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Abstract  

Cloud Computing enables users achieve ubiquitous, on-demand, and convenient 

access to a variety of shared computing resources, such as servers, networks, storage, 

applications, and more. As a business model, Cloud Computing has been openly 

welcomed by users and has become one of the research hotspots in the field of 

information and communication technology. This is because it provides users with 

on-demand customization and pay-per-use resource acquisition methods. The 

heterogeneity of compute nodes in Cloud data centre, the dynamic and massiveness of 

user task requests, and the increasing size of Cloud data centres, have brought about 

the challenge of task scheduling and virtual machine management. This challenge has 

received wide attention from industry and academia in recent times. Despite the 

numerous research works, key issues still remain unresolved, prominent among which 

are: i.) Cloud resource providers tend to share their resources among multiple 

concurrent services owned by different customers. This practice requires sophisticated 

resource management mechanisms that dynamically manage the provider's resources 

in the most cost-effective manner, yet delivering on expected quality of service (QoS) 

levels agreed with the customers. ii.) Cloud users have varied QoS requirements, 

hence, comprehensively considering all QoS targets during task scheduling in a 

challenge and an active research area. iii.) Existing research works on virtual machine 

management usually selects the virtual machine (VM) to be migrated according to its 

resources occupation and the number of migrations. However, an important factor of 

virtual machine migration overhead is often overlooked. This results in proposed 

models being able to minimize overall energy consumption in Cloud data centres but 

at the detriment of high migration overhead. iv.) Due to the nature of Cloud 

Computing itself, there are some inevitable limitation in the communication between 

the Cloud layer and the underlying layer (Internet of Thing layer). These include 

latency, bandwidth and power consumption issues. Aiming at the presented challenges, 

this thesis conducts an in-depth research on resource allocation in different layers of 

Cloud Computing, and proposes corresponding models and algorithms to address the 
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challenges. 

The main research work and contributions of the thesis are reflected in the following 

aspects:  

 To address the issue of resource sharing, Cloud federation has been proposed by 

this thesis. An analysis of the necessary conditions for the composition and 

maintenance of the Cloud federation is done, after which a fairness profit sharing 

strategy is proposed. This strategy is able to measure the contribution of each 

participant by using the economic concepts of Shapley Value; which aims at 

fairly distribute the profit between members of a group/team in accordance to 

their contributions. A comprehensive fair profit distribution method, not only 

ensures the federation stability, but also attracts more Cloud service providers to 

join the federation. Finally, the fairness of our proposed strategy has been proved 

by the experimental results.  

 For the second challenge, a multi-QoS target constraint-based task collaborative 

scheduling strategy is proposed. In Cloud Computing environments resources are 

dynamic and varied, while user preferences are diverse with multiple metrics. The 

users’ satisfaction on the QoS largely determines the performance of Cloud task 

scheduling strategy. A task scheduling strategy proposed in this thesis targets the 

QoS constraint requirements of different user tasks by combining the modified 

Differential Evolution algorithm with Shapley Value. Compared with the 

traditional DE and Cloud-sim task banding policy, the proposed method can 

effectively reduce the deadline of the user task scheduling, improve the 

comprehensive QoS performance of the system, while satisfying the multi-QoS 

target constraint requirements of the user task.  

 In addressing the third challenge，a VM migration-aware model was developed 

and was achieved in two phases: i.) proposal of a virtual machine consolidation 

with migration overhead awareness; ii.) proposal of a virtual machine 

consolidation with both cooperative and competitive Cloud federations. This 

http://etd.uwc.ac.za/ 
 



III 

 

algorithm reduces the consolidation overhead in the virtual machine migration 

process by selecting the virtual machine with the smallest overhead factor to 

migrate. Finally, experimental results show that the proposed algorithm can 

reduce the virtual machine migration overhead, and how it works with different 

types of Cloud federations.  

 For the fourth challenge, this thesis proposed an IoT-based Fog Computing model, 

which took into consideration the delay, distance and energy consumption 

between the fog and terminal layers. A modified routing protocol for the IoT layer 

was designed for data collection and muling. Furthermore, a modified genetic 

algorithm (GA) was proposed to solve the problem of resource allocation on fog 

nodes. Finally, experiments were used to prove that the modified routing protocol 

model proposed performed better in terms of robustness and sensor energy 

control. Similarly, at the fog layer, the modified GA showed better performance 

when compared to the classic MaxMin algorithm and the fog oriented MaxMin 

algorithm.  

Key words：Cloud Computing, Evolution algorithm, Fog Computing, Internet of 

things (IoT), LIBP, Quality of service (QoS), Profit distribution, Resource allocation, 

Virtual machine migration, Shapley Value. 
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Chapter 1: Introduction  

1.1 Research Background and Significance 

Cloud Computing is a new business computing model and a product of the 

ongoing information technology revolution. The resource types of Cloud Computing 

systems are usually heterogeneous and dynamic in nature. Additionally, there are large 

numbers of Cloud users, with diverse quality of service (QoS) requirements. This 

series of factors makes the task scheduling and resource allocation problem in the 

Cloud Computing environment particularly complex. However, due to the nature of 

Cloud Computing itself, certain challenges are inevitable, such as those relating to 

delay (as a result of physical distance between users and the Cloud data centres) and 

energy consumption when communicating with the Internet of Things. In view of the 

above description, this thesis will proceed from several aspects such as modelling 

Cloud federation by a fair profit distribution strategy, the QoS target constraints of 

Cloud Computing task scheduling, the migration necessity-based virtual machine 

migration technology and an IoT-based Fog Computing model. This section 

introduces the research background and significance of this thesis.  

  

1.1.1 The concept of “Cloud Computing” 

The birth of Cloud Computing is the product of the information technology 

revolution. With the rapid development of information technology and the increasing 

network bandwidth, the demand for computing resource and storage is on the rise. 

The traditional computing model could no longer meet people’s urgent needs of 

high-performance computing or massive data storage space. In this context, grid 

computing technology was developed and it matured rapidly. By integrating a large 

number of idle computing resources via the Internet, grid computing can effectively 
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deal with all kinds of complex scientific computing problems, and it can also well 

meet the needs of a large number of institutions or individuals for high-performance 

computing applications. However, because grid computing technology is more 

focused on solving large-scale scientific computing problems, it is not well applied in 

the field of commercial computing. Therefore, Cloud Computing technology has 

emerged as an extension of grid computing technology in commercial applications. 

The concept of "Cloud Computing" was first proposed by the Google Corporation, 

United States in 2006; as a new business computing service model. It is the result of 

mixed evolution of multiple technologies. It inherits the technical foundations of grid 

computing and combines it with utility computing and software as a service (SaaS) 

[1]. Grid computing laid the technical foundation for resource sharing and resource 

integration for the development of Cloud Computing technology [2]. The utility 

computing uses services as a quantifiable commodity, upon which the business 

service model for Cloud Computing was developed; while SaaS provides a concrete 

and feasible commercial billing plan for Cloud Computing technology. It is precisely 

because of the above-mentioned existing technological foundations and the vigorous 

promotion of many large companies that Cloud Computing has developed rapidly 

upon its introduction. It has achieved lots of excellent application cases in many 

commercial fields and generated tremendous influence in its short existence [3]. There 

is no universally accepted statement about the definition of "Cloud Computing”. 

Wikipedia considers Cloud Computing to be a business computing model. 

Specifically, it is a dynamic, scalable, virtualized resource provided over the Internet 

and in the form of a service. In [4], Cloud Computing is considered as a virtual 

resource pool containing a large amount of available resources. These resources may 

be hardware resources, software resources, network resources or development 

platforms; the entire virtual resource pool is provided by Cloud service providers. The 

whole resource pool is based on the principle of pay-as-you-go, and its maintenance 

and management are performed according to a Service Level Agreement (SLA) [5]. 

This resource pool allow dynamic configuration for the purpose of optimization. 

Foster, et al. [6] believe that Cloud Computing technology is a large-scale distributed 
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commercial computing model driven mainly by economic factors. It provides users 

with a virtual resource pool made up of a large number of computers based on 

virtualization technology, so that users can obtain all kinds of computing resources on 

demand. 

1.1.2 Features of Cloud Computing 

In summary, Cloud Computing technology has the following characteristics: 

1. The huge server size. At present, the Cloud Computing platforms of IT giants such 

as Google, Amazon, IBM, Microsoft and Yahoo, usually have hundreds of thousands 

or even millions of servers, while private Cloud projects of IT companies generally 

have hundreds or thousands of servers. The large scale of servers in Cloud Computing 

systems can provide system users with unprecedented computing power and storage 

space. 

2. Virtualization. Through virtualization technology, resources distributed in different 

geographic locations are integrated into logically unified resource pools. Users can 

access the services provided by Cloud Computing systems at any time and any place 

via Internet. The resources requested by users come from the logical Cloud. They do 

not have to care about the specific locations where these resources are deployed. 

Virtualization is both the foundation and an important feature of Cloud Computing 

[7]. 

3. Reliability and scalability. In order to maintain the cost advantage, a large number 

of cheap equipment is often used to deploy the server node of the Cloud Computing 

system, resulting in frequent failures in the Cloud Computing system and severe 

single point failure. For this reason, Cloud Computing systems usually ensure the 

reliability of Cloud Computing systems by introducing various fault-tolerant 

mechanisms, such as replica strategies and node isomorphism interchange 

technologies [8]. On the other hand, the resources of Cloud Computing systems are 

dynamically scalable and their size can be dynamically adjusted based on users' 
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demands. This scalability avails users the ability to purchase Cloud Computing 

resources and services of any size according to their needs. 

4. Cost Efficient/Afforabilty. The economy of scale used in Cloud Computing, lowers 

the prices of computing resource. This offers significant cost advantage to users 

versus purchasing and setting up private servers [9]. In addition, integrating all types 

of IT resources are integrated for unified deployment through mature virtualization 

technologies, can realize automatic control and optimization management of system 

resource usage, thereby providing users with a transparent service, and Cloud services 

can be billed flexibly like water and electricity [10]. 

5. Versatility. Cloud Computing can provide a wide range of service content, and its 

service is not limited to specific types of applications. In addition, Cloud Computing 

can not only support multiple types of applications, but also can execute application 

computing, data storage, video playing and other types of applications at the same 

time. 

6. User-centric. Cloud Computing provides a huge resource pool, which enable users 

only need to install a Cloud Computing client on the local terminal to obtain services 

from the Cloud Computing system. In this process, users do not need to change their 

original work habits or work environment, such as operating systems, programming 

languages, and so on. 

The purpose of Cloud Computing is to share resources and work collaboratively. 

However, due to the large scale of Cloud Computing servers, resources are 

heterogeneous and dynamic. On one hand, they provide services to a wide range of 

users, hence require scheduling of resources. On the other hand, the types of tasks are 

varied, and the QoS target constraint requirements are different. This series of factors 

makes the task scheduling and resource allocation problem in the Cloud Computing 

environment very complicated. The task scheduling problem in the Cloud Computing 

environment has certain similarities with the task scheduling in the traditional 
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distributed environment, but there are also great differences. Firstly, unlike in 

traditional distributed computing environment, the resources in the Cloud system are 

dynamical, and resources can be added or removed at any time. The Cloud 

Computing task scheduling strategy must be able to monitor resources changes in real 

time. Secondly, the types of resources in the Cloud Computing environment are 

heterogeneous and oblivious to the users. They are shielded through mature 

virtualization technologies, integrated into a unified logical resource pool and jointly 

provided as external services. This is in contrast to traditional distributed 

environments where computing resources are often homogeneous.  In addition, 

unlike the traditional distributed environment, the Cloud Computing task scheduling 

policy is generally not limited to a specific application. It can support multiple types 

of applications and can run multiple applications at the same time. Finally, the task 

scheduling task in the traditional distributed environment is relatively simple. It only 

pays attention to the overall performance index of the traditional distributed system 

environment, such as task completion time and system throughput. In Cloud 

Computing environment, the task scheduling strategy also seeks to improve the 

service revenue of Cloud service providers as well as provide cater for the sharing of 

profit between multiple collaborative providers. It must do these while also satisfy the 

requirements of a large number of users for different resource types and QoS target 

constraints for different scheduling tasks. Furthermore, it must effectively manage the 

allocation of virtual resource (vms) in a manner that conserves energy. The inclusion 

of a Fog Computing layer between Cloud data centre and IoT layer (to decrease delay, 

control bandwidth and save energy), further complicates the task of the Cloud 

scheduler. 

1.1.3 Research significance of Cloud Computing resource scheduling 

Cloud Computing uses virtualization technology to consolidate a large number of 

IT resources, such as servers, computing clusters, network facilities, and software 

systems, distributed in different regional locations into a logically unified virtual 
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resource pool. It aims at providing a large number of users with all kinds of safe and 

reliable, low-cost, simple delivery, highly scalable computing or storage service on 

the way of "pay-as-you-go" [11]. Cloud Computing users can purchase Cloud 

Computing resources or services of any size as needed, without bothering about the 

actual physical location of such resources. To the Cloud service users, the Cloud 

Computing resources are perceived as unlimited [12]. The goal of Cloud Computing 

is to realize resource sharing and collaborative work. However, due to the large scale 

of Cloud Computing servers, the resources are heterogeneous and dynamic, and on 

the other hand, it provides services to the general public, which has a wide user base, 

diverse tasks requests types. These series of factors makes the task scheduling 

problem in the Cloud Computing environment very complicated. The task scheduling 

problem in the Cloud Computing environment has certain similarities with the 

traditional task scheduling, and there are also great differences. First of all, the 

resources in the Cloud system are dynamic, and new resources will be added to the 

Cloud Computing system at any time. At the same time, existing resources may exit 

the system at any time. The Cloud Computing task scheduling strategy may cost the 

critical waste of computing resources, serious affect Cloud Service provider's revenue 

[13]. 

In summary, the Cloud Computing system has a large server scale, diverse 

resources, a wide user base, different types of application tasks, and different 

requirements for service quality objectives. The Cloud Computing system must 

handle a large number of user tasks and massive data at all times [14]. In this context, 

balancing these multiple requirements and objectives, has become a research hotspot 

and technical difficulty in the field of Cloud Computing. [15]. Therefore, in the 

Cloud-based business-based business computing model, the in-depth study of its 

resource scheduling strategy not only has high theoretical value, but also has good 

practical significance. 
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1.2 Cloud Computing resource allocation and the challenges  

Figure 1-1 Cloud Resource layer structure 

Within the Cloud Computing environment, we need to manage heterogeneous 

resources, such as computers, VMs, storage units, IoT platforms etc. (shown in Figure 

1-1), in a cost-effective manner. In this thesis, we study the resource allocation in 

different modules: (i) For the creation and maintenance of physical resource layer in a 

collaborative Cloud federation, we proposed a fairness profit strategy based on each 

member’s contribution (chapter 2). (ii) Between application layer and virtual resource 

layer, there is the task allocation management module, which includes QoS-based task 

scheduling. (chapter 3); (iii) Between virtual resource layer and physical resource 

layer, an advanced VM migration strategy is proposed in the virtual resource 

scheduling module to improve (chapter 4) and (iv) Between the IoT layer and Fog 

Computing layer, there is the edge computing-based task allocation management 

module, we realize the modelling and modification on both IoT layer and fog layer 

(chapter 5). Each setting raises different research questions and we will further 

discuss these questions and its challenges in the following. 
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(i) Formation and stability in Cloud federation with a fair profit distributing. 

Cloud Computing provides a seemingly infinite infrastructure for hosting and 

deploying web-based applications. This enables companies or individual easily rent 

infrastructure resources from virtually unlimited capacity as needed. A 'pay as you go' 

model is used for billing, wherein users are charged based on actual resources used 

during a given time interval. This enables companies optimize their information 

technology (IT) investments, ensure resource availability and increase scalability.  

While Cloud Computing offers many benefits, it has some major limitations, 

prominent among which are vendor lock-in and limited scalability. To overcome these 

limitations, the concept of a Cloud federation has been introduced. Cloud federation is 

a new paradigm that allows Cloud providers share resources between each other [15]. 

The Cloud federation can loosely be described as [16]: 

 Concentration: In this federation, resource allocation is executed through 

a central entity. All the available Cloud resources are registered with the 

central entity as a repository and market for resources. 

 Peer-to-peer: Here, different Cloud providers communicate directly with 

each other without the help of any central entity. 

With respect to the Internet of Things (IoT), the ever increasing volume of “smart” or 

“connected” devices has unfortunately also resulted in some unwanted issues. These 

include: i.) increase in energy consumption of suppliers; ii.) increased latency as a 

result of the physical distance between IoT devices and Cloud service providers; and 

iii.) over utilization of Cloud provider resources. The emerging of Fog Computing and 

Cloud federation concepts could address these challenges, by allowing providers 

optimize the utilization of their resources by building business partnerships with other 

providers. However, the concept of balancing quality of service (QoS) with energy 

sustainability and cost savings is not trivial. With more and more contributions in the 

literature, people are paying more and more attention to this field. Currently, most 
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energy management strategies focus on independent Cloud providers, others are 

beginning to focus on Cloud federation [17]. 

The Cloud federation could helps solve resource limitations challenges of Cloud 

providers, which forces them to reject new customers when there are not enough local 

resources to meet customer needs. The federation allows providers to dynamically 

outsource resources to other providers in response to changes in demand. It also 

allows providers that do not make full use of resources to lease some out to other 

providers. This outsourcing and insourcing mechanism leads to income generation 

and help providers get more profit when used in the right way [18]. The essence of 

Cloud federation is also a kind of resource allocation, but due to the selfishness of 

individuals, the composition and maintenance of Cloud federation also face 

considerable challenges [19]. Hence, the question of how to form an effective and 

stable federations which can attract more providers, remains a pertinent one, with the 

development of Cloud federations. The answer(s) to this question should address:  

 Attracting new members to the federation: Cloud providers will only 

outsource resources or internal resources in the federation if the income 

earned is profitable, otherwise they will only be more willing to reject their 

own customer's resource request or outsource. Therefore, the resource 

allocation between users and Cloud providers should be effective and 

reasonable. 

 Retaining federation members: In addition to the overall profit guarantee of 

the federation, the profit-sharing strategy must be distributed in a fair way 

among the participating Cloud providers. With this in mind, the issue of 

profit sharing in the Cloud federation needs to be thoroughly examined [20] 

and to design a dynamic and adaptive profit sharing strategy for the Cloud 

resource providers to guarantee each one can get his corresponding profit by 

his contribution. 
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(ii) Multiple QoS needs to be considering in task scheduling. 

The essence of Cloud Computing task scheduling is a resource allocation strategy. 

Based on this strategy, a suitable mapping relationship between application tasks and 

computing resources is established to achieve reasonable allocation and efficient 

scheduling execution of application tasks among computing resources. However, 

unlike traditional distributed computing and grid computing, which only focus on 

performance factors such as system throughput and task completion time, the task 

scheduling problem in Cloud Computing environments is more complicated. First, the 

application task scheduling request in the Cloud Computing environment is 

large-scale decentralized. The Cloud Computing system must perform task scheduling 

and management in a distributed and parallel manner. Second, the Cloud Computing 

resources are often attributed to different organizations or individuals. The task 

scheduling strategy of the Cloud Computing system cannot interfere with the local 

task scheduling within its host node; further, since the Cloud Computing system is 

dynamically scalable, it requires that its task scheduling strategy must also be 

adaptive and scalable. Most importantly, as a business computing model, QoS is 

naturally part of the business service. In order to improve resource utilization and 

obtain as much service revenue as possible, Cloud Computing systems should fully 

consider the QoS requirements of user task scheduling. This might include addressing 

the following issues: 

 Improving the Quality of Service of different Cloud Computing users. There 

are many metric for measuring of QoS in Cloud Computing, such as price, 

bandwidth, security, stability, etc. The goal is to design a comprehensive 

algorithm that considers multiple factors to achieve task scheduling based on 

the user's needs as well as dynamically adjust the quality content and 

importance. 

 When signing up to a Cloud service, both users and Cloud service provider 

often sign a service level agreement (SLA).The SLA spells out the QoS 
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constraints of the user task clearly, including the deadline of the application 

task, the scheduling expenditure budget, the reliability of the system, and the 

security of the service [21]. For the relatively high network bandwidth 

requirements, the corresponding communication bandwidth requirements 

should also be agreed upon in the SLA. In order to obtain as much service 

revenue as possible and ensure commercial success, the Cloud Computing 

system must fully consider the QoS target constraint requirements of user 

task scheduling and meet their requirements as much as possible. Of course, 

in actual situations, it is impossible to ensure that all QoS are met. Therefore, 

according to the requirements of QoS, dynamic and adaptable task 

scheduling model are used to match the special QoS requirements from users. 

 Optimizing the task scheduling results. The Cloud Computing system always 

has to deal with a large number of application tasks. The task completion 

time, execution cost, bandwidth support and so on refers to the compressive 

QoS of the whole tasks be executed by its scheduling strategy. It can be seen 

that when task scheduling is performed in a Cloud Computing system, 

maximizing QoS is a common goal of Cloud system users and Cloud service 

providers. Therefore, there is a need to design efficient algorithms to 

optimize the QoS when doing the task allocation. 

(iii)  The energy based virtual resource management: VM migration and 

integration. 

As the number and scale of Cloud Computing data centres continue to 

expand, the high energy consumption of Cloud data centres has become 

increasingly severe. The energy-saving methods commonly used in Cloud data 

centres can be divided into two categories: static energy-saving methods and 

dynamic energy-saving methods. The mainly factors that need to be considered of 

the static energy-saving is designing the hardware system and its components of 
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the computer. The method mainly includes energy-saving micro-architecture 

design for the motherboard [22], energy-efficient design of the circuit layer, 

low-power state design of the processor, memory and disk [23] and so on. The 

dynamic energy-saving method on the other hand, dynamically optimizes 

energy-saving according to the change of the operating load of the Cloud data 

centre from the perspective of resource management. The commonly used 

dynamic energy saving method mainly includes VM consolidation [5, 24-27] and 

Dynamic Voltage and  Frequency Scaling (DVFS) [28] [29] [30]. VM 

consolidation is a technology for making virtual machine resource scheduling 

more reasonable, by means of "Live Migration" technology [27] [31]. It 

consolidates applications running in the Cloud data centre into a small number of 

compute nodes and shut down idle compute nodes to reduce energy consumption 

in the Cloud data centre. VM consolidation is one of the major energy-saving 

methods used in most Cloud Computing data centres today. In the existing 

research, there are still some problems worthy of further study, such as: 

 How can unnecessary VM migration be avoided to conserve energy? 

Existing research works on virtual machine consolidation algorithms often 

ignore the impact of VM migration overhead when selecting VMs to be 

migrated. Although VMs can be quickly migrated between computing nodes 

within a data centre through online migration technology, VM migrations are 

at a cost. These cost might include reduction in running performance of VMs, 

increased data transfer volume in the data centre and increase in energy 

consumption at both root and destination compute node [5, 32, 33]. Though 

the cost of a single VM migration is relatively small, the wide range of tasks 

handled by the Cloud data centre and with the large fluctuations in the 

number of tasks, the Cloud data centre may experience frequent VM 

migration during daily operation and maintenance. These invariably results in 

higher overall VM migration cost has become an increasingly indispensable 

overhead factor in the daily management of Cloud data centres. However, 
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when selecting the VM to be migrated, the existing research usually selects 

the VM to be migrated according to its resources occupied, the number of 

migrations, but often ignore the important factor of VM migration overhead. 

The proposed VM consolidation algorithm can reduce the energy 

consumption of the Cloud data centre to a certain extent, and also cause high 

migration overhead. Therefore, we need to design an efficient VM migration 

strategy to realize the VM migration but take into account VM migration cost 

as well. 

 How can VM migration technology be used in federated Cloud Computing? 

Federation game in Cloud Computing is a way to expand/ integrate resources 

and make better use of resources. Each participant wanting to maximize his 

own interests is a key issue in the federation game. Combining VM migration 

and Cloud federation game must consider the different situations of the 

participants who wants to provide VMs. So there is a need to design the VM 

migration for both cooperative federation and competitive federation to meet 

the different requirements of participants. 

(iv) The distance between Cloud Computing layer and the Internet of Things 

terminal layer restricts their development.  

User happiness/satisfaction becomes a problem for delay-sensitive applications 

that require nodes to meet their latency requirements. The emerging wave of Internet 

deployments, especially the Internet of Things (IoT), requires mobility support and 

geographic distribution in addition to location awareness and low latency. A new 

platform is needed to meet these requirements and this is where Fog Computing 

comes into play [34]. Fog Computing is the infrastructure that processing power can 

be used from anywhere in the Cloud to the terminal equipment, it extends the power 

of Cloud Computing to the edge of the network, enabling any computing device to 

host software services and process, analyze, and store data closer to where the data 
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was generated. For example, a Fog Computing server can process data uploaded by an 

IoT terminal and need to determine if it needs to be manipulated, rather than sending a 

meaningless data such as a temperature reading of an intelligent thermostat to the 

Cloud data centre every minute. 

The architecture of the Fog Computing brings enormous processing power. Since 

its processing power is often located near the required equipment, the distance of data 

transmission is reduced and the delay is reduced. As a result, decisions can be made 

faster, and IoT manufacturers and software developers will reduce spending on Cloud 

Computing by limiting the amount of data sent to them. Fog Computing makes Cloud 

Computing better at what it does best: long-term data storage and analysis, rather than 

computing tasks that is time-critical. Like with the multi-layer resource allocation 

between Cloud Computing and its users; Fog Computing and the Internet of Things 

also have their corresponding challenges. Some of which include: 

 How can an advanced model be built to connect IoT and Fog Computing? As 

the middle layer between Cloud layer and IoT layer, the fog layer plays a role 

of connecting the upper and lower layers. How to design a model that 

incorporates data collection from the IoT sensor layer and uploading same to 

the fog layer is a direction that needs more study. 

 How can delay, distance and energy consumption between the uploaded tasks 

and fog nodes be balanced? In the fog layer, the fog nodes often have their 

own computing power and storage capacity. Therefore, the resource 

allocation of the Fog Computing has certain similarities with the Cloud 

Computing, but it pays more attention to the IoT sensor geographic location, 

delay time and fog nodes energy consumption of the entire system. Therefore, 

it is meaningful to design an efficient resource allocation algorithm to 

maximize the comprehensive performance of distance, delay and energy 

consumption for the Fog Computing layer of the model. 

 How can the robustness of IoT routing protocol and battery lives of IoT 
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sensors be improved? In recent years, the Internet of Things (IoT), which 

aims to achieve universal communication between a large numbers of 

resources to constrain embedded devices, has become a new paradigm in the 

field of wireless communications. Implementing IoT basically requires 

thousands of low-power and low-cost embedded devices to interconnect 

efficiently and seamlessly [35]. Although today's routing protocols for 

low-power wireless networks (such as CTP or RPL) handle link failures 

relatively well, most studies focus on energy control, and robustness has not 

received enough research attention. Therefore, it is worth that we work on 

robustness and energy control of the routing protocol of for the equipment in 

IoT layer. 

1.3 Contributions 

(i) A unique profit sharing model for Cloud federation– Chapter 2: Though, 

Cloud federation can optimize resource allocation, the fairness of profit 

distribution between participating providers may be one of the most 

important conditions for joining. The economic profit distribution model 

of the traditional single resource level or simple proportional allocation 

mechanism cannot show the contribution of all participants, which means 

that the fair performance is insufficient. This part is to propose a fair 

distribution of profit, and to assess the relative importance of each 

participant (Cloud provider) based on the contribution of resource 

allocation they can make. The main contributions of this work are 

summarized as follows:  

 Usually the proportion of participants in the Cloud federation is fixed, 

but in this work, a dynamic profit distribution model is considered 

based on the various user needs. This allows for dynamic adjustment 

of proportion of each participant according to different conditions.  
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 The proposed Cloud federation model, in addition to taking into 

account the time and budget conditions that users usually propose, 

also considers QoS attributes of reliability, stability and security of the 

Cloud provider. This further aids in accurately obtaining the specific 

computing contribution of each Cloud provider. 

 Use of the economics concept of Shapley Value to calculate the 

contribution for participants, which can then be used for appropriate 

profit distribution in Cloud federation. 

 Finally, the use of experiments to compare and validate the fairness of 

the model.  

(ii) Multi-QoS constrained Cloud Computing task collaborative scheduling 

strategy–Chapter 3: In Cloud Computing, resource types and user 

preferences are heterogeneous and change dynamically. QoS constraints of 

user tasks are varied and with multiple metrics. The degree of satisfaction 

of the QoS largely determines the performance of the Cloud Computing 

task scheduling strategy. For the task scheduling problem with QoS target 

constraints in Cloud Computing environment, this chapter work proposed 

a multi-QoS target constrained Cloud Computing task scheduling strategy 

and the contributions are shown as follows: 

 Proposal of an algorithm to calculate Shapley Value. Within the 

network of task allocation, calculating Shapley value is a NP hard 

problem. In this section, a modification of the algorithm proposed in 

[36] was proposed to calculate the Shapley value of VMs in large 

networks. This enabled the use of Shapley value in the federation 

Cloud to obtain the valuation of each member’s specific contribution.  

 Modified DE algorithm based on Shapley value. The developed model 

is a hybrid modification of differential evolution (DE) algorithm for 

Cloud resource allocation with Shapley value. Specifically, the 
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mutation step of the DE was modified, thereby influencing the choice 

of genes in subsequent generations. 

 Dynamic QoS Adherence: As stated above, users often have various 

QoS requirements that are very important to them. The proposed 

model is able to dynamically adapt and satisfy various user imposed 

QoS requirement, more specifically execution time, cost and 

bandwidth. 

(iii) VM migration and consolidation of the virtual resource allocation – 

Chapter 4. Due to the existing VM consolidation research, the impact of 

VM migration overhead is often neglected. This part carries out the VM 

consolidation research of migration overhead awareness. A VM 

consolidation model under multiple constraints is proposed and its 

contributions are described as follows: 

 Based on the service level agreement (SLA) violation rate and the 

remaining execution time of the virtual machine, we propose a VM 

Migration Necessity-based Dynamic Scheduling algorithm for our 

model. This algorithm can reduce the migration overhead during VM 

consolidation by selecting the virtual machine with the smallest 

overhead factor to migrate. 

 The experimental results demonstrated the effectiveness of our 

proposed VM migration algorithm in VM migration times, migration 

mean time cost, SLA and energy consumption by comparing with 

many other algorithms. 

 Our research also considered both cooperative federation and 

competitive federation while do the VM migration and the experiment 

results shown the performance with two different federations. 

(iv) The advanced model that connects IoT and Fog Computing – Chapter 5: In 
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recent years, the words "Internet of Things" and "Cloud Computing" have 

profoundly changed the IT academia and industry. However, in the actual 

application process, there are certain shortcomings between Internet of 

Things (IoT) and Cloud Computing. The IoT awareness layer has a large 

amount of data and is very complex, which is consist of multi-source 

heterogeneous data. While Cloud service is a highly aggregated service 

computing. Although it is cheap and convenient, it consumes a huge 

number of network bandwidth, and delay is also an inevitable problem due 

to its physical structure. In such an environment, Fog Computing merged 

as the times require, it is a distributed service computing model of 

para-virtualized architecture, which inherits the advantages of Cloud 

Computing and terminal computing. It can fully utilize the computing 

functions of the terminal and the advantages of local proximity processing. 

We proposed an IoT-based Fog Computing model and the contribution are 

described as follows: 

 Mathematical modelling：Our model includes problems with the node 

transport protocol of the terminal layer and the allocation of resources 

(fog nodes) in the fog layer and tasks uploaded from the terminal layer. 

The purpose of this model is to minimize the overall cost of completing 

the terminal tasks through the fog node: time, price, energy. 

 Terminal layer protocol: Based on the LIBP algorithm, we propose an 

improvement of the multi-sink node. The goal is to improve the 

robustness of the terminal layer nodes and extend the battery life of the 

sink node. Finally, the simulation of cooja on contiki OS proved the 

effectiveness of multi-sink nodes. 

 Task scheduling for fog layer: A modified GA is used for optimizing the 

task scheduling between terminal layer and Fog Computing layer. The 

experiment results proof the efficient of our proposed model by 
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comparing with the traditional MaxMin algorithm and the fog oriented 

MaxMin algorithm. 

1.4 Thesis Organization  

 

Fig 1-2 thesis constructer 

As shown in the Figure 1-2, the rest of this thesis is organized as follows:  

Based on the Cloud Computing environment, chapter 2 introduces the Cloud 

federation, analyses the characteristics of Cloud federation and the Cloud federation 

kernels: fairness of profit distribution and federation stability. It then discusses the 

proposed fairness benefit distribution strategy, which is based on the concept of 

economics: Shapley Value, to determine the contribution of each participant in Cloud 

federation. Our strategy focuses on fair and just which provides a strong support for 

the above two kernels. Finally, we show the validity and fairness of our strategy by 

the experiment.  

Chapter 3 presents a Cloud Computing task collaborative scheduling strategy 
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with multiple QoS target constraints between the virtual machines in Cloud 

Computing layer and users in application layer. According to the users’ different task 

scheduling requests, the corresponding QoS target constraints are constructed 

respectively. Then, target solution is solved by applying the Shapley Value based 

Differential Evolution algorithm to optimize and dynamically adjust the QoS 

performance for the users’ different QoS requirements. 

In chapter 4, a VM consolidation model with migration overhead awareness is 

proposed for the VM providers in both cooperative federation and competitive 

federation. This model is an optimization model under multiple constraints that 

focuses on three factors: SLA violation rate, migration times and energy consumption. 

Then, the flow of the algorithm proposed in this chapter at each stage is described in 

detail. Finally, the algorithm was tested and verified by experiments. 

For the shortcomings of communication between Cloud Computing layer and IoT 

layer, an IoT-based Fog Computing model is proposed in chapter 5. The model can be 

divided into two parts, part 1: the data processing in fog layer which focuses on 

optimizing the comprehensive performance of delay, distance and energy 

consumption. Part 2: the IoT layer which is responsible for collecting and uploading 

data, we proposed a modified routing protocol to enhance energy balance and nodes 

robustness. The sixth chapter summarizes the thesis and discusses potential future 

works. 
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Chapter 2: A Fair Profit Distribution Strategy of Modelling 

Cloud Federation 

2.1 Introduction：  

Cloud Computing is aimed at integrating IT resources into a large-scale and scalable 

resource pool through virtualization technology, and provides software as a Service 

(SAAS), Platform as a Service (PAAS) and Infrastructure as a Service (IAAS) services 

via the Internet [37]. Due to the dynamic nature of user requirements, especially for 

data-intensive needs, the increase in demand for computing resources may lead to a 

single Cloud Resource Provider (CRPs) being unable to meet their needs. These makes 

the CRPs need to improve their dynamic resource capabilities by working 

cooperatively as a federation. Furthermore, single Cloud Computing is associated with 

many other issues including: i) vendor-lock deployments which tie Cloud end-users to a 

unique Cloud provider, thus forbidding an average user to move its application from 

one Cloud to another ii) over-sized Cloud infrastructures unable to satisfy peak demand 

periods and leading to performance slow-down iii) non-cooperative resources and 

networks configuration resulting in every single service or workloads deployed in a 

unique site or replicated in multiple sites and iv) resources duplication resulting in 

departments within the same institution maintaining their own non-cooperative 

infrastructures.  

Cloud federation [38] can make more efficient use of the Cloud infrastructure by 

enabling statistical multiplexing of resources and services. In many cases, this is the 

only or best way to satisfy the services on a global scale. The Internet is a typical 

example as the global service which works through a joint agreement between more 

than 30,000 autonomous systems or groups [39]. Currently, building the Cloud 

federation provides many benefits, such as capacity improvement, computationally 

intensive task completion time reduction, faster communication and so on.  

There are two core conditions to form the federation [40]. One is maximizing the 
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profit of the federation, which means the profit of other federation members works as 

any other formation won’t be higher than the federation. The other one is the profit 

distribution between the federation members which is the guarantee that members are 

willing to form the federation. If properly conceived, this strategy will provide 

incentives to potential members that encourage them to share their resources. 

As mentioned above, based on how to define the federation game model; how to 

define the Cloud resource providers and Cloud federation revenue; how to define the 

federation members and their contributions so as to distribute the profit. This chapter 

present a framework for resource management for Cloud federation and propose an 

economic model which captures the contribution of each CRP in the user’s dynamic 

requisition. Based on this model, this chapter proposes the Shapley Value Profit 

Distribution-based Strategy (SVPDS) to distribute the profit between federation 

members due to each member’s contribution, that is, Shapley Value [41]. Our research 

reveals the following: 

 Usually the proportion of participants in the Cloud federation is fixed. However, 

in our work, the profit distribution changes dynamically with respect to user needs. 

We can dynamically adjust proportion of each participate according to different 

conditions. The proportion of participants in the usual Cloud coalition is fixed, but in 

this part, the profit distribution of these participants of the federation is dynamic 

because of the different user demands.  

 By proposing a Cloud federation model, we can take into account the time and 

budget conditions of users. The Quality of Service (QoS) attributes: reliability, 

stability and security of the Cloud provider are also considered in our model.  

 Using the economic concept Shapley Value, the contribution of participants in the 

federation can be calculated. This provides data and strong evidence for participants 

profit distribution in the Cloud federation. 

 Finally, the experimental results and data comparisons prove the validity and 

fairness of the model. More Cloud providers can participate in the distribution of 
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benefits, which provides strong support for the formation and consolidation of Cloud 

federation. 

2.2 Related work 

The originally conceived Cloud Computing paradigm has reached a development 

level, which has exposed its limitations: service disruption, degraded service quality, 

resource contention, data representation lack of interoperability etc. Therefore, several 

new methods of use and optimization have been implemented to maintain the 

continuity of the technology. different Cloud organizations are formed with the goal 

of maximizing the use of Cloud Computing, which is called inter-Clouds [42], Assis 

[43] compared solutions such as hybrid Cloud, Cloud and Cloud federation, they 

identified the functional and non-functional attributes required for Cloud federation 

by identifying the major architectures in the literature, and evaluate these architectures 

based on the attributes described.  

For improving the clients experience of joining Cloud federation, Li [44] proposed 

a Cloud federation architecture that allows Cloud clients to seamlessly and 

transparently access Cloud services. The federation can be provided based on various 

terms, including as a subscription-based real-time online service to Cloud clients, 

which is aiming at simplifying the communication between clients through the 

Service Abstraction Layer (SAL). In order to optimize resources in heterogeneous 

environments and take advantage of the unlimited resources of Cloud Computing, 

Celesti [45] proposed a new module called Cross-Cloud Federation Manager for 

Cloud federation, including three agents (discovery, Match and authentication). And a 

technical solution based on IdP / SP model and SAML technology is proposed, which 

focus on the security part: authentication agent.  

The Cloud federation allows the CRPs to gain more benefits through cooperation. 

Therefore, the Cloud federation needs to overcome the limitations of each CRP to 

maintain QoS during a sudden surge in resource demand. However, the presence of 
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untrusted CRP can degrade the QoS through federated services. Trusted CRP on the 

other hand have high value in the federation because they can extend their resources 

and services to maintain the level of QoS. Thus, in order to ensure the delivery of the 

submitted QoS, Ray [46] proposed a broker based Cloud federation architecture. The 

formation of the Cloud federation is modelled as a hedonic league game. The main 

goal of this work is to find the most appropriate and stable federation which will 

maximize the satisfaction of each CRP based on the service of QoS. They proposed a 

federation game inspired Cloud joint formation (CGCFF) algorithm to improve the 

satisfaction, quality and profit for the federation. 

In Cloud federation, QoS is one the non-negligible factors which reflects the 

overall performance of computer network, particularly the performance gotten by the 

users. In terms of computer network systems, QoS plays a very important role in 

providing high quality service, such as computing and information for the users. 

However, researchers in the field of various service applications have different 

definitions for QoS. Araban [47] and his group classify the characteristics of services 

into two categories, namely the internal attributes which are only related to the 

implementation of the service itself, and the external attributes that are associated 

with the environment in which the service is located, such as performance, reliability, 

integrity, availability. Ran [48]and his group suggested that there are five kinds of 

service, i.e. QoS attributes during the operation (including scalability, capacity, 

response time, reliability, availability, robustness, exception handling and accuracy, 

etc.), QoS attributes related to actual events (event integrity, etc.), QoS attributes 

related to deployment management (normative, support for standards, stability and 

change cyclicality, etc.), QoS attributes related to cost (cost, etc.), and security-related 

attributes (authentication, authorization, confidentiality, statistics, traceability, 

traceability, data encryption, non-repudiation, etc.). Researchers at IBM [49] 

classified service QoS into six categories: visibility, accessibility, integrity, throughput 

and response time, reliability, standard compliance and security. 
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  Based on the above classifications, it can be seen that different researchers focus 

on different QoS attributes according to their own research domain characteristics, so 

it is quite challenge to provide a common QoS model for everyone. Here we propose 

a basic QoS model, which could provide efficient way to determine the QoS attribute 

and show a highly practical use value. 

 Based on the above classifications, it can be seen that different researchers focus 

on different QoS attributes according to their own research domain characteristics, so 

it is quite challenge to provide a common QoS model for everyone. Here this chapter 

proposes a basic QoS model, which could provide efficient way to determine the QoS 

attribute and show a highly practical use value. 

QoS in Cloud services can be measured with different attributes, and the 

attributes used in this work are shown in Table 2-1. 

Table 2-1: QoS attributes 

QoS attributes Description 

Execution 

price(P) 

The cost required for the Cloud service provider to perform a 

given task 

Execution 

time(T) 

The time it takes for the Cloud service provider to perform a 

given task 

Reliable (RE) The probability of a Cloud service running normally 

Available (AVA) The probability that a Cloud service can be successfully 

accessed 

Security (SE) The security level of the Cloud service 

Beyond QoS, as mentioned above, a very important point of forming a federation 

is the strategy of benefits distribution between CRPs which must be carefully chosen. 

This is because the CRP will only join the federation when the income obtained is 

profitable, otherwise they will rather reject new user requests and keep their own 
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resources and existing customers[50]. Since every participant in the federation is 

selfish, so the best profit -sharing strategy must be as fair as possible. With this in 

mind, profit sharing issues in the Cloud federation need to be considered critically and 

a profit-sharing method must be found to ensure the economic benefits of each CP 

belonging to the federation. Base on this theory, this chapter also focuses on 

proposing a fair profit sharing strategy. Comparing with the strategy in this part, there 

are some other common methods that people are using for sharing profit. 

Zant et al. [20] proposed a proportional revenue sharing method that intuitively 

allocates the benefit ratio based on the provider's working time, but this method does 

not consider the source of the request and the number of virtual machines in the 

federation. If income incentives are not significant, this may not be attractive so as to 

force the CRP to reject task execution requests. Toosi et al. [51] proposed the 

Dynamic Pricing based revenue sharing strategy, in which the CRP’s revenue is 

calculated based on the price of the VM multiplied by the number of VMs. The 

disadvantage is that the source dynamic pricing may cause losses to the CP when the 

internal CP idle capacity is very low. Goiri [18] and his group improved the dynamic 

pricing strategy by add the factor alpha, which is called Pricing factor alpha based 

revenue sharing, its revenue is calculated by multiplying alpha based VM price with 

the number of VMs, as well as time duration. But in actual circumstances, the price of 

cooperation CRP will be different. Therefore, it is very important to decide which 

alpha of the CP to use, but they did not mention on what basis and how to calculate 

alpha. Hassan [52] et al. proposed the Broker’s strategically decided price-based 

revenue Sharing strategy, which is a kind of energy awareness resource and revenue 

sharing mechanism based on cooperative game theory. However, the strategy does not 

apply to centralized/peer-to-peer federation scince its pricing does not involve CP's 

consent. Tang and Chen [53] focuses on auction pricing strategy which is called 

double auction based revenue sharing strategy, CRPs acting as buyer and seller who 

respectively is presented buy bid and sell bid. A broker (the role of the auctioneer) in 

Cloud Federation manages all bids, performs a double auction to determine both 
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successful buy and sale bids. The revenue sharing is dynamic changing due to these 

prices in different time interval. CRP can strategically manipulate bid prices and 

trading volumes to maximize their profits, but this strategy only works in a federation 

environment with brokers. Bellagio [54] and his group proposed an economic model 

which is a virtual currency-based auction system designed for allocating resources. 

Although their model provides a general approach to meeting diverse requirements, 

they didn’t provide a means of sharing profits among a group of independent 

providers whose resources are part of certain bids. Based on the dual auction of the 

spot market, Dramitinos [55] proposed a trading virtual machines in the certain 

duration. In terms of profit sharing, it is similar with the parallel synchronous markets 

[56, 57]. But the profit between independent organizations is implicitly shared 

through the market, which didn’t take into account the possibility of complementarily 

of users. Antoniadis [58] and his group focus on sharing the value of diversity in the 

federation, their research made a very fair profit distribution by Shapley Value, but 

they did not take into account dynamic user’s quests which may influence the 

contribution of members in the federation.   
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2.3 System Model 

 

Fig. 2-1 Federated Cloud Infrastructure 

A typical federated Cloud infrastructure of healthcare is depicted by Figure 2-1, it is 

an example of an application, where i) patients’ vital signs are captured in the E-health 

kiosks by E-health sensors ii) routed into a network of micro-Cloud devices belonging 

to a fog-based infrastructure where they are aggregated and pre-processed and iii) 

transferred to macro-Cloud devices belonging to a local health information 

organization (LHIO) which are federated into a global Cloud infrastructure belonging 

to a regional health information organization (RHIO) sharing the Cloud resources and 

services. Such deployment may be suitable for rural and low-income areas of the 

developing countries with the expectation of enabling these settings to leapfrog from 

poor equipped into adequately prepared environments capable of using the federated 

Cloud to tackle some of the most challenges health issues of the developing world.  
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2.3.1. The Federated Cloud Computing Resource Management Framework 

 

Fig. 2-2 Cloud Computing resource management framework 

A Cloud Computing resource management framework is presented in Figure 2-2 

where: 

1. A Physical resource layer composed of data centres hosting different hardware 

resources as the form of VMs. 

2. A virtual resource layer is layered above the physical resource layer to virtualize 

the physical resources for better resource management. While different virtualization 

techniques may be available, virtual machine virtualization and containerization seem 

to be the most popular techniques used by this layer to virtualize resources.   

3. An application layer is layered above the virtual resource layer to provide 

different services to the users and include SaaS, PaaS and IaaS. 

When considering a service perspective, the framework in figure 2-2 can be 

presented as a two-layer architecture including: 

1. A virtual resource scheduling module, where a mapping between virtual and 
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physical resources in the data centre. Here, each physical machine host at least one 

virtual machine (VM) and the total performance, value, energy consumption are a 

summation of all VMs belong to the host who provides these VMs.  

2. A task allocation management module enabling the virtual resources to be 

allocated to the users in a cost-effective way. Based on the structure in figure 2.2, we 

will discuss how to allocate the Users’ task to the VMs, and how to measure the 

contribution of each VM which is the key of fairness distribution strategy after they 

finish the task execution. 

2.3.2 The Cloud Federation Model 

Federation game theory is an important branch of game theory, and its 

normalization of the interdependence of human relations is totally different from 

non-cooperative game. Non-cooperative game describes the model accurately to each 

player's action and its order, while the federation (cooperative) game focuses on the 

results of the formation of different coalitions of the players and the interrelationship 

between players and federation, i.e. the interaction between group decision makers 

[59, 60]. Non-cooperative game consists of four components: players, game rules, 

game outcomes and game effects, federation game shorten the last three elements into 

a whole, so the federation game is composed of two parts: one is the set of all players, 

the other one is the available corresponding functions of different combinations of 

players. 

Definition 2-1 Set R = {R1, R2, ..., Rm} denote a collection of m Cloud resource 

providers (CRPs), each CRP has their own QoS attributes and also can provide 

resources to the user as a virtual machine instance. VM = {VM1, VM2, ..., VMn}, and 

each VM instance can provide cpu, memory, bandwidth, corresponding price and so 

on. 

Definition 2-2 Federation formation is to discuss how to divide the players Set F 

into disjoint federation structure. The federation structure F = {F1, F2, ..., Fk} 
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represents a federation partition form in which each player is a member of a 

federation that is determined. We define a specified federation we need to get its profit 

as S, which is Fi, S ⊆ F. 

Definition 2-3 The Cloud providers have task set T= {T1, T2, ..., Tn}, where Ti is an 

independent task set, the deadline for completing the task set is D, and the cost budget 

for completing the task set is B. 

Definition 2-4 The execution time function is defined as T (T, S), indicating the 

execution time of CRP executing task in Specified federation. We compare the 

execution times of all VMs, choose the longest one as the final execution time which 

is defined as:  

time cost：T(T, S) = max ∑ t(T, CRP)

T∈T,CRP∈S

 

Definition 2-5 The execution cost function is defined as P (T, S), choose the longest 

one as the final execution ∈ T to the resource provider CRPj ∈S in Specified 

federation. The final execution cost is defined as:  

Execution cost：P(T, S) = ∑ p(T, CRP)

T∈T,CRP∈S

;  

Definition 2-6 The reliability of the Cloud service is defined as RE: the ratio of the 

number of successful executions of the Cloud service to the total number of 

executions, that is, 𝑅𝐸(𝐶𝑅𝑃𝑖) =
∑ REj(CR𝑃i)

𝑛

𝑗=1

n
  ,  where REj (CRPi) is the j

th
 

execution of the Cloud service CPi, if the execution is successfully, then REj (CRPi) is 

1, otherwise it is 0. 

Definition 2-7 The availability of a Cloud service is defined as AVA: the ratio of the 

number of successful visits to the total number of visits to the Cloud, that is, 

AV(𝐶𝑅𝑃𝑖) =
∑ AVj(CPi)

𝑛

𝑗=1

n
, where AVAj (CRPi) is the j

th
 visit to the Cloud service 

http://etd.uwc.ac.za/ 
 



32 

 

CRPi, if the access is successful, AVAj(CPi) is 1, otherwise it is 0. 

Definition 2-8: Cloud service security is defined as SE: refers to the Cloud service 

security value, if the Cloud service supports only SSL-level security, its value is 1. If 

the Cloud service supports WSS level Security, such as Token, Time Stamp, Signature, 

Encrypted, the security value is 2; otherwise, it is 0. A summary of parameters and 

symbols used is given on Table 2-2. 

Table 2-2: Parameters and symbol definitions 

Symbol Meaning 

R The set of Cloud Resource Providers: {R1, R2, Rm} 

F The set of Cloud Federation which is consisted of R: {F1, F2, Fm} 

S One federation of the federation set F 

Reliable: 

RE(CRPj) 

The probability of a Cloud service running normally which is 

provided by CRPj 

Available: 

AVA(CRPj) 

The probability that a Cloud service can be successfully accessed 

CRPj 

Security: 

SE(CRPj) 

The security level of the Cloud service CRPj  

VM The set of VMs: {VM1, VM2, … VMn} 

Mips The VM’s CPU speed 

Execution time 

𝐓(𝐓, 𝐅) 

The cost required for the Cloud service provider to execute all 

tasks 

Execution 

price 𝐏(𝐓, 𝐅) 

The time it takes for the Cloud service provider to execute all 

tasks 

Task The user’s question which has to be executed T: {T1, T2, … Tn} 

Budget(B) The price that users are willing to pay 

Deadline(D) The time that users are willing to wait 
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Definition 2-9 the profit V(S) of federation S:  

The goal of Cloud federation S is to provide VM instances to users while 

maximizing their benefits. In contrast to the work in [61], this chapter takes into 

account execution time, execution cost, reliability, availability and security as the 

feature function and defined as follows: 

V(S)′ {
=α(B − P(T, S) +β(D − T(T, S)), if S > 0 𝑎𝑛𝑑 𝑇(T, S) ≤ D

 
= 0, if S = 0 or T(T < S) > 𝐷 𝑜𝑟 𝑃(𝑇, S) > 𝐵                           

 

RAS(S)=(RE(CRP1)+AVA(CRP1)+SE(CRP1))+ (RE(CRP2)+AVA(CRP2)+ SE(CRP2)) 

+…+ (RE(CRPn)+ AVA(CRPn)+SE(CRPn)). 

V(S) {
=  V(S)’+ά ∗ RAS(S), if  V(S)′ ≠ 0

 

=  0, if  V(S)′ = 0                                 

 

Where S is the federation and RAS(S) is the part of QoS attributes: reliability, 

availability and security of the Cloud providers. V(S)’ is the federation profit of cost 

and time which also belong to QoS attributes. α，β and γ are the weight factors which 

can be used for adjusting the importance of different QoS attribute and the V(S) is the 

final federation profit, v(∅)=0. 

2.3.3 Federation Game 

In the Cloud environment, the federation game can be defined as (S, v), and each 

CRP in S is a game participant, and v is the game characteristic function defined on 

the S ⊆ F. The characteristic function shows that the income obtained from the 

cooperation of CRPs in the form of a federation S is defined as v: S function⊆ F, and 

v (∅) = 0 Each S ⊆ F is called a federation, and if all CRPs are only one Union, 

known as the Grand federation, namely: S = F. In this chapter, the game feature 

function is defined as: V (F) {
=  0, |S| = 0

 
 =  P, |S| > 0 
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Where: | S | represents the size of S (empty or otherwise), while P represents the 

total profit obtained by the federation, which is the value of the function V (S). 

Cloud federation game satisfies two main properties: fairness and stability. The 

nature of fairness indicates that the benefits of the federation must be fairly divided 

among its members. Stability of the federation implies that CRP is not willing to quit 

the coalition. These two properties are discussed below: 

1) Fairness of profit distribution 

The characteristic value v(S) of federation S must be divided equally among its 

members based on the principle of fairness. This chapter introduces a fair sharing rule 

based on the market sharing mechanism, that is, the higher the contribution of 

resources in all possible federation in which CRP is involved, the profit it gets. 

Definition 2-10 Contribution margin 

CMi (S) = v (S) - v (S \ {i}), i belongs to S, represents the contribution of the 

player i to the federation S, where S \ {i} represents the federation formed by all the 

players except the player i. 

Definition 2-11 Shapley value 

The Shapley value measures the degree of improvement a of joining player i to the 

federation S by its marginal contribution. The main idea is that in federation game (N, 

v), where N is the federation that consist of all CRPs, player i may form a variety of 

different federation structure, as long as calculating the average contribution margin 

of all different federations of player i. Based on the contribution marginal, the Shapley 

value is defined as below. 

In the federation game (N, v), the Shapley value represents a set of profit 

distributions Ψ = (σ1, σ2, ..., σN), where σi=, ⊆N*P(S)*CMi(S)，P(S)=(|S|-1)!(N-|S|)!/N! 

means the possibility of player i forming a federation. (|S|-1)! means the number of 
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the players before player i appears and (N-|S|)! means the number of the players after 

player i appears. 

Definition 2-12 the profit distribution percentage: PDP(𝐶𝑅𝑃𝑖) =
Ψi

∑ Ψj
𝑁

j=1

 , where Ψi 

is the Shapley Value of CRPi and ∑ Ψj
𝑁

j=1
 means the sum up of all members’ 

shapley value in the federation N. The numerical analysis denote that our strategy is 

fairer than the profit distribution of To Each According To His Contribution 

(TEATHC) [62]. 

2) Federation stability  

The following introduces the concept of kernel in the federation game to analyse 

the stability of the federation structure. 

Definition 2-13 Distribution: A distribution that satisfies the following conditions 

1) PDP(CRPi)*V(S) ≥ v (CRPi); 

2) ∑ PDP(CRPi) ∗ V(S) = v (S)
 

CRPi ∈ S
; 

Condition 1) ensure that the profit of each member in the formation of the final 

federation are not less than the profit of the Fi alone, and condition 2) ensure that the 

total profit should be segmented among all members. 

Definition 2-14 kernel is a distribution set, while satisfying ∑ PDP(CRPi) ∗
 

CRPi ∈ R

V(R) ≥ v (S), S ⊆ F; 

The definition of the kernel indicates that the profit of any federation is less than 

or equal to the sum of the dividends of its members. The existence of the profit vector 

in the kernel indicates that the final federation is stable. Then, if there is no arbitrary 

CRPs willing to leave the federation in favour of another, the profit vector is in the 

kernel. Please note that how to get this kernel is a NP-hard problem, usually people 
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usually use some algorithm, such as ant colony algorithm and genetic algorithm to do 

the calculation. This chapter focuses on profit distribution, so we will use a simple but 

accurate example to illustrate and use the exhaustive method to calculate the kernel. 

2.4 Algorithm Description 

In this section, we set up a scenario where six Cloud tasks are to be scheduled 

across three CRP’s Cloud resources. We analyse this example to verify the 

performance of the federation in completing the tasks. The parameters used are 

summarized on Table 2-3. Table 2-4 (a) gives the resource execution cost matrix of a 

task, and shows that if CRP1 performs all tasks, the cost would be 3 + 4 + 2 + 2 + 1 + 

4 = 16. Table 2-4 (b) shows that if CRP2 performs all tasks, the task completion time 

would be 3 + 3 + 2 + 2 + 2 + 3 = 15. 

Table 2-3: Parameter configuration 

Parameter Value 

Resource providers CRP1, CRP2, CRP3 

Initial federation order {{CRP1, CRP2}, {CRP2, CRP3}, {CRP1, CRP3}} 

Task Set T= {T1, T2, T3, T4, T5, T6} 

Budget/deadline B=28/D=21 

Weighting factor α=0.5, β=0.5，γ1=1 

Attribute matrix P(i,j)=Table 2(a), T(i,j)=Table 2(b)，RAS(i,j)=Table 2(c) 

Table 2-4(a): Attribute matrix P (i, j)                                                  

 RP1 RP2 RP3 

T1(P) 4 3 5 

T2(P) 5 3 2 

T3(P) 3 5 4 
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Table 2-4(b): Attribute matrix T (i, j)   

 

 

 

 

 

Table 2-4(c): Attribute matrix RAS (i, j)   

 reliability (RE) availability (AVA) security (SE) 

RP1 0.8 0.8 2 

RP2 0.9 0.7 1 

RP3 0.9 0.9 1 

Algorithm 1 shows how the Shapley value can be obtained using the data on the 

above Tables. Note: algorithm 1 is designed to minimize the task scheduling cost.  

Algorithm 1：Cost Minimizing on Time Constraint (CMTC) 

1. input: T = {T1, T2, …, Tn}, R = {CRP1, CRP2, …, CRPm}, Budget B, Deadline D 

2. output: Mapping relation between T and R 

3. Initialize Payoff matrix P (i, j), Time matrix T (i, j), k 

4. For j = 1 to m 

5.   Tj = 0 

T4(P) 3 5 4 

T5(P) 2 5 4 

T6(P) 5 3 4 

 RP1 RP2 RP3 

T1(T) 5 4 3 

T2(T) 3 4 6 

T3(T) 5 3 4 

T4(T) 4 3 2 

T5(T) 5 3 4 

T6(T) 5 4 3 
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6. End for 

7. For i = 1 to n 

8.   Initialize Pmax = MAX and TP = 0 

9.   For j = 1 to m 

10.     If P (i, j) ≤ Pmax and TT+T(i,j)+TP ≤ D 

11.       Pmax = P (i, j) 

12. TP+=Pmax 

13.       K = j 

14.     Else if Tj+T (i, j)>D and j==m 

15.       Return infeasible allocation 

16.     End if 

17.     If TP>B 

18.       Return infeasible allocation 

19.     End if 

20. TT+=T (i, k) 

21. End for return Mapping relation 

By following algorithm 1, table 2-5 is obtained. 

Table 2-5: CMTC algorithm task scheduling results 

Federation 

structure 

Scheduling results Price time Revenue of 

cost and time 

RAS 

value 

Overall 

revenue 

{CRP1} Over Time   0 0 0 

{CRP2} Over Time   0 0 0 

{CRP3} Over Time   0 0 0 

{CRP1, 

CRP2} 

T3,T4,T5 → CRP1, 

T1,T2,T6→CRP2 

17 17 7.5 3.1 10.6 
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{CRP1, 

CRP3} 

T1,T3,T4,T5→CRP1, 

T2,T6→CRP3 

18 21 5.5 2.6 8.1 

{CRP2, 

CRP3} 

T2,T3,T4,T5→CRP2, 

T1,T6→CRP3 

20 18 5 2.7 7.7 

{CRP1, CRP2, 

CRP3} 

T3,T4,T5 → CRP1, 

T1,T6→CRP2, T2→

CRP3 

16 17 8 3.2 11.2 

Algorithm 1 provides a means of calculating the task scheduling results. CMTC 

scheduling results are shown on Table 2-5 and shows the average revenue of members. 

Tables 2-6 ~ 2-8 show the benefits of using the Shapley Value assignment method 

under the CMTC algorithm. 

The revenue distribution of CRP1 is: 0 + 10.6 / 6 + 8.1 / 6 + 3.5 / 3 = 25.7 / 6, 

The revenue distribution of CRP2 is: 0 + 10.6 / 6 + 7.7 / 6 + 3.1 / 3 = 24.5 / 6,  

The revenue distribution for CRP3 is: 0 + 8.1 / 6 + 7.7 / 6 + 1.6 / 3 = 19/6. 

The Shapley value of the federation game which is solved by the CMTC algorithm 

is (25.7 / 6, 24.5 / 6, 19/6). This value indicates that CRP1 contributes the most to the 

federation, and CRP1 will be preferentially absorbed as federation members when 

building the federation. In contrast, the Shapley value of CRP3 is minimal which 

means CRP3 has the lowest priority when building federation. Therefore, the final 

federation structure is {{CRP1, CRP2}, {CRP3}}. 

Table 2-6: Revenue distribution of CRP1 in CMTC Algorithm: 

Structure V(F) CM(F) |F| P(F) CM(F)* P(F) 

{CRP1}v 0 0 1 1/3 0 
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{CRP1, CRP2} 10.6 10.6 2 1/6 10.6/6 

{CRP1, CRP3} 8.1 8.1 2 1/6 8.1/6 

{CRP1, CRP2, CRP3} 11.2 11.2-7.7=3.5 3 1/3 3.5/3 

Table 2-7: Revenue distribution of CRP2 in CMTC Algorithm: 

 V(F) CM(F) |F| P(F) CM(F)* P(F) 

{CRP2} 0 0 1 1/3 0 

{CRP1, CRP2} 10.6 10.6 2 1/6 10.6/6 

{CRP2, CRP3} 7.7 7.7 2 1/6 7.7/6 

{CRP1, CRP2, CRP3} 11.2 11.2-8.1=3.1 3 1/3 3.1/3 

Table 2-8: Revenue distribution of CRP3 in CMTC Algorithm: 

structure V(F) CM(F) |F| P(F) CM(F)* P(F) 

{CRP3} 0 0 1 1/3 0 

{CRP1, CRP3} 8.1 8.1 2 1/6 8.1/6 

{CRP2, CRP3} 7.7 7.7 2 1/6 7.7/6 

{CRP1, CRP2, CRP3} 11.2 11.2-10.6=1.6 3 1/3 1.6/3 

2.5 Experiment and performance analysis 

In order to evaluate the proposed model, this section discusses experimental 

simulation carried out on Cloud-sim. The proposed model is compared with the 

classical Max-Min algorithm and modified Max-Min algorithm. 

2.5.1 Experiment environment 

Cloud-sim [63] was released by Melbourne University and Gridbus project group 

in 2009, which is a powerful Cloud Computing environment simulation software. It is 

based on the existing Java based discrete event simulation package in Grid Sim. It can 

also run on multiple platforms such as Windows and Linux. Our justification for 

http://etd.uwc.ac.za/ 
 



41 

 

choosing Cloud-sim can be described as follows: 

The Cloud Computing technology is an evolution of grid technology and grid 

environment. Though a number of grid simulators exists, such as Grid Sim, which are 

good for simulating and modelling grid or distributed computing environments; they 

do not support the basic computing resources or any application service requirements 

of Cloud Computing environment [64]. The major shortcoming is their inability to 

model virtual resource or application tasks for the user's request according to the 

demand. In Cloud Computing environment, all kinds of system parameters such as the 

number of application tasks, the types of application tasks, the load status of the 

system, the level of system energy consumption, the type of available resources, the 

processing capacity of available resources, and the bandwidth of the network are 

constantly changing. The original intention of Cloud-sim simulator was to build a 

reasonable simulation model by this dynamic state system and the application tasks, 

so as to achieve the reasonable control of Cloud resources and efficient execution of 

application task scheduling requests. Based on Grid Sim grid simulator, Cloud-sim 

adds simulation support for Cloud Computing, which provides convenience for 

researcher on Cloud Computing technology. 
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Fig. 2-3 layered architecture of Cloud Sim [63] 

The architecture of the simulator is illustrated in Figure 2-3. From the figure it can 

be seen that the architecture of Cloud Sim is divided into four levels, namely, Sim 

Java, Grid Sim, Cloud Sim and User Code from bottom to top. The lowest Sim Java is 

the simulation engine simulator, which implements all core functions for the above 

three levels, such as management of various simulation modules or simulation clock, 

multiple components communication control, query module maintenance and so on. 

Based on the Java sim layer, Grid Sim layer provides a variety of software component, 

and also provides a graphical interface (Visual Modeller) for the users, which supports 

a huge convince for users. Some functional modules (the packages) which are 

provided by GridSim can be extended on Cloud-sim layer, to provide the computing 

environment simulation and simulation function of the Cloud, to instantiate the core 

entity and build the virtual model, and make the dynamical management at same time. 

In the Cloud Sim simulator source code, the core functional modules are 

implemented by a series of core classes such as Datacenter, SANStorage, 

BWProvisioner, Memory Provisioner, VMProvisioner, Cloudlet, VMMAllocation 

Policy, Virtual Machine, and Datacenter Broker class and so on. 

The Datacenter class is used to simulate the various core infrastructures provided 

by Cloud service providers in Cloud Computing systems. It encapsulates a set of 

computing resources, including hardware and software, and provides a series of 

resources allocation strategy, such as bandwidth allocation, memory allocation, and 

storage devices allocation. The BWProvisioner class is used to simulate the 

bandwidth allocation strategy of virtual machines in a Cloud data centre. This class is 

responsible for allocating network bandwidth resources for a set of competing virtual 

machines. Researchers can expand or rewrite the class as needed, to develop or test 

new bandwidth allocation methods. The Memory Provisioner class is used to provide 

a memory space allocation strategy for a group of competing virtual machines. The 

VMProvisioner class is responsible for selecting the host node that should be 
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deployed for the creation request of a virtual machine in the data centre. In the default 

practice of Cloud Sim, this class selects the first host node that meets the virtual 

machine deployment requirements to deploy the current virtual machine. To create a 

request, in practical applications, researchers can implement better virtual machine 

deployment strategies by extending the VMProvisioner class. The Cloudlet class is 

used to simulate specific Cloud application tasks, and the specific QoS objectives of 

the task schedule are also set in this class. The VMAllocation Policy class is used to 

simulate the allocation strategy of virtual machines. Computing resources are 

generally divided into two types: time sharing and space sharing. Researchers can set 

specific resource allocation strategies by rewriting this class. The Virtual Machine 

class is used to simulate an instance of a specific virtual machine, and the 

corresponding virtual machine is managed by the host node it is deployed on. The 

Datacenter Broker class simulates the role of a task scheduling agent in the Cloud 

Computing environment.  

In this chapter, to test the proposed SVPDS strategy in the Cloud Sim simulator, we 

first need to extend its Datacenter Broker class, implement the proposed SVPDS 

cooperative scheduling strategy in Datacenter Broker.java, and reload its original Bind 

Cloudlet to VM function.  

2.5.2 Experiment setting 

The operating environment of the simulation experiment in this chapter was 

made up of CPU: Intel (R) Core (TM) i5-2500K, 1.87GHz, Memory: 8.0GB, HDD: 

1000GB. 

Please notice that getting Shapley value is a NP-hard problem, so in this case we 

use the exhaustive method to build a simple example which is able to use the accurate 

data to do our experiment. Our experiment has 4 CRPs, with each CRP having 1 VM. 

The VM’s mips, usage cost and related features are summarized on Table 2-10, and 

follows the Amazon EC2 on-demand instance pricing method. The experiment has 10 
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different requisitions, which are respectively from 1 task to 10 tasks, and we set each 

task length to 400. Table 2-9 shows the budget, deadline and the weight factor.  

Table 2-9: Experimental parameters 

Parameter Value 

Resource providers CRP1, CRP2, CRP3, CRP4 

Task Set T= {T1,T2,T3,T4,T5,T6,T7,T8,T9, T10} 

Budget/deadline B=800/D=15 

Weighting factor α=0.5, β=0.5，γ=1 

Attribute matrix Table 2-9: 

Table 2-10: 

 VM0 VM1 VM2 VM3 

Mips 150 140 130 80 

Price 8 8 10 11 

Reliability (RE) 0.3 0.5 1.0 1.0 

Availability (AVA) 0.2 0.5 1.0 1.0 

Security (SE) 0.5 2.0 1.0 2.0 
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2.5.3 Simulation results 

 

Fig. 2-4 Shapley value of each VM by SVPDS 

Figure 2-4 shows a comparison of the Shapley value of each VM under different 

tasks. For tasks 1 to 3, it can be seen that all 4 VMs’ Shapley Value were greater than 

0. This means they can all get their corresponding profit in the ratio of their 

contributions. When the number of submitted tasks grew to 4, VM4’s Shapley Value 

became 0. That is because VM4 is not able to execute 4 tasks alone with the 

constrain-deadline/budge, while the other 3 VMs could execute these 4 tasks alone. 

This implies that whatever the federation is, VM4 won’t do any execution to make any 

contribution.  

When the number of tasks grew to 6, the Shapley Value of VM1 and VM2 

decreased, while those of VM3 and VM4 increased. This means VM1 and VM2 were 

not able to execute all tasks alone, but if one of them worked with other VMs then the 

6 tasks could still be finished within constrain-deadline/budget. With 9 tasks, VM4’s 

Shapley Value once again became 0. In essence whatever the federation is, the other 
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VMs do not need to work with VM4, as without it the federation made more profit. 

When the number of tasks grew to 10, the Shapley Value of VM4 increased and the 

Shapley Value of VM3 decreased to the same level as VM4. That was because both 

VM3 and VM4 were unable to make contributions alone, but if they worked as a team, 

they could make viable contributions. 

According to definition 2-12 with the data of Figure 2-4, we can get the profit 

distribution percentage by SVPDS of each VM under different number of tasks. This 

is showed in Figure 2-5.  

 

Fig. 2-5 the percentage distribution profit of each VM by Shapley Value-based Profit 

Distribution Strategy (SVPDS) 

Through exhaustive method, we get the best task scheduling and their 

corresponding profit under the different number of tasks which is showed in Table 

2-11. 

Table 2-11: Task scheduling and profit with QoS 
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number of 

tasks 

Profit 

1 Task1-VM2 397.59 

2 Task1-VM1, Task2-VM2 387.95 

3 Task1-VM1, Task2-VM2, Task3-VM2 378.09 

4 Task1-VM1, Task2-VM1, Task3-VM2, Task4-VM2 368.45 

5 Task1-VM1, Task2-VM1, Task3-VM2, Task4-VM2, Task5-VM2 358.59 

6 Task1-VM1, Task2-VM1, Task3-VM1, Task4-VM2, Task5-VM2, 

Task6-VM2 

348.96 

7 Task1-VM1, Task2-VM1, Task3-VM1, Task4-VM2, Task5-VM2, 

Task6-VM2, Task7-VM2 

339.11 

8 Task1-VM1, Task2-VM1, Task3-VM1, Task4-VM1, Task5-VM2, 

Task6-VM2, Task7-VM2, Task8-VM2 

329.45 

9 Task1-VM1, Task2-VM1, Task3-VM1, Task4-VM1, Task5-VM2, 

Task6-VM2, Task7-VM2, Task8-VM2, Task9-VM2 

319.59 

10 Task1-VM1, Task2-VM1, Task3-VM1, Task4-VM1, Task5-VM1, 

Task6-VM2, Task7-VM2, Task8-VM2, Task9-VM2, Task10-VM2 

309.95 

 

Using the scheduling profile on table 2-11, we get the profit distribution 

percentage by using TEATHC [65] for each VM under different number of tasks. This 

result is shown in Figure 2-6. 
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Fig. 2-6 The profit of each VM by TEATHC 

Figure 2-6 shows that the VMs can be involved in 2 different profit distribution 

strategies. Form the task number 1 to 10, we can see in most case, only VM1 and/or 

VM2 is enough to finish tasks execution, while VM3 and VM4 remained on standby. 

This was the case when TEATHC, one of the classic tradition economic profit 

distribution strategies, was used. In this case its fairness is inadequate as it kept VM3 

and VM4 running but unutilized and not profitable.  

In contrast, the proposed SVPDS engaged VM3 and VM4 and profit was 

distributed fairly in accordance to their respective contributions. The comparison 

between these two strategies demonstrate that our proposed SVPDS is fairer. A fair 

benefit distribution environment not only can make the federation more stable, but 

also able to attract more participants to the Cloud federation. 

Table 2-12: Compare SVPDS model with the TEATHC based on number of VMs 

involved in the profit distribution 

The request The number of tasks involve in profit distribution 
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1 task 4 VMs 1 VM 

2 tasks 4 VMs 2 VMs 

3 tasks 4 VMs 2 VMs 

4 tasks 3 VMs 2 VMs 

5 tasks 4 VMs 2 VMs 

6 tasks 4 VMs 2 VMs 

7 tasks 4 VMs 2 VMs 

8 tasks 4 VMs 2 VMs 

9 tasks 4 VMs 2 VMs 

10 tasks 3 VMs 2 VMs 

We conducted another experiment where QoS attributes were not considered as 

profit maximization constraints. Here we set the QoS weight factor γ to 0, and then 

obtained VMs’ Shapley value and the profits under 10 different number of tasks 

which are respectively showed as Figure 2-7 and Table 2-13. The results without QoS 

attributes show that the system utilized VM1 more than VM2. This was because 

though both VMs had the same price, VM1 was faster. This is in contrast to Table 2-11 

which utilized VM2. That is because when considering QoS, speed and price, VM2 has 

more contribution to the federation than VM1. The profits are showed in the total 

profit column in both Table 2-11 and Table 2-13. The above comparisons demonstrate 

that QoS attributes play an important role in maximizing profit for the federation. 
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Fig.2-7 shapley value of each vm by SVPDS(γ=0) 

Table 2-13 the task schedule and profit without QoS 

The number 

of tasks 

The schedule of task Total 

Profit 

1 Task1-VM1 396.45 

2 Task1-VM1, Task2-VM2 387.95 

3 Task1-VM1, Task2-VM1, Task3-VM2 377.04 

4 Task1-VM1, Task2-VM1, Task3-VM2, Task4-VM2 368.45 

5 Task1-VM1, Task2-VM1, Task3-VM1, Task4-VM2, Task5-VM2 357.64 

6 Task1-VM1, Task2-VM1, Task3-VM1, Task4-VM2, Task5-VM2, 

Task6-VM2 

348.96 

7 Task1-VM1, Task2-VM1, Task3-VM1, Task4-VM1, Task5-VM2, 

Task6-VM2, Task7-VM2 

338.25 

8 Task1-VM1, Task2-VM1, Task3-VM1, Task4-VM1, Task5-VM2, 

Task6-VM2, Task7-VM2, Task8-VM2 

329.45 

9 Task1-VM1, Task2-VM1, Task3-VM1, Task4-VM1, Task5-VM1, 

Task6-VM2, Task7-VM2, Task8-VM2, Task9-VM2 

318.84 
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10 Task1-VM1, Task2-VM1, Task3-VM1, Task4-VM1, Task5-VM1, 

Task6-VM2, Task7-VM2, Task8-VM2, Task9-VM2, Task10-VM2 

309.95 

2.6 CONCLUSION 

Thus far, this research has only scratched the surface of this issue. We define a 

special QoS that can be used as a standard of measuring Cloud providers’ 

contributions. Based on these contributions we proposed a fairness profit distribution 

strategy for the Cloud federation. Our simple models and examples reflect the value 

of a member in the federation depending on their corresponding QoS contribution. We 

also proposed the Shapley value-based approach to measure their contributions.  

Our approach leads to quantification of intuitive notions of the value of the 

members according to the demand of the users. QoS is used as contribution parameter, 

which is the key to determine the Shapley value. We believe that our approach can 

easily be extended to other forms of demand patterns and can lead to economically 

compatible profit-sharing programs that can be applied in a sustainable Cloud 

resource providers federation. We measured the change in the members’ Shapley 

Value under different numbers of tasks, and record the changes in the proportion of 

profit they can allocate and the number of members that can participate in the final 

distribution of profit which is used for the comparison of TEATHC, then we found 

that our strategy can allow more members to participate in the distribution of profit 

according to their contributions. 

Other interesting directions to extend this work could in the use the loose 

network formulas to calculate Shapley values, as proposed by Paschalidis and Liu 

[66]. Federation hierarchy, composite integrated topology, market-based federation 

profit sharing and the performance competition in the form of Cloud facilities like 

Microsoft Azure can all be valuable directions for further works.   
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Chapter 3: A Multiple QoS-based Task scheduling model for 

Cloud Computing 

3.1 Introduction 

Cloud Computing technology is a new type of business computing service model 

which is developed on the basis of grid computing. Cloud Computing leverages on 

large number of virtualized dynamic computing resources and has become a research 

hotspot in the IT field. These dynamic resources can provide system users with 

various types of computing and data storage services. However, the system needs to 

coordinate distributed resources belonging to different organizations and individuals 

as well as provide a unified access interfaces for Cloud users. A unified interface, 

enables Cloud users access and use Cloud resources (through the Internet), without 

knowing how or which resources are allocated to them and where these resources are 

deployed [67]. Additionally, huge computing power can be easily aggregated thus 

enabling effective solution to large computationally and data-intensive application 

problems [68]. Despite these advantages, many challenges still exist with Cloud 

Computing. Some of these include the dynamic and heterogeneous nature of Cloud 

Computing resources, wide disparity between user workloads and effectively 

allocating these workloads onto Cloud resources. In solving some of these challenges, 

numerous research work have been done in the area of Cloud Computing task 

scheduling and Cloud Computing resource management [69]. 

When tasks are being scheduling in a Cloud Computing environment, these tasks 

often have various quality of service (QoS) target constraints, which the users expect 

the Cloud Computing system to satisfy [70]. In fact, the degree of satisfaction of QoS 

constraint requirements is an important factor in measuring the performance of Cloud 

task scheduling strategy. Therefore, in the Cloud Computing environment, the task 

scheduling strategy usually considers the QoS target constraint requirements of the 

scheduling task and the performance parameters of various available resources to 
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achieve a reasonable match between the number of application tasks and available 

computing resources [71, 72]. 

 This chapter considers three task scheduling constraints, which are: deadline, 

scheduling budget and bandwidth constraints, and proposes a Multi-QoS-Target 

Scheduling Model (M-QoS-TSM). This model assumes that the tasks to be scheduled 

are independent of each other. In the proposed M-QoS-TSM model, in order to meet 

the individualized scheduling requirements of different users for different QoS target 

constraints, the proposed scheduling strategy first assigns weight parameters to the 

various constraints, then applies a fitness function to convert the multi-QoS target 

constraint problem into a single-objective constraint problem. It should be noted that 

though only three QoS target constraint parameters are considered, without loss of 

generality, the Cloud task scheduling model can easily be extended to have more QoS 

target parameters. 

Given a set of application tasks to be scheduled and a fixed set of available 

computing resources, the task scheduling problem is one that finds a scheduling 

strategy to allocate tasks to computing resources to achieve efficient tasks execution. 

This is an NP-complete problem, and nearly impossible to obtain the global optimal 

solution within polynomial time. In response to this, various heuristic optimization 

methods, such as genetic algorithms [73], simulated annealing methods, Tabu search, 

etc., are often used to approximate the optimal solution of the task scheduling 

problem. In the proposed M-QoS-TSM collaborative scheduling model, once the 

multi-QoS target constrained optimization problem has been relaxed to a single target 

optimization problem, after which an optimal Differential Evolution algorithm is used 

to obtain the approximate solution. Finally, the scheduling decision of the application 

task will be executed based on the solution results. 

The rest of this chapter is organized as follows. First, the state-of-the-art of 

Cloud task scheduling problems is presented. This is followed by the definition of 

terms relating to the M-QoS-TSM scheduling model. An analysis of the conditions 
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that M-QoS-TSM scheduling strategy needs to satisfy is followed by the construction 

of the scheduling model. The model is then used to compute an approximate solution 

using the optimal Differential Evolution algorithm as a binding policy between tasks 

and Cloud Computing resources. Finally, multiple experiments are used to verify the 

effectiveness of the proposed M-QoS-TSM based on average completion time, 

deadline violation rate, and average scheduling overhead of the application tasks.  

3.2 Related works 

The previous chapter had introduced some related works with respect to QoS. 

This chapter further discusses research works focused of QoS and task scheduling in 

the Cloud environment. Over the years, task scheduling of Cloud Computing has 

attracted a large number of experts, scholars and technicians alike [74]. Hameed [75] 

outlined the problem of resource allocation in Cloud Computing, summarized main 

techniques in the literature based on the dimension taxonomy and comprehensively 

sorted them by: resource adaption policy, objective function, allocation method, 

allocation operation, and interoperability. In order to solve the problem of optimal 

resource allocation, Kaikai [76] proposed a Hadoop-based Cloud manufacturing 

service platform which uses the revenue function for both providers and users, but 

they did not consider the QoS attributes of the platform. In the work of Pillai [77], a 

resource allocation mechanism for machines on the Cloud based on the principles of 

coalition formation and game theory and experiments was proposed. Experiments 

were used to prove the efficient of the model by comparing it with other resource 

allocation methods. Like the previous work QoS constraints were not considered.  

Resource scheduling strategy plays an important role in determining the 

performance of Cloud Computing systems; however, due to the different QoS 

requirements, the huge number of tasks and resources, the task scheduling problem 

can be extremely complicated. In terms of consuming services exposed by different 

providers and alleviate vendor lock-in, Anastasi [78] proposed a genetic approach for 

Cloud Brokering. The aim was to satisfying QoS requirements of applications though 
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finding Infrastructure-as-a-Service (IaaS) resource. However, Cloud Computing 

infrastructures needs to predict the cost-benefit and the corresponding QoS 

experienced by users. Bruneo [79] presented a stochastic reward nets (SRNs) based 

model to address this. Several performance metrics are defined to test the behavior of 

a Cloud data centre. These include: utilization, availability, waiting time, and 

responsiveness, so as to adjust the data parameters for the Cloud data centre. Singh 

[80] proposed a Cloud workload management framework. Their research is able to 

improve the energy consumption, execution cost and time of different Cloud 

workloads through K-means on the basis of weights assigned and their QoS 

requirements, but they did not take into account the multiple QoS constraints. A 

mixed-game model was built by distinguishing the task-type preference and the 

resource-service capability in the research of Li [81], and they proposed an 

evolutionary game scheduling algorithm which is based on differentiated services, by 

which the QoS could be improved greatly. Samanta [82]and Kumar [83] focus on 

using game theory to optimal the resource allocation problem of QoS constraints, in 

which service providers intend to solve complex parallel computing problems through 

the use of resources across Cloud-based networks. For the computationally intensive 

application task, Daniel [84] proposed a scheduling method can handle multiple 

application tasks in heterogeneous platform at the same time, these applications can 

be independent tasks, can also contain more than one bag of task. Considering QoS 

constraints of task scheduling, Oprescu [85] proposed a budget constrained task 

scheduling scheduler, which is able to deal with multiple task bags under different 

minimum completion time constraints, maximum budget constraints and different 

performance parameters. For focusing on the computation capacity in the Cloud 

Computing environment, Wei Yu, LinGuan Yu, LinHung Yu and Wei [86] propose a 

dynamic auction mechanism to solve the allocation problem. They apply a 

second-priced auction mechanism for improving the efficient of resource allocation. 

The above researches have done the works between QoS and resource allocation, but 

they did not consider that the multiple QoS constraints.   
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In addition, there are also some recent works devoted to obtaining available 

computing resources information to define different QoS attributes, such as the 

"Network Weather Service(NWS) method proposed in literature [87]". The NWS 

integrate resource through a variety of methods, finally constructs a prediction model 

for effective availability system. Randies [88] and Aslam [89] worked on the QoS 

constraints such as task execution time and user trust degree in the task scheduling 

process. The task scheduling strategies can reduce the execution time of the task to a 

certain extent while ensuring system load balancing.  

Since the Cloud Computing task scheduling problem has certain similarities with 

the task scheduling in the traditional distributed environment, some classical 

scheduling algorithms applied in the traditional distributed environment can also be 

borrowed for the Cloud Computing task scheduling problem. Random load balancing 

algorithm (Opportunistic Load Balancing, OLB) [90]; Minimum Execution Time 

(MET), Freund R [91], integrated MET and MCT's Switching Algorithm; KPB 

(K-Percent Best) algorithm; Min-min algorithm, Wu & Shu [92]; Max-min algorithm, 

Maheswaran [93], Duplex algorithm, Lai [94] are some examples. The task is 

designed to be efficient, and can be used for Cloud Computing task scheduling 

problems with appropriate improvements. 

In addition, since Cloud Computing task scheduling is essentially an 

NP-complete problem, it is impossible to find a global optimal solution within the 

polynomial time complexity. In order to quickly obtain a satisfactory scheduling 

scheme, a large number of user tasks are mapped to suitable computing resources in a 

short period of time. Some classical heuristic optimization algorithms are also often 

used in Cloud Computing task scheduling problems, such as genetic optimization 

algorithms genetic [95-98], ant colony optimization algorithm ant colony [99, 100], 

simulated annealing algorithm [101], particle swarm optimization algorithm 

[102-105], Tabu search algorithm [106], and a Mapping algorithm [107] and so on. 
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3.3 M-QoS-TSM 

3.3.1 Formalization of multiple QoS target constraints 

Before we introduced the contribution of VMs, there is a need to introduce the 

concept of federation games. The federation game is an important branch of game 

theory, which focuses on the interdependence of human relationships. 

Non-cooperative game describes the model accurately to each player's action and its 

order, while the federation (cooperative) game [77] focuses on the results of the 

formation of different coalitions of the players and the interrelationship between 

players and federation, i.e. the interaction between group decision makers. 

Non-cooperative game consists of four components: players, game rules, game 

outcomes and game effects; while federation game shortens the last three elements 

into a whole, thus composing of two parts: set of all players and corresponding 

functions of different combinations of players. 

In our model, the federation game consists of a set of VMs; with each subset F of 

VM representing a federation. The value of the federation is represented by the 

characteristic function v (F), which means the revenue that can be obtained when the 

federation members work as a whole. 

Definition 1 The Cloud resource provider set is represented by VM = {VM1, VM 2, ..., 

VMm}, which means m resource providers that can complete the task. 

Definition 2 The federation formation is to discuss how to divide the players (VMs) 

into disjoint subsets. The federation structure F = {F1, F2, ..., Fk} represents a 

federation segmentation.  

Definition 3 The federation game can be defined as (Fn, v), where Fn is the set of 

game participants and v is the value of the game players. 

Definition 4 The VMs have task set T= {T1, T2, ..., Ts}, and the set T includes a 

deadline (D) of completing the tasks, and the cost budget (B) of completing the tasks.   

http://etd.uwc.ac.za/ 
 



58 

 

Definition 5 The time function, defined as t: T on set T= {T1, T2, ..., Ts}, and the 

seallocating tasks to VMs. We compare the execution times of all VMs choose the 

longest one as the final execution time. It is defined as: 

Execution Time：T(T,Fn) = max∑ t(T, VM)T∈T,VM∈Fn ; (1)  

Definition 6 The cost function, which is defined as c: Tution times of all VMs choose 

the longest one as the final execution time.rate. e tasks, and the ∈ Fn，which is 

defined as: 

Execution cost：C(T,Fn) = ∑ c(T, VM)T∈T,VM∈Fn ; (2) 

Definition 7 The average bandwidth function, defined as B: Tndwidth functionof all 

VMs choose the longest one as the final execution ti(VMm ∈ Fn), which the tasks 

are allocated to. It is defined as: 

Bandwidth：B(T,Fn) = (
1

L
)∑ b(T, VM)T∈T,VM∈Fn ; (3) 

where the L is the number of VMs in Fn. 

In order to provide resources to meet tasks requirements of users, and to maximize the 

QoS benefits of the task implementation, VMs can form a resource federation to 

execute tasks. For each federation Fn, there must be a mapping between tasks and 

resource providers πS: T → Fn, the mapping result can be used to calculate the 

federation game (Fn, v), v is the equation 4 as follows: 

V(Fn)

{
 

 =Ϊ(D − T(T, Fn)) +Ϋ(B − C(T, Fn)) +ά ∗ B(T,Fn),

 if T(T, S) ≤ D and C(T, Fn) ≤ B
 

= 0, if S = 0 or T(T, Fn) > D or P(T, Fn) > B                           

 (4) 

where Fn is the member of the federation set F, D-T(T, Fn), B-C(T, Fn) and B(T, Fn) 

are respectively the benefits of execution time, execution cost and average bandwidth 

of the tasks ∈ T with the federation Fn. V(Fn) is the federation value. α, β and γ are 

the weight factors of execution time, execution cost and average bandwidth. 

3.3.2 Model architecture 

Figure 3-1 gives the architecture of the M-QoS-TSM collaborative scheduling 
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model proposed in this chapter. 

 

Fig 3-1 the architecture of the M-QoS-TSM 

As shown in Figure 3-1, the M-QoS-TSM scheduling model implementation 

process is as follows:  

i. Users submit the application tasks with QoS constraints to the task 

scheduler, and at the same time, VMs send their resource information to 

the task scheduler.  

ii. The scheduler transports the tasks and other related parameter 

information to the M-QoS-TSM model. 

iii. The model generates the simulation results, then return the simulation 

results to task scheduler. 

iv. The scheduler judges the returned information, if the VMs are able to 

finish the users’ task request, then send the simulation result (the task 

scheduling message) to the VMs, otherwise it will inform the users that 

request has been rejected.  

v. VMs execute the tasks according to the received task scheduling 

message.  
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3.4 The modified differential evolution algorithm based on Shapley Value   

3.4.1 Calculating VM Contribution in Large Networks 

In chapter 2, application of Shapley Value in Cloud Computing was introduced. 

However, though the Shapley value based centrality is superior to traditional methods, 

an efficient algorithm for computing its exact value for a larger network (with 100s of 

nodes), to the best of our knowledge, has yet to developed. For such networks, the 

only feasible method currently outlined in the literature is the Monte Carlo sampling 

[108]; this method is not only inaccurate, but also very time consuming. For example, 

in the network shown in [36], the Monte Carlo method must iterate 300 times, parsing 

the entire network a 1000 times to produce an approximation of the Shapley value, yet 

with an error rate of 40%. In addition, more iteration at exponential levels is needed to 

further reduce this margin of error. 

The work of [36] considers the game defined by Suri and Narahari and proposes 

an accurate linear time algorithm to calculate the corresponding Shapley value of the 

node in a topology network. The probability that in a random permutation none of the 

vertices from F(vi)∪{vj} occurs before vi, where vi and vj are neighbours, is 

SV|vj|=1/(1+deg(vj)), where deg(vj) is the number of links on each node, which is 

used to indicate the importance of each node (lower number of links indicate higher 

importance). Therefore, by summing the SV|vi| and all the SV|vj| of its neighbours, the 

Shapley value of the node vi can be obtained.  

In applying this model, since a VM can perform any task, the number of links of 

each VM is thus the same. We consider the match results between the VM and each 

task as the length of each link, which allows us use deg(vj) for VMs in the task 

scheduling. This is done in line with [36]. In practical QoS applications, users may 

have their own specific QoS requirements, thus an algorithm that can adjust the QoS 

weight dynamically is necessary. Using the different QoS requirements, the 

contributions can be considered as different QoS weight. The deg(vi) can be divided 

http://etd.uwc.ac.za/ 
 



61 

 

to three: degT(vi), degC(vi), degB(vi), which respectively means the contributions of 

the j-th VM to the execution time , the contributions of the j-th VM to the execution 

cost, and j-th VM’s contribution to the bandwidth. A sample example is shown in 

Figure 3-2, t11=1, c11=1, b11=1 respectively means the degT(v1), degC(v1) and degB(v1) 

of allocating Task1 to VM1, then t12=2, c12=2, b12=2 respectively means the degT(v1), 

degC(v1) and degB(v1) of allocating Task1 to VM2 and so on, the VM number 

corresponds vmSV|vi| which can be found in algorithm 3-1. 

 

Fig 3-2 sample example to calculate the degT, degC, degB 

It is important to note that, for both execution time and execution cost smaller 

values are desirable, while for bandwidth, higher values are better. With respect to 

bandwidth, the bandwidth of any individual VM can be obtained by subtracting the 

bandwidth sum of all other VMs from total bandwidth (HB). This results in (7). 

Deg(v)=Ϊ/(1+degT(t))+Ϋ/(1+degC(t))+ά/(1+HB-degB(t))      (7) 

where α, β, γ are the weight factor to adjust the equation to match the users’ QoS 

requirements. With deg(v), we can calculate the contribution of each VM using 

algorithm 1 as follows: 
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The steps in Algorithm 1 can be summarized as follows:  

 First, the set of VM and the set of T are initialized. 

 Then the Shapley value of the chosen VM (vmSV|vi|) from the set of VM is set to 

0. 

 Then the sum the Shapley value (SV|t|) of the chosen virtual machine with each 

task is determined using (7). 

 Finally, the Shapley value of every chosen VM from the set of VM is put in a list 

(vmSV). This list provides the possibilities for the mutation step in the DE 

algorithm in the next section. The complexity is O(3|n||m|), where n is the number 

of tasks and m is the number of VMs. 

3.4.2 The Modified DE algorithm 

As mentioned before, task scheduling in Cloud Computing environment is a NP 

hard problem, hence difficult to find the best solution when large numbers of 

participants are involved. Intelligent optimization algorithms are usually used to find 

optimal / satisfactory solution. In this section, we proposed the Shapley Value based 

DE Algorithm (SVBDEA), which builds upon the classic DE algorithm [109]. 

SVBDEA requires the parameters of three main steps, population size (NP)，a 

parameter (S) to control the mutation, as well as the crossover probability (CR).  
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The steps of SVBDEA are presented as follows:  

Initialing population: creating a population X consists of individuals xi = {xi,1, 

xi,2, …, x i,D}
 T

, where i = 1,…,NP, and {Xi(0) | x
L

i,j ≤ xi,j(0) ≤ x
U

i,j; i= 1,2,…, NP; 

j=1,2…,E}, where xi(0) is the i
th 

individual (in this thesis, individual means one 

match result between Tasks and VMs) and j means j
th
 dimensionality (means the 

number of VM), and the way to calculate xi,j(0) is described in equation 8 as follows: 

xi,j(0) = x
L

i,j + rand(0-1)*(x
U

i,j - x
L

i,j);            (8) 

where x
L

i,j, x
U

i,j respectively express the lower bound and upper bound of j-th 

dimensionality, rand(0-1) means a random number between 0 and 1. In this thesis, 

individual xi indicates one match result between VMs and tasks, and E is the number 

of tasks. 

 Mutation: The DE algorithm implements individual mutation through a 

differential strategy. The common difference strategy is to randomly select two 

different individuals: xr2 and xr3 in the population, then use a scaling factor (S) to 

scale the difference between xr2 and xr3. Than we can generate the mutant vector: Vi, 

g+1 by adding another random population xr1 according to equation 9 as follows:  

Vi, g+1
 
= xr1, g

 
+ F (xr2, g - xr3, g)        (9) 

where r1, r2 and r3 are three random number in [1, NP], the S is a certain constant, 

and g indicates the g-th dimensionality.  

The above mutation is the traditional mutation step which likes many types of 

mutations such as Uniform, Gaussian and Non-Uniform mutation [110]. and so on. In 

these mutations, the value of only a single dimensionality in the individual is changed 

to improve its fitness. The effect of this on the entire individual is small, especially 

with large population size or when the solution is close to stability. In order to 

improve the search range and simultaneously reduce premature convergence in a local 
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optimal solution, we proposed using Shapley Value List: vmSVi, j (According the 

algorithm 2, vmSV|j| is the shapley value of j-th VM, j=1,2…,E; and each individual 

has its list: vmSVi, j, where i= 1,2,…, NP) to measure the importance of each 

dimensionality of players, to provide the possibility of each VM:: Pi, j, which can be 

presented in equation 10: 

Pi, j = vmSVi, j/ ∑ vmSVi, n𝐷
𝑛=0   (10), 

So the ∑i∈NP, j∈D Pi,j = 1, which means the sum of each Pi,j is 100%, and the number of 

VM will be selected is according to applying equation 8 in the roulette wheel 

selection (RWS) [111], that the selected VM is defined as RWS. Since we have the 

possibility, we can generate new dimensionality when inheriting from individual. The 

mutation can be defined in equation 11 as follows:  

xi,1[n] = (xi, 1, xi, 2, . . . , xi, n) + (z1(△xi, 1 - xi, 1), z2(△ xi, 2 - xi, 2), . . . , zn(△ xi, n - xi, n))  

(11), 

where z1, z2,… zn ∈ {0,1}, and Δxi, 1, Δxi, 2,…, Δxi, n are selected by the RWS. Then 

we can generate 4 different individuals by adjusting the number of z. The first 

mutated individual has 1/4 dimensionalities (x) randomly set to 1, while the others are 

set zero. The second mutated individual has 1/2 dimensionalities randomly set to 1 

and the others set to 0. The third mutated individual has 3/4 randomly set to 1 while 

the fourth has all its dimensionalities set to 1. 

Since we have 4 mutated individuals, we then select 4 individuals with the 

smallest fitness value from the population and compare with the fitness values of our 

4 newly mutated individuals. After the comparison, we put 4 individuals with the 

highest relative fitness value back into the population to get a new population.  

 Crossover: The purpose of crossover operation is to randomly select individuals. 

The method of crossover operation is shown in equation 10 as follows: 
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Ui,j
g+1

= Vi,j
g+1 

if rand(0,1) ≤ CR, j=1,…,D,        (10) 

where CR is the crossover probability. The crossover operation refers to optimization 

process. If V(Ui
g+1

 ) < V(xi
g
) then xi

g
 = Ui

g+1
 , where V(·) is the fitness function of 

equation 4. 

Description in pseudo-code of applied DE is presented in Algorithm 2. 

Algorithm 2 Shapley Value-based mutation 

Input:  

NP: population size, F: a parameter to control the mutation, CR: crossover 

probability, fitness function: f(·) - equation (4), a random population: xi
G
,
 
generation: 

the times of generation repeat 

Output: 

Optimal solution (task scheduling results): individuals from last population with best 

fitness 

int t = 0;  

while t is not 0 do 

foreach vector xi
G
 from population X 

do Generate mutant vector vi
G
 according to (7), (9), Crossover vectors 

according to (10) 

if V(Ui
g+1

 ) < V(xi
g
)  

then xi
g
 = Ui

g+1 

end 
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end 

t = t + 1 

return Individuals of the last population with best fitness 

Stop 

3.5 Experiments and Performance Analysis 

3.5.1 Experiment Environment 

A description of the CloudSim platform and simulation environment has been 

given in the previous chapter. In this study, 8 VMs were used in CloudSim 

environment, similar to that used in [32]. Performance configuration and computing 

power parameters were adapted from CloudSim and are shown on Table 8.  

Table 8: Performance Configuration and Computing Power Parameters (adapted from 

CloudSim) 

: VM1 VM 2 VM 3 VM 4 VM 5 VM 6 VM 7 VM 8 

Pes 1 2 1 2 1 3 1 1 

Mips 1010 2050 2130 270 550 1310 700 1180 

Price 10 12 14 15 16 18 20 22 

Bandwidth 100 600 210 13 100 250 60 200 

In the simulator, the application task parameters include task ID and task length, 

in which task length use Millions of Instruction (MI) as a unit. Task length means the 

number of basic instructions of task scheduling requests. For this work, task lengths 

were set to 10000, which is adapted from the work of [33]. 

In the SVBDEA algorithm constructed, the parameters for the DE algorithm are 

set as follows: the population size of 100, maximum and minimum value are 8 and -8, 
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the mutation zoom is 0.5, the crossover is 0.1, and the maximum iteration number of 

the algorithm is 2000. 

3.5.3 Experiment process 

The main operation steps of the experimental process are described as follows: 

Step 1:  Grid Sim.init (num_user, calendar, trace_flag, exclude_from_file, 

exclude_from_proces g, report name);  

/ *Cloud Sim is extended based on the core functional modules provided by Grid Sim, 

so the experiment needs to initialize the core module library provided by Grid Sim 

first. */  

Step2: Data centre datacenter () = create Datacenter (" Datacenter_ 0");   

/*  Create a Cloud data centre for the Cloud Computing environment, which is the 

resource and service provider for the entire simulation environment.*/  

Step 3: Datacenter Broker datacenterbroer = create Broker () 

int broker ID = datacenterbroker.get_id (  

/* Creat task scheduling agent for Cloud Computing system, it is in charge of rescoure 

allocation according to the users’ QoS constraints*/  

Step4: virtualmachinelist = new Virtual Machine List ();   

/* Create a list of virtual machines for the Cloud Computing simulation environment 

*/  

5: Step  

Virtual Machine virtualmachine =  
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new Virtualmachine (new VMCharacteristics (vmid, bro ID, size, memory, bw, vcpus, 

priority, vmm, new Time Shared VMScheduler ())); 

/* Create a virtual machine and give a variety of attribute parameter settings 

Specified agent. */  

Step 6: virtualmachinelist.add(virtualmachine1);   

/*  Add the virtualmachine1 into the virtualmachinelist。*/  

Step 7: datacenterbroker. submit VMList();   

/*  Submit virtualmachinelist to  virtualmachinelistdatacenterbroker。*/  

Step 8: Cloudletlist = new Cloudlet List ();   

/* Creat Cloud task list*/  

Step 9:  

Cloudlet Cloudlet1 = new Cloudlet (id, length, file_ size, output_ size);   

/* Specify the parameters for the Cloudlet */  

Step10: Cloudlet1.set User ID (broker ID);   

/* Assign agent of Cloudlet*/  

Step11: Cloudletlist.add(Cloudlet1);   

/*  Add Cloudlet1 into Cloudletlist。*/  

Step12: datacenterbroker. submit Cloudlet List(Cloudletlist);   

/ Submit Cloudletlist to datacenterbroker。*/  
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Step13: Grid Sim.start Grid Simulation ();   

/* Start simulation*/  

Step14: Cloudlet List newCloudlist = datacenterbroker. get Cloud List();   

/*Get task list from datacenterbroker */  

Step15: Grid Sim.stop Grid Simulation ();   

/* Simluation finish。*/  

Step16: print Cloudlet List(newCloudlist);   

/* Print newCloudlist */  

Step17: datacenter (). print Debts ();   

/* Sum up the task scheduling overhead of users。*/ 

3.5.4 Experiment Results 

In order to evaluate the proposed SVBDEA, we compared it with the usual DE 

algorithm [22] and the conventional task banding policy of CloudSim [24]. Due to the 

deadline and budget should be increased with the different number of tasks, we use 

the execution time and cost of conventional task allocation policy as the dynamic 

deadline and budget to provide the parameter for the algorithm 3. We used different 

values for the weight factors: α, β, γ and considered 4 different cases scenarios. 

Scenario 1, α=β=γ= 1/3: 

In the first scenario, we assumed that the 3 QoS attributes for users have the same 

degree of importance, so we set α=β=γ= 1/3. A comparison of execution times, which 

is a measure of the first QoS requirement is shown in Figure 3-3, The SVBDEA is on 

the average, respectively 22.00% and 41.13% quicker than the classic DE algorithm 
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and the conventional task allocation policy. A comparison of the second QoS 

requirement (execution cost) is shown in Figure 3-4, the proposed SVBDEA results in 

an average of 20.83% and 39.13% less cost than the traditional DE algorithm and the 

conventional task allocation policy respectively. Since we are aiming at a multiple 

QoS objectives, it is advantageous to get higher total QoS score while sacrificing one 

of the QoS attributes. In this case bandwidth was sacrified, hence why SVBDEA 

performed worse than the other techniques in terms of bandwidth. The simulation 

results in Figure 3-5 shows that SVBDEA utilized on the average 6.05% and 33.70% 

more bandwidth than the traditional DE algorithm and the conventional task 

allocation policy.  

 

Fig. 3-3 the task execution time (makespan) 
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Fig. 3-4 the task execution cost 

 

Fig. 3-5 the average bandwidth that VMs provide 
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usual DE algorithm and the conventional task banding policy, which is even better 

than the performance in case 1. 

 

Fig. 3-6 the execution time (makespan) of special QoS requirement 

Scenario 3, α=1%, β=98%, γ=1%, α+β+γ=100%: 
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Fig. 3-7 the execution cost of special QoS requirement 

Scenario 4, α=1%, β=1%, γ=98%, α+β+γ=100%: 

In this scenario, we assumed that users only care about the execution time, so we 

set α to 1%, β to 1% and γ to 98%, which means the role that bandwidth plays is much 

important than execution time and execution cost. SVBDEA is respectively 8.94% 

and 107.79% on higher than the usual DE algorithm and the conventional task 

banding policy. This is as shown in Figure 3-8. 

To sum up, in the task scheduling problem, the proposed SVBDEA algorithm has 

a better performance whether it is aiming at combination of multiple QoS or the 
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Fig. 3-8 the average bandwidth that VMs provide special QoS requirement 

3.6 Conclusion 

The task scheduling strategy is an important part of Cloud Computing 
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resources has thus become a major research in Cloud Computing. For the different 

task QoS target constraints, the scheduler must fully consider their differences and 

establish the reasonable mapping relationship between the application tasks and the 

available computing resources. In this chapter, we proposed a multi QoS target 

scheduling federation model (M-QoS-TSM) which considers three QoS target 

constraints of deadline, scheduling budget and bandwidth request. Considering that 

Cloud resources are fixed and we proposed a modified DE binding algorithm, which 

transform the multi-target constrained problem into the single target optimization 

problem. Though users have different task scheduling QoS constraints requests, the 

proposed binding policy can still satisfy these requests by adjusting the QoS 

constraint weight. Results of simulation show that in terms of average completion 

time, task bandwidth request level and the QoS performance, the model proposed in 

this chapter is better than the traditional DE algorithm and conventional task 

allocation policy in CloudSim. 

0

100

200

300

400

500

600

700

250 500 750 1000 1250 1500 1750 2000

Bandwidth in special 

SVBDEA DE Conventional

X: number of tasks 

Y: bandwidth 

http://etd.uwc.ac.za/ 
 



75 

 

Chapter 4: Migration-based VM Consolidation in Federated 

Cloud Computing 

4.1 Introduction 

Virtual machine consolidation is one of the major energy-saving methods 

adopted by most Cloud Computing data centres, and its technology foundation is 

virtual machine online migration. This technology can quickly and transparently 

migrate a running virtual machine from one computing node to another, which has 

become an important method for resource management of Cloud Computing data 

centres in virtualized environments. The application of virtual machine online 

migration can achieve the goals of load balancing, fault-tolerant management, as well 

as energy-saving and emission reduction in Cloud data centres [112-114]. However, 

during the process of migration technology, there will be a decrease of the running 

performance of virtual machines due to the migration, as well as an increase amount 

of data transmission in the data centre. These are some of the adverse effects of virtual 

machine migration technology [5, 32, 33, 115, 116]. In the works, these adverse 

effects brought by the virtual machine migration are collectively referred to as the 

migration cost (MC). Although the cost of a single virtual machine migration is 

relatively small, due to the wide range of tasks handled by the Cloud data centre and 

the large number of tasks being processed, Cloud virtual machine migrations may 

occur frequently during the daily operation and maintenance of Cloud data centres 

[112, 114, 117]. These make the migration of virtual machines increasingly expensive 

over an extended period of time. The current research on the problem of virtual 

machine consolidationusually select the virtual machine to be migrated according to 

factors such as the resources occupied by the virtual machine, the number of 

migrations, and ignores migration overhead can be different due to the the migration 

of different virtual machines. In essence, though virtual machine migration can reduce 

the energy consumption of Cloud data centres, it does this with high migration 

overheads. In addition, the remaining execution time of the virtual machine is also an 
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important factor that affects the migration overhead. For example, when migrating a 

virtual machine with a short remaining execution time, for the purpose of 

consolidation, the corresponding migration cost still needs to be considered and this 

might outweigh benefit of the consolidation in itself. The migration of virtual 

resources in federated Cloud Computing environments is also another point, the 

compute nodes are from their providers, but the providers might be willing to offer 

their unused resources as a service to the federation (cooperative allocation) and pull 

back these resources for their own use when they are needed (competitive allocation). 

Existing research on virtual machine consolidationalso ignores this point. Therefore, 

in view of the above-mentioned deficiencies in the existing research, this chapter 

studies the impact of virtual machine migration overhead and virtual machine 

remaining execution time on virtual machine integration, and proposes a virtual 

machine consolidation algorithm with migration overhead awareness. This is adapted 

for both competitive Cloud federation and cooperative Cloud federation. 

In this chapter, we first describe the relevant research background of the 

migration and migration costs of virtual machines in detail. Then, we 

comprehensively introduce the research status of virtual machine consolidation as 

well as existing selection and consolidation methods. 

4.1.1Research Background  

Currently, the virtual machine online migration technology generally is based on 

memory pre-copy migration mechanism. The migration process of a mechanism 

shown in Figure 4-1 [115, 118]. Before the start of pre-copy process begins, that is, 

before time t0, the virtual machine (VM1) normally runs on the source computing 

node. At t0, the pre-copy operation begins, the first round of memory copying is 

performed, and all the memory image files occupied by VM1 are copied from the 

source compute node to the destination compute node. The required time is (t1 - t0). 

Subsequently, the migration process enters the multiple rounds of memory iterative 

synchronization. During this round of iterations, it transfer the memory page file, 

http://etd.uwc.ac.za/ 
 



77 

 

which was modified by VM1 in the previous round, from the source compute node to 

the destination compute node, that is, the transferred memory page size of ith iteration 

is the portion that was modified during the (i-1)th iteration, and the modified page 

during the iteration process is called "Dirty Pages." The above iteration process is 

repeated until the size of the "dirty page" in one iteration is less than a set value or the 

iteration reaches a certain number of times (eg, n times). Finally, the source compute 

node stops the VM1 operation at time tn and transmits the “dirty page” generated by 

the nth iteration to the destination compute node. After the destination compute node 

receives and loads the final state data, it boots up VM1 at the time tn+1. These 

processes are as illustrated in Figure 4-1. 

 

Fig 4-1 Schematic diagram of VM pre-migration process [115] 

The online migration technology can realize the rapid migration of a virtual 

machine from a computing node within one Cloud data centre to another computing 

node, without sacrificing the service of this virtual machine. This greatly improves 

flexibility of resource management operations, such as the load balance, fault-tolerant, 

as well as energy conservation and emission reduction of Cloud data centre. Currently, 

most mainstream virtualization platforms such as VMware, Xen, KVM etc. support 
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the application of virtual machine online migration technology. Although the process 

of online migration of a virtual machine is transparent to users, the slight decrease in 

the quality of service that occurs during the entire migration of the virtual machine is 

noticeable by the user. Studies have shown that the entire process of virtual machine 

migration will generate the following types of overhead for the Cloud data centre and 

the users [5, 32, 115, 116]. 

1) Migration time: refers to the length of time from the start of the pre-migration 

process on the source compute node to the time that virtual machine has been 

migrated to the destination compute node totally, as represented by Tmig. In the 

migration example in Figure 4-1, Tmig = tn+1 - t0. Tmig is mainly affected by some 

factor, such as the dirty page rate of the virtual machine and the network 

bandwidth of the Cloud data centre. Set the memory size of the virtual machine to 

Vmem, the dirty page rate during the migration process to Dmem, the bandwidth of 

the Cloud data centre to bw, and the pre-set number of iterations to n, so that λ = 

Dmem / bw, which is provided by [115], Tmig can be calculated by Equation (4-1). 

  

2) The virtual machine downtime: refers to the length of time that the virtual 

machine is neither running on the source computing node, nor running on the 

destination computing node, and represented by Tdown. As shown in Figure 4-1, 

Tdown = tn + 1 – tn. The migrated virtual machine is completely inaccessible during 

the Tdown period, so that the downtime should be as short as possible during the 

virtual machine migration. Iterations number increase of of dirty page transfers is 

helpful for reduce the downtime, but increasing the number of iterations will also 

increase the migration time of the virtual machine. Therefore, the downtime and 

the migration time need to be considered comprehensively in the process of 

migration. If we define the restart time as Tresume, then the downtime can be 

described as equation (4-2). 
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Tdown=x(Vmen/bw)+Tresume             (4-2) 

3) Migration energy consumption: expressed by Emig. Virtual machine migration 

will increase the amount of data transmission in the Cloud data centre and occupy 

network resources, therefore, additional energy consumption will be generated 

during the migration of virtual machines [5, 32, 115].  

4) The migration performance loss: refers to the effect of the virtual machine's 

service performance during the entire migration process. The study of 

Beloglazovet al [5] shows that during the entire migration process of the virtual 

machine, these is about 10% performance loss of CPU, which means the virtual 

machine consumes 10% less CPU resources during the entire migration process. 

Once a virtual machine has been migrated, its actual execution time should be 

increased by one-tenth of the migration time due to the 10% performance loss. 

The above studies on online migration of virtual machines show that although the 

overhead of virtual machine migration is relatively small, it cannot be ignored. 

The reason is that in the Cloud Computing environment, the scope of tasks 

handled by the data centre is relatively wide, and the number of requests 

submitted by users for virtual machines fluctuates greatly. In the daily operation 

and maintenance of Cloud data centres, frequent virtual machine migration may 

occur. For example, according to VMware researchers, analysis of operational 

profile data collected from 17 enterprise data centres who use VMware reveal that 

peak number of the daily operations has averaged over 3,000 times [114]. In 

addition, the migration costs of virtual machines are related to the types of virtual 

machines and the size of physical resources occupied. It can be seen that the 

unreasonable migration may reduce the energy consumption in the Cloud data 

centre but bring about a large migration overhead. In some cases, the benefits of 

the reduced energy consumption may be significantly less than the cost of virtual 

machine migration overhead. Therefore, the migration cost of virtual machines is 

an important factor that cannot be ignored in the process of virtual machine 

consolidation.  
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4.1.2 Related work 

Virtualization technology allows Cloud providers to encapsulate the various 

services they provide into the form of virtual machines. When users request these 

services, they map these virtual machines to various computing nodes in the Cloud 

data centre. Through the virtual machine online migration technology, Cloud data 

centre managers can also dynamically change the mapping relationship between 

virtual machines and compute nodes according to the changes of system operational 

load, so as to achieve system load balancing, fault-tolerant management, and energy 

conservation and emission reduction goals [112, 114, 119].  

Virtual machine consolidation technology can integrate compute nodes with low 

resource utilization by migrating the VMs that are running on them, to reduce the 

number of active compute nodes in Cloud data centres and achieve energy savings. In 

the Cloud Computing environment, the demand for resources running on the virtual 

machine during the execution process changes dynamically. So, the virtual machine 

consolidationmay cause the following situations: when the number of virtual 

machines running on a compute node reaches a certain level, the change of the 

resource demand of the virtual machine will intensify the physical resource 

competition, which may cause the compute node overload during the operation 

process. The situation is that the demand of the virtual machine running on a 

computing node is greater than the resource capacity provided by the computing node. 

Such a computing node is called a thermal computing node. At this time, it is 

necessary to adjust the mapping relationship between the computing node and the 

virtual machine by using the virtual machine online migration technology to reduce 

the number of virtual machines running on the thermal computing node to avoid 

destroying the service level agreement (SLA).  

Virtual machine consolidation is often described as the Bin Packing problems. 

Existing studies have proposed the heuristic solutions such as First/Best Fit 

Descending (FFD and BFD) algorithms, and the best adaptive fallover (BAF) 
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algorithm [120], the improved best-fit descent (MBFD) algorithm [117], the Sercon 

algorithm [121], and pMapper [122]. Evolutionary algorithms, such as GA, ACO, DE 

etc. [123-125], have also been proposed. These algorithms all provide feasible 

solutions for virtual machine consolidation under Cloud Computing environment. The 

migration necessity-based virtual machine consolidation algorithm proposed in this 

chapter focuses on the selection phase of the virtual machine to be migrated. It seeks 

to determine how to select a suitable virtual machine to be migrated when a 

computing node needs to migrate out virtual machines to reduce the migration 

overhead. Therefore, the following sections will introduce the existing research work 

on virtual machine selections.  

The following existing virtual machine selecting method are usually adopted for 

virtual machine consolidation research:  

(1) Random Selection Migration (RSM) [112]. The RSM method randomly 

selects one (or more) virtual machine from a virtual machine running on a triggering 

computing node to be migrated. The migration of the VM enables the previous node 

meet certain constraints. 

(2) Resource-based Migration (Rb M) [112]. The Rb M method refers to 

selecting a virtual machine to be migrated according to the size of resources occupied 

by the virtual machine. This method can be further divided into CPU-based migration 

(Cb M) and memory-based migration (Mb M), and Combined Migration (Co M). The 

Cb M method means selecting a virtual machine that occupies a maximum (or 

minimum) CPU resource as the target to be migrated from the computing node. 

Similarly, the Mb M method is based on a memory occupation, and the Co M method 

is selected according to both of CPU and memory resources of the virtual machine. 

(3) Balance-based Migration (Bb M) [126]. Due to the heterogeneous nature of 

Cloud data centre resources, different types of virtual machines may have different 

requirements for different resources. This method of virtual machine migration, which 
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makes the utilization of various resources provided by the computing nodes as 

consistent as possible, is called a Bb M method; conversely, the method that makes 

the difference in the utilization of various resources provided by the computing nodes 

as large as possible is called the Imbalance-based Migration (IbM) method. 

(4) Minimization of Migrations (MoM) [127]. The method selects the minimum 

number of virtual machines to be migrated from the triggering computing nodes. This 

method is also one of the most adopted methods to reduce the effect of virtual 

machine migration. 

(5) Minimum Migration Time (MMT) [5]. When a computing node in the Cloud 

data centre triggers a migration operation, the MMT method selects the virtual 

machine of the smallest migration time from the virtual machine running on the 

computing node. The virtual machine migration time is calculated as shown in 

Equation (4-1). 

(6) Maximum Correlation Migration (MCM) [128-131]. This method is proposed 

by the following basic idea [191]: Two virtual machines running on the same 

computing node, the possibility of overload has a positive correlation of the resource 

utilization correlation of these two virtual machines. Therefore, the MCM method 

selects the virtual machine that has the highest CPU utilization associated with the 

other virtual machines running on the computing node as the target to be migrated 

out. 

(7) Maximum Potential Growth Migration (MPGM) [117]. The potential growth 

of CPU utilization refers to the gap between the CPU capacity currently used by a 

VM and the CPU capacity set by the VM at the time of creation. The MPGM method 

is to select the virtual machine with the greatest potential for CPU utilization as the 

target to be migrated from the computing node. 

Beloglazov et al. [117] proposed a dual-threshold based virtual machine 

consolidation algorithm, the author adopted three methods: RSM, MoM, and MPGM 
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respectively to choose the virtual machine to be migrated. Finally, they compared the 

simulation experiments of these three methods demonstrated that the MoM method is 

superior to the other two methods in most cases. In [5], Beloglazov further studied the 

impact of virtual machine migration on the service performance, and pointed out that 

during the entire virtual machine migration process, the performance loss of the 

migrated virtual machine is equivalent to about 10% of the normal usage. In addition, 

the author proposes an adaptive virtual machine consolidationalgorithm and adopts 

RSM, MMT, and MCM methods to select the virtual machine to be migrated. In order 

to achieve the balance between the user's service level objective (SLO) and the system 

power consumption, Kord et al. [130] proposed a method based on the Minimum 

Correlation Coefficient (MCC) to place the virtual machine. Gutierrez-Garcia and 

Ramirez-Nafarrate [112] studied the problem of virtual machine consolidationbased 

on online migration, focusing on target virtual machines selecting when the 

computing nodes initiate migration. In order to solve these problems, the author 

proposes an E-protocol (Energy-aware Server Consolidation Protocol) algorithm and 

uses Rb M, Ib M and other methods to select the virtual machine to be migrated, and 

adopts a corresponding method for these virtual machines to be migrated, as well as 

chooses a suitable destination computing node. Mann [127] studied the placement of 

virtual machines in a multicore environment, in this study, the authors assume that 

each CPU core of a compute node can be shared by multiple virtual machine cores, so 

as long as the CPU is not overload, the number of virtual machine cores that each 

compute node can accommodate may be much larger than the number of CPUs, 

which improves the multiplexing capability of the compute nodes. In Mann's research, 

the performance of compute nodes, the number of virtual machines, and the number 

of overloaded CPU cores were taken into account in the process of virtual machine 

placement, and proposed an optimization model. The model is based on a Constraint 

Programming (CP) algorithm to solve the minimization problem of the model. In 

addition, studies such as using the MoM method to select the virtual machine which is 

proposed by K. S. Rao [132], is the method of Migration awareness perception (Mig 
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CAP) algorithm for VM migration, and its overhead is reflected in the number of VM 

migrations. 

Based on the review above it can be seen that the most common methods used in 

literature to select virtual machines to be migrated are: RSM, Rb M, and MoM. Most 

of these methods are based on the resources occupied by virtual machines or 

migration times, but they often ignore the important factor of the migration cost of the 

virtual machine. In addition, the remaining execution time of the virtual machine is 

one of the important factors that need to be considered in the virtual machine 

consolidation process, that is always be ignored either. Therefore, aiming at the above 

two problems existing in the research on the consolidation of existing virtual 

machines, this chapter proposes a VM Migration Necessity-based Dynamic 

Scheduling Algorithm (VMMNDSA). 

Table 4-1 Summary of Parameters and Symbols  

symbol description 

T= {1，2，3,…,|T|} T is the length of the entire run cycle, divided into |T| time windows 

CN={cnj,1={cnh CN is the set of compute nodes in the data centre, where M represents the total number of 

compute nodes and cnj represents the jth compute node 

Ωj, Γj, Λj The CPU, memory and bandwidth resource capabilities of the compute node cnj 

CN(t), m(t) The set of compute nodes used in the tth time window, and the size of the set 

V(t), n(t) The set of virtual machines used in the tth time window, and the size of the set 

at(vi), rt(vi) The time that vi arrived and its execution time 

ωit, γit, λit The CPU, memory and bandwidth requirements of vi in the tth time window 

Tmig(vj) The migration time of vj 

Tdown(vj) The downtime of vj 

Emig(vj) The migration energy consumption of vj 

CFmig(vj) The migration cost of vj 

S(t)=(s1(t), s2(t)..., the state vector of compute node set, where sj(t) represents the state of cnj 
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sM(t)) 

SLAj(t) Whether the compute node cnj has an SLA violation in the tth time window 

SUMTmig(cnj) The sum up of all virtual machine migration downtime in the compute node cnj 

LThreshold Lower threshold for resource utilization 

4.2 VM Migration Necessity-based Dynamic Scheduling Model 

In this chapter, we first describe the above-mentioned migration overhead of 

virtual machine consolidation issues in detail, and then establish a mathematical 

model of the problem, including objective functions and constraints. For the 

convenience of reading, table 4-1 gives a summary of the parameters used in this 

chapter. 

4.2.1 Problem Description  

In order to meet the needs of users in different geographic locations, Cloud 

providers deploy a large number of Cloud Computing data centres around the world. 

These Cloud data centres can receive virtual machine requests submitted by users, and 

based on the different needs and the resource capability to place the received virtual 

machine requests on the appropriate compute nodes for task execution. However, in 

Cloud Computing environment, computing nodes in a Cloud data centre may be 

affected by various factors such as the arrival of a virtual machine request, the 

execution of a virtual machine request, and the dynamic changes in resource 

requirements during execution of the virtual machine. The resource utilization could 

be too low or too high, so that the VMs running on the Cloud data centre need to be 

dynamically adjust by VM migration. Most of the current researches on virtual 

machine consolidation focus on the single consolidation under the current operating 

state of Cloud data centres. The research in this chapter is different from these studies 

in that it focuses on the necessity and overhead associated with migrating individual 

VM. It takes into account the VM’s dynamic nature, that is, the virtual machine 

running to the end, the arrival of new virtual machine requests and the changes in 
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resource requirements on the running virtual machine. This helps prevent unnecessary 

VM migration and consolidation, in order to achieve the Cloud data adjustment. This 

work also takes Cloud federation (described in chapter 2) into account. We consider 

that PM providers as the participants who form the federation as illustrated in Figure 

4-2. In cooperative federation, VMs can be migrated to any PMs, for example in 

Figure 4-2, VM1 can be migrated to PM3. However, in competitive federation, VM1 

only can be migrated to the PM2, which is from the same PM provider: PM provider 

1.  

 

Fig 4-2 VM migration model of federated PMs in Cloud Computing 

In order to more intuitively and clearly describe the virtual machine 

consolidation problem of migration overhead, we first give some definitions of related 

concepts and terms. 

Definition 4-1: Time Slot (TS) [133]. Assuming that the entire data centre's 

running time is T, we can use the method shown in Figure 4-3 to divide the entire 

running time period T by the fixed unit time length tΔ to |T | unit time lengths, ie T= 

{1, 2, 3, ..., |T|}. A unit time length tΔ is a time window and can be considered as a 

basic time processing unit. For example, the initial deployment of a virtual machine is 

based on a uniform placement for each time window, which is, put all the arrived VM 
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requests into the waiting queue during the time t (1≤t≤|T|). Then, at the beginning of 

the (t + 1)
th
 time window, make the uniformly placement of all the VM requests in the 

waiting queue. In the experiment in this chapter, the value of the unit time length tΔ is 

set to 1 minute. 

 

Fig.4-3 Time division window schematic 

Definition 4-2: Cloud Data centre (DC). The CN={cnj|1(DC). The CN={cnndow 

schematic In the experiment in this chaCloud data centre, where M is the total number 

of computing nodes and cnj is the j
th

 computing node. Due to these compute nodes are 

heterogeneous, their CPU processing power and memory size may different, so using 

Ωj, Γj, and Λj to represent the CPU processing power, memory size and bandwidth that 

the compute node cnj can provide. CN(t) denotes the set of compute nodes that the 

Cloud data centre is using within the t
th
 time window, and m(t) denotes the number of 

compute nodes in the set CN(t). CN(t) and m(t) satisfy the following relational 

equations: CN(t) ⊆CN and m(t)≤M. 

Definition 4-3: Virtual Machine (VM). If V represents the set of all virtual 

machine requests that arrived during the entire operating cycle T of the Cloud data 

centre. N=|V| indicates the total number of VM requests processed by the Cloud data 

centre. V(t) denote the set of VMs running in the Cloud data centre at the beginning of 

the t
th
 time window, then V(t) ⊆ V. If n(t)=|V(t)| to represent the number of virtual 

machines running in the Cloud DC in the t
th
 time window and use vi to represent the 

i
th

 virtual machine in V(t), then vi∈v(t) and 1ndtual . Using at(vi), rt(vi) to respectively 

represents the arrival time and execution time of the VM vi, V(t) can be described 

formally: V(t)={vi|at(vi)<t and at(vi)+rt(vi)>t}, where at(vi)<t indicates that the 

http://etd.uwc.ac.za/ 
 



88 

 

execution request of the VM vi is submitted to a Cloud data centre by a user before 

the t
th
 time window, at(vi) + rt(vi) > t indicates that the VM vi has not completed 

execution at the beginning of the t
th
 time window. Use ωit, γit and λit respectively 

represents CPU processing power demand, memory size demand and bandwidth 

demand in the t
th
 time window. In the Cloud Computing environment, since the 

resource requirements of the virtual machine dynamically change, so the value of ωit, 

γit and λit are change either in different time windows. Data from Google Cluster Job 

Load Data Set [134, 135] was used, which collects the data of CPU and memory 

during the fixed time interval.  

Let Vj,t represent the set of VMs running on compute node cnj at the beginning of 

the t
th
 time window, then for any t (1r job load data sets. r>j,t = Vj,t-1 + Vj,in - Vj,out , 

where Vj,t-1 represents the set of virtual machines running on cnj at the beginning of (t 

- 1) time windows, and Vj,in represents the set of VMs running on cnj that are newly 

placed at the beginning of the time window. Vj, out denotes the set of VMs that have 

been migrated out of the compute node cnj or have finished execution before the time 

window starts. The initial placement of virtual machine requests is done at the 

beginning of each time window. 

Definition 4-4: Thermal Computing Nodes, (TCN). If the sum of the resources 

required by all the VMs running on a computing node is greater than the capacity of 

the computing node, the computing node is called a thermal computing node. Once a 

compute node becomes a thermal compute node, SLA violation occurs. In order to 

avoid increasing the SLA due to the thermal computing node, it is necessary to 

migrate some VMs running on thermal computing nodes to other computing nodes 

with sufficient resource capacity through online migration technology. 

Definition 4-5: VM Placement Policy. The VM placement policy refers to a 

mapping relationship between the virtual machine set V(t) and the computing node set 

CN(t) within the t
th
 time window, which can be indicated with the matrix 

X(t)=(xij)n(t)*m(t), where m(t) and n(t) respectively represents the number of compute 
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nodes used by the Cloud data centre and the number of VM running in the Cloud data 

centre during the t
th
 time window. If the virtual machine vi is placed on the compute 

node cnj, then Xij=1; otherwise, Xij=0. 

Definition 4-6: VM Integration. Virtual machine consolidation means migrating 

VMs from the compute nodes which have a smaller number of active VMs through 

online migration technologies, and shutting down idle computing nodes so as to 

achieve the goal of reducing energy consumption of Cloud data centres. The 

formalization of VM consolidation can be descripted as follows: In the t
th

 time 

window, the set of VMs running in the Cloud data centre is V(t) and n(t)=|V(t)|, and 

the set of computing nodes used in Cloud data centre is CN(t), and m(t)=|CN(t)|, the 

current virtual machine placement strategy is X(t)=(xij)n(t)*m(t). The virtual machine 

consolidation is to find a solution under the constraints of multiple constraints, and get 

a new placement strategy X'(t) from the set of virtual machines to optimize the 

objective function. 

Definition 4-7: States of CNs (Computing Nodes). The computing nodes in the 

Cloud data centre can be in a normal power consumption state or a low power 

consumption state. For any computing node cnj∈CN, if Vj,t≠Φ t that is, the 

computing node cnj is running VMs during the t
th
 time window, then cnj is a 

computing node that is on working which means it is in normal power consumption 

state; Otherwise, if Vj, t=Φ, the computer node cnj is not used within the t
th
 time 

window, so it is in a low power state such as shutdown or sleep. The vector S(t)=(s1(t), 

s2(t)..., s M(t)) is used to calculate the node state in the t
th
 time window, which is an 

M-dimensional vector sj (t) (1e window, whiccomputing node cnj is in the normal 

power consumption state in the t
th

 time window, then sj(t)=1; otherwise, sj(t)=0. The 

computing node state vector S(t) can be calculated by a given virtual machine 

placement strategy X(t)=(xij)n(t)×m(t), where sj(t) is calculated as the formula (4-3): 

𝑆𝑗(𝑡) = {1, 𝑖𝑓 
∑ 𝑥𝑖𝑗 ≥ 1; 
𝑛(𝑡)
𝑖=1

0, 𝑜𝑡ℎ𝑒𝑟.
（4-3） 
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The migration necessity VM consolidation problem studied in this chapter refers 

to how the Cloud data centre operating environment changes dynamically during the 

entire operation cycle (T). This includes the arrival of new VM requests, the execution 

of VMs, the dynamic changes of resource requirements during the VM execution 

process, as well as the completion of the VM request to determine the condition of 

VM integration, and to find a suitable VM placement strategy X (t), based on meeting 

a variety of restrictions and avoiding the unnecessary VM migration costs, keep the 

number of computing nodes in t
th
 time as low as possible. 

4.2.2 Objective Functions and Constraints 

Virtual machine consolidation generally aims at reducing the energy 

consumption of Cloud data centres. The optimization goal is usually to minimize the 

number of active computing nodes [112, 126, 127, 132, 136]. Consistent with most 

existing VM consolidation studies, this chapter also uses the minimizing number of 

active compute nodes as the optimization goal for VM integration. It should be 

pointed out that most of the existing research focuses on the consolidation of static 

virtual machines, that is, executing single VM consolidation in the current state of 

Cloud data centres. What this chapter studies is to adjust the Cloud data centre's 

running status through multiple VM integrations within the entire operating cycle T 

(T= {1, 2, 3,..., |T|}) of the Cloud data centre. Therefore, the proposed VM 

consolidation model of migration necessity is to minimize the number of active 

compute nodes in each time window, i.e. within each time window t∈T, min∑
M

j=1sj(t). 

Within each time window t (1indow, iating cycVM placement strategy X'(t) 

obtained by virtual machine consolidation must satisfy the following constraints: 

 (1) Ranges: For any i,(1Forn(t)) and any j,(1t)) and anx'ij∈{0,1}, sj(t)∈{0,1}, that 

is,the value of x'ij and sj(t) can only be 0 or 1. 

(2) The VM must be relocated: for any i, (1for any ly∑j=1
M(t)

 Xij=1, i≠j)  which 

means that the VM vi must be deployed to another compute node. 
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(3) The capability limitation of computing node: For any computing node 

cnj∈CN(t), cnj must satisfy ∑j=1
n(t) 

Xij*ω(t) ≤Ωj, ∑j=1
n(t)

 Xij*γ(t)≤Γj, and ∑j=1
n(t)

 

Xij*λ(t))Λj, that is, the sum of the CPU, memory and bandwidth resource 

requirements of all VMs on one compute node cannot exceed its CPU and memory 

processing capabilities.  

(4) SLA Violation Percentage (SVP). When the computing node’s capacity is 

lower than the resource demand of VMs running on it, it will destroy the service level 

agreement (SLA) between the user and the Cloud provider. In this case, some virtual 

machines need to be migrated to other compute nodes with sufficient resource 

capacity through the online migration technology, so as stop increasing the SLA. 

SLAj(t) is used to indicate whether the SLA occurs in the t
th
 time window of the 

computing node cnj, and the equation is shown in formula (4-4).  

𝑆𝐿𝐴𝑗(𝑡) =

{1, 𝑖𝑓 
∑ 𝑥𝑖𝑗 ∗ω(t) >Ωt) > or∑ 𝑥𝑖𝑗 ∗ 𝛾(𝑡) >Γj, or ∑ 𝑥𝑖𝑗 ∗λ(𝑡) >Λj 

𝑛(𝑡)
𝑖=1 ; 

𝑛(𝑡)
𝑖=1  

𝑛(𝑡)
𝑖=1

0, 𝑜𝑡ℎ𝑒𝑟.
 

（4-4） 

Therefore, in order to meet the user's requirement, the SLA of computing node 

should be reduced as much as possible during the virtual machine integration. In the 

algorithm proposed in this chapter, the SLA is restricted in such a way that SLA of the 

same computing node cannot exceed the time length of single time window. 

(5) Migration consumption (MC). The current online migration of VMs is 

implemented based on the memory Pre-Copy mechanism. VM migration will increase 

the communication burden on the Cloud data centre and bring additional migration 

energy consumption. In addition, during virtual machine migration, the VM’s 

performance will also be impact, even a short downtime. However, frequent Cloud 

virtual machine migration may occur during the daily operation and maintenance of 

Cloud data centres. In order to reduce its impact, the cost of migrating VMs should be 

reduced as much as possible during the VM integration. Moreover, this chapter also 
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take into account the factor of VM’s remaining execution time, that is, in the 

consolidation process, the VM migration is unnecessary if its remaining execution 

time is not short than a time window. 

4.3 VM Migration Necessity-based Dynamic Scheduling Algorithm 

4.3.1 Algorithm Description 

According to the description of VM consolidation problem in the previous section, 

this chapter aims at solving the dynamic process, that mainly includes the initial 

deployment when a new virtual machine request arrives, the dynamic changes in 

resource requirements during to the VM execution process, and the VM consolidation 

and thermal computing node elimination caused by the end of execution. Based on the 

above process of VM consolidation problem, this chapter proposes a multi-stage 

consolidation algorithm called VM migration necessity-based dynamic scheduling 

algorithm (VMMNDSA). The algorithm is a multi-stage algorithm that includes four 

stages: pre-processing, thermal compute node elimination, initial virtual machine 

placement, and virtual machine integration. The following describe  the various 

stages of the VMMNDSA algorithm. 

(i) Pre-Processing 

In the Cloud Computing environment, the VM resources demand dynamically 

changes with time. The Google cluster load data set adopted in this chapter also 

reflects the dynamic changes in the resource requirements of the VMs during its 

operation. The Google Cluster workload dataset was published by Google after VM 

log files processing on its Cloud Computing cluster system. Therefore, in the 

pre-processing stage of the VMMNDSA algorithm, the entire operating cycle T of the 

Cloud data centre is also divided into |T| time windows according to the unit time 

length tΔ by “Definition 4-1” in Section 4.2.1. In this way, although the demand for 

CPU: ωit, memory: γit and bandwidth: λit of VM vi is different in different time 
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windows, it can be regarded as fixed during the tΔ time of the time window. 

The Pre-Processing of the VMMNDSA algorithm mainly accomplishes two tasks: 

First, judging if the VM running in the Cloud data centre is over. If the execution of 

the VM ends, then release the computing node. Second, according to the real-time 

data in this window, dynamically adjust the CPU and memory resources occupied by 

the running VM. The Pre-Processing algorithm is executed at the beginning of each 

time window.  

The pseudo-code description of the algorithm is shown in Algorithm 4.1. The 

input is the current time window t (1 th|T|) and the set of VMs, V (t-1), running in the 

Cloud data centre during the (t−1)
th
 time window. The output is a set of virtual 

machines V(t) running in the Cloud data centre at the beginning of the t
th

 time window. 

The specific execution process of the Pre-Processing algorithm is as follows: at the 

beginning of each time window t, first free all computing node resources occupied by 

the executed virtual machine within the (t-1)
th
 time window, as shown in step 2-7 of 

Algorithm 4.1, where the judgment condition in step 3, at(vi)+rt(vi)>(t-1), refers to 

that the VM vi is still executing at the beginning of the (t-1)
th

 time window, and 

at(vi)+rt(vi)<t refers to the virtual machine vi at the beginning of the t
th
 time window, 

the execution has finished. Second, the Pre-Processing algorithm will adjust the CPU 

and memory resources occupied by the current running VMs in the Cloud data centre 

at the beginning of each time window. This is shown as step 8-12 in algorithm 4.1. 

Algorithm 4.1: Pre-Processing Algorithm 

Input: the current time window, t(1npu|T|), V(t-1) 

Output: V(t) 

1.Intilizaing: V(t)=V(t-1); 

2. Foreach VM vi∈V(t) do 

3.  If at(vi)+rt(vi)>(t-1) && at(vi)+rt(vi)<t then 

4.    Release all rescource occupied by vi 
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5. End foreach 

6. Foreach VM vi∈V(t) do 

7.  Adjust the CPU, memory and bandwidth that VM vi occupied 

8. End foreach 

9. Return V(t); 

15. end if 

 

(ii) Thermal Computing Nodes Removing 

After the pre-processing operation with the VMMNDSA algorithm, due to 

changes in the resource requirements of the VMs running in the Cloud data centre, 

some computing nodes’ capabilities may be insufficient and become thermal 

computing nodes. At this point, it is necessary to migrate the VMs running on the 

thermal computing node to other compute nodes with sufficient resource capacity to 

eliminate the thermal compute node. This process is called TCNR and the algorithm 

used is the Thermal Computing Nodes Removing (TCNR) algorithm. 

The main factors that TCNR algorithm consider are the VM migration 

consumption and the VM remaining execution time. From Section 4.2.1, we know 

that the VM migration consumption consists of four parts: migration time (in seconds), 

downtime (in milliseconds), migration energy consumption (Unit: Joule) and 

performance loss of migration (unit less). Among them, the part of the performance 

loss of migration can be directly reflected by extending the execution time of the 

migrated VMs, because during the entire migration process, the performance loss of 

migrating a virtual machine is equivalent to a 10% reduction in the CPU usage of the 

VM. That is, the execution time of the virtual machine increases by one-tenth of the 

total time of the migration [5, 121]. For the other three parts, they differ in terms of 

unit and magnitude. In order to find the VM with the least migration consumption 

from the computing node, the concept of “Cost Factor (CF)” is introduced and defined 
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as follows: 

Definition 4-8: Cost Factor (CF). The cost factor of the VM refers to the value of 

VM migration comprehensive cost, including its CPU, memory and bandwidth 

requirements, as well as the migration time, downtime and migration energy 

consumption caused by the VM migration. If the computing node cnj violates the SLA 

in the t
th
 time window, and the VM set running on the compute node cnj is Vj,t, and 

vi∈Vj,t, CFmig(vi) represents the cost factor of the migration VM vi. Its equation is 

shown in formula (4-5)  

CFmig(vi)= α*(ωit + λit)/(γit) + β*(Tmig(vi) + Tdown(vi) + Emig(vi));           (4-5) 

where ωit, γit, λit respectively are the CPU requirement, memory requirement and 

bandwidth requirement of the VM vi on the overloaded physical compute node cnj in 

the t
th
 time window. In the formula, the greater ωit and the λit are, the more the 

computing resource is consumed, and the migration can better relieve the 

computational resource load of the physical node. The smaller λit is, the smaller the 

migration overhead is due to less data need to be deal with. Tmig(vi) + 

Tdown(vi)+Emig(vi) are the part of migration cost which cannot be ignored, while α, β 

are the weighting factors of migration time and migration energy consumption 

(α+β=1), which affect the migration cost factors.  

The pseudo-code description of the TCNR algorithm is shown in Algorithm 4.2. 

The input of this algorithm is the current time window t(1The inp, the input is VM set 

V(t), current used computing node set CN(t), and the current VM placement strategy 

X(t). The output is a new VM placement strategy X'(t) after the thermal compute node 

is eliminated. The specific implementation process of the TCNR algorithm is as 

follows: 

It begin with an initialization process, such that the value of each element in the 

new VM placement policy X’(t) is set as the value of the corresponding element of 

the current VM placement policy X(t). 

http://etd.uwc.ac.za/ 
 



96 

 

Secondly, according to formula (4-6), it judges whether the current computing 

node in the Cloud data centre is a thermal computing node or not (Steps 2 and 3 of 

Algorithm 4.2). If the computing node cnj is a thermal computing node, the following 

operations need to be performed on the computing node (Step 4-18 of Algorithm 4.2): 

finding the VM with the shortest remaining execution time from the VM set Vj, t 

running on the computing node cnj. and define it as vl, its remaining execution time as 

Tmin. At the same time, find all VMs who satisfy resource requirements from set Vj,t, 

calculate its cost factor, and mark the virtual machine with the smallest cost factor as 

vk (Step 4-9 of Algorithm 4.2); if the VM vl with the shortest remaining execution 

time can be executed within the t
th
 time window, which means the remaining 

execution time Tmin is less than tΔ or the migration time of the VM vk, the SLA of the 

computing node cnj is within the limited range, and no migration is needed. Then the 

algorithm go to Step 2 to continue execution (Steps 10 and 11 of Algorithm 4.2); 

otherwise, the virtual machine vk with the smallest cost factor is the VM to be 

migrated and the execute the CNSelection function to select a suitable destination 

compute node for the virtual machine vk, which is denoted as cnd (cnd∈CN).  

The virtual machine vk is migrated from the source compute node cnj to the 

destination compute node cnd, and change the value of the corresponding position in 

the k-th row of the placement strategy X' (t), that is, let x'kj=0 and x'kd=1 (Steps 12-17 

of Algorithm 4.2). The virtual machine vk is migrated from the source compute node 

cnj to the destination compute node cnd, and change the value of the corresponding 

position in the k-th row of the placement strategy X' (t), that is, let x'kj=0 and x'kd=1 

(Steps 12-17 of Algorithm 4.2). The virtual machine vk is migrated from the source 

compute node cnj to the destination compute node cnd, and change the value of the 

corresponding position in the k-th row of the placement strategy X' (t), that is, let 

x'kj=0 and x'kd=1 (Steps 12-17 of Algorithm 4.2). 

∑ 𝑥𝑖𝑗 ∗ 𝜔(𝑡) > ij ∗ r∑ 𝑥𝑖𝑗 ∗ 𝛾(𝑡) >Γj, or ∑ 𝑥𝑖𝑗 ∗λ(𝑡) >Λj 
𝑛(𝑡)
𝑖=1 ; 

𝑛(𝑡)
𝑖=1  

𝑛(𝑡)
𝑖=1 (4-6) 
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Algorithm 4.2: Thermal Computing Node Removing (TCNR) Algorithm 

Input: Current time window t(1(pu|T|), V(t), CN(t), X(t) 

1. Initialization: X '(t) = X(t);  

2. foreach compute node cnj∈CN(t)  do 

3.  if, according to formula (4-6), the compute node cnj is the thermal computing 

node then 

4.    foreach virtual machine vi∈Vj,t  do 

5.    Calculate the VMs’ remaining execution time to get vl with the shortedt 

execution time and record as Tmin.; 

6.      if the migration of VM vi can remove the SLA of computing node cnj then 

7.        Calculate CFmig(vi) according to formula (4-5), and record the virtual 

machine with the s mallest CFmig(vi) value as vk; 

8.      end if 

9.    end foreach 

10.   if Tmin≤ tΔ or Tmin≤ Tmig(vk) then 

11.     continue  

12.   else 

13.     vk is the VM to be migrated. 

14.     cnd ← CNSelection(vk); 

15.     Move the vk from the source compute node cnj to the destination compute 

node cnd. 

16.     updata the value of the corresponding position in the k-th row of the 

placement strategy X' (t), that is, let x'kj=0 and x'kd=1; 

17.   end if 

18.  end if 

19. end foreach 

In step 14 of the TCNR algorithm, the CNSelection() selection function is used. 

This function aims at maximizing the computing node’s resource utilization based on 

the Best Fit Descending (BFD) method for each VM to be deployed. In this way, load 

http://etd.uwc.ac.za/ 
 



98 

 

balancing between these computing nodes can be ensured while reducing the number 

of computing nodes used. The pseudo code description of the CNSelection() function 

is shown in Algorithm 4.3. The input is the virtual machine vk who need to be placed, 

and the set of compute nodes CN(t) used by the current time window t. The output is 

the compute node cnj where vk is going to be placed. The specific implementation 

process is as follows: 

(iii) Target computing node selection 

When considering a federated Cloud environment, the virtual machines allocated 

to the users' tasks can be migrated either to physical resources of the users' current 

Cloud provider or to physical resources of different Cloud providers. Such an 

allocation of virtual resources to physical resources can lead to a cooperative model 

when users' virtual machines can be migrated anywhere or a competitive model when 

users' virtual machines can only be migrated to their providers' physical machines as 

the target computing node, which is expressed by Figure 4-4. 

 

Figure 4-4 the structure of Cooperative and Competitive federation 

Firstly, according to the federation type, we confirm the range of target 

computing nodes. Then we select from the computing nodes used by the Cloud data 
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centre in the current time window t. The selection method is: find the compute node 

with the largest CPU, memory and bandwidth resource capabilities from the CN(t), 

and determine the remaining resources of the compute node. If its capacity can reach 

the resource requirements of vk, while meeting the federation condition，then denote it 

as cnj, return cnj (Steps 1-6 of Algorithm 4.3). 

cnj∈{CN-CN(t)}, and (Ωj+ Γj+ Λj)= maxcnj∈{CN-CN(t)}{ Ωj+ Γj+ Λj}    (4-7). 

Algorithm 4.3: Compute node selection function: CNSelection(vi) 

Input: virtual machine vk, current time window t compute node set used CN(t) 

Output: compute node where virtual machine vk is placed cnj 

1. For all compute nodes in CN(t), sort the CPU, memory and bandwidth resource 

capacities in descending order based on the formula (4-7). Assume that the order of 

the calculated compute nodes is cn1, cn2, ..., cn|CN(t)|; 

2. if the federation is cooperative  

3.  foreach compute node cnj∈{cn1, cn2, ..., cn|CN(t)|} do 

4.    if CN cnj's remaining resource capacity can meet the resource requirements of 

virtual machine vk 

5.   return cnj; 

6. else if the federation is competitive 

7.  foreach compute node cnj∈{cn1, cn2, ..., cn|CN(t)|} do 

8.    If CN cnj's remaining resource capacity can meet the resource requirements of 

virtual machine vk, and cnj and vk belong to same PM provider 

9.   return cnj; 

14. end if  

15. return cnj; 

(iv) Virtual Machine Placement (VM Placement) 

Algorithm 4.4: VM Placement Algorithm 
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Input: Current time window t, Vin(t-1), CN(t), current VM placement strategy X(t) 

Output: New VM placement strategy X'(t) 

1. Initialization: X'(t) = X(t) 

2. For all compute nodes in CN(t), sort the CPU, memory and bandwidth resource 

capacities in descending order. Assume that the order of the calculated compute nodes 

is cn1, cn2, ..., cn|CN(t)|  

3.  foreach VM vi∈Vin (t-1) do 

4.    foreach compute node cnj∈{cn1, cn2, ..., cn|CN(t)|} do 

5.      If CN cnj's remaining resource capacity can meet the resource requirements 

of virtual machine vi then  

6.         Place vi to cnj 

7.         V(t)←V(t) ⋃{vi}, n(t)= |V(t)|; 

8.         update the corresponding value of the X'(t) according to the placement of 

the VM vi; 

9.         break 

10.      end if 

11. end foreach  

12.  If CN(t) can't find a suitable compute node to place VM vi 

13.     select the compute node with the largest sum of CPU, memory and 

bandwidth resource capabilities from the remaining unused compute nodes, 

denote it as cnp, who satisfy formula (4-7); 

14.     place vi to cnj 

15.     V(t)←V(t) ⋃{vi}, n(t)= |V(t)|; 

16.     add the computation node cnp to the set CN(t); 

17.     CN(t)←CN(t) ⋃{cnp}, m(t)= |CN(T)|; 

18.     update the corresponding value of the X'(t) according to the placement of the 

VM vi; 

19.   end if 

20. end foreach 
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21. return X'(t); 

Vin(t) represent the set of VM requests submitted by the user to the Cloud data 

centre within the t
th
 time window, that is, for any VM vi∈Vin(t), satisfies t t is, for< ( t 

+1). The task of the VM placement stage is to allocate the newly arrived VMs in 

(t-1)
th
 time window to the appropriate computing node at the beginning of the t

th
 time 

window. The VM Placement algorithm uses the Best Fit to Fall (BFD) algorithm to 

place the new arrived VM requests. 

The pseudo-code description of the VM Placement algorithm is shown in 

Algorithm 4.4. The input is the current time window t, Vin(t-1), the currently used set 

of compute nodes CN(t), and the current VM placement strategy X(t), outputs new 

VM placement strategy X'(t) after the newly arrived VM request set Vin(t-1) is placed. 

The specific process of the VM Placement algorithm for is as follows: First, sort all 

compute nodes in CN(t) by their CPU, memory and bandwidth resource capacities in 

descending order. The order of the calculated compute nodes is cn1, cn2, ..., cn|CN(t)|. 

Next, for each VM vi in Vin(t-1), judge from the front to the back of the computing 

node cnj∈{cn1, cn2, ..., cn|CN(t)|}. If cnj’s remaining resource capacity can meet the 

resource requirement of the virtual machine vi, place vi on the cnj (algorithm 4.4, step 

4-11); if a suitable computing node cannot be found in CN(t), place the vi from the 

remaining unused compute nodes. Formula (4-7) selects the compute node with the 

largest sum of CPU, memory and bandwidth resource capabilities, denotes as cnp, 

places vi on the compute node cnp, and adds the compute node cnp to the set CN(t) 

(algorithm 4.4 Step 12-20). Finally, return the new VM placement policy X’(t) with 

all the VMs in the VM set Vin(t−1). 

The above is a detailed description of the various phases included in the 

VMMNDSA algorithm and the completion of each phase. The overall execution flow 

of the VMMNDS algorithm proposed in this chapter is as follows: At the beginning of 

each time window t, (1≤t≤|T|), first through the Pre-Processing algorithm to release 

the resources of the VM occupying the computing node that is executed in the 
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previous time window (t-1), and simultaneously changes the size of the CPU, memory 

and bandwidth resources occupied by the executing VM. As a result of these changes, 

these compute nodes being used in the Cloud data centre may become thermal 

computing nodes. In this case, it is necessary to use the algorithm provided by the 

thermal compute node removing stage to remove these thermal compute nodes and 

avoid the SLA break. Then execute the initial deployment of the newly arrived VM 

requests in the (t-1)
th
 time window with the VM placement algorithm. Finally, 

integrate VMs, close the idle computing nodes to achieve the purpose of reducing 

energy consumption.  

4.3.2 Time Complexity Analysis 

This section mainly analyzes the time complexity of the VMMNDSA algorithm. 

In order to analyze the complexity of the VMMNDS algorithm, we first let N = V(t), 

n = Vin(t). From the description of the process of VMMNDS algorithm in describe in 

section 4.3.1, the algorithm includes a total of four separate stages: pre-processing, 

thermal compute node removing, initial virtual machine placement, and virtual 

machine integration. Firstly, the pre-processing stage will traverse all VMs in the 

virtual machine set V(t) running in the Cloud data centre, to judges whether the task is 

completed or not. Obviously, the time complexity of this stage is O(N). The second 

stage is to remove the thermal nodes, and it is necessary to traverse all the compute 

nodes and remove the thermal nodes. The time complexity is O (m∙log N). Then, the 

time complexity of the initial VM placement phase is similar to that of the task 

scheduling algorithm analyzed in Section 4.4.2, which is O(n×m). In summary, the 

time complexity of the VMMNDS algorithm proposed in this chapter is O (N + m∙log 

N + n∙M). 

4.4 Experiment and Result Analysis 

We have discussed VM selection policy in the related work in 4.1.2, and VM 

allocation policy has been shown to be vital during the entire VM migration process. 
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In the experiment in this chapter, we choose two VM selection policies: MCM 

(Maximum Correlation Migration) and MMT (Minimum Migration Time), and two 

VM allocation policies: LR (Local Regression) and MAD (Median Absolute 

Deviation). We combined this two VM selection policies and two VM allocation 

policies into 4 VM migration algorithms, which are respectively LrMcm, LrMmt, 

MadMcm, MadMmt [5].  

In order to evaluate the performance of proposed VMMNDSA algorithm, this 

section will test the VMMNDSA algorithm through simulation experiments, and 

compare the experimental results with the above four algorithms and the DVFS 

(Dynamic Voltage and Frequency Scaling) algorithm [5].  

4.4.1 Experiment Parameter Setting and Performance 

A. Experimental parameter settings 

The simulation environment remains similar to those in the previous chapters. 

The compute node data and VM data used in this chapter's experiment are 

anonymized data from the Google cluster-loaded data set used in similar experiments 

[126, 128, 137]. A data centre with 30 PMs was set up and three different VM types as 

described on Table 4-2. 

B. Table 4-2： experiment parameter of VM migration 

Virtual Machine Setting VM 

Numb

er 

VM 

MIPS 

VM 

Pes 

VM 

RAM 

VM 

Bandwidth 

VM 

Size 

VM Types Type1 20 500 1 870 100,000  2,500 

Type2 20 1000 1 1740 

Type3 20 2000 1 1740 

Type4 20 2500 1 613 

Host Setting Host Host Host Host Host Host Size 
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Numb

er 

MIPS Pes RAM Bandwidth 

Provider 1 10 Type1 

Hosts 

25 1860 2 4096 100,000,000 1,000,000 

Provider 2 10 Type2 

Hosts 

25 2660 2 4096 

Provider 3 10 Type3 

Hosts 

25 2980 2 4096 

Provider 4 10 Type4 

Hosts 

25 3220 2 4096 

the cost of 

using 

processing 

3.0 

the cost of 

using memory 

0.05 

the cost of 

using 

bandwidth 

0.001 

Max/Min Load 

Threshold 

80%/0% 

α= β=0.5 

C. Performance indicators 

    In order to verify the effectiveness of the VMMNDSA algorithm proposed in 

this chapter, the following were used as metrics to compare the experimental results, 

similar [29] [117] [126].  

1) The number of VM migrations: VM migrations count during the simulation. 

2) SLA violation rate: ratio of computing node that violates the SLA during the 

entire operating cycle T to the total nodes in the system; equation (4-9). In 
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this chapter, the data centre's entire operating cycle T is divided into |T| 

periods of the same size, so reducing the time of SLA is equivalent to 

reducing the number of SLA. 

SLA =
∑ ∑ 𝑆𝐿𝐴𝑗(𝑡)

𝑚(𝑡)

𝑗=1

𝑇

𝑡=1

∑ 𝑚(𝑡)
𝑇

𝑡=1

  (4-9) 

3) The VM migration mean time (ms): average migration time of all VMs 

during the whole simulation process, in millisecond (ms).  

4) The energy consumption: includes the sum of the costs of all the migrated 

VMs in each time window, the total costs of all the VMs migrated in the 

entire operation cycle T. 

4.4.2 Analysis of Results 

Figure 4-5 shows the number of VM migrations. Compared with the five existing 

algorithms, the MadMMT algorithms had the most frequent migration at 5256 in 

cooperative federation and 1909 in competitive federation. The VMMNDS performed 

significantly better at 590 times in cooperative federation and 233 times in 

competitive federation, which is almost one-tenth of MadMmt. Compared with the 

least migrated LrMcm algorithm, VMMNDS VM migration count was only about a 

quarter of LrMcm for both cooperative and competitive federation. The results of this 

experiment highlight the characteristics of our algorithm: reducing unnecessary VMs 

migration. This is because when the VMMNDS algorithm selects the VM to be 

migrated from the thermal compute node, the factors of the remaining execution time 

of the VM are taken into account (eg, Steps 10 and 11 of Algorithm 4.2, and Steps 5 

and 6 of Algorithm 4.5). In essence, VMMNDS does not unnecessarily migrate VMs 

that have a short remaining execution time.  
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Fig 4-5. Migration times 

Secondly, figure 4-6 shows that in terms of the SLA violation, five of the existing 

alogrithms: LrMcm, LrMmt, MadMcm, MadMmt performance better than VMMNDS 

in both cooperative and competitive federation. This is because when a compute node 

becomes a thermal compute node, the four algorithms will choose to migrate a certain 

number of VMs to avoid the SLA. This is done without considering the execution 

time remaining. VMMNDS on the other hand considers execution time. If a VM’s 

remaining execution time is minimal, VMMNDS ignores the VM. This affects SLA 

and accounts for the slightly higher SLA violation rate than the five algorithms. 
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Fig 4-6 SLA violation rate 

Figure 4-7 is the experiment result of the migration mean time of each VM. 

The MadMcm and MadMmt algorithms performance worst since they have the 

longest VM migration mean time in both cooperative and competitive federation. 

This is beacace they adopt the Median Absolute Deviation VM selection policy 

which is more complicated than others. VMMNDS on the other hand had the 

shortest VM migration mean time in both cooperative and competitive federation 

due to its efficient VM selecting policy and VM allocation policy. 
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Fig. 4-7 VM migration mean time (ms) 

From the results shown in Figure 4-8, the VMMNDS algorithm reduces the total 

migration cost (energy consumption) by 46.21% in cooperative federation and 44.85% 

in competitive federation, when compared to the MadMmt algorithm which has the 

highest energy consumption. Compared to the other four algorithms, our proposed 

VMMNDS on the average conserves 21.91% more energy under cooperative 

federation and 20.79% under the competitive federation. This is because the 

VMMNDS algorithm always chooses the VM with the lowest migration cost each 

time during the selecting VM migration process and avoid the unnecessary VM 

migration as much as possible, so the VMMNDS algorithm can obtain lower average 

migration cost. In addition, the VMMNDS algorithm in itself requires fewer 

migrations, which has been proven in Figure 4-5. It can be known that considering the 

impact of VM migration costs and remaining execution time in the selecting VM 

migration process can greatly reduce the additional consumption caused by 

unnecessary VM selections. 
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Fig. 4-8 Energy Consumption 

4.5 Conclusion 

Virtual machine consolidation is a commonly used method to effectively solve 

the high energy consumption problem of Cloud data centres. This chapter combined 

VM migration with VM consolidation and proposed the VMMNDMS model. This 

model considers both cooperative and competitive Cloud federations. Experimental 

simulations were used to verify the efficiency of the proposed model. Obtained results 

show that for both cooperative and competitive federations, our proposed 

VMMNDMS can greatly reduce the number of virtual machine migrations and 

migration mean time. This helps reduce the impact of migration on the overall 

performance of the Cloud Computing center and achieve more energy-efficient results, 

while keeping SLA at an acceptable level.  
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Chapter 5: IoT-based Fog Computing Model 

5.1 Introduction：  

With the maturity of wireless communication technology, Internet of Things has 

made continuous progress and breakthroughs. Terminal equipment is continuously 

been miniaturized, networked, and intelligently developed, hence able to support a 

wider range coverage and deployment scenarios. This terminal equipment, also 

known as sensors, collects data and uploads it on Cloud facilities, which have more 

sophisticated processors and sufficient memory resources. Over the years, the volume 

of data being transmitted has increased rapidly with the increase in the number of 

terminal devices. This has created problems of delay and congestion in a Cloud 

Computing environment [139]. Fog computing has emerged as a solution to these 

latency and distance related problems. By increasing the local computing and storage 

capabilities of the fog nodes and the edge devices can share some of the tasks 

previously solely handled at the Cloud data centre.  

Stolfo used the idea of “fog” to resist hacking. He proposed the term “Fog 

Computing”, which was later used by Cisco to promote products and networks 

development strategy. The concept of “Fog Computing” was first proposed by Cisco 

in 2011 [34] and defined as a distributed computing infrastructure for the Internet of 

Things (IoT) that extends computing power and data analytics applications to the 

"edge" of the network. A Fog Computing model is equivalent to a local Cloud, where 

data management and done are controlled by local servers. Users can analyze and 

manage their data at any time, any place and in any way. The core idea of  Fog 

Computing is “smart front-end”, which uses network devices or dedicated devices to 

provide computing, storage, and network communication services between Cloud 

servers and terminal devices, for making data storage and computing much closer to 

terminal acquisition, which greatly benefits reducing data transmission and storage 
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overhead, improving application response speed, and saving network resources [140] 

[141]. 

Fog Computing is the middle layer between Cloud Computing and terminal layer 

of the IoT network, which is located at the edge of the network, close to the terminal. 

It is often combined with Cloud Computing to form a common network structure 

model as shown in Figure 5-1. The figure depicts the Cloud Computing layer, Fog 

Computing layer and terminal access layer Resource [142]. In the coverage area of the 

fog node, various intelligent terminals access the node and realize interconnection and 

intercommunication. In addition, Fog Computing layer is able to complete the direct 

computing processing to reduce the network transmission delay. The Cloud 

Computing layer, as the top-level supporting structure of Fog Computing, collects 

some statistical analysis data to the Cloud data centre, analyzes the big data globally, 

to coordinate the overall situation and implement resource allocation. 

 

Fig. 5-1 the architecture of Fog Computing 

There is a close relationship between Fog Computing and Cloud Computing. 

Many technologies in Cloud Computing can be directly applied in the fog. The Fog 

Computing node is actually equivalent to a small Cloud. Of course, Fog Computing 

http://etd.uwc.ac.za/ 
 



112 

 

also has its own unique characteristics and advantages [142] [143] [144] [145] [146] 

[147], including:  

(1) Located at the edge of the network, hence can better solve the delay problem 

of real-time interaction of a large number of applications. This is especially vital for 

some applications that require high real-time performance, such as virtual simulation 

games, augmented reality, real-time monitoring and video conferencing. 

(2) Extensive geographical distribution. This is a major different from Cloud and 

Fog computing. The Fog network structure is mainly distributed, with limited 

coverage, while the Cloud’s coverage area is often significantly larger. With the 

continuous intelligentization of terminal devices, various information collection 

devices are also developing toward mobile handheld devices, and the wide coverage 

is convenient for achieving more accurate positioning and geographic information 

perception. 

(3) The number of massive nodes. Due to the wide geographical distribution, a 

large number of terminal devices and network nodes will constitute a large-scale Fog 

Computing network, and a large number of node accesses can also enhance the 

computing and storage capabilities of the Fog Computing network. 

(4) Support for mobility. The development of terminal in form of smart devices 

and handheld is the future. The Fog Computing supports some necessary mobile 

communication technologies, including transmission protocols and identity 

authentication, to support communication between applications and mobile terminals. 

 (5) Heterogeneity. This enables communication between heterogeneous 

hardware and software devices in different forms and environments. It also facilitates 

efficient access of terminal devices and cross-domain convergence of application 

services to achieve interconnection and information sharing.  
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The terminal layer is often a wireless sensor network of the Internet of Things, 

with a multi-hop self-organizing network system composed of a large number of 

nodes deployed in the certain area and communicating wirelessly. The goal is to 

collaboratively perceive, collect, and preprocess information about the perceived 

objects in the network coverage area and send the information to the observer [148]. 

We assume that each node in the terminal layer has its own battery, and there are 

variations in power at specific time intervals due to different factors specifically the 

amount of activity performed by each node. The power level of a terminal node is 

dependent on how much work the node is doing. Factors that could overwork a node 

or increase its power depletion include: traffic, the number of child nodes connected 

to it, ambient temperature and humidity [149]. Energy consumption must always be 

considered as the main factor to design and measure IoT related protocols. With this 

in mind, this chapter proposes an IoT-based Fog Computing model, with the 

following specific contributions: 

An IoT-based Fog Computing framework: a multi-layer framework for IoT-based 

Fog Computing environments that addresses issues related to: i) the topology of the 

terminal layer network and its impact on the routing of data in that layer; ii) the 

allocation of tasks uploaded from the terminal layer to resources (Fog nodes) in the 

Fog layer . The proposed framework is based on a model that minimizes the overall 

cost (delay, distance, energy) of completing the terminal tasks using Fog nodes (FN). 

GA based Fog layer task scheduling strategy: A task scheduling strategy for the 

Fog layer using a modified Genetic Algorithm (GA) for matching tasks (uploaded 

from the sink nodes in the terminal layer) to corresponding FN is proposed. The task 

requests and the geographical location of the Fog and sink nodes are used as input for 

the modified GA, which outputs a binding scheme of tasks to resources (FNs). 

Implementation is done using CloudSim [63] and the relative efficiency of the new 

algorithm compared to the traditional Max-min algorithm and the Fog-oriented 

Max-min [150] algorithm is revealed. 
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A multi-sink LIBP Terminal layer protocol: This thesis proposes a novel collection 

tree protocol that builds upon LIBP [151] protocol to organize the terminal layer into 

a multi-sink IoT network. The objective is to improve the robustness and reliability of 

the terminal layer network and extend the battery life of the sink nodes. Simulations 

using Cooja [152] on the Contiki OS [153] are used to demonstrate the efficiency of 

the multi-sink protocol compared to the mono-sink LIBP protocol.  

Our expectation is to improve the robustness of the underlying IoT networks' and 

safeguard it against nodes failures as well as extend the terminal nodes' life span. 

These are achieved through the use of multi-sink deployment, while reduction in 

processing delays and energy consumption are achieved by incorporating a Fog 

Computing layer. 

5.2 Related work: 

The Fog Computing was first proposed by Bonomi [34] in 2011. In order to solve 

the applicability of Platform-as-a-Service (PaaS), Hong et al. [154] proposed the 

concept of Mobile Fog, which realizes the connection of heterogeneous devices 

simplification, as well as on-demand dynamic expansion of applications, which 

enhances the ability to interconnect communications between heterogeneous devices 

and enhances the universal application of Fog Computing. Oueis [155] applied Fog 

Computing to the processing of load balancing to improve the quality of the user's 

network experience. Applications spanning Cloud and fog, such as Internet of Things 

(IoT) applications, are still provisioned manually nowadays, but Yangui et al. [156] 

proposed a Platform as-a-Service (PaaS) construct for hybrid Cloud/fog environment 

to automate applications.  

As a result of the combination of IoT and heterogeneous devices, Abedin [157] 

addressed the utility based matching or pairing problem within the same domain of 

IoT nodes by using Irving's matching algorithm under the node specified preferences 

to endure a stable IoT node pairing. In terms of the communication distance, 
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Intharawijitr et al. [158] defined a mathematical model of a Fog network and the 

important related parameters to clarify the computing delay and communication delay 

in Fog architecture. Deng [159] focus on the interplay and cooperation between the 

edge (fog) and the core (Cloud), they develop an approximate solution to decompose 

the primal problem into three subproblems to make a balance between power 

consumption and delay in a Cloud- Fog Computing system. Sarkar [160] and his 

group conducted theoretical modelling of the Fog Computing architecture and 

analyzed the delay and energy performance of the application in the Internet of 

Things. They have accumulated the experience in the design and wide application of 

the Fog Computing architecture. Due to the Cloud Computing's high degree of 

polymerization computing mode, it can not give full play to the resources of the edge 

device. Ningning et al. [161], therefore proposed a Fog Computing framework to turn 

physical nodes in different levels into virtual machine nodes. Their simulation 

demonstrated that dynamic load balancing mechanism can effectively configure 

system resources as well as reducing the consumption of node migration brought by 

system changes. 

In terms of the terminal layer of the IoT, the ubiquitous sensing technology 

enabled by Wireless Sensor Network (WSN) technology is one of the indispensable 

parts [148]. Thanks to the recent adoption of various supporting wireless technologies, 

such as RFID tags and embedded sensors and actuator nodes, the Internet of Things 

has come out of its infancy and is the next revolutionary technology to transform the 

Internet into a fully integrated future Internet. In [162] a use case considering energy 

consumption measurements of RPL and CTP is presented and a metrics for several 

scenarios running both RPL and CTP was proposed. However, they did not consider 

the routing protocol’s robustness and reliability. Felici-Castell [163] and his team 

focused on analyzing different strategies to gather information from different topics. 

The trade-offs between the "always send" and "local buffer" methods are verified 

experimentally, which considering power consumption, lifetime, efficiency and 

reliability. Machado [164] proposed a routing protocol based on Routing Energy and 
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Link quality (REL). The end-to-end link quality estimation mechanism, residual 

energy and hop count are used to select routes to improve the reliability and energy 

efficiency of IoT applications. In addition, REL proposes an event-driven mechanism 

to provide load balancing and to avoid premature depletion of energy by 

nodes/networks. But they didn’t take into account the affect of different number of 

sinks. 

There are some new research work such as [165] [166] [167] [160] [168] which 

focus on the combination of Cloud Computing, Fog Computing and IoT. Yannuzzi 

[166] examines some of the most promising and challenging problems of IoT and 

explained the reason why current compute and storage models confined to data 

centres may not be able to meet the requirements of many applications. Their analysis 

is particularly centered on three interrelated requirements: mobility, reliable control 

and calability, then described why Fog Computing is necessary for IoT, and discussed 

the unavoidable interplay of the Fog and the Cloud in the future. In terms of the 

framework between IoT and Fog Computing, Donassolo [167] proposed an 

orchestration system which is called FITOR, which build a realistic fog environment 

while offering efficient orchestration mechanisms. Based on extensive experiments, 

they proposed O-FSP optimizes the placement of IoT applications and the related 

strategies in terms of provisioning cost, resource usage and acceptance rate. Sarkar 

[160] did some works on the Fog Computing architecture modelling, which is one of 

the new researches arean. They proposed a mathematical formulation for improving 

the balance between the latency and energy saving. And their experiment results 

proved that the proposed model can save around 40% energy consumption. However, 

they did not consider the energy consumption in the IoT layer. Aazam [168] proposed 

using Cloud of Things (CoT) to solve the IoT resource management problem, and 

introduced the architecture of a smart gateway with Fog Computing. Then they tested 

this concept based on upload latency, synchronization latency, jitter, bulk data upload 

latency, and bulk data synchronization latency. But they did not take into account the 

energy consumption around the fog nodes in Fog Computing layer. 
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5.3 Model Description: 

In Cloud Computing, effective resource allocation is the main goal of achieving 

economic benefits, while the main features of Fog Computing are location awareness, 

mobility, low delay and distributed geographic location. Fog computing is not a 

replacement for Cloud Computing, but they reduce the disadvantages of Cloud 

Computing and make them more efficient. The model proposed in this chapter 

focuses on energy consumption from underlying sensors (which are in the terminal 

layer) to fog nodes (which are in the fog layer). So, the model is called IoT-based Fog 

Computing model (IoT-FCM). The Fog Computing layer aspect of the model is 

described in the subsequent sub-sections, while the terminal layer of the model is 

discussed in section 5.4.1. The Cloud layer was introduced in chapter 2 and 3. 

5.3.1 Fog Computing layer model design 

Figure 5-2 shows the architecture of the IoT-based Fog Computing model 

(IoT-FCM) proposed in this thesis. The processes performed in the figure are as 

follows: in the first step, the application tasks queue (generated by sink-nodes) will be 

sent to the Fog manager service which is in the Fog Computing layer. This service 

manager has information about all the Fog nodes. Using the modified GA algorithm 

(which will be introduced in next section), the Fog manager service generates the task 

scheduling simulation results. The FNs then executes the manager assigned tasks. 

Before introducing the specific process of task scheduling strategy of the modified 

GA for Fog Computing layer, some definitions and assumptions are first introduced.   
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Fig. 5-2 The IoT-Fog architecture 

5.3.2 Formalization of Fog Computing Layer Model 

The Fog Computing layer model is constructed in this chapter, which focuses on 

three target parameter that decide it comprehensive performance. These parameters 

are: delay, energy and distance. Delay means the response time that users (sink nodes) 

have to wait after they submit their tasks. Energy is the total energy the target FN 

needs to finish its allocated tasks, while distance means the total distance of each user 

to their corresponding according to scheduling result. Suppose the Fog Computing 

system consists of the Fog Nodes, which can be represented as a set FN = {FN1, 

FN2, …, FNN}, and the application tasks which are going to be scheduled can be 

represented as a set T = {t1, t2, …tn}. The main factor affects delay in the execution 

time ExeTij, where i = 1, …, n and j = 1, …, N. ExeEij is the energy consumption of ti 

by FNj. 

The first quality factor considered is the total distance TD, which is the distance 

from users to their corresponding FN. This can be calculated by traversing all the 

tasks in set T. If (TiX, TiY)) and Coord (FNjX, FNjY), denote the coordinates of user i 

and FNj, respectively, then TD can be determined by using 

TD = ∑i=1
n√((TiX - FNjX)

2
+ (TiY - FNjY)

2
), TD<TDL (5-1) 
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where T is the Task set, n is the number of tasks in set T, while connected to the 

j-th FN, and TDL is the total distance limitation. 

From the Fog Computing characteristics, delay should be kept as low as possible. 

Tasks scheduling strategy therefore must aim at minimizing task completing time 

(execution time). FNs can hold more than one task at a time, the completing time is 

thus the execution time of such a task running on a FN whose execution time is the 

longest. The execution time ExeT of a task T by the FN can be described by using  

 ExeT =MAX {∑i=1
n
ExeTij;j∈N}, ExeT(T, FN) < DL,   (5-2) 

where DL is the delay limitation, the summation of all the execution times ExeTij of 

the various tasks Ti(i∈n) running on a FN gives the completion time of each FNj, j∈

N. The delay is obtained from the last FNj to finish its tasks. 

Energy controling is also a very important factor that needs to be considered 

while building Fog Computing models. Therefore, Fog Computing system should 

keep the energy consumption as low as possible. In addition, the scheduling energy 

consumption ExeE cannot be greater than the upper limit of electricity supply. The 

energy consumption for executing task set T by set FN is given by  

ExeE = ∑i=1
n∑j=1

NExeEij,  ExeE(T, FN) < EL,      (5-3) 

where ExeEij is the energy consumed by FNj, j∈N to execute task Ti, i∈n and ExeE 

is the energy consumed by all the FNs in executing their allocated tasks; DL is the 

energy limitation. 

The three equations can be integrated into a fitness function which is defined by 

using  
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F(C)

{
 
 

 
 = α ∗ (1 − 

ExeT(C)

DL
)+ β ∗ (1− 

ExeE(C)

EL
)+ γ ∗ (1− 

TD (C)

TDL
) ,

if , ExeT(C) ≤ DL, ExeE(C) ≤ EL,TD (C) > TDL  
 

= 0, if ExeT(C) > DL 𝑜𝑟 ExeE(C) > EL  𝑜𝑟 TD (C) > TDL                                                               

(5− 4) 

where C is the vector of the special individual which includes one match between 

tasks and fog nodes (T, FN), F(C) is the fitness function means the fitness value of the 

vector C, which is used for measuring the score of the individual in the population, 

(1-ExeT(C)/DL) is the benefit of execution time which is considered as delay in the 

paper when finished the task scheduling, so the same (1-ExeE(C)/EL) is the benefit of 

energy and (1-TD(C)/TDL) is the benefit of distance. While α，β and γ are the weight 

factors to repectively adjust the importance of delay, energy consumption and 

distance. 

5.3.3 The Modified Genetic Algorithm for Proposed Fog Computing Model: 

As earlier mentioned, task scheduling in Cloud Computing environment is a NP 

hard problem. It is very difficult to find the best solution when the number of 

participants is large. The usual way is to apply various intelligent optimization 

algorithms to approach its optimal solution as the satisfactory solution. Genetic 

algorithm (GA) is one of these algorithms to get the approximate optimal solution. In 

this chapter, the classic GA is modified using a single fitness function, emanating 

from multiple fitness functions, as well as the generation of the third child of 

crossover in order to determine the optimal solution of the IoT-FCM model. 

The modified genetic algorithm is presented as follows:  

1. Initialization of the population.  

Initialize the population and setting up of the relevant parameters, such as 

population size (P), probability of performing crossover (pc), probability of mutation 

(pm), as well as the evaluating fitness of every individual in the population are done. 

In GA, the proposed multi-target parameters correspond to multiple fitness. Hence, 
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we use the equation 5-4 as the fitness function to evaluate each vector solution 

(chromosome). 

2. Crossover  

Following the principle of higher fitness is better, the second step involves 

choosing two individuals from the population as parents, upon which the crossover is 

executed to produce two children. In order to obtain an optimal solution, this chapter 

adds the third child to increase the diversity of the population which is generated by 

accumulating the parents corresponding gene values to generate a new child. The 

process is showed in Algorithm 1:  

 3. Mutation 

There are many types of mutations such as Gaussian, Uniform mutation and 

Non-Uniform mutation [169]. In these mutations, the value of only a single gene in 

the chromosome is changed to improve its fitness. The effect of this on the entire 

chromosome is minimal especially with large population size or when the solution is 

close to stability [169]. We modified the mutation process, changing the single-gene 

mutation to multi-gene mutation. We then generate multi-mutated chromosomes to 

replace chromosomes with the lowest fitness value in the population. This reduces the 

impact on optimal values, while greatly expanding the search range and 

simultaneously reducing premature convergence to a local optimal solutions. The 

main purpose of mutation is to generate new genes when inheriting from parents. The 

mutation can be defined in equation 5 as follows: 

Cm1(n)=(c1,c2,…,cn)+(x1(△c1-c1),x2(△c2-c2)),…,xn(△cn-cn))) ,         (5-5) 
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where x1, x2,… xn ∈ {0,1}, and Δc1, Δc2,…, Δcn are the random numbers within 

the limits of gene in the chromosome. Then we can generate 4 different children by 

adjusting the number of x. The first mutated child has 1/4 of its genes (x) randomly 

set to 1, while the other genes are set zero. The second mutated child has 1/2 its genes 

randomly set to 1 and the others set to 0. The third mutated child has 3/4 randomly set 

to 1, while the fourth has all its genes set to 1. 

Since we have 4 mutated children, we then select 4 chromosomes with the 

smallest fitness value from the population and compare with the fitness values of our 

4 newly generated mutated children. After the comparison, we put 4 chromosomes 

with the highest relative fitness value back into the population to get a new population. 

The process is showed in Algorithm 2. 

4. Merging  

In this phase, we merge the new chromosome population set generated by the 

crossover and mutation operations. Afterwards, the best chromosomal individuals 

who have the highest value of F(C) are select to be retained as population for the next 

generation.  

Steps 2 to 4 are repeated till the simulation ends.  

5.3.4 Terminal layer design of this model 

This section will introduce the part of our proposed model design of the terminal 

layer. We use the modified LIBP [147] as the protocol for node communication in our 
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model. The principle of LIBP is to make each node below the sink node select the 

parent node with the fewest child nodes in order to get the balance tree. The LIBP 

algorithm can beiefly be described as follows: 

a. The spanning tree is rooted at the sink node by signing or marking its name in the 

beacon message, though recursively broadcasting and recording the parent node 

of the beacon message.  

b. Select the parent with the fewest number of children to promote least traffic 

interference. 

A routing in WSNs that solves a local optimization problem using a weight 

associated with a measure of interference (using number of children) is described in 

LIBP, but it does not consider other reliability constraints, such as energy efficiency, 

and nodes’ robustness, nodes will need a lot of energy when they communicate with 

nodes at greater distances within their range and if sink node is offline, the system 

will stop working. The modified LIBP proposed in this chapter attempt to solve these 

limitations by adding multiple sink nodes to improve the system’s battery life and 

improve the robustness of the entire system. 

 

Fig. 5-3 Proposed terminal layer model. 

Figure 5-3 presents the detailed structure of the terminal layer, with the following 
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characteristics:  

a. At least two nodes with GPRS: Terminal layer should have at least two nodes 

capable of transmitting IP packets to a fog node. 

b. Only nodes with GPRS can become sink nodes. The sink node is selected based 

on whether the node has the lowest temperature and highest energy. 

c. Each node should have a solar panel for energy regeneration. 

5.4. Simulation result: 

5.4.1 Simulation environment  

CloudSim [63] was used as the simulation tool, while simulation hardware 

remained similar to those in the previous chapters. Performance configuration and 

computing power parameters were adapted from CloudSim and are shown on Table 1.  

Table 5-1: Performance Configuration and Computing Power Parameters (adapted from 

CloudSim)  

Fog Nodes: Node1 Node2 Node3 Node4 Node5 Node6 Node7 Node8 

Pes 2 4 2 4 2 2 2 2 

Mips 550 300 650 350 750 800 850 900 

Energy 

Cost 

10 12 14 15 16 18 20 22 

Coordinates {10,10} {10,40} {10,70} {40,10} {70,10} {70,40} {70,70} {60,80} 

In the simulator, the application task parameters include task ID, task length and 

coordinates, in which task length use Millions of Instruction (MI) as a unit. Task 

length means the number of basic instructions of task scheduling requests. For this 
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work, task lengths were set to 1000. We simulate the coordinates of FNs in an area, 

such as a city or a university, so we limit the range of FN in {0-100}, and randomly 

generate the coordinates of 100 FNs, which are shown in Table 5-2.  

Table 5-2: Task Coordinates 

Task 

number 

Coordinates Task 

number 

Coordinates Task 

number 

Coordinates Task 

number 

Coordinates Task 

number 

Coordinates 

0 {93,31} 20 {36,75} 40 {73,06} 60 {53,49} 80 {61,21} 

1 {32,96} 21 {44,23} 41 {77,45} 61 {52,12} 81 {62,96} 

2 {14,11} 22 {31,23} 42 {77,89} 62 {54,11} 82 {64,11} 

3 {52,21} 23 {35,23} 43 {72,34} 63 {12,63} 83 {62,48} 

4 {50,21} 24 {36,21} 44 {70,21} 66 {10,21} 84 {63,90} 

5 {43,90} 25 {33,90} 45 {73,90} 65 {53,93} 85 {67,53} 

6 {10,61} 26 {31,21} 46 {77,62} 66 {58,34} 86 {84,70} 

7 {96,59} 27 {36,59} 47 {76,59} 67 {50,61} 87 {64,10} 

8 {39,83} 28 {49,83} 48 {76,78} 68 {51,24} 88 {63,46} 

9 {71,34} 29 {34,51} 49 {11,34} 69 {42,83} 89 {12,37} 

10 {23,31} 30 {43,31} 50 {83,31} 70 {43,51} 90 {13,14} 

11 {22,96} 31 {32,96} 51 {92,96} 71 {44,67} 91 {39,57} 

12 {24,11} 32 {14,11} 52 {96,75} 72 {44,11} 92 {17,11} 

13 {23,83} 33 {59,39} 53 {92,21} 73 {49,87} 93 {52,31} 

14 {20,21} 34 {54,52} 54 {95,24} 74 {44,59} 94 {50,61} 
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15 {23,90} 35 {43,90} 55 {93,90} 75 {53,12} 95 {44,23} 

16 {28,95} 36 {10,61} 56 {90,61} 76 {40,61} 96 {13,71} 

17 {26,59} 37 {96,59} 57 {45,32} 77 {49,56} 97 {95,69} 

18 {66,66} 38 {57,74} 58 {99,83} 78 {49,83} 98 {32,53} 

19 {28,45} 39 {75,23} 59 {68,21} 79 {41,34} 99 {63,31} 

GA operational parameters used are as follows: a population size of 100; 

mutation probability of 0.01; maximum iteration number of the algorithm was set to 

1000; weighting factors set as: α=β=γ=1/3, delay limitation, energy limitation and 

distance were respectively set to 50, 2000 and 5000. 

5.4.2 Simulation Results  

In order to evaluate the proposed IoT-FCM model, simulations of both the Fog 

Computing layer and terminal layer were done. In this section, we show the 

simulation experiment results of Fog Computing layer using delay (makespan), sum 

of distance, sum of energy consumption as metrics. Then we proved the effectiveness 

of our proposed GA optimized IoT-FCM model by comparing it with traditional 

Max-Min algorithm and improved Fog-Oriented Max-Min algorithm. In task 

scheduling problem, the traditional Max-Min algorithm usually select the makespan 

as the main parameter to achieve the relative optimal solution. The Fog-Oriented 

Max-Min algorithm as used in this thesis considers multiple parameters (including 

delay, distance and energy consumption) to calculate the relative optimal solution. 
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Figure 5-4 shows the delay of the three different algorithms. Here delays as a 

result of signal transmission time were not considered because they are too short thus 

negligible; rather the focus was on task execution time at the FN. The proposed 

algorithm is aimed at minimizing the distance and energy consumption. In Figure 5-4, 

when compared to the two other algorithms (Fog-oriented Max-Min and Max-Min), 

IoT-FCM sacrified speed for better performance in distance and energy. It is shown to 

increase execution time by an average of 17.5% compared to the other algorithms. 

However, when a 100 tasks were submitted, it was at par with the other algorithms, as 

shown by the converged curves in Figure 5-4.  

 

Fig. 5-4 Delay 

Figure 5-5 shows the results for the total distance form users to their 

corresponding FNs. One of the benefits of Fog Computing relative to Cloud 

Computing is that it is closer to the terminal [29]. Hence minimizing the distance is 
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vital. From the results, comparing IoT-FCM with the two other Max-Min algorithms, 

IoT-FCM is seen to have an advantage over the others for all submitted tasks as the 

lower the distance between terminals and corresponding FNs, the better the algorithm. 

Comparing the closeness of terminals to their FNs; using IoT-FCM, terminals are 

about 50% closer to their FNs when 40 tasks are submitted versus the two other 

algorithms and 38% closer versus Fog-Oriented Max-Min and 55% closer versus 

Max-Min when 100 or more tasks are submitted. The mildness of the curve also 

proved the stability and predictability of the IoT-FCM model. 

 

Fig. 5-5 The sum of the distances from each user to their corresponding fog node 

Another important factor of Fog Computing considered in this work is the energy 

consumption which is shown in Figure 5-6. The energy consumption of all the Fog 

nodes in the system was taken into consideration. Obtained results show that the 

proposed algorithm has some advantages in terms of energy consumption during the 

whole test. On the average, IoT-FCM conserved about 100 mAh of energy compared 
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to Fog-Oriented Max-Min for all submitted tasks and about 200 mAh when compare 

to the Max-Min algorithm.  

 

Fig. 5-6 the sum of the energy consumption of all fog nodes 

5.4.3 Experimental Findings of Multi-Sink nodes. 

As earlier stated, experimental simulation of the terminal layer was carried out 

using the Cooja on Contiki [153], which is a simulator embedded in Ubuntu 16.04 

operating system. Using Cooja [152] we were able to implement and test the 

robustness and energy efficiency of the Multi-sink LIBP used at the terminal layer. 

Two categories tests were carried out: robustness and energy efficiency. The results 

are as follows: 

Robustness test： 

A: Our proposed modified-LIBP protocol: 
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Figure 5-7a: Load balanced network with five sink nodes. 

 

Figure 5-7b: Sink node 1 goes offline due to energy depletion or fault. 

 

Figure 5-7c: Sink node 1,2,3,4 go offline due to energy depletion or fault. 
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Figures 5-7a to 5-7c show that as long as at least one sink node remains, the network is 

able to be recovering from any outage, as all node make use of node 5 as the network sink 

node. 

B: Original LIBP Protocol 

Experiments were also done to see what would happen is the sink node goes 

offline when the original LIBP protocol is used. Figures 5-7d and 5-7e repectively 

show the results before and after going offline. 

 

Fig 5-7d: Network shows all nodes making use of node 1 as the sink node. 

 

Fig 5-7e: Sink node 1 goes offline and after the network fails to recover. 
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With the results shown in Figures 5-7a to 5-7e it can be seen that the proposed 

m-LIBP protocol is more robust to failure than the original LIBP IoT protocol.  

Energy consumption test 

Experiments were also conducted on a network containing 50 nodes. Radio TX 

(transmitting) and Radio RX (receive) represent the energy consumption of nodes. A 

comparison on energy consumption levels was done for single and multi-sink 

networks (2 to 5 sink nodes). Obtained results are shown in Figures 5.8a-e. 

 

Figure 5-8a Energy consumption of five sink nodes. 

 

Figure 5-8b Energy consumption of four sink nodes. 
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Figure 5-8c Energy consumption of three sink nodes. 

 

Figure 5-8d Energy consumption of two sink nodes. 

 

Figure 5-8e Energy consumption of one sink nodes. 
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From the perspective of the IoT terminal layer, nodes’ energy consumption is the 

goal that routing protocol needs to achieve. It can be seen that the highest energy 

consumed by the sink nodes from Figure 5-8a-d are respectively 5.84%, 5.7%, 6.00%, 

5.86%. These are lower than the energy consumption of 6.60% recorded with the 

original LIBP (1 sink node) in Figure 5-8e was used. Similarly, on Table 5-3, the 

average energy consumed when using multiple sink node in each figure are 

respectively 4.23%, 3.92%, 4.38%, 5.07%. These are again lower than the average of 

the original LIBP at 6.60%. Comparing the results, the proposed multi-sink LIBP used 

by IoT-FCM shows lower energy consumption versus the original LIBP. This in turn 

implies better battery life of sink nodes. 

Table 5-3: Comparison of Energy consumption using multiple sink nodes 

 

Energy consumption 

of 5 sink nodes 

Energy consumption of 

4 sink nodes 

Energy consumption 

of 3 sink nodes 

Energy consumption 

of 2 sink nodes 

Energy consumption 

of 1 sink nodes 

Sink node 1: 4.55% 5.71% 3.18% 5.86% 6.60% 

Sink node 2: 5.84% 3.86% 6.00% 4.27% none 

Sink node 3: 3.48% 3.40% 3.96% none none 

Sink node 4: 3.35% 3.28% none none none 

Sink node 5: 3.93% none none none none 

Average: 4.23% 3.92% 4.38% 5.07% 6.6% 

In order to further test the energy consumption, we set up another scenario case, 

where we put the multi-sink LIBP with 3 sink nodes in three clusters, with each 

cluster having 1 sink node. The original number of nodes in each cluster were 

randomly set to 10, 21 and 17 respectively. Then we adjusted the number of nodes in 

each cluster to see the energy consumption situations of the highest energy 

consumption node and the average energy consumption The simulation results of this 

process shows that moving nodes from different cluster is able to decrease the highest 

energy consumption, which are summarized on Table 5-4. 

Table 5-4: Energy balance moving nodes from different sink node cluster 
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 Sink 1 Sink 2 Sink 3 Sink 1 Sink 2 Sink 3 Sink 1 Sink 2 Sink 3 

10 21 17 15 16 17 16 16 16 

Highest Average Highest Average Highest Average 

Sink 1 4.18% 2.09% 4.77% 2.51% 4.77% 2.58% 

Sink 2 5.54% 2.89% 4.83% 2.66% 4.83% 2.66% 

Sink 3 4.96% 2.44% 4.85% 2.71% 4.79% 2.61% 

We also tested the recovery time by making the sink node 1 offline, and 

compared the recovery time of different number of sink nodes to demonstrate the 

robustness of the multi-sink LIBP. The results of these are shown on Table 5-5.  

Table 5-5: Comparison of longest distance and recovery time using multiple sink 

nodes 

 5 sink nodes 4 sink nodes 3 sink nodes 2 sink nodes 1 sink 

nodes 

Sink node number 1 2 3 4 5 1 2 3 4 1 2 3 1 2 1 

Distance 2 2 0 2 2 2 1 2 2 2 3 0 2 2 3 

Recovery time 15.183s none 18.768s none 27.328s none 34.812s none infinity 

5.5 Conclusion:  

Fog computing is a new architectural model, derivative from Cloud Computing. It 

adopts the design of decentralized network structure, streamlines the process of data 

aggregation transmission, which can greatly reduce network delay, reduce bandwidth 

requirements and improve network security. Processing all data from the Internet of 

Things (IoT) and sensors by Cloud Computing is relatively inefficient, but Fog 

Computing can solve this problem as Fog Computing technology brings the Cloud 

closer to the clients.  

Combining the Internet of Things and Fog Computing, we proposed the 

IoT-based Fog computing model and describe this model in layers. In the Fog 
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Computing layer part of our model, we use fog nodes to handle specific tasks from 

IoT layer, the IoT-FCM moved users 38% closer to the Fog node for Fog-oriented 

Max-Min and 55% for the traditional Max-Min. While with respect to energy, 

IoT-FCM conserved an average of 150KWh more energy versus the other algorithms. 

For the other part of the model, which is the terminal layer; IoT-FCM modified the 

LIBP protocol by adding multiple sinks. Performance evaluations were done using 

Cooja on Contiki and obtained results, which show that the modified LIBP with its 

use of multiple sink nodes was more robust and tolerant to node failure and was also 

more energy conservatory. Of significant note in this work is that the two layers were 

simulated on different environments – CloudSim and Cooja. 
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Chapter 6: Conclusion and Future Work 

6.1 Retrospective 

With the development of Cloud Computing and the maturity of related 

technologies, the user base of Cloud Computing as a platform for commercial and 

personal use has grown tremendously. The number of tasks submitted by users and the 

scale of these tasks are becoming larger. Users expect the Cloud to always be on, 

always available and accessible from anywhere and at any time. Despite the general 

perception of the Cloud being an unlimited pool of resources, in truth, Cloud 

resources are finite and Cloud Service Providers (CSP) often struggle with 

accommodating the ever increasing heterogeneous workloads submitted by Cloud 

users. This issue has fuelled studies on techniques of effectively allocating workloads 

to resources.  

This thesis has discussed four major problems related to Cloud Computing. 

Firstly, it looked at the problem of fair distribution of profit in Cloud federation and 

concluded that most related works only consider maximizing interests as incentive 

targets, but does not fully consider the influence and role of profit distribution among 

the federation members. Secondly, most existing research on task scheduling in the 

Cloud Computing environment are not able to guarantee the overall QoS targets of 

both users and CPS, while maximizing overall benefits. Thirdly, with respect to 

research on consolidation of virtual machines, most ignored the important factor of 

virtual machine migration overhead when selecting VMs to be migrated across host 

servers. Lastly, for the communication research between Internet of Things and Cloud 

Computing, the influence of bandwidth, delay and energy consumption caused by 

geographical location should be given more attention.  

In view of the above mentioned, this thesis conducted an in-depth research into 

resource allocation in Cloud Computing and made the contributions summarized as 

follows: 
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Resource management and profit distribution: This thesis analysed the 

necessity of Cloud federation, and its key technologies. Fair profit distribution was 

identified as an incentive for CSPs to join a Cloud federation, hence a Cloud 

federation model based on Shapley Value for fair profit distribution strategy (SVPDS) 

was proposed. The model is a dynamic benefit allocation mechanism, which enables 

the profit distribution between Cloud providers to be dynamically adjusted according 

to the changes of federation members and the tasks it received. Results of simulations 

showed that compared with the traditional method of benefit distribution of To Each 

According to Their Contribution (TEATC), SVPDS can comprehensively assess the 

contribution degree of each CSP in the federation and always fairly distribute profit 

among them. 

Resource management and task scheduling problem: The purpose of Cloud 

Computing is to provide users with a comprehensive service. However, while 

providing such services, the quality of service is often compromised; especially from 

the perspective of users as the definition of quality varies across users. With this in 

mind, this thesis proposed a model that considers multi-QoS target constraints task 

scheduling. The model modifies the classic Differential Evolution algorithm and uses 

it to convert the multi QoS requirements problem to a single QoS problem. The 

modification also reduces the probability of the DE being trapped in a local optimal 

solution. Compared with the traditional method, the proposed algorithm is more stable 

and has a better comprehensive performance in adhering to quality of service and 

minimizing task makespan.  

Resource management, VM migration and Consolidation: This thesis has 

contributed in the area of virtual machine consolidation by introducing a model that is 

migration overhead aware. The proposed model controls unnecessary virtual machine 

migration by its overhead awareness, and combined it with both cooperative federated 

Cloud Computing and competitive federated Cloud Computing. This developed 

model is able to reduce migration overhead during virtual machine consolidation by 
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minimizing unnecessary migrations. Results of experimental simulations show that 

the model can indeed reduce the virtual machine migration overhead as well as reduce 

the energy exerted during VM migration and consolidation in both cooperative and 

competitive Cloud federations.  

Resource allocation in IoT and Fog Networks: This thesis proposed an 

IoT-based Fog Computing model which consists of two layers: the IoT layer and the 

Fog layer. At the IoT layer, data is gathered and uploading to the Fog. This work 

modified the Least Interference Beaconing Protocol making it more robust and energy 

efficient. This was achieved by introducing multiple sink nodes. The Fog layer 

receives and processes the data from the IoT layer. This thesis modified the classic 

GA to optimize the task allocation to Fog nodes. Results of experiments conducted 

showed that the models proposed by this thesis yielded better performance in terms of 

robustness and energy control at the IoT layer; yet equally efficient with regards delay, 

distance and energy consumption between the two layers.  

6.2 Perspective  

This work can be strengthened in many different directions offering many 

opportunities for future works. Some of these considerations include: 

 Blockchain technology in Cloud federation. In addition to fair profit 

distribution and benefit maximizing, future work could look into other 

factors that can encourage CSP participation in Cloud federation. A 

billing system that can securely and immutably store every resource 

usage transaction could be considered. Blockchain technology can pave 

the way for such a financial billing system using encrypted blocks to 

store data in a common ledger. The use of Blockchain technology to 

support the development of Cloud federation should be a very promising 

research topic.  

 Technical standards normalization. Despite the numerous research works 
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on going, there is still a lack of globally accepted standard in Cloud 

Computing. Issues of vendor lock in and incompatibility are still 

prevalent, due to the use of proprietory technologies by various CSPs. 

The lack of technical standards has without doubt hindered the 

development of Cloud Computing technology. Developing a uniform and 

interoperable platform for the Cloud could be another interesting area for 

future research works. 

 The gap between theoretical and practical. Virtual machine consolidation 

achieves energy savings by reducing the number of compute nodes used. 

In the virtual machine consolidation research conducted in this thesis, 

there is an implicit assumption that multiple virtual machines running on 

the same computing node do not affect each other. However, in reality, 

when multiple virtual machines run on the same computing node, they 

are not completely isolated from each other. A number of researchers 

have reported that multi-tenant VMs can compete for shared resources, 

which may cause performance interference. Furthermore, VM migration 

and consolidation in cooperative Cloud federation might be more 

complex to achieve in practice than in theory. Proffering solutions to 

these VM consolidation related problems could also be directions for 

extending this thesis.  
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