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Population Pharmacokinetics of Terizidone and Cycloserine in 

Patients with Drug-resistant Tuberculosis 

Mwila Mulubwa – 2019 

Introduction: Drug-resistant tuberculosis remains a major world health problem and 

one of the leading cause of death worldwide. Despite adequate adherence to anti-

tuberculosis drugs by patients, the emergence of drug-resistance tuberculosis still 

occurs. This fact implies other factors leading to the emergence of resistant strains of 

Mycobacterium tuberculosis. A multidrug treatment regimen, which may consist of five 

to seven different drugs including terizidone, is used in the treatment of drug-

resistance tuberculosis. Terizidone is part of the multidrug regimen whose 

pharmacokinetics is scarce in literature and plasma concentration profile unknown. 

Two molecules of cycloserine joined by terephtalaldehyde moiety makes up a 

molecule of terizidone, which is thought to undergo complete metabolism into 

cycloserine in vivo. Additionally, the current literature report that terizidone and 

cycloserine can be used interchangeably as they are thought to be equivalent. The 

aim of this thesis was first to develop and validate bioanalytical methods for 

determination of terizidone and cycloserine in patients’ plasma samples. Secondly, to 

model population pharmacokinetics of terizidone and cycloserine. Thirdly, to 

determine the amount of cycloserine resulting from metabolism of terizidone. 

Methods: This was a non-randomised prospective clinical study involving 39 patients 

with drug-resistant tuberculosis admitted to Breweskloof Hospital for intensive 

treatment phase. All patients took 500 – 750 mg daily dose of terizidone in addition to 

other anti-tuberculosis drugs. Blood was sampled at pre-dose, 0.5, 1, 2, 3, 3.5, 4, 8, 

16 and 24 hours post terizidone administration. Chromatographic bioanalytical 

methods for determination of both terizidone and cycloserine in plasma samples were 

developed and validated. Terizidone population pharmacokinetics was modelled 

solely and jointly with cyloserine using nonlinear mixed-effects modelling implemented 

in Monolix 2018R1 software. The R statistical software version 3.5.2 was used to  
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perform correlation and regression analyses between secondary pharmacokinetic 

parameters of cycloserine and markers of hepatic function. 

Results: The HPLC-UV and UPLC-MS/MS methods were developed and validated 

for analysis of terizidone and cycloserine in patients’ plasma samples. A one-

compartment model with first-order elimination process described best the 

pharmacokinetics of terizidone. The absorption process was well characterised by a 

modified transit compartment model with mean transit time (MTT) and absorption rate 

constant (ka) of 1.7 h and 2.97 h-1, respectively. Albumin had significant effect on the 

apparent distribution volume (Vp/F) of terizidone (13.4 L). The total terizidone apparent 

clearance (Cltot/F) was 0.51 L/h. In the joint model, the percentage of the total amount 

of terizidone in the body that was metabolised to cycloserine was 29%. The clearance 

of terizidone via biotransformation and other routes was 0.47 and 0.1 L/h, respectively. 

The apparent clearance of cycloserine was 2.94 L/h and a one-compartment model 

with first-order elimination characterised well its pharmacokinetics. The median and 

range of cycloserine amount resulting from terizidone metabolism was 51.6 (0.64 – 

374) mg. Cycloserine Cmin and Cmax was significantly associated with increased 

conjugated bilirubin concentration (p < 0.05). Cmax was significantly associated with 

increased binding affinity of unconjugated bilirubin to albumin (p = 0.048). 

Conclusions: In this thesis, the population pharmacokinetics of terizidone and 

cycloserine, has for the first time, been described in patients with drug-resistant 

tuberculosis. The Vp/F in patients with drug-resistant tuberculosis is influenced by 

albumin concentration, which may affect drug concentration in patients with hepatic 

impairment. Terizidone and cycloserine is not interchangeable as the amount of 

cycloserine emanating from metabolism of terizidone is far lower than expected. 

Cycloserine plasma exposure may be a predisposing factor to the development of 

hyperbilirubinemia because of its relationship with conjugated bilirubin.  

Keywords: Terizidone, Cycloserine, Population pharmacokinetics, Drug-resistant 

tuberculosis, Metabolism.
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Chapter One 

 

1.0 BACKGROUND 

Tuberculosis, an infectious disease caused by the bacillus Mycobacterium 

tuberculosis remains a major world health problem. Respiratory tuberculosis is the 

active infection of the lungs, mediastinal lymph nodes, larynx or pleural cavity. It is 

typically spread by droplets from infected person particularly by coughing, sneezing, 

talking and breathing. The extra pulmonary tuberculosis affects any other organ. 

Pulmonary tuberculosis infection is of particular importance, as it is highly contagious 

and life threatening to affected patients. Extra pulmonary tuberculosis is less common 

and not very contagious (Gordon, Mwandumba, 2008).  

Each year, millions of people continue to fall sick with tuberculosis, which is one of the 

top ten causes of death in the world. Worldwide, an estimated 10 million people in 

2017 developed tuberculosis disease of which 90% were adults aged above 15 years 

(World Health Organization, 2018). In 2017, tuberculosis caused an estimated 1.6 

million deaths among HIV infected and uninfected patients (World Health 

Organization, 2018). Meanwhile, in 2015 tuberculosis morbidity was 10.4 million new 

cases while mortality was at 1.4 million deaths in addition to 0.4 million deaths patients 

co-infected with HIV (World Health Organization, 2016a). HIV infection is the most 

potent risk factor for active tuberculosis as it is directly related to the patient’s degree 

of immunosuppression. Hence, tuberculosis is common among HIV-infected persons 

worldwide. In some African countries, the rate of HIV infection among tuberculosis 

patients reaches 70–80% (World Health Organization, 2014, Longo et al., 2013). Not 

only does HIV infection increase the number of tuberculosis cases, but also changes 

the clinical course of tuberculosis (NDoH, 2014). 

The World Health Organization recommends a standardised first-line daily treatment 

regimen for new patients presumed or known to have drug-susceptible tuberculosis. 

The regimen consists of four drugs; isoniazid, rifampicin, pyrazinamide and 

ethambutol  which are taken in the initial phase or first two months of treatment 
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followed by isoniazid and rifampicin in the continuation phase or the last four months 

(World Health Organization, 2010).  

Improper use of anti-tuberculosis drugs, among other factors have led to the 

emergence of drug resistant strains of Mycobacterium tuberculosis. It is estimated 

globally that 3.5% of new tuberculosis cases and 18% of previously treated cases have 

drug-resistant tuberculosis (World Health Organization, 2018).  

In South Africa, the design of standardised second-line regimen is based on first-line 

drug susceptibility testing at diagnosis. The drug-resistant tuberculosis treatment 

regimen for the intensive phase consists of kanamycin or amikacin (injection), 

moxifloxacin, ethionamide, terizidone, ethambutol and pyrazinamide. Isoniazid is 

added to the treatment for rifampicin mono-resistant tuberculosis patients. The 

continuation phase treatment comprises four drugs; terizidone, moxifloxacin, 

ethionamide and pyrazinamide which are administered daily (NDoH, 2013). The South 

African department of health has simplified the administration of standardised second-

line regimen across four weight bands; <33 kg, 33–50 kg, 51–70 kg and >70 kg in 

order to accommodate the fixed dose formulations that are available in the country 

(NDoH, 2013). 

The knowledge and subsequent application of pharmacokinetic information of anti-

tuberculosis drugs in the clinical management of tuberculosis is crucial in order to 

achieve the desired treatment outcomes (Savic et al., 2017). Characterisation of 

pharmacokinetic parameters of each anti-tuberculosis drug in the regimen is 

indispensable in order to determine appropriate optimal dose (Chirehwa et al., 2017).  

In additional to maximising the anti-mycobacterial efficacy, pharmacokinetic 

characterisation of anti-tuberculosis drugs ensures prevention of drug resistance with 

minimal toxicity (Srivastava et al., 2017, Savic et al., 2017). Terizidone and cycloserine 

(metabolite) are among the drugs used in the treatment of drug-resistant tuberculosis 

whose pharmacokinetics have not been extensively studied. 

1.1 PROBLEM STATEMENT 

Drug-resistant tuberculosis constitutes a major threat to the management of 

tuberculosis worldwide and remains a public health crisis. Its treatment success 
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globally is low, at 55% (World Health Organization, 2016a, World Health Organization, 

2018). 

In South Africa, drug-resistant tuberculosis has reached alarming proportions. It is 

estimated that 9.6% of all tuberculosis cases in South Africa are drug-resistant, 

thereby ranking it as one of the 30 high drug-resistant tuberculosis burden countries 

in the world (Streicher et al., 2012). A high proportion of drug-resistant tuberculosis 

cases in South Africa had unfavourable treatment outcome, with rates in the range 41-

58%. Additionally, treatment is empiric owing to a delay in Drug Susceptibility Tests 

results for second-line anti- tuberculosis drugs (NDoH, 2013, Brust et al., 2010). This 

phenomenon may partly explain the high mortality and low culture conversion rates 

reported in South Africa (Streicher et al., 2012). Drug-resistant tuberculosis is often 

associated with higher mortality rates in HIV-infected than uninfected patients (Brust 

et al., 2010, Streicher et al., 2012).  

Treatment of drug-resistant tuberculosis in HIV-infected patients remains a challenge 

(Isaakidis et al., 2012).The most common risk factors of anti-tuberculosis drug-

resistance are low plasma drug exposure due to drug-drug interactions, altered 

pharmacokinetics, inter-individual pharmacokinetic variability and inadequate dose or 

dosing frequency in drug-resistant tuberculosis patients co-infected with HIV (Alsultan, 

Peloquin, 2014, Satti, McLaughlin & Seung, 2013, Sotgiu et al., 2015).  

The pharmacokinetics of terizidone, which is one of the second-line drugs used in 

drug-resistant tuberculosis, is poorly described in literature (World Health 

Organization, 2015). The recommended daily dose of terizidone is 750 mg within the 

weight band of 33-70 kg for both intensive and continuous phases of treatment (NDoH, 

2013) but the average Cmax and Tmax is unknown. Furthermore, the primary parameters 

that describe terizidone pharmacokinetics at steady-state in drug-resistant 

tuberculosis patients and the sources of pharmacokinetic variability are unknown. 

Additionally, whether the 750 mg daily dose of terizidone is sufficient to guarantee 

adequate cycloserine exposure within the recommended target plasma range of 20–

30 µg/ml (Lange et al., 2014) is not established.  

The World Health Organization acknowledges a number of gaps in the current 

knowledge about the treatment of drug-resistant tuberculosis. Hence, population 
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pharmacokinetic studies aimed at determination of optimal drug dosing and safety is 

one of the research priorities in order to close these gaps (World Health Organization, 

2016b). Thus, attending to the urgent need for improved care and treatment of patients 

with drug-resistant tuberculosis (World Health Organization, 2018). Therefore, the 

study of the population pharmacokinetics of terizidone and cycloserine is highly called 

for. 

1.2 RESEARCH QUESTIONS 

1. What is the best population pharmacokinetic model that describes the fate 

of terizidone and its metabolite cycloserine in drug-resistant tuberculosis 

patients? 

2. What is the effect of HIV status on terizidone and cycloserine 

pharmacokinetic parameters?  

3. What are the sources and correlates of variability in terizidone and 

cycloserine plasma concentrations at recommended doses of terizidone? 

4. What are the clinically significant covariates influencing pharmacokinetic 

parameters of terizidone and cycloserine? 

5. How much cycloserine is formed from terizidone metabolism in patients with 

drug-resistant tuberculosis? 

1.3 GENERAL OBJECTIVE 

The general objective of this study was to describe the steady-state population 

pharmacokinetics of terizidone and cycloserine in drug-resistant tuberculosis patients 

with and without HIV infection. 

1.3.1 Specific objectives 

1. To develop and validate a high-performance liquid chromatography method 

coupled with ultraviolet detection (HPLC-UV) for determination of terizidone 

in plasma. 

2. To develop and validate a sensitive ultra-performance liquid 

chromatography tandem mass spectrometry (UPLC-MS/MS) method for 

determination of cycloserine in plasma.  
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3. To determine the plasma concentrations of terizidone and cycloserine in 

plasma of patients with drug-resistant tuberculosis. 

4. To model population pharmacokinetics of terizidone and its metabolite 

cycloserine in patients with drug-resistant tuberculosis. 

5. To determine the factors influencing the pharmacokinetics of terizidone and 

cycloserine in patients with drug-resistant tuberculosis.  

6. To determine the cycloserine amount emanating from terizidone 

metabolism in patients with drug-resistant tuberculosis. 

1.4 THESIS OUTLINE 

The thesis comprises nine chapters. Each chapter has its own reference list provided 

at the end. The chapters are arranged as follows: 

Chapter 1: Introduction 

Chapter 2: Literature review 

Chapter 3: Methodology 

Chapter 4: Analysis of terizidone in plasma using HPLC‐UV method and its 

application in a pharmacokinetic study of patients with drug-resistant 

tuberculosis. 

Chapter 5: Sensitive ultra-performance liquid chromatography tandem mass 

spectrometry method for determination of cycloserine in plasma for a 

pharmacokinetics study. 

Chapter 6: Steady-state population pharmacokinetics of terizidone and its 

metabolite cycloserine in patients with drug-resistant tuberculosis. 

Chapter 7: Amount of cycloserine emanating from terizidone metabolism and 

relationship with hepatic function in patients with drug-resistant 

tuberculosis. 

Chapter 8: General discussion  

Chapter 9: Overall conclusions
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Chapter Two 

 

2.0 INTRODUCTION 

The purpose of this chapter is to review the current literature on the clinical 

pharmacology (pharmacokinetics/pharmacodynamics) of terizidone and cycloserine in 

human subjects. Each sub-section ends with a brief summary. The bioanalytical 

methods for determination of terizidone and cycloserine in plasma are reviewed. 

Furthermore, factors that influence the pharmacokinetics of these drugs are reviewed 

in subsequent sections. On the other hand, the link between pharmacokinetics and 

the development of drug-resistant tuberculosis is discussed in light of other drugs used 

in tuberculosis treatment. In general, the relationship between plasma exposure (AUC, 

Cmax) of several anti-tuberculosis drugs and outcomes (efficacy) is illustrated. 

Therefore, the role that pharmacokinetics play in the management of tuberculosis is 

justified. In addition, the concept of dose optimisation of anti-tuberculosis drugs 

performed in some studies is substantiated. In order to emphasise the role of 

pharmacokinetics in tuberculosis management, methods for optimal dose 

determination such as pharmacokinetic modelling and simulation are presented with 

applicable studies reviewed. The need for terizidone dose optimisation based on 

pharmacokinetic target is dealt with. Finally, the chapter is summarised by highlighting 

the current gaps in the pharmacokinetics knowledge of terizidone and its metabolite 

cycloserine. 

2.1 QUANTIFICATION OF TERIZIDONE AND CYCLOSERINE IN PLASMA 

Quantification of terizidone in plasma has only been achieved using colorimetric 

method (Zitkova, Toušek, 1974). In this method, an analyte of interest undergoes a 

chemical reaction with another reactant to form a coloured target chemical product. 

The intensity of the target coloured chemical product or its optical absorbance, which 

is measured using light with suitable wavelength, is proportional to the concentration 

of the analyte (Dubois et al., 1956). However, the current standard bioanalytical 

method employed in clinical pharmacokinetic studies is a chromatographic method 
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(USFDA, 2013, ICH, 2005). Chromatography is among the most versatile analytical 

techniques used to separate and quantify complex mixtures based on some 

compound’s properties such as polarity, molecular weight, particle size, solubility and 

ionic mobility (Robards et al., 1994). To date, no chromatographic bioanalytical 

method has been employed to determine plasma concentrations of terizidone.  

Unlike terizidone, chromatographic methods for determination of cycloserine in 

plasma have been employed before (Polagani et al., 2013, Patel et al., 2011, Mao et 

al., 2017, Yaroshenko, Grigoriev & Sidorova, 2014, Stepanova et al., 2016, Supriya, 

Ashish & Meena, 2012). However, the steps involved in the sample preparations are 

many making the routine analysis of plasma samples to be prone to imprecision and 

inaccuracy. 

2.2 CLINICAL PHARMACOLOGY OF TERIZIDONE  

Terizidone is categorised as group IV anti-tuberculosis drug by the World Health 

Organization and classified as a second-line drug. It is effective against 

Mycobacterium tuberculosis, used in the treatment of both pulmonary and extra 

pulmonary tuberculosis, and reserved for treatment of drug-resistant tuberculosis 

(World Health Organization, 2014). It is a dimer which is obtained by combining two 

molecules of cycloserine and one molecule of terephtalaldehyde (Figure 1). Terizidone 

and cycloserine have advantage over other drugs in that they do not show cross-

resistance with other active anti-tuberculosis drug classes (NDoH, 2013). The World 

Health Organization Prequalification Team-Medicines states that terizidone is not 

detected in plasma using a bioanalytical method with a Lower Limit of Quantification 

of 0.2 μg/mL and appears to be pre-systemically hydrolysed completely into its active 

metabolite cycloserine (World Health Organization, 2015). 
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Figure 1. Terizidone molecule (A) and cycloserine molecule (B). 

2.2.1  Terizidone pharmacokinetics 

The pharmacokinetic properties of terizidone are scarce and poorly described in the 

literature. Currently, no pharmacokinetic studies of the drug have been performed in 

patients with drug-resistant tuberculosis. The drug was developed in the 1970s when 

the bio-analytical methods were limited (World Health Organization, 2015). Plasma 

concentration of terizidone in these pharmacokinetic studies (Zitkova, Toušek, 1974, 

Zitkova et al., 1983) was quantified using colorimetric method, which is unspecific and 

currently not in use. 

Terizidone is rapidly absorbed after single oral administration of 250-750 mg dose on 

empty stomach (Table1) and reaches maximum concentration (Cmax) in 2-4 hours. 

Absorption shows some dependence on age. Doses above 500mg do not cause a 

proportional increase in the concentration (Vora, 2010, Zitkova, Toušek, 1974).  

It is widely distributed and the volume of distribution (V/F) increases with increasing 

dose. Terizidone has a low elimination rate constant, clearance and long half-life. 

Clearance ranges from 2.49-6.4 L/h over the dose range of 250-750mg (Zitkova, 

Toušek, 1974, Zitkova et al., 1983). 

Thirty nine per cent of the administered dose is excreted in urine after 30 hours. The 

high concentrations of terizidone in urine indicate the possibility of using it in 
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genitourinary tuberculosis (Kottász, Babics, 1972). The urine excretion of terizidone in 

adults is slower than in young ones.  

It is, however, worthy to note the significant shortcoming in Zitkova and Toušek 

(Zitkova, Toušek, 1974) study design. Blood sampling was not done at steady-state 

but it was performed on the first day of the trial after administration of a single dose. 

In order to reach steady-state, it takes about four to five elimination half-lives. The 

authors used an open one-compartment model to calculate the pharmacokinetic 

parameters of terizidone. Based on visual inspection of the concentration-time curves, 

rough estimates for and the observed average Cmax were 8, 17 and 19 µg/mL following 

administration of 250, 500 and 750 mg single doses of terizidone, respectively   

(Zitkova, Toušek, 1974). However, simulations of one-compartment model using MlxR 

package of R software (R Core Team, 2018) with average pharmacokinetic 

parameters shown in Table1 yielded lower Cmax but same Tmax. The simulated Cmax for 

250, 500 and 750 mg single doses were 2.1, 2.6 and 2.8 µg/mL, respectively. Either 

this huge difference between the observed and simulated Cmax of terizidone imply that 

pharmacokinetic parameters were incorrectly estimated or the model used to describe 

the pharmacokinetics was inappropriate. Therefore, the pharmacokinetic parameters 

of terizidone published in literature (Zitkova, Toušek, 1974) may be incorrect.   

Table1: Pharmacokinetic parameters of terizidone in tuberculosis patients 

N Dose 
(mg) 

ka (h-1) V/F 
(L) 

Cl/F 
(L/h) 

ke (h-1) T1/2 (h) Tmax 
(h) 

Source 

10 250 1.36 112.6 2.49 0.022 33 3 (Zitkova, Toušek, 1974) 

15 500 1.39 175.1 6.30 0.035 21 3 (Zitkova, Toušek, 1974) 

10 750 1.17 245.6 6.40 0.028 24.8 3 (Zitkova, Toušek, 1974) 

2.2.2  Terizidone pharmacodynamics 

The mode of action of terizidone is similar to that of cyloserine. Its bacteriostatic effect 

is achieved through inhibition of cell wall synthesis by competitively inhibiting L-alanine 

racemase and D-alanine ligase, thereby impairing peptidoglycan formation needed for 

Mycobacterium tuberculosis cell wall synthesis. The minimum inhibitory concentration 

(MIC) ranges from 4-130 mg/mL in susceptible strains (Vora, 2010). Currently, there 
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is no information on the MIC of terizidone in drug-resistant strains. Therefore, the 

pharmacodynamics indices such as Cmax/MIC ratio, AUC/MIC ratio and time > MIC 

(Craig, 2007) which are used to link anti-infective drug exposure and response are not 

available for terizidone. 

Prior to the 1970s, some clinical studies were performed in tuberculosis patients 

mainly on terizidone safety and tolerability. However, literature that described these 

studies was in Portuguese, Italian, Croatian and Russian that were reviewed by 

Hwang et al (Hwang et al., 2013). The adverse effects profile of terizidone is similar to 

that of cycloserine but terizidone is better tolerated and hence leads to better 

compliance. The few reported side effects are slurred speech, dizziness, headache 

and convulsions. Others adverse effects reported include depression, tremors, 

insomnia, confusion and suicidal tendency (Vora, 2010). The electroencephalographic 

studies using light and sonic stimulation show that terizidone leads to less activating 

effect of the ascending part of the reticular formation of the brain stem than 

cycloserine. Patients with concomitant psycho-neurological impairments tolerate well 

terizidone dose of 250 mg taken eight hourly (Shmelev, Shabalova & Kolosovskaia, 

1975). 

2.2.3  Factors influencing pharmacokinetics of terizidone 

There are scanty studies that have established the factors that affect the 

pharmacokinetics of terizidone, if any. The only study trial that was performed in the 

1970s found urine excretion of terizidone lower in older tuberculosis patients than in 

young ones. Thus, old age was found to be affecting the renal excretion of the drug 

(Zitkova, Toušek, 1974). This could have been due to the decrease in both renal 

function and high transaminase levels which were significantly worse in elderly 

patients than the young ones (Zitkova, Toušek, 1974). These authors did not develop 

mixed effects pharmacokinetic model that could have accounted for the effects of other 

covariates on pharmacokinetics of terizidone. It is however, worthy to note that Zitkova 

and Toušek carried out their study in an era before the concept of population 

pharmacokinetics (non-linear mixed effects modelling) was introduced in the 

pharmacokinetics discipline (Sheiner, Rosenberg & Marathe, 1977). 
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2.3 CLINICAL PHARMACOLOGY OF CYCLOSERINE 

Cycloserine is an analogue of D-alanine amino acid and a broad-spectrum antibiotic 

used in combination with other drugs (Brennan, Young & Robertson, 2008). The World 

Health Organization classifies it as a group 4 oral bacteriostatic drug used as the 

second-line treatment for drug-resistant tuberculosis (World Health Organization, 

2014). Depending on the concentration, cycloserine may also be bactericidal on 

particular strains (Brennan, Young & Robertson, 2008). 

2.3.1  Cycloserine pharmacokinetics 

The pharmacokinetics of cycloserine in drug-sensitive and –resistant tuberculosis 

patients is very limited while there are currently no pharmacokinetic studies performed 

in HIV-infected patients receiving anti-retroviral therapy.  

In patients with drug-sensitive tuberculosis, oral doses of 250 – 750 mg of cycloserine 

reach maximum concentration in blood within 2-3 hours (Table 2).The rate of 

absorption in drug-resistant tuberculosis patients is slower than in drug-sensitive 

tuberculosis, with absorption rate constant of 0.135 versus 1.67 ± 0.25 (Chang et al., 

2017, Zitkova, Toušek, 1974). 

The rate of absorption in healthy subjects is faster than in tuberculosis patients. 

Meanwhile, in healthy subjects, a single dose of cycloserine is rapidly absorbed and 

reaches peak plasma concentration in approximately 0.84 hours after oral 

administration of 250 – 100 mg. A fatty meal or orange juice increases the Tmax in 

healthy subjects but the extent of cycloserine absorption is not affected. In fasting state 

of healthy subjects, cycloserine has lag time of 0.4 hours (Zitkova, Toušek, 1974, Zhou 

et al., 2015). The Cmax after a dose of 500 mg and 250 mg ranges between 12.4 – 42.9 

µg/mL 7.21 – 30 µg/mL, respectively (Brennan, Young & Robertson, 2008, Zhou et al., 

2015, Zhu et al., 2001, Zheng-sheng et al., 2014). However, Cmax in drug-resistant 

tuberculosis patients has not yet been reported in literature. The concentration of 

cycloserine in cerebrospinal fluid of tuberculosis patients after a dose of 250 mg 

reaches maximum concentration of 12.8 µg/mL in 2 hours (Holdiness, 1985). 

Cycloserine is widely distributed to most body fluids and tissues, including cerebral 

spinal fluid, lymph tissue, breast milk, lungs, bile, sputum, pleural, synovial fluids and 
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crosses the placental barrier. The concentration reached in cerebrospinal fluid is 79% 

of the serum concentration (Brennan, Young & Robertson, 2008, Holdiness, 1985). 

The V/F in drug-sensitive tuberculosis patients is higher than in healthy subjects, 115-

255 L and 15.2-16.8 L, respectively (Zitkova, Toušek, 1974, Zhou et al., 2015). The 

clearance is higher in tuberculosis patients than in healthy subjects, 3.2 - 8.6 L/h and 

0.91-1.1 L/h, respectively. In drug-resistant tuberculosis patients, the V/F is 

surprisingly comparable to that in healthy subjects (Table 2). The pharmacokinetic 

properties of cycloserine are linear at doses ranging from 250-1000 mg in healthy 

subjects (Zitkova, Toušek, 1974, Zhou et al., 2015). 

Excretion is primarily renal, with 38-70% excreted unchanged within 12 to 30 hours 

(Brennan, Young & Robertson, 2008, Zitkova, Toušek, 1974). 

Critical review of the study by Zitkova and Toušek (Zitkova, Toušek, 1974) show some 

flaws in the estimated pharmacokinetic parameters. Simulations of Cmax using the 

pharmacokinetic model, which the authors used to estimate the pharmacokinetic 

parameters of cycloserine, yielded very low values compared to the observed Cmax. 

The simulated Cmax at single doses of 250, 500 and 750 mg yielded 2.01, 2.51 and 

2.73 µg/mL compared with 8, 14 and 17 µg/mL observed average Cmax, respectively. 

The simulated Tmax was equally different from the observed one except for the 750 mg 

dose which was same as the observed one. Therefore, the pharmacokinetic 

parameters of cycloserine, which Zitkova and Toušek estimated, may be incorrect and 

this could be the reason why they seem to be different from the rest of other studies 

shown in Table 2. 

Furthermore, terizidone and cycloserine were co-administered in this study and hence 

there was also cycloserine emanating from hydrolysis (metabolism) of terizidone which 

authors did not consider in their pharmacokinetic calculations. It is for this reason that 

the authors noted that increase in blood concentration of terizidone was not 

proportional to the two molecules of cycloserine that make up a molecule of terizidone 

even after administration of same dose of both drugs (Zitkova, Toušek, 1974). The 

sampling of blood for pharmacokinetic analyses in this study was not done at steady-

state. These factors highlighted above contributed to the inaccuracy of cycloserine 

pharmacokinetic parameters  
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Table 2. Pharmacokinetic parameters of cycloserine in tuberculosis patients and healthy volunteers 

aMedian value, bmean value, *AUC0-∞, †L/kg, ‡L/h/kg, cmeasured in cerebrospinal fluid.

Subjects N Dose 

(mg) 

Tlag 

(h) 

ka (h-1) V/F 

(L) 

Cl/F 

(L/h) 

T1/2 

(h) 

ke (h-1) Cmax 

(µg/mL) 

Tmax 

(h) 

AUC 

(µg•h/mL) 

Source 

TB patients 10 250  - 1.60 115 3.23 25 0.028 - 2 - (Zitkova, Toušek, 1974) 

 15 500 - 1.47 176.5 8.31 15.8 0.047 - 3 - (Zitkova, Toušek, 1974) 

 10 750  - 1.94 255.8 8.65 21.8 0.033 - 2 - (Zitkova, Toušek, 1974) 

 22 250 - - - - - - 12.8c 2c - (Holdiness, 1985) 

Drug-resistant 

TB 

14 250-500 

bd 

- 0.135 10.5 1.38 - - - - - (Chang et al., 2017) 

Healthy volunteers             

Fasting 12 500 0.4 3.97 0.41† 0.033‡ 8.26 0.083 14.8a 0.75 214* (Zhu et al., 2001) 

Fatty meal 12 500 - - - - - - 12.4a 3.5 217* (Zhu et al., 2001) 

Orange juice 12 500 - - - - - - 13.8a 1.5 225* (Zhu et al., 2001) 

Anti-acid 12 500 - - - - - - 19.2a 0.88 216* (Zhou et al., 2015) 

 12 250 - - 16.82 1.11 12.33 - 19.42b 0.86 283* (Zhou et al., 2015) 

 12 500 - - 15.26 0.91 13.27 - 42.9b 0.83 643* (Zhou et al., 2015) 

 12 1000 - - 16.61 0.99 13.13 - 84.76b 0.84 1224* (Zhou et al., 2015) 

 16 250 bd - - 10.7 1.2 20.3 - 24.9 4 242.3 (Park et al., 2015) 

Fatty meal 10 250 - - - - 11.4 - 9.56 1.8 135* (Zheng-sheng et al., 2014) 

Fasting 10 250 - - - - 12.5 - 7.21 2.8 125* (Zheng-sheng et al., 2014) 

 - 250 bd - - - - 10 - 25-30 - - (Brennan, Young & 

Robertson, 2008) 
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2.3.2  Cycloserine pharmacodynamics 

Cycloserine achieves bacteriostatic effect by inhibiting alanine racemase and d-

alanine ligase which are both essential enzymes for the synthesis of peptidoglycan 

and subsequently cell-wall biosynthesis and maintenance. It has in vitro potency 

against Mycobacterium tuberculosis with MIC ranging from 6.2-25 µg/mL and depends 

on the media used, pH and the presence of d-alanine which inhibits its activity. 

Cycloserine can be bacteriostatic or bactericidal depending on local concentration 

effects along with efficacy against the particular bacteria strain involved. About <1log 

(80%) of mycobacterium tuberculosis is killed in macrophages with cycloserine plasma 

concentration of 50 µg/mL (Brennan, Young & Robertson, 2008, Peloquin, 2008). 

The Cmax/MIC ratio of 1.7 is achieved after a daily dose of 500 mg cycloserine at 

steady-state. A dose of 500 mg every 12 hours at steady-state results in Cmax/MIC 

ratio of about 2.4 and 24-hour-concentration/MIC ratios of about 1. The time in which 

the cycloserine serum concentrations exceed the MIC is about 8 hours. However, 

the precise cycloserine pharmacodynamic index that requires optimisation is not 

known (Berning, Peloquin, 1999). The target Cmax range after 250-500 mg doses is 

20-35 µg/mL. For therapeutic drug monitoring, a dose increase is recommended if 

the Cmax is less than 15 μg/mL also a dose decrease if the Cmax is above 40 μg/mL 

(Alsultan, Peloquin, 2014, Peloquin, 2002). 

The main adverse effect of cycloserine is central nervous system (CNS) toxicity which 

includes depression, dizziness, hyper-excitability, memory loss, lethargy, anxiety and 

confusion. The CNS effects may be worse with plasma concentrations greater than 35 

μg/mL. The lethargy is often seen at normal plasma concentrations (Peloquin, 2008). 

2.3.3  Factors influencing pharmacokinetics of cycloserine  

In health individuals, high fat meal lowers the Cmax, delay the Tmax, decrease the ka 

and increase the absorption half-life but does not affect AUC0-∞. The orange juice or 

anti-acids (aluminium hydroxide or magnesium hydroxide) does not significantly affect 

cycloserine disposition (Zheng-sheng et al., 2014, Zhu et al., 2001). 

Gender in health subjects affects Cl/F and elimination half-life. The Cl/F is greater in 

women than in men while half-life in men is longer than in women (Zhou et al., 2015). 
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Meanwhile, in drug-resistant tuberculosis patients, only one study investigated the 

effects of covariates on cycloserine ka, Cl/F and V/F. The covariates such as age, sex, 

body weight, body mass index, serum albumin and serum creatinine did not have any 

effect on ka, Cl/F and V/F (Chang et al., 2017). There was however, interindividual 

variability in Cl/F and V/F of 22.3% and 35.1%, which could not be accounted for by 

any covariate investigated (Chang et al., 2017). In this study, the influence of HIV 

infection and antiretroviral therapy on pharmacokinetic parameters of cycloserine was 

not investigated. 

Generally, pharmacokinetic variability is affected by: 

 Pathophysiologic and physiologic factors such as renal and hepatic impairment, 

co-morbidities (other disease states) and pregnancy.  

 Environmental factors that include exposure to pollutants, diet and smoking.  

 Drug–drug interactions,  

 Genetic phenotypes that affect the clearance of drugs through hepatic 

metabolism by polymorphic cytochrome P450 isoforms such as CYP2D6, 

2C19, 2C9 and 2A6.  

 Other factors such as circadian rhythm, adherence, food effect and the timing 

of meals, activity and posture (Ette, Williams, 2004). 

2.4 ANTI-MYCOBACTERIAL PHARMACODYNAMICS AND REGIMEN 

EFFICACY 

Pharmacodynamics relates the time course of pharmacokinetics or plasma drug levels 

to the therapeutic action or toxicological effects. For antimicrobials, it describes the 

relationship that exist between the plasma drug concentration to which the bacteria is 

exposed at various sites of infection and bacterial killing (David, Willian, 2005). The 

major parameters that have been used to measure in vitro activity of antimicrobials 

against various bacteria are MIC and minimum bactericidal concentration (MBC). Even 

though MIC and MBC are excellent predictors of the potency of an antimicrobial agent, 

they do not provide information on the time course of antimicrobial activity (Craig, 

2007). Using the MIC as a measure of the potency of drug-organism interactions, the 

pharmacokinetic parameters that determine efficacy such as Cmax and AUC can be 

converted to pharmacokinetic/pharmacodynamics (PK/PD) indices. The Cmax/MIC and 
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AUC/MIC ratios have been the PK/PD parameters that correlate well with in vivo 

efficacy for concentration dependent killing anti-tuberculosis drugs. Time above MIC 

(T>MIC) is the PK/PD parameter for anti-tuberculosis drug that exhibit time dependent 

killing (Craig, 2007). 

Some proteins have been proposed as surrogate biomarkers of anti-tuberculosis 

treatment response. The serum inducible protein of 10 kDa (IP-10) decreases 

significantly after anti-tuberculosis treatment. Therefore, it can be a useful marker for 

monitoring therapy and efficacy in patients with active tuberculosis (Hong et al., 2014). 

In drug-resistant tuberculosis patients, chemokines and acute inflammation markers 

[monocyte chemoattractant protein 1 (MCP-1), IP-10, soluble interleukin-2 receptor 

alpha (sIL-2Rα), serum amyloid A (SAA), C-reactive protein (CRP) and vascular 

endothelial growth factor A (VEGF-A)] predict the microbiological outcome and hence 

predictive of treatment response (Ferrian et al., 2017). No studies that have shown 

how pharmacokinetics of anti-tuberculosis drugs in drug-resistant tuberculosis 

patients are related to these biomarkers. However, it is undoubted that plasma 

exposure to anti-tuberculosis drugs (pharmacokinetics) plays a vital role since drug-

resistant strain induces the production of these chemokines (Basile et al., 2017) which 

correlate well with treatment outcome (Ferrian et al., 2017). 

In patients with pulmonary tuberculosis, conversion of sputum mycobacterial cultures 

from growth to negative growth of mycobacteria tuberculosis is considered the most 

important indicator of treatment response or efficacy of anti-tuberculosis 

pharmacologic treatment for drug-resistant tuberculosis (World Health Organization, 

2010b). From the literature, the sputum conversion at 2 or 3 months is taken as a good 

treatment response in pulmonary tuberculosis (Brust et al., 2011, Holtz et al., 2006, 

Kurbatova et al., 2012, Kwon et al., 2008, Yew et al., 2000). The efficacy of the second-

line regimen in drug-resistant tuberculosis patients whether HIV-infected or not, 

ranges between 24 – 85% in terms of the rate of sputum culture conversion. The 

median time to culture conversion ranges between 60 - 90 days (Brust et al., 2011, 

Holtz et al., 2006, Loveday et al., 2012, Kurbatova et al., 2012, Kwon et al., 2008, Yew 

et al., 2000). It is worthy to note that the efficacy in these studies was not related to 

the plasma concentration of each individual drug in the regimen. Therefore, variations 

in the efficacy could be a result of inadequate individual drug exposure. 
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There are, however other factors that influence the efficacy of the second-line anti-

tuberculosis regimen.  Factors such as baseline positive (Kurbatova et al., 2012) 

smear, smoking, previous use of second-line drugs, older age, male gender and 

bilateral radiological involvement (Mota et al., 2012, Qazi et al., 2011).  

2.5 MECHANISMS OF DRUG-RESISTANT TUBERCULOSIS  

Multidrug-resistant tuberculosis (MDR-TB) is defined as the infection with 

Mycobacteria tuberculosis strains which are resistant to rifampicin and isoniazid, the 

key first-line anti-tuberculosis drugs (Zumla et al., 2012). Drug resistance in 

tuberculosis is epidemiologically classified as primary, acquired and initial. Primary 

drug resistance occur in treatment naïve patients who get infected with resistant strain 

of bacteria. Acquired drug resistance applies to patients previously treated with drug 

susceptible tuberculosis and later become resistant to medications mainly due to non-

adherence or inappropriate/irregular treatment (Long, 2000). The sub-optimal drug 

therapy causes spontaneous mutations in the mycobacteria chromosomal genes that 

leads to production of resistant strains (Almeida Da Silva, Pedro Eduardo, Palomino, 

2011). Initial or mixed drug resistance is a combination of primary and acquired drug 

resistance as patients in this category have unconfirmed drug history although claim 

to be treatment naïve (Long, 2000). 

There are six genotypes of Mycobacterium tuberculosis strains that have been 

identified in MDR-TB patients in the Western Cape Province of South Africa. These 

are Beijing, Latin American and Mediterranean (LAM), Haarlem, X, Family 11(F11), 

Family 28 (F28) and IS6110 low copy number clades (Johnson et al., 2010, Marais et 

al., 2006, Streicher et al., 2004). Beijing is the most prevalent genotype family followed 

by LAM. Infection with either Beijing or Haarlem strain increases the likelihood to have 

drug resistant tuberculosis than other strain families (Marais et al., 2006). The Beijing 

cluster 220 genotypes with -15 inhAC-T promoter and rpoB gene mutations confer 

isoniazid and rifampicin resistance, respectively (Johnson et al., 2006).  

The action of rifampicin on Mycobacterium tuberculosis is bactericidal with MIC range 

of 0.05-10 µg/mL in different media. It targets the β-subunit of DNA dependent RNA 

polymerase and interferes with the synthesis of RNA (Zhang, Yew, 2009). The β-

subunit of the RNA polymerase is encoded in the 81 base pair region of rpoB gene. 
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Mutations in the rpoB gene (amino acid 507-533) are accountable for most rifampicin 

resistance and cross-resistance to other rifamycins (Laurenzo, Mousa, 2011, Zhang, 

Yew, 2009). Furthermore, mutations in codons 531 (S531L) and 526 (H526P/D/Y) give 

rise to high-level rifampicin resistance with MIC above 64 µg/mL (Laurenzo, Mousa, 

2011). 

Isoniazid is a prodrug that is activated by catalase peroxidase leading to production of 

multiple reactive species such as oxygen radicals and isonicotinic acyl radicals, which 

lead to the killing of Mycobacterium tuberculosis infected cells (Zhang, Yew, 2009). 

The enzyme, enoyl-acyl carrier protein reductase (InhA), involved in mycolic acid 

synthesis is thought to be the primary target of inhibition by isoniazid. Mutations in two 

genes KatG and InhA account for majority of isoniazid resistance as they result in loss 

of catalase peroxidase activity (Laurenzo, Mousa, 2011).  

2.5.1  Factors contributing to the development of drug-resistant tuberculosis 

Poor treatment outcome such as acquired drug-resistant tuberculosis are mainly 

caused by patient factors like non-adherence, inappropriate treatment regimen, 

inadequate supply of anti-tuberculosis drugs or supply of poor quality drugs (World 

Health Organization, 2014). Comorbidities and undernutrition may also cause 

malabsorption of anti-tuberculosis drugs leading to low bioavailability and sub-

therapeutic concentrations (Murray, Cohen, 2009, World Health Organization, 2014). 

Low exposure to anti-tuberculosis drugs or to a single drug because of inappropriate 

regimen or poor treatment adherence provides survival advantage for drug-resistant 

bacteria (Pablos-Mendez, Lessnau, 2000). Similarly, if new cases of tuberculosis are 

not successfully treated due to clinical mismanagement, result in the increase of drug-

resistant tuberculosis prevalence by ten-fold (Pablos-Mendez, Lessnau, 2000).  

Comorbidity like HIV infection was found to be associated with drug-resistance and 

resistance to any other drug even after adjusting for confounding effect of previous 

anti-tuberculosis therapy (Murray, Cohen, 2009). This is thought to occur because of 

non-adherence due to polypharmacy in HIV infected patients, overlapping toxicities 

and drug interactions between anti-tuberculosis and anti-retroviral drugs (Murray, 

Cohen, 2009). Drug-resistant tuberculosis has been associated with previous history 

of pulmonary tuberculosis and episodes and previous treatment with category 2 drugs 

http://etd.uwc.ac.za/



Literature Review 

 

23 
 

(streptomycin, kanamycin, amikacin and capreomycin) (Workicho, Kassahun & 

Alemseged, 2017, Dessalegn et al., 2016). Being younger than 30 years is associated 

with higher chance of having drug-resistant tuberculosis than being older. This could 

be due to non-adherence or reluctance in adhering to the anti-tuberculosis drugs in 

younger patients (Workicho, Kassahun & Alemseged, 2017). A case-control study 

found type II diabetes and past smoking status to be associated with drug-resistant 

tuberculosis (Rifat et al., 2014). In another study, diabetes mellitus was independently 

associated with drug resistance even after adjusting for other factors (Baghaei et al., 

2016). It is suggested that in type II diabetes, low immunity may enhance propensity 

to infection with resistant strains (Rifat et al., 2014). Consumption of alcohol and 

chronic anti-acid use were found to be significant predictors of drug-resistant 

tuberculosis (Mulisa et al., 2015). Furthermore, indulgence in both alcohol and tobacco 

influence the outcome of treatment with category 4 drugs in drug-resistant tuberculosis 

patients (Yadav et al., 2016). 

The factors that lead to development of drug-resistant tuberculosis are largely those 

that eventually result in low plasma exposure to anti-tuberculosis. These are non-

adherence, comorbidities, malabsorption and drug-drug interactions through the use 

of medication for comorbidities and social drugs such as tobacco and alcohol. Erratic 

supply of anti-tuberculosis and use of wrong treatment regimens ultimately lead to 

drug resistance resulting from inadequate drug exposure.  

2.6 THE ROLE OF PHARMACOKINETICS IN PREVENTION OF DRUG-

RESISTANT TUBERCULOSIS 

Despite the high rate of adherence to anti-tuberculosis medication by patients, 

emergence of drug-resistant tuberculosis still occur (Calver et al., 2010). 

Pharmacokinetic variability in anti-tuberculosis drugs is the more likely cause of the 

emergence of drug-resistant tuberculosis (Srivastava et al., 2011) since not only is 

associated with drug-resistant tuberculosis but also treatment failure (Pasipanodya, 

Srivastava & Gumbo, 2012).  

2.6.1  Relationship between drug exposure and tuberculosis treatment outcome 

Rifabutin AUC0-24 and median Cmax were found significantly lower in patients who had 

acquired rifampicin resistance (ARR) than those who did not. Subsequent adjusted 
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analyses showed that rifabutin AUC0-24 of less than 4.5 mg*h/mL was associated with 

relapse or failure (Weiner et al., 2005). Isoniazid median AUC0-12 was also significantly 

lower in patients with relapse or ARR failure (Weiner et al., 2005). A controlled trial 

revealed a strong association between isoniazid AUC0-12 and treatment failure or 

relapse while Cmax did not show any association (Weiner et al., 2003). The AUC0-12 

was significantly lower among patients with relapse or failure. The trial on the contrary 

did not find any significant associations between rifampin AUC (or Cmax) and treatment 

outcome (Weiner et al., 2003). The time over a certain concentration threshold as 

described by AUC is the better determinant pharmacokinetic parameter for treatment 

outcome of isoniazid than Cmax. 

In drug-sensitive tuberculosis, the 24-hour AUCs for isoniazid, rifampicin and 

pyrazinamide were found to be most predictive of long-term outcomes (relapse, 

treatment failure and death). Furthermore, target plasma concentrations of these 

drugs were not associated with long-term outcomes (Pasipanodya et al., 2013). Only 

pyrazinamide peak concentration was found the highest predictor of 2-month sputum 

conversion and sterilizing activity (Pasipanodya et al., 2013). Another study showed 

that standard dosing of rifampin resulted in sub-therapeutic plasma levels and poor 

clinical response. Dose increase resulted in improved clinical outcome with no change 

in side effects profile (Mehta et al., 2001). 

Lower than expected Cmax values of ethambutol, rifampin and isoniazid occurred 

frequently in a cohort of tuberculosis patients (Chideya et al., 2009). Meanwhile, poor 

tuberculosis treatment outcome was associated with low pyrazinamide Cmax and more 

frequently among HIV-infected patients with a CD4 cell count of less than 200 cells/mL 

(Chideya et al., 2009). Surprisingly, in HIV negative patients, sub-therapeutic plasma 

levels of ethambutol, isoniazid, rifampicin and ofloxacin sampled at 1-2 hours were 

reported (Kimerling et al., 1998). Additionally, improvement in the clinical outcomes 

was noted after drug doses were adjusted upwards. Drug interactions and 

malabsorption could not be ruled out as probable reason since patients were reported 

to be smokers, alcohol and laxative abusers (Kimerling et al., 1998).  

On the contrary, one study revealed that despite the presence of low concentrations 

of rifampicin, isoniazid and pyrazinamide in the patients, treatment response was good 

(Burhan et al., 2013). There was no any association found between plasma 
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concentrations and sputum culture results at four and eight weeks (Burhan et al., 

2013). However, this study assessed only two time points and this could have led to 

the underestimation of the Cmax especially in the presence of delayed drug absorption. 

Similarly, despite a substantial number of drug-resistant tuberculosis patients not 

achieving the minimum therapeutic concentrations of cycloserine, moxifloxacin and 

prothionamide, the sputum conversion after two months of therapy was not affected 

(Lee et al., 2015). These concentrations, nevertheless, may have not represented the 

typical Cmax as each patient sample was drawn between 2 to 6 hours (Lee et al., 2015). 

Another reason for this observation is that the authors could not use AUC as the 

predictor of sputum conversion as their study design could not allow. In another study, 

lower than recommended plasma concentrations of cycloserine were frequent among 

the drug-resistant tuberculosis patients. However, the majority of the patients achieved 

cure defined as five consecutive negative sputum cultures taken every 30 days during 

the last 12 months of treatment (Hung et al., 2014). This study had some limitations to 

consider; low doses of cycloserine were administered and not the recommended 

(Hung et al., 2014). The important investigations with respect to the impact of low 

cycloserine plasma concentrations were not performed and blood was sampled at two 

time points (Hung et al., 2014). 

In anti-tuberculosis drugs, pharmacokinetics plays a major role in either prevention or 

contributing factor to development of drug-resistant tuberculosis. Achieving 

therapeutic plasma drug levels is cardinal for clinical efficacy of anti-tuberculosis 

treatment. Strong evidence from a meta-analysis of controlled clinical trials confirms 

that variability in the pharmacokinetics of a single drug in the anti-tuberculosis drug 

regimen is significantly associated with acquired drug resistance and treatment failure 

(Pasipanodya, Srivastava & Gumbo, 2012). This evidence supports more use of 

individualised dosing than standardised dosing recommended in directly observed 

therapy programmes (Pasipanodya, Srivastava & Gumbo, 2012).  

2.7 POPULATION PHARMACOKINETICS AND MODELLING 

Population pharmacokinetics is defined as the study of sources and correlates of 

variability in drug concentrations between individuals (patients) when standard dosage 

regimens are administered. The essence of population pharmacokinetics is to 

recognise any demographical features (age, weight, and race), pathophysiological 
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(renal and hepatic impairment), concomitant therapies or disease state that can 

significantly alter the pharmacokinetic parameters (Aarons, 1991). It seeks to identify 

the pathophysiological factors that cause changes in the dose-concentration 

relationship that can potentially result in altered therapeutic response. The population 

pharmacokinetics make provision for appropriate dose adjustment or modification 

(Sun et al., 1999). 

The concept of population pharmacokinetics was first proposed by Sheiner and co-

workers in 1977 and has now become a standard tool in the clinical setting and 

pharmaceutical industry (Sheiner, Rosenberg & Marathe, 1977). In population 

pharmacokinetic modelling, a non-linear mixed-effects modelling approach is 

employed. This approach considers the population rather than the individual as the 

unit of analysis for estimating the pharmacokinetic parameters distribution and 

covariate relationship within the population of interest. All pharmacokinetic parameters 

and precision of these parameters are estimated simultaneously (Kiang et al., 2012). 

Population pharmacokinetic modelling is robust and has several advantages, which 

include: 

 Ability to accommodate flexible study designs which occur during treatment, 

 Allow analysis of sparse or dense data from each patient, 

 Ability to screen and quantification of covariates for explaining variability in the 

pharmacokinetic parameters, 

 Ability to distinguish between inter-individual and intra-individual variability in 

the pharmacokinetic parameters, 

 Allow estimation of the magnitude of the unexplained part of the variability in 

the patient population (Charles, 2014, Ette, Williams, 2004). 

 Utilisation of information generated for individualised dosing. 

 Overcome ethical barriers that does not allow performing of traditional Phase 1 

studies in children (Bonate, 2011). 

2.7.1   Role of pharmacokinetic modelling and simulation in anti-tuberculosis 

drugs 

Pharmacokinetic modelling characterises and summarises concentration-time data 

while simulation is applied modelling. Simulation uses models to predict outcomes for 
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a given set of inputs. Monte Carlo simulations unlike deterministic simulations take 

into consideration random variation component of the model to make predictions 

(Bonate, 2011).  

The Monte Carlo simulations were performed on final population pharmacokinetics 

models for second-line anti-tuberculosis drugs in patients with drug-resistant 

tuberculosis with an aim to evaluate World Health Organization and American 

Thoracic Society recommended dosages. The observed data in comparison with 

simulated data revealed none or small proportion of patients achieving target 

concentration range. Hence, authors recommended the following doses: 500 to 750 

mg of cycloserine, 200 mg six hourly of moxifloxacin for patients weighing less than 

50 kg, 750 to 1000 mg IM of kanamycin and 3.3 to 6.6 g twelve hourly or 3.3 g eight 

hourly of para-aminosalicylic acid (Chang et al., 2017). Meanwhile, simulations of the 

600 mg standard dose of rifampicin in another study showed inability to prevent 

emergence of resistance, as probability of target attainment especially in pulmonary 

epithelial lining fluid was less than 36% (Goutelle et al., 2009). However, using 1200 

mg dose produced better results in terms of target attainment (Goutelle et al., 2009). 

The mean bactericidal effect after simulations of 300 mg daily dose of isoniazid was 

11% lower for fast than slow acetylator subjects with MIC of 1 mg/L (Lalande et al., 

2015). Increment of daily dose to 450 mg resulted in a 22% increase in bactericidal 

effect for fast acetylator subjects. These results implied that fast acetylator patients 

infected with low-level resistance mycobacterium tuberculosis might benefit from 

higher doses of isoniazid (Lalande et al., 2015). 

The final pharmacokinetic models in one study (Zvada et al., 2014) were used to 

perform steady-state Monte Carlo simulations of the measures of exposure (AUC and 

Cmax) for tuberculosis-infected patients using World Health Organization 

recommended guidelines (World Health Organization, 2010a). The simulated results 

predicted decreased AUCs by 50% and 56% for isoniazid and rifampicin, respectively. 

Children in the lowest weight band (5.0-7.9 kg) had lower exposures than those in the 

reference adult population (Zvada et al., 2014). These simulation results showed that 

children within the lowest weight band were under-dosed. Furthermore, a dose of 

50mg/kg pyrazinamide was found optimal for children weighing between 5.0 to 7.9 kg, 

as it would achieve the same AUC as in adults. Authors observed wide variability in 
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drug exposure when dosed according to World Health Organization programmatic 

weight bands (Zvada et al., 2014).   

From the studies discussed above, it can be concluded that pharmacokinetic 

modelling and simulation play a role in the determination of effective dose or dosing 

interval for the target patient population. It can further be utilised as a tool for optimal 

individualised anti-tuberculosis drug dose determination and subsequent adjustments. 

2.7.2  The need for terizidone dose optimisation 

There is scanty information available in English language on the use of terizidone in 

tuberculosis besides no studies currently in the scientific literature have attempted to 

optimise terizidone dose in drug-resistant tuberculosis patients. Terizidone in a dose 

of 600-900 mg per day demonstrated a good level of tolerance in five dialysed 

tuberculosis patients (Galietti et al., 1991). Similarly, in the two studies of pulmonary 

tuberculosis patients with concomitant psycho-neurological impairments, tolerated 

well a dose of 250 mg three times daily (Shmelev, Shabalova & Kolosovskaia, 1975, 

(Kottász, Babics, 1972). While terizidone in the above studies was reported to be well 

tolerated at these doses, no plasma concentrations were measured to establish the 

corresponding tolerated plasma concentration range. 

According to South African policy guidelines on the management of drug-resistance 

tuberculosis, patients weighing 33-70 kg take terizidone daily dose of 750 mg in both 

intensive and continuous phase (NDoH, 2013). In addition, the guideline does not state 

the target plasma concentration. Considering the patient weight-band of 33-70 kg and 

the daily dose of 750 mg, it is reasonably justified to speculate that patients within this 

weight-band do not achieve similar plasma concentrations of terizidone. Heavier 

patients are more likely to be under-dosed compared to the lighter ones. 

The plasma concentration profile of terizidone at steady-state in drug-resistant 

tuberculosis patients has not been established. Hence, not only is there a need to 

optimise the dose but also establish effective terizidone exposure (Cmax or AUC) in 

order to prevent resistance and improve treatment outcomes. 
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2.8 SUMMARY 

There is only one study published in English language on pharmacokinetics of 

terizidone in drug sensitive tuberculosis. The pharmacokinetic parameters were not 

accurately estimated due to the use of a non-specific bioanalytical assay (outdated) 

and inappropriate pharmacokinetic model. Cycloserine is the secondary metabolite of 

terizidone. Nevertheless, no pharmacokinetic studies have established the 

pharmacokinetic relationship between terizidone and cycloserine as a secondary 

metabolite. The influence of HIV infection, anti-retroviral therapy and other anti-

tuberculosis drug in the regimen on pharmacokinetics of terizidone in drug-resistant 

tuberculosis patients is not known.  The drug-resistant tuberculosis develops as a 

result of low plasma drug exposure caused by several factors that account for 

pharmacokinetic variability of some drugs in the regimen. Terizidone daily dose of 750 

mg for patients weighing 33-70 kg may not provide sufficient plasma concentrations 

especially in patients with higher body weight.  Good treatment outcomes indicated by 

2 or 3 months sputum culture conversion and other biomarkers are primarily driven by 

adequate plasma concentration of each drug in the regimen. Population 

pharmacokinetic modelling is the best method that can be used to establish 

pharmacokinetic parameter profile of terizidone and cycloserine as its metabolite at 

steady-state.
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Chapter Three 

 

3.0 INTRODUCTION 

The overarching aim of this chapter is to describe the methods and various tools 

employed in order to perform the study objectives outlined in Chapter one. Briefly, the 

chapter describes the study design, site and states the ethical considerations of the 

study. Additionally, the criteria that were applied to either include or exclude the 

patients in the study are outlined. The procedure on how the blood samples from 

patients were obtained and processed has been highlighted. The analytical methods 

to determine the plasma concentrations of terizidone and cycloserine are briefly 

outlined as they have been described in Chapters four and five in detail, respectively. 

The information about the patients’ demographic and clinical characteristics collected 

is provided. The various steps in process of pharmacokinetic modelling of terizidone 

and cycloserine concentration-time data, including the selection of the base, error and 

covariate models have been described. Finally, the chapter concludes by explaining 

the procedure on how the final pharmacokinetic model was validated and used in the 

simulation of current terizidone dose across three weight-bands. 

3.1 STUDY DESIGN AND SITE 

This prospective, non-randomised (non-intervention) clinical study was conducted at 

Brewelskloof Hospital in Worcester, Western Cape province of South Africa. 

Brewelskloof Hospital is one of the designated drug-resistant tuberculosis specialised 

centre in the province. It is a referral hospital to both public and private health 

institutions within the catchment area. The areas catered for by the hospital include 

Caledon, Grabouw, Touws River, De Doorns, Robertson, Montagu, Stellenbosch, 

Swellendam, Bredasdorp, Riviersonderend, Ceres, Kleinmond, Hermanus, Heidberg, 

Paarl, Matjiefontein and Klein Bay.  
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3.1.1 Ethics statement 

The study protocol was approved by the University of the Western Cape ethics 

committee (Reference number: 07/6/12) and University of Cape Town ethics 

committee (Reference number: 777/2014). The study was conducted according to the 

principles stated in the declaration of Helsinki (General Assembly of the World Medical 

Association, 2014) and the guidelines of the National Department of Health of South 

Africa (Department of Health, 2006). The patients were identified by codes. Data 

collected was handled with strict confidentiality. Each patient signed informed consent 

form. Participation in the study was voluntary. Patients had the right to withdraw their 

participation at any stage of the study without consequences. 

3.1.2 Study sample size 

Thirty-nine (39) adult patients with drug-resistant tuberculosis participated in this 

study. Twenty-seven (27) of them were co-infected with human immunodeficiency 

virus (HIV). It was not possible to calculate the minimum number of patients and blood 

samples per patient for pharmacokinetic modelling, as there is no information in 

literature about the population pharmacokinetic model of terizidone.   

3.2 PHARMACOKINETIC SAMPLING DESIGN: COLLECTION OF BLOOD 

SAMPLES 

The full population pharmacokinetics sampling design was applied in order to get 

several 

drug concentrations per patient at different times and to allow for precise estimation 

of pharmacokinetics parameters from the concentration-time data (USFDA, 1999). 

The blood sampling in patients co-infected with HIV was performed as per protocol of 

the main approved study. Blood samples from each patient were collected in 

heparinised tubes at 0h (baseline), 1(±0.5)h, 2(±0.5)h, 3(±0.5)h, 4(±0.5)h, 5h, 8h, 16h, 

and 24h after witnessing intake of terizidone and other second-line anti-tuberculosis 

drugs, including antiretroviral drugs for HIV-infected patients. The blood samples 

underwent centrifugation at 10000 rpm for 5 minutes in order to obtain plasma. 

Harvested plasma was appropriately labeled and stored in a central repository at -

80ºC until drug analysis. 
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3.2.1 Determination of terizidone and cycloserine concentrations in plasma 

The method to analyse terizidone in human plasma was developed and validated 

using high performance liquid chromatography coupled with ultra-violet detection 

(HPLC-UV). 

The method was validated using United States Food and Drugs Administration 

guidelines for analytical method validation and International Conference on 

Harmonisation for validation of analytical procedures (USFDA, 2013, ICH, 2005). The 

detailed procedure of the method is presented in Chapter four. The ultra-performance 

liquid chromatography tandem mass spectrometry method was developed and 

validated for determination of cycloserine in human plasma. The method was validated 

according to the international guidelines (ICH, 2005, USFDA, 2013) and details are 

presented in Chapter five. 

3.3 COLLECTION OF CLINICAL DATA 

3.3.1 Demographic data 

Demographic data such as age, body weight, height and gender were obtained from 

each patient on the day of blood sampling. Body mass index (BMI) was calculated 

using height and body weight (Rolland-Cachera et al., 1991). Free fat mass was 

calculated for each gender using BMI and body weight (Janmahasatian et al., 2005). 

3.3.2 Medical and treatment history 

Medical history regarding HIV status and comorbidities was obtained from the patients’ 

medical records. The dose of terizidone and the current anti-tuberculosis drug regimen 

were documented at the time of pharmacokinetic blood sampling. The antiretroviral 

treatment regimen, current anti-tuberculosis regimen and concurrent medications 

were recorded from the patients’ medical records. 

3.3.3 Liver function tests  

An extra 5 mL of blood was collected from each patient for the determination of alanine 

aminotransferase (ALT), gamma-glutamyl transferase (GGT) and aspartate 

aminotransferase (AST). Other liver function markers such as albumin, unconjugated 

bilirubin, conjugated bilirubin and total bilirubin were analysed as well. 
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3.3.4 Kidney function tests 

Creatinine clearance (Cockcroft, Gault, 1976) and estimated glomerular filtration rate 

(Levey et al., 2007) were calculated using serum creatinine concentration from each 

patient. 

3.3.5 Inclusion criteria 

The inclusion criteria in this study were the following: 

1. Male and female with confirmed drug-resistant tuberculosis with or without HIV 

infection, 

2. Age ranging from 17 to 65 years,  

3. Intensive phase treatment of drug-resistant tuberculosis for at least two weeks, 

4. Being treated with second-line anti-tuberculosis drugs (kanamycin or amikacin, 

moxifloxacin, ethionamide, terizidone, ethambutol, isoniazid and 

pyrazinamide), 

5. Informed signed consent form.  

3.3.6 Exclusion criteria 

If the patients had the following characteristics, they were excluded from the study: 

1. Paediatric patients, 

2. Pregnant patients,  

3. Patients with unstable haemodynamics, 

4. Extensively drug-resistant tuberculosis, 

5. Absence of informed signed consent form. 

3.4 DETERMINATION OF PHARMACOKINETIC PARAMETERS 

The population pharmacokinetics analysis approach was employed (Sun et al., 1999). 

The population pharmacokinetic model consists of three sub models namely; (1) 

structural model (which describes the overall pattern of data using fixed effects 

parameters), (2) statistical or stochastic model (which accounts for variability by using 

a hierarchy of random effects  e.g. inter-individual variability, inter-occasion variability 

and residual variability) and (3) covariate model (which expresses relationships 
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between model parameters and covariates). The population pharmacokinetic model is 

the set of models for individual observation and generally represented as equation (1): 

𝒚𝒊𝒋 = 𝒇𝒊𝒋 (𝜱𝒋, 𝒙𝒊𝒋) + 𝜺𝒊𝒋                (𝟏) 

Where 𝒚𝒊𝒋 is the vector of observed data like drug plasma concentrations at respective 

time points 𝒙𝒊𝒋 of the jth subject.  𝒇𝒊𝒋 is the function for the prediction of the ith response 

in the jth subject.  𝜱𝒋 represents the vector of estimable pharmacokinetic parameters 

of the jth subject and  finally 𝜺𝒊𝒋 is the ith measurement error in the jth subject. 

Furthermore 𝜱𝒋 is represented as equation (2):  

𝜱𝒋 = 𝒈 (𝜽, 𝒛𝒋) + 𝜼𝒋                        (𝟐) 

Where g is a function describing the expected value of 𝜱𝒋 as a function of known 

individual specific covariates 𝒛𝒋  and the vector of population parameters 𝜽. 𝜼𝒋 

represents the random variation of individual parameters around the (mean) 

population prediction (Ette, Williams, 2004).  

The concentration-time data for terizidone and cycloserine was analysed by employing 

the non-linear mixed-effects (NLME) modelling implemented in Monolix 2018R1 

software  (Lixoft, 2018). The software implements a stochastic approximation of the 

standard expectation maximization (SAEM) algorithm (Kuhn, Lavielle, 2005) for NLME 

models without approximations. The primary pharmacokinetic parameters such as 

absorption rate constant (ka), apparent volume of distribution (V/F) and apparent 

clearance (Cl/F) were estimated.  

The secondary pharmacokinetic parameters such as area under the curve (AUC0-24) 

and half-life were estimated using the final validated model without covariates. The 

Monolix MlxTran model file used to execute the estimation of secondary 

pharmacokinetic parameters is included in this thesis as Appendix 1. The values for 

the maximum concentration (Cmax) and the time at which concentration is at Cmax (Tmax) 

were obtained from the file output of the individual predicted concentrations. 

 

 

  

http://etd.uwc.ac.za/



Methodology 

 

48 
 

3.5  PHARMACOKINETIC MODEL BUILDING STRATEGY 

3.5.1 Selection of the base and error model 

The data set was explored using DatXplore interface in Monolix and relationships 

among the covariates were established. Selection of the pharmacokinetic structural or 

base model was aided by graphical exploration of concentration-time data for 

terizidone and cycloserine using ggplot2 package in R statistical software (R Core 

Team, 2018) in addition to DatXplore. The overall pattern of the time versus log-

transformed concentration of terizidone and cycloserine profile determined the 

pharmacokinetic structural model to be initially selected. The concentration-time data 

for terizidone and cycloserine were modelled simultaneously using Monolix.  One-

compartment model was selected initially with constant or additive error model (𝒚 =

𝒇 + 𝒂 𝜺) without inclusion of covariates. Several error models such as proportional 

(𝒚 = 𝒇 + 𝒃 𝒇 𝜺), combined1 ( 𝒚 = 𝒇 + (𝒂 + 𝒃 𝒇) 𝜺), combined2, (𝒚 = 𝒇 +  √(𝒂𝟐 +

𝒃𝟐 𝒇𝟐 𝛆)), and exponential (𝐥𝐨𝐠(𝒚) = 𝐥𝐨𝐠(𝒇) + 𝒂 𝜺) were tried as well iteratively in order 

to get the best error model. The error model associated with the lowest Objective 

Function Value (OFV) or Bayesian Information Criterion–BIC was selected (Schwarz, 

1978). The two-compartment model was tried with several error models as for the one-

compartment model.  

After performing several runs, the selection of the best base model (structural) was 

based on visual inspection of individual fit plots as well as observed versus individual 

predicted concentration (IPRED) plots.  

Selection of best error model was based on goodness-of-fit plots that included 

individual weighted residuals (IWRES) versus time plot and a plot of absolute values 

of IWRES (|IWRES|) versus IPRED. A lack of visible trend in both plots was the criteria 

for the appropriate error model. Additionally, the inspection of parameter distribution 

(Empirical Bayes Estimates–EBEs) plots of the simulated rather than the empirical 

distribution of the estimated individual parameters (Lavielle, Ribba, 2016) was 

performed. At every modelling stage, the structural and error models were assessed 

for any mis-specification. 
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3.5.2 Random effects  

The distribution of standardised random effects associated with each estimated 

pharmacokinetic parameter (fixed effects) were assessed for normality by visual 

inspection of boxplots generated in Monolix. The model for random effects was thus 

accepted if the boxplots were in agreement or did not deviate from the expected 

standard normal distribution. 

3.5.3 Covariate modelling 

The covariate modelling was performed in a stepwise manner (Mandema, Verotta & 

Sheiner, 1992) and iteratively. The basic population pharmacokinetic model without 

any covariates, developed from the above described procedure was the starting point 

in the covariate modelling. Allometric scaling of all disposition parameters was applied 

in order to adjust for the expected effect of body size (Anderson, Holford, 2009) using 

body size descriptors like free fat mass (Janmahasatian et al., 2005), total body weight 

and body mass index. The correlations among the covariates were analysed in order 

to identify the possibility of collinearity. Pharmacological or biological plausible 

covariates were selected for covariate model building. In the case of collinearity, only 

one of the correlated covariates was included in the model. 

3.5.4 Screening for covariate effects 

Selection of covariate significance (pharmacologically or biologically plausible) was 

achieved through graphical observation of correlation trends between random effects 

of individual predicted pharmacokinetic parameters and continuous covariates in 

Monolix interface. In the case of categorical covariates, the boxplots of random effects 

of individual predicted pharmacokinetic parameters were assessed for any visible 

differences in the medians as the criteria for inclusion in the covariate model. 

Therefore, any visible trend between random effects and individual predicted 

parameters indicated eligibility of a covariate for inclusion in the covariate model. 

Covariate modelling included the determination of relationship between various 

covariates (patient demographic variables, HIV status, liver and renal function markers 

and co-morbidities) and fixed parameters using Wald test integrated in Monolix. All 

continuous covariates were centered around the median value (typical median value). 
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The covariates that met the inclusion criteria as stated above were tested one at a 

time in a stepwise forward inclusion manner. A p-value of ≤ 0.05 (Wald test) was 

considered significant provided the OFV (−2 ∗ 𝑙𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) decreased by at least 

3.84 points (goodness-of-fit criteria). After inclusion of all the significant covariates (full 

model), a backward deletion step was performed at the significance level of ≤ 0.01 

provided there was a decrease in OFV by at least 6.63 points. The final population 

pharmacokinetic model (reduced model) consisted of relevant covariates of interest 

that were evaluated and retained. 

3.5.5 Model diagnosis 

The final population pharmacokinetic model was subjected to four types of model 

diagnoses in order to evaluate its validity. These were individual parameter estimates 

based diagnosis, residual type diagnosis, simulation based diagnosis and numerical 

diagnosis (Karlsson, Savic, 2007).  

The individual parameter estimates based diagnosis involved the plot of the 

distribution of individual predicted parameters and the shrinkage. The low value of 

shrinkage and approximate normal distribution observed through histograms and QQ-

plots of the EBEs was desirable. The other diagnostic test performed was plot of 

observed concentrations versus predicted concentrations (IPRED) in order to test if 

there was agreement.   

Residual type diagnosis involved the plot of IWRES and time in order to identify any 

trend in the IWRES over time (independent variable). Model misspecification was 

assumed if there was a clear trend in the IWRES. 

Simulation based model diagnosis involved the visual predictive checks (VPC) (Wang, 

Zhang, 2012). The VPC evaluated the predictability of final pharmacokinetic model by 

making graphical comparison between the multiple model-simulated predictions at 

each time point from the data set and observed data. The simulation of the single data 

set was also performed and compared with the observed data set (Karlsson et al., 

1998). 

Numerical diagnostics involved comparison of the OFV (−𝟐 ∗ 𝒍𝒐𝒈𝒍𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅) 

between nested models or comparison of BIC between non-nested models. The 
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smaller the OFV or BIC value the better was the model. Model over fit was also 

assessed by the magnitude of relative standard errors of the pharmacokinetic 

parameters (Karlsson, Savic, 2007). High values indicated possible over fit. Finally, a 

bootstrap procedure was performed in Monolix aided by Rsmlx R package (Lavielle, 

Chauvin & Tran, 2018) in order to assess the precision of the parameters and 

robustness of the proposed joint population pharmacokinetic model. 

3.6 Monte Carlo simulation 

The final joint population pharmacokinetic model was used to simulate terizidone and 

cycloserine exposure (AUC0-24 and Cmax) at 750 mg terizidone daily dose across the 

three weight bands, 33 – 50, 51 – 70 and > 70 kg. This was done in order to assess 

whether similar exposure was achieved across these weight bands. In patients 

weighing 51 – 70 and > 70 kg, dosage optimisations were performed to achieve 

exposures similar to those in 33 – 50 kg weight band and taking 750 mg of terizidone 

daily. 
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In this chapter, a research paper entitled: 

“Analysis of Terizidone in Plasma using HPLC‐UV method and its Application 

in a Pharmacokinetic Study of Patients with Drug-resistant Tuberculosis”, 

is presented. It was published as a research article in the Biomedical Chromatography, 

2018, 32(11): e4325. https://doi.org/10.1002/bmc.4325. It has been re-used in this 

thesis with permission from the publisher (John Wiley & Sons, Inc. license number 

4476471000780). The Copyright license agreement is included as Appendix 2. 
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Abstract

A chromatographic method has been developed and validated for the first time for

analysis of terizidone in plasma. Terizidone was extracted from plasma by protein pre-

cipitation using a mixture of acetonitrile and methanol (1:1, v/v). The chromatographic

separation was achieved with a gradient of acetonitrile and water both containing

0.1% formic acid on a Supelco Discovery® HS C18 (150 ×4.6mm, 5μm) reversed‐

phase column. Propranolol was used as the internal standard. The total run‐time

was 18min. The calibration standard concentrations ranged between 3.125 and

200μg/mL and calibration curves were linear with coefficient of determination values

in the range of 0.9988–0.9999. The inter‐ and intra‐day assay precision (percentage

relative standard error) was <15% while mean accuracy was 107%. The mean extrac-

tion efficiencies of terizidone and IS were 76 and 89%, respectively. The validation

results demonstrated that the method was selective and sensitive, and that terizidone

was stable under the studied conditions. The method was successfully applied in a

population pharmacokinetic study. The mean plasma concentration of terizidone in

patients at all sampling time points was 51.8 ± 28μg/mL. The method was simple,

cheap and hence suitable for therapeutic drug monitoring of terizidone.

KEYWORDS

HPLC‐UV, multidrug‐resistant tuberculosis, plasma, Terizidone
1 | INTRODUCTION

Tuberculosis remains a major world health problem and ranks as the

ninth leading cause of death in the world (WHO, 2017). If not properly

managed, drug‐resistant tuberculosis (DR‐TB) emerges as a complica-

tion of tuberculosis (Zumla et al., 2012). Consequently, DR‐TB neces-

sitates the use of a second‐line anti‐tuberculosis drugs regimen, which

usually contains five to seven drugs (WHO, 2014).

Terizidone is one of the second‐line drugs used in both intensive

and continuous phases of DR‐TB treatment in South Africa (NDoH,

2013). It is made up of two molecules of cycloserine that are joined

by a molecule of terephtalaldehyde and reported to have fewer

adverse effects than cycloserine (Bartmann et al., 2013; Kottász &

Babics, 1972; Vora, 2010). For DR‐TB treatment to be successful,
wileyonlinelibrary.co
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the plasma concentration of each drug in the regimen must reach

the effective threshold necessary to kill the bacteria. In fact, studies

have confirmed that variability in the plasma exposure of anti‐tubercu-

losis drugs is one of the main causes of emergence of DR‐TB or poor

treatment outcomes (Chideya et al., 2009; Pasipanodya, Srivastava, &

Gumbo, 2012; Srivastava, Pasipanodya, Meek, Leff, & Gumbo, 2011).

Adequate plasma drug exposure and an optimal regimen not only pre-

vent the emergence of DR‐TB but also promote early desired treat-

ment outcomes (Pasipanodya et al., 2013; Yuen et al., 2015).

Therefore, therapeutic drug monitoring, which involves the measuring

of plasma concentration of drugs at specific times after drug adminis-

tration, is of utmost importance (Alsultan & Peloquin, 2014). Further-

more, the knowledge of the pharmacokinetic properties of drugs

used in DR‐TB aid in determining appropriate doses should drug
© 2018 John Wiley & Sons, Ltd.m/journal/bmc 1 of 7
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plasma concentrations be found to be lower or higher than the

expected threshold (Reynolds & Heysell, 2014).

Terizidone has scarce information about its pharmacokinetics in

the literature (WHO, 2015). In one pharmacokinetic study (Zitkova &

Toušek, 1974), terizidone plasma concentration was determined using

the calorimetric method (Jones, 1956), which is neither specific nor

currently used in determination of plasma drug concentrations. How-

ever, literature from the World Health Organization (WHO, 2015)

states that terizidone is not measurable in plasma and thus is thought

to undergo complete pre‐systemic hydrolysis in the gut wall and liver.

The objective of the current study was to develop and validate

the first chromatographic method to determine terizidone concentra-

tions in plasma and verify its presence in patient plasma samples for

a population pharmacokinetic study.
2 | EXPERIMENTAL

2.1 | Chemicals and reagents

Terizidone powder, analytical grade (catalog no. T115500, Figure 1),

was obtained from Toronto Research Chemicals, Canada. Propranolol

powder (lot no. 29H4016), used as the internal standard (IS), was pur-

chased from Sigma‐Aldrich, Germany. HPLC‐grade acetonitrile and

methanol were sourced from Sigma‐Aldrich and Merck (South Africa),

respectively. Dimethylsulfoxide (DMSO) and formic acid were sourced

from Merck, South Africa. Ten other drugs (ethionamide, ethambutol,

kanamycin, isoniazid, moxifloxacin, stavudine, lamivudine, tenofovir,

pyrazinamide and efavirenz) that are usually co‐administered with

terizidone were obtained from Western Cape Provincial Pharmaceuti-

cal Services (South Africa). Cycloserine powder (CAS no. 68‐41‐7) was

purchased from Sigma‐Aldrich, Germany. The HPLC‐grade water (18

mΩ) was obtained from a Direct‐Q3 (Mmillipore) water purification

system. Drug‐free pooled plasma was purchased from Sigma‐Aldrich.
TABLE 1 Gradient elution steps
2.2 | Instrumentation

The analysis of terizidone was performed on a Waters® 1525 HPLC

system (Milford, MA, USA) equipped with binary pumps with maxi-

mum operating pressure of 6000 psi and a programmable range of

flow‐rate between 0.00 to 10.00mL/min in 0.01mL increments. The

system comprised an integral vacuum degasser for removal of dis-

solved gases from the mobile phase. Linked to the system was a

Waters® 717 plus autosampler and Waters® 2487 (dual absorbance)

UV detector, which was set at a sensitivity of 2.0000 AUFS. The han-

dling of data was managed by Empower pro software.
FIGURE 1 Chemical structure of terizidone
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2.3 | Chromatographic and analytical conditions

The chromatographic separation of terizidone and IS was achieved

using a reversed‐phase Supelco Discovery® HS C18 column

(150 × 4.6mm, 5 μm). The mobile phase used was water containing

0.1% formic acid (A) and acetonitrile containing 0.1% formic acid (B).

Gradient elution was carried out using the steps shown in Table 1.

Terizidone and IS were both monitored with the Waters® 2487 UV

detector set at 260 nM. The sample injection volume was 20 μL. The

HPLC analysis was performed at a flow rate and temperature,

1.2mL/min and 20°C, respectively.
2.4 | Preparation of stock solutions, calibration
standards and quality controls

Stock solution of terizidone at 2mg/mL (2000 μg/mL) was prepared

by dissolving accurately weighed 20.0mg of terizidone powder in

2mL of DMSO and made up to 10mL mark with methanol in a

10mL volumetric flask. Stock quality control (QC) solution of

terizidone was prepared at concentration 1.5mg/mL (1500 μg/mL)

by dissolving 15.0mg of terizidone powder in 2mL of DMSO and

made up to 10mL with methanol in a 10mL volumetric flask. The IS

stock solution was made at 0.4mg/mL (400 μg/mL) by dissolving

20.0mg of propranolol in methanol using a 50mL volumetric flask.

These solutions were kept at −20°C.

Seven standards for the calibration curve were prepared in the

range 3.125–200 μg/mL by spiking 0.3mL of terizidone stock solution

in 2.7mL of drug‐free plasma and diluting serially with drug‐free

plasma. Drug‐free plasma (1.8mL) was spiked with 0.2mL of

terizidone QC stock solution and appropriately diluted with drug‐free

plasma. The QC samples, low (LQC), medium (MQC) and high (HQC),

were thus prepared at 10, 37.5 and 150 μg/mL, respectively.
2.5 | Plasma sample treatment

The IS stock solution (in methanol) was diluted with equal volume of

acetonitrile to 200 μg/mL. To every 200 μL of spiked plasma (calibra-

tion standards and QC samples), 800 μL of IS solution (200 μg/mL)

was added and vortex mixed for 1min. The protein precipitate was

then separated through centrifugation (10,000 rpm) at 2°C for

10min. The supernatant (800 μL) was pipetted into a clean vial and

20 μL was injected onto HPLC system.
Time Flow rate (mL/min) A (%) B (%)

0.0 1.2 90.0 10.0

1.0 1.2 90.0 10.0

10.0 1.2 0.0 100.0

13.0 1.2 0.0 100.0

13.1 1.2 90.0 10.0

18.0 1.2 90.0 10.0
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MULUBWA AND MUGABO 3 of 7
2.6 | Method validation

The validation of the method was performed according to the interna-

tional guidelines (ICH, 2005; USFDA, 2013) for quantification of the

limit of detection (LOD), lower limit of quantification (LLOQ) or sensi-

tivity, selectivity, linearity, accuracy, precision, carry‐over, recovery

and stability.
2.7 | Analysis of patients’ plasma samples
Patients’ plasma samples kept at −80°C were left to thaw at room tem-

perature. To each 200 μL of patient plasma, 800 μL of IS was added.

The rest of the sample preparation process was the same as for the cal-

ibration standards. The analytical run consisted of blank sample (proc-

essed plasma without IS and terizidone), zero blank (processed plasma

with IS only), calibration standards, patient samples and QC samples.
FIGURE 2 Chromatograms of IS (a), LLOQ
(b) and highest calibration standard (c)
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3 | RESULTS AND DISCUSSION

3.1 | Optimization of chromatographic conditions

The use of a mixture of methanol and acetonitrile (1:1, v/v) as precip-

itating solvent improved the extraction of the analyte and IS from the

plasma. Other ISs tested apart from propranolol were acyclovir and

reserpine. The separation of the analyte and IS was tried on three dif-

ferent columns, namely a Kinetex XB C18 (150 × 2.1mm, 2.6 μm), a

Zorbax Eclipse XDB C8 (150 × 4.6mm, 5 μm) and a Luna C8

(250 × 4.6mm, 5 μm). The organic mobile phases tested were methanol

and acetonitrile. A buffer solution of octane sodium sulfonic acid and

sodium bicarbonate at pH of 8 and 9 was tried too. The optimization

objective was to achieve well‐separated sharp peaks of both analyte

and IS as well as a short run‐time. Isocratic separation was tried first

followed by gradient elution. In all of the chromatographic trial runs,
c.ac.za/



TABLE 2 Retention time for analyte, IS and other drugs

Drugs Retention time (min)

Cycloserine 0.21*

Ethionamide 4.80

Ethambutol 1.43

Efavirenz 3.62

Isoniazid 1.55

Lamivudine 3.23

Kanamycin 1.90

Moxifloxacin 6.94

Tenofovir 8.06

Stavudine 5.87

Pyrazinamide 4.18

Propranolol (IS) 10.53 ± 0.024

Terizidone (analyte) 11.62 ± 0.029

*Cycloserine peak was in the void and very small.

TABLE 3 Parameters describing the linearity of the calibration curve

Run number r2 Equation Residual sum of squares

1 0.9999 y = 0.0103x − 0.026 0.00029

2 0.9998 y = 0.011x − 0.0115 0.00058

3 0.9999 y = 0.0112x − 0.0074 0.00019

4 0.9996 y = 0.0107x − 0.0223 0.00121

5 0.9999 y = 0.0102x − 0.0192 0.00034

6 0.9988 y = 0.0104x − 0.0032 0.00353
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isocratic elution was found to be unsuitable. Hence, more time was

spent in determining the best gradient steps at different flow rates.

Terizidone's chemical structure comprises two cycloserine

structures joined by terephthalaldehyde moiety (Figure 1). The

terephthalaldehyde moiety renders terizidone less polar than cycloser-

ine. Hence, terizidone was retained more on a high‐surface‐area (HS

C18) column than cycloserine. Increasing the water content (polar

mobile phase) in the first step of the gradient insured the repulsion

of tezidone from the mobile phase and onto the nonpolar stationary

phase (HS C18), leading to a longer retention time, while increasing

the organic mobile phase (acetonitrile) in the second step of the gradi-

ent speeded up the elution of terizidone. Acetonitrile was preferred to

methanol because it has a higher elution strength than methanol on

C18 columns.

The mobile phase consisting of acetonitrile and water with 0.1%

formic acid generally produced good peaks of both IS and analyte.

Addition of formic acid to acetonitrile (0.1%) produced sharper peaks

than acetonitrile without formic acid. Therefore, the mobile phases

found to be optimal were 0.1% formic acid in acetonitrile and 0.1%

formic acid in water with gradient elution steps and flow rate as

shown in Table 1. The column, an HS C18 column (150 × 4.6mm,

5 μm) best separated the IS and analyte with a run‐time of 18min,

as shown in Figure 2. The LC/MS method was initially tried but

terizidone had problems with ionization. Therefore, it was difficult to

detect its ion.

3.2 | Method validation

3.2.1 | Selectivity

Selectivity of the analytical method was tested by assessing possible

interference by co‐administered drugs and cycloserine (analyte metab-

olite). The drugs—ethionamide, ethambutol, kanamycin, isoniazid,

moxifloxacin, stavudine, lamivudine, tenofovir, pyrazinamide, efavirenz

and cycloserine—were each and in combination tested at 10 μg/mL.

These drugs did not show any interference or co‐elution at the reten-

tion times of the IS (propranolol) and the analyte (terizidone). The

method was therefore able to differentiate the analyte and IS from

co‐administered drugs. The retention time for each drug is shown in

Table 2. The interference from endogenous compounds was not

assessed as pooled plasma was used. However, 5‐fold dilution of

plasma with IS solution (200 μL in 1000 μL) from the sample prepara-

tion procedure also resulted in dilution of the endogenous com-

pounds. Hence, the interference of the endogenous compounds was

assumed to be negligible.

3.2.2 | Sensitivity, LOD and linearity

The LLOQ or sensitivity was the lowest concentration of the calibra-

tion standards that was reliably quantified with accuracy within 20%

of the nominal concentration and precision of ≤20% of the relative

standard deviation (RSD) of the back‐calculated concentration

(USFDA, 2013). Each calibration standard was injected six times. The

concentration of 3.125 μg/mL met the criterion for the LLOQ as it

had an accuracy of 118.9%, which was within 20% of the nominal con-

centration with an RSD of 9.43%. Half of the concentration of the

LLOQ (1.562 μg/mL) could not meet the criteria as it had an accuracy
59http://etd.uw
of 158% and an RSD of 25.1%, and hence was excluded from the

calibration curve.

The LOD was determined by visual evaluation of the analyte peak

(ICH, 2005). The LLOQ sample was serially diluted with plasma to

three concentrations levels: 1.56, 0.78 and 0.39 μg/mL. The response

(peak) corresponding to the concentration of 0.78 μg/mL was reliably

clear and hence considered as the LOD.

The calibration curve was constructed from the plot of chromato-

gram peak area ratios of the analyte and the IS as a linear function of

the analyte nominal concentration. The average coefficient of deter-

mination (r2) obtained from six replicate analytical runs of the seven

calibration standards was 0.9997. The average of the residual sum of

squares was 0.001. Table 3 shows the summary of linearity parame-

ters. Therefore, the curve was linear over the concentration range

3.125–200 μg/mL.
3.2.3 | Precision and accuracy

The accuracy of the analytical method was determined by replicate

analysis of LLOQ, LQC, MQC and HQC. The results are presented in

Table 4. Accuracy was expressed as the percentage ratio of the mean

back‐calculated concentration and nominal concentration. It ranged

between 99.7 and 118.9% for both within‐ and between‐run accuracy

and was within the acceptable limits (USFDA, 2013). Precision,

expressed as percentage relative standard deviation (RSD), was deter-

mined from the replicate analysis of LLOQ, LQC, MQC and HQC

within an analytical run (on one day) and between analytical runs (on
c.ac.za/



TABLE 4 Within‐run and between‐run precision and accuracy of the analytical assay for LLOQ, LQC, MQC and HQC

Nominal concentration (μg/mL) Mean concentration, ± SD (μg/mL) RSD (precision, %) Accuracy (%)

Within‐run analysis

3.125a 3.7 ± 0.35 9.4 118.9

10b 11.3 ± 0.33 2.97 112.7

37.5b 38.1 ± 0.19 0.50 101.6

150b 149.6 ± 0.53 0.35 99.7

Between‐run analysis

3.125b 3.4 ± 0.58 17.35 107.2

10b 10.7 ± 0.73 6.79 107.4

37.5b 38.8 ± 0.98 2.52 103.5

150b 150.8 ± 2.23 1.48 100.5

aSix replicates.
bFive replicates.

SD, Standard deviation.
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different days). As shown in Table 4, the within‐run precision ranged

between 0.35 and 9.4% while between‐run precision ranged between

1.48 and 17.35%, which was within acceptable limits (USFDA, 2013).
3.2.4 | Carry‐over and recovery

Carry‐over was assessed by injecting a blank sample (without IS and

analyte) after the highest concentration sample (200 μg/mL) of the

calibration standard. There was no noticeable peak at the retention

time for the analyte or IS. Hence, there was no carry‐over observed.

Recovery or extraction efficiency was evaluated by comparing the

instrument response (peak area) of the analyte extracted from the
FIGURE 3 Chromatograms of terizidone from a patient at six sampling t
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plasma and peak area of the analyte prepared in the solvent (USFDA,

2013). The recoveries of the analyte at 3.125 and 200 μg/mL were

66.7–70.% and 79.8–80.2%, respectively. The overall mean extraction

for the analyte was 75.6%. The extraction efficiency of the IS was

80.6–94.3% with a mean of 88.5%.
3.2.5 | Stability

The analyte stability assessment was carried out according to the sit-

uations likely to be encountered during patient plasma sample prepa-

ration and analysis (USFDA, 2013). These situations were the

maximum number of freeze–thaw cycles and the maximum time the
ime points (0–24 h)

c.ac.za/



FIGURE 4 Boxplot of terizidone concentrations in patients with
drug‐resistant tuberculosis
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samples remained in the autosampler at 20°C for each batch analysis.

After three freeze–thaw cycles, the concentrations of the HQC and

LQC samples dropped by 0.37% (0.74 μg/mL) and 1.9% (0.12 μg/

mL), respectively. However, the concentrations of HQC and LQC

samples after 24 h in the autosampler did not change. Therefore, the

analyte was stable in all circumstances where patient plasma samples

were prepared and analyzed.
3.3 | Method application in a pharmacokinetic study

The method developed was used to determine the concentration of

terizidone in patient plasma samples for a population pharmacokinetic

study. The study involved 78 DR‐TB patients who were undergoing an

intensive phase of treatment for at least 2 weeks (steady state). A total

of 608 plasma samples were analyzed but terizidone was only found in

272 samples from 39 patients. There was no chromatographic peak

seen at terizidone retention time for all samples that did not have

terizidone. Figure 3 depicts a typical example of terizidone chromato-

grams from a patient with blood sampled at baseline (0), 3, 3.5, 5, 8

and 24 h. The median and mean concentrations from the 39 patients

were 49.3 (4.3–176.1) and 51.8 ± 28.1 μg/mL, respectively. The sum-

mary distribution of the concentrations is shown in Figure 4. To our

knowledge, this is the first chromatographic method developed to

analyze terizidone in plasma.
4 | CONCLUSION

The HPLC‐UV method was hereby developed and validated, and for

the first time, successfully applied to determine plasma concentration

of terizidone in patients with DR‐TB. The method is simple and does

not require expensive instrumentation or reagents. The validation
61http://etd.uw
results demonstrate unequivocally that the method is selective, sensi-

tive, linear, accurate, precise and stable. The method is suitable for

therapeutic drug monitoring of terizidone in DR‐TB patients, unlike

monitoring of its metabolite (cycloserine). As the literature on

terizidone dose optimization is scarce, the current method is appropri-

ate for pharmacokinetic studies in order to establish optimal doses.
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ABSTRACT 

A simple and sensitive ultra-performance liquid chromatography tandem mass 

spectrometry method has been developed and validated for the analysis of cycloserine 

in patients’ plasma. Using methanol, cyloserine and propranolol (internal standard–IS) 

was extracted from plasma by protein precipitation procedure. The chromatographic 

separation was successfully achieved on Phenomenex KinetexTM PFP C18 (2.1 mm x 

100 mm, 2.6 µm) reversed-phase column. Acidified with 0.1 % formic acid, water and 

acetonitrile were used as mobile phases for gradient elution. Cycloserine and IS were 

detected by Xevo® TQ MS triple quadrupole tandem mass spectrometer. The transition 

of protonated precursor to product ion were monitored at 103→75 m/z and 260.2→183 

m/z for cycloserine and IS, respectively. The lower limit of quantification was 0.01 

µg/mL. The method was linear over the concentration range 0.01–50 µg/mL with 

average coefficient of determination of 0.9994. The within-run and between-run 

precision and accuracy were in the range 3.7–19.3% (RSD) and 98.7–117.3%, 

respectively. Processed cycloserine sample was stable for 48 hours at 8 ⁰C and after 

three freeze-thaw cycles. The extraction efficiency ranged between 88.7 and 91.2%. 

The method was successfully applied in a pharmacokinetic study for the determination 

of cycloserine in plasma of patients with drug-resistant tuberculosis.  

Keywords: Cycloserine, UPLC-MS/MS, plasma, drug-resistant tuberculosis. 
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5.0 INTRODUCTION 

Cycloserine is a structural analogue of D-alanine, a broad-spectrum antibiotic, 

naturally produced from Streptomyces lavendulae and Streptomyces garyphalus 

(Batson et al., 2017). It is clinically used as the second-line drug for treatment of 

multidrug-resistant tuberculosis (World Health Organization, 2014). Cycloserine exerts 

bacteriostatic (Di Perri and Bonora, 2004) action by preventing the biosynthesis of 

peptidoglycan through inhibition of D-alanine:D-alanine ligase and alanine racemase 

of the Mycobacterium tuberculosis (Prosser and de Carvalho, 2013).  

Cycloserine is water soluble and absorbed faster in healthy individuals than 

tuberculosis patients (Chang et al., 2017, Zhu et al., 2001). It distributes widely in body 

fluids and tissues. Primarily the kidneys excrete it mostly in unchanged form. The 

clearance is lower in healthy individuals than in tuberculosis patients (Brennan et al., 

2008). Although cycloserine is effective in treating resistant strains of Mycobacterium 

tuberculosis, its use is limited due to severe toxicities on the kidney and 

neuropsychiatric adverse reactions (Batson et al., 2017, World Health Organization, 

2014). Consequently, the World Health Organization (World Health Organization, 

2014) recommends monitoring of cycloserine plasma concentration to ensure that the 

peak concentration is kept below 35 µg/mL.  

Determination of plasma concentration of cycloserine or any drug requires a method 

that has less steps in sample preparation and better sensitivity. Several bioanalytical 

methods for cycloserine employing LC-MS/MS have been described in literature 

(Polagani et al., 2013, Patel et al., 2011, Mao et al., 2017, Yaroshenko et al., 2014) 

with sensitivities in the range 0.05 – 0.5 µg/mL. The other HPLC-MS and HPLC-

MS/MS methods had sensitivities of 0.5 and 0.2 µg/mL, respectively (Stepanova et al., 

2016, Supriya et al., 2012). Three of these methods employed solid phase extraction 

procedure, which is expensive and time consuming. The other methods made use of 

protein precipitation and derivatisation (Polagani et al., 2013, Mao et al., 2017, 

Stepanova et al., 2016) that involved several steps and used very small volumes of 

reagents. More errors are likely to be made if small volumes of reagents are used in 

sample processing, which eventually affect precision. 
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The only UPLC-MS/MS method (Han et al., 2013) for cycloserine analysis available 

has two shortcomings. Firstly, many steps are involved when mixing volumes of 

reagents. Moreover, the method required a sample to be centrifuged twice before it is 

ready for analysis. Secondly, as small as 4 and 5 µL volumes of reagents were used 

in sample preparation process. These pitfalls compromise the precision and accuracy 

especially if the method is adapted for routine batch analysis of clinical samples. The 

objective of this study was to develop a bioanalytical method that has less steps in 

sample preparation, simple as well as better sensitivity for analysis of cycloserine in 

plasma of patients.  

Therefore, in the current study a simple, stable and sensitive UPLC-MS/MS method 

was developed and validated for the determination of cycloserine in plasma. The 

method was applied to quantify cycloserine as a metabolite of terizidone in 

pharmacokinetic study of patients with drug-resistant tuberculosis.  

5.1 EXPERIMENTAL 

5.1.1 Chemical reagents 

The reference standard, cycloserine (Figure 1) powder, analytical grade (CAS: 68-41-

7) and propranolol powder (internal standard–IS, Figure 1) analytical grade (Lot: 

29H4016) were purchased from Sigma-Aldrich, Germany. The HPLC grade of 

methanol and acetonitrile were purchased from Merck (South Africa) and Sigma-

Aldrich (Germany), respectively. Formic acid was acquired from Merck, South Africa. 

Water (18 mΩ) was obtained from a Direct-Q3 (Mmillipore) water purification system. 

Blank pooled plasma (for research purpose) was purchased from Sigma-Aldrich, 

Germany. 
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Figure 1. Chemical structure of cycloserine (A) and propranolol (B). 

5.1.2 Instrumentation  

The analytical equipment consisted of a Waters® Acquity (Waters, Milford, MA, USA) 

ultra-performance liquid chromatography (UPLC) system. It consisted of a binary 

solvent manager with two independent pump systems that pumped solvent through 

the system with a maximum pressure of 15000 psi. The Sample manager injected 

samples that were drawn from the vials located in the Sample organiser onto the 

chromatographic column. The system was also equipped with a column heater. 

Temperature in the Sample organiser was kept at 10 ⁰C. Coupled to the UPLC system 

was a Xevo® TQ MS triple quadrupole tandem mass spectrometer (atmospheric 

pressure ionisation) and was used for high-resolution UPLC-MS/MS analysis. The 

MassLynxTM software, acquired, managed and processed the mass spectrometry data 

and UPLC instrument control. 

5.1.3 Chromatographic and mass spectrometry conditions 

Separation of cycloserine and propranolol was carried out on Phenomenex KinetexTM 

PFP C18 (2.1 mm x 100 mm, 2.6 µm) reversed-phase column. The column temperature 

was maintained at 45 ⁰C. The mobile phases consisted of water (A) and acetonitrile 

(B) both acidified with 0.1 % formic acid. The gradient steps in Table 1 were used to 

elute cycloserine and propranolol at flow rate of 0.4 mL/min. The total chromatographic 

run time was 7 minutes.  
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Table 1. Gradient elution steps 

Time (minutes) %Water (A) %Acetonitrile (B) 

0  100 0 

0.5 100 0 

4.5 90 10 

6 0 100 

6.5 0 100 

6.51 100 0 

7 100 0 

Ionisation, detection and quantification of cycloserine and IS was achieved on Xevo® 

TQ MS triple quadrupole tandem mass spectrometer equipped with electrospray 

ionisation source operating in positive ion mode. The mass spectrometer performed 

the detection of cycloserine and IS using multiple reaction mode (MRM) with the 

transition (precursor → product) of 103 →75 m/z for cycloserine and 260.2 →183 m/z 

for IS. The operating parameters used were set as follows: capillary voltage, 3.5 V; 

cone voltage, 15 V; collision energy range, 7-15 eV; source temperature, 140 ⁰C; 

desolvation temperature, 400 ⁰C; desolvation gas, 800 L/h and cone gas, 50 L/h. 

5.1.4 Preparation of stock solutions, quality controls and calibration standards 

Stock solution of cycloserine (1000 µg/mL) was prepared by dissolving accurately 

weighed 10.0 mg cycloserine in 10 mL of methanol. The stock quality control (QC) 

cycloserine solution with concentration of 800 µg/mL was prepared by dissolving 8.0 

mg of cycloserine in 10 mL of methanol. The IS stock solution with a concentration of 

100 µg/mL was prepared by dissolving 10 mg of propranolol in 100 mL of methanol. 

These solutions were kept at -80 ⁰C. 

The stock solution of cycloserine was appropriately diluted with methanol in order to 

make eight concentrations of standard working solution (500, 250, 50, 10, 2, 1, 0.5, 

0.1 µg/mL). Calibration standards were prepared by spiking 100 µL of each standard 

working solution to 900 µL of blank plasma. In this way, eight concentrations (50, 25, 

5, 1, 0.2, 0.1, 0.05, 0.01 µg/mL) for the calibration standard curve were prepared. The 

QC working standard solution was prepared by appropriate dilution of stock QC 

solution with methanol to 400, 100 and 5 µg/mL. The QC samples were prepared at 
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concentrations of 40, 10 and 0.5 µg/mL for high QC, medium QC and low QC, 

respectively, by spiking 100 µL of each QC working solution with 900 µL of blank 

plasma. The IS solution was further diluted with methanol to the concentration of 0.01 

µg/mL. 

5.1.5 Plasma sample pre-treatment  

Extraction of cycloserine from the spiked plasma (calibration standard curve and QC 

samples) was achieved through plasma protein precipitation. To each 200 µL of spiked 

plasma, 800 µL of IS solution was added and vortex mixed for 1 minute. In order to 

separate the precipitate, the contents were centrifuged (13000rpm) for 10 minutes at 

2 ⁰C. Five hundred micro-litres (500 µL) of the supernatant were pipetted into a clean 

vial. A further 500 µL of water was added to the supernatant and vortex mixed. Finally, 

2 µL of this solution was injected onto the UPLC system. 

5.1.6 Method validation 

The bioanalytical method was validated according to the International Conference for 

Harmonisation and United States Foods and Drugs Administration guidelines for 

validation of analytical procedures (USFDA, 2013, ICH, 2005). The method was 

validated for sensitivity or limit of quantification, limit of detection, linearity, accuracy, 

precision, recovery, carry-over, matrix effect and stability.  

5.1.7 Analysis of patient’s plasma samples 

Plasma cycloserine (terizidone metabolite) concentration was determined in 78 drug-

resistant tuberculosis patients treated with 750 mg terizidone daily dose and other anti-

tuberculosis drugs. The study was approved by the ethics committees of University of 

Cape Town (Ref: 777/2014) and University of the Western Cape (Ref: 07/6/12). 

Frozen patients’ plasma samples were left to thaw at room temperature and vortex 

mixed before pipetting. To every 200 μL of plasma, 800 μL of IS were added and 

vortex mixed for 1 minute. The procedure for the rest of the patients’ plasma sample 

preparation was same as the calibration standards. The bioanalytical run consisted of 

the processed sample plasma without IS and terizidone, processed plasma with IS 

only, calibration standards, processed patient samples and QC samples. 
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5.2 RESULTS  

5.2.1 Chromatographic and mass spectrometry conditions optimisation 

In order to optimise the separation efficiency and chromatographic peak shape of the 

analyte and the IS, several mobile phase compositions, the flow rate and different C18 

columns were employed. Acetonitrile and water, both acidified with 0.1% formic acid 

were found to be the best mobile phases with gradient composition shown in Table 1. 

Additionally, the flow rate of 0.4 mL/min was found suitable for current method. The 

column, Acquity UPLC BEH C18 (2.1 mm x 100 mm, 1.7 µm), was tried but the analyte 

eluted quite early. Separation of cycloserine and IS was best achieved on a 

Phenomenex KinetexTM PFP C18 (2.1 mm x 100 mm, 2.6 µm) reversed-phase column 

as it is ideal for separation of polar compounds (Figure 2).  

Using electrospray ionisation in positive mode, the protonated precursor ions [M+H]+ 

of cycloserine and propranolol that were dominant had m/z ratios of 103 and 260.2, 

respectively. After the conditions for fragmentation were optimised with collision 

energy in the range 7-15 eV, the most abundant and stable ions in the product spectra 

were observed at m/z ratios of 75 and 183 for cycloserine and propranolol, 

respectively. Other parameters for ionisation were optimised to obtain highest, stable 

and consistent signal intensity for cycloserine and propranolol. 

 

Figure 2. Chromatograms of cycloserine and propranolol with retention times at 0.52 minutes 

and 5.8 minutes, respectively. 
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5.2.2 Method validation 

5.2.2.1  Sensitivity and limit of detection 

Sensitivity was the lowest cycloserine concentration (lower limit of quantification–

LLOQ) that was measured with acceptable precision and accuracy. The lowest 

concentration of the calibration standards was determined to be 0.01 µg/mL as it had 

a precision of 19.3% (percentage relative standard deviation–%RSD) and accuracy of 

98.7% (Table 3). This was within the acceptable precision of not more than 20% and 

accuracy within 80 – 120% (USFDA, 2013).  

The limit of detection (LOD) based on the calibration curve, was calculated using the 

formula (1): 

𝐿𝑂𝐷 = 3.3𝜎/𝑆   (1) 

where σ was the standard deviation of the Y-intercepts of the regression equations 

shown in Table 2. Similarly, S was the average of the slopes of the regression 

equations. The value of the LOD was 0.004 µg/mL. 

5.2.2.2  Linearity 

The eight-point standard calibration curve was constructed by ploting cycloserine 

nominal concentrations on the X-axis against peak area ratios of cycloserine and IS 

on the Y-axis (response). The weighting factor of 1/x improved the linear regression 

fit. Linearity was assessed statistically by fitting the data (nominal concentration and 

response) to a linear regression model by method of least squares. The regression 

equations constructed from six replicate bioanalytical runs of the eight calibration 

standards are shown in Table 2 together with the corresponding coefficient of 

determination values and the sum of residuals. The average coefficient of 

determination and correlation coefficient was 0.9994 and 0.9997, respectively. 
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Table 2. Bioanalytical method linearity parameters 

Run number R-square (r2) Linear equation Residual sum of squares  

1 0.9998 𝑌 = 4.202𝑥 + 0.0604 0.00069 

2 0.9998 𝑌 = 4.161𝑥 + 0.0511 0.00107 

3 0.9999 𝑌 = 4.244𝑥 + 0.0536 0.00093 

4 0.9996 𝑌 = 4.301𝑥 + 0.0489 0.00141 

5 0.9998 𝑌 = 4.215𝑥 + 0.0578 0.00022 

6 0.9989 𝑌 = 4.207𝑥 + 0.0621 0.00209 

5.2.2.3  Accuracy and precision 

Five replicate values from the analyses of LLOQ, low QC, median QC and high QC 

were employed to calculate accuracy of the assay. The accuracy was estimated as 

the percentage ratio average (five replicates) of the back-calculated concentrations 

and the nominal concentration. The accuracy ranged from 98.7 – 116% and 99 – 117% 

for within-run analysis and between-run analysis, respectively (Table 3). Precision 

(%RSD) was calculated as the percentage ratio of the standard deviation and the 

mean of the replicates analysed on same day (within-run) and different days (between-

run). The within-run precision ranged between 3.7 and 19.3% while between-run 

precision was in the range 2.6 – 15% (Table 3). The accuracy and precision was within 

the accepted range (USFDA, 2013). 
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Table 3. Within-run and between-run accuracy and precision of the LLOQ, low QC, 

median QC and high QC assay. 

Nominal concentration 

(µg/mL) 

Mean 

concentration  ± SD 

(µg/mL) 

Accuracy (%) Precision 

(%RSD) 

Within-run analysis    

0.01 0.0098 ± 0.002 98.7 19.3 

0.5 0.58 ± 0.062 114.6 10.8 

10 9.94 ± 0.697 99.4 7 

40 40.48 ±1.48 101.2 3.7 

Between-run analysis     

0.01 0.012 ± 0.002 117.3 15 

0.5 0.57 ± 0.03 111 5.2 

10 10.3 ± 0.674 103 6.5 

40 39.6 ± 1.06 99 2.6 

SD, Standard deviation 

5.2.2.4  Carry-over and matrix effect 

The carry-over was assessed by injecting the highest concentration of the calibration 

standard (50 µg/mL) followed by a blank sample. A response of 238.874 was read 

after injection of 50 µg/mL and 0.00677 after injection of blank sample. The blank 

sample response corresponded to cycloserine concentration of 0.0021 µg/mL and was 

below the LLOQ.  

The matrix effect was evaluated by comparing the instrument response (peak area) of 

cycloserine and IS that was prepared in methanol and the one spiked in plasma. The 

average ratios of the peak area of cycloserine spiked in plasma to the one prepared 

in methanol were 0.9927 and 1.003 for low QC and high QC, respectively. Similarly, 

the average IS ratios were 0.9961 and 1.01. These results show that the effect of 

plasma (matrix) on the ionization of both cycloserine and IS was not significant.  
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5.2.2.5  Stability and recovery 

The analyte stability was evaluated according to the situations that were expected to 

be experienced during patient plasma sample processing and analysis (USFDA, 

2013). These situations were freeze-thaw of at least one cycle and stability of 

processed samples in the autosampler for maximum of 24 hours. The mean 

cycloserine concentration for the low QC and high QC after three freeze-thaw cycles 

was almost close to the nominal concentration. Nevertheless, the mean concentration 

of the processed samples that were stored at 2 – 8 ⁰C dropped by 11.9 and 1.75% for 

low QC and high QC, respectively, after 48 hours. The mean accuracy was 88.1 and 

98.3% while precision was 9.1 and 3.7% (RSD) the low QC and high QC, respectively. 

Recovery was determined by comparing instrument response of the analyte that was 

prepared in the solvent with analyte extracted from plasma (USFDA, 2013). The 

percentage recovery was in the range 88.7 – 91.2 for both low and high QC. 

5.2.3 Application of bioanalytical method in pharmacokinetic study 

Seventy-eight patients participated in the study after signing informed consent form. 

They provided 608 plasma samples, which were analysed for cycloserine as a 

metabolite of terizidone. The mean and median concentrations were 2.1 ±1.5 µg/mL 

and 1.9 (0.01 – 8.2) µg/mL, respectively. The distribution of the cycloserine 

concentration in shown in Figure 3. 
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Figure 3. Distribution of cycloserine concentrations in drug-resistant tuberculosis patients. 

5.3 DISCUSSION 

Protein precipitation was the preferred method of analyte (cycloserine) extraction from 

plasma as it is simple, fast and inexpensive (Sargent, 2013). The two-fold dilution of 

the supernatant with water and five-fold in protein precipitation procedure ensured also 

the dilution of interfering compounds. This procedure reduced the matrix effect (Mao 

et al., 2017). 

In the chromatographic separation, the initial 100% aqueous phase favoured the 

elution of cycloserine first as it is more polar than the IS. Subsequently, the gradual 

reduction of the aqueous phase or gradual increase of the organic phase in the second 

step of the gradient favoured the elution of the IS. The excellent peak shape, better 

separation and reproducibility (Figure 2) resulted from the combined C18 and 

pentafluoropheny (PFP) functionality through pi-pi, hydrogen bonding, dipole-dipole 

and hydrophobic interactions. Hence, the PFP C18 (2.1 mm x 100 mm, 2.6 µm) 

reversed-phase column was the best of the columns that were tried.  

The carry-over effect (0.0021 µg/mL), although minimal, was rather expected because 

cycloserine molecule is polar and has affinity for pentafluoropheny moiety (stationary 
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phase component). Hence, it remained stuck in the column but was gradually eluting 

with each run. On the other hand, the calibration curve was linear (ICH, 2005) over the 

concentration range 0.01 – 50 µg/mL as the coefficient of determination value and the 

sum of the residuals was approximatelty one and zero, respectively. 

Furthermore, our method had a better sensitivity of 0.01 µg/mL than a previously 

reported UPLC-MS/MS method (Han et al., 2013) with 0.5 µg/mL. Hence, it was 

suitable to measure low concentrations of cycloserine as a metabolite of terizidone in 

patients who were slow metabolisers. The method was successfully used to determine 

plasma concentrations of cycloserine in a population pharmacokinetic study of patients 

with drug-resistant tuberculosis hospitalised for intensive phase of treatment. 

5.4 CONCLUSION 

The simple, sensitive and reliable UPLC-MS/MS method was developed and validated 

for analysis of cycloserine in plasma of patients with drug-resistant tuberculosis. The 

validation parameters indicated that the method was linear, sensitive, stable, precise 

and accurate. The method is suitable for pharmacokinetic studies as sample 

processing is relatively simple and does not require use of expensive chemicals.
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In this chapter, a research paper entitled: 

“Steady-state Population Pharmacokinetics of Terizidone and its Metabolite 

Cycloserine in Patients with Drug-resistant Tuberculosis” 

is presented. It was published as an original article in the British Journal of Clinical 

Pharmacology, 2019: 85:1946–1956. https://doi.org/10.1111/bcp.13975. It has been 

re-used in this thesis with permission from the publisher (John Wiley & Sons, Inc. 

license number 4632450146888). The Copyright license agreement is included as 

Appendix 4. 
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Aims: Despite terizidone being part of the second‐line recommended drugs for

treatment of drug‐resistant tuberculosis (DR‐TB), information on its pharmacokinetics

is scarce. The aim of this study was to describe the steady‐state population pharma-

cokinetics (PPK) of terizidone and its primary metabolite cycloserine in patients with

DR‐TB and determine the effect of patient characteristics.

Methods: This clinical study involved 39 adult DR‐TB patients admitted to

Brewelskloof Hospital in Cape Town, South Africa for intensive treatment phase.

Blood samples were collected at predose and 0.5, 1, 2, 3, 3.5, 4, 8, 16 and 24 hours

after drug administration. The estimation of PPK parameters was performed using

nonlinear mixed‐effects modelling software Monolix 2018R1. Free‐fat mass was used

to perform allometric scaling on disposition parameters.

Results: A 1‐compartment model best described the pharmacokinetics of

terizidone and cycloserine. A modified transit compartment model described the

absorption of terizidone. The parameters of terizidone model were mean transit time

(1.7 h), absorption rate constant (2.97 h−1), apparent volume of distribution (Vp/F:

13.4 L) and apparent total clearance (0.51 L h−1). In the joint model, apparent fraction

of terizidone converted to cycloserine was 0.29 while apparent clearance of

terizidone via other routes and apparent cycloserine clearance was 0.1 L h−1 and

2.94 L h−1, respectively. Serum albumin had significant effect on Vp/F.

Conclusions: The developed PPK model described well the concentration–time

profile for terizidone and cycloserine in DR‐TB patients. High albumin concentration

was associated with low Vp/F.

KEYWORDS

cycloserine, drug‐resistant tuberculosis, population pharmacokinetics, terizidone

1 | INTRODUCTION

Drug‐resistant tuberculosis, which includes rifampicin mono‐resistant

and multidrug‐resistant tuberculosis, is a persistent global threat and

is linked to inadequate tuberculosis treatment.1,2 Usually, the

suboptimal drug treatment influences spontaneous mutations in the

Mycobacterium tuberculosis chromosomal genes, which lead to the

emergence of resistant strains.3 To prevent further drug resistance, a

multidrug treatment regimen consisting of 5–7 drugs is used in the

treatment of drug‐resistant tuberculosis.4
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Terizidone, a condensation product of two cycloserine molecules,

is one of the medicines used to treat drug‐resistant tuberculosis.5,6

Information on how terizidone is metabolised into cycloserine and

the enzymes involved is not available in literature. Nevertheless, it

seems to undergo hydrolysis into cycloserine presystemically.7

Terizidone and cycloserine exert their respective antibacterial effect

by disrupting the synthesis of peptidoglycan needed for bacterial cell

wall formation through inhibition of D‐alanine ligase and L‐alanine

racemase.8 Terizidone is a potential drug for treatment of extra‐

pulmonary tuberculosis9 and has been reported to have fewer central

nervous system side effects than cycloserine and well tolerated in

patients on dialysis.10,11 A recent study indicated that both terizidone

and cycloserine were clinically effective in the intensive treatment

phase of drug‐resistant tuberculosis.12

Despite terizidone being recommended and currently used in the

treatment of drug‐resistant tuberculosis,4 information on its pharma-

cokinetics in literature is hardly found or poorly described. There

appears to be only one study published in which terizidone and cyclo-

serine pharmacokinetics were compared after a single‐dose adminis-

tration of each drug in tuberculosis patients.13 After oral

administration of 250–750 mg, terizidone reaches maximum concen-

tration within 3 hours with absorption rate constant (ka) in the range

1.17–1.36 h−1. The distribution volume is high, ranging between 113

and 246 L, while clearance is in the range 2.49–6.4 L h−1. Thirty‐nine

percent of the administered dose is excreted in urine after 30 hours.13

Terizidone plasma and urine concentrations in this study were not

measured but estimated based on cycloserine using colorimetric

method.13 By contrast, the population pharmacokinetics of cycloser-

ine in multidrug‐resistant tuberculosis patients have been described14

as well as noncompartmental pharmacokinetics in which cycloserine

was measured as terizidone metabolite.15 Cycloserine reaches maxi-

mum concentration within 2–3 hours with ka of 0.135 h−1 after oral

daily dose of 500–1000 mg. It is widely distributed in most body fluids

and tissueswith distribution volume of 10.5 L. Its clearance is 1.38 L h−1

and primarily eliminated via renal route with 50–70% excreted

unchanged within 12–24 hours.14,16 The primary and secondary phar-

macokinetic parameters of terizidone at steady state in drug‐resistant

tuberculosis patients are still unknown.

The objective of this study was to describe the population

pharmacokinetics of terizidone and cycloserine at steady state in

patients with drug‐resistant tuberculosis and assess the influence of

patient characteristics on pharmacokinetic parameters. We also

estimated the associated secondary pharmacokinetic parameters.

2 | METHODS

2.1 | Study design

This was a non‐randomised observational clinical study involving adult

patients admitted for intensive treatment phase of drug‐resistant

tuberculosis at Brewelskloof Hospital, Western Cape province, South

Africa. All patients were taking second‐line anti‐tuberculosis drugs

such as pyrazinamide, ethionamide, kanamycin, moxifloxacin or

ofloxacin, and ethambutol in addition to terizidone. In patients with

tuberculosis monoresistant to rifampicin, isoniazid was added to their

treatment. The doses were administered according to the local treat-

ment guideline for management of drug‐resistant tuberculosis.17

The patients included in this study were on anti‐tuberculosis

treatment for at least 2 weeks and had consented to participate in

the study. Patients were excluded from the study if they requested

so, were pregnant, breast‐feeding, severely dehydrated or intolerant

to terizidone. The demographic information was captured from

patients on the day of the study while medical and treatment history

was obtained from patients' folders. The ethics committees of the

University of the Western Cape (Ref: 07/6/12) and University of

Cape Town (Ref: 777/2014) approved this study. The patients' infor-

mation was treated with confidentiality and the study was conducted

in conformity with the principles outlined in the declaration of

Helsinki.18

2.2 | Pharmacokinetic blood sampling

The patients were in fasting state from 22:00 hours prior to the

morning of the blood‐sampling day. Using an intravenous catheter

placed in a vein of the forearm, 5 mL of blood from each patient

was collected in heparinised tubes at baseline (predose) and at 0.5,

1, 2, 3, 3.5, 4, 8, 16 and 24 hours after drug administration. After

centrifugation, the plasma was stored at −80°C until the date of

analysis. Other blood samples were also collected for renal and liver

function tests, virological and immunological tests. Patients then took

their usual dose of anti‐tuberculosis medications, including terizidone,

and the time was noted. Human immunodeficiency virus (HIV)

coinfected patients also received antiretroviral drugs as prescribed.

Patients were then allowed to eat and drink as usual.

What is already known about this subject

• Single‐dose pharmacokinetics of terizidone.

What this study adds

• The study outlines the first description of population

pharmacokinetics of terizidone and cycloserine at

steady state in drug‐resistant tuberculosis patients with

and without human immunodeficiency virus infection.

• The study characterises for the first time the secondary

pharmacokinetic parameters of terizidone at steady state.

• The first description of terizidone fraction undergoing

biotransformation into cycloserine and the influence of

serum albumin on apparent volume of distribution of

terizidone.
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2.3 | Plasma quantification of terizidone and
cycloserine

Plasma concentration of terizidone was analysed using high‐

performance liquid chromatography–UV method. It was extracted

from plasma using protein precipitation method. The average inter‐

and intraday precision was 3.3 and 7%, respectively, while the mean

accuracy was 107%. Calibration curves were linear with coefficient

of determination ranging between 0.9988 and 0.9999. The lower limit

of quantification and limit of detection was 3.125 and 0.78 μg mL−1,

respectively.19 Cycloserine concentrations were analysed using ultra‐

performance liquid chromatography–tandem mass spectrometry

method and validated according to the international guidelines.20

Extraction was achieved through plasma protein precipitation with

propranolol as internal standard. The mean inter‐ and intraday preci-

sion was 10.2 and 7.3%, respectively. The inter‐ and intraday accuracy

was 103.8 and 108.7%, respectively. The curves were linear over the

concentration range of 0.01–50 μg mL−1 with mean coefficient of

determination of 0.9994. The quantification and detection limits were

0.01 and 0.004 μg mL−1, respectively, while the carry‐over was

0.0021 μg mL−1. The matrix effect was insignificant. Cycloserine was

stable after 3 freeze–thaw cycles and extraction efficiency ranged

between 68.7 and 71.2%.

2.4 | Pharmacokinetic modelling

At the time of pharmacokinetic blood sampling, all patients had

already achieved steady‐state concentration for terizidone. The

previous dose of terizidone was administered 24 hours before the

sampling day. Therefore, the predose sampling time of 0 hours was

set to 23.9 hours for modelling purposes. Conversion of concentration

from μg mL−1 to μmol L−1 (molar units) was performed by using molar

mass of 302.3 g mol−1 and 102.1 g mol−1 for terizidone and cycloser-

ine, respectively. The doses for terizidone were also converted from

mg to μmol.

The population pharmacokinetic parameters were estimated using

nonlinear mixed‐effects modelling in Monolix 2018R1 software.21 The

software utilises stochastic approximation expectation maximization

algorithm22 to carry out parameter estimations. The likelihood and

Fisher information matrix were computed using importance sampling

and stochastic approximation, respectively. Selection of the base

model was guided by the visual inspection of diagnostic plots, change

in the objective function value (OFV: −2 * loglikelihood), plausibility and

precision of the parameter estimates (percentage relative standard

error–%RSE).

We performed modelling in 2 parts. In the first part, only terizidone

concentration–time profile was modelled. Based on the visual

inspection of terizidone concentration–time profile using Datxplore

interface of Monolix 2018R1, 1‐ and 2‐compartment models were fit

to the data. Absorption process was modelled using lag‐time or transit

compartment model23 and assessed if it improved the model fit. In the

case of the transit compartment being over‐parameterised,

modification was performed by setting ka equal to transit rate con-

stant (Ktr; http://mlxtran.lixoft.com/examples/transit‐compartments‐

weibull‐absorption/).

In the second part, terizidone and cycloserine concentration–time

profiles were modelled jointly. Terizidone model was modified in order

to link it to cycloserine compartment. We assumed that terizidone did

not undergo first‐pass metabolism but was eliminated by biotransfor-

mation into cycloserine and other routes. Additionally, oral bioavail-

ability ( F ) was assumed to be one. The fraction (Fm) of terizidone

that is converted into cycloserine is unknown and unidentifiable.

The clearance of terizidone by other routes is also unidentifiable. Sim-

ilarly, the apparent volume of distribution of cycloserine (Vm/F) is

unidentifiable, as the dose was not administered directly. To circum-

vent this problem, we decided to fix Vm/F to the literature value of

10.5 L.14 This decision allows Fm to be identified and to distinguish

between terizidone clearance via biotransformation and other

routes.24,25 It is worth noting that Fm is not the true fraction but

apparent fraction.26 Another way of dealing with parameter

identifiability problem is to set the volume of the parent drug equal

to metabolite volume, fixing metabolite volume equal to 1 or fixing

Fm to any value between zero and 1. However, we chose not to

undertake these options.

Proportional and combined (additive and proportional) error

models were explored to model residual unexplained variability. The

between‐subject variability (BSV) model described the random

variation in population pharmacokinetic parameters. We assumed that

these parameters were log‐normally distributed.

2.5 | Covariate model

After the base model was selected using the criteria in previous sec-

tion, we investigated the effects of covariates on pharmacokinetic

model parameters. The total body weight (TBW), free‐fat mass27

(FFM) or body mass index was used as body size descriptor. In order

to adjust for the expected effect of body size, allometric scaling was

performed on clearance and volume parameters. The exponents were

either fixed to 0.75 for clearance and 1 for volume28 or estimated.

Other covariates explored were age, sex, HIV status, alanine amino-

transferase, aspartate transaminase, total bilirubin, TBW creatinine

clearance and FFM creatinine clearance. Creatinine clearance was

calculated using Cockcroft–Gault formula.29 A covariate was selected

if it was pharmacologically plausible; a correlation existed between a

covariate and the random effects of the predicted individual param-

eters. Retention of the covariate in the model was based on statisti-

cal significance (P ≤ .05 using Wald test), a decrease in OFV and

BSV. Covariates, normalised by the typical population median value,

were added in the model one at a time in log‐linear fashion. The

relationship between a pharmacokinetic value (θi) and continuous

covariate (covi) and of an i‐th individual was expressed as shown in

equation 1:

θi ¼ θpop*
covi

COVmedian

� �βθi

* e
ηi (1)
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where θpop represented the typical population pharmacokinetic value

and COVmedian the population median value of the continuous covar-

iates. The random effect associated with the i‐th individual was

denoted by ηi where ηi ≈ N(0,ω2). The factor describing the effect

of a continuous covariate on θi was denoted by βθi. The relationship,

in the case of the categorical covariates was expressed as shown in

equation 2:

θi ¼ θpop *e
βθi;cat cat¼n½ �

*e
ηi (2)

where βθi,cat[cat = n] denoted the difference in parameter (θi)

between an individual belonging to group n and the reference group.

Correlations among random effects of estimated individual parame-

ters were then investigated and significant ones were estimated as

population parameters.

2.6 | Model evaluation

The model was evaluated visually by inspection of the diagnostic plots

such as individual‐ and population predicted vs observed concentra-

tions, individual‐weighted residuals vs time and predicted concentra-

tions. The visual predictive checks for both terizidone and

cycloserine were inspected for possible model misspecification.

The distribution of parameter estimates randomly sampled from the

conditional distribution30 were evaluated in order to ensure that the

assumption of normality was met. We also performed a bootstrap pro-

cedure of 250 runs using Monolix software aided by Rsmlx (R Speaks

‘Monolix’) R package (http://rsmlx.webpopix.org), in order to evaluate

the robustness of the final joint model.

2.7 | Secondary pharmacokinetic parameters

The other pharmacokinetic parameters for terizidone and cycloserine

were calculated using MLXTRAN coded formulae in Monolix as shown

in Appendix A. The area under the concentration–time curve up to 24

hours (AUC0‐24h) and half‐life were calculated by integration of the

concentrations predicted from the final joint pharmacokinetic model

without covariates and formulae, respectively. The maximum plasma

concentration (Cmax) and time to reach Cmax (Tmax) were obtained from

the output file of the predicted individual concentrations. Finally, the

clearance of terizidone resulting from biotransformation into cycloser-

ine was calculated from the individual predicted estimates of

terizidone apparent volume of distribution (Vp/F), Fm and biotransfor-

mation rate constant. Model‐based simulations of the distributions of

AUC0‐24h and Cmax were performed across 3 weight bands specified in

the local treatment guideline17 using current dose (750 mg daily). A

dosing schedule was proposed that would normalise exposure across

weight bands using Monte‐Carlo simulations.

3 | RESULTS

Thirty‐nine patients including 27 HIV infected and 20 females partici-

pated in this study. Thirty‐eight patients received a daily dose of

750 mg of terizidone while 1 patient received 500 mg. In total, they

provided 571 plasma concentrations, of which 272 were for

terizidone. The average number of plasma samples per patient was 7

and 8 for terizidone and cycloserine, respectively. The summary of

patients' demographic characteristics are displayed inTable 1. The plot

of the concentration vs time of the original data for terizidone and

cycloserine is shown in Figure 1.

3.1 | Terizidone pharmacokinetic model

The base model consisted of a 1‐compartment pharmacokinetic model

with first‐order absorption and linear elimination. A combined additive

and proportional error model best modelled the residual unexplained

variability in terizidone concentration. A lag‐time parameter was

added to describe absorption delay but did not improve the model

fit (OFV = +4). When a transit compartment model was used instead,

resulted in worse fit (OFV = +8.52) than the base model. Additionally,

the ka was overestimated and thus not plausible besides %RSE could

not be estimated. The transit compartment model was then modified

by setting Ktr equal to ka. This modification resulted in improved

model fit (OFV = −39.1) and good parameter precision (Table 2).

Therefore, the final terizidone model had the following parameters:

mean transit time (Mtt), ka, Vp/F and apparent total clearance (Cltot/F).

TABLE 1 Summary of patients' demographic characteristics

Variable Value

Sample size (n) 39

Sex

Female (n) 20

Male (n) 19

Age (years) 32 (17–56)a

Total body weight–TBW (kg) 51.4 (32.4–71)a

Free fat mass–FFM (kg) 39.8 (24.8–51)a

Body mass index (kg m−2) 18.4 (12.4–26.1)a

Alanine aminotransferase (IU L−1) 11 (4–46)a

Aspartate transaminase (IU L−1) 33 (17–109)a

Albumin (g L−1) 32 (15–48)a

TBW creatinine clearance (ml min−1) 83 (34.5–128)a

FFM creatinine clearance (ml min−1) 60.4 (26.8–106)a

Total bilirubin (μmol L−1) 7 (2–24)a

Human immunodeficiency virus status

Infected (n) 27

Uninfected (n) 12

CD4 count (cells μl−3) 227 (9–1243)a

Viral load (copies mL−1) 3279 (42–4 331 310)b

aMedian and range.
bMedian and range from 19 patients who had their viral load above 40

copies mL−1 while the viral load from 8 patients was below 40 copies mL−1.
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Allometric scaling using FFM, TBW and body mass index was per-

formed on Vp/F and Cltot/F. The FFM was found to be the best

descriptor of body size as it was associated with the lowest OFV. Allo-

metric scaling using FFM after fixing exponent to 1 and 0.75 on Vp/F

and Cltot/F resulted in model improvement (OFV = −90.04) and this

explained 13.5 and 5% of the variation in Vp/F and Cltot/F, respec-

tively. The covariates, sex, FFM creatinine clearance and HIV status

had significant effect on Cltot/F, while albumin had significant effect

on Vp/F. However, when all significant covariates were included in

the model, only albumin remained significant on Vp/F and led to

improved model fit (OFV = −11.9; p = 0.0062). The variation explained

by albumin in Vp/F was 43.2%. There were no significant correlations

found among parameter random effects. The summary of the popula-

tion pharmacokinetic parameters of terizidone are shown in Table 2.

3.2 | Joint terizidone and cycloserine model

Terizidone final model was modified in order to incorporate a cyclo-

serine compartment as illustrated in Figure 2. The Cltot/F was divided

into apparent clearance of terizidone due to biotransformation into

cycloserine (Clpm = Cltot/Fm) and apparent clearance of terizidone

via other routes (Clp = Cltot/(1‐Fm)). A 1‐compartment model with

first‐order elimination best characterised cycloserine disposition. The

combined additive and proportional error model best described the

FIGURE 1 Observed concentration–time profiles for terizidone and
cycloserine

TABLE 2 Population pharmacokinetic parameters from terizidone
only model

Parameter Estimate %RSE

Mtt (h) 1.6 17.1

ka (h−1) 2.97 19.1

Vp/F a (L) 13.4 4.8

Cltot/F
a (L h−1) 0.51 10.9

Coefficient (effect) of albumin on Vp/F −0.61 30.3

Between‐subject variability (CV%)b

Mtt 82 18.3

ka 36.1 53.1

Vp/F 16 35

Cltot/F 64 13

Residual error

Additive (μmol L−1) 13.6 31

Proportional 0.13 20

aAllometrically scaled parameters using FFM by fixing exponents to 1 and

0.75 on Vp/F and Cltot/F, respectively.
bCoefficient of variation percentage calculated as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e SDð Þ2 − 1

p� �
*100

where SD is the estimated standard deviation.

%RSE, percentage relative standard error; Mtt, mean transit time; ka,

absorption rate constant; Vp/F, apparent volume of distribution; Cltot/F,

apparent total clearance of terizidone.

FIGURE 2 Schematic diagram for the joint pharmacokinetics model
of terizidone and cycloserine. Mtt, mean transit time of terizidone
from ingestion to its absorption; Ad, amount of terizidone at the
absorption site; ka, absorption rate constant of terizidone; Vp/
F, apparent volume of distribution of terizidone; Clp = Cltot/(1‐
Fm), clearance of terizidone via other routes; Fm, apparent fraction of
terizidone converted to cycloserine; Cltot/F, apparent total clearance
of terizidone (Clp + Clpm), Vm/F (10.5 L), apparent volume of
distribution of cycloserine; Clm/F, apparent clearance of cycloserine
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residual unexplained variability in cycloserine concentration. Allome-

tric scaling on apparent clearance of cycloserine (Clm/F) using FFM

and fixing the exponent to 0.75 slightly improved the joint model with

OFV change of −0.82. The variation in Clm/F explained by this scaling

was 17%. After scaling of Clm/F with FFM, no covariates were found

significant on Fm, Clp and Clm/F. The values for Mtt, ka, and Vp/F in

the terizidone and joint model were not exactly the same but similar.

The joint model was described by the following system of ordinary

differential equations 3–5:

dAd=dt ¼ −ka*Ad (3)

dApc=dt ¼ ka*Ad − Cltot= 1 − Fmð Þð Þ=Vp*Apc − Cltot= Fmð Þ=Vp*Apc
(4)

dAm=dt ¼ Cltot= Fmð Þ=Vpð Þ*Apc − Clm= Fð Þ=10:5*Am (5)

The amount of terizidone at the absorption site and central

compartment was denoted by Ad and Apc, respectively, with ka as

the absorption rate constant. The amount of cycloserine formed from

terizidone metabolism was denoted as Am.

The final joint model had the parameters:Mtt, ka, Vp/F, Clp, Fm and

Clm/F (Table 3). The final individual models of Vp/F, Clp and Clm/F

belonging to an i‐th individual were described as follows 6–8:

Vp
Fi

¼ 14*
FFMi

39:8

� �1

*
Albumini

32

� �−0:51

*e
ηi (6)

Clp ¼ 0:1*
FFMi

39:8

� �0:75

*e
ηi (7)

Clm
Fi

¼ 2:94*
FFMi

39:8

� �0:75

*e
ηi (8)

3.3 | Model evaluation

The plots of individual predicted vs observed concentration for both

terizidone and cycloserine indicated that there was a good agreement

FIGURE 3 Population and individual
predicted vs observed concentrations for
terizidone A, and cycloserine B
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between predicted and observed concentration (Figure 3). Similarly,

Figure 4 showed that there was no bias observed in the plots of

individual‐weighted residuals vs time and predicted concentration.

The visual predictive checks for the joint model are shown in

Figure 5. Most of the observed data points lay within 90% prediction

interval (generated from 1000 simulations) except for the 95th percen-

tile of cycloserine visual predictive checks that showed some over pre-

diction in variability. The bootstrap parameters in Table 3 were similar

to the ones estimated from the original data set. Therefore, the devel-

oped joint model described fairly the observed plasma concentration–

time profiles for terizidone and cycloserine.

3.4 | Secondary pharmacokinetic parameters

The secondary pharmacokinetic parameters for terizidone were Cmax,

Tmax, AUC0‐24h, half‐life and Clpm and for cycloserine were Cmax, Tmax,

AUC0‐24h and half‐life (Table 4). The MLXTRAN model file for Monolix

in Appendix A gives the code of how these parameters were

calculated. The simulated distributions of AUC0‐24h and Cmax

(Figure 6) show a decreasing trend in the median value across the 3

weight bands, 33–50 kg, 51–70 kg and > 70 kg, respectively.

Monte‐Carlo simulations showed that a terizidone daily (every

24 hours) dose of 750, 900 and 1200 mg achieved similar exposure

across the weight bands 33–50, 51–70 and > 70 kg, respectively.

The proposed dosing schedule is shown in Table 5.

4 | DISCUSSION

There is scarce information in the literature on pharmacokinetics of

terizidone although it is an old drug. In this study, we, for the first, time

developed a population pharmacokinetic model of terizidone and a

joint model (with cycloserine) at steady state in patients with drug‐

resistant tuberculosis. A 1‐compartment model with first‐order

absorption and elimination best described terizidone pharmacokinet-

ics. A modified transit compartment model described better the

absorption delay than the lag time, as the precision in the former

FIGURE 4 Individual‐weighted residuals vs

time and predicted concentrations for
terizidone A, and cycloserine B
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was better than the latter. Initially, addition of a lag time or transit

compartment to model the delayed absorption did not improve the

model fit. This indicated a possibility of over parameterisation for

the transit compartment model. When the number of parameters

were reduced from 3 to 2 by setting ka equal to Ktr, this resulted in

improved model fit. The average time (Mtt) it took from the ingestion

of terizidone to its absorption was about 102 minutes (1.7 hours). It

then underwent fast absorption with ka of 2.97 h−1. Within a median

Tmax of 4 hours, terizidone reached a Cmax of 239 μmol L−1.

Adjusting for the effect of body size (allometric scaling) on Vp/F

and Cltot/F using FFM and fixing exponents, resulted in model

improvement. The FFM was the best descriptor of body size as it

was associated with the lowest OFV. As a result of this scaling, the

BSV in Vp/F and Cltot/F decreased by 13.5 and 5%, respectively. The

population estimates of the Vp/F and Cltot/F were thus estimated with

good precision. Serum albumin had significant effect on the Vp/F and

accounted for 43.2% of the variation in the Vp/F. Additionally, this

improved the model fit. The effect was in such a way that high serum

albumin concentration was significantly associated with low values

of Vp/F or vice versa. This phenomenon is well known as increased

drug binding resulting from increased serum albumin concentration

tend to decrease the volume of distribution.31,32 This effect of albumin

on Vp/F may have potential clinical impact on patients with hepatic

impairment.

The pharmacokinetic parameters (Mtt, ka and Vp/F) of the joint

model, although not exactly the same, were similar to those of

terizidone model. Additionally, these parameters were estimated with

good precision. In the joint model, it was clearly observed that the

FIGURE 5 Visual predictive checks of terizidone and cycloserine
generated from 1000 simulations. The shaded areas represent the
prediction interval at 5th, 50th and 95th percentiles (95% confidence
interval). The solid lines represent the empirical median of the 5th, 50th

and 95th percentiles. The observed data is represented by dots

TABLE 3 Terizidone and cycloserine population pharmacokinetic
parameters from a joint model

Parameter

Model estimate Bootstrap

Estimate %RSE Median
95% CI (lower,
upper)

Mtt (h) 1.43 14 1.01 0.92, 1.75

ka (h−1) 3.2 10.5 3.1 2.69, 3.4

Vp/F a (L) 14 11 13.4 12.4, 14.6

Clp a (L h−1) 0.1 12 0.08 0.05, 0.09

Fm 0.29 10 0.24 0.19, 0.33

Clm/F a (L h−1) 2.94 20.2 2.7 2.44, 3.01

Coefficient

(effect) of

albumin on

Vp/F

−0.51 54.9 −0.50 −0.73, −0.47

Between‐subject variability (CV%)b

Mtt 75 10 83 71.2, 96

Ka 46 28 48 43, 56

Vp/F 22 15 25 91, 27

Clp 52 16.1 46.2 44, 51

Fm 27 31.2 21.8 19, 29

Clm/F 189 11 171 162, 226

Residual error

Additive,

terizidone

(μmol L−1)

25 17.9 21 20, 24.4

Proportional,

terizidone

0.04 63.1 0.04 0.04, 0.05

Additive,

cycloserine

(μmol L−1)

0.29 33.6 0.3 0.22, 0.3

Proportional,

cycloserine

0.32 6.14 0.3 0.24, 0.31

aAllometrically scaled parameters using FFM by fixing exponents to 1 on

Vp/F and 0.75 on Clp and Clm/F.
bCoefficient of variation percentage calculated as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e SDð Þ2 − 1

p� �
*100

where SD is the estimated standard deviation.

%RSE, percentage relative standard error; CI, confidence interval; Mtt,

mean transit time; ka, absorption rate constant; Vp/F, apparent volume

of distribution; Cltot/F, apparent total clearance of terizidone; Fm, fraction

of terizidone that is converted into cycloserine; Clm/F, apparent clearance

of cycloserine.
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estimated Clp (0.1 L h−1) was lower than Clpm (0.47 L h−1). This implied

that terizidone clearance via biotransformation into cycloserine was

higher than clearance via other routes. The closeness of the sum value

of Clp and Clpm (0.57 L h−1) and Cltot/F (0.51 L h−1) indicated that the

joint model was able to discriminate well between the Clpm driven by

Fm and Clp. On average, 29% of the total amount of terizidone in the

body was being converted to cycloserine, suggesting that 71% of the

remaining was eliminated via other routes. However, this was not

the absolute but apparent fraction, owing to the unavailability of urine

data. No covariates tested had significant effect on Clp, Fm and Clm/F.

Meanwhile, there was high BSV observed in Clm/F and Mtt, which

could not be explained by the covariates tested. The pharmacokinetic

parameters of terizidone in our study are different from the previously

reported,13 where blood was sampled after a single dose or before

steady state. In the previous study,13 Vp/F and Cltot/F were higher

(245.6 L, 6.4 L h−1) than in our study (13.4 L, 0.51 L h−1). Meanwhile,

in the study by Zitkova and Toušek,13 the observed average Cmax

resulting from 750 mg dose of terizidone was very different from

the Cmax that we simulated using their model (approximately 19 vs

6.1 μg mL−1, respectively). It is noteworthy that the method33 Zitkova

and Toušek13 used to determine terizidone concentrations was vali-

dated for cycloserine and not terizidone. In their study,13 terizidone

was not determined directly but estimated based on the cycloserine

concentration. Therefore, concentrations might have been inaccu-

rately estimated and lead to incorrect estimation of terizidone

pharmacokinetic parameters. These shortcomings associated with

determination of terizidone in Zitkova and Toušek's study13 may

explain the differences in Vp/F and Cltot/F in our study.

The precision at which pharmacokinetic parameters were esti-

mated in the joint and terizidone model was generally good. However,

the %RSE in the estimation of BSV in ka, proportional error estimate

and coefficient of albumin on Vp/F were slightly above 50%. There

was good agreement between observed and predicted concentrations

and the model predicted well the concentrations across all time points

as no bias was seen in the residual plots. The visual predictive checks

indicated that the joint model fitted well the observed terizidone and

cycloserine concentration–time data, as most of the observed data

overlapped with the simulated percentiles. Although the model

showed slight over prediction in the absorption phase, the bootstrap

parameters were comparable with those estimated from the original

data set. Therefore, the final joint model without covariates that was

used to estimate the Cmax, Tmax, AUC0‐24h, half‐life and Clpm was

appropriate.

TABLE 4 Summary of the secondary pharmacokinetic parameters of
terizidone and cycloserine

Pharmacokinetic parameters Median and range

Terizidone

Cmax (μmol L−1) 239 (64.2–520)

Tmax (h) 4 (2–8)

AUC0‐24h (μmol h L−1) 1635 (483–8954)

Half‐life (h) 17.8 (9–45)

Clpm (L h−1) 0.47 (0.05–1.88)

Cycloserine

Cmax (μmol L−1) 24.1 (0.54–63.5)

Tmax (h) 8 (3–8)

AUC0‐24h (μmol h L−1) 203 (3.6–99)

Half‐life (h) 2.49 (0.32–11.9)

Cmax, maximum plasma concentration; Tmax, time to reach Cmax; AUC0‐24h,

area under the concentration–time curve up to 24 hours; Clpm, apparent

clearance of terizidone due to biotransformation into cycloserine.

FIGURE 6 Box plots of simulated area under the concentration–
time curve up to 24 hours (AUC) and maximum plasma
concentration (Cmax) for the current recommended terizidone daily

dose of 750 mg stratified by weight band

TABLE 5 Proposed dosing schedule of terizidone across 3 weight
bands

Simulated exposure

Weight
band (kg) Dose (mg)a AUC0‐24h (μmol h L−1)b Cmax (μmol L−1)b

33–50 750 4929 (3694–6317) 278 (228–336)

51–70 900 5045 (3929–6392) 278 (227–335)

> 70 1200 5047 (3926–6381) 279 (228–335)

aDosed every 24 hours.
bValues expressed as median and interquartile range.
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The local treatment guideline for the management of drug‐resistant

tuberculosis17 recommends terizidone daily dose of 750 mg for

patients in the weight bands 33–50 and 51–70 kg and 750–1000 mg

for patients >70 kg. Although no information on the target AUC0‐24h

or Cmax for terizidone is available from the literature, model‐based sim-

ulations show that a 750 mg daily does not achieve similar AUC0‐24h or

Cmax across the 3 weight bands. Therefore, we propose a terizidone

daily dose of 900 and 1200 mg for patients in the weight bands

51–70 and > 70 kg, respectively. This would ensure the achievement

of a similar exposure in patients weighing 33–50 kg and taking

750 mg of the drug.

In conclusion, we report, for the first time the population pharma-

cokinetics of terizidone and its metabolite cycloserine in patients with

drug‐resistant tuberculosis. We characterised the secondary pharma-

cokinetic parameters of terizidone and cycloserine. High serum

albumin concentration was significantly associated with low Vp/F in

this patient population. The FFM was found to be the best descriptor

of body size and most ideal for body size effect adjustment. On

average, 29% of the terizidone amount in the body was converted into

cycloserine. The low Cltot/F or long half‐life supports once daily dosing

of terizidone in drug‐resistant tuberculosis patients.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the following: (1) South African

Medical Research Council, National Research Foundation and

University of the Western Cape for financial support; (2) The

Provincial Pharmaceutical Services (Western Cape), for supplying

anti‐tuberculosis tablets; (3) The Department of Health (Western Cape

Province) and Brewelskloof Hospital authorities for granting

permission to conduct the study; and (4) Study participants.

COMPETING INTERESTS

There are no competing interests to declare.

CONTRIBUTORS

M.M. did the modelling, interpreted pharmacokinetic data, and

drafted the manuscript. P.M. conceived and designed the project,

collected blood samples and patient information, conducted labora-

tory tests, and co‐drafted the manuscript. Both authors approved

the final draft.

ORCID

Mwila Mulubwa https://orcid.org/0000-0003-2404-9717

Pierre Mugabo https://orcid.org/0000-0001-5653-0551

REFERENCES

1. World Health Organization. Global Tuberculosis Report 2017. Geneva,

Switzerland: World Health Organization Press; 2017 http://www.

who.int/tb/publications/global_report/gtbr2017_main_text.pdf.

Accessed August 12, 2018.

2. Zhao Y, Xu S, Wang L, et al. National survey of drug‐resistant tubercu-
losis in China. N Engl J Med. 2012;366(23):2161–2170.

3. Almeida Da Silva PE, Palomino JC. Molecular basis and mechanisms of

drug resistance in Mycobacterium tuberculosis: classical and new drugs.

J Antimicrob Chemother. 2011;66:1417–1430.

4. World Health Organization. Companion handbook to the WHO guide-

lines for the programmatic management of drug‐resistant tuberculosis.

Geneva, Switzerland: World Health Organization Press; 2014 http://

apps.who.int/iris/bitstream/handle/10665/130918/9789241548809_

eng.pdf. Accessed July 10, 2018.

5. World Health Organization. WHO treatment guidelines for drug‐resistant
tuberculosis 2016 update. Geneva, Switzerland: World Health Organi-

zation Press; 2016 http://apps.who.int/iris/bitstream/handle/10665/

250125/9789241549639‐eng.pdf. Accessed August 7, 2018.

6. Bartmann K, Iwainsky H, Kleeberg HH, et al. Antituberculosis drugs.

Berlin Heidelberg: Springer Science & Business Media; 2013.

7. World Health Organization Prequalification Team. Notes on the design

of bioequivalence study: Terizidone. Geneva, Switzerland: World Health

Organization Press; 2015 https://extranet.who.int/prequal/sites/

default/files/documents/29%20BE%20terizidone_Oct2015_0.pdf.

Accessed December 15, 2018.

8. Vora A. Terizidone. J Assoc Physicians India. 2010;58:267–268.

9. Kottász S, Babics A. Treatment of urogenital tuberculosis with

terivalidin. Int Urol Nephrol. 1972;4(4):353–360.

10. Galietti F, Giorgis GE, Oliaro A, et al. Tolerability to terizidone (TZ) in

the treatment of pulmonary tuberculosis in dialyzed patients. Minerva

Med. 1991;82(7‐8):477–481.

11. Shmelev NA, Shabalova LN, Kolosovskaia VP. Comparative clinical

electroencephalographic study of cycloserine and terizidon tolerance.

Antibiotiki. 1975;20(2):174–180.

12. Raznatovska OM, Khudiakov HV, Makarovych AH. Comparative

evaluation of the efficacy and tolerability of chemotherapy in patients

with drug‐resistant pulmonary tuberculosis using terizidone and

cycloserine in the comprehensive treatment. Actual Infectology.

2015;4.09:66–69.

13. Zitkova L, Toušek J. Pharmacokinetics of cycloserine and terizidone.

Chemotherapy. 1974;20(1):18–28.

14. Chang MJ, Jin B, Chae J, et al. Population pharmacokinetics of

moxifloxacin, cycloserine, p‐aminosalicylic acid and kanamycin for the

treatment of multi‐drug‐resistant tuberculosis. Int J Antimicrob Agents.

2017;49(6):677–687.

15. Court R, Wiesner L, Stewart A, et al. Steady state pharmacokinetics of

cycloserine in patients on terizidone for multidrug‐resistant tuberculo-
sis. Int J Tuberc Lung Dis. 2018;22(1):30–33.

16. Brennan PJ, Young DB, Robertson BD, et al. Handbook of anti‐
tuberculosis agents. Tuberculosis. 2008;88:85‐170.

17. Department of Health. Management of Drug‐resistant Tuberculosis

policy guidelines. Pretoria: Department of Health Republic of South

Africa; 2013.

18. General Assembly of the World Medical Association. World medical

association declaration of Helsinki: ethical principles for medical

research involving human subjects. J am Coll Dent. 2014;81:14.

19. Mulubwa M, Mugabo P. Analysis of terizidone in plasma using HPLC‐
UV method and its application in pharmacokinetic study of patients

with drug‐resistant tuberculosis. Biomed Chromatogr. 2018;32(11):

e4325.

20. USFDA. Guidance for Industry Bioanalytical Method Validation.

Rockville, USA: Food and Drugs Administration; 2013 http://acad-

emy.gmp‐compliance.org/guidemgr/files/UCM368107.PDF. Accessed

February 5, 2018.

21. Monolix version 2018R1. Antony, France: Lixoft SAS, 2018. http://

lixoft.com/products/monolix/.

MULUBWA AND MUGABO 1955

90http://etd.uwc.ac.za/

https://orcid.org/0000-0003-2404-9717
https://orcid.org/0000-0001-5653-0551
http://www.who.int/tb/publications/global_report/gtbr2017_main_text.pdf
http://www.who.int/tb/publications/global_report/gtbr2017_main_text.pdf
http://apps.who.int/iris/bitstream/handle/10665/130918/9789241548809_eng.pdf
http://apps.who.int/iris/bitstream/handle/10665/130918/9789241548809_eng.pdf
http://apps.who.int/iris/bitstream/handle/10665/130918/9789241548809_eng.pdf
http://apps.who.int/iris/bitstream/handle/10665/250125/9789241549639-eng.pdf
http://apps.who.int/iris/bitstream/handle/10665/250125/9789241549639-eng.pdf
https://extranet.who.int/prequal/sites/default/files/documents/29%20BE%20terizidone_Oct2015_0.pdf
https://extranet.who.int/prequal/sites/default/files/documents/29%20BE%20terizidone_Oct2015_0.pdf
http://academy.gmp-compliance.org/guidemgr/files/UCM368107.PDF
http://academy.gmp-compliance.org/guidemgr/files/UCM368107.PDF
http://lixoft.com/products/monolix/
http://lixoft.com/products/monolix/


22. Delyon B, Lavielle M, Moulines E. Convergence of a stochastic approx-

imation version of the EM algorithm. Ann Stat. 1999;27(1):94–128.

23. Savic RM, Jonker DM, Kerbusch T, Karlsson MO. Implementation of

a transit compartment model for describing drug absorption in

pharmacokinetic studies. J Pharmacokinet Pharmacodyn. 2007;34(5):

711–726.

24. Evans ND, Godfrey KR, Chapman MJ, Chappell MJ, Aarons L, Duffull

SB. An identifiability analysis of a parent–metabolite pharmacokinetic

model for ivabradine. J Pharmacokinet Pharmacodyn. 2001;28(1):

93–105.

25. Holford S, Allegaert K, Anderson BJ, et al. Parent‐metabolite pharma-

cokinetic models for tramadol–tests of assumptions and predictions.

J Pharmacol Clin Toxicol. 2014;2:1023.

26. Niu J, Scheuerell C, Mehrotra S, et al. Parent‐metabolite pharmacoki-

netic modeling and pharmacodynamics of Veliparib (ABT‐888), a

PARP inhibitor, in patients with BRCA 1/2–mutated cancer or PARP‐
sensitive tumor types. J Clin Pharmacol. 2017;57(8):977–987.

27. Janmahasatian S, Duffull SB, Ash S, Ward LC, Byrne NM, Green B.

Quantification of lean bodyweight. Clin Pharmacokinet. 2005;44(10):

1051–1065.

28. Anderson BJ, Holford NH. Mechanistic basis of using body size and

maturation to predict clearance in humans. Drug Metab Pharmacokinet.

2009;24(1):25–36.

29. Cockcroft DW, Gault H. Prediction of creatinine clearance from serum

creatinine. Nephron. 1976;16(1):31–41.

30. Lavielle M, Ribba B. Enhanced method for diagnosing pharmacometric

models: random sampling from conditional distributions. Pharm Res.

2016;33(12):2979–2988.

31. VreeTB, Shimoda M, Driessen JJ, et al. Decreased plasma albumin con-

centration results in increased volume of distribution and decreased

elimination of midazolam in intensive care patients. Clin Pharmacol

Ther. 1989;46(5):537–543.

32. Piafsky KM. Disease‐induced changes in the plasma binding of basic

drugs. Clin Pharmacokinet. 1980;5(3):246–262.

33. Jones LR. Colorimetric determination of cycloserine, new antibiotic.

Anal Chem. 1956;28(1):39–41.

How to cite this article: Mulubwa M, Mugabo P. Steady‐state

population pharmacokinetics of terizidone and its metabolite

cycloserine in patients with drug‐resistant tuberculosis. Br J

Clin Pharmacol. 2019;85:1946–1956. https://doi.org/

10.1111/bcp.13975

APPENDIX A

AUC computation of parent and metabolite for 1‐compartment model

with first‐order absorption and elimination with parameters Mtt, ka,

Vp, Cl, Fm and Clm using ODE.

[LONGITUDINAL]

input = {Mtt, ka, Vp, Cl, Fm, Clm}

PK:

depot (target = Ad, Mtt, Ktr = ka, ka)

EQUATION:

odeType = stiff

Vm = 10.5

kp = Cl/(Vp*(1-Fm))

kt = Cl/(Vp*Fm)

km = Clm/Vm

;Initial conditions

t_0 = −120

Ad_0 = 0

Apc_0 = 0

Am_0 = 0

;Differential equations

ddt_Ad = −ka*Ad

ddt_Apc = ka*Ad - kp*Apc - kt*Apc

ddt_Am = kt*Apc - km*Am

ddt_AUCp = 1/Vp * Apc

ddt_AUCm = 1/Vm * Am

if(t < 24)

AUC24p = AUCp

end

if(t < 48)

AUC48p = AUCp

end

AUC24_48p = AUC48p - AUC24p

if(t < 24)

AUC24m = AUCm

end

if(t < 48)

AUC48m = AUCm

end

AUC24_48m = AUC48m - AUC24m

;other PK parameters

T_HalfTZ = log(2)/(kp + kt)

T_HalfCS = log(2)/km

Cl_TZtrans = kt*Vp

Cp = Apc/Vp

Cm = Am/Vm

OUTPUT:

output = {Cp, Cm}

table = {AUC24_48p, AUC24_48m, T_HalfTZ, T_HalfCS,

Cl_TZtrans}
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In this chapter, a research paper entitled: 

“Amount of Cycloserine Emanating from Terizidone Metabolism and 

Relationship with Hepatic Function in Patients with Drug‑Resistant 

Tuberculosis” 

is presented. It was published as an original research article in the Drugs in R&D, 

2019; 19:289–296. https://doi.org/10.1007/s40268-019-00281-4. It has been re-used 

in this thesis under the terms of the Creative Commons Attribution-NonCommercial 

4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which 

permits any noncommercial use, distribution, and reproduction in any medium. The 

Creative Commons license statement from Springer Nature (Publisher) is included as 

Appendix 5. 
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Abstract
Background and objectives  The dosing of cycloserine and terizidone is the same, as both drugs are considered equivalent 
or used interchangeably. Nevertheless, it is not certain from the literature that these drugs are interchangeable. Therefore, 
the amount of cycloserine resulting from the metabolism of terizidone and the relationship with hepatic function were 
determined.
Methods  This prospective clinical study involved 39 patients with drug-resistant tuberculosis admitted for an intensive 
phase of treatment. Cycloserine pharmacokinetic parameters for individual patients, like area under the curve (AUC), clear-
ance (CLm/F), peak concentration (Cmax) and trough concentration (Cmin), were calculated from a previously validated joint 
population pharmacokinetic model of terizidone and cycloserine. Correlation and regression analyses were performed for 
pharmacokinetic parameters and unconjugated bilirubin (UB), conjugated bilirubin (CB), albumin, the ratio of aspartate 
transaminase to alanine aminotransferase (AST/ALT), or binding affinity of UB to albumin (Kaf), using R statistical software 
version 3.5.3.
Results  Thirty-eight patients took a daily dose of 750 mg terizidone, while one took 500 mg. The amount of cycloserine 
[median (range)] that emanated from terizidone metabolism was 51.6 (0.64–374) mg. Cmax (R2 = 22%, p = 0.003) and Cmin 
(R2 = 10.6%, p = 0.044) were significantly associated with increased CB concentration. Cmax was significantly associated with 
increased Kaf (R2 = 10.1%, p = 0.048), while high CLm/F was significantly associated with decreased AST/ALT (R2 = 21%, 
p = 0.003).
Conclusions  Cycloserine is not interchangeable with terizidone, as amounts are lower than expected. Cycloserine may be a 
predisposing factor to the development of hyperbilirubinaemia, as CLm/F is affected by hepatic function.

 *	 Mwila Mulubwa 
	 3579753@myuwc.ac.za; mwila.mulubwa@gmail.com

1	 School of Pharmacy, University of the Western Cape, Private 
Bag X17, Bellville, Cape Town 7535, South Africa

Key Points 

Terizidone is not completely metabolised into cycloser-
ine in patients with drug-resistant tuberculosis.

Cycloserine and terizidone cannot be used interchange-
ably.

Cycloserine and terizidone exposure may be a predispos-
ing factor to the development of jaundice in patients with 
drug-resistant tuberculosis.

1  Introduction

Drug-resistant tuberculosis remains a public health crisis, and 
treatment success continues to be low, at 55% worldwide [1]. 
Cycloserine is among the recommended group C second-line 
drugs for treatment of drug-resistant tuberculosis [2]. One of 
its advantages is that it does not share cross-resistance with 
other anti-tuberculosis drugs in the regimen, although it is 
associated with neurological side effects [3]. Its antimycobac-
terial bacteriostatic effect is achieved through inhibition of the 
enzymes d-alanine ligase and alanine racemase, which are both 
essential for the biosynthesis of peptidoglycan, a bacterial cell 
wall component [4]. The susceptibility breakpoint is 64 µg/
mL, and efficacy is driven by the percentage of time the plasma 
concentration is above the minimum inhibitory concentration. 
Nevertheless, the doses likely to achieve bactericidal effect in 
patients could be neurotoxic, as they are high [5].
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Terizidone, which is a condensation product of two 
molecules of cycloserine joined by a terephthalaldehyde 
moiety, is also part of the recommended group C second-
line drugs for treatment of drug-resistant tuberculosis [2, 
6]. The metabolism of terizidone has not been character-
ised. However, it is thought to convert into cycloserine 
and para-phthalate, likely by hydrolysis of imine groups 
pre-systemically [7, 8]. Terephthalaldehyde in humans 
has been shown to undergo quick metabolism into tere-
phalic acid, which is a more stable metabolite and read-
ily excreted in urine [9]. However, the enzymes involved 
in these metabolic processes are not known. The in vivo 
metabolism of cycloserine, a structural analogue of amino 
acid d-alanine [6], has not been characterised in humans. 
Meanwhile, in vitro studies show that d- or l-cycloserine 
in the presence of alanine racemase undergo racemisation 
followed by transamination to form a stable isoxazole by 
irreversible tautomerisation of the intermediate substrate, 
ketimine [10].

In patients with drug-resistant tuberculosis, a dose of 
250–500 mg of cycloserine administered orally twice daily 
is slowly absorbed, with an absorption rate constant of 
0.135 h−1, and reaches the average maximum plasma con-
centration of 22 µg/mL within 4 h [11]. It is widely dis-
tributed to most body fluids (bile, synovial fluid, breast 
milk, sputum) and tissues (lymphatic tissues and lungs) and 
crosses the placenta, with the apparent distribution of 10.5 L. 
Cycloserine apparent clearance is 1.38 L/h. It is primarily 
excreted in urine, with 50 and 70% excreted unchanged in 
12 and 24 h, respectively. The elimination half-life is 5.27 h. 
The between-subject variation in apparent clearance and dis-
tribution volume is 22.3 and 35.1%, respectively [11, 12].

Treatment of drug-resistant tuberculosis with a multid-
rug regimen consisting of cycloserine/terizidone and other 
second-line drugs is associated with adverse reactions 
[13]. Hepatotoxicity, nephrotoxicity and hypokalaemia 
are the most possible life-threatening adverse reactions 
that require alteration of the drug regimen or temporal 
withdraw [14]. Furthermore, mortality is high when hepa-
totoxicity is accompanied by jaundice, encephalopathy and 
ascites [15].

Cycloserine and terizidone are considered equivalent, and 
doses are currently used interchangeably [7, 8]. Owing to the 
unavailability of bioequivalence or mass balance studies of 
terizidone, the equivalence of dosing has not yet been estab-
lished [8]. The objective of this study was to determine the 
average amount of cycloserine that results from the metabo-
lism of terizidone in patients with drug-resistant tuberculo-
sis. We also assessed the potential effect of cycloserine and 
terizidone exposure on the incidence of hepatotoxicity or 
nephrotoxicity in these patients.

2 � Methods

The details of the study design, including the study popula-
tion, drug administration, ethics, inclusion and exclusion 
criteria, and population pharmacokinetic modelling, have 
been described elsewhere [16]. Briefly, this was a prospec-
tive clinical study of patients admitted for intensive phase 
treatment of drug-resistant tuberculosis. They were taking 
500–750 mg of terizidone once daily, and other second-
line anti-tuberculosis drugs (ethionamide, pyrazinamide, 
moxifloxacin, ethambutol, isoniazid and kanamycin) were 
administered according to the local treatment guideline 
[17]. Blood for pharmacokinetics study was sampled at 
baseline and 0.5, 1, 2, 3, 3.5, 4, 8, 16 and 24 h after drug 
administration. Separate blood samples were also drawn 
for liver [total bilirubin, conjugated bilirubin, unconjugated 
bilirubin, albumin, alanine aminotransferase (ALT), aspar-
tate transaminase (AST)] and renal function markers (serum 
creatinine). Estimated glomerular filtration rate (eGFR) 
[18] and creatinine clearance (CrCL) [19] were calculated, 
and demographic information including HIV status was 
obtained from each patient.

2.1 � Determination of Cycloserine and Terizidone 
in Plasma

Cycloserine concentration in plasma was determined using 
an ultra-performance liquid chromatography tandem mass 
spectrometry method. Methanol was used to extract cyclo-
serine and propranolol (internal standard) from plasma 
by a protein precipitation method. Acidified acetonitrile 
with 0.1% formic acid was used as the mobile phase, 
and chromatographic separation was achieved on a Phe-
nomenex PFP reversed phase column. The lower limit of 
quantification and limit of detection were 0.01 μg/mL and 
0.004 μg/mL, respectively. The average intra-day precision 
was 10.2%, while inter-day was 7.3%. Accuracy ranged 
between 98.7 and 117.3%, and the coefficient of deter-
mination was 0.9994. Cycloserine was stable after three 
freeze–thaw cycles, and extraction efficiency was in the 
range 88.7–91.2% [20]. Terizidone was analysed using a 
high-performance liquid chromatography with UV detec-
tor (HPLC-UV) method. The within- and between-run 
accuracy was in the range 99.7–112.7% and 100.5–107.4%, 
respectively. The intra- and inter-day precision, measured 
as percentage relative standard deviation, ranged between 
0.35 and 9.4% and 1.48 and 6.79%, respectively. The lower 
limit of quantification was 3.125 µg/mL, while the limit of 
detection was 0.78 µg/mL. The coefficient of determina-
tion value ranged between 0.9988 and 0.9999, and calibra-
tion curves were linear [21].
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2.2 � Pharmacokinetic Modelling

The concentration–time profiles of terizidone and its metab-
olite cycloserine were jointly modelled using non-linear 
mixed effects implemented in Monolix 2018R1 software 
[22]. The final joint model without covariates was used to 
estimate the biotransformation rate constant (ktr) describing 
the metabolism of terizidone into cycloserine and cycloser-
ine clearance (CLm/F). The model and the validation details 
have been described elsewhere [16].

2.3 � Calculation of the Amount of Cycloserine 
and Other Pharmacokinetic Parameters

The following formulae were coded and added to the Mono-
lix MLXTRAN model script of the final joint model for the 
computation of parameters. The amount of cycloserine was 
calculated as shown in Eq. (1):

where dose is the amount of cycloserine, AUC is the area 
under the concentration–time profile of cycloserine from 0 
to 24 h, and CLm/F is the apparent clearance of cycloserine.

The AUC was calculated by integrating the concentration 
from 0 to 24 h according to Eq. (2):

where C is cycloserine concentration.
Cycloserine half-life was calculated according to Eq. (3):

where ke = (Clm/F)∕10.5.

The distribution volume of cycloserine was fixed to a 
literature value of 10.5 L [11] when estimating CLm/F. 
This was done in order to overcome the non-identifiability 
parameter problem encountered in parent–metabolite phar-
macokinetic models of orally administered drugs [23].

The biotransformation half-life was calculated as shown 
in Eq. (4):

The peak (Cmax) and trough (Cmin) concentrations were 
obtained from the observed data for both cycloserine and 
terizidone concentration–time profiles. The individual 
predicted values for terizidone clearance due to biotrans-
formation (CLtm/F) and other routes (CLto/F) were com-
puted in Monolix and extracted from the output file.

(1)Dose = AUC × Clm/F,

(2)AUC =

24

∫
0

C(t)dt,

(3)Cycloserine half life =
ln(2)

ke
,

(4)Biotransformation half-life =
ln(2)

ktr
.

2.4 � Calculation of Binding Affinity of Unconjugated 
Bilirubin to Albumin and AST/ALT Ratio

The strength of unconjugated bilirubin binding to albumin 
was calculated according to Eq. (5) [24]:

where Kaf is the binding affinity, with the units L/µmol, and 
TB and UB are total bilirubin and unconjugated bilirubin, 
respectively. The AST/ALT ratio [25], a marker reflecting 
alterations in hepatic function, was calculated by dividing 
the AST value by the ALT value for each patient.

2.5 � Statistical Analysis

Mann–Whitney U test was performed to determine differ-
ences in the demographic information stratified by HIV 
status. We performed Spearman’s correlations between 
hepatic or renal function (eGFR/CrCL) markers and phar-
macokinetic parameters (Cmin, Cmax, CLm/F, CLtm/F and 
CLto/F). This was done in order to determine whether 
a statistically significant linear relationship existed, as 
cycloserine or terizidone could bind to albumin or affect 
the binding affinity of unconjugated bilirubin to albumin. 
Furthermore, cycloserine concentration may be affected 
by alterations in hepatic or renal function. If the correla-
tions were significant, linear stepwise regression analysis 
was performed in order to determine if pharmacokinetic 
parameters were significantly predicting hepatic or renal 
function markers. A two-tailed p value of ≤ 0.05 was 
considered statistically significant. The analysis was per-
formed in the R version 3.5.3 statistical environment [26].

3 � Results

Thirty-nine drug-resistant tuberculosis patients (20 females 
and 19 males) participated in this study. Out of the seven 
patients with comorbidities, three had cryptococcal meningi-
tis, while each of the remaining four had deep venous throm-
bosis, hyperlipidaemia, gastric acid or epilepsy. Thirty-eight 
out of 39 patients took a daily dose of 750 mg terizidone, 
while one patient took 500 mg. Table 1 shows the summary 
of demographic information. The HIV-infected patients had 
significantly lower albumin than their HIV-uninfected coun-
terparts (30 vs. 35.5 g/L; p = 0.041). However, the rest of 
the demographic variables were similar in HIV-infected and 
HIV-uninfected groups.

(5)Kaf =
TB − UB

UB × albumin − TB + UB
,
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3.1 � Amount of Cycloserine and Pharmacokinetic 
Parameters

The summary of the calculated amount of cycloserine or 
dose resulting from terizidone metabolism and the values 
for pharmacokinetic parameters is shown in Table 2. There 
was wide variation in cycloserine dose and also in the phar-
macokinetic parameters, except for cycloserine half-life, for 
which the variation was relatively narrow. Table 3 shows the 
summary of terizidone pharmacokinetic parameters. 

3.2 � Correlations Between Hepatic Function Markers 
and Pharmacokinetic Parameters of Cycloserine 
and Terizidone

Significant positive correlations existed between AST, ALT, 
conjugated bilirubin, Kaf and cycloserine pharmacokinetic 
parameters (Cmin, Cmax or CLm/F), as shown in Table 4. 

There was significant negative correlation between AST/
ALT ratio and CLm/F (p = 0.016). Meanwhile, there was 
no significant correlation between albumin or unconjugated 
bilirubin and the pharmacokinetic parameters (p > 0.05). 
Similarly, no significant correlations existed between renal 
function markers (CrCL and eGFR) and CLm/F (p > 0.05). 
Significant positive correlations existed between terizidone 
Cmax and conjugated or unconjugated bilirubin (p = 0.038 
and 0.02, respectively), as shown in Table 5.

3.3 � Pharmacokinetic Parameters Predictive 
of Hepatic Function Markers

The cycloserine Cmax was found to be a significant predictor 
of both conjugated bilirubin and Kaf, as shown by regression 
plots b and c of Fig. 1. The associations were in such a way 
that an increase in Cmax resulted in a significant increase in 
conjugated bilirubin and Kaf (plot b, β = 0.06, R2 = 22% and 
p = 0.003; plot c, β = 2.3, R2 = 10.1% and p = 0.048). Cmin 

Table 1   Patients’ demographic 
information

ALT alanine aminotransferase, AST aspartate transaminase, BMI body mass index, CrCL creatinine clear-
ance, eGFR estimated glomerular filtration rate, Kaf binding affinity
*Statistically significant
a The values in the column are reported as median and range

Variables HIV infected (n = 27)a HIV uninfected (n = 12)a P value

Age (years) 31 (17–44) 34 (20–56) 0.46
Weight (kg) 51.4 (32.4–64) 50 (39.8–71) 0.69
BMI (kg/m2) 18.5 (12.4–23.5) 17.9 (15–26.1) 0.8
Albumin (g/L) 30 (15–45) 35.5 (26–48) 0.041*
ALT (IU/L) 11 (4–46) 10.5 (4–23) 0.47
AST (IU/L) 36 (20–109) 26.6 (17–76) 0.053
Conjugated bilirubin (µmol/L) 1 (1–8) 1 (1–9) 0.86
Unconjugated bilirubin (µmol/L) 5 (1–17) 7 (2–11) 0.42
Total bilirubin (µmol/L) 6 (2–24) 8 (3–20) 0.69
AST/ALT ratio 3.2 (0.8–8.7) 2.7 (1.9–5.9) 0.39
Kaf (L/µmol) 146 (70.9–710) 128 (75.5–377) 0.84
CrCL (mL/min) 86.4 (34.4–128) 77.8 (55.4–113) 0.41
eGFR (mL/min/1.73 m2) 118 (46–228) 104 (74.9–192) 0.57

Table 2   Cycloserine dose and pharmacokinetic parameters

AUC​ area under the curve, CLm/F apparent clearance of cycloserine, 
Cmax peak concentration, Cmin trough concentration

Parameter Median (range)

Cycloserine dose (mg) 51.6 (0.64–374)
Cmax (µmol/L) 28.6 (0.49–69.4)
Cmin (µmol/L) 9.1 (0.15–36.3)
AUC (µmol h/L) 201 (3.07–983)
Biotransformation half-life (h) 22.6 (10.2–216)
CLm/F (L/h) 2.6 (0.64–21)
Cycloserine half-life (h) 2.78 (0.34–11.3)

Table 3   Pharmacokinetic parameters for terizidone

CLtm/F terizidone clearance due to biotransformation, CLto/F ter-
izidone clearance via other routes, Cmax peak concentration, Cmin 
trough concentration

Parameter Median (range)

Cmin (µmol/L) 88 (14.3–307)
Cmax (µmol/L) 247 (61–583)
CLtm/F (L/h) 0.29 (0.05–1.14)
CLto/F (L/h) 0.11 (0.035–0.31)
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Table 4   Correlations between 
cycloserine pharmacokinetic 
parameters and liver function 
markers

ALT alanine aminotransferase, AST aspartate transaminase, CLm/F apparent clearance of cycloserine, Cmax 
peak concentration, Cmin trough concentration, Kaf binding affinity, r Spearman’s ρ correlation coefficient
*p < 0.05, **p < 0.001

Cmin (µmol/L) Cmax (µmol/L) CLm/F (L/h)

AST (IU/L) r = 0.26 r = 0.34* r = − 0.06
ALT (IU/L) r = 0.15 r = 0.11 r = 0.35*
Conjugated bilirubin (µmol/L) r = 0.36* r = 0.47** r = 0.07
Unconjugated bilirubin (µmol/L) r = 0.12 r = 0.15 r = 0.09
Kaf (L/µmol) r = 0.38* r = 0.46** r = − 0.02
AST/ALT ratio r = 0.1 r = 0.2 r = − 0.38*

Table 5   Correlations between 
terizidone pharmacokinetic 
parameters and liver function 
markers

ALT alanine aminotransferase, AST aspartate transaminase, CLtm/F terizidone clearance due to biotransfor-
mation, CLto/F terizidone clearance via other routes, Cmax peak concentration, Cmin trough concentration, 
Kaf binding affinity, r Spearman’s ρ correlation coefficient
*p < 0.05

Cmin (µmol/L) Cmax (µmol/L) CLtm/F (L/h) CLto/F (L/h)

AST (IU/L) r = 0.06 r = 0.15 r = − 0.13 r = − 0.06
ALT (IU/L) r = 0.16 r = 0.14 r = 0.1 r = 0.05
Conjugated bilirubin (µmol/L) r = 0.22 r = 0.33* r = 0.13 r = 0.06
Unconjugated bilirubin (µmol/L) r = 0.25 r = 0.37* r = − 0.01 r = − 0.01
Kaf (L/µmol) r = 0.07 r = 0.1 r = − 0.07 r = − 0.15
AST/ALT ratio r = − 0.1 r = − 0.06 r = 0.16 r = − 0.17

Fig. 1   Regression plots of 
cycloserine pharmacokinetic 
parameters predictive of 
conjugated bilirubin, AST/
ALT ratio and Kaf. ALT alanine 
aminotransferase, AST aspartate 
transaminase, Kaf binding 
affinity, CLm/F apparent clear-
ance of cycloserine, Cmax peak 
concentration, Cmin trough 
concentration
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could not significantly predict Kaf in the regression analysis, 
although a significant correlation existed between Cmin and 
Kaf in correlation analysis. Meanwhile, increase in Cmin was 
significantly associated with an increase in conjugated bili-
rubin (plot a, β = 0.1, R2 = 10.6% and p = 0.044). The CLm/F 
significantly predicted AST/ALT ratio, as shown in plot d 
of Fig. 1. Increase in CLm/F was significantly associated 
with a decrease in AST/ALT ratio (β = − 0.2, R2 = 21% and 
p = 0.003). Terizidone Cmax significantly predicted concen-
tration of conjugated bilirubin (β = 0.008, R2 = 14.2% and 
p = 0.018) as well as unconjugated bilirubin (β = 0.012, 
R2 = 11.4% and p = 0.035). The regression plot is shown in 
Fig. 2.

4 � Discussion

This study aimed to determine the amount of cycloserine that 
results from the metabolism of terizidone and the relation-
ship between cycloserine exposure parameters and hepatic 
or renal function markers in patients receiving treatment for 
drug-resistant tuberculosis. There appears to be no studies 
in the literature that have quantified the amount of cycloser-
ine as a terizidone metabolite in drug-resistant tuberculosis 
patients. Terizidone is thought to undergo complete hydroly-
sis into cycloserine pre-systemically [7]. Since one mole 
of terizidone has two moles of cycloserine and a mole of 
terephthalaldehyde moiety, it is expected for a 750-mg daily 
dose of terizidone to produce 507 mg of cycloserine, with an 
assumption that bioavailability is near 100%. In the current 
study, the median dose of cycloserine produced from a 750-
mg dose of terizidone was 51.6 mg, which was lower than 
expected. This observation clearly suggests that terizidone 
is not completely hydrolysed to cycloserine pre-systemically. 
Furthermore, terizidone was detected systemically over a 
period of 24 h after its administration, and on average, only 
29% of the total dose was metabolised to cycloserine [16]. 

The clinical implication of this finding in the current study 
is that cycloserine and terizidone should not be used inter-
changeably, as exposure parameters (Cmax, Cmin and AUC) 
may be significantly lower in patients taking terizidone 
than those taking cycloserine. Owing to the low amount of 
cycloserine produced from terizidone, dose optimisation or 
therapeutic drug monitoring, contrary to what some authors 
imply [27], should be based on terizidone and not cyclo-
serine concentration. Additionally, in patients treated with 
terizidone, Court et al. [28] reported higher cycloserine Cmax 
than in the current study. The difference could have been that 
in the Court et al. study [28], there were patients who had 
renal insufficiency, which could have led to accumulation 
of cycloserine, as it primarily undergoes renal elimination 
[6]. Furthermore, the bioavailability and biotransformation 
rate of terizidone into cycloserine in the current study could 
have been lower than in the Court et al. [28] study. We can-
not overlook the possibility of pharmacokinetic interactions 
with co-administered drugs in the current study.

Bilirubin, a pigment derived from the breakdown of 
haemoglobin, increases in blood because of an imbalance 
between its production and excretion. Since unconjugated 
bilirubin is not water soluble, it is bound to albumin and 
transported to the liver, where it is made soluble or conju-
gated with glucuronic acid and subsequently undergoes bil-
iary excretion into the gastrointestinal tract [29]. Increased 
serum levels of conjugated bilirubin are an indication of 
hepatic dysfunction or liver disease, clinically manifested as 
jaundice [25]. In the current study, cycloserine Cmin and Cmax 
as well as terizidone Cmax were significantly associated with 
increased concentration of conjugated bilirubin.

Although the concentration of conjugated bilirubin in 
most of the patients was within the normal range, this obser-
vation implies that high plasma cycloserine or terizidone 
concentrations may be associated with hyperbilirubinaemia 
in some patients.

Fig. 2   Regression plots of ter-
izidone pharmacokinetic param-
eters predictive of conjugated 
and unconjugated bilirubin. 
Cmax peak concentration
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Unconjugated bilirubin is insoluble in water and hence 
cannot be excreted via the kidney. It is instead bound to albu-
min and transported to the liver for conjugation. Increased 
serum levels of unconjugated bilirubin indicate that there 
is an accumulation in the bloodstream due to haemolysis, 
which may be caused by haemolytic anaemia, hepatocel-
lular dysfunction (e.g. hepatitis) and cirrhosis in which the 
excretory function of the hepatocytes is impaired [25]. Some 
drugs have been shown to compete with unconjugated biliru-
bin for binding to albumin, which leads to increased concen-
tration of unconjugated bilirubin and causes encephalopa-
thy in neonates [30–33]. Therefore, the binding affinity of 
unconjugated bilirubin to albumin is of clinical importance. 
Cycloserine Cmax in the current study was associated with 
increased Kaf, while Cmin results were insignificant. This 
means that high cycloserine concentrations improve the 
binding affinity of unconjugated bilirubin to albumin, which 
is potentially a desired characteristic in bilirubin metabo-
lism. The observed relationship between Kaf and Cmax may 
also imply that cycloserine is less bound to albumin.

The AST/ALT ratio is a non-invasive diagnostic index 
used to predict liver cirrhosis or fibrosis, and a value higher 
than 1 is indicative of non-alcoholic fatty liver disease [34, 
35]. Cycloserine is primarily renally cleared, with 70% 
excreted unchanged [12], while the other portion is metabo-
lised in the liver. However, the enzymes specifically involved 
in the catabolism of cycloserine in vivo are not known. In 
the current study, higher CLm/F was significantly associated 
with low AST/ALT ratio. Additionally, the median value 
of the AST/ALT ratio was more than 2. This was an obvi-
ous indication that liver disease affects hepatic function, 
which leads to low activity or production of cycloserine-
metabolising enzymes and eventually results in low CLm/F. 
Meanwhile, the non-correlation between CLm/F and CrCL 
or eGFR in the current study was unexpected, as cycloserine 
is also cleared via the renal route. This observation could 
suggest a possibility of more cycloserine undergoing active 
tubular secretion than glomerular filtration, as seen in other 
drugs [36].

This study has some limitations to consider. In vitro drug 
plasma binding studies were not performed due to ethical 
issues as we were supposed to use drug-free human plasma. 
Cycloserine metabolites were not measured in plasma; 
this could have helped to determine the rate of cycloser-
ine metabolism in vivo. Furthermore, cycloserine was not 
measured in patients’ urine for determination of the fraction 
of the dose that is excreted unchanged. We only measured 
cycloserine and terizidone in plasma. Since patients were 
on a multidrug treatment regimen, other anti-tuberculosis 
drugs could have shown similar results as cycloserine and 
terizidone. The study, however, is important as it gives an 
insight into how cycloserine and terizidone exposure might 
affect hepatic function. This can guide the clinical decision 

regarding whether or not to withdraw terizidone in the case 
of hepatotoxicity.

5 � Conclusions

In conclusion, the amount of cycloserine resulting from 
the metabolism of terizidone in drug-resistant tuberculosis 
patients was lower than expected. High concentrations of 
cycloserine could potentially favour bilirubin disposition, 
albeit be a predisposing factor to the development of jaun-
dice in drug-resistant tuberculosis patients taking terizidone. 
Cycloserine clearance is reduced in hepatic dysfunction.
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Chapter Eight 

 

8.0 INTRODUCTION 

In this chapter, a brief general discussion of important findings from chapter four, five, 

six and seven are presented. These findings are with regard to the developed methods 

for bioanalysis of terizidone and cycloserine in plasma. Other findings concern the 

population pharmacokinetics of terizidone and cycloserine as well as the use of 

cyloserine and terizidone interchangeably. Otherwise, the detailed discussion has 

already been outlined in these chapters. 

8.1 Quantification of terizidone in plasma 

There appears to be only one method in literature in which terizidone was quantified 

in plasma (Zitkova and Toušek, 1974) using colorimetric method (Jones, 1956). In this 

method, terizidone was not measured directly but estimated based on its metabolite 

cycloserine. The principle behind colorimetric method is the measurement of optical 

absorbance of a coloured reaction product between analyte and suitable reagents 

using light (Benhabib and Li, 2013). Colorimetric method of analysis is not suitable for 

pharmacokinetic studies as interfering substances can produce similar colours and 

cause errors in the results (Armstrong and Kuder, 1935). Furthermore, colorimetric 

method is outdated (World Health Organization, 2018). Additionally, in colorimetry, 

different compounds exhibit variances that can affect the accuracy of the results 

(Scott, 2017). Chromatographic methods are commonly used in pharmacokinetic 

studies as they are the most versatile bioanalytical techniques and able to produce 

highly accurate and precise results (USFDA, 1999, ICH). In Chapter four (Mulubwa 

and Mugabo, 2018), a chromatographic method (HPLC-UV) for determination of 

terizidone in plasma was developed and validated. This was the first-ever 

chromatographic method to be developed for analysis of terizidone. In this developed 

method (Mulubwa and Mugabo, 2018), terizidone was accurately quantified unlike in 

the colorimetric method where it was estimated based on cycloserine (Jones, 1956). 

http://etd.uwc.ac.za/



General Discussion 

 

102 
 

In Chapter four (Mulubwa and Mugabo, 2018), terizidone was detected and quantified 

in patients’ plasma samples. However, this was contrary to the proposition by the 

World Health Organization that terizidone is not measurable in plasma as it is thought 

to hydrolyse completely into cycloserine pre-systemically (World Health Organization, 

2015). The proposition was based on the fact that there were no analytical methods in 

literature in which terizidone was directly measured in plasma and not estimated based 

on its primary metabolite cycloserine. Therefore, this proposition no longer holds 

because terizidone is measurable in plasma. 

8.2 Quantification of cycloserine in plasma 

There are several bioanalytical methods that have been described in literature for the 

determination of cycloserine in plasma using liquid chromatograph coupled to mass 

spectrometer (Polagani et al., 2013, Patel et al., 2011, Mao et al., 2017, Yaroshenko 

et al., 2014, Han et al., 2013). The aim of Chapter five was to develop a method that 

involved less steps in sample preparation and sensitive or ability to measure lower 

concentrations than those reported in literature with good accuracy and precision. The 

developed method in Chapter five (Mulubwa and Mugabo, 2019a) had relatively less 

steps in sample preparation than the previously reported methods (Han et al., 2013, 

Supriya et al., 2012). Furthermore, the method (Mulubwa and Mugabo, 2019a) was 

more sensitive (0.01 µg/mL vs. 0.05 µg/mL) than the previously reported (Polagani et 

al., 2013). The method was suitable for bioanalysis especially where cycloserine is 

expected to be in very low concentrations as terizidone metabolite.  

8.3 Pharmacokinetics of terizidone and cycloserine 

The aim of Chapter six (Mulubwa and Mugabo, 2019b) was to model the 

pharmacokinetics of terizidone and cycloserine and to determine the factors that affect 

the pharmacokinetics of these drugs. A one-compartment model with first-order 

elimination best described the pharmacokinetics of terizidone. A modified transit 

compartment model characterised well the absorption of terizidone. Cycloserine 

underwent first order elimination with a shorter half-life than terizidone. Terizidone’s 

long half-life implies that it can be dosed once daily and still achieve the desired 

plasma concentration although the target Cmax or AUC is still unknown. 
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The clearance of terizidone via biotransformation is higher than clearance via other 

routes. This finding has clinical implications in patients who may have reduced hepatic 

function due to liver disease. Although the enzymes involved in terizidone metabolism 

are not known, patients with liver disease may experience toxic effects as a result of 

accumulation of terizidone in plasma due to reduced hepatic clearance. The inverse 

relationship between terizidone distribution volume and albumin may have clinical 

implications. It may imply that in patients with low albumin concentration due to a liver 

disease, the exposure pharmacokinetic parameters such as Cmax and Cmin may reduce 

due to an increase in terizidone distribution volume. This has potential to cause 

resistance owing to low plasma drug exposure. 

The fraction of the total amount of terizidone in the body that was converted to 

cycloserine, on average was 29% (Mulubwa and Mugabo, 2019b). This observation 

clarifies the contrary view of the World Health Organization that terizidone is near 

complete (World Health Organization, 2018) or completely converted into cycloserine 

(World Health Organization, 2015). 

8.4 Cycloserine amount resulting from terizidone metabolism 

The objective of Chapter seven was first to determine the amount of cycloserine that 

emanates from the metabolism of terizidone in patients with drug-resistant 

tuberculosis. The second objective was to determine the relationship between the 

cycloserine pharmacokinetic parameters and markers of hepatic or renal function. The 

average amount of cycloserine that emanated from terizidone metabolism was far less 

than the expected theoretical amount. This means that terizidone and cycloserine are 

not equivalent. The clinical implication is that they should not be used interchangeably 

as exposure parameters such as Cmax, Cmin and AUC may be lower in patients taking 

terizidone than those taking cycloserine.  

The ratio of aspartate transaminase to alanine aminotransferase, which relates to non-

alcoholic fatty liver disease (Alexopoulou et al., 2019, Angulo, 2002), was inversely 

related to cycloserine clearance. This indicated that cycloserine was affected by 

hepatic function and implied that it was cleared by the liver in addition to the known 

renal clearance (Brennan et al., 2008). Meanwhile, the non-significant relationship 

between exposure parameters (Cmax and Cmin) and markers of renal function 

http://etd.uwc.ac.za/



General Discussion 

 

104 
 

(estimated glomerular filtration rate and creatinine clearance) implied that cycloserine 

was not freely filtered but secreted in renal tubules. High cycloserine concentrations 

promoted disposition of unconjugated bilirubin by increasing its binding affinity to 

albumin in order to transport it to the liver for conjugation and subsequent elimination 

into the bile. However, cycloserine concentration was significantly associated with 

increased concentration of conjugated bilirubin. The clinical implication of this 

observation is that cycloserine may be associated with hyperbilirubinemia as a side 

effect in some patients as conjugated bilirubin is what is responsible for the clinical 

signs of jaundice (Longo et al., 2013).  
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Chapter Nine 

 

9.0 STUDY OBJECTIVES ACCOMPLISHED  

In this non-randomised clinical study, 39 patients with drug-resistant tuberculosis and 

in intensive treatment phase were prospectively enrolled at Brewelskloof Hospital in 

South Africa. All of the objectives set out in Chapter one were successfully achieved. 

These objectives included: 

i. the development and validation of a high-performance liquid 

chromatography method coupled with ultraviolet detection (HPLC-UV) for 

determination of terizidone in plasma, 

ii. the development and validation of a sensitive ultra-performance liquid 

chromatography tandem mass spectrometry (UPLC-MS/MS) method for 

determination of cycloserine in plasma,  

iii. the determination of plasma concentrations of terizidone and cycloserine 

in patients with drug-resistant tuberculosis, 

iv. modelling population pharmacokinetics of terizidone and its metabolite 

cycloserine in patients with drug-resistant tuberculosis, 

v. the determination of the factors influencing pharmacokinetics of terizidone 

and cycloserine in patients with drug-resistant tuberculosis,  

vi. the determination of the amount of cycloserine emanating from terizidone 

metabolism in patients with drug-resistant tuberculosis. 

 9.1 OVERALL CONCLUSIONS  

The bioanalytical method (HPLC-UV) for the determination of terizidone in plasma for 

pharmacokinetic study was successfully developed, validated and applied in the 

analysis of patients’ plasma samples. The method was simple, accurate and precise 

making it also suitable for therapeutic drug monitoring of terizidone. The UPLC-MS/MS 

bioanalytical method for determination of cycloserine in plasma was developed and 

validated. The method was sensitive or able to measure very low concentrations of 
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cycloserine with acceptable accuracy and precision. The method was successfully 

used to measure cycloserine as terizidone metabolite in patients’ plasma samples. 

The population pharmacokinetic of terizidone and cycloserine, has for the first time, 

been described in patients with drug-resistant tuberculosis. A one-compartment model 

with first-order elimination process best describes the pharmacokinetics of terizidone 

in drug-resistant tuberculosis patients. A modified transit model best characterises its 

absorption process. About 29% of the total amount of terizidone in the body is 

metabolised into cycloserine and undergoes first-order elimination process. The 

apparent distribution volume of terizidone in drug-resistant patients is influenced by 

albumin concentration, which may affect drug concentration in patients with hepatic 

impairment. Terizidone and cycloserine cannot be used interchangeably as the 

amount of cycloserine emanating from metabolism of terizidone is far lower than 

expected. Cycloserine plasma exposure may be a predisposing factor to development 

of jaundice because of its relationship with conjugated bilirubin and its apparent 

clearance is reduced in patients with non-alcoholic fat liver disease. 

9.2 STUDY LIMITATIONS  

This study addressed only the pharmacokinetics of terizidone and its metabolite 

cycloserine. The pharmacodynamics part, which needed to establish the minimum 

inhibitory concentration (MIC) of terizidone, was not performed. Consequently, the 

Monte Carlo simulations for terizidone dose optimization in this population of patients 

were not carried out.  

The concentrations of both terizidone and cycloserine were not measured in urine. 

This information would have helped to determine the amount of each drug eliminated 

in unchanged form. The sample size in this study was not calculated due to lack of a 

population pharmacokinetic model of terizidone in literature, which could have been 

used to simulate and estimate the required patient sample size. 

9.3 RECOMMENDATIONS 

The MIC of terizidone in resistant strains of Mycobacteria tuberculosis needs to be 

determined in order to establish pharmacodynamic index for dosage optimisation in 

drug-resistant tuberculosis patients. Furthermore, suitable pharmacodynamic indices 
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such as Cmax/MIC (Blaser et al., 1987, Preston et al., 1998), AUC/MIC (Holmes et al., 

2013, Ramos-Martin et al., 2017, Zinner et al., 2001) or percentage of time that plasma 

concentration remains above MIC (%T> MIC) (Andes et al., 2003, McKinnon et al., 

2008) for terizidone need to be determined. 

Based on low clearance and long half-life, terizidone should be dosed once daily. The 

dosing should not be same as that of cycloserine but should be based on the 

appropriate pharmacodynamics index. Although albumin was significantly affecting 

the distribution volume of terizidone, the clinical significance of this needs to be 

evaluated and establish whether dose adjustment is necessary. Future studies should 

determine the amount of terizidone and cycloserine excreted in patients’ urine. Finally, 

the sample size for future terizidone pharmacokinetics studies can be estimated from 

the model developed in this thesis.  
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DESCRIPTION: 

AUC computation of parent and metabolite for 1-compartment 

model with first-order absorption and elimination with 

parameters Mtt, ka, Vp, Cl, Fm and Clm using Ordinary 

Differential Equations. 

 

[LONGITUDINAL] 

input = {Mtt, ka, Vp, Cl, Fm, Clm} 

 

PK: 

depot(target = Ad, Mtt, Ktr = ka, ka) 

 

EQUATION: 

odeType = stiff 

Vm = 10.5     

kp = Cl/(Vp*(1-Fm))   

kt = Cl/(Vp*Fm)    

km = Clm/Vm    

 

;Initial conditions 

t_0 = -120 

Ad_0 = 0 

Apc_0 = 0     

Am_0 = 0     

 

;Differential equations 

ddt_Ad = -ka*Ad 

ddt_Apc = ka*Ad - kp*Apc - kt*Apc  

ddt_Am = kt*Apc - km*Am 

ddt_AUCp = 1/Vp * Apc 

ddt_AUCm = 1/Vm * Am 

 

 

if(t < 24) 
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     AUC24p = AUCp 

end 

if(t < 48) 

     AUC48p = AUCp 

end 

AUC24_48p = AUC48p - AUC24p  

if(t < 24) 

     AUC24m = AUCm 

end 

if(t < 48) 

     AUC48m = AUCm 

end 

AUC24_48m = AUC48m - AUC24m  

 

;other PK parameters 

T_HalfTZ = log(2)/(kp + kt)    

T_HalfCS = log(2)/km     

Cl_TZtrans = kt*Vp      

Cp = Apc/Vp      

Cm = Am/Vm      

 

OUTPUT: 

output = {Cp, Cm} 

table = {AUC24_48p, AUC24_48m, T_HalfTZ, T_HalfCS, Cl_TZtrans} 
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shall not assert any such right, license or interest with respect thereto

NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR
REPRESENTATION OF ANY KIND TO YOU OR ANY THIRD PARTY,
EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE MATERIALS
OR THE ACCURACY OF ANY INFORMATION CONTAINED IN THE
MATERIALS, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED
WARRANTY OF MERCHANTABILITY, ACCURACY, SATISFACTORY
QUALITY, FITNESS FOR A PARTICULAR PURPOSE, USABILITY,
INTEGRATION OR NON-INFRINGEMENT AND ALL SUCH WARRANTIES
ARE HEREBY EXCLUDED BY WILEY AND ITS LICENSORS AND WAIVED
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BY YOU. 

WILEY shall have the right to terminate this Agreement immediately upon breach of
this Agreement by you.

You shall indemnify, defend and hold harmless WILEY, its Licensors and their
respective directors, officers, agents and employees, from and against any actual or
threatened claims, demands, causes of action or proceedings arising from any breach
of this Agreement by you.

IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR
ANY OTHER PARTY OR ANY OTHER PERSON OR ENTITY FOR ANY
SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR
PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN
CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING OR
USE OF THE MATERIALS REGARDLESS OF THE FORM OF ACTION,
WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT,
NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT
LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, FILES, USE,
BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER
OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. THIS LIMITATION SHALL APPLY NOTWITHSTANDING ANY
FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED
HEREIN. 

Should any provision of this Agreement be held by a court of competent jurisdiction
to be illegal, invalid, or unenforceable, that provision shall be deemed amended to
achieve as nearly as possible the same economic effect as the original provision, and
the legality, validity and enforceability of the remaining provisions of this Agreement
shall not be affected or impaired thereby. 

The failure of either party to enforce any term or condition of this Agreement shall not
constitute a waiver of either party's right to enforce each and every term and condition
of this Agreement. No breach under this agreement shall be deemed waived or
excused by either party unless such waiver or consent is in writing signed by the party
granting such waiver or consent. The waiver by or consent of a party to a breach of
any provision of this Agreement shall not operate or be construed as a waiver of or
consent to any other or subsequent breach by such other party. 

This Agreement may not be assigned (including by operation of law or otherwise) by
you without WILEY's prior written consent.

Any fee required for this permission shall be non-refundable after thirty (30) days
from receipt by the CCC.

These terms and conditions together with CCC's Billing and Payment terms and
conditions (which are incorporated herein) form the entire agreement between you and
WILEY concerning this licensing transaction and (in the absence of fraud) supersedes
all prior agreements and representations of the parties, oral or written. This Agreement
may not be amended except in writing signed by both parties. This Agreement shall be
binding upon and inure to the benefit of the parties' successors, legal representatives,
and authorized assigns. 
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In the event of any conflict between your obligations established by these terms and
conditions and those established by CCC's Billing and Payment terms and conditions,
these terms and conditions shall prevail.

WILEY expressly reserves all rights not specifically granted in the combination of (i)
the license details provided by you and accepted in the course of this licensing
transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms
and conditions.

This Agreement will be void if the Type of Use, Format, Circulation, or Requestor
Type was misrepresented during the licensing process.

This Agreement shall be governed by and construed in accordance with the laws of
the State of New York, USA, without regards to such state's conflict of law rules. Any
legal action, suit or proceeding arising out of or relating to these Terms and Conditions
or the breach thereof shall be instituted in a court of competent jurisdiction in New
York County in the State of New York in the United States of America and each party
hereby consents and submits to the personal jurisdiction of such court, waives any
objection to venue in such court and consents to service of process by registered or
certified mail, return receipt requested, at the last known address of such party.

WILEY OPEN ACCESS TERMS AND CONDITIONS
Wiley Publishes Open Access Articles in fully Open Access Journals and in Subscription
journals offering Online Open. Although most of the fully Open Access journals publish
open access articles under the terms of the Creative Commons Attribution (CC BY) License
only, the subscription journals and a few of the Open Access Journals offer a choice of
Creative Commons Licenses. The license type is clearly identified on the article.
The Creative Commons Attribution License
The Creative Commons Attribution License (CC-BY) allows users to copy, distribute and
transmit an article, adapt the article and make commercial use of the article. The CC-BY
license permits commercial and non-
Creative Commons Attribution Non-Commercial License
The Creative Commons Attribution Non-Commercial (CC-BY-NC)License permits use,
distribution and reproduction in any medium, provided the original work is properly cited
and is not used for commercial purposes.(see below)

Creative Commons Attribution-Non-Commercial-NoDerivs License
The Creative Commons Attribution Non-Commercial-NoDerivs License (CC-BY-NC-ND)
permits use, distribution and reproduction in any medium, provided the original work is
properly cited, is not used for commercial purposes and no modifications or adaptations are
made. (see below)
Use by commercial "for-profit" organizations
Use of Wiley Open Access articles for commercial, promotional, or marketing purposes
requires further explicit permission from Wiley and will be subject to a fee.
Further details can be found on Wiley Online Library
http://olabout.wiley.com/WileyCDA/Section/id-410895.html

Other Terms and Conditions:

v1.10 Last updated September 2015
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Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or
+1-978-646-2777.
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