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ABSTRACT

Fractional Black-Scholes Equations and their Robust Numerical Simulations
by
Samuel Megameno Nuugulu
PhD Thesis, Department of Mathematics and Applied Mathematics, Faculty of

Natural Sciences, University of the Western Cape

Conventional partial differential equations under-the classical Black-Scholes ap-
proach have been extensively explored over the past few decades in solving option
pricing problems. However, the underlying Efficient Market Hypothesis (EMH) of
classical economic theory neglects the effects of memory in asset return series, though
memory has long been observed -in.a number financial data. With advancements in
computational methodologies, it has now become possible to model different real life
physical phenomenons using complex approaches such as, fractional differential equa-
tions (FDEs). Fractional models are generalised models which based on literature have
been found appropriate for explaining memory effects observed in a number of finan-
cial markets including the stock market. The use of fractional model has thus recently
taken over the context of academic literatures and debates on financial modelling. Frac-
tional models are usually of a non-linear and complex nature, which pose a considerable
amount of computational and theoretical difficulties in deriving their analytical solu-
tions. To the best of our knowledge, currently, there exist no tractable exact /analytical
solution methods for solving fractional Black-Scholes equations, and as such, numerical
solution methods become of a vital importance in understanding nature of solutions
to such models. This thesis therefore, serves to derive some Generalised (fractional)

Black-Scholes Partial Differential Equations (fBS-PDEs), as well as, propose their re-
i
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spective tractable, efficient and robust numerical simulation methods. The proposed
models and their respective numerical methods are used to price standard as well as
exotic options on continuous dividend paying stocks. The fractional models presented
herein, falls within two categories; the time-fractional Black-Scholes Partial Differential
Equations(tfBS-PDEs) as well as those which are generalised in both time and space
directions, i.e. the time-space-fractional Black-Scholes Partial Differential Equations
(tsfBS-PDEs). Though it involves a considerable amount of computational difficulties
to construct tractable, efficient solution methods for fractional models, we were able to
construct a number of reliable numerical solutions schemes for the considered models.
Overall, results herein indicates that, the fractional Black-Scholes framework and the
accompanying numerical computations-are well sunited-and appropriate methods for
pricing continuous dividend paying stock options. Furthermore, the fractional Black-
Scholes approach has outperformed its ¢lassical counterpart (classical Black-Scholes

model) in calculating the best option premiums under all considered market conditions.

February 2020.
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Chapter 1

General Introduction

This chapter presents the gencral introduction of the thesis. The chapter introduces
the general ideas and concepts of the theory of fractional calculus and its application
to finance. The chapter further highlights the review of numerous literatures related to
other subsequent chapters in this thesis. Lastly the chapter conclude with the structure

of the remainder of the thesis.

1.1 Literature review

Since the discovery of the celebrated “Black-Scholes-Merton” asset pricing formula in
the early 1970s, the application of Black-Scholes (BS) partial differential equations
(PDEs) in valuation of derivative instruments became very popular. The popularity
of the approach can be mainly attributed to the belief that the approach provided
the best and most effective asset valuation tool of the time. Besides the application
in derivatives pricing, dynamical behaviours of financial markets, attributed to ill-
informed splash trading for example, has led to a formation of a number of speculative
bubbles and volatility smiles in market data. Often when these speculative bubbles
burst, unfavourable economic recessions and crises become inevitable.

It is worth noting that in derivative markets, once the price evolution process for a

particular asset is specified, it is possible to address the question of how to price deriva-

1
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CHAPTER 1. GENERAL INTRODUCTION 2

tive contracts on this particular asset. One of the most common classes of derivative
instruments in the markets are called options. An option is a financial contract that
gives the holder the right, but not obligation, to buy or sell a specified quantity of an
underlying asset, e.g., a stock, at a fixed price, called the strike price, before or on the
expiration date. Since it is a right and not an obligation, the holder of the contract
can decide not to exercise the option and let it to expire worthless.

There are two main types of options: standard and non-standard. Standard options
are further categorised as European or American type. The European options can only
be exercised on the expiration date, whereas, the American options are more flexible
and can be exercised at anytime on or before the expiration date. These options can
further be divided into two categories = eall options-(which give their holders the rights
to buy) or put options (which give their holders-the rights to sell).

Another rather complex kind of tradable options available in the market today are
exotic options. Over the years exotic options have become very popular. Today, a large
variety of exotic options are readily-available toinvestors-as'they are cheaper and many
offers specific tailor-made protections to the investors; seeifor example ([13] 42} [61] 98])
and some references therein.

Several factors can provide an explanation for the wide popularity of exotic options.
One is the almost unlimited flexibility in the sense that they can be tailored to address
a specific needs which may not be possible with standard options. For example, an
investor who would like to hedge against a large drop in the underlying asset price
can sell a down-and-in put with the barrier set at a lower level as a cheapest way to
purchase the underlying asset.

On the other hand, exotic options play a significant hedging role in meeting investors
need in very cost effective ways, see ([13]). Also, according to [13]| rational investors
are moving away from buying general protections and rather focusing on designing
complex strategies which serves to address their specific exposures at any given point
in time. Most of these complex strategies are based on exotic options.

The oldest type of exotic options are barrier options. Barrier options in general

http://etd.uwc.ac.za/



CHAPTER 1. GENERAL INTRODUCTION 3

come in two forms, knock-out option (disappearing) or knock-in (appearing) when the
underlying asset price triggers some pre-set price levels ([14]). Barrier options are thus
conditional options, and depends on whether the barrier(s) have been breached during
the lifetime of the option. Barrier options are also part of a class of options called
path-dependent options. According to Buchen and Konstandatos (|[I3]) barrier options
are usually cheaper than their vanilla counterparts, this is due to the fact that a buyer
of a barrier option has a more specific view of the underlying asset price dynamics
within the time to maturity of the option as compared to its vanilla counterparty.
Another hybrid of barrier options are the so-called partial time barrier options ([13]).
Here, the barrier is monitored (or active) for a time period that is shorter than the
expiry time. These options are-also-ealled windew barrier.options. Another refinement
of these barrier options are those-options where-barrier(s) are monitored discretely in
time, a comprehensive coverage of these kind of options can be found for example in
(14 133} 136]) to mention but a few.

The concept of option pricingis-both-a theoretical-and a practical problem in
computational finance. The derivation of the classical Black - Scholes equation which
is at the center of option priciug theory was based on fhe Efficient Market Hypothesis
(EMH) assumption. Of primary concern in the EMH and this derivation in general
is that assets price returns are assumed to follow a Gaussian process. Of course,
in the earlier days of trading, the Black-Scholes equation in its classical form was
a very efficient asset pricing tool and as such it found enormous applications in the
general spectrum of derivative pricing. Later, however, it turned out that splash trading
presumably informed by classical contemporary theory, and also done with little to no
knowledge of evolutions of markets dynamics has led to a formation of a number of
speculative market bubbles, which in turn led to a lot of financial troubles. For a
comprehensive account on speculative bubbles and their roles in financial crises among
other market anomalies see for example, (|1} 22| [54]) and some references therein.

Among other factors, the recurrent occurrence of unexpected fluctuations, i.e., sud-

den unexpected rise/fall in stock prices renders the use of the classical Black Scholes
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CHAPTER 1. GENERAL INTRODUCTION 4

approach inappropriate. Taleb in [91] refers to such rare occurrences as “black-swan
events” from his popular book entitled: “The black-swan: The impact of the highly
improbable”. According to Taleb [91] a black-swan is “A highly improbable event with
three principal characteristics: it is unpredictable; it carries a massive impact; and,
after the fact, we concoct an explanation that makes it appear less random, and more
predictable, than it was”. According to Kleinert [54], the existence of black-swan events
in financial markets is a severe obstacle to all hedging attempts. Kleinert in ([54]) fur-
ther argued that based on the central limit theorem, one would normally consider price
changes as a result of random steps of a given finite size and demonstrates that these
series of random walks build up to a complete Gaussian process. However, in an event
where a black-swan occur, some-stéps can beconie very-izregular, resulting into a com-
bined process that exhibits power-law-properties. It-is therefore of vital importance
that models beyond the classical Black-Scholes setup, those that have the capacity to
explain the effects of “black-swan events”, as well as their solutions, both numerical and
analytical if possible are developed:

Recall that valuing options under the. classical Black+Scholes framework, one as-
sumes that the market consists of & risky asset, e.g.,/alstock, and a riskless asset such
as a bond. Emanating from its assumptions, the classical Black-Scholes approach suf-
fers from a few drawbacks, namely, (i) constant rate of return, (ii) constant volatility,
and (iii) no dividend, taxes or transactional costs. Interest rates are bound to market
forces and as such, cannot remain constant over a longer period of time. Based on
empirical evidence, most traded asset returns exhibit memory structures, regimes of
un-even fluctuations, volatility smiles and clustering. Therefore, assuming constant
volatility may introduce some model risk. Furthermore, it is worth noting that trading
of financial assets may involve transactional costs, taxation as well as dividend pay-
ments. It is therefore crucial that in designing asset valuation models, one pays ample
attention to the case-by-case practicalities of relaxing some of these assumptions.

Empirical evidence in (25 37, [103]) and some references therein suggest that the

assumption of log-normality of returns and Gaussian shocks under-represent the actual
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CHAPTER 1. GENERAL INTRODUCTION )

dynamics of unanticipated jumps in asset returns. To circumvent this among other
issues, a number of suggestions has been made, for example replacing the standard
Brownian motion with a Levy processes which according to Zhang et al. [103] exhibits
long fat tails while capturing the volatility smiles and skewness which may not be
captured using the classical Black-Scholes models.

Weakening some assumptions of the classical Black-Scholes approach, some re-
searchers suggested a few improved-models, such as, stochastic interest rate models
[24] 28, 32] ’1], jump-diffusion models [3} 24} 3] [55] [71] [85], stochastic volatility mod-
els [11] 28], 80, 81, [87], models with transactional costs [30] 43, 88| 100} 101], dividend
payments based models [7, [68] 80l 81] as well as regime-switching models [19] [87].

Bielecki et al. [10] also gave-anextension of-theno-arbitrage pricing theory to pric-
ing dividend-paying securities in-discrete-time markets with transaction costs. They
showed that when there are no transaction costs on the dividends paid by a securi-
ties, the no-arbitrage conditions under the efficient friction assumption market become
equivalent to the existence of a consistent pricing system. Recently, [88] solved a space-
time fractional FKuropean option pricing model in the presence of transaction costs and
tested the practicability of their results onfmarket real data. In the general case, when
there are transaction costs on the dividends, the no-arbitrage condition is open. This
is so because, if a security pays dividends, the security price falls by the amount of
dividend payout. Arbitrage opportunities vanishes because investors are compensated
with the same amount of price depreciation back in cash through the dividends paid
out to them.

Recent models with dividend payments, include but not limited to [68],[81] and
[7]. Martin-Vaquero et al. in ([68]) derived a stabilized explicit Runge-Kutta method
for solving American option on Multi-assets with dividends. Rana and Ahmad in
([81]) used the Glosten-Jagannathan-Runkle - Generalized Autoregressive Conditional
Heteroscedasticity (GJR-GARCH) forecasted volatility in pricing European call options
on dividend paying stocks. Ballerster et al. [7] derived a robust numerical method for

pricing vanilla options with discrete dividend payments.
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Another notable setback of the classical Black Scholes approach as well as many
of its revised versions discussed above is that their resultant models involve integer
order derivatives and integrals. According to Panas (|77]) integer order derivatives
only capture localised information (change) around a point. However, with changing
market conditions, which led to an evolvement of some unusual structures in financial
markets, such as, repeated patterns and trends, heavy tailedness in the distributions
of asset returns, volatility smiles and clustering, presents a considerable amount of
practical challenges in using models involving integer (local) derivatives. The need for
better and robust approaches has therefore become very imperative.

On the other hand, dynamical trading, always involve some residual risks emanating
from the imperfection of the correlations-betweennr the nnderlying process and the risky
counterpart and hence choosing-an-underlying-stochastic process under which, the
discounting asset price movements at-least asymptotically follows a martingale would
best serve to eliminate the associated risk. That is so, because of the fact that the
underlying processes are usually correlated withthe substitutes (risky counterparts)
which creates markets incompleteness. Furthermore, attributed to the principle of no-
arbitrage, there can be infinitely many martingale imeastirés in any such portfolio setup,
which would allow for the underlying (stock) to be directly correlated to the risk. If
one wishes to therefore overcome the associated uncertainty, it is ideal to employ an
appropriate underlying stochastic process, one that is able to capture the dynamical
behaviours of the underlying (stock) price movements.

The study on pricing stock options via classical Black-Scholes approach is based on
the well known efficient market hypothesis (EMH), i.e, martingale property of price
movements. The consequence of using these types of models is that it is almost impos-
sible to infer any additional information from historical price movements to predict the
future prices. It therefore became imperative that for one to better understand future
price movements, there is a need to pay ample attentions to the repeated historical
patterns and trends.

Contrary to what the efficient market hypothesis may suggest, unusual structures
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and patterns observed in a number of financial markets data can strongly be attributed
to the following three factors, (i). markets discount everything (markets will always
respond to news and events), (ii). as behavioural finance suggests, asset prices moves
in trends and patterns forming structures depicting investors’/traders’ psychology, and
lastly that (iii). these repeated market structures may persist and are most likely to
re-occur more often than expected (history mostly always repeat itself).

In recent years, after the discovery of fractal geometry and fractal dynamics of
financial markets, see (|25, [66] [103]) progress has been made in the design of new
revolutionary models circumventing some of the unrealistic assumptions of the classical
Black-Scholes models. At the centre of the revolution are fractional calculus based
models.

Mandelbrot [64] in the late sixties observed that'stock price returns exhibits heavy
tails features, as a result, they proposed an exponential non-Gaussian Levy type of
process for modelling heavy tailed stock returns. Fast forward, in the mid 1990s, ema-
nating from a series of his publications on the theory of fractal geometry, Mandelbrot
certainly revolutionised the world of science, finance and applied economics. The fields
of finance and applied economics beingsoime of his mastisubtle areas of interests, led
him onto the path of discovering the fractal geometry of financial markets.

Falling under chaos theory is the Fractal Market Hypothesis (FMH) which helps
in explaining market behaviours based on the idea of Mandelbrot fractal geometry
[67]. As one may recall from elementary fractional calculus, fractals are fragmented
geometric structures which when broken down into smaller parts would still maintain
the shape and structure of the whole. From financial markets point of view, one
may look at stock price movements as fractals, the market structures on bigger time
frames are preserved on smaller time frames. Repeated self-similar patterns have long
been observed in financial market data, for some accounts with reference to stock
markets see for example [37, 54, [77] and some references therein. Mandelbrot and
Cioczek-Georges in ([66]) suggested yet another modification of the classical Black-
Scholes model using his theory of fractal geometry ([67]) which help capture memory
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and heredity features observed in financial data see [6l 37, [77, 97, 101, 103]. The
later approach of Mandelbrot and Cioczek-Georges [66] suggest replacing the standard
Brownian motion with a generalised/fractional Brownian motion. The generalised
Brownian motion is characterised by a hurst parameter H (0 < H < 1/2), such that it
is equivalent to a standard Brownian motion when H = 1/2 .

According to Panas [77] local derivative based mathematical models can only cap-
ture localized information about change in price at a particular point and time, as
such, these models may not be appropriate for modeling dynamics of markets depict-
ing unusual structures such as jumps and repeated patterns. Panas in (|77]) indicated
that memory effects in financial data occurs in two forms: memory due to the noise
and that due to the trend. He-further mentioned that-that incorporating a fractional
Brownian motion as the governing process-of the underlying dynamics can only help
to capture the noise memory effects and not the trend memory effects.

To the best of our knowledge, the work by Mandelbrot and Cioczek-Georges [66]
put them at the forefront of the pioneering worksinthe-area of application of fractional
calculus to financial modeling and! literature. | They were: first to suggest an approach
whereby one analogously replace the standard. Brownian motion in the classical Black-
Scholes model with a fractional Brownian motion (fBM) characterised by a Hurst
parameter H € (0,1]. Unlike in the standard case, the hurst parameter H in the
fBM helps in explaining the effects of memory. Some recent literatures on the similar
approach are Jumarie ([46]), Wei-Gou (]|95]), and Liang (|63]) to mention but a few.

The Hurst parameter and fractional derivative operators involved in models driven
by fractal processes are increasingly becoming popular and effective tools for explaining
the effects of memory in financial markets. In the contemporary setting, to capture
effects of memory under the classical Black-Scholes setup, some researchers, for exam-
ple, ([46. 163] [66]) suggested replacing the standard Brownian motion in the underlying
(stock) dynamics with a fractional Brownian motion.

There has been a widespread applications of fractional Brownian motions based

models in finance. Jumarie [46], Liang et al. [63], Mandelbrot and Cioczek-Georges
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[66], Wei-Gou et al. [95], to mention but a few, are some of the authors who applied
fractional Brownian motion based models to pricing of equities, wallets, options and
to general portfolio optimization problems.

Fractional Brownian motion based models have two very important features, namely;
self-similarity and long-range dependence (hereditary properties), see [77,[95] and refer-
ences therein. These features allows for the best capture and representation of extreme
behaviours of stock price movements, they also help in explaining the effects of repeated
patterns and trends in price movements. Jumarie in ([49]) pointed out that asset price
volatility can be well captured by fractional Brownian motion which presents some
random-like features suitable in explaining the effects of uneven fluctuations in stock
price movements.

Motivated by the ideal that' fractional caleulus provide a powerful tool for explain-
ing effects of memory observed in a number of physical systems and phenomenons, a
growing number of research work on fractional Black-Scholes models has been pub-
lished. Recall that memory reffects-come in-two forms; the noise memory effects and
trend memory effects. Incorporating a fractional Brownian motion as the underlying
process for the pricing dynamics only capture.the noise memory effects [77]. However,
based on collective arguments in (|16} [73] [78]), fractional derivative based models are
very good mathematical tools for explaining dynamics of complex processes, irregular
increments and trend memory effects which are exhibited by a number of financial
instruments time series.

The use of standard fractional Brownian motions in fractional models introduces
a considerable amount of mathematical complexity in finding solutions to the models.
For this reason, Jumarie [49] suggested an alternative which is to consider a non-random
fractional stochastic dynamics subjected to the usual standard Brownian motion in-
stead of analogously replacing governing process with a standard fractional Brownian
motion as discussed above.

Models resulting from the Jumarie [49] approach are generically referred to as frac-

tional partial differential equations (fPDEs). In the Black-Scholes setup, there are
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three main classes of fractional Black-Scholes partial differential equations (fBS-PDEs),
namely; the time-fractional Black-Scholes (tfBS) PDEs, the space-fractional Black-
Scholes (sfBS) PDEs and the time-space-fractional Black-Scholes (tsfBS) PDEs. With
the tfBS-PDEs, the time derivative is replaced by a corresponding fractional derivative
of order o ( 0 < aw < 1), whereas, in the case of sfBS-PDEs, the space derivatives are
replaced by their corresponding fractional derivatives of order o and 5 ( 0 < o < 1)
and (1 < B < 2) respectively. In the case of tsfBS-PDEs, one has a combination of
the two. The pioneering ideas in the derivation of these fPDEs and other subsequent
concepts on fractional calculus herein can strongly be attributed to a series of work
by Jumarie in (|46} 47, 48] [19]). A number of authors built on the approach, either
by deriving semi-analytic solutions-to-the models-inostly via the fractional Laplace
transform method or by suggesting some numerical methods for solving the models.

Among others Chen et al.  [25] followed an approach almost similar to that of
Jumarie [49], but instead maintained the usual Gausgsian dynamics and only analogous
replaced the integer derivatives-in-the Black-Scholes-PDE with their corresponding
fractional order derivatives cv.and B ( 0' <o’ L andnl €16 < 2).

Since the fractional derivative operators involvediin all these fractional approaches
are of a non-local nature, full tractable analytical methods for solving fractional Black-
Scholes models are seldomly available. As such numerical approaches are the only
possibly available avenues to help understand the nature of solutions to these models.

There is empirical evidence suggesting that fractional models, unlike classical ones
weighs information on the underlying asset price over a range of parameters instead
of only looking at the localised information about the underlying asset price, see for
example, 337,77, 95] and references therein. Therefore, as such, fractional models are
deemed more appropriate in capturing unusual dynamics of financial assets series, hence
provide a much more reliable approach to pricing of assets and financial derivatives such
as American options (which can be exercised anytime before or on maturity).

The valuation of American options has long been a subject of active research in

computational and mathematical finance. American option problems are usually of a
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non-linear nature. The non-linearity in American option problems is introduced by
the early exercise features associated with the contract, as such, it has been widely
accepted that there exist no tractable analytical methods for solving American option
problems. Apart from the nonlinearity of American option problems, modelling Amer-
ican options using fractional models pose yet another challenge in terms of the involved
mathematical complexity as well as in the holistic understanding and development of
analytical solutions to such models. For these reasons, tractable analytical methods
for solving American option fractional Black-Scholes PDEs are seldom available in lit-
erature. The emphasise is therefore mainly focused on the development of numerical
techniques. In designing a numerical method for solving American option problems,
one ought to take into account.the fact that the-design-of the involved model leads to a
free boundary value problem and-as'such, the location of the boundary is unknown at
each point in time. A robust numerical method should therefore be able to determine
the location of the free boundary in addition /to computing a fair value of the option.

It should also be noted that-though the design of numerical methods for pricing
American option problems under [the classical Black-Scholes approach has been ex-
tensively explored and still femain a|subject of active| rasearch, the same can not be
said under the fractional Black-Scholes setup. It is therefore imperative that robust,
efficient and accurate numerical techniques for solving fractional Black-Scholes models
for American options are developed.

One of the best numerical techniques for pricing American options is a technique
based on the front-fixing algorithm. The front-fixing method has long been applied
to a wide range of problems arising in population dynamics ([20]) and finance |21}, 52
53, [75, 90, [104]. However, there are numerous other techniques used in solving Ameri-
can option problems, for example singularity separating methods [39, [90] and Penalty
methods [28] [75] among others. The basic idea behind the front-fixing technique is
to use some change of variables to transform the problem from a moving boundary
problem to a fixed boundary problem.

A growing number of researchers have devoted efforts to the study of numerical

http://etd.uwc.ac.za/



CHAPTER 1. GENERAL INTRODUCTION 12

methods for fractional models. Zhuang and Liu in (JL05]) proposed an unconditional
stable implicit difference scheme for solving time fractional diffusion equations. In an
approach almost similar to that of Zhuang and Liu [105], Chang-Ming, et al. |23] pro-
posed a finite difference method for solving fractional subdiffusion equations as well
as proposed a Fourier analysis method for analysing numerical methods to fractional
models. Though authors such as Decreusefond and Ustunel [27] among others, had sug-
gested some analysis methods for fractional models prior to Chang-Ming, et al. [23], the
analysis presented in [23] has now become the basis of theoretical analysis of numerical
methods to fractional differential equations. Zhang, et al. [103] constructed a second
order accurate discrete implicit numerical scheme for a space-fractional Black-Scholes
equation. Zhang, et al. [103] concluded-that their-so-called fast bi-conjugate gradient
stabilised method was able to reduce the 'storage-space from O(k?) to O(k) and simul-
taneously reduced the computational costi from O(k?) to O(k log k) per iteration, where
k is the number of grid points in space. Apart from finite difference based methods,
other new techniques have been proposed. Forexamplein {40] the authors proposed two
techniques for solving time-fractional Black=Scholes models, namely: Residual Power
Series method (RPSM) and eellocation bhased.mesh-frae method.

Currently, there exists no perfect analytic solutions for fractional fractional Black-
Scholes equations. Though tractable analytic solutions to fractional differential equa-
tions are rare in general, there has been a few recent developments on the design of
semi-analytic solutions. Chen, et al. [25] presented an analytic solution to a time-
fractional Black-Scholes for pricing double barrier options. Liang, et al. [63] derived
an analytic solution for a bi-fractional Black-Scholes-Merton model using the Laplace
transform technique. A similar technique was later used in Kumar, et al. [56] in pric-
ing European option problems. Other analytical techniques such as fractional variation
iteration method are discussed in Ahmad, et al. [2], those based on Homotopy pertur-
bation under Sumudu transform of the fractional derivatives can be found in Asma, et
al. [4].]56] used the Laplace homotopy perturbation method, which is combination of

the Laplace transform and the homotopy perturbation method in deriving a solution
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to the fractional Black-Scholes equation with boundary condition for a European op-
tion pricing problem. This thesis therefore serves to suggest new, robust and tractable
numerical techniques for solving fractional Black-Scholes equations applied to different

practical market settings.

1.2 Outline of the thesis

The rest of the thesis is organised as follows.

Chapter [1| presented a general introduction of the thesis as well as a thorough review
of related literatures. Pertinent gaps were identified and appropriate models as well as
their approximation methods identified will ‘be presented in subsequent chapters.

In Chapter [2]a time-fractional Black-Scholes PDE (£fBS-PDE) as well as its implicit
numerical scheme are proposed. The derivation of the model and design of an uncon-
ditionally stable scheme are presented. Some numerical examples for pricing European
put options pricing problems:

Chapter [3] serves to suggest a robust numeérical scheme.which is based on the gen-
eralisation of the Crank Nicholson (GN) difference method to solving the tfBS-PDE.
Through rigorous theoretical analysis of the method is presented, and results therein in-
dicates that the method is both convergent and unconditionally stable. Two numerical
examples are presented to illustrate the robustness of the method.

Using the concept of Fractional Market Hypothesis (FMH), Chapter [4] suggest a
model governed by some non-Gaussian fractional stochastic process. We derived a
time-fractional Black-Scholes PDE (tfBS-PDE) and suggest a robust high order nu-
merical method. We further discuss the stability and convergence properties of the
numerical method followed by some numerical experiments confirming the theoretical
observations.

Chapter [5| presents the design and analysis of one of the most robust numerical
technique for pricing American options, under a time-fractional Black-Scholes setting.

The proposed method therein is based on a front-fixing finite difference algorithm, one
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which allow for the simultaneous computation of the option value as well as the optimal
exercise boundary. Subsequent sections therein, presents the procedures involved, from
the construction of the involved time fractional Black-Scholes PDE (tfBS-PDE), to the
design of the numerical method which is based on the front-fixing transformation,
incorporating the early exercise features of American options into the original model
derivation.

Chapter [6] incorporates the concept of pricing double barrier options in the time-
fractional Black-Scholes framework. The underlying motivation to price double barrier
options via the time-fractional Black-Scholes framework is justified by evidence of pres-

)

ence of “long memory” in the time direction observed in many financial assets’ time
series. A numerical scheme for-solving-a-double bartier-option pricing time-fractional
Black-Scholes equation is also suggested. "Fhe theoretical analysis results for stability
and convergence are also presented therein.

Chapter 7| present the construction of a nuinerical solution method to a time-space
fractional Black-Scholes Partial Differential Equation (tfBS-PDE). The existence and
uniqueness of the constructed numerical scheme, its computational stability and conver-
gence analysis are discussed therein-and lastly,some nunierical examples demonstrating
the efficiency and robustness of the involved numerical method in solving time-tfBS-
PDEs are presented.

Finally, Chapter |8|briefly present a summary of the whole thesis as well as highlight

the scope for future research.
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Chapter 2

An implicit finite difference scheme for
a time-fractional Black-Scholes

equation

In this chapter, dividend paying European stock options are modelled via a time-
fractional Black-Scholes (tfBS) partial differential equation (PDE). The fractional deriva-
tives used and subsequent results herein, are'based ont the Caputo and Jumarie (modified-
Reimann-Liouville) derivative framework, coupled with some results from the Jumarie-
fractional (generalised) Taylor series. The fractional stochastic dynamics is an appro-
priate framework to capture the market fluctuations in which random fractional white
noise has the potential to estimate accurate European put option premiums, while

providing a good numerical convergence.

2.1 Introduction

The motive in studying option pricing from a fractional calculus point of view is mainly
due to the non-local nature of the involved fractional derivative operators and the
underlying fractal processes. Fractional derivatives provide the best tools in explaining

the trend and noise memory effects as well as capturing non-localised information about

15
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the stock price movements, something that standard Brownian motions based models
may fail to explain.

The aim of this chapter is two fold: firstly, to construct a time-fractional (tf{BS) PDE
for pricing European options on continuous dividend paying stocks, and, secondly, to
propose an implicit finite difference method for solving these type of fractional partial
differential equations (FPDEs). Through rigorous mathematical analysis, we establish
that, the derived implicit finite difference scheme is unconditionally stable. To support
these theoretical deductions, we present some numerical examples in the proposed
framework on pricing European put options under different sets of continuous dividend
yields.

The rest of the chapter is organised asfollow,-Section{2.2| presents some useful results
regarding fractional derivatives that are veryfundamental to the chapter. Specific focus
is on three very common definitions of derivatives of fractional orders. Simultaneously,
this section provides a brief accounti of work on the derivation of the tfBS-PDE for
pricing options on dividend paying stocks. Tn-Section 2.3} we present the derivation of
an implicit finite difference scheme for solving the t{BS-PDE presented in Section
The theoretical analysis and'discussion of the stabilityland convergence properties
of the numerical scheme are discussed in Section [2.4l To substantiate and validate
the theoretical claims regarding the proposed numerical method, extensive numerical
experiments are presented in Section 2.5 Finally, some concluding remarks and scope

for further research directions are presented in Section [2.6]

2.2 Time-fractional Black-Scholes (BS) Equation

In this section, firstly we present some key results about fractional derivatives. As far as
the definitions of fractional derivatives are concerned, we only focus on three common
derivative definitions, namely, those of the Remann-Liouville, Caputo, and Jumarie
definition. We then present the derivation of the time-fractional Black-Scholes PDE

for pricing options on stocks that pay continuous dividends.
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2.2.1 Some mathematical preliminaries on fractional deriva-

tives

In most recent literature, derivatives of fractional orders are defined in the Caputo,
Reimann-Liouville and Jumarie (modified Reimann-Liouville) sense. For a detailed
treatment for different types of fractional derivatives, merits and de-merits of their
usage, see ([5]) and references therein. Some good discussions can be found in ([46, 47
48, 149]).

In this section, we briefly review some preliminaries on fractional differentiation as

well as present a brief derivation of the model under consideration.

Definition 2.2.1. Caputo fractional derivative
Let u : R — R be a continuous, but not mecessariy-a differentiable function. The

Caputo fractional derivative of order o is defined as follow

1 dmu(n) 1
Dgu(t) = d -1 : 2.2.1
cu(t) I'(n—a«) /0 dt—(t=Tr)e= " 22 4 << ( )

Definition 2.2.2. Reitmann-Liouville fractional derivative
Let u : R — R be a continuous, but not necessarily a differentiable function. Then,

the Reimann-Liouville fractional derivative of order « is given by

1 dn [ u(T)
D% = —_— —1 . 2.2.2
will) = g | o 1-l<a<n (222

The Riemann-Liouville derivative has certain disadvantages when modelling real-
world phenomenons ([47]). For example, the Riemann-Liouville derivative of a constant
is not zero. In addition, if an arbitrary function is a constant at the origin, its fractional
derivative has a singularity at the origin, for example, the exponential and Mittag-
Leffler functions. These disadvantages reduce the field of application of the Riemann-
Liouville fractional derivative ([5]). Some of these disadvantages can be circumvented
by modifying the Reimann-Liouville definition.

Jumarie in ([47]) modified the Reimann-Liouville derivative using the concept of
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fractional differencing coupled with his theory of Jumarie-fractional (generalised) Tay-
lor series. The definition by Jumarie takes into account the existence of a fractional
derivative at ¢ = 0, which is undefined in the Caputo and Reimann-Liouville deriva-

tives.

Definition 2.2.3. Jumarie (modified Reimann-Liouville) derivative
Let u : R — R be a continuous, but not necessarily a differentiable function, and

suppose u(t) is

(i) a constant K, then its Jumarie fractional derivative of order « is defined by

@ F(n[ia) t_a+1_n7 . < U/ 17
Dou(by= (2.2.3)
0, agin — 1,

(ii) not a constant, then

1 {u(r)y—u(0)} }
D5u(t —1l<a<n. 224
ult) = e | ST g (224

Definition 2.2.4. Generalized (fractional) Taylor series
Let u : R — R be a continuous function such that u(t) has a fractional derivative of

order ko, for some positive integer k and 0 < a < 1, then the following equality holds
u(t + h) k() 0<a <1, 2.2.5
N kzzo itk W “= (22:5)

where uk®) (t) represent the fractional derivative of ka-th order of u(t).

Definition [2.2.5 provide a consistent framework for defining fractional derivatives

of constant functions, which align fractional calculus to classical integer calculus.

Definition 2.2.5. Fractional differencing

Let u : R — R be a continuous, but not necessarily a differentiable function, and
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let k > 0 denote the discretization step in t. Define the forward operator FW (k) by
FW(Qu(t) = u(t + k), (2.2.6)

then, the fractional difference of ordern—1 < oo < m, of u(t) is defined by the expression

= D (-1 ) u(t+(a—0k), neN (2.2.7)

2.2.2 Derivation of the time-fractional BS-PDE

In deriving the time-fractional- BS-PDE; let us first assume that the stock price dy-

namics follows the following fractional stochastic equation

dS = rSdt—+ ow(t)(dt)*?, 0<a<l, (2.2.8)

where S and o are respectively the price and volatility of the stock, r is the risk-
free interest rate, and w(t) denotes the standard Wiener process. In the presence of

continuous dividends, denoted by d, the above equation change to
dS = (r — 0)Sdt + ow(t)(dt)*’?, 0<a<l. (2.2.9)

Let us also consider the following important identities, which, according to Jumarie

[49] are consistent with the generalised Taylor series defined in Definition [2.2.4:

1
d°t = ——— 17 (dp)® <1 2.2.1
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d*S =T(1 + a)dS, 0<a<l, (2.2.11)
and
e 1
5 St 0<a<l. (2.2.12)

dS)* _ T(2—a)

Combining (2.2.11) and (2.2.12]), we obtain a conversion formula which allows us

to convert integer derivatives to fractional derivatives and vice versa:

Sl—)
s — ds)° <1 2.2.1
S fitare—a " 0<as (22.13)

Suppose V' = V/(S,t) represent: the value of a-European put option, and suppose
that V/(S,t) satisfies the assumption [2:2.6

Assumption 2.2.6. Assume the function V (S, 1) is sufficiently smooth with respect to

S and its a derivative with respect-to-time-ezists-for-some o (0 < o <1).

Consider the risk-free investment interest rate dynamie’ equation
aVv =rVdt. (2.2.14)
Multiplying both sides of with I'(1 — «), we obtain
['(1—a)dV =T(1—-a)rVdt. (2.2.15)

Now, combining (2.2.15)) with ([2.2.11)) yields the variational fractional increment pro-

Cess
4V =T(1 + a)rVat. (2.2.16)

Equation (2.2.16]) along with (2.2.13) yield the following fractional interest rate dy-
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namic equation

oy — "V iiargne
dV_F(z_a)t (dt)~. (2.2.17)

Since V'(S,t) is sufficiently smooth with respect to S and its a-derivative (0 < o < 1)

with respect to ¢ exists, applying the fractional Taylor series ([2.2.5) of order a on

V(S,t) up to remaining error term yields

L0V e OV o 1OV

v = T 5% T 5%

Combining this with [t6’s lemina-on-equation-{2:2.9).. we obtain

1 ov v 1, a0V
T+ o) o Ut (Ui Ot +BP S 557

AV = I (dt)e (2.2.19)

Using the conversion formula([2.2.13]) but.in terms of ¢; we can replace dt in (2.2.19))
with

tl_a(dt>a

dt = 2.2.2
Mt al2—a) (22.20)
to obtain
= — * *— * 2.2.21
V= tiray o W tarareoat “agd)" T30S Gar(d2221)
Multiplying both sides of (2.2.21)) with I'(1 + «), we obtain
oV (r—=9) ,,.,0V T'(l+a) 2 2 PV
(1 dv = St ———2%0°S dt 2.2.22
(1+a) (ata+r(2— 0 s T T gz ) A" (2:2.22)
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Using ([2.2.17)), the left-hand side of (2.2.22)) can be re-written as

M1+ a)dV = d*V,
rV

= mtm(dt}“. (2.2.23)

Using ([2.2.23)) along with (2.2.22]), we obtain

o _ 2
TV 1—c _ 8 V (T 6) Stlfaa_v + F<]' + Oé) O-QSQa V (2224)

T2 —a) g T Te-a) 85 > 952

Equation ([2.2.24) can further be simplified into the following tf{BS-PDE

r—0; 0 <a<12.2.25)

oV ov ¢t Ha D14 ) 0
- V - S_ — 252 =
ot (7’ 1 as) T (2570 i e
We can now proceed with developing a robust numerical/scheme to solve the tf{BS-PDE
(2.2.25)) coupled with the following boundary and terminal’ conditions
3

V(540 e=max (£ — S50)

V(0,t) = Ke "I, (2.2.26)
lim V(S,t) = 0,
S—o00 )

where K is the strike price of the European put option and 7T is the maturity time.

2.3 Numerical method

In this section, we present the construction of an implicit numerical method for solving

(2.2.25)) along with (2.2.26)). To begin with, let L and N be positive integers and
define h = 1/L and k = 1/N as the space and time step-sizes, respectively. Define

http://etd.uwc.ac.za/



CHAPTER 2. AN IMPLICIT FINITE DIFFERENCE SCHEME FOR A
TIME-FRACTIONAL BLACK-SCHOLES EQUATION 23

Sy=1h; 1=0,1,2,....,Land t, =nk; n=20,1,2,...,N, such that S; € [Siin, Smaz]
and t,, € [0,7]. Furthermore, define V;" = V' (S, t,) as the solution at the grid point
(Si,tn) = (Lh,nk).

Using the definition of Caputo fractional derivative given in for n = 1, the
time-derivative in can be approximated by

8“V(Sl,tn) . 1 /tn aV(Sl,T) (t _ T)_ad’]'
0

ot (1 —a) ot

) ﬁ 2 /(‘]—m- (% + O(k)> (nk —7)~%dr,

=170

I'(l1—a) k 1—a

R Z (vl?—_v,“ v O<k)> ((nk ~ (G = Dk)" — (nk - jk>1‘°‘> |

J=1
n

= Ta - )1 g 120 (ﬁ_?w; i O<k>) [(n—j+ 1" = (n =) ] ke,

J=1
n

- > T VAT (=P
+ﬁ Jz; [ TR B AT ] Ok,

_ r(zl— 3 k_la ]Zn;(vli ~VP Y =i+ 1) = (n—45)"°]
+ﬁ Jz: [(n=j+ 1) = (n—j)'"] O(K*).

Shifting the indices in (2.3.1) we obtain

0V (S, t,) 1 1 &

i v rzD DA A
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Let
1 1
o = —— 2.3.
Pe =T —a) ke (23.3)
and
Bi=i"—(G -1 j=1,2,--,n, (2.3.4)

such that 1 = 8 > 2 > --- > (, — 0. Substituting p, and f; into (2.3.2) yield

8aV(Sl;tn) o n j+1 71 7 1 - 2—«
- paZﬁj )+F(2_a);ﬂJO(k )’

ot
; ; 1
— o 3 V”_J‘H k- Vn_J LBl l—aO k,2—a
P ;/J(l l )+F(2—(k)n ( )7
' n 1 ¢ 11—«
_ | U+ Y N v ‘n 2—a
= ol VD flegter (5) 0w
= paZﬁ WVERKTDY I (2.3.5)
it (2 4+ a)

The time derivative in ([2.2.25)) is therefore approximated by

0V (S, tn)

g = P 2BV = V) 4 O(k). (236)

Jj=1

One can clearly see that for j = 1 and a = 1 the fractional difference formula ({2.3.6)

reduces to the classical finite difference formula

IV (S, tn | AL VAl
(aé ) _ Y ——+ O(k).

Now, the first and second spatial derivatives in (2.2.25)) are discretised using the
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usual forward and central finite difference approximations, respectively, i.e.,

OV (Sitn) _ Vit =W
oS h

+ O(h) (2.3.7)

and

PV (Si,tn) Vi =2V + VI,

55z = 2 + O(h?). (2.3.8)

Using (2.3.6), (2.3.7) and (2.3.8) into (2.2.25)), we obtain the full scheme

(nk)l—a

Pa ;ﬁj(‘/}nﬁl —V') = (B (r = 0OV, — V) T2—a)

DRI W, — 2V + V). (239)

Now ([2.3.9) can be further simplified to have the form

Vi + bV + Vi B (8 VT Z‘i oV BV, (2.3.10)
7=2
where
0; = B;— By =12, ,n, (2.3.11)
and

T+ «a)o?l?
i = g (TR

- 2
b = 1—p,' (F(l +a)o’l? + r+ “&;ﬂl)a()nk)la) :

L (T4 a)o®? | (r—=0)l(nk)' ™\
a( : oo ) [=1,2,---,L.
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The matrix representation of the above is given by
AnUn = (PlUnfl -+ QOQUn,Q + 4 (,OnflUl + ﬁnUO, (2312)
which can further be written as
A, U, =b,, (2.3.13)
where
a1, b ciy 0 0 Von
0 agn bay _coy v
An - Un - : )
Aj—1n blfln Cliiin 0 Vlr?—l
0 e e 0 Arn bLn Cin VLn
n—1
bn = Z C10,7'[J-n~j - ﬁnUO
j=1
Remark 2.3.1. The following observations can easily be verified
)
1=51>pBy> B, =0,
$1 = 1-— /827
£2.3.14)
Z;’ilgoj:1>1—(21*0‘—(2—1)1*5“):2—21*‘:@1 > g > — 0.

/

Now, before we proceed further, we analyze the numerical method presented above.
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2.4 Analysis of the numerical method

In this section we present the stability and convergence analysis of our implicit finite

difference scheme ([2.3.9).

2.4.1 Stability Analysis

Let ‘71”;1 =0,1,2,---L;n = 0,1,2,--- N; be an approximate solution obtained by
using (2.3.9). Define €' = V;* — V;* as the truncation error, such that e = % = 0 for
all n.

Now setting n = 1 in (2.3.9) and simplifying further, we have

! (F(H—W> v, ¥ (1 e <r(1 g (00 W“)la)) v

2 ['2-a)
L (TA+a)d?>  (r—0)l(nk)T*
! L #/V 2.4.1
+pa ( 2 F(2 —Oé) ‘/Z-H I | ( )
which can be represented as
auVity +0uVi' + cuVih, = V7, (2.4.2)

where

(Tl + a)o?l?
ay = Pl(¥>’

¢ 2

_ + (r = 0)l) (nk)'~
b o= 152 (T4 a2+
1 Pa ( (14 a)o?l® + T2—a) ,
(T +a)d?l>  (r—20)Il(nk)t=
= p ! =1,2,--- L.
C1 Pa ( 9 F(2 _ C() ) l ) <y )
Using the error equation along with ([2.4.2), we obtain
ayel_y +bugl + cugly, =€), n=1, (2.4.3)
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and with (2.3.10)), we obtain

n—1

i€ + bmel +cmgly = Z wie) 0+ Bugd, n>2. (2.4.4)
j=1

In matrix notations, (2.4.3) and (2.4.4) can be written as

(2.4.5)
AnEn - QolEn—l + QOQEn—Z + -+ Qpn—lEl + ﬂnEOa n Z 2
where
EY
€y
EH 1] - (2.4.6)
==

With above notations, we now prove the following theorem.

Theorem 2.4.1. The implicit finite difference scheme (2.3.9) is unconditionally stable

and its global error satisfies
1Enllco < |Eolloo, for n=1,2,3,--- N.
Proof. Suppose n =1 and let

1 | 1
by I= max [< ] (2.4.7)
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Then using (2.4.3), we see that
1Bille = [em |,

< | ammel |+ bcl + clmsinﬂ ,

= | 5? )

< [[Eoll, (2.4.8)
which implies that

1E1[loo < [[Eol|oo-
Now suppose for n > 2, we have
Bttt

Define

[ 45 5T, BAR Nei'( (2.4.9)
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Hence
||ETLH00 = | Em ‘7
S ’ &nmgzl_l + bnmgfn + Cnm€%+1 ‘7

| 01Ep1 + @oBEp o+ + 01 Ey + B,E |,

IN

o1 |En1 |42 | Ena |+ -+ @n1 | E1 | 48, | Eo |,

IA

01| En—1lloc + @2/|En—2lloc + -+ + @n_1||Etlloc + Bnl|Eo||oo,

IN

1]/ Eo|loo + 02| Eolloo + -+ + @n-1]|Eolloc + BnllEollso

(901 +o2t+ -+ P+ Bn) ||E0H00ﬁ

n—1
7j=1
= (1= Pn +Buitofec;
= ol a0

Therefore
||E71Hoo S ”E()HOC for all = ]_727 B _/]\/'7

which completes the proof of the theorem.

2.4.2 Convergence Analysis

Let U}" be the exact solution of (2.2.25)) with condition ([2.2.26)) at the grid point (.S, ¢,,).

Define €' = U — V", with e" = (e}, ey, - ,e?_ ;)T and €’ = 0. Now since the errors

ep satisfy (2.3.10) and (2.4.2), we have for n > 2

n—1
el + bue} + cuefy = Y pie) 7 + Ry, (2.4.11)
j=1
and forn =1
1 1 1 _ pl
allel_l + bllel + Cll€l+1 - Rl . (2412)
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In the above, the remainder term R} is obtained from (2.3.9) by multiplying both sides
of the equation by k°T'(2 — «). This gives

D B VSt tusi—g) = V(S taj)] = ik®V(St, 1) — Wk [V(Siga, tn) = V(Si, 1]
=1

+BET (2 — ) [V(Sii1,tn) — 2V (Si, tn) + V(Si_1,t0)] (2.4.13)
where
2 2F 1
pw=rt'""% w=(r—90lt"* and B = w.
Define
LEV(Si,tn) - Z@ gtz =V (S, taj)] (2.4.14)
then

0V (S, t,)
ot
1

ik
< -
“I'(1-a) ; /(j—1)k

J

1 - gk dr
S —k / . N\~
(1 —a) ]Z G-tk (tn —T)*

1

__¢C k/ﬂ"ﬂ dr
“Tl-a) Jy (t,—1)

< O\k, (2.4.15)

— LV (S ty)

n

aV(Sl-/ 7') i (V(Sh thrlfj) e V<Sl7 tn—j)) dr
or k (tn - T>a’

where C' and C are constants independent of A and k. Therefore

LYV (S, t,) = 2 ~ o) Zﬂj (St tng1—5) = V(Si, ta—j)]

aa (Sly n)

S+ Ok (2.4.16)
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We further note that

V(Sit1,tn) = V(Sita) OV (Sity)
h 98

+ Cyh, (2.4.17)

and

V(Sl_H, tn> — 2V(Sl, tn) + V(Sl_l, tn) B 82V(Sl, tn)

3 = 3 + Csh?®. (2.4.18)

Substituting (2.4.16)) - (2.4.18) into (2.4.13]) and simplifying, we obtain

OV (Si, t,) u w  OV(S,t,) L O*V(S),t,)
R} = k°T(2- = VSrtu)y=
! 2-a) ot D2—"07) (5t ta) M2—a) 0S +5 052
+C1EM + Cok®h + C3kTR7, (2.4.19)
where Cy and C3 are constants independent of /2 and k.
From (2.4.19)), we have
|BY | S @R A O B
< Ok + k*h), (h? < h), (2.4.20)

where C' is a generic constant.

We can now prove the following main result.

Theorem 2.4.2. Let V" be the approximation of the exact solution U obtained via

the implicit scheme ([2.3.9). Then, there exist a constant C, such that
m%XHV}" - U < Clk+h), for 1=1,2,--- ., L—1 and n=1,2,---

Proof. To proceed, let

n | o | — n
"l =l € [= max e |
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For n = 1, we have

le'lle = Te
< | @imerm_q + bim€l + Clmemin |,
= |Rl1 |>
< OB (K" + k°h) (using (2.4.20)). (2.4.21)

Now, for n > 2, we have

le" [l

/AN VAN VAN R VAN

IN

| Gnmer—1 DB Cam T

| 1€ + ppe e E R

o1 et | +Hep | el K- -Hi adly llef | + | Ry, |,

o1 | € | oh et ik M gl le! | +C(K'* + k°R),
o11l€™ | oot w2 ller oo + 1ot Pnile! oo + C (KT + k*h),

(01 + 02 Feer i @rpig 3ok S GRS 4 k2h),
n—1
(Z p; + ﬁn> B, C(E + kh),
7=1
(1= Ba + Ba) B CE™T + kD),
OB (K + k2h). (2.4.22)
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We further notice that

= . (2.4.23)

Therefore, from ([2.4.21)) and ([2.4.22}); we have

™0 SECTI AR,
H| Cutk> (B + H),
=t rhrsmoe—te=Tk < T,

L NA(KEHY. wllete SO 0. (2.4.24)

This completes the proof of the theorem.
In the next section, we present a set of numerical results confirming theoretical

results presented above.

2.5 Numerical results

In this section the pricing of standard European put options using the time-fractional
BS-PDE is implemented via the implicit finite difference scheme (2.3.9) along
with conditions . We consider two examples with varying dividend yields, and
the order of the time derivative («) ranging from 0.1 to 0.9. We further present results

for error and convergence rates.
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Example 2.5.1. Consider equation ([2.2.25) subject to conditions ([2.2.26|) for pricing
a European put option with the following parameters: K = 150, r = 0.055, o =

0.1, T=1, Spax = 450, L =30, N = 50,4 = 0.025, 0.045 and 0.065.

Example 2.5.2. Consider equation ([2.2.25]) subject to conditions ([2.2.26)) for pricing
a European put option with the following parameters: K = 200, r = 0.065, o =

0.025, T'=1, Spax = 600, L =33, N =100,6 = 0.045 and 0.085.

In order to show that the proposed scheme is unconditionally stable and converge
with order one in both time and asset price, the results are presented in tables [2.5.1
and [2.5.2 for Example [2.5.1 and in tables [2.5.3 and [2.5.4 for Example [2.5.2.

Table 2.5.1: Maximum absolute.errors-for-FExample |2.5.1‘with r = 0.055 and 9 = 0.065.

04\ N =40 N="280 N="160 N = 320 N =640

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

6.1152e-02
5.9707e-02
5.7925e-02
9.5896e-02
9.3692e-02
5.1370e-02
4.8978e-02
4.6552¢-02
4.4121e-02
4.1705e-02

3.1069e-02
3.0276e-02
2.9330e-02
2:8272e-02
2.7136e-02
2.5948e-02
21731 e=02
2.3503e-02
2.2277e-02
2.1064e-02

1.5659¢-02
1.6245¢-02
1.4758¢-02
1-4218e-02
1.3641e-02
1.3040e-02
1.242e-02
1.1809e-02
1.1194e-02
1.0586e-02

7.8606e-03
7.6491e-03
7.4021e-03
7.1294¢-03
6.8388e-03
6.5369¢-03
6.2289¢-03
5.9190e-03
5.6107e-03
9.3066e-03

3.9381e-03
3.8312¢-03
3.7069e-03
3.5698e-03
3.4240e-03
3.2726e-03
3.1183e-03
2.9631e-03
2.8088e-03
2.6567¢e-03

Table 2.5.2: Convergence rates for Example 2.5.1 with » = 0.055 and § = 0.065.

a [N=80 N=160 N =320 N =640

0.1 ] 0.98 0.99 0.99 1.00
0.2 ] 0.98 0.99 0.99 1.00
03] 0.98 0.99 1.00 1.00
04 1] 0.98 0.99 1.00 1.00
0.5] 0.98 0.99 1.00 1.00
0.6 0.99 0.99 1.00 1.00
0.7 0.99 0.99 1.00 1.00
0.8 0.99 0.99 1.00 1.00
091 0.99 0.99 1.00 1.00
1.0 0.99 0.99 1.00 1.00
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Table 2.5.3: Maximum absolute errors for Example [2.5.2 with » = 0.065 and § = 0.045.

a\ N =40

N =280

N =160

N =320

N =640

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.5661e-01
1.3930e-01
1.2548e-01
1.1445e-01
1.0574e-01
9.8970e-02
9.3914e-02
9.0418e-02
8.8420e-02
8.7951e-02

8.1330e-02
7.2084e-02
6.4751e-02
9.8938e-02
5.4365e-02
5.0832¢-02
4.8203e-02
4.6397e-02
4.5378e-02
4.5161e-02

4.1509e-02
3.6713e-02
3.2926e-02
2.9934e-02
2.7586e-02
2.5777e-02
2.4435e-02
2.3516e-02
2.3001e-02
2.2896e-02

2.0978e-02
1.8533e-02
1.6607e-02
1.5088e-02
1.3898e-02
1.2983e-02
1.2304e-02
1.1840e-02
1.1581e-02
1.1530e-02

1.0547¢-02
9.3120e-03
8.3404e-03
7.5750e-03
6.9759¢-03
6.5152¢-03
6.1741e-03
5.9410e-03
9.8109e-03
5.7857e-03

Table 2.5.4: Convergence rates-for Example l2.5.2 with.; = 0.065 and § = 0.045.

a | N =80_N=160_N=2320_N =640

0.1 0.93 0.97 0.98 0.99
021 0.93 0.97 0.99 0.99
03] 0.93 0.98 0.99 0.99
04| 096 0.98 0.99 0.99
0.5 0.96 098 0:99 0.99
0.6 | 0.96 0.98 0.99 0.99
0.7 0.96 0.98 099 0.99
0.8 0.96 0.98 0.99 0.99
0.9] 0.96 0.98 0.99 0.99
1.0 | 0.96 0.98 0.99 0.99

In Figures [2.5.1 to [2.5.3 and Figures 2.5.7 and [2.5.8, we plot the European put

payoffs at maturity using the parameters as indicated in examples [2.5.1 and [2.5.2,

respectively. The solid line indicates the intrinsic payoffs whereas the line with asterics
indicates the approximated payoffs. For the second Example [2.5.2 the same set of
parameter values for a were used and almost similar observations were obtained. Due
to space limitations, only two cases, i.e., d = 0.045 and 0.085 are presented in the

results below. In Figures [2.5.4 to [2.5.6 and Figures [2.5.9 and [2.5.10] we plot payoffs

throughout the life span of the options for examples [2.5.1 and [2.5.2, respectively.
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Figure 2.5.1: Payoffs for « = 0.3, 0.5, 0.7, 0.9, 6 = 0.025 and t = T.
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Figure 2.5.2: Payoffs for « = 0.3, 0.5, 0.7, 0.9, 6 = 0.045 and t = T.
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Figure 2.5.3: Payoffs for « = 0.3, 0.5, 0.7, 0.9, 6 = 0.065 and t = T.
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Figure 2.5.7: Payoffs for « = 0.3, 0.5, 0.7, 0.9, 6 = 0.045 and t = T.
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Figure 2.5.8: Payoffs for « = 0.3, 0.5, 0.7, 0.9, 6 = 0.085 and t = T.
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Figure 2.5.10: Payoffs for o = 0.3, 0.5, 0.7, 0.9, 6 = 0.085 for all 0 <¢ < T.

As one can see from the results presented above, the accuracy of the results is better
in the case when 1/2 < a < 1 as compared to when 0 < o < 1/2. However, from
the numerical point of view, o can be chosen to be small or large. And also, the fact

that the proposed method is unconditionally stable, the choice of a does not affect the

overall convergence of the method, see tables eg. [2.5.2 and [2.5.4. One may further

note that, the restriction on a to be between 0.5 and 1 is not too large a hindrance,
as regular markets’s conditions would not require extreme lower values of «, since

under such extremely lower « values, the underlying stock price S; returns become
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negatively correlated, which signal anti-persistent features which in-turn violates some
key fundamental asset pricing assumptions. Similar observations are made under all
considered dividend yields. To this end, it is worth noting that, changing the dividend
yield does have a significant effect on the put premium results, if one carefully contrast
the premium profiles obtained at different dividend yields, regardless of the value of
a, one can observe that, high dividends yields are associated with high put premiums.
This is true because, the underlying stock price is expected to drop by the amount
of the dividend payout and hence a higher dividend yield would imply a higher put

premium.

2.6 Summary and-discussions

In this chapter, we formulated a time-fractional Black-Scholes PDE for pricing standard
European put options written on a dividend paying stock. Then we designed and
analyzed an implicit finite difference scheme for solving tfBS-PDEs. We proved that
the proposed method is unconditionally stable and converges with order one in both
time and asset direction. Two numerical examples supporting the theoretical claims
were presented. As we can see from all the results presented, the proposed method is
quite efficient for all values of the order of the fractional derivative considered in the
simulations. Our results suggest that, the fractional framework is a very effective and
robust approach for calculating European put premiums.

As can be seen from our results, the tf{BS-PDE model produces option premiums
curves which are very different from what classical theory may suggest. Another im-
portant feature to note is that the BS models proposed in the classical framework are
known to produce option premium curves which are similar in shape and hence may
not fully capture the effects of unanticipated market movements, whereas the fractional
Black-Scholes models have the ability to produce premium curves which are quite sen-
sitive to changes in associated parameters, such as, volatility, dividend, interest rate,

news events etc. In summary, if sufficient market data is available, the fractional BS
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models can be calibrated to produce option price curves that take into account a variety
of different market conditions.

Currently, we are investigating other higher order methods for solving the tfBS-
PDE presented in this chapter. Therefore in the Chapter |3| we present a much high

order numerical scheme for solving time-fractional Black-Scholes PDEs.
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Chapter 3

A Robust Crank Nicholson Scheme for
a Stock Exchange Time Fractional

Black-Scholes Eguation

This chapter presents a robust numerical scheme based on the extension of the Crank
Nicholson difference method in solving the tfBS-PDE obtained under the assumption
that the stock market does ‘exhibit some ‘unexplained hereditary/memory features.
Through rigorous theoretical analysis, our results indicate that the method is both
convergent and unconditionally stable. Some numerical results are also presented to

illustrate the robustness of the method.

3.1 Introduction

There is empirical evidence in support of the assertion that fractional stochastic models
are well suited for modelling systems and phenomenons exhibiting hereditary charac-
ters. The use of fractional models to explain memory observed in a number of financial
markets including the stock market has recently taken over the context of academic
literatures and debates within the financial mathematic and behavioural finance disci-

plines. The efficient market hypothesis used in contemporary financial modelling liter-

49
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atures often neglects the effects of memory, though memory has long been observed in a
number financial data. In assuming the stock market exhibits some unexplained mem-
ory structures, depicted by some non-random fractional stochastic dynamics which are
governed by the usual standard Brownian motion, we obtain a time fractional Black-
Scholes (tfBS) partial differential equation PDE for pricing stock options.

Though the chapter presents a robust numerical scheme for solving tfBS-PDEs for
pricing Furopean stock options, ideas and techniques presented herein can be extended
to solving tsfBS-PDEs. The method under consideration is an extension of the Crank-
Nicholson method to solving t{BS-PDEs. To the best of our knowledge, this approach
has not yet been experimented in solving time-fractional Black-Scholes PDEs.

The method herein does net-only prove to-have an-advantage over unconditional
stability, but it also attain high aceuracy eompared toit’s implicit and explicit methods.
In the implicit and explicit cases, the order of accuracy in time maybe lower than the
one in the asset direction. For example, if one wish to reduce the approximation
error by four, one has to inerease the temporal gird size by four and the spatial one
(asset direction) by two, which resultsiin eight timeslonger computational time. Our
method therefore considerably rediuices thé computational time involved in computing
the solution while attaining overall convergent and unconditional stable results.

The rest of this chapter is organized as follow, Section present a brief derivation
of the tfBS-PDE for pricing European options on continuous dividend paying stocks.
In Section [3.3] we present the detailed construction of the numerical scheme. A com-
prehensive theoretical analysis of the method in terms of convergence and stability is
presented in Section Two practical examples on the use of the approach for pricing
European put stock options can be found in Section [3.5] Lastly, Section present

some concluding remarks and set the scope for future research.

http://etd.uwc.ac.za/



CHAPTER 3. A ROBUST CRANK NICHOLSON SCHEME FOR A STOCK
EXCHANGE TIME FRACTIONAL BLACK-SCHOLES EQUATION o1

3.2 The time fractional Black-Scholes PDE

3.2.1 Model specification

Suppose the stock price S follows the following non-random fractional stochastic pro-

cess presented in a fractional Maruyama representation dB,(t) = w(t)(dt)*/?
dS = (r — 0)Sdt + o Sw(t)(dt)*/?, 0 < a < 1, (3.2.1)

where B,(t) is a fractal process governed by a Gaussian white noise w(t), with o2
representing the volatility while » and § represent the risk-free interest rate and the
continuous dividend yield respectively.

The fractional dynamic equation gencralize the standard Brownian motion
B(t) given by dB(t) = w(t)dt'? with d B () = w(t)(d#)?/? where 0 < a < 1.

Note that, when o = 1, equation (3.2.1) is equivalent to a geometric Brownian
motion.

It is further worth noting that unlike in the standard, Brownian motion, the non-
Gaussian fractional process dees not, make any prior assumption about the
underlying distribution of the stock price (S). However, it does make inferences on
how the market is scaling with respect to time. This feature is very important in
modelling market cycles in forms of repeated patterns.

From equation (3.2.1) one can derive two families of fractional Black-Scholes PDEs,
namely; t{BS-PDEs as well as tsfBS PDEs. Fundamental to the derivation of the
t{BS-PDE are three key conversion formulae useful in converting between integer and
fractional derivatives. According to ([49]) the following identities are well consistent

with the fractional (Generalized) Taylor series expansion.

1 1—
o' ot «a <1 2.2
dt_—F(Z >t (dt)*, 0 < « , (3.2.2)
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d*S=T(1+a)dS, 0<a<l, (3.2.3)
and
e 1
S St 0<a<l. (3.2.4)

dSy*  T(2—a)

Combination of the two indentities (3.2.3) and ((3.2.4) results in the following deriva-

tive conversion formula

S(—a)
ds — d9)° <1 2.
S = T a2 o))" 0<as (3:2:5)

If we let V' = V/(S5,t) represent-the option valuesuelithat it is sufficiently smooth in
the asset direction and that atleast its fractional time derivative of order a (0 < o < 1)

exists, then, combining the evolution equation of a safe investment

AV E VAL, (3.2.6)

with the conversion formula ((3.2.5) results in the following fractional interest rate (safe

investment evolution) equation

oy, TV l—a( g3\
AV = mt (dt)>. (3.2.7)

Since V (S, t) is sufficiently smooth in the asset direction and fractionally differen-
tiable in time up to order a (0 < a < 1), the fractional Taylor series expansion of

V' (S, t) upto some remaining error terms yields

1 oV ov 10°V

T+ a) o (dt)* + ==dS +

v = 957+ 5952

dS)?. (3.2.8)

Combining (3.2.7) with the fractional It6’s lemma applied to equation (3.2.1), cou-
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pled with some algebraic manipulations, we obtain the tfBS-PDE

(3.2.9)

rv VY 0 T(14a) ,.,0%V
ot (Tv_q5%>r<2—a)_ 2 7 G5

where ¢ = r — 9; 0 < a < 1, subject to the following initial and boundary conditions

for a European put option

V(S,0) = max(K — S,0),
V(0,t) = Ke "1, (3.2.10)
5hm V(S,t) =0,

with K the strike price and 7' the maturity time. In the next section we present the

details and construction of the numerical method.

3.3 Model discretization and numerical scheme

This section present the discretization. of derivative terms.in the tfBS-PDE (3.2.9) as
well as it’s full final scheme subject to initial and boundary conditions in ((3.2.10)).

3.3.1 Model discretization

Let L and N be positive integers and define h = S,./L and k = T/N as the space
and time step-sizes respectively. Define S; = lh; | = 0,1,2,...,L and t, = nk; n =
0,1,2,..., N, such that S; € [Smin, Smaz] and t, € [0,T]. Furthermore, define V;"*! =
V(Si,tnt1) as the solution at the grid point (S, t,41) = (lh, (n + 1)k).

Temporal discretization

Since the Caputo definition allows for incorporation of traditional initial and boundary
conditions in the problem formulation, and also due to the fact that, the value of a

European option V (S, ) is a time differentiable function, we define the time fractional
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derivative in (3.2.9) using Definition 2.2.1. If we let n = 1, from the time-fractional
derivative in (3.2.9) we have

aaV(Sl, tn+1) . 1 tnt1 8V(Sl, 7') —a
ot T T(1-0) /0 gr Ui 7)) T
1 n+l /(j—i-l)k Vit oyt
< L 1+ O n+ 1)k — 1) %dr,

1 1 it Vlj+1 . ‘/ljfl ,
F(l—a)l—aj:1< 2k +O(F)

(=)= (n—j+ 1) k",
1 1 o

= mkj Z U/Ej+1 B ‘/lj—l] [(TL o j>1—a . (n — i+ 1)1—04}

St =112 (=71 1)~ O(k?)k' ™,

I

1 1 n-H1

= sro a2 - MMl il - -5 )

1

+F(2 — )

=
n+1

+r<2—107> NIVERSTIW of thty ] 00+ (3.

Shifting the indices in (3.3.1) by j = n — j, we obtain

n

V(S tn) 1 n—j+1 n—j—1\ [:1-a , 1-a
ot 22— a) ke ; (v, V)b (G +1)7]
1 - l—a l1—a 3—a
+—2F(2 SpSpa K (j+ 1)) Ok* ). (3.3.2)
Define
1 1
Pa ‘= —mk—a, (333)
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and
ﬂ] = (j + 1)1*04 - j17a7 .] = 07 N2 (334)

where, 1 = fy > 81 > f > -+ > — 0 and lim, o0 )7 = n'~*. Substituting p,

and f; into (3.3.2) we obtain

0V (Sy, tni1)

o n—j+1 n—j— 1 3— a
ot N pa;@ SO I2—a) Zﬁf (k
< Pa ﬁ V"*JJFl _ anjfl o —nlfa(g(k?)fa)’
JX; J ( l l ) F(Q _ Oé)

n ; — 1 ¢ -«
_ - DG 1y el n 3—«
- pajZO/BJ(VE Vl ) F(?—a) <l{?) O<k )7

& ] s tlfoz
— VI IH VP i He—x2 3.3.5
The time derivative in (3.2.9)is therefore approximated by
9V (S, t,, . i
TV bet) ) 3 5,07 ) + O, (3.3.6)

§=0
Spatial discretization

The first and second spatial derivatives in (3.2.9) are approximated respectively by

IV (S, tns1) Vlel vt
0S 2h

+ O(h?), (3.3.7)

and

O*V (S, tyia) VlT-HI A7 AR A A

557 e +0O(h?). (3.3.8)
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3.3.2 The full scheme

Substituting (3.3.6), (3.3.7) and (3.3.8) into (3.2.9), we obtain

- n—j n—j— tl_a n n n n
pa ) BV =V = s (VT =V - V) - @ (339)
j=0
where
or = TULF a)o® (Vi =2V + Vi + Vi - 2V + V)

4

The above scheme is of the Crank-Nicholson type, which can be broken down into
two separate distinct cases, i.e. for when-n=0-and when n > 1.
Setting n = 0, and equating the non fictitious point to zero we obtain the following

system of equations

CL1%£1 + bl‘/il A clVfH = “O‘/l(ll = bo‘/lo i (:OVZ(jrl, (3310)
where
1+ ) e
— 212 - l
“ 1 “Te—a)
e I'(l+«)
by = —r— g
1 pa/BO TP(2 _ Oé) o 2 b
I'(l1+«) t-e
= o’ l
@ = TrT ey
and
ao = _0212M’
4
I'(1
= pub+ ot
I'(1
o = —02l2—( i a)'
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For n > 1:
W VT H by VI e VI = Vi 0.V 4 eV

o0 YoV pafra Vi (3.3.11)

j=1
where
I'(l+ ) t-e
n — 2[2 _ l
13 +1 g 4 q F(2 — Oé)’
e N1+ a)
bivi = pafh — o — 0%
o L (d==0r1) -«
272
n =3 { l 5
AR — T Toe—
and
S 1
a, = —O’QZZM,
4
L(lL+a)

bn — pa/Bl + O-2l2 2 9
—02l2r(1 #e)

n e 3.3.12
‘. : (33.12)
Y = ﬁj_ﬁj+1;.jzo71727"'7nv
which leads to the following general matrix representation
AU =BU" + ) U7+ C" foralln > 1, (3.3.13)

j=1
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where
Unt1 bps1 Cnp1 O 0
0 apy1 bpi1 Cpya
A = ,
Uny1 bpy1 cpyr 0
0 0 Gny1 bpi1 Cosa
a, b, ¢, 0 - -0 0
0 a, b, c,
B = : : , (3.3.14)
e, R (|
0 oy N
A
v
u" = : -
Vil
VA

and

C" = paﬁnU?, for all n > 1.

Remark 3.3.1. The following observations are trivial to show

1=8y>p1>---—0,

0o =1—pi,

Z?:o vj =1— Buia,

Do =1>27 (2 1) =1 =g >y > - = 0.

(3.3.15)
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3.4 Analysis of the numerical method

In this section we present the stability and convergence analysis of the scheme presented

in (3.3.10))-(3.3.11]). The analysis is based on the Fourier series analysis for fractional

PDEs.

3.4.1 Stability analysis

Theorem 3.4.1. The scheme (3.3.10))-(3.3.11)) along with (3.2.10) is unconditionally

stable.

Proof. Let v;;1 =0,1,2,---L;n = 0,1.2;~--/N: be an approximate solution to the

difference equations (3.3.10])-(3:3-11)j;-and-define-ef =V — v as the truncation error,

such that € = €} = 0 for all n. Sinee the approximate solution satisfy the two equations
0 L y

(3.3.10)-(3.3.11)), then, substituting €' into (3:3.10)-(3.3.11]) yield

1 1 1 0 0 N
au€_; + bue, +ee =auer s +bot; ¥ cdel,; n =0, (3.4.1)
and for n > 1 we have

n
n+1 n+1 nt+l n n n n—j+1
U116 + €] + Cuu€lyy = €y + bu€’ + cuely + E P;€
j=0

+Bpgrel. (3.4.2)
Consider the grids function

€, WhenSl—%<S§Sl+}—2‘, [=1,2,..,L—1,
(S) = (3.4.3)

0, whenO§S<%orSmax—%<S§Smm+%.
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The grids €¢"(S) can be represented by the Fourier series

€"(S) =) on(j)e/Smear: n = 0,1,2, ..., N, (3.4.4)
j=1
for
1 Smazx -
on(j) = B / €"(S)e IS/ Smaz 4G p = 0,1,2, ..., N. (3.4.5)
mazr J0
Let €" = (€}, €%, .-+ ,e?_ )T and define the norm by

L1 1/2 S 1/2
[€" ]l = (Z hl €. 2) = (/0 e (S) deS) : (3.4.6)
=1

Then, using the Parseval ecuality

Smaz o0
/O POl N sl (3.4.7)
Jj=—00
we obtain
Smaz ) o0
=[S Pas = 3 i) P (3.48)
j=—00

Therefore, the solution to (3.4.1) and (3.4.2) takes the following form

" = gl (3.4.9)

where 8 = 27j/Spa, and i = /—1. Substituting €” into (3.4.1) and (3.4.2), we obtain

(ale_ﬁh + 1" +b))o = (aoe_ﬁh + e’ + bo)oo; forn =0, (3.4.10)
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whereas for n > 1,

n
(an+16_6h + Cn+165h +bni1)Ons1 = (ane_ﬁh + cae™ + bn)on + Z PjOn+1—j
j=1

+Bn+100, (3.4.11)

which can further be simplified into

Y01 = Yo0o; for n =0, (3.4.12)
and
Vnt10n41 = UnOpei i PjOnt1—5 + Bps100; forn > 1, (3.4.13)
=)
where
¥, = 4a,, cos Bh + b, (3.4.14)
and

19n+1 = (an-i-l + cn-l—l)(COS Bh — isin Bh) + bn-‘rl

= 4dayyq cos Sh+ by, (since a, = ¢,), (3.4.15)

foralln=0,1,2,--- N — 1.
Now (3.4.12)) and (3.4.13)) separately yields

9
01 = 19—090; for n =0, (3.4.16)
1
19" 1 - Bn-‘rl
n+l = n iOnt1-j + ——00; T > 1. 3.4.17
Ot = Gt 5 — ;%@ bimg oo form (3.4.17)
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We note
Remark 3.4.2. The ratio ’191:11 is monotonically decreasing forallmn = 0,1,2,--- | N—
1, i.e.,
Un | | 4ancosfBh+ by
Uns1|  |4@ng1 cos Bh+ byi
4a,, cos Bh + b,
3.4.18
~ |4a, cos fh + b, ( )

We can also establish,

Proposition 3.4.3. Suppose 0,11 is a solution to (3.4.16)) and (3.4.17)), then |ons1| <
|0ol; for alln=0,1,2,- -, No="1.

Proof. Suppose n = 0, then in view of Remaik [3.4.2 we have

PHES l%@o < ool (3.4.19)

Now let n > 1 and suppose that | g, {<|-pg ['for all n,then from (3.4.17)), we have

Y, /3n+1
On = On - O
‘ +l| ﬁnJrl n+1 Z (10] i ] TL+1 0
Y, 5n+1
< On < 0o,
79n+1 n+1 Z% e 79n+1 0
7971 ﬁn 1
< | + _j 1 ool
ﬁn—i—l 19 19”"‘
< loa| + Z%’Qnﬂ—j + |Bnt100]
j=1

= on| + ¢1lon] + w2 lon-1] + -+ onlo1] + Bat1 oo ,

< ool + ¥1 00| + @2 loo| + -+ + ©nloo| + Bns1 0ol

= (Z wi + 5n+1> 00| = (1 = Bas1 + Bus1) loo| . (see remark 3.3.1),
=0

— oo (3.4.20)

http://etd.uwc.ac.za/



CHAPTER 3. A ROBUST CRANK NICHOLSON SCHEME FOR A STOCK
EXCHANGE TIME FRACTIONAL BLACK-SCHOLES EQUATION 63

The above alongside (3.4.7) yields, ||€"]|2 < ||€°||, for all n =1,2,--- | N — 1 which
completes the proof of theorem [3.4.1.

3.4.2 Convergence analysis

Theorem 3.4.4. The difference scheme (3.3.10)-(3.3.11)) alongside (3.2.10)) is conver-

gent and converges with the order O(k* + h?).
Proof. Let U be the exact solution to (3.3.1) and (3.2.10)) at the grid point (5}, t,).
Define e} = U* — V)", such that e =€} =0foralln=0,1,2,--- N — 1.

Define the truncation error by

R} = Z@j [V (St tns1—;) VST = 0V(S tnitt) — w [V (S, tar) — V(S tat]
=0

+ P, [V (Si41, tnt1) — 2V (St tns)l+ VISt togt) + V (St t0)
—QV(Sl, tn) + V(Sl_l, tn)}, (3.4.21)

where
p=krt'™ w=k*r — D)it'"°,
and
B E°T(2 — ) (l20'2F(1 + a))

P, .
2

Note that R}’ in (3.4.21) is obtained from (3.3.9) by multiplying both sides by the
term k°T'(2 — «).

To proceed further, we need the following two properties.

Proposition 3.4.5. There exist a constant C such that | R |< C*(kQ + h2) for all
[=0,1,2,---,L—1andn=0,1,2,--- , N.
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Proof. Define
—2a n+1
LiV(Sitni) = oms—— Zﬁy (St tns1-5) = VISt ta—j)]
then
oV (S;, tn o
T ) 1v(si )
ntl o e(i+1)k
< 1 Z/j 8V(Sl, ) o (V(Sl,tn+1_j) - V(Sl,tn_j)) dr
- 2F(1 — Oé) =0 ik 87— k'2 (tn+1 — T)a’
n+1 ;
< 1 ]{;2 Z (G+1)k dT
2I'(1 — a) i Jik (=il
C 9 G+Dk dr
N QF(l Oé) /]lc (fn-i—l — T)a
< O1k?, (3.4.22)
where C' and C) are constants independent of & and . Therefore
—a 9V (S, tust)
Iy In+1
2F 2 — a Z B] Sl, tn,jﬁ_g) — V(Sl, tn—j«H)} = —‘ata—Jr + Clk2. (3423)
In a similar way, we can show that
V(Siy1tng1) = V(Si1,tn) OV (Si 1) 5
= h 3.4.24
oh o5 & (3.4.24)
and
VT 2 VP L 2V W OVt L e 0

2h? 052
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Substituting (3.4.23)) - (3.4.25) into (3.4.21)) and simplifying, we obtain
8O‘V(Sl,tn) 1% w 6V(Sl,tn)
no_ CVF 2_ _ tn _
ki KT a){ ate kwe—af“&’> kT(2—a) 85
2 t
+Pa%] + CLE*T + Cok*h? + C3k“h?. (3.4.26)
This implies that
| R | < Cy (K + k> (h* 4+ 1h?%)),
S é (k2+a + kahQ) ’
= Ck° (k‘Q + h2) ;
< CO{RP A ——(sitce B <k < 1) . (3.4.27)

Since the errors e} satisfy equation (3.3.10)-(3.3.11]), substituting e} into (3.3.10)-

(13.3.11)) we obtain

ate; %+ bal et | = Ry, (3.4.28)
and
anﬂe?ff + anel”Jrl + cn+1el’f11 = ape | +bpe) +cpel + Z wjefﬂ_j

j=1

+ R (3.4.29)
Let us define the following grid functions

e, whenS —2<S<S§+%4 1=12.,L-1,

e"(S) = (3.4.30)

O, When0§5<%0r5max—g<S§Smax+%>
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and

P, when S —2<S<S+L21=12.,L-1,
R™(S) = (3.4.31)

0, WheDO§S<}—QLOI’SmaI—}_2L<S§Smaa:+%>

respectively, where e™(S) and R}’ can be expanded into the following Fourier series

representations
e"(S) =D Aa(j)e ™/ Smers = 0,1,2, . N, (3.4.32)
7j=1
R*(S) = ) "rems S =02, ., N, (3.4.33)
j=1
for
1 Smar N,
A(f) = S / e"(8)e 95/ Fmae 4G = 0, 1,2, ..., N, (3.4.34)
max J(Q
and
1 Smax o
n.(j) = S / R™(S)e~2mi8/Smaz G = 0,1,2,..., N. (3.4.35)
max J(Q

Let e" = (e?,eg,--- ,e’i_l)T and R" = (R?,Rg,--- ,R%_l)T with their second

norms as

1/2

Lil 1/2 S’!YLQZ‘
le"]]2 = (Z hle} 2) = (/ |e”(S)|2dS> n=0,1,2,---,N (3.4.36)
=1 0

and

http://etd.uwc.ac.za/



CHAPTER 3. A ROBUST CRANK NICHOLSON SCHEME FOR A STOCK
EXCHANGE TIME FRACTIONAL BLACK-SCHOLES EQUATION 67

L-1 1/2 Smaaw 1/2
[ R[] = (Z h|R?|2> - (/ \R”(S)|2d5) :n=1,23---,N. (3.4.37)
I=1 0

Now, the Parseval equality imply

Smas oo
[ lesrlas = 3 G, (3.4.39)
0 P
and
Smac 2 - 2
| RS asESn G (3.4.30)
0 i
which leads to
Smaz , o3
0 =

and

Smaac oo
wwng BRSPS = 3 () n=1,2.3 N (3441)
0

j=—o0
Suppose that
em = et (3.4.42)
and
R™ = n,ePh (3.4.43)

Y

for B = 277 /Sy and ¢ = y/—1. Substituting e™ and R™ into (3.4.28)) and (3.4.29)) and
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further simplifying we obtain

M =1, when n =0, (3.4.44)
and
)‘n+179n+1 = UpAn + Z @j)‘n*j+1 + T, (3'4'45)
j=1

where ¥,,11 = 4c,y1cos Bh+ by, forn=1,2,--- N

Proposition 3.4.6. If \, is a solution to (3.4.44)) and (3.4.45)) for alln =0,1,2,--- | N,
then | A\, |<C | my |.

Proof. From (3.4.27)) coupled with , werget
| R, € C(R* +h*) §in=0,1,2, - N.
Therefore, from we have
| st [=l i () IS C P [= CIm(G) [ n=0,1,2,--- | N, (3.4.46)

for some constant C, independent of h and k.

Let n = 0, then, from (3.4.44]) we have

< Clml. (3.4.47)

1
A p— —
| 1| ‘191771

Now suppose | A, |[< C' |y | for n > 1. We show that it is also true for n + 1. To
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see this, from ([3.4.45)) we have

|)\n+1| = )

1 n
S (ﬁn)\n + Z ©jAn—jt1 + 77n+1>

j=1

1 n
| Ut | | I | ; i | |+ +1|)
1 n
< |19+1| 00|n1|+2¢j0j|771|+Cn+1|771|>,
n =
1 [ no ) )
< m C|771|+j2190j0|771|+0|771 |>, (02033?;3{4-1{0]})’
~ n N R ) é
= C|nl|+z%c|’h‘+0|mla C:|79+1| ’
j=1 .
B é{|m|+29@j|”71|+|771|},
j=1
= C@B~Bur) Il
- cnt (3.4.48)

Combining the results obtained: abovejwe see that; the scheme (3.3.10)-(3.3.11)) is

convergent, which completes the proof to theorem [3.4.4.

3.5 Numerical experiments

Example 3.5.1. Consider the tfBS equation subject to initial and boundary
conditions for pricing a standard European put option with the following pa-
rameters: K = 150, » = 0.055, 0 = 0.01, T'=1, Spax = 450, L =100, N = 100,6 =
0.025, 0.055 and 0.065.

Example 3.5.2. Consider the tfBS equation subject to initial and boundary
conditions for pricing a standard European put option with the following pa-
rameters: K = 200, r = 0.065, ¢ = 0.025, T' = 1, Spax = 600, L = 100, N =
100, 9 = 0.045 and 0.085.
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The tabular results for the two examples starting with N = 50 for example [3.5.1
and N = 100 for example |3.5.2 are presented in tables|3.5.1 to[3.5.4 below. Numerical

results confirm our theoretical results and observations presented as theorem [3.4.1 and

theorem 13.4.4.

Table 3.5.1: Maximum absolute errors for example |3.5.1 with = 0.055 and § = 0.025.

a [ N =100

N =200

N =400

N =800

N = 1600

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.3714e-02
1.2394e-02
1.0162e-02
9.5623e-03
8.5515e-03
8.0315¢-03
7.5609e-03
7.3065¢-03
7.1436e-03
7.1202e-03

3.4691e-03
3.1352¢-03
2.5506e-03
2.4089e-03
2.0632e-03
2.0216e-03
1912603
1.8183¢-03
1.8170e-03
1.7911e-03

8.7754e-04
7.9308e-04
6.5025e-04
6.1188e-04
5.4720e-04
5:1393e-04
4.8381¢=04
4.6753e-04
4.59711e-04
4.5561e-04

2.2198e-04
2.0062¢-04
1.6449e-04
1.5478e-04
1.3842e-04
1.3000e-04
+:2239¢-04
1.1827¢-04
1:1563¢-04
1.1525e-04

5.5953e-05
5.0548e-05
4.1409e-05
3.7153e-05
3.4915e-05
3.2785e-05
3.0759¢-05
2.9717e-05
2.9250e-05
2.9154e-05

Table 3.5.2: Convergence rates for example [3.5.1 with » = 0.055 and § = 0.025.

a [N=200 N =400 N =800 N =1600

0.1 1.91 1.95 1:98 1.99
0.2 1.92 1.96 1.98 1.99
0.3 1.93 1.96 1.98 1.99
0.4 1.93 1.96 1.98 1.99
0.5 1.93 1.97 1.98 1.99
0.6 1.94 1.97 1.98 1.99
0.7 1.94 1.97 1.98 1.99
0.8 1.94 1.97 1.98 1.99
0.9 1.94 1.97 1.98 1.99
1.0 1.94 1.97 1.98 1.99
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Table 3.5.3: Maximum absolute errors for example [3.5.2 with » = 0.065 and § = 0.085.

Table 3.5.4: Convergence rates-for-example 13.5.21 with.r = 0.065 and 6 = 0.085.

a | N =100

N =200

N =400

N =800

N = 1600

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

6.5592¢-02
5.8088e-03
0.2147e-02
4.7443e-02
4.3746e-02
4.0893e-02
3.8773e-02
3.7318e-02
3.6499e-02
3.6328e-02

1.6592¢-02
1.4694e-02
1.3191e-02
1.2001e-02
1.1066e-02
1.0344e-02
9.8080e-03
9.4400e-03
9.2328e-03
9.1895e-03

4.1972¢-03
3.7170e-03
3.3368e-03
3.0358e-03
2.7993e-03
2.6167¢-03
2.4810e-03
2.3879¢-03
2.3355e-03
2.3246e-03

1.0617e-03
9.4025e-04
8.4408e-04
7.6794e-04
7.0810e-04
6.6192e-04
6.2760e-04
6.0405e-04
5.9079e-04
2.8803e-04

2.6857e-04
2.3784e-04
2.1352e-04
1.9426e-04
1.7912e-04
1.6544e-04
1.5676e-04
1.5080e-04
1.4745e-04
1.4670e-04

o} \N:200 N. =400 N =3800_..N = 1600

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.95 1.98 1.99
1.96 1.98 1.9
1.96 1.98 1.8
1.96 1.98 =
1.97 198 09
1.97 1.98 1:99
1.97 1.98 199
1.97 1.98 1.99
1.97 1.98 1.99
1.97 1.98 1.99

1.99
1.99
1.99
2.00
2.00
2.00
2.00
2.00
2.01
2.01

Maturity payoff curves for the three dividend yields 6 = 0.025, 0.055 and 0.065 at

a = 0.1, 0.3, 0.5, 0.7, and o = 0.9 under example [3.5.1 are presented in fig. [3.5.1

below

http://etd.uwc.ac.za/



CHAPTER 3. A ROBUST CRANK NICHOLSON SCHEME FOR A STOCK

EXCHANGE TIME FRACTIONAL BLACK-SCHOLES EQUATION 72
200 ‘ Europegn Put payoffs at 5‘= 0.025 ‘
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Figure 3.5.1: Payoffs for « = 0.1, 0.3, 0.5, 0.7, 0.9, and t = T.

The general payoff curves throughout the life-time of the option at the five fractional

derivative orders () for the three considered yield rates under example [3.5.1 are given

in figs. [3.5.2 to [3.5.4 below
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fig. [3.5.5 below.

European Put payoffs at § = 0.045 European Put payoffs at 4 = 0.085
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Figure 3.5.5: Payoffs for aa = 0.1, 0.3,0.5,70.7, 0.9, and ¢t =1T.

The general payoff curves throughout the life-time of the option for « = 0.1, 0.3, 0.5, 0.7,

and 0.9 and the two considered-dividend vields-are given-in figs. |3.5.6 and [3.5.7 below
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counterpart. In addition, the numerical method and results indicates that our scheme
is very robust and efficient in solving tf{BS-PDEs. The method does not only reduce
computational time but, also attain high order unconditional stable results, in any
states of the world and market conditions. One key observation is that, the general
payoff curves and profiles are more smoothier when 1/2 < « < 1, and otherwise when
0 < o < 1/2. With the latter signalling asymmetric performance of the approach and
method. These however, implies that, the approach is more robust when 1/2 < a < 1.
These observations are not strange or of a contradictory nature. It is expected that
1/2 < a < 1 the involved fractional stochastic process be more persistent and as it is
characterised by positive correlations between asset returns’ increments, hence, attain-
ing better performance compared to-the case when-0-<.« < 1/2 which represent the
anti-persistent regime under whieh the-underlying stock price process is characterised
by negative correlation between increments. The practical interpretation of these is
that, the approach confirms our theoretical observations and general consensus in lit-
erature that stock market dynamics-are of a power law nature, and that the underlying
distributions of stock returns decays slower than the exponential distribution and have
no independent increments. It is therefore expected that the method perform better
in the region (1/2 < a < 1) which is characterised by high persistence and positive
correlation as compared to (0 < a < 1/2) when the process covers less and less grounds
than the ordinary random process.

Currently we are exploring other higher order methods for solving tfBS and tsfBS-
PDEs. We are also interested in the calibration of the models to real-time data. In
Chapter 4| we suggest an alternative Fractal Market Hypothesis based time-fractional
Black- Scholes Partial Differential Equation (tfBS-PDE), as well as present an efficient

numerical scheme for solving it.
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Chapter 4

An Efficient Finite Difference
Approximation for-a Time-Fractional

Black-Scholes PDE -Arising via a
Fractal Market Hypothesis

This chapter presents a Fractal Market Hypothesis based time-fractional Black-Scholes
partial differential equation (tfBS-PDE). Herein, we also present a robust high order
numerical method for solving the derived t{BS-PDE. Further discussion on the stability
and convergence properties of the numerical method and some numerical experiments

are presented.

4.1 Introduction

Since the early 70s the study of Black-Scholes (BS) partial differential equations (PDEs)
under the Efficient Market Hypothesis (EMH) has been a subject of active research in
the derivative pricing area of financial engineering. One of the most common classes of

highly traded derivative instruments are options. Pricing of options and many other

80
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derivatives under the Efficient Market Hypothesis (EMH) has some serious setbacks.
Hence it has now become obvious, to those familiar with the concept, that the BS
models derived under the EMH framework fails to account for a number of realistic price
evolutions in real-time markets’ data. An alternative approach to the EMH framework
is the Fractal Market Hypothesis (FMH) which proposes better and clear explanations
of market behaviours during unfavourable market conditions. The FMH approaches
are very attractive to asset pricing as they provide for a somewhat unique framework,
one that has a potential to transform conventional thinking in asset pricing literature.
The involved non-local derivatives and integral operators as well as the accompanying
fractional stochastic dynamics in the FMH based models provide the best tools for
explaining the dynamics of market-anomalics; seimething that the classical models may
fail to explain.

The rest of this chapter is organised as follow, Section [4.2] presents a brief discussion
on the development of the involved model. Section presents the construction and
analysis of the involved difference-scheme.—To validate-our theoretical observations,
Section presents some practical experiments on pricing: European option on contin-
uous dividend paying stocks!  The‘conclusions and redommendations drawn from the

study as well as the prospect for future research are presented in Section

4.2 Model specification

4.2.1 The fractional Black-Scholes equation

To begin, we assume the stock price (S) dynamics follows a non-random fractional

stochastic process given by
dS = (r — 6)Sdt + o Sw(t)(dt)*’?, 0<a <1, (4.2.1)
where w(t) is the Gaussian white noise with mean zero and standard deviation

of one. Whereas r and § represent risk-free interest rate and continuous dividend

http://etd.uwc.ac.za/
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respectively. Suppose B(t) denote a standard Brownian motion, then, equation (4.2.1
is a generalization of B(t) by replacing dB(t) = w(t)dt'/? with dB(t) = w(t)(dt)*/? for
some 0 < o < 1.

The fractional process (4.2.1) is more appropriate compared to the standard one be-
cause it does not make any prior distributional assumptions about the asset price/returns.
The model free assumption provides a better approach to model the power law prop-
erties of markets with greater flexibility.

Consider the relation

S(l—a)
= & < 1. 4.2.2
ds F(1+Oé)(&_1)!(dS) ; 0<a< ( )

Suppose V (S, t) is sufficiently smooth -with respect to. S and its a-derivative exists

with respect to time, then theory of interest suggest,

IV = rVdt, (4.2.3)

The above leads to the variational fractional increment formula

4V =T(1 + a)rVat. (4.2.4)

Using (4.2.4) and (4.2.2), we obtain the following fractional interest dynamic equa-

tion

o _ TV 11—« «@
PV = gt (4.2.5)

The assumption on differentiability and continuity of V'(S,t¢) imply that (4.2.5)

satisfy the Generalized Taylor series of order o upto some remaining error terms follows,

1 v v . 1PV
e (dt)” + SedS + - s (dS)*. 4.2,
T+ a) o T 5595 1 555 (9) (4:2:6)

v = Bl 2952
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The It6’s lemma applied on (4.2.1) alongside (4.2.6), yield

1 9oV v o1, 0V
- @ — — — —_— e, 4.2.
Ty o (007 + (= 0)S gt + 50°5 5 ) (4.2.7)

v = Bl 2 952

After some algebraic manipulations and change of derivatives, we obtain the fol-

lowing

[e% o TV 11—« @

R
OV (r=0) o1 o0V T(l4+a) ,,0°V
- <8t“+(a—1)!5t 5T 2 7Y g%

) (Ao, (4.2.8)

which implies

ale’ | P 2
Ao oV 1 ulime Sf1—aal+ F(1+O‘)02528 4

(@ —1)! ate (I E DI ||los 2 952" (4.2.9)

Equation (4.2.9) can furtherbe simplified-intothe following t{BS-PDE

0V

iy 2 Q2
(@A) 5117 5 g5
g=r—90; 0<a<l

S rV sS4 (4.2.10)

e V) t* T(l+a)
GE

To ease the computational difficulties involved in computing the solution to the
tfBS-PDE in (4.2.10]), we transform (4.2.10)) into a heat equation by change of variables
and then to use the known solution of the heat equation to represent the solution,
thereafter change variables back to the original variable V(.S )

First we want to eliminate the term rV in (4.2.10). To do so we assume V(S,1) is

differentiable with respect to ¢. Then, considering the following change of variables

V(S,t) = e TS, 1), (4.2.11)
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and applying the Caputo derivative on (4.2.11)),would yield,
Ve =D (e T ) (S, t) +e "I  0< a < 1, (4.2.12)

where Dy is the Caputo derivative with respect to ¢ of order a.

From the generalized Taylor series expansion ([2.2.5), we have

D (e,r(T,t)) — e T(T1) (4.2.13)

By using (4.2.13)) in (4.2.12]), we obtain

tl—a

o o —r(T—1)
V(S t) =re H(a =

vl EerYnPuees, 1), 0 <a <1, (4.2.14)

The above equation along with (4.2.10)), yields

tl—a

—r(T—t) —r(T—t), o
re -1 1)!11(8, t) + e (9 )
(1) /17a (T—1) tlfa
wWECTERN AP Sit)———
€ U( ‘)(Oé_l)' goe US( ’)(Oé—l)'
I'(1
—%02526—"“—%55(5, t) (4.2.15)

which after simplifying yield,

e I'l+ «)
(a—1)! 2

v (S,t) = —qSvs(S,t) 02S%vs5(S,t), 0<a<1, (4.2.16)

with terminal condition,

w(S,T) = V(S,T).

Now, since we want to obtain a pde with constant coefficients, to eliminate the
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Svs(S,t) and S?vgs(S,t) terms from (4.2.16]), we consider the transformation
s = 7", for some constant 7, (4.2.17)
resulting in a pde with the solution of the form
v(S,t) = v(s,t),

and terminal condition

v(s, T)=v(S,T)=V(S,T).

Therefore,
(1 = 1 1
vy (s,t) = (%02 — qm> vi(s,18) — ~(—;_i)02vss(s, t).  (4.2.18)
The general solution to (4-2:18f takes the form
Ly
v(s, thE ps;t)y=00s =gt 3 i (4.2.19)

Which suggest for the following transformation (again without loss of notations)
1 2 « «
s=s—In(c)+r(T—1t)— ot (T —t%), (4.2.20)
and terminal condition
o(s,T) = c(e® — 1) = ¢(e*MOFr(T=0=30*(T*~1%) _ 1), (4.2.21)

Choosing the constant 7 in (4.2.17) as 7 = —In(c) +rT — %UQTO‘ for some constant
¢ and substituting the new variable (s) of (4.2.19) back into (4.2.18)) eliminates the
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term v,(s,t) from (4.2.18]) resulting into the following fractional heat equation

N I'(l+a)o?
pi(s,t) = —%pss(s,t), (4.2.22)
which can be simplified to
Pp(s,t)  pls,)
= 4.2.23
ata 1/J 682 ) ( )
where ¢ = —F(HTO‘)”Q, with European put option initial and boundary conditions in
terms of the original variables
p(s,0) =V (5,0) = max(K — Ke™,0),
p(0,t) =VHOVF = Ke (4.2.24)
lim p(s,t) = lun VI($,t) = 0,
s—00 S—o0

where K is the strike price of the option and T is the maturity time.
For the remainder of this chapter equation (4.2.23]) is referred to as the time-

fractional Black-Scholes heat equation.

4.3 Numerical method and its analysis

This section presents the fundamental aspects and design of the proposed numerical
scheme for solving equation (4.2.23)).

To begin, Let L and N be some positive integers, and define h = S,,,,/L and
k = T/N as the spatial and temporal grid sizes. Further denote s; € [0, Sy and
tn € [0,T] as the grid points in the asset and time directions, such that s; = [h and
t,=nkfor=0,1,2,3,...,Land n=0,1,2,.... N — 1.

Denote the value of the option p at grid point (¢,,s;) by

P = p(tn, s1), (4.3.1)
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and also, define

Cl(t,s) = ! ] /Ot P, S)> dz, (4.3.2)

such that

0°p(tns1/2,51)  OC(tny1)2,51)
pu— 4- .
ot ot ’ (4.3.3)

which is defined in the Caputo sense, then,

('3&29(%;1/2, Sl) _ ac(tngtl/z, Sl) — C(tn-H; él>k— C(tn, Sl) 1 (9(1{:2) (434)

Using the Caputo derivative in Definition [2.2.1, C(#;. 1, s;) can be represented as

follow;
1 (7 8)
C tn s = _— —— .
(tng1,51) F(1+a)/0 T—p— 2
1 n+1 /jk p(T Sl)
= o~ el dz,
I'(l-a) ; G-k i
1 = (T—1t;5) jo1, (T—1t;-1) 1
= T/ N + —p] + O ]{72 ) dz,
F(l—a)jz1 D PR (k%) (tpi1 — )
= (0; — 3B p Z 5 — G+ DB P + By, (4.35)
Jj=0 =0
where
1 n+1 /jk d
E, = = ok ————
o Il —a) ; G—1)k ( )(tn+1 —T7)
1 n+1
— kQ 9 _ Nl—a 1 — \l—a klfa
O 2 (2 =) = (e 1))
(n+ 1)1—04 )
= o Ok 4.3.6
(a—1)! O(K"), ( )
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and

Similarly,

C(tn,Sl)

(1P ), 437

= o D) (G+ 1) =57, (4.3.8)

1 (T, 81)
T(1+a) /0 (= )

n n

Z(‘Sj—l — (e k2(5j—1 — jBi)p

J=1 J=1

+E,. (4.3.9)

We can therefore approximate

aap(tn—&-l/% 51)
o
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as follow
Op(tntiye,s1)  Cltuyr, s1) — Cltn, 51) >
= > 6 —iBn =) (6 — G+ 1B
§=0 j=0
—Z 1= (G = 1)) +Z (6= jB-)mp "
E E,
+ n+1k (9(1{:2)

n

— 2{5—57—1))+((7—1) =By

n

+ (O =0, (G B 8y op

7=0
E,.1+FE, |
+— O G)
- 1 (1) nl-o
_ n—j+1 2 2
— Z(/'yp, +<a_1),< = )O(k)+(9(k)
7=0
= Y o O, (4.3.10)
§=0
where
0; = 0541 — 25] + 5]'—17 for j>1, (4311)

since

Therefore, using an appropriate second order approximation in the asset direction,

[#-2:23) yield

77— w n n 7 7 7
Z%p RO = g P 20T P e = 200 40 )

+LO), (4.3.12)
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where

0<n<N-1land, 1 <I[<L-—1.

Which can be simplified to the following difference scheme

Y P Y v Y Y
_ﬁpll+1 + h2 + 09 pll - ﬁp},l = mp?ﬂ - ﬁp? + ﬁp?,l, (4.3.13)

for n = 0 and,

—gpabin g T o0 ) i — gmpit St — (a0 | A b

= Z o 7, (4.3.14)

for n > 1, with an European put initial and boundary conditions

P Emax (KR Ke 0y,

o (4.3.15)

|

pr=0,0<n<N.

4.3.1 Stability analysis

Let P*;1=0,1,2,---L;n=0,1,2,--- N; be an approximate solution to the difference

scheme (4.3.13))-(4.3.14), and define €] = p} — P/ as the truncation error, such that

ey = €7 = 0 for all n. Substituting €} into (4.3.13)-(4.3.14) we obtain

( Y (G (G Y (
C9R2 Sraien T 2 +00 ) g — W‘EIIA = ﬁE?ﬂ - ﬁe? + W“??A = 0(4.3.16)
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for n = 0 and,

~opz i + 2 +too g — o1 T ot T EJFUO € +2—h2€z—1
= ot > 1 (4.3.17)
j=1

Let us define the following grid functions,

e, when S —-2<S<S+%4 1=12..,L-1,
€"(9) = (4.3.18)
07 When 0§S<% or S’maT_%<S§Smax+%

Then €"(S) can be represented -by-the-folowing Fourier series;

e*(S) = > LGP APt = 1d. ., (4.3.19)
J=1
where
1 Smax WE
0.) = 5 / R EPRS et d S Pri 1,2, .., N. (4.3.20)
max J(Q
Let € = (€}, ¢5, -+ ,e? )T and, defining it’s norm

1/2

= (ghy e \2> v (/OSW | () \st) , (4.3.21)

and, applying the Parseval equality

ETL

Smazx 0o
[ resr s = Y 1a P (13.22)

j=—o00

http://etd.uwc.ac.za/



CHAPTER 4. AN EFFICIENT FINITE DIFFERENCE APPROXIMATION FOR
A TIME-FRACTIONAL BLACK-SCHOLES PDE ARISING VIA A FRACTAL
MARKET HYPOTHESIS 92

we obtain that

2

E’I’L

Smawz o
= [Hes pas = 3 1) F (43.23)

2 j=—o00

Therefore, we can propose the solution to (4.3.16]) and (4.3.17)) takes the following

form
€ = pneth (4.3.24)

where 8 = 275 /S0 and @ = /—1. Substituting the expression for €” into (4.3.16)
and (4.3.17)), we obtain

Yo sanh Y i [y Vo Bk
o die + | 55 t 0] 1€ 1] 2p3 1€ = 5%

h2

(0 iB(1—1)h.
+ 53 00€ (=Dh. (4.3.25)

for n = 0 and,

Y ; Y ; Y 81—
_WQnJrle AU+1)h + ﬁ + 00 | Ont1€ Ptk _ ﬁQnJrle AU=1)h
_ %QneiB(Hl)h _ (% 4 Uo) 0Pt

Jj=1

Which after simplifications, leads to

01 (—%Qewh + eiﬁh) + (% + 00) = QO%Q (e’ﬂh +e )

- (% + 0'0) ,n=0, (4.3.27)
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Onin (—Q%Qewh + e‘wh) + (% + 00) = o, (%26"5}‘ + e"'ﬁh) - <% + 00>
- ZO’an,jJrl, n Z 1. (4328)

7=1

These implies that

01 (—%cosﬁh + % + Oo> = 0o (% cos fh — (% + 00)) ,n=0, (4.3.29)

and

Ont1 <—%COSB}L 4 % —|~cro> = (% cosBh — <% + 00>)

piotlin> 1 (4.3.30)

Proposition 4.3.1. Suppose g, 1 satisfy (4.3.29)) and '(4.3.30)), then | oni1 |<| 00 |
foralln=20,1,2,--- | N.

Proof. Suppose n = 0, from (4.3.29) we have

—% cos Bh + (% + 09)
’Ql ‘ = o ¥ Qo
7z cos Bh — (ﬁ +00)

_ —(;f—zcosﬁh— (%+UO))Q
%cosﬁh— (% —i—ao) ’

= ’ —0o |7

Y

?

< ol (4.3.31)

Now, suppose | 0, |<| o | forn =1,2,3,..., N. We need to show that | 0,11 |<| 00 |-
From (4.3.30))
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| On+1 |

From Proposition4.3.1 coupled with the Parseval equality, we obtain,

N — 2 j10i0n—j+1
~(roos = (5 +o0)) | |~ (oos = (& +o0)|
0 (%cosﬂh—( )

too))| | Xioienm

(% cos fh — (% + 00)) ’
1
‘(% cos fh — (% + ‘70)) ‘ Z?ﬂ |0jon—js1]’

= 1
|Qn|+ |U'Qn—'+1 |7 Sl ;
Z e | & cos Bh — (& + 00) |

j=1
| on | 401 | 00| +02 | 0p1 |+ 4+ 00|01,

o
3
_l’_

| 00 | +o1¢@e-0a]) 0o} F—=Fpnatpo |,

n
> ol oo
j=1

loo | (- Y]o; #11). (4.3.32)
j=1
el < ||€°

2 2

foralln=1,2,--- , N — 1, which lead us to the following theorem.

Theorem 4.3.2. The difference scheme (4.3.13)-(4.3.14) is unconditionally stable.

The proof to Theorem [4.3.2 follows from results from equation [4.3.16| through to
equation 4.3.32|

4.3.2 Convergence analysis

The concept of Fourier analysis was used to studying the convergence properties of the

scheme. To begin, let us denote the truncation error at grid point (t,.1,s;) by Rl"H,

then, from equation (4.3.5) and part of (4.3.12)), we have that

IR} <C(K*+h%,1=1,2,---,L—1;n=0,1,2,--- ,N — 1,

(4.3.33)
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where C' is a constant given by
C= max {Cp'}, for some constants C}* independent of h and k.
1<ISL-1,0<n<N-1
Let &' = p(si,tn) — p}* denote the approximation error at grid point (t,,s;), such
that & = 0, forn = 1,2,--- N and & = 0, forl = 0,1,--- , L. By substituting &

into the scheme (4.3.13))-(4.3.14]), we obtain

(0 (0 (0
_2_h2€l1+1 + (ﬁ +00)§) — 2—]12511_1 =Ry, (4.3.34)
for n = 0 and,
o2 iy (ﬁ + 00) = 570 - — ﬁgfm = (ﬁ +00)§" + Q—hZSz—l

o Zojf’j“ + R n > 1.(4.3.35)

JEL

Similar to stability analysis, we define the folowing grid functions

1 wher+9G Y S fugdt & X Bf WP 1 9 L1,
£(S) = S e Pl (4.3.36)
0, when""0'<-§ « % or " Sppid '5’ < S < S+ %,

R', when S —-2<S<S+% 1=12..,L-1,
R'(S) =4 S (4.3.37)
0, when 0§S<% or Smax—%<5§5max+%,

which imply £"(S) and R} have the following Fourier series representations

§(8) =Y ml(j)e®S S =12, N, (4.3.38)
j=1

R'(S) =Y wa(j)e?™¥/Smees =12, N, (4.3.39)
j=1
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1 Smax o
(i) = g / £"(8)e #mSmardS; = 1,2,.., N. (4.3.40)
max J(Q
1 Smax o
]/n(j> _ S / Rn(s)e—ZQWjS/S77Lade; n = ]_’ 27 ceey N (4341)
max J(Q

Let & = (&p, &0, -+ &7 )T and R* = (R}, Ry, -+, R? )T, and let us define their

norms as follow

L-1 1/2 Smaz 1/2
& = (Z hl & ) - ( / £4(9) lZdS) , (4.3.42)
2 I=1 4
L1 1/2 ol 1/2
HR" = (Z h{RY 12> = ( / ER™(S) |2dS> : (4.3.43)
2 =1 0

and, apply the following Parseval equalities

Smaac o
[ et as = 3 IR0 B =120, (43.44)
0 oo
Smaz 0
/ | RMS)* 1dS = > |w() 5 n=1,2,..,N, (4.3.45)
0 P I—
to obtain
2 [e%e]
&l =Y IG5 n=12..N, (4.3.46)
2 j=—00
2 e’}
’R” = |w() [’ n=12..N (4.3.47)
2 j=—00
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We can therefore propose that
" =1, and R" = v,e", (4.3.48)

where § = 275 /S0 and @ = y/—1. Substituting the expressions in (4.3.48]) into

(4.3.34) and (4.3.35]), we obtain

2227' ePUTDR 4 (;L/; + 0o ) et — 21227' ePU=Dh — ) eBth =0,  (4.3.49)

and

22}627“ B0+ e (;;2 +Uo> T i ZI}UQTnHelB(Z Dh
14
( iB(14H1)h
= t-T18"
262 1"

2h2
i =]
Ungr€PMn > 1 (4.3.50)
Which after simplifications, leads to
1 —1 w
1 ( 2%2 (e Bl emiPh) (ﬁ +oo | | =1, (4.3.51)

and

Tn+1 (_21]2 (e wh 1 e mh) + <% + Jo)) = T, <% (eiﬂh -+ e*’ﬂh) - (% +ao))

n

- Z OjTn—jt1 + Vni1, n > 1. (4.3.52)

i=1
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These implies that for n = 0,

T (—%cosﬁh + ;;D 0> =1, (4.3.53)
and for n > 1,
Totl (—;gcosﬁh—l—%—i-ao) = (;lécosﬁh—<w —i—ao)) Zaﬂn 41
FUpit. (4.3.54)

Which leads to the following equalities:

n=E= 2 : (4.3.55)
(p cos fh — (h—2 Ar 00))
and
7'1— O0iTpn—j + Un
Tt = —[|| TalE Z,:H T orie |- (4.3.56)
(h% cos Bh — (h—Q - ao))
Proposition 4.3.3. Suppose 7,, forn =0,1,--- N s a solution to equations (4.3.55|)

and (4.3.56)), then there exists a positive constant Cy such that |,| < Cy|1]| for all n.
Proof. Notice that when n = 0, from (4.3.55) we have

41
(% cos Sh — (% + 09))

< Chlnl, (4.3.57)

|| <

Suppose |7,| < Col|vy|, for n = 1,2,--- | N, for some constant C' independent of h
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and k. Then,

Z?:l OjTn—j+1 + Vnt1
(;f—z cos Bh — (% +09))
Z?:1 OjTn—j+1 T Vnyl

(% cos Bh — (% + 00))

|Tn+1| <

S |Tat

Y

IN

|7 | +

Y

IN

Colal + Z | 7z cos Sh — (:}2 + 00))‘ (Oslragial + ]

IN

00‘1/1’ + ZCj(aj|Tnfj+1| + ‘Vn+1|>7

j=1

n
Colvi| + § 0;Cilmar =G |11 |,

f ==+

Co|v1| + ZUjCj‘Vl‘ -
j=l
= C()|V1| -+ 0'101‘1/1{ + UzCQ}Vl‘ -+ +0'7,,Cn}yl{ + On-i—l”/l}a

T

< Cllm| + Y- oifmfr (€= max {C;}),

IA

IN

= 0<j<n+1
= CA'<2+ZUJ‘)‘V1L
j=1
— Clul. (4.3.58)

The following theorem therefore holds,

Theorem 4.3.4. The difference scheme (4.3.13)-(4.3.14)) is convergent and converge
with order O(k?, h?).

The proof to Theorem 4.3.4 follows from equation (4.3.34) through to equation
(4.3.58).

4.4 Numerical experiments

In this section we investigate the pricing of European put options using the time-

fractional Black-Scholes (tfBS) PDE (4.2.23)) which is implemented via scheme (4.3.13])-
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(4.3.14]) with initial and boundary conditions . We consider two distinct ex-
amples with varying dividend yields and order of the fractional derivative («) fixed
at 0.3,0.5,0.7 and 0.9. The numerical solutions obtained using the proposed method
shows that the option maturity payoff curves obtained are in very good coincidence with
the European put option intrinsic payoff curves obtained under all possible parameter

settings.

Example 4.4.1. Consider equation (4.2.23|) subject to conditions (4.3.15|) on pricing
a European put option with the following parameters: K =150, r = 0.08, 0 = 0.1, T' =

1, Sumax = 450, L = 100, N = 200, § = 0.035, 0.05 and 0.10.

Below we present numerical results for the case when 0 = 0.035 considered at all
four values of a i.e. (a = 0.3,0.5,0.7 and 0.9}
The maturity payoff curves for ¢ = 0.035 are as shown in fig. 4.4.1 below,
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Figure 4.4.1: Maturity payoffs for 6 = 0.035 with a = 0.3,0.5,0.7 & 0.9 respectively,

and the general payoffs throughout the lifespan of the option at all considered sets of
« are as appearing in Figure [4.4.2 below
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Figure 4.4.3: Maturity payoffs for:d = 0:045with o =10.3+0.5,0.7 & 0.9 respectively.
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Table 4.4.1: Maximum absolute errors for example 4.4.1 with r = 0.08 and ¢§ = 0.035.

a | N=30

N =60

N =120

N =240

N =480

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

7.5592e-03
6.8088e-03
6.2147e-03
5.7443e-03
5.3746e-03
5.0893e-03
4.8773e-03
4.7318e-03
4.6499e-03
4.6328e-03

1.8952¢-03
1.8694e-03
1.6191e-03
1.5001e-03
1.4966e-03
1.4044e-03
1.3880e-03
1.2500e-03
1.1682¢-03
1.1645e-03

4.7712e-04
4.7170e-04
4.3368¢-04
4.0358e-04
3.7993e-04
3.6167e-04
3.4810e-04
3.3879¢-04
2.9355¢-04
3.0246e-04

1.1987e-04
1.1825e-04
1.1698e-04
1.1684e-04
1.1651e-04
1.1619e-04
1.1607e-04
1.1405e-04
7.3797e-05
7.5988e-05

3.0128e-05
3.3784e-05
3.1352¢-05
2.9426e-05
2.7912e-05
2.1544e-05
2.1676e-05
1.9950e-05
1.8575e-05
1.9670e-05

Table 4.4.2: Convergencetates for-example |4.4.1 with 7 = 0.08 and § = 0.035.

a | N =60""N="120"V"=240"TIN = 480
0.1 1.67 1.86 1.88 1.89
0.2 1.66 1.87 1.88 1.89
0.3 1.68 1.87 1.89 1.90
0.4 1.68 1.87 1.89 1.91
0.5 1.68 1'88 189 1.95
0.6 1.68 1:88 1489 1.96
0.7 1.78 1.88 1189 1.98
0.8 1.89 1.88 1.89 1.98
0.9 1.89 1.88 1.89 1.98
1.0 1.89 1.87 1.89 1.98

Table 4.4.3: Maximum absolute errors for example 4.4.2 with » = 0.065 and § = 0.045.

a | N=50

N =100

N =200

N =400

N =800

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.4714e-03
1.3394e-03
1.1162e-03
9.6623e-04
8.6515e-04
8.1315e-04
7.6609¢-04
7.4065e-04
7.2436e-04
7.2202e-04

3.5691e-04
3.2352e-04
2.6506e-04
2.5089e-04
2.1632¢-04
2.1216e-04
2.0126e-04
1.9183e-04
1.9170e-04
1.8911e-04

8.8754e-05
7.9308e-05
6.6025e-05
6.2188e-05
5.5720e-05
9.2393e-05
4.9381e-05
4.7753e-05
4.6711e-05
4.6561e-05

2.2298e-05
2.0162e-05
1.6549e-05
1.5578e-05
1.3942¢-05
1.3100e-05
1.2439e-05
1.1927e-05
1.1663e-05
1.1625e-05

9.6053e-06
5.0648e-06
4.1509e-06
3.7253e-06
3.5015¢-06
3.2885e-06
3.0859e-06
2.9817e-06
2.9350e-06
2.9254e-06
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Table 4.4.4: Convergence rates for example [4.4.2 with » = 0.065 and § = 0.045.

o \NleO N =200 N =400 N =800

0.1 1. 78 1.89 1.97 1.97
0.2 1.79 1.92 1.96 1.98
0.3 1.79 1.93 1.97 1.98
0.4 1.80 1.94 1.97 1.99
0.5 1.88 1.95 1.98 1.99
0.6 1.88 1.96 1.98 1.99
0.7 1.88 1.96 1.98 1.99
0.8 1.88 1.97 1.98 1.99
0.9 1.89 1.97 1.98 1.99
1.0 1.89 1.97 1.98 1.99

4.5 Summary and discussions

The fractional approach is a very effective approach to asset pricing as it provides a
unique framework, one that has-a potential to transform cenventional thinking in asset
pricing theory and applications: The mon-local derivatives and integral operators as
well as the accompanying fractional stochastic dynamics. provides the best tools for
explaining trend and noise memory effects as well as non-localised information about
the stock price movements, something that the classical models may fail to explain.
Since the fractional derivatives operators are of a non-local nature, there is little to none
existing knowledge of analytic solutions to fractional BS models. As such, numerical
methods are the only available avenues to help understand the nature of solutions to
these models.

In this chapter, we transformed a standard t{BS-PDE into a solvable t{BS-PDE in
the form of a heat equation. In general, the transformation is necessary as it helps
in easing the mathematical difficulties and complexity involved in solving the original
tfBS-PDE using the high order numerical method presented herein. We constructed
a robust and high order numerical scheme for solving the resultant model. From the
simulation, we considered two examples, Example 4.4.1, and Example 4.4.2 as well
as their numerical results in Tables 4.1 to [4.4.4. The above stated results are in
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agreement with theoretical observations that, the method is unconditional stable and
converges to up to order O(k?). We further observe that, our approach provides a very
efficient, effective and powerful mathematical tool for option pricing.

Though the asymptotic long-term behaviours of markets tends to be similar for
when the dynamics are driven by the usual Gaussian processes as compared to non-
Gaussian processes (i.e fractal processes), we observe that, incorporating the fractional
parameters describes the dynamics much better and with greater flexibility. Such fact
does holds most specifically in markets with empirical evidence of memory or those
that presents some non-random power law properties which are often not predictable
using ordinary Gaussian assumptions.

The application of the approach to-other models and their calibration to real-time
market data remain the subjeet: of future research. In the next chapter we formulate
an American option pricing fractional Black-Scholes equation as well as propose a

front-fixing transformation based-numerical-method -for solving the resultant model.
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Chapter 5

A Robust Numerical Simulation of an
American Put-Option-Pricing Time

Fractional Black-Scholes Equation

In this chapter we propose a robust finite difference numerical scheme for solving a
time-fractional Black-Scholes equation forpricing American put options. The numer-
ical method herein is based on front-fixing transformation, whereby the early exercise
boundaries are transformed into fixed boundaries allowing for the simultaneous compu-

tation of the option premiums as well as the corresponding optimal exercise boundaries.

5.1 Introduction

After the discovery of fractal structures of financial markets, fractional partial differen-
tial equations became very popular in studying financial derivative pricing problems.
The available research results includes two key aspects, firstly, derivation of a better re-
alistic pricing model, one that closely reflects the actual dynamics of financial markets.
Secondly, the design of a robust numerical method for solving the resultant models be-
come important, since in most cases, the resultant models are often of nonlinear nature
and as such, no reliable analytic methods have thus far been documented. therefore

108
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numerical methods become vitally important in understanding the nature of solutions
to these models. The difficulty in evaluating American options accurately lies on the
unknown free boundaries associated with these type of options. The free boundaries
emanates from the flexibility of early exercise features associated with the American
options. To the best of our knowledge, there are no extensive literatures on numerical
methods for pricing of American option problems from a fractional point of view.
This chapter is organised as follow, Section present a brief derivation of the
involved time-fractional Black-Scholes (tfBS) PDE for pricing American put options.
In Section [5.3|we propose a finite difference discretisation of the transformed tfBS-PDE
while further elaborating on the construction-6f the numerical scheme. The theoretical
analysis of the scheme are presented in-Section while in Section we present
some American option pricing numerical experiments. Concluding remarks as well as

scope for further research are presented in Section

5.2 The tfBS-PDE for American put options

5.2.1 A time-fractional PDE describing an American option

problem

Let v(S,t) denote the value of an American put option, S the price of the underlying
stock and K the option’s strike price. Assume the stock price dynamics follow the

following fractal process, driven by the usual Gaussian white noise w(t)
dS = (r — 6)Sdt + oSw(t)(dt)*?, 0 < a <1, (5.2.1)

where r is the risk-free interest rate, ¢ the dividend yield, and w(t) the Gaussian white
noise. Using (5.2.1) and the Generalized Taylor series expansion of v(S,t) with some

algebraic manipulations, leads to the following time-fractional Black-Scholes (tfBS)
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PDE with initial and boundary conditions for American put option.

0%v

_ v e F(l1+a) 4 .0%
o (”"(7"‘5)%) M2 2 70 o5
S>bt),0<a<l, (5.2.2)
v(S,0) = max(K —S,0), S >0,
ov
P (be).) = 1.
v(b(t),t) = K —b(t), (5.2.3)
élgqolC V(S ) ity
TN ¥
v(HIET 1T HI— H{0HB Hb(t).

With a change of variable # =7 —¢{time to maturity};-the equation (/5.2.2) become

0% v K (1 ahri——= 0%
i _ (r — RS i 202
ore (”’ r >Sas) reaa c@en < ° a5
S>0(1),0<a<1,t>0, (5.2.4)
v(S,0) = max(K —S,0), S >0,
ov
- - 1
v(b(r),7) = K —b(7), (5.2.5)
5151010 v(S,7) = 0,
b(0) = K,
v(S,7) = K—50<85<b(1),

where b(7) is the moving exercise boundary.

It is worth noting that, when S < b(7) it is optimal to exercise a put option.
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Whereas, when b(7) < S, the optimal exercising strategy would be to hold the option
when b(7) < S.

The value matching condition v(b(7),7) = K — b(7) and the smooth pasting condi-
tion % (b(7),7) = —1 are necessary for preserving financial interpretation of the con-
tinuity of v(b(7),7) and 2% (b(7),7) across the optimal exercise boundary b(7). This
is done to avoid arbitrage opportunities, because after purchasing an American put an
investor can exercise the option once the asset price falls below b(7), or purchase it
back whenever the asset price rises above b(7). Since the transactions of converting the
put option into holding of cash plus a short position in asset and vice versa all occur
on the early exercise boundary, we.require-the-value matching and smooth pasting
conditions in order to ensure that these transactions-are self-financing, that is, each
portfolio revision undertaken is exactly financed by, the proceeds from the sale of the
previous position ([53]).

The underlying concept of the-front=fixing approach is to remove the moving exer-
cise boundary b(7) by change of variables which then leads to a non-linear tfBS-PDE
posed on a fixed domain. With this formulation, the position of the boundary is given
but some of the boundary conditions remain unknown and must be simultaneously
computed with the value of the option.

To transform the tfBS-PDE ([5.2.4) and for the convenience of numerical implemen-

tation, we consider the following change of variables

u(w, 1) = (K bi(r) = 22w =n <E> . (5.2.6)

S

The so-called Landau transformation of the spatial variable (z = In (bf

)) serves
to ensure that + = 0 whenever S = b(7), which transform the then free boundary
conditions to fixed boundary conditions. Under this transformation, the free boundary

S = b(1) become the fixed boundary x = 0, hence the name of the method. Using the
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new random variable x, the underlying stock dynamic equation (5.2.1) change to

2y
dr=(g—Z — (7) dt + ow(t)(dt)*?, q=r—6,0<a < 1. (5.2.7)
2 by(r)

By using ((5.2.7) and replicating a derivation parallel to the one presented in chap-
ter 2| the tfBS-PDE (5.2.4) is transformed into the following fractional linear comple-
mentary problem (FLCP) under a new random variable «

v o2 du\ (T —7)'"* T(1+a) ,0%u bou
oo~ 007) ((“— (4~ 7%) fe—a) 2 "oz’ 5%) , (5:28)

T > 0, == F—mye 02X 1 and, 0 < 7 < T.
This FPDE can further be simplified into

0~ 0 102 V0
“ HT(Tu—ua—u)—wT§02—u+—f i >0 0<a<l, 0<7<T,
x

ra 9% | by On
- V-4 LY &)rte o?
giEmse e R, _ 5 7 (599
FeTHRN (apEe  © 7 (5:2:9)

with initial and boundary conditions for an American put option

w(z,0) = max(l—e*,0),z>0, (5.2.10)
2—2(0,7) = —by(r), (5.2.11)
w(0,7) = 1—bs(r), (5.2.12)
lim u(z,7) = 0, (5.2.13)
br(0) = 1, (5.2.14)

where b is the derivative (of the free boundary by) with respect to 7.
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5.3 Discretization of the tfBS-PDE and construction
of the numerical scheme

In this section, we introduce a finite difference method for solving the time fractional
Black Scholes (tfBS) initial boundary value problem (IBVP) (5.2.9) with a free bound-
ary by(7). Not only do we compute the solution to the fractional IBVP (5.2.9) but

simultaneously compute the position of the free boundary b (7).

5.3.1 Discretization of the tfBS-PDE

Let L and N be positive integers-and define h = 2,a/4L.and k = T/N as the space
and time step sizes respectively—Define x; =-th; " I-—="1,2,...,L and 7,, = nk; n =
0,1,2,...,N, such that z; € [Zin, Tiae) and 7, € [0,1]. Furthermore, define u}) =
u(zy, 7,) as the solution at the grid|point| (z;,1,) = ((h nk).

We evaluate the a-derivative in by the following quadrature

0%u ajlaTn Dl IL J 7_170{
_ = ek 3.1
where
1 1
o= —————, 5.3.2
P I'2— o)k~ ( )
and
BJ = jl_a - (.] - 1)1—047 J = ]-727 e, N, (533)
such that, 1 =0, >y > 03> --->—0asj —n.
Simplifying (5.3.1) we obtain
0%u(xy, ) n— n—j
aT; paZ@ T — ™) + O(k). (5.3.4)
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It can be shown that, for j = 1 and o = 1, (5.3.4) reduces to the classical backward
finite difference formula.

The other derivative terms in (5.3.1) are approximated by

ou(wzy, 7p) g — 'ty 2
D S LT A e ot S ) h 0.
o L o), (5:35)
52u(1'z, Tn) uliy — 2up + upt gy 2
T ! +O(h?), (5.3.6)
b b — pt
Or _ T Lo, (5.3.7)

or k

5.3.2 Construction of the numerical scheme

To obtain the full numerical scheme; we substitute (5.3:4), (5.3.5),(5.3.6) and (5.3.7)
into ((5.2.9). After simplifying, we obtain

forn=1
bl L1 bO oo LU,
auy_q + bu, +cup— < 4 4 f) Uz+12hu1—1 =0, (5.3.8)
!
and for n > 2
n n n b? B b?il u?—l—l _ u?—l — n—j
aw_ + bu' + cu, — o 57 = Z wu 7, (5.3.9)
f j=1
where
ocw, O
a = Ya — ,
Xe\Tan ~ 2n
1
b = 1—Xa <HTT — %U%)T) , (5.3.10)

B 02w7+97y
© = X" Ton )0
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where

Xa = kpa = k', (5.3.11)
(6]

and

i = Bj—Bj+1, =12, ,n (5.3.12)

From boundary conditions in ([5.2.10) we obtain

n n
Uy — Uy

—— =by-and;uy-=-1.— bY. (5.3.13)

Consider (5.2.9) for o = 0,7 > 0 and substitute (5.3.13) into (5.2.9) at (0,7) to

obtain

1 ﬁ (0 )_g(5+aj)b,( )+ 60,7 =0 (5.3.14)
20' w-,—axzu i T 2 if: T T = ) .J.

with its central discretization given by

2

0.5+ %)b; 400 =0, (5.3.15)

n n n
—0“Ww,

2 h?

Equation (5.3.15)) follow directly from the definition of a fractional derivative of a

differentiable function u(z,7) at = 0.

Now ((5.3.13]) implies

up = 1-0%, (5.3.16)

uty = uf 280, (5.3.17)

After some algebraic manipulations, we obtain the following expression in terms of
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Uy
uy =+ n>1, (5.3.18)
whereby
h? h? 6.
(=r(l1+ —r), andy =r(1+h+ ), for Kk = ——. (5.3.19)
o 2 wr

Using scheme(.3.8)-(5.3.9) for [ = 1, and evaluating (5.3.19)) at n'*- step, the free

boundary b% can be expressed as

o TR (5.3.20)

where

¢ —fauyTburteny—{uoy—ua)/2h)

v A TRRITVY the o520
therefore the final schemes'for uj' and b} are givén by
D = b}, (5.3.22)
up = 1-0%, (5.3.23)
uy = (—bn>1, (5.3.24)
a"uj_y +bul + ", = By, 1=2,--- Lyn=1, (5.3.25)

n—1
a"u by + ", = Z oiup Bl 1=2,---  L,n>2, (53.26)
j=1

for
bn_bn—l 1 n _ jpn—1
—n f f 2 -n f f
= - bh=1- 0. r — — dé"=¢c— —--2—,(53.2
a+ 20, , Xa ( i wT> and ¢" = ¢ 20 ,(5.3.27)
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with initial and boundary conditions
b?f =1, u} =maz(l —e*,0), withu) =0, anduf,, =0, for 0 <1 < L+1(5.3.28)

The above scheme can be represented in the following tridiagonal matrix system

A'U! = pU", for n = 1, (5.3.29)
and
AU = o, U 4 it U for n > 2, (5.3.30)
where
11 1L - A 0
R R 0
& 1 2L 1y & f-b 0
An - P . . . . . )
0 &N—S b N
0 a "t b
and
n n n 7 T
U = (uf,uf, b} ) . (5.3.31)

5.4 Analysis of the numerical method

In this section, we present theoretical results on the positivity and non-increasing spa-
tial monotonicity properties of the numerical solution as well as those of the moving
boundary which then establish the stability results. To begin, we show that the coef-
ficients a, b, and ¢ satisfy the two conditions in lemma [5.4.1 below.
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5.4.1 Positivity of the solution and boundary conditions

Lemma 5.4.1. The positivity conditions for the coefficients a, b, and ¢ in the schemes

(5.3.8) and (5.3.9), with regards to descritization stepsizes h and k are

Cond. 1. 3%2 > |r — 0|, for any h > 0, and

—a
Cond. 2. k < (Tl_o‘r — %F(C(Flfg)j) .

Proof. From equation ([5.3.14)), the non-negativity of a, implies

clw, b1,
rre vl et 201
_ =
= 'm (O-uUT QQTM),
_ Y
= 1 ((f Wy QHT;L)
1( )

AL )
= ﬁ((j}j—:‘){i (02 & <(7- 5 g)) S0, (541)

therefore the positivity condition for coefficient a is that

302
5 >r — 9, for any h > 0, (5.4.2)

whereas for b, we have

rl-o o> T(1+ )
1—k°T(2 — —_ | >
(2-9) (F(Q T (T—ﬂa) =
2T(1 + a)?
1> ke ey 2T 4.
= (T " 2h(T—7)a> (54:3)
Therefore the positivity condition for b is that
T+ a)?\ “
k< 1oy 7 ZA2TA) 4.4
—(T " 2h(T—r)a> ’ (5.44)
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and the positivity of ¢ follows directly from (5.3.14)) when

302
- <r—4¢, for any h > 0. (5.4.5)

To establish results on positivity of the numerical solution u;' and the moving
boundary b", we propose lemma [5.4.2 and its proof together with other subsequent

results therein leads to the desired positivity results.

Lemma 5.4.2. Let {uj,b}} be the numerical solution to the scheme ((5.3.22)-(5.3.26))
for the American put option problem in (5.2.9) and let 1, be defined as in (5.3.21)).
Then from lemma(5.4.1, for any h->0-we-obtain-thal

1). For every fized n,

0 <k, Hi. (5.4.6)

2). up > upy, forl =0, Lin'= 0y -5 0N\ 1
3). u} >0 forl=0,---,L—1;n=0,--- ,N — 1.

Proof. Given n = 0, then from initial conditions in (5.3.28), we have ) > 0 and b} > 0,
and from (5.3.19), (5.3.21)), (5.3.27) and Cond.1. of lemma [5.4.1, we obtain

0 <= ¢ <1, (5.4.7)
Y
since
1+ 2
lim & = lim & <—UT> — 1. (5.4.8)
=0y b0k \ 1+ h4 2
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Note that, from ((5.3.22))-(5.3.24)) and (5.4.7) we have

0 < by =g} <1, (5.4.9)
uy =1—1y >0, (5.4.10)
1&:(—71)}:(—7%:{—7%:0, (5.4.11)

and from (5.3.25) and (5.3.28) we have u; >0 for all j =2,--- | L.

Now

RS = i e e iy )
(s — 1g) /20 |+ b5 ’

¢ tila+0/2h)u}

f\/b} !
hod-h2(1/2.— 2
— N Rt 02— 1/o") , (5.4.12)
1/24% h(3/4 + r262) 4+ O(h?))
which implies 0 < ¢; < 1.
To show that u3 = 0, we consider ((5.3.26)) for n = 2 and [ = 2, which give
1
a*ui + bus + cuy = Z pud + Bous = 0,
j=1
which implies
bu; = —a*(uz — u3) = 0. (5.4.13)

Since a? and b are positive we have u2 = 0, hence
2 )
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Let n > 2 and by induction hypothesis, we assume the conclusions holds true for

n — 1, such that

0<t, 1 <1, w™'>0, u'> u}ﬂ:ll.

Now let us define

h? ug — ub
pn—/i(l—ir;r)—l— 02h 2 — qu — bul — cul,

and

uly —ull iy
. = TR TN
d 5 +/£<+h—|—2>bf/

which yields

(5.4.14)

(5.4.15)

(5.4.16)

When [ = 2, combining thé Taylor expansion of (5.3.14) with ((5.4.15)) coupled with
the value matching and smooth pasting conditions ((5.2.11]) and ([5.2.12))), we obtain

. (02 +2rh* (24 2h + h?)
o 2

b}‘) +O(hY).

Using (5.3.16)), (5.3.18) and (5.4.17)) in (5.4.15)) we obtain

0% +rh? 1 —2ha .
e = (Y 0 (1529 iy

o

N 1 —2hbk — 2hek\ (2 +2h+ B2\ ,
2h 2 P

and

2ho? * 2h 2h 2

24 2rh?) b -1 2h — 1Y\ [2+2 2
dn:/i(a—l—r) i +(h ><+h+h)/€b,}.
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To show the positivity of the solution {u"} and consequently that of 1, as well
as it’s boundedness, it suffices to show that, the coefficients a” and ¢"” in (5.3.27)) are
positive.

The coefficients are positive because

b — b 1— 1 -1 1— 1,
f f —a+ ¢n_1:a+¢n1 . Y1

G o T oh bt 2hiby

(5.4.20)

and by induction assumption 0 < ¢, <1, then 0 < 1 — %,,_; < 0, we obtain

pr— pnt 11—
~n / f n—1
= - — e ——— > 0. 5.4.21
T T (5.4.21)
Similarly, for ¢* we have
-n o b?‘ I b}l;l _ 1 B /(/)n»l

c"=c Zlc >0, (5.4.22)

Sherll 1H " 1124

therefore

b 511

Moreover, the solution {u]'} is an increasing function of [ since a put option become
worthless as it approach maturity.

The following theorem follows from the results above

Theorem 5.4.3. Under the assumptions of lemma|5.4.2, the scheme ([5.3.22))-(5.3.26)

guarantees the following properties about the free boundary condition and the numerical

solution
. monotonicity and positivity of b}, n =10,--- |, N;
ii. monotonicity and positivity of the solution u" = (uf,--- ,u}’) forn=0,---,N.
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5.4.2 Stability and consistency analysis

In this section, we study the stability and consistency properties of the scheme ([5.3.22)-
(15.3.26]).

Numerical stability

We note that

Definition 5.4.4. The numerical scheme (5.3.22))-(5.3.26) with initial and boundary
conditions (5.2.10)) is said to be ||| stable in the fived domain [0, x.] x [0,T], if for
every partition with k = 1/N, h =4f/L-and<{(L+L)h= 1,

]| < M, 0<n <N, (5.4.23)

where |.||, is the supremum norm. and M _some constant independent of h, k and N.

Theorem 5.4.5. Under assumptions of lemma |5.4.2, the:numerical scheme ([5.3.22))-
(5.3.26)) for solving the tfBS PDE (H.2.9) is |]| _sstable:

Proof. Since for each fixed n, the sequence of solutions ;' is non-increasing with

respect to [, then according to the boundary condition (5.3.23) and based on the
positivity results of b} established under lemma5.4.1, we get

[u| (o =ug =10 <1, 0<n <N, (5.4.24)

therefore the numerical scheme ([5.3.22))-(5.3.26) is ||.|| . -stable.

Consistency of the numerical schemes

To analyze for numerical consistency of a numerical scheme to a partial differential
equation, one look at how well the numerical solution approximate the exact theoretical

solution as the discretization stepsizes approach zero ([86]). In our case however, on top
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of matching the behaviour of the numerical scheme (5.3.25))-(5.3.26)) to the tfBS PDE

(5.2.9), we also extend the approach to the moving boundary condition ((5.2.11))-(/5.2.12))
with its numerical scheme (5.3.20).

To assess the numerical consistency of the scheme ((5.3.25))-(5.3.26|) we first define
u = u(xy, 7,) and ZA);@L = bs(7,) as the exact solutions to the tfBS PDE (5.2.9) and
moving boundary at time 7, respectively. As follow, redefine the scheme to

S(U?, bn = Zﬁ] n—j+1 ) _0, (Tu? _ ,uul—"_—l 2_hul—1>

1 o (W — 2u Uy
+WT§U ( 72

kb 2h : o
The scheme ([5.4.25)) is consistent \with equation (|5.4.26|) below

9%u u 1 ,0%u b;ou
F(U,bf) = % = 97— (ru v /,Lé;> + WT§U —(;)_’[; _ E% O, (5426)

if the local truncation error is given by

Tﬁ(al,z}’;) — S(al,iyy)—F(al,z};)

0%u upy, — up ou
- uy'” Jt_ T N_Z " _ 9 Bt S e e
pa Z s (u ) ore ( 2h &E)

Lo (il —2u +ugty 82“)

+WT§U h? Ox?
1 b — b?_l up'yy — Ul du
—— b — 4.2
bf<< K on oz ) (5.4.27)
such that
hlggoTl (1, b ¥) =0. (5.4.28)

Suppose u(zx, 7) is a-differentiable up to order 2a (0 < a < 1) in time, and differ-
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entiable up to order four in space then, applying the generalised Taylor expansion of

Tl”(ﬁ,l;?) about (zy,7,) yield

N 1
TP (b)) = kRP(L) = 0,0k’ R} (2) + w50 WP RY(3) + le”(él)%(xl, )
1 db
+h?RM2)——=L(7,) — kh>R}(4)R}(2), (5.4.29)
b;} dr
where
R?(D = @gjzzx%xlﬂ—n)’ R?@) = é%(l’l,ﬂz), (5 4 30>
. 27 . M
RY(3) = 00 o ), _Bptd)= k- 2 ().

From ([5.4.29)-(j5.4.30) we observe that the local truncation error of the numerical

scheme ((5.3.25)-(5.3.26)) for the tfBSIPDE (5.2.9) is of order O(k) in time and O(h?)

in space.
To complete the consistency analysis of the solution of the free boundary, we rewrite

the boundary conditions ([5.2.11))=(5.2.12)) and! (3.3:14)) in' the following form

ov

Fi(ub) = 200.7) + by(r) =0,
Fy(u,bf) = w(0,7)+bs(7) —1=0,

F3(u,bp) = 12 a—2(0 )— 6 5+0—2 be(r)+6.7r=0 (5.4.31)
3(U, Oy = 2aw78x2u , T T B AT =V, X

and their respective numerical approximations are as follow

u —u”
Si(uby) = — =+ =0,

So(u,by) = wug +bf—1=0,
1 5, uf—2uf+u?,y 9( 2

Ss(u,by) = 50 wr 72 J+ %) b} +0r=0. (5.4.32)
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Using Taylor expansion it is trivial to show that

Tl(u, bf) = Sl(u, bf) — Fl(u, bf) = 0,
Ty(u,by) = Sy(u,by) = Fy(u,by) = O(h?),
T5(u,bf) = Ss(u,bp) — F3(u,by) = (’)(hQ). (5.4.33)

therefore the local truncation error for the boundary condition is of order O(h?) in

space. The above observations suffice as proof to the following results.

Theorem 5.4.6. Suppose the solution u(x, ) to the tfBS-PDE ([5.2.9) with initial and

boundary conditions (5.2.10)) -(5:2:14)“is - differentiable-up to order 2 in time as well

as differentiable up to order fouwr-in-space~then; the-numerical solution obtained via

the scheme(5.3.22)-(5.3.26)) is| consistent with the tfBS-PDE (5.2.9) with initial and

boundary conditions (5.2.10)-(b.2.14)). therefare from the Lax equivalence theorem, the

scheme converges and is second-order-accurate in space as well as first-order accurate
m time.
5.5 Numerical experiments

Example 5.5.1. Consider an American put option with the following market param-

eters 0 = 0.02&0.2, r =0.10, 0 = 0.02, and K = 150.

Graphical results are presented in the following figures.
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Figure 5.5.1: American put option maturity payoffs for o = 0.5 and o« = 0.9 at different
dividend yields.
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Figure 5.5.2: American put option general payoffs for o = 0.5 and a = 0.9 at different
dividend yields.

Results from fig. through to fig. suggest that the approach is more
effective for larger values of o (a > 0.5). This is not surprising because o > 0.5
represent the case when the underlying stock increments are persistently positively

correlated.
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Figure 5.5.3: American put option exercise boundaries for a« = 0.5 and a = 0.9 at
different dividend yields.

Figure [5.5.3 above show the early exercise boundaries for the four considered com-
binations of o and 9. It is evident from the results that, the option holder must keep
track of specific points in time and for a specific price of the stock to maximise the
benefit of holding these specific stock options. Tabular results are presented in the

following tables.
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Table 5.5.1: Maximum absolute errors for example |5.5.1 with » = 0.10 and 6 = 0.02.

a | N=10

N =20

N =40

N =80

N =160

N =320

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

4.6360e-02
4.7227e-02
4.7745e-02
4.8015e-02
4.8093e-02
4.7972e-02
4.7591e-02
4.6903e-02
4.5976e-02
4.5000e-02

2.3559e-02
2.4000e-02
2.4263e-02
2.4400e-02
2.4440e-02
2.4378e-02
2.4184e-02
2.3835¢-02
2.3364e-02
2.2838e-02

1.1972e-02
1.2196e-02
1.2330e-02
1.2399¢-02
1.2420e-02
1.2388e-02
1.2290e-02
1.2112e-02
1.1873e-02
1.1621e-02

9.9859¢-03
6.0979e-03
6.1648¢-03
6.1997¢-03
6.2098e-03
6.1941e-03
6.1449e-03
6.0561e-03
5.9363e-03
5.8104e-03

2.9929e-03
3.0490e-03
3.0824e-03
3.0999¢-03
3.1049¢-03
3.0971e-03
3.0724e-03
3.0280e-03
2.9682¢-03
2.9052e-03

1.4965¢-03
1.5245e-03
1.5412¢-03
1.5499¢-03
1.5524e-03
1.5485e-03
1.5362¢-03
1.5140e-03
1.4841e-03
1.4526e-03

Table 5.5.2: Convergence rates-for-example |5.5.1 with » = 0.10 and 6 = 0.02.

a [N=10 [N=20" V=40 V=80 N =160

0.1] 0.98 0.98 1.00 1.00 1.00
0.2 ] 0.98 0.98 1.00 1.00 1.00
0.3 ] 0.98 0.98 1.00 1.00 1.00
041 0.98 0.98 1.00 1.00 1.00
0.5] 0.98 0:98 1-00 1:00 1.00
0.6 | 0.98 0.98 1.00 1.00 1.00
0.7 0.98 0.98 1.00 1.00 1.00
0.8 0.98 0.98 1.00 1.00 1.00
0.9] 0.98 0.98 1.00 1.00 1.00
1.0 | 0.98 0.98 1.00 1.00 1.00

Table 5.5.3: Maximum absolute errors for example |5.5.1 with » = 0.10 and 6 = 0.2.

a | N=10

N =20

N =40

N =80

N =160

N = 320

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

4.6168e-02
4.6826e-02
4.7119e-02
4.7151e-02
4.7002e-02
4.6728e-02
4.6370e-02
4.5954e-02
4.5496e-02
4.5000e-02

2.3471e-02
2.3806e-02
2.3924e-02
2.3951e-02
2.3865e-02
2.3726e-02
2.3564e-02
2.3323e-02
2.3108e-02
2.2838e-02

1.1922¢-02
1.2092e-02
1.2168e-02
1.2176e-02
1.2138e-02
1.2067e-02
1.1975e-02
1.1867e-02
1.1749e-02
1.1621e-02

9.9611e-03
6.0462e-03
6.0839¢-03
6.0881e-03
6.0688¢-03
6.0335e-03
5.9873e-03
9.9336e-03
5.8744e-03
5.8104e-03

2.9806e-03
3.0231e-03
3.0420e-03
3.0440e-03
3.0344¢-03
3.0167e-03
2.9936e-03
2.9668e-03
2.9372e-03
2.9052¢-03

1.4903e-03
1.5115e-03
1.5210e-03
1.5220e-03
1.5172e-03
1.5084e-03
1.4968e-03
1.4834e-03
1.4686e-03
1.4526e-03
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Table 5.5.4: Convergence rates for example [5.5.1 with » = 0.10 and 6 = 0.2.

o [N=10 N=20 N=40 N=80 N- 160

0.1 ] 0.98 0.98 1.00 1.00 1.00
0.2 ] 0.98 0.98 1.00 1.00 1.00
03] 0.98 0.98 1.00 1.00 1.00
0.4 1] 0.98 0.98 1.00 1.00 1.00
0.5] 0.98 0.98 1.00 1.00 1.00
0.6 | 0.98 0.98 1.00 1.00 1.00
0.7 0.98 0.98 1.00 1.00 1.00
0.8 ] 0.98 0.98 1.00 1.00 1.00
09 1] 0.98 0.98 1.00 1.00 1.00
1.0 0.98 0.98 1.00 1.00 1.00

To illustrate the order of convergence in the space direction, we fixed N = 30 for

varying N and obtain the following results.

Table 5.5.5: Maximum absolute errors for Example [5.5.1 with » = 0.10 and § = 0.2.
for a fixed N.

a | M=230

W= 0

A = 1206

M = 240

M = 480

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

7.6512¢-02
6.7988e-03
6.2147e-02
5.7443e-02
5.3746e-02
4.0893e-02
4.0773e-02
4.0318e-02
4.0499e-02
4.0328e-02

1.9962e-02
1:8944¢=02
1.7191e-02
1.4701e-02
1.4566e-02
1.0948e-02
1.0880e-02
1.0498e-02
1.0338e-02
1.0295e-02

5.1892¢-03
5.0170e-03
4.3368e-03
4.0358e-03
2.7993e-03
2.6167e-03
2.4898e-03
2.3779e-03
2.4355e-03
2.4246e-03

1.3597e-03
1:2673e-03
1.0940e-03
1.0137e-03
7.0810e-04
6.7192e-04
6.1752e-04
6.0115e-04
6.0039e-04
5.9881e-04

3.4953e-04
3.1784e-04
2.7652¢-04
2.5926e-04
1.7202e-04
1.6889e-04
1.5688e-04
1.5576e-04
1.5495e-04
1.5047e-04
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Table 5.5.6: Convergence rates for Example [5.5.1 with » = 0.10 and ¢ = 0.2 for a fixed
N.

a [M=30 M=60 M=120 M =240

0.1 1.95 1.88 1.99 1.98
0.2 1.96 1.88 1.99 1.98
0.3 1.96 1.98 1.99 1.98
0.4 1.96 1.98 1.99 1.98
0.5 1.97 1.98 1.99 1.98
0.6 1.97 1.98 1.99 1.98
0.7 1.97 1.98 1.99 1.98
0.8 1.97 1.98 1.99 1.98
0.9 1.97 1.98 1.99 1.98
1.0 1.97 1.98 1.99 1.98

The maximum norm errors presented in table{5.5.1.-table[5.5.3 and table[5.5.5 above

indicates that, the numerical method converges for all e values. These observations
validates our theoretical observations that, the method is indeed convergent. It can
also be observed from table [5:5:2; table[5.5.4 and table[5.5:6 above, that, in all possible
states of the world (parameterisation), the method converges up to first-order in time

as well as second order in space.

5.6 Summary and discussions

Over the past decade, the financial literature has proposed a multitude of different
models to capture the dynamics of financial assets. The use of fractal processes and
models based on these processes has proven to be an excellent tool that strikes the
right balance between capturing the desired properties of stock price evolution and
mathematical tractability. Though the mathematical complexity of these models may
pose some serious challenges in terms of designing analytical solutions, in this chapter
we demonstrate that numerical techniques can save the day when using the approach
to price nonlinear American option problems.

In this chapter, a front-fixing method for American put option was considered. Our

results indicate that the numerical scheme is stable under the stability and positivity
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conditions presented in Lemma [5.4.1 and Lemma [5.4.2. In addition to positivity and
monotonicity of solution, we also demonstrate and confirm via numerical results in
fig. [0.5.3 that the associated free boundaries are also positive and monotone. Over all
our results suggest that the approach is very robust, effective and efficient for pricing
American put option for when the order of the fractional derivative o > 0.5. This is
not surprising because a > 0.5 represent the case when increments of the underlying
stock process are persistently and positively correlated. This in essence justify our
prior assumption that, indeed stock markets have memory.

In the next chapter, we present an investigation on the pricing of double barrier
options under a time-fractional Black-Seholessetup.. Furthermore, a corresponding high
order numerical method (both in-time-and space) to the resultant fractional model is

proposed.
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Chapter 6

A Robust Numerical Method for a
Time Fractional-Black=Scholes
Equation for Pricing|Double Barrier

Options

This chapter presents an investigation on the numerical pricing of double barrier op-
tions. Herein we focus on those options written on underlying asset(s) whose dynamics
are governed by a non-standard fractal stochastic processes. The resultant model is of
a time fractional nature referred to as a time-fractional Black-Scholes equation. We
extend the concept of double barrier options pricing in a time-fractional Black-Scholes
scope. A robust numerical scheme is implemented and its’ stability and convergence
properties are studied. Results suggest that, the numerical method is uncondition-
ally stable and and converges with order O(h* + k?). To substantiate the theoretical
findings, we further present some numerical experiments on pricing of double knock-in

barrier option problems.

134
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6.1 Introduction

After the discovery of fractal features of financial markets, alot of efforts has been
dedicated to finding accurate and stable numerical methods for solving the already
involved asset pricing fractional differential equations. In the chapter we suggest a
numerical scheme for solving a double barrier option pricing governed by time-fractional
Black-Scholes equation. The time-fractional derivative in the model helps in capturing
the time-decaying effects of the underlying asset and also in capturing the global nature
of the change in underlying asset price as well as the involved barriers.

The underlying motivation for pricing double barrier options via the time-fractional
Black-Scholes framework is justified by the evidence oflong memory” in the time
direction observed in many agsets time series, see for example (|84, 57, 59]). Its has
been substantiated, see for example [25]; that the long decay in the underlying asset
in the time direction does not deteriorate the no-arbitrage constraints of asset pricing
theory, which may invalidate herein.

The combination of time-fractional Black-Scholes and'double barriers conditions in
this chapter, adds on an additional degrees of complexity in the design of solution(s)
to the model. Albeit the complexity involved, we designed a new robust numerical
scheme for solving time-fractional Black-Scholes model for pricing discrete-monitored
double-barrier European options. This chapter therefore present an efficient numerical
scheme for solving a time-fractional Black-Scholes model for pricing discrete double
barrier option problems.

The rest of this chapter is organised as follow, Section present the model under
consideration, while Section present the detailed construction of the numerical
scheme. A comprehensive theoretical analysis of the method in terms of convergence
and stability is presented in Section Two practical examples on the use of the
approach for pricing double knock-in European put stock options can be found in
Section [6.5] And lastly, Section present some concluding remarks and set the scope

for future research.
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6.2 Model

To the best of our knowledge there is limited number of literature on the subject of high
order solution schemes for barrier options pricing time-fractional Black-Scholes PDEs
as the topic is still quite relatively new and limited to vanilla option problems. In this
chapter, we will consider the following time fractional Black-Scholes (t{BS)-PDE for

pricing double barrier put options

3\

o SO tl-o 2T (1+a) 5252
G = (rv—(r—0)%¢) roma) - (2 = sz 0 <a <l

\ (6.2.1)

Vs

whereby B; and B, are the lower and upper knock-out barriers with R; and R,
denoting the respective rebates paid 'when the corréesponding barriers are hit, while r
represent the risk-free interest rate and o the dividend yield paid by the underlying
stock.

Using variable transform (7 =T —{) time to maturity, we obtain the following

initial value problem (IVP)

e’ o T(1 2Q2 92
Ta_l(T_T)l_aav_< rv 0% 1+ @)o?5% 0%v _

o o « T — -«
gra \T2—a) 799 aSa)( L T

which simplifies to

0™ rv v 1o - D14+ a)0®5? 0%
_ —(r — R — @ = 2.2
(r(z s RGO a)as) Tt e 0 (622

0<a<l,
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with initial and boundary conditions

S € (BlaBu)7
T € (T,0), (6.2.3)
U(BZ,T) :Rl, U(Bu,T) :Ru

Considering the following change of variables z = In(S) and v(z,7) = € v(S,T)

and without loss of notations, after simplification we obtain

« (1 2.2 92
0%v(x, T) _ ro(z,7) (r — O) ov(x,T) 1o T(l+a)o2® 0 v’ (6.2.4)
ore ['2—-a) ['(2 — a)ox 2 052
0<a<l,
with the following initial and barrier conditions
v(z,0) = max(K|— %] 0)310 <ln < 7}
(6.2.5)

v (by, T) il i e g D, LoDy, -

6.3 Numerical scheme

This section present the construction of the involved numerical scheme in solving ((6.2.4)
subject to initial and barrier conditions ((6.2.5).

6.3.1 Model discretization

Let L and N be positive integers and define h = (b, — b;)/L and k = T/N the
space and time step-sizes respectively. Denote x; = b, + lh; for [ = 0,1,2,..., L and
Tn, = nk; n=0,1,2,..., N, such that z; € [b,b,] and 7,, € [0,T]. Furthermore, define

vf' = v(xy, 7,) as the solution at the grid point (z;,7,) = (b + lh, nk).
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Temporal discretization

Let us define

Af = Ago(a, m) = L0 T) _k:(x””—” _ U _k:l , (6.3.1)

and discretize the time-fractional derivative in (6.2.4) at the grid point (z;,7,.1) by

the following quadrature formula

= F(21——a) ;%At?}(fﬁl; g O(k?), (6.3.2)
where
oj=GFI) "= =012 n, (6.3.3)

such that, 1 =09 > 01 > 02 31+ > = 0.as j n.

Spatial discretization

We approximate the spatial derivatives in (6.2.4) as follow

Ov(@1, Tusr) _ (@11, Torr) = 0(@-1, Torr) 12 O0(@n, Tan) oY), (6.3.4)

ox 2h 6 ox3
and
62U($17Tn+1) _ U(Il+1,Tn+1) - QU(-Tl,TnH) + U(ﬂfl—l,Tnﬂ) _ h_234v(33l,7n+1)
0x? h? 12 Oxt
+O(hY). (6.3.5)
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6.3.2 The full scheme

To obtain the full numerical scheme we substitute (6.3.2), (6.3.4) and (6.3.5) into (6.2.4)

we obtain the following scheme

1 - ; Ti-e
- A n—j+1 _ n+l Aay n+ly
F(Q . CE) jz_;g] tVy (TUZ q Y ) F(Q _ Oé)
—w(oc)Amfo — R?H
(1+ a)o?a?

g=r—09n>0, wla)= 5 , (6.3.6)
which after some algebraic manipulations can be simplified into
n+1 :
> i = G D = + Ry (6.3.7)
j=1

where by a = —kaq717:2_w/, b= kaﬁZ%Q—‘“/ clg —kaqu‘;{“’/ -1, W =kT2—-a)w(a),
and Y; =05 — 0j41-

The final scheme is explicitly given by
vl + -+ Op1v) + o) = av bt el (6.3.8)

where the left hand side of the scheme (6.3.8) capture the memory effects.

R;‘H represent the remainder after truncation which is given by

. h2 rl-a 832}n+1 84vn+1
Rl+1:ﬁ(r(2—a) &;3 + w(a) 8;;4 )+O(h4+k:2), (6.3.9)
therefore,
|R}H =C (W', K?) . (6.3.10)

For some constant C' independent of h and k. The proof to this result follows in the

next section.
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6.4 Analysis of the numerical method

In this section we present the stability and convergence properties of the proposed

difference scheme ([6.3.8).

6.4.1 Stability analysis

The stability properties of the proposed scheme (6.3.8) will be discussed using the

concept of Fourier analysis. Suppose 9" is an approximate solution to the scheme

(6.3.8) such that v} — 0] = ¢ for  =0,1,--- , L, then the following theorem holds.

Theorem 6.4.1. The difference-scheme-in (6:3.8)-is unconditional stable

Proof: Substituting the roundoff error € into ((6:3.8) we obtain

n+1

) il n1 n+1 n+1
E ©j—16 =llae T 4106 cel
7j=1

such that € = €} = 0.

Let us define the grid function as follow,

n

") €/, when xl—%<x§xl—|—%, l=1,2,...,L—1,
€'(x) =
0, when b <z<b+2%orb,—%<a<b,+2

which can be expanded in terms of the following Fourier series representation
oo
en(ZL’) — Z Qn<j)6127rj$/bu—bl’ n=12, .., N,
j=1

where
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Let € = (e, €5, -+ , €% )T and, define it’s norm

1/2

e, = (Zm i >/ -([iewra) (6.45)

Then apply the Parseval equality to obtain

bu—b; 00
[ ear ae= 3 e P (646
j=—00
to obtain
9 by by 3 >}
A e e el (6.47)
J=—00

Therefore, the solution to (6.4.1) takes the following form
€& = 0,6, (6.4.8)

for p := 2mj/b, — b and i ='\/=1. Substituting the éxpression for €" into (6.4.1),

after simplifying we obtain
(900n + 4+ Pu_101 + Pnoo) €7 = €Po, 1 (ae”P" + e +b) | (6.4.9)
and

P00n + F+ Pno101 + 0n00 = Ot (a (e 4+ +b—1),  (6.4.10)

since By = 1 and a = ¢ — fy.

From the Fourier series representation of cos Sh we obtain

©o0n + -+ Pn101 + P00 = Ont1(acosBh+b—1). (6.4.11)
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Now we have

Proposition 6.4.2. Suppose o,.1 satisfy (6.4.11)), then |oni1| < |oo| for all n =
0,1,2,--- N

Proof: Let n = 0, then from (6.4.11]) we have
o1 (acos Sh+b—1)| = |eoool, (6.4.12)

which implies that

Lo00
o Ph——b—++
¥0
|a'Gos Bh b= 1
1115
lajcos Bh/+ bt 1
;

e B gl =P <),

1
< ool ( 1). (6.4.13)

1 lalcosiB It B 1| 3

|Ql| =

| |QO‘7

||QO’7

We therefore have,

lo1] < ool -
For n = 1, we suppose |g,| < |oo| for all n = 1,2,--- | N, and show that the same

is true for | 0,1 1| < |00l for all n.
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| | = Z;l;l Pj—10n—j+1
Ont1 acosfBh+b—11
1 n+1
lacos Bh+ b — 1| ]21 [Pi-16n-s1l
n+1 1
< —1Yn—j s L < ]-7
- ; [Pi-10n-j+1] ( lacos Bh +b— 1|)
= wolon|l + w1 lon1|+ -+ on1lor] + ©nlool,
< o lool + @1 loo] + - 4 ©n1loo] + on oo,
= (po ot |
n+1
= Z P00l
Jj=1
nt1
= ool ( N all: 1) . (6.4.14)
=1

It therefore follow that,

g 4 <HEw:

6.4.2 Convergence analysis

In this subsection we prove that the proposed scheme ((6.3.8) converges with the spatial

accuracy of fourth order.

The analysis will follow the concept of Fourier analysis.

Let R?“ denote the truncation error of involved in the approximation at grid point

(1, Tni1), then from (6.3.9) we obtain the following theorem

Theorem 6.4.3. The difference scheme ([6.3.8) is convergent and converges with order

O(k* + h*).

Let &' = v(xy,t,) — v} denote the approximation error at grid point (t,,z;), such

that & = 0, forn = 1,2,--- ,N and & = 0, forl = 0,1,--
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into the scheme ([6.3.8) we obtain

n+1
S & A R = agpt ot 4 i, (6.4.15)
j=1

Similar to stability analysis, we define the following grid functions

" when z,—f<ax<S+2% 1=12...,L-1,
enisy =4 ¢ SR (6.4.16)

0, when 0§x<% or xmax_g<5§xmax+%a

Ccr W i e e et | — 1.2 ... [ — 1
RYz)=¢ " . 2 T T (6.4.17)
0, when “O-<¥'< % e A % << Tyaw + %7

which imply £"(z) and C}" have the following Fourier series representations

£"(z) = Wimel Rt g L2 ., N, (6.4.18)
j 3
R'(x) =Y wn(f)e?™*/mmars p=1,2,., N, (6.4.19)
j=1
where
. 1 e n —i2wjx/x
ma(j) = M (x)e eI Emar s p=1,2, ..., N. (6.4.20)
Tmax 0
. 1 e n —i2mjx/x
vn(j) = R"(x)e =¥/ @mardy: n =1,2,...,N. (6.4.21)
xmax 0

Let " = (&p, &0, -+, )T and R" = (R}, Ry, .-+, R? )T, and let us define their
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norms as follow

L—1 1/2 Tmax 1/2
& —(Zw \2> —(/ ' (x) Fdx) | (6.4.22
2 1=1 0
L—1 1/2 Tmax 1/2
HR” :(Zm}zm?) :(/ | R () |2dx) , (6.4.23)
2 =1 0

and, apply the following Parseval equalities

Smaz S
|16 == i 2 N, (6424
0 ete—
Smax =
/ | R(S)? JldS =Dy TH| vall) B nle= 1,2, N, (6.4.25)
0 j=—00
to obtain
2 [e%e]
&l =D IG5 n=12.N, (6.4.26)
2 j=—o00
2 ']
’R” = w7 n=12..,N (6.4.27)
2 j=—00
Now let us define
& =1, and R" =, (6.4.28)
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where § = 27j/Sa: and ¢ = v/—1, and use these expressions in ((6.4.15)) such that

n+1

iBlh iB(1—1)h iBlh iB(1+1)h
g @i 1Tnjr1€™™ = ar, PO L pr Py oer e PUTDR
7=1

—Up et (6.4.29)

which implies

n+1
(Z goj_lTn_j+1> Pl — eiBZthH ((ae_wh + cePh 4 b) — I/n+1) . (6.4.30)
j=1

simpifying into
n+1

Z wi—1Tarilld | 7l (ados SAH 8H 1) — vt (6.4.31)
j=1

Therefore,

. o 27;1 P51 Tr 1144 U (6.4.32)
e (acosBh+b—1) o

Now we have

Proposition 6.4.4. Suppose 7, forn =0,1,--- | N is a solution to (6.4.32)), then there

exists some positive constant C' such that |1,,| < Clwy| for all n.

Proof. 1t is trivial to show that for n = 0, from (|6.4.32)) we have

©PoTo + 11
<. 6.4.33
(acos Bh+b—1) =" ( )

|71| =

Suppose |7,| < Col|vy|, for n = 1,2,--- | N, for some constant C' independent of h
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and k. Then,

Z?;rll Pj-1Tn+1—j + Vi1
(acosBh+b—1) ’

IN

|Tn+1|

n+1
1

; [(acos Bh+b—1)] (@51 [Tnjia | + [Pnga ),

IN

n+1

Z Cj-1(0j-1 [Ta—jr1] + [Vntal),

j=1

n+1

Zdj_loj_l |Tn_j+1| + Cn+1 |V1| )

j=1

n+1

203;10_7‘—1 |V1| =i 1V1| )

j=1

= 00Co|n1| + ap@alvrl F a2Cs il T t0,.Cn (1] + Crpr |11 ]
n+1

< CO ol + ub, (@)= lmax| {3l
j=1

IA

IN

IN

0y <ns1

. n+1
= C(Y_o))lml
j=0
= Clnl. (6.4.34)

We can therefore conclude that the scheme ((6.3.8) is convergent and this complete
the proof to Theorem (6.4.3.

6.5 Numerical experiments

In this section, we present two double barrier knock-in put options examples.

Example 6.5.1. Consider equation subject to conditions for pricing
double knock-in put option with the following parameters: K = 80, r = 0.05, ¢ =
001, T =1, Spax = 120, L = 100, N = 50,6 = 0.025, and 0.075, a =
0.5, 0.7, 0.9, 1.0, with lower barrier located at B; = 6 and upper barrier located
at B, =110 .
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To check for the effects of the change in some key option parameters on the efficiency
of the model, as well as the numerical method herein, we consider a second example
with two different set of dividend yields 9, two different sets of barriers, same interest

rate r, same strike price, same maturity time and same set of « values.

Example 6.5.2. Consider equation (|6.2.1) subject to conditions for pricing
double knock-in put options with the following parameters: K = 80, r = 0.05, 0 =
0.015, T =1, Spax = 120, L = 100, N = 100,06 = 0.045 and 0.10, o =
0.5, 0.7, 0.9, 1.0, with lower barrier located at B; = 10 and upper barrier located at
B, = 130.

Option maturity payoff curves-for the two considered examples ( considered exam-

ples (Example [6.5.1 and Examiple [6:5.2; above) are presented in figs. [6.5.1 and [6.5.2

below.
70 Double barrier put payoff when § =0.025 =0 Double barrier put payoff when 6 = 0.075
2 a=05 o, ° a=05
00 * o =107 45 £l * a=07[q
60 O % v e =094 o N =09
wx, © ——a=10 40F £ ——a=10}4

50 o 35+ 4
@ * [ L o
E’ 401 / Dg_ 0 "o
c b c25f N
g ! g b\
g 30 Sl d \

20f 9 R 1 15}

! F*o
g & or 3 o
10/ '\%g R
[ 8 5r d oo
§ 7 e,
old | | | | "®%0e06000,, ol d | | | oo
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Stock Price Stock Price

Figure 6.5.1: Double barrier put option payoffs for § = 0.025, and 0.075, with
a=0.5,0.7 09, 1.0, and B,=6, B,=110att="T.
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Double barrier put payoff when 4 = 0.045 Double barrier put payoff when § = 0.10
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Figure 6.5.2: Double barrier put option payoffs for § = 0.045, and 0.10, with o =
0.5, 0.7, 0.9, 1.0, and B; = 10, B,=130att =1

The results in figs. |6.5.1 and|6.5.2 are well consistent with those obtained in [103]
which was in terms of a call option. Figures and [6.5.2 indicates that, change in
the dividend yield has an effect on-the option price (premium). A higher dividend yield

(0) yield a lower option premium. This is not strange because, the holder of the option
with a higher dividend yield is compensated more through dividends as compared to
the one with a lower dividend yield.

Moreover, the consider tfBS in give high option price both for the in-the-
money option and for when the underlying asset price (S) is close to the strike price
(K') as compared to the classical BS model (o = 1). This shows that, the t{BS model
is of a power-law nature as compared to the classical BS model.

The tabular results for the two considered examples (Example @ and Exam-
ple @, above) are presented in Tables @ to @ below.
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Table 6.5.1: Maximum absolute errors for Example [6.5.1 with » = 0.05 and § = 0.025.

a |

N =50

N =100

N =200

N =400

N =800

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

7.1212e-03
7.1336e-03
7.3465e-03
7.4609e-03
8.1315e-03
8.4515e-03
9.5333e-03
1.1062e-02
1.2494e-02
1.3815e-02

1.7901e-03
1.8180e-03
1.8383e-03
1.9326e-03
2.0213e-03
2.1032e-03
2.3909e-03
2.5616e-03
3.1452e-03
3.4591e-03

4.4561e-04
4.4711e-04
4.5753e-04
4.8371e-04
5.1493e-04
5.4620e-04
6.1088e-04
6.4925e-04
7.8208e-04
8.7754e-04

1.1525e-04
1.1563e-04
1.1827e-04
1.2239¢-04
1.3000e-04
1.3842e-04
1.5478e-04
1.6449e-04
2.0062¢-04
2.2198e-04

2.9154e-05
2.9250e-05
2.9717e-05
3.0759¢-05
3.2785e-05
3.4915e-05
3.7153e-05
4.1409e-05
5.0548e-05
2.5953e-05

Table 6.5.2: Convergence tates for-Example '6.5.11 with 7 = 0.05 and 0 = 0.025.

o \N:IOO N"=12009TN"=400/TT V = 800

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.91
1.92
193
1093
1.93
1.94
1.94
1.94
1.94
1.94

1.9 1198
1.96 1{98
1.96 1.98
1.96 1.98
YT 1.98
i1y 198
TP 1.98
1.97 1.98
1.97 1.98
1.97 1.98

1.99
1.99
1.99
1.99
1.99
1.99
1.99
1.99
1.99
1.99

Table 6.5.3: Maximum absolute errors for Example |6.5.2 with r

a |

N =100

N =200

N =400

N =800

N = 1600

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

6.5512e-02
5.7988e-03
5.2147e-02
4.7443e-02
4.3746e-02
4.0893e-02
3.8773e-02
3.7318e-02
3.6499¢-02
3.7328e-02

1.6492¢-02
1.4694e-02
1.3191e-02
1.2001e-02
1.1066e-02
1.0344e-02
9.8080e-03
9.4300e-03
9.3328e-03
9.2895¢-03

4.1892¢-03
3.7170e-03
3.3368e-03
3.0358e-03
2.7993e-03
2.6167e-03
2.4898e-03
2.3779e-03
2.4355e-03
2.4246e-03

1.0597e-03
9.4025e-04
8.4408e-04
7.6794e-04
7.0810e-04
6.6192e-04
6.2752¢-04
6.0305e-04
9.9979e-04
5.9803e-04

2.5953e-04
2.3784e-04
2.1352e-04
1.9426e-04
1.7912e-04
1.6544e-04
1.5688e-04
1.4980e-04
1.5745e-04
1.5670e-04
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Table 6.5.4: Convergence rates for Example [6.5.2 with » = 0.05 and 6 = 0.045.

@ \N:200 N =400 N =800 N =1600

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.95 1.98 1.99
1.96 1.98 1.99
1.96 1.98 1.99
1.96 1.98 1.99
1.97 1.98 1.99
1.97 1.98 1.99
1.97 1.98 1.99
1.97 1.98 1.99
1.97 1.98 1.99
1.97 1.98 1.99

1.99
1.99
1.99
2.00
2.00
2.00
2.00
2.00
2.00
2.00

To demonstrate the convergence properties of the scheme in the asset direction, we

fix N = 100 and computer the error for varying M. The results are presented in the

tables below

Table 6.5.5: Maximum absolute-errors-for-Example |6.5.2 with » = 0.05 and 6 = 0.045
when N is fixed.

a |

M =100

M = 200

M = 400

M = 800

M = 1600

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

6.6630e-02
5.8987e-02
5.3146e-02
4.8442e-02
4.4745e-02
4.1892e-02
3.9772e-02
3.8317e-02
3.7498e-02
3.8327e-02

4:16426-03
3.6294e-03
3.3591e-03
3.1629e-03
2.8924e-03
2.7038e-03
2.5636e-03
2.4674e-03
2.4132e-03
2.4680e-03

2.6892¢-04
2.2672e-04
2.3168¢-04
2.1086e-04
1.9124e-04
1.7877e-04
1.6950e-04
1.6314e-04
1.5956e-04
1.6318e-04

1.:6297¢-05
1.4025e-05
1.2638e-05
1.4057e-05
1.2644e-05
1.1820e-05
1.1207¢-05
1.0786e-05
1.0550e-05
1.0789e-05

1.1165e-06
9.0211e-07
7.9527e-07
9.3715e-07
8.3602e-07
7.8149e-07
7.4098e-07
7.1317e-07
6.9752e-07
7.1336e-07
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Table 6.5.6: Convergence rates for Example [6.5.2 with » = 0.05 and 6 = 0.045 when
N is fixed.

o \M:200 M =400 M =800 M = 1600

0.1 3.99 3.68 3.69 3.69
0.2 3.96 3.92 3.99 3.75
0.3 3.96 3.92 3.99 3.75
0.4 3.96 3.92 3.99 3.87
0.5 3.97 3.92 3.99 3.87
0.6 3.97 3.92 3.99 3.88
0.7 3.97 3.92 3.99 3.98
0.8 3.97 3.92 3.99 3.99
0.9 3.97 3.91 3.99 3.99
1.0 3.97 3.91 3.99 3.99

Numerical results herein confirms our theoretical deductions on the stability and
convergence properties of the scheme as presented in Section [6.4.1 and Section |6.4.2
respectively. The scheme is unconditionally stable and converges with order two in

time as well as order four in space.

6.6 Summary and discussions

This chapter considered a double barrier option pricing problem under the time-
fractional Black-Scholes setup. We proposed a robust high order numerical scheme
for solving a double barrier time-fractional Black-Scholes PDE. Two numerical exam-
ples were presented. Results indicates that, the fractional Black-Scholes approach is
a very efficient valuation technique for barrier option as compared to usual/classical
Black-Scholes approach. The barrier option tfBS model is sensitive to dividend pay-
outs, it allocates lower put premiums to higher dividend yield options. This is well
in-line with the theory of no arbitrage, investors who are compensated well in div-
idends should receive prices lower than those of investors with lower dividend yield
options. Moreover, the numerical scheme herein, proves to be well efficient in solving

the involved time-fractional Black-Scholes model.
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On fractionalizing both temporal and spatial derivatives in the classical Black-
Scholes model, Chapter 7| presents a discussion of the design and analysis of a time-

space-fractional Black-Scholes PDE as well as its universal numerical scheme.

http://etd.uwc.ac.za/



Chapter 7

A Universal Finite Difference Scheme
for a Time-Space-Fractional

Black-Scholes Equation

This chapter present a new kind lof universal difference scheme for solving a time-
space fractional B-S models.1 Theotetical analysis of the scheme suggest the scheme is
conditionally stable, convergent, and uniquely solvable. Furthermore, numerical exper-
iments indicates that the universal difference method is valid and efficient for solving
the time-space fractional B-S equation. At the same time, numerical experiments in-
dicates that the time-space fractional B-S equation and the proposed scheme provide

superior results which are consistent with the actual financial market scenarios.

7.1 Introduction

The fractional Black-Scholes (B-S) equations are important mathematical models for
modelling numerous physical phenomenons in science, finance and engineering. How-
ever the study of their numerical solutions has very significant practical applications.

This chapter focus on the numerical aspects of the solution methods to time-space
fractional Black-Scholes partial differential equations (tf{BS-PDE), something that ac-

154
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cording to the best of our knowledge is not extensively documented in literature. We
construct a universal difference scheme in Section [7.2] The discussion herein, focus on
numerically solving a time-space fractional Black-Scholes equation subject to standard
European put option initial and boundary conditions. The existence and uniqueness
of the numerical method, its computational stability and convergence are discussed in
Section And lastly, some numerical examples are discussed in Section [7.4] which
demonstrate the efficiency and robustness of the numerical method in solving time-
space fractional Black-Scholes equations. Concluding remarks, further discussions and

scope for further studies are presented in Section [7.5]

7.1.1 Model

Suppose the stock price S follow the following Ito-Maruyama fractional differential

equation

(dt)”

d°S = (r = OS5 153

AT 5 o Sw(t)(d)?, 0 < a < 1. (7.1.1)
Using the following two fractional identities
1+ a)dS :=d*S (7.1.2)
and
% = ﬁtl—a, 0<a<l, (7.1.3)
it is trivial to show that infact is equivalent to

dS = (r — 8)Sdt + o Sw(t)(dt)*?, 0 < a <1, (7.1.4)

for w(t) a Gaussian white noise, whereas r and § are the risk-free interest rate and

continuous dividend yield respectively.
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If we consider the standard case where the stock price dynamics are governed by
the standard Brownian motion B(t) = [w(t)(dt)"/?, then (7.1.1) and (7.1.4) are gen-
eralizations of a geometric Brownian motion process with B(t) = [ w(t)(dt)*/? as the
governing stochastic process.

Let v = v(S,t) denote the price of a European option such that v(S,t) satisfy the

following assumption

Assumption 7.1.1. Assume the function v(S,t) has a fractional partial derivative
of order oo with respect to t and fractional partial derivatives of order a and 2 with

respect to S for some 0 < a < 1.

Then, the generalized Taylor-series in-terms v(.S;L) Up to remaining error term
yields

1 0w e | |lo*v L) 1 D*

=t o= W A ase W S0y pm

(dS™)?.  (7.1.5)

Using fractional identity ({7.1.3) expressed in terms of S, we re-write (7.1.5) as
I 0w I'e—a)_, 10

= S gy e Y gam1 8 Y jag

it oe Wt rara)” age

F2(2 — Oé) 52(1 2 0>

I'(1+2«) 052«

dv =

+ ——(d*S5)>. (7.1.6)

[to’s lemma on v(S, t) suggest we identify w(#)? with its variance such that w(t)? = 1,

therefore from (|7.1.1) we get
(d*S)? =T (1 + a)*0?S?(dt)~, (7.1.7)

substituting into ((7.1.7) we obtain

(2= a) 5900

0%v 0%v
] _ l—a Qo 3 «
aldv = (_ta +( 5)t S — S + I (1 + )—(1 5 )0' S ESQO‘> (dt) (718)

Using fractional identity (7.1.2), dividing both sides of equation (7.1.7) by (dt)®
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and simplying we obtain the following time-space fractional Black-Scholes partial dif-

ferential equation (tsfBS PDE)

v ( rv 80‘7)) fa _ 31+ a)l%(2 — ) 0%

. - a 2 Q2a
otr  \T(2—a) (r=0)5" 550 Ti+2a) 0> o5

0<a<l,(7.19)

with standard European put options boundary conditions

v(S,t) = max(K — S,0),

v(0,t) = Ke (T, (7.1.10)
limu(5;4)="0,

SO0

where K is the strike price of the option and 7" is the maturity time.
Let v =€, t =T — 7, v(z,t) = € ""u(s, 7) be some change of notations. Without

any loss of notations ([7.1.9) simplify fo

0% I'(l—a) v |, &%
- (1 —2q) AR el ol 0 <1, (7.1.
ore <<V(O‘)F(1 a7 *‘W)) — t(@)0’ 25 ) 7(a), 0< a <1, (7.1.11)

where v(a) = W, k(a) = (r—=6)(T—7)"% and 7(a) = 77T — 7)1,

subject to the following put option boundary conditions

v(z,7) = max(K — €, 0),
v(0,7) = Ke ", (7.1.12)

gl;_)n%v(xm) =0.

7.2 Numerical scheme

Let L and N be positive integers and define h = 1/L and k = 1/N as the space and time
grid size respectively. Define x; = [h; 1 =0,1,2,...,L, and 7, = nk; n =0,1,2,..., N,
such that z; € [Tpmin, Tmas) and 7, € [T,0]. Furthermore, define v} = v(x;, 7,,) as the

solution at the grid point (z;,7,) = (lh, nk).
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The a-derivative in ([7.1.11]) is approximated using the following quadrature formula

ov(xy, 1) K g n—j+l  n—j n
or I(2-a) ; Bt K I'2- a)k’ (r21)

where
BJ' = jl_a - (] - 1)1—047 ] = 1727 s, N, (722)

such that, 1 =06, >y > 03 >--->—0as j —n.

The 6-method for solving is designed by combining the classical explicit and
implicit schemes of the right hand side of using some parameter 6 (0 < 6 <1).
Multiply the explicit scheme by 1 — @ and implicit by ¢ and add them together to

obtain the following scheme after ignoring the truncation errors

0%v(xy, Thy1) - k% & = o
e eE ST
= (1 I 9) (((Lb 45 (7- s 5)(T g ki(TL b 1))1—a)<k<n . 1))1701[(71
+alk(n — 1) (T — k(n + 1))04—1%711 - 2;;;" + vl"_l)

B B UnJrl . 2Un+1 4 Un_Jrl
+a(nk)' (T — nk)*t 2 }22 =l ) (7.2.3)
where
Ul — I'l—a)

K" = (T —k(n+ 1)) L = 2 b= 1,2 N

( (n + )) 2h Y a 7(a)0- Y F(l _ 2@)7 Y ) Y )
and

l=1,2,--- L
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Let RHS be defined as follow

RHS : = (—p(abopsr 4 (r — 6)tng1) — p20n1)00 1 + (14 2002001) 0] + (11 (abon 41
+(r — 0)Un41) — p20n+1)00]"
= (1= 0)(u(abon + (r — 6)vn) + p20n)viyy + (1 = 2p20,(1 = 0)) vy (7.2.4)

Then, (7.2.3) is equivalent to

n—1
= et = RHS + (1= 0)(—p(abon + (r — 6)¢n) + paon)vp 4 + (2'7%)0p" + Bav]
j=2

= (1 = 0)(palabgp=AF="0)n)F120n)0/, 1 + (—2p200(1 — O)v)"

+(1 — 0)(Fprlabor = (Lo h N~ 0, )V} | + B} (7.2.5)

where

©Yj :jlfa _ (] _ 1)17047 BJ :jlfoz oy (J Pt 1)1—a7 j: 1’2’.__ n,

00 = (k(n = 1)) — k(n + 1)), 44, = (k(n — 1)), j = 1.2, n.
This scheme can be simplified into the following simplest form

n+1 n+1 n+l _ n n n
107+ 0p 10T+ G0 = antly b + Gy

n—1
+> T 4 B, (7.2.6)
j=1
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where

anp1 = Olpi(abonia + (r — 0)Un1) — pi20n+1],

bni1 = 1+ 20p2001,

1 = O[—p1(aboni1 + (1 — 6)¥ni1) — p2ontl, (7.2.7)
a, = (1—=0)[—pi(abo, + (r — &) + po0n) + t204),
by = —=2(1—0)pu20n,

Cpn = (1 - 0)[Nl(ab9n + (T - 5)¢n) - ,U/2Qn]-

The general matrix form of the-scheme is given by

n

AMTU = AP ) g UM O for all n > 1, (7.2.8)
1+ 1
with
bn+1 Cn+1
(p41 bn+1 Cn+1
An+1 —
Qp41 bn—l—l Cn+1
Ap+1 anrl
b, c¢n
an, b, ¢,
A" = : (7.2.9)
an, b, ¢,
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Uttt = : : (7.2.10)

C" =3, UL, foralln>1,

where

n n+1
ApUy =7 Ap41V;

0
UE= : ; (7.2.11)
0

] o A3t
Crlr ki 7 CaVp

7.3 Analysis of the numerical method

In this section we present a theoretical analysis of the scheme constructed in sec-
tion [7.2] Four theoretical properties of the solution are investigated, namely; existence

and uniqueness, it’s stability as well as convergence.

7.3.1 Existence and uniqueness of the numerical solution

Theorem 7.3.1. The 0-method([7.2.6) for solving the time-space fractional Black-
Scholes PDE (7.1.11)) is uniquely solvable.

Proof.
From (7.2.7) we observe that a,,1 < 0, ¢,y1 < 0, b,y1 > 0, and that b, —

|ani1 + cny1| = 1, so the coefficient matrix A" is diagonally dominant and hence
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invertible. Similar results are obtained in terms of the matrix A", since a,, > 0, b, > 0,
and ¢, < 0 with |b,| — |a, + ¢,| = 0. Therefore, the §-methodin (7.2.6) yield a unique
solution. Therefore, theorem [7.3.1 follows.

7.3.2 Stability and convergence analysis
Stability analysis

Lemma 7.3.2. Let 9" be an approzimate solution from the 0-method([7.2.6) in solving
time-space fractional Black-Scholes PDE (7.1.11)), and define e} = v — v' such that
E, = (7, - ,5{11)7’, then, for 3 < 6 <d-we have ||E,|/« < ||[Ei|ls for all1 < n <

N+1, for0 <0 < % and ”Fh(f,;a) < Twe-haveEyili<WE || for alll <n < N +1.

Proof. Suppose n =1 and let

1008 1
S (7.3.1)

Then

1Balloe = e |,

2 2 2
S | a2€l,1 + b2€l + 02€l+1 9

= leal,

< |Eifeo, (7.3.2)
which implies that

1Bl < [[En oo (7.3.3)
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Now suppose for n > 2, then
1€+ bpae] T el = anely +bagl + gl
n—1
+> el + Bl (7.3.4)
j=1
and suppose
[En]lco < [|Ei[oo- (7.3.5)
If we define
S e (7.3.6)
and
I nE1
LN TS Bia 147 & (7.3.7)
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then
||En+1||oo = | 5:?—1 |7

< An+1 | 57j11 | +bn+1 | 5?+1 | +Cnt1 | 5;2:_11 |7
S; |an+15?jf +‘bn+1€?+1 +'Cn+15?:f|7

n—1
= ang?—l + bng? + cngln-i-l + Z 90]'5?_]' + ﬂngll )

j=1

n—1 )
< anlefy | Aol el [ Fen et |+ 0l er™ | +Ba el |,
j=1
n—1
< an | e |+ epdTedel +Z¢j ferl +6n | &' |,
=i
= an | € | +bn Repabt-tnnleiabct-@umtiaty -+ on1 | € | +6n | &1 |,
= (an +bn + )il I1-(ad)+ {1 +1h-1)l| €7 | +5n |511 |
< (pn+ -+ oSt
n—1
= (Zsojwn) I Tk
j=1
= (1 - ﬂn + /371,) ||E1”oo»
= Bl (7.3.8)
Therefore

”EnHoo < ||E1||oO forall n=1,2,---, N,

which completes the proof of the following theorem.

Theorem 7.3.3. The 0-method([7.2.6) for solving the time-space fractional Black-
Scholes PDE (7.1.5) is unconditionally stable when : < 6 < 1 and the condition

al2-0) 1 must hold for 0 < 6 < I

h2k>
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Convergence Analysis

Lemma 7.3.4. Let u}' be the exact solution to the time-space fractional Black-Scholes

PDE (7.1.5) at grid point (x;,7,). Define the truncation error by e} = u}' — v}', with

" |= max | e |, when
1<I<L—1

1 <0 <1 we set ||e"]|o < CB (K" + k®R); and when 0 < § < 3 the condition

2
th(Z)zl;la) < 1 holds and one also set ||€"||oc < CB; (k' + k*h).

e = (6?7637“' ae%—l)T and € = 0. D6ﬁ7’L€ ”enHOO :| e?n

Since the errors e} satisfy (7.2.6) we have

n—1
anprefH 4 bugaef ™+ o€l = anefitbag + cael' + Z pie; "+ Ry (1.3.9)
j=1
Define
ko n—1
Lyv(zy, Thyr) 1= = B; [Ulx:, Tat1—3)1— v(xi, 7aej)] (7.3.10)
Jj=1
then
0“v(xy, N
‘% Livo(y, Tosr)
nzf/ a’U flfl, o (U(xla’rn-‘rl—j) B ’U(:ElaTn—j)) ds
o) 2 k T =9
1 —a) ; (Tna1 — s
e
< Cik, (7.3.11)
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where C' and (' are constants independent of h and k. Therefore

k_a n—1
Liv(xy, Thyr) = m Zﬂj [w(@1, Tnr1—5) — v(@1, Tay)]
j=1

- % + Ok (7.3.12)

We further note that

v(xi11, ) —v(xy, ) Ov(xy, Th)
= h 3.1
N Ep + Cyh, (7.3.13)

and

V(1415 Tn) — 20Ty T byl it Ol & )

2
2 ST + Csh”. (7.3.14)
Combining ([7.3.12)-(7.3.14) vield
ek Ol Y 1 w  ov(x,T)
To= k°T(2 — / = L —
A K2 -a) [ e Te—a) @™~ To -0 as
82 n
_,_5%] + C1EM Y 4+ Cok®h + C3k®h?, (7.3.15)
where Cy and C3 are constants independent of h and k.
From (7.3.15)), we have
| R | < C(R + k%(h + B?)),
< C(k™ 4+ k%h), (h? < h), (7.3.16)

where C' is a generic constant.

We can now prove the following main result.

Theorem 7.3.5. The 0-method([7.2.6) for solving the time-space fractional Black-
Scholes PDE ([7.1.5) is convergent when 5 < 0 <1 and the condition O‘F(Q}L_#Na_l <

1 must for when 0 < 6 < % The scheme is first-order convergent in both time and
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space.

Proof. To proceed, define
le"ll =l €

For n = 1, we have

'l = lem |,
< | uepr b e .,
. If{ll |’

< OB+ kER) |(using (7-3.16)). (7.3.17)
And, for n > 2, we have

el = le

IN

n—+1 n 1
| an1€)) + bpyre] + Cn+1€141 E

| pre" ™t + e 2+ ot + R,

IA

o1 e |+ |+ o | € [+ R

o1 | e | 4o | € 4+ ony | € | FC (T + E2D),

IN

orlle" oo + p2lle” o + -+ 4 @n-alle! oo + C(RF + kR),

IN

(p1+pa+ -+ on1+ Bn)ﬁglé(k”a + k%h),
n—1
(Z ©; + ﬁn> BC (KT + k*h),
j=1
= (1= 8,4+ 8,) B 1Ok + k°h),
= OB (k™ + kD). (7.3.18)

IN

http://etd.uwc.ac.za/



CHAPTER 7. A UNIVERSAL FINITE DIFFERENCE SCHEME FOR A
TIME-SPACE-FRACTIONAL BLACK-SCHOLES EQUATION 168

It can be shown that

-1
n

n—oo N n—oo pl-a — (n — 1)1701

- . (7.3.19)

Therefore, (7.3.17) and (|7.3.18)) vield

IA

le™le <] Crft (KT +HkPh),
2| Coftk> (K + H),
—_ Ct%(k+h) since 7, = nk < T,

— C(k+h) where C = Ct°. (7.3.20)

This completes the proof to theorem [7.3.5.

7.4 Numerical experiments

In this section, we present some numerical results from scheme ((7.2.6) for the time-space
fractional Black-Scholes PDE in ((7.1.11)) subject to the option and market parameters

in the example below.

Example 7.4.1. Consider a standard European put option with the following param-
eters: K = 150, r = 0.055, ¢ = 0.01, T' =1, Spax = 450, L = 100, N = 100,06 =
0.025, 0.055 and 0.065.

In order to practically understand the effects of the time-space fractional Black-

Scholes PDE in ([7.1.5) when used to price options as well the effectiveness of the
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f-method in solving the model, herein we present convergence results for three cases.
This consist of two cases when the scheme is unconditional stable, i.e. § = 1/2 and
6 = 1 and another one when the scheme is conditionally stable, that is for # = 1/3.
Convergence results in tables [7.4.1 to [7.4.6 indicates that the numerical scheme is
convergent for % <a<l.

Results indicate that the time-space fractional PDE model provides superior re-
sults in terms of put options premium calculations, as compared to the classical Black-
Scholes model (equivalent to o = 1). The time-space fractional Black-Scholes ([7.1.5
setup therefore, yields results which are consistent with the actual option market dy-
namics as compared to the classical Black-Seholes.PDE obtained when o = 1.

1

However the case when the-dractional-order-0-<-a-< =

5, provides weaker results.

These is observations are not strange however. As far as financial markets dynamics and
fractional Black-Scholes theory is concerned, 0 < o < % correspond to an anti-persistent
regime of the underlying stock price, characterised by a negative correlation between
increments. Similar observations were made. in. Chapter 3| for a time-fractional Black-
Scholes model in pricing European put options. Therefore, our general observation
is that, fractional Black-Scholes models only out perform their classical counterparts
when % <a<l.

Table 7.4.1: Maximum absolute errors for example [7.4.1 with » = 0.10, 6 = 0.02 and
6=1/2.

a | N=10

N =20

N =40

N =80

N =160

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

5.9325e-06
5.6042¢-06
5.2703e-06
4.9343e-06
4.6000e-06
4.2719e-06
3.9556¢-06
3.6580e-06
3.3875e-06
3.1541e-06

2.8495e-06
2.6933e-06
2.5332e-06
2.3722e-06
2.2121e-06
2.0549e-06
1.9035e-06
1.7611e-06
1.6318e-06
1.5204e-06

1.3066e-06
1.2382¢-06
1.1655¢-06
1.0925¢-06
1.0199e-06
9.4878e-07
8.8045¢-07
8.1643e-07
7.5854e-07
7.0894e-07

5.3180e-07
5.1154e-07
4.8348e-07
4.5545e-07
4.2784e-07
4.0114e-07
3.7593e-07
3.5294e-07
3.3294e-07
3.1681e-07

1.3793e-07
1.4946e-07
1.4534e-07
1.4184e-07
1.3921e-07
1.3786e-07
1.3831e-07
1.4120e-07
1.4705e-07
1.5567e-07
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Table 7.4.2: Convergence rates for example [7.4.1 with » = 0.10, 6 = 0.02 and 0 = 1/2.

o [N=10 N=20 N=40 N =280

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.05
1.05
1.05

1.12
1.12
1.12
1.12
1.12
1.11
1.11
1.11
1.11
1.10

1.30
1.28
1.27
1.26
1.25
1.24
1.23
1.21
1.19
1.16

1.25
1.18
1.33
1.28
1.32
1.24
1.24
122
1.18
1.03

Table 7.4.3: Maximum absolute; errors for example |7.4.1 with » = 0.10, 6 = 0.02 and

0=1.

a | N=10

NE 20

N £40

Ni= 80

N =160

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.2097e-05
1.1426e-05
1.0745e-05
1.0060e-05
9.3776e-06
8.7080e-06
8.0626¢-06
7.4552e-06
6.9029e-06
6.4264e-06

5.9825¢-06
5.6042e-06
92703e-06
4.9343e-06
47600006
4.2719e-06
3.9556¢-06
3.6580e-06
3.3875e-06
3.1541e-06

2.8495¢-06
2.6933e-06
2:5332e-06
2.3722e-06
2.2121e-06
2.0549e-06
1.9035e-06
1.7611e-06
1.6318e-06
1.5204e-06

1.3066¢-06
1.2382¢-06
1,1655¢-06
1.0925¢-06
1.0199¢-06
9.4878e-07
8.8045¢-07
8.1643e-07
7.5854e-07
7.0894e-07

9.3180e-07
5.1154e-07
4.8348e-07
4.5545e-07
4.2784e-07
4.0114e-07
3.7593e-07
3.5294e-07
3.3294e-07
3.1681e-07
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Table 7.4.4: Convergence rates for example [7.4.1 with » = 0.10, 6 = 0.02 and 0§ = 1.

o [N=10 N=20 N=40 N =280

0.1 1.03 1.06 1.12 1.30
0.2 1.03 1.06 1.12 1.28
0.3 1.03 1.06 1.12 1.27
0.4 1.03 1.06 1.12 1.26
0.5 1.03 1.06 1.11 1.25
0.6 1.03 1.06 1.11 1.24
0.7 1.03 1.05 1.11 1.23
0.8 1.03 1.05 1.11 1.21
0.9 1.03 1.05 1.11 1.19
1.0 1.03 1.05 1.10 1.16

Table 7.4.5: Maximum absolute; errors for example |7.4.1 with » = 0.10, 6 = 0.02 and
6=1/3.

a\ N =10 NE 20 N =40 Ni= 80 N =160

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

2.4426e-05
2.3071e-05
2.1695e-05
2.0311e-05
1.8933e-05
1.7581e-05
1.6278e-05
1.5051e-05
1.3936e-05
1.2973e-05

1.2097e-0%
1.1426e-05
1:0745e-05
1.0060e-05
9877606
8.7080e-06
8.0626¢-06
7.4552e-06
6.9029e-06
6.4264e-06

9.9325¢-06
5.6042e-06
2:2703e-06
4.9343e-06
4.6000e-06
4.2719e-06
3.9556¢-06
3.6580e-06
3.3875e-06
3.1541e-06

2.8495e-06
2.6933¢-06
2.:5332¢-06
2.3722e-06
2.2121e-06
2.0549e-06
1.9035e-06
1.7611e-06
1.6318e-06
1.5204e-06

1.3066e-06
1.2382¢-06
1.1655¢-06
1.0925¢-06
1.0199¢-06
9.4878e-07
8.8045¢-07
8.1643e-07
7.5854e-07
7.0894e-07
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Table 7.4.6: Convergence rates for example [7.4.1 with » = 0.10, 6 = 0.02 and 0 = 1/3.

o [N=10 N=20 N=40 N =280
0.1] 093 0.95 0.96 0.99
0.2 1.00 0.99 0.98 1.12
03] 1.01 1.03 1.01 1.12
04| 1.01 1.03 1.02 1.12
05| 1.01 1.03 1.03 1.12
0.6 | 1.01 1.03 1.02 1.11
0.7] 1.01 1.03 1.03 1.11
0.8 1.01 1.03 1.05 1.11
09| 1.01 1.03 1.05 1.11
10| 1.01 1.03 1.05 1.10

7.5 Summary and discussions

In this chapter, a #-method is used to solve a time-space fractional Black-Scholes equa-
tions on pricing a standard European put-option problem: Theoretical results demon-
strates that the scheme exhihits unconditional stability and convergence properties
when % < 6 < 1 and is conditional stable . when 1 < 6, < 1, with stability condition
(C“F@];#N o=l < 1). Numerical results confirm these theoretical deductions. All in
all the results indicates the time-space fractional Black-Scholes approach is appropri-
ate for calculating fair put option premiums for % < a < 1 compared to the classical
Black-Scholes model. Like in the time-fractional Black-Scholes model expensively dis-
cussed in the earlier chapters, the time-space fractional Black-Scholes under performs
when 0 < a < % compared to its classical counter-party. Calibration of the time-space

fractional Black-Scholes model and design of robust high order numerical method to

solving such models remain a subject of future research.
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Concluding remarks and scope for

future research

The discovery of fractal geometry and fractal dynamics of financial markets lead to
a grate progress in the desigh of new mathematical modelling techniques. Of special
interests are those models desighed to eircumvent some of the unrealistic assumptions
in the classical Black-Scholesiapproach:- At the eentresof these evolutionary models,
are the fractional calculus based models. Fractional calculus based models have proved
to be very effective modelling techniques in the asset pricing space as well as in other
areas of science and engineering. In the asset pricing sphere, fractional calculus models
provides for a somewhat unique framework, one that has evidently transformed con-
ventional thinking in asset pricing theory and its general applications. Since fractional
derivatives and integral operators are non-local by design, they provides for the best
pool of tools for explaining trend and noise memory effects evidently observed in a
number of real-time asset price returns.

This thesis therefore investigated the design and analysis of fractional Black-Scholes
partial differential equations in pricing continuous dividend paying stock options un-
der different market settings. A numerous hybrid of fractional Black-Scholes models

were discussed, specifically falling within the following three categories, namely; time-
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fractional Black-Scholes (tfBS) PDEs, space-fractional Black-Scholes (sfBS) PDEs and
time-space-fractional Black-Scholes (tsfBS) PDEs as well as their corresponding robust
numerical simulation methods. Compared to the classical Black-Scholes set-up, under
the tfBS-PDEs, one replace (not analogously) the first order time derivative by its
corresponding fractional derivative of order av where ( 0 < a < 1) so as to generalise
the order of rate of change unlike in the classical sense where the order is fixed at
« = 1. In case of sfBS-PDEs, the spatial derivatives are replaced (not analogously)
by corresponding derivatives of fractional orders, the first order derivative replaced by
a where (0 < a < 1) and the second order derivative by 5 for (1 < § < 2). In the
case of tsfBS-PDEs, one has a combination ef the.other two cases. In addition to the
models designs, the thesis further-discuss the design and analysis of several numerical
methods for solving the designed fractional models:

In Chapter [2| we presented the formulation of a time-fractional Black-Scholes PDE
for pricing standard European put options-written on a-dividend paying stock. Fur-
thermore, we presented the design,and analysis.an implicit finite difference scheme to
the resultant model. The numerical scheme therein was found to be unconditionally
stable and convergent. Two numerical examples were presented suggesting that, the
fractional framework is a very effective and robust approach for calculating European
put options premiums.

In Chapter [3| a Crank Nicholson type scheme for solving a tfBS-PDE for pricing
standard European options was proposed. To demonstrate the effectiveness of the
method, two numerical examples were presented. Theoretical and numerical results
therein suggests that the fractional approach is a very efficient tool for pricing stock
options compared to its classical counterpart. Further conclusions from this chapter are
that, the suggested numerical scheme herein provided high order convergent solutions
to the tfBS-PDE. It is important to further highlight that, the scheme did not only
provide convergent solutions, but also did reduce the computational time required to
compute the solution.

To ease some mathematical complexity in solving and implementing fractional
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Black-Scholes models, we proposed some transformation of the model in the previ-
ous chapters. For example, in Chapter 4| we proposed a heat equation transform of the
tfBS-PDE proposed in Chapter [2l The transformation eased the computational efforts
required to attain high order numerical results.

A hybrid of option problems are solved, ranging from European options, American
to Barrier options. In Chapter [5| we proposed a robust front-fixing transformation
method for pricing American put options under a time-fractional Black-Scholes setup.
Using this approach, the early exercise boundaries of an American option problem are
transformed into fixed boundaries allowing for the simultaneous computation of the
option premiums as well as the corresponding optimal exercise boundaries.

The application of the appreach to pricing exotic-options was also investigate, in
Chapter [6] we present a high order numerical method for pricing double barrier options
under the time-fractional Black-Scholes setup. Results therein suggest that, the nu-
merical method is unconditionally stable and-converges with order O(h*+k?). Further-
more, to investigate the effects of fractional decays in both time and space directions, a
time-space-fractional Black-Scholes (tsfBS) PDE and it’s universal solution method is
proposed. The results therein, suggest that, the approach is effective and does provide
results which are consistent with actual financial market scenarios.

In conclusion therefore, overall, the obtained maturity payoff curves as well as the
corresponding general solution profiles presented in this thesis work show that of the
fractional Black-Scholes approach asymmetric performance effects depending on the
value of a. The fractional approach discussed herein, has proven to be more robust
and effective for when 1/2 < a < 1. as compared to when 0 < o < 1/2. These
observations are however not strange, as, it is expected that, when 1/2 < a < 1, the
underlying fractional stochastic processes involved in our models derivations become
more persistent for when 1/2 < a < 1 characterised by positive correlations between
increments. Therefore, it is expected for the approach to attain better performance
compared to the case when 0 < o < 1/2 which represent the anti-persistent regime of

the process.
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Therefore, from the practical point of view, these results confirms the theoretical
deductions presented in the during analysis of the models and method herein, as well
as confirming the general consensus in literature that, stock markets dynamics are of a
power law nature. Also empirical evidence suggest, in general, underlying stock return
follows heavy-tailed distributions and as such, they are not independently distributed.
Therefore, modelling such returns using the classical approach would greatly give rise
to model risk. As evidently observed, the our approach performed effectively for when
1/2 < a < 1 as compared to when 0 < o < 1/2 in which case, the underlying process
would be expected to cover less and less grounds than any ordinary Gaussian random
process would do.

Another important observation to-take note-of is that, the Black-Scholes models
proposed in classical setups arewell known for producing option premium curves which
are similar in shapes and as such, they may not fully reflect the real market anomalies,
for examples, in markets with-high-an=anticipated news events. Whereas, such models
when formulated in the fractional sense have the. ability to produce option premium
curves which are well sensitive to changes in almost all associated parameters, such as,
volatility, dividends, interest rates, etc.

For further research, we intend to apply the fractional Black-Scholes models as
well as their corresponding numerical methods to local and international real-time
market data. Therefore, the calibration of the tfBS, sfBS, tsfBS PDEs and other
corresponding hybrids fractional Black-Scholes models to real-time market data remain
a subject of future research. Furthermore, the design and analysis of new robust higher
order numerical solution methods, semi-analytic and analytic solutions methods for

fractional Black-Scholes models also remain a subject of further research opportunities.
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