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ABSTRACT 

In this study a mixed methods approach was employed to investigate how exposure to a 
teaching strategy based on spiral revision, productive practice and a mainly direct expository 
instructional method would influence the mathematical competencies of procedural fluency 
and conceptual understanding of pre-service mathematics teachers at a South African 
university. A secondary concern of the study was how retention and transfer abilities of 
participants would be influenced if they experience mathematics through a teaching strategy 
underpinned by spiral revision and productive practice.  

A revised version of the taxonomy table of Anderson et al (2001) was utilized to classify 
learning and instructional activities in the study in terms of mathematical reasoning and 
knowledge requirements. In this revised taxonomy the cognitive processes are understood to 
operate on knowledge structures during the process of cognition (i.e. reasoning categories 
based on knowledge categories.). The categories of the revised taxonomy table were the main 
measuring instrument for the study. 

The findings of the study indicate that the competencies of procedural fluency and conceptual 
understanding were positively enhanced by the teaching strategy. Some categories however 
did not show the same level of positive enhancement. Arguments are presented as to why this 
might be the case and possible solutions are mooted. Findings also indicate that retention and 
near transfer abilities of participants were positively enhanced. Far transfer abilities were 
unchanged post intervention. Explanations are offered for this finding and possible 
resolutions are suggested.   
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CHAPTER 1: INTRODUCTION 
 
 
1.1 The importance of mathematics for the individual and society 

The importance of mathematics and mathematical ability in the 21st century for both the 
individual and society cannot be underestimated. The International Review Panel of 
Mathematical Sciences Research at South African higher education institutions states that there 
is an unprecedented worldwide demand for university graduates with mathematical skills. They 
contend that because the mathematical sciences form the basis of cross-disciplinary research, this 
inherent power is deployed in finding solutions to the most critical and complex contemporary 
problems in society (Department of Science and Technology, 2008).  

 Research has shown that a linear relationship exists between the quantitative demands of 
different occupations that require a degree in higher education and the wages associated with 
those occupations (Geary, 2000). Findings of that research indicate that the higher the 
mathematics requirements in the occupation the higher the entry-level is, at commensurate 
wages. Based on this the author argues that the development and maintenance of numerical and 
mathematical competencies is very important for individuals within these societies and for the 
society as a whole.  

Brown (2009) affirms the importance of mathematics for the individual when he asserts that 
mathematics is an important enabling science. He points out that most disciplines benefit from a 
good foundation through the concepts and skills developed in mathematics and data sciences and 
that mathematics is both a prerequisite and a tool in many disciplines. Areas he cites include 
chemistry, physics, computer science, environmental sciences, meteorology, psychology, health 
sciences, geography, economics, finance, business and many others. It is also my view that for 
many disciplines like physics and engineering, mathematics should not be regarded as 
supplementary to the discipline but as a fundamental building block of knowledge in the 
discipline.  

Also, many believe that the development of good mathematics and science teachers and students 
is a prerequisite for economic development on a national scale. As a prerequisite for economic 
growth the South African government identified mathematics, science and technology as areas in 
education that require investment. To this end it established the Dinaledi1 Project to increase the 
quality and number of students who would take mathematics and science. The Accelerated and 

                                                           
1 A crucial initiative arising from the National Strategy for Mathematics, Science and Technology Education in 
South Africa was the establishment of the Dinaledi Project in June 2001. As a result of this project, 102 secondary 
schools were selected to be centers of excellence for the development of mathematics, science and technology. The 
aim was to increase the participation rates, especially of those previously disadvantaged, and of girl learners.  It was 
also to improve learner performance in these subjects. 
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Shared Growth Initiative for South Africa (Asgi-SA)2 is a set of government interventions that 
aimed to increase economic growth to 6% per annum between 2010 and 2014 while also halving 
unemployment and poverty by 2014. Asgi-SA makes specific mention of the importance of 
mathematics and science in this endeavour. 
 
 
1.2 Mathematics as a gatekeeper 

Historically, in South African society mathematics has always been a gatekeeper to higher 
education and the world of work. The following quote makes this abundantly clear: “…What is 
the use of teaching the Bantu mathematics when he cannot use it in practice? The idea is quite 
absurd.” (Verwoerd, 1953).   

I am of the opinion that mathematics in post-apartheid South Africa still maintains its 
gatekeeping function. This is evidenced by vast disparities in the distribution of human and 
physical resources that still exist in schooling in South Africa. Similarly critical Vithal and 
Volmink (2005) argue that although a new curriculum was designed to change this state of 
affairs, the poor in South African society remain marginalized: for them opportunities provided 
by mathematical knowledge and skills are lacking. This lack of access to mathematical 
knowledge and skills is a two-edged sword for the marginalized since they also need 
mathematics as a tool by which to understand the social forces that contribute to their 
marginalization (Martin et al, 2010).    
 
  
1.3 Rationale 

It is widely agreed that prospective teachers should graduate with a command of the five kinds of 
mathematical competencies outlined by the National Research Council (2001) since these are 
essential for success in learning mathematics. The competencies are as follows: conceptual 
understanding, procedural fluency, strategic competence, adaptive reasoning and a productive 
disposition. Conceptual understanding refers to the comprehension of mathematical concepts, 
operations and relations. Procedural fluency is the skill that is required to carry out procedures 
flexibly, accurately, efficiently and appropriately. Strategic competence is understood to denote 
the ability to formulate, represent and solve mathematical problems. The capacity for logical 
thought, reflection, explanation and justification is defined as adaptive reasoning. The habitual 
predisposition to see mathematics as sensible, useful and worthwhile together with a personal 
belief in assiduousness is defined as productive disposition (National Research Council, 2001). 

The authors argue that the five competencies are interwoven and interdependent.  

                                                           
2 AsgiSA is a set of government interventions which sought to achieve an average economic growth of 6% by 2010 
and to halve poverty and unemployment by 2014. 
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Reinforcing this, other research has shown that two of these strands are particularly important to 
the development of mathematical proficiency – conceptual understanding and procedural fluency 
(Hiebert & Grouws, 2007). Thus, there is a need in pre- service mathematics education (in the 
South African context) for research that investigates which teaching strategies could lead to the 
enhancement of the competencies of conceptual understanding and procedural fluency of pre-
service mathematics education students. The question is what is the current state of affairs 
regarding these competencies in the South African context? 

1.3.1 South African learners’ levels of mathematical content knowledge and reasoning  

The teaching and learning of mathematics has always been a contentious issue both in South 
Africa and internationally. In the South African context the mathematics teaching and learning 
problems are exacerbated by socio-economic problems with historical roots. South African 
teachers of mathematics at school level have borne the brunt of severe criticism for how their 
perceived lack of requisite knowledge and competence prevent them from delivering quality 
teaching of mathematics. It might be that some of this criticism consists of unfair generalizations 
since it seems to include all South African teachers irrespective of their success in teaching 
mathematics. However, it cannot be denied that South Africa does have major problems in the 
teaching and learning of mathematics. 

 The foregoing critique seems to be corroborated by large scale international and national studies 
conducted to measure the mathematical proficiency of South African learners at school level.  
One such study is the Trends in International Mathematics and Science Study (TIMSS). TIMSS 
was conducted in South Africa for the first time in 1995 and subsequently in 1999, 2002 and 
2011 (Mullis et al, 2011).  

It is necessary to provide a short explanation of the term scale score since it will be used to 
describe proficiency of South African school learners as determined by TIMSS. Analyses of 
TIMSS data occurs in two phases namely scaling and estimation. TIMSS rely on item response 
theory (IRT) scaling to describe student achievement on assessments and to provide accurate 
measures of trends. IRT is used to determine the difficulty of each test item or item category. 
The difficulty of items is deduced using information about how likely it is for participating 
students to get some items correct versus other items. Once the parameters for each item are 
determined student ability can be estimated even when students have been presented with 
different items. Initially achievement scores are expressed in a standardized logit scale that 
ranges from -4 to +4. In order to make the scores more meaningful and to facilitate their 
interpretation, scores are transformed to a scale score with a mean of 500 and a standard 
deviation of 100.  

The South African grade 8 achievement scale score for 1995 was 276 and for 1999 it was 275. In 
2002 the scale score for grade 8 was 264 and for grade 9 it was 285. For 2011 the scale score for 
grade 9 was 352 (Reddy et al, 2012). The authors of the South African TIMSS report of 2011 
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argue that the South African mathematics scale score has increased by 67 points from 2002 to 
2011 (Reddy et al, 2012). It may be the case that the scale score has improved from 2002 to 
2011, but I think what is more significant is that the 352 scale score for 2011 is still below the 
Low International benchmark of 400. My expectation was that the South African learners would 
perform better since grade 9 had been assessed instead of grade 8. These statistics (as measured 
by the TIMMS instrument) show that South African learners have less than half of the 
mathematical content knowledge of their international peers.  

A similarly bleak picture is painted for the cognitive domains. The international average 
percentage correct in the Knowing domain is 49% compared to 26% for South Africa. For the 
cognitive domain of Applying, the international average is 39% compared to 19% for South 
Africa. The international average for Reasoning is 30% and for South Africa it is 14%. These 
average achievement percentages show that South African students operate mostly in the 
cognitive domain of Knowing, but even here, at a low level.  

Reddy et al (2012) also analysed the average achievement of learners with respect to the former 
racial categorisation of schools in South Africa. They found that the average achievement scores 
of the former House of Assembly (HOA – White) administered schools were the highest, 
whereas the former House of Representatives (HOR – Coloured) and Ex-African administered 
schools were the lowest performing schools. They found that although the former African-
administered schools achieved the lowest scores for 2011, they also showed the greatest 
improvement between 2002 and 2011. South Africa also participated in TIMSS 2015. The results 
indicate that the grade 4 scale score is 376 which is second last of all the participating countries. 
The grade 8 scale score is 372 and is also second last on the list (Mullis, et al, 2016). My concern 
is that nearly twenty years after the advent of democracy in South Africa the mathematical 
competency divide is exactly where it was during the years of segregation. This suggests that the 
previously advantaged are still privileged in terms of mathematics and hence can expect better 
work and higher education opportunities in South Africa, whereas the previously disadvantaged 
remain disadvantaged. 
 
In the South African education system the tradition has been to focus on the grade 12 
examinations and the improvement of grade 12 results. This focus is directed at preparing 
students from the previously disadvantaged communities of South Africa for better work and 
higher education opportunities (DBE, 2011). However there is a growing realisation that perhaps 
this has not come to pass as many learners do not even make it to grade 12. Also, in many cases 
the help provided in grade 12 has not been beneficial since gaps in the knowledge base and 
learner misconceptions are too great to deal with in the limited time comprising the grade 12 
year.  
 
In 2008 and 2009 a new national assessment system called Annual National Assessments 
(ANAs) was piloted in South African primary schools. The ANAs were made compulsory for all 
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public schools in South Africa and were conducted in all public schools for the first time in 2011. 
The purpose of the ANAs according to the Department of Education was to contribute to better 
learning in schools and to form part of a range of interventions for promoting quality teaching 
and learning especially in the poorest communities. In the pilot study approximately 6 million 
learners from grades 1 to 6 were assessed in languages and mathematics.  In 2012 grade 9 was 
included in the assessment. For both 2011 and 2012 only grades 1 and 2 achieved average 
percentages higher than 50%. There was a general decline in average percentage from grade 3 to 
grade 9. The national average for grade 9 mathematics in 2012 was 12.7% (DBE, 2012), and in 
2014 it was 10.9% (DBE, 2014). These results, together with the TIMSS results presented 
earlier, indicate that South Africa has a sizeable problem in terms of the mathematical 
proficiency of its learners. Both the ANAs and TIMSS indicate that the majority of South 
African learners of the General Education and Training (GET) band have low levels of content 
knowledge and that they operate mainly in the elementary cognitive domains of mathematical 
reasoning.  
 
Results of the National Senior Certificate (NSC) indicate that learning and teaching problems in 
mathematics are not restricted to the GET band, but are also prevalent in the Further Education 
and Training (FET) band.  This argument is corroborated by the following results: in 2011 52.6% 
of learners scored below 30%; in 2012 this applied to 46% of learners; in 2013 , 40.9% of 
learners and in 2014, 46.6% of learners scored below 30% for the NSC examination (DBE, 
2014). One can therefore argue that the majority of South African learners at school level have 
not developed the requisite procedural fluency and conceptual understanding as envisioned by 
the curriculum documents.  
    
1.3.2 South African mathematics teachers’ mathematical understanding and content 

knowledge  

It is commonly agreed that the demands of teaching require knowledge at the intersection of 
mathematical content knowledge and knowledge of teaching (Ball, Thames & Phelps, 2008; 
Shulman, 1986).  Research has shown that both content knowledge and the skill to integrate 
content knowledge with pedagogical knowledge are required for effective teaching (Taylor & 
Taylor, 2013). Shulman (1986) distinguishes between three categories of teacher content 
knowledge namely, subject matter content knowledge, pedagogical content knowledge and 
curricula content knowledge. Although the organization, composition and characteristics of 
mathematical content knowledge for teaching have been extensively researched, there is no 
consensus among researchers concerning what mathematics teachers need to know in order to 
deliver effective teaching (Ball, Hill & Schilling, 2004). Furthermore, although research has 
shown that teachers’ mathematical knowledge is significantly related to learner achievement, the 
nature and extent of that knowledge is not known (Ball, Hill & Rowan, 2005).  
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However, both subject matter knowledge and pedagogical content knowledge have been further 
refined. Ball and colleagues (Ball et al, 2008) have proposed that Subject matter knowledge be 
subdivided into the following categories: Common content knowledge (CCK), Specialized 
content knowledge (SCK) and Horizon content knowledge. They propose that pedagogical 
content knowledge consists of the sub-domains Knowledge of content and students (KCS), 
Knowledge of content and teaching (KCT) and Knowledge of content and curriculum (Ball et al, 
2008). The focus of the present research however is subject matter knowledge and in particular 
Common content knowledge.  
 
Common content knowledge is defined as the mathematical knowledge one has in common with 
others who know and use mathematics. This knowledge is mostly discipline specific but is also 
essential to teaching since pedagogical content knowledge is predicated on content knowledge 
(Ball et al, 2008; Shulman, 1986;  Venkat & Spaull, 2015).   
        
It is imperative that teachers have a thorough understanding of the mathematics they are 
teaching, since it is highly unlikely that teachers who do not have a good grasp of mathematical 
concepts will be able to teach such concepts to learners (Ball, et al, 2008; Hiebert et al, 2003; 
Venkat & Spaull, 2015; Lerman et al, 2010).  It is essential therefore that one determine what 
research uncovered about the subject matter knowledge of teachers in the South African context. 
This would be done not to vilify teachers of mathematics, but to gain a better understanding of 
areas lacking, in order to design better teaching strategies and to improve the content knowledge 
and mathematical reasoning abilities of pre-service teachers. My specific interest therefore is to 
determine what the literature reveals regarding types of mathematical knowledge (procedural and 
conceptual) and attendant cognitive abilities of South African teachers. 
 
The National Education Evaluation and Development Unit (NEEDU) was established in 2009 by 
the minister of Basic Education in South Africa. Their function is to investigate and report 
directly to the minister of education on the state of schools in South Africa and in particular on 
the status of teaching and learning. They measured the quality of teaching and learning by 
measuring the outcomes of learning evident in learner notebooks and through one-on-one 
assessment in learner reading. These measures were used in conjunction with the scores attained 
in the Annual National Assessment (ANA) tests (NEEDU, 2012). 
 
The NEEDU report utilized some of the findings of SACMEQ III3 of 2007. SACMEQ III 
assessed grade 6 teachers’ subject knowledge in language and mathematics. Since some of the 

                                                           
3 The Southern and Eastern Africa Consortium for Monitoring Educational Quality (SACMEQ) is an organisation 
consisting of 15 Ministries of Education in Southern and East Africa. They work together to apply scientific 
methods for monitoring and evaluating the conditions of schooling and the quality of education. Technical 
assistance is provided by UNESCO’s International Institute for Educational Planning (IIEP). Between 1995 and 
2005 SACMEQ completed two major education policy research projects: SACMEQ I and SACMEQ II. SACMEQ 
III commenced in 2007 and was completed in 2011. 
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test items utilized in this endeavour were common to teacher and learner tests they provided the 
opportunity for comparing teacher and learner scores directly (NEEDU, 2012). For example, on 
the item:  

10 × 2 + (6 − 4) ÷ 2 = 

the number of teachers who computed it correctly was 54% whereas the number of learners who 
did the correct calculation was 22%.  
 
The results of some of these tests are captured in the following summary: Teachers’ average 
percentage score for Arithmetic was 67.15%; for Fractions, Ratio and Proportion it was 49.68%; 
for Algebraic Logic, it was 46.51%; for rate of change it was 42.3% and for Space and Shape it 
was 56.44%. The SACMEQ III authors found that teachers performed relatively well in 
questions requiring elementary cognitive functions, but struggled with items that required higher 
cognitive functions. The authors therefore concluded that South African primary school teachers 
demonstrate poor subject knowledge in language and mathematics and as a result are less 
capable of understanding the requirements of the curriculum and how to apply these in their 
classes. The authors have identified poor subject knowledge as a major barrier to quality 
teaching and learning at all levels of the teaching system. 
 
Bansilal, Brijlall and Mkhwanazi (2014) investigated levels of common content knowledge of 
South African high school mathematics teachers. Data for this research was provided by in-
service teachers’ written responses to a shortened form of a grade 12 mathematics paper one 
examination. Their sample consisted of 253 teachers that were enrolled for an Advanced 
Certificate in Education (ACE). The ACE serves as an upgrading of high school mathematics 
qualifications of teachers. The researchers employed the APOS theory (action-process-object-
schema) of Dubinsky (1999) to analyse the written responses of the participating teachers. 
Teachers obtained an average of 57% in the presented test. Findings of the study indicate that the 
majority of participants performed well with lower cognitive level questions, but struggled with 
the higher cognitive level questions. One cannot generalise these findings to all South African 
high school mathematics teachers. One cannot also conclude from this study that all South 
African high school mathematics teachers do not have adequate content knowledge for the level 
at which they are teaching. Consistent poor performance of grade 12 learners in the final 
mathematics examinations however is an indication that major problems exist in teaching and 
learning of mathematics at the high school level. It is therefore not unreasonable to argue that 
poor content knowledge of teachers is a contributing factor to the teaching and learning problems 
at the high school level.   
          
Many others have also identified the poor content knowledge of teachers as a problem in 
mathematics education. For instance, Ball investigated the subject matter knowledge of 
prospective teachers at 5 different American tertiary institutions and found that the mathematical 
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understanding of those students was heavily dependent on procedures and lacked insight (Ball, 
1990). A further, very intriguing finding in that research is that majoring in mathematics does not 
always guarantee sufficient subject knowledge.  
 
Stein and colleagues (Stein et al, 1990) investigated the relationship between subject matter 
knowledge and elementary instruction in the domain of functions. They found that limited 
content knowledge led to teaching that was lacking in several key areas. Meaningful connections 
between key concepts were not made as a result of this deficiency in content knowledge. 
Investigating the effect of teachers’ mathematical knowledge for teaching on student 
achievement Hill and colleagues (Hill et al, 2005) found a strong relationship between these 
elements. Ball and others reiterate that adequate content knowledge remains an essential 
component of teacher competency (Ball, 1990; Shulman, 1987; Stein et al, 1990; Hill et al, 
2005).    
 
Based on their research into teacher mathematics content knowledge in the South African 
context, Venkat and Spaull (2015) argue that many teachers do not possess sufficient content 
knowledge to provide their learners with access to the disciplinary ideas of mathematics. In 
particular, it is argued that many teachers lack indispensable conceptual knowledge for the level 
at which they are teaching; they have a highly procedural orientation towards mathematics 
teaching and they manifest gaps in requisite content knowledge. Furthermore, corresponding 
analysis of learner and teacher performance indicates that only the most proficient teachers had a 
positive impact on learner performance. 
 
Venkat and Spaull (2015) also analysed the South African mathematics teacher test data that had 
been gathered in the study conducted by the Southern and East African Consortium for 
Monitoring Educational Quality (SACMEQ) 2007. The test responses of 401 grade 6 
mathematics teachers drawn from a nationally representative sample of South African primary 
schools forms the primary data. Their findings indicate that the majority of South African grade 
6 teachers have mathematical content knowledge levels below grade 6. The authors argue that 
this lack of content knowledge prevents teachers from delivering quality teaching, hence the 
learning of mathematics is severely compromised. Teachers of primary school mathematics 
(indeed all mathematics teachers) need to have a well-connected, well developed deep 
understanding of fundamental mathematics (Ma, 1999). However, the pursuit of more advanced 
courses in mathematics does not necessarily translate into a deeper understanding of fundamental 
mathematics (Ma, 1999). In order to deal with the problem of inadequate teacher content 
knowledge Taylor and Taylor (2013) argue that both pre- and in-service teacher training should 
focus on providing teachers with a well-wrought conceptual understanding of mathematics.  
 
There are however others who do not agree that content knowledge of teachers should always be 
the focus in mathematics education. Martin et al (2010) contend that research in mathematics 
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education that is content-focused and that ignores or simplifies the social contexts in which the 
research participants are embedded risks perpetuating the power relations in the field. Although 
they agree that mathematics content is important in mathematics education research, they do not 
agree that studies which isolate content offer a sufficiently wide view of contemporary problems 
in mathematics education. They propose that multidimensional studies are needed to understand 
how and why learners interact with mathematics content in the ways that they do, as well as how 
and why they learn (Martin et al, 2010). 
 
Julie (2015) is an example of a South African author who is critical of the studies that were used 
as a basis to argue that South African teachers’ weak mathematical content knowledge is one of 
the main contributing factors to the poor mathematical proficiency of learners in South African 
schools. He is of the opinion that the instruments used to determine the levels of mathematical 
content knowledge of South African teachers in most instances do not comply with accepted 
criteria for good tests. The contention therefore is that the identified deficiency of mathematical 
content knowledge is more a function of the instruments used rather than teachers’ lack of 
content knowledge. He argues that the tests lack in terms of the following: “ambiguity of item 
formulation; the retention problem – inability to recall information due to non-use of knowledge 
that was previously acquired; knowledge valued and legitimated through boundary objects in 
practice; disciplinary fidelity of the items with respect to mathematics and mathematics 
education; openness or not of items with respect to system 1 cognitive processing.  
 
Julie (2015) argues that test items that are considered to be good test items should be 
unambiguously formulated such that there is no doubt as to the correct answer. He identified an 
item used in the Taylor (2011) study and another used in the Carnoy, Chisholm and Chilisa 
(2012) study as examples of test items that are ambiguously framed. A reason advanced for the 
weak performance of teachers in the tests that were used to determine their levels of 
mathematical content knowledge, is that they have forgotten the mathematics they have learnt 
during their studies.  
 
Boundary objects are defined as: “objects which inhabit several social worlds and satisfy the 
informational requirements of each of them” (Star & Griesemer, 1989, pg 205). Julie (2016) 
maintains that teachers’ normal exposure to school mathematics is through these boundary 
objects. Hence if a test item does not conform to knowledge as distributed by the boundary 
objects then the expectation is that such an item will have a low percentage of correct responses. 
Items based on the order of operations such as that of Carnoy, Chisholm and Chilisa (2012) were 
considered to be items that teachers are not normally exposed to and hence were answered 
poorly.  
 
Disciplinary fidelity of test items is referent to its preciseness in terms of adherence to constructs 
constituting mathematics as a discipline. Julie (2015) argues that items with low mathematical 

http://etd.uwc.ac.za/



 

 

 

 

  

10 
 

fidelity can have multiple correct representations. A few such items were identified in the tests 
presented to teachers.  
 
When people are presented with particular kinds of problems where analytic reasoning are 
required one of two systems of metacognitive processes can be applied (Frederick, 2005). 
System 1 ordinarily occur spontaneously and do not require much attention. When people are 
presented with test items in a particular format they tend to use system 1 cognitive processing 
since it requires less effort. Unfortunately, much of the salient features of such test items will be 
missed as a result of system 1 cognitive processing. Some of the test items presented to teachers 
can be classified as such items. 
 
Despite his criticism of the studies used to determine levels of mathematical content knowledge 
of South African teachers Julie (2015) concedes that the content knowledge of teachers do 
require some form of improvement. He is of the opinion that the knowledge gaps of teachers 
should be identified at the sites where teachers are actively engaged in school mathematical 
work. In other words, the knowledge gaps identified should be directly related to the content they 
are teaching. The expectation is that, if the content knowledge that these gaps represent is 
attended to the practice of the teacher concerned will be improved.  
 
Ball and Bass (2000) make the point that teachers need to hold and use mathematics differently 
to the way mathematicians do as a consequence of the requirements of teaching. Professional 
mathematicians commonly compress mathematical information into more abstract 
representations in order to convert it into more usable forms. Teachers of mathematics on the 
other hand work with mathematics as it is being learned and therefore need to ‘unpack’ 
mathematical ideas (Ball, Bass & Hill, 2004; Adler & Davis, 2006). Teaching that is geared 
towards the unpacking or decompressing of mathematical ideas is described as teachers’ explicit 
coherent reasoning that mediates learner mathematical reasoning. Since it is essential that 
teachers of mathematics develop the ability to decompress mathematical ideas, Adler and Davis 
(2006) investigated to what extent decompression of mathematical knowledge forms part of 
assessment tasks in formal mathematics education courses for in-service teachers in South 
Africa. Their findings indicate that in the majority of assessment tasks compression of 
mathematical ideas was dominant.  
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1.3.3 Conclusion 

From the foregoing discussion one can distil the following arguments regarding the teaching and 
learning of school mathematics in the current South African context.  
 
Many learners have low levels of relevant content knowledge and operate mainly in the 
elementary cognitive domains in terms of mathematical reasoning (their reasoning is not 
developed to the appropriate school level). The majority of learners have not developed the 
requisite procedural fluency and conceptual understanding as envisioned by the curriculum 
documents.    
  
In the previous section I have shown that the test items utilized to determine South African 
primary school teacher content knowledge is flawed in many ways. Sufficient evidence was 
provided to be sceptical about findings concerning levels of teacher content knowledge. 
Furthermore, although researchers such as Venkat and Spaull (2015) have identified a lack of 
content knowledge in teachers they do not specify how these deficiencies can be addressed. The 
preferred way to deal with these deficiencies in the South African context has been based on an 
approach by which content knowledge deficiencies is attended to in a general way. That is 
teachers have been presented with courses (for example ACE) or workshops where they are 
exposed to the same general mathematical content.  In other words, a one-size fits all approach is 
mooted. These interventions have however achieved limited success since results of large scale 
testing such as ANAs indicate that many learner still have not achieved a desirable level of 
mathematical proficiency.    
     
One cannot disregard all the research concerning levels of content knowledge of South African 
primary school teachers despite the fact that some of the research is flawed. This is especially the 
case with some of the linked analysis discussed in the previous section. Linked analysis of 
teachers and learners showed that learners struggle with the same mathematical content that 
teachers are struggling with, which is an indication that teachers’ lack of proficiency with this 
content prevents them from delivering quality teaching and hence learning is compromised.  
 
There can be no doubt that many South African teachers lack essential conceptual and procedural 
knowledge required for the level at which they are teaching; many also have a highly procedural 
orientation to mathematics teaching and have gaps in requisite content knowledge. Many of these 
teachers have completed mathematical courses at tertiary institutions. Exposure to these courses 
does not seem to have prepared the teachers adequately for their classroom teaching.  Improved 
mathematical courses and teaching is required to adequately prepare pre-service teachers to teach 
at the school level so that new teachers that enter the system can improve on the current 
situation. There is therefore an urgent need to design and then implement and test teaching 
strategies for pre-service teachers that have as a goal development of conceptual and procedural 
knowledge based on the content they will ultimately teach. The question is what kind of teaching 
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strategy will enhance pre-service teachers’ conceptual and procedural knowledge and deal 
effectively with their content knowledge gaps? The question that this research is concerned with 
is what should be done in the mathematical training of pre-service teachers at the university level 
to prepare them adequately in terms of levels of content knowledge and conceptual and 
procedural understanding for the level they will eventually be teaching at?    
    
Problems in the teaching of mathematics are not unique to South Africa but are prevalent in 
many other countries. For example, Hiebert and Grouws (2007) maintain that many teachers in 
the United States of America often focus on lower level skills using a tightly controlled and 
curtailed question-and-answer routine. This approach does not ordinarily develop deep 
mathematical understanding. It has been my experience that a similar situation exists in South 
Africa. To change this style of operating one has to change the way one teaches pre-service 
teachers. That is to say one has to make certain that in their teaching two fundamental learning 
outcomes are in place namely, conceptual understanding and procedural fluency.  
 
 
1.4 Research questions  

From the foregoing arguments, it is clear that many South African mathematics learners have 
major deficiencies in the requisite mathematical content knowledge. Also, many have not 
developed higher cognitive abilities in mathematical reasoning. South African teachers too, in 
many cases do not have the desired levels of mathematical content knowledge and cognitive 
competencies. This might contribute to learner deficiencies. So I agree with the argument that in 
order to increase the mathematical proficiency of learners first the mathematical proficiency of 
prospective teachers has to be increased. It is unrealistic to expect prospective teachers to learn to 
teach for mathematical proficiency without becoming proficient themselves (Hiebert et al, 2003; 
Ball et al, 2005; Shulman, 1986). As I see it, an increase in mathematical proficiency includes 
inter alia an enhancement of conceptual and procedural knowledge, improved ways of working 
with mathematics, augmented ways of reasoning and improved ways in which the knowledge is 
held. 
 
Until 2011, at the University of the Western Cape (UWC) pre-service mathematics education 
students who were being prepared to teach in the senior phase (grades 7, 8 and 9) were required 
to do exactly the same mathematics course as mainstream mathematics students (students who 
would use mathematics as a tool in a discipline  other than teaching.). These prospective 
mathematics teachers were required to complete at least the second year of pure university level 
mathematics. The expectation therefore was that these higher level mathematics courses would 
prepare the pre-service students for teaching in the senior phase. The completion of more 
advanced courses in mathematics however does not necessarily translate into a deeper 
comprehensive understanding of fundamental mathematics (Ma, 1999). As argued in the 
foregoing section, the struggles of some South African teachers are mute testimony to this 
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contention. As I have argued previously teachers of primary school mathematics (indeed 
mathematics teachers at all levels) must have a well-connected deep understanding of 
fundamental mathematics (Ma, 1999). 

Julie (2002) is of the view that school mathematics is a specific kind of Mathematics. He 
contends that school mathematics consists of various kinds of mathematics. His argument is that 
mathematics courses for prospective teachers should also be a blend of the different genres 
(Julie, 2011). He advocates that such mathematics courses should be based on links between 
higher level mathematics such as mainstream university mathematics and school level 
mathematics. Based on these arguments a new curriculum was developed for mathematics 
content courses for pre-service teachers in 2012. A major objective of these courses presented to 
pre-service teachers at UWC was to expose them to the mathematical content that they would 
eventually teach. The idea was to delve deeper into the school level content in order to enhance 
the procedural fluency and conceptual understanding of participating students.   
 
The question that arises concerns the kind of teaching which may be likely to develop these 
abilities and knowledge in students. I am of the opinion that part of the reason why some school 
teachers struggle with school level mathematics is that they have simply forgotten the relevant 
procedures and concepts. Another possible reason for their struggle is that when they were 
initially exposed to mathematical content it was done in a compressed way. In other words, they 
were not exposed to explicit coherent reasoning that made visible the different facets of the 
concepts studied within the teaching and learning discourse. This approach limited their 
knowledge of concepts and did not always provide connections with other relevant concepts. It 
thus had a negative effect on the acquisition of conceptual knowledge, hence inhibiting 
conceptual understanding. The outcome of this is that the competencies of procedural fluency 
and conceptual understanding were not developed to the required level.  
 
A possible way to counteract the forget problem and an underdeveloped procedural and 
conceptual understanding is to apply the strategy of spiral revision. The expectation is that this 
strategy would facilitate the retention of indispensable knowledge within long-term memory and 
increase the possibility of the transfer of knowledge. Productive practice is a strategy that can be 
used to uncover the different facets of mathematical concepts and to strengthen and deepen 
conceptual understanding.  

My hypothesis is therefore: If South African mathematics education pre-service students are 
exposed to a teaching strategy that is premised on spiral revision and productive practice then 
their procedural fluency, conceptual understanding, knowledge retention and knowledge transfer 
abilities will be enhanced.       
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The research questions of the study are as follows:   

Main Research question: How would exposure to a teaching strategy (based on spiral revision 
and productive practice) in requisite content areas of the specified curriculum influence the 
mathematical competencies of procedural fluency and conceptual understanding in pre-service 
mathematics teachers?  

Sub question: Are retention and transfer abilities of pre-service mathematics teachers enhanced 
if they experience mathematics through a teaching strategy underpinned by spiral revision and 
productive practice?  
 
 
1.5 Definitions of important constructs in this study 

Automatization is defined as the practice of a skill or habit to the point of its having become 
routine so that little if any conscious effort or direction is required (Sweller, 1994). 

Conceptual understanding refers to the comprehension of mathematical concepts, operations 
and relations. 

Continuous review of previously taught and (possibly learned) content is revision that is done 
many times during a semester.  

Deepening-thinking-like problems are mathematical problems that are designed to on the one 
hand determine depth of conceptual understanding and on the other hand to provide 
opportunities to deepen and strengthen conceptual understanding. 

Direct instruction is defined as instruction that provides information that fully explains the 
concepts and procedures that students are required to learn (Kirschner et al, 2006).    

Distributed (spaced) practice is a learning strategy where practice of specified knowledge and 
skills is distributed over multiple sessions (Rohrer & Taylor, 2006). 

Flexible Procedural knowledge  is defined as deep procedural knowledge that would allow a 
student that possess such knowledge to use mathematical procedures that would best fit a 
provided known or novel problem situation. A consequence of such flexibility is that students 
that possess such knowledge will have the ability to generate maximally efficient solutions for 
known and even sometimes unknown problem situations. Flexibility in problem solving requires 
knowledge of multiple strategies and efficiency in applying such strategies in problem situations 
(Star, 2005). 

Intersession interval (ISI) is defined as the time between study or practice sessions (Rohrer & 
Pashler, 2007). 
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Mass (blocked) practice is a learning strategy where all practice is done in a single session and 
where usually all presented problems require for its solution the same procedure or strategy. It 
usually takes the form that upon the completion of a lesson, practice exercises are presented to 
students based on the concept or set of concepts that were covered in that lesson.  

Overlearning (repetitive practice) is defined as the continuation of study immediately after 
error-free performance has been achieved. Research has shown that while overlearning often 
increases performance for a short period, the benefit diminishes sharply over time. (Rohrer & 
Pashler, 2007). This type of practice usually includes many problems of the same kind. The 
‘same kind’ refer to cases such as where problems are presented where the same procedure are 
required or the same concept is dealt with.   

Procedural fluency is the skill that is required to carry out procedures flexibly, accurately, 
efficiently and appropriately. 

Productive practice is a didactic strategy where students are exposed to deepening thinking-like 
problems in order to enrich their conceptual knowledge in requisite content areas of the specified 
mathematics curriculum (Julie, 2013). The idea with this component of the teaching strategy 
therefore was to enhance conceptual knowledge of participating students. 

Productive struggle is a strategy whereby students are allowed either during lessons or in 
tutorial class to struggle with mathematics that is deemed to be important. The word ‘struggle’ is 
referent to the amount of effort which students spend in making sense of mathematics (Hiebert & 
Grouws, 2007). 

Retention interval (RI) is defined as the amount of time between study and test. It is usually 
measured from the second study or practice session (Rohrer & Pashler, 2007). 

Schemata are cognitive constructs that organize elements of information according to the 
manner in which they will be utilized (Sweller, 1994). 

Spiral revision (or repeated revision) is defined as the recurrent practising of previously covered 
mathematical work in specified content areas (Julie, 2013). 

Spiral testing is defined as a type of assessment where each test presented to students during a 
semester contains test items based on current topics, but also on topics that were previously 
completed and that were also tested in previous tests.   

Testing (retrieval) practice is defined as practice where students are required to recall 
information or knowledge (such as during tests; when working through assignments or old 
question papers; or supplying responses to verbal questions) as opposed to restudying.  

The spacing effect is the finding that distributed practice yields better test scores than massed 
practice (Rohrer & Taylor, 2006).  
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Unguided or minimally guided instruction is defined as instruction in which students are 
required to discover or construct essential information for themselves as opposed to being 
presented with essential information (Kirschner et al, 2006). 
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CHAPTER 2: LITERATURE REVIEW 
 
2.1 Introduction 

Mathematics education has an ambiguous meaning since it can refer to the mathematical 
educational process or to a field of research or discipline (Niss, 1999; Freudenthal, 1981). The 
former has been taking place for millennia and forms an integral part of individual and societal 
development. The concern of this research however is with mathematics education as a field of 
research. In particular, this research is concerned with mathematics teacher education.  

Mathematics education as a field of scientific research is relatively young. There is however not 
always consensus and clarity about what qualifies as mathematics education research and what 
exactly this research is (Sierpinska, Kilpatrick, Balacheff, Howson, Sfard & Steinbring, 1993; 
Niss, 1999). Many researchers active in the field of mathematics education research have 
attempted to define the field. I will however use the definition provided by Niss (1999, pg 5) 
when he states that mathematics education research is:  

…the scientific and scholarly field of research and development which aims at 
identifying, characterising and understanding phenomena and processes actually or 
potentially involved in the teaching and learning of mathematics at any educational level. 

The fact that mathematics teacher education is such a broad field of research makes it difficult to 
select only relevant publications for a literature review. I therefore developed an elementary 
framework to assist in the selection of relevant literature. The framework serves to direct the 
exploration of literature in relation to the type of research, the object of the research; the identity 
of research participants, the specifics of the research question (or questions) and the findings.  

Potential avenues of research in the field include theoretical research, empirical research, applied 
research, developmental research, etc. (Niss, 1999). My main focus is on empirical research, but 
where necessary theoretical, applied and developmental research is included. 

The objects of study include inter alia the teaching of mathematics, the learning of mathematics, 
teaching and learning situations, the relations between teaching, learning and mathematical 
knowledge; societal perceptions of mathematics and its teaching and the system of education 
itself (Sierpinska et al, 1993).  

The relations between teaching, learning and mathematical knowledge is very complex. The 
debates regarding knowledge requirements for mathematics teaching and teaching in general is 
not settled. Many researchers however are in agreement that teachers need different types of 
knowledge in order to deliver effective teaching. Shulman (1986) distinguishes between three 
categories of teacher content knowledge namely, subject matter content knowledge, pedagogical 
content knowledge and curricula content knowledge.  Although the organization, composition 
and characteristics of mathematical content knowledge for teaching have been extensively 
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researched, there is no consensus among researchers concerning what mathematics teachers need 
to know in order to deliver effective teaching (Ball et al, 2004). Furthermore, although research 
has shown that teachers’ mathematical knowledge is related to learner achievement, the nature 
and extent of that knowledge is not known (Ball et al, 2005). By using a specified teaching 
strategy this study therefore aims to enhance prospective mathematics teachers’ subject matter 
content knowledge and their approach to reasoning in mathematics. Since the object of study 
therefore broadly fits the category ‘relations between teaching, learning and mathematical 
knowledge,’ relevant literature will be reviewed. 

While potential mathematics teacher education research participants might include in-service 
teachers or teacher educators working within the primary or secondary school curriculum,  as the 
focus of this study I have selected participants active in pre-service teacher education. This, 
notwithstanding my acknowledgement that valuable insights might also be gained from related 
in-service teacher education research. 

Interest in content knowledge issues in the international field of mathematics teacher education 
has increased recently (Adler, Moletsane, Pournara, Taylor & Thorne, 2009). This kind of 
research is however not entirely uncontested. Nonetheless, research questions that deal with 
these – and related – issues are also of interest to me and hence I will focus on studies that have 
attendant research questions. 

I begin by first reviewing general trends in mathematics education research. I follow this with a 
comparison of selected teaching strategies or methods. After this I hone in on literature that deals 
with the following issues: mathematics teacher education research investigating teaching 
methods in teacher education courses and their influence on content knowledge; teaching 
strategies and their influence on conceptual and procedural knowledge; the link between features 
of teaching and students’ learning in terms of skill efficiency and conceptual understanding.  
 
 
2.2 Trends in mathematics teacher education research    

A few researchers have attempted to provide a survey of mathematics teacher education studies 
conducted in specific periods. Some of these studies attempted to determine international trends 
while others focused on trends on the national scene.  

Not much is known about the efficacy of teacher preparation in relation to the creation of 
opportunities for learning mathematics and how the form of instructional delivery affects 
teachers’ mathematics knowledge (Tatto, et al, 2010). The International Commission on 
Mathematics Instruction (ICMI) study of 15 May 2005 focused on the organization of the 
mathematics preparation and development of teachers. One of the reasons advanced for the 
necessity of the study was that the education and development of pre- and in-service 
mathematics teachers is essential to learners’ acquisition of mathematical knowledge. 
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Knowledge gained from such a study could potentially also be used to inform and strengthen 
mathematics teacher education policy and practices nationally or internationally (Tatto et al, 
2010). 

Data for the aforementioned study consisted of findings of research reports based on the 
organization of teacher education at national level in approximately 20 countries or regions 
submitted to ICMI -15. Tatto et al (2010) maintain that the findings indicate that in some 
countries mathematics teacher preparation is placed in universities in order to expose teachers to 
more rigorous training in mathematical content. Other participating countries were more 
disposed to placing teacher preparation in teacher colleges where presumably the emphasis is on 
mathematical pedagogy. The study findings indicate that in South Africa a high emphasis is 
placed on mathematical content knowledge and a low emphasis on pedagogical content 
knowledge in pre-service teacher education for prospective secondary school teachers whilst 
there is a low emphasis on content knowledge and a high emphasis on pedagogical content 
knowledge for prospective primary school teachers. Those researchers were perturbed that some 
primary school teachers are placed in preparation programs where there is a low emphasis on 
mathematical content knowledge. They maintain that it is essential that teachers of mathematics 
are well versed in the mathematical content that they teach. 

Sfard (2005) presented a report on a survey that investigated the relations between mathematics 
education research and practice at ICME-10 in July 2004. The major focus of research that was 
done in the period 1970 to 2000 was on the student. However, in the period 2001 to 2004 the 
focus of the research turned to the teacher and teacher practice. Only one quarter of researchers 
in this period focused on the student.  

Data for the Sfard report (2005) was collected by means of a questionnaire posted on the website 
of ICME 10 and by sending the questionnaire to colleagues known to be active researchers in the 
field.  Sfard (2005) found that in the period under review (2001 – 2004) most of the empirical 
data was based on recordings of classroom interaction that focussed on the process of teaching 
and learning as compared to earlier studies which had tended to focus on the learning of the 
individual student. Most of the research was of a qualitative nature and emphasized the social 
context of learning. 

Based on the aforementioned research and data types, Sfard (2005) contends that the bulk of the 
research in the period 2001 to 2004 conceptualizes learning as participationist as opposed to 
acquisitionist. If the learning process is conceptualized as the development of concepts and an 
acquisition of knowledge, then it can be referred to as acquisitionist. Alternatively, if the learning 
process is conceived of in terms of participation in certain kinds of activities rather than in 
accumulating or gaining permanent ownership of some commodity then the participationist 
metaphor applies. In this conceptualization learning a subject now implies becoming a member 
of a certain community, being able to communicate in the language of the community and 
subscribing to the norms of the community. Sfard (1998) maintains that in current discourses on 
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learning the acquisitionist and participationist metaphors are central. She maintains that while 
both orientations are present in most research the acquisitionist concept of learning is more 
prominent in older studies whilst the participationist concept is more dominant in recent studies. 

An international study conducted under the auspices of ICME 10 reports on a survey of 
mathematics teacher education conducted between 1999 and 2003 (Adler, Ball, Krainer, Lin & 
Novotna, 2005). International mathematics education journals, handbooks and conference 
proceedings formed the main sources of data for that survey. The researchers confined their 
investigation to research types that attempted to determine how, on what basis and under what 
conditions teachers learn. Studies that investigated how teachers’ opportunities to learn can be 
improved were also included. The research participants in those studies were pre-service 
teachers, in-service teachers and teacher educators. Both primary and secondary teacher 
education was included. The authors contend that the focus of research in the 1970s was on 
curriculum issues, whereas in the 1980s and 1990s it was on learners. They observed that 
subsequently there has been another shift to a focus on teachers.  

A finding of the aforementioned study was that a large component of the research consisted of 
small-scale qualitative research studies (Adler et al, 2005). The complexities of research that 
focuses on teachers are advanced as a rationale for the choice of small-scale studies. Small-scale 
studies might also contribute towards developing a theory of teacher learning. 

They contend that, small-scale studies are limited since cross-case analyses are required to 
examine in what ways different instructional approaches, programs and settings affect the 
content knowledge teachers need to master in order to offer quality teaching. Another possible 
shortcoming of small-scale studies is that often these are done in the short term and consequently 
their analysis of the development of teacher knowledge may fail to provide a comprehensive 
picture. Studies that follow teachers over extended periods prove more informative since 
teachers’ knowledge develops over time (Adler et al, 2005). 

Another finding of this research is that the majority of teacher education research is conducted 
by teacher educators who rely on their own students to become participants. Presumably this is a 
consequence of teacher educators attempting to intervene and investigate so as to improve and 
understand their practice (Adler et al, 2005). In this regard, what typically happens is that a 
teacher educator designs a program and then attempts to illustrate the effectiveness (or not) of it 
by means of research.  

The upshot of this is that some research questions have been studied extensively while others 
have not received as much attention. For instance, the question of teacher learning in a context 
where reform is not the objective has not been studied as extensively. Similarly, studies that 
investigate teachers’ experiential learning have not been accorded much consideration. Questions 
such as what do teachers learn from their teaching experience, whether teachers learn from this 
experience and what supports learning from such experience have received little or no attention. 
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Finally Adler et al (2005) suggest that comparative studies on how one approach to teacher 
learning compares with another might greatly assist in an initiative to identify best practice, but 
this idea has not attracted much attention.  

Mathematics teacher education in South Africa has always been a contentious issue, but even 
more so in the wake of post-apartheid educational reforms. Its current context is one of 
curriculum reform, social transformation, new policy frameworks and institutional change 
(Adler, et al, 2009). There is therefore a dire need for research and the dissemination of findings 
to generate debate that will lead to practices enhancing of the teaching and learning of 
mathematics in this very complex environment. A relatively recent survey of research into 
mathematics and science teacher education in South Africa (2000-2006) provides some insight 
into the current state of affairs (Adler et al, 2009). Data for that survey was gathered from peer-
reviewed national and international journal articles and conference proceedings in the period 
2000 to 2006. 

The findings indicate that small-scale qualitative studies dominate. This concurs with the 
international study done by Adler et al (2005). In most cases the subjects of these studies were 
in-service teachers who were participating in upgrading programmes where high school 
mathematics was the focus. In the majority of cases the researchers were teacher educators who 
were also the presenters of the programmes and who were attempting to determine the efficacy 
of their courses. Teacher knowledge for teaching and teacher learning in a context of curriculum 
reform was the predominant focus of that research. In terms of content knowledge, the objective 
was to determine what it is that teachers need to know and be able to do mathematically in order 
to deliver quality teaching.  

Teaching approaches and their potential effects were the focus of some research articles. Adler 
and colleagues (2009) contend that this focus on content knowledge is in agreement with 
international trends in the research field of mathematics teacher education. One has to bear in 
mind however that this ‘content’ is different from what is normally viewed as the accepted 
content by mathematicians. Included in the ‘content’ proposed by Adler et al (2009) are 
mathematical processes and learners’ handling of content. They maintain that in South Africa 
both pre- and in-service teachers come to teacher education programmes with substantial gaps in 
their knowledge bases. To address these knowledge deficiencies the emphasis should not only be 
on more content but, instead should be about the kinds of content and pedagogic content 
knowledge teachers need to know in order to teach effectively (Adler et al, 2009). 

Under-researched areas include pre-service mathematics teacher education, which is not very 
well represented in the literature (Adler et al, 2009). The investigators argue that given the recent 
introduction of the Bachelor of Education (B.Ed) degree, pre-service mathematics teacher 
research emerged as an area that needed urgent attention. They contend that the practice of 
mathematics teacher education in this new context should be researched thoroughly if we intend 
to produce effective teachers. One of the main tensions in this endeavour is between breadth and 
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depth of discipline knowledge. The new curriculum requires a broadened domain knowledge 
base. We should however guard against sacrificing depth for increased domain knowledge.  

Another prominent absence in the research field is studies on primary mathematics teacher 
education (Adler et al, 2009). Adler and her colleagues (2009) are of the opinion that primary 
teacher knowledge deficiencies contribute to poor learner achievement in mathematics at the 
primary level. They argue that this might be as a result of the fact that few primary teacher 
programmes include a serious focus on disciplinary knowledge. Despite this very little is known 
about primary mathematics teacher education programmes that are attempting to address primary 
teacher content knowledge issues. There is a particular lack of research about the kind and 
quantity of content knowledge primary teachers require and possible methods that may be used 
to develop such knowledge effectually (Adler et al, 2009). 

Taylor (2014) did a study that deals specifically with pre-service teacher education at higher 
education institutions in South Africa. Five representative institutions were selected for the 
study. The purpose of the study was to describe curricula and practices of pre-service teacher 
education. The major aim of the investigation was to determine the range and depth of 
mathematics and English courses offered to B.Ed students specialising in Intermediate Phase 
teaching. The author argues that in-service teaching training in the South African context had 
limited success in improving learner proficiency. He is therefore of the opinion that in order to 
improve the quality of schooling pre-service teacher education needs to be improved.  

Some of the pertinent findings of the Taylor (2014) research are: 

• The content of modules and programmes varies widely among institutions. 
• Pre-service teacher education programmes have low entrance requirements in 

comparison with other disciplines. 
• A majority of the pre-service teacher education programmes lack a strong underlying 

logic and coherence. 
• Students specialising in mathematics are required to take courses that deal 

specifically with mathematics content. 
• The mathematics content courses offered deal mostly with school level topics taught 

to Intermediate and Senior Phase learners, but the content is presented at a deeper 
conceptual level and focus on the specialized mathematical knowledge a teacher 
would need to know. 

• The courses align well with similar courses in the USA.  

Taylor (2014) maintains that teacher proficiency in South Africa depends heavily on the 
quality of their university education. He is however of the opinion that the current system 
does not prepare pre-service teachers adequately to deliver quality teaching in mathematics.  
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Adler and Davis (2006) investigated mathematics for teaching in the teacher education courses 
of a range of tertiary institutions in South Africa. The focus of the study was on formal 
evaluative events in the education courses of selected institutions. Research sites were restricted 
to five of the nine provinces in South Africa and included both urban and non-urban contexts. 
The focus of the study was mathematics in-service courses. Sixteen such programs were 
identified across the provinces. These courses offered certification for teachers of the senior 
phase (grades 7 – 9) as well as the further education and training phase (grades 10 – 12).  Some 
of these courses were taught by the mathematics faculty while others were taught by the 
mathematics teacher education faculty.  

The researchers analysed formal assessment tasks which consisted primarily of written 
assignments and tests. The evaluation tasks were studied to determine the kinds of mathematical 
and pedagogical competencies that teachers in these courses were expected to display, and the 
kind of mathematical knowledge that was privileged. Assessment tasks were examined to 
determine whether mathematical reasoning or reasoning about mathematics teaching was 
required in the solution procedure. If either of these occurred in a task the researchers would 
investigate whether the task required unpacking or compression of mathematical ideas. 
Unpacking can be described as an elaboration of knowledge whereas compression refers to the 
compression of mathematical information into an abstract form that is highly usable. Since 
teachers work with mathematics as it is being learned, their work should mostly include 
unpacking of mathematical ideas. Conversely it is more convenient for research mathematicians 
to work with compressed mathematical ideas. The findings indicate that the majority of 
mathematics courses for teachers are premised on the compression of mathematical ideas rather 
than on the unpacking of mathematical ideas.    

In what follows a summary of the previous two sections will be presented. This summary 
however will only focus on specific issues regarding pre-service mathematics teachers’ content 
knowledge. The motivation for doing this is that the major focus of this study is pre-service 
teachers’ subject matter knowledge: 

• There is a paucity of research (both in South Africa and internationally) concerning 
how the form of instructional delivery affects pre-service mathematics teachers’ 
mathematical knowledge. 

• Of the few studies that researched teacher content knowledge in most cases the 
objective was to determine what it is that teachers need to know and be able to do 
mathematically in order to deliver quality teaching. 

• It is argued that in South Africa both pre- and in-service teachers enter educational 
programmes with substantial gaps in their mathematical knowledge bases. 

• It is claimed that in order to address these knowledge deficiencies depth of disciplinary 
knowledge should be the focus rather than breadth. 
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• The majority of research studies concerning teacher content knowledge are small-scale 
qualitative studies. 

Based on the foregoing arguments a pertinent question is: What kind of teaching strategy (or 
strategies) would aid in developing content knowledge of pre-service teachers to requisite 
levels? In section 2.3, a few teaching strategies will be discussed in order to inform discussions 
regarding the question.  
 
In the next sub-section examples of singular mathematics teacher education studies will be 
discussed. 
 

2.2.1 Examples of singular mathematics teacher education research 

How to design mathematics teacher education programs that influence the nature and quality of 
teachers’ practice positively has to a large extent remained a mystery (Hiebert, Morris & Glass, 
2003). Hiebert et al (2003) maintain this is in part due to the lack of a widely shared knowledge 
base for both teaching and teacher education. Very little research is done to determine the 
effectiveness of mathematics teacher education programs and very little information is shared 
about teacher education programs across tertiary institutions. Hence teacher educators mostly 
start anew when presenting teacher education courses. In the light of this the authors propose an 
‘experiment model’ for teaching and teacher education as a possible way to address these issues. 
This model is premised on two learning aims: one is the development of the knowledge and 
disposition by which to learn to teach effectively over time, and the other is mathematical 
proficiency (Hiebert et al, 2003). As mentioned in section 1.3 mathematical proficiency is 
considered to consist of five kinds of mathematical competencies: conceptual understanding, 
procedural fluency, strategic competence, adaptive reasoning and productive disposition 
(National Research Council, 2001).  

Hiebert et al (2003) believe that it is better to define learning goals in terms of students’ thinking. 
Stated differently it means to assess goal-achievement by investigating changes in students’ 
thinking about procedures and concepts. It is also worthwhile to note that learning is 
conceptualized as acquisitionist in this research. It is highly improbable that all the learning goals 
discussed in the foregoing section can be achieved in a relatively short period of time. I am 
therefore of the opinion that it is more important for prospective teachers to learn how to learn so 
that over time they themselves will continue to improve their mathematical proficiency.  

In the experimental teaching model as proposed by Hiebert et al (2003), it is essential that each 
lesson be treated as an experiment. This entails setting clear learning goals, collecting data to 
evaluate the lesson efficacy and interpreting the data with a view to improving future lessons. It 
is a requirement of this model that lessons are designed in such a way as to expose student 
thinking; and that teachers develop the ability to listen with understanding and to assess student 
thinking in terms of cogency of reasoning, the connection of mathematical ideas, etc.   
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Rowland et al (2005) investigated elementary (school) teachers’ subject knowledge in the United 
Kingdom by utilizing a case study. They used videotapes to analyse lessons presented by pre-
service elementary teachers. Their goal was to determine in which ways the pre-service students 
drew on their knowledge of mathematics and mathematics pedagogy in teaching mathematics. 
The researchers used a grounded approach by which to analyse their data. They identified four 
broad mathematics-related knowledge requirements, which they refer to as the knowledge 
quartet. The knowledge quartet consists of foundation, transformation, connection and 
contingency. Foundational knowledge is defined as propositional knowledge and beliefs. This 
includes the meaning and description of relevant mathematical concepts, the factors that are 
significant in the teaching and learning of mathematics and the objective in or reasons for 
teaching mathematics. Transformational knowledge is described as knowledge required in the 
processes of deliberation and choice in planning and teaching. This knowledge is required for 
identifying the mathematical concepts and procedures in a lesson. Connection knowledge is 
knowledge required for making connections between different meanings and descriptions or 
alternative ways of representing concepts.  Connection knowledge is also required in the 
sequencing of mathematical content. Contingency knowledge is described as the ability of the 
teacher to respond appropriately to unexpected developments in the presentation of a lesson.  

Hill et al (2005) investigated whether and how teachers’ mathematical knowledge for teaching 
contributes to students’ mathematics achievement. Their study focused on the specialised 
knowledge and skills required for effective teaching. Unsurprisingly the findings of their study 
indicate that teachers’ mathematics knowledge is strongly related to student achievement.   

Stein et al (1990) explored the relationship between teachers’ mathematical knowledge and their 
teaching practice. The authors videotaped an experienced fifth grade teacher teaching a sequence 
of lessons on functions and graphing. They also interviewed the teacher and presented the 
teacher with a card-sort task. They found that the teacher’s knowledge of functions and graphing 
was missing several key mathematical concepts and that it was not organized in such a manner as 
would provide an easily accessible, cross-representational understanding of the domain. The 
authors found that these constraints gave rise to a narrowing of instruction in three different 
ways. One was a lack of making meaningful connections between key concepts and 
representations. Another was that no provision was made for future learning in the area of 
functions and graphing. The lessons also overemphasised limited truths.  

Similar to the international situation there is a paucity of research that investigated the 
effectiveness of mathematics teacher education in the South African context. Paras (2001) 
concurs with this argument and claim that there is a lack of research in mathematics teacher 
education in South Africa, notwithstanding a perceived crisis in mathematics education. He 
devised a study to determine why students are failing Mathematics Education I in the School of 
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Educational Studies at the University of Durban Westville4. The research participants for this 
study were students enrolled for the course and lecturers who presented the course. The purpose 
of the study was to obtain students’ and lecturers’ explanations for the high failure rate of the 
Mathematics Education I course. The data collection method included interviews and 
questionnaires.  

I will now elaborate on some salient findings of the Paras (2001) research. 

One of the main findings was that the interactive strategies used by lecturers were inadequate for 
the advancement of effective learning. In terms of questioning techniques, it was found that 
lecturers did not direct questions at specific students, but directed questions at the class in 
general. Furthermore, lecturers frequently tended to answer their own questions and did not 
allow students time to complete responses to questions. 

Participating lecturers generally agreed that students in this course had huge gaps in their 
requisite mathematical knowledge base. In many cases gaps in student knowledge existed simply 
because some fundamental content at school level had not been covered. Yet despite the fact that 
lecturers were aware of this, no concrete plans had been devised to deal with these knowledge 
gaps.  

Another finding was that students were under-prepared for most lectures and tutorial sessions. 
Lecturers routinely gave students homework, but in the majority of cases those tasks were not 
done. Consequently, most students could not participate in task-based class discussions. 
Furthermore, students expected tutors to re-teach content that had been covered in lectures. A 
university enculturation program for first-year students was proposed as a possible solution, to 
help students to become independent learners. The author argues that this can be achieved by 
providing students with an intensive introductory program that delineates what university level 
studies require and in particular, what being a mathematics education student entails. Staff 
development programs were suggested as a possible means by which to enhance teaching and 
learning. These may then focus on teaching techniques such as questioning and so facilitate 
progress amongst less knowledgeable students.  

Van Putten et al (2010) probed the attitudes of pre-service mathematics education students at the 
University of Pretoria in South Africa towards Euclidean geometry. Levels of understanding in 
terms of Euclidean geometry were also included in their investigation. Their approach entailed 
interviews with a group of pre-service students before and after they were taught a module in 
Euclidean geometry. A case study approach together with a pre-post-test procedure was followed 
in the study. The authors used the Van Hiele levels of thought as the theoretical framework of the 
study. They found that after instruction the students’ attitudes towards geometry changed in 

                                                           
4 The University of Durban Westville does not exist anymore, it was incorporated into University of Kwazulu-
Natal 

http://etd.uwc.ac.za/



 

 

 

 

  

27 
 

positive ways. However the instruction had still failed to bring about sufficient improvement in 
the students’ levels of understanding to be able to teach geometry adequately. 

Van der Sandt and Nieuwoudt (2003) investigated the geometry content knowledge of grade 7 
teachers and pre-service teachers in the North West province of South Africa. They used the van 
Hiele theory and acquisition scales of Gutierrez et al (1991) to investigate their subjects’ levels 
of content knowledge and geometric reasoning. Their findings indicate that both the teachers and 
the prospective teachers did not reach the level of geometric thinking and content knowledge that 
is required for the successful teaching of geometry at this level. The authors contend that these 
findings have significant implications for pre-service and in-service teacher education. 

Van der Sandt (2007) did a two year study of teachers’ and pre-service students’ content 
knowledge of geometry using the Van Hiele theory and the acquisition scales of Gutierrez et al. 
(1991). Her subjects were drawn from five different cities in South Africa. The author found that 
both the teachers and the pre-service teachers failed to reach the expected level of geometric 
thinking and knowledge acquisition.  

Long (2005) analysed the teaching and learning of a second-year university mathematics 
education course offered to pre-service teachers in South Africa by utilizing the distinction 
between conceptual and procedural knowledge. The topic to which this distinction was applied 
was number bases. Students in this course had a varied mathematical background; some only 
offered mathematics up to grade 9, while others offered mathematics up to grade 12.  

Long (2005) advances a few reasons for why she thinks this distinction between conceptual and 
procedural knowledge is useful for this kind of analysis. She maintains that the constructs can 
provide the students with a scaffold both for learning mathematics and for thinking about the 
teaching of mathematics. She contends that these constructs are useful for uncovering the 
processes used in acquiring mathematical knowledge; and that they can also be a tool with which 
to tackle problematic areas of learning. She is also of the opinion that the distinction can be 
utilized by lecturers to analyse their own teaching and for students to analyse their learning 
(Long, 2005). 

Long (2005) investigated students’ ways of working when solving problems in the content 
domain of number bases, and subsequently advanced explanations as to their developmental 
levels in terms of their mathematical proficiency for this type of problem. Students who were 
able to use different strategies to solve the problems with which they were presented were 
deemed to have a conceptual understanding. It was found that such students grasped the relevant 
concepts very quickly and were able to work fluently with the procedures. A reason advanced for 
these abilities is that these students did mathematics at a higher level at school and resultantly 
were better able to process mathematical information.    

 A second group of students (who were also successful in solving the problems with which they 
were presented) tended to focus more on the application of the procedure while a conceptual 
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understanding was not afforded the same level of focus. This group needed to be exposed to a 
number of examples in which the procedures involved are applied before they could fully 
understand the underlying concepts and hence develop a flexible comprehension. The teaching 
strategy the author proposes would work best for this group involves an integration of the 
concepts and the procedures so that the procedure becomes a scaffold for comprehending the 
concept.  

A third group that was identified tended to focus on how to do the problem. In other words, these 
students were preoccupied by the steps involved in the procedure and hence did not form 
conceptual links between the procedure and the concepts. These students were able to apply the 
procedures only when presented with similar problems, and struggled when presented with 
problems where the context was changed. The teaching strategy applied in this group was one in 
which the links from the procedural to the conceptual and vice versa were made much more 
explicit.   

Long (2005) were of the opinion that in the learning of mathematics, in some instances 
conceptual understanding precedes procedural competence whereas in others the opposite is true. 
Mathematical learning is viewed as a complex process in which conceptual understanding and 
the scaffolding function of procedures both play a role in establishing mathematical proficiency. 
Furthermore, the fluent execution of algorithms is considered to be an aspect of procedural 
fluency and the algorithms are understood to represent compressed conceptual understanding. 
Compressed conceptual understanding is assumed to refer to mathematical concepts that have 
been developed to a high degree of abstraction.  The author was also of the opinion that if 
competency with algorithms is achieved within a content area then this frees the mind to focus 
on conceptual relationships.  

Financial mathematics forms a small section of the latest South African high school mathematics 
curriculum. Despite the fact that financial mathematics is allocated only 7% of teaching time and 
forms approximately 6% of the mark allocation in the final grade 12 examination it is one of the 
rare school topics where real world applications is immediately obvious. Pournara (2014) 
designed a qualitative study to investigate teachers’ knowledge requirements for the teaching of 
financial mathematics. His research participants were third and fourth year Bachelor of 
Educations students at the University of Witwatersrand. The aim of the study was to determine 
teacher knowledge requirements in the teaching of annuities.  

 Pournara (2014) used the term mathematics-for-teaching (MfT) to refer to teachers’ knowledge 
for teaching mathematics in his study. The reasons he advances for not using the knowledge 
categories of pedagogical content knowledge (PCK) and subject matter knowledge (SMK) as 
posited by Shulman is that he found no empirical evidence for the existence of these categories 
of knowledge and that no productive and clear boundaries was established in the defining of the 
categories. He considers MfT to be an amalgam of PCK and SMK in which no fine distinctions 
is made between mathematical and pedagogical aspects of knowledge. The author maintains that 
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knowledge for teaching annuities comprises knowledge of mathematical aspects, knowledge of 
pedagogical aspects and contextual knowledge of finance. Examples of typical annuity problems 
are used to unpack the knowledge requirements to teach annuities. Arguments based on this 
unpacking are subsequently used to show how knowledge of mathematics, knowledge of 
pedagogy and contextual knowledge of finance are intertwined.  

The topic linear equations are one of the core content modules of the South African high school 
mathematics curriculum. Some concepts that are associated with this topic are fundamental to the 
understanding of topics that are dealt with later in school and tertiary mathematics education. 
The concept of a linear system is an example of such a concept. The type of linear system 
normally dealt with in high school is two equations in two unknowns. In higher mathematics, the 
system of two equations with two unknowns is generalized to 𝑛𝑛 equations with 𝑛𝑛 unknowns 
which forms part of the topic matrix algebra. Ndlovu and Brijlall (2015) devised a study to 
investigate the nature of mental constructions of matrix algebra concepts of 85 pre-service 
teachers at the University of KwaZulu-Natal. Study participants’ responses to a structured 
activity sheet were the main data source for the study.              

In order to determine the mental constructions research participants might make in their efforts to 
understand the presented matrix algebra concepts Ndlovu and Brijlal (2015) designed a genetic 
decomposition. A Genetic decomposition is defined as the structured set of mental constructs 
which describe how a given concept can develop cognitively. The authors used the APOS theory 
(action-process-object-schema) (Dubinsky & McDonald, 2002) to describe and analyse the pre-
service teacher’s constructed knowledge of matrix algebra concepts. Their findings indicate that 
most of the participants were operating at action and process stages while few were operating at 
the object stage. In addition, cognitive constructions made by the pre-service teachers in the 
majority of cases corresponded with the preliminary genetic decomposition.   
 
  
2.3 A Comparison of a few teaching methods/strategies 

The teaching and learning of mathematical concepts and procedures has always played an 
integral part in human and societal development. It is probable that only once our distant 
forebears had invented counting could they quantify possessions and then determine if their set 
of possessions had increased, decreased or remained the same. This ability to count could only 
have been passed on to the next generation by means of teaching. It would therefore not be an 
exaggeration to claim that mathematics education in its different guises has been with us for 
millennia. Swetz (1995) agrees that many of our current mathematical educational processes 
have evolved from practices employed in the distant past. He maintains that instructional 
techniques such as the use of discourse and the logical sequencing of mathematical problems and 
exercises from easy to complex are evident in historical mathematical texts. The creation of 
teaching strategies or methods that a majority of mathematics instructors find adequate and that 
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satisfies the myriad educational needs of the contemporary mathematics classroom has however, 
remained elusive.   

A synthesis of meta-analyses of effects on student achievement in schools was done by Hattie 
(2009). He designed an achievement continuum with a scale based on effect size to determine 
how six different factors affect student achievement at the school level. The six factors utilized 
were: the child; the home; the school; the curricula; the teacher; and the approaches to teaching. 

Hattie (2009) identified an effect size of 𝑑𝑑 = 0.40 as the average effect size for the majority of 
factors that affect student achievement. He refers to this effect size as the hinge point since it is 
the point on a continuum that provides the fulcrum around which all other effects are interpreted. 
Factors with an effect size lower than 𝑑𝑑 = 0.40  is considered to have negligible effects on 
student achievement. Conversely factors with an effect size higher than 𝑑𝑑 = 0.40 is considered 
to be factors that might influence student achievement in a noticeable way. Although Hattie’s 
(2009) synthesis is mainly concerned with schools I am of the opinion that many of the identified 
factors that have a noticeable effect (𝑑𝑑 > 0.40) on student achievement might be applicable in 
higher education as well. I believe that this is especially so in the case of pre-service teacher 
education.    

Over the years many teaching strategies or approaches has been designed and implemented in 
mathematics. Some features of these strategies were more successful than others in terms of 
enhancing student achievement. Teaching strategies has an average effect size of 𝑑𝑑 = 0.60 
(Hattie, 2009). The expectation therefore is that implementation of a successful teaching strategy 
will have a significant positive effect on student achievement in most cases. Donovan and 
Radosevich (1999) for example performed a meta-analytic review of the teaching strategy 
distributed practice and found an effect size of 𝑑𝑑 = .42. Similarly meta-analytic studies done by 
Hattie (2003) found an effect size of 𝑑𝑑 = .82 and 𝑑𝑑 = 1.00 for the strategy direct instruction and 
instructional quality respectively. It is important therefore that educators (mathematics 
instructors in particular) are cognisant of those features of teaching strategies that would have a 
significant effect on student proficiency. 

Despite the fact that this research is concerned with the development of effective teaching 
strategies for mathematics teacher education courses I did not limit investigation of the literature 
to teaching strategies employed in pre-service teacher mathematics content courses at the 
university level. My motivation for doing this is since I am of the opinion that the development 
of quality teaching strategies is not the sole preserve of any particular sector of mathematics 
teaching and learning but that it can be developed at any level where teaching and learning take 
place. I am also of the opinion that one can gain valuable knowledge on how to design effective 
teaching strategies from investigating weaknesses and strengths of teaching strategies discussed 
in the literature. Moreover, knowledge of different teaching strategies might also contribute to 
better designed and implemented teaching sessions. Consequently, any literature that contributes 
to better understanding of what constitute quality teaching strategies was included in the review. 
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In the next section I compare a few selected mathematics teaching methods/ strategies for their 
perceived strengths and weaknesses.      

It is Wigley (1992) who distinguishes between two models for teaching mathematics. He points 
out that the ‘path-smoothing model’ is prevalent in mathematics teaching and textbooks, the 
main objective of which is to smooth the path for the student. The main features of this approach 
involve a teacher who is responsible for dividing the content into a number of categories and 
who will then present these to students one at a time. Students are then taught a method by which 
to solve problems in a series of steps. Teacher questions are geared towards leading students in a 
particular direction and towards checking that they follow the explanations. Students are 
presented with exercises by the teacher to enable them to practise the problem-solving methods 
they were taught. In an attempt to deal with student failure, revision involves returning to the 
same or similar work throughout the course. Thus Wigley (1992) maintains that this model 
emphasises repetitive rather than insightful activities.  

Since many examinations (for example the South African grade 12 final mathematics 
examination) tend to follow a set pattern it is very susceptible to a path-smoothing approach.  A 
limitation of the path smoothing model is that the teacher might offer explanations but rarely has 
the time to debate with students and hence to examine their perceptions of the explanations 
offered. Limitations of the model are exposed in cases when students struggle with unfamiliar 
problems or show a lack of insight into mathematical relationships. 

Wigley (1992) offers the ‘challenging model’ as a better alternative. In this model the teacher 
presents students with a challenging problem based on a major area of the syllabus and then 
allows for time for engagement with the problem. Students’ solution strategies form the basis for 
discussion and elicit an exposition of legitimate strategies. These strategies are then applied to a 
variety of problems. After this the different techniques are used to review previously covered 
content, to identify clearly what has been learnt and to show how it holds together and how it 
relates to other knowledge. Revision is done through encouragement and by exposing different 
points of view rather than by going over previously covered work in the same way. The 
instructional design is therefore based on discovery learning (Rittle-Johnson, 2006) alternatively 
referred to as unguided or minimally guided instruction (Kirschner, Sweller & Clark, 2006) (see 
chapter 3.8 for a discussion). An advantage of discovery learning is that it enhances both 
knowledge transfer and conceptual knowledge. Discovery learning however relies on extensive 
search through the problem text, which is very demanding on working-memory and therefore 
might not lead to better learning (Rittle-Johnson, 2006). 

After having analysed the teaching model of Schoenfeld (1985), Wilson and Cole (1991) point 
out that the Schoenfeld teaching method includes the modelling of problem-solving strategies as 
well as a series of structured exercises performed as group or individual activities. Schoenfeld 
(1985) uses practice exercises to increase the skill levels of students. He also retraces the solution 
of previously completed problems in order to generalize the solution strategy. This method also 
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includes a session in each period when students provide problems that the teacher attempts to 
solve. This serves to illustrate that problem-solving is not always a smooth error-free operation 
and that it is not a shame to struggle to find a solution. This model therefore includes both 
problem solving instruction as well as direct instruction.  

Direct instruction frequently allows for students to learn correct mathematical procedures. It may 
even facilitate the invention of additional correct procedures and might lead to an improvement 
in conceptual knowledge. However, there is no evidence that this kind of instruction leads to 
enhanced transfer ability (Rittle-Johnson, 2006). 

All of the teaching strategies thus far focus on the classroom teaching and to a lesser extent on 
practice strategies utilized to enhance learning in terms of long-term retention, procedural 
fluency and conceptual understanding.  It is argued that the simplest principle of learning is 
based on the fact that practice of a skill improves the performance of that skill (Rohrer, Dedrick 
& Stershic, 2015). Many teaching strategies for mathematics learning are premised on this 
principle. These strategies are not all the same and differ in terms of when practice takes place, 
volume of practice exercises, temporal distribution of practice sessions, how problems in practice 
exercises are structured and if practice requires long-term retrieval of knowledge. Teaching 
strategies premised on some of these practice features are discussed next.         

None of the teaching strategies discussed thus far in this section has both daily review and spiral 
testing as critical features of the strategy. The teaching strategy that will be discussed next is 
premised on a continuous review strategy and spiral testing where each of the tests presented to 
participating learners contained test items based on content that was recently covered as well as 
content that was covered in the previous five weeks.        

Wineland and Stephens (1995) designed a study to determine if spiral testing and continuous 
review would improve mathematical achievement and retention of basic mathematical concepts 
of below average eighth and ninth grade learners. Their sample consisted of 48 below average 
eight grade learners that were placed in two classes and 42 below average ninth grade learners 
that were also randomly placed in two classes. 

The continuous review strategy utilized in the research of Wineland and Stephens (1995) is the 
review-as-you-go method. In this method review problems from material covered in the previous 
five weeks was presented to the experimental group at the beginning of each class. For the 
control group review problems were taken exclusively from current content. The experimental 
group wrote a spiral test every Friday during a semester. Each of these tests consisted of five 
sections. Each section was based on one week’s material and contained six to eight problems. 
Only one section was based on recently covered content, whereas the other four sections were 
based on content that was covered in the previous five weeks. The control classes on the other 
hand wrote chapter tests that covered only current content. Cumulative tests were presented to 
both control and experimental groups at mid-semester. No review was done for these tests. At 
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the end of the semester both control and experimental groups wrote another cumulative test. 
Both control and experimental groups were given a two-day review for these tests.   

Their findings indicate that the experimental groups of both the eighth and ninth grades scored 
significantly higher than the control groups on the cumulative mid-semester test. The 
experimental group of the ninth graders also scored significantly higher than the control group on 
the cumulative semester test. The results did not however show a significant difference between 
the control and experimental groups for the cumulative semester test of the eight graders.  

The revision strategy of Wineland and Stephens (1995) is based on the premise that short daily 
reviews is more effective than once off review done immediately prior to a test or an 
examination. In addition, spiral testing is considered to aid retention better than review. I am of 
similar opinion and hence the teaching strategy employed in the present research also included a 
version of the review-as-you-go method as well as spiral testing. How these strategies were 
effected in the present research will be elaborated on at a later stage. 

The incremental teaching approach of Saxon (1982) is based on cumulative continual practice 
and testing. In this approach topics are presented in increments to students during teaching 
sessions. After an increment has been presented to students it becomes part of their daily work 
for the remainder of the school year. In this approach it is not expected that students fully 
understand a concept immediately after it has been presented to them since they will be exposed 
to the concept many times. In the incremental approach a fundamental facet of a concept is 
presented and practiced for four or five problem sets before the next facet of the same concept is 
introduced. Subsequently both facets of the concept are practised before the next one is 
introduced and so on. Even after students have mastered a particular topic problems related to the 
topic continued to appear in every practice exercise and test. The incremental approach therefore 
is based on both distributed practice and interleaved practice. 

Saxon (1982) contrasts his incremental approach with what he refers to as the spiral approach. In 
this spiral approach, review is at the end of each unit or topic where only content of that unit is 
reviewed. He argues that the spiral approach is disjointed since there is no connection with other 
completed topics. That is practice exercises following each unit includes only problems based on 
the content of that unit and does not include problems based on previously completed units. It 
should be noted that in the present study a different meaning is attached to spiral revision (see 
section 1.5 for a definition). 

Another teaching approach that is premised on continuous practice is interleaved practice. In the 
interleaved approach each homework assignment consists of practice problems drawn from 
many previous lessons including the immediately preceding lesson. In the homework problem 
sets no two problems of the same kind appear consecutively. Therefore in the interleaved 
approach the practice of different skills is intermixed as opposed to grouped by type.  
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Taylor and Rohrer (2010) argue that proficiency in mathematics is a function of the ability to 
solve problems. In turn ability to solve problems is premised on the ability to distinguish 
between different kinds of problems. Once the type of problem is identified the problem must be 
connected with an appropriate procedure. Research has shown that interleaving mathematical 
practice improves both ability to discriminate between different types of problems and to 
associate each kind of problem with an appropriate strategy (Rohrer, Dedrick & Burgess, 2014).  

The success of interleaved practice is ascribed to the fact that interleaved practice provides 
students with opportunities to practice associating each kind of problem with the appropriate 
procedure. It is argued that interleaved practice is based on two critical features (Rohrer et al, 
2014). One of these features is that different kinds of problems are interleaved. This feature is 
thought to contribute to the development of ability to choose appropriate strategies based on 
problem features. The other feature is that problems of the same kind are spaced which is 
thought to improve retention abilities. 

Rohrer et al (2014) maintain that mathematics students devote most of their practice time to 
blocked (massed) practice. They argue that this is a consequence of the fact that each lesson in 
most textbooks is followed immediately by a set of exercises based on that lesson. Problems 
within a blocked assignment are generally based on the same concept or procedure.  Blocked 
practice therefore allows students to safely assume that each problem will require the same 
strategy as the previous problem and hence allow students to focus only on the execution of the 
strategy without having to associate the problem with its strategy. Research has shown that 
blocked or massed practice often increases performance for a short period, but this benefit 
sharply decreases over time (Pashler et al, 2007). Massed practice is therefore not very effective 
in terms of retarding forgetting of learned content. On the other hand research has shown that 
long-term retention is positively enhanced by distributed or spaced practice (Seabrook et al, 
2005; Pashler et al, 2007; Rohrer &Taylor, 2006). Distributed practice also often result in better 
test scores than massed practice (Seabrook et al, 2005; Rohrer & Taylor, 2006).     

In what follows I will compare features of the teaching strategies that were discussed in the 
previous sections in tabular form (see table 1). Since such a wide variety of features exist I will 
restrict the features that are compared to those that in my opinion have a high probability to 
enhance learning significantly. Some of the discussed teaching strategies did not pronounce on 
some features and hence these features are omitted for them. Note that some of the terms used in 
the comparison will only be discussed at length in chapter 6. See section 1.5 for an explication of 
the concept productive struggle. 
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  TEACHING STRATEGIES 

STRATEGY FEATURES 
 

Path 
smoothing 
strategy 

Challenging 
strategy 

Schoenfeld 
strategy 

Spiral 
testing and 
Continuous 
review 

Incremental 
Approach 
(Saxon) 

Interleaved 
Mathematical 
practice 

Teaching 
Method 

 Mainly direct 
teaching  

Mainly problem 
solving 
instruction  

Both problem 
solving and 
direct 
instruction 

Mainly direct 
teaching 

Direct teaching  

Productive 
struggle 

 Not included Productive 
struggle is a key 
component of 
strategy 

included  included included 

Type(s) of 
practice 
employed   

 Mostly mass 
and repetitive 
practice 

Practice of 
previously 
covered work 
not emphasized 

Mostly mass 
and distributed 
practice 

Mainly 
distributed 
practice 

Mass, repetitive  
distributed, 
interleaved 

Distributed and 
interleaved 

Revision 
strategy: 
 

Frequency  Regular 
revision 

Seldom Regular Continuous 
review 

Continuous 
review 

Continuous 
review 

Format Mostly teacher 
driven with 
presented tasks 
similar or the 
same. In other 
words, going 
over previously 
covered work 
in the same 
way 
 

Discussion of 
student solution 
strategies is used 
to identify 
legitimate 
strategies which 
is subsequently 
applied to 
previously 
covered content 
to show how it 
relates to other 
knowledge 
 

Solutions of 
previously 
completed 
problems is 
retraced in 
order to 
generalize 
solution 
strategies 
 

Short daily 
review of 
completed 
work 
 

Teacher driven , 
student 
seatwork and 
homework 
assignments 

Homework 
assignments 

Is regular testing  
part of revision 
strategy? 

No No  Spiral testing yes No 

Does revision 
strategy include 
strategies to 
expose different 
facets of 
concepts in order 
to deepen 
understanding? 

No In some cases Yes It is not a focus 
of this strategy 

yes  

Does the 
teacher seek 
feedback 
about 
efficacy of 
their 
teaching?  

 Seldom Yes Yes  yes  

Teacher 
questioning  

 Mostly lower 
level questions 

Include both 
higher and lower 
order questions 

Include both 
higher and 
lower order 
questions 

 Both higher and 
lower order 

 

Main focus of 
teaching: 
Procedural 
and/ or 
Conceptual 
knowledge 

 Procedural 
knowledge is 
afforded more 
attention 
 

Conceptual 
knowledge is 
developed more 
than procedural 
knowledge  
 

Focus is on the 
development of 
both procedural 
and conceptual 
knowledge 
 

Both 
procedural and 
conceptual 
knowledge is 
developed, but 
procedural 
knowledge is 
focused on  

Both Both 

Table 2.1: A comparison of features of teaching strategies 
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2.4 Linking particular features of teaching with students’ learning  

The main concern of my research is to determine how procedural fluency and conceptual 
understanding of pre-service teachers will be influenced by a teaching strategy based on spiral 
revision and productive practice. The aim therefore is to link particular teaching features (spiral 
revision and productive practice) with pre-service students’ learning. Hiebert and Grouws (2007) 
analysed findings of a number of studies to investigate the effects of classroom mathematics 
teaching on students’ learning.  They contend that efforts to link particular teaching features with 
students’ learning have not produced many results. Moreover, researchers who attempt to 
connect teaching with learning face a number of difficulties, such as a shortage of useful 
theories, and how to effectively document the effects of teaching on learning.  

Thus, in order to document the effects of teaching on learning one has to decide which variables 
to study and how to measure the variables. This is not straightforward since many factors both 
inside and outside school influence what and how well students learn. Furthermore, since 
teaching methods consist of multiple features that intersect in many ways, in research it is 
difficult to isolate the effects of specific pedagogical features on students’ learning. An 
additional complication is the fact that different teaching methods are required for different 
learning goals. For example, some teaching strategies might be better suited for retention of 
knowledge, whereas others might be more conducive for transfer of knowledge.  

Hiebert and Grouws (2007) argue that research which focuses on connections between specific 
teaching features and student learning is better served by analysing relatively broad units of 
investigation such as the typical daily lesson or lessons. However, they maintain that each of 
these has advantages and disadvantages; thus researchers should think carefully about their own 
research before choosing the unit of study.  

Also, it often happens that questions of how teaching affects learning become confused with 
questions of how teachers affect learning (Hiebert & Grouws, 2007). That is, it sometimes 
happens that methods of instruction are confused with teacher characteristics. The emphasis in 
my research falls upon how teaching methods influence learning. How years of experience and 
qualifications, or teaching characteristics might do so is not central to this discussion.  

Hiebert and Grouws (2007) argue that one of the most firmly established links between teaching 
and learning is the notion of opportunity to learn. They maintain that ‘opportunity to learn’ is 
widely considered to be the single most important predictor of student achievement.  Opportunity 
to learn is defined as circumstances that allow students to engage in and spend time on academic 
tasks. For the authors opportunity to learn includes inter alia consideration of students’ entry 
knowledge, the nature and purpose of the tasks and activities, and the likelihood of engagement. 

Research investigating which teaching features enhances the learning outcomes of skill 
efficiency and conceptual understanding has not received much attention from researchers 
(Hiebert & Grouws, 2007). Skill efficiency is defined as the accurate, smooth, and rapid 
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execution of mathematical procedures. This definition does not include the flexible use of skills 
or the adaptation of skills to new situations.  

Hiebert and Grouws (2007) in their review of the literature found no empirical studies that 
attempted to determine which features of teaching support skill efficiency, and which support 
conceptual understanding. (This is the gap in the literature I am attempting to address – at least 
partially). They argue that features of teaching which enhance skill efficiency include rapid 
pacing, many teacher-directed product-type questions, and teacher demonstration followed by 
substantial amounts of error-free practice. They also point out that the literature indicates that 
students can acquire conceptual understanding if teaching attends explicitly to conceptual 
underpinnings and to connections between mathematical facts, procedures and ideas. The kind of 
teaching that enhances conceptual understanding includes discussions about the mathematical 
meaning underlying procedures, and the probing of how different solution strategies are similar 
to and different from each other. Their findings also indicate that retention and transfer are aided 
by this kind of teaching.  

Another teaching feature that appears to facilitate students’ conceptual understanding is that 
students are allowed to struggle with important mathematics (Hiebert & Grouws, 2007). The 
word ‘struggle’ is used to refer to the amount of effort that is not immediately apparent, but 
which students expend in making sense of mathematics. Teaching strategies that facilitate 
productive struggle include posing problems that require making mathematical connections, 
allowing students to engage with the problem and subsequently working out these problems in 
ways that make the connections visible.  

Hiebert and Grouws (2007) contend that it is not the case that only one set of teaching features 
aids skill learning while another set supports conceptual learning. They found better transfer of 
procedural skills is achieved if conceptual understanding has been the goal of teaching. 

Hiebert and Grouws (2007) maintain that in the U.S.A. teaching strategies rarely include explicit 
attention to conceptual development and in many cases do not make allowance for students to 
struggle with key mathematical ideas. They contend that it is important that researchers are clear 
about the kinds of learning they intend to study and that teaching goals should be made explicit.        

In the present research I will attempt to foster skill efficiency by applying the teaching strategy 
of spiral revision. I will attempt to enhance conceptual understanding by utilizing the teaching 
strategy of productive practice.    
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2.5 Conclusion 

A comparison between international and national mathematics education studies reveals firstly, 
that current research tends to focus on the teacher and processes of teaching, and secondly, that 
small-scale qualitative studies predominate. The researchers in many cases were teacher 
educators who were attempting to determine the efficacy of the courses they offered. Small-
scale-studies have the advantage that in-depth investigations of phenomena can be conducted and 
that individual progress can be monitored much closer. A shortcoming of these small-scale 
studies is that they are normally conducted over a short period, which does not allow for 
comprehensive study of proficiency development of pre-service teachers. Additionally, findings 
of qualitative studies normally are not generalizable which limit findings to the specific context 
and participants.    

The literature indicates that there is a need for studies that investigate the mathematical 
knowledge and reasoning development of pre-service students over more extended periods. 
Furthermore, as has been indicated already, most studies have been small-scale qualitative 
studies. There is thus a gap in the literature in terms of large-scale quantitative or mixed methods 
studies. The present study is a mixed methods study done over two semesters, thus providing 
opportunities to study the knowledge and reasoning developments of prospective teachers a little 
more comprehensively than is done in the small-scale short term studies.   

Curriculum reform is the preferred context for many of the South African studies. Furthermore, 
in pre-service teacher education for prospective secondary school teachers, great emphasis is 
placed on mathematical content knowledge and less on pedagogical content knowledge; 
conversely pedagogical content knowledge for prospective primary school teachers is 
emphasized while content knowledge is under-emphasized. This state of affairs might be one of 
the underlying reasons for the dismal mathematical performance of an overwhelming majority of 
South African primary school learners. There is general consensus in the mathematics education 
community that a well-connected deep understanding of fundamental mathematics is an absolute 
necessity for primary and high school teachers.  

A major gap identified in South African research is that studies concerning pre-service 
mathematics teacher education are not well represented in the literature. This is despite the fact 
that many pre-service teachers in South Africa enter mathematics teacher education programmes 
with substantial gaps in their knowledge bases. There is thus a need for research that investigates 
which teaching methods are best suited to such pre-service students. Comparison studies on how 
one teaching approach compares to another in terms of enhancing mathematical content 
knowledge of teachers might assist in a major way for identifying best practice. Very few such 
studies however can be found in the literature.  

It is the tendency of many of the mathematics courses for pre-service secondary school teachers 
in South Africa to teach these students more advanced mathematical content. However, research 
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has shown that taking more advanced courses in mathematics does not necessarily translate into 
a deeper understanding of fundamental mathematics (Ma, 1999). An important question 
therefore is what kind of teaching would allow pre-service mathematics education students to 
develop the requisite procedural skills and a well-connected conceptual understanding. An 
analysis of the literature done by Hiebert and Grouws (2007) indicates that students can acquire 
conceptual understanding if teaching attends explicitly to conceptual underpinnings and to 
connections between mathematical facts, procedures and ideas. Moreover, I am of the opinion 
that prospective teachers would be better prepared for their teaching if courses designed for them 
would deal explicitly with the content they were to teach in schools.  

Conclusions that might be drawn from the South African studies that performed investigations in 
the domain of Euclidean geometry, referred to in the foregoing section are twofold. On the one 
hand, it suggests that some teachers’ content knowledge in the domain of Euclidean geometry is 
not sufficient and therefore might present a barrier to quality teaching and learning in this 
domain. The studies also suggest that the cognitive competencies of teachers in the domain of 
Euclidean geometry are below expected levels, which may in turn contribute to learner 
deficiencies in this area. There is thus a dire need for developing teaching strategies that broaden 
and deepen the content knowledge and cognitive abilities of prospective teachers in the domain 
of Euclidean geometry (and other school level content domains). This would facilitate the 
delivery of quality instruction and ultimately improve the learning of mathematics at the school 
level.   

Based on findings of their study in the domain of matrix algebra Ndlovu and Brijlall (2015) 
advance similar arguments.  Their findings indicate that the procedural development of the 
majority of participants were well ahead of their conceptual development in this domain. The 
authors maintain that a lack of basic school level algebra knowledge contributed to the retarded 
conceptual development of participants. This provides more evidence that in many instances        
pre-service teachers’ content knowledge gaps impede progress in terms of their conceptual and 
procedural development.           

The literature review indicates that there is a dearth of investigative studies into teaching 
strategies that could be employed to enhance procedural fluency and conceptual understanding of 
pre-service teachers. Also, very few studies examined which features of a teaching strategy 
would support skill efficiency and which would support conceptual understanding. This study 
attempts to address these gaps in the literature. It is the intention of this study to investigate 
whether a teaching strategy premised on spiral revision and productive practice would enhance 
procedural fluency and conceptual understanding of participating students. Moreover, none of 
the teaching strategies reviewed include a revision method that has the goal of enhancement of 
procedural flexibility and fluency, coupled with a strategy to cultivate conceptual knowledge and 
the embellishment of creative reasoning. My proposed teaching method seeks to include these 
design features.   
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Opinions in the literature are divided as to which of direct teaching method or discovery learning 
– is better suited for effective learning in mathematics. Researchers tend to favour one or the 
other, very rarely both, but in my view both teaching methods should be applied for effective 
learning. The intended learning outcome should determine which method would be more 
effective in a given teaching and learning situation. If knowledge transfer and the development 
of conceptual knowledge are the goals then discovery learning is best. Otherwise, if the aim is 
for students to learn correct mathematical procedures and to become flexible in their use of 
procedures then the direct method is better suited.   

It is my contention that mathematics teaching strategies should include (both in instruction and 
student assignments) strategies to enhance long-term retention of covered content. Since research 
has shown that distributed or spaced practice is best suited to retard forgetting it was included as 
part of the teaching strategy of the present research. Mass practice on the other hand was utilized 
to enhance procedural mastery.    

All of the teaching strategies reviewed suffered of some weakness in terms of effective student 
learning. Some of the teaching strategies (for example the Schoenfeld (1985) strategy) had fewer 
weaknesses than others. I am however of the opinion that each of the strategies offered some 
feature or features that has a high probability to contribute to effective learning. Moreover, I am 
of the opinion that many different teaching and learning contexts exist and that each of these 
require teaching strategies that will be suitable for it, but not necessarily for another context. In 
other words, I am of the opinion that there is no one size fits all teaching strategy but that 
features of available teaching strategies should be matched to the context. For example, in a 
context where there is a big difference in students’ prior knowledge levels one could use direct 
teaching with low knowledge students and present high knowledge students with problem 
solving instruction. I therefore contend that for effective teaching and learning to take place 
teachers should be aware of the different teaching strategies available in order to employ a 
strategy or combine features from different teaching strategies to best suit their teaching context.  

In the following chapter I will discuss the theories that inform and underpin this study.        
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CHAPTER 3: THEORETICAL UNDERPINNINGS 
 
 
3.1 Introduction 

In mathematics education, there is no consensus as to the definition of theory and its role and use 
in research. In this study, I will use the definitions and roles of theory as espoused by Assude, 
Boero, Herbst, Lerman and Radford (2008). They maintain that theory in mathematics education 
research when dealing with the teaching and learning of mathematics has a structural and 
functional perspective. Theory in the structural perspective is defined as an organized and 
coherent system of concepts and notions in the mathematics education field. In the functional 
perspective, it is considered as a system of tools that allow for speculation about some reality. 
When theory is used as a tool it can be used in the following ways (Assude et al,2008): 

• To consider ways to enhance the teaching and learning environment including the 
curriculum 

• Develop methodology 
• Describe, interpret, explain, and justify classroom observations of student and teacher 

activities 
• Convert practical problems into research problems 
• Define different steps in the investigation of a research problem, and 
• Generate knowledge  

Theory can also function as an object. Aims in this perspective include the advancement of 
theory itself which can include testing a theory or as a means to produce new theoretical 
developments. In this study theory, will be used to describe, interpret and explain observed 
phenomena. To a lesser degree, it will also be used in theoretical developments.     

Niss (2007) argues that the use of theory is essential in any discipline that perceives itself as 
scholarly or scientific. Lester (2005) contends that the role theory plays in the research should be 
situated within a research framework. A research framework is defined as a structure of the ideas 
that serve as a basis for a phenomenon that is to be investigated. Three types of    frameworks are 
distinguished namely theoretical, practical and conceptual (Eisenhart, 1991). Lester (2005) 
contends that theory should also be considered as a framework, and as such theoretical 
frameworks guide research by relying on formal theories, such as cognitive structuralism, for 
example. Data gathered in this type of research is used to support, extend, or modify the theory.  

However, the use of theoretical frameworks may be problematic in some instances. It is possible 
that strict adherence to a theoretical framework might cause the researcher to make the data 
rather than the evidence fit the theory. Another problematic use of theoretical frameworks is that 
in some cases data is stripped of its context and local meaning in order to serve the theory.  
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Practical frameworks are not informed by formal theories but by accumulated practice 
knowledge of practitioners, the findings of previous research or even public opinion (Scriven, 
1986). Some limitations of this framework are that findings tend to be only locally generalizable 
and that too much emphasis is placed on local participants’ perspectives (Lester, 2005). 
Researchers who adopt a conceptual framework normally use different theories and practitioner 
knowledge which are relevant to the study. This means relevant theories and perspectives are 
used to answer the research questions. In this framework both explanation and justification is 
important. Researchers utilizing this framework do not only explain phenomena, but also justify 
why they are doing the research in a particular way and why their explanations and 
interpretations are reasonable.  

This study is concerned with the use of a teaching strategy to investigate whether it will increase 
the cognitive competencies and broaden and deepen mathematical knowledge of research 
participants in specified domains. This implies that a framework is required which will facilitate 
the achievement of such objectives – theoretically and pragmatically. I am of the opinion that in 
order to deal more effectively and perhaps more comprehensively with research in mathematics 
education, one has to utilize all tools available and therefore multiple perspectives will be 
employed in an attempt to address the research problem. In some cases, I refer to theories that 
are well established explanatory frameworks, whereas in other cases I rely on local theories or 
practitioner theories. Thus, the framework for this study is based on pragmatic concerns and can 
be described as a bricolage of theories and perspectives as espoused by Lester (2005) and Cobb 
(2007).  

Descriptions of some of the theories used in the study are discussed next. However, not all the 
theories utilized will be discussed in this chapter since for practical reasons some theories are 
explored in other chapters where their relevance will be contextualized.  
 
 
3.2 Human Memory System   

Memory plays a crucial role not only in mathematical learning, but in almost all forms of 
learning. Knowledge of memory structures and processes would therefore greatly aid in 
understanding the learning process in mathematics. Theories of human memory usually include 
both the architecture of the memory system and the processes operating within that system. 
‘Architecture’ refers to the components of the memory system and the organisation of these 
components whereas ‘processes’ refers to the activities occurring within the memory system.  

A multi-store model of the memory system as proposed by Atkinson and Shiffrin (1968) enjoys 
widespread support among researchers. According to this model human memory is composed of 
three interconnected memory stores namely sensory memory (SM), short term memory (STM) 
store and long-term memory (LTM) store. Information from our senses is initially stored in 
sensory memory for a very short period in the same form that it was processed by our senses (for 
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example sound or visual images). Subsequently a decision is made as to which parts of the 
information are important enough to pay attention to. The part to which attention is directed is 
transferred to the working memory where it is processed further. 

Although the terms short-term memory and working memory (WM) are sometimes used 
interchangeably I will follow the distinction of Baddeley (2012). In this distinction, short-term 
memory refers to the simple temporary storage of information, while working memory refers to a 
limited capacity system that is capable of briefly storing and manipulating information required 
in the performance of complex cognition. The WM consists of four components namely central 
executive, phonological loop, visuo-spatial sketchpad and the episodic buffer (Repovs & 
Baddeley, 2006).  

The central executive component is an attentional control system of limited processing capacity 
that has the role of controlling action. It is thought to have the capacity to focus attention on:  

• relevant information and processes inhibiting irrelevant processes and information;  
• switching (shifting) attention between tasks;  
• planning, sub-tasks to achieve a goal;  
• dividing attention between two or more tasks;  
• updating and checking the contents of working memory;  
• coding representations in working memory for time and place of appearance;  
• controlling access to long-term memory (Baddeley, 2007; Smith & Jonides, 1999).  

The phonological loop deals with auditory, primarily speech-based information and consists of 
two components namely, a temporary speech-related store and a sub-vocal articulatory rehearsal 
process.  

The visuo-spatial sketchpad is responsible for the temporary storage and manipulation of spatial 
and visual information. As a consequence of the fact that the initial three-component model of 
working memory cannot account for the ways in which sub-systems work together and how 
these systems interface with long-term memory a fourth component was proposed (Baddeley, 
2000). This fourth component known as ‘the episodic buffer’ is assumed to be a temporary store 
of limited capacity that is capable of combining a range of different storage dimensions thus 
allowing it to collate information from the visuo-spatial, phonological loop and the long-term 
memory.  

Long-term memory refers to the component of memory where information is stored over 
extended periods. Two types of long-term memory can be distinguished namely declarative 
(explicit) and implicit memory. Declarative memories are memories that are available in 
consciousness. Declarative memory is further divided into episodic memory and semantic 
memory. Episodic memory is the memory of past experiences that occurred at a particular time 
and place (Tulving, 2002). Semantic memory on the other hand involves the storage and retrieval 
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of factual knowledge about the world (Griffiths, Dickinson & Clayton, 1999). Implicit memories 
are those that are mostly unconscious and include memories of body movement and memories of 
procedures such as how to plait hair. 
 
 
3.3 Worry and Mathematical Performance 

We know that emotion can affect learning in both positive and negative ways (Kort et al, 2001; 
Goleman, 1995; Sylwester, 1994). Research has shown that mathematical anxiety has a negative 
effect on mathematical performance (Ashcraft & Krause, 2007). Anxiety is defined as an 
aversive emotional and motivational state that occurs in threatening circumstances. State anxiety 
is the currently-experienced level of anxiety (Eysenck, Derakshan, Santos & Calvo, 2007). State 
anxiety is a state in which a person is unable to initiate a clear pattern of behaviour to remove or 
alter the event or object that is threatening an existing goal (Power & Dalgleish, 1997). Worry is 
the component of state anxiety that is responsible for effects of anxiety on performance 
effectiveness and efficiency. Worry is activated in stressful situations such as in test conditions 
(Eysenck, 1992).  

Processing efficiency theory which is a cognitive performance theory forms the basis of 
attentional control theory. The concepts of cognitive effectiveness and efficiency form the crux 
of processing efficiency theory (Eysenck & Calvo, 1992). Cognitive effectiveness is understood 
to refer to the quality of task performance as measured by response accuracy, for example. 
Cognitive efficiency on the other hand is said to refer to the relationship between the 
effectiveness of performance and the effort or mental resources spent in task performance. 
Efficiency is said to decrease as more resources are spent in task performance to realize a given 
performance level. According to this theory worry has a significantly greater negative effect on 
processing efficiency than on performance effectiveness.  

According to processing efficiency theory worry has two effects on cognitive performance. On 
the one hand the worrisome thoughts are believed to preoccupy some of the limited attentional 
resources of working memory and hence fewer of the attentional resources are available for 
concurrent task processing. In other words, worry acts like a resource demanding secondary task 
(Ashcraft & Krause, 2007). On the other hand, worry might increase motivation to minimize the 
aversive anxiety state by promoting enhanced effort and use of auxiliary processing resources 
and strategies. It is an assumption of processing efficiency theory that the main effects of worry 
are on the central executive component of the working memory. The processing efficiency 
theory however has some major theoretical limitations. For example, the theory does not specify 
which of the central executive functions are impaired by anxiety and does not consider 
circumstances in which anxious persons might outperform non-anxious persons (Eysenck et al, 
2007). 
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The attentional control theory attempts to build on the strengths of the efficiency theory and to 
address its limitations (Eysenck et al, 2007). This theory is more precise about the effects of 
anxiety on the functioning of the central executive. The revised theory emphasises that anxiety 
impairs processing efficiency more than it does performance effectiveness. Furthermore, anxiety 
decreases the influence of the goal-directed attentional system and increases the influence of the 
stimulus-driven attentional system. Attentional control is therefore reduced and consequently the 
inhibiting and shifting functions of the central executive are negatively affected (Eysenck et al, 
2007). A person who suffers from the emotion of worry therefore will focus on the worrisome 
thoughts and hence less of the focus will be on the task at hand. Important information in the task 
might therefore be missed since full attention is not focused on the task. For example, a student 
who suffers from the emotion of worry and who is busy with a question in a test might focus so 
much on worrying about not achieving that less attention is given to the information provided in 
the task. Hence not all the relevant information is processed. The student may not be able to 
sufficiently inhibit the worrying thoughts that emerge in the working memory to be able to shift 
focus to the task at hand. The student may then have the sensation that the mind cannot access 
the relevant information in the long-term memory (‘going blank’) to deal with the task at hand 
since the attentional system is now attempting to focus on two tasks simultaneously. 
 
 
3.4 Cognitive Load Theory      

The learning and instructional framework for this study is based on a cognitive load perspective 
(Sweller, 1994). The assumption in this theory is that learning and problem-solving difficulty is 
artificial in the sense that it can be manipulated by instructional design.  Cognitive load refers to 
the amount of mental effort being used in the working memory. Sweller (1988) contends that 
increased amounts of information in working memory increase cognitive load, and that learning 
and problem-solving is premised on both selective attention and cognitive load. 

Sweller (1994) argues that schema acquisition and the automatization of learned procedures are 
two essential mechanisms in the learning process. In cognitive load theory mechanisms of 
learning determine which features of the material make it hard to learn. The theory is based on 
the assumption that gaining of knowledge and cognition based on this knowledge are heavily 
dependent on schema acquisition. The notion of schemata is thought to offer an explanation for a 
major part of learning-mediated cognitive performance. Sweller (1988) argues that experts in a 
domain have more domain specific knowledge (in the form of schemata) than novices in the 
domain.               

Schemata are cognitive constructs that organize elements of information according to the manner 
in which they will be utilized. It is generally accepted that newly presented information is not 
internalized in the exact form that it is presented; instead, new knowledge is altered so that it fits 
in with current knowledge. It is argued that knowledge of subject matter is organized into 
schemata and it is these schemata which determine how new information is dealt with.  
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Sweller (1994) contends that people utilize schemata to deal with mathematical problems. These 
schemata allow for problems to be categorized according to the solution procedure. For example 
students who have been exposed to algebra will not only know how to solve a specific linear 
equation such as 2𝑥𝑥 + 5 = 7 , but will know the solution procedure for this category of problem 
and hence would be able to solve all problems of the form 𝑎𝑎𝑥𝑥 ± 𝑏𝑏 = 𝑐𝑐,    ∀𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈  ℝ. These 
schemata therefore reduce the amount of mental effort required for solving such problems and 
allow people to potentially solve an infinite variety of such problems. 

Schemata are not acquired in an all or nothing manner, but are assimilated gradually over a 
period of time. Consequently, when a student is exposed to new knowledge, the ability to use 
this knowledge is initially severely constrained since the schema has not been fully developed. 
Cognitive processing of information can either be controlled or automatic (Schneider & Shiffrin, 
1977). Controlled cognition is said to occur when information is consciously attended to. In other 
words, the information is either not in the long-term memory or is not well-established in the 
long-term memory and therefore has to be processed in the working memory. 

In Cognitive Psychology automatization is defined as the practice of a skill or habit to the point 
of its having become routine so that little if any conscious effort or direction is required. In other 
words, this occurs if the thought processes involved in the skill have been moved to the long-
term memory. When a complex mental skill is first acquired it can only be utilized with 
considerable cognitive effort; however, over time and with enough practice the skill may become 
automated (Sweller, 1994). Consequently, if mundane procedural elements of a task have been 
practised to the extent that it have become automated, this would free cognitive capacity for 
more creative reasoning and the application of prior knowledge in unfamiliar situations. 
Moreover, if skills operate under automatic processing then cognitive load will be reduced. This 
I think is what teachers of mathematics would ideally want to achieve in mathematics 
instruction. 

It is an accepted fact that a function of learning is to store information in long-term memory 
(Atkinson & Shiffrin, 1968). A function of learning according to cognitive load theory is to store 
automated schemata in long-term memory. As stated in the previous section, working memory 
has a limited capacity and duration; hence the amount of information that can be processed in the 
working memory is limited. This limitation can affect learning negatively so a function of 
instruction and learning should be to find ways of reducing working memory load. Schema 
acquisition and automatization have precisely this effect of reducing working memory load.  

In cognitive load theory, an element is defined as any material that is to be learned. If in order to 
learn material it is required that mental connections have to be made between many other 
elements, then the material is said to have high element interactivity and is perceived to be 
harder to learn. Conversely, if elements of a task can be learned without making other mental 
connections then it is said to have low element interactivity and is perceived to be easier to learn. 
Mathematical tasks rarely have low element interactivity.  
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Further to this, total cognitive load is the sum of intrinsic and extraneous cognitive load (Sweller, 
1994). Extraneous cognitive load is imposed by instructional methods whereas intrinsic cognitive 
load is determined by element interactivity. If a content area has a high number of interacting 
elements it is associated with a high intrinsic cognitive load. Conversely if material has a low 
element interactivity it is thought to have a low cognitive load. Instructors have no control over 
intrinsic cognition since it is dependent only on the element interactivity of the material to be 
learned. It is argued that if people have acquired schemata of a content area with high element 
interactivity, then the content is understood. If these schemata are automated, then the material is 
understood very well. 

As noted earlier, learning and problem-solving is premised on selective attention and cognitive 
load. The knowledge levels of learners in a specified domain may also impact on cognitive load. 
If learners have low prior knowledge in a domain, then cognitive load will be high in the learning 
process. Conversely learners with high levels of prior knowledge will have a low cognitive load 
in the learning process. Based on cognitive load theory it is argued that instructional tasks that 
require the processing of many new elements of information simultaneously will not be very 
effective and the ability to use the information in related tasks will be severely constrained. 
Instructional designers should therefore always bear in mind the limitations of our cognitive 
architecture when designing tasks for instruction.  
 
 
3.5 Procedural and Conceptual knowledge 

Contributing to this exploration of cognitive mental patterning, De Jong and Ferguson-Hessler 
(1996) have devised a conceptual framework for examining the concept of knowledge. They 
contend that the concept of knowledge is dominant in research on teaching and learning. They 
maintain that the knowledge base of people is made up of different types of knowledge such as 
conceptual knowledge, procedural knowledge, domain specific knowledge, etc. Knowledge is 
also characterized by different qualities such as the level of knowledge, generality of knowledge, 
level of automatization of knowledge, structure of knowledge, etc. Those authors argue that the 
two dimensions of knowledge namely type of knowledge and quality of knowledge can be 
utilized to differentiate between novice and expert task performance.  

In that framework, the description of knowledge is approached from the perspective of 
knowledge-in-use. This implies that task performance forms the basis for the identification of 
germane facets of knowledge. De Jong and Ferguson-Hessler (1996) argue that the knowledge-
in-use perspective allows us to determine if a knowledge base is adequate for the solution of a 
given type of problem at a given level. They maintain that novices in a domain do not possess 
the requisite organized deep-level knowledge to deal effectively with tasks in the domain, 
whereas experts do indeed possess the indispensable knowledge components at the correct level.   
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Knowledge is referred to as deep-level knowledge if it is firmly entrenched in a person’s 
knowledge base and external information has been transformed to basic concepts or procedures 
in a given domain (De Jong & Ferguson-Hessler, 1996). The authors argue that this implies that 
the knowledge has been comprehensively processed, organized and stored in memory in a way 
that makes it useful for application and task performance. Knowledge that is categorized as deep 
is, as a rule, associated with understanding and abstraction. Conversely, surface level knowledge 
is knowledge that is stored in the same way that it was received from an external source and is 
not connected in meaningful ways to other knowledge. Since the knowledge is not connected 
meaningfully to other knowledge it is less useful and is therefore normally associated with rote 
learning.     

It is generally accepted in the mathematics education community that both procedural and 
conceptual knowledge is necessary for the effective learning of mathematics. There is however 
no consensus on the respective roles that procedural and conceptual knowledge play in student 
learning. It is argued that although an understanding of conceptual and procedural knowledge 
might provide significant insights into mathematical learning and performance, the relationship 
between these forms of knowledge is not yet well understood (Hiebert & Lefevre, 1986). 

Much has been written about procedural and conceptual knowledge; but the ensuing discussion 
concerning these two knowledge types will be informed by the theoretical arguments of Hiebert 
and Lefevre (1986) (unless otherwise indicated). Conceptual knowledge is characterized as 
knowledge that is rich in relationships. Conceptual knowledge is developed by establishing 
cognitive links between different pieces of information. This linking process is possible between 
pieces of information that are already stored in the memory, or between an existing piece of 
knowledge and one that is newly learned. The result of the linking process is that the new 
knowledge is assimilated into appropriate knowledge structures and hence becomes part of an 
existing network. In other words, it becomes part of the schemata in long-term memory.   

The term abstract is used to determine the level of connection between pieces of information; it 
refers to the degree to which a unit of knowledge is tied to a specific context. Abstraction is said 
to increase as knowledge is freed from a specific context. If the relationship is established at the 
same level of abstraction or at a less abstract level than the level at which the original 
information was presented, then the relationship is said to be at the primary level. If, however, 
the relationship between pieces of information is established at a higher abstract level than the 
pieces of information they connect then the relationship is said to be at the reflective level. Such 
relationships are less bonded to specific contexts. Building the cognitive connections in this case 
requires that one reflects on the information being connected and consequently more of the 
mathematical terrain becomes ‘visible’. The reflective level is therefore perceived to be at a 
higher level than the primary level. 

It is argued that procedural knowledge consists of two distinct parts (Hiebert & Lefevre, 1986). 
One part is said to consist of the formal language or symbol representation system of 
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mathematics, while the other part consists of the algorithms for completing mathematical tasks. 
The first part requires that students and teachers of mathematics are familiar with the symbols 
used to represent mathematical ideas and of the syntactic rules for writing these symbols in an 
acceptable form. Knowledge of these symbols and syntax on its own however does not 
necessarily imply understanding of meaning, but only an awareness of surface features. For an 
understanding of meaning, conceptual knowledge is required.     

Algorithms are said to be step-by-step instructions that prescribe how to solve mathematical 
tasks and are normally executed in a predetermined linear sequence. In some cases procedures 
are embedded in other procedures as sub-procedures. Together these sub-procedures form a 
super-procedure. Procedures operate on two types of objects namely standard written symbols 
(e.g., -5, ÷, ∛ ) or non-symbolic objects such as proof structure. At school level the objects in the 
majority of cases are symbols. Hiebert and Lefevre (1986) argue that in most school tasks the 
aim is to transform a given symbol form to an answer form by executing a sequence of symbol 
manipulation rules. They are therefore of the opinion that most of the procedural knowledge that 
school students possess are chains of prescriptions for manipulating mathematical symbols.  

The description and definition of procedural and conceptual knowledge of Hiebert and Lefevre 
(1986) however has drawn some criticism. Star (2005) maintains that the definitions of 
procedural and conceptual knowledge of Hiebert and Lefevre (1986) do not fully account for 
knowledge type and knowledge quality. An assumption that can be drawn from their definition 
of conceptual knowledge is that conceptual knowledge is always deep and rich in relationships. 
Star (2005) however maintains that cognitive connections of conceptual knowledge may be 
limited and superficial or they may be extensive and deep. He maintains that a learner’s initial 
conceptual knowledge is generally limited and superficial, but over time may develop, gain 
depth and establish more connections.    

The definition for procedural knowledge (as proposed by Hiebert & Lefevre (1986)) seems to 
indicate that procedural knowledge is superficial and is not rich in connections (Star, 2005). This 
in turn seems to lead to a dichotomous state as far as students are concerned – that a student 
either knows how to do a procedure or does not know. However, this is not true in all cases as a 
procedure can be known on a very superficial level as a chronological list of steps or it can be 
known on a more abstract level; it may include planning knowledge in its cognitive 
representation. It is possible that a student possesses knowledge about the purpose of each part of 
a procedure and how these parts fit together. This is known as teleological semantics (Van Lehn 
& Brown, 1980). Planning knowledge of a procedure includes knowledge of the order of steps, 
the goals and sub-goals of steps, the type of situations in which the procedure might be used, 
possible constraints imposed upon the procedure by the given situation and any heuristics which 
might be inherent in the situation. Star (2005) contends that if a student possesses such 
procedural knowledge then the knowledge is both deep and connected.  

http://etd.uwc.ac.za/



 

 

 

 

  

50 
 

Star (2005) argues that skilled problem-solvers in mathematics are also flexible in their use of 
known procedures. A student who does not possess such flexible procedural knowledge will not 
always be able to solve unfamiliar problems where the solution requires the student to use known 
procedural knowledge. The student will also not be able to produce a maximally efficient 
solution in the absence of such flexible procedural knowledge. One outcome of such flexibility is 
that students who possess such knowledge will have the ability to generate maximally efficient 
solutions for known and even sometimes unknown problem situations. Star (2005) contends that 
flexible procedural knowledge is deep procedural knowledge and will enable a student to use 
mathematical procedures which would best fit a provided known or novel problem situation. 

Procedural knowledge on its own – even if it is well developed – does not always imply 
understanding. Meaningful mathematical learning has occurred if cognitive relationships 
between units of knowledge are created or recognized (Hiebert & Lefevre, 1986). Thus, the 
converse of meaningful learning is rote learning. Rote learning is defined as learning where 
cognitive relationships between units of knowledge are not established or are not well 
established. Since the knowledge is not linked with other knowledge, the holder of such 
knowledge will not be able to generalize to other situations where the knowledge is required. 
Knowledge gained through rote learning can only be accessed and applied in contexts that are 
very similar to the original (Hiebert & Lefevre, 1986). 

It is argued that it is highly unlikely that conceptual and procedural knowledge are possessed as 
entirely independent knowledge systems (Hiebert & Lefevre, 1986). Even in cases where 
inefficient mathematical learning has taken place, some connections will be established between 
conceptual and procedural knowledge. Fully developed mathematical knowledge includes 
significant and fundamental cognitive connections between conceptual and procedural 
knowledge. Procedures are said to access and act on conceptual knowledge translating it into 
something observable. Procedures therefore inform on the state of conceptual knowledge.  

The creation of appropriate cognitive connections between conceptual and procedural knowledge 
is thought to contribute to efficient memory storage and successful retrieval of procedures in 
applicable circumstances. Hiebert and Lefevre (1986) advance several reasons why procedures 
are stored and retrieved more successfully when they are connected to conceptual knowledge. If 
procedures are connected through conceptual knowledge they become part of a network of 
information that is held together by semantic relationships which do not deteriorate easily, since 
memory endures longer for meaningful relationships. As the procedures are part of a knowledge 
network, many alternative cognitive links can be used to access and retrieve them. It is thought 
that conceptual knowledge also has an executive control function in that it is utilized to monitor 
not only the selection and use of a procedure, but also to determine the reasonableness of the 
procedural outcome.  

Conceptual knowledge only becomes useful in solving mathematical tasks when it is converted 
into an appropriate form. When a student is introduced to a new mathematical topic, initially the 
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student does not know the procedures by which to solve mathematical problems that are based 
on the topic. In the absence of knowledge of procedures, known problems are solved by applying 
mathematical facts and concepts in an arduous way. However, as the student becomes exposed to 
similar problems and these are solved repeatedly, conceptual knowledge is gradually transformed 
into procedural knowledge. In this way knowledge that was initially conceptual can become 
procedural. Hiebert and Lefevre (1986) argue that this is a very important process in the learning 
of mathematics since well-known procedures can reduce the cognitive effort required and this 
cultivates a capacity to solve more complex problems. They maintain that automated procedures 
release cognitive resources which can, for example, be utilized to look for relationships between 
novel aspects of problems or where relevant conceptual knowledge can be applied.     

Hiebert and Lefevre (1986) argue that sound mathematical knowledge includes significant and 
fundamental cognitive links between procedural and conceptual knowledge. They maintain that 
for students to be competent in mathematics, they need to possess both procedural and 
conceptual knowledge as well as cognitive links between these two essential knowledge 
components. Understanding in mathematics is said to occur when new mathematical information 
is appropriately connected to the existing knowledge networks.  
 
  
3.6 Developmental relations between Conceptual and Procedural knowledge 

The development of procedural and conceptual knowledge is central in the learning of 
mathematics. An enduring debate in the mathematics education community however is centered 
around which of these knowledge types should enjoy primacy during instruction. Rittle-Johnson 
et al (2015) maintain that the debate is based on the fact that people have different beliefs about 
the cognitive development of conceptual and procedural knowledge. Consequently, many of the 
theories concerning the development of conceptual and procedural knowledge in mathematics 
have focused on which type of knowledge develops first in a given mathematical domain (Rittle-
Johnson, Siegler & Alibali, 2001).  

It is generally accepted that conceptual knowledge underpins and in many instances, leads to the 
development of procedural knowledge (Rittle-Johnson, Schneider & Star, 2015). Conceptual 
understanding is defined as the comprehension and connection of concepts, operations and 
relations. An important question therefore is whether it is always the case that conceptual 
understanding should be achieved first to establish a foundation from which procedural skill can 
develop? In other words, if conceptual knowledge is focused on first during instruction does this 
lead to better learning of mathematics or is the converse true? Rittle-Johnson et al (2001) argue 
that the debate regarding which type of knowledge develops first might prevent us from gaining 
a better understanding of both the gradual development of each knowledge type and the relations 
between the two knowledge types.  
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There are four theoretical viewpoints concerning relations between procedural and conceptual 
knowledge (Schneider, Rittle-Johnson & Star, 2011). Each of these theories is supported by 
some empirical evidence, but is at the same time contradicted by other evidence. According to 
the concepts-first theory, students first acquire conceptual knowledge in a domain and 
subsequently use this conceptual knowledge to generate procedures to solve problems. In the 
procedures-first theory it is argued that students first learn procedures for solving problems in a 
domain and then gradually develop conceptual knowledge through repeated solving of problems 
(Rittle-Johnson et al, 2001). 

My support lies with the iterative model as proposed by Rittle-Johnson, et al (2001). A major 
premise of this theory is that either procedural or conceptual knowledge may develop first, but 
one type of knowledge does not as a rule develop before the other. The authors argue that it is 
often the case that a particular type of knowledge is incomplete. More specifically, one type of 
knowledge might be better developed at a particular point in time, but this does not imply that 
the other type of knowledge is totally absent. Generally, initial knowledge in any domain is very 
limited. The contention is that levels of prior knowledge in a domain determine which type of 
knowledge will emerge first, and set the learning process in motion.  

It is argued that conceptual knowledge is general and abstract and resultantly can be generalized 
to new problem types (Schneider et al, 2011). Procedural knowledge is thought to be more tied to 
a specific problem type because procedures are normally practised with a specific type of 
problem. Thus, it is argued that if students have some prior knowledge of material to be learned 
then conceptual knowledge might play a bigger role in the development of procedural knowledge 
than vice versa.  Students with little prior knowledge in a domain tend to develop procedural 
knowledge first which subsequently facilitates the development of conceptual knowledge. For 
example, when students are introduced to the topic of subtraction of real numbers they often 
learn the procedure first and then through exposure to different types of problems in this domain 
develop the conceptual understanding. According to the iterative model therefore, improved 
conceptual knowledge results in improved procedural knowledge. Improved procedural 
knowledge in turn leads to improved conceptual knowledge, which then leads to improved 
procedural knowledge and so on. 

As mentioned previously when students are first introduced to a mathematical topic their initial 
knowledge of the topic tends to be very limited. Consequently, it is often the case that students 
know a little about a topic, but do not fully understand the topic. Conceptual knowledge is 
indispensable for the construction, selection and correct application of procedures. Yet practising 
known procedures is thought to help students develop and deepen understanding of concepts. 
The main argument therefore is that both kinds of knowledge are required for effective 
mathematical learning and that over time each type of knowledge is required to strengthen the 
other. Additionally, if conceptual knowledge regarding a mathematical topic has not as yet 
reached a mature state, then a student who possesses such knowledge will tend to use the 
conceptual knowledge laboriously when constructing a solution procedure to a given 
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mathematical task. Instruction in mathematics should therefore be directed towards developing 
both procedural and conceptual knowledge.  

A student with low expertise in a mathematical domain usually has fragmented knowledge and is 
without the ability to ‘see’ how procedures and concepts relate to each other in the domain. As 
expertise in a domain increases so the ability to integrate the conceptual and procedural pieces of 
knowledge into a coherent knowledge structure increases (Baroody & Dowker, 2003; Linn, 
2006; Schneider & Stern, 2009; Schneider et al, 2011).  

In order to determine relations between conceptual and procedural knowledge, each must be 
assessed independently using multiple measures (Rittle-Johnson, Schneider & Star, 2015). Tasks 
used to measure conceptual knowledge are usually relatively unfamiliar to the research 
participants. This is so that participants are forced to produce a possible solution from their 
conceptual knowledge as opposed to applying a known procedure. Hence conceptual knowledge 
measures include tasks such as evaluating the correctness of a procedure or an example; and 
providing definitions and explanations of concepts (Crooks & Alibali, 2014; Rittle-Johnson & 
Schneider, 2015).  

Tasks used to measure procedural knowledge are usually familiar to participants and involve 
problem types that participants have solved before. Measurement of procedural knowledge 
normally involves solving problems where the outcome measure is usually the correctness of the 
solutions provided. In some cases, procedural tasks include near transfer problems. Near transfer 
problems include problem types that have an unfamiliar feature and which require the student to 
recognise that a known procedure is relevant, or that a slight modification of a known procedure 
can be utilized to deal with the unfamiliar feature. Rittle-Johnson et al (2015) maintain that 
continuous knowledge measures should be used to measure both types of knowledge since these 
types of measures capture gradual changes in knowledge as well as depth and breadth of 
knowledge. 
 
 
3.7 Students’ level of expertise 

In order to design instructional strategies that are effective and that satisfy the needs of students 
it is important to determine levels of student expertise rapidly (Kalyuga, 2007). Kalyuga (2007) 
argues that knowledge structures in long-term memory regulate our ability to deal with 
knowledge-based cognitive activities. Cognition is negatively affected if knowledge structures in 
long-term memory are not well developed for a specific class of tasks. It is therefore imperative 
to be able to determine levels of knowledge acquisition for a given class of tasks since these 
levels are an indicator of level of expertise for that class of tasks. Hence level of expertise can be 
determined by determining level of acquisition of knowledge structures.  
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In the present study levels of acquisition of procedural and conceptual knowledge (and 
concomitant reasoning abilities based on these knowledge structures) for a specific class of 
mathematical tasks are therefore perceived to be a measure of level of expertise.  

The first step diagnostic method is a method that is utilized to determine students’ level of 
expertise (Blessing & Anderson, 1996; Sweller et al, 1983). This method involves presenting 
learners with selected mathematical tasks for a limited time and then requesting them to indicate 
their first step towards a solution for each task. The method is based on the idea that well-learned 
higher-level solution procedures would allow more experienced learners to generate advance 
steps of the solution quickly and to skip some intermediate steps (Blessing & Anderson, 1996; 
Sweller et al, 1983). These well-learned procedures are thought to be automated in the majority 
of cases. Different (presented) first steps are therefore perceived to be indicators of different 
levels of expertise. The first-step diagnostic method was validated in a series of studies in 
algebra, coordinate geometry, and arithmetic word problems. Although the first-step diagnostic 
method was not employed in my study I am of the opinion that should participating students 
generate advance steps and skip some intermediate steps during testing situations that these can 
then be seen as indicators of expertise level. I am also of the view that if students perform some 
advance steps in a single step, then it is also an indication of an advanced expertise level.  

It is generally accepted that problem-solving in mathematics requires both written steps and 
complex cognition. Cognition in turn requires the establishment of cognitive connections 
between different pieces of knowledge. The connections can be made between pieces of 
knowledge that are already established in memory or they can be made between information that 
is newly presented and prior knowledge. The written steps are the external manifestation of the 
internal cognitive processes.   

The difference between ‘the next step’ and a cognitive connection is that in order to write the 
next step in a mathematical argument (or solution procedure) you first need some connection 
with the previous step. This connection can take various forms such as a definition and a 
previously established result. I think it is commonly understood that the next step means the next 
written statement in a mathematical argument. The production of this next step in the majority of 
cases requires the bringing together of more than one idea (cognitive connections). It is a 
requirement in mathematical arguments that the written step is premised on a coherent chain of 
reasoning. In order for the argument to make sense step-by-step and as a coherent whole, 
connections need to be made in a specific order. Violation of this logical order will in most cases 
lead either to an inconclusive argument (or solution) or to an incoherent argument (or solution).  

A next step that violates a mathematical principle or that does not follow logically from the 
previous step is perceived to be the result of incorrect reasoning or reasoning that is based on a 
misconception. The manner in which steps are presented in an argument therefore provides 
instructors of mathematics with insight into the level of development of mathematical reasoning 
in students, and into any misconceptions held by the student.  
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A distinction is made between errors and slips in terms of mathematical mistakes (Olivier, 1989; 
Brodie, 2014). Slips are defined to be mistakes that are easily corrected when they are pointed 
out. Slips are careless mistakes made by both experts and novices. Errors on the other hand are 
thought to arise from misconceptions. Misconceptions are defined to be conceptual structures 
constructed by learners that make sense in relation to their current knowledge, but that are not 
aligned with conventional mathematical knowledge (Brodie, 2014). The argument I want to 
present here however does not concern what happens when mistakes are presented in a solution 
procedure but rather what inferences can be drawn from the way steps are presented in a solution 
procedure or mathematical argument. 

The majority of mathematical tasks require that more than one connection be made between 
concepts held in memory. As the different ideas are processed using conceptual knowledge, it 
becomes exceedingly difficult to hold the results of all processed thoughts in working memory 
(because of its limited capacity).  Hence students who are newly introduced to a mathematical 
topic will tend to write down the conclusion of each of the constituent parts of their reasoning 
process. That is, they will tend to write many more steps than someone who has more experience 
with the topic.  

A student who has had more exposure to and practice in a specific class of problem will have 
automated many of the reasoning processes involved in problem-solving. Certain parts of the 
reasoning process will not be brought into conscious focus (in working memory) since it is 
automated and will manifest itself in the solution procedure as redundant steps. That is, since it is 
no longer part of conscious reasoning it will not be a written step in the solution procedure. It is 
not written as a step since it is automated and so might be perceived to be obvious. Moreover, it 
is not included since it is not consciously attended to, and therefore it may be perceived to be 
included in the part that is consciously attended to. Steps that are normally performed separately 
in different lines – as a result of automatization – might also be performed simultaneously in one 
line in the argument. I posit therefore that if intermediate steps in a solution procedure are 
skipped or more than one step is performed simultaneously, then this is an indication of a higher 
level of expertise in a specific class of tasks. The more advanced the student’s level of reasoning 
the more some intermediate steps in a solution become redundant.  Conversely, one might infer a 
lower level of expertise if a student laboriously performs all steps of a solution procedure. I will 
utilize proof of a mathematical statement in the context of elementary number theory in order to 
further flesh out the above arguments.   

A mathematical statement and its contra-positive are logically equivalent. Therefore, to prove a 
mathematical statement by contra-position one first writes the contra-positive of the given 
statement and then proves the contra-positive statement by a direct proof.  
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The method of proof by contraposition therefore consists of the following steps: 

(i) Express the statement to be proved in the form: ∀ 𝑥𝑥 ∈ 𝐷𝐷, 𝑖𝑖𝑖𝑖 𝑃𝑃(𝑥𝑥)𝑡𝑡ℎ𝑒𝑒𝑛𝑛 𝑄𝑄(𝑥𝑥); 
(ii) Rewrite this statement in the contra-positive form: 

  ∀ 𝑥𝑥 ∈ 𝐷𝐷, 𝑖𝑖𝑖𝑖 ∼ 𝑄𝑄(𝑥𝑥) 𝑡𝑡ℎ𝑒𝑒𝑛𝑛 ∼ 𝑃𝑃(𝑥𝑥).  
(iii) Prove the contra-positive by a direct proof: 

(a) Suppose 𝑥𝑥 is a particular but is an arbitrarily chosen element of 𝐷𝐷 such that 𝑄𝑄(𝑥𝑥) 
is false; 

(b) Show that 𝑃𝑃(𝑥𝑥) is false. 
 
If one wants to prove a statement by contraposition therefore, the first step is to write the contra-
positive of the given statement. This requires one to first make the connection between contra-
position and its definition. In other words, it requires one to know that one must take the 
negation of both parts of the universal statement and then write it in such a way that one starts 
with the consequent and ends with the antecedent part of the given statement. That is, the step 
requires one to write the contra-positive, but first one needs to make the connection between 
contraposition and its definition. This is the first connection. It is important to note that one does 
not write down what contra-positive means, but that one applies the meaning of contra-position 
to the given statement (this is the second connection: applying the meaning). Hence in order to 
write the next step one needs to make more than one connection in some cases.  
 
The second step requires one to use the direct method of proof. Again, this requires one to make 
a connection between the contra-positive statement in the first step and what one is supposed to 
do next (the second step). In other words, one then has to use the antecedent of the contra-
positive statement and to apply it in order to deduce the consequent of the statement by using 
prior knowledge like factorization, definitions, etc. This requires one to make another connection 
between the given statement and the required prior knowledge. That is, one needs to connect the 
statement with something one has learned in the past.  

In the following sub-section I present an example to illustrate the foregoing arguments.    
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Prove the following by contraposition: 

For all integers a, b and c, if  a ∤ bc then  a ∤  b. 

(Since step1 has already been done in the problem statement we start with step 2 in the proof) 

Proof: 

Steps Connections 
Step 2: Write the statement in the contra-
positive:  
𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑛𝑛𝑡𝑡𝑒𝑒𝑖𝑖𝑒𝑒𝐹𝐹𝑖𝑖 𝑎𝑎, 𝑏𝑏 𝑎𝑎𝑛𝑛𝑑𝑑 𝑐𝑐, 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑏𝑏⁄ 𝑡𝑡ℎ𝑒𝑒𝑛𝑛  
𝑎𝑎 𝑏𝑏𝑐𝑐⁄                                                       (i) 

Connection 1: What is contraposition? 
Connection 2: Application of contraposition to 
the specific statement 

Step 3: Prove the contra-positive by a direct 
proof: 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐹𝐹𝑖𝑖𝑒𝑒 𝑎𝑎, 𝑏𝑏 𝑎𝑎𝑛𝑛𝑑𝑑 𝑐𝑐 𝑎𝑎𝐹𝐹𝑒𝑒 𝑎𝑎𝐹𝐹𝑏𝑏𝑖𝑖𝑡𝑡𝐹𝐹𝑎𝑎𝐹𝐹𝑖𝑖𝑎𝑎𝑎𝑎 𝑐𝑐ℎ𝐹𝐹𝑖𝑖𝑒𝑒𝑛𝑛  
𝑖𝑖𝑛𝑛𝑡𝑡𝑒𝑒𝑖𝑖𝑒𝑒𝐹𝐹𝑖𝑖 𝑖𝑖𝑆𝑆𝑐𝑐ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 𝑎𝑎 𝑏𝑏⁄ ,                      (ii) 
 
 
𝑡𝑡ℎ𝑒𝑒𝑛𝑛 𝑏𝑏 = 𝑎𝑎𝑎𝑎 𝑖𝑖𝐹𝐹𝐹𝐹 𝑖𝑖𝐹𝐹𝑠𝑠𝑒𝑒 𝑖𝑖𝑛𝑛𝑡𝑡𝑒𝑒𝑖𝑖𝑒𝑒𝐹𝐹 𝑎𝑎       (iii) 
 
 
𝑏𝑏𝑐𝑐 = 𝑎𝑎𝑎𝑎𝑐𝑐 – multiplying by 𝑐𝑐                (iv) 
 
 
𝑏𝑏𝑐𝑐 = 𝑎𝑎(𝑎𝑎𝑐𝑐) – Now 𝑎𝑎𝑐𝑐 is an integer since the 
product of integers is an integer         (v) 
 
Therefore 𝑎𝑎 𝑏𝑏𝑐𝑐⁄                                   (vi) 

Connection 3: Start with the antecedent of the 
contra-positive statement i.e. make a 
connection between direct proof and its first 
step. 
 
Connection 4: Make a connection with 
definition of divisibility. 
 
Connection 5: Connecting the antecedent to 
the consequent  
Connection 6: Connection with properties of 
integers 
 
Connection 7: making a connection with 
definition of divisibility again, but this time in 
the reversed direction 

 
In the process of proving, some parts of the above proof may be skipped by experts. For 
example, in (ii) the supposition that 𝑎𝑎, 𝑏𝑏 𝑎𝑎𝑛𝑛𝑑𝑑 𝑐𝑐 are arbitrarily chosen is skipped in many cases 
since it is assumed that this known. Similarly, in (v), the part that indicates that 𝑎𝑎𝑐𝑐 is an integer 
might sometimes be omitted since it is assumed obvious. It should be noted that much of the 
reasoning that takes place is not made visible but can be assumed on the basis of the written 
argument presented. This is also a common occurrence in problem solving in mathematics.  

Hence it is my argument that level of expertise can be inferred from redundant steps and how 
some ideas are used together in presented steps.  
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3.8 Teaching strategy 

It is generally agreed that both conceptual and procedural knowledge are required for 
mathematical competence. It was the intention of this research to determine whether a teaching 
strategy based on spiral revision and productive practice would improve the mathematical 
proficiency of research participants.  

Mathematical proficiency is the term used by Kilpatrick and his colleagues (National Research 
Council, 2001) to capture what it means to learn mathematics successfully (see 1.3). Kilpatrick 
and colleagues (National Research Council, 2001) are of the opinion that the five strands of 
mathematical proficiency are interwoven and interdependent. This assertion has major 
implications for how successful learning of mathematics is viewed. The following quote 
provides more insight as to how important they view this statement to be: 

The most important observation we make about these five strands is that they are 
interwoven and interdependent. This observation has implications for how students 
acquire mathematical proficiency, how teachers develop that proficiency in their 
students, and how teachers are educated to achieve that goal. (National Research 
Council, 2001, pg 5)    

The teaching strategy employed in this research is based on the above description of 
mathematical proficiency. This research however only focused on the strands conceptual 
understanding and procedural fluency. The motivation for this decision is based on the following 
arguments.  

The argument has been presented that the most important aspect of the five strands of 
mathematical proficiency is that they are interwoven and interdependent. This implies that 
development of any strand will have a developmental effect on the other strands as well. Since 
the strands are believed to be interwoven it would be a very difficult exercise to investigate how 
each of these strands is influenced individually by a teaching strategy. Furthermore, research has 
shown that development of the strands conceptual understanding and procedural fluency are 
major contributors to the development of mathematical proficiency (Hiebert & Grouws, 2007). I 
therefore chose to focus only on the strands conceptual understanding and procedural fluency in 
order not to get distracted by too much data that is interconnected. 

Spiral revision (or repeated revision) is defined as the recurrent practising of previously covered 
mathematical work in specified content areas (Julie, 2013) (see 1.5). When students are required 
to solve mathematical tasks using newly learned procedures or concepts, their working memories 
may easily be overloaded since they have to deal with many new elements of information at 
once.  Conversely if students had had some practice in a mathematical content area, they would 
be able to use their existing knowledge structures to make inferences and to make connections 
between well-entrenched concepts in their long-term memories so as to solve mathematical 
problems presented to them (Cronbach & Snow, 1977; Kalyuga, 2007; Rittle-Johnson et al, 
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2009). The importance of practising procedural skills to the extent that these become part of long 
term memory (automatization) cannot be underestimated. This is a key reason why I advocate 
the need for spiral revision. That is, sometimes students struggle with mathematics because they 
have not practised lower level procedural skills to the extent that these have become part of their 
long-term memories. These lower level procedural skills in many instances are the building 
blocks of the higher order skills.   

An important consideration in learning in general and for mathematics in particular is the 
problem of forgetting. Unless they consciously review learned material, humans forget 
approximately half of newly learned knowledge in a matter of days or weeks (Ebbinghaus, 1964; 
Rubin & Wenzel, 1996; Averell & Heathcote, 2010; Murre & Dros, 2015). The speed of 
forgetting is dependent on factors such as the difficulty of the learned material, how the material 
is presented, depth of learning and physiological factors such as stress and sleep. Very few 
studies have investigated retention of mathematical procedures and concepts. In particular, there 
is a dire lack of research into how the distribution of practice affects the retention of 
mathematical knowledge that requires more than verbatim recall. 

Although Brownell’s arguments (1956) concerning mathematical practice are not based on 
empirical studies and are confined to the domain of arithmetic, they nonetheless provide very 
useful suggestions on how to use practice to improve mathematical learning and retention of 
knowledge. Brownell (1956) argues that in mathematical learning understanding can happen in 
an instant, but to gain facility with mathematical procedures, practice is required. There are 
however different types of practice that can be utilized. Brownell (1956) is of the view that many 
different types of practice are possible and that these practice types can be placed on a 
continuum. For him, at one end of the continuum there is repetitive practice and at the other 
extreme, varied practice.  

Varied practice is defined as practice which involves different approaches or procedures that are 
employed to deal with the same type of problem. This type of practice is normally used when the 
aim is to achieve or stimulate deeper understanding. Repetitive practice is defined as practice 
whereby the same kind of procedure is practiced over and over.  

Repetitive practice is utilized in the following instances: 

• when the learning goal is to achieve competence;  
• to develop the ability to identify the most efficient and economical way to solve a 

mathematical problem;  
• and to assimilate the learning into long-term memory.  

Thus, it is between the extremes of repetitive and varied practice that every other type of 
practice can be placed. These other types of practice are a combination of varied and repetitive 
practice and differ in the extent to which either repetition or variation is employed. Brownell 
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(1956) maintains that in order to become proficient in arithmetic, both types of practice are 
required.  

An empirical study done by Rohrer and Taylor (2006) examined how retention of mathematical 
knowledge is influenced by distributed practice and overlearning practice. Distributed practice is 
a strategy to promote learning and retention in which practice of specified knowledge and skills 
is distributed over multiple sessions. Overlearning is a strategy whereby a student first masters a 
skill and immediately continues to practice the same skill (Rohrer & Taylor, 2006). The term 
overlearning might however be perceived as negative since it can be compared to terms such as 
over-eating and also, the type of practice described by overlearning seems to be very similar to 
repetitive practice. I therefore prefer the term repetitive practice and will henceforth use this 
term instead.     

The retention of knowledge in the learning of mathematics is absolutely crucial since in many 
cases prior knowledge is required to solve presented problems. It is thus important to know 
which type of practice would best enhance retention of mathematical procedures and concepts. A 
very popular teaching strategy in mathematics is to present students with an example of a 
specific type of problem and then require of the students that they practise solving many of the 
same type of problem immediately. This practice is usually done as a once-off exercise and can 
thus be classified as repetitive. Research done by Rohrer and Taylor (2006) has shown that long-
term retention of a mathematical procedure was better aided by distributed practice. In this study, 
I utilized both distributed and repetitive practice strategies. I utilized repetitive practice mainly 
for mastery and distributed practice for retention purposes and for deeper understanding. 

The strategy followed in the research was that completed work was revised in class on an on-
going basis throughout the semester. Although the majority of revision problems were restricted 
to a specified content area or concept (the problems required knowledge from only one content 
area or concept), certain problems required integrated knowledge.  

A major problem in the learning of mathematics is that students tend to compartmentalize 
mathematical knowledge. Ball (1988) argues that mathematics in the school curriculum is 
presented in compartments and mathematical content is treated as a collection of discrete bits of 
procedural knowledge. A consequence of this tendency to compartmentalize mathematical 
knowledge is that the cognitive load required in knowing and using mathematics is considerably 
increased. Students instructed in this manner will have a low level of knowledge integration and 
as a result knowledge accessibility will be negatively affected.  

Consequently, the revision utilized in this study included problems whose solutions are based on 
a combination of two or more concepts from different, previously covered content areas. In 
addition, where possible, the solutions required the use of flexible procedural knowledge. The 
following is an example of such a problem based on concepts from different content areas 
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(content areas of exponential equations and trigonometry) and which requires the use of flexible 
procedural knowledge:     

 Solve for 𝑥𝑥: 82𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 16, 𝑖𝑖𝑖𝑖  𝑥𝑥 ∈ [0°; 360°]  

Hiebert and Lefevre (1986) argue that sound mathematical knowledge includes significant and 
fundamental cognitive links between procedural and conceptual knowledge. They maintain that 
for students to be competent in mathematics they need to possess both procedural and conceptual 
knowledge as well as cognitive links between these two essential knowledge components. They 
describe rote learning as learning that produces knowledge which is closely tied to the context in 
which it was learned, and that is devoid of relationships with other knowledge. The consequence 
is that knowledge acquired through rote learning can only be accessed and applied in contexts 
that mirror the context in which it was learned.  

Spiral revision was used in conjunction with productive practice in the study. Julie (2013) argues 
that productive practice is a didactic strategy in which students are exposed to deepening 
thinking-like problems with the aim of enriching their conceptual knowledge in requisite content 
areas of the specified mathematics curriculum. The idea in this teaching strategy therefore was to 
enhance the conceptual knowledge of participating students. As indicated earlier the enhanced 
conceptual knowledge will in turn support enhancement of procedural knowledge in an iterative 
process. The following is an example of a deepening thinking-like problem: 

Problem-solving in mathematics requires students to view mathematical concepts from different 
angles. For example, a function can be viewed in terms of its operational character, as a process 
of co-variation (how the dependent variable co-varies with the dependent variable) or as a 
mathematical object (Doorman et al., 2012). The following is an example of such a question: 

 For what values of 𝑥𝑥 will: {(2𝑥𝑥; 2𝑥𝑥 − 1); (𝑥𝑥2 − 3; 3𝑥𝑥) } not be a function? 

This question requires the student to think of the function in terms of its operational character, 
but importantly, also to utilize the definition of the function concept to solve the problem and in 
so doing perhaps to enhance an understanding of the function definition. The solution strategy is 
also based on the exploitation of a known procedure. The student however has to make the 
connection between the concept and the procedure. The objective with deepening thinking-like 
questions is to enhance and to deepen conceptual knowledge of students while the student makes 
cognitive connections between procedural and conceptual knowledge.  

The following solution illustrates the foregoing claims: 
Functions can be defined in more ways than one. Here I will use the following definition: 
A function 𝑖𝑖 from a set 𝐴𝐴 to a set 𝐵𝐵 is a relation that assigns to each element 𝑥𝑥 in the set 𝐴𝐴 
exactly one element 𝑎𝑎 in the set 𝐵𝐵. The set 𝐴𝐴 is the domain of the function and the set 𝐵𝐵 is the 
range of 𝑖𝑖. 
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This definition implies the following: 

1. Each element in A must be matched with an element in B. 
2. Some elements in B may not be matched with any element in A. 
3. Two or more elements in A may be matched with the same element in B. 
4. An element in A cannot be matched with two different elements in B. 

 
Since the question requires us to find those 𝑥𝑥 values that will cause the ordered pairs not to 
represent a function we utilize Statement 4. That is, we want the first co-ordinates to be the same 
and the second co-ordinates to be different. What we are therefore attempting to achieve is to 
make explicit the fact that a first co-ordinate cannot be matched with two different second co-
ordinates. The student would therefore be forced to think carefully about what the definition 
implies. To achieve this, we equate the first co-ordinates thus: 

𝑥𝑥2 − 3 = 2𝑥𝑥 

One should then realize that a known procedure may be utilized to solve for 𝑥𝑥. In other words, 
one could use the solution of quadratic equations. In the process the student should make a 
connection between the procedure and the concept. 

𝑥𝑥2 − 2𝑥𝑥 − 3 = 0 

(𝑥𝑥 + 1)(𝑥𝑥 − 3) = 0 

These provide two possible solutions: 

𝑥𝑥 = −1 𝐹𝐹𝐹𝐹 𝑥𝑥 = 3 

We have to check which 𝑥𝑥-value gives the desired result by substituting in the original co-
ordinate pairs in the following way: 

 𝑥𝑥 = −1, yields {(−2,−3); (−2,−3)}. This is not the desired result. 

If 𝑥𝑥 = 3, 𝑡𝑡ℎ𝑒𝑒𝑛𝑛 𝑤𝑤𝑒𝑒 ℎ𝑎𝑎𝑎𝑎𝑒𝑒 {(6,5); (6,9)}. This is the desired result, since we now have the first 
coordinates the same and the second coordinates different, which violates the 4th statement. This 
is to say an element in the domain cannot be matched with two different elements in the range. 

Spiral revision is based on a number of premises or ideas. The first of these is that direct 
instruction is better suited to students with low levels of prior knowledge in a mathematical 
domain. The second premise is that continuous practice over an extended period will allow for 
better retention and retrieval of indispensable knowledge. A third premise is that repeated 
practice should include testing practice which in turn will better develop automaticity of the 
requisite procedural skills. Testing practice refer to the retrieval of prior knowledge when 
presented with test items (see 1.5). Another premise is that development and increase of 
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procedural knowledge will aid in procedural flexibility and conceptual knowledge in a given 
mathematical domain. Each of these ideas will be discussed next. 

There is an ongoing debate in the mathematics education community regarding which would best 
aid learning in mathematics: unguided instruction (or minimally guided) or direct instruction. As 
already stated learning is defined as a change in long-term memory. The aim of instruction 
therefore should be to increase the efficiency with which information is stored in and retrieved 
from long-term memory (Kirschner, Sweller & Clark, 2006). In mathematical learning, 
automated procedural skills are greatly beneficial in the solving of complex cognitive tasks. A 
lower level procedural skill that is automated would free cognitive capacity to deal with other 
features of the problem and would thus allow for cognitive connections to be made between 
other pieces of information provided.  

Direct instruction is defined as instruction that provides information which comprehensively 
explains the concepts and procedures students are required to learn (Kirschner et al, 2006). 
Unguided or minimally-guided instruction, by comparison, is defined as instruction in which 
students are required to discover or construct essential information for themselves as opposed to 
being presented with essential information (Kirschner et al, 2006). Unguided instruction has been 
labelled variously as: discovery learning (Anthony, 1973; Bruner, 1961); problem-based learning 
(Barrows & Tamblyn, 1980; Schmidt, 1983); inquiry learning (Papert, 1980; Rutherford, 1964); 
experiential learning (Boud, Keogh & Walker, 1985; Kolb & Fry, 1975); and constructivist 
learning (Jonassen, 1991; Steffe & Gale, 1995). 

Kirschner et al (2006) argue that instruction which does not take human cognitive architecture 
into consideration will not be very effective. Some of the disadvantages of unguided or 
minimally-guided instruction are ascribed to the fact that its design features do not include 
human cognitive architecture. Also, as indicated earlier, working memory is the cognitive 
structure wherein conscious processing of information occurs. When working, memory is 
required to process novel information, it is limited in terms of duration and capacity. Unguided 
or minimally-guided instruction requires that a student search a given problem for relevant 
information. The learning conditions therefore require a random search, which makes heavy 
demands on working memory. This heavy load on working memory does not allow for 
information to be moved to long-term memory and hence no effective learning can occur. 
Unguided or minimally guided instruction is however not totally without advantages. It is 
thought that students who discover or invent their own procedures in a domain have better 
transfer abilities and conceptual knowledge than students who have internalized taught concepts 
and procedures in that domain (Rittle-Johnson, 2006).  

Students in the novice- to intermediate-knowledge levels with regards to a mathematical domain 
or content area are thought to be better served by direct instructional guidance in the concepts 
and procedures that are to be learnt (Kirschner et al, 2006). Experts in a mathematical content 
area are skilful because their long-term memory contains copious amounts of networked 
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information concerning the content area. Conversely novices to a domain do not have properly 
connected prior knowledge and hence would have to make heavy use of their working memory 
in the learning process. Direct instructional guidance would circumvent the limitations of 
working memory since the student is presented with the procedures and concepts and hence no 
random searching through a problem space is required.  

In this study participating students were very diverse in terms of prior knowledge of the content 
areas that were covered in the research. While some students could be classified as novices in 
many of the topics covered, others had prior exposure to some of the content that was taught. In 
most cases the teaching strategy was based on direct instructional guidance.  

Long-term memory retrieval and storage play a key role in learning (Calderon-Tena & Caterino, 
2016). It is thought that long-term memory storage and retrieval is comprised of associative 
memory skills and retrieval fluency. Associative memory skill is the ability to integrate new 
information with previously learned information and to store it in long-term memory. Retrieval 
fluency is defined as the ability to retrieve previously learned information efficiently. Calderon-
Tena and Caterino (2016) conducted a study that assessed the relationship between long-term 
memory retrieval and mathematics, and mathematics problem solving achievement among 
elementary, middle and high school students in a national sample of American students. Their 
findings indicate that with an increase in age and grade, it is likely that an advanced capacity for 
long-term retrieval is a better predictor of both mathematics calculation and problem solving 
ability.  

As mentioned previously learning is assumed to have taken place if there is a change in long-
term memory. In other words, learning is assumed to have taken place if new information is 
appropriately connected and assimilated into long-term memory. It is normal practice to study 
content until one is able to recall it (that is, until it is learned) then to drop it from further study. 
In this study, it was my contention that even well learned material will be forgotten to some 
degree if it is not ‘refreshed’. The term refresh here refers to knowledge in long-term memory 
that is either restudied or retrieved. Retrieval therefore is not viewed as a neutral event but is 
seen as a learning event. So retrieval during testing is seen as a learning event that fixes 
(retention) and expands learning. Retrieval is thought to expand knowledge. This means that if a 
test item prompts the executive control to bring information into consciousness but cognition 
suggests that the information has to be adapted in order to provide a solution procedure, then the 
information will not be retained in exactly the same way it was retrieved. In other words, the test 
item causes the retained information to be connected to other information or to be connected in a 
different way, and in the process the retrieved information itself is changed. For example, during 
instruction a student is presented with the two-variable linear equation in the standard form:   
𝑎𝑎 = 𝑠𝑠𝑥𝑥 + 𝑐𝑐  (for example:   𝑎𝑎 = 3𝑥𝑥 + 4). Then in a subsequent test the student is presented 
with the equation in the form:  −3𝑥𝑥 + 5(𝑎𝑎 + 1) = 15 and is requested to determine the gradient. 
It is highly probable that the student would retrieve the schema for the standard form, compare 
the two equations and realize that the equation provided has to be manipulated into standard 
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form. As a consequence, a connection is made with the schema that contains previously learned 
manipulations of linear equations. This process changes the retained information to include 
connections to the specific type of manipulations of linear equations.     

It is generally assumed that effective learning occurs when material is revised. It has however 
been found that repeated retrieval practice during testing enhanced long-term retention to a 
greater extent than repeated restudying (Karpicke & Roediger, 2008; Carpenter, Pashler, Wixted 
& Vul, 2008). This idea has been explored in this research. Students wrote 5 tests and an end of 
module examination for the first semester during which the research was conducted. Each test 
contained questions on content that had previously been covered. So, for example, four of the 
five tests contained questions on linear functions. This meant students were expected to restudy 
previously covered content and then, whilst writing the test, to retrieve information regarding 
linear functions. This thus offered repeated retrieval practice for the content area. 

In the next section I discuss how the teaching strategy was implemented in the study. 

3.8.1 How the teaching strategy was effected in the study 

The teaching strategy that was implemented in the present research was premised on a direct 
instructional method, a version of continuous review and spiral testing. The continuous review 
strategy included the strategies of spiral revision and productive practice. In what follows I will 
elaborate on how each of the components of the teaching strategy was implemented in the study. 

The preferred instructional method for the study was the direct instructional method. Minimally 
guided instruction was used very rarely.  As explained in chapter 1 the objective of direct 
instruction is to provide information that fully explains the concepts and procedures that students 
are required to learn. An expository instructional method that attended explicitly to conceptual 
underpinnings and to connections between mathematical facts, procedures and ideas was 
employed (Hiebert & Grouws, 2007). On some teaching occasions students were allowed to 
struggle to master concepts and procedures. Productive struggle therefore formed part of the 
teaching strategy.  

Revision of completed topics formed an important part of the teaching strategy. Various forms of 
revision were utilized in the study. One part of the spiral revision strategy was based on a version 
of the review-as-you-go method (Wineland & Stephens, 1995). In this method content from 
topics covered in a chapter was reviewed through teacher questioning and problem presentation 
at the beginning of each class. When a new chapter was started review of the previous chapter 
was slowly faded out.  

On the completion of a topic in a chapter mass practice exercises (which included repetitive 
(overlearning) practice) was presented to students during lessons. Some of the problems 
presented to students during lessons were of the deepening-thinking-like kind. Tutorial 
assignments which were presented   to students once a week included problems based on topics 
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completed recently (in the week of the tutorial) as well as problems based on topics that were 
completed in the previous two to four weeks. Tutorial assignments also included deepening-
thinking-like problems which are based on the learning strategy of productive practice. Tutorial 
assignments therefore were mostly based on the learning strategy of distributed practice. 

Another component of the spiral revision strategy was based on the learning strategy spiral 
testing. The following delineation of how the spiral testing was employed only holds for the first 
semester since a slightly different format was employed in the second semester of the research. 
The basic principle of the method however holds for both semesters. Tests was written 
approximately every third week. The majority of the tests presented to students in the first 
semester of the research consisted of three sections each of which was based on different topics. 
Each section contained between four and seven questions.  At least one and at most two of the 
sections was based on content that was not part of recently covered content. Usually only one of 
the sections was based on current topics. For example the fourth test contained a section based 
on content that was covered approximately three months earlier, a section that was covered 
approximately two months earlier and a section that was covered more recently. Testing practice 
therefore was premised on both retrieval and distributed practice. 

The spiral revision component of the teaching strategy thus is comprised of various revision 
strategies: 

• Review-as-you-go 
• Mass practice 
• Repetitive practice 
• Distributed practice 
• Spiral testing (retrieval practice) 

The following diagram illustrates the basic design of the teaching strategy (see figure 1). It 
should be noted that this basic format was followed for the entire course and that productive 
practice was part of some lessons and tutorials. Moreover review of some of the earlier content 
would be slowly faded out from lesson 4 onwards.  
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Week 1: 
 

 

 

 

 
Week 2: 
 

 

 

 

 

Week 3: 
 

 

 

 

 

 

Figure 3.1: Basic design of teaching strategy 

 

3.9 Conclusion 

This chapter dealt with theories that I consider to be useful to describe phenomena, interpret 
results of the study, explain research findings, and to propose theories regarding the observed 
phenomena. Cognitive load theory in conjunction with theories regarding the human memory 
system and development of procedural and conceptual knowledge was used to describe, interpret 
and explain how the teaching strategy influenced participants in terms of their procedural 
fluency, conceptual understanding, levels of retention and transfer abilities. A theory regarding 
the effect of worry on mathematical performance was used to advance an explanation of the 
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knowledge and 
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Lesson 2: Review 
at start of new 
lesson + exposure 
to new content + 
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distributed practice   

Lesson 3: Review of 
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distributed and 
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content of previous 3 
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distributed practice   
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content of previous 4 
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and distributed practice   
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content of previous 5 
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distributed and varied 
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covered content of all 6 
lessons 
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content + mass, 
repetitive and 
distributed practice 

Lesson 8: Review of 
content of previous 7 
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distributed practice 

 

Lesson 9: 
Review of 
content of 
previous 8 
lessons + 
exposure to 
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Class test: 
Retrieval 
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performance of participating students and a theory is proposed as to how level of expertise of 
participants can be determined.  

It should be noted that not all of the theories discussed in this chapter will be afforded equal 
prominence in the explanatory framework in the study. Some theories will be central whilst 
others will be on the periphery of the proffered explanatory framework of the observed 
phenomena.  

The diagram below (see figure 3.2) shows where and the degree to which the various theories 
and strategies was utilized in this study. The bigger and thicker arrows indicate that a theory was 
used substantially in the explanatory framework or that a theory regarding observed phenomena 
is proposed. The smaller and thinner arrows indicate that a theory was used less and were not as 
prominent in the framework. The arrows were also utilized to indicate the degree to which a 
strategy feature was used in the study. The bigger and thicker arrows indicate that a strategy 
feature was utilized extensively and is a prominent part of the study while the smaller and thinner 
arrows is an indication that a strategy feature was used to a lesser degree and is therefore not a 
prominent part of the study. Some of the lines have arrows on both ends while others only have 
arrows on one end. Lines with arrows on both ends are used to indicate that theory is used to 
inform findings and conversely findings are used to inform theory. Alternatively, lines with 
arrows on both ends indicate that a strategy feature was informed by the findings as well as vice 
versa. Lines with only one arrow indicate that the theory was used to inform findings but that the 
reverse did not happen.       

Note that not all the strands of mathematical proficiency are shown in the diagram. Only the 
strands that formed part of the investigation are included.  
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Figure 3.2: Theory and strategy utilization 
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Many studies in fields such as psychology, cognitive psychology, cognitive neuroscience, etc. 
have investigated phenomena that deal explicitly with the teaching and learning of 
mathematics. Many of the findings from such studies elucidate some of the features of 
learning that instructors of mathematics could use in the improvement of teaching and 
learning. I believe that without such research mathematics education would be much weaker 
in terms of understanding underlying phenomena in mathematics teaching and learning. It is 
therefore essential that research findings from these contributing fields of research are used in 
the advancement of the teaching and learning of mathematics.  

In the next chapter I will discuss the research design of the study. 
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CHAPTER 4: RESEARCH DESIGN 
 
 
4.1 Introduction 

The process of research design requires researchers to make many multi-layered and 
interrelated decisions. Each decision is typically informed by a question or questions that the 
researcher attempts to provide answers to (Creswell, 2003). An initial question in educational 
research usually centres around the epistemology informing the research. The answer to the 
question as to which strategies of enquiry will be employed is ordinarily used by researchers 
to conceptualize a research approach or approaches. In turn these decisions inform the 
decision regarding methods of data collection and analysis. Furthermore, it is recommended 
that educational researchers base their choice of research approach on the research question 
or questions, the objective of the research, available populations, time and cost constraints, 
the possibility of the manipulation of an independent variable, and the availability of data 
(Johnson & Chistensen, 2012).  

In this chapter I will delineate the decisions that informed strategies of inquiry, methods of 
data collection and analysis in my research design.   
 
 
 4.2 Research Paradigm 

In educational research three major research paradigms or approaches are distinguished, 
namely quantitative research, qualitative research and mixed methods research. Quantitative 
research commonly employs the confirmatory scientific method to test theories and 
hypotheses. It uses quantitative data to determine whether the theories or hypotheses are 
confirmed or not. Quantitative researchers typically use a narrow-angle lens because they 
tend to focus on only one or a few causal factors at the same time while attempting to keep 
constant the factors that are not being studied. Quantitative researchers commonly attempt to 
use the data to identify cause-and-effect relationships that allow them to make probabilistic 
predictions and generalizations (Johnson & Chistensen, 2012).  The term probabilistic is used 
to indicate that a phenomenon is considered likely to occur as opposed to there being 
certainty about such an occurrence. By contrast, qualitative researchers collect qualitative 
data (normally non-numerical), and ordinarily follow the exploratory scientific method. 
Qualitative research is customarily used to describe local phenomena and in some instances 
to generate hypotheses or to construct theories (Johnson & Christensen, 2012). Qualitative 
researchers use a wide-angle lens to investigate in full detail human behaviour as it occurs 
naturally. In this paradigm, the researcher is considered to be the instrument of data 
collection. Quantitative and qualitative research also differs in how human behaviour is 
perceived in each of these frames. The assumption in quantitative research is that human 
cognition and behaviour are highly predictable and explainable. Conversely, in qualitative 
research human behaviour is viewed as being dynamic and changeable over time and place.         
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In mixed methods research, quantitative and qualitative research approaches are used 
conjointly. Johnson and Christensen (2012) argue that the three research approaches can be 
regarded as being part of a research continuum with qualitative research on the left, 
quantitative research on the right side and mixed research in the centre of the continuum. 
Research can therefore be either fully quantitative, fully qualitative, mixed with an emphasis 
on qualitative, or mixed with an emphasis on quantitative. The degree to which the two 
methods are mixed is dependent on practical concerns and on the research questions.   

Creswell (2003) describes a mixed methods research approach as one in which the researcher 
tends to base knowledge claims on pragmatic grounds. Pragmatism sees the problem as more 
important than the method of research and therefore in most cases relies on more than one 
approach in order to derive knowledge about the problem. The philosophical position adopted 
in the present study is based on pragmatism. 

However, the pragmatist argument does not take into account the fact that quantitative and 
qualitative methods represent two different paradigms and are thus incommensurate (Sale, 
Lohfeld & Brazil, 2002).  Fundamental to this argument is that the phenomenon under 
scrutiny is rendered differently by each of the two methods. This implies that one cannot use 
these two approaches to study different aspects of the same phenomenon. This in turn implies 
that one cannot use cross validation or triangulation to validate results of a mixed methods 
approach. However, it does not imply that one cannot use a mixed methods approach in a 
single study. Sale et al (2002) argue that if one distinguishes between phenomena by labelling 
the phenomenon investigated by each approach (and validating each separately) then a mixed 
method approach is appropriate.    

In this study the quantitative paradigm provided the framework for measuring mathematical 
knowledge and cognition (in terms of presence, type and range), whereas the qualitative 
approach was employed to investigate whether retention and transfer abilities can be 
observed. Both retention and transfer are incorporeal and were inferred from written 
productions of participants. A quantitative approach which is based on positivism therefore 
would have been inappropriate in this case. For the qualitative part of the research, case 
studies were utilized to develop a narrative based on analyses of written productions of 
participants. Hence this part of the study can be classified as case study research. In this study 
test and examination results were used as quantitative data, and analysis of test and 
examination responses were used as qualitative data.  

4.2.1 Conceptualization of the qualitative method employed in the study 

In this study, qualitative methods were also used to gain deeper insight into how research 
participants were influenced by the teaching strategy implemented. Qualitative methods 
therefore were utilized to explain some of the quantitative results in more depth. This was not 
done for all the quantitative results but only for one type of question. As indicated in chapter 
1, the main purpose of the qualitative method was to provide possible answers to the second 
research question. Findings of the quantitative and qualitative methods were combined to 
determine the effectiveness of the teaching strategy implemented. Moreover, the quantitative 
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results took temporal precedence over the qualitative results. The design of this study can 
therefore be classified as a type of explanatory sequential design although it does not adhere 
in the strict sense to this design type.  

Case study research is a form of qualitative research that is focused on providing a detailed 
account of one or more cases. A case is defined as a bounded system where it is incumbent 
on the researcher to identify and outline the boundaries of the system (Johnson & 
Christensen, 2012). 

In general, there are three distinct types of case study: intrinsic case studies, instrumental case 
studies and collective case studies (Stake, 1995). The researcher’s main objective with an 
intrinsic case study is to understand a specific case. The intrinsic case study is very popular in 
educational studies. Some of its uses include evaluation of educational programs like for 
example a study that evaluates the effectiveness of an implemented teaching strategy.  In an 
instrumental case study the researcher’s primary interest is in understanding something more 
general than the particulars of the case. In other words, the researcher is interested in drawing 
conclusions that apply beyond a particular case (Johnson & Christensen, 2012).  

In a collective or multiple-case study several cases are studied. By studying more than one 
case the researcher typically attempts to gain greater insight into a research topic. Cases in a 
collective study are usually studied intrinsically. An advantage of studying more than one 
case is that the cases can be compared for similarities and differences. Another important 
advantage is that it is possible to generalize results as a consequence of replication logic. 
Replication logic refers to the idea that the more a research finding is shown to be true with 
different sets of people, the greater the confidence a researcher may invest in the finding and 
in generalizing beyond the original research participants (Johnson & Christensen, 2012). 

This study utilized a collective case study design in which individual cases were studied 
instrumentally. Each of the six selected cases was first examined holistically.  This was 
followed by a comparative cross-case analysis of similarities and differences. My rationale 
for choosing this method was founded on my desire to determine how the teaching strategy 
would affect retention and transfer abilities not only within selected cases, but in the whole 
group of participating students. In other words, the goal was to use the selected case studies 
to generalize findings. An eclectic approach was followed in a data analysis restricted to the 
data which contributed to understanding the cases reflected in the analysis. 

4.2.2 Conceptualization of the quantitative method employed in the study 

Quantitative research methods can broadly be categorized as experimental, quasi-
experimental or non-experimental (Johnson & Christensen, 2012). The main purpose of 
experimental research is to determine cause-and-effect relationships. The experimental 
researcher typically creates experimental and control groups by means of random assignment. 
Random assignment is used to control for extraneous variables which might confound the 
results of the study. By manipulating one or more variables (normally the independent 
variables) and keeping the other extraneous variables constant the researcher strives to 
control for all confounding variables which may influence the results. Of all research 
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methods, experimental research is said to provide the strongest evidence about the cause-and-
effect relationships that emerge from the manipulation and control for extraneous variables 
(Johnson & Christensen, 2012). However, it is not always possible to do experimental 
research, either because the independent variable cannot be manipulated or because it might 
be unethical to manipulate the independent variable. In such cases the researcher can then opt 
for either the quasi-experimental or the non-experimental method.  

In this research the non-experimental method was followed. 

Non-experimental research is described as research in which the independent variable is not 
manipulated, and no random assignment to groups is effected (Johnson & Christensen, 2012). 
Since there is no random assignment to groups and no manipulation of the independent 
variable in the non-experimental method, it is perceived to provide weaker evidence of a 
causal relationship between variables. The non-experimental method is however very 
important in educational research since many research problems in education do not lend 
themselves to experimentation (Kerlinger, 1986). For example, if one attempts to determine 
how socio-economic status influences mathematical learning then manipulation of variables 
is neither ethical nor possible.   

Johnson and Christensen (2012) argue that the dimensions of time and research objective 
should be utilized to classify non-experimental research. In order to do this, researchers 
should answer two questions namely: how is the data collected in relation to time; and what is 
the primary objective of the research? In this study data was collected from the same students 
at successive points over time. Thus, this research can be classified as longitudinal research 
and the type of longitudinal research as panel study.  

It is argued that panel studies are superior to the other time dimension types for the following 
reasons (Johnson & Christensen, 2012). Firstly, since the same people are studied over a 
period of time the researcher is better able to determine cause and effect. Secondly, changes 
are measured at the level at which they occur, that is within the individuals who change; 
hence this type is more powerful in terms of providing causal evidence.  

One of the research objectives was to establish whether there is evidence that the teaching 
strategy enhanced procedural fluency and conceptual understanding of research participants. 
Objectives therefore set out to determine whether there is evidence for cause-and-effect 
relationships, and to produce theories that explain how and why the teaching strategy was 
either effective or not effective. This determined whether the research would be classified as 
explanatory non-experimental research. Furthermore, a pre- and post-test ‘repeated measures 
design’ was utilized in the study. 
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4.3 Sampling 

4.3.1 Quantitative sample 

It is generally accepted that the aim of quantitative sampling is to draw a representative 
sample from the population in order to generalize findings back to the population. Moreover, 
the sample selection method ordinarily depends on the aim of the study (Marshal, 1996).  The 
most common sampling method in quantitative studies is random or probability sampling. 
Random sampling however is not always possible. This is especially the case in mathematics 
education research where it is not always possible to randomly select a sample that have the 
majority of characteristics of the population. In addition, the circumstances of the study do 
not always allow for random sampling.  

The population for this study are all pre-service mathematics education students in South 
Africa enrolled for a mathematics content course in the first or second year tertiary level. This 
population however is very diverse since students study to become teachers in different 
sectors of schooling. The different South African universities also have different acceptance 
criteria for the variety of mathematics education courses presented. For example, some 
universities would accept students who offered mathematical literacy at school level while 
others do not. An added difficulty is that universities have differing course content for 
similarly-named courses. It was therefore not possible to randomly select a strictly 
representative sample (which could be used to generalize results). Thus, the selected 
quantitative sample for this study was based on convenience.     

The most common sampling method in educational studies is probably convenience 
sampling. Convenience sampling is normally applied in circumstances where the researcher 
has easy access to particular sites and participants. This method can suffer problems of bias 
given that the chosen sample might not be representative of the population. The researcher in 
this study engaged the students of a class he was teaching as research participants (sample 
size: sixty-three) since it was convenient.  

4.3.2 Research participants 

The research participants for this study were the 2014 second-year pre-service cohort of 
students enrolled for a mathematics course presented by the researcher. The research was 
done over both semesters of 2014. Originally eighty-eight students were registered, but 
eventually only sixty-three students formed part of the study. Students who missed certain 
tests and examinations were not used in the study.  

Students enrolled for the course were diverse in terms of their school-leaving mathematical 
knowledge. The number of students who had completed mathematics up to grade 12 was 
forty-four; and the number of students who had done mathematical literacy in grade 12 was 
nineteen. The sample consisted of thirty males and thirty-three females of whom the average 
age was 23. Table 4.1 shows the demographics of the sample. 
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 Number of 
students 

Average age Mathematics Mathematical 
Literacy 

Female 33 23 24 11 
Male 30 23 20 8 
Total 63  44 19 
   Table 4.1: Demographics of study participants 
 
4.3.3 Qualitative sample 
In qualitative research sampling is normally purposeful. This implies that the study 
participants who are selected are best placed to facilitate an understanding of the 
phenomenon that is being studied.  The purposeful sampling strategy in this study was 
maximal variation sampling. Thus, the same set of students was utilized for both the 
qualitative and quantitative parts of the study. The qualitative sample however consisted of 
only six of the total number of students who participated in the study. The selection of these 
was based on their achievement levels as determined by test and examination results of the 
quantitative part of the study. Two students were selected from the high achievers, two from 
the average achievers and two from the low achievers. This was done in order to gain diverse 
perspectives in terms of the phenomenon being investigated.  
 
   
 4.4 Integration of quantitative and qualitative data 

Creswell (2015) argues that integration refers to how the researcher brings together the 
qualitative and quantitative results in a mixed methods investigation. In order to uphold 
research rigour it is important that as part of the mixed methods research design, a researcher 
indicates where and how integration of the quantitative and qualitative results will occur. This 
decision is influenced by the type of mixed method design that is utilized in the study.  

Part of the intention of this study was to use qualitative methods to gain deeper insight into 
how and in which ways research participants were influenced by the teaching strategy 
implemented. As indicated earlier, qualitative methods were employed to explain some of the 
quantitative results at more depth. The two sets of data were brought together in the data 
analysis. The interpretation of results phases involved deploying the qualitative data set to 
explain some of the quantitative results and to help explicate the effectiveness of the teaching 
strategy.   
 
 
4.5 Research validity of the qualitative research component 

Validity, reliability and trustworthiness are central to the design of a research study. It is 
incumbent on a researcher to adequately address these issues in the design of a study. 
Validity is defined as the degree to which conclusions drawn by a researcher can be attributed 
to results of the study. The term validity however is generally associated with quantitative 
research. Trustworthiness on the other hand is the term that is usually associated with 
qualitative research (Boudah, 2011). Johnson and Christensen (2012) maintain that when 
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qualitative researchers speak of research validity, they are usually referring to qualitative 
research that is plausible, credible, trustworthy, and therefore defendable. A study is said to 
be reliable if the results can be replicated if the study were conducted again. Research 
reliability and validity however are dependent on how the researcher deals with confounding 
variables. In the next sections I outline some of the strategies that were utilized in this 
research to deal with threats to validity and reliability.  

A qualitative researcher must guard against a host of threats to validity. It is expected that as 
part of the research design qualitative researchers indicate how they intend to deal with issues 
such as researcher bias, descriptive validity, interpretive validity, theoretical validity, internal 
validity and external validity (Johnson & Christensen, 2012).  

Researcher bias occurs when the researcher allows his/her personal views and perspectives to 
affect selective observation, recording of information and how data is interpreted. Researcher 
bias will result in the researcher obtaining results that are consistent with what the researcher 
wanted to find. Reflexivity is mooted as one of the strategies that can be utilized to counter 
the effects of researcher bias. Reflexivity refers to the idea that the researcher engages in 
critical self-reflection about his/her potential biases and predispositions so that s/he may 
decide on a strategy by which to deal with these threats.  

Another strategy used to counter the threat of researcher bias is negative-case sampling. 
Negative-case sampling is employed when the researcher purposely seeks out examples that 
disconfirm expectations. This strategy was followed in some parts of this study. Since it was 
my expectation that the majority of the higher ability research participants would positively 
confirm the research question, I deliberately included low ability participants who 
represented the negative-case sample. It was my expectation that these low ability students 
would disconfirm my expectation. 

Descriptive validity refers to how accurate the researcher is in reporting what they saw and 
heard (Johnson & Christensen, 2012). Since the data in this study consists of the actual 
written products of participants, this aspect reduced the threat to validity. 

Interpretive validity refers to the extent to which research participants’ perspectives, 
thoughts, intentions and experiences are correctly understood and reported by the researcher 
(Johnson & Christensen, 2012). It is argued that participant feedback constitutes the most 
important strategy by which to reduce threats to interpretive validity. The researcher shares 
his/her interpretations and conclusions of participants’ subjective worlds with the participants 
for verification. Because of the way this study had been set up this strategy was employed 
inconsistently and in only a few instances. It was not employed across all cases. The 
qualitative analysis part of the study was done last and consequently participants were not 
always available for consultation. 

Another available strategy for reducing threats to interpretive validity is the use of low-
inference descriptors. Low-inference descriptors are descriptions that closely resemble the 
participants’ accounts (Johnson & Christensen, 2012). The verbatim description that uses 
participants’ exact words is viewed as the lowest inference descriptor. In this study the actual 
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written renditions of participants were utilized. These therefore can be viewed as a form of 
verbatim submission. 

Internal validity is defined as the degree to which a researcher is justified in concluding that 
an observed relationship is causal (Johnson & Christensen, 2012). It is then incumbent on the 
researcher to ensure that the observed change in the dependent variable can be ascribed to the 
independent variable and not to confounding extraneous variables. Data triangulation is 
proposed as a strategy by which to reduce the threat to internal validity. In this study, I used 
data triangulation in the following ways: data was collected at different times; data was 
collected with different students; multiple observations were utilized presenting more than 
one test to participating students over two semesters.    

External validity is described as the degree to which an observed relationship between 
dependent and independent variables can be generalized to other populations, settings and 
conditions (Boudah, 2011). It is argued that qualitative research may be weak in terms of 
external validity because of a lack of random sampling and also since the majority of 
qualitative researchers are more interested in particularistic findings than universalistic 
findings (Johnson & Christensen, 2012).  

Replication logic is advocated as a strategy for reducing threats to external validity. As stated 
earlier, if a finding is replicated with different people and in different circumstances then the 
finding can be generalized beyond the people in the study even if there was no random 
sampling. In this study six students with different abilities were treated as the case studies. 
Furthermore, all their written products over two semesters were utilized. These written 
products were produced during testing situations that were not all the same since some testing 
situations were high stakes (such as the examinations) whereas other tests (such as class tests) 
were not pitched at the same high stakes level. One can therefore argue that the circumstances 
for the different sets of data collected were not the same. Therefore, if a research finding is 
replicated in the six case studies one can argue that because of replication logic the findings 
can be generalized beyond the current population. 
 
 
4.6 Research validity of the quantitative research component 

In quantitative research the four major types of validity that are usually considered are 
internal, external, construct and statistical conclusion. In a one-group pre-test/post-test design 
(such as this study) the issues that might affect internal validity include history, maturation, 
testing, instrumentation and regression. 

History refers to any event that occurs between the pre-test and post-test measurements of the 
dependent variable that influences the post measurement of the dependent variable. Such 
history events however only represent a threat to internal validity if they represent plausible 
rival explanations for the findings of the study. In this study no history event (known to the 
researcher) occurred that affected the findings. 
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Maturation refers to any physical or mental changes that may occur within research 
participants that might affect performance on the dependent variable. Since most of the 
participants of this study were mature individuals no threat was expected in terms of 
maturation. They might have matured in terms of the knowledge they hold and how they hold 
this knowledge due to engagements with knowledge that are not necessarily linked to 
understanding of their mathematics courses. For example, they might have matured in the 
way they engaged with academic texts. 

Johnson and Christensen (2012) describe testing as changes that occur in participants’ scores 
obtained on the second administration of a test as a result of their having taken the test before.  
In this study, more than one test formed the pre-test and post-test score and test items were 
different for each subsequent test. Hence the threat to internal validity was reduced.  

Instrumentation pertains to any changes in the instrument that was used for measurement. 
One way in which an instrumentation threat may occur is when the pre-test and post-test 
measurement instrument is different. This would include instances when test items that are 
presented in pre-test and post-test are not equivalent. In this study, pre- and post-tests were 
equivalent.   

As stated earlier external validity refers to the degree to which the results of a study can be 
generalized to other populations, settings and conditions. The two steps involved in achieving 
external validity in quantitative research are firstly, to identify the target population and 
secondly, to randomly select a sample from the target population. For various practical 
reasons it is however not always possible to implement these two steps. In many instances in 
educational research an accessible population is used instead of the target population. From 
this accessible population a random sample is then selected. In this study, students taking one 
of my classes were selected as the accessible population. No random selection from this 
group was made and instead the whole class participated in the study. The fact that the whole 
class participated increased the possibility that the accessible population is representative of 
the target population.  

The inferential steps involved in generalizing from the study sample to the target population 
normally require the researcher to first generalize from the study sample to the accessible 
sample and then from the accessible population to the target population. However, one can 
very rarely generalize from the accessible population to the target population with any degree 
of confidence since the accessible population is seldom representative of the target 
population. Also, it is incumbent on researchers to specify if their intention is to generalize to 
a target population or to generalize across a target population (Johnson & Christensen, 2012).  

When the intention is to generalize across a target population, we attempt to determine 
whether the finding holds for each of the subpopulations within the target population. In this 
research the target population would be all pre-service teachers taking a mathematics content 
course at a tertiary institution. This target population has various sub-populations such as 
students taking mathematics courses to teach at the foundation level of primary school or to 
teach at the further education and training level. For this study the sub-population would be 
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students taking mathematics content courses in preparation for teaching at the senior phase 
(grades 7, 8 and 9). It is the intention of this study to generalize to this sub-population. As I 
have argued here, since a whole class constituted the research participants, this increased the 
likelihood that the status of the sample could be said to be representative of the sub-
population.  
 
 
4.7 The Quantitative research instrument 

As already indicated a pre- and post-test repeated measures design was followed in this 
research. The teaching strategy implemented was underpinned by spiral revision which was  
likely to bear fruit only after many revision sessions (in our case the tests formed part of the 
revision process). For this reason, all the class tests together were considered to constitute a 
pre-test. The examinations which were written at the end of each semester (there were two 
examinations) were together considered to be a post-test. The research was conducted over 
both the first and second semester of 2014.  

A taxonomy table based on Bloom’s revised taxonomy was utilized to categorize each 
question for all tests and examinations. The taxonomy of educational objectives is defined as 
a framework for classifying statements of what instructors expect or intend students to learn 
as a result of instruction (Anderson & Krathwohl, 2001). Bloom’s original taxonomy 
consisted of six major categories namely knowledge, comprehension, application, analysis, 
synthesis and evaluation. The categories were ordered from simple to complex and from 
concrete to abstract. It is also understood that mastery of the objectives was hierarchical. That 
is mastery of each simpler category was a prerequisite to comprehension of the next more 
complex category (Krathwohl, 2002). 

Krathwohl (2002) argues that statements of objectives describing intended learning outcomes 
typically consist of a noun or noun phrase and a verb or verb phrase. Both noun and verb 
aspects are associated with the knowledge category in Bloom’s original taxonomy. This 
implied that the knowledge category was dual in nature, which was different from the other 
categories. In Bloom’s revised taxonomy this inconsistency was eliminated by allowing the 
noun and verb aspects to form separate dimensions. In this new taxonomy, the noun provided 
the basis for the knowledge dimension while the verb formed the basis for the cognitive 
Process dimension (Anderson, Krathwohl, Airasian, Cruikshank, Mayer, Pintrich, Raths & 
Wittrock, 2001). Using these two dimensions a two-dimensional table was constructed which 
the authors termed the taxonomy table. The knowledge dimension formed the vertical axis of 
the table whereas the cognitive process dimension formed the horizontal axis. The 
intersections of the knowledge and cognitive process categories form the cells of the table. 

The knowledge dimension of the revised taxonomy contains four main categories: Factual 
knowledge, Conceptual knowledge, Procedural knowledge and Meta-cognitive knowledge. 
The main categories of the Cognitive Process dimension are: Remember, Understand, Apply, 
Analyse, Evaluate and Create.  
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The taxonomy table is shown in Table 4.2. It should be noted that in this revised taxonomy 
the cognitive processes are understood to operate on knowledge structures during the process 
of cognition. To reveal this way of thinking one would therefore refer to understanding based 
on conceptual knowledge, etc. It is recommended that the taxonomy table be used to classify 
the instructional and learning activities which target achievement of the learning objectives, 
as well as the assessment employed to determine how well the objectives were mastered by 
the students (Anderson et al, 2001).  

Krathwohl (2002) argues that one of the most frequent uses of the original Bloom’s 
taxonomy (and also the revised taxonomy table) has been to classify curricular objectives and 
test items in order to show the breadth, or lack thereof, of the objectives across the spectrum 
of categories. He argues that such analysis has routinely shown a predominant emphasis on 
learning objectives that require only recognition or straightforward recall of information; and 
a lack of objectives that require understanding and new use of knowledge. Analyses such as 
these have been used on a continuing basis in an attempt to improve on curricula and tests by 
including more of the cognitively demanding categories.  

   
   The Cognitive Process Dimension 
The 
Knowledge 
Dimension 

1.  
Remember 

2.  
Understand 

3.  
Apply 

4.  
Analyze 

5.  
Evaluate 

6.  
Create 

A. Factual 
Knowledge 

      

B. Conceptual 
Knowledge 

      

C. Procedural 
Knowledge 

      

D. 
Metacognitive 
Knowledge 

      

Table 4.2: The Taxonomy Table      
 
4.7.1 The Revised Taxonomy Table 
4.7.1.1 The knowledge categories 

The categories of the Knowledge and Cognitive Process dimension of the revised taxonomy 
table however were not sufficient for my study. Thus, I have modified the table to suit the 
needs of my investigation. In my version of the taxonomy table I keep some of the 
Knowledge dimension categories, but I discard most of the Cognitive Process dimension 
categories. My reason for discarding some of the cognitive dimension categories is that I  
wanted to focus on the cognition categories prevalent in mathematical cognition. Similarly, 
the knowledge categories I include are those that are predominant in mathematics. I have also 
not utilized sub-categories in the Knowledge dimension, but have included subcategories in 
the cognitive Process dimension. Moreover, since this study is concerned with the teaching 
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and learning of mathematics, the knowledge categories and cognitive processes categories are 
approached from the perspective of mathematics.  

The categories of my revised Knowledge dimension are as follows:  Factual Knowledge, 
Procedural Knowledge, Flexible Procedural Knowledge, and Conceptual Knowledge. It 
should be noted that it was not the intention to create an exhaustive list of the knowledge 
categories possible in mathematical learning, but rather that the categories were chosen based 
on the needs of the study.   I now define and discuss each category briefly.  

Factual Knowledge is comprised of the basic elements that constitute the discipline of 
mathematics which students must know in order to solve problems or communicate. This 
includes knowledge of terminology, format and syntax of symbol representation, allowable 
operations, etc.  (Eisenhart, Borko, Underhill, Brown, Jones & Agard (1993). 

Procedural knowledge is knowledge that consists of rules and procedures for solving 
mathematical problems. Procedural knowledge also consists of knowledge of mathematical 
symbols and the syntactic conventions for the manipulation of such symbols (Hiebert & 
Lefevre, 1986; Star, 2005).  

Star (2005) argues that skilled problem solvers in mathematics are also flexible in their use of 
known procedures. A student who does not possess such flexible procedural knowledge will 
not always be able to solve unfamiliar problems where the solution requires the student to use 
known procedural knowledge. The student will also be unable to produce a maximally 
efficient solution in the absence of such flexible procedural knowledge. An outcome of such 
flexibility is that students who possess such knowledge will have the ability to generate 
maximally efficient solutions for known and even sometimes unknown problem situations. 
Star (2005) contends that flexible procedural knowledge is deep procedural knowledge that 
will allow a student who possesses it to use mathematical procedures best suited to a 
provided known or novel problem situation.  

Hiebert and Lefevre (1986) contend that conceptual knowledge is knowledge that is rich in 
relationships. This connected web of knowledge is a network in which the linking 
relationships are as prominent as the discrete pieces of information. 
 
4.7.1.2 The Cognitive Process categories 

As already intimated I have adapted the Cognitive Process dimension provided by Anderson 
et al (2001) in order to deal more specifically with cognition in the mathematical context.  
The main categories of my version of the Cognitive Process dimension are Imitative 
Reasoning (IR) and Creative Reasoning (CR). Imitative reasoning is sub-divided into the 
categories Memorised Reasoning (MR) and Algorithmic Reasoning (AR). Algorithmic 
Reasoning in turn is sub-divided into the sub-categories Familiar Algorithmic Reasoning 
(FAR) and Delimiting Algorithmic Reasoning (DAR). Creative Reasoning is sub-divided into 
the sub-categories Local Creative Reasoning (LCR) and Global Creative Reasoning (GCR). 
The categories and sub-categories are discussed next. 
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Lithner (2008) has developed a conceptual framework that is concerned with reasoning in 
mathematics. In this framework reasoning is defined as the line of thought required to 
produce assertions and reach conclusions in solving mathematical tasks. Reasoning in this 
framework can either be the thinking processes or the product of thinking processes, or both. 
A line of thought may be classified as reasoning even if it is incorrect. The only proviso is 
that it makes sense to the thinker.  

Lithner (2008) differentiates between two different types of reasoning in mathematics. 
Imitative reasoning (IR) occurs when a student produces a solution procedure that s/he 
memorized. Conversely creative reasoning (CR) is reasoning that is characterized by 
flexibility and novel approaches to mathematical problems (Bergqvist, 2007). 

Lithner (2008) distinguishes between two main categories of imitative reasoning, namely 
memorized and algorithmic imitative (AR) reasoning. He asserts that for imitative reasoning 
to be classified as memorized reasoning it needs to fulfil two conditions. On one hand the 
reasoning should be based on recalling a complete answer. On the other hand, the 
implementation strategy should consist of only writing down the answer. A reasoning 
sequence is classified as algorithmic reasoning (AR) if the reasoning is based on the recall of 
an algorithm. An algorithm is described as a finite sequence of executable directives which 
allows one to find a result for a given class of problems. A reasoning sequence is classified as 
algorithmic reasoning if it satisfies two conditions.  

On one hand the strategic choice for the reasoning should be to recall an algorithm as a 
solution. No other reasoning should be required except to implement the algorithm. On the 
other hand if, however, a task requires mostly creative reasoning then the reasoning involved 
is classified as global creative reasoning (GCR). Bergqvist (2007) claims that in some 
instances students use algorithmic reasoning to solve mathematical tasks, without any 
comprehensive understanding of the underlying mathematical concepts. Bergqvist (2007) 
describes creative reasoning (CR) as reasoning that is not hindered by fixation and is 
characterized by flexibility, novel approaches to mathematical problems and well-founded 
task solutions. If a task is very nearly solvable using imitative reasoning and creative 
reasoning is required only to modify an algorithm, then the reasoning required is local 
creative reasoning (LCR).  

The revised taxonomy table based on the foregoing discussion is shown in Table 4.3. The 
possible categories based on the table are shown in Table 4.4. 
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The 
knowledge 
Dimension 
(KD) 

The cognitive process dimension (CPD) 
1. Imitative reasoning (IM) 2. Creative mathematically 

founded reasoning 
(a.) 
Memorised 
reasoning 
(MR) 

(b.) Algorithmic Reasoning 
(AR) (a.) Local 

creative 
reasoning 

(b.) Global 
creative 
reasoning (i) familiar 

AR 
(ii) delimiting 
AR 

A.) Factual 
knowledge 

     

B.) Procedural 
knowledge 

     

C.) Flexible 
procedural 
knowledge 

     

D.) 
Conceptual 
knowledge 

     

Table 4.3: The Revised Taxonomy Table 
 
1. A1a – Memorized Reasoning based on Factual knowledge 
2. A1bi – not possible 
3. A1bii – not possible 
4. A2a – not possible 
5. A2b – not possible 
6. B1a – Memorized Reasoning based on Procedural knowledge  
7. B1bi – Familiar Algorithmic Reasoning based on Procedural Knowledge 
8. B1bii – Delimiting Algorithmic Reasoning based on Procedural Knowledge 
9. B2a – Local Creative Reasoning based on Procedural Knowledge 
10. B2b – Global Creative Reasoning based on Procedural Knowledge 
11. C1a – Memorised Reasoning based on Flexible Procedural Knowledge 
12. C1bi – Familiar Algorithmic Reasoning based on Flexible Procedural knowledge 
13. C1bii – Delimiting Algorithmic Reasoning based on Flexible Procedural knowledge 
14. C2a – Local Creative Reasoning based on Flexible Procedural knowledge 
15. C2b – Global Creative Reasoning based on Flexible Procedural knowledge 
16. D1a – Memorised Reasoning based on Conceptual knowledge 
17. D1bi – Familiar Algorithmic Reasoning based on Conceptual knowledge 
18. D1bii – Delimiting Algorithmic Reasoning based on Conceptual knowledge 
19. D2a – Local Creative Reasoning based on Conceptual knowledge 
20. D2b – Global Creative Reasoning based on Conceptual knowledge 
Table 4.4: Possible question categories based on the Revised Taxonomy Table 
 
The categories (as shown in Table 4.4) formed the measuring instrument that was used to 
measure knowledge and reasoning proficiency of the research participants. It should be noted 
that the classification of a problem was also based on how often the problem had been done 
before and how long ago similar problems had been done. The classification was dependent 
on number of prior practice sessions, temporality and perceived major knowledge and 
reasoning requirements of the problem. To illustrate this, a problem can initially be classified 
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as Delimiting algorithmic reasoning based on flexible procedural knowledge (C1bii). But 
after students have been exposed to it for a number of times the knowledge requirements then 
become Familiar algorithmic, and the reasoning type becomes ordinary procedural 
knowledge. The new classification thus becomes Familiar Algorithmic Reasoning based on 
Procedural knowledge (B1bi), which is a category perceived to be less difficult. 
 
 
4.8 Data collection and data analysis  

4.8.1 The Quantitative procedure 

In order to determine if the mathematical competencies of procedural fluency and conceptual 
understanding of pre-service mathematics students can be enhanced by exposure to a teaching 
strategy underpinned by spiral revision and productive practice I compared pre- and post-test 
scores. As previously indicated together all class tests were considered as the pre-test whereas 
examinations written at the end of each semester were together considered a post-test. Only 
students who had written all the tests and examinations were included. Data was collected in 
both the first and second semesters of 2014. 

Test items for both the class tests and examination were categorized using the revised 
taxonomy table. These categories formed the main measuring instrument for the study. It 
should be noted that not all possible categories were utilized since some categories were not 
present in the assessments.   

Each participating student received a score in each category for each individual class test and 
examination. Subsequently all the individual scores for each category were added and a total 
determined. This was done separately for class tests and examinations. For example, all 
individual scores for the category Familiar Algorithmic Reasoning based on Procedural 
knowledge (B1bi) were added to provide a total sum for this category per student. The sums 
for the categories Memorized Reasoning based on Factual knowledge (A1a), Memorized 
Reasoning based on Procedural knowledge (B1a) and Familiar Algorithmic Reasoning based 
on Procedural knowledge (B1bi); Familiar Algorithmic Reasoning based on Flexible 
Procedural knowledge (C1bi) and Delimiting Algorithmic Reasoning based on Flexible 
Procedural knowledge (C1bii) were added in turn to provide a sum total. This was done 
separately for pre- and post-tests. This sum total was considered to represent measures of the 
mathematical competency procedural fluency.   

Similarly, the sum scores for the categories Memorised Reasoning based on Conceptual 
knowledge (D1a), Familiar Algorithmic based on Conceptual knowledge (D1bi), Delimiting 
Algorithmic Reasoning based on Conceptual knowledge (D1bii) and Local Creative 
reasoning based on Conceptual knowledge (D2a) were added to provide a new sum total. 
Subsequently these sums were added to provide a new sum total. This was done separately 
for pre- and post-tests. This sum total was considered to represent a measure of the 
mathematical competency Conceptual understanding.   
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Finally, the pre-test sum score for procedural fluency (SKILLPRE) and the pre-test sum score 
for conceptual understanding (CONCPRE) were added. This new sum total was termed 
(PRETOT); it was considered to be a measure of both procedural fluency and conceptual 
understanding. Similarly, the post-test sum score for procedural fluency (SKILLPOST) and 
the post-test sum score for conceptual understanding (CONCPOST) were added to provide 
the new sum total termed (POSTTOT).   

Table 4.5 shows the terminology and the explanation used in the statistical analysis. 

TERM EXPLANATION 
A1aPRE Sum of all class test items; memorized reasoning based on factual knowledge expressed as 

% 
A1aPOST Sum of all exam test items; memorized reasoning based on factual knowledge expressed as 

% 
B1aPRE Sum of all class test items; memorized reasoning based on procedural knowledge expressed 

as % 
B1aPOST Sum of all exam test items; memorized reasoning based on procedural knowledge 

expressed as % 
B1biPRE Sum of all class test items; Familiar algorithmic reasoning based on Procedural knowledge 

expressed as % 
B1biPOST Sum of all exam test items; Familiar algorithmic reasoning based on Procedural knowledge 

expressed as % 
C1biPRE Sum of all class test items; Familiar Algorithmic reasoning based on Flexible Procedural 

knowledge  
C1biPOST Sum of all exam test items; Familiar Algorithmic reasoning based on Flexible Procedural 

knowledge expressed as % 
C1biiPRE Sum of all class test items; Delimiting Algorithmic Reasoning based on Flexible Procedural 

Knowledge expressed as % 
C1biiPOST Sum of all exam test items; Delimiting Algorithmic Reasoning based on Flexible 

Procedural Knowledge expressed as % 
D1aPRE Sum of all class test items; Memorized Reasoning based on Conceptual knowledge 

expressed as % 
D1aPOST Sum of all exam test items; Memorized Reasoning based on Conceptual knowledge 

expressed as % 
D1biPRE Sum of all class test items; Familiar algorithmic reasoning based on Conceptual knowledge 
D1biPOST Sum of all exam test items; Familiar algorithmic reasoning based on Conceptual knowledge 

expressed as % 
D1biiPRE Sum of all class test items; Delimiting Algorithmic Reasoning based on Conceptual 

knowledge expressed as % 
D1biiPOST Sum of all exam test items; Delimiting Algorithmic Reasoning based on Conceptual 

knowledge expressed as % 
D2aPRE Sum of all class test items; Local Creative Reasoning based on Conceptual knowledge 

expressed as % 
D2aPOST Sum of all exam test items;Local Creative Reasoning based on Conceptual knowledge 

expressed as % 
SKILLPRE Sum of A1aPRE, B1aPRE, B1biPRE, C1biPRE and C1biiPRE expressed as % 
SKILLPOST Sum of A1aPOST, B1aPOST, B1biPOST, C1biPOST and C1biiPOST expressed as % 
CONCPRE Sum of D1aPRE, D1biPRE, D1biiPRE and D2aPRE expressed as % 
CONCPOST Sum of D1aPOST, D1biPOST, D1biiPOST and D2aPOST expressed as % 
PRETOT Sum of SKILLPRE and CONCPRE expressed as % 
POSTTOT Sum of SKILLPOST and CONCPOST expressed as % 
Table 4.5: Terminology and explanation used in the statistical analysis 
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4.8.2 The Qualitative procedure 

Data for the qualitative method was composed of the written responses of students to test and 
examination questions. Only one type of question was utilized for this purpose since it would 
have been impractical to analyse all test and examination questions. The responses of only six 
students were taken into consideration since again it would have been impractical to analyse 
responses of all participating students.  Data was collected in both the first and second 
semester of 2014. 

The responses of the selected six students to questions that were based on linear functions 
were analysed. Written responses to all tests and examinations that contained questions on 
linear functions were included as data items. These written responses were analysed to 
determine if students exhibited retention and transfer abilities and if students showed 
progression in terms of these abilities. Analysis was also done with the intention of gaining 
deeper insight into some of the quantitative results. Subsequently a narrative was developed 
based on the findings of the analysis. 
 
 
4.9 Conclusion 

In this chapter the research design that was employed in this study was discussed. The 
discussion centred on how a mixed method approach was conceptualized in the study. Figure 
2 is a synopsis of how the approach was effected in the study. 

Paradigm:                                                                                        

       

 

 

 

Research method:                                                

 

 

 

Primary Research:              
Objective 

Figure 4.1: Research design 

In the following chapter (chapter 5) the quantitative part of the study will be presented and 
discussed.  

Quantitative research: 
Investigated how knowledge levels and 
cognitive abilities of participants were 
influenced by a teaching strategy premised on 
spiral revision and productive practice 

Qualitative research: 
Investigated how retention and transfer 
abilities of participants with respect to 
presented content were affected.   

Non-experimental Collective case study 

Explanatory Instrumental case 
study 

http://etd.uwc.ac.za/



 

 

 

 

 

88 
 

CHAPTER 5: STATISTICAL ANALYSIS, QUANTITATIVE RESULTS AND   
DISCUSSION 

 
 
5.1 Introduction 

Pre- and post-test scores were compared in order to determine whether the mathematical 
competencies of procedural fluency and conceptual understanding of pre-service mathematics 
teachers were enhanced by exposure to a teaching strategy underpinned by spiral revision and 
productive practice. As previously indicated all class tests were taken together to represent 
the pre-test, whereas examinations written at the end of each semester were taken together to 
represent the post-test. Test items for both the class tests and the examinations were 
categorized according to the revised taxonomy table. These categories formed the main 
measuring instrument in the study. The dependent variable in the study is the achievement 
scores (pre- and post-test) and the independent variable is the treatment ‘teaching strategy 
underpinned by spiral revision and productive practice”. The variables employed in the 
analysis have been discussed in Chapter 4.7.   

In this chapter I show the results of the statistical analyses (IBM SPSS version 23 was used 
for this purpose), and present conclusions based on the findings. The statistical analysis was 
done in the following way: descriptive statistics were used initially to explore the data in 
order to check for violations of underlying assumptions of statistical tests. A paired samples 
test was performed next to determine whether there were significant differences between pre-
test and post-test scores. Finally, a stratified analysis was performed in order to determine 
how the teaching intervention affected the research participants individually.    
 
 
5.2 Descriptive Statistics for the univariate variables SKILLPRE, SKILLPOST, 
 CONCPRE, CONCPOST, PRETOT and POSTTOT 

It is common practice that prior to doing statistical analysis one explores the data by means of 
descriptive statistics and graphs as a thorough description is essential to understanding the 
data. Another important reason is that one needs to check for violation of underlying 
assumptions in statistical tests. For example, one needs to check if the data is normally 
distributed and if outliers exist, since both of these might influence correlation coefficients. 
The descriptive statistics of mean, standard deviation, range, skewness and kurtosis were 
obtained for the variables SKILLPRE, SKILLPOST, CONCPRE, CONCPOST, PRETOT 
and POSTTOT. The descriptive statistics for these variables are shown in Table 5.1.  
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N Range Minimum Maximum Mean 
(%) 

Std. 
Deviation 

Skewness Kurtosis 

Statistic Statistic Statistic Statistic Statistic Statistic Statistic Std. 
Error 

Statistic Std. 
Error 

SKILL-PRE 63 76 23 99 65.71 21.093 -.140 .302 -.992 .595 
CONC-PRE 63 77 14 90 48.99 18.692 .177 .302 -.896 .595 
PRE-TOT 63 72 22 94 57.35 18.888 .134 .302 -1.088 .595 
SKILL-
POST 

63 59 41 100 77.98 16.289 -.558 .302 -.645 .595 

CONC-
POST 

63 74 20 94 59.94 17.850 .062 .302 -.855 .595 

POST-TOT 63 57 39 96 68.96 15.960 -.106 .302 -1.115 .595 
Valid N 
(listwise) 

63          

Table 5.1: Descriptive statistics for variables SKILLPRE, SKILLPOST, CONCPRE, 
       CONCPOST, PRETOT and POSTTOT 
 
Skewness and kurtosis provide information concerning the distribution of scores on 
continuous variables (Gravetter & Walnau, 2002). The skewness value offers an indication of 
the symmetry of the distribution whereas the kurtosis provides information about the 
‘peakedness’ of the distribution. Positive skewness values indicate scores clustered to the left 
at low values whereas negative skewness values indicate a clustering of scores at the high 
values. Positive kurtosis values indicate that the distribution is clustered in the centre 
(peaked) with long thin tails whereas negative kurtosis values indicate a distribution that is 
relatively flat. If the distribution is perfectly normal, both skewness and kurtosis will have a 
value of 0. 

The skewness value for the variables SKILLPRE, SKILLPOST and POSTTOT is negative 
which indicates a distribution that is clustered at the high scores. The kurtosis values for these 
variables are also negative, which indicates a distribution that is relatively flat. This is an 
indication that too many scores are in the extremes. Skewness and kurtosis together therefore 
indicate that high scores are in the majority for all these variables. 

The skewness value for the variables CONCPRE, PRETOT and CONCPOST is positive 
which indicates a distribution that is clustered at the low scores. The kurtosis values for these 
variables are negative, which indicates a distribution that is flat and thus most scores are in 
the extremes. Skewness and kurtosis taken together for these variables therefore indicates that 
most scores for these variables are low.      

A normal distribution has a bell-shaped curve, which has the greatest number of scores in the 
middle with smaller frequencies towards the extremes. The skewness and kurtosis values for 
the variables SKILLPRE, SKILLPOST, CONCPRE, CONCPOST, PRETOT and POSTTOT 
indicate that scores are not normally distributed.  
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Another way to determine if scores are normally distributed is to use histograms. Histograms 
provide a visual picture of the distribution. Figure 5.1 shows the histogram for SKILLPRE; 
Figure 5.2 shows the histogram for CONCPRE; Figure 5.3 shows the histogram for 
PRETOT; Figure 5.4 shows the histogram for SKILLPOST; Figure 5.5 shows the histogram 
for CONCPOST and Figure 5.6 shows the histogram for POSTTOT. A normal distribution 
implies that most of the tallest columns or bars of the histogram should be concentrated in the 
middle with the shorter columns at either extreme. This is not the case for SKILLPRE, and 
thus one can conclude that the distribution for SKILLPRE is not normal. Although some of 
the tallest columns for CONCPRE are in the middle, this is not consistent which again 
indicates a non-normal distribution. PRETOT also has some of the tallest columns towards 
the middle, but once again it is not consistent and hence the conclusion is that it is not 
normally distributed. The tallest columns for SKILLPOST are on the left extreme and hence 
the conclusion is that the distribution is not normal. Although some of the tallest columns of 
CONCPOST are towards the middle, the majority are not concentrated there and hence the 
conclusion is that the distribution is not normal. The histogram of POSTTOT has an irregular 
spread of bars and therefore the conclusion is that the distribution is not normal. The 
conclusions derived from the histograms together with skewness and kurtosis findings 
therefore indicate that none of the distributions of the univariate variables SKILLPRE, 
SKILLPOST, CONCPRE, CONCPOST, PRETOT and POSTTOT are normal.  

 

   

Figure 5.1: Histogram of SKILLPRE                  Figure 5.2: Histogram of CONCPRE 
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Figure 5.3: Histogram of PRETOT                       Figure 5.4: Histogram of SKILLPOST 

 

    

Figure 5.5: Histogram of CONCPOST     Figure 5.6: Histogram of POSTTOT 
 
 
5.2.1 Outliers 

The 5% trimmed mean will be utilized to determine how much the outliers are affecting the 
mean for the variables SKILLPRE, SKILLPOST, CONCPRE, CONCPOST, PRETOT and 
POSTTOT. To obtain the 5% trimmed mean the top and bottom 5 percent of cases are 
removed and a new mean value is calculated. One then compares the original and new means 
to determine what influence these extreme scores have on the mean, and whether they require 
further investigation. Tables 5.2 to 5.13 show the 5% trimmed mean and the extreme values 
for the variables. Figures 5.7 to 5.12 show the boxplots for the variables.  
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 Statistic Std. Error 
SKILLPRE Mean 65.71 2.658 

95% Confidence 
Interval for Mean 

Lower Bound 60.39  
Upper Bound 71.02  

5% Trimmed Mean 66.24  
Median 65.52  
Variance 444.931  
Std. Deviation 21.093  
Minimum 23  
Maximum 99  

Table 5.2: SKILLPRE 5% trimmed mean 

 

 
 

 Case Number Student Number Value 
SKILLPRE Highest 1 62 3043417 99 

2 33 3347907 97 
3 34 3375617 97 
4 8 3347834 96 
5 36 3347760 95 

Lowest 1 7 3300057 23 
2 25 3257801 24 
3 53 3102256 26 
4 3 3301443 29 
5 48 3347729 35 

Table 5.3: SKILLPRE extreme values 
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Figure 5.7: SKILLPRE boxplot 

 

 
 

 Statistic Std. Error 
CONCPRE Mean 48.99 2.355 

95% Confidence 
Interval for Mean 

Lower Bound 44.29  
Upper Bound 53.70  

5% Trimmed Mean 48.77  
Median 46.73  
Variance 349.400  
Std. Deviation 18.692  
Minimum 14  
Maximum 90  
Range 77  
Interquartile Range 30  
Skewness .177 .302 
Kurtosis -.896 .595 

Table 5.4: CONCPRE 5% trimmed mean 
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 Case Number Student Number Value 
CONCPRE Highest 1 62 3043417 90 

2 19 3347452 83 
3 8 3347834 82 
4 36 3347760 79 
5 5 3347786 78 

Lowest 1 2 3155417 14 
2 37 3300421 19 
3 57 3270745 20 
4 17 3213234 20 
5 7 3300057 21 

Table 5.5: CONCPRE extreme values 

 

 

 

Figure 5.8: CONCPRE boxplot 
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 Statistic Std. Error 
SKILLPOST Mean 77.98 2.052 

95% Confidence 
Interval for Mean 

Lower Bound 73.88  
Upper Bound 82.09  

5% Trimmed Mean 78.73  
Median 81.02  
Variance 265.338  
Std. Deviation 16.289  
Minimum 41  
Maximum 100  
Range 59  
Interquartile Range 26  
Skewness -.558 .302 
Kurtosis -.645 .595 

Table 5.6: SKILLPOST 5% trimmed mean 

 
 

 
 Case Number Student Number Value 
SKILLPOST Highest 1 8 3347834 100 

2 27 3302287 100 
3 19 3347452 99 
4 36 3347760 99 
5 33 3347907 98a 

Lowest 1 15 3300909 41 
2 57 3270745 42 
3 29 3166125 44 
4 53 3102256 48 
5 4 3347494 49 

Table 5.7: SKILLPOST extreme values 
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Figure 5.9: SKILLPOST boxplot 

 
 Statistic Std. Error 
CONCPOST Mean 59.94 2.249 

95% Confidence 
Interval for Mean 

Lower Bound 55.45  
Upper Bound 64.44  

5% Trimmed Mean 59.89  
Median 60.18  
Variance 318.632  
Std. Deviation 17.850  
Minimum 20  
Maximum 94  
Range 74  
Interquartile Range 30  
Skewness .062 .302 
Kurtosis -.855 .595 

Table 5.8: CONCPOST 5% trimmed mean 
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 Case Number Student Number Value 
CONCPOST Highest 1 5 3347786 94 

2 36 3347760 93 
3 27 3302287 90 
4 1 3347698 90 
5 20 3347615 86 

Lowest 1 7 3300057 20 
2 59 3213259 31 
3 13 3301450 34 
4 23 3301484 34 
5 15 3300909 36 

Table 5.9: CONCPOST extreme values 

 

 

 

 

Figure 5.10: CONCPOST boxplot 
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 Statistic Std. Error 
PRETOT Mean 57.35 2.380 

95% Confidence 
Interval for Mean 

Lower Bound 52.59  
Upper Bound 62.11  

5% Trimmed Mean 57.26  
Median 56.34  
Variance 356.773  
Std. Deviation 18.888  
Minimum 22  
Maximum 94  
Range 72  
Interquartile Range 31  
Skewness .134 .302 
Kurtosis -1.088 .595 

Table 5.10: PRETOT 5% trimmed mean 
 

 
 Case Number Student Number Value 
PRETOT Highest 1 62 3043417 94 

2 8 3347834 89 
3 19 3347452 88 
4 36 3347760 87 
5 5 3347786 86 

Lowest 1 7 3300057 22 
2 53 3102256 27 
3 3 3301443 28 
4 37 3300421 29 
5 25 3257801 32 

Table 5.11: PRETOT extreme values 
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Figure 5.11: PRETOT boxplot 

 
 Statistic Std. Error 
POSTTOT Mean 68.96 2.011 

95% Confidence 
Interval for Mean 

Lower Bound 64.94  
Upper Bound 72.98  

5% Trimmed Mean 69.03  
Median 69.11  
Variance 254.729  
Std. Deviation 15.960  
Minimum 39  
Maximum 96  
Range 57  
Interquartile Range 26  
Skewness -.106 .302 
Kurtosis -1.115 .595 

Table 5.12: POSTTOT 5% trimmed mean 
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 Case Number Student Number Value 
POSTTOT Highest 1 36 3347760 96 

2 5 3347786 95 
3 27 3302287 95 
4 1 3347698 92 
5 8 3347834 92 

Lowest 1 15 3300909 39 
2 57 3270745 42 
3 4 3347494 43 
4 7 3300057 43 
5 53 3102256 45 

Table 5.13: POSTTOT extreme values 

 

 

 

Figure 5.12: POSTTOT boxplot 

 

An examination of the above trimmed means, extreme values and boxplots yield the 
following conclusions. Firstly, any scores that IMB SPSS (version 23) considers outliers 
appear as little circles with a number attached. Points are defined as outliers if they extend 
more than 1.5 box-lengths from the edge of the box and extreme points are those that extend 
more than three box-lengths from the edge of the box. No outlier or extreme outliers are 
identified by the boxplots. Secondly, the differences between the extreme values as indicated 
in the tables are not significant. Lastly, the differences between the original mean and the 
trimmed mean are not significant in all the cases (all differences are less than 1%) and hence 
the outliers do not have a major influence on the data. 
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5.3 Paired-samples tests  

Comparisons of the means of the variables yield the following results. The mean for 
SKILLPRE was 65.71 whereas the mean for SKILLPOST was 77.98 which therefore imply 
that there was an increase of 12.27% in mean score for these variables. The mean for 
CONCPRE was 48.99 versus a mean of 59.94 for CONCPOST, which implies an increase of 
10.95%. PRETOT had a mean of 57.35 and POSTTOT had a mean of 68.93 giving an 
increase of 11.61%.  An important question arises concerning whether a significant difference 
exists between pre-test and post-test scores. Since this investigation is an example of a 
repeated-measures study I employed a paired-samples test (t statistic) that is based on the 
overall mean difference (𝜇𝜇𝐷𝐷) to answer this question.  

In a paired-sample test the difference between pre- and post-test scores for each participant is 
calculated and then the overall mean difference is calculated by adding all the difference 
scores. The paired samples t statistic requires two basic assumptions: one, that observations 
within each treatment must be independent and two, that the population distribution of 
difference scores must be normal (Gravetter & Walnau, 2002). This study satisfies the first 
assumption since different scores were obtained from the same individual. Gravetter and 
Walnau (2002) maintain that if the sample is relatively large (𝑛𝑛 > 30) then the normality 
assumption can be ignored. Since 𝑛𝑛 = 63 for this study the normality assumption is ignored.  
The related samples t statistic is therefore the preferred statistic. It is also important to report 
the effect size since it is difficult to evaluate the importance of differences between means or 
to compare such differences with other experiments (Myers et al, 2010). Gravetter and 
Walnau (2002) contend that the two commonly used measures of effect size are Cohen’s d 
and 𝐹𝐹2, the percentage of variance accounted for.   

The null hypothesis is that there is no significant difference after exposure to the teaching 
strategy. In other words, the mean difference of the pre- and post-test score for the population 
is zero i.e. 

  𝐻𝐻0: 𝜇𝜇𝐷𝐷 = 0 

The alternative hypothesis is that the intervention caused the post-test scores to be higher or 
lower than the pre-test scores. In other words, the mean difference is not zero: 

  𝐻𝐻1: 𝜇𝜇𝐷𝐷  ≠ 0 

The level of significance is set at 𝛼𝛼 = .05 for a two-tailed test. For this case 𝑛𝑛 = 63, hence 
the t statistic will have 𝑑𝑑𝑖𝑖 = 𝑛𝑛 − 1 = 63 − 1 = 62. From the t-distribution table we find that 
the critical values for a two-tailed test are +2.000 and -2.000.  
 
5.3.1 Paired-samples test for SKILLPRE and SKILLPOST  

Table 5.14 shows the means, standard deviation and standard error for the individual 
variables SKILLPRE and SKILLPOST. Table 5.15 shows the statistics for the paired samples 
t test. 
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 Mean N Std. Deviation Std. Error Mean 
Pair 1 SKILLPRE 65.71 63 21.093 2.658 

SKILLPOST 77.98 63 16.289 2.052 

Table 5.14: Descriptive statistics for SKILLPRE and SKILLPOST 

 
 

 

Paired Differences 

t df 
Sig. (2-
tailed) Mean 

Std. 
Deviation 

Std. 
Error 
Mean 

95% Confidence 
Interval of the 

Difference 
Lower Upper 

Pair 
1 

SKILLPRE - 
SKILLPOST 

-12.278 15.455 1.947 -16.171 -8.386 -6.306 62 .000 

Table 5.15: Paired samples test for SKILLPRE and SKILLPOST 

 
In the calculations of effect size that follows below D represents the difference between 
SKILLPRE and SKILLPOST, t represents the t statistic and df refers to degrees of freedom. 
The calculations below show Cohen’s d and 𝐹𝐹2: 
  

 𝐷𝐷 � =  ∑𝐷𝐷
𝑡𝑡

=  774
63

= 12.286 
  

 𝑆𝑆𝑆𝑆 =  ∑𝐷𝐷2 −  (∑𝐷𝐷)2

𝑡𝑡
= 24 306 −  (774)2

63
= 14 796.86 

 

 𝑖𝑖2 =  𝑆𝑆𝑆𝑆
𝑡𝑡−1

=  14 796.86
63−1

= 238.659 
 

 𝐶𝐶𝐹𝐹ℎ𝑒𝑒𝑛𝑛′𝑖𝑖 𝑑𝑑 =  𝐷𝐷
�

𝑠𝑠
=  12.286

√238.659
 = 0.795  

This implies that we have a large effect since 𝑑𝑑 is close to 0.8. 
 

 𝐹𝐹2 =  𝑡𝑡2

𝑡𝑡2+𝑑𝑑𝑑𝑑
=  (−6.306)2

(−6.306)2+62
= 0.391 

 
For these data 39% of the variance in the scores is accounted for by the difference before the 
intervention of the teaching strategy compared with what was the case after the intervention. 

Since the obtained t value falls within the critical region that is, 𝑡𝑡 < −2.00 the null 
hypothesis is rejected and we conclude that the teaching intervention did affect the post-
score. Based on the above results one can therefore conclude that the teaching strategy 
resulted in an increase in SKILLPOST (𝑀𝑀 = 12.28, 𝑆𝑆𝐷𝐷 = 15.46). This increase was 
statistically significant, 𝑡𝑡(62) =  −6.306,𝑆𝑆 < 0.05, two-tailed. 
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5.3.2 Paired-samples test for CONCPRE and CONCPOST 

A paired-samples test was also performed for CONCPRE and CONCPOST. Tables 5.16 and 
5.17 show the statistics for the paired-samples test. 

 
 Mean N Std. Deviation Std. Error Mean 
Pair 1 CONCPRE 48.99 63 18.692 2.355 

CONCPOST 59.94 63 17.850 2.249 

Table 5.16: Descriptive statistics for CONCPRE and CONCPOST 

 
 

 

Paired Differences 

t df 
Sig. (2-
tailed) Mean 

Std. 
Deviation 

Std. 
Error 
Mean 

95% Confidence 
Interval of the 

Difference 
Lower Upper 

Pair 
1 

CONCPRE - 
CONCPOST 

-10.950 11.128 1.402 -13.752 -8.147 -7.810 62 .000 

Table 5.17: Paired-samples test for CONCPRE and CONCPOST 

 
Cohen’s d and 𝐹𝐹2 for CONCPRE and CONCPOST is shown below:  
 
 𝐶𝐶𝐹𝐹ℎ𝑒𝑒𝑛𝑛′𝑖𝑖 𝑑𝑑 = 0.984 
This implies that we have a large effect size since 𝑑𝑑 > 0.8. 
 
  𝐹𝐹2 =  0.4959 
 
For these data 50% of the variance in the scores is accounted for by the difference before the 
intervention of the teaching strategy compared with the case after the intervention.  

Since the obtained t value falls in the critical region that is, 𝑡𝑡 < −2.00 the null hypothesis is 
rejected and we conclude that the teaching intervention did affect the post-score. Based on 
the above results one can therefore conclude that the teaching strategy resulted in an increase 
in CONCPOST (𝑀𝑀 = 10.95, 𝑆𝑆𝐷𝐷 = 11.128). This increase was statistically significant, 
𝑡𝑡(62) =  −7.81,𝑆𝑆 < 0.05, two-tailed. 
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5.3.3 Paired-samples test for PRETOT and POSTTOT 

The paired-samples test was also performed for PRETOT and POSTTOT. Tables 5.18 and 
5.19 show the statistics for the paired-samples test. 

 

 Mean N 
Std. 

Deviation 
Std. Error 

Mean 
Pair 1 PRETOT 57.35 63 18.888 2.380 

POSTTOT 68.96 63 15.960 2.011 

Table 5.18: Descriptive statistics for PRETOT and POSTTOT 

 

 
 

 

Paired Differences 

t df 
Sig. (2-
tailed) Mean 

Std. 
Deviation 

Std. 
Error 
Mean 

95% Confidence 
Interval of the 

Difference 
Lower Upper 

Pair 
1 

PRETOT - 
POSTTOT 

-11.614 9.623 1.212 -14.038 -9.190 -9.579 62 .000 

Table 5.19: Paired-samples test for PRETOT and POSTTOT  

 
Cohen’s d and 𝐹𝐹2 for PRETOT and POSTTOT is shown below:  
 
𝐶𝐶𝐹𝐹ℎ𝑒𝑒𝑛𝑛′𝑖𝑖 𝑑𝑑 = 1.208 
This implies that we have a large effect size since 𝑑𝑑 > 0.8. 
 
  𝐹𝐹2 = 0.5968 
 
For these data 60% of the variance in the scores is accounted for by the difference before the 
intervention of the teaching strategy compared with the case after the intervention. 
  
Since the obtained t value falls in the critical region that is,  𝑡𝑡 < −2.00 the null hypothesis is 
rejected and we conclude that the teaching intervention did affect the post-score. Based on 
the above results one can therefore conclude that the teaching strategy resulted in an increase 
in POSTTOT (𝑀𝑀 = 10.95, 𝑆𝑆𝐷𝐷 = 11.128). This increase was statistically significant, 
𝑡𝑡(62) =  −9.579,𝑆𝑆 < 0.05, two-tailed. 
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5.4 STRATIFIED ANALYSIS 

In order to determine how the teaching intervention affected the research participants 
individually a stratified analysis was done by using the statistical technique known as cross-
tabulation. What this essentially means is that the pre-test scores are compared to post-test 
scores to determine whether the score of individual participants improved, remained the same 
or regressed. Since it would be a very difficult task to use percentages for each individual, the 
scores were ranked as shown in Table 5.20. The aim of the stratified analysis was therefore to 
determine what the rank was in the post-test if for example a participant had had a rank of 1 
in the pre-test. It was thought that such a comparison might provide more insight as to how 
the lower, middle and high-ranked individuals were affected by the teaching intervention. 

RANK PERCENTAGE BAND 
1 0% - 30% 
2 31% - 40% 
3 41% - 50% 
4 51% - 60% 
5 61% - 70% 
6 71% - 80% 
7 81% - 90% 
8 91% - 100% 

Table 5.20:  Percentage ranks 

 
Using the ranks together with the two variables SKILLPRE and SKILLPOST, an 8 ×
8 cross-tabulation table was constructed. A similar table was constructed for CONCPRE and 
CONCPOST. The statistical measures for SKILLPRE and SKILLPOST are shown in Tables 
5.21 and 5.22. The chi-square test statistics (Table 5.21) are not valid for this investigation 
since 100% of cells have expected frequencies lower than 5. The symmetrical measures 
shown in Table 5.22 provide measures of the strength of the relationships or effect size of the 
variables involved. The assumptions and requirements for phi and Cramer’s V are the same as 
for the chi-square tests, in other words, at least 80% of the expected frequencies should be 5 
or larger. As already noted this condition is not met and hence these statistical measures will 
not be used.  

Kendall’s tau is a non-parametric measure of correlation between two ranked variables. It 
evaluates the degree of similarity between two sets of ranks given to the same set of objects 
(Abdi, 2007). Kendall’s tau is different from Spearman’s rho and Pearson’s r in that it 
represents a probability. It can be interpreted as the difference between the probability that 
the observed data are in the same order and the probability that the observed data are not in 
the same order (Abdi, 2007). Kendall’s tau is the probability of the difference of the 
concordant pairs and the discordant pairs. A concordant pair is when the rank of the second 
variable is greater than the rank of the former variable, whereas a discordant pair is when the 
rank is equal to or less than the rank of the first variable. The two variations of Kendall’s tau 
namely tau-b and tau-c differ only in the way they handle rank ties. Since in our case we have 
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two variables that are ranked and the interest is to determine movement in ranks, tau-b is the 
preferred statistic. 

The analysis for SKILLPRE and SKILLPOST (Table 5.22) indicate a significant positive 
association between the two variables, tau-b = .569,   𝜌𝜌 < .001. This tau is considered to be a 
large effect size (Cohen, 1992).    

 Value df 

Asymptotic 
Significance 

(2-sided) 
Exact Sig.  
(2-sided) 

Exact Sig.  
(1-sided) 

Pearson Chi-Square 59.628a 35 .006 .b  
Likelihood Ratio 68.205 35 .001 .b  
Fisher's Exact Test .c   .c  
Linear-by-Linear Association 26.160 1 .000 .b .b 
N of Valid Cases 63     

Table 5.21: Chi-Square Tests for SKILLPRE and SKILLPOST 
 

 

 Value 

Asympt
otic 

Standar
dized 

Errora 
Approximate 

Tb 
Approximate 
Significance 

Exact 
Significance 

Nominal by Nominal Phi .973   .006 .c 
Cramer's V .435   .006 .c 
Contingency 
Coefficient .697   .006 .c 

Ordinal by Ordinal Kendall's tau-b .569 .060 9.877 .000 .c 
Kendall's tau-c .565 .057 9.877 .000 .c 
Gamma .663 .069 9.877 .000 .c 
Spearman 
Correlation .709 .058 7.848 .000d .c 

Interval by Interval Pearson's R .650 .068 6.673 .000d .c 
N of Valid Cases 63     

Table 5.22: Symmetric Measures for SKILLPRE and SKILLPOST 
 
5.4.1 Stratified analysis for SKILLPRE and SKILLPOST 

5.4.1.1 Controlling for a pre-test rank of 1 

Table 5.23 reports on how participants moved within the ranks from pre-test to post-test. The 
table shows that four students had a pre-test rank of 1 which amounts to 6.3% of the total 
number of students. One of these students moved to rank 3, one moved to rank 5, one moved 
to rank 6 and another moved to rank 7. It is also worth noting that no students scored in the 
lowest two ranks in the post-test and that the lowest post-test rank is 3. There was thus 0% 
with rank 1 in the post-test and hence a reduction of 6% from pre- to post-test.  
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5.4.1.2 Controlling for a pre-test rank of 2 
Two students had a pre-test rank of 2 which is 3.2% of the total number of students. One of 
these students moved to rank 4 and the other to rank 7. Again, we have 0% with rank 2 in the 
post-test and hence a reduction of 3% from pre- to post-test. 
 
5.4.1.3 Controlling for a pre-test rank of 3   
Eleven students had a pre-test rank of 3, which is 17.5% of the total number of students. After 
intervention one student remained ranked 3, three moved to rank 4, four moved to rank 5, two 
moved to rank 6 and one moved to rank 7. After intervention, 7.9% of students had a rank of 
3, which is a decline of approximately 10%. 
 
5.4.1.4 Controlling for a pre-test rank of 4 
Nine students had a pre-test rank of 4, which is 14.3% of the total number of students. In the 
post-test, three of these students regressed to rank 3; one remained in rank 4; two moved to 
rank 5 and three moved to rank 6. Post intervention 11.1% of students had a rank of 4 which 
shows a decline of approximately 3%. 
 
5.4.1.5 Controlling for a pre-test rank of 5 
Eleven students had a pre-test rank of 5, which constitutes 17.5% of the total number of 
students. In the post-test one of these regressed to rank 4, one remained in rank 5, two 
progressed to rank 6, five moved to rank 7 and two moved to 8. After the intervention 12.7% 
of students had a rank of 5, which shows a decline of approximately 5%.  
 
5.4.1.6 Controlling for a pre-test rank of 6 
Eight students had a pre-test rank of 6, which is 12.7% of the total number of students. Post-
test scores show that one of these students regressed to rank 4, one remained in rank 6, two 
moved to rank 7 and four moved to rank 8. In the post-test 15.9% of students had a rank of 6, 
which shows an increase of about 3%. 
 
5.4.1.7 Controlling for a pre-test rank of 7 
Eight students had a pre-test rank of 7, which is 12.7% of the total number of students. Post-
test scores show that one of these students regressed to rank 6, three remained in rank 7 and 
four progressed to rank 8. After intervention 23.8% of students had a rank of 7, which is 
equal to an increase of 11%. 
 
5.4.1.8 Controlling for a pre-test rank of 8 
Ten students had a pre-test rank of 8, which constitutes 15.9% of the total number of 
students. Post-test ranks show that two students regressed to rank 7 and eight remained in 
rank 8. Post intervention 28.6% of students had a rank 8, which is equal to an increase of 
approximately 13%. 
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SKILL POST RANK 

Total 3 4 5 6 7 8 
SKILLPRE 
RANK  

1 Count 1 0 1 1 1 0 4 
% within RANK PRE 25.0% 0.0% 25.0% 25.0% 25.0% 0.0% 100.0% 
% of Total 1.6% 0.0% 1.6% 1.6% 1.6% 0.0% 6.3% 

2 Count 0 1 0 0 1 0 2 
% within RANK PRE 0.0% 50.0% 0.0% 0.0% 50.0% 0.0% 100.0% 
% of Total 0.0% 1.6% 0.0% 0.0% 1.6% 0.0% 3.2% 

3 Count 1 3 4 2 1 0 11 
% within RANK PRE 9.1% 27.3% 36.4% 18.2% 9.1% 0.0% 100.0% 
% of Total 1.6% 4.8% 6.3% 3.2% 1.6% 0.0% 17.5% 

4 Count 3 1 2 3 0 0 9 
% within RANK PRE 33.3% 11.1% 22.2% 33.3% 0.0% 0.0% 100.0% 
% of Total 4.8% 1.6% 3.2% 4.8% 0.0% 0.0% 14.3% 

5 Count 0 1 1 2 5 2 11 
% within RANK PRE 0.0% 9.1% 9.1% 18.2% 45.5% 18.2% 100.0% 
% of Total 0.0% 1.6% 1.6% 3.2% 7.9% 3.2% 17.5% 

6 Count 0 1 0 1 2 4 8 
% within RANK PRE 0.0% 12.5% 0.0% 12.5% 25.0% 50.0% 100.0% 
% of Total 0.0% 1.6% 0.0% 1.6% 3.2% 6.3% 12.7% 

7 Count 0 0 0 1 3 4 8 
% within RANK PRE 0.0% 0.0% 0.0% 12.5% 37.5% 50.0% 100.0% 
% of Total 0.0% 0.0% 0.0% 1.6% 4.8% 6.3% 12.7% 

8 Count 0 0 0 0 2 8 10 
% within RANK PRE 0.0% 0.0% 0.0% 0.0% 20.0% 80.0% 100.0% 
% of Total 0.0% 0.0% 0.0% 0.0% 3.2% 12.7% 15.9% 

Total Count 5 7 8 10 15 18 63 
% within RANK PRE 7.9% 11.1% 12.7% 15.9% 23.8% 28.6% 100.0% 
% of Total 7.9% 11.1% 12.7% 15.9% 23.8% 28.6% 100.0% 

Table 5.23: RANK PRE and RANK POST Cross-tabulation for SKILLPRE and 
SKILLPOST 

 
5.4.1.9 Conclusion for Stratified analysis of SKILLPRE and SKILLPOST  
Table 5.24 summarizes the increase or decrease in the number of students for each rank. A 
negative value indicates a decrease whereas a positive indicates an increase. It should be 
noted that rank 6, 7 and 8 are the only ones that show an increase and also that no students 
were rank 1 and 2 in the post-test. In the pre-test 9.5% of students were in rank 1 and 2 and 
hence it implies that all of these students moved to higher ranks. Post-test only 7.9% of 
students were in rank 3 which ordinarily is the pass/fail cut-off score. It is also worthwhile 
noting that the biggest increase was in rank 8. This is perhaps an indication that the teaching 
strategy premised on repeated revision helped to increase the procedural fluency of 
participating students. Figure 5.13 shows the increase decrease graph. 
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RANK INCREASE/DECREASE 

(PERC POST – PERC PRE) 
1 -6% 
2 -3.2% 
3 -9.6% 
4 -3.2% 
5 -4.8% 
6 3.2% 
7 11.1% 
8 12.7% 

Table 5.24: Percentage increase/decrease for SKILLPRE and SKILLPOST 
 

 

 
Figure 5.13: SKILLPRE and SKILLPOST percentage increase/decrease in number of 
students 
 
5.4.2 Stratified analysis for CONCPRE and CONCPOST 
A stratified analysis was also done for CONCPRE and CONCPOST the results of which are 
shown in Tables 5.25 and 5.26. 
 
The analysis shows a significant positive association between CONCPRE and CONCPOST, 
tau-b (63) = . 661, 𝜌𝜌 < .001. This tau is considered to be a large effect size (Cohen, 1992). 
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 Value 

Asymptotic 
Standardized 

Errora Approximate Tb 
Approximate 
Significance 

Exact 
Significance 

Nominal by 
Nominal 

Phi 1.102   .001 .c 
Cramer's V .450   .001 .c 
Contingency 
Coefficient .740   .001 .c 

Ordinal by 
Ordinal 

Kendall's tau-b .661 .040 15.455 .000 .d 
Kendall's tau-c .647 .042 15.455 .000 .d 
Gamma .763 .043 15.455 .000 .d 

Measure of 
Agreement 

Kappa .160 .062 3.359 .001 .c 

N of Valid Cases 63     
Table 5.25: Symmetric Measures for CONCPRE and CONCPOST 

 
 
5.4.2.1 Controlling for a pre-test rank of 1 
Table 5.26 shows that eleven students had a pre-test rank of 1 which amounts to 17.5% of the 
total number of students. One of these students remained in rank 1, three moved to rank 2, six 
moved to rank 3 and one moved to rank 4. Post intervention only one student had rank 1, 
which amounts to 1.6% of the total number of students. This amounts to a decrease of 
approximately 16%.  
  
5.4.2.2 Controlling for a pre-test rank of 2 
Fifteen students were rank 2 before intervention, which amounts to 23.8% of the total number 
of students. Five of these students remained rank 2, four students moved to rank 3, three 
students moved to rank 4 and three students moved to rank 5. After intervention eight 
students were rank 2, which is 12.7% of the total number of students. There was therefore a 
decrease of about 11% in rank 2. 
 
5.4.2.3 Controlling for a pre-test rank of 3   
Seven students had a pre-test rank of 3 which amounts to 11.1% of the total number of 
students. After intervention two of these students remained rank 3, two moved to rank 4 and 
three moved to rank 5. Post intervention thirteen students were rank 3, which is 20.6% of the 
total number of students. There was therefore an increase of approximately 10% in rank 3. 
 
5.4.2.4 Controlling for a pre-test rank of 4 
Ten students had a pre-test rank of 4, which amounts to 15.9% of the total number of 
students. One of these students regressed to rank 3, one remained rank 4, three moved to rank 
5, three moved to rank 6 and two progressed to rank 7. After intervention ten students were 
rank 4 and hence there was no net increase or decrease for this rank. 
 
5.4.2.5 Controlling for a pre-test rank of 5  
Nine students had a pre-test rank of 5, which amounts to 14.3% of the total number of 
students. Two of these students regressed to rank 4, three students remained in rank 5, one 
student moved to rank 6 and three students moved to rank 7. Post-test twelve students were in 
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rank 5, which amounts to 19% of the total number of students. This is equivalent to an 
increase of 5% 
 
5.4.2.6 Controlling for a pre-test rank of 6  
Eight students had a pre-test rank of 6, which amounts to 12.7% of the total number of 
students. Post-test one of these students regressed to rank 4, three remained in rank 6, two 
moved to rank 7 and two progressed to rank 8. Post intervention eight students had a rank of 
6, which amounts to 12.7% of the total number of students. There was thus no net movement 
in rank 6. 
 
5.4.2.7 Controlling for a pre-test rank of 7 
Three students had a pre-test rank of 7, which amounts to 4.8% of the total number of 
students. Post-test one of these students regressed to rank 6 and two remained rank 7. Post 
intervention nine students were in rank 7, which amounts to 14.3% of the total number of 
students. There was therefore an increase of approximately 10%. 
 
5.4.2.8 Controlling for a pre-test rank of 8   
No student had a pre-test rank of 8. Post intervention two students had a rank of 8, which 
amounts to an increase of 3.2% of the total number of students.  
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CRANKPOST 

Total 1 2 3 4 5 6 7 8 
CRANKPRE 1 Count 1 3 6 1 0 0 0 0 11 

% within 
CRANKPRE 9.1% 27.3% 54.5% 9.1% 0.0% 0.0% 0.0% 0.0% 100.0% 

% of Total 1.6% 4.8% 9.5% 1.6% 0.0% 0.0% 0.0% 0.0% 17.5% 
2 Count 0 5 4 3 3 0 0 0 15 

% within 
CRANKPRE 0.0% 33.3% 26.7% 20.0% 20.0% 0.0% 0.0% 0.0% 100.0% 

% of Total 0.0% 7.9% 6.3% 4.8% 4.8% 0.0% 0.0% 0.0% 23.8% 
3 Count 0 0 2 2 3 0 0 0 7 

% within 
CRANKPRE 0.0% 0.0% 28.6% 28.6% 42.9% 0.0% 0.0% 0.0% 100.0% 

% of Total 0.0% 0.0% 3.2% 3.2% 4.8% 0.0% 0.0% 0.0% 11.1% 
4 Count 0 0 1 1 3 3 2 0 10 

% within 
CRANKPRE 0.0% 0.0% 10.0% 10.0% 30.0% 30.0% 20.0% 0.0% 100.0% 

% of Total 0.0% 0.0% 1.6% 1.6% 4.8% 4.8% 3.2% 0.0% 15.9% 
5 Count 0 0 0 2 3 1 3 0 9 

% within 
CRANKPRE 0.0% 0.0% 0.0% 22.2% 33.3% 11.1% 33.3% 0.0% 100.0% 

% of Total 0.0% 0.0% 0.0% 3.2% 4.8% 1.6% 4.8% 0.0% 14.3% 
6 Count 0 0 0 1 0 3 2 2 8 

% within 
CRANKPRE 0.0% 0.0% 0.0% 12.5% 0.0% 37.5% 25.0% 25.0% 100.0% 

% of Total 0.0% 0.0% 0.0% 1.6% 0.0% 4.8% 3.2% 3.2% 12.7% 
7 Count 0 0 0 0 0 1 2 0 3 

% within 
CRANKPRE 0.0% 0.0% 0.0% 0.0% 0.0% 33.3% 66.7% 0.0% 100.0% 

% of Total 0.0% 0.0% 0.0% 0.0% 0.0% 1.6% 3.2% 0.0% 4.8% 
Total Count 1 8 13 10 12 8 9 2 63 

% within 
CRANKPRE 1.6% 12.7% 20.6% 15.9% 19.0% 12.7% 14.3% 3.2% 100.0% 

% of Total 1.6% 12.7% 20.6% 15.9% 19.0% 12.7% 14.3% 3.2% 100.0% 
Table 5.26: RANKPRE and RANKPOST Cross-tabulation for CONCPRE and 

CONCPOST 

 
5.4.2.9 Conclusion for Stratified analysis of CONCPRE and CONCPOST 

Table 5.27 summarizes the increase or decrease in the number of students for each rank. A 
negative value indicates a decrease whereas a positive indicates an increase. Ranks 1 and 2 
showed a decrease and ranks 3, 5, 7 and 8 showed an increase. The lowest two ranks together 
showed a decrease of 27% whereas the top two ranks together showed an increase of 13%. 
Although twenty-two students (34.92%) were still in ranks 1, 2 and 3 (the below 50% ranks), 
thirty-one students (49.21%) were in ranks 5 to 8 (the above 60% ranks) post intervention. In 
the pre-test thirty-three students (52.38%) were in ranks 1, 2 and 3, whereas twenty students 
(31.74%) were in ranks 5 to 8. There was thus a net movement from the lower ranks to the 
higher ranks which perhaps can be attributed to the teaching strategy implemented. In 
particular, the productive practice component of the teaching strategy which emphasised 
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conceptual understanding can most probably be one of the factors that contributed to this net 
increase. Figure 5.14 shows the increase/decrease in graph form.  
  

RANK INCREASE/DECREASE 
(PERC POST – PERC PRE) 

1 -15.9% 
2 -11.1% 
3 9.5% 
4 0% 
5 4.7% 
6 0% 
7 9.5% 
8 3.2% 

Table 5.27: Percentage increase/decrease for CONCPRE and CONCPOST 
 

 

Figure 5.14: CONCPRE and CONCPOST percentage increase/decrease in number of 
students 
 
5.4.3 Stratified analysis of categories constituting procedural fluency and conceptual 
understanding 
Table 5.28 shows a comparison of the variables that constitute the pre-and post-test variables 
of SKILL (procedural fluency) and CONC (conceptual understanding). As indicated 
previously SKILL is constituted by A1a, B1a, B1bi, C1bi and C1bii whereas CONC is 
constituted by D1a, D1bi, D1bii and D2a.  Tables 5.29 and 5.30 show the difference between 
the means pre- and post- for SKILL and CONC variables respectively. The difference for the 
variables A1a, B1a and B1bi is relatively high, whereas in the case of C1bii it is low and for 
C1bi it is negative. In the case of CONC the difference for both the variables D1bi and D1bii 
is above 15, but D1a and D2a each have a negative difference. Stratified analysis was 
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performed in order to gain insight as to why the differences for C1bi, D1a and D2a are 
negative. Table 5.31 shows the stratified analysis for C1bi. 
 

 N Range Minimum Maximum Mean (%) Std. Deviation 
A1aPRE 63 94 6 100 64.58 29.805 
A1aPOST 63 100 0 100 90.48 29.590 
B1aPRE 63 100 0 100 57.94 45.086 
B1aPOST 63 100 0 100 68.25 40.213 
B1biPRE 63 62 37 99 69.84 14.987 
B1biPOST 63 28 72 100 90.42 7.922 
C1biPRE 63 83 17 100 71.67 17.895 
C1biPOST 63 100 0 100 69.44 28.379 
C1biiPRE 63 98 2 100 64.49 23.964 
C1biiPOST 63 66 34 100 71.32 16.811 
D1aPRE 63 85 10 95 57.89 21.407 
D1aPOST 63 95 5 100 57.88 24.661 
D1biPRE 63 80 18 99 55.68 20.179 
D1biPOST 63 79 21 100 72.75 20.771 
D1biiPRE 63 92 5 97 45.35 25.671 
D1biiPOST 63 67 32 99 72.98 18.183 
D2aPRE 63 98 0 98 37.05 25.948 
D2aPOST 63 94 0 94 36.17 25.068 
Valid N (listwise) 63      
Table 5.28: Descriptive Statistics of categories constituting procedural fluency and 

conceptual understanding 
 

difference = post – pre 
A1aPOST - A1aPRE = 90.48 - 64.58 = 25.9 
B1aPOST – B1aPRE = 68.25 – 57.94 = 10.31 
B1biPOST – B1biPRE = 90.42 – 69.84 = 20.58 
C1biPOST – C1biPRE = 69.44 – 71.67 = -2.23 
C1biiPOST – C1biiPRE = 71.32 – 64.49 = 6.83 
Table 5.29: Difference between SKILL means 

 
difference = post – pre 

D1aPOST – D1aPRE = 57.88 – 57.89 = -0.01 
D1biPOST – D1biPRE = 72.75 – 55.68 = 17.07 
D1biiPOST – D1biiPRE = 72.98 – 45.35 = 27.63 
D2aPOST – D2aPRE = 36.17 – 37.05 = -0.88 
Table 5.30: Difference between CONC means 
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5.4.3.1 Stratified analysis of C1biPRE and C1biPOST 

5.4.3.1.1 Controlling for a pre-test rank of 1 
Table 5.31 shows that two students had a pre-test rank of 1 which amounts to 3.2% of the 
total number of students. One of these students moved to rank 5 and the other to rank 6. Post 
intervention eight students had rank 1, which amounts to 12.7% of the total number of 
students. This amounts to an increase of 9.5% of the total number of students. 
 
5.4.3.1.2 Controlling for a pre-test rank of 2 
Only one student had a pre-score of 2, which amounts to 1.6% of the total number of 
students. This student regressed to rank 1. After intervention six students had rank 2 which 
amounts to 9.5% of the number of students. This amounts to an increase of approximately 8% 
of the total number of students.   
 
5.4.3.1.3 Controlling for a pre-test rank of 3 
Five students had a pre-test rank of 3, which is equal to 7.9% of the total number of students.  
One of these students regressed to rank 1, one progressed to rank 4, another one to rank 5 and 
two progressed to rank 7. After intervention three students had rank 3, which is equivalent to 
5% of the total number of students. The difference between pre-and post is equivalent to a 
decrease of about 3%. 
 
5.4.3.1.4 Controlling for a pre-test rank of 4 
Seven students had a pre- rank of 4, which is equal to 11.1% of the total number of students. 
One of these students regressed to rank 1, while another regressed to rank 2. One student 
remained in rank 4; one progressed to rank 6 and three progressed to rank 8. After 
intervention two students were in rank 4, which is equivalent to 3.2% of the total number of 
students. This implies the number of students in this rank decreased by 7.9%. 
 
5.4.3.1.5 Controlling for a pre-test rank of 5 
Eleven students had a pre-rank of 5, which is equal to 17.5% of the total number of students. 
Four of these students regressed to rank 1, one regressed to rank 2 and one regressed to rank 
3. One student progressed to rank 5 and four improved to rank 7. After intervention six 
students were in rank 5, which is equivalent to 9.5% of students. Thus, the number of 
students in this rank decreased by 8%.  
 
5.4.3.1.6 Controlling for a pre-test rank of 6 
Seventeen students had a pre-rank of 6, which is equal to 27% of the total number of 
students. One of these regressed to rank 1, three to rank 2, two to rank 3 and two to rank 5. 
Two students remained in rank 6, while three progressed to rank 7 and four progressed to 
rank 8. Post intervention six students were rank 6, which is equal to 9.5% of total number of 
students. Hence the number of students in this rank decreased by 17.5%. 
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5.4.3.1.7 Controlling for a pre-test rank of 7 
Ten students had pre-rank of 7, which is equal to 15.9% of the total number of students. One 
of these students regressed to rank 2, one to rank 5 and one to rank 6. Two students remained 
in rank 7 and five progressed to rank 8. After intervention twelve students were in rank 7, 
which is equal to 19% of the total number of students. Hence the number of students in this 
rank increased by about 3%. 
 
5.4.3.1.8 Controlling for a pre-test rank of 8 
Ten students had a pre-rank of 8, which is equal to 15.9% of the total number of students. 
One of these students regressed to rank 6 while another regressed to 7 and eight remained in 
rank 8. After intervention twenty students were in rank 8, which is equal to 31.7% of the 
total number of students. The number of students in this rank had therefore increased by 
15.8%.  
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C1biPOST-RANK 

Total 1 2 3 4 5 6 7 8 
C1biPRERANK 1 Count 0 0 0 0 1 1 0 0 2 

% within 
C1biPRERANK 0.0% 0.0% 0.0% 0.0% 50.0% 50.0% 0.0% 0.0% 100.0% 

% of Total 0.0% 0.0% 0.0% 0.0% 1.6% 1.6% 0.0% 0.0% 3.2% 
2 Count 1 0 0 0 0 0 0 0 1 

% within 
C1biPRERANK 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 

% of Total 1.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.6% 
3 Count 1 0 0 1 1 0 2 0 5 

% within 
C1biPRERANK 20.0% 0.0% 0.0% 20.0% 20.0% 0.0% 40.0% 0.0% 100.0% 

% of Total 1.6% 0.0% 0.0% 1.6% 1.6% 0.0% 3.2% 0.0% 7.9% 
4 Count 1 1 0 1 0 1 0 3 7 

% within 
C1biPRERANK 14.3% 14.3% 0.0% 14.3% 0.0% 14.3% 0.0% 42.9% 100.0% 

% of Total 1.6% 1.6% 0.0% 1.6% 0.0% 1.6% 0.0% 4.8% 11.1% 
5 Count 4 1 1 0 1 0 4 0 11 

% within 
C1biPRERANK 36.4% 9.1% 9.1% 0.0% 9.1% 0.0% 36.4% 0.0% 100.0% 

% of Total 6.3% 1.6% 1.6% 0.0% 1.6% 0.0% 6.3% 0.0% 17.5% 
6 Count 1 3 2 0 2 2 3 4 17 

% within 
C1biPRERANK 5.9% 17.6% 11.8% 0.0% 11.8% 11.8% 17.6% 23.5% 100.0% 

% of Total 1.6% 4.8% 3.2% 0.0% 3.2% 3.2% 4.8% 6.3% 27.0% 
7 Count 0 1 0 0 1 1 2 5 10 

% within 
C1biPRERANK 0.0% 10.0% 0.0% 0.0% 10.0% 10.0% 20.0% 50.0% 100.0% 

% of Total 0.0% 1.6% 0.0% 0.0% 1.6% 1.6% 3.2% 7.9% 15.9% 
8 Count 0 0 0 0 0 1 1 8 10 

% within 
C1biPRERANK 0.0% 0.0% 0.0% 0.0% 0.0% 10.0% 10.0% 80.0% 100.0% 

% of Total 0.0% 0.0% 0.0% 0.0% 0.0% 1.6% 1.6% 12.7% 15.9% 
Total Count 8 6 3 2 6 6 12 20 63 

% within 
C1biPRERANK 12.7% 9.5% 4.8% 3.2% 9.5% 9.5% 19.0% 31.7% 100.0% 

% of Total 12.7% 9.5% 4.8% 3.2% 9.5% 9.5% 19.0% 31.7% 100.0% 
Table 5.31: PRERANK and POSTRANK Cross-tabulation for C1biPRe and C1biPOST 
 
 
5.4.3.1.9 Conclusion for Stratified analysis of C1biPRE and C1biPOST 

Table 5.32 summarizes the increase or decrease in the number of students for each rank. A 
negative value indicates a decrease whereas a positive indicates an increase. The table shows 
that after intervention ranks 1 and 2 increased by 17.5% and rank 7 and 8 increased by 18.5% 
whereas ranks 3, 4, 5 and 6 together show a decrease of 36.4%. Figure 5.15 shows the 
increase/decrease in graph form.  

A more informative way of analysing the results of the stratified analysis is to look at the 
actual number of students who moved between ranks. Ranks 1, 2 and 3 are below 50% which 
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is the pass cut-off point. Before intervention eight students were registered in these 3 ranks, 
whilst after intervention seventeen students were in these ranks. This implies that these ranks 
increased by 112.5%. This also implies that 26.98% of the total number of students had fail 
ranks for this category of question after intervention. Ranks 4, 5 and 6 range between 50% 
and 80%. Before intervention thirty-five students were in rank 4, 5 and 6, whilst after 
intervention only fourteen students were in these ranks. This implies that these ranks 
decreased by 60%. Nine of these students (14% of the total number of students) who had 
been in these ranks initially had regressed to ranks 1, 2 and 3.  
 
C1bi is the category Familiar Algorithmic Reasoning based on Flexible Procedural 
Knowledge. The fact that approximately a quarter of students occupy the fail grades and that 
14% of students regressed to the fail ranks for this category of question implies that the 
teaching strategy was not very effective in improving student ability for this category of 
question. It would seem therefore that a possible weakness in the teaching strategy was that it 
did not effectively assist all students to acquire the ability to use known procedural 
knowledge flexibly in novel contexts.   
 

RANK INCREASE/DECREASE 
(PERC POST – PERC PRE) 

1 9.5% 
2 8% 
3 -3% 
4 -7.9% 
5 -8% 
6 -17.5% 
7 3% 
8 15.8% 

Table 5.32: Percentage increase/decrease for C1bi 

 

 
Figure 5.15: C1biPRE and C1biPOST percentage increase/decrease in number of 

students 
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5.4.4 Stratified analysis of D1aPRE and D1aPOST 

Table 5.33 shows the stratified analysis for D1aPRE and D1aPOST. 
 
 

 
D1aPOSTRANK 

Total 1 2 3 4 5 6 7 8 
D1a 
PRERANK 

1 Count 1 0 1 2 1 1 0 0 6 
% within 
D1aPRERANK 16.7% 0.0% 16.7% 33.3% 16.7% 16.7% 0.0% 0.0% 100.0% 

% of Total 1.6% 0.0% 1.6% 3.2% 1.6% 1.6% 0.0% 0.0% 9.5% 
2 Count 3 0 1 0 4 1 0 0 9 

% within 
D1aPRERANK 33.3% 0.0% 11.1% 0.0% 44.4% 11.1% 0.0% 0.0% 100.0% 

% of Total 4.8% 0.0% 1.6% 0.0% 6.3% 1.6% 0.0% 0.0% 14.3% 
3 Count 0 0 0 1 0 2 0 1 4 

% within 
D1aPRERANK 0.0% 0.0% 0.0% 25.0% 0.0% 50.0% 0.0% 25.0% 100.0% 

% of Total 0.0% 0.0% 0.0% 1.6% 0.0% 3.2% 0.0% 1.6% 6.3% 
4 Count 2 1 0 0 6 0 2 0 11 

% within 
D1aPRERANK 18.2% 9.1% 0.0% 0.0% 54.5% 0.0% 18.2% 0.0% 100.0% 

% of Total 3.2% 1.6% 0.0% 0.0% 9.5% 0.0% 3.2% 0.0% 17.5% 
5 Count 3 1 1 1 4 4 2 0 16 

% within 
D1aPRERANK 18.8% 6.3% 6.3% 6.3% 25.0% 25.0% 12.5% 0.0% 100.0% 

% of Total 4.8% 1.6% 1.6% 1.6% 6.3% 6.3% 3.2% 0.0% 25.4% 
6 Count 2 0 0 0 3 1 0 0 6 

% within 
D1aPRERANK 33.3% 0.0% 0.0% 0.0% 50.0% 16.7% 0.0% 0.0% 100.0% 

% of Total 3.2% 0.0% 0.0% 0.0% 4.8% 1.6% 0.0% 0.0% 9.5% 
7 Count 1 1 1 1 1 0 3 1 9 

% within 
D1aPRERANK 11.1% 11.1% 11.1% 11.1% 11.1% 0.0% 33.3% 11.1% 100.0% 

% of Total 1.6% 1.6% 1.6% 1.6% 1.6% 0.0% 4.8% 1.6% 14.3% 
8 Count 0 0 0 0 0 0 1 1 2 

% within 
D1aPRERANK 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 50.0% 50.0% 100.0% 

% of Total 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.6% 1.6% 3.2% 
Total Count 12 3 4 5 19 9 8 3 63 

% within 
D1aPRERANK 19.0% 4.8% 6.3% 7.9% 30.2% 14.3% 12.7% 4.8% 100.0% 

% of Total 19.0% 4.8% 6.3% 7.9% 30.2% 14.3% 12.7% 4.8% 100.0% 
Table 5.33: PRERANK and POSTRANK Cross-tabulation for D1aPre and D1aPOST 

 
 
5.4.4.1 Controlling for a pre-test rank of 1 
Table 5.33 shows that six students had a pre-test rank of 1 which amounts to 9.5% of the total 
number of students. One of these students remained in rank 1, one moved to rank 3, two 
moved to rank 4, one moved to rank 5 and one moved to rank 6. Post intervention twelve 
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students had rank 1, which amounts to 19% of the total number of students. This amounts to 
an increase of 9.5% of the total number of students. 
 
5.4.4.2 Controlling for a pre-test rank of 2 
Nine students had a pre-score of 2, which amounts to 14.3% of the total number of students. 
Three of these students regressed to rank I, one moved to rank 3, four moved to rank 5 and 
one moved to rank 6. After intervention three students had rank 2 which amounts to 4.8% of 
the total number of students. This amounts to a decrease of 9.5% for the total number of 
students.   
 
5.4.4.3 Controlling for a pre-test rank of 3 
Four students had a pre-test rank of 3, which is equal to 6.3% of the total number of students.  
One of these students moved to rank 4, two moved to rank 6 and one moved to rank 8. After 
intervention four students had rank 3, which is equivalent to 6.3% of the total number of 
students. There is therefore no net difference between pre-and post-rank. 
 
5.4.4.4 Controlling for a pre-test rank of 4 
Eleven students had a pre-test rank of 4, which is equal to 17.5% of the total number of 
students. After intervention two of these students regressed to rank 1, one regressed to rank 2, 
six moved to rank 5 and two moved to rank 7. The number of students who had a rank of 4 
after intervention is five; this is equivalent to 7.9% of the total number of students and 
amounts to a decrease of 9.6%. 
 
5.4.4.5 Controlling for a pre-test rank of 5 
Sixteen students had a pre-rank of 5, which is equal to 25.4% of the total number of students. 
Three of these students regressed to rank 1, one regressed to rank 2, one regressed to rank 3, 
one regressed to rank 4, four remained rank 5, four moved to rank 6 and two moved to rank 7. 
After intervention nineteen students were in rank 5, which is equivalent to 30.2% of students. 
Thus, the number of students in this rank increased by 4.8%.  
 
5.4.4.6 Controlling for a pre-test rank of 6 
Six students had a pre-rank of 6, which is equal to 9.5% of the total number of students. After 
intervention two of these students regressed to rank 1, three regressed to rank 5 and one 
remained in rank 6. The number of students who had a rank of 6 after intervention was nine, 
which amounts to 14.3% of the total number of students. This amounts to an increase of 
4.8%. 
 
5.4.4.7 Controlling for a pre-test rank of 7 
Nine students had a pre-rank of 7, which is equal to 14.3% of the total number of students. 
After intervention one student regressed to each of the ranks 1, 2, 3, 4 and 5, while three 
students remained in rank 7 and one student moved to rank 8. The number of students who 
had a rank of 7 after intervention was eight, which amounts to 12.7% of the total number of 
students. This signifies a decrease of 1.6%. 
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5.4.4.8 Controlling for a pre-test rank of 8 
Two students had a pre-rank of 8, which is equal to 3.2% of the total number of students. 
After intervention one student regressed to the rank of 7, while the other student remained in 
rank 8. The number of students who had a rank of 8 after intervention was three, which 
amounts to 4.8% of the total number of students  –  an increase of 1.6%. 
 
5.4.4.9 Conclusion for Stratified analysis of D1aPRE and D1aPOST 
Table 5.34 summarizes the increase or decrease in the number of students for each rank. A 
negative value indicates a decrease whereas a positive indicates an increase. The table shows 
that after intervention ranks 1, 2 and 3 had a 0% increase. Similarly ranks 4, 5 and 6 and 
ranks 7 and 8 show a zero percent increase. Figure 5.16 shows the increase/decrease in graph 
form.  
 
Actual number of students shows that there was no net movement of students between ranks. 
Before intervention ranks 1, 2 and 3 had nineteen students, which remained the same post 
intervention. Ranks 4, 5 and 6 had thirty-three students before and after intervention, while 
ranks 7 and 8 similarly showed no movement.  
 
D1a indicates the category Memorised reasoning based on conceptual knowledge. Based on 
the foregoing analysis, one may conclude that the teaching strategy had no major impact on 
the improvement of students’ ability to use the conceptual knowledge they had been exposed 
to in class in problem situations.   
 

RANK 
 

INCREASE/DECREASE 
(PERC POST – PERC PRE) 

1 9.5% 
2 -9.5% 
3 0% 
4 -9.6% 
5 4.8% 
6 4.8% 
7 -1.6% 
8 1.6% 

Table 5.34: Percentage increase/decrease for D1a 
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Figure 5.16: D1aPRE and D1aPOST percentage increase/decrease in number of 

students 
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5.4.5 Stratified analysis of D2aPRE and D2aPOST 

Table 5.35 shows the stratified analysis for D2aPRE and D2aPOST. 
 

 
D2aPOSTRANK 

Total 1 2 3 4 5 6 7 8 
D2a 
PRERANK 

1 Count 25 3 0 2 0 0 0 0 30 
% within 
D2aPRERANK 83.3% 10.0% 0.0% 6.7% 0.0% 0.0% 0.0% 0.0% 100.0% 

% of Total 39.7% 4.8% 0.0% 3.2% 0.0% 0.0% 0.0% 0.0% 47.6% 
2 Count 2 2 3 0 0 0 1 0 8 

% within 
D2aPRERANK 25.0% 25.0% 37.5% 0.0% 0.0% 0.0% 12.5% 0.0% 100.0% 

% of Total 3.2% 3.2% 4.8% 0.0% 0.0% 0.0% 1.6% 0.0% 12.7% 
3 Count 2 0 0 2 1 0 0 0 5 

% within 
D2aPRERANK 40.0% 0.0% 0.0% 40.0% 20.0% 0.0% 0.0% 0.0% 100.0% 

% of Total 3.2% 0.0% 0.0% 3.2% 1.6% 0.0% 0.0% 0.0% 7.9% 
4 Count 0 1 2 0 1 1 1 0 6 

% within 
D2aPRERANK 0.0% 16.7% 33.3% 0.0% 16.7% 16.7% 16.7% 0.0% 100.0% 

% of Total 0.0% 1.6% 3.2% 0.0% 1.6% 1.6% 1.6% 0.0% 9.5% 
5 Count 0 2 1 1 0 1 1 1 7 

% within 
D2aPRERANK 0.0% 28.6% 14.3% 14.3% 0.0% 14.3% 14.3% 14.3% 100.0% 

% of Total 0.0% 3.2% 1.6% 1.6% 0.0% 1.6% 1.6% 1.6% 11.1% 
6 Count 0 1 0 0 0 0 1 0 2 

% within 
D2aPRERANK 0.0% 50.0% 0.0% 0.0% 0.0% 0.0% 50.0% 0.0% 100.0% 

% of Total 0.0% 1.6% 0.0% 0.0% 0.0% 0.0% 1.6% 0.0% 3.2% 
7 Count 0 1 0 0 0 2 0 0 3 

% within 
D2aPRERANK 0.0% 33.3% 0.0% 0.0% 0.0% 66.7% 0.0% 0.0% 100.0% 

% of Total 0.0% 1.6% 0.0% 0.0% 0.0% 3.2% 0.0% 0.0% 4.8% 
8 Count 0 0 1 0 1 0 0 0 2 

% within 
D2aPRERANK 0.0% 0.0% 50.0% 0.0% 50.0% 0.0% 0.0% 0.0% 100.0% 

% of Total 0.0% 0.0% 1.6% 0.0% 1.6% 0.0% 0.0% 0.0% 3.2% 
Total Count 29 10 7 5 3 4 4 1 63 

% within 
D2aPRERANK 46.0% 15.9% 11.1% 7.9% 4.8% 6.3% 6.3% 1.6% 100.0% 

% of Total 46.0% 15.9% 11.1% 7.9% 4.8% 6.3% 6.3% 1.6% 100.0% 

Table 5.35: PRERANK and POSTRANK Cross-tabulation for D2aPRE and D2aPOST 
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5.4.5.1 Controlling for a pre-test rank of 1 
Table 5.35 shows that thirty students had a pre-test rank of 1 which amounts to 47.5% of the 
total number of students. Twenty-five of these students remained in rank 1, three moved to 
rank 2 and two moved to rank 4. Post intervention twenty-nine students had rank 1, which 
amounts to 46% of the total number of students. This amounts to a decrease of 1.5% of the 
total number of students. 
 
5.4.5.2 Controlling for a pre-test rank of 2 
Eight students had a pre-score rank of 2, which amounts to 12.7% of the total number of 
students. Two of these students regressed to rank 1, two remained in rank 2, three moved to 
rank 3 and one moved to rank 7. After intervention ten students had rank 2 which accounts 
for 15.9% of the total number of students. This amounts to an increase of 3.2% of the total 
number of students.   
 
5.4.5.3 Controlling for a pre-test rank of 3 
Five students had a pre-score rank of 3, which amounts to 7.9% of the total number of 
students. Two of these students regressed to rank 1, two moved to rank 4, and one progressed 
to rank 5. After intervention seven students had rank 3 which amounts to 11.1% of the total 
number of students. This amounts to an increase of 3.2% of the total number of students.   
 
5.4.5.4 Controlling for a pre-test rank of 4 
Six students had a pre-score rank of 4, which amounts to 9.5% of the total number of 
students. One of these students regressed to rank 2, two regressed to rank 3, one moved to 
rank 5, one moved to rank 6 and one moved to rank 7. After intervention five students had 
rank 4 which amounts to 7.9% of the total number of students. This amounts to a decrease of 
1.6% in the total number of students.  
 
5.4.5.5 Controlling for a pre-test rank of 5 
Seven students had a pre-score rank of 5, which amounts to 11.1% of the total number of 
students. Two of these students regressed to rank 2 and one each regressed to rank 3 and 4 
respectively. Three students progressed to ranks 6, 7 and 8 respectively. After intervention 
three students were in rank 5 which amounts to 4.8% of the total number of students. This 
amounts to a decrease of 6.3% in the total number of students.   
 
 5.4.5.6 Controlling for a pre-test rank of 6 
Two students had a pre-score rank of 6, which amounts to 3.2% of the total number of 
students. One of these students regressed to rank 2 and the other progressed to rank 7. After 
intervention four students were in rank 6 which accounts for 6.3% of the total number of 
students. This amounts to an increase of 3.1% of the total number of students. 
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5.4.5.7 Controlling for a pre-test rank of 7 
Three students had a pre-score rank of 7, which amounts to 4.8% of the total number of 
students. One of these students regressed to rank 2 and the other two regressed to rank 6. 
After intervention four students were in rank 7 which amounts to 6.3% of the total number of 
students. This amounts to an increase of 1.5% in the total number of students. 
   
5.4.5.8 Controlling for a pre-test rank of 8 
Two students had a pre-score rank of 8, which amounts to 3.2% of the total number of 
students. One of these students regressed to rank 3 while the other student regressed to rank 
5. After intervention, only one student was in rank 8 which amounts to 1.6% of the total 
number of students. This amounts to a decrease of 1.6% of the total number of students. 
 
5.4.5.9 Conclusion for Stratified analysis of D2aPRE and D2aPOST 
Table 5.36 summarizes the increase or decrease in the number of students for each rank. A 
negative value indicates a decrease whereas a positive indicates an increase. The table shows 
that after intervention ranks 1, 2 and 3 – the below pass cut-off – had a 4.9% increase. Ranks 
4, 5 and 6 decreased by 7.9% and ranks 7 and 8 showed only a minor change. Figure 5.17 
shows the increase/decrease in graph form.  

Student numbers indicate that in total three students moved from ranks 4, 5 and 6 to ranks 1, 
2 and 3 while ranks 7 and 8 showed zero movement. D2a is the category Local Creative 
Reasoning based on Conceptual Knowledge which is the highest category in terms of 
achievement difficulty. This is also the category that I believe teachers should have in 
abundance for school level mathematics. I believe that in order for teachers of mathematics to 
explain concepts adequately they must be able to view and utilize concepts from different 
angles.  

Before intervention the number of students within ranks 1, 2 and 3 was forty-three. This is 
equal to 68% of the total number of students. After intervention forty-six students were in 
ranks 1, 2 and 3, which is equal to 73% of the total number of students. Ranks 4, 5 and 6 
contained fifteen students (23.8% of the total number of students) before intervention and 
twelve students (19% of the total number of students) after intervention. Ranks 7 and 8 had 
five students (7.9% of the total number of students) before intervention and five students after 
intervention.  

The question is what do these statistics reveal?  

The fact that 68% of students were in ranks 1, 2 and 3 before intervention implies that the 
majority of students entered with weak abilities in terms of Local Creative Reasoning based 
on Conceptual Knowledge. The fact that the number of students in these ranks increased after 
intervention is a probable indication that the teaching strategy did not have the desired effect 
of increasing ability in this category. Furthermore, the fact that the movement between ranks 
was very low suggests that for all categories of student, their ability in the domain of Local 
Creative Reasoning based on Conceptual Reasoning was not affected in a major way by the 
teaching strategy. What this means is that the majority of students was not moved to either 
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higher or lower ranks and hence student ability for this category remained mostly unchanged 
by the teaching strategy.    

RANK INCREASE/DECREASE 
(PERC POST – PERC PRE) 

1 -1.5% 
2 3.2% 
3 3.2% 
4 -1.6% 
5 -6.3% 
6 3.1% 
7 1.5% 
8 -1.6% 

Table 5.36: Percentage increase/decrease for D2a 
 
 

 
Figure 5.17: D2aPRE and D2aPOST percentage increase/decrease in number of 

students 
 

5.5 Error variance (Nuisance variables)  
In research the possibility always exists that factors other than those specified by the 
researcher might be responsible for observed effects. These factors are labelled ‘nuisance 
variables’. Error variance consists of those chance fluctuations in scores that are attributable 
to the effects of nuisance variables. In order to draw valid conclusions a researcher must be 
able to rule out the possibility that nuisance variables could explain the apparent effect of the 
independent variable (Myers et al, 2010). One way to reduce error variance is to make certain 
that uniform conditions exist for all research participants.  

In this study, all research participants received the same instruction in the same environment 
and hence control by uniform conditions was utilized to reduce error variance. Furthermore, 
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since students participating in the study wrote tests and examinations independently without 
any consultation, each observation is independent. 
 
 
5.6 Summary of Conclusions of statistical analysis 

In this research, total score for an examination was 100 whereas total score for a class test 
was 50. Examinations included questions from all topics covered during the semester, 
whereas class tests included questions from only those topics covered prior to the test. 
Knowledge retention requirements for examinations therefore were greater and similarly the 
retention interval was greater for examinations than for tests. Research has shown that 
frequent classroom testing can improve examination scores, but improvement diminishes as 
test frequency increases (Bangert-Drowns, Kulik, Kulik, & Morgan, 1991). However, the 
deleterious effects of testing on students can influence this improvement. Some of these 
effects are test anxiety, lower intrinsic motivation, a decrease in student learning, etc. 
(Amrein & Berliner, 2002). In a study with elementary school students it was found that the 
students experienced significantly greater test anxiety about high-stakes assessment than 
about classroom tests (Segool, Carlson, Goforth, von der Embse & Barterian, 2013). In the 
current study, the class tests afforded students the opportunity to perform better in the next 
test or the one following that, etc. and hence their test anxiety might have been alleviated. By 
contrast, the examination was a once-off event and carried the attendant high stakes 
consequences such as non-promotion in the case of failure to pass it. One could thus argue 
that students are likely to be more anxious about examinations. The expectation therefore was 
that post-test scores (examinations) would be lower than pre-test (class tests). However, 
should statistical analysis show otherwise (like higher post-test scores) it would be reasonable 
to argue that the intervention played a role in increasing post-test scores.  

The aim of this investigation was to determine how exposure to a teaching strategy (based on 
spiral revision and productive practice) would influence the mathematical competencies of 
procedural fluency and conceptual understanding of participating pre-service students. The 
following categories were considered to be measures of procedural fluency: Memorized 
Reasoning based on Factual knowledge (A1a), Memorized Reasoning based on Procedural 
knowledge (B1a) and Familiar Algorithmic Reasoning based on Procedural knowledge 
(B1bi); Familiar Algorithmic Reasoning based on Flexible Procedural knowledge (C1bi) and 
Delimiting Algorithmic Reasoning based on Flexible Procedural knowledge (C1bii) as 
determined according to the Revised Taxonomy table. Procedural fluency was represented by 
the variables SKILLPRE and SKILLPOST. A related samples t test based on differences 
between pre- and post-test scores was performed on these two variables.  

The findings indicate a significant difference between SKILLPRE and SKILLPOST. A 
stratified analysis was also performed to compare students’ pre- and post-test rankings. The 
findings indicate that the majority of students moved to a higher ranking for SKILLPOST. 
No students were in the lowest two ranks and only 7.9% of students were below the pass cut-
off score post-test. If one considers all these statistical findings together a highly plausible 
conclusion is that procedural fluency was positively enhanced by the teaching strategy.  
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However, an investigation into the categories which constitute procedural fluency and 
conceptual understanding indicates that the teaching strategy has some weaknesses which 
should be addressed in order to improve effectiveness. The analysis of student performance in 
the category Familiar Algorithmic Reasoning based on Flexible Procedural Knowledge 
(C1bi) – which forms part of procedural fluency – indicates that approximately a quarter of 
the students are not at the required level of competence for this category. This category of 
question was used to determine whether students had developed the ability to use familiar 
procedural knowledge in a new way.     

The following categories were considered to be measures of conceptual understanding: 
Memorised Reasoning based on Conceptual knowledge (D1a), Familiar Algorithmic 
Reasoning based on Conceptual knowledge (D1bi), Delimiting Algorithmic Reasoning based 
on Conceptual knowledge (D1bii) and Local Creative reasoning based on Conceptual 
knowledge (D2a). Conceptual understanding was represented by the variables CONCPRE 
and CONCPOST. A related samples t test was also performed on these two variables. The 
findings indicate a significant difference between pre- and post-test scores. The findings 
based on the stratified analysis indicate that the lowest two ranks decreased by 27% whereas 
the top two ranks together showed an increase of 13%. Pre-test, scores indicate 52.4% of 
students were below the cut-off score, whereas 34.9% of students were below the cut-off 
score according to post-test scores.   

As discussed in the foregoing section, if all findings concerning CONCPRE and CONCPOST 
are considered, then a highly plausible conclusion is that conceptual understanding was 
improved by the teaching strategy.  

Although the overall analysis of the categories constituting conceptual understanding show 
that the majority of students have improved abilities after intervention, an investigation into 
the individual categories indicates that weaknesses exist in some categories. Student abilities 
remained largely unchanged pre-and post-intervention for the category Memorized 
Reasoning based on Conceptual Knowledge (D1a). Similarly, the category Local Creative 
Reasoning based on Conceptual Knowledge (D2a) did not show a significant positive change 
after intervention. These two categories of questions were utilized to determine if students 
had developed the ability to use conceptual knowledge creatively in order to solve problems 
with which they were presented.  

The qualitative part of the study will be discussed in the following chapter. 
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CHAPTER 6: QUALITATIVE RESULTS: DATA ANALYSIS AND DISCUSSION 
 
 
6.1 Introduction  

Two essential objectives in teaching mathematics are the enhancement of the retention and 
transfer of knowledge.  

Mayer (2002) defines retention as the ability to recall learnt material at some future point in 
the same way in which it had been presented. Transfer is defined as the capacity to utilize 
prior knowledge in order to solve new problems or to learn new subject matter. Two of the 
major objectives of the teaching strategy were to enhance participating students’ retention 
and transfer abilities. Spiral revision and productive practice provided the instructional 
strategy through which it was hoped to achieve this. 

Retention of prior knowledge is an essential part of learning in general. Revision of 
previously learnt material is one of the main strategies employed to enhance retention in 
education. It was argued in chapter 3.8 that humans forget approximately half of newly 
learned knowledge in a matter of days or weeks (Ebbinghaus, 1964; Rubin & Wenzel, 1996; 
Averell & Heathcote, 2010; Murre & Dros, 2015) unless they consciously review the learned 
material. The ‘forget rate’ is dependent on factors such as the difficulty of the learned 
material, how the material is presented, the depth of learning and physiological factors such 
as stress and sleep.  

Most of the research concerning knowledge retention has utilized tasks that require verbatim 
recall of, for example, nonsense words. A review of the literature shows that there is a 
paucity of studies which have investigated retention of mathematical procedures and 
concepts. More precisely there is a dire lack of research that has examined how the 
distribution of practice across learning sessions affects the retention of mathematical 
knowledge – a domain which requires more than verbatim recall. 

Different types of practice are described and defined in the literature. Distributed practice is 
defined as a learning strategy in which practice of specified knowledge and skills is 
distributed over a differing number of practice sessions. Distributed practice may be massed 
into a single session, may be distributed across two sessions or more sessions (Rohrer & 
Taylor, 2006). The type of distributed practice favoured in this study is practice distributed 
across many sessions. An important issue in the determination of the effectiveness of such 
practice is the retention interval. Retention interval is defined as time elapsed between the 
most recent learning session and the test (Rohrer & Taylor, 2006).    

Overlearning is a strategy in which a student first masters a skill and then immediately 
proceeds to practice the same skill (Rohrer & Taylor, 2006). A very popular teaching strategy 
in mathematics is to present students with an example of a specific type of problem and then 
immediately require the students to practice solving many examples of the same kind of 
problem. This type of practice is usually done as a once-off exercise and can thus be 
classified as overlearning. As I have stated earlier the term overlearning might be perceived 
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as negative  since it can be compared to terms such as overeating and in addition the type of 
practice described by overlearning appear to be very similar to repetitive practice. I therefore 
prefer the term repetitive practice and will use this term henceforth.     

The retention of knowledge in the learning of mathematics is absolutely crucial since in the 
majority of cases prior knowledge is required for solving problems presented. It is thus 
important to know which type of practice would best enhance the retention of mathematical 
procedures and concepts. Research done by Rohrer and Taylor (2006) has shown that long-
term retention of a mathematical procedure is better aided by distributed practice. In this 
research I utilized both distributed and repetitive practice. I utilized repetitive practice mainly 
for mastery, and distributed practice for retention purposes and deeper understanding. 

Some researchers argue that retrieving information during a test is not a neutral event and that 
the retrieval process can change knowledge, and in itself can produce learning (Karpicke & 
Roediger, 2008). Furthermore research has shown that testing can be employed as a strategy 
to enhance retention of knowledge (Roediger & Karpicke, 2006; Carpenter, Pashler, Wixted 
& Vul, 2008). Findings in empirical research have shown that repeated testing of the same 
content boosted retention more than repeated study (Roediger & Karpicke, 2006). Also as 
indicated earlier, a meta-analysis of the effects of test frequency has shown that frequent 
classroom testing can improve examination scores, but that improvement reduces as test 
frequency increases (Bangert-Drowns, Kulik, Kulik, & Morgan, 1991). In this study I have 
employed repeated testing on the same content as a strategy to enhance retention of 
indispensable mathematical knowledge. Indispensable mathematical knowledge is the 
mathematical knowledge that allows students to have fruitful interaction in the mathematics 
classroom and with the broader mathematical community. It enables them to cope with future 
activities in mathematics (Linchevski et al, 2000).          

The debates have not been settled regarding which conditions allow for transfer of knowledge 
and which teaching strategies are best suited to enhance transfer. However, I view transfer, 
practice and conceptual understanding as being closely linked in the learning of mathematics.  

As argued in chapter 3.4 automatization is defined as the practice of a skill or habit to the 
point that it becomes routine and requires little if any conscious effort or direction. In other 
words it refers to the point at which the thought processes involved in the skill have been 
moved to the long-term memory. Kalyuga (2007) maintains that if mundane procedural 
elements of a task have been practised to the extent that it became automated it would free 
cognitive capacity to engage in more creative reasoning and to applying prior knowledge in 
unfamiliar situations. In other words it would increase the possibility of transfer taking place.  

Since I wanted the students to become proficient in the content areas which form part of our 
curriculum I had to devise teaching strategies that would help them develop competency in 
the specified content areas. Thus amongst its goals, the instruction aimed to develop task 
specific proficiency. Kalyuga (2007) argues that the development of task-specific expertise is 
a prerequisite for becoming a higher-level expert in a broader domain of learning. Task-
specific expertise is the ability to perform fluently in a specific class of tasks.  
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Ericsson (2000) argues that expert performance in a domain of learning is viewed as an 
extreme case of skill attainment and is the result of incremental improvement in performance 
during extensive experience in the domain. Experience is gained through deliberate practice 
on tasks designed by an instructor with the goal of improving aspects of a student’s 
performance. Ericsson (2000) maintains that the amount of time spent in solitary practice 
influences the level of expertise attained. He contends that the greater the accumulated 
amount of practice the higher the level of expertise achieved.          

As stated defined previously spiral revision is the recurrent practising of previously covered 
mathematical work in specified content areas (Julie, 2013). Spiral revision includes review-
as-you-go, mass practice, distributed practice, repetitive practice, productive practice and 
spiral testing as part of the revision process. One of the mathematical competencies that the 
spiral revision strategy is premised on is procedural fluency.  

In this study practice (either in class, in tutorial class, as homework or in class tests) consisted 
of working through selected mathematical tasks that were similar to examples encountered 
earlier, were reversal-type problems or deepening-thinking-like problems. Each successive 
class test included questions on content previously covered and therefore students were 
required to revise topics previously covered in their individual studies as well. Class tests 
therefore formed part of the revision process.  

In most cases in teaching situations in mathematics revision is done as a once-off exercise 
and is presented in the same way as the original teaching (Wigley, 1992). However, as 
indicated earlier revision in this study was done on an ongoing basis throughout the semester 
and it included discussion of deepening thinking-like problems (May & Julie, 2014). It is 
generally accepted that mathematical proficiency is a function of both procedural and 
conceptual knowledge. I therefore considered it prudent to include productive practice in the 
teaching strategy. Julie (2013) contends that productive practice is a didactic strategy by 
which students are exposed to deepening thinking-like problems. Deepening thinking-like 
problems were utilized to enhance and deepen conceptual knowledge and to increase flexible 
procedural knowledge of students in requisite content areas of the specified mathematics 
curriculum (May & Julie, 2014).  

A central idea of the teaching strategy is that tasks that are conceptually and procedurally 
more demanding are presented to students within each subsequent cycle of the revision 
process. I am of the opinion that problems requiring more complex solution strategies require 
more practice more often in order to develop skill in dealing with such problems, to deepen 
understanding and also to make it part of the long-term memory.  

Retention of procedural knowledge and mastery of imitative reasoning was inferred if a 
participating student produced a correct procedure for an appropriate task. It was also 
assumed that procedural knowledge was retained if a correct formula (for example slope-
intercept form of the two-variable linear equation) had been produced correctly and used 
appropriately. Tasks used to determine levels of conceptual knowledge were usually 
unfamiliar to participants and required participants to make cognitive connections between 
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known pieces of information or between known and new pieces of information. Some of 
these tasks required creative reasoning.    

6.1.1 A Deepening-thinking-like example 

Productive practice forms an important part of my version of spiral revision. Deepening-
thinking-like problems is the type of problem utilized for discussion purposes or for students 
to engage with in this type of practice. To make it clear what kind of problem I perceive to be 
of this kind a typical example is discussed next. 

The following is an example of a deepening-thinking-like example. If in a lesson on 

rationalisation of denominators examples such as 12
√18

, √x−�y
√x+�y

  and 1
√65  were discussed, then the 

following presented problem can be classified as a deepening-thinking-like problem:  

Simplify 𝑡𝑡
√𝑏𝑏𝑛𝑛  by rationalising the denominator.   

 The following is an exposition of my motivation for this classification. In order to rationalize 
denominators the notion of 1 in a different form is utilized as well as the fact that 1 is the 
identity element for multiplication in the real number system. Since all the examples 
discussed in the lesson utilized integer roots this question extends the discussion into a new 
direction, prompting the further question, ‘What would happen in the case of a general or 
variable root?’ This case would therefore require the student to realize that after 
multiplication is effected the exponent under the root should be equal to the order of the root 
and hence that this is the general underlying principle being utilized in all such cases. 
Moreover they should also be aware that in the exponential form the exponent of the base of 
the denominator should be 1. The intention with this question therefore would be to expose 
the general conceptual underpinnings involved in the solution procedure for this type of 
question. The following solution serves to exemplify the above discussion: 

𝑎𝑎
√𝑏𝑏𝑛𝑛 ×

√𝑏𝑏𝑡𝑡−1𝑛𝑛

√𝑏𝑏𝑡𝑡−1𝑛𝑛  

=  𝑡𝑡. √𝑏𝑏𝑛𝑛−1𝑛𝑛

√𝑏𝑏𝑛𝑛−1∙𝑏𝑏𝑛𝑛      

 
6.2 Research participants 

The second research question is concerned with retention and transfer abilities of the 
participating pre-service students. As mentioned previously the objective (regarding the 
topics taught) was to determine how retention and transfer abilities of participating students 
would be affected if they are exposed to a teaching strategy underpinned by spiral revision 
and productive practice. This question was investigated by means of case studies. As 
indicated earlier the students selected to participate in the case studies were chosen from 
different ability groups. In total six students formed the contingent for the case studies; two 
students were selected from the lower achieving group (Students A and B); two from the 
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average achieving group (Students C and D) and two from the high achieving group 
(Students E and F). The student demographics and results are shown in Table 6.1. It should 
be noted that students tend to score higher in mathematical literacy than in mathematics but 
that these higher scores do not usually translate into higher scores in mathematics courses at 
university level. 

Student Male / 
Female 

Grade 12 Mathematics/ 
Mathematical Literacy 

Grade 12 
results 

MAE 121 results (first 
year university 

mathematics module 
for pre-service 

teachers) 
Student A Female Mathematical Literacy 75% 48% 
Student B Female Mathematical Literacy 86% 55% 
Student C Female Mathematics 47% 64% 
Student D Female Mathematics 65% 47% 
Student E Female Mathematics 60% 95% 
Student F Male Mathematics 61% 97% 

Table 6.1: Case study student Demographics and Results 
 
 
6.3 Presentation of results and data analysis   

Data for this part of the study – the case studies – consisted of the written responses of the six 
participating students to either class tests or end of module examinations. Since it would have 
been a very difficult and time-consuming exercise to include responses on all topics, only 
responses to test and examination items based on the algebraic and graphical versions of the 
two-variable linear equation (𝑎𝑎 = 𝑠𝑠𝑥𝑥 + 𝑐𝑐) and related items in different contexts of the 
curriculum were considered. Such problems were included in the first four class tests of the 
first semester, the end of module examinations of the first semester, and they also formed part 
of the chapter on Analytic Geometry that was covered in the second semester.  

6.3.1 Question 1.1 of class test 1 of semester 1 

The first class test was written soon after the topic of linear functions (as part of the broader 
topic of analytic geometry) had been completed. Responses to the following question in Class 
test 1 were investigated: “Determine the equation of the straight line through (2; 1) and 
perpendicular to 3𝑎𝑎 + 2𝑥𝑥 = 6”. This question was classified as Familiar Algorithmic 
Reasoning based on Procedural knowledge (B1bi). The statistical analysis has shown that the 
majority of students do not have a problem with this type of question (see chapter 5.4.3) and 
hence the expectation was that the case studies would corroborate this. Student responses are 
presented in Figures 6.1 to 6.6. 

Question 1.1 of Test 1 was similar to a question that was discussed in class and hence the 
expectation was that the majority of students would provide a correct solution. Finding the 
solution required students to transform the two-variable linear equation to the form:           
𝑎𝑎 = 𝑠𝑠𝑥𝑥 + 𝑐𝑐 in order to determine 𝑠𝑠, the gradient of the line. The fact that the product of the 
gradients of perpendicular lines is equal to -1 is then utilized to determine the gradient of the 
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required line. This new gradient together with the coordinates (2; 1) is then substituted in the 
point-slope form of the line:  𝑎𝑎 − 𝑎𝑎1 = 𝑠𝑠(𝑥𝑥 − 𝑥𝑥1) to obtain the required equation. Students 
B, D, E and F produced a correct solution. Both students A and C made an error in the 
calculation of the perpendicular gradient, but otherwise followed the correct procedure for 
this type of problem. The case studies therefore supports the evidence from the statistical 
analysis that the majority of students performed relatively well with this type of problem. 

 

 

Figure 6.1: Student A’s response to Question 1.1 of Class test 1 

   

 

Figure 6.2: Student B’s response to Question 1.1 of Class test 1 
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Figure 6.3: Student C’s response to Question 1.1 of Class test 1 

 

 

Figure 6.4: Student D’s response to Question 1.1 of Class test 1 
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Figure 6.5: Student E’s response to Question 1.1 of Class test 1 

 

 

Figure 6.6: Student F’s response to Question 1.1 of Class test 1 

 
 
6.3.2 Question 1.1 of Class test 2 of semester 1 

The second class test was written three weeks after the first test. The question for this test was 
as follows: Determine the equation of the line with y-intercept -2 and passing through the 
point (2;1). This question was classified as Familiar Algorithmic Reasoning based on 
Conceptual Knowledge (D1bi). The statistical analysis indicated that the majority of students  
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developed the ability to deal with such problems in the context of linear functions, and hence 
the expectation was that the case studies would reflect this. Student responses are presented 
in Figures 6.7 to 6.12.  

Student A correctly provided the coordinates for the y-intercept and then attempted to use the 
coordinate pairs to determine the gradient. However the student had the change in y as the 
denominator and hence calculated the gradient incorrectly. She then proceeded to use this 
incorrect gradient correctly in the point slope form of the two-variable linear equation. 
Student A was aware of the requirements for solving such a problem since she first attempted 
to determine the gradient and subsequently she substituted this value into the point slope form 
of the equation of a line.  

 

Figure 6.7: Student A’s response to Question 1.1 of Class test 2 

 

Student B produced a correct solution for this problem. In her solution she first calculated the 
gradient and subsequently used the slope and y-intercept form of the equation of a line to 
determine the required equation. 

 

 

Figure 6.8: Student B’s response to Question 1.1 of Class test 2 
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It seems that Student C was aware of the procedures required for solving the problem. 
However she made an error in the calculation of the gradient: she did not use the same order 
in the denominator as in the numerator. She proceeded to use the incorrect gradient correctly 
in the slope and y-intercept form of the equation of a line. 

 

 

Figure 6.9: Student C’s response to Question 1.1 of Class test 2 

 

Students D, E and F produced correct solutions for the problem. Student D used the point-
slope form of the line whilst Student E utilized the slope and y-intercept form.  

 

 
Figure 6.10: Student D’s response to Question 1.1 of Class test 2 

 

http://etd.uwc.ac.za/



 

 

 

 

 

139 
 

 

Figure 6.11: Student E’s response to Question 1.1 of Class test 2 

 

 

Figure 6.12: Student F’s response to Question 1.1 of Class test 2 

 

The foregoing analyses of student responses seem to indicate that these students had retained 
the relevant indispensable knowledge for linear functions at this time. Although Students A 
and C committed conceptual errors in their efforts to determine the gradient they used the 
results obtained correctly in appropriate equations. This question required students to use 
conceptual knowledge to solve the problem with which they were presented and since no 
similar problem had been done in class it implied that prior knowledge was required to solve 
this new type of problem. In other words the problem required transfer of knowledge. The 
fact that the majority of students could apply their prior knowledge in the new context can be 
perceived to be an instance of knowledge transfer. 

 

6.3.3 Question 1.1 of Class test 3 of semester 1 

Class test 3 was written approximately 7 weeks after Class test 1. The first question for Class 
test 3 is shown in Figure 6.13 below. Only Question 1.1 was utilized for our purposes 
however. This question was categorized as Familiar Algorithmic Reasoning based on 
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Flexible Procedural Knowledge (C1bi). The statistical analysis shows that approximately a 
quarter of students had average scores below 50% for this category of question which is an 
indication that this is a category that some students struggled with. Student responses are 
shown in Figures 6.14 to 6.19. 

 

QUESTION 1 

1. Given line 𝐷𝐷𝐹𝐹 with equation:   𝑥𝑥 + 2𝑎𝑎 − 2 = 0 (as shown in the sketch) 

1.1 Find the slope of line  𝐷𝐷𝐹𝐹.       (2) 
1.2 Find the length of  𝑂𝑂𝐴𝐴.       (2) 
1.3 Determine the length of 𝑂𝑂𝐵𝐵.       (2) 

       1.4       The  𝑎𝑎 − 𝑐𝑐𝐹𝐹𝐹𝐹𝐹𝐹𝑑𝑑𝑖𝑖𝑛𝑛𝑎𝑎𝑡𝑡𝑒𝑒 of 𝐸𝐸 is -1. Find the length of 𝐸𝐸𝐹𝐹 if 𝐸𝐸𝐹𝐹 is parallel 
                   to the 𝑥𝑥 − 𝑎𝑎𝑥𝑥𝑖𝑖𝑖𝑖.        (3) 
1.5 Write the coordinates of 𝐴𝐴  𝑎𝑎𝑛𝑛𝑑𝑑  𝐹𝐹.      (2) 
1.6 Determine the midpoint of line 𝐴𝐴𝐹𝐹.      (2) 
1.7 Determine the length of 𝐴𝐴𝐹𝐹.       (2) 

 

Figure 6.13: Question 1 of Class test 3 of semester 1 

 
The solution procedure for this question required that the equation be manipulated in order to 
write it in standard form. In other words a known procedure (manipulation of linear 
equations) should be utilized to achieve a known form (𝑎𝑎 = 𝑠𝑠𝑥𝑥 + 𝑐𝑐) of the linear equation. 
The student should be aware that once the equation is in this form the coefficient of the 
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𝑥𝑥 − 𝑡𝑡𝑒𝑒𝐹𝐹𝑠𝑠 is the required gradient. The indispensable knowledge in this case is the 
comprehension that the equation of the linear function should be brought to standard form in 
order for the gradient to be determined. It seems as if Student A attempted to manipulate the 
equation, but was not certain how to go about it. However the fact that she attempted to 
manipulate the equation might indicate that she knew that the equation needed to be in 
standard form but forgot the manipulation procedure and what the standard form looks like. 
Her responses to Question 1.1 of Class test 1 and Class test 2 (see Figures 1 and 7) shows that 
in these cases she was aware of the standard form and of the position of the gradient in this 
form. A possible conclusion therefore is that she had forgotten, and hence retention of 
knowledge had not been achieved.  

 

 
Figure 6.14: Student A’s response to Question 1.1 of Class test 3 

 
The first three deleted attempts of Student B are possibly an indication that she was not 
certain about how to proceed. In the last line however, it seems she attempted to manipulate 
the equation. The fact that she did not continue the manipulation might indicate that she was 
not certain that this was the correct way to proceed. Her responses to Question 1.1 of Class 
test 1 and Class test 2 however show that in both these cases she was aware of how to 
manipulate the linear equation to obtain standard form, and that once the equation was in 
standard form the coefficient of the 𝑥𝑥 − 𝑡𝑡𝑒𝑒𝐹𝐹𝑠𝑠 is the gradient. The fact that she was not 
certain about how to proceed is perhaps an indication that she forgot the required procedure 
and hence one could argue that the requisite knowledge had not been retained.   

 

 
Figure 6.15: Student B’s response to Question 1.1 of Class test 3 
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Student C manipulated the equation and arrived at standard form, but did not continue to 
write down the gradient. The fact that the gradient was not written down appears to be an 
oversight rather than not knowing what to do. One could therefore argue that this student had 
retained the requisite procedural and conceptual knowledge required to solve this type of 
problem.  

 

 
Figure 6.16: Student C’s response to Question 1.1 of Class test 3 

 
Student D attempted to manipulate the equation, but committed an error in this process. It 
does appear however that the student was aware that the equation had to be transformed to 
standard form before the gradient could be determined. One can therefore conclude that this 
student had retained requisite knowledge. 

 

 
Figure 6.17: Student D’s response to Question 1.1 of Class test 3 
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Students E and F produced correct solutions and hence the conclusion is that the 
indispensable knowledge was retained. 

 

 
Figure 6.18: Student E’s response to Question 1.1 of Class test 3 

 

 

 
Figure 6.19: Student F’s response to Question 1.1 of Class test 3 

 

 
6.3.4 Question 1.1 of Class test 4 of semester 1 

Class test 4 was written approximately eleven weeks after Test 1. The first question for Class 
test 4 is shown in Figure 6.20. Only Question 1.1 was utilized for our purposes. This question 
was classified as Familiar Algorithmic Reasoning based on Procedural knowledge (B1bi). In 
order to answer the question, one had to realize that the numbers provided on the Cartesian 
axis in the sketch should be written as coordinate pairs. Thereafter one would determine the 
gradient using the coordinate pairs. One could then either use the slope-intercept form or the 
slope and y-intercept form of a line to determine the equation of the line. The most efficient 
method however is to use the slope and y-intercept form since it involves fewer calculations. 
As argued previously skilled problem-solvers in mathematics are also flexible in their use of 
known procedures (Star, 2005). A result of such flexibility is that students who possess such 
knowledge will thus have the ability to generate maximally efficient solutions for known and 
even sometimes unknown problem situations. If a student therefore utilized the more efficient 
way (slope and y-intercept method) of solving the problem, then one might argue that this is 
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an indication of the presence of flexible procedural knowledge. Student responses are shown 
in Figures 6.21 to 6.26. 

 

QUESTION 1 

A sketch of line AD is shown below. Use the sketch to answer the following questions: 

1.1 Find the equation of line AD.        (3) 
1.2 Determine the length of BC.        (3) 
1.3 Determine the equation of the line perpendicular to line AD and through the point 
 (4;-2).           (4) 

 

/10/ 

Figure 6.20: Question 1 of Class test 4 of semester 1 

 

It should be noted however that in this question a sketch with single numbers on the axes 
were provided whereas in the majority of class examples and exercises either coordinate pairs 
or equations were provided. During classroom discussions however students had been 
exposed to the idea that on an axis one of the coordinate pairs is zero. The question therefore 
requires students to transfer the aforementioned knowledge of coordinate pairs to this 
problem.  

Student A calculated the gradient correctly, but did not proceed to determine the required 
equation. There are many possible reasons why the student did not determine the equation. 
One may therefore not make any judgement concerning her knowledge of how to determine 
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the equation of the line. One could however conclude that knowledge of coordinate pairs and 
how to use the coordinate pairs to determine gradients had been retained.  

 
Figure 6.21: Student A’s response to Question 1.1 of Class test 4 

 
Although Student B correctly wrote down the formula to calculate the gradient, she 
substituted variables in both numerator and denominator. It seems as though she was not 
aware that the points provided in the sketch should be used to determine the gradient. One 
might therefore argue that Student B had not made the connection that the numbers provided 
on the axis in the sketch may be written as coordinate pairs which could then be used to 
calculate the gradient.  

Student B wrote the correct formula for the point-slope form of the line, but again substituted 
variables where numbers were supposed to have been placed in the formula. This is further 
confirmation that she did not make the connection that one may write the numbers provided 
on the axis as coordinate pairs. As a result she substituted variables since she was under the 
impression that no coordinate pairs existed in the problem. Student B was aware that the 
solution required that first the gradient should be determined, and subsequently that the 
gradient together with a point should be utilized to determine the linear equation. One can 
therefore argue that indispensable knowledge had been retained regarding the gradient and 
point-slope formula of the line. However, what was lacking was knowledge transfer 
regarding how to write coordinate pairs if single numbers are provided on the axis. 

 

 
Figure 6.22: Student B’s response to Question 1.1 of Class test 4 
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Student C provided a completely correct solution. Furthermore the student used the most 
efficient way to derive the answer and hence a possible conclusion is that the student 
possesses flexible procedural knowledge for this type of problem. Student C therefore 
exhibited both retention and transfer of the indispensable knowledge for this class of 
problem.   

 

 
Figure 6.23: Student C’s response to Question 1.1 of Class test 4 

 

The solutions provided by Students D, E and F were also entirely correct. However these 
students did not use the most efficient way to solve the problem and hence one can argue that 
they did not use available knowledge flexibly. Solutions provided by these students however 
show signs of retention and transfer of requisite knowledge.     
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Figure 6.24: Student D’s response to Question 1.1 of Class test 4 

 

 

 
Figure 6.25: Student E’s response to Question 1.1 of Class test 4 
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Figure 6.26: Student F’s response to Question 1.1 of Class test 4 

 

6.3.5 Question 1.5 of the first semester examination 

The end of module examination was written approximately 14 weeks after Class test 1 had 
been written. The first question of the examination is shown in Figure 6.27. Only Question 
1.5 was considered for the purposes of this analysis. This question was classified as Familiar 
Algorithmic Reasoning based on Conceptual knowledge (D1bi). In order to solve the 
problem one had to access the fact that gradients of parallel lines are equal. To determine the 
required equation the gradient of line PQ – which had been determined in the previous 
question – should therefore be used together with point R in the point-slope equation of the 
line (or alternatively the point-y-intercept form of the line). Student responses are shown in 
Figures 6.28 to 6.33. 
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QUESTION 1 

PQR is a triangle with vertices 𝑃𝑃(−1; 3),   𝑄𝑄(1; 1)  𝑎𝑎𝑛𝑛𝑑𝑑  𝑅𝑅(6; 6). 

 

P(-1;3)

Q(1;1)

R(6;6)

y

 

1.1 Determine the gradient of PQ.      (2) 
1.2 Determine the gradient of QR.      (2) 
1.3 Show that triangle PQR is right-angled at Q.     (2) 
1.4 Determine the equation of line PQ.      (2) 
1.5 Determine the equation of the line parallel to PQ and through the point R. (3) 
1.6 Show that the point (-3;5) lies on the line PQ.    (2) 
1.7 Determine the coordinates of the midpoint M of PR.    (2) 
1.8 Determine the equation of the perpendicular bisector of PR.   (4) 
 
           /19/ 

Figure 6.27: Question 1 of first semester examination 
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Students A, B, D and F produced correct responses to Question 1.5. All of these students 
correctly utilized the gradient of PQ in the point-slope form of the line to determine the 
required equation. Student E also produced a correct response. However this student utilized 
the point-y-intercept form of the line to determine the required equation. One can therefore 
argue that all these students have retained the requisite indispensable procedural and 
conceptual knowledge for this type of problem. 
 
Student C was aware that parallel lines have equal gradients, and correctly substituted the 
gradient and coordinates of point R into the point-slope form of the line. The student 
transposed the -6 incorrectly and hence did not produce the correct equation. Nonetheless the 
student’s solution shows that the indispensable knowledge had been retained. 

 

 
Figure 6.28: Student A’s response to Question 1.5 of first semester examination 

 

 
Figure 6.29: Student B’s response to Question 1.5 of first semester examination 

 

 

 
Figure 6.30: Student C’s response to Question 1.5 of first semester examination 
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Figure 6.31: Student D’s response to Question 1.5 of first semester examination 

 

 

 
Figure 6.32: Student E’s response to Question 1.5 of first semester examination 

 

 

 
Figure 6.33: Student F’s response to Question 1.5 of first semester examination 
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6.3.6 An example of a two-variable linear equation problem that is embedded in a 
 more complex problem 

Ordinarily complex mathematical problems contain many pieces of seemingly disparate 
information. In solving such problems, while it may be easy to make mental connections 
between some parts of the information provided and relevant prior knowledge, it may not be 
easy to make similar connections with other parts of the information provided. Furthermore, 
some of the information that is provided is not obvious and one has to make conceptual 
connections to ‘see’ this information. Should the problem have sub-questions or sub-goals 
then a further complication is that one has to decide between solution-relevant and solution-
irrelevant information.  

It is my contention that if a student can recognise instances where prior mathematical 
knowledge can be applied in a complex environment, and if they then proceed to apply the 
knowledge correctly, then such knowledge is well ensconced in the long-term memory and is 
most probably connected appropriately with relevant conceptual knowledge.  

Students’ perception of the degree of difficulty of mathematical problems varies. Some 
students from the same class group may find a particular problem very difficult to solve 
whereas others might find the same problem easier to solve.  The complexity of a 
mathematical problem is dependent upon many factors. Examples of such factors are levels 
of student prior knowledge concerning the problem domain, number of past experiences with 
similar problems and student ability. Students were presented with more complex problems 
from the domain of analytic geometry that dealt with the topic of circles, but which 
simultaneously tested knowledge of linear functions. The following instruction with sketch, 
and its solution (see Figure 54) were utilized for class discussion purposes:  
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“Determine the equations of the tangents to the circle 𝑥𝑥2 +  𝑎𝑎2 = 13 from the point 𝐴𝐴(−1; 8) 
outside the circle.”  
 
 
 

 
Figure 6.34: Sketch of an example of a more complex problem 

 
Possible Solution 
We write the equation 𝑥𝑥2 +  𝑎𝑎2 = 13 in terms of y to obtain: 𝑎𝑎 =  √13 − 𝑥𝑥2 

Therefore 𝐵𝐵�𝑥𝑥;√13 − 𝑥𝑥2 � 

The gradient of normal OB is:   √13−𝑡𝑡
2

𝒙𝒙
 

∴ The gradient of tangent AB is:   −𝒙𝒙
√13−𝑡𝑡2

 

But the gradient of AB is also:    √13−𝑡𝑡
2−8

𝒙𝒙+𝟏𝟏
 

∴  
−𝒙𝒙

√13 − 𝑥𝑥2
 =       

√13 − 𝑥𝑥2 − 8
𝑥𝑥 + 1

 

∴  −𝑥𝑥2 − 𝑥𝑥 = 13 −  𝑥𝑥2 − 8�13 − 𝑥𝑥2 

∴ 65𝑥𝑥2 + 26𝑥𝑥 − 663 = 0 

∴ 5𝑥𝑥2 + 2𝑥𝑥 − 51 = 0 

∴  (5𝑥𝑥 + 17)(𝑥𝑥 − 3) = 0 

∴ 𝑥𝑥 =  −
17
5

    𝐹𝐹𝐹𝐹     𝑥𝑥 = 3 

∴ 𝐴𝐴𝑡𝑡 𝐵𝐵:  𝑥𝑥 = 3    𝑎𝑎𝑛𝑛𝑑𝑑    𝑎𝑎 = 2  
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𝐴𝐴𝑡𝑡  𝐶𝐶:  𝑥𝑥 =  −
17
5

     𝑎𝑎𝑛𝑛𝑑𝑑     𝑎𝑎 =
6
5

 

Gradient of tangent AB is: −3
2
 

Equation of tangent AB is: 𝑎𝑎 =  −3
2
𝑥𝑥 + 13

2
 

Gradient of tangent AC is: 17
6

  

Equation of tangent AC is: 𝑎𝑎 = 17
6
𝑥𝑥 + 65

6
 

In the foregoing example the coordinates of points B and C are written in a generalized form 
that is, they are the coordinates for any point anywhere on the circumference of this circle. 
For all participating students this was their first encounter with this way of writing 
coordinates. The remainder of the solution was dependent on knowledge of gradients and the 
equation of a linear function although this is in the context of circle geometry. 

A second, similar example was discussed in order to consolidate the main ideas involved in 
the solution of such problems. This example was as follows: 
 
“Find the equations of the tangents to (𝑥𝑥 + 1)2 +  𝑎𝑎2  = 20 which are parallel to  
  2𝑎𝑎 − 𝑥𝑥 = 0.”  
 
In this case no sketch was provided, but a sketch was drawn during the class debate in order 
to provide a visual picture to aid the discussion.  
 
The concepts involved in the solution of such problems are coordinates, gradients, equations 
of lines, parallelism of lines, perpendicularity of lines, general equation of circle, tangents to 
circles and angle between radius and tangent. A similar question was presented to students in 
the third class test of the second semester. The question was: 
 
“Find the equations of the tangents to 𝑥𝑥2 + (𝑎𝑎 + 1)2 = 20 which are parallel to 
 𝑎𝑎 + 2𝑥𝑥 = 0.”  

The solution procedure for this problem is similar to the foregoing example. That is, first one 
has to write the equation of the parallel line in standard form in order to find the gradient. The 
equation of the circle is used to find the centre of the circle. The circle equation should then 
be written in terms of either x or y in order to write generalized coordinates for points of 
contact on the two tangents (in this case it is more convenient to write the equation in terms 
of x). These points are then utilized together with the coordinates of the centre to determine 
the gradient of the radius of the circle. The product of this gradient and the tangent gradient is 
put equal to -1, since the tangent and the radius are perpendicular. This equation is then 
manipulated to determine two values for either x or y. Back substitution yields the 
corresponding x or y values which are subsequently used to write the two coordinate pairs for 
the points of contact on the tangents. These points are then used together with the parallel 
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gradient to determine the required equations. Student solutions are shown in Figures 6.35 to 
6.40. 

This test was written approximately 32 weeks after Test 1. Part of the objective of this test 
was to assess retention and transfer of knowledge of linear functions. In particular the aim 
was to determine whether students would – in a complex environment – be able to recognise 
those instances where they could apply their prior knowledge of linear functions. Elements of 
various categories form part of this question; however the question was classified based on 
the perceived major reasoning and knowledge requirements and hence it was categorised as 
Delimiting Algorithmic Reasoning based on Conceptual knowledge (D1bii).  

Student A realized that the centre of the circle was (0;-1), but could not use this information 
to determine the required gradients. It seemed however as if Student A was aware that the 
gradient needed to be calculated, but could not determine the required coordinates. It seemed 
also that the student was aware that the fact that the product of the gradients of perpendicular 
lines is equal to -1, should be utilized. The student was able to recall the point-slope formula 
of the line, but substituted incorrect values. Since no coordinates were determined one cannot 
judge whether the student had retained requisite conceptual knowledge of coordinates and 
gradients of linear functions. One can however infer from the student’s solution strategy that 
she struggled to transfer her knowledge to the new context. 
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Figure 6.35: Student A’s solution to Question 8 of Class test 3 of semester 2 

 
Student B wrote the equation of the parallel line in standard form in order to determine the 
gradient. However she did not substitute this gradient into the point-slope equation of a line 
that was written correctly. The student attempted to manipulate the provided equation of the 
circle in order to write y in terms of x. This information however was not used to write 
generalized coordinates. The student then proceeded to write the formula for gradient, but 
substituted no value or variables. This is perhaps an indication that she did not know how to 
determine the generalized coordinates and consequently did not substitute into the formula.  

On the side of the page Student B wrote the words ‘gradient,’ ‘point’ and ‘equation.’ A strong 
possibility is that the student wrote these words as a reminder that these are the things she 
was to determine in order to solve the problem. One can therefore infer from her solution 
strategy that she had retained general knowledge regarding gradients and equations of linear 
functions, but could not transfer this knowledge to the context with which she was presented.  
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Figure 6.36: Student B’s solution to Question 8 of Class test 3 of semester 2 
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Student C wrote the equation of the parallel line in standard form in order to determine the 
gradient. The sketch was incorrectly drawn with centre (0;0). The student correctly 
manipulated the equation of the circle to make y the subject of the formula. However, a better 
option would have been to write x in terms of y. This is perhaps an indication that the student 
was more reliant on imitative reasoning (the class example made y the subject of the formula, 
so the inference is that the student was imitating this), and consequently did not transfer prior 
knowledge in the most effective way. In other words the student did not utilize prior 
procedural knowledge flexibly.  

Using the incorrect centre the student proceeded to determine the gradient of the radius 
correctly. Consequently the student equated the product of this gradient and the parallel 
gradient with -1. This equation was then used to determine values for x. These x-values were 
then back substituted to find the y-coordinates. These two points were then utilized to 
determine the required equations. One can thus infer from the student’s solution that 
indispensable knowledge regarding linear functions was retained and was transferred 
appropriately to the new context.  
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Figure 6.37: Student C’s solution to Question 8 of Class test 3 of semester 2 
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Student D identified the coordinates of the centre of the circle correctly. This student 
attempted to write y in terms of x, but made a mistake in the process. Subsequently the 
student attempted to determine the gradient of the radius. Two gradients were calculated, 
presumably one for the radius towards a tangent on one side of the circle and the other to the 
tangent on the opposing side. The product of these gradients was then equated with -1.   

The student’s solution seems to indicate that she was aware that the equation of the circle 
should be written in terms of the variable y and that subsequently this result should be utilized 
to write generalized coordinates for points on the intersection of the circle and tangents. She 
was also aware that the coordinates of the centre of the circle and the generalized coordinates 
should be used to determine the gradient of the radius. One can infer from her solution that 
knowledge of gradients, coordinates and the product of perpendicular lines had been retained 
and transferred to the new context. One cannot make a judgment about her knowledge of 
equations of lines since her solution did not include these. She did not however make the 
connection between parallel lines and equality of gradients. Also, she did not choose to use 
the better option in the process of writing the equation of the circle in terms of one variable. 
This is perhaps an indication that flexible procedural knowledge was not well developed for 
this type of problem. Furthermore it seems as if she was relying more on imitative reasoning 
and hence utilized recall to apply her solution strategy. I am of the opinion that she was 
attempting to recall features of the example and relied less on reasoning through the problem 
before her and consequently committed the errors. 
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Figure 6.38: Student D’s solution to Question 8 of Class test 3 of semester 2 
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Student E provided an entirely correct solution except for a calculation error in the final part 
of her solution. One of the prominent features of her solution was that she manipulated the 
equation of the circle to write x in terms of y. This is contrary to the class example where y 
was written in terms of x. This is an indication that the student used creative reasoning in 
order to use prior procedural knowledge flexibly. This student is one of only two students in 
the entire class who used flexible procedural knowledge in their solution procedure. One can 
infer from her solution that Student E had retained indispensable knowledge regarding linear 
functions and had transferred relevant knowledge to the new context. 

Student F made only one mistake in his attempt. He did not make the connection that one 
needs to take the negative value of the square root in the case of the coordinates in the third 
quadrant. This is perhaps an indication that his conceptual understanding of coordinates, 
quadrants and roots was not yet at the desired level. Also this student did not realize that it 
would have been more convenient to manipulate the circle equation provided in order to write 
x in terms of y. This demonstrates his reliance on imitative reasoning and perhaps an under-
developed creative reasoning ability. An inference one can make however is that the student 
had retained the indispensable knowledge regarding linear functions and had transferred 
relevant knowledge to the new context.   
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Figure 6.39: Student E’s solution to Question 8 of Class test 3 of semester 2 
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Figure 6.40: Student F’s solution to Question 8 of Class test 3 of semester 2 
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6.3.7 Question 4 of the end of module examination of the second semester  

This section deals with the end of module examination of the second semester. The focus will 
only be on questions that deal with problems that are similar to those discussed in section 
6.3.6. Question 4 of this examination therefore is the only question that will be discussed as it 
is the only question that is similar. This question was classified as Creative reasoning based 
on conceptual knowledge (D2a). 

The end of module examination was written approximately a month after Test 3 and 
approximately one and a half months after participating students had been taught problems 
similar to Question 4. Question 4 of the end of module second semester examination is shown 
in Figure 6.41, and a sketch (Figure 6.42) with a possible solution is shown thereafter. 

 

Question 4 

4.1 Determine the centre and radius of the following circle: 

 𝑥𝑥2 − 2𝑥𝑥 + 𝑎𝑎2 − 7 = 0        

4.2 Find the equation of the tangents to the circle in 4.1 which are parallel to      
𝑎𝑎 − 𝑥𝑥 + 3 = 0          

4.3 Do the tangents that you determined in 4.2 intersect at some point (yes or no)? 
Explain your reasoning.         

Figure 6.41: Question 4 of the end of module second semester examination 
 
 

 

 
Figure 6.42: Sketch for Question 4 
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Possible solution to question 4 
4.1 𝑥𝑥2 − 2𝑥𝑥 + 𝑎𝑎2 − 7 = 0 

 𝑥𝑥2 − 2𝑥𝑥 + �− 2
2
�
2

+ 𝑎𝑎2 = 7 + 1 

 (𝑥𝑥 − 1)2 + 𝑎𝑎2 = 8 
 ∴ 𝑐𝑐𝑒𝑒𝑛𝑛𝑡𝑡𝐹𝐹𝑒𝑒 (1; 0)     𝑎𝑎𝑛𝑛𝑑𝑑      𝐹𝐹𝑎𝑎𝑑𝑑𝑖𝑖𝑆𝑆𝑖𝑖 =  √8 
 
4.2 First we write 𝑎𝑎 − 𝑥𝑥 + 3 = 0 in standard form: 𝑎𝑎 = 𝑥𝑥 − 3. The gradient of the two 
lines we are seeking should therefore be: 𝑠𝑠∥ = 1 
 
Next we use the provided circle equation to determine generalized coordinates for point A 
which is a point of contact of one of the tangents to the circle: 
 (𝑥𝑥 − 1)2 + 𝑎𝑎2 = 8 
 
 ∴ 𝑎𝑎 =  √−𝑥𝑥2 + 2𝑥𝑥 + 7 
 
 ∴ 𝐴𝐴�𝑥𝑥;  √−𝑥𝑥2 + 2𝑥𝑥 + 7 � 
  

 The gradient of radius CA is: 𝑠𝑠𝐶𝐶𝐶𝐶 = √−𝑡𝑡2+2𝑡𝑡+7−0
𝑡𝑡−1

 
 
 𝑠𝑠𝐶𝐶𝐶𝐶 × 𝑠𝑠∥ =  −1 (radius and tangent are perpendicular to each other) 
 

 √−𝑡𝑡2+2𝑡𝑡+7
𝑡𝑡−1

 × 1 =  −1 
   
 √−𝑥𝑥2 + 2𝑥𝑥 + 7  =  −(𝑥𝑥 − 1) 
 −𝑥𝑥2 + 2𝑥𝑥 + 7 =  𝑥𝑥2 − 2𝑥𝑥 + 1 
 −2𝑥𝑥2 + 4𝑥𝑥 + 6 = 0 
 ∴ 𝑥𝑥 =  −1     𝐹𝐹𝐹𝐹   𝑥𝑥 = 3 
 
 ∴ 𝐴𝐴(−1; 2)   𝑎𝑎𝑛𝑛𝑑𝑑   𝐵𝐵(3;−2) 
 
 The equations of the two parallel tangents therefore are: 
 𝑎𝑎𝐶𝐶 − 2 = 1�𝑥𝑥 − (−1)�         𝑎𝑎𝑛𝑛𝑑𝑑          𝑎𝑎𝐵𝐵 − (−2) = 1(𝑥𝑥 − 3) 
 ∴ 𝑎𝑎𝐶𝐶 = 𝑥𝑥 + 3             𝑎𝑎𝑛𝑛𝑑𝑑       𝑎𝑎𝐵𝐵 = 𝑥𝑥 − 5 
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6.3.8 Analysis of student responses to Question 4 of the end of module examination of 
 the second semester 

In the first sub-question, completion of the square is required in order to determine the center 
and radius of the circle. For Question 4.2 the equation of the line to which the tangents must 
be parallel is written in standard form in order to determine its gradient.  

Next the equation of the circle is written in terms of y. Subsequently this new equation is used 
to write generalized coordinates for A (one of the points of contact of the tangents to the 
circle). Using this generalized coordinate the gradient of the radius to point A is determined. 
After this the product of the gradient of the radius and the gradient of the line to which the 
tangents must be parallel are equated to -1. The resulting equation is used to determine 
numerical values for the x-coordinates of points A and B. These numerical values are then 
substituted in the generlized coordinate to determine the numerical y-values for points A and 
B. Finally, these numerical coordinates are used together with the parallel gradient to 
determine the equations of the tangents.  

Student A attempted to complete the square in Question 4.1 and provided a correct answer for 
the radius, but committed an error in completing the square (see Figure 6.43). For Question 
4.2 Student A started correctly by writing the equation of the line in standard form and then 
proceeded (incorrectly) to substitute the y-value of the equation of the circle. In these 
calculations the student made another error and then stopped abruptly midway through the 
problem. It seems as if the student did not know how to proceed and so gave up. It would 
seem therefore that retention and transfer of relevant knowledge in terms of linear functions, 
and reasoning with these constructs, was negatively affected by the complexity of the 
presented problem.   

 
Figure 6.43: Student A’s response to Question 4 of the end of module examination of the   
        second semester 
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Student B’s response is shown in Figure 6.44. Student B completed the square, determined 
the radius and centre of the circle correctly and proceeded to write the equation of the 
provided line in standard form. The student then substituted the algebraic y-value of this line 
into the equation of the circle. From this equation numerical values for the coordinates of A 
and B were calculated. The coordinates of point A and the coordinates of the origin were then 
used to calculate a gradient. The negative reciprocal of this number was determined and 
substitued for the value of the gradient. It would seem therefore that the student was aware 
that the radius and the tangent are perpendicular and hence they calculated the reciprocal 
(although the incorrect circle centre was used). A similar method was followed in the case of  
the line through point B.  

Student B used the correct formula to calculate gradient (but utilized incorrect points) and 
used the correct method to determine the perpendicular gradient at the appropriate part of the 
problem. Furthermore the correct formula for the point slope form of the line was used. The 
fact that it is stated in the problem that the two tangents should be parallel to the line provided 
implies that the tangents are also parallel to each other and hence would not intersect. The 
student did not make this connection and it would seem therefore that conceptual 
understanding of parallelism is lacking in some respects since the student did not make the 
connection that parallel lines do not intersect. One could however argue that the 
indispensable knowledge regarding linear functions had been retained although it was not 
transferred into the new context in an entirely correct way.        
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Figure 6.44: Student B’s response to Question 4 of the end of module examination of the   
           second semester 

http://etd.uwc.ac.za/



 

 

 

 

 

170 
 

       

Student C’s response is shown in Figure 6.45. The student attempted to complete the square 
for both x and y and produced an incorrect solution. For Question 4.2 Student C started  
correctly by writing the linear equation in standard form and subsequently by identfying the 
correct gradient. The equation of a circle with centre at the origin was then utilized to write 
generalized coordinates for a point on the circle. This is despite the fact that the student 
determined a centre that was not at the origin. The circle centre that was determined in the 
first part of the question together with the generalized coordinate was then utlized to  
determine the gradient of the radius. Next the product of the two gradients  was equated to -1 
and an attempt was made to simplify the resulting equation. However Student C stopped 
before calculating values for the x-coordinate.  

Student C exhibits confused reasoning regarding completing the square and determining 
centres of circles that are not at the origin. Knowledge regarding linear equations in standard 
form and perpendicular gradients however seems to have been retained correctly. Although 
incorrect equations were used to determine the generalized coordinates, this was done 
correctly and hence one can argue that determining of generalized coordinates was also 
retained. Student C did not attempt to determine the linear equations and hence one cannot 
draw any conclusions regarding this knowledge.   

 
Figure 6.45: Student C’s response to Question 4 of the end of module examination of the 
           second semester 
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Student D’s response is shown in Figure 6.46. The response of student D was correct up to 
the point where the determined x-coordinates were supposed to be substituted into the 
generalized coordinates to determine the y-coordinates. The student intially substituted into 
generalized coordinates, but made a mistake in the calculation and then drew lines through 
this apparently deciding that this was not the correct way and then substituted into the 
equation of the parallel line. Despite the mistake the student used the point-slope equation of 
the line correctly to determine linear equations. Knowledge regarding paralellism however 
seems to be lacking in some respects since the student did not make the connection that 
parallel lines do not intersect. One can therefore argue that the student had retained the 
indispensable knowledge regarding linear functions and that the knowledge was transferred 
correctly into the new context. 
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Figure 6.46: Student D’s response to Question 4 of the end of module examination of the 
           second semester   
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Student E’s response is shown in Figure 6.47. This student produced an entirely correct 
response save for a minor error in the writing of the coordinate pairs. It would seem therefore 
that the indispensable knowledge had been retained and correctly transferred to the new 
context. 

Student F’s response is shown in Figure 6.48. This student produced an entirely correct 
solution with no errors. The conclusion therefore is that the student had retained the 
indispensable knowledge and had transferred it correctly to the new context.     

            

 
Figure 6.47: Student E’s response to Question 4 of the end of module examination of the 
           second semester     
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Figure 6.48: Student F’s response to Question 4 of the end of module examination of the 
           second semester              
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6.4 The teaching strategy adapted        

In this section an incident which gave rise to a decision to adapt the implemented teaching 
strategy will be discussed.    

This study was started at the beginning of February 2014 with the MAE 211 students. When 
the research had been underway for approximately two and a half months (in mid-April), a 
participating student (Student B) came to see me after having written Test 3 and complained 
bitterly that she “went blank” in the test (See Appendix E for Test 3).  

In order to determine what she meant by “going blank” I entered into a discussion with her. 
During our discussion I presented the student with the following problem based on linear 
functions (this formed part of Question 1 of the test that had been written: see Figure 6.49): 
“Find the equation of the line that is parallel to the line 𝑎𝑎 = 2𝑥𝑥 + 4 and through the 
point(1; 2)”  

However the student could not produce a written solution despite the fact that this work had 
been revised more than once before then (see line 1 in Figure 6.49). Since she could not recall 
the slope-intercept form for the two variable linear equation  (𝑎𝑎 = 𝑠𝑠𝑥𝑥 + 𝑐𝑐), I wrote it down 
for her (this is the part that is circled in Figure 6.49) and requested that she use it to solve the 
problem. Still she could not proceed and so I asked her to write down the point-slope form for 
the equation of a line [𝑎𝑎 − 𝑎𝑎1 = 𝑠𝑠(𝑥𝑥 − 𝑥𝑥1)] and to use this in her reasoning. She then 
substituted numbers for all the variables (see lines 2 and 3 in Figure 6.49).  Although I asked 
her to think about her response and to think about how one goes about finding an equation of 
a line, again she substituted numbers for all the variables (see line 4 of Figure 6.49). 
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Figure 6.49: Discussion with Student B 

What was very puzzling however was that when I checked Tests 1 and 2 which had been 
written in February and March respectively and which covered linear functions, I was 
surprised to discover that the student had produced correct solutions to similar and even more 
challenging problems to the one I presented her with in our discussion (see Figures 6.2 & 
6.8).  

In order to probe her retention and transfer abilities further I posed a question based on 
remainder and factor theorem. This content concerning remainder and factor theorem had 
been covered more recently.  

The following is the problem that was presented to her:  
Given 𝑖𝑖(𝑥𝑥) =  𝑥𝑥3 − 2𝑥𝑥 + 5.  𝐼𝐼𝑖𝑖 𝑥𝑥 − 2 𝑖𝑖𝑖𝑖 𝑑𝑑𝑖𝑖𝑎𝑎𝑖𝑖𝑑𝑑𝑒𝑒𝑑𝑑 𝑖𝑖𝑛𝑛𝑡𝑡𝐹𝐹 𝑖𝑖,𝑖𝑖𝑖𝑖𝑛𝑛𝑑𝑑 𝑡𝑡ℎ𝑒𝑒 𝐹𝐹𝑒𝑒𝑠𝑠𝑎𝑎𝑖𝑖𝑛𝑛𝑑𝑑𝑒𝑒𝐹𝐹.  
 
Student B provided a correct response and when prompted produced an alternative method 
which was also correct. The fact that student B performed better on content that had been 
covered more recently (remainder and factor theorem) than on content which had been 
covered much earlier (linear functions) may have been the result of memory decay.  
 

Line 1 

Line 2 

Line 3 

Line 4 
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Rittle-Johnson (2006) contends that self-explanation is an essential and effective way of 
improving learning and transfer of knowledge. Furthermore she proposes that direct 
instruction on a correct procedure, combined with a conceptual explanation for the procedure 
would lead to the greatest gains in learning if students were also prompted to self-explain. 
Self-explanation is defined as the ability to generate explanations of correct material by 
oneself.   

In spiral revision one cannot revise all content covered all the time. An instructional 
challenge therefore is to design revision exercises in such a way so as to revise the majority 
of previously covered content appropriately. Furthermore it is not easy to design revision in a 
way that does not encourage rote learning, but rather to ensure that each revision session 
results in a deeper understanding and an awareness of the interconnectedness of concepts. 
Since the task that I presented to Student B in our discussion was based on work that had not 
been recently revised in class it meant that if the student was able to self-explain correctly 
while studying on her own, her chances of providing a correct response would increase. Since 
she could not at that point produce a correct solution, but could produce a correct solution in 
an earlier test (this test had been written very shortly after the content had been covered), I 
suspected that the student’s individual ability to self-explain when studying previously 
covered content was not well-developed. It was also possible that the student had not 
developed the ability to read and interpret mathematical texts to the appropriate level.  When 
I investigated test responses of all participating students I discovered that many of the lower 
ability students exhibited this phenomenon (better performance on recent content and a not-
so-good performance on content covered at an earlier point). The majority of the more able 
students however did not exhibit this phenomenon. 

In order to test my hypotheses I presented the whole class with a copied mathematical text 
from a discrete mathematics textbook (Epp, 2011). The text was based on the concepts of 
floor and ceiling which forms part of elementary number theory. The concepts did not form 
part of the content covered by our course and therefore were completely new to the students. 
The text contained definitions and illustrative examples based on the definitions. The text 
also contained an exposition of direct proofs of properties of floor and ceiling. Students were 
required to study the theory and examples, and then to attempt exercises provided in the text. 
No teaching was offered for the entire duration of this exercise. This intervention exercise 
was done as a once-off three hour session on a Saturday morning. It should be noted that 
since it was a voluntary exercise not all students participated.  

Some of the exercise problems based on the presented text required solutions that were 
premised on imitative reasoning based on procedural knowledge. These included problems 
requiring students to compute the floor and ceiling of numbers similar to the completed 
examples. The exercises also contained questions of a higher cognitive level and, for the 
greater part of the solution required creative reasoning based on conceptual knowledge. 
Questions that required the construction of a direct proof fell into this category. Students 
were allowed to discuss with one another while working through the text, but were required 
to attempt the exercises individually.  
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The following is the definition of floor as provided in the text: 

 Given any real number 𝑥𝑥, the floor of 𝑥𝑥, denoted ⌊𝑥𝑥⌋, is defined as follows: 
 ⌊𝑥𝑥⌋ = 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 𝑆𝑆𝑛𝑛𝑖𝑖𝑢𝑢𝑆𝑆𝑒𝑒 𝑖𝑖𝑛𝑛𝑡𝑡𝑒𝑒𝑖𝑖𝑒𝑒𝐹𝐹 𝑛𝑛 𝑖𝑖𝑆𝑆𝑐𝑐ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡  𝑛𝑛 ≤ 𝑥𝑥 < 𝑛𝑛 + 1. 
 Symbolically, if 𝑥𝑥 is a real number and 𝑛𝑛 is an integer, then 
 ⌊𝑥𝑥⌋ = 𝑛𝑛  ⇔   𝑛𝑛 ≤ 𝑥𝑥 < 𝑛𝑛 + 1.    

The following is the definition of ceiling as provided in the text: 

 Given any real number 𝑥𝑥, the ceiling of 𝑥𝑥, denoted ⌈𝑥𝑥⌉, is defined as follows: 
 ⌈𝑥𝑥⌉ = 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 𝑆𝑆𝑛𝑛𝑖𝑖𝑢𝑢𝑆𝑆𝑒𝑒 𝑖𝑖𝑛𝑛𝑡𝑡𝑒𝑒𝑖𝑖𝑒𝑒𝐹𝐹 𝑛𝑛 𝑖𝑖𝑆𝑆𝑐𝑐ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡  𝑛𝑛 − 1 < 𝑥𝑥 ≤ 𝑛𝑛. 
 Symbolically, if 𝑥𝑥 is a real number and 𝑛𝑛 is an integer, then 
 ⌈𝑥𝑥⌉ = 𝑛𝑛  ⇔   𝑛𝑛 − 1 < 𝑥𝑥 ≤ 𝑛𝑛.    

The text provided completed examples for the following values of 𝑥𝑥: 25
4

 ;   0.999; −2.01 

Since I wanted to determine whether students could apply the definition of floor and ceiling 
to cases that were not covered by the examples, I presented them with the following 
additional question (referred to as Question 1), which was slightly different and not contained 
in the textbook exercises. This was done in order to determine how well the text was read and 
understood:  

Compute the floor and ceiling for each of the following: (a) 3 and (b) -7 

The definition of floor implies that if given any real number (that is not an integer) then the 
floor of the real number is the integer immediately to the left of the given number. Implicit in 
the definition of floor is the fact that if the number provided is an integer, then the floor is 
that integer. One should therefore be cognizant of the fact that the set of integers is contained 
in the set of real numbers and therefore that all integers are real numbers. Thus if an integer is 
provided then the floor is that integer. A similar argument holds for problems based on the 
concept of ceiling.  

When I assessed their solutions I discovered that none of the participating students – with the 
exception of one – made the connection that if an integer is provided, then the floor is that 
integer. As I have stated previously not all students participated in the exercise since 
participation was voluntary and hence only the responses of those case study students that 
participated (Students A, B, E and F) will be provided and discussed (see Figures 6.50 to 
6.53).    
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Figure 6.50: Student A’s response to Question 1 

 

 
Figure 6.51: Student B’s response to Question 1 

 

 
Figure 6.52: Student E’s response to Question 1 
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Figure 6.53: Student F’s response to Question 1 

Analyses of student responses indicate that only one student (Student A) provided a response 
that shows the student was aware of the meaning implicit in the definition. That is, only one 
student made the connection that if the provided number is an integer then both floor and 
ceiling are that number. If one analyses responses to other similar questions (referred to as 
Question 2 - see Figure 6.54) it seems most students were imitating the completed examples 
without making a connection with the implicit information in the definition. In other words 
they applied procedures correctly by imitating the completed examples provided, without a 
full conceptual understanding. This is illustrated by their responses to these problems which 
were similar to the completed examples (see Figures 6.55 to 6.58). Since most of these 
responses are correct this hides the fact that they did not make the connection with the 
implicit information in the definitions provided. This implies that they could not self-explain 
correctly. I also found it strange that Student A, who had been identified as one of the weaker 
students, was the only student who made the implicit connections.  

 

Compute ⌊𝑥𝑥⌋ 𝑎𝑎𝑛𝑛𝑑𝑑 ⌈𝑥𝑥⌉ 𝑖𝑖𝐹𝐹𝐹𝐹 𝑒𝑒𝑎𝑎𝑐𝑐ℎ 𝐹𝐹𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝐹𝐹𝑎𝑎𝑎𝑎𝐹𝐹𝑤𝑤𝑖𝑖𝑛𝑛𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑆𝑆𝑒𝑒𝑖𝑖 𝐹𝐹𝑖𝑖 𝑥𝑥 𝑖𝑖𝑛𝑛 1 − 4: 
1.   37.999   2.   17

4
 

3.   − 14.00001  4.  − 32
5

 

Figure 6.54: Question 2 
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Figure 6.55: Student A’s response to Question 2 

 

 
Figure 6.56: Student B’s response to Question 2 
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Figure 6.57: Student E’s response to Question 2 

 

 
Figure 6.58: Student F’s response to Question 2 

 

The exercises based on the text also contained problems which were explicitly conceptual in 
nature. Some of these problems (referred to as Questions 6 and 7) are shown in Figure 6.59. 
Student responses to these problems are presented in Figures 6.60 to 6.63. 

Question 6: 𝐼𝐼𝑖𝑖 𝑎𝑎 𝑖𝑖𝑖𝑖 𝑎𝑎𝑛𝑛 𝑖𝑖𝑛𝑛𝑡𝑡𝑒𝑒𝑖𝑖𝑒𝑒𝐹𝐹,𝑤𝑤ℎ𝑎𝑎𝑡𝑡 𝑖𝑖𝑖𝑖 ⌈𝑎𝑎⌉?  𝑊𝑊ℎ𝑎𝑎? 

Question 7: 𝐼𝐼𝑖𝑖 𝑎𝑎 𝑖𝑖𝑖𝑖 𝑎𝑎𝑛𝑛 𝑖𝑖𝑛𝑛𝑡𝑡𝑒𝑒𝑖𝑖𝑒𝑒𝐹𝐹,𝑤𝑤ℎ𝑎𝑎𝑡𝑡 𝑖𝑖𝑖𝑖 �𝑎𝑎 + 1
2
� ?𝑊𝑊ℎ𝑎𝑎?   

Figure 6.59: Questions 6 and 7 
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Figure 6.60: Student A’s responses to Questions 6 and 7 

 

 
Figure 6.61: Student B’s response to Questions 6 and 7 

 

 
Figure 6.62: Student E’s response to Questions 6 and 7 

 

 
Figure 6.63: Student F’s response to Questions 6 and 7 

 

Only Student F provided a correct reason and solution to Question 6. Unfortunately he did 
not reconcile his response to this question with his response to Question 1. All other students 
did not supply a correct solution and reason. 

Students A and B provided a partially correct reason in Question 7. All the other students did 
not provide a correct solution or reason. Based on all these responses I concluded that most of 
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the students could not make all the requisite cognitive connections with the implicit 
information in the definitions provided.  

The research-related question arising was, ‘What does this indicate?’ Does one conclude that 
the students have not developed the ability to self-explain correct material to the appropriate 
level? Since I suspected that this was the case I revised the teaching strategy by including 
exercises that required the students to self-explain. In classroom interactions students were 
prompted by the researcher to make visible their self-explanation of mathematical texts 
presented and problem and solution statements in order to correct and enhance their ability to 
self-explain. Peer discussions in tutorial classes were also utilized to make reasoning visible 
in order to enhance self-explanation abilities.   
 
 
6.5 Quality of response 

Instead of analysing student responses only for correctness one could also analyse responses 
in terms of quality of response. An aspect of quality in this regard is efficiency of response. 
Efficiency of response can in many instances provide insight into the level of proficiency. If 
analysis of a written response indicates that some intermediate steps were skipped and/ or 
some steps were performed simultaneously (and were effectively performed as a single step) 
then such a response would be deemed to be more efficient than a response that would show 
the converse. 
 
I presented the argument in chapter 3 that expertise level of students is a function of their 
ability to either skip some (or all) intermediate steps or to perform some steps 
simultaneously. I am of the opinion that if a student in a particular class of tasks shows a 
consistent ability to skip intermediate steps and/or to perform some steps simultaneously then 
this would be assumed to be an indicator of well-developed procedural and conceptual 
knowledge in that domain. In what follows I will analyse a few solution procedures of the 
case study students to determine if they skipped intermediate steps or performed some steps 
simultaneously. It should be noted that in all the analysis that follows solution procedures 
will be evaluated in terms of how steps are performed and correctness of steps will not 
necessarily be evaluated.      

Question 1.1 of class test 1 was as follows: “Determine the equation of the straight line 
through (2; 1) and perpendicular to   3𝑎𝑎 + 2𝑥𝑥 = 6” 

(For the ensuing discussion figures 6.1 to 6.6 of section 6.3.1 will be utilized.) 

The solution required students to transform the provided two-variable linear equation to the 
form 𝑎𝑎 = 𝑠𝑠𝑥𝑥 + 𝑐𝑐 in order to determine 𝑠𝑠 the gradient of the line. The fact that the product 
of the gradients of perpendicular lines is equal to -1 is then utilized to determine the gradient 
of the required line. This new gradient together with the coordinate (2; 1) is then substituted 
in the point-slope form of the line i.e. 𝑎𝑎 − 𝑎𝑎1 = 𝑠𝑠(𝑥𝑥 − 𝑥𝑥1) to obtain the required equation.  
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There are thus three sub goals in the solution procedure namely:  

(i) To transform the equation 3𝑎𝑎 + 2𝑥𝑥 = 6 to the form 𝑎𝑎 = 𝑠𝑠𝑥𝑥 + 𝑐𝑐  
(ii) Subsequently to use the gradient of this line to determine the gradient of the other 

line 
(iii) This new gradient is used together with the provided coordinate pair to determine 

the equation of the perpendicular line 

In order to achieve the first sub goal the following steps need to be performed: 

1. The additive inverse of 2𝑥𝑥 must be added on both sides: 3𝑎𝑎 + 2𝑥𝑥 − 2𝑥𝑥 = −2𝑥𝑥 + 6 
2. The subsequent equation must be simplified: 3𝑎𝑎 = −2𝑥𝑥 + 6 
3. Next each term must be divided by 3 (stated differently each term must be multiplied 

by the reciprocal of 3 namely 1
3
 ): 3𝑦𝑦

3
= −  2𝑡𝑡

3
+  6

3
 

4. The resulting equation must then be simplified: 𝑎𝑎 = −2
3
𝑥𝑥 + 2 

If one compares the solutions of the six students the following is observed:  

• Students A, B, D and F show steps 2, 3 and 4. 
•  Student C shows steps 2, 3 and 4 but steps 2 and 3 are performed together 
• Student E skipped steps 1 to 3 and only shows the final form namely step 4. 

It has been my experience that many teachers at the school level often teach that the 2𝑥𝑥 of the 
equation 3𝑎𝑎 + 2𝑥𝑥 = 6 should be ‘taken over and the sign changed’. Hence learners that were 
exposed to this way of instruction would only show the −2𝑥𝑥 on the right side of the equation. 
But this is not an indication that they have skipped the step of adding the additive inverse on 
both sides in order to preserve equality. Rather it shows that they have ‘taken over’ the 2𝑥𝑥. It 
is my contention therefore that students A, B, D and F performed all four steps as indicated 
above.  

In order to achieve the third sub goal the following steps need to be performed: 

5. Either the point-slope form of the two variable linear equation [𝑎𝑎 − 𝑎𝑎1 =  𝑠𝑠⊥(𝑥𝑥 −
𝑥𝑥1)] or the slope-y-intercept form (𝑎𝑎 = 𝑠𝑠𝑥𝑥 + 𝑐𝑐) is written down. (I will only use 
point-slope) 

6. The perpendicular gradient and the 𝑥𝑥 − 𝑎𝑎𝑛𝑛𝑑𝑑 𝑎𝑎 −coordinates are substituted into the 
equation: 𝑎𝑎 − 1 =  3

2
(𝑥𝑥 − 2) 

7. The brackets is removed by applying the distributive law: 𝑎𝑎 − 1 =  3
2
𝑥𝑥 − 3 

8. The additive inverse of 1 is added on both sides: 𝑎𝑎 − 1 + 1 =  3
2
𝑥𝑥 − 3 + 1  

9. The resulting equation is simplified: 𝑎𝑎 =  3
2
𝑥𝑥 − 2 
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If the solutions of the students are compared again the following is observed: 

• Students B,C and D show all five steps 
• Students A, E and F show only four steps since steps 7 and 8 are done simultaneously 

and therefore shown as one line  

 
Question 1.5 of the first semester examination is similar in certain ways to question 1.1 of 

class test 1. Question 1.5 was as follows:  
 
Determine the equation of the line parallel to PQ and through the  
point R.  
 
For the discussion that follows figures 6.28 to 6.33 will be utilized. 
 
The solution procedure for question 1.5 required that one is aware that parallel lines have 
equal gradients. This gradient is then utilized together with the provided coordinates to 
determine the required two-variable linear equation.  The following are possible steps for the 
solution procedure: 
 

1. Either the point-slope form of the two variable linear equation [𝑎𝑎 − 𝑎𝑎1 =  𝑠𝑠⊥(𝑥𝑥 −
𝑥𝑥1)] or the slope-y-intercept form (𝑎𝑎 = 𝑠𝑠𝑥𝑥 + 𝑐𝑐) is written down. I will only use the 
former. 

2. The parallel gradient and the 𝑥𝑥- and 𝑎𝑎-coordinates are substituted into the equation:            
𝑎𝑎 − 6 = −(𝑥𝑥 − 6) 

3. The distributive law is applied to remove the brackets: 𝒚𝒚 − 𝟔𝟔 = −𝒙𝒙 + 𝟔𝟔 
4. Six is added on both sides of the equation: 𝒚𝒚 − 𝟔𝟔 + 𝟔𝟔 = −𝒙𝒙 + 𝟔𝟔 + 𝟔𝟔 
5. The resulting equation is simplified: 𝒚𝒚 = −𝒙𝒙 + 𝟏𝟏𝟏𝟏 

 
If one compares the solution procedures of the six students the following is observed (student 
E was not considered since she utilized a different method): 

• Students A,B and D showed all the possible steps 
• Students C and F performed steps 3 and 4 simultaneously 

 
Question 4.1 of the end of module examination of the second semester of 2014 was as 
follows:  Determine the centre and radius of the following circle: 𝒙𝒙𝟏𝟏 − 𝟏𝟏𝒙𝒙 +  𝒚𝒚𝟏𝟏 − 𝟕𝟕 = 𝟎𝟎.  
 
Student responses are shown in figures 6.70 to 6.75 
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Figure 6.70: Student A’s response to question 4.1 of the end of module examination of the  
       second semester   

 

  

 

Figure 6.71: Student B’s response to question 4.1 of the end of module examination of the  
          second semester  

 

 

Figure 6.72: Student C’s response to question 4.1 of the end of module examination of the        
       second semester              
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Figure 6.73: Student D’s response to question 4.1 of the end of module examination of the        
       second semester     

          

 

Figure 6.74: Student E’s response to question 4.1 of the end of module examination of the        
       second semester   

 
Figure 6.75: Student F’s response to question 4.1 of the end of module examination of the        
       second semester              

The solution procedure for question 4.1 requires that the equation be transformed to the form: 
 (𝒙𝒙 − 𝒂𝒂)𝟏𝟏 + (𝒚𝒚 − 𝒃𝒃)𝟏𝟏 =  𝒓𝒓𝟏𝟏 
 
In order to achieve this form with the above equation the following steps should be 
performed: 

1. Add 7 on both sides : 𝒙𝒙𝟏𝟏 − 𝟏𝟏𝒙𝒙 +  𝒚𝒚𝟏𝟏 − 𝟕𝟕 + 𝟕𝟕 = 𝟕𝟕 
2. Simplify the resulting equation: 𝒙𝒙𝟏𝟏 − 𝟏𝟏𝒙𝒙 +  𝒚𝒚𝟏𝟏 = 𝟕𝟕 
3. The coefficient of the 𝒙𝒙 − 𝒕𝒕𝒕𝒕𝒓𝒓𝒕𝒕 is halved and then squared. This number is then 

added on both sides: 𝒙𝒙𝟏𝟏 − 𝟏𝟏𝒙𝒙 + �−𝟏𝟏
𝟏𝟏
�
𝟏𝟏

+  𝒚𝒚𝟏𝟏 = 𝟕𝟕 + �−𝟏𝟏
𝟏𝟏
�
𝟏𝟏
 

4. The equation is simplified: 𝒙𝒙𝟏𝟏 − 𝟏𝟏𝒙𝒙 +  𝟏𝟏 + 𝒚𝒚𝟏𝟏 = 𝟕𝟕 + 𝟏𝟏 
5. The equation is written in the required form: (𝒙𝒙 − 𝟏𝟏)𝟏𝟏 + 𝒚𝒚𝟏𝟏 = 𝟖𝟖 
6. The centre and radius is written down: 𝒄𝒄𝒕𝒕𝒄𝒄𝒕𝒕𝒓𝒓𝒕𝒕 (𝟏𝟏;𝟎𝟎) 𝒂𝒂𝒄𝒄𝒂𝒂 𝒓𝒓𝒂𝒂𝒂𝒂𝒓𝒓𝒓𝒓𝒓𝒓 = 𝟏𝟏√𝟏𝟏 
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The following is observed if one compares student responses: 
• If one assumes that all of these students performed ‘take over’ as explained earlier, 

then students B, C, D, E and F performed steps 1,2,3 together, skipped step 4 and then 
performed steps 5 and 6. 

• Student A performed all the required steps. 
 
It is not practically possible to show this kind of analysis for all test and examination items. 
The above findings however were evident in most of the participating students’ written 
productions. In other words if a student laboriously showed all possible steps in the analyzed 
items then the same way of working would be evident in their other responses to test or 
examination items. The question is why do some students have the ability to perform steps 
more efficiently than others despite the fact that all participating students were exposed to the 
same teaching under uniform conditions? A possible answer to this question will be provided 
in chapter 7.  
 
 
6.6 Summary of student performance 

A summary of the six students’ performance in the selected test and examination items (the 
items discussed in the previous sections of this chapter) is shown in Table 6.2. The table 
shows each of the six students’ performance in terms of retention of indispensable 
knowledge, errors committed, ability to transfer requisite knowledge, ability to utilize flexible 
procedural knowledge and ability to use prior knowledge creatively. Not all of these 
performance criteria were represented in the different test items and hence the summary does 
not include all knowledge and reasoning competencies that were measured for each test and 
examination item, but only salient competencies for the particular item.  

A distinction was drawn between procedural errors and conceptual errors. Procedural errors 
are perceived to be errors where manipulation or calculation is the cause of the error. 
Conceptual errors are errors that are the result of a misconception. ‘Y’ indicates that an error 
was committed whilst ‘N’ indicates that no error was committed. Similarly, ‘Y’ indicates that 
knowledge was retained or transferred and ‘N’ indicates negation. The symbol ‘P’ indicates 
that retention or transfer was only partial. ‘Y’ indicates use of flexible procedural knowledge 
or creative thinking and ‘N’ signifies that it was not utilized.  

Since I was focusing on only a narrow part of linear functions in this part of the study, the 
algebraic component consisted mostly of utilization of the two-variable linear equation. In the 
majority of cases therefore the requisite procedural knowledge consisted of knowledge of 
manipulation rules of these types of linear equations. I therefore found it convenient to draw a 
distinction between procedural and conceptual errors. Procedural errors in this instance refer 
to errors that occur as a result of a violation of the manipulation rules, application of an 
inappropriate procedure, or a calculation error. For example if the task requires manipulation 
of the equation 6𝑥𝑥 + 3𝑎𝑎 = 12 in order to determine the gradient, and if the presented solution 
included an error such as 𝑎𝑎 = 2𝑥𝑥 + 4 , then it was be classified as a procedural error.  

The concepts which enjoyed focus in this part of the study include gradient, intercepts, 
parallelism of lines, perpendicularity of lines, coordinates, midpoint of a line, perpendicular 
bisector, intersection of lines and tangent. Conceptual errors are more difficult to define. For 
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the purpose of the study I distinguish between two categories of conceptual errors. A 
conceptual error could be inferred if a participant failed to make appropriate connections with 
provided information and prior knowledge, or between seemingly disparate pieces of 
information. Conceptual errors could also be inferred if analysis of a written response 
exposed a misunderstanding of a concept or definition.    

It is generally assumed that experts in a domain tend to make fewer errors than novices.  One 
criterion that can be used to determine level of expertise therefore is number of errors 
committed. Hence for this study the fewer the number of errors a student committed the 
higher the level of expertise was perceived to be and conversely. It should be noted that this 
was not the only criterion used to determine level of expertise, but forms one of a range of 
criteria. 
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A Y   Y   Y Y Y     N N N     P N N     Y Y Y Y P N N N Y Y P N N N 
B     Y     Y Y Y   N N N   Y P N N     Y Y Y Y P N N N Y Y P P N N 
C     Y   Y Y Y     Y N N     Y Y Y Y   Y Y   Y Y Y Y N Y Y P P N N 
D     Y     Y Y   Y Y N N     Y Y N     Y Y Y Y P Y N N Y Y P P N N 
E     Y     Y Y     Y Y Y     Y Y N     Y Y     Y Y Y Y     Y Y Y Y 
F     Y     Y Y     Y Y Y     Y Y N     Y Y   P Y Y Y N     Y Y Y Y 

Table 6.2: Summary of case study student performance on linear functions 
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6.7 Level of expertise 
 
The six students selected for the case study had varied mathematical backgrounds. Students A 
and B had taken mathematics up to grade 9 whereas the other four had taken mathematics up 
to grade 12. Students A and B did not therefore have the same level of exposure to 
mathematical concepts and procedures at school level as the other four students. It could be 
argued therefore that the prior knowledge (concerning mathematical topics discussed in the 
course) of these two students was not developed to the same level as that of the other four. It 
was the intention of this study to determine how mathematical competency of participating 
students (with their different levels of prior knowledge in terms of course topics) was affected 
by the teaching strategy.  

It should be noted that I use the phrases ‘level of competence’ and ‘level of expertise’ 
synonymously. As indicated earlier an objective of the study was to develop task-specific 
expertise in participating students. Task specific expertise is the ability to perform fluently in 
a specific class of tasks. I agree with the argument that task- specific expertise is a 
prerequisite for a student to become an expert in a larger mathematical domain. The class of 
tasks used to determine competency in this case was the two-variable linear equation and its 
attendant concepts. As has been indicated, learning is defined as a change in long-term 
memory. If knowledge can be retrieved from long-term memory it implies that it has been 
retained. The retained knowledge may or may not be appropriately connected to other 
relevant knowledge.  

But even if the knowledge is in some ways isolated, the fact that it is retained is in my view a 
start to some learning process. In this study students were subjected to repeated testing on the 
same content and hence were required to retrieve some knowledge repeatedly. Repeated 
retrievals cause changes in the way knowledge is subsequently retained. Retention and 
transfer abilities can therefore be utilized as a measure of reasoning and knowledge 
development (and current level of expertise) in participating students.  

For this study the main categories of knowledge retention considered were procedural and 
conceptual knowledge whilst the main reasoning types were imitative and creative. It is very 
rare however that mathematical tasks require solution procedures which exclusively involve 
either purely procedural or purely conceptual knowledge. It is argued that knowledge that is 
initially conceptual can be converted to knowledge that is procedural (Hiebert & Lefevre, 
1986). Therefore knowledge type is also dependent on the student involved. A student’s level 
of mathematical development will determine whether knowledge is conceptual or procedural. 
Because of this it is a very difficult exercise to categorize test or task items accurately in 
terms of procedural and conceptual knowledge requirements.  

So categorization was based on perceived level of mathematical development in the majority 
of participating students in order to be applicable to most of the students. Retention abilities 
of the different knowledge types were inferred from written productions.  
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Expertise level was also thought to be a function of flexible procedural knowledge. I have 
argued previously that skilled problem-solvers in mathematics are also flexible in their use of 
known procedures. A student who does not possess flexible procedural knowledge will not 
always be able to solve unfamiliar problems where the solution requires the student to use 
assimilated procedural knowledge. Also, the student will not be able to produce a maximally 
efficient solution in the absence of such flexible procedural knowledge. Thus such flexibility 
endows students who possess relevant knowledge with the ability to generate maximally 
efficient solutions for known and even sometimes unknown problem situations. Star (2005) 
contends that flexible procedural knowledge is deep procedural knowledge that would allow 
a student to use appropriate mathematical procedures in a known or novel problem situation. 

The two knowledge types (procedural and conceptual) are usually intricately entwined in the 
reasoning requirements of most mathematical tasks. In this study the level of development of 
mathematical competence was determined by ability to deal effectively with tasks of varying 
degrees of difficulty. Thus some mathematical tasks were perceived to be of a greater degree 
of difficulty than others. A novice-to-expert competency scale was created (see Table 6.3) 
based on the perceived knowledge and reasoning requirements (which determine the 
difficulty level), and the correctness of written solutions (which provide the inferred 
knowledge levels and correctness of reasoning) to assigned tasks.  

The levels of the scale are based on the Dreyfus (1980) model of skill acquisition. The 
Dreyfus (1980) model is normally used to provide a means of assessing and supporting 
progress in the development of skills or competencies. The descriptors delineate levels of 
knowledge and reasoning. Perceived ability of participants therefore is described in terms of 
these two. A distinction is drawn between two types of knowledge and two types of 
reasoning. All the test and examination items were utilized to determine an expertise level for 
the six students.    

As already argued it is expected that students with low expertise in a mathematical domain 
will have fragmented knowledge and will usually lack the ability to ‘see’ how procedures and 
concepts relate to each other in the domain. Yet as expertise in a mathematical domain 
increases so does the ability to integrate pieces of conceptual and procedural knowledge into 
a coherent knowledge structure (Baroody & Dowker, 2003; Linn, 2006; Schneider & Stern, 
2009; Schneider et al, 2011).   

Student ability to generate advance steps of a solution procedure and to skip intermediate 
steps or alternatively to perform some advance steps in a single step, was also used to gauge 
level of expertise for a specified class of tasks (see 6.5). If in test or examination items a 
student skipped intermediate steps of a solution procedure or performed intermediate steps in 
a single step, it was deemed to be an indicator of an instance of expert performance.   

Error rate was also used as a measure by which to determine level of expertise. As it is 
generally assumed that experts in a domain tend to make fewer errors than novices, level of 
expertise can therefore be inferred from the number of errors committed. In this study the 
fewer the number of errors a student committed the higher the level of expertise was assumed 
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to be and the converse also applied. It should be noted that error classification has been 
discussed in the previous section.    

The category in which a student is placed is not viewed as the final competency level of the 
student. It is an indication of their developmental level at that point and should be seen as the 
point from which the student will progress should further learning occur. The competency 
level is therefore not regarded as fixed, but is considered to be in a constant state of flux. The 
scale reflects the expertise level after exposure to the interventions of the study. The scale is 
neither utilized to indicate initial levels of competency nor subsequent final levels of 
competency, but rather to indicate the level the student is currently at, from which they might 
progress.    

There is general consensus in the mathematics education community that a well-connected 
deep understanding of fundamental mathematics is an absolute necessity for primary and high 
school teachers. In terms of scale categories therefore, at the very least teachers should 
operate at the competent expertise level since it is inevitable that teachers learn much in the 
process of teaching. Hence if prospective teachers enter the profession at the competent level, 
the expectation is that they are likely progress to a higher level of expertise as a consequence 
of the different teaching interactions.  The preferred categories that teachers entering the 
teaching profession would fall into should thus be proficient or expert.  

To explore the school grounding that might ultimately produce such readiness I shall use the 
scale in order to categorize the six students under investigation in this study.  
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LEVEL DESCRIPTOR (of Knowledge and Reasoning) 
1. Novice  (i) Rigid adherence to taught procedures or rules is in evidence and 

therefore student relies to a very large extent on imitative reasoning. 
No signs of imitative reasoning (based on) flexible procedural 
knowledge are present, and/or student exhibits algorithmic fixation. 

(ii) Student exhibits procedural errors in more than 80% of imitative 
reasoning based on procedural knowledge tasks. 

(iii) Student exhibits misconceptions in more than 80% of tasks. 
(iv) Creative thinking is non-existent. 
(v) There is no instance where intermediate steps are skipped or 

intermediate steps are performed in a single step. 
2. Advanced  

Beginner 
 

(i) Slight flexibility in the use of taught procedures and rules is in 
evidence; relies to a large extent on imitative reasoning, but also 
shows hints of ability to use flexible procedural knowledge.  

(ii) Student exhibits procedural errors in 50% to 80% of imitative 
reasoning based on procedural knowledge tasks. 

(iii) Student exhibits misconceptions in 50% to 80% of presented tasks. 
(iv) Creative thinking is exhibited in fewer than half the required cases. 
(v) There is one case in which intermediate steps are skipped or 

intermediate steps are performed in a single step.  
3. Competent 
 

(i) Flexible procedural knowledge is used correctly in 50% – 60% of 
required cases; imitative reasoning is used correctly in the majority of 
required cases. 

(ii) Student exhibits procedural errors in 20% to 50% of imitative 
reasoning based on procedural knowledge tasks. 

(iii) Student exhibits misconceptions in 20% to 50% of presented tasks. 
(iv) Creative thinking is shown in slightly more than half required 

instances. 
(v) There are two to four cases where intermediate steps are skipped or 

intermediate steps are performed in a single step. 
4. Proficient 
 

(i) Flexible procedural knowledge is used correctly in 60% to 80% of 
required cases; imitative reasoning is used correctly in nearly all 
cases. 

(ii) Student exhibits procedural errors in 0% to 20% of imitative 
reasoning based on procedural knowledge tasks. 

(iii) Student exhibits misconceptions in 0% to 20% of tasks. 
(iv) Creative thinking is shown in 60% - 80% of required instances.  
(v) In more than half the cases where applicable, intermediate steps are 

skipped or intermediate steps are performed in a single step. 
5. Expert  

(highly 
skilled) 

 

(i) Flexible procedural knowledge is used correctly in all cases; imitative 
reasoning is used correctly in all cases. 

(ii) Student exhibits no procedural errors in imitative reasoning based on 
procedural knowledge tasks. 

(iii) Student exhibits no misconceptions in any presented tasks. 
(iv) Creative thinking is shown in 80% – 100% of required cases 
(v) In all applicable cases intermediate steps are skipped or intermediate 

steps are performed in a single step. 
Table 6.3: Novice-to-expert competency scale 
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Students A and B are very similar in terms of level of mathematical knowledge and 
reasoning. An analysis of their test and examination responses indicates that they relied 
mostly on imitative reasoning and they showed a moderate degree of flexibility in procedural 
knowledge, but also committed a number of errors. An analysis of these errors shows that 
some were the result of misconceptions. Both these students struggled with the more complex 
problems. Neither of these students could produce a coherent solution to either of the more 
complex test items. Student B however performed slightly better with the more complex 
problems. Based on these arguments Student B was thought to be midway in the competent 
expertise level whereas Student A was thought to be near the start of the competent level. 

Students C and D also exhibited a high level of similarity in their performance. Yet while 
they also relied largely on imitative reasoning, they showed more advanced abilities in terms 
of procedural skills and were more accurate in the execution of procedures. Student C utilized 
the more efficient solution strategy in two instances, which is an indication of flexibility in 
the application of procedural knowledge. Although Student D did not identify those instances 
where a more efficient strategy might be employed, she was much more accurate in the 
execution of procedures and hence is grouped with Student C. Although these students did 
not supply a completely correct solution to the more complex problems, they performed 
much better than Students A and B in these items. Their responses to these items were more 
coherent and showed that their conceptual understanding was slightly more developed than 
that of Students A and B. Both these students were thought to be midway in the proficient 
expertise level with Student C slightly ahead of Student D. 

Students E and F were identified as the highest performing students. Neither made any 
procedural errors across all the different test and examination items based on linear functions. 
Student F made one conceptual error in one of the more complex test items. Surprisingly, an 
analysis of this error showed that Student F did not have a well-developed understanding of 
parallelism of linear functions. Although these students had not used more efficient strategies 
where applicable, it became evident that if one were to prompt them, they would have been 
able use their procedural knowledge flexibly. These students produced near flawless 
responses to the more complex tasks. Student E was the only student who could use prior 
knowledge creatively. Based on the foregoing arguments, Student E appeared to be near the 
top of the proficient level for these types of linear function problems. Because Student F 
exhibited a fundamental misconception, he was considered to be slightly above the middle of 
the proficient level.            
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6.8 Conclusion 

The main aim of the analysis in this chapter was to determine whether there was any evidence 
of knowledge retention and transfer in the written production of participating students with 
regard to the two-variable linear equation and its attendant concepts. A related objective was 
to determine level of expertise after exposure to the teaching strategy. The six students 
selected for the case studies showed varying degrees of retention and transfer of knowledge 
over time.    

In the next paragraphs I summarize the main findings (of this chapter) based on student 
responses to the tests and examinations. I then use these as a basis for synthesizing my 
concluding findings (for this part of the study). 

 
Students A and B seemed to have followed a similar pattern of retention and transfer of 
requisite indispensable knowledge in the given context of linear functions. Analyses of the 
responses of Students A and B (in terms of the selected test and examination items) indicate 
that initially the students retained and transferred a major part of the indispensable linear 
function knowledge in two problems of differing difficulty levels. Responses to the last two 
tests in the latter part of the first semester however indicated that the students later struggled 
to retain and transfer the relevant indispensable knowledge. In the end of module examination 
of the first semester these problems seem to have been overcome since the students produced 
completely correct responses. The responses of the students to the more complex problems 
presented in the second semester however produced evidence that the retention and transfer 
problems had not been eradicated completely. Student B however, seemed to cope better with 
the more demanding questions than Student A. 

Students C and D also seem to have followed similar knowledge retention and transfer 
patterns. Responses to the first four tests of the first semester as well as to the end of module 
examination seem to indicate that the indispensable linear function knowledge had been 
retained and the ability to transfer this knowledge in relevant problem situations had been 
developed to a high degree. Their responses to the more complex problem presented in the 
second semester however painted a slightly different picture. From these responses it became 
clear that their transfer abilities in terms of linear functions was lacking in certain areas. For 
Student C these problems persisted in the case of a similar complex problem presented in the 
examination of the second semester. Student D seemed to have resolved these issues by the 
time of this examination and produced a near perfect response. 

The responses of Students E and F to the test and examination items seem to indicate that the 
indispensable linear function knowledge and the concomitant ability to transfer this 
knowledge to relevant problem situations had been very well-developed. 

It is not normally the intention of qualitative researchers to generalize findings beyond the 
original research participants. However, as I have argued in Chapter 3, if a finding in a 
qualitative study is replicated with different people and in different circumstances then the 
finding can be generalized beyond the people in the study even if there was no random 
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sampling. In this study six students with different abilities comprised the case studies. All 
their written work over two semesters was incorporated. These written productions were 
produced in testing situations that were not all the same since some testing situations were 
high stakes (such as the examinations) whereas other tests (such as class tests) were not at the 
same high stakes level. One can therefore argue that the circumstances for the different sets 
of data collected were not the same. Moreover, the test and examination items were of 
different degrees of difficulty. If a research finding therefore is replicated in the six case 
studies one can argue that because of replication logic the findings can be generalized beyond 
the current population. 

The analysis of the student responses shows that indispensable knowledge relating to linear 
functions was retained across the greater portion of the selected test and examination items by 
a majority of the six students. This was the case despite the fact that four of the six students 
struggled with the more complex linear function problems. A similar argument can be 
advanced for transfer of knowledge in that the majority of students were able to transfer 
relevant linear function knowledge, but struggled to transfer in the domain of the more 
complex items. Following replication logic one can therefore argue there is a high probability 
that this finding holds for many of the other participating students.  

While it may not be possible to extend this finding to other content domains that formed part 
of the study, I nonetheless have high expectations that similar results will be obtained for the 
other content areas. 

In the next chapter I discuss findings of both the qualitative and quantitative parts of the 
study, synthesize conclusions and make some suggestions for future research. 
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CHAPTER 7: DISCUSSION, SUGGESTIONS FOR FUTURE RESEARCH,  
   LIMITATIONS AND CONCLUSION   
 
 
7.1 Introduction 

An examination of the literature regarding mathematics education reveals that not a lot is 
known about the efficacy of mathematics teacher preparation in terms of the organization of 
opportunities to learn mathematics and how the form of instructional delivery affects 
prospective teachers’ knowledge (Tatto, Lerman, & Novotna, 2010). Furthermore very little 
research was done to determine the effectiveness of mathematics teacher education programs 
and very little information is shared about teacher education programs across tertiary 
institutions hence teacher educators mostly start anew when presenting teacher education 
courses (Hiebert et al, 2003). This research was an attempt to address some of these issues in 
the South African context.  

In an attempt to deal with some of the knowledge and reasoning issues of pre-service 
mathematics teachers this study was designed. The hypothesis of this study was as follows: If 
South African mathematics education pre-service students are exposed to a teaching strategy 
that is premised on spiral revision and productive practice then their procedural fluency, 
conceptual understanding, knowledge retention and knowledge transfer abilities will be 
enhanced. A mixed methods approach was employed to investigate this hypothesis.  

In this chapter I will provide a summary of results and conclusions; provide some 
explanations for the findings; offer recommendations for teaching mathematics to pre-service 
teachers (including the issue of learning resources); discuss contributions of the study to 
theory; discuss limitations of the study; discuss issues for further research and provide overall 
concluding comments. Some of these will not be discussed separately, but will be discussed 
together since it provides for a logical flow. For example some sections might include 
summary and discussion of results, explanations, conclusions and recommendations.  
 
 
7.2. Summary of findings: Procedural fluency  

How would exposure to a teaching strategy that is based on spiral revision and productive 
practice, in requisite content areas of the specified curriculum, influence the mathematical 
competencies of procedural fluency and conceptual understanding of pre-service mathematics 
teachers was the main research question for this study. The secondary question was 
concerned with how retention and transfer abilities of participants would be influenced if they 
experience mathematics through a teaching strategy underpinned by spiral revision and 
productive practice. In this section findings related to procedural fluency are discussed. I will 
then proceed to discuss findings related to conceptual understanding and finally I will discuss 
findings related to retention and transfer.  
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The categories memorized reasoning based on factual knowledge, familiar algorithmic 
reasoning based on procedural knowledge, familiar algorithmic reasoning based on flexible 
procedural knowledge and delimiting algorithmic reasoning based on flexible procedural 
knowledge was deemed to be a measure of the competency procedural fluency. These 
categories therefore formed the measuring instrument that was utilized to measure knowledge 
and reasoning proficiency of research participants. As indicated in chapter 4, the instrument 
used to pursue the hypothesis was based on these categories. Student written responses to test 
and examination items were analysed to determine their proficiency levels. 

The statistical analysis (see chapter 5) indicated that students scored high on the majority of 
the variables for procedural fluency. Furthermore the stratified analysis showed that the 
majority of students improved from pre-test to post-test in terms of procedural fluency. The 
stratified analysis however also indicates that some students struggled with the category 
familiar algorithmic reasoning based on flexible procedural knowledge. Approximately a 
quarter of students fell in the fail grades for this category of question. The teaching strategy 
appears to be effective in improving some aspects of procedural fluency, but lack in others. It 
would seem that a possible weakness of the teaching strategy was that it did not effectually 
assist all students to acquire the ability to flexibly use known procedural knowledge in novel 
contexts.  
 
The findings in chapter 6 indicate that participating students had varying levels of 
competencies after exposure to the teaching strategy. Moreover the analysis done in chapter 
6.5 indicates that some students performed steps of solution procedures more efficiently than 
others.    
 
Possible explanations for the above phenomena will be presented next. 

7.2.1 Explanations, conclusions and recommendations: Procedural fluency 

As argued previously schema acquisition and the automatization of learned procedures are 
two essential mechanisms in the learning process (Sweller,1994). In cognitive load theory 
mechanisms of learning is utilized to determine which features of material make it hard to 
learn. The theory is based on the assumption that gaining of knowledge and cognition based 
on this knowledge is heavily dependent on schema acquisition. The notion of schemas is 
thought to be able to explain a major part of learning-mediated cognitive performance. 
Sweller (1988) argues that experts in a domain have more domain specific knowledge (in the 
form of schemas) than novices in the domain.               

It is generally accepted that newly presented information is not internalized in the exact form 
that it is presented; rather new knowledge is altered so that it fits in with current knowledge. 
It is argued that knowledge of subject matter is organized into schemas and it is these 
schemas that determine how new information is dealt with (see chapter 3.4). Sweller (1994) 
contends that people utilize schemas to deal with mathematical problems. These schemas 
allow for problems to be categorized based on the solution procedure. For example students 
that have been exposed to algebra will not only know how to solve a specific linear equation 
such as  2𝑥𝑥 + 5 = 7 , but will know the solution procedure for this category of problem and 
hence would be able to solve all problems of the form 𝑎𝑎𝑥𝑥 ± 𝑏𝑏 = 𝑐𝑐,    ∀𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈  ℝ. These 
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schemas therefore reduces the amount of mental effort required to solve such problems and 
allow people to potentially solve an infinite variety of such problems. 

Schemas are not acquired in an all or nothing manner, but rather it is assimilated gradually 
over a period of time. Consequently when a student is exposed to new knowledge, the ability 
to use this knowledge is initially severely constrained since the schema has not been fully 
developed.  

Cognitive processing of information can either be controlled or automatic (Schneider & 
Shiffrin, 1977). Controlled cognition is said to occur when information is consciously 
attended to. In other words the information is either not in the long-term memory or is not 
well-established in the long-term memory and therefore have to be processed in the working 
memory. 

When a complex mental skill is first acquired it can only be utilized with considerable 
cognitive effort; however over time and with enough practice the skill may become 
automated (Sweller, 1994).  Consequently if mundane procedural elements of a task have 
been practiced to the extent that it became automated it would free cognitive capacity for 
more creative reasoning and applying prior knowledge in unfamiliar situations. Moreover if 
skills operate under automatic processing then cognitive load will be reduced. This I think is 
what teachers of mathematics would ideally want to achieve with instruction in mathematics. 

It is an accepted fact that a function of learning is to store information in long-term memory. 
A function of learning according to cognitive load theory is to store automated schemas in 
long-term memory. As mentioned previously working memory has a limited capacity and 
duration and hence the amount of information that can be processed in the working memory 
is limited. This limitation can affect learning negatively and hence a function of instruction 
and learning should be to find ways to reduce working memory load.   Schema acquisition 
and automatization have precisely this effect namely to reduce working memory load.  

Generally when students are first introduced to a mathematical topic their initial knowledge 
of the topic tends to be very limited. So it is often the case that students know a little about a 
topic, but do not fully understand the topic. Conceptual knowledge is indispensable for the 
construction, selection and correct application of procedures (Hiebert & Lefevre, 1986). On 
the other hand practicing known procedures is thought to help students develop and deepen 
understanding of concepts. The main argument therefore is that both kinds of knowledge are 
required for effective mathematical learning and that each type of knowledge is required to 
strengthen the other over time. Instruction in mathematics should therefore strive to develop 
both procedural and conceptual knowledge. Development of procedural and conceptual 
knowledge in a mathematical domain should however also include development of the ability 
to categorize problems based on required solution procedures. It is my contention that the 
spiral testing component of the teaching strategy played a major role in developing the ability 
to discriminate between different kinds of problems and to associate each kind of problem 
with an appropriate strategy.   
 
As argued previously students with low expertise in a mathematical domain usually has 
fragmented knowledge and do not have the ability to ‘see’ how procedures and concepts 
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relate to each other in the domain. As expertise in a domain increase the ability to integrate 
the conceptual and procedural pieces of knowledge into a coherent knowledge structure 
increases (Baroody & Dowker, 2003; Linn, 2006; Schneider & Stern, 2009; Schneider et al, 
2011). Schemas of low expertise students therefore will not contain well-developed 
procedural and conceptual knowledge and ways of reasoning for a specific class of problem 
but will lack in some areas. High expertise individuals on the other hand have schemas that 
have more mature conceptual and procedural development and the concomitant reasoning 
abilities. 

My argument is that although problems that require flexible use of procedural knowledge was 
practiced in class what happened was that since student schemas (the students that struggled 
with this kind of problem) regarding manipulation was not fully developed for that class of 
task because their focus was on how the different parts of the steps fit together. Moreover 
they were focusing on the reasoning that connects the individual steps. That is their 
understanding of the procedure as a whole was not fully developed. This limits their ability to 
compare features of the procedure to procedures of other similar problems. That is they did 
not compare it in terms of comparing problem features, but were focusing on the reasoning 
behind the individual steps and the ideas that connected the steps.  They have not developed 
to the point where they can compare problems based on problem features such as for example 
if it is a reversal problem of a kind that has been done previously. This is evidenced by the 
fact that the struggling students still wrote all the steps for this class of problem. In turn the 
writing of all the steps indicates what is happening cognitively. What is happening in terms of 
reasoning is that the ideas that connect each step are not fully automated and hence these 
have to be brought into conscious focus (in the working memory) in order to be processed. 
These students therefore do not have mature schemas for a particular class of tasks and have 
to consciously attend to tasks in working memory. They have to laboriously reason through 
all of the steps that constitute the solution procedure for the particular task. What I am 
arguing therefore is that it is practically impossible to become flexible in the use of 
procedures if one still needs to focus on each individual step in a routine procedure.  
 
The central executive is one of the components of the working memory. As I have mentioned 
in chapter 3.2 the central executive is an attentional control system of limited processing 
capacity that has the role of controlling action. As I have mentioned previously the fact that 
all the steps are written is an indication that the reasoning that connect each step in the 
procedure has to be brought into consciousness (in the working memory). Since the reasoning 
that connects steps are not fully automated it implies that the central executive has to direct 
the majority of attention to these thoughts which leaves less capacity to shift attention to 
other features of the solution procedure such as comparing it with other similar known cases. 
I believe this is one of the main reasons why these students struggle to develop their ability to 
use known procedures flexibly and in novel situations. In other words since the procedure for 
a particular type of task is not fully automated and the schema for the type of task is not at a 
mature level it compromises ability to use known procedures creatively. Hence what the data 
is indicating (struggles with the category of question familiar algorithmic reasoning based on 
flexible procedural knowledge) is that these students are not at the same developmental level 
as their peers. The question is what inferences can be drawn from these arguments regarding 
the teaching strategy and what can be done to improve the situation? 
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A premise of my version of spiral revision is that development and increase of procedural 
knowledge will aid in procedural flexibility and conceptual knowledge in a given 
mathematical domain. The statistical analysis and qualitative analysis however has shown 
that this is not true for the development of procedural flexibility of some students (in 
particular students identified as low ability students). A primary goal of the teaching strategy 
was to make explicit conceptual underpinnings of a procedure and conversely to show how 
concepts are utilized in the development of a procedure. The expectation was that this way of 
doing would negate the need to explicitly compare solution procedures of different practice 
examples as a function of problem features. The findings however indicate that the 
expectation was not met in all cases and hence there is a need to compare solution procedures 
of presented problems.  
 
Schema development for a specific class of tasks allow for problems to be categorized based 
on solution procedure. As argued earlier schema acquisition is one of the essential 
mechanisms in the learning process.  If problems are categorized based on solution 
procedures then deeper insight would be gained if problem features can be linked to 
procedure type. What I am proposing therefore is that the teaching strategy be adapted by 
including exercises where solution procedures of different problems (of the same class of 
tasks) are compared for similarities and differences and links are made between problem 
features and procedure type. Such exercises would require more complex cognitive processes 
since it requires one to consider individual steps that constitute a solution procedure, the ideas 
that link the steps and then to compare these to another solution procedure while 
simultaneously attempting to link problem features to the procedures. It is my contention that 
although it would be a more demanding exercise it would allow one to gain deeper insight as 
to how and why procedures are applied for a specific problem type, the limitations in terms of 
when and under what circumstances it can be applied and what are the circumstances that 
allow for the procedure to be adapted. This deeper insight is in my opinion a prerequisite for 
the development of the ability to identify those instances where known procedural knowledge 
can be applied in novel contexts or to use procedures more flexibly and more efficiently. The 
question is which practice strategies could be exploited to achieve such learning objectives?     
 
It is theorized that mass practice assists mathematics learning by providing immediate 
opportunity to practice what one has been exposed to. It allows students to focus on the 
execution of a strategy for a particular type of mathematical problem (Rohrer, et al, 2015). 
This type of practice however does not provide for students to compare what they have learnt 
to other similar problems. Furthermore there is no guarantee that mastery of the particular 
type of problem is achieved since it is possible that students can imitate solution procedures 
without having an understanding of the underlying ideas.  
 
A distributed practice format on the other hand provides many opportunities for students to 
master a particular skill or concept. Furthermore it can be utilized to uncover the different 
facets of concepts. Once students has been exposed to many different types of problems of a 
particular class of tasks over an extended period of time they can be presented with tasks that 
require comparison of solution procedures. It is my opinion that distributed practice is best 
suited for this type of learning activity.            
 
The quantitative analysis indicates that the categories memorized reasoning based on factual 
knowledge, memorized reasoning based on procedural knowledge and familiar algorithmic 
reasoning based on procedural knowledge had high pre- and post-test means. All three 
categories also showed significant increases in means between pre- and post-test. These are 
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some of the categories that constitute the competency procedural fluency. The cognitive 
process dimension for all of these categories is imitative reasoning. These categories 
therefore require less complex reasoning and hence can be classified as lower order. An 
analysis of the categories familiar algorithmic reasoning based on flexible procedural 
knowledge and delimiting algorithmic reasoning based on flexible procedural knowledge on 
the other hand indicates that there was very little improvement between pre- and post-test for 
these categories. These category of question required more complex reasoning since its 
solution procedure require one to use known procedures in a new way or use known 
procedures in tasks that have not been encountered before. These categories can therefore be 
classified as higher order. The question is what inference can be made from these findings 
regarding how the teaching strategy affected competency levels of participants? In other 
words what is the answer to the main research question in terms of procedural fluency? 
 
The teaching strategy enhanced some aspects of procedural fluency (memorized reasoning 
based on factual knowledge, memorized reasoning based on procedural knowledge and 
familiar algorithmic reasoning based on procedural knowledge) but did not improve other 
aspects (familiar algorithmic reasoning based on flexible procedural knowledge and 
delimiting algorithmic reasoning based on flexible procedural knowledge) of procedural 
fluency (see chapter 5). This finding was more pronounced for lower ability students than for 
higher ability students. The categories where improvements were noted fall in those 
categories where highly imitative reasoning is required. The categories where the imitative 
reasoning requirements were less and flexibility in reasoning was a requirement were the 
categories where improvement were either negligible or a regression was registered. This 
implies that the teaching strategy was effective in improving ability to reason imitatively with 
known procedural knowledge, but was not as effective to improve ability to reason flexibly 
with known procedural knowledge or to use known procedural knowledge in novel situations. 
The teaching strategy affected higher and lower ability students differently. The higher ability 
students show an improvement in both the higher order categories and the lower order 
categories. The lower ability students on the other hand show an improvement in the lower 
order categories, but do not show the same level of improvement in the higher order 
categories.  
 
A premise of the teaching strategy was that development and increase of procedural 
knowledge and concomitant reasoning abilities will aid in improving procedural flexibility 
and conceptual knowledge in a given mathematical domain. This seems to hold true for the 
higher ability students that participated in the study, but in most cases does not hold true for 
the lower ability students. The majority of higher ability students had some prior exposure at 
the school level with some of the presented content whereas some of the lower ability 
students did not have the same level of exposure to the content. An inference one can 
therefore make is that level of prior knowledge in a content area played a major role in how 
individual participants were affected by the teaching strategy.   
 
 
7.3 Summary of findings: Conceptual understanding 

In this section I will discuss findings related to effectiveness of the teaching strategy with 
regards to conceptual understanding of participants. As mentioned previously conceptual 
understanding refers to the comprehension of mathematical concepts, operations and 
relations.  The categories of Memorised Reasoning based on Conceptual knowledge (D1a), 
Familiar Algorithmic Reasoning based on Conceptual knowledge (D1bi), Delimiting 
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Algorithmic Reasoning based on Conceptual knowledge (D1bii) and Local Creative 
reasoning based on Conceptual knowledge (D2a) were considered to be measures of 
conceptual understanding.  

Analysis of the data indicates that the majority of students entered the course with weak 
conceptual understanding. The mean for the pre-test was 48.99% which is below the pass cut-
off score. The post-test mean was 59.94% which represents an improvement of 10.95%. The 
stratified analysis indicates that the lowest ability students were affected most by the 
implemented teaching strategy. These students showed the biggest improvement (27% moved 
to higher ranks post-test). This represents the biggest movement of students in terms of 
improvement of scores for conceptual understanding. The higher ability students also showed 
a significant improvement. There was thus an overall improvement in terms of conceptual 
understanding.  

Closer inspection of the data however reveals that this positive result does not hold for all the 
categories that constitute conceptual understanding. The categories familiar algorithmic 
reasoning based on conceptual knowledge and delimiting algorithmic reasoning based on 
conceptual knowledge showed significant improvement from pre- to post-test. The categories 
memorized reasoning based on conceptual knowledge and local creative reasoning based on 
conceptual knowledge on the other hand showed a near zero difference between pre- and 
post-test. This implies that after intervention there was no improvement in terms of 
performance in these categories. Furthermore the data reveals that the majority of students 
entered with very weak abilities in terms of Local Creative Reasoning based on Conceptual 
Knowledge. I am of the opinion that this is the most difficult category to improve on. This is 
also the category that I believe teachers should excel in in terms of school level mathematics. 
I believe that in order for mathematics teachers to explain concepts adequately they must be 
able to view and utilize concepts from different angles which in turn require the ability to 
reason creatively with known concepts.  
 
Possible explanations for the above phenomena will be presented next. 

 

7.3.1 Explanations, conclusions and recommendations: Conceptual understanding 

As I have mentioned previously conceptual understanding is defined to be the comprehension 
of mathematical concepts, operations and relations. Conceptual understanding is therefore 
premised on knowledge of concepts. Conceptual knowledge is defined as knowledge that is 
rich in relationships (Hiebert & Lefevre, 1986). Conceptual knowledge is developed by 
establishing cognitive links between different pieces of information. The linking process is 
possible between pieces of information that is already stored in memory or between an 
existing piece of knowledge and one that is newly learned. The result of the linking process is 
that the new knowledge is assimilated into appropriate knowledge structures and hence 
becomes part of the existing network. In other words it becomes part of the schemas in the 
long term-memory. 
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The term abstract is used to determine the level of connection between pieces of information. 
The term abstract refers to the degree to which a unit of knowledge is tied to a specific 
context. Abstractness is said to increase as knowledge is freed from a specific context. If the 
relationship is established at the same level of abstractness or at a less abstract level than the 
level at which the original information was presented then the relationship is said to be at the 
primary level. On the other hand if the relationship between pieces of information is 
established at a higher abstract level than the pieces of information they connect then the 
relationship is said to be at the reflective level. Such relationships normally are less tied to 
specific contexts. Building the cognitive connections in this case requires that one reflects on 
the information being connected and consequently more of the mathematical terrain will 
become ‘visible’. The reflective level is therefore perceived to be at a higher level than the 
primary level. 

The description and definition of procedural and conceptual knowledge of Hiebert and 
Lefevre (1986) however has drawn some criticism. Star (2005) maintains that the definitions 
of procedural and conceptual knowledge of Hiebert and Lefevre (1986) do not fully account 
for knowledge type and knowledge quality in their definitions. An assumption that can be 
drawn from their definition of conceptual knowledge is that conceptual knowledge is always 
deep and rich in relationships. On the contrary cognitive connections of conceptual 
knowledge might be limited and superficial or it might be extensive and deep (Star, 2005). 
He maintains that a mathematics students’ initial conceptual knowledge generally is limited 
and superficial, but over time might develop and become deeper and have more connections.   

As I have mentioned before a primary goal of the teaching strategy was to make explicit 
conceptual underpinnings of a procedure and conversely to show how concepts are utilized in 
the development of a procedure. The main teaching strategy that was used to develop 
conceptual knowledge was productive practice (see chapter 1.5). Productive practice is a 
strategy where deepening thinking-like problems is employed to enrich the conceptual 
knowledge of students in requisite content areas of the specified mathematics curriculum.  

As I have indicated before I support the iterative model as proposed by Rittle-Johnson, et al 
(2001).  A major premise of this theory is that either procedural or conceptual knowledge 
might develop first, but one type of knowledge does not as a rule develop before the other. 
The contention is that it is often the case that a particular type of knowledge is incomplete. 
More specifically one type of knowledge might be better developed at a particular point in 
time, but this does not imply that the other type of knowledge is totally absent. Furthermore 
initial knowledge in a domain generally is very limited.  The contention is that levels of prior 
knowledge in a domain determine which type of knowledge will emerge first and set the 
learning process in motion. Whichever knowledge type is developed first then in turn forms a 
basis from which the other type of knowledge develops. According to the iterative model 
therefore improved conceptual knowledge results in improved procedural knowledge. 
Improved procedural knowledge in turn leads to improved conceptual knowledge, which then 
leads to improved procedural knowledge and so on. 
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Analysis of the data revealed that students entered the study with very low levels of 
conceptual knowledge in the content areas that were covered. The data further revealed that 
the low ability students benefitted most from the teaching strategy with regards to conceptual 
understanding. These students however did not move from being advanced beginners to 
expert but rather in my estimate moved to the competent level. Students that entered the study 
with a more or less competent level generally moved to a more proficient level. Most 
participants however did not show an improvement in the category local creative knowledge 
based on conceptual knowledge as mentioned before. Next I will advance theories as to the 
underlying reasons for these different levels and change in proficiency level of the 
participating students.  

Mathematics educators in the majority of cases use students’ solution procedures to presented 
tasks to determine proficiency levels of students in terms of type and quality of knowledge 
and concomitant reasoning abilities. Broadly speaking problem solving in mathematics can 
be divided into three phases. The first phase comprises understanding of the problem 
statement in terms of provided information and what is to be determined or proved.  The 
second phase consists of developing a strategy to provide a solution procedure or proof. The 
third phase involves producing a written or verbal solution procedure based on the strategy 
developed in the second phase. The first and second phase is mostly invisible since it is done 
mentally. I am aware that according to the literature there are other phases involved, but for 
my purposes these three phases suffice. Each of the phases necessitates adequate conceptual 
understanding in order to produce a correct solution procedure. Conceptual understanding 
mediates interpretation of the problem statement. Thus if conceptual understanding for a 
particular class of tasks is not well developed then the problem statements for the tasks will 
not be completely understood which in turn will lead to the production of an incorrect 
solution procedure. The second and third phases are also mediated by conceptual 
understanding. It is important to keep in mind that procedures that are produced normally are 
the result of conceptual knowledge that is highly abstracted. Procedures are said to access and 
act on conceptual knowledge translating it into something observable. Procedures therefore 
informs on the state of conceptual knowledge (Hiebert & Lefevre, 1986). Next I will use an 
example to explicate the foregoing arguments:  

Prove that  ∀ 𝑥𝑥 ∈ ℝ 𝑎𝑎𝑛𝑛𝑑𝑑 ∀𝑠𝑠 ∈ ℤ,   ⌊𝑥𝑥 + 𝑠𝑠⌋  =  ⌊𝑥𝑥⌋ + 𝑠𝑠. 

The first phase requires reading and interpretation of the statement. The very first word in this 
case states what must be done namely that a proof must be provided of a mathematical 
statement. Next the symbolism has to be translated into English which in this case is: the for 
all symbol; an element of a set; the set of real numbers and the set of integers. Conceptual 
understanding is required to understand what  ∀ 𝑥𝑥 ∈ ℝ 𝑎𝑎𝑛𝑛𝑑𝑑 ∀𝑠𝑠 ∈ ℤ    mean. That is one 
needs to make the connection that the statement must be proved in such a way that it holds 
for all real numbers and for all integers with no exceptions. Next one has to understand what 
one has to prove. That is an understanding of  ⌊𝑥𝑥 + 𝑠𝑠⌋  =  ⌊𝑥𝑥⌋ + 𝑠𝑠 is required. That is one 
needs to understand that what is required is that one must show that the sum of the floor of a 
real number and an integer is equal to the sum of the integer and the floor of the real number. 
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This is premised on an understanding of the concept floor. Correct interpretation of the 
problem statement therefore is mediated by conceptual understanding. 

The second phase requires that a strategy be developed to tackle the problem. This requires 
that one realize that one should start with some prior knowledge and what is provided in the 
problem statement. Conceptual knowledge mediates the reasoning that is required to produce 
a strategy. 

In the last phase it is required that a coherent solution procedure is produced based on the 
strategy developed in phase two. In this instance the definition of floor is applied directly as 
the first step. That is: 

let 𝑛𝑛 = ⌊𝑥𝑥⌋,𝑖𝑖𝐹𝐹𝐹𝐹 𝑛𝑛 ∈ ℤ  𝑎𝑎𝑛𝑛𝑑𝑑  𝑥𝑥 ∈ ℝ, then by definition of floor we have: 𝑛𝑛 ≤ 𝑥𝑥 < 𝑛𝑛 + 1 

Subsequently we add 𝑠𝑠 to all three parts of the inequality:  𝑛𝑛 + 𝑠𝑠 ≤ 𝑥𝑥 + 𝑠𝑠 < 𝑛𝑛 + 1 + 𝑠𝑠 

This step is based on understanding of properties of inequalities. Finally the definition of 
floor is now used in the opposite direction. That is we interpret this statement to mean that 
⌊𝑥𝑥 + 𝑠𝑠⌋ = 𝑛𝑛 + 𝑠𝑠, but since 𝑛𝑛 = ⌊𝑥𝑥⌋ we have ⌊𝑥𝑥 + 𝑠𝑠⌋ =  ⌊𝑥𝑥⌋ + 𝑠𝑠. What we have shown 
therefore is that the statement is true for an arbitrarily chosen integer and real number. The 
statement is therefore true for all real numbers and all integers. It is clear that this last phase 
is also mediated by conceptual understanding.  

It is highly unlikely that the above problem can be correctly understood and a correct solution 
procedure produced without having the requisite conceptual knowledge that is appropriately 
connected to other knowledge.  The first point I am making is that procedural knowledge is 
the visible part of our conceptual knowledge and as argued by Hiebert and Lefevre (1986) it 
informs on how well developed conceptual knowledge in a mathematical domain is and to 
what level reasoning abilities with the conceptual knowledge is developed.  In other words it 
informs on our conceptual understanding. The second point I am making is that conceptual 
understanding mediates almost all acts involved in problem solving. Therefore mathematical 
understanding in general is premised on conceptual understanding. 

The question remains why students that are exposed to the same teaching under uniform 
conditions show different proficiency levels in terms of level of development of procedural 
fluency and conceptual understanding. Students entered the course with differing levels of 
proficiency is the first part of the answer. That is the starting point for participating students 
were not all the same in terms of prior knowledge. More particularly their initial types and 
quality of knowledge were not all the same. In some cases procedural knowledge were more 
developed than conceptual knowledge and in other cases it was vice versa. For argument’s 
sake let us presume that a participating student entered the course with a well-developed 
ability to manipulate linear equations, but the student is not as developed in the underlying 
conceptual knowledge, whilst another student entered with well-developed procedural and 
conceptual knowledge. According to the iterative model improved procedural knowledge 
leads to improved conceptual knowledge. The first student needs to develop in terms of 
conceptual knowledge first before further progress can be made, while the other student is 
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already at this stage and can therefore improve on procedural knowledge which in turn will 
lead to improvement of conceptual knowledge that is already ahead of the other student. The 
second student therefore will tend to learn more under the same conditions as a consequence 
of better developed procedural and conceptual knowledge. It will therefore be difficult for the 
first student to first catch up and then overtake the other student if they receive the same kind 
of instruction under uniform conditions.    

The second part of the answer is based on how the knowledge is held by the different 
students. In other words the quality of their knowledge is not all the same. To determine the 
quality of knowledge one has to determine if the knowledge is surface level or deep level 
knowledge. Surface level knowledge is normally associated with a low level of abstractness 
whereas deep level knowledge is associated with a high level of abstractness.  

Although some participating students have been exposed to some of the content before 
entering the course their level of abstractness for the content was at the primary level. That is 
the relationship between relevant pieces of information is tied to a specific context and hence 
they find it difficult to transfer their knowledge to a different context where the knowledge 
might be required. The more these students are exposed to different problems in different 
contexts the more their knowledge will be freed from a specific context and hence the 
abstractness of knowledge will improve. That is they will develop a better and deeper 
conceptual understanding. On the other hand students that were already at the reflective level 
in terms of some content could deal more effectively with more advanced problems. 
Evidence for this can be seen in responses to the more complex problems that were discussed 
in chapter 6. Students that were at the reflective level could progress much further with 
problems in a different context (circles) than students that were at the primary level. In the 
majority of cases the primary level students could not progress beyond the first sub 
procedure.  

The last part of the answer has to do with the to be learned material itself. In cognitive load 
theory an element is defined as any material that is to be learned. If in order to learn material 
it is required that mental connections needs to be made between many other elements then the 
material is said to have a high element interactivity and is perceived to be harder to learn. 
Conversely if elements of a task can be learned without making other mental connections 
then it is said to have low element interactivity and is perceived to be easier to learn. 
Mathematical tasks rarely have low element interactivity. In particular mathematical tasks 
that require the utilization of concepts and definitions at both primary and high school level 
usually necessitate that many mental connections be made. It can therefore be argued that 
such tasks have high element interactivity.  

Examples of material that has high element interactivity that were part of the presented 
course can be found in the complex examples that were discussed in chapter 6, such as the 
theorem about tangents to circles.  

This theorem is as follows: If a tangent to a circle is drawn, then it is perpendicular to the 
radius at the point of contact.      
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A number of concepts appear in this theorem. These concepts are tangent, circle, 
perpendicular and radius. A failure to fully comprehend any of these will result in not 
understanding the theorem. Furthermore connections need to be made with tangent and radius 
and straight line. That is one needs to be cognizant of the fact that a tangent and a radius are 
in fact straight lines and therefore can be represented by the two-variable linear equation and 
all the other attendant concepts hold such as gradient, intercepts, etc.  
 
Furthermore one has to realize that the theorem is written in the if-then format. This implies 
that it is a conditional statement which has a hypothesis and a conclusion. This in turn implies 
that if the hypothesis is true then it follows that the conclusion is true. In some problem 
situations the converse might be presented. That is a radius is presented perpendicular to a 
straight line. In such a situation one need to be aware that this is the converse of the stated 
theorem and that the conclusion that can be drawn is that the straight line is a tangent. 
Problems that rely for their solution on an understanding of such theorems therefore have 
high element interactivity. 
 
Total cognitive load is the sum of intrinsic and extraneous cognitive load (Sweller, 1994). 
Extraneous cognitive load is imposed by instructional methods whereas intrinsic cognitive 
load is determined by element interactivity. If a content area has a high number of interacting 
elements it is associated with a high intrinsic cognitive load. Conversely if material has a low 
element interactivity it is thought to have a low cognitive load. Instructors have no control 
over intrinsic cognitive load since it is only dependent on the element interactivity of to be 
learned material. It is argued that if people have acquired schemas of a content area with high 
element interactivity, then the content is understood. If these schemas are automated then the 
material is understood very well (Sweller, 1994).  

One can deduce from the responses of the low ability students to the complex problems that 
although they know the concepts involved, the schemas for these are not fully automated. 
Their laborious reasoning is evident in the fact that they show each step. This in turn provides 
evidence that the schemas for these content areas are not fully automated. I think it is to be 
expected that material that have high element interactivity will be more difficult to learn and 
hence will be more difficult to apply in problem situations. A possible solution is that 
students are exposed to such problems more often and over an extended period. I think it 
takes time and effort to really understand some concepts in all of its different nuances. 
Exposure more often will allow for engagement repeatedly with the same concepts increasing 
the probability that it will become abstracted. I have attempted to expose students often and 
over an extended period of time to the different classes of tasks in this study. I could not 
however do this consistently for all the tasks because of time constraints. The more complex 
tasks are an example of such tasks.  

Exposure more often and over an extended period will allow for the creation of appropriate 
cognitive connections between conceptual and procedural knowledge which is thought to 
contribute to efficient memory storage and successful retrieval of procedures in applicable 
circumstances. Hiebert and Lefevre (1986) advance several reasons why procedures are 
stored and retrieved more successfully when it is connected to conceptual knowledge. If 
procedures are  connected with conceptual knowledge it becomes part of a network of 
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information that is held together by semantic relationships that do not deteriorate easily since 
memory endures longer for meaningful relationships.  Since the procedures are part of a 
knowledge network many alternate cognitive links can be used to access and retrieve it. It is 
thought that conceptual knowledge also has an executive control function in that it is utilized 
to monitor not only the selection and use of a procedure, but also to determine the 
reasonableness of the procedural outcome.  

Conceptual knowledge only becomes useful for solving mathematical tasks when it is 
converted into an appropriate form. When a student is introduced to a new mathematical 
topic, the student initially do not know procedures to solve mathematical problems based on 
the topic. Since no procedures are known problems is solved by applying mathematical facts 
and concepts in an arduous way. However as the student are exposed to similar problems and 
these are solved repeatedly conceptual knowledge is gradually transformed into procedural 
knowledge. In this way knowledge that was initially conceptual can become procedural. 
Hiebert and Lefevre (1986) argues that this is a very important process in the learning of 
mathematics since well-known procedures can reduce cognitive effort required and hence 
very complex problems can be solved. They maintain that automated procedures release 
cognitive resources that can be utilized to for example look for relationships between novel 
aspects of problems or where relevant conceptual knowledge can be applied.    
 
All of the above arguments however still do not adequately address the issue of why the 
teaching strategy did not make inroads into enhancing creative reasoning based on conceptual 
knowledge abilities of participants. The majority of participating students struggled to deal 
effectively with this category of question. The teaching strategy therefore affected most of the 
participating students in the same way for this category of problem. I think the debate about 
nature or nurture is relevant in this instance. I am of the opinion that teaching strategies can 
be designed and utilized to enhance creative mathematical reasoning of students. Creativity is 
however also a function of innate abilities and therefore teaching strategies can have limited 
success in this regard.  
 
 
7.4 Retention and Transfer as a function of Temporality 

There is evidence that participants of the study have retained the majority of indispensable 
knowledge for the different classes of tasks. Transfer of knowledge to problems that were not 
structurally the same but that required a known solution procedure were not dealt with in the 
same way by the different ability groups. The data suggest that in most cases the lower ability 
group struggled to transfer knowledge to such problems. The higher ability group on the 
other hand performed slightly better in terms of transfer of knowledge in such cases. The 
teaching strategy therefore was effective in terms of retention of indispensable knowledge, 
but was not as effective for all categories of students in terms of transfer of knowledge.  
 
The argument was presented in chapter 6 that humans forget approximately half of newly 
learned knowledge in a matter of days or weeks (Ebbinghaus, 1964; Rubin & Wenzel, 1996; 
Averell & Heathcote, 2010; Murre & Dros, 2015) unless they consciously review the learned 
material. In chapter 1.5 retention interval was defined as time elapsed between the most 
recent learning session and the test (Rohrer & Taylor, 2006).  The first assessment of the 
study was done on 21 February 2014. In order to determine how effective the teaching 
strategy was in terms of retention and transfer of indispensable knowledge over an extended 
period I presented student B with a two-variable linear equation problem on 17 August 2015.  
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The retention interval therefore was 18 months. It should be noted that student B would have 
had no exposure to content that covered two- variable linear equations from the start of 2015 
onwards. The student also was not informed that she would be presented with this type of 
problem beforehand and therefore would not have reviewed the content. This implies that the 
student would not have reviewed similar content for approximately eight months. The 
expectation therefore was that student B would have forgotten how to deal with such 
problems. One should also keep in mind that student B struggled with this type of problem in 
the second and third test of the first semester of the study. The idea therefore was to 
determine the effectiveness of the teaching strategy as a function of temporality. The 
presented problem and student B’s response is presented in figure 7.7. 
 
 
 

 
Figure 7.1: Student B and temporality  
 
The solution procedure requires that one is cognisant of the fact that parallel lines have equal 
gradients and that one therefore has to transform the provided equation to the form             
𝒚𝒚 = 𝒕𝒕𝒙𝒙 + 𝒄𝒄. One should then be aware that when the equation is in this form the coefficient 
of the 𝒙𝒙 − 𝒕𝒕𝒕𝒕𝒓𝒓𝒕𝒕 is the gradient. One could then either substitute into the point-slope form or 
the slope-intercept form of the two-variable linear equation. In this case utilization of the 
slope intercept form would be the more efficient way to deal with the problem.  
 
Although student B did not use the more efficient way to solve the problem she demonstrated 
with her solution procedure that she had retained all the indispensable knowledge for this 
class of problem and could transfer her knowledge successfully. One can therefore argue that 
the thought processes involved in the production of such procedures (schema) is part of the 
long-term memory structures of student B. This could therefore be construed as evidence that 
the teaching strategy achieved its goal of retention of indispensable knowledge for student B. 
Although one cannot extrapolate this finding to the entire population my sense is that it 
would be similar for other students since student B was identified to be in the low ability 
group.     
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7.5 Contributions to theory 

Usually taxonomies of educational objectives are utilized as a framework to classify learning 
and instructional activities. Many of these taxonomies however are not always very clear and 
consistent as to the criteria that it utilizes for classification purposes. The South African 
Further Education and Training (FET) mathematics CAPS document for example utilizes 
four categories (referred to as cognitive levels) to categorize mathematical tasks and 
assessment items. The four cognitive levels are: knowledge, routine procedures, complex 
procedures and problem solving. Criteria utilized for classification in the CAPS taxonomy 
includes type of problem (e.g. non-routine problem), cognitive processes (e.g. straight recall) 
and skill required (e.g. perform well known procedures). The criteria for each of the different 
cognitive levels sometimes include all of these criteria and in other cases only some. For 
some cognitive levels the knowledge requirements are stated whereas in others it is not. 
Similarly reasoning requirements are included in some instances and in others it is not clear 
what the reasoning requirements are. 

The taxonomy developed in this study (see chapter 4.7) was designed to classify learning and 
instructional activities in terms of mathematical reasoning and mathematical knowledge 
requirements. The reasoning and knowledge categories utilized are those that are 
predominant in mathematics learning. It is different from other similar taxonomies in that 
classification is based on cognitive processes that operate on knowledge structures. It can 
therefore be argued that its categories are more closely aligned to mathematical cognition. It 
is also different in terms of the categories that are usually employed in the knowledge 
dimension (e.g. flexible procedural knowledge) and cognitive process dimension (e.g. 
imitative reasoning). The scheme of the taxonomy contributes to theories concerning design 
of taxonomies that are specific to mathematics. In particular it strives to employ 
discrimination criteria that align with human mathematical cognitive processes. This in my 
opinion provides a tool that is more fine grained and is more specific (in terms of 
mathematical knowledge and reasoning demands) in its classification of learning and 
instructional activities.  The taxonomy table also provides a ready for use instrument that can 
be implemented in other similar studies or to determine how well learning and instructional 
objectives are achieved in the ordinary South African mathematics classroom. 

An essential strategy employed in sport to improve individual skills and overall proficiency is 
practice. Without practice no athlete can improve performance. Even in sport like running, 
(where movements are elementary) practice is required to improve performance. Similarly 
there is general agreement in the mathematics education community that practice forms an 
important part of learning. However there is not always consensus as to the type of practice 
that should be employed or the frequency and timing of practice in the various learning 
contexts. The majority of studies that investigated effectiveness of the different types of 
practice focussed on the effectiveness of one type of practice (e.g. meta-analysis of benefits 
of overlearning done by  Driskell, Willis & Cooper, 1992; benefit of distributed presentation 
done by Seabrook et al, 2005)  or compared the different types of practice for effectiveness 
(e.g. Rohrer & Taylor, 2006; Seabrook et al, 2005). The foci of some of these studies are: 
retention, test performance, ability to connect a problem with an appropriate procedure, 
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ability to discriminate between problem types and ability to distinguish among similar 
concepts.  Furthermore there is a paucity of studies that investigated effects of a combination 
of types of practice.  

Investigations on how the different types of practice affects retention of mathematical 
knowledge do not specify the type of mathematical knowledge affected (e.g. Pashler et al, 
2007; Rohrer & Pashler, 2007; Seabrook et al, 2005). In other words it is not specified which 
type of mathematical knowledge is retained or alternatively not retained. None of the studies 
that I have encountered focused on how reasoning based on knowledge is affected by the 
different kinds of practice. I have also not encountered studies that investigated how the 
various practice forms affects transfer of mathematical knowledge.   

Theories on mathematical practice are silent on how a combination of practice strategies 
affects mathematical proficiency in terms of enhancement of the different knowledge types 
and reasoning abilities. This study makes a contribution in this regard. It provides evidence 
on how a combination of practice strategies affects the different knowledge types and 
reasoning abilities. This study provides evidence that a revision strategy premised on spiral 
revision and productive practice enhanced the mathematical competencies of procedural 
fluency and conceptual understanding. One can therefore argue that if mathematics education 
pre-service students are exposed to a teaching strategy that is premised on spiral revision and 
productive practice then their procedural fluency, conceptual understanding, knowledge 
retention and knowledge transfer abilities will be enhanced.  

Theories regarding the practice strategy of overlearning (repetitive practice) indicate that 
overlearning increases performance for a short while, but that the benefit diminishes sharply 
over time (Rohrer & Pashler, 2007). Most of these overlearning studies however were done 
only with word-definition pairs.  Notable exceptions are studies done by Rohrer and Taylor 
(2006) and Rohrer and Taylor (2007) which were done with mathematics problems. These 
studies however were done with only one type of task (permutations) and therefore is of only 
limited value. These studies do however extend the theory to include more abstract types of 
learning.  

Findings from the present study indicate that the strategy of overlearning increased test 
performance a short while after exposure to content, but that performance declined in later 
tests (see chapter 6.4). These findings therefore can be viewed as an instance of confirmation 
of the theory that overlearning increases performance for a short while, but that the benefit 
decreases over time. Since this study employed a range of mathematical tasks that require 
more than rote learning it can be argued that the findings extend the theory to include more 
abstract cognitive tasks. Also since many of the previous studies were done in the domain of 
language this study assists in generalizing results of such studies to more abstract cognitive 
tasks.  

Rohrer and Pashler (2007) proposes a theory that final test performance is a function of the 
spacing gaps between practice or study sessions. According to this proposition very small 
gaps results in poorer performance when compared to excessively long gaps. Additionally 
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they argue that the spacing effect gets bigger for longer-term retention. The present study 
provides evidence of both of these propositions (see chapters 5 and 6) and therefore can be 
perceived to be confirmation of the propositions. Evidence is presented in the study that 
performance improved as a consequence of spacing of exposures to learning over long gaps 
(see discussion of student B in chapter 7). Evidence is presented in chapter 5 of the 
proposition that the spacing effect gets bigger for longer term retention.    

Rohrer et al (2015) argues that the solution of the majority of mathematical problems requires 
two distinct steps: 

• Discrimination between different kinds of problems. That is the student has to decide 
which type of problem they are presented with. 

• Subsequently the type of problem has to be associated with an appropriate strategy 
which has to be executed. 

Mass practice is important to achieve mastery of recently learned procedures or concepts. 
This is especially so in the case of more complex procedures or algorithms. Repetitive 
mass practice where one type of procedure or concept is practiced however suffers from 
some weaknesses. The following weaknesses of repetitive mass practice are identified by 
Rohrer et al (2015): 

• No discrimination between different types of problems is required. The fact that 
students do not need to discriminate between different types of problems reduce the 
difficulty of the presented problems. 

• Students can solve this kind of problem without reading instructions since each 
consecutive problem are of the same type. They can therefore solve these kinds of 
problems without being aware of the kind of problem they are solving. 

• This kind of practice therefore impedes the learning of the association between a 
problem and an appropriate strategy. Consequently it is theorized that this kind of 
practice in most cases do not support long-term retention. 

The results of the present study indicate that discrimination abilities of the majority of 
participants were enhanced (see chapter 5). Based on the foregoing arguments it is highly 
unlikely that the repetitive mass practice was responsible for this enhanced discrimination 
ability. It is my contention that the spiral testing component of this version of spiral revision 
was responsible for this finding. 

My contention is that the spiral testing component of spiral revision has a number of things 
in common with interleaving practice. In spiral tests different types of problems are 
presented consecutively. It thus requires that students discriminate between the different 
types of problems presented. Once a decision is made as to the type of problem, the student 
subsequently has to decide on an appropriate strategy. Spiral testing therefore enhances 
ability to discriminate between problem types and strengthens the association between a 
problem and an appropriate strategy. Spiral testing therefore also enhances long-term 
retention.  
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Spiral testing is premised on retrieval practice. As I have stated earlier retrieval practice has 
been found to be more effective than restudying in terms of enhancement of learning. 
Retrieval practice has also been found to be more effective at reducing the forget rate in 
comparison with restudying.   Most studies concerning retrieval practice however has been 
done with verbal tasks (e.g. Carrier & Pashler, 1992; McDaniel, 2007). Although this study 
is premised on more than one practice type, spiral testing formed a foundational part of the 
intervention strategy. One can therefore argue that this study provides evidence of 
enhancement of learning and reduction of the forget rate in the domain of more abstract 
cognitive mathematics tasks and hence provides an instance of generalization of these 
theories (see chapters 5 and 6).      

Rohrer and Taylor (2006) maintain that theories of distributed practice and overlearning do 
not declare how transfer abilities are affected by these practice types. The present study 
provides evidence that near transfer abilities was significantly enhanced by the implemented 
strategy. Far transfer abilities however were not significantly changed (see chapter 6).    

The present study is premised on the notion that many factors contribute to learning during 
teaching and learning interactions. It is my opinion that no single factor on its own can 
dramatically enhance learning of mathematics. A teaching approach that is premised on 
different types of practice, restudying and an expository instructional approach is better 
suited to: 

1. Retard forgetting;  

2. Improve procedural skills and procedural flexibility;  

3. Enhance conceptual understanding.  

This study therefore contributes to theory in the sense that it provides evidence that more than 
one factor needs to be utilized to enhance learning. Each of the factors (continuous 
restudying; distributed practice; retrieval practice; mass practice; repetitive practice and an 
expository instructional method) contributed to more effective learning. In a minority of 
instances each of these factors contributed uniquely to learning while in the majority of cases 
all the factors (in an overlapping manner) together contributed to enhancement of learning. 

Hiebert et al (2003) maintains that there is a paucity of research that set out to determine the 
effectiveness of mathematics teacher education programs. In particular there is a scarcity of 
research that investigated how the form of instructional delivery affects pre-service 
mathematics teachers’ mathematical knowledge and reasoning. Moreover it is very rare that 
tertiary institutions share knowledge about teacher education programs.  

The present research contributes to current understandings of how and in what ways an 
instructional strategy premised on a continuous revision strategy affects pre-service 
mathematics teachers’ mathematical competency in terms of procedural fluency and 
conceptual understanding. This is especially the case for low knowledge participants since 
many pre-service teachers in South Africa enter mathematics courses with substantial gaps in 
their knowledge base.  
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From a pedagogical point of view students also were exposed to the implementation of a 
teaching strategy and could learn from this and can when they are teaching themselves 
implement such a strategy. This implies that they also learnt how to implement practice 
strategies to enhance learning. Hence learning was on the one hand of the content itself, but 
on the other hand they were also learning about teaching strategies to enhance learning.  
 
  
7.6 Limitations of the study 

In the quantitative part of this study a non-experimental research method was followed. This 
implies that independent variables were not manipulated and no random assignment to groups 
is effected. Since there is no random assignment to groups and no manipulation of the 
independent variable in the non-experimental method, it is perceived to provide weaker 
evidence of a causal relationship between variables. 

In order to provide stronger evidence of cause-and-effect relationship between variables the 
teaching strategy employed (the independent variable) in the study need to be manipulated. 
This implies that on the one hand the type of teaching employed should be varied and on the 
other hand the continuous practice strategy should be varied.  

Since no control group was utilized there is no evidence that the chosen sample of students 
performed better or worse than another group that were not subjected to the implemented 
teaching strategy. One way of dealing with this weakness (in order to provide stronger 
evidence or corroborating evidence) is to utilize the implemented teaching strategy with an 
experimental group and to teach the control group in an ordinary way. Ordinary here might 
mean that no continuous practice is employed and only repetitive mass practice is used at the 
conclusion of a lesson and revision is done as a once-off exercise just before a test or exam. 
The type of teaching employed for the control group might be unguided or minimally guided 
instruction only.     

Higher order problems or tasks appear less frequently in practice tasks and hence they are 
practised less. In the present study higher order problems (problems of the category Familiar 
Algorithmic Reasoning based on Flexible Procedural Knowledge and Local Creative 
reasoning based on Conceptual knowledge) also appeared less frequently since a major 
portion of the intervention time was spent on the routine problems. This meant that higher 
order problems was spiralled less frequently and this might be a contributing factor to the 
finding that students tend to perform worse on these type of problems.   

The fact that only one type of question was analysed in the qualitative part of the study is 
another possible weakness of the study. In possible successive studies this weakness can be 
addressed by utilizing two or three question types from different content areas.  
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7.7 Issues for further research 

It is not clear from findings of the study how each of the different components of the teaching 
strategy contributed to participant competency in terms of retention of knowledge, transfer 
abilities and   knowledge and reasoning development.  Issues that might be pursued in further 
research are how each of the components of the teaching strategy uniquely contributes to 
participant competency development. For example an investigation could be done on how a 
teaching strategy premised on spiral revision and direct teaching influences low knowledge 
participants in terms of transfer abilities (near or far transfer or both). Alternatively a study 
could be done on the effectiveness of a teaching strategy premised on productive practice and 
minimally guided instruction. 

It is also not clear from findings of the study how each of the constituent parts of spiral 
revision (review-as-you-go; repetitive practice, mass practice; distributed practice and spiral 
testing) contributed to the overall competency development of participants. Moreover it is 
also not entirely clear what if any influence the different practice forms had on each other. 
For example one could investigate how repetitive practice and spiral testing would influence 
competency as compared to distributed practice and spiral testing.     

Can one for example do distributed practice without previously doing mass or repetitive or is 
the one necessary before the other is done. This implies that one will be investigating if mass 
and repetitive practice is utilized for mastery of procedures, or if distributed practice on its 
own will produce mastery and retention. 
 
 
7.8 Overall concluding comments 

This research was concerned about how continuous revision influences mathematical ability. 
In particular it was concerned about how the different categories of knowledge were retained 
and how the reasoning ability with this knowledge was influenced. Also the research was 
concerned about how knowledge was transferred to the different mathematical contexts. The 
findings indicate that the continuous revision constantly updated the memory trace and hence 
memory was retained even up to five months after initial exposure to the content. It was 
found however that transfer to similar contexts (near transfer) was easier than far transfer 
where the context was considerably different from the context in which the original learning 
occurred. This phenomenon was more pronounced for the lower ability students than for the 
higher ability students. That is the lower ability students tended to transfer knowledge to 
similar contexts well, but not so well to different contexts.  
  
I believe that it is essential that teachers of mathematics at all levels include in their teaching 
strategies well thought out plans to practice using  previously learnt procedures and concepts 
during problem solving activities. Things to consider in such plans includes aims of the 
practice session, frequency of practice, temporality and what format the practice sessions 
should take,  should students be allowed to struggle during practice sessions (productive 
struggle), should retrieval practice be utilized, etc.  The kinds of practice that are currently 
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available in the literature are mass practice, distributed practice, interleaved practice and 
repetitive practice. The objectives of these kinds of practice include the following: 

• to practice until error free productions of a type of procedure or procedures is 
achieved (or alternatively mastering is achieved) 

• retention of a procedure and its attendant concepts 
• deepening understanding of a concept or concepts and the associated procedure(s) 

In this research I have used a spiral revision teaching strategy to improve procedural 
knowledge. This improved procedural knowledge would subsequently allow for the 
improvement of conceptual knowledge. But this does not imply that participating students 
would as a result of being exposed to this teaching strategy now have finished and complete 
procedural and conceptual knowledge in the topics they received instruction in. Rather I see 
this as a good start in the right direction in terms of knowledge and reasoning development.  

I utilized productive practice as a teaching strategy to ameliorate conceptual understanding of 
participating students. The improved conceptual understanding allowed for the improvement 
and development of procedural knowledge. Again my argument is that participating students 
would as a rule not have a complete conceptual understanding of topics that were discussed. I 
believe that a major part of their learning would occur when they are teaching. What 
normally would happen is that the new teacher would be forced to examine his/her 
understanding of concepts as they prepare to teach a topic. This in itself would cause a 
change in information stored in long-term memory. That is as the information is being 
retrieved it will be examined for relevance and level of detail required by the teaching 
process. In some instances some of the knowledge that the new teacher possess would have to 
be ‘dumbed down’ for the level the teacher is teaching at. This would require the teacher to 
identify breadth and depth of required knowledge. This in turn requires the teacher to step 
back and look over the entire mathematical terrain that the topic covers, since decisions 
regarding levels and depth of knowledge cannot be done in isolation. For the teacher this 
requires that new cognitive connections are made between schemas. This is in my opinion a 
powerful learning experience. The teaching strategy employed in this research however 
developed crucial fundamental knowledge that is essential in the learning trajectory of these 
prospective teachers.  

A deduction one can make based on the data of the study is that the assessment component of 
this spiral revision teaching strategy has revealed the quality and type of knowledge and 
reasoning ability of students after exposure to the teaching strategy.  If one produces a correct 
solution in two tests (on the same topic) it does not necessarily imply that task specific 
expertise and conceptual understanding has been achieved as can be seen in the case of 
student B (discussed in chapter 6). More specifically it does not imply that retention of 
requisite knowledge is permanent and that transfer would occur automatically to structurally 
similar problems. It was only when student B was assessed the third and fourth time on the 
same topic that it became apparent that the student perhaps did not understand the content as 
well as the results of the first two tests implied. It is my contention therefore that the 
assessment component (spiral testing) of my version of spiral revision can be utilized to 
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uncover the quality and type of knowledge a student would possess after exposure to 
instruction. By utilizing different kinds of questions with varying levels of difficulty in each 
successive test one can determine if the underlying concepts of a topic are connected 
appropriately, if the necessary procedural skills has been developed and if the student is able 
to identify the relevance of  prior knowledge when attempting to provide solutions to given 
mathematical tasks.  Furthermore since the same content is assessed over and over one can 
determine how well established the knowledge is in the long term memory, the level of 
abstractness of the knowledge and if appropriate connections were made with other relevant 
knowledge.    

It has been my experience that both at school and at tertiary level in South Africa that the 
majority of mathematics textbooks are written in a format where the type of practice that is 
mooted is mass and repetitive practice. In this format nearly all of the problems concerning a 
given topic appear in the exercises immediately after the lesson and examples of the topic 
(Rohrer & Taylor, 2006). Based on the textbook format a highly probable inference one can 
make is that many teachers follow this way of doing and hence the type of practice in such 
classes would overwhelmingly be mass practice and repetitive practice. Furthermore in many 
cases in the South African context revision in mathematics is done mostly as preparation for 
tests or exams, is done in the same way as the original teaching was done and normally is 
done as a once off exercise. It has been my experience that this kind of revision does not 
influence in a major way procedural skill or levels of understanding. Distributed practice 
where practice of the same skills is practiced across multiple class sessions is very rare. 
Research has shown that retention of original well learnt mathematical procedures are 
enhanced by distributed practice and are unaffected by repetitive practice (Rohrer & Taylor, 
2006). I therefore contend that one possible way of making inroads into the dismal 
mathematical performance of South African students at all levels is to change the format of 
textbooks exercises to include mass practice, repetitive practice and distributed practice. 

I am of the opinion that not enough attention is given in South African research to how 
regular revision of previously covered mathematical content influences retention, transfer, 
proficiency and level of understanding. I am not claiming however that regular practice of 
previously covered mathematical content is a panacea for all our teaching and learning ills. I 
do believe however that spiral revision together with productive practice and self-explanation 
exercises hold promise for improving student mathematical ability. 

As mentioned previously an analysis of the literature regarding mathematics education of pre-
service mathematics teachers reveal that many pre-service teachers in South Africa enter 
mathematics teacher education programmes with substantial gaps in their knowledge bases. 
There is thus a need for research that investigates which teaching methods are best suited for 
such pre-service students. This study is such an investigation. That is it was the intention of 
the study to determine if a teaching strategy based on spiral revision and productive practice 
will enhance procedural fluency and conceptual understanding of participants and 
consequently attend to knowledge gaps. The findings of the study indicate that both 
procedural and conceptual knowledge of participants were improved.  
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It is the intention of many of the mathematics courses for prospective secondary school 
teachers in South Africa to teach these students more advanced mathematical content. 
Research has however shown that taking more advanced courses in mathematics do not 
necessarily translate into deeper understanding of fundamental mathematics (Ma, 1999). An 
important question therefore is what kind of teaching would allow pre-service mathematics 
education students to develop requisite procedural skills and a well-connected conceptual 
understanding. An analysis of the literature done by Hiebert and Grouws (2007) indicates that 
students can acquire conceptual understanding if teaching attends explicitly to conceptual 
underpinnings and to connections among mathematical facts, procedures and ideas. The 
teaching strategy employed in this research attempted to do exactly this.   

Furthermore I am of the opinion that prospective teachers would be better prepared for their 
teaching if courses designed for them would deal explicitly with the content they would teach 
in schools. The course content of this study was school level content where the emphasis was 
on developing depth of knowledge in school level content. I am of the opinion that well 
developed knowledge and a deeper understanding of school level mathematics will result in 
better teaching at the school level.   

Shulman (1986) distinguishes between three categories of teacher content knowledge namely 
subject matter content knowledge, pedagogical content knowledge and curricular content 
knowledge. Mathematics teachers need to be well developed in all three categories in order to 
deliver effective and quality teaching. All three categories are used together in most teaching 
encounters in mathematics. Therefore a lack in any category would negatively affect the 
teaching. Hence although this research only attended to content knowledge it contributes to 
the overall development of the prospective teachers. 
 
An advantage of the revision strategy implemented in the study is that it strengthens the 
association of the different kinds of problems that students were presented with and the 
appropriate strategy. Consequently students tended to choose the correct strategy more often 
than before the intervention. Since the revision strategy required students to execute these 
appropriate chosen strategies many times during the study they became proficient in the 
execution of correct procedures. Another advantage therefore was development of 
proficiency in executing appropriate procedures. The revision strategy of this study aided in 
developing ability of participants to choose an appropriate strategy for a presented problem 
and to execute the chosen strategy based on the features of the presented problem. One could 
therefore argue that the revision strategy utilized in this study improved problem solving 
abilities of participants in terms of the topics that were dealt with in the study. 

Mathematics teachers are required to explain their understanding of mathematical concepts 
and procedures to students during instruction. This understanding is always under 
construction, i.e. it is continually updated and corrected. I believe that it is especially during 
the teaching process that teachers uncover gaps in their knowledge base. This discovery 
prompts them to attempt to address the gap which requires them to make more appropriate 
cognitive connections and hence move their understanding to a new level. 

http://etd.uwc.ac.za/



 

 

 

 

 

222 
 

In conclusion I think that the teaching strategy achieved the majority of its objectives in terms 
of enhancing procedural fluency and conceptual understanding of participants. The categories 
where the teaching strategy was not effective requires further research in order to reveal 
which strategies would be effective to deal with these shortcomings.    
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APPENDICES 
 

APPENDIX A 
 

Ethics Statement 

Before undertaking this study various sources have been consulted in order to ensure that this study 
meets acceptable ethical guidelines. The researcher also undertakes to abide by the Code of Research 
Ethics of the Human Sciences Research Council and of the American Psychologist Association.  

The researcher undertakes to treat as confidential all information obtained from the University of the 
Western Cape and elsewhere and that all such information will be kept in a locked cabinet.  

The ethical principles that this research will strive to adhere to include the following: Autonomy, 
beneficence, nonmaleficence, justice and confidentiality. Autonomy refers to the right of every 
individual to self-determination or the freedom of the individual to decide and/or act for him or 
herself. The principle of beneficence refers to the idea of doing good in the process of conducting the 
research; Nonmaleficence is the idea that research should not harm participants; Justice is the 
requirement that all research participants be treated with impartiality and conscientiousness and that 
there is an equitable allocation of resources, opportunities, benefits, and burdens for all participants 
(Adu-Gyamfi and Okech, 2010).  

It is important that research participants are informed of the nature, duration and purpose of the 
research and also the methodology that will be followed.  The consent of participants should be 
voluntary and they should have the right to withdraw their participation at any stage. Participants 
should also be aware that all information obtained in the course of the research will be treated as 
confidential and that the right to privacy of participants will be respected. 

Operationalization of Ethical Principles  

The right to full disclosure about the research 
 In order to give research participants a clear understanding of the study the researcher will explain the 
general purpose and process of the study as well as a description of what each participant will be 
expected to do and the conditions that they will be exposed to. All participants will be fully briefed 
about the research procedure and how findings of the research will be disseminated.   

The right to privacy 
Research participants have the right to refuse to be interviewed. They also have the right to refuse any 
mention of them in the study. Research participants will also be informed that they may terminate 
their participation in the study at any time and that any data obtained will be held confidential. They 
will also be informed that all data collected will be accessible to the study supervisor as well. 

The right to anonymity 
The participants have the right to remain anonymous. The researcher will ensure that all participants 
remain anonymous in the recording of data as well as dissemination of findings of the study. The 
researcher will make certain that each participant remain anonymous during the transcribing of 
interviews. 
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The right to confidentiality 
The information gathered from participants will remain confidential. Furthermore all data such as 
recordings, transcriptions and written work will be kept secure in a locked cabinet. 

All participants will complete a Participant Consent Form. A completed Consent form will be viewed 
as the respondents’ consent to participate in the study.    
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APPENDIX B 

PARTICIPANT CONSENT FORM 

 

VERIFICATION OF ADULT INFORMED CONSENT FOR OWN PARTICIPATION 

 

I,……………………………………………………………………………………………. 

(Please print full name and surname) 

 

voluntarily give my consent to serve as a participant in the study entitled: 

 
A Teaching Strategy to Enhance Mathematical Competency of Pre-Service 
Teachers at UWC 

 
I have received a satisfactory explanation of the general purpose and process of this study, as 
well as a description of what I will be asked to do and the conditions that I will be exposed to. 
 
It is my understanding that my participation in this study is voluntary and I will receive no 
remuneration for my participation. 
 
It is further my understanding that I may terminate my participation in this study at any time 
and that any data obtained will be held confidential. I am aware that the researcher has to 
report to his supervisor and that all data collected will be accessible to the supervisor as well. 
 
 
 
 
Signature of participant:……………………………………………………………………. 
 
 
 
Date:……………………………………………………………………………………….. 
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APPENDIX C 

CLASS TEST 1 OF SEMESTER 1 

 

MAE 211 

CLASS TEST 1   21 February 2014  TOTAL: 50 

 

Question 1 

1.1 Determine the equation of the straight line through (2; 1) and perpendicular to                
3𝑎𝑎 + 2𝑥𝑥 = 6          (5) 

1.2 The point 𝐴𝐴(2𝑎𝑎; 3𝑎𝑎) lies on the straight line joining the points 𝑃𝑃(1; 2)  𝑎𝑎𝑛𝑛𝑑𝑑   𝑄𝑄(2; 6). 
Calculate the value of 𝑎𝑎.         (5) 

1.3 Determine whether the following points are collinear:  
 𝐴𝐴(−2;−6),   𝐵𝐵(2;−4)  𝑎𝑎𝑛𝑛𝑑𝑑   𝐶𝐶(4;−3)       (5) 
 
1.4 Determine the value of 𝑎𝑎 if the distance of 𝐴𝐴(−4;𝑎𝑎) from the origin is 5.   (4) 
 
1.5 Determine the value of 𝑥𝑥  𝑎𝑎𝑛𝑛𝑑𝑑 𝑎𝑎 if (3

2
; 1) is the midpoint of the line segment joining 

𝐴𝐴(4;−1) 𝑎𝑎𝑛𝑛𝑑𝑑  𝐵𝐵(𝑥𝑥;𝑎𝑎)         (5) 
                       /24/ 

Question 2 
𝐴𝐴𝐵𝐵𝐶𝐶 is a triangle with vertices   𝐴𝐴(3; 10), 𝐵𝐵(10; 9) 𝑎𝑎𝑛𝑛𝑑𝑑  𝐶𝐶(2; 3)
 

A(3;10)

B(10;9)

C(2;3)

x

y
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2.1 Find the gradient of AC.        (2) 

2.2 Determine the gradient of AB.       (2) 

2.3 Show that triangle ABC is right-angled at A.     (2) 

2.4 Find the equation of the line parallel to AC and through the point B.  (3) 

2.5 Determine the equation of line AC.      (2) 

2.6 Show that the point 𝐷𝐷(1;−4) lie on the line AC.     (2) 

2.7 Determine the coordinates of the midpoint M of CB.    (2) 

2.8 Determine the equation of the perpendicular bisector of CB.   (4) 

           /19/ 

QUESTION 3 

In the sketch below 𝐴𝐴𝐵𝐵𝐶𝐶𝐷𝐷 is a parallelogram with vertices 𝐴𝐴(−1; 4), 𝐵𝐵(3; 6) 𝑎𝑎𝑛𝑛𝑑𝑑 𝐷𝐷(4; 1)and 
diagonals AC and BD: 

x

y

A(-1;4)

B(3;6)

C(x;y)

D(4;1)

P

 

3.1 Determine the length of AB.       (2) 

3.2 Determine the midpoint P of BD.      (2) 

3.3 Determine the coordinates of C.       (5) 

           /9/ 
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APPENDIX D 

CLASS TEST 2 OF SEMESTER 1 

 

MAE 211 

CLASS TEST 2   14 March 2014  TOTAL: 50 

QUESTION 1 

1.1 Determine the equation of the line with y-intercept -2 and passing through the point (2;1). 
            (3) 
1.2 In the sketch below PQRS is a rectangle. Determine the following: 
 (a) The length of PS.        (2) 
 (b) The length of QS        (2)  
 (c) The gradient of PQ        (2) 
 (d) The value of k         (3) 

P(-6;6)

Q(-7;4)

R(-1;k)

S(0;3)

x

y

           /12/ 

QUESTION 2 

2.1 Given 𝑖𝑖(𝑥𝑥) = −𝑥𝑥2 + 2𝑥𝑥 + 3 
2.1.1 Write 𝑖𝑖(𝑥𝑥) in the form 𝑖𝑖(𝑥𝑥) = 𝑎𝑎(𝑥𝑥 − 𝑆𝑆)2 + 𝑢𝑢      (3) 
2.1.2 Determine the equation of the axis of symmetry      (1) 
2.1.3 Does the function have a maximum or minimum value? Write an equation for this  

value.           (2) 
2.1.4 Write the coordinates of the turning point.      (2)  

2.2 Determine the equation of a quadratic function with turning point (2;3) and through the point 
(1;2).          (4) 
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                        /12/ 

QUESTION 3 

3.1 The figure below shows the graphs of 𝑎𝑎 = 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐  𝑎𝑎𝑛𝑛𝑑𝑑  𝑎𝑎 = 𝑑𝑑𝑥𝑥 + 𝑒𝑒 
3.1.1 Determine the numerical values of 𝑑𝑑 𝑎𝑎𝑛𝑛𝑑𝑑 𝑒𝑒      (4) 
3.1.2 Determine the numerical values of 𝑎𝑎, 𝑏𝑏 𝑎𝑎𝑛𝑛𝑑𝑑 𝑐𝑐      (6) 
3.1.3 Determine the length of 𝐴𝐴𝐵𝐵 if 𝐴𝐴𝐵𝐵 is parallel to the 𝑎𝑎 − 𝑎𝑎𝑥𝑥𝑖𝑖𝑖𝑖    (2) 
3.1.4 If the equation of line 𝐸𝐸𝐹𝐹  is 𝑎𝑎 = 3𝑥𝑥 + 2. Determine the coordinates of the points of 

intersection of the parabola and line 𝐸𝐸𝐹𝐹.      (6) 
3.1.5 Determine the length of 𝐶𝐶𝐷𝐷  if 𝐶𝐶𝐷𝐷  is parallel to the 𝑎𝑎 − 𝑎𝑎𝑥𝑥𝑖𝑖𝑖𝑖  and 𝐶𝐶  is the  

turning point          (4) 

 

3.2 Draw a rough sketch of 𝑎𝑎 = 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐 ∶ 
 if  𝑎𝑎 < 0;    𝑏𝑏 < 0;    𝑐𝑐 > 0       (4) 

           /26/ 
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APPENDIX E 

CLASS TEST 3 OF SEMEMSTER 1 

 

MAE 211 

CLASS TEST 3   11 April 2014  TOTAL: 50 

QUESTION 1 

1. Given line 𝐷𝐷𝐹𝐹 with equation:   𝑥𝑥 + 2𝑎𝑎 − 2 = 0 (as shown in the sketch) 

1.1 Find the slope of line  𝐷𝐷𝐹𝐹.       (2) 
1.2 Find the length of  𝑂𝑂𝐴𝐴.        (2) 
1.3 Determine the length of 𝑂𝑂𝐵𝐵.       (2) 
1.4 The  𝑎𝑎 − 𝑐𝑐𝐹𝐹𝐹𝐹𝐹𝐹𝑑𝑑𝑖𝑖𝑛𝑛𝑎𝑎𝑡𝑡𝑒𝑒  of 𝐸𝐸 is -1. Find the length of 𝐸𝐸𝐹𝐹 if 𝐸𝐸𝐹𝐹 is parallel to the                        

 𝑥𝑥 − 𝑎𝑎𝑥𝑥𝑖𝑖𝑖𝑖.         (3)  
1.5 Write the coordinates of 𝐴𝐴  𝑎𝑎𝑛𝑛𝑑𝑑  𝐹𝐹.      (2) 
1.6 Determine the midpoint of line 𝐴𝐴𝐹𝐹.      (2) 
1.7 Determine the length of 𝐴𝐴𝐹𝐹.       (2) 

 

                    /15/ 
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QUESTION 2 

2 In the sketch below 𝐷𝐷(2;−9) is the turning point and 𝐴𝐴(0;−5) is the 𝑎𝑎 − 𝑖𝑖𝑛𝑛𝑡𝑡𝑒𝑒𝐹𝐹𝑐𝑐𝑒𝑒𝑆𝑆𝑡𝑡. 

2.1 Show that 𝑖𝑖(𝑥𝑥) = 𝑥𝑥2 − 4𝑥𝑥 − 5.        (4) 
2.2 Determine the coordinates of 𝐸𝐸.        (3) 
2.3 Write the equation of the axis of symmetry.      (1) 
2.4 Determine the coordinates of 𝐶𝐶 if 𝐶𝐶  and 𝐴𝐴 are symmetrical about the axis of symmetry and 

then determine the distance from 𝐴𝐴 to 𝐶𝐶.       (4) 
 

 

                     /12/ 

QUESTION 3 

3.1 Find the value of 𝑎𝑎 if 𝑖𝑖(𝑥𝑥) = 𝑥𝑥3 + 𝑎𝑎𝑥𝑥2 − 𝑥𝑥 + 5 is divided by 𝑥𝑥 − 2 and gives a remainder of 
23.           (3) 

3.2 If  𝑥𝑥 − 1 is a factor of  𝑖𝑖(𝑥𝑥) = 𝑎𝑎𝑥𝑥3 − 7𝑥𝑥 + 3, determine  𝑎𝑎.    (3) 

3.3 If    2𝑥𝑥2 + 𝑎𝑎𝑥𝑥 + 4 = (𝑥𝑥 − 2) ∙ 𝑄𝑄(𝑥𝑥) +   6. Find 𝑎𝑎 𝑎𝑎𝑛𝑛𝑑𝑑 𝑄𝑄(𝑥𝑥).    (6) 

3.4 Given  𝑖𝑖(𝑥𝑥) =  𝑥𝑥3 − 2𝑥𝑥2 − 4𝑥𝑥 + 8: 
 (a) Find the 𝑎𝑎 − 𝑖𝑖𝑛𝑛𝑡𝑡𝑒𝑒𝐹𝐹𝑐𝑐𝑒𝑒𝑆𝑆𝑡𝑡.        (1) 
 (b) Find the 𝑥𝑥 − 𝑖𝑖𝑛𝑛𝑡𝑡𝑒𝑒𝐹𝐹𝑐𝑐𝑒𝑒𝑆𝑆𝑡𝑡(𝑖𝑖).       (3) 
 (c) Find the turning point(s).       (7) 

                      /23/ 
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APPENDIX F 

CLASS TEST 4 OF SEMESTER 1 

MAE 211 

CLASS TEST 4   2 MAY 2014  TOTAL: 50 

 

QUESTION 1 

A sketch of line AD is shown below. Use the sketch to answer the following questions: 

1.1 Find the equation of line AD.       (3) 
1.2 Determine the length of BC.       (3) 
1.3 Determine the equation of the line perpendicular to line AD and through the point  
 (4;-2).          (4) 

 

           /10/ 

 

QUESTION 2 

ABCD is a parallelogram with vertices  𝐴𝐴(−3; 1), 𝐵𝐵(5; 3), 𝐶𝐶(7;−2) 𝑎𝑎𝑛𝑛𝑑𝑑 𝐷𝐷(𝑥𝑥; 𝑎𝑎). The point 𝐸𝐸 is the 
midpoint of 𝐴𝐴𝐶𝐶  𝑎𝑎𝑛𝑛𝑑𝑑 𝐷𝐷𝐵𝐵. See sketch below. 

2.1 Determine the length of BC.       (3) 
2.2 Determine the midpoint E of AC.      (3) 
2.3 Determine the midpoint of line BD.      (2) 
2.4 Determine the coordinates of D.      (4) 
2.5 Determine the length of line DF if the 𝑎𝑎 − 𝑐𝑐𝐹𝐹𝐹𝐹𝐹𝐹𝑑𝑑𝑖𝑖𝑛𝑛𝑎𝑎𝑡𝑡𝑒𝑒 𝐹𝐹𝑖𝑖 𝐹𝐹 𝑖𝑖𝑖𝑖 2  and DF is parallel to the 

𝑥𝑥 − 𝑎𝑎𝑥𝑥𝑖𝑖𝑖𝑖.         (7) 
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           /19/ 

QUESTION 3 

Given the following rational function:         𝑖𝑖(𝑥𝑥) = 𝑡𝑡2−9
𝑡𝑡2−2𝑡𝑡−3

 

3.1 Determine the domain of 𝑖𝑖.       (3) 
3.2 Find the 𝑎𝑎 − 𝑖𝑖𝑛𝑛𝑡𝑡𝑒𝑒𝐹𝐹𝑐𝑐𝑒𝑒𝑆𝑆𝑡𝑡 if it exists.      (2) 
3.3 Find the 𝑥𝑥 − 𝑖𝑖𝑛𝑛𝑡𝑡𝑒𝑒𝐹𝐹𝑐𝑐𝑒𝑒𝑆𝑆𝑡𝑡(𝑖𝑖) if it exists.      (4) 
3.4 Find the vertical asymptote(s) if it exists.     (4)  
3.5 Find the horizontal asymptote(s) if it exists.     (2) 
3.6 Sketch the graph of 𝑖𝑖.        (6)  

           /21/ 
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APPENDIX G 

CLASS TEST 5 OF SEMESTER 1 

 

MAE 211 

CLASS TEST 5   16 MAY 2014  TOTAL: 50 

 

QUESTION 1 

1.1 Determine the value of k if 𝑖𝑖(𝑥𝑥) = 𝑥𝑥3 + 6𝑥𝑥2 − 𝑎𝑎𝑥𝑥 − 8 has a remainder of 15 when divided 
by 𝑥𝑥 − 2.          (3) 

1.2 Determine the value of 𝑎𝑎 if 𝑥𝑥 − 1 is a factor of 𝑖𝑖(𝑥𝑥) = 2𝑥𝑥3 + 𝑎𝑎𝑥𝑥2 − 8𝑥𝑥 + 3.  (3) 

1.3 Find 𝑆𝑆 if 𝑎𝑎 + 2 is a factor of 𝑎𝑎50 − 𝑆𝑆25.       (4) 

                     /10/ 

QUESTION 2 

The sketch below shows the graph of     𝑖𝑖(𝑥𝑥) = 𝑥𝑥3 − 5𝑥𝑥2 − 8𝑥𝑥 + 12. 
 
2.1 Determine the 𝑎𝑎 − 𝑖𝑖𝑛𝑛𝑡𝑡𝑒𝑒𝐹𝐹𝑐𝑐𝑒𝑒𝑆𝑆𝑡𝑡.        (1) 
 
2.2 Determine the 𝑥𝑥 − 𝑖𝑖𝑛𝑛𝑡𝑡𝑒𝑒𝐹𝐹𝑐𝑐𝑒𝑒𝑆𝑆𝑡𝑡𝑖𝑖.        (5) 
 
2.3 Determine the coordinates of the turning points B and E.     (8) 
 

 
           /14/ 
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QUESTION 3 

3.1 Use the provided sketch to prove the theorem which states: If any side of a triangle is 
produced, then the exterior angle so formed is equal to the sum of the opposite two interior 
angles. You are given ∆𝐴𝐴𝐵𝐵𝐶𝐶 with side BC produced to L and exterior angle ACL and opposite 
interior angles �̂�𝐴 and𝐵𝐵� . Note angle ACL is also known as �̂�𝐶1. 

A

B C L
12

 

            (4) 

3.2 What can you deduce from the following? 

 (a) Two lines 𝑎𝑎1  𝑎𝑎𝑛𝑛𝑑𝑑  𝑎𝑎2  are coplanar and  𝑎𝑎1  ∩  𝑎𝑎2 =  ∅    (1) 

 (b) M and N are two planes such that 𝑀𝑀 ∩𝑁𝑁 = ∅     (1) 

3.3 Refer to the diagram and complete the following statements based on it: 
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 (a) 𝐴𝐴𝐵𝐵����  +   𝐵𝐵𝐶𝐶���� =………..        (1) 

 (b) 𝐴𝐴𝐵𝐵����   ∪   𝐵𝐵𝐶𝐶����  =……….        (1) 

 (c) 𝐴𝐴𝐵𝐵����  ∩   𝐵𝐵𝐴𝐴���� =………..        (1) 

 (d) 𝐵𝐵𝐴𝐴�����⃗   ∪  𝐵𝐵𝐷𝐷������⃗ =……….        (1) 

 (e) 𝐵𝐵𝐴𝐴�����⃗   ∩   𝐵𝐵𝐷𝐷������⃗ =………        (1) 

 

3.4 Use the provided sketch to determine the following (provide reasons for your answers): 

40° 

x
y z

 

  

(a) 𝑥𝑥          (1) 

(b) 𝑎𝑎          (1) 

(c) 𝑧𝑧          (1) 
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3.5 ABCD is a parallelogram. Use the sketch to answer the questions that follow: 

 

a b

cd e

f

72° 

40° 
A B

CD
 

 (a) Determine the value of a.      (1) 

 (b) Determine the value of b      (3) 

 (c) Determine the value of c.      (1) 

 (d) Determine the value of d.      (2) 

 (e) Determine the value of e.      (3) 

 (f) Determine the value of f.      (2) 

 

           /26/ 

 

 

 

 

 

 

 

 

 

 

 

 

http://etd.uwc.ac.za/



 

 

 

 

 

252 
 

APPENDIX H 

END OF MODULE EXAMINATION SEMESTER 1 

 

 

UNIVERSITY OF THE WESTERN CAPE 

FINAL ASSESMENT 
 

MAY / JUNE 2014 

         

 

 

 

MODULE  NAME : MATHEMATICS (B.ED) 211 

MODULE CODE : MAE 211 

 

 
DURATION : 3 HOURS                                                               MARKS : 100 
 
 
                                                    
 
STUDENTS WILL BE NOTIFIED VIA THEIR G – MAIL ACCOUNT WHETHER THEY QUALIFY 
FOR A SPECIAL OR SUPPLEMENTARY ASSESSMENT IN A PARTICULAR MODULE 
 
 
STUDENTS CAN ALSO CONSULT THE DEPARTMENTAL NOTICE BOARD TO ASCERTAIN 
WHETHER THEY QUALIFY FOR A SPECIAL OR SUPPLEMENTARY ASSESSMENT IN A 
PARTICULAR MODULE. 
 
ACADEMIC DEPARTMENTS MUST PUBLISH A LIST OF STUDENTS WHO QUALIFY TO WRITE 
THE ABOVE MENTIONED CATEGORIES OF ASSESSMENTS WITHIN 48 HOURS BEFORE THE 
WRITING TIME OF A MODULE. 
 

 

LECTURER(S) INSTRUCTIONS TO STUDENTS (OPTIONAL): 

 

1. Answer ALL questions. 
2. Make sure that you write your name, surname and student number in the appropriate spaces 

on your answer book. 
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QUESTION 1 

 

PQR is a triangle with vertices 𝑃𝑃(−1; 3),   𝑄𝑄(1; 1) 𝑎𝑎𝑛𝑛𝑑𝑑  𝑅𝑅(6; 6). 

 

P(-1;3)

Q(1;1)

R(6;6)

y

 

1.1 Determine the gradient of PQ.      (2) 
1.2 Determine the gradient of QR.      (2) 
1.3 Show that triangle PQR is right-angled at Q.     (2) 
1.4 Determine the equation of line PQ.      (2) 
1.5 Determine the equation of the line parallel to PQ and through the point R. (3) 
1.6 Show that the point (-3;5) lie on the line PQ.     (2) 
1.7 Determine the coordinates of the midpoint M of PR.    (2) 
1.8 Determine the equation of the perpendicular bisector of PR.   (4) 
 
           /19/ 
 
QUESTION 2 
2.1 The sketch shows the graphs of two functions:  
             𝒇𝒇(𝒙𝒙) = −𝒙𝒙𝟏𝟏 + 𝟏𝟏𝟎𝟎𝒙𝒙 + 𝟏𝟏𝟐𝟐  𝒂𝒂𝒄𝒄𝒂𝒂  𝒈𝒈(𝒙𝒙) = 𝟏𝟏𝒙𝒙 + 𝟐𝟐 
 
2.1.1 Determine the coordinates of the turning point D.    (4) 
2.1.2 Determine the length of AB.       (4) 
2.1.3 Determine the coordinates of C.      (5) 
2.1.4 Determine the length of PQ if 𝑶𝑶𝑶𝑶 = 𝟑𝟑. [PQ is parallel to the 𝒚𝒚 − 𝒂𝒂𝒙𝒙𝒓𝒓𝒓𝒓] (3) 
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2.2 Use the following information to draw a rough sketch of 𝒚𝒚 = 𝒂𝒂𝒙𝒙𝟏𝟏 + 𝒃𝒃𝒙𝒙 + 𝒄𝒄 if: 
 𝒂𝒂 < 𝟎𝟎, 𝒃𝒃 < 𝟎𝟎, 𝒄𝒄 < 𝟎𝟎, 𝒂𝒂𝒄𝒄𝒂𝒂  𝒃𝒃𝟏𝟏 − 𝟐𝟐𝒂𝒂𝒄𝒄 < 𝟎𝟎     (4) 
 
           /20/ 
 
 
QUESTION 3 
 
3.1 If   𝒙𝒙 − 𝟏𝟏 is a factor of   𝒇𝒇(𝒙𝒙) = 𝒙𝒙𝟐𝟐 − 𝟏𝟏𝟏𝟏𝒙𝒙𝟏𝟏 + 𝒑𝒑𝒙𝒙 + 𝟏𝟏𝟐𝟐 determine 𝒑𝒑. (3) 
 
3.2 If   𝟏𝟏𝒙𝒙𝟑𝟑 + 𝒙𝒙𝟏𝟏 − 𝒌𝒌𝒙𝒙 + 𝟏𝟏 = (𝒙𝒙 − 𝟏𝟏) ∙ 𝑸𝑸(𝒙𝒙) + 𝟏𝟏. Find 𝒌𝒌  𝒂𝒂𝒄𝒄𝒂𝒂  𝑸𝑸(𝒙𝒙).  (6) 
 
3.3 The sketch below shows the graph of  𝒈𝒈(𝒙𝒙) = 𝒙𝒙𝟑𝟑 − 𝟑𝟑𝒙𝒙 + 𝟏𝟏. 𝑨𝑨  𝒂𝒂𝒄𝒄𝒂𝒂  𝑪𝑪 are turning 

points. 
3.3.1 Determine the length of OB.       (1) 
3.3.2 Determine the length of OD.       (3) 
3.3.3 Determine the coordinates of C.      (4) 
3.3.4 Determine the length of EA.       (2) 
3.3.5 Determine the length of CF if CF is parallel to the 𝒙𝒙 − 𝒂𝒂𝒙𝒙𝒓𝒓𝒓𝒓.  (4) 
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           /23/ 
 
QUESTION 4 
 
Given the rational function :  𝒇𝒇(𝒙𝒙) =  𝒙𝒙𝟏𝟏+𝟑𝟑𝒙𝒙

𝒙𝒙𝟏𝟏+𝒙𝒙−𝟔𝟔
  

 
4.1 Determine the domain of the function.     (3) 
 
4.2 Determine the 𝒙𝒙 −   𝒂𝒂𝒄𝒄𝒂𝒂  𝒚𝒚 − 𝒓𝒓𝒄𝒄𝒕𝒕𝒕𝒕𝒓𝒓𝒄𝒄𝒕𝒕𝒑𝒑𝒕𝒕𝒓𝒓 if it exists.   (4) 
 
4.3 Determine the vertical asymptote(s) if it exists.    (4) 
 
4.4 Determine the horizontal asymptotes if it exists.    (2) 
 
4.5 Sketch the graph of   𝒇𝒇.       (5) 
 
                    /18/ 
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QUESTION 5 
 
5.1 Use the sketch below to prove the theorem that states: If two straight lines intersect 

then the vertically opposite angles are equal. 
 

A

BC

D

1
2 3
4

 
 
           (4) 
5.2 Use the sketch below to determine the following: [Provide reasons for your answers] 
 
5.2.1 𝒙𝒙          (2) 
5.2.2 𝒚𝒚          (2) 
5.2.3 𝒛𝒛          (2) 
5.2.4 𝒕𝒕          (2) 
 

A

B C

E

D

y

t x

z65° 

40° 

 
 
 
 
 
 
 
 
5.3 ABCD is a parallelogram, AE = FC. Prove that EBFD is a parallelogram. 
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A B

CD

E

F

1

1

 
           (8) 
 
           /20/ 
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APPENDIX I 
CLASS TEST 1 OF SEMESTER 2 

 
MAE 221 

CLASS TEST 1   12 AUGUST 2014  TOTAL: 40 

 

1. Use the graph of function  f to describe the transformation that yields the graphs of g: 
(a) 𝑖𝑖(𝑥𝑥) =  2𝑡𝑡     𝑎𝑎𝑛𝑛𝑑𝑑  𝑖𝑖(𝑥𝑥) =  2𝑡𝑡+2 + 3      (2) 
(b) 𝑖𝑖(𝑥𝑥) =  (3

4
)𝑡𝑡   𝑎𝑎𝑛𝑛𝑑𝑑   𝑖𝑖(𝑥𝑥) =  −(9

4
)−𝑡𝑡+1      (2)  

 
2. Use the one-to-one property to solve the equation for x: 

(a) 𝑒𝑒𝑡𝑡2+6 =  𝑒𝑒5𝑡𝑡         (4) 
(b) 0.25𝑡𝑡 = 4          (4) 

 
3. On the day of a child’s birth her father deposits an amount  of R50 000 into a banking 

account, that pays 5% interest compounded continuously. Determine the amount in the 
account on the child’s 21st birthday.                                                                                                
(3) 

 
4. Use the properties of logarithms to simplify the expression: 

 
(a) log𝑦𝑦 𝑎𝑎3                                     (2) 
(b) 5log5 10                                        (1) 

 
5. Given the following logarithmic function: 𝑖𝑖(𝑥𝑥) = − log2(𝑥𝑥 + 3) 

Determine the following: 
(a) The domain of the function        (2) 
(b) The 𝑥𝑥 − 𝑖𝑖𝑛𝑛𝑡𝑡𝑒𝑒𝐹𝐹𝑐𝑐𝑒𝑒𝑆𝑆𝑡𝑡         (2) 
(c) The 𝑎𝑎 − 𝑖𝑖𝑛𝑛𝑡𝑡𝑒𝑒𝐹𝐹𝑐𝑐𝑒𝑒𝑆𝑆𝑡𝑡  𝑖𝑖𝑖𝑖 𝑖𝑖𝑡𝑡 𝑒𝑒𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖       (2) 
(d) asymptote                        (1) 
(e) sketch the graph         (4) 

            
6. Find the exact value of the logarithmic expression without using a calculator: 

 
(a) log3 81−3                      (3) 
(b) 6 ln 𝑒𝑒2  −   ln 𝑒𝑒4                     (3) 

 
7. Condense the expression to the logarithm of a single quantity: 

(a) ln𝑥𝑥 −   [ln(𝑥𝑥 + 1) +  ln(𝑥𝑥 − 1)]                                (2)
  

(b) 1
2

[log4 𝑥𝑥 + 2 log4(𝑥𝑥 + 4) − log4(𝑥𝑥 − 1)]                        (3) 
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APPENDIX J 
CLASS TEST 2 OF SEMESTER 2 

 

MAE 221 

CLASS TEST 2 [MATRICES]   TOTAL: 40 

 

1. Given the matrix:   𝐴𝐴 = �
1 3 1
1 5 5
2 6 3

� 

(a) Perform the following sequence of row operations on 𝑠𝑠𝑎𝑎𝑡𝑡𝐹𝐹𝑖𝑖𝑥𝑥 𝐴𝐴: 
(i) 𝑅𝑅2 − 𝑅𝑅1 
(ii) 𝑅𝑅3 − 2𝑅𝑅1 
(iii) 1

2
 𝑅𝑅2 

(iv) 𝑅𝑅2 − 2𝑅𝑅3 
(v) 𝑅𝑅1 − 3𝑅𝑅2 
(vi) 𝑅𝑅1 −  𝑅𝑅3        (6) 

      
(b) What did the operations accomplish?     (1)  

 

2. Given the following system of linear equations: �
𝑥𝑥 + 𝑎𝑎 − 𝑧𝑧 = 2

2𝑥𝑥 + 3𝑎𝑎 − 𝑧𝑧 = 7
3𝑥𝑥 − 2𝑎𝑎 + 𝑧𝑧 = 9

� 

(a) Write an augmented matrix for the system.     (2) 
(b) Use Gauss-Jordan elimination to solve the system of equations.  (10) 

 

3. Find the determinant of the following matrix:  𝑀𝑀 = � 3 3
−1 0�   (1) 

 

4. Given the matrix:      B = �
−2 4 1
−6 0 2
5 3 4

�. Find the determinant of B by expanding by cofactors 

on the row or column that would make the computations easiest.  (8) 
 

5. Find the determinants to verify the equations: 
 

(a) �𝑎𝑎 𝑐𝑐
𝑏𝑏 𝑑𝑑� = �𝑎𝑎 𝑏𝑏 + 𝑎𝑎𝑎𝑎

𝑐𝑐 𝑑𝑑 + 𝑎𝑎𝑐𝑐�       (4) 

(b) �𝑥𝑥 𝑎𝑎
𝑧𝑧 𝑤𝑤� = − �

𝑧𝑧 𝑤𝑤
𝑥𝑥 𝑎𝑎�        (4) 
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6. Solve for 𝑥𝑥: �𝑥𝑥 − 1 2
3 𝑥𝑥 − 2� = 6      (5) 
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APPENDIX K 

CLASS TEST 3 OF SEMESTER 2 

 

MAE 221 

CLASS TEST 3   3 OCTOBER 2014  TOTAL: 40 

 

8. Use the graph of function  f to describe the transformation that yields the graphs of g: 
(c) 𝑖𝑖(𝑥𝑥) =  (3

2
)𝑡𝑡     𝑎𝑎𝑛𝑛𝑑𝑑  𝑖𝑖(𝑥𝑥) =  −(3

2
)𝑡𝑡+2 + 3      (2) 

(d) 𝑖𝑖(𝑥𝑥) =  𝑎𝑎𝐹𝐹𝑖𝑖𝑥𝑥 𝑎𝑎𝑛𝑛𝑑𝑑   𝑖𝑖(𝑥𝑥) =  3 − 𝑎𝑎𝐹𝐹𝑥𝑥(𝑥𝑥 − 2)      (2)  
 
2. Draw sketch graphs on the same system of axes of the functions given by                        

𝑖𝑖(𝑥𝑥) =  2𝑡𝑡   𝑎𝑎𝑛𝑛𝑑𝑑  ℎ(𝑥𝑥) =  3𝑡𝑡 and use the graphs to solve the inequalities: 
 (a) 3𝑡𝑡 < 2𝑡𝑡 
 (b) 3𝑡𝑡 > 2𝑡𝑡         (4) 
 
3. Is the following an equation of a circle? (Answer yes or no). 
 (a) 𝑥𝑥2 − 𝑎𝑎2 − 16 = 0        (1) 
 (b) 3𝑥𝑥2 + 2𝑎𝑎2 = 12        (1) 
 
4. Determine the equation of the circle with centre at the origin and which passes             

through (2;3).          (3) 
 
5. Determine the equation of the circle with centre (1;-2) and passing through the                  

point (-2;-1).          (4) 
 
6. If (𝑎𝑎; 3) is a point on the circle 𝑥𝑥2 + 𝑎𝑎2 = 25. Determine all possible values of 𝑎𝑎. (3) 
 
7. Determine the coordinates of the centre and the radius of the following circle: 
 𝑥𝑥2 − 4𝑥𝑥 + 𝑎𝑎2 + 6𝑎𝑎 = −4        (4) 
 
8. Find the equations of the tangents to 𝑥𝑥2 + (𝑎𝑎 + 1)2 = 20 which are parallel                          

to 𝑎𝑎 + 2𝑥𝑥 = 0.          (16) 
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APPENDIX L 
CLASS TEST 4 OF SEMESTER 2 

 
MAE 221 

CLASS TEST 4   17 OCTOBER 2014  TOTAL: 40 

 

1. Use Gauss-Jordan elimination to solve the following system of equations: 

 𝑥𝑥 + 3𝑎𝑎 + 𝑧𝑧 = 3 
 𝑥𝑥 + 5𝑎𝑎 + 5𝑧𝑧 = 1 
 2𝑥𝑥 + 6𝑎𝑎 + 3𝑧𝑧 = 8         (6) 
 
2. Solve for 𝑥𝑥: 

 �𝑥𝑥 − 2 1
−3 𝑥𝑥� = 6          (4) 

 
3. If 𝐴𝐴𝐵𝐵 = 8𝑠𝑠𝑠𝑠 and 𝐷𝐷𝐶𝐶 = 2𝑠𝑠𝑠𝑠 and 𝑂𝑂𝐷𝐷 ⊥ 𝐴𝐴𝐵𝐵. Find the length of 𝑂𝑂𝐷𝐷. (See sketch below) 
 

 

O

A B

C

D
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4. In the sketch below 𝑂𝑂 is the centre of the circle. Use the sketch to prove that:                           

∠𝐵𝐵1 +  ∠𝐶𝐶 = 90°         (5) 
 

 

O

A B

C

1 1
2 2

 
5. Determine the value of 𝑥𝑥: O is the centre of the circle.      

 

O

B
CX

 

           (4) 
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6. Use the provided sketch to prove the theorem which states: If a quadrilateral is cyclic then the 
opposite angles are supplementary. O is the centre of the circle. 

 

• 

P

Q

R

S

O

 

 

            (6) 

7. 𝑃𝑃𝑄𝑄 is a diameter ,𝑃𝑃𝑅𝑅 is a chord and 𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑅𝑅  in the sketch below. Determine the value of 𝑥𝑥. 

 

P

O

Q

RT
x

60° 

(4) 
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8. Use the sketch below to prove that PQRS is a cyclic quadrilateral. 

 

 S

40° 

48° 

P

Q
92° 1

1
2
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APPENDIX M 

END OF MODULE EXAMINATION SEMESTER 2 
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QUESTION 1 
 
1.1 Use the graph of 𝑖𝑖 to describe the transformation that yields the graph of 𝑖𝑖.  

 
(a) 𝑖𝑖(𝑥𝑥) =  3𝑡𝑡       ;       𝑖𝑖(𝑥𝑥) = 1 − 3𝑡𝑡+1     (2) 
(b) 𝑖𝑖(𝑥𝑥) =  10𝑡𝑡     ;       𝑖𝑖(𝑥𝑥) =  10−𝑡𝑡−1 + 2    (2) 

 
1.2 Use the one-to-one property of functions to solve the following equations for 𝑥𝑥: 

 
(a) 𝑒𝑒𝑡𝑡2−3 =  𝑒𝑒2𝑡𝑡        (4) 
(b) (0.5)𝑡𝑡 = 32        (4) 

 
1.3 Given the logarithmic function: log (−𝑥𝑥 − 5). Determine the following: 

 
(a) The domain of the function.      (2) 
(b) The 𝑥𝑥 − 𝑖𝑖𝑛𝑛𝑡𝑡𝑒𝑒𝐹𝐹𝑐𝑐𝑒𝑒𝑆𝑆𝑡𝑡.       (2) 
(c) The equation of the asymptote.      (1) 

 
1.4 Condense the following expressions to the logarithm of a single quantity: 

 
(a) 5 log(𝑥𝑥2 + 10) − 6 log 𝑥𝑥       (3) 
(b) [ln(𝑥𝑥 − 1) − ln (𝑥𝑥 + 1)] − ln(𝑥𝑥 + 1)     (2) 

 
1.5  If R75 000 is invested at in interest rate of 12% compounded continuously, determine 

the amount of the investment at the end of 5 years.  (3) 
 

/25/ 
 
QUESTION 2 
 

2.1 Write the augmented matrix for the following system of equations and then use  
Gauss-Jordan elimination to solve the system of equations: 
 
−𝑥𝑥 + 𝑎𝑎 + 2𝑧𝑧 = 1 
2𝑥𝑥 + 3𝑎𝑎 + 𝑧𝑧 = −2 
5𝑥𝑥 + 4𝑎𝑎 + 2𝑧𝑧 = 4        (8) 

 
2.2 Solve for 𝑥𝑥: 

 
�𝑥𝑥 − 3 5

2 𝑥𝑥 + 2� =  4𝑥𝑥 − 10       (5) 
 
 

2.3 Find the determinant of the matrix, by expanding by cofactors on the row or column 
that makes the computations the easiest. 
 

𝐴𝐴 = �
−2 4 1
−6 0 2
5 3 4

�       (8) 

         /21/ 
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QUESTION 3 
 
ABCD is a square with vertices  𝐴𝐴(−2; 4), 𝐵𝐵(6; 3), 𝐶𝐶(7; 11) 𝑎𝑎𝑛𝑛𝑑𝑑 𝐷𝐷(𝑥𝑥;𝑎𝑎). The point 𝐺𝐺 is 
the midpoint of 𝐴𝐴𝐶𝐶  𝑎𝑎𝑛𝑛𝑑𝑑 𝐷𝐷𝐵𝐵. (See sketch below). 
3.1 Determine the length of AB.       (3) 
3.2 Determine the midpoint G of AC.      (2) 
3.3 Determine the midpoint of line BD.      (2) 
3.4 Determine the coordinates of D.      (4) 
3.5 Calculate the gradient of BC       (3) 
3.6 Determine the equation of line BC      (3) 
3.7 Determine the length of line EF if the 𝑎𝑎 − 𝑐𝑐𝐹𝐹𝐹𝐹𝐹𝐹𝑑𝑑𝑖𝑖𝑛𝑛𝑎𝑎𝑡𝑡𝑒𝑒 𝐹𝐹𝑖𝑖 𝐸𝐸 𝑖𝑖𝑖𝑖 5  and EF is parallel 

to the 𝑥𝑥 − 𝑎𝑎𝑥𝑥𝑖𝑖𝑖𝑖.         (3) 
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A(-2;4)

B(6;3)

C(7;11)

D(x;y)

G

O

y

x

E(0;5) F
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QUESTION 4 
4.1 Determine the centre and radius of the following circle: 

 𝑥𝑥2 − 2𝑥𝑥 + 𝑎𝑎2 − 7 = 0       (4) 
 
4.2 Find the equation of the tangents to the circle in 4.1 which are parallel to   𝑎𝑎 − 𝑥𝑥 +

3 = 0         (14) 
 
4.3 Do the tangents that you determined in 4.2 intersect at some point (yes or no)? 

Explain your reasoning.       (3)  
           /21/ 
 
QUESTION 5 
 
5.1 Use the sketch below (circle with centre O) to prove the theorem which states: If a 

quadrilateral is cyclic, then the opposite angles are supplementary.  
 

O

A

B

C

D

.

 
 
           (5) 
 
 
 
 
 
5.2 In the sketch below: 𝑃𝑃𝑆𝑆 = 𝑄𝑄𝑆𝑆  and ∠𝑆𝑆1 =  ∠𝑆𝑆3 

 

 a) Prove that ∠𝑃𝑃 =  ∠𝑅𝑅       (4) 
 b) Prove that 𝑃𝑃𝑆𝑆 = 𝑅𝑅𝑆𝑆       (4) 
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P

T

S

R

Q

1

11

2

2
23

 
           /13/ 
 
          [TOTAL:100] 
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APPENDIX N 
MATHEMATICAL TEXT TO TEST FOR SELF-EXPLANATION ABILITIES 
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