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Abstract

Sequencing an HIV quasispecies with next generation sequencing technologies yields a dataset with
significant amplification bias and errors resulting from both the PCR and sequencing steps. Both the
amplification bias and sequencing error can be reduced by labelling each cDNA (generated during the
reverse transcription of the viral RNA to DNA prior to PCR) with a random sequence tag called a Primer
ID (PID). Processing PID data requires additional computational steps, presenting a barrier to the
uptake of this method. MotifBinner is an R package designed to handle PID data with a focus on

resolving potential problems in the dataset.

MotifBinner groups sequences into bins by their PID tags, identifies and removes false unique bins,
produced from sequencing errors in the PID tags, as well as removing outlier sequences from within a
bin. MotifBinner produces a consensus sequence for each bin, as well as a detailed report for the
dataset, detailing the number of sequences per bin, the number of outlying sequences per bin, rates
of chimerism, the number of degenerate letters-in_the final consensus sequences and the most

divergent consensus sequences (potential.contaminants).

We characterized the ability of the'PID approach to reduce the effect of sequencing error, to detect
minority variants in viral quasispecies and to reduce the rates of PCR induced recombination. We
produced reference samples with known variants at known frequencies to study the effectiveness of
increasing PCR elongation time, decreasing the number of PCR cycles, and sample partitioning, by
means of dPCR (droplet PCR), on PCR induced recombination. After sequencing these artificial samples
with the PID approach, each consensus sequence was compared'to the known variants. There are
complex relationships between the sample preparation protocol and the characteristics of the
resulting dataset. We produce a set of recommendations that can be used to inform sample

preparation that is the most useful the particular study.

The AMP trial infuses HIV-negative patients with the VRCO1 antibody and monitors for HIV infections.
Accurately timing the infection event and reconstructing the founder viruses of these infections are
critical for relating infection risk to antibody titer and homology between the founder virus and
antibody binding sites. Dr. Paul Edlefsen at the Fred Hutch Cancer Research Institute developed a
pipeline that performs infection timing and founder reconstruction. Here, we document a portion of
the pipeline, produce detailed tests for that portion of the pipeline and investigate the robustness of

some of the tools used in the pipeline to violations of their assumptions.
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2 Introduction

2.1 Thesis Outline
The main goal of this project was to develop methods that will improve the accuracy with which the

genetic information of populations of organisms can be obtained. Sequencing genetic information is
an error-prone process. Robust techniques exist for correcting these errors when sequencing an

individual organism, but the approaches for populations of organisms are more complex.

The first chapter provides background information and reviews some of the existing approaches for
obtaining the genetic information from populations of organisms. A very basic introduction to
molecular biology is provided. Using these concepts, the human immunodeficiency virus (HIV) is
described since it was used as a case study in this work. Next, the traditional approach and its
limitations to sequencing HIV is reviewed motivating the application of next generation sequencing
(NGS) for sequencing HIV. Modifications to the standard NGS protocols that enable the sequencing of
the HIV quasispecies are described in the subsections about the PID approach. The first chapter
concludes with a discussion of an.approach-for computing-the-time since HIV infection based on

sequence data.

MotifBinner implements a complex algorithm to process the sequence data. Each step in this
algorithm, and the reasoning that led to the inclusion of that step, together with a detailed example
of the use of MotifBinner is detailed in Chapter 2. An experiment comparing variations in the
protocols for preparing a sequence. library with'the' PID approach'is detailed in Chapter 3. The final
chapter presents work that tests and investigates a software pipeline that estimates the time since

infection based on datasets like those produced by MotifBinner.

2.2 Central Dogma of Molecular Biology
Molecular biology is a large and complex subject. This section briefly summarizes a few concepts

drawn from (Fairbanks & Andersen, 1999). In simple terms, the central dogma of molecular biology
states that genetic information is used to construct proteins. Proteins are large molecules that are

essential to all living organisms (F. H. Crick, 1958).

Genetic information is stored in long linear molecules called deoxyribonucleic acid (DNA). DNA
consists of a long series of nucleotides (also referred to as bases or residues) that are linked together.
Four different kinds of nucleotides can be found in DNA: adenine (A), cytosine (C), guanine (G) and
thymine (T) (Watson & Crick, 1953). These four nucleotides form a four-letter alphabet and the order
in which they occur encodes the genetic information. When DNA is sequenced, the order of the

nucleotides is determined.
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Figure 1: Structure of nucleotides. (a) The building-blocks-of-all-nucleotides-are-one or more phosphate groups, a pentose
sugar, and a nitrogen-containing base. (b) The nitrogen-containing bases of nucleotides. (c) The two pentose sugars of DNA
and RNA. (OpenStax-College, 2015);+ Downlead;: -fory+freey at-~http://cnx.org/contents/14fb4ad7-39a1-4eee-abbe-
3ef2482e3e22@7.30.

A nucleotide is composed of a five-carbon sugar molecule with a phosphate group at one end (the 5’
carbon) and a nitrogenous base at the other (the 1’ carbon), see Figure 1. The phosphate group of one
nucleotide can bind to the 3’ carbon of another nucleotide, allowing long chains to form. This also
provides the orientation of the DNA, with DNA being read from the 5’ to the 3’ end. When a gene or
region is towards the 5’ end of the DNA molecule, it is said to be upstream and downstream when it

is towards the 3’ end.

DNA exists as double stranded helices in which the nitrogenous bases facing each other (Figure 2). The
facing nitrogenous bases bind to each other with the following restrictions: 1) Adenine can only bind
to thymine and; 2) Cytosine can only bind to guanine (Watson & Crick, 1953). Adenine binds to
thymine with two hydrogen bonds while guanine binds to cytosine with three hydrogen bonds, thus
the bonds between guanine and cytosine is stronger than the bonds between adenine and thymine.
Additionally, for the bases to bind to each other, the two strands must run in opposite directions in

the helix. These restrictions mean that any strand in a double stranded DNA molecule is uniquely
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determined by the other strand. The two strands are said to be reverse complements of each other.
The formal terminology for the orientation of the two strands is to refer to them as either sense or
antisense based on their relationship to the messenger RNA for which they encode. However, in the
Primer ID literature, the strands are referred to as either the forward or reverse stand, with the

forward strand being the strand that is the same as the RNA version of the sequence.

Hydrogen bonds

Nitrogenous bases: Thymine o _.-HoN Ader\;nne 3
. 5’
’ +  mmmm Adenine N OH
P is 9% A Nat
=X Thymine P NH™ N
mm Guanine -0 Q o. N L‘N 0" %o O@
Cytosine < P
O o 0O
_.HzN
O, N & C
5o [ W 4 > 0" . &
Base pair e o_ N _{:H O>_N OP 0
----- Cytosine o,
Sugar- 0 Guanine Rz ©5
phosphate | [ |
backbone | I |
Sugar-phosphate Bases Sugar-phosphate
3 ' backbone backbone

Figure 2: In the DNA double helix, two strands-attach-via-hydrogen-bonds-betweemthe bases of the component nucleotides.
(OpenStax-College, 2015); Download for free at http://cnx.org/contents/14fb4ad7-39a1-4eee-abbe-3ef2482e3e22@7.30.

A protein is a long chain of amino acids (AA). The order of the amino acids together with the way the
protein is folded determines the function of'the protein. The'order of the amino acids in proteins are

encoded into regions on DNA molecules called genes.

There are 20 amino acids, but only 4 letters occur in DNA. Hence, consecutive nucleotides in DNA are
grouped together into units of three, called codons. There are 64 = 4 X 4 X 4 unique codons, so that
each amino acid is encoded by multiple codons. This mapping from groups of three nucleotides to

amino acids is called the genetic code.

The information in DNA is used build a protein in two steps called transcription and translation.
Transcription copies the gene from the DNA that encodes the protein into a ribonucleic acid (RNA)

molecule. Translation builds the protein from the RNA molecule.

In order to transcribe a gene, an RNA polymerase binds to the DNA just before the start of the gene
(upstream of the gene). The RNA polymerase proceeds along the gene towards the 3’ end in the DNA
and builds up a strand of RNA by building up a chain of nucleotides that are complementary to the

nucleotides in the DNA. RNA is very similar to DNA except that at the 2’ carbon of their sugars they
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have an extra oxygen molecule attached, and that thymine does not occur in RNA, it is replaced with

uracil.

Translation is the process by which protein is constructed by a molecule called a ribosome using an
RNA molecule as a template. The process is initiated when the ribosome binds to the RNA molecule.
The ribosome proceeds towards the 3’ end of the RNA and builds up a chain of amino acids in the
process. The amino acids added into the chain are determined by the codons present in the RNA

molecule.

Using the terminology and processes defined in this section, the central dogma of molecular biology
can be more precisely stated as: DNA codes for RNA, which is translated into protein. Additionally,
such information cannot be transferred back from protein to either protein or nucleic acid (F. Crick,
1970). Information flow between DNA and RNA is complex in that DNA (RNA) can code for other DNA

(RNA) and that DNA can also be constructed from an RNA template.

2.3 Basic Overview of HIV

Human immunodeficiency virus (HIV) infects humans, primarily-targeting the CD4+ T cells of the host’s
immune system. Once these cells becomeinfectedthey are destroyed which, as a result, weakens the
immune system of the infected individual. This in turn can|lead to infection by opportunistic
pathogens, which ultimately results in death (Gottlieb et al., 1981; Masur et al., 1981). The advanced
stage of the disease, where the immune system-of theinfected individual is severely compromised, is

referred to as acquired immunodeficiency syndrome (AIDS)

HIV is a retrovirus, implying that its genetic information is encoded as RNA rather than DNA. The
structure of an HIV virion is shown in Figure 3 A. The HIV replication cycle, shown in Figure 4, starts
when a virion binds to a host cell (generally CD4+ T cells) (Doms & Trono, 2000). The envelope
glycoprotein on the surface of the virion binds the surface protein, CD4, expressed on CD4+ T cell
among others. This initiates a series of conformational rearrangements in the envelope protein which
fuse the virion on CD4+ T cell membranes. Upon fusion the HIV capsid, which contains the viral RNA
and enzymes, is injected into the host cell cytoplasm. Once inside, the viral RNA is reverse transcribed
to DNA by the viral enzyme reverse transcriptase (M. D. Miller, Farnet, & Bushman, 1997) and the DNA
is subsequently incorporated into the DNA of the host cell (Andrake & Skalka, 1996; LaFemina et al.,
1992). The viral DNA incorporated into the host cell is called provirus which replicates by using the
host cell’s translation machinery to produce HIV proteins (Q. Zhou, Chen, Pierstorff, & Luo, 1998; Q.
Zhou & Sharp, 1995). As part of this translational process, the HIV envelope protein is also covered in
the same glycans that cover many of the host’s cells. This “glycan shield” hides the surface features of

HIV, allowing it to evade the immune system (Figure 4 B). These viral proteins assemble at the plasma
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membrane of the infected cell after which a new virion buds from the host cell in order to find other

host cells to invade (Kohl et al., 1988).

Envelope spike (Env)
l_‘_ﬂ

gp120 gp41

Host cell molecule

Lipid membrane

Matrix

Protease

Capsid

Integrase

Nucleocapsid

Reverse transcriptase

100-120 nm

Figure 3: Figure 1.1 from (Behrens, 2017). Thelstructure of the virion (A).. Two capies of the viral RNA, the integrase enzyme
and the reverse transcriptase enzyme are surrounded-by-the capsid. Structuralintegrity of the virion is provided by the matrix.
The virion is surrounded by a membrane and the envelope spikes form protuberances on its outside. The envelope spikes are
covered in glycans (B).

As described above, the HIV replication cycle requires the reverse transcription of the viral RNA to
DNA which is facilitated by a viral enzyme, reverse transcriptase. While transcription and translation
of non-viral DNA and RNA is very accurate due to various proofreading and error correction
mechanisms (Fairbanks & Andersen, 1999), the reverse transcription process employed by HIV is less
accurate since it lacks these mechanism (Bebenek, Abbotts, Wilson, & Kunkel, 1993). Inaccurate
reverse transcription introduces many mutations (approximately 2.16 x 10> mutations per base per
replication cycle (Mansky & Temin, 1995)), which could result in changes to the viral proteins. Since
these mutations occur randomly, changes may yield a virion that is either less fit than the original or
non-functional (Gao et al.,, 2004). However, mutations also occur that do not affect the fitness
significantly, or which confers an evolutionary advantage (Rambaut, Posada, Crandall, & Holmes,
2004) Moreover, the replication cycle is short, lasting only 2.5 days (Perelson, Neumann, Markowitz,
Leonard, & Ho, 1996). This high level of replication and the low level of fidelity of the reverse
transcription process leads to a diverse population of virions in a single host (Rambaut et al., 2004)

which is termed the viral quasispecies (Nowak, 1992).
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Figure 4: Figure 1 from (Pau & George, 2014). The HIV replication cycle.

Even though infections eventually become diverse, in the vast majority of cases the infection is
founded by a single virus, defined as the transmitted founder (Keele et al., 2008). The initial phase of
infection, during which so few viral RNA particles are present that they are undetectable is called the
eclipse phase. After approximately 10 days of replication, sensitive RNA assays can detect the viral

RNA (Figure 5). During this early stage, the immune response is limited and poorly targeted to HIV
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allowing rapid replication. The amount of viral RNA present in the blood of the infected individual,
called the viral load, increases rapidly leading to a phase of acute infection during which the patient
may experience flu-like symptoms and the risk of spreading HIV is greatly increased (Simon & Ho,

2003).

Increasing viral diversity

Acute Chronic AIDS
ey ok Tt By L0
o ﬂ%’bﬁ Qﬁﬁﬂﬁﬁ G S0

— Plasma viraemia
— CD4+* T lymphocytes

Viral set-point

Primary
infection

Weeks Years

Figure 5: Figure 2 from (Simon & Ho, 2003). The natural course of HIV-1 infection on the basis of the longitudinal evolution of
the two key surrogate markers — viral load (plasmaviraemia) and €CD4 count (CD4+ T-lymphocyte count).

During this acute phase, the immune system will start to produce antibodies targeted to HIV and the
CD8+ cells will start to respond to therinfection. Together, these responses reduce the severity of the
infection and reduces the levels of ongoing viral replication..Eventually, the viral load stabilizes around
a set point and few, or even no, symptoms are experienced. This phase may persist for many years,
but the low level ongoing replication steadily reduces the amount of CD4+ cells in the infected
individual. Eventually, the CD4+ cell count is reduced to such a low level that the immune system can
no longer effectively protect against other pathogens, resulting in a multitude of symptoms related to
opportunistic infections. An AIDS diagnosis is based on the number and severity of these opportunistic
infections or a CD4 count below 200 cells per cubic millimeter of blood (Girard, Osmanov, Assossou,

& Kieny, 2011).

2.3.1 Overview of HIV treatment

Various drugs have been developed to treat HIV infected individuals. In March 1987, azidothymidine
(AZT), originally explored as a treatment for cancer during the 1960s, was approved by the FDA as a
treatment for AIDS. Soon after, clinical trials showed that AZT effectively delayed the progression of
HIV into AIDS, thus becoming the first treatment for HIV. Due to large investments in the subsequent

30 years an extensive suite of drugs that treat HIV have been developed. There drugs are referred to
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as antiretroviral drugs with treatment commonly referred to as antiretroviral therapy (ART) (Pau &
George, 2014). The website of the Food and Drug Administration of the United States of America that
lists the available antiretroviral drugs for the treatment of HIV listed 40 drugs on the 2nd of August
2018. The drugs are grouped based on their function and disrupt one of the stages of the HIV

replication cycle. The HIV drug groups and their functions are summarized in Table 1.

Table 1: Classes of antiretroviral drugs.

Name (Abbreviation) | Description Number
of drugs
Multi-class Combines a number of different drugs into a combination 5
Combination product that simultaneously targets more than one stage in the
Products replication cycle.
Nucleoside Reverse | Inhibits the activity of reverse transcriptase, preventing the 13
Transcriptase viral RNA from being converted into DNA. NRTIs mimic the
Inhibitors (NRTIs) natural ACGT nucleotides;but lack some of the structures that
attach different nucleotides to-each other. Hence they
compete with the normal-nucleotidesfor-incorporation and
when one of them is used by the reverse transcriptase enzyme,
then the process stops.
Nonnucleoside Like NRTIs, they interfere with the reverse transcription step. 6
Reverse These drugs directly bind to the reverse transcription enzyme
Transcriptase disabling it.
Inhibitors (NNRTIs)
Protease Inhibitors Binds selectively to viral proteases and prevents them from 11
(P1s) producing the precursor molecules needed to produce viral
particles.
Fusion Inhibitors Prevents the merging of the HIV envelope and the membrane 1
of the CD4 cell.
Entry Inhibitors Antagonizes a receptor on the surface of a CD4 Cell (the CCR5 1
receptor), preventing the HIV virion from forming the bond
with the CD4 Cell that is required for the envelope and
membrane to fuse.
HIV integrase strand | Blocks the incorporation of the viral DNA into the host’s 3
transfer inhibitors genome by interfering with the HIV enzyme called integrase.
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Although the use of a single drug can control the infection, a high dose is required and it is frequently
unsuccessful. Additionally, resistance to a single can drug can easily arise in a patient. Therefore a
number of drugs are combined, reducing the required dose of any individual drug required leading to
reduced side effects, substantially increasing efficacy and reducing the risk of resistance emerging.
This multi-drug treatment regime is referred to as highly active antiretroviral therapy (HAART). Proper
adherence to an HAART routine result in a life expectancy of infected individuals which is similar to

that of uninfected individuals (Pau & George, 2014).

Some of the cells infected with HIV are not actively producing HIV and are said to be in a latent state.
All the drugs listed in Table 1 inhibit ongoing replication of HIV, however they do not destroy these
inactive infected cells. Thus, HAART only reduces the number of active HIV virions present as well as
the rate at which cells are infected without impacting the latent cells. These latent cells are distributed
throughout the body, and can remain latent for many years after which they can become active.
Therefore, even if treatment is effective enough to reduce the viral load of a patient to undetectable

levels, treatment interruption results in the infection-rebounding (Chun et al., 1997).

2.3.2 HIV drug resistance

Apart from treatment interruption, drug resistance can also result in a rebound of the infection. After
prolonged treatment drug resistance often arises in the quasispecies. Due to the increased fitness of
these strains in the presence of treatment;-these-variants-become-the dominant subpopulation in the
quasispecies, leading to treatment failure..In.addition to-suppressing the level of replication, HAART
reduces the chances of drug resistance arising by requiring that multiple mutations need to arise
simultaneously to confer resistance to the treatment regimen. However, various factors such as poor
access to medication in resource limited settings, poor adherence and various other political and

personal factors leads to imperfect treatment (Nachega et al., 2011).

Low adherence to treatment leads to higher levels of viral replication in the presence of low levels of
various drugs. In these scenarios, the higher replication levels allow for high numbers of mutations to
arise and the sub-therapeutic drug concentrations confers a modest fitness advantage to the resistant
variants. This allows drug resistant variants to arise at a much faster rate than what would have been
possible with proper treatment. Furthermore, drug resistance strains can be transmitted, leading to
cases where an individual’s baseline infection is a drug resistant strain. Epidemiological studies of drug
resistance are finding increasing rates of first time infections with drug resistance and they predict
that drug resistance will become an increasingly serious problem. According to the World Health
Organization’s 2017 HIV drug resistance report, a survey of 11 poor counties, between 2014 and 2016,

found that in 6 of these counties more than 10 percent of cases were drug resistant.
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Treatment failure due to drug resistance requires that the patient be switched to a different treatment
regimen. However, first-line drugs are cheaper and have fewer side effects than these alternative
treatments. The challenges associated with drug resistance is further exacerbated in resource limited
settings where access to second and third-line treatment strategies can be limited (Nachega et al.,

2011).

2.3.3 HIV vaccine

While the availability of HAART has greatly reduced the spread of HIV and markedly improved the
health outcomes of infected individuals on treatment, it is not a cure. Additionally, the complex
treatment regimens and side effects causes low adherence which in turn drive the development of
drug resistance. Thus, there is continued interest in the development of a vaccine. A vaccine exposes
the immune system to inactivated or weakened (attenuated) portions of a pathogen, inducing the
production of neutralizing antibodies targeting that vaccine. If a vaccine can successfully elicit potent
antibodies, then the immune system can rapidly respond to the pathogen the next time an infection
occurs. This rapid response is critical since.it-enables-the‘immune system to stop the infection before
there is a large number of virions and.before the latent reservoirs.can be seeded (McMichael & Koff,

2014).

A key requirement for a vaccine to work is that the immune system must be able to produce antibodies
that effectively target the pathogen.—However,—the—antibodies produced by most HIV positive
individuals are non-neutralizing and target regions of the.virion that mutate rapidly. Thus, vaccines
that expose the body to specific portions of certain HIV variants are unlikely to be effective since the
antibodies they induce are either not potent enough, can be easily evaded by a small number of
mutations, or there are already a high enough percentage of circulating virus in the human population

that contains escape mutations to that vaccine (Girard et al., 2011).

In addition to the difficulty of eliciting effective antibodies, the search for a vaccine faces another
major obstacle. Conducting HIV vaccine trials are extremely expensive and time consuming. To
conduct any vaccine trial, a number of subjects must be enrolled and divided into two groups. One
group is given the vaccine and the other is given a placebo. The two groups are monitored for infection
events and if the number of infections occurring in the placebo group is statistically greater than in
the vaccinated group then the trial is considered successful. In the general population, the incidence
of HIV is very low. Thus, to obtain enough infection events in the placebo arm, a very large number of

subjects must be enrolled and they must be followed for a long time, greatly increasing the cost.

The high cost of vaccine studies, combined with the difficulty of designing a vaccine that is likely to be

effective, means that very few HIV vaccine trials have been conducted to date. Out of the five large
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scale vaccine efficacy trials that has been conducted, only one showed a possible protective effect.
The RV144 trial injected 16,402 subjects with a prime-boost recombinant vaccine and demonstrated
a 31.2% efficacy in preventing HIV infection. The mode of protection is still unknown, but theorized to

be related to the antibodies that were elicited (Girard et al., 2011).

During natural infection, a small number of HIV infected individuals develop potent antibodies that
target regions of the virion that are conserved and are capable of neutralizing a broad spectrum of
viral strains. One such antibody, VRCO1, targets the conserved region on Env that binds to the CD4
receptor on T cells (T. Zhou et al., 2010). VRCO1 is both potent and broad, neutralizing 90% of HIV-1
isolates across all clades of HIV-1. The theorized protective effect of the antibodies motivated the

launch of the AMP study.

The AMP study will infuse HIV-negative patients via intravenous drip with either VRCO1 antibodies or
a placebo every two months and monitor for HIV infections in both arms. The primary endpoint of the
study is to compare the number of infections that occurred between the two treatment arms. If
successful, this will demonstrate that the presence of a“potent broadly neutralizing antibody is
effective at reducing the risk of infection (Gilbert et al., 2017). Since the investigation product is an
expensive infusion that needs to be administered every two months, the AMP trial will not resultin a

feasible public health intervention.

The value of the trial, however, will-be-in-establishing a correlate of protection. If a vaccine can be
derived that induces a person’s immuné system to produce the VRCO1 antibody, then the result of the
AMP study (if successful) will provide strong evidence that.such a vaccine will be effective, provided
the antibody is elicited at a high enough concentration. This will greatly reduce the cost and time
required to test vaccine candidates, since a modest number of subjects can be injected with the
vaccine candidate and the concentration of broadly neutralizing antibody in their blood can be
measured soon after. Additionally, a successful result from the AMP trial will provide evidence that if
a vaccine candidate can elicit any potent broadly neutralizing antibodies, then the vaccine candidate
may be efficacious. If this result can be confirmed by duplicating the AMP study with another antibody,
then the cheaper and faster trials may be performed for any broadly neutralizing antibody instead of

only for VRCO1 (Gilbert et al., 2017).

The concentration of the VRCO1 antibody in the patient’s blood increases rapidly to a high level during
the infusion. The antibody is continuously cleared from the body of the patient meaning that the
concentration will start declining immediately upon cessation of the infusion and will reach a lowest

level just prior to the next infusion. Thus, in order to relate the protective effect of the antibody to the
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concentration of the antibody, it is useful to know the time of HIV infection with as little uncertainty

as possible (L. Zhang, Gilbert, Capparelli, & Huang, 2018).

As previously described, upon infection the virus starts to replicate producing increasing levels of viral
RNA in the patient’s blood (viral load). As the viral load increases, the body also recognizes the
infection and produce antibodies. HIV requires a period of time after infection to replicate to such
levels that the RNA can be detected. This period of time is different from the amount of time it takes
the immune system to produce enough of these antibodies to be detectable by an assay. Thus by using
both tests (RNA based and antibody based), information about the time of infection can be gleaned.
For example, if the person tests positive on the RNA test but not on the antibody test, then the
infection was so recent that enough antibodies were not yet produced, but far enough into the past

that enough replication could have happened for the RNA test to be positive (L. Zhang et al., 2018).

A possible approach to increase the accuracy of the infection timing is to analyze the sequences of a
sample of the HIV population in a patient. Poison Fitter available from the LANL website implements
such an approach (Elena E Giorgi et al., 2010). Poisson Fitteris-reviewed in detail in section 5.5. Briefly,
by comparing the number of sequences to each other, the amount of mutation that has occurred since
infection can be tallied. Using previously published parameters of the mutation rate of HIV, the
number of mutations can be converted into a number of generations of HIV replication that has
occurred since HIV infection. Using knowledge of the replication cycle of HIV, the number of
generations can be converted into a time estimate. This approach and other approaches to

investigating the diversity of an HIV population are explored in'Chapter 4.

2.4 Sequencing
The process by which the sequence of nucleotides in a molecule of DNA are identified is called

sequencing. The proliferation of DNA sequence data led to the creation of the field of bioinformatics

to process and analysis all of the resulting data (Ouzounis & Valencia, 2003).

2.4.1 The polymerase chain reaction

The two sequencing techniques discussed in this work both require large amounts of target DNA to
be present. Hence the region of interest must first be amplified using polymerase chain reaction (PCR)

(R. Saiki et al., 1988).

The reaction occurs in a solution containing the DNA templates of interest; a polymerase which copies
DNA; deoxynucleotide triphosphate (dNTP) and primers. Primers are short DNA sequences
(oligonucleotides) which are designed to be complementary to two specific positions of a DNA

sequence. The region between these two specific positions will be amplified by the reaction. PCR is a
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cyclical process in which three steps are repeated a number of times. Figure 6 illustrates a single cycle
of PCR. First the DNA double helix is separated (denaturated) by heating the solution to over 90°C.
Next the solution is cooled to under 60°C allowing the primers to anneal to their complementary
regions. The last step is to heat the solution to 72°C where the polymerase enzyme functions best,
allowing the new strands of DNA to be synthesized. The synthesis process is described in detail in the
next paragraph. The most commonly used polymerase is the Taq polymerase derived from the
organism Thermus aquaticus (R. K. Saiki et al., 1985). Exact details of the protocols differ slightly
between laboratories (Brodin et al., 2015; Jabara, Jones, Roach, Anderson, & Swanstrom, 2011; Kinde,
Wu, Papadopoulos, Kinzler, & Vogelstein, 2011; Kou et al., 2016; S. Zhou, Jones, Mieczkowski, &

Swanstrom, 2015).

Synthesis occurs when a primer will anneals to these specific position and the polymerase binds to the
DNA sequence where a primer annealed. The polymerase will then copy the DNA sequence forming a
new molecule that starts with the primer and ends at some position towards the 3’ end from primer
binding site. The position where the molecule-ends-is. determined by the DNA sequence and the
parameters of the reaction. This position‘is either-the-end-of the DNA sequence, or the position where
the polymerase detached from the DNA sequence interrupting the process or the position where the
polymerase was when the PCR cycle was stopped. Since DNA molecules have an orientation and the
polymerase can only copy DNA in one direction, a hewly copied strand will be duplicated in the
opposite direction in the next PCR cycle. Thus inthe following cycle, the other primer will anneal to
the molecule and it will be copied towards the region to whichithe/previous primer was bound. As this

process is repeated only the region'between the two primersis amplified.
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Figure 6: The first three cycle of PCR. The process-is-initiated-with-a-double-stranded"-DNA molecule (A) which is denatured by
heating the solution (B). Cooling the solution allowsprimers torbind to the denatured DNA (C) producing an attachment site
for the polymerase enzyme (D). Heating the solution again allows the polymerase to synthesize a complementary strand (E)
yielding a double stranded DNA molecule (F)*which ‘can-bé denatured' again to-initiate the next cycle of PCR (* or the
subsequent row in the figure). Note how the size of the molecule that is amplified is reduced by the restrictions placed on it

by the primers.

It is important to note that PCR amplifies DNA in a biased way. At each cycle of PCR only a portion of
the DNA molecules are copied. This random sampling of molecules at each cycle leads to a final
distribution of molecules that is different from the distribution in the original sample. If the match
between the primer and the target region on the genome is poor, the rates at which the primers
anneal is much lower during the initial rounds, suppressing amplification efficiency. If two similar
templates are amplified together in the same reaction and their primer binding regions are identical
except that at one position one template has a adenine instead of a cytosine in the forward primer
and a thymine instead of a cytosine in the reverse primer, the template with the cytosine amplified
between 40% and 120% more efficiently due to the higher binding energy between guanine and

cytosine than between adenine and thymine (Polz & Cavanaugh, 1998).
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Figure 7: Figure 2 from Liu et al 2014. Recombination frequencies at different conditions during PCR. (A) Recombination
frequencies were determined at different thermal cycles. Equal amount of NL4-3 and 89.6 plasmids (107 copies per template)
were mixed together and co-amplified. The PCR was carried with 5, 10, 15, 20, 25 or 30 thermal cycles. (B) Recombination
frequencies were determined with different numbers of templates. Equal amount of NL4-3 and 89.6 plasmids (101,103,105
or 107 copies each) was mixed together and co-amplified by 30 cycles of PCR. (C) Recombination frequencies were determined
with different extension time. Equal amount of NL4-3 and 89.6 plasmids (107 copies per template) were mixed together and
co-amplified. The PCR was carried with different extension time (1, 2, 4 or 8 minutes). The PCR products were analyzed by the
PASS assay and the recombination frequency at each condition was determined by linkage analysis of six bases.
doi:10.1371/journal.pone.0106658.9002

24



Another artifact that degrades the quality of product produced by PCR is that chimeric molecules can
be generated. In such molecules the product built up by the polymerase contains the genetic material
from one template in certain regions and the genetic material from another template in other regions.
The most common version is when one side of the molecule is from template one and then a switch
occur such that the other end of the molecule is from another template. (Kanagawa, 2003) describes
multiple processes that can produce such chimeric molecules. We-will-enlyfocus-the-single-proecess
that—preduces—the—majority—of—chimeric—meoleculesOf all the processes that generate PCR

recombination, we will restrict our discussion to a single one which is responsible for the majority of

the recombination (J. Liu et al., 2014). The polymerase may fall off from the molecule that it is busy

copying, yielding a partially synthesized molecule. This incomplete sequence can then act as a primer
for the next cycle of PCR. A chimeric sequences will be produced since the partially copied product
will be extended with the polymerase adding the genetic information from another template onto the
partial product. The rate at which recombination-occurs during PCR is strongly influenced by the PCR
parameters. Most chimeric sequences-are-produced-in-the latter stages of the reaction when the
concentration of primers are lower and the.concentration of amplified products are higher (Kanagawa,
2003). Thus recombination rates are increased when the number of cycles are higher (Figure 7 A) or
when the number of molecules with which the reaction is seeded are higher (Figure 7 B). Furthermore,
increasing the duration of the elongation step reduces the numberof partially synthesized molecules

also reducing the rate at which recombinant sequences are produced (Figure 7 C).

2.4.2 Sanger Sequencing

The first widely adopted approach used to sequence DNA was described in (Sanger, Nicklen, &
Coulson, 1977). Originally, to perform Sanger sequencing, a PCR solution was prepared and divided
into four equal samples. To each of the samples, one type of dideoxynucleotide triphosphates (ddNTP)
is added, so that one sample contains ddATP, the next contains ddCTP, and so forth. After
incorporating a ddNTP instead of a dNTP into a new copy of a DNA molecule, the polymerase enzyme

is unable to continue extending the nucleotide chain.

Since only a small amount of ddNTP is added, each of the four reactions will produce copies of the
input DNA templates that are randomly terminated at one of the positions containing the base
corresponding to the ddNTP added to that sample. By determining the lengths of the DNA molecules
in each of the four samples, the positions of the bases in the DNA sequencing can be inferred. The
lengths of the molecules are assessed using polyacrylamide gel electrophoresis. The four samples are

run through the same gel in separate channels causing bands to appear in each channel at positions
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that are indicative of the relative lengths of the DNA molecules (Figure 8). When the information is

transferred from the gel to digital storage, the sequence of digitally stored letters is called a read.

g TAGTTAC 4370
__,____CGG A'C
AGA

SRS GAGA 4360
GAGH TA 4350

ceeimGTTTT
-# -G

Figure 8: Example of gel obtained after performing Sanger sequencing. The DNA sequence is written from left to right and
upwards. The position of the nucleotides in the genome of the organism is also provided. The dotted lines connect bases in

the sequence with the bands from which they were read. Figure from (Sanger et al., 1977).

As reviewed in (Dovichi & Zhang, 2000), optimizations to the original process includes the attachment
of fluorescent dyes to the ddNTPs and replacing the manual gel electrophoresis step with an
automated step. These improvements increased the throughput of this sequencing technique enough
to allow sequencing of the entire human genome. While slow and expensive, Sanger sequencing is still
used because it produces long high quality reads. The top-of-the-line 3730xI DNA Analyzer machine
produced by Applied Biosystems produces reads between 400 and 900 bases in length with an
accuracy of 99.999% (L. Liu et al., 2012).

26



2.4.3 Single Genome Amplification and Sequencing

In order to apply Sanger sequencing to viral RNA, it must first be converted to DNA. DNA derived from
RNA is referred to as complementary DNA (cDNA) (Palmer et al., 2005). The viral RNA isolated from
the blood plasma contains the RNA of many different individual virions from the quasispecies. If
Sanger sequencing is applied directly to cDNA produced from such a sample, then the diversity of the
quasispecies will not be reflected in the final dataset since only a single sequence will be obtained for
the entire sample. This sequence will consist of the bases that occur most frequently at each position

in the region that was sequenced and is called the consensus sequence (Thomas et al., 2006).

In order to obtain DNA sequences of individual members of the quasispecies, single cDNA molecules
must be isolated from the sample before they are amplified with PCR. This is performed with a time
consuming and expensive process called single genome amplification (SGA). SGA is performed by
diluting the sample and running separate PCR reactions on sub-samples from the dilutions (Butler,

Pacold, Jordan, Richman, & Smith, 2009).

The degree of dilution is varied until_the PCR reactionin-only. 30% of the diluted sub-samples
successfully amplifies the DNA in that sub-sample. The most probable reason for the other 70% of the
sub-samples failing to amplify is that there is no DNA in those sub-samples due to the high level of
dilution. The number of DNA molecules in each sub-sample follows the Poisson distribution. The
probability mass function of a Poissen-distributed-random-variable with a rate parameter of 0.35 is

0.70 and 0.25 at the values of 0 and 1 respectively.-Hence;if 70% of the sub-samples did not contain

DNA, then of the sub-samples with DNA, approximately 80% ( 025 —0.83~ 0.8) of the sub-samples

1-0.70
will contain DNA from a single input DNA template. The DNA from the successfully amplified sub-

samples can be sequenced with Sanger sequencing (Butler et al., 2009).

2.4.4 High throughput sequencing

Newer sequencing technologies, referred to as next generation sequencing (NGS) were developed
that produce more data in a single run than Sanger sequencing (L. Liu et al., 2012). These technologies
enable the sequencing of individual viral templates at a lower cost while being less labor intensive
than SGA (Jabara et al., 2011). While several NGS platforms exist, this work will only discuss the
approach used by lllumina for their MiSeq machines as this is the primary sequencing technology used
with the PID approach due to the large amount of sequence data they produce, the length of their
reads and favorable error profiles. (Bhiman et al., 2015; Kinde et al., 2011; Kou et al., 2016; Lundberg,
Yourstone, Mieczkowski, Jones, & Dangl, 2013; S. Zhou et al., 2015).
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The Illumina process was reviewed in (Voelkerding, Dames, & Durtschi, 2009) and for the applications
discussed in this work starts by amplifying the sample with PCR (Brodin et al., 2015; Lundberg et al.,
2013; S. Zhou et al., 2015). The primers used in the PCR step contain an adaptor sequence that enables
the amplified DNA fragments to be anchored to a slide whose surface is covered in oligonucleotides

that are complementary to the region added during PCR (Figure 9).

After attaching the DNA to the slide, it is amplified again so that copies of each sequence is made and
attached close to the originally attached sequence. This process is called bridge amplification and
produces a slide covered in spots each with identical sequences. Sequencing is performed by attaching
primers to sequences on the slide, synthesizing strands complementary to the sequences on the slide

and recording each base that is incorporated into the newly synthesized strands.

This process, called sequencing by synthesis, is performed by using special nucleotides that contain a
fluorescent marker that emits colored light when excited by a light source and a removable
modification that blocks the synthesis process. Each type of nucleotide emits a different color. After
attachment of the primers, the slide is washed with-a solution.that contains these special nucleotides.
Only one nucleotide can be incorporated into the newly synthesized strands because of the
modification that blocks addition of more nucleotides: The solution containing the special nucleotides
is washed away and the fluorescent markers are read. For each spot on the slide this reveals which

nucleotide was incorporated first and hence what the sequence is'at the first position for each spot.

To read the next position, the slideTis Washed in“a Jsolution, containing enzymes that remove the
modification that blocks the synthesis process and the fluorescent marker from the previously
synthesized nucleotides. The slide is washed in the in the solution with the special nucleotides again
to begin the process of reading the second position in the sequence. By repeating these steps, the

sequence of the DNA molecules attached to each of the spots can be determined.

As this process continues, some sequences fail to incorporate a nucleotide in some cycles. When this
occurs, this sequence becomes out of phase with the other sequences at the same spot, lagging 1 or
more positions behind. At the nth cycle, the lagging sequence will incorporate the nucleotide for the
(n-x)th position in the sequence, where x denotes the number of failed incorporations for the
sequence in question. The desynchronization degrades the quality of the signal produced when the
fluorescent dyes are excited and ultimately limits the number of positions that can be read. Read
lengths on the MiSeq machines with reagent kit v3 used to generate the example data for this work

are 300 bases long (lllumina, 2015).
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Figure 9: The Illumina sequencing process. Single stranded DNA with a sequencing platform specific region are attached to
the slide. Bride amplification produces spots of identical sequences. The bridge amplified sequences are denatured and
sequencing is initiated with the addition of primer, polymerase (POL) and ddNTPs with the removable blocking modification
and the fluorescent dye. After incorporation the fluorescence is recorded. The blocking modification and fluorescent dye are

removed before the next synthesis cycle. Figure from (Voelkerding et al., 2009).

Itis possible to attach and bridge amplify sequences longer than 300 bases to an lllumina slide. Benefit
can be derived from using longer sequences, since the attached sequences can be read from either
end. The first sequencing run reads the sequences from the 5’ end for 300 bases in the direction of
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the 3’ end. A second run can be performed starting at the 3’ end, reading 300 bases in the region of
the 5’ end. In cases where the attached sequences are shorter than 600 base pairs, the two reads will

overlap in the central part of the sequence yielding overlapping paired end reads.

Illumina sequencing is more error prone than Sanger sequencing. In contrast to Sanger sequencing’s
accuracy of 99.999% (L. Liu et al., 2012), the MiSeq platform’s accuracy is around 99% depending on
various factors and processing strategies. The most common error type is a substitution error which
occurs when a base is miscalled as another base. Insertions (when a base is spuriously inserted into a
sequence) or deletions (when a base in the sequence is skipped) occur roughly 2 orders of magnitude
less frequently than substitutions. Together insertion and deletions are referred to as indels. A
detailed investigation of the sequencing error rates of the MiSeq platform, (Schirmer et al., 2015),
reported substitution error rates ranging between 0.00157 and 0.0187 (Figure 10 A), insertion rates
from below 0.000002 to 0.00123 (Figure 10 B) and deletion rates ranging from smaller than 0.000006
up to a maximum of 0.000712 (Figure 10 C).

A key observation reported in (Schirmer-etal.;2015)is‘that-the errors are non-random. From Figure
10t is clear that library preparation has a significant influence on the errors. Additionally, the location
in the sequence can affect the error rates with the first 10 bases and the last bases having higher error
rates. Certain errors occur very frequently, for example, in one dataset, 25% of all substitution errors
occurred when the A at position 226 was misread-as a-G. Under, the assumption that the error is

independent of position and nucleotide, this specific error is expected to account for only 0.133%

(ﬁ X g; sequence length of 250) of all errors. When the 3mers occurring directly before an error was

analyzed, it was observed that the same 3mers directly preceded up to 75% of the errors in the
datasets. However, the 3mers that preceded the errors were not consistent across all datasets (Figure

11).
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Figure 10: Comparison of substitution (A), insertion (B) and deletion (C) error rates for a number of datasets, library
preparation techniques and primers. The lower x-axis indicates the number of the dataset used, the upper x-axis indicates the
library preparation method grouped by the solid vertical black lines. The dotted vertical black lines blocks of datasets that
utilized the same primers. The heights of the bars shows the amount error in the dataset and the colors allocate the errors to

the nucleotide at the position where error occurred. Figure from (Schirmer et al., 2015).
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When sequencing an HIV quasispecies directly using the MiSeq platform, it is challenging to
deconvolute the diversity inherent in the quasispecies from the sequencing error (Zagordi,
Bhattacharya, Eriksson, & Beerenwinkel, 2011). Additionally, the bias introduced during the PCR
amplification step required to generate enough DNA obscures the true relative abundance levels for

different variants. The Primer ID (PID) approach was developed to address this problem.

Top 3 Motifs in R1 reads for Substitutions across all DS Motif Occurrence Rates for R1 Substitutions
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Figure 11: The most frequently occurring 3mers directly preceding substitution errors. The left side of the figure displays the
three most common motifs for each data set and the rightiside illustrates the percentage of errors that were associated with
the respective motif. The lower x-axis indicates-the.number_of the dataset used, the upper x-axis indicates the library
preparation method grouped by the solid vertical black lines. The dotted vertical black lines blocks off datasets that utilized

the same primers. Figure from (Schirmer et al., 2015),

2.5 The PID approach

In 2011 and 2012 numerous publications proposed tagging DNA molecules with unique identifiers to
address the issue of PCR induced bias (Casbon, Osborne, Brenner, & Lichtenstein, 2011; Fu, Hu, Wang,
& Fodor, 2011; Kivioja et al., 2012) or both the bias and inaccuracy of NGS (Jabara et al., 2011; Kinde
et al., 2011; Shiroguchi, Jia, Sims, & Xie, 2012). The PID approach allows highly accurate sequencing of
a significant proportion of individuals from a population. Most PID approaches focus on sequencing a
short amplicon, but (Hong et al.,, 2014) proposed a modification potentially allowing full length

genome sequencing.

As illustrated in Figure 12, the first step when sequencing HIV RNA is to reverse transcribe the RNA
into cDNA. When the primers for the reverse transcription step are synthesized, random letters of a

set length are added to each primer so that each primer contains the region that binds to the RNA,
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together with a random sequence that is unique! to that individual primer molecule. These primers
together with reverse transcriptase are added to the RNA causing a reaction that yields double

stranded molecules in which one strand is RNA and the other cDNA.

Primer ID cDNA primer,

. <—
cDNA synthesis b

l Purification

15t Round PCR
N4
>

, Forward Primer
with 4 random

2nd Round PCR nucleotides

- l

Purification ) .
,l, Illumina Indexed Primer

Sequencing region
lllumina Librar N4 N8

-
MiSeq 300 bp pair-end sequencing v
Primer ID Barcode

Figure 12: PID approach for the MiSeq Platform used by (S. Zhou et al., 2015). The PID (yellow, N8) is included in the cDNA
primer along with a PCR primer site (brown) and the upstream primer includes four randomized bases to add diversity to the
initial sequencing read (required for calibration; orange N4). The platform specific primers (green with purple barcode) are
included in the last round of PCR. Paired-end sequence of region 1 (R1) and region 2 (R2) are indicated which may or may not

overlap in the middle. Figure from (S. Zhou et al., 2015).

The RNA is removed from the sample in a purification step before PCR is used to amplify the cDNA.
When the cDNA is amplified, the unique labels are copied together with the rest of the sequence of
interest. Thus after PCR, each input copy of cDNA that was successfully amplified yields a set of

identical molecules, except for PCR induced errors, with the same PID.

The amplified DNA is sequenced using next generation sequencing technologies like lllumina’s MiSeq
platform. The reads obtained from the machine will contain a PID, which can then be used to group

together all reads that were generated from the same input cDNA molecule. By comparing these reads

1 This is not strictly true due to the large number of molecules and a limited number of possible combinations,
see section 2.6.2 for more details.
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to each other, any differences can be attributed to either sequencing error or an error made by the
polymerase used during PCR. A consensus sequence is constructed for each bin in the final dataset by
first aligning all the sequences with the same PID and then constructing a sequence by letting each

position be the base that occurs most frequently at that position in the alignment.

The construction of the consensus sequences reduces the PCR bias and the sequencing error
significantly. The PCR bias differs between samples and laboratories. Jabara and colleagues generated
2,213 consensus sequences from 27,075 reads (Table 2) and no PID was sequenced more than 96
times (Figure 13) (Jabara et al., 2011). In contrast, a team from Sweden and Germany generated 14
consensus sequences from 47,387 reads (Table 3) with the most frequently occurring PID occurring
over 9,000 times (Figure 14) (Brodin et al., 2015). By working with the sequences grouped on their
PIDs instead of the reads from the machine, the bias induced by PCR amplification is removed.
Researchers based at the university of North Carolina measured the substitution error rate after
applying the PID approach to be between 0.011% and 0.002% (Table 4) (S. Zhou et al., 2015) which is

less than the 0.5% reported in (Schirmer et al.,.2015)for the lllumina MiSeq platform.

Table 2: Number of reads and consensus sequences obtained by |(Jabaraetjal:;2011) for three datasets.

Sample T1 T2 T3

Ritonavir - - +
Total 20,429 24,658 27,075
reads

Consensus 857 1,609 2,213
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Figure 13: Distribution of the number of reads per PID (blue) or consensus sequence (red). Three datasets were used in the
construction of this figure, the height of the bar indicates the average value over the three datasets and the error bars the
standard deviation. Stars indicates cases where a single sequences was resampled a high number of times. Figure from (Jabara

etal., 2011).
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Table 3: Number of reads and consensus sequences obtained by (Brodin et al., 2015) for four datasets.

No. of consensus template sequences

Sample No. of input No. of No. of reads with PIDs Uncorrected Corrected for PID Corrected for PID
template molecules  reads observed at least 3 times substitutions substitutions and indels
Clone 10,000 47,387 47,225 97 23 14
Patient 18,900 104,597 102,192 2,103 2,000 1,786
A
Patient 24,000 57,159 56,317 263 200 184
B
Patient 5,850 20,089 19,816 120 103 99
C
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Figure 14: Distribution of the number of reads (copy number) per PID for ane sample (the “Clone” sample from Table 3). Figure

from (Brodin et al., 2015).

Table 4: Summary of the error rates after application of thesRID-approach’from (S: Zhou et al., 2015). The different sets were

produced using different enzymes.

ENV (Setl)* ENV (Set2) ENV (Set3) Protease (Setl)
Control vi/vz  |cz/v3  |vijv2z  |cz/v3  |vi/vz [c2/v3d |R1 R2 combined
Consensus sequences 23,385| 23,385/ 18,408 18,408 15,205/ 15,205 14,778 14,778 14,741
Mis-priming 6 41 8 40 4 5 8 15 7
In-frame deletion 5 12 0 8 1 2 0 0 0
Frameshift 138 134 151 87 184 25 43 42| 55
Consensus sequences
(no in/del) 23,236 23,198| 18,249 18,273| 15,016| 15,173 14,727 14,721 14,679
Length 265 256 265] 256 265 256 265 256 340
Substitutions 206 748 73 412 158 311 426 488 565
Substitution rate 0.003%| 0.013%| 0.002%| 0.009%| 0.004%| 0.008%| 0.011%| 0.013%| 0.011%
Substitutions
(excluding first 1 and
last 2 positions) 0.009% 0.005% 0.008%,
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2.6 Complications of Primer ID

A number of complications associated with the PID approach have been highlighted:

1) Skewed template resampling with a small number of input templates accounting for a large
proportion of the total sequences (Brodin et al., 2015; Fu et al., 2014; Kou et al., 2016;
Lundberg et al., 2013).

2) PID collisions leading to chimeric bins (Sheward, Murrell, & Williamson, 2012; Yourstone,
Lundberg, Dangl, & Jones, 2014; S. Zhou et al., 2015).

3) Sequencing or PCR error in the PID region (Kou et al., 2016; Lundberg et al., 2013; S. Zhou et
al., 2015).

4) Sequencing and PCR error after applying the PID technique (Brodin et al., 2015; Jabara et al.,
2011; Kinde et al., 2011; Kou et al., 2016; S. Zhou et al., 2015).

Each of these issues are explored in this section.

2.6.1 Skewed template resampling

As noted at the end of section 2.5, the ability of the PID approach to correct for PCR induced bias is
one of its main features. However, in cases where the bias jis severe the final number of consensus
sequences produced might be very small. As shown in Table 3, as few as 14 final consensus sequences
can be obtained from 47225 input-reads.-Skewed-template-resampling leading to a low number of
consensus sequences was also reported by.(Fuetal.,2014).and (Kou et al., 2016) see Table 5 and Table

6 respectively.

Table 5: Number of consensus sequences and raw reads for different samples from (Fu et al., 2014). The column titled “Unique
transcripts” lists the number of consensus sequences obtained for each sample from the number of raw reads given by the

“Paired-end reads” column.

RNA Length Copies of input RNA in library Paired-end reads Unique start/stop sites* Unique transcripts’  Yield*
ERCC130 1,059 9,000,000 1,059,847 11,206 41,331 0.0046
ERCC136 1,033 562,500 310,315 2,255 3,579 0.0064
ERCC108 1,022 281,250 76,479 1,198 1,603 0.0057
ERCC116 1,991 140,625 40,592 157 181 0.0013
ERCC092 1,124 70,314 36,347 263 308 0.0044
ERCC095 521 35,157 5,565 41 42 0.0012
ERCCO19 644 8,790 3,080 15 17 0.0019

*The number of sequenced clones of different start/stop sites and overlapping by at least a single nucleotide.

The number of sequenced clones of different start/stop sites with distinct molecular indexing and overlapping by at least a single
nucleotide.

*The ratio of resulting transcripts in the library to the total number of copies added to the sample used for library preparation.
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Table 6: Number of consensus sequences and raw reads for different samples from (Kou et al., 2016). Five different samples
were prepared which was composed of a majority variant (99% or 99.9% of the sample) and a minority variant (1.0% or 0.1%

of the sample). Each variant is reported on a separate row. The column titled “UID #” lists the number of consensus sequences

obtained for each variant from the number of raw reads given by the “Read#” column.

Template Input Readi Output (based on reads) UID # Output (based on UID)
FGFR3-E7 WT 99.9% 6669968 100% 177998 100%
FGFR3-E7 R248C(Chr4:1803564 G>A) 0.1% 1 0% 0 0%
FGFR3-E9 Y373C(chr4:1806099 T >C) 99.0% 70722 69.0% 271 96.4%
FGFR3-E9 WT 1.0% 19336 21.5% 10 3.6%
HRAS-E1 WT 99.0% 265986 97.9% 1259 97.7%
HRAS-E1 G13V(Chr11:534285G>T) 1.0% 5753 2.1% 29 2.3%
PIK3CA-E20 WT 99.9% 45767 81.7% 768 96.6%
PIK3CA-E20 H1047L(Chr3:178952085A>G) 0.1% 10231 18.3% 27 3.4%
PIK3CA-EQ WT 99.9% 13390 100% 211 100%
PIK3CA-E9 E542K(Chr3:178936083 C>T) 0.1% 65 0% (o} 0%

A possible explanation for the skewed resampling is that some of the randomly generated primers has
a higher probability of being amplified during the PCR steps. (S. Zhou et al., 2015) explored this
hypothesis by applying the PID approach to the same sample twice independently of each other. The
most frequent PIDs from the one sample-were-randomly distributed in the other sample suggesting

that the PID itself is not the cause of the bias amplification.
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Figure 15: The number of reads per unique PID. The PIDs that occurred the most frequently (top 10%) in Run 1 is colored red

and all other are colored blue. Figure from (S. Zhou et al., 2015).

2.6.2 PID Collisions

(Sheward et al., 2012) introduced the birthday paradox in the context of the PID approach. The
birthday paradox states that in a room of only 23 people there is a larger than 50% chance that two
people will share a birthday. If for example, the block of degenerate nucleotides is 8 bases long and
10,000 templates were reverse transcribed into cDNA molecules, then only 8585 of the templates are
expected to have unique PIDs. However, the need to assign a unique PID to each template must be
balanced with the probability of making sequencing and/or PCR errors in the PID region. The longer

the PID, the larger the chance of making a sequencing error while sequencing the PID region (S. Zhou
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et al., 2015). The relationship between the length of the PID and the probability of a sequencing error

in the PID is illustrated in Figure 16.
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Figure 16: The relationship between the length of a|PID and the probability of an error occurring while sequencing the PID.

When two different input templates-are assigned the same PID, it is called a PID collision. A PID

collision will lead to a chimeric bin: Chimeric bins:.can hayve:one of the following compositions:

1) The sequence for the different input templates may be identical,

2) The one template may occur more frequently that the other template in the bin, or

3) Both templates may occur at similar frequencies and have different sequences.
The first two cases will not lead to complications in the generation of the consensus sequence, but the
third case may lead to ambiguous nucleotide calls occurring in the consensus sequence at the positions
where the two templates differ. However, the rate at which bins satisfying case 3 will occur should be

very low since a number of events must occur in sequence:

1) Two input templates must be given the same PID,

2) The sequences of the templates must be different, and

3) Both of these templates must occur at very similar frequencies in the final dataset.
A measure of the chimerism in a bin was developed in (Yourstone et al., 2014). When different
sequences with the same PID have different bases at the same position, this is due to either a
sequencing or PCR error in one of the sequences or the two sequences were from different input

templates. If the quality scores associated with these bases are high, then it is more likely that two
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different input templates were tagged with the same PID than if the quality scores of either or both
of these bases were low. Based on this (Yourstone et al., 2014) defined the consensus score (c-score).
Each column in the multiple sequence alignment (MSA) is first assigned a score by multiplying the
mode base percentage (i.e. mode base count / total base count) by the mode base average quality

score. Subsequently, these column scores are averaged across all columns to generate the c-score.

2.6.3 Sequencing error with in the PID region

Sequencing errors in the PID are very frequent. Consider an example where the PID is 8 nucleotides
long, the sequencing error rate is 1 in 100 and there is a bin of size 500. In order to sequence all the
nucleotides in the PID region of this bin, 4000 nucleotides need to be sequenced. Under the assumed
error rate, around 40 sequencing errors is expected within the PID. This means that this one bin of size
500 will generate around 40 offspring bins each of a very small size. The exact same sequencing error
may happen in more than one of the offspring bins, yielding offspring bins with more than one
template. Sequencing error in the PID region was first mentioned in (Lundberg et al., 2013). They
noted that there was an unexpectedly high-number-of singletons (PID sequenced only once) in the
dataset and that the average sequence-quality of singletons were lower than that of the rest of the
data. MT-Toolbox (Yourstone et al.,-2014), the software used in-(Lundberg et al., 2013), allows the

exclusion of bins of size one, but does not further address the issue.

(S. Zhou et al., 2015) performed a‘detailed-investigation-of-the-sequencing error in the PID region.
They used a dataset with a low input.copy humber(370-input templates). 11,208 unique PIDs were
present in this dataset of which 8,121 occurred only once. First, they showed that the sequencing
quality scores in PID region of those sequences belonging to bins with only one sequence is lower than
for bins with more than 53 sequences (Figure 17 a). Next they compared the PIDs in the bins with less
than 23 sequences to the PIDs of the bins with more than 53 sequences and found that over 80% of
bins sized 4 to 22 have PIDs that differ by only one nucleotide from a PID found in a large bin (there
were only 121 large bins in this sample) (Figure 17 b). An offspring bin is defined as a bin whose PID

resulted from a sequencing error in the PID region.
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Figure 17: Assessment of sequencing errors in the PID region. The quality scores for the PID region in sequences with PIDs
that occur only once in the dataset (singles) compared to the quality scored for more frequently occurring PIDs (more than 53
times) (a). The PID distribution and percentages of PIDs at low abundance (less than 23 occurrences) that differ by one or two

nucleotides from the frequently occurring PIDs (more than 53-times). Figure from (S. Zhou et al., 2015).

To combat the problems resulting from-sequencing-errors.in.the PID, (S. Zhou et al., 2015) performed
a simulation to compute a cutoff (hamed the consensus cutoff)-so that all bins with less sequences
than this cutoff are likely to be offspring bins. All offspring bins are discarded. The key assumption of
their simulation is that the largest offspring bins will most likely result from sequencing errors in the
largest bin in the dataset. Hence they simulated sequencing a PID as many times as the largest bin in
the dataset. The most frequently occurring incorrectly sequenced PID determines the size of the
largest offspring bin. By repeating'the simulation'a large humber of times, a distribution of sizes for
the largest offspring bin was built. The consensus cutoff was chosen as the mean of the distribution
plus 1.96 times the standard deviation. To make this approach easier to implement, they simulated
the expected size of the largest offspring bin for a large range of bin sizes and fitted a 6™ order
polynomial regression model through the data points. Hence one can use this formula to quickly

determine the cutoff for any dataset with similar assumptions.

2.6.4 Sequencing and PCR errors in the final consensus sequences

(Brodin et al., 2015; Jabara et al., 2011; Kinde et al., 2011; Kou et al., 2016; S. Zhou et al., 2015)
reported that the error rates after applying the PID approach are very low, but not zero. Different
reasons for the residual errors have been proposed. Kinde and colleagues measured error rate per
cycle of PCR of Phusion polymerase and obtained a figure (0.00000045 errors/bp/PCR cycle) similar to
that claimed by the manufacturer (0.00000044 errors/bp/PCR cycle) (Kinde et al., 2011). However they

were not able to differentiate between sequencing error that still exists after applying the PID
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approach and the error rate of the polymerase. The error rate per cycle of 0.00000045 errors/bp/PCR
cycle reported in (Kinde et al., 2011) translates to an error rate of 0.00099% meaning that in the final
sequences each base hasa1in 101,010 chance of being incorrect. This is lower than the rates reported
in other publications, but is explained by the stringent criteria used in (Kinde et al., 2011) to construct
consensus sequence which required that 95% of sequences in a bin must be the same at each position

for a consensus sequence to be constructed.

Zhou and colleagues measured the error rates in a number of different samples (Table 4) and reported
the approximate error rate 0.01% (S. Zhou et al., 2015). They noted that this rate is close to the

reported error rate for reverse transcriptase in an enzyme reaction.

Brodin and colleagues presented a scenario where the targeted region contained a hotspot for
sequencing error (Brodin et al.,, 2015). It is a homopolymer stretch which presents a significant
challenge for the 454 sequencing technology they used (Shao et al., 2013). Even though they achieved
very deep coverage in a bin of this position (8,222 reads), the homopolymer error was still present in
the final consensus sequence. A single substitution-error.is-also shown where a T was misread as a C

in a bin with 4,748 sequences.

Primer ID No. of Segquence
reads
91 101 111 121 131 141 151 161

TTGGTACACC 8846 AAARATAGAG GAACTGAGAC AACATCTGTT AAGGTGGGGA TTTACCACAC CAGACAARARA ACATCAGAAA GAACCTC
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Figure 18: Errors in consensus sequences. An alignment of 14 partial template consensus sequences from (Brodin et al., 2015).

Errors compared to the correct sequence are highlighted. Figure from (Brodin et al., 2015).

A detailed investigation of the error rates of the PID approach was presented in (Kou et al., 2016).
They produced figures exploring the per position error rates in their datasets and measured early stage
PCR errors by flagging bins in which more than 95% of the sequences differed from the know input
template as errors that occurred during the first two cycles of PCR (Figure 19). The average error rate
of stage 2 PCR (25 cycles) and lllumina sequencing ranged from 0.17% to 0.28% when using a less
accurate polymerase (Platinum Taq) and 0.02% to 0.006% when using an accurate polymerase (Q5
with Platinum Taq). The average error rate of stage 1 PCR (2 cycles) was about one order of magnitude

lower when using Platinum Taq and ranged from 0.04% to 0.05% (Table 7). The difference between
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stage 1 PCR error and stage 2 PCR error combined with sequencing error was not as pronounced when

using Q5 with Platinum Taq (.003% to .009%) (Table 7).
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Figure 19: Error rates at each nucleotide in two datasets from (Kot etali,-2016).(A) Error rates plotted for all 114 nucleotides

of the FGFR3-Exon14 sample which was amplified with Rlatinum Tag), nucleotides 1 to 30 are magnified. (B) Error rates

plotted for all 112 nucleotides of the FGFR3-Exon7 sample whichiwas amplified|with Q5 enzyme, nucleotides 31 to 60 are

magnified. Figure from (Kou et al., 2016).

Table 7: Average and standard deviation of the PCR and sequencing erroriratejon three of the samples from (Kou et al., 2016).

The 2" PCR rows include error from both the 2" round of PCR and.the lllumina sequencing step. Table from (Kou et al., 2016).

Platinum Taq Q5 with Platinum Taq

FGFR3-E14 FGFR3-E9 FGFR3-E14 FGFR3-E9 FGFR-E7

1st PCR Average 4.83E-04 4.14E-04 9.40E-05 3.39E-05 3.02E-05
2nd PCR Average 2.85E-03 1.68E-03 9.08E-05 6.22E-05 2.01E-04
1st PCR Stdev 3.61E-04 1.31E-03 5.34E-04 2.86E-04 3.97E-05
2nd PCR Stdev 1.92E-03 3.83E-03 4.80E-04 3.29E-04 1.99E-04
Read# 2400000 90059 62400 54638 6440196

UID# 4910 281 997 1589 104094

2.7 Other PID processing toolkits
The extra data processing steps introduced by the PID approach are non-trivial and MotifBinner

aims to address them. During the course of this project, two solutions to the data processing steps

were released. The first solution by (Yourstone et al., 2014) was used in the field of metagenomics and

is a suite of perl modules and scripts with tests and a graphical user interface (GUI). The second
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solution was used to detect drug resistance in HIV (S. Zhou et al., 2015) and is distributed as a set of

ruby scripts that the user should edit and run.

2.7.1 MT-Toolbox

The Molecular Tag Toolbox (MT-Toolbox) is a suite of perl modules and scripts that processes data
produced with a PID approach (Yourstone et al., 2014). It is a high quality implementation build with
perl’s package management and testing tools. MT-Toolbox is the first step in a bigger software

system called MT-MT-Toolbox which performs metagenomics analyses on a PID dataset.
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Figure 20: MT-Toolbox workflow. Single-end or paired-end (overlapping or non-overlapping) reads can be input into MT-
Toolbox. Overlapping paired-end reads are merged after which all reads, regardless of their type, are categorized by their
MT (molecular tag referred to as the PID in this work). Next a square alignment matrix is created for each MT (PID) category
using either a multiple sequence alignment algorithm or by stacking the reads. From these matrices, consensus sequences
are built and quality control measures remove low quality consensus sequences. The MT-MT-Toolbox extension performs

additional metagenomics analyses. Figure from (Yourstone et al., 2014).

The workflow is described in Figure 20. A choice is offered for whether the sequences for each PID

should be aligned or just stacked without alignment prior to consensus sequence construction. Due
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to the low frequency of indels in lllumina reads, the stacking strategy yields acceptable results. A
sample dataset described in the publication contained 449,676 reads of which 447,175 (99.45%) were

253 bases long.

When constructing the consensus sequences for each PID, ties are broken using the quality scores. For
example, if in a bin of size four, two sequences has an A at position 1 and two sequences a T, then the
consensus will contain the base which was read with the highest average quality. If using the quality
scores does not resolve the tie, then an IUPAC ambiguity character is inserted. No provision is made

for sequencing errors in the PID beyond exclusion of bins of size 1.

Chimerism is measured using a custom metric they called the consensus score (c-score). It measures
conflicts within the sequences with the same PID. If sequences with the same PID has different bases
at the same position and those bases have very high quality scores, then it is a strong indication that
the sequences are in fact from different input templates. To compute the c-score, each column in the
MSA is first assigned a score by multiplying the mode base percentage (i.e. mode base count / total
base count) by the mode base average quality score.-Subsequently, these column scores are averaged
across all columns to generate the c-score. The user may specify a threshold c-score and all PIDs whose

associated c-scores are below this threshold are excluded from the final dataset.

MT-Toolbox allows for a complex primer design in which the lengths of the primers can be staggered
to overcome problems in earlier versions of the lllumina MiSeq platform. This flexibility complicates

the application of this tool to datasetsproduced withimore basic primer designs.

2.7.2 Ruby scripts of (S. Zhou et al., 2015)

The (S. Zhou et al., 2015) publication was accompanied by a set of ruby scripts. Two of these scripts
are of interest when processing PID data. The one script computes the consensus cutoff which is an
input to the script that processes the data. The data processing script can be run from the command
line and accepts the length of the PID and the input file name as arguments. The script must be edited
to set the sequences for the flanking the PID which will allow the extraction of the PID for each

sequence.

No alignment step is performed, taking advantage of the very low frequency of indels in the lllumina
sequencing process. Using a simulation process, a cutoff is computed and all bins smaller than this
cutoff are discarded due to the possibility that they are the result of sequencing error inside the PID

region itself.
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3 MotifBinner

As part of a project to develop and optimize protocols for sample preparation and sequencing of HIV
samples we developed a software package called MotifBinner. It processes the raw reads producing
consensus sequences and various metrics that aid in troubleshooting samples that did not produce
usable data. The first part of this chapter details the design and implementation of the software
package. The parameters and algorithms are explained here. The formats in which output are
produced are described in this first section. The second section of this chapter presents the
simulations and investigations that were used to justify the design decisions. The chapter closes by

carefully examining the results of processing two datasets with MotifBinner.

3.1 Design and Implementation
MotifBinner is designed to processes high-throughput/next generation sequencing (NGS) data

generated using the Primer ID (PID) approach, as described in (Jabara et al., 2011). In this method, a
random sequence tag is included in the initial cDNA synthesis primer, such that each input template
is tagged with a unique block of nuclecotides (PID). Following-amplification with PCR, all sequences
amplified from the same original cDNA template will theoretically have the same PID. MotifBinner

utilizes the following steps to process NGS data that contains PIDs:

1. Locate and identify the PIDs in each sequence

2.  Group sequences into bins based ontheir PIDs

3. Based on a model of sequencing ‘error-rate, discard bins'which have a high probability of
originating from sequencing error within the PID

4. Determine whether a bin contains non-uniquely labelled sequences (PID collisions).

5.  Filter out sequences from each bin that are the result of PID collisions.

6. Align the sequences in each bin

7.  Construct a consensus sequence for each bin

8.  Produce a report detailing the steps that were taken

9. Save all the results and the report
3.1.1 Locate and identify the PIDs in each sequence

According to the PID method, the primer used for cDNA synthesis consists of a known, gene-specific
binding region, a sequencing platform specific region and a randomly assigned PID of a known length.
A common design, shown in Figure 21, is to have the primer ID between two known regions in the

primer. A region in the primer that comes before (upstream) the primer ID is referred to here as a
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‘prefix’. Likewise, a region in the primer that comes after (downstream) the primer ID is referred to as

the ‘suffix’.

Sequencing Platform Region (suffix)

Primer ID \
Gene Specific Primer (prefix) ™
-‘-H-H-""‘"-h

|
Viral RNA

Figure 21: cDNA synthesis primer design assumed for use with MotifBinner.

A search pattern is constructed by concatenating the prefix sequence, a series of ‘N’s, and the suffix
sequence. The ‘N’s represent a match to any base.and the number of ‘N’s inserted is equal to the
length of the PID. Either the prefix orsuffix may be NULL, allowing researchers flexibility in their primer
design. Each sequence is then searched for this pattern using the vmatchPattern function from the
Biostrings (Pages, Aboyoun, Gentleman, & DebRoy, 2017) package. The number of
mismatches to the search pattern are relaxed iteratively to account for sequencing error within the
prefix and suffix, while ensuring that each-matchis obtained at the highest specificity. Since an ‘N’s
will match any base, mismatches are onlyallowed-in the prefix and suffix and not in the PID itself.
Figure 22 shows an example of the search.for. the PIDs.in the sequence data. This process is repeated

until the maximum number of allowed mismatches is reached (controlled via the max.mismatch

parameter).

Prefix Primer ID Suffix Mismatch
Primer Design [ AIC AT GGAATINNNNNNNNNI[CT GA G :
Sequence 1 Al@laTcalalalTlalaltTTT[T]Aa c@T cla G 0
Sequence 2 AGATGGAATIAATAAGGAABIT GlAG 1
Sequence 3 Al@laTGcGTAT|A AT GT A T|G|al- 2
Sequence 4 aAleTTclgaAaT|A AT G T AMGIT cla G 3

Figure 22: An example of an alignment of the primer region in sequence data. The first row shows the design of the primer
which is the pattern used to search for PIDs in the sequences. A number of example sequences from raw data is included. The
last column shows how many mismatches must be allowed in the search before the search pattern will be found in the
sequence.

The current approach does not allow for insertions or deletions (indels) in the search pattern. If a
sequence contains an indel in the prefix, suffix or primer ID it will not be returned as a match. A

possible exception is that if the indel is very close to either of the terminal regions of the search motif,
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then a match might be returned, depending on the number of additional mismatches present. For
example, if there was an insertion at the third position on the left of the prefix, such that the sequence

is AACCGT instead of AACGT, a match will be returned if the max.mismatch parameter was >= 3.

The motif scanning procedure is implemented in parallel, using the foreach (Revolution
Analytics & Weston, 2015) library. The number of CPU cores to use is specified by the ncpu
parameter. A further processing time optimization allows the motif searching to start with a given

number of mismatches allowed, as specified with the max.mismatch_start parameter.

The raw sequence names are replaced in the output by an optional user input string, concatenated to
the PID that was found for the sequence. Additionally, a data.frame linking the new sequence name,
with the original raw sequence name is produced. This data.frame is especially useful when
processing paired-end data, allowing both pairs to be given the same PID, even though the PID was

only contained in one of the two reads.

Sequences in which no primer ID could be located-are removed from the primary dataset. These
sequences are written to a file with'the suffix.'_pid_not_found.fasta' when the results of the binning

process are written to disk.

3.1.2 Group sequences into bins based on their PIDs

The sequence data set is broken up-into-a series of smaller datasets. Each of these data sets is called
a bin, where each bin will only contain sequences that have the same primer ID. In this way, each bin

will theoretically contain sequences that are from a single input template.

3.1.3 Discard bins based on invalid PIDs

An inherent problem with current NGS technologies is their high error rates. Thus, there is the
possibility that sequencing errors may occur within the PID. In order to combat this problem,
MotifBinner implements an approach proposed by Zhou and colleagues (S. Zhou et al., 2015) based
on estimating a cutoff and discarding all sequences where the bins contain fewer sequences than this
cutoff. This is due to the fact that these small bins are likely to be 'offspring bins', bins that arise as a
result of sequencing errors within the PID as opposed to true bins containing a uniquely generated
PID. Assuming an error rate, specified via the sequencing_error_rate parameter, one can
estimate the size of the offspring bins produced from the largest bin. This number of sequences in the
largest expected offspring bin is then used as the cutoff for the minimum bin size allowed. The

simulation approach implemented in MotifBinner is described in the following sections.

47



3.1.3.1 Simulating the sequencing of Primer IDs

A function called sim_one_parent_main_off was written to perform the simulation of the
sequencing for a single bin. For a given bin size, primer ID length and sequencing error rate, this
function will simulate sequencing a PID the number of times specified by the bin size argument under
the assumed sequencing error rate. A number of PIDs will then be produced, of which the majority
will be the original PID sequence (called the parent PID). All other PIDs produced (those with
sequencing errors in them) will be referred to as offspring PIDs. The PID that occurs at the second
highest frequency (the most frequent of the offspring PIDs), will be referred to as the main offspring

PID. The function returns the number of parent PIDs produced and the number of main offspring PIDs.

If this process is repeated a large number of times, a distribution can be built showing the relationship
between the number of parent PIDs produced and the number of main offspring PIDs produced. This
distribution can be used to guide the choice for the consensus cutoff associated with a parent bin of
a specified size. Three parameters influence the size of the main offspring bin and a range was

considered for each of them, namely:

e The true size of the bin (which would result if PIDs were sequenced with perfect

accuracy), ranging from 100 to 15000 in steps of 20
e  The length of the primer ID, ranging from 5 to 15

e The sequence error rate for which four values are considered, 1/50, 1/75, 1/100 and

1/125.

3.1.3.2 Computing a consensus cutoff from simulated data

Once you have a distribution of main offspring bin sizes simulated for a given parent bin size, the
guestion remains as to how to choose a cutoff value from that distribution. The mean value is not a
good choice, since roughly 50% of the offspring bins would still be passed into the final dataset. The
maximum offspring bin size is not a valid choice either as it is effectively determined by the number
of simulations you perform (since the chance exists that all of the reads for a given PID contains a

sequencing error in the PID). We chose to use the 99'" percentile of the distribution.

To accurately estimate the 99" percentile of a distribution a large sample size is required. It is
impractical to simulate a large sample for each possible parent bin size, therefore we used a sliding
window of size 20 over the parent bin size. All observations within the sliding window are pooled and
a 99" percentile was computed for them. This 99" percentile was then taken as the size of the main
offspring bin for a parent bin whose size is equal to the midpoint of the sliding window. To simulate

the data, the true bin size is incremented from 100 to 15000 in steps of 20 and 2000 observations are
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simulated for each true bin size. A sliding window yields acceptable results since the relationship
between parent bin size and the main offspring bin size is very linear over the width of the sliding

window.

3.1.3.3 Modeling the relationship between parent and main offspring bin sizes

The relationship between the parent bin and main offspring bin sizes behaves like a power function
with an exponent smaller than one for small parent bin sizes and like a straight line for larger parent
bin sizes. Hence the relationship can be summarized with the following model: y = a + bx + dx® + ¢
where y denotes the size of the main offspring bin and x the size of the parent bin. The nls2
(Grothendieck, 2013) package was used to fit this model to the data by assuming that error

terms, &, are normally distributed.

To ensure reliable fitting of the models, a linear model regressing the main offspring bin size on the
parent bin size as a straight line is first fitted. The residual sum of squares is computed from this
simplistic model. Next the n1s2 (Grothendieck, 2013) package is used to fit 1000 versions of
the nonlinear model each with small-perturbations-to:the starting conditions. Of the 1000 fitted
models, the model with the smallest residual sum of squares is selected. As a basic check the residual
sum of squares is compared to the residual sum of squares of the basic linear model to ensure that
the fitting procedure was successful. The starting conditions for the nonlinear models are perturbed

with the following scheme:

e The a parameter is uniformly/selected from-10 to 10
e The b parameter is uniformly selected from 0.001:to 0.01
e The d parameter is uniformly selected from 0.2 to 0.7

e The e parameter is uniformly selected from 0.2 to 0.6

3.1.3.4 Distribution and usage

The cutoff computed from the simulation will only be applicable to the dataset if the simulation
parameters match those used in the biological design. Thus, a number of datasets were simulated and
models were fit to these datasets. The coefficients of these models are packaged into MotifBinner
so that the user can quickly obtain a consensus cutoff for the current dataset without the need to

perform simulations.

After extracting PIDs from sequences and sorting the sequences into appropriate bins a consensus
cutoff is computed by MotifBinner using these stored models; the largest bin that was found and
the user supplied sequencing error rate. All bins smaller than the consensus cutoff are discarded and

are not included in the subsequent steps.
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3.1.4 Determine which bins are chimeric

While bins should theoretically only contain sequences from a single template, bins containing
sequences from multiple templates have been observed, (Brodin et al., 2015; Yourstone et al., 2014;
S. Zhou et al., 2015). Such bins are referred to as chimeric bins. This occurs when different input
templates are tagged with an identical PID. PCR recombination causes a similar problem in which a
portion of a sequence is labelled with the incorrect PID. The effect of chimeric bins on the overall
quality of the data is small, but their presence indicates a potential flaw in the PID approach. Hence it

is important to detect when a data set contains a large amount of chimeric bins.

If a bin contains n alighed sequences, each of length m, and we hypothesize that the bin was produced
from a single input template, then the sequencing error for the bin can be approximated by dividing
the total number of non-consensus letters in the alignment across all positions by the total number of
letters in all sequences of the bin. We denote the estimated sequencing error by p. Under the
hypothesis of a single input template, the number of sequencing errors at each position follows a

binomial distribution of size n and a success-probability of p.

For any position (i), the number of observed non-consensus letters &; can be used to construct a test
for the null hypothesis that the given number of non-consensus bases are due to sequencing error
only, against the alternative hypothesis that bases observed at the position is not the result of random
sampling from a binomial distribution-with-a-success-probability-of p. The p-value for this test is given
by 6; = 1 — binom(g;, n,p) where binom denetes the-cumulative distribution function (cdf) of a
binomially distributed random variable. One can then specify a tolerance for type | error by choosing
an a. The null hypothesis is rejected if 8; > a. If the null hypothesis is rejected, then one may infer
that the number of mutations at position i is unlikely to result from sequencing error with a single

input template.

This computation must be done for the entire sequence. This means that m such hypothesis tests
must be performed. Multiple hypothesis testing has well documented effects on the type | error of
the test (R. G. J. Miller, 2012). To preserve the type | error, a correction must be performed. In
MotifBinner, the Holm-Bonferroni correction is used (Holm 1979). After computing the p-values for
all the positions and applying the correction to them, a bin is said to be chimeric if any of the corrected

p-values exceed 0.999. Hence a is equal to 0.001.

Using a correction for multiple hypothesis testing frequently leads to severe power loss of the
hypothesis test. However, for this application, the probability of a sequencing error is so low (when
interpreted as a success probability in a binomial distribution), that the p-values returned from the

binomial cdf gets extremely small for even a small number of non-consensus bases. Hence, the power
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after applying the correction is still acceptable. Consider for example that P(X < 10) for a

binom (30, 1:70) distributed random variable is equal to 0.999999999999995.

A limitation of the approach outlined above is that it only uses the information from the position with
the largest number of mutations. Better performance is achieved by constructing a compound

rejection criteria for the null hypothesis:

e Reject Hy if the largest p-value exceeds 0.999, or
e  Reject H if the two largest p-values exceed 0.995.

While a statistically consistent derivation of the compound hypothesis is possible, it suffices to show
that the sensitivity and specificity of the method based on a compound rejection criteria is high on

simulated datasets.

3.1.5 Find and remove sequences that were given an incorrect PID

The previous section was concerned with evaluating an entire bin to see if the data in the bin resulted
from multiple input templates with.the'same PID. In this-section;-each sequence in a bin is inspected

to see if it is from the same input template as-the rest of the sequences in the bin.

For each bin, a distance matrix is constructed that contains the distance of each sequence from every
other sequence in the bin. We used the generalized Levenshtein edit distance that does not allow the
transposition of adjacent characters (van der Loo, 2014). This is the most computationally intensive
step in MotifBinner and scales quadratically with the size of the'bins - i.e. it is an O(n?) operation.
To reduce running time, a maximum bin‘size is-specified using the max_sequences parameter. If a
bin contains more sequences than specified with the max_sequences parameter, then a number of
sequences equal to max_sequences (default is 400) is randomly sampled from the bin and all the
other sequences in the bin are discarded before the distance matrix is computed. Large bins result
from over amplification of sequences with certain PIDs during the PCR step and consists of many reads
of the same input template. Discarding a portion of these sequences does not result in information

loss provided that enough sequences remain in the bin.

Two different options can be used to compute the distances. The stringDist function of the
Biostrings (Pagesetal, 2017) library is the default. It is slower, but does not require the installation
of an external dependency. Alternatively, the faster vsearch
( ) program can be used. stringDist returns a non-normalized
edit distance. vsearch returns the edit distance normalized by the length of the pairwise alignment

between the two sequences. The output from vsearch is altered to provide a raw edit distance
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similar to that from stringDist. In a very small number of cases there are mismatches of size 1 between
some distances in the results obtained from stringDist and vsearch due to rounding and loss of

precision when converting the normalized distances from vsearch to non-normalized distances.

If the maximum distance between any two sequences in the dataset is greater than a threshold
specified via the threshold parameter, the sequence(s) that are furthest away from all the other
sequences is (are) removed from the dataset. In some cases, two or more sequences are equidistant
from the other sequences, in which case both (or all) sequences are simultaneously removed. This
process is repeated until the maximum distance between any two points drops below the threshold.
The default threshold is % meaning that if there are more than 8 errors in a read of length 600, then
we expect that there is another process at play in addition to sequencing error and the read will be
discarded as being from a different template than the rest of the sequences. It should be noted that
the maximum distance between any two sequences is halved before comparing it to the threshold
since a distance of 1 between two sequences mean that there was a sequencing error in only one of

the sequences.

Sequences removed from the bins at this step are not considered in any of the subsequent steps of
the binning process. These sequences are however reported in the output, where a fasta file is

produced for each bin. The sequences removed in this step are indicated by a suffix *_out’ appended

7

to their sequence headers, while those that are retainedare appended with the suffix “_src”.

3.1.6 Align the sequences in each bin

After outlying sequences have been removed from the bins, alignment of the remaining sequences is
trivial due to the high degree of similarity between the sequences. Thus, a muscle (Edgar, 2004)

alignment with default settings was found to perform adequately.

3.1.7 Construct a consensus sequence for each bin

After alignment, a consensus sequence is constructed for each bin. For each position in the alignment,
the letter that occurs most frequently is taken as the consensus letter. If more than one letter occurs

with equal frequency, then an IUPAC ambiguity character is returned for that position.

3.1.8 Produce a report detailing the steps that were taken

A detailed report is produced recording various metrics about the binning process:

. Number of input sequences
. The number of sequence in which PIDs were found

. Sequence lengths
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. The distribution of bin sizes
. The amount of sequences removed during the step that finds sequences with incorrect PIDs
. A list of the bins from which the most sequences were removed

. The number of degeneracies in the consensus sequences and the size of the bins from which the

consensus sequences were produced
. An analysis of the distances between the sequences
o The running time of the different steps in MotifBinner

. The parameters that were used for the run
3.1.9 Save all the results and the report

A large amount of output is written to the disk, including:

. A file containing all the consensus sequences for the given data set

o A fasta file containing all the sequences in which PIDs could not be found

. Alookup table linking the original sequence-name-to the new name containing the primer ID that
was found for that sequence

o A folder containing:

— A fasta file for each hin, containing the sequences that were assigned to the bin,
including the consensus for the bin'and all sequences that were removed from the bin
during the outlier removal step

—  Aplot, for each bin, showing the distances between each of the sequences in that bin.

o The report on the binning processfor the dataset

3.2 Materials and MethodsBatasets

This work made use of two biologically derived NGS datasets produced using the PID approach
described in (S. Zhou et al., 2015). These datasets have been published in (Bhiman et al., 2015) and a
detailed description of the datasets can be found in that publication. Briefly, the datasets were derived
from participant CAP256 of the CAPRISA 002 Acute Infection study, a cohort of 245 high-risk, HIV-
negative women that was established in 2004 in Durban, South Africa, for follow-up and subsequent
identification of HIV seroconversion. This individual is known to have been superinfected (re-infected

with a distinct strain of HIV-1 at 15 weeks post infection.

The viral RNA was converted to cDNA using a primer designed to bind to HXB2 position 1094 to 1118
of the gp160 protein. It also included a randomly assigned 9-mer region (the PID) and a region to which

the primers used for PCR will bind. Hence the cDNA synthesis process will produce cDNA molecules
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that starts on the 3’ end with the target region of the PCR primers, followed by the PID, and the

sequence of the gp160 gene from position 1118 towards the start of the gp160 gene.

PCR was performed using a reverse primer binding to the region introduced during the cDNA synthesis
step and a forward primer with a gene specific region targeted to HXB2 position 332 to 358 of the
gp160 gene. PCR primers also included the required sequencing platform specific regions so that the
final product after PCR consisted of positions 332 to 1118 of the gpl160 gene and the relevant

sequencing platform specific sequencing.

Paired-end sequencing was performed on the PCR product yielding two reads from each end of the
molecule. The first read, called the forward read, starts from position 332 and extends 300 bases
towards the 3’ end (roughly HXB2 position 632 of the gp160 gene depending on indels in the specific
variant). The second read, called the reverse read, starts on the 3’ end, with the region introduced
during cDNA synthesis — the binding site for the PCR primers and then the PID. The PID is followed on
the 5’ end by the sequence of gpl60 from position 1118 to approximately position 842 (276

nucleotides).

Due to the highly variable nature of the 1%and 2" variable loops (covered by the forward read),
alignment of this region is challenging. Hence we only used the reverse reads from these datasets for
the evaluation of MotifBinner. A small portion of the reverse reads covered positions 710 to 958
instead of 842 to 1118 of gp160, due to a miss-priming event. All reads resulting from the miss-priming

event were removed from the dataset.

The first dataset was generated from a sample. collected roughly 6. weeks post infection (visit code
2000), while the second dataset was generated from a sample collected at approximately 193 weeks
post infection (visit code 4260). Hence, the two datasets are referred to here as ‘6wpi’ and ‘193wpi’
respectively. For the 6wpi dataset, all viruses were closely related to the primary infecting virus, while
significant viral diversity had evolved by 193wpi (due in part to the superinfection event), see Figure

23 (Bhiman et al., 2015).
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Figure 23: Differences in sequence diversity between the two datasets, illustrated by an unrooted phylogenetic tree. A

maximum likelihood tree was constructed using FastTree| (Price, Dehal, & Arkin, 2009) and plotted with ggtree (Yu G,

Smith D, Zhu H, n.d.), using all the unique'seguencesfrom-the-6wpi-(green)-and-193wpi (blue) datasets, as well as HXB2 (red)

as a reference/outgroup.

Additionally, each dataset was processed using two different methods: The first method processed

the data according to the PID approach, using the PID tags contained within the sequence, while the

second method processed the data independently of these PID tags. The two versions of the processed

datasets are referred to as the ‘PID version’ and the ‘non-PID version’. The steps taken to produce

these datasets are listed below:

1)
2)

55

The raw fastq files containing the reverse reads were selected.

The length and quality of the reads from each dataset were tabulated. Low quality reads from
each dataset were filtered out using the Shortread package (Morgan et al., 2009), with a
minimum average read quality score of 25 (Q25) and a minimum read length of 275.

Sequences resulting from miss-priming were removed by searching for a motif
(ACCATGCAATAATGTCAGCACAGTACAA) that occurred only in the miss-primed sequences. The
search was performed with the vmatchPattern function of the Biostrings (Pages et al., 2017)

package, allowing for a total of 7 mismatches.



4)

The sequences were generated with primers designed to stagger the sequencing start site. To
ensure that all reads started at the same position in our datasets, bases to the 5’ of the consensus
start site (CAAAACAATAATAGTACATCTCAATGAA) were removed from the reads in both datasets.
This was achieved using the vmatchPattern and padAndClip functions of Biostrings (Pages
et al., 2017), allowing up to 8 mismatches when searching for the start site in the sequence data.
Following these data clean-up steps, MotifBinner was used to further process the PID version
of the two datasets into the resulting consensus sequences. Section 3.1 describes the process
MotifBinner follows in detail. Briefly, the PID is located for each read and used to group reads
with identical PIDs into bins. After a number of steps designed to assess and improve the quality
of the bins, an alignment is constructed for each bin. The alignments are condensed into
consensus sequences by representing each position in the alignment by the nucleotide that occurs
most frequently at that position. The binning reports for these datasets are included in Section
8.1 and Section 8.2. The resulting consensus sequences were aligned in codon space using MACSE
(Ranwez, Harispe, Delsuc, & Douzery, 2011) with default settings. The alighments were manually
curated. In a MACSE alighment,.incomplete codons-are-always.padded on the left hand side with
exclamation characters. In many. cases, the alignment of the nucleotides can be improved by
moving the gap padding to the right hand side of the incomplete codon. Additionally, the

exclamation characters were converted to gap characters (dash) for consistency.

In order to assess the benefit of using the PID-approach, the two datasets inputted into MotifBinner

were processed according to the stepsilisted below, to create non-PID versions of the datasets:
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Steps 1 to 4 above were followed, with the exception that in step 1, the PID motif (located at the
3’ end of the reads) was also removed. This was achieved by stripping out the PID motif
(CAGGAGGGGAYCTAGAARTTACAACNNNNNNNNNCTGAGCGTGTG), as well as any bases following
the 3’ end of this motif, using the vmatchPattern and padAndClip functions of Biostrings,
allowing up to 5 mismatches.

In order to compare the PID versus non-PID methodologies, the sequences within each dataset
had to be aligned consistently. As mentioned above, the PID datasets were aligned using MACSE.
The non-PID datasets were profile aligned to the consensus sequences of the PID-dataset, using
MAFFT (Katoh, Misawa, Kuma, & Miyata, 2002) with the --add option. This option adds unaligned
sequences to an existing alignment and will not make any changes to the existing alignment other

than adding gaps to it.



3) These alignments were also manually curated. MAFFT does not align sequences in codon space.
Thus, the alignment was manually curated to obtain a more biologically relevant, ‘in frame’,

alignment.

In this way, two versions of each dataset were generated (PID and non-PID) for use in the subsequent

analysis, namely:

6wpi_nonpid
6wpi_pid
193wpi_nonpid

P W N R

193wpi_pid
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3.3 Results and Discussion

Various simulations and analyses were performed to inform and validate the design of MotifBinner.

The datasets used were described in the previous chapter. The first part of this section carefully

investigates the primary problems encountered while processing PID datasets and motivates the

solutions implemented in MotifBinner. To guantify the benefits of the PID approach, two datasets are

processed twice, once using the information contained in the PIDs and once ignoring that information.

The results obtained from the different processes are compared and discussed.

3.3.1 JustificationforValidation of MotifBinner’s design.the-desigrof-MotifBinner

As illustrated in section 3.1, MotifBinner executes a number of steps to process PID data. This
section aims to highlight the importance of each of these steps, providing supporting data to justify

their inclusion.

3.3.1.1 Locate and identify the PIDs in each sequence

The identification of the PID motif is essential for pro’c_essmg data according to this method. However,
i "'kl

sequencing error in the specific p{mm-ﬁgybn(s')" us‘ed:as.‘tﬁe’ search motif, reduce the number or
‘hits’, if only exact matches are con§1&-ﬁeﬂ'~¢A4Ibw§ngf$9peFrbr&+h—€hese regions, (the prefix and suffix
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Figure 24: An alignment of selected sequences, over the PID containing region, from the 6wpi dataset. The first line shows the

search motif.
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The increase in the number of matches that are returned when allowing for mismatches in the search
motif is shown in Table 8. The importance of this step is highlighted when one considers that PIDs
could be found in 7510 more sequences when using fuzzy matching instead of exact matching. This
additional 7510 sequences increases the total number of usable sequences by 25% from 29989 to
37499. These sequences were typically of lower quality than those found when no mismatches were
allowed (average quality scores of 34.6 and 32.22 respectively). However, the average quality of these

sequences was high enough (< 1 in 1000 expected error) to justify their inclusion.

Table 8: The number and quality of sequences in which PIDs were found in the 6wpi dataset for different levels of allowed
mismatches in the search for the motif (CAGGAGGGGAYCTAGAARTTACAACNNNNNNNNNCTGAGCGTGTGGTG). Each row
shows the number of additional hits resulting from an increase in the number of mismatches allowed. A total of 29989 PIDs

were found when using an exact search. Of the 8979 sequences in which no hits were found when no mismatches were

allowed, a PID could be found in 4917 when allowing one mismatch.

Sequences Mismatches Mean Interquartile Range
Searched Allowed Quality of Quality
T —t 33.7-36.3
8979 4917 1 32,6 30-35.6
4062 1013 2 29.7 27 -31.9
3049 560 3 30.5 26.7-34.6
2489 264 4 304 26.6-34.1
2225 252 5 32.3 28.5-35.7
1973 177 6 32.7 29.5-35.7
1796 265 7 33.6 31.8-35.9
1531 62 8 30.7 27.8-34.8

The PID search proceeds by iteratively lowering the number of mismatches allowed, ensuring that
matches are always achieved using the highest specificity. The maximum allowed number of
mismatches is specified using the max_mismatch parameter. The number of mismatches allowed in
the first search is set using the max_mismatch_start parameter. This design prevents the situation
where the search string used to find the PID matches multiple locations in the sequence as illustrated

in Figure 25.

232.2 isthe weighted average of the qualities of the sequences in which PIDs were found when allowing between
1 and 8 mismatches.
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Primer Design AGTSAATTNNNNCAGM

| Mismatches
Sequence TGTGAATCAATTEAEAG

Match 1 AGTSAATTNNNNICAG
Match 2 AGTSAATTNNNN[EA G[E 3

Figure 25: A contrived example in which a single search pattern can match the same sequence at multiple locations.

Finding rare variants is one of the main applications of the PID approach. In this case each additional
sequence included in the dataset improves the odds of finding a potentially rare variant. Thus,

justifying the use of fuzzy matching in the identification of the PID motifs.

3.3.1.2 Discard bins based on invalid PIDs

When a sequencing error occurs within the PID tag, this creates either a false unique PID tag, or causes
the tag to erroneously be identical to another PID tag sequence. For the first example, consider the
situation where a PID of length 9 is represented 500 times in the dataset (due to PCR amplification of

the specific cDNA sequence).

In this example 4500 nucleotides will be sequenced just for the PIDs themselves. With an error rate of
1in 100, it is expected that roughly 45 sequencing errors will be made, leading to approximately 45
reads in the dataset with incorrect PIDs. This creates a parent bin of 455 sequences, with up to 45
‘offspring’ bins, where a PID that was sequenced correctlyis-referred to as the parent PID and those
with sequencing errors are called offspring PIDs. (S. Zhou et al., 2015) first reported this phenomena

and described a computational method for resolving it.

A number of variables had to be considered during the implementation of a modified version of the

approach described in (S. Zhou et al., 2015), namely:

e The selection of a suitable modelling approach
e Determining the optimal sample size required to estimate the 99" percentile
e Identifying the most appropriate regression model to fit, and the fitting procedure to use

e Determining the linearity of the relationship over the size of the sliding window

3.3.1.2.1 Modelling approach

While powerful methods for centile estimation exist (Rigby & Stasinopoulos, 2005), we decided that a
more basic approach was appropriate. For small ranges of parent bin sizes, we estimate the 99"
percentile of the main offspring bin size and then fit a nonlinear regression model through those

estimated percentiles. The motivation for this decision is threefold:
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e Accessibility of the concepts to the intended audience: The concepts of a percentile and
nonlinear regression are much more widely known than centile estimation;

e Simplicity of the model: The nonlinear regression model is a simple 4 parameter model, while
centile estimation methods employ smoothers, making them harder to distribute, and
communicate;

e Abundance of data: Since the data is generated using a basic simulation, we can generate very
large amounts of data, adequately compensating for the lower power of the more basic

approach.

3.3.1.2.2 Sample size required to estimate the 99" percentile

Modelling the relationship between the main offspring bin size and the parent bin size requires
estimating the 99" percentile of the distribution of main offspring bin size over a sliding window of
parent bin sizes. An important consideration is the sample size required to obtain a decent estimate

of the 99™ percentile.

The absolute bias when estimating.percentiles-and the mean was investigated by simulating 1000
samples from a standard normal distribution, and comparing the estimates of the mean, 95%
percentile, and 99" percentile to the analytically computed values. The results are shown in Figure 26

and Table 9.
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Figure 26: The absolute bias when estimating the mean, 95th percentile and 99th percentiles for various sample sizes.
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The absolute bias for estimating the 99" percentile is significantly higher than for the mean, but

decreases steadily as sample size increases, suggesting that large sample sizes should be used.

Table 9: The absolute b