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Abstract 

Ovarian cancer (OC) is the most fatal gynaecologic malignancy that is generally diagnosed in 

the advanced stages, resulting in a low survival rate of about 40%. This emphasizes the need 

to identify a biomarker that can allow for accurate diagnosis at stage I. MicroRNAs (miRNAs) 

are appealing as biomarkers due to their stability, non-invasiveness, and differential 

expression in tumour tissue compared to healthy tissue. Since they are non-coding, their 

biological functions can be uncovered by examining their target genes and thus identifying 

their regulatory pathways and processes.  

This study aimed to identify miRNAs and genes as candidate biomarkers for early stage OC 

diagnosis, through two distinct in silico approaches. The first pipeline was based on sequence 

similarity between miRNAs with a proven mechanism in OC and miRNAs with no known role. 

This resulted in 9 candidate miRNAs, that have not been previously implicated in OC, that 

showed 90-99% similarity to a miRNA involved in OC. Following a series of in silico 

experimentations, it was uncovered that these miRNAs share 12 gene targets that are 

expressed in the ovary and also have proven implications in the disease. Since the miRNAs 

target genes contribute to OC onset and progression, it strengthens the notion that the 

miRNAs may be dysregulated as well. Using TCGA, the second pipeline involved analysing 

patient clinical data along with implementing statistical measures to isolate miRNAs and 

genes with high expression in OC. This resulted in 26 miRNAs and 25 genes being shortlisted 

as the potential candidates for OC management. It was also noted that targeting interactions 

occur between 15 miRNAs and 16 genes identified through this pipeline. In total, 35 miRNAs 

and 37 genes were identified from both pipelines. 

To rank all the identified candidates based on strength and priority, those with targeting 

interactions were subjected to trident to assess their triplex-forming potential. All candidates 

had similar triplex scores, except miR-2-14 and ACTB, identified through the second pipeline, 

which had the strongest interaction and was therefore deemed a top priority candidate.  

Since bioinformatics offers a predictive outcome, all identified candidates need to undergo 

molecular validation to ensure not only their dysregulated expression in OC but also the 

modulating effect that these miRNAs have on their target genes.   
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Chapter 1 

Literature review 

1.1. Cancer overview 

The human body is composed of trillions of cells and cancer can arise when one abnormal cell 

begins to divide and proliferate uncontrollably. Cancer can develop in any part of the body 

and while each cancer type has its own distinct characteristics, the overall processes that give 

rise to cancers are similar.  Cells have specific rules on cell division; however, a cancerous cell 

follows its own program for proliferation. A mass of these abnormal cells forms a tumour 

which can either stay in its original tissue (benign) or invade other tissues (malignant). The 

cells from malignant tumours can establish new tumours throughout the body via the blood 

or lymphatic system, a process called metastasis (National Institutes of Health, 2007). 

1.1.1. Cancer and the cell cycle 

The cell cycle has four consecutive phases, namely mitosis (M), Gap 1 (G1), synthesis (S) and 

Gap 2 (G2). According to Williams et al. (2011), the most important phases are the S phase, 

when DNA replication takes place and the M phase, when the cell divides to yield two identical 

daughter cells. Following the M phase is the G1 phase. This is the period between mitosis and 

the start of DNA replication, and in this phase the cell is metabolically active and constantly 

growing. After the G1 phase is the S phase, followed by the G2 phase. During the G2 phase, the 

cell continues to grow and proteins are produced to prepare for mitosis. A cell cycle 

checkpoint protects cells by not allowing damaged or incomplete chromosomes to be 

replicated and passed on to daughter cells. At the checkpoint in G1 phase, cell cycle arrest is 

overseen by p53, which is a protein activated in response to DNA damage.  In many cancers, 

the gene that encodes p53 (TP53) is mutated therefore allowing the damaged DNA to be 

replicated and passed on to daughter cells rather than being corrected (Cooper, 2000). 

1.1.2. Tumour biology 
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Tumours that have become dedifferentiated and lost their tissue-specific traits are anaplastic 

as it is not possible to use histopathological criteria to determine their origin. These tumours 

are classified as cancers of unknown primary origin (CUP), showing the difficulty in 

determining the tumours original site of development in the patient. The progression of 

tumours is a multi-step process towards increasing aggressive and invasive behaviour. The 

first step is usually hyperplasia and this is when tissues have growths consisting of an 

abnormal number of cells. The cells may appear normal and may be in the correct tissue but 

their proliferation is no longer regulated. Metaplasia is an excessive proliferation of cells that 

are not normally found in that specific tissue; however, the cells appear to be normal. The 

next step in tumour progression is dysplasia and this occurs due to proliferation of abnormal 

cells. The cells giving rise to dysplastic tumours are considered to be abnormal cells as they 

have undergone changes in size, shape and organization. The last step before a tissue can 

become cancerous is termed neoplasia, and this is when the abnormal cells divide in the 

incorrect tissue (Weinberg, 2014).  

Cancer cells thrive and proliferate by prolonged growth signals (oncogenes) and avoiding anti-

growth signals (tumour suppressors). Proto-oncogenes stimulate growth and a mutation in a 

proto-oncogene that allows it to be permanently activated leads to the cell growing out of 

control, and thus giving rise to cancer. The mutated proto-oncogene stimulating prolonged 

growth and division becomes known as an oncogene. Tumour suppressor genes either halt 

the cell cycle, repair DNA errors, or induce apoptosis. A mutation in a tumour suppressor gene 

allows for damaged DNA to be replicated, which could therefore give rise to cancer as well 

(Chow, 2010). Apoptosis is the process whereby cells follow a course towards death once 

specific stimuli is received. However, cancer cells avoid apoptosis which contributes to 

malignant transformation (Wong, 2011). In the 1970s, Kerr et al. (1972), connected apoptosis 

to the removal of “potentially malignant cells, hyperplasia and tumour progression”. 

Therefore, a reduction in apoptosis or resistance to it plays an important role in cancer (Wong, 

2011). 

Tumours can remain benign or they become malignant through the process of metastasis. A 

malignant tumour can metastasize by travelling through either the lymphatic system or the 

blood system (Hejmadi, 2010) and constructing secondary tumours in a distant tissue site 

(Leber et al., 2009). Cancer cells that are not in close proximity to blood vessels create new 
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blood vessels, known as angiogenesis, in order to metastasize and invade nearby tissues (Neal 

and Berry, 2006). 

1.1.3. Hallmarks of cancer 

The hallmarks of cancer involve six major biological abilities acquired during the multistep 

advancement of tumours. These steps arise from genetic alterations enabling the 

transformation of normal cells into malignant cells (Hanahan and Weinberg, 2011). Figure 1.1 

shows the six major hallmarks which will be discussed further.   

 

Figure 1.1: The six hallmarks of cancer (Hanahan and Weinberg, 2011). 

1.1.3.1. Self-sufficiency in growth signals 

Normal cells control the production and release of growth-promoting signals that moves 

them from a state of dormancy into an active state of proliferation (Hanahan and Weinberg, 

2000), guaranteeing homeostasis in cell number and maintenance of tissue function. In 

cancer cells however, the growth and proliferative signalling pathways contain alterations in 
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their growth ligands, receptors or cytosolic signalling molecules, thus resulting in their 

uncontrolled growth and proliferation (Fouad and Aanei, 2017).  

Without growth signals, healthy cells cannot proliferate thus demonstrating their 

dependence on these signals. Cancer cells thrive by creating a positive feedback signalling 

loop in which they synthesize their own growth factors, therefore reducing their dependence 

on exogenous growth signals and disrupting the crucial homeostatic mechanism (Hanahan 

and Weinberg, 2000).  

In many cancers, growth factor receptors are overexpressed, enabling cancer cells to become 

hyperresponsive to ambient levels of growth factors that would not usually trigger a response 

(Hanahan and Weinberg, 2000).   

1.1.3.2. Insensitivity to antigrowth signals 

Anti-growth signals maintain cellular and tissue homeostasis within healthy tissues. These 

signals block proliferation by either forcing cells out of their active state of proliferation, 

whereby they may reoccur if future signals allow, or by permanently relinquishing their ability 

to proliferate. In order for cancer cells to survive and thrive, they work to avoid and diminish 

these signals (Hanahan and Weinberg, 2000).  

Tumour suppressors limit proliferation and cell growth and are generally deactivated or 

downregulated in cancer. Two key tumour suppressors in cancer encode the p53 and Rb 

(retinoblastoma-associated) proteins.  The Rb protein receives signals from extracellular and 

intracellular sources and decides whether a cell will proceed into the cell cycle or not. p53 

receives stimuli from stress and abnormality sensors within the cell and will halt the cell cycle 

if there is excessive DNA damage or unfavourable conditions. The Rb and p53 pathways are 

flawed in cancer cells therefore allowing uncontrolled proliferation (Hanahan and Weinberg, 

2011). 

1.1.3.3. Tissue invasion and metastasis 

The main aspect of a malignant tumour is the ability to invade nearby and distant tissues to 

form secondary tumours. For cancer cells to reach distant tissues, they have to (i) invade via 

http://etd.uwc.ac.za/ 



5 
 

the extracellular matrix (ECM), along with the basement membrane and stromal cells, (ii) 

invade into blood or lymphatic vessels, (iii) endure transportation in circulation, (iv) exit the 

blood or lymphatic vessels at the parenchyma of distant tissues, (v) withstand and control 

foreign environments to form micro-metastases which may (vi) develop into macro-

metastases (Fouad and Aanei, 2017).  

Invasive and metastatic capabilities of a cell results in the change of proteins that link cells to 

their surroundings within a tissue. Such proteins include cell-cell adhesion molecules (CAMs) 

as well as integrins. The most commonly observed cancerous modification in cell-to-

environment involves E-cadherin, which is an interaction molecule expressed on epithelial 

cells. The interaction between E-cadherins on neighbouring cells results in the stimulation of 

anti-growth signals. In most epithelial cancers, E-cadherin function is absent through various 

mechanisms that include mutational inactivation and transcriptional repression. This serves 

as evidence that E-cadherin acts as a tumour suppressor in epithelial cancers by inhibiting 

invasion and metastasis, thus making its elimination a crucial aspect for cancer cells (Hanahan 

and Weinberg, 2000). 

1.1.3.4. Limitless replicative potential 

The ability to replicate infinitely is a phenotype that is acquired during tumour progression 

and is vital for malignant growth conditions (Hanahan and Weinberg, 2000). This is a clear 

distinction from healthy cells, that can only pass through a restricted number of consecutive 

cell cycles due to two proliferation barriers namely (a) senescence, a generally irreversible 

entry into a viable but non-proliferative form, and (b) cell death when in crisis state (Hanahan 

and Weinberg, 2011).  

The ends of chromosomes, called telomeres, has become a counting device for cell 

generations. With each cell cycle, telomeric DNA from the ends of all chromosomes are lost, 

thus making it possible to count the replicative generations. This loss of telomeric DNA is due 

to the inability of DNA polymerases to fully replicate the 3’ ends of the chromosomal DNA 

during each S phase. Consecutive cycles result in destroyed telomeres and therefore 

unprotected chromosomal ends, which may result in death of the affected cell. Malignant 

cells with the potential to replicate limitlessly, protect and maintain their telomeres by one 
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of two mechanisms. They either upregulate their expression of the telomerase enzyme that 

adds hexanucleotide repeats onto telomeric DNA ends, or they activate Alternative 

Lengthening of Telomeres (ALT) which is a mechanism to maintain telomeres via 

“recombination-based interchromosomal exchanges of sequence information” (Hanahan and 

Weinberg, 2000). 

1.1.3.5. Sustained angiogenesis 

Blood vessels supply oxygen and nutrients to the cells which are essential for their function 

and survival, therefore compelling cells to exist within 100 µm of a capillary blood vessel. 

Angiogenesis is the process whereby new blood vessels are produced and is carefully 

regulated. Cancerous cells originally lack angiogenic abilities (Hanahan and Weinberg, 2000), 

therefore hindering their motive to expand as they require blood or lymphatic vessels as a 

transport to invade surrounding tissues. Members from the hypoxia-inducible transcription 

factor (HIF) family control the expression of genes implicated in angiogenesis, cell survival and 

metabolism, therefore making hypoxia an angiogenic trigger. Since hypoxia is a trait of 

tumours, it is understandable that they would have increased levels of HIF, correlating with a 

poor prognostic outcome (Fouad and Aanei, 2017). 

Well known inducers of angiogenesis are members from the vascular endothelial growth 

factor (VEGF) family. They encode ligands involved in the generation of new blood vessels 

during stages of growth and postnatal development, as well as in homeostatic survival of 

endothelial cells. VEGF expression can also be upregulated due to hypoxia, thus further 

indicating how cancer cells ensure their survival via angiogenesis (Hanahan and Weinberg, 

2011).  

1.1.3.6. Evading apoptosis 

Cell programmed death (apoptosis) is a natural way to ensure cell number and maintain 

homeostasis. When triggered by various signals, apoptosis takes places in a series of well-

defined steps. Cellular membranes are disturbed, nuclear and cytoplasmic skeletons are 

destroyed, cytosol is released, chromosomes are degenerated and the nucleus is broken 

down. This entire process takes place within 30-120 minutes. There are two classes that make 
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up the apoptotic machinery, sensors and effectors. Sensors supervise the extracellular and 

intracellular environments by looking out for normal or abnormal conditions that dictate 

whether a cell should die or not. These signals regulate effectors which implement apoptosis 

(Hanahan and Weinberg, 2000).  

Tumour cells employ a variety of mechanisms in order to restrict and avoid apoptosis. The 

most common mechanism relates back to loss of TP53 function, therefore eliminating this 

important damage sensor from inducing apoptosis (Hanahan and Weinberg, 2011).  

1.2. Ovarian cancer 

Ovarian cancer (OC) is the most common gynaecologic disease and has a 5-year survival rate 

of approximately 40% (Whittemore et al., 1992). In 2009, the American Cancer Society stated 

that out of all gynaecologic malignancies, OC has the highest case-to-fatality ratio. This high 

fatality rate is mostly due to the fact that OC is usually diagnosed at an advanced stage and 

at this point the cancer has already metastasized within the peritoneal cavity (Lengyel, 2010).  

The risk of women developing OC in their lifetime is 1 in 71 and the possibility of dying from 

it is 1 in 95 (Razi et al., 2016). There is a huge difference in overall cancer survival rates 

between developed and developing countries. A reason for this could be due to inadequate 

access to diagnostic and therapeutic procedures because of the expense that these 

procedures hold (Redaniel et al., 2009). This would thus emphasize the need for cheaper 

diagnostic methods and therapies.  

1.2.1. Physiology and anatomy of the ovary 

Females have two ovaries that form part of their reproductive system, as seen in Figure 1.2. 

The ovaries produce the eggs required in order to conceive a child and are connected to the 

uterus via the fallopian tubes (Torpy, 2011). The ovaries are located within the pelvic cavity 

and are approximately 2 to 3 cm in length.  
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Figure 1.2: Anterior view of the female reproductive system (Cancer Association of South 

Africa, 2016).  

The ovaries are made up of two different types of cells, namely germ cells and somatic cells. 

Germ cells give rise to the oocytes (eggs) while somatic cells make up the granulose, thecal 

and stromal cells (Richards et al., 2010).  

1.2.2. Histological subtypes of OC 

There are various types of OCs and they can be categorized according to the structures from 

which the tumours arise (Chen et al., 2003). The four major categories for ovarian tumours 

are (i) Epithelial carcinomas, (ii) Germ cell carcinomas, (iii) Stromal carcinomas, and (iv) small 

cell carcinoma. For each category, there are many subcategories however only the main 

categories will be briefly overviewed.  

1.2.2.1. Epithelial carcinoma 

Epithelial OC is the most fatal gynaecological malignancy and according to Fagotti et al. 

(2010), patients with this type of OC have a 5-year survival rate of approximately 39%. This 

type of tumour arises from the cells lining the ovary and is the most common form of OC. As 

a result of tumour growth, cancerous cells shed into the peritoneal fluid and are able to 

spread to other parts in the peritoneal cavity. 
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1.2.2.2. Germ cell carcinoma  

Germ cell ovarian tumours originate in the cells forming the eggs. They make up about 20-

25% of all ovarian tumours, but only 5% are malignant while the rest are benign (Shaaban et 

al., 2014).  

1.2.2.3. Stromal carcinoma  

Ovarian stromal tumours occur in the connective tissue cells inside the ovary and they 

comprise about 8% of all OCs (Chen et al., 2003). A cancerous stroma produces molecules 

essential for tumour biology and a large ovarian stroma is linked to low survival rates in 

advanced stage of the disease (Davidson et al., 2014). 

1.2.2.4. Small cell carcinoma 

Small cell carcinoma of the ovary (SCCO) is a scarce, malignant and very aggressive tumour. It 

accounts for 0.1% of all OCs and is linked to a poor prognosis and high fatality rate. SCCO is 

an undifferentiated neoplasm and its origin is yet unknown (Origoni et al., 2013).  

1.2.3. Aetiology of OC 

There are various factors associated with OC development; specific factors may increase the 

chance of a woman getting OC while other factors may reduce the likelihood. Having certain 

risk factors does not mean that the woman is destined to develop OC and some women who 

have this disease may have no known risk factors.  

There are various factors believed to reduce the risk of OC, and the biggest preventative 

strategies are using oral contraceptives and tubal ligation (McLemore et al., 2009). The 

section that follows will focus on some of the risk factors for OC. 

1.2.3.1. Genetic factors and family history 

The most crucial genetic risk factor for OC is a genetic mutation in the inherited BRCA1 and/or 

BRCA2 genes, which are accountable for approximately 85% of hereditary OCs (Toss et al., 

2015). Mutations in the BRCA1 and BRCA2 genes are predominantly associated with breast 
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cancer development, however since mutations in these genes are also involved in OC, it is 

safe to say that women who have had breast cancer are at increased risk for OC (Pruthi et al., 

2010).  

Lynch Syndrome is an autosomal dominant condition resulting from errors in the mismatch 

repair region genes, MLH1, MSH2, MSH6 or PMS2 (Kastrinos, 2009). Mutations in these genes 

results in an increased susceptibility to cancer, and studies have shown that women with 

Lynch Syndrome have a high risk of developing OC (Lu et al., 2013).  

A study conducted by Negri et al. (2002), demonstrated that the risk of a woman developing 

OC increases if someone in her family has had ovarian or breast cancer. This thus shows that 

family history also acts as a genetic factor in the development of OC. 

1.2.3.2. Reproductive and hormonal factors 

In 1971, Fathalla proposed that frequent ovulation increases the risk of DNA mutations due 

to the rupture and repair cycle of the ovarian surface epithelium. Since pregnancy suppresses 

ovulation, it lowers the risk of OC (Salehi et al., 2008). According to Hunn and Rodriguez 

(2012), pregnancy reduces the risk of OC by one-third, with the reduction increasing with each 

additional pregnancy. It was also proposed by Rostgaard et al. (2003) that pregnancy removes 

premalignant and damaged cells from the ovary.  

The risk of OC increases with the use of hormone replacement therapy (HRT). Various studies 

found a slight increase in OC risk for long-term users of oestrogen replacement therapy and 

noted that progestins might sporadically further increase the risk (Lacey, 2002; Riman, 2002; 

Daniilidis and Karagiannis, 2007).  

1.2.3.3. Age 

Age is considered an important risk factor for OC as it usually affects older women. This 

disease is most prevalent in women aged between 50 and 70 years old, with 70% of cases 

being diagnosed in women who are older than 55 years (Sundar et al., 2015).  

There is also an increase in risk for women who started menstruating before the age of 12 

years (McLemore et al., 2009). 

http://etd.uwc.ac.za/ 



11 
 

1.2.3.4. Lifestyle and environmental factors 

It has been confirmed by Olsen et al. (2013) that obesity increases the risk for OC and 

according to Feng (2015), the risk is increased by 30%. Adipose tissue (fat tissue) produces 

high levels of oestrogen, which supports growth of ovarian surface epithelial cells. Therefore, 

an increase in adipose tissue would result in an increase in the production of oestrogen 

(Leitzmann et al., 2009) and thus an over-proliferation of ovarian surface epithelial cells.  

Many studies found a correlation between talcum powder usage and an increase in risk for 

OC development. The talc particles may either become fixed on the ovarian surface epithelial 

or it can be absorbed into the pelvic cavity where it is found in inclusion cysts. The foreign 

body in the inclusion cyst forms a granuloma which starts an inflammatory response. It is 

proposed that this inflammatory response leads to DNA damage which initiates the events 

needed for tumorigenesis (McLemore et al., 2009).  

There have been many studies attempting to determine dietary factors influencing OC risk, 

and results have been either conflicting or inconclusive. Therefore, further studies will be 

needed in order to conclude if dietary factors have an effect on the risk of OC (Hunn and 

Rodriguez, 2012). 

1.2.4. Symptoms of OC 

The early symptoms of OC are extremely mild therefore it is usually diagnosed in the advanced 

stages (Russo et al., 2009). The symptoms are non-specific to OC and these symptoms include 

abdominal discomfort, nausea, indigestion, fatigue and frequent urination. The absence of 

early symptoms accounts for the late diagnosis of OC which then results in the low survival 

rate. This therefore further emphasizes the need for an early diagnostic tool (Burges and 

Schmalfeldt, 2011). 

1.2.5. Stages of OC 

There are four main stages in OC. The first stage is when the cancer is still enclosed within the 

ovaries and the second stage occurs when the cancer involves one or both ovaries and the 

tumour spreads to other regions within the pelvic cavity. Stage three OCs involve one or both 
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ovaries and the spread of the tumour to other regions within the peritoneum and/or spread 

to the lymph nodes. The fourth and final stage of OC involves the tumour spreading to distant 

regions in the body (Sahdev, 2016). 

1.2.6. Global and local prevalence 

In 2013, OC was ranked the sixth most common cancer and the seventh cancer-related cause 

of death amongst women globally. As seen in Figure 1.3.1, the highest incidence rate for OC 

was reported to be in Europe with more than 8 cases per 100 000, while the lowest incidence 

rate was said to be in Africa with less than 5 cases per 100 000.  

 

Figure 1.3.1: Worldwide incidence rates of OC in 2008 (Chornokur et al., 2013). 

While the incidence rate for OC in African women may be the lowest, the mortality rate is the 

highest. This is a result of racial-related health disparity as Africa has inadequate access to 

accurate diagnostic and therapeutic methods (Chornokur et al., 2013). 

Death rates per 100 000 individuals in South Africa for OC have increased by 41% from 1990 

to 2015 (CNS reporter, 2016). In South Africa, 1 in 460 women have a lifetime risk of 

developing OC, which is the 9th cancer-related cause of death in South African women (South 

African Medical Research Council, no date). In 2001, the National Cancer Registry recorded 
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529 cases of OC in South Africa. Of these 529 cases, 207, 225, 69, and 16 were in white, black, 

coloured and Asian patients, respectively (Smith and Guidozzi, 2009).  

As mentioned earlier, the symptoms for OC are extremely elusive, thus resulting in advanced-

stage diagnosis and low five-year survival rates. According to Chornokur et al. (2013) the 

survival rates for OC can increase to over 90% if it is caught in stage I. Figure 1.3.2 shows the 

percentage of cases from 2007 to 2013 and the relative survival rates by stage at diagnosis.  

 

Figure 1.3.2: Percentages of OC cases by stage of diagnosis and their respective 5-year survival 

rates from 2007 to 2013 (National Cancer Institute, no date).  

As observed in Figure 1.3.2, when OC is diagnosed at an early stage, preferably stage I, the 

survival rate is above 90%. This thus emphasizes the need for early detection of OC which 

would also positively impact the effectiveness of treatment. The reason for OC usually being 

diagnosed late is due to the ineffectiveness of current screening methods available.  

1.2.7. Screening and diagnosis of OC 

The main purpose of OC screening tests is for early detection of the disease or risk factors in 

seemingly healthy patients that are possibly at risk. Diagnostic tests confirm the existence or 

absence of OC and are performed on patients who either display the relevant symptoms or 

patients with a positive screening test result.  

1.2.7.1. Screening tests 

http://etd.uwc.ac.za/ 



14 
 

Transvaginal ultrasonography (TVS) and the cancer antigen 125 (CA-125) are the two most 

considered methods for OC screening. A clinical trial performed in the United States reported 

that the usage of these tests did not decrease the mortality risk, whereas a trial performed in 

the United Kingdom recorded benefits of using these tests (Doubeni et al., 2016). 

TVS scans a woman’s reproductive organs by using a probe that is inserted into the vagina. 

The probe emits sound waves that reflect off the body structures while a computer captures 

the waves and converts them into a picture (Cancer Association of South Africa, 2016). TVS is 

accurate in identifying abnormalities in the mass and physical structure of the ovaries; 

however, it is unable to distinguish between benign and malignant tumours. It has sensitivity 

to OC but a low positive predictive value when used alone for screening; therefore, it is usually 

used together with serum markers (e.g., CA-125) (Van Nagell and Hoff, 2014). 

CA-125 is a glycoprotein of high molecular weight, expressed in large amounts by cancerous 

ovarian cells. The levels of CA-125 are found to be higher in cancerous cells than in healthy 

cells, thus it may assist doctors in establishing diagnosis. However, it is common when using 

CA-125, to obtain a false positive result as it elevated in some benign conditions as well in 

other cancers (Rauh-Hain et al., 2011). This thus lacks the sensitivity and specificity for OC, 

but it is still an important means for monitoring OC progression, reoccurrence as well as the 

effectiveness of treatment (Cancer Association of South Africa, 2016).  

Since TVS and CA-125 are insufficient when used as a screening method alone, it has been 

observed that screening for OC is more effective when these methods are performed 

together (Van Nagell and Hoff, 2014).  

1.2.7.2. Diagnostic tests 

There are various diagnostic tests that can be performed to confirm the presence of OC. These 

include, imaging tests, blood tests and biopsies.  

Imaging tests such as ultrasounds, computed tomography, positron emission tomography and 

magnetic resonance imaging have the ability to conclude if an abnormal pelvic mass is 

present, by using waves to generate images of the ovary (Doubeni et al., 2016). 
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Blood tests have the ability to detect OC at an early stage based on the identification of certain 

proteins and DNA in a patient’s blood, caused by or as a by-product of the cancerous cells 

(Robertson, 2005). However, some proteins may not be present during early stages of OC.  

Surgery is the only way to accurately diagnose OC. This involves removing the ovary 

completely and analysing the cells. A biopsy of the ovary is not generally performed as the 

cancer may possibly spread, producing an even more advanced cancer (Chen and Berek, 

2017).  

There is currently no technology-based diagnostic technique that can accurately diagnose OC, 

therefore, performing surgery is still the preferred way to establish accurate diagnosis and 

staging of OC (Burges and Schmalfeldt, 2011).   

1.3. Biomarkers 

A biomarker is defined as a biological molecule identified in the blood, tissues and body fluids 

that is an indication of normal or irregular processes (Henry and Hayes, 2012). There are 

various types of biomarkers such as DNA, RNA, miRNAs, proteins, peptides and chemical 

modifications (Goossens et al., 2015). They allow for the differentiation of individuals with a 

disease from those without the disease. The changes could be attributed to mutations, 

transcriptional alterations, and post-translational modifications. Biomarkers can be non-

invasive and easily accessible from circulations, excretions or secretions, or they can be 

derived from tissues, which would involve biopsies (Henry and Hayes, 2012).  

A biomarker can serve many functions in cancer. Biomarkers can either serve as a (i) 

diagnostic biomarker, which establishes a certain diagnosis and confirms the presence of 

cancer, (ii) prognostic biomarker, which conveys information about a probable cancer 

outcome, regardless of treatment used or it can be a (iii) predictive biomarker, which shows 

the effectiveness of treatment in cancer patients with the biomarker compared to patients 

without the biomarker (Ballman, 2015).  

1.3.1. Applications of biomarkers 
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Since the development of cancer is an intricate process, it goes without saying that many 

changes will be made to cells, their contents and specific pathways. Biomarkers allow for the 

early detection of cancer as well as identifying a patient at risk. Over the years, cancer 

treatment has become relatively specific and target-oriented, with highly characterized 

targets in various cancers. Unfortunately, most targets have only been identified in advanced 

and metastatic cancers therefore restricting the effectiveness of treatment. There is a 

rationale that if targets can be found preferably in stage I, treatments will most likely be more 

effective (Negm et al., 2002). Thus, there is a need to identify early stage cancer biomarkers 

which can serve as targets in treatment.  

Biomarkers play important roles: (i) before diagnosis, in risk assessment; (ii) at time of 

diagnosis, in identifying the stage and progression of disease; and (iii) after diagnosis, in 

monitoring treatment effects and disease reoccurrence (Ludwig and Weinstein, 2005).  

Techniques for OC biomarker discovery can be performed on patient tissue samples, blood, 

urine, and other body fluids. However, it is impractical to rely on tissues to identify biomarkers 

for early detection. Asymptotic women who have no reason to believe that they have OC 

would not deem invasive surgeries, such as biopsies, to be necessary. Therefore, the most 

efficient approach would be to screen for biomarkers that can be identified from bodily fluids. 

Since OC is extremely fatal, biomarkers for its early detection must be of high sensitivity and 

high specificity (Stephen et al., 2013). 

1.3.2. The ideal biomarker 

The ideal OC biomarker would be used in a general screening process and it would allow for 

the diagnosis of women without symptoms. It should also have the following qualities: 

1.3.2.1. Non-invasive and inexpensive 

It would be preferred to identify the biomarker via bodily fluids instead of tissues as it is easily 

accessible from body fluids and will not require invasive surgery. It should also be performed 

using an easy laboratory test which reduces the cost compared to surgery (Fathi et al., 2013).  

1.3.2.2. High specificity 
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The biomarker should be highly specific to OC, with a specificity of 99.6% which will allow for 

a positive predictive value. It would be an even greater advantage if the biomarker is able to 

differentiate between subtypes and causes of this disease (Fathi et al., 2013; Zhang et al., 

2011).   

1.3.2.3. High sensitivity 

The biomarker should be highly sensitive for OC, which could help in early detection. The 

sensitivity should be more than 75% to avoid a false-negative result (Fathi et al., 2013; Zhang 

et al., 2011).   

1.3.3. Current OC biomarkers 

There is yet no effective screening technique for the early diagnosis of OC (Rastogi et al., 

2016). There are various biomarkers used however none of them display the high specificity 

and the sensitivity required. The biomarkers currently used are discussed below: 

1.3.3.1. CA-125  

CA-125 is a high molecular weight glycoprotein and is expressed by approximately 80% of 

OCs. It lacks sensitivity and specificity as it is only elevated in 50-60% of stage I OCs and can 

be expressed at high levels in some benign conditions, pregnancy, menstruation as well as 

other cancers (Moore et al., 2010). Regardless, it is still useful in monitoring treatment and 

cancer reoccurrence. Using CA-125 and TVS together is the standard method for detecting OC 

(Rastogi et al., 2016).   

1.3.3.2. HE4 

Human Epididymis Protein 4 (HE4) is an over-expressed protein in OC. When compared to CA-

125, HE4 has a higher sensitivity for stage I OC and a lower false-positive result. Many OCs 

that do not express CA-125, do in fact express HE4 therefore, combining these tests for OC 

diagnosis is an excellent strategy. While the specific function of HE4 currently remains 

unknown, it has been shown to be absent from normal ovarian surfaces and highly expressed 

on OC surfaces (Coticchia et al., 2010).  
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1.3.3.3. VEGF 

VEGF is an angiogenic factor and thus is responsible for producing blood vessels via a process 

called angiogenesis. Cancers require an increase in blood supply in order to metastasize and 

invade other areas. VEGF levels are high in OC and also contribute to ascites (build-up of fluid 

in the peritoneal cavity). Many studies have shown that although high levels of ascites are a 

prognostic factor for OC, no differences in ascites levels were observed between control, 

benign and OC samples (Coticchia et al., 2010). Therefore, VEGF is not specific and sensitive 

to OC.  

1.3.3.4. Ova1 

Ova1 is a five-biomarker panel composed of second-generation CA-125 and other 

inflammatory and transport proteins. Even though this test has high sensitivity for OC, it is 

not used to establish diagnosis but rather for determining the possibility of malignancy in 

patients with ovarian tumours (Ueland, 2017).   

1.3.4. MicroRNAs as biomarkers 

MicroRNAs (miRNAs) are short, non-coding, single-stranded RNA molecules, with a length of 

17-25 nucleotides that are generally conserved across species. There are various studies 

establishing that miRNAs are present in different tissues and cell types, and their 

dysregulation is linked to many diseases, including cancer (Wang et al., 2015).  According to 

MacFarlane and Murphy (2010), miRNAs are predicted to constitute 1 to 5% of the human 

genome and they regulate approximately 30% of protein-coding genes.   

1.3.4.1. Biogenesis and function of miRNAs 

MiRNAs are important regulators of gene expression as they control various cellular and 

metabolic pathways (MacFarlane and Murphy, 2010). Figure 1.4 illustrates the overview of 

the miRNA biogenesis pathway. In the nucleus, the stem-loop precursors from the transcribed 

miRNA gene serves as the primary precursor miRNA (pri-miRNA). The 3’ poly-A-tail and 5’ 7-

methylguanosine cap of the pri-miRNA is cleaved by the miRNA processing complex, 
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comprised of RNase III Drosha along with its cofactor DGCR8, generating the precursor miRNA 

(pre-miRNA). The pre-miRNA is transported to the cytoplasm via exportin-5 (nuclear transport 

receptors) and Ran-GTP (nuclear protein), where it is cleaved by Dicer, producing a miRNA 

duplex (miRNA:miRNA*; with the asterisk denoting the passenger strand). The miRNA duplex 

is loaded onto an Argonaute protein (Ago2) by the Dicer-TRBP complex, forming the RNA-

induced silencing complex (RISC). (Wang et al., 2015). The guide strand separates from the 

passenger strand which is subsequently degraded. The functional miRNA (guide strand) 

guides RISC to its target mRNAs and silences it through mRNA cleavage, translational 

repression or deadenylation. Although this is the standard pathway of miRNA biogenesis, 

some steps may be left out or replaced for certain miRNAs (Winter et al., 2009). 

At the 5’ end of the mature miRNA, lies the “seed region” which is a 6-8 nucleotide sequence 

that has near-perfect complementarity to the mRNA target (Rolle et al., 2016). The level of 

complementarity doesn’t have to be an exact match, which therefore allows for one miRNA 

to target multiple mRNAs and multiple miRNAs to target a single mRNA (Barca-Mayo et al., 

2012).     
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Figure 1.4: MicroRNA biogenesis overview pathway (Winter et al., 2009). 

1.3.4.2. Circulating miRNAs  

Although majority of miRNAs have been identified within cells, there are also miRNAs 

circulating in the extracellular environment. These circulating miRNAs are highly stable, can 

withstand unfavourable conditions for an extended period of time and have differential 

expression between cancerous and normal samples (Zhang et al., 2015). Their availability in 

bodily fluids such as blood, saliva and urine, is appealing as it renders them a non-invasive 

biomarker (Allegra et al., 2012).  

It was recently discovered that these circulating miRNAs are contained within exosomes, 

along with proteins and nucleic acids, and can be taken up by surrounding or distant cells 

when exosomes circulate. Exosomes are membrane-bound vesicles present in nearly all 

biological fluids and play important roles in conveying information between cells. Due to the 

presence of specific surface proteins, the tissue or cell of origin of the exosome can be 

determined (Zhang et al., 2015). Exosomes can be released from many different types of cells 

including T-cells, B-cells, epithelial cells, and tumour cells. For this reason, major interest has 

been in exosomal miRNAs as diagnostic biomarkers in various diseases (Tian et al., 2017).  

1.3.4.3. Suitability of miRNAs as cancer biomarkers 

Cell communication is vital for tumour formation as tumour cells need to interact with each 

other and other healthy cells in order to subsist, thrive and metastasize. Communication 

between different tumour cells within the same patient (inter-tumour) allows for a 

heterogeneous population of cells to cooperate and survive in an unreceptive environment. 

Exosomes play an important role in the communication of cells, making the miRNAs 

transported and conveyed in tumour-derived exosomes of special interest (Thind and Wilson, 

2016).   

MiRNA alterations can be attributed to chromosomal abnormalities, genomic mutations, 

epigenetic changes as well as changes in miRNA biogenesis. Certain miRNA genes may be 

located at regions known to be mutated in cancer thus changing their function (Lan et al., 

2015). Circulating miRNAs released from cancer cells can prompt tumorigenesis in the 
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recipient cells, by acting as either oncogenes (oncomiRs) or tumour suppressive miRNAs. 

There have been numerous oncomirs identified, promoting cancer onset, invasion and 

migration (Wang et al., 2015). OncomiRs are predominantly overexpressed in cancer while 

tumour suppressive miRNAs are underexpressed (Svoronos et al., 2016). Aberrant levels of 

miRNA expressions have been evaluated in many cancers and the studies suggest that they 

serve as good diagnostic biomarkers and predictors of the patient’s response to treatment 

(Cheng, 2015).  

MiRNAs are suitable biomarkers as they are easily available in bodily fluids and have a high 

degree of specificity and sensitivity. They are also incredibly stable and resistant to boiling, 

pH changes, cycles of freeze-thawing and chemical or enzymatic fragmentation (Larrea et al., 

2016). The demand for biomarkers that can accurately diagnose early stage cancers is crucial 

as the patient’s survival and prognosis depends on the tumour stage at the time of detection, 

with early diagnosis almost always correlating to a better prognosis (Lan et al., 2015).  

The first case of miRNA association with a human cancer was discovered in 2002 by Calin and 

co-workers. They found that in chronic lymphocytic leukaemia (CLL), a commonly deleted 

chromosomal region (13q14) encodes miR-15 and miR-16. The deletion of the region 

containing the miRNA-encoding genes resulted in the deletion or downregulation of these 

miRNAs in CLL and also indicated that these genes are the targets of inactivation by allelic loss 

in CLL (Calin et al., 2002). Since then, miRNAs have been linked to several other cancers 

including OC.  

1.3.4.4. MiRNAs in OC 

Various high-throughput technologies and studies have discovered miRNA upregulation or 

downregulation in OC when compared to healthy ovaries and the different cell types (Deb et 

al., 2017). There are many miRNAs dysregulated in OC onset and progression, most of which 

are downregulated due to genetic and epigenetic processes. Various studies have 

investigated the potential of miRNAs in OC diagnosis by comparing different expression 

profiles in the ovarian surface epithelium with cancerous ovaries (Katz et al., 2015).  

It was reported that in OC patients, the under-expression of Dicer is strongly associated with 

advanced stage OC, and decreased expression of Drosha correlates with suboptimal surgery. 

http://etd.uwc.ac.za/ 



22 
 

These findings imply that the abnormal processing of Dicer and Drosha contributes to 

tumorigenesis and undesirable clinical outcomes (Nakamura et al., 2016).   

As stated in the previous section, miRNAs may either act as oncomiRs or tumour suppressive. 

miRNAs. As an example, peritoneal dissemination is one of the key characteristics in the 

metastasis of OC and it has been reported that integrin α5 is a crucial molecule in this process. 

Ohyagi-Hara et al. (2013) discovered that miR-92a prevents peritoneal dissemination by 

inhibiting integrin α5, therefore acting as a tumour suppressor. Table 1.1 shows the current 

circulating miRNA biomarkers used for the diagnosis of OC, and where the miRNA is sampled 

from.  

Table 1.1: Current diagnostic miRNA biomarkers in OC (Nakamura et al., 2016). 

Source Upregulated miRNA Downregulated miRNA 

Serum (exosome) 

miR-21, miR-141, miR-200a, 

miR-200b, miR-200c, miR-203, 

miR-205, miR-214 

 

Serum 

miR-21, miR92, miR-93, miR-

126, miR-29a, miR-182, miR-

200a, miR-200b, miR-200c, 

miR-21, miR-221, miR-7, miR-

429, miR-141 

miR-155, miR-127, miR-99b, 

miR-132, miR-26a, let7-b, miR-

145, miR-25, miR-93, miR-145 

Whole blood miR-30c-1 
miR-342-3p, miR-181a, miR-

450-5p 
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1.3.5. Methods for biomarker discovery 

As stated above, there are various types of biomarkers and there are also many different 

technologies allowing for the evaluation of changes in molecular profiles between healthy 

and disease samples. The discovery of biomarkers is crucial in clinical research as well as 

targeted therapies (Hu et al., 2011; Mäbert et al., 2014). There are various approaches to 

biomarker discovery including genomics, proteomics, metabolomics and bioinformatics. 

These approaches will be further discussed, with bioinformatics being the main focus of the 

next section.  

1.3.5.1. Genomic approach 

Genomic approaches for biomarker discovery are based on the measuring of gene expression 

via various technologies including micro-arrays and polymerase chain reaction (PCR). Micro-

Plasma 

miR-205, miR-16, miR-21, miR-

191 (endometriosis associated 

OC) miR-16, miR-191, miR-4284 

(serous OC), miR-191-5p, miR-

206, miR-548a-3p, miR-320a, 

miR-574-3p, miR-590-5p, miR-

34c-5p, miR-106b-5p, miR-

1274a, miR-625-3p, miR-720, 

miR-200b 

let-7f, miR-19a-3p, miR-30a-5p, 

miR-645, miR-150-5p, miR-

106b, miR-126, miR-150, miR-

17, miR-20a, miR-92a 

Urine miR-30-5p  

Serum/plasma  
let-7i-5p, miR-122, miR-152, 

miR-25-3p 
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array analysis has uncovered many different biomarkers (Ilyin et al., 2004) and measures gene 

expression based on the principle that complementary sequences will bind to each other. 

Since mRNA is less stable, the transcripts are converted to cDNA. The unknown DNA is 

fragmented, fluorescent markers are attached and they are then allowed to interact with 

probes of the DNA chip. DNA fragments that are complementary to the probe will bind and 

they can be identified based on their fluorescent emission. The fluorescence pattern is 

measured on a computer and certain gene expression levels are thus recorded. Although this 

method is fast, specific and sensitive, it is limited due to high costs involved (Govindarajan et 

al., 2012). 

1.3.5.2. Proteomic approach 

Proteomic approaches attempt to isolate, classify and characterize a range of proteins to 

obtain information about protein abundance, location, modifications and interactions. For 

biomarker discovery, proteomic approaches have certain advantages over other methods as 

it accounts for post-translational modifications with can affect protein function and activity. 

The final amount of protein can also vary greatly from the amount of mRNA transcribed (Ilyin 

et al., 2004).  

Various separating techniques have been established which can divided into gel-based and 

non-gel-based categories. Two-dimensional gel electrophoresis (2DE), the most commonly 

used gel-based technique, separates proteins according to their isoelectric point (pI) and 

molecular weight. For biomarker discovery, the proteins from healthy and disease samples 

are stained to allow for the detection and identification of differentially expressed proteins 

(Hudler et al., 2014).  

1.3.5.3. Metabolomic approach 

Cancer metabolism has been one of the main areas of focus in biomarker discovery, since 

1956 when Otto Warburg showed that cancer cells depend on anaerobic metabolism. The 

study also proposed that cells have a higher rate of glycolysis as well as an overproduction of 

lactic acid, even under normal oxygen levels. Altered cancer metabolism results in higher 

levels of reactive oxygen species (ROS), enabling cell survival and proliferation. Cancer cells 
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develop adaptations enabling them to maintain ROS levels below toxic levels, as excessive 

ROS production triggers apoptosis (Mäbert et al., 2014).  

Metabolomics has developed into an approach that complements genomic and proteomic 

technologies, as the analysis of metabolites are just as crucial as genome and proteome 

analyses for understanding cellular functions. Since there is no single technique that can 

analyse different types of molecules, a combination of techniques is required in this field (Jain, 

2010). A metabolomic-based approach for biomarker discovery generally comprises of two 

platforms; (i) either nuclear magnetic resonance (NMR) or mass spectrometry (MS) along with 

(ii) separation techniques. Various metabolite biomarkers including fatty acids, amino acids, 

and lipids, have been discovered for many different types of cancers (Mäbert et al., 2014). 

The limitations of using metabolomic approaches arise from the errors in study designs and 

experimental procedures. Along with the advantages that each technology has for biomarker 

discovery, they also have their own set of disadvantages. This makes bioinformatics for 

biomarker discovery more appealing.  

1.4. Bioinformatics 

The definition of bioinformatics is stated by Luscombe et al. (2001) as “a management 

information system for molecular biology” that has many applications. It uses computational 

techniques to comprehend and categorize biological information. Since biological data are 

being produced at an exponential rate, computers allow for the storage of this data as they 

can handle an immense amount of data. Bioinformatics allows for the access and submission 

of existing and new work respectively. The information is stored in databases thus making it 

easily accessible. There are various databases focusing on protein sequences, molecular 

structures, genomic and nucleotide sequences, gene expression as well as integrated 

databases which allows for the incorporation of relevant information.  

Bioinformatics has been applied many times in OC. For example, Xue et al. (2015), used 

bioinformatics to investigate the molecular interaction of the NSC319726 gene in OC, and 

discovered that the gene might play an effective role in OC by targeting certain genes 

implicated in the oocyte meiosis pathway. Another study conducted by Du et al. (2015), used 
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bioinformatics to identify differentially expressed genes as well as OC-related genes acting as 

potential therapeutic targets.  

It is evident that bioinformatics is extremely useful in identifying novel interactions which 

could aid in OC diagnosis and treatment.  

1.4.1. Advantages of bioinformatics 

Bioinformatics allows individuals to access, sort out, analyse, predict, and store biological data 

(Bayat, 2002), making the accessibility of information much easier and cheaper. Before 

experimental work is performed, bioinformatics can be employed to select candidates that 

are of priority (Thébault et al., 2015), which is also cost efficient as laboratory reagents will 

only be bought once the list of potential candidates are narrowed down. Applying 

bioinformatics in cancer research aids in understanding the mechanisms behind the disease. 

It also allows for the identification and validation of novel biomarkers (Wu et al., 2012). 

Bioinformatics also has additional advantages such as fast sequencing abilities and it allows 

for enormous storage capability (Mishra, 2016). 

1.4.2. Biomarker discovery 

Biomarker discovery depends on the idea that certain molecular species displaying the 

highest degree of variation across phenotypes may be identified as potential biomarkers. The 

traditional method for biomarker discovery involves analysing a particular gene or protein 

that is aberrantly expressed in disease tissues when compared to normal tissues. Since 

traditional methods mostly focus on gene expression levels, it does not necessarily provide 

information on the interactions of these markers, on a gene or protein level. Using 

bioinformatics for biomarker discovery entails analysing the list of potential markers as well 

as their signalling and interactions in order to form a deeper understanding and analysis of 

the proposed biomarkers. Because bioinformatics offers a predictive outcome, the proposed 

results must be validated molecularly before it can reach the clinical setting (Azuaje, 2013).  

With the use of bioinformatics, a vast number of biomarkers have been discovered, but only 

a small number of them have been established in the clinical setting. This is because most 

biomarkers discovered are found to be irreproducible (Wang et al., 2015). Bioinformatics is 
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also only a prediction network and cannot replicate the exact conditions within a cell, 

therefore molecular testing will still need to be performed in order to validate the results 

obtained.  

1.5. Problem identification 

OC is the most common gynaecologic malignancy and accounts for approximately 4% of all 

cancers diagnosed in women (Brain et al., 2014). It is known as the ‘silent killer’ as the early 

symptoms are extremely mild and very easy to ignore. More than 70% of women are usually 

diagnosed in the advanced stages but by this point the cancer has already metastasized to 

other regions distant from the ovary (Zhang et al., 2011). Due to the absence of early 

symptoms, the five-year survival rate of this disease is about 40% (Whittemore et al., 1992). 

Early detection of OC is therefore important as it could help increase survival rates. However, 

current diagnostic biomarkers are unsuccessful due to the low sensitivity and specificity for 

OC (Zhang et al., 2011). Since there are no adequate biomarkers for OC diagnosis, it would be 

of crucial significance to identify a sensitive and specific biomarker for OC to be able to 

distinguish between normal and cancerous ovaries.  

MiRNAs show great promise as biomarkers as they are proven to have differential expression 

profiles between cancer types according to diagnosis and the developmental stage of the 

tumour, therefore being highly sensitive and specific. They are extremely stable and easily 

accessible in body fluids such as the blood, saliva, and urine, thus rendering them non-invasive 

(Wang et al., 2015).  

Due to the importance of this topic, the current study was employed to identify potential 

miRNAs and their target genes that can serve as biomarkers for the early diagnosis of OC, 

using in silico methodologies. Specific study aims are as follows: 

(i) Identification of miRNAs and their target genes based on a sequence similarity 

approach.  

(ii) Identification of miRNAs and genes using patient clinical data extracted from 

TCGA, followed by the implementation of statistical parameters to isolate the 

candidates.  
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(iii) Analysis of triplex-forming potential between candidate miRNAs and target genes 

identified from each pipeline.  

(iv) Prioritization of candidate list for future experimentation.  
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Chapter 2 

Identification of miRNAs and target genes as biomarkers for the early stage 

diagnosis of OC via a sequence similarity approach 

 

2.1 Introduction 

OC is a fatal malignancy with a 5-year survival rate of about 40%. This low survival rate arises 

from the lack of early symptoms which results in an almost always late stage diagnosis. It is 

proposed that if OC is diagnosed in the early stages, the survival rates will increase to 80% 

(Burges and Schmalfeldt, 2011). The symptoms of OC are extremely vague and can be 

confused for something minor. These symptoms include bloating, loss of appetite, pelvic pain 

and increased urinary frequency (Sundar et al., 2015).  

If a patient has these symptoms, they will be required to undergo a full physical examination, 

to evaluate for pelvic and abdominal masses. This approach however lacks accuracy as a mass 

could be missed or mistaken for another condition. If a mass is detected, the patient would 

then be recommended to undergo transvaginal ultrasonography to determine the ovarian 

architecture and vascularity, differentiate between cystic and solid masses, and identify 

ascites (Doubeni et al., 2016).  

Biomarkers are also commonly used to diagnose and detect OC, however due to their lack of 

sensitivity and specificity to OC, they are failing. This emphasizes the need to identify more 

sensitive and specific biomarkers. As stated in the previous chapter, miRNA dysregulation has 

been linked to a variety of diseases including OC, thus making them and their sequences 

appealing for diagnostic purposes (Fathi et al., 2013).  

Roughly 60% of human genes are governed by miRNAs, involved in crucial processes such as 

the immune system, cell cycle, development, differentiation, proliferation, metabolism and 

inflammation. It is proposed that overexpressed miRNAs may act as oncogenes by 

downregulating tumour suppressor genes, and underexpressed miRNAs function as tumour 

suppressors by negatively regulating its oncogenes. For example, the RAS oncogenes (H-, K-, 
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and N-RAS) contain binding sites in their 3’UTR for miRNAs from the let-7 family. These 

miRNAs are generally downregulated in various tumours and were shown to negatively 

regulate the RAS oncogenes, therefore acting as tumour suppressors (Kinose et al., 2014).  

Since miRNAs exert their function by regulating target genes, identifying the functions of 

these targets are crucial in understanding their biological role (Wong and Wang, 2014; 

Hammond, 2015). 

Functional genomics comprises of genome-wide methods to annotate functions of genes and 

proteins as well as their interactions. The data from DNA sequencing, gene expression and 

protein functions are combined to model powerful networks that control gene expression, 

cell differentiation, and cell cycle progression. Technological advancements such as the 

accessibility of full genome sequences allows for studying cells at a systems level. Knowledge 

regarding gene function and regulatory pathways can be expanded by identifying the 

abundance of transcripts in diverse cell types under a variety of conditions (Bunnik and Le 

Roch, 2013).  

Approximately one-fifth of all OC cases are due to hereditary conditions, with 65-85% of these 

cases resulting from a germline mutation in the BRCA genes causing defective DNA repair. 

Carriers with a BRCA1 or BRCA2 mutation have a 54% and 84% increased lifetime risk of 

developing OC and breast cancer respectively. Currently, there are at least 16 genes known 

to be implicated in the hereditary OC mechanism (Toss et al., 2015). Sporadic OCs arise from 

genetic mutations that are not inherited, in genes such as p53, Ki-ras and erbB-2 (Angioli et 

al., 1998). Identifying mutations in genes linked to OC is a crucial step for diagnostic and 

therapeutic potential (Toss et al., 2015).  

MiRNA loci that are clustered together may contain members of either the same or different 

families. The cluster of sequences, even from different families, all share similar targeting 

properties and therefore share a similar sequence (Marco et al., 2013). In 2008, Lu et al. 

discovered evidence that miRNAs deriving from clustered miRNA genes are more inclined to 

share similar functional roles and disease implications. This finding is fundamental in 

identifying novel disease-associated miRNAs (Lu et al., 2008; Kamanu et al., 2013), and serves 

as the basis behind employing a sequence similarity approach in this chapter. The 

understanding is that if a novel miRNA with no links to OC shares a certain degree of similarity 
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in sequence to a miRNA proven to have implications in OC, then it will most likely have the 

same dysregulated function.  

Due to the large amounts of biological data stored online, many bioinformatic approaches 

implement data mining to discover novel compounds and molecules (Zaki et al., 2007). Data 

mining involves the process of extracting knowledge from great amounts of data. In 

bioinformatics, this is employed to identify novel significant patterns and relationships. A few 

applications of data mining in bioinformatics includes gene identification, detecting protein 

functional domains and disease diagnosis and prognosis. The results from data mining falls 

into one of two categories: (i) supervised learning and (ii) unsupervised learning (Raza, 2012). 

In supervised learning, the sample data is analysed from a source with the correct 

classification already assigned (Sathya and Abraham, 2013).  Classification, estimation and 

prediction are examples of tasks in supervised learning. Classification organizes data into 

various predefined classes, estimation provides a value for an unknown continuous variable, 

and prediction is similar to classification and estimation however, data is classified according 

to future estimated behaviour. Unsupervised learning involves no variable being selected as 

the target, instead the aim is to establish an association between all variables. Examples of 

unsupervised learning are: (i) association rules, (ii) clustering and (iii) description and 

visualization. Association rules group certain variables together, clustering gathers a 

population into clusters or subgroups, and description and visualization represents the data 

through visual techniques (Raza, 2012).  

Databases are crucial for storing the vast amounts of data generated, while still being 

constantly updated and compared to other data. Databases comprising of gene sequences 

are split into two types: primary databases and secondary databases. Primary databases 

contain direct experimental results whereas secondary databases combine data from primary 

databases as well as other data such as gene variants and sequences information. There are 

various types of databases containing information on genetic diseases, gene sequence, 

mutations and gene and protein expression levels (Bianco et al., 2013).  
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2.1.1 Biological databases  

A biological database comprises of organized data that can be accessed, maintained and 

updated. Sequence and structure databases are two of the broad categories, with sequence 

databases applying to both nucleic acids and proteins, and structure databases being 

applicable to proteins only. There are various databases available for both study and research 

by industries and academic institutions (Babu, 1997).  

Since the discovery of miRNAs, a variety of bioinformatic tools have been created to study 

their physiological roles and predict their regulated targets (Stępień et al., 2018). There are 

many different online databases to recover not only miRNAs expressed in different species, 

but also differentially expressed miRNAs in a variety of diseases, including OC.  

2.1.1.1 MiRNA discovery databases 

2.1.1.1.1 MiRBase 

MiRBase is a publicly available online database containing information on all published 

mature miRNAs, such as miRNA sequence data, annotation, as well as predicted gene targets. 

MiRBase is the dominant repository for miRNA information, thus making it a reliable and 

efficient source of obtaining both precursor and mature miRNAs in various species (Griffiths-

Jones et al., 2006). The database was created in 2002 and was previously called the miRNA 

registry. It collects data submitted from authors as well as publications identifying novel 

miRNAs (Kozomara and Griffiths-Jones, 2011).  

2.1.1.1.2 DbDEMC 2.0 

DbDEMC 2.0 is an integrated database that presents miRNAs differentially expressed in 

human cancers, validated via high-throughput approaches (Yang et al., 2016). This database 

combined expression profiles from 48 miRNA microarray data sets in peer-reviewed articles 

to provide insight into the differential expression levels of disease-linked miRNAs. DbDEMC is 

also preferred as it provides data on miRNA expression for a variety of cancer cell lines (Yang 

et al., 2010).  
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2.1.1.1.3 Mir2disease 

Mir2disease is a manually curated database containing miRNAs that are dysregulated in many 

different human cancers. To establish this database, over 600 literature papers were 

consulted and 1939 associations between 299 miRNAs and 94 diseases were reported. 

Mir2disease also provides the approach employed to detect the miRNAs respective 

expression patterns, including qRT-PCR, microarrays or northern blotting (Jiang et al., 2009).  

2.1.1.1.4 MiRandola 

MiRandola is a manually curated database comprising of extracellular circulating miRNAs, 

with an option for users to contribute submissions. Depending on their extracellular form, 

miRandola classifies these circulating/extracellular miRNAs into four categories: (i) miRNA-

Ago2, (ii) miRNA-exosome, (iii) miRNA- High-density lipoprotein and (iv) miRNA-circulating 

(Russo et al., 2012).  

2.1.1.1.5 MiRCancer 

MiRCancer is an online database consisting of miRNA-cancer associations identified through 

textmining, followed by manual validation. The database works by implementing 75 

constructed rules to identify the miRNA-cancer associations in PubMed. In 2013, miRCancer 

recognized 878 relationships between 236 miRNAs and 78 human cancers through consulting 

more than 26 000 PubMed articles (Xie et al., 2013).  

2.1.1.2 Tools for sequence similarity analysis 

2.1.1.2.1 CD-HIT 

Due to large scale genome projects, the sizes of databases that contain biological sequences 

are increasing at a rapid rate. This strengthens the call for bioinformatic tools that can 

organize and analyse data effectively. Since biological sequences are related and may share 

homology, clustering and determining a representative sequence is an efficient way to solve 

many sequence analysis problems (Huang et al., 2010).  
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CD-HIT-EST is a tool that clusters either DNA or RNA according to a user-specified sequence 

identity level, based on a greedy incremental clustering algorithm. This algorithm involves the 

sorting of sequences in order of decreasing length, with the longest sequence becoming the 

representative of the first cluster (Li and Godzik, 2006). The remaining sequences are 

compared to the representative sequence and if their similarity is above a specified threshold, 

it is grouped in that cluster as a duplicate and if not, that sequence becomes the 

representative of a new cluster (Manconi, et al., 2016). 

CD-HIT-EST-2D compares two nucleotide datasets, db1 and db2. The sequences in db1 are 

arranged in order of decreasing length and each sequence in db2 is compared to each 

sequence in db1, starting with the longest one. If the similarity is greater than a given 

threshold, the sequence is grouped with its similar one in db1. At the end of the search, CD-

HIT produces two files; (i) a report of the similar sequences between db1 and db2, and (ii) a 

list of sequences in db2 that are not comparable to any sequence in db1 (Li and Godzik, 2006). 

2.1.1.2.2 BLAST 

Basic Local Alignment Search Tool (BLAST) is a program that can be used online or as stand-

alone tool to search sequence similarities. It works by identifying short matches between two 

sequences and seeks to perform alignments from these matches. BLAST also provides 

statistical information to interpret the biological significance of the data, in the form of an E-

value (expect value). There are various different types of BLAST programs to compare protein 

and/or nucleotide sequences (McGinnis and Madden, 2004) and according to Babu (1997), all 

have been “designed for speed, with a minimal sacrifice of sensitivity”.  

2.1.1.3 MiRNA gene target database 

2.1.1.3.1 MiRDip 

Algorithms for miRNA target gene prediction, usually pair the miRNA seed region to a similar 

mRNA sequence. Many factors complicate this binding, especially the imperfect miRNA-

mRNA binding that occurs, therefore single base-pair mismatches should be considered. 

MiRDip is a free online data portal with combined data from various databases, that allows 
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for the visualization and interpretation of miRNA-target gene networks. Databases predicting 

miRNA target genes consider various traits of miRNA:mRNA target binding. These traits 

include seed sequence match, conservation, site accessibility, free energy of the 

miRNA:mRNA duplex, contribution of multiple binding sites, local ALU content, local mRNA 

sequence, ribosomal shadow, position effects and 3’ pairing (Shirdel et al., 2011).  

Since miRNAs fall under non-coding RNAs and therefore do not get transcribed into proteins, 

their biological function is examined through the identification of their gene targets along 

with their function (Ling et al., 2013). The general pipeline employed in miRNA research 

involves identifying their gene targets using various prediction tools, such MiRDip. MiRDip 

contains approximately 152 million human miRNA predicted target genes retrieved from 30 

independent sources. It provides an integrative score allocated to each target to increase 

accuracy of the predicted interaction (Tokar et al., 2017).  

2.1.1.4 Gene annotation databases 

2.1.1.4.1 PAGENBASE 

Pattern gene database (PaGenBase) combines gene patterns from literature and data mining. 

Pattern genes can be defined as a group of genes exhibiting specific expression patterns under 

various physiological conditions.  Housekeeping, selective/specific, and repressed genes are 

three categories currently attracting great attention. Housekeeping genes are believed to 

preserve basal cellular functions as they are ever-present in all tissues under all types of 

physiological conditions and developmental stages. Specific/selective genes are expressed 

preferentially under certain conditions, whereas repressed genes are unanimously expressed 

except under specific conditions. Identifying gene patterns serves as a gateway to 

understanding gene functions and exploring molecular mechanisms leading to pathogenesis. 

PaGenBase comprises of pattern genes identified through the comparison of their expression 

levels under serial conditions, including in various tissues or developmental stages (Pan et al., 

2013).  

2.1.1.4.2 DAVID 
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Database for Annotation, Visualization and Integrated Discovery (DAVID) is a publicly 

available tool, established in 2003, that annotates biological meaning and function to large 

genes lists (Huang et al., 2009). This database originally comprised of four core elements; 

annotation tools, GoCharts, KeggCharts, and DomainCharts. (i) Annotation Tools are used to 

assign functions to the input list of genes. (ii) GoCharts presents differentially expressed genes 

according to their biological processes, molecular functions and cellular component 

functions. Biological processes entail various extensive functions, whereas molecular 

functions define tasks achieved by individual gene products. Cellular component functions 

comprise of genes with functions in subcellular structures and locations. (iii) KeggCharts 

exhibits the distribution of differentially expressed genes between various KEGG biochemical 

pathways. This function enables for the implication of genes in various diseases through 

identifying and analysing the pathways linked to the specific disease. (iv) DomainCharts 

depicts the distribution of differentially expressed genes between families of protein domains 

(Dennis et al., 2003).  

Currently, the DAVID annotation tool has over 40 categories including protein-protein 

interactions, functional domains, disease links, homologies, gene tissue expression, and many 

more. The expanded annotation tool allows for a more comprehensive analysis due to various 

biological features being available in a single space. The clustering tool, a new feature in 

functional annotation, runs on a novel algorithm that evaluates the relationships between the 

annotated terms based on the degrees of their co-association genes, with the intent to group 

similar, redundant and heterogenous annotation content from the same or different 

resources into annotation groups (Huang et al., 2007).  

2.1.1.5 Protein network database 

2.1.1.5.1 STRING 

Search tool for recurring instances of neighbouring genes (STRING) is an online web-server 

that identifies interacting genes/proteins to the query gene/protein. STRING also retrieves all 

genes occurring within potential operons for the query gene, as it is noted that genes 

constantly occurring in each other’s vicinity in potential operons within the genome tend to 

encode functionally interacting proteins (Snel et al., 2000). 
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Protein-protein interactions may occur (i) directly through physical binding, or (ii) indirectly - 

due to a shared substrate in a metabolic pathway, by controlling each other transcriptionally, 

or by interacting in bigger multi-protein assemblies. Methods predicting these functional 

associations are based on the notion that functionally associated proteins are encoded by 

genes sharing common selection pressures (Von Mering et al., 2003).  

While most of the protein interactions in STRING are imported from other databases, a large 

amount predicted interactions are also produced de novo, based on systematic genome 

comparisons. Fully sequenced genomes are imported and searched for three types of 

associations; namely conserved genomic neighbourhood, gene fusion events, and co-

occurrence of genes across genomes. The goal is to discover pairs of genes which seem to be 

under similar selective pressures during evolution, so that they may be deemed as 

functionally associated (Von Mering et al., 2005). 

2.1.2 Aims 

The aim of this chapter is to identify novel miRNAs via a sequence similarity approach, 

followed by the identification and characterization of their target genes to serve as 

biomarkers for the early diagnosis of OC, using various in silico approaches.  

2.1.3 Objectives 

• Retrieve miRNAs implicated in OC along with their sequences to create db1 

• Retrieve all human mature miRNAs and their sequences to create db2 

• Sequence similarity analysis via local BLAST and CD-HIT programs, using db1 and db2 

• Create a list of miRNAs with high similarity to miRNAs already linked to OC 

• Curation through textmining of the list of miRNAs to ensure no implication in OC 

• Identify the target genes of the potentially novel miRNAs using mirDIP 

• Extraction of all ovary-specific genes from PaGenBase 

• Venn diagram construction for each miRNA’s target genes that intersect with those 

expressed in the ovary 

• Functional annotation to prioritize genes with direct links to OC and determining of 

their function using DAVID 
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• Discover protein interactions of the prioritized genes with each other using STRING 

• Create a final list of miRNAs and their target genes as candidate biomarkers for OC 

diagnosis 
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2.2 Methodology  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Flow chart representing the outline of the in-silico methodology employed for 

miRNA identification in this chapter.  
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2.2.1 Data mining 

To identify all mature miRNAs expressed in the human body, miRBase was utilized. For the 

extraction of OC-implicated miRNAs, dbDEMC, mir2disease, miRandola and miRCancer was 

employed.  

2.2.1.1 MiRBase 

MiRBase was launched using the URL www.mirbase.org/, and the “browse” tab was selected 

with Homo sapiens being specified. The option to view high confidence miRNAs was selected, 

and all mature sequences were downloaded. The miRNAs were stored in fasta format as 

“allmirna.fasta”. 

2.2.1.2 dbDEMC 2.0 

Under the “browse” tab on the dbDEMC homepage (http://www.picb.ac.cn/dbDEMC/), OC 

was selected, all experiment IDs were ticked, and the miRNA sequences were downloaded.  

2.2.1.3 MiR2Disease 

On the mir2disease homepage (http://www.mir2disease.org/), OC was searched under 

“search by disease name”, “malignant neoplasm of the ovary” was selected, and the 

sequences were downloaded.  

2.2.1.4 MiRandola 

The full MiRandola database (http://mirandola.iit.cnr.it/index.php) was downloaded and only 

miRNA sequences linked to OC were kept.  

2.2.1.5 MiRCancer 

Under the “download” tab on the MiRCancer homepage 

(http://mircancer.ecu.edu/index.jsp), the “miRCancerOctober2017” dataset was 

downloaded, and miRNAs implicated in OC were kept.  
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The miRNA sequences from all four databases with implications in OC were combined and 

duplications were removed in excel. The miRNAs were stored in fasta format as 

“ovmirnas.fasta”. 

2.2.2 Duplication removal via CD-HIT 

CD-HIT-EST was used to remove duplicates by clustering query datasets that met a specified 

similarity threshold. On the CD-HIT web server homepage (http://weizhongli-

lab.org/cdhit_suite/cgi-bin/index.cgi?cmd=Server%20home), the CD-HIT-EST tab was 

selected and “allmirna.fasta” was uploaded as the query. The sequence identity was set to 

0.99 and all other parameters were left as default. The output fasta file and cluster file were 

downloaded.  

The page was then reset and “ovmirnas.fasta” was uploaded as the query. The parameters 

specified were the same as before.  

2.2.3 Sequence similarity analysis 

2.2.3.1 CD-HIT 

In order to identify sequences that share similarity, CD-HIT-EST-2D was run on Ubuntu 

software with the following command line: 

                             

 

Where: “-i” is db1 with the validated OC miRNAs, “-i2” is db2 with all human mature miRNAs, 

“-O” is the output name, “-c” is the sequence identity threshold set to 0.9 and “–n” is the 

word size specified as 8. 

2.2.3.2 BLAST 

cdhit-est-2d -i ovmirna \fasta.txt -i2 allmirna\fasta.txt – O result – c0.9 -n8 
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BLASTN was used in this section to search nucleotide-nucleotide similarity. The ncbi-blast-

2.7.1+win64.exe program was downloaded from NCBI and installed. A database was created 

out of the “allmirna.fasta” file using the following command line: 

 

Where: “– in” is the input file, “-parse_seqids” enables parsing of the sequence id and “– 

dbtypenucl” is the particular type of input, which in this case is nucleotides. 

The OC miRNAs were queried against the newly created database of all human mature 

miRNAs, using the following command line with a specified e-value of 1e-3 and word size of 

7: 

 

Where: “-db” is the database created by previous command line, “-evalue” describes the 

number of hits expected to be seen by chance within the database and was set to 1e-3, 

“word_size” is specified to 7, meaning that there should be at least 7 identical nucleotides 

between two sequences for it to be deemed as similar, “-query” is the input file to be queried 

against the database created, and “–out” is the output result file name and destination. 

The results from and CD-HIT-EST-2D and BLAST were analysed and the miRNAs in common 

were kept for further analysis.  

2.2.2 Text-mining 

To determine if any of the miRNAs common to the BLAST and CD-HIT-EST-2D results had 

known implications in OC, literature papers were consulted. Those miRNAs with clear 

implications were eliminated while the ones that showed no association with OC were kept 

as candidates for further analysis.  

makeblastdb.exe -in allmirna.fasta.txt -parse_seqids -dbtype nucl -input_type fasta -out 

C:\blast\allmirna.out 

blastn.exe -db C:\blast\allmirna.out -evalue 1e-3 -word_size 7 -query ovmirna.fasta.txt -

out C:\blast\result.out 
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Figure 2.2: Flow chart depicting the outline of the in-silico methodology employed for 

prioritising the miRNA target genes. 
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2.2.5 Gene identification 

2.2.5.1 miRNA target genes 

To identify the gene targets of each miRNA, the miRDip database was utilized. On the miRDip 

homepage (http://ophid.utoronto.ca/mirDIP/) under the miRNA-gene matrix tab, the option 

to search miRNAs was selected. The novel candidate miRNA along with its corresponding 

validated miRNA were inputted into the search box and a score class of medium was selected. 

The gene targets shared between the validated and candidate miRNAs were kept for further 

analysis. This process was repeated for each candidate miRNA and its validated reference. 

2.2.5.2 Ovary-specific genes 

PaGenBase was used to extract the genes with expression specific to the ovary. On the 

PaGenBase homepage (http://bioinf.xmu.edu.cn/PaGenBase/index.jsp), under the search 

tab; Homo sapiens, tissue and specific genes were selected as the conditions and “ovary” was 

typed in as the sample. The Specificity Measure (SPM) was left on default as 0.9. Once the 

query was submitted “ovary” was selected as the sample once more and the results were 

downloaded. 

2.2.6 Intersecting genes 

To identify if the miRNAs target any genes expressed in the ovary, Venn diagrams of the 

miRNA target genes and ovary expressed genes were constructed using a bioinformatics 

intersection tool (http://bioinformatics.psb.ugent.be/webtools/Venn/). The miRNA target 

genes and ovary genes were uploaded separately and the result was downloaded. This was 

performed for each miRNA’s target genes. All intersecting genes for each miRNA targets were 

combined with duplications being removed and the common genes kept for further analysis.  

2.2.7 Functional annotation 

2.2.7.1 Disease 
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The DAVID database was employed to shortlist the common genes that have a proven 

mechanism in OC. The genes were copied and pasted into the DAVID database 

(https://david.ncifcrf.gov/) using their official gene symbols and selecting Homo sapiens for 

both the input list and background species. The “disease tab” was expanded and the results 

for “Genetic Associations Database (GAD) disease” were analysed. Only the genes with 

implications in OC were kept for further analysis.  

2.2.7.2 Gene function 

The shortlisted genes were once again inputted into the DAVID database for functional 

analysis, using the same parameters as before. The functional annotation clustering file was 

downloaded and all biological processes, molecular functions and cellular components that 

the shortlisted genes are involved in were identified and kept for further analysis. Literature 

papers were consulted to identify the roles that these processes play in cancer onset and 

progression.  

2.2.8 Protein-protein interactions 

To identify the protein-protein interactions between the shortlisted genes, STRING was used. 

On the homepage (https://string-db.org/), the option to query multiple proteins was selected 

and the shortlisted genes were pasted into the space provided, with Homo sapiens selected 

as the organism. All parameters were left as default and the protein network was downloaded 

and analysed.  
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2.3 Results and discussion 

2.3.1 Data mining 

Table 2.1.1: Number of mature human miRNAs obtained from miRBase. 

Database name Number of miRNAs 

miRBase 2634 

 

As the table above indicates, there were 2634 mature human miRNAs extracted from 

miRBase that were deemed to have been identified with high confidence. Accuracy of the 

sequences needed to be ensured since the basis of the algorithms employed, rely on 

sequence similarity. A miRNA is said to be of “high confidence” when it has multiple 

sequencing reads, which serves as validation and support for its sequence being accurate 

(Kozomara et al., 2018). 

Table 2.1.2: Number of miRNAs implicated in OC obtained from multiple databases. 

Database name Number of miRNAs 

dbDEMC 2.0 188 

miR2disease 8 

miRandola 4 

miRCancer 12 

 212 

 

To increase the number of miRNAs with implications in OC, four different databases were 

used. Table 2.1.2 shows the number of miRNAs with dysregulations in OC obtained from each 

database. All four databases obtained their miRNAs via data mining and are updated by 

constantly consulting new literature (Jiang et al., 2009; Russo et al., 2012; Xie et al., 2013; 

Yang et al., 2016). All miRNAs were combined to a total of 212 and duplications were removed 
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in excel to eliminate multiple records of the same miRNA housed in more than one database. 

This reduced the total to 201 non-redundant miRNAs implicated in OC. 

2.3.2 Duplication removal via CD-HIT 

While the previous section 2.3.1 removed duplicates in excel based on the name of the OC-

linked miRNA, this section focused to remove duplicates based on sequence as it is known 

that miRNAs arising from various precursors may share identical sequences (Griffiths-Jones 

et al., 2006).  

Table 2.2: Number of miRNAs before and after the removal of duplicates via CD-HIT. 

 Before duplication removal After duplication removal 

Mature miRNAs 2634 2593 

OC-implicated miRNAs 201 198 

 

Many databases may contain multiple records of identical sequences. These duplicates impair 

data quality and lead to both redundancies and inconsistencies. This therefore makes the 

removal of duplicates a fundamental process. CD-HIT-EST uses a sequence similarity threshold 

to identify duplicates (Chen et al., 2017), which was set to 99% to remove miRNAs that share 

identical sequences. As can be seen from Table 2.2 above, 41 mature miRNAs and 3 OC-linked 

miRNAs shared identical sequences to other miRNAs in their respective datasets and were 

thus termed as duplicates and clustered under their representative sequence. The 198 unique 

OC-implicated miRNAs are shown in Table A.1 Appendix A. 

2.3.3 Sequence similarity analysis 
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Table 2.3: Clusters of similar miRNA sequences with the percentage of similarity calculated 

by CD-HIT and BLAST. MiRNAs in bold are validated with implications in OC, and the miRNAs 

below them share more than 90% similarity.  

MiRNA 

family 
Clusters Percent similarity 

MiRNA 

family 
Clusters Percent similarity 

  CD-HIT BLAST   CD-HIT BLAST 

1 >miR-1-1   10 >miR-1-10   

>miR-1-1a +/91.30% +/+ 91% >miR-1-10a +/95.65% +/+ 96% 

        

2 

>miR-1-2   11 >miR-1-11   

>miR-1-2a +/90.91% +/+ 95% >miR-1-11a +/90.91% +/+ 95% 

>miR-1-2b +/90.91% +/+ 90%     

>miR-1-2c +/95.45% +/+ 95% 12 >miR-1-12   

>miR-1-2d +/95.45% +/+ 95% >miR-1-12a +/90.91% +/+ 91% 

>miR-1-2e +/90.91% +/+ 91%     

    13 >miR-1-13   

3 

>miR-1-3   >miR-1-13a +/90.91% +/+ 95% 

>miR-1-3a +/95.24% +/+ 95%     

>miR-1-3b +/95.00% +/+ 95% 14 >miR-1-14   

>miR-1-3c +/94.74% +/+ 95% >miR-1-14a +/95.45% +/+ 95% 

>miR-1-3d +/90.48% +/+ 94%     

>miR-1-3e +/90.91% +/+ 91% 15 >miR-1-15   

    >miR-1-15a +/90.91% +/+ 95% 

4 >miR-1-4       

>miR-1-4a +/90.48% +/+ 95% 
16 

>miR-1-16   

    >miR-1-16a +/95.45% +/+ 95% 

5 >miR-1-5   >miR-1-16b +/90.91% +/+ 91% 

>miR-1-5a +/91.30% +/+ 95%     

    17 >miR-1-17   

6 >miR-1-6   >miR-1-17a +/95.45% +/+ 95% 

>miR-1-6a +/95.65% +/+ 96%     

    18 >miR-1-18   

7 >miR-1-7   >miR-1-18a +/95.45% +/+ 95% 

 >miR-1-7a +/90.91% +/+ 95%     

    19 >let-1-19   

8 >miR-1-8   >let-1-19a +/90.91% +/+ 95% 

>miR-8a +/95.65% +/+ 96%     

        

9 >miR-1-9       

>miR-9a +/95.65% +/+ 96%     
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Table 2.3 above indicates only the results that were produced by both the CD-HIT and BLAST 

algorithms. The analysis identified 28 miRNAs clustered under 19 OC miRNAs with similarities 

between 90-99%. The nomenclature employed for miRNAs identified in this chapter relates 

to: miR – miRNA; 1 – identified through sequence similarity (pipeline 1); 1a to 19a – numerical 

order of identification, with the letters differentiating between miRNAs identified from the 

same cluster.  

Incorporating various methods to conduct sequence similarity analysis is integral for 

exploratory research in bioinformatics (Eser et al., 2014). BLAST and CD-HIT produce clusters 

based on different alignment criteria, therefore the miRNAs in common to both algorithms 

results are deemed to have a higher level of accuracy since both programs state they are more 

than 90% similar to their validated reference miRNA.  

The “+/” and “+/+” symbols in front of each percentage indicates similarity between the 

forward strand of the query sequence, whereas “-/” and “+/-” depicts similarity involving the 

reverse complement of the query sequence (Wheeler and Bhagwat, 2007). For this reason, 

only the miRNAs with forward strand similarity were analysed and shown in Table 2.3. 

MiRNAs that had similarity involving their reverse complement were ignored in this study 

since that is not the genuine sequence of the miRNA. 

Since the identified miRNAs share high similarity to sequences proven to have implications in 

OC, it is highly plausible that they will have the same dysregulated function in the above-

mentioned disease. In 2013, Pearson stated that this type of analysis is important in 

identifying novel molecules. These miRNAs were text-mined to discover their potential 

novelty in the pathogenesis of OC.  

2.3.4 Text-mining 

Literature papers were consulted and it was found that 19 out of the 28 miRNAs had 

implications in OC, and the remaining 9 miRNAs with no implications became the candidate 

miRNAs for this chapter to be implicated in the disease. The text-mining results are tabulated 

in Table 2.4 below.  
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Table 2.4: Shows the miRNAs implicated in OC, after literature mining. The miRNAs in bold 

indicate OC-implicated and the normal text relates to the potential novel OC miRNAs.  

MiRNA 

family 
Clusters Implicated? 

MiRNA 

family 
Clusters Implicated? 

      

1 >miR-1-1  10 >miR-1-10  

>miR-1-1a No >miR-1-10a Yes 

      

2 

>miR-1-2  11 >miR-1-11  

>miR-1-2a No >miR-1-11a Yes 

>miR-1-2b No    

>miR-1-2c No 12 >miR-1-12  

>miR-1-2d Yes >miR-1-12a Yes 

>miR-1-2e Yes    

   13 >miR-1-13  

3 

>miR-1-3  >miR-1-13a Yes 

>miR-1-3a No    

>miR-1-3b No 14 >miR-1-14  

>miR-1-3c No >miR-1-14a Yes 

>miR-1-3d No    

>miR-1-3e Yes 15 >miR-1-15  

   >miR-1-15a Yes 

4 >miR-1-4     

>miR-1-4a No 16 >miR-1-16  

   >miR-1-16a Yes 

5 >miR-1-5   >miR-1-16b Yes 

>miR-1-5a Yes    

   17 >miR-1-17  

6 >miR-1-6  >miR-1-17a Yes 

>miR-1-6a Yes    

   18 >miR-1-18  

7 >miR-1-7  >miR-1-18a Yes 

>miR-1-7a Yes    

   19 >let-1-19  

8 >miR-1-8  >let-1-19a Yes 

>miR-1-8a Yes    

      

9 >miR-1-9     

>miR-1-9a Yes    
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Annotating function to a sequence is commonly based on their similarity to sequences of 

known function (Klasberg et al., 2016). As mentioned in section 2.1.8, miRNA biological 

functions and target pathways can be deduced by identifying the functions of their gene 

targets (Ling et al., 2013). The 9 novel OC miRNAs were carried forward to identify and analyse 

their target genes.  

2.3.5 Gene identification 

The identified miRNAs are novel for OC and to determine their potential function, their target 

genes were functionally annotated. If the target genes are implicated in OC, by virtue of this, 

the regulating miRNA can also be implicated, in the absence of experimental evidence for the 

miRNA. Identifying target genes expressed specifically in the ovary, as their dysregulation 

would most likely lead to OC, was of interest as it provides additional support in the regulating 

miRNA’s potential. 

2.3.5.1 miRNA target genes 

Table 2.5.1: Number of gene targets shared between each of the potentially novel miRNAs 

(in normal text) and their respective similar OC-implicated miRNA (in bold). 

 miRNA Number of target genes shared 

Cluster 1 
>miR-1-1  

>miR-1-1a 17957 

   

Cluster 2 

>miR-1-2  

>miR-1-2a 12645 

>miR-1-2b 14419 

>miR-1-2c 14285 

   

Cluster 3 

>miR-1-3  

>miR-1-3a 9822 

>miR-1-3b 10654 

>miR-1-3c 10337 
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>miR-1-3d 10121 

   

Cluster 4 
>miR-1-4  

>miR-1-4a 17892 

 

The Table above indicates the relative target genes shared between the novel miRNAs and 

their respective OC-implicated miRNA reference. Gene targets in common to both the novel 

candidate miRNA and their reference miRNA were specified based on the notion that if two 

miRNAs share the same set of target genes, they will most likely be involved in the same 

pathways (Bhajun et al., 2015).  

From the results obtained, a high number of gene targets were identified for each miRNA 

cluster, with cluster 1 having the highest. The high number of gene targets is accounted for 

by the fact that one miRNA can target thousands of genes and one gene can be targeted by a 

large number of different miRNAs. This also arises in overlapping of gene targets between 

miRNAs, with different miRNAs exerting diverse functions on the same target gene (Peter, 

2010). MiRNAs may act as either oncogenes or tumour suppressors based on their effects on 

target genes (Makondi et al., 2019). 

MiRDip has four specific confidence classes; very high, high, medium and low confidence, 

corresponding to the results from the top 1%, top 5%, top 1/3 and the remaining predictions, 

respectively (Tokar et al., 2017). Medium score was selected in this section to increase the 

number of genes used for identifying overlapping genes in the next section.  

2.3.5.2 Ovary-specific genes 

Table 2.5.2: Number of genes expressed specifically in the ovary. 

Database used Number of ovary-specific genes 

PaGenBase 245 

 

One of the many uses of the PaGenBase database is to identify tissue-specific genes that can 

serve as potential biomarkers for specific diseases/conditions (Pan et al., 2013), hence the 
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selection of ovary-specific genes. According to the database, there are 245 genes specifically 

expressed in the ovary. The SPM (specificity measure) was set to 0.9 and more and is a 

parameter that measures the specificity of a gene’s expression in a certain sample, with a 

higher SPM indicating more sample specificity (Pan et al., 2013).  
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2.3.6. Intersecting genes  
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Figure 2.3:  Venn diagrams depicting the intersection of the ovary-specific genes with each 

miRNAs’ target genes.  

Figure 2.3 displays Venn diagrams depicting the intersection of genes for each of the 9 miRNAs 

identified target genes, with the ovary-specific genes. From the results obtained, it is evident 

that there are candidate miRNA target genes expressed in the ovary. Various studies have 

demonstrated that many genes with either specific or preferential expression in the ovary 

govern crucial molecular elements of ovarian function (Hennebold et al., 2000). This 

motivates that these miRNAs could be putative biomarkers for OC, as their dysregulation 
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could result in the alteration of the target gene’s expression (Paranjape et al., 2009) which 

could potentially lead to OC.  

The total combined number of intersecting genes was 1035 and once duplications were 

removed, this total was reduced to 158. These 158 genes, shown in Table A.2 Appendix A, 

were taken to DAVID to identify the ones with OC associations, i.e. onset and/or progression.  

2.3.7 DAVID Functional annotation 

2.3.7.1 Disease  

Table 2.6: Genes with implications in OC. 

Gene name Disease 

FOS OC, alcohol consumption, Alzheimer's Disease … 

WISP1 OC, asthma, Bone Mineral Density … 

WNT5A OC, amyotrophic Lateral Sclerosis|Anoxia … 

AMHR2 OC, estradiol, female infertility… 

BNC2 OC, diabetes, type 1, Tobacco Use Disorder… 

CYP19A1 OC, abortion, habitual|Infertility…  

EGR2 OC, alzheimer's disease, Bone Mineral Density… 

ESR1 OC, abdominal aortic aneurysm, abortion… 

ESR2 OC abdominal aortic aneurysm, Abortion… 

LHCGR OC, abortion, habitual|Infertility…  

PDGFB OC, amyotrophic Lateral Sclerosis|Anoxia… 

PGR OC, abdominal aortic aneurysm, Abortion…  

 

Out of the 158 genes targets expressed in the ovary, 12 genes were returned from DAVID as 

having implication in OC as well as showing high expression in the ovary based on their SPM 

value. The fact that the candidate miRNAs target these genes strongly suggests these miRNAs 

may have mechanisms in OC as well.  
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The table below indicates the targeting interactions between the regulating novel OC miRNA 

and its target genes.  
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Table 2.7: Targeting interactions between the novel OC miRNAs and target genes. 

 

Target genes 

FOS WISP1 WNT5A AMHR2 BNC2 CYP19A1 EGR2 ESR1 ESR2 LHCGR PDGFB PGR 

N
o

ve
l O

C
 m

iR
N

A
s 

miR-1-1a ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

miR-1-2a ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

miR-1-2b ✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

miR-1-2c ✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

miR-1-3a  ✓ ✓ ✓ ✓   ✓ ✓   ✓ 

miR-1-3b  ✓ ✓ ✓ ✓   ✓ ✓ ✓ ✓ ✓ 

miR-1-3c  ✓ ✓ ✓ ✓   ✓ ✓   ✓ 

miR-1-3d  ✓ ✓  ✓   ✓ ✓   ✓ 

miR-1-4a ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
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In order to understand the roles of these gene within a cell, their functions need to be uncovered.  

2.3.7.2 Gene function 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Biological processes, molecular functions and cellular components that the candidate 

genes are involved in. Yellow blocks indicate the functions of the respective genes. 

From the results shown in Figure 2.4, most of the genes are involved in protein binding. Proteins 

may bind either DNA or RNA, and are involved in a variety of crucial processes including DNA 

packing, transcription, replication, modification and repair (Hudson and Ortlund, 2014; Peled et 

al., 2016). DNA binding proteins (DBPs) holds an essential role as transcription factors governing 

gene expression, and alterations within these DBPs contributes greatly to tumorigenesis (Liu et 

al., 2001). RNA binding proteins (RBPs) plays a fundamental part in gene regulation, and act as 

important coordinators in maintaining genome integrity. They are key players in many post-
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transcriptional events including mRNA splicing, stability, localization and polyadenylation, which 

ultimately affects gene expression levels within each cell (Wang et al., 2019). Their dysregulation 

has become clear in various cancer types thus influencing the function and expression of 

oncoproteins and tumour suppressor proteins (Pereira et al., 2017).  

Early growth response 2 (EGR2) and Progesterone receptor (PGR), genes regulated by the 

identified miRNAs, are transcription factors with proven mechanisms in OC. EGR2 is upregulated 

in response to hormones, growth factors, cytokines and environmental stimulants and is highly 

associated with OC survival and recurrence. It has also been implicated in the Phosphatase and 

Tensin homologue (PTEN) - induced apoptotic pathway (Delfino and Rodriguez-Zas, 2013; Jin et 

al., 2017). Progesterone supresses ovulation, which not only decreases the proliferative effect of 

oestrogen, but also inhibits inflammation and cancer infiltration. It has also been proven to 

initiate apoptosis in tumour cells. PGR expression is reported to be significantly lower in tumour 

ovarian tissues when compared to healthy tissues and serves as a prognostic biomarker in OC 

(Mungenast and Thalhammer, 2014).  

Luteinizing hormone/choriogonadotropin receptor (LHCGR) regulates ovulation by binding 

luteinizing hormone (LH) and hCG. Its expression is reported to be downregulated in a cancerous 

ovary and also correlates to a poor overall survival (Zhong et al., 2019).  

Some of the candidate genes are localized to the cell membrane. Membrane proteins are an 

essential component of biological membranes mediating vital cellular functions (Kampen, 2011). 

Cell membrane proteins are altered throughout normal cellular processes as well as during 

tumorigenesis.  Membrane proteins present in normal cells may partially or completely disappear 

in cancer cells, while over expressed or newly synthesized proteins may be present (Grimm et al., 

2011). Cytochrome P450 Family 19 Subfamily A Member 1 (CYP19A1) is localized to the 

membrane and involved in the synthesis of oestrogen (Khayeka-Wandabwa et al., 2019). In 2008, 

a study by Goodman et al., revealed that variants of CYP19A1 influences susceptibility to OC.  

It is clear that the candidate genes are not only implicated in OC, as seen in the literature, but 

also involved in processes leading to cancer onset and metastasis, as seen from the DAVID 
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analysis. Since the candidate miRNAs target these genes and therefore control these processes, 

it strengthens their potential as being promising biomarkers for early stage OC diagnosis.  

2.3.8 Protein-protein interactions 

 

Figure 2.5: Network from STRING depicting the interactions of the candidate proteins with each 

other.  

Out of the twelve candidate proteins, eight have evidence-based interactions with each other. 

Oestrogen Receptor 1 (ESR1), the central gene in the network, is known to be highly expressed 

in OC (Giannopoulou et al., 2018). Oestrogen provides signalling systems for cell division and 

differentiation by binding to its receptor, leading to transcriptional activation of oestrogen-

responsive genes. Included in these genes are proto-oncogenes such as c-fos (Mungenast and 

Thalhammer, 2014). 
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FOS protein forms the transcription factor activating protein (AP-1) along with Jun protein. Each 

protein is differentially expressed and regulated; therefore, each cell type has a complex mixture 

of AP-1 dimers with slightly dissimilar functions (Hess, 2004; Hein et al., 2009). Numerous studies 

have implicated AP-1 transcription factors in major cancer-related pathways including 

inflammation, differentiation, cell migration, metastasis and angiogenesis.  Depending on the 

cellular context, both the upregulated and downregulation of AP-1 promotes tumorigenesis 

(Garces de los Fayos Alonso et al., 2018).  

The proteins not involved in the network were still considered to be candidates, due to several 

other lines of evidence. Lack of interactions between these proteins could possibly be attributed 

to the need for studies yet to characterize such interactions. It is also likely that the proteins may 

interact through another intermediary protein not part of the input list and network. One of the 

proteins not connected to the network is Wnt Family Member 5 (WNT5a), which is known to 

have high expression in OC when compared to healthy, borderline and benign controls (Ford et 

al., 2014). The Wnt signalling pathway is involved in both the development and homeostasis of 

tissues by regulating their endogenous stem cells. Abnormal Wnt signalling is a key contributor 

to cancer onset and progression through affecting the behaviour of cancer stem cells (CSCs). CSCs 

are responsible for tumour establishment as well as disease relapse due to their drug-resistant 

properties (Duchartre et al., 2016). Various lines of evidence have indicated interactions between 

the Wnt signalling pathway and miRNAs in cancer development. MiRNAs were found to activate 

or inhibit the Wnt pathway at several steps. Conversely, Wnt activation increases miRNA 

expression by binding to its promoter and initiating transcription (Peng et al., 2016).  

MiRNAs regulating the same gene are expected to consequently regulate the same target 

pathway (Kehl et al., 2017). This further strengthens the potential of these miRNAs as all of their 

candidate target genes are implicated in OC, with eight out of twelve having interactions with 

each other. 
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2.4 Conclusion 

It has been proven that miRNAs serve crucial functions such as RNA silencing, post-transcriptional 

regulation and gene regulation (Cai et al., 2018). They act as suitable biomarkers for both 

diagnosis and prognosis due to their differential expression across various cancer stages and 

types (Zhang et al., 2017; Du et al., 2018).  

This chapter identified nine novel OC miRNAs based on a sequence similarity analysis as well as 

twelve target genes that are expressed within the ovary. The candidate miRNAs were produced 

by both BLAST and CD-HIT as having 90-99% similarity to their validated references, and were 

further deemed as novel candidates based on their lack of involvement in OC. 

The candidate target genes of these miRNAs were reduced and characterized based on them 

having, (i) selective expression in the ovary, and (ii) clear implications in OC. The candidate genes 

are involved in various molecular functions, biological processes and cellular components 

including protein, chromatin, enzyme and zinc binding, plasma and integral membrane 

components, regulating transcription and signal transduction. This indirectly indicates the 

various pathways that the novel miRNAs target and control, all of which could contribute to 

cancer onset and metastasis (Liu et al., 2014). STRING analysis indicated that more than 50% of 

the candidate genes interact with each other, and since each candidate miRNA targets the same 

gene as another, they most likely target the same dysregulated OC pathway (Kehl et al., 2017).   

MiRNAs comprise a complex regulatory network due to the fact that multiple miRNAs can target 

the same gene, and therefore determine the expression levels of the gene (Peter, 2010). Based 

on the shared targeting interactions involving multiple candidate miRNAs and a single gene, it is 

highly plausible that the combination of miRNAs is what drives the target genes into 

carcinogenesis.  
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Chapter 3 

Identification of miRNAs and genes as biomarkers for the early stage diagnosis 

of OC using patient clinical data from TCGA 

3.1 Introduction 

Cancer comprises of dynamic genomic aberrations in the form of somatic mutations, copy 

number variations, epigenetic alterations, and altered gene expression levels. Due to tumour 

heterogeneity, each cancer type has its own different molecular profile, thus requiring unique 

diagnostic and therapeutic strategies (Tomczak et al., 2015; Wang et al., 2016). 

Clinical data acts as a central resource in healthcare progression, by allowing for the development 

of novel knowledge based on individual clinical experiences (Grossmann, 2010). Many 

investigators have incorporated The Cancer Genome Atlas (TCGA) as a resource to not only 

support their studies, but also to aid in interpreting molecular testing of individual patients in a 

clinical setting (Liu et al., 2018). 

Launched by the National Institute of Health (NIH), TCGA is a comprehensive atlas of genomic 

cancer profiles that helps in producing new cancer therapies, diagnostic techniques, and 

preventative strategies. TCGA involves various centres responsible for the collection and 

processing of samples, followed by high-throughput and accurate bioinformatics analysis. It 

utilizes various platforms to generate many data types, including gene, exon, and miRNA 

expression, single nucleotide polymorphisms, and loss of heterozygosity for more than 30 cancer 

types and 10 cancer tissues (Chu et al., 2015; Tomczak et al., 2015). Since TCGA has a large 

amount of clinical data stored, statistical measures are important in filtering data and identifying 

those that are statistically significant. From there, biologically relevant data can be uncovered 

(Antunović et al., 2011).  
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As mentioned previously, using miRNAs and genes as biomarkers for OC diagnostics offers great 

promise (Wang et al., 2015). The immense knowledge and potential that clinical data provides in 

identifying such biomarkers, was the reason behind clinical data being the basis of this chapter.    

3.1.2 Aim 

The aim of this chapter is to identify miRNAs and genes, extracted from TCGA clinical data, with 

the potential to serve as biomarkers for early stage OC diagnosis. 

3.1.3 Objectives 

• Extract patient clinical OC cases of miRNA expression from TCGA 

• Identify top 100 highly expressed miRNAs according to statistical measures 

• Finalize a candidate miRNA list 

• Extract patient clinical cases of gene expression from TCGA 

• Identify top 100 highly expressed gene according to statistical measures 

• Finalize candidate gene list 

• Observe any targeting interactions between candidate miRNAs and genes 
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3.2 Methodology 
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Figure 3.1: Flow charts representing the outline of the in-silico methodology employed for both 

miRNA and gene identification in this chapter. 
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3.2.1. MiRNA data extraction 

To extract miRNAs expressed in OC cases, the TCGA data portal (available at 

https://cancergenome.nih.gov/) was launched and the repository tab was selected. “Ovary” was 

selected as the primary site, with “TCGA-OV” being the project of focus. “Transcriptome 

profiling” was selected under data category and “miRNA quantification” was specified as the data 

type. The files were extracted and analysed in Microsoft Excel.  

3.2.1.1. Statistical parameters to isolate candidates 

To identify and isolate the candidate miRNAs, Reads Per Million Mapped was used as the 

expression level of each miRNA and averages across all patient samples were calculated. The 

miRNA averages were ranked from highest to lowest expression. The top 100 highly expressed 

miRNAs were selected and their standard deviations and signal to noise (S/N) ratios were 

calculated. To ensure that the signal to noise values are in fact stable and accurate, a distribution 

curve was constructed. Using the signal to noise values, a box plot was created and miRNAs falling 

in the upper whisker were selected as the candidate miRNAs.  

3.2.2. Gene data extraction 

To extract genes expressed in OC, the TCGA data portal (available at 

https://cancergenome.nih.gov/) was launched and the repository tab was selected. “Ovary” was 

selected as the primary site, with “TCGA-OV” being the project of focus. “Transcriptome 

profiling” was selected under data category and “Gene expression quantification” was specified 

as the data type. The files were extracted and analysed in Microsoft Excel.  

3.2.2.1. Statistical parameters to isolate candidates 

To identify and isolate the candidate genes, Reads Per Million Mapped was used as the 

expression level of each gene and averages were calculated across all patient cases. The gene 

averages were ranked from highest to lowest expression. The top 100 highly expressed genes 
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were selected and their standard deviations and signal to noise ratios were calculated. To ensure 

that the signal to noise values are in fact stable and accurate, a distribution curve was 

constructed. Using the signal to noise values, a box plot was created and genes falling in the 

upper whisker were selected as the candidate genes.  

3.2.3 MiRNA-gene targeting interactions 

To determine if any of the candidate miRNAs target the candidate genes identified, miRDip 

(available at http://ophid.utoronto.ca/mirDIP/) was launched and the bidirectional search tool 

was utilized. The miRNAs and genes that have interactions with each other were used for the 

subsequent chapter of this study.  
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3.3 Results and discussion 

3.3.1 MiRNA data extraction and candidate identification 

A total of 499 patient cases with expression level records for 1881 miRNAs were extracted from 

TCGA and analysed. The top 100 highly expressed miRNAs had average expression levels ranging 

from 274270,4552 to 277,3424168. This is notably a huge gap and as can be seen in Figure 3.2, 

the distribution curve of the top 100 miRNA’s S/N ratios prove that the data is stable and 

accurate, based on the bell-shaped curve produced.  

 

Figure 3.2: Distribution curve of the top 100 highly expressed miRNAs, based on their S/N values. 

Many statistical tools assume that random variation in data follows normal distribution. 

“Normal” is the term given to continuous data distributed on either side of the mean as given by 

the standard deviation, that follows a bell-shape (Krithikadatta, 2014; Maltenfort, 2015). S/N 

values for each miRNA was calculated according to the formula “S/N = 𝑋̅/s”, where “𝑋̅” is the 

mean and “s” is the standard deviation (Busch and Busch, 2018).  
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Because a higher S/N value correlates to a higher level of accuracy (Mazziotta, 2002), Figure 3.2.1 

depicts the box plot constructed to identify and isolate miRNAs with S/N values residing in the 

upper whisker. 

 

Figure 3.2.1: Box plot of the top 100 miRNAs, based on their S/N values. 

A total of 26 miRNAs had S/N values in the upper whisker of the box plot, with the range identified 

to be 1.51 to 2.5. These miRNAs are the candidates deemed to have accurate and reproducible 

expression levels in OC, which can be found in Table 3.1 along with their average expression and 

S/N values.  

Box plots provide a graphical summary of data (Schlattmann and Dirnagl, 2010), based on the 

minimum value, the median of the first half of the data (Q1), the median (Q2), the median of the 

second half of the data (Q3) and the maximum value (Marmolejo-Ramos and Siva Tian, 2010). 

The upper whisker was chosen to identify candidates with highest levels of expression in OC as it 

contains the top 25% of data.  

  

Starting point of upper whisker = 1.51 
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Table 3.1: Candidate miRNAs identified in this study, with their relative expression data. 

miRNA Average expression Standard deviation S/N 

miR-2-1 4458,889373 2938,323243 1,517495 

miR-2-2 4634,98713 1860,490687 2,491271 

miR-2-3 1809,124095 1190,141792 1,520091 

miR-2-4 1892,036496 1110,02132 1,704505 

miR-2-5 2341,187127 1385,781261 1,689435 

miR-2-6 94559,1116 52486,06122 1,801604 

miR-2-7 1611,565932 1060,816006 1,519176 

miR-2-8 18095,54756 10045,29476 1,801395 

miR-2-9 1060,270432 691,26301 1,533816 

miR-2-10 5543,778875 2559,821627 2,16569 

miR-2-11 15755,83122 10153,83577 1,551712 

miR-2-12 965,5993532 482,0611749 2,003064 

miR-2-13 795,9024507 392,31845 2,028715 

miR-2-14 6741,021503 4190,369678 1,608694 

miR-2-15 274270,4552 130406,8453 2,103191 

miR-2-16 54006,50543 28130,87368 1,91983 

miR-2-17 59196,81886 30860,19656 1,918226 

miR-2-18 26174,26004 13998,73795 1,869759 
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miR-2-19 26033,19381 13937,59924 1,867839 

miR-2-20 26043,70234 13959,39537 1,865676 

miR-2-21 771,4991879 487,3704161 1,582983 

miR-2-22 9433,434034 5966,506702 1,581065 

miR-2-23 9419,006612 5964,843608 1,579087 

miR-2-24 2519,998189 1621,584784 1,554034 

miR-2-25 641,9281163 416,4159963 1,541555 

miR-2-26 4324,040628 2837,130532 1,524089 

 

The nomenclature employed for miRNAs identified in this chapter relates to: miR – miRNA; 2 – 

identified from TCGA expression data (pipeline 2); 1 to 26 – numerical order of identification. 
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3.3.2 Gene data extraction and candidate identification 

 

Figure 3.3: Distribution curve of the top 100 highly expressed genes, based on their S/N values. 

The distribution curve in Figure 3.3 proves that the S/N values for the top 100 genes are stable 

and accurate, therefore allowing for them to be taken further in this study. In Figure 3.3.1 below, 

the box plot has an upper whisker starting point of 1.73. This indicates that the top 25% of the 

genes with high expression have a S/N value of ≥1.73. 

A total of 25 genes with S/N values of 1.73 and higher were identified and finalized as the 

candidate genes of this chapter.  These genes are tabulated in Table 3.2 along with their average 

expression, standard deviation and S/N values.  
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Figure 3.3.1: Box plot of the top 100 genes, based on their S/N values. 

  

Starting point of upper whisker = 1.73 
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Table 3.2: Candidate genes identified in this chapter, as well as their expression information.  

Gene Average expression Standard deviation S/N 

PTMA 96127,20899 41419,54247 2,320818 

ACTB 344376,4339 154014,9449 2,235994 

CALR 74623,56614 34730,766 2,14863 

CFL1 75154,06085 35857,30681 2,09592 

MT-CO1 941874,9048 454346,8453 2,073031 

HSP90AB1 97081,5 48063,50267 2,019859 

MT-ND4 732800,5397 369430,8529 1,983593 

TMBIM6 70141,12169 35738,85403 1,962601 

MT-ATP6 236967,9841 121668,1398 1,947658 

ACTG1 233980,4709 121570,2148 1,924653 

MT-ND2 342401,9577 179211,1074 1,910607 

FTL 156460,1455 82380,60824 1,899235 

GNAS 113802,4021 60190,01033 1,890719 

TUBB 76076,05556 40456,71676 1,880431 

MT-CO3 440762,4339 240515,669 1,832573 

RPL15 111229,2884 61468,23281 1,809541 

MT-RNR2 832386,6693 460253,4606 1,80854 

MT-ND5 169919,2884 93959,32637 1,808435 
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RPL3 114091,5767 63119,55505 1,807547 

MT-CO2 405573,963 226899,4167 1,787461 

PSAP 79962,5291 45078,27248 1,77386 

ALDOA 109488,7989 62281,82887 1,757957 

RPL7A 72758,38095 41587,67802 1,749518 

MT-ND1 379320,0979 217706,7267 1,742344 

RPL4 120127,7354 69255,61162 1,734556 
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3.3.3 MiRNA-gene targeting interactions 

Table 3.3: Candidate miRNAs that target the candidate genes identified. 

  Candidate target genes 

C
an

d
id

at
e 

m
iR

N
A

s 

 ACTB ACTG1 ALDOA CALR CFL1 FTL GNAS HSP90AB1 PSAP PTMA RPL15 RPL3 RPL4 RPL7A TMBIM6 TUBB 

miR-2-1 ✓ ✓  ✓ ✓  ✓  ✓  ✓    ✓ ✓ 

miR-2-2  ✓ ✓ ✓ ✓  ✓  ✓      ✓  

miR-2-3 ✓ ✓  ✓ ✓       ✓ ✓  ✓  

miR-2-4 ✓ ✓ ✓    ✓  ✓ ✓ ✓    ✓ ✓ 

miR-2-5  ✓ ✓ ✓ ✓  ✓  ✓  ✓    ✓ ✓ 

miR-2-6  ✓     ✓         ✓ 

miR-2-7 ✓ ✓  ✓   ✓  ✓  ✓  ✓ ✓ ✓  

miR-2-8 ✓      ✓  ✓  ✓    ✓  

miR-2-9   ✓ ✓ ✓  ✓  ✓      ✓  

miR-2-10 ✓   ✓  ✓ ✓  ✓  ✓    ✓ ✓ 
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miR-2-11  ✓     ✓   ✓       

miR-2-12  ✓    ✓ ✓  ✓  ✓    ✓ ✓ 

miR-2-13  ✓   ✓  ✓ ✓ ✓ ✓ ✓    ✓ ✓ 

miR-2-14 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓   ✓  ✓ ✓ 

miR-2-15  ✓  ✓   ✓  ✓      ✓  
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Out of the 26 miRNAs and 25 genes identified in this chapter, there are targeting interactions 

between 15 miRNAs and 16 genes.  

It was to be expected that not all miRNAs and genes would interact with each other, since the 

gene identification was not based on using the miRNAs as input, as in chapter 2. Solely for the 

purpose of the following chapter, was the targeting interactions between the candidate 

miRNAs and genes scrutinized. Both miRNA and gene lists were identified as candidates for 

diagnostic purposes based on their specific expression levels in OC clinical cases.  

Cofilin 1 (CFL1) is a small ubiquitous protein involved in cytokinesis, endocytosis, apoptosis, 

cell migration and cell mobility (Mousavi et al., 2018). The activity status of CFL1 is directly 

associated with invasion, intravasation and metastasis of tumours. It was reported that 

increased CFL1 expression results in the progression of OC, and that targeting the activities of 

this gene is sufficient to significantly inhibit tumour invasiveness. Additional studies are still 

required to further elucidate the clinical outcomes of CFL1 in OC (Zhou et al., 2012).   

Ferritin light chain (FTL) is a key protein involved in iron metabolism (Wu et al., 2016). The 

regulation of iron metabolism in OC plays a crucial role in promoting cell proliferation and a 

study published in 2019 by Wang et al. revealed that high expression levels of FTL correlates 

to a poor prognostic outcome in patients with OC.  

Transmembrane BAX Inhibitor Motif Containing 6 (TMBIM6) is an endoplasmic reticulum (ER) 

protein that regulates apoptosis in response to ER-stress triggers. Overexpression of TMBIM6 

has been implicated in OC (Liu, 2017).  

3.4 Conclusion  

TCGA is a huge repository containing patient clinical data for various cancer types, resulting 

in studies that have significantly advanced the understanding of cancer biology (Mounir et al., 

2019). Using expression data extracted from TCGA as well as distribution curves and box plots 

as statistical measures, 26 miRNAs and 25 genes were identified as candidate biomarkers for 

OC diagnosis. 

Out of the 25 genes, 16 are involved in protein binding which is known to be a vital cellular 

process.  
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While all 26 miRNAs and 25 genes are still considered the candidate biomarkers identified in 

this chapter, only the 15 miRNAs and 16 genes that interact with each other, will be carried 

forward to the next chapter to assess their triplex-forming abilities.  
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Chapter 4 

Prioritization of candidate miRNAs and genes based on the triplex-forming 

potential between interacting miRNAs and genes. 

4.1 Introduction 

MiRNA-gene interactions are dynamic and depend on various factors, including subcellular 

location of miRNA, abundancy of miRNA and target genes, and the affinity of their 

interactions. MiRNAs commonly interact with the 3’-UTR of target mRNAs, inducing mRNA 

degradation and translational inhibition. However, miRNAs are also capable of interacting 

with other sites in the target mRNA, such as the 5’-UTR, coding sequence as well as promoter 

regions. They have also been shown to upregulate gene expression in response to certain 

cellular conditions, sequences and co-factors. Binding of miRNA to the target gene’s 3’-UTR, 

5’-UTR and coding regions induces silencing effects on gene expression, whereas binding to 

the promoter region has been reported to induce transcription, thus stimulating gene 

expression (Valinezhad et al., 2014; O’Brien et al., 2018).  

Eukaryotic promoters have a complex structure and several different sequence motifs. 

Transcription factors are required to bind to specific DNA sequences before RNA polymerase 

II can bind to the promoter and initiate transcription (Bhagavan and Ha, 2011). Commonly 

found in the promoter region of many genes are CpG islands which are an important feature 

of promoters as their methylation leads to silenced gene expression (Lim and Maher, 2010; 

Tollefsbol, 2011). With that being said, it is also known that approximately 45% of human 

gene promoters, particularly those of tissue-specific genes, do not contain CpG islands 

however, these genes are still transcriptionally silenced via methylation (Han et al., 2011). 

Since promoter regions are significant regulatory sites, their sequences are of importance as 

well. Such sequences can be obtained from genome browsers which allow users to search, 

browse, extract and analyse genomic sequences (Wang et al., 2012).  

Two popular systems annotating and displaying genomic information are Ensembl Genome 

Browser and UCSC Genome Browser (Birney, 2004). Both browsers display gene annotations 

from various sources regarding sequence variation, conserved regions, CpG islands, as well as 
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regulatory and promoter sequences (Furey, 2006; Spudich et al., 2010). Ensembl imports 

manually curated datasets, however if such evidence is not available, it annotates the gene 

set using a gene prediction pathway (Spudich et al., 2007). UCSC produces several annotations 

based on mRNA alignments. mRNA and EST sequences are extracted from GenBank and 

aligned against the genome using a fast sequence alignment tool, BLAT (BLAST-like Alignment 

Tool). Data is filtered based on identity percentage as well as alignments that best match the 

sequence (Karolchik, 2003). BLAT is commonly used to locate sequences in a reference 

genome, identify homologous sequences from the genomes of closely related species, 

recognize exon-intron boundaries, determine gene structures, as well as aid in assembling 

and annotating genomic and transcriptomic sequences (Wang and Kong, 2019).  

It has been postulated that miRNAs are capable of forming triplexes with the major groove of 

duplex DNA through either Hoogsteen or reverse Hoogsteen hydrogen bonds. Triplex 

formation involves a run of purines on one strand of the duplex. Purine bases contain more 

than one face from which they can form hydrogen bonds, which allows them to 

simultaneously participate in Watson-Crick pairing and either Hoogsteen or reverse 

Hoogsteen pairings (Paugh et al., 2016). Bioinformatic analyses have uncovered enrichment 

of potential triplex targeting sites (TTS) in regulatory regions, primarily in promoters and 

enhancers. This direct interaction results in an altered gene function. As shown in Figure 4.1 

below, triplex-forming oligonucleotides (TFOs) rich in pyrimidines interact with polypurine 

sequences via Hoogsteen base-pairing forming a parallel alignment whereas purine rich TFOs 

interact with polypurine sequences via reverse Hoogsteen base-pairing in an anti-parallel 

manner (Maldonado et al., 2017).   
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Figure 4.1: Triplex forming interactions between TFOs and DNA polypurine strand. Solid lines 

indicate Watson-Crick hydrogen bonding whereas dotted lines represent either Hoogsteen or 

reverse Hoogsteen hydrogen bonding (Maldonado et al., 2017). 

Trident is a computational algorithm that assesses the landscape of potential miRNA triplex-

binding sites in genomic DNA. It searches for triplex-forming units and Hoogsteen interactions 

according to the format of “XY:Z”, with “Z” representing the miRNA nucleotide. For example, 

TA:U and CG:C represents Hoogsteen interactions, whereas TA:A and CG:G indicates reverse 

Hoogsteen bonds. For each triplex binding site identified, Trident determines a 

thermodynamic binding energy as well as a heuristic score, with a higher heuristic score and 

lower thermodynamic energy relating to a stronger interaction (Paugh et al., 2016).   

The candidate miRNAs and genes from chapter 2 and 3 were identified through two distinct 

methodologies. Each chapter yielded a great number of candidates and since there was no 

overlap between the results, the candidates need to be ranked in order of priority. From 

there, candidates to be carried forward for future investigation can be distinguished. The 

Trident tool was implemented to prioritize the candidates for molecular validation, based on 

favourable thermodynamic interactions between a miRNA and its target genes. The 

motivation behind utilizing Trident to prioritize the candidates stem from the fact that: (a) it 

provides an additional line of evidence for an interaction between the miRNA and target 
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genes, and (b) triplex structures have been implicated in cancer due to its regulation of gene 

expression levels (Wang et al., 2018).  

Since the purpose of this chapter was to rank and prioritize the candidates, the miRNAs and 

genes not involved in targeting interactions were still considered to part of the finalized 

candidate list. These miRNAs and genes were deemed to be of low priority.  

4.1.2 Aims 

The aim of this chapter is to determine the potential of the candidate miRNAs identified in 

chapter 2 and 3, to form triplexes with the promoter regions of their respective target genes. 

4.1.3 Objectives 

• Extract sequences of the miRNAs identified in chapter 2 and 3 from miRBase 

• Extract true promoter sequences of target genes of the identified miRNAs and verify 

its authenticity 

• Determine triplex forming abilities of the miRNAs and their target genes, using Trident 

tool 

• Determine if any binding takes places between the antisense miRNA strand and the 

target gene’s promoter 

• Highlight list of miRNAs and genes for further validation 
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4.2 Methodology 

 

 

 

 

 

 

 

 

 

  

 

Figure 4.2: Flow chart depicting the outline of the in-silico methodology employed for 

identifying the candidates capable of triplex-formations. 
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4.2.1 MiRNA sequence extraction  

The candidate miRNAs and their target genes identified in both chapter 2 and chapter 3 were 

kept separate so their trident results could be compared. 

MiRBase was employed to extract the mature sequence of each candidate miRNA by pasting 

the miRNA name into the search box. The mature sequences were saved in FASTA format and 

used for the Trident tool.  

4.2.2 Promoter sequence extraction of miRNA target genes 

To ensure and verify that each gene’s promoter sequence was authentic, both Ensembl 

Genome Browser and UCSC genome browser were used. Ensembl Genome Browser (available 

at https://www.ensembl.org/index.html) was launched and “Human” was specified as the 

species, with the gene name being pasted in the search box below. The query was submitted 

and the returned result with the correct gene name and species was selected. On the left tab 

of the gene result, “sequence” was selected and all configurations were left on default with 

the upstream flanking region, containing the promoter, being 600bp. This 600bp before the 

first exon was selected as the promoter region.  

To verify that this sequence was in fact the true promoter, UCSC Genome Browser (available 

at https://genome.ucsc.edu/) was launched. The “BLAT” tool was utilized and the sequence 

extracted from Ensembl was pasted in the search box, with “Human” being specified and “Dec 

2013” as the selected assembly. All other parameters were left on default and the query was 

submitted. The result with “100%” identity was analysed by selecting it’s “browser” link. 

Under the “Regulation” setting, CpG islands were selected to identify if it was present within 

the promoter region, however if no CpG islands were present, the promoter sequence was 

still deemed to be true based on the 100% identity between two different genome browsers.  

4.2.3 Trident tool 

To predict triplex binding sites, Trident (available at http://trident.stjude.org/) was used. 

Under the “tools” tab, the miRNA sequence was pasted in the first search box with the specific 

target gene’s promoter sequence in the second search box. “MiRanda Rules” was ticked and 
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“Homo sapiens” was specified. The query was submitted and if any results were returned, it 

was recorded and saved. 

To serve as a negative control for this chapter, the reverse-complement of each miRNA 

sequence was generated using DNA Reverse Complement Sequence Generator Tool 

(available at http://www.bugaco.com/calculators/dna_reverse_complement.php). RNA was 

specified as the sequence mode and each miRNA sequence was submitted as the input 

sequence. The reverse complementary sequence for each candidate miRNA was retained and 

used in the Trident tool along with its target gene’s promoter sequence, to determine if anti-

sense binding can occur.  
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4.3 Results and discussion 

Gene promoter sequences are enriched with potential miRNA target sites in both sense and 

antisense directions (Catalanotto et al., 2016), however the antisense miRNA has less 

potential to form favourable Hoogsteen bonds (Paugh et al., 2016). Because of this, the 

antisense strand was used as a negative control to prioritize the miRNAs with triplex 

formations involving their sense strand only, thus resulting in a more enriched and validated 

interaction.   

When searching for binding site pairs, Trident not only shares some similarities with 

MiRanda’s miRNA-mRNA binding site algorithm but also incorporates its own rule 

adaptations. Trident binding rules assign a thermodynamic energy when searching for 

Hoogsteen (C:G and U:A) and Reverse Hoogsteen (G:G and A:A) binding (Paugh et al., 2016).  

Table 4.1 indicates the triplex-forming abilities of the candidate miRNAs and target genes 

identified in chapter 2. As can be seen there are a total of nine triplex interactions, involving 

seven sense-strand miRNAs and the promoters of five genes.  For the antisense results, a total 

of five triplexes were returned involving four miRNAs and three genes. There is no overlap 

between the sense and antisense results except for miR-1-3a which binds to AMHR2 in both 

a sense and antisense manner. These interactions are tabulated in Table 4.1.1 along with their 

energy and heuristic scores, genomic position, and hit structure.  

As mentioned previously, a higher heuristic score and lower thermodynamic energy 

correlates to a stronger interaction. The six miRNAs with only sense stand interactions have 

similar scores and are therefore, based on their favoured triplex formation abilities, equally 

prioritized. Due to the fact that miR-1-3a is capable of both sense and antisense bindings to 

AMHR2, it was deemed to be of low priority.  

The five genes involved in sense triplexes (WISP1, WNT5A, AMHR2, EGR2 and PGR) are, as 

depicted in section 2.3.7.2 of chapter 2, linked to positive regulation of transcription from 

RNA polymerase II promoter, signal transduction, Wnt signalling pathway, and cell-cell 

signalling. Implication of the Wnt signalling pathway in cancer has been discussed in chapter 

2, and it should be noted that when dysregulated, all other pathways mentioned here 
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contribute to tumorigenesis as well (Martin, 2003; Villicaña et al., 2014; Sever and Brugge, 

2015).  
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Table 4.1: Candidate miRNAs and target genes identified in chapter 2 that have triplex forming abilities.  

 Binding type WISP1 WNT5A AMHR2 EGR2 ESR1 LHCGR PGR 

miR-1-2a 

Sense  ✓     ✓ 

Anti-sense        

miR-1-2b 

Sense    ✓    

Anti-sense        

miR-1-2c 

Sense    ✓    

Anti-sense        

miR-1-3a 

Sense   ✓     

Anti-sense        

miR-1-3b 

Sense ✓ ✓      

Anti-sense        

miR-1-3c 

Sense   ✓     

Anti-sense        
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miR-1-4a 

Sense ✓       

Anti-sense        
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Table 4.1.1: Triplex interactions identified between each candidate miRNA and its target genes for both sense and antisense strands using 

Trident. Table indicates the Energy score (E), Heuristic score (H), Genomic position (P) and binding structure.  

miR-1-2a 

Sense 

WNT5A E: -11.77 H: 144 P: 39-60 

 

PGR E: -8.98 H: 144 P: 31-50 

 

Antisense LHCGR E: -10.01 H: 142 P: 24-44 

 

miR-1-2b 

Sense EGR2 E: -14.3 H: 148 P: 195-216 
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miR-1-2c 

Sense EGR2 E: -11.49 H: 152 P: 195-216 

 

Antisense ESR1 E: -9.27 H: 140 P: 401-422 

 

miR-1-3a 

Sense AMHR2 E: -15.98 H: 140 P: 304-324 

 

Antisense AMHR2 E: -25.32 H: 169 P: 566-587 

 

miR-1-3b 
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Sense 

WISP1 E: -22.68 H: 142 P: 434-455 

 

WNT5A E: -16.11 H: 140 P: 280-299 

 

miR-1-3c 

Sense AMHR2 E: -16.80 H: 146 P: 305-324 

 

miR-1-4a 

Sense WISP1 E: -15.23 H: 144 P: 23-43 
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Antisense 

AMHR2 E: -14.25 H: 144 P: 530-550 

 

LHCGR E: -18.66 H: 141 P: 135-157 
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Table 4.2 indicates triplex-forming interactions between candidate miRNAs and target genes 

identified in chapter 3. A total of eleven sense-strand triplexes were formed between seven 

miRNAs and five genes. For the antisense results, a total of six triplexes were produced 

between four miRNAs and five genes. Once more, there is only one overlapping result namely 

miR-2-14 that binds to TMBIM6 in both a sense and antisense manner. The information 

regarding these interactions can be found in Table 4.2.1. 

All sense strand interaction scores are relatively similar and equally prioritized, with miR-2-14 

and ACTB having the strongest interaction and therefore being of highest priority.  

The five genes (ACTB, CALR, GNAS, PTMA and TMBIM6) that are involved in sense-binding 

triplexes have roles in protein binding, with CALR and TMBIM6 also having roles in ubiquitin 

protein ligase binding. As previously discussed, protein binding is a process that when altered, 

contributes greatly to cancer onset and progression (Pereira et al., 2017). Ubiquitin ligases 

are vital components of the ubiquitin proteasome system (UPS) which governs crucial 

processes regulating cellular homeostasis, cell cycle and metabolism in response to DNA 

damage and stress signals. Dysregulation of ubiquitin ligases results in alterations of substrate 

availability and activity, thereby promoting cellular transformation and tumorigenesis (Qi and 

Ronai, 2015).  

Actin beta (ACTB) is a cytoskeleton structural protein that plays pivotal roles in cell 

development and migration, embryonic development, and gene expression. It is generally 

regarded as a housekeeping gene with an assumption that its expression is unaffected by 

experimental or physiological conditions, however it was found to be differentially expressed 

in a variety of cancers, including OC.  ACTB expression is reported to be upregulated in OC 

samples when compared to healthy ovarian tissues (Guo et al., 2013). This is especially 

interesting since triplex formation between a miRNA and its target gene is said to increase 

gene expression (Paugh et al., 2016). This allows for the assumption that since miR-2-14 forms 

triplexes with ACTB and hence upregulates its expression, it directly leads to OC onset and 

progression.  
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Table 4.2: Candidate miRNAs and target genes identified in chapter 3 that have triplex forming abilities. 

 Binding type ACTB ACTG1 CALR GNAS PSAP PTMA RPL15 TMBIM6 

miR-2-1 

Sense ✓   ✓    ✓ 

Anti-sense         

miR-2-2 

Sense    ✓     

Anti-sense         

miR-2-3 

Sense   ✓      

Anti-sense         

miR-2-4 

Sense         

Anti-sense         

miR-2-5 

Sense        ✓ 

Anti-sense         

miR-2-7 Sense         
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Anti-sense         

miR-2-8 

Sense        ✓ 

Anti-sense         

miR-2-11 

Sense      ✓   

Anti-sense         

miR-2-13 

Sense         

Anti-sense         

miR-2-14 

Sense ✓     ✓  ✓ 

Anti-sense         
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Table 4.2.1: Triplex interactions identified between each candidate miRNA and its target genes for both sense and antisense strands using trident. 

Table indicates the Energy score (E), Heuristic score (H), Genomic position (P) and binding structure. 

miR-2-1 

Sense 

ACTB E: -25.12 H: 149 P: 34-55 

 

GNAS E: -21.9 H: 166 P: 392-412 

 

TMBIM6 E: -25.4 H: 149 P: 134-156 

 

miR-2-2 

Sense GNAS E: -17.54 H: 157 P: 348-371 
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miR-2-3 

Sense CALR E: -26.84 H: 142 P: 137-160 

 

miR-2-4 

Antisense TMBIM6 E: -13.13 H: 141 P: 356-377 

 

miR-2-5 

Sense TMBIM6 E: -18.79 H: 153 P: 799-819 

 

miR-2-7 

Antisense GNAS E: -14.54 H: 140 P: 538-560 
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miR-2-8 

Sense TMBIM6 E: -25.48 H: 140 P: 75-98 

 

miR-2-11 

Sense PTMA E: -13.72 H: 140 P: 21-42 

 

miR-2-13 

Antisense ACTG1 

E: -26.37 H: 148 P: 218-241 

 

E: -24.55 H: 143 P: 300-326 
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E: -24.31 H: 142 P: 282-307 

 

PSAP E: -24.57 H: 154 P: 531-553 

 

RPL15 E: -16.5 H: 140 P: 310-332 

 

miR-2-14 

Sense 

ACTB E: -28.42 H: 165 P: 281-303 

 

PTMA E: -26.98 H: 142 P: 210-231 
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TMBIM6 E: -16.17 H: 140 P: 568-588 

 

Antisense TMBIM6 E: -16.92 H: 141 P: 853-875 
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4.4 Conclusion 

Through regulating their target genes, miRNAs influence a broad spectrum of biological 

processes. Triplex structures involving miRNAs and gene promoter regions, formed in the 

major groove of duplex DNA, is a potential mechanism whereby miRNAs directly modify gene 

transcription. The ability of miRNAs to form triplexes depends on their length and sequence 

(Paugh et al., 2016). 

All triplex interactions identified in this chapter involve genes that govern crucial pathways 

and processes, which further prioritizes the miRNAs involved. This also indicates the strength 

that both pipelines offer in identifying miRNAs with significant triplex interactions. The 

candidate miRNAs with no triplex bindings are not disregarded in this study as it is possible 

that their triplex forming potential is yet to be uncovered and characterized through further 

studies. 

Out of the set of miRNAs identified from the first pipeline and second pipeline, six and seven 

miRNAs respectively are enriched for strong triplex formations and additional investigations 

concerning them should be conducted. Due to the strong interaction between miR-2-14 and 

ACTB, based on them having the lowest energy binding and one of the highest heuristic 

scores, it is prioritized before all other candidates. All other miRNA-gene triplex interactions 

have similar binding scores and are equally prioritized after miR-2-14. Additional support for 

the great potential that ACTB offers, is its role in fundamental cellular pathways (Guo et al., 

2013).  

Uncovering Hoogsteen and reverse Hoogsteen bonds is a task that can be performed by 

molecular simulations in the future, as the purpose of this chapter was to determine enriched 

triplex interactions between the candidate miRNAs and their target gene’s promoter. Based 

on proven gene interactions in the form of triplexes, the prioritized miRNAs are deemed to 

be suitable biomarkers for OC diagnosis.  
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Chapter 5 

General discussion and future prospects 

With a 5-year survival rate of around 40%, OC is the most common gynaecologic malignancy. 

Accounting for this low survival rate, is the fact that it is often diagnosed in the advanced 

stages due to the lack of early symptoms. It is anticipated that if OC is diagnosed in the early 

stages, survival rates will increase to 80% (Burges and Schmalfeldt, 2011). This stresses the 

urgency for identifying sensitive and specific biomarkers that can aid in the early diagnosis of 

this disease. 

MiRNAs are appealing as biomarkers due to their roles in fundamental cellular processes as 

well as their proven dysregulation in cancer (Wang et al., 2015). Since miRNAs are non-coding, 

they exert their function through the regulation of their target genes. For this reason, their 

target genes are equally appealing (Wong and Wang, 2014; Hammond, 2015). The discovery 

of biomarkers can be achieved through various techniques, with bioinformatics playing a 

pivotal role. Bioinformatics allows one to generate, store, annotate and analyse biological 

data, while remaining cost effective (Chowdhary et al., 2016).  

This study has relied on two bioinformatic techniques to separately identify miRNAs and 

genes with strong potential as diagnostic biomarkers for early stage OC.   

The first pipeline incorporated a sequence similarity approach whereby novel miRNAs with 

no links to OC were identified as candidate biomarkers based on their similarity in sequence 

to miRNAs with a validated mechanism in OC. This is based on the notion that two sequences 

sharing a high degree of similarity, will most likely share a similar function (Lu et al., 2008). In 

this study, a similarity range of 90-99% was set when using two similarity programs, namely 

BLAST and CD-HIT. In common to both programs, were 28 miRNAs with similarities to 19 

miRNAs that have a proven dysregulation in OC. Following textmining, 9 miRNAs had no 

mechanism in OC to date and were finalized as the candidates for further study. Gene targets 

of the candidate miRNAs were extracted and those expressed in the ovary were identified 

and retained for further analysis. Functional annotation from DAVID returned 12 genes that 

have direct links in OC, with them being involved in processes related to cancer when 

dysregulated. Since the 9 candidate miRNAs target 12 genes, including FOS, WISP1, WNT5a, 
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EGR2 and PGR, with clear links to OC, it strengthens their potential in being suitable diagnostic 

biomarkers.  

The second pipeline dealt with patient clinical data extracted from TCGA, a comprehensive 

atlas of genomic cancer profiles (Chu et al., 2015). Distribution curves for both the miRNAs 

and genes proved that the extracted data was accurate and stable. Using box plots, the top 

25% highly expressed miRNAs and genes were identified, resulting in 26 miRNAs and 25 genes 

shortlisted as the candidates of chapter 3. Out of this, it was noted that targeting interactions 

occur between 15 miRNAs and 16 genes, which were carried over to chapter 4 of this study.  

The candidate miRNAs and genes with targeting interactions identified in each pipeline were 

subjected to the trident tool to further prioritize them based on their triplex-forming abilities. 

Triplexes, which directly alter gene function, can be formed between miRNAs and the major 

groove of duplex DNA (Paugh et al., 2016). Out of the 9 miRNAs and 12 genes identified from 

the first pipeline, 6 miRNAs and the promoter regions of 5 genes were predicted to form sense 

triplexes. With a higher heuristic score and lower thermodynamic energy indicating a stronger 

interaction, all triplexes had similar scores and were thus equally prioritized. Out of the 15 

miRNAs and 16 genes with targeting interactions identified in the second pipeline, 7 miRNAs 

and 5 genes are capable of forming sense triplexes. The triplex interaction between miR-2-14 

and ACTB had the strongest interaction and was deemed as a top priority candidate, with the 

rest being equally prioritized. This interaction is especially interesting since ACTB is said to be 

upregulated in OC and it has been proposed that triplex formations increase a genes 

expression level (Guo et al., 2013; Paugh et al., 2016). This allows for the assumption that 

miR-2-14 directly causes the upregulation and dysregulation of ACTB which leads to OC onset 

and progression. The candidate miRNAs and genes not involved in any targeting interactions 

and triplex formations were still noted as candidates, just of low priority. Ranking of the 

candidates according to their priority can be found in Table 5.1 below.  
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Table 5.1: Prioritization of all candidate miRNAs based on their ability to form triplexes with 

their target genes.  

 MiRNAs Genes 

Top priority miR-2-14 ACTB 

Equally prioritized 

miR-1-2a WISP1 

miR-1-2b WNT5A 

miR-1-2c AMHR2 

miR-1-3b EGR2 

miR-1-3c PGR 

miR-1-4a CALR 

miR-2-1 GNAS 

miR-2-2 PTMA 

miR-2-3 TMBIM6 

miR-2-5  

miR-2-8  

miR-2-11  

Low priority 

miR-1-1a FOS 

miR-1-3a BNC2 

miR-1-3d CYP19A1 

miR-2-4 ESR1 

miR-2-6 ESR2 

miR-2-7 LHCGR 
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miR-2-9 PDGFB 

miR-2-10 CFL1 

miR-2-12 MT-CO1 

miR-2-13 HSP90AB1 

miR-2-15 MT-ND4 

miR-2-16 MT-ATP6 

miR-2-17 ACTG1 

miR-2-18 MT-ND2 

miR-2-19 FTL 

miR-2-20 TUBB 

miR-2-21 MT-CO3 

miR-2-22 RPL15 

miR-2-23 MT-RNR2 

miR-2-24 MT-ND5 

miR-2-25 RPL3 

miR-2-26 MT-CO2 

 PSAP 

 ALDOA 

 RPL7A 

 MT-ND1 

 RPL4 
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From the two approaches employed in this study, one relying on sequence similarity and the 

other based on patient clinical data, no overlapping results were obtained. The reason for 

each pipeline yielding its own distinct set of results could be attributed to the fact that the 

two pipelines share no underlying resemblance. The sequence similarity approach is a 

prediction methodology based purely on biological knowledge, whereas the TCGA approach 

is based on patient clinical data that depicts the confirmed miRNA/gene expression levels in 

OC patients.  

This study has identified candidate miRNAs and genes that offer promising potential in being 

suitable diagnostic biomarkers for early stage OC. Future work regarding these candidates 

would entail molecular validation, followed by the development of a lateral flow device for 

diagnostic purposes.  

In order to prove their dysregulated expression in OC, quantitative PCR (qPCR) should be 

performed on the candidate miRNAs and genes. qPCR involves monitoring DNA amplification 

in real time by tracking fluorescence. After each cycle, fluorescence is measured with the 

intensity of the fluorescent signal indicating the amount of DNA amplicons in the sample at 

that specific time. In terms of gene expression studies, qPCR is an extensively applied 

technique (Kralik and Ricchi, 2017). This would confirm the candidate genes dysregulated 

expression levels in OC samples when compared to healthy ovarian tissue. Possible OC cell 

lines that could be utilized are CaoV-3, Ovcar-3 and OAW28.  

To determine the effect of the candidate miRNAs on their target genes, luciferase assays 

would need to be performed. A luciferase reporter gene assay is a common application used 

to examine the regulation of transcriptional activities by promoters and transcription factors. 

Adaptations to this assay allows for exploring the post-transcriptional regulation of miRNAs 

on their target genes. This can be attained by engineering a luciferase gene construct 

containing the predicted miRNA targeting sequence from the target gene (Jin et al., 2013). 

Cells are co-transfected with the miRNA as well as a plasmid containing a luciferase coding 

sequence upstream of the mRNA gene of interest. If the miRNA targets the mRNA, the 

luminescence variation will be altered, thus reflecting the changes in the transcript’s stability 

and/or translation efficiency (Campos-Melo et al., 2014). This assay will offer confirmation of 

the predicted targeting interaction between the miRNAs and genes identified in this study.  
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Once all the predicted results from this in silico study has been validated, the end goal would 

be to construct a Point of Care (POC) device, such as a lateral flow assay, using 

nanotechnology. This device offers great potential due to its ease of use, and being robust 

and inexpensive (de Puig et al., 2017). Since current OC biomarkers are failing, there is a great 

demand to identify ones that can offer an accurate diagnosis. If the identified candidate 

miRNAs and genes are validated to be sensitive and specific biomarkers for OC diagnosis, 

using them to construct a lateral flow device provides a promising and cost-effective means 

for early diagnosis of OC.  

  

 

 

 

  

http://etd.uwc.ac.za/ 



112 
 

Appendix A 

Chapter 2 supplementary information 

Table A.1: List of 198 OC validated miRNAs, after duplication removal.  

hsa-miR-199a-3p  

hsa-miR-499-3p  

hsa-miR-371-3p  

hsa-miR-129-2-3p  

hsa-miR-509-3-5p  

hsa-miR-1245b-5p  

hsa-miR-1255b-5p  

hsa-miR-219-1-3p  

hsa-miR-193a-3p  

hsa-miR-146b-3p  

hsa-miR-125a-3p  

hsa-miR-193a-5p  

hsa-miR-548c-3p  

hsa-miR-514b-5p  

hsa-miR-513a-5p  

hsa-miR-199a-5p  

hsa-miR-548d-3p  

hsa-miR-1225-5p  

hsa-miR-548c-5p  

hsa-miR-1207-3p  

hsa-miR-106a-5p  

hsa-miR-106b-5p  

hsa-miR-450b-3p  

hsa-miR-518a-3p  

hsa-miR-151a-3p  

hsa-miR-550a-5p  

hsa-miR-200a-3p  

hsa-miR-301a-3p  

hsa-miR-513a-3p  

hsa-miR-548d-5p  

hsa-miR-181c-5p  

hsa-miR-146b-5p  

hsa-miR-135b-5p  

hsa-miR-302c-3p  

hsa-miR-516a-3p  

hsa-miR-1915-3p  

hsa-miR-378a-3p  

hsa-miR-200c-3p  

hsa-miR-193b-3p  

hsa-miR-1185-5p  

hsa-miR-374b-5p  

hsa-miR-302a-3p  

hsa-miR-130b-3p  

hsa-miR-135a-5p  

hsa-miR-1307-3p  

hsa-miR-519c-3p  

hsa-miR-302b-3p  

hsa-miR-199b-5p  

hsa-miR-181b-5p  

hsa-miR-1277-3p  

hsa-miR-548b-3p  

hsa-miR-517c-3p  

hsa-miR-548a-5p  

hsa-miR-548b-5p  

hsa-miR-1224-3p  

hsa-miR-1225-3p  

hsa-miR-520d-5p  

hsa-miR-518a-5p  

hsa-miR-520a-3p  

hsa-miR-519b-3p  

hsa-miR-516a-5p  

hsa-miR-518d-3p  

hsa-miR-548a-3p  

hsa-miR-885-5p  

hsa-miR-362-5p 

hsa-miR-502-3p 

hsa-miR-532-5p 

hsa-miR-574-3p 

hsa-miR-532-3p 

hsa-miR-501-3p 

hsa-miR-542-5p 

hsa-miR-188-5p 

hsa-miR-362-3p  

hsa-miR-509-5p 

hsa-miR-486-5p  

hsa-miR-342-5p 

hsa-miR-34c-3p 

hsa-miR-34c-5p 
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hsa-miR-324-3p 

hsa-miR-501-5p  

hsa-miR-508-3p 

hsa-miR-508-5p 

hsa-miR-296-3p  

hsa-miR-127-5p  

hsa-miR-127-3p 

hsa-miR-140-3p 

hsa-miR-485-5p 

hsa-miR-299-3p 

hsa-miR-337-5p 

hsa-miR-654-3p 

hsa-miR-140-5p 

hsa-miR-509-3p 

hsa-miR-371-5p 

hsa-miR-769-5p 

hsa-miR-340-5p 

hsa-miR-221-3p 

hsa-miR-425-5p  

hsa-miR-30d-5p 

hsa-miR-27a-3p 

hsa-miR-183-5p 

hsa-miR-30b-5p 

hsa-miR-92a-3p 

hsa-miR-342-3p  

hsa-miR-30c-5p 

hsa-miR-18a-5p 

hsa-miR-411-5p 

hsa-miR-223-3p 

hsa-miR-205-5p 

hsa-miR-142-3p 

hsa-miR-26a-5p 

hsa-miR-367-3p 

hsa-miR-486-3p 

hsa-miR-30e-5p 

hsa-miR-141-3p 

hsa-miR-660-5p 

hsa-miR-625-5p 

hsa-miR-664-3p  

hsa-miR-767-5p 

hsa-miR-542-3p 

hsa-miR-454-3p 

hsa-miR-339-3p 

hsa-miR-576-3p  

hsa-miR-20a-5p 

hsa-miR-192-5p  

hsa-miR-10b-5p 

hsa-miR-502-5p 

hsa-miR-369-3p 

hsa-miR-150-5p 

hsa-miR-770-5p 

hsa-miR-483-3p 

hsa-miR-338-3p 

hsa-miR-576-5p 

hsa-miR-23a-3p 

hsa-miR-337-3p 

hsa-miR-659-3p 

hsa-miR-409-5p 

hsa-miR-34a-5p 

hsa-miR-182-5p 

hsa-miR-382-5p 

hsa-miR-493-3p 

hsa-miR-100-5p 

hsa-miR-485-3p 

hsa-miR-766-3p 

hsa-miR-29a-3p 

hsa-miR-361-5p 

hsa-miR-455-3p  

hsa-miR-541-3p 

hsa-miR-144-3p 

hsa-miR-23b-3p 

hsa-miR-330-5p 

hsa-miR-187-3p 

hsa-miR-29c-3p 

hsa-miR-185-5p 

hsa-miR-34b-3p  

hsa-miR-33b-5p 

hsa-miR-331-3p 

hsa-miR-154-5p 

hsa-miR-101-3p 

hsa-miR-214-3p 

hsa-miR-143-3p 

hsa-miR-139-3p  

hsa-miR-126-3p 

hsa-miR-483-5p 

hsa-miR-888-5p 

hsa-miR-188-3p 

hsa-miR-615-5p 

hsa-miR-525-5p 

hsa-miR-875-5p  

hsa-miR-139-5p 

hsa-miR-628-3p 

hsa-miR-769-3p 
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hsa-miR-490-5p 

hsa-miR-409-3p 

hsa-miR-490-3p 

hsa-miR-142-5p 

hsa-miR-574-5p 

hsa-miR-219a-5p  

hsa-miR-628-5p 

hsa-miR-875-3p 

hsa-miR-876-5p 

hsa-miR-590-5p 

hsa-miR-129-5p 

hsa-miR-876-3p 

hsa-miR-339-5p 

hsa-miR-491-5p 

hsa-miR-93-5p  

hsa-miR-96-5p  

hsa-let-7d-5p  

hsa-miR-21-5p  

hsa-let-7i-5p  

hsa-miR-17-5p  

hsa-miR-516-5p  

hsa-miR-30a-5p  

hsa-mir-135a-3p  

hsa-mir-200b-3p  

hsa-mir-551b-3p  

hsa-mir-224-5p  

hsa-mir-28-5p  
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Table A.2: Ovary-specific genes extracted, following duplication removal.  

ACSM1 

ADAMTS16 

ADRB3 

AMHR2 

ANGPTL2 

ANGPTL5 

AQR 

ARMS2 

ARX 

ASMT 

ATP4B 

BAIAP3 

BCL2L2 

BMP6 

BNC2 

C12orf71 

C6 

CCBE1 

CCDC17 

CCDC94 

CDC42BPA 

CDH11 

CDH3 

CDON 

CELF5 

CHRNA4 

CHST9 

CLSTN2 

CLUL1 

COL6A2 

COL6A3 

CPZ 

CRYGD 

CSF2 

CYP11A1 
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CYP2W1 

DDX17 

DISC1 

ECEL1 

EGR1 

EGR2 

EGR3 

EML5 

EPHB2 

EPYC 

ESR1 

ESR2 

ETV7 

FAM153A 

FAM19A3 

FOS 

FOSB 

FOXL2 

FOXO1 

GABRB2 

GLI3 

GNGT1 

GOT1L1 

GSTM2 

GSTM5 

GTF2A1L 

HAS1 

HS3ST1 

HSD11B1 

HSD3B2 

IQCH 

KCNK7 
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KRT32 

KRTAP10-12 

LCN1 

LDHAL6A 

LEFTY2 

LHCGR 

LHX9 

LPAR4 

LRRC17 

LTBP4 

MAMLD1 

MAP4K1 

MDFI 

MDK 

MEX3A 

MGA 

MMP11 

MUM1L1 

NPC1L1 

NR2F2 

NR4A2 

NRK 

OGN 

OR4D10 

OR5K1 

OTOR 

OVGP1 

P2RX2 

PAEP 

PDGFB 

PDLIM4 

PDZK1 

PEG3 

PGR 

PHACTR3 

PKNOX2 

POU1F1 

PRPS2 

PRSS35 

PUS7L 

RBMS3 

RBP1 

REN 

RHBG 

RPP25 

RRS1 
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SCGB1D4 

SCGB2A2 

SCML1 

SEMA6D 

SIGLEC11 

SLC22A1 

SLC24A2 

SLC25A41 

SLC7A8 

SNCAIP 

SOX4 

SPATA5L1 

SPRR2F 

SSTR3 

STIP1 

TAB3 

TCF23 

TMEM190 

TRPC1 

TSHZ3 

UBA6 

UBAP1 

UBXN8 

USH1G 

VWCE 

WFIKKN2 

WISP1 

WNT4 

WNT5A 

XCR1 

ZFPM2 

ZNF268 

ZNF30 

ZNF469 

ZNF540 

ZNF549 

ZNF556 

ZNF660 

ZNF714 

ZNF83 

ZNF837 

ZP4 
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