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Abstract

In a category C with a proper (£, M)-factorization system for morphisms, we further in-
vestigate categorical topogenous structures and demonstrate their prominent role played
in providing a unified approach to the theory of closure, interior and neighbourhood opera-
tors. We then introduce and study an abstract notion of Cészar’s syntopogenous structure
which provides a convenient setting to investigate a quasi-uniformity on a category. We
demonstrate that a quasi-uniformity-is-a family of categorical closure operators. In par-
ticular, it is shown that every idempotent closure operator is'a base for a quasi-uniformity.
This leads us to prove that for any idempotent closure operator ¢ (interior i) on C there
is at least a transitive quasi-uniformity ¢/ on C compatible with ¢ (7). Various notions of
completeness of objects and precompactness with respect to the quasi-uniformity defined

in a natural way are studied.

The great relationship between quasi-uniformities and closure operators in a category
inspires the investigation of categorical quasi-uniform structures induced by functors. We
introduce the continuity of a C-morphism with respect to two syntopogenous structures
(in particular with respect to two quasi-uniformities) and utilize it to investigate the quasi-
uniformities induced by pointed and copointed endofunctors. Amongst other things, it
is shown that every quasi-uniformity on a reflective subcategory of C can be lifted to a
coarsest quasi-uniformity on C for which every reflection morphism is continuous. The
notion of continuity of functors between categories endowed with fixed quasi-uniform
structures is also introduced and used to describe the quasi-uniform structures induced

by an M-fibration and a functor having a right adjoint.



Declaration

I declare that Quasi-uniform and Syntopogenous Structures on Categories is my own work,
that it has not been submitted before for any degree or examination in any other university,
and that all the sources I have used or quoted have been indicated and acknowledged by

complete references.

Minani Iragi July 2019

Signed:



Acknowledgement

It is great pleasure that I wish to thank immensely my supervisor Professor David Holgate
for his exceptional guidance, unwavering encouragements and for having allowed me to
work independently during my pleaseant time as his graduate student. Above all he has

made my dream of pursuing a career in Mathematics come true.

Professor Holgate has been mere than-a supervisor-to-me. »His professional behaviour
coupled with his approachability have been important qualities which helped me to com-
plete the thesis. His financial support for me to attend and give talks in workshops and
conferences has been an enjoyablé apportunity to grow as a mathematician. He has played

a role of a real father during my graduate studies.

I acknowledge financial support from the National Research Foundation of South Africa,
received through Professor Holgate’s research Grant, during 2017, 2018 and 2019. My
thanks also go to my fellow students who could always see me passing by and say hi. My

thanks to Dr Ando Razafindrakoto for some assistance during the course of my studies.

I thank the Department of Mathematics and Applied Mathematics at the University
of the Western Cape for employement opportunities extended to me during the course
of my studies. I thank the Category and Topology Research group of Cape Town for

marvellous regular research seminars.

I thank my family for their continuous love and support which have enabled me to com-
plete this thesis. Finally, I thank the Lord for covering me with his grace during the

course of my studies at the University of the Western cape.



Contents

Dedication

Key words
Abstract
Declaration
Acknowledgement
Introduction

1 Preliminaries
1.1 Factorization structures for morphisms . . . .. . . . .. ... L.
1.2 M-subobjects, Images and Inverse images . . . . .. ... ... ......

1.3 Closure, Interior and Neighbourhood operators . . . . . . . ... .. .. ..

2 More on topogenous structures
2.1 The Basic Results . . . . . . . . .. .
2.2 Family of Morphisms . . . . . . . . ... ..
2.3 Some Properties of Topogenous orders . . . . . . . . ... ... ... ...
2.4 Lifting a Topogenous order along an M-fibration . . . .. ... .. .. ..
2.5 Topogenous orders induced by (co)pointed endofunctors. . . . . . . . . ..

2.6 Examples . . . . . .

3 The syntopogenous structures
3.1 The definitions . . . . . . . ...

3.2 Quasi-uniform structure or co-perfect syntopogenous structure . . . . . . .

13
13
16
22

25
25
28
36
40
42
48



3.3 Quasi-uniform structures determined by closure and interior operators . . .

3.4 Examples . . . ...

4 Completeness
4.1 The S-Cauchy filters . . . . . . . . . ...
4.2 Variant of completeness . . . . . . ... Lo
4.3 Precompactness . . . . . . . ..
4.4 The pair completeness . . . . . . . .. ..

4.5 Examples . . . ..

5 Quasi-uniform structures and Functors
5.1 Quasi-uniform structures induced by (co)pointed
endofunctors . . . . . . .. L
5.2 The (U, V)-continuity of functors.—=ve, . . . . . Lo
5.3 Lifting a quasi-uniformity along-an-M-=fibration—">". . . . . . . . . .. ..
5.4 Quasi-uniform structures-and adjoint functors . . . . . .. .. ... ..

5.5 Examples . ... ... Wl AU IH-W-H -H .- - 0oL

References

62
66

70
70
79
82
33
87

89

89
97
100
103
107

114



Introduction

Among the various asymmetric topological structures, one finds the notion of quasi-
uniform structure. First introduced by Nachbin ([Nac48]) under the name of semi-uniform
structure, the term quasi-uniform structure was proposed by A.Csészar in [Csd63] when
he introduced a general concept of syntopogenous structure which aimed to provide a sin-
gle setting study of topological, proximity and-(quasi) uniform structures. Quasi-uniform
structures have been a subject of intensive research (see e:g.[FF1.82] with references therein
and the survey papers [Kiin95, Kiun01, Kiin02]). Csaszar ([Csa63]) and Pervin ([Per62])
proved that every topological space has a compatible quasi-uniformity, a result which
only holds for uniform spaces if the topological space is completely regular. Thus the
study of quasi-uniform spaces provides in some sense an alternative approach to the
study of topological spaces. Categorical methods have 'played an important role in the
study of this great relationship'between quasi-uniform. and topological spaces (see e.g
[Brii99, Kiin92]). In these papers, the authors essentially studied functors from the cat-
egory of T,-topological spaces and continuous maps to the category of T,-quasi-uniform
spaces which endow the T,-topological spaces with compatible quasi-uniformities and
make continuous maps become quasi-uniformly continuous, the so-called functorial quasi-
uniformities first pointed out by Briimmer in [Brii69]. Other categorical study of this

relationship between topological and quasi-uniform spaces includes [DK00] and [DK18].

The study of topological structures on abstract categories was initiated by D. Dikranjan
and Giuli [DG87] who introduced the notion of categorical closure operator. The develop-
ment of the categorical closure operator led to a beautiful theory (see e.g.[DT95, Cas03])
which constitutes up-to-date an important part of categorical topology. This way of
thinking eventually motivated other authors to take a similar approach and introduce

the categorical interior ([Vor00]) and neighbourhood ([HS11]) operators. The recently in-



troduced notion of topogenous structures on categories ([HIR16]) has provided a unified
approach to the categorical closure, interior and neighbourhood operators and has shed a

light on the study of a concept of quasi-uniformity on an abstract category.

Our thesis aims to study a quasi-uniformity ([FL82]) on an arbitrary category using an
abstract notion of syntopogenous structure ([Csa63]). Classical notions and results on
quasi-uniform spaces are expressed in a more general categorical setting. This leads to new
results that are applied to specific examples in Topology and Algebra. Departing from
a category C with a proper (£, M)-factorization system for morphisms, we first focus
on providing further development of the categorical topogenous structures. A number
of new results that complete our previous study in ([HIR16, Iral6]) and partly lay a
basis for the development of the thesis are proved. We then proceed by introducing the
notions of quasi-uniformity and syntopogenous structure on a category. Although the
categorical syntopogenous structure appears as-ai appropriate family of order relations
on the subobject lattice, subX' for-any ohject X of the category, a categorical quasi-
uniformity is thought of as a suitably axiomatized family of endomaps on subX for any
object X of the category. The definitions obtained include the fact that every morphism
in a category must be continuous with respect-to the structure. It is shown that there is a
subconglomerate of the conglomerate of all syntopogenous structures which is isomorphic
to the conglomerate of all quasi-uniform structures. This leads to the observation that a
quasi-uniformity is a family of closure operators. In particular, every idempotent closure
operator is a quasi-uniformity. Moreover, we prove that given an idempotent closure

operator ¢ (interior 7) on C, there is at least a transitive quasi-uniformity compatible with
c (7).

Diverse notions of completeness and precompactness of objects of C relative to the quasi-
uniformity obtained are studied. Our attention will then be turned to the study of conti-
nuity of a C-morphism with respect to two syntopogenous structures on C which enables
us to describe the quasi-uniformity induced by a pointed (resp. copointed) endofunctor.
Thinking of categories supplied with quasi-uniformities as large “spaces”, we generalize
the continuity of C-morphisms (with respect to a quasi-uniformity) to functors. We prove
that for an M-fibration or a functor having a right adjoint, one can concretely describe
the coarsest quasi-uniformity for which the functor is continuous. Our thesis is organised

as below.



The Chapter 1 is devoted to factorization structures for morphisms as well as the notion
of subobject, images and pre-images of subobjects. We also recall a number of definitions
and results on closure, interior and neighbourhood operators that will be used throughout

our thesis.

In Chapter 2, we define, analogous to the C-strict morphism already studied in [HIR16],
the C-co-strict morphism and show that it generalizes both the c-open and i-closed mor-
phisms. The notions of C-initial and C-final morphisms, introduced in [Iral6], are shown
to capture their counterparts in the settings of closure, interior and neighbourhood opera-
tors. The pullback behaviour of the four types of morphisms is also studied. Our C-initial
morphism leads to the definition of a hereditary topogenous order which enables us to

study hereditary closure and interior operators in one setting.

Special topogenous orders that correspond to the additive (respectively grounded) interior
and closure operators are identified:"We then turn-eur-attention to the lifting of a topoge-
nous order along an M-fibration.This-net-enly contains-the lifting of a closure operator
([DT95]) as a particular case buti also provides a way of lifing an interior operator along
an M-fibration. The continuity of a morphism with respect to two topogenous orders
is introduced and used to investigate the topogenous order induced by a pointed (resp.

copointed) endofunctor.

Chapter 3 introduces the theory of categorical quasi-uniform and syntopogenous struc-
tures. We demonstrate the equivalence between quasi-uniform and co-perfect syntopoge-
nous structures, which together with Proposition 2.1.5, leads to the description of a
quasi-uniormity as a family of categorical closure operators. Since, every interpolative
topogenous order is shown to be a syntopogenous structure and the class of these orders
is known (see Corallary 2.1.6(i)) to be essentially equivalent to the conglomerate of all
idempotent closure operators, it will be proved that every idempotent closure operator
is a quasi-uniformity on C. This allows to prove a one to one correspondence between
idempotent closure operators and the so-called saturated quasi-uniform structures, and
obtain a categorical generalization of the Csaszar-Pervin ([Csa63, Per62]) quasi-uniformity
that we characterize as the coarsest transitive quasi-uniform structure compatible with
a given idempotent interior operator on C. The initial morphism with respect to a syn-
topogenous structure is defined and shown to capture its counterparts in the settings of

quasi-uniformity and (idempotent) closure operator. We also study the Hausdorff separa-
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tion axiom relative to a syntopogenous structure (in particular relative to a quasi-uniform

structure).

Chapter 4 studies complete objects of a category with respect to a syntopogenous (in
particular a quasi-uniform) structure. For a quasi-uniform structure, distinct notions of
Cauchy filters are defined. Consequently, variant notions of completeness of objects in
the category are studied. Categorical proofs of classical theorems of completeness are

provided.

In Chapter 5, we investigate the continuity of a C-morphism with respect to two syn-
topogenous structures (in particular with respect to two quasi-uniformities). It is shown
that for a syntopogenous structure S on C and an £-pointed endofunctor (F,7n), there is
coarsest syntopogenous structure S on C for which every nx : X — FX is (S5, S)-
continuous. Since a categorical quasi-uniformity is equivalent to a co-perfect syntopoge-
nous structure and simple co-perfect-syntopogenous struetures are equivalent to idem-
potent closure operators, S allows us-to construet the quasi-uniform structure and
the closure operator induced by a pointed endofunctor. In particular, we demonstrate
that every quasi-uniformity on a reflective subcategory of C can be lifted to a coarsest
quasi-uniformity U*" on C forwhich every reflection morphism is (U5, U)-continuous.
When applied to spaces, U tiarhgott to-describe initial structures induced by reflection
maps. Dually for M-copointediendofunctor and-syntopegenous structure S on C, there is
a finest syntopogenous structure S on C for which every ex : GX — X is (S, 8%¢)-
continuous. If F': A — C is a functor and U and V are quasi-uniformities on A and C
respectively, we define the (U, V)-continuity of F' and show that if F' is an M-fibration
or has a right adjoint, then there is a coarsest quasi-uniformity V¥ on A for which F
is (VF,V)-continuous. Investigating the lattice of all quasi-uniform structures on C, we
demonstrate that for a functor F' : A — C with a right adjoint G, there is a Galois
connection between the conglomerate of all quasi-uniformities on C and the conglomerate

of all those on A.
Some of the main results of this thesis have been discussed in

(1) D. Holgate, M. Iragi, Quasi-uni form and syntopogenous structures on categories,

Topology and its Applications, 263:16-25, 2019.

(2) D. Holgate and M. Iragi. Quasi-uniform structures and functors.

11



Quaestiones Mathematicae (under review), 2019.

(3) D. Holgate and M. Iragi. More on categorical topogenous structures

(In preparation).

(4) D. Holgate and M. Iragi. Quasi-uniform structures determined by closure

and interior operators (In preparation).

The reader of this thesis is assumed to have a basic knowledge of general topology, cate-
gory theory with little more presupposed from algebra, order and lattices ([Fuc73, DP02,
Eng89]) and of course familiarity with the topological structures considered in the thesis
especially quasi-uniform and syntopogenous spaces. However, we have recalled a number
of basics that can help the reader to go through the work without much difficulty. The
structure of our thesis is simple, chapters are numbered according to their order of ap-
pearance in the text. The same rule holds fer-sections in chapters and for propositions,
lemmas, and definitions in sections:—We-also-assume-a pecking order of sets, classes and
conglomerates (as in [AHS06]), that.is-each-set-is-a-class.and cach class is a conglomerate.

The symbol C will be used for sét theoretical inclusion.
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Chapter 1

Preliminaries

This chapter is mainly an overview of terminologies and elementary results that will be
used throughout the thesis, the aim being-to-make-the work as self-contained as possible.
We depart from a fixed category. C.-Then discuss factorization structures for morphisms
of C that enable us to efficiently deal with images and inverse images of subobjects.
We end the chapter by stating a few definitions on c¢losure, interior and neighbourhood
operators that we will frequently use in the subsequent chapters. For the meaning of
categorical concepts and notations used without definition in this work, we refer the
reader to ([AHS06, HST14]). However, we note some variations from the notations of
these two books: f € C (resp. X € C) shall be used when f is'a morphism (resp. X is an
object) of C.

1.1 Factorization structures for morphisms

Factorization systems play an important role in this work, in fact from section 2 of this
chapter our basic working environment will always be a category C endowed with an
(€, M)-factorization system for morphisms. Here, we recall its definition and a few results
that we shall need throughout. For more details on the topic, the interested reader is
referred to ([AHSO06], chapter 14).

Definition 1.1.1. [HST1}] A pair of distinguished classes (€, M) of morphisms of C is

factorization system provided:

(1) € and M are closed under composition with isomophisms from the left and the right

13



respectively i.e if e € €, g € Iso(C) and g o e makes sense, then goe € &, and if

m e M, g € Iso(C) and m o g makes sense, then mo g € M.

(2) Every morphism f € C factors as an €-morphism and an M-morphism

i.e f=moe withe €& and m € M,

(3) C has the unique (€, M)-diagonalization property: for every commutative diagram

with e € £ and m € M, there is a uniquely determined morphism w with woe = u
and mow = wv. In this case we say that every E-morphism e is orthogonal to every

M-morphism m and write e L m.

The system is called proper if £ C Epi(€)and- M€ A ono(C).
For the rest of this work, by a factorization structure, we will always mean
a proper one.
Some usefull stability properties of the classes M and € are considered in the next propo-
sition.
Proposition 1.1.2. [AHS06] Let (£, M) be a factorization system in C.
(1) ENM =1s0(C);
(2) Ifgo f e M, then f € M;
(3) Ifgo f €&, then g € &;
(4) € and M are closed under composition;

(5) M is stable under pullbacks;

(6) M is stable under intersections.

Proof. (1) If f € Iso(C) and f =moe with e € £ and m € &, then e,m € [s0(C) by the
diagonalization property and hence f € M[)€. On the other hand if f € M€, the

diagonalization property implies the existance of w which makes

f

_—

=

ST

f
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commute. Thus f € Iso(C). (2) and (3) follows from properness of (£, M).
(4) Let n, m € M and nom =m’ o€’ with m’ € M and ¢ € £. Then there is w which

makes

commute. By Proposition 1.1.2(2), ¢’ € E(YM = Is0(C) and so nom € M. A similar
argument holds for £.

(5) [AHS06] Consider the pullback diagram

with m € M and let m' = m” o e with m” € M and e € £. Then by the diagonalization

property, there is w such that

e
——

fl t ’LU I lfom//
£

! — T -
m

commutes. This gives the following pullback diagram

Som' og=m" and f’' o g = w, which implies that m’ o (goe) =m' and f'o(goe) = f’
and thus g o e = id. Now e is an epimoprhism and a section, e € Iso(C) and m' € M.

An analoguous reasonning to the previous proves (6). O]

Our next proposition is a consequence of the unique diagonalization property.

Proposition 1.1.3. [AHS06]
(1) The (€, M)-factorizations of a morphism of C are unique, up to isomorphism.

(2) In an (€, M)-factorization system, the classes € and M determines each other i.e
E={ecC|VmeM]elm}
M={meC|Veec&|elm}.

15



Proof. (1) Let f = moe = m' o€ with ¢/;e € £ and m,m’ € M. Then by the

diagonalization, there is w for which

commutes. By Properness of (£, M), w € E(\M = Iso(C). Thus m = m' and e = ¢’
(2) If f € &, then for all m € M, fLm by diagonalization property. On the other hand
if fLm for allm € M and f =m'oe with e € £ and m' € M, there is w such that

commutes i.e m' ow = id and wo f = e. Thus.m' € [s0(C) and we obtain f =m'oe € £.

[]

1.2 M-subobjects, Images and Inverse images

Throughout this section we assume that the category C is endowed with (€, M)-factorization
system for morphisms. In accordance with [DT95], thei class subX of all M-morphisms
with codomain X, for every object X in C, will be called the subobjects of X. Subobjects
represent an appropriate categorical treatement of the notion of sub-structures. SubX is

preordered as follows : if m < n in subX if and only if there exists j such that noj =m

A

The morphisms n and m are isomorphic (m = n) if it holds that m < n and n < m. Cleary

M

>~ is an equivalence relation. The collection of equivalence classes {[m] | m € subX} can
be preordered as [m| C [n] & m < n. Thus, instead of working with these equivalnce
classes, we use their representatives. We think of isomorphic subobjects as being the same

and for the rest of the thesis, we shall simply write n = m for m = n.

16



Definition 1.2.1. [DT95] We will say that C has M-pullbacks, if for every morphism

f: X —Y and every n € subY a pullback diagram

exists in C with m € subX.

The morphism m is uniquely determined up to isomorphism, it is called the inverse image
of n under f and denoted by f~'(n): f7}{(N) — X.

Definition 1.2.2. [CGT0j] For a morphism f: X — Y inC and m : M — X, one
defines f(m) : (M) — Y to be the M-part of the (€, M)-factorization of the composite
fom.

M=—="1(M)

ml j f(m)

Proposition 1.2.3. [DT95] For every morphism =X — Y in C, f(—) and f~'(=)

are adjoint to each other with f{—=) being the left adjoint.

Proof. We need to show that, f(m) < n<m < f!(n) for all m € subX and n € subY.

Assume that f(m) < n, then there is j : f(M) — N such that the diagram below

commutes.
M—S~ f(M)—1~N
o]
X 7 Y ™ Y

This implies that f om = n o joe and we have the commutative diagram below

17



The arrow j; exists by the pullback property of the diagram. So m = f~'(n) o j; and

joe=goj. Hence m < f~1(n).

On the other hand if m < f~!(n), then there is k : M — f~'(N) such that m =

f~Y(n) o k. Now consider the diagram below

M—Es f~Y(N)

N
x lf—l(m jn
—Y

X

We get that f(m)oe= fom=fof'(n)ok=notok.
By the diagonalization property, there is w which makes

e
L

= l = lf(m)
-

N
n

commute i.e f(m) =noh and tok=hoeSo f(m)<n and
thus m < f~1(n) & f(m) < n. O
It follows from adjointness that:

(1) f(-) and f~L(—) are monotone maps

(2) m < f7H(f(m)) and f(f~H(n)) < n;

(3) f(Viermi) = Vi f(ma);

(4) f (Niermi) = Nier £7H(0na).
Lemma 1.2.4. Let

be a commutative diagram. Then for any suitable subobjects n and m,
(1) [DT95] p'(f'~*(n)) < f~H(p(n)).
(2) (1 (m)) < p~H(f(m)).

18



= f'(f(n)) < p(n) commutativity of the diagram

S (f'(n)) < f(p(n))  adjointness.

Likewise,

(3) PP (n) <m = fE'E (M) < f(m)

= p(f'(p'"t(m))) < f(m) commutativity of the diagram

= ['("(m)) <p~'(f(m))  adjointness.

Definition 1.2.5. The commutative diagram

is said to satisfy Beck-Chevalley’s Property (BCP) if f'(p'~Ym)) = p~*(f(m)). Equiva-
lently if p'(f'"~1(n)) = f~1(p(n)) for appropriate subobjects n and m.

If C has M-pullbacks, then the preordered class subX has binary meets for all X € C. In
fact, for m: M — X and n : N — X subobjects of X the binary meet is given by the

diagonal of the following pullback diagram

Ml\N—>N
M———X

This means that m An =mom=(n) =non=t(m).

We are interested in the existence of arbitrary meets in subX as we need subX to be a

complete lattice for each X € C.
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Definition 1.2.6. [DT95] We shall say that C has M-intersections if for every family
(my)ier in subX (I may be infinite class or empty), if a multiple pullback diagram

exists in C with m € subX.

This also implies the existence of the join \/ of subobjects and in particular the least
subobject ox : Ox —> X exists for every X € C.
Definition 1.2.7. We shall say that C is M-complete if it has M-pullbacks and M-

intersections.

It is now clear from Definition 1.2.6 that if C has M-intersections, then the preordered
class sub X is a complete lattice for every object-of.C. The largest element of subX always

exist, it is the identity morphism™ T+ X =—=X-on—X".

The next proposition provides sufficient conditions for the image and inverse image of
subobjects to be partially inverse to each other.

Proposition 1.2.8. [DT95] Let f+X —= Y be a-morphism. in C.
(1) If f € M, then f~1(f(m)) = for allom & subX:
(2) If f € € and € is stable under pullback'then f{f7%n)) = n for all n € subY

(3) fe& ifand onlyif f(1x) =1y
Proof. (1) Consider the diagram

M —= f(M)
m $m)

Since f € M by taking e = 1, , the diagram becomes a pullback. This implies by
Definition 1.2.1 that m is the inverse image of f(m) under f . Thus, f~1(f(m)) = m.

(2) Consider the diagram

fTHN) — f(X)
i) ln
X——Y



with f € £ and £ is stable under pullback. Then f’ € £. This implies by Definition 1.2.2
that n is the image of f~'(n) under f . Hence f(f~'(n)) = n.

(3) Consider the following commutative diagram

X — f(X)

fl lf(lx)

Y ——Y

1y
Since f € £ and f(1x) € M, by the diagonalization property of (£, M) factorizations,
there is a morphism ¢ : Y — f(X) such that f(1x) ot =1y , thatis 1y < f(1x).

Conversely if 1y = f(1x), then the commutativity of the above diagram gives f =

f(lx)oe=1y oe=ce. Hence, f € & O

Proposition 1.2.9. [DT95] Let f : X —-¥~be_a morphism in C. For any morphism
9:Y — Z inC, one has that {go-f)(=)-=g(f(—))-and (9o [)~ (=) = f~ (g7 (-)).

Proof. One uses Definition 1.2.2 and Proposition 1.1.3(1) to prove (g o f)(—) = g(f(-))
while (g o f)™' (=) = f~1(g'(~)) follows from Definition|1.2.1 and the uniqueness of
pullbacks. O

Definition 1.2.10. A C-morphisny f X —= Y reflects o' if f L (oy) = ox (equivalently

f(m) =oy & m = ox).

Besides the image pre-image adjunction studied in Proposition 1.2.3, we shall often find
it important to assume that for any C-morphism f : X — Y, the inverse image
f~! commutes with the joins of subobjects so that it has a right adjoint f. given by
fu(m) = Vin € subY | f-{(n) < m}. Thus f~1(n) < m & n < fu(m), f~(f(m)) <
m (with f71(f.(m)) = m if f € M) and n < f.(f~'(n)) (with f.(f~'(n)) =nif f €
€ and & stable under pullback).

Lemma 1.2.11. Assume that for any morphism f € C, the inverse image f~1 commutes

with the joins of subobjects and

be a commutative diagram. Then for suitable subobjects n and m,
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(1) p ' (fu(n)) < fL(P'(n));
(2) fHpa(m)) < pL(f~H(m)).

Proof. Let I be an appropriate subjobject. Since
(1) PO <n=p () <P ) = 77N 0) <o)

we have that {p~'(1) | (1) <n} S {| 10 <P (0)} =

pH(fen)) =Vt D) L) < n} < VLN < p7H)} = LU0 ().

Similarly for some suitable ¢,

2)p7' () <m = f~Hp7 @) < 1) = pTHTI) < f ()

gives that {f~'(n) [ p~'(t) <n} C{f' (" '(]) <n} =

F ) = V{f~ () [ p7H () < n} < V{0 < nd = pl(fH(n).

]

Corollary 1.2.12. If for any morphism. f € C, the inverse image f~' commutes with
the joins of subobjects, then the diagram wn the definition above satisfies Beck-Chevalley
Property (BCP) if £~ (p.(n)) = p.(f# (o)l Buuivelently p(f.(n) = £.(0~1()) for
appropriate subobjects m and n.

Lemma 1.2.13. If f~1 commutes. with the join: of subobjects. for any f € C, then subX

15 a distributive lattice for every, X. €.C

Proof. For all X € C and m,n,p € subX, then mA(nVp) = mom="(nVp) = m(m=t(n)V
m~Y(p))) = m(m~}(n))Vm(m™(p)) = (moem™'(n))V(mom™"(p)) = (mAn)V(mAp). O

1.3 Closure, Interior and Neighbourhood operators

In the sequel, we shall assume that the category C is endowed with an (€, M)-factorization
system for morphisms and that it is M-complete.

Definition 1.3.1. /[DG87] A closure operator ¢ on C with respect to M is given by a
family of maps

{ex: subX — subX | X € C} such that:

(C1) m < ecx(m) for all m € subX;
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(C2) m <n= cx(m) <cx(n) for all m,n € subX;

(C3) every morphism f: X — Y is c-continuous, that is: f(cx(m)) < ey (f(m)) for all

m € subX.

We denote by C'L(C, M) the conglomerate of all closure operators on C with respect to
M ordered as follows: ¢ < ¢ if cx(m) < ¢y (m) for all m € subX and X € C.

According to [DT95], a closure operator ¢ on C is :
(1) grounded if cx(0x) = Ox for all X € C,
(2) additive if cx(m V n) = cx(m) V cx(n) for all m,n € subX and X € C,
(3) idempotent if cx(cx(m)) = cx(m) for all m € subX and X € C,
(4) hereditary if cps(p) = m~(cx(m(p))) for all p € subM.

The ordered conglomerate of all grounded {resp.-additive, idempotent) closure operators
will be denoted by gCL(C, M) (respraCTiCy M)y 1€ 1(CyM)).

Definition 1.3.2. [Vor00] An interior: operator:i on:C with respect to M is given by a
family of maps

{ix : subX — subX | X € C} such-that

(I11) ix(m) < m for every m & $ubX and X &C;
(I12) m <n=ix(m) <ix(n) forievery myn'c subX; X € C;

(I3) every morphism f : X — Y in C is i-continuous, f~(iy(n)) < ix(f~(n)) for

each n € subY .

The ordered conglomerate of all interior operators on C with respect to M is denoted by

INT(C, M). We also note from [HS18] that an interior operator i on C is :
(1) grounded if ix(1x) = 1x for all X € C,
(2) additive if ix(m An) =ix(m) Aix(n) for all m,n € subX and X € C,
(3) idempotent if ix(ix(m)) = ix(m) for all m € subX and X € C,
(4) ([AH19]) hereditary if iy (p) = m ™ (ix(m.(p))) for all m : M — X and p € subM.

The symbols gINT(C, M), aINT(C, M) and :INT(C, M)) will denote the ordered con-

glomerate of all grounded, additive and idempotent interior operators respectively.

23



Definition 1.3.3. [HS']]] A neighbourhood operator v on C with respect to M is a family
of maps {vx : subX — P(subX) | X € C} such that

(N1) n € vx(m)=m <n for every m € subX and X € C;
(N2) m <n=vx(n) Cvx(m) for every m,n € subX and X € C;
(N3) p € vx(m) and p < q then q € vx(m) for every m,p,q € subX and X € C;

(N4) every morphism f : X — Y in C is v-continuous, n € vy(f(m)) = f~1(n) €

vx(m) for every m € subX and n € subY .

The congolomerate of all neighbourhood operators on C with respect to M is denoted by

NBH(C, M)
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Chapter 2

More on topogenous structures

This chapter aims to continue the investigating categorical topogenous structures and
demonstrate their prominent role played-in-providing a unified approach to the theory
of closure, interior and neighbourhood operators.. The notions of strict, co-strict, initial
and final morphisms with respect-to a topogencus order are systematically studied. Be-
sides showing that they allow simultanous study of four classes of morphisms obtained
separately with respect to closure, interior and neighbourhood operators, the initial and
final morphisms lead us to the study of topogenous structures induced by pointed and co-
pointed endofunctors. Hereditariness, additivity and groundedness for topogenous struc-
tures are defined. We also lift a topogenous order along an M-fibration. This permits
to obtain the lifting of interior and neighbourhood operators along an M-fibration and
includes the lifting of closure operators found in the literature. A number of examples

presented at the end of the chapter demonstrate our results.

2.1 The Basic Results

This section covers fundamental definitions and results on topogenous structures. Some
of them are already known from ([HIR16]) or ([Iral6]) while others appear here for the
first time.

Definition 2.1.1. A topogenous order = on C is a family T= {Cx | X € C} of relations,

each Cx on subX, such that:

(T1) m Cx n=m <n for every m,n € subX,
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(T2) m<nCxp<qg=mLCxq for every m,n,p,q € subX, and

(T3) every morphism f : X — Y in C is C-continuous, f(m) Cy n = m Cx f~(n)

for all n € subY, m € subX.
Given two topogenous orders C and ' on C, CCC'< (m Cx n = m C'y n) for all

m,n € subX and X € C. The resulting ordered congolomerate of all topogenous orders

on C is denoted by TORD(C, M).

Proposition 2.1.2. TORD(C, M) and NBH(C, M) are order isomorphic with the in-

verse assignments C— v= and v — " given by
vi(m)={n|mCxn} and m % n<n evx(m) for all X € C

Proof. (N1) follows from (7'1) while (N2) and (N3) follows from (72). For (N4), let
f: X — Y be a C morphism-and p-€ V= (f(m))y=fanyCy p = m Cx f'(p) &
f7(p) € v (m). Similarly (7'1) and (72) follows from (N1) and (N3) respectively. Let
f : X — Y be a C-morphism.. Then fi(m) % n < n € vw(f(m)) = fl(n) €
vx(m) & m Cx f~'(n). The assignments clearly preserve order and they are inverse to

each other. O
Particular topogenous orders will be of importance.
Definition 2.1.3. A topogenous order C is said to be

(1) \/-preserving if (Vi € I :m; Cx n) = \/ m; Cx n,

(2) N-preserving if (Vi € I :m Cx n;) = m Cx Ang, and

(3) interpolative m Cx n=3p|m Cx pCx n forall X €C.

The ordered conglomerate of all \/-preserving, A-preserving and interpolative topoge-
nous orders is denoted by \/ =TORD(C, M), A —TORD(C, M) and INTORD(C, M)

respectively.

Our interest in the above classes is due to the fact that the first two are the equivalent

to the conglomerate of interior and closure operators respectively while the last one when
considered in \ —TORD(C, M) and \/ —=TORD(C, M) corresponds to the conglomerate

of idempotent closure and interior operators respectively.
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Proposition 2.1.4. \/ “-TORD(C, M) is order isomorphic to INT(C, M) with the in-

verse assignments given by
i%(m) = \/{p | pCx m} and m C n < m <ix(n) for all X €C

Proof. We use (T'1) and (72) to see that (I1) and (I2) are respectively satisfied. Let
f X —Y be a C-morphism. Since C€ \/ -TORD, i;(m) = \/{p | p Ty m} and

so by (T3), f7H(ig(m)) € {q | ¢ Cx f7'(m)} = f71(i™(m)) < V{q¢ | ¢ Cx f'(m)}.
Hence f~1(i%(m)) <i%(f'(m)). On the other hand (I1) and (12) follows from (7'1) and
(T2) respectively. Let f : X — Y be any C-morphism and m % n with m,n € subY.

Then m < iy(n) = f~'(m) < [Tl (iv(n)) < iv(f~'(m)) = f'(m) < ix(f7'(n) &
f~H(m) Cx f7H(m). -

In similar way to the above we obtain the following:
Proposition 2.1.5. \ —TORD(C; M) is order isomorphicito C'L(C, M) with the inverse

assignments given by

ck(m) = /\{p | m Cxp}t and m|CSin<lex(m) <n forall X € C

If we denote by \/ —INTORD(C,; M) and \ =INTORD(C, M) the conglomerate of all
interpolative topogenous orders'in'\/ =“TORD(C; M) and A'~TORD(C, M) respectively,
then

Corollary 2.1.6. (i) A—INTORD(C, M) =iCL(C, M).

(ii) \ ~INTORD(C, M) = iINT(C, M).
Proof. (i) If ¢ is idempotent, then m ¢ n < cx(cx(m)) = cx(m) < n < m C°
cx(m) C° n. Conversely if C€ A —INTORD then c%(c5(m) < c=(m).
(#7) Similar reasonning to the above.
0

Definition 2.1.7. Let =, C'e TORD(C, M). C o ' is the topogenous order defined by
mCxolCyn<3dpesubX |mCxpCyn
for allm, n € subX and X € C and called the composition of C and C’.

It is clear from the above definition that C is interopolative if C o C=L.
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Proposition 2.1.8. (1) IfC, e A—=TORD(C, M), thenm Cx o Cly n < ¢ (c=(m)) <

n

(2) If, e V =TORD(C, M), then m Cx o C'y n < m < Z)E((Z)E(/(n))

Proof. (1) Assume that C, ='eé A—-TORD(C,M) and m Cx o C'x n. Then there
is p € subX | m Cx p Clx n and by Proposition 2.1.5 ¢5(m) < p and & (p) < n.
Thus c§ (c=(m)) < n. On the other hand if ¢5 (¢=(m)) < n, put p = ¢=(m) to get
mCx c=(m)CxynemCxolyn.

(2) If C, ’e V =TORD(C, M), then by Proposition 2.1.4 m Cx o C'y n < m < i%(p)

and p < i5 (n) & m <% (5 (n)). O

2.2 Family of Morphisms

Investigating different ways of expressing the continuity condition of a C-morphism with
respect to categorical closure, interior and neighbourhood operators led to the study of
particular classes of morphisms with respect to each of the operators (see e.g [GTO0O,
Raz12, CGTO01]). We show that this-approachwhen-applied-to a topogenous order pro-
duces special classes of morphisms that-provide.a common generalization of those obtained
previously with respect to each of the three operators.

Proposition 2.2.1. Assume that for every C-morphism f : X — Y, f~! has a right
adjoint. Let =€ TORD. The following are equivalent to the C-continuity. For suitable

subobjects m, n and p,
(1) mCyn= f"(m)Cx f(n);
(2) m Cy fu(n) = f~H(m) Cx n;
(3) f(m) By fu(n) = m Cx n.
Proof. If (T3) holds, then m Cx n = f(f~'(m)) < m Cx n = f(f~'(m)) Cx n =
fHm) Cx f~(n).
Assume (1) holds, then m Cy fi(n) = f~'(m) Cx f~1(fc(n)) <n= f~*(m) Cx n.
If (2) holds then f(m) Cy fi(n) = m < f~1(f(m)) Cx n = m Cx n.
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If (3) holds, then f(m) Cy p = f(m) Cx p < f.(f7 () = f(m) Cy f.(f7(p)) =
m Cx f(p). O

The point in the proposition above that each equivalent description of (7'3) fullfils one
implication leads to the natural definition of morphisms that satisfy the other implication.

Definition 2.2.2.
Given a topogenous order , we say that a C-morphism f: X — Y s
(1) ([HIR16]) C-strict if f(m) Cy p < m Cx f~1(p) for all m € subX and p € subY’;
(2) C-final if m Cy n < f~Y(m) Cx f~'(n) for all n, m € subY’;
(3) C-co-strict if m Ty fi(n) < f~1(m) Cx n for all m € subY and n € subX,
(4) C-initial if f(m) Cy fo(n) & m Cx n for all m, n € subX.

We note that in a category where~f='-does not-have a-right adjoint the definition of
C-initial and C-co-strict morphisms.can -be written-as follows. A morphism f: X — Y

is :

(1) C-initial if m Cx n = 3 p € subY | f(m) Cy p and f~'(p) < n for all m, n €
subX.

(it) C-co-strict if f~'(m) Cx n = 3 p € subY | m Cy p and f~(p) < n for all

m € subY, n € subX.

It follows immediately from Proposition 2.1.2 that our classes correspond to those obtained
in [Razl12] with respect to a neighbourhood operator as this can be seen in the next
proposition.

Proposition 2.2.3. Let f : X — Y be a C-morphism, m € subX and n € subY .
(1) f is C-strict if and only if vE(f(m)) = F(vZ(m)).
(2) f is C-co-strict if and only if vg(f~(n)) = f~1 (4 (n)).
(3) [ is C-final if and only if f(WS(f~}(n))) = v§ ().
(4) f is C-initial if and only if f~ (WG (f(m))) = v (m).

The behaviour of our morphisms can be summarized in the following proposition.
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Proposition 2.2.4. (1) Each of the classes is closed under composition, contains all

isomorphisms of C.

(2) C-initial morphisms are left-cancelable, while C-co-strict, C-strict and C-final mor-

phisms are left cancellable with respect to M.

(3) C-final morphisms are right cancelable, while T-initial, C-co-strict and C-strict

morphisms are right cancellable with respect to € provided £ s pullback stable.

Proof. (1) First note that if f : X — Y is an isomorphism then f.(m) = f(m). Now, let
g :Y — X be the inverse of f, then f~'(n) Cx n = m =g '(f~'(m)) Cy g '(m) =
fim) = fum). f f: X — Y and g: Y — Z are C-strict, then m Cx (go f)~(n) =
fHg™Hn) & f(m) Ty g7'(n) & (g0 f)(m) = g(f(m)) Cz n. A similar argument holds
for C-initial and C-final.

(2)If f: X — Y and g : YV —Zare-C-mitial, theirf=' (g '(m)) C n = g '(m) Cy
fe(n) = m Tz g.(fu(n)). If go [ is ==strict and g+ ¥ = Z is in M, then g7 (g(n)) = n.
Nowm Cx fH(n) = f7H (g™ (g(n))) = (90.0) " (g(n)) = g(f(m)) = (go.f)(m) € g(n) =
f(m) Cy g (g(n)) = f(m) Cy n. A similar argument, holds for C-co-strict and C-final.
(3) If go f is C-final, then g~ ' (m) Ty g '(n) = f~H(g " (m)) Cy f g9 '(n)) = m Czn.
Assume that go f is C-strict, £ is stable under pullbacks'and 'f € &, then f(f~1(m)) = m.
Hence m Cy g~ (n) = f~'(m) Ex /T (g () =(ge /)T n) = (g0 /)(f7'(m)) Cz n =

g(m) Cz n.
A similar reasonning works for C-initial, C-co-strict. O]
The following is an observation concerning the relationship between the types of mor-

phisms.

Proposition 2.2.5. (1) Every C-co-strict morphism in M is C-initial.
(2) Ewvery C-initial morphism in £ is C-co-strict provided & is pullback stable.
(3) Any C-strict morphism in M is C-initial.
(4) FEvery C-strict in & is T-final provided £ is pullback stable.
(5) If go f =1 1inC then f is a C-initial morphism and g is a C-final morphism in E.

(6) Any C-final morphism in M is C-strict.
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(7) Every C-co-strict morphism in & is C-final provided £ is pullback stable.

Proof. Let f: X — Y be a C-morphism and consider suitable subobjects m and n in
each case. (1) If f is C-co-strict, then m Cx n < f~1(f(m)) Cx n = f(m) Cx f«(n).
(2) If f is C-initial in £ with &€ pullback stable, then f~'(m) Cx n = m = f(f~}(m)) Cx
fe(n).

(3) If f is C-strict in M, then m Cx n <& m Cx f'(fi(n)) = f~1(m) Cx fi(n).

(4) If f is C-strict in & with £ pullback stable, then f~'(m) Cy f~'(n) & m =
f(f=Hm)) &y f(fH(n)) = n.

(5) Follows from Proposition 2.2.4.

(6) If f is C-final in M, then f~'(m) Cx n < f~1(m) Cx f71(f(n)) = m Cy f(n) .
(7) If f is C-co-strict in &, then f~Y(m) Cx f~*(n) & m Cy f.(f~1(m)) =n.

]

Propositions 2.2.4 and 2.2.5 were already obtained in [Iral6] without use of the fact that
f7![—] has both left and right adjoint. This ¢condition plays an important role in the study
of the relationship between these classes and those obtained for the interior operators.
Definition 2.2.6. ([Ira16]) A subobject-m of an-object X € C is C-strict if m Tx m.
Proposition 2.2.7. Let f: X =Y be w C-morphism.

(1) If f is C-final then a subdbjdet'm of ¥, bs Cistrictiff 'f71(n) is C-strict in X.

(2) If C€ INTORD and f is C-initial then for every C-strict subobject m of X, there
is p € subY such that m = f~(p).

Proof. (1) is clear. For (2), assume € INTORD, f is C-initial and m € subX is C-
strict. Then m Cx m = f(m) Cx fi.(m) = 3 p € subX such that f(m) Cx p Cx

fo(m) =m Cx f~'(p) Cx [ (fu(m)) <m=m < f7Hp) <m=m= f"(p). O

We are interested in the pullback behaviour of the morphisms. We show that each of the
classes ascends along C-initial morphisms and descends along C-final morphisms

Proposition 2.2.8. Let
f/
—Q

P
p’l p
X

— Y

31



be a pullback diagram satisfying Beck Chevalley Property (BCP). Then the following state-

ments are true.

(1) If p’ is C-initial, then f' is T-initial (resp. C-strict, C-co-strict, C-final) provided

f is C-initial (resp. C-strict, C-co-strict, C-final).

(1) If p is C-final, then f is C-final (resp. C-strict, C-co-strict, C-initial) provided f’

is C-final (resp. C-strict, C-co-strict, C-initial).

Proof. (i) Let p’ be C-initial. If f is C-initial, then f’ is C by Proposition 2.2.4.

Assume f is C-strict, then

m Cpn=p'(m)Cx p.(n)
= f(p'(m)) Ty f(pi(n))

= p(f'(m)) Cy f(p.(n)

= f'(m) Cq 7 ()

= f'(m) Cq f' (™ pln))) < f(n)

= f'(m) Cq ['(n)

If fis C-co-strict, then

fHm) Epn=p/(f71(m)) Cx pl(n)
= [~ (p(m)) Cx pi(n)
= p(m) Cy fi(p.(n))

=m Cqp ' (f.(p.(n)))

initiality of p’

strictness of f

commutativity of the diagram
—-continuity of p

BCP

initiality of p’
BCP
co-strictness of f

C-continuity of p

=m Co f1(0 ' ((.(n))) < fl(n) BCP

= m Cq fi(n)
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Suppose [ is C-final, then

[ m) S 7N ) = P17 (m) Tx pl(f 7 ()

= [~ p(m)) Cx [~ (pe(n))

= p(m) Cy D« (Tl)

= mlCyn

initiality of p’
BCP
finality of f

continuity of p

(7i) Let p be final. If f’ is C-final then f is C-final by Proposition 3.2.24.

Assume f’ is C-strict, then

mCxn=p m)Cpp t(n)

= /(P (m)) Co f'(P(n))

=p (f(m)-Eap=

= f(m) Ty f(1)

Suppose [’ is C-co-strict, then

Cx n = 77 50m) Eppin)

= e ) el (1)

Hn)

=p '(m) Co filp *(n))

=p ' (m) Cop (fu(n))

= m Cy f.(n)

If fis C-initial, then

mCxn=p (m)Cpp *(m)
= /(P (m)) Co fi(p ' (n))

= p~ ' (f(m)) Cq p™ (fu(n))

= f(m) Ty fi(n)

33

C-continuity of p’
C-strictness of f’
BCP

finality of p

C-continuity of p’
BCP
co-strictness of f’
BCP

finality of p

C-continuity of p’
initiality of f’
BCP

finality of p



Definition 2.2.9.
([DT95, GT00, CGTO1])Let f: X — Y be aC and c € CL(C, M). Then f is
(1) c-closed if f(cx(m)) = cy(f(m)) for all m € subX.
(2) c-open if f ey (n)) = ex(f~1(n)) for alln € subY .
(3) c-initial if cx(m) = f~(cy (f(m))) for all m € subX .

(4) c-final if cy(n) = f(cx(f71(n))) for all n € subY .

Our next proposition shows that when Ce A —-TORD(C, M), then the C-strict mor-
phism (resp. [C-co-strict, C-initial, C-final) correspond the c=-closed (resp. cS-open,
cE-initial and c-final) morphisms.

Proposition 2.2.10. Let e A\ —TORD(C, M), and let for any morphism f € C, the
inverse image f~ commutes with the join of-subobjects. Then f : X — Y is C-initial
(resp. C-co-strict, C-final, C-striet-)-if-and-only-if-+t-isc==mitial (resp c=-open, c=-final,

cE-closed ).

Proof. (1) Let f be a c=-initial and Ce A —TORD(C, . M). Then f(m) Cy fi(n) &
G(f(m)) < fu(n) & UG < n e e0m)<n< m Cx n. Conversely if
[ is C-initial, then f~' (& (f(m)) < n< () < fi(n) & f(m) Cy fiu(n) &

mCxn< cg(m) <n.

(2) Assume f is ct-open, then m Cy f.(n) & cG(m) < fu(n) & U (m) < n &
& (fHm)) <n < f1(m) Cx n. Conversely if f C-co-strict then ¢=(f~(m)) <
n< f7im)CxnemCy (n) & cG(m) < fuln) & [ (m) <n.

(3) If fis c=-final, then f~1(m) Cx f1(n) & = (f~1(m)) < f~Hn) & f((f1(m)) <

n < cy(m) <n < m Cy n. On the other hand if f is C-final, then f(c=(f~!(m))

IN

n& (7 m) < fin)e fim)Cx f(n) &mCy ne &(m) <n.

(4) ([HIR16]) If f is C-strict, then f(c%(m)) < n & K(m) < f71(n) & m Cx
fHn) & f(m) Cy n < &(f(m)) < n. Conversely if f(c§(m)) = ¢&(f(m)) then,
m Ex [T (n) & k(m) < [7(n) & f(ck(m)) <n e &(f(m) <n e f(m) Cy

n.
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Open morphism with respect to an interior operator was studied in ([Cas15]). Assuming
the pre-image commutes with the join of subobjects, i-initial and i-final morphisms were
introduced in [Raz12]. Recently in ([AH19]), the i-closed morphism has been defined and
a systematic study of the four classes of morphisms with respect to an interior operator
is provided. In the next proposition we prove that if C€ \/ =TORD(C, M), then the
[C-strict morphism (resp. [C-co-strict, C-initial, C-final) correspond to the i-open (resp.
i-closed, i-initial and i-final) morphisms. As introduced in ([AH19)]),

Definition 2.2.11. Assume that for every C-morphism f : X — Y, f~! has a right
adjoint f, andi € INT(C, M). Then f is

(1) i-closed if f.(ix(m)) =iy (fi(m)) for all m € subX.
(2) i-open if ix(f~1(n)) = [~ (iy(n)) for alln € subY .
(3) i-initial if ix(m) = f~ iy (f.(m))) for-afttm € subX .

(4) i-final if iy (n) = f.(ix (fNm))) for-alln & suby:
Proposition 2.2.12. Let Ce \/=TORD(C, M), and let for any morphism f € C, the
inverse image f~' commutes with the join of subobjects. Then f : X — Y is C-initial
(resp. C-co-strict, T-final, C-strict)-if and only if it is-i-initial (resp. i-closed, i-final,

i-open ).

Proof. (1) If f is d-initial and '€ \f =TORD(C, M), then f(m) Cy f«(n) < f(m) <
iS(fu(n)) & m < 7S (fu(n) & m < i%(n) & m Cx n. Conversely if f is C-
initial then m < f~'(iy(fi(n))) & f(m) < iy(fi(n)) & f(m) Cy f.(n) & m Cx

n<m<ix(n).

(2) Let f be i-closed, then f~'(m) Cx n< f~1(m) <ix(n) & m < fi(i%(n)) & m <
i5(f(n)) & m Cy fi(n). Conversely if f is C-co-strict, m < i;(f.(n)) & m C

fi(n) & f7Hm) Cx ne f1(m) <i%(n) & m < f.(5(n)).

(3) If fisi-final, then f~(m) Cx f7'(n) & f7(m) <i%(f7(n)) & m < fu(i%(f7(n)) &
m < i%(n) & m Cy n. Conversely if f is C-final then m < f.(ix(f~(n))) &

Ym) <ix(f7'(n)) & fm)Cx f'(n) & mCy n<sm<iy(n).

(4) ([HIR16]) Let f be C-strict, m < f~(iy(n)) & f(m) < iy(n) & f(m) Cy n &
m Cx f~1(n) & m <ix(f'(n)). On the other hand if f~!1(:%(m)) =% (f~'(m))

then, m Cx f~'(n) & m < i%(f'(n) & m < 71 (n) & f(m) <i%(n)) &
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f(m) Cy n.

]

Apart from the four classes of morphisms studied in above, a weaker notion of C-final
morphism will be usefull.
Definition 2.2.13. Let =€ TORD. A C-morphism f : X — Y is said to be weakly

C-final if for any m,n € subY such that m <n, m Cy n < f~Y(m) Cx f'(n).

We note that if f € £, then f is weakly C-final if and only if it is C-final.
Proposition 2.2.14. Let € TORD and f : X — Y be a C-morphism.

(1) Ifce N —TORD, then f is weakly C-final if and only if ¢ (m) = mV f(c% (f~1(m))).

(2) IfCe \V —TORD, then f is weakly "-final if and only if i (m) = mAf.(i5(f~1(m))).

Proof. (1) Let Ce A\ —-TORD.and f be-weakly =final and m € subY. For any
n € subY such that m < m, dG(m) < n & m iy n < f~1(m) Cy f(n)
fleg(f7Hm)) < nem vV fe (T m) £ n.

On the other hand if ¢5:(p) = pV f(c5(f7'(p))) for any p € subY, then for all
m,n € subY'such that m <n-mEynecsmy<n<mV f(K(f1(m) <n<&
F(&(f7Hm)) < n e SSfTm) € A Hm),Ex f7(n).

(2) Assume that Ce \/ —=TORD, f is weakly~-final and m € subY. Then for any
n € subY such that m < n, m < i%(n) & m Cy n & f'(n) Cx f'(m) &
f7Hm) < ik (f7Hn) & m < L35 (71 () € m < n A fulik(f7H(n)).
Conversely if i%(p) = pA f.(i5(f*(p))) for any p € subY’, then for all m,n € suby’
such that m < n, m Cy n & m < i%(n) & m < nA f.(5(f 1 (n) & m <

LGS (7)) & f7Hm) <i%(f7(n) & f7H(m) Cx [~ (n).

2.3 Some Properties of Topogenous orders

Having observed that a topogenous order provides a unified approach to closure and

interior operators, it is natural to think of properties of topogenous orders that would
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specialize into known ones for these two operators. This is the point we wish to make in
this section.

Definition 2.3.1. A topogenous order  is hereditary if n Ty p < m(n) Cx ma(p) for
any M : M — X,p, n € subM and X € C.

It is seen from Definition 2.2.2(4) that our definition for hereditariness is equivalent to

the fact that every morphism in M is C-initial.

We shall now show that the definition above corresponds to the hereditary closure operator
if Ce A—=TORD(C, M) and to the hereditary interior operator if € \/ =TORD(C, M).
Proposition 2.3.2. Let € A —-TORD(C,M). Then  is hereditary if and only if

n~ (% (n(p))) = K (p) for any p € subN.

Proof. If T is hereditary, then c5(p) < j < p Cn J < n(p) Cx n(j) < 5(n(p)) <
n.(j) & n (% (n(p))) < j. Conversely-ifn=c5(n(p))) = cn(p) then p Cy j & c5(p) <
j e n (k) < j & ke nip) Sxm)

U

Proposition 2.3.3. Let Ce \/-TORD(C,M). Then [L is hereditary if and only if
n (iS5 (na(4))) = 5 () for any n € subX and j € subN.

Proof. If n™'(i%(n.(5))) = c§(j), then p Ty j < p < i5() © p < 07165 (n.()))) ©
n(p) <i%(n.(5)) © n(p)

Cx n«(j). Conversely if C is hereditary, p <i5(j) © pCy j &
n(p) Cx nu(j) & n(p) < % (n.(7)) < p < nix(n.L))). O

Since being a hereditary topogenous order means that every morphism in M is C-initial,
the above two propostions can be obtained by specializing Propositions 2.2.10(1) and

2.2.12(2) to morphisms in M.

Proposition 2.3.4. Consider the following pullback diagram.
_ !
fHN) =

N
X Y

and let T be a hereditary topogenous order. Then the restriction f' is C”-final (resp.

C-strict, C-initial, C-co-strict) provided that [ is C-final (resp. C-strict, T-initial, C-

co-strict).

Proof. Similar to the one of Proposition 2.2.8(i) ]
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Proposition 2.3.5. Assume that every morphism in € is C-final. Let p be an €-morphism

in the following pullback diagram.

Then f is C-final (resp. C-strict, C-initial, C-co-strict) provided that f' is T-final (resp.

C-strict, C-initial, T-co-strict).
Proof. Similar to the one of Proposition 2.2.8(ii) O

We next prove that there are particular topogenous orders that correspond to the additive
and grounded closure and interior operators.

Let us now consider the following classes of topogenous orders.

Definition 2.3.6.

(1) A=aTORD(C, M) : the class of all topogenous orders in \ —TORD(C, M)
statisfying (T4): m Cx n andp Ly g=mN.n Ly p\ q, for allm, n € subX.

(2) \V —aTORD(C, M) : theyclass pf ull topogenous orders in \| =TORD(C, M)

statisfying (T5): m Cx n, and.pox ¢-=mAnCx p/\ g,

(3) AN—gTORD(C, M) : the class of all topogenous orders in \ —TORD(C, M)
statisfying (76): Ox Cx Ox,

(4) \/ —gTORD(C, M) : the class of all topogenous orders in \] =TORD(C, M)
statisfying (T7): 1x Cx lx.

(5) N—=d'TORD(C, M) : the class of all topogenous orders in \ —TORD(C, M)
statisfying (T4'): Vi € I, m; Cx ny = \;e;mi Tx Ve mi for my, n; € subX.

Proposition 2.3.7. The following statements hold true.
(1) A—=aTORD(C,M) = aCL(C, M).
(2) \V =aTORD(C, M) = aINT(C, M).
(3) AN—gTORD(C, M) = gCL(C, M).

(4) \/ —gTORD(C, M) = gINT(C, M).
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()

N\ —dTORD(C, M) = a’CL(C, M).

Proof. (1) Assume C satisfies (T4). Obviously, c(m) V ck(p) < c5(m V p). Let

a < cg(mVp). Thena < A{g | mVpC q}. Since m C ¢=(m) and p T =(p),
by (T4) mVp C c¢=(m)V c=(p). Thus a < ¢(m) V ¢(p). Conversely, if ¢ is
additive and m C°n, p C°¢ ¢. Then c¢x(m) < n and cx(p) < ¢. This implies that

cx(mvn)=cx(m)Vex(n) <pVg ThusmvVnC®pVg.

Assume that (7'5) holds. Clearly i (m A p) < i=(m) Ai&(p). Let a < i%(m) Ai=(p)
then a < i%(m) = \/{¢ | p C ¢q}. This means that there are n and ¢ such that
a < n,a < qwithm C nand n C ¢q. By assumption, m A p C n A g and
a<nANqg=1 Thusa < \{l| mAp I} =i(mAp)and i=(m) Ai"(p) <
i=(m A n). Conversely, if i is additive and m T n, p £' n then m < ix(m) and

p<ix(q) =mAp<ix(n)ANix(q) =ixtm/Aq). ThusmAnC'nAgq.
(3) and (4) are clear.
Assume that C satisfies (I4"). Cleatly, V.o, ex (i) < c5x(Veymi). Let n <

KNViegmi) = NMp | V.d,mi Tx py. Since m; Tix c=(m;) for each ¢ € I, by
(T4/)7 \/iel ml) L Vie[ C)E((ml) Thus s Viel C)E((ml)

On the other hand if ¢ is‘fully additive and m S n/for all i € I, then cx(m;) <

n; = \/iel cx(m;) = CX(\/z'el iy 4 Viel = Viel m; Cx \/iel 1.

Proposition 2.3.8.

Let C, C'e TORD(C,M). If C and ' satisfy (T'4), (T5). Then so does C o ['.

Proof. Assume that C and ' satisfy (T4). If m Cx o C'y n and m' Cx o Ty n’, then

m Cx p Cy nand m' Cx p/ Ty n' for some p, p’ € subX. Thus mVm' Cx pVp Tk

nVn/, that is mVm/' Cx o Ty nVn'. A similar argument holds for the case of (7'5). O

Proposition 2.3.9. Let {C% |i€ I} C TORD(C, M) for all X € C and consider the

topogenous orders Ti=J{C% |i € I} and %= ({C% |i € I} for all X € C. Then

(1)
(2)

C% is hereditary if and only if there is i € I such that C% is hereditary.

C$ is hereditary if and only if C% is hereditary for each i € I.
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(3) % satisfies (T4) to (T7) if and only if there is i € I such that T satisfies (T4)
to (T'7).

(4) =% satisfies (T4) to (T'7) if and only if C% satisfies for each i € I (T4) to (T'7).

2.4 Lifting a Topogenous order along an M-fibration

Considering categories supplied with fixed closure operators with respect to classes of
subobjects, D. Dikranjan and W. Tholen [DT95] generalized the notion of c-continuity
of morphisms to functors and defined the least and largest closure operators for which
the functor is continuous. A concrete description of this largest closure operator was
obtained in the case of an M-fibration. In this section we wish to define a topogenous
order induced by an M-fibration which, includes D. Dikranjan and W. Tholen’s closure
as a paricular case and allows alseto-lift an interior operator along this functor.

Let us start by recalling from [DT95] that for an M-fibration F : A — C, (€, MF)
where Ep = F1€ ={ee€ A| Fe & £} and Mp = F M) IniF, with IniF the class of
F-initial morphisms, is a factorization system in A and M-subobject properties in C are

inherited by M p-subobjects in A In particular,
(1) A has Mpg-pullbacks if C has M-pullbacks.
(2) A is Mpg-complete if C is M-complete.

(3) the Mp-images and M p-inverse images are obtained by initially lifting M-images
and M-inverse images. Consequently Ff~1(n) = (Ff) ' (Fn) and (Ff)(Fm) =
F f(m) for any f € A and suitable subobjects n and m.
Lemma 2.4.1. [DT95] Let F : A — C be a faithful M-fibration.

(1) Forany X € A, subX and subF'X are order equivalent with the inverse assignments,
vx  subX — subF'X and dx : subFX — subX, given by yx(m) = Fm and
dx(n) =p with Fp=n and p € IniF.

(2) Forany f: X — Y € A and suitable subobjects n, m,n’ and m'.
(1) w(f(m)) = (Ff)(yx(m)).
(2) f(dx(n)) =y (Ff)(n).
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(3) S0y (m)) = ox ((F )~ (m)).
(4) yx (71 () = (F )~ v (n).

Proof. (1) is clear and (2) follows from the fact that F' preserves images and inverse images

of subobjects. n

Proposition 2.4.2. Let ' : A — C be a faithful M-fibration and C be a topogenous

order on C with respect to M. Defines C by m T n < Fm Crpx vx(n).
(1) =¥ is a topogenous order on A with respect to Mp.

(2) =¥ is interpolative and satisfies (T4) provided T has the same properties.

Proof. (1) (T1) m CX n & Fm Crx vx(n) = Fm < yx(n) = m = dx(Fm) <
dx(vx(n)) =n. (T2) is clear.

For (T3), let f : X — Y be an A-merphism-and-f(m).=4.n. Then F f(m) Cry 1y (n) =
(Ff)(Fm) Cpy vy (n) = Fm (BN =05 () < m Ck f7(n).

(2) If =F is interpolative, then m 5 n < Fm|Cry yx(n) = I p € subFX | Fm Cry
p Crx vx(n) = Fm Crx vx(@x{phand Fox(p)) Crx 9x(n), since Fix(p) = p and
vx (0x(p)) = p. Thus m =5 ox(p) =k w

If CF satisfies (T'4), then m & n and m/ C5 n/. This implies that Fm Cpx vx(n) and
Fm/' Crx (yx(n). Thus FmAFm' Cpx 7x(n) Ayx(n') = F(mAm') Crx yx(nAn') <

mAm' X nAn. O
In the light of Propositions 2.1.4 and 2.1.5, we can prove the following.
Proposition 2.4.3. (1) IfCe A —TORD, then m C n < dx (% (Fm)) < n.

(2) If Ce \V —TORD, then m C5 n & m < dx (155 (yx(n)).
Proof. (1) If ce AN —TORD, then m C% n & Fm Crx vx(n) & cpx(Fm) < yx <
0x(crx(F'm)) < 0x(vx(n)) © dx(crx(Fm)) < n.

(2) If ce \/ =TORD, then m C§ n & Fm Crx vx(n) & Fm < i%(yx(n)) &

Ox(Fm) < ox(ipx (7x(n))) & m < dx(ipx (7x(n)))- =
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2.5 Topogenous orders induced by (co)pointed end-

ofunctors

We define the continuity of a C-morphism with respect to two topogenous orders on C
and use it to construct new topogenous orders from old. It is shown that for a pointed
endofunctor (F,n) of C and a topogenous order on C, there is a coarsest topogenous
order " on C for which every nx : X — FX is (CF", C)-continuous and dually for a
copointed endofunctor of C, there is a finest topogenous order =%¢ on C for which every
ex : GX — X is (T, C%F)-continuous. In particular, for meet preserving topogenous
order, C™" and C%* correspond to the closure operators obtained by Dikranjan and W.
Tholen in ([DT95]) while join preserving C7 and C%* allow us to construct the interior
operators induced by F' and G respectively.

Definition 2.5.1. Let C, '€ TORP(CM)—~A-C-mowrphism [ : X — Y is (C, C')-
continuous if f(m) % n = m Cx [TH0) or equivalently p iy n = f~1(p) Cx f(n)

for alln, p € subY and m € subX.

It is clear from the definition that every C-morphism f : X — Y is (CC, C)-continuous
and (C’, C’)-continuous, it is (£, =)-continuous if ='C

Proposition 2.5.2. Let f: X —Y be a.C-morphismi

(1) Ifc,c’e AN=TORD(C, M), then'f+ X —= Yis (=, T')-continuous
if and only if f(cz(m)) < ' (f(m)).

(2) IfC,c’e \V —TORD(C,M), then f: X — Y is (C, C)-continuous
if and only if f~1(i5 (n)) <% (F~(n)).

Proof. (1) If C,C’e A—=TORD(C,M) and f: X — Y is (C, C’)-continuous,

{f7'(n) | f(m) &y n} S{p| m Cx p} = ck(m) = A{p | m Ex p} < AN{f7'(n) | f(m) Ty
n} = f1(c§ (f(m)). On the other hand, if f(c5(m)) < ¢ (f(m)), then f(m) T4 n <
&7 (f(m)) < n = f(ck(m)) <n e dg(m) < fHn) & mTx f(n).

(2)Ifc,c’e V =TORD(C,M)and f : X — Y is (C, =')-continuous, then f~1(i%’ (n)) €
{alagcx fH )} = fHGF () < V{a | ¢ Cx f71(n)} = i5(f ' (n)). Conversely if
f7HET (n) < i (F7H(n), then p < f7HiF (n) & f(p) Ty n= p Cx f'(n) & p <
5 (). 0
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Morphisms in C satisfying condition (1) ( resp. (2)) in Proposition 2.5.2 will be refered
to as (c-, ¢')-continuous (resp. (i=,i= )-continuous.
Definition 2.5.3. A pointed endofunctor of C is a pair (F,n) consisting of a functor

F:C — C and a natural transformation n : 1o — F.

For any C-morphism f: X — Y, (F,n) induces the commutative diagram below.

X2 FX
I
Y —+FY
The dual notion is the copointed endofunctor, that is a pair (G, €) consisting of a functor
G : C — C and a natural transformation € : G — 1¢. (G, ¢) induces the commutative
diagram
GX X
=
R

forany f: X — Y in C. If nx € &€ for any X &€ C, then (F,n) is said to be E-pointed.
Dually if ex € M for any X € C, then (G, &) is M-copointed.

For a pointed endofunctor (F),7) of C and a topogenous order [ on C, we wish to construct
the coarsest topogenous order " on C for which every morphism in F = {nx : X € C} is
(', C)-continuous and the dual case. This method was developped for categorical closure
operators in ([DT95]) and it is used in chapter 5 in the case of categorical syntopogenous
structures (in particular quasi-uniform structures).

Theorem 2.5.4. Let (F,n) be an E-pointed endofunctor of C and C be a topogenous
order on C. Then for all m,n € subX, m X" n < nx(m) Cpx p and n5t(p) < nis a
topogenous order on C. It is the least topogenous order for which every nx : X — FX

is (CF", C)-continuous. Moreover, T is interpolative provided T interpolates.

43



Proof. (1) (T'1) is easily seen to be satisfied.

For (T2),m' <mCY"n<n & 3Ipe subFX | nx(m) Cpx pand ri'(p) < n.
= nx(m') < nx(m) Cpx pand ' (p) <n </
= nx(m’) Crx pand 0t (p) < n’

‘F7
esmiCy'n

To check (T'3), let X — Y be a C morphism and f(m) C5" n. Then thereis p € subFY
such that 7y (m) Cpy p and 0y (p) < n. By Definition 2.5.3, Ff onx =ny o f. So

(Ff)(nx(m)) Cry pand 1yt (p) <n = (Ff)(nx(m)) Crx pand f~' (5" (p)) < f1(n)
= nx(m) Cx (Ff)" (p) and ng (Ff) "' (p) < f'(n)
="ix () Crxdand ' (1) < f7H(n)(with [ = g(p))

& B )

Since nx(m) Crx n = nx (Mgt G-y (m) Crx nx(nz(n)
m CXY" n5t(n), Fis (C", ©)-continuous, If C is.another topogenous order on C such
that F is (C, C)-continuous, then m =5 n < nx(m) Cry p and nx'(p) < n = m Cx
Ny (p) <n=mCkn.

Lastly, if C is interpolative and nx € £ for all X € C, then m Ef(’n n < nx(m) Cpx p
and 75" (p) < n for some p € subFX. This implies that there is [ € subFX such that
nx(m) Crx | Cpx p- Thus ny(m) Crx nx(ny' (1)) Crx p, that is m %7 ny'(1) £X”
n. [l

Definition 2.5.5. [AHS06] A full subcategory A of C is reflective if for every X € C,
there is an object FX € A and a C-morphism nx : X — FX (called the reflection
morphism) with the property that for any C-morphism f: X — Y with Y € A, there is
a unique A-morphism g : FX — Y such that f = gonx.

If nx € € forany X € C, then A is E-reflective. Viewing a reflector as pointed endofunctor,
one obtains the following proposition that will turn out to be useful in the examples.
Proposition 2.5.6. Let A be an E-reflective subcategory of C and C be a topogenous order

on A. Then for all X € C and m,n subX, m C* n < nx(m) Crx p and ny' (p) < n is a
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topogenous order on C. It is the least one for which every reflection morphism nx : X —
FX is (E", C)-continuous. Moreover, """ is interpolative provided C interpolates.

Proposition 2.5.7. Let (F,n) be a pointed endofunctor of C and € \ —=TORD. Then
= (m) = nxt Gy (nx(m))) is the largest closure operator on C for which every nx :
X — FX is (&7, ¢%)-continuous. Moreover, if T is interpolative, then ¢= " is idem-

potent.

Proof. (C1) follows from the fact that, nx(m) < A{p | nx(m) Crx p} & m <
nx (AMp [ nx(m) Crx p}) = ny' (cpx (1x(m))). (C2) is clear. For (C3), Let f: X — Y

be a C-morphism and m € subX.

Then f(c=""(m)) =f(1x" (cEx (1x(m)))
<0y ((Ff)(cx (nx(m)))) Lemma 1.2.4
< 1y epstEEF i) c~-continuity
< N EDGEFGRYY Definition 2.5.3

< & (f(m)

Since 1x (=" (m)) < Gy (nxm)); Fris (65 eS)-continnous. If ¢ is another closure
operator such that F' is (¢, c")-continuous, then nx(d'(m)) < cF(nx(m)) & d(m) <

nt(c% (nx(m)) = ¢="" (m). For C is interpolative,

(T () = ¢ (! (e x (nx (m)))
=1y (hx (nx (nx' (cFx (nx(m)))))
< 0y (crx (crx (nx(m))))
= ny' (cix(nx(m))), =€ \ —INTORD

= &""(m).

]

Proposition 2.5.8. Let A be a reflective subcategory of C and =€ \—TORD. Then
cA(m) = nx (5 (nx(m))) is the largest closure operator on C for which every reflection
morphism nx : X — FX is (c*, c5)-continuous. Moreover, if T is interpolative, then

cA is idempotent.
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The closure operator in Proposition 2.5.8 was studied on the category of topological spaces
and continuous maps by L. Stramaccia ([Str88]), on topological categories by D. Dikranjan
([Dik92]) and later on an arbitrary category by Dikranjan and Tholen ([DT95]). It is a
special case of the pullback closure studied by D. Holgate in [Hol96, Hol95].

Proposition 2.5.9. Let (F,n) be a pointed endofunctor of C and C€ \/ =TORD. Then
i (m) = 5 (i% (nx)«(m))) is the least interior operator on C for which every nx :
X — FX is (i‘:,i‘:F’n)-contmuous. i s idempotent provided T is interpolative and

each ny € €.

Proof. Since i (nx)«(m)) = V{n | n Cpx (nx)(m)} < (nx)e(m), i§ " (m) < m. (12)
is clearly satisfied. For (I3), let f : X — Y be a C-morphism and m € subY’,

FHEE () = £ (k! (15x (nx ) (m))
= nx (F f)_ i) Definition 2.5.3
< my' (ERCCER) e )e(m) cE-continuity
< nx' (igx (x)(FTI(m) Lemma 1.2.11

=% " (f1 (m)

Since 7z (5 (n)) < 15 (5 () (e () = i (5 (), mx i (=", i%)-continuous

for any X € C and n € subX. If ¢’ is another interior operator C such that ny is (¢, :%)-

continuous, then i% " (m) = ny' (iFx ((nx).(m))) < i (" (1x)(n)) < P (n).

IfCe\/ ~TORD and ny € € forall X € C, theni=""(i=""(m)) = i="" (15  (i%x (nx )(m)))

= x (ipx (nx)« (nx (Fx (0x)(m)))) = nx' ((5x (ipx (nx)< (M) = 1% ({Fx (nx)<(m)).
[

While the topogenous order induced by a pointed endofunctor was obtained with the help
of C-initial morphism, the notion of C-weakly final morphism is used in the next theorem
to obtain the topogenous order induced by a co-pointed endofunctor.

Theorem 2.5.10. Let (G,¢) be a co-pointed endofunctor of C and C a topogenous order
on C, then for all m € subX and n > m, m C9 n < e (n) Cax e (n) is a topogenous

order on C. It is the largest one for which every ex : GX — X is (T, C%°)-continuous.

Proof. (T'1) and (72) are easily seen to be satisfied. For (T3), let f : X — Y be a
C-morphism. Then for all m € subX and n € subY such that f(m) < n, f(m) C%¢
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n & ey (f(m) Cay ey’ (n) = (Gf)(ex' (m)) Coy ey’ (n) = ex' (m) Cax ex' (f71(n) =
m 5 7' (n). Now, ex : GX — X is trivially (T, £9¢)-continuous and if ' is
another topogenous order on C such that ex is (C, C’)-continuous, then m C’y n =

ex(exi(m)) T n = ext(m) Cx ext(n) & m TG n for all n > m. O

Definition 2.5.11. A full subcategory A of C is coreflective if for every X € C, there
is an object GX € A and a morphism ex : GX — X (called coreflection morphism)
with the property that for any C-morphism f:Y — X (with Y € A), there is a unique
morphism A-morphism 'Y — GX such that ex o f' = f.

Viewing a coreflector as a co-pointed endofunctor, we get the next proposition.
Proposition 2.5.12. Let A be a coreflective subcategory of C and T a topogenous order
on A, then for all m € subX and n >m, m C* n & e (n) Cax €' (n) is a topogenous
order on C. It is the largest one for which every coreflection morphism ex : GX — X
is (C, C4)-continuous.

Proposition 2.5.13. Let (G, ¢) be-a co-pointed-endofunctor of C and _e \ —-TORD,
then for all m € subX, =" (m) = m Vi ex(¢=(a3'(m))) is @ closure operator on C. It is

the least closure operator for which every ex : GX —+ X s (¢, c¢)-continuous.

Proof. (C1) and (C2) are easily seen to be satisfied. To check (C3), let f: X — Y be

a C-morphism, and m € sub.X,

F(EE7" (m)) =f(m V ex(c (5 (m))))
=f(m) V f(ex(c=(ex'(m))))
=f(m) Vey(Gf)(c (e (m)))) Definition 2.5.3
<f(m) Vey(c(Gf)(ex' (m))) c--continuity
<f(m) Vey(c(ey' f((m)))) Corollary 1.2.4
== f(m))

For any X € C, ey is (c=, ¢=“)-continuous since e x (= (e 3 (m)) < =" (m) < (e (m))

C9%(m)). If ¢ is another topogenous order on C such that e is (¢, ¢)-continuous,

<y (e
then c= (e (m)) < e’ (d(m)) & ex(c (e (m)) < d(m) = mVex(ck(m)) < d(m) =

E7%(m)) < (m). O
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Proposition 2.5.14. Let A be a coreflective subcategory of C and e \ —TORD, then
for all m € subX, ct(m) = m V ex(c=(ex' (m))) is a closure oparator on C. It is the
least closure operator for which every coreflection morphism ex : GX — X s (c,c)-
continuous.

Proposition 2.5.15. Assume that for any morphism f € C, the inverse image f—*
commutes with the joins of subobjects. Let (G,e) be a copointed endofunctor of C and
Ce \/ —=TORD, then for all m € subX, i (m) = m A (ex).(iC(cx (m))) is a interior
oparator on C. It is the largest interior operator for which every ex : GX — X s

G’,e)

(1,1%%)-continuous.

Proof. (I1) and (I2) are clearly seen to be satisfied.
For (13), let f: X — Y be a C-morphism, then

7
= [ m) K e ev G @)
< f7H(m) AlE)R(GF) iy (&5 (m))) Lemma 1.2.11
< f7Hm) N(ex)uliex(GA)TH(Ev (m)))  c-continuity
< 7Y m) AR e =) Definition 2.5.3
)

]

Since £ (i7" (m)) = ex' (m) Aex' ((ex)(iGx (ex (M) < iGx(ex! (M), ex is (i5,i=7")-

continuous.
If i’ is another interior operator on C such that ey is (i=, i’')-continuous, then e (i'(m)) <

i(egx(n)) & i'(m) < (ex).(igx(ex () = i'(n) <A (ex):(igx (ex' (n))-

2.6 Examples

1. In the category Top of topological spaces and continuous maps with its (surjections,

emdeddings)-factorization structure, consider the following two topogenous orders:
ACy B& ACB and AC\y B& AC B forall X € Topand A, B C X.
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Propositions 2.2.10 and 2.2.12 provide equivalent ways of characterizing open and closed
continuous maps as well as well as a continuous map whose domain carries the coarsest
topology for which the map is continuous. Equivalent ways of describing hereditary
quotient maps are provided. It is clear that f,(A) =Y \ f(X \ A) for any A C X.

Proposition 2.6.1. The following are equivalent for a continuous map f: X — Y.

(1) f is open ;
2) fFFUA S B=ACY\ f(X\B);

(3) BC(f71(A) = f(B) c A”.

Proof() = (2) then fY(A)C B« fA)C B X\BC X\ f (A & X\BC
Y \A) e f(X\B)CY\A< ACY\ f(X\B).

(2) B)BC (AP e X\[IA)CX\Be [TY\A)CX\BesY\AC
Y\ f(B) & f(B) CY\Y\ A & fBFCA

(3) = (1) BC (f71(4))° & f(B) LA Bl A).

O

A similar reasoning proves the following.

Proposition 2.6.2. The following are equivalent for a-continuous map f: X — Y.
(1) f is closed;
(2) BC f(4) & f(B) € 4
3) fFHA) B e ACY\ f(X\B)F.

For a continuous map f: X — Y, X carries the initial topology induced by f if, A C X
is open iff there is an open B C Y such that A = f~1(B) or equivalentely A = f~'(f(A))
for each A C X (see e.g [GT00, Eng89]). Such morphism corresponds to the C-initial.
In fact, if f is C-initial, then f~'(f(4)) C B < X\ B C X\ f ' (f(A)) & X\ B C
YN\ JA) & f(X\B) C Y\ T(A) & [(4) Y\ [(X\ B) & [(A) Cy f.(B)
AT B AC B. Conversely if X carries the coarsest topology for which f is continuous,
ACx BeACBe [(JA) CBe X\BC X\ [Y(Y\TA) e f(X\B)C
Y\ f(A) & f(A) CY\ f(X\B) & f(A) Cy fu(B) for any A, B C X.
An analogous reasoning shows that X carries the coarsest topology for which f is contin-

uous iff

FLA) SY\F(X\B)° < AC B
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According to ([Eng89], Exercise 2F'), f is hereditary quotient if it is surjective with the
property that every restriction f’': f~*(A) — A is quotient for any A C Y or equiva-
lently f surjective with the property that f (fT(B)) C Y is closed for every B CY. We
clearly see that f is C-final iff it is ’-final iff it is hereditary quotient.

(T4) (resp. (T'5)) are satisfied by T (resp. ’). However, (T'4") fails for C since the

Kuratowski closure is not fully additive.

2. In the category Grp of groups and group homomorphisms with the (epi, mono)-

factorization structure, let C be the topogenous structure defined by
ACg B A< N<B with NdGand A, B<G(.

A group homomorphism is C-strict iff it preserves normal subgroups.
Proposition 2.6.3. A group homomorphisin-f—=G-==_H is -final if and only if it is

surjective.

Proof. Assume f is C-final. Since H<1H, fTHH)<G. Thus f1(H) Ce G < f7H(f(Q)) =
HCy f(G)= H < f(G) = H = f(G), that is [ is surjective. Conversely if f is surjec-

tive then it preserves normal subgroups and by Proposition 2.2.5(4), f is C-final. O]

Proposition 2.2.5(3) allows to sayy that;every: injective, group homomorphism that pre-

serves normal subgroups is C-initial. It is also clear that C satisfies (T4), (T'6) and (T'7).

3. Let Prox be the category of proximity spaces and proximal maps with (surjective,

embedding)-factorization. For any (X, ¢) € Prox and A, B C X,
AT, 5 Be AS(X \ B)

is an interpolative topogenous order on Prox which satisfies (7°5).

4. Consider TopGrp, the category of topological groups and continuous group homomor-

phisms. The forgetfull functor

F : TopGrp — Grp.
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is a mono-fibration since every subgroup of a topological group is a topological group with
the subspace topology (see [DT95]). Thus by Proposition 2.4.2, every topogenous order
on Grp can be initially lifted to a topogenous order on TopGrp.

5. Let Top be the category of topological spaces and continuous maps with its (sur-
jections, emdeddings)-factorization structure. It is well known that Top,, the category of
T,-topological spaces and continuous maps is a epi-reflective subcategory of Top. Define
Sx ={Cxo, | Xo € Topo} by ACx, B< AC B for any X, C Top,, 4, B C X,. Let
(F,n) be the reflector into Top. For any X € Top, nx : X — X/ ~ takes each x € X
to its equivalence class [z] = {y € X | {z} = {y}}. Thus Sx = {C¥" | X € Top} with
ACY" B e nit(nx(A) CB A BCX.

6. The category sTop of sequentially closed topological spaces (those spaces in which every
sequentially closed set is closed) is M-eorefiective in-Top. Consider C on sTop defined
by AC B< A C C C B for any X € sTop and some closed subset C' of X. Let (G, ¢)
be the coreflector into sTop. Forany (X, 7)) € Top, spxry1 (X, T') — (X, T), identity
map on X, where 7' = {A C X | X \ A is sequentially closed } is an sTop-coreflection
for any (X, 7). It is clear that (G, &)

AN L BIMYAIA AR

for some closed subset C' of X.
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Chapter 3

The syntopogenous structures

In this chapter, we introduce the categorical notions of quasi-uniform and syntopogenous
structures that are fundamental to our study.-Therelationship between the two structures
that is established leads to the description of a-quasi-uniformity as a family of categorical
closure operators. We show that for ai idempotent closure operator ¢ (interior ¢) on C,
there is at least a quasi-uniformity ¢/ on C compatible with ¢ (¢). This allows to find a
condition under which a topogenous order is compatible with'a transitive quasi-uniformity.
We then investigate the initial morphism and Hausdorff separation axiom with respect to
a syntopogenous strucure (in particular, a quasi-uniformity). This initial morphism will
play an important role in the study of completeness of objects. The chapter ends with a

list of examples that illustrate the developped theory.

3.1 The definitions

Definition 2.1.1 enables us to axiomatize the notion of syntopogenous structure in a very
natural way.
Definition 3.1.1. A syntopogenous structure on C with respect to M is a family

S ={Sx | X € C} such that each Sx is a family of relations on subX satisfying:
(S1) Fach Cxe Sx satisfies (T'1) and (T2).
(S2) Sx is a directed set with respect to inclusion.

(S3) Cx=JSx is an interpolative topogenous order.
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We can extend the ordering of topogenous orders to syntopogenous structures in the
following way: & < &' if for all X € C and Cxe Sy, there is C'y€ S’'x such that
CxCrC’y. The resulting conglomerate will be denoted by SY NT.

(S3) includes the fact that for any C-morphism f : X — Y and Cy€ Sy, there is
Cx€ Sx such f(m) Cy n = m Cx f(n) for all m € subX and n € subY. This
will be referred to as the continuity condition of syntopogenous structure or simply the
S-continuity. Its equivalent descriptions are provided in the next proposition.
Proposition 3.1.2. Let f : X — Y be a C-morphism such that f=1 commutes with the
joins of subobjects and S € SY NT'. The following are equivalent to the S-continuity.

(1) For any Cy€ Sy, there is Cx€ Sx | m Cy n = f~'(m) Cx f~'(n) for all

n,m € subY,

(2) For any Cy€ Sy, there is Cx€ Sx |m-Ty-fo(n) = [ (m) Cx n for allm € subY

and m € subY ;
(3) For any Cy € Sy, there is Ox€ Sx | f(m) Ty fi(n) = m Cx n foralln,m € subY.

We are interested in particular classes of syntopogenous structures as these will play an
important role in what follows:

Definition 3.1.3. We shall say [that|S € SY NT(C, M), is:
(1) co-perfect if every Cx€ Sk is. N-preserving: for-alb X &C.
(2) simple if Sx = {Cx} for any X €C.
(3) interpolative if every Cx€ Sx interpolates for all X € C.

The ordered conglomerate of all co-perfect (resp. interpolative) syntopogenous structures
will be denoted by CSY NT(C, M) (resp. INSYNT(C, M)). A topogenous order must
interpolate to be a syntopogenous structure.

Thus INTORD(C, M) is just the class of simple syntopogenous structures. In addition,
we have the following,

Proposition 3.1.4. INTORD(C, M) is coreflective in SY NT(C, M)

Proof. We just need to observe that the inclusion Cx— SG¥ = {Cx | X € C} has a

right adjoint S —C 3= |J{Cx€ Sx} for all X € C. O

Corollary 3.1.5. A—INTORD(C, M) is coreflective in CSY NT(C, M).
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For the rest of this section we assume that for any C-morphism f : X — Y, f~!
commutes with the joins of subobjects. Proposition 3.1.2 allows us to define an S-initial
morphism.

Definition 3.1.6. Let f : X — Y be a C-morphism and S be a syntopogenous structure
on C. Then f is S-initial if for every Cx€ Sx there is Cy€ Sy such that m Cx n =
f(m) Cy fu(n) for all m, n € subX.

The S-initial morphism can also be expressed without use of right adjoint f~!. In this
case f : X — Y is S-initial if for any Cx€ Sx there is Cy€ Sy such that m Cx n
implies there is p € subY such that f(m) Cy p and f~'(p) < n. This definition becomes
equivalent to the previous in any category where the preimage commutes with the join of
subobjects.

Definition 3.1.7. A source (f; + X — X;)ier is S-initial if for any Cx€ Sx there is

i € I and Cx, € Sx, such that m C xn-==Flm)Ex(f(n).

3.2 Quasi-uniform structure or co-perfect syntopoge-

nous structure

Analogous to a uniformity, T. G. Gantner and R. C. Steinlage ([GS72]) proved that a
quasi-uniformity on a set X can be descrided in terms of subsets of X x X containing
the diagonal Ax = {(z,x) : x € X}, called the "entourages” or equivalently in terms of
covers of X or in terms of quasi-pseudometrics . The observation that this (entourage)
quasi-uniformity on X can be equivalently expressed as a family of maps f : X — P(X)
which can easily be extended to a family of maps f : P(X) — P(X), motivates the
point in our defintion that a quasi-uniformity on C will be given as a family of endomaps

on subX for each X € C.

Let X € C, subX being a complete lattice can be seen as a category, monotone maps
fl=], g[—] from subX to subX are the functors and there is a natural transformation
a : f[-] = g[-] exactly when f(m) < g(m) for all m € subX. It turns out that
F(subX), the endofunctor category on subX is ordered by < “pointwise”.

Definition 3.2.1. A quasi-uniformity on C with respect to M is a familyU = {Ux | X €
C} with Ux a full subcategory of F(subX) for each X such that:
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(U1) For anyU € Ux, 1x < U,

(U2) For any U € Ux, there is U’ € Ux sucth that U' o U’ < U.
(U3) For anyU €Uy and U <U', U’ € Uy.

(U4) For any U, U" e Ux,UNU'" € Ux.

(U5) For any C-morphism f : X — Y and U € Uy, there is U € Ux such that
f(=)eU <Uo f(-).

We shall denote by QUNIF(C, M) the conglomerate of all quasi-uniform structures on
C. It is ordered as follows: U < V if for all X € C and U € Uy, there is V € Vx such that
V < U. We shall refer to (U5) as the continuity condition of quasi-uniformities or simply
the U-continuity. Its equivalent expression is provided by the next proposition.
Proposition 3.2.2. A morphism f Y — Y is U-continuous if and only if for any
U' € Uy, there is U' € Ux such that TCf=Hn)) < F=L{T{n)). for any n € subY .

Proof. If f is U-continuous and U &€ Uy, then there is U € Uy such that for any n €
subY and m = f~'(n), f(U'(f7H(m)) < UM ) £ Un) = fU(fH(n)) <
Un) & U'(ftn)) < f7HU@))— Conversely if the condition in the proposition is
satisfied then for any U € Uy, there is ' € Uy such that for any m € subX and n = f(m),
U'(f71(f(m))) < fHU(f(m))) = U'(m) < fHU(f(m))) & fU'(m)) U(f(m)). O

From the image pre-image adjunction we get the following other two equivalent

expressions of the U-continuity of a C-morphism f: X — Y.
(1) For any U € Uy, there is U’ € Ux such that f(U'(f~(n))) < U(n), n € subY .
(2) For any U € Uy, there is U’ € Ux such that U'(m) < f~Y(U(f(m))), m € subX.

The next proposition immediately follows from (U5) and Proposition 3.2.2.

Proposition 3.2.3.
Let f: X — Y be a C-morphism, U € QUNIF(C, M), m € subX and n € subY.
(1) If f(m) < n then for all V' € Uy, there is U € Uy such that f(U(m)) < V(n).
(2) If m < f~(n) then for any V € Uy, there is U € Ux such that U(m) < f~1(V(m)).

We shall often describe a quasi-uniformity by defining a base for it.
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Definition 3.2.4. A base for a quasi-uniformity U on C is a family B = {Bx | X € C}
with each Bx a full subcategory of F(subX) for all X € C satisfying all the axioms in
Definition 3.2.1 except (U3).

Lemma 3.2.5. LetU € QUNIF(C,M). Then {Bx | X € C} is a base for U if and only
iof for any U € Ux, there is V € Bx such that V < U.

Definition 3.2.6. A base for quasi-uniformity on C is transitive if for all X € C and
UeBx,UoU=U. A quasi-uniformity with a transitive base is called transitive quasi-

uniformity.

The ordered class of all transitive quasi-uniformities on C will be denoted by TQUNIF'.
Proposition 3.2.7. Let U be a quasi-uniformity on C.
U ={Ux | X € C} where Uy = {U* | U € Ux} with U*(m) = \/{n | m < U(n)} is a

base of a quasi-uniformity on C called the conjugate quasi-uniformity of U.

Proof. (U1) is easily seen to be satisfied. For (U2), let-U*cU*. Then U € Uy = IV €
Ux such that V(V(m)) < U(m). Thus V. (V- (m))=\V{nlm <V (V(m))} <V{n|m<
U(n)} = U*(m). Since (UAV)(m) = U(m)AV{(m), (UAV)" (m)=U*(m)AV*(m) and
U*(m) A V*(m) € U%. Thus (U4) is satisfied. Let f : X +—— Y be a C-morphism and
U € Uy. By (U5), there is U’ £ Uy such that f(U"(m)) < U(f(m)). Hence f(U™*(m)) =
FVAn [ m <U'(n)} = V{f(W)4m S U )RV ip L M) < U (p)} = U*(f(m)). O
Definition 3.2.8. A quasi-uniformity U on C is said to be a uniformity provided for
every U € Ux and X € C, there is V € U such that m < U(n) < n < V(m) for any
m, n € subX.

Proposition 3.2.9. A quasi-uniformity U on C is uniformity if and only if Uy = Ux for
every X € C.

Proof. Let U be a uniformity on #. We must show that for any X € C, Ux < U% and
Uy < Ux. So for any U € Uy, there is V € U such that n < U(m) < m < V(n) so
that n < U*(m) = n < V(U*(m)) < U*(m) <V(n) = m < V(n) < n < U(m) and for
any U* € Uy, U(m) < U*(m). Conversely if U* = U, then for any U € Ux and X € C,

m < U(n) < m<U*(n) < n<U(m). O

We have seen that QUNIF(C, M), the conglomerate of all quasi-uniform structures on
C is ordered as follows: U <V if for all U € Ux there is V € Vy such that V(m) < U(m)
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for any m € subX. We next prove that this order confers to QUNIF(C, M) the structure
of a complete lattice.

Theorem 3.2.10. Let A= {U'|i € I} C QUNIF(C,M). Then B ={Bx | X € C}
with Bx = {U"A .. NU" | for every 1 < i < n, U' € U for some U' € A and n € N}
is a base for the supremum U = \/ A of A. If each U" is a uniformity (resp transitive

quasi-uniformity) on C then U is also a uniformity (resp. transitive quasi-uniformity).

Proof. (U1) and (U4) are clearly satisfied. For (U2), let U = U' A ... AU™ € By, for
any 1 < i <mn, U € Uy forsome U € A. Then there are V!, .., V" such that
VieVI< UL, . .VioVm < U™ Now, V =VIA. AVT € By and VoV < (Vio V1) A
WA (Vro V™) <U. Let f: X — Y be a C-morphism and U = U' A ... AU™ € By.
Then there are V!, ... V™ such that f(U'(m)) < VI(f(m)),..., f(U"(m)) < V"(f(m)).
Thus f(U(m)) = f(Um)A .. AU (m)) < f(U(m))A A LU m)) < VHf(m)) A A
Vr(f(m)) < (VIALLAVY)(f (m))y=V{flin)). Ttisclearthat I/ is finer than each U* and
if V is another quasi-uniformity on C-that-is finer than each /', then U is coarser than V.
Let each U’ be a uniformity and p < J(m) for any U € By with p, m € subX. Then
p < (U'A...AU™)(m) for any 1 <i < n, U €U, for some¢ U € A and n € N and there
are V1, .. V" with m < U (p) iy < U"(p). Hence - < (VL A ... AV™)(p) = V(p).

Assume that for each i, U € TQUNIF(C;M)and U € Bx. Then U = U' A ... AU"
for any 1 < i < n, U* € Uy for some U . A.- Since U(t/(m)) < U',...,U{U(m)) <
U, UU(m)) < (U'A ... AV™)(m) =U(m). O

Corollary 3.2.11. QUNIF(C, M) is complete lattice.

Proof. The least element is Uy = {1x} for any X € C while the greatest is the quasi-
uniformity Uy consisting of all U € F(subX) satisfying (U1). For any A = {U* | i e I} C
QUNIF(C,M),U =\ Aof Ais constructed as in Theorem 4.1.17. Thus QUNIF(C, M)
is a complete lattice since the meet can be constructed as the join of all upper bounds of

A. O

Corollary 3.2.12. UNIF(C, M) and TQUNIF(C, M) are complete sublattices of
QUNIF(C, M).

Theorem 3.2.13. The conglomerates UNIF(C, M) and TQUNIF(C, M) are coreflec-
tie in QUNIF(C, M).
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While our intention is to study a quasi-uniformity on a category, we have found it more
fruitfulful to express many of our proofs in terms of a syntopogenous structure. The next
two theorems that describe the clear relationship between the two structures shall lead
us to the achievement of this goal. Let S € SYNT(C, M), BS will denote the base for
a quasi-uniformity induced by S. If B is a base for a quasi-uniformity, S® denotes the
syntopogenous structure induced by B.

Theorem 3.2.14.

The assignments U — SY and S — U given by
S8 ={c% | U € Bx} where m =% n < U(m) < n, and

BS = {U" | Cxé€ Sx} where U=(m) = A{n|m Cx n}

for all X € C and m, n € subX define an adjunction between QUNIF(C, M) and
SYNT(C, M) with 8 — U being-the right adjoint.

Proof. For all X € C and B a‘base of a quasi-uniformity, we first show that S? is a
syntopogenous structure on C. | (S1) follows from (/1) and the fact that each U €
Bx is a monotone map while (S2) follows from (U3). For (S3), Let m = n for
U € Bx and m, n € subX. Then U(m) < n. By (U2), there is U' € Ux such
that U'(U'(m)) < U(m) < n = U(m) < U0 (m)) <n e mcY Um) Y n lf
f: X — Y is a C-morphism and' U € By ‘then by (U4) ‘there is U’ € By such that
FU(m)) < U(f(m)) < n. Now f(m) CY n & U(f(m)) < n = f(U"(m)) < U(f(m)) <
n=f(U'(m) <n=U'(m) < fn)emcy f(n).

On the other hand, one uses (S1) and (52) to see that B satisfies (U1) and (U3) respec-
tively. For (BU2), let U € BSy for C€ Sx. Then by (S3) there is Cx€ Sx such that
CxCCx o Cx . This implies that U~ o U~ < UE. Let f : X — Y be a C-morphism
and U5 € B{. Then by (S3), there is Cy such that f(m) Cy n = m Cx f'(n).
Thus Ux(m) = A{n | m Cx n} < A{f7'(p) | f(m) Ey p} = [THU(f(m)) <
fHUS(f(m))) = Ux(m) < fHUS(f(m))) < fU(m))) < U (f(m)).

Assume Bx < B'x for all X € C and V¢ S” for some U € Ux. By assumption, there is

V € B'x such that V < U =cVCcY. Thus S < S¥.

Furthermore, if Sx < S8'x and U™ € BY for all Cy€ Sy, there is € &'x such that
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CxCry= UY < U%. Hence BS < BY.
Lastly B < BS” and §8° < S. For any U € By and Ce Sy, m C{" n < US(m) < n &

Ap|mCx p} <n=mCxpand BS® = Bsince US" (m) = N{n | U(m) < n} = U(m).

]

The fact that & — S has a right inverse leads us to a condition on the syntopogenous
structure under which the other inverse exists, that is a subconglomerate of SY NT'(C, M)
which is order isomorphic to QUNIF(C, M).

Theorem 3.2.15. QUNIF(C, M) is order isomorphic to CSY NT(C, M)

Proof. B = Bs° by Theorem 3.2.15, we only need to show that S8 = 8. Tt suffices to
prove that for any Cx€ Sy, C% “=Cx . Soform C{ ™ n < U-(m) <n < A{p|m Cx

p}<n<miCxnforal X €C. O

Since Sx € A —TORD(C, M) for-cachi-S € CSYNT(C,M), it follows from Theorem
3.2.15 that a quasi-uniformity on-C is a collection of familics of closure operators.

By Corallary 2.1.6, A —INTORD(C, M) is isomorphic to the conglomerate of idempotent
closure operators and from Theorem 3.2.15, CSY NT(C, M) = QUNIF(C, M). Thus by

Corollary 3.1.5 every idempotent closure operator on C is a base for a quasi-uniformity.

From Propositions 2.1.4, 2.1.2 and Theorem 3.2.15, we obtain the interior and neighbour-
hood operators associated to a quasi-uniformity as one can see in the following proposition.

Proposition 3.2.16. Let U be a quasi-uniformity on C and X € C.

(i) If for any C-morphism f : X — Y, f~1 commutes with the joins of subobjects,
then 4 (m) = \/{p € subX | U(p) < m for some U € Ux} is an interior operator

on C.

(ii) M (m) = {n € subX | U(m) < n for some U € Ux} is a neighbourhood operator on
C.

Proof. (i) (I1) and (I2) are easily seen to be satisfied. To check (I3), we let f :
X — Y be a C-morphism and U € Uy, then by Proposition 3.2.2 there is U’ €
Ux such that U'(f~1(m)) < f~(U(m)) for any m € subY. Thus f~1(i¥(m)) =
VA [ U) < m}) = V') | U(p) < m} < V| U'(f7Hp) < m} =
i (f7H(m)).
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(17) (N1) to (N3) are clear. For (N4), let f : X — Y be a C-morphism and n €
M(f(m)). Then U(f(m)) < n for some U € Uy. By (U5) there is U’ € Uy such
that f(U'(m)) S U(f(m)) <n e U'(m) < f7(n) < f(n) € 4 (m).

]

Let us denote by INTCSY NT(C, M) the conglomerate of all interpolative co-perfect
syntopogenous structures on C. We next prove that interpolative co-perfect syntopogenous

structures are exactly the transitive quasi-uniformities.

Proposition 3.2.17. INTCSY NT(C, M) is order isomorphic to TQUNIF(C, M)

Proof. Let B be a transitive base and m C§ n for any U € Bx and X € C, then U(m) =
UU(m)) =% U(m) < n, hence m =% U(m) =% n. Conversely if S € INTCSY NT and
CxeSx,mCxn=(3p)|mCxpCxn=U>(m)<pCxn=U-*(m)<n. This
implies that A{l | U= (m) Cx [} <N g finTq}thatis U (U*(m)) < UX(m) and
UEx(m) < U= (USx(m)) follows from (/1) 'so that UEX(m) = USX (USX (m)). O

Theorem 3.2.15 provides a bridge from quasi-uniformity to syntopogenous structure and
back. This allows us to always compare the results we obtain for the two structures and
work at the side where the proofs are easier to manipulate.

Proposition 3.2.18. Let f: X — Y be a C-morphism'and S € CSYNT(C, M). Then
f is S-initial if and only if for every U € By ‘there is U' € By ‘such that f~1(U'(f(m))) <
U(m) for all m € subX.

Proof. Assume that for any U € Bx there is U’ € By such that f~1(U’(f(m))) < U(m)
for all m € subX and m Cx n for some Cx€ Sy and m, n € subX. Then there is
U € By such that CV=Cx and there is U’ € By such that f~1(U'(f(m)) < U(m) =
fU(f(m)) < Ulm) < n = fTHU(f(m) < n e U(f(m) < fuln) < f(m) CY
f«(n). Conversely if S € CSYNT(C, M) and f is S-initial, then for all U € Bx and
m, nsubX, Uim) <n<< (FCxeSx) | mCxne (FIyve Sy) | f(m) Ty fuln) &
(B U € By) | U'(f(m)) < fuln) < fHU'(f(m))) < n. Thus f7HU'(f(m))) < U(m).

[

Proposition 3.2.19. Let f : X — Y be a C-morphism, S € CSYNT(C, M) and S is
simple. Then f is S-initial if and only if f~1(c%(f(m))) < K (m) for all m € subX.
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Proof. The proof follows from Proposition 2.1.5 and the fact that S € CSYNT(C, M)
and S is simple means that S = {C} € A —INTORD for all X € C. O

Proposition 3.2.20. Assume that for any C-morphism f: X — Y, f~1 commutes with
the join of subobjects and S € CSY NT. If f is US-initial, then

(1) f is M -initial;

(2) f is i -initial.

Proof. If f is US-initial and U € B, then there is V € By such that f~1(V(f(m))) <
U(m) for all m € subX. Thus,

(1) L0A (m)) = {fu(n) | U(m) < n} € {p | V(f(m)) < p} = P (f(m)) = 4 (m)
FLOM (F(m)) that is f is 4’ -initial.

2)ne{n|Um <m}= fn)e{p|Vip) < fm}=mne{fp|Vp
fom)} = {n | U(n) < m} C {[ MV )< FlmP=" (m) = V{n | U(n) < m} <
V{7 0) V(D) < fulm)} = f TEFRGa))) thag 18 s @ -initial.

N

IN

N

]

Proposition 3.2.21. Let (f : X —— X,)ier be a source in C and S € CSYNT(C, M).
Then f; is S-initial if and only if for any U € B there isi € I and U € B}S(i such that
(f) YU (f;(m))) < U(m) for all m € subX.

Proof. Assume that for any U € BY, thereisi € T and U € BY. such that (f;) "' (U’'(f;(m))) <
U(m) and m Cx n for some Cy€ Sx. Then there is U € B which determines
Cx and there is ¢ € I and U’ € B, such that (f;)"'(U'(fi(m))) < U(m) < n =
(fi) (U (fi(m))) < n = U'(fi(m))) < (fi)+(n) = fi(m) Ex, (fi)«(n). On the other hand
if S € CSYNT(C, M) and f; is S-initial. Then for any U € B, U(m) <n < (3 Cxe
Sx) |mCxne (3 Cx€ Sx) | film) Cx, (f)u(n) & @ U € BY) | U'(film)) <
(fi)e(n) & (fi) (U (fi(m)) < n. O
Corollary 3.2.22. Let X = [[,.; X; be a product in C and S € CSYNT(C, M). Then
(pi + X — X,)ies is S-initial if for any U € BY there is i € I and U € BY., such that
()~ (U"(ps(m))) < U(m) for all m € subX.

Definition 3.2.23. Let sub™ X be the class of all atomic elements of subX for any X € C
and S € SYNT. Then X € C is said to be S-separated if for any pair m, n € sub™X
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such that m An = Ox, there are p, q € subX and Cx€ Sx such thatm Cx p andn Cx q
with p A ¢ = 0x.

Proposition 3.2.24. Let S € CSYNT and X € C. X is S-separated if and only if for
any n, m € subt X such that m An = Ox, there is U € B such that U(m) AU (n) = Ox.

Proof. Assume that X is S-T5 and m, n € sub™X such that m An = Ox. Then there
is Cx€ Sx and p, ¢ € subX such that m Cx p and n Cxy g with p A ¢ = 0x. By
Theorem 3.2.15 there is U € BY such that C{=Cx. Thus U(m) < p and U(n) < ¢ =
Um)ANU(n) <pAqg=0x = U(m)AU(n) = 0x. Conversely if for n, m € subX with
mAn = Oy, there U € B such that U(m)AU(n) = 0x . Then, since S € CSYNT, m Cx
U(m), n CTx U(n). One puts p = U(m), ¢ = U(n) to complete the proof. O

Proposition 3.2.25. If § is simple, then X is S-separate if and only if for any pair
m, n € sub,X such that m N\n = Ox, there-are p, q € subX and Cx€ Sx such that

p € vy (m) and q € vx(m) withiphg="0x.

Proof. The proof follows from Proposition 2.1.2 and the fact that S € SYNT(C, M) and
S is simple means that S = {C} € INTORD for all X € C. O

3.3 Quasi-uniform structures determined by closure

and interior operators

We have already observed in the previous section that every quasi-uniformity in a category
induces an idempotent closure operator (interior). In this section, we first prove a one
to one correspondence between idempotent closure operators and the so-called saturated
quasi-uniformities. We then define what it means for a quasi-uniformity to be compatible
with a closure operator (interior) on C. With the help of categorical topogenous struc-
tures, we show that for any idempotent closure operator ¢ (interior i) on C, there is at
least a transitive quasi-uniformities compatible with ¢ (i). We find a condition under
which a topogenous order is compatible with a transitive quasi-uniformity. This allows
us to characterize a closure operator (interior) that is compatible with a transitive quasi-
uniformity. In particular, when C is the category Top of topological spaces and continuous

maps, the coarsest transitive quasi-uniformity compatible with the Kuratowski interior
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operator corresponds to the Csaszar-Pervin quasi-uniformity and the one compatibe with
the Kuratowski closure is the inverse of the Csédszar-Pervin quasi-uniformity while in Grp
it allows to generate a family of idempotent closure operators on Grp determined by the
normal closure.

Definition 3.3.1. Let U € QUNIF(C,M). We shall say that U is compatible with
(or © admits U) if Cx=J{CY¥: U € Ux} for all X € C.

Thinking of a topology as a particular topogenous order, one sees that Definition 3.3.1
carries the idea of a quasi-uniformity compatible with a topology. With this understand-
ing, the classical reality that every topological space admit at least a quasi-uniformity can
now be treated in a categorical setting.

Because of Proposition 2.1.2, we can say that Y € QUNIF(C, M) is compatible with a
closure operator ¢ (respectively an interior i) if cx(m) = A{U(m) : U € Ux} (respectively

ix(m)=\{n|U(n) < m for some U.eUsc})for-any-m c subX.

Definition 3.3.2. A quasi-uniform structure U on € is said to be saturated if for any

X eC, NM{U :U e Ux} € Ux.

We shall denote by SQUN I F{C, M) the conglomerate of all saturated quasi-uniform
structures on C.
Proposition 3.3.3. Let U € QUNIF(C; M).and X € C.iThen U € SQUNIF(C, M) if

and only if there is a unique base B for U such that Bx has a single member.

Proof. Sufficiency is clear. Let V(m) = A{U(m) : U € Ux} for any m € subX. By
assumption, V' € Uy. Now, let Bx = {V}. We must show that V oV <V and satisfies
(U5). Since V € Ux, there is U € Ux such that Uo U < V. But V < U and so
V(V(m)) < V(U(m)) < UWU(m)) < V(m). Let f: X — Y and Vy € By. Then

Vy € Uy and there is U’ € Ux such that f(U'(m)) < V(f(m)) for all m € subX. Since
Vx <U', f(Vx(m)) < f(U'(m)) < V(f(m)). The uniqueness of B is easily seen. O

As mentioned earlier, every idempotent closure operator is a base for a quasi-uniform
structure on C. Proposition 3.3.3, allows now to identify those quasi-uniform structures
that are in one to one corespondance with idempotent closure operators.

Theorem 3.3.4. SQUNIF(C, M) is order isomorphic to ICL(C, M). The inverse as-
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seignments of each other U — H and ¢ — U are given by
U, ={U € F(subX) : ¢ < U} and

Cuz/\{U:UEZ/{X}

for all X €C.

Proof. The assignment ¢ — U° is clearly well defined. For & +— &, we only need
to show that for any U € SQUNIF(C, M), H o = H. So for all U € Uy, there is
V € Uy such that VoV < U. Now, V(H(m)) < V(V(m)) < U(m). Thus H(H(m)) =
MV(Em) : V € Uy} < AU = U € Uy} = (m). Let c € ICL(C, M), & (m) =
AU (m) : U € U} = ex(m) and for any U € SQUNIF(C, M), U = {U € F(subX) :
H<U}y=U. O

Proposition 3.3.5. Let U € SQUN LE(C,M)-anud-f. X — Y be a C-morphism. Then
(1) f is U-initial if and only if F=UESEF ) < EE(m)-for any m € subY .

(2) f is H-closed if and only if for any U € Ux there is V € Uy such that V(f(m)) <
f(U(m)) for any m € subY!.

Proof. (1) Assume f is U-initial, Then forcany U € Uy there is V € Uy such that
V() < Um). Thusf 2K () (V€ Ud < U(m) = £ (B (F(m) <
NUm) : U € Ux} = & (m). Conversely if f~H(&E(f(m)) < H(m) and U € Uy,
then f[TYA{V(f(m)) : V € Uy} < N{U(m) : U € Ux} < U(m). Since U €
SQUNIF(C, M),V =& €Uy and f(U'(f(m)) < U(m).

)
other hand if for any U € Uy, there is V' € Ux such that V' (f(m)) <
& (f(m)) < f(Um)) = &(f(m)) < FINMUm) : U € Ux}) = f(K(m)).

Our next theorem was motivated by the observation that a topology on a set is a particular
interpolative topogenous order and the fact that each member of a base for Pervin quasi-

uniformity depends on a finite number of open sets.
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Theorem 3.3.6. Let Ce A —INTORD(C, M). Then there is a coarsest transitive quasi-

uniformity U on C compatible with .

Proof. Let —e N—INTORD(C,M). For any X € C, put A= = {m € subX | mis C
- strict}. Then A is a complete sublattice of subX. If F/(A") is the collection of all finite
sublattices of A%, then Sx = {C% | L € F(A%)} where m Ck n< dpe L |m <
p < n is an interpolative co-perfect syntopogenous structure. By Theorem 3.2.14, By =
{US" | L € F(AF)} is a base for a transitive quasi-uniformity S on C. Now, let U = US
thenm 4 ne ILe FIAD) | U (m)<nemiChkneIpel|m<pCxp<
n = m Cx n. On the other hand, m Cx n < cx(m) < n = m Cx cx(m) Cx n. Since
cx(m) € AS, put £ = {cx(m), 1x} to have that m C% n < U="(m) < n = m % n.
Thus CY=C. Let U’ € QUNIF(C, M) such that C=C%". We must show that & < U’ i.e
if L € F(AF) then there is U’ € U’y such that U'(m) < US"(m) for any m € subX. For
any m € subX, m Ck US" (m) =m 3 U= (m)—Smce-=" =, there is U’ € U'x such
that U’(m) < US"(m). O

In a similar way to the above, we prove the next Theorem.
Theorem 3.3.7. Let Ce \/ —INTORD(C. M). Then there is a coarsest transitive quasi-

uniformity U on C compatible with .

Theorems 3.3.6 and 3.3.7 are very important. On the one hand they allow us to conclude
that for any ¢ € ICL(C, M) (respectively iINT(C, M)), there is a coarsest transitive
quasi-uniformity ¢« on C compatible with ¢ (7). On the other hand they present a cate-

gorical version of the well known Csészar-Pervin ([Csa63, Per62]) quasi-uniformity.

Furthermore, the analysis of the proof of Theorem 3.3.6, allows to obtain a categorical gen-
eralization of A. Cészsér’s Theorem (see [Csa00]), which characterizes those topogenous
orders that are compatible with a transitive quasi-uniformity.

Theorem 3.3.8. Let C€ TORD(C, M). Then C is compatible withtd € TQUNIF(C, M)
if and only if C=CA for some complete sublattice A of subX, where m T4 n < 3 p €

Alm<p<n.

Proof. Assume that Y € TQUNIF(C, M) and C=CY. For any X € C, let A = {m €
subX | m is C —strict}. If m Cx n then there is U € Ux such that U(m) < n. By

assumption, U(m)) © U(m) = U(m) € A so that m % n. On the other hand, m %
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n=dpe€ Asuch that m < pCx p <n = m Cx n. Conversely let A be a complete
sublattice of subX for any X € C and C=C*. Let F(A) be the collection of all finite
sublattices L of A. Then S € A —INCSYNT(C, M) where Sx = {C% | L € F(A)}.
Now U = {US" | L € F(A)} is a base for a transitive quasi-uniformity on C and
=4 since m Cx n = 3 p € A such that m < p < n. Put L = {0x,p, 1x} to have
m E%A n. On the other hand if m % n for some L € F(A), then there is p € L such

that m < p <n = m C% n. Since Y= J{CY: U € Ux}. O

From Theorem 4.2.4 and Proposition 2.1.2, we can characterize the closure (interior)
operators compatible with a transitive quasi-uniformity:.

Corollary 3.3.9. Leti € INT(C, M). Then i is compatible withd € TQUNIF(C, M)
if and only if for any X € C and m € subX, ix(m) =\{n|Ipe A:n <p<m} for
some complete sublattice of subX .

Corollary 3.3.10. Let ¢ € CL(CoM)Then ¢ 1s-compatible with U € TQUNIF(C, M)
if and only if for any X € C and m-€ subX, ex(m)=A{n | Ipe A:m <p<n} for
some complete sublattice of subX.

Proposition 3.3.11. Let Let ¢ TORD(C, M). If there isd € QUNIF(C, M) such
that U is compatible with T, then A="is a complete sublattice-of subX for any X € C.

Proof. Follows from the fact that for any 4 € QUNIF(C, M), e AN =TORD(C, M).
]

3.4 Examples

By Theorem 3.2.15, which establishes an equivalence between co-perfect syntopogenous
structures and quasi-uniformities on a category, it will be enough to define a co-perfect
syntopogenous structure when exbitting examples of a categorical quasi-uniformity. Al-
ready our first example shows that the classical quasi-uniformity is a particular co-perfect

syntopogenous structure and hence a particular categorical quasi-uniformity:.

1. Let X be a (non empty) set. A filter D on X x X is called a quasi-uniformity on
X provided each member of U is a reflexive relation and for each member D € D
there is D’ € D such that D' o D' C D. A function f : (X, D) — (Y, D’) between

quasi-uniform sapces is continuous if V. D' € D' 3 D € D | f*(D) C D’ where
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fA(D) = {(f(x), f(y)) | xDy}. Let C be Qunif, the category of quasi-uniform
spaces and quasi-uniformly continuous maps with the (surjective, quasi-uniform
embeddings)-factorization structure. Every (X, D) € Qunif gives a co-perfect
syntopogenous stucture, Sx,p) = {E&} D) | D € D} on Qunif where A IZ@Q D)
B < D[A] € B and A, B C X. On the other hand, the co-perfect syntopogenous
structure that describes a quasi-uniformity is the one satisfying the property that
A € B (1 €I) = Uy Ai C U, Bi for any index set I. This is known as
the biperfect syntopogenous structures (see [Csa63]). A morphism f : (X, D) —
(Y, D’) is S-initial provided D is the initial quasi-uniformity induced by f on X. Let
B and B’ be bases for D' and D’ respectively and f.(B) =Y \ f(X\ B). For D € D
and A, BC X, ACxp)B& DAJICB<3D eD|(fx[f)Y(D)ACBs
FUDIFA) S B X\BC X\ DA & X\ BC f1(V\ DIf(A)]) <
F(X\B) CY\D'[f(A)] & D'[f(ALSHYNAX\B) & f(A) CF, py fu(B). Sub*X
is the class of single element sets-of-X--thus-being-S-separated is equivalent to the

conditions in Proposition 3.2.24.

. In the category TopGrp of topological groups and continuous group homomor-
phisms, let (£, M) be the (surjective, injective)-factorization structure. For any
X € TopGrp, let §(e) be the neighbourhood filter of the identity element e.

For all U € f(e), put

U=A{(z,y) eXxX :2lyeU}

U ={(z,y) e X x X :yz ! €U}

One defines two co-perfect syntopogenous structures on TopGrp;

Sy =1{Cx |U€sbe)}

St ={ck |U€Be)}

where ACY' B&U-ACBand ACY B< A-U C B. Of course, S = S if X

is abelian.

We have proved that interpolative topogenous orders are equivalent to single syntopoge-

nous structures. Below we present a number of examples derived from idempotent closure

and interior operators. In some cases we derive the categorical quasi-uniform structure

determined by the order.

1. Let C = Grp be the category of groups and group homomorphisms with (surjective,

injective)-factorization system. For any A, B < G, let S = {C¢ | G € Grp} with
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ACqg B A< N < B with N <G is a co-perfect simple syntopogenous structure
(meet preserving topogenous order) on Grp. Then P(A-) = {N < G | N < G}
is a complete lattice so that Sy = {C% | L € P(A%)} where ACY B& 3N €
L|A<N<BieeachU-"(4)=({B<G|INelL : A<N<B}isan

idempotent closure operator on Grp. Now
By = {U™" | L € P(A%)}

is a family of idempotent closure operators on Grp with {US"(A) | L € P(AF)} =
Ng(A) where N is the normal closure.

. In the category AbGrp of abelian groups and abelian group homomorphisms, let
M be the class of injective abelian group homomorphisms and & be the class of the

surjectives ones. Then for any G € AbGrp and A, B < G,

Se = {C¢ | G € AbGrppwhereA T B &HA)<B.with
t(A) = {a € A: (In € Z)y n>-0and na—"0}the torsion part of A is single

co-perfect syntopogenous structures.

. Let C = Top the category of topological spaces and continuous maps with M the
class of embeddings and (of course) £ the class of surjective continous maps. For

A BCX,

(a) Sx,7y = {Cx,7n | (X, T) € Top} with A Cx B A C O C B for
some O € T is a single co-perfect syntopogenous structure (meet preserving
topogenous order). Our defintions for S-separated corresponds to the usual
definitions in topology of Hausdorff topological space.

Now, A= = {O C X | O € Tx} is a complete lattice so that Sx = {C% | L €
F(AS)} with Ac% B 30 e L| ACO C B is an interpolative co-perfect
syntopogenous structure by Theorem 3.3.7, By = {US" | L € F(AF)} is a base
for a transitive quasi-uniformity ¢ on Top. Since Sy is biperfect (see [Csa63]),
y € US"[z] if and only if {z} =% X \ {y} is not true. We claim that B is
equivalent to a base for Csdszar-Pervin quasi-uniformity P on X. If B is a base

for P, then B” = {(_, So, | O; € T} where So, = (X \ 0;) x X)U (X x O;).

68



Let V € B”, then

(x, y) €V & (x, y) € Sp, for each i, 1 <i<nand O; € T,
S (x, y) € (X\O) x Xor(x, y) € X X0,
sSreX\O;ory e O,
e {r} cf X\ {y} is not true, L = {O0; | 1 <i < n},
&y e U1,

& (z, y) e U

b) Sx, ={Cx,m | (X, T) € Top} with ACx B AC C C B for some
closed C' C X is a single co-perfect syntopogenous structure (meet preserving
topogenous order). A continous map f+(X. Ty) — (Y, Ty) is S-initial if
and only if Tx is theinitial-topolegy-induced-by [ on X. Since A" = {C' C
X | C is closed in Ty}is a-complete Tattice, Sx= {CL | L € F(A%)} with
ACk B&3CeL|ACUCBisan interpolative biperfect syntopogenous

structure (see [Csa63}) and so
B £EUSTLE rlasy

where (z,y) ¢ US" < {z} % X\{y} is a base for a transitive quasi-uniformity
U on Top. Since P~! is generated by {S¢ | C' is closed in T}, U = P~
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Chapter 4

Completeness

We have established in the previous chapter a satisfactory theory of quasi-uniform struc-
tures on a category using syntopogenous-struetires.tlere we wish to study completeness
of objects relative to these structures. This extends to-an- arbitrary category the usual
theory (see e.g.[Csa63, SP66, FL82]) ou the one hand, on the other hand it produces a
much simpler theory of (Cauchy completeness) even when restricted to spaces. Purely
categorical proofs of classical results are obtained. providing a possibility for our theory of
completeness to be directely applied to categories in other branches of mathematics. We
start with the convergence of filters that leads to the S-Cauchy filters. For a co-perfect
syntopogenous structure, various notions of Cauchy filters are defined and the relationship
between them is studied. This shall naturally lead us to the study of different notions of

complete objects.

4.1 The S-Cauchy filters

Since for any X € C, subX is a complete lattice, by a filter on X we shall always
understand a filter on subX.

Lemma 4.1.1. Let X € C and F be a filter on X. Then F is an ultrafilter on X if and
only if m An > 0x for all n € F implies that m € F.

Proof. Assume F is an ultrafilter on X and mAn > 0x for all n € F. Then {mAn|n €

F} is a filter base for a filter 7" on X that is finer than F and contains m. Consequentely
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F = F' and thus m € F. Conversely if m An > 0x foralln € F = m & F and F C F'
with F an filter on X. Then for all p’ € F', p’ Ap > 0x for any p € F, which implies
that p’ € F. Thus F is an maximal filter on X. O

We shall also need the following lemma known as the ultrafilter lemma.
Lemma 4.1.2. For every filter F on X € C, there is an ultrafilter F' on X such that
FCF.

In realm of spaces, the above lemma is equivalent to the Axiom of Choice (see e.g.[Her06]).
Let f: X — Y be a C-morphism and F a filter on subX then f(F) is the filter defined
by m € f(F) < f1(m) e F. If f € & and F is an ultrafilter then f(F) is also an
ultrafilter. If H is an ultrafilter on Y and f reflects 0 then f~(#) is also an ultrafilter
on X where f~1(#) is the filter defined by m € f~(H) < f(m) € H.

For any X € C, we shall denote by subsX, the class-of all m € subX such that m > Ox
and for all m € sub, X, v5(m) ={n-{m Tx nforsome-Zxc S}. We note that v5(m)
does not form a filter in general nnless S is co-perfect:

Definition 4.1.3. Let S € CSYNT, X € C and F a filter on X. We say that F
converges to a subobject m € suby X with respect—to S—and write F S om if for any
Cx€Sx, mCxn=né&cF fornesubX. F isan S-Cauchy if for any Cx€ Sx there
is m € sub,X such that m C"x n=n € F.

Definition 4.1.4. Let X € C, m € sub, X, F a filter on X and S € CSYNT. Then m

is a clustering of F with respect to S if n Ap > Ox for anyn € v (m) and p € F.

The following is an easy observation.

Proposition 4.1.5. Let S € CSYNT, X € C and F a filter on X.
LFSmand FCF = F Sm.
2. <& and}"flﬁmé}"im.
3. For any m € sub,X, vy(m) Som.
4. F is S-Cauchy and F C F' then so is F'.

5. Every S-convergent filter on X is S-Cauchy.
Definition 4.1.6. Let S € SYNT and X € C. A filter F on X is said to be S-Cauchy if
it 1s Cauchy with respect to any S* € CSY NT that is coarser than S§. It converges with
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respect to S if it converges with respect to any S* € CSY NT such that S* < S.
One easily sees that Proposition 4.1.5 holds for any &', S € SYNT.

For the rest of this chapter, it is assumed that the class £ is stable under pullbacks
along M -morphisms and that any f € C reflects 0.
Proposition 4.1.7. Let f : X — Y be a C-morphism, F a filter on X and S € CSYNT.

(a) If F 5 m then f(F) 5 f(m). The converse implication holds if f is S-initial.

(b) If F is S-Cauchy on X then so is f(F) onY. The converse holds if f is S-initial
and belongs to &.

(¢) If m is a clustering of F then f(m) is also a clustering of f(F).

Proof. (a) Assume that F Sy m with m € sub,X. Then f(m) € sub,Y. Let f(m) Cy
p for any Cy€ Sy and p € sub¥.Theiby.(54) there is Cx€ Sy such that
m Cx f'(p) and f~'(p)r& F = pref (F)Conversely if f(F) 5 f(m) and
f(m) € sub,Y. Then m & subsX. Let m Cx n for any Cx€ Sx. Then there is
Cy€ Sy such that f(m) Ty f.(n) and f.(n) € f(F). Thus f~*(f.(n)) € F which
implies that n € F.

(b) Let F be S-Cauchy and [1yi&.Sy 1 Themwby (S4) thereis - y€ Sx such that f(p) Cy
q = p Cx [ Y(q) and there is m & subsX such, that m Cx n = n € F. Thus
f(m) €sub,Y and f(m) Cy L= mCx f ') = f'(l) € F & | € F. Conversely
if f(F) is S-Cauchy and Cx€ Sy, then there is Cy€ Sy such that m Cx n =
f(m) Cy f«(n) and there is p € sub,Y such that p Cy ¢ = ¢ € f(F). Now
f7Yp) € sub,X since f € € and f~l(p) Cx n = p = f(fHp) Cy fi(n) =
filn) € f(F) & f7H(f(n) e F=neF.

(¢) Let m be a clustering of . If n € v8(f(m)) and p € f(F), then f(m) Cy n for some
Cy€ Sy. By assumption, f~1(n)A f~(p) > 0x = 0y < f(f7H(n)Af71(p)) < nAp.
Thus n A p > 0x and f(m) is a clustering of F.

]

Corollary 4.1.8. Let f : X — Y be an E-morphism and F a filter on 'Y and S €
CSYNT. Assume that f is S-initial. Then

L. FSme f1(F)S ().
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2. F is 8-Cauchy if and only if f~1(F) is S-Cauchy.

Proposition 4.1.9. Let X = [[..; Xi be a product in C and F a filter on X. Assume

el

(pi : X — Xi)ies is an S-initial source.
(1) F Sem if and only if p;(F) S, pi(m) for each i.

(2) If for eachi € I the projections belong to &€, then F is S-Cauchy if and only if p;(F)
1s S-Cauchy for each 1.

Proof. (1) 1t F % m then pr;(F) 35, pr;(m) for each ¢ by Proposition 4.1.7(a). Let
pi(F) % pi(m) with p;(m) € sub,X;. Then m € sub,X for each i € I. Now, if m Cyx [
for any Cx€ Sy. Then there is i € I such that p;(m) Cx, (pi)«(1) and (p;)«(1) € pi(F).
So (p) M ((pi)«(1)) € F= 1€ F.

(2) If F is S-Cauchy on X, then by Proposition 4.1.7(b), p,(F) is S-Cauchy on X; for
each i € I. Conversely if p;(F) is.S=Cauchy on X;foreach« € [ and Cy€ Sy, then there
is 1 € I and Cx,€ Sy, such that'm-Tx n = p;(m) Cx(p;).(n) and there is [ €sub,X;
such that [ Cx, p = p € pi(F). Since p; € € for each i € I, p; ' (1) € sub,X and p;(I) Cx
n=1=pip; () Cx, (pi)«(n) = (pi)s(n) € pi(F) < p; ' ((pi)(n) e F==neF. O

From Proposition 4.1.7 and Definition 4.1.6 we have the following.

Proposition 4.1.10. Let f : X — Y be a C-morphism, F a filter on X and S € SYNT.
(1) If F Sy m then f(F) 5 f(m). The converse implication holds if f is S-initial.

(2) F is S-Cauchy on X then so is f(F) onY. The converse holds if f is S-initial and
belongs to E.

Proof. (1) If F S, m then by Definition 4.1.6, F S5 m for any §* € CSYNT such
that S* < §. By Proposition 4.1.7, f(F) SN f(m). Thus f(F) 5 f(m). Conversely if
f(F) 5 f(m) then f(F) SN f(m) for any S* € CSY NT such that S* < S. Proposition

4.1.7 implies that F S m. Hence F S m.

(2) Let F be S-Cauchy on X, then F is S*-Cauchy for any S € CSY NT such that
S§* < §*. By Proposition 4.1.7(b), f(F) is S-Cauchy and so f(F) is S-Cauchy. On the
other hand if f(F) is S-Cauchy, then f(F) is S*-Cauchy for any S* € C'SY NT such that
S§* < S. Proposition 4.1.7(b) implies that F is S*-Cauchy and thus F is S- Cauchy. O
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Analogous to Corollary 4.1.8 we have the Corollary.
Corollary 4.1.11. Let f : X — Y be an E-morphism, F a filter on’Y and S € SYNT.
Assume that f is S-initial. Then

L. FSme f4F) S F(m).

2. F is S-Cauchy if and only if f~1(F) is S-Cauchy.
Proposition 4.1.12. Let F be a filter on X and m € sub,X.

(1) If F S m then m is a clustering of F. The converse holds if F is an ultrafilter.

(2) m is a clustering of F if and only if there is a filter H on X such that F < H and

S
H = m.

Proof. (1) If If F 3, m, n € vi(m) and p € F, then n A p > Oy since F is a filter.
Conversely if F is an ultrafilter, m is a clustering of 7 and for any Cx€ Sx, m Cx n,

then n € F.

(2) Assume that m is a clustering of /& and put # = v5(m) (| F. We have that F < H
and if for any Cx€ Sx, m Cx n = n € H. Conversely if H is a filter such that
F < and H S m then for any 7€ vs-{m)-and-p €' F there is p’ € H such that

p < p. Since’;'-lim,77,€7-[:>n/\p’>0X:>pAn>0X.
]

Theorem 4.1.13. Let § € CSYNT and F be a filter on X. Then X is S-separated if

and only if F Somand F S n implies that m =n for allm, n € sub®™X and X € C.

Proof. Assume that X is S-separated, F Sy om and F 3 n with m, n € sub™X. If
m Cx pand n Cx ¢ for some Cx€ Sx, then pAg > 0x. Thus m An > Ox that is m = n.
Conversely if X is not §-Ts, then there are m, n € subX with m A n = 0x such that
pAqg>0x forallmCxp, nCxqgand Cx€ Sx. Now F={p|mCx p}U{q¢|n Cx ¢}

for all Cx€ Sx so that F S, m and F Sin simultanously. O

Definition 4.1.14. Let U be a quasi-uniformity on C and F filter on X. We shall say
that F converges to m (m € sub,X ) with respect to U and write F “ m if for any
U €Uy, Um) e F. F isU-cauchy if for each U € Ux there is m € sub,X such that
U(m) e F.
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Let U and V be quasi-uniform structures on C. For any X € C, if Uy < Vyx then every
V-cauchy filter on X is U-Cauchy. In particular, every U-Cauchy filter is U*-Cauchy.
Proposition 4.1.15. Let f : X — Y be a C-morphism. If F is U-Cauchy filter then so
is f(F). The converse holds if f is U-initial and belongs to E.

Proof. Let F be U-cauchy and U € Uy. Then by (U5) there is U’ € Ux such that
f(U'(n)) < U(f(n)) for all n € subX and there is m € sub,X with U’(m) € F. This
implies that f(I7(m)) € f(F). Thus f(U7(m)) < U(f(m)) = U(f(m)) € f(F) and
f(m) € sub,Y. Assume that f(F) is U-cauchy and U € Ux. Since [ is U-initial,
there is U’ € Uy such that f~Y(U’(f(m)) < U(m) and there is n € sub,Y such that
Ufn) € f(F) & f1(U'(n)) € F. Since f € &, f'(n) € sub,Y and f~}(U'(n)) =
FHU (W) SU(fFHn) = U(fH(n) € F. O

Proposition 4.1.16. Let S € CSY NT and.JF.a filter on X. Then F Sme F ﬁ m

Proof. Let m € sub,X and F TR (S B‘)S( then there is — € Sx such that Cx=C%
and m Cx n = n € F. But m Tx Afn | m ©x n} = U(m). Thus U(m) € U.

S
Conversely if 7 “= m and m Cy 0 then U (m) < n for some U € BS.. Hencen € F. [

Theorem 4.1.17. Let § € CSY NI and F be a filter-on X-—Then F is S-Cauchy if and
only if it is US-Cauchy.

Proof. Let F be U°-Cauchy and Cx€ Sy. Since S € C'SY NT, by Theorem 3.2.15 there
is U € BS that determines Cy and there is m € sub,X such that U(m) € F. Now, let
mCxn< Uim)<n=mnecF. Conversely if F is S-cauchy and U € B% then there is
Cx€ Sx such that :S’(::X and there is m € sub,X such that m Cx n = n € F. Now
m Cx U(m) since § € CSYNT and U(m) € F. O

Left (resp. right) Cauchy filters in quasi-uniform spaces have been investigated in [Rom96]
and these lead to left (resp. right) complete quasi-uniform spaces which are closely related
to the Smyth complete quasi-uniform spaces ([Stin93]). It seems that our co-perfect
syntopogenous structure provides a simple and natural way of stating these notions in
categorical language and link them to those obtained above. Let us also note that a
categorical approach to convergence has already been studied in the literature (see e.g
[S1a96)).

Definition 4.1.18. Let S € CSY NT'. A filter F on an object X € C will be called:
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(1) S-round if for every n € F, there ism € F and Cx€ Sx such that m Cx n.

(2) weakly S-Cauchy (or simply wS-Cauchy) if for every Cx€ Sx and for everyn € F,

there is m € sub,X with m < n such that m Cx p = p € F for any p € subX.

(3) left S-Cauchy if for all Cx€ Sx there isn € F such that m Cx p = p € F for any

m <n and m € sub,X.

(4) Corson S-filter or simply c¢S-filter if for all Cx€ Sx, there is m € sub,X such that

mCxn=nAp>0x foranyp e F.

For any X € C and m € sub, X, v5(m) = {n | for some C"y€ Sx, m Cx n} is S-round
and an S-Cauchy filter on X. An S-round and wS-Cauchy filter shall simply be called
S-round Cauchy filter.

Proposition 4.1.19. A filter F on X € C is:

(1) is S-round if and only if for-everyn-€ F, therets im-€.F and there is U € BS such
that U(m) < n.

(2) is wS-Cauchy if and only if for every U € Bs and for every n € F, there is

m € sub,X with m < n such that U(m) € F.

(3) is left S-Cauchy if and only, if every, U € B there is n € F such that U(m) € F

for any m <n and m € sub,X.

(4) is cS-filter if and only if for every U € B, there is m € sub,X such that U(m)Ap >

Ox for anyp € F.

Proof. (1) Assume F is S-round and m € F. Then there are n € F and Cx€ Sx such
n Cx m. By Theorem 3.2.15 there is U € Ux with C{=Cx . Thus U(n) € F. Conversely
if for any n € F, there m € F and U € BY such that U(n) < m, then Theorem 3.2.15

implies the existence of Cx€ Sx that determines U. Thus n Cx m.
A similar argument holds for (2) and (3).

(4) Assume F is a cS-filter and U € BS.. Then there is Cx€ Sy and there is m € sub, X
such that m Cx n = nAp > Ox for all p € F. Since m Cx U(m), we get that
U(m) Ap > 0x. On the other hand if for any Cx€ Sy, then there is U € BS such
that U~ = U and there is m € subX such that U(m) A p > Ox for any p € F. Now

mCxn<U(m)<n=nAp>0x.
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]

We shall sometimes say U-round (resp. left U-Cauchy) filters to mean the equivalent
expressions of Defintion 4.1.18 provided by Proposition 4.1.19.

Definition 4.1.20. A filter F on an object X € C 1is said to be U-stable if for any
Uelx, N{U(n) | ne F}eF. F isright U-Cauchy if for any U € Ux there isn € F
such that U*(m) € F for any m <n and m € sub,X .

Proposition 4.1.21. Let F be a filter on X € C. Then F is U-stable if and only if for
any U € Ux, there is m € F such that m < U(n) for anyn € F.

Proof. Assume that F is U-stable and U € Ux. Then A{U(n) : n € F} € F. One puts
m = N{U(n) : n € F} € F to have that, m < U(n) for any n € F. Conversely if it
holds that for any U € Ux there is m € F such that m < U(n) for any n € F, then
m < A{U(n):neF} = AN{Un): necFrerF.

Proposition 4.1.22. Consider the following for a filter 7 on X € C.
(1) F is U*-stable.

(2) F is ¢S-Cauchy. (5} Fis S-Cauchy.
(3) F is left S-Cauchy. (G F is U-stable.
(4) F is wS-Cauchy. (T)Fid rightUsCatchy.

Then (1) = (2), (3) = (4), (3) = (6), (3) = (1) and (5) = (2)

If F is an ultrafilter then (1) = (3), (6) = (7), (5) = (3) and (2) = (5).

Proof. (1) = (2) If F is U*-stable and U € Uy, then there is m € F such that m < U*(n)
for any n € F. This implies that U(m) An > 0x. By Proposition 4.1.19, F is ¢S-Cauchy.
(3) = (4) If F is left S-Cauchy, Cxe Sx and n € F then there is [ € F such that
m' Cx p=pé€F forany m" <[ and m’ € sub,X. Since n, | € F, [ An > 0x and
putting m = [ A n, we get that m Cx p = p € F, that is F is wS-Cauchy.

(3) = (6) Assume that F is left S-Cauchy and Cy€ Sx. Then there is n € F such that
mCx p=pé€EF forany m <n and m €sub,X. Thus F is S-Cauchy.

(3) = (1) Let F be left U-Cauchy and U € Ux. Then there is m € F such that U(m) € F
for all n < m with n € sub,X. If p € F, then m Ap < U(m) = m < U*(mAp) < U*(p).
Thus F is U*-stable.
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(5) = (2) If F is S-Cauchy and Cx€ S, then there is m € sub,X such that m Cx n =
n € F, which implies that n Ap > o for all p € F.

Let F be an ultrafilter.

(1) = (3) If F is U*-stable and U € Uy, then there is m € F such that m < U*(p) for
any p € F. Let n < m and n € sub,X. Then n < U*(p) © nAU*(p) >0x = n € F
since F is an ultrafilter and thus U(n) € F.

(6) = (7) If F is U-stable and U € Ux then there is m € F such that m < U(p) for all
peF. If n <mandn € sub,X, then n < U(p) = nAU(p) > 0x = n € F since F is
an ultrafilter and thus U(n) € F.

(5) = (3) If F is S-Cauchy and U € Ux. Then there is m € sub,X such that U(m) € F
by Proposition 4.1.19. Now, m A U(m) > 0x = m € F since F is an ultrafilter. Let
n <m and n € sub, X, then U(n) < U(m) and U(n) AU(m) > 0x. Thus U(n) € F.

(2) = (b) If F is ¢S-Cauchy and [ x€ Sy.then there is m € sub,X such that m Cx

n=nAp> 0y for any p € F . Sinee F-is-an-ultrafilter-n-e& F. O

It follows from Propositions 4.1.19 and 4.1.22 that every (/-Cauchy filter is ¢S-Cauchy
with the connverse holding if F is an ultrafilter.

Proposition 4.1.23. Let [ : X — ¥ be a C-morphism and JF a filter on X. Then iof F
is U-stable on X then so is f(F)."The converse halds if f s U-initial.

Proof. Let F be U-stable on X and U € Uy . Then there is V'€ Ux such that f(V(p)) <
U(f(p)) and there is m € F such that m < V(n) for all n € F. This implies that
f(m) < f(V(m)) < U(f(n)), that is f(F) is U-stable. Conversely if f(F) is U-stable
and U € Uy, there is U € Uy such f~HU'(f(p))) < U(p) and there is m € f(F) such
that m < U’(n) for all n € f(F). In particular m < U’(f(p)) for all p € F. Thus
Y m) < YU (f(p)) < U(p), that is F is U-stable. O

From the above proposition, we can prove the following.

Proposition 4.1.24. Let X = [[..; X; be a product in C and F a filter on X. Assume

icl
that (p; : X — X)ier is a U-initial source. Then F is U-stable if and only if p;(F) is

U-stable for each 1.
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4.2 Variant of completeness

Our different notions of Cauchy filters developed in the previous section allows us to define
distinct notions of complete objects.
Definition 4.2.1. Let S € SYNT. A C-object X is said to be strongly S-complete if

every S-cauchy filter on X converges with respect to S.

It can be seen from Definition 4.1.6 that a C object X is strongly S-complete if and only
if it is strongly S*-complete with §* € CSY NT such that §* < §. From Proposition
4.1.16 and Theorem 4.1.17 we have that,

Proposition 4.2.2. For S € CSYNT, an object X € C is strongly US-complete if and

only if it strongly S-complete.

Proof. Assume that X is strongly ¢/®-complete and let F be an S-Cauchy filter. Then
by Theorem 4.1.17, F is US-Canchy and by assymption £ is¢/°-convergent. Proposition
4.1.16 implies that F is S-convergent. Conversely if X i5 S-complete and F is a U
Cauchy filter on X, then F is S-Cauchy and S-convergent., By Propoposition 4.1.16, F

is S-convergent. O

Proposition 4.2.3. Let f : X — Y be a E-morphism that is S-initial. Then X is

strongly S-complete if and only if Y s strongly S-complete.

Proof. If Y is strongly S-complete and F an S-Cauchy filter on X, then by Proposition

4.1.7(b), f(F) is S-Cauchy and by assumption, f(F) 5 n for some n € sub,Y. This

implies that F S f(f~(n)) since f € €. By Proposition 4.1.7(a) F S f~'(n) and

f~Yn) € sub,X. Thus X is strongly S-complete.

On the other hand if X is strongly S-complete and F is S-Cauchy filter on Y, then by
S

Corollary 4.1.8 f~}(F) is S-Cauchy filter. Since X is strongly S-complete, f~1(F) =
n= f(f~YF)) EN f(n)=F SN f(n). Thus Y is strongly S-complete. O

Theorem 4.2.4. Let X = [[,.; Xi be a product in C and F a filter on X and S €
CSYNT. Assume that (p; : X — X;)ier is an S-initial source. Let for each i € I

iel

the projections belong to £. Then X s strongly S-complete if and only if X; is strongly

S-complete for each i.

In light of Proposition 4.2.2 we get
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Proposition 4.2.5. Let X = [[,.; X; be a product in C and F a filter on X and S €

CSYNT. Assume that (p; : X — X;)ier is an S-initial source. Let for each i € I

il

the projections belong to €. Then X is strongly S-complete if and only if X; is strongly

US-complete for each i.

One naturally obtains a categorical closure operator from S-convergent filters.
Proposition 4.2.6. Let S € CSYNT. Then ¢ (m) = \/{n € sub,X |3 F on X

such that F > n andm € F} is a closure operator on C.

Proof. (C1) and (C2) are easily seen to be satisfied. To check (C3),let f : X — Y beaC-
morphism and F be a filter on Y such that F S, pand m € F. Then by Proposition 4.1.7
(1), f(F) 5 f(n) and f(m) € f(F). Thus f(c3(m)) = \/{f(n) | 3 F on X such that

F S nandme F} < V{n' | 3 F onY such that F’ 5 0 and f(m) € F'} =
oy (f(m)). a

We shall say that m is S-closed if m. = 5 ().
Proposition 4.2.7. Let m : M —— X be S-initial and X strongly S-complete. Then M

1s strongly S-complete provided m is S-closed.

Proof. Let F be S-Cauchy filter on M. Then by Proposition 4.1.7 (2), m(F) is S-Cauchy
and m(F) converges to some n € subX because X is strongly S-complete. Since m is
S-closed, n < m < n =moj ="m(y) for some"j € subM. "Thus m(F) S5 m(j) = F ij
by Proposition 4.1.7 (1). O

Definition 4.2.8. Let S € CSYNT. An object X € C will be said to be:

(1) S-complete if every S-round Cauchy filter on X there is a unique m € sub,X such
that F = vg(m).

(2) left S-complete if every left S-Cauchy filter on X is S-convergent.
(3) ¢S-complete if every c¢S-filter on X has a clustering with respect to S

Because of Theorem 3.2.15, Proposition 4.1.19, we equivalently express the above defini-
tion as follows.

Definition 4.2.9. Let S € CSYNT. An object X € C will be said to be:

(1) S-complete if every US-round Cauchy filter on X there is a unique m € sub,X such
that F = 4 (m).
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(2) left S-complete if every left US-Cauchy filter on X is US -convergent.
(3) eS-complete if every cUS-filter on X has a clustering with respect to US.

We immediately get from Proposition 4.1.22 that every strongly S-complete object is left
S-complete.
Definition 4.2.10. An object of X € C is U-stable if every Cauchy filter on X is U-

complete.

Our next proposition relates left (right) U-complete objects with U-stable ultrafilters.
Proposition 4.2.11. For X € C, the following hold true.

(1) If X is left U-complete, then every U*-stable ultrafilter on X is U-convergent.

(2) If X is right U-complete, then every U-stable ultrafilter on X is U-convergent.

Proof. (1) Assume X is left /-complete-and F be- -stable ultrafilter. By Proposition
4.1.22, F is left U-Cauchy and hence ¢A-convergent:
(2) If Xis right U-complete and F be U-stable ultrafilter on X. By Proposition 4.1.22, F

is right U-Cauchy and thus I/-convergent. O]

Proposition 4.2.12. Let f : X ==Y be aU=initial- C=morphism. Then X is U-stable if
and only if Y is U-stable.

Proof. Assume that X is U-stable and F is a U-Cauchy filter on Y . Then by Proposition
4.1.15, f~1(F) is a U-Cauchy filter and U-stable. Since f € &, Proposition 4.1.23 implies
that F = f(f'(F) is U-stable. On the other hand if Y is U-stable and F is Y-Cauchy
filter on X, then f(F) is U-Cauchy and U-stable. By Proposition 4.1.15, f~1(f(F)) is
U-stable. Since f~(f(F)) C F, F is U-stable. O

Proposition 4.2.13. Let X = [[..; X; be a product in C. Assume that (p; : X — X;)ier

iel
1s a U-initial source. Then X is U-stable if and only if X; is U-stable for each 1.
Proposition 4.2.14. Let U € SQUNIF(C, M). Then every C-object is Strongly U-

complete.

Proof. Let F be a U- Cauchy filter on X and Bx = {U} be a base for Y. Since F is U-
Cauchy, there is m € subgX such that V(m) € F. But V(m) < U(m) for any U € Ux.
Thus U(m) € F and F converges to m. O
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4.3 Precompactness

With the theory of completeness of objects of C already established, one would expect
precompactness coming next.

Definition 4.3.1. Let X € C and S € CSYNT. X s said to be S-precompact if every
ultrafilter on X s an S-Cauchy filter.

It is immediate from the above definition that every U-precompact object is U*-precompact.
Proposition 4.3.2. Let X € C and § € CSYNT. X is S-precompact if and only if
every ultrafilter on X is a US-Cauchy filter.

Proof. Assume that X is S-precompact and F be an ultrafilter on X. Let U € B%.
Then by Theorem 3.2.15, there is Cx€ Sx such that U- = U and there is m € sub, X
such that m Tx n = n € F. Since m Tx. U(m), U(m) € F. Conversely if every
ultrafilter on X is US-cauchy, det- F-be an ultrafilter on X-and C”x€ Sx. Then there
is U € B$ such that C{=Cy and there ism € sub,X such that U(m) € F. Now

mCxn<U(m)<n=necF. O

Proposition 4.3.3. Let f : X —— Y be an E-morphism that is S-initial. Then X is

S-precompact if and only if Y is S-precompact.

Proof. Let X be S-precompact and - beanultrafilteron X: {Then f~1(F) is an ultrafilter
on X. By assumption, f~!(F) is an S-Cauchy filter on X. It follows from Proposition
4.1.7 that F = f(f~1(F)) is S-Cauchy filter on Y. Conversely let f be S-initial, belongs
to & and Y is S-precompact. If F is an ultrafilter on X, then f(F) is an ultrafilter on Y.
By assumption, f(F) is S-Cauchy. By Proposition 4.1.7, F is S-Cauchy. O

Theorem 4.3.4. Let X = [[..; X; be a product in C. Assume (p; : X — X;)ier be an

iel
S-initial source. Let p; belong to € for each i, then X is S-precompact if and only if X;
18 S-precompact for each 1.

Definition 4.3.5. An object X is said to be hereditarily precompact (resp. U*-precompact)

if every ultrafilter on X is left U-Cauchy (resp. U*-Cauchy).

From the observation that a filter on X € C is U*-Cauchy if and only if it is right U-
Cauchy, we have the following

Proposition 4.3.6. (1) X isU*-precompact if and only if it is hereditarily U*-precompact.
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(2) X is right U-complete if and only if it is U*-complete.
Proposition 4.3.7. If an object X € C is S-precompact and left S-complete then every

ultrafilter on X s S-convergent.

Proof. Let X be S-precompact, left S-complete and F an ultrafilter on X. Then F is an
S-Cauchy filter and by Proposition 4.1.22; F is left S-Cauchy and thus S-convergent. [

Proposition 4.3.8. The following hold true for a quasi-uniformity U on C and X € C.
(1) X is U-precompact if every ultrafilter on X is a ¢S-Cauchy filter.

(2) X is hereditary U-precompact, then every ultrafilter on X is U*-Cauchy.

Proof. (1) Assume X is Y precompact and F be an ultrafilter on X. Then F is U-Cauchy
filter on X. By Proposition 4.1.22 F is a ¢S-Cauchy.

(2) If X is hereditarily U-precompact and.Fis-amuitrafilter on X, then F is left U-Cauchy
filter. By Proposition 4.1.22, Fis U*-Cauchy. O]

4.4 The pair completeness

In order to make Caszsar’s theory. of completeness of/quasi-uniform spaces, expressed
in termes of syntopogenous structures, easily understandable at a level of completeness
of uniform spaces, W. F. Lindgren and P. Fletcher ([LF78]) introduced the concept of
pair completeness. Having studied various complete objects with respect to our quasi-
uniformity, it sounds natural to define pair completeness in these settings and relate it
with those obtained in the second section of this chapter.

Definition 4.4.1. Let X € C and (G, F) be an ordered pair of filters on X. We shall say
that (G, F) Yom (resp. (G, F) is U-stable) if G Lmand F S m ( resp. G is U*-stable
and F is U-stable). (G, F) is U-Cauchy if for any U € Ux, there are m € G and n € F

such that n < U(m') for allm’ < m and m’ € sub,X.

It is clear from the above Definition that if (G, F) is a U-Cauchy pair then F is U-Cauchy.
Definition 4.4.2. A filter F on X € C is said to be Doitchinov U-Cauchy or simply
dU-Cauchy if there is a filter G on X such that (G, F) is U-Cauchy.
Proposition 4.4.3. If F % m (m € sub™ X ) then F is dU-Cauchy.
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Proof. Assume F % m and U € Uyx. Then Um)e F. Now,let G={l|m<I},p<m
and p € sub,X, then U(m) < U(p). Thus F is dU-Cauchy. O

Proposition 4.4.4. Let U be a quasi-uniformity on C and F a filter on X € C. Then
(1) F Y m if and only if (F,F) “om.

(2) IfU is a quasi-uniformity, then F is U-Cauchy if and only if (F,F) is U-Cauchy.

Proof. (1) If F Y m and U € Uy, then U(m) € F. Since, U(m) < U*(m), U*(m) € F
and so (F, F) Y m. On the other hand if (F,F) Y mand U € Uy, then U(m), U*(m) €
F. Thus F % m.

(2) If F is U-Cauchy and U € Uy, then there is V € Uy such that VoV < U and there is
m € sub,X such that V(m) € F. Let p < V(m) and p € sub,X. Since U is a uniformity,
m < V(p) = m < V(m) < V(V(p) < U(p)~Thus (F,F) is U-Cauchy. Conversely if
(F,F) is U-Cauchy, then there-are-m, —n-e-F-such-thatn < U(p) for all p < n and
p € sub,X. Thus U(p) € F. O

Proposition 4.4.5. Let f : X —= Y be a U-initial C-morphism that reflects 0 and (G, F)

an ordered pair of filters on X . Then
(1) (G, F) % m if and only if (FG)3f GF)) % 1 (o)
(2) (G, F) is U-stable if and only if ( f(G), F{F)) is U=stable.

(3) (G,F) is U-Cauchy if and only if (f(G), f(F)) is U-Cauchy.

Proof. (1) Assume that (G, F) Y m and U € Uy. Then by (U5), there is U’ € Ux such
that f(U'(m)) < U(f(m)), U*(m) € G and U(m) € F. Now, f(U'(m)) € f(F) =
U(f(m)) € F and f(U*(m)) € £(G) = U*(f(m)) € f(G). Thus (f(g), f(F)) % f(m)
and f(m) € sub,Y since f reflects 0.

Conversely, let (f(G), f(F)) % f(m) and U € Uy. Then by U-initiality of f, there is
U’ € Uy such that f~4U'(f(m))) < U(m), U'(f(m)) € f(F) and U*(f(m)) € f(G). So
YU (f(m)) € Fand f~Y(U*(f(m))) € G which implies that U(m) € F and U*(m) € G.
Consequentely, (G, F) & m.

(2) Let (G, F) be U-stable and U € Uy. Then there is V € Ux such that V(f~'(p)) <
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S7H(U(p)) for all p € subY and there is m € F and n € G such that m < V(m/)
and n < V*(n') for all m’ € F and n’ € G. If k € f(F) and | € f(G), then
m < V) < FUR) and n < V() < FUHD). Thus f(m) < UK)
and f(n) < U*(l). Consequentely (f(G), f(F)) is U-stable.

On the other hand if (f(G), f(F)) is U-stable and V' € Ux, then there is U € Uy such
that f~Y(U(f(p)) < V(p) for all p € subX and there is m’ € f(G) and m € f(F) such
that m < U(l) and m’ < U*(k) foralll € f(F) and k € f(G). Let n € F and n’ € G, then
m < U(f(n)) and m’ < U*(f(n’)). Thus f~'(m) < f~YU(f(n)) < V(n) and f~}(m’)
and f~H(m') < fYU*(f(n')) < V*(n'), that is (G, F) is U-stable.

(3) Assume that (G, F) is U-Cauchy and U € Uy. Then there is V € Uy such that
V(ft(p)) < f~YU(p)) for all p € subY and there is m € G and n € F such that
n < V(m') for all m" < m and m’ € subsX-Tet i€ sub,Y and [ < f(m), then f(m)Al =
< f(mA f71(1) =1 since f € & Now 1€ suby¥ impliesthat m A f~1(I) € sub,X and
n < Vim A fD) < VO REOIVS RS () < f(n) < UQ). Thus
(f(F). f(G)) is U-Cauchy.

Conversely, let (f(G), f(F)) be U-Caunchy-and-U/ €-Ux—Then by U-initiality of f, there
is V € Uy such that f~1(V(f(p))) < U(p). for all p € subX and there is m € f(G)
and n € f(F) such that n < V(m/) for all m’ < m and m’ € sub,Y. Let [ € sub,X
and I < f~'(m). Then f(I) < m. Since f(I) € sub,Y, n < V(f(l)) = f'(n) <
YV (FW) <U() = f~1(m) <U(l). Thus (G, F) is U-Cauchy. O

Because of Proposition 4.4.5, we have that every di/-Cauchy filter on X is U/-Cauchy.

Proposition 4.4.6. Let X = []._.; X; be a product in C and (G,F) be an ordered pair of

i€l

filters on X. Assume that (p; : X — X;)ier is a U-initial source.
(1) (G,F) Y m if and only if (pi(G), pi(F)) 4, pi(m) for each i.
(2) (G,F) isU-Cauchy if and only if (p;(G),pi(F)) is U-Cauchy for each i.
(3) (G,F) is U-stable if and only if (p;(G),p;(F)) is U-stable for each i.

Proposition 4.4.7. If each filter pair on X isU-stable then X is hereditarily U* -precompact.

Proof. Assume that each filter on X is U-stable and F is an ultrafilter on X. Then
(F, F) is U-stable and so F is U-stable. Thus F is right ¢-Cauchy. Consequently X is
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U*-precompact. n

From Propositions 4.4.6 and 4.4.5, we can conclude that:

Proposition 4.4.8. Let f : X — Y be a U-initial C-morphism and F a filter on X.
Then F is dU-Cauchy if and only if f(F) is dU-Cauchy.

Proposition 4.4.9. Let X = [[..; X; be a product in C and F be filters on X. Assume
that (p; : X — X;)ier is a U-initial source. Then F is dU-Cauchy on X if and only if
pi(F) is dU-Cauchy for each i.

Definition 4.4.10. An object X € C is dU-complete if every diU-Cauchy filter on X is

U-convergent. X is U-Cauchy bounded if every ultrafilter is dU-Cauchy.

It is now clear from Propositions 4.4.6 and 4.4.5 that Propositions 4.2.3 and 4.2.4 remain
true for di-complete objects.
Proposition 4.4.11. (1) Every U-Cauchy-bounded object is U-precompact. The con-

verse holds if U is a uniformity:
(2) If every ultrafilter on X is t-convergent then X is U-Cauchy bounded.
(3) If X is dU-complete and U-Cauchy bounded then every ultrafilter on X isU-convergent.
(4) FEvery strongly U-complete object is dU-complete.

(5) If (G, F) is a U-Cauchy pair then (F,G) is a U*-Cauchy pair.

Proof. (1) and (4) follow from the fact that every dif-Cauchy filter is filter is U-Cauchy
while (2) follows from Proposition 4.4.3.

(3) is immediate from the definitions.

(5) Assume that (G, F) is a U-Cauchy pair and U € Ux. Then thereism € G and n € F
such that n < U(m/) for all m’ < m and m’ € sub,X. If n’ < n and n € sub,X, then

n' <U(m)=m < U*(n). Thus (F, G) is a U*-Cauchy pair on X. O

Proposition 4.4.12. Let F be a filter on X € C. Then F is a left U*-Cauchy filter if
and only if it is a right dU-Cauchy filter.

Proof. Let F be right U-Cauchy and U € Ux. Then there is m € F such that U(m) € F
for all m" <m and m’ € sub,X. Now, p < U(m') then m < U(p). Thus one puts F =G
to see that F is d/*-Cauchy. Conversely if F is dU*-Cauchy, then there is a filter G on X
such that (G, F) is U*-Cauchy. Let U € U, there is m € G, n € F such that n < U(m/)
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for all m" <m and m’ € sub,X. If p < n and p € sub,X then p < U(n), thus n < U*(p)
and U*(p) € F. O

Every left U-Cauchy filter is U*-Cauchy and U*-Cauchy filters are di/-Cauchy. Con-
sequently, every dlU-complete object is left U-Complete. However, the proposition above
allows one to conclude that an object is dU4*-complete if and only if it is right U-complete.
Proposition 4.4.13. If X is right U-Complete and (G, F) is a filter pair on X, then F

has a clustering with respect to U.

Proof. Assume that (G, F) is a U-Cauchy filter pair on X with X right U-complete. Let
F' be an ultrafilter on X that is finer that F. Then (G, F) is a U-Cauchy pair which
implies that F' is U*-Cauchy since U* < U. Thus F’ is right U-Cauchy and so F’ is

U-convergent. Consequentely F has a clustering with respect to U.

4.5 Examples

1. Consider the syntopogenous structure in Example 3:3(1). For any (X, D) € Qunif,
let sub, X be the class of singleton subsets of X. According to Proposition 4.1.16,
an S-convergent filter on' X Jis‘the one converging in the topology induced by D.
S-cauchy filters are D-cauchy filters (Theorem 4.1.17). By Proposition 4.1.19, left
(resp. right) S-Cauchy filters become the left K-Cauchy (resp. right) K-Cauchy
filters introduced by Romaguera in ([Rom96]) while wS-Cauchy filters and ¢S-
Cauchy filters are called weakily hereditarily Cauchy filters ([PPnR99]) and Corson
Cauchy filters ([PPnR99]). Thus, strongly S-complete objects coincide with the
convergent complete quasi-uniform spaces ([FL82]). An S-complete object corre-
sponds to a Smyth complete quasi-uniform space ([Siin93]) and left S (resp. ¢S)-
complete objects are the left (resp. corson) complete quasi-uniform spaces (see e.g

[Kiin02, PPnR99J).

2. Let S be the syntopogenous structure in Example 3.3.5(b). For any (X, T) € Top,
a filter F on X is S-round if for all A € F, there is B € F such that B C O C A
for some O € T, that is F has base of open subsets of X, say B ={0 | O € T}.
Now F being S-round and wS-Cauchy shall mean that for all O € B, there is x € O
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such that AM(x) C B which is equivalent to saying that F is a completely prime
open filter where N'(z) = {O € T | x € O}. Thus, (X, T) being wS-complete is
equivalent to the fact that every completely prime filter of open sets of X is the
neighbourhood filter of a unique point of X i.e (X, 7) is a sober space. In [Smy94]

sobriety is established using covers.

. Let S be the syntopogenous structure in Examples 3.3(2). For any (X, -) € TorGrp,
a filter F on X converges to z with respect to S if for any U € f(x), U - x € F.
F is S-Cauchy if for any U € [(e), there is © € X such that U - x € F. Thus every

complete group (see e.g [Bou66]) is S-complete.
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Chapter 5

Quasi-uniform structures and

Functors

This chapter aims to describe the quasi-uniformities induced by an £-pointed (respectively
an M)-copointed endofunctor and to investigate the continnity of functors between cat-
egories supplied with fixed quasi-uniformities. We commence by defining the continuity
of a C-morphism with respect totwo-syntopogenous-structures which permits us to study
the syntopogenous structures induced by £-pointed and M-copointed endofunctors of C.
Then apply Theorem 3.2.15 to obtain the corresponding quasi-uniformities. The notion
of continuity of functors between categories endowed with quasi-uniformities is then in-
troduced. The results proved are shown to yield in particular some of those obtained by
D. Diranjan and Tholen in ([DT95]). We conclude the chapter with a few examples that

demonstrate our results.

5.1 Quasi-uniform structures induced by (co)pointed

endofunctors

For a syntopogenous structure S on C and an E-pointed endofunctor (£, 1), we show, in
this section, that there is a coarsest syntopogenous structure S7 on C for which every
nx : X — FX is (85, 8)-continuous. This allows us to use Theorem 3.2.15 and obtain

the coarsest quasi-uniformity &5"" on C which makes every nx : X — FX (US"",US)-

&9



continuous. The dual case of an M-copointed endofunctor is also studied.

Throughout this section, the class € will be assumed to be stable under pullback

along M -morphisms.

Definition 5.1.1. Let S and S’ be syntopogenous structures on C. A morphism f: X —
Y is (S,8')-continous if for all 4 € S'y, there is Cx € Sx such that f(m) Cfy n = m Cx
f~Yn) for all m € subX and n € subY, equivalently m % n = f~1(m) Cx f~'(n) for

all n,m € subY.

Since every C-morphism f is (S, &)-continuous and (S§',8’)-continuous, f is (S,S’)-
continuous if &’ < §. Because S is simple if Sy = {Cx} is an interpolative topogenous
order, we obtain the following proposition which is a particular case of Definition 2.5.1
for interpolative topogenous orders.

Proposition 5.1.2. Assume that-S-and-S" are simple-syntopogenous structures i.e Sx =
{Cx},8'x = {C} € INTORD(E, My Then {is (S,S’)-continuous if and only if
f(m) Ty n=mCx f1(n) for all m & subX and n & subY .

Proposition 5.1.3. IfS,8" € C'SYNT(C,M).| Then f is/(S.S’")-continuous if and only
if for any V € BS there is U & BS such that fF{U(m)) < V{F(m)) for all m € subX.

Proof. Assume that f : X — Y is (S,8)-continuous and §,8 € CSYNT(C, M).
Then for any V € By, there is € S’y which determines V' and there is Cx€ Sy
such that f(m) Ty n = m Cx f~'(n). Now U(m) = Ug(m) = Ap | m Cx p} <
NH) | fm) &y n} = [THV(f(m)) = Ulm) < [ (V(f(m) & f(U(m)) <
V(f(m)). Conversely, assume that for any V' € B{ there is U € BS such that f(U(m)) <
V(f(m)). Now, for any i€ Sy, there is, by Theorem 3.2.15, V € B such that
Cy=CV. Thus f(m) Ty n & V(f(m) < n = f(Um) < n & Ulm) < () &

mCY fH(n) & mCx f1(n). O

Propositions 5.1.2 and 2.5.2 allow us to prove the following.

Proposition 5.1.4. Let S and S’ be simple and co-perfect syntopogenous structures i.e
Sx ={Cx},S'x ={Cx} € NA=INTORD(C,M). Then f is (S,8")-continuous if and
only if f(c5(m)) < & (f(m)) for all m € subX.

Theorem 5.1.5. Let (F,n) be an E-pointed endofunctor of C and S a syntopogenous

structure on C with respect to M. Then S¥" = {CY" | Crpx€ SpX} with m CY"
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n < nx(m) Crx p and ny' (p) < n for some p € subFX is the coarsest syntopogenous
structure on C with respect to M for which every nx : X — FX is (81", 8)-continuous.

If S is interpolative and co-perfect, then so is ST,

Proof. (S1) follows Theorem 2.5.4 while (S2) is clear. For (53), let C¥"€ Sy and m £}
n. Then there is p € subF X and Cpx€ Spy such that nx(m) Cpx p and 5 (p) < n and
there is Ty € Spx such that nx(m) Chy | Chy p and ny' (p) < n for some | € subFX.
Since each nx € &, nx(m) Ty 1x (15 (1)) Ty p. Thus m %" (1) % p.

Let f : X — Y be a C-morphism and f(m) C" n for Ci7¢ 8. Then there is
p € subFY and Cpy€ Spy such that ny(f(m)) Cry p and ny'(p) < n. By Definition

253, Ffonx =nyo/f.

Now, (F'f)(nx(m)) Cry p and 73" (p) < n = (Ff)(nx(m)) Crx p and ' (1" (p)) <
f7(n). So nx(m) Cx (Ff)~H(p) and 0y (FFH=(p)) < [~'(n) which gives 1x(m) Crx
land 05t (1) < £~ (n)(with | =G=5P))that-is-m-E i = ().

If § is interpolative and m Efg" 5, then gy (m) Cpxp. and 15 (p) < n for some
p € subFX. This implies that there is [ € subF'X such that nx(m) Crx | Crx p.
Thus 7x (m) Crx nx(nx (1) Crx p, that is m D" gyl (1) £ n.

nx is (851, 8)-continuous, since for all Cx € Sy, 1jx (M) Cx 1 = nx(m) Crx (nx(nx (7))
& m "y (n).

Assume S is co-perfect, then for eachz € I, m I:f(’" ni s x(m) Crx p; and 0y (p;) < n.

By assumption, nx(m) Crx Ai; i and 05 (Aie; Pi) = Nics 15 (2i) < Aoy i Conse-

quently m %" A._,n;. If 8 is another syntopogenous structure on C such that Nx is
X iel

(8, S)-continuous, then for any C7e S, m CX" n < nx(m) Crx p and 55 (p) < n.

This implies that there is Cy€ S’y such that m Ty 7' (p) < n = m % n. Thus

Stn < &', O

Viewing a reflector as endofunctor of C, one obtains the corollary below.

Proposition 5.1.6. Let A be an E-reflective subcategory of C and S a syntopogenous
structure on A with respect to M. Then S = {C4% | Crx€ Spx} with m C% n &
nx(m) Crx p and ny' (p) < n for some p € subFX is the coarsest syntopogenous structure
on C with respect to M for which every reflection morphism nx : X — FX is (84,8)-

continous. If S is interpolative and co-perfect, then so is S*A.

It is important to note that if S is a simple syntopogenous structure, then Theorem 5.1.5
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(resp. Proposition 5.1.6) becomes a particular case of Theorem 2.5.4 (resp. Proposition
2.5.6).
Since S is co-perfect provided S is co-perfect, we get the next proposition from Theo-
rems 3.2.14 and 3.2.15.
Proposition 5.1.7. Let (F,n) be a pointed endofunctor of C and S € CSYNT(C, M).
Then

BY " ={U™" | U™ € Bix} with US" (m) = nx" (U™ (nx(m))

1s a base for the coarsest quasi-uniformity on C with respect to M for which every
nx : X — FX is (Z/{‘SF’",L{S)—contmous. BS"" is a transitive base provided that S is

interpolative.

Proof. (U1) m <y (nx(m)) < 0y (U(nx(m))) = U(m).
For (U2), let U™ e BS™" for Crx€ Srx. Then, by Theorem 3.2.15, there is Cpx € Srx
such that VE o VE < UE.

Hence U™ (U5 m)) = i (0= tqx (s (VS (nx(m)))
<" (U (U (g (m))
< U (e (m)))
E g

1F,n

(U4 IEUE"" U™ e BS™ for Cx, T € Spx. US"(m)AUE"" (m) = nx (U (nx (m)))A
1y (US (nx(m))) = 0" (U (nx (m)AUE (nx(m))) = ny (USAUS) (nx(m)) = UED" (m).
Thus UE"" AUE™" € BS™.

(U5) Let f: X — Y be a C-morphism and UE™ € BS™ for Cry€ Spy. Then there is
Crx€ Spx such that f(VErX(m)) < U (f(m)).

Thus f(VEF’n(m)) = f(nx (V=X (nx(m)))

<y (FF(VERX (nx(m))) Lemma 1.2.4
<y (U (Ff)(nx(m))
=0y (U"X (ny (f(m))) Definition 2.5.3
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Since, for any Cpx€ Sx, US"(m) = nx (U= (nx(m))) = nx (U=""(m)) < U=(nx(m)),

nx is (US™", U)-continous for all X € C. If S is interpolative then

U= (U (m) = U (nx' (U (x (m)))
= nx (U (nx (" (U™ (nx (m))))
<0y (US(US(nx(m))))
= 1x (U"(nx(m)))

— U (m).

Let B’ be a base for another quasi-uniformity on C such that ny is (U’, U®)-continuous,
then for any U € B%y, there is U’ € B'x such that nx(U(m)) < U=(nx(m)) & U'(m) <
N3 (UE(nx(m))) = UE""(m). Thus BS™" <.Bk O

One sees from the above proposition that the-condition-of ( F,n) being £-pointed is not
needed when the syntopogenous structure is co-perfect.
Theorem 5.1.8. Let (F,n) be a pointed endafunctor of C and U € QUNIF(C, M). Then

the assignment U — UT" preserves-arbitrary joins and uniformity.

Proof. Let A = {U* | i € I} C QUNIF(C,M). Théorem 4.1.17, Bx = {U* A ... A
U™ | for each 1 < i < n, U' € Uy for'some U" € QUNTF(C, M)} is a base for \/ S. We
must show that BY% = {(U' A ... AU™)" | foreach 1 < i < n, U’ € Uy for some U' €
QUNIF(C, M} = {(UYT A ... A (U™ | for each 1 < i < n, U' € Uy for some U’ €
QUNIF(C, M)}. Now, (U A. AU = (i (U A . AU (e (m)) = 1 (U (s () A
AN (UM (nx(m))) = (UY? A ... A (U™)7. Assume that U is a uniformity on C. For
any X € C, m,n € subX and U € Urx, n < U"(m) & n < i (U(nx(m))) < nx(n) <
U(nx(m)). This implies that there is V' € Urx such that nx(m) < V(nx(n)) & m <
nx (V(nx(n))) = V"(n).

Proposition 5.1.9. Let (F,n) be a pointed endofunctor of C and U € QUNIF(C, M).

U

Assume that nx reflects 0 for each X in C.

(1) If F is a U"-Cauchy filter on X, then nx(F) is U-Cauchy on FX. The converse
implication holds if (F,n) is E-pointed and & is pullback stable.

(2) F “m (m € sub,X) if and only if nx(F) 4 nx (m).
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(3) X is U"-precompact if and only if FX is U-precompact.

Proof. (1) Assume that F is U"-Cauchy and U € Urx. Since nx is (U",U)-continuous,
nx (U™ (n)) < U(nx(n) for all n € subX and there is m € sub,X such that
U(m) € F. Thus ni' (U(nx(m)) € F < U(nx(m)) € nx(F), that is nx(F) is
U-Cauchy. Conversely if nx(F) is U-Cauchy on FX and U" € UY. Then there is
m € sub,F'X such that U(m) € nx(F) < n'(U(m)) € F. Since (F,n) is E-pointed
and & is pullback stable, ny' (m) € sub,X and n*(U(m)) = nx' (U(nx (nx'(m)))) =
U(ny' (m)). Thus Un(ny' (m)) € F.

2) Let 7 %5 m (m € sub,X) and U € Upx. Since ny is (U7, U)-continuous,
nx (U"(m)) < U(nx(m)) < U'(m) < 0y (U(nx(m)). Hence ny' (U(nx(m)) € F <
U(nx(m)) € nx(F). Conversely assume that nx(F) 4 nx(m) (nx(m) € sub,F'X)
and U" € U". Then m € sub, X and Ulnx(m)) € nx(F) < 0 (U(nx(m)) € F.

(3) The proof of (3) follows from-(1)-and (2):
[

According to [Hol09], if ¢, ¢ € CL(C, M), a C-morphism f: X — Y is said be (¢, ¢)-

preserving if f(cx(m)) = (f(m)).
Proposition 5.1.10. Let (F,n) be an E-pointed endofunctor of C andUU € QUNIF(C, M).

u.,n

Then for every X € |, nx is (", &) -preseverving.

Proof.

For any X € C, nx(c} " (m)) = nx (A\{nx' (U(nx(m)) : U € Upx}
= nx (15 (A\{U(nx(m)) : U € Upx}

= /\{U(nx(m)) U € Upx} = &Ex(nx(m)).

]

Proposition 5.1.11. Let A be a reflective subcategory of C and S a co-perfect syntopoge-

nous structure on A. Then

B = {U" | US € Bix} withU™" (m) = 15" (U= (nx (m)))
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18 a base for the coarsest quasi-uniformity on C with respect to M for which every reflection
morphism ny : X — FX is (Z/ISA, US)-continous. BS" is a transitive base provided that

St s interpolative.

While the syntopogenous structure S™7 was obtained with the help of the S-initial mor-
phism, a generalization of the notion of weakly C-final morphism to the case of syntopge-
nous structures gives the syntopogenous structure S%¢ induced by a copointed endofunc-
tor (G,¢) on C.

Theorem 5.1.12. Let (G,¢) be a M-copointed endofunctor of C and S a syntopogenous
structure on C, then SY° = {C$° | Cax€ Sax} with m C5° n & ext(n) Cax ex'(n)

for all m € subX and n > m, is the finest syntopogenous structure on C for which every

ex : GX — X is (S, 8%¢)-continuous.

Proof. (S1) and (S2) are easily easily seen to-be satisfied.

(83) If CG e S$° then there is Ehye-Sex—such-that-EaxC Ty © Chy. Now for all
m<n,mCY ne ey Cox expl)map.esubGX [ ex (m) Chy p Chx £x () =
ex (M) Chy ext(ex (D)) Thx ex'(n) < m 0y Bx (p) T'9T n. Thus CGTCCY® o T~
Let f: X — Y be a C-morphism and 576 ST, Then for all m € subX and n € subY’
such that f(m) < n, f(m) CEF 1 & S Cov Gitn) = (GAHER M) Cav
e (n) = 3 Coxe Sax | ex (MIEEY GRIEEM YL m) Cox e () =
m S f(n).

For all X € C, ex : GX — X is (S, 8%¢)-continuous, since for any Ei’ee S)G(’E and

m,n € subX with n < m, m CY° n = e3'(n) Cax €5 (n).

If " is another syntopogenous structure on C such that ex is (S, S’)-continuous, then for
any Cx€ S'y, m Cly n = ex(ex'(m)) T n = 3 Cax€ Sax | e (m) Cx e5'(n) &
m =$° n. O
Corollary 5.1.13. Let A be an M-coreflective subcategory of C and S a syntopogenous
structure on A, then S = {C% | Cx€ Sx} with m C% n & ex'(n) Cax ex (n) for
all m € subX and n > m, is the finest syntopogenous structure on C for which every
coreflection ex : GX — X is (S, S84)-continuous.

Proposition 5.1.14. Assume that f~' commutes with the join of subobjects for any f € C
and (G,e) be an M-copointed endofunctor of C and S € CSYNT(C, M). Then

BSYT = {VEDT | VE € BS, ) with VE™ (m) = m V ex(VE(ex (m)))
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is a base for finest quasi-uniformity on C which makes every ex (V,V#)-continous.

Proof. (U1) is clear.

(U2) Let VE®* € BS™, then there is Ty € Sax such that CC o .

1G,e

Now, VE“ (VEY (m)) = VO (m V ex (VT (651 (m))

1G,e

(U4) Tf VETS VED" € BS™ then

1G e

VES AVES = [m v ex(VElex (DI IV ex™ (85 ()]

= m V (ex (VEERmpN eV tan))) Lemma 1.2.13

Since VEAE € B, VES AVES" € B,

(U5) Let f: X — Y be a C-morphism and VE™* € BE“". Then, there is Ty € Sy such
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that f(VEX(m)) < VEY(f(m)) for all m € subX.

Now, f(VEX"(m)) = f(m Vv ex(VE(ex! (m)))
= f(m) V flex(VE(ex' (m))))
= f(m) Vey(Gf)(VE(ex'(m)))) Definition 2.5.3
< f(m) VeyVE(GS) (X (m))) U-continuity
< f(m) Vey(VE(ey (fm)) Lemma 1.2.4
= VE (f(m)

Since ex(VE(ex (m))) < VET (m) & VE(e(m)) < e (VED (m)),ex is (V,V57°)-
continuous.

Let B’ be base for another quasi-uniformity.3’.on C such that ex is (V,V’)-continuous.
Then for all V! € V'x, there is Ve V5ysuch V(e ) <ex(V'(m)) & ex(V(ex' (m))) <

V'(m) = mVex(V(ext(m))) <V (m) e VES (m) < V'(m). Thus B < BE<. O

Proposition 5.1.15. Assume that [T7' commutes with the join of subobjects for any

fecC, A be an M-coreflective subcategory of C and S a syntopogenous on A. Then
BA = (V| VE EIBS Vit IVE 1) E m Viex (VE(e5 (m)

15 a base for finest quasi-uniformity on C which makes every coreflection morphism €x

(V, VA)-continous.

5.2 The (U,V)-continuity of functors

Let A be a category endowed with an (£, M')-factorization system for morphisms and
A be M’-complete.
Definition 5.2.1. [DT95] A functor F': A — C is said to preserve subobjects provided

that Fm is an M-subobject for every M’-subobject m.

If F' preserves subobjects, then for every X € A, F' induces a monotone map
subX — subF X. Assuming the preservation of subobjects by I’ allows us to prove the
Lemma below.

Lemma 5.2.2. [DT95] Let f : X — Y be an A-morphism. Then
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(1) Ff~Yn) < (Ff)"Y(Fn) for all n €subY .
(2) (Ff)(Fm) < F(f(m)) for all m €subX.
Proof. (1) By Defintion 1.2.1, Ffo(Ff) '(n) = Fno f” and fo f~'(n) = no f’ so that

FfoFfY(n)=F(fof(n))=F(nof')= FnoFf. Thus there is a morphism

j which makes the diagram

commute with t = (Ff)~1(Fn). Now (Ff)"*(Fn)oj = Ff~(n), that is
Ff=t(n) < (Ff)~H(Fn).

(2) From Definition 1.2.2, f o= flin)oerforep e &y and FfoFm= (Ff)(Fm)o
ey with eo € €. So Ff o Fm-= F(fom) = F(f(m)oe) = Ff(m)o Fey .
The diagonalization property implies the existence of .a morhism j making the the
diagram below commute.

€2
T T

Fell J i(f‘f)(pm)
Ffoj=(Ff)(Fm), that is (Ff)(Fm) < Ff(m).

]

It is clear from the proof of the above Lemma that F f~'(n) = (F f)~'(Fn) if F preserves
pullbacks along M-morphisms. In this case we say that F' preserves inverse images.
Similarly, (F'f)(F'm) = F f(m) if Fe € £. In this case, we say that F' preserves images.
Definition 5.2.3. Let F': A — C be a functor that preseves subobjects, U € QUNIF(A, M')
and V € QUNIF(C,M). Then F is (U, V)-continuous if for all V € Vpx, there is

U € Ux such that FU(m) < V(Fm) for all m € subX, X € A.

It can be easily seen that our definition for (U, V)-continuity of F' is a generalization
of U-continuity of morphisms to functors. Using Theorem 3.2.14, we can formulate an

equivalent definition of the (U, V)-continuity of F in terms of co-perfect syntopogenous
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structures so that F' is (S,S’)-continuous will mean that F' is continuous with respect to

the quasi-uniform structures associated with S and S'.

Definition 5.2.4. Let F' : A — C be a functor that preseves subobjects, S € CSY NT (A, M’)
and § € CSYNT(C,M). Then F is (S, §')-continuous if for all C'ry€ S'px, there is
Cx€ Sx such that FUS(m) < U= (Fm) for all m € subX, X € A.

Continuity of a functor between categories supplied with fixed closure operators has been
studied in [DT95]. We next use the above proposition together with Corollary 2.1.6 and

the fact that A —INTORD(C, M) is equivalent to the simple co-perfect syntopogenous
structures to produce the (U, V)-continuity of F'in terms of idempotent closure operators.
Proposition 5.2.5. Let F : A — C be a functor that preseves subobjects, S € CSY NT(A, M)
and S € CSYNT(C, M) with S and 8" being simple i.e Sx = {Cx} and S'px = {Chry}.

Then F is (S, 8')-continuous if and only if for all Fc5(m) < cGy(F'm) for allm € subX,
XecA

We next prove some properties for the (14 V)-eontinuity-of /' that will be useful in what

follows.

Proposition 5.2.6. (1) For any U € QUNIEF(A, M'), Id is (U, U)-continous.

(2) If F is (U, V)-continuous and G = C — D a (V, W)-continuous functor that
preserves subobjects where W is a quasi-uniformity on D with respect to a class L

of mononomorphisms of D, then GF is{Uy YW)-continuous.

(3) Let U < U" in QUNIF(A, M) and V' <V in QUNIF(C, M). Then F is

(U, V)-continuous implies that it is (U', V')-continuous.

Proof. (1) is obvious.

(2) Let W € Wgpx for X € A. By (V, W)-continuity of G, there is V' € Vpx such that
GV (n) < W(Gn) for all n € subFX. Since F'is (U, V)-continous, there is U € Ux such
that FU(m) < V(Fm) for all m € subX. Thus GFU(m) < GV (Fm) < W(GFm), that
is GF is (U, W)-continuous.

(3) Assume F'is (U, V)-continuous and V' € V'px. Since V' <V, there is V' € Vpx such
that V' < V' and there is U € Ux such FU(m) < V(Fm) < V'(Fm) for all m € subX.
From U < U’', we get U" € Ux such that U’ < U and FU'(m) < FU(m) < V(Fm) <
V'(Fm). Thus F is (', V')-continuous. O
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5.3 Lifting a quasi-uniformity along an M-fibration

We prove, in this section, that if F': A — C is an M-fibration and B is a base for a quasi-
uniformity on C, there is a coarsest quasi-uniformity ¥ on A such that F is (U, U)-
continuous. We then use the syntopogenous structure to deduce the lifted idempotent
closure operator, which turns out to be the largest one for which F'is (c':F, c-)-continuous.
Proposition 5.3.1. Let F : A — C be a faithful M-fibration and S be a syntopogenous

structure on C with respect to M. Then
SY ={c% | Crx€ Srx} where m Ck n < Fm Crx vx(n)

s a syntopogenous structure on A with respect to Mg which is interpolative, co-perfect
provided S has the same property. Moreover, an A-morphism is SF'-initial provided F f

18 S-initial.

Proof. (S1) follows Proposition 2.4.2. For (82),we let. =2, /" € ST for Crx, Chy € Srx.
Then there is T’y such that CpxCChy and Chy CEl . (Thus CECC and £ CCAE .
(83) Let m & n for Crxe Spx and m, n & subX. Then there is p € subFX and
Chx € Srx such that Fm Chgp ey Ax()y& Fm Tey #0x(p) Cry Fn & m ¥
Ox(p) C'F n. Let f: X — YV andrche S 1iThen f (). Cin.e F(f(m)) Cry 1y (n) &
(F)(Fm) Ery 2w () & Fin Sl BF Yowlwy = o (@) & m £F 1(n).

If S is co-perfect, then for all i € I,m Ck n; & Fm Cpx vx(n) = Fm Crx

Nier 7x(ni) < Fm Crx 7(6x (Nier 7x(13)) = vx (Nies 0x (vx (0))) = vx (Nieg 124)-

Interpolation of S¥' follows from Proposition 2.4.2

Assume that Ff is S-initial and Ci € Sx. Then for all m, n € subX, m C§ n <
Fm Cgrpx Fn. This implies that there is Cpy€ Spy such that (Ff)(Fm) Cpy p and
(Ff)~'(p) < Fn. Since F preserves images, F'f(m) Cpy p and dx(Ff)™'(p) < n. Now,
F preserves preimages, Ff(m) Cpy F(oy(p)) and £~ (8y(p)) < n. Thus f(m) = by (p)
and f~(dy(p)) < n, that is f is SF-initial. O

Althought our next proposition can be obtained from Theorem 3.2.15 and Proposition

5.3.1, we provide a direct proof (without use of syntopogenous structures) as we want to
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describe U*.
Theorem 5.3.2. Let F': A — C be a faithful M-fibration and B be a base for a quasi-
uniform structure on C with respect to M. Then
(i) B = {U" | U € Urx} where UF(m) = 6x(U(Fm)) is a base for a quasi-
uniformity on A with respect to Mpg.

(ii) B is transitive provided B is a transitive base.
(iii) BY is a base for the coarsest quasi-uniformity for which F is (UY,U)-continuous.

(iv) An A-morphism f is U -initial provided F [ is S-initial.

Proof. (i) (Ul) m <~vx(U(Fm)) since m = vyx(Fm) < vx(U(Fm)).
(U2) If U)I? € Bf( for U € Upy, then there is V € Bry such VoV < U.

Now V' (VEmy =V (Fm)))
= ox (V(F(0xV(Fmn))))
= 0 (VI(V (Em))
< ox (UI(Fm)
=U"(m).

(U4) If UF, VF € Bpx for U, V € Bry, then UAV € Brx. So UF(m) AVE(m) =
dx(U(Fm)) ANox(V(Fm)) = ox(U(Fm) AV (Fm)) =0x((UAV)(Fm)).

Thus UF A VF € BE.

(U5) Let f: X — Y be a A-morphism and U" € BE for U € Bry.

Thus f(U"(m)) = f(ox(U(Fm))

= oy (Ff)(U(Fm)))
< oy (V(Ff)(Fm)) for some V € Bpx

= oy (V(Ff(m)))
=V (f(m))
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(17) If B is a transitive base, then for all U € By

Ur(U" (m)) = U" (0x (U(Fm))
= Ox(U(F(x(U(Fm)))
= ox(U(U(Fm)))
= ox(U(F'm))
=U"(m)

(4ii) F is (U",U)-continuous, since for any U € Brx, UF(m) = 0x(U(Fm))

& yx(UF(m)) =U(Fm) & F(U"(m)) = U(Fm).

If B’ is a base for another quasi-uniformity &4’ on A such that F is (U',U)-continuous,
then for all UF € BE, there is U’ € B’ such_that FU'(m) < U(Fm) = FU¥(m). Thus
U'(m) = dx(FU'(m)) < dx(FUEGR)=U"(m), that-is-BE< B'.

(iv) If Ff is U-initial and U? & Uk there is U e Uzy such that (Ff)"H (U (Ff)(p)) <
U(p) for all p € subF'X. Now f {0y (U (EFf(m)))) =dx((Ef)" YU (Ff(m)))) =
Sx((FAY™H U ((Ff)(Fm)))) < ox(U(Fm)) = Ul (m) for allim € subX. O

Corollary 5.3.3. Under the assumptions,of-1heorem 5.5.2 and F is essentially surjective
on objects, B is the base of the finest quasi-uniformity on C for which F is (U, U)-

continuous.

Proof. By essential surjectivity of F' on objects, we have that for all Y € C, Y =& FX
for some X € A. Thus if B’ is another quasi-uniformity on C such that F is (U, U’)-
continuous, then for all Y € C and U’ € U'y, there is X € A and UF € B such that
Y = FX and FU"(m) < U'(Fm) < U(Fm) = Fox(U(Fm)) < U'(Fm) = U'(Fm).
Thus B’ < B. O

Proposition 5.3.4. Let F : A — C be faithful M-fibration and S be a simple co-perfect
syntopogenous structure on C with respect to M i.e S = {Cx} € N—INTORD . Then
=" (m) = 6x(cE(Fm)) is an idempotent closure operator on A with respect to Mp. It is

the largest closure operator on A for which F is (=", ¢=)-continuous.

Proof. (C1) and (C2) are easily seen to be satisfied. For (C3), let f: X — Y be an A

-morphism and m € subY.
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Then f(c% (m)) = f(0x(chx(Fm)
= Oy (Ff)(chx(Fm))
< Sy (chy (Ff(m))
= Oy (cy (Ff(m))
= & (f(m)))

Fis (¢=", ¢&)-continuous since, yx (= (m)) = ¢=(Fm) & Fc&" (m) = ¢=(Fm).

Now, CEF(CEF(m)) = CEF(CSX(C%’X(Fm)))

If ¢ is another closure operator-on-A such that#is (¢, ¢=)-continuous, then Fex(m) <

¢C(Fm). Thus cy(m) = 6x(F(ex (m ) WV <SOREL (Fi)) =ik (m). O

5.4 Quasi-uniform structures and adjoint functors

We start by recalling the definition of adjoint functors.

Let A and C be categories. An adjunction from A to C consists of functors F': A — C,
G : C — A and a natural transformation 1 : 14 — GF such that for all X € A,
<FX,nx>is a G-universal arrow with domain X i.e forany Y € Cand f: X — GY €

A, there is a unique f : FX — Y such that the following diagram commutes.
- GFX

S~

X — GY
FX —Y

U
GY
Thus the correspondance
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is inverse to the map ¢x y : C(FX,Y) — A(X,GY) given by g — Gf onx and
the existence of a G-universal arrow for X therefore gives a natural isomorphism ¢y, _ :
C(FX,—) — A(X,G—) so that A(X,G—) : A — Set is a representable functor.
Conversely, the representability of A(X,G—) gives a G-universal arrow for X with F'X

the representing object and with an isomorphism as above, nx = ¢x, rx(1px).

F is called the left adjoint, G the right adjoint and for the rest of the paper we shall
simply write F 4G : C — A.

Lemma 5.4.1. [DT95] Let F 4 G : C — A be adjoint functors. Then GM C M’ if
and only if FE' C &.

Theorem 5.4.2. Let FF 4G : A — C be adjoint functors and B be a base for a quasi-
uniformity U € QUNIF(A, M’). Assume that G and F preserves subobjects. Then
By = {U" | U € Bpx} with U'(m) = n' (GU(Fm)) for any X € C is a base for
quasi-uniformity on C. B" is a base-for-the coarsest.quasi-uniformity for which F is

(U, U)-continuous.

Proof. Let us first note that for any U € Ugpyx, we have the diagram below.

M = GFM
m Un(M) .~ GU(FM) GFm
Am) G[m\
X GFX
nx

By adjointness, g : U"(M) — GU(FM) corresponds to a morphism g : FU"(M) —
U(Fm) such that the following diagram commutes.

FUM

U(FM)
FU”(X %ﬂ)
FX

So U(Fm)og=FU"m) < FU"(m) <U(Fm). (U1) follows from the diagram

below. For (U2), let U" € U}, then U"(m) = nyx (GU(Fm)) for some U € Brx and
there is V' € Upx such that V oV < U. Since, FV'(m) < V(Fm); V(FV1(m)) <
V(V(Fm)) < U(Fm) = V(FV"(m)) < U(Fm)) = G(V(FV"(m))) < G(U(Fm)) =
Ny (GV(EV(m))) < ny' (U(Fm)) < VI(V7(m)) < U(m).
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(U3) Let UM, V" € U™ and m €subX. Since, G preserves inverse images,

Since, U AV € Ux,UTAVT € U".

(U5) Let X — Y be a C-morphism and U" € Y" for any U € Uy . Then there is V € Uy
such that f(V(m)) < U(f(m)).

Thus f(V"(m)) = f(nx (GV(Fm)))

< 0y UGEFUGCYV(Tm)) Lemma 1.2.4

<y (G V(M)

<y GU (B (Em))) U-continuity of Ff
= 1y (GU (Ef(m))) Lemma 5.4.1
=U"(f(m))

F'is (U",U)-continuous, since for any U € Upx, FU"(m) < U(F'm) for any X € C. Let
B’ be a base for another quasi-uniformity & on C such that F' is (U’,U)-continuous. Then
for any U" € BY, there is U’ € B'x such that FU'(m) < U(Fm). Thus nx(U'(m)) <
GFU'(m) < GU(Fm) = nx(U'(m)) < GU(Fm)) < U'(m) < 1y (GU(Fm)) = U"(m),
that is U7 < U'. O

Theorem 5.4.3. Let FF 4 G : C — A be adjoint functors and B be a base for U €
QUNIF(C, M). Then the assignment U — U" preserves all joins and transitivity. More-

over,
()"
QUNIF(A, M) QUNIF(C, M)
(=)n
with Vi = \V{U € QUNIF(C,M) : U" < V}. In particular, F is (U",U) and (V,U")-

continuous for allUd € QUNIF(C, M) andV € QUNIF(A, M’).
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Proof. One proceedes as in the proof of Theorem 5.1.8 to show that U — U" preserves
all joins. Assume that U is transitive. Since FU"(m) < U(Fm) for any U € Bpx,
UnU"(m)) = nx (GU(FU"(m)) < ny (GUU(Fm))) = ny (GU(Fm)) = U'(m). F is
clearly (U",U)-continuous. Now, let V € QUNIF(A, M) and U € QUNIF(C, M) such
that 4" < V. Then F is (V,U)-continuous and so by Lemmma 5.2.6(3), F' is (V,V,)-

continuous since U < V.
O

Proposition 5.4.4. Let ' 4G : A — C be adjoint functors and S € CSYNT (A, M").

Assume that G and F' preserve subobjects.

Then 8" = {C% | Crx€ Srx} with m C% n < 0y (GUS(Fm)) < n is a co-perfect
syntopogenous structure. It is the coarsest syntopogenous structure for which F' is (8", S)-
continuous.

Proposition 5.4.5. Under thetassumptions-of Proposition-above, if S € CSY NT (A, M')
and simple i.e S = {Cx} € N=INLTORD(A M) = ICL(A,M'). Then 5 (m) =
Ny (GG (F'm)) is an idempotent closure operator. It is the largest closure operator c for

which F' is (¢, c&)-continuous.

One obtains quasi-uniform structures_induced by pointed and copointed endofunctors
(F,n) and (G, e) as follows. H?n = {UF’T] | U € Upx } where UF’n(m) =nx (U(Fm)) and
H)G(’E = {UG’E | U € Upx } with UG’E(m) =mVex(U(Gm)) for any X € C. Tt is not hard
to see that U " and U are quasi-uniform structures on C. Moreover,

Proposition 5.4.6. The following holds true.
(1) HFW < YFn:
(2) UuG= < UG"‘:’.

(3) Ifnx € €, then U =y,

Proof. (1) Since for any X € C, the diagram commutes

by the diagonalization property of the (£, M)-factorization, there is ¢t such that Fmot =

nx o e, that is, nx(m) < Fm. Thus for any T e 27{?7, there is UM € uf;"? such that
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UFa(m) < T " (m).

(2) The pullback

commutes so that ex'(m) ol = Gm < Gm < ex'(m). Thus for any U%* € u)(g‘g, there is

T e [7?;’5 such that UG’E(m) < U%(m).

]

It is well known that a full subcategory of C is reflective if and only if the inclusion functor
I : A= C has a left adjoint I, called a reflector.-Smice the reflector can also be viewed
as a pointed endofunctor of C, we have the following.

Proposition 5.4.7. Let A be a reflective subcategory of Cl and B be a base of a quasi-

uniformity on C. Then
(1) For any X € C, B¢ < BY.

(2) If A is E-reflective, then B+ = BY.

5.5 Examples

1. Let QUnif, be the category of T, quasi-uniform spaces and quasi-uniformly con-
tinuous maps with (surjective, embeddings)-factorization system. It is known that
bQUnif, (see e.g [Brii99]), the category of bicomplete quasi-uniform spaces and
quasi-uniformly continuous maps is an epi-reflective subcategory of QUnif,. Let
(F,n) be the bicompletion reflector into QUnif,. For any (X,U) € QUnif,,
nx (X, U) — ()?,Z}) takes each z € X to its neighbourhood filter in the topology
induced by the join of U and its inverse. It is known that nx is a quasi-uniform
embedding. Details about this can be found in [? ]. Now, BF" = {UF" | U € LNI)}}
where UM = {(z,y) € X x X | (nx(x),nx(y)) € 17} is a base of for the quasi-

uniform structure %" on X. Since nx is quasi-uniform embedding, Ux is the initial
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quasi-uniformity for which nx is quasi-uniformly continuous. Thus U)};’" =Ux.

. The category Unif of uniform spaces and quasi-uniformly continuous maps is core-
flective in Qunif. Let (G, ¢) be the coreflector into Unif. For any (X,U) € QUnif,
ex (X, U\/U™') — (X,U) is an identity map. Since U \/U™" is the finest quasi-

uniformity on X for which ey is quasi-uniformly continous, Z/{)C;’E =uU\u

. Consider TopGrps the category of Hausdorff topological groups and continuous
group homomorphisms with the (surjective, injective)-factorization structure. We
know from [Bou66] that the category cTopGrps of complete Hausdorff topological
groups (those topological groups which are complete with respect to the two-sided
uniformity) is coreflective in TopGrpz. Let (F,7n) be the completion reflector into
TopGrp, and for any X € cTopGrp, let S(e) be the neighbourhood filter of the
identity element e. For all U € f(e), put U. = {(x, y) € X x X 1y €zUNUz} so
that BS, = {U° | U € ((e)}-isabase for the-two-sided uniformity &¢ on X. Since
nx is again an embedding of X' - Toprps-into-its completion X , we have that
utn =u.,.

. The forgetful functor
F :TopGrp — Grp

is a mono-fibration. Thus by Proposition 5.3.1, every syntopogenous structure on

Grp can be initially lifted to a syntopogenous structure on TopGrp.

. Consider the functors G : Qunif — Top which sends every quasi-uniform space
(X,U) to the topological space (X, G(U)) with G(U), the topology induced by U,
obtained by taking as base of neighbourhoods at a point = the filter {Ulx] | U € U}
where Ulz] = {y € X : (z,y) € U} and F : Top — Qunif which sends every
topological space (X, T) to the finest quasi-uniformity & on X with G(U) = T. It is
known (see e.g [DKO00]) that F is left adjoint to G. For any (X, 7T) € Top, the unit
nx : (X, T) — (X,GF(T)) is a continuous map where (X, GF(T)) is the set X
endowed with the topology of the finest quasi-uniformity (X, F/(T)). Now Sixu) =
{c% | U € U}y where A =V B & U(A) C B for any A, B C X is a co-perfect
syntopogenous structure on Qunif for any (X,U) € Qunif. Let (X,7) € Top,
AT B < ' (GU(FA)) C B forany U € Uyx. But ny (GU(FA)) =y (GU(A)),
Ny (GU(A)) is a neighbourhood of A in 7. Thus Sx = {C% | X € Top} with
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AC% B« V C B where V a is neighbourhood of A in 7 so that AC% B« A C
O C B for some O € T.

. Let Top be the category of topological spaces and continuous maps with its (surjec-
tions, emdeddings)-factorization structure. It is well known that Top,, the category
of T,-topological spaces and continuous maps is a epi-reflective subcategory of Top.
Define Sx = {Cx, | Xo € Topo} by A Cx, B & A C B for any X, C Top,,
A, B C X,. Let (F,n) be the reflector into Top,. For any X € Top, ny : X —
X/ ~ takes each z € X to its equivalence class [z] = {y € X | {z} = {y}}. Thus
Sx ={Ck" | X € Top} with ACY" B o ni'(inx(A) CB A, BC X.
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