
i

Resource management in the Cloud: An End-to-end

Approach

By:

Kun Ma (Makuning@126.com)

A thesis submitted in partial fulfillment of the requirments

for the degree of

Doctor of Philosophy

Department of Computer Science,

University of the Western Cape

Supervisors:

Prof. Antoine Bagula

May 2020

http://etd.uwc.ac.za/

ii

Acknowledgements

At this moment, a myriad of gratitude fill my heart. I would like to take this

opportunity to give my sincere thanks for those who offered the generous help during

my four years of PhD studies.

First of all, I would like to thank my supervisor, Professor Antoine Bagula, for his

inspirational guidance and instructive guidance that have helped me greatly in the past

year. His professionalism inspires me all the time, which guides me how to be a real

researcher. He not only gave me a lot of help on searching the interesting problem and

papers writing, but, more importantly, showed me how to conduct the scientific

research with critical thinking as well. Thanks for your encouragement and all

discussions we made. You are my life-time comrade and I wish you all the best for the

future.

Secondly, I would like to thank Dr. Ajayi and Dr. Nyirenda for their valuable guidance.

They provided the real important supports for the papers we worked together, and also

lots of valuable comments and suggestions to improve my work.

Thirdly, I would like to especially thank our ISAT team, we have the regular meeting

per week, we do the presentation per week, we discuss to each per week, and we share

our idea, our resource together. We are united, ISAT team is our strong backing.

Last but not the least, I dedicate this thesis to my parents and my girlfriend, you are

the fulfilment of my lonely moment, the driving force of my advance, and the harbour

of my soul. My gratitude to your love is beyond my words, I will always love you.

http://etd.uwc.ac.za/

iii

Publications

1. Ma K, Bagula A, Mauwa H, et al. Modelling Cloud Federation: A Fair Profit Distribution

Strategy Using the Shapley Value[C] 2018 IEEE 6th International Conference on Future

Internet of Things and Cloud (FiCloud). IEEE, 2018: 393-398.

2. Ma K, Bagula A, Nyirenda C, et al. An IoT-Based Fog Computing Model[J]. Sensors, 2019,

19(12): 2783.

3. Xu, Lingyu, et al. "Design of a Credible Blockchain-Based E-Health Records (CB-EHRS)

Platform." 2019 ITU Kaleidoscope: ICT for Health: Networks, Standards and Innovation (ITU

K). IEEE, 2019.

4. Ajayi, Olasupo O., Antoine B. Bagula, and Kun Ma. "Fourth Industrial Revolution for

Development: The Relevance of Cloud Federation in Healthcare Support." IEEE Access 7

(2019): 185322-185337.

5. Ma K, Bagula A, Ajayi O, Nyirenda C. Aiming at QoS: A Modified DE Algorithm for Task

Allocation in Cloud Computing. InICC 2020-2020 IEEE International Conference on

Communications (ICC) 2020 Jun 7 (pp. 1-7). IEEE.

http://etd.uwc.ac.za/

I

Abstract

Cloud Computing enables users achieve ubiquitous, on-demand, and convenient

access to a variety of shared computing resources, such as servers, networks, storage,

applications, and more. As a business model, Cloud Computing has been openly

welcomed by users and has become one of the research hotspots in the field of

information and communication technology. This is because it provides users with

on-demand customization and pay-per-use resource acquisition methods. The

heterogeneity of compute nodes in Cloud data centre, the dynamic and massiveness of

user task requests, and the increasing size of Cloud data centres, have brought about

the challenge of task scheduling and virtual machine management. This challenge has

received wide attention from industry and academia in recent times. Despite the

numerous research works, key issues still remain unresolved, prominent among which

are: i.) Cloud resource providers tend to share their resources among multiple

concurrent services owned by different customers. This practice requires sophisticated

resource management mechanisms that dynamically manage the provider's resources

in the most cost-effective manner, yet delivering on expected quality of service (QoS)

levels agreed with the customers. ii.) Cloud users have varied QoS requirements,

hence, comprehensively considering all QoS targets during task scheduling in a

challenge and an active research area. iii.) Existing research works on virtual machine

management usually selects the virtual machine (VM) to be migrated according to its

resources occupation and the number of migrations. However, an important factor of

virtual machine migration overhead is often overlooked. This results in proposed

models being able to minimize overall energy consumption in Cloud data centres but

at the detriment of high migration overhead. iv.) Due to the nature of Cloud

Computing itself, there are some inevitable limitation in the communication between

the Cloud layer and the underlying layer (Internet of Thing layer). These include

latency, bandwidth and power consumption issues. Aiming at the presented challenges,

this thesis conducts an in-depth research on resource allocation in different layers of

Cloud Computing, and proposes corresponding models and algorithms to address the

http://etd.uwc.ac.za/

II

challenges.

The main research work and contributions of the thesis are reflected in the following

aspects:

 To address the issue of resource sharing, Cloud federation has been proposed by

this thesis. An analysis of the necessary conditions for the composition and

maintenance of the Cloud federation is done, after which a fairness profit sharing

strategy is proposed. This strategy is able to measure the contribution of each

participant by using the economic concepts of Shapley Value; which aims at

fairly distribute the profit between members of a group/team in accordance to

their contributions. A comprehensive fair profit distribution method, not only

ensures the federation stability, but also attracts more Cloud service providers to

join the federation. Finally, the fairness of our proposed strategy has been proved

by the experimental results.

 For the second challenge, a multi-QoS target constraint-based task collaborative

scheduling strategy is proposed. In Cloud Computing environments resources are

dynamic and varied, while user preferences are diverse with multiple metrics. The

users’ satisfaction on the QoS largely determines the performance of Cloud task

scheduling strategy. A task scheduling strategy proposed in this thesis targets the

QoS constraint requirements of different user tasks by combining the modified

Differential Evolution algorithm with Shapley Value. Compared with the

traditional DE and Cloud-sim task banding policy, the proposed method can

effectively reduce the deadline of the user task scheduling, improve the

comprehensive QoS performance of the system, while satisfying the multi-QoS

target constraint requirements of the user task.

 In addressing the third challenge，a VM migration-aware model was developed

and was achieved in two phases: i.) proposal of a virtual machine consolidation

with migration overhead awareness; ii.) proposal of a virtual machine

consolidation with both cooperative and competitive Cloud federations. This

http://etd.uwc.ac.za/

III

algorithm reduces the consolidation overhead in the virtual machine migration

process by selecting the virtual machine with the smallest overhead factor to

migrate. Finally, experimental results show that the proposed algorithm can

reduce the virtual machine migration overhead, and how it works with different

types of Cloud federations.

 For the fourth challenge, this thesis proposed an IoT-based Fog Computing model,

which took into consideration the delay, distance and energy consumption

between the fog and terminal layers. A modified routing protocol for the IoT layer

was designed for data collection and muling. Furthermore, a modified genetic

algorithm (GA) was proposed to solve the problem of resource allocation on fog

nodes. Finally, experiments were used to prove that the modified routing protocol

model proposed performed better in terms of robustness and sensor energy

control. Similarly, at the fog layer, the modified GA showed better performance

when compared to the classic MaxMin algorithm and the fog oriented MaxMin

algorithm.

Key words：Cloud Computing, Evolution algorithm, Fog Computing, Internet of

things (IoT), LIBP, Quality of service (QoS), Profit distribution, Resource allocation,

Virtual machine migration, Shapley Value.

http://etd.uwc.ac.za/

IV

Directory

Chapter 1: Introduction .. 1

1.1 Research Background and Significance .. 1

1.1.1 The concept of “Cloud Computing” .. 1

1.1.2 Features of Cloud Computing ... 3

1.1.3 Research significance of Cloud Computing resource scheduling .. 5

1.2 Cloud Computing resource allocation and the challenges .. 7

1.3 Contributions .. 15

1.4 Thesis Organization ... 19

Chapter 2: A Fair Profit Distribution Strategy of Modelling Cloud Federation. 21

2.1 Introduction： .. 21

2.2 Related work ... 23

2.3 System Model ... 28

2.3.1. The Federated Cloud Computing Resource Management Framework 29

2.3.2 The Cloud Federation Model .. 30

2.3.3 Federation Game ... 33

2.4 Algorithm Description ... 36

2.5 Experiment and performance analysis ... 40

2.5.1 Experiment environment .. 40

2.5.2 Experiment setting ... 43

2.5.3 Simulation results .. 45

2.6 CONCLUSION .. 51

Chapter 3: A Multiple QoS-based Task scheduling model for Cloud Computing

 .. 52

3.1 Introduction .. 52

3.2 Related works ... 54

3.3 M-QoS-TSM .. 57

3.3.1 Formalization of multiple QoS target constraints .. 57

3.3.2 Model architecture .. 58

3.4 The modified differential evolution algorithm based on Shapley Value..................................... 60

3.4.1 Calculating VM Contribution in Large Networks .. 60

3.4.2 The Modified DE algorithm... 62

3.5 Experiments and Performance Analysis ... 66

3.5.1 Experiment Environment .. 66

3.5.3 Experiment process .. 67

3.5.4 Experiment Results .. 69

3.6 Conclusion .. 74

http://etd.uwc.ac.za/

V

Chapter 4: Migration-based VM Consolidation in Federated Cloud Computing

 .. 75

4.1 Introduction .. 75

4.1.1Research Background .. 76

4.1.2 Related work .. 80

4.2 VM Migration Necessity-based Dynamic Scheduling Model ... 85

4.2.1 Problem Description... 85

4.2.2 Objective Functions and Constraints ... 90

4.3 VM Migration Necessity-based Dynamic Scheduling Algorithm .. 92

4.3.1 Algorithm Description .. 92

4.3.2 Time Complexity Analysis ... 102

4.4 Experiment and Result Analysis ... 102

4.4.1 Experiment Parameter Setting and Performance .. 103

4.4.2 Analysis of Results .. 105

4.5 Conclusion .. 109

Chapter 5: IoT-based Fog Computing Model.. 110

5.1 Introduction： .. 110

5.2 Related work: .. 114

5.3 Model Description: ... 117

5.3.1 Fog Computing layer model design ... 117

5.3.2 Formalization of Fog Computing Layer Model ... 118

5.3.3 The Modified Genetic Algorithm for Proposed Fog Computing Model: 120

5.3.4 Terminal layer design of our model ... 122

5.4. Simulation result: ... 124

5.4.1 Simulation environment ... 124

5.4.2 Simulation Results .. 126

5.4.3 Experimental Findings of Multi-Sink nodes. .. 129

5.5 Conclusion: ... 135

Chapter 6: Conclusion and Future Work ..137

6.1 Retrospective .. 137

6.2 Perspective ... 139

http://etd.uwc.ac.za/

1

Chapter 1: Introduction

1.1 Research Background and Significance

Cloud Computing is a new business computing model and a product of the

ongoing information technology revolution. The resource types of Cloud Computing

systems are usually heterogeneous and dynamic in nature. Additionally, there are large

numbers of Cloud users, with diverse quality of service (QoS) requirements. This

series of factors makes the task scheduling and resource allocation problem in the

Cloud Computing environment particularly complex. However, due to the nature of

Cloud Computing itself, certain challenges are inevitable, such as those relating to

delay (as a result of physical distance between users and the Cloud data centres) and

energy consumption when communicating with the Internet of Things. In view of the

above description, this thesis will proceed from several aspects such as modelling

Cloud federation by a fair profit distribution strategy, the QoS target constraints of

Cloud Computing task scheduling, the migration necessity-based virtual machine

migration technology and an IoT-based Fog Computing model. This section

introduces the research background and significance of this thesis.

1.1.1 The concept of “Cloud Computing”

The birth of Cloud Computing is the product of the information technology

revolution. With the rapid development of information technology and the increasing

network bandwidth, the demand for computing resource and storage is on the rise.

The traditional computing model could no longer meet people’s urgent needs of

high-performance computing or massive data storage space. In this context, grid

computing technology was developed and it matured rapidly. By integrating a large

number of idle computing resources via the Internet, grid computing can effectively

http://etd.uwc.ac.za/

2

deal with all kinds of complex scientific computing problems, and it can also well

meet the needs of a large number of institutions or individuals for high-performance

computing applications. However, because grid computing technology is more

focused on solving large-scale scientific computing problems, it is not well applied in

the field of commercial computing. Therefore, Cloud Computing technology has

emerged as an extension of grid computing technology in commercial applications.

The concept of "Cloud Computing" was first proposed by the Google Corporation,

United States in 2006; as a new business computing service model. It is the result of

mixed evolution of multiple technologies. It inherits the technical foundations of grid

computing and combines it with utility computing and software as a service (SaaS)

[1]. Grid computing laid the technical foundation for resource sharing and resource

integration for the development of Cloud Computing technology [2]. The utility

computing uses services as a quantifiable commodity, upon which the business

service model for Cloud Computing was developed; while SaaS provides a concrete

and feasible commercial billing plan for Cloud Computing technology. It is precisely

because of the above-mentioned existing technological foundations and the vigorous

promotion of many large companies that Cloud Computing has developed rapidly

upon its introduction. It has achieved lots of excellent application cases in many

commercial fields and generated tremendous influence in its short existence [3]. There

is no universally accepted statement about the definition of "Cloud Computing”.

Wikipedia considers Cloud Computing to be a business computing model.

Specifically, it is a dynamic, scalable, virtualized resource provided over the Internet

and in the form of a service. In [4], Cloud Computing is considered as a virtual

resource pool containing a large amount of available resources. These resources may

be hardware resources, software resources, network resources or development

platforms; the entire virtual resource pool is provided by Cloud service providers. The

whole resource pool is based on the principle of pay-as-you-go, and its maintenance

and management are performed according to a Service Level Agreement (SLA) [5].

This resource pool allow dynamic configuration for the purpose of optimization.

Foster, et al. [6] believe that Cloud Computing technology is a large-scale distributed

http://etd.uwc.ac.za/

3

commercial computing model driven mainly by economic factors. It provides users

with a virtual resource pool made up of a large number of computers based on

virtualization technology, so that users can obtain all kinds of computing resources on

demand.

1.1.2 Features of Cloud Computing

In summary, Cloud Computing technology has the following characteristics:

1. The huge server size. At present, the Cloud Computing platforms of IT giants such

as Google, Amazon, IBM, Microsoft and Yahoo, usually have hundreds of thousands

or even millions of servers, while private Cloud projects of IT companies generally

have hundreds or thousands of servers. The large scale of servers in Cloud Computing

systems can provide system users with unprecedented computing power and storage

space.

2. Virtualization. Through virtualization technology, resources distributed in different

geographic locations are integrated into logically unified resource pools. Users can

access the services provided by Cloud Computing systems at any time and any place

via Internet. The resources requested by users come from the logical Cloud. They do

not have to care about the specific locations where these resources are deployed.

Virtualization is both the foundation and an important feature of Cloud Computing

[7].

3. Reliability and scalability. In order to maintain the cost advantage, a large number

of cheap equipment is often used to deploy the server node of the Cloud Computing

system, resulting in frequent failures in the Cloud Computing system and severe

single point failure. For this reason, Cloud Computing systems usually ensure the

reliability of Cloud Computing systems by introducing various fault-tolerant

mechanisms, such as replica strategies and node isomorphism interchange

technologies [8]. On the other hand, the resources of Cloud Computing systems are

dynamically scalable and their size can be dynamically adjusted based on users'

http://etd.uwc.ac.za/

4

demands. This scalability avails users the ability to purchase Cloud Computing

resources and services of any size according to their needs.

4. Cost Efficient/Afforabilty. The economy of scale used in Cloud Computing, lowers

the prices of computing resource. This offers significant cost advantage to users

versus purchasing and setting up private servers [9]. In addition, integrating all types

of IT resources are integrated for unified deployment through mature virtualization

technologies, can realize automatic control and optimization management of system

resource usage, thereby providing users with a transparent service, and Cloud services

can be billed flexibly like water and electricity [10].

5. Versatility. Cloud Computing can provide a wide range of service content, and its

service is not limited to specific types of applications. In addition, Cloud Computing

can not only support multiple types of applications, but also can execute application

computing, data storage, video playing and other types of applications at the same

time.

6. User-centric. Cloud Computing provides a huge resource pool, which enable users

only need to install a Cloud Computing client on the local terminal to obtain services

from the Cloud Computing system. In this process, users do not need to change their

original work habits or work environment, such as operating systems, programming

languages, and so on.

The purpose of Cloud Computing is to share resources and work collaboratively.

However, due to the large scale of Cloud Computing servers, resources are

heterogeneous and dynamic. On one hand, they provide services to a wide range of

users, hence require scheduling of resources. On the other hand, the types of tasks are

varied, and the QoS target constraint requirements are different. This series of factors

makes the task scheduling and resource allocation problem in the Cloud Computing

environment very complicated. The task scheduling problem in the Cloud Computing

environment has certain similarities with the task scheduling in the traditional

http://etd.uwc.ac.za/

5

distributed environment, but there are also great differences. Firstly, unlike in

traditional distributed computing environment, the resources in the Cloud system are

dynamical, and resources can be added or removed at any time. The Cloud

Computing task scheduling strategy must be able to monitor resources changes in real

time. Secondly, the types of resources in the Cloud Computing environment are

heterogeneous and oblivious to the users. They are shielded through mature

virtualization technologies, integrated into a unified logical resource pool and jointly

provided as external services. This is in contrast to traditional distributed

environments where computing resources are often homogeneous. In addition,

unlike the traditional distributed environment, the Cloud Computing task scheduling

policy is generally not limited to a specific application. It can support multiple types

of applications and can run multiple applications at the same time. Finally, the task

scheduling task in the traditional distributed environment is relatively simple. It only

pays attention to the overall performance index of the traditional distributed system

environment, such as task completion time and system throughput. In Cloud

Computing environment, the task scheduling strategy also seeks to improve the

service revenue of Cloud service providers as well as provide cater for the sharing of

profit between multiple collaborative providers. It must do these while also satisfy the

requirements of a large number of users for different resource types and QoS target

constraints for different scheduling tasks. Furthermore, it must effectively manage the

allocation of virtual resource (vms) in a manner that conserves energy. The inclusion

of a Fog Computing layer between Cloud data centre and IoT layer (to decrease delay,

control bandwidth and save energy), further complicates the task of the Cloud

scheduler.

1.1.3 Research significance of Cloud Computing resource scheduling

Cloud Computing uses virtualization technology to consolidate a large number of

IT resources, such as servers, computing clusters, network facilities, and software

systems, distributed in different regional locations into a logically unified virtual

http://etd.uwc.ac.za/

6

resource pool. It aims at providing a large number of users with all kinds of safe and

reliable, low-cost, simple delivery, highly scalable computing or storage service on

the way of "pay-as-you-go" [11]. Cloud Computing users can purchase Cloud

Computing resources or services of any size as needed, without bothering about the

actual physical location of such resources. To the Cloud service users, the Cloud

Computing resources are perceived as unlimited [12]. The goal of Cloud Computing

is to realize resource sharing and collaborative work. However, due to the large scale

of Cloud Computing servers, the resources are heterogeneous and dynamic, and on

the other hand, it provides services to the general public, which has a wide user base,

diverse tasks requests types. These series of factors makes the task scheduling

problem in the Cloud Computing environment very complicated. The task scheduling

problem in the Cloud Computing environment has certain similarities with the

traditional task scheduling, and there are also great differences. First of all, the

resources in the Cloud system are dynamic, and new resources will be added to the

Cloud Computing system at any time. At the same time, existing resources may exit

the system at any time. The Cloud Computing task scheduling strategy may cost the

critical waste of computing resources, serious affect Cloud Service provider's revenue

[13].

In summary, the Cloud Computing system has a large server scale, diverse

resources, a wide user base, different types of application tasks, and different

requirements for service quality objectives. The Cloud Computing system must

handle a large number of user tasks and massive data at all times [14]. In this context,

balancing these multiple requirements and objectives, has become a research hotspot

and technical difficulty in the field of Cloud Computing. [15]. Therefore, in the

Cloud-based business-based business computing model, the in-depth study of its

resource scheduling strategy not only has high theoretical value, but also has good

practical significance.

http://etd.uwc.ac.za/

7

1.2 Cloud Computing resource allocation and the challenges

Figure 1-1 Cloud Resource layer structure

Within the Cloud Computing environment, we need to manage heterogeneous

resources, such as computers, VMs, storage units, IoT platforms etc. (shown in Figure

1-1), in a cost-effective manner. In this thesis, we study the resource allocation in

different modules: (i) For the creation and maintenance of physical resource layer in a

collaborative Cloud federation, we proposed a fairness profit strategy based on each

member’s contribution (chapter 2). (ii) Between application layer and virtual resource

layer, there is the task allocation management module, which includes QoS-based task

scheduling. (chapter 3); (iii) Between virtual resource layer and physical resource

layer, an advanced VM migration strategy is proposed in the virtual resource

scheduling module to improve (chapter 4) and (iv) Between the IoT layer and Fog

Computing layer, there is the edge computing-based task allocation management

module, we realize the modelling and modification on both IoT layer and fog layer

(chapter 5). Each setting raises different research questions and we will further

discuss these questions and its challenges in the following.

http://etd.uwc.ac.za/

8

(i) Formation and stability in Cloud federation with a fair profit distributing.

Cloud Computing provides a seemingly infinite infrastructure for hosting and

deploying web-based applications. This enables companies or individual easily rent

infrastructure resources from virtually unlimited capacity as needed. A 'pay as you go'

model is used for billing, wherein users are charged based on actual resources used

during a given time interval. This enables companies optimize their information

technology (IT) investments, ensure resource availability and increase scalability.

While Cloud Computing offers many benefits, it has some major limitations,

prominent among which are vendor lock-in and limited scalability. To overcome these

limitations, the concept of a Cloud federation has been introduced. Cloud federation is

a new paradigm that allows Cloud providers share resources between each other [15].

The Cloud federation can loosely be described as [16]:

 Concentration: In this federation, resource allocation is executed through

a central entity. All the available Cloud resources are registered with the

central entity as a repository and market for resources.

 Peer-to-peer: Here, different Cloud providers communicate directly with

each other without the help of any central entity.

With respect to the Internet of Things (IoT), the ever increasing volume of “smart” or

“connected” devices has unfortunately also resulted in some unwanted issues. These

include: i.) increase in energy consumption of suppliers; ii.) increased latency as a

result of the physical distance between IoT devices and Cloud service providers; and

iii.) over utilization of Cloud provider resources. The emerging of Fog Computing and

Cloud federation concepts could address these challenges, by allowing providers

optimize the utilization of their resources by building business partnerships with other

providers. However, the concept of balancing quality of service (QoS) with energy

sustainability and cost savings is not trivial. With more and more contributions in the

literature, people are paying more and more attention to this field. Currently, most

http://etd.uwc.ac.za/

9

energy management strategies focus on independent Cloud providers, others are

beginning to focus on Cloud federation [17].

The Cloud federation could helps solve resource limitations challenges of Cloud

providers, which forces them to reject new customers when there are not enough local

resources to meet customer needs. The federation allows providers to dynamically

outsource resources to other providers in response to changes in demand. It also

allows providers that do not make full use of resources to lease some out to other

providers. This outsourcing and insourcing mechanism leads to income generation

and help providers get more profit when used in the right way [18]. The essence of

Cloud federation is also a kind of resource allocation, but due to the selfishness of

individuals, the composition and maintenance of Cloud federation also face

considerable challenges [19]. Hence, the question of how to form an effective and

stable federations which can attract more providers, remains a pertinent one, with the

development of Cloud federations. The answer(s) to this question should address:

 Attracting new members to the federation: Cloud providers will only

outsource resources or internal resources in the federation if the income

earned is profitable, otherwise they will only be more willing to reject their

own customer's resource request or outsource. Therefore, the resource

allocation between users and Cloud providers should be effective and

reasonable.

 Retaining federation members: In addition to the overall profit guarantee of

the federation, the profit-sharing strategy must be distributed in a fair way

among the participating Cloud providers. With this in mind, the issue of

profit sharing in the Cloud federation needs to be thoroughly examined [20]

and to design a dynamic and adaptive profit sharing strategy for the Cloud

resource providers to guarantee each one can get his corresponding profit by

his contribution.

http://etd.uwc.ac.za/

10

(ii) Multiple QoS needs to be considering in task scheduling.

The essence of Cloud Computing task scheduling is a resource allocation strategy.

Based on this strategy, a suitable mapping relationship between application tasks and

computing resources is established to achieve reasonable allocation and efficient

scheduling execution of application tasks among computing resources. However,

unlike traditional distributed computing and grid computing, which only focus on

performance factors such as system throughput and task completion time, the task

scheduling problem in Cloud Computing environments is more complicated. First, the

application task scheduling request in the Cloud Computing environment is

large-scale decentralized. The Cloud Computing system must perform task scheduling

and management in a distributed and parallel manner. Second, the Cloud Computing

resources are often attributed to different organizations or individuals. The task

scheduling strategy of the Cloud Computing system cannot interfere with the local

task scheduling within its host node; further, since the Cloud Computing system is

dynamically scalable, it requires that its task scheduling strategy must also be

adaptive and scalable. Most importantly, as a business computing model, QoS is

naturally part of the business service. In order to improve resource utilization and

obtain as much service revenue as possible, Cloud Computing systems should fully

consider the QoS requirements of user task scheduling. This might include addressing

the following issues:

 Improving the Quality of Service of different Cloud Computing users. There

are many metric for measuring of QoS in Cloud Computing, such as price,

bandwidth, security, stability, etc. The goal is to design a comprehensive

algorithm that considers multiple factors to achieve task scheduling based on

the user's needs as well as dynamically adjust the quality content and

importance.

 When signing up to a Cloud service, both users and Cloud service provider

often sign a service level agreement (SLA).The SLA spells out the QoS

http://etd.uwc.ac.za/

11

constraints of the user task clearly, including the deadline of the application

task, the scheduling expenditure budget, the reliability of the system, and the

security of the service [21]. For the relatively high network bandwidth

requirements, the corresponding communication bandwidth requirements

should also be agreed upon in the SLA. In order to obtain as much service

revenue as possible and ensure commercial success, the Cloud Computing

system must fully consider the QoS target constraint requirements of user

task scheduling and meet their requirements as much as possible. Of course,

in actual situations, it is impossible to ensure that all QoS are met. Therefore,

according to the requirements of QoS, dynamic and adaptable task

scheduling model are used to match the special QoS requirements from users.

 Optimizing the task scheduling results. The Cloud Computing system always

has to deal with a large number of application tasks. The task completion

time, execution cost, bandwidth support and so on refers to the compressive

QoS of the whole tasks be executed by its scheduling strategy. It can be seen

that when task scheduling is performed in a Cloud Computing system,

maximizing QoS is a common goal of Cloud system users and Cloud service

providers. Therefore, there is a need to design efficient algorithms to

optimize the QoS when doing the task allocation.

(iii) The energy based virtual resource management: VM migration and

integration.

As the number and scale of Cloud Computing data centres continue to

expand, the high energy consumption of Cloud data centres has become

increasingly severe. The energy-saving methods commonly used in Cloud data

centres can be divided into two categories: static energy-saving methods and

dynamic energy-saving methods. The mainly factors that need to be considered of

the static energy-saving is designing the hardware system and its components of

http://etd.uwc.ac.za/

12

the computer. The method mainly includes energy-saving micro-architecture

design for the motherboard [22], energy-efficient design of the circuit layer,

low-power state design of the processor, memory and disk [23] and so on. The

dynamic energy-saving method on the other hand, dynamically optimizes

energy-saving according to the change of the operating load of the Cloud data

centre from the perspective of resource management. The commonly used

dynamic energy saving method mainly includes VM consolidation [5, 24-27] and

Dynamic Voltage and Frequency Scaling (DVFS) [28] [29] [30]. VM

consolidation is a technology for making virtual machine resource scheduling

more reasonable, by means of "Live Migration" technology [27] [31]. It

consolidates applications running in the Cloud data centre into a small number of

compute nodes and shut down idle compute nodes to reduce energy consumption

in the Cloud data centre. VM consolidation is one of the major energy-saving

methods used in most Cloud Computing data centres today. In the existing

research, there are still some problems worthy of further study, such as:

 How can unnecessary VM migration be avoided to conserve energy?

Existing research works on virtual machine consolidation algorithms often

ignore the impact of VM migration overhead when selecting VMs to be

migrated. Although VMs can be quickly migrated between computing nodes

within a data centre through online migration technology, VM migrations are

at a cost. These cost might include reduction in running performance of VMs,

increased data transfer volume in the data centre and increase in energy

consumption at both root and destination compute node [5, 32, 33]. Though

the cost of a single VM migration is relatively small, the wide range of tasks

handled by the Cloud data centre and with the large fluctuations in the

number of tasks, the Cloud data centre may experience frequent VM

migration during daily operation and maintenance. These invariably results in

higher overall VM migration cost has become an increasingly indispensable

overhead factor in the daily management of Cloud data centres. However,

http://etd.uwc.ac.za/

13

when selecting the VM to be migrated, the existing research usually selects

the VM to be migrated according to its resources occupied, the number of

migrations, but often ignore the important factor of VM migration overhead.

The proposed VM consolidation algorithm can reduce the energy

consumption of the Cloud data centre to a certain extent, and also cause high

migration overhead. Therefore, we need to design an efficient VM migration

strategy to realize the VM migration but take into account VM migration cost

as well.

 How can VM migration technology be used in federated Cloud Computing?

Federation game in Cloud Computing is a way to expand/ integrate resources

and make better use of resources. Each participant wanting to maximize his

own interests is a key issue in the federation game. Combining VM migration

and Cloud federation game must consider the different situations of the

participants who wants to provide VMs. So there is a need to design the VM

migration for both cooperative federation and competitive federation to meet

the different requirements of participants.

(iv) The distance between Cloud Computing layer and the Internet of Things

terminal layer restricts their development.

User happiness/satisfaction becomes a problem for delay-sensitive applications

that require nodes to meet their latency requirements. The emerging wave of Internet

deployments, especially the Internet of Things (IoT), requires mobility support and

geographic distribution in addition to location awareness and low latency. A new

platform is needed to meet these requirements and this is where Fog Computing

comes into play [34]. Fog Computing is the infrastructure that processing power can

be used from anywhere in the Cloud to the terminal equipment, it extends the power

of Cloud Computing to the edge of the network, enabling any computing device to

host software services and process, analyze, and store data closer to where the data

http://etd.uwc.ac.za/

14

was generated. For example, a Fog Computing server can process data uploaded by an

IoT terminal and need to determine if it needs to be manipulated, rather than sending a

meaningless data such as a temperature reading of an intelligent thermostat to the

Cloud data centre every minute.

The architecture of the Fog Computing brings enormous processing power. Since

its processing power is often located near the required equipment, the distance of data

transmission is reduced and the delay is reduced. As a result, decisions can be made

faster, and IoT manufacturers and software developers will reduce spending on Cloud

Computing by limiting the amount of data sent to them. Fog Computing makes Cloud

Computing better at what it does best: long-term data storage and analysis, rather than

computing tasks that is time-critical. Like with the multi-layer resource allocation

between Cloud Computing and its users; Fog Computing and the Internet of Things

also have their corresponding challenges. Some of which include:

 How can an advanced model be built to connect IoT and Fog Computing? As

the middle layer between Cloud layer and IoT layer, the fog layer plays a role

of connecting the upper and lower layers. How to design a model that

incorporates data collection from the IoT sensor layer and uploading same to

the fog layer is a direction that needs more study.

 How can delay, distance and energy consumption between the uploaded tasks

and fog nodes be balanced? In the fog layer, the fog nodes often have their

own computing power and storage capacity. Therefore, the resource

allocation of the Fog Computing has certain similarities with the Cloud

Computing, but it pays more attention to the IoT sensor geographic location,

delay time and fog nodes energy consumption of the entire system. Therefore,

it is meaningful to design an efficient resource allocation algorithm to

maximize the comprehensive performance of distance, delay and energy

consumption for the Fog Computing layer of the model.

 How can the robustness of IoT routing protocol and battery lives of IoT

http://etd.uwc.ac.za/

15

sensors be improved? In recent years, the Internet of Things (IoT), which

aims to achieve universal communication between a large numbers of

resources to constrain embedded devices, has become a new paradigm in the

field of wireless communications. Implementing IoT basically requires

thousands of low-power and low-cost embedded devices to interconnect

efficiently and seamlessly [35]. Although today's routing protocols for

low-power wireless networks (such as CTP or RPL) handle link failures

relatively well, most studies focus on energy control, and robustness has not

received enough research attention. Therefore, it is worth that we work on

robustness and energy control of the routing protocol of for the equipment in

IoT layer.

1.3 Contributions

(i) A unique profit sharing model for Cloud federation– Chapter 2: Though,

Cloud federation can optimize resource allocation, the fairness of profit

distribution between participating providers may be one of the most

important conditions for joining. The economic profit distribution model

of the traditional single resource level or simple proportional allocation

mechanism cannot show the contribution of all participants, which means

that the fair performance is insufficient. This part is to propose a fair

distribution of profit, and to assess the relative importance of each

participant (Cloud provider) based on the contribution of resource

allocation they can make. The main contributions of this work are

summarized as follows:

 Usually the proportion of participants in the Cloud federation is fixed,

but in this work, a dynamic profit distribution model is considered

based on the various user needs. This allows for dynamic adjustment

of proportion of each participant according to different conditions.

http://etd.uwc.ac.za/

16

 The proposed Cloud federation model, in addition to taking into

account the time and budget conditions that users usually propose,

also considers QoS attributes of reliability, stability and security of the

Cloud provider. This further aids in accurately obtaining the specific

computing contribution of each Cloud provider.

 Use of the economics concept of Shapley Value to calculate the

contribution for participants, which can then be used for appropriate

profit distribution in Cloud federation.

 Finally, the use of experiments to compare and validate the fairness of

the model.

(ii) Multi-QoS constrained Cloud Computing task collaborative scheduling

strategy–Chapter 3: In Cloud Computing, resource types and user

preferences are heterogeneous and change dynamically. QoS constraints of

user tasks are varied and with multiple metrics. The degree of satisfaction

of the QoS largely determines the performance of the Cloud Computing

task scheduling strategy. For the task scheduling problem with QoS target

constraints in Cloud Computing environment, this chapter work proposed

a multi-QoS target constrained Cloud Computing task scheduling strategy

and the contributions are shown as follows:

 Proposal of an algorithm to calculate Shapley Value. Within the

network of task allocation, calculating Shapley value is a NP hard

problem. In this section, a modification of the algorithm proposed in

[36] was proposed to calculate the Shapley value of VMs in large

networks. This enabled the use of Shapley value in the federation

Cloud to obtain the valuation of each member’s specific contribution.

 Modified DE algorithm based on Shapley value. The developed model

is a hybrid modification of differential evolution (DE) algorithm for

Cloud resource allocation with Shapley value. Specifically, the

http://etd.uwc.ac.za/

17

mutation step of the DE was modified, thereby influencing the choice

of genes in subsequent generations.

 Dynamic QoS Adherence: As stated above, users often have various

QoS requirements that are very important to them. The proposed

model is able to dynamically adapt and satisfy various user imposed

QoS requirement, more specifically execution time, cost and

bandwidth.

(iii) VM migration and consolidation of the virtual resource allocation –

Chapter 4. Due to the existing VM consolidation research, the impact of

VM migration overhead is often neglected. This part carries out the VM

consolidation research of migration overhead awareness. A VM

consolidation model under multiple constraints is proposed and its

contributions are described as follows:

 Based on the service level agreement (SLA) violation rate and the

remaining execution time of the virtual machine, we propose a VM

Migration Necessity-based Dynamic Scheduling algorithm for our

model. This algorithm can reduce the migration overhead during VM

consolidation by selecting the virtual machine with the smallest

overhead factor to migrate.

 The experimental results demonstrated the effectiveness of our

proposed VM migration algorithm in VM migration times, migration

mean time cost, SLA and energy consumption by comparing with

many other algorithms.

 Our research also considered both cooperative federation and

competitive federation while do the VM migration and the experiment

results shown the performance with two different federations.

(iv) The advanced model that connects IoT and Fog Computing – Chapter 5: In

http://etd.uwc.ac.za/

18

recent years, the words "Internet of Things" and "Cloud Computing" have

profoundly changed the IT academia and industry. However, in the actual

application process, there are certain shortcomings between Internet of

Things (IoT) and Cloud Computing. The IoT awareness layer has a large

amount of data and is very complex, which is consist of multi-source

heterogeneous data. While Cloud service is a highly aggregated service

computing. Although it is cheap and convenient, it consumes a huge

number of network bandwidth, and delay is also an inevitable problem due

to its physical structure. In such an environment, Fog Computing merged

as the times require, it is a distributed service computing model of

para-virtualized architecture, which inherits the advantages of Cloud

Computing and terminal computing. It can fully utilize the computing

functions of the terminal and the advantages of local proximity processing.

We proposed an IoT-based Fog Computing model and the contribution are

described as follows:

 Mathematical modelling：Our model includes problems with the node

transport protocol of the terminal layer and the allocation of resources

(fog nodes) in the fog layer and tasks uploaded from the terminal layer.

The purpose of this model is to minimize the overall cost of completing

the terminal tasks through the fog node: time, price, energy.

 Terminal layer protocol: Based on the LIBP algorithm, we propose an

improvement of the multi-sink node. The goal is to improve the

robustness of the terminal layer nodes and extend the battery life of the

sink node. Finally, the simulation of cooja on contiki OS proved the

effectiveness of multi-sink nodes.

 Task scheduling for fog layer: A modified GA is used for optimizing the

task scheduling between terminal layer and Fog Computing layer. The

experiment results proof the efficient of our proposed model by

http://etd.uwc.ac.za/

19

comparing with the traditional MaxMin algorithm and the fog oriented

MaxMin algorithm.

1.4 Thesis Organization

Fig 1-2 thesis constructer

As shown in the Figure 1-2, the rest of this thesis is organized as follows:

Based on the Cloud Computing environment, chapter 2 introduces the Cloud

federation, analyses the characteristics of Cloud federation and the Cloud federation

kernels: fairness of profit distribution and federation stability. It then discusses the

proposed fairness benefit distribution strategy, which is based on the concept of

economics: Shapley Value, to determine the contribution of each participant in Cloud

federation. Our strategy focuses on fair and just which provides a strong support for

the above two kernels. Finally, we show the validity and fairness of our strategy by

the experiment.

Chapter 3 presents a Cloud Computing task collaborative scheduling strategy

http://etd.uwc.ac.za/

20

with multiple QoS target constraints between the virtual machines in Cloud

Computing layer and users in application layer. According to the users’ different task

scheduling requests, the corresponding QoS target constraints are constructed

respectively. Then, target solution is solved by applying the Shapley Value based

Differential Evolution algorithm to optimize and dynamically adjust the QoS

performance for the users’ different QoS requirements.

In chapter 4, a VM consolidation model with migration overhead awareness is

proposed for the VM providers in both cooperative federation and competitive

federation. This model is an optimization model under multiple constraints that

focuses on three factors: SLA violation rate, migration times and energy consumption.

Then, the flow of the algorithm proposed in this chapter at each stage is described in

detail. Finally, the algorithm was tested and verified by experiments.

For the shortcomings of communication between Cloud Computing layer and IoT

layer, an IoT-based Fog Computing model is proposed in chapter 5. The model can be

divided into two parts, part 1: the data processing in fog layer which focuses on

optimizing the comprehensive performance of delay, distance and energy

consumption. Part 2: the IoT layer which is responsible for collecting and uploading

data, we proposed a modified routing protocol to enhance energy balance and nodes

robustness. The sixth chapter summarizes the thesis and discusses potential future

works.

http://etd.uwc.ac.za/

21

Chapter 2: A Fair Profit Distribution Strategy of Modelling

Cloud Federation

2.1 Introduction：

Cloud Computing is aimed at integrating IT resources into a large-scale and scalable

resource pool through virtualization technology, and provides software as a Service

(SAAS), Platform as a Service (PAAS) and Infrastructure as a Service (IAAS) services

via the Internet [37]. Due to the dynamic nature of user requirements, especially for

data-intensive needs, the increase in demand for computing resources may lead to a

single Cloud Resource Provider (CRPs) being unable to meet their needs. These makes

the CRPs need to improve their dynamic resource capabilities by working

cooperatively as a federation. Furthermore, single Cloud Computing is associated with

many other issues including: i) vendor-lock deployments which tie Cloud end-users to a

unique Cloud provider, thus forbidding an average user to move its application from

one Cloud to another ii) over-sized Cloud infrastructures unable to satisfy peak demand

periods and leading to performance slow-down iii) non-cooperative resources and

networks configuration resulting in every single service or workloads deployed in a

unique site or replicated in multiple sites and iv) resources duplication resulting in

departments within the same institution maintaining their own non-cooperative

infrastructures.

Cloud federation [38] can make more efficient use of the Cloud infrastructure by

enabling statistical multiplexing of resources and services. In many cases, this is the

only or best way to satisfy the services on a global scale. The Internet is a typical

example as the global service which works through a joint agreement between more

than 30,000 autonomous systems or groups [39]. Currently, building the Cloud

federation provides many benefits, such as capacity improvement, computationally

intensive task completion time reduction, faster communication and so on.

There are two core conditions to form the federation [40]. One is maximizing the

http://etd.uwc.ac.za/

22

profit of the federation, which means the profit of other federation members works as

any other formation won’t be higher than the federation. The other one is the profit

distribution between the federation members which is the guarantee that members are

willing to form the federation. If properly conceived, this strategy will provide

incentives to potential members that encourage them to share their resources.

As mentioned above, based on how to define the federation game model; how to

define the Cloud resource providers and Cloud federation revenue; how to define the

federation members and their contributions so as to distribute the profit. This chapter

present a framework for resource management for Cloud federation and propose an

economic model which captures the contribution of each CRP in the user’s dynamic

requisition. Based on this model, this chapter proposes the Shapley Value Profit

Distribution-based Strategy (SVPDS) to distribute the profit between federation

members due to each member’s contribution, that is, Shapley Value [41]. Our research

reveals the following:

 Usually the proportion of participants in the Cloud federation is fixed. However,

in our work, the profit distribution changes dynamically with respect to user needs.

We can dynamically adjust proportion of each participate according to different

conditions. The proportion of participants in the usual Cloud coalition is fixed, but in

this part, the profit distribution of these participants of the federation is dynamic

because of the different user demands.

 By proposing a Cloud federation model, we can take into account the time and

budget conditions of users. The Quality of Service (QoS) attributes: reliability,

stability and security of the Cloud provider are also considered in our model.

 Using the economic concept Shapley Value, the contribution of participants in the

federation can be calculated. This provides data and strong evidence for participants

profit distribution in the Cloud federation.

 Finally, the experimental results and data comparisons prove the validity and

fairness of the model. More Cloud providers can participate in the distribution of

http://etd.uwc.ac.za/

23

benefits, which provides strong support for the formation and consolidation of Cloud

federation.

2.2 Related work

The originally conceived Cloud Computing paradigm has reached a development

level, which has exposed its limitations: service disruption, degraded service quality,

resource contention, data representation lack of interoperability etc. Therefore, several

new methods of use and optimization have been implemented to maintain the

continuity of the technology. different Cloud organizations are formed with the goal

of maximizing the use of Cloud Computing, which is called inter-Clouds [42], Assis

[43] compared solutions such as hybrid Cloud, Cloud and Cloud federation, they

identified the functional and non-functional attributes required for Cloud federation

by identifying the major architectures in the literature, and evaluate these architectures

based on the attributes described.

For improving the clients experience of joining Cloud federation, Li [44] proposed

a Cloud federation architecture that allows Cloud clients to seamlessly and

transparently access Cloud services. The federation can be provided based on various

terms, including as a subscription-based real-time online service to Cloud clients,

which is aiming at simplifying the communication between clients through the

Service Abstraction Layer (SAL). In order to optimize resources in heterogeneous

environments and take advantage of the unlimited resources of Cloud Computing,

Celesti [45] proposed a new module called Cross-Cloud Federation Manager for

Cloud federation, including three agents (discovery, Match and authentication). And a

technical solution based on IdP / SP model and SAML technology is proposed, which

focus on the security part: authentication agent.

The Cloud federation allows the CRPs to gain more benefits through cooperation.

Therefore, the Cloud federation needs to overcome the limitations of each CRP to

maintain QoS during a sudden surge in resource demand. However, the presence of

http://etd.uwc.ac.za/

24

untrusted CRP can degrade the QoS through federated services. Trusted CRP on the

other hand have high value in the federation because they can extend their resources

and services to maintain the level of QoS. Thus, in order to ensure the delivery of the

submitted QoS, Ray [46] proposed a broker based Cloud federation architecture. The

formation of the Cloud federation is modelled as a hedonic league game. The main

goal of this work is to find the most appropriate and stable federation which will

maximize the satisfaction of each CRP based on the service of QoS. They proposed a

federation game inspired Cloud joint formation (CGCFF) algorithm to improve the

satisfaction, quality and profit for the federation.

In Cloud federation, QoS is one the non-negligible factors which reflects the

overall performance of computer network, particularly the performance gotten by the

users. In terms of computer network systems, QoS plays a very important role in

providing high quality service, such as computing and information for the users.

However, researchers in the field of various service applications have different

definitions for QoS. Araban [47] and his group classify the characteristics of services

into two categories, namely the internal attributes which are only related to the

implementation of the service itself, and the external attributes that are associated

with the environment in which the service is located, such as performance, reliability,

integrity, availability. Ran [48]and his group suggested that there are five kinds of

service, i.e. QoS attributes during the operation (including scalability, capacity,

response time, reliability, availability, robustness, exception handling and accuracy,

etc.), QoS attributes related to actual events (event integrity, etc.), QoS attributes

related to deployment management (normative, support for standards, stability and

change cyclicality, etc.), QoS attributes related to cost (cost, etc.), and security-related

attributes (authentication, authorization, confidentiality, statistics, traceability,

traceability, data encryption, non-repudiation, etc.). Researchers at IBM [49]

classified service QoS into six categories: visibility, accessibility, integrity, throughput

and response time, reliability, standard compliance and security.

http://etd.uwc.ac.za/

25

 Based on the above classifications, it can be seen that different researchers focus

on different QoS attributes according to their own research domain characteristics, so

it is quite challenge to provide a common QoS model for everyone. Here we propose

a basic QoS model, which could provide efficient way to determine the QoS attribute

and show a highly practical use value.

 Based on the above classifications, it can be seen that different researchers focus

on different QoS attributes according to their own research domain characteristics, so

it is quite challenge to provide a common QoS model for everyone. Here this chapter

proposes a basic QoS model, which could provide efficient way to determine the QoS

attribute and show a highly practical use value.

QoS in Cloud services can be measured with different attributes, and the

attributes used in this work are shown in Table 2-1.

Table 2-1: QoS attributes

QoS attributes Description

Execution

price(P)

The cost required for the Cloud service provider to perform a

given task

Execution

time(T)

The time it takes for the Cloud service provider to perform a

given task

Reliable (RE) The probability of a Cloud service running normally

Available (AVA) The probability that a Cloud service can be successfully

accessed

Security (SE) The security level of the Cloud service

Beyond QoS, as mentioned above, a very important point of forming a federation

is the strategy of benefits distribution between CRPs which must be carefully chosen.

This is because the CRP will only join the federation when the income obtained is

profitable, otherwise they will rather reject new user requests and keep their own

http://etd.uwc.ac.za/

26

resources and existing customers[50]. Since every participant in the federation is

selfish, so the best profit -sharing strategy must be as fair as possible. With this in

mind, profit sharing issues in the Cloud federation need to be considered critically and

a profit-sharing method must be found to ensure the economic benefits of each CP

belonging to the federation. Base on this theory, this chapter also focuses on

proposing a fair profit sharing strategy. Comparing with the strategy in this part, there

are some other common methods that people are using for sharing profit.

Zant et al. [20] proposed a proportional revenue sharing method that intuitively

allocates the benefit ratio based on the provider's working time, but this method does

not consider the source of the request and the number of virtual machines in the

federation. If income incentives are not significant, this may not be attractive so as to

force the CRP to reject task execution requests. Toosi et al. [51] proposed the

Dynamic Pricing based revenue sharing strategy, in which the CRP’s revenue is

calculated based on the price of the VM multiplied by the number of VMs. The

disadvantage is that the source dynamic pricing may cause losses to the CP when the

internal CP idle capacity is very low. Goiri [18] and his group improved the dynamic

pricing strategy by add the factor alpha, which is called Pricing factor alpha based

revenue sharing, its revenue is calculated by multiplying alpha based VM price with

the number of VMs, as well as time duration. But in actual circumstances, the price of

cooperation CRP will be different. Therefore, it is very important to decide which

alpha of the CP to use, but they did not mention on what basis and how to calculate

alpha. Hassan [52] et al. proposed the Broker’s strategically decided price-based

revenue Sharing strategy, which is a kind of energy awareness resource and revenue

sharing mechanism based on cooperative game theory. However, the strategy does not

apply to centralized/peer-to-peer federation scince its pricing does not involve CP's

consent. Tang and Chen [53] focuses on auction pricing strategy which is called

double auction based revenue sharing strategy, CRPs acting as buyer and seller who

respectively is presented buy bid and sell bid. A broker (the role of the auctioneer) in

Cloud Federation manages all bids, performs a double auction to determine both

http://etd.uwc.ac.za/

27

successful buy and sale bids. The revenue sharing is dynamic changing due to these

prices in different time interval. CRP can strategically manipulate bid prices and

trading volumes to maximize their profits, but this strategy only works in a federation

environment with brokers. Bellagio [54] and his group proposed an economic model

which is a virtual currency-based auction system designed for allocating resources.

Although their model provides a general approach to meeting diverse requirements,

they didn’t provide a means of sharing profits among a group of independent

providers whose resources are part of certain bids. Based on the dual auction of the

spot market, Dramitinos [55] proposed a trading virtual machines in the certain

duration. In terms of profit sharing, it is similar with the parallel synchronous markets

[56, 57]. But the profit between independent organizations is implicitly shared

through the market, which didn’t take into account the possibility of complementarily

of users. Antoniadis [58] and his group focus on sharing the value of diversity in the

federation, their research made a very fair profit distribution by Shapley Value, but

they did not take into account dynamic user’s quests which may influence the

contribution of members in the federation.

http://etd.uwc.ac.za/

28

2.3 System Model

Fig. 2-1 Federated Cloud Infrastructure

A typical federated Cloud infrastructure of healthcare is depicted by Figure 2-1, it is

an example of an application, where i) patients’ vital signs are captured in the E-health

kiosks by E-health sensors ii) routed into a network of micro-Cloud devices belonging

to a fog-based infrastructure where they are aggregated and pre-processed and iii)

transferred to macro-Cloud devices belonging to a local health information

organization (LHIO) which are federated into a global Cloud infrastructure belonging

to a regional health information organization (RHIO) sharing the Cloud resources and

services. Such deployment may be suitable for rural and low-income areas of the

developing countries with the expectation of enabling these settings to leapfrog from

poor equipped into adequately prepared environments capable of using the federated

Cloud to tackle some of the most challenges health issues of the developing world.

http://etd.uwc.ac.za/

29

2.3.1. The Federated Cloud Computing Resource Management Framework

Fig. 2-2 Cloud Computing resource management framework

A Cloud Computing resource management framework is presented in Figure 2-2

where:

1. A Physical resource layer composed of data centres hosting different hardware

resources as the form of VMs.

2. A virtual resource layer is layered above the physical resource layer to virtualize

the physical resources for better resource management. While different virtualization

techniques may be available, virtual machine virtualization and containerization seem

to be the most popular techniques used by this layer to virtualize resources.

3. An application layer is layered above the virtual resource layer to provide

different services to the users and include SaaS, PaaS and IaaS.

When considering a service perspective, the framework in figure 2-2 can be

presented as a two-layer architecture including:

1. A virtual resource scheduling module, where a mapping between virtual and

http://etd.uwc.ac.za/

30

physical resources in the data centre. Here, each physical machine host at least one

virtual machine (VM) and the total performance, value, energy consumption are a

summation of all VMs belong to the host who provides these VMs.

2. A task allocation management module enabling the virtual resources to be

allocated to the users in a cost-effective way. Based on the structure in figure 2.2, we

will discuss how to allocate the Users’ task to the VMs, and how to measure the

contribution of each VM which is the key of fairness distribution strategy after they

finish the task execution.

2.3.2 The Cloud Federation Model

Federation game theory is an important branch of game theory, and its

normalization of the interdependence of human relations is totally different from

non-cooperative game. Non-cooperative game describes the model accurately to each

player's action and its order, while the federation (cooperative) game focuses on the

results of the formation of different coalitions of the players and the interrelationship

between players and federation, i.e. the interaction between group decision makers

[59, 60]. Non-cooperative game consists of four components: players, game rules,

game outcomes and game effects, federation game shorten the last three elements into

a whole, so the federation game is composed of two parts: one is the set of all players,

the other one is the available corresponding functions of different combinations of

players.

Definition 2-1 Set R = {R1, R2, ..., Rm} denote a collection of m Cloud resource

providers (CRPs), each CRP has their own QoS attributes and also can provide

resources to the user as a virtual machine instance. VM = {VM1, VM2, ..., VMn}, and

each VM instance can provide cpu, memory, bandwidth, corresponding price and so

on.

Definition 2-2 Federation formation is to discuss how to divide the players Set F

into disjoint federation structure. The federation structure F = {F1, F2, ..., Fk}

http://etd.uwc.ac.za/

31

represents a federation partition form in which each player is a member of a

federation that is determined. We define a specified federation we need to get its profit

as S, which is Fi, S ⊆ F.

Definition 2-3 The Cloud providers have task set T= {T1, T2, ..., Tn}, where Ti is an

independent task set, the deadline for completing the task set is D, and the cost budget

for completing the task set is B.

Definition 2-4 The execution time function is defined as T (T, S), indicating the

execution time of CRP executing task in Specified federation. We compare the

execution times of all VMs, choose the longest one as the final execution time which

is defined as:

time cost：T(T, S) = max ∑ t(T, CRP)

T∈T,CRP∈S

Definition 2-5 The execution cost function is defined as P (T, S), choose the longest

one as the final execution ∈ T to the resource provider CRPj ∈S in Specified

federation. The final execution cost is defined as:

Execution cost：P(T, S) = ∑ p(T, CRP)

T∈T,CRP∈S

;

Definition 2-6 The reliability of the Cloud service is defined as RE: the ratio of the

number of successful executions of the Cloud service to the total number of

executions, that is, 𝑅𝐸(𝐶𝑅𝑃𝑖) =
∑ REj(CR𝑃i)

𝑛

𝑗=1

n
 , where REj (CRPi) is the j

th

execution of the Cloud service CPi, if the execution is successfully, then REj (CRPi) is

1, otherwise it is 0.

Definition 2-7 The availability of a Cloud service is defined as AVA: the ratio of the

number of successful visits to the total number of visits to the Cloud, that is,

AV(𝐶𝑅𝑃𝑖) =
∑ AVj(CPi)

𝑛

𝑗=1

n
, where AVAj (CRPi) is the j

th
 visit to the Cloud service

http://etd.uwc.ac.za/

32

CRPi, if the access is successful, AVAj(CPi) is 1, otherwise it is 0.

Definition 2-8: Cloud service security is defined as SE: refers to the Cloud service

security value, if the Cloud service supports only SSL-level security, its value is 1. If

the Cloud service supports WSS level Security, such as Token, Time Stamp, Signature,

Encrypted, the security value is 2; otherwise, it is 0. A summary of parameters and

symbols used is given on Table 2-2.

Table 2-2: Parameters and symbol definitions

Symbol Meaning

R The set of Cloud Resource Providers: {R1, R2, Rm}

F The set of Cloud Federation which is consisted of R: {F1, F2, Fm}

S One federation of the federation set F

Reliable:

RE(CRPj)

The probability of a Cloud service running normally which is

provided by CRPj

Available:

AVA(CRPj)

The probability that a Cloud service can be successfully accessed

CRPj

Security:

SE(CRPj)

The security level of the Cloud service CRPj

VM The set of VMs: {VM1, VM2, … VMn}

Mips The VM’s CPU speed

Execution time

𝐓(𝐓, 𝐅)

The cost required for the Cloud service provider to execute all

tasks

Execution

price 𝐏(𝐓, 𝐅)

The time it takes for the Cloud service provider to execute all

tasks

Task The user’s question which has to be executed T: {T1, T2, … Tn}

Budget(B) The price that users are willing to pay

Deadline(D) The time that users are willing to wait

http://etd.uwc.ac.za/

33

Definition 2-9 the profit V(S) of federation S:

The goal of Cloud federation S is to provide VM instances to users while

maximizing their benefits. In contrast to the work in [61], this chapter takes into

account execution time, execution cost, reliability, availability and security as the

feature function and defined as follows:

V(S)′ {
=α(B − P(T, S) +β(D − T(T, S)), if S > 0 𝑎𝑛𝑑 𝑇(T, S) ≤ D

= 0, if S = 0 or T(T < S) > 𝐷 𝑜𝑟 𝑃(𝑇, S) > 𝐵

RAS(S)=(RE(CRP1)+AVA(CRP1)+SE(CRP1))+ (RE(CRP2)+AVA(CRP2)+ SE(CRP2))

+…+ (RE(CRPn)+ AVA(CRPn)+SE(CRPn)).

V(S) {
= V(S)’+ά ∗ RAS(S), if V(S)′ ≠ 0

= 0, if V(S)′ = 0

Where S is the federation and RAS(S) is the part of QoS attributes: reliability,

availability and security of the Cloud providers. V(S)’ is the federation profit of cost

and time which also belong to QoS attributes. α，β and γ are the weight factors which

can be used for adjusting the importance of different QoS attribute and the V(S) is the

final federation profit, v(∅)=0.

2.3.3 Federation Game

In the Cloud environment, the federation game can be defined as (S, v), and each

CRP in S is a game participant, and v is the game characteristic function defined on

the S ⊆ F. The characteristic function shows that the income obtained from the

cooperation of CRPs in the form of a federation S is defined as v: S function⊆ F, and

v (∅) = 0 Each S ⊆ F is called a federation, and if all CRPs are only one Union,

known as the Grand federation, namely: S = F. In this chapter, the game feature

function is defined as: V (F) {
= 0, |S| = 0

 = P, |S| > 0

http://etd.uwc.ac.za/

34

Where: | S | represents the size of S (empty or otherwise), while P represents the

total profit obtained by the federation, which is the value of the function V (S).

Cloud federation game satisfies two main properties: fairness and stability. The

nature of fairness indicates that the benefits of the federation must be fairly divided

among its members. Stability of the federation implies that CRP is not willing to quit

the coalition. These two properties are discussed below:

1) Fairness of profit distribution

The characteristic value v(S) of federation S must be divided equally among its

members based on the principle of fairness. This chapter introduces a fair sharing rule

based on the market sharing mechanism, that is, the higher the contribution of

resources in all possible federation in which CRP is involved, the profit it gets.

Definition 2-10 Contribution margin

CMi (S) = v (S) - v (S \ {i}), i belongs to S, represents the contribution of the

player i to the federation S, where S \ {i} represents the federation formed by all the

players except the player i.

Definition 2-11 Shapley value

The Shapley value measures the degree of improvement a of joining player i to the

federation S by its marginal contribution. The main idea is that in federation game (N,

v), where N is the federation that consist of all CRPs, player i may form a variety of

different federation structure, as long as calculating the average contribution margin

of all different federations of player i. Based on the contribution marginal, the Shapley

value is defined as below.

In the federation game (N, v), the Shapley value represents a set of profit

distributions Ψ = (σ1, σ2, ..., σN), where σi=, ⊆N*P(S)*CMi(S)，P(S)=(|S|-1)!(N-|S|)!/N!

means the possibility of player i forming a federation. (|S|-1)! means the number of

http://etd.uwc.ac.za/

35

the players before player i appears and (N-|S|)! means the number of the players after

player i appears.

Definition 2-12 the profit distribution percentage: PDP(𝐶𝑅𝑃𝑖) =
Ψi

∑ Ψj
𝑁

j=1

 , where Ψi

is the Shapley Value of CRPi and ∑ Ψj
𝑁

j=1
 means the sum up of all members’

shapley value in the federation N. The numerical analysis denote that our strategy is

fairer than the profit distribution of To Each According To His Contribution

(TEATHC) [62].

2) Federation stability

The following introduces the concept of kernel in the federation game to analyse

the stability of the federation structure.

Definition 2-13 Distribution: A distribution that satisfies the following conditions

1) PDP(CRPi)*V(S) ≥ v (CRPi);

2) ∑ PDP(CRPi) ∗ V(S) = v (S)

CRPi ∈ S
;

Condition 1) ensure that the profit of each member in the formation of the final

federation are not less than the profit of the Fi alone, and condition 2) ensure that the

total profit should be segmented among all members.

Definition 2-14 kernel is a distribution set, while satisfying ∑ PDP(CRPi) ∗

CRPi ∈ R

V(R) ≥ v (S), S ⊆ F;

The definition of the kernel indicates that the profit of any federation is less than

or equal to the sum of the dividends of its members. The existence of the profit vector

in the kernel indicates that the final federation is stable. Then, if there is no arbitrary

CRPs willing to leave the federation in favour of another, the profit vector is in the

kernel. Please note that how to get this kernel is a NP-hard problem, usually people

http://etd.uwc.ac.za/

36

usually use some algorithm, such as ant colony algorithm and genetic algorithm to do

the calculation. This chapter focuses on profit distribution, so we will use a simple but

accurate example to illustrate and use the exhaustive method to calculate the kernel.

2.4 Algorithm Description

In this section, we set up a scenario where six Cloud tasks are to be scheduled

across three CRP’s Cloud resources. We analyse this example to verify the

performance of the federation in completing the tasks. The parameters used are

summarized on Table 2-3. Table 2-4 (a) gives the resource execution cost matrix of a

task, and shows that if CRP1 performs all tasks, the cost would be 3 + 4 + 2 + 2 + 1 +

4 = 16. Table 2-4 (b) shows that if CRP2 performs all tasks, the task completion time

would be 3 + 3 + 2 + 2 + 2 + 3 = 15.

Table 2-3: Parameter configuration

Parameter Value

Resource providers CRP1, CRP2, CRP3

Initial federation order {{CRP1, CRP2}, {CRP2, CRP3}, {CRP1, CRP3}}

Task Set T= {T1, T2, T3, T4, T5, T6}

Budget/deadline B=28/D=21

Weighting factor α=0.5, β=0.5，γ1=1

Attribute matrix P(i,j)=Table 2(a), T(i,j)=Table 2(b)，RAS(i,j)=Table 2(c)

Table 2-4(a): Attribute matrix P (i, j)

 RP1 RP2 RP3

T1(P) 4 3 5

T2(P) 5 3 2

T3(P) 3 5 4

http://etd.uwc.ac.za/

37

Table 2-4(b): Attribute matrix T (i, j)

Table 2-4(c): Attribute matrix RAS (i, j)

 reliability (RE) availability (AVA) security (SE)

RP1 0.8 0.8 2

RP2 0.9 0.7 1

RP3 0.9 0.9 1

Algorithm 1 shows how the Shapley value can be obtained using the data on the

above Tables. Note: algorithm 1 is designed to minimize the task scheduling cost.

Algorithm 1：Cost Minimizing on Time Constraint (CMTC)

1. input: T = {T1, T2, …, Tn}, R = {CRP1, CRP2, …, CRPm}, Budget B, Deadline D

2. output: Mapping relation between T and R

3. Initialize Payoff matrix P (i, j), Time matrix T (i, j), k

4. For j = 1 to m

5. Tj = 0

T4(P) 3 5 4

T5(P) 2 5 4

T6(P) 5 3 4

 RP1 RP2 RP3

T1(T) 5 4 3

T2(T) 3 4 6

T3(T) 5 3 4

T4(T) 4 3 2

T5(T) 5 3 4

T6(T) 5 4 3

http://etd.uwc.ac.za/

38

6. End for

7. For i = 1 to n

8. Initialize Pmax = MAX and TP = 0

9. For j = 1 to m

10. If P (i, j) ≤ Pmax and TT+T(i,j)+TP ≤ D

11. Pmax = P (i, j)

12. TP+=Pmax

13. K = j

14. Else if Tj+T (i, j)>D and j==m

15. Return infeasible allocation

16. End if

17. If TP>B

18. Return infeasible allocation

19. End if

20. TT+=T (i, k)

21. End for return Mapping relation

By following algorithm 1, table 2-5 is obtained.

Table 2-5: CMTC algorithm task scheduling results

Federation

structure

Scheduling results Price time Revenue of

cost and time

RAS

value

Overall

revenue

{CRP1} Over Time 0 0 0

{CRP2} Over Time 0 0 0

{CRP3} Over Time 0 0 0

{CRP1,

CRP2}

T3,T4,T5 → CRP1,

T1,T2,T6→CRP2

17 17 7.5 3.1 10.6

http://etd.uwc.ac.za/

39

{CRP1,

CRP3}

T1,T3,T4,T5→CRP1,

T2,T6→CRP3

18 21 5.5 2.6 8.1

{CRP2,

CRP3}

T2,T3,T4,T5→CRP2,

T1,T6→CRP3

20 18 5 2.7 7.7

{CRP1, CRP2,

CRP3}

T3,T4,T5 → CRP1,

T1,T6→CRP2, T2→

CRP3

16 17 8 3.2 11.2

Algorithm 1 provides a means of calculating the task scheduling results. CMTC

scheduling results are shown on Table 2-5 and shows the average revenue of members.

Tables 2-6 ~ 2-8 show the benefits of using the Shapley Value assignment method

under the CMTC algorithm.

The revenue distribution of CRP1 is: 0 + 10.6 / 6 + 8.1 / 6 + 3.5 / 3 = 25.7 / 6,

The revenue distribution of CRP2 is: 0 + 10.6 / 6 + 7.7 / 6 + 3.1 / 3 = 24.5 / 6,

The revenue distribution for CRP3 is: 0 + 8.1 / 6 + 7.7 / 6 + 1.6 / 3 = 19/6.

The Shapley value of the federation game which is solved by the CMTC algorithm

is (25.7 / 6, 24.5 / 6, 19/6). This value indicates that CRP1 contributes the most to the

federation, and CRP1 will be preferentially absorbed as federation members when

building the federation. In contrast, the Shapley value of CRP3 is minimal which

means CRP3 has the lowest priority when building federation. Therefore, the final

federation structure is {{CRP1, CRP2}, {CRP3}}.

Table 2-6: Revenue distribution of CRP1 in CMTC Algorithm:

Structure V(F) CM(F) |F| P(F) CM(F)* P(F)

{CRP1}v 0 0 1 1/3 0

http://etd.uwc.ac.za/

40

{CRP1, CRP2} 10.6 10.6 2 1/6 10.6/6

{CRP1, CRP3} 8.1 8.1 2 1/6 8.1/6

{CRP1, CRP2, CRP3} 11.2 11.2-7.7=3.5 3 1/3 3.5/3

Table 2-7: Revenue distribution of CRP2 in CMTC Algorithm:

 V(F) CM(F) |F| P(F) CM(F)* P(F)

{CRP2} 0 0 1 1/3 0

{CRP1, CRP2} 10.6 10.6 2 1/6 10.6/6

{CRP2, CRP3} 7.7 7.7 2 1/6 7.7/6

{CRP1, CRP2, CRP3} 11.2 11.2-8.1=3.1 3 1/3 3.1/3

Table 2-8: Revenue distribution of CRP3 in CMTC Algorithm:

structure V(F) CM(F) |F| P(F) CM(F)* P(F)

{CRP3} 0 0 1 1/3 0

{CRP1, CRP3} 8.1 8.1 2 1/6 8.1/6

{CRP2, CRP3} 7.7 7.7 2 1/6 7.7/6

{CRP1, CRP2, CRP3} 11.2 11.2-10.6=1.6 3 1/3 1.6/3

2.5 Experiment and performance analysis

In order to evaluate the proposed model, this section discusses experimental

simulation carried out on Cloud-sim. The proposed model is compared with the

classical Max-Min algorithm and modified Max-Min algorithm.

2.5.1 Experiment environment

Cloud-sim [63] was released by Melbourne University and Gridbus project group

in 2009, which is a powerful Cloud Computing environment simulation software. It is

based on the existing Java based discrete event simulation package in Grid Sim. It can

also run on multiple platforms such as Windows and Linux. Our justification for

http://etd.uwc.ac.za/

41

choosing Cloud-sim can be described as follows:

The Cloud Computing technology is an evolution of grid technology and grid

environment. Though a number of grid simulators exists, such as Grid Sim, which are

good for simulating and modelling grid or distributed computing environments; they

do not support the basic computing resources or any application service requirements

of Cloud Computing environment [64]. The major shortcoming is their inability to

model virtual resource or application tasks for the user's request according to the

demand. In Cloud Computing environment, all kinds of system parameters such as the

number of application tasks, the types of application tasks, the load status of the

system, the level of system energy consumption, the type of available resources, the

processing capacity of available resources, and the bandwidth of the network are

constantly changing. The original intention of Cloud-sim simulator was to build a

reasonable simulation model by this dynamic state system and the application tasks,

so as to achieve the reasonable control of Cloud resources and efficient execution of

application task scheduling requests. Based on Grid Sim grid simulator, Cloud-sim

adds simulation support for Cloud Computing, which provides convenience for

researcher on Cloud Computing technology.

http://etd.uwc.ac.za/

42

Fig. 2-3 layered architecture of Cloud Sim [63]

The architecture of the simulator is illustrated in Figure 2-3. From the figure it can

be seen that the architecture of Cloud Sim is divided into four levels, namely, Sim

Java, Grid Sim, Cloud Sim and User Code from bottom to top. The lowest Sim Java is

the simulation engine simulator, which implements all core functions for the above

three levels, such as management of various simulation modules or simulation clock,

multiple components communication control, query module maintenance and so on.

Based on the Java sim layer, Grid Sim layer provides a variety of software component,

and also provides a graphical interface (Visual Modeller) for the users, which supports

a huge convince for users. Some functional modules (the packages) which are

provided by GridSim can be extended on Cloud-sim layer, to provide the computing

environment simulation and simulation function of the Cloud, to instantiate the core

entity and build the virtual model, and make the dynamical management at same time.

In the Cloud Sim simulator source code, the core functional modules are

implemented by a series of core classes such as Datacenter, SANStorage,

BWProvisioner, Memory Provisioner, VMProvisioner, Cloudlet, VMMAllocation

Policy, Virtual Machine, and Datacenter Broker class and so on.

The Datacenter class is used to simulate the various core infrastructures provided

by Cloud service providers in Cloud Computing systems. It encapsulates a set of

computing resources, including hardware and software, and provides a series of

resources allocation strategy, such as bandwidth allocation, memory allocation, and

storage devices allocation. The BWProvisioner class is used to simulate the

bandwidth allocation strategy of virtual machines in a Cloud data centre. This class is

responsible for allocating network bandwidth resources for a set of competing virtual

machines. Researchers can expand or rewrite the class as needed, to develop or test

new bandwidth allocation methods. The Memory Provisioner class is used to provide

a memory space allocation strategy for a group of competing virtual machines. The

VMProvisioner class is responsible for selecting the host node that should be

http://etd.uwc.ac.za/

43

deployed for the creation request of a virtual machine in the data centre. In the default

practice of Cloud Sim, this class selects the first host node that meets the virtual

machine deployment requirements to deploy the current virtual machine. To create a

request, in practical applications, researchers can implement better virtual machine

deployment strategies by extending the VMProvisioner class. The Cloudlet class is

used to simulate specific Cloud application tasks, and the specific QoS objectives of

the task schedule are also set in this class. The VMAllocation Policy class is used to

simulate the allocation strategy of virtual machines. Computing resources are

generally divided into two types: time sharing and space sharing. Researchers can set

specific resource allocation strategies by rewriting this class. The Virtual Machine

class is used to simulate an instance of a specific virtual machine, and the

corresponding virtual machine is managed by the host node it is deployed on. The

Datacenter Broker class simulates the role of a task scheduling agent in the Cloud

Computing environment.

In this chapter, to test the proposed SVPDS strategy in the Cloud Sim simulator, we

first need to extend its Datacenter Broker class, implement the proposed SVPDS

cooperative scheduling strategy in Datacenter Broker.java, and reload its original Bind

Cloudlet to VM function.

2.5.2 Experiment setting

The operating environment of the simulation experiment in this chapter was

made up of CPU: Intel (R) Core (TM) i5-2500K, 1.87GHz, Memory: 8.0GB, HDD:

1000GB.

Please notice that getting Shapley value is a NP-hard problem, so in this case we

use the exhaustive method to build a simple example which is able to use the accurate

data to do our experiment. Our experiment has 4 CRPs, with each CRP having 1 VM.

The VM’s mips, usage cost and related features are summarized on Table 2-10, and

follows the Amazon EC2 on-demand instance pricing method. The experiment has 10

http://etd.uwc.ac.za/

44

different requisitions, which are respectively from 1 task to 10 tasks, and we set each

task length to 400. Table 2-9 shows the budget, deadline and the weight factor.

Table 2-9: Experimental parameters

Parameter Value

Resource providers CRP1, CRP2, CRP3, CRP4

Task Set T= {T1,T2,T3,T4,T5,T6,T7,T8,T9, T10}

Budget/deadline B=800/D=15

Weighting factor α=0.5, β=0.5，γ=1

Attribute matrix Table 2-9:

Table 2-10:

 VM0 VM1 VM2 VM3

Mips 150 140 130 80

Price 8 8 10 11

Reliability (RE) 0.3 0.5 1.0 1.0

Availability (AVA) 0.2 0.5 1.0 1.0

Security (SE) 0.5 2.0 1.0 2.0

http://etd.uwc.ac.za/

45

2.5.3 Simulation results

Fig. 2-4 Shapley value of each VM by SVPDS

Figure 2-4 shows a comparison of the Shapley value of each VM under different

tasks. For tasks 1 to 3, it can be seen that all 4 VMs’ Shapley Value were greater than

0. This means they can all get their corresponding profit in the ratio of their

contributions. When the number of submitted tasks grew to 4, VM4’s Shapley Value

became 0. That is because VM4 is not able to execute 4 tasks alone with the

constrain-deadline/budge, while the other 3 VMs could execute these 4 tasks alone.

This implies that whatever the federation is, VM4 won’t do any execution to make any

contribution.

When the number of tasks grew to 6, the Shapley Value of VM1 and VM2

decreased, while those of VM3 and VM4 increased. This means VM1 and VM2 were

not able to execute all tasks alone, but if one of them worked with other VMs then the

6 tasks could still be finished within constrain-deadline/budget. With 9 tasks, VM4’s

Shapley Value once again became 0. In essence whatever the federation is, the other

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10

vm 1

vm 2

vm 3

vm 4

Y: shapley value

X: task number

http://etd.uwc.ac.za/

46

VMs do not need to work with VM4, as without it the federation made more profit.

When the number of tasks grew to 10, the Shapley Value of VM4 increased and the

Shapley Value of VM3 decreased to the same level as VM4. That was because both

VM3 and VM4 were unable to make contributions alone, but if they worked as a team,

they could make viable contributions.

According to definition 2-12 with the data of Figure 2-4, we can get the profit

distribution percentage by SVPDS of each VM under different number of tasks. This

is showed in Figure 2-5.

Fig. 2-5 the percentage distribution profit of each VM by Shapley Value-based Profit

Distribution Strategy (SVPDS)

Through exhaustive method, we get the best task scheduling and their

corresponding profit under the different number of tasks which is showed in Table

2-11.

Table 2-11: Task scheduling and profit with QoS

The The schedule of task Total

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10

vm1

vm2

vm3

vm4

Y: profit percentage

X: task number

http://etd.uwc.ac.za/

47

number of

tasks

Profit

1 Task1-VM2 397.59

2 Task1-VM1, Task2-VM2 387.95

3 Task1-VM1, Task2-VM2, Task3-VM2 378.09

4 Task1-VM1, Task2-VM1, Task3-VM2, Task4-VM2 368.45

5 Task1-VM1, Task2-VM1, Task3-VM2, Task4-VM2, Task5-VM2 358.59

6 Task1-VM1, Task2-VM1, Task3-VM1, Task4-VM2, Task5-VM2,

Task6-VM2

348.96

7 Task1-VM1, Task2-VM1, Task3-VM1, Task4-VM2, Task5-VM2,

Task6-VM2, Task7-VM2

339.11

8 Task1-VM1, Task2-VM1, Task3-VM1, Task4-VM1, Task5-VM2,

Task6-VM2, Task7-VM2, Task8-VM2

329.45

9 Task1-VM1, Task2-VM1, Task3-VM1, Task4-VM1, Task5-VM2,

Task6-VM2, Task7-VM2, Task8-VM2, Task9-VM2

319.59

10 Task1-VM1, Task2-VM1, Task3-VM1, Task4-VM1, Task5-VM1,

Task6-VM2, Task7-VM2, Task8-VM2, Task9-VM2, Task10-VM2

309.95

Using the scheduling profile on table 2-11, we get the profit distribution

percentage by using TEATHC [65] for each VM under different number of tasks. This

result is shown in Figure 2-6.

http://etd.uwc.ac.za/

48

Fig. 2-6 The profit of each VM by TEATHC

Figure 2-6 shows that the VMs can be involved in 2 different profit distribution

strategies. Form the task number 1 to 10, we can see in most case, only VM1 and/or

VM2 is enough to finish tasks execution, while VM3 and VM4 remained on standby.

This was the case when TEATHC, one of the classic tradition economic profit

distribution strategies, was used. In this case its fairness is inadequate as it kept VM3

and VM4 running but unutilized and not profitable.

In contrast, the proposed SVPDS engaged VM3 and VM4 and profit was

distributed fairly in accordance to their respective contributions. The comparison

between these two strategies demonstrate that our proposed SVPDS is fairer. A fair

benefit distribution environment not only can make the federation more stable, but

also able to attract more participants to the Cloud federation.

Table 2-12: Compare SVPDS model with the TEATHC based on number of VMs

involved in the profit distribution

The request The number of tasks involve in profit distribution

 SVPDS TEATHC

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

vm1

vm2

vm3

vm4

X: task number

Y: profit percentage

http://etd.uwc.ac.za/

49

1 task 4 VMs 1 VM

2 tasks 4 VMs 2 VMs

3 tasks 4 VMs 2 VMs

4 tasks 3 VMs 2 VMs

5 tasks 4 VMs 2 VMs

6 tasks 4 VMs 2 VMs

7 tasks 4 VMs 2 VMs

8 tasks 4 VMs 2 VMs

9 tasks 4 VMs 2 VMs

10 tasks 3 VMs 2 VMs

We conducted another experiment where QoS attributes were not considered as

profit maximization constraints. Here we set the QoS weight factor γ to 0, and then

obtained VMs’ Shapley value and the profits under 10 different number of tasks

which are respectively showed as Figure 2-7 and Table 2-13. The results without QoS

attributes show that the system utilized VM1 more than VM2. This was because

though both VMs had the same price, VM1 was faster. This is in contrast to Table 2-11

which utilized VM2. That is because when considering QoS, speed and price, VM2 has

more contribution to the federation than VM1. The profits are showed in the total

profit column in both Table 2-11 and Table 2-13. The above comparisons demonstrate

that QoS attributes play an important role in maximizing profit for the federation.

http://etd.uwc.ac.za/

50

Fig.2-7 shapley value of each vm by SVPDS(γ=0)

Table 2-13 the task schedule and profit without QoS

The number

of tasks

The schedule of task Total

Profit

1 Task1-VM1 396.45

2 Task1-VM1, Task2-VM2 387.95

3 Task1-VM1, Task2-VM1, Task3-VM2 377.04

4 Task1-VM1, Task2-VM1, Task3-VM2, Task4-VM2 368.45

5 Task1-VM1, Task2-VM1, Task3-VM1, Task4-VM2, Task5-VM2 357.64

6 Task1-VM1, Task2-VM1, Task3-VM1, Task4-VM2, Task5-VM2,

Task6-VM2

348.96

7 Task1-VM1, Task2-VM1, Task3-VM1, Task4-VM1, Task5-VM2,

Task6-VM2, Task7-VM2

338.25

8 Task1-VM1, Task2-VM1, Task3-VM1, Task4-VM1, Task5-VM2,

Task6-VM2, Task7-VM2, Task8-VM2

329.45

9 Task1-VM1, Task2-VM1, Task3-VM1, Task4-VM1, Task5-VM1,

Task6-VM2, Task7-VM2, Task8-VM2, Task9-VM2

318.84

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10

vm1

vm2

vm3

vm4

X: shapley value

X: task number

http://etd.uwc.ac.za/

51

10 Task1-VM1, Task2-VM1, Task3-VM1, Task4-VM1, Task5-VM1,

Task6-VM2, Task7-VM2, Task8-VM2, Task9-VM2, Task10-VM2

309.95

2.6 CONCLUSION

Thus far, this research has only scratched the surface of this issue. We define a

special QoS that can be used as a standard of measuring Cloud providers’

contributions. Based on these contributions we proposed a fairness profit distribution

strategy for the Cloud federation. Our simple models and examples reflect the value

of a member in the federation depending on their corresponding QoS contribution. We

also proposed the Shapley value-based approach to measure their contributions.

Our approach leads to quantification of intuitive notions of the value of the

members according to the demand of the users. QoS is used as contribution parameter,

which is the key to determine the Shapley value. We believe that our approach can

easily be extended to other forms of demand patterns and can lead to economically

compatible profit-sharing programs that can be applied in a sustainable Cloud

resource providers federation. We measured the change in the members’ Shapley

Value under different numbers of tasks, and record the changes in the proportion of

profit they can allocate and the number of members that can participate in the final

distribution of profit which is used for the comparison of TEATHC, then we found

that our strategy can allow more members to participate in the distribution of profit

according to their contributions.

Other interesting directions to extend this work could in the use the loose

network formulas to calculate Shapley values, as proposed by Paschalidis and Liu

[66]. Federation hierarchy, composite integrated topology, market-based federation

profit sharing and the performance competition in the form of Cloud facilities like

Microsoft Azure can all be valuable directions for further works.

http://etd.uwc.ac.za/

52

Chapter 3: A Multiple QoS-based Task scheduling model for

Cloud Computing

3.1 Introduction

Cloud Computing technology is a new type of business computing service model

which is developed on the basis of grid computing. Cloud Computing leverages on

large number of virtualized dynamic computing resources and has become a research

hotspot in the IT field. These dynamic resources can provide system users with

various types of computing and data storage services. However, the system needs to

coordinate distributed resources belonging to different organizations and individuals

as well as provide a unified access interfaces for Cloud users. A unified interface,

enables Cloud users access and use Cloud resources (through the Internet), without

knowing how or which resources are allocated to them and where these resources are

deployed [67]. Additionally, huge computing power can be easily aggregated thus

enabling effective solution to large computationally and data-intensive application

problems [68]. Despite these advantages, many challenges still exist with Cloud

Computing. Some of these include the dynamic and heterogeneous nature of Cloud

Computing resources, wide disparity between user workloads and effectively

allocating these workloads onto Cloud resources. In solving some of these challenges,

numerous research work have been done in the area of Cloud Computing task

scheduling and Cloud Computing resource management [69].

When tasks are being scheduling in a Cloud Computing environment, these tasks

often have various quality of service (QoS) target constraints, which the users expect

the Cloud Computing system to satisfy [70]. In fact, the degree of satisfaction of QoS

constraint requirements is an important factor in measuring the performance of Cloud

task scheduling strategy. Therefore, in the Cloud Computing environment, the task

scheduling strategy usually considers the QoS target constraint requirements of the

scheduling task and the performance parameters of various available resources to

http://etd.uwc.ac.za/

53

achieve a reasonable match between the number of application tasks and available

computing resources [71, 72].

 This chapter considers three task scheduling constraints, which are: deadline,

scheduling budget and bandwidth constraints, and proposes a Multi-QoS-Target

Scheduling Model (M-QoS-TSM). This model assumes that the tasks to be scheduled

are independent of each other. In the proposed M-QoS-TSM model, in order to meet

the individualized scheduling requirements of different users for different QoS target

constraints, the proposed scheduling strategy first assigns weight parameters to the

various constraints, then applies a fitness function to convert the multi-QoS target

constraint problem into a single-objective constraint problem. It should be noted that

though only three QoS target constraint parameters are considered, without loss of

generality, the Cloud task scheduling model can easily be extended to have more QoS

target parameters.

Given a set of application tasks to be scheduled and a fixed set of available

computing resources, the task scheduling problem is one that finds a scheduling

strategy to allocate tasks to computing resources to achieve efficient tasks execution.

This is an NP-complete problem, and nearly impossible to obtain the global optimal

solution within polynomial time. In response to this, various heuristic optimization

methods, such as genetic algorithms [73], simulated annealing methods, Tabu search,

etc., are often used to approximate the optimal solution of the task scheduling

problem. In the proposed M-QoS-TSM collaborative scheduling model, once the

multi-QoS target constrained optimization problem has been relaxed to a single target

optimization problem, after which an optimal Differential Evolution algorithm is used

to obtain the approximate solution. Finally, the scheduling decision of the application

task will be executed based on the solution results.

The rest of this chapter is organized as follows. First, the state-of-the-art of

Cloud task scheduling problems is presented. This is followed by the definition of

terms relating to the M-QoS-TSM scheduling model. An analysis of the conditions

http://etd.uwc.ac.za/

54

that M-QoS-TSM scheduling strategy needs to satisfy is followed by the construction

of the scheduling model. The model is then used to compute an approximate solution

using the optimal Differential Evolution algorithm as a binding policy between tasks

and Cloud Computing resources. Finally, multiple experiments are used to verify the

effectiveness of the proposed M-QoS-TSM based on average completion time,

deadline violation rate, and average scheduling overhead of the application tasks.

3.2 Related works

The previous chapter had introduced some related works with respect to QoS.

This chapter further discusses research works focused of QoS and task scheduling in

the Cloud environment. Over the years, task scheduling of Cloud Computing has

attracted a large number of experts, scholars and technicians alike [74]. Hameed [75]

outlined the problem of resource allocation in Cloud Computing, summarized main

techniques in the literature based on the dimension taxonomy and comprehensively

sorted them by: resource adaption policy, objective function, allocation method,

allocation operation, and interoperability. In order to solve the problem of optimal

resource allocation, Kaikai [76] proposed a Hadoop-based Cloud manufacturing

service platform which uses the revenue function for both providers and users, but

they did not consider the QoS attributes of the platform. In the work of Pillai [77], a

resource allocation mechanism for machines on the Cloud based on the principles of

coalition formation and game theory and experiments was proposed. Experiments

were used to prove the efficient of the model by comparing it with other resource

allocation methods. Like the previous work QoS constraints were not considered.

Resource scheduling strategy plays an important role in determining the

performance of Cloud Computing systems; however, due to the different QoS

requirements, the huge number of tasks and resources, the task scheduling problem

can be extremely complicated. In terms of consuming services exposed by different

providers and alleviate vendor lock-in, Anastasi [78] proposed a genetic approach for

Cloud Brokering. The aim was to satisfying QoS requirements of applications though

http://etd.uwc.ac.za/

55

finding Infrastructure-as-a-Service (IaaS) resource. However, Cloud Computing

infrastructures needs to predict the cost-benefit and the corresponding QoS

experienced by users. Bruneo [79] presented a stochastic reward nets (SRNs) based

model to address this. Several performance metrics are defined to test the behavior of

a Cloud data centre. These include: utilization, availability, waiting time, and

responsiveness, so as to adjust the data parameters for the Cloud data centre. Singh

[80] proposed a Cloud workload management framework. Their research is able to

improve the energy consumption, execution cost and time of different Cloud

workloads through K-means on the basis of weights assigned and their QoS

requirements, but they did not take into account the multiple QoS constraints. A

mixed-game model was built by distinguishing the task-type preference and the

resource-service capability in the research of Li [81], and they proposed an

evolutionary game scheduling algorithm which is based on differentiated services, by

which the QoS could be improved greatly. Samanta [82]and Kumar [83] focus on

using game theory to optimal the resource allocation problem of QoS constraints, in

which service providers intend to solve complex parallel computing problems through

the use of resources across Cloud-based networks. For the computationally intensive

application task, Daniel [84] proposed a scheduling method can handle multiple

application tasks in heterogeneous platform at the same time, these applications can

be independent tasks, can also contain more than one bag of task. Considering QoS

constraints of task scheduling, Oprescu [85] proposed a budget constrained task

scheduling scheduler, which is able to deal with multiple task bags under different

minimum completion time constraints, maximum budget constraints and different

performance parameters. For focusing on the computation capacity in the Cloud

Computing environment, Wei Yu, LinGuan Yu, LinHung Yu and Wei [86] propose a

dynamic auction mechanism to solve the allocation problem. They apply a

second-priced auction mechanism for improving the efficient of resource allocation.

The above researches have done the works between QoS and resource allocation, but

they did not consider that the multiple QoS constraints.

http://etd.uwc.ac.za/

56

In addition, there are also some recent works devoted to obtaining available

computing resources information to define different QoS attributes, such as the

"Network Weather Service(NWS) method proposed in literature [87]". The NWS

integrate resource through a variety of methods, finally constructs a prediction model

for effective availability system. Randies [88] and Aslam [89] worked on the QoS

constraints such as task execution time and user trust degree in the task scheduling

process. The task scheduling strategies can reduce the execution time of the task to a

certain extent while ensuring system load balancing.

Since the Cloud Computing task scheduling problem has certain similarities with

the task scheduling in the traditional distributed environment, some classical

scheduling algorithms applied in the traditional distributed environment can also be

borrowed for the Cloud Computing task scheduling problem. Random load balancing

algorithm (Opportunistic Load Balancing, OLB) [90]; Minimum Execution Time

(MET), Freund R [91], integrated MET and MCT's Switching Algorithm; KPB

(K-Percent Best) algorithm; Min-min algorithm, Wu & Shu [92]; Max-min algorithm,

Maheswaran [93], Duplex algorithm, Lai [94] are some examples. The task is

designed to be efficient, and can be used for Cloud Computing task scheduling

problems with appropriate improvements.

In addition, since Cloud Computing task scheduling is essentially an

NP-complete problem, it is impossible to find a global optimal solution within the

polynomial time complexity. In order to quickly obtain a satisfactory scheduling

scheme, a large number of user tasks are mapped to suitable computing resources in a

short period of time. Some classical heuristic optimization algorithms are also often

used in Cloud Computing task scheduling problems, such as genetic optimization

algorithms genetic [95-98], ant colony optimization algorithm ant colony [99, 100],

simulated annealing algorithm [101], particle swarm optimization algorithm

[102-105], Tabu search algorithm [106], and a Mapping algorithm [107] and so on.

http://etd.uwc.ac.za/

57

3.3 M-QoS-TSM

3.3.1 Formalization of multiple QoS target constraints

Before we introduced the contribution of VMs, there is a need to introduce the

concept of federation games. The federation game is an important branch of game

theory, which focuses on the interdependence of human relationships.

Non-cooperative game describes the model accurately to each player's action and its

order, while the federation (cooperative) game [77] focuses on the results of the

formation of different coalitions of the players and the interrelationship between

players and federation, i.e. the interaction between group decision makers.

Non-cooperative game consists of four components: players, game rules, game

outcomes and game effects; while federation game shortens the last three elements

into a whole, thus composing of two parts: set of all players and corresponding

functions of different combinations of players.

In our model, the federation game consists of a set of VMs; with each subset F of

VM representing a federation. The value of the federation is represented by the

characteristic function v (F), which means the revenue that can be obtained when the

federation members work as a whole.

Definition 1 The Cloud resource provider set is represented by VM = {VM1, VM 2, ...,

VMm}, which means m resource providers that can complete the task.

Definition 2 The federation formation is to discuss how to divide the players (VMs)

into disjoint subsets. The federation structure F = {F1, F2, ..., Fk} represents a

federation segmentation.

Definition 3 The federation game can be defined as (Fn, v), where Fn is the set of

game participants and v is the value of the game players.

Definition 4 The VMs have task set T= {T1, T2, ..., Ts}, and the set T includes a

deadline (D) of completing the tasks, and the cost budget (B) of completing the tasks.

http://etd.uwc.ac.za/

58

Definition 5 The time function, defined as t: T on set T= {T1, T2, ..., Ts}, and the

seallocating tasks to VMs. We compare the execution times of all VMs choose the

longest one as the final execution time. It is defined as:

Execution Time：T(T,Fn) = max∑ t(T, VM)T∈T,VM∈Fn ; (1)

Definition 6 The cost function, which is defined as c: Tution times of all VMs choose

the longest one as the final execution time.rate. e tasks, and the ∈ Fn，which is

defined as:

Execution cost：C(T,Fn) = ∑ c(T, VM)T∈T,VM∈Fn ; (2)

Definition 7 The average bandwidth function, defined as B: Tndwidth functionof all

VMs choose the longest one as the final execution ti(VMm ∈ Fn), which the tasks

are allocated to. It is defined as:

Bandwidth：B(T,Fn) = (
1

L
)∑ b(T, VM)T∈T,VM∈Fn ; (3)

where the L is the number of VMs in Fn.

In order to provide resources to meet tasks requirements of users, and to maximize the

QoS benefits of the task implementation, VMs can form a resource federation to

execute tasks. For each federation Fn, there must be a mapping between tasks and

resource providers πS: T → Fn, the mapping result can be used to calculate the

federation game (Fn, v), v is the equation 4 as follows:

V(Fn)

{

 =Ϊ(D − T(T, Fn)) +Ϋ(B − C(T, Fn)) +ά ∗ B(T,Fn),

 if T(T, S) ≤ D and C(T, Fn) ≤ B

= 0, if S = 0 or T(T, Fn) > D or P(T, Fn) > B

 (4)

where Fn is the member of the federation set F, D-T(T, Fn), B-C(T, Fn) and B(T, Fn)

are respectively the benefits of execution time, execution cost and average bandwidth

of the tasks ∈ T with the federation Fn. V(Fn) is the federation value. α, β and γ are

the weight factors of execution time, execution cost and average bandwidth.

3.3.2 Model architecture

Figure 3-1 gives the architecture of the M-QoS-TSM collaborative scheduling

http://etd.uwc.ac.za/

59

model proposed in this chapter.

Fig 3-1 the architecture of the M-QoS-TSM

As shown in Figure 3-1, the M-QoS-TSM scheduling model implementation

process is as follows:

i. Users submit the application tasks with QoS constraints to the task

scheduler, and at the same time, VMs send their resource information to

the task scheduler.

ii. The scheduler transports the tasks and other related parameter

information to the M-QoS-TSM model.

iii. The model generates the simulation results, then return the simulation

results to task scheduler.

iv. The scheduler judges the returned information, if the VMs are able to

finish the users’ task request, then send the simulation result (the task

scheduling message) to the VMs, otherwise it will inform the users that

request has been rejected.

v. VMs execute the tasks according to the received task scheduling

message.

http://etd.uwc.ac.za/

60

3.4 The modified differential evolution algorithm based on Shapley Value

3.4.1 Calculating VM Contribution in Large Networks

In chapter 2, application of Shapley Value in Cloud Computing was introduced.

However, though the Shapley value based centrality is superior to traditional methods,

an efficient algorithm for computing its exact value for a larger network (with 100s of

nodes), to the best of our knowledge, has yet to developed. For such networks, the

only feasible method currently outlined in the literature is the Monte Carlo sampling

[108]; this method is not only inaccurate, but also very time consuming. For example,

in the network shown in [36], the Monte Carlo method must iterate 300 times, parsing

the entire network a 1000 times to produce an approximation of the Shapley value, yet

with an error rate of 40%. In addition, more iteration at exponential levels is needed to

further reduce this margin of error.

The work of [36] considers the game defined by Suri and Narahari and proposes

an accurate linear time algorithm to calculate the corresponding Shapley value of the

node in a topology network. The probability that in a random permutation none of the

vertices from F(vi)∪{vj} occurs before vi, where vi and vj are neighbours, is

SV|vj|=1/(1+deg(vj)), where deg(vj) is the number of links on each node, which is

used to indicate the importance of each node (lower number of links indicate higher

importance). Therefore, by summing the SV|vi| and all the SV|vj| of its neighbours, the

Shapley value of the node vi can be obtained.

In applying this model, since a VM can perform any task, the number of links of

each VM is thus the same. We consider the match results between the VM and each

task as the length of each link, which allows us use deg(vj) for VMs in the task

scheduling. This is done in line with [36]. In practical QoS applications, users may

have their own specific QoS requirements, thus an algorithm that can adjust the QoS

weight dynamically is necessary. Using the different QoS requirements, the

contributions can be considered as different QoS weight. The deg(vi) can be divided

http://etd.uwc.ac.za/

61

to three: degT(vi), degC(vi), degB(vi), which respectively means the contributions of

the j-th VM to the execution time , the contributions of the j-th VM to the execution

cost, and j-th VM’s contribution to the bandwidth. A sample example is shown in

Figure 3-2, t11=1, c11=1, b11=1 respectively means the degT(v1), degC(v1) and degB(v1)

of allocating Task1 to VM1, then t12=2, c12=2, b12=2 respectively means the degT(v1),

degC(v1) and degB(v1) of allocating Task1 to VM2 and so on, the VM number

corresponds vmSV|vi| which can be found in algorithm 3-1.

Fig 3-2 sample example to calculate the degT, degC, degB

It is important to note that, for both execution time and execution cost smaller

values are desirable, while for bandwidth, higher values are better. With respect to

bandwidth, the bandwidth of any individual VM can be obtained by subtracting the

bandwidth sum of all other VMs from total bandwidth (HB). This results in (7).

Deg(v)=Ϊ/(1+degT(t))+Ϋ/(1+degC(t))+ά/(1+HB-degB(t)) (7)

where α, β, γ are the weight factor to adjust the equation to match the users’ QoS

requirements. With deg(v), we can calculate the contribution of each VM using

algorithm 1 as follows:

http://etd.uwc.ac.za/

62

The steps in Algorithm 1 can be summarized as follows:

 First, the set of VM and the set of T are initialized.

 Then the Shapley value of the chosen VM (vmSV|vi|) from the set of VM is set to

0.

 Then the sum the Shapley value (SV|t|) of the chosen virtual machine with each

task is determined using (7).

 Finally, the Shapley value of every chosen VM from the set of VM is put in a list

(vmSV). This list provides the possibilities for the mutation step in the DE

algorithm in the next section. The complexity is O(3|n||m|), where n is the number

of tasks and m is the number of VMs.

3.4.2 The Modified DE algorithm

As mentioned before, task scheduling in Cloud Computing environment is a NP

hard problem, hence difficult to find the best solution when large numbers of

participants are involved. Intelligent optimization algorithms are usually used to find

optimal / satisfactory solution. In this section, we proposed the Shapley Value based

DE Algorithm (SVBDEA), which builds upon the classic DE algorithm [109].

SVBDEA requires the parameters of three main steps, population size (NP)，a

parameter (S) to control the mutation, as well as the crossover probability (CR).

http://etd.uwc.ac.za/

63

The steps of SVBDEA are presented as follows:

Initialing population: creating a population X consists of individuals xi = {xi,1,

xi,2, …, x i,D}
 T

, where i = 1,…,NP, and {Xi(0) | x
L

i,j ≤ xi,j(0) ≤ x
U

i,j; i= 1,2,…, NP;

j=1,2…,E}, where xi(0) is the i
th

individual (in this thesis, individual means one

match result between Tasks and VMs) and j means j
th
 dimensionality (means the

number of VM), and the way to calculate xi,j(0) is described in equation 8 as follows:

xi,j(0) = x
L

i,j + rand(0-1)*(x
U

i,j - x
L

i,j); (8)

where x
L

i,j, x
U

i,j respectively express the lower bound and upper bound of j-th

dimensionality, rand(0-1) means a random number between 0 and 1. In this thesis,

individual xi indicates one match result between VMs and tasks, and E is the number

of tasks.

 Mutation: The DE algorithm implements individual mutation through a

differential strategy. The common difference strategy is to randomly select two

different individuals: xr2 and xr3 in the population, then use a scaling factor (S) to

scale the difference between xr2 and xr3. Than we can generate the mutant vector: Vi,

g+1 by adding another random population xr1 according to equation 9 as follows:

Vi, g+1

= xr1, g

+ F (xr2, g - xr3, g) (9)

where r1, r2 and r3 are three random number in [1, NP], the S is a certain constant,

and g indicates the g-th dimensionality.

The above mutation is the traditional mutation step which likes many types of

mutations such as Uniform, Gaussian and Non-Uniform mutation [110]. and so on. In

these mutations, the value of only a single dimensionality in the individual is changed

to improve its fitness. The effect of this on the entire individual is small, especially

with large population size or when the solution is close to stability. In order to

improve the search range and simultaneously reduce premature convergence in a local

http://etd.uwc.ac.za/

64

optimal solution, we proposed using Shapley Value List: vmSVi, j (According the

algorithm 2, vmSV|j| is the shapley value of j-th VM, j=1,2…,E; and each individual

has its list: vmSVi, j, where i= 1,2,…, NP) to measure the importance of each

dimensionality of players, to provide the possibility of each VM:: Pi, j, which can be

presented in equation 10:

Pi, j = vmSVi, j/ ∑ vmSVi, n𝐷
𝑛=0 (10),

So the ∑i∈NP, j∈D Pi,j = 1, which means the sum of each Pi,j is 100%, and the number of

VM will be selected is according to applying equation 8 in the roulette wheel

selection (RWS) [111], that the selected VM is defined as RWS. Since we have the

possibility, we can generate new dimensionality when inheriting from individual. The

mutation can be defined in equation 11 as follows:

xi,1[n] = (xi, 1, xi, 2, . . . , xi, n) + (z1(△xi, 1 - xi, 1), z2(△ xi, 2 - xi, 2), . . . , zn(△ xi, n - xi, n))

(11),

where z1, z2,… zn ∈ {0,1}, and Δxi, 1, Δxi, 2,…, Δxi, n are selected by the RWS. Then

we can generate 4 different individuals by adjusting the number of z. The first

mutated individual has 1/4 dimensionalities (x) randomly set to 1, while the others are

set zero. The second mutated individual has 1/2 dimensionalities randomly set to 1

and the others set to 0. The third mutated individual has 3/4 randomly set to 1 while

the fourth has all its dimensionalities set to 1.

Since we have 4 mutated individuals, we then select 4 individuals with the

smallest fitness value from the population and compare with the fitness values of our

4 newly mutated individuals. After the comparison, we put 4 individuals with the

highest relative fitness value back into the population to get a new population.

 Crossover: The purpose of crossover operation is to randomly select individuals.

The method of crossover operation is shown in equation 10 as follows:

http://etd.uwc.ac.za/

65

Ui,j
g+1

= Vi,j
g+1

if rand(0,1) ≤ CR, j=1,…,D, (10)

where CR is the crossover probability. The crossover operation refers to optimization

process. If V(Ui
g+1

) < V(xi
g
) then xi

g
 = Ui

g+1
 , where V(·) is the fitness function of

equation 4.

Description in pseudo-code of applied DE is presented in Algorithm 2.

Algorithm 2 Shapley Value-based mutation

Input:

NP: population size, F: a parameter to control the mutation, CR: crossover

probability, fitness function: f(·) - equation (4), a random population: xi
G
,

generation:

the times of generation repeat

Output:

Optimal solution (task scheduling results): individuals from last population with best

fitness

int t = 0;

while t is not 0 do

foreach vector xi
G
 from population X

do Generate mutant vector vi
G
 according to (7), (9), Crossover vectors

according to (10)

if V(Ui
g+1

) < V(xi
g
)

then xi
g
 = Ui

g+1

end

http://etd.uwc.ac.za/

66

end

t = t + 1

return Individuals of the last population with best fitness

Stop

3.5 Experiments and Performance Analysis

3.5.1 Experiment Environment

A description of the CloudSim platform and simulation environment has been

given in the previous chapter. In this study, 8 VMs were used in CloudSim

environment, similar to that used in [32]. Performance configuration and computing

power parameters were adapted from CloudSim and are shown on Table 8.

Table 8: Performance Configuration and Computing Power Parameters (adapted from

CloudSim)

: VM1 VM 2 VM 3 VM 4 VM 5 VM 6 VM 7 VM 8

Pes 1 2 1 2 1 3 1 1

Mips 1010 2050 2130 270 550 1310 700 1180

Price 10 12 14 15 16 18 20 22

Bandwidth 100 600 210 13 100 250 60 200

In the simulator, the application task parameters include task ID and task length,

in which task length use Millions of Instruction (MI) as a unit. Task length means the

number of basic instructions of task scheduling requests. For this work, task lengths

were set to 10000, which is adapted from the work of [33].

In the SVBDEA algorithm constructed, the parameters for the DE algorithm are

set as follows: the population size of 100, maximum and minimum value are 8 and -8,

http://etd.uwc.ac.za/

67

the mutation zoom is 0.5, the crossover is 0.1, and the maximum iteration number of

the algorithm is 2000.

3.5.3 Experiment process

The main operation steps of the experimental process are described as follows:

Step 1: Grid Sim.init (num_user, calendar, trace_flag, exclude_from_file,

exclude_from_proces g, report name);

/ *Cloud Sim is extended based on the core functional modules provided by Grid Sim,

so the experiment needs to initialize the core module library provided by Grid Sim

first. */

Step2: Data centre datacenter () = create Datacenter (" Datacenter_ 0");

/* Create a Cloud data centre for the Cloud Computing environment, which is the

resource and service provider for the entire simulation environment.*/

Step 3: Datacenter Broker datacenterbroer = create Broker ()

int broker ID = datacenterbroker.get_id (

/* Creat task scheduling agent for Cloud Computing system, it is in charge of rescoure

allocation according to the users’ QoS constraints*/

Step4: virtualmachinelist = new Virtual Machine List ();

/* Create a list of virtual machines for the Cloud Computing simulation environment

*/

5: Step

Virtual Machine virtualmachine =

http://etd.uwc.ac.za/

68

new Virtualmachine (new VMCharacteristics (vmid, bro ID, size, memory, bw, vcpus,

priority, vmm, new Time Shared VMScheduler ()));

/* Create a virtual machine and give a variety of attribute parameter settings

Specified agent. */

Step 6: virtualmachinelist.add(virtualmachine1);

/* Add the virtualmachine1 into the virtualmachinelist。*/

Step 7: datacenterbroker. submit VMList();

/* Submit virtualmachinelist to virtualmachinelistdatacenterbroker。*/

Step 8: Cloudletlist = new Cloudlet List ();

/* Creat Cloud task list*/

Step 9:

Cloudlet Cloudlet1 = new Cloudlet (id, length, file_ size, output_ size);

/* Specify the parameters for the Cloudlet */

Step10: Cloudlet1.set User ID (broker ID);

/* Assign agent of Cloudlet*/

Step11: Cloudletlist.add(Cloudlet1);

/* Add Cloudlet1 into Cloudletlist。*/

Step12: datacenterbroker. submit Cloudlet List(Cloudletlist);

/ Submit Cloudletlist to datacenterbroker。*/

http://etd.uwc.ac.za/

69

Step13: Grid Sim.start Grid Simulation ();

/* Start simulation*/

Step14: Cloudlet List newCloudlist = datacenterbroker. get Cloud List();

/*Get task list from datacenterbroker */

Step15: Grid Sim.stop Grid Simulation ();

/* Simluation finish。*/

Step16: print Cloudlet List(newCloudlist);

/* Print newCloudlist */

Step17: datacenter (). print Debts ();

/* Sum up the task scheduling overhead of users。*/

3.5.4 Experiment Results

In order to evaluate the proposed SVBDEA, we compared it with the usual DE

algorithm [22] and the conventional task banding policy of CloudSim [24]. Due to the

deadline and budget should be increased with the different number of tasks, we use

the execution time and cost of conventional task allocation policy as the dynamic

deadline and budget to provide the parameter for the algorithm 3. We used different

values for the weight factors: α, β, γ and considered 4 different cases scenarios.

Scenario 1, α=β=γ= 1/3:

In the first scenario, we assumed that the 3 QoS attributes for users have the same

degree of importance, so we set α=β=γ= 1/3. A comparison of execution times, which

is a measure of the first QoS requirement is shown in Figure 3-3, The SVBDEA is on

the average, respectively 22.00% and 41.13% quicker than the classic DE algorithm

http://etd.uwc.ac.za/

70

and the conventional task allocation policy. A comparison of the second QoS

requirement (execution cost) is shown in Figure 3-4, the proposed SVBDEA results in

an average of 20.83% and 39.13% less cost than the traditional DE algorithm and the

conventional task allocation policy respectively. Since we are aiming at a multiple

QoS objectives, it is advantageous to get higher total QoS score while sacrificing one

of the QoS attributes. In this case bandwidth was sacrified, hence why SVBDEA

performed worse than the other techniques in terms of bandwidth. The simulation

results in Figure 3-5 shows that SVBDEA utilized on the average 6.05% and 33.70%

more bandwidth than the traditional DE algorithm and the conventional task

allocation policy.

Fig. 3-3 the task execution time (makespan)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

250 500 750 1000 1250 1500 1750 2000

Execution time

SVBDE DE Conventional

Y: time

X: number of tasks

http://etd.uwc.ac.za/

71

Fig. 3-4 the task execution cost

Fig. 3-5 the average bandwidth that VMs provide

In considering other QoS requirements, we considered case 2 to case 4 as

follows:

Scenario 2, α= 98%, β=γ=1%, α+β+γ=100%:

In this scenario, we assumed that users only care about the execution time, so we

set α to 98%, β and γ to 1%; implying that that execution time plays a more important

role both than execution cost and bandwidth. The simulation results in figure 3-6

shows that SVBDEA is respectively 36.37% and 64.01% on average shorter than the

0

20000

40000

60000

80000

100000

120000

140000

250 500 750 1000 1250 1500 1750 2000

Execution cost

SVBDEA DE Conventional

0

50

100

150

200

250

300

250 500 750 1000 1250 1500 1750 2000

Bandwidth

SVDE DE Conventional

Y: bandwidth

X: number of tasks

Y: energy

X: number of tasks

http://etd.uwc.ac.za/

72

usual DE algorithm and the conventional task banding policy, which is even better

than the performance in case 1.

Fig. 3-6 the execution time (makespan) of special QoS requirement

Scenario 3, α=1%, β=98%, γ=1%, α+β+γ=100%:

For this scenario, we assumed that users place more importance on execution cost.

We therefore, set α to 1%, β to 98% and γ to 1%, thereby giving execution cost higher

degree of important relative to execution time and bandwidth. Obtained results are

shown in Figure 3-7, on the average, SVBDEA is respectively 20.41% and 39.38%

cheaper for the users than the DE algorithm and the conventional task allocation

policy.

0

1000

2000

3000

4000

5000

250 500 750 1000 1250 1500 1750 2000

execution time in special

SVBDEA DE Conventional

Y: time

X: number of tasks

http://etd.uwc.ac.za/

73

Fig. 3-7 the execution cost of special QoS requirement

Scenario 4, α=1%, β=1%, γ=98%, α+β+γ=100%:

In this scenario, we assumed that users only care about the execution time, so we

set α to 1%, β to 1% and γ to 98%, which means the role that bandwidth plays is much

important than execution time and execution cost. SVBDEA is respectively 8.94%

and 107.79% on higher than the usual DE algorithm and the conventional task

banding policy. This is as shown in Figure 3-8.

To sum up, in the task scheduling problem, the proposed SVBDEA algorithm has

a better performance whether it is aiming at combination of multiple QoS or the

special QoS goal.

0

20000

40000

60000

80000

100000

120000

140000

250 500 750 1000 1250 1500 1750 2000

execution cost in special

SVBDEA DE Conventional

Y: time

X: number of tasks

http://etd.uwc.ac.za/

74

Fig. 3-8 the average bandwidth that VMs provide special QoS requirement

3.6 Conclusion

The task scheduling strategy is an important part of Cloud Computing

technology. Users usually there are different constraint requirements and Cloud

resources change dynamically. Reasonably and efficiently scheduling tasks to

resources has thus become a major research in Cloud Computing. For the different

task QoS target constraints, the scheduler must fully consider their differences and

establish the reasonable mapping relationship between the application tasks and the

available computing resources. In this chapter, we proposed a multi QoS target

scheduling federation model (M-QoS-TSM) which considers three QoS target

constraints of deadline, scheduling budget and bandwidth request. Considering that

Cloud resources are fixed and we proposed a modified DE binding algorithm, which

transform the multi-target constrained problem into the single target optimization

problem. Though users have different task scheduling QoS constraints requests, the

proposed binding policy can still satisfy these requests by adjusting the QoS

constraint weight. Results of simulation show that in terms of average completion

time, task bandwidth request level and the QoS performance, the model proposed in

this chapter is better than the traditional DE algorithm and conventional task

allocation policy in CloudSim.

0

100

200

300

400

500

600

700

250 500 750 1000 1250 1500 1750 2000

Bandwidth in special

SVBDEA DE Conventional

X: number of tasks

Y: bandwidth

http://etd.uwc.ac.za/

75

Chapter 4: Migration-based VM Consolidation in Federated

Cloud Computing

4.1 Introduction

Virtual machine consolidation is one of the major energy-saving methods

adopted by most Cloud Computing data centres, and its technology foundation is

virtual machine online migration. This technology can quickly and transparently

migrate a running virtual machine from one computing node to another, which has

become an important method for resource management of Cloud Computing data

centres in virtualized environments. The application of virtual machine online

migration can achieve the goals of load balancing, fault-tolerant management, as well

as energy-saving and emission reduction in Cloud data centres [112-114]. However,

during the process of migration technology, there will be a decrease of the running

performance of virtual machines due to the migration, as well as an increase amount

of data transmission in the data centre. These are some of the adverse effects of virtual

machine migration technology [5, 32, 33, 115, 116]. In the works, these adverse

effects brought by the virtual machine migration are collectively referred to as the

migration cost (MC). Although the cost of a single virtual machine migration is

relatively small, due to the wide range of tasks handled by the Cloud data centre and

the large number of tasks being processed, Cloud virtual machine migrations may

occur frequently during the daily operation and maintenance of Cloud data centres

[112, 114, 117]. These make the migration of virtual machines increasingly expensive

over an extended period of time. The current research on the problem of virtual

machine consolidationusually select the virtual machine to be migrated according to

factors such as the resources occupied by the virtual machine, the number of

migrations, and ignores migration overhead can be different due to the the migration

of different virtual machines. In essence, though virtual machine migration can reduce

the energy consumption of Cloud data centres, it does this with high migration

overheads. In addition, the remaining execution time of the virtual machine is also an

http://etd.uwc.ac.za/

76

important factor that affects the migration overhead. For example, when migrating a

virtual machine with a short remaining execution time, for the purpose of

consolidation, the corresponding migration cost still needs to be considered and this

might outweigh benefit of the consolidation in itself. The migration of virtual

resources in federated Cloud Computing environments is also another point, the

compute nodes are from their providers, but the providers might be willing to offer

their unused resources as a service to the federation (cooperative allocation) and pull

back these resources for their own use when they are needed (competitive allocation).

Existing research on virtual machine consolidationalso ignores this point. Therefore,

in view of the above-mentioned deficiencies in the existing research, this chapter

studies the impact of virtual machine migration overhead and virtual machine

remaining execution time on virtual machine integration, and proposes a virtual

machine consolidation algorithm with migration overhead awareness. This is adapted

for both competitive Cloud federation and cooperative Cloud federation.

In this chapter, we first describe the relevant research background of the

migration and migration costs of virtual machines in detail. Then, we

comprehensively introduce the research status of virtual machine consolidation as

well as existing selection and consolidation methods.

4.1.1Research Background

Currently, the virtual machine online migration technology generally is based on

memory pre-copy migration mechanism. The migration process of a mechanism

shown in Figure 4-1 [115, 118]. Before the start of pre-copy process begins, that is,

before time t0, the virtual machine (VM1) normally runs on the source computing

node. At t0, the pre-copy operation begins, the first round of memory copying is

performed, and all the memory image files occupied by VM1 are copied from the

source compute node to the destination compute node. The required time is (t1 - t0).

Subsequently, the migration process enters the multiple rounds of memory iterative

synchronization. During this round of iterations, it transfer the memory page file,

http://etd.uwc.ac.za/

77

which was modified by VM1 in the previous round, from the source compute node to

the destination compute node, that is, the transferred memory page size of ith iteration

is the portion that was modified during the (i-1)th iteration, and the modified page

during the iteration process is called "Dirty Pages." The above iteration process is

repeated until the size of the "dirty page" in one iteration is less than a set value or the

iteration reaches a certain number of times (eg, n times). Finally, the source compute

node stops the VM1 operation at time tn and transmits the “dirty page” generated by

the nth iteration to the destination compute node. After the destination compute node

receives and loads the final state data, it boots up VM1 at the time tn+1. These

processes are as illustrated in Figure 4-1.

Fig 4-1 Schematic diagram of VM pre-migration process [115]

The online migration technology can realize the rapid migration of a virtual

machine from a computing node within one Cloud data centre to another computing

node, without sacrificing the service of this virtual machine. This greatly improves

flexibility of resource management operations, such as the load balance, fault-tolerant,

as well as energy conservation and emission reduction of Cloud data centre. Currently,

most mainstream virtualization platforms such as VMware, Xen, KVM etc. support

http://etd.uwc.ac.za/

78

the application of virtual machine online migration technology. Although the process

of online migration of a virtual machine is transparent to users, the slight decrease in

the quality of service that occurs during the entire migration of the virtual machine is

noticeable by the user. Studies have shown that the entire process of virtual machine

migration will generate the following types of overhead for the Cloud data centre and

the users [5, 32, 115, 116].

1) Migration time: refers to the length of time from the start of the pre-migration

process on the source compute node to the time that virtual machine has been

migrated to the destination compute node totally, as represented by Tmig. In the

migration example in Figure 4-1, Tmig = tn+1 - t0. Tmig is mainly affected by some

factor, such as the dirty page rate of the virtual machine and the network

bandwidth of the Cloud data centre. Set the memory size of the virtual machine to

Vmem, the dirty page rate during the migration process to Dmem, the bandwidth of

the Cloud data centre to bw, and the pre-set number of iterations to n, so that λ =

Dmem / bw, which is provided by [115], Tmig can be calculated by Equation (4-1).

2) The virtual machine downtime: refers to the length of time that the virtual

machine is neither running on the source computing node, nor running on the

destination computing node, and represented by Tdown. As shown in Figure 4-1,

Tdown = tn + 1 – tn. The migrated virtual machine is completely inaccessible during

the Tdown period, so that the downtime should be as short as possible during the

virtual machine migration. Iterations number increase of of dirty page transfers is

helpful for reduce the downtime, but increasing the number of iterations will also

increase the migration time of the virtual machine. Therefore, the downtime and

the migration time need to be considered comprehensively in the process of

migration. If we define the restart time as Tresume, then the downtime can be

described as equation (4-2).

http://etd.uwc.ac.za/

79

Tdown=x(Vmen/bw)+Tresume (4-2)

3) Migration energy consumption: expressed by Emig. Virtual machine migration

will increase the amount of data transmission in the Cloud data centre and occupy

network resources, therefore, additional energy consumption will be generated

during the migration of virtual machines [5, 32, 115].

4) The migration performance loss: refers to the effect of the virtual machine's

service performance during the entire migration process. The study of

Beloglazovet al [5] shows that during the entire migration process of the virtual

machine, these is about 10% performance loss of CPU, which means the virtual

machine consumes 10% less CPU resources during the entire migration process.

Once a virtual machine has been migrated, its actual execution time should be

increased by one-tenth of the migration time due to the 10% performance loss.

The above studies on online migration of virtual machines show that although the

overhead of virtual machine migration is relatively small, it cannot be ignored.

The reason is that in the Cloud Computing environment, the scope of tasks

handled by the data centre is relatively wide, and the number of requests

submitted by users for virtual machines fluctuates greatly. In the daily operation

and maintenance of Cloud data centres, frequent virtual machine migration may

occur. For example, according to VMware researchers, analysis of operational

profile data collected from 17 enterprise data centres who use VMware reveal that

peak number of the daily operations has averaged over 3,000 times [114]. In

addition, the migration costs of virtual machines are related to the types of virtual

machines and the size of physical resources occupied. It can be seen that the

unreasonable migration may reduce the energy consumption in the Cloud data

centre but bring about a large migration overhead. In some cases, the benefits of

the reduced energy consumption may be significantly less than the cost of virtual

machine migration overhead. Therefore, the migration cost of virtual machines is

an important factor that cannot be ignored in the process of virtual machine

consolidation.

http://etd.uwc.ac.za/

80

4.1.2 Related work

Virtualization technology allows Cloud providers to encapsulate the various

services they provide into the form of virtual machines. When users request these

services, they map these virtual machines to various computing nodes in the Cloud

data centre. Through the virtual machine online migration technology, Cloud data

centre managers can also dynamically change the mapping relationship between

virtual machines and compute nodes according to the changes of system operational

load, so as to achieve system load balancing, fault-tolerant management, and energy

conservation and emission reduction goals [112, 114, 119].

Virtual machine consolidation technology can integrate compute nodes with low

resource utilization by migrating the VMs that are running on them, to reduce the

number of active compute nodes in Cloud data centres and achieve energy savings. In

the Cloud Computing environment, the demand for resources running on the virtual

machine during the execution process changes dynamically. So, the virtual machine

consolidationmay cause the following situations: when the number of virtual

machines running on a compute node reaches a certain level, the change of the

resource demand of the virtual machine will intensify the physical resource

competition, which may cause the compute node overload during the operation

process. The situation is that the demand of the virtual machine running on a

computing node is greater than the resource capacity provided by the computing node.

Such a computing node is called a thermal computing node. At this time, it is

necessary to adjust the mapping relationship between the computing node and the

virtual machine by using the virtual machine online migration technology to reduce

the number of virtual machines running on the thermal computing node to avoid

destroying the service level agreement (SLA).

Virtual machine consolidation is often described as the Bin Packing problems.

Existing studies have proposed the heuristic solutions such as First/Best Fit

Descending (FFD and BFD) algorithms, and the best adaptive fallover (BAF)

http://etd.uwc.ac.za/

81

algorithm [120], the improved best-fit descent (MBFD) algorithm [117], the Sercon

algorithm [121], and pMapper [122]. Evolutionary algorithms, such as GA, ACO, DE

etc. [123-125], have also been proposed. These algorithms all provide feasible

solutions for virtual machine consolidation under Cloud Computing environment. The

migration necessity-based virtual machine consolidation algorithm proposed in this

chapter focuses on the selection phase of the virtual machine to be migrated. It seeks

to determine how to select a suitable virtual machine to be migrated when a

computing node needs to migrate out virtual machines to reduce the migration

overhead. Therefore, the following sections will introduce the existing research work

on virtual machine selections.

The following existing virtual machine selecting method are usually adopted for

virtual machine consolidation research:

(1) Random Selection Migration (RSM) [112]. The RSM method randomly

selects one (or more) virtual machine from a virtual machine running on a triggering

computing node to be migrated. The migration of the VM enables the previous node

meet certain constraints.

(2) Resource-based Migration (Rb M) [112]. The Rb M method refers to

selecting a virtual machine to be migrated according to the size of resources occupied

by the virtual machine. This method can be further divided into CPU-based migration

(Cb M) and memory-based migration (Mb M), and Combined Migration (Co M). The

Cb M method means selecting a virtual machine that occupies a maximum (or

minimum) CPU resource as the target to be migrated from the computing node.

Similarly, the Mb M method is based on a memory occupation, and the Co M method

is selected according to both of CPU and memory resources of the virtual machine.

(3) Balance-based Migration (Bb M) [126]. Due to the heterogeneous nature of

Cloud data centre resources, different types of virtual machines may have different

requirements for different resources. This method of virtual machine migration, which

http://etd.uwc.ac.za/

82

makes the utilization of various resources provided by the computing nodes as

consistent as possible, is called a Bb M method; conversely, the method that makes

the difference in the utilization of various resources provided by the computing nodes

as large as possible is called the Imbalance-based Migration (IbM) method.

(4) Minimization of Migrations (MoM) [127]. The method selects the minimum

number of virtual machines to be migrated from the triggering computing nodes. This

method is also one of the most adopted methods to reduce the effect of virtual

machine migration.

(5) Minimum Migration Time (MMT) [5]. When a computing node in the Cloud

data centre triggers a migration operation, the MMT method selects the virtual

machine of the smallest migration time from the virtual machine running on the

computing node. The virtual machine migration time is calculated as shown in

Equation (4-1).

(6) Maximum Correlation Migration (MCM) [128-131]. This method is proposed

by the following basic idea [191]: Two virtual machines running on the same

computing node, the possibility of overload has a positive correlation of the resource

utilization correlation of these two virtual machines. Therefore, the MCM method

selects the virtual machine that has the highest CPU utilization associated with the

other virtual machines running on the computing node as the target to be migrated

out.

(7) Maximum Potential Growth Migration (MPGM) [117]. The potential growth

of CPU utilization refers to the gap between the CPU capacity currently used by a

VM and the CPU capacity set by the VM at the time of creation. The MPGM method

is to select the virtual machine with the greatest potential for CPU utilization as the

target to be migrated from the computing node.

Beloglazov et al. [117] proposed a dual-threshold based virtual machine

consolidation algorithm, the author adopted three methods: RSM, MoM, and MPGM

http://etd.uwc.ac.za/

83

respectively to choose the virtual machine to be migrated. Finally, they compared the

simulation experiments of these three methods demonstrated that the MoM method is

superior to the other two methods in most cases. In [5], Beloglazov further studied the

impact of virtual machine migration on the service performance, and pointed out that

during the entire virtual machine migration process, the performance loss of the

migrated virtual machine is equivalent to about 10% of the normal usage. In addition,

the author proposes an adaptive virtual machine consolidationalgorithm and adopts

RSM, MMT, and MCM methods to select the virtual machine to be migrated. In order

to achieve the balance between the user's service level objective (SLO) and the system

power consumption, Kord et al. [130] proposed a method based on the Minimum

Correlation Coefficient (MCC) to place the virtual machine. Gutierrez-Garcia and

Ramirez-Nafarrate [112] studied the problem of virtual machine consolidationbased

on online migration, focusing on target virtual machines selecting when the

computing nodes initiate migration. In order to solve these problems, the author

proposes an E-protocol (Energy-aware Server Consolidation Protocol) algorithm and

uses Rb M, Ib M and other methods to select the virtual machine to be migrated, and

adopts a corresponding method for these virtual machines to be migrated, as well as

chooses a suitable destination computing node. Mann [127] studied the placement of

virtual machines in a multicore environment, in this study, the authors assume that

each CPU core of a compute node can be shared by multiple virtual machine cores, so

as long as the CPU is not overload, the number of virtual machine cores that each

compute node can accommodate may be much larger than the number of CPUs,

which improves the multiplexing capability of the compute nodes. In Mann's research,

the performance of compute nodes, the number of virtual machines, and the number

of overloaded CPU cores were taken into account in the process of virtual machine

placement, and proposed an optimization model. The model is based on a Constraint

Programming (CP) algorithm to solve the minimization problem of the model. In

addition, studies such as using the MoM method to select the virtual machine which is

proposed by K. S. Rao [132], is the method of Migration awareness perception (Mig

http://etd.uwc.ac.za/

84

CAP) algorithm for VM migration, and its overhead is reflected in the number of VM

migrations.

Based on the review above it can be seen that the most common methods used in

literature to select virtual machines to be migrated are: RSM, Rb M, and MoM. Most

of these methods are based on the resources occupied by virtual machines or

migration times, but they often ignore the important factor of the migration cost of the

virtual machine. In addition, the remaining execution time of the virtual machine is

one of the important factors that need to be considered in the virtual machine

consolidation process, that is always be ignored either. Therefore, aiming at the above

two problems existing in the research on the consolidation of existing virtual

machines, this chapter proposes a VM Migration Necessity-based Dynamic

Scheduling Algorithm (VMMNDSA).

Table 4-1 Summary of Parameters and Symbols

symbol description

T= {1，2，3,…,|T|} T is the length of the entire run cycle, divided into |T| time windows

CN={cnj,1={cnh CN is the set of compute nodes in the data centre, where M represents the total number of

compute nodes and cnj represents the jth compute node

Ωj, Γj, Λj The CPU, memory and bandwidth resource capabilities of the compute node cnj

CN(t), m(t) The set of compute nodes used in the tth time window, and the size of the set

V(t), n(t) The set of virtual machines used in the tth time window, and the size of the set

at(vi), rt(vi) The time that vi arrived and its execution time

ωit, γit, λit The CPU, memory and bandwidth requirements of vi in the tth time window

Tmig(vj) The migration time of vj

Tdown(vj) The downtime of vj

Emig(vj) The migration energy consumption of vj

CFmig(vj) The migration cost of vj

S(t)=(s1(t), s2(t)..., the state vector of compute node set, where sj(t) represents the state of cnj

http://etd.uwc.ac.za/

85

sM(t))

SLAj(t) Whether the compute node cnj has an SLA violation in the tth time window

SUMTmig(cnj) The sum up of all virtual machine migration downtime in the compute node cnj

LThreshold Lower threshold for resource utilization

4.2 VM Migration Necessity-based Dynamic Scheduling Model

In this chapter, we first describe the above-mentioned migration overhead of

virtual machine consolidation issues in detail, and then establish a mathematical

model of the problem, including objective functions and constraints. For the

convenience of reading, table 4-1 gives a summary of the parameters used in this

chapter.

4.2.1 Problem Description

In order to meet the needs of users in different geographic locations, Cloud

providers deploy a large number of Cloud Computing data centres around the world.

These Cloud data centres can receive virtual machine requests submitted by users, and

based on the different needs and the resource capability to place the received virtual

machine requests on the appropriate compute nodes for task execution. However, in

Cloud Computing environment, computing nodes in a Cloud data centre may be

affected by various factors such as the arrival of a virtual machine request, the

execution of a virtual machine request, and the dynamic changes in resource

requirements during execution of the virtual machine. The resource utilization could

be too low or too high, so that the VMs running on the Cloud data centre need to be

dynamically adjust by VM migration. Most of the current researches on virtual

machine consolidation focus on the single consolidation under the current operating

state of Cloud data centres. The research in this chapter is different from these studies

in that it focuses on the necessity and overhead associated with migrating individual

VM. It takes into account the VM’s dynamic nature, that is, the virtual machine

running to the end, the arrival of new virtual machine requests and the changes in

http://etd.uwc.ac.za/

86

resource requirements on the running virtual machine. This helps prevent unnecessary

VM migration and consolidation, in order to achieve the Cloud data adjustment. This

work also takes Cloud federation (described in chapter 2) into account. We consider

that PM providers as the participants who form the federation as illustrated in Figure

4-2. In cooperative federation, VMs can be migrated to any PMs, for example in

Figure 4-2, VM1 can be migrated to PM3. However, in competitive federation, VM1

only can be migrated to the PM2, which is from the same PM provider: PM provider

1.

Fig 4-2 VM migration model of federated PMs in Cloud Computing

In order to more intuitively and clearly describe the virtual machine

consolidation problem of migration overhead, we first give some definitions of related

concepts and terms.

Definition 4-1: Time Slot (TS) [133]. Assuming that the entire data centre's

running time is T, we can use the method shown in Figure 4-3 to divide the entire

running time period T by the fixed unit time length tΔ to |T | unit time lengths, ie T=

{1, 2, 3, ..., |T|}. A unit time length tΔ is a time window and can be considered as a

basic time processing unit. For example, the initial deployment of a virtual machine is

based on a uniform placement for each time window, which is, put all the arrived VM

http://etd.uwc.ac.za/

87

requests into the waiting queue during the time t (1≤t≤|T|). Then, at the beginning of

the (t + 1)
th
 time window, make the uniformly placement of all the VM requests in the

waiting queue. In the experiment in this chapter, the value of the unit time length tΔ is

set to 1 minute.

Fig.4-3 Time division window schematic

Definition 4-2: Cloud Data centre (DC). The CN={cnj|1(DC). The CN={cnndow

schematic In the experiment in this chaCloud data centre, where M is the total number

of computing nodes and cnj is the j
th

 computing node. Due to these compute nodes are

heterogeneous, their CPU processing power and memory size may different, so using

Ωj, Γj, and Λj to represent the CPU processing power, memory size and bandwidth that

the compute node cnj can provide. CN(t) denotes the set of compute nodes that the

Cloud data centre is using within the t
th
 time window, and m(t) denotes the number of

compute nodes in the set CN(t). CN(t) and m(t) satisfy the following relational

equations: CN(t) ⊆CN and m(t)≤M.

Definition 4-3: Virtual Machine (VM). If V represents the set of all virtual

machine requests that arrived during the entire operating cycle T of the Cloud data

centre. N=|V| indicates the total number of VM requests processed by the Cloud data

centre. V(t) denote the set of VMs running in the Cloud data centre at the beginning of

the t
th
 time window, then V(t) ⊆ V. If n(t)=|V(t)| to represent the number of virtual

machines running in the Cloud DC in the t
th
 time window and use vi to represent the

i
th

 virtual machine in V(t), then vi∈v(t) and 1ndtual . Using at(vi), rt(vi) to respectively

represents the arrival time and execution time of the VM vi, V(t) can be described

formally: V(t)={vi|at(vi)<t and at(vi)+rt(vi)>t}, where at(vi)<t indicates that the

http://etd.uwc.ac.za/

88

execution request of the VM vi is submitted to a Cloud data centre by a user before

the t
th
 time window, at(vi) + rt(vi) > t indicates that the VM vi has not completed

execution at the beginning of the t
th
 time window. Use ωit, γit and λit respectively

represents CPU processing power demand, memory size demand and bandwidth

demand in the t
th
 time window. In the Cloud Computing environment, since the

resource requirements of the virtual machine dynamically change, so the value of ωit,

γit and λit are change either in different time windows. Data from Google Cluster Job

Load Data Set [134, 135] was used, which collects the data of CPU and memory

during the fixed time interval.

Let Vj,t represent the set of VMs running on compute node cnj at the beginning of

the t
th
 time window, then for any t (1r job load data sets. r>j,t = Vj,t-1 + Vj,in - Vj,out ,

where Vj,t-1 represents the set of virtual machines running on cnj at the beginning of (t

- 1) time windows, and Vj,in represents the set of VMs running on cnj that are newly

placed at the beginning of the time window. Vj, out denotes the set of VMs that have

been migrated out of the compute node cnj or have finished execution before the time

window starts. The initial placement of virtual machine requests is done at the

beginning of each time window.

Definition 4-4: Thermal Computing Nodes, (TCN). If the sum of the resources

required by all the VMs running on a computing node is greater than the capacity of

the computing node, the computing node is called a thermal computing node. Once a

compute node becomes a thermal compute node, SLA violation occurs. In order to

avoid increasing the SLA due to the thermal computing node, it is necessary to

migrate some VMs running on thermal computing nodes to other computing nodes

with sufficient resource capacity through online migration technology.

Definition 4-5: VM Placement Policy. The VM placement policy refers to a

mapping relationship between the virtual machine set V(t) and the computing node set

CN(t) within the t
th
 time window, which can be indicated with the matrix

X(t)=(xij)n(t)*m(t), where m(t) and n(t) respectively represents the number of compute

http://etd.uwc.ac.za/

89

nodes used by the Cloud data centre and the number of VM running in the Cloud data

centre during the t
th
 time window. If the virtual machine vi is placed on the compute

node cnj, then Xij=1; otherwise, Xij=0.

Definition 4-6: VM Integration. Virtual machine consolidation means migrating

VMs from the compute nodes which have a smaller number of active VMs through

online migration technologies, and shutting down idle computing nodes so as to

achieve the goal of reducing energy consumption of Cloud data centres. The

formalization of VM consolidation can be descripted as follows: In the t
th

 time

window, the set of VMs running in the Cloud data centre is V(t) and n(t)=|V(t)|, and

the set of computing nodes used in Cloud data centre is CN(t), and m(t)=|CN(t)|, the

current virtual machine placement strategy is X(t)=(xij)n(t)*m(t). The virtual machine

consolidation is to find a solution under the constraints of multiple constraints, and get

a new placement strategy X'(t) from the set of virtual machines to optimize the

objective function.

Definition 4-7: States of CNs (Computing Nodes). The computing nodes in the

Cloud data centre can be in a normal power consumption state or a low power

consumption state. For any computing node cnj∈CN, if Vj,t≠Φ t that is, the

computing node cnj is running VMs during the t
th
 time window, then cnj is a

computing node that is on working which means it is in normal power consumption

state; Otherwise, if Vj, t=Φ, the computer node cnj is not used within the t
th
 time

window, so it is in a low power state such as shutdown or sleep. The vector S(t)=(s1(t),

s2(t)..., s M(t)) is used to calculate the node state in the t
th
 time window, which is an

M-dimensional vector sj (t) (1e window, whiccomputing node cnj is in the normal

power consumption state in the t
th

 time window, then sj(t)=1; otherwise, sj(t)=0. The

computing node state vector S(t) can be calculated by a given virtual machine

placement strategy X(t)=(xij)n(t)×m(t), where sj(t) is calculated as the formula (4-3):

𝑆𝑗(𝑡) = {1, 𝑖𝑓
∑ 𝑥𝑖𝑗 ≥ 1;
𝑛(𝑡)
𝑖=1

0, 𝑜𝑡ℎ𝑒𝑟.
（4-3）

http://etd.uwc.ac.za/

90

The migration necessity VM consolidation problem studied in this chapter refers

to how the Cloud data centre operating environment changes dynamically during the

entire operation cycle (T). This includes the arrival of new VM requests, the execution

of VMs, the dynamic changes of resource requirements during the VM execution

process, as well as the completion of the VM request to determine the condition of

VM integration, and to find a suitable VM placement strategy X (t), based on meeting

a variety of restrictions and avoiding the unnecessary VM migration costs, keep the

number of computing nodes in t
th
 time as low as possible.

4.2.2 Objective Functions and Constraints

Virtual machine consolidation generally aims at reducing the energy

consumption of Cloud data centres. The optimization goal is usually to minimize the

number of active computing nodes [112, 126, 127, 132, 136]. Consistent with most

existing VM consolidation studies, this chapter also uses the minimizing number of

active compute nodes as the optimization goal for VM integration. It should be

pointed out that most of the existing research focuses on the consolidation of static

virtual machines, that is, executing single VM consolidation in the current state of

Cloud data centres. What this chapter studies is to adjust the Cloud data centre's

running status through multiple VM integrations within the entire operating cycle T

(T= {1, 2, 3,..., |T|}) of the Cloud data centre. Therefore, the proposed VM

consolidation model of migration necessity is to minimize the number of active

compute nodes in each time window, i.e. within each time window t∈T, min∑
M

j=1sj(t).

Within each time window t (1indow, iating cycVM placement strategy X'(t)

obtained by virtual machine consolidation must satisfy the following constraints:

 (1) Ranges: For any i,(1Forn(t)) and any j,(1t)) and anx'ij∈{0,1}, sj(t)∈{0,1}, that

is,the value of x'ij and sj(t) can only be 0 or 1.

(2) The VM must be relocated: for any i, (1for any ly∑j=1
M(t)

 Xij=1, i≠j) which

means that the VM vi must be deployed to another compute node.

http://etd.uwc.ac.za/

91

(3) The capability limitation of computing node: For any computing node

cnj∈CN(t), cnj must satisfy ∑j=1
n(t)

Xij*ω(t) ≤Ωj, ∑j=1
n(t)

 Xij*γ(t)≤Γj, and ∑j=1
n(t)

Xij*λ(t))Λj, that is, the sum of the CPU, memory and bandwidth resource

requirements of all VMs on one compute node cannot exceed its CPU and memory

processing capabilities.

(4) SLA Violation Percentage (SVP). When the computing node’s capacity is

lower than the resource demand of VMs running on it, it will destroy the service level

agreement (SLA) between the user and the Cloud provider. In this case, some virtual

machines need to be migrated to other compute nodes with sufficient resource

capacity through the online migration technology, so as stop increasing the SLA.

SLAj(t) is used to indicate whether the SLA occurs in the t
th
 time window of the

computing node cnj, and the equation is shown in formula (4-4).

𝑆𝐿𝐴𝑗(𝑡) =

{1, 𝑖𝑓
∑ 𝑥𝑖𝑗 ∗ω(t) >Ωt) > or∑ 𝑥𝑖𝑗 ∗ 𝛾(𝑡) >Γj, or ∑ 𝑥𝑖𝑗 ∗λ(𝑡) >Λj

𝑛(𝑡)
𝑖=1 ;

𝑛(𝑡)
𝑖=1

𝑛(𝑡)
𝑖=1

0, 𝑜𝑡ℎ𝑒𝑟.

（4-4）

Therefore, in order to meet the user's requirement, the SLA of computing node

should be reduced as much as possible during the virtual machine integration. In the

algorithm proposed in this chapter, the SLA is restricted in such a way that SLA of the

same computing node cannot exceed the time length of single time window.

(5) Migration consumption (MC). The current online migration of VMs is

implemented based on the memory Pre-Copy mechanism. VM migration will increase

the communication burden on the Cloud data centre and bring additional migration

energy consumption. In addition, during virtual machine migration, the VM’s

performance will also be impact, even a short downtime. However, frequent Cloud

virtual machine migration may occur during the daily operation and maintenance of

Cloud data centres. In order to reduce its impact, the cost of migrating VMs should be

reduced as much as possible during the VM integration. Moreover, this chapter also

http://etd.uwc.ac.za/

92

take into account the factor of VM’s remaining execution time, that is, in the

consolidation process, the VM migration is unnecessary if its remaining execution

time is not short than a time window.

4.3 VM Migration Necessity-based Dynamic Scheduling Algorithm

4.3.1 Algorithm Description

According to the description of VM consolidation problem in the previous section,

this chapter aims at solving the dynamic process, that mainly includes the initial

deployment when a new virtual machine request arrives, the dynamic changes in

resource requirements during to the VM execution process, and the VM consolidation

and thermal computing node elimination caused by the end of execution. Based on the

above process of VM consolidation problem, this chapter proposes a multi-stage

consolidation algorithm called VM migration necessity-based dynamic scheduling

algorithm (VMMNDSA). The algorithm is a multi-stage algorithm that includes four

stages: pre-processing, thermal compute node elimination, initial virtual machine

placement, and virtual machine integration. The following describe the various

stages of the VMMNDSA algorithm.

(i) Pre-Processing

In the Cloud Computing environment, the VM resources demand dynamically

changes with time. The Google cluster load data set adopted in this chapter also

reflects the dynamic changes in the resource requirements of the VMs during its

operation. The Google Cluster workload dataset was published by Google after VM

log files processing on its Cloud Computing cluster system. Therefore, in the

pre-processing stage of the VMMNDSA algorithm, the entire operating cycle T of the

Cloud data centre is also divided into |T| time windows according to the unit time

length tΔ by “Definition 4-1” in Section 4.2.1. In this way, although the demand for

CPU: ωit, memory: γit and bandwidth: λit of VM vi is different in different time

http://etd.uwc.ac.za/

93

windows, it can be regarded as fixed during the tΔ time of the time window.

The Pre-Processing of the VMMNDSA algorithm mainly accomplishes two tasks:

First, judging if the VM running in the Cloud data centre is over. If the execution of

the VM ends, then release the computing node. Second, according to the real-time

data in this window, dynamically adjust the CPU and memory resources occupied by

the running VM. The Pre-Processing algorithm is executed at the beginning of each

time window.

The pseudo-code description of the algorithm is shown in Algorithm 4.1. The

input is the current time window t (1 th|T|) and the set of VMs, V (t-1), running in the

Cloud data centre during the (t−1)
th
 time window. The output is a set of virtual

machines V(t) running in the Cloud data centre at the beginning of the t
th

 time window.

The specific execution process of the Pre-Processing algorithm is as follows: at the

beginning of each time window t, first free all computing node resources occupied by

the executed virtual machine within the (t-1)
th
 time window, as shown in step 2-7 of

Algorithm 4.1, where the judgment condition in step 3, at(vi)+rt(vi)>(t-1), refers to

that the VM vi is still executing at the beginning of the (t-1)
th

 time window, and

at(vi)+rt(vi)<t refers to the virtual machine vi at the beginning of the t
th
 time window,

the execution has finished. Second, the Pre-Processing algorithm will adjust the CPU

and memory resources occupied by the current running VMs in the Cloud data centre

at the beginning of each time window. This is shown as step 8-12 in algorithm 4.1.

Algorithm 4.1: Pre-Processing Algorithm

Input: the current time window, t(1npu|T|), V(t-1)

Output: V(t)

1.Intilizaing: V(t)=V(t-1);

2. Foreach VM vi∈V(t) do

3. If at(vi)+rt(vi)>(t-1) && at(vi)+rt(vi)<t then

4. Release all rescource occupied by vi

http://etd.uwc.ac.za/

94

5. End foreach

6. Foreach VM vi∈V(t) do

7. Adjust the CPU, memory and bandwidth that VM vi occupied

8. End foreach

9. Return V(t);

15. end if

(ii) Thermal Computing Nodes Removing

After the pre-processing operation with the VMMNDSA algorithm, due to

changes in the resource requirements of the VMs running in the Cloud data centre,

some computing nodes’ capabilities may be insufficient and become thermal

computing nodes. At this point, it is necessary to migrate the VMs running on the

thermal computing node to other compute nodes with sufficient resource capacity to

eliminate the thermal compute node. This process is called TCNR and the algorithm

used is the Thermal Computing Nodes Removing (TCNR) algorithm.

The main factors that TCNR algorithm consider are the VM migration

consumption and the VM remaining execution time. From Section 4.2.1, we know

that the VM migration consumption consists of four parts: migration time (in seconds),

downtime (in milliseconds), migration energy consumption (Unit: Joule) and

performance loss of migration (unit less). Among them, the part of the performance

loss of migration can be directly reflected by extending the execution time of the

migrated VMs, because during the entire migration process, the performance loss of

migrating a virtual machine is equivalent to a 10% reduction in the CPU usage of the

VM. That is, the execution time of the virtual machine increases by one-tenth of the

total time of the migration [5, 121]. For the other three parts, they differ in terms of

unit and magnitude. In order to find the VM with the least migration consumption

from the computing node, the concept of “Cost Factor (CF)” is introduced and defined

http://etd.uwc.ac.za/

95

as follows:

Definition 4-8: Cost Factor (CF). The cost factor of the VM refers to the value of

VM migration comprehensive cost, including its CPU, memory and bandwidth

requirements, as well as the migration time, downtime and migration energy

consumption caused by the VM migration. If the computing node cnj violates the SLA

in the t
th
 time window, and the VM set running on the compute node cnj is Vj,t, and

vi∈Vj,t, CFmig(vi) represents the cost factor of the migration VM vi. Its equation is

shown in formula (4-5)

CFmig(vi)= α*(ωit + λit)/(γit) + β*(Tmig(vi) + Tdown(vi) + Emig(vi)); (4-5)

where ωit, γit, λit respectively are the CPU requirement, memory requirement and

bandwidth requirement of the VM vi on the overloaded physical compute node cnj in

the t
th
 time window. In the formula, the greater ωit and the λit are, the more the

computing resource is consumed, and the migration can better relieve the

computational resource load of the physical node. The smaller λit is, the smaller the

migration overhead is due to less data need to be deal with. Tmig(vi) +

Tdown(vi)+Emig(vi) are the part of migration cost which cannot be ignored, while α, β

are the weighting factors of migration time and migration energy consumption

(α+β=1), which affect the migration cost factors.

The pseudo-code description of the TCNR algorithm is shown in Algorithm 4.2.

The input of this algorithm is the current time window t(1The inp, the input is VM set

V(t), current used computing node set CN(t), and the current VM placement strategy

X(t). The output is a new VM placement strategy X'(t) after the thermal compute node

is eliminated. The specific implementation process of the TCNR algorithm is as

follows:

It begin with an initialization process, such that the value of each element in the

new VM placement policy X’(t) is set as the value of the corresponding element of

the current VM placement policy X(t).

http://etd.uwc.ac.za/

96

Secondly, according to formula (4-6), it judges whether the current computing

node in the Cloud data centre is a thermal computing node or not (Steps 2 and 3 of

Algorithm 4.2). If the computing node cnj is a thermal computing node, the following

operations need to be performed on the computing node (Step 4-18 of Algorithm 4.2):

finding the VM with the shortest remaining execution time from the VM set Vj, t

running on the computing node cnj. and define it as vl, its remaining execution time as

Tmin. At the same time, find all VMs who satisfy resource requirements from set Vj,t,

calculate its cost factor, and mark the virtual machine with the smallest cost factor as

vk (Step 4-9 of Algorithm 4.2); if the VM vl with the shortest remaining execution

time can be executed within the t
th
 time window, which means the remaining

execution time Tmin is less than tΔ or the migration time of the VM vk, the SLA of the

computing node cnj is within the limited range, and no migration is needed. Then the

algorithm go to Step 2 to continue execution (Steps 10 and 11 of Algorithm 4.2);

otherwise, the virtual machine vk with the smallest cost factor is the VM to be

migrated and the execute the CNSelection function to select a suitable destination

compute node for the virtual machine vk, which is denoted as cnd (cnd∈CN).

The virtual machine vk is migrated from the source compute node cnj to the

destination compute node cnd, and change the value of the corresponding position in

the k-th row of the placement strategy X' (t), that is, let x'kj=0 and x'kd=1 (Steps 12-17

of Algorithm 4.2). The virtual machine vk is migrated from the source compute node

cnj to the destination compute node cnd, and change the value of the corresponding

position in the k-th row of the placement strategy X' (t), that is, let x'kj=0 and x'kd=1

(Steps 12-17 of Algorithm 4.2). The virtual machine vk is migrated from the source

compute node cnj to the destination compute node cnd, and change the value of the

corresponding position in the k-th row of the placement strategy X' (t), that is, let

x'kj=0 and x'kd=1 (Steps 12-17 of Algorithm 4.2).

∑ 𝑥𝑖𝑗 ∗ 𝜔(𝑡) > ij ∗ r∑ 𝑥𝑖𝑗 ∗ 𝛾(𝑡) >Γj, or ∑ 𝑥𝑖𝑗 ∗λ(𝑡) >Λj
𝑛(𝑡)
𝑖=1 ;

𝑛(𝑡)
𝑖=1

𝑛(𝑡)
𝑖=1 (4-6)

http://etd.uwc.ac.za/

97

Algorithm 4.2: Thermal Computing Node Removing (TCNR) Algorithm

Input: Current time window t(1(pu|T|), V(t), CN(t), X(t)

1. Initialization: X '(t) = X(t);

2. foreach compute node cnj∈CN(t) do

3. if, according to formula (4-6), the compute node cnj is the thermal computing

node then

4. foreach virtual machine vi∈Vj,t do

5. Calculate the VMs’ remaining execution time to get vl with the shortedt

execution time and record as Tmin.;

6. if the migration of VM vi can remove the SLA of computing node cnj then

7. Calculate CFmig(vi) according to formula (4-5), and record the virtual

machine with the s mallest CFmig(vi) value as vk;

8. end if

9. end foreach

10. if Tmin≤ tΔ or Tmin≤ Tmig(vk) then

11. continue

12. else

13. vk is the VM to be migrated.

14. cnd ← CNSelection(vk);

15. Move the vk from the source compute node cnj to the destination compute

node cnd.

16. updata the value of the corresponding position in the k-th row of the

placement strategy X' (t), that is, let x'kj=0 and x'kd=1;

17. end if

18. end if

19. end foreach

In step 14 of the TCNR algorithm, the CNSelection() selection function is used.

This function aims at maximizing the computing node’s resource utilization based on

the Best Fit Descending (BFD) method for each VM to be deployed. In this way, load

http://etd.uwc.ac.za/

98

balancing between these computing nodes can be ensured while reducing the number

of computing nodes used. The pseudo code description of the CNSelection() function

is shown in Algorithm 4.3. The input is the virtual machine vk who need to be placed,

and the set of compute nodes CN(t) used by the current time window t. The output is

the compute node cnj where vk is going to be placed. The specific implementation

process is as follows:

(iii) Target computing node selection

When considering a federated Cloud environment, the virtual machines allocated

to the users' tasks can be migrated either to physical resources of the users' current

Cloud provider or to physical resources of different Cloud providers. Such an

allocation of virtual resources to physical resources can lead to a cooperative model

when users' virtual machines can be migrated anywhere or a competitive model when

users' virtual machines can only be migrated to their providers' physical machines as

the target computing node, which is expressed by Figure 4-4.

Figure 4-4 the structure of Cooperative and Competitive federation

Firstly, according to the federation type, we confirm the range of target

computing nodes. Then we select from the computing nodes used by the Cloud data

http://etd.uwc.ac.za/

99

centre in the current time window t. The selection method is: find the compute node

with the largest CPU, memory and bandwidth resource capabilities from the CN(t),

and determine the remaining resources of the compute node. If its capacity can reach

the resource requirements of vk, while meeting the federation condition，then denote it

as cnj, return cnj (Steps 1-6 of Algorithm 4.3).

cnj∈{CN-CN(t)}, and (Ωj+ Γj+ Λj)= maxcnj∈{CN-CN(t)}{ Ωj+ Γj+ Λj} (4-7).

Algorithm 4.3: Compute node selection function: CNSelection(vi)

Input: virtual machine vk, current time window t compute node set used CN(t)

Output: compute node where virtual machine vk is placed cnj

1. For all compute nodes in CN(t), sort the CPU, memory and bandwidth resource

capacities in descending order based on the formula (4-7). Assume that the order of

the calculated compute nodes is cn1, cn2, ..., cn|CN(t)|;

2. if the federation is cooperative

3. foreach compute node cnj∈{cn1, cn2, ..., cn|CN(t)|} do

4. if CN cnj's remaining resource capacity can meet the resource requirements of

virtual machine vk

5. return cnj;

6. else if the federation is competitive

7. foreach compute node cnj∈{cn1, cn2, ..., cn|CN(t)|} do

8. If CN cnj's remaining resource capacity can meet the resource requirements of

virtual machine vk, and cnj and vk belong to same PM provider

9. return cnj;

14. end if

15. return cnj;

(iv) Virtual Machine Placement (VM Placement)

Algorithm 4.4: VM Placement Algorithm

http://etd.uwc.ac.za/

100

Input: Current time window t, Vin(t-1), CN(t), current VM placement strategy X(t)

Output: New VM placement strategy X'(t)

1. Initialization: X'(t) = X(t)

2. For all compute nodes in CN(t), sort the CPU, memory and bandwidth resource

capacities in descending order. Assume that the order of the calculated compute nodes

is cn1, cn2, ..., cn|CN(t)|

3. foreach VM vi∈Vin (t-1) do

4. foreach compute node cnj∈{cn1, cn2, ..., cn|CN(t)|} do

5. If CN cnj's remaining resource capacity can meet the resource requirements

of virtual machine vi then

6. Place vi to cnj

7. V(t)←V(t) ⋃{vi}, n(t)= |V(t)|;

8. update the corresponding value of the X'(t) according to the placement of

the VM vi;

9. break

10. end if

11. end foreach

12. If CN(t) can't find a suitable compute node to place VM vi

13. select the compute node with the largest sum of CPU, memory and

bandwidth resource capabilities from the remaining unused compute nodes,

denote it as cnp, who satisfy formula (4-7);

14. place vi to cnj

15. V(t)←V(t) ⋃{vi}, n(t)= |V(t)|;

16. add the computation node cnp to the set CN(t);

17. CN(t)←CN(t) ⋃{cnp}, m(t)= |CN(T)|;

18. update the corresponding value of the X'(t) according to the placement of the

VM vi;

19. end if

20. end foreach

http://etd.uwc.ac.za/

101

21. return X'(t);

Vin(t) represent the set of VM requests submitted by the user to the Cloud data

centre within the t
th
 time window, that is, for any VM vi∈Vin(t), satisfies t t is, for< (t

+1). The task of the VM placement stage is to allocate the newly arrived VMs in

(t-1)
th
 time window to the appropriate computing node at the beginning of the t

th
 time

window. The VM Placement algorithm uses the Best Fit to Fall (BFD) algorithm to

place the new arrived VM requests.

The pseudo-code description of the VM Placement algorithm is shown in

Algorithm 4.4. The input is the current time window t, Vin(t-1), the currently used set

of compute nodes CN(t), and the current VM placement strategy X(t), outputs new

VM placement strategy X'(t) after the newly arrived VM request set Vin(t-1) is placed.

The specific process of the VM Placement algorithm for is as follows: First, sort all

compute nodes in CN(t) by their CPU, memory and bandwidth resource capacities in

descending order. The order of the calculated compute nodes is cn1, cn2, ..., cn|CN(t)|.

Next, for each VM vi in Vin(t-1), judge from the front to the back of the computing

node cnj∈{cn1, cn2, ..., cn|CN(t)|}. If cnj’s remaining resource capacity can meet the

resource requirement of the virtual machine vi, place vi on the cnj (algorithm 4.4, step

4-11); if a suitable computing node cannot be found in CN(t), place the vi from the

remaining unused compute nodes. Formula (4-7) selects the compute node with the

largest sum of CPU, memory and bandwidth resource capabilities, denotes as cnp,

places vi on the compute node cnp, and adds the compute node cnp to the set CN(t)

(algorithm 4.4 Step 12-20). Finally, return the new VM placement policy X’(t) with

all the VMs in the VM set Vin(t−1).

The above is a detailed description of the various phases included in the

VMMNDSA algorithm and the completion of each phase. The overall execution flow

of the VMMNDS algorithm proposed in this chapter is as follows: At the beginning of

each time window t, (1≤t≤|T|), first through the Pre-Processing algorithm to release

the resources of the VM occupying the computing node that is executed in the

http://etd.uwc.ac.za/

102

previous time window (t-1), and simultaneously changes the size of the CPU, memory

and bandwidth resources occupied by the executing VM. As a result of these changes,

these compute nodes being used in the Cloud data centre may become thermal

computing nodes. In this case, it is necessary to use the algorithm provided by the

thermal compute node removing stage to remove these thermal compute nodes and

avoid the SLA break. Then execute the initial deployment of the newly arrived VM

requests in the (t-1)
th
 time window with the VM placement algorithm. Finally,

integrate VMs, close the idle computing nodes to achieve the purpose of reducing

energy consumption.

4.3.2 Time Complexity Analysis

This section mainly analyzes the time complexity of the VMMNDSA algorithm.

In order to analyze the complexity of the VMMNDS algorithm, we first let N = V(t),

n = Vin(t). From the description of the process of VMMNDS algorithm in describe in

section 4.3.1, the algorithm includes a total of four separate stages: pre-processing,

thermal compute node removing, initial virtual machine placement, and virtual

machine integration. Firstly, the pre-processing stage will traverse all VMs in the

virtual machine set V(t) running in the Cloud data centre, to judges whether the task is

completed or not. Obviously, the time complexity of this stage is O(N). The second

stage is to remove the thermal nodes, and it is necessary to traverse all the compute

nodes and remove the thermal nodes. The time complexity is O (m∙log N). Then, the

time complexity of the initial VM placement phase is similar to that of the task

scheduling algorithm analyzed in Section 4.4.2, which is O(n×m). In summary, the

time complexity of the VMMNDS algorithm proposed in this chapter is O (N + m∙log

N + n∙M).

4.4 Experiment and Result Analysis

We have discussed VM selection policy in the related work in 4.1.2, and VM

allocation policy has been shown to be vital during the entire VM migration process.

http://etd.uwc.ac.za/

103

In the experiment in this chapter, we choose two VM selection policies: MCM

(Maximum Correlation Migration) and MMT (Minimum Migration Time), and two

VM allocation policies: LR (Local Regression) and MAD (Median Absolute

Deviation). We combined this two VM selection policies and two VM allocation

policies into 4 VM migration algorithms, which are respectively LrMcm, LrMmt,

MadMcm, MadMmt [5].

In order to evaluate the performance of proposed VMMNDSA algorithm, this

section will test the VMMNDSA algorithm through simulation experiments, and

compare the experimental results with the above four algorithms and the DVFS

(Dynamic Voltage and Frequency Scaling) algorithm [5].

4.4.1 Experiment Parameter Setting and Performance

A. Experimental parameter settings

The simulation environment remains similar to those in the previous chapters.

The compute node data and VM data used in this chapter's experiment are

anonymized data from the Google cluster-loaded data set used in similar experiments

[126, 128, 137]. A data centre with 30 PMs was set up and three different VM types as

described on Table 4-2.

B. Table 4-2： experiment parameter of VM migration

Virtual Machine Setting VM

Numb

er

VM

MIPS

VM

Pes

VM

RAM

VM

Bandwidth

VM

Size

VM Types Type1 20 500 1 870 100,000 2,500

Type2 20 1000 1 1740

Type3 20 2000 1 1740

Type4 20 2500 1 613

Host Setting Host Host Host Host Host Host Size

http://etd.uwc.ac.za/

104

Numb

er

MIPS Pes RAM Bandwidth

Provider 1 10 Type1

Hosts

25 1860 2 4096 100,000,000 1,000,000

Provider 2 10 Type2

Hosts

25 2660 2 4096

Provider 3 10 Type3

Hosts

25 2980 2 4096

Provider 4 10 Type4

Hosts

25 3220 2 4096

the cost of

using

processing

3.0

the cost of

using memory

0.05

the cost of

using

bandwidth

0.001

Max/Min Load

Threshold

80%/0%

α= β=0.5

C. Performance indicators

 In order to verify the effectiveness of the VMMNDSA algorithm proposed in

this chapter, the following were used as metrics to compare the experimental results,

similar [29] [117] [126].

1) The number of VM migrations: VM migrations count during the simulation.

2) SLA violation rate: ratio of computing node that violates the SLA during the

entire operating cycle T to the total nodes in the system; equation (4-9). In

http://etd.uwc.ac.za/

105

this chapter, the data centre's entire operating cycle T is divided into |T|

periods of the same size, so reducing the time of SLA is equivalent to

reducing the number of SLA.

SLA =
∑ ∑ 𝑆𝐿𝐴𝑗(𝑡)

𝑚(𝑡)

𝑗=1

𝑇

𝑡=1

∑ 𝑚(𝑡)
𝑇

𝑡=1

 (4-9)

3) The VM migration mean time (ms): average migration time of all VMs

during the whole simulation process, in millisecond (ms).

4) The energy consumption: includes the sum of the costs of all the migrated

VMs in each time window, the total costs of all the VMs migrated in the

entire operation cycle T.

4.4.2 Analysis of Results

Figure 4-5 shows the number of VM migrations. Compared with the five existing

algorithms, the MadMMT algorithms had the most frequent migration at 5256 in

cooperative federation and 1909 in competitive federation. The VMMNDS performed

significantly better at 590 times in cooperative federation and 233 times in

competitive federation, which is almost one-tenth of MadMmt. Compared with the

least migrated LrMcm algorithm, VMMNDS VM migration count was only about a

quarter of LrMcm for both cooperative and competitive federation. The results of this

experiment highlight the characteristics of our algorithm: reducing unnecessary VMs

migration. This is because when the VMMNDS algorithm selects the VM to be

migrated from the thermal compute node, the factors of the remaining execution time

of the VM are taken into account (eg, Steps 10 and 11 of Algorithm 4.2, and Steps 5

and 6 of Algorithm 4.5). In essence, VMMNDS does not unnecessarily migrate VMs

that have a short remaining execution time.

http://etd.uwc.ac.za/

106

Fig 4-5. Migration times

Secondly, figure 4-6 shows that in terms of the SLA violation, five of the existing

alogrithms: LrMcm, LrMmt, MadMcm, MadMmt performance better than VMMNDS

in both cooperative and competitive federation. This is because when a compute node

becomes a thermal compute node, the four algorithms will choose to migrate a certain

number of VMs to avoid the SLA. This is done without considering the execution

time remaining. VMMNDS on the other hand considers execution time. If a VM’s

remaining execution time is minimal, VMMNDS ignores the VM. This affects SLA

and accounts for the slightly higher SLA violation rate than the five algorithms.

0

1000

2000

3000

4000

5000

6000

Dvfs LrMcm LrMmt MadMcm MadMmt VMMNDS

Coopertive

Competitive

http://etd.uwc.ac.za/

107

Fig 4-6 SLA violation rate

Figure 4-7 is the experiment result of the migration mean time of each VM.

The MadMcm and MadMmt algorithms performance worst since they have the

longest VM migration mean time in both cooperative and competitive federation.

This is beacace they adopt the Median Absolute Deviation VM selection policy

which is more complicated than others. VMMNDS on the other hand had the

shortest VM migration mean time in both cooperative and competitive federation

due to its efficient VM selecting policy and VM allocation policy.

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

20.00%

Dvfs LrMcm LrMmt MadMcm MadMmt VMMNDS

Coopertive

Competitive

http://etd.uwc.ac.za/

108

Fig. 4-7 VM migration mean time (ms)

From the results shown in Figure 4-8, the VMMNDS algorithm reduces the total

migration cost (energy consumption) by 46.21% in cooperative federation and 44.85%

in competitive federation, when compared to the MadMmt algorithm which has the

highest energy consumption. Compared to the other four algorithms, our proposed

VMMNDS on the average conserves 21.91% more energy under cooperative

federation and 20.79% under the competitive federation. This is because the

VMMNDS algorithm always chooses the VM with the lowest migration cost each

time during the selecting VM migration process and avoid the unnecessary VM

migration as much as possible, so the VMMNDS algorithm can obtain lower average

migration cost. In addition, the VMMNDS algorithm in itself requires fewer

migrations, which has been proven in Figure 4-5. It can be known that considering the

impact of VM migration costs and remaining execution time in the selecting VM

migration process can greatly reduce the additional consumption caused by

unnecessary VM selections.

0

1

2

3

4

5

6

Dvfs LrMcm LrMmt MadMcm MadMmt VMMNDS

Coopertive

Competitive

http://etd.uwc.ac.za/

109

Fig. 4-8 Energy Consumption

4.5 Conclusion

Virtual machine consolidation is a commonly used method to effectively solve

the high energy consumption problem of Cloud data centres. This chapter combined

VM migration with VM consolidation and proposed the VMMNDMS model. This

model considers both cooperative and competitive Cloud federations. Experimental

simulations were used to verify the efficiency of the proposed model. Obtained results

show that for both cooperative and competitive federations, our proposed

VMMNDMS can greatly reduce the number of virtual machine migrations and

migration mean time. This helps reduce the impact of migration on the overall

performance of the Cloud Computing center and achieve more energy-efficient results,

while keeping SLA at an acceptable level.

0

10

20

30

40

50

60

Dvfs LrMcm LrMmt MadMcm MadMmt VMMNDS

Coopertive

Competitive

http://etd.uwc.ac.za/

110

Chapter 5: IoT-based Fog Computing Model

5.1 Introduction：

With the maturity of wireless communication technology, Internet of Things has

made continuous progress and breakthroughs. Terminal equipment is continuously

been miniaturized, networked, and intelligently developed, hence able to support a

wider range coverage and deployment scenarios. This terminal equipment, also

known as sensors, collects data and uploads it on Cloud facilities, which have more

sophisticated processors and sufficient memory resources. Over the years, the volume

of data being transmitted has increased rapidly with the increase in the number of

terminal devices. This has created problems of delay and congestion in a Cloud

Computing environment [139]. Fog computing has emerged as a solution to these

latency and distance related problems. By increasing the local computing and storage

capabilities of the fog nodes and the edge devices can share some of the tasks

previously solely handled at the Cloud data centre.

Stolfo used the idea of “fog” to resist hacking. He proposed the term “Fog

Computing”, which was later used by Cisco to promote products and networks

development strategy. The concept of “Fog Computing” was first proposed by Cisco

in 2011 [34] and defined as a distributed computing infrastructure for the Internet of

Things (IoT) that extends computing power and data analytics applications to the

"edge" of the network. A Fog Computing model is equivalent to a local Cloud, where

data management and done are controlled by local servers. Users can analyze and

manage their data at any time, any place and in any way. The core idea of Fog

Computing is “smart front-end”, which uses network devices or dedicated devices to

provide computing, storage, and network communication services between Cloud

servers and terminal devices, for making data storage and computing much closer to

terminal acquisition, which greatly benefits reducing data transmission and storage

http://etd.uwc.ac.za/

111

overhead, improving application response speed, and saving network resources [140]

[141].

Fog Computing is the middle layer between Cloud Computing and terminal layer

of the IoT network, which is located at the edge of the network, close to the terminal.

It is often combined with Cloud Computing to form a common network structure

model as shown in Figure 5-1. The figure depicts the Cloud Computing layer, Fog

Computing layer and terminal access layer Resource [142]. In the coverage area of the

fog node, various intelligent terminals access the node and realize interconnection and

intercommunication. In addition, Fog Computing layer is able to complete the direct

computing processing to reduce the network transmission delay. The Cloud

Computing layer, as the top-level supporting structure of Fog Computing, collects

some statistical analysis data to the Cloud data centre, analyzes the big data globally,

to coordinate the overall situation and implement resource allocation.

Fig. 5-1 the architecture of Fog Computing

There is a close relationship between Fog Computing and Cloud Computing.

Many technologies in Cloud Computing can be directly applied in the fog. The Fog

Computing node is actually equivalent to a small Cloud. Of course, Fog Computing

http://etd.uwc.ac.za/

112

also has its own unique characteristics and advantages [142] [143] [144] [145] [146]

[147], including:

(1) Located at the edge of the network, hence can better solve the delay problem

of real-time interaction of a large number of applications. This is especially vital for

some applications that require high real-time performance, such as virtual simulation

games, augmented reality, real-time monitoring and video conferencing.

(2) Extensive geographical distribution. This is a major different from Cloud and

Fog computing. The Fog network structure is mainly distributed, with limited

coverage, while the Cloud’s coverage area is often significantly larger. With the

continuous intelligentization of terminal devices, various information collection

devices are also developing toward mobile handheld devices, and the wide coverage

is convenient for achieving more accurate positioning and geographic information

perception.

(3) The number of massive nodes. Due to the wide geographical distribution, a

large number of terminal devices and network nodes will constitute a large-scale Fog

Computing network, and a large number of node accesses can also enhance the

computing and storage capabilities of the Fog Computing network.

(4) Support for mobility. The development of terminal in form of smart devices

and handheld is the future. The Fog Computing supports some necessary mobile

communication technologies, including transmission protocols and identity

authentication, to support communication between applications and mobile terminals.

 (5) Heterogeneity. This enables communication between heterogeneous

hardware and software devices in different forms and environments. It also facilitates

efficient access of terminal devices and cross-domain convergence of application

services to achieve interconnection and information sharing.

http://etd.uwc.ac.za/

113

The terminal layer is often a wireless sensor network of the Internet of Things,

with a multi-hop self-organizing network system composed of a large number of

nodes deployed in the certain area and communicating wirelessly. The goal is to

collaboratively perceive, collect, and preprocess information about the perceived

objects in the network coverage area and send the information to the observer [148].

We assume that each node in the terminal layer has its own battery, and there are

variations in power at specific time intervals due to different factors specifically the

amount of activity performed by each node. The power level of a terminal node is

dependent on how much work the node is doing. Factors that could overwork a node

or increase its power depletion include: traffic, the number of child nodes connected

to it, ambient temperature and humidity [149]. Energy consumption must always be

considered as the main factor to design and measure IoT related protocols. With this

in mind, this chapter proposes an IoT-based Fog Computing model, with the

following specific contributions:

An IoT-based Fog Computing framework: a multi-layer framework for IoT-based

Fog Computing environments that addresses issues related to: i) the topology of the

terminal layer network and its impact on the routing of data in that layer; ii) the

allocation of tasks uploaded from the terminal layer to resources (Fog nodes) in the

Fog layer . The proposed framework is based on a model that minimizes the overall

cost (delay, distance, energy) of completing the terminal tasks using Fog nodes (FN).

GA based Fog layer task scheduling strategy: A task scheduling strategy for the

Fog layer using a modified Genetic Algorithm (GA) for matching tasks (uploaded

from the sink nodes in the terminal layer) to corresponding FN is proposed. The task

requests and the geographical location of the Fog and sink nodes are used as input for

the modified GA, which outputs a binding scheme of tasks to resources (FNs).

Implementation is done using CloudSim [63] and the relative efficiency of the new

algorithm compared to the traditional Max-min algorithm and the Fog-oriented

Max-min [150] algorithm is revealed.

http://etd.uwc.ac.za/

114

A multi-sink LIBP Terminal layer protocol: This thesis proposes a novel collection

tree protocol that builds upon LIBP [151] protocol to organize the terminal layer into

a multi-sink IoT network. The objective is to improve the robustness and reliability of

the terminal layer network and extend the battery life of the sink nodes. Simulations

using Cooja [152] on the Contiki OS [153] are used to demonstrate the efficiency of

the multi-sink protocol compared to the mono-sink LIBP protocol.

Our expectation is to improve the robustness of the underlying IoT networks' and

safeguard it against nodes failures as well as extend the terminal nodes' life span.

These are achieved through the use of multi-sink deployment, while reduction in

processing delays and energy consumption are achieved by incorporating a Fog

Computing layer.

5.2 Related work:

The Fog Computing was first proposed by Bonomi [34] in 2011. In order to solve

the applicability of Platform-as-a-Service (PaaS), Hong et al. [154] proposed the

concept of Mobile Fog, which realizes the connection of heterogeneous devices

simplification, as well as on-demand dynamic expansion of applications, which

enhances the ability to interconnect communications between heterogeneous devices

and enhances the universal application of Fog Computing. Oueis [155] applied Fog

Computing to the processing of load balancing to improve the quality of the user's

network experience. Applications spanning Cloud and fog, such as Internet of Things

(IoT) applications, are still provisioned manually nowadays, but Yangui et al. [156]

proposed a Platform as-a-Service (PaaS) construct for hybrid Cloud/fog environment

to automate applications.

As a result of the combination of IoT and heterogeneous devices, Abedin [157]

addressed the utility based matching or pairing problem within the same domain of

IoT nodes by using Irving's matching algorithm under the node specified preferences

to endure a stable IoT node pairing. In terms of the communication distance,

http://etd.uwc.ac.za/

115

Intharawijitr et al. [158] defined a mathematical model of a Fog network and the

important related parameters to clarify the computing delay and communication delay

in Fog architecture. Deng [159] focus on the interplay and cooperation between the

edge (fog) and the core (Cloud), they develop an approximate solution to decompose

the primal problem into three subproblems to make a balance between power

consumption and delay in a Cloud- Fog Computing system. Sarkar [160] and his

group conducted theoretical modelling of the Fog Computing architecture and

analyzed the delay and energy performance of the application in the Internet of

Things. They have accumulated the experience in the design and wide application of

the Fog Computing architecture. Due to the Cloud Computing's high degree of

polymerization computing mode, it can not give full play to the resources of the edge

device. Ningning et al. [161], therefore proposed a Fog Computing framework to turn

physical nodes in different levels into virtual machine nodes. Their simulation

demonstrated that dynamic load balancing mechanism can effectively configure

system resources as well as reducing the consumption of node migration brought by

system changes.

In terms of the terminal layer of the IoT, the ubiquitous sensing technology

enabled by Wireless Sensor Network (WSN) technology is one of the indispensable

parts [148]. Thanks to the recent adoption of various supporting wireless technologies,

such as RFID tags and embedded sensors and actuator nodes, the Internet of Things

has come out of its infancy and is the next revolutionary technology to transform the

Internet into a fully integrated future Internet. In [162] a use case considering energy

consumption measurements of RPL and CTP is presented and a metrics for several

scenarios running both RPL and CTP was proposed. However, they did not consider

the routing protocol’s robustness and reliability. Felici-Castell [163] and his team

focused on analyzing different strategies to gather information from different topics.

The trade-offs between the "always send" and "local buffer" methods are verified

experimentally, which considering power consumption, lifetime, efficiency and

reliability. Machado [164] proposed a routing protocol based on Routing Energy and

http://etd.uwc.ac.za/

116

Link quality (REL). The end-to-end link quality estimation mechanism, residual

energy and hop count are used to select routes to improve the reliability and energy

efficiency of IoT applications. In addition, REL proposes an event-driven mechanism

to provide load balancing and to avoid premature depletion of energy by

nodes/networks. But they didn’t take into account the affect of different number of

sinks.

There are some new research work such as [165] [166] [167] [160] [168] which

focus on the combination of Cloud Computing, Fog Computing and IoT. Yannuzzi

[166] examines some of the most promising and challenging problems of IoT and

explained the reason why current compute and storage models confined to data

centres may not be able to meet the requirements of many applications. Their analysis

is particularly centered on three interrelated requirements: mobility, reliable control

and calability, then described why Fog Computing is necessary for IoT, and discussed

the unavoidable interplay of the Fog and the Cloud in the future. In terms of the

framework between IoT and Fog Computing, Donassolo [167] proposed an

orchestration system which is called FITOR, which build a realistic fog environment

while offering efficient orchestration mechanisms. Based on extensive experiments,

they proposed O-FSP optimizes the placement of IoT applications and the related

strategies in terms of provisioning cost, resource usage and acceptance rate. Sarkar

[160] did some works on the Fog Computing architecture modelling, which is one of

the new researches arean. They proposed a mathematical formulation for improving

the balance between the latency and energy saving. And their experiment results

proved that the proposed model can save around 40% energy consumption. However,

they did not consider the energy consumption in the IoT layer. Aazam [168] proposed

using Cloud of Things (CoT) to solve the IoT resource management problem, and

introduced the architecture of a smart gateway with Fog Computing. Then they tested

this concept based on upload latency, synchronization latency, jitter, bulk data upload

latency, and bulk data synchronization latency. But they did not take into account the

energy consumption around the fog nodes in Fog Computing layer.

http://etd.uwc.ac.za/

117

5.3 Model Description:

In Cloud Computing, effective resource allocation is the main goal of achieving

economic benefits, while the main features of Fog Computing are location awareness,

mobility, low delay and distributed geographic location. Fog computing is not a

replacement for Cloud Computing, but they reduce the disadvantages of Cloud

Computing and make them more efficient. The model proposed in this chapter

focuses on energy consumption from underlying sensors (which are in the terminal

layer) to fog nodes (which are in the fog layer). So, the model is called IoT-based Fog

Computing model (IoT-FCM). The Fog Computing layer aspect of the model is

described in the subsequent sub-sections, while the terminal layer of the model is

discussed in section 5.4.1. The Cloud layer was introduced in chapter 2 and 3.

5.3.1 Fog Computing layer model design

Figure 5-2 shows the architecture of the IoT-based Fog Computing model

(IoT-FCM) proposed in this thesis. The processes performed in the figure are as

follows: in the first step, the application tasks queue (generated by sink-nodes) will be

sent to the Fog manager service which is in the Fog Computing layer. This service

manager has information about all the Fog nodes. Using the modified GA algorithm

(which will be introduced in next section), the Fog manager service generates the task

scheduling simulation results. The FNs then executes the manager assigned tasks.

Before introducing the specific process of task scheduling strategy of the modified

GA for Fog Computing layer, some definitions and assumptions are first introduced.

http://etd.uwc.ac.za/

118

Fig. 5-2 The IoT-Fog architecture

5.3.2 Formalization of Fog Computing Layer Model

The Fog Computing layer model is constructed in this chapter, which focuses on

three target parameter that decide it comprehensive performance. These parameters

are: delay, energy and distance. Delay means the response time that users (sink nodes)

have to wait after they submit their tasks. Energy is the total energy the target FN

needs to finish its allocated tasks, while distance means the total distance of each user

to their corresponding according to scheduling result. Suppose the Fog Computing

system consists of the Fog Nodes, which can be represented as a set FN = {FN1,

FN2, …, FNN}, and the application tasks which are going to be scheduled can be

represented as a set T = {t1, t2, …tn}. The main factor affects delay in the execution

time ExeTij, where i = 1, …, n and j = 1, …, N. ExeEij is the energy consumption of ti

by FNj.

The first quality factor considered is the total distance TD, which is the distance

from users to their corresponding FN. This can be calculated by traversing all the

tasks in set T. If (TiX, TiY)) and Coord (FNjX, FNjY), denote the coordinates of user i

and FNj, respectively, then TD can be determined by using

TD = ∑i=1
n√((TiX - FNjX)

2
+ (TiY - FNjY)

2
), TD<TDL (5-1)

http://etd.uwc.ac.za/

119

where T is the Task set, n is the number of tasks in set T, while connected to the

j-th FN, and TDL is the total distance limitation.

From the Fog Computing characteristics, delay should be kept as low as possible.

Tasks scheduling strategy therefore must aim at minimizing task completing time

(execution time). FNs can hold more than one task at a time, the completing time is

thus the execution time of such a task running on a FN whose execution time is the

longest. The execution time ExeT of a task T by the FN can be described by using

 ExeT =MAX {∑i=1
n
ExeTij;j∈N}, ExeT(T, FN) < DL, (5-2)

where DL is the delay limitation, the summation of all the execution times ExeTij of

the various tasks Ti(i∈n) running on a FN gives the completion time of each FNj, j∈

N. The delay is obtained from the last FNj to finish its tasks.

Energy controling is also a very important factor that needs to be considered

while building Fog Computing models. Therefore, Fog Computing system should

keep the energy consumption as low as possible. In addition, the scheduling energy

consumption ExeE cannot be greater than the upper limit of electricity supply. The

energy consumption for executing task set T by set FN is given by

ExeE = ∑i=1
n∑j=1

NExeEij, ExeE(T, FN) < EL, (5-3)

where ExeEij is the energy consumed by FNj, j∈N to execute task Ti, i∈n and ExeE

is the energy consumed by all the FNs in executing their allocated tasks; DL is the

energy limitation.

The three equations can be integrated into a fitness function which is defined by

using

http://etd.uwc.ac.za/

120

F(C)

{

 = α ∗ (1 −

ExeT(C)

DL
)+ β ∗ (1−

ExeE(C)

EL
)+ γ ∗ (1−

TD (C)

TDL
) ,

if , ExeT(C) ≤ DL, ExeE(C) ≤ EL,TD (C) > TDL

= 0, if ExeT(C) > DL 𝑜𝑟 ExeE(C) > EL 𝑜𝑟 TD (C) > TDL

(5− 4)

where C is the vector of the special individual which includes one match between

tasks and fog nodes (T, FN), F(C) is the fitness function means the fitness value of the

vector C, which is used for measuring the score of the individual in the population,

(1-ExeT(C)/DL) is the benefit of execution time which is considered as delay in the

paper when finished the task scheduling, so the same (1-ExeE(C)/EL) is the benefit of

energy and (1-TD(C)/TDL) is the benefit of distance. While α，β and γ are the weight

factors to repectively adjust the importance of delay, energy consumption and

distance.

5.3.3 The Modified Genetic Algorithm for Proposed Fog Computing Model:

As earlier mentioned, task scheduling in Cloud Computing environment is a NP

hard problem. It is very difficult to find the best solution when the number of

participants is large. The usual way is to apply various intelligent optimization

algorithms to approach its optimal solution as the satisfactory solution. Genetic

algorithm (GA) is one of these algorithms to get the approximate optimal solution. In

this chapter, the classic GA is modified using a single fitness function, emanating

from multiple fitness functions, as well as the generation of the third child of

crossover in order to determine the optimal solution of the IoT-FCM model.

The modified genetic algorithm is presented as follows:

1. Initialization of the population.

Initialize the population and setting up of the relevant parameters, such as

population size (P), probability of performing crossover (pc), probability of mutation

(pm), as well as the evaluating fitness of every individual in the population are done.

In GA, the proposed multi-target parameters correspond to multiple fitness. Hence,

http://etd.uwc.ac.za/

121

we use the equation 5-4 as the fitness function to evaluate each vector solution

(chromosome).

2. Crossover

Following the principle of higher fitness is better, the second step involves

choosing two individuals from the population as parents, upon which the crossover is

executed to produce two children. In order to obtain an optimal solution, this chapter

adds the third child to increase the diversity of the population which is generated by

accumulating the parents corresponding gene values to generate a new child. The

process is showed in Algorithm 1:

 3. Mutation

There are many types of mutations such as Gaussian, Uniform mutation and

Non-Uniform mutation [169]. In these mutations, the value of only a single gene in

the chromosome is changed to improve its fitness. The effect of this on the entire

chromosome is minimal especially with large population size or when the solution is

close to stability [169]. We modified the mutation process, changing the single-gene

mutation to multi-gene mutation. We then generate multi-mutated chromosomes to

replace chromosomes with the lowest fitness value in the population. This reduces the

impact on optimal values, while greatly expanding the search range and

simultaneously reducing premature convergence to a local optimal solutions. The

main purpose of mutation is to generate new genes when inheriting from parents. The

mutation can be defined in equation 5 as follows:

Cm1(n)=(c1,c2,…,cn)+(x1(△c1-c1),x2(△c2-c2)),…,xn(△cn-cn))) , (5-5)

http://etd.uwc.ac.za/

122

where x1, x2,… xn ∈ {0,1}, and Δc1, Δc2,…, Δcn are the random numbers within

the limits of gene in the chromosome. Then we can generate 4 different children by

adjusting the number of x. The first mutated child has 1/4 of its genes (x) randomly

set to 1, while the other genes are set zero. The second mutated child has 1/2 its genes

randomly set to 1 and the others set to 0. The third mutated child has 3/4 randomly set

to 1, while the fourth has all its genes set to 1.

Since we have 4 mutated children, we then select 4 chromosomes with the

smallest fitness value from the population and compare with the fitness values of our

4 newly generated mutated children. After the comparison, we put 4 chromosomes

with the highest relative fitness value back into the population to get a new population.

The process is showed in Algorithm 2.

4. Merging

In this phase, we merge the new chromosome population set generated by the

crossover and mutation operations. Afterwards, the best chromosomal individuals

who have the highest value of F(C) are select to be retained as population for the next

generation.

Steps 2 to 4 are repeated till the simulation ends.

5.3.4 Terminal layer design of this model

This section will introduce the part of our proposed model design of the terminal

layer. We use the modified LIBP [147] as the protocol for node communication in our

http://etd.uwc.ac.za/

123

model. The principle of LIBP is to make each node below the sink node select the

parent node with the fewest child nodes in order to get the balance tree. The LIBP

algorithm can beiefly be described as follows:

a. The spanning tree is rooted at the sink node by signing or marking its name in the

beacon message, though recursively broadcasting and recording the parent node

of the beacon message.

b. Select the parent with the fewest number of children to promote least traffic

interference.

A routing in WSNs that solves a local optimization problem using a weight

associated with a measure of interference (using number of children) is described in

LIBP, but it does not consider other reliability constraints, such as energy efficiency,

and nodes’ robustness, nodes will need a lot of energy when they communicate with

nodes at greater distances within their range and if sink node is offline, the system

will stop working. The modified LIBP proposed in this chapter attempt to solve these

limitations by adding multiple sink nodes to improve the system’s battery life and

improve the robustness of the entire system.

Fig. 5-3 Proposed terminal layer model.

Figure 5-3 presents the detailed structure of the terminal layer, with the following

http://etd.uwc.ac.za/

124

characteristics:

a. At least two nodes with GPRS: Terminal layer should have at least two nodes

capable of transmitting IP packets to a fog node.

b. Only nodes with GPRS can become sink nodes. The sink node is selected based

on whether the node has the lowest temperature and highest energy.

c. Each node should have a solar panel for energy regeneration.

5.4. Simulation result:

5.4.1 Simulation environment

CloudSim [63] was used as the simulation tool, while simulation hardware

remained similar to those in the previous chapters. Performance configuration and

computing power parameters were adapted from CloudSim and are shown on Table 1.

Table 5-1: Performance Configuration and Computing Power Parameters (adapted from

CloudSim)

Fog Nodes: Node1 Node2 Node3 Node4 Node5 Node6 Node7 Node8

Pes 2 4 2 4 2 2 2 2

Mips 550 300 650 350 750 800 850 900

Energy

Cost

10 12 14 15 16 18 20 22

Coordinates {10,10} {10,40} {10,70} {40,10} {70,10} {70,40} {70,70} {60,80}

In the simulator, the application task parameters include task ID, task length and

coordinates, in which task length use Millions of Instruction (MI) as a unit. Task

length means the number of basic instructions of task scheduling requests. For this

http://etd.uwc.ac.za/

125

work, task lengths were set to 1000. We simulate the coordinates of FNs in an area,

such as a city or a university, so we limit the range of FN in {0-100}, and randomly

generate the coordinates of 100 FNs, which are shown in Table 5-2.

Table 5-2: Task Coordinates

Task

number

Coordinates Task

number

Coordinates Task

number

Coordinates Task

number

Coordinates Task

number

Coordinates

0 {93,31} 20 {36,75} 40 {73,06} 60 {53,49} 80 {61,21}

1 {32,96} 21 {44,23} 41 {77,45} 61 {52,12} 81 {62,96}

2 {14,11} 22 {31,23} 42 {77,89} 62 {54,11} 82 {64,11}

3 {52,21} 23 {35,23} 43 {72,34} 63 {12,63} 83 {62,48}

4 {50,21} 24 {36,21} 44 {70,21} 66 {10,21} 84 {63,90}

5 {43,90} 25 {33,90} 45 {73,90} 65 {53,93} 85 {67,53}

6 {10,61} 26 {31,21} 46 {77,62} 66 {58,34} 86 {84,70}

7 {96,59} 27 {36,59} 47 {76,59} 67 {50,61} 87 {64,10}

8 {39,83} 28 {49,83} 48 {76,78} 68 {51,24} 88 {63,46}

9 {71,34} 29 {34,51} 49 {11,34} 69 {42,83} 89 {12,37}

10 {23,31} 30 {43,31} 50 {83,31} 70 {43,51} 90 {13,14}

11 {22,96} 31 {32,96} 51 {92,96} 71 {44,67} 91 {39,57}

12 {24,11} 32 {14,11} 52 {96,75} 72 {44,11} 92 {17,11}

13 {23,83} 33 {59,39} 53 {92,21} 73 {49,87} 93 {52,31}

14 {20,21} 34 {54,52} 54 {95,24} 74 {44,59} 94 {50,61}

http://etd.uwc.ac.za/

126

15 {23,90} 35 {43,90} 55 {93,90} 75 {53,12} 95 {44,23}

16 {28,95} 36 {10,61} 56 {90,61} 76 {40,61} 96 {13,71}

17 {26,59} 37 {96,59} 57 {45,32} 77 {49,56} 97 {95,69}

18 {66,66} 38 {57,74} 58 {99,83} 78 {49,83} 98 {32,53}

19 {28,45} 39 {75,23} 59 {68,21} 79 {41,34} 99 {63,31}

GA operational parameters used are as follows: a population size of 100;

mutation probability of 0.01; maximum iteration number of the algorithm was set to

1000; weighting factors set as: α=β=γ=1/3, delay limitation, energy limitation and

distance were respectively set to 50, 2000 and 5000.

5.4.2 Simulation Results

In order to evaluate the proposed IoT-FCM model, simulations of both the Fog

Computing layer and terminal layer were done. In this section, we show the

simulation experiment results of Fog Computing layer using delay (makespan), sum

of distance, sum of energy consumption as metrics. Then we proved the effectiveness

of our proposed GA optimized IoT-FCM model by comparing it with traditional

Max-Min algorithm and improved Fog-Oriented Max-Min algorithm. In task

scheduling problem, the traditional Max-Min algorithm usually select the makespan

as the main parameter to achieve the relative optimal solution. The Fog-Oriented

Max-Min algorithm as used in this thesis considers multiple parameters (including

delay, distance and energy consumption) to calculate the relative optimal solution.

http://etd.uwc.ac.za/

127

Figure 5-4 shows the delay of the three different algorithms. Here delays as a

result of signal transmission time were not considered because they are too short thus

negligible; rather the focus was on task execution time at the FN. The proposed

algorithm is aimed at minimizing the distance and energy consumption. In Figure 5-4,

when compared to the two other algorithms (Fog-oriented Max-Min and Max-Min),

IoT-FCM sacrified speed for better performance in distance and energy. It is shown to

increase execution time by an average of 17.5% compared to the other algorithms.

However, when a 100 tasks were submitted, it was at par with the other algorithms, as

shown by the converged curves in Figure 5-4.

Fig. 5-4 Delay

Figure 5-5 shows the results for the total distance form users to their

corresponding FNs. One of the benefits of Fog Computing relative to Cloud

Computing is that it is closer to the terminal [29]. Hence minimizing the distance is

0

2

4

6

8

10

12

14

16

40 50 60 70 80 90 100

Delay

IoT-FCM Fog-Oriented MaxMin MaxMin

Y: time (second)

X: number of tasks

http://etd.uwc.ac.za/

128

vital. From the results, comparing IoT-FCM with the two other Max-Min algorithms,

IoT-FCM is seen to have an advantage over the others for all submitted tasks as the

lower the distance between terminals and corresponding FNs, the better the algorithm.

Comparing the closeness of terminals to their FNs; using IoT-FCM, terminals are

about 50% closer to their FNs when 40 tasks are submitted versus the two other

algorithms and 38% closer versus Fog-Oriented Max-Min and 55% closer versus

Max-Min when 100 or more tasks are submitted. The mildness of the curve also

proved the stability and predictability of the IoT-FCM model.

Fig. 5-5 The sum of the distances from each user to their corresponding fog node

Another important factor of Fog Computing considered in this work is the energy

consumption which is shown in Figure 5-6. The energy consumption of all the Fog

nodes in the system was taken into consideration. Obtained results show that the

proposed algorithm has some advantages in terms of energy consumption during the

whole test. On the average, IoT-FCM conserved about 100 mAh of energy compared

0

1000

2000

3000

4000

5000

6000

40 50 60 70 80 90 100

total distance

 IoT-FCM Fog-Oriented MaxMin MaxMin

Y: distance

X: number of tasks

http://etd.uwc.ac.za/

129

to Fog-Oriented Max-Min for all submitted tasks and about 200 mAh when compare

to the Max-Min algorithm.

Fig. 5-6 the sum of the energy consumption of all fog nodes

5.4.3 Experimental Findings of Multi-Sink nodes.

As earlier stated, experimental simulation of the terminal layer was carried out

using the Cooja on Contiki [153], which is a simulator embedded in Ubuntu 16.04

operating system. Using Cooja [152] we were able to implement and test the

robustness and energy efficiency of the Multi-sink LIBP used at the terminal layer.

Two categories tests were carried out: robustness and energy efficiency. The results

are as follows:

Robustness test：

A: Our proposed modified-LIBP protocol:

0

200

400

600

800

1000

1200

1400

1600

1800

40 50 60 70 80 90 100

energy consumption

IoT-FCM Fog-Oriented MaxMin MaxMin

Y: energy

X: number of tasks

http://etd.uwc.ac.za/

130

Figure 5-7a: Load balanced network with five sink nodes.

Figure 5-7b: Sink node 1 goes offline due to energy depletion or fault.

Figure 5-7c: Sink node 1,2,3,4 go offline due to energy depletion or fault.

http://etd.uwc.ac.za/

131

Figures 5-7a to 5-7c show that as long as at least one sink node remains, the network is

able to be recovering from any outage, as all node make use of node 5 as the network sink

node.

B: Original LIBP Protocol

Experiments were also done to see what would happen is the sink node goes

offline when the original LIBP protocol is used. Figures 5-7d and 5-7e repectively

show the results before and after going offline.

Fig 5-7d: Network shows all nodes making use of node 1 as the sink node.

Fig 5-7e: Sink node 1 goes offline and after the network fails to recover.

http://etd.uwc.ac.za/

132

With the results shown in Figures 5-7a to 5-7e it can be seen that the proposed

m-LIBP protocol is more robust to failure than the original LIBP IoT protocol.

Energy consumption test

Experiments were also conducted on a network containing 50 nodes. Radio TX

(transmitting) and Radio RX (receive) represent the energy consumption of nodes. A

comparison on energy consumption levels was done for single and multi-sink

networks (2 to 5 sink nodes). Obtained results are shown in Figures 5.8a-e.

Figure 5-8a Energy consumption of five sink nodes.

Figure 5-8b Energy consumption of four sink nodes.

http://etd.uwc.ac.za/

133

Figure 5-8c Energy consumption of three sink nodes.

Figure 5-8d Energy consumption of two sink nodes.

Figure 5-8e Energy consumption of one sink nodes.

http://etd.uwc.ac.za/

134

From the perspective of the IoT terminal layer, nodes’ energy consumption is the

goal that routing protocol needs to achieve. It can be seen that the highest energy

consumed by the sink nodes from Figure 5-8a-d are respectively 5.84%, 5.7%, 6.00%,

5.86%. These are lower than the energy consumption of 6.60% recorded with the

original LIBP (1 sink node) in Figure 5-8e was used. Similarly, on Table 5-3, the

average energy consumed when using multiple sink node in each figure are

respectively 4.23%, 3.92%, 4.38%, 5.07%. These are again lower than the average of

the original LIBP at 6.60%. Comparing the results, the proposed multi-sink LIBP used

by IoT-FCM shows lower energy consumption versus the original LIBP. This in turn

implies better battery life of sink nodes.

Table 5-3: Comparison of Energy consumption using multiple sink nodes

Energy consumption

of 5 sink nodes

Energy consumption of

4 sink nodes

Energy consumption

of 3 sink nodes

Energy consumption

of 2 sink nodes

Energy consumption

of 1 sink nodes

Sink node 1: 4.55% 5.71% 3.18% 5.86% 6.60%

Sink node 2: 5.84% 3.86% 6.00% 4.27% none

Sink node 3: 3.48% 3.40% 3.96% none none

Sink node 4: 3.35% 3.28% none none none

Sink node 5: 3.93% none none none none

Average: 4.23% 3.92% 4.38% 5.07% 6.6%

In order to further test the energy consumption, we set up another scenario case,

where we put the multi-sink LIBP with 3 sink nodes in three clusters, with each

cluster having 1 sink node. The original number of nodes in each cluster were

randomly set to 10, 21 and 17 respectively. Then we adjusted the number of nodes in

each cluster to see the energy consumption situations of the highest energy

consumption node and the average energy consumption The simulation results of this

process shows that moving nodes from different cluster is able to decrease the highest

energy consumption, which are summarized on Table 5-4.

Table 5-4: Energy balance moving nodes from different sink node cluster

http://etd.uwc.ac.za/

135

 Sink 1 Sink 2 Sink 3 Sink 1 Sink 2 Sink 3 Sink 1 Sink 2 Sink 3

10 21 17 15 16 17 16 16 16

Highest Average Highest Average Highest Average

Sink 1 4.18% 2.09% 4.77% 2.51% 4.77% 2.58%

Sink 2 5.54% 2.89% 4.83% 2.66% 4.83% 2.66%

Sink 3 4.96% 2.44% 4.85% 2.71% 4.79% 2.61%

We also tested the recovery time by making the sink node 1 offline, and

compared the recovery time of different number of sink nodes to demonstrate the

robustness of the multi-sink LIBP. The results of these are shown on Table 5-5.

Table 5-5: Comparison of longest distance and recovery time using multiple sink

nodes

 5 sink nodes 4 sink nodes 3 sink nodes 2 sink nodes 1 sink

nodes

Sink node number 1 2 3 4 5 1 2 3 4 1 2 3 1 2 1

Distance 2 2 0 2 2 2 1 2 2 2 3 0 2 2 3

Recovery time 15.183s none 18.768s none 27.328s none 34.812s none infinity

5.5 Conclusion:

Fog computing is a new architectural model, derivative from Cloud Computing. It

adopts the design of decentralized network structure, streamlines the process of data

aggregation transmission, which can greatly reduce network delay, reduce bandwidth

requirements and improve network security. Processing all data from the Internet of

Things (IoT) and sensors by Cloud Computing is relatively inefficient, but Fog

Computing can solve this problem as Fog Computing technology brings the Cloud

closer to the clients.

Combining the Internet of Things and Fog Computing, we proposed the

IoT-based Fog computing model and describe this model in layers. In the Fog

http://etd.uwc.ac.za/

136

Computing layer part of our model, we use fog nodes to handle specific tasks from

IoT layer, the IoT-FCM moved users 38% closer to the Fog node for Fog-oriented

Max-Min and 55% for the traditional Max-Min. While with respect to energy,

IoT-FCM conserved an average of 150KWh more energy versus the other algorithms.

For the other part of the model, which is the terminal layer; IoT-FCM modified the

LIBP protocol by adding multiple sinks. Performance evaluations were done using

Cooja on Contiki and obtained results, which show that the modified LIBP with its

use of multiple sink nodes was more robust and tolerant to node failure and was also

more energy conservatory. Of significant note in this work is that the two layers were

simulated on different environments – CloudSim and Cooja.

http://etd.uwc.ac.za/

137

Chapter 6: Conclusion and Future Work

6.1 Retrospective

With the development of Cloud Computing and the maturity of related

technologies, the user base of Cloud Computing as a platform for commercial and

personal use has grown tremendously. The number of tasks submitted by users and the

scale of these tasks are becoming larger. Users expect the Cloud to always be on,

always available and accessible from anywhere and at any time. Despite the general

perception of the Cloud being an unlimited pool of resources, in truth, Cloud

resources are finite and Cloud Service Providers (CSP) often struggle with

accommodating the ever increasing heterogeneous workloads submitted by Cloud

users. This issue has fuelled studies on techniques of effectively allocating workloads

to resources.

This thesis has discussed four major problems related to Cloud Computing.

Firstly, it looked at the problem of fair distribution of profit in Cloud federation and

concluded that most related works only consider maximizing interests as incentive

targets, but does not fully consider the influence and role of profit distribution among

the federation members. Secondly, most existing research on task scheduling in the

Cloud Computing environment are not able to guarantee the overall QoS targets of

both users and CPS, while maximizing overall benefits. Thirdly, with respect to

research on consolidation of virtual machines, most ignored the important factor of

virtual machine migration overhead when selecting VMs to be migrated across host

servers. Lastly, for the communication research between Internet of Things and Cloud

Computing, the influence of bandwidth, delay and energy consumption caused by

geographical location should be given more attention.

In view of the above mentioned, this thesis conducted an in-depth research into

resource allocation in Cloud Computing and made the contributions summarized as

follows:

http://etd.uwc.ac.za/

138

Resource management and profit distribution: This thesis analysed the

necessity of Cloud federation, and its key technologies. Fair profit distribution was

identified as an incentive for CSPs to join a Cloud federation, hence a Cloud

federation model based on Shapley Value for fair profit distribution strategy (SVPDS)

was proposed. The model is a dynamic benefit allocation mechanism, which enables

the profit distribution between Cloud providers to be dynamically adjusted according

to the changes of federation members and the tasks it received. Results of simulations

showed that compared with the traditional method of benefit distribution of To Each

According to Their Contribution (TEATC), SVPDS can comprehensively assess the

contribution degree of each CSP in the federation and always fairly distribute profit

among them.

Resource management and task scheduling problem: The purpose of Cloud

Computing is to provide users with a comprehensive service. However, while

providing such services, the quality of service is often compromised; especially from

the perspective of users as the definition of quality varies across users. With this in

mind, this thesis proposed a model that considers multi-QoS target constraints task

scheduling. The model modifies the classic Differential Evolution algorithm and uses

it to convert the multi QoS requirements problem to a single QoS problem. The

modification also reduces the probability of the DE being trapped in a local optimal

solution. Compared with the traditional method, the proposed algorithm is more stable

and has a better comprehensive performance in adhering to quality of service and

minimizing task makespan.

Resource management, VM migration and Consolidation: This thesis has

contributed in the area of virtual machine consolidation by introducing a model that is

migration overhead aware. The proposed model controls unnecessary virtual machine

migration by its overhead awareness, and combined it with both cooperative federated

Cloud Computing and competitive federated Cloud Computing. This developed

model is able to reduce migration overhead during virtual machine consolidation by

http://etd.uwc.ac.za/

139

minimizing unnecessary migrations. Results of experimental simulations show that

the model can indeed reduce the virtual machine migration overhead as well as reduce

the energy exerted during VM migration and consolidation in both cooperative and

competitive Cloud federations.

Resource allocation in IoT and Fog Networks: This thesis proposed an

IoT-based Fog Computing model which consists of two layers: the IoT layer and the

Fog layer. At the IoT layer, data is gathered and uploading to the Fog. This work

modified the Least Interference Beaconing Protocol making it more robust and energy

efficient. This was achieved by introducing multiple sink nodes. The Fog layer

receives and processes the data from the IoT layer. This thesis modified the classic

GA to optimize the task allocation to Fog nodes. Results of experiments conducted

showed that the models proposed by this thesis yielded better performance in terms of

robustness and energy control at the IoT layer; yet equally efficient with regards delay,

distance and energy consumption between the two layers.

6.2 Perspective

This work can be strengthened in many different directions offering many

opportunities for future works. Some of these considerations include:

 Blockchain technology in Cloud federation. In addition to fair profit

distribution and benefit maximizing, future work could look into other

factors that can encourage CSP participation in Cloud federation. A

billing system that can securely and immutably store every resource

usage transaction could be considered. Blockchain technology can pave

the way for such a financial billing system using encrypted blocks to

store data in a common ledger. The use of Blockchain technology to

support the development of Cloud federation should be a very promising

research topic.

 Technical standards normalization. Despite the numerous research works

http://etd.uwc.ac.za/

140

on going, there is still a lack of globally accepted standard in Cloud

Computing. Issues of vendor lock in and incompatibility are still

prevalent, due to the use of proprietory technologies by various CSPs.

The lack of technical standards has without doubt hindered the

development of Cloud Computing technology. Developing a uniform and

interoperable platform for the Cloud could be another interesting area for

future research works.

 The gap between theoretical and practical. Virtual machine consolidation

achieves energy savings by reducing the number of compute nodes used.

In the virtual machine consolidation research conducted in this thesis,

there is an implicit assumption that multiple virtual machines running on

the same computing node do not affect each other. However, in reality,

when multiple virtual machines run on the same computing node, they

are not completely isolated from each other. A number of researchers

have reported that multi-tenant VMs can compete for shared resources,

which may cause performance interference. Furthermore, VM migration

and consolidation in cooperative Cloud federation might be more

complex to achieve in practice than in theory. Proffering solutions to

these VM consolidation related problems could also be directions for

extending this thesis.

http://etd.uwc.ac.za/

141

REFERENCES

1. Cusumano M. Cloud computing and SaaS as new computing platforms[J].

Communications of the ACM, 2010, 53(4): 27-29.

2. Manias E., B.F., A component-based middleware for hybrid grid/cloud

computing platforms[J]. . Concurrency and computation: practice &

experience, 2012. 24(13): 1461-1477

3. Armbrust M., F.A., Griffith R., et al. , A view of cloud computing[J]. .

Communications of the ACM, 2010, 53(4): 50-58.

4. Luis M. V., L.R.M., Juan C., et al. , A break in the clouds: towards a cloud

definition[J]. . ACM SIGCOMM computer communication review, 2009.

39(1): 50-55

5. Beloglazov A, Buyya R. Optimal online deterministic algorithms and adaptive

heuristics for energy and performance efficient dynamic consolidation of

virtual machines in cloud data centers[J]. Concurrency and Computation:

Practice and Experience, 2012, 24(13): 1397-1420.

6. Foster I., Z.Y., Raicu L., et al. , Cloud Computing and grid computing

360-degree compared[A]. Proceedings of the 2008 grid computing

environments workshop[C]. 2008.

7. Yan., L., Network I/O virtualization for cloud computing[J]. IT professional,

2010. 12(5): 36-41

8. Ghosh A., A.I., In cloud computing we trust – but should we?[J]. IEEE

security & privacy, 2010. 8(6): 14-16

9. Brumec S., V.N., Cost effectiveness of commercial computing clouds[J].

Information systems, 2013. 38(4): 495-508

http://etd.uwc.ac.za/

142

10. Liu Ke, J.H., Chen Jinjun, et al. , A compromised-time-cost scheduling

algorithm in swin De W-C for instance-intensive cost-constrained workflows

on a cloud computing platform[J]. International journal of high

performance computing applications, 2010. 24(4): 445-456

11. Fard, H.M., R. Prodan, and T. Fahringer, A truthful dynamic workflow

scheduling mechanism for commercial multicloud environments. IEEE

Transactions on Parallel and Distributed systems, 2013. 24(6): p. 1203-1212.

12. Su, S., et al., Cost-efficient task scheduling for executing large programs in the

cloud. Parallel Computing, 2013. 39(4-5): p. 177-188.

13. Moreno-Vozmediano, R., R.S. Montero, and I.M. Llorente, Key challenges in

cloud computing: Enabling the future internet of services. IEEE Internet

Computing, 2013. 17(4): p. 18-25.

14. Delimitrou, C. and C. Kozyrakis, Qos-aware scheduling in heterogeneous

datacenters with paragon. ACM Transactions on Computer Systems (TOCS),

2013. 31(4): p. 12.

15. Wang, W.-J., et al., Adaptive scheduling for parallel tasks with QoS

satisfaction for hybrid cloud environments. The Journal of Supercomputing,

2013. 66(2): p. 783-811.

16. Grozev, N. and R. Buyya, Inter‐Cloud architectures and application

brokering: taxonomy and survey. Software: Practice and Experience, 2014.

44(3): p. 369-390.

17. Giacobbe, M., et al., Towards energy management in Cloud federation: A

survey in the perspective of future sustainable and cost-saving strategies.

Computer Networks, 2015. 91: p. 438-452.

http://etd.uwc.ac.za/

143

18. Goiri, I., Guitart, J. and Torres, J., Characterizing cloud federation for

enhancing providers' profit. In Cloud Computing (CLOUD), in 2010 IEEE 3rd

International Conference on (pp. 123-130). IEEE. 2010, July.

19. Fazio, M., et al. How to enhance cloud architectures to enable

cross-federation: Towards interoperable storage providers. in Cloud

Engineering (IC2E), 2015 IEEE International Conference on. 2015. IEEE.

20. El Zant, B., Amigo, I. and Gagnaire, M., Federation and revenue sharing in

cloud computing environment. In Cloud Engineering (IC2E), in In Cloud

Engineering (IC2E), 2014 IEEE International Conference on (pp. 446-451).

IEEE. 2014.

21. Okuhara, M., T. Shiozaki, and T. Suzuki, Security architecture for cloud

computing. Fujitsu Sci. Tech. J, 2010. 46(4): p. 397-402.

22. Ranganathan, P., et al., Ensemble-level Power Management for Dense Blade

Servers. SIGARCH Comput. Archit. News, 2006. 34(2): p. 66-77.

23. Horvath, T., et al., Dynamic Voltage Scaling in Multitier Web Servers with

End-to-End Delay Control. IEEE Transactions on Computers, 2007. 56(4): p.

444-458.

24. Alboaneen, D.A., B. Pranggono, and H. Tianfield, Energy-Aware Virtual

Machine Consolidation for Cloud Data Centers, in Proceedings of the 2014

IEEE/ACM 7th International Conference on Utility and Cloud Computing.

2014, IEEE Computer Society. p. 1010-1015.

25. Wolke, A. and C. Pfeiffer. Improving Enterprise VM Consolidation with

High-Dimensional Load Profiles. in 2014 IEEE International Conference on

Cloud Engineering. 2014.

http://etd.uwc.ac.za/

144

26. Perumal, V. and S. Subbiah, Power-conservative server consolidation based

resource management in cloud. International Journal of Network Management,

2014. 24(6): p. 415-432.

27. Ahmad, R.W., et al., A survey on virtual machine migration and server

consolidation frameworks for cloud data centers. Journal of Network and

Computer Applications, 2015. 52: p. 11-25.

28. Laszewski, G.v., et al. Power-aware scheduling of virtual machines in

DVFS-enabled clusters. in 2009 IEEE International Conference on Cluster

Computing and Workshops. 2009.

29. Ding, Y., et al., Energy efficient scheduling of virtual machines in cloud with

deadline constraint. Future Generation Computer Systems, 2015. 50: p. 62-74.

30. Kamga, C.M., G.S. Tran, and L. Broto, Extended scheduler for efficient

frequency scaling in virtualized systems. SIGOPS Oper. Syst. Rev., 2012.

46(2): p. 28-35.

31. Dargie, W. Estimation of the cost of VM migration. in 2014 23rd International

Conference on Computer Communication and Networks (ICCCN). 2014.

32. W. Voorsluys, J.B., S. Venugopal, et al. , Cost of virtual machine live

migration in clouds: A performance evaluation., in Proceedings of the

Internationall Conference on Cloud Computing. 2009: Beijing.

33. F. Xu, L.F., Jin H, et al. , Managing performance overhead of virtual

machines in cloud computing: A survey, state of the art, and future directions.

Proceedings of the IEEE, 2014. 102(1): 11-31

34. Bonomi F, Milito R, Natarajan P, et al. Fog computing: A platform for internet

of things and analytics[M]//Big data and internet of things: A roadmap for

smart environments. Springer, Cham, 2014: 169-186.

http://etd.uwc.ac.za/

145

35. Zhao, M., et al., A comprehensive study of RPL and P2P-RPL routing

protocols: Implementation, challenges and opportunities. Peer-to-Peer

Networking and Applications, 2017. 10(5): p. 1232-1256.

36. Pawel Michalak, T., et al., Efficient Computation of the Shapley Value for

Game-Theoretic Network Centrality. arXiv preprint arXiv:1402.0567, 2014.

37. Buyya R, Y.S., Venugopal S, et al. , Cloud Computing and emerging IT

platforms: Vision, hype, and reality for delivering computing as the 5th utility

[J]. Future Generation Computer Systems, 2009. 25 (6): 599-616.

38. Mashayekhy, L., M.M. Nejad, and D. Grosu, Cloud federations in the sky:

Formation game and mechanism. IEEE Transactions on Cloud Computing,

2015. 3(1): p. 14-27.

39. Bates, G.H.T. and P. Smith. Cidr report-http://www.cidrreport.org/as2.0/

Technical report. 2015. CIDR.

40. Kertesz, A., Characterizing cloud federation approaches, in Cloud Computing.

2014, Springer. p. 277-296.

41. Shapley, L., "A value for n-person games," in Contributions to the Theory of

Games II, H. W. Kuhn and A. W. Tucker, Eds. Princeton Univ. Press. 1953,.

42. Bessis, N., et al. An architectural strategy for meta-scheduling in Inter-clouds.

in Advanced Information Networking and Applications Workshops (WAINA),

2012 26th International Conference on. 2012. IEEE.

43. Assis, M.R. and L.F. Bittencourt, A survey on cloud federation architectures:

Identifying functional and non-functional properties. Journal of Network and

Computer Applications, 2016. 72: p. 51-71.

44. Li H. Cloud federation as a service: U.S. Patent 8,924,569[P]. 2014-12-30.

http://etd.uwc.ac.za/

146

45. Celesti, A., et al. Three-phase cross-cloud federation model: The cloud sso

authentication. in Advances in Future Internet (AFIN), 2010 second

international conference on. 2010. IEEE.

46. Ray, B., et al., Quality and Profit Assured Trusted Cloud Federation

Formation: Game Theory Based Approach. IEEE Transactions on Services

Computing, 2018.

47. Saeed Araban, L.S., Measuring Quality of Srevice for Contract Aware

Web-Srevice[J]. Proceedings of the 1st Australian Work- shop on Engineering

Service-Oriented System,Melbourne,Australia, 2004. 54-56.

48. Ran, S., A model for web services discovery with QoS. ACM Sigecom

exchanges, 2003. 4(1): p. 1-10.

49. Mani, A. and A. Nagarajan, Understanding quality of service for Web

services–Improving the performance of your Web services, 2002. 2010.

50. Dhuria, S., A. Gupta, and R. Singla, Comparison of Revenue Sharing

Mechanisms in Cloud Federation. 2018.

51. Toosi, A.N., Calheiros, R.N., Thulasiram, R.K. and Buyya, R., Resource

provisioning policies to increase iaas provider's profit in a federated cloud

environment., in In High Performance Computing and Communications

(HPCC), 2011 IEEE 13th International Conference on (pp. 279-287). IEEE.

2011, September. .

52. Hassan, M.M., Abdullah-Al-Wadud, M., Almogren, A., Song, B. and Alamri,

A. , Energy-aware resource and revenue management in federated cloud: a

game-theoretic approach. . IEEE Systems Journal, 2017. 11(2), pp.951-961.

http://etd.uwc.ac.za/

147

53. Tang, L.a.C., H., Double auction mechanism for request outsourcing in cloud

federation, in In Communication Workshop (ICCW), 2015 IEEE International

Conference on (pp. 1889-1894). IEEE. 2015, June.

54. A. A. Young, B.N.C., A. C. Snoeren, and A. Vahdat, "Resource allocation in

federated distributed computing infrastructures," in Proc. OASIS Workshop.

2004.

55. Dramitinos M, Stamoulis G D, Courcoubetis C. An auction mechanism for

allocating the bandwidth of networks to their users[J]. Computer Networks,

2007, 51(18): 4979-4996.

56. Walrand, L.H.a.J., "Pricing and revenue sharing strategies for Internet service

providers" in Proc. IEEE INFOCOM. 2005.

57. Walrand, R.J.a.J., "An efficient Nash-implementation mechanism for network

resource allocation," Automatica. 2010.

58. Androulaki M, Frangedaki E, Antoniadis P. Optimization of public spaces

through network potentials of communities[J]. Procedia Manufacturing, 2020,

44: 294-301.

59. Norman, G., Non-Cooperative Game, in Dictionary of Industrial Organization.

2014, Edward Elgar Publishing Limited.

60. Mashayekhy, L. and D. Grosu. A coalitional game-based mechanism for

forming cloud federations. in Proceedings of the 2012 IEEE/ACM Fifth

International Conference on Utility and Cloud Computing. 2012. IEEE

Computer Society.

61. Winter, E., Handbook of Game Theory with Economic Applications, Chapter

53 The shapley value. Hebrew University of Jerusalem, Volume 3, 2002.

62. Gregory and Stuart, P.a.R.C.E.S.i.t.T.-F.S.-W.C.P.p.I.

http://etd.uwc.ac.za/

148

63. Calheiros R N, Ranjan R, Beloglazov A, et al. CloudSim: a toolkit for

modeling and simulation of cloud computing environments and evaluation of

resource provisioning algorithms[J]. Software: Practice and experience, 2011,

41(1): 23-50.

64. Belalem, G., F.Z. Tayeb, and W. Zaoui. Approaches to improve the resources

management in the simulator CloudSim. in International Conference on

Information Computing and Applications. 2010. Springer.

65. Subrata, R., A.Y. Zomaya, and B. Landfeldt, A cooperative game framework

for QoS guided job allocation schemes in grids. IEEE Transactions on

Computers, 2008. 57(10): p. 1413-1422.

66. I. Ch. Paschalidis and Y. Liu, ―Pricing in multiservice loss networks: static

pricing, asymptotic optimality, and demand substitution effects,‖. IEEE/ACM

ToN, 2002. vol. 10, no. 3.

67. Laili Yuanjun, T.F., Zhang Lin, et al. , A study of optimal allocation of

computing resources in cloud manufacturing systems[J]. The international

journal of advanced manufacturing technology, 2012. 63(5-8): 671-690.

68. Jang E. Y., K.H.J., Rule-based cloud RBAC model for flexible resource

allocation in cloud computing service[J]. Information-an international

interdisciplinary journal, 2010. 13(5): 1653-1666

69. Han Yanbo, S.J., Wang Guiling, et al. , A cloud-based BPM architecture with

user-end distribution of non-compute-intensive activities and sensitive data[J].

Journal of computer science and technology, 2010. 25(6): 1157-1167

70. Lin Weiwei, L.C., Wang J. Z., et al. , Bandwidth-aware divisible task

scheduling for cloud computing[J]. . Software: practice and experience, 2014.

44(2): 163-174.

http://etd.uwc.ac.za/

149

71. Hirai T., M.H., Kasahara S., et al. , Performance analysis of large-scale

parallel-distributed processing with backup tasks for cloud computing[J].

Journal of industrial and management optimization, 2014. 10(1): 113-129

72. Pedersen J. M., R.M.T., Dubalski B., et al. , Using latency as a QoS

indicator for a global cloud computing services[J]. Concurrency and

computation practice and experience, 2013. 25(18): 2488-2500

73. Pop F., C.V., Bessis N., et al. , Reputation guided genetic scheduling

algorithm for independent tasks in inter-clouds environments[A]. Proceedings

of the 27thinternational conference on advanced information

networking and applications workshops[C], 2013. 772-776.

74. Stieninger, M., et al., Factors influencing the organizational adoption of cloud

computing: a survey among cloud workers. Determinants of analytics-based

managerial decision-making, 2018.

75. Hameed, A., et al., A survey and taxonomy on energy efficient resource

allocation techniques for cloud computing systems. Computing, 2016. 98(7): p.

751-774.

76. Kaikai, S., X. Wensheng, and L. Jianyong, Research on Mass Manufacturing

Resource Sensory Data Management Based On Hadoop. Key Engineering

Materials, 2016. 693.

77. Pillai, P.S. and S. Rao, Resource allocation in cloud computing using the

uncertainty principle of game theory. IEEE Systems Journal, 2016. 10(2): p.

637-648.

78. Anastasi, G.F., et al., QBROKAGE: A Genetic Approach for QoS Cloud

Brokering, in Proceedings of the 2014 IEEE International Conference on

Cloud Computing. 2014, IEEE Computer Society. p. 304-311.

http://etd.uwc.ac.za/

150

79. Bruneo, D., A stochastic model to investigate data center performance and

QoS in IaaS cloud computing systems. IEEE Transactions on Parallel and

Distributed Systems, 2014. 25(3): p. 560-569.

80. Singh, S. and I. Chana, QRSF: QoS-aware resource scheduling framework in

cloud computing. The Journal of Supercomputing, 2015. 71(1): p. 241-292.

81. LI Tao-shen, Z.X.-x., Evolutionary Game Scheduling Algorithm for

Differentiated Services under Cloud Computing [J]. Journal of Beijing

University of Posts and Telecommunications, 2013. 36 (1): 41-45.

82. Samanta, A. and S. Misra, Dynamic Connectivity Establishment and

Cooperative Scheduling for QoS-Aware Wireless Body Area Networks. IEEE

Transactions on Mobile Computing, 2018.

83. Kumar, N., et al., Bayesian cooperative coalition game as-a-service for

RFID-based secure QoS management in mobile cloud. IEEE Transactions on

Emerging Topics in Computing, 2016.

84. Daniel Paranhos da Silva, W.C., Francisco Vilar Brasileiro. , Trading Cycles

for Information: Using Replication to Schedule Bag-of-Tasks Applications on

Computational Euro-Par 2003 Parallel Processing, 2003 pp 169-180.

85. Oprescu A., K.T., Bag-of-tasks scheduling under budget constraints[A].

Proceedings of the 2ndIEEE international conference on cloud

computing technology and science[C], 2010. 351-359

86. Wei Yu, L.Y., LinHung Yu, Wei, Dynamic Auction Mechanism for Cloud

Resource Allocation[A]. CCGRID '10 Proceedings of the 2010 10th

IEEE/ACM International Conference on Cluster, Cloud and Grid

Computing[C], 2010. May 17 - 20, 2010.

http://etd.uwc.ac.za/

151

87. Wolski R., S.N.T., Hayes J., The network weather service: a

distributed resource performance forecasting service for

meta-computing[J]. Future generation computer systems, 1999. 15(5-6):

757-768.

88. Randies, M., D. Lamb, and A. Taleb-Bendiab. A comparative study into

distributed load balancing algorithms for cloud computing. in Advanced

Information Networking and Applications Workshops (WAINA), 2010 IEEE

24th International Conference on. 2010. IEEE.

89. Aslam, S. and M.A. Shah. Load balancing algorithms in cloud computing: A

survey of modern techniques. in Software Engineering Conference (NSEC),

2015 National. 2015. IEEE.

90. Fujimoto, N. and K. Hagihara. A comparison among grid scheduling

algorithms for independent coarse-grained tasks. in Applications and the

Internet Workshops, 2004. SAINT 2004 Workshops. 2004 International

Symposium on. 2004. IEEE.

91. Freund, R.F., et al. Scheduling resources in multi-user, heterogeneous,

computing environments with SmartNet. in Heterogeneous Computing

Workshop, 1998.(HCW 98) Proceedings. 1998 Seventh. 1998. IEEE.

92. Wu, M.-Y., W. Shu, and H. Zhang. Segmented min-min: A static mapping

algorithm for meta-tasks on heterogeneous computing systems. in hcw. 2000.

IEEE.

93. Maheswaran, M., et al. Dynamic matching and scheduling of a class of

independent tasks onto heterogeneous computing systems. in Heterogeneous

Computing Workshop, 1999.(HCW'99) Proceedings. Eighth. 1999. IEEE.

http://etd.uwc.ac.za/

152

94. Lai, G.-J. A novel task scheduling algorithm for distributed heterogeneous

computing systems. in International Workshop on Applied Parallel Computing.

2004. Springer.

95. Qiu, M., et al., Phase-change memory optimization for green cloud with

genetic algorithm. IEEE Transactions on Computers, 2015. 64(12): p.

3528-3540.

96. Keshanchi, B., A. Souri, and N.J. Navimipour, An improved genetic algorithm

for task scheduling in the cloud environments using the priority queues:

formal verification, simulation, and statistical testing. Journal of Systems and

Software, 2017. 124: p. 1-21.

97. Verma, A. and S. Kaushal, Deadline constraint heuristic-based genetic

algorithm for workflow scheduling in cloud. International Journal of Grid and

Utility Computing, 2014. 5(2): p. 96-106.

98. Gai, K., M. Qiu, and H. Zhao, Cost-aware multimedia data allocation for

heterogeneous memory using genetic algorithm in cloud computing. IEEE

transactions on cloud computing, 2016.

99. Zuo, L., et al., A multi-objective optimization scheduling method based on the

ant colony algorithm in cloud computing. IEEE Access, 2015. 3: p.

2687-2699.

100. Dam, S., et al., An ant colony based load balancing strategy in cloud

computing, in Advanced Computing, Networking and Informatics-Volume 2.

2014, Springer. p. 403-413.

101. Hu, Y., et al., Cloud manufacturing resources fuzzy classification based on

genetic simulated annealing algorithm. Materials and Manufacturing

Processes, 2017. 32(10): p. 1109-1115.

http://etd.uwc.ac.za/

153

102. Alkayal, E.S., N.R. Jennings, and M.F. Abulkhair. Survey of task scheduling in

cloud computing based on particle swarm optimization. in Electrical and

Computing Technologies and Applications (ICECTA), 2017 International

Conference on. 2017. IEEE.

103. Awad, A., N. El-Hefnawy, and H. Abdel_kader, Enhanced particle swarm

optimization for task scheduling in cloud computing environments. Procedia

Computer Science, 2015. 65: p. 920-929.

104. Zhang, Y., S. Wang, and G. Ji, A comprehensive survey on particle swarm

optimization algorithm and its applications. Mathematical Problems in

Engineering, 2015. 2015.

105. Verma, A. and S. Kaushal. Bi-criteria priority based particle swarm

optimization workflow scheduling algorithm for cloud. in Engineering and

Computational Sciences (RAECS), 2014 Recent Advances in. 2014. IEEE.

106. De Falco, I., et al. Improving search by incorporating evolution principles in

parallel tabu search. in Evolutionary Computation, 1994. IEEE World

Congress on Computational Intelligence., Proceedings of the First IEEE

Conference on. 1994. IEEE.

107. Chow, K.-W. and B. Liu. On mapping signal processing algorithms to a

heterogeneous multiprocessor system. in Acoustics, Speech, and Signal

Processing, 1991. ICASSP-91., 1991 International Conference on. 1991.

IEEE.

108. Robert, C. and G. Casella, Monte Carlo statistical methods. 2013: Springer

Science & Business Media.

109. Sun, J., Q. Zhang, and E.P. Tsang, DE/EDA: A new evolutionary algorithm for

global optimization. Information Sciences, 2005. 169(3-4): p. 249-262.

http://etd.uwc.ac.za/

154

110. Zhao, X., X.-S. Gao, and Z.-C. Hu, Evolutionary programming based on

non-uniform mutation. Applied Mathematics and Computation, 2007. 192(1):

p. 1-11.

111. Lipowski, A. and D. Lipowska, Roulette-wheel selection via stochastic

acceptance. Physica A: Statistical Mechanics and its Applications, 2012.

391(6): p. 2193-2196.

112. J. O. Gutierrez-Garcia, A.R.-N., Collaborative agents for distributed

load management in cloud data centers using live migration of

virtual machines[J]. IEEE Transactions on Service Computing,, 2015. 8(6):

916-929

113. N. J. Kansal, I.C., Energy-aware virtual machine migration for cloud

computing-a cirefly optimization approach[J]. Journal of Grid Computing,

2016. 14(2): 327-345

114. V. Soundararajan, J.M.A., The impact of management operations on the

virtualized datacenter[C]. in Proceedings of the ACM International

Symposium on Computer Architecture. 2010: Saint-Malo.

115. H. Liu, H.J., C. Z. Xu, X. Liao. , Performance and energy modeling for live

migration of virtual machines. Cluster Computing, 2013. 16: 249 - 264

116. H. Liu, H.J., X. Liao, et al. , Live virtual machine migration via asynchronous

replication and state synchronization. IEEE Transactions on Parallel and

Distributed Systems, 2011. 22(12): 1986-1999

117. A. Beloglazov, J.A., R. Buyya. , Energy-aware resource allocation heuristics

for efficient management of data centers for cloud computing. Future

generation computer systems, 2012. 28(5): 755-768

http://etd.uwc.ac.za/

155

118. F. Xu, L.F., Jin H, et al, Managing performance overhead of

virtual machines in cloud computing: A survey, state of the art,

and future directions. Proceedings of the IEEE, 2014. 102(1): 11-31

119. N. J. Kansal, I.C., Energy-aware virtual machine migration for cloud

computing-a cirefly optimization approach. Journal of Grid Computing, 2016.

14(2): 327-345

120. T. C. Ferreto, M.A.S.N., R. N. Calheiros, et al. Server consolidation with

migration control for virtualized data centers[J]. Future Generation Computer

Systems, 2011, 27(8): 1027-1034, Server consolidation with migration control

for virtualized data centers[J]. Future Generation Computer Systems, 2011.

27(8): 1027-1034

121. M. Marzolla, O.B., F. Panzieri, Server consolidation in clouds

through gossiping[C]. in Proceedings of the International

Symposium on World of Wireless, Mobile and Multimedia

Networks. 2011 Lucca.

122. A. Verma, P.A., A. Neogi, pMapper: power and migration cost aware

application placement in virtualized systems[C], in Proceedings of the

ACM/IFIP/USENIX 9th International Middleware Conference. 2008: Leuven.

123. E. Feller, C.M., Autonomous and energy-aware management of

large-scale cloud infrastructures, in Proceedings of the 26th

International Parallel and Distributed Processing Symposium

Workshops and Ph D Forum. 2012: Shanghai.

124. S. Chen, J.W., Z. H. Lu, A cloud computing resource scheduling policy based

on genetic algorithm with multiple fitness[C]. in Proceedings of the 12th

International Conference on Computer and Information Technology. 2012:

Chengdu.

http://etd.uwc.ac.za/

156

125. Y. Q. Gao, H.B.G., Z. W. Qi, et al. , A multi-objective ant colony system

algorithm for virtual machine placement in cloud computing[J]. . Journal of

Computer and System Sciences, 2013. 79(8): 1230-1242.

126. L. Wei, C.H.F., B. He, et al., IEEE Transactions on Cloud Computing,

accepted and published online. Towards efficient resource allocation for

heterogeneous workloads in Iaa S clouds [J].

127. Mann., Z.Á., Multicore-aware virtual machine placement in cloud data

centers[J]. IEEE Transactions on Computers, 2016 65(11): 3357-3369.

128. B. Jennings, R.S., Resource management in clouds: Survey and

research challenges[J]. . Journal of Network and Systems Management,

2015. 23(3): 567-619

129. K. Zheng, X.W., L. Li L, et al. , Joint power optimization of data center

network and servers with correlation analysis[C]. in Proceedings of the IEEE

Conference on Computer Communications. 2014: Toronto.

130. N. Kord, H.H., An energy-efficient approach for virtual machine placement in

cloud based data centers[C]. , in Proceedings of the 5th Conference on

Information and Knowledge Technology. 2013: Shiraz.

131. X. Wang, X.W., K. Zheng K, et al. , Correlation-aware traffic consolidation

for power optimization of data center networks[J]. IEEE Transactions on

Parallel and Distributed Systems, 2016. 27(4): 992-1006

132. K. S. Rao, P.S.T., Heuristics based server consolidation with residual resource

defragmentation in cloud data centers[J]. . Future Generation Computer

Systems, 2015 50: 87-98.

133. Crisler, K.J. and M.L. Needham, Time slot allocation method. 1997, Google

Patents.

http://etd.uwc.ac.za/

157

134. C. Reiss, J.W., J. L. Hellerstein. Google Inc, Google cluster-usage traces:

format+ schema[R], W. Paper, Editor. 2011,.

135. Google cluster-usage traces (version 2), h.c.g.c.p.g., Google Inc., 2014

136. F. Tao, C.L., T. W. Liao, et al. , BGM-BLA: a new algorithm for dynamic

migration of virtual machines in cloud computing[J]. IEEE

Transactions on Services Computing, 2016. 9(6): 910-925

137. M. Dabbagh, B.H., M. Guizani, et al. , Toward energy-efficient cloud

computing: Prediction, consolidation, and overcommitment[J]. IEEE Network,

2015. 29(2): 56-61

139. Gülağız, F.K. and O. Gök. Estimation of Synchronization Time in Cloud

Computing Architecture. in International Conference on Mobile Networks and

Management. 2016. Springer.

140. Yu, W., et al., A survey on the edge computing for the Internet of Things. IEEE

Access, 2018. 6: p. 6900-6919.

141. Yi, S., C. Li, and Q. Li. A survey of fog computing: concepts, applications and

issues. in Proceedings of the 2015 workshop on mobile big data. 2015. ACM.

142. Taneja, M. and A. Davy, Resource aware placement of data analytics platform

in Fog Computing. Procedia Computer Science, 2016. 97: p. 153-156.

143. Aazam, M. and E.-N. Huh. Fog computing micro datacenter based dynamic

resource estimation and pricing model for IoT. in Advanced Information

Networking and Applications (AINA), 2015 IEEE 29th International

Conference on. 2015. IEEE.

144. Krishnan, Y.N., C.N. Bhagwat, and A.P. Utpat. Fog computing—Network

based cloud computing. in Electronics and Communication Systems (ICECS),

2015 2nd International Conference on. 2015. IEEE.

http://etd.uwc.ac.za/

158

145. Yi, S., Z. Qin, and Q. Li. Security and privacy issues of fog computing: A

survey. in International conference on wireless algorithms, systems, and

applications. 2015. Springer.

146. Peng, M., et al., Fog-computing-based radio access networks: issues and

challenges. Ieee Network, 2016. 30(4): p. 46-53.

147. Gupta, H., et al., iFogSim: A toolkit for modeling and simulation of resource

management techniques in the Internet of Things, Edge and Fog computing

environments. Software: Practice and Experience, 2017. 47(9): p. 1275-1296.

148. Gubbi, J., et al., Internet of Things (IoT): A vision, architectural elements, and

future directions. Future generation computer systems, 2013. 29(7): p.

1645-1660.

149. Wei, P., et al., Impact Analysis of Temperature and Humidity Conditions on

Electrochemical Sensor Response in Ambient Air Quality Monitoring. Sensors,

2018. 18(2): p. 59.

150. Li, H., Wu, C., Li, Z. and Lau, F.C. Profit-maximizing virtual machine trading

in a federation of selfish clouds. . in In INFOCOM, 2013 Proceedings IEEE

(pp. 25-29). IEEE. 2013, April.

151. Bagula, A., D. Djenouri, and E. Karbab. Ubiquitous sensor network

management: The least interference beaconing model. in 2013 IEEE 24th

Annual International Symposium on Personal, Indoor, and Mobile Radio

Communications (PIMRC). 2013.

152. Sehgal, A., Using the contiki cooja simulator. Computer Science, Jacobs

University Bremen Campus Ring, 2013. 1: p. 28759.

http://etd.uwc.ac.za/

159

153. Dunkels, A., B. Gronvall, and T. Voigt. Contiki-a lightweight and flexible

operating system for tiny networked sensors. in 29th annual IEEE

international conference on local computer networks. 2004. IEEE.

154. Hong K., L.D., Ramachandran U. , Mobile fog：aprogramming model for

large-scale applications on the internet of things[C], in ACM SIGCOMM

Workshop on Mobile Cloud Computing. 2013: ACM.

155. Oueis, J., E.C. Strinati, and S. Barbarossa. The Fog Balancing: Load

Distribution for Small Cell Cloud Computing. in 2015 IEEE 81st Vehicular

Technology Conference (VTC Spring). 2015.

156. Yangui, S., et al. A platform as-a-service for hybrid cloud/fog environments. in

2016 IEEE International Symposium on Local and Metropolitan Area

Networks (LANMAN). 2016.

157. Abedin, S.F., et al. A Fog based system model for cooperative IoT node

pairing using matching theory. in 2015 17th Asia-Pacific Network Operations

and Management Symposium (APNOMS). 2015.

158. Intharawijitr, K., K. Iida, and H. Koga. Analysis of fog model considering

computing and communication latency in 5G cellular networks. in 2016 IEEE

International Conference on Pervasive Computing and Communication

Workshops (PerCom Workshops). 2016.

159. Deng, R., et al. Towards power consumption-delay tradeoff by workload

allocation in cloud-fog computing. in 2015 IEEE International Conference on

Communications (ICC). 2015.

160. Sarkar, S. and S. Misra Theoretical modelling of fog computing: a green

computing paradigm to support IoT applications. IET Networks, 2016. 5,

23-29.

http://etd.uwc.ac.za/

160

161. Ningning, S., et al., Fog computing dynamic load balancing mechanism based

on graph repartitioning. China Communications, 2016. 13(3): p. 156-164.

162. Ogawa HS, d.O.B., Rodrigues TJ, et al., Energy consumption and memory

footprint evaluation of RPL and CTP in TinyOS In: Proceedings of the

XXXIV Simposio Brasileiro de Telecomunicacxoes (SBrT 2016), Santare ḿ, PA,

30 August–2 September 2016. 2016.

163. Felici-Castell S, P.-S.J.J., Segura-Garcia J, et al., Experimental trade-offs

between different strategies for multihop communications evaluated over real

deployments of wireless sensor network for environmental monitoring[J].

International Journal of Distributed Sensor Networks, 2018. 14(5):

1550147718774465.

164. K. Machado, D.R., E. Cerqueira, Antonio A. F. Loureiro, A. Neto, and José

Neuman de Souza, ―A Routing Protocol Based on Energy and Link Quality for

Internet of Things Applications‖PMC, PMCID: PMC3649399, February

2013. .

165. Chiang, M. and T. Zhang, Fog and IoT: An overview of research opportunities.

IEEE Internet of Things Journal, 2016. 3(6): p. 854-864.

166. Yannuzzi, M., et al. Key ingredients in an IoT recipe: Fog Computing, Cloud

Computing, and more Fog Computing. in 2014 IEEE 19th International

Workshop on Computer Aided Modeling and Design of Communication Links

and Networks (CAMAD). 2014. IEEE.

167. Donassolo, B., et al., Fog Based Framework for IoT Service Provisioning.

2018.

168. Aazam, M. and E.-N. Huh. Fog computing and smart gateway based

communication for cloud of things. in Future Internet of Things and Cloud

(FiCloud), 2014 International Conference on. 2014. IEEE.

http://etd.uwc.ac.za/

161

169. Davis, L., Handbook of genetic algorithms. 1991.

http://etd.uwc.ac.za/

	Title page:Resource management in the Cloud: An End-to-end Approach
	Acknowledgements
	stractAbstractAbstract AbstractAbstract
	Key wordsKey wordsKey words Key words Key wordsKey words

