = θ̄(η) + δθ(η,x) . (1.21)
21Mpc = 3.086 × 1024 cm
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10 Introduction

1.4.1 Perturbed Einstein field equations

The evolution of the density perturbations that describes the growth of LSS formation
is also computed using EFE (1.7). In this case we use the perturbed FLRW metric,
which in the Newtonian gauge is defined as:

ds2 = a2(η)
[

−
(
1 + 2Φ

)
dη2 +

(
1 − 2Ψ

)
δij dx

idxj
]
, (1.22)

given the gravitational potential Φ and curvature perturbation Ψ. In this model there
is no matter anisotropic stress and therefore Φ = Ψ. The perturbed part of the Einstein
tensor (1.1) is

δGµν = δRµν − 1
2
(
ḡµν δR + R̄ δgµν

)
(1.23)

such that

δG00 = 2∇2Φ − 6HΦ′ ,

δG0i = 2∂i
(
Φ′ + HΦ

)
,

δGij =
[
2Φ′′ + 6HΦ′ + 4

(
2H′ + H2

)
Φ
]
δij .

(1.24)

The perturbed energy-momentum tensor is

δT µν = (δρ+ δp) ūµūν + (ρ̄+ p̄) (ūµ δuν + ūν δu
µ) + δp δµν , (1.25)

therefore
δT 0

0 = −δρ , δT 0
i = (ρ̄+ p̄)∂iV , δT ij = δp δij . (1.26)

In the ΛCDM model p̄ = 0 = δp, and the velocity potential V is related to the velocity
vector field vi via

∂iV = vi . (1.27)

The matter density contrast δm is a convenient way to express the deviation from
the FLRW background solution. At position x and conformal time η, we define

δm(η,x) = ρ(η,x) − ρ̄(η)
ρ̄(η) . (1.28)
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1.4 Perturbation theory 11

For an observer, it is more useful to compute the density contrast in a comoving
reference frame. Therefore we define the comoving matter density contrast as

∆m ≡ δm + ρ̄′
m
ρ̄m

Vm = δm − 3HVm . (1.29)

By T νµ;ν = 0, the continuity and the Euler equation become

∆′
m = −∇2Vm , (1.30)

V ′
m + HVm = −Φ . (1.31)

In ΛCDM we assume that dark energy remains unperturbed, thus DE is only
included in the background. Equating the Einstein tensor (1.23) and energy-momentum
tensor (1.26), the perturbed field equations read

δGµν = 8πGδTµν , (1.32)

such that the evolution of the perturbations are given by:

Poisson : ∇2Φ = 4πGa2ρ̄m∆m ,

momentum constraint : Φ′ + HΦ = −4πGa2ρ̄mVm ,

Bardeen : Φ′′ + 3HΦ′ + Λ2Φ = 0 .

(1.33)

The Poisson equation can be expressed in unitless matter density (1.11) such that

∇2Φ = 3
2 ΩmH2∆m , (1.34)

therefore we can find the evolution of the density contrast by taking the time derivative
of (1.30) and substituting in (1.31):

∆′′
m + H∆′

m − 3
2ΩmH2∆m = 0 . (1.35)

1.4.2 The primordial universe

The Cosmic Microwave Background radiation (CMB) is the relic that bears the imprint
of the primordial inhomogeneities in the density field, which can still be detected in
the form of temperature fluctuations. The anisotropies measured in the CMB (of the
order of only 10−5K) have evolved into the present-day LSS as a result of gravitational
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12 Introduction

Fig. 1.4 Primordial temperature fluctuations on the surface of last scattering lead to
the LSS we observe today. Credit: C. Blake and S.Moorfield

interaction, as illustrated in Figure 1.4. At later times, the signature of the primordial
anisotropies are no longer available on small scales, due to the non-linear nature of
small scale structure formation. However, the signal remains intact on ultra-large
scales where structure formation remains linear. More detailed information on the very
early Universe can be found in [33].

Due to the vast range of physical scales in the universe it is often more convenient to
perform the statistical analysis of the matter distribution in Fourier space (or frequency
space) as opposed to real space. The details of the Fourier transformation will be
discussed in subsection 2.1.1, for now note that in Fourier space different scales are
represented by k, which have units of Mpc−1, i.e. smaller values represent larger scales.

An interesting possibility is that the primordial potentials do not follow a Gaussian
distribution. Inflation is the leading theory that describes the beginning of the universe
and the origin of primordial curvature perturbations [34–37], which requires only a
single scalar field to be consistent with current data. However, there is no theoretical
basis for this assumption, and in fact, some fundamental physics models actually
prefer multiple scalar fields (e.g. [38, 39]). The critical test required to distinguish
between the different models is measuring the distribution of primordial potential and
its deviation from Gaussianity.

http://etd.uwc.ac.za/ 



1.4 Perturbation theory 13

Let us consider the local-type deviation from Gaussianity in the gravitational
potential of the primordial curvature perturbation:

Φ = φ+ fNL
(
φ2 − ⟨φ2⟩

)
, (1.36)

where φ is the first order Gaussian perturbation and fNL is an indicator of deviations
thereof. Primordial Non-Gaussianity (PNG) would imply that fNL ̸= 0, which induces
a large-scale modulation of the small-scale formation of haloes in the cold dark matter.
The result produces a scale and redshift dependence in the halo bias (or clustering bias),
which relate the observed galaxies to the underlying dark matter distribution. The
correction to the clustering bias is given by a simple model [40–43], defined physically
in the common rest frame of galaxies and dark matter:

δg(k, z) = b(z) ∆m(k, z) + 2fNL δcrit
[
b(z) − 1

]
φ(k, z) . (1.37)

The scale-independent linear clustering bias is denoted by b, and δcrit = 1.686 is the
threshold density contrast for spherical collapse. In [44–46] they show that this model
requires some improvement, but we will use the simplified model (1.37).

The primordial potential is related to the observed matter density contrast by linear
evolution (see [47, 48] for details). Following the CMB convention of fNL:

δg(k, z) =
b(z) + 3fNL

δcrit
[
b(z) − 1

]
D(zd)(1 + zd) Ωm0H

2
0

D(z)T (k) k2

∆m(k, z) , (1.38)

where zd is a redshift deep in the matter-dominated era. Note that the growth factor
D(z) and transfer function T (k) are normalised to unity at present-day and on ultra-
large scales respectively. The various inflationary models have different requirements
for the distribution of primordial potential and therefore measuring fNL will play an
important role in discerning between them. The state-of-the-art constraint on the
local-type primordial non-Gaussianity parameter fNL is provided by Planck [10]:

fNL = −0.9 ± 5.1 , (1.39)

at 68% CL. Many single-field models are ruled out at fNL ∼ 1. Therefore, being able
to measure PNG with a precision of σ(fNL) ≲ 1 is an exciting prospect for future
cosmological surveys [49].
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14 Introduction

Fig. 1.5 A computer simulation of the evolution of the large scale structure of the
Universe, i.e. the formation of the so-called cosmic web. Credit: [50]

1.4.3 Large-scale structure formation

The rate at which the LSS grows from small perturbations is illustrated in Figure 1.5,
which offers a key observational discriminant between different cosmological (and hence
gravitational) models [51, 52]. A variety of gravitational theories predict almost an
indistinguishable background evolution and therefore, in order to discern between
models of gravity, it is necessary to also consider the clustering of matter. The density
contrast evolves over time via the growth factor D:

∆m(η,x) = D(η) ∆m(η0,x) . (1.40)

This factor is used to define the linear growth rate of large-scale structure formation,

f = 1
H
D′

D
= d lnD

d ln a ⇒ ∆′
m = fH∆m . (1.41)

Hence, by (1.35), the evolution of f is

df
d ln a + 1

2 (4 − 3Ωm) f + f 2 = 3
2Ωm . (1.42)
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1.5 Observed density contrast 15

The growth rate can be parameterised in terms of the matter density of the universe
using a power-law [53]

f(η) = Ωm(η)γ , (1.43)

where the exponent denotes the growth index and is assumed to be constant in ΛCDM.
Although this does not allow for scale-dependence of the growth rate, it still delivers a
consistency test of ΛCDM and standard dark energy models. A significant deviation
from γ = 0.55 would indicate a breakdown of the standard model, as a result of either
non-standard dark energy or modified gravity. For a review on modified theories of
gravity see [54].

1.5 Observed density contrast

The observed number density contrast ∆g is given by the contrast at the source δg,
modulated not only by redshift space distortions, but also by the Doppler effect, lensing
magnification and other relativistic effects. The observed number of galaxies in a
direction n within solid angle dΩn and redshift interval dz is

dNg = Ng dz dΩn = ng dV . (1.44)

Here Ng is the angular number density per redshift as measured by the observer. On
the other hand, ng is the number density and dV is the volume element, which are not
observed, since they are quantities at the emitting source.

The observed number density contrast is given by [43]

∆g(z,n, Fc) = Ng(z,n, Fc) − N̄g(z, Fc)
N̄g(z, Fc)

, (1.45)

where Fc is the survey flux cut. The observed number density contrast in the Newtonian
gauge is related to the comoving number density contrast at the source, δg = b∆m =
(ng − n̄g)/n̄g, via redshift-space (light-cone) effects:

∆g = δg + ∆RSD + ∆Dopp + ∆Lens + ∆Pot . (1.46)

The ∆ terms on the right are now described individually.
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16 Introduction

1.5.1 Redshift Space Distortions

The growth rate is increasingly better constrained via Redshift Space Distortions (RSD)
and other peculiar velocity measurements, and one can model RSD on large scales
using linear cosmological perturbation theory [55]. RSD is as a result of how we infer
distance to an emitter using the redshift. The Hubble redshift of a galaxy is not only
influenced by the background expansion (1.13), but is also modified by a Doppler
correction due to the peculiar velocitiy v of the source. We observe the position of
the galaxy as a combination of the two in redshift space. Consequently the observed
position is given by [40]

xobs = x + v · n

H , (1.47)

where n is a unit vector denoting the line-of-sight. Therefore, galaxies moving towards
the observer will appear closer and conversely, receding galaxies will appear further
away. Note that velocities in the traversal direction do not influence the observed
position. The diagram in Figure 1.6 illustrates this principle for three distinct cases:

• Linear regime: At large scales, the peculiar velocity of an infalling shell is small
compared to its radius, hence induce only a slight distortion in observed space. This
scenario is easy to model using linear perturbation theory, which will be the focus of
this work.

• Turnaround: In this configuration the peculiar velocity is just cancelling the general
Hubble expansion, which appears collapsed to a single velocity in redshift space.

• Non-linear regime: Inside the shell of the turnaround point, the peculiar velocities
of galaxies are large compared to the radius of the shell. Due to the extreme distortion
the collapsing galaxies in real space appear turned “inside out” in redshift space.

The conservation of galaxy number counts enable us to relate (1.47) to the observed
matter density contrast with the RSD correction, called the Kaiser formula [57]:

∆RSD(z,n) = − 1
H(z)n · ∇

[
n · v(z,n)

]
. (1.48)

Redshift surveys allow us to simultaneously measure the cosmic expansion history and
growth rate of structure formation, by statistically analysing the three-dimensional
clustering of galaxies [58]. To completely model the effect of RSD we also need to
consider a “dispersion model”, which includes a damping effect in addition to the
Kaiser formula [59]. The small-scale damping takes into account a non-linear effects,
which is beyond the scope of this thesis. Figure 1.7 illustrates the difference between
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1.5 Observed density contrast 17

Fig. 1.6 The true position and velocity of a galaxy in real space (left), and the
corresponding position observed in redshift space (right). The line-of-sight of the
detector extends from the bottom to the top of the diagram. Credit: [56]

the observed density contrast ∆g in redshift space (left) and the actual baryonic matter
distribution δg after RSD have been corrected for (right).

1.5.2 Doppler effect

The Doppler term ∆Dopp in (1.46) is sourced by radial peculiar velocities. This not only
affects the measured redshift, but it also has a (de-)magnification effect on galaxies
[60]:

∆Dopp(z,n, Fc) = AD(z, Fc) n · v(z,n) , (1.49)

which scales as ∆Dopp ∼ δm H0/k in Fourier space, and is only non-negligible on
ultra-large scales. The amplitude of the Doppler term is

AD(z, Fc) =

[
5s(z, Fc) − 2

]
H(z)χ(z) − 5s(z, Fc) + be(z, Fc) + d lnH(z)

d ln(1 + z) , (1.50)

where the s and be in (1.50) is the magnification bias and evolution bias respectively,
which will be defined later in section 3.3. Roughly speaking, the magnification bias is the
change in the galaxy number density with respect to the luminosity cut at fixed redshift,
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18 Introduction

Fig. 1.7 The matter distribution observed in redshift space (left), as opposed to the
true matter distribution (right). Credit: Hume A. Feldman

which is survey dependent. The evolution bias is the change in comoving number
density with respect to redshift at fixed luminosity cut, which is tracer dependent.
Halo and galaxy formation and evolution lead to a non-conserved comoving number
density (e.g. due to mergers), that is reflected in nonzero be , which then modulates
the Doppler contribution.

Note also that part of the Doppler term, i.e. (1 + z)(5s− 2) v · n/(χH), is a Doppler
contribution to lensing magnification, arising from the apparent radial displacements
related to redshift perturbations, δz = (1 + z)v · n [40] (see also [60–63]).

The Doppler contribution in the power spectrum [40, 43, 63–66], and even more
in the cross-power spectrum of two tracers [67–73] and in the bispectrum of a single
tracer [74–77], is a powerful and independent probe of gravity.

1.5.3 Lensing magnification

The large-scale gravitational lensing convergence contribution to the number density
contrast in (1.46) is denoted by:

∆Lens(z,n) = AL(z, Fc)κ(z,n)

=
[
5s(z, Fc) − 2

] ∫ χ(z)

0
dχ̃

[
χ(z) − χ̃

]
χ(z) χ̃ ∇2

nΦ(χ̃,n) ,
(1.51)

where Φ is the Bardeen potential. Since κ is a line-of-sight integral over a weighted
matter density contrast δm, the lensing term scales as ∆Lens ∼ δm. This means that
the lensing term is partially degenerate with the Gaussian clustering bias b in δg.
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1.5 Observed density contrast 19

For an idealised survey that detects all galaxies (i.e. s = 0), a positive κ in (1.51)
decreases the observed number density contrast by increasing the solid angle. In a real
survey, s is positive, and the effect of magnification bias when κ > 0 is to increase the
observed number density contrast – since galaxies below the luminosity cut can be
brightened by lensing and thus be observed. Similarly, when κ < 0, the effect of s is
to reduce the number density contrast by de-magnifying galaxies that are above the
luminosity threshold.

The lensing magnification contribution to number counts is itself another potentially
important probe of gravity and dark matter [78–84], independent of weak lensing
surveys. In order to realise the potential of these probes, it is necessary to include
careful modelling of s and be.

1.5.4 Potential terms

Finally, the ∆Pot term in (1.46) collects the remaining, sub-dominant relativistic
potential effects:

∆Pot(z,n) = [AL(z, Fc) − AD(z, Fc)]Φ(z,n) + ∂Φ(z,n)
∂ ln(1 + z) +

[
3 − be(z, Fc)

]
HV

− 2AL(z, Fc)
∫ χ(z)

0

dχ̃
χ(z) Φ(χ̃,n) − 2AD(z, Fc)

∫ χ(z)

0
dχ̃ ∂Φ(χ̃,n)

∂η
,

(1.52)

The first two terms on the right of (1.52) are Sachs-Wolfe terms. The third term is
the Newtonian gauge correction that is needed for the physical definition of clustering
bias, where V is the velocity potential. In line 2 of (1.52), the first term is Shapiro
time delay and the second is integrated Sachs-Wolfe. The potential term scales in
Fourier space as ∆Pot ∼ Φ ∼ δm H

2
0/k

2, which is only non-negligible on even larger
scales than the Doppler term.

In auto-correlations of a single tracer the leading Doppler contribution scales as
Doppler2 ∼ (δm)2 H2

0/k
2, like the leading potential contribution, δm × Φ. But in

cross-correlations between tracers, the leading Doppler contribution is δm × Doppler
[67, 75], which scales as (δm)2 H0/k and dominates over the potential contribution.
The ultra-large scale relativistic effects are partially degenerate with the contribution
of scale-dependent clustering bias from fNL [41–43, 85–88].
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20 Introduction

However, lensing and other relativistic effects are not simply a theoretical ‘nuisance’
that needs to be included in the modelling – they can also be important cosmological
probes of gravity (see e.g. [89–98])
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Chapter 2

Correlation functions, multi-tracers
and Fisher forecasts

The following chapter gives a brief overview of how to analyse the matter distribution
in the Universe and estimate the precision on cosmological parameters from future
experiments.

The structure of the chapter is as follows: The matter density contrast in cosmo-
logical surveys are traditionally investigated via the two-point correlation function.
These correlations are then analysed in either Fourier or harmonic space, which is
recapped in section 2.1. Information from distinctly different dark matter tracers can
be combined through cross-correlations using the multi-tracer technique, explained
in section 2.2. Lastly, we review how to forecast the precision on parameters from
future surveys using a Fisher Matrix analysis in section 2.3, as well as how we calculate
the expected bias on these parameters from theoretical systematics, i.e. assuming an
incorrect cosmological model.

2.1 Two-point correlation function

The main features of the galaxy distribution are described by the two-point correlation
function (2PCF):

ξg(r) = ⟨∆g(x) ∆g(x′)⟩ , (2.1)

where x′ = x + r refers to a point separated by r from the reference position x.
Statistical homogeneity implies ξg is independent of x, and in the absence of redshift-
space effects, isotropy depends only on the magnitude of separation r = |r|. The 2PCF
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22 Correlation functions, multi-tracers and Fisher forecasts

describes the excess probability of finding two galaxies separated by this distance, and
in a truly random distribution of galaxies ξg = 0 for any r.

2.1.1 Fourier power spectrum

It is often convenient to perform the analysis in the Fourier domain, since the transform
decomposes space-dependent functions into functions depending on spatial frequency.
The convention for the Fourier and inverse Fourier transform used in the thesis is

∆g(k) =
∫
dx ∆g(x)e−ik·x and ∆g(x) =

∫ dk

(2π)3 ∆g(k)eik·x . (2.2)

Under an assumption of statistical isotropy, the Fourier transform of the 2PCF defines
the observed Fourier power spectrum as

Pg(k′) =
∫
dr ξg(r)eik′·r or (2π)3δD(k′ − k)Pg(k′) = ⟨∆g(k)∆∗

g(k′)⟩ . (2.3)

The Fourier power spectrum requires a choice of fiducial model to convert observed
angles and redshifts to distances. This then requires an Alcock-Paczynski correction
[99] to compensate for the error in the choice of fiducial. By assuming an incorrect
fiducial model, the true comoving volume V̄c will be distorted by a factor

Vc(z) = D2
A(z) H̄(z)

D̄2
A(z)H(z)

V̄c . (2.4)

Pg(k′) encodes a flat-sky approximation that neglects wide-angle correlations and
doesn’t include cross-bin correlations. In addition, it does not take into account the
lensing effect expected in GR. There are prescriptions to deal with these issues (e.g.
[100]). However, it is useful to explore an alternative analysis that avoids these problems
from the start.

2.1.2 Angular power spectrum

The alternative to the 3D power spectrum is to use the angular power spectrum Cℓ(z, z′),
which is the harmonic transform of the correlation function that is observed in redshift
space — i.e., on the backward light-cone of the observer [40, 41, 101–103]. The Cℓ
has the advantage that it is an observable, hence we can ignore the uncertainty in the
fiducial model and avoid the AP correction. In addition, it also naturally incorporates
Doppler and lensing magnification effects on the auto- and cross-bin correlations, as
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2.1 Two-point correlation function 23

Fig. 2.1 A spherical harmonic decomposition of data into multipoles ℓ. The horizontal
axis indicates the different possible configurations of m, ranging between −ℓ < m < ℓ.
Credit [104].

well as other smaller relativistic observational effects. The number density contrast
observed on the backward light-cone can be given directly in terms of the fundamental
observables z and n by expanding in spherical harmonics:

∆g(z,n) =
∑
ℓm

aℓm(z)Yℓm(n) (2.5)

where the multipole ℓ corresponds to the angular size considered. As illustrated in
Figure 2.1, this decomposition includes wide-angle effects as well.

The spherical harmonic coefficients aℓm are expressed in terms of the spherical
Bessel function jℓ(kχ):

aℓm(z) = (i)ℓ
2π2

∫
dk ∆g(z,k) jℓ(kχ)Y ∗

ℓm(n) . (2.6)

We assume that the aℓm are Gaussian distributed with covariance

⟨aℓm(zi) a∗
ℓ′m′(zj)⟩ = Cℓ(zi, zj) δℓℓ′δmm′ . (2.7)

Following the notation and approach of [40] we relate the aℓm coefficients to the power
spectrum of the primordial curvature perturbations P(k):

Cℓ(zi, zj) = 4π
∫

d ln k∆W
ℓ (zi, k)∆W

ℓ (zj, k)P(k). (2.8)
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The dimensionless primordial curvature power spectrum P(k) = As(k/k0)ns−1 generates
the initial over- and under-densities from which present day large scale structures grew.
It is expressed in terms of the amplitude As, the spectral index ns and pivot scale
k0 = 0.05 Mpc−1. The ∆W

ℓ in (2.8) represents the windowed transfer functions that
relate ∆g to P. We refer to it as the “windowed” transfer function since it describes
the observable transfer function in each z-bin located at zi via the window function W
[1]:

∆W
ℓ (zi, k) =

∫
dz p(z)W (zi, z) ∆ℓ(z, k) , (2.9)

where p is a selection function which in practice is the redshift distribution function of
the observed sources: p ∝ Ng = dNg/(dzdΩn). Hence, p and W work as a weighting
function for ∆ℓ. The product of the selection function and the window function inside
the bin is normalised such that

∫
dz p(z)W (zi, z) = 1 for all zi.

In (2.9) the ∆ℓ represents the theoretical transfer function (1.46) in harmonic space

∆ℓ(k) = δg jℓ(kχ) + ∆RSD
ℓ + ∆Dopp

ℓ + ∆Lens
ℓ + ∆Pot

ℓ . (2.10)

The first term represents the matter density contrast with the scale dependent clus-
tering bias (1.38), whereas the last term of (2.10) is simply the sum of the potential
contributions, i.e. the Sachs-Wolfe, integrated Sachs-Wolfe and Shapiro time delay:
∆Pot
ℓ = ∆SW

ℓ + ∆ISW
ℓ + ∆TD

ℓ . The terms are written explicitly as [93, 94, 102, 105]:

∆RSD
ℓ = kvk

H j′′
ℓ (kχ) ,

∆Dopp
ℓ =

(
2 − 5s
Hχ + 5s− be + H′

H2

)
vkj

′
ℓ(kχ) ,

∆Lens
ℓ = ℓ(ℓ+ 1)(2 − 5s)

2

∫ χ

0
dχ̃(χ− χ̃)

χχ̃

[
Φk(χ̃) + Ψk(χ̃)

]
jℓ(kχ̃) ,

∆SW
ℓ =

[
(be − 3)H

k
vk +

(
1 + 2 − 5s

Hχ + 5s− be + H′

H2

)
Ψk + [5s− 2] Φk + Φ′

k

H

]
jℓ(kχ) ,

∆ISW
ℓ =

(
2 − 5s
Hχ + 5s− be + H′

H2

)∫ χ

0
dχ̃
[
Φ′
k(χ̃) + Ψ′

k(χ̃)
]
jℓ(kχ̃) ,

∆TD
ℓ = (2 − 5s)

χ

∫ χ

0
dχ̃
[
Φk(χ̃) + Ψk(χ̃)

]
jℓ(kχ̃) .

In order to simplify the notation we suppress the redshift and k dependence, except
in the spherical Bessel function. The peculiar velocity field in k-space is denoted by
vk = |v|k. In our model there is no matter anisotropic stress, and therefore Φk = Ψk.
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Fig. 2.2 A diagram of several different tracers observed by SDSS. Credit: eBOSS
collaboration.

Note that the split in (2.10) changes if a different gauge is chosen - but the sum of all
terms, ∆ℓ, is gauge invariant.

An immediate issue with the angular power spectrum is that, unlike P (k, z), we
cannot cleanly separate out the RSD effect. In addition, computational complexity
arises from the oscillating spherical Bessel functions in Cℓ(zi, zj), from cross-bin corre-
lations when zi ≠ zj . Also, to maximally exploit the potential of spectroscopic surveys
we need to utilise very thin redshift bins, which could potentially introduce non-linear
effects into large scale modes (see subsection 2.3.1). Nevertheless, advances in using the
angular power spectrum to analyse galaxy survey data are ongoing (e.g. [17, 106–113]).

2.2 Multi-tracer technique

In the future there will be many surveys that cover large fractions of the sky with
high completeness, therefore the variance due to the surveys finite volume (i.e. cos-
mic variance) is perhaps the most formidable obstacle to better extract information
on cosmological parameters [114]. A natural extension to analysing cosmological
experiments independently, is to combine different surveys and take advantage of
the cross-correlations between tracers to improve the statistical power - called the
multi-tracer (MT) technique. Using two distinctly different dark matter tracers that
sample the same underlying density field (see Figure 2.2) enables us to significantly
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26 Correlation functions, multi-tracers and Fisher forecasts

reduce the effect of experimental systematics and cosmic variance [26, 27]. The au-
thors have pointed out that for certain parameters the effect of cosmic variance can
be circumvented, as is the case for: clustering bias, linear matter growth rate and
primordial non-Gaussianity. The reason for this is that the bias-sensitive parameters
are not subject to the same stochastic processes that lead to different realisations of the
density field for some matter power spectrum. By comparing the clustering of different
types of tracers that sample the same underlying matter distribution, we should be
able to measure such parameters without cosmic variance. Therefore the precision will
be limited only by the shot-noise of the experiment, or by the instrumental noise in
the case of intensity mapping. The MT was applied using the angular power spectra
in [91, 92], to constrain local-type primordial non-Gaussianity. The suppression of
cosmic variance lead to significant improvements over single-tracer constraints. As
a consequence, a smaller overlap volume still produces better results than a simple
combination of the full larger volume of each individual tracer.

Let’s consider multiple tracers A = 1, 2, · · · , and define the generic angular power
spectrum:

〈
∆A(zi,ni) ∆B(zj,nj)

〉
=
∑
ℓ

(2ℓ+ 1)
4π CAB

ℓ (zi, zj)Lℓ
(
ni · nj

)
, (2.11)

where ∆A corresponds to ∆g of tracer A and Lℓ denotes the Legendre polynomial.
Therefore we can compute the multi-tracer by generalising from (2.8), such that

CAB
ℓ (zi, zj) = 4π

∫
d ln k∆Aℓ(zi, k) ∆Bℓ(zj, k)P(k) . (2.12)

Note that ∆Aℓ is also the windowed transfer function, but for simplified notation we
drop the superscript W . The multi-tracer is a matrix that contains both auto- and
cross-power spectra. The former refers to correlations between the observed density
contrast in the same survey (A = B), whereas the latter refers to the correlations
between surveys (A ̸= B). Explicitly, for N number of tracers the MT looks like

Cℓ =



C11
ℓ (zi, zj) C12

ℓ (zi, zj) · · · C1N
ℓ (zi, zj)

· · · · · · · · · · · ·

CN1
ℓ (zi, zj) CN2

ℓ (zi, zj) · · · CNN
ℓ (zi, zj)


, (2.13)
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where each entry in (2.13) is a matrix of all the auto- and cross-bin correlations in the
power spectrum Cℓ(zi, zj).

2.3 Fisher Matrix analysis

In order to estimate the precision expected from a future measurement (or experiment),
we assume that the given observable is based on a theoretical model, which corresponds
to a function dependent on a set of known parameters. We can forecast the precision
on these parameters by turning to a Bayesian statistical method called the Fisher
Matrix analysis. This method is used to quantify the amount of information that an
observable random variable X carries about an unknown parameter value ϑα. Let L
be the log-likelihood function and ϑ the parameter vector under consideration. The
Fisher matrix is simply evaluated at the parameter maximum-liklihood of the best-fit
values ϑ̄, namely

F (ϑα, ϑβ) = ∂2L
∂ϑαϑβ

∣∣∣∣
ϑ=ϑ̄

. (2.14)

The multi-tracer Fisher matrix for angular power spectra is defined as follows [2, 91, 92]:

Fϑαϑβ
=

ℓmax∑
ℓmin

(2ℓ+ 1)
2 fsky Tr

[(
∂ϑαCℓ

)
Γ−1
ℓ

(
∂ϑβ

Cℓ

)
Γ−1
ℓ

]
, (2.15)

where ϑα represents the parameters considered in the analysis. Furthermore,

Γℓ = Cℓ + N ℓ , (2.16)

where Nℓ is the expected noise of the surveys under consideration.

The Fisher matrix F is the inverse of the covariance of the parameters, therefore
the conditional and marginal errors of the parameters are given by

σ2(ϑα) = [Fϑαϑα ]−1 and σ2(ϑα) =
[
F −1

]
ϑαϑα

, (2.17)

respectively. The marginal error includes the uncertainty of all the parameters under
consideration in the estimate, whereas the conditional error assumes all other parameters
are known.

http://etd.uwc.ac.za/ 



28 Correlation functions, multi-tracers and Fisher forecasts

Fig. 2.3 Scales associated with a multipole ℓ.

2.3.1 Scales included

The largest scales that we can include in the Fisher Matrix analysis is dependent on the
size of the sky area Ωsky of the survey under consideration, where Ωsky = 4π fsky. We can
compute the largest observable scale in harmonic space using ℓmin = int(π/

√
Ωsky) + 1,

and introduce it into the computation via the lower limit of the summation in (2.15).
For the MT, we consider only the overlapping sky area of the surveys in the Fisher
Matrix analysis.

In reality, we cannot perfectly extract all the observable scales from the data –
there will be a loss of ultra-large-scale modes due to systematics, e.g. extinction due to
Galactic dust or stellar contamination in galaxy surveys, or foreground contamination
of intensity mapping. The cosmological signal from 21cm emission is several orders of
magnitude lower than the galactic and extra-galactic foreground contamination. In
order to extract the cosmological information, it is therefore necessary to first remove
or model the systematics in galaxy and intensity mapping surveys. In order to take
account of the loss of some ultra-large scale signal due to systematics, we need to
impose a minimum angular multipole ℓmin. For a multi-tracer analysis, the same ℓmin

is used for each survey. In the case of very large sky area, ℓmin ∼ 5 may be feasible for
intensity mapping [115], and we take this as our ‘optimistic’ minimum.

We only consider linear perturbations in our Fisher forecasts. The inclusion of
nonlinear effects is beyond the scope of this thesis and we therefore need to choose
ℓmax in (2.15) to exclude these effects from the Fisher matrix.
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In Fourier space, the scale marking the breakdown of a perturbative analysis of
matter clustering is given in [116] as

knl(z) = knl,0(1 + z)2/(2+ns) with knl,0 ≃ 0.2hMpc−1 . (2.18)

On the scales of interest, the multipole ℓ corresponds to a transverse comoving length
scale λ⊥ = 2π/k, which subtends an angle θ = λ⊥/χ at the observer (see Figure 2.3).
Using θ = 2π/ℓ, this gives ℓ = χk. It follows that the maximum multipole for
auto-correlations is

ℓmax(zi, zi) = χ(zi)knl(zi) . (2.19)

The case of cross-bin correlations is more complicated (see the discussion in [102]). In
principle, one can allow for ℓ ≫ 1 in the case of near-radial correlations, for which θ ≪ 1
and λ⊥ ≪ 2π/knl – provided that λ∥ > 2π/knl, to ensure that λ > 2π/knl. However,
in order to fully exclude nonlinearities from the Fisher matrix, we need to exclude
them also from the covariance of Cℓ(zi, zj), which contains the term Cℓ(zi, zi)Cℓ(zj, zj).
If λ⊥ is nonlinear then Cℓ(zi, zi) includes nonlinear effects, and hence the covariance
contains nonlinearities. Therefore we impose the cut

ℓmax(zi, zj) = min
{
ℓmax(zi, zi), ℓmax(zj, zj)

}
. (2.20)

Note that our modelling of the linear cut is simplistic and optimistic. An improved
model has recently been presented in [117], which recognises the subtle relationship
between scales in Fourier and harmonic space, but which does not include redshift
space effects. Stage IV surveys probably require a more robust scale cut, which can be
made using the BNT method [118]. Advances in analysis of this relationship in redshift
space are presented in [119] and references cited therein. In their work they have
found that by decreasing the redshift bin-width below ∆z ≲ 0.01, non-linear effects
are introduced into the large scale modes. The uncontrolled nonlinearities can lead to
a biased growth rate estimate. We use ∆z ≥ 0.01, while recognising that further work
is needed to improve the removal of non-linear contamination.

2.3.2 Best-fit bias

The best-fit values will be influenced by unaccounted systematics or incomplete theo-
retical modelling. In order to estimate this bias one can use the ‘correct’ mock data
and do inference on this data using the ‘wrong’ model, as done in [120]. This approach
provides a precise evaluation of the biasing introduced, however it is a time-consuming
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and computationally expensive process. We rather follow the alternative approach,
which uses the Fisher information in the case of nested model selection [121].

In the Fisher formalism we assume that the posterior distribution of a set of m
parameters ϑ, given some n dimensional data vector X, is Gaussian:

P(ϑ|X) =
[
(2π)m det (F −1)

]−1/2
exp

[
−1

2(ϑ − ϑ̄)TF (ϑ − ϑ̄)
]
. (2.21)

The best-fit values ϑ̄ maximise the posterior. Using Bayes theorem, we relate the
posterior with the likelihood of the data L via

P(ϑ|X) ∝ L(X|ϑ) Π(ϑ) , (2.22)

where Π is the prior. For simplicity we do not consider any priors on the parameters.
Assuming the likelihood to be Gaussian,

L(X|ϑ) = [(2π)n det Γ]−1/2 exp
[
−1

2(X − X̄)TΓ−1(X − X̄)
]
, (2.23)

where Γ is the covariance of the data and X̄ is the value that maximises the likelihood.

Making incorrect model assumptions will therefore lead to a shift in the best-fit
value of the parameters considered. In the example of nested models, there is a sub-
model with parameters ψi, so that ϑα = {ψi, φI}. Suppose that we make an incorrect
assumption, and fix the values of φI to incorrect values φ̂I , instead of the true values
φ̄I . This shifts φI by the amount

δφI = φ̂I − φ̄I . (2.24)

As a consequence, we will estimate the remaining parameter values to be ψ̂i, instead of
their true values ψ̄i. The bias on the best-fit values is:

δψi = ψ̂i − ψ̄i . (2.25)

We relate (2.25) to (2.24) through the covariance of the parameters, determined by the
amount of information we expect to extract from the survey [122, 123]:

δψi = −
∑
I,j

δφI FφIψj

[
H−1

]
ψjψi

, (2.26)
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where F is the Fisher matrix of the total set ϑα, and H is the Fisher matrix of the
sub-model with the parameters ψi that we wish to fit.
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Chapter 3

Next-generation cosmological
surveys

In this work we forecast the constraints on cosmological parameters expected from
future spectroscopic surveys. To accomplish this we are required to model the observed
matter distribution, based on the survey specifications and instrumental sensitivity.

Measurements of galaxy clustering in upcoming surveys will not only be sensitive
to the standard redshift-space distortions, but the observed galaxy number counts will
also be distorted by lensing magnification and Doppler effects. The amplitude of these
contributions depends sensitively on magnification bias and evolution bias in the galaxy
number density. Magnification bias quantifies the change in the observed number of
galaxies gained or lost by lensing magnification, while evolution bias quantifies the
physical change in the galaxy number density relative to the conserved case.

In our forecasts we consider several different dark matter tracers that are observed
over a large redshift range, namely: neutral Hydrogen observed by the Square Kilometre
Array Observatory (SKAO); in the optical band we model the Dark Energy Spectro-
scopic Instrument (DESI)-like bright galaxy survey (BGS); as well as the Euclid-like
Hα surveys in near-infrared (NIR). The following chapter serves as an overview of the
more technical aspects of simulating such surveys, and is largely based on [3] - of which
I am co-author.

This chapter is structured as follows. We give a brief review of the luminosity
function and how it is used to calculate the comoving number density in section 3.2. We
then carefully define and explain how the astrophysical parameters of magnification bias
and evolution bias are computed in section 3.3, explicitly highlighting subtleties in their
definition. The details on the luminosity functions and corresponding astrophysical
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parameters of the near-infrared and optical galaxy surveys are given in section 3.4.
Similarly, we explain such details on the neutral Hydrogen surveys in section 3.5.
The noise specifications for the surveys under consideration (and their combinations)
are explained in section 3.6. Finally, we summarise the survey specifications, noise
properties and fitting functions used in our simulations in section 3.7.

3.1 Preamble

The result of an experiment is not only dependent on the instrumental specifications
(for example the physical dimensions and sensitivity of the detector), but also on
the survey specifications like sky area and redshift range observed. An increased
cosmological volume will contain a greater number of sources, improve the statistical
capability of the survey and render higher precision measurements. Furthermore, we
also have to take into account relativistic effects that alter the observed galaxy number
counts via redshift space distortions, lensing magnification and other light-cone effects.
The last point proves to be the most challenging and therefore we carefully address
this issue in the following sections.

In section 3.2 we show how to compute the comoving number density (1.44)
using the luminosity function, which is unique to each survey. There are important
astrophysical parameters that are dependent on the comoving number density and
hence the luminosity function. The magnification bias is defined as the rate at which
the comoving number density changes with respect to the luminosity threshold, and
is related to the sensitivity of the detector. The evolution bias compensates for how
the number density evolves over time, which is tracer dependent. In section 1.5 we
explicitly state the contribution of each light-cone effect to the observed density contrast
(1.45). The amplitude of the Doppler effect (subsection 1.5.2), lensing magnification
(subsection 1.5.3) and potential terms (subsection 1.5.4) are highly sensitive to the
magnification bias s and evolution bias be. In addition, the lensing and Doppler
contributions are powerful and independent tests of gravity. Therefore, in order to
properly model the density contrast and take advantage of these tests, we need to
accurately model s and be contributions. We estimate that errors on s and be need to
be ≲ 10% in order to preserve detectability of the lensing and Doppler effects [91].

We clarify some subtleties involved in the meaning and calculation of the magnifi-
cation and evolution biases, and to derive these important astrophysical parameters for
a broad variety of different future galaxy surveys. These biases are given by derivatives
of the number density, and consequently are very sensitive to the form of the luminosity
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function. We give a careful derivation of the magnification and evolution biases in
section 3.3, clarifying a number of results in the literature.

We then relate the general theory of s and be to specific luminosity functions
for Hα-like surveys like Euclid in subsection 3.4.1 – illustrating how different survey
sensitivities affect the luminosity curves and corresponding astrophysical parameters.
We expand the analysis to surveys with K-correction, like Dark Energy Spectroscopic
Instrument (DESI)-like bright galaxy survey (see subsection 3.4.2). Finally in section 3.5
we consider both the galaxy and intensity mapping surveys of SKAO 21cm neutral
Hydrogen (HI). The intensity mapping surveys do not resolve individual galaxies, rather
they infer the matter distribution from temperature fluctuations by measuring the
integrated line emissions. Therefore, the intensity mapping surveys are not dependent
on the detector sensitivity, which means that the evolution bias is only dependent on
the background brightness temperature, i.e. survey independent. The magnification
bias is a constant, since surface brightness is conserved.

Instead of computing the luminosity functions, comoving number densities and
resulting astrophysical parameters, we simplify the process by determining fitting
functions for: the number density (comoving and observed), as well as the magnification
and evolution biases for all the surveys considered.

Following this, we model the uncertainties in the measurement of the various surveys
by determining their specific noise properties in section 3.6. The main uncertainty
in galaxy surveys are as a result of the discrete nature of the galaxy number count
approach, and therefore is dominated by shot-noise. Conversely, the intensity mapping
surveys observe integrated emission and hence are more affected by instrumental noise.
We also model noise for the combination of surveys, which is necessary when computing
the multi-tracer correlation of different surveys, and we show in subsection 3.6.3 that
the cross-shot noise in our survey configurations may be neglected.

The results of the chapter is summarised in section 3.7 for the convenience of the
reader.

3.2 Luminosity function

Cosmological experiments traditionally analyse the observed number density contrast
(1.45) via galaxy number count surveys. The amount of galaxies an experiment is
able to observe depends on the sensitivity of the detector, i.e. the flux cut Fc of
the survey (which is constant). The faintest galaxies detectable by the instrument is
dependent on the brightness of the galaxy and the distance to the source. Therefore,
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the corresponding luminosity cut Lc is related to the flux cut through the luminosity
distance (1.17). Written in terms of co-moving distance:

Lc(z) = 4π Fc(1 + z)2χ2(z). (3.1)

In this chapter we will only work with the background quantities so the over-bars
are omitted. The number of galaxies Ng that are observed above the flux cut is the same
as the number at the source that are above the corresponding luminosity threshold:

dNg = Ng(z, Fc) dz dΩn = ng(a, Lc) dV , (3.2)

where ng is the comoving number density and dV is the comoving volume element.
The above equation explicitly states the dependence of (1.44) on the sensitivity of the
survey and corresponding luminosity threshold. The number density measured at the
observer Ng are related to the comoving number density at the source ng by

Ng = χ2

H
ng . (3.3)

The survey will detect all the galaxies that are brighter than the luminosity threshold,
and so we compute ng by integrating the (comoving) luminosity function Φ over
luminosity:

ng(a, Lc) =
∫ ∞

Lc(a)
dL Φ(a, L)

L∗(a) , (3.4)

where L∗ is a characteristic luminosity in the luminosity function. We can express the
luminosity function analytically in the simple form:

Φ(z, y) = ϕ∗(z) g(y) and y ≡ L

L∗
, (3.5)

where ϕ∗(z) is a characteristic number density. Note than an alternative definition of
the luminosity function is also used:

ng(a, Lc) =
∫ ∞

Lc(a)
d lnL Φ̂(a, L) where Φ̂ = L

L∗
Φ . (3.6)

In the case of galaxy surveys, accurate knowledge of the luminosity function is
needed, since small changes in the luminosity function can lead to large changes in its
partial derivatives at fixed redshift and fixed luminosity cut. For example, a Schechter
type function and a broken power-law model have both been considered as models for
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a Stage IV Hα spectroscopic survey. While both give very similar number densities,
they produce significantly different evolution biases.

3.3 Magnification and evolution bias

Observations of galaxy number counts trace not only the underlying matter density,
but are distorted by effects of observing them on our past lightcone. The dominant part
of this is the linear redshift-space distortions (RSD). There is also an effect on number
counts from lensing magnification – and other relativistic effects become potentially
important on ultra-large scales. These are the same scales where local primordial
non-Gaussianity are strongest, and could possibly influence the measurement on fNL.

There are three important astrophysical parameters in ∆g (1.45): the clustering bias
b relating number and matter density contrasts (δg = b∆m); the evolution bias be and
the magnification bias s. Here we focus on the last two. Note that the magnification
bias has two different but equivalent forms, denoted by s = 2Q/5. The relation between
the notations are expressed later in (3.12).

The magnification bias and evolution bias are astrophysical parameters that depend
on the intrinsic galaxy properties at the source, and on the survey-dependent flux cut.
They are defined by partial derivatives that respectively hold a fixed and hold Lc fixed
[40, 43]:

Q(a, Lc) = −∂ lnng(a, Lc)
∂ lnLc

, (3.7)

be(a, Lc) = ∂ lnng(a, Lc)
∂ ln a . (3.8)

In general, these parameters are very sensitive to the galaxy sample and the type of
survey, thus modelling them accurately is important when taking into account the
lensing magnification and Doppler contributions. Light beams from sources reach the
observer via the intervening large-scale structure: Q determines the number of galaxies
gained at the observer due to magnification (κ > 0), or lost due to de-magnification
(κ < 0). Magnification bias is positive, except in the idealised case of all possible
galaxies are detected, Q = 0. The background comoving number density evolves
according to the properties of the haloes that host galaxies in the survey, as well as
the properties of the halo environment. Halo and galaxy formation and evolution lead
to a non-conserved comoving number density (e.g. due to mergers), that is reflected
in nonzero be, which then modulates the Doppler contribution. The idealised case is
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the conservation of the comoving number density, corresponding to be = 0. In a real
scenario, processes such as mergers will produce a nonzero be. It can be positive (more
galaxies in a comoving volume) or negative (less galaxies), and it can change sign.
Both parameters affect the observed fluctuations in number density.

The relations (3.4), (3.7) and (3.8) are expressed in terms of quantities at the source.
It is often more convenient to rewrite them in terms of the corresponding observer
quantities Ng, z and F :

Ng(z, Fc) = χ2(z)
H(z)

∫ ∞

Fc
dF Φ(z, F )

F∗(z)
, (3.9)

Q(z, Fc) = −∂ lnNg(z, Fc)
∂ lnFc

, (3.10)

be(z, Fc) = −∂ lnNg(z, Fc)
∂ ln(1 + z) − d lnH(z)

d ln(1 + z) + 2(1 + z)
χ(z)H(z) . (3.11)

Here F∗ = L∗/(4πD2
L) and we used dL/L∗ = dF/F∗ and ∂/∂ lnLc = ∂/∂ lnFc, since

the integral and derivative are at fixed z.
Note that it is common to use a different (but equivalent) definition of magnification

bias, as in section 1.5 and (2.10):

s = −2
5
∂ lnng

∂ lnLc
= −2

5
∂ lnNg

∂ lnFc
= ∂ log10ng

∂Mc
= ∂ log10Ng

∂mc
≡ 2

5 Q . (3.12)

Here M = m−5 log10(DL/10 pc) is the absolute magnitude and m = −2.5 log10F+const
is the apparent magnitude.

From the expressions (3.4), (3.7) and (3.8) we find:

Q(a, Lc) = Lc(a)
L∗(a)

Φ(a, Lc)
ng(a, Lc)

, (3.13)

be(a, Lc) = 1
ng(a, Lc)

∫ ∞

Lc(a)
dL ∂

∂ ln a

[
Φ(a, L)
L∗(a)

]
. (3.14)

The alternative definition (3.6) of the luminosity function leads to the equivalent
expressions

Q(a, Lc) = Φ̂(a, Lc)
ng(a, Lc)

, (3.15)

be(a, Lc) = 1
ng(a, Lc)

∫ ∞

Lc(a)
d lnL ∂Φ̂(a, L)

∂ ln a , (3.16)
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and similarly in terms of z and F .

3.3.1 Caveat regarding evolution bias

There is a subtle and important point associated with (3.14): these expressions follow
strictly from the use of partial derivatives in the definition (3.8). The use of the
total derivative gives a very different result (see also [124]). Implementing the Leibniz
integral rule to compute the total derivative leads to:

d lnng

d ln a = ∂ lnng

∂ ln a + ∂ lnng

∂ lnLc

d lnLc

d ln a = be + 2
(

1 + 1
χH

)
Q , (3.17)

where we used (3.1) in the second equality. The same result follows if we use variables
z and Fc. Therefore, (3.17) makes it clear that for a realistic sky survey (Q ̸= 0) the
total log-derivative of number density is not the correct expression for the evolution
bias.

To illustrate this point, let us consider a simple toy model with luminosity function

Φ = ϕ∗0(1 + z) e−L/L∗ , (3.18)

where ϕ∗0 is constant and L∗ = L∗0 = const. From here onwards we adopt the
background redshift (z = a−1 − 1) instead of the scale factor. Then by (3.4) and (3.13),

ng = ϕ∗0(1 + z)e−Lc/L∗0 , Q = Lc

L∗0
. (3.19)

The derivative of ng in (3.19) gives

d lnng

d ln(1 + z) = 1 + Lc

L∗0

d lnLc

d ln(1 + z) . (3.20)

Using the definition (3.14) of the evolution bias, we find

be = − ∂ lnng

∂ ln(1 + z) = − 1
ng

∫ ∞

Lc

dL
L∗0

∂Φ
∂ ln(1 + z) = −1 . (3.21)

Therefore, the general result of (3.17) is verified by illustrating the difference between
the total and partial derivatives using the toy model (equations (3.19)–(3.21)). An
example for a more realistic Stage IV Hα cosmological survey like Euclid is shown in
Figure 3.1. Details of this model can be found in subsection 3.4.1.
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Fig. 3.1 The difference between the logarithmic total derivative of number density
(left) and the partial derivative, i.e. the evolution bias (right), for a Hα Model 3
luminosity function.

When dealing with survey data or simulated data, the luminosity function is in
principle known as a function of luminosity in each redshift bin. Then the tracer
properties can be extracted as follows.

• The number density in each redshift bin is a simple luminosity integral (a sum
over luminosity bins) of the luminosity function [see (3.4)].

• Then the magnification bias is given by a simple ratio at the luminosity threshold
of the luminosity function and the number density [see (3.13)].

• By contrast, the direct expression for be in (3.14) is a luminosity integral in each
redshift bin of the redshift partial derivative of the luminosity function.

• For be, it is simpler to numerically determine the total redshift derivative of the
computed number density and then algebraically compute the evolution bias via
(3.17):

be = − d lnng

d ln(1 + z) − 2
(

1 + 1 + z

χH

)
Q . (3.22)

Practically speaking, it is more convenient to express (3.22) in terms of the observed
number density contrast, thus from (3.3) we find

be = − d lnNg

d ln(1 + z) − d lnH
d ln(1 + z) + 2(1 + z)

χH
− 2

(
1 + 1 + z

χH

)
Q . (3.23)
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Comparing with [43], we agree with their equation (33), except for a typo: their
∂ logNg/∂ log(1 + z) should be replaced by the total derivative d logNg/d log(1 + z)1.

3.4 Spectroscopic galaxy surveys

In the following section we build upon the theoretical background established in
section 3.2 and section 3.3. The principles explained in these sections will now be
applied to the specific surveys we employed in our analysis. First, we consider the
more traditional cosmological surveys that observe in the optical and near-infrared
bands. We define the luminosity function models for Euclid-like Hα and DESI’s BGS
surveys, and compute them for a range of different detection sensitivities. We then
determine the expression for the comoving number density and plot ng corresponding
to different flux cuts. Consequently, we compute the astrophysical parameters be and
Q, and how they evolve with redshift for different Fc or mc. As mentioned previously,
these astrophysical parameters are survey dependent, and play an important role in
the observed number density contrast via the light-cone effects.

3.4.1 Euclid-like Hα survey

Euclid2 space telescope is planned to launch in 2022, with a Near Infrared Spectrometer
and Photometer (NISP) instrument which is designed to detect galaxies in the near-
infrared (NIR) band. In our forecasts we only consider the spectroscopic observations
since we require high redshift accuracy for our analysis. The spectroscopic channel will
be equipped with 4 different low resolution near-infrared grisms, 3 “red” (1250−1850nm)
and 1 “blue” (920 − 1250 nm), but no slit (“slitless spectroscopy”). The survey will
measure the redshifts of up to 30 million Hα galaxies over 15 000 deg2 in the redshift
range 0.9 ≤ z ≤ 1.8 [125].

Based on several datasets, [126] have presented fits for Hα luminosity functions as a
function of redshift. We consider a Stage IV Hα spectroscopic survey similar to Euclid.
The updated luminosity function given by [125] corresponds to Model 3 in [126].

The best-fit to the Model 3 luminosity function of the form (3.5) is the broken
power law case:

g(y) = yα

1 + (e − 1)yν , (3.24)

1Without this replacement, our (3.11) shows that their equation (33) leads to Q = 0.
2www.euclid-ec.org
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Fig. 3.2 Stage IV Hα survey (Model 3) luminosity function. Left: Φ(z, Lc), at the
threshold luminosity Lc, for 3 flux cuts, using (3.1). Right: Φ(z0, L), at 3 fixed redshifts.
The threshold luminosity Lc(z), with Fc = 2 × 10−16 erg cm−2 s−1, is shown by the
dashed line.

where α − ν is the bright-end slope. The factor e − 1 is chosen so that L∗ is the
luminosity at which Φ falls to 1/e of the faint-end power law, as in the Schechter case.
The expressions for ϕ∗(z) and L∗(z) from [126] are given by:

logL∗(z) = logL∗∞ +
[

1.5
(1 + z)

]β
log

[
L∗(0.5)
L∗∞

]
, ϕ∗ = ϕ∗0 , (3.25)

where

L∗(0.5) = 1041.733 erg s−1 , L∗∞ = 1042.956 erg s−1 , ϕ∗0 = 10−2.92 Mpc−3 ,

α = −1.587 , ν = 2.288 , β = 1.615 . (3.26)

In Figure 3.2, we show the luminosity function at the luminosity cut against redshift
for 3 different flux cuts (left), and against luminosity at 3 redshifts (right), showing
also the threshold luminosity.

Therefore, we can compute the number density and magnification bias using (3.4)
and (3.13) respectively:

ng(z, yc) = ϕ∗(z)G(yc) (3.27)

Q(z, yc) = yc
g(yc)
G(yc)

, (3.28)
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Fig. 3.3 Stage IV Hα survey (Model 3): number density (top), magnitude bias (bottom
left) and evolution bias (bottom right), for 3 different flux cuts (in units erg cm−2 s−1).

where
G(yc) =

∫ ∞

yc
dy g(y)

needs to be evaluated numerically. Using the total derivative to compute be, we need

d lnG(yc)
d ln(1 + z) = d lnG(yc)

d ln yc

d ln yc

d ln(1 + z) = −yc g(yc)
G(yc)

[
d lnLc

d ln(1 + z) − d lnL∗

d ln(1 + z)

]
, (3.29)

then (3.22) and (3.28) give

be(z, yc) = − d lnϕ∗(z)
d ln(1 + z) − d lnL∗(z)

d ln(1 + z) Q(z, yc) . (3.30)

Note how the derivative of the luminosity threshold Lc in (3.29) has been cancelled
out and replaced by a derivative of L∗ in (3.30).
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Alternatively, we can determine be via the definition (3.14) to check the result. We
start with

∂ ln (Φ/L∗)
∂ ln(1 + z) = d lnϕ∗

d ln(1 + z) − d lnL∗

d ln(1 + z) + d ln g
d ln y

∂ ln y
∂ ln(1 + z) , (3.31)

which leads to

be = − 1
ϕ∗ G(yc)

∫ ∞

yc
dy ϕ∗ g

[
d lnϕ∗

d ln(1 + z) − d lnL∗

d ln(1 + z) − y

g

dg
dy

d lnL∗

d ln(1 + z)

]

= − d lnϕ∗

d ln(1 + z) + d lnL∗

d ln(1 + z) + d lnL∗

d ln(1 + z)
1

G(yc)

∫ ∞

yc
dy y dg

dy . (3.32)

Integrating by parts, we recover (3.30). Figure 3.3 shows the associated number density,
magnitude bias and evolution bias, for 3 different flux cuts.

The physical properties of the Euclid sample determine the true luminosity function –
this can be estimated via simulations and will be measured when the survey is operating.
In order to forecast the precision of the measurements expected from a Euclid-like Hα
survey, we assume that the sensitivity of Euclid is Fc = 2 × 10−16 erg cm−2 s−1. The
corresponding number density, magnitude bias and evolution bias was computed, and
for convenience we also determined the fitting functions:

ng(z) = 0.00363 z−0.910 e0.402z − 0.00414 h3Mpc−3 , (3.33)

Q(z) = 0.583 + 2.02z − 0.568z2 + 0.0411z3 , (3.34)

be(z) = −7.29 + 0.470z + 1.17z2 − 0.290z3 . (3.35)

3.4.2 DESI-like bright galaxy survey

The Dark Energy Spectroscopic Instrument (DESI)3 is a ground-based experiment
whose spectrometer will determine the redshift of millions of galaxies with a redshift
resolution of around 1%. The survey will target, among others, Luminous Red Galaxies
(LRG), Emission Line Galaxies (ELG), Quasars and a Bright Galaxy Sample (BGS)
[127]. The BGS sample is at low redshifts in the range 0.05 < z < 0.58, while the
others are at higher redshifts. Here we consider a DESI-like BGS survey only, as a
low-redshift complement to a Euclid-like Hα survey. DESI will conduct an optical
survey covering 15 000 deg2 and expecting to detect 1.2 million bright galaxies [127].

3www.desi.lbl.gov
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Fig. 3.4 DESI-like BGS luminosity function. Left: Φ(z,Mc), at the absolute magnitude
threshold for 3 different apparent magnitude cuts, where M = m− 5 log10(dL/10 pc).
Right: Φ(z0,M), at 3 fixed redshifts, showing also the threshold absolute magnitude
(dashed) with apparent magnitude cut mc = 20.

If a survey measures galaxy fluxes in fixed wavelength bands, this leads to a K-
correction for the redshifting effect on the bands. In that case, it is standard to work in
terms of dimensionless magnitudes. The correction to the threshold absolute magnitude
is

Mc(z) = mc − 5 log
[
DL(z)
10 pc

]
−K(z) , (3.36)

where the apparent magnitude cut is mc.

For the DESI Bright Galaxy Sample (BGS), we follow [66, 84, 127], making small
adjustments. We use a Schechter luminosity function of the form (3.5), with

g(y) = (0.4 ln 10) 10−0.4(α+1)y exp
(
−10−0.4y

)
where y = M −M∗(z) . (3.37)

The number density of the DESI BGS will closely follow the Galaxy and Mass
Assembly (GAMA) survey [127, 128]. Therefore we can use the r-band parameters in
Table 5 of [129], with fiducial redshift z0 = 0.1 (which is where the magnitudes are
K-corrected) in the luminosity function (3.37):

α = −1.23 , ϕ∗(z) = 10−2.022+0.92 z h3Mpc−3 , M∗(z) = 5 log10 h− 20.65 − 0.6 z .

The K-correction is modelled as K = 0.87 z, following [84], and we take mc = 20,
following [128]. In Figure 3.4, we show the luminosity function at the absolute
magnitude cut against redshift for 3 different apparent magnitude cuts (left), and

http://etd.uwc.ac.za/ 



46 Next-generation cosmological surveys

0.1 0.2 0.3 0.4 0.5 0.6
z

0.00

0.02

0.04

0.06

n
g

[h
3
M

p
c−

3 ]

mc = 19

mc = 19.5

mc = 20

0.1 0.2 0.3 0.4 0.5 0.6
z

0

2

4

6

8

10

Q

0.1 0.2 0.3 0.4 0.5 0.6
z

−12

−10

−8

−6

−4

−2
b e

Fig. 3.5 DESI-like BGS number density (top), magnitude bias (bottom left) and
evolution bias (bottom right), at 3 different limiting apparent magnitudes.

against absolute magnitude at 3 redshifts (right), showing also the threshold absolute
magnitude (dashed).

As before, the luminosity function is employed to compute the galaxy number
density, magnification bias and evolution bias via:

ng(z,Mc) =
∫ Mc(z)

−∞
dM Φ(z,M) , (3.38)

Q(z,Mc) = 5
2
∂ log10ng(z,Mc)

∂Mc
= 5

2 ln 10
Φ(z,Mc)
ng(z,Mc)

, (3.39)

be(z,Mc) = − 1
ng(z,Mc)

∫ Mc(z)

−∞
dM ∂Φ(z,M)

∂ ln(1 + z) . (3.40)

In Figure 3.5 we show the the associated number density, magnitude bias and
evolution bias, for 3 different magnitude cuts. Comparing Figure 3.3 with Figure 3.5,
we find that the Q has a similar trend with redshift, but dbe/dz has an opposite sign.
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This could be due to the types of galaxies and/or to a different evolution at low and
high redshifts.

We can avoid the need to compute the integral in (3.40) as follows. We compute
the total derivative:

dng

dz =
∫ Mc

−∞
dM ∂Φ

∂z
+ dMc

dz Φc =
∫ Mc

−∞
dM ∂Φ

∂z
+ 2 ln 10

5
dMc

dz Qng , (3.41)

where we used (3.39). This leads to a modification of (3.22) for the photometric case,
using (3.36):

be = − d lnng

d ln(1 + z) − 2
[
1 + 1 + z

χH
+ 2 ln 10

5
dK

d ln(1 + z)

]
Q . (3.42)

For the BGS sensitivity, we assumed mc = 20, in order to include the faint sample
[130]. The parameters have been slightly adjusted from [129] (within 1σ uncertainty)
to better represent the number densities given in Table 2 of [66]. The true luminosity
functions will be estimated when the surveys take data, and the data will determine
how accurate the simple models of luminosity function are.

The fitting functions of DESI’s BGS survey for the number density, magnitude bias
and evolution bias, with mc = 20, are given by:

ng(z) = 0.031 z−0.373 e−5.85z − 0.002 h3Mpc−3 , (3.43)

Q(z) = 0.282 + 2.36z + 2.27z2 + 11.1z3 , (3.44)

be(z) = −2.25 − 4.02z + 0.318z2 − 14.6z3 . (3.45)

3.5 21cm HI surveys (SKAO-like)

We now turn our attention to a relatively new observational technique, to measuring
neutral Hydrogen (HI) in the radio band via the 21cm line emission. The abundance of
Hydrogen in the Universe have been known for a long time, and the idea of using it to
trace the matter distribution of the Universe is not a novel one. A simple explanation
why this technique has not been considered until recently, is that only now modern
radio receivers are sensitive enough to detect HI and extract a cosmological signal.
Following the end of the epoch of reionisation, the vast majority of neutral Hydrogen
are contained within galaxies [131]. Therefore, the emission of HI is a good tracer of
the underlying dark matter distribution. We are able to detect the neutral Hydrogen
atom via the 21cm emission line originating from the hyperfine spin-flip transition of
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Fig. 3.6 The spin-flip transition of a neutral Hydrogen atom emitting a photon of
wavelength λ21 = 21cm (left). The hyperfine structure associated with the transition
(right). Credit: R. Nave4

HI. The HI atom has only two distinct configuration states: the electron and proton
either has the same or the opposite direction of spin (see Figure 3.6). The former
configuration is associated to the higher energy state, which naturally transitions to the
latter. The change in energy releases a photon of wavelength λ21 =21cm, corresponding
to a frequency of 1420MHz.

There are two types of HI cosmological survey:

• HI galaxy survey
Detecting individual galaxies via the 21cm emission line, much in the same way
as Hα and other emission-line galaxies, using the interferometer mode of the
radio telescope.

• HI intensity mapping
Measuring the integrated 21cm intensity of the sky at a given frequency, without
resolving individual galaxies, using either interferometer or single-dish mode.

3.5.1 HI galaxy surveys

The Square Kilometre Array Observatory (SKAO)5 is planned to become the largest
radio telescope array on the planet, which intends to conduct a HI galaxy survey over
the redshift range 0 < z ≲ 0.5 and covering 5 000 deg2. The 10 000 hr long observation
is expected to detect ∼ 3 million galaxies [95]. This survey will use the next-generation
197-dish mid-frequency array, which will absorb the existing 64-dish MeerKAT array.
A more futuristic ‘Phase 2’ survey, which we denote ‘SKAO2’, could cover 30 000 deg2

over the range 0.1 < z ≲ 2 and detect 1 billion galaxies [132].
4http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/h21.html
5https://www.skatelescope.org/
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As in the case of optical/NIR surveys, the number density of HI galaxies is de-
pendent on the sensitivity threshold of the instrument. Radio surveys use the flux
density Sν , usually abbreviated as S. This is the flux per frequency, in units of
Jy = 10−26 W m−2 Hz−1.

The root-mean-square (rms) noise associated with a flux density measurement by
an interferometer can be approximated by [132, 133]

Srms(ν) = 2kB Tsys(ν)
AeffNd

√
2 tp(ν) δν

, (3.46)

where ν = ν21/(1 + z) is the observed frequency, in terms of the rest-frame frequency
ν21 = 1420 MHz. The system temperature, that combines instrumental and sky
temperature, is denoted by Tsys. The Boltzmann constant is indicated by kB, the
number of dishes is Nd and δν is the frequency channel width. The time per pointing

tp = ttot
θ2

b
Ωsky

, (3.47)

depends on the total integration time ttot, the total survey area Ωsky and the effective
primary beam (field of view) from a mosaicked sky [134]:

θ2
b = π

8

[
1.3 λ21(1 + z)

Dd

]2

, (3.48)

where Dd is the dish diameter and λ21 is the rest-frame wavelength. The effective
collecting area is

Aeff = ϵ
π

4 D
2
d , (3.49)

where ϵ ∼ 0.6 − 0.9 is the aperture efficiency.

The detection limit of HI galaxies depends not only on flux threshold, but also
on the observed line profile. In order to take this into account, we include an Ncut σ

detection threshold so that the detection is done with sufficient spectral resolution.
This leads to a detection limit [132, 133]

Sc(z) = Srms(z)
Ncut

10 . (3.50)

Models of a HI luminosity function would require a relation between the HI
luminosity of a galaxy and its host dark matter halo, which depends on other factors
in addition to the halo mass. This would need to be calibrated against full simulations.
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Table 3.1 Fitting coefficients for SKA HI galaxy surveys (3.51), details in [133].

c1 c2 c3 c4 c5 Srms
SKAO 5.45 1.41 15.49 0.6052 1.0859 100µJy
SKAO2 6.55 1.93 6.22 0.5504 0.8015 5µJy

An alternative approach, bypassing the need for a luminosity function, is followed by
[133], which uses the S3-SAX simulation. Each galaxy in the simulation has a redshift,
an HI luminosity and a line profile. This is used to determine the number of galaxies
that are expected to be detected in a survey. The result is a fitting formula for the
observed angular number density Ng(z, Sc) [133], given in terms of Srms. We adopt
this fitting formula, adjusting it to the detection threshold:

Ng(z, Sc) ≡ dNg(z, Sc)
dz dΩ = 10c1(Sc) zc2(Sc) exp [−c3(Sc)z] deg−2. (3.51)

The parameters ci for a range of flux sensitivities Sc are given in Table 3 of [133] and
summarized in Table 3.1 (see also [47, 132]). In Figure 3.7, we provide similar plots to
[133] for Ng(z, Sc), against z for various Sc and against Sc for various z.

For both SKAO and SKAO2 surveys, we assume frequency resolution δν = 50 kHz
and observation time ttot = 10 000 hr. For SKAO we follow the SKA Cosmology Science
Working Group Red Book [95]:

Nd = 197 , Dd = 15 m, Ωsky = 5 000 deg2, ϵ = 0.66, Ncut = 5 , (3.52)

where Tsys(ν) is given in [95] and the Ncut = 5 choice follows [133]. The system
temperature is modelled by

Tsys = Trec + 60
(

ν

300 MHz

)−2.5
K . (3.53)

For the futuristic SKAO2, we follow [132] and use the survey details:

Trec = 15 K, Nd = 70 000 , Dd = 3.1 m,

Ωsky = 30 000 deg2, ϵ = 0.81, Ncut = 10 . (3.54)

The Ncut = 10 choice follows [133]. The results for Sc(z) are shown in Figure 3.7.
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Fig. 3.7 Top: Flux sensitivity of SKAO HI galaxy survey (upper panel) and its
futuristic upgrade SKAO2 (lower panel). Bottom: Observed number density of HI
galaxies: against redshift at different flux cuts, showing SKAO (dotted) and SKAO2
(dashed) (left); against flux cut for different redshifts (right).

The magnification bias is computed from (3.51) as

Q = −∂ lnNg

∂ lnSc
, (3.55)

which follows from (3.10), using the fact that ∂/∂ lnF = ∂/∂ lnS for a fixed frequency
channel width. At each fixed redshift zi, we define the flux densities Sj = Si + j h,
where j = 0,±1,±2 and h is a small increment. We compute lnNg(zi, Sj) from (3.51)
for each lnSj (using suitable interpolation of Table 3 in [133]). Then we use the
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Fig. 3.8 Comoving number density (top), magnification bias (bottom left) and evolution
bias (bottom right) for HI galaxy surveys with SKAO (dot-dashed) and a futuristic
SKAO2 (solid).

five-point stencil method to compute the derivative (3.55). We tested the stability
of the derivative and concluded that h = 0.001 was a stable interval to use in this
context. This approach is related to that of [47] for an SKAO2 HI galaxy survey,
which parametrises lnNg(zj, Sc) as a function of lnSc for different redshifts (see also
[80, 120, 135]).

For the evolution bias, we take the total redshift derivative of Ng and then use
(3.3):

be = − d lnNg

d ln(1 + z) − d lnH
d ln(1 + z) + 2(1 + z)

χH
− 2

(
1 + 1 + z

χH

)
Q , (3.56)

where Q has already been computed as described above. The resulting comoving
number density, magnification bias and evolution bias are shown in Figure 3.8.
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Fitting functions for the number density, magnitude bias and evolution bias for
SKAO are:

ng(z) =127 z4 − 241 z3 + 172 z2 − 55 z + 6.66

− exp
(
−90.9 z4 + 27 z3 − 17.1 z2 − 7.3 z + 1.8

)
h3 Mpc−3 , (3.57)

Q(z) = − 51.37 z4 + 58.92 z3 − 27.13 z2 + 13.36 z + 0.17 , (3.58)

be(z) =2867 z4 − 4910 z3 + 3146 z2 − 892 z + 86.3

− exp
(
−862 z4 + 406.8 z3 − 100 z2 − 1.3 z + 4.3

)
, (3.59)

while for SKAO2:

ng(z) =1.47 z4 − 11.7 z3 + 35.1 z2 − 47.4 z + 24.2

− exp
(
−0.16 z4 + 0.08 z3 − 0.65 z2 − 1.87 z + 3.2

)
h3 Mpc−3 , (3.60)

Q(z) =0.28 z4 − 1.18 z3 + 1.76 z2 + 1.36 z , (3.61)

be(z) =0.07 z5 − 5.47 z4 + 16.4 z3 − 19.6 z2 + 7.35 z + 0.22

− exp
(
89.2 z4 + 169.2 z3 − 102.5 z2 + 15.5 z + 0.24

)
. (3.62)

3.5.2 HI intensity mapping surveys

In addition to the HI galaxy surveys, the SKAO will also be conducting another type of
survey called Intensity Mapping (IM) survey. As opposed to galaxy surveys, IM does
not require the resolution of individual galaxies. Rather, it measures the integrated line
emission from the sources and infer the distribution of matter from the temperature
fluctuations - as in the CMB analysis. The advantage of IM is that one can scan larger
sky areas in the same amount of time, hence extract information on the large scale
structure more efficiently. In this work we are interested in the HI IM survey observed
by the future SKAO radio telescope array, because of the unprecedented cosmological
volumes oberved by this experiment. The SKAO IM survey will cover 20 000deg2. In
addition, the observation does not only include the bright galaxies, but the fainter
emissions as well - like filaments in the large-scale structure.

The integrated 21cm emission is measured in a three-dimensional pixel, which is
assembled by the frequency channel width and the telescope beam, called a voxel. The
frequency resolution of the instrument is ∼ 50kHz, which translates into a redshift
accuracy of z ∼ 10−4. We are considering the single-dish configuration of the telescope
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Fig. 3.9 The temperature fluctuations of a HI intensity map located at z = 1.

array, thus the beam is defined by

βℓ(zi) = exp
[
−ℓ(ℓ+ 1)

16 ln 2 θ2
b(zi)

]
, (3.63)

where θb = 1.22λ21(1 + z)/Dd is the effective field of view and Dd is the dish diameter.
The intensity mapping angular power spectrum is modulated by the telescope beam,
which leads to a loss of small-scale transverse power:

CIM IM
ℓ (zi, zj) → βℓ(zi) βℓ(zj)CIM IM

ℓ (zi, zj) . (3.64)

The resulting IM tomography is a three dimensional map of the temperature fluctuations
at different z, with an extremely high redshift precision. In Figure 3.9 we show a
temperature map of SKAO-like HI IM, centered around z = 1 and redshift bin width
∆z = 0.1. The image was generated using software called Healpix.

The HI brightness temperature measured at redshift z in direction n is related to
the observed number of 21cm emitters per redshift per solid angle, NHI, as follows:

THI(z,n) = const NHI(z,n)
DA(z,n)2 , (3.65)
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Fig. 3.10 Background temperature (left) and evolution bias (right) for post-reionisation
21cm intensity mapping.

for further details see [43, 136]. This relation implies that the surface brightness is
conserved, therefore it follows that the effective magnification bias is [43, 76, 136, 137]

Q = 1 . (3.66)

Considering the background quantities, (3.65) implies that

THI = const nHI χ
2 H−1

a2χ2 = const (1 + z)2

H
nHI , (3.67)

where nHI is the comoving number density of HI emitters in the source rest-frame.
Intensity mapping integrates over the entire luminosity function in each voxel [138].
Therefore the brightness temperature does not depend on a luminosity threshold, but
depends only on redshift. By (3.67), this is also the case for the number density, so
that [76, 136]

be ≡ − ∂ lnnHI

∂ ln(1 + z) = − d lnTHI

d ln(1 + z) − d lnH
d ln(1 + z) + 2 . (3.68)

Equation (3.67) also leads to [131]

THI(z) = 189h (1 + z)2 H0

H(z) ΩHI(z) mK, (3.69)
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where ΩHI(z) is the comoving HI density in units of the critical density today. This is
poorly constrained by current observations and we use the fit [139]:

THI(z) = 0.056 + 0.23 z − 0.024 z2 mK. (3.70)

Using the background temperature (3.70), we can find the evolution bias (3.68), which
is shown in Figure 3.10. For convenience, we have also determined a fitting formula for
be, suitable for any post-reionisation HI IM survey:

be = −0.32 − 0.11 z + 0.06 z2 − exp
(
−0.9 z3 + 3.12 z2 − 4.61 z + 0.78

)
. (3.71)

Note that Q and be are survey-dependent for galaxy surveys, since they depend on
the survey flux cut. By contrast, for 21cm intensity mapping there is no flux limit and
the evolution bias therefore depends only on the background brightness temperature
and the Hubble rate, while the effective magnification bias is 1.

The evolution bias for intensity mapping has the same physical meaning as for
galaxy surveys, since it is given in (3.68) by the comoving number density of 21cm
emitters. However, since the IM surveys do not resolve the individual galaxies, the
change of the galaxy number counts are not as easily observed, as compared to the
galaxy surveys that detect individual galaxies.

3.6 Survey noise

Another important aspect necessary to include when modeling future cosmological
observations is: how well will the survey be able to extract the desired signal from the
measurement? The precision of the measurement is dependent on the uncertainty in
the detection, which we call the survey noise. We take this uncertainty into account in
our analysis by adding the noise to Cℓ, which enters the Fisher forecast in (2.16).

3.6.1 Galaxy surveys

The main contribution of noise in the galaxy surveys is called Poisson noise, commonly
known as shot-noise. The shot-noise originates from the discrete nature of galaxy
observations, and an increased sample size reduces this uncertainty. The angular
shot-noise power is inversely proportional to the number of galaxies observed per solid
angle:

N g
ℓ (zi, zj) = 1

NΩ(zi)
δij , (3.72)
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where NΩ is the windowed observed number density

NΩ(zi) =
∫

dz W (z, zi)N̄g(z) . (3.73)

The above equation determines the expected number of galaxies observed in the redshift
bin centered about zi. Given the precise redshift resolution of spectroscopic galaxy
surveys, we have opted to use a top-hat like window function W that is smoothed at
the edges [1]:

W (z, zi) = 1
2 tanh(∆zi/2σzi)

[
tanh

(
z−zi + ∆zi/2

σzi

)
− tanh

(
z−zi − ∆zi/2

σzi

)]
, (3.74)

where ∆zi is the redshift bin size, σz is the redshift resolution and σzi = σz(1 + zi).

3.6.2 HI Intensity mapping surveys

For HI IM experiments the main source of noise is instrumental and we can neglect
shot noise on the scales of interest (see Figure 3.12, right). For single-dish surveys, the
noise is [140, 141]

NHI
ℓ (zi, zj) =

4π fsky T
2
sys(zi)

2Nd ttot ∆ν δij . (3.75)

The system temperature Tsys is frequency dependent (3.53), Nd represents the number
of dishes, the frequency band of observation is ∆ν, the total integration time is ttot

and the sky fraction is fsky = Ωsky/4π.
The full SKAO observation will be conducted by a combination of two different

radio antennas that measure signals using four separate receivers, each with distinct
noise properties. The new phase of SKAO have a 133 dishes of 15m diameter, and
will observe the high- and low-z using Band1 and Band2 receivers respectively. The
precursor to SKAO is called MeerKAT, which consists of 64 radio dishes of diameter
13.5m, which will be incorporated into the total array. The dishes are equipped with
Lband and UHF receivers, that detect the high and low frequencies respectfully. We
need to weight the noise and beam properties from the MeerKAT dishes and the new
SKAO dishes, with different diameters and receiver bands (see Table 3.2).

The contributions of the different antennas are weighted using the individual
root-mean-square (RMS) error. For the UHF/L-bands and Band 1/2 we have:

wU/L = w−1
tot

Nd,U/L

T 2
sys,U/L

, w1/2 = w−1
tot

Nd,1/2

T 2
sys,1/2

, (3.76)
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Table 3.2 SKAO and MeerKAT: dish and receiver properties.

Receiver Frequency range Redshift range Dd # dishes
[MHz] [m]

Band 1 350 – 1050 0.35–3.06 15 133
Band 2 950 – 1760 0.1–0.49 15 133
UHF-band 580 – 1015 0.4–1.45 13.5 64
L-band 900 – 1670 0.1–0.58 13.5 64

where

wtot = Nd,U/L

T 2
sys,U/L

+ Nd,1/2

T 2
sys,1/2

. (3.77)

The weighted instrumental noise for SKAO surveys is given by

T SKAO IM1/2
ℓ = wU/LT U/L

ℓ + w1/2T 1/2
ℓ = 2π fsky

∆ν ttot

T 2
sys,eff

Nd,tot
, (3.78)

where T U/L
ℓ is the noise for 64 MeerKAT dishes in UHF/L-bands, and T 1/2

ℓ is the
noises for 133 new SKA dishes in Bands 1/2 – each given by (3.75). In (3.78) Tsys,eff

corresponds to the effective system temperature, which is the weighted average of the
system temperatures from the individual receivers in the full telescope array.

The system temperatures, in the form T 2
sys/Nd, are shown in Figure 3.11, for the

individual receivers (left) and for SKAO using the weighted noise (3.78) (right). For
the MeerKAT bands the system temperature and the effective one are the same. Note
that the jumps in the effective system temperature for SKAO IM1/2 arise from the
fact that the frequency range of the SKAO bands and the MeerKAT bands do not
perfectly overlap.

Additionally, we also have to weight the impact of the beam because the diameter
of the dishes differ. The total weighted beam is simply given by

B
SKAO IM1/2
ℓ = w1/2B

1/2
ℓ + wU/LB

U/L
ℓ . (3.79)

From here on out we refer to SKAO IM1/2 simply as IM1 and IM2 respectively.
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Fig. 3.11 System temperature (in the form T 2
sys/Nd) for the 4 receiver bands of HI IM

(left) and the weighted effective system temperature for SKAO and MeerKAT (right).

3.6.3 Multi-tracers

In addition to looking at the noise properties of individual surveys, we also have to take
into account what happens when we combine surveys via the multi-tracer technique.
In the case of a MT analysis we use only the overlapping sky area, hence we fix the
scanning ratio of the HI IM surveys, i.e the sky area over time. This implies that the
observational time ttot needs to be adjusted proportionally to the reduction in sky area.

Given the overlap between the BGS and IM2 surveys, and between the Hα and IM1
surveys, we need to consider the cross-shot noise. For correlations between tracers one
expects an overlap in the dark matter halos seen by both surveys. An exception is for
example the red and blue galaxies in photometric galaxy surveys, which by selection
are disjoint tracers of the dark matter. When we consider HI IM, all halos in a voxel
containing HI will contribute to the integrated temperature observed in the voxel.
Some of these halos, especially the most massive ones, will host emission line galaxies
which appear in spectroscopic galaxy surveys such as the DESI-like BGS survey. These
overlap halos will induce a shot-noise term contribution in the cross-correlation.

The comoving HI density is given by

ρHI =
∫ Mmax

HI

Mmin
HI

dM nh(M)MHI(M) , (3.80)
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where nh is the halo mass function, MHI is the mass of HI in a halo of mass M , and
we take MHI(M) ∝ M0.6 [142]. The HI shot noise power spectrum is [131, 143]

NHI
sn,ℓ = H

χ2
T̄ 2

HI
ρ2

HI

∫ Mmax
HI

Mmin
HI

dM nh(M)MHI(M)2 , (3.81)

and the galaxy shot noise power spectrum 1/Ng can be determined by (3.3). The
cross-shot noise power spectrum can be estimated as [92]

N×
sn,ℓ = 1

Ng

T̄HI

ρHI

∫ Mmax

Mmin
dM nh(M)MHI(M) Θ(M) , (3.82)

where Θ is a weighting function accounting for the fraction of halos that are present
in both samples. For simplicity, we dropped the redshift dependence, and in what
follows we neglect the width of the bins and just take their central values. In the
absence of an exact model, one can approximate that all halos within a mass range
Mmin ≤ M ≤ Mmax overlap and set Θ(M) = 1 in this interval and zero elsewhere.
This implicitly assumes that all halos within this mass range have HI and host a bright
galaxy, which is incorrect. However, assuming Θ(M) = 1 leads to an over-estimation
of the noise contribution within the mass range.

In order to find Mmin and Mmax in (3.82), we need to estimate the halo mass ranges
of each survey. The BGS survey will cover a range of higher mass halos, while the HI
IM surveys cover lower mass halos which are small enough to contain neutral Hydrogen.
For the BGS survey, we use abundance matching between the number of galaxies in a
bin and the expected number from the halo mass function, i.e.,

Ng = χ2

H

∫ ∞

Mmin
g

dM nh(M) . (3.83)

In this approximation we assume that all massive halos will host a bright galaxy, which
is not necessarily true. In fact the minimum halo mass that host an observed bright
galaxy depends on the completeness of the sample. A lower completeness results in a
lower minimum halo mass. This does not trivially translate into a higher cross-shot
noise, but it would extend the overlap into higher redshifts. For demonstration purposes
we assume the sample is complete. In a given redshift bin we perform abundance
matching to find Mmin

g , using the Sheth-Tormen halo mass function [144] and the
number density for the BGS survey, (3.86). The minimum mass is shown in Figure 3.12
(left panel), and it compares well with Figure 3.4 of [127].
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Fig. 3.12 Left: Mass overlap between HI IM and BGS halos. Right: Shot-noise power
spectra for HI IM and BGS, together with the over-estimate of their cross-shot noise.
The instrumental-noise power spectrum for HI IM is also shown.

In order to estimate the maximum HI halo mass, we need to determine the mass
range of halos that contribute to HI IM. To this end, we assume that only halos with
circular velocities between 30 and 200 km/s host HI, where [142]

vcirc = 30
√

1 + z

(
M

1010M⊙

)1/3

km/s. (3.84)

The maximum HI halo mass is shown in Figure 3.12 (left panel), together with the
overlap region. The overlap for BGS is only at low redshift. We do not find any mass
range overlap between HI IM and the Hα survey.

The right panel of Figure 3.12 displays the shot-noise power spectra for BGS, HI
IM and their cross noise. Our over-estimate of cross-shot noise is well below the galaxy
shot noise and rapidly vanishes. Hence we neglect this term in our forecasts, see for
example [131, 143, 145, 146]. We include the instrumental noise for HI IM, which is
clearly much larger than the HI IM shot noise. The step in the instrumental noise
arises from the fact that the frequency ranges of the SKAO bands and the MeerKAT
bands do not perfectly match, as shown in Figure 3.11.
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Since the cross-shot noise in the multi-tracer can safely be neglected in the surveys
under consideration, the MT noise for N number of tracers is the diagonal matrix:

N ℓ =



N 11
ℓ (z1

i , z
1
j ) 0 · · · 0

· · · · · · · · · · · ·

0 0 · · · NNN
ℓ (zNi , zNj )


. (3.85)

3.7 Synopsis

The observed (linear) number density contrast ∆g depends on three astrophysical biases,
which in turn depend on the sample of galaxies considered. The linear clustering bias
b has been the subject of extensive studies, therefore in this chapter we have focused
on determining the magnification and evolution biases. These two biases modulate the
amplitude of light-cone effects which, for forthcoming surveys, need to be included in
the modeling of the two- and three-point statistics.

Forecasts for future galaxy surveys require physically self-consistent models of
Q and be, especially when lensing and other relativistic effects are important. Key
examples when this is the case are:

• constraints on primordial non-Gaussianity [4, 43, 47, 91, 92];

• detection of the lensing potential and Doppler effect in the number counts, via
the two-point statistics [40, 43, 63–73, 78, 82, 83, 91] and three-point statistics
[48, 74–76];

• investigation of the possible biases on best-fit parameter values that may be
induced by neglecting relativistic effects [5, 48, 79, 80, 84, 86, 147, 148].

When lensing and other relativistic effects are detectable, they can themselves
provide novel probes of gravity and matter. However, such probes are only possible if
magnification and evolution biases are accurately modelled [5, 43, 84, 87, 91].

For simulated or observed galaxy data, the luminosity function is in principle known
as a function of luminosity in each redshift bin. Then Q and be may be extracted as
follows.

• Number density ng in each redshift bin is found from a simple luminosity integral
of the luminosity function, (3.4).
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Table 3.3 Basic details of the surveys.

Experiment Tracer Sky area ttot Redshift Spectral
[103 deg2] [103hr] range resolution

MeerKAT IM-L HI IM 4 4 0.1–0.58 10−4

MeerKAT IM-U HI IM 4 4 0.4–1.45 10−4

SKAO IM2 HI IM 20 10 0.1–0.58 10−4

SKAO IM1 HI IM 20 10 0.35–3.06 10−4

SKAO1 Gal HI galaxies 5 — 0.1–0.58 10−4

SKAO2 Gal HI galaxies 30 — 0.1–2.0 10−4

Euclid-like Hα galaxies 15 — 0.90–1.80 10−3

DESI-like Bright galaxies 15 — 0.1–0.58 10−3

• Then Q is determined by a ratio at the luminosity threshold of the luminosity
function and the number density, (3.13).

• For be, instead of using its definition, it is simpler to take a total redshift derivative
of the computed ng and then use Q to compute be via (3.22).

The survey specification of the experiments under consideration are collected and
displayed in Table 3.3. The instrumental and shot-noise for HI intensity mapping and
galaxy surveys are compared in Figure 3.13.

Fig. 3.13 Shot noise for galaxy surveys and instrumental noise (normalised by T 2
HI)

for intensity mapping surveys.
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3.7.1 Cosmological survey fits

Fig. 3.14 Top: Number density and HI temperature in mK (left), and Gaussian
clustering bias (right), for the surveys. Bottom: Magnification bias (left) and evolution
bias (right), for the surveys.

For the reader’s convenience, the fits for the observed number density and resulting
astrophysical parameters used in the forecasts, including the linear clustering bias b,
are given below:
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• DESI-like BGS survey:

Ng = z1.161 exp
[
10.75 −

(
z

0.27

)2.060
]
, (3.86)

b = 0.99 + 0.73 z − 1.29 z2 + 10.21 z3 , (3.87)

s = 0.113 + 0.945 z + 0.908 z2 + 4.442 z3 , (3.88)

be = −2.25 − 4.02 z + 0.318 z2 − 14.6 z3 . (3.89)

• Euclid-like Hα survey:

Ng = z1.985 exp
(
0.019 z4 − 0.052 z3 + 0.147 z2 − 3.405 z + 11.471

)
, (3.90)

b = 0.7(1 + z) , (3.91)

s = 0.234 + 0.801 z − 0.222 z2 + 0.015 z3 , (3.92)

be = −7.29 + 0.470 z + 1.17 z2 − 0.290 z3 . (3.93)

• HI intensity mapping (any survey):

THI = 0.0559 + 0.2324 z − 0.0241 z2 mK , (3.94)

b = 0.667 + 0.178 z + 0.050 z2 , (3.95)

s = 0.4 , (3.96)

be = −0.32 − 0.11 z + 0.06 z2

− exp
(
−0.9 z3 + 3.12 z2 − 4.61 z + 0.78

)
. (3.97)

The fits are illustrated in Figure 3.14. The evolution bias can be positive (more
galaxies in a comoving volume than the conserved case) or negative (less galaxies) and
it can change sign. Note that the evolution of sources in intensity mapping is less
susceptible to galaxy mergers as compared to the number counts in galaxy surveys,
since intensity mapping does not resolve individual galaxies. The magnification bias is
always positive; it is most easily computed not via a derivative, but from the ratio of
the luminosity function and number density, as in (3.13).
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Chapter 4

Constraining the growth rate of
large-scale structure

The growth rate of large-scale structure provides a powerful consistency test of the
standard cosmological model and a probe of possible deviations from general relativity.
We use a Fisher Matrix analysis to anticipate the constraints on the growth index
γ from future spectroscopic surveys, using the power spectrum that is observed in
redshift space, i.e., the angular power spectrum. We include the cross-correlations
between redshift bins, using a hybrid approximation when the total number of bins
is computationally unfeasible. We forecast the constraints on the growth rate from
independent next-generation spectroscopic galaxy surveys, after which we determine
the improvement in precision expected by combining these surveys via the multi-tracer
technique.

The following chapter is based on [1, 2], of which I am co-author and first author
respectively. This chapter is structured as follows. In section 4.1 we give a brief
overview about the background and utility of the work. We explain the specifics of the
Fisher Matrix analysis in section 4.2, as it pertains to this chapter. We analyse the
effect of redshift binning on RSD precision in section 4.3, and explain the details of the
tomographic analysis. The details of combining surveys in the analysis is explained
in section 4.5. Our results are presented in section 4.4 and we draw conclusions in
section 4.6. The fiducial model selected for the forecasts is a concordance ΛCDM model
with the Planck 2018 best-fit parameters.
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4.1 Preamble

We are entering a new era in the study of the large-scale structure (LSS) of the Universe.
Not only will we map the sky over larger areas, but we will also go deeper in redshift. In
addition to the increasing volumes, we will probe the sky at higher precision in different
frequency ranges, creating exquisite sets of complementary dark matter tracers. The
cross-correlation between these tracers reduces cosmic variance, which can improve
constraints [93, 149–151]. Additionally, correlations between datasets suppresses some
systematics.

General relativity and its classical modifications (see e.g. the reviews [23–25, 54])
have distinctive effects on the clustering of galaxies and their peculiar velocities.
Identifying the statistical effect of peculiar velocities on the distribution of matter
provides a powerful test of the cosmological model and the theory of gravity. This test
is based on using redshift-space distortions (RSD) to measure the LSS growth rate
f (1.41) or growth index γ = ln f/ ln Ωm (1.43). To implement this test one requires
the redshift accuracy of the spectroscopic surveys. Upcoming spectroscopic surveys,
in optical, near infra-red and in radio bands [95, 152–159], will have greater redshift
accuracy and observe larger volumes than ever before, allowing for higher precision
tests.

The standard analysis of RSD data for tests of gravity uses the spatial power
spectrum Pg(k, z) in Fourier space, which allows one to cleanly separate the RSD
effect via a Legendre multipole expansion. The state-of-the-art measurement is from
the extended Baryon Oscillation Spectroscopic Survey (eBOSS) Data Release 14
quasar (DR14Q) survey [160], giving γ = 0.580 ± 0.082, which is consistent with the
standard ΛCDM value γ = 0.55. Similarly, most forecasts for future surveys rely
on the same analysis (e.g. [132, 149, 161]). However, the Fourier power spectrum is
not without its disadvantages (see subsection 2.1.1), therefore opt to rather use the
angular power spectrum. Unlike Pg(k, z), the Cℓ is analysed in redshift space and thus
we need not consider uncertainties in the fiducial model. Furthermore, it naturally
includes wide-angle and relativistic effects, as well as cross-bin correlations (details in
subsection 2.1.2).

It is intuitively clear that averaging over peculiar velocities in thick redshift bins
in Cℓ will wash out the RSD signal, therefore thin bins are needed for precision
measurements on RSD. As redshift bins are decreased in size, the reduced number of
galaxies translates into higher shot-noise, so one might expect to reach a ‘sweet spot’
in bin width where the precision is optimal. This expectation is however not correct,
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since it ignores the additional information that arises from the growing number of auto-
and cross-correlations. We confirm that information on the growth index γ continues
to increase with decreasing bin width, reaching a theoretical maximum for infinitely
thin bins. In practice we need to choose a bin width that is feasible for numerical
computation.

We use Fisher forecasting and marginalise over the standard cosmological param-
eters, in particular including the amplitude of primordial fluctuations and the dark
energy equation of state parameter, as well as over the clustering bias in each bin.
Modelling nonlinear RSD is beyond the scope of this work and therefore we use in-
formation only from the linear scales (see subsection 2.3.1). For our forecasts we use
the growth index γ, which we assume to be constant. Although this does not allow
for scale-dependence of the γ (in common with most work on the growth rate), it still
delivers a consistency test of ΛCDM and standard dark energy models. A significant
deviation of γ = 0.55 would indicate a breakdown of the standard model, due either to
non-standard dark energy or modified gravity.

We use survey specifications that are similar to those planned for the DESI BGS,
the Euclid-like Hα survey, and for the SKAO HI surveys, summarised in section 3.7.
For now we use a simplified model for the DESI survey. Since the BGS is a low-redshift
sample, the lensing contribution is very small and we can safely neglect κ in (2.10).
Also, in BGS the magnification effect is negligible, therefore we set s = 0 in the Doppler
term (1.50). We find that the errors on γ for a Euclid-like survey and an SKAO
HI intensity mapping survey are ∼ 3%. We also find that an HI intensity mapping
survey with the SKAO precursor MeerKAT and a DESI-like BGS survey have a similar
accuracy of ∼ 5%. Percent-level errors from independent observations seem to be only
within reach for the futuristic SKAO2 HI galaxy survey. We also show that if only
auto-correlations Cℓ(z, z) are used and cross-bin correlations Cℓ(z, z′) are neglected,
then the constraints degrade by a factor of ∼ 40 − 150%.

Using two distinctly different dark matter tracers that sample the same underlying
density field enables us to significantly reduce the effect of systematics and cosmic
variance (details in section 2.2). In addition, we include the information from the
remaining observed volume by adding the Fisher matrices from non-overlap regions to
Fisher information from the multi-tracer. In order to do this, we must assume that
one can break the sky area into independent patches- which implies that one neglects
modes above the size of the patches. Due to the large tomographic matrices we break
down the redshift range into independent subsurveys. All cross-bin correlations within
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each subsurvey are computed, but cross-correlations between subsurveys are neglected,
as explained in more detail below.

We find that the errors on γ (including Planck priors on standard cosmological
parameters) from combining a high-z SKA-like HI IM and a Euclid-like Hα survey
are ∼2.3%. The combination of DESI-like BGS and low-z SKA HI IM surveys deliver
∼1.6% precision. Combining all the information from high- and low-redshift surveys
further improves the error on growth index to ∼1.3%, which is an improvement of
∼55% on constraints from the best independent survey.

4.2 Fisher matrix analysis

The expected precision of measurement on γ from future spectroscopic surveys was
estimated using the Fisher forecast, as explained in section 2.3. In the analysis we
consider the following set of parameters:

ϑα =
{
γ,As, ns,Ωcdm,Ωb, w,H0, b(zi)

}
. (4.1)

For the cosmological parameters we use the fiducial values: As = 2.142 × 10−9,
ns = 0.967, Ωcdm = 0.26, Ωb = 0.05, w = −1, H0 = 67.74 km/s/Mpc. For the growth
index, we take γ = 0.55, as discussed above. In addition, the clustering bias in each
bin, b(zi), is a free parameter, with fiducial value set by the bias models for each survey
(see section 3.7). We assumed Gaussian priors from Planck 2018 [162] for all standard
cosmological parameters. The priors are on the parameters, not their logarithms;
we use the log of the parameters in the Fisher matrix purely because this gives a
numerically more stable inversion of the matrix (see [110] for more detail).

We marginalise over the uncertainty of linear clustering bias b(zi) as a nuisance
parameter, in each redshift bin zi. The number of bias parameters is therefore survey-
and binning-dependent and is further discussed in section 4.3. As will become clear, in
some experiments the number of bins introduces computational limitations, and we
develop a means to deal with this, following the idea proposed in [110].

The angular power spectra and their derivatives are computed using CAMB_sources .
The derivatives with respect to Ωcdm,Ωb, w,H0 are taken numerically using the five-point
stencil method. For the remaining parameters, we use a modified CAMB_sources to
accept analytical derivatives1. The analytical derivative with respect to γ uses the

1https://github.com/ZeFon/CAMB_sources_MT_ZF.git
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parametrisation (1.43), so that ∂f/∂γ = f ln Ωm. Then

∂

∂γ
Cℓ(zi, zj) =

∫
d ln k

[
∆W
ℓ (zj)

∫
dz′ p(z′) W (z′, zi) ln Ωm∆v

ℓ (4.2)

+ ∆W
ℓ (zi)

∫
dz′′ p(z′′) W (z′′, zj) ln Ωm ∆v

ℓ

]
P(k) , (4.3)

where ∆v
ℓ denotes the RSD and Doppler terms in (2.10). The analytical derivatives

with respect to As, ns and the biases are given in Appendix A of [94].

4.3 Redshift binning and the precision on RSD

In a Fisher Matrix analysis of the Fourier power spectrum Pg(k), the redshift bin width
does not affect the analysis, provided that ∆z is not too large (typically ∆z ≲ 0.1
is chosen). The important binning in the Fourier case happens in k-space. On the
contrary, the bin width plays an important role in the Fisher Matrix analysis using Cℓ,
especially for spectroscopic surveys. In this case, we need to apply redshift binning
in a way that corresponds to the observable of interest. For example, if we choose
broad redshift bins, this will suppress the RSD signal, since the stochastic nature of
peculiar motions tend to average out. We can confirm this expectation by looking
at the relative strength of RSD in the angular power spectrum as the bin width is
decreased. A typical example is shown in Figure 4.1 (top left), where we plot Cℓ(zi, zi)
without RSD (dashed) and with RSD (solid), for different bin widths ∆z; the fractional
RSD contribution is shown in the bottom left panel. The Fisher information on the
growth rate index γ also increases with decreasing bin width, as shown via ∂Cℓ/∂γ in
the top right plot.

It is clear from these plots that one can in principle extract more information
from RSD by decreasing the width of the redshift bin. On the other hand, this also
increases the shot-noise (3.72), since NΩ ∼ N∆z (and similarly for the instrumental
noise (3.75)). The increase in shot-noise with decreasing bin width is illustrated in
Figure 4.1 (bottom right).

One might expect that the battle between increasing signal and growing shot-noise
produces an idealised binning configuration where information is maximised. The left
panel of Figure 4.2 appears to show this, for a bin centred at redshift zi = 1 in a
Euclid-like Hα survey (red) and SKAO IM1 survey (blue). We vary the width of a
single redshift bin and find an optimal bin size that minimises the conditional error
from auto-correlations. However, the problem with this apparent optimisation is that
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Fig. 4.1 Top left: Cℓ(zi, zi) without RSD (dashed) and with RSD (solid). Bottom
left: fractional RSD contribution to total angular power spectrum, where ∆Cℓ =
Cℓ(total) − Cℓ(density only). Top right: Fisher derivative ∂Cℓ/∂γ. Bottom right:
shot-noise (3.72). For a Euclid-like survey, with different bin widths at zi = 1.

we have neglected cross-correlations. Decreasing the bin width means an increase in
the number of bins, and consequently an even greater increase in the number of auto-
and cross-spectra amongst the redshift bins. The additional information from these
correlations compensates for the increased shot-noise per bin, as illustrated in the right
panel of Figure 4.2. We fix the total redshift range to 0.1, subdivide it into 50 bins of
∆z = 0.002, 20 bins of ∆z = 0.005, 10 bins with ∆z = 0.01, 5 bins with ∆z = 0.02, 2
bins with ∆z = 0.05 and a single bin with ∆z = 0.1. Then we compute the conditional
constraints on γ including cross-correlations between redshift bins. The ‘sweet spot’
for Euclid (and SKAO IM1) at ∆z ∼ 0.005 (0.01) in the left panel is not present once
the cross-correlations are included. Therefore we can in principle reduce the bin size
down to the size of the receiver bands, which is ∼ 2 × 10−3 (2 × 10−4) at zi = 12.

2[119] shows that bin widths ∆z ≲ 10−3 introduce non-linear systematics into the large scale
modes.
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Fig. 4.2 Dependence of the conditional γ error on the redshift bin width: for a single
bin of varying width (left); for a growing number of sub-divisions with fixed total size
of 0.1, including all auto- and cross-correlations (right).

The implication is that we should choose a redshift bin width that is as small as
possible, given the practical constraints imposed by redshift resolution and especially
by numerical computation. In order to extract all the information, we need to include
cross-correlations between bins – and this becomes numerically prohibitive for very
large numbers of bins. To tackle this problem, we follow the ‘hybrid’ method proposed
in [110] - i.e., we divide the full redshift range of a survey into subsurveys and perform
all cross-bin correlations in each subsurvey, but not between subsurvey bins. There is a
small loss of information from neglecting some cross-correlations between redshift bins.
However, if the subsurveys are wide enough, i.e., bigger than the correlation length
(which is typically ∼ 0.1 in redshift), this loss is only non-negligible for adjacent bins
of subsurveys [110]. We use a redshift bin-width of ∆z = 0.01, which is numerically
feasible with the hybrid method and also reduces the effect on non-linearities on low-ℓ
modes [119] (see subsection 2.3.1).

In the hybrid approach, the constraints from a survey are just the summed con-
straints from each subsurvey. We modify this slightly in order to deal with the
survey-dependence of the clustering bias. We marginalise over the bias parameters
b(zi) in the Fisher matrices for each subsurvey, before adding these matrices to obtain
the Fisher matrix of the full survey. In more detail: let IF̃φαφβ

be the Fisher matrix of
subsurvey I marginalised over the clustering bias, so that φα are all the parameters in
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(4.1) except for bI(zi). Then

IF̃φαφβ
=
[(

IFϑαϑβ

)−1

φαφβ

]−1
, (4.4)

and the total Fisher matrix is

F̃φαφβ
=
∑
I

IF̃φαφβ
. (4.5)

In the case of the low-redshift surveys BGS, SKAO IM2, SKAO Gal, and Lband
of MeerKAT IM, the number of bins is low enough compute the full tomographic
result. We compared this with the result from the subsurvey approximation with 2
subsurveys, and found that the subsurvey approximation is only slightly worse, at the
second significant figure.

4.4 Forecast results

The best forecasts (including Planck 2018 priors) are in the range ∼ 3 − 5% for the
near-future surveys. This is only improved to percent level in the more futuristic HI
galaxy survey with SKAO2. The constraints on γ are degenerate with the total matter
density today by (1.43), as illustrated in the contour plots for γ and Ωm0 in Figure 4.3.
Note that since Ωm0 = Ωcdm0 + Ωb0, we had to transform our Fisher matrix adding
the constrains from both parameters (see [163]). We summarise the errors on γ in
Table 4.1.

Including cross-bin correlations

Performing all cross-bin correlations is a computational challenge, which becomes
increasingly difficult considering the very thin bins in our analysis. However, including
cross-bin contributions is very important to maximally extract the information from the
Cℓ, as illustrated in Figure 4.2. In Table 4.2 we show the constraints computed when
neglecting all cross-bin correlations and using only auto-correlations. By comparing
with Table 4.1, we find that the marginal constraints with priors are degraded by a
factor of ∼ 40 − 150%, and those without priors are degraded by much more.
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Fig. 4.3 Marginal 1σ contour plots of γ and Ωm0 for the surveys considered. Plus sign
indicates the fiducial values. No priors included.

Table 4.1 Errors on γ in spectroscopic surveys, with and without Planck 2018 priors.
Note that the last subsurvey may have a different number of bins as it is just the
remainder.

Redshift Survey Subsurveys σcond
ln γ σln γ

# # bins no prior with prior
each % % %

Low redshift BGS 1 50 2.6 6.7 4.5
SKAO Gal 1 48 3.6 14.0 6.4
MK IM-L 1 48 2.9 10.8 5.7
SKAO IM2 1 48 1.2 4.6 2.8

High redshift Hα Spectr 3 45 1.4 3.9 2.9
MK IM-U 2 52 2.9 17.8 8.0
SKAO IM1 5 45 1.2 5.3 3.7

Low and high SKAO2 Gal 4 47 0.6 1.7 1.4

4.5 Combining multiple surveys

A natural extension to improve the constraints in section 4.4 is to combine different
surveys and take advantage of the cross-correlations between tracers to improve the
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Table 4.2 As in Table 4.1, but neglecting all cross-bin correlations.

Redshift Survey σcond
ln γ σln γ

no prior with prior
% % %

Low redshift BGS 3.6 26.1 8.4
SKAO Gal 4.4 62.0 9.8
MK IM-L 3.3 65.2 9.1
SKAO IM2 1.4 27.4 5.1

High redshift Hα Spectr 1.7 14.6 7.2
MK IM-U 3.2 124.2 11.0
SKAO IM1 1.3 26.7 6.4

Low and high SKAO2 Gal 0.7 4.9 3.4

statistical power. Each survey scans a particular sky area and redshift range, which do
not necessarily overlap with another survey. A first approach is to combine surveys
via a joint analysis. This is a good approach when we consider different cosmological
probes, for example, joining the information from SNIa supernovae and from the CMB.
When we consider different galaxy surveys, we can no longer do joint analysis at the
posterior level.

A possible approach is the multi-tracer technique [26], which we apply to the
overlapping volume of the surveys, i.e., the same redshift range and sky area. This
method was applied in [91, 92], using the angular power spectra, to constrain local-
type primordial non-Gaussianity, leading to significant improvements over single-tracer
constraints as a result of the suppression of cosmic variance. Primordial non-Gaussianity
in the power spectrum is an ultra-large scale effect and is therefore heavily impacted
by cosmic variance. As a consequence, a smaller overlap volume still produces better
results than a simple combination (neglecting the cross-tracer correlations) of the full
larger volume of each individual tracer. Since RSD measurements do not rely on
ultra-large scales, the gain from the multi-tracer is lower and we benefit from combining
information from non-overlap volumes with the multi-tracer information.

By following the hybrid method, we apply two techniques in order to achieve
manageable numerical computations when redshift bin widths are ∼0.01, giving O(100)
bins and the same number of bias nuisance parameters.

The MT is generalised for N number of surveys in (2.13) to find the internal
covariance of experiments with multiple probes, for example [4, 5, 97, 164]. However,
here we are only considering a combination of two dark matter tracers A and B, with
the same sky area ΩAB, the same redshift range and the same redshift binning, by
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using the combined matrix [91, 92]:

Cℓ =


CAA
ℓ (zi, zj) CAB

ℓ (zi, zj)

CBA
ℓ (zi, zj) CBB

ℓ (zi, zj)

 , (4.6)

in (2.15). Similarly to the single-tracer case, we apply the subsurvey division of the
common redshift range, marginalise out the bias parameters bA(zi) and bB(zi) (4.4), and
add the subsurvey matrices (4.5) to produce a multi-tracer Fisher matrix FAB

αβ (overlap)
on the overlap volume, computed using (4.6) in (2.15).

In general, surveys A and B will not have the same sky area and the same redshift
ranges. In this case, there is additional information in the non-overlap volumes of the
two surveys A and B. These non-overlap volumes in general include two contributions:

• the non-overlap parts of each sky area, ΩA − ΩAB and ΩB − ΩAB, across the full
redshift range for each survey, zAmax − zAmin and zBmax − zBmin;

• the overlap sky area ΩAB, across the non-overlap parts of the redshift ranges.

The non-overlap volumes are processed in the same way as above: divide into subsurveys,
marginalise out the bias parameters, and add the subsurvey Fisher matrices. This
produces two non-overlap Fisher matrices, FA

αβ(non-overlap) and FB
αβ(non-overlap),

which are then added to the overlap multi-tracer Fisher matrix to produce the total
Fisher matrix:

Fαβ(total) = FAB
αβ (overlap) + FA

αβ(non-overlap) + FB
αβ(non-overlap) . (4.7)

The volumes of the next-generation spectroscopic surveys are given in Table 3.3,
which indicates that there are significant overlaps in the low- and high-redshift ranges.
This suggests a multi-tracer combination of IM2 with BGS and another of IM1 with
Hα would be feasible. We assume the overlapping sky area between surveys is ΩAB =
104 deg2 for both low- and high-z combinations, which then gives the non-overlap areas,
ΩA − ΩAB and ΩB − ΩAB. These regions are summarised in Table 4.3.

For the low redshift combination there is a good overlap in the redshift range, but
for the high redshift case IM1 extends well beyond the Hα range. In practice above
z = 1.8 and below z = 0.9 we only obtain constraints from HI IM, although we still
add this information to the overall constraints as in (4.7). We fix the subsurveys to
have 20 redshift bins of width 0.01. Note that subsurveys at the edges of the redshift
range may have less than 20 redshift bins.
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Table 4.3 Overlap and non-overlap sky areas for the low- and high-z combinations.

Tracer A Tracer B ΩA − ΩAB ΩB − ΩAB ΩAB

[103 deg2] [103 deg2] [103 deg2]
Low-z SKAO IM2 BGS 10 5 10
High-z SKAO IM1 Hα 10 5 10

The noise matrix is given by the shot-noise for galaxy counts (3.72) and instrumental
noise for IM (3.75). We fix the HI IM instrumental noise by fixing the scanning ratio,
i.e, the sky area over time. This implies that the observational time ttot, has to be
adjusted proportionally to the reduction in sky area. The shot noise for IM is much
smaller than the instrumental noise and the cross shot-noise is negligible [92], as shown
in subsection 3.6.3. Therefore, the noise matrix in (2.15) is simply the diagonal matrix
(3.85).

The new results are for the combined totals of surveys, i.e., using multi-tracer in
the overlap volume and adding single-tracer in the non-overlap volumes. As expected,
the combination at low redshift has more constraining power than the one at high
redshift, given that f and Ωm are tending to 1 at higher redshifts.

Table 4.4 summarises our results. The single-tracer errors compare well with our
previous results Table 4.1, except for the Hα sample, whose specifications we have
updated following the Euclid collaboration paper [125], which appeared after the
publication of our paper [1] on the ST case. There is a minor difference for the other
surveys, since in order to compensate for the increased number of bias parameters in
the MT we used narrower subsurveys than before. Therefore the reduced cross-bin
correlations simplified the computation but slightly degraded the constraints. We
excluded constraints from the SKAO Gal, since the larger observed volume of intensity
mapping delivers much higher precision (see Table 4.1). We also did not consider the
SKAO2 Gal configuration, because it will not be taking measurements for decades.

In Figure 4.4 we plot the 1σ contours for the low-z (left) and high-z (right) surveys
as well as their combinations. By combining surveys and utilising the full observed
volume, we find better results than the best single-tracer survey result. It is therefore
natural to extend the combination by a further step – adding the combined totals from
low and high redshift, assuming that they too are independent. There is a caveat: in
order to avoid double-counting of the IM signal, we remove from the high-z combination
the contribution with z < 0.6. We choose to exclude the information from SKAO IM1
since the instrumental noise is larger in this band and extracts less information on γ.
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Table 4.4 Normalised errors on γ. The combination of surveys (⊗) includes the MT
applied to overlapping volumes and ST from non-overlapping volumes added via (4.7).
We also consider adding the low- and high-z surveys by adding their Fisher information
matrices (⊕).

Survey σln γ (%)
Low redshift BGS 4.7

SKAO IM2 2.9
IM2⊗BGS 1.6

High redshift Hα survey 4.0
SKAO IM1 3.8
IM1⊗Hα 2.3

Low + High redshift IM2⊗BGS⊕IM1⊗Hα 1.3

Fig. 4.4 Marginal 1σ contours for matter density and growth index: low-z surveys
(left); high-z surveys (right). Solid black contours denote the combined total, as in
(4.7), and + indicates fiducial values.

The result is given in the last row of Table 4.4 (σγ/γ = 1.3%) and Figure 4.5 displays
the 1σ contours. Despite the higher instrumental noise of SKAO IM1, it observes larger
volumes and constrains the density parameter the best, thereby selecting SKAO IM2
for the z < 0.6 interval in the total combination slightly degrades the constraints on
Ωm0

3.

3Note that the solid black contour in Figure 4.5 is not exactly the combination of the red dot-dashed
and blue dashed contours, since we removed some IM1 bins to avoid double-counting.
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Fig. 4.5 Marginal 1σ contour plots for the low- and high-z combined totals (solid
black).

Without information in non-overlap volumes

At higher redshift we find that there is still substantial information outside the overlap
volume of IM1 and Hα surveys. We repeat our forecasts in the traditional multi-tracer
analysis where one only considers the overlap volume. For the low-z combination the
degradation in precision is not strong, but for the high-z case the overlap volume alone
is not even competitive with the single tracer constraints. We reproduce Table 4.4
by only considering the overlap volume, see Table 4.5. In both cases, the overlap
area is the same, 104 deg2. The overlap redshift range is 0.1 ≤ z ≤ 0.58 for the low-z
combination and 0.9 ≤ z ≤ 1.8 for the high-z combination. At low redshifts, one could
in principle use only the overlap area and still obtain a good constraint on γ. At higher
redshifts, this is not the case, as most of the information to constrain γ comes from
the large non-overlap volume.

4.6 Discussion and conclusions

In this chapter, we focused on constraints on the growth index γ using the observed
power spectrum, i.e. the angular power spectrum Cℓ, of spectroscopic cosmological
surveys. Instead of an exhaustive study of surveys, we tried to fill the redshift range
0 < z ≲ 3 with the potentially best contemporaneous spectroscopic surveys. We first
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Table 4.5 As in Table 4.4, but considering only the overlap volumes of low- and high-z
combinations.

Survey σln γ (%)
Low redshift BGS 5.5

SKAO IM2 3.8
IM2⊗BGS 1.9

High redshift Hα survey 4.6
SKAO IM1 12.9
IM1⊗Hα 4.2

investigated the effect of redshift bin width on the amount of information on γ that can
be extracted. Unlike the case of the Fourier power spectrum Pg, the choice of redshift
bin width has a significant impact in the angular power spectrum. We showed that
cross-correlations between bins compensates for the growth in noise, and we concluded
that in theory, the thinnest possible width will deliver the highest signal-to-noise. In
practice, computing all cross-bin correlations becomes increasingly difficult for the
very thin bins. We used a variant of a ‘hybrid’ method to capture the dominant
cross-correlation contribution, where the full range of auto- and cross-bin correlations
are computed only within each subsurvey.

We used the growth index γ rather than the growth rate f , since it is redshift-
independent and therefore better suited to surveys with very high numbers of redshift
bins. Although the γ parametrisation is not valid for scale-dependent modifications
of gravity, it still provides a test of the standard cosmological model and a probe of
possible deviations from general relativity.

Key advantages of Cℓ include: it incorporates the redshift evolution of all cosmo-
logical, astrophysical and noise variables; it does not impose a flat-sky approximation
but naturally incorporates wide-angle correlations; Doppler and lensing corrections to
the two-point correlations are also naturally included. Furthermore, since the angular
power spectrum is directly observable, constructing the Cℓ of the data requires no
assumptions of a fiducial model and therefore no Alcock-Paczynski correction is needed.
These advantages over the Fourier power spectrum Pg (which is not an observable)
come with a price. Unlike Pg, Cℓ does not allow a clean separation of the RSD effect.

In our Fisher forecasts, we marginalised over the standard cosmological parameters,
as well as the dark energy equation of state and the clustering bias in each redshift
bin for each survey. Our constraints are based only on the information from linear
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scales. Our main results for independent surveys are shown in Table 4.1 and in the
error contour plots of Figure 4.3. The best marginal constraints (including priors) on
γ are ∼ 3 − 5% for the near-future surveys, with SKAO intensity mapping providing
the best near-future constraints, while the SKAO precursor MeerKAT is predicted to
be competitive. The more futuristic SKAO2 HI galaxy survey would be necessary to
reach sub-percent errors from a single cosmological survey.

In addition, we included all possible information from these surveys, using multi-
tracer cross-correlations on overlap volumes and single-tracer correlations on non-overlap
volumes. To do this we assumed that different patches of the sky are independent and
we only included modes that are contained within each patch.

Our main MT results are shown in Table 4.4 and in the contour plots of Figure 4.4
and Figure 4.5. The best marginal constraints on γ are ∼1.6 and ∼2.3% for combina-
tions of low- and high-z surveys respectively. Therefore, we find ∼45% improvement
on the best independent survey. If we take the further step of combining the low-
and high-z combinations, we find a precision of 1.3%, which is ∼55% better than the
best single-tracer. The combination of the low- and high-z surveys renders a similar
precision to that of the futuristic SKAO2 galaxy survey.

In conclusion, combining the information from appropriate near-future spectroscopic
surveys – via the multi-tracer technique in the overlap volumes and the single-tracer in
non-overlap volumes – will significantly improve constraints of the growth rate of the
large-scale structure, without using more observational resources. In addition, joining
the information from low and high redshifts can break the degeneracy between Ωm0

and γ.
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Chapter 5

Future prospects for fNL and
relativistic effects

Measuring the effects of primordial non-Gaussianity in the large-scale structure is an
important scientific driver of future surveys as their volume increases. Primordial
non-Gaussianity of the different types (local, equilateral, folded) are only observable
on ultra-large scales, and provides an exquisite window into the physics of the very
early universe (see e.g. [22] for a review). We study combinations of future large-scale
structure surveys in optical/NIR and radio bands, in order to forecast how well we will
be able to constrain fNL (1.36). We also estimate the amount of information we will
be able to extract on light-cone effects (i.e. relativistic effects) from future surveys,
which can serve as a novel test for gravitational models. In addition, the relativistic
effects can mimic a signal similar to fNL and potentially bias its measurement. We
also consider the influence that neglecting the light-cone effects has on parameter
measurements.

The chapter is based on [4, 5], of which I am first author. It is organised as follows:
in section 5.2 we focus on local primordial non-Gaussianity, Doppler effects and lensing
magnification effects in a multi-tracer analysis of the observed angular power spectra.
We present our results in section 5.4 and conclude in section 5.5.

5.1 Preamble

Non-gaussianities give rise to non-zero odd-point clustering functions, and local-type
primordial non-Gaussianity also affects the two-point statistics of tracers of the dark
matter [165, 166]. It induces a scale-dependent correction to the bias, ∝ fNLH

2/k2
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in Fourier space, thereby affecting the power spectrum on very large scales (see
subsection 1.4.2). The state-of-the-art constraint on the local-type primordial non-
Gaussianity parameter fNL is provided by Planck [10]: fNL = −0.9 ± 5.1 (at 68% CL).
Several constraints have also been provided by quasar surveys [18, 167], the most recent
being fNL = −12 ± 21 [19].

Future galaxy surveys will improve on current constraints because they will access a
greater number of long modes than available in current surveys [43, 47, 123, 168–172].
Measuring the scale-dependent bias (1.38) using the power spectrum on very large
scales requires extremely large cosmological volumes to reduce error bars; in most cases
this is not enough due to the growth of cosmic variance with scale. In fact, forecasts
that are based only on the power spectrum for realistic future cosmological surveys,
using the scale-dependent bias of a single tracer on its own, cannot provide a precision
of σ(fNL) < 1. This is an important threshold to distinguish between single-field and
many multi-field inflationary scenarios (see e.g. [49]). In order to beat cosmic variance
and approach or break through the σ(fNL) ∼ 1 target, one needs to take advantage of
the multi-tracer technique [26, 27, 114, 173, 174], as shown in [89–98]. In section 2.2
we give an overview of the technicalities regarding the multi-tracer technique.

It is important to note that the observed power spectrum includes light-cone effects
[40, 43, 101, 175] (see section 1.5), which can produce a signal similar to that of
fNL, potentially leading to a bias in the measurement of fNL [41–43, 85–88]1. Other
theoretical and systematic effects may also be degenerate with fNL in spectroscopic
surveys (see e.g. [119, 178, 179]). We include large-scale lensing magnification and
all other light-cone effects, and we show that neglecting these relativistic effects in
a multi-tracer analysis can bias estimates of fNL and of the standard cosmological
parameters (see also [88]). However, lensing and other relativistic effects are not simply
a theoretical ‘nuisance’ that needs to be included in the modelling – they can also be
important cosmological probes of gravity (see e.g. [60, 66, 69, 71–78, 180–182]).

One of our goals is to determine how well we could detect the Doppler term, both
in single and multiple tracer cases, which requires accurate redshifts. We therefore use
‘spectroscopic’ to mean cosmological surveys with high redshift accuracy, irrespective of
how such redshifts are effectively measured. While photometric surveys provide lower
shot-noise, which is an important advantage in the multi-tracer technique, they also
lose velocity information via averaging over thick redshift bins. We consider surveys
with specifications similar to the following planned surveys: the DESI-like Bright
Galaxy Sample [183]; the Euclid-like Hα survey [125]; the 21cm intensity mapping

1This is also the case for the bispectrum [48, 148, 176, 177].
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surveys in Bands 1 and 2 with the MID telescope of the SKAO [95]. The details of
modelling these surveys are found in chapter 3, the fits used in the forecasts are given
in subsection 3.7.1, and the survey specifications can be found in Table 3.3. In the
multi-tracer we only consider the overlapping sky area of the surveys, which in this
case is Ωsky = 104 deg2 for both low- and high-z combinations. As before, we fix the
scanning ratio of the SKAO IM surveys to compensate for the reduction in sky area.
In this analysis we include all cross-bin correlations by performing the full tomographic
analysis.

The multi-wavelength choice of the four surveys is motivated by: a good coverage of
redshifts in the range 0 < z < 2; high redshift resolution in order to detect the Doppler
effect; a negligible cross-shot noise between optical and 21cm intensity samples; and
the very different systematics affecting optical and radio surveys, which are suppressed
in cross-correlations.

We show that combining these surveys can provide a detection of the Doppler term
with a signal-to-noise of ∼8. In the case of the lensing magnification contribution, the
Hα survey on its own can deliver a 4% error, while the full combination improves this
to 2%. For fNL, the forecast multi-tracer constraint significantly improves on Planck,
at σ(fNL) ∼ 1.5, but falls short of the σ(fNL) ∼ 1 threshold. This is not unexpected,
since our choice of surveys is based on the combination of relativistic and primordial
non-Gaussian signals and is not optimised for fNL alone. As an example, photometric
surveys or radio continuum surveys in a multi-tracer combination [91] are more likely
to achieve σ(fNL) < 1, as they will have lower shot noise. Similarly, combining the
bispectrum and power spectrum of a single tracer [46, 184–186] can achieve σ(fNL) < 1,
especially when using spectroscopic surveys [157, 184, 187]. Adding information from
higher-order point statistics, such as the trispectra of spectroscopic surveys [188], will
help reduce error bars on fNL.

We also find that the multi-tracer method approaches the maximum information
that can be extracted, since the marginal errors approach the conditional errors.

5.2 Primordial non-Gaussianity and relativistic
effects in the multi-tracer

The scale-dependent clustering bias in Fourier space, given by (1.38), grows on large
scales as fNLH

2
0/k

2, producing a power spectrum monopole Pg(k, z) that blows up on
ultra-large scales. This behaviour in Fourier space is misleading, since the directly
measurable signal of fNL is very small. The point here is that the Fourier power
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Fig. 5.1 Percentage contribution of the scale-dependent bias to the Fourier power
spectrum monopole (left) and angular power spectrum (right) for an Hα survey at
z = 1.8 with ∆z = 0.03.

spectrum is not directly observable. One has to de-project measured angular positions
and redshifts into a Cartesian three-dimensional volume – which requires assuming a
fiducial cosmology. The Fourier power spectrum is a derived quantity, which is also
not gauge invariant. By contrast, the angular power spectrum (see subsection 2.1.2) is
observable, thus circumvents the requirement of an Alcock-Paczynski correction.

We illustrate this point in Figure 5.1, showing an example of the percentage
contribution of fNL to the Fourier (left) and angular power spectra (right). The
blow-up in the unobservable Pg is not mirrored by the behaviour of Cℓ, in which the
fNL contribution is only a few percent on the largest scales, where cosmic variance is
typically much larger. This is why we require a multi-tracer approach to detect the
signal of fNL.

The dominant relativistic effects are from the Doppler and lensing magnification
terms. The Doppler term depends on both the magnification and evolution biases via
(1.50), while the lensing term (1.51) depends only on the magnification bias. Using
the fits in subsection 3.7.1, we show in Figure 5.2 the amplitude of the Doppler and
lensing contributions to the observed number density and temperature contrasts.

It is apparent that the Doppler coefficient for intensity mapping is significantly
smaller than for the galaxy samples. The magnification bias of HI IM surveys is
sHI = 2/5, therefore by (1.50) we see the 1/Hχ term is cancelled, contributing to
the reduced AD. Therefore we expect HI surveys to under-perform in extracting
information on the Doppler effect, compared to galaxy surveys. We also note that the
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Fig. 5.2 Coefficient of the Doppler (left) and lensing (right) contributions for the
surveys.

Doppler amplitude is strongest at low redshift, so that the BGS survey is best placed
to detect it.

The lensing coefficient vanishes for intensity mapping and is largest for the BGS
survey. This does not mean that the lensing contribution for BGS is greater than for
Hα, since the lensing amplitude is |ALκ| and κ will be larger at higher z.

For our Fisher Matrix analysis, we separate the relativistic contributions in (1.46) by
introducing fudge factors ε = 1 in order to gauge the detectability of each contribution:

∆A = δA + ∆RSD + εD ∆Dopp + εL ∆Lens + εP ∆Pot . (5.1)

We determine which correlations add the most information to the analysis, both in
single- and multi-tracer cases. We compute the signal-to-noise of a parameter ϑ,
constrained by two surveys, from each correlation CAB

ℓ (zAi , zBj ), as

SAB(ϑ, zAi , zBj ) =

∑
ℓ

[
∂ϑC

AB
ℓ (zAi , zBj )

∆CAB
ℓ (zAi , zBj )

]2
1/2

, (5.2)

where A,B = 1, 2 and

∆CAB
ℓ (zAi , zBj ) =


ΓAAℓ (zAi , zAj )ΓBBℓ (zBi , zBj ) +

[
ΓABℓ (zAi , zBj )

]2
(2ℓ+ 1)fsky


1/2

, (5.3)

with
ΓABℓ = CAB

ℓ + NAB
ℓ , (5.4)
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Fig. 5.3 Signal-to-noise SAB(θ, zAi , zBj ) for the Doppler contribution (θ = εD) (left) and
the lensing magnification contribution (θ = εL) (right). Top panels: 1⊗2 = IM2⊗BGS
for 0.35 < z < 0.56. Bottom panels: 1 ⊗ 2 = IM1 ⊗ Hα for 0.90 < z < 1.11. The colour
bar shows the signal-to-noise ratio.

where the noise is given by (3.72) for galaxy surveys and (3.75) for IM.
As we confirm below, the potential terms are very poorly constrained, and we set

εP = 0 in this discussion. In Figure 5.3 we show examples of SAB for ϑ = εD (left) and
ϑ = εL (right) using both low-redshift (top) and high-redshift (bottom) survey pairs.
The axes indicate which z-bins are correlated, where z1

i is the i-bin of SKAO IM2 (top
panels) and IM1 (bottom panels), while z2

i corresponds to BGS (top panels) and Hα
(bottom panels). For the multi-tracer combination 1 ⊗ 2 = IM2 ⊗ BGS (top panels) we
use the redshift range 0.35 < z < 0.56, while for 1 ⊗ 2 = IM1 ⊗ Hα (bottom panels)
we use 0.9 < z < 1.11. In both cases a bin-width ∆z = 0.03 is used. The colour bar
shows the signal-to-noise SAB of the parameter for each pair (zAi , zBj ).
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The plots show that the bulk of the information on εD comes from the cross-spectra,
which contribute 3–5 times more than the individual surveys. This contribution is
mainly from the cross-tracer spectra, although at low redshift it is also marginally
from cross-correlations between consecutive redshift bins of the same tracer. The latter
feature is the basis of the estimator constructed in [189], which is the angular power
spectrum counterpart of the Doppler dipole in the two-point correlation function [180].
Although there is some residual information in the low-redshift BGS-BGS correlations,
the bulk clearly comes from the off-diagonal, i.e. the cross-tracer correlations. BGS
contains the most information on the Doppler term, given the 1/χ term in (1.50) (see
Figure 5.2).

In the case of lensing magnification, the analysis is slightly different. Firstly, IM
has no lensing magnification contribution (AL = 0). However, IM can act as a lens of
background galaxies in BGS and Hα. In both cases, we see that the furthest off-diagonal
cross-bin correlations are providing the most information on εL. As expected, this
comes from the lower redshift field lensing the higher redshift field. For this reason,
when the higher redshift field is traced by IM, no information is obtained – as seen in
the right column of Figure 5.3. We also see that most information on εL is obtained by
galaxy surveys on their own, especially at high redshift. In fact, for the Hα survey,
cross-correlations with an IM survey seem to be irrelevant for lensing. Most information
lives in the furthest off-diagonal cross-bin correlations of Hα-Hα.

5.3 Fisher forecast

Having gained qualitative insights into the multi-tracer precision on fNL and relativistic
effects, we turn now to the quantitative estimate of constraints via Fisher forecasting.
Later, we also consider constraints on the standard cosmological parameters. The
multi-tracer Fisher matrix for the angular power spectra is defined in section 2.3, while
the noise is the diagonal matrix (3.85) where we use (3.72) for galaxy surveys and
(3.75) for intensity mapping.

In our forecasts we consider the set of parameters

ϑα =
{
fNL, εD, εL, εP; Ωcdm, Ωb, w, ns, H0, As; bA(zAi )

}
. (5.5)

As before, we assume the fiducial cosmology: As = 2.142 × 10−9, ns = 0.967, Ωcdm =
0.26, Ωb = 0.05, w = −1, H0 = 67.74 km/s/Mpc. Note that the εI do not have
physical meaning; instead they are used to model the detectability of the relativistic
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contributions. We also consider the uncertainty in the Gaussian clustering biases by
marginalising over the bias in each redshift bin, bA(zAi ). In the single-tracer case, the
forecasts are degraded by this marginalisation, but the multi-tracer analysis is only
weakly affected by marginalisation over the clustering bias, consistent with [92]. We
do not marginalise over the magnification and evolution biases. Instead, we consider
εL and εD as rough proxies of the uncertainties in these astrophysical parameters.

We are also interested in the effect that neglecting the light-cone contributions
has on parameter estimation, and follow the method set out in subsection 2.3.2. By
considering the Doppler, lensing and potential effects, the fixed subset in (5.5) is:

φI =
{
εD, εL, εP

}
. (5.6)

Neglecting the relativistic effects means setting ε̂I = 0, which implies a shift from the
true values of

δεD = δεL = δεP = −1 . (5.7)

We then determine the bias on the best-fit values of the remaining parameters:

ψi =
{
fNL; Ωm0, w, ns, H0, As

}
. (5.8)

This bias is best expressed as normalised by the errors σ(ψi). We define the normalised
biases from neglecting individual relativistic effect as

δIψi ≡ δψi(φI)
σ(ψi)

, (5.9)

where δψi(φI) denotes the case of (2.26) when I is fixed at one value and only j is
summed over. It follows that the normalised bias from all relativistic effects combined
is

δrelψi = δψi
σ(ψi)

where δψi =
∑
I

δψi(φI) . (5.10)

In general, if |δIψi| < 1, then any induced bias is smaller than the error bars and
can be safely neglected. On the other hand, if |δIψi| > 1 the effect I should not be
neglected in the model. Note however that the approximation made in deriving (2.26)
breaks down when |δIψi| > 1. For biases above 1σ, the value of δIψi is not reliable – it
does not quantify the bias, but qualitatively it confirms that the bias is larger than the
error bars. This is sufficient for our purposes.

http://etd.uwc.ac.za/ 



5.4 Results 91

Table 5.1 Marginal uncertainties on fNL and relativistic effects εI , computed by
marginalising over the standard cosmological parameters and bA(zi) only. Results are
for individual surveys and their combination using the multi-tracer technique (⊗).
When combining low- and high-redshift information, we also consider adding their
Fisher information matrices (⊕). HI intensity mapping surveys are unaffected by
lensing and cannot constrain εL. Results exclude priors.

Redshift Survey σ(fNL) σ(εD) σ(εL) σ(εP)
0.1 − 0.58 BGS 26.38 7.57 0.39 33.3

IM2 35.74 18.07 − 228.3
IM2⊗BGS 2.12 0.14 0.13 6.86

0.9 − 1.8 Hα 9.34 9.08 0.04 10.0
0.35 − 3.05 IM1 4.72 6.29 − 10.89
0.60 − 3.05 IM1⊗Hα 3.06 0.37 0.03 4.71
0.1 − 3.05 (IM2⊗BGS)⊕(IM1⊗Hα) 1.70 0.13 0.03 3.79

IM2⊗BGS⊗IM1⊗Hα 1.55 0.13 0.02 3.47

5.4 Results

5.4.1 Precision on fNL and light-cone effects

The forecast precision on fNL and relativistic effects from future surveys is computed
for individual surveys, as well as for the multi-tracer case that includes all correlations
between different surveys. In Table 5.1 we show the marginal error on fNL and εI ,
marginalised over the uncertainty of the standard cosmological parameters and the
biases bA(zi). This approach is in some sense closer to reality, since including the
light-cone corrections in the transfer function is the correct model to use. The caveat
is that this assumes the magnification and evolution biases are known. Later we will
partly incorporate this uncertainty in the biases by including marginalisation over the
εI , which can be seen as a ‘marginalisation’ over the amplitude uncertainties of the
relativistic terms.

The highest precision on fNL from an individual survey is σ(fNL) = 4.72 from
SKAO IM1. This is not surprising since IM1 boasts the largest observed volume among
the surveys. The bigger the volume, the larger the scales we observe and the more
frequently we can sample correlations at scales that carry an fNL signal (see Figure 5.1).
The IM1 precision on fNL can be improved by a factor of 3 by combining all low- and
high-z surveys (IM2⊗BGS⊗IM1⊗Hα), resulting in σ(fNL) = 1.55. This is significantly
better than current constraints.
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It is interesting to note that individually the high-z surveys constrain fNL remarkably
better than the low-z, since the volumes observed are considerably larger. Individually
the low-z surveys cannot access as many correlations on large scales, and therefore being
dominated by cosmic variance, cannot constrain fNL well. However, the multi-tracer
eliminates cosmic variance, which enables the low-z combination to gain access to the
fNL signal on ultra-large scales. This is a clear example of how the multi-tracer works.
By cancelling cosmic variance, dark matter tracer combinations in smaller overlapping
volumes can perform as well as, or better than, single tracers covering large volumes.
In fact, the low-z combination IM2⊗BGS does better than its IM1⊗Hα counterpart,
because of the reduced noise at lower redshift, as shown in Figure 3.13.

The best single-survey constraint on the Doppler contribution is again from the
SKAO IM1 survey, with σ(εD) = 6.29. This survey has the largest volume, which
compensates for the small amplitude of its Doppler term (1.50). The BGS survey has
the highest amplitude: its Doppler coefficient is largest (see Figure 5.2) and the radial
peculiar velocity n · v is largest at low z. Nevertheless, the volume beats the amplitude
for a term that has signal on ultra-large scales. As soon as we multi-trace the surveys,
again the domination of survey volume fades away due to the cancellation of cosmic
variance. Similar to fNL, the low-z combination outperforms the high-z combination
by a factor of nearly 3 – since moving to lower z both increases ∆Dopp (1.49) and
reduces survey noise. This effect can also be seen in Figure 5.3. The full combination
of four surveys offers a precision of σ(εD) = 0.13, only slightly better than the low-z
combination. The multi-tracer improvement in precision over the best single tracer
is a factor of nearly 50. This precision on the Doppler amplitude corresponds to a
signal-to-noise of ∼8, sufficient for a detection of the Doppler term. It also suggests that
we can make some constraint on the evolution bias, assuming that the magnification
bias is constrained by the lensing term (see below).

HI intensity mapping is unaffected by lensing magnification and so cannot constrain
the lensing term. The best single-survey constraint comes from the high-redshift Hα
survey, as expected, delivering σ(εL) = 0.04. This precision is about double that found
in [79]. The reason is that we use updated survey specifications with a reduced redshift
range. Even though IM does not constrain lensing by itself, its correlation with a
galaxy survey does improve the error – since galaxies at zi behind HI at zj < zi are
lensed by the IM, as confirmed by Figure 5.3. As a result, IM2⊗BGS improves the
BGS-only lensing constraint by a factor of ∼ 3, while IM1⊗Hα improves on Hα-only
by ∼25%. The correlation of all four surveys improves on the Hα-only constraint by
a factor of 2, with σ(εL) = 0.02. This is a high enough precision to place reasonable
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Table 5.2 Fully marginal uncertainties on fNL and relativistic effects εI . The same as
Table 5.1, except that σ(fNL) and each σ(εI) are computed by marginalising over all
other parameters, not just the standard cosmological parameters.

Redshift Survey σ(fNL) σ(εD) σ(εL) σ(εP)
0.1 − 0.58 BGS 45.15 8.70 0.40 60.07

IM2 44.64 26.18 − 303.32
IM2⊗BGS 2.71 0.14 0.13 8.87

0.9 − 1.8 Hα 30.73 26.9 0.05 15.51
0.35 − 3.05 IM1 6.77 9.52 − 21.24
0.6 − 3.05 IM1⊗Hα 4.37 0.37 0.03 6.78
0.1 − 3.05 (IM2⊗BGS)⊕(IM1⊗Hα) 1.71 0.13 0.03 3.84

IM2⊗BGS⊗IM1⊗Hα 1.55 0.13 0.03 3.51

constraints on the magnification bias s. According to [87], we need to know s(z) within
5 − 10% accuracy to avoid systematic parameter biases.

Finally, we computed the combined uncertainty σ(εP) on the relativistic potential
effects (1.52). Even the full multi-tracer combination is unable to achieve σ(εP) < 1.
In other words, the potential contribution to the power spectrum is not detectable
(signal-to-noise < 1).

Table 5.2 presents a variation of Table 5.1 in which we include marginalisation over
fNL and the relativistic parameters εI . As mentioned earlier, this incorporates the
uncertainties on the astrophysical parameters s and be, in addition to the cosmological
parameters. Comparing Table 5.1 with Table 5.2, we see that for individual surveys the
constraints can be substantially degraded, especially for higher redshift surveys. One
exception is lensing which is only slightly affected in single tracer. When we combine
all four surveys, the constraints become insensitive to the additional marginalisation.

Figure 5.4 displays the contour plots for the relativistic parameters fNL and εI . The
covariances include marginalisation over all parameters in (5.5), as in Table 5.2. The
contours show the total correlated information (black), with its low-z (blue) and high-z
(red) components. In green we show constraints from the simple addition of the low-z
and high-z Fisher information. This is computationally far less expensive, although
some information is lost on fNL and lensing magnification. In fact, for relativistic
effects, it suffices to consider cross-tracer correlations only in the overlapping footprints.

We also find that combining low-z and high-z samples breaks degeneracies between
εD and εL, as well as between εD and εP. As an example, the degeneracy between fNL

and εL (or εP) at low-z is orthogonal to the degeneracy at high-z. This explains the
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Fig. 5.4 Contour plots of fNL and relativistic parameters. The correlation of all
surveys is shown in black, with dotted lines giving the fiducial values. The low-z
combination is shown in blue, high-z in red, and the sum of their Fisher information in
green. Constraints exclude priors.

great improvement seen in Table 5.2 from multi-tracer pairs at low and high redshift,
to the full multi-tracer combination.

In Table 5.3 we give the conditional uncertainties on fNL and the relativistic param-
eters to illustrate the robustness of the multi-tracer to uncertainty in the cosmological
model. Comparing Table 5.2 and Table 5.3, it is apparent that the error for single
surveys is catastrophically increased by marginalising over the cosmological model,
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Table 5.3 Similar to Table 5.1, except that here we display the conditional uncertainties
on fNL and relativistic effects εI .

Redshift Survey σ(fNL) σ(εD) σ(εL) σ(εP)
0.1 − 0.6 BGS 10.56 7.41 0.39 29.79

IM2 14.17 17.17 − 173.93
IM2⊗BGS 2.0 0.14 0.12 6.8

0.9 − 1.8 Hα 4.49 8.3 0.04 7.59
0.35 − 3.05 IM1 4.42 5.52 − 9.25
0.6 − 3.05 IM1⊗Hα 2.72 0.37 0.03 4.43
0.1 − 3.05 (IM2⊗BGS)⊕(IM1⊗Hα) 1.60 0.13 0.03 3.71

IM2⊗BGS⊗IM1⊗Hα 1.47 0.13 0.02 3.40

especially at low z. The least affected is IM1, due to the high amount of cross-bin
correlations included in the analysis. By contrast, the multi-tracer constraints are only
slightly improved by not marginalising over cosmological parameters and clustering
bias nuisance parameters.

Systematics

In reality, we cannot perfectly extract all the observable scales from the data – there
will be a loss of ultra-large-scale modes due to systematics, e.g., extinction due to
Galactic dust or stellar contamination in galaxy surveys, or foreground contamination
of intensity mapping. The cosmological signal from 21cm emission is several orders of
magnitude lower than the galactic and extra-galactic foreground contamination. In
order to extract the cosmological information, it is therefore necessary to first remove
or model the systematics in galaxy and intensity mapping surveys. Recent treatments
of ultra-large scale systematics are given in [190] (galaxy survey data) and [191] (21cm
intensity mapping simulations). In both cases, information is lost on the largest scales,
but the loss is more severe in intensity mapping.

In [19, 190] it was found that one of the biggest complications regarding the
improvement of precision on fNL are as a result of large-scale systematics. In order
to take account of the loss of some ultra-large scale signal due to systematics, we
need to impose a minimum angular multipole ℓmin. For a multi-tracer analysis, the
same ℓmin is used for each survey. In the case of very large sky area, ℓmin ∼ 5 may be
feasible for intensity mapping [115], thus we take this as our ‘optimistic’ minimum.
Then we investigate how the constraints on ultra-large-scale parameters are affected
by increasing ℓmin.
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Fig. 5.5 Uncertainty on fNL (top), εD (middle), and εL (bottom) as a function of the
minimum angular multipole ℓmin, in the single-tracer (left panels) and multi-tracer
(right panels) cases.

The results for the non-Gaussianity and Doppler parameters are shown in Figure 5.5.
It is clear that reducing the maximum scale (lowest ℓ) does significantly affect the
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uncertainty in single surveys (left panels), for both fNL (top) and εD (middle), as
expected. By contrast, since cosmic variance is cancelled in the multi-tracer (right
panels), the ultra-large scales have a smaller influence on the constraints, as previously
highlighted. The constraints are much more robust to the loss of the largest scales.
We conclude that our constraints should not be much affected by ultra-large scale
systematics when using the multi-tracer technique.

It is worth noting that the constraints from the IM1 survey are less susceptible to
increasing ℓmin, because it includes extremely large-scale correlations along the line of
sight, up to (zi, zj) = (0.35, 3.05). In addition, we find that the uncertainty on εD from
the BGS survey closely follows IM1, because of the effect mentioned earlier: despite
the reduction in observed volume at low z, the Doppler amplitude AD is much bigger
for BGS, and the magnitude of n · v is notably larger. The improved noise properties
at low z also contributes to the fact that IM2⊗BGS constrains εD much better than
IM1⊗Hα.

In the case of lensing magnification, the signal does not depend significantly on
ultra-large scales and we expect little effect from increasing ℓmin. This expectation is
confirmed by Figure 5.5 (bottom panels).

5.4.2 Constraints on standard cosmological parameters

Before estimating the biases on best-fit values, we first determine at which precision
the standard cosmological parameters can be constrained. The marginal errors on the
cosmological parameters as a fraction of the fiducial values are presented in Table 5.4,
expressed in percentages. Generally the high-redshift surveys give better constraints –
since they observe a larger volume and hence sample more correlations between points.
However, in the multi-tracer combination, the low-z surveys provide better constraints
than the high-z surveys. The reason is that cosmic variance is effectively cancelled
in the MT analysis, thereby negating the advantage of the bigger volume at high z.
Furthermore, the low z surveys have the advantage of lower noise. The exception
is the dark energy equation of state w, which benefits from measurements before
and after dark energy domination, that are available only in SKAO IM1. The best
constraints are achieved when all surveys are combined. In particular, the error on Ωm0

is sub-percent, while all others are a few percent. The full multi-tracer combination
produces a significant improvement in precision.

Figure 5.6 displays the contour plots for the standard cosmological parameters,
together with fNL. Fiducial values are indicated by the dotted lines, and black contours
indicate the multi-tracer correlation of all the surveys. The low- and high-z multi-tracer
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Table 5.4 Marginal errors (in percentage) on standard cosmological parameters, for
individual surveys and in multi-tracer (⊗) combination, including all relativistic effects.
⊕ denotes the sum of independent multi-tracer pairs (excluding the IM2 band overlap
in band IM1). Results exclude priors.

Redshift Survey Ωm0 ns H0 w As
0.10 − 0.58 BGS 2.34 5.95 12.43 5.25 19.41

IM2 3.57 8.89 18.57 4.85 28.03
IM2⊗BGS 1.14 2.04 3.78 3.30 5.96

0.90 − 1.80 Hα 1.18 3.57 6.79 3.19 10.37
0.35 − 3.05 IM1 2.27 5.64 11.23 2.53 16.57
0.60 − 3.05 IM1⊗Hα 1.13 2.85 5.60 2.29 8.32
0.10 − 3.05 (IM2⊗BGS)⊕(IM1⊗Hα ) 0.69 1.58 3.08 1.35 4.61

IM2⊗BGS⊗IM1⊗Hα 0.68 1.55 3.02 1.34 4.51

pairs are in blue and red respectively. The sum of their Fisher information is in green.
A strong degeneracy is apparent between ns, H0, and As, which is reduced as more
data sets are added. By contrast, w and Ωm0 are differently degenerate with the other
parameters at low and high redshifts. Except for w, all cosmological parameters appear
to be uncorrelated with fNL, which is not unexpected.

Another feature of Figure 5.6 and Table 5.4 is that the constraints and contours do
not improve significantly when the sum of multi-tracer pairs is replaced by the full multi-
tracer. This indicates that taking them as uncorrelated is a good approximation, since
little information is added from low-z⊗ high-z cross-correlations. The approximation
considerably decreases the computation time needed.

5.4.3 Bias from neglecting relativistic effects

We now consider the bias on the best-fit value from neglecting all relativistic effects,
beginning with the standard cosmological parameters. Table 5.5 shows the biases on
the best-fit of ψi, normalised to σ(ψi), that follows from neglecting all relativistic effects
in the modeling – i.e., δrelψi, defined in (5.10). At low z, neglecting the relativistic
effects is justified, even for the multi-tracer pair IM2⊗BGS. The same is true for the
high-z IM1 on its own. By contrast, neglecting the relativistic effects in the Hα survey
on its own leads to a significant bias for all parameters. This bias is then passed on to
any multi-tracer that includes the Hα survey.

Figure 5.7 shows the contours corresponding to Table 5.5. The low-z multi-tracer
pair and the high-z multi-tracer pair disagree on the best-fit value for all parameters
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Fig. 5.6 Contour plots of the standard cosmological parameters and fNL: full multi-
tracer combination of all 4 surveys (black); low-z multi-tracer pair (blue); high-z
multi-tracer pair (red); sum of low-z and high-z Fisher information (green). Fiducial
values are indicated by dotted lines. Constraints exclude priors.

when relativistic effects are neglected. In other words, there is a tension between low-z
and high-z results, which is not eased by combining them. This clearly exemplifies the
problem of theoretical systematics.

In Table 5.6, we present the marginal error on fNL and the bias on its best-fit
value, arising from neglecting the Doppler, lensing and potential effects, (5.9), and
their combination, (5.10). The first column reproduces the results already presented
in Table 5.1, and serves to normalise the biases on the true value f̄NL = 0. The last
column is the equivalent of Table 5.5 for fNL. The columns in between break down the
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Table 5.5 Bias on the best-fit value of each standard cosmological parameter (nor-
malised by the standard deviation) that follows from neglecting relativistic effects.

Redshift Survey δrelΩm0 δrelns δrelH0 δrelw δrelAs
0.10 − 0.58 BGS 0.17 -0.17 0.18 -0.1 -0.18

IM2 0.01 -0.01 0.01 0.0 -0.02
IM2⊗BGS 0.25 -0.30 0.44 -0.67 -0.51

0.90 − 1.80 Hα 5.46 -7.23 6.98 -7.81 -7.14
0.35 − 3.05 IM1 0.01 -0.01 0.01 -0.02 -0.01
0.60 − 3.05 IM1⊗Hα 6.12 -8.71 8.04 -9.14 -8.14
0.10 − 3.05 (IM2⊗BGS)⊕(IM1⊗Hα) 3.42 -4.66 4.28 -4.81 -4.17

IM2⊗BGS⊗IM1⊗Hα 6.07 -7.53 7.25 -7.34 -7.05

Table 5.6 Marginal error and normalised best-fit biases δIfNL on fNL, from neglecting
the Doppler, lensing and potential effects, and their combination, δrelfNL.

Redshift Survey σ(fNL) δDfNL δLfNL δPfNL δrelfNL

0.10 − 0.58 BGS 26.38 -0.05 0.17 0.02 0.14
IM2 35.74 -0.03 − 0.0 -0.03
IM2⊗BGS 2.12 0.04 0.49 0.09 0.62

0.90 − 1.80 Hα 9.34 0.10 6.03 -0.08 6.06
0.35 − 3.05 IM1 4.72 0.04 − -0.06 -0.02
0.60 − 3.05 IM1⊗Hα 3.06 0.08 3.11 -0.15 3.04
0.10 − 3.05 (IM2⊗BGS)⊕(IM1⊗Hα) 1.70 0.06 1.84 -0.01 1.89

IM2⊗BGS⊗IM1⊗Hα 1.55 0.10 2.60 -0.01 2.69

bias into the three components of the relativistic effects. Note that intensity mapping
is unaffected by lensing magnification.

As in the case of the standard cosmological parameters, neglecting the relativistic
effects at low redshift does not significantly bias the best-fit value of fNL. Similarly,
the high redshift IM1 survey does not show significant bias in fNL, and it is again only
the Hα survey that suffers a significant bias on the best-fit. This > 1σ bias propagates
into all multi-tracer combinations with Hα. It is apparent that the > 1σ bias is mainly
due to the neglect of lensing magnification, and it follows that lensing must be included
in the analysis.

The Doppler and potential effects can lead to a bias up to 13% of the error bars, in
the case of IM2⊗BGS. This is a significant fraction of the total 62% bias, with lensing
contributing 49%. If we are only interested in biases above 1σ, we can neglect the
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Fig. 5.7 Same as Figure 5.6, but now neglecting relativistic effects, i.e. lensing, Doppler
and potential effects. The best-fit values from the full multi-tracer combination (black)
are given above the distributions, showing the consequent bias on the true values
(marked by dotted lines).

Doppler and potential contribution. However, there may be other survey combinations
for which the Doppler and potential effects, when added to the lensing effect, push the
bias above 1σ (or pull it below 1σ).

Figure 5.7 presents the contours in the case where all relativistic effects are neglected.
This incorrect model will introduce theoretical systematics in the form of a bias on
the best-fit values of the parameters. For the low-z multi-tracer pair, the bias is small
enough that the fiducials are still contained within the 1σ contours. On the other hand,
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Fig. 5.8 As in Figure 5.7, but now neglecting the Doppler and potential effects, while
including the lensing effect.

the high-z multi-tracer pair shows strong biases in all best-fit values, in tension with
the low-z pair. In particular, the wrong theoretical model in the high z case leads us
to detect a spurious fNL ∼ 10 at 3σ, whereas the true value implies Gaussian initial
conditions. It is also apparent that when combining the low- and high-z data sets, the
spurious fNL detection remains (∼ 4 at ∼ 2σ).

Table 5.5, Table 5.6 and Figure 5.7 show that the biases in the best-fit parameters
come overwhelmingly from the Euclid-like Hα survey. It is clear that relativistic effects
must be included in the modeling for theoretical accuracy. Table 5.6 confirms that we
can safely omit the Doppler and potential effects for the surveys considered.
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To confirm this, we compute the bias on the best-fit value from neglecting the
Doppler and potential but keeping the lensing effect. Figure 5.8 shows that including
lensing in the modelling is sufficient to de-bias all parameters. Although some residual
bias remains, it is within the 1σ contours. Therefore we conclude that for these surveys,
and their combinations, it is safe to neglect Doppler and potential effects, if the goal is
to measure fNL and the standard cosmological parameters.

We emphasise that the Doppler contribution itself is detectable, with signal-to-noise
of ∼ 8, and for the purpose of detection, it should be included in the modeling. We do
not expect any significant bias on the standard cosmological parameters from neglecting
the Doppler term, since this term is only non-negligible on ultra-large scales, which
contribute little to the standard constraints. This is confirmed in Table 5.7 to Table 5.11
below. The fNL constraints do rely critically on ultra-large scales, and neglecting the
Doppler effect biases the fNL best-fit by 10% for the full multi-tracer combination of
the surveys considered here (Table 5.6). There may be other combinations of surveys
for which the neglect of the Doppler term produces a more significant bias on the fNL

best-fit.

5.4.4 Gaussian universe

Let us also consider the impact of relativistic effects in a Gaussian universe, i.e. where
fNL = 0. Is it necessary to include the light-cone effects to avoid any bias in the
measurements of the standard cosmological parameters? As before, we use (2.26) to
compute the relative bias on the best-fit value from neglecting the Doppler effect δD,
lensing δL, and potential terms δP, as well as the combination of them δrel. However,
here we also include primordial non-Gaussianity in the subset

φI =
{
fNL, εD, εL, εP

}
, (5.11)

and fix it to the fiducial value, such that δfNL = f̄NL − f̂NL = 0. We summarise the
results for single- and multi-tracer cases in Table 5.7 to Table 5.11 for the parameters
Ωm0, ns, H0, w and As.

As expected, neglecting the Doppler and potential effects does not bias any best-fit
values significantly. The largest bias is ∼ 25% on w in the low-z multi-tracer IM2⊗BGS,
which is less than 1σ. For the lensing effect, the same applies at low redshifts. Once
again, it is only a Euclid-like Hα survey and its combinations with the other surveys,
that leads to significant biases in all parameters when lensing is neglected. Although
the trend is the same as found previously, the relative biases are generally smaller.
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Table 5.7 Normalised best-fit bias in the matter density δIΩm0, from neglecting
Doppler, lensing and potential effects, and their combination δrelΩm0.

Redshift Survey δDΩm0 δLΩm0 δPΩm0 δrelΩm0

0.10 − 0.58 BGS 0.01 0.17 0.0 0.18
IM2 0.02 − 0.0 0.02
IM2⊗BGS -0.15 0.4 0.01 0.26

0.90 − 1.80 Hα 0.01 5.59 0.0 5.6
0.35 − 3.05 IM1 -0.01 − 0.01 0.01
0.60 − 3.05 IM1⊗Hα -0.09 6.24 0.01 6.15
0.10 − 3.05 (IM2⊗BGS)⊕(IM1⊗Hα) -0.01 3.46 0.0 3.45

IM2⊗BGS⊗IM1⊗Hα 0.0 6.13 0.0 6.13

Table 5.8 As in Table 5.7, for the spectral index ns.

Redshift Survey δDns δLns δPns δrelns

0.10 − 0.58 BGS 0.0 -0.18 0.0 -0.19
IM2 -0.01 − 0.0 -0.01
IM2⊗BGS 0.03 -0.32 -0.01 -0.30

0.90 − 1.80 Hα -0.02 -7.57 -0.01 -7.60
0.35 − 3.05 IM1 -0.01 − 0.01 0.01
0.60 − 3.05 IM1⊗Hα 0.10 -8.96 -0.01 -8.87
0.10 − 3.05 (IM2⊗BGS)⊕(IM1⊗Hα) 0.02 -4.76 0.0 -4.74

IM2⊗BGS⊗IM1⊗Hα 0.02 -7.65 -0.01 -7.63

Table 5.9 As in Table 5.7, for the Hubble parameter H0.

Redshift Survey δDH0 δLH0 δPH0 δrelH0

0.10 − 0.58 BGS 0.0 0.19 0.0 0.20
IM2 0.02 − 0.0 0.02
IM2⊗BGS 0.05 0.39 0.01 0.44

0.90 − 1.80 Hα 0.02 7.42 0.0 7.44
0.35 − 3.05 IM1 0.0 − 0.01 0.01
0.60 − 3.05 IM1⊗Hα -0.10 8.26 0.01 8.17
0.10 − 3.05 (IM2⊗BGS)⊕(IM1⊗Hα) 0.0 4.35 0.01 4.36

IM2⊗BGS⊗IM1⊗Hα 0.0 7.34 0.01 7.36

This may be caused by the reduction in the parameter space volume when fNL is
fixed to zero. In any case, such marginal reduction should be interpreted qualitatively,
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Table 5.10 As in Table 5.7, for the dark energy equation of state w.

Redshift Survey δDw δLw δPw δrelw

0.10 − 0.58 BGS 0.03 -0.14 -0.01 -0.12
IM2 0.0 − 0.0 0.0
IM2⊗BGS -0.25 -0.43 -0.01 -0.69

0.90 − 1.80 Hα -0.03 -8.59 -0.0 -8.63
0.35 − 3.05 IM1 -0.03 − 0.01 -0.02
0.60 − 3.05 IM1⊗Hα 0.05 -9.63 0.0 -9.58
0.10 − 3.05 (IM2⊗BGS)⊕(IM1⊗Hα) 0.07 -4.97 -0.02 -4.93

IM2⊗BGS⊗IM1⊗Hα 0.06 -7.52 -0.03 -7.48

Table 5.11 As in Table 5.7, for the primordial power spectrum amplitude As.

Redshift Survey δDAs δLAs δPAs δrelAs

0.10 − 0.58 BGS 0.01 -0.21 -0.01 -0.21
IM2 -0.02 − 0.0 -0.02
IM2⊗BGS -0.18 -0.33 0.0 -0.52

0.90 − 1.80 Hα -0.03 -7.71 0.0 -7.74
0.35 − 3.05 IM1 0.0 − -0.01 -0.01
0.60 − 3.05 IM1⊗Hα 0.10 -8.39 -0.01 -8.30
0.10 − 3.05 (IM2⊗BGS)⊕(IM1⊗Hα) 0.0 -4.23 -0.01 -4.24

IM2⊗BGS⊗IM1⊗Hα -0.01 -7.13 -0.01 -7.15

given the approximation used to compute the bias. The take-home message is that
for high-z spectroscopic galaxy surveys, lensing magnification must be included for
unbiased measurements of the standard cosmological parameters.

5.5 Discussion and conclusion

In this chapter, we investigated how combinations of next-generation large-scale struc-
ture surveys in the optical and radio can constrain primordial non-Gaussianity and
relativistic effects. Primordial non-Gaussianity is a powerful probe of the very early
Universe and its signal in the power spectrum is preserved on ultra-large scales. The
relativistic effects include the contribution of lensing magnification to the number
density contrast, which provides a probe of gravity and matter that is independent
of the probes delivered by weak lensing shear surveys. Of the remaining relativistic
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effects, the Doppler effect is the most important, and provides another new probe of
gravity and matter.

We chose a pair of spectroscopic surveys at low redshift and another at high redshift,
which have the lowest noise in the respective parts of the electromagnetic spectrum,
and which cover large areas of the sky. At low z we chose a DESI-like Bright Galaxy
Sample [183] in the optical and an HI intensity mapping survey with Band 2 of the
SKAO MID telescope [95]. The high redshift pair is a Euclid-like Hα spectroscopic
survey [125] and HI IM with Band 1 of SKAO MID [95].

We identified which pairs of correlations are most sensitive to the lensing and Doppler
effects, using a signal-to-noise estimator SAB in (5.2) for angular power spectra (similar
to the estimator used in the two-point correlation function by [84]). The observable
angular power spectra CAB

ℓ (zi, zj) are used in the analysis, since they naturally include
relativistic light-cone effects, wide-angle effects and correlations between all redshift
bins, and do not require an Alcock-Paczynski correction. The results are summarised
in Figure 5.3. This shows clearly that pairs (zAi , zBi+1) are optimal for the Doppler effect
and are central to the results in [180, 189]. The Doppler effect (1.50) is also more
prominent at low redshifts which is broadly explained by the 1/χ in its amplitude, as
well as by the greater magnification bias and growth of the radial peculiar velocity at
low z.

On the other hand, the lensing contribution is stronger at higher redshift and
is most relevant in pair correlations (zA1 , zAn ), where n is the total number of bins.
Although this is expected, since lensing is a line-of-sight integrated effect, Figure 5.3
shows it in a visually intuitive manner.

Figure 5.3 also revealed a counter-intuitive feature – that the cross-correlation
between a galaxy survey and an intensity mapping survey enhances the lensing signal,
even though the intensity mapping on its own has no lensing signal. The point is that
background galaxies are lensed by foreground intensity.

We then computed Fisher forecasts of the constraints on fNL and the relativistic
effects, for all single-tracer cases, for multi-tracer pairs at low and high z, and for the full
multi-tracer combination of all four surveys. As expected, the full combination provides
the most stringent constraints on fNL, improving on the state-of-the-art constraint
from Planck [10] by a factor of more than 3. The lensing contribution can be detected
at ∼2% accuracy, while the Doppler contribution can be detected with a signal-to-noise
of ∼8.

We presented our forecasts in two scenarios. First, we assumed that the light-cone
effects are perfectly modelled, i.e., the magnification and evolution biases are perfectly
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known. In the second case, we incorporated the model uncertainties in the amplitude
of the relativistic contribution to the angular power, by marginalising over εD, εL and
εP parameters. Predictably, the first scenario provides the best possible constraints.
However, the second scenario constraints approach those of the first when we consider
multi-tracer pairs – and even more when we combine all surveys. The multi-tracer
shows one of its strengths: robustness against marginalisation.

It is notable that for the lensing contribution most information comes from the Hα
survey alone. For the Doppler term, most of the constraints come from the low-redshift
multi-tracer. For Doppler and lensing, there is sufficient sensitivity to detect their
effects in the Cℓ. On the other hand, the relativistic potential terms are too small to
be detected, even when combining all surveys.

In the case of fNL, the multi-tracer results with spectroscopic galaxy surveys delivers
σ(fNL) ∼ 1.5. This is not as good as some forecasts with photometric galaxy surveys
(see e.g. [91, 95, 97]). Photometric surveys utilise wider redshift bins which contain
more galaxies, and hence lower noise. The survey noise is the limiting factor in the
multi-tracer, since cosmic variance has been cancelled. Therefore, spectroscopic multi-
tracer (with relativley thin z-bins) is not optimised for fNL, and this was not our focus
here. On the other hand, the spectroscopic combination delivers a ∼10% detection of
the Doppler effect, which is not possible with photometric surveys.

We stress that it is important to join the low and high redshift surveys to break
degeneracies between fNL and the relativistic effects, as seen in Figure 5.4. In addition,
the multi-tracer technique provides critical robustness against the loss of information
due to systematics on ultra-large scales, as shown in Figure 5.5.

Next we focused on the potential theoretical systematic bias on measurements of
fNL and standard cosmological parameters, which can arise if the relativistic effects
are neglected in the modeling.

First we estimate the expected precision on the standard cosmological parameters
via a Fisher forecast – using the correct theoretical model, which includes lensing
magnification, Doppler and potential effects, in addition to the standard redshift-space
distortion effect. Table 5.4 shows that the multi-tracer significantly improves on single-
tracer precision, due to the combination of information, inclusion of cross-spectra and
the elimination of cosmic variance. The contour plots in Figure 5.6 visually demonstrate
the improvement in precision from combining low- and high-z survey combinations, as
well as showing the breaking of degeneracies between several parameters. The same
qualitative features apply to the precision on fNL.
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Then we investigated what happens when we use the incorrect theoretical model,
i.e. when we neglect one or more of the relativistic effects in the model. This leads
to a theoretical systematic that threatens accurate measurement – by biasing the
best-fit (or measured) values of the parameters, as given by (2.26), (5.9) and (5.10).
The important question is: exactly how large is this bias for fNL and the cosmological
parameters? If the bias is < 1σ, the relativistic effect can be neglected if necessary;
otherwise it must be included. Each parameter in the model that is not fixed will be
biased by disregarding a relativistic effect. The more free parameters there are, the
greater the parameter space volume and hence the larger the potential bias.

The results on best-fit bias are summarised in Table 5.5–Table 5.11 and Figure 5.7.
When we separate the relativistic effects, we see that only the neglect of lensing leads
to a bias above 1σ on fNL and cosmological parameters, while neglecting the Doppler
leads to at most a 25% bias. If we are pressed to save computation time, we can
therefore neglect the Doppler and potential effects, as confirmed in Figure 5.8.

It is clear that lensing effects cannot be neglected for the Hα-like survey, or for
any multi-tracer combination involving the Hα survey, – including the full multi-tracer
combination considered here. The special role of lensing in the Hα survey is due to:
(a) its high redshift reach which boosts the lensing effects, as shown in Figure 5.9;
(b) the fact that the 21cm intensity surveys are unaffected by lensing magnification,
although they can contribute to the lensing of galaxies in cross-correlations. The BGS
galaxy survey can also detect the lensing effect, but only at low significance, given its
low redshift reach.

We confirmed that the same qualitative statements apply in the case of the bias on
the cosmological parameters in a Gaussian universe, where fNL is fixed at zero. The
results are summarised in Table 5.7 to Table 5.11.

One might ask how lensing drives the bias on fNL, given that its signal does not
require ultra-large scales in order to be significant. The point is that the lensing
magnification contribution (5s− 2)κ is a weighted average along the line of sight of
the matter density contrast – and therefore it can mimic a change in the Gaussian
clustering bias, which in turn can bias the amplitude of the fNL contribution [85, 87].

Our results are broadly consistent with previous work on galaxy surveys, in particular
[79, 80, 85–88, 192], but we consider a different combination of surveys and we use the
full multi-tracer combination of four surveys.

In [84], the bias on cosmological parameters is negligible for spectroscopic surveys
but significant for photometric surveys. However, [84] uses the two-point correlation
function, without cross-bin correlations, for spectroscopic surveys. A similar result
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Fig. 5.9 Signal-to-noise S(zi, zj) of the lensing magnification contribution in the
Euclid-like Hα survey over its redshift range 0.9 < z < 1.8.

was found in [110] for spectroscopic surveys using the angular power spectrum in a
hybrid approach which, like [84], does not consider correlations from large redshift
differences. By contrast, we include all cross-bin correlations amongst many thin bins.
In Figure 5.9, we show the lensing magnification contribution from each individual
auto- and cross-bin correlation of a Euclid-like Hα survey. The signal-to-noise ratio
S is given by (5.2). It is clear that widely separated cross-bin correlations have the
highest signal-to-noise. This accounts for our different conclusion – and also explains
why we agree with the result of [84] on photometric surveys, for which they do include
cross-bin correlations via a tomographic analysis.

The key point is that, in order to avoid serious bias on the best-fit values of
fNL and cosmological parameters, the effect of lensing magnification on the galaxy
power spectrum must be included in upcoming surveys which cover high redshifts.
The inclusion of lensing in the theoretical modeling highlights the importance of
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Table 5.12 Survey volumes and uncertainties on fNL and relativistic terms in (2.10),
marginalising over the standard cosmological parameters (excluding priors). σ(εP) is
always ≫ 1 and is not shown. Uncertainties when marginalising also over the Gaussian
clustering biases in each bin, bA(zi), are in brackets.

Redshift Survey Ωsky/deg2 σ(fNL) σ(εD) σ(εL)
0.1 − 0.58 BGS (DESI-like) 15,000 26.36 (26.38) 7.57 (7.57) 0.32 (0.39)

IM2 (SKAO-like) 20,000 35.33 (35.74) 18.04 (18.07) −
IM2⊗BGS 10,000 2.10 (2.12) 0.14 (0.14) 0.12 (0.13)

0.9 − 1.8 Hα (Euclid-like) 15,000 9.32 (9.34) 9.08 (9.08) 0.04 (0.04)
0.35 − 3.05 IM1 (SKAO-like) 20,000 4.65 (4.72) 6.28 (6.29) −
0.60 − 3.05 IM1⊗Hα 10,000 3.05 (3.06) 0.37 (0.37) 0.03 (0.03)
0.1 − 3.05 (IM2⊗BGS)⊕(IM1⊗Hα) 10,000 1.70 (1.70) 0.13 (0.13) 0.03 (0.03)

IM2⊗BGS⊗IM1⊗Hα 10,000 1.55 (1.55) 0.13 (0.13) 0.02 (0.02)

good-precision estimates of the lensing magnification bias parameter (see also [3, 43, 78–
80, 84, 87, 88, 91, 92, 171]). The lensing magnification and associated parameter s are
given in section 3.3

The precision on the lensing and Doppler contributions would be washed away if s
and be are poorly measured. We have partially allowed for uncertainties in s and be

by marginalising over the lensing and Doppler parameters εL and εD. Based on the
analysis in [91], we can estimate that errors on s and be need to be ≲ 10% in order to
preserve detectability of the lensing and Doppler effects.

Finally, we note that our simplified analysis based on Fisher forecasts means that
our estimates of the impact of lightcone effects should be regarded as optimistic. We
have fully included uncertainties from cosmological parameters and from the modelling
of Gaussian clustering biases bA(zi). These are important, but they have little impact
on the multi-tracer, as shown in Table 5.12. Observational systematics have not
been incorporated into our analysis. Systematics on ultra-large scales include stellar
contamination and dust extinction for galaxy surveys (see e.g. [190]), and foreground
contamination for intensity surveys (see e.g. [123, 193, 194]). We have made some
allowance for these systematics by excluding the largest scales via the cut ℓ ≥ ℓmin = 5.
In Figure 5.5 we showed that the full multi-tracer constraints on fNL, εL and εD are
robust to an increase of ℓmin, up to ∼ 10 − 20.
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Chapter 6

Summary

In chapter 1 we gave a brief overview of the standard model of cosmology and perturba-
tion theory, as well as light-cone effects in general relativity. We recall how the matter
distribution is analysed in cosmological surveys in chapter 2, and how to combine
information using the multi-tracer technique. Specifically, we used the angular power
spectrum Cℓ in our analysis, which is observed in redshift space. Key advantages of Cℓ
include: it incorporates the redshift evolution of all cosmological, astrophysical and
noise variables; it does not impose a flat-sky approximation but naturally incorporates
wide-angle correlations; critically, the Doppler and lensing corrections to the two-point
correlations are naturally included. Furthermore, since the angular power spectrum
of the data is directly observable, its construction makes no assumptions regarding a
fiducial model and circumvents the need of the Alcock-Paczynski correction.

In order to assess the precision on several cosmological and astrophysical parameters
from future spectroscopic galaxy surveys, we employed a Fisher Matrix analysis. The
details of the statistical technique is reviewed in chapter 2. In all our Fisher forecasts,
we marginalised over the standard cosmological parameters, as well as the dark energy
equation of state and the clustering bias in each redshift bin, for each survey. Our
constraints are based only on the information from linear scales.

The technicalities of theoretically modelling galaxy surveys and intensity mapping
surveys are explained in chapter 3. We focus on how to compute the magnification
bias and evolution bias for several different surveys, as well as their associated noise
properties. Instead of an exhaustive study of surveys, we tried to fill the redshift
range 0 < z ≲ 3 with the potentially best contemporaneous spectroscopic surveys.
Specifically, we considered large-scale structure surveys in the optical and radio bands:
DESI-like BGS and Euclid-like Hα galaxy surveys, together with SKAO-like 21cm
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intensity mapping surveys in lower- and higher-frequency bands. Our choice was
motivated by: high redshift resolution (to detect RSD and the Doppler effect); a
negligible cross-shot noise between optical and 21cm intensity samples; and with very
different systematics affecting optical and 21cm radio surveys.

6.1 Constraints on growth rate

In chapter 4, we focused on constraints on the growth index γ, which offers a powerful
consistency test for ΛCDM. We showed that cross-correlations between z-bins compen-
sates for the growth in noise, and we concluded that in theory the thinnest possible
width will deliver the highest signal-to-noise.

The main results for independent surveys are shown in Table 4.1 and in 1σ contour
plots of Figure 4.3. The best marginal constraints (including priors) on γ are ∼ 3 − 5%
for the near-future surveys, with SKAO intensity mapping providing the best near-
future constraints.

In addition, we included all possible information from these surveys, using multi-
tracer cross-correlations on overlap volumes and single-tracer correlations on non-overlap
volumes. The results from the MT are shown in Table 4.4 and in the contour plots of
Figure 4.4 and Figure 4.5. The best marginal constraints on γ are ∼1.6 and ∼2.3%
for combinations of low- and high-z surveys, respectively. By utilising the MT, the
constraints from independent surveys are improved by up to ∼45%. If we take the
further step of combining the low- and high-z combinations, we find a precision of
1.3%, which is ∼55% better than the best single-tracer. Therefore, combining the
information from future spectroscopic surveys will significantly improve constraints of
the growth rate of large-scale structure, without using more observational resources.
In addition, another advantage of joining the information from low and high redshifts
can break the degeneracy between Ωm0 and γ.

6.2 Constraints on fNL and light-cone effects

In chapter 5 we investigated how combinations of next-generation large-scale structure
surveys in the optical and radio bands can constrain primordial non-Gaussianity and
relativistic effects. Primordial non-Gaussianity is a powerful probe of the very early
Universe and its signal in the power spectrum is preserved on ultra-large scales. The
relativistic effects include the contribution of lensing magnification to the number
density contrast, which provides a probe of gravity and matter that is independent
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of the probes delivered by weak lensing shear surveys. Of the remaining relativistic
effects, the Doppler effect is the most important, and provides another new probe of
gravity and matter.

We identified which pairs of correlations are most sensitive to the lensing and
Doppler effects, using a signal-to-noise estimator SAB in (5.2) for angular power
spectra. The results are summarised in Figure 5.3. This shows clearly that pairs
(zAi , zBi+1) are optimal for the Doppler effect. The 1/χ relation in the Doppler amplitude
and growth of the radial peculiar velocity broadly explains why this effect is more
prominent at low z. On the contrary, the lensing contribution is stronger at higher
redshift and is most relevant in pair correlations (zA1 , zAn ), where n is the total number
of bins.

Figure 5.3 also revealed a counter-intuitive feature – that the cross-correlation
between a galaxy survey and an intensity mapping survey enhances the lensing signal,
even though the intensity mapping on its own has no lensing signal. The reason is that
background galaxies are lensed by foreground intensity.

Quantitatively we determined the constraints on fNL and the relativistic effects,
for all single-tracer cases, for multi-tracer pairs at low and high z, and for the full
multi-tracer combination of all four surveys. As expected, the full combination provides
the most stringent constraints on fNL, improving on the state-of-the-art constraint
from Planck [10] by a factor of more than 3. The lensing contribution can be detected
at ∼2% accuracy, while the Doppler contribution can be detected with a signal-to-noise
of ∼8. Therefore, there is sufficient sensitivity to detect the Doppler and lensing
effects in the Cℓ. For the Doppler term, most of the constraints power comes from
the low-redshift multi-tracer, and Hα provides most information on lensing. We also
illustrate the robustness of the MT against marginalisation.

We stress that it is important to join the low and high redshift surveys to break
degeneracies between fNL and the relativistic effects, as seen in Figure 5.4. Also, it was
found that the cancellation of cosmic variance in the multi-tracer has greatly improved
the constraints on large-scale parameters such as fNL and Doppler effect. In addition,
the multi-tracer technique provides critical robustness against the loss of information
due to systematics on ultra-large scales, as shown in Figure 5.5. In the case of fNL, the
multi-tracer results with spectroscopic galaxy surveys delivers σ(fNL) ∼ 1.5.

Also, we investigated what happens when one uses a simplified theoretical model,
i.e. when we neglect one or more of the relativistic effects. We found that this will
lead to a theoretical systematic that threatens accurate measurements – by biasing
the best-fit (or measured) values of the parameters, as given by (2.26), (5.9) and
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(5.10). The results on the best-fit bias are summarised in Figure 5.7, with detailed
information in Table 5.5–Table 5.11. By separately considering the relativistic effects,
we see that only neglecting lensing leads to a bias above 1σ on fNL and cosmological
parameters, while the neglect of Doppler leads to at most a 25% bias. If we are pressed
to save computation time, we can therefore neglect the Doppler and potential effects,
as illustrated in Figure 5.8. We confirmed that the same qualitative statements apply
in the case of the bias on the cosmological parameters in a Gaussian universe, where
fNL is fixed at zero. The results are summarised in Table 5.7 to Table 5.11.

Our results are broadly consistent with previous work on galaxy surveys, in particular
[79, 80, 85–88, 192], although we consider a different combination of surveys and we
use the full multi-tracer combination of four surveys.

The key point is that, in order to avoid serious bias on the best-fit values of fNL

and cosmological parameters, the effect of lensing magnification on the galaxy power
spectrum must be included in upcoming surveys which cover high redshifts.

6.3 Future work

In order to improve the accuracy of the forecast constraints, we should properly include
the uncertainty of the astrophysical parameters, like magnification bias and evolution
bias. We have partly included the uncertainty in these parameters by marginalising over
the amplitude of the light-cone effects, i.e. magnification lensing, Doppler effect, as well
as the potential terms. However, in future work we plan to include such uncertainties
in the model by marginalising over the be and Q parameters explicitly. As shown, it
is essential to properly model the uncertainty in these parameters in order to avoid
biases on the measurements. Furthermore, we are interested to know how neglecting
light-cone effects can influence the best-fit bias on the growth rate, assuming the full
model of lensing effects and magnification bias at low-z.

The precision on RSD can be improved by including the vast amount of information
available in the smaller scales of the non-linear regime. There have been great progress
in modelling the non-linear scales and the “finger-of-god” effect in Fourier space.
However, in order to accomplish this in harmonic space, more work should be done
regarding the theoretical modelling of non-linear scales in the angular power spectrum.
In [119] they found that very narrow bin widths can introduce non-linear effects into
the large scale effects, which can significantly influence the ultra-large scale parameters
like fNL. This means that in future work we will have to consider these effects modelling
the precision using very thin bins in Cℓ.
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Fig. 6.1 Signal-to-noise SAB(θ, zAi , zBj ) computed in (5.2) for the lensing magnification
contribution (θ = εL) for the total survey combination 1 ⊗ 2 ⊗ 3 ⊗ 4 = IM2 ⊗ BGS ⊗
IM1 ⊗ Hα. The low-z overlap 1 ⊗ 2 = IM2 ⊗ BGS for 0.35 < z < 0.56, is correlated
with the high-z overlap 3 ⊗ 4 = IM1 ⊗ Hα for 0.90 < z < 1.11. Colour bar shows the
signal-to-noise.

Lastly, we should be able to further improve constraints by considering the correla-
tion between multiple photometric and spectroscopic surveys. By including several
different tracers from various different types of cosmological surveys and redshift bin-
ning configurations, we should be able to optimise the constraints on ultra-large scale
parameters, without the loss of precision on parameters dependent on peculiar velocity
field. In other words, the wide redshift bins of a photometric survey will reduce the
shot-noise, such that the large scale observables like fNL and AD can better benefit
from the cancellation of cosmic variance. Simultaneously, we can include spectroscopic
surveys with a much thinner z-bins to provide information on the peculiar velocity
fields via RSD.
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Additionally, we can include a CMB survey in the cross-correlation, which will
naturally add the priors from Planck 2018, as well as include extra information on
lensing magnification. Figure 6.1 makes it apparent that most of the information comes
from the correlation between the optical galaxy survey 2 ⊗ 4 = BGS ⊗ Hα, which is not
unexpected. A significant amount of information is coming from the high-z galaxies
lensed by the low-z IM, i.e. 1 ⊗ 4 = IM2 ⊗ Hα, which is perhaps not so intuitive. As
explained before, it is the Hα galaxies at zi being lensed by HI distribution at zj < zi.
By adding the CMB lensing, we will receive a lensing signal from all surveys over
the entire redshift range in the multi-tracer - since the CMB photons transverse from
deeper in redshift, they will be lensed by all the matter along the way. Therefore, we
can extract information on κ from the entire volume of the massive HI IM surveys.
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