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ABSTRACT 

Malaria poses devastating health and socioeconomic outcomes on global health especially 

among pregnant women and children below the age of 5 in endemic areas. This is 

exacerbated by Plasmodium falciparum resistance to available antimalarial drugs, especially 

chloroquine (CQ), which was the drug of choice for many years against the blood stage of 

malaria. CQ resistance is mostly associated with mutations in the putative transporter protein 

known as the P. falciparum chloroquine resistance transporter (PfCQRT) localized in the 

parasitic digestive vacuole (DV) membrane. It enhances CQ efflux out of the DV and reduces 

its accumulation at its site of action. Consequently there is need for continued research for a 

more effective therapeutic drug to solve the problem of CQ resistance. The use of reversed 

CQ compounds which involves the hybridization of a CQ-like nucleus to a reversal agent 

(RA) is a feasible strategy of identifying innovative antimalarial compounds to overcome P. 

falciparum CQ resistance. Prior research has shown that the channel blocking ability of 

polycyclic cage compounds, such as pentacycloundecylamines (PCU), aids in CQ resistance 

reversal. In continuation of this research, the structurally related polycyclic adamantane 

moiety with inherent channel blocking ability was identified as a potential RA for this study. 

The aim of this study was to synthesize novel adamantane-chloroquinolin (AD-CQ) 

conjugates as potentially improved ‗reversed chloroquine‘ compounds to overcome P. 

falciparum CQ resistance. 

The AD-CQ conjugates consisted of the CQ-like 4-aminoquinoline pharamacophore 

conjugated to the adamantane moiety (as the reversal agent) via an alkyl linker. Firstly, the 

CQ-like nucleus was conjugated to alkyl linkers of different chain lengths by amination 

reaction using microwave irradiation to generate the various aminoquinoline (ACQ) 

intermediates. These compounds were then used for synthesis of the novel AD-CQ 

conjugates in series 1 and 2. The aza-adamantanols of series 1 were synthesized from the 

conjugation of an adamantane diketone and appropriate ACQ intermediates via reductive 

amination followed by transannular cyclization. The adamantane diketone was synthesized 

from 2-adamantanone via a 3 step process. The imine-adamantanes of series 2 were 

synthesized from the direct conjugation between 2-adamantone and ACQ intermediates in a 

1:1 ratio. A total of eight novel AD-CQ conjugates were synthesized containing the bulky 

adamantane moiety which made the incorporation of a tertiary amine possible. The 

compounds were structurally confirmed by NMR, IR and MS. In vitro MTT and pLDH 
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assays were used to evaluate the cytotoxicity and antimalarial activity of the novel conjugates 

against CQ
S
 and CQ

R 
strains NF54 and K1 of the P. falciparum parasite.  

All the novel AD-CQ compounds were non-toxic (CHO IC50 = 37860 – 279420 nM) and 

some of the conjugates exhibited potent antimalarial activity in vitro, superior to CQ against 

the CQ
R
 strain and thus overcoming P. falciparum CQ resistance. Compound 5, 6 and 9 were 

highly active compounds on both CQ
S
 and CQ

R
 strains (IC50< 100 nM). Compound 5 showed 

the lowest resistance index (RI = 2.11) with good activity against the CQ
R
 strain (IC50 = 

98.92 nM) and was identified as the most promising novel AD-CQ conjugate. Its ability to 

retain activity in the CQ
R
 strain was 18-fold better than that of CQ. The adamantane moiety, 

especially in the aza-adamantanols, was shown to be a significant P. falciparum CQ 

resistance reversal agent compared to the previously used structurally related PCU moiety. 

Hence, the hybridization of a CQ-like nucleus to an adamantane moiety results in reversed 

CQ molecules with improved antimalarial activity that could overcome P. falciparum CQ 

resistance.  
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CHAPTER 1 

INTRODUCTION 

1.1. INTRODUCTION 

Malaria is a life-threatening parasitic infectious disease caused by the Plasmodium parasite 

and the different species responsible for infection in humans are P. falciparum, P. vivax, P. 

malariae, P. ovale and the most recently discovered P. knowlesi. Of these five species P. 

falciparum is the most common and lethal species (Greenwood et al., 2005; Carter & Mendis, 

2002; Liu et al., 2010), associated with most deaths especially in Africa (Maguene et al., 

2015; Kaur et al., 2009; Baird, 2005; WHO, 2017c). 

Malaria infection is a major global health problem that accounts for millions of morbidity and 

mortality cases with increase in health cost annually (Yearick et al., 2008; Kelly et al., 2007). 

Although substantial progress has been made to control and manage the disease in the past 

decades of research, about 50 % of the world‘s populations are still at risk of being infected 

with the malaria parasite. In the 212 million clinical cases encountered globally in 2015, 

429,000 deaths were registered (WHO, 2016a). Moreover, the burden of malaria is felt 

mostly in low to middle income countries of sub-Saharan Africa. In addition, the poorest, 

marginalized communities and young children below the age of 5 and pregnant women are 

the most vulnerable (Bray et al., 2005; Breman, Alilio and Mills, 2004; Bloland, 2001). It 

also places economic burden on the malaria endemic countries, as it impedes economic 

growth which affects livelihood and settlement patterns (Sachs & Malaney, 2002; Gallus & 

Sachs, 2001). 

Chloroquine (CQ), (figure 1.1) was a cost effective antimalarial drug discovered in the 1940s. 

Additionally, it was readily available, well tolerated with a rapid onset of action and a 

relatively good safety profile (Greenwoodet al., 2005; Ridley, 2002; Wellems & Plowe, 

2001). These qualities made CQ a ‗wonder drug‘ that was used extensively worldwide as the 

mainstay drug for the prophylaxis and treatment of blood stage malaria for many decades 

since its discovery (Bruce-Chwatt, 1954). CQ exerts its antimalarial activity by inhibiting the 

formation of inert haemozoin leading to build up of toxic free haem in the parasitic food 

vacuole. Nonetheless, the emergence of P. falciparum CQ resistance in 1957 in the Thai-

Cambodian border area and subsequent increasing wide spread of the resistant strains of the 
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parasite have rendered CQ ineffective and its use as an antimalarial drug restricted (Joubert et 

al., 2014; Sunduru et al., 2009; Trape et al., 1998). This has put all the excellent qualities of 

CQ to waste as the problem is not with CQ itself but with the advancement of the parasite.  

N

NH

CH3

N

Cl

CH3

CH3

 

Figure 1.1: CQ structure 

P. falciparum resistance to CQ is due to mutations in Plasmodium falciparum chloroquine 

resistance transporter (PfCQRT) protein, a putative transporter in the parasitic vacuole 

membrane. This transporter promotes CQ efflux out of the parasitic vacuole thus decreasing 

CQ accumulation at its site of action (Fidock et al., 2000). Furthermore, P. falciparum is not 

resistant to CQ only but to almost all available antimalarial drugs even the newer artemisinin-

based combination therapies (ACTs) thus limiting the number of affordable efficacious drugs 

available to fight the disease. The greatest consequences of these limitations of fewer drugs 

and high cost have been the complication and delay of malaria treatment, control and 

eradication strategies especially in sub-Saharan Africa (Ridley et al., 1996). Thus there is 

indeed a dire need for the discovery of new antimalarial drugs to expand the chemotherapy 

agents‘ portfolio before it is too late. This study seeks to overcome P. falciparum CQ 

resistance using adamantane-chloroquinolin conjugates as potential reversed CQ agents. This 

could go a long way to restore the usefulness of CQ derivatives as antimalarial drugs. 

 

1.2. RATIONALE OFTHE STUDY 

As already stated, malaria poses health threat to 50 % of the world‘s population as the most 

common strain P. falciparum, in addition to being lethal has become resistant to every 

antimalarial drug available especially CQ. Thus more people mainly in sub-Saharan Africa 

are at risk of being infected with the malaria parasite each year with increased malaria 

morbidity and mortality. This is due to the availability of a limited number and range of 

antimalarial drugs, which greatly hinders the management and control of malaria. 

The control of malaria infection is multifaceted including vector control, chemotherapy and 

policy strengthening (Crater & Mendis, 2002). Currently, the limitation of vector control, 
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inadequate surveillance of policies as well as the delay of an effective vaccine makes 

chemotherapy the mainstay strategy, to control, cure and possibly eliminate malaria (Aguiar 

et al., 2012). Thus, it is required that new drugs be developed against all the stages of the 

complex life cycle of the parasite. However, the interest of this study is focused on continued 

research efforts to modify existing successful pipe-line drugs, especially the modification of 

existing blood stage antimalarial agent scaffolds, in order to produce improved novel 

antimalarial agents. CQ has been used as a lead scaffold and modified as described below to 

synthesize novel AD-CQ conjugates to overcome P. falciparum CQ resistance. 

1.2.1. 4-Aminoquinoline Pharmacophore 

Resistance to CQ has made its use restricted in malaria infection and has led to the rise of 

artemisinin-based combination therapy (ACT) as first line treatment in P. falciparum 

infections. However, the availability of ACT is limited and resistance to artemisinin have also 

emerged (Noedl et al., 2008; Dondrop et al., 2009). Also, the effectiveness of some 

alternatives like mefloquine and quinine has reduced significantly due to cross resistance. 

These drugs mentioned above do not match the low cost, quick onset of action, safety profile, 

availability and simple structure of CQ (Mushtaque & Shahjahan, 2015; WHO, 2014; Peyton, 

2012; Saenz et al., 2012; van Schalkwyk & Egan, 2006; Wellems & Plowe, 2001, Ridley et 

al., 1996; Whitty et al., 2008; Olliaro, Taylor & Rigal, 2001). 

In this project, the 4-aminoquinoline pharmacophore (CQ-like nucleus) was used as lead 

scaffold to synthesize novel adamantane-chloroquinolin conjugates in order to modulate and 

enhance the favourable qualities of CQ. Moreover, the 4-aminoquinoline pharmacophore (7-

chloro-4-aminoquinoline-based antimalarial drugs) is still an attractive scaffold of interest 

because its mechanism of action and mechanism of resistance are independent of each other 

and resistance to it developed slowly over a long period of time (Omodeo-Sale et al., 2009; 

Egan et al., 2000). Structure-activity relationship (SAR) on the 4-aminoquinoline 

pharmacophore has shown it to posssesses antimalarial activity,especially the inhibition of 

beta-hematin formation (haemozoin) and enhanced accumulation of the drug at the targeted 

site (O'Neill, 1998; Muraleedharan & Avery, 2007). New analogues with the 4-

aminoquinoline core as reversed CQ molecules have been shown to have enhanced 

antimalarial activity in vitro compared to CQ against CQ resistant (CQ
R
) P. falciparum 

strains as well CQ sensitive (CQ
S
) strains (Joubert et al., 2014; Pandey et al., 2013; Sunduru 

et al., 2009). 
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1.2.2. Reversed Chloroquine Molecule Strategy 

Despite the controversies on the mechanism of CQ resistance, it is agreed that CQ resistance 

occurs due to decreased CQ access to target free haem as a result of reduced drug 

accumulation in the parasitic digestive vacuole (Saenz et al., 2012; Kelly et al., 2007; 

Wellems & Plowe, 2001). This has shown to be strongly associated to point mutations of 

Plasmodium falciparum chloroquine resistance transporter (PfCQRT) protein in the vacuole 

of the parasite. This is a transporter which promotes the efflux of the drug out of the vacuole, 

the site of CQ action (Burgess et al., 2010; Van Schalkwyk & Egan, 2006; Djimdé et al., 

2004).  

Fortunately, CQ resistance can be reversed using reversal agents and/or chemosensitiers. 

These are molecules that reverse resistance to CQ by inhibiting the efflux mechanism or 

making the parasite sensitive to CQ again. The interest in research on agents to reverse CQ 

resistance started in 1987, when Krogstad and co-workers discovered that CQ resistance was 

due to increased efflux rate of the drug out of the food vacuole (Krogstad et al., 1987). This 

explains the low drug accumulation and why several compounds, such as calcium channel 

blockers like verapamil (Martin et al., 1987), tricyclic antidepressants like imipramine (Adam et al., 

2004; Bhattacharjee, Kyle and Vennerstrom, 2001) and antihistamines like chlorpheniramine (Basco 

& Bras, 1994; Brasco & Bras, 1991), have slowed the rate of this efflux and increased CQ 

accumulation in the vacuole (Kelly et al., 2007). A similar result was obtained by Martin, 

Oduola and Milhous (1987), when they investigated verapamil and found it reversed CQ 

resistance in resistant P. falciparum strains with no effect on CQ sensitive strains at the same 

concentration. 

The findings of these studies, though ground breaking, had the limitation of the poly-

pharmacy approach of CQ and chemosensitizers, which is costly and inconvenient. To 

address this problem, Burgess and colleagues (2006) introduced the new attractive strategy of 

reversing CQ resistance via the hybridization of a reversal agent (RA) to the CQ 

pharmacophore (7-chloro-4-aminoquinoline nucleus) in the development of a single 

antimalarial molecule. This was termed a ‗reversed CQ (RCQ) compound‘ (figure1.2) with 

greater advantage of increasing the accumulation of the compound in the vacuole. 
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Figure 1.2: Generalized structure of a RCQ compound 

Many other researchers have demonstrated the feasibility of this strategy by the investigation 

of different RA design strategies and have produced potent novel RCQ compounds (Joubert 

et al., 2014; Van Schalkwyk & Egan, 2006; Andrews et al., 2009). 

The hybridization of the RAs to the side chain of 7-chloro-4-aminoquinoline nucleus 

produced compounds with the excellent antimalarial properties as CQ and this is attributed to 

the 7-chloro-4-aminoquinoline scaffold. The 7-chloro-4-aminoquinoline is responsible for the 

antimalarial activity of the compounds by facilitating haem target binding. This hybridized 

reversed CQ molecule is generally a potential improved dual function compound (Kumar et 

al., 2011) and it is the interest of this study. This hybridization is advantageous to the patient, 

as it produces a single chemical entity with dual activity and decreases the concentration of 

each compound required, when compared to the polypharmacy approach. The result of this is 

decreased cost, increased efficacy, adherence and reduced toxicity (Joubert et al., 2014; 

Peyton, 2012). These molecules are known to also have enhanced activity against resistant 

strains of P. falciparum as well as improved metabolic stability which prevents cross 

resistance. 

1.2.3. Polycyclic Cage Compounds 

Polycyclic amines like NGP1-01 (figure 2.13), a prototype of pentacycloundecylamine 

(PCU) has shown significant inherent voltage-gated calcium channels and N-methyl-D-

aspartate channels blocking activities. It has been investigated and found to act as a 

chemosensitizer to CQ and further investigation led to the discovery of aza-derivatives of 

PCUs with better resistance reversal activity when hybridized to a CQ-like nucleus (Joubert 

et al., 2016; Joubert et al., 2014). Based on these findings, adamantane which is structurally 

related to the PCU of NGP1-01 as a polycyclic cage compound with inherent ability to block 

N-methyl-D-aspartate (NMDA) channels (Kademani et al., 2014; Parsons & Gilling, 2007; 

Danysz et al., 1997) was chosen to be explored as a resistance reversal agent in this study. 

Furthermore, to the best of our knowledge this is the first time adamantane the smallest 

diamondoid is been investigated as a RA conjugated to the CQ-like nucleus. 
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The interest to explore adamantane is also encouraged by the following: The known RAs 

used for other RCQ compounds like calcium channel blockers, antihistamines and 

antidepressants have high cardiac and central neuronal system side effects and cross-

resistance have also been observed with these classes of molecules (Mushtaque & Shahjahan, 

2015; Zishiri et al., 2011, Kelly et al., 2007). Adamantane on the other hand have not been 

associated with these effects. The adamantane moiety also facilitates the formation of a 

tertiary amine with the N-alkyl amino side chain of the proposed structures which is 

necessary for antimalarial activity via its protonation (Kelly et al., 2007). Furthermore, the 

diamondoid and bulky nature of the adamantane moiety could also confer metabolic stability 

to the terminal tertiary amine from N-dealkylation as in the case of CQ (Geldenhuys et al., 

2005). This could then lead to prevention of pruritus side effect commonly associated with 

CQ administration as well as cross resistance with CQ (Aghahowa et al., 2010). 

There are controversies as to the appropriate length of linker neccessary for optimum activity 

between the RA and the CQ-like nucleus. While some studies show that the optimum length 

is between 2-3 carbons (Joubert et al., 2014), others say it can also be more than a 10 carbon 

chain linker (Ridley et al., 1996; Hocart et al., 2011). This implies the linker length has a role 

to play in the antimalarial activity of the compounds. Thus, the effect of the linker length was 

also evaluated in this study by varying the carbon chain length. 

 

1.3. AIM AND OBJECTIVES OF STUDY 

The main aim of this study is to synthesize two series of novel adamantane-chloroquinolin 

(AD-CQ) conjugates (figure 1.3) as potentially improved reversed CQ compounds to 

overcome CQ resistance by Plasmodium falciparum and to investigate their antimalarial 

activity. To obtain this aim, the following objectives were set: 

 Design model compounds that fulfil the requirements of potential reversed CQ agents. 

 Synthesis, purification and structural elucidation of the N-(7-chloroquinolin-4-

yl)alkanes-1-n-diamines of different lengths (aminoquinoline (ACQ) intermediates, 

compounds 1 - 4).  

 Synthesis of the adamantane diketone moiety through a 3 step synthesis process. 
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 Synthesis of the AD-CQ conjugates of series 1 (aza-adamantanols, compounds 5 - 8) 

(figure 1.3). 

 Synthesis of AD-CQ conjugates of series 2 (imine-adamantanes, compounds 9 – 

12)(figure 1.3) 

 Structure elucidation of the synthesized series of compounds using NMR, MS and IR. 

 Screening of the synthesized compounds for cytotoxicity. 

 Evaluation of the compounds for antimalarial activity and resistance reversal activity 

N

OH

NH

N

Cl

n 

Aza-adamantanols

n 

Imine adamantane

n = 2, 3, 4, 6

Series 1 compounds Series 2 compounds
n = 2, 3, 4, 6

C

N NH

N

Cl

 

Figure 1.3: Representative structures of the two adamantane-chloroquinolin conjugates 

series. 

 

1.4 HYPOTHESIS 

CQ reversed molecule is a viable strategy to reverse CQ resistance in P. falciparum CQ 

resistant strains. Adamantane derivatives are known to have inherent channel blocking 

activity (Joubert et al., 2011; Geldenhuys et al., 2007). However it is not known whether such 

inherent channel blocking activity can inhibit the efflux pumps associated with malaria 

resistance. In this study, the series of synthesized novel adamantane-chloroquinolin 

compounds are proposed to exhibit the following properties: 

 The 4-aminoquinoline pharmacophore (CQ-like portions) of the molecule will confer 

antimalarial activity to the molecule by binding to the target haem.  

 The channel blocking properties of the adamantane may enable these molecules to 

block the efflux pump associated with CQ resistance and enhance accumulation of the 

drug, thus improving its use in malaria chemotherapy. It is also expected that its 

lipophillic nature will enhance permeability into the food vacuole. 
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 The presence of the tertiary amine will increase the basicity of the proposed novel 

structures. This will increase the degree of protonation of the novel molecules thus 

enabling greater accumulation of the drug in the food vacuole where it is proposed to 

act.  

 The aza-adamantane moiety is bulky enough for steric hindrance, which will prevent 

metabolism of the tertiary amine required for antimalarial activity. It will also prevent 

cross resistance with CQ as well as avoid formation of the metabolite involved in 

psoriases which is a major reason for non-adherence. 

 

1.5 RESEARCH QUESTIONS 

Malaria poses a global health problem which is exacerbated by the increasing spread of 

Plasmodium falciparum resistance to CQ. Due to P. falciparum resistance to almost all 

antimalarial agents especially to CQ, this study seeks to develop improved novel antimalarial 

alternatives for blood stage malaria. The good qualities of CQ encouraged the optimization of 

the already successful 4-aminoquinoline pharmacophore in this study to develop improved 

novel antimalarial alternatives for blood stage malaria parasite. 

The main question posed in this research is, can adamantane with inherent channel blocking 

ability act as a P. falciparum CQ resistance reversal agent to produce improved RCQ 

compounds? Other questions include: 

1. How would the series of novel adamantane-chloroquinolin conjugates be designed 

and synthesized? 

2. What is the toxic effect of this novel AD-CQ conjugates on non-parasitic cells? 

3. Do these novel compounds demonstrate any antimalarial activity? 

4. Do these novel compounds exhibit any ability to reverse CQ resistance?  

5. What is the reversal effect of the use of adamantane moiety as CQ resistance reversal 

agent compared to the pentacycloundecylamine moiety previously used? 

6. What is the appropriate chain length for optimal activity of the linker between the 4-

aminoquinoline pharmacophore and the reversal agent? 
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7. How would the presence or absence of a hydroxyl (-OH) substitution on the 

compounds affect the activity? 

8. What is the effect of the pKa value of the terminal tertiary amine on the antimalarial 

activity of the compounds? 

1.6 CHAPTERS OUTLINE 

This study is divided into five chapters. Chapter 1 provides the context in which the research 

is set, the importance of the research, the aim and objectives of the study, the hypothesis and 

research questions. It also includes the chapter outline and conclusion. 

Chapter two is the literature review. This chapter provides a background of malaria and 

available blood stage antimalarial drugs especially CQ. It also focuses on P. falciparum 

resistance, the development of reversed CQ agents as well as the importance of the polycyclic 

cage moieties in producing improved reversed CQ molecules. 

Chapter three present the synthesis of the novel compounds which highlights all the 

experimental work carried out in this study to produce the novel adamantane-chloroquinolin 

(AD-CQ) conjugates, including the intermediates required. These comprise what was done 

and used, giving detailed synthetic procedures for the designed series of compounds as well 

as challenges that were encountered. Two test series of the novel AD-CQ conjugates of four 

compounds each were synthesised by conjugating the adamantane moiety to a CQ-like 

nucleus. 

Chapter four deals with the biological assays done and results obtained. The cytotoxicity 

profiles of the compounds were investigated. It also explains how the synthesized compounds 

were evaluated for antimalarial activity on both CQ
S
 and CQ

R
 strains and the results used to 

investigate their resistance reversal ability against CQ
R
 isolates of P. falciparum.  

Chapter five gives an overall conclusion of the study and recommendations for future studies. 

 

1.7 CONCLUSION 

Resistance to antimalarial drugs especially CQ is a major setback in malaria chemotherapy 

for the prophylaxis and treatment of blood stage malaria. The hybridization of adamantane as 

reversal agent to a 4-aminoquinoline nucleus via an alkyl amino linker of appropriate length 
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may produce a potentially improved reversed CQ molecule. It is expected that these novel 

synthesized compounds will have improved antimalarial activity compared to CQ because of 

their potential ability to accumulate in the food vacuole of chloroquine resistant strains by 

blocking the CQ efflux system mediated by the PfCQRT. This ability may make the resistant 

strains sensitive to the CQ nucleus again. Being designed with proposed reverse CQ agents in 

mind, the compounds may also have improved pharmacokinetic properties as a result of the 

lipophillic nature of adamantane. These molecules will potentially lead to improved 

chemotherapy to overcome the malaria disease, resulting in decreased morbidity and 

mortality associated with malaria, especially in Africa. In addition, these hybrid-reversed CQ 

molecules are expected to reduce the burden of cocktail administration of CQ and a reversal 

agent as proposed in other studies in that it will decrease cost, increase efficacy and 

adherence, and reduce toxicity by decreasing the concentration of each compound required. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 INTRODUCTION 

This chapter reviews some literature on malaria. It provides a background of malaria and the 

available classes of blood stage acting antimalarials especially chloroquine (CQ). It looks at 

P. falciparum resistance to CQ, the development of reversed CQ agents as well as the 

importance of the polycyclic cage moieties as reversal agents in producing improved reversed 

CQ molecules. The aim of this chapter was to understand the vulnerability of the parasite, the 

basic mechanisms by which CQ antimalarial drugs act and how resistance to CQ developed. 

This enables the optimisation of CQ, so as to design new chemical therapeutic derivatives, 

rather than focusing on discovering new entities with new mechanism of action, to save time 

and cost. 

The 4-aminoquinolines and their derivatives especially CQ have been the most significant 

antimalarial agents synthesized and used for the treatment and prevention of malaria. 

However, the increasing emergence and widespread multidrug resistant P. falciparum strains, 

has put chemotherapy (the mainstay of malaria management and control) under constraint, 

thus raising health concerns. Therefore, there is a need for the continued search for improved 

synthetic alternatives. This research is aimed at making a contribution by developing an 

improved alternative to CQ to address the problem of CQ resistance.  

 

2.2 MALARIA BACKGROUND 

2.2.1 History of malaria 

Malaria is an ancient disease that dates centuries, following the awareness of the 

characteristic poor health, malarial (mash) fevers and enlarged spleens seen in people living 

in marshy places. For many years, the idea that malaria was air borne was generally accepted, 

thus the name mal’aria meaning ‗spoiled air‘ in Italian (Reiter, 2000). With the discovery of 

bacteria in 1676, and the incrimination of microorganisms as causes of infectious diseases 

followed by the development of the germ theory of infection by Louis Pasteur and Robert 

Koch in 1878-1879, the search for the cause of malaria intensified. However, scientific 
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understanding of the malaria disease was possible only after the discovery of the plasmodium 

parasites in the blood of malaria patients by Charles Louis Alphonse Laveran in 1880 and the 

discovery of the plasmodium sexual stage in infected birds by William MacCallum (Bruce-

Chwatt, 1988; Sullivan, 2002).  

Furthermore, the identification of mosquitoes as the malaria vector was first shown for avian 

malaria by Ronald Ross in 1897 following his elucidation of the whole transmission cycle of 

the avian malaria parasite P. relictum in culicine mosquitoes (Meshnick & Dobson, 2001). 

With further studies by the Italian malariologists Giovanni Battista Grassi, Amico Bignami, 

Giuseppe Bastianelli, Angelo Celli, Camillo Golgi and Ettore Marchiafava between 1898 and 

1900, mosquitoes were confirmed to also transmit malaria to humans (Bruce-Chwatt, 1988; 

Cox, 2010).  

Today, malaria is known as a devastating mosquito-borne infectious disease of humans and 

other animals, caused by the parasitic protozoan Plasmodium. It is transmitted principally by 

the female Anopheles mosquitoes during feeding on a blood meal. In some rare but possible 

cases malaria is transmitted from human to human via transfusion of malaria infected blood 

(Ekwunife et al., 2011; Owusu-Ofor, Gadzo and Bates, 2016; WHO, 2016a). Also, malaria 

can be ‗congenital‘, transmitted from an infected mother to foetus before or during delivery 

(Solomon, Okere and Daminabo, 2014). 

Five species of Plasmodium are known to affect humans and these include P. falciparum, P. 

vivax, P. malariae, P. ovale and P. knowlesi. Of all these species, P. falciparum is the 

deadliest species associated with most deaths (Maguene et al., 2015; Burgess et al., 2010; 

Yearick et al., 2008; Kaur et al., 2009). P. falciparum is different from the other species 

known to affect humans in that it has the ability to adhere to the endothelium of blood vessels 

during the blood stage of the infection and limit blood supply to different organs. P. vivax and 

P. ovale infections make eradication of malaria difficult because they have the ability to 

remain dormant in the liver for months as hypnozoites without any symptoms and cause 

relapses after malaria treatment or years of initial infection. P. malariae is unique in that it is 

able to persist asymptomatic for years in the blood stage while P. knowlesi is a zoonotic 

infection. P. knowlesi is an infection of monkeys transmitted to humans by the mosquito 

vector.  

P. vivax although less researched is highly disabling and malaria infection by it, is common 

in tropical areas outside Africa as a result of the absence of the Duffy blood group antigen 
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receptor necessary for P. vivax invasion of the red blood cells (RBCs) expressed in most 

Africans. Also, P. vivax can develop within the mosquito at a lower temperature than that 

required for P. falciparum thus can survive in cold temperatures (Greenwood et al., 2008). 

Baird (2013) concurs with Anstey and colleagues (2009) to argue that P. vivax is an equally 

life threatening Plasmodium species associated with as many debilitating clinical cases as P. 

falciparum. However, P. falciparum is of greater importance in this study because it is the 

most prevalent malaria parasite on the African continent where more deaths occur. Also, it is 

associated with severe malaria and responsible for most malaria-related deaths globally. 

Additionally, it is the most implicated parasite in antimalarial resistance making the control 

of the disease a challenge (Trampuz et al., 2003; WHO, 2016a; MMV, 2017; WHO, 2016b).  

2.2.2 Life cycle of malaria 

Malaria infection is caused by the parasitic protozoan of the genus Plasmodium which has a 

complex life cycle completed in three stages. These include the exo-erythrocytic stage (in the 

liver), the intra-erythrocytic stage (in blood) and the sporogonic stage (in the mosquito) as 

shown in figure 2.1. It involves two hosts - the female Anopheles mosquito (vector) and 

humans or animals (secondary host) (Foley & Tilley, 1998; Hay et al., 2010; Kumar, Kumari 

and Pandey, 2014). 

The life cycle of Plasmodium illustrated in figure 2.1 begins with the inoculation of 

sporozoites, the motile infective form of the parasite by the female Anopheles mosquito into 

the blood stream of the human host during a blood meal. The sporozoites target and access 

the liver rapidly through the blood stream with the help of the circumsporozoite protein and 

invade the hepatocytes (liver cells) (A). This begins the asymptomatic liver stage of the 

infection (Sinnis et al., 1994). The parasite stays in the liver cells for 5 to 16 days where it 

replicates asexually via tissue schizogony to produce thousands of merozoites contained in 

schizonts (mother cell). P. vivax and P. ovale hypnozoites attack this stage and remain 

dormant in the liver cells (White, 2011).  
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Figure 2.1: The life cycle of Plasmodium. (Adapted from: Baimote, Wanner and Le Roch, 

2013) 

A rupture of the liver cells as the schizonts burst, releases thousands of merozoites which 

flood into the blood stream and infect red blood cells (RBCs) (Sturm et al., 2006). This 

begins the blood stage of the malaria infection cycle. The merozoites in RBCs start another 

series of rapid asexual proliferations known as blood schizogony producing 8 to 32 new 

schizonts, each containing merozoites. These merozoites differentiate through different forms 

from ring forms to trophozoites to schizonts as shown in figure 2.1 (B). The infected RBCs 

rupture as the schizonts burst and many merozoites are again released into the blood stream 

to start a new infective cycle infecting new RBCs. The release of merozoites in blood and 

infection of new RBCs is an almost indefinitely repeated process taking place every 24 hours 

(P. knowlesi), 48 hours (P. falciparum, P. vivax and P. ovale) and 72 hours (P. malariae). 

This increases the number of parasites in the blood (Greenwood et al., 2008) and is 

responsible for the symptomatic phase of malaria infections. In the course of disease 

progression, some trophozoites differentiate sexually from immature gametocytes to mature 

male and female gametes that circulate in the peripheral blood awaiting ingestion by a female 

A 

B 

C 

D 
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anopheles mosquito for further development (C) (Cooke, Mohandas and Coppel, 2001; 

Cowman, Berry and Baum 2012; Miller, Good and Milon, 1994). Targeting of the blood 

stage is therefore most critical for the control of clinical cases of the disease and associated 

morbidity and mortality. 

The circulating gametes are fertilized in the gut of the mosquito once they are ingested during 

another blood meal on the infected person by the female anopheles mosquito as illustrated in 

figure 2.1 (D). This is the asymptomatic mosquito stage. In the mosquito gut, fertilization 

occurs between the gametes to form a motile zygote called an ookinete. The zygote then 

develops into new sporozoites via sporogony which migrate to the mosquito salivary glands 

in preparation for inoculation during the next blood meal starting the cycle over again 

(Cowman, Berry and Baum 2012). Development of drugs that target this stage are important 

to prevent transmission. 

2.2.3 Epidemiology 

Malaria still remains a devastating infectious parasitic disease of great public health impact 

worldwide with 50 % of the world‘s population (3.2 billion people) at risk of being infected 

with the malaria parasite annually. According to the World Malaria Report (2017a) released 

by the World Health Organisation (WHO), estimates of 212 million malaria cases and 429 

000 deaths were observed globally in 2015 only. This statistic estimate a 21 % drop in 

malaria new cases and 29 % decline in mortality rates registered worldwide when analysed 

from 2010 to 2015, resulting in a total of 6.8 million deaths by malaria averted. Despite this 

success registered in lowered disease burden, malaria still remains endemic in more than 91 

countries (WHO, 2017a; WHO, 2017c). This means more than 40 % of the people in these 

countries are infected with malaria. 

This is a cause for concern because a greater number of malaria deaths are not reported as 

they are handled at home with complementary medicines and strategies to notify and record 

these deaths are nowhere to be found. This was investigated by Murray and colleagues 

(Murray et al., 2012) and indicated that counting all the undiagnosed, untreated and 

unreported malaria cases doubles the reported mortality rate (Talisuna, Bloland and 

D'Alessandro 2004; Breman, 2001). Nevertheless, malaria is preventable and curable when 

diagnosed and treated on time using effective antimalarial drugs. Although malaria is also 

common in the tropical and subtropical areas of Asia and Latin America, its main impact is 
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felt in Sub-Saharan Africa where almost 92 % of the global mortality burden occurs (WHO, 

2016a; Kaur, et al., 2009; Greenwood & Mutabingwa, 2002). 

In 1954, Africa was identified as the most malaria plagued continent and this was attributed 

to the late introduction of residual insecticides as the modern vector control strategy used in 

other areas at that time like USA in 1951 (Bruce-Chwatt, 1954). Recent data by WHO 

(2016a) revealed that increased control efforts implemented using insecticides bed-nets and 

surveillance are dramatically reducing the malaria burden in many places and especially in 

children below 5 years and pregnant women in Africa (Breman, Alilio and Mills, 2004). 

However, Africa still remains the most plagued malaria WHO region. From the above it can 

be seen that the intensity of malaria transmission in Africa is determined by epidemiological 

factors related to the vector, parasite, human host and environmental conditions.  

There are more than 400 different species of Anophelines mosquito vectors that transmit the 

malaria parasite but only about 40 are malaria vectors of major importance known as 

―dominant vector species (DVS)‖ by malaria experts. DVS are capable of significant malaria 

transmission (Hay et al., 2010; Sinka et al., 2012). Each species of these Anopheles 

mosquitoes has a preferred aquatic habitat such as small, shallow collections of fresh water, 

puddles or hoof prints, which favours transmission. These habitats are abundant during the 

rainy season in tropical countries (Autino et al., 2012). Transmission is more intense in 

places where the mosquito lifespan is longer for complete development of parasites and their 

preference of feeding on humans rather than other animals. The long lifespan and strong 

human-biting habit of the African vector species contributes to the reasons why nearly 90% 

of the world's malaria cases are in Africa (Coluzzi, 1999). These vector species include the 

common Anopheles gambiae complex: An. gambiae, An. arabiensis, An. merus, An. melas 

and Anopheles funestus, An. moucheti and An. nili (Sinka et al., 2010).Anopheles gambiae is 

a very efficient vector in malaria transmission because, they are long-lived, breed readily, 

occur in high densities in the tropical climates and also, they prefer to feed on humans rather 

than other animals. These species are exclusively found in sub-Saharan Africa (Gallup & 

Sachs, 2001). Their effective transmission rate which is the number of sporozoite-positive 

mosquito bites per person per year varies between 1 in part of Latin America and Southeast 

Asia to about 300 in some parts of tropical Africa. This is measured using entomological 

inoculation rate (EIR) (Birley & Charlewood, 1987). Anopheles funestus is also a major 

vector in transmitting P. falciparum in Africa despite being sadly neglected, with most of the 
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research focusing on members of the An. gambiae complex (Charlewood et al., 1995; 

Coetzee & Fontenille, 2004). 

Human immunity or correctly put tolerance is also significant in malaria transmission. In 

areas of intense or stable malaria transmission where a healthy human is exposed to a fairly 

constant rate of malaria inoculation (from mosquito bites) all year round throughout their 

whole lives, morbidity and mortality during early childhood is very significant. The most 

vulnerable group of people affected by malaria are children below the age of 5 and pregnant 

women due to immature and compromised immune system (Luxemburger et al., 1997; Carter 

& Mendis, 2002). However, for those who survive early childhood, some partial immunity 

against malaria is developed (Baird, 1995; Baird et al., 1991). This partial immunity does not 

provide complete protection but reduces the risk of severe disease from malaria infection in 

adulthood by making the infection asymptomatic. On the other hand, in areas with low, 

erratic or focal transmission, full immunity is not achieved and symptomatic severe malaria 

cases may occur at all ages. This is known as unstable malaria. In addition, this immunity 

gained is lost if the individual is exposed to a long period of no reinfection such as in 

relocation from an endemic area to a malaria free area (Thomson, 1933). The above explain 

why children and pregnant women with low immunity in African countries with intense 

malaria transmission are more vulnerable to severe attack than adults whereas in low 

transmission areas, all age groups are at equal risk. 

Furthermore, natural climatic conditions such as heavy rainfall patterns, temperature and 

relative humidity and altitude also greatly affect malaria transmission. This is because they 

affect the number and survival of mosquitoes (Carter & Mendis, 2002). In areas of unstable 

malaria like in South Africa (SA), transmission is mostly seasonal with the peak season 

during or just after the rainy season in many places. Malaria peaks in SA from September to 

May. In addition, human activities such as agriculture, deforestation, urbanisation, increase in 

international travel and influx of people with low immunity into intense malaria areas also 

affect malaria transmission and can cause a malaria epidemic (Autino et al., 2012; Keiser et 

al., 2004). Malaria epidemics or emergency is a threat for all, even in non-malarious areas 

due to global warming and seasonal change patterns threatening the world today. Thus 

malaria does not solely belong to the tropical countries, as it can occur anywhere when 

climate and other conditions favour transmission (Snow, 2015; Parham et al., 2011)  
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The socioeconomic impact of malaria has been investigated by Gallup and Sachs (2001) and 

Sachs and Malaney (2002), and they found that malaria is a disease commonly associated to 

poverty and decreased economic growth with a causal relationship from both ends. At a 

global level, malaria incidence is concentrated in the world‘s poorest countries especially in 

sub-Saharan Africa. Although one cannot categorically say malaria causes poverty or poverty 

cause malaria, it is hard not to see the link between poverty and malaria. Malaria‘s impact on 

economic growth is huge. For this reason, malaria ridden countries cannot monitor and 

control the disease such that there is high malaria incidence in these countries. This 

eventually leads to high cost, disease burden and absences from work which leads to 

depression in economic growth and limits the countries‘ ability to monitor and control the 

disease. Thus it maintains a vicious cycle of disease and poverty (Breman, 2001). 

2.2.4 Pathology of malaria and clinical manifestation 

The pathology of malaria illness arises as a result of the processes that take place in the 

asexual blood stage. These processes involve the rupture of infected red blood cells to release 

parasitic waste and many merozoites parasites into the blood stream. These infect new red 

blood cells causing RBCs degradation by plamepsins and falcipains enzymes (aspartic acid 

proteases) (Egan et al., 2000; Goldberg et al., 1990). The proteolysis of the infected RBCs 

results in cell debris and toxins, which when released into the blood stream stimulate 

macrophages and other host cells to produce cytokines and other soluble factors responsible 

for an abnormal immune response and the clinical symptoms of malaria (CDC, 2010). Also, 

lysis of erythrocytes and hepatocytes directly affect blood counts and the liver. The 

involvement of blood makes malaria a potential multisystem disease because all organs of the 

body are in contact with blood. The clinical symptoms are manifested as either 

uncomplicated (typical) or severe malaria (Sunduru et al., 2009). 

The typical symptoms of malaria are flu-like in nature with regular periodic occurrence of 

sudden coldness accompanied by shivering and then fever and sweating know as paroxysm. 

This occurs every four days (quartan fever) as in P. falciparum and P. malariae infections 

and every three days (tertian fever) in P. vivax and P. ovale infections (Carter & Mendis, 

2002). Other symptoms include headaches and nausea, fatigue, body aches, and spleen 

enlargement if left untreated (MMV, 2015). Symptoms of malaria can recur after varying 

symptom-free periods following relapse, reinfection or recrudescence. Relapse occurs when 

symptoms reappear after parasite elimination from the blood by malaria treatment, due to 
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persistent parasites as hypnozoites in the liver cells and usually occurs between 8 - 24 weeks 

(Nadjm & Behrens, 2012). Recrudescence is the return of symptoms after a symptom-free 

period caused by parasites that survived in the blood as a result of inadequate or ineffective 

treatment (White, 2011; Baird & Rieckmann 2003). Reinfection means the parasite that 

caused the past infection was eliminated from the body but a new parasite was introduced. 

Reinfection cannot readily be distinguished from recrudescence, although recurrence of 

infection within two weeks of treatment from the initial infection is typically attributed to 

treatment failure (Tran et al., 2012; WHO, 2015) 

If not treated, uncomplicated malaria infections become severe leading to other life 

threatening conditions and are mostly associated with the P. falciparum parasite. In severe 

malaria, parasite proliferation in the erythrocyte causes structural, biochemical and 

mechanical modifications which increase the rigidity and adhesiveness of the parasitized 

RBCs. This increased adhesiveness causes the infected RBCs to continuously and 

simultaneously bind to vascular endothelium (cytoadherence) and to non-infected 

erythrocytes (rosettling). This binding can cause the accumulation of parasitized cells in the 

small vessels and locally sited capillaries, resulting in vascular occlusion and inflammation. 

This results in decreased blood supply thus limiting oxygen supply to vital organs causing 

dysfunction of the organs. Some serious complications associated with severe malaria include 

respiratory distress, glomerulonephritis (kidney inflammation), acute renal failure, 

hypoglycaemia, severe anaemia, cerebral malaria, metabolic acidosis and pulmonary oedema 

(WHO, 2015; White, 2004; Wilairatana et al., 2002). Cerebral malaria and respiratory 

distress are the major causes of death by P. falciparum especially in infants as it leads to 

convulsions, coma and death if not attended to immediately (Chen, Schlichtherle and 

Wahlgren, 2000; Foley & Tilley, 1998; Wiesner et al., 2003; Miller, Good and Milon, 1994). 

The malaria parasite has been able to survive from ancient times until now via the 

development of many mechanisms through mutations to avoid natural as well as host induced 

immune responses. The most notorious survival strategy of the parasite is its ability to 

undergo almost unlimited antigenic variations, changing the antigens on the surface red blood 

cells such that it is not recognized. This provides for temporary parasitisation and often 

causes death of their host in the end (Chen, Schilchtherle & Wahlgren 2000).  
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2.2.5 Control of malaria 

To decrease and eliminate host morbidity and mortality, malaria must be controlled. The 

control of malaria infection involves the integrated efforts of vector control, chemotherapy 

and policies. Currently, the limitation of vector control as well as the delay to get an effective 

vaccine and ineffective policies surveillance makes chemotherapy the mainstay strategy to 

control and eliminate malaria as per WHO Global Technical Strategy (GTS) for Malaria 

2016-2030 (WHO, 2017b; Aguiar et al., 2012). Presently, the fight against malaria is steered 

towards malaria elimination which is defined as the reduction to zero new malaria cases of a 

particular human malaria parasite within a defined geographical area as a result of deliberate 

activities.  This will require integrated efforts to prevent transmission re-establishment. Once 

this is achieved permanently worldwide, then malaria can be eradicated for a malaria free 

world (WHO, 2017b). 

Malaria had once occurred widely in the temperate areas of Western Europe and the USA. 

However, it was successfully eradicated through the vector control campaign with DDT 

(dichloro-diphenyl-trichoroethane) insecticide between the late 1940s and early 1950s 

(Zucker, 1996). The success of this campaign led to the creation of the Global Malaria 

Eradication in 1955 by the World Health Organisation. This programme which depended on 

CQ for both treatment and prevention and DDT for vector control was relatively successful 

only in areas with relative low transmission rate and developed economy (Carter & Mendis, 

2002; Tanner & Savigny, 2008). Nonetheless, the goal of ‗Global malaria eradication‘ was 

never achieved in most parts of Africa, and was officially abandoned in 1972 because of the 

lost political will due to war and unrest at the time, emergence of CQ resistant parasites and 

DDT insecticide resistant anopheles mosquitoes (Brito, 2001; Bruce-Chwatt, 1988; 

Greenwood et al., 2008).  

With the ‗crushed hope‘ of achieving global malaria eradication, the new strategy of ‗Malaria 

control‘ was then introduced to reduce malaria incidence, prevalence or mortality (disease 

burden) to a level where it is not a public health problem anymore (Mendis et al., 2009; 

WHO, 2017b). From the lessons of past failure, it was postulated that strengthening of health 

systems, infrastructure development and poverty reduction, especially in Africa, was required 

in addition to chemotherapy and vector control in order to effectively and efficiently control 

malaria (Crater & Mendis, 2002). 
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The introduction of the new strategy was followed by a global gloom period in the fight 

against malaria with increased malaria burden (Tanner et al., 2015). The DDT resistant 

vectors led to the focus of malaria control and elimination being shifted and greatly 

dependent on chemotherapy (Aguiar et al., 2012). However, there existed too few 

antimalarial drugs which made them vulnerable to emergence of resistance. Moreover, 

malaria at the time was known as a disease of the poor and this made investment into 

antimalarial drugs to be seen as a market failure by pharmaceutical industries and thus was 

not pursued. The public sectors such as government did not have all the innovative methods 

and finances to invest in malaria research (Mendis et al., 2009). These limitations called for a 

partnership between the private and public as well as military sectors to combine research 

efforts and to finance international malaria programmes to fight this common enemy that 

threatened the world (Brito, 2001; Rieckmann & Sweeney, 2012).  

Presently this has been looked into after the Global Malaria Control Strategy adoption of 

1992 (WHO, 1993) and there are many new partnerships between governmental, academic, 

non-governmental organisations (NGOs) and pharmaceutical companies such as WHO‘s 

Medicines for Malaria Ventures (MMV). MMV was created in 1999 for the discovery, 

development and delivery of new antimalarials in collaboration with the public and the 

private sectors and many other funding organisations. These organisations include the World 

Bank‘s Roll Back Malaria (RBM) program, Bill and Melinda Gates Foundation‘s Malaria 

Vaccine Initiative and Multilateral Initiatives on Malaria and other national initiatives. The 

success of such partnership can be seen in South Africa (SA) in the collaboration of SA 

Medical Research Council (MRC) and UCT with Bill and Melinda Gates foundation to 

develop new medicines, vaccines and other biotechnologies against HIV/AIDS, TB and 

Malaria (Haldar & Philips, 2013). 

Currently, no antimalarial vaccine exist commercially, except the RTS,S/AS01 vaccine based 

on the P. falciparum circumsporozoite protein which is in clinical trials. It is a pre-blood 

stage vaccine with promising results (Bejon et al., 2008; Schwartz et al., 2012). Also being 

tested are vaccines targeting the anti-merozoite surface protein of blood stages (McCa-rthy et 

al., 2011) and the blockade of transmission (Herrera, Corradin & Arévalo-Herrera, 2007; 

Gregory et al., 2012). With the adaptation by WHO that RTS,S be rolled out in 3 sub-Saharan 

countries as pilot projects and the funding for it already secured, the vaccinations are 

expected to start in 2018. However, vaccine development is still a challenge and a success 

story is yet to be told. 
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The history of malaria gives researchers the advantage to understand the disease and how it 

has evolved overtime as well as the prospects of understanding the gaps in malaria research 

which is one of the aims of this chapter. This section has shown that from a statistical point of 

view, malaria is a devastating parasitic infectious disease worldwide as 50 % of the world‘s 

population is at risk of transmission. Since all the clinical manifestations of malaria infection 

are now known to be from the blood stage, targeting the infection at this stage will decrease 

disease morbidity and mortality especially in sub-Saharan Africa. This research aims at 

synthesizing adamantane-chloroquinolin conjugates as reversed CQ molecules to overcome 

P. falciparum CQ resistance as a strategy to add to the antimalarial armoury to control and 

eventually eradicate the disease.  

 

2.3 SCHIZONTICIDES: BLOOD STAGE ACTING ANTIMALARIAL AGENTS 

The plasmodium parasite responsible for malaria pathology is most susceptible to drug attack 

at the blood stage. Antimalarials acting on the asexual erythrocytic Plasmodium parasites are 

known as blood schizonticides. Blood schizonticides are used for clinical prophylaxis 

(prevention of clinical symptoms by acting on the asexual parasite in blood); clinical cure 

which entails relief of immediate flu-like symptoms of an attack without necessarily 

eliminating infection and radical cure which is complete elimination of blood and tissue 

parasite from the body (Olliaro, 2001). For decades, malaria chemotherapy has been 

sustained by a handful of drugs, each with their own pharmacological limitations, of which 

parasite resistance has been the most significant (Biagini et al., 2003). The classes of drugs 

commonly used with blood schizonticidal activity include antifolates (e.g. pyrimethamine, 

proguanil); artemisinin and related derivatives (artesunate, artemether, arteether) and the 

quinolines (e.g. CQ, mefloquine, quinine, amodiaquine) (Olliaro, 2001; Shaik, 2010; von 

Seidlein & Greenwood, 2003; Jana & Paliwal, 2007; Saifi et al., 2013). These are presented 

in figure 2.2. 
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Figure 2.2: Structures of some blood stage Schizonticides 

2.3.1 Antifolates 

Antifolate antimalarials are drugs that inhibit the parasitic folate pathway enzymes: 

dihydrofolate reductase (DHFR) by pyrimethamine, cycloguanil and dihydropteroate 

synthase (DHPS) by sulfadoxine and other sulfa drugs in the production of parasitic folate 

(figure 2.3). These enzymes are involved in the biosynthesis of parasitic nucleic acids and 

some amino acids necessary for parasitic growth (Saifi et al., 2013). These drugs have been 

used successfully for the treatment of malaria but the rapid emergence of drug resistance 

through point mutations in the genes coding for DHFR and DHPS enzymes, have restricted 

their use (Biagini et al., 2003; Sibley et al., 2001).  

The first antifolate drug produced was proguanil marketed as Paludrine
®
 in 1945. Further 

work on it by Carrington and co-workers (1951) showed progunail to be a prodrug as its 

antimalarial activity was attributed to one of its metabolites, cycloquanil, an active form of 

the drug. It later became the template for pyrimethamine synthesis by Falco and colleagues 

(1951). DHPS inhibitors had unacceptable toxicity profiles and low efficacy when used alone 

in antimalarial therapy, but showed good synergistic effects with DHFR inhibitors. Thus, 

they were used in combination therapy. The most widely used combination was sulfadoxine 

and pyrimethamine (SP) marketed as Fansidar
® 

(Nazila 2006; Saifi et al., 2013). Despite the 

combination of DHFR and DHPS inhibitors, it soon faced resistance and was short lived.  
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Figure 2.3: Antifolates antimalarial drugs 

2.3.2 Artemisinin and derivatives 

Artemisinin (ART) discovered by Chinese scientists from sweet wormwood Arteminsia 

annua in 1972, is a sesquiterpene lactone with an endoperoxide bridge essential for 

antimalarial activity. The discovery of artemisinin rescued the antimalarial chemotherapy as 

all the other antimalarial classes available at the time were faced with resistance (White, 

2008). 

The antimalarial activity of artemisinin and derivatives is by interaction with haem via the 

endoperoxide bridge to form oxygen free radicals. These free radicals alkylate protein and 

damage parasitic micro-organelles and membranes (Meshnick, Taylor and 

Kamchonwongpaisan, 1996). The endoperoxides also inhibit parasitic polymerization of 

degraded haemoglobin to haemozoin. 

The natural structure of artemisinin served as a template for the development of semi-

synthetic derivatives like artemether and artesunate in 1987 as well as dihydroartemisinin 

(DHA), an active metabolite of artemisinin in 1992. The derivatives were modified to 

improve water and oil solubility to ease formulation into different dosage forms (Krishna, 

Uhlemann and Haynes, 2004; Biagini et al., 2003). The use of artemisinin and derivatives in 

monotherapy had as a major drawback, susceptibility to an increased rate of malaria infection 

recrudescence due to their short half-lives and short-course of treatment (Meshnick, Taylor 

and Kamchonwongpaisan 1996). Consequently, artemisinin-based combination therapies 

(ACTs) were introduced in an attempt to reduce recrudescence with monotherapy and to slow 

down potential resistance. Artemisinin-based combination therapies (ACT) were declared by 

the WHO as the first line treatment for P. falciparum malaria infection in 2004 (WHO, 2006; 

Schoepflin et al., 2010). In addition to other drawbacks, ART and its semi-synthetic 

http://etd.uwc.ac.za/



 

 

 

 

Chapter 2  Literature Review 

25 
 

derivatives are commercially limited because it is a natural product thus requires extraction 

which is costly. 
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Further work on artemisinin led to the discovery of other synthetic antimalarial drugs like 

pyronaridine in 1973 and lumefantrine (benflumetol) in 1976, to expatiate on the ACTs 

development. Synergistic effects between lumefantrine and artemether resulted in a new 

combination in China in 1992. This new combination drug was registered in 1999 in 

Switzerland as Coartem
®
 and added to the WHO Essential List in 2001 (Premji, 2009). 

Another combination drug artemisinin and piperaquine was tested and DHA/piperaquine 

phosphate was registered and produced in Vietnam in 1997 as Artekin
®
. Artemisinin and 

derivatives have also shown to have activities against other parasites, viruses and cancers 

(Krishna et al., 2008). However, the emergence of Plasmodium falciparum resistance to 

artemisinin threatens the usable life span of ACTs and the armoury of antimalarial 

chemotherapy. 

2.3.3 Aminoquinolines and derivatives 

Quinine (Q) is a natural alkaloid extracted from the bark of cinchona tree and was the first 

antimalarial agent to be used as standard for intermittent fever worldwide. Quinine has a 

weak gametocidal activity against P. vivax and P. malariae and is still used in the treatment 

of acute cases of severe P. falciparum infection. Quinine provided the scaffold for discovery 

and synthetic aminoquinolines development. 

Further research in search of new antimalarial drugs to address the disaster caused by malaria 

in World War I spearheaded the exploration and discovery of new synthetic antimalarials. 
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This was due to the fact that world supply of quinine was cut off by the Japanese and quinine 

extraction from Chinchona bark was expensive and difficult and it also causes severe cardiac 

side effects (Brito, 2001). 
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Figure 2.5: Structure of Quinine 

In 1856, Henry attempted to synthesise QN but failed. However, in his failure, he succeeded 

in synthesizing the first synthetic water resistant textile dye. As dyes became useful to 

microbiologists and commonly used to stain and identify pathogens that were difficult to see 

under the microscope, methylene blue (MB) was discovered to be particularly effective in 

staining malaria parasites and found to have antimalarial activity.  

Using MB as a prototype, scientists from Bayer a once German dye company turned 

pharmaceutical company, began to develop new synthetic antimalarials and discovered 

Pamaquine (PM) (plasmoquine) in 1925. PM, the first 8-aminoquinoline antimalarial drug 

was also capable of preventing relapses in vivax and ovale malaria. Nevertheless, it is no 

longer used clinically as per WHO recommendation because it is less efficacious than it is 

toxic (WHO, 2010; Peters, 1999) 

In1932, they developed mepacrine (MP) (Atabrine®) which was effective against falciparum 

malaria. One of the biggest problems with this compound was its discolouration of the urine, 

skin and eyes. Although this was used for some time to monitor patient compliance, it greatly 

limited the use of mepacrine (Coatney, 1963). 

Research for new antimalarial drugs continued and resochin was developed in 1934. 

Although it had potent antimalarial activity, reports from clinical trials showed it was too 

toxic and thus abandoned. In 1936, a derivative of resochin was developed known as 

sontochin (NQ) (nivaquine) which seemed less toxic. However, due to the greater loss of 

soldiers to malaria in the Pacific War of the 1940s, the Vietnam War, World War II and 

others in malaria zones than to the war itself, more efforts were made by Australian and 

American military to find the best antimalarial drugs to fight the disease (Brabin, 2014; 
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Rieckmann & Sweeney, 2012). Compounds previously synthesised were re-assessed and 

resochin was among them. The ‗wonder properties‘ of resochin renamed CQ were seen and 

appreciated only in 1946 and was then designated the drug of choice for malaria treatment 

(Talisuna, Bloland and D'Alessandro 2004; Khan & Chand, 2015; Coatney, 1963). 

With the success story of CQ, many other compounds previously made were reinvestigated 

against malaria and Camoquin (amodiaquine AQ) another 4-aminoquinoline was discovered. 

Amodiaquine is an orally active 4-aminoquinoline with antimalarial and anti-inflammatory 

properties. It is structurally similar to CQ but is superior in activity against CQ resistant P. 

falciparum strains. However, it has been associated with agranulocytosis and severe fatal 

acute hepatitis which limits its use in chemoprophylaxis (O‘Neill et al., 2003). 

In the search for effective clinical derivatives of PM, primaquine (PQ) was discovered. PQ is 

the only approved drug commercially available for attacking the tissue hypnozoites reservoir 

of infection of P. vivax and P.ovale (Baird & Rieckmann, 2003; Greenwood, 1995). It is the 

prototype used for the design and synthesis of anti-hypnozoite derivatives for radical cure. 

Primaqiune is an all stages antimalarial drug: It kills the early and late stage tissue parasites in 

the liver as well as sterilizes the gametocytes of the blood stage of all species, thus stops 

disease transmission from host to vector (Davanco et al., 2014). Although PQ exerts 

schizontocidal activity (Vale, Moreira and Gomes, 2009), it is less effective on P. falciparum. 

It interferes with ubiquinone function as an electron carrier in the respiratory chain of the 

parasite, thus disrupting its metabolic processes in the mitochondria (Hill et al., 2006; 

Schlesinger, Krogstad and Herwaldt, 1988). Works of Alving and colleagues (1955) 

demonstrated that there is a synergy effect between PQ and blood schizonticides like CQ or 

quinine since it showed decreased efficacy when not co-administered with CQ (Baird & 

Rieckmann, 2003). However, metabolites of PQ cause serious side effects such as haemolytic 

anaemia in glucose-6-phosphate dehydrogenase (G6PD) deficient patients and necessitate a 

pre-screening before the use of PQ. This limits the use of PQ only as a last resort (Fernando, 

Rodrigo and Rajapakse, 2011; Alving et al., 1960). Therefore, PQ needs a better alternative 

that is safer, well tolerated by all, require no special diagnostics and with a short course of 

treatment.  

Tafenoquine (TQ) a promising PQ analogue developed by the US Army and GSK (Elmes et 

al., 2008; Wells, Burrows and Baird, 2010) shows better antimalarial activity against all three 

stages of malaria parasite life cycle compared to primaquine. Nonetheless, it still has the 
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potential side effect of haemolysis in G6PD deficient patients. Thus, TQ will have the same 

limitations as primaquine. 
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Figure 2.6: Aminoquinoline based antimalarial drugs and their analogues 

 

2.4 CHLOROQUINE: BACKGROUND AND PROPOSED MECHANISMS OF 

ACTION 

CQ is a diprotic weak base synthetic analogue of the natural quinoline quinine. This is 

illustrated in figure 2.7. Since its recognition as a potent and safe antimalarial in the 1940s, 

CQ has been used for many years as the mainstay malaria chemotherapy agent for both 

prophylaxis and treatment of the blood stage malaria (Bruce-Chwatt, 1981). This was because 

of its effectiveness and simple regimen, affordability, quick onset of action and readily 

accessibility in hyper-endemic areas, as well as a low toxicity profile that permitted its use in 

pregnant women and children who are the most vulnerable victims of the disease (Hawley et 

al., 1998; Burgess et al., 2010; Mushtaque & Shahjahan, 2015; Omodeo-Sale et al., 2009; 

Wellems & Plowe, 2001). CQ is also useful in rheumatoid arthritis therapy as a disease 

modifying agent to decrease the symptoms. 

http://etd.uwc.ac.za/



 

 

 

 

Chapter 2  Literature Review 

29 
 

 

5

10

6

9

7

8

3

2

4

N
1

Cl
19

NH
11

12

CH3
20

13

14

15

N
16 17

21

CH3
18

CH3
22 Tertiary amine second protonable nitrogen (pKa 2)

7 - chloro - 4 -aminoquinoline nucleus containg first protonable nitrogen (pKa 1) at N 1

 

Figure 2.7: Structure of CQ showing protonable nitrogens 

The site of action for CQ and other 4-aminoquinoline drugs to exert their antimalarial activity 

is the acidic parasitic digestive vacuole (DV) of pH 5.2 – 5.8 (Egan, Ross and Adams, 1994). 

The mechanism of action of CQ can be broadly explained by the two major theories of drug 

accumulation in the acidic DV by ion trapping and inhibition of haem polymerization 

(Kaschula et al., 2002).  

2.4.1 pH (Ion) trapping in parasitic DV (weak base) theory 

At physiological pH (pH = 7.4), CQ is uncharged and very membrane permeable thus 

diffuses into the acidic DV (pH = 5.5) where it becomes double- ionized because of its 

dibasic nature (pKa1 = 8.1 and pKa2 = 10.2) (figure 2.7) (Martin et al., 2009; Olliaro, 2001). 

The ionized form is DV membrane impermeable hence it is trapped in and accumulates in the 

acidic food vacuoles depicted in figure 2.8 (Homewood et al., 1972). Ample evidence have 

demonstrated that the difference of pH gradient between the DV and external red blood cells 

is important for the accumulation of CQ and its derivatives in the DV (O‘Neil et al., 2011; 

Foley & Tilley, 1998; Martiney, Cerami and Slater, 1995; Geary et al., 1990). Hence, an 

increase in vacuolar pH will reduce the proton gradient responsible for drug concentration 

and thus lead to decreased drug uptake and accumulation. The pH trapping aids in ensuring 

that the compound is concentrated at the site of action and is essential for drug activity 

(Hawley et al., 1998). 

Based on this theory, the adamantane-chloroquinolin conjugates in this study were designed 

with a tertiary amine on the side chain to have pKa close to that of CQ to ensure protonation 

in the DV.  
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Figure 2.8: Diffusion of CQ and ion trapping due to pH gradient. (Adapted from: O‘Neil et 

al., 2011) 

2.4.2 Haem polymerization to haemozoin inhibition theory 

Once trapped, the concentration of CQ increases in the DV, the site of haemoglobin 

degradation. The trapped drug then react/complex with haematin (ferriprotoporphyrin IX 

(FPIX) from degraded red blood cells and inhibits parasitic haematin crystallization and 

detoxification to non-toxic insoluble haemozoin (Hz) crystals (Bray et al., 1998; Slater & 

Cerami, 1992; Pagola et al., 2000). The diagram in figure 2.9 represents the process of 

haemozoin inhibition. 

 

 

Figure 2.9: CQ inhibition of toxic haematin detoxification to harmless haemozoin 
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Intra-erythrocytic P. falciparum degradation of haemoglobin provides amino acids used for 

parasitic growth and also releases free haem which is rapidly oxidized to haematin toxic to 

the parasite. However, this toxic by-product is detoxified in the DV into haemozoin or 

malaria pigment crystals which are non-toxic to the plasmodium parasites but toxic to 

humans (Mushtaque & Shahjahan, 2015; Dorn et al., 1995). 

The CQ-FPIX complex inhibits the detoxification via crystallization and the accumulation of 

significant concentrations of toxic FPIX and complex adductsis ultimately responsible for 

killing the parasite (Foley & Tilley, 1998; Combrinck et al., 2013; Omodeo-Sale et al., 2009; 

Sullivan et al., 1998).  

These mechanisms of actions above are attributed to the 7-chloro-4-aminoquinoline nucleus 

and basic amino side chain shown in figure 2.10. The 4-aminoquinoline pharmacophore is 

said to be essential for the complexation of CQ to FPIX resulting in inhibition of haemozoin 

formation and parasite growth while the basic amino side chain aids in trapping high 

concentrations of the drug in the acidic DV of the parasite (Egan et al., 2000; Glans et al., 

2012; Yearicket al., 2008; Muraleedharan& Avery, 2007; Cheruku et al., 2003). 
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Figure 2.10: Structure activity relationship (SAR) of CQ 

2.4.3 Inhibition of Glutathione and hydrogen peroxide mediated haem decomposition 

theory 

Although it is generally accepted that CQ exerts its antimalarial activity by inhibiting the 

polymerization of haemozoin in the DV of the parasite (Egan et al., 2000), it has been 

questioned and debated if this is the only means by which CQ is effective against the 
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plasmodia parasite. Other different mechanisms have been proposed (Sullivan, 2002), but the 

inhibition of both hydrogen peroxide-mediated decomposition of haem and cytosolic 

glutathione-mediated degradation of haem would be mentioned in this study. This is because 

these two routes have been proposed and investigated as defence mechanisms of 

detoxification by the parasite (Opsenica et al., 2013). Ferriprotoporphyrin IX is a pro-oxidant 

and catalyses reactive oxygen species production. This is because in addition to sequestering 

of the toxic haem by-product into insoluble haemozoin, ferrous haem is oxidized to ferric 

haem with the release of oxygen and superoxide for the production of hydrogen peroxide 

(H2O2) and other oxygen radicals (Loria et al., 1999). This causes oxidative stress in the DV. 

Ginsburg and co-workers, (1998) also proposed that not all ferriprotoporphyrin is converted 

to haemozoin thus the remainder exits the DV to the cytosol where it is decomposed by 

glutathione. 

These proposed mechanisms cannot be discredited by the findings of Egan and colleagues 

(2000); they rather strengthen each other as their mechanisms seem to be connected. Thus in 

addition to inhibition of haemozoin formation, the inhibition to both hydrogen peroxide and 

glutathione degradation of toxic haem are additional mechanisms to the mechanism of action 

of CQ to bring about parasite death. Although the rate of one can be more than the others, 

none can stand alone. 

Additionally, despite resistance to CQ, novel drugs with CQ-like nuclei and proposed CQ 

mechanism of action are still in quest because the mechanism of action and mechanism of 

resistance of CQ are independent of each other (Omodeo-Sale et al., 2009; Egan et al., 2000). 

 

2.5 P. FALCIPARUM CHLOROQUINE RESISTANCE 

Despite the effective mechanism of action of CQ, P. falciparum with time has and continues 

to develop resistance to it and almost all other available antimalarial drugs, even the newest 

artemisinin-based combinations. This thus makes optimal treatment, control and ultimately 

elimination of malaria difficult (Saenz et al., 2012). Parasite resistance has been defined as 

the ―ability of a parasite strain to survive and/or multiply despite the administration and 

absorption of a drug in doses equal to or higher than those usually recommended but within 

the limits of tolerance of the subject‖. This takes into consideration that ―the drug must gain 

access to the parasite or the infected red blood cells for the duration of the time necessary for 
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the normal action of the drug‖ (Bruce-Chwatt et al., 1986;WHO, 2010;WHO, 2015;WHO, 

2016c). 

The first case of CQ resistant P. falciparum was observed in the Cambodia-Thailand border 

of Southeast Asia in late 1957, and it spread steadily through South America (Venezuela and 

Colombia) and India in the 1960s and 1970s. It was only in 1978 that Africa also joined the 

queue, when resistant P. falciparum strains were detected in Kenya and Tanzania. However, 

within a decade almost the entire continent was swept with resistance (Wellems & Plowe, 

2001).  

The frequent malaria treatment failures observed with CQ during this period led to the 

abandonment of CQ as a first line drug and ultimately a stop to its use in malaria infections. 

Thailand was the first country to replace CQ as a first-line drug in 1973 followed by several 

others in Asia and South America. Nonetheless, CQ was still useful in Africa until 1988 

when KwaZulu-Natal in South Africa replaced CQ with Sulfodoxine-Pyrimethamine (SP) as 

a first line treatment for malaria (Bredenkamp et al., 2001). Notwithstanding, the first country 

to change their national drug treatment policy as per WHO requirements was Malawi in 

1993, followed by Kenya, South Africa and Botswana four years later (Bloland et al., 1998; 

Talisuna, Bloland and D'Alessandro, 2004). This was the decline of the success story of CQ 

usefulness in malaria infections. It has been established that P. falciparum CQ resistance is as 

a result of decreased accumulation of CQ in the DV, for which there are many proposed 

mechanisms pointing to either increased efflux or reduced intake of drug (Van Schalkwyk & 

Egan, 2006;Wellems & Plowe, 2001). Consequently, there is decreased access of CQ to free 

heme for complexing and thus ineffectiveness of CQ. Many propositions have been made as 

to the mechanism of limited CQ accumulation in the DV of P. falciparum parasites, of which 

the major ones considered in this study are follows. 

2.5.1 Increase CQ efflux rate out of parasitic DV theory 

CQ resistance is based on reduced CQ accumulation in the DV of resistant parasites (Verdier 

et al., 1985). This theory was confirmed by Krogstad and colleagues (1987) and shown to be 

due to CQ efflux from the DV. They demonstrated that CQ is efflux from CQ
R
 parasites at a 

rate 40-50 times faster than in CQ
S
 parasites despite the same rate of accumulation. This 

finding suggested a simultaneous expulsion of CQ out of the DV by an energy dependent 

process. This process was mediated by the ATP-fuelled multidrug efflux pump, p-

glycoprotein (pGP) which is capable to expel a number of different drugs (Sharom, 2011). 
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Bray and co-workers in 1992 also investigated this phenomenon and discovered that both 

CQ
S
 and CQ

R 
parasites of P. falciparum have equal rates of CQ efflux. However, this new 

finding did not contradict the efflux pump theory of Krogstad and colleagues (1987), but 

suggested that more than the efflux of CQ out of parasitic DV is responsible for CQ 

resistance. This made room for further research into the difference in the CQ
S
 and CQ

R
 

strains of P. falciparum. Consequently, mutation in the gene coding for PfCQRT found in the 

CQ
R
 strains was implicated in P. falciparum CQ resistance.  

2.5.2 PfCQRT mutations theory 

CQ resistant P. falciparum accumulate less CQ compared to CQ sensitive parasites. The 

major explanation for the decreased CQ accumulation in the DV of resistant strains is 

attributed to multiple point mutations in the transmembrane protein Plasmodium falciparum 

CQ resistance transporter (PfCQRT) localized in the parasitic DV membrane (Fidock et al., 

2000; Fitch, 2004; Djimdé et al., 2004; Pulcini et al., 2015). This putative drug/metabolite 

transporter recognizes and expels CQ out of the DV, its site of action (Bray et al., 2005; 

Burgess et al., 2010). The inhibition of this transporter is thus imperative. 

 

2.6 REVERSED CHLOROQUINE (RCQ) MOLECULES 

The search for new antimalarial agents is significant in the fight against plasmodium parasite 

resistance to today‘s drugs in order to increase the chemotherapy armoury. The strategies 

commonly used for new drug discovery are combination therapy, the use of resistance 

reversal agents (chemosensitizers), natural products, repurposing of drugs originally 

developed against other diseases, structural modification of existing antimalarial drugs and 

search of drugs with new parasitic targets and mechanism of action (Muregi & Ishih, 2010; 

Grimberg & Mehlotra, 2011). Chemosensitizers or reversal agents (RAs) are molecules that 

reverse resistance to a drug and a RA generally inhibits the efflux mechanism (Peyton, 2012). 

The aim of this study was to structurally modify the existing ineffective drug CQ by 

conjugating its pharmacophore with a potential resistance RA to form a dual functioned 

compound. 

The emergency of CQ resistance led to increased morbidity and mortality (Trape et al., 

1998). This fuelled researchers to study the disease and parasite to understand them better. It 

was discovered that CQ resistance is due to decreased CQ accumulation in the DV thus 
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decrease access to the target haem-detoxification process (Bray et al., 1998). The decreased 

CQ concentration is as a result of efflux of the drug by PfCQRT and not as a change in the 

degradation process of haemoglobin or structure of free haem the target of CQ. Hence, 

targeting the inhibition of haem degradation is still a viable strategy as the unchanged process 

of haem degradation makes the parasite vulnerable to 4-aminoquinoline-based drugs at the 

right concentration. The discovery of compounds that enhance the accumulation of CQ in the 

DV hence, restore CQ sensitivity in CQ
R
 strains when given together with CQ was ground 

breaking in the fight against P. falciparum CQ resistance. Some of these compounds which 

include verapamil (VP), despiramine and chloropheniramine (figure 2.11) are structurally 

different and belong to different classes of drugs such as: calcium channel blockers, 

antidepressants and antihistamines (Peyton, 2012; van Schalkwyk & Egan, 2006; Martin et 

al., 1987). They have been demonstrated to bind directly to the PfCQRT in the DV 

membrane inhibiting the PfCQRT CQ efflux system (Bray et al., 2005). Nonetheless, due to 

high doses often required for the polypharmacy administration of the chemosensitizers and 

CQ, and associated toxic effects, studies were turned towards the use of a more attractive 

hybrid-drug approach (Burgess et al., 2006; Joubert et al., 2014; Kelly et al., 2007; Peyton, 

2012 ). 
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Figure 2.11: Some reported CQ reverser compounds. a. Verapamil b. Imipramine c. 

Desimipramine d. Chlorpheniramine 

Drug hybridization is the conjugation of two pharmacophores to produce a single hybrid 

molecule with dual functionality or targets by rational drug design. This hydrid agent can 

then be further optimised. The conjugation of a 4-aminoquinoline pharmacophore (CQ-

nucleus) to a resistance reversal agent using an alkyl linker is an innovative strategy to 

reverse CQ resistance in P. falciparum resistant strains (Joubert et al., 2014; Sunduru et al., 

2009; Deane et al., 2014; Muregi & Ishih, 2010). This strategy was first demonstrated by 

Burgess and colleagues (2006) using imipramine as the reversal agent and they called the 

resultant class of aminoquinoline-hybrids, ―reversed chloroquine (RCQ) molecules‖ (figure 
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2.12). They carried out further studies to demonstrate the feasibility of this approach and 

synthesised many optimised compounds which showed good antimalarial activity and low 

toxicity compared to CQ. The antimalarial activity of compounds linking any reversal-agent-

like moieties to a 4-aminoquinoline (RCQ compounds) is by inhibition of haemozoin 

formation in a similar way as CQ (Andrews et al., 2009; Burgess et al., 2010; Peyton, 2012). 

All RCQ compounds share common features, such as bulky hydrophobic heterocyclic rings 

of the RA and 4-aminoquinoline (CQ like nucleus) linked to one another by an alkyl side 

chain linker with a tertiary amine as a bond acceptor site (Sharma, Tiwari and Parate, 2015). 
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Figure 2.12: Representative structure and structure activity relationship of RCQ compounds 

 

2.7 POLYCYCLIC CAGE MOLECULES 

Recently the field of drug design and discovery has witnessed a shift of interest in developing 

drugs with multi-functions by targeting different mechanisms of disease etiologies (Youdim 

& Buccafusco, 2005; Van der Schyf & Geldenhuys, 2009). This is made possible in some 

instances by the use of polycyclic compounds. The synthesis of pentacyclo 

[5.4.0.0
2,6

.0
3
.0

5,9
]undecane-8,11-dione, commonly known as Cookson‘s diketone, in 1958 

(Cookson et al., 1958) stimulated the interest for research on saturated polycyclic 

hydrocarbon cage compounds by medicinal chemists. This interest was later fuelled by the 
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discovery of the antiviral activity of the adamantane derivative - amantadine by Davies and 

co-workers in 1964 (Davies et al., 1964), as well as its subsequently observed antiparkison 

activity. The antiparkison activity was discovered following an unanticipated symptomatic 

improvement when the drug was administered to patients with Parkinson disease for 

treatment of influenza (Oliver & Malan, 2007; Schwab et al., 1969). Since then many 

polycyclic compounds have been synthesized and evaluated, especially adamantane 

derivatives, such as amantadine, memantine and pentacycloundecylamines (PCU). These 

compounds have been ascertained to have diverse pharmacological activities including 

antiviral activity against influenza, anti-parkinson activity (Joubert et al., 2012; Malan et al., 

2003) and significant calcium and sodium channels antagonism (Malan et al., 2000).  

Polycyclic amines like NGP1-01 an oxa-prototype of PCU, has been shown to possess 

significant inherent channel blocking activity (Kadernani et al., 2014). NGP1-01 has been 

investigated further by Joubert and co-workers (2014) and shown to act as a chemosensitizer 

to CQ when given together at increasing concentrations. NGP1-01 has no intrinsic 

antimalarial activity but when co-administered with CQ, increases the activity of CQ against 

the CQ
R 

parasite. It reverses the P. falciparum resistance to CQ by 40% and 52% at 1 µM and 

10 µM respectively. This polypharmacy approach shows that for a higher reversal of CQ 

resistance, a higher concentration of the chemosensitizer (NGP1-01) is required (Table 4.4) 

(Joubert et al., 2014). To address the poly-pharmacy approach, NGP1-01 was conjugated to a 

CQ-like nucleus, producing novel PCU-CQ compounds which are aza-derivatives of PCUs 

(PCU-CQ 1 - 3). These compounds, especially PCU-CQ 1, had good resistance reversal 

ability on the CQ
R
 strain.  From further investigation on PCUs, the aza-derivatives (aza-

PCU1 and aza-PCU2) were identified to have significant voltage-gated calcium channel 

blocking activities and this was found to have a direct correlation with the compounds 

capacity to act as modulating agents to CQ resistance. This implied that the inherent channel 

blocking activities of these polycyclic compounds enabled better resistance reversal activity 

(Joubert et al., 2016; Joubert et al., 2014).  

Based on this finding, adamantane (AD), a polycyclic compound with inherent channel 

blocking ability like NGP1-01 (Kademani et al., 2014; Danysz et al., 1997) was investigated 

in this study for its potential to reverse CQ resistance. To the best of our knowledge this is the 

first time adamantane, the smallest diamondoid has been explored as a RA attached to a CQ-

like nucleus, even though its derivatives have been explored as antimalarial agents (S1 – S5) 

by Solaja and colleagues (Solaja et al., 2008). 
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Figure 2.13: Polycyclic cage compounds and their derivatives with antimalarial activity 

 

Adamantane is highly lipophilic in nature, thus the conjugation of the adamantane moiety to 

several privileged molecules can favourably modify and improve their pharmacokinetics and 

pharmacodynamics properties (Brookes et al., 1992) and enhances the movement of the 

privileged compounds across biological membranes (Zah et al., 2003). Also, their unique 

properties of high density, moderate strain energy and great stability convey metabolic 

stability to the conjugated compounds (Joubert et al., 2012; Geldenhuys et al., 2005). 

Adamantane and its derivatives are known N-methyl-D-asparate (NMDA) receptor channel 

blockers which have also been proven to modulate voltage-gated calcium channels (Parsons, 
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Danysz and Quack, 1999; Malan et al., 2000; Joubert et al., 2011). The inherent channel 

blocking ability of these moieties, suggest that the adamantane moiety may block the 

PfCQRT and inhibit the efflux of CQ-like antimalarials and render them useful as a reversal 

agents to overcome plasmodia CQ resistance (Joubert et al., 2014). The adamantane moiety 

facilitates the formation of a tertiary amine with the N-alkyl amino side chain of the proposed 

structures which is necessary for antimalarial activity via its protonation (Joubert et al., 2016; 

Kelly et al., 2007). 

 

2.8 CONCLUSION 

Many strategies have been developed and used to fight malaria, yet it remains a devastating 

parasitic disease with major health and socioeconomic impact worldwide despite decades of 

research. The 4-aminoquinolines and their derivatives, especially CQ, have been the most 

significant antimalarial agents synthesized and used for the treatment and prevention of 

malaria. However, the increasing emergence and alarmingly widespread multidrug resistant 

P. falciparum strains, especially to CQ, have put chemotherapy which is the mainstay of 

malaria management and control under constraint. This is intensified by the fact that very few 

antimalarial drugs are available. 

History has taught us that P. falciparum resistance is ever evolving and continual research 

must thus be undertaken in search for new suitable antimalarial drugs to expand the available 

range to withstand and overcome the problem of CQ resistance. Although there is a shift 

towards genomic exploration for a better understanding of the disease to discover new 

interventions, it is agreed that this has to be balanced with research that deals with immediate 

priorities like optimal implementation and protection of existing treatment and control tools. 

Thus the optimization of CQ via the viable strategy of ‗reversed CQ molecules‘. The 

hybridization of adamantane as a reversal agent to a CQ-like nucleus with a linker of 

appropriate carbon chain length could produce a potential improved reversed CQ molecule 

and add to the number of antimalarial agents.  
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CHAPTER 3 

SYNTHETIC PROCEDURES 

3.1. INTRODUCTION 

This chapter highlights all the experimental work carried out in this study to synthesize the 

novel adamantane-chloroquinolin (AD-CQ) conjugates including the required intermediates. 

Detailed synthetic procedures for the designed series of compounds as well as challenges that 

were encountered are reported herein. Two series of novel AD-CQ conjugates of four 

compounds each were synthesized by conjugating an adamantane moiety to a CQ-like 

nucleus via different tethered linkers. The reactions used included amination and reductive 

amination. The compounds were characterized by nuclear magnetic resonance (NMR), mass 

spectrometry (MS) and infrared (IR) spectroscopy. 

 

3.2. STANDARD EXPERIMENTAL PROCEDURES 

3.2.1. Materials 

Unless otherwise specified, all reagents and solvents used were purchased from Sigma-

Aldrich and other commercial suppliers and used without further purification. Some solvents 

were dried by simple distillation technique. 

3.2.2. Instrumentation for product characterization 

Nuclear magnetic resonance spectroscopy (NMR): Proton (
1
H) and Carbon (

13
C) NMR 

spectra were obtained using a Bruker Avance IIIHD Nanobay spectrometer equipped with a 5 

mm BBO probe at a resonance frequency of 400 MHz and 100 MHz respectively. All 

chemical shifts (δ) were reported in parts per million (ppm) relative to the signal of the 

internal standard Tetramethylsilane (TMS; δ = 0) added to an appropriate deuterated solvent 

of methanol, chloroform or DMSO. The following abbreviations are used to describe the 

multiplicity of the respective signals: s - singlet, bs - broad singlet, ds – doublet of singlet, d - 

doublet, dd - doublet of doublet, t - triplet and m - multiplet. Relevant spectra of compounds 

are included in the annexure. 

Mass spectroscopy (MS): The MS spectra of samples were recorded on a Perkin Elmer 

Flexar Single Quad (SQ) 300 mass spectrometer. The samples were dissolved in methanol, 

filtered through a 0.2 micron filter and diluted with 50 % (aq.) methanol before injecting 100 
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µl of the 50 ppm solution via the UHPLC auto-sampler into the SQ 300 MS. Relevant spectra 

are included in the annexure.  

Infrared spectroscopy (IR): The IR spectra were recorded on a Perkin Elmer Spectrum 400 

FT-IR (Fourier-transform infrared) spectrometer attached to a computer for analyzing data. 

Approximately 0.1 mg of the sample to be analyzed was placed on the fitted diamond 

attenuated total reflectance (ATR) attachment. Pressure was then applied on the ATR and the 

spectra was generated and obtained on the computer. Relevant spectra are included in the 

annexure. 

Melting point (mp) determination: Melting points for the solid form of the compounds 

were determined using a Lasec SMP-10 melting point apparatus and capillary tubes. The 

melting points were uncorrected 

Microwave (MW) reactor: Synthetic procedures that involved microwave irradiation were 

performed utilizing a CEM Discover
®
 SP focused closed vessel reactor. This method 

drastically shortened reaction times as reactions were completed in minutes as opposed to 

hours and days for conventional methods. MW synthesis reactions are reproducible because 

of the highly and accurately controlled temperature system that makes heating uniform in the 

reaction vessel. The reaction yields are generally higher making it an ideal method for 

medicinal chemists as it enables the optimisation of reaction conditions (Koopmans et al., 

2006). 

3.2.3. Chromatographic techniques 

Thin layer chromatography (TLC): Analytical TLC was performed on 0.20 mm thick 

aluminum silica gel sheets (TLC Silica gel 60 F245 Merck KGaA). The mobile phases for 

this technique were prepared on a volume-to-volume basis in the ratio 10:1 of 

methanol/ammonia. Visualization was achieved using UV light (254 nm and 366 nm), and/or 

iodine vapour. This was used mainly to monitor reaction progress. 

Column chromatography: Product mixtures were purified using a standard glass columns 

varying in size. The stationary phase used was silica gel (0.063 - 0.200 mm/70 - 230 mesh 

ASTM, Macherey-Nagel, Duren, Germany) with methanol/ammonia in the ratio 10:1 as 

mobile phase. 
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3.3. GENERAL SYNTHETIC PROCEDURES 

3.3.1. Synthesis of N-(7-chloroquinolin-4-yl)alkane-1-n-diamines (ACQ intermediates; 

compounds 1- 4) 

The synthesis of the appropriate N-(7-chloroquinolin-4-yl)alkane-1-n-diamines (ACQ-

intermediates) involved the amination of 4,7-dichloroquinoline with excess of the appropriate 

alkanediamine employing microwave (MW) irradiation as represented in scheme 3.1. A 

mixture of 4,7-dichloroquinoline (1.00 g, 5.05 mmol) and the appropriate alkanediamine was 

dissolved in acetonitrile (4 ml) and irradiated at 150 ˚C, 150 W and 150 psi for 1 hour 30 

minutes. The cooled reaction mixture was then basified with 5 % NaHCO3 (30 ml) and 

extracted with dichloromethane (DCM) (20 ml x 3). The combined organic fractions were 

collected and washed with water and then with brine to wash off the excess alkanediamine. 

The washed organic solution was then evaporated in vacuo to generate a pale yellow crude 

residue of N-(7-chloroquinolin-4-yl)alkane-1-n-diamines (compounds 1– 4) (Joubert et al., 

2014; Sunduru et al., 2009; Natarajan et al., 2008). The residue was used without further 

purification or further purified by column chromatography rendering the product as an off-

white solid. 

n

+ NH2
NH2n 

ACQ intermediatesn = 2, 3, 4, 6DCQ
Alkanediamine

acetonitrile

MW, 150 

C, 150 W, 150 psi

1 hr 30 minsN

Cl

Cl

NH NH2

NCl

(Compounds 1 - 4)  

Scheme 3.1: Schematic representation of ACQ synthesis 

3.3.2. Synthesis of the aza-adamantanol derivatives (compounds 5 – 8, Series 1) 

Two series of the novel adamantane-chloroquinolin (AD-CQ) reversed CQ conjugates were 

synthesized. Series 1 consisted of the aza-adamantanols (compounds 5 - 8). Prior to their 

synthesis, an adamantane diketone (bicyclo[3.3.1]nonane-3,7-dione) intermediate was 

required to be synthesized. This was required to provide a tertiary amine needed in the AD-

CQ derivatives. The diketone was synthesized according to a modified method from the 

published methods of Zalikowski, Gilbert and Borden (1980) and Banister and co-workers 

(2011). This reaction involved a three-step synthetic route starting with the commercially 

available 2-adamantone. The schematic representation is shown in scheme 3.2. 
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O
O

O

OH

OH

O
O

Lactone Diol
Diketone

LiAlH 4, Et 2O PDC, CH 2Cl2

2 - Adamantanone

m-CPBA, CH 2Cl 2

1.) 18 hrs, rt reflux, 19 hrs rt, 66 hrs
2.) MW, 100 

o
C, 

100 psi, 100 W, 

 20 mins

 

Scheme 3.2: A schematic representation of the adamantane diketone synthesis 

The 2-adamantanone was subjected to a Baeyer-Villiger oxidation reaction with m-

chloroperbenzoic acid (m-CPBA) to generate a lactone (4-oxatricyclo[4.3.1.1
3, 8

]undecan-5-

one) using conventional and MW methods 1 and 2. The lactone was reduced with lithium 

aluminium hydride (LiAlH4) to a diol [7-(hydroxymethyl)bicyclo[3.3.1]nonan-3-ol] which 

was then oxidized with pyridinium dichromate to yield the adamantane diketone 

(bicyclo[3.3.1]nonane-3,7-dione). 

The adamantane diketone was then used in the synthesis of the aza-adamantanol derivatives 

(5 – 8) via the two methods presented in scheme 3.3. The diketone was conjugated to the 

appropriate N-(7-chloroquinolin-4-yl) alkanediamines (compounds 1 – 4) in a 1:1.25 mmol 

ratio, by reductive amination and transannular cyclization using sodium 

triacetoxylborohydride (NaBH(OAc)3) (1.60 mmol) to generate the aza-adamantanols.  

O
O

N

NH

Cl

NH2

+

Series 1: Compounds 5 - 8

NNH

OH

NCl
n = 2, 3, 4, 6

Adamantane diketone ACQ intermediates

CH2Cl2,NaBH(OAc)3, AcOH
n 

1.) MW, 85  
o
C, 100 psi, 100 W, 2 hrs

n 

2.) rt, 18 hrs

Aza - adamantanols

 

Scheme 3.3: Synthetic route for the aza-adamantanols of series 1 (compounds 5 – 8) 

Some compounds of series 1 were synthesized by a modified method from the microwave-

assisted method (1 in scheme 3.3) used by Joubert and colleagues (2013) and the 

conventional method (2 in scheme 3.3) of Banitster and co-workers (2011). 

In the microwave-assisted method, an equimolar mixture of the diketone and the appropriate 

N-(7-chloroquinolin-4-yl)alkanediamine was dissolved in ethanol (5 ml) in a closed 

microwave vessel and irradiated at 85 ˚C, 100 W, 100 psi for 10 minutes to dissolve all solids. 

The reaction mixture was then transferred to a round bottom flask where ethanol (10 ml) and 

acetic acid (150 µl) was added. The mixture was then treated with sodium 
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triacetoxyborohydride (1.3 mmol) and allowed to stir for 2 hours at room temperature, where 

after it was concentrated in vacuo. Water (15 ml) was added to the concentrate to dissolve the 

mixture and this was stirred further with the addition of sodium hydrogen carbonate until the 

evolution of the CO2 gas ceased. Then an excess of the sodium hydrogen carbonate (2 g) was 

added. The aqueous sodium hydrogen carbonate layer was extracted with DCM (20 ml x3) 

and the combined organic fractions was washed with water (25 ml) and concentrated in vacuo 

to obtain the crude yellowish solid of aza-adamantanol, compound 7. 

In the conventional method of Banitster et al., (2011), a mixture of diketone (1 mmol) and N-

(7-chloroquinolin-4-yl)alkanediamines (1 mmol) was dissolved in 1,2-dichloroethane (DCE) 

with glacial acetic acid (75 µl) and stirred for 10 minutes until all solids were dissolved. The 

mixture was then treated with sodium triacetoxyborohydride (1.3 mmol) and further stirred 

for 18 hours at room temperature. The reaction mixture was quenched with sodium hydroxide 

(3 M, 1 ml), stirred for a further 10 minutes and then partitioned between sodium hydroxide 

(0.5 M) and dichloromethane (DCM) in the ratio 6:5 to wash off any acetic acid left. The 

DCM layer was collected, the aqueous phase extracted with more DCM (25 ml x 2) and the 

combined organic layers washed with brine and concentrated in vacuo to get compound 6. 

The drawback with this method is the lengthy reaction time. 

These two methods were worked into a modified method which makes use of the short 

reaction time of the MW and a neat work-up. In the modified method, an equimolar mixture 

of the adamantane diketone (1 mmol) and N-(7-chloroquinolin-4-yl)alkanediamine (1 mmol) 

was dissolved in 1,2-dichloroethane (DCE; 4.5 ml). Glacial acetic acid (AcOH; 75 µl) was 

added to the mixture to activate the carbonyl group. The mixture was transferred to a sealed 

microwave vessel (25 ml capacity) and irradiated at 85 ˚C, 100 W and 100 psi for 10 minutes 

to dissolve all the solids. The reaction mixture was transferred into a round bottom flask, 

treated with sodium triacetoxyborohydride and stirred at room temperature for 2 hours. The 

reaction was monitored with TLC using methanol/ammonia in the ratio 10:1 as mobile phase. 

After 2 hours, the reaction was quenched with sodium hydroxide (NaOH; 3 M, 1 ml) and 

stirred for 10 minutes. The reaction was then partitioned between sodium hydroxide solution 

and DCM in the ratio 6:5 and the DCM layer was collected. The aqueous NaOH layer was 

extracted with more DCM (20 ml x 2). The combined organic fractions were washed with 

brine and concentrated in vacuo to a yellowish product of compound 5 and 8. A summary of 

the three methods is presented on table 3.1, as used to synthesize the different compounds of 

series 1. 
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Table 3.1: Summary of series 1 aza-adamantanols synthetic methods 

Method used 
Reaction 

time 

% yield Comments 

Conventional method by Banitster 

and co-workers (2011) 

18 hours Cpd.6: 50 Lengthy reaction 

time 

MW assisted method by Joubert 

and colleagues (2013) 

2 hours Cpd.7: 24 Much compound 

was lost during the 

workup. Also 

reaction should be 

monitored 

frequently to 

prevent breakdown 

of compounds. 

Modified method (combining both 

methods above) 

2 hours Cpd.5: 38 

Cpd.8: 41 

Short time, 

reasonable yields, 

but introduction of 

unknown impurities 

were observed 

 

3.3.3. Synthesis of imine-adamantane derivatives (compounds 9 – 12, Series 2) 

Series 2 of the novel AD-CQ conjugates consist of compounds 9 – 12. They were synthesized 

through the direct conjugation of commercially available 2-adamantanone to the appropriate 

N-(7-chloroquinolin-4-yl)alkanediamines as illustrated in scheme 3.4.  

O

N

NH

Cl

NH2 n EtOH, HCl

NCl

NH N
n + MW, 150 

o
C, 200 W, 250 psi, 10 hrs

n = 2, 3, 4, 62 - adamatanone

Compounds 1 - 4

Compounds 9 - 12
n = 2, 3, 4, 6  

Scheme 3.4: Synthetic route of series 2 imine-adamantanes 

An equimolar mixture of 2-adamantanone and the appropriate N-(7-chloroquinolin-4-

yl)alkanediamine was dissolved in ethanol (10 ml) in a closed microwave vessel. The mixture 
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was made acidic by the addition of two drops of hydrochloric acid (HCl) to pH 5 to ensure 

nucleophilic attack at the carbonyl carbon. The mixture was irradiated at 150 ˚C, 200 W and 

250 psi at 2 hour intervals for 9 – 10 hours in the presence of 4 Å molecular sieves to remove 

the water byproduct formed. The reaction was monitored with TLC using methanol/ammonia 

(10:1) as mobile phase. The reaction mixture was filtered through Celite® and the filtrate 

concentrated in vacuo without any further work-up to yield an off-white solid powder of 

imine-adamantanes (compounds 9 – 12). The compounds were characterized and confirmed 

with NMR MS and IR. 

 

3.4. SYNTHESIS OF INDIVIDUAL COMPOUNDS 

3.4.1. N-(7-chloroquinolin-4-yl)ethane-1,2-diamine (Compound 1) 

 

N

NH

Cl

NH2

 

 

Synthesis: Dichloroquinoline (DCQ; 1.0247 g, 5.17 mmol) and ethane-1,2-diamine (1.73 ml, 

25.87 mmol) dissolved in acetonitrile (4 ml) was microwave irradiated in a closed vessel at 

150 ˚C, 150 W and 150 psi at 30 minute intervals for 1 hour. The reaction was monitored with 

TLC using methanol/ammonia (10:1) as mobile phase. The reaction mixture was basified 

with 5 % NaHCO3 (aq) (30 ml) and extracted with DCM (20 ml x 2). The organic layers were 

collected, combined and washed with water (20 ml) and then with brine (15 ml). The workup 

washed off the excess ethane-1,2-diamine from the organic layer which was concentrated 

under reduced pressure to yield N-(7-chloroquinolin-4-yl)ethane-1,2-diamine, compound 1 as 

a pale yellow solid. This solid was further purified by column chromatography using 

methanol/ammonia (10:1) as mobile phase producing an off-white powder (Yield: 0.6762 g, 

59 %) (Fortuin, 2014; Natarajan et al., 2008). 

Physical data: C11H12ClN3; 
1
H-NMR (400 MHz, DMSO-d6) δ: 8.47 – 8.45 (d, 1H, J = 6.40 Hz), 

8.30 – 8.28 (d, 1 H, J = 9.2 Hz), 7.82 – 7.82 (ds, 1 H, J = 2.4 Hz), 7.52 – 7.48 (dd, 1 H, J = 9.2, 2.4 

Hz), 6.58 – 6.57 (d, 1 H, J = 5.6 Hz), 3.55 – 3.52 (t, 2 H, J = 12.0, 6.4 Hz), 3.11 – 3.08 (t, 2 H, J = 

12.4, 6.4Hz); MS (ESI-MS) m/z: 222.11 [M+H]
+ 
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3.4.2. N-(7-chloroquinolin-4-yl) propane-1,3-diamine (Compound 2) 

 

N

NH

Cl

NH2

 

 

Synthesis: Dichloroquinoline (1.0030 g, 5.06 mmol) and propane-1,3-diamine (2.11 ml, 

25.24 mmol) dissolved in acetonitrile (4 ml) was microwave irradiated in a closed vessel at 

150 ˚C, 150 W and 150 psi at 30 minute intervals for 1 hour. The reaction was monitored with 

TLC using methanol/ammonia (10:1) as mobile phase. The reaction mixture was basified 

with 5 % NaHCO3 (aq) (30 ml) and extracted with DCM (20 ml x 2). The organic layers were 

collected, combined and washed with water (20 ml) and then with brine (15 ml). The workup 

washed off the excess propane-1,3-diamine from the organic layer which was concentrated 

under reduced pressure to yield N-(7-chloroquinolin-4-yl)propane-1,3-diamine, compound 2 

as a pale yellow solid. This solid was further purified by column chromatography using 

methanol/ammonia (10:1) as mobile phase producing an off-white powder (Yield: 0.9947 g, 

83%) (Fortuin, 2014; Natarajan et al., 2008). 

Physical data: C12H14ClN3; 
1
H-NMR (400 MHz, DMSO-d6) δ: 8.83 – 8.81 (d, 1 H, J = 9.2 Hz), 

8.59 – 8.57 (d, 1 H, J = 7.2 Hz), 8.12 – 8.11 (ds, 1 H, J = 2.4 Hz), 7.77 – 7.74 (dd, 1 H, J = 9.2, 

2.4Hz), 6.94 – 6.92 (d, 1 H, J = 7.2 Hz), 3.67 – 3.63 (m, 2 H), 2.96 – 2.91 (m, 2 H), 2.04 – 1.97 (m, 

2H); MS (ESI-MS) m/z: 236.00 [M+H]
+
. 

 

3.4.3. N-(7-chloroquinolin-4-yl) butane-1,4-diamine (compound 3) 

 

N

NH

Cl

NH2

 

 

Synthesis: Dichloroquinoline (1.0022 g, 5.06 mmol) and butane-1,4-diamine (2.60 ml, 25.86 

mmol) dissolved in acetonitrile (4 ml) was microwave irradiated in a closed vessel 
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microwave reactor at 150 ˚C, 150 W and 150 psi at 30 minutes interval for 1 hour. The 

reaction was monitored with TLC using methanol/ammonia (10:1) as mobile phase. The 

reaction mixture was basified with 5 % NaHCO3aq (30 ml) and extracted with DCM (20 ml x 

2). The combined organic layers were collected and washed with water (20 ml) and then 

brine (15 ml). The workup washed off the excess butane-1,4-diamine from the organic layer 

which was concentrated under reduced pressure to yield N-(7-chloroquinolin-4-yl)butane-1, 

4-diamine, compound 3 as a pale yellow oily solid. This was further purified by column 

chromatography using methanol/ammonia (10:1) as mobile phase producing a yellowish 

waxy solid (Yield: 0.7178 g, 56%) (Fortuin, 2014). 

Physical data: C13H16ClN3; 
1
H-NMR (400 MHz, MeOD) δ: 8.17 – 8.15 (d, 1 H, J = 5.6 Hz), 7.92 

– 7.90 (d, 1 H, J = 8.8 Hz), 7.60 – 7.59 (ds, 1 H, J = 2.0 Hz), 7.21 – 7.18 (dd, 1 H, J = 8.8, 2.4 Hz), 

6.30 – 6.29 (d, 1 H, J = 6.0 Hz), 3.21 – 3.17 (t, 2 H, J = 15.2, 7.6 Hz), 2.67 – 2.63 (t, 2 H, J = 14.8, 7.2 

Hz), 1.66 – 1.48 (m, 4 H); MS (ESI-MS) m/z: 250.10 [M+H]
+
.
 

 

3.4.4. N-(7-chloroquinolin-4-yl) hexane-1,6-diamine (Compound 4) 

 

N

NH

Cl

NH2

 

 

Synthesis: Dichloroquinoline (1.0050 g, 5.07 mmol) and hexane-1,6-diamine (3.31 ml, 25.35 

mmol) dissolved in acetonitrile (4 ml) was microwave irradiated in a closed vessel at 150 ˚C, 

150 W and 150 psi at 30 minutes interval for 1 hour. The reaction was monitored with TLC 

using methanol/ammonia (10:1) as mobile phase. The reaction mixture was basified with 5 % 

NaHCO3aq (30 ml) and extracted with DCM (20 ml x 2). The organic layers were collected, 

combined and washed with water (20 ml)) and then with brine (15 ml). The workup washed 

off the excess hexane-1,6-diamine from the organic layer which was concentrated under 

reduced pressure to yield N-(7-chloroquinolin-4-yl)hexane-1,6-diamine, compound 4 as a 

pale yellow waxy solid. This solid was further purified by column chromatography using 

methanol/ammonia (10:1) as mobile phase producing an off-white powder (Yield: 0.9817g, 

69 %) (Fortuin, 2014; Natarajan et al., 2008). 
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Physical data: C15H20ClN3; 
1
H-NMR (400 MHz, MeOD) δ (ppm): 8.48 – 8.45 (d, 1 H, J = 9.2 

Hz), 8.40 – 8.38 (d, 1 H, J = 7.2 Hz), 7.88 – 7.88 (ds, 1 H, J = 2.0 Hz), 7.70 – 7.68 (dd, 1 H, J = 9.2, 

2.4 Hz), 6.90 (d, 1 H, J = 7.2 Hz), 3.62 (t, 2 H, J = 15.2, 7.2  Hz), 2.95 (t, 2 H, J = 15.6, 7.6 Hz), 1.88 

– 1.81 (m, 2 H), 1.75 – 1.67 (m, 2 H), 1.52 – 1.48 (m, 4 H); MS (ESI-MS) m/z:. 278.06 [M+H]
+
. 

 

3.4.5. 4-Oxatricyclo[4.3.1.1
3,8

]undecan-5-one (Lactone) 

 

O

O

 

 

Synthesis: 2-Adamantanone (5.0070 g, 33.33mmol) dissolved in DCM (50 ml) was treated 

with m-CPBA (5.8486 g, 33.89 mmol) and stirred at room temperature (rt) for 18 hours while 

the reaction was monitored with TLC using MeOH/NH4OH (10:1) as mobile phase. A white 

suspension was formed, which was filtered and the filtrate poured into a separating funnel 

and washed with aqueous sodium hydroxide (NaOH; 1 M, 100 ml) and the DCM layer was 

collected. The aqueous phase was extracted with more DCM (25 ml x 2) and the combined 

organic fractions were collected and concentrated in vacuo. The residue was allowed to dry in 

the fume cupboard to yield a white solid of 4-oxatricyclo[4.3.1.1
3,8

]undecan-5-one (Lactone) 

(Yield: 5.3727 g, 97 %). The structure of the product was elucidated by NMR and confirmed 

to be similar as per literature (Banister et al., 2011). 

This reaction is also possible through the utilization of microwave irradiation (method 2 in 

scheme 3.2) and is much quicker. 2-Adamantanone (0.1759 g, 1.17 mmol) dissolved in DCM 

(15 ml) was treated with m-CPBA (0.2040 g, 1.18 mmol). The mixture was microwave 

irradiated at 100 ˚C, 100 W and 100 psi for 20 minutes at a 10 minute interval. The reaction 

was monitored by TLC using methanol/ammonia in the ratio 10:1 as mobile phase. The 

reaction mixture was washed with NaOH (1 M; 20 ml) and the DCM layer was collected. The 

aqueous phase was extracted with DCM (15 ml x 2). The combined organic layers were 

collected and concentrated in vacuo to yield a white solid of lactone (Yield: 0.1911 g, 98.11 

%). This microwave synthesis saves considerable time and is very convenient for small scale 

synthesis. However, the 20 minutes seem to be too long as other minor peaks of impurities 
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are seen in the 
1
H-NMR (spectrum 42). These could be attributed to energetic breakdown of 

compounds forming unknown degradation products. 

Physical data: C10H14O2; mp: 281 – 290 ˚C (Lit.: 285 – 287; Zalikowski et al., 1980); 
1
H-

NMR (400 MHz, CDCl3) δ (Spectrum 6): 4.50 -4.6(m, 1 H), 3.08 – 3.05(t, 1 H, J = 12.00, 

4.00 Hz), 2.10 – 1.73(m, 12 H). 

 

3.4.6. 7-(Hydroxymethyl)bicyclo[3.3.1]nonan-3-ol (Diol) 

 

OH

OH

 

 

Synthesis: Oxatricyclo[4.3.1.1
3,8

]undecan-5-one (4.8653 g, 29.27 mmol) was dissolved in a 

gray suspension of lithium aluminum hydride (LiAlH4, 1.5220 g, 40.10 mmol) in diethyl 

ether (50 ml). The reaction was refluxed overnight, cooled and quenched with a mixture of 

THF and water (1:1, 2 ml), NaOH solution (4 M, 1 ml) and water (3 ml) to deactivate active 

hydride. This sequence is known as the Fieser work up, necessary to prevent the formation of 

an emulsion from aluminum hydroxide by converting the aluminate salts to alumina which 

can easily to rinsed and filtered. There was gas evolution and formation of a white suspension 

on addition of the water. The suspension was slowly transferred into a separating-funnel (500 

ml capacity) containing water (150 ml). The denser aqueous phase was collected first and 

filtered to collect the alumina salt residue, which was washed with hot THF. The aqueous 

filtrate was extracted with diethyl ether (25 ml x 2) and was combined with the synthetic 

diethyl ether fraction and the hot THF. The combined organic fractions were concentrated in 

vacuo to yield 7-(Hydroxymethyl)bicyclo[3.3.1]nonan-3-ol (diol) (Yield: 2.65 g, 54.41 %) as 

a white crystalline solid. The structure of the product was confirmed by NMR and was found 

to be similar as reported in the literature (Banister et al., 2011).  

Physical data: C10H18O2;mp: 169 – 173 (Lit.: 164-168, 170 – 174) (Banister et al., 2011; 

Zalikowski, Gilbert and Borden, 1980); 
1
H-NMR (400 MHz, MeOD) δ (Spectrum 7): 4.083 

(m, 1 H), 3.331 – 3.326 (d, 2 H, overlapping with MeOD signal, J = 6.00 Hz), 2.082 (m, 2 

H), 1.977 – 1.584 (m, 11 H), 1.195 – 1.161 (d, 1 H, J = 13.60 Hz). 
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3.4.7. Bicyclo[3.3.1]nonane-3,7-dione(Adamantane diketone) 

 

O
O

 

 

Synthesis: The diol (0.3903 g, 2.29 mmol) was added to a suspension of pyridinium 

dichromate (PDC; 4.5829 g, 12.18mmol) in diethyl ether (30 ml). The mixture was stirred at 

rt for three days and the reaction was monitored by TLC using methanol/ammonia (10:1) 

until completion. The reaction mixture was diluted with more diethyl ether (50 ml) and mixed 

with Celite
®
 to absorb the fine traces of the PDC and it was filtered by vacuum filtration to 

remove the PDC particles. The diethyl ether filtrate was collected and concentrated under 

pressure to yield bicyclo[3.3.1]nonane-3,7-dione (adamantane diketone) (Yield: 0.2793 g, 

80.05 %) as a brownish solid with physical properties that match that found in the literature 

(Banister et al., 2011; Toşa, 2009). 

Physical data: C9H12O2; mp: 210˚C (initial droplet appears) 257 ˚C (final melting) (Lit.: 249 

– 255; Banister et al., 2011) 
1
H-NMR (400 MHz, CDCl3) δ (Spectrum 8) 2.866 (s, 2 H), 

2.613 – 2.560 (dd, 4 H, J = 15.60, 5.60 Hz), 2.434 – 2.395 (d, 4 H, J = 15.60), 2.203 (m, 2H). 

 

3.4.8.  2-{2-[(7-Chloroquinolin-4-yl)amino]ethyl}-2-azatricyclo[3.3.1.1
3,7

]decan-1-ol 

(Compound 5) 

NCl

NH
N

OH

 

 

Synthesis: The N-(7-chloroquinolin-4-yl)ethane-1,2-diamine (1; 0.1663 g, 0.75 mmol) and 

diketone (0.0978 g, 0.64 mmol) were dissolved in 1,2-dichloroethane (3.5 ml). Glacial acetic 

acid (75 µl) was added as a proton donor to the mixture and stirred for 10 minutes to dissolve 

all solids. The reaction mixture was then treated with sodium triacetoxyborohydride 
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(NaBH(OAc)3) (0.2756 g, 1.30 mmol) and stirred at rt for 18 hours and subsequently 

partitioned between NaOHaq (0.5 M) and dichloromethane (DCM) in the ratio of 6:5 

respectively. The denser DCM layer was collected. The NaOH layer was further extracted 

with more DCM (15 ml x 3) and the combined DCM layers was washed with brine (25 ml). 

The combined DCM layer was then concentrated under reduced pressure to yield compound 

5 (Yield: 85.6 mg, 38.40 %) as an off-white solid. 

Physical data: C20H24ClN3O; 
1
H-NMR (400 MHz, MeOD) δ (ppm) (Spectrum 9): 8.36 – 

8.34 (d, 1 H, J = 5.6 Hz), 8.05 – 8.03 (d, 1 H, J = 9.2 Hz), 7.78 – 7.77 (ds, 1 H, J = 2.4 Hz), 7.42 – 

7.39 (dd, 1 H, J = 9.2, 2.0 Hz), 6.56 – 6.54 (d, 1 H, J = 6.0 Hz), 3.37 – 3.34 (t, 2 H, J = 13.2, 6.4 Hz), 

3.12 – 3.09 (t, 2 H, J = 13.2, 6.4 Hz), 2.20 (m, 2 H), 2.01 – 1.95 (m, 4 H), 1,80 – 1.75 (d, 2 H, J = 16.4 

Hz), 1.71 – 1.68 (d, 2 H, J = 12.4 Hz), 1.55 – 1.52 (d, 2 H, J = 12.0 Hz), 1.29 (bs, 1 H); 
13

C-NMR 

(100 MHz) δ:153.4, 150.5, 147.4, 137.6, 126.9, 124.7, 118.4, 99.874, 94.4, 57.7, 50.8, 44.8, 36.6, 

34.5, 32.0, 30.6; MS (ESI-MS) m/z (Spectrum11): 358.26 [M + H]
+
, 360.36 [M + H]

+
+ 2; IR (ATR, 

cm
-1

) Vmax: 3261, 2926, 1574, 1408, 1012, 922, 802, 763. 

 

3.4.9.  2-{3-[(7-Chloroquinolin-4-yl)amino]propyl}-2-azatricyclo[3.3.1.1
3,7

]decan-1-ol 

(Compound 6) 

NCl

NH N

OH

 

 

Synthesis: The N-(7-chloroquinolin-4-yl)propane-1,3-diamine 2 (0.2895 g, 1.23 mmol) and 

diketone (0.1565 g, 1.03 mmol) were dissolved in 1,2-dichloroethane (3.5 ml). Glacial acetic 

acid (75 µl) was added as a proton donor to the mixture and stirred for 10 minutes to dissolve 

all solids. The reaction mixture was then treated with sodium triacetoxyborohydride 

(NaBH(OAc)3) (0.3444 g, 1.62 mmol) and stirred at rt for 18 hours and subsequently 

partitioned between NaOHaq(0.5 M) and dichloromethane (DCM) in the ratio 6:5 

respectively. The denser DCM layer was collected. The NaOH layer was further extracted 

with more DCM (15 ml x 3) and the combined organic fractions was washed with brine (25 
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ml). The combined DCM layer was then concentrated under reduced pressure to yield 

compound 6 (Yield: 183.1 mg, 47.9 %) as an off-white solid.  

Physical data: C21H26ClN3O; 
1
H-NMR (400 MHz, MeOD) δ (Spectrum 13): 8.36 – 8.34 (d, 1 

H, J = 5.6 Hz), 8.11 – 8.09 (d, 1 H, J = 8.8 Hz), 7.78 – 7.77 (ds, 1 H, J = 2.4 Hz), 7.41 – 7.38 (dd, 1 H, 

J = 11.2, 9.2, 2.4 Hz), 6.57 – 6.55 (d,1 H, J = 5.6 Hz), 3.47 – 3.43 (t, 2 H, J = 13.6, 6.8, Hz), 2.95 – 

2.92 (t, 2 H, J = 13.6, 6.8Hz), 2.18 (m, 2 H), 1.99 – 1.97 (d, 4 H, J = 12.4 Hz), 1.89 – 1.86 (m, 3 H), 

1.78 – 1.73 (d, 2 H, J = 17.6 Hz), 1.65 – 1.62 (d, 2 H, J = 11.6 Hz), 1.52 – 1.49 (d, 2 H, J = 12.8 Hz); 

13
C-NMR (100 MHz, MeOD) δ: 150.73, 147.93,134.77, 126.42, 124.54, 122.35, 117.13, 98.04, 

81.59, 77.02, 53.13, 47.33, 41.29, 36.99, 35.33, 32.50, 31.30 26.61; MS (ESI-MS) m/z: 372.16 [M + 

H]
+
, 374.18 [M + H]

+ 
+ 2; IR (ATR, cm

-1
) Vmax: 3192, 2916, 1591, 1454, 1217, 803, 762. 

 

3.4.10. 2-{4-[(7-Chloroquinolin-4-yl)amino]butyl}-2-azatricyclo[3.3.1.1
3,7

]decan-1-ol 

(Compound 7)  

NCl

NH
N

OH

 

 

Synthesis: The N-(7-chloroquinolin-4-yl)butane-1,4-diamine 3 (0.1146 g, 0.46 mmol) and 

diketone (0.0611 g, 0.40 mmol) were dissolved in 1,2-dichloroethane (4.5 ml). Glacial acetic 

acid (75 µl) was added to the mixture and microwave irradiated at 85 ˚C, 100 W, and 100 psi 

for 10 minutes to dissolve all the solids. The reaction mixture was then treated with sodium 

triacetoxyborohydride (NaBH(OAc)3 (0.1361 g, 0.64 mmol) and stirred at room temperature 

for 2 hrs. The reaction was then quenched with sodium hydroxide (3 M, 2 ml), stirred for 10 

minutes and subsequently partitioned between NaOH (aq) (0.5 M) and dichloromethane 

(DCM) in the ratio 6:5 respectively. The denser DCM layer was collected. The NaOH layer 

was further extracted with more DCM (15 ml x3) and the combined organic fractions was 

washed with brine (25 ml). The combined DCM layer was then concentrated under reduced 

pressure to yield compound 7 as a yellow waxy solid. The mixture was further purified by 

column chromatography using methanol/ammonia (10:1) as mobile phase (Yield: 36.5mg, 

23.56 %). 
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Physical data: C22H28ClN3O; 
1
H-NMR (400 MHz, MeOD) δ (Spectrum 17): 8.34 (d, 1 H, J = 

6.0 Hz), 8.11 – 8.09 (d, 1 H, J = 9.2 Hz), 7.76 (ds, 1 H, J = 4.4 Hz), 7.40 – 7.37 (dd, 1 H, J = 11.6, 9.2, 

2.0 Hz), 6.52 – 6.51 (d, 1 H, J = 5.2 Hz), 3.38 – 3.37 (m, 2 H) 2.84 – 2.80 (m, 2 H), 2.64 (t, 2 H, J 

=14.8, 7.2 Hz), 2.38 – 1.46 (m, 14 H); 
13

C-NMR (100 MHz, MeOD) δ: 152.5, 147.9, 146.2, 138.8, 

127.6, 125.9, 124.2, 99.5, 82.6, 51.2, 49.5, 46.0, 43.9, 41.8, 36.8, 33.3, 31.3, 24.2; MS (ESI-MS) m/z: 

386.26 [M + H]
 +

, 388.25 [M + H]
+
+ 2; IR (ATR, cm

-1
) Vmax; 3297, 2924, 2852, 1581, 1413,1163, 

919, 801, 762. 

 

3.4.11. 2-{6-[(7-Chloroquinolin-4-yl)amino]hexyl}-2-azatricyclo[3.3.1.1
3,7

]decan-1-ol 

(Compound 8) 

NCl

NH
N

OH

 

 

Synthesis: The N-(7-chloroquinolin-4-yl)hexane-1,6-diamine 4 (0.1040 g, 0.37 mmol) and 

diketone (0.0456 g, 0.30mmol) were dissolved in ethanol (5 ml). The reaction mixture was 

microwave irradiated at 80 ˚C, 100 W, 100 psi for 10 minutes to dissolve all solids. More 

ethanol (10 ml) was added to the reaction mixture and transferred to a round bottom flask. 

Acetic acid (150 µl) was added to the mixture as a proton donor. The mixture was then 

treated with sodium triacetoxyborohydride (NaBH(OAc)3 (0.0850 g, 0.40 mmol) and stirred 

for 4 hours at room temperature. The reaction mixture was concentrated in vacuo and water 

(20 ml) was added to the residue. The resultant suspension was stirred with the addition of 

sodium bicarbonate in small portion until the complete evolution of gas and then an excess 

sodium bicarbonate solid was added to the mixture. This was to neutralize any excess acetic 

acid from the product. The mixture was then extracted with DCM (20 ml x 4). The combined 

organic layers was washed with water (25 ml x 2) and concentrated in vacuo and a yellow 

microcrystalline solid was obtained. This was precipitated with ethyl acetate to give 

compound 8 (Yield: 51.2 mg, 41.28 %). 

Physical data: C24H32ClN3O; 
1
H-NMR (400 MHz, CDCl3) δ (Spectrum 21): 8.34 – 8.33 (d, 1 

H, J = 5.6 Hz), 8.11 – 8.09 (d, 1 H, J = 8.8 Hz), 7.77 – 7.76 (ds, 1 H, J = 2.4 Hz), 7.40 – 7.37 (dd, 1 H, 
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J = 11.6, 9.6, 2.8 Hz), 6.51 – 6.50 (d, 1 H, J = 5.2 Hz), 3.37 – 3.35 (m, 2 H), 2.98 (m, 2 H), 2.37 (m, 

2H), 2.26 – 2.19 (m, 4H), 2.07 (m, 8 H); 
13

C-NMR (100 MHz, MeOD) δ: 152.7, 152.4, 149.7, 136.3, 

127.6, 125.9, 124.3, 118.8, 99.7, 95.5, 55.3, 46.0, 42.8, 40.4, 36.6, 34.5, 31.9, 31.2, 29,7, 28.2, 27.3; 

MS (ESI-MS) m/z: 414.32 [M + H]
+
, 416.31 [M + H]

+
+ 2; IR (ATR, cm

-1
) Vmax; 3343, 2921, 1577, 

1450, 1035, 975, 850, 768. 

 

3.4.12. 2-{2-[(7-Chloroquinolin-4-yl)amino]ethyl}-2-tricyclo[3.3.1.1
3,7

]dec-2-

ylideneamine (Compound 9) 

NCl

NH
N

 

 

Synthesis: The N-(7-chloroquinolin-4-yl)ethane-1,2-diamine, 1 (0.0217 g, 0.098 mmol) was 

added to commercially available 2-admantantone (0.0188 g, 0.125 mmol) dissolved in 

ethanol (10 ml) in a microwave vessel. The mixture was made acidic by the addition of two 

drops of hydrochloric acid (HCl) to pH 5 to ensure nucleophilic attack at the carbonyl carbon. 

The mixture was microwave irradiated at 150 ˚C, 200 W and 250 psi at 2 hour intervals for 

10 hrs in the presence of molecular sieves. The reaction was monitored by TLC using 

methanol/ammonia in the ratio 10:1 as mobile phase. The reaction mixture was then filtered 

through Celite® and the filtrate concentrated under reduced pressure without any further 

work up to yield compound 9 (Yield: 0.0171 g, 49.4 %) as an off-white solid powder. 

Physical data: C21H24ClN3; 
1
H-NMR (400 MHz, DMSO-d6) δ (Spectrum 25): 8.84 – 8.81 (d, 

1 H, J = 9.2 Hz), 8.65 – 8.63 (d, 1 H, J = 7.2 Hz), 8.12 (s, 1 H ), 7.80 – 7.78 (d, 1 H, J = 9.2 Hz), 7.02 

– 7.00 (d, 1 H, J = 7.2 Hz), 3.85 (m, 2 H), 3.16 (m, 2 H), 2.38 (m, 3 H), 2.05 – 1.87 (m, 17 H); 
13

C-

NMR (100 MHz, MeOD) δ (Spectrum 26): 175.8, 158.0, 144.5, 141.3, 140.1, 129.0, 126.5, 120.4, 

117.3, 100.4, 42.0, 38.9, 38.44, 37.8, 34.7, 34.3, 28.6; MS (ESI-MS) m/z: 354.29 [M + H]
+
, 356.23 

[M + H]
+
+ 2; IR (ATR, cm

-1
) Vmax: 3416 (N-H), 2897(C-H), 1573 (C=N), 1408, 1013, 903, 802, 

763. 

. 

http://etd.uwc.ac.za/



 

 

 

 

Chapter 3  Synthetic Procedures 

56 
 

3.4.13. 2-{3-[(7-Chloroquinolin-4-yl)amino]propyl}-2-tricyclo[3.3.1.1
3,7

]dec-2-

ylideneamine (Compound 10) 

NCl

NH N

 

 

Synthesis: The N-(7-chloroquinolin-4-yl)propane-1,3-diamine 3 (0.3138 g, 1.33mmol) was 

added to commercial 2-admantantone (0.1996 g, 1.33mmol) dissolved in ethanol (10 ml) in a 

microwave vessel. The mixture was made acidic by the addition of two drops of hydrochloric 

acid (HCl) to pH 5 to ensure nucleophilic attack at the carbonyl carbon. The mixture was 

microwave irradiated at 150 ˚C, 200 W and 250 psi at 2 hour intervals for 10 hours in the 

presence of molecular sieves. The reaction was monitored by TLC using methanol/ammonia 

in the ratio 10:1 as mobile phase. The reaction mixture was then filtered through Celite and 

the filtrate was concentrated under reduced pressure without any further work up to yield 

compound 10 (Yield: 0.3007 g, 61.4 %) as an off-white solid.  

Physical data: C22H26ClN3.  
1
H-NMR(400 MHz, DMSO) δ (Spectrum 29): 8.42 – 8.40 (d, 1H, 

J = 5.6 Hz), 8.36 – 8.34 (d, 1 H, J = 8.8 Hz), 7.79 – 7.79 (ds, 1 H, J = 2.4 Hz), 7.46 – 7.44 (dd, 1 H, J 

= 11.2, 9.2, 2.4 Hz), 6.53 – 6.52 (d, 1 H, J = 5.6 Hz), 3.41 – 3.38 (t, 2 H, J = 13.6, 6.8 Hz), 2.92 – 2.89 

(t, 2 H, J = 14.4, 7.2 Hz), 2.38 (m, 2 H) 2.04 – 1.86 (m, 16 H); 
13

C-NMR (100 MHz, MeOD) δ: 

170.01, 153.02, 151.65, 148.69, 137.03, 126.92, 126.51, 124.48, 118.62, 99.79, 48.43, 40.94, 40.39, 

38.75, 37.16, 28.91, 27.59; MS (ESI-MS) m/z: 368.13 [M + H], 370.18 [M + H]
+
+ 2; IR (ATR, cm

-1
) 

Vmax: 3244, 2863, 1591, 1454, 1217, 803, 762. 
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3.4.14. 2-{4-[(7-Chloroquinolin-4-yl)amino]butyl}-2-tricyclo[3.3.1.1
3,7

]dec-2-

ylideneamine (Compound 11) 

N
NH

NCl  

 

Synthesis: The N-(7-chloroquinolin-4-yl)butane-1,4-diamine, 3 (0.1806 g, 0.72 mmol) was 

added to commercial 2-admantantone (0.1040 g, 0.70 mmol) dissolved in ethanol (10 ml) in a 

microwave vessel. The mixture was made acidic by the addition of two drops of hydrochloric 

acid (HCl) to pH 5 to ensure nucleophilic attack at the carbonyl carbon. The mixture was 

microwave irradiated at 150 ˚C, 200 W and 250 psi at 2 hour intervals for 10 hours in the 

presence of molecular sieves. The reaction during this duration was monitored by TLC using 

methanol/ammonia in the ratio 10:1 as mobile phase. The reaction mixture was then filtered 

through Celite® and the filtrate concentrated under reduced pressure without any further 

work up to yield compound 11 (Yield: 0.1573 g, 59.49 %) as a waxy solid.  

Physical data: C23H28ClN3; 
1
H-NMR (400 MHz, MeOD) δ (Spectrum 33): 8.39 – 8.38 (d, 1 

H, J = 6.0 Hz), 8.34 – 8.36 (d, 1 H, J = 4.0 Hz), 7.83 – 7.82 (ds, 1 H, J = 1.6 Hz), 7.57 – 7.54 (dd, 1 

H, J =10.8, 8.8, 2.0 Hz), 6.81 – 6.79 (d, 1H, J = 6.8 Hz), 3.61 – 3.58 (t, 2 H, J = 13.2, 6.4 Hz), 3.05 – 

3.02 (t, 2 H, J = 14.4, 6.8 Hz), 2.46 (m, 2 H), 2.16 – 2.13– 1.81 (m, 14 H), 1.68 – 1.58 (m, 1 H); 
13

C-

NMR (100 MHz, MeOD) δ: 178.14, 156.10, 146.15, 142.50, 139.50, 127.90, 125.76, 122.25, 117.24, 

99.85, 48.38, 47.40, 43.89, 40.34, 37.13, 28.85, 26.12, 26.03; MS (ESI-MS) m/z: 382.32 [M + H]
+
, 

384.34 [M + H]
+
+ 2; IR (ATR, cm

-1
) Vmax: 3228, 2904, 1611, 1451, 1056, 874, 764. 
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3.4.15.2-{6-[(7-Chloroquinolin-4-yl)amino]hexyl}-2-tricyclo[3.3.1.13,7]dec-2-

ylideneamine(Compound 12) 

NH

NCl

N

 

 

Synthesis: The N-(7-chloroquinolin-4-yl)hexane-1,6-diamine, 4 (0.0551 g, 0.22 mmol) was 

added to commercial 2-admantantone (0.0305 g, 0.20 mmol) dissolved in ethanol (10 ml) in a 

microwave vessel. The mixture was made acidic by the addition of two drops of hydrochloric 

acid (HCl) to pH 5 to ensure nucleophilic attack at the carbonyl carbon. The mixture was then 

microwave irradiated at 150 ˚C, 200 W and 250 psi at 2 hour intervals for 10 hours in the 

presence of molecular sieves. The reaction was monitored by TLC using methanol/ammonia 

in the ratio 10:1 as mobile phase. The reaction mixture was then filtered through Celite and 

the filtrate concentrated under reduced pressure without any further work up to yield 

compound 12 (Yield: 0.0437 g, 52.5 %) as an off-white solid.  

Physical data: C25H32ClN3; 
1
H-NMR (400 MHz, MeOD) δ (Spectrum 37): 8.48 – 8.46 (d, 1 

H, J = 8.0 Hz), 8.40 – 8.38 (d, 1 H, J = 7.2 Hz), 7.89 – 7.88 (ds, 1 H, J = 2.0 Hz), 7.71 – 7.68 (dd, 1 

H, J = 11.2, 9.2, 2.4 Hz), 6.91 – 6.89 (d, 1 H, J = 7.2 Hz), 3.64 – 3.60 (t, 2 H, J = 14.8, 6.8 Hz), 2.97 – 

2.95 (t, 2 H, J = 15.2, 7.6 Hz), 2.47 (m, 2 H), 2.17 – 1.50 (m, 12 H); 
13

C-NMR (100 MHz, MeOD) δ: 

173.54, 157.56, 143.77, 140.92, 140.07, 128.65, 126.13, 120.32, 116.93, 99.73, 48.43, 44.74, 40.62, 

40.38, 38.38, 37.13, 34.77, 34.26, 28.91, 28.58, 27.47, 27.14; MS (ESI-MS) m/z: 410.34 [M + H]
+
, 

412.32 [M + H]
+
+ 2; IR (ATR, cm

-1
) Vmax: 3333, 2913, 1615, 1448, 1056, 873, 735. 

 

3.5. STRUCTURE ELUCIDATION 

The ACQ-intermediates (compound 1– 4), other intermediates and the adamantane diketone 

were confirmed with 
1
H-NMR and MS and compared with literature. In confirming the novel 

synthesized AD-CQ derivatives, the 2-adamantanone and its intermediates were analyzed and 

used to extrapolate and assign their characteristic peaks to the AD-CQ derivatives. In the 

proton NMR, the 4-aminoquinoline moiety showed five aromatic proton peaks down-field (9 
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– 6 ppm) in the characteristic d, d, ds, dd and d pattern (Natarajan et al., 2008; Fortuin, 2014). 

The protons of the differently tethered linkers appeared around 3.5 – 2 ppm and the 

adamantane cage protons were seen up-field at around 2 – 1 ppm. In the 
13

C-NMR, the cage 

carbons were still found up-field while the linkersare around 60 – 40 ppm and the aromatic 

carbons were seen down-field. The molecular ion masses of the compounds from the MS 

spectra were similar to the calculated masses confirming the compounds. Characteristic 

functional moieties such as the hydroxyl group in aza-adamantanol series and the C=N bond 

in imine-adamantane series as well C-H, C=C, N-H bonds were identified. On the IR spectra, 

the hydroxyl group was observed at 3450 -3200 cm
-1

and the imine bond at 1650 – 1550 cm
-1

. 

The structures of the novel compounds were confirmed with analysis from NMR, MS and IR. 

 

3.6. CONCLUSION 

A total of 12 test compounds presented in figure 3.1 were synthesized successfully. They 

consisted of four aminoquinoline intermediates (compounds 1- 4) and eight novel 

adamantane-chloroquinolin (AD-CQ) conjugates (compounds 5 – 12). These conjugates 

contained the bulky adamantane moiety which made the synthesis of a tertiary amine 

possible.  
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Figure 3.1: Structures of synthesized compounds used for biological evaluations 

The percentage yield of the final products ranged from 23.56 % to 83.40 %. The low to 

moderate yields observed may be due to the formation of by-products during synthesis and 

compound lost during purification. However, optimization of the various synthetic techniques 

and purification procedures used in this study as well as further purification of the remaining 
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fractions of product mixture after column chromatography could improve yields. The 

compounds were characterized and confirmed using NMR, MS and IR spectroscopy. 

In order to meet all the objectives of this study, the 12 test compounds (compounds 1 - 12) 

were subjected to in vitro cytotoxicity (MTT) and parasite lactate dehydrogenase (pLDH) 

biological assays. These assays and the results obtained are discussed in chapter 4.
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CHAPTER 4 

BIOLOGICAL EVALUATION AND 

RESULTS 

4.1. INTRODUCTION 

This chapter focuses on the in vitro bioassays carried out in this study. It explains 

the investigation of the cytotoxicity profiles of the novel compounds against a 

non-parasitic cell line. Furthermore, it includes the results of the synthesized 

compounds (adamantane-chloroquinolin (AD-CQ) conjugates and 

aminoquinoline (ACQ) intermediates) evaluated in in vitro assays for their 

antimalarial activity on both CQ
S 

(NF54) and CQ
R
 (K1) strains of P. falciparum 

using the parasitic lactate dehydrogenase (pLDH) assay. In addition, these assays 

provide data on the ability of the compounds to overcome resistance in the CQ
R
 

isolates of P. falciparum (K1). The results and discussion of the biological assays 

carried out on the test compounds are herein presented in relation to the research 

questions asked in chapter 1. 

4.2. BIOLOGICAL ASSAYS 

In vitro cytotoxicity studies were conducted on the novel test compounds against a 

Chinese hamster ovarian (CHO) cell line using the 3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyl tertrazoliumbromide (MTT) colorimetric assay. The MTT assay 

assesses the growth and survival of the CHO cell line used (Mosmann, 1983) 

based on viable cells‘ ability to reduce the yellow MTT into water-insoluble 

purple-blue formazan mediated by dehydrogenase enzymes of endoplasmic 

recticulum and mitochondria (Twentyman & Luscombe, 1987; Fotakis & 

Timbrell, 2006). Thereafter, the antimalarial activity of the AD-CQ compounds 

was quantitatively determined against both P. falciparum CQ
S
 (NF54) and CQ

R
 

(K1) strains using a modified parasite lactate dehydrogenase (pLDH) assay first 

described by Makler and Hinrichs (1993). This is based on the measurement of 

inhibition of pLDH activity by the compounds. From the dose-inhibition 
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measurements, the 50 % inhibitory concentration (IC50) values of pLDH activity 

for the test compounds were calculated and compared with CQ (Penna-Coutinho 

et al., 2011).  

4.3. MATERIALS AND METHODS 

4.3.1. MTT Assay Procedure 

Stock solutions of the test compounds were dissolved in 100 % dimethylsulfoxide 

(DMSO), to a concentration of 20 mg/ml and stored at -20 ˚C. To enhance 

solubility, the stock solutions were sonicated and test compounds that did not 

fully go into solution were tested in suspension. All further dilutions were freshly 

prepared in complete culture medium on the day of the experiment and tested in 

triplicate.  

Initially, the stock solution was thawed and starting from a 100 µg/ml 

concentration, it was serially diluted in 10-fold dilutions to give 6 different 

concentrations in complete medium and the lowest concentration was 0.001µg/ml. 

The reference drug emetine was also serially diluted with the same dilution 

technique as above. Lastly, the 50 % inhibitory concentrations of cell line growth 

were obtained using non-linear dose-response curve fitting analysis with 

GraphPad Prism v.4 software from full dose-response curves. 

4.3.2. Cells and P. Falciparum Parasite Cultures 

To quantitatively determine the effect of the synthesized compounds on biological 

systems, two strains of P. falciparum were selected to be used in this study; NF54 

and K1, the P. falciparum CQ
S
 and CQ

R
 strains respectively. The parasite strains 

were cultured continuously according to a modified method of Trager and Jensen 

(1976) in normal type A human erythrocytes of 2 % haematocrit. The parasite 

culture was maintained in a complete tissue culture medium of RPMI 1640 

supplemented with 25 mM HEPES buffer, 20 µg/ml gentamicin, 27 mM sodium 

hydrogen carbonate and 10 % normal type A human serum (Trager & Jensen, 

1976; Tan‐ariya et al., 1997). This was incubated at 37 ˚C in an atmosphere of 3 

% O2, 6 % CO2 and 91 % N2. 
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4.3.3. Parasite Lactate Dehydrogenase (pLDH) Assay Procedure 

Prior to the experiment, the parasitemia level of the culture-derived parasitized 

erythrocytes was adjusted to 2 % suspension by the addition of a normal type A 

human erythrocytes. The stock solutions of the novel test compounds were 

prepared and stored at -20 ˚C. All further dilutions were freshly prepared in 

complete culture medium on the day of the experiment and tested in triplicate.  

On the day of the experiment, the frozen stock parasite suspension was thawed at 

room temperature and 0.2 ml of parasite suspension was collected and dispensed 

into a well of a 96-well microtitre plate in triplicate for each compound 

concentration. Subsequently, an aliquot of the frozen stock synthesized test 

compounds were thawed and freshly diluted to the desired final test concentration 

with complete medium. Starting from a concentration of 1000 ng/ml, the test 

compounds were serially diluted 2-fold to 2 ng/ml concentrations in complete 

medium. A total of 10 concentrations were achieved. Each dilution was 

distributed in the 96-well microtiter plates with parasite suspension in triplicate 

and then incubated at 37 ºC for 72 hours. The same dilutions technique was done 

on the reference drug CQ. Finally, the cultures in each well were re-suspended 

carefully and aliquots were removed and spectrophotometerically analyzed at 650 

nm for pLDH activity. Then, the IC50 values were obtained by the non-linear 

dose-response curve fitting analysis using GraphPad Prism v.4.0 for windows. 

The antimalarial activity of the test compounds were expressed as IC50 values 

(mean ± SD) which is inversely proportional to the potency of the test 

compounds. 

 

4.4. RESULTS AND DISCUSSION 

4.4.1. Cytotoxicity Study 

One of the aims of this study was to establish the toxicity of these conjugates, thus 

they were subjected to cytotoxicity evaluation using the Chinese Hamster Ovarian 

cell line (CHO). The results are presented in table 4.1. It can be seen from the 

result that all the AD-CQ conjugates of both series, have very high CHO IC50 

values (IC50: 37860 – 279420 nM). The implication of these high values is that the 
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novel conjugates have very low toxicity towards non-parasitic cells and as such 

are much safer when compared to the cytotoxic reference drug emetine (IC50 = 61 

nM). 

Table 4.1: Cytotoxicity assay IC50 values of the novel AD-CQ conjugates 

CHO = Chinese Hamster Ovarian.  

4.4.2. Antimalarial Activity 

The main aim of this study was to synthesize novel AD-CQ conjugates and have 

them overcome P. falciparum CQ resistance. However, these conjugates are also 

expected to fundamentally possess antimalarial activity because of the 

Series 1 aza-adamantanols 
CHO 

IC50 (nM) 
Series2  imine-adamantanes 

CHO 

IC50(nM) 

NCl

NH
N

OH

5  

279420 
NNH

NCl
9  

98500 

N

OH

NH

NCl
6  

45190 
N

NH

NCl
10  

66390 

N

OH

NH

NCl
7  

37860 
N

NH

NCl
11  

57080 

 

NCl

NH

N

OH

8  

80760 

 

N
NH

NCl
12  

103750 

Emetine 61   
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incorporation of the 4-aminoquinoline moiety of CQ (Peyton, 2012). The 

antimalarial activities of the conjugates were defined as follows: IC50 > 1000 nM 

is inactive; IC50 < 1000 nM is active and IC50 < 100 nM is highly active. From the 

results presented in table 4.2, both series of novel synthesized AD-CQ conjugates 

(compounds 5 - 12) displayed good antimalarial activity in the low nanomolar 

range (IC50 = <5 – 112.69 nM) comparable to the reference drug CQ (IC50 = 7.8 

nM) against the CQ
S
 NF54 strain. Among all the AD-CQ conjugates, compound 

10, showed every good activity (IC50 = < 5 nM) even better than the reference CQ 

on the CQ
S
 NF54 strain followed by compound 6, 7 and 5 (IC50 NF54 = 22.32, 

33.94 and 46.94 nM). The work of Makler and Hinrichs (1993) has shown that 

there is a linear correlation between parasitemia levels and pLDH activity. Hence, 

the IC50 values are inversely proportional to the potency of the test compounds, 

which implies the lower the IC50 value the more potent the compound. 

Focusing on the CQ
R
 strain K1, seven of the novel conjugates (5 – 11) were active 

antimalarial compounds (IC50 = 93 nM – 784 nM) and compound 12 was 

considered inactive with an IC50 value greater than 1000 nM (IC50 = 1580.28 nM). 

Three of the compounds 5, 6 and 9 were highly active (IC50 = 98.92, 96.80 and 

93.81 nM). These results showed that the novel AD-CQ conjugates exhibit 

marked antimalarial activity. Furthermore, the selectivity index (SI), defined as 

the ratio of the IC50 on the CHO cell line to the IC50 on CQ
R
 K1 was calculated. 

This estimates the potential of the novel conjugates to selectively inhibit P. 

falciparum growth. A very low SI (below 25) indicates the possibility that the 

antimalarial activity determined is due to cytotoxicity rather than antimalarial 

activity against the parasite. In the same line the higher the SI (greater than 25) the 

more selective the conjugates towards P. falciparum (Valdés et al., 2010; Soh & 

Benoit-Vical, 2007). As shown in table 4.2, all the novel conjugates show greater 

selectivity towards the resistant parasite strains K1 with high SI (SI = 73 – 2825). 

This implies the activity of the novel conjugates recorded is because of 

antimalarial activity. 

Between the novel compounds, the series 1-aza-adamantanols (5 – 8) showed 

better activity with lower IC50 values against CQ
R
 strain compared to the series 2-
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imine-adamantanes (9 – 12). Evaluating the two series structurally in relation to 

their activity, it was established that the presence of the hydroxyl group (-OH) 

may play a role in the improved reversed CQ activity of the aza-adamantanols 

(series 1). This implies that the hydroxyl group could help or play a part in the 

binding of the compounds to the PfCQRT and aid in blocking this channel. This 

can be investigated further by investigating the mechanism of action of these 

conjugates. It is worth mentioning that although the imine-adamantane 

compounds showed significant activity against the CQ sensitive strain, they had 

markedly reduced activity against the CQ resistant strain. This loss of activity 

may be directly linked to the lower pKa values observed or other structural 

features making the imine-adamantane moiety a weaker RA. 

Table 4.2: Antimalarial activity of novel adamantane-chloroquinolin conjugates 

Compounds 
NF  54 

IC50 (nM) 

K1 

IC50 (nM) 

SI 

5 46.94 98.92 2825 

6 22.32 96.80 467 

7 33.94 198.22 191 

8 112.57 283.59 285 

9 26.28 93.81 1050 

10 < 5 191.62 346 

11 108.39 783.89 73 

12 112.69 1580.28 104 

CQ 7.8 300.00 ND 

Selectivity Index = IC50 CHO/IC50 K1. ND = not determined 

After confirming that these conjugates have antimalarial activity, it was further 

evaluated if they retained enough activity in the CQ
R
 strain to overcome P. 

falciparum CQ resistance. The ability of the conjugates to overcome the problem 

of P. falciparum CQ resistance was elucidated from the antimalarial activity of 

the conjugates against the CQ
S
 and CQ

R
 strains. From the antimalarial activity 

data it was possible to get the ratio of the IC50 of the CQ
R
 strain K1 to that of the 

CQ
S
 strain NF54. This ratio is called the resistance index (RI) shown in table 4.3. 
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RI gives a degree of how resistant the parasite is to a particular compound by 

reducing its activity on the resistant strain such that a higher concentration of the 

drug compound is required to inhibit the growth of 50 % of the parasite in the 

resistant strain than in the sensitive strain. The higher the K1 IC50, the higher the 

RI and the higher the level of resistance (Nzila & Mwai, 2010). 

As shown in table 4.3, all the novel conjugates have smaller RI, ranging from 

2.11 to > 16, compared to CQ with a RI of 38.46. This implies that the novel 

compounds exhibit the ability to retain their activity in P. falciparum CQ resistant 

strain thus can overcome the problem of P. falciparum CQ resistance. 

Table 4.3: Resistance reversal activity of the novel AD-CQ conjugates 

Compounds 

NF 54  

IC50 (nM) 

K1 

 IC50 (nM) 

RI  Ratio to 

CQ RI* 

5 46.94 98.92 2.11 18.2 

6 22.32 96.80 4.34 8.9 

7 33.94 198.22 5.84 6.6 

8 112.57 283.59 3.81 10.1 

9 26.28 93.81 3.56 10.8 

10 < 5 191.62 >16 2.4 

11 108.39 783,89 7.23 5.3 

12 112.69 1580.28 14.02 2.7 

CQ 7.8 300.00 38.46 1 

Resistance Index = IC50 K1/IC50 NF54. *Ratio to CQ RI = RI of CQ/RI of compound 

Between the two series, the aza-adamantanols of series 1 are better at retaining 

their activity in the resistant strain than the imine-adamantane series. This implies 

that the aza- adamantanols are promising reversed CQ compounds. Although the 

ACQ intermediates (compounds 1 – 4) with a primary terminal amine were also 

tested, they did not have significant activity against the CQ
S 

strain at 
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concentrations of less than 10 µM and were thus not tested further. This result 

confirmed that the terminal tertiary amine is essential for antimalarial activity 

especially in the CQ
R
 strain to increase the drug accumulation in the acidic 

digestive vacuole (DV) (Egan et al., 2000). Evaluation of the ACQ intermediates 

offered information about the effect of adamantane as a reversal agent as well as 

some preliminary SAR of the AD-CQ. The result showed that the addition of the 

adamantane in the novel compounds greatly decreased the concentration required 

for 50 % inhibition of the parasite. Hence the ability of the novel compounds to 

retain their activity in the CQ
R
 strain and overcome the problem of P. falciparum 

CQ resistance is attributed to the adamantane moiety. This has the implication that 

the adamantane moiety is a resistance reversal agent in P. falciparum CQ resistant 

strain. 

Prior work in our research group, have shown NGP1-01 may act as a good 

reversal agent. The pentacycloundecylamine (PCU) of NGP1-01 was used to 

develop aza PCU-CQ derivatives (PCU-CQ 1 - 3) which are good reversed CQ 

compounds (Fortuin, 2014; Joubert et al., 2014). This is demonstrated by their 

resistance index compared to CQ, presented in table 4.4. The same assay methods 

as described in this study were used to evaluate the PCU-CQ compounds. Thus, in 

this study we were also interested to evaluate the reversal effect of the adamantane 

moiety as RA compared to the PCU moiety. This was possible by comparing the 

RI of the AD-CQ conjugates with that of the PCU-CQ compounds. The PCU-CQ 

compounds have RIs ranging from 7 – 22 compared to CQ while the RI of the 

novel AD-CQ conjugates range from 2 to 16. However, for easy and clear 

comparison of the resistance reversal activity of the PCU and adamantane 

moieties, the RI of the novel AD-CQ conjugates and the PCU-CQ compounds 

were modified by calculating the ratio of each RI of the various compounds 

compared to CQ. This made comparison between the compounds meaningful. The 

ratio revealed that PCU-CQ 1 (a 2C linker) was 3.29 times better at retaining 

activity than CQ whereas compound 5 (also with a 2C linker) of the novel AD-CQ 

conjugates is 18 times better at retaining activity than CQ in the CQ
R
 strain. From 

figure 4.1, it can be clearly seen that compound 5 overcomes the problem of P. 

falciparum CQ resistance by 18-fold compared to CQ. Therefore, the aza-
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adamantanol moiety as used in this study produced more potent reversed CQ 

compounds than the PCU moiety. 

Table 4.4: PCU-CQ compounds with PCU of NGP1-01as reversal agent RI and 

corresponding structures 

Previous study 

compounds 

RI Ratio to CQ 

RI* 

PCU-CQ1 7 3.29 

PCU-CQ2 22 1.05 

PCU-CQ3 14 1.60 

CQ 23 1 

 

Resistance Index = IC50 K1/IC50 NF54. *Ratio to CQ RI = RI of CQ/RI of compound 

 

Figure 4.1: Graphic display of the potency of the compounds in reversing CQ 

resistance. 

The result presented in table 4.2 shows that, the IC50 values of the test compounds 

increases as the chain length of the alkyl linker increases. This trend is significant 

in the resistant strain K1 and concurs with literature that chain length changes has 

little influence on CQ
S
 NF54 activity but a profound influence on the CQ

R
 strain 
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and thus resistance (De, et al., 1996). This can be explained in that as the chain 

length increases the degree of flexibility of the compounds in the PfCQRT protein 

increases and may adopt an unfavourable conformation whereas the short chain 

adopts a more favourable conformation and thus improves the efficacy of the 

compounds. From both series and putting all data together, it can be concluded 

that the conjugates with alkyl linkers of 2 - 3 carbons show optimum activity for 

both CQ
S
 NF54 and CQ

R
 K1. This answers the research question ―What is the 

appropriate chain length for optimal activity of the linker between 4-ACQ 

pharmacophore and the RA?‖ asked in chapter 1. 

From the data shown in table 4.5 below, the series 1-aza-adamantanols have log P 

values of less than 5 (Log P = 3.1 – 4.59) in the range of CQ (log P = 4.69) 

compared to the large values of the series 2-imine-adamantane (Log P = 6.34 – 

7.93). Furthermore, all the novel compounds have hydrogen bond donors and 

acceptors less than five and ten respectively with molecular mass below 500 

Daltons. The conjugates of series 1 obey all the Lipinski rule of five (Ro5) 

(Lipinski et al., 1997). This implies that compounds of this series possess desired 

drug-like properties of solubility and permeability necessary for orally effective 

drug candidate development. Therefore, the activity of the novel compounds is 

mainly due to the reversal ability of the adamantane moiety via inhibition of the 

PfCQRT efflux pump and little to do with the lipophllic nature of the adamantane 

RA. The imine adamantanes failed to obey all the RoF with the log P values 

which can affect their solubility. The table below represents a summary of all the 

results. 

 

 

 

 

 

http://etd.uwc.ac.za/



 

 

 

 

Chapter 4             Biological Evaluation and Results 

71 
 

 

Table 4.5: In vitro antimalarial activity IC50 values of the novel adamantane-

chloroquinolin conjugates and reference compounds 

Compounds 

NF  54  

IC50 

(nM) 

K1 

 IC50 

(nM) 

CHO 

 IC50 

(nM) 

RI  SI  Log 

P  

pKa2  

5  46.94  98.92  279420  2.11  2825  3.11  8.3  

6  22.32  96.80  45190  4.34  467  3.34  8.8  

7  33.94  198.22  37860  5.84  191  3.72  9.1  

8  112.57  283.59  80760  3.81  285  4.59  9.2  

9  26.28  93.81  98500  3.56  1050  6.34  6.3  

10  < 5  191.62  66390  >16  346  6.67  6.7  

11  108.39  783,89  57080  7.23  73  7.00  7.1  

12  112.69  1580.28  103750  14.02  104  7.93  8.9  

CQ  7.8  300.00  ND  38.46  ND  4.69  10.2  

Emetine  ND  ND  61  ND  ND  ND  ND  

Resistance Index = IC50 K1/IC50 NF54. Selectivity Index = IC50 CHO/IC50 K1. ND = not 

determined. CHO = Chinese Hamster Ovarian. Log P values calculated using ACD Chemsketch. 

The pKa calculated using the ACE and JChem acidity and basicity calculator, available at 

http://epoch.uky.edu/ace/public/pka.jsp)c 

 

According to Kaschula and co-workers (2002), pKa of terminal nitrogen ranges 

from 7.65 to 10.2 in amino derivatives. This results in 97 % of drug in the DV due 

to pH trapping. Based on this it was expected that conjugates with a pKa value 

closer to that of CQ would have better antimalarial activity. Thus, the pKa values 

of the compounds were calculated and are presented in table 4.5 to get a picture 

on the degree of protonation for drug accumulation in the DV. From the 

calculated pKa values, all the compounds have a quinolyl nitrogen pKa value of 

7.3 and terminal side chain nitrogen of varied pKa values. This may lead to 
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different degrees of drug accumulation because of the differences in 2
nd

 

protonation. It was thus expected that the antimalarial activity will also increase in 

each series as pKa values increases. Although this was true between the two series 

in that the more active series 1- aza-adamantanols showed higher pKa values 

(closer to CQ, pKa = 10.2), it was not true within each series as carbon chain 

length increases.  
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Imine-adamantane (Series 
2) 

N
1

Cl

NH
NH22

pKa1 = 7.3, pKa2= 9.6 
N
1

Cl

NH
N
2

OH

pKa1= 7.3, pKa2= 8.3 

N
2

NH

N
1

Cl

pKa1= 7.3, pKa2= 6.3  

N
1

Cl

NH NH22

pKa1= 7.3, pKa2= 9.6  

N
2

OH

NH

N
1

Cl

pKa1= 7.3, pKa2= 8.8  

N
2NH

N
1

Cl

pKa1= 7.3, pKa2= 6.7  

N
1

Cl

NH
NH22

pKa1= 7.3, pKa2= 10.2  

N
2

OH

NH

N
1

Cl

pKa1= 7.3, pKa2= 9.1  

N
2NH

N
1

Cl

pKa1= 7.3, pKa2= 7.1  

N
1

Cl

NH
NH22

pKa1= 7.3, pKa2= 10.2 N
1

Cl

NH

N
2

OH

pKa1= 7.3, pKa2= 9.2  

N
2

NH

N
1

Cl

pKa1= 7.3, pKa2= 8.9  

pKa1= 7.3, pKa2= 10.2

N
1

Cl

NH

CH3

N
2

CH3

CH3

CQ

 

  

 

Figure 4.2: Calculated pKa values of the novel compounds. 

 The pKa calculated using the ACE and JChem acidity and basicity calculator, available at 

http://epoch.uky.edu/ace/public/pka.jsp)c 

From figure 4.2 above, the ACQ intermediates (1 – 4) with terminal primary 

amines were expected to have good activity against the CQ
S
 strain when 

considering pKa values alone, however they did not have significant activity when 

tested (IC50 CQ
S 

> 1 µM). This concurs with literature (Egan et al., 2000) in that 
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the terminal tertiary amine is essential for antimalarial activity especially in the 

CQ
R
 strain. It supports the argument that although drug accumulation via pH 

trapping is possible by the second protonation of the tertiary amine, increases in 

pKa cannot be considered alone for increased activity as this series of compounds 

had higher pKa values closer to that of CQ (pKa = 10.2). Thus, a primary terminal 

amine decreases antimalarial activity. 

 

4.5. CONCLUSION 

The novel compounds exhibited potent antimalarial activity in vitro comparable to 

CQ on the CQ
S
 NF54 strain and superior to CQ against the CQ

R
 KI strain and 

overcame P. falciparum CQ resistance. Although compound 5 was not the 

compound with the best activity on both CQ
S
 and CQ

R
 strains, it had the lowest 

RI (RI = 2.11) and good activity (IC50 = 98.92 nM) towards the resistant parasite 

strain K1. Compound 5 which showed an 18-fold enhancement at retaining its 

activity against the P. falciparum CQ
R
 strain K1 compared to CQ is thus a 

promising candidate to substitute CQ in P. falciparum resistant malaria. The 

adamantane moiety, especially in the aza-adamantanols, was shown to be a 

significant P. falciparum CQ resistance reversal agent. Hence, the hybridization 

of a CQ-like nucleus to an adamantane moiety resulted in adamantane-

chloroquinolin conjugates with improved antimalarial activity that overcomes the 

problem of P. falciparum CQ resistance.  
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CHAPTER 5 

SUMMARY AND CONCLUSION 

5.1. INTRODUCTION 

From the review of literature, malaria remains a significant parasitic infection. 

This is because of the devastating impact it has on global health and the 

socioeconomic status of endemic areas especially in sub-Saharan Africa (Sachs & 

Malaney, 2002; Gallup & Sachs, 2001). Half of the worlds‘ population are at risk 

of malaria parasite infection. Although efforts are being made to fight the disease, 

there are still thousands of malaria-related deaths annually and the most 

vulnerable predominantly include pregnant women and children below the age of 

5 (WHO, 2016a). The burden of malaria is being aggravated by the emergence of 

Plasmodium falciparum resistance to the few antimalarial drugs available, in 

particular CQ (Sidhu, Verdier-Pinard and Fidock, 2002). CQ had been the drug of 

choice for the prophylaxis and treatment of malaria infection. However, P. 

falciparum resistance to it has restricted its use in malaria therapy and put to waste 

its good qualities of cost-effectiveness, safety, affordability and availability 

(Ridley, 2002). CQ resistance is mainly as a result of low drug concentration in 

the parasitic food vacuole due to its efflux by the mutated Plasmodium falciparum 

CQ resistance transporter (PfCQRT) (Pulcini et al., 2015; Sidhu, Verdier-Pinard 

and Fidock, 2002; Fidock et al., 2000). Hence, the inhibition of this efflux 

transporter of CQ could overcome the prevailing issue of P. falciparum resistance 

to CQ-like drugs. In an attempt to solve the problem, some compounds known as 

reversal agents (RA) were found to reverse/inhibit the effect of PfCQRT (Deane, 

et al., 2014). This led to the attractive strategy of making ―reversed CQ‖ (RCQ) 

compounds which involved the hybridization of the CQ-like 4-aminoquinoline 

pharmacophore to a reversal agent via an alkyl linker (Burgess et al., 2006, 

Andrews et al., 2009). Thus, this study sought to synthesize a series of novel 

adamantane-chloroquinolin (AD-CQ) conjugates as potentially improved reversed 

CQ agents. These compounds are intended to overcome the CQ resistance by 
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Plasmodium falciparum and could add to the antimalarial armoury to control 

malaria.  

5.2. SYNTHESIS 

The AD-CQ conjugates (compounds 5 - 12) consisted of the CQ-like 4-

aminoquinoline pharmacophore conjugated to adamantane (as the reversal agent) 

via an alkyl linker. Their synthesis involved multiple intermediary steps which 

posed many challenges in this study. The idea in designing the novel compounds 

was to explore adamantane as a RA, whilst incorporate a terminal tertiary amine 

as well as a hydroxyl group in the conjugates. The starting material 2-

adamantanol enabled all these features. Firstly, the various aminoquinoline (ACQ) 

intermediates were synthesized by the amination of 4, 7-dichloroquinoline with 

different chain length diaminoalkane linkers using microwave irradiation. These 

compounds were used for synthesis of the novel AD-CQ conjugates of series 1 

and 2.  

The compounds in series 1 (compounds 5 - 8) had the hydroxyl group. They were 

synthesized by the conjugation of the adamantane diketone and appropriate ACQ 

intermediates via reductive amination followed by transannular cyclization 

(Joubert et al., 2014). The adamantane diketone was synthesized from the 2-

adamantanone via a 3 step process. The compounds in series 2 (compounds 9 – 

12) were synthesized from the direct conjugation between 2-adamantone and 

ACQ intermediates in a 1:1 ratio.  

As presented in figure 3.1, a total of eight novel AD-CQ conjugates (compounds 

5 – 12) were successfully synthesized with reasonable yields. The compounds 

were purified with column chromatography using methanol/ammonia as mobile 

phase in a 10:1 ratio. NMR and IR were used to characterize significant signals 

and the MS confirmed the presence of the desired conjugates by their molecular 

masses. Characterization of the compounds was possible by making inference to 

the characteristic signals observed for each specific compound using the signals of 

2-adamatnatone and its intermediates as reference for the adamantane part of the 

conjugates. 
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5.3. BIOLOGICAL EVALUATIONS 

The cytotoxicity profile of the synthesized novel AD-CQ conjugates were 

investigated using the MTT assay and all compounds were found to be non-toxic 

on the Chinese Hamster Ovarian cell line. Their antimalarial activity was then 

investigated against both CQ sensitive (CQ
S
) NF54 and resistant (CQ

R
) K1 strains 

using the parasitic lactate dehydrogenase assay (Makler et al., 1993). The results 

obtained are presented in table 4.5 of the preceding chapter. 

All the compounds of both series demonstrated in vitro antimalarial activity 

comparable to CQ against the CQ
S
 strain and superior to CQ against the CQ

R
 

strains. The compounds also had lower resistance index (RI) of 2 to 16, which 

gave the degree of magnitude by which the activity of the compounds were 

retained in the CQ
R 

strain compared to CQ (RI = 38). In general the compounds in 

series 1 had better activity. The degree by which P. falciparum CQ resistance was 

overcome in the resistant strain was calculated as the ratio to CQ RI and ranged 

from 2 to 18-folds. This result illustrated that compound 5 overcame P. 

falciparum CQ resistance in the resistant strain K1 by 18-fold compared to CQ. 

Thus it stood out as a promising lead compound for further optimization to 

substitute CQ in P. falciparum malaria infections. The adamantane moiety, 

especially in the compounds of series 1, was shown to be a significant P. 

falciparum CQ resistance reversal agent compared to the previously used 

structurally related PCU moiety (Joubert et al,. 2014). 

5.4. CONCLUSION 

Resistance to antimalarial drugs especially CQ is a major setback in the use of 

chemotherapy in the control of malaria. This thus created the need to find and 

develop new improved antimalarial agents.  

This study has shown that the hybridization of adamantane moieties to a CQ-like 

nucleus via alkyl linkers of 2-3 carbon chain lengths results in improve reversed 

CQ compounds with significant in vitro antimalarial activity that overcome P. 

falciparum CQ resistance. From all the observations and analysis made, this study 

has deduced that the antimalarial activity of the novel compounds is dependent on 
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a number of hypothesized factors that need to be assessed collectively and not 

individually. These include: 

 The 4-aminoquinoline pharmacophore is still a viable class for 

antimalarial compounds. 

 The incorporation of the tertiary amine group is essential for significant 

activity especially in the CQ
R
 strain as it increases drug accumulation in 

the acidic DV  

 The use of the adamantane moiety as a RA produced reversed CQ 

compounds with enhanced antimalarial activity compared to CQ in the P. 

falciparum CQ resistant strain.  

 The length of the alkyl linker between the CQ-like nucleus and the 

adamantane RA should be between 2-3 carbons for optimum ability to 

overcome resistance. 

From table 4.5, it was observed that compound 5 had the lowest RI and good 

activity towards the resistant parasite strain K1 even though it was not the 

compound with the best activity on both CQ
S
 and CQ

R
 strains. It retained its 

activity in the CQ
R 

strain by 18-fold compared to CQ and was thus identified as a 

promising candidate to substitute CQ in P. falciparum resistant malaria. However, 

its clinical use and safety in humans still needs to be proven. Therefore, the next 

step will be to carry out further in vitro and in vivo biological and mechanistic 

studies to elaborate on the molecular mechanism (s) involved in parasite-killing 

and reversal of the PfCQRT efflux effect. Also, the role of the hydroxyl group on 

the activity of the aza AD-CQ conjugates should be investigated further to build 

on the SARs of the compounds. Also, further work on compound 10 with NF54 

IC50 value lower than CQ is recommended. 
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ANNEXURE 

SPECTRAL DATA: 

 

NUCLEAR MAGNETIC RESONANCE 
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SPECTRUM 1: Compound 1 
1
H-NMR 
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SPECTRUM 2: Compound 2 1H-NMR  

 

  

NCl

NH NH2

http://etd.uwc.ac.za/



 

 

 

 

 

106 
 

SPECTRUM 3: Compound 3 1H-NMR  
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SPECTRUM 4: Compound 4 1H-NMR  
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SPECTRUM 5: 2-Adamantanone 1H-NMR 
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SPECTRUM 6: Lactone 1H-NMR 
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SPECTRUM 7: Diol 1H-NMR 
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SPECTRUM 8: Adamantane Diketone 1H-NMR 
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SPECTRUM 9: Compound 5 1H-NMR 
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SPECTRUM 10: Compound 5 13C-NMR 
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SPECTRUM 11: Compound 5 MS 
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SPECTRUM 12: Compound 5 IR 
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SPECTRUM 13: Compound 6 1H-NMR 
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SPECTRUM 14: Compound 6 13C-NMR 
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SPECTRUM 15: Compound 6 MS 
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SPECTRUM 16: Compound 6 IR 
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SPECTRUM 17: Compound 7 1H-NMR 
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SPECTRUM 18: Compound 7 13C NMR 
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SPECTRUM 19: Compound 7 MS
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SPECTRUM 20: Compound 7 IR 
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SPECTRUM 21: Compound 8 PROTON NMR 
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SPECTRUM 22: Compound 8 13C-NMR 
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SPECTRUM 23: Compound 8 MS
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SPECTRUM 24: Compound 8 IR 
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SPECTRUM 25: Compound 9 PROTON NMR 
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SPECTRUM 26: Compound 9 13C NMR 
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SPECTRUM 27: Compound 9 MS
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SPECTRUM 28: Compound 9IR 
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SPECTRUM 29: Compound 10 1H-NMR 

 

N

NH

NCl
10

http://etd.uwc.ac.za/



 

 

 

 

 

133 
 

 

SPECTRUM 30: Compound 10 13C-NMR 
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SPECTRUM 31: Compound 10 MS
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SPECTRUM 32: Compound 10 IR 
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SPECTRUM 33: Compound 11 1H-NMR 
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SPECTRUM 34: Compound 11 13C-NMR 
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SPECTRUM 35: Compound 11 MS 
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SPECTRUM 36: Compound 11 IR 

  
4000.0 3600 3200 2800 2400 2000 1800 1600 1400 1200 1000 800 650.0

55.0

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

100

101.0

cm-1

%T 

3228.92

2904.20

2852.91

1717.74

1697.61

1673.25

1611.77

1580.07

1451.19

1403.82

1353.43

1310.50

1290.41

1233.32

1212.49

1161.83

1137.83

1089.51

1056.66

1030.08

997.05

953.26

898.10

874.23

804.59

765.01

714.39

3027.77

3373.01

1550.00

2646.82

N
NH

NCl
11

http://etd.uwc.ac.za/



 

 

 

 

 

140 
 

SPECTRUM 37: Compound 12 1H-NMR 
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SPECTRUM 38: Compound 12 13C-NMR 
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SPECTRUM 39: Compound 12 MS 
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SPECTRUM 40: Compound 12 IR 
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SPECTRUM 41: ADAMANTANONE IR 
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SPECTRUM 42: Proton NMR for Lactone by MW synthesis 
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