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Abstract 
 

Parkinson’s disease (PD) is a neurodegenerative disorder that occurs due to a loss of dopaminergic 

neurons in the substantia nigra. It is one of the most common neurodegenerative disorders, ranking 

second only to Alzheimer’s disease. Research on the genetic causes of PD over the past two decades 

has led to the discovery of several PD-associated genes. Currently, researchers have identified 23 

genes that are linked to rare monogenic forms of PD with Mendelian inheritance. In sub-Saharan 

Africa (SSA), PD has received little attention due to factors such as underfunded healthcare 

infrastructure, the absence of epidemiological data, and a scarcity of neurologists. In the relatively 

few published studies, it has been shown that the known PD mutations play a minor role in disease 

etiology in SSA populations. In the current study, we follow up on previous work done in an MMed 

study investigating a South African family with several family members (mother and three sons) 

suffering from PD. The parents are both of Indian descent. Whole-exome sequencing (WES) had been 

performed on three affected members of this family, and 11 sequence variants had been prioritized 

for further study. The present study aimed to use in-silico methods to provide additional support for 

putative causal variants from WES data on a South African Indian family with PD.  

 

In this study, the Universal Mutation Databases (UMD) predictor was used to confirm the positions 

of the 11 sequence variants. Next, pathway, protein-protein interactions, and expression analyses were 

performed to determine brain-specific gene function and mRNA expression profiles to prioritize the 

candidate genes/proteins. Three-dimensional (3D) protein structures for the genes that satisfied the 

prioritized criteria were then constructed to identify the location of variants with respect to the 

catalytic site that might affect protein-substrate or drug interactions. Afterward, the phenotypic effect 

of the variants on the 3D protein structures was determined using the DUET web server and validated 

using molecular dynamic (MD) simulations. Molecular dynamic simulations were run to compare the 

variant (MT) and wild-type (WT) systems. Finally, several trajectory parameters were evaluated using 
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GROMACS (2020) utilities to determine any change in the dynamics of the protein structure when 

the variant was introduced.  

 

From the 11 sequence variants prioritized in the multiplex family, only three were selected for further 

analyses, namely, the p.T871M located in the leucine-rich repeat kinase 1 (LRRK1), the p.V138I 

located in the neuropeptide S receptor 1 (NPSR1), and p.R663C located in the erythrocyte membrane 

protein band 4.1 like 2 (EPB41L2). LRRK1 could not be pursued for further studies due to a lack of 

a solved homologous template structure covering the variant position at the start of this study. 

Pathway and expression data analysis revealed that both NPSR1 and EPB41L2 are involved in 

signaling and cellular processes that play a critical role in PD. It was further shown that NPSR1 is 

involved in the G protein-coupled receptor signaling pathway, neuropeptide signaling pathway, and 

the up-regulation of the release of sequestered calcium ions into the cytosol. EPB41L2, on the other 

hand, plays a role in the dopamine receptor-mediated signaling pathway as well as the nicotine 

pharmacodynamics pathway. Homology models of both NPSR1, using the 6J21 template, and 

EPB41L2, using the 3F31 template, were successfully constructed and validated. As detected by the 

Structure Analysis and Verification Server (SAVES), the structural quality assessment indicated high 

reliability of the 3D protein structures of both the NPSR1 and EPB41L2 models. MD simulation 

results suggest that both p.V138I and p.R663C variants on the NPSR1 and EPB41L2 proteins, 

respectively, had a destabilizing effect on the fold of the protein structures based on the root mean 

square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), hydrogen 

bond (H-bond) analysis, and principal component analysis (PCA) values. 

 

Based on the findings of this study, we propose that both variants (p.V138I in NPSR1 and p.R663C 

in EPB41L2) can potentially alter protein dynamics. The findings of this study contribute significantly 

to our current understanding of the genetic etiology of PD and support the notion that novel variants 

could be responsible for PD in SSA.

http://etd.uwc.ac.za/ 
 



 

1 

 

CHAPTER I: Background 

1.1 Introduction 

Parkinson’s disease (PD) is a neurodegenerative condition caused by the death of dopaminergic 

neurons in a part of the brain known as the substantia nigra (Aarsland et al., 2005). It is one of the 

most common disorders affecting the nervous system, ranking second only to Alzheimer’s disease, 

and hence imposes significant healthcare and economic burdens on society. Over the past two 

decades, several causative monogenic mutations linked to PD have been discovered (Blauwendraat 

et al., 2020). This sparked a surge in interest in the disease’s genetic etiology. Although much has 

been elucidated from genetic research, the exact pathobiological mechanisms of PD are not yet fully 

understood. However, a few probable causes such as mitochondrial dysfunction, abnormal protein 

aggregation, neuro-inflammation, and impaired cerebral glucose metabolism are standard processes 

of insulin resistance, diabetes, and neurodegeneration and have been identified as possible 

fundamental mechanisms for PD progression (Jankovic, 2008; Xu et al., 2018).  

 

Conversely, in sporadic cases, PD is thought to be induced by non-genetic factors that interact with 

genetic risk factors (Lesage & Brice, 2012). However, more insight is needed to clarify and further 

understand PD pathogenesis to ultimately develop effective therapeutic strategies (Lin et al., 2016). 

 

It has been reported by the Parkinson’s Foundation that there are more than 10 million people 

currently living with PD globally (https://www.parkinson.org/Understanding-Parkinsons/Statistics). 

It is estimated that approximately 60 000 Americans are currently diagnosed with PD each year 

(Marras et al., 2018). By 2030, it is estimated that 1.2 million individuals in the United States will be 

living with PD (https://www.parkinson.org/Understanding-Parkinsons/Statistics). Regarding the 

incidence of PD, studies show that it is more common in the elderly, particularly in those above the 
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age of 65 years (Akinyemi, 2012; Dorsey et al., 2018; Karimi-Moghadam et al., 2018). However, an 

estimated four percent of people with PD are diagnosed before the age of 50 years, and it has also 

been shown that men are 1.5 times more prone to having PD than women (Georgiev et al., 2017). 

 

Presently, much of what we know about PD is based on data from studies carried out in North 

America, Asia, and Europe (Khalil et al., 2020). Therefore, information on the clinical, 

environmental, and genetic risk factors from other geographical regions and ethnicities worldwide is 

needed to understand better PD’s etiology and pathophysiology (Khalil et al., 2020). The field of PD 

genetics is understudied in sub-Saharan Africa. This is a notable omission since populations of 

African ancestry have the most significant genomic diversity globally. Africa has been reported to be 

the birthplace of anatomically modern humans and the geographic origin of human expansion 

globally within the last 100 000 years (Nielsen et al., 2017; Shriner et al., 2014, 2016). Therefore, 

studying African genomes and understanding their complexity is critical to understanding human 

biology and disease’s differential distribution by geography and ancestry. It is speculated that due to 

the rich genetic heterogeneity present in the region, there are unique genotypes, environmental 

factors, and cultural influences that may affect the disease onset, phenotype, and progression. The 

present study is a step towards improving our understanding of the genetic factors underlying PD in 

sub-Saharan African patients. Specifically, it is focused on a South African multiplex family living 

with PD and employed next-generation sequencing and bioinformatic approaches to prioritize 

variants to identify potentially a novel PD gene and or genes.  
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1.2 Review of literature 

1.2.1 The history of PD 

Parkinson's disease, initially referred to as 'the shaking palsy' was first described in Western medical 

literature by James Parkinson in the early nineteenth century as a "neurological syndrome that causes 

involuntary tremulous motion and lessened muscular strength in certain parts of the body as well as 

a stooped posture and abnormal gait." (Goetz, 2011; Parkinson, 2002). Previously, researchers such 

as Sylvius de la Boe and Sauvages wrote about resting tremor and festination, defined as the 

involuntary shortening of stride and quickening of gait in the late seventeenth and eighteenth-century, 

respectively (Pearce, 1989). Moreover, much earlier traditional Indian and ancient Chinese texts 

dating as early as 1000 BC also provided clinical descriptions that suggest PD (Goetz, 2011).  

 

The term 'Parkinson's disease' was first suggested by Jean-Martin Charcot. He rejected the ‘shaking 

palsy's’ earlier designations as he recognized that patients diagnosed with the disease did not 

necessarily appear weak or present with tremors. He was also the first to note two forms: the 

tremorous and akinetic PD forms (Goetz, 2011). Many other researchers such as William Gowers 

(1880), Richer and Meige (1895), Babinski (1921), Brissaud (1925), Tretiakoff (1921), Foix and 

Nicolesco (1925), Greenfield and Bosanquet (1953) as well as Hoehn and Yahr (1967) also 

contributed to the more profound and precise understanding of the PD phenotype (Goetz, 2011). 

 

1.2.2 Clinical and neuropathological features 

1.2.2.1 Clinical features 

PD falls under a broader category of parkinsonism, the latter defined as a combination of bradykinesia 

with either rest tremor, rigidity, or both (Postuma et al., 2015). Bradykinesia is the slowness of 

movement or difficulty moving the body voluntarily. Parkinsonism is characterized by a large number 
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of motor and non-motor features that can impact function. Included under the general term 

parkinsonism is a group of neurological disorders that display quite similar PD symptoms. Broadly, 

these can be divided into two categories, namely, primary parkinsonism and secondary parkinsonism. 

Primary parkinsonism, also known as idiopathic PD, occurs in about 80 – 85 % of patients diagnosed 

with PD, with the cause of disease currently unknown. 

 

On the other hand, secondary parkinsonism, also referred to as atypical parkinsonism, includes drug-

induced parkinsonism, vascular (Arteriosclerotic) parkinsonism, and dementia with Lewy bodies 

(DLB). It also includes essential tremor, normal pressure hydrocephalus (NSA) corticobasal 

degeneration (CBD), progressive supranuclear palsy (PSP), and multiple system atrophy (MSA) 

(Hughes et al., 1992; Jankovic, 2008). In these conditions, the disease's cause is generally known; 

however, they do not respond well to dopaminergic medications such as levodopa. 

 

There are four cardinal manifestations of PD: tremor at rest, rigidity, akinesia/bradykinesia, and 

postural instability that all fall under the category of motor features (Jankovic, 2008). Additionally, 

freezing of gait (motor blocks) is also included in PD's classic symptoms. Non-motor symptoms of 

PD include, but are not restricted to, mood disorders such as depression, cognitive changes such as 

problems with focused attention, hallucinations and delusions, orthostatic hypotension, sleep 

disorders such as insomnia, constipation, and early signs of satiety, pain fatigue, excessive sweating 

as well as sexual problems (Chaudhuri et al., 2006). 

 

Amongst the early signs of PD is the presence of a slight shaking or tremor in an individual's finger, 

thumb, hand, or chin, and their handwriting getting much smaller than it usually was (micrographia). 

Additionally, loss of sense of smell, difficulty in moving or walking, trouble sleeping, soft or low 

voice, masked face, frequent dizziness or fainting, and stooped posture is experienced (Chaudhuri et 

al., 2006).  
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1.2.2.2 Neuropathological features 

Neuropathological hallmarks of PD are the progressive loss of dopaminergic neurons containing 

neuromelanin in the substantia nigra pars compacta (SNpc) and the presence of fibrillar aggregates 

referred to as Lewy bodies (LB) (Braak et al., 1999; Wakabayashi et al., 2013). There are four 

dopaminergic pathways: the mesolimbic pathway, mesocortical pathway, tuberoinfundibular 

pathway, and the nigrostriatal pathway. The nigrostriatal pathway projects from the dopamine-

producing neurons in the substantia nigra (SN) to the basal ganglia or striatum and mediates motor 

movement (Livingstone & Wonnacott, 2009; Marsden, 2006). In PD patients, reduced levels of 

neuromelanin and dopamine result in depigmentation of the SNpc, as shown in Figure 1.1. This leads 

to the emergence of motor impairment. Other brain regions implicated in progressive neuronal loss 

are the hypothalamus, locus coeruleus (LC), the vagus’s dorsal motor nucleus, basal nucleus of 

Meynert, and the cranial nerve motor nuclei cerebral cortex (Petrucelli & Dickson, 2008). 

 

While the appearance of LB's in post-mortem PD brains is indicative of a definite PD diagnosis, not 

all PD patients present with these fibrillar aggregates in which the α-synuclein protein (encoded by 

the SNCA gene) is the main constituent (Wakabayashi et al., 2013). α-Synuclein is a presynaptic 

terminal protein that plays a direct role in PD pathogenesis. Studies report several mutations in the 

SNCA gene (including A53T, A30P, E46K) associated with PD development (Oczkowska et al., 

2013). LB's consist of a heterogeneous mixture of more than 90 molecules, including mitochondria-

related proteins, molecules implicated in the ubiquitin-proteasome system, autophagy, and 

aggresomal formation (Wakabayashi et al., 2013). Although LB's are recognized as the 

histopathological hallmark of PD, their role in promoting neurotoxicity remains poorly understood 

(Wakabayashi et al., 2013). Braak and colleagues (2017) presented a pathologic staging system for 

PD, where early pathologic manifestations of PD are detected in the dorsal motor nucleus of the vagus 

and anterior olfactory nucleus, with a consecutive spread of the pathology to LC, SN, and basal 

forebrain (Petrucelli & Dickson, 2008). In the final stages, pathology extends to the neocortex, 
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particularly limbic and multimodal association cortices of the frontal and temporal lobes. Although 

the Braak PD staging system has been proven in autopsy studies of patients with disorders associated 

with LB's and controls, not all PD patients exhibit LB pathology (Burke et al., 2008). 

 

Figure 1.1: The brain region predominantly affected by PD (SNpc) and the difference in the 

appearance of the SN in PD patients and non-PD affected individuals. (Source: 

https://en.wikiversity.org/wiki/WikiJournal_of_Medicine/Medical_gallery_of_Blausen_Medical_20

14#/media/File:Blausen_0704_ParkinsonsDisease.png). Accessed: 25/02/2021 

 

1.2.3 Diagnosis 

PD is diagnosed clinically by neurologists or physicians, basing it on the patient's medical history, 

reviewing their signs and symptoms, and performing a neurological and physical exam. This clinical 

diagnosis of PD is dependent on the Movement Disorder Society PD criteria (MDS-PD) (Postuma et 

al., 2015). In the MDS-PD criteria, the motor syndrome's centrality remains the core feature by which 
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clinical PD is defined. However, non-motor manifestations such as olfactory loss are present in most 

patients and often dominate the clinical presentation.  

 

Several disease progression rating scales are used for the evaluation of motor impairment and 

disability to diagnose PD. The most frequently used rating scales are the Hoehn and Yahr and the 

Unified Parkinson's Disease Rating Scale (UPDRS) (Ramaker et al., 2002). Hoehn and Yahr first 

introduced a rating scale in the late 20th century. Clinicians used this rating scale to rate motor 

symptoms on a scale of 1 to 5, depending on the severity of the symptoms shown (Goetz, 2011). 

Another comprehensive tool developed to account for the non-motor symptoms is UPDRS, which 

also accounts for social interaction, moods, and mental functioning (Martinez-Martin et al., 2013). 

Despite the different rating scales' availability, PD diagnosis is still challenging as PD shares certain 

phenotypes with other Parkinsonian syndromes (Mhyre et al., 2012).  

 

1.2.4 Incidence and prevalence of PD 

Incidence is defined as the measure of new cases in a population over a given period and is typically 

measured as the number of people diagnosed annually. Conversely, prevalence is a measurement of 

individuals affected by the disease at a particular time. The incidence of PD is linked to certain risk 

factors such as age, industrial chemicals, and pollutants like pesticides and metals (Dorsey et al., 

2018).  

 

The Global Burden of Disease study (Dorsey et al., 2018) labels neurological disorders as the leading 

causes of disability and the second-highest death cause globally. Regarding the leading cause of 

disability-adjusted life years (DALs), neurological disorders accounted for 276 million cases (11.6 %) 

of the global DALYs than other diseases in 2016. Neurological disorders were also the underlying 
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causes of 9 million deaths (16.5 %) of the absolute global deaths recorded in 2016, second only to 

cardiovascular-related deaths (Dorsey et al., 2018). 

 

PD is the second most common age-dependent neurodegenerative disease, currently affecting 1-2 

percent of the population above 65 years (Johri & Beal, 2012; Karimi-Moghadam et al., 2018). The 

Parkinson's Prevalence Project was established to determine a more accurate representation of the 

number of people currently living with PD (Marras et al., 2018). It is estimated that in the year 2030, 

there will be about 1.2 million people in the United States only living with PD 

(https://www.parkinson.org/Understanding-Parkinsons/Statistics).  

 

PD has been identified as the fastest-growing neurodegenerative disorder in prevalence, disability, 

and death (Dorsey et al., 2018). On a global scale, the prevalence of PD has been predicted to affect 

41 per 100 000 individuals in the sixth decade of life (Karimi-Moghadam et al., 2018). In individuals 

aged 80 years and older, this figure is predicted to be greater than 1 900 per 100 000 (Cacabelos, 

2017; Pringsheim et al., 2014). Furthermore, another study reports that PD is more predominant in 

males than females with a ratio of 3:1 respectively (Karimi-Moghadam et al., 2018). 

 

A study carried out by Elbaz and colleagues (2018) reported that 6,1 million people worldwide had 

PD, of whom 47,5 % were women and the 52.5 % were men (Dorsey et al., 2018). When these 

statistics were further categorized, the study showed that 34,4 % of those individuals were from high 

Socio-demographic Index (SDI) countries such as North America, 50,8 % from high-middle or 

middle SDI countries such as North Africa, and 14,8 % from low-middle or low SDI countries such 

as West Africa (Dorsey et al., 2018). Compared to other regions, epidemiological studies in Sub-

Saharan Africa (SSA) are either very old or have a minimal sample size (Williams et al., 2018). As 

seen in the data obtained from the study carried out by Elbaz and colleagues (2018), the prevalence 
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of PD in SSA is perceived to be lower than that reported in the more developed countries (high SDI 

countries). 

 

1.2.5 Treatment 

PD currently has no cure, but several available therapies and disease management strategies may be 

implemented to alleviate symptoms of this neurodegenerative disorder. Early PD treatments were 

based on empirical observations, and anticholinergic drugs were used as early as the nineteenth 

century. One such description can be found in the book Ru Men Shi Qin (Zhang et al., 2006) from 

traditional Chinese medicine that records a typical PD case where an "anti-tremor pill" was 

recommended containing a mixture of gastrodia tuber and scorpion. Gastrodia tuber contains 

gastrodin, which has been shown to increase dopamine levels in guinea pigs and inhibit monoamine 

oxidase type B in aging mice models (Zhan et al., 2016; Zhang et al., 2006). Gastrodia tuber has 

further been shown to possess potential neuroprotective effects. 

 

In India, early descriptions of PD are recorded in the Ayurvedic treaties describing it as a category of 

disorders known as Vata and characterized by tremors (Kampa), stiffness (stambha), and depression 

(vishada) (Auddy et al., 2003; Zhang et al., 2006). Treatment recommendations for the tremors by 

Ayurvedic included the ingestion of the seeds of the Mucuna pruriens (cowhage) plant, which 

contains levodopa, a drug currently widely used to treat PD. 
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Figure 1.2: Gastrodia tuber plant (A) and Mucuna pruriens seeds (B). The Gastrodia tuber plant, 

part of the 'anti-tremor pill' recommended in ancient times by traditional Chinese medicine. Seeds of 

the Mucuna pruriens plant contained levodopa and were recommended in ancient Indian medicine to 

treat PD symptoms. (Sources: https://commons.wikimedia.org/wiki/File:Gastrodia_elata_1.JPG, 

https://commons.wikimedia.org/wiki/File:Mucuna_pruriens_flower.jpg). Accessed: 25/02/2021 

 

The traditional approach to treating patients with PD is the administration of drugs to alleviate 

symptoms (Mhyre et al., 2012). Medications prescribed may help manage difficulties experienced 

with walking, movement, and tremor and may increase or substitute dopamine levels in the body. 

These include anticholinergic agents, Amantadine, levodopa, and synthetic dopamine agonists.  

 

Levodopa is the cornerstone of symptomatic therapy. As dopamine does not readily cross the blood-

brain barrier, levodopa, a dopamine precursor, is administered to treat PD symptoms (Koller & Rueda, 

1998). It is decarboxylated to dopamine and thus, acts on all dopamine receptors (Calne, 1993). 

Levodopa is converted to dopamine by aromatic-L-amino-acid, raising the concentration of 

dopamine, which is beneficial within the striatum but deleterious outside the blood-brain barrier as 

such dopamine levels cause adverse reactions. Levodopa administration may be delayed as prolonged 

usage of this drug is associated with motor complications. These include uncontrolled involuntary 
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movement (dyskinesia), involuntary muscle contractions resulting in repetitive movements 

(dystonia), involuntary twitching and writhing affecting posture (choreoathetosis), and motor 

function fluctuations (Mhyre et al., 2012).  

 

Neurosurgery, gene therapy, and stem cell transplantation are other therapies explored for motor 

symptoms to restore normalized motor function and optimally maintain daily living activities. 

Surgical procedures are advised during later stages of PD. An example is the deep brain stimulation 

(DBS) procedure, where surgeons implant electrodes into the thalamus, subthalamic nucleus, or 

globus pallidus (Volkmann, 2004). DBS has been shown to effectively control erratic and fluctuating 

responses to medication or control dyskinesia that do not improve with medication adjustments. 

Lifestyle changes such as aerobic exercises and diets high in fiber have also been recommended to 

assist with PD symptoms. 

 

1.2.6 Non-genetic risk factors for PD 

Apart from the primary risk factors associated with PD, such as sex, age, and genetic influences, there 

are other risk factors that researchers have identified that increase a person's risk of developing PD. 

Exposure to pesticides, rural residence, certain occupations such as farming, welding, carpentry, and 

workers chronically exposed to metals have been associated with increased risk to PD (Chade et al., 

2006; Gorell et al., 2004). Other risk factors include exposure to toxins such as herbicides (paraquat), 

fungicides (maneb), insecticides, and pesticides (Lee & Gilbert, 2016). Scientists have also suggested 

prolonged exposure to metals such as copper, manganese, mercury, lead, and solvents such as 

trichloroethylene and polychlorinated biphenyls increase the risk of PD (De Miranda & Greenamyre, 

2020).  
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1.2.7 Genetic causal and risk factors for PD 

Research on the genetic causes of PD has led to discoveries of several PD-causing or associated genes 

over the past two decades (Bandres-Ciga et al., 2020). PD may either appear as sporadic or familial. 

Sporadic PD is when an individual presents with PD while there is no known history of other family 

members with the disease. On the other hand, familial PD refers to more than one disease occurrence 

in a particular family.  

 

PD researchers have identified 23 genes linked to rare monogenic familial forms of PD with 

Mendelian inheritance that can be divided into either X-linked, autosomal recessive, or autosomal 

dominant (Bandres-Ciga et al., 2020). Autosomal recessive genes include Parkin (PRKN), PINK1, 

DJ-1, ATP13A2, PLA2G6, FBXO7, DNAJC6, SYNJ1, SLC6A3, and VPS13C. RAB39B has been 

associated with an X-linked disorder displaying parkinsonism features. Examples of the autosomal 

dominant genes include GBA, SNCA, LRRK2, GIGYF2, HTRA2, VPS35, EIF4G1, DNAJC13, 

CHCHD2, TMEM230, RIC3, and GCH1 (Karimi-Moghadam et al., 2018). Table S1 in the appendix 

shows the 23 genes linked to rare monogenic familial forms of PD. It highlights the disease features, 

locus and position, the pathways they are involved in, and the disease onset. 

 

The clinical characteristics shared by patients who have mutations in the autosomal dominant PD 

genes are that of typical PD, presenting an excellent response to levodopa treatment during the early 

stages of disease progression and Lewy body formation (Dekker et al., 2003; Kouli et al., 2018). It is 

also seen that most of these genes result in late-onset PD (disease age at onset of > 50 years) (Hicks 

et al., 2002).  Contrastingly, the attributes shared by the autosomal recessive PD genes are atypical 

parkinsonism features (Gasser, 2009; Karimi-Moghadam et al., 2018). However, patients with 

mutations in the PRKN, PINK1, and DJ-1 genes display typical PD symptoms (Gasser, 2009). 

Juvenile disease onset is associated with the autosomal recessive PD genes, good response to 

http://etd.uwc.ac.za/ 
 



 

13 

 

levodopa during the early stages of PD, and Lewy bodies' absence. Dementia has also been linked to 

autosomal recessive PD genes (Karimi-Moghadam et al., 2018). 

 

Studies on the genetic causes of PD have been carried out over the past two decades and have shown 

that the genetic causes may vary in specific populations. Various PD-causing or PD-associated genes 

have been recognized, which have aided in drug discovery and the establishment of personalized 

treatment. This highlights the need to identify new PD-causing or PD-associated genes by utilizing 

new sequencing technologies and bioinformatics approaches.  

 

1.2.8 Bioinformatic approaches to identify novel disease-causing genes 

1.2.8.1 Overview 

Bioinformatics is an interdisciplinary field that develops software tools and methods to interpret and 

understand biological data. It combines computer science, statistics, mathematics as well as 

engineering to analyze and interpret data. Analyses such as DNA sequencing result in exponential 

amounts of biological data, making it hard to analyze manually. With the advent of computer science, 

various computational techniques and algorithms are used to analyze large biological datasets more 

accurately and efficiently using automated processes.  

 

As one of the most influential biomedical research tools, DNA sequencing has improved its 

productivity exponentially. It has evolved into a new layout of technological territories towards 

engineering and physical disciplines over the past four decades (Shuikan et al., 2019). DNA 

sequencing technology has played an essential role in the advancement of molecular biology ever 

since its invention. From the early manual sequencing operation that Frederick Sanger developed to 

the first-generation automated sequencer driven by Sanger chemistry, and right up to the most recent 

next-generation sequencing (NGS), a tremendous change in the field has been observed (Chow-White 
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et al., 2012). The sequencing speed has improved exponentially over the last few decades, 

fundamentally changing how we can examine the blueprint of all life and help us develop other 

branches of genomic studies such as comparative genomics, proteomics, and metabolomics (Shuikan 

et al., 2019). In the current study, bioinformatics approaches were used to query gene ontology 

information in several databases and protein-protein interaction analysis, to prioritize putative genes 

involved in PD. Additional structural methods employed in this study include molecular modeling, 

change in protein stability predictions, and molecular dynamic simulations to validate further the 

sequence variants' effect on the protein structure and behavior. 

 

1.2.8.2 Gene Prioritization techniques 

Genes contain the information required to produce proteins for daily metabolic activities to take place. 

A series of nucleotide bases in a gene may alter during mitosis or due to environmental exposure. The 

result is the acquisition of specific mutations in genes that alter protein function. These genetic 

mutations may result in either failure of protein production or the formation of faulty proteins with 

altered activity (Raj & Sreeja, 2018). As a result, genetic disorders may arise from the improper 

protein production of cells, which may be classified as Mendelian disorders (mutation of a single 

gene) or complex disorders that arise from mutations in several genes (Raj & Sreeja, 2018).  

 

High-throughput methods such as genome-wide association studies (GWAS) and RNA interference 

screens have revolutionized how we can couple genetic variations to diseases. These techniques have 

become very efficient in connecting large chromosomal regions with genetic disorders, generating 

lists of hundreds of potential gene candidates (Guala et al., 2017). Techniques for prioritizing 

candidate disease genes are vital in maximizing the information from these high-throughput 

experiments to produce a list of potential genes that can be validated with experimental methods 

(Guala et al., 2017).  
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Gene prioritization is defined as the process of filtering potential candidate genes based on their 

association with a particular disease. Computational methods such as biological knowledge sources 

are often used to rank the genes to identify which of the prioritized genes is most likely the causative 

gene. These will then be studied further by performing a series of in-silico and in-vitro experiments. 

Biological knowledge sources can be classified according to the nature of data collection and the type 

of data (Raj & Sreeja, 2018). This can be further divided into primary, secondary, and composite 

databases. For this study, composite databases are utilized, which is a collaboration of multiple 

databases such as Online Mendelian Inheritance in Man (OMIM), National Centre for Biotechnology 

Information (NCBI), gene ontology, Kyoto encyclopedia of genes and genomes (KEGG), panther 

pathway analysis, Reactome, and the Allen brain atlas.  

 

1.2.8.3 Molecular dynamic simulations to evaluate potential pathogenicity 

of variants 

Biological macromolecules are large molecules built from smaller molecules divided into four 

classes: proteins, carbohydrates, lipids, and nucleic acids. Biological macromolecules are essentially 

dynamic systems, as insights into their internal motions can be demonstrated using calculations based 

on physical models (Karplus & McCammon, 2002). Dynamic simulations encompass molecular 

dynamic movements, refinement of structures based on nuclear magnetic resonance (NMR) and X-

ray data, and the evaluation of free energy changes induced by mutations. Molecular dynamics (MD) 

simulations are vital in understanding these motions. 

 

MD is a computer simulation method used to analyze the physical movements of molecules and 

atoms. MD simulations play a role in predicting molecular systems’ properties, structure, and function 

(Geng et al., 2019). They enable researchers to calculate atomic movements in a molecular system 

and investigate the proteins' structural dynamics on timescales of nanoseconds up to microseconds 

(Ode et al., 2012). This is important for understanding the motion of molecular systems.  
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MD simulation studies have provided an increased understanding of protein structure-function 

relationships (Nair & Miners, 2014). The ability of MD simulations to provide individual particle 

movements as a function of time and measure the change in Gibbs free energy are a few characteristics 

that have played an essential role in the broad applicability of MD simulations (Karplus & 

McCammon, 2002). The Gibbs free energy is given by G = H − TS, where H is the enthalpy, T is 

temperature, and S is the entropy. Enthalpy is mathematically described as H = U + pV, where U is 

the internal energy, p is the pressure, and V is the volume. Additionally, free energy is a quantitative 

measure that describes the relationship between denatured and native molecules whose value depends 

on other factors such as the variation of enthalpy (the amount of potential energy: bonded and non-

bonded interactions) and the variation of entropy (different protein conformations). This, in turn, 

describes deeper aspects of the protein such as bond angles, bond lengths, and hydrogen bonds. 

Furthermore, this describes energetic changes such as thermal fluctuations and rearrangements of 

chemical bonds. Simulating systems over nanosecond timescales can identify motions such as atomic 

fluctuations, conformational changes in amino acid side chains, and loop motions (Nair & Miners, 

2014). 

 

MD is a well-established method that provides insights into the workings of biomolecular systems at 

spatial (locations) and temporal (time) scales that are difficult to access experimentally (Klepeis et 

al., 2009). Experimentally, not all prioritized genes can be tested by wet-lab experiments due to 

complications that arise, such as protein aggregation, factors such as protein solubility, as well as the 

costs incurred during wet-lab experiments. Utilizing MD simulations is advantageous as it mimics 

what atoms do in an organism, assuming a given potential energy function. MD's application is made 

to study structure-function relationships, disease pathways, and drug design (Lemkul, 2019). MD can 

be used to explore conformational space, behavior, and movement of the residues in the protein 

structure as well as the folding and unfolding of the protein and is often the method of choice for 

biological macromolecules.  
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MD simulations provide powerful tools for exploring the conformational energy landscape accessible 

to molecules to determine the thermodynamic properties of the biological macromolecules (Karplus 

& McCammon, 2002). Recent advances in computer hardware and software have rapidly improved 

MD's performance and precision. Simulations can now be run on central processing units (CPUs) and 

graphics processing units (GPUs), providing significant internal parallelism with the potential for 

high combinational throughput at a relatively low cost (Klepeis et al., 2009). Combining increased 

computer power and improved potential energy functions for biological macromolecules has resulted 

in the researchers' ability to generate simulations that approach native experimental behavior. 

Furthermore, an increase in readily available computer power and the standardization of simulation 

protocols is now feasible for non-specialists to reproduce simulation analyses published by others.  

 

1.2.8.4 Limitations of MD 

Although MD simulations' capability has significantly increased due to improved high-performance 

computing systems, there are still limitations concerning the investigation of many critical biological 

systems (Kim et al., 2017). For instance, magnesium (Mg2+) ions play an essential role in biological 

processes such as DNA repair mechanisms and the self-assembly of RNA nanoparticles. However, 

Mg2+ ion dynamics only occur on a microsecond timescale, which is currently beyond regular MD 

simulation timescales. Coarse-grained approaches can overcome this limitation on large-scale 

systems such as membranes, viruses, and chromatin fibers. In a coarse-grained approach, each 

nucleotide in an RNA molecule can be represented by a few beads so that the total number of atoms 

in the RNA nanostructure is markedly reduced (Kim et al., 2017; Paliy et al., 2010). Moreover, 

multiscale computational approaches using both quantum mechanical and molecular mechanical 

(QM/MM) methods, all-atom MD simulations, and coarse-grained techniques can provide vital 

information for large biomolecular systems. 
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Another principal challenge MD simulations face is that force fields require further refinement 

(Durrant & McCammon, 2011). Force fields are a collection of equations that describe the potential 

energy of a system. Here the potential energy is derived from bonded and non-bonded interactions 

observed between atoms. Force fields are inherently approximate as they are derived from classical 

mechanics and not quantum mechanics. However, there have been fast improvements made to match 

experimental data. While simulations can accurately predict critical molecular motions, simulations 

are poorly suited to systems where quantum mechanics are essential; for instance, when transitional 

metal atoms are involved in binding. Some researchers have introduced quantum mechanical 

calculations into classic MD force fields to overcome this challenge (Durrant & McCammon, 2011).  

 

Another limitation faced by force fields is partly due to polarizability. The atoms' electrostatic 

properties in the classic MD simulations are represented by the atomic nuclei's partial charges (Kim 

et al., 2017). The magnitudes and positions of the partial charges are treated as constants throughout 

the MD simulations. However, the magnitudes and distributions of charges in a biomolecule 

continuously change in response to the environment. The constant partial charge approximation is 

insufficient to describe the polarizability of the biomolecules. To bridge the gap between the constant 

partial charge and polarizability, various theoretical models have been applied to major force field 

groups such as the Amber and CHARMM force field groups (Kim et al., 2017). 

 

1.2.9 Computational studies in PD research 

Computational methods involving comparative protein structure modeling, molecular docking, and 

MD simulations have provided fundamental support in PD research to unravel details of PD biology 

(Coskuner-Weber & Uversky, 2018). Computational studies complement wet-lab experiments and 

provide structural information at the atomic level, with MD simulations contributing insights into the 

structure-function relationships (Delemotte, 2020; Hollingsworth & Dror, 2018; Nair & Miners, 

2014). For instance, the α-Synuclein protein with a genetic missense mutation (A53T) was initially 
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identified in Italian and Greek families with familial PD (Coskuner & Wise-Scira, 2013). With the 

aid of Replica Exchange Molecular Dynamic (REMD) simulations (40 ns), researchers established a 

direct relationship between the rapid conformational changes and free energy landscapes upon 

introducing the A53T mutation within the α-synuclein protein structure.  

 

Conformationally, a decrease in the number of β-sheets formed in the non-amyloid-β component 

(NAC) and C-terminal region was seen upon introducing the A53T mutation. Conversely, an increase 

in β-sheet abundance around the mutation site was seen. Additionally, long-range interactions were 

lost between the NAC region and the N- and C-terminal regions due to the A53T mutation, indicating 

that the NAC region was more solvent-exposed, contributing to an increase in the aggregation rate of 

the protein. α-Synuclein aggregates then formed insoluble fibrils characterized by Lewy bodies. This 

study extensively explored the contribution of MD simulations in representing the molecular structure 

of α-synuclein and its contribution to the formation of Lewy bodies, enhancing our fundamental 

knowledge of PD (Coskuner & Wise-Scira, 2013; Coskuner-Weber & Uversky, 2018). Its results also 

agree with several experimental measurements previously conducted (Coskuner & Wise-Scira, 2013). 

However, it also highlights the lack of experts in both drug discovery and MD simulations, posing a 

significant limitation in this field of study.  

 

Another study employed MD simulations to provide a mechanistic view underlying the WD40 

dimerization and unveiled the structural basis by which interface-based mutations compromise the 

complex binding network along with the dimerization interface (Li et al., 2020). Other studies utilized 

MD simulations to understand the role of LRRK2, DJ1, and VPS35 mutations in PD (Anderson & 

Daggett, 2008; Y.-B. Guo et al., 2016; Zimprich et al., 2011).  

 

From these studies, the strengths of utilizing MD simulations are highlighted to understand the 

mechanical impact of mutations on protein structure and, in doing so, provide helpful insight into the 
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mechanism of PD development. Hence, in the present study, we apply a similar approach to prioritize 

the effect of variants on our target protein structure to provide support for the variant's role in PD and 

propose it for further experimental investigation.  

 

1.2.10 Rationale of the present study 

In sub-Saharan Africa (SSA), PD research has received little attention (Dekker et al., 2020). 

Consequently, a lack of knowledge of the condition leads to most people living with PD in SSA being 

misdiagnosed and untreated resulting in high mortality rates (Mokaya et al., 2017). The estimated 

number of PD patients in the SSA region is relatively low, which may be due to the widespread belief 

that neurological disorders are part of natural aging. Therefore, patients remain undiagnosed 

(Williams et al., 2018). Other factors contributing to the low numbers include the absence of 

epidemiological data, a scarcity of neurologists, and underfunded healthcare infrastructure (Bower & 

Zenebe, 2005; Lekoubou et al., 2014). Though chronic non-communicable diseases like PD are 

considered urgent health priorities in high-income countries, in SSA, the impact and burden of PD 

are unfortunately neglected and go unrecognized. Therefore, despite the imminent epidemic of PD, 

countries in SSA are ill-equipped to deal with this problem (Dotchin & Walker, 2012). 

 

It has been shown that the known PD mutations play a minor role in disease etiology in SSA 

populations (Bardien et al., 2010; Blanckenberg et al., 2013; Wang et al., 2015). This illustrates a 

knowledge gap in SSA PD genetics, emphasizing the importance of utilizing new technologies to 

discover novel PD-causing genes or novel mutations in known PD genes. Ultimately, this insight 

might contribute significantly to our current understanding of the genetic etiology of PD, both locally 

and internationally.  

 

In the current study, we follow up on previous work done in an MMed study by Dr. Roopnarain 

(unpublished data) investigating a South African family with several family members (mother and 
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three sons) suffering from PD. The parents are both of Indian descent. In the MMed study, whole-

exome sequencing (WES) had been performed on three affected members of this family, and 11 

sequence variants had been prioritized for further research. We used the data generated by the MMed 

study as a basis for the current study, and the study’s aims and objectives are outlined below.  

 

1.2.11 Aim and objectives: 

 The aim of this study was to use in-silico methods to prioritize a causal variant from WES data on a 

South African Indian family with PD. The project is divided into six specific objectives: 

1 To annotate the 11 sequence variants using the Universal Mutation Databases (UMD) 

predictor v.2016.  

2 To perform pathway, expression and STRING analysis on the 11 genes to determine brain-

specific gene function, mRNA expression profiles and protein-protein interactions with 

known PD genes.  

3 To construct accurate three-dimensional protein structures for the prioritized genes most likely 

to be associated with PD. 

4 To calculate destabilizing effects of the variants on the respective protein structure upon 

introducing the variant using the DUET web server.  

5 To simulate the effects of only the variants that destabilize the respective protein structure 

compared to the wild-type (WT) structure. 

6 To analyze the simulation trajectory data and, in doing so, validate the effects of variants on 

the protein structure.  
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CHAPTER II: Methodology 

2.1 Ethical considerations: 

Ethical approval was obtained from the Health Research Ethics Committee of Stellenbosch 

University, Cape Town, South Africa (Protocol number: 2002C/059), with annual renewals.  

 

2.2 Previous work: 

2.2.1 Filtering and variant prioritization: 

 

A previous MMed study (conducted by Dr. K Roopnarain) investigated a South African Indian family 

with PD, denoted as family ZA 398. DNA was collected from the three affected individuals and eight 

unaffected family members. WES was then carried out on the three affected family members 

(siblings) and yielded 166 variants shared by all the affected family members. Due to this large 

number of variants, they were further filtered down to 11 gene variants using strict criteria by Dr. 

Roopnarain. This criterion involved using a bioinformatics workflow (Appendix Figure S3) to find 

uncommon variants shared by the three affected siblings. Following this, variants were further 

prioritized using a population database (EXaC database) and in-silico pathogenicity prediction tools 

(Polyphen, SIFT, MutationTaster, Mutation Assessor, and CADD).  

 

Additionally, the criteria included selecting only heterozygous variants shared between the three 

patients, filtering out all synonymous variants and only including non-synonymous variants. The Gtex 

portal was used to determine which of the variant genes were expressed in brain tissue. Any known 

PD genes reported in the AnnEx database (a database containing thousands of PD exomes) were 

excluded. Subsequently, common variants (Minor Allele Frequency ≥ 0.001) recorded in the Single 

Nucleotide Polymorphism database (dbSNP) and 1000 genome project were excluded. Other online 
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platforms utilized include the disease-related variant databases such as ClinVar, the Human Gene 

Mutation Data (HGMD), and the Online Mendelian Inheritance in Man (OMIM) database. This 

yielded a list of eleven candidate genes with novel variants pursued further in the current study (Table 

2.1). Moreover, none of the currently known PD mutations was found in any of the sequenced family 

members. Additionally, Sanger sequencing was performed on the unaffected family members to 

determine the presence or absence of variants found in the affected family members. 

 

Table 2.1: List of 11 non-synonymous variants in candidate genes (in chromosomal order). 

Gene symbol Gene name Variant present or 

absent in unaffected 

members 

Number of 

unaffected 

members 

ELK4 (p.R48C) ETS transcription factor 4 Present 4 

CEP170 (p.T377M) Centrosomal protein 170 Present 3 

EEFSEC (p.V184M) Eukaryotic elongation factor Present 4 

TRIM59 (p.K114R) Tripartite Motif containing 59 Absent 0 

HTT (p.R2063H) Huntingtin Absent 0 

ELMOD2 (p.A215S) ELMO domain containing 2 Absent 0 

EPB41L2 (p.R663C) Erythrocyte membrane protein 

band 4.1 like 2 

Present 1 

NUP153 (p.T1284I) Nucleoporin 153 Present 2 

NPSR1 (p.V138I) Neuropeptide S receptor 1 Present 5 

LRRK1 (p.T871M) Leucine-rich repeat kinase 1 Present 6 

MAN2B1 (p.V825A) Mannosidase alpha class 2B 

member 1 

Present 4 

Abbreviations: ELK4= ETS transcription factor, CEP170= Centrosomal protein 170-KD, EEFSEC= 

Eukaryotic elongation factor selenocysteine-tRNA-specific, TRIM59= Tripartite motif-containing 

protein 59, HTT= Huntingtin, ELMOD2= ELMO domain containing 2, EPB41L2= Erythrocyte 

membrane protein 4.1 like 2, NUP153= Nucleoporin 153-KD, NPSR1= Neuropeptide S receptor 1, 

LRRK1= Leucine-rich repeat kinase 1, MAN2B1= Mannosidase alpha class 2B member 1, SNCA= 

Synuclein alpha, PARK7= Parkinson disease protein 7, ETS= E26 transformation-specific and 

ELMO= Engulfment and motility. 

 

The eleven candidate genes containing the novel variants were ELK4 (R48C), CEP170 (T377M), 

EEFSEC (V184M), TRIM59 (K114R), HTT (R2063H), ELMOD2 (A215S), EPB41L2 (R663C), 

NUP153 (T1242I), NPSR1 (V138I), LRRK1 (T871M) and MAN2B1 (V825A). Most of the 11 

prioritized variants found in the affected family members were also found in the eight unaffected 
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family members who were Sanger sequenced. Most frequent variants included: genes ELK4 (four 

unaffected individuals), CEP170 (three unaffected individuals), NPSR1 (five unaffected individuals), 

LRRK1 (six unaffected individuals), MAN2B1 (four unaffected individuals), and EEFSEC (four 

unaffected individuals) (Table 2.1). However, the variants in genes TRIM59, HTT, and ELMOD2 were 

not found in unaffected family members (Table 2.1). What is apparent from this is that all the 

unaffected family members are much younger than the age of onset observed for their parents. 

Therefore, the affection status of these individuals is currently unknown. However, now that their 

genotyping status for these 11 candidate variants is known, we will continue to monitor them for signs 

of PD. The 11 gene variants were further prioritized in this study using gene ontology, protein-protein 

interaction analysis, and pathway analysis to determine their possible role in PD development. 

 

2.3 Current work: 

2.3.1 Variant annotation: 

 

The Universal Mutation Databases (UMD) – predictor (v.2016) was used for confirming variant 

positions at the start of this study. It is an online-based computational combinatory system used for 

next-generation sequencing (NGS) analysis that efficiently annotates complementary DNA 

substitutions of human transcripts for their potential pathogenicity (Frédéric et al., 2009; Salgado et 

al., 2016). Variant call format (VCF) files of the affected family members were uploaded to the UMD-

predictor for variant annotation. The UMD-predictor investigates the substitutions' biochemical 

properties and their impact on splicing signals, the localization in protein domains, conservation 

through the BLOSUM62 global substitution matrix, and protein-specific conservation among 100 

species (Salgado et al., 2016). The UMD-predictor tool has been shown to outperform the seven most 

cited prediction tools: SIFT version 5.1.1 (Sim et al., 2012), Polyphen version 2.2.2, Provean 1.1.3 

(Choi et al., 2012), Mutation Assessor 2 (Reva et al., 2011), Condel, CADD (Kircher et al., 2014) and 
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MutationTaster 2 (Schwarz et al., 2014). This system showed a higher specificity of 95 % compared 

to SIFT having 79 %, Polyphen having 72 %, Provean having 73 %, Mutation Assessor having 75 %, 

Condel having 78 %, CADD having 76 %, and MutationTaster achieving 69 %. This trend was 

consistent in other parameters measured, such as the diagnostic odds ratio (DOR), accuracy, speed, 

and Matthew's correlation coefficient (MCC) (Salgado et al., 2016). The MCC is a model evaluation 

tool that measures the differences between actual values and predicted values, while the DOR is a 

statistic in epidemiology expressing the strength of association between exposure and disease; DOR 

can be applied to describe the strength of the association between test results and disease (Glas et al., 

2003). The UMD-predictor also provided the shortest list of candidate mutations for WES data 

(Salgado et al., 2016). For these reasons, we utilized this prediction tool for our study. 

 

2.3.2 Prioritizing the 11 candidate genes as potential PD-associated 

genes: 

 

2.3.2.1. Functional gene annotation using data mining:  

Data mining was performing using previously published data to determine each of the 11 genes' 

functions to investigate whether they have been reported previously as being involved in any PD-

linked biological pathways associated with PD as well as other neurological disorders.  

 

2.3.2.2 Pathway and expression analysis: 

2.3.2.2.1 Allen Brain Atlas: 

The Allen Brain Atlas (v.2016) (Jones et al., 2009) is an online resource available for researchers to 

query gene expression data in brain tissue under different diseased conditions. For this study, we used 

the microarray data resource. We selected 'Microarray gene search' under the human brain tool and 

searched each gene by its gene symbol as recorded on the UniProt resource (The UniProt Consortium, 

2015). A minimum Z-score of 3, which indicated increased gene expression levels in the brain region 
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of interest, was set as the cut-off score when selecting the specific brain regions to confirm if the gene 

was expressed in that region. The purpose of searching each gene individually against the Allen Brain 

Atlas was to determine whether they were highly expressed in the basal ganglia, hypothalamus, and 

the substantia nigra as these regions have been associated with PD in previous studies. This also aided 

in narrowing down the number of genes to a manageable list for further studies.  

 

2.3.2.2.2 KEGG pathway and PANTHER pathway analysis: 

The KEGG (v.2020) and PANTHER (v.15.0) pathway databases were utilized to identify the specific 

pathways for each of the eleven genes (Du et al., 2014; Thomas et al., 2003). This was performed by 

searching the databases using each gene symbol as recorded on the UniProt database. The output was 

recorded as a diagram containing the biological pathways they were involved in. The purpose was to 

determine if any of the eleven genes interacted with any known PD genes and if they were involved 

in any PD-linked or dopamine-related pathways. 

 

2.3.2.2.3 STRING Analysis: 

The search tool for the retrieval of interacting genes (STRING) analysis (v.11.0b) is a database 

predicting protein-protein interactions. STRING utilizes experimental data and information from 

curated databases to determine protein-protein interactions based on interaction predictions. These 

interaction predictions are derived from systematic co-expression analyses, detection of shared 

selective signals across genomes, automated text-mining of the scientific literature, and 

computational transfer of interaction knowledge between organisms based on gene orthology 

(Szklarczyk et al., 2017). STRING analysis was performed by searching the database using each gene 

symbol as recorded on the UniProt database. For this analysis, all the different types of protein-protein 

interaction data were used. The output was recorded as a diagram containing the protein-protein 

interactions each gene was involved in. The purpose was to determine if any of the eleven genes 

interacted with any known PD genes. 
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2.3.2.2.4 Human Protein Atlas: 

The Human Protein Atlas (HPA) (v.20.1) is a web-based bioinformatics tool that maps the gene of 

interest against all tissues and organs present in the human body to determine the level of expression 

of the specified protein (Pontén et al., 2008). It is a publicly available tool and contains millions of 

high-resolution images that show the spatial distribution of proteins in healthy human tissue and 

various cancer types. 

 

The HPA consists of six sub-atlases: the tissue atlas, the cell atlas, the pathology atlas, the brain atlas, 

the blood atlas, and the metabolic atlas. For this study, the tissue atlas tool was utilized to determine 

the gene expression level found in the various tissues. This specified which tissues the gene was 

highly expressed in and was done by searching each gene by its gene symbol as recorded on the 

UniProt database. The output was shown as graphs illustrating the expression level and was recorded. 

Using pathway (KEGG and PANTHER), STRING and expression analysis (HPA) allowed us to 

prioritize three novel genes as putative PD-associated genes, LRRK1, NPSR1 and EPB41L2. Due to 

the unavailability of a template structure covering the variant position (p.T871M) of LRRK1, only 

genes NPSR1 and EPB41L2, were further explored in structural studies to understand the influence 

of the variant on the protein structure and behavior. The structural methods are introduced in the 

following sections.  

 

2.3.3 Protein structure homology modeling: 

Homology modeling techniques were used to predict the target proteins’ three-dimensional (3D) 

structures as there were no experimental structures available for the two proteins. For this study, we 

used the SWISS-MODEL (v.2020) web server (Guex et al., 2009), an online tool to perform 

homology modeling. There are several steps required to build a 3D protein model of a target protein: 

i) the identification of the amino acid (AA) sequence of the target protein, ii) selection of a 
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homologous structural template, iii) performing an accurate alignment of the target sequence and 

template structure, iv) 3D model-building and v) 3D model quality evaluation.  

 

2.3.3.1 Template search and target-template alignment: 

The WT canonical AA sequences for genes NPSR1 and EPB41L2 were retrieved from UniProt with 

accession numbers O43491 and Q6W5P4, respectively. The target protein sequences were aligned to 

a library of protein sequences extracted from the Protein Data Bank (PDB) (Cheng, 2008) to identify 

homologous protein sequences. SWISS-MODEL implemented the Basic Local Alignment Search 

Tool (BLAST) (Camacho et al., 2009) and HHblits (Steinegger et al., 2019) algorithms to search for 

related template structures. After a list of templates was generated, the homologous template structure 

with the highest sequence identity and sequence coverage to the target sequence that encompassed 

the variant site was selected for model construction.  

 

2.3.3.2 3D Protein model construction: 

Three-dimensional protein models for each target sequence were built using the target-template 

alignment file and the template PDB structure. The PDB file of the modeled protein 3D structure was 

downloaded from the SWISS-MODEL website and visualized in PyMol (Yuan et al., 2017). The 

predicted protein model was structurally aligned to the template structure to assess the structural fold. 

The template used for the NPSR1 protein had two ligands bound: the 5-[[(2~{R},3~{S})-2-[(1~{R})-

1-[3,5-bi(trifluoromethyl)phenyl] ethoxy]-3-(4-fluorophenyl) morpholin-4-yl] methyl]-1,2-dihydro-

1,2,4-triazol-3-one (GBQ) and the (2R)-2,3-dihydroxypropyl (9Z)-octadec-9-enoate (OLC). The 

PyMol align and extract tools were simultaneously utilized to create the NPSR1-GBQ-OLC complex 

and the NPSR1-GBQ complex. The NPSR1-GBQ-OLC complex was needed to perform stability 

prediction analyses as well as calculate polar interactions, while the NPSR1-GBQ complex was used 

to perform MD simulations. This will be explained in detail in the next chapter. Additionally, the 

PyMol mutagenesis wizard tool was used to mutate the wild-type (WT) AA residues p.V138I on the 
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NPSR1 protein structure and the p.R663C on the EPB41L2 protein system. The resulting variant 

structures were saved in PDB format. 

 

2.3.3.3 3D Protein model quality evaluation: 

To evaluate the accuracy of the predicted protein structures, both internal and external tools were 

used. Firstly, quality scores were calculated with SWISS-MODEL inbuilt algorithms, including the 

Global Model Quality Estimation (GMQE) and the Qualitative Model Energy Analysis (QMEAN). 

GMQE is a quality estimation that combines properties from the target-template alignment and the 

template structure. The final GMQE score is a numerical value between 0 and 1, representing the 

expected accuracy of the generated model. A score closer to 1 indicates higher reliability, and a score 

closer to 0 reflects a lower accuracy of the model (Biasini et al., 2014). QMEAN is a composite 

scoring function assessing the significant geometrical aspects of protein structures, such as their fold, 

hydrogen bonding, chirality, and solvation potential, providing both global (entire protein structure) 

and local (per residue) total quality estimates based on the protein model structure (Higueruelo et al., 

2012; Persson et al., 2018; Studer et al., 2020). The QMEAN indicates the similarity of the generated 

protein model’s quality score relative to experimental structures of a similar size (Benkert et al., 

2011). A quality score close to 0 indicates a high-quality protein structure. In contrast, any score that 

falls within the range of -1 to -4 indicates low-quality models compared to high-resolution 

experimental structures of a similar size (Benkert et al., 2011; Studer et al., 2020). 

 

For external evaluation, the Structure Analysis and Verification Server (SAVES) v6.0 web server was 

utilized (https://saves.mbi.ucla.edu/). SAVES is an online web-based tool that accepts files in PDB 

format and has five different quality parameter checks, namely, Verify 3D (Bowie et al., 1991; Lüthy 

et al., 1992), ERRAT (Colovos & Yeates, 1993), Prove (Pontius et al., 1996), PROCHECK 

(Laskowski et al., 1996; Morris et al., 1992) and WHATCHECK (Engh & Huber, 1991). The 

http://etd.uwc.ac.za/ 
 



 

30 

 

predicted WT 3D models were uploaded to the SAVES web server to evaluate the overall quality of 

the models.  

 

Verify 3D, the first of the five quality parameter checks, determines the compatibility of an atomic 

model (3D) with its amino acid sequence (1D) by assigning a structural class based on its location 

and environment (alpha, beta, loop, polar, nonpolar) and comparing the results to high-resolution 

structures (Eisenberg et al., 1997). A model should have at least 80 % of the residues in the sequence 

with a score greater than or equal to 0.2 in the 3D-1D profile for the protein model to be considered 

reliable. Any score below that indicates problematic regions within the model.  

 

ERRAT is a quality evaluation tool that analyses the statistics of non-bonded interactions between 

different atom types and plots on a graph the value of the error function versus the position of a 9-

residue sliding window (Colovos & Yeates, 1993). This is calculated by comparison with statistics 

from reliable high-resolution structures. Structures are considered of high accuracy when they have 

values of 50 % or above (Colovos & Yeates, 1993; Tran et al., 2015). 

 

PROCHECK assesses the quality of a given protein structure by comparing its stereochemical 

parameters, phi and psi dihedral angle distributions of amino acid side chains, with those in high-

resolution protein structures (Pontius et al., 1996). For a protein model to be considered reliable, at 

least 90 % of the residues must be in the most favorable regions of the Ramachandran plot and have 

the best combinations of phi and psi dihedral angle distributions (Morris et al., 1992). A score below 

that indicates problematic side chain orientations and loop regions. In summary, a protein model 

needs to satisfy all or some of these criteria to be deemed reliable. For this study, we utilized the 

Verify 3D, ERRAT, and PROCHECK quality evaluation tools.  

 

http://etd.uwc.ac.za/ 
 



 

31 

 

2.3.4 Stability prediction and polar interaction calculations: 

The DUET web server (v.14) was used to calculate the destabilizing or stabilizing effects of the 

variant on the respective protein structure (Pandurangan et al., 2017; Pires & Ascher, 2016). DUET 

implements both the Site-Directed Mutator (SDM) and the mutation Cut-off Scanning Matrix 

(mCSM) algorithms to calculate a combined score using the two software. Here, the WT structure of 

the respective protein was used to predict the stabilizing or destabilizing effect of the variant on the 

protein structure. The analysis was performed as a regression task consisting of predicting the 

numerical value and direction of change of the difference in Gibbs free energy (Pires et al., 2014). In 

brief, the web server took as input the WT homology model structure in PDB format. Next, 

information on the type of variant, its position, and the chain location was provided to the web server, 

and the job was submitted. The predicted change in Gibbs free energy score upon introducing the 

variant (ΔΔG in Kcal/mol) was calculated. DUET calculates either a negative score, indicating a 

destabilizing effect of the variant on the structure, or a positive score indicating a stabilizing effect of 

the variant on the protein structure.  

PyMol was used to calculate changes in the number of polar contacts between neighboring residues 

of the mutated residue and the WT residue using the ‘find polar contacts’ option in PyMol. This was 

done to determine if the loss or gain of interactions occurred in the immediate amino acid environment 

of the protein residue, thereby possibly affecting the protein’s fold. An increase or decrease in the 

number of polar interactions may further result in a conformational change of the protein (Chen et 

al., 2019). Furthermore, MD simulations were also performed to understand the effect of the variants 

on the dynamics of the protein structures, which are described below. 

 

2.3.5 Molecular Dynamic (MD) simulations: 

Molecular dynamics simulation (MD) is a computational method that analyses the physical 

movements of atoms and molecules. These simulations can provide details concerning individual 

particle motions as a function of time, enabling one to address specific questions about a model 
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system (Karplus & McCammon, 2002). MD’s ability to simulate large biomolecular systems and 

sample more significant conformational changes over long-time scale periods makes it possible to 

determine functional implications that specific changes such as mutations may have on protein 

structures, thus playing an essential role in our understanding of biology (Karplus & McCammon, 

2002).  

 

MD simulations are widely employed in studies investigating structure-function relationships, disease 

pathways, and drug design, relying on the relationship between a given configuration of atoms and 

its energy to propagate dynamics (Nair & Miners, 2014). In this study, we used the GROMACS 

v.2020 suite to perform 200 ns MD simulations for each of the four systems: NPSR1 WT and variant 

(p.V138I) and for EPB41L2 WT and variant (p.R663C). The WT and variant NPSR1 protein systems 

were simulated with the GBQ ligand-bound, forming the NPSR1-GBQ complex, which will be 

discussed further in the next chapter. 

 

2.3.5.1 Preparation of MD simulation input files with CHARMM-GUI: 

CHARMM-GUI (v.24), an online-based tool, was utilized to build the coordinates and topology of 

the WT and MT protein structures of NPSR1 (p.V138I) and EPB41L2 (p.R663C) (Brooks et al., 

2009). For the NPSR1-GBQ complex, the topology of the GBQ ligand was prepared separately using 

the PARAMCHEM CHARMM (v.24) general force field. Topology is defined as a description of the 

properties and connectivity of all atoms in a system. CHARMM-GUI has several modules, and for 

this study, the CHARMM-GUI solution builder interface was employed, which accepts PDB, 

PDBx/mmCIf, and CHARMM formats as input files (Jo et al., 2008). The four systems’ atomic 

coordinates were uploaded separately to the solution builder interface to solvate the systems with 

water molecules (Jo et al., 2008; Lee et al., 2016). The computed energy used was the CHARMM 

single-point energy, ensuring all coordinates were defined (Vanommeslaeghe et al., 2010). A 

rectangular TIP3 water-box with an edge distance of 10.0Å from the edges of the protein was defined. 
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The systems were neutralized by adding counter ions to each of the systems. These were 138 positive 

potassium (K) and 149 negative chloride (Cl) ions to a 0.15M concentration of the NPSR1 WT and 

MT (p.V138I) systems. Additionally, 140 positive K and 140 negative Cl ions were also added to a 

0.15M concentration of the EPB41L2 WT and MT (p.R663C) systems. For all four protein systems, 

the Monte-Carlo ion placing method was used. An empirical force field, which is an accurate 

mathematical description of the relationship of conformation to energy in and between molecules, is 

vital for MD simulations, and in this study, the CHARMM36M was used as it is optimized for proteins 

and small molecules as well as nucleotides and lipid molecules (Huang & MacKerell, 2013). The 

NVT (constant number of particles, Volume, and Temperature) and NPT (constant number of 

particles, Pressure, and Temperature) ensembles were performed at a constant temperature of 

303.15K. 

 

2.3.5.2 Energy minimization: 

CHARMM-GUI solution builder interface generated input files necessary for performing energy 

minimization of the various protein systems in an aqueous solvent environment (Lee et al., 2016). 

Each of the four systems underwent 50000 steps of steepest descent minimization integrator to energy 

minimize the solvated structures using the CHARMM36M force field, applying constraints to the 

hydrogen bonds, and employing the LINCS constraint algorithm as well as the Verlet cutoff-scheme 

(Vanommeslaeghe et al., 2010). This number of energy minimization steps was utilized to completely 

relax the systems’ atomic coordinates to obtain a low energy state. Gromacs v.2020 was used to run 

all simulations in this study (Gajula et al., 2016). 

 

2.3.5.3 System equilibration: 

In the equilibration stage of MD simulations, atoms of the macromolecules and the surrounding 

solvent undergo a relaxation that usually lasts for tens or hundreds of picoseconds before the system 

reaches a stationary state (Stella & Melchionna, 1998). The simulation time required to equilibrate 
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protein systems depends on two significant factors, namely, the system size (the larger the system, 

the slower the equilibration) and the starting structure used (quality of the protein model used and 

how many solvent molecules is present in the system) (Kandt et al., 2007).  

 

After completing the energy minimization step, all the systems underwent a two-step equilibration 

phase, namely NVT and NPT. In both the isothermal-isochoric (NVT) and the isothermal-isobaric 

(NPT) ensembles, the number of particles and temperature were conserved (Binder et al., 2004). The 

volume was conserved for the NVT ensemble, while pressure was conserved in the NPT ensemble. 

NVT was run for 125 picoseconds (ps) to stabilize the system’s temperature, and a short position 

restraint NPT was run after that for 125 ps to stabilize the system’s pressure by keeping the protein 

restrained. The Nose-Hoover temperature-coupling method (Ruhle, 2007) was used for the NVT 

ensemble, with a constant coupling of 1.0 ps at 303.15 K under a random sampling seed. For NPT, 

Parrinello-Rahman pressure coupling was turned on with a constant coupling of 2.0 ps at 303.15 K 

and compressibility of 4.5 × 10–5 bar–1 under conditions of position restraints (all-bonds) 

(Cherniavskyi et al., 2021; Martoňák et al., 2003).  

 

2.3.5.4 Production molecular dynamics: 

After all the systems were equilibrated at the desired temperature and pressure, position restraints 

were removed from the protein, and the simulation proceeded in an unbiased manner. The simulation 

conditions included an integration time step of 0.002 ps, and the MD trajectories were recorded every 

10 ps. The Centre for High-Performance Computing (CHPC) resources (Amolo, 2018) was utilized 

due to its ability to run simulations on multiple computer processors. An extensive production MD 

was initiated for a 200 nanosecond (ns) period to analyze structural changes in protein dynamics for 

all four systems at random seed numbers. Random seed number refers to random starting protein 

conformation (Lian, 2018). Each simulation was repeated to validate the reproducibility of results. 
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2.3.6 Analysis of MD simulations: 

The analysis of the resulting MD trajectory files was done using GROMACS v.2020 utilities. The 

root mean square deviation (RMSD) was calculated for the backbone atoms of the protein using gmx 

rms, and the root mean square fluctuation (RMSF) per-residue analysis was done using gmx rmsf. 

RMSD reveals the average displacement of atoms compared to a reference structure during the 

simulation (Martínez, 2015). If the RMSD achieves a stable plateau, the simulation is considered to 

have attained a stable conformation and reached equilibration (Agrahari et al., 2019). The last 50 ns 

of the trajectory were analyzed, representing the most stable part of the simulation. RMSF measures 

the average fluctuation of a particular residue or atom over time (Martínez, 2015). It is used to obtain 

information on the local structure flexibility, thermal stability, and heterogeneity of macromolecules 

(Kuzmanic & Zagrovic, 2010). In this study, RMSF was utilized to inspect each residue’s flexibility. 

Additionally, the mean and standard deviation (stdev) was calculated for the RMSD and RMSF values 

of both the WT and MT systems. 

 

The radius of gyration (Rg) was calculated for the backbone using gmx gyrate. Rg, which provides 

information on the compactness and size of the protein molecules (Arnittali et al., 2019), was carried 

out to analyze the impact of the variant on the folding state of the protein system (Agrahari et al., 

2019). The solvent-accessible surface area (SASA) of the protein atoms of the four protein systems 

was calculated using gmx sas. SASA is defined as the surface area of a biomolecule that is accessible 

to a solvent and the ability of its atoms to form contacts with the solvent (Ausaf Ali et al., 2014). 

SASA is a critical factor in studies inspecting protein folding and stability, as it plays a significant 

role in understanding the structure-function relation of proteins and their residues. The total intra-

molecular hydrogen bonds (H-bonds) between the NPSR1 protein and its ligand GBQ was calculated 

using gmx hbond. Additionally, the non-bonded pairwise interaction energy analysis was performed 

using gmx energy. In this calculation, the Lennard-Jones energy and the coulombic electrostatic 

energy were considered. 
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The Visual Molecular Dynamics (VMD) package was used to inspect the systems’ motions along the 

complete 200 ns of the trajectory. VMD is a molecular visualization program for displaying, 

animating, and analyzing large biomolecule systems using 3D graphics and built-in scripting 

(Humphrey et al., 1996). As MD simulations are time-dependent and each frame of time carries vital 

information related to interactions, analysis and proper understanding of the simulation are very 

important. For this study, VMD was used to inspect the motions along the trajectory of the protein 

systems and reported as movies. 

 

2.3.6.1 Principal component analysis: 

Principal Component Analysis (PCA) is a statistical technique that reduces the complexity of data 

sets to extract biologically relevant movements of protein domains from irrelevant localized motions 

of atoms (David & Jacobs, 2014). PCA is a linear transform method that extracts basic movements 

from the data set using a covariance matrix constructed from atomic coordinates that describe the 

accessible degrees of freedom of the protein residues (David & Jacobs, 2014).  This method is a 

means to transform the data to a new coordinate system, such that the most significant variance 

determined by the scalar projection of the data comes to lie on the first coordinate (first principal 

component) and the second most significant variance on the second coordinate (Ayaz, 2003).  

 

For this analysis, firstly, we generated a covariance matrix using gmx covar. This was done to 

understand how the atom positions vary from the mean with respect to each other. Next, we computed 

the eigenvectors and eigenvalues of the covariance matrix to identify the principal components. 

Eigenvectors of the covariance matrix were used as they represent the directions of the axes where 

there is most variance; eigenvalues are the coefficients attached to eigenvectors, which give the 

percentage of variance carried in each principal component. Lastly, we created a 2D graph plotting 

variance distribution along the two major principal component axes. This was to understand 
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differences in large-scale movements of the protein systems throughout the simulation landscape. 

Figure 2.1 illustrates a flowchart summarizing the methodology utilized to carry out this study. 

 

Figure 2.1: Flowchart representing the methodology of this study. PD: Parkinson’s disease, MD: 

molecular dynamics.   

Previous work: 

• 166 variants filtered to 

11 variants in 11 genes. 

Current work 

11 variants in 11 genes 
annotated 

3 genes prioritized as PD-
associated 

2 variants in 2 genes 
modelled and simulated 

http://etd.uwc.ac.za/ 
 



 

38 

 

CHAPTER III: Results 

3.1 Description of the family: 

A South African family of Indian ancestry with Parkinson’s disease (PD) was identified by a 

neurologist, Dr. Jonathan Carr and clinically assessed by Dr. Roopnarain. A simplified version of the 

pedigree indicating the family members who took part in this study (four members affected with PD; 

a mother and her three sons) are shown in Figure 3.1 and denoted as family ZA 398. 

 

Unfortunately, the mother passed away many years before starting this study, which did not allow for 

a clinical assessment of her symptoms by the neurologist or to collect a blood sample for DNA 

analysis. We did, however, obtain clinical information about the mother from her children by word of 

mouth.  

 

As mentioned previously, all three affected individuals share the 11 variants that were prioritized in 

the previous study. Therefore, the focus of the current study was to further investigate the 11 variants 

and to prioritize putative pathogenic variants for future functional studies.  
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Figure 3.1: Pedigree of family ZA 398. Affected family members (PD patients) shown in blue. 

Squares represent males, while circles represent females. Dashed lines through the squares and circles 

indicate deceased individuals. Roman numerals represent generations of offspring. AAO = Age at 

onset of PD, ID = Identification number of individuals that took part in the study. Personal 

information removed to allow anonymity of individuals. 

 

3.2 Variant annotation: 

The UMD–predictor was used to verify the positions of variants on the respective genes. This web-

based tool gives the chromosome and chromosome position on which the gene is found, gene name, 

the protein position, both the wild-type and the variant amino acid and indicates whether the variant 

is pathogenic or a benign polymorphism. We do not report here the pathogenicity of the variants, as 

this initial analysis was done only to confirm the position of the variants. 

 

 

 

 

http://etd.uwc.ac.za/ 
 



 

40 

 

Table 3.1: Tabulated representation of the variant position annotation by the UMD-predictor. 

Chromosome 

(Chr) 

Chromosome 

position 

Gene symbol Amino acid 

position 

Wild-type 

amino acid 

Variant amino 

acid 

Chr1 205592869 ELK4 48 R C 

Chr1 243349703 CEP170 377 T M 

Chr3 127980996 EEFSEC 184 V M 

Chr3 160156631 TRIM59 114 K R 

Chr4 3210535 HTT 2063 R H 

Chr4 1411464647 ELMOD2 215 A S 

Chr6 131199300 EPB41L2 663 R C 

Chr6 17626089 NUP153 1284 T I 

Chr7 34851409 NPSR1 138 V I 

Chr15 101567928 LRRK1 871 T M 

Chr19 12759179 MAN2B1 825 V A 

Abbreviations: ELK4= ETS transcription factor, CEP170= Centrosomal protein 170-KD, EEFSEC= 

Eukaryotic elongation factor selenocysteine-tRNA-specific, TRIM59= Tripartite motif-containing 

protein 59, HTT= Huntingtin, ELMOD2= ELMO domain containing 2, EPB41L2= Erythrocyte 

membrane protein 4.1 like 2, NUP153= Nucleoporin 153-KD, NPSR1= Neuropeptide S receptor 1, 

LRRK1= Leucine-rich repeat kinase 1, MAN2B1= Mannosidase alpha class 2B member 1, R= 

Arginine, C= Cysteine, T= Threonine, M= Methionine, V= Valine, K= Lysine, H= Histidine, A= 

Alanine, S= Serine, I= Isoleucine. 

 

3.3 Functional gene annotation using data mining: 

Presented below are the results obtained after data mining was performed on the 11 candidate genes. 

ETS-domain protein (ELK4) is a member of the E-twenty-six (ETS) family of transcription factors 

and the ternary complex factor (TCF) subfamily (Rickman et al., 2009). ETS-domain proteins play a 

role as either transcriptional repressors or activators, and their activities are often regulated by signal 

transduction pathways, including the MAP kinase pathway (Sharrocks et al., 1997). ETS-domain 

transcription factors regulate a diverse array of biological functions, including mammalian 

hematopoiesis and Drosophila eye development. Hematopoiesis refers to the production of the 

cellular components of blood and blood plasma. A study conducted by Peng et al. (2016) identified 

ELK4 as a protein-binding partner with cyclin-dependent kinase 2 (CDK2), a catalytic subunit of the 

CDK complex whose activity is restricted to the G1-S of the cell cycle, where cells make proteins 
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necessary for mitosis and DNA replication (Peng et al., 2016). Mutations in the ELK4 gene have been 

associated with prostate cancer and melanoma in previous studies (Makkonen et al., 2008; Peng et 

al., 2016). 

 

The centrosomal protein of 170 kDa (CEP170) is a component of the centrosome, a non-membranous 

organelle that functions as the major microtubule-organizing center in humans and is highly expressed 

in the ovaries and testis (Ishikawa et al., 1997). During mitosis, CEP170 localizes to centrosomes as 

well as spindle microtubules and promotes microtubule organization and microtubule assembly. 

(Bärenz et al., 2018) CEP170 interacts with the intraflagellar transport protein 81 (IFT81), the SH3-

domain-containing protein PRAX-1 and is phosphorylated by CDK1 and polo-like kinase 1 (PLK1) 

(Guarguaglini et al., 2005; Welburn & Cheeseman, 2012). 

 

The eukaryotic elongation factor, selenocysteine-TRNA specific (EEFSEC), is a protein-coding gene 

that promotes selenocysteine incorporation into selenoproteins (Dobosz-Bartoszek et al., 2016). SNPs 

identified in the EEFSEC locus were significantly associated with gestational length, preterm birth, 

increased risk of prostate cancer, and reduced risk of hypospadias (G. Zhang et al., 2017). Diseases 

associated with EEFSEC include Karyomegalic, Interstitial Nephritis, and Drug-Induced Lupus 

Erythematosus (Perico et al., 2018). 

 

The tripartite motif-containing protein 59 (TRIM59) is an essential member of the TRIM family, 

regulating biological processes such as cell cycle, cell apoptosis, and natural immunity to viruses (P. 

Zhang et al., 2019). A study by Geng et al. (2019) identified TRIM59 as a critical oncoprotein relating 

to lung cancer proliferation and metastasis (Geng et al., 2019). TRIM59 has also been shown to 

promote retinoblastoma progression and tumor growth in hepatocellular carcinoma (Wu et al., 2020; 

Ying et al., 2020).  
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The huntingtin (HTT) gene is linked to Huntington's disease, a neurodegenerative disorder 

characterized by loss of striatal neurons (Sienes Bailo et al., 2020). This may be caused by an unstable, 

expanded trinucleotide repeat in the HTT gene, translating as a polyglutamine repeat in the protein 

product (Futter et al., 2009). HTT is widely expressed as two alternatively polyadenylated forms 

displaying different abundance in various fetal and adult tissues required for normal development. 

 

ELMO domain-containing 2 (ELMOD2) gene encodes one of six engulfment and motility (ELMO) 

domain-containing proteins and may play a role in antiviral responses. Mutations in ELMOD2 may 

be involved in the cause of familial idiopathic pulmonary fibrosis (Pulkkinen et al., 2010). 

 

Erythrocyte membrane protein 4.1-like 2 (EPB41L2), also known as protein 4.1G, is a member of the 

protein 4.1 families, which function as adaptors linking transmembrane proteins to the cytoskeleton 

(Yang et al., 2011). This family includes four members: 4.1R, 4.1G, 4.1B, and 4.1N that share high 

sequence homology in three functional domains, namely, the N-terminal 4.1-ezrin-radixin-moesin 

(FERM) domain, the internal spectrin-actin-binding domain (SABD), and the C-terminal domain 

(CTD) (Yang et al., 2011). A study carried out using real-time PCR revealed that EPB41L2 is 

predominantly expressed in the brain, spinal cord, and along the membrane of Sertoli cells in the 

testis (Pm et al., 2005). EBP41L2 was found to be localized at two specific regions in Schwann cells 

forming myelin in the peripheral nervous system: Schmidt-Lanterman incisures (SLIs) and paranodes 

(Ohno et al., 2006; Saitoh et al., 2017). 

 

Nucleoporin 153 (NUP153) protein belongs to the nucleoporin family, glycoproteins involved in 

regulating the transport of macromolecules between the nucleus and cytoplasm (McMorrow et al., 

1994). NUP153 plays a role in repairing double-strand breaks and activating DNA damage 

checkpoints (Lemaître et al., 2012). This protein is also necessary for HIV-1 replication (Buffone et 

al., 2018). 
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Neuropeptide S receptor 1 (NPSR1) gene encodes a membrane protein and is a member of the 

vasopressin/oxytocin subfamily of G protein-coupled receptors. The resulting protein acts as a 

receptor for neuropeptide S and affects various cellular processes through its signaling. Neuropeptide 

S is a neurotransmitter expressed in the brainstem, and its mRNA occurs in some regions of the fear 

circuit, such as the amygdala and hypothalamus (Gechter et al., 2019). Polymorphisms in the NPSR1 

gene have also been associated with asthma susceptibility, insomnia, panic disorders, inflammatory 

bowel disease, and rheumatoid arthritis (Ghazal, 2016; Hall et al., 2019; Ober & Yao, 2011). 

 

Leucine-rich repeats kinase 1 (LRRK1) is a multi-domain protein belonging to the ROCO family of 

complex proteins (Korr et al., 2006). ROCO proteins constitute a novel subgroup of Ras-like GTPases 

that are characterized by unique domain architecture. All ROCO proteins contain a GTPase-like 

domain named Ras of complex proteins (Roc) followed by the C-terminal of Roc (COR) domain, a 

stretch of 300–400 amino acids of unknown function showing no significant sequence homology to 

any functionally described protein domain (Bosgraaf & Van Haastert, 2003). Additionally, LRRK1 

has been shown to play a critical role in regulating bone mass in humans, and mutations in it have 

been identified in patients with osteosclerotic metaphyseal dysplasia (L. Guo et al., 2017; Iida et al., 

2016). 

 

Mannosidase alpha class 2B member 1 (MAN2B1) gene encodes an enzyme that hydrolyses terminal, 

non-reducing alpha-D-mannose residues in alpha-D-mannosidase. The activity of this enzyme is 

necessary for the catabolism of N-linked carbohydrates released during glycoprotein turnover, and it 

is a member of family 38 of glycosyl hydrolases. Mutations in MAN2B1 have been linked to Alpha-

mannosidosis, a rare autosomal recessive disorder caused by the deficiency of lysosomal alpha-

mannosidase (Sbaragli et al., 2005). 
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3.4 Pathway, expression and STRING analysis: 

To further prioritize the possible causal role of these variants and genes in PD, gene expression 

profiles and pathway databases were interrogated for each gene. The publicly available databases 

used in this study included the Allen Brain Atlas, KEGG’s pathway, PANTHER pathway, Human 

Protein Atlas, and STRING database. Gene expression analysis was done to determine which genes 

were highly expressed in the brain, and pathway analysis was done to determine if any of the 11 genes 

were involved in PD-linked or dopamine-related biological pathways. Additionally, STRING analysis 

was performed to identify if any of the 11 genes interacted with PD-linked genes. Two known PD 

genes were also included as positive controls in these analyses to test the efficacy of this prioritization 

method namely, SNCA and PARK7. SNCA was chosen as it encodes a presynaptic protein (α-

synuclein) that plays a significant role in PD-related pathways. PARK7, on the other hand, encodes 

the DJ-1 protein and plays a key role in mitochondrial function, which has been implicated as an 

important biological process underlying the development of PD. SNCA is highly expressed in brain 

regions such as the thalamus, basal ganglia and midbrain and is involved in PD-linked pathways such 

as calcium signaling and dopamine metabolism. PARK7 is expressed in the amygdala, hippocampus 

and cerebral cortex and is broadly involved in pathways previously linked to neurodegeneration in 

multiple diseases. The results of the positive controls were then used as a guide to prioritize putative 

candidate variants from the 11 sequence variants in the current study, for further analysis. 

 

STRING analysis indicates that the EPB41L2 protein interacts with several synaptic cell-adhesion 

molecules such as neuroligins and neurexins (Figure S5). Neuroligins and neurexins connect pre- and 

postsynaptic neurons at synapses, shape neural network properties, and mediate trans-synaptic 

signaling (Südhof, 2008). In humans, alterations in neuroligin or neurexin genes are implicated in 

autism and other cognitive diseases. Several significant protein-protein interactions between 

EPB41L2-NLGN1 (0.907), EPB41L2-NLGN2 (0.904), EPB41L2-NRXN1 (0.920), EPB41L2-NRXN2 

(0.920), and EPB41L2-NRXN3 (0.920) were recorded indicating the strength of the association 
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between the genes and amount of evidence available for the interactions. The closer the combined 

score is to 1, the more evidence available for interactions between the genes. Furthermore, it also 

revealed that NPSR1 interacts with proteins involved in the positive regulation of the circadian 

sleep/wake cycle as well as in hormone-mediated apoptotic signaling pathways (Figure S4). Several 

significant protein-protein interactions between NPSR1-PTh (0.951), NPSR1-CASR (0.967), and 

NPSR1-CALCA (0.953) were recorded indicating the strength of the association between the genes 

and amount of evidence available for the interactions (Figure S4).  Additionally, STRING analysis 

indicates that LRRK1 interacts with four PD-associated genes, namely, PARK2, PINK1, PARK7 and 

VPS35 (Figure S6). LRRK1 recorded a combined score of significant protein-protein interactions 

between LRRK1-PARK2 = 0.730; LRRK1-PARK7 = 0.666; LRRK1-PINK1 = 0.741; LRRK-VPS35 

= 0.737. STRING analysis of the remaining eight genes showed that they did not interact with any 

PD-associated genes. 

 

Table 3.2: Gene expression profiles and pathway data of the 11 candidate genes (in alphabetical 

order) under investigation compared to two known PD genes. 

Gene Allen Brain Atlas Human Protein 

Atlas 

KEGG Pathway 

Analysis 

PANTHER Pathway 

Analysis 

CEP170 Cerebral cortex, 

Grey matter 

Testis, Caudate, 

Cerebellum, 

Cerebral cortex, 

Pons & medulla, 

Midbrain, 

Thalamus, Bone 

marrow, Spinal 

cord 

Ciliogenesis, 

Centrosome 

formation 

Centriole appendage 

assembly, 

Microtubule 

organization 

EEFSEC Grey matter, Pons, 

Cerebral cortex 

Parathyroid gland, 

Skeletal muscle, 

Cardiac muscle, 

Cerebellum, 

Cerebral cortex, 

Hippocampal 

formation 

Translation factors, 

Elongation factors 

Translational 

elongation, 

Selenocysteine 

ELK4 Basal ganglia, 

White matter 

Prostate, Testis, 

Oesophagus, 

MAPK signaling 

pathway, 

Interleukin signaling 

pathway, PDGF 
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Adipose tissue, 

Cerebellum 

Transcriptional 

misregulation in 

cancer 

signaling pathway, 

CCKR signaling map 

ELMOD2 Cerebellar cortex, 

Grey matter, 

Hypothalamus, 

Substantia nigra, 

Pons, Cerebral 

cortex, Thalamus, 

Ventricles, 

Cerebellum 

Thyroid gland, 

Adrenal gland, 

Bronchus, 

Duodenum, Testis, 

Pituitary gland 

Membrane 

trafficking 

Antiviral defence 

EPB41L2 White matter, 

Grey matter 

Hippocampus, 

Caudate, Spinal 

cord, Retina, 

Thalamus, 

Midbrain, Cerebral 

cortex, Testis, Basal 

ganglia 

Signaling & 

cellular processes 

Dopamine receptor-

mediated signaling 

pathway, Nicotine 

pharmacodynamics 

pathway 

HTT Cerebellar cortex Cerebral cortex, 

Parathyroid gland, 

Cerebellum, 

Amygdala, Lung 

Huntingtin Disease Huntingtin’s disease 

LRRK1 Not expressed in 

the brain 

Detected in all 

tissue, Lymph 

node, Appendix, 

Tonsil, Spleen 

Transferases Canonical wnt 

signaling pathway 

MAN2B1 Hypothalamus, 

White matter, 

Thalamus, 

Ventricle, Pons, 

Grey matter, 

Cerebellum 

Lymph node, 

Spleen, Monocytes. 

Glycan 

degradation, 

Lysosome process 

Protein 

deglycosylation, 

neutrophil 

degranulation, 

cellular protein 

modification process. 

NPSR1 Cerebral Cortex, 

Thalamus, Grey 

matter, Pons, 

Hypothalamus, 

Basal ganglia 

Brain, Retina, 

Stomach, 

Cerebellum, 

Hypothalamus, 

Testis, Pons& 

medulla, Corpus 

callosum, Cerebral 

cortex 

Signaling & 

cellular process 

G-protein coupled 

receptor signaling 

pathway (Reactome), 

Neuropeptide 

signaling pathway, 

Up-regulation of the 

release of sequestered 

calcium ions into the 

cytosol (UniProtKB) 

NUP153 Grey matter, 

Cerebral cortex 

Bone Marrow, 

Testis, Cerebellum, 

RNA transport Nuclear pore 

assembly 
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Thymus, Skeletal 

muscle 

PARK7 Hippocampal 

formation, 

Amygdala, Gray 

matter 

Hippocampus, 

Cerebral cortex, 

Cerebellum, 

Amygdala 

Parkinson’s 

disease, Pathways 

of 

neurodegeneration 

– multiple diseases, 

Transcription. 

Sumoylation of 

transcription co-

factors (Reactome) 

SNCA Thalamus, Grey 

matter 

Cerebral cortex, 

Hippocampal 

formation, 

Amygdala, Basal 

ganglia, 

Hypothalamus, 

Midbrain, 

Thalamus 

Alzheimer’s 

disease, 

Parkinson’s 

disease, Pathways 

of 

neurodegeneration 

– multiple diseases, 

Calcium signaling, 

Dopamine 

metabolism 

Parkinson’s disease 

TRIM59 White matter Brain & lymphoid 

tissue, Corpus 

callosum, 

Thalamus, 

Midbrain, Thymus, 

Ubiquitin system I-kappaB kinase/ NF-

kappaB signaling 

Abbreviations: ELK4= ETS transcription factor, CEP170= Centrosomal protein 170-KD, EEFSEC= 

Eukaryotic elongation factor selenocysteine-tRNA-specific, TRIM59= Tripartite motif-containing 

protein 59, HTT= Huntingtin, ELMOD2= ELMO domain containing 2, EPB41L2= Erythrocyte 

membrane protein 4.1 like 2, NUP153= Nucleoporin 153-KD, NPSR1= Neuropeptide S receptor 1, 

LRRK1= Leucine-rich repeat kinase 1, MAN2B1= Mannosidase alpha class 2B member 1, SNCA= 

Synuclein alpha, PARK7= Parkinson disease protein 7, MAPK: Mitogen-activated protein kinase, 

PDGF: Platelet-derived growth factor, CCKR: Cholecystokinin receptor. 

 

The results tabulated show that NPSR1 and EPB41L2 were noted by both the Allen Brain Atlas 

(https://celltypes.brain-map.org/) and Human Protein Atlas (HPA) (https://www.proteinatlas.org/) to 

be highly expressed in the midbrain, thalamus and basal ganglia, which are vital regions known to be 

involved with PD pathogenesis (Table 3.2, Table S2 and Figures S1 and S2). Pathway analysis 

(http://pantherdb.org/; https://www.genome.jp/kegg/) has shown that both NPSR1 and EPB41L2 are 

involved in signaling and cellular processes. NPSR1 is involved in the G protein-coupled receptor 

signaling pathway, neuropeptide signaling pathway and the up-regulation of the release of sequestered 
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calcium ions into the cytosol. EPB41L2, on the other hand, plays a role in the dopamine receptor-

mediated signaling pathway as well as the nicotine pharmacodynamics pathway.  This agrees with 

the results recorded from the known PD genes, SNCA and PARK7 genes, which were used as positive 

controls as explained above. ELMOD2 is expressed in the substantia nigra, hypothalamus and 

thalamus but only involved in membrane trafficking and antiviral defense pathways. MAN2B1 and 

ELK4 are also expressed in the hypothalamus, and basal ganglia, respectively but are not involved in 

any PD related pathways. NUP153, CEP170, LRRK1, EEFSEC, TRIM59 and HTT are not involved 

in PD related pathways, as shown in Table 3.2. Interestingly, LRRK1 is involved in protein-protein 

interactions with three autosomal recessive PD genes (PARK2, PINK1 and PARK7) and one autosomal 

dominant PD gene (VPS35) as shown in Figure S6. 

From the functional gene annotation performed using data mining, STRING analysis, as well as the 

data recorded in Table 3.2, it is evident that LRRK1, EPB41L2 and NPSR1 fit the criteria of this study. 

This is because they are either involved in protein-protein interactions with PD-associated genes 

(Figure S6) or highly expressed (as shown in Table S2) in the basal ganglia, midbrain and thalamus 

and involved in PD related pathways. Examples of the PD related pathways include the dopamine 

receptor-mediated signaling pathway, G protein-coupled receptor signaling pathway, up-regulation of 

the release of calcium ions and the neuropeptide signaling pathway to mention a few. Regulation of 

the dopamine receptor-mediated signaling pathway is crucial, as a loss of dopamine neurons is the 

main feature of PD (Saikia, 2018). Moreover, maintaining calcium homeostasis is critical in the 

mitochondria of healthy individuals and a dysregulation in the levels of calcium ions present in the 

mitochondria act as a major pathological hallmark of PD (Ludtmann & Abramov, 2018). Additionally, 

components in the G protein-coupled receptor-signaling pathway are utilized as therapeutic targets in 

reducing psychiatric symptoms displayed by PD patients (Galet et al., 2021). Specific proteins in 

these pathways have been implicated in PD development and could act as significant risk factors as 

both dopamine regulation and maintenance of calcium homeostasis in the human body are critical 

factors (Chan et al., 2009). For these reasons, genes; LRRK1, NPSR1 and EPB41L2 were selected to 
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carry out further in-silico structural analyses. Unfortunately, due to a lack of a solved homologous 

template structure covering the variant position for LRRK1 at the start of this study, we only 

performed in-silico structural analyses on NPSR1 and EPB41L2. The remaining eight genes are 

considered to be of lower importance as they do not fit all the criteria mentioned above.  However, 

they are all still plausible candidates and therefore should not be excluded from future studies.  

 

3.5 Homology modeling: 

The two prioritized proteins, NPSR1 and EPB41L2, containing amino acid substitutions at positions 

p.V138I and p.R663C, respectively, were further pursued in homology modeling studies to assess the 

effects of the variants on the protein structures. For the NPSR1 protein, the homologous x-ray 

diffraction crystal structure of the human NK1 substance P (SP) receptor with Protein Data Bank ID: 

6J21 was selected to construct the 3D protein structure of NPSR1. SP receptor, a distantly related 

homolog to NPSR1, is involved in the G-protein coupled receptor protein-signaling pathway. The 

template 6J21 had the highest sequence coverage (0.79) and low sequence identity (21.77 %) to 

NPSR1 and was therefore selected for homology modeling.  

 

Furthermore, the 6J21 template protein structure had two ligands bound to it; the 5-[[(2~{R},3~{S})-

2-[(1~{R})-1-[3,5-bi(trifluoromethyl)phenyl]ethoxy]-3-(4-fluorophenyl)morpholin-4-yl]methyl]-

1,2-dihydro-1,2,4-triazol-3-one (GBQ) and the (2R)-2,3-dihydroxypropyl (9Z)-octadec-9-enoate 

(OLC), attached to the protein structure. GBQ, a neurokinin 1 (NK1) receptor antagonist, is a drug 

used in chemotherapy and general anaesthesia. In previous studies, SP and its tachykinin NK1 

receptor have been identified as novel neuroprotective targets for dopaminergic degeneration 

(Thornton & Vink, 2015). OLC, a molecule from lipid monoolein, is an amphiphilic featuring a polar 

head group and a non-polar hydrocarbon chain (Kulkarni et al., 2011). It is an endogenous ligand and 

was included to solve the 6j21 template structure (Chen et al., 2019; Cherniavskyi et al., 2021). With 
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the aid of PyMol, both ligands were extracted to NPSR1 to generate a complex (the NPSR1-GBQ-

OLC complex). This was done by firstly aligning the 6j21 template and the solved NPSR1 protein 

structure. The PyMol extract tool was then used to extract both GBQ and OLC ligands from the 6j21 

template and onto the NPSR1 protein structure. The resulting NPSR1-GBQ-OLC complex was then 

saved in PDB format. The two ligands were included to determine whether the binding of ligands to 

NPSR1 was affected by introducing the p.V138I variant. Figure 3.2 illustrates the 3D cartoon 

representation of the NPSR1 membrane protein homology model, consisting of 10 alpha-helices, 13 

loops and two beta-sheets. The C-terminal (shown to the right) of the NPSR1 membrane protein 

projects into the lumen, while the N-terminal (shown to the left) is in the cytosol. 

 

Figure 3.2: 3D cartoon representation of the NPSR1 homology structure predicted with SWISS-

Model. The protein A-chain is colored by its secondary structure, with alpha helices shown in cyan, 

beta sheets shown in red, and loops shown in magenta. The mutated residue Isoleucine 138 is labeled 

and shown as yellow sticks, and the GBQ and OLC ligands are labeled and shown as green sticks. 

http://etd.uwc.ac.za/ 
 



 

51 

 

 

In addition, for the EPB41L2 protein, the X-ray diffraction crystal protein structure of the AlphaII-

spectrin tetramerization domain with PDB ID: 3F31, which is from homo sapiens, was selected to 

construct the 3D structure of the spectrin-actin-binding domain of this protein. The criteria used for 

selecting a homologous template were based on high sequence identity and sequence coverage, and 

coverage of the variant site. For the EPB41L2 gene, the 3F31 template covering the AA region 634 – 

770, as shown in the sequence alignment (Figure S18), presented the highest sequence coverage 

(0.73) and low sequence identity (27.42 %) relative to the other templates. The GMQE score was 

0.21, indicating low confidence in the homology model’s quality. Nevertheless, this is expected 

because of the low sequence identity between the target EPB41L2 sequence and the homologous 

template 3F31 and because the predicted protein model still requires additional energy refinement. 

The predicted protein structure for EPB41L2 consists of 9 alpha helices and 10 loop regions with no 

beta-sheets indicative of a transmembrane protein structure (Figure 3.3).  
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Figure 3.3: 3D cartoon representation of the EPB41L2 homology structure predicted with 

SWISS-Model. The protein B-chain, a monomer, is colored by its secondary structure, with alpha 

helices shown in cyan and loops shown in magenta. The mutated residue Cys 663 is labeled and 

shown as yellow sticks. 

 

3.6 3D protein model quality assessment: 

The QMEAN score calculated for the NPSR1 WT 3D protein complex was -5.00, demonstrating 

moderate reliability of the predicted NPSR1-GBQ-OLC protein complex compared to experimental 

structures of a similar size (Benkert et al., 2011; Studer et al., 2020). Moreover, the protein complex 

had a GMQE score of 0.54, which was closer to 1.00, indicating high confidence in the homology 

model’s quality. Additionally, a low root mean square deviation (RMSD) score (0.121 Å) was 

calculated using PyMol align command between the NPSR1 WT homology model and the 6J21 

template. This indicated minimal deviation of backbone carbon atoms between target and template, 

suggesting high homology and structural similarity between the two structures. Quality assessment 

of the NPSR1 WT and 6J21 template 3D protein structures was performed using the SAVES v6.0 web 
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server. Interestingly, PROCHECK analysis of the NPSR1 WT homology model indicated satisfaction 

of stereo-chemical restraints. The NPSR1 WT model contained 93 % of its residues in the most 

favored regions in the Ramachandran plot. The overall quality factor score, as evaluated by ERRAT, 

was high (93.33 %), indicating that all residues in the A-chain had a low error rate for the NPSR1 WT 

homology model. NPSR1 WT 3D structure failed the VERIFY3D quality check with only 45.24 % 

of the residues averaging a 3D-1D score >= 0.2. However, the 6J21 template scores also failed the 

VERIFY3D quality analysis and had a lower (37.94 %) score than our predicted model. 

 

For the EPB41L2 protein (WT), a quality assessment of the spectrin-actin-binding region and the 

3F31 template was performed using the SAVES v6.0 web server. The WT homology model had a 

QMEAN score of -3.74, indicating that the generated model was of moderate quality compared to 

other experimental structures. The RMSD analysis calculated between the EPB41L2 WT homology 

model and the 3F31 template using the PyMol align command revealed minimal deviation (0.626 Å) 

of the backbone carbon atoms. This suggests high homology and structural similarity between both 

structures as the RMSD (2.0 Å) was less than the RMSD cut-off value of 3.5 Å. PROCHECK and 

ERRAT analyses of the EPB41L2 WT homology protein structure was satisfactory, with 84.9 % of 

the residues found in the most favored regions of the Ramachandran’s plot and an overall quality 

factor score of 86.8 %. However, the WT homology model failed the VERIFY3D quality checks with 

only 47.45 % of residues averaging a 3D-1D score >= 0.2. Upon inspecting the VERIFY3D score of 

the 3F31 template, it was seen that only 51.62 % of the residues averaged a 3D-1D score >= 0.2. This 

indicates that the template structure 3F31 with a resolution of 2.3 Å and an R-factor of 0.28, used to 

generate the EPB41L2 WT homology model, is of moderate quality. Subsequent modeling studies 

should consider using a template with higher resolution and higher sequence identity to the target 

sequence of EPB41L2 to obtain a more accurate 3D structure of the target protein. In summary, based 

on the satisfaction of several qualitative factors, the protein models used here were considered reliable 

and were subsequently selected for MD simulation studies.  
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3.7 Protein stability and polar interaction calculations:  

The most frequent cause of monogenic disorders is a single base DNA variant that results in an amino 

acid (AA) substitution that affects the enzyme activity (Yue et al., 2005).  As shown in Table 3.3, both 

the p.V138I and p.R663C variants have slightly destabilizing effects on their respective protein 

structures, as predicted by the DUET web server. Additionally, no change in the number of polar 

contacts formed between the NPSR1 protein and ligands (GBQ and OLC) is seen after introducing 

the variant. However, a slight change is seen in the distance between the H-bond formed between the 

oxygen atom in the GBQ ligand and the hydrogen atom of the ARG125 residue after the introduction 

of the p.V138I variant (Figure 3.4 A and 3.4 B). No change is seen in the polar interactions between 

OLC and NPSR1 after the p.V138I variant is introduced. For this reason, when running the MD 

simulations, we only explored the NPSR1-GBQ complex further. 

 

Table 3.3: Stability prediction of the variants on the energy minimized protein systems and 

analysis of their effect on the polar contacts 

Protein Predicted ΔG (Kcal/mol) Polar contacts 

DUET Stability Before variant After variant 

NPSR1 (p.V138I) -0.324 Destabilizing GBQ: Arg125 

OLC: 0 

GBQ: Arg125 

OLC: 0 

EPB41L2 

(p.R663C) 

-0.102 Destabilizing 1 (GLU668) 1 (GLU668) 

Abbreviations: NPSR1= Neuropeptide S receptor 1, EPB41L2= Erythrocyte membrane protein 4.1 

like 2 Arg= Arginine (R), Glu= Glutamic acid/ Glutamate, V= Valine, I= Isoleucine C= Cysteine. 
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Figure 3.4: NPSR1 active site showing interaction with the GBQ ligand.  

A) Polar contacts formed between the GBQ drug, colored according to atom type (carbon: yellow, 

hydrogen: white, nitrogen: blue, oxygen: red, sulfur: orange). The residue of the NPSR1 WT protein 

(ARG 125) forms a polar contact; labeled and colored according to atom type (carbon: magenta, 

hydrogen: white, nitrogen: blue, oxygen: red, sulfur: orange). Polar contacts shown as yellow dashes 

and labeled. 

 

http://etd.uwc.ac.za/ 
 



 

56 

 

B) Polar contact formed between the GBQ drug, which is colored according to atom type (carbon: 

yellow, hydrogen: white, nitrogen: blue, oxygen: red, sulfur: orange). Residue that it forms a polar 

contact with (ARG 125) of the NPSR1 MT (p.V138I) protein labeled and colored according to atom 

type (carbon: magenta, hydrogen: white, nitrogen: blue, oxygen: red, sulfur: orange). Polar contacts 

shown as yellow dashes and labeled.  

 

3.8 Production MD simulations: 

3.8.1 Energy minimization of NPSR1 and EPB41L2 protein structures: 

Before running simulations, it was necessary to relax the solvated systems to a low-energy state. For 

the NPSR1 WT and MT (p.V138I) protein structures, the potential energy (Epot) was both negative 

values and fell within the 105 – 106 range, suggesting that the energy minimization (EM) was 

successful as this is one of two critical factors used in determining convergence of the systems. The 

second factor, the maximum force (WT: Fmax = 9.0867 x102; MT: Fmax = 9.0909 x102), the target 
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for which was set in the EM script as ‘emtol = 1000.0’, which indicates a target Fmax of no greater 

than 1000 kJ mol -1 nm -1. We observed that the Fmax of both the WT and MT was less than the set 

target indicating a successful EM.  

 

A similar trend was seen in both the WT and MT (p.R663C) of the EPB41L2 protein structures, with 

the Epot values falling within the 105 – 106 range and the Fmax values less than 1000 kJ mol -1 nm -1 

as shown in Table 3.4, suggesting that all solvated systems were relaxed to a low-energy state. Energy 

minimization of all systems was repeated and showed similar results as observed for the first run 

(Table 3.4). 

 

Table 3.4: Energy minimization results for the WT and MT protein structures of NPSR1 and 

EPB41L2 

 Epot x E06 

(kJ mol-1) 

Fmax x E02 

(kJ mol-1 nm-1) 

Repeat Epot x E06 

(kJ mol-1) 

Fmax x E02 

(kJ mol-1 nm-1) 

NPSR1 WT -2.349 9.0867 WT -2.345 9.104 

MT (p.V138I) -2.322 9.0909 V138I -2.345 8.687 

EPB41L2 WT -2.126 8.7039 WT -2.181 9.555 

MT (p.R663C) -2.252 9.072 R663C -2.256 9.765 

Abbreviations: WT= wild-type, MT= variant, Epot= potential energy, Fmax= maximum force. 

 

3.8.2 Equilibration of the NPSR1 and EPB41L2 protein structures: 

Before performing simulations, equilibration was carried out to obtain constant temperature (T), 

pressure (P), and density for all the systems. We first employed the canonical (NVT) ensemble, where 

the number of particles (N) and volume (V) were constants. The results show that all systems, 

including the repeats, deviate at an average temperature range of 303.17 – 303.38 K. Subsequently, 

the isothermal-isobaric NPT ensemble was run to equilibrate the systems to constant pressure and 

density conditions. The average value of NPSR1 systems pressure was at 2.2 Pa for the (WT) and -

0.195 Pa for the (MT), while the EPB41L2 system’s average pressure was at 0.82 Pa for the (WT), -
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0.166 Pa for the (MT). Overall, all four systems had an average density value of 1026 Kg/m3, 

indicating a successful equilibration across all systems, including for each of the four repeats. 

 

3.9 Simulation trajectory analyses: 

To understand the conformational changes and dynamic stability of both NPSR1 and EPB41L2 upon 

introducing the variants, we initiated MDS runs for the NPSR1 protein structures and the EPB41L2 

protein structures using Gromacs v.2020. The following sections will report the simulation results for 

both systems.  

 

3.9.1 NPSR1-GBQ protein structure complex: 

RMSD of both the WT and MT (p.V138I) of the NPSR1 protein systems was calculated to inspect 

the trajectory’s convergence (Figure 3.5). Initially, a sudden rise in the RMSD was seen in the first 

few nanoseconds, resulting from the initial kinetic shock experienced by both systems at the start of 

the simulation. In the RMSD plot below, the WT reached a stable conformation from 50 ns till the 

end of the simulation, while the MT had two stable conformations at 50 ns – 75 ns, 100 ns – 140 ns, 

and 150 ns – 200 ns, respectively. For the simulation duration, the mean and stdev of the WT and MT 

trajectories were at close range and followed a similar trend with the MT (p.V138I), having a slightly 

higher average RMSD value of 0.64 ± 0.07 nm compared to the WT with 0.63 ± 0.08 nm. A similar 

trend was observed for the repeat simulations, with the RMSD values for the WT and MT (p.V138I) 

structures being 0.60 ± 0.07 nm and 0.63 ± 0.08 nm, respectively (Figure S19). When the RMSD of 

both the WT and MT (p.V138I) were compared, it was observed that they both achieved a stable 

conformation after 50 ns suggesting a stable dynamic behavior for both systems; hence, the RMSD 

trajectories for the last 50 ns were utilized for further analysis. Additionally, the GBQ ligand adopted 

two stable conformations based on RMSD analysis in both the WT and MT (p.V138I) systems (Figure 

S20). 
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Figure 3.5: Backbone RMSD analysis of the WT NPSR1 protein and p.V138I MT systems at 

303 K over 200 ns of the simulation period. 

 

The RMSF was calculated for the most stable part of the conformation (100 ns – 150 ns) and plotted 

to assess the AA flexibility for both the WT and MT (p.V138I) systems. In the RMSF plot below 

(Figure 3.6), the overall fluctuations of the p.V138I MT were found to be much higher in comparison 

to the WT. The mean and stdev RMSF values of the WT residues fluctuated between 0.17 ± 0.13 nm 

and the MT (p.V138I) system with an average of 0.2 ± 0.13 nm. RMSF analysis of the fluctuations 

showed that the MT (p.V138I) system had more flexible regions than the WT. Conformational 

flexibility was observed in the regions spanning residues 100-116, 138, 234-240, 251-260, and 296-

306. Furthermore, the flexible regions span the active site residues ASP 105, TRP 108, ARG 109, 

PHE 109, and ASN 298 crucial for ligand binding, suggesting that the presence of the MT (p.V138I), 

which is found on the alpha-helices, impacts the overall dynamics and stability of the protein system. 
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Figure 3.6: A) RMSF analysis of the protein residues. WT NPSR1 system (shown in black) and the 

MT (p.V138I) system (shown in red) at 303 K. Black circles with residue numbers indicate regions 

of higher flexibility in the MT (p.V138I) protein system. B) Cartoon structure of the MT (p.V138I) 

protein structure colored according to RMSF with a value of 0 representing regions with low 

flexibility (blue) and 1 showing higher flexibility regions (green, yellow, and red). Labeled residues 

on cartoon structure correspond to regions of high flexibility. 

 

To gain insight into the WT and MT (p.V138I) protein systems’ stability and compactness, the radius 

of gyration (Rg) was computed, as shown in Figure 3.7. For the simulation duration, the MT 

(p.V138I) system had a higher mean and stdev of 2.27 ± 0.03 nm compared to the WT protein system, 

which had 2.23 ± 0.03 nm. The MT (p.V138I) protein system having a higher Rg value suggests a 

less compact protein structure than the WT. This agrees with the RMSF values, where the residues in 

the MT (p.V138I) protein system showed higher flexibility. Overall, these findings indicate that 

variant p.V138I impacts the stability and compactness of the NPSR1 protein. 
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Figure 3.7: Rg for backbone atoms of the WT and MT (p.V138I) NPSR1 protein systems at 303 

K are shown as a function of time. The black line color represents the WT protein system, while the 

red line indicates the MT (p.V138I) protein system. 

 

Hydrogen bonds (H-bonds) are essential interactions in protein-ligand complexes. They have many 

directional interactions underpinning protein folding, protein structure conformation and molecular 

recognition. H-bond analysis was performed to calculate the average number of H-bonds formed 

between the protein and GBQ ligand for both the WT and MT (p.V138I) protein systems. This was 

done for the most stable part of the simulation trajectory. The mean and stdev of the H-bonds formed 

between the NPSR1 protein and the GBQ ligand were calculated to be 0.16 ± 0.365 nm and 0.03 ± 

0.2 nm for the WT and MT (p.V138I) structures, respectively. In Figure 3.8 A and B, the H-bond bar 
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diagrams formed between the MT structure and GBQ ligand are sparse compared to the WT complex, 

which formed a higher number of H-bonds within the structure between 80 ns and 140 ns.  

 

To understand hydrogen bond interactions, conformational snapshots of the NPSR1-GBQ complex 

during the last 50 ns of the simulation were extracted using Gromacs v.2020. The overall protein 

structure of the WT varied from the MT (p.V138I) in the loop regions as is shown in Figure S23. 

Furthermore, the GBQ ligand formed fewer contacts with surrounding residues because of the 

p.V138I variant on the protein structure (Table 3.5 and 3.6). The higher number of interactions seen 

for the WT NPSR1-GBQ agree with higher average number of H-bonds observed for the WT system 

compared to the MT (p.V138I) (Figures 3.8A and B and S21 and S22). Common interacting residues 

that could be exploited for further drug development include I181, P202, Y290, F299, and I315. 

 

Table 3.5: Polar contacts formed between the GBQ ligand and surrounding residues in the 

NPSR1 WT protein complex during the last 50 ns of the simulation. 

Last 50 ns of simulation Polar contacts and residues involved in the interactions 

160 ns 3.0 Å (M211), 3.0 Å (Y290), 3.9 Å (I315). 

170 ns 3.6 Å (L200), 3.2 Å (W207), 2.4 Å (M211), 3.7 Å (I315). 

180 ns 2.6 Å (P202), 3.3 Å (I315). 

190 ns 3.2 Å (P202), 3.6 Å (W201), 3.9 Å (S312), 2.9 Å (Q316). 

200 ns 2.9 Å (L296) 

Abbreviations: W= tryptophan, L= leucine, M= methionine, I= isoleucine, P= proline, F= 

phenylalanine, V= valine, R= arginine, E= glutamic acid/ glutamate, S= serine, Q= glutamine, T= 

threonine, Y= tyrosine, C= cysteine, A= alanine. 
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Table 3.6: Polar contacts formed between the GBQ ligand and surrounding residues in the 

NPSR1 MT (p.V138I) protein complex during the last 50 ns of the simulation. 

Last 50 ns of simulation Polar contacts and residues involved in the interactions 

160 ns 3.6 Å (T181), 4.0 Å (Y210), 3.3 Å (I315). 

170 ns 3.9 Å (T181), 3.0 Å (V214). 

180 ns 3.2 Å (Y210), 3.5 Å (P299). 

190 ns 3.4 Å (Y129), 2.7 Å (L132), 3.0 Å (Y290), 2.7 Å (F299). 

200 ns 3.0 Å (F299) 

Abbreviations: W= tryptophan, L= leucine, M= methionine, I= isoleucine, P= proline, F= 

phenylalanine, V= valine, R= arginine, E= glutamic acid/ glutamate, S= serine, Q= glutamine, T= 

threonine, Y= tyrosine, C= cysteine, A= alanine. 

 

Figure 3.8: Average intramolecular protein-drug HBs among the WT, MT NPSR1 protein 

complex, and the GBQ ligand at 303 K for the most stable part of the simulations (80 ns-140 

ns).  A) Average number of HBs formed between WT and GBQ. B) Average number of HBs formed 

between MT and GBQ.  

 

The non-bonded interaction energy between the NPSR1 protein and the GBQ ligand was calculated 

to assess the strength of the interaction. For the WT and MT (p.V138I) NPSR1-GBQ complex 

systems, the total pairwise non-bonded interaction energy between the NPSR1 protein and GBQ 

ligand was computed for the simulation period 100 ns - 150 ns. Our study included the short-range 

Coulombic electrostatic interaction energy term and the short-range Lennard-Jones energy term, 

yielding the total non-bonded pairwise interaction energy as the sum of the two energy components 
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evaluated. Entropy change is not considered in the calculation. The overall non-bonded pairwise 

interaction energies between the NPSR1 protein and GBQ ligand were greater for the MT ( -146.4198 

kJ/mol) than for the WT structure with it having a non-bonded pairwise interaction energy of -

123.3012 kJ/mol.  

 

Table 3.7: Non-bonded interaction energy between the WT and MT (p.V138I) NPSR1-GBQ 

complexes. 

Energy (kJ/Mol) WT MT (p.V138I) 

Coul-SR -6.48424 -27.2028 

LJ-SR -116.817 -119.217 

Total interaction energy -123.3012 -146.4198 

Abbreviations: Coul-SR: short-range Coulombic electrostatic interaction energy, LJ-SR: short-

range Lennard-Jones interaction energy. 

 

SASA was calculated to quantify solvent exposure for the hydrophobic and hydrophilic residues. In 

Figure 3.9, the p.V138I variant protein structure has a higher overall total SASA value than the WT 

protein structure, implying more buried residues are becoming solvent exposed. For the simulation 

duration, the MT (p.V138I) system had a slightly higher mean and stdev of 165.89 ± 2.08 nm2 

compared to the WT protein system, which had 163.39 ± 1.71 nm2. This exposed the buried residues 

in the NPSR1 protein structure to the solvent, raising the p.V138I variant’s solvent accessible surface 

area. 
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Figure 3.9: SASA analysis for the backbone atoms of the WT and MT (p.V138I) NPSR1 protein 

systems at 303 K are shown as a function of time. The black line color represents the WT protein 

system, while the red line indicates the MT (p.V138I) protein system. 

 

Calculation of the contribution of each of the top ten principal components (PCs) indicated that the 

first two PCs (PC1 and PC2) contributed significantly to the movement of the protein. For the WT 

system, PC1 contributed 52 %, while PC2 contributed 26 %. In the MT (p.V138I) system, PC1 

contributed 51 % while PC2 contributed 20 %. Therefore, 2D projections of PC1 and PC2 for both 

systems were plotted and shown in Figure 3.10. The scatterplot observed that the MT (p.V138I) had 

more randomized motions and occupied a larger phase space than the WT, resulting in a less stable 

variant structure. 
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Figure 3.10: 2D Projections of the first two PCs during the stable 100-150 ns simulation period 

for both the WT and MT (p.V138I) protein systems. WT represented in turquoise, and the MT 

(p.V138I) shown in orange. Distinct cluster observed circled in black. Circles represent stable clusters 

for the WT. 

 

3.9.2 EPB41L2 protein structure: 

The RMSD of both the WT and MT (p.R663C) EPB41L2 protein systems were calculated to analyze 

trajectory convergence and equilibrium (Figure 3.11). Initially, a sharp increase in the RMSD was 

observed in the first few nanoseconds, which could be attributed to both systems’ initial kinetic shock 

during the simulation phase. The WT and MT (p.R663C) protein systems reached equilibrium after 

75 ns based on the RMSD plot shown below (Figure 3.11). The mean and standard RMSD deviation 

values for the MT (p.R663) system were higher at 1.74 ± 0.18 nm than that of the WT system at 1.63 

± 0.24 nm. When the RMSD of the WT and MT (p.R663C) trajectories were compared, it was found 

that both simulation trajectories achieved equilibrium, implying a stable dynamic behavior of both 

systems; thus, the last 100 ns of the two trajectories were used for further analysis. 
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Figure 3.11: Backbone RMSD analysis of the WT EPB41L2 protein and p.R663C MT systems 

at 303 K over 300 ns of the simulation period. 

 

Protein dynamics, structure, and function are all intrinsically linked. The complex nature of the 

EPB41L2 protein and the impact of the p.R663C variant on the protein structure can be revealed by 

studying the internal atomistic motions of protein systems. The RMSF for the most stable part of the 

conformation (100 ns – 300 ns) was calculated and plotted to assess the AA flexibility for both the 

WT and MT (p.R663C) systems. In the RMSF plot below (Figure 3.12), the overall fluctuation of the 

p.R663C MT was found to be much higher in comparison to the WT.  The mean and stdev RMSF 

values of the WT residues fluctuated between 0.21 ± 0.11 nm and the MT (p.R663C) system with an 

average of 0.28 ± 0.15 nm. RMSF analysis of the fluctuations showed that the MT (p.R663C) system 

had higher flexibility than the WT. Conformational flexibility was observed in the region spanning 

residues 699-717 and corresponded to a loop region in the MT (p.R663C). In the WT protein system, 

residues 660-673 (Figure S21) which correspond to alpha-helices, showed increased flexibility 

compared to the MT. Moreover, the region spanning the variant p.R663C showed lower flexibility 

than the WT. The reduced flexibility of the 660-673 region is important for regulating access to the 

catalytic site and controlling the spectrin-actin-binding domain of the EPB41L2 membrane protein.     
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Figure 3.12A: RMSF analysis of the protein residues of WT EPB41L2 protein (shown in black) 

and the MT (p.R663C)) system (shown in red) at 303 K. Black circles with residue numbers 

indicate regions of higher flexibility in the MT (p.R663C) protein system. Cartoon structure of the 

p.R663C MT protein structure colored according to RMSF flexibility with a value of 0 representing 

regions with low flexibility (blue) and 1 showing regions of high flexibility (green and red). The red 

arrow indicates the position of the p.R663C variant. 

 

 

Figure 3.12B: RMSF analysis of the protein residues of WT EPB41L2 protein (shown in black) 

and the MT (p.R663C)) system (shown in red) at 303 K. Black circles with residue numbers 

indicate regions of higher flexibility in the WT protein system. Cartoon structure of the WT protein 

structure colored according to RMSF flexibility with a value of 0 representing regions with low 

flexibility (blue) and 1 showing regions of high flexibility (green, yellow and red). The red arrow 

indicates the position of the p.R663C variant. 
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Next, the Rg plot (Figure 3.13) measures the change in the center of mass of the spectrin-actin-binding 

region of the EPB41L2 protein structure before and after introducing the p.R663C variant. For the 

duration of the simulation (300 ns), the Rg value of the p.R663C variant was higher than the WT 

system. Significant fluctuations were observed in both protein systems in the first 100 ns. The MT 

(p.R663C) had a mean and stdev Rg values of 1.93 ± 0.11 nm, while the WT protein system had 1.81 

± 0.16 nm. The MT (p.R663C) protein system’s Rg value is higher than the WT, indicating that the 

MT protein structure is less compact than the WT protein structure.  

 

Figure 3.13: Rg for backbone atoms of the WT and MT (p.R663C) EPB41L2 protein systems at 

303 K are shown as a function of time. The black line color represents the WT protein system, while 

the red line indicates the MT (p.R663C) protein system. 
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The total SASA measures the conformational change in solvent exposure for hydrophobic and 

hydrophilic residues. The wild-type protein structure displayed lower overall SASA values as 

compared to the p.R663C variant structure, each having mean and stdev values of 77.9 ± 1.5 nm2 and 

82.08 ± 1.47 nm2, respectively. This suggests that more buried residues became solvent exposed in 

the spectrin-actin binding domain for the p.R663C variant compared to the WT (Figure 3.14). 

 

 

Figure 3.14: SASA analysis for the backbone atoms of the WT and MT (p.R663C) EPB41L2 

protein systems at 303 K are shown as a function of time. The black line color represents the WT 

protein system, while the red line indicates the MT (p.R663C) protein system. 

 

The conformational motion of both systems was projected along the first two principal components 

(PC1 and PC2) directions to see if any differences were observed in protein motion between the WT 
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and MT (p.R663C) protein systems. PC1 contributed 56 %, while PC2 contributed 23 % for the WT 

protein system. In the MT (p.R663C) protein system, PC1 contributed 61 % while PC2 contributed 

16 %. From the scatterplot, it is observed that the MT (p.R663C) clusters were more randomized and 

occupied a larger region of phase space as compared to the WT. However, we observed one distinct 

cluster circled in black for the MT and three for the WT system (Figure 3.15). These clusters represent 

the specific conformation adopted by the WT protein system when the protein is most stable over the 

simulation duration.  

 

Figure 3.15: 2D Projection of Eigenvector 1 and 2 during the 300 ns simulation period for both 

the WT and MT (p.R663C) EPB41L2 protein systems. The WT represented in turquoise, and the 

MT (p.R663C) shown in orange along with the first two principal components (PC1 and PC2). Circles 

represent stable clusters for the WT (3) and MT (1). 

 

In summary, our findings revealed that both NPSR1 (p.V138I) and EPB41L2 (p.R663C) were 

attractive PD candidate genes based on several prioritization criteria’s and were therefore, selected 

for further structural analyses. Moreover, pathway and expression data analysis revealed that both 

NPSR1 and EPB41L2 were involved in signaling and cellular processes. Furthermore, the structural 
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quality assessment indicated high reliability of the 3D protein structures, specifically conserved 

domains with the NPSR1 protein model and the EPB41L2 protein model each satisfying QMEAN, 

GMQE, ERRAT, Procheck and ERRAT quality analyses. Additionally, MD simulation results showed 

that both p.V138I and p.R663C variants had destabilizing effects on the protein structures of NPSR1 

and EPB41L2 based on the stability predictions, trajectory parameter values that included RMSD, 

RMSF, Rg, SASA, and PCA analysis. Similarly, H-bond analysis confirmed fewer hydrogen bonds 

being formed between NPSR1 and ligand GBQ due to the presence of mutation p.V138I. The results 

visualized in the simulation movies are in agreement with the RMSD, RMSF, Rg, SASA, and PCA 

analyses of all four protein systems 

( https://drive.google.com/drive/folders/15h3iv0yRGtb04kdaZxl4xbrqV1ztqVJE?usp=sharing). In 

the NPSR1-GBQ protein systems, the MT (p.V138I) had more flexible loop regions compared to the 

WT. Overall, the protein structure adopted a less compact fold upon introduction of the p.V138I 

variant. In the actin-spectrin-binding domain of the EPB41L2 protein system, the beta sheet connector 

and alpha helix region is very flexible spanning residues (699-717) going from an extended to flexed 

conformation in the p.R663C variant system. Future drug development should target this flexible 

region of the variant protein p.R663C spanning residues (699-717) to restore stability to the protein 

structure.  
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CHAPTER IV: Discussion and Conclusion 

4.1 Discussion 

 

In this study, the genetic etiology of PD in a SA family of Indian ancestry was investigated using 

bioinformatic approaches that included data mining, pathway, expression and STRING analysis. 

Thereafter, in-silico structural modeling methods were used to interrogate the effect of variants on 

the protein structure of the most likely PD associated genes.  Interestingly, the 11 variants shared by 

the three affected family members reported by Dr. Roopnarain (unpublished data) are not reported in 

literature. Further inspection of the 11 variants identified in the multiplex family revealed that they 

are novel variants.  

 

As estimated in 2016, India is home to nearly half a million people living with PD, with an expected 

significant increase in prevalence in the near future (Rajan et al., 2020). Mutations in genes such as 

DJ-1, SNCA, VPS35, and PINK-1 have been shown to not significantly contribute to PD amongst 

individuals of Indian ancestry (Biswas et al., 2006; Nagar et al., 2001; Punia et al., 2006; Sudhaman 

et al., 2013). This strengthens the speculation that the genetic causes of PD in this population may 

differ from other populations, necessitating further research in this area.  

 

As mentioned in the literature review, studies inspecting the genetic causes of PD have shown that 

the genetic elements contributing to PD may vary in specific populations (Rajan et al., 2020). The 

absence of previously identified PD mutations in this multiplex family led to the conclusion that other 

novel mutations could be responsible for the disease phenotype. From the 11 variants identified in 11 

genes (ELK4, CEP170, EEFSEC, TRIM59, HTT, ELMOD2, EPB41L2, NUP153, NPSR1, LRRK1, 

and MAN2B1), candidate genes that fulfilled the prioritization criteria were selected for further 

studies. Factors such as genes involved in protein-protein interactions with PD-associated genes, 

genes highly expressed in brain tissue and involved in PD-related pathways were used as the criteria 

http://etd.uwc.ac.za/ 
 



 

74 

 

for selecting the candidates. The LRRK1 p.T871M, NPSR1 p.V138I and EPB41L2 p.R663C variants 

met the above filtration criteria and were chosen as top candidates to investigate the effect of the 

variants on the protein structure. Unfortunately, due to the lack of a solved homologous template 

structure that covered the p.T871M variant position located in LRRK1, structural modelling was not 

pursued. However, recently, a new homologous template (7LI3) 

(https://www.rcsb.org/structure/7LI3) was solved which can be used in future studies to predict the 

3D structure of LRRK1 that encompasses the p.T871M region. 

  

The 3D structures predicted for NPSR1 and the spectrin-actin-binding domain of EPB41L2 were 

found to be reliable approximations of the native protein structure, based on the satisfaction of several 

quality parameters such as PROCHECK and ERRAT. However, we recognize the predicted models’ 

medium accuracy due to low sequence identity between the target sequence and the template and 

propose that these protein models be interpreted with caution. However, we are confident in the 

modeling of specific domains within the protein structures due to sequence conservation and similar 

structural fold to the homologous template structures.     

 

Variants are significant in evolution as they introduce diversity into genomes. Tang et al. (2016) 

reported that non-synonymous variants, which are also referred to as missense mutations, may have 

deleterious or advantageous effects on an organism by affecting the protein’s stability and function. 

Therefore, structural-based methods are essential as they predict the impact of amino acid substitution 

on protein stability (Tang & Thomas, 2016). Examples of tools that can predict a change in phenotype 

include SIFT, PolyPhen, and the stability prediction tool DUET. SIFT and Polyphen consider the 

composition of amino acids and predict whether a substitution is deleterious. However, both these 

tools rely on sequence data and usually provide contradictory results (Pereira et al., 2020; Sebate et 

al., 2021). Therefore, we utilized structure-based methods only to calculate the protein’s free energy 

change using the DUET web server. DUET inspects the change in Gibbs free-energy differences 
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(ΔΔG) between folded and unfolded protein states upon introduction of the variant. DUET results 

showed that the variants introduced into the protein structure resulted in slightly destabilizing effects 

of the p.V138I (ΔG = -0.324 Kcal/mol) and p.R663C (ΔG = -0.102 Kcal/mol) variants on the NPSR1 

and EPB41L2 protein structures, respectively. Regardless of the magnitude of the destabilizing effects 

being relatively small (<0.5 Kcal/mol), we speculated that the variants can still affect the stability and 

folding of the protein, as shown in other studies (Anderson & Daggett, 2008; Sebate et al., 2021). 

However, stability predictions do not take protein dynamics into account after the introduction of a 

variant. Therefore, more in-depth analyses such as the change in protein dynamics and per residue 

fluctuation are essential for understanding protein structure change after introducing variants. 

 

To understand the impact of the variants on the protein structure and dynamics, MD simulations of 

the NPSR1 and EPB41L2 protein structures were performed. MD analyses effectively detect subtle 

changes in protein structure (Nair & Miners, 2014). Trajectory analyses of the NPSR1 and EPB41L2 

protein structures verified the DUET stability prediction results. Variants p.V138I and p.R663C 

affected the stability of the NPSR1 and EPB41L2 protein structures based on RMSD, RMSF, Rg, 

SASA values, H-bond, and PCA analysis (Figures 3.5 – 3.15). From the analyses, the current study 

found that the p.V138I variant impacted the flexibility and compactness of the NPSR1 protein 

structure. Overall fluctuations of the p.V138I variant were higher in various regions, including the 

regions spanning residues 100-116, 138, 234-240, 251-260, and 296-306. Apart from residue 138, 

representing the variant position, all other regions represent loop regions and important catalytic 

binding sites. The SASA analyses indicated that more residues in the NPSR1 p.V138I MT system 

became solvent-exposed, suggesting that the MT is less stable than the WT structure. Furthermore, 

fewer inter-molecular H-bonds between the MT (p.V138I) protein structure and its ligand, GBQ was 

formed. The lower number of H-bonds indicate weaker interaction between the MT (p.V138I) and 

GBQ. 
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Similarly, the PCA result was in agreement with RMSF, Rg, SASA, and H-bond analysis. However, 

the non-bonded interaction analysis showed contradictory results to the H-bond analysis with the MT 

showing stronger interaction energy than the WT. Correspondingly, the change from valine to 

isoleucine resulted in perturbations in the hydrophobic core, inducing changes in the NPSR1 proteins’ 

overall 3D structure. This observation has not been reported in previous MD studies investigating 

mutations in NPSR1 protein. A study conducted by Neufang et al. (2015) which looked at a 

polymorphism occurring at residue 107 (p.N107I) located in the NPSR1 protein, reported that this 

substitution caused a 10-fold increase in NPSR1 expression and NPS efficacy at the receptor. It also 

resulted in increased activation of the prefrontal cortex and locus coeruleus, the latter of which has 

been reported to be involved in the generation of tremors in PD (Isaias et al., 2012). These findings 

are in line with previous studies that report that variants in the NPS/NPSR1 protein have been 

associated with psychiatric illnesses such as anxiety, panic disorders, and disorders related to alcohol 

misuse (Ghazal, 2016; Neufang et al., 2015).  

 

As mentioned in the literature review, NPSR1 is a G protein-coupled receptor (GPCR) family member 

and encodes a membrane protein that acts as a receptor for a neuropeptide known as Neuropeptide S 

(NPS) (Pietras et al., 2011). Neuropeptides are small protein-like molecules produced and secreted 

primarily by the peripheral and central nervous system neurons. The majority of neuropeptides exert 

their action by binding to GPCRs. GPCRs are the most prominent family of cell surface receptors in 

the human genome and are used as therapeutic targets for PD (Lemos et al., 2018). Signals from 

peptide-GPCRs are associated with specific brain functions such as stress and anxiety, memory and 

learning, glucose metabolism, sleep and wakefulness, and neuroprotection (Zheng et al., 2021). Some 

neuropeptides have played neuroprotective roles in PD in recent studies, including the NPY, ghrelin, 

substance P, and neurotensin, as shown in in vitro and in vivo studies (Bayliss et al., 2016; Li et al., 

2019; Maasz et al., 2017; Shi et al., 2017; Wang et al., 2015). 
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Strikingly, NPSR1 is involved in the up regulation of the release of sequestered Ca2+ ions into the 

cytosol and affects various cellular processes through its signaling. When activated by its cognate 

ligand NPS, NPSR1 causes intracellular calcium ions to mobilize and stimulate cyclic adenosine 

monophosphate (cAMP) synthesis, which results in increased cellular excitability (Reinscheid et al., 

2005; Xu et al., 2004). Calcium (Ca2+) channels are found throughout the brain and regulate 

neurotransmitter release, primarily at presynaptic terminals (Zaichick et al., 2017). Since Ca2+ 

signaling has such a broad impact on neural biology, Ca2+ levels must constantly be regulated to 

prevent uncontrolled responses that could lead to diseases such as PD. We speculate that the novel 

variant in NPSR1 could have deleterious effects on the regulation of Ca2+ levels resulting in PD 

symptoms.      

 

Similarly, EPB41L2 is a highly expressed gene in the thalamus, midbrain, and basal ganglia and is 

also involved in signaling and cellular processes (Table 3.2). This gene plays a role in the dopamine 

receptor-mediated signaling pathway and the nicotine pharmacodynamics pathway. The dopamine 

(DA) receptor-mediated pathway is essential as alterations in DA receptors and DA signaling 

pathways are associated with PD (Juárez Olguín et al., 2015; Tozzi et al., 2018). Since DA is a 

signaling molecule in the DA receptor-mediated signaling pathway, maintaining its homeostasis is 

crucial as DA plays a vital role in motor coordination and memory (Saikia, 2018). Any changes 

occurring in the proteins/molecules involved in this pathway could cause an imbalance in the DA 

homeostasis of an individual’s body. The substitution occurring at residue 663 from arginine to 

cysteine (p.R663C) in the EPB41L2 protein affected the protein structure and dynamics. The 

substitution from arginine, a polar, positively charged amino acid, to cysteine, an uncharged polar 

amino acid, results in a change in charge that could affect protein stability. A study conducted by 

Chakkalakal (2018) reports that point mutations involving a change from arginine to cysteine result 

in a broad spectrum of unusual phenotypes depending on the protein backbone on which the change 

occurs (Chakkalakal et al., 2018).  

http://etd.uwc.ac.za/ 
 



 

78 

 

From the MD results, the variant p.R663C located on the spectrin-actin-binding domain of the 

EPB41L2 protein structure recorded higher fluctuations and decreased compactness compared to the 

WT structure. Fluctuations in protein residues emerge as a critical factor in deciding biological 

activity, indicating that protein functional sites are uniquely coupled with structural fluctuations 

(Agrahari et al., 2019). RMSF analysis demonstrated overall higher fluctuations of the EPB41L2 

p.R663C variant structure with maximum fluctuations observed at the loop region. This region 

regulates the morphological and functional dynamics of the protein (Nestor et al., 2011). Furthermore, 

the p.R663C variant structure exhibited higher Rg values than the WT, illustrating a less tightly 

packed and less stable protein structure. SASA results agreed with the RMSF and Rg analysis of all 

parameters suggesting that the EPB41L2 p.R663C MT affects the stability of the protein structure, 

making it more flexible and less compact, leading to a thermodynamically unstable system.  From 

the PCA analysis, it is observed that the p.R663C variant structure covers a larger subspace with less 

stable cluster conformations in comparison to the WT, suggesting it has a less stable conformation. It 

is speculated that the resulting altered MT (p.R663C) structure may lead to the increased flexibility 

of the loop region that regulates calcium transportation. This may implicate that the dopamine 

receptor-mediated signaling pathway is involved in the development of PD symptoms. 

 

In summary, a schematic illustration of the findings of this study and their implications in PD are 

shown in Figure 4.1 below. 
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Figure 4.1: Schematic representation of the findings of this study. Dashed arrows indicate a 

disruption of the biological process of interest.   
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4.2 Limitations of study and future work 

 

The initial study only whole-exome sequenced three family members, a small sample size. However, 

the study was not dependent upon a large sample size as this was a familial study. Future studies 

should screen more unrelated families with PD to determine if these variants are unique within this 

South African family. The genetic diversity of PD continues to complicate our understanding of PD. 

This is an evolving epidemic (Dorsey et al., 2018); it is vital to keep identifying many causal variants 

to be one step closer to achieving personalized treatments for PD patients. Another limitation of this 

study was the use of protein models of moderate accuracy. To overcome this limitation, subsequent 

modeling studies should consider using templates with higher resolution and higher sequence identity 

to the target sequence when they become available. 

 

Additionally, short MD simulations were ran for this study (200 ns for NPSR1 and 300 ns for 

EPB41L2). Lengthy simulations may be required to capture large and subtle changes of the protein 

systems correctly. Another limitation of this study was the exclusion of Molecular Mechanics 

Poisson-Boltzmann Surface Area (MMPBSA) free energy of binding calculations between the protein 

NPSR1 and GBQ ligand to obtain absolute measures of protein binding by taking entropy into 

account. Lastly, protein-membrane simulations were not pursued for EPB41L2 and NPSR1, which 

are crucial to account for long-range electrostatic interactions. Future experimental work should 

include protein expression assays that look at the cell viability and apoptotic effects of the putative 

causal variants (p.V138I and p.R663C) on the NPSR1 and EPB41L2 proteins, respectively.   

 

4.3 Conclusion 

This study successfully filtered three candidate genes: LRKK1, NPSR1 and EPB41L2 as potential PD 

causative genes. The filtering method applied in this study also validated two known genes, SNCA 
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and PARK7, providing a solid basis for using these methods to prioritize other candidate genes for 

future investigation. Our findings in this study propose that the p.V138I and p.R663C variants on the 

NPSR1 and EPB41L2 protein structures, respectively, can alter protein dynamics. Furthermore, it is 

interesting to note that both variants (p.V138I and p.R663C) caused increased fluctuations, protein 

fold changes, and instability in the protein structures compared to the wild-type. However, these 

findings need to be validated using wet-lab experiments. While it is well-recognized that 

neurodegenerative diseases are characterized by aberrant protein misfolding and aggregate formation, 

the mechanisms that initiate or promote proteinopathy in PD remain poorly understood. If NPSR1 

and EPB41L2 are indeed found to be the causal genes of PD in this multiplex family after 

experimental validation, this could reveal a new mechanism for the pathobiology of Parkinson’s 

disease. 
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Appendix 
 

Link to simulation movies for protein systems; NPSR1 (WT), NPSR1 (p.V138I), EPB41L2 (WT), 

and EPB41L2 (p.R663C): 

https://drive.google.com/drive/folders/15h3iv0yRGtb04kdaZxl4xbrqV1ztqVJE?usp=sharing  

NPSR1 (WT): Protein has highly flexible beta sheets.  

NPSR1 (p.V138I): Protein has more prominent loop regions that are highly flexible. Beta sheets are 

less flexible compared to the WT. 

EPB41L2 (WT): Protein structure made up of alpha helices and loop regions. 

EPB41L2 (p.R663C): Beta sheets present in the protein structure. More loop regions present, and 

fewer alpha helices are seen in the protein structure due to the introduction of the p.R663C variant. 

 

Table S1: Genes linked to monogenic familial forms of PD. 

Gene Features/Traits Locus & 

Position 

Pathways Involved in Disease 

Onset 

References 

AUTOSOMAL DOMINANT PD GENES 

SNCA Psychiatric symptoms 

Moderate levodopa 

response 

Dementia 

Lewy body formation 

PARK1,4 

 

4q21 

Chaperone-mediated 

autophagy pathway 

Variable 

onset 

Polymeropoulos et 

al., 1996 

Karimi-Moghadam et 

al., 2018 

LRRK2 Good response to 

levodopa 

Dementia 

PARK 8 

 

12q12 

Mitochondrial 

fission/fusion 

Late 

onset 

Healy et al., 2008 

Karimi-Moghadam et 

al., 2018 

VPS35 Good response to 

levodopa 

Rare cognitive decline 

PARK 17 

 

16q11.22 

Lysosomal-mediated 

proper protein quality 

control pathway 

Late 

onset 

Karimi-Moghadam et 

al., 2018 

Vilarino-Guell et al., 

2011 

GCH1 Dopa-responsive 

dystonia 

 

14q22.2 

Folate biosynthesis, 

metabolic pathways, 

biosynthesis of cofactors 

Juvenile 

onset 

Pan et al., 2020 

HTRA2 Mitochondrial 

dysfunctiion 

PARK 13 

 

2p13 

Proteolysis of misfolded 

and damaged proteins 

Late 

onset 

Karimi-Moghadam et 

al., 2018 

Strauss et al., 2005 

GIGYF2 Not available (N/A) PARK 11 IGF-1/Insulin receptor Late Langlais et al., 2004 
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2q36 

signalling pathway onset Vecctione et al., 2003 

Karimi-Moghadam et 

al., 2018 

DNAJC13 Lewy body formation 

Levodopa effective in 

early stages 

PARK 21 

 

3q22.1 

Clathrin coating of 

vesicles 

40 – 83 

years 

Vilarino-Guell et al., 

2014 

Appel-Cresswel et 

al., 2014 

Gustavsson et al., 

2015 

Ross et al., 2016 

TMEM230 N/A  

20p13-

p12.3 

N/A N/A Wang et al., 2021 

EIF4G1 Preserved cognition 

Good response to 

levodopa 

PARK 18 

 

3q27.1 

MRNA translation 

initation 

Late 

onset 

Chartier—Harlin et 

al., 2011 

Karimi-Moghadam et 

al., 2018 

CHCHD2 Good response to 

levodopa 

PARK 22 

 

7p17.2 

Mitochondrial 

metabolism regulation 

Late 

onset 

Karimi-Moghadam et 

al., 2018 

Aras et al., 2015 

RIC3 N/A  

11p15.4 

N/A N/A Ben-David et al., 

2020 

GBA N/A  

1q21 

N/A Unclear Karimi-Moghadam et 

al., 2018 

AUTOSOMAL RECESSIVE PD GENES 

PRKN Slow progression 

Lewy bodies absent 

Dementia 

PARK 2 

 

6q25-27 

PARKIN-mediated 

ubiquitylation pathway 

Early 

onset 

(juvenil

e) 

Lucking et al., 2000 

Tanaka et al., 2004 

PINK1 Slow progression 

Lewy bodies absent 

Dementia 

PARK 6 

 

1p35-p36 

Mitochondrial pathway 

Mitophagy 

Early 

onset 

(juvenil

e) 

Valente et al., 2004 

Ibanez et al., 2006 

DJ-1 Psychotic symptoms 

Good response to 

levodopa 

PARK 7 

 

1p36 

Transcriptional 

regulation 

Antioxidative stress 

reaction 

Early 

onset 

Ottolini et al., 2009 

Bonifati et al., 2003 

ATP13A2 Dementia 

Cognitive impairment 

Adequate response to 

levodopa 

PARK 9 

 

1p36 

Lysosomal-mediated 

proper protein and 

mitochondrial quantity 

and quality control 

pathway 

Severe 

early 

onset 

Dehay et al., 2012 

Gusdon et al., 2012 

Tofaris 2012 

PLA2G6 Dystonia-Parkinsonism 

Visual disturbance 

Dementia 

Initial good response to 

levodopa 

PARK 14 

 

22q12 -q13 

Mitochondrial inner 

membrane remodelling 

processes 

Early 

onset 

Balsinde and Balboa 

2005 

Shinzawa et al., 2008 
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Levodopa-induced 

dyskinesia 

FBOX7 Saccadic eye 

movement 

Appreciable response 

to levodopa 

PARK 15 

 

22q12 - q13 

Ubiquitin-proteasome 

degradation pathway 

Early 

onset 

Nelson et al., 2013 

Di Fonzo et al., 2009 

DNAJC6 Wheelchair bound state 

Poor response to 

levodopa 

Mental retardation 

Seizures 

PARK 19 

 

1p31.3 

Presynaptic 

endocytosisof clathrin-

coated vesicles 

Early 

onset 

Edvardson et al., 

2012 

Koroglu et al., 2013 

Kononenko and 

Hauke 2015 

SYNJ1 Apraxia of eyelid 

opening (ALO) 

Cognitive decline 

PARK 20 

 

21q22.11 

Endocytic recyclcing 

pathway 

Early 

onset 

(juvenil

e) 

Quadri et al., 2013 

Krebs et al., 2013 

Olgiati et al., 2014 

VPS13C Cognitive decline 

Autonomic dysfunction 

Good levodopa 

response within early 

stages 

PARK 23 

 

15q22.2 

Co-operates with 

PRKN/PINK1 pathway 

Early 

onset 

Lesage et al., 2016 

Nalls et al., 2014 

Schreglmann and 

Houlden 2016 

SLC6A3 N/A  

5p15.33 

Synaptic vesicle cycle, 

dopaminergic synapse, 

Parkinson disease 

N/A Iyer et al., 2020 

X-LINKED DISORDER WITH PARKINSONIM FEATURES 

RAB39B N/A  

Xq28 

Pathways of 

neurodegeneration - 

multiple diseases 

Early 

onset 

Wilson et al., 2014 

Abbreviations: SNCA = Synuclein alpha, LRRK2 = Leucine-rich repeat kinase 2, VPS35 = Vacuolar 

protein sorting ortholog 35, GCH1 = GTP Cyclohydrolase 1, HTRA2 = HtrA Serine Peptidase 2, 

GIGYF2 = GRB10 Interacting GYF Protein 2, DNAJC13 = DnaJ Heat Shock Protein Family Member 

C13, TMEM230 = Transmembrane protein 230, EIF4G1 = Eukaryotic translation initiation factor 4 

gamma 1, CHCHD2 = Coiled-Coil-Helix-Coiled-Coil-Helix Domain Containing 2, RIC3 = 

Resistance to inhibitors of cholinesterase 3, GBA = Glucocerebrosidase, PRKN = Parkin RBR E3 

Ubiquitin Protein Ligase, PINK1 = PTEN-induced kinase 1, DJ-1 = Protein deglycase, ATP13A2 = 

ATPase Cation Transporting 13A2, PLA2G6 = Phospholipase A2 Group VI, FBOX7 = F-box protein 

7, DNAJC6 = DnaJ Heat Shock Protein Family Member C6, SYNJ1 = Synaptojanin 1, VPS13C = 

Vacuolar Protein Sorting 13 Homolog C.  
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Figure S1: RNA tissue specificity expression data for the NPSR1 gene. Ranked according to 

expression levels in descending order (Source:https://www.proteinatlas.org/ENSG00000187258-

NPSR1/tissue). Accessed: 28/07/2021 

 
 

 

Figure S2: RNA tissue specificity expression data for the EPB41L2 gene. Ranked according to 

expression levels in descending order (Source: https://www.proteinatlas.org/ENSG00000079819-

EPB41L2/tissue). Accessed: 28/07/2021 

 

 

Table S2: Microarray data for gene expression (Allen Brain Atlas) 

Gene 

Symbol 

Structure Probe name Expression

: Z-score 

Log2 

Intensity 

Donor Information 

ELK4 globus pallidus, 

external segment 

(GPe) 

A_23_P16109

8 

3.2543 7.79445 H0351.1009, 57 yrs, M, White 

or Caucasian 

ELK4 corpus callosum (cc) CUST_14695_

PI416261804 

3.70433 9.3546 H0351.1015, 49 yrs, F, 

Hispanic 

ELK4 cingulum bundle (cgb) CUST_14695_ 3.17808 9.72976 H0351.2001, 24 yrs, M, Black 

http://etd.uwc.ac.za/ 
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PI416261804 or African American 

CEP170 cingulum bundle (cgb) A_23_P23151 

 

3.41149 7.49535 H0351.2001, 24 yrs, M, Black 

or African American 

CEP170 CA4 field (CA4) A_23_P23151 3.57055 8.10207 H0351.1009, 57 yrs, M, White 

or Caucasian 

CEP170 ventral thalamus (VT) A_23_P23151 3.09337 7.75621 H0351.1016, 55 yrs, M, White 

or Caucasian 

EEFSEC lateral group of nuclei, 

dorsal division (DTLd) 

A_23_P14420

2 

 

4.649 5.67189 H0351.2001, 24 yrs, M, Black 

or African American 

EEFSEC nucleus subceruleus 

(SubC) 

CUST_11498_

PI416261804 

 

5.5024 7.18942 H0351.1012, 31 yrs, M, White 

or Caucasian 

EEFSEC precentral gyrus (PrG) CUST_11498_

PI416261804 

3.93401 5.74492 H0351.1015, 49 yrs, F, 

Hispanic 

EEFSEC locus ceruleus (LC) CUST_11498_

PI416261804 

3.72774 5.60927 H0351.1015, 49 yrs, F, 

Hispanic 

TRIM59 cingulum bundle (cgb) A_23_P40771

8 

 

3.19333 8.06338 H0351.2001, 24 yrs, M, Black 

or African American 

HTT IX (Cb-IX) A_23_P21274

9 

3.04422 10.7383 H0351.2002, 39 yrs, M, Black 

or African American 

ELMOD2 I-II (Ve-I-II) A_23_P30569

2 

3.29953 4.20595 H0351.2001, 24 yrs, M, Black 

or African American 

ELMOD2 VIIB (Ve-VIIB) A_24_P38518

5 

3.71756 3.9222 H0351.2001, 24 yrs, M, Black 

or African American 

ELMOD2 V (Cb-V) 

 

A_24_P38518

5 

 

3.44992 3.80494 H0351.2001, 24 yrs, M, Black 

or African American 

ELMOD2 inferior olivary 

complex (IO) 

A_24_P38518

5 

3.5154 3.83363 H0351.2001, 24 yrs, M, Black 

or African American 

ELMOD2 paraventricular nuclei 

of thalamus (Pa) 

A_23_P30569

2 

3.59334 4.40736 H0351.2002, 39 yrs, M, Black 

or African American 

ELMOD2 lateral hypothalamic 

area, anterior region 

(LHA) 

A_24_P38518

5 

3.21239 3.42527 H0351.2002, 39 yrs, M, Black 

or African American 

ELMOD2 supraoptic nucleus 

(SO) 

A_23_P30569

2 

 

3.23039 4.22893 H0351.2002, 39 yrs, M, Black 

or African American 

ELMOD2 substantia nigra (SN) A_24_P38518

5 

2.98152 3.32655 H0351.2002, 39 yrs, M, Black 

or African American 

ELMOD2 trochlear nucleus (4) A_24_P38518

5 

 

3.82777 3.68837 H0351.2002, 39 yrs, M, Black 

or African American 
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ELMOD2 facial motor nucleus 

(7) 

A_24_P38518

5 

 

3.51889 3.55631 H0351.2002, 39 yrs, M, Black 

or African American 

ELMOD2 CA4 field (CA4) 

 

A_23_P30569

2 

4.0832 4.78219 H0351.1009, 57 yrs, M, White 

or Caucasian 

ELMOD2 supramarginal gyrus 

(SMG) 

A_24_P38518

5 

 

4.67612 4.45775 H0351.1009, 57 yrs, M, White 

or Caucasian 

ELMOD2 claustrum (Cl) A_24_P38518

5 

3.34446 3.77329 H0351.1009, 57 yrs, M, White 

or Caucasian 

ELMOD2 tuberomammillary 

nucleus (TM) 

A_24_P38518

5 

 

6.4376 5.36314 H0351.1009, 57 yrs, M, White 

or Caucasian 

ELMOD2 posterior group of 

nuclei (DTP) 

A_24_P38518

5 

 

5.70108 4.4238 H0351.1012, 31 yrs, M, White 

or Caucasian 

ELMOD2 cochlear nuclei (8Co) A_24_P38518

5 

 

3.21613 3.30532 H0351.1012, 31 yrs, M, White 

or Caucasian 

ELMOD2 choroid plexus of the 

lateral ventricle 

(CPLV) 

A_23_P30569

2 

 

3.97306 4.74337 H0351.1012, 31 yrs, M, White 

or Caucasian 

ELMOD2 parahippocampal gyrus 

(PHG) 

A_24_P38518

5 

3.86654 3.72909 H0351.1015, 49 yrs, F, 

Hispanic 

ELMOD2 arcuate nucleus of the 

hypothalamus (ARH) 

A_23_P30569

2 

4.08247 4.96858 H0351.1015, 49 yrs, F, 

Hispanic 

ELMOD2 superior colliculus 

(SC) 

A_24_P38518

5 

 

4.01029 3.80254 H0351.1015, 49 yrs, F, 

Hispanic 

ELMOD2 globose nucleus (Glo) A_24_P38518

5 

 

3.11386 4.66866 H0351.1016, 55 yrs, M, White 

or Caucasian 

EPB41L2 cingulum bundle (cgb) CUST_10588_

PI416261804 

3.07842 10.3154 H0351.2001, 24 yrs, M, Black 

or African American 

EPB41L2 central glial substance 

(CGS) 

CUST_10587_

PI416261804 

 

3.43252 9.79024 H0351.1012, 31 yrs, M, White 

or Caucasian 

NUP153 central glial substance 

(CGS) 

A_23_P12225

4 

 

3.23847 9.01955 H0351.2001, 24 yrs, M, Black 

or African American 

NUP153 dentate gyrus (DG) CUST_10891_

PI416261804 

3.2699 5.92154 H0351.1016, 55 yrs, M, White 

or Caucasian 

NPSR1 planum polare (PLP) A_23_P19886 

 

5.78725 4.42121 H0351.2001, 24 yrs, M, Black 

or African American 

NPSR1 lateral group of nuclei, CUST_476_PI 3.7146 4.38354 H0351.2001, 24 yrs, M, Black 
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ventral division 

(DTLv) 

416408490 

 

or African American 

NPSR1 medial group of nuclei 

(DTM) 

CUST_476_PI

416408490 

3.81673 4.44403 H0351.2001, 24 yrs, M, Black 

or African American 

NPSR1 superior colliculus 

(SC) 

A_23_P19886 

 

4.9865 4.10303 H0351.2001, 24 yrs, M, Black 

or African American 

NPSR1 red nucleus (RN) 

 

CUST_16724_

PI416261804 

 

4.03132 4.01214 H0351.2001, 24 yrs, M, Black 

or African American 

NPSR1 pretectal region (PTec) CUST_16724_

PI416261804 

3.03403 3.63143 H0351.2002, 39 yrs, M, Black 

or African American 

NPSR1 medial geniculate 

complex (MG) 

A_23_P19886 5.10127 3.92499 H0351.2002, 39 yrs, M, Black 

or African American 

NPSR1 trigeminal nuclei (5) 

 

A_23_P19886 

 

3.39098 3.23388 H0351.2002, 39 yrs, M, Black 

or African American 

NPSR1 cuneate nucleus (Cu) A_23_P19886 

 

3.1588 3.14006 H0351.2002, 39 yrs, M, Black 

or African American 

NPSR1 lateral hypothalamic 

area, anterior region 

(LHA) 

CUST_476_PI

416408490 

 

3.68097 3.73325 H0351.1009, 57 yrs, M, White 

or Caucasian 

NPSR1 mammillary body 

(MB) 

CUST_476_PI

416408490 

4.28009 4.02847 H0351.1009, 57 yrs, M, White 

or Caucasian 

NPSR1 caudal group of 

intralaminar nuclei 

(ILc) 

CUST_16724_

PI416261804 

3.05815 4.15417 H0351.1009, 57 yrs, M, White 

or Caucasian 

NPSR1 lateral parabrachial 

nucleus (LPB) 

CUST_16724_

PI416261804 

 

3.76174 4.59551 H0351.1009, 57 yrs, M, White 

or Caucasian 

NPSR1 pineal gland (PIN) A_23_P19886 

 

3.67069 3.01265 H0351.1012, 31 yrs, M, White 

or Caucasian 

NPSR1 Lateral tuberal nucleus 

(LTu) 

A_23_P19886 3.13643 2.80366 H0351.1012, 31 yrs, M, White 

or Caucasian 

NPSR1 lateral hypothalamic 

area, mammillary 

region (LHM) 

A_23_P19886 7.62803 4.56071 H0351.1012, 31 yrs, M, White 

or Caucasian 

NPSR1 mammillary body 

(MB) 

CUST_16724_

PI416261804 

3.37439 4.03607 H0351.1012, 31 yrs, M, White 

or Caucasian 

NPSR1 tuberomammillary 

nucleus (TM) 

CUST_476_PI

416408490 

3.17282 4.65152 H0351.1012, 31 yrs, M, White 

or Caucasian 

NPSR1 preoptic region (PrOR) CUST_476_PI

416408490 

3.48437 4.92602 H0351.1012, 31 yrs, M, White 

or Caucasian 

NPSR1 body of the caudate 

nucleus (BCd) 

A_23_P19886 3.19862 3.13934 H0351.1015, 49 yrs, F, 

Hispanic 

NPSR1 posterior hypothalamic A_23_P19886 4.95779 4.08826 H0351.1015, 49 yrs, F, 
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area (PHA)  Hispanic 

NPSR1 parolfactory gyri 

(PaOG) 

CUST_16724_

PI416261804 

6.12278 4.81824 H0351.1016, 55 yrs, M, White 

or Caucasian 

NPSR1 subiculum (S) A_23_P19886 

 

3.52953 3.23112 H0351.1016, 55 yrs, M, White 

or Caucasian 

NPSR1 nucleus subceruleus 

(SubC) 

CUST_16724_

PI416261804 

 

3.46878 3.3031 H0351.1016, 55 yrs, M, White 

or Caucasian 

NPSR1 Paramedian pontine 

reticular formation 

(PPRF) 

A_23_P19886 

 

5.08295 4.08545 H0351.1016, 55 yrs, M, White 

or Caucasian 

LRRK1 Not available (N/A) N/A N/A N/A N/A 

MAN2B1 lateral hypothalamic 

area, mammillary 

region (LHM) 

CUST_151_PI

417507815 

5.32486 7.72601 H0351.2001, 24 yrs, M, Black 

or African American 

MAN2B1 cingulum bundle (cgb) A_24_P37015

6 

3.50073 5.85948 H0351.2001, 24 yrs, M, Black 

or African American 

MAN2B1 lateral group of nuclei, 

dorsal division (DTLd) 

CUST_151_PI

417507815 

 

3.02976 5.56675 H0351.2002, 39 yrs, M, Black 

or African American 

MAN2B1 corpus callosum (cc) A_23_P27613 3.67153 11.6327 H0351.2002, 39 yrs, M, Black 

or African American 

MAN2B1 choroid plexus of the 

lateral ventricle 

(CPLV) 

A_23_P27613 

 

5.12188 13.936 H0351.1009, 57 yrs, M, White 

or Caucasian 

MAN2B1 trigeminal nuclei (5) CUST_151_PI

417507815 

3.20617 5.42835 H0351.1012, 31 yrs, M, White 

or Caucasian 

MAN2B1 central glial substance 

(CGS) 

A_23_P27613 

 

3.29846 11.7684 H0351.1012, 31 yrs, M, White 

or Caucasian 

MAN2B1 globus pallidus, 

external segment 

(GPe) 

A_24_P37015

6 

 

3.57386 6.64669 H0351.1016, 55 yrs, M, White 

or Caucasian 

Abbreviations: ELK4= ETS transcription factor, CEP170= Centrosomal protein 170-KD, EEFSEC= 

Eukaryotic elongation factor selenocysteine-tRNA-specific, TRIM59= Tripartite motif-containing 

protein 59, HTT= Huntingtin, ELMOD2= ELMO domain containing 2, EPB41L2= Erythrocyte 

membrane protein 4.1 like 2, NUP153= Nucleoporin 153-KD, NPSR1= Neuropeptide S receptor 1, 

LRRK1= Leucine-rich repeat kinase 1, MAN2B1= Mannosidase alpha class 2B member 1, R= 

Arginine, C= Cysteine, T= Threonine, M= Methionine, V= Valine, K= Lysine, H= Histidine, A= 

Alanine, S= Serine, I= Isoleucine. 
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Previous work: 

 

Figure S3: Bioinformatics pipeline. Steps followed by the MMED student to prioritize the 11 

sequence variants. 

 

  

166 variants identified from 

sequencing data 

11 variants remained that satisfied 

the selection criteria  
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Current work: 

Figure S4: STRING analysis of NPSR1 protein-protein interactions. Colored according to the 

type of interactions present; red/magenta represents interactions determined experimentally; 

turquoise represents interactions determined from curated databases. Predicted interactions are shown 

as green (gene neighborhood), yellow (gene fusions), and blue (gene co- occurrence). Other 

interactions determined by text mining (lime), co-expression (black), and protein homology (grey) 

are also shown. (Source: https://string-

db.org/cgi/network?taskId=bqL9ERYTRRDC&sessionId=bbHQfln5VLM5). Accessed:28/07/2021 
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Figure S5: STRING analysis of EPB41L2 protein-protein interactions. Colored according to the 

type of interactions present; red/magenta represents interactions determined experimentally; 

turquoise represents interactions determined from curated databases. Predicted interactions are shown 

as green (gene neighborhood), yellow (gene fusions), and blue (gene co- occurrence). Other 

interactions determined by text mining (lime), co-expression (black), and protein homology (grey) 

are also shown. (Source: https://string-

db.org/cgi/network?taskId=bvbm1paWXg2g&sessionId=bbHQfln5VLM5). Accessed: 28/07/2021  
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Figure S6: STRING analysis of LRRK1 protein-protein interactions. LRRK1 interactions with 

PD-associated genes are illustrated, namely, VPS35, PARK7, PINK1, and PARK2. Colored according 

to the type of interactions present; red/magenta represents interactions determined experimentally; 

turquoise represents interactions determined from curated databases. Predicted interactions are shown 

as green (gene neighborhood), yellow (gene fusions), and blue (gene co- occurrence). Other 

interactions determined by text mining (lime), co-expression (black), and protein homology (grey) 

are also shown. (Source: https://string-

db.org/cgi/network?taskId=b2AHy5Oeuwph&sessionId=bbHQfln5VLM5). Accessed: 28/07/2021 
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Figure S7: STRING analysis of ELK4 protein-protein interactions. Colored according to the type 

of interactions present; red represents interactions determined experimentally; turquoise represents 

interactions determined from curated databases. Predicted interactions are shown as green (gene 

neighborhood), yellow (gene fusions), and blue (gene co- occurrence). Other interactions determined 

by text mining (lime), co-expression (black), and protein homology (grey) are also shown. (Source: 

https://string-db.org/cgi/network?taskId=bZz5i2MqU3BP&sessionId=bbHQfln5VLM5). Accessed: 

28/07/2021 

 

  

http://etd.uwc.ac.za/ 
 

https://string-db.org/cgi/network?taskId=bZz5i2MqU3BP&sessionId=bbHQfln5VLM5


 

129 

 

 

Figure S8: STRING analysis of CEP170 protein-protein interactions. Colored according to the 

type of interactions present; red represents interactions determined experimentally; turquoise 

represents interactions determined from curated databases. Predicted interactions are shown as green 

(gene neighborhood), yellow (gene fusions), and blue (gene co- occurrence). Other interactions 

determined by text mining (lime), co-expression (black), and protein homology (grey) are also shown. 

(Source: https://string-db.org/cgi/network?taskId=bD9zYB0zpKAU&sessionId=bbHQfln5VLM5). 

Accessed: 28/07/2021 
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Figure S9: STRING analysis of EEFSEC protein-protein interactions. Colored according to the 

type of interactions present; red represents interactions determined experimentally; turquoise 

represents interactions determined from curated databases. Predicted interactions are shown as green 

(gene neighborhood), yellow (gene fusions), and blue (gene co- occurrence). Other interactions 

determined by text mining (lime), co-expression (black), and protein homology (grey) are also shown. 

(Source: https://string-db.org/cgi/network?taskId=bAgt3M6YFLH3&sessionId=bbHQfln5VLM5). 

Accessed: 28/07/2021 
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Figure S10: STRING analysis of TRIM59 protein-protein interactions. Colored according to the 

type of interactions present; red represents interactions determined experimentally; turquoise 

represents interactions determined from curated databases. Predicted interactions are shown as green 

(gene neighborhood), yellow (gene fusions), and blue (gene co- occurrence). Other interactions 

determined by text mining (lime), co-expression (black), and protein homology (grey) are also shown. 

(Source: https://string-db.org/cgi/network?taskId=b6dYF3030PjC&sessionId=bbHQfln5VLM5). 

Accessed: 28/07/2021 
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Figure S11: STRING analysis of HTT protein-protein interactions. Colored according to the type 

of interactions present; red represents interactions determined experimentally; turquoise represents 

interactions determined from curated databases. Predicted interactions are shown as green (gene 

neighborhood), yellow (gene fusions), and blue (gene co- occurrence). Other interactions determined 

by text mining (lime), co-expression (black), and protein homology (grey) are also shown. (Source: 

https://string-db.org/cgi/network?taskId=bNXc8On5lAoC&sessionId=bbHQfln5VLM5). Accessed: 

28/07/2021 
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Figure S12: STRING analysis of ELMOD2 protein-protein interactions. Colored according to the 

type of interactions present; red represents interactions determined experimentally; turquoise 

represents interactions determined from curated databases. Predicted interactions are shown as green 

(gene neighborhood), yellow (gene fusions), and blue (gene co- occurrence). Other interactions 

determined by text mining (lime), co-expression (black), and protein homology (grey) are also shown. 

(Source: https://string-db.org/cgi/network?taskId=bJhI0SVr3eQh&sessionId=bbHQfln5VLM5). 

Accessed: 28/07/2021 
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Figure S13: STRING analysis of NUP153 protein-protein interactions. Colored according to the 

type of interactions present; red represents interactions determined experimentally; turquoise 

represents interactions determined from curated databases. Predicted interactions are shown as green 

(gene neighborhood), yellow (gene fusions), and blue (gene co- occurrence). Other interactions 

determined by text mining (lime), co-expression (black), and protein homology (grey) are also shown. 

(Source: https://string-db.org/cgi/network?taskId=bsx1ZDfMzFZc&sessionId=bbHQfln5VLM5). 

Accessed: 28/07/2021 
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Figure S14: STRING analysis of MAN2B1 protein-protein interactions. Colored according to the 

type of interactions present; red/magenta represents interactions determined experimentally; 

turquoise represents interactions determined from curated databases. Predicted interactions are shown 

as green (gene neighborhood), yellow (gene fusions), and blue (gene co- occurrence). Other 

interactions determined by text mining (lime), co-expression (black), and protein homology (grey) 

are also shown. (Source: https://string-

db.org/cgi/network?taskId=bWTwAe3g22NJ&sessionId=bbHQfln5VLM5). Accessed: 28/07/2021

http://etd.uwc.ac.za/ 
 

https://string-db.org/cgi/network?taskId=bWTwAe3g22NJ&sessionId=bbHQfln5VLM5
https://string-db.org/cgi/network?taskId=bWTwAe3g22NJ&sessionId=bbHQfln5VLM5
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Figure S15: Pathway interaction data of the EPB41L2 (Protein 4.1) gene. Interactions that EPB41L2 (Protein 4.1) is involved in highlighted with 

pink border. Pathway information obtained from Reactome (Source: https://reactome.org/). Accessed: 28/07/2021  

http://etd.uwc.ac.za/ 
 

https://reactome.org/


 

138 

 

 

Figure S16: Pathway interaction data of the NPSR1 (G-proteins) gene. Interactions that NPSR1 (G-protein) is involved in are highlighted. Pathway 

information obtained from Reactome (Source: https://reactome.org/). Accessed: 28/07/2021  

http://etd.uwc.ac.za/ 
 

https://reactome.org/
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Figure S17: Sequence alignment of the NPSR1 protein (Model_01) and its template (6j21.1.A). Colored according to hydrophobicity ranging from 

the least hydrophobic (darker regions) to the most hydrophobic (lighter regions). Mismatch residues are faded while conserved residues are shown in 

bold andgaps are shown as dashes. 

 

 

Figure S18: Sequence alignment of the spectrin-actin-binding domain of the EPB41L2 protein and its template (3F31). Colored according to 

hydrophobicity ranging from the least hydrophobic (darker regions) to the most hydrophobic (lighter regions). Mismatch residues are faded while 

conserved residues are shown in bold andaps are shown as dashes.

http://etd.uwc.ac.za/ 
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Table S3: NVT/NPT of the NPSR1 wild-type system after EM and equilibration 

 Average Err. Est RMSD Tot-Drift 

Potential -2.34903 x106 8200 17059.3 -57499.1 (kJ/mol) 

Temperature 303.174 0.052 5.47481 -0.316022 (k) 

Pressure 2.20459 1.1 68.0104 3.36789 (bar) 

Density 1019.16 0.1 2.14414 0.768824 (kg/m3) 

 
Table S4: NVT/NPT of the NPSR1 (p.V138I) variant system after EM and equilibration 

 Average Err. Est RMSD Tot-Drift 

Potential -2.32227 x106 4600 9903.33 -32755.7 (kJ/mol) 

Temperature 303.202 0.042 5.13256 -0.301053 (k) 

Pressure -0.194827 0.98 65.6804 -3.38891 (bar) 

Density 971.096 0.13 1.48729 0.407359 (kg/m3) 

 

Table S5: NVT/NPT of the EPB41L2 wild-type system after EM and equilibration. 

 Average Err. Est RMSD Tot-Drift 

Potential -1.35658 x106 0.00 204.729 -499.125 (kJ/mol) 

Temperature 303.224 0.04 5.68616 -0.266789 (k) 

Pressure 1.97473 1 101.086 -3.71275 (bar) 

Density 1025.52 0.16 3.38796 0.434789 (kg/m3) 

 

Table S6: NVT/NPT of the EPB41L2 (p.R663C) variant system after EM and equilibration. 

 Average Err. Est RMSD Tot-Drift 

Potential -1.35439 x106 0.00 267.614 -650.875 (kJ/mol) 

Temperature 303.178 0.026 4.6431 -0.182804 (k) 

Pressure 1.43574 1.1 101.943 3.22227 (bar) 

Density 1034.64 0.14 3.80982 0.893166 (kg/m3) 

 

  

http://etd.uwc.ac.za/ 
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Figure S19: Backbone RMSD analysis of the WT NPSR1 protein and p.V138I MT systems 

(repeats) at 303 K over 200 ns of the simulation period. 

 

http://etd.uwc.ac.za/ 
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Figure S20: RMSD analysis of the GBQ ligand in the WT NPSR1 protein and p.V138I MT 

systems at 303 K over 200 ns of the simulation period. 
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Figure S21: Snapshots of the GBQ ligand and the residues it interacts with as well as the polar 

contacts formed in the NPSR1 WT protein system during the last 50 ns of the simulation. (A) 

160 ns (B) 170 ns (C) 180 ns (D) 190 ns (E) 200 ns. Polar contact formed between the GBQ drug, 

which is colored according to atom type (carbon: yellow, hydrogen: white, nitrogen: blue, oxygen: 

red, sulfur: orange). Residues that it forms a polar contact with of the NPSR1 WT protein labeled and 

colored according to atom type (carbon: magenta, hydrogen: white, nitrogen: blue, oxygen: red, 

sulfur: orange). Polar contacts shown as yellow dashes and labeled.  

 

 

http://etd.uwc.ac.za/ 
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Figure S22: Snapshots of the GBQ ligand and the residues it interacts with as well as the polar 

contacts formed in the NPSR1 MT (p.V138I) protein system during the last 50 ns of the 

simulation. (A) 160 ns (B) 170 ns (C) 180 ns (D) 190 ns (E) 200 ns. Polar contact formed between 

the GBQ drug, which is colored according to atom type (carbon: yellow, hydrogen: white, nitrogen: 

blue, oxygen: red, sulfur: orange). Residues that it forms a polar contact with of the NPSR1 MT 

protein labeled and colored according to atom type (carbon: magenta, hydrogen: white, nitrogen: blue, 

oxygen: red, sulfur: orange). Polar contacts shown as yellow dashes and labeled.  

 

  

http://etd.uwc.ac.za/ 
 



 

147 

 

 

 

 

  

http://etd.uwc.ac.za/ 
 



 

148 

 

 

Figure S23: Snapshots of the NPSR1 (WT) and NPSR1 MT (p.V138I) protein systems during 

the last 50 ns of the simulation. (A) 160 ns (B) 170 ns (C) 180 ns (D) 190 ns (E) 200 ns. WT shown 

in green while the MT is shown in turquoise. 

http://etd.uwc.ac.za/ 
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Figure S24: Backbone RMSD analysis of the WT EPB41L2 protein and p.R663C MT systems 

(repeats) at 303 K over 150 ns of the simulation period. 
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