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ABSTRACT

Stochastic modeling of an HIV/AIDS
epidemic with treatment

Mozart Umba Nsuami

PhD Thesis, Department of Mathematics and Applied Mathematics, University of the

Western Cape.

The HIV/AIDS epidemic continues to be among the most devastating diseases in hu-

man history despite the new scientific advances and serious public health interventions.

The greatest burden of HIV/AIDS is still in sub-Saharan Africa, and within this specific

region, women are severely affected. Despite an increase in prevention interventions, in-

cluding such as ARV treatment and pre-exposure prophylaxis (PrEP), behavioural change

remains a key role in the transmission of HIV/AIDS. In this thesis, we investigate several

related models for the population dynamics of HIV/AIDS epidemic model with treatment.

We start off with a four compartmental HIV deterministic model with stages of HIV in-

fection and with inflow of HIV infectives. Thereafter, we impose stochastic perturbations

on the underlying HIV/AIDS deterministic model without inflow of infectives. For this

version of HIV stochastic model, we prove global existence and positivity of solutions to

the HIV/AIDS-perturbed model. Some useful properties such as boundedness property,

stochastic permanence property and asymptotic stability have been derived. Under the
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asymptotic stability, it is found that whenever the intensities of the noise are not too large,

then the stochastic solution remains close to the underlying deterministic solution. Oth-

erwise strong noise gives a divergence between stochastic and deterministic behaviours.

We also investigate another type of stochastic HIV model with inflow of infectives and

we study stability in the mean. In the absence of inflow of infectives, we introduce an

analogue of the basic reproduction number which we link to a theorem on almost sure

exponential stability in the case of a disease-free equilibrium. It is found that stochastic

perturbation does not destabilize the disease-free equilibrium, i.e., whenever the analogue

of the basic reproduction number is below unit, then the disease-free equilibrium is almost

surely exponentially stable. Furthermore, we propose a new model for the transmission of

HIV/AIDS including ART treatment and pre-exposure prophylaxis (PrEP). Our model

can be used to test the effects of ART and of the uptake of PrEP in a given population,

as we demonstrate through simulations. The model can also be used to estimate future

projections of HIV prevalence. We prove global stability of the disease-free equilibrium.

We also prove global stability of the endemic equilibrium for the most general case of the

model, i.e., which allows for PrEP individuals to default. We include insightful simula-

tions based on published South-African HIV trend from 2016. Finally, we also investigate

other stochastic HIV/AIDS epidemic models such as: stochastic HIV model with satu-

rated incidence rate and stochastic HIV model with the use of PrEP. The results obtained

in both models were very meaningful, and we show insightful simulations in this regard.
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Chapter 1

General Introduction

1.1 HIV/AIDS background

Acquired immune deficiency syndrome or acquired immunodeficiency syndrome (AIDS) is

a disease of the human immune system caused by human immunodeficiency virus (HIV).

In the summer of 1981, clinicians in New York and California observed among young, pre-

viously healthy, homosexual men an unusual clustering of cases of rare diseases, notably

kaposi sarcoma and opportunistic infections such as Pneumocystis carinii pneumonia, as

well as cases of unexplained, persistent lymphadenopathy [30, 53]. It soon became evident

that these individuals had a common immunological deficit in cell-mediated immunity, re-

sulting predominantly from a significant diminution of circulating CD4+ T cells [33, 62].

Acquired Immune Deficiency Syndrome (AIDS) occurs when an HIV-positive individual

has such lowered immune levels that he/she falls prey to a variety of opportunistic infec-

tions. The rate of HIV infection and death due to AIDS first increased rapidly during the

1980s in the United States and in Western Europe. Since 1982 AIDS has developed into

a global pandemic across the world.

There are two types of HIV virus: HIV1 which is most common in sub-Saharan Africa

and throughout the world, and HIV2 which is most often found in West Central Africa,
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parts of Europe and India. It is important though to notice that both produce the same

patterns of illness. HIV2 causes a slower progression of disease than HIV1. HIV is the

virus that causes AIDS. Not everyone who is infected with HIV has AIDS. Everyone with

AIDS is infected with HIV. AIDS is the result of progression of HIV Infection. Anyone

infected with HIV, although healthy, can still transmit the virus to another person. The

HIV/AIDS pandemic consists of many separate epidemics. Each epidemic has its own

distinct origin, in terms of geography and specific populations affected, and involve differ-

ent types and frequencies of risk behaviours and practices, for example, unprotected sex

with multiple partners or sharing of drug injection equipment. It has been observed many

years ago that the virus cannot spread by means of a handshake, kiss, or a sneeze, nor by

means of a mosquito bite. Sharing of food, drinking glasses or clothes will not transmit

the virus. Thus the main means of transmission worldwide is human sexual intercourse

in which bodily fluids like semen or blood are exchanged. This is the reason why the

sexually active age group from 15 to 45 is most at risk. Also important in HIV transmis-

sion is the sharing of unclean needles, such as between injection drug users, and in rare

instances, the virus is transmitted by means of accidental needle-sticks. Mother-to-child

transmission (also called MTCT or vertical transmission) is common today, resulting in

millions of pediatric HIV cases. The chances of a baby born to an HIV plus mother being

infected are about 40 percent. Because mother-to child HIV transmission can be so easily

prevented (or at least minimized) by an anti-retroviral drug at a low cost, infected infants

are an especially painful problem for the world.

1.1.1 HIV/AIDS stages of infection

The process from HIV to AIDS may take several years and includes different stages, see

for instance in [102]. The WHO system for adults sorts patients into one of four hier-

archical clinical stages ranging from stage 1 (asymptomatic) to stage 4 (AIDS). Patients

are assigned to a particular stage when they demonstrate at least one clinical condition in
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that stage’s criteria. Patients remain at a higher stage after they recover from the clinical

condition which placed them in that stage. These stages are as follows.

1. Stage 1.

Patients who are asymptomatic or have persistent generalized lymphadenopathy

(lymphadenopathy of at least two sites [not including inguinal] for longer than 6

months) are categorized as being in stage 1, where they may remain for several

years.

2. Stage 2.

Even in early HIV infection, patients may demonstrate several clinical manifes-

tations. Clinical findings included in stage 2 (mildly symptomatic stage) are un-

explained weight loss of less than 10 percent of total body weight and recurrent

respiratory infections (such as sinusitis, bronchitis, otitis media, and pharyngitis),

as well as a range of dermatological conditions including herpes zoster flares, angular

cheilitis, recurrent oral ulcerations, papular pruritic eruptions, seborrhoeic dermati-

tis, and fungal nail infections.

3. Stage 3.

As disease progresses, additional clinical manifestations may appear. Those encom-

passed by the WHO clinical stage 3 (the moderately symptomatic stage) category

are weight loss of greater than 10 percent of total body weight, prolonged (more than

1 month) unexplained diarrhea, pulmonary tuberculosis, and severe systemic bacte-

rial infections including pneumonia, pyelonephritis, empyema, pyomyositis, meningi-

tis, bone and joint infections, and bacteremia. Mucocutaneous conditions, including

recurrent oral candidiasis, oral hairy leukoplakia, and acute necrotizing ulcerative

stomatitis, gingivitis, or periodontitis, may also occur at this stage.
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4. Stage 4.

The WHO clinical stage 4 (the severely symptomatic stage) designation includes

all of the AIDS-defining illnesses. Clinical manifestations for stage 4 disease that

allow presumptive diagnosis of AIDS to be made based on clinical findings alone

are HIV wasting syndrome, Pneumocystis pneumonia (PCP), recurrent severe or ra-

diological bacterial pneumonia, extrapulmonary tuberculosis, HIV encephalopathy,

CNS toxoplasmosis, chronic (more than 1 month) or orolabial herpes simplex infec-

tion, esophageal candidiasis, and Kaposi’s sarcoma. Other conditions that should

arouse suspicion that a patient is in clinical stage include cytomegaloviral (CMV)

infections (CMV retinitis or infection of organs other than the liver, spleen or lymph

nodes), extrapulmonary cryptococcosis, disseminated endemic mycoses (e.g., coccid-

iomycosis, penicilliosis, histoplasmosis), cryptosporidiosis, isosporiasis, disseminated

non-tuberculous mycobacteria infection, tracheal, bronchial or pulmonary candida

infection, visceral herpes simplex infection, acquired HIV-associated rectal fistula,

cerebral or B cell non-Hodgkin lymphoma, progressive multifocal leukoencephalopa-

thy (PML), and HIV-associated cardiomyopathy or nephropathy. Presence of these

conditions unaccompanied by the AIDS-defining illnesses, however, should prompt

confirmatory testing.

1.1.2 HIV/AIDS in the history

In recent years, the HIV/AIDS epidemic has been spreading at an alarming rate, and

the prevalence of HIV infection is still extremely high. It is reported that more than

35 million of people were living with HIV in 2012 compared to 36.5 million in 2016. It

is reported in [44] that 2.5 million people were newly infected in 2012 compared to 1.8

million in 2016. There has been 1.5 million AIDS-related causes of death worldwide in

2013 compared to 1 million in 2016 (UNAIDS DATA 2017, [46]). The most significant

advance in medical management of HIV infection includes two recommendations [110].

First, antiretroviral therapy (ART) should be initiated for everyone living with HIV at
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any CD4+ cell count. The HIV treatment reduces viral load to levels below the limits

of detection of the most sensitive clinical assays, resulting in a significant reconstitution

of the immune system [4]. The Global AIDS Update 2016 of the Joint United Nations

Programme on HIV/AIDS, reports that the global coverage of ART therapy reached ap-

proximately 46% at the end of 2015. The gains in treatment are largely responsible for a

26% decline in AIDS-related deaths globally since 2010, from an estimated 1.5 million in

2010, to 1.1 million in 2015. Despite this significant achievement, globally there has been

1.8 million new infections reported in 2015 [45]. Second, the use of daily oral pre-exposure

prophylaxis (PrEP) is recommended as a prevention choice for people at substantial risk

of HIV infection as part of combination prevention approaches. Substantial gaps remain

in understanding the trade-offs between costs and benefits of choosing alternative HIV

prevention strategies, such as the initiation of PrEP by high risk uninfected individuals

[29]. Following WHO, making PrEP drugs available for safe, effective prevention outside

the clinical trial setting is the current challenge. However, it is important to highlight and

recall that PrEP is not for everyone: only people who are HIV-negative and at very high

risk for HIV infection should take PrEP [111]. In 2015, the Medicines Control Council of

South Africa issued a full regulatory approval of PrEP, and the country became the first

in Sub-Saharan Africa to include PrEP in its national HIV programme. Globally, female

sex workers (FSWs) are 13.5 times more likely to be living with HIV than women in the

general population [50]. There are many countries with regulatory approval for PrEP.

The European Medicines Agency has also granted market authorization for PrEP to be

marketed across the European Union’s 28 countries [25].

South Africa is a country homing the largest concentration of people living with HIV

in the world. The first AIDS-related deaths in this country occurred in late December

1981 and January 1982 [79, 64]. The HIV epidemic was not an issue of major concern

to the government and therefore received a very limited attention [87]. The prevalence

of HIV/AIDS increased from 0.8% in 1990 to 4.3% in 1994, and almost 10% of the total

population in 2014 [63]. The provision of ART in 2013 has reduced the prevalence of
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HIV from an estimated 15% to 9% among adults not on ART. The annual incidence

decreased from 2% to 0.9% and the AIDS related deaths from 0.9% to 0.3% p.a., saving

1.5 million lives and US 727 million, see [104]. In April 2010, a large HIV counselling

and testing campaign was launched in South Africa, a principle part of which was to

scale up awareness of HIV [34, 42] and the result was positive. In [36], a model based

on the case scenario of 90% annual HIV testing coverage in adults 15− 49 years old and

four ART eligibility scenarios of CD4+ count has been studied. The authors found that

increasing the provision of ART to less than 350 cells /mm3 may significantly reduce

costs while reducing the HIV burden. In the paper [104] the authors use trend data for

the prevalence of HIV among woman attending ante-natal clinics in South Africa and

the reported coverage of ART. The authors found that a main reason why countries of

Southern Africa have the highest rates of HIV in the world is because of the system of

oscillating migrant labour historically.

1.1.3 HIV/AIDS Treatment

HIV treatment is actually deeply affecting the epidemic in countries where it has been

brought to scale. Antiretroviral treatment is usually started once an individuals CD4+

count (the number of T helper cells) drops to a low level, an indication that the immune

system is deteriorating. Treatment can stop HIV from damaging the immune system,

therefore, HIV-infected individuals on treatment usually remain clinically asymptomatic.

Accelerating the scale up of antiretroviral therapy will drive progress across the broader

AIDS response. It will reduce HIV-related illness and death, prevent people from ac-

quiring HIV infection, address the needs of women and girls, reduce stigma and social

exclusion and promote service integration.

In the rapidly developing countries most heavily affected by HIV, scaling up antiretrovi-

ral therapy preserves and strengthens the health and well-being of the adolescents and

working-age adults on which future economic growth depends. Investing in HIV treatment
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generates economic returns up to three times the investment, increasing productivity, pre-

venting children from becoming orphaned and deferring the health care costs associated

with advanced HIV-related illnesses [94, 81].

In South Africa, where HIV treatment coverage reached 83% in 2012 under WHOs 2010

treatment guidelines [94, 109, 103] (initiating treatment at a CD4+ cell count of 350

cells/mm3), scaling up treatment is estimated to have reduced the number of people

newly infected with HIV by 17-32% in 2011 [94, 23]. In KwaZulu-Natal, South Africa,

life expectancy in 2011 was 11.3 years greater than in 2003, when HIV treatment in the

province began to be scaled up [10]. In parts of KwaZulu-Natal where a substantial level

of HIV treatment coverage (30−40%) had been achieved, the odds of acquiring HIV were

38% lower than in communities in which fewer than 10% of treatment-eligible individuals

were receiving therapy [92].

However, in HIV-infected individuals not receiving treatment or on treatment that is not

working, the immune system fails and symptoms develop. Initially many of the symptoms

are mild, but as the immune system deteriorates the symptoms worsen. Symptomatic HIV

infection is mainly caused by the emergence of certain opportunistic infections that the

immune system would normally prevent. This stage of HIV infection is often characterised

by multi-system disease and infections can occur in almost all body systems. Treatment

for the specific infection is often carried out, but the underlying cause is the action of HIV

as it erodes the immune system. Unless HIV itself can be slowed down the symptoms of

immune suppression will continue to worsen.

1.2 Research questions, aims and objectives

The major objectives of this research are the construction and analysis of determinis-

tic and stochastic models for the population dynamics of HIV/AIDS disease. We shall

build a mathematical model or models for the numerical dynamics of the disease in a
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population, that will be able to make future projections and to assess or plan for inter-

ventions towards curbing the disease. This work entails literature searching, pencil and

paper mathematical investigation, and computer code writing and then running such code.

In this dissertation, we address the following matters:

1. Should HIV/AIDS be considered as a chronic manageable disease rather than a fatal

one?

2. What is the impact of inflow of infectives on the epidemiology of HIV/AIDS?

3. What is the extent to which ARV treatment and pre-exposure prophylaxis (PrEP)

significantly help to reduce the endemicity of the disease in a population?

4. What is the impact of the incidence rate on the force of infection?

5. Would the environmental perturbation be catastrophic on the system and prevent

the policy makers to launch a certain intervention programme?

6. How can public health authorities optimally intervene on the epidemic?

1.3 Literature review

The dynamics between virus infections and the immune system involve many different

components. In such cases, the principles governing the dynamics and the outcome of

infection cannot be understood by verbal or graphical reasoning. Thus mathematical

modeling in epidemiology has become a very powerful tool in analyzing the spread, and

control of infectious diseases qualitatively and quantitatively. The research results help to

predict and develop tendencies of the infectious disease, for determining the key factors of

the disease spreading, and for seeking the optimum strategies for preventing and control-

ling the spread of infectious diseases [59]. In [39] the authors show that the implications

of parents in perceptions of HIV counselling and testing are meaningful. Through the use
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of semi-structured interviews, qualitative study explored perceptions of parents regarding

the ethico-legal and social implications in the process of fighting against HIV/AIDS.

Cai et al. [14] investigate an HIV/AIDS epidemic model with two stages of infections.

The authors study local and global stability of the equilibria of a deterministic HIV/AIDS

model with treatment. Z. Osman et al. [75] extend the model of Cai et al. in [14] by

introducing the infectives through vertical transmission at any time t. The authors prove

global stability of the disease-free as well as the endemic equilibrium.

Research shows that access to treatment increases the expected available time for the

transmission of HIV, but it is also shown that treatment without reduction of risky be-

haviour may even increase the proportions of infected individuals. Such cases have been

studied in [14, 5]. In the paper by S. Blower [7], it is shown that incidence rates of HIV

will decrease due to the fact that more HIV-positive individuals gain access to treatment,

and hopefully the treated individuals would change their behaviour and the levels of risky

behaviour do not increase.

Many papers, whether in deterministic modeling or stochastic modeling, have studied

the effect of migrants on established populations. These papers study the stability of

equilibrium states and /or control of the spread of the disease. In general, there are two

types of stability analysis, local and global, widely used in the literature. Local stabil-

ity is concerned with behaviour of the model solution near an equilibrium point, while

global stability can describe solution behaviour in the whole domain. Examples of such

contributions can be found in [43, 68, 82, 95]. In the paper [68] of R. Naresh et al., the

authors analyze a mathematical model of the spread of HIV/AIDS in a population of

varying size with immigration of infectives. On analyzing this situation, they found that

the disease is always persistent if the direct immigration of infectives is allowed in the

community. However, in the absence of inflow of infectives, the endemicity of the disease

is found to be higher if pre-AIDS individuals also interact sexually, in comparison to the
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case when they do not. The paper [82] of T. Roy et al. describes and studies the preva-

lence of risky behaviours and factors affecting sexual practices among rural-to-urban male

migrant taxi drivers. Based on a survey, the authors’ results demonstrate that rural-to-

urban male migrants in the region under consideration significantly increase the spread of

sexually transmitted infections and HIV because of their mobility, their high-risk sexual

practices and their extensive sexual networks. In [95] the authors analyze a model of

HIV/AIDS transmission with infective immigrants with time delay and treatment. The

model incorporates some essential parameters of the HIV/AIDS transmission and enables

the assessment of the effect of recruitment of infected immigrants into the community.

They found that the direct inflow of infectives makes the disease more difficult to control.

PrEP can be cost-saving if delivered to individuals at increased risk of infection. The word

prophylaxis means to prevent or control the spread of an infection or disease. PREP is

a new HIV prevention method in which people who do not have HIV infection take a

pill daily to reduce their risk of becoming infected. In particular, HIV models that ac-

count for the use of PrEP are featured in the papers [86, 66, 37]. In [86] for instance,

a mathematical model for HIV/AIDS transmission using PrEP has been proposed, and

then translated into a control problem where the objective was to determine the PrEP

strategy that minimizes the number of individuals with pre-AIDS HIV-infection as well

as the costs associated with PrEP. The paper by Mukandavire et al. [66] compares the

impact of increasing condom use or HIV PrEP use among sex workers. The authors

found that condom promotion interventions should remain the mainstay HIV prevention

strategy for FSWs, with PrEP only being implemented once condom interventions have

been maximised or to fill prevention gaps where condoms cannot be used. In [37], the

authors develop a static model of HIV risk and compare HIV-risk estimates before and

after the introduction of PrEP to determine the maximum tolerated reductions in condom

use with regular partners and clients for HIV risk not to change. With a case study in

South Africa for FSWs, it is found that PrEP is likely to be of benefit in reducing HIV

risk, even if reductions in condom use do occur.

14

http://etd.uwc.ac.za/



The models mentioned so far are deterministic and do not consider explicitly the stochas-

ticities in or on the system. As a matter of fact, when modeling population dynamics, it

is also important to consider environmental fluctuations due to the fact that parameters

involved in epidemic models are not absolutely constant. They may fluctuate around

some average values. In the real world, population dynamics is inevitably subjected to

environmental noise, which is an important component for the population dynamics of

HIV/AIDS. The large white noise may be a serious epidemic, which can be considered

as the decisive factor responsible for the extinction of populations and human activi-

ties without control will affect the biological diffusion process which is likely to cause

fatal consequences [118]. Based on these facts, the research towards stochastic pop-

ulation systems became very interesting and valuable. Stochastic models for the epi-

demic populations have been proposed or developed by many authors; see for instance

[60, 19, 38, 28, 76, 52, 58, 93, 107, 78, 100]. Stochastic models involved in a certain eco-

logical relationship are also featured in [74, 91].

In [58], the authors obtain sufficient criteria for the existence of periodic solutions to deter-

ministic epidemic models with modified saturation incidence rates and their corresponding

stochastic epidemic models with random perturbation. The authors also utilise stochastic

Lyapunov functions to investigate the asymptotic behaviour of the solution. In [76], a

stochastic mutualism model is proposed and investigated. The authors show that there

is a unique solution to the model for any positive initial value. They also further show

that the solution is stochastically bounded, uniformly continuous and globally attractive.

Under some conditions, they show that the stochastic model is stochastically permanent

and persistent in mean. One of the topics that has been studied quite extensively in sde

models, is the stability of solutions, especially of the disease free equilibrium. There are

various versions of stability, see e.g. in [60]. Now it is known that stochastic perturbations

can stabilize a system. This is true also in epidemiological models. Although many papers

have studied stability, very few of these have proofs of stability of the disease free equi-
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librium beyond the condition R0 < 1. Here R0 denotes the basic reproduction number

of the underlying deterministic model. Examples of stochastic perturbation improving

stability of the disease-free equilibrium of an epidemic model of can be found in [38, 19].

In [78], the author investigates an SIR epidemic model with stochastic perturbations.

Some qualitative properties such as stochastic boundedness and permanence are proved.

X. X. Wang et al. [100] formulate and analyse a modified stochastic ratio-dependent

Leslie-Gower predator-prey model. Thus by applying Itô formula and constructing Lya-

punov functions, some qualitative properties as well such as the existence of global positive

solutions, stochastic boundedness, and the global asymptotic stability are explored. Based

on these results, they perform a series of numerical simulations and make a comparative

analysis of the stability of the model system within deterministic and stochastic environ-

ments. In [52], an SIRS epidemic model with saturated incidence rate and disease-inflicted

mortality is studied. The Global stability of the endemic equilibrium state is proved by

constructing a Lyapunov function. The investigation of the authors stochastic model re-

vealed that the stochastic stability of disease free equilibrium depends on the magnitude

of the intensity of noise as well as the parameters involved within the model system. In

[99] the authors extend the classical SIRS epidemic model incorporating media coverage

from a deterministic framework to a stochastic differential equation (SDE) and focus on

how environmental fluctuations of the contact coefficient affect the extinction of the dis-

ease. It is shown that the magnitude of environmental fluctuations will have an effective

impact on the control and spread of infectious diseases.

Examples of stochastic models for HIV/AIDS can be found in [113, 26, 47]. In [26], the

authors study a model of AIDS and condom use via the technique of parameter perturba-

tion which is standard in stochastic population modeling. Their research indicates that

introducing environmental noise into the deterministic model can have a stabilising ef-

fect. The paper by Yang et al. [113] investigates the dynamic behaviour of an HIV model

with stochastic perturbation and the authors obtain the asymptotic behaviour results.
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Kamina et al. [47] apply the multi-dimensional diffusion process to model early human

immunodeficiency virus type-1 (HIV-1) population dynamics. The authors incorporate

more of the randomness of the HIV-1 infection process to investigate the probability and

the possibility of viral extinction in their model.

Many authors investigate asymptotic behaviour of stochastic systems around the equi-

libria of the underlying deterministic models and examples of those can be found in

[28, 57, 116, 117, 51, 114].

1.4 Outline of the thesis

This thesis is structured as follows:

Chapter 1 provides a general introduction on HIV/AIDS epidemic, biological background

on the disease in question. It also covers literature review on mathematical modeling of

HIV/AIDS, deterministic and stochastic models.

Chapter 2 produces background preliminaries on epidemiological modeling; some theories

of ordinary differential equations as well as stochastic differential equations.

In chapter 3 we start off first by presenting the relevant HIV/AIDS epidemic model with

two infection stages and inflow of infectives. We perform stability analysis of both the

disease-free and endemic equilibrium points.

In Chapter 4 we investigate stochastic dynamics of an HIV/AIDS epidemic model with

treatment. We show different approaches of introducing randomness in the model. We

prove existence of global positive solutions. Some useful properties such as boundedness,

stochastic permanence and asymptotic behaviour around the equilibrium of the underly-
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ing deterministic model are also studied.

In Chapter 5 we introduce a stochastic HIV/AIDS epidemic model with inflow of infec-

tives. A Theorem on almost sure exponential stability is studied in the absence of inflow

of infectives. Furthermore, we study stability in the mean.

In Chapter 6 we investigate a model describing the population dynamics of HIV/AIDS

including treatment and pre-exposure prophylaxis (PrEP) in the context of South Africa.

In Chapter 7 we propose a stochastic model of HIV/AIDS epidemic with saturated in-

cidence rate. Our aim is this chapter is to investigate both the impact of the stochastic

perturbation as well as that of the incidence rate on the transmission HIV.

Chapter 8 is devoted to study exponential stability of a disease-free equilibrium for an

HIV epidemic model with the use of prophylaxis.

In Chapter 9 we give some concluding remarks, including insightful and constructive ideas

for future research.
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Chapter 2

Preliminaries

2.1 Existence and uniqueness of solutions

We start off by presenting a general theorem about existence and uniqueness of solutions

of the first order initial value problem and we shall refer to [27]. Consider an ordinary

differential equation (ODE):

x′(t) = f(t, x(t)), x(t0) = x0, (2.1)

where t0 and x0 are real numbers. Thus we shall show that if f(t, x) and ∂f
∂x

(t, x) are con-

tinuous in some region containing the point (t0, x0), then there is an interval (containing

t0) on which a unique solution of equation (2.1) exists.

Theorem 2.1.1. ([27]) Let f(t, x) be continuous for all values t and x. Then the initial

value problem is equivalent to the integral equation

x(t) = x0 +
∫ t

t0
f(s, x(s))ds (2.2)

in the sense that x(t) is a solution of (2.1) if and only if x(t) is a solution of (2.2).

Let D denote the rectangular region in the tx-plane defined by

D : a ≤ t ≤ b, c ≤ x ≤ d, (2.3)
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where −∞ < a < b < +∞ and −∞ < c < d < +∞. We say that the function f(t, x) is

Lipschitz continuous in x over D if there exists a constant k, 0 < k <∞, such that

|f(t, x1)− f(t, x2)| ≤ k|x1 − x2| (2.4)

whenever (t, x1) and (t, x2) belong to D. The constant k is called a Lipschitz constant.

Clearly, every Lipschitz continuous function is continuous in x for each fixed t. However,

not every continuous function is Lipschitz continuous.

Theorem 2.1.2. [20] Let f(t, x) and ∂f
∂x

(t, x) be continuous on D. Then f(t, x) is Lips-

chitz continuous in x over D.

Definition 2.1.3. ([61, 73, 83]) Equilibrium and stability

A point x∗ is an equilibrium solution of (2.1) if f(t, x∗) = 0. We say an equilibrium point

is

1. locally stable, if for every R > 0 there exists r > 0, such that

‖x(0)− x∗‖ < r ⇒ ‖x(t)− x∗‖ < R, t ≥ 0

2. locally asymptotically stable, if locally stable and

‖x(0)− x∗‖ < r ⇒ lim
t→∞

x(t) = x∗

3. globally asymptotically stable, asymptotically stable for all x(0) ∈ Rn .

Theorem 2.1.4. Lyapunov Global Asymptotic Stability

Let ẋ = f(x) and f(x∗) = 0. If there exists a C1 function V : Rn → R such that

1. V (x∗) = 0

2. V (x) > 0, for all x 6= x∗

3. V̇ (x) < 0 for all x 6= x∗
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4. V (x)→∞ as ‖x‖ → ∞

then x∗ is a globally asymptotically stable equilibrium.

Definition 2.1.5. Invariant Sets

A set M is called invariant if for the system

ẋ = f(x),

x(0) ∈M implies that x(t) ∈M for all t ≥ 0.

2.2 Compartment Modeling

A compartmental disease model is one for which the individuals in a population are

classified into compartments depending on their status with regard to the infection under

study and assumptions about the nature and time rate of transfer from one compartment

to another. The standard susceptible-exposed-infectious-removed (SEIR) model divides

the total population into four compartments: susceptible (S, previously unexposed to

the pathogen), exposed (E, infected, but not yet infectious), infected (I, infected and

infectious) and recovered (R, recovered from infection and acquired lifelong immunity)

[3, 49, 1]. The infection process is represented in Figure 2.1. Children are born susceptible

to the disease and enter the compartment S. A susceptible individual in compartment S

is infected after effective contact with an infectious individual in compartment I and then

enters the exposed compartment E. After the latent period ends, the individual enters the

compartment I and becomes capable of transmitting the infection. When the infectious

period ends, the individual enters the recovered class R and will never be infected again

[49, 1]. In each compartment, individual death occurs at a constant rate, µ, which is

equal to the birth rate. Death induced by the disease is not considered here. Therefore,

the total population size in the model, N , remains unchanged. The SEIR model and its

extension have been used to model many infectious diseases, for example, measles [2, 17],

rubella [31, 13], influenza [35, 18] and SARS [56, 101], among others.
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Figure 2.1: Structure of a susceptible-exposed-infectious-recovered (SEIR) model.

where the parameter α is the rate at which individuals in the exposed category become

infectious per unit time, and its reciprocal is the average latent period; the parameter γ

is the rate at which infectious individuals recover (become immune) per unit time, and

its reciprocal is the average infectious period; and the parameter µ refers to the birth

and death rates. The probability per unit of time at which the susceptible individuals

of the population become infected is called force of infection which is represented by λ.

The latter generally seen as a function of total number of infective individuals. The term

incidence represents the number of individuals that become infected in any given period

of time. It is often referred to as incidence rate, which is the incidence per unit time.

Prevalence is defined as the proportion of the population that is infected.

2.2.1 HIV/AIDS compartment modeling

For the case of HIV/AIDS modeling, we can also refer in [6, 54, 14, 88]. In [6] for

instance, a model for HIV/AIDS in four compartment is presented. The total sexually-

active population at time t, is denoted by N(t). This population N(t) is divided into four

mutually-exclusive compartments, namely susceptible class S(t), the infected individuals

who do not know that they are infected I1(t), the infected individuals who do know that
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they are infected I2(t), and that of the AIDS populations A(t). Hence the total population

at time t, N(t) can be written as N(t) = S(t) + I1(t) + I2(t) + I1(t). It is assumed that

individuals are recruited at a constant rate π to the susceptible class S(t). Susceptible

individuals can be infected with HIV following contact with infected individuals at a rate

λ, where λ = β1λ1+β2λ2
N

, with β1, β2 are the transmission rates for HIV. The individuals

in the I2 class are more infectious than those in the I1 class. Therefore we must have

β1 < β2. Suppose that the individuals of the I1(t) class enter into the I2(t) class at a rate

ω and into the AIDS class A(t) at a rate δ1. Again suppose that the individuals of the

I2(t) class progress into the AIDS class at a rate I2(t). Let µ and d denote the natural

mortality rate and disease induced death rate respectively.

In [88], the authors present a mathematical model for the transmission dynamics of

HIV/AIDS epidemic with treatment by considering the three latent compartments for

slow, medium and fast progresses of developing the AIDS. The model is developed by

dividing the total population into six compartments, namely susceptible compartment S,

slow latent compartment I1, medium compartment I2, fast latent compartment I3, symp-

tomatic stage J and a full-blown AIDS A group. Thus, the total number of population

at time t is given by

N(t) = S(t) + I1(t) + I2(t) + I3(t) + J(t) + A(t).

In the paper by Cai et al., [14], an HIV/AIDS epidemic treatment model is presented. To

construct the model, the authors first divide the total population into four classes. The

classes are: the class of susceptible individuals S(t), the class of asymptomatic individ-

uals I(t), the class of symptomatic individuals J(t) and the class of the population who

have full-blown AIDS A(t). The term µK is the recruitment rate into the population,

µ being the birth rate which is assumed to coincide with the average mortality rate by

natural causes. The disease-induced mortality rate is denoted by δ. The parameters β;

βbdenote the probabilities of disease transmission per contact by an infective in the first

and second stage respectively. For an individual, c is the average number of contacts with
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others per unit time. By k1 and k2 we denote the transfer rates from the asymptomatic

phase I to the symptomatic phase J and from the symptomatic phase to the A-class,

respectively. The parameter α is the rate of transfer from the symptomatic phase J to

the asymptomatic phase I due to treatment.

The structure of the model is given by the following diagram:

A J

S I
βS(I + bJ)c

k1I

k2J

αJ

(µ+ δ)A(µ+ δ)A

µS

µK

µJ

µI

Figure 2.2: Flow diagram of an HIV/AIDS model

2.2.2 Basic Reproduction number R0

The basic reproduction number can be obtained by inspection in models with only one

infective class. How ever if number of infective classes is two or more, then the technique

due to Diekmann (1990) is more appropriate. The technique has also been studied by

Van den Driessche and Watmough (2002) [11], Hyman et al. (2004) [41]. The technique

is called the next generation method and defines R0 as the spectral radius of the next

generator operator.
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2.2.3 R0 using the next generation method

Let us assume that there are n compartments of which m are infected. We define the

vector x = (x1, ..., xn)T , where xi ≥ 0 denotes the number of proportion of individuals

in the ith compartment. For simplicity we sort the compartments so that the first m

compartments correspond to infected individuals.

Define Xs to be set of all disease free states, that is

Xs = {x ≥ 0|xi = 0, i = 1, 2, ...m}.

Let Fi(x) be the rate of appearance of new infections in compartment i and let Vi(x) =

V −i (x)− V +
i (x), where V +

i is the rate of transfer of individuals into compartment i by all

other means and V −i is the rate of transfer of indivuals out of the ith compartment.

The disease transmission model consists of nonnegative initial conditions together with

the following system of equations:

ẋi = fi(x) = Fi(x)− Vi(x) (2.5)

Let us consider the following assumptions as in [11]:

1. If x ≥ 0, then Fi,V−i ,V+
i ≥ 0 for i = 1, 2, ..., n.

It is noted that in the case where the compartment is empty, then there can be no

transfer of individuals out of the compartment by death, infection nor any other

means.

2. If xi = 0, then V−i = 0. This simply means that nobody leaves the compartment.

In particular if x ∈ Xs, then V−i = 0 for i = 1, 2, ...,m.

3. If Fi = 0, i > m. (m is the number of infectives classes)

4. If x ∈ Xs, then Fi = 0, and Vi = 0 for all i = 1, 2, ...,m.

5. If F(x) is set to zero, then all the eigenvalues of Df(x0) have negative real parts

and Df(x0) is the derivative
[
∂f1
∂xj

]
evaluated at the disease free equilibrium x0.
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Assuming that Fi and Vi meet the assumptions above, we can form the next generation

matrix FV −1 from the matrices of partial derivatives of Fi and Vi. More specifically we

have,

F =
[
∂Fi
∂xj

(x0)
]

and V =
[
∂Vi
∂xj

(x0)
]

where i, j = 1, ...,m and x0 is the disease free equilibrium.

The entries of FV −1 give the rate at which infected individuals in xj produce new infec-

tions in xi, multiplied by the average length of time an individual spends on a single visit

to compartment j.

Definition 2.2.1. The basic reproduction number is given by

R0 = ρ(FV −1) (2.6)

where ρ denotes the spectral radius of the matrix FV −1.

Thus, we call FV −1 the next generation matrix for the model and we shall set R0 as equal

to the spectral radius FV −1.

2.3 Stochastic Processes

Let (Ω,F ,P) be a probability space, see [60, pp9-11]. A filtration is an increasing family

{Ft}t≥0 of increasing sub-σ-algebras of F (i.e. Ft ⊂ Fs ⊂ F for all 0 ≤ t < s < ∞).

The filtration is said to be right continuous if Ft = ⋂
s>tFs for all t ≥ 0. When the

probability space is complete, the filtration is said to satisfy the usual conditions if it is

right continuous and F0 contains all P -null sets.

A family {Xt}t∈I of Rd-valued random variables is called a stochastic process with param-

eter set (or index set) I and state space Rd. The parameter set I is usually the halfline
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R+ = [0,∞}, but it may also be an interval [a, b], the nonegative integers or even subsets

of Rd. Note that for each fixed t ∈ I we have a random variable

Ω 3 ω → Xt(ω) ∈ Rd.

On the other hand, for each fixed ω ∈ Ω we have a function

I 3 t→ Xt(ω) ∈ Rd

which is called a sample path of the process, and we shall write X.(ω) for the path.

Theorem 2.3.1. ([60]) If {Xt}t≥0 is a progressively measurable process and τ is a stop-

ping time, then XτII<∞ is Fτ -measurable. In particular, if τ is finite, then Xτ is {Fτ}-

measurable.

Theorem 2.3.2. ([60]) Let {Mt}t≥0 be an Rd-valued martingale with respect to {Ft}, and

let θ, ρ be two finite stopping times.

Then

E(Mθ|Fρ) = Mθ∧ρ a.s.

In particular, if τ is a stopping time, then

E(Mτ∧t|Fs) = Mτ∧s a.s.

holds for all 0 ≤ s < t < ∞. That is, the stopped process M τ = {Mτ∧t} is still a

martingale with respect to the same filtration {Ft}.

2.4 Brownian Motions

Brownian motion is the name given to the irregular movement of pollen grains, suspended

in the water, observed by the Scottish botanist Robert Brown in 1982. The motion was

later explained by the random collisions with the molecules of water. To describe the

motion mathematically it is natural to use the concept of a stochastic process Bt(ω),

interpreted as the position of the pollen grain w at time t. Let us define Brownian motion

mathematically in what follows, see for instance [60, p15]
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Definition 2.4.1. Let (Ω,F ,P) be a probability space with a filtration {Ft}t≥0. A (stan-

dard) one-dimensional Brownian motion is a real-valued continuous {Ft}-adapted process

{Bt}t≥0 with the following properties:

• B0 = 0 a.s.;

• for 0 ≤ s < t < ∞, the increment Bt − Bs is normally distributed with mean zero

and variance t− s;

• for 0 ≤ s < t <∞, the increment Bt −Bs is independent of Fs.

2.5 Itô’s Formula

Let {Bt}t≥0 be a one-dimensional Brownian motion defined on the complete probability

space (Ω,F ,P) adapted to the filtration {F}t≥0, see [60, p31]. Let L1(R+;Rd) denote the

family of all Rd-valued measurable {F}-adapted processes f = {f(t)}t≥0 such that
∫ T

0
|f(t)|dt <∞ a.s. for every T > 0.

Definition 2.5.1. A one-dimensional Itô process is a continuous adapted process x(t) on

t ≥ 0 of the form

x(t) = x(0) +
∫ t

0
f(s)ds+

∫ t

0
g(s)dBs,

where f ∈ L1(R+;R) and g ∈ L2(R+;R). We shall say that x(t) has stochastic differential

dx(t) on t ≥ 0 given by

dx(t) = f(t)dt+ g(t)dBt.

Let C2,1(Rd × R+;R) denote the family of all real-valued functions V (x, t) defined on

Rd × R+ such that they are continuously twice differentiable in x and once in t. If

V ∈ C2,1(Rd × R+;R), we set

Vt = ∂V

∂t
, Vx =

(
∂V

∂x1
, ...,

∂V

∂xd

)
,
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Vxx =
(

∂2V
∂xi∂xj

)
d×d

=


∂2V

∂x1∂x2
. . . ∂2V

∂x1∂xd... ...
∂2V

∂x1∂x1
. . . ∂2V

∂xd∂xd


Clearly, when V ∈ C2,1(R× R+;R), we have Vx = ∂V

∂x
and Vxx = ∂2V

∂x2 .

Theorem 2.5.2. ([60]) (The one-dimensional Itô formula) Let x(t) be an Itô process on

t ≥ 0 with the stochastic differential

dx(t) = f(t)dt+ g(t)dBt,

where f ∈ L1(R+;R) and g ∈ L2(R+;R). Let V ∈ C2,1(R × R+;R). Then V (x(t), t) is

again an Itô process with the stochastic differential given by

dV (x(t), t) = [Vt(x(t), t) + Vx(x(t), t)f(t) + 1
2Vxx(x(t), t)g2(t)]dt+ Vx(x(t), t)g(t)dBt a.s.

Theorem 2.5.3. ([60]) (The multi-dimensional Itô formula) Let x(t) be a d-dimensional

Itô process on t ≥ 0 with the stochastic differential

dx(t) = f(t)dt+ g(t)dB(t),

where f ∈ L1(R+;Rd) and g ∈ L2(R+;Rd×m). Let V ∈ C2,1(Rd×R+;R). Then V (x(t), t)

is again an Itô process with the stochastic differential given by

dV (x(t), t) = [Vt(x(t), t) + Vx(x(t), t)f(t) + 1
2trace(g

T (t)Vxx(x(t), t)g(t))]dt

+Vx(x(t), t)g(t)dB(t) a.s

Let us now introduce formally a multiplication rule:

dtdt = dBidt = 0, dBidBi = dt, dBidBj = 0 if i 6= j,

Then, for example,

dxi(t)dxj(t) =
∑

m
k=1gik(t)gjk(t)dt.

Example 2.5.4. Let us consider a real-valued function of the form g = g(S(t), I(t), J(t), A(t)).

In particular we note that ∂g
∂t

= 0. For convenience we write down the formula for the

differential of g. Applying the multi-dimensional Itô formula we obtain
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dg = ∂g

∂S
dS + ∂g

∂I
dI + ∂g

∂J
dJ + ∂g

∂A
dA+ 1

2

[
∂2g

∂I2dSdS + ∂2g

∂I2dIdI + ∂2g

∂J2dJdJ

+ ∂2g

∂A2dAdA

]
+
[
∂2g

∂S∂I
dSdI + ∂2g

∂S∂J
dSdJ + ∂2g

∂S∂A
dSdA+ ∂2g

∂I∂J
dIdJ

+ ∂2g

∂I∂A
dIdA+ ∂2g

∂J∂A
dJdA

]
.

2.6 Stochastic Differential equations

Consider the d-dimensional stochastic differential equation of Itô type, see [60, pp.48-51]

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t) on t0 ≤ t ≤ T (2.7)

with initial value x(t0) = x0. By the definition of stochastic differential, this equation is

equivalent to the following stochastic integral equation:

x(t) = x(0) +
∫ t

t0
f(x(s), s)ds+

∫ t

t0
g(x(s), s)dB(s) on t0 ≤ t ≤ T. (2.8)

2.7 Existence and Uniqueness of Solutions

Theorem 2.7.1. Assume that there exist two positive constants K̄ and K such that

(i) (Lipschitz condition) for all x, y ∈ Rd and t ∈ [t0, T ]

|f(x, t)− f(y, t)|2 ∧ |g(x, t)− g(y, t)|2 ≤ K̄|x− y|2; (2.9)

(ii) (Linear growth condition) for all (x, t) ∈ Rd × [t0, T ]

|f(x, t)|2 ∧ |g(x, t)|2 ≤ K(1 + |x|2). (2.10)

Then there exists a unique solution x(t) to equation (2.7) and the solution belongs to

M2([t0, T ];Rd).
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2.8 Stability of Stochastic Differential equations

Consider the d-dimensional stochastic differential equation, see for instance [60, pp.110-

128]

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t) (2.11)

on t ≥ 0 with initial value X(0) = X0, the solution is denoted by X(t,X0). Assume that

f(t, 0) = g(t, 0) = 0 for all t ≥ 0, so the origin point is an equilibrium of (2.11).

Definition 2.8.1. The equilibrium X = 0 of the system (2.11) is said to be:

(i) Stable in probability if for all ε > 0,

lim
X0→0

P
(

sup
t≥0
|X(t,X0)| ≥ ε

)
= 0; (2.12)

(ii) asymptotically stable if it is stable in probability and moreover;

lim
X0→0

P
(

lim
t→∞

X(t,X0) = 0
)

= 1; (2.13)

(iii) globally asymptotically stable if it is stable in probability and moreover, for all X0 ∈

Rn

P
(

lim
t→∞

X(t,X0) = 0
)

= 1; (2.14)

(iv) almost surely exponentially stable if for all X0 ∈ Rn,

lim
t→∞

sup 1
t

ln |X(t,X0)| < 0 a.s.; (2.15)

(v) pth moment exponentially stable if there is a pair of positive constants C1 and C2 such

that for all X0 ∈ Rn,

E (|X(t,X0|p) ≤ C1|X0|pe−C2t on t ≥ 0. (2.16)

Let us denote by L the differential operator associated to (2.11), defined for a function

V (t, x) ∈ C1,2(R× Rn) by

LV = ∂V

∂t
+ fT

∂V

∂x
+ 1

2Tr
[
gT
∂2V

∂x2 g

]
.
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Chapter 3

Stability of an HIV/AIDS epidemic

model with treatment and inflow of

infectives

3.1 Introduction

We investigate an HIV/AIDS epidemic model with treatment similar to that in [14].

The model allows for two stages of infection namely the asymptomatic phase and the

symptomatic phase. The ARV treatment helps the symptomatic individuals to move back

to asymptomatic phase. Thus, we only consider two stages according to clinic stages, i.e.,

the asymptomatic phase I and the symptomatic phase J . In this chapter and throughout,

we find it convenient to replace βS(I + bJ)c in [14] by S(β1I + β2J)c. We also introduce

inflow of infectives Q1 and Q2 in the model as in the diagram below:
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A J

S I
S(β1I + β2J)

k1I

k2J

αJ

(µ+ δ)A

µS

µK

µJ

µI

Q1

Q2

Figure 3.1: Flow diagram of HIV/AIDS model with inflow of infectives

We now give the description of parameters.

µ Birth and mortality rates by natural causes,

K Size of the total population,

c An individual average number of sexual contacts with others per unit time,

β1 Probability of disease transmission in the asymptomatic phase,

β2 Probability of disease transmission in the symptomatic phase,

k1 Progression rate from I to J ,

k2 Progression rate from the symptomatic phase J to A,

α Rate of transfer from J to I due to ARV treatment,

δ Disease induced mortality rate.

Our model is then constructed by considering the appropriate in-flow and out-flow rates

of each compartment as in figure (3.1) and parameters in the list above.
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dS

dt
= µk − Sλ− µS,

dI

dt
= Q1 + Sλ− (µ+ k1)I + αJ,

dJ

dt
= Q2 + k1I − (µ+ k2 + α)J,

dA

dt
= k2J − (µ+ δ)A. (3.1)

where

λ = c(β1I + β2J)

and

with S(0) = S0 > 0, I(0) = I0 ≥ 0, J(0) = J0 ≥ 0, A(0) = A0 ≥ 0

In the absence of Q1 and Q2, then the model system (3.1) permits two equilibria; the

disease-free equilibrium E0 = (K, 0, 0, 0) and the equilibrium point E∗ = (S∗, I∗, J∗, A∗).

The coordinates of the equilibrium point will be calculated at a later stage.

For calculating the basic reproduction number R0 we take Q1 = Q2 = 0. Using the next

generation matrix we re-arrange the equations so that the infective classes come first, we

obtain

dI

dt
= Sλ− (µ+ k1)I + αJ,

dJ

dt
= k1I − (µ+ k2 + α)J,

dS

dt
= µK − Sλ− µS. (3.2)

We eliminate that last compartment since it does not appear in any other compartment

and we write (3.2) by

x
′ = F (x)− V (x)
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which can also be expressed by

x
′

i = Fi − Vi or x
′

i = Fi − (V −i − V +
i )

where F and V are the m× n matrices given by

F =
(

∂Fi(x0)
∂xj

)
, V=

(
∂Vi(x0)
∂xj

)
.

Then from our system we have

F=


∂Fi
∂I

∂Fi
∂J

0 0

 =

 β1Sc β2Sc

0 0


and

V=


∂V
∂I

∂V
∂J

∂V
∂I

∂V
∂J

 =


µ+ k1 −α

−k1 (µ+ k2 + α)


The derivatives of F and V at E0(0, 0, K) are given by

F=


β1cK β2cK

0 0

 and V=


(µ+ k1) −α

−k1 (µ+ k2 + α)


The inverse of V is given by

V −1 = 1
(µ+k1)(µ+k2)+µα


(µ+ k2 + α) k1

α (µ+ k1)


and a calculation of FV −1 gives the basic reproductive number of the model as

ρ(FV −1) = R0 = cK ((µ+ k2 + α)β1 + β2k1)
((µ+ k1)(µ+ k2) + αµ) . (3.3)
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3.1.1 Existence of the endemic equilibrium

We first compute the coordinates of the endemic equilibrium E∗ by

S∗ = µK

λ+ µ
,

I∗ = α(λ+ µ)Q2 + (α + µ+ k2)(kλµ+ (λ+ µ)Q1)
[(µ+ k1)(µ+ k2) + αµ](λ+ µ) ,

J∗ = 1
(α + µ+ k2)

[
Q2 + k1

(
α(λ+ µ)Q2 + (α + µ+ k2)(kλµ+ (λ+ µ)Q1)

[(µ+ k1)(µ+ k2) + αµ](λ+ µ)

)]
,

A∗ = k2

(µ+ δ)(α + µ+ k2)

[
Q2 + k1

(
α(λ+ µ)Q2 + (α + µ+ k2)(kλµ+ (λ+ µ)Q1)

[(µ+ k1)(µ+ k2) + αµ](λ+ µ)

)]
,

We now prove existence of the endemic equilibrium by considering λ as defined in the

model system (3.1). At the same time, λ is a root of the following polynomial

Z1λ
2 + Z2λ+ Z3 = 0; (3.4)

where

Z1 = µ(α + k2 + µ) + k1(k2 + µ)

Z2 = cβ1((−α− k2 − µ)(µK +Q1)− αQ2) + k1(µ(µ+ k2)− cβ2(µK +Q1 +Q2))

+µ(µ(α + k2)− cβ2Q2)

Z3 = −µ(cβ1(Q1(α + k2 + µ) + αQ2) + cβ2(k1(Q1 +Q2) + µQ2)).

For the case Q1 = Q2 = 0, the quadratic equation admits a root λ0 = 0 which corresponds

to the disease-free equilibrium and another root

λ1 = µ(cβ1K(α + k2 + µ)− k1(−cβ2K + k2 + µ) + µ(α + k2 + µ))
αµ+ k1µ+ k2µ+ k1k2 + µ2

which is positive if and only if −Z2 > 0. It is also noted that a negative value of λ will

result in a point E1 which is non-feasible. Thus, if Q1, Q2 > 0 as −Z2 = h > 0 the

quadratic equation admits one positive and one negative root. The negative root is not

meaningful biologically, and so we only consider the positive root given by
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λ∗ =
−Z2 +

√
Z2

2 − 4Z1Z3

2Z1
.

We note that h > 0 if and only if R0 > 1, and h < 0 if and only if R0 < 1. We observe

that

lim
Q1,Q2→0

λ∗ = h+ |h|
2Z1

=


0, h < 0,

h
Z1
, h > 0.

In particular it is noticed that as Q1, Q2 get closer to zero, the model has threshold

R0 = 1. Therefore, for Q1, Q2 > 0, the disease remains endemic, so the system (3.1) has

one endemic equilibrium point and the disease will remain in the population. In this case

the system (3.1) would not exhibit a disease-free equilibrium.

3.1.2 Feasible solutions

Thus, we shall study system (3.1) in the following feasible region:

∆ =
{
x ∈ R4|x1 > 0, x2 > 0, x3 > 0, x4 > 0, x1 + x2 + x3 + x4 < k

}
. (3.5)

which can be shown to be positively invariant with respect to (3.1).

3.1.3 Global stability of the disease-free equilibrium

We now prove by means of Lyapunov function that forR0 < 1 the disease-free equilibrium

E0(K, 0, 0, 0) is globally asymptotically stable if Q1 = Q2 = 0.

Let us first define the numbers π, ξ0, ξ1, ξ2 and ξ3
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π = (µ+ k1)(µ+ k2) + αµ,

ξ1 = β1(µ+ k2 + α) + β2k1,

ξ2 = β1α + β2(µ+ k1). (3.6)

The values of ξ0 and ξ3 will be displayed at later stage, meanwhile they are declared to

be positives.

Theorem 3.1.1. For the case Q1 = Q2 = 0, then the disease-free equilibrium E0 of

system (3.1) is globally asymptotically stable if R0 < 1.

Proof. Consider the numbers as displayed (3.6).

Assuming that R0 < 1, it is possible to find positive numbers ξ0 and ξ3 sufficiently small

such as to have the following inequality:

ξ0cβ1K + πβ1(R0 − 1) < 0, ξ0cβ2K + ξ3k2 + πβ2(R0 − 1) < 0.

Define the following function

V1(S(t), I(t), J(t), A(t)) = ξ0(K − S(t)) + ξ1I(t) + ξ2J(t) + ξ3A(t).

Differentiating V1(t), we have

V̇1(t) = −ξ0Ṡ(t) + ξ1 [c(β1I + β2J)S − (µ+ k1)I + αJ ] + ξ2 [k1I − (µ+ k2 + α)J ] + ξ3Ȧ(t)

≤ −ξ0Ṡ(t) + π(R0 − 1)(β1I + β2J) + ξ3Ȧ(t)

= −ξ0(µ(K − S)− cK(β1I + β2J)) + π(R0 − 1)(β1I + β2J) + ξ3(k2J − (µ+ δ)A)

= −ξ0µ(K − S) + I[ξ0cβ1K + πβ1(R0 − 1)] + J [ξ0cβ2K + ξ3k2 + πβ2(R0 − 1)]

−ξ3(µ+ δ)A. (3.7)

We note that V1 is positive-definite and V̇1 is negative-definite. Therefore the function V1

is a Lyapunov function for system (3.1) without inflow of infectives. By the Lyapunov
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asymptotic stability theorem, the disease-free equilibrium E0 is globally asymptotically

stable. This completes the proof.

3.1.4 Global stability of the endemic equilibrium

We shall now prove global stability of the endemic equilibrium.

Theorem 3.1.2. The endemic equilibrium E∗ of system (3.1) is globally asymptotically

stable for R0 > 1.

Proof. Setting r = (S, I, J) ∈ Ω ⊂ R4, we can now construct a Lyapunov function of the

form

V2 = V2(r) =
(
S − S∗ − S∗ ln S

S∗

)
+ C1

(
I − I∗ − I∗ ln I

I∗

)
+ C2

(
J − J∗ − J∗ ln J

J∗

)
(3.8)

where r∗ = E∗ = (S∗, I∗, J∗) and Ci > 0 is a constant. Thus, V2(r) ≥ 0 for r ∈ Int ∆,

and V2(r) = 0 ⇐⇒ r = r∗.

By equating each equation in system (3.1) to zero, the equilibrium equations as follows

are useful:

µK = S∗(β1I
∗ + β2J

∗)c+ µS∗,

(µ+ k2 + α) = Q2

J∗
+ k1

I∗

J∗
,

(µ+ k1) = Q1

I∗
+ S∗(β1I

∗ + β2J
∗)c

I∗
+ α

J∗

I∗
.

(3.9)
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The time derivative of V2 is

V̇2 = Ṡ
(

1− S∗

S

)
+ C1İ

(
1− I∗

I

)
+ C2J̇

(
1− J∗

J

)
. (3.10)

We substitute (3.9) into (3.10)

V̇2 =
(

1− S∗

S

)
(−cS(β1I + β2J)− µS + cS∗(β1I

∗ + β2J
∗) + µS∗)

+C1

(
1− I∗

I

)
(Q1 + S(β1I + β2J)c+ αJ

−(Q1 + β1S
∗cI∗ + β2S

∗cJ∗ + αJ∗)I
I∗

)

+C2

(
1− J∗

J

)(
Q2 + k1I −

(
Q2

J∗
+ k1

I∗

J∗

))
. (3.11)

Expanding and grouping some terms we have

V̇2 = µS∗
(

2− S

S∗
− S∗

S

)
+
(

1− S∗

S

)
cβ1(I∗S∗ − IS)

+
(

1− S∗

S

)
cβ1(J∗S∗ − JS) + C1

(
1− I∗

I

)(
Q1 −Q1

I

I∗

)
+C1

(
1− I∗

I

)
β1c

(
IS − I∗S∗ I

I∗

)
+C1

(
1− I∗

I

)
β2c

(
JS − J∗S∗ I

I∗

)
+ C1α

(
1− I∗

I

)(
J − J∗ I

I∗

)
+C2k1

(
1− J∗

J

)(
I − I∗ J

J∗

)
+ C2

(
1− J∗

J

)(
Q2 −Q2

J

J∗

)
. (3.12)

Let

S

S∗
= x,

I

I∗
= y,

J

J∗
= z.

Then (3.12) becomes
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V̇2 = µS∗
(

2− 1
x
− x

)
+ cβ1I

∗S∗
(

1− xy − 1
x

+ y
)

+cβ2J
∗S∗

(
1− xz − 1

x
+ z

)
+ C1

(
2− 1

y
− y

)
Q1

+C1β1cS
∗I∗(xy − y − x+ 1) + C1β2cS

∗J∗
(
xz − xz

y
− y + 1

)

+C1αJ
∗
(
z − y − z

y
+ 1

)
+ C2k1I

∗
(
y − z − y

z
+ 1

)
+C2

(
2− 1

z
− z

)
Q2. (3.13)

Expanding further we have

V̇2 = µS∗
(

2− 1
x
− x

)
+ C1

(
2− 1

y
− y

)
Q1 + cβ1I

∗S∗ − cβI∗S∗xy − cβI∗S∗ 1
x

+cβ1I
∗S∗y + cβ2J

∗S∗ − cβ2J
∗S∗xz − cβ2J

∗S∗
1
x

+ cβ2J
∗S∗z

+C1β1cS
∗I∗xy − C1β1cS

∗I∗y − C1β1cS
∗I∗x+ C1β1cS

∗I∗ + C1β2cS
∗J∗xz

−C1β2cS
∗J∗

xz

y
− C1β2cS

∗J∗y + C1β2cS
∗J∗

+C1αJ
∗z − C1αJ

∗y − C1αJ
∗ z

y
+ C1αJ

∗ + C2k1I
∗y − C2k1I

∗z

−C2k1I
∗y

z
+ C2k1I

∗. (3.14)

Grouping some terms like xy, xz, y and z, then we have

V̇2 = µS∗
(

2− 1
x
− x

)
+ C1

(
2− 1

y
− y

)
Q1 + cβ1I

∗S∗xy(C1 − 1) + cβ2J
∗S∗xz(C1 − 1)

+y(cβ1S
∗I∗ − C1cβ1S

∗I∗ − C1cβ2S
∗J∗ − C1αJ

∗ + C2k1I
∗)

+z(cβ2S
∗J∗ + C1αJ

∗ − C2k1I
∗) + cβ1I

∗S∗ − cβ1I
∗S∗

1
x

+cβ2J
∗S∗ − cβ2J

∗S∗
1
x

+ C1β1cS
∗I∗ − C1β2cS

∗J∗
xz

y
+ C1β2cS

∗J∗

−C1αJ
∗ z

y
+ C1αJ

∗ − C2k1I
∗y

z
+ C2k1I

∗ − C1β1cS
∗I∗x (3.15)

We choose the coefficients of xy, xz, y and z which are equal to zero; that is,
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(C1 − 1) = 0,

cβ1S
∗I∗ − C1cβ1S

∗I∗ − C1cβ2S
∗J∗ − C1αJ

∗ + C2k1I
∗ = 0,

cβ2S
∗J∗ + C1αJ

∗ − C2k1I
∗ = 0.

Thus we have

C1 = 1, C2 = cβ2S
∗J∗ + αJ∗

k1I∗
.

Equation (3.15) is reduced to the following.

V̇2 = µS∗
(

2− 1
x
− x

)
+ C1

(
2− 1

y
− y

)
Q1 + cβ1S

∗I∗
(

2− 1
x
− x

)

+cβ2S
∗J∗

(
2− 1

x
− xz

y

)
− z

y
αJ∗ + αJ∗ − y

z
C2k1I

∗

+C2k1I
∗ + C2

(
2− 1

z
− z

)
Q2. (3.16)

By substituting C1, C2 in (3.16) it follows that

V̇2 = S∗(µ+ cβ1I
∗)
(

2− 1
x
− x

)
+
(

2− 1
y
− y

)
Q1 + cβ2S

∗J∗
(

3− 1
x
− xz

y
− y

z

)

+αJ∗
(

2− z

y
− y

z

)
+ C2

(
2− 1

z
− z

)
Q2. (3.17)

Note that since the arithmetical mean is greater than or equal to the geometric mean,

that is

(a1 + a2 + ...+ an)/n ≥ n
√
a1a2...an for ai ≥ 0, i = 1, .., n,

then it follows that (2− x− 1/x) ≤ 0 for x > 0 and (2− x− 1/x) = 0 if and only if x = 1;

(2− y − 1/y) ≤ 0 for y > 0 and (2− y − 1/y) = 0 if and only if y = 1; (2− z − 1/z) ≤ 0

for z > 0 and (2− z − 1/z) = 0 if and only if z = 1;
(
2− z

y
− y

z

)
≤ 0 for y, z > 0 and(

2− z
y
− y

z

)
= 0 if and only if y = z;

(
3− 1

x
− xz

y
− y

z

)
≤ 0 for x > 0, y > 0, and z > 0
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and
(
3− 1

x
− xz

y
− y

z

)
= 0 if and only if x = y = z = 1. Therefore, it is easy to see that

V̇2 ≤ 0. Furthermore, V̇2 = 0 if and only if x = y = z = 1. The maximum invariant set of

system (3.1) on the set {(x, y, z) : V̇ = 0} is the singleton (1, 1, 1). Thus, for system (3.1),

the endemic equilibrium E∗ is globally asymptotically stable if R0 > 1 by the Lasalle

invariance principle. 2

3.2 Numerical simulations and concluding remarks

We present some numerical simulations in the general context to investigate the dynamics

of the model system with and without the inflow of infectives. For some numerical simu-

lations in the context of the South African HIV historical data, we let the reader refer to

chapters 5, 6, 7 and 8. The parameter values of the model are given in the table below.

Table 3.1: Estimating parameters for model system 3.1

Parameter Estimated values Ref

µ 0.017 [7]

µ0 0.017 [7]

α 0.21 [7]

k1 0.3 Estimated

k2 0.3 Estimated

c 3 [7]

δ 0.21 Estimated
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Figure 3.2: The population dynamics with and without inflow

In Figure 3.2, we show the population dynamics of HIV/AIDS with and without positive

flow of infectives. It can be seen that whenever there is positive inflow of infectives, then

the model system (3.1) does not permit a disease-free equilibrium even when R0 < 1,

see for example in Figure 3.2 (c). In Figure 3.2 (b) and (d), we show that the presence

of the inflow of infectives makes the disease to stabilize more at the endemic level. The

basic reproduction number in (d) is less than in (b), but the graph in Figure (d) is more

endemic than in Figure (b).
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Chapter 4

Stochastic dynamics of an

HIV/AIDS epidemic model with

treatment1

4.1 Introduction

In this chapter, we investigate a stochastic HIV/AIDS epidemic model with treatment.

The model allows for two stages of infection namely the asymptomatic phase and the

symptomatic phase. We prove existence of global positive solutions. We show that the

solutions are stochastically ultimately bounded and stochastically permanent. We also

study asymptotic behaviour of the solution to the stochastic model around the disease-free

equilibrium of the underlying deterministic model. Our theoretical results are illustrated

by way of numerical simulations.

Examples of stochastic models for HIV/AIDS can be found in [113, 26, 47]. In [26], the

authors study a model of AIDS and condom use via the technique of parameter perturba-
1A modified version of this chapter was published as:

M.U. Nsuami, P.J. Witbooi. Stochastic dynamics of an HIV/AIDS epidemic model with treatment.

Quaestiones Mathematicae, (2018) 1-17.
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tion which is standard in stochastic population modeling. Their research indicates that

introducing environmental noise into the deterministic model can have a stabilising effect.

The paper by Yang et al. [113] investigates the dynamic behaviour of an HIV model with

stochastic perturbation and the authors obtain the asymptotic behaviour results. Kamina

et al. [47] models the population dynamics of the human immunodeficiency virus type-1

(HIV-1) population dynamics with the use of diffusion processes. The authors incorporate

more of the randomness of the HIV-1 infection process to investigate the probability and

the possibility of viral extinction in their model.

The chapter is structured as follows. In Section 4.2 we give some preliminaries. In Section

4.3 we present the model and we show the existence of global solutions. In Section

4.4 we study the ultimate boundedness and stochastic permanence properties. Section

4.5 studies asymptotic behaviour around the disease-free equilibrium of the underlying

deterministic model. Section 4.6 gives a numerical illustrations and Section 4.7 provides

some concluding remarks.

4.2 Preliminaries

Let us denote by Rn
+ (resp. Rn

++) the set of points in Rn having only non-negative (resp.

strictly positive) coordinates.

Throughout this paper we assume a complete probability space (Ω,F ,P) with a filtration,

{Ft}t≥0, that is right continuous and with F0 containing all the subsets having measure

zero.

Consider an equation of the form (4.1) below, for an k-dimensional Brownian motion B(t)

on Ω.

dx(t) = f(t, x)dt+ g(t, x)dB(t) (4.1)
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A solution with initial value x(0) = x0 is denoted by x(t, x0). Assume that f(t, 0) =

g(t, 0) = 0 for all t ≥ 0, so the origin point is an equilibrium of (4.1).

For a stochastic process x(t) which is a function of B(t), when we wish to single out a

specific Brownian path ω, we shall write x(t, ω).

By L we denote the infinitesimal generator of an equation of the form (4.1), see [72] of

∅ksendal, defined for a function V (t, x) ∈ C1,2(R+ × Rk).

Definition 4.2.1. (see [51, 115]) A solution x(t) of the system (4.1) is said to be stochas-

tically ultimately bounded if for any ε ∈ (0, 1), there is a positive constant ϕ = ϕ(ε), such

that for any positive initial value x(0),

lim sup
t→∞

P{|x(t)| > ϕ} ≤ ε.

Definition 4.2.2. (see [77]) A solution x(t) of system (4.1) is said to be stochastically

permanent if for any ε ∈ (0, 1), there exists a pair of positive constants ϕ = ϕ(ε) and

ξ = ξ(ε), such that for any positive initial value x(0), the following condition holds:

lim inf
t→∞

P {|x(t)| ≤ ϕ} ≥ 1− ε, and lim inf
t→∞

P {|x(t)| ≥ ξ} ≥ 1− ε.

Remark 4.2.3. The following inequality will be useful in Sections 4 and 5.

Given any finite sequence of real numbers u1, u2, ... , un, then

(
n∑
i=1

ui)2 ≤ n(
n∑
i=1

u2
i ). (4.2)

4.3 The model and global solutions

In the underlying deterministic model, we assume a total population which at any time

t is subdivided into four classes. The classes are: the class of susceptible individuals
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S(t), the class of asymptomatic individuals I(t), the class of symptomatic individuals

J(t) and the class of the population who have full-blown AIDS A(t). The term µK is the

recruitment rate into the population, µ being the birth rate which is assumed to coincide

with the average mortality rate by natural causes. The disease-induced mortality rate is

denoted by δ. The parameters β1, β2 denote the probabilities of disease transmission per

contact by an infective in the first and second stage respectively. For an individual, c is

the average number of contacts with others per unit time. By k1 and k2 we denote the

transfer rates from the asymptomatic phase I to the symptomatic phase J and from the

symptomatic phase to the A-class, respectively. The parameter α is the rate of transfer

from the symptomatic phase J to the asymptomatic phase I due to treatment.

Let W (t) = (W0(t),W1(t),W2(t),W3(t)) be a 4-dimensional Wiener process defined on

this probability space. The components of W are assumed to be mutually independent.

In the model below, the non-negative constants σ0, σ1, σ2 and σ3 denote the intensities of

the stochastic perturbations.

In the literature, it is showed that there are different possible approaches to introduce

random effects in the epidemic models affected by environmental white noise from biologi-

cal significance and mathematical perspective. Here, we mainly mention three approaches

to the model (3.1) as an example. For the first model, we assume that white noise type

stochastic perturbations are directly proportional to S, I, J, A influenced on the dS, dI, dJ

and dA in the model (3.1) with or without the positive inflow of infected individuals. The

model takes the following form.
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dS = [µK − c(β1I + β2J)S − µS] dt+ σ0SdW0(t),

dI = [c(β1I + β2J)S − (µ+ k1)I + αJ ] dt+ σ1IdW1(t),

dJ = [k1I − (µ+ k2 + α)J ] dt+ σ2JdW2(t),

dA = [k2J − (µ+ δ)A] dt+ σ3AdW3(t). (4.3)

The second one, because system (3.1) has a positive equilibrium E∗ = (S∗, I∗, J∗, A∗) un-

derR0 > 1, we can introduce stochastic perturbations which are linked to S(t), I(t), J(t), A(t)

from values of S∗, I∗, J∗, A∗, respectively. In detail, that is,

dS = [µK − c(β1I + β2J)S − µS] dt+ σ0(S − S∗)dW0(t),

dI = [c(β1I + β2J)S − (µ+ k1)I + αJ ] dt+ σ1(I − I∗)dW1(t),

dJ = [k1I − (µ+ k2 + α)J ] dt+ σ2(J − J∗)dW2(t),

dA = [k2J − (µ+ δ)A] dt+ σ3(A− A∗)dW3(t). (4.4)

As a third approach, one can add randomly fluctuation affecting directly the deterministic

model. Suppose that infection rate β1 and β2 are stochastically perturbed with

β1 → β1 + σ0Ḃ(t), β2 → β2 + σ0Ḃ(t), namely

dS = [µK − c(β1I + β2J)S − µS] dt− σ0cβ1ISdW0(t)− σ1cβ2JSdW0(t),

dI = [c(β1I + β2J)S − (µ+ k1)I + αJ ] dt− σ0cβ1ISdW0(t)− σ1cβ2JSdW0(t),

dJ = [k1I − (µ+ k2 + α)J ] dt

dA = [k2J − (µ+ δ)A] dt (4.5)

Let us consider the model (4.3).

In the special case when σ0 = 0, the model system (4.3) permits a disease-free equilibrium

E0 = (K, 0, 0, 0). The basic reproduction number of the underlying deterministic model
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is very similar to the one in [14] and is computed as

R0 = cK[β1(µ+ k2 + α) + β2k1]
(µ+ k1)(µ+ k2) + αµ

.

We use the notation:

X(t) = (S(t), I(t), J(t), A(t)).

In what follows we show that solutions of (4.3) exist globally and are positive (a.s), see

for instance [77, 115].

Theorem 4.3.1. For model (4.3) and any initial value (S(0), I(0), J(0), A(0)) ∈ R4
++,

there is a unique solution (S(t), I(t), J(t), A(t)) on t ≥ 0 which remains in R4
++ with

probability one.

Proof. Note that the coefficients of the system (4.3) are locally Lipschitz continuous. Thus

there exists a unique local solution on t ∈ [0, τe), where τe is the explosion time. We need

to show that this solution is global almost surely (a.s) ; that is, τe =∞ a.s.

Let m0 > 0 be sufficiently large so that S(0), I(0), J(0), and A(0) sits within the interval

[1/m0,m0]. For each integer m ≥ m0, define a sequence of stopping times by

τm = inf
{
t ∈ [0, τe) : S(t) /∈

( 1
m
,m
)

or I(t) /∈
( 1
m
,m
)

or J(t) /∈
( 1
m
,m
)

or A(t) /∈
( 1
m
,m
)}

where we set inf∅ = ∞. Now since the sequence (τm) is non-decreasing, the following

limit exists:

τ∞ = lim
m→∞

τm,

and τ∞ ≤ τe (a.s.). Now we need to show τ∞ =∞ a.s. If this statement is violated, then

there exist T > 0 and ε ∈ (0, 1) such that
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P{τ∞ ≤ T} > ε. (4.6)

Thus, there is an integer m1 ≥ m0 such that

P{τm ≤ T} ≥ ε ∀m ≥ m1. (4.7)

Choose a0 > 0 sufficiently small in order to have a0cβ1 < µ and a0cβ2 < µ. Consider the

function V1 defined by

V1(S, I, J, A) =
(
S − a0 − a0 ln S

a0

)
+
(
I − 1− ln I

)
+
(
J − 1− ln J

)
+
(
A− 1− lnA

)
.

Note that each of the four bracketed terms are non-negative while (S(t), I(t), J(t), A(t)) ∈

R4
++. By applying Itô’s formula we have,

dV1(S, I, J, A) = LV1dt+ (S − a0)σ0dW0(t) + (I − 1)σ1dW1(t)

+(J − 1)σ2dW2(t) + (A− 1)σ3dW3(t), (4.8)

where

LV1 =
[(

1− a0

S

)(
µK − c(β1I + β2J)S − µS

)]
+
[(

1− 1
I

)(
c(β1I + β2J)S

−(µ+ k1)I + αJ)
)]

+
[(

1− 1
J

)(
k1I − (µ+ k2 + α)J

)]
+
[(

1− 1
A

)(
k2J − (µ+ δ)A

)]
+ 1

2(a0σ
2
0 + σ2

1 + σ2
2 + σ2

3)

≤ µK − µ(I + J) + a0c(β1I + β2J) + µ(3 + a0) + k1 + k2 + α + δ

+1
2
(
a0σ

2
0 + σ2

1 + σ2
2 + σ2

3).

Note that by the choice of a0 we have:
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a0cβ1I − µI = I (a0cβ1 − µ) < 0 and a0cβ2J − µJ = J (a0cβ2 − µ) < 0.

Therefore

LV1 ≤ C,

where C = µK + µ(3 + a0) + k1 + k2 + α + δ + 1
2 (a0σ

2
0 + σ2

1 + σ2
2 + σ2

3) is a constant.

Integrating both sides of (4.8) from 0 to τm ∧ T yields

∫ τm∧T

0
dV1(S(s), I(s), J(s), A(s)) ≤

∫ τm∧T

0
Cds+H(τm ∧ T ),

where

H(s) =
∫ s

0
(S(u)− a0)σ0dW0(u) +

∫ s

0
(I(u)− 1)σ1dW1(u) +

∫ s

0
(J(u)− 1)σ2dW2(u)

+
∫ s

0
(A(u)− 1)σ3dW3(u).

Note that H(s) is a mean zero martingale process. Thus by taking expectations we have

E
[
V1(S(τm ∧ T ), I(τm ∧ T ), I(τm ∧ T ), J(τm ∧ T ))

]
≤ V1(S(0), I(0), J(0), A(0)) + CT.

Set Ωm = {τm ≤ T} for m ≥ m1. From equation (4.7), we have that P(Ωm) ≥ ε for each

m > m1. For every ν ∈ Ωm, we have

{S(τm, ν), I(τm, ν), J(τm, ν), A(τm, ν)}
⋂
{m, 1/m} 6= ∅.

Consequently, for every ν ∈ Ωm

V1(S(τm ∧ T ), I(τm ∧ T ), J(τm ∧ T ), A(τm ∧ T )) ≥ Dm

where
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Dm = min
u∈{1,a0}

{
m− u− u ln m

u
,

1
m
− u− u ln 1

um

}
> 0.

Then we obtain

V1(S(0), I(0), J(0), A(0)) + CT

≥ E
[
(1ΩmV1(S(τm ∧ T ), I(τm ∧ T ), J(τm ∧ T ), A(τm ∧ T ))

]
≥ εDm,

where 1Ωm is the indicator function of Ωm. Letting m → ∞ leads to the contradiction

∞ = V1(S(0), I(0), J(0), A(0)) + CT < ∞. Therefore, the solution of model (4.3) is

positive and will not explode in finite time, with probability one. This completes the

proof.

The solution X(t) of model system (4.3) is stochastically ultimately bounded and stochas-

tically permanent.

4.4 Ultimate boundedness and permanence

The solutions to system (4.3) are expected to exhibit some further properties, other than

positivity. In this section we investigate for stochastically ultimate boundedness and

stochastic permanence.

Theorem 4.4.1. For any initial value X(0) in R4
++, system (4.3) is stochastically ulti-

mately bounded.

Proof. Let m0 > 0 be sufficiently large such that every coordinate of X(0) is contained

within the interval ( 1
m0
,m0). For each integer k ≥ m0, define the stopping time
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τk = inf
{
t ≥ 0 : S(t) /∈

(1
k
, k
)

or I(t) /∈
(1
k
, k
)

or J(t) /∈
(1
k
, k
)

or A(t) /∈
(1
k
, k
)}

. (4.9)

By Theorem 4.3.1, τk →∞ almost surely as k →∞. We have

dN = d(S + I + J + A)

= (µK − µN − δA)dt+ σ0SdW0(t) + σ1IdW1(t)

+σ2JdW2(t) + σ3AdW3(t).

Applying Itô’s formula to eµtN gives

deµtN = µeµtNdt+ eµtdN

= (µeµtK − eµtδA)dt+ σ0e
µtSdW0(t) + σ1e

µtIdW1(t)

+σ2e
µtJdW2(t) + σ3e

µtAdW3(t).

≤ µeµtKdt+ σ0e
µtSdW0(t) + σ1e

µtIdW1(t)

+σ2e
µtJdW2(t) + σ3e

µtAdW3(t) (4.10)

By integrating this inequality and then taking expectations on both sides of (4.10), one

can see that

E
[
eµ(t∧τk)N(t ∧ τk)

]
−N(0) ≤ E

[∫ t∧τk

0
µeµsKds

]
≤ K(eµt − 1).

Letting k →∞ we obtain the inequality

eµtE[N(t)]−N(0) ≤ K(eµt − 1).

Consequently,

lim sup
t→∞

E[N(t)] ≤ K.
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Note that |X| =
√
S2 + I2 + J2 + A2 ≤ N, and therefore

lim sup
t→∞

E[|X(t)|] ≤ K.

Now for any given ε > 0, let us write ϕ = K/ε. We complete the proof by using Markov’s

inequality, obtaining

lim sup
t→∞

P{|X(t)| > ϕ} ≤ lim sup
t→∞

E[|X(t)|]
ϕ

≤ K

ϕ
= ε.

The property of permanence is quite a significant property since it refers to the long term

boundedness of |X(t)| as well as boundedness away from zero in the long term.

Lemma 4.4.2. Assume that there exist positive constants ρ and h satisfying:

h

ρ
+ µ+ δ + ρ+ 1

2 max{σ2
0, σ

2
1, σ

2
2, σ

2
3} < µK. (4.11)

For any initial value X(0) ∈ R4
++, the solution X(t) satisfies the inequality

lim sup
t→∞

E
[

1
|X(t)|ρ

]
≤ 2ρH,

where

H =
(
C2

2
4hC1

+ 1
)

max
{

1, (1 + v#)ρ−2
}
,

v# =
C2 +

√
C2

2 + 4C1h

2C1

and

C1 = ρ
(
µK − µ− δ − ρ+ 1

2 max{σ2
0, σ

2
1, σ

2
2, σ

2
3}
)
− h,

C2 = ρ
(
µ+ δ + max{σ2

0, σ
2
1, σ

2
2, σ

2
3}
)

+ 2h. (4.12)
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Proof. Let us assume existence of ρ and h to satisfy condition (4.11). Now we define the

function V2(S, I, J, A) = (S+ I +J +A)−1 for X(t) ∈ R4
++. Applying the Itô formula, we

have

L[(1 + V2)ρ] = ρ(1 + V2)ρ−2Γ,

where

Γ =
[1
2(ρ− 1)V 4

2 + (1 + V2)V 3
2

]
(σ2

0S
2 + σ2

1I
2 + σ2

2J
2 + σ2

3A
2)

−(1 + V2)V 2
2 (µK − µN − δA) .

Note that
1
2(ρ− 1)V 4

2 + (1 + V2)V 3
2 = 1

2(ρ+ 1)V 4
2 + V 3

2 .

Using the identity V2N = 1 together with the inequalities V2A < 1 and

V 2
2

(
σ2

0S
2 + σ2

1I
2 + σ2

2J
2 + σ2

3A
2
)
< max

{
σ2

0, σ
2
1, σ

2
2, σ

2
3

}
,

we obtain an inequality as follows

Γ ≤
[1
2(ρ+ 1)V 2

2 max
{
σ2

0, σ
2
1, σ

2
2, σ

2
3

}
+ V2max

{
σ2

0, σ
2
1, σ

2
2, σ

2
3

} ]
−V 2

2 (µK − µ− δ) + V2(µ+ δ)− V 3
2 µK .

On the right hand side of the latter inequality, we drop the negative term −V 3
2 µK and

we reshuffle terms to obtain

Γ ≤ −V 2
2

(
µK − (µ+ δ)− ρ+ 1

2 max
{
σ2

0, σ
2
1, σ

2
2, σ

2
3

} )
+V2

(
µ+ δ + max{σ2

0, σ
2
1, σ

2
2, σ

2
3}
)
.

In fact we can now express Γ in the inequality below, with C1 and C2 are as defined in

(4.12):

Γ ≤ −V 2
2

(C1 + h

ρ

)
+ V2

(C2 − 2h
ρ

)
.
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Again by the Itô formula we have

L[eht(1 + V2)ρ] = heht(1 + V2)ρ + ehtL(1 + V2)ρ

= eht(1 + V2)ρ−2(h(1 + V2)2 + ρΓ)

≤ eht(1 + V2)ρ−2(−C1V
2

2 + C2V2 + h) .

Recall that v# = (C2 +
√
C2

2 + 4C1h)/(2C1). If V2 > v#, then L(eht(1 + V2)ρ) ≤ 0.

Now note that eht(1 + V2)ρ−2 is positive. So in order to find an upper bound for the

right hand side of the inequality above, it suffices to maximize the factors separately. We

continue on this to find that

−C1V
2

2 + C2V2 + h ≤ C2
2

4C1
+ h,

and over 0 < V2 ≤ v# we get

(1 + V2)ρ−2 ≤ max{1, (1 + v#)ρ−2}.

Therefore,

L(eht(1 + V2)ρ) ≤ eht
(

max{1, (1 + v#)ρ−2}
)( C2

2
4C1

+ h
)

= ehthH.

Thus it can be deduced that

E
[
eht(1 + V2(t))ρ

]
≤ eht(1 + V2(0))ρ + hH

eht

h
.

Therefore

lim sup
t→∞

E
[
V2(t)ρ

]
≤ lim sup

t→∞
E
[
(1 + V2(t))ρ

]
≤ H.

For (S, I, J, A) ∈ R4
++, from the inequality (4.2) it follows that

S + I + J + A ≤
√

4(S2 + I2 + J2 + A2).
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Consequently, for any ρ > 0,

(S + I + J + A)ρ ≤ 2ρ(S2 + I2 + J2 + A2)
ρ
2 = 2ρ |X|ρ .

Taking reciprocals the latter inequality yields

1
|X|ρ

≤ 2ρ
(S + I + J + A)ρ .

Therefore we can conclude that

lim sup
t→∞

E
[

1
|X(t)|ρ

]
≤ 2ρ lim sup

t→∞
E[(V2(t))ρ] ≤ 2ρH,

which completes the proof. 2

We can now prove the stochastic permanence.

Theorem 4.4.3. If max{σ2
0, σ

2
1, σ

2
2, σ

2
3} < 2(µK− (µ+ δ)), then the solution of the model

(4.3) is stochastically permanent.

Proof. By Theorem 4.4.1, we have P{|X(t)| > ϕ} ≤ ε. This implies

P{|X(t)| ≤ ϕ} ≥ 1− ε,

from which it follows that

lim inf
t→∞

P{|X(t)| ≤ ϕ} ≥ 1− ε.

The assumption max{σ2
0, σ

2
1, σ

2
2, σ

2
3} < 2(µK − (µ + δ)) implies that there exists ρ > 0

such that

µ+ δ + ρ+ 1
2 max{σ2

0, σ
2
1, σ

2
2, σ

2
3} < µK

and given the latter inequality, there exists h > 0 such that
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h

ρ
+ µ+ δ + ρ+ 1

2 max{σ2
0, σ

2
1, σ

2
2, σ

2
3} < µK.

Therefore Lemma 4.4.2 applies, and so it follows that for H as in Lemma 4.4.2:

lim sup
t→∞

E
[

1
|X(t)|ρ

]
≤ 2ρH.

Now, for any ε > 0, let ξ = 1
2

(
ε
H

) 1
ρ . Then

P{|X(t)| < ξ} = P
{

1
|X(t)| >

1
ξ

}
= P

{
ξ

|X(t)| > 1
}

= P
{(

ξ

|X(t)|

)ρ
> 1

}
≤ ξρE

[
1

|X(t)|ρ
]

Hence,

lim sup
t→∞

P{|X(t)| < ξ} ≤ ξρ(2ρH) = ε,

from which it follows that

lim inf
t→∞

P{|X(t)| ≥ ξ} ≥ 1− ε.

The proof is complete.

4.5 Asymptotic behaviour around the disease-free

equilibrium of the underlying deterministic model

In the deterministic models, the biological significance of the asymptotic stability of the

disease-free equilibrium state is that the disease will go extinct, while the stability of

the endemic equilibrium state means that the disease will persist in a given population.

However, it can be seen that the model system (4.3) has no equilibrium states and that

is why we study the asymptotic behaviour around the equilibrium of the underlying de-

terministic system.
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Before stating the main theorem of this section, let us first define the following numbers:

π = (µ+ k1)(µ+ k2) + αµ, b4 = β2π
(1−R0)

k2
,

b5 = β1π
(1−R0)

2k1
, b1 = b2

2K , b2 = β1(µ+ k2 + α) + β2k1,

b3 = β2(µ+ k1) + β1α + b5. (4.13)

Theorem 4.5.1. Suppose that the following conditions are satisfied:

R0 < 1, σ2
0 < µ.

Then for any given initial value (S(0), I(0), J(0), A(0)) ∈ R4
++, the solution of the model

(3.1) has the property:

lim sup
t→∞

1
t
E
∫ t

0

[
(S(τ)−K)2 + I(τ) + J(τ) + A(τ)

]
dτ ≤ 2b1σ

2
0
K2

θ
,

where

θ = min
{

2(µ− σ2
0), π (1−R0)

2 β1, b4(µ+ δ), b5(µ+ k2 + α)
}
.

Proof. Set Q = S −K. Then the system 4.3 can be written as

dQ = [−µQ− c(β1I + β2J)(K +Q)] dt+ σ0(K +Q)dW0(t)

dI = [c(β1I + β2J)(K +Q)− (µ+ k1)I + αJ ] dt+ σ1IdW1(t),

dJ = [k1I − (µ+ k2 + α)J ] dt+ σ2JdW2(t),

dA = [k2J − (µ+ δ)A] dt+ σ3AdW3(t).

For the numbers bi as in display (4.13) above, consider the following positive-definite

function:

V3(Q, I, J, A) = b1Q
2 + b2I + b3J + b4A.
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Then ∫ t

0
dV3(Q, I, J, A) =

∫ t

0
LV3(Q, I, J, A)du+Mt

where

Mt =
∫ t

0
2b1Qσ0(K +Q)dW0(u) +

∫ t

0
b2σ1IdW1(u)

+
∫ t

0
b3σ2JdW2(u) +

∫ t

0
b4σ3AdW3(u)

and

LV3(Q, I, J, A) = 2b1Q[−µQ− c(β1I + β2J)(K +Q)] + b1[σ2
0(K +Q)2]

+b2[c(β1I + β2J)(K +Q)− (µ+ k1)I + αJ ]

+b3[k1I − (µ+ k2 + α)J ] + b4[k2J − (µ+ δ)A].

We simplify and reorganize the terms to get

LV3 = −2b1µQ
2 + b1[σ2

0(K +Q)2] + Y1 + Y2 − b4(µ+ δ)A (4.14)

where Y1 and Y2 are given by:

Y1 = −2b1c(β1I + β2J)Q(K +Q) + b2c(β1I + β2J)(K +Q)

Y2 = b2[−(µ+ k1)I + αJ ] + b3[k1I − (µ+ k2 + α)J ] + b4k2J.

Following the inequality (4.2), regarding the second term in equation (4.14) we get

b1σ
2
0[K +Q]2 ≤ 2b1σ

2
0(K2 +Q2).

The term Y1 can be expanded as

Y1 = −2b1c(β1I + β2J)Q2 + c(β1I + β2J)Q(b2 − 2Kb1) + b2c(β1I + β2J)K.
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Noting that b2 = 2Kb1, we obtain the inequality

Y1 ≤ b2c(β1I + β2J)K.

A routine calculation reveals that

b2c(β1I + β2J)K + Y2 = π
(R0 − 1)

2 β1I − b5(µ+ k2 + α)J.

Thus we obtain the following inequality:

LV3 ≤ −2b1(µ− σ2
0)Q2 + π

(R0 − 1)
2 β1I − b4(µ+ δ)A

−b5(µ+ k2 + α)J + 2b1σ
2
0K

2.

Therefore ∫ t

0
dV3 ≤

∫ t

0

[
− 2b1(µ− σ2

0)Q2 − π (1−R0)
2 β1I

−b5(µ+ k2 + α)J − b4(µ+ δ)A+ 2b1σ
2
0K

2
]
du+Mt.

We take expectation and note that E[Mt] = 0. Thus we obtain

0 ≤ E
[
V3(Q(t), I(t), J(t), A(t))

]
≤ E

[
V3(Q(0), I(0), J(0), A(0))

]
+ E

[ ∫ t

0

{
− 2b1(µ− σ2

0)(Q(u))2 − π (1−R0)
2 β1I(u)

−b5(µ+ k2 + α)J(u)− b4(µ+ δ)A(u) + 2b1σ
2
0K

2
}
du
]

which gives

E
[ ∫ t

0

{
2b1(µ− σ2

0)(Q(u))2 + π
(1−R0)

2 β1I(u) + b5(µ+ k2 + α)J(u) + b4(µ+ δ)A(u)
}
du
]

≤ E[V3(Q(0), I(0), J(0), A(0))] + 2b1σ
2
0K

2t.

Therefore,

lim sup
t→∞

1
t
E
[ ∫ t

0

{
2b1(µ−σ2

0)(Q(u))2+π (1−R0)
2 β1I(u)+b5(µ+k2+α)J(u)+b4(µ+δ)A(u)

}
du
]
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≤ 2b1σ
2
0K

2.

We take θ as in the formulation of the theorem, and then it follows that:

lim sup
t→∞

1
t
E
[ ∫ t

0

{
(S(τ)−K)2 + I(τ) + J(τ) + A(τ)

}
dτ
]
≤ 2b1σ

2
0
K2

θ
.

The proof is complete.

Remark 4.5.2. Theorem 4.5.1 asserts that under the given conditions if the stochas-

tic perturbations are small, then in the long term the sample paths of a solution of the

stochastic system (4.3) will tend to stay within a certain neighbourhood of the disease-free

equilibrium of the deterministic model.

4.6 Simulations

We present some numerical simulations in order to illustrate the analytical results of

stochastic model (4.3). Regarding the parameters we note the following. The parameters

have been chosen so as to be applicable to Southern Africa, mostly taken from [9]. We

expect to see a value of β2 significantly bigger than β1, since the more advanced the

infection has become, the probability of disease transmission in the symptomatic phase

exceeds that of the asymptomatic phase. In [40], the parameter c is assigned values

ranging from 1 to 2 for the average number of sexual partners per given time. In our case

we take c = 3 in order to avoid addressing a problem that is simpler than the actual one.

The value of K is the size of the population and does not have an effect on the relative

sizes of the different classes. Consequently we regard K as nominal. In order to illustrate

the results, we vary the values of β1 and β2. The parameter values of the model are given

in the table below.
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Table 4.1: Description of parameters and their values for model system 3.1

Parameters Value Source

µ 0.02 [9]

α 0.33 [9]

k1 0.125 [41]

k2 0.1 [9]

c 3 cf. [40]

δ 0.333 [9]

K 6.5 Nominal

with the initial conditions: S0 = 4.5, I0 = 1, J0 = 0.6, A0 = 0.4. In each graph we

show four trajectories, the S-class and the J=class of the stochastic model (one sample

path) and of the underlying deterministic model.
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Deterministic S(t)
Deterministic J(t)

Figure 4.1: A case with R0 > 1 and R0 = 2.938838313

Chosen Values:

β1 = 0.002; β2 = 0.005;σ0 = 0.001;σ1 = 0.05;σ2 = 0.05;σ3 = 0.05;R0 = 2.938838313.
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Figure 4.2: Theorem 4.5.1 guarantees stability in the mean.

Chosen Values:

β1 = 0.00067; β2 = 0.001675;σ0 = 0.01;σ1 = 0.1;σ2 = 0.1;σ3 = 0.1;R0 = 0.9845108347.
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Figure 4.3: A case with R0 = 1.043287601 and σ0 = 0.

Chosen Values:

β1 = 0.00071; β2 = 0.001775;σ0 = 0;σ1 = 0.05;σ2 = 0.05;σ3 = 0.05;R0 = 1.043287601.

In Fig. 4.1 we haveR0 = 2.938838313 > 1, i.e., the basic reproduction number happens to

be higher than unity, while σ2
0 < µ. The requirements of Theorem 4.5.1 are therefore not

satisfied, and there does not seem to be convergence. In Figure 4.2 the basic reproduction

numberR0 is found to be less than one and the requirements of Theorem 4.5.1 are fulfilled.

It can be seen that the stochastic solution remains close to the disease-free equilibrium

of the underlying deterministic solution. In Fig. 4.3 we increase the value of β1 and β2,

and we let σ0 = 0. In this case the requirements of Theorem 4.5.1 are not satisfied but

the stochastic solution remains close to the underlying deterministic solution. It may be

that the condition σ0 = 0 permits a stability theorem stronger than Theorem 4.5.1, (cf.

[107]). We also noticed that in most of the simulations (not presented here), when the

intensities of the noise are not too large, then the stochastic solution remains close to the
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underlying deterministic solution. Otherwise strong noise may cause divergence between

stochastic and deterministic behaviours.

4.7 Concluding remarks

Explicit inclusion of stochasticity into epidemiological models by way of Brownian motion

provides further insight into the problem since randomness does feature in real life. In

this chapter, for a treatment model of HIV/AIDS with stochastic perturbations, we have

shown that there are solutions that are feasible (almost surely) in every sense that we have

explored. We also investigated the asymptotic behaviour of the solutions with respect to

the disease-free equilibrium of the underlying deterministic model 4.3. It is important

that even when we would opt to work with the underlying deterministic model, then

there is the assurance that minor random noise will not be catastrophical. There are even

indications that noise on the system may enhance the extinction of the disease. Both

models 4.4 and 4.5 need further investigations meanwhile a model similar to model 4.5

has been studied in Chapter 7.
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Chapter 5

A stochastic model for HIV epidemic

with treatment and inflow of HIV

infectives1

5.1 Introduction

In this chapter, we introduce inflow of infectives on the stochastic compartmental model

of Chapter 4. We present a theorem on almost sure exponential stability of the disease-

free equilibrium. We also study the long term behaviour of the solutions to the stochastic

model around the endemic equilibrium of the underlying deterministic model. Our theo-

retical results are illustrated by simulations with parameters applicable to South Africa.

The dynamics of HIV/AIDS in the context of Southern Africa present serious challenges

due to its complexities and therefore requires interventions. Mathematical modeling in

epidemiology has been utilized to assess the impact of the disease on the population, to

identify key disease drivers and to make future projections. Parameters involved in epi-
1A modified version of this chapter was published as:

M.U. Nsuami, P.J. Witbooi. A STOCHASTIC MODEL FOR HIV EPIDEMIC WITH TREATMENT

AND INFLOW OF INFECTIVES. International Journal of Applied Mathematics, 31(5), (2018) 545-568.
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demic models may not be absolutely constant, due to inhomogeneities and environmen-

tal perturbations. Many authors investigate asymptotic behaviour of stochastic systems

around the equilibria of the underlying deterministic models and examples of those can

be found in [28, 51, 57, 114, 117]. In the papers by [26] Dalal et al. (HIV), [38] Gray

et al. (SIS), [16] Chen et al. (SIR), and [105, 106] Witbooi (SEIR), it is proved that

stochastic perturbation actually enhances stability of the disease-free equilibrium for the

specific models. In this chapter we make another contribution in this regard.

We introduce the inflow of infectives on a deterministic compartmental model, and there-

after we impose the stochastic perturbation in such a manner that the total population

size itself is perturbed by white noise. We study the long term behaviour of the sde model.

We prove a result on almost sure exponential stability of the dfe, in the absence of inflow

of infectives and with no perturbations on the class of susceptibles. We introduce an ana-

logue of the basic reproduction number and we link it to almost sure exponential stability

of the dfe. Here we note that for an sde system the concept of almost sure exponential sta-

bility is very similar to global asymptotic stability when working with ordinary differential

equations. For the case of inflow of infectives we investigate for a type of stability in mean.

The remainder of this chapter is set up as follows. In Section 5.2 we give some prelimi-

naries. In Section 5.3 we present the model and we study the existence of global positive

solutions. Section 5.4 covers a theorem on almost sure exponential stability of the disease-

free equilibrium. We present numerical simulations to illustrate the results. Section 5.5

deals with asymptotic behaviour of the solutions to the stochastic model around the en-

demic equilibrium of the underlying deterministic model. Again we provide numerical

simulations to illustrate our theoretical results. In Section 5.6 we continue to discuss the

long time behaviour of the stochastic system. In Section 5.7 we present some concluding

remarks.
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5.2 Preliminaries

Let us denote by Rn
+ (resp. Rn

++) the set of points in Rn having only non-negative (resp.

strictly positive) coordinates.

The following observation which we quote from [108] is useful when dealing with expo-

nential stability.

Lemma 5.2.1. For k ∈ N, let X(t) = (X1(t), X2(t), ..., Xk(t)) be a bounded Rk-valued

function and let (t0,n) be any increasing unbounded sequence of positive real numbers.

Then there is a family of sequences (tl,n) such that for each l ∈ {1, 2, ..., k}, (tl,n) is a

subsequence of (tl−1,n) and the sequence Xl(tl,n) converges to the largest limit point of the

sequence Xl(tl−1,n).

5.3 Stochastic HIV Model

Let W (t) = (W0(t),W1(t),W2(t),W3(t)) be a 4-dimensional Wiener process defined on

this probability space. The components of W are assumed to be mutually independent.

The non-negative constants σ0, σ1, σ2 and σ3 denote the intensities of the stochastic per-

turbations.

The parameters Q1, Q2 denote the inflow of infectives into the asymptomatic class and

into the symptomatic class respectively. Based on the above assumptions, we then present

the following stochastic model:
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dS = [µK − c(β1I + β2J)S − µS] dt+ σ0SdW0(t),

dI = [Q1 + c(β1I + β2J)S − (µ+ k1)I + αJ ] dt+ σ1IdW1(t),

dJ = [Q2 + k1I − (µ+ k2 + α)J ] dt+ σ2JdW2(t),

dA = [k2J − (µ+ δ)A] dt+ σ3AdW3(t). (5.1)

In what follows we show that solutions of (5.1) exist globally and are positive.

Let

Rn
++ = {x ∈ Rn|xi > 0 for all i = 1, 2, .., n}. (5.2)

Theorem 5.3.1. For model (5.1) and any initial value (S(0), I(0), J(0), A(0)) ∈ R4
++,

there is a unique solution (S(t), I(t), J(t), A(t)) on t ≥ 0 which remains in R4
++ with

probability one.

Proof. Consider the function V1 below as defined in the proof of Theorem 4.3.1.

V1(S, I, J, A) =
(
S − a0 − a0 ln S

a0

)
+
(
I − 1− ln I

)
+
(
J − 1− ln J

)

+
(
A− 1− lnA

)
.

By applying Itô’s formula we have,

dV1(S, I, J, A) = LV1dt+ (S − a0)σ0dW0(t) + (I − 1)σ1dW1(t)

+(J − 1)σ2dW2(t) + (A− 1)σ3dW3(t), (5.3)

where
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LV1 =
[(

1− a0

S

)(
µK − c(β1I + β2J)S − µS

)]
+
[(

1− 1
I

)(
Q1 + c(β1I + β2J)S

−(µ+ k1)I + αJ
)]

+
[
(1− 1

J
)(Q2 + k1I − (µ+ k2 + α)J)

]
+
[
(1− 1

A
)(k2J − (µ+ δ)A)

]
+ 1

2(a0σ
2
0 + σ2

1 + σ2
2 + σ2

3)

≤ µK − µ(I + J) + a0c(β1I + β2J) + µ(3 + a0) + k1 + k2 + α + δ

+Q1 +Q2 + 1
2
(
a0σ

2
0 + σ2

1 + σ2
2 + σ2

3).

We choose a0 sufficiently small such that:

a0cβ1I − µI = I (a0cβ1 − µ) < 0 and a0cβ2J − µJ = J (a0cβ2 − µ) < 0.

Therefore

LV1 ≤ C,

where C = µK+µ(3+a0)+k1+k2+α+δ+Q1+Q2+ 1
2 (a0σ

2
0 + σ2

1 + σ2
2 + σ2

3) is a constant.

The rest of the proof comes readily as in the proof of Theorem 4.3.1. Therefore, the

solution of model (5.1) is positive and will not explode in finite time, with probability

one. This completes the proof.

5.4 Almost sure exponential stability

We investigate the behaviour of the model system (5.1) under small perturbations, with

σ0 = 0, and Q1 = Q2 = 0. Note that we adopt condition σ0 = 0 and Q1 = Q2 = 0 for two

reasons: (1) This is the only condition to obtain a disease-free equilibrium in the case of a

deterministic system by the definition. (2) Convergence of S becomes smooth graphically

and not too complicated. Under these two conditions then, the disease-free equilibrium

E0 = (K, 0, 0, 0) exists. The basic reproduction number of the underlying deterministic

model is computed by
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R0 = cK[β1(µ+ k2 + α) + β2k1]
(µ+ k1)(µ+ k2) + αµ

.

The following subset Φ of sample paths will be of interest.

Φ =
{
ω ∈ Ω| (S(t, ω), I(t, ω), J(t, ω), A(t, ω) ∈ R4

++ for all t ≥ 0
}
.

From Theorem 5.3.1 it follows that P(Ω\Φ) = 0. In the remainder of this section we

assume that sample paths are restricted to Φ.

Proposition 5.4.1. If (S(0), I(0), J(0), A(0)) ∈ R4
++, then almost surely, S(t) ≤ K for

all t > 0.

Proof. Given any path (in Φ), then

d(S −K)
dt

= −µ(S −K)− c(β1I + β2J)S ≤ −µ(S −K). (5.4)

Therefore S(0) < K implies that S(t) < K for all t > 0.

The following numbers will play a key role in our study of exponential stability. Let

ξ0, ξ1, ξ2, ξ3 and ξ4 be non-negative numbers, chosen as follows.

ξ1 = β1(µ+ k2 + α) + β2k1,

ξ2 = β1α + β2(µ+ k1),
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ξ4 = (µ+ k1)(µ+ k2) + µα.

The numbers ξ0 and ξ3 will be chosen later. For now we just bear in mind that they are

both non-negative.

We continue by preparing notation and concepts for our theorem on almost sure expo-

nential stability. Recall that we work with sample paths in Φ. This implies in particular

that if Z(t) is defined as below, then Z(t) > 0 for all t ≥ 0. Thus we define

Z(t) = ξ0(K − S(t)) + ξ1I(t) + ξ2J(t) + ξ3A(t) (5.5)

and let

V2(t) = lnZ(t).

For a stochastic process x(t) we write

〈x〉t = 1
t

∫ t

0
x(s)ds.

In the following we build a proposition according to definition 2.8.1.

Proposition 5.4.2. The disease-free equilibrium of System (5.1) is almost surely expo-

nentially stable if

lim sup
t→∞

〈LV2(X)〉t < 0 (a.s.).

Proof. We start off by noting that

V2(X(t)) = V2(X(0)) +
∫ t

0
LV2(X(u))du+Mt,

where

Mt =
∫ t

0

(
−ξ0σ0

S(u)
z(X(u))dW0(u) + ξ1σ1

I(u)
z(X(u))dW1(u) + ξ2σ2

J(u)
z(X(u))dW2(u)

+ξ3σ3
A(u)

z(X(u))dW3(u)
)

73

http://etd.uwc.ac.za/



The strong law of large numbers for local martingales, see [60, p12] for instance, implies

that

lim
t→∞

1
t
Mt = 0 (a.s.).

Also, we observe that

lim
t→∞

1
t
V2(X(0)) = 0.

Therefore

lim sup
t→∞

1
t
V2(X(t)) = lim sup

t→∞

1
t

∫ t

0
LV2(X(u))du = lim sup

t→∞
〈LV2(X)〉t (a.s.).

This completes the proof.

We now calculate LV2.

LV2 = −ξ0

Z
[µK − c(β1I + β2J)S − µS] + ξ1

Z
[c(β1I + β2J)S − (µ+ k1)I + αJ ]

+ ξ2

Z
[k1I − (µ+ k2 + α)J ] + ξ3

Z
[k2J − (µ+ δ)A]

− 1
2

(ξ1σ1I

Z

)2

+
(
ξ2σ2J

Z

)2

+
(
ξ3σ3A

Z

)2
 .

By Lemma 5.2.1 we can find, for every sample path w, a sequence tn which is increasing

and unbounded, such that

lim sup
t→∞

L〈V2(w)〉t = lim
n→∞

L〈V2(w)〉tn ,

and for which we can define the following limits:

s = lim
n→∞

〈S〉tn , i = lim
n→∞

〈
I

Z

〉
tn

, j = lim
n→∞

〈
J

Z

〉
tn

, a = lim
n→∞

〈
A

Z

〉
tn

,
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and

q = lim
n→∞

〈
K − S
Z

〉
tn

.

In particular we note that ξ0q + ξ1i+ ξ2j + ξ3a = 1 and ξ0q, ξ1i, ξ2j, ξ3a ∈ [0, 1].

We define F (ξ) as:

F (ξ) = F (ξ0, ξ1, ξ2, ξ3) = lim sup
t→∞

〈LV2〉t. (5.6)

Then F (ξ) takes the form:

F (ξ) = ξ0 [−µq + c(β1i+ β2j)s] + ξ1 [c(β1i+ β2j)s− (µ+ k1)i+ αj]

+ξ2 [k1i− (µ+ k2 + α)j] + ξ3 [k2j − (µ+ d)a]

−1
2
[
(ξ1σ1i)2 + (ξ2σ2j)2 + (ξ3σ3a)2

]
. (5.7)

An invariant Rσ of the model (5.1).

Let us define a function h : [0, 1]→ R as follows:

h(u) = ξ1ξ2

2
(σ1u)2 + σ2

2(1− u)2

β1ξ2u+ β2ξ1(1− u) . (5.8)

Then h is continuous and positive. Therefore h has a minimum, which we shall denote

by h∗. Note that h∗ > 0. In the final theorem we use the following number Rσ, which we

define to be:

Rσ = cK[β1(µ+ k2 + α) + β2k1]
(µ+ k1)(µ+ k2) + αµ+ h∗

. (5.9)

Theorem 5.4.3. If Rσ < 1, then restricted to the subset Φ, I and J almost surely

converge exponentially to 0.
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Proof. For ξ1, ξ2 and ξ4 as above (and for ξ0 = ξ3 = 0), we define Z0 = ξ1I + ξ2J and

V0 = lnZ0. It suffices to prove that lim supt→∞〈LV0〉t < 0. Also, we let F0 = F (0, ξ1, ξ2, 0).

We need to prove that F0 < 0.

From (5.7) it follows that

F0 ≤ ξ1 [c(β1i+ β2j)s− (µ+ k1)i+ αj]+ξ2 [k1i− (µ+ k2 + α)j]−1
2
[
(ξ1σ1i)2 + (ξ2σ2j)2

]
.

This can further be simplified to yield

F0 ≤ ξ1cK(β1i+ β2j)− ξ4(β1i+ β2j)−
1
2
[
(ξ1σ1i)2 + (ξ2σ2j)2

]
. (5.10)

Now we note that

(ξ1σ1i)2 + (ξ2σ2j)2 = (ξ1σ1i)2 + (ξ2σ2j)2

β1i+ β2j
(β1i+ β2j),

and since ξ2j = 1− ξ1i, we have

F0 ≤ cKξ1(β1i+ β2j)− ξ4(β1i+ β2j)− h(ξ1i)(β1i+ β2j).

This leads to the inequality below:

F0 ≤ cKξ1(β1i+ β2j)− ξ4(β1i+ β2j)− h∗(β1i+ β2j) = ξ4(Rσ − 1)(β1i+ β2j) < 0.

This completes the proof.

We now prove the main theorem.

Theorem 5.4.4. If Rσ < 1, then the disease-free equilibrium is almost surely exponen-

tially stable.
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Proof. The proof is by contradiction. From Theorem 5.4.3 we know that limt→∞ I(t) = 0

(a.s) and limt→∞ J(t) = 0 (a.s). Let us now suppose, contrary to the claim of this theorem,

that for some subset Θ of Φ with P(Θ) > 0, on Θ we have:

lim
t→∞

[(K − S(t)) + A(t)] 6= 0. (5.11)

Now let Z be as in (5.5) and F (ξ) as in (5.7). In particular we choose ξ0 = ξ1 = ξ2 =

ξ3 = ξ4 = 1. Then in view of (5.11) and by the definition of i and j, on Θ we have i = 0

(a.s) and j = 0 (a.s). Thus, from (5.7) it follows that

F (ξ) ≤ −µq − (µ+ δ)a− 1
2(σ3a)2 (a.s).

Therefore, F < 0 (a.s). Then by Proposition 5.4.2 it follows that on Θ, we have that

limt→∞(K − S(t)) = 0 (a.s) and limt→∞A(t) = 0 (a.s). This is a contradiction, and it

completes the proof.

5.5 A case study of HIV/AIDS in South Africa.

The parameters such as c, α, k1, k2 found in [9, 41, 40] are applicable to Southern African.

We also assign nominal values to certain parameters. In [40] for instance, the average

number of sexual partners per given time denoted by c has been assigned values ranging

from 1 to 2 for a specific case. In our case we take c = 3 in order to avoid addressing

a problem that is simpler than the actual one. We expect the following inequality holds

β1 < β2, knowing that the probability of disease transmission in the symptomatic phase

far exceeds that of the asymptomatic phase. In the year 2016, the life expectancy in

South Africa was estimated at 62.4 years, see for instance in [90]. The mortality rate µ

is simply the inverse of the life expectancy given by 1
62.4 yr

−1. The disease induced mor-

tality rate δ is found in [90]. The parameter K is the size of the population and does not
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complicate our task. We estimate values for the inflow of infectives Q1 and Q2 since they

are not easily obtainable. The parameter values of the model are given in the table below.

Table 5.1: Epidemiological data used to estimate initial values for model (5.1)

Parameters Value Source

α 0.33 [9]

k1 0.125 [41]

k2 0.1 [9]

c 3 cf. [40]

µ 1
62.5 [90]

δ 0.279 [90]

Regarding the initial conditions, we start off by 2016 in order to do our projection. Ac-

cording to the South African 2016 mid-year population estimate [90], the total population

which we denote by N(t16) = S(t16) + I(t16) + J(t16) + A(t16), and where t16 is the time

on 25 August 2016 was 55.91 million. An estimated 7.03 million of the total population

were infected with HIV/AIDS in 2016. This means that the classes of I(t16), J(t16) and

A(t16) add up to 7.03 million. We shall then use the parameters listed in Table 1 to

find a suitable equilibrium point to split the numbers between the classes of I(t16), J(t16)

and A(t16). We keep vary the value of β1 and β2 in order to vary the value of the basic

reproduction number.

Let us denote the force of infection by

λ = c(β1I + β2J).

We note that with inflow of infectives, we find the following equilibrium values for I and

J :
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I = α (λ+ µ) Q2 + (α + µ+ k2) (Kλµ+ (λ+ µ) Q1)
(λ+ µ) ((µ+ k1) (µ+ k2) + αµ)

and

J = 1
(α + µ+ k2)

[
Q2 + k1

(
α (λ+ µ) Q2 + (α + µ+ k2) (Kλµ+ (λ+ µ) Q1)

(λ+ µ) ((µ+ k1) (µ+ k2) + αµ)

)]

This consideration leads us to assign initial values to I0 and J0, and thus our initial state

is taken as:

S0 = 48.88, I0 = 5.22, J0 = 1.46, A0 = 0.344.

We present some simulations in order to illustrate the analytical results of stochastic

model (5.1) and the underlying deterministic system. For simplicity we use one common

value for σ1, σ2 and σ3 (call it σ) while σ0 = 0. In each graph we show trajectories of J(t)

for the stochastic model and of J(t) for the underlying deterministic model with respect

to time in years.
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Figure 5.1: A case of Rσ < 0, Theorem 5.4.3 guarantees stability.

Chosen values: β1 = 0.000176, β2 = 0.00037, u = 0.9, σ = 0.03. Calculated values:

R0 = 0.967734, Rσ = 0.9557, h = 0.000272349.
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Figure 5.2: Improving stability in the case Rσ < 0 and σ = 0.05.

Chosen values: β1 = 0.000176, β2 = 0.00037, u = 0.9, σ = 0.05. Calculated values:

R0 = 0.967734, Rσ = 0.9350, h = 0.000756524.
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Figure 5.3: Stability obtained beyond R0 < 1 while Rσ < 1.

Chosen values: β1 = 0.000186, β2 = 0.00039, u = 0.9, σ = 0.06. Calculated values:

R0 = 1.022, Rσ = 0.9702, h = 0.00108939.

In Figs. 5.1 and 5.2 we use β1 = 0.000176 and β2 = 0.00037, but with different values of

σ. In both cases Rσ is found to be less than 1. In these cases Theorem 5.4.3 assures us

that the disease-free equilibrium is almost surely exponentially stable. Indeed the graph

shows that over time, the state of the system converges to disease-free equilibrium. It

is also noticed that the convergence to the disease-free equilibrium is faster in Fig. 5.2

than in Fig. 5.1, in line with a lower value of Rσ. In this case, we have expected the

convergence to be faster for a smaller value of Rσ. Fig. 5.3 shows that for small values of

the perturbation parameter there is convergence to disease-free equilibrium for a bigger

range of values of the basic reproduction number of the underlying deterministic model.
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5.6 Asymptotic behaviour around endemic equilib-

rium of the underlying deterministic model

For σ0 6= 0 the model system (5.1) has no endemic equilibrium, but we can investigate

the asymptotic behaviour around the endemic equilibrium of the underlying deterministic

model system.

Before stating the main theorem, let us first define these positive numbers:

B1 = 1 + 2µ+ k2

α
, B2 = µ+ (µ+ k1)(2µ+ k2)

α
,

B3 = 2µ+ (µ+ k1)(2µ+ k2)
α

+ µ(2µ+ k2)
α

, B4 = 2B3

cβ1
(5.12)

Theorem 5.6.1. Let (S(t), I(t), J(t), A(t)) be the solution of system (5.1) with any initial

value (S(0), I(0), J(0), A(0)) ∈ R4
++. Let E∗ = (S∗, I∗, J∗, A∗) be an endemic equilibrium

point of the underlying deterministic model. If R0 > 1, and the following condition is

satisfied:

2(µ+ δ)− k2 > 0,

then the solution of model (5.1) has the property:

lim sup
t→∞

1
t
E
∫ t

0

[
(S(τ)− S∗)2 + (I(τ)− I∗)2 + (J(τ)− J∗)2 + (A(τ)− A∗)2

]
dτ ≤ B0

θ
,

where

θ = 2 min {µB1, B2, µ, 2(µ+ δ)− k2} ,

and

B0 = K2(σ2
0B1 + σ2

1B1 + σ2
2 + 2σ2

3) + 1
2B4

(
S∗σ2

0 + 2I∗σ2
1 + A2J

∗σ2
2

)
.
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Proof. We note that at the nontrivial equilibrium point E∗ = (S∗, I∗, J∗, A∗) we have,

µK +Q1 +Q2 = µS∗ + µI∗ + (µ+ k2)J∗

µK +Q2 = µS∗ + (µ+ k1)I∗ − αJ∗

(µ+ δ) = k2
J∗

A∗
. (5.13)

Consider the following function

V3(S, I, J, A) = V4 + V5 + V6 + V7

where

V4 = [(S − S∗) + (I − I∗) + (J − J∗)]2,

V5 = (2µ+ k2)
α

[(S − S∗) + (I − I∗)]2, V6 = 2(A− A∗)2,

V7 = B4

(
S − S∗ − S∗ ln S

S∗

)
+ 2B4

(
I − I∗ − I∗ ln I

I∗

)
+ A2B4

(
J − J∗ − J∗ ln J

J∗

)

with

A2 = 2αJ∗ + cβ2J
∗S∗

k1I∗
.

Then

∫ t

0
dV3(S, I, J, A) =

∫ t

0
LV3du+Rt

=
∫ t

0
[LV4 + LV5 + LV6 + LV7]du+Rt

where
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Rt =
∫ t

0
2[(S − S∗) + (I − I∗) + (J − J∗)](σ0SdW0(u) + σ1IdW1(u) + σ2JdW2(u))

+
∫ t

0
2(2µ+ k2)

α
[(S − S∗) + (I − I∗)](σ0SdW0(u) + σ1IdW1(u))

+
∫ t

0
4(A− A∗)σ3dW3(u) +

∫ t

0
B4(S − S∗)σ0dW0(u) +

∫ t

0
2B4(I − I∗)σ1dW1(u)

+
∫ t

0
A2B4(J − J∗)σ2dW2(u).

We expand the LVi terms as follows

LV4 = 2[(S − S∗) + (I − I∗) + (J − J∗)][−µ(S − S∗)− µ(I − I∗)− (µ+ k2)(J − J∗)]

+(σ2
0S

2 + σ2
1I

2 + σ2
2J

2),

LV5 = 2(2µ+ k2)
α

[(S − S∗) + (I − I∗)][−µ(S − S∗)− (µ+ k1)(I − I∗) + α(J − J∗)],

+(2µ+ k2)
α

(σ2
0S

2 + σ2
1I

2),

LV6 = 4(A− A∗)[k2(J − J∗)− (µ+ δ)(A− A∗)] + 2σ2
3A

2,

LV7 = µS∗B4

(
2− S

S∗
− S∗

S

)
−B4

(
1− S∗

S

)
cβ1(IS − I∗S∗) + 2B4

(
2− I

I∗
− I∗

I

)
Q1

−B4

(
1− S∗

S

)
cβ2(JS − J∗S∗) + 2B4cβ1 (I − I∗) (S − S∗)

+2B4

(
1− I∗

I

)
cβ2

(
JS − J∗S∗ I

I∗

)
+ 2B4α

(
1− I∗

I

)(
J − J∗ I

I∗

)
+A2B4

(
1− J∗

J

)(
k1I − k1I

∗ J

J∗

)
+ A2B4

(
2− J

J∗
− J∗

J

)
Q2

+1
2B4

(
S∗σ2

0 + 2I∗σ2
1 + A2J

∗σ2
2

)
.

Let us compute LV4,LV5 and LV6 in detail.
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LV4 = −2µ(S − S∗)2 − 4µ(S − S∗)(I − I∗)− 2(2µ+ k2)(S − S∗)(J − J∗)

−2(2µ+ k2)(I − I∗)(J − J∗)− 2µ(I − I∗)2 − 2(µ+ k2)(J − J∗)2

+(σ2
0S

2 + σ2
1I

2 + σ2
2J

2)

LV5 = −2µ(2µ+ k2)
α

(S − S∗)2 − 2(µ+ k1)(2µ+ k2)
α

(I − I∗)2

−2
(

(µ+ k1)(2µ+ k2)
α

+ µ
(2µ+ k2)

α

)
(S − S∗)(I − I∗)

+2(2µ+ k2)(S − S∗)(J − J∗) + 2(2µ+ k2)(I − I∗)(J − J∗)

+(2µ+ k2)
α

(σ2
0S

2 + σ2
1I

2)

LV6 = 4k2(A− A∗)(J − J∗)− 4(µ+ δ)(A− A∗)2 + 2σ2
3A

2.

Thus we have,

LV3 = −2µB1(S − S∗)2 − 2B2(I − I∗)2 − 2(µ+ k2)(J − J∗)2

−2B3(S − S∗)(I − I∗) + 4k2(A− A∗)(J − J∗)− 4(µ+ δ)(A− A∗)2

+σ2
0S

2B1 + σ2
1I

2B1 + σ2
2J

2 + 2σ2
3A

2 + LV7 (5.14)

where B1, B2 and B3 are as in (5.12).

Following the inequality (4.2) in remark 4.2.3, regarding the second term in line two for

equation (5.14) we get

2(A− A∗)(J − J∗) ≤ (A− A∗)2 + (J − J∗)2.

Now from (5.14) we obtain the inequality:

LV3 ≤ −2µB1 (S − S∗)2 − 2B2 (I − I∗)2 − 2µ (J − J∗)2

−2(2(µ+ δ)− k2) (A− A∗)2 +K2(σ2
0B1 + σ2

1B1 + σ2
2 + 2σ2

3)

−2B3(S − S∗)(I − I∗) + LV7

≤ Λ, (5.15)
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where

Λ = LV7 − 2B3(S − S∗)(I − I∗) +K2(σ2
0B1 + σ2

1B1 + σ2
2 + 2σ2

3).

Then

Λ = µS∗B4

(
2− S

S∗
− S∗

S

)
−B4

(
1− S∗

S

)
cβ1(IS − I∗S∗) + 2B4

(
2− I

I∗
− I∗

I

)
Q1

−B4

(
1− S∗

S

)
cβ2(JS − J∗S∗) + 2B3 (I − I∗) (S − S∗)

+2B4

(
1− I∗

I

)
cβ2

(
JS − J∗S∗ I

I∗

)
+ 2B4α

(
1− I∗

I

)(
J − J∗ I

I∗

)
+A2B4

(
1− J∗

J

)(
k1I − k1I

∗ J

J∗

)
+ A2B4

(
2− J

J∗
− J∗

J

)
Q2

+1
2B4

(
S∗σ2

0 + 2I∗σ2
1 + A2J

∗σ2
2

)
+K2(σ2

0B1 + σ2
1B1 + σ2

2 + 2σ2
3).

Letting S
S∗

= x, I
I∗

= y, A
A∗

= z, it follows that

Λ = S∗(B4µ+ 2B3I
∗)
(

2− 1
x
− x

)
+ 2B4αJ

∗
(

2− z

y
− y

z

)

+B4Scβ2J
∗
(

3− xz

y
− 1
x
− y

z

)
+ 2B4

(
2− 1

y
− y

)
Q1

+1
2B4

(
S∗σ2

0 + 2I∗σ2
1 + A2J

∗σ2
2

)
+ A2B4

(
2− 1

z
− z

)
Q2

+K2(σ2
0B1 + σ2

1B1 + σ2
2 + 2σ2

3).

Note that since the arithmetic mean is greater than or equal to the geometric mean, it

follows that

1
y

+ y ≥ 2, 1
x

+ x ≥ 2, z
y

+ y

z
≥ 2, 1

x
+ xz

y
+ y

z
≥ 3.

We now have

Λ ≤ 1
2B4

(
S∗σ2

0 + 2I∗σ2
1 + A2J

∗σ2
2

)
+K2(σ2

0B1 + σ2
1B1 + σ2

2 + 2σ2
3). (5.16)
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Substituting (5.16) into (5.15), it follows that

LV3 ≤ −2µB1 (S − S∗)2 − 2B2 (I − I∗)2 − 2µ (J − J∗)2

−2(2(µ+ δ)− k2) (A− A∗)2 +K2(σ2
0B1 + σ2

1B1 + σ2
2 + 2σ2

3)

+1
2B4

(
S∗σ2

0 + 2I∗σ2
1 + A2J

∗σ2
2

)
.

Hence ∫ t

0
dV3 ≤

∫ t

0
[−2µB1(S − S∗)2 − 2B2(I − I∗)2 − 2µ(J − J∗)2

−2(2(µ+ δ)− k2)(A− A∗)2 +K2(σ2
0B1 + σ2

1B1 + σ2
2 + 2σ2

3)

+1
2B4(S∗σ2

0 + 2I∗σ2
1 + A2J

∗σ2
2)]du+Rt.

We take expectation and note that E[Rt] = 0. Thus we obtain

0 ≤ E[V3(S(t), I(t), J(t), A(t))] ≤ E[V3(S(0), I(0), J(0), A(0))]

+E
∫ t

0
[−2µB1(S − S∗)2 − 2B2(I − I∗)2 − 2µ(J − J∗)2

−2(2(µ+ δ)− k2)(A− A∗)2 +B0]du, (5.17)

which gives

E
∫ t

0

[
2µB1 (S(u)− S∗)2 + 2B2 (I(u)− I∗)2 + 2µ (J(u)− J∗)2

+2(2(µ+ δ)− k2) (A(u)− A∗)2
]
du

≤ E[V3(S(0), I(0), J(0), A(0))] +B0t.

Therefore,

lim sup
t→∞

1
t
E
∫ t

0

[
2µB1 (S(u)− S∗)2 + 2B2 (I(u)− I∗)2 + 2µ (J(u)− J∗)2

+2(2(µ+ δ)− k2) (A(u)− A∗)2
]
du ≤ B0.

We take θ as in the formulation of Theorem 5.6.1, and then it follows that:
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lim sup
t→∞

1
t
E
∫ t

0

[
(S(τ)− S∗)2 + (I(τ)− I∗)2 + (J(τ)− J∗)2 + (A(τ)− A∗)2

]
dτ ≤ B0

θ
,

This completes the proof.

Remark 5.6.2. Theorem 5.6.1 states that for small values of the perturbation parameters

the solutions of the stochastic system (5.1) will eventually stay very close to the endemic

equilibrium of the underlying deterministic model.

We present numerical simulations in the general case as well as in the case the South-

African historical HIV data with parameter values given in Table 5.2.

Table 5.2: Parameters estimates for the simulation of model system 5.1 in the general

context.

Parameters Value Source

µ 0.02 [8]

α 0.33 [8]

k1 0.125 [41]

k2 0.1 [8]

c 3 Estimate

δ 0.333 [8]

b 2.5 Estimate

K 6.5 Nominal

with the initial conditions: S0 = 4.5, I0 = 1, J0 = 0.6, A0 = 0.4. In each graph we

show two trajectories of the stochastic model (one sample path) and of the underlying

deterministic model.
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Figure 5.4: β = 0.00165, Q1 = Q2 = 0, σ0 = 0.002, σ1 = 0.01, σ2 = 0.02, σ3 = 0.02,

R0 = 1.022,B1 = 1.42, B2 = 0.0815
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Figure 5.5: β = 0.00165, Q1 = Q2 = 0.005, σ0 = 0.002, σ1 = 0.01, σ2 = 0.02, σ3 = 0.02,

R0 = 1.022, B1 = 1.42, B2 = 0.0815
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Figure 5.6: β = 0.00254, Q1 = Q2 = 0.005, σ0 = 0.25, σ1 = 0.28, σ2 = 0.22, σ3 = 0.02,

R0 = 1.574, B1 = 1.42, B2 = 0.0815
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Figure 5.7: β = 0.00550, Q1 = Q2 = 0, σ0 = 0.25, σ1 = 0.25, σ2 = 0.25, σ3 = 0.2,

R0 = 3.407, B1 = 1.42, B2 = 0.0815 .

In the special case, the initial state is taken as:

S0 = 48.88; I0 = 5.22; J0 = 1.46;A0 = 0.344.

We present numerical simulations in order to illustrate the results of Theorem 5.5.1 with

parameter values given in Table 1.
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Figure 5.8: The dynamics of model system (5.1) without the inflow of infectives:

Chosen values: β1 = 0.0002904, β2 = 0.00061, Q1 = Q2 = 0, σ0 = 0.005, σ1 = 0.004, σ2 =

0.009, σ3 = 0.01. Calculated value: R0 = 1.595, λ = 0.009527, S∗ = 35.04, I∗ = 6.88, J∗ =

1.92, A∗ = 0.65.

In Fig. 5.8 the basic reproduction number R0 is bigger than one and the stochastic so-

lutions remain close to the endemic solutions of the underlying deterministic model. We

observe a similar pattern in these graphs. In Fig. 5.9 all the parameters and their values

have remained unchanged, except that the inflow of infectives Q1, Q2 now are taken as

positive. In the case of the underlying deterministic model, the inflow of infectives lead to

increasing the values of the force of infection λ, I, J and A while decreasing the value of

S. In the stochastic case, the fluctuation in each graph is higher than the fluctuations in
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Figure 5.9: The dynamics of model system (5.1) with inflow of infectives:

Chosen values: β1 = 0.0002904, β2 = 0.00061, Q1 = Q2 = 0.005, σ0 = 0.005, σ1 =

0.004, σ2 = 0.009, σ3 = 0.01. Calculated value: R0 = 1.595, λ = 0.01022, S∗ = 34.12, I∗ =

7.37, J∗ = 2.077, A∗ = 0.70.

Fig. 5.8 due to the inflow of infectives. In Fig. 5.10, for Q1 = Q2 = 0.005, we increase the

values of stochastic perturbations. In this case, strong perturbation has led to a strong

divergence and we do not expect the stochastic solutions to be close to the endemic solu-

tions of the underlying deterministic system.
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Figure 5.10: The dynamics of model system (5.1) with big stochastic perturbations:

Chosen values: β1 = 0.0002904, β2 = 0.00061, Q1 = Q2 = 0.005, σ0 = 0.04, σ1 = 0.03,

σ2 = 0.06, σ3 = 0.06. Calculated value: R0 = 1.595, λ = 0.01022, S∗ = 34.12, I∗ =

7.37, J∗ = 2.077, A∗ = 0.70.

5.7 Concluding remarks

We have presented an sde model of HIV, which we showed to have well-behaved solu-

tions. In the special case that we have no inflow of infected individuals into the system

and σ0 = 0, Theorem 5.4.3 describes convergence to disease-free equilibrium. In particu-

lar, the theorem asserts that for sufficiently small values of the perturbation parameter,

stability of the disease-free equilibrium is obtained for a bigger range of values of the
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basic reproduction number R0 of the deterministic model, i.e., beyond the range R0 < 1.

This is sufficiently significant that it can be observed in simulations. The almost sure

exponential stability is a fairly strong type of stability, it being a stochastic version of

global asymptotic stability. For the public health authorities it is comforting to know that

the presence of minor stochasticity on their model will not be a hindrance if eradication

strategies should be launched. However, although South Africa has more people infected

with HIV, the country has kept many HIV infected people alive, due to it being among

countries having the largest ART programmes in the world. The ART treatment has

improved the lives of many individuals with HIV in the world and particularly in South

Africa, but it is known that treatment without behavioural change may even lead to high

prevalence of AIDS. With respect to the general model, we have been able to describe

the long-term behaviour of solutions in comparison with that of the deterministic model,

in Theorem 5.6.1. The theorem asserts that asymptotically the stochastic solutions stay

within a certain bound from the (non-trivial) equilibrium point of the underlying deter-

ministic model. This is very well observed in simulations. Further it is also investigated

that the positive flow of infectives could affect the stability and also lead the dynamics

of the model system from stable to the unstable situation. Our sde model has revealed

some new phenomena and is useful when planning intervention strategies.
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Chapter 6

A model of HIV/AIDS population

dynamics including ARV treatment

and pre-exposure prophylaxis1

6.1 Introduction

We investigate a deterministic compartmental model for HIV/AIDS epidemic model in-

cluding ARV treatment and the use of oral prophylaxis. Antiretroviral treatment (ART)

and oral pre-exposure prophylaxis (PrEP) have recently been used efficiently in manage-

ment of HIV infection. Pre-exposure prophylaxis consists in the use of an antiretroviral

medication to prevent the acquisition of HIV infection by uninfected individuals. We pro-

pose a new model for the transmission of HIV/AIDS including ART and PrEP. Our model

can be used to test the effects of ART and of the uptake of PrEP in a given population,

as we demonstrate through simulations. The model can also be used to estimate future

projections of HIV prevalence. We prove global stability of the disease-free equilibrium.

We also prove global stability of the endemic equilibrium for the most general case of the
1A modified version of this chapter was published as:

M.U. Nsuami, P.J. Witbooi. A model of HIV/AIDS population dynamics including ARV treatment and

pre-exposure prophylaxis. Advances in Difference Equations, 2018(1), (2018) 11.
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model, i.e., which allows for PrEP individuals to default. We include insightful simula-

tions based on recently published South-African data.

The aim of this chapter is to demonstrate the extent to which PrEP can possibly reduce

the prevalence of the HIV in a large population such as South Africa, in the presence

of treatment. We introduce a model with two stages of infection and we assume that

susceptible individuals have access to PrEP to prevent themselves from HIV. Such indi-

viduals become exposed to HIV once they stop taking oral PrEP. The model allows for

individuals in the asymptomatic phase to move back to the asymptomatic phase after

successful treatment.

The remainder of this chapter is set up as follows. In Section 6.2 we present the model.

We calculate the basic reproduction number and prove existence of positive solutions.

Section 6.3 covers both global stability of the disease-free and endemic equilibrium. In

Section 6.4 we provide numerical simulations to illustrate our theoretical results and the

utility of the model. In Section 6.5 we offer some concluding remarks.

6.2 The model

6.2.1 Model description

We consider a population with homogeneous mixing of individuals, of size N(t) at time

t. The total size N(t) is assumed to be sufficiently large in order to approximate the

population as a continuum of points. These are general assumptions for modeling with

ordinary differential equations, see for instance [3] of Anderson and May. For this model,

the population is subdivided into the classes of susceptibles S(t), the asymptomatic phase

I1(t) of HIV, the symptomatic phase I2(t), the AIDS patients A(t) and the individuals

under PrEP E(t), so that

N(t) = S(t) + I1(t) + I2(t) + A(t) + E(t).
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Figure 6.1: Flow diagram of HIV/AIDS model with PrEP

Our model is then constructed by considering the appropriate in-flow and out-flow rates

of as in the diagram above

dS

dt
= µK − c(β1I1 + β2I2)S − (µ+ φ)S + θE,

dI1

dt
= c(β1I1 + β2I2)S − (µ+ k1)I1 + αI2,

dI2

dt
= k1I1 − (µ+ k2 + α)I2,

dA

dt
= k2I2 − (µ+ δ)A,

dE

dt
= φS − (µ+ θ)E ; (6.1)

S(0) = S0 > 0, I1(0) = I1,0 > 0, I2(0) = I2,0 > 0, A(0) = A0 > 0, E(0) = E0 > 0.
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The functions S(t), I1(t), I2(t), A(t) and E(t) are assumed to be continuous. We introduce

the following parameters that appear in the model equations:

µ Birth and mortality rates by natural causes,

K The size of the total population when disease-free,

c The average number of sexual contacts of one individual with others, per unit time,

β1 The probability of disease transmission in the asymptomatic phase,

β2 The probability of disease transmission in the symptomatic phase,

φ The proportion of susceptible individuals under PrEP,

θ The proportion of susceptible individuals who default PrEP,

k1 Progression rate from I1 to I2,

k2 Progression rate from the symptomatic phase I2 to A,

α The rate of transfer from I2 to I1 due to ARV treatment,

δ Disease induced mortality rate.

The model system (6.1) permits a disease-free equilibrium Σ0 =
(

(µ+θ)K
(µ+φ+θ) , 0, 0, 0,

φK
(µ+φ+θ)

)
and an endemic equilibrium Σ∗ = (S∗, I∗1 , I∗2 , A∗, E∗) with the coordinates

S∗ = µK(µ+ θ)
(µ+ θ)(λ+ µ) + µφ

,

I∗1 = λ(µ+ k2 + α)µK(µ+ θ)
[(µ+ k2)(µ+ k1) + µα][(µ+ θ)(λ+ µ) + µφ]

I∗2 = k1λµK(µ+ θ)
[(µ+ k2)(µ+ k1) + µα][(µ+ θ)(λ+ µ) + µφ]

A∗ = k1k2λµK(µ+ θ)
[(µ+ k2)(µ+ k1) + µα][(µ+ θ)(λ+ µ) + µφ]

E∗ = µKφ

(µ+ θ)(λ+ µ) + µφ
.

where

λ = c(β1I
∗
1 + β2I

∗
2 ).
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Following the method expounded in [98] the basic reproduction number of the model is

calculated as

R0 = c(µ+ θ)K(β1(µ+ k2 + α) + β2k1)
(µ+ φ+ θ)((µ+ k1)(µ+ k2) + αµ) .

6.2.2 Feasible solutions

Let us introduce the set Ω,

Ω =
{
x ∈ R5| xi > 0, i = 1, 2, 3, 4, 5 and x1 + x2 + x3 + x4 + x5 < K

}
.

Theorem 6.2.1. Assume that X(t) is a solution of the system (6.1) with X(0) ∈ Ω.

Then X(t) ∈ Ω for all t > 0.

Proof. The proof is by contradiction. Let X(t) be a solution of the system (6.1) where

X(0) ∈ Ω. Suppose to the contrary that there exists a t0 > 0 such that X(t0) /∈ Ω. Let

T = inf{t > 0 : X(t) /∈ Ω}. Since Ω is an open set due to continuity of X(t), T is strictly

positive.

Choose a0 > 0 sufficiently small in order to have a0cβ1 < µ and a0cβ2 < µ. Consider the

function V1 defined by
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V1(t) =
(
S − a0 ln S

a0

)
+
(
I1 − ln I1

)
+
(
I2 − ln I2

)
+
(
A− lnA

)
+
(
E − lnE

)
(6.2)

Note that for every T < t, each of the five bracketed terms on the right hand side of

equation (6.2) are positive while (S, I1, I2, A,E) ∈ Ω.

Now we find an upper bound for the set

G = {V1(t) : 0 < t < T}.

We note that for any 0 < t < T ,

V̇1(t) =
[(

1− a0

S

)(
µK − c(β1I1 + β2I2)S − (µ+ φ)S + θE

)]
+
[(

1− 1
I1

)(
c(β1I1 + β2I2)S

−(µ+ k1)I1 + αI2
)]

+
[
(1− 1

I2
)(k1I1 − (µ+ k2 + α)I2)

]
+
[
(1− 1

A
)(k2I2 − (µ+ δ)A)

]
+
[
(1− 1

E
)(φS − (µ+ θ)E)

]
= µK − a0

S
µK − µ(S + I1 + I2 + A+ E)− a0

S
θE + a0(µ+ φ) + a0c(β1I1 + β2I2)

− 1
I1
c(β1I1 + β2I2)S + (µ+ k1)− 1

I1
αI2 + (µ+ k2 + α)− 1

A
k2I2 + (µ+ δ)

− 1
E
φS + (µ+ θ)

≤ µK − µ(I1 + I2) + a0c(β1I1 + β2I2) + 4µ+ a0(µ+ φ) + k1 + k2 + α + δ + θ.

Note that by the choice of a0 we have:

a0cβ1I1 − µI1 = I1 (a0cβ1 − µ) < 0 and a0cβ2I2 − µI2 = I2 (a0cβ2 − µ) < 0.

Therefore

V̇1(t) ≤ C,

where C = µK + 4µ+ a0(µ+ φ) + k1 + k2 + α + δ + θ.
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Integrating from 0 to t yields

V1(t) = V1(0) +
∫ t

0
V̇1(s)ds ≤ V1(0) + Ct ≤ V1(0) + CT. (6.3)

However, we note that for any positive constant q,

lim
x→0+

(
x− q ln x

q

)
=∞.

Now further, due to positivity of the bracketed terms on the right hand side of equation

(6.2), it follows that

lim
t→T

V1(t) =∞. (6.4)

The equation (6.4) is in conflict with the inequality (6.3). Thus we have arrived at a

contradiction.

6.3 Stability analysis

6.3.1 Global stability of the disease-free equilibrium

The following positive numbers are useful in the proof of the global stability of disease-free

equilibrium.

ξ1 = µ+ k2 + α + k1
β2

β1
, ξ2 = α + β2

β1
(µ+ k1), ξ4 = (µ+ k1)(µ+ k2) + αµ.

Theorem 6.3.1. If R0 < 1, then the disease-free equilibrium Σ0 of system (6.1) is globally

asymptotically stable.

Proof. We introduce a number Λ as:

Λ = (µ+ θ)K
µ+ φ+ θ

.
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Assuming that R0 < 1, it is possible to find positive numbers ξ0 and ξ3 sufficiently small

such as to have the following inequality:

C2 = ξ0cβ2Λ + ξ3k2 + ξ4(R0 − 1) < 0.

Using such ξ0 and ξ3, together with the numbers ξi introduced already, we define a function

V2 as follows.

V2(t) = ξ0[K − (S + E)] + ξ1I1 + ξ2I2 + ξ3A. (6.5)

The time derivative of V2(t) is given by:

V̇2(t) = ξ0[−µ(K − (S + E)) + c(β1I1 + β2I2)S] + ξ1 [c(β1I1 + β2I2)S − (µ+ k1)I1 + αI2]

+ξ2 [k1I1 − (µ+ k2 + α)I2] + ξ3 [k2I2 − (µ+ δ)A] .

Grouping some terms we have:

V̇2(t) ≤ C0[K − (S + E)] + C1I1 + C2I2 + C3A

where

C0 = −µξ0 < 0,

C1 = ξ0cβ1Λ + ξ1cβ1Λ− (µ+ k1)ξ1 + ξ2k1,

C2 = ξ0cβ2Λ + ξ1cβ2Λ− (µ+ k2 + α)ξ2 + ξ3k2 + ξ1α,

C3 = −(µ+ δ)ξ3 < 0.

Now we show that the coefficients C1, C2 are also negative. Firstly, it is easy to see that

−(µ+ k1)ξ1 + ξ2k1 = −ξ4 = −((µ+ k1)(µ+ k2) + αµ).

It follows that
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C1 = ξ0cβ1Λ + ξ1cβ1Λ− ξ4 = ξ0cβ1Λ + ξ4(R0 − 1) < 0.

Further, notice that

−(µ+ k2 + α)ξ2 + ξ1α = −ξ4
β2

β1
.

Thus, we have

ξ1cβ2Λ− ξ4
β2

β1
= ξ4(R0 − 1).

Therefore,

C2 = ξ0cβ2Λ + ξ3k2 + ξ4(R0 − 1) < 0,

confirming that V2 is a Lyapunov function. This completes the proof.

6.4 Global stability of the endemic equilibrium

We investigate global stability of the endemic equilibrium of model (6.1) in the general

case, that is when θ 6= 0 and in particular case, when θ = 0.

Theorem 6.4.1. Assume that R0 > 1 and θE∗ < cβ1I
∗
1S
∗. Then the endemic equilibrium

Σ∗ of system (6.1) is globally asymptotically stable .

Proof. Consider a function V3 of the form:
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V3(t) =
(
S − S∗ − S∗ ln S

S∗

)
+D1

(
I1 − I1

∗ − I1
∗ ln I1

I1
∗

)
+D2

(
I2 − I∗2 − I2

∗ ln I2

I2
∗

)
+D3

(
A− A∗ − A∗ ln A

A

∗)

+D4

(
E − E∗ − E∗ ln E

E

∗)
,

where D1, D2, D3 and D4 are positive constants, to be determined at a later stage.

The (endemic) equilibrium values of the system (6.1) satisfy the following equations:

µK = S∗(β1I1
∗ + β2I2

∗)c+ (µ+ φ)S∗ − θE∗

(µ+ k2 + α) = k1
I1
∗

I2
∗

(µ+ k1) = S∗

I1
∗ (β1I1

∗ + β2I2
∗)c+ α

I2
∗

I1
∗

(µ+ δ) = k2
I∗2
A∗

(µ+ θ) = φ
S∗

E∗
.

The time derivative of V3(t) is given by

V̇3(t) = cβ1

(
1− S∗

S

)
(I∗1S∗ − I1S) + cβ2

(
1− S∗

S

)
(I∗2S∗ − I2S)

+
(

2− S

S∗
− S∗

S

)
S∗(µ+ φ) +

(
1− I∗1

I1

)
D1cβ1 (I1S − I1S

∗)

+
(

1− I∗1
I1

)
D1cβ2

(
I2S − I∗2S∗

I1

I∗1

)
+ (E − E∗) θ

(
1− S∗

S

)

+D3

(
1− A∗

A

)
k2

(
I2 − I∗2

A

A∗

)
+D2

(
I1 − I∗1

I2

I∗2

)(
1− I∗2

I2

)
k1

+
(

1− E∗

E

)
D4

(
S − S∗ E

E∗

)
φ. (6.6)

Let

x = S

S∗
, y = I1

I∗1
, z = I2

I∗2
, v = A

A∗
, w = E

E∗
.
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Then (6.6) becomes

V̇3(t) = S∗(µ+ φ)
(

2− 1
x
− x

)
+D1cβ1I

∗
1S
∗
(

1− 1
y

)
(xy − y) +D1cβ2I

∗
2S
∗
(

1− 1
y

)
(xz − y)

+D2I
∗
1k1

(
1− 1

z

)
(y − z) +D3I

∗
2k2

(
1− 1

v

)
(z − v) + αD1I

∗
2

(
1− 1

y

)
(z − y)

+D4k2

(
1− 1

w

)
φS∗(x− w) + cβ1I

∗
1S
∗
(

1− 1
x

)
(1− xy)

+cβ2I
∗
2S
∗
(

1− 1
x

)
(1− xz) +

(
1− 1

x

)
(x− 1)θE∗. (6.7)

This equation informs a choice of values for the numbers Di, in order to render V3 a

Lyapunov function. For making our choices, we require the numbers Di to satisfy the

following equations.

(D1 − 1) = 0

−D2I
∗
1k1 + αD1I

∗
2 +D3I

∗
2k2 + cβ2I

∗
2S
∗ = 0

−D1cβ1I
∗
1S
∗ −D1cβ2I

∗
2S
∗ +D2I

∗
1k1 − αD1I

∗
2 + cβ1I

∗
1S
∗ = 0

−D1cβ1I
∗
1S
∗ +D4k2φS

∗ + θE∗ = 0

This leads to the following Di-values:

D1 = 1, D2 = cβ2S
∗I2
∗ + αI2

∗

k1I1
∗ , D3 = D2k1I

∗
1 − (cβ2S

∗I2
∗ + αI∗2 )

k2I∗2
.

D4 = cβ1I
∗
1S
∗ − θE∗

k2φS∗
.

Substituting back the Di terms in (6.7), we have

V̇3(t) = S∗(µ+ φ)
(

2− 1
x
− x

)
+ cβ2S

∗I2
∗
(

3− 1
x
− xz

y
− y

z

)

+αI2
∗
(

2− z

y
− y

z

)
+ (cβ1I

∗
1S
∗ − θE∗)

(
3− w − 1

x
− x

w

)
≤ 0.

This complete the proof.
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In particular, we have the following corollary:

Corollary 6.4.2. If θ = 0, then the endemic equilibrium Σ∗ of system (6.1) is globally

asymptotically stable for R0 > 1.

6.5 Numerical simulation

The model can be used to test the efficiency of a given intervention. In particular, au-

thorities may want to see the effect of, for example, expanding the use of PrEP. Thus,

simulations in this context will also be shown.

We illustrate the analytical results by way of numerical simulations with the parameters

applicable to South Africa as in Table 1 below:

Table 6.1: Estimating initial values for model system (6.1) based on parameters and their

fixed values

Parameters Value Source

α 0.33 [9]

k1 0.125 [41]

k2 0.1 [9]

c 3 cf. [40, 71]

δ 0.279 [90]

µ 1
62.4 [90]

φ 0.01 Nominal

θ 0.001 Nominal
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6.5.1 Details on the description of parameters and their values

In [40, 71] for instance, the average number of sexual partners per given time denoted

by c is determined; values ranging from 1 to 2 for a specific case. In our case we find it

convenient to take c = 3. We expect the following inequality, β1 < β2, to hold since the

intensity of disease transmission in the symptomatic phase exceeds that of the asymp-

tomatic phase. In the year 2016, the life expectancy in South Africa was estimated at

62.4 years, see for instance [90]. The mortality rate µ is simply the inverse of the life

expectancy, and thus µ = 1
62.4year−1. The parameter K is the size of the population

when it is free from HIV. According to [90], in 2016 South Africa had an estimated total

population 55.91 million. Thus we consider it reasonable to choose K = 56 million. We

assume that 1% of the susceptible individuals take PrEP, that is, φ = 0.01 and the default

rate takes the value θ = 0.001.

6.5.2 Initial conditions

For initial conditions, we first refer to the South African statistical release [90] of 2016 in

order to do some projections. Let us denote the time 25 August 2016 by t0. We note that

N(t0) = S(t0) + I1(t0) + I2(t0) + A(t0) + E(t0).

An estimated 7.03 million of the total population were infected with HIV/AIDS in 2016.

This number can be split between the classes of I1(t0), I2(t0) and A(t0). We shall then

use the parameters listed in Table 1 below to find a suitable equilibrium point to split the

numbers between the classes of I1(t0), I2(t0) and A(t0). In this process we keep varying

the value of β1 and β2 in order to vary the value of the basic reproduction number. This

method leads to the following initial values for our simulations:

I1,0 = 5.11, I2,0 = 1.43, A0 = 0.48.
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We note that in endemic equilibrium,

E∗ = φ

µ+ θ
S∗.

Therefore, we consider it reasonable to use the initial value

E(t0) = 1
50

φ

µ+ θ
S(t0).

This consideration leads us to assign initial values to S0 and E0, and thus our initial state

for these two initial values are taken as:

S0 = 46.18, E0 = 1.12 .

6.5.3 Simulations on the effect of PrEP

In the following we show the trajectories of I1(t), I2(t), A(t) of the model for φ = 0.01

in Fig. 6.1, and in Fig. 6.2 the trajectories of I2(t) for different values of φ, φ =

0.01, 0.02, 0.03. For the different values of φ, the corresponding value of R0 will be

denoted by R0(φ).
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Figure 6.2: Population dynamics of the model for the case φ = 0.01.

In both Figure 6.1 and Figure 6.2 we have chosen the values: β1 = 0.000481, β2 =

0.000581. In figure 6.1 we compute the basic reproduction number, R0(0.01) = 1.401 > 1.

The trajectories show that the disease is prevailing at the endemic level. We also compute

the endemic equilibrium points I∗1 = 5.28, I∗2 = 1.48 and A∗ = 0.50 (in millions). In Figure

6.2, we show the graph of I2(t) with different values of φ. In the case φ = 0.02, the basic
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Figure 6.3: Comparing the class of symptomatic infectives, I2, for different values of φ.
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Figure 6.4: Population of susceptibles and individuals with PrEP

Chosen values: β1 = 0.000481, β2 = 0.000581, φ = 0.01. Calculated values:

R0(0.01) = 1.414, S∗ = 25.1157, E∗ = 14.7739.

reproduction number reduces to R0(0.02) = 1.021. This is due to increasing uptake of

PrEP from 0.01 to 0.02, and we observe the increase in the uptake of PrEP has decreased

the basic reproduction number and the class of I2(t). The equilibrium value is computed

by I∗2 = 0.12. The same scenario is also very well observed in the simulation for the

case where φ = 0.03. In this case, the basic reproduction number is found to be below

unity, that is, R0(0.02) = 0.8039. The class of I2(t) converges to zero. We note I∗2 is a

decreasing function of φ. We note that also the long term (or asymptotic) values of I1

and A are decreasing functions of φ. In Fig. 6.3 we show the dynamics of the population

of susceptibles and of the individuals with PrEP.
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6.6 Concluding remarks

In this paper, we have investigated a model describing the population dynamics of HIV/AIDS

including treatment and pre-exposure prophylaxis (PrEP) in the context of South Africa.

We proved global stability of disease-free and endemic equilibria, Theorem 6.3.1 and

Theorem 6.4.1 respectively. Our analytical results and our sample simulations are quite

meaningful as we work with the current HIV trend in South Africa. We showed the

substantial impact that treatment has on the incidence, prevalence and mortality due to

AIDS. Managing HIV with early treatment can decrease transmission and possibly de-

crease the number of AIDS related deaths. Our model quantifies how the use of PrEP can

potentially reduce the number of new HIV infections, and this has been well observed in

the sample simulations. South Africa has a wide range of its population being exposed to

HIV. Its high-risk sections of the population include adolescent girls and young women,

sex workers, men who have sex with men (MSM), discordant couples and truckers, all of

whom face various barriers to access including stigma, criminalisation and lack of sup-

portive service delivery infrastructure [21].
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Chapter 7

A Stochastic HIV/AIDS epidemic

treatment model with saturated

incidence rate

7.1 Introduction

Mathematical modeling of epidemiological phenomena has become an important issue for

modern society. The needs of this modeling has far increased recently. Most of these

models are crucial and necessary to inform planning and policy formulation. In the

mathematical study of epidemiological problems, the incidence rate that measures the

rate of new infection is considered to be a very crucial parameter. It is assumed to be, in

most classical disease transmission models, of mass action type with bilinear interactions

given by βSI, where β is the per capita contact rate, and S and I represent the susceptible

and infected populations, respectively. However, the actual incidence S and I may not be

linear relationship. In [15], the following nonlinear incidence rate is used g(I) = βI
(1+αI) to

the modeling of cholera. Nonlinearities can be approximated by a variety of forms kSI
(1+aI2)

where kI measures the infection force of the disease and 1
(1+αI2) describes the psychological

or inhibitory effect from the behavioural change of the susceptible individuals when the
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number of infectives is very large (k, α > 0). We investigate the stochastic dynamics of an

HIV/AIDS epidemic treatment model with saturated incidence rate and we will restrict

our attention the following saturated incidence rate and we refer to [48]

λsat = βiλ

where

λ = c(β1I + β2J)
(1 + φ(I + J))

and with 1
(1+φ(I+J)) measures the inhibition effect from behavioural change of susceptible

individuals when their number increases or from the crowing effect of the infective indi-

viduals [112]. The constant parameter φ measures the extent of psychological or inhitory

effect (detriment effect if 0 < φ < 1, beneficial or positive effect if φ > 1) [48]. For a very

large number of infective individuals, the force of infection may decrease as this number

increases due to the fact that in the presence of large number of infectives, the population

may tend to reduce the number of contacts per unit of time [112].

7.2 Preliminaries

Let us denote by Rn
+ (resp. Rn

++) the set of points in Rn having only non-negative (resp.

strictly positive) coordinates.

Throughout this paper we assume to have a complete probability space (Ω,F ,P) with a

filtration, {Ft}t≥0, that is right continuous and with F0 containing all the subsets having

measure zero.

Remark 7.2.1. We study the effect of stochastic noise in the transmission of HIV by

adding randomly fluctuation affecting directly the deterministic model. Suppose that infec-

tion rate β1 and β2 are stochastically perturbed with β1 → β1+σẆ (t) and β2 → β2+σẆ (t).
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7.3 HIV/AIDS stochastic model

Model system (7.1)

dS = [µK − λS − µS] dt− c(I + J)Sσ
(1 + φ(I + J))dW (t)

dI = [λS − (µ+ k1)I + αJ ] dt+ cISσ

(1 + φ(I + J))dW (t),

dJ = [k1I − (µ+ k2 + α)J ] dt+ cJSσ

(1 + φ(I + J))dW (t),

dA = [k2J − (µ+ δ)A] dt. (7.1)

Let us define the following sets:

∆ =
{
x ∈ R4

++ : x1 > 0, x2 > 0, x3 > 0, x4 > 0, and x1 + x2 + x3 + x4 ≤ K
}

Ω0 = {w ∈ Ω| A(t, w(t)) > 0 for all t ≥ 0}

Ω1 = {w ∈ Ω| (S(t, w(t)), I(t, w(t)), J(t, w(t)), A(t, w(t)) ∈ ∆ for t ≥ 0}.

Remark 7.3.1. Let us write N(t) = S(t) + I(t) + J(t) + A(t). Then N(t) is the total

population size, and satisfies the ordinary differential equation

d

dt
(K −N(t)) = µ(K −N(t))− δA(t).

Therefore it follows from solving the ordinary differential equation, that for any sample

path w ∈ Ω0, if we have N(0) ∈ ∆ then N(t) ∈ ∆. Note also that Ω1 ⊆ Ω0.

Theorem 7.3.2. For model (7.1) and an initial value (S(0), I(0), J(0), A(0)) ∈ ∆ with

all coordinates positive, there is a unique solution X(t) = (S(t), I(t), J(t), A(t)) with

X(t) ∈ ∆ for all t ≥ 0 with probability one.
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Proof. The coefficients of the system (7.1) are locally Lipschitz continuous. Thus there

exists a unique local solution on t ∈ [0, τen), where τen is the explosion time. Suppose that

we choose a number m0 ∈ N sufficiently large so that S(0), I(0), J(0), A(0) all lie within

the interval ( 1
m0
, K). For each n ∈ N ∩ [m0,∞), let us write

Dn =
{
t ∈ [0, τen) : S(t) ≤ 1

n
or I(t) ≤ 1

n
or J(t) ≤ 1

n
or A(t) ≤ 1

n

}
.

Then we define stopping times τn and τ∞ by taking τn to be the infimum of Dn if Dn 6= ∅

and otherwise τn =∞ . The set D∞ and the random variable τ∞ are defined as:

D∞ = {t ∈ [0, τen) : S(t) ≤ 0 or I(t) ≤ 0 or J(t) ≤ 0 or A(t) ≤ 0}

τ∞ = lim
n→∞

τn = inf D∞.

For each γ > 0, let Ω(γ) be the subset of Ω defined below.

Ω(γ) = {ω ∈ Ω|τ∞(ω) ≤ γ}

We shall prove by contradiction that τen = ∞ (a.s.). So let us assume to the contrary

that there exists T,C ∈ R with C > 0, and with T < τen such that P(Ω(T )) = C.

Let us define the function V (X), for X = (S, I, J, R), by the formula:

V (X) = ln
(

K4

SIJA

)
= ln K

S
+ ln K

I
+ ln K

J
+ ln K

A

By remark 7.3.1, each of the four terms of V (X(t)) are non-negative for every t ∈ [0, τ∞).

We set up a contradiction by calculating upper and lower bounds on expectations of V .

Firstly we calculate an upper bound. For every u ∈ [0, τ∞ ∧ T ) we have:
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dV (X(u)) = − 1
S(u)

{
[µK − λ(u)S(u)− µS(u)] du− c(I(u) + J(u))S(u)σ

(1 + φ(I(u) + J(u)))dW (u)
}

+ 1
2S2(u)

[
c2(I(u) + J(u))2S2(u)σ2

(1 + φ(I(u) + J(u)))2

]
du− 1

I(u) {[λ(u)S(u)

−(µ+ k1)I(u) + αJ(u)] du+ cI(u)S(u)σ
(1 + φ(I(u) + J(u)))dW (u)

}

+ 1
2I2(u)

[
c2(I2(u)S2(u)σ2

(1 + φ(I(u) + J(u)))2

]
du

− 1
J(u)

{
[k1I(u)− (µ+ k2 + α)J(u)] du+ cJ(u)S(u)σ

(1 + φ(I(u) + J(u)))dW (u)
}

+ 1
2J2(u)

[
c2(J2(u)S2(u)σ2

(1 + φ(I(u) + J(u)))2

]
du

− 1
A(u) [k2J(u)− (µ+ d)A(u)] du. (7.2)

Removing some of the negative terms on the right hand side, we obtain the following

inequality.

dV (X(u)) ≤
[
λ(u) + 4µ+ k1 + k2 + α + δ + 1

2
c2(I(u) + J(u))2σ2

(1 + φ(I(u) + J(u)))2

+ c2S2(u)σ2

(1 + φ(I(u) + J(u)))2

]
du

+
[

c(I(u) + J(u))σ
(1 + φ(I(u) + J(u))) − 2 cS(u)σ

(1 + φ(I(u) + J(u)))

]
dW (u) (7.3)

Note that since

1
(1 + φ(I(u) + J(u))) < 1, I

(1 + φ(I(u) + J(u))) < K,
J

(1 + φ(I(u) + J(u))) < K

, then (7.3) becomes

dV (X(u)) ≤ ρdu+
[

c(I(u) + J(u))σ
(1 + φ(I(u) + J(u))) − 2 cS(u)σ

(1 + φ(I(u) + J(u)))

]
dW (u) (7.4)

where
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ρ = cK(β1 + β2) + 4µ+ k1 + k2 + α + δ + 1
2c

2(2K)2σ2 + c2K2σ2

= cK(β1 + β2) + 4µ+ k1 + k2 + α + δ + 3c2K2σ2,

and for t ∈ [0, τ∞ ∧ T ], let M(t) be as below.

M(t) = σ
∫ t

0

[
c(I(u) + J(u))

(1 + φ(I(u) + J(u))) − 2 cS(u)
(1 + φ(I(u) + J(u)))

]
dW (u).

Now we have the following inequality:

∫ t

0
dV (X(u)) ≤ ρt+M(t).

Therefore, for any k ∈ N ∩ [m0,∞) we have

V (X(t ∧ τk))− V (X(0)) ≤ ρ(t ∧ τk) +M(t ∧ τk) (a.s.)

The stochastic process M(t) is a local martingale and therefore for any m ∈ N ∩ [m0,∞)

we have E[M(t ∧ τm)] = M(0) = 0. Consequently,

E[V (X(T ∧ τm))] ≤ ρ(T ∧ τm) + V (X(0) ≤ ρT + V (X(0)),

and we have the upper bound which we set out to find. We now search for a lower bound

for E[V (X(T ∧ τm))]. Note that if ω ∈ Ω(T ) and we evaluate V (X(ζ)) for ζ = ω(τm), then

we get:

V (X(ζ)) ≥ ln(mK).

We can deduce the lower bound:

E[V (X(T ∧ τm))] ≥ C ln(mK).

These two bounds yield
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C ln(mK) ≤ E[V (X(T ∧ τm))] ≤ ρT + V (X(0)).

We can choose a value of m sufficiently big, so that

C ln(mK) > ρT + V (X(0)),

leading to a contradiction. Therefore we must have τ∞ =∞ almost surely. This complete

the proofs.

7.4 Exponential stability under large perturbation

Theorem 7.4.1. Assume that β = max{β1, β2}. If 1
2σ

2 > β2

(µ+δ) , then disease-free equi-

librium E0 = (K, 0, 0, 0) is almost surely exponentially stable in ∆.

Proof. Let (S0, I0, J0, A0) ∈ ∆. In virtue of theorem 7.3.2, the solution of the system 7.1

remains in ∆. Then let us define the function

V2 = ln [(K − S) + I + J + A] .

With the application of the multi-dimensional Itô’s formula, it will result in the following

dV2 = 1
[(K − S) + I + J + A] [−dS + dI + dJ + dA]

−1
2σ

2
(

c(I + J)S
[(K − S) + I + J + A] [1 + φ(I + J)]

)2

dt

−1
2σ

2
(

cIS

[(K − S) + I + J + A] [1 + φ(I + J)]

)2

dt

−1
2σ

2
(

cJS

[(K − S) + I + J + A] [1 + φ(I + J)]

)2

dt (7.5)

.
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Further we have

dV2 = − [µ((K − S) + (I + J + A)) + δA]
[(K − S) + I + J + A] − 1

2σ
2
(

c(I + J)S
[(K − S) + I + J + A] [1 + φ(I + J)]

)2

dt

−1
2σ

2
(

cIS

[(K − S) + I + J + A] [1 + φ(I + J)]

)2

dt

−1
2σ

2
(

cJS

[(K − S) + I + J + A] [1 + φ(I + J)]

)2

dt

+ 2σc(I + J)S
[(K − S) + I + J + A] [1 + φ(I + J)]dW

+
(

2c(β1I + β2J)S
[(K − S) + I + J + A] [1 + φ(I + J)]

)
dt

≤ − [µ((K − S) + (I + J + A)) + δA]
[(K − S) + I + J + A] − 1

2σ
2
(

c(I + J)S
[(K − S) + I + J + A] [1 + φ(I + J)]

)2

dt

+ 2σc(I + J)S
[(K − S) + I + J + A] [1 + φ(I + J)]dW

+
(

2c(β1I + β2J)S
[(K − S) + I + J + A] [1 + φ(I + J)]

)
dt (7.6)

Letting Z =
(

c(I+J)S
[(K−S)+I+J+A][1+φ(I+J)]

)
. Then we write 7.6 by

dV2 ≤
[
−1

2σ
2Z2 + 2βZ − [µ((K − S) + (I + J + A)) + δA]

(K − S) + I + J + A

]
dt+ 2σZdW

≤
[
−1

2σ
2Z2 + 2βZ − (µ+ δ)

]
dt+ 2σZdW. (7.7)

where

β = max{β1, β2}.

Thus since −1
2σ

2Z2 + 2βZ − (µ + δ) = −1
2σ

2
(
Z − 2β

σ2

)2
+ 2β2−(µ+δ)σ2

σ2 , it can be deduced

that

dV ≤ 2β2−(µ+δ)σ2

σ2 + 2σZdW ,

and integrating we get

ln [(K − S(t)) + I(t) + J(t) + A(t)]

≤ ln [(K − S0) + I0 + J0 + A0] + 2β2−(µ+δ)σ2

σ2 t+
∫ t

0 2σZdW.
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Note that the quadratic variation of the stochastic integral
∫ t
0 Z(s)dW0(s) is

∫ t
0 Z

2ds ≤ Ct;

for some constant C. Then by the strong law of large number for local martingales, see

[60], we have

lim
t→∞

1
t

∫ t

0
Z(s)dW (s) = 0 a.s. (7.8)

Therefore, it can be concluded that

lim
t→∞

sup1
t

ln [(K − S(t)) + I(t) + J(t) + A(t)] ≤ 2β2 − (µ+ δ)σ2

σ2 < 0

This completes the proof. 2

Remark 7.4.2. Assuming that φ = σ = 0, then the model system has the same basic

reproduction given in (3.3).

Theorem 7.4.3. If R0 < 1, then I(t), J(t) and A(t) converges exponentially to (0, 0, 0).

Proof. Let (S(0), I(0), J(0), A(0)) ∈ ∆. Since R0 < 1, let θ > 0 such that

θk2 < π(1−R0)β2

where π = (µ+ k1)(µ+ k2) + αµ.

Consider the following

V3 = ln(ξ1I(t) + ξ2J(t) + θA(t)) (7.9)

where ξ1 and ξ2 as defined in chapter 5.

By Itô’s formula, we have the following

120

http://etd.uwc.ac.za/



dV3 = 1
ξ1I(t) + ξ2J(t) + θA(t) [ξ1dI(t) + ξ2dJ(t) + θdA(t)]

− 1
2{[ξ1I(t) + ξ2J(t) + θA(t)][1 + φ(I + J)]}2 (ξ1σcIS)2

− 1
2{[ξ1I(t) + ξ2J(t) + θA(t)][1 + φ(I + J)]}2 (ξ2σcJS)2

≤ 1
ξ1I(t) + ξ2J(t) + θA(t) [ξ1dI(t) + ξ2dJ(t) + θdA(t)]

≤ 1
ξ1I(t) + ξ2J(t) + θA(t) (π(R0 − 1)(β1I + β2J) + θdA(t))

+ σc(ξ1I + ξ2J)S
[ξ1I(t) + ξ2J(t) + θA(t)][1 + φ(I + J)]dW

≤ 1
ξ1I(t) + ξ2J(t) + θA(t) [−π(1−R0)Iβ1 − (π(1−R0)β2 − θk2)J − (µ+ k2)θA]

σc(ξ1I + ξ2J)S
[ξ1I(t) + ξ2J(t) + θA(t)][1 + φ(I + J)]dW

≤ −θ̄dt+ 1
[ξ1I(t) + ξ2J(t) + θA(t)][1 + φ(I + J)]σc(ξ1I + ξ2J)SdW (7.10)

Where θ̄ = max(π(1−R0)β1, (π(1−R0)β2 − θk2), (µ+ k2)θ). By integrating we check

ln(ξ1I(t) + ξ2J(t) + θA(t))

≤ ln(ξ1I0 + ξ2J0 + θA0)− θ̄t

+
∫ t

0

σc(ξ1I(s) + ξ2J(s))S(s)
[ξ1I(s) + ξ2J(s) + θA(s)][1 + φ(I(s) + J(s))]dW (s) (7.11)

We note in particular that in view of the strong law of large number for local martingales

[60], the last terms of (7.11) will vanish a.s.

Therefore, we can deduce that

lim
t→∞

sup1
t

ln(ξ1I(t) + ξ2J(t) + θA(t)) ≤ −θ̄ < 0.
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This complete the proof.

7.5 Numerical simulations

We present some numerical simulations and we refer to the table 5.1. In order to find the

equilibrium point, let us first consider the following equilibrium values for I and J :

I = (α + µ+ k2)Kλµ
(λ+ µ) ((µ+ k1) (µ+ k2) + αµ)

and

J = 1
(α + µ+ k2)

[
k1

(α + µ+ k2)Kλµ
(λ+ µ) ((µ+ k1) (µ+ k2) + αµ)

]

where

λ = c(β1I + β2J)
[1 + φ(I + J)].

Thus, our initial state is taken as:

S0 = 49.12, I0 = 5.11, J0 = 1.35, A0 = 0.23.
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Figure 7.1: Stochastic perturbation with φ = 0.90

Chosen values: β1 = 0.000176, β2 = 0.00037, σ = 0.03. Calculated value: R0 = 0.9616.
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Figure 7.2: Decreasing φ by 0.20

Chosen values: β1 = 0.000176, β2 = 0.00037, σ = 0.03. Calculated value: R0 = 0.9616.

In both figures 7.1 and 7.2, we choose the same value of stochastic perturbation σ = 0.03.

The basic reproduction number is found to be R0 < 1. In this case, the disease-free

equilibrium is almost surely exponential stable. It can be seen that the number of infected

individuals in figure 7.2 is higher than in figure 7.1 due to decreasing the value of φ by

0.20, but in both cases the requirements of Theorem 7.4.1 are satisfied.

7.6 Conclusion

This paper presents a stochastic model describing the population dynamics of an HIV/AIDS

epidemic. Our aim is to study the effect of stochastic noise and that of the saturated in-

cidence rate in the transmission of HIV, i.e., stochasticity associated with the parameters

β1 and β2. We proved the almost sure exponential stability of the model system under

suitable conditions. In particular, we proved that the stochastic perturbation does not

destabilize the disease-free equilibrium, that is to say, whenever R0 < 1, then the disease-

free equilibrium is almost surely exponentially stable. Our future work should analyze

other types of stability such as the pth moment exponential stability and in more complex

compartmental models.
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Chapter 8

Exponential stability of a

disease-free for an HIV epidemic

model with the use of prophylaxis

Submitted for publication.

8.1 Introduction

Pre-exposure prophylaxis has become a very promising approach for the HIV prevention

from infected individuals. However, the risk infection with HIV after exposure to a virus

can be better understood through a stochastic framework. In this research, we present a

stochastic model for HIV/AIDS epidemic with the use of prophylaxis and we show that

the model with random perturbation has a unique global positive solution. Thereafter, we

introduce an analogue of the basic reproduction number, call it Rσ to support a theorem

on almost sure exponential stability. The latter asserts that the disease free goes extinct

exponentially almost surely whenever Rσ < 1. The results show that small stochastic

perturbations predict disease extinction rather than persistence.
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The following papers, see for instance in [26, 38, 105, 106, 16] show that stochastic per-

turbations can further improve the quality stability of the disease-free equilibrium for

the specific models. However, stochastic models of HIV/AIDS population dynamics in-

cluding ARV treatment and Pre-exposure prophylaxis have not been intensively studied.

The current paper aims to demonstrate how the use of PrEP may lead to reducing new

infections for instance, and even in the presence of minor stochastic perturbations. Our

motivation in this chapter comes from the fact that stochastic framework may have the

ability to predict efficacy of prophylaxis against HIV.

In section 8.2 , we show the model and prove positivity. In Section 8.3 we present a theo-

rem on almost sure exponential stability. We provide numerical simulations to in Section

8.4 . In Section 8.5 we present some concluding remarks.

8.2 HIV stochastic Model

Throughout this paper we assume to have a complete probability space (Ω,F ,P) with

a filtration, {Ft}t≥0, that is right continuous and F0 containing all the subsets having

measure zero.

Let B(t) = (B0(t), B1(t), B2(t), B3(t), B4(t)) be a 5-dimensional Wiener process defined

on the given probability space. The non-negative constants σ0, σ1, σ2, σ3 and σ4 denote

the intensities of the stochastic perturbations. We shall assume that the components of

the 5-dimensional Wiener process Bi are mutually independent. In the model, we also

introduce two positive constants r and q such that r2 + q2 = 1 and r >
√

2
2 . We have the

following model system:

125

http://etd.uwc.ac.za/



dS(t) = [µK − λS(t)− (µ+ φ)S + θE]dt+ σ0S(t)dB0(t),

dI1(t) = [λS(t)− (µ+ k1)I1(t) + αI2(t)]dt+ σ1rI1(t)dB1(t),

dI2(t) = [k1I1(t)− (µ+ k2 + α)I2(t)]dt+ σ2qI2(t)dB2(t),

dA(t) = [k2I2 − (µ+ δ)A]dt+ σ3A(t)dB3(t)

dE(t) = [φS − (µ+ θ)E]dt+ σ4E(t)dB4(t) (8.1)

where

λ = c(β1I1(t) + β2I2(t)).

We now show that solutions of (8.1) exist globally and are positive, but first let us write:

Rn
++ = {x ∈ Rn|xi > 0 for all i = 1, 2, .., n}. (8.2)

Theorem 8.2.1. For model (8.1) and any initial value (S(0), I1(0), I2(0), A(0), E(0)) ∈

R5
++, there is a unique solution (S(t), I1(t), I2(t), A(t), E(t)) on t ≥ 0 which remains in

R5
++ with probability one.

Proof. Consider the function V1 as defined below

V1(S, I1, I2, A,E) =
(
S − a0 − a0 ln S

a0

)
+
(
I1 − 1− ln I2

)
+
(
I2 − 1− ln I2

)
+
(
A− 1− lnA

)
+
(
E − 1− lnE

)
.

By applying Itô’s formula as in the proof Theorem 4.3.1, we have:

dV1(S, I1, I2, A,E) = LV1dt+ (S − a0)σ0dB0(t) + (I1 − 1)rσ1dB1(t)

+(I2 − 1)qσ2dB2(t) + (A− 1)σ3dB3(t)

+(E − 1)σ4dB4(t), (8.3)
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where

LV1 =
[(

1− a0

S

)(
µK − c(β1I1 + β2I2)S − (µ+ φ)S + θE

)]
+
[(

1− 1
I1

)(
c(β1I1 + β2I2)S

−(µ+ k1)I1 + αI2
)]

+
[
(1− 1

I2
)(k1I1 − (µ+ k2 + α)I2)

]
+
[
(1− 1

A
)(k2J − (µ+ δ)A)

]
+
[
(1− 1

E
)(φS − (µ+ θ)E)

]
+1

2
(
a0σ

2
0 + r2σ2

1 + q2σ2
2 + σ2

3 + σ2
4)

= µK − a0

S
µK − µ(S + I1 + I2 + A+ E)− a0

S
θE + a0(µ+ φ) + a0c(β1I1 + β2I2)

− 1
I1
c(β1I1 + β2I2)S + (µ+ k1)− 1

I1
αI2 + (µ+ k2 + α)− 1

A
k2J + (µ+ δ)

− 1
E
φS + (µ+ θ).

Now we note that we have an upper bound for LV1

LV1 ≤ µK − µ(I1 + I2) + a0c(β1I1 + β2I2) + 4µ+ a0(µ+ φ) + k1 + k2 + α + δ + θ

+1
2
(
a0σ

2
0 + r2σ2

1 + q2σ2
2 + σ2

3 + σ2
4).

We choose a0 > 0 sufficiently small in order to have

a0cβ1I1 − µI1 = I1 (a0cβ1 − µ) < 0 and a0cβ2I2 − µI2 = I2 (a0cβ2 − µ) < 0.

Therefore

LV1 ≤ C,

where C = µK + 4µ+ a0(µ+ φ) + k1 + k2 + α+ δ+ θ+ 1
2 (a0σ

2
0 + r2σ2

1 + q2σ2
2 + σ2

3 + σ2
4)

is a constant.

The rest of the proof follows readily.
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The following subset Φ of sample paths will be of interest.

Φ =
{
ω ∈ Ω| (S(t, ω), I1(t, ω), I2(t, ω), A(t, ω), E(t, ω)) ∈ R5

++ for all t ≥ 0
}
.

From Theorem 8.2.1 it follows that P(Ω\Φ) = 0. In the remainder of this section we

assume that sample paths are restricted to Φ.

8.3 Almost sure exponential stability

In the following, we introduce some more concepts leading to the preparation of our main

theorem on almost sure exponential stability.

Let us first assume that σ0 = σ4 = 0, then the model system (8.1) exhibits a disease-free

equilibrium E0 = ( (µ+θ)K
(µ+φ+θ) , 0, 0, 0,

φK
(µ+φ+θ)). Note that condition σ0 = σ4 = 0 is also in line

with section 5.4. In this case the basic reproduction number is computed by

R0 = c(µ+ θ)Kβ1b1

(µ+ φ+ θ)b4
(8.4)

where

b1 = (µ+ k2 + α + k1
β2

β1
), b4 = ((µ+ k1)(µ+ k2) + αµ).

Remark 8.3.1. The function that we now introduce links R0 and Rσ. Let us define

h : R++ → R+ by the rule x→ 1
x

[r2x2b2
1 + q2(1− b2

1x
2)] (8.5)

with b1 as in (8.4).
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If r = q =
√

2
2 , then h(x) = 1/2

x
. In this case h tends 0+ as x approaches +∞. In our proof,

we omit the case where both are equal. Further, it is easy to see that for r 6= q, then h

tends +∞ as x tends +∞; h tends to +∞ as x tends to 0+. Therefore, h′(x) is continuous

on R++ and has the following root denoted by x0 = q2

b1
√

2r2−1 . Therefore, h′′(x0) > 0 to

indicate that h(x) has a minimum given by

h(r∗) = b1r
2

√
2r2 − 1

.

At the end of the proof for our main theorem, we shall use the fact that

Rσ = c(µ+ θ)Kβ1b1

(µ+ φ+ θ)(b4 + min{σ1
2, σ

2
2}h(r∗)) . (8.6)

Proposition 8.3.2. If (S(0), I1(0), I2(0), A(0), E(0)) ∈ R5
++, then almost surely, S(t) +

E(t) ≤ K for all t > 0.

Proof. Given any path (in Φ), then

d((S + E)−K)
dt

= −µ((S + E)−K)− c(β1I1 + β2I2)S ≤ −µ((S + E)−K).

Therefore S(0) + E(0) < K implies that S(t) + E(t) < K for all t > 0.

Consider the numbers b0, b1, b2, b3, b4 and b5

where

b1 = (µ+ k2 + α + k1
β2

β1
), b2 = α + β2

β1
(µ+ k1) + b5

b3 = b4
(1−R0)

k2
, b4 = ((µ+ k1)(µ+ k2) + αµ)

b5 = (1−R0)
k1

. (8.7)
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Note that we choose b0 sufficiently small such that

b0cβ1Λ + b4

2 (R0 − 1) < 0

and

b0cβ2Λ− b5(µ+ k2 + α) < 0,

where Λ = (µ+θ)K
(µ+φ+θ) .

Using the numbers bi introduced, we can now define a function Z(t) below. Recall that

as we work with sample paths in Φ, this implies in particular that Z(t) > 0 for all t ≥ 0.

Thus we define

Z(t) = b0(K − (S(t) + E(t)) + b1I1(t) + b2I2(t) + b3A(t) (8.8)

and let

V2(t) = lnZ(t).

For a stochastic process x(t) we write

〈x〉t = 1
t

∫ t

0
x(s)ds.

Proposition 8.3.3. The disease-free equilibrium of model system (8.1) is almost surely

exponentially stable if

lim sup
t→∞

〈LV2(X)〉t < 0 (a.s.).

Proof. We start off by noting that

V2(X(t)) = V2(X(0)) +
∫ t

0
LV2(X(u))du+Mt,

where
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Mt =
∫ t

0

(
−b0σ0

S(u)
z(X(u))dB0(u) + b1rσ1

I1(u)
z(X(u))dB1(u) + b2qσ2

I2(u)
z(X(u))dB2(u)

+b3σ3
A(u)

z(X(u))dB3(u)− b0σ4
E(u)

z(X(u))dB4(u)
)

The strong law of large numbers for local martingales, see [60, p12] for instance, implies

that

lim
t→∞

1
t
Mt = 0 (a.s.).

Also, we observe that

lim
t→∞

1
t
V2(X(0)) = 0.

Therefore

lim sup
t→∞

1
t
V2(X(t)) = lim sup

t→∞

1
t

∫ t

0
LV2(X(u))du = lim sup

t→∞
〈LV2(X)〉t (a.s.).

This completes the proof.

We now calculate LV2.

LV2 = −µb0
[K − (S + E)]

Z
+ I1

Z
[(b0 + b1)cβ1S − b1(µ+ k1) + b2k1]

+I2

Z
[(b0 + b1)cβ1S + b1α− b2(µ+ k2 + α) + b3k2]

−b3(µ+ δ)A
Z
− 1

2Z2

(
r2b2

1σ
2
1I

2
1 + q2b2

2σ
2
2I

2
2 + b2

3σ
2
3A

2
)

≤ C0
[K − (S + E)]

Z
+ C1

I1

Z
+ C2

I2

Z
+ C3

A

Z
− 1

2Z2

(
r2b2

1σ
2
1I

2
1 + q2b2

2σ
2
2I

2
2

)
.

By Lemma 2.3 in [106], we can find, for every sample path w of the Wiener process W (t),

there exists an unbounded increasing sequence tn of positive time values for which
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lim sup
t→∞

LV2(t, w) = lim
n→∞

LV2(tn, w),

and for which we can define the following limits:

s = lim
n→∞

〈S〉tn , i1 = lim
n→∞

〈
I1

Z

〉
tn

, i2 = lim
n→∞

〈
I2

Z

〉
tn

, a = lim
n→∞

〈
A

Z

〉
tn

,

and

q = lim
n→∞

〈
K − (S + E)

Z

〉
tn

.

In particular we note the identity

b0q + b1i1 + b2i2 + b3a = 1 (8.9)

and

b0q, b1i, b2j, b3a ∈ [0, 1].

We define F (b) as:

F (b) = F (b0, b1, b2, b3) = lim sup
t→∞

LV2(t).

Then F (b) takes the form:

F (b) = C0q + C1i1 + C2i2 + C3a−
1
2
(
r2b2

1σ
2
1i

2
1 + q2b2

2σ
2
2i

2
2

)
≤ C0q + C1i1 + C2i2 + C3a−

1
2 min{σ1

2, σ
2
2}
(
r2b2

1i
2
1 + q2b2

2i
2
2

)
(8.10)

with s < (µ+θ)K
(µ+φ+θ) = Λ and where
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C0 = −b0µ < 0

C1 = b0cβ1Λ + b4(R0 − 1) + k1b5

= b0cβ1Λ + b4

2 (R0 − 1) < 0

C2 = b0cβ2Λ + b4(R0 − 1) + k2b3 − b5(µ+ k2 + α)

= b0cβ2Λ− b5(µ+ k2 + α) < 0

C3 = −(µ+ δ)b3 < 0.

Remark 8.3.4. From the identity (8.9), we also have the inequality

(b2i2)2 ≤ (1− b1i1)2

≤ (1− b2
1i

2
1),

and with h(.) being the function as in equation (8.6), then the last term of (8.10) can be

written as:

(r2b2
1i

2
1 + q2b2

2i
2
2) = i1h(i1).

Therefore from C1 we have the inequality

b0cβ1Λ + 1
2[b4 + min{σ1

2, σ
2
2}h(r∗)](Rσ − 1) < 0.

Theorem 8.3.5. Assuming Rσ < 1, then (I1(t), I2(t), A(t)) almost surely converge expo-

nentially to 0.

Proof. Note that by the choice of b0, it follows that

b0cβ1Λ + 1
2
cK(µ+ θ)b1

(µ+ φ+ θ) −
1
2b4 −

1
2 min{σ1

2, σ
2
2}h(r∗) < 0.

Thus
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F (b) ≤ −b0µq + i1[b0cβ1Λ + 1
2(b4 + min{σ1

2, σ
2
2}h(r∗))(Rσ − 1)]− i2b5(µ+ k2 + α)

−a(µ+ δ)b3 < 0.

This completes the proof.

8.4 Numerical simulation

We use parameters and initial states values given in [70]. The parameters values are as

follows:

Table 8.1: List of parameters and their values chosen to simulate the model system (8.1)

based on the South African historical HIV trend.

Parameters Value Source

α 0.33 [9]

k1 0.125 [41]

k2 0.1 [9]

c 3 cf. [40]

δ 0.279 [90]

µ 1
62.4 [90]

φ 0.01 Nominal

θ 0.001 Nominal
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We assign the following initial values:

S0 = 56.18, E0 = 1.12, I1,0 = 5.11, I2,0 = 1.43, A0 = 0.48

In the following we only show the trajectories of I2(t) for different values of φ, φ =

0.02, 0.021. For the different values of φ, the corresponding value of R0 will be denoted

by R0(φ).
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Figure 8.1: Convergence beyond R0(φ) < 1.

Chosen values: β1 = 0.000481, β2 = 0.000581, σ1 = 0.03, σ2 = 0.03. Calculated values:

R0(0.02) = 1.021,Rσ = 0.726
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Figure 8.2: Convergence to the disease-free equilibrium.

Chosen values: β1 = 0.000481, β2 = 0.000581, σ1 = 0.03, σ2 = 0.03. Calculated values:

R0(0.021) = 0.9975,Rσ = 0.7124.

.

135

http://etd.uwc.ac.za/



0 50 100 150 200 250 300 350

time in years

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Sym
pto

ma
tic p

opu
latio

n in
 mi

llion

Deterministic I
2
(t)

Stochastic I
2
(t)

Figure 8.3: Improving stability of the disease-free equilibrium.

Chosen values: β1 = 0.000481, β2 = 0.000581, σ1 = 0.04, σ2 = 0.05. Calculated values:

R0(0.021) = 0.9975,Rσ = 0.5872.

In Figure 8.1, for φ = 0.02 and σ1 = σ2 = 0.03, R0(0.02) = 1.021 while Rσ = 0.726 < 1.

In this case, Theorem 8.3.5 guarantees almost sure exponential stability. Indeed there

is convergence to the disease-free equilibrium even beyond R0(φ) < 1. The substantial

change which occurred in the value of the basic reproduction number is due to both in-

creasing uptake of PrEP and the stochastic perturbations, which led to decreasing the

value of the the class of I2(t). In Figure 8.2, for σ1 = σ2 = 0.03 and an increase in

the uptake of PrEP to φ = 0.021 results in decreasing the basic reproduction number to

R0(0.02) = 0.9975 < 1 while Rσ = 0.726 < 1. The disease-free equilibrium is almost

sure exponentially stable. In Figure 8.3, we increase the values σ1 = 0.04, σ2 = 0.05 and

Rσ = 0.5872 < 1. In this case, we have expected the disease to converge faster to zero

according to the theorem.

8.5 Concluding remarks

In this chapter, we investigated a stochastic model describing the population dynamics

of HIV with pre-exposure prophylaxis (PrEP). We proved existence of solutions which

are almost surely global and positive by using Lyapunov techniques. We also proved a

theorem (Theorem 8.3.5) on almost exponential stability. From the main theorem (The-

orem 8.3.5), we found that the disease-free equilibrium is almost surely exponentially
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stable whenever the requirement is fulfilled. The simulations show that minor stochastic

perturbations on the model may not always be catastrophic, and this has been observed

in the simulations. Thus, minor environmental perturbations may not stop public health

authorities from deciding on launching of a certain programme. Our model has attempted

to show how the use of PrEP can potentially reduce the number of new HIV infections,

and even when minor stochastic perturbations are considered.
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Chapter 9

Concluding remarks and scope for

future research

It has been shown throughout the literature that the greatest burden of HIV/AIDS is

still in sub-Saharan Africa and in this region, especially women are severely affected.

South Africa has more people infected with HIV, but the country has kept more HIV-

infected people alive than any other country by providing access to anti-retroviral therapy

(ART) in the public sector and negotiating drug prices [104]. Anti-retroviral Treatment

(ART) can help to reduce HIV transmission. The substantial impact of treatment on

the incidence, prevalence and mortality shows how it is imperative to make ARV treat-

ment available to everyone, regardless of CD4+ cell counts. It is also known that early

ARV treatment eliminates HIV transmission and possibly eliminates AIDS related deaths.

Thus, HIV/AIDS can be considered as a chronic manageable disease rather than a fatal

one.

However, the HIV/AIDS epidemic addresses a complex challenge to the public policy of

South Africa, with implications for some of the government’s key policy objectives (no-

tably health, education, social development), and impacts on public finance and macroe-

conomic. There is a range of fiscal consequences resulting from HIV/AIDS beyond the
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costs of the policy response. An important aspect of the fiscal costs of HIV/AIDS is the

fact that the costs of HIV/AIDS impacts and its national response are highly persistent-

not only absorbing a considerable share of fiscal resources at present, but projected to

continue doing so over many years [24].

Our dissertation deals with stochastic modeling an HIV/AIDS epidemic disease with

treatment. The dynamics of the model are also studied when there is a massive inflow of

HIV infectives.

We start off with the underlying deterministic model in Chapter 3. We extend the paper

of cai et al. [14] and we prove both global stability of endemic and disease-free equilibrium

with and without the inflow of infectives respectively. We prove existence of the endemic

equilibrium as well. We carry out with stability analysis and we support our theoretical

results by way of numerical simulations. Through the numerical simulations, we show the

impact that the inflow have on the transmission of HIV. The disease in this case remain

at the endemic level and the model system does not exhibit a disease-free equilibrium.

Explicit inclusion of stochastic perturbations into epidemiological models by way of Brow-

nian motion shows much insight into the problem since randomness does feature in real

life. Stochasticity has been introduced in various biological models such as for instance,

natural resource management or the ecological studies or the epidemics in human popu-

lations. In Chapter 4, a stochastic model for the population dynamics of HIV/AIDS is

introduced and we show that there are feasible solutions (almost surely) in every sense

that we have explored. We also investigate the asymptotic behaviour of the solutions

with respect to the disease-free equilibrium of the underlying deterministic model. Our

results have shown that minor random noise predicts extinction of the disease rather than

persistence.

In Chapter 5, We have presented an sde model of HIV with inflow of infectives. In the
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special case that we have no inflow of infectives into the system and σ0 = 0, and for

sufficiently small values of the perturbation parameter, stability of the disease-free equi-

librium is obtained for a bigger range of values of the basic reproduction number R0 of

the deterministic model, i.e., beyond the range R0 < 1. This is sufficiently significant

that it can be observed in simulations. The almost sure exponential stability is a fairly

strong type of stability, it being a stochastic version of global asymptotic stability. For the

public health authorities it is comforting to know that the presence of minor stochasticity

on their model will not be a hindrance if eradication strategies should be launched. In the

case of stochastic HIV/AIDS model with inflow of infectives, we have been able to study

stability in the mean. The theorem asserts that asymptotically the stochastic solutions

stay within a certain bound from the (non-trivial) equilibrium point of the underlying

deterministic model.

In Chapter 6, we have established a model describing the population dynamics of HIV/AIDS

including treatment and pre-exposure prophylaxis (PrEP) in the context of South Africa.

Our analytical results and our sample simulations are quite meaningful as we work with

the current HIV trend in South Africa. Our model quantifies how the use of PrEP can

potentially reduce the number of new HIV infections, and this has been well observed in

the sample simulations. South Africa has a wide range of its population being exposed to

HIV. Its high-risk sections of the population include adolescent girls and young women,

sex workers, men who have sex with men (MSM), discordant couples and truckers, all of

whom face various barriers to access including stigma, criminalisation and lack of sup-

portive service delivery infrastructure [21]. If they are to be the focal point for PrEP, it

will be imperative to assess how best to introduce PrEP into programmes where these

high risk sections of the population can be supported [22].

The incidence rate that measures the rate of new infection is considered to be a very

crucial parameter. In Chapter 7 we introduce a stochastic model for HIV/AIDS with

incidence rate., stochasticity associated with the parameter β. Thus by constructing

140

http://etd.uwc.ac.za/



suitable Lyapunov functions and applying Itô’s formula, some other properties such as

existence of global positive solution, convergence, almost sure exponential stability are

proved. Our theoretical results are supported by ways of numerical simulations. Our

results show stochastic perturbation can predict extinction rather than persistence. We

also show that when inhibitory effect from the behavioural change of the susceptible in-

dividuals is large then the force of infections becomes small.

In chapter 8, we present a stochastic model for HIV/AIDS epidemic with the use of

prophylaxis and we show that the model with random perturbation has a unique global

positive solution. Our motivation in this research comes from the fact that stochastic

framework may have the ability to predict efficacy of prophylaxis against HIV.

The effects of different environmental noises from the underlying deterministic model may

lead to different dynamical outcomes. In the case of HIV models, we may have to extend

to the approach in [84] to illustrate the different dynamical outcomes of two stochastic

differential equation models based on simulation observations and the theorems obtained

from previous sections. Following the approach for instance in [84], then the HIV/AIDS

perturbed can be written as

dS = [µK − c(β1I1 + β2I2)S − µS] dt+ σ00SdW00(t) + σ01I1dW01(t)

+σ02I2dW02(t) + σ03AdW03(t)

dI1 = [c(β1I1 + β2I2)S − (µ+ k1)I1 + αI2] dt+ σ10SdW10(t) + σ11I1dW11(t)

+σ12I2dW12(t) + σ13AdW13(t)

dI2 = [k1I1 − (µ+ k2 + α)I2] dt+ σ20SdW20(t) + σ21I1dW21(t)

+σ22I2dW22(t) + σ23AdW23(t)

dA = [k2I2 − (µ+ δ)A] dt+ σ30SdW30(t) + σ31I1dW31(t)

+σ32I2dW32(t) + σ33AdW33(t).
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where σij, i, j = 0, 1, 2, 3 are real constants and known as the intensity of environmental

fluctuations, Wij(t), i, j = 0, 1, 2, 3 independent standard Brownian motion. For simplic-

ity, the dynamics of the model can also be studied when the values of σij = σj, i = 0, 1, 2, 3.

Mathematical modeling has been such an important approach to control the population

dynamics of infectious diseases. Optimal control has been applied by many mathemati-

cians in the analysis and control of infectious diseases both qualitatively and quantita-

tively. In particular, the study on optimal control aims to determine the best method

of controlling the outbreak of certain disease for instance within a specific time frame.

Our future work will formulate an optimal control problem for both deterministic and

stochastic cases where the objective would be to determine the ARV treatment strategy

and PrEP strategy that minimize the class of individuals with HIV as well as the costs

associated with ARV treatment and PrEP. The outbreak of HIV/AIDS has led to an

increasing awareness among economists of the need to study their impact on the economy

in terms of the resources allocation and cost. This question arises when the resources

available for public healthcare are strictly limited. If resources are unlimited, then the

optimal way to allocate prevention funds is to spend enough to eradicate the disease. An-

other approach that we aim to research on is the cost-effectiveness analysis (CEA). CEA

is a type of economic analysis where both the cost and the outcome (impact, result, effect,

benefit, health gain) of an intervention are evaluated and then expressed in the form of a

cost-effectiveness ratio. The numerator of the cost-effectiveness (CE) ratio represents the

cost of the intervention associated with one unit of outcome. The denominator is the unit

of outcome. It can be expressed using many types of measures including: years of life

gained, quality-adjusted life years gained (QALY s), new diagnoses, infections averted,

and deaths averted. CEA is usually conducted on interventions that are known to be ef-

fective. In recent years, mathematical models with the inclusion of latent infected T-cells

have been developed to investigate the models behaviors. Many of these models do not

consider the effect of stochastic fluctuation factor which is such an important component

in epidemiological modeling. Research related to stochastic differential equation model of

the dynamics mechanism of HIV virus can be very meaningful with experimental data.
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Stochastic models of HIV co-infection with malaria, Tuberculosis or flu will also be at

centre of our future research. Another version of stochastic model can also be formulated

by using the continuous-time discrete state Galton-Watson branching process (GWbp).

The branching process helps to determine disease invasion and extinction probabilities.
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