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Abstract

A mathematical model for studying the impact of climate variability
on malaria epidemics in South Africa

Gbenga Jacob Abiodun

PhD thesis, Department of Mathematics and Applied Mathematics, Faculty
of Natural Sciences, University of the Western Cape

Malaria is most prevalent in tropical climates, where there are sufficient rainfall
for mosquitoes to breed and conducive temperatures for both the mosquito and
protozoa to live. A slight change in temperature can drastically affect the lifes-
pan and patterns of mosquitoes, and moreover, the protozoan itself can only
survive in a certain temperature range. With higher temperatures, mosquitoes
can mature faster, and thus have more time to spread the disease. The malaria
parasite also matures more quickly at warmer temperatures. However, if tem-
peratures become too high, neither mosquitoes nor the malaria pathogen can
survive. In addition, stagnant water is also a major contributor to the spread
of malaria, since most mosquito species breed in small pools of water. The cor-
rect amount and distribution of rainfall increases the possible breeding sites
for mosquito larvae, which eventually results in more vectors to spread the dis-
ease. With little rainfall, there are few places for the mosquitoes to breed. For
these reasons, and in order to control mosquito population, it is important to
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examine the weather parameters such as temperature and rainfall which are
imperative in determining the disease epidemics. Accurate seasonal climate
forecasts of these variables, together with malaria models should be able to
drive an early warning system in endemic regions. These models can also be
used to evaluate the possible change in regions under climate change scenarios,
and the spread of malaria to new regions.

In this study, we develop and analyse a mosquito model to study the pop-
ulation dynamics of mosquitoes. Ignoring the impact of climate, the model is
further developed by introducing human compartments into the model. We
perform both analytical and numerical analyses on the two models and ver-
ify that both models are epidemiological and mathematical well-posed. Using
the next generation matrix method, the basic reproduction number of each
system is calculated. Results from both analyses confirm that mosquito- and
disease-free equilibria are locally asymptotically stable whenever R0 < 1 and
unstable whenever R0 > 1. We further establish the global stability of the
mosquito-free equilibrium using a Lyapunov function. In order to examine
the effectiveness of control measures, we calculate the sensitivity coefficients of
the reproductive number of the mosquito-human malaria model and highlight
the importance of mosquito biting rate on malaria transmission. In addition,
we introduce climate dependent parameters of Anopheles gambiae and climate
data of Limpopo province into the malaria model to study malaria transmis-
sion over the province.

Climate variables and puddle dynamics are further incorporated into the
mosquito model to study the dynamics of Anopheles arabiensis. The climate-
dependent functions are derived from the laboratory experiments in the study
of Maharaj [114], and we further verify the sensitivity of the model to parame-
ters through sensitivity analysis. Running the climate data of Dondotha village
in Kwazulu-Natal province over the mosquito model, it is used to simulate the
impact of climate variables on the population dynamics of Anopheles arabien-
sis over the village. Furthermore, we incorporate human compartments into
the climate-based mosquito model to explore the impact of climate variability
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on malaria incidence over KwaZulu-Natal province over the period 1970-2005.
The outputs of the climate-based mosquito-human malaria model are further
analysed with Principal Component Analysis (PCA), Wavelet Power Spec-
trum (WPS) and Wavelet Cross-coherence Analysis (WCA) to investigate the
relationship between the climate variables and malaria transmission over the
province.

The results from the mosquito model fairly accurately quantify the sea-
sonality of the population of Anopheles arabiensis over the study region and
also demonstrate the influence of climatic factors on the vector population dy-
namics. The model simulates the population dynamics of both immature and
adult Anopheles arabiensis and increases our understanding on the importance
of mosquito biology in malaria models. Also, the simulated larval density pro-
duces a curve which is similar to observed data obtained from another study.

In addition, the mosquito-malaria models produce reasonable fits with the
observed data over Limpopo and KwaZulu Natal provinces. In particular, they
capture all the spikes in malaria prevalence. Our results further highlight the
importance of climate factors on malaria transmission and show the seasonality
of malaria epidemics over the provinces. The results of the PCA on the model
outputs suggest that there are two major process in the model simulation.
One of the processes indicate high loadings on the population of Susceptible,
Exposed and Infected humans, while the other is more correlated with Sus-
ceptible and Recovered humans. However, both processes reveal the inverse
correlation between Susceptible-Infected and Susceptible-Recovered humans
respectively. Through spectrum analysis, we notice a strong annual cycle of
malaria incidence over the province and ascertain a dominant periodicity of
one year. Consequently, our findings indicate that an average of 0 to 120-day
lag is generally noted over the study period, but the 120-day lag is more as-
sociated with temperature than rainfall. The findings of this study would be
useful in an early warning system or forecasting of malaria transmission over
the study areas.
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Chapter 1

Introduction

Malaria remains one of the most dangerous infectious and prevalent diseases
found in tropical and subtropical regions. Globally, every year the mosquito-
borne disease causes about 273 million clinical cases and more than one million
deaths [192]. It is estimated that more than 40% of the total world population,
are exposed to the deadly disease as Sub-Saharan Africa carries an extremely
high share of the global burden [203]. Malaria afflicts mostly children under
the age of 5 years and pregnant woman who tend to dwell in malaria-prone
rural areas [195]. In children, it causes neurological injury, advanced coma,
pulmonary edema and kidney problems as a result of damaged vascular system
[40]. The impact on pregnant woman leads to an increase of infant low birth
weight and infant mortality [122, 180]. Malaria has also been linked to poverty;
people suffering from malaria often struggle to earn a living [55]. It is noted
that endemic malaria countries have lower rates of economic growth than non-
malaria countries [66, 134, 169].
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2 CHAPTER 1. INTRODUCTION

1.1 Malaria background

The origin of the word malaria is from the Italian phrase, (Mal aria) meaning
bad air. It was initially thought that the disease came from fetid marshes.
Laveren (1880) later discovered that the real cause of malaria is Plasmodium.
This malaria pathogen can only be transmitted to humans when they are bitten
by an infected female Anopheles mosquito.

Anopheles (An.) is a genus of mosquito from the family of Culicidae which
comprises several species. Female Anopheles require proteins for egg produc-
tion. Some of these species prefer to feed on human blood (anthropophily),
while others prefer to feed on animals (zoophily). Also, out of these species,
only about 40 species are able to transmit malaria well enough to cause sub-
stantial human illness and death [76]. Malaria transmission in tropical Africa
is sustained by three main vectors which are An. gambiae, An. arabiensis and
An. funestus [162], while An. arabiensis and An. funestus are the main causes
of malaria in South Africa [105].

1.2 Mosquito bionomics

The term bionomics is used to describe both the ecology of a mosquito species
(e.g. larval habitats) and its behaviour (e.g. host biting preferences). Below
are some bionomics of the three main vectors of malaria transmission with
their images in Fig. 1.1

• An. gambiae - It is known to be one of the most efficient vectors of
malaria in the world and has been studied extensively [38]. It is consid-
ered to be highly anthropophilic, it prefers to feed on human (e.g., [64]).
It is a relatively long-lived species (although not as long as An. funes-
tus), with a short larval development period [143]. The larvae are able
to develop very quickly (approximately 6 days from egg to adult under

 

 

 

 



1.2. Mosquito bionomics 3

optimal conditions and temperatures). For this reason, it is often found
in generally small and temporary fresh water associated with human ac-
tivity such as pools, puddles, water in hoof prints, wheel ruts or areas
of rice cultivation [53, 123]. An. gambiae typically feed late at night, a
characteristic shared with An. funestus that may increase their ability
to effectively transmit malaria parasites (e.g., [32]).

• An. arabiensis - When compared to An. gambiae, An. arabiensis is de-
scribed as exophagic (feeds outdoor) and exophilic (rests outside) [201].
It is also known to have a wide range of feeding and resting patterns,
depending on geographical location (e.g., [61]). There is great variation
in the feeding preference depending on the local variation in host avail-
ability and composition of the local genotypes of the vector (e.g., [201]).
An. arabiensis is commonly found in dry, savannah environments and
sparse woodland (e.g., [62]), also in forested areas. Its larval habitats
are similar to those of An. gambiae: generally small, temporary, sunlit,
clear and shallow fresh water pools [63], although An. arabiensis is able
to utilize a greater variety of locations than An. gambiae, including slow
flowing, partially shaded streams (e.g., [1]) and a variety of large and
small natural and man-made habitats. Blood feeding times also vary in
frequency but biting generally occurs during the night. Peak evening bit-
ing times can begin in the early evening (19:00) or early morning (03:00)
(e.g., [189]). This species does, however, demonstrate a predisposition
to exophilic (or partial exophilic) behaviour regardless of where it blood
feeds or the source of its meal (e.g., [57]). This behavioural trait, to
a greater or lesser extend, is considered to be related to polymorphic
chromosomal inversions depending on location (e.g., [39]).

• An. funestus - A typical An. funestus larval habitat is a large, perma-
nent or semi-permanent body of fresh water with emergent vegetation,
such as swamps, large ponds and lake edges [178]. Larvae have been
found in both shaded and sunlit environments and it is concluded that
An. funestus uses emergent vegetation as refuge against predation while
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(a) (b) (c)

Figure 1.1: The image of (a) An. gambiae, (b) An. arabiensis and (c) An.
funestus. Source: Centers for Disease Control and Prevention (CDC).

the shading it casts, or the presence of shade from overhanging plants,
is of lesser importance [61]. An. funestus is considered to be highly an-
thropophilic and bites late night around 22:00 (e.g., [32]). Its populations
from 12 countries have been divided into three geographical locations;
eastern Africa, western and central Africa, and southern Africa [58].

1.3 Malaria biology

Malaria is caused by protozoan parasites of the genus Plasmodium. There are
over 120 species of the parasite genus Plasmodium [54], though only five of
them cause malaria (see Fig. 1.2 for images): These are:

• P. falciparium - It is the most dangerous and commonly found in Africa
(e.g., [176]). It can cause severe infection because it multiples rapidly in
the blood, and can thus cause severe blood loss (i.e. anemia). Also, the
parasites can clog small blood vessels. When this occurs in the brain,
cerebral malaria results, a complication that can be fatal. Its incubation
period is 9 - 14 days [199]. It is also resistant to most of the drugs used
in the prevention and treatment of malaria [141].

• P. vivax - It is more common in temperate areas, such as Asia, Latin
America and some parts of Africa. Because of the population densities
especially in Asia it is probably the most prevalent human malaria par-
asite. P. vivax (as well as P. ovale) has dormant liver stages hypnozoites

 

 

 

 



1.3. Malaria biology 5

that can activate and invade the blood relapse several months or years
after the infecting mosquito bite. The incubation period in the human
body is approximately 12 - 17 days for the symptoms of the disease to
become apparent [199].

• P. ovale - It is found mostly in Africa (especially West Africa) and the
islands of the western Pacific. It is biologically and morphologically very
similar to P. vivax. However, unlike P. vivax, it can infect individuals
who are negative for the duffy blood group, which is the case for many
residents of sub-Saharan Africa. This explains the greater prevalence of
P. ovale (rather than P. vivax) in most of Africa. It has an incubation
period of 8-17 days in an infected person. Like P. vivax, it can hide in
the liver of partially treated people to reemerge later on [116].

• P. malariae - It is found worldwide and it is the only human malaria par-
asite species that has a three-day cycle. The other three species discussed
above are known to have a two-day cycle. If not treated, P. malariae
can cause a long-lasting, chronic infection that in some cases can last a
lifetime. In some chronically infected patients it can cause serious com-
plications such as the nephrotic syndrome. Its incubation period is 2-4
weeks in an infected person.

• P. knowlesi - is found throughout Southeast Asia as a natural pathogen
of long-tailed and pig-tailed macaques. It has recently been shown to
be a significant cause of zoonotic malaria in that region, particularly in
Malaysia. It has a 24-hour replication cycle and so can rapidly progress
from an uncomplicated to a severe infection; fatal cases have been re-
ported.

1.3.1 The parasite cycle

A female Anopheles mosquito carrying malaria-causing parasites feeds on a
human and injects the parasites in the form of sporozoites into the bloodstream.
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Figure 1.2: Images of five malaria species. Source: Centers for Disease Control
and Prevention (CDC).

The sporozoites travel to the liver and invade liver cells (see Fig. 1.3 ). Over
5-16 days (depending on the malaria parasite species), the sporozoites grow,
divide, and produce tens of thousands of haploid forms, called merozoites,
per liver cell. The merozoites exit the liver cells and re-enter the bloodstream,
beginning a cycle of invasion of red blood cells, asexual replication, and release
of newly formed merozoites from the red blood cells repeatedly over 1-3 days.
This multiplication can result in thousands of parasite-infected cells in the
host bloodstream, leading to illness and complications of malaria that can last
for months if not treated. Some of the merozoite-infected blood cells leave
the cycle of asexual multiplication. Instead of replicating, the merozoites in
these cells develop into sexual forms of the parasite, called male and female
gametocytes, that circulate in the bloodstream. When a mosquito bites an
infected human, it ingests the gametocytes. In the mosquito gut, the infected
human blood cells burst, releasing the gametocytes, which develop further into
mature sex cells called gametes. Male and female gametes fuse to form diploid
zygotes, which develop into actively moving ookinetes that burrow into the
mosquito midgut wall and form oocysts. Growth and division of each oocyst
produces thousands of active haploid forms called sporozoites. After 8-15 days,

 

 

 

 



1.3. Malaria biology 7

Figure 1.3: Cycle of the malaria parasite in the human and mosquito host
(after [55, 66]).

the oocyst bursts, releasing sporozoites into the body cavity of the mosquito,
from which they travel to and invade the mosquito salivary glands. The cycle
of human infection re-starts when the mosquito takes a blood meal, injecting
the sporozoites from its salivary glands into the human bloodstream.

1.3.2 Age and immunity

In biology, immunity is the balanced state of having adequate biological de-
fenses to fight infection, disease, or other unwanted biological invasion. Various
biological processes influence the transmission of the malaria parasite and the
malaria prevalence [55]. At birth, children are temporarily protected from in-
fection due to the transfer of antibodies from mother [200]. They lose this

 

 

 

 



8 CHAPTER 1. INTRODUCTION

immunity after a few months and become susceptible to any disease. However,
when the immunity is lost, they quickly develop protection against non-severe
disease [70].

1.4 Factors affecting malaria

1.4.1 Climatic factors

Major climatic factors influencing malaria transmission are temperature and
rainfall [131, 190]. Temperature affects malaria through various biological
processes. The first is the gonotrophic cycle, which is the egg production. It is
established that egg production only occurs when temperature exceeds 10oC
and that the rate of egg development is highly influenced by temperature (e.g.,
[46]). The second is the sporogonic cycle, which is the development of malaria
parasite within vectors. It takes temperature of above 16oC to complete the
sporogonic cycle (e.g., [46]). Thirdly, the ambient air temperature affects the
mosquitoes mortality rate. For instance, temperature below 10oC is noted
to reduce the duration of survival (e.g., [85]). Fourthly, larval development
of mosquitoes depends on water temperatures. For example, An. gambiae
s.s. emerge as adults only between water temperatures of 18 and 34oC and
most larvae develop between 22 and 26oC [8]. The second major climatic
factor affecting the spread of malaria is precipitation. Rainfall influences the
abundance of aquatic habitats (eggs, larvae and pupae) available to mosquitoes
for oviposition [55]. Mosquitoes deposit their eggs in ponds, puddles, or even
hoof prints (e.g., [56]). However, excessive rainfall can negatively influence
mosquito breeding. Immoderate rainfall can lead to flushing of breeding sites
and high losses of aquatic habitats (e.g., [145]). This can paradoxically lead
to decrease in malaria transmission [51]. Provided that appropriate breeding
places persist, mosquito populations rapidly increase short after the beginning
of the rainy season [100, 144]. The population can drop during a following dry
season to such low levels that malaria transmission cannot be sustained [117].

 

 

 

 



1.4. Factors affecting malaria 9

For this reason, malaria is mostly seasonal in Africa (e.g., [55]).

Several studies have examined the influence of climate variability on year-
to-year variation of seasonal malaria epidemic over the African highlands [152].
For example, Thomson et al [188] found that both daily rainfall and an-
nual malaria anomalies are significantly related to the sea surface temperature
(SSTs). Hay et al [75] confirmed the existence of cycles of disease periodicity of
more than one-year long. Using the time-series modelling approach, Zhou et al
[212] recently ascertained that rainfall and temperature play a significant role
in the inter-annual variability of malaria across multiple East African high-
lands. Their results in contrast to [75] suggested that malaria epidemics in
the highlands are initiated by climate variables. More recently, Pascual et al
[152] combined both a time-series epidemiological model and a statistical ap-
proach to analyse monthly cases of malaria from 1970 to 2003 over a highland
in Western Kenya. The findings from their study revealed the existence of
multiyear cycles of malaria incidence over the study period. Their findings
also highlighted the impact of rainfall over malaria resurgence in 1990. It is
concluded in line with the study of Zhou et al [212] that climate variables play
significant roles at different temporal scales and should be considered when
building predictive models.

1.4.2 Other factors

Human activities also play a crucial role in transmission and prevention of
malaria across Africa [55]. Activities such as deforestation and cultivation of
natural swamps increase local temperatures by several degrees (e.g., [65]). It
is also established that land cover affects the duration of larval development
through its effects on water temperature [133]. Crop irrigation is another
important factor affecting the spread of malaria. It has a strong influence
on mosquito breeding by increasing the surface water availability [71]. For
instance in Africa, irrigated rice cultivation is associated with higher densities
of main vectors of malaria and with an extension of the breeding season (e.g.,

 

 

 

 



10 CHAPTER 1. INTRODUCTION

[22]).

1.5 Malaria distribution over Africa

Studies [41, 55, 190] have shown that the transmission and distribution of
malaria is highly influence by environmental and meteorological conditions.
For instance, in Sub-Sahara Africa, the transmission of malaria is highly sea-
sonal (e.g., [41]). Climate variables such as temperature, rainfall and humidity
influence biological parameters of malaria [185]. These factors also play signif-
icant roles in the availability of mosquitoes which are the vectors of the disease
(e.g., [7, 145]). Hence, climate changes are expected to affect transmission of
malaria transmission [68]. Malaria is highly centered in the tropics, reaching
into subtropical regions on five continents (see Fig. 1.4). Warm and moist con-
ditions in the tropics lead to a stable transmission of the malaria parasite. The
malaria belt in Africa is bounded by the dry Sahara as well as the colder tem-
perate zone of South Africa. In West Africa, transmission of malaria is mainly
influenced by rainfall. Also in most regions, suitable mosquito breeding sites
are only sustained during the rainy season and therefore annual transmission
follows seasonal rains [90].

Malaria incidence and control in South Africa
Malaria was first recognized among the early settlers and travelers in South-
ern Africa [16]. In the mid-19th century, the early pioneers leaving the non-
malarious Cape province soon experienced the menace of malaria in the north-
ern Transvaal [59]. Over 20 000 deaths were recorded prior to the implementa-
tion of malaria control in the 1930s. During this period, indoor feeding habitat
of malaria vectors were recognised and indoor spraying was introduced [59].
Further efforts to eradicate malaria continued through 1960s which led to erad-
ication of An. funestus [59].

As a result of the constant efforts to meet the national elimination target
by 2018, South Africa has achieved 85% decrease in reported cases from 2000

 

 

 

 



1.5. Malaria distribution over Africa 11

Figure 1.4: (a) Distribution of endemic malaria, (b) length, (c) onset month,
and (d) end month of the malaria transmission season in Africa (for more
details cp. [41, 55, 184]. Source: MARA, http://www.mara.org.za). In the
regions with two seasons each year, the maps in (c) and (d) refer to the first
season in the year.

 

 

 

 



12 CHAPTER 1. INTRODUCTION

to 2011 [206]. A noticeable decrease of 64,624 malaria cases to 9,866 cases
were recorded during this period as 424 deaths were reduced to 54 deaths. In
addition to these persistence controls, transmission has also been limited to
three provinces in the north and northeastern parts (as shown in Fig. 1.5)
of the country KwaZulu-Natal, Limpopo, and Mpumalanga [16, 41, 127]. It
is endemic along the border with Mozambique and Zimbabwe. Although, de-
spite this enormous decline in malaria transmission, approximately 10% of the
country’s 50 million populations remain at risk of malaria infection [115, 206].
More importantly, malaria transmission is also noted to be seasonal in the three
provinces, with transmission limited to the warm and rainy summer months
(September to May). Hence malaria is unstable and epidemic-prone [41].

1.6 Malaria models

In early 20th century, Ross [165] developed the first mathematical model of
malaria transmission. He formulated two ordinary differential equations to
examine malaria transmission from mosquito vectors to human hosts and vice
versa. The model was also used to determine the transmission rate between
the host-compartments. In 1928, Ross concluded that there is a possibility
of malaria eradication provided numbers of Anopheles are reduced below a
certain number [55, 166].

Several mathematical malaria models have been developed after the Ross’
work (e.g., [141]). For instance, in the 1950s, Macdonald refined the basic
model of Ross (e.g.,[113]). More factors such as proportion of infective bites
is being considered in his model [111], although the model was criticised for
ignoring immunity factor [55]. Numerous studies thereafter have considered
this factor in their models. Struchiner et al [181] further modified the Garki
model, considering the fact that immune individuals can lose their immunity.
Parasitological data from Senegal is used to refine the work of Cancrė et al [25]
by means of a Bayesian calibration. Their results indicated that in the Ndiop
region, about 60% of the immune lose their immunity during the dry season.
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Figure 1.5: Malaria risk map for South Africa (released by National Depart-
ment of Health; after [128]).
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Also, Okosun and Makinde [142] derived and analysed a deterministic model
for the transmission of malaria disease with drug resistance in the infective
individuals. In their studies, it is established that some individuals can be
drug resistant, but with effective control of these individuals, the spread of
malaria can be reduced.

The major set-back of classic differential-equation malaria models is the
uncertain assumption of quasi-static vector numbers and constant parasite de-
velopment rates [80]. These mathematical systems were established without
any dynamical equations for the number of mosquitoes [136]. Most parame-
ter values pertaining to the development of malaria were also uncertain. In
addition, studies are yet to identify a persuasive functional relation for the
mosquito survival probability [55]. More importantly, most of these studies
also ignored the impact of climate on mosquito population dynamics and the
impact on parasite development were also neglected.

However, several studies have considered the distribution of mosquito vec-
tors and malaria with environmental and meteorological variables. These vari-
ables (generally including temperature, rainfall, and humidity data) can pos-
sibly be used to predict malaria distributions, as they also influence many
biological processes [55]. For instance, in the Malaria Atlas Project, a large
set of nationally reported case-incidence data and biological temperature- and
rainfall-dependent rules of transmission exclusion was used to generate a global
spatial distribution of P. falciparum malaria [69]. Hay et al [74] and Thomson
et al [186] determined the relationship between malaria incidence and precipi-
tation to predict the epidemic region. Logistic regression and a geo-statistical
approach based on environmental factors were also used to examine the distri-
bution of parasite ratios in Mali [87] and over West Africa [88]. Hence, climate-
or weather-driven malaria models provide a better understanding of dynamics
of malaria transmission.

Numerous climate-based malaria models have also been developed. In
the previous studies of Martens et al [107, 109, 110], Jetten et al [82], and
Lindsay and Martens [101], climate data were used to simulate the relation-
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ship between climate variables and the basic reproduction rate R0 of malaria.
The Mapping Malaria Risk in Africa (MARA) project [117] presents a simple
climate-based distribution model of malaria transmission (hereafter referred
to as MDM: MARA Distribution Model) for sub-Saharan Africa [41]. The
MDM was based on rainfall and temperature determinants of the parasite
development and mosquito survival. Depinay et al [45] also developed a com-
prehensive model to simulate the population dynamics and the development
of African Anopheles using local environmental data. Using daily temperature
and rainfall data, Pascual et al [151] introduced a mosquito population model
to analyse the development and mortality of larvae as well as mosquito sur-
vival. Furthermore, Hoshen and Morse [80] presented the so-called Liverpool
Malaria Model (LMM), a weather-driven, mathematical-biological model to
simulate the dynamics of malaria parasites. The model also simulates the size
and behaviour of the total mosquito population and malaria prevalence within
human hosts. Morse et al [130] further described the integration of the LMM
into a probabilistic multi-model seasonal forecast system [149, 187], which was
used in the national malaria control programme in Botswana and surrounding
countries [84]. Alonso et al [4] developed a mosquito-human malaria model to
examine the impact of warmer temperature on malaria incidence in a high-
land region of East Africa. Their findings suggest that climate change plays
an important role in escalating malaria incidence in the region. Also, the re-
cent study of Tompkins et al [190] introduced a new dynamical community
malaria model (VECToR borne disease model of the International Centre for
Theoretical Physics: VECTRI) that accounts for the temperature and rainfall
influences on the parasite and vector life cycles. The model put into consid-
eration a simple surface hydrology and accounts for the population density in
the calculation of daily mosquito biting rates.

However, these models in the previous studies are difficult to quantify be-
cause of many uncertainties [100]. For this reason and limitations, some of
the models are not able to give accurate descriptions of the current situa-
tion of global malaria, so they have a limited value for assessing the impact
of long-term climate change [159, 163]. Also, most studies miss a realistic
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linkage between environmental conditions and the survival in aquatic stages
[55]. Hydrological changes are also likely to significantly contribute to rates
and efficiency with which mosquito populations grow and transmit pathogens
[173]. Hence, mosquito breeding must be adequately simulated in relation to
hydrological processes instead of precipitation [183].

1.7 Stability for ordinary differential equations

In this section, we present results which will be used to prove the local stability
for systems of ordinary differential equations. Hence the following definitions
and theorems will be used to determine the local stability of the disease free
equilibrium of a system of ordinary differential equations.

Definition 1.7.1 ([141], The basic reproductive number).
The basic reproductive number is used to measure the ability of the disease to
reproduce, and is denoted by R0. This is defined as the expected number of
secondary cases reproduced by one infected individual in his/her entire infec-
tious period. When R0 < 1, each infected individual can produce an average
of less than one new infected individual during his entire period of infectious-
ness. In this case the disease will not persist in the population and may be
eradicated. But in a situation where R0 > 1 implies that each infected indi-
viduals during the entire period of infectiousness can produce more than one
new infected individual. This is a strong indication that the disease can persist
and invade the population.

Definition 1.7.2 ([141], The next generation method).
The so-called next generation method introduced by van den Driessche et
al. [196] and Diekmann et al. [47] is a general method for deriving R0 in
cases where one or more classes of infectives are involved. Suppose we have n
disease compartments and m non-disease compartments, and let x ∈ Rn and
y ∈ Rm be the sizes of these compartments. Also, denote the rate of secondary
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infection increase of the ith disease compartments by Fi. However Vi is the
rate of disease progression, death and recovery decrease the ith compartment,
the compartmental model can then be written in the form:

dxi
dt

= Fi(x, y)− Vi(x, y), i = 1, ..., n, (1.1)
dyi
dt

= gj(x, y), j = 1, ...,m.

The calculation of the basic reproduction number is based on the linearization
of the ordinary differential equations (ODE) model about a disease-free equilib-
rium, while the following assumptions ensure the existence and well-posedness
of a model.

1. Assume Fi(0, y) = 0 and Vi(0, y) = 0 for all y ≥ 0 and i = 1, ..., n. All
new infections are secondary arising from infected hosts.

2. Fi(0, y) ≥ 0 for all non-negative x and y and i = 1, ..., n. Then function
F represent new infections and cannot be negative.

3. Vi(0, y) ≤ 0 whenever xi = 0, i = 1, ..., n. Each component, Vi represents
a net outflow from compartment i and must be negative (inflow only)
whenever the compartment is non- empty.

4. Assume ∑n
i=1 Vi(x, y) ≥ 0 for all non-negative x and y. The sum rep-

resents the total outflow from all infected compartments. Terms in the
model leading to increases in ∑n

i=1 xi are assumed to represent secondary
infections and therefore belong in F .

5. Assume the disease-free system dy
dt

= g(0, y) has a unique equilibrium
that is asymptotically stable. That is, all solutions with initial conditions
of the form (0, y) approach a point (0, y0) as t→∞. This point is referred
to as the disease-free equilibrium.
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Assuming that Fi and Vi meet above conditions, we can form the next genera-
tion matrix (operator) FV −1 from matrices of partial derivatives of Fi and Vi
particularly

F =
[
∂Fi(x0)
∂xj

]
and V =

[
∂Vi(x0)
∂xj

]
(1.2)

where i, j = 1, ...,m and where x0 is the disease-free equilibrium. The R0

is given by the spectral radius (dominant eigenvalue) of the matrix FV −1.

1.7.1 Lyapunov functions and stability

In this Section, we (ab)use the “dot" notation. The reason for this is that this
abuse is so widespread that it is better to adopt it.
Suppose we are given an ODE

u̇ = f(u) (1.3)

and differentiable function

V : N → R, x 7→ V (x) (1.4)

where N ⊆ Rn. Denoting by t 7→ u(t) a solution of (3.11) and using the chain
rule we obtain

d

dt
V (u(t)) =

n∑
k=1

∂kV (u(t))duk(t)
dt

= ∇V (u(t)).f(u(t)), (1.5)

where

∂kV (x) := ∂V (x1, ..., xn)
∂xk

(1.6)
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∇V (x) := (∂1V (x), ..., ∂nV (x))T (1.7)

for x = (x1, ..., xn)T ∈ Rn.

Due to the above calculation, the following notation is often used

V̇ (x) = ∇V (x).f(x), (1.8)

despite V not being a function of time and the “dotted" V not being exactly
a time derivative. This notation comes for the fact that we are “dotting" the
composite of V with u, V (u(t)), with respect to time and the rigorous notation
should be V (u)) or V ◦ u. Since this is a bit more cumbersome, we stick to
“dot" notation V̇ .
Hence the following technical results, summarises the idea behind Lyapunov
functions.

Lemma 1.7.3 ([68], Lyapunov barrier).
Let V : N → R, be continuously differentiable, where N ⊆ Rm, is a non-empty
open and bounded set, with V̇ (x) ≤ 0 for all x ∈ N,, and let m = minx∈δNV (x).
Then, for any u0 ∈ N such that V (u0) < m, the set C(u0) = {u ∈ N : V (u) ≤
V (u0)} has the property that Γ+(u0) ⊆ C ⊆ N.

Proof. Choose u0 ∈ N such that V (u0) < m. Since u(t) is continuous, be
either u0 ∈ N for all t ≥ 0 or there exist t1 > 0 such that u0 ∈ N for 0 ≤ t < t1

and u(t1) ∈ ∂N . However in the latter case, as V̇ ≤ 0 for all u ∈ N ,

V (u(t1)) = V (u0) +
∫ t1

0
V̇ (u(t))dt ≤ V (u0) < m, (1.9)

which contradicts u(t1) ∈ ∂N, since m = minu∈∂NV (u). Therefore u(t) ∈ C
for all t ≥ 0, i.e., Γ+(u0) ⊆ C(u0).

Definition 1.7.4 ([68], (Sign) definite functions).
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A function F : N → R is positive definite at u∗ ∈ N if

(i) F(u∗) = 0
(ii) F (u) > 0 for all u ∈ N with u 6= u∗

F is negative definite if −F is positive definite.

Definition 1.7.5 ([68], Lyapunov functions).
A continuous differentiable function V : N → R, where N ⊆ Rm, is a Lyapunov
function for u̇ = f(u) at u∗ ∈ N if
(i) V (u) is positive definite at u∗, and
(ii) V̇ (u) ≤ 0 for all u ∈ N .
If in addition, V̇ (u) is negative definite at u∗, then V is a strict Lyapunov
function.

Theorem 1.7.6 ([68], Lyapunov’s first stability theorem (Lyapunov
stability condition)).
Suppose that u∗ is a fixed point of u̇ = f(x). Suppose that for some open set
N ⊆ Rm, containing u∗ there exists V : N → R, such that V is Lyapunov at
u∗. Then u∗ is Lyapunov-stable.

Proof. Let B(u∗, ε) be the (closed) ball of radius ε centered at u∗,

B(u∗, ε) := {u : ‖u− u∗‖ ≤ ε},

and choose ε > 0 sufficiently small that B(u∗, ε) ⊆ N . To prove Lyapunov
stability we need to find δ > 0 such that if u0 ∈ B(u∗, δ) then Γ+(u0) ⊂
B(u∗, ε).
Note that as V is a Lyapunov function at u∗ defined on N and B(u∗, ε) ⊆ N

it follows that V is a Lyapunov function at u∗ defined on B(u∗, ε). Let

m = min
u∈∂B(u∗,ε)

V (u),

where ∂B(u∗, ε) is the boundary of B(u∗, ε). Since a continuous function
on a compact (closed and bounded) set achieves its infimum, there exists
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y ∈ ∂B(u∗, ε) such that V (y) = m. Moreover, since V (u) > 0 throughout
B(u∗, ε)|{u∗}, it follows that m > 0.
As V is continuous and V (u∗) = 0 there exists δ > 0 such that V (u) < m for
all u ∈ B(u∗, δ).
Applying Lyapunov Barrier Lemma above to the set N := B(u∗, ε) and any
point u0 ∈ B(u∗, δ). It gives Γ+(u0) ⊆ B(u∗, ε) as required.

Theorem 1.7.7 ([68], Lyapunov’s second stability theorem (Lyapunov
asymptotic stability condition)).
Suppose there exist a Lyapunov function and let u∗ be a fixed point of u̇ =
f(u) and suppose that for some open set N ⊂ Rm, containing u∗, there exists
V : N → R, such that V is strict Lyapunov at u∗. Then u∗ is asymptotically
stable.

Proof. Since a strict Lyapunov function is a Lyapunov function, Lyapunov’s
first stability theorem implies that u∗ is Lyapunov-stable and it remains only
to prove quasi-asymptotic stability (q.a.s.).
Define ε and δ as in the proof of Lyapunov’s first stability theorem. Thus if
u0 ∈ B(u∗, δ) then Γ+(u0) ⊆ B(u∗, ε). Pick any such u0 ∈ B(u∗, δ).
Since V̇ (u(t)) ≤ 0 it follows that V (u(t)) is non-increasing in t and as V is
bounded below by 0 it follows that limt→∞V (u(t)) = c ≥ 0 exists. We shall
show that c = 0.
As Γ+(u0) is bounded, ω(u0) is non-empty. Consider any x ∈ ω(u0). Then
since there exist tk → ∞ such that S(tk)u0 → x as k → ∞, by continuity of
V,

V (x) = lim
k→∞

V (S(tk)u0) = c.

But since ω(u0) is forward invariant, if x ∈ ω(u0) then S(t)x ∈ ω(u0) for
all t ≥ 0, and so

V (S(t)x) = c ∀t ≥ 0.
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Thus V̇ (x) = 0 for all x ∈ ω(u0). But V̇ (u) 6= 0 for u 6= u∗, and thus
x = u∗. So ω(u0) = {u∗}. As V is positive-definite at u∗, V (u∗) = 0, i.e. c = 0.
Therefore u(t)→ u∗ as t→∞, showing that u∗ is q.a.s.

1.7.2 Routh-Hurwitz criteria

The Routh-Hurwitz stability criterion is a necessary and sufficient condition
to establish the stability of a single-input, single-output (SISO), linear time
invariant (LTI) control system. The criterion establishes a systematic way
to show that the linearized equations of motion of a system have only stable
solutions. Consider the characteristic equation

Ωn + a1Ωn−1 + a2Ωn−2 + ...+ an−1Ω + an = 0, (1.10)

determining the n eigenvalues Ω of a real n × n square matrix A. Then the
eigenvalues Ω all have negative real parts if

H1 > 0, H2 > 0, H3 > 0, ...Hn > 0,

where Hn are the following determinants:

H1 = |a1| ,

H2 =
∣∣∣∣∣∣ a1 1
a3 a2

∣∣∣∣∣∣ ,
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H2 =

∣∣∣∣∣∣∣∣∣
a1 1 0
a3 a2 a1

a5 a4 a3

∣∣∣∣∣∣∣∣∣ ,

Hn =

∣∣∣∣∣∣∣∣∣∣∣∣

a1 1 . . . 0
a3 a2 . . . 0
... ... . . . ...

a2n−1 a2n−2 . . . an

∣∣∣∣∣∣∣∣∣∣∣∣
.

The steady state is stable (that is, Re(Ω) < 0) for all λ if and only if Hj ≥ 0
for all j = 1, 2, 3, ..., n.
The criterion can be performed using either polynomial divisions or determi-
nant calculus.

1.7.3 Hartman-Grobman theorem

Definition 1.7.8 ([13], Hyperbolic Fixed Point).
A hyperbolic fixed point for a system of differential equation is a point at
which the eigenvalues of the Jacobian for the system evaluated at that point
all have nonzero real parts.

Theorem 1.7.9 ([141], Hartman-Grobman theorem).
Let f : Rn → Rn be a smooth map with a hyperbolic fixed point p. Let A denote
the linearization of f at point p. Then there exists a neighbourhood U of p and
a homeomorphism

h : U → Rn

such that

fU = h−1 ◦ A ◦ h
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that is, in the neighbourhood U of p, f is topologically conjugate to its lineariza-
tion.

The theorem explains the local behaviour of dynamical systems in the neigh-
bourhood of a hyperbolic equilibrium point.

1.7.4 Bendixson–Dulac theorem

Theorem 1.7.10 ([23], Bendixson–Dulac theorem).
If there exists a C1 function ϕ(x, y) (called the Dulac function) such that the
expression

∂(ϕf)
∂x

+ ∂(ϕg)
∂y

has the same sign (6= 0) almost everywhere in a simply connected region of the
plane, then the plane autonomous system

dx

dt
= f(x, y),

dy

dt
= g(x, y),

has no periodic solutions lying entirely within the region.

Proof. Without loss of generality, let there exist a function ϕ(x, y) such that

∂(ϕf)
∂x

+ ∂(ϕg)
∂y

> 0

in simply connected region R. Let C be a closed trajectory of the plane au-
tonomous system in R. Let D be the interior of C. Then by Green’s Theorem,
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x

D

(
∂(ϕf)
∂x

+ ∂(ϕg)
∂y

)
dxdy =

∮
C

(−ϕgdx+ ϕfdy) =
∮
C

(−ẏdx+ ẋdy).

But on C, dx = ẋdt and dy = ẏdt, so the integral evaluates to 0. This is a
contradiction, so there can be no such closed trajectory C.

1.7.5 Bifurcation analysis

Consider a family of ordinary differential equations that depend on one pa-
rameter ǫ

x, = f(x, ǫ), (1.11)

where f : Rn+1 → Rn is analytic for ǫΥR, xΥRn. Let x = x0(ǫ) be a family of
equilibrium points of Equation 1.11, that is, f(x0(ǫ), ǫ) = 0. Now let

z = x− x0(ǫ).

Then

z, = A(ǫ)z +O(|z|2),

where A(ǫ) = {f
{x (x0(ǫ) , ǫ).

Let ǫ1, ǫ2, ...ǫn(ǫ) be the eigenvalues of A(ǫ). If, for some i, Reǫi(ǫ) changes
sign at ǫ = ǫ0, we say that ǫ0 is a bifurcation point of Equation 1.11.
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1.8 Some statistical analyses

1.8.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is used to analyse the data generated
from the model. PCA is useful in identifying common modes of variability be-
tween variables [83, 139, 161], and can reduce numerous number of inter-related
variables to a few principal components that capture much of the variance of
the original dataset [139]. PCA has been widely and successfully used to help
understand, interpret, and reconstruct large, multivariate datasets, both with
spatial extent [197] and at single sites [160]. Here, PCA is applied to iden-
tify the meteorological variables that are coupled with the model outputs. To
achieve this, Statistica software (Statsoft Inc., 2013) using the varimax rotation
option to obtain a clear pattern of loadings is used for the analysis.

1.8.2 Wavelet Power Spectrum (WPS)

Wavelet analysis is a method of decomposing a time series into time-frequency
space. This view offers interesting insights into the dominant modes of a time
series and how those modes vary over time. In contrast to Fourier analysis,
wavelet analysis highlights the study of signals whose spectra change with
time. In addition, the time-frequency analysis reveals further characteristics
such as the periodic components with time progression [29, 152, 191]. The
wavelet power spectrum also calculates the distribution of variance between
frequency f and different time locations τ . In order to compare the wavelet
power spectrum with classical spectral methods, the global wavelet spectrum is
computed as the time average of the wavelet power spectrum for each frequency
component [152]. For a better understanding of this method and analysis, see
[30].
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1.8.3 Wavelet Cross-coherence Analysis (WCA)

Time-series analyses have been used to examine the dynamics of several disease
epidemics, as it seemed to be the only substitute [28, 77], they are more useful
in short-term analyses [11, 50]. They are typically noisy and complex [30]. For
these reasons, wavelet cross-coherence is often consider as a substitute. It is
a method for analyzing the coherence and phase lag between two time series
as a function of both time and frequency [31]. As given in Fourier analysis,
the univariate wavelet power spectrum can be extended to quantify statistical
relationships between two time series x(t) and y(t) by computing the wavelet
coherence

Rx,y(f, τ) = | 〈Wx,y(f, τ)〉 |
| 〈Wy(f, τ)〉 |1/2 . | 〈Wy(f, τ)〉 |1/2 ,

where 〈〉 indicates smoothing in both time and frequency; Wx(f, τ) represents
the wavelet transform of series x(t); Wy(f, τ) is the wavelet transform of series
y(t); and Wx,y(f, τ) = Wx(f, τ).W ∗

y (f, τ) is the cross wavelet power spectrum.
The wavelet coherence provides local information about the extend to which
two non-stationary signals x(t) and y(t), are linearly correlated at a particular
frequency (or period). Rx,y(f, τ) is equal to 1 when there is a perfect linear
relationship at a particular time and frequency between the two signals [30].

1.9 Objectives

Since malaria transmission and distribution of Anopheles are climate- and
weather-dependent, the objectives of this thesis are as follow:

• To develop a detailed mosquito model that includes both aquatic and
adults stages to under-study the impact of temperature and rainfall on
the population dynamics of Anopheles mosquitoes.
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• To develop and validate mosquito-human malaria model over epidemic
regions in South Africa.

• To apply the mosquito-human malaria model to study the effect of cli-
mate variability on malaria epidemics over South Africa.

1.10 Outline of the thesis

The thesis is organized as follows:

Chapter 1 offers the biological background of malaria, literature review
on malaria models, as well as the objectives of this study. In Chapter 2 of
this thesis, we present and analyse a basic malaria model without climate-
dependent variables or any intervention strategies. In Chapter 3, we further
extend the model and introduce climate-dependent parameters of Anopheles
gambiae to study malaria transmission dynamics over Limpopo province. Ig-
noring climate variables, a detailed mosquito model is presented and analysed
in Chapter 4. The mosquito model is developed further in Chapter 5 by incor-
porating climate-dependent parameters into the model. In the same chapter,
the model is validated and used to simulate mosquito population dynamics of
a village in KwaZulu-Natal province.

Chapter 6 further extends the mosquito model in Chapter 4 by incorpo-
rating exposed and infected mosquitoes with human compartments into the
model. The detailed mosquito-human malaria model is both analytically and
numerically analysed with simulated results.

In Chapter 7 of this thesis, we introduce climate-dependent parameters
into the mosquito-human malaria model in Chapter 6 to study the dynamics
of human population in KwaZulu-Natal province. The impact of climate vari-
ability on malaria transmission over the province is investigated by performing
some statistical analyses on the model outputs.

Before we move on to the rest of the thesis, it is important to mention
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that simulation results presented in this work are performed using MATLAB,
FORTRAN and Ferret.

 

 

 

 



Chapter 2

Basic malaria model and
analysis

2.1 Introduction

Mathematical models for transmission dynamics of malaria are useful in pro-
viding a better knowledge of the disease, to plan for the future and to carry
out the suitable and appropriate control measures [92]. Several studies (e.g.,
[37, 92, 138, 165, 194]) have considered used mathematical models to investi-
gate the development of epidemiological disease. The study of malaria using
mathematical modeling was originated from the work of Ross [165]. In the
study, it was suggested that, if mosquito population can be reduced to be-
low a certain threshold then malaria can be eradicated [165]. His model was
modified by MacDonald by including super-infection and concluded that re-
ducing the number of mosquitoes have little effect on epidemiology of malaria
in areas of intense transmission [92, 111]. The works of Ross and Macdon-
ald were further extended by Ngwa et al [138] with the popular generalized
malaria model, which includes both the human and mosquito interactions. Ig-
noring immunity to disease, Tumwiine et al [194] used an SIS and SI model in
the human hosts and mosquito vectors respectively, for the study of malaria

30
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epidemic that lasts for a short period. It was concluded in their study that
the system is in equilibrium only at the point of extinction. More important
results highlighted numerically. Also, in the study of Chiyaka et al, mathe-
matical model was used to investigate the malaria treatment and spread of
drug resistance in an endemic population. Analysis from the study showed
that if the treated humans become immediately uninfectious to mosquitoes
then treatment will always reduce the number of sensitive infections. Also,
their results revealed that the spread of drug resistance with treatment as a
control strategy depends on the ratio of the infectious periods of treated and
untreated humans and on the transmission rates from infectious humans with
resistant and sensitive infections.

In this chapter, we present a basic deterministic model of malaria transmis-
sion dynamics. An SEIRS submodel for the mosquito-to-human malaria trans-
mission dynamics and an SEI submodel for the human-to-mosquito malaria
transmission dynamics (hereafter, ShEhIhRh+SvEvIv) are also analysed. The
primary aim of this chapter is neither to present any new results nor part of
the major work from this thesis, but to offer a basic and general background
of the model, and some mathematical analyses of the model without climate-
dependent variables or any intervention strategies.

2.2 Model description

We consider a basic deterministic ShEhIhRh +SvEvIv malaria model with the
assumption about the nature and time rate of transfer from one compartment
to another. We also consider the framework of the model to describe a disease
with temporary immunity on recovery from infection. The model indicates
that the passage of individuals is from the susceptible class, Sh, to the exposed
class, Eh, then to infective class, Ih, and finally to the recovery class, Rh. Sh(t)
represents the number of individuals not yet infected with the malaria parasite
at time t, or those susceptible to the disease. Malaria as one from many diseases
has a latent or exposed phase, Eh(t), during which an individual is said to be
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infected but not infectious. Whereas, Ih(t) denotes the number of individuals
who have been infected with malaria and are capable of spreading the disease
to those in the susceptible class. This is done through infecting the susceptible
mosquitoes. Let Rh(t) be the compartment for individuals who have recovered
from the disease. We assume these humans have no plasmodium parasites
in their bodies and hence can not transmit the infection to mosquitoes. We
denote the total human population by Nh(t) such that

Nh(t) = Sh(t) + Eh(t) + Ih(t) +Rh(t).

It is explained in the study of Killeen et al [86] that a susceptible human bit-
ten by an infectious anopheles mosquito may become infected with a finite
probability that depends on the abundance of infectious mosquitoes and hu-
man hosts. We also assume a horizontal standard incidence with homogeneous
mixing meaning that susceptible individuals get infected through contact with
infected mosquitoes. The susceptible human population is increased by recruit-
ment (birth and immigration) at a constant rate, Φh. In this study, infected
immigrants are excluded from the recruitment process because we assume that
most individuals who are sick will not travel, also that there is a strict and
constant screening exercise to reject infected individuals into the population
under study. When susceptible human gets bitten by an infectious female
anopheles mosquito, there is a finite probability, β that the parasite (in the
form of sporozoites) will be passed on to the human. After this successive bite,
the parasite then moves to the liver where it develops into its next life stage.
At this stage, the infected human will move to the exposed class. After a while,
the parasite, now in form of merozoites enters the blood stream. Hence, the
exposed individuals become infectious and progress to infected state at a con-
stant rate ηh. We further assume that the individuals do not recover by natural
immunity and exclude the direct infectious-to-susceptible recovery. This is a
realistic simplifying assumption because most people have some period of im-
munity before becoming susceptible again. Individuals who have experienced
infection may after some time recover with natural immunity at a constant
rate α and move to the recovered class. Since disease-induced immunity due
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to malaria is temporary, individuals leave the recovered state to the susceptible
state at a fraction q. Humans leave the population through natural death at
constant rate µh and the infected humans have an additional disease-related
death rate constant γ. The mosquito population, Nv(t) is divided into three
classes: susceptible, Sv(t); exposed, Ev(t); and infectious, Iv(t) such that

Nv(t) = Sv(t) + Ev(t) + Iv(t)

In this study, only female anopheles mosquitoes considered as the transmission
vector since only female mosquito bites human for blood meals. The female
mosquitoes enter the susceptible class through birth at a rate Γv. They become
infected by biting infectious humans at a rate ε. The parasites (in the form
of gametocytes) enter the mosquito with probability ξ, when the mosquito
bites an infectious human, and the mosquito moves from the susceptible to
the exposed class. Depending on the ambient temperature and humidity, after
some period of time, the parasite develops into sporozoites and enters the
mosquitos salivary glands, and the mosquito progresses at a rate ηv, from the
exposed class to the infectious class. We assume that the infective period
of the vector ends with its death, and therefore the vector does not recover
from being infective [6]. We assume the disease does not kill the infected
mosquitoes while the susceptible ones leave the population through natural
death, µv. The rate of infection of susceptible individual is βh, and the rate of
infecting a susceptible mosquito is ξv and κ is the contact rate per human per
unit time.

We illustrate the model flow diagram in Figure 2.1, which translates to equa-
tion 2.1

 

 

 

 



34 CHAPTER 2. BASIC MALARIA MODEL AND ANALYSIS

Rh
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Figure 2.1: Flow diagram of the basic malaria transmission model

The summary of the state variables and parameters satisfying equation 2.1 are
presented in Table 2.1 and Table 2.2 respectively. It is assumed that all state
variables and parameters of the basic model for both human and mosquito
populations are positive for all t ≥ 0 as will be analysed in a suitable region.
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Table 2.1: State variables of the basic malaria model

Symbol Description
Sh Number of susceptible humans at time t
Eh Number of exposed humans at time t
Ih Number of infectious humans at time t
Rh Number of recovered humans at time t
Sv Number of susceptible mosquitoes at time t
Ev Number of exposed mosquitoes at time t
Iv Number of infectious mosquitoes at time t
Nh Total human population at time t
Nv Total mosquito population at time t

dSh
dt

= Φh + qRh − βhSh − µhSh

dEh
dt

= βhSh − (ηh + µh)Eh

dIh
dt

= ηhEh − (α + γ + µh)Ih

dRh

dt
= αIh − (q + µh)Rh (2.1)

dSv
dt

= Γv − ξvSv − µvSv

dEv
dt

= ξvSv − (ηv + µv)Ev

dIv
dt

= ηvEv − µvIv

where βh = βεκIv
Nh

and ξv = ξεκIh
Nh

.
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Table 2.2: Parameters of the basic malaria model

Symbol Description
Φh Recruitment rate of humans
µh Per capita natural death rate for humans

ηh
Progression rate of humans from the exposed
state to the infectious state

γ
Per capita disease-induced death rate for hu-
mans

q Per capita rate of loss of immunity

α
Recovery rate for humans from the infected
state to the recovered state with natural im-
munity

βh
Force of infection for susceptible humans to
exposed individuals

β
Probability that a bite results in transmis-
sion of infection to the human

Γv Birth rate of mosquitoes
µv Per capita natural death rate for mosquitoes

ηv
Progression rate of exposed mosquitoes to in-
fected mosquitoes

ε Biting rate of mosquito
κ Contact rate

ξv
Force of infection for susceptible mosquitoes
to exposed mosquitoes

ξ
Probability that a bite results in transmis-
sion of the parasite from an infectious human
to the susceptible mosquito
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From the study of Tumwiine et al [194], the term βεκShIv
Nh

is denoted as the rate
at which the human hosts Sh get infected by infected mosquitoes Iv and βεκSvIh

Nh

refers to the rate at which the susceptible mosquitoes Sv are infected by the
infected human hosts Ih. This implies that the rate of infection of susceptible
human Sh by infected mosquito Iv is dependent on the total number of humans
Nh available per vector.

2.3 Invariant region

The total population sizes Nh and Nv can be determined by the differential
equations

dNh

dt
= dSh

dt
+ dEh

dt
+ dIh

dt
+ dRh

dt
(2.2)

= Φh − µhNh − γIh,

It is noted that in the absence of the disease (γ = 0), we have

dNh

dt
= dSh

dt
+ dEh

dt
+ dIh

dt
+ dRh

dt
(2.3)

= Φh − µhNh,

and

dNv

dt
= dSv

dt
+ dEv

dt
+ dIv

dt
(2.4)

= Γv − µvNv

Lemma 2.3.1. The model system (2.1) has solutions which are contained in
the feasible region Ω = Ωh + Ωv.
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Proof: Let (Sh, Eh, Ih, Rh, Sv, Ev, Iv) ∈ R7
+ be any solution of the system with

non-negative initial conditions. Since

dNh

dt
≤ Φh − µhNh, (2.5)

and using Birkhoff and Rota Theorem on differential inequality [13], we have
0 ≤ Nh ≤ Φh

µh
, hence

Φh − µhNh ≥ Ke,−µht (2.6)

where K is constant. Therefore, all feasible solutions of the human population
only of the system (2.1) are in the region

Ωh =
{

(Sh, Eh, Ih, Rh) ∈ R4
+ : Sh + Eh + Ih +Rh ≤

Φh

µh

}
(2.7)

Similarly, the feasible solutions of the mosquito population only are in the
region

Ωv =
{

(Sv, Ev, Iv) ∈ R3
+ : Sv + Ev + Iv ≤

Γv
µv

}
(2.8)

Thus, the feasible set for model system (2.1) is given by

Ω =
{

(Sh, Eh, Ih, Rh, Sv, Ev, Iv) ∈ R7
+ : Sh, Eh, Ih, Rh, Sv, Ev, Iv ≥ 0;Nh ≤ Φh

µh
;Nv ≤ Γv

µv

}
,

which is a positively invariant set under the flow induced by the model (2.1). Hence
the system is epidemiologically meaningful and mathematically well-posed in the
domain Ω. Also in this domain it is sufficient to consider the dynamics of the
flow generated by the model (2.1). Moreover, the usual existence, uniqueness and
continuation of results hold for the system. 2

2.4 Positivity of solutions

In this section, we show that the solutions of the system 2.1 are positive.
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Lemma 2.4.1. Let the initial condition be
{(Sh(0), Sv(0)) > 0, (Eh(0), Ih(0), Rh(0), Ev(0), Iv(0)) ≥ 0 }∈ Ω.
Then the solution set {(Sh, Eh, Ih, Rh, Sv, Ev, Iv)}(t) of the model system (2.1) is
positive for all t > 0.

Proof: From the first equation of system (2.1), we have

dSh
dt

= Φh + qRh − βhSh − µhSh ≥ −βhSh − µhSh

≥ −(βh + µh)Sh

∫ 1
Sh
dSh ≥ −

∫
(βh + µh)dt

Sh(t) ≥ Sh(0)e−(
∫
βhdt+µht) ≥ 0.

From the second equation of system (2.1) we have

dEh
dt

= βhSh − (ηh + µh)Eh ≥ −(ηh + µh)Eh

∫ 1
Eh

dEh ≥ −
∫

(ηh + µh)dt

Eh(t) ≥ Eh(0)e−(ηh+µh)t ≥ 0.

Also from the third equation of system (2.1)

dIh
dt

= ηhEh − (α+ γ + µh)Ih

∫ 1
Ih
dIh ≥ −

∫
(α+ γ + µh)dt

Ih(t) ≥ Ih(0)e−(α+γ+µh)t ≥ 0.

The fourth equation of system (2.1) gives
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dRh
dt

= αIh − (q + µh)Rh

∫ 1
Rh

dRh ≥ −
∫

(q + µh)dt

Rh(t) ≥ Rh(0)e−(q+µh)t ≥ 0.

Considering the fifth equation of system (2.1), we solve for Sv(t)

dSv
dt

= Γv − ξvSv − µvSv

≥ −(Γv + µv)Sh

∫ 1
Sv
dSv ≥ −

∫
(Γv + µv)dt

Sv(t) ≥ Sv(0)e−(
∫

Γvdt+µvt) ≥ 0.

The sixth equation of system (2.1) gives

dEv
dt

= ξvSv − (ηv + µv)Ev

∫ 1
Ev
dEv ≥ −

∫
(ηv + µv)dt

Ev(t) ≥ Ev(0)e−(ηv+µv)t ≥ 0.

From the seventh equation of system (2.1), we have
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dIv
dt

= ηvEv − µvIv

∫ 1
Iv
dIv ≥ −

∫
µvdt

Iv(t) ≥ Iv(0)e−µvt ≥ 0.

Furthermore, it is important to show that the region Ω is positively invariant. The
right hand sides of equations (2.2) and (2.4) are both bounded by Φh − µhNh and
Γv − µvNv, respectively. It thus follows that

dNh

dt
< 0 if Nh(t) > Φh

µh

and
dNv

dt
< 0 if Nv(t) >

Γv
µv

Using a standard comparison theorem [211], it has been shown above that

Nh(t) ≤ Φh

µh
(1− e(−µht)) +Nh(0)e(−µht),

and
Nv(t) ≤

Γv
µv

(1− e(−µvt)) +Nv(0)e(−µvt).

Moreso, if Nh(0) < Φh
µh

then Nh(t) ≤ Φh
µh

and if Nv(0) < Γv
µv

then Nv(t) ≤ Γv
µv
.

Therefore Ω is positively invariant. If Nh(0) > Φh
µh

and Nv(0) > Γv
µv
, then either the

solution enters Ω in finite time, or Nv(t) approaches Γv
µv

and Nh(t) approaches Φh
µh

asymptotically, and the infected state variables Eh, Ih, Ev and Iv approaches zero as
t→∞. 2
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2.5 Existence of the disease-free equilibrium

In this section, we analysed system (2.1) in order to obtain the equilibrium points of
the system and its stability. Let E = (S∗h, E∗h, I∗h, R∗h, S∗v , E∗v , I∗v ) be the steady-state
of system (2.1). Then, the equilibrium points are obtained by setting the right hand
sides of system (2.1) to zero, that is;

Φh + qRh − βhSh − µhSh = 0

βhSh − (ηh + µh)Eh = 0

ηhEh − (α+ γ + µh)Ih = 0

αIh − (q + µh)Rh = 0 (2.9)

Γv − ξvSv − µvSv = 0

ξvSv − (ηv + µv)Ev = 0

ηvEv − µvIv = 0

The population will never be extinct as long as the human recruitment term Φh

and the mosquito birth term Γv are not zero. This implies that there is no trivial
equilibrium point, thus (S∗h, E∗h, I∗h, R∗h, S∗v , E∗v , I∗v ) 6= (0, 0, 0, 0, 0, 0, 0). The model
system (2.1) has a steady state in the absence of malaria diseases, that is, Eh =
Ih = Ev = Iv = 0. Hence, the disease-free equilibrium (DFE) denoted as E0, of the
model system (2.1) is given by

 

 

 

 



2.5. Existence of the disease-free equilibrium 43

E0 = (S∗h, E∗h, I∗h, R∗h, S∗v , E∗v , I∗v )

(2.10)

=
(Φh

µh
, 0, 0, 0, Γv

µv
, 0, 0

)

2.5.1 Reproduction number

The basic reproduction number (sometimes called basic reproductive rate, basic re-
productive ratio) denoted by R0, of an infection is the number of cases one case
generates on average over the course of its infectious period, in an otherwise un-
infected population. In other words, it is the number of secondary infections that
one infectious individual would create over the duration of the infectious period,
provided that everyone else is susceptible. It is useful as it helps determine whether
or not an infectious disease can spread through a population. When R0 < 1, it
implies that each individual produces, on average, less than one new infected indi-
vidual and hence the disease dies out with time. On the other hand, when R0 > 1,
it means each individual produces more than one new infected individual and hence
the disease is able to invade the susceptible population. However, R0 = 1 is the
threshold below which the generation of secondary cases is insufficient to maintain
the infection with human community.
The basic reproduction number can not be determined from the structure of the
mathematical model alone, but depends on the definition of infected and uninfected
compartments. We define Xs to be the set of all disease free states. That is

Xs = {x ≥ 0|xi = 0, i = 1, ...,m}.

In the computation of R0, it is important to distinguish new infection from all
other changes in the population. Let Fi be the rate of appearance of new infections
in compartment i, Vi = V−i − V

+
i is the difference between the rate of transfer of

individuals in the compartment i, (V−i ), by all other means and the rate of transfer of
individuals in the compartment i, (V+

i ) by all other means, while x0 be the disease-
free equilibrium point. It is assumed that each function is continuously differentiable
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at least twice in each variable. The disease transmission model consists of non-
negative initial conditions together with the following system of equations:

ẋ = fi(x) = Fi(x)− Vi(x), i = 1, ..., n.

Let
F =

[
∂Fi(x0)
∂xj

]
and V =

[
∂Vi(x0)
∂xj

]
(2.11)

where 1 ≤ i, j ≤ m.

Also, F is non-negative, V is a nonsingular M -matrix in which both are m × m

matrix, where m is the number of infected classes.
Hence, R0 is the largest eigenvalue of FV −1, where the (i, j) entry of F is the rate
at which infected individuals in compartment j produce new infections i, the (j, k)
entry of V −1 is the average length of time this individual spends in compartment j
during its lifetime, assuming that the population remains near the DFE and barring
reinfection.
Hence, the (i, k) entry of the product FV −1 is the expected number of new infections
in compartment i produced by the infected individual originally introduced into
compartment k. Following [48], FV −1 is called the next generation matrix for the
model and we therefore say

R0 = ρ(FV −1),

where ρ(A) denotes the spectral radius of a matrix A.

In an attempt to calculate R0 for system (2.1), we start from the infected com-
partments for both populations; Eh, Ih, Ev, Iv and then followed by the uninfected
classes; Sh, Rh, Sv. The two populations thus give
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dEh
dt

= βεκIv
Nh

Sh − (ηh + µh)Eh

dIh
dt

= ηhEh − (α+ γ + µh)Ih

dEv
dt

= ξεκIh
Nh

Sv − (ηv + µv)Ev

dIv
dt

= ηvEv − µvIv (2.12)

dSh
dt

= Φh + qRh −
βεκIv
Nh

Sh − µhSh

dRh
dt

= αIh − (q + µh)Rh

dSv
dt

= Γv −
ξεκIh
Nh

Sv − µvSv

From equation (2.12), we show the rate of appearance of new infection in compart-
ments; Eh and Ev using the next generation matrix as

F =



βεκIv
Nh

Sh

0

ξεκIh
Nh

Sv

0


. (2.13)

Differentiating the matrix above, with respect to the model variables using Jacobian
matrix method at the disease-free equilibrium point E0, whereNh ≤ Φh

µh
andNv ≤ Γv

µv
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to get Jacobian matrix;

F =



0 0 0 βεκ

0 0 0 0

0 ξεκΓvµh
Φhµv 0 0

0 0 0 0


(2.14)

Calculating the transfer of individuals out of the compartments of the system (2.12)
by all other means, we have

V =



(ηh + µh)Eh

(α+ γ + µh)Ih − ηhEh

(ηv + µv)Ev

µvIv − ηvEv


. (2.15)

Hence, the Jacobian matrix of V evaluated at E0 is given by

V =



ηh + µh 0 0 0

−µh α+ γ + µh 0 0

0 0 ηv + µv 0

0 0 −ηv µv


. (2.16)
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The inverse of above matrix gives

V −1 =



1
ηh+µh 0 0 0

ηh
(ηh+µh)(α+γ+µh)

1
(α+γ+µh) 0 0

0 0 1
ηv+µv 0

0 0 ηv
µv(ηv+µv)

1
µv


. (2.17)

We find the product of equation (2.14) and (2.17) to give

FV −1 =



0 0 a1 a2

0 0 0 0

a3 a4 0 0

0 0 0 0


, (2.18)

where

a1 = βεκηv
µv(ηv + µv)

, a2 = βεκ

µv
, a3 = ξεκΓvηhµh

(α+ γ + µh)(ηh + µh)Φhµv
, and

a4 = ξεκΓvµh
(α+ γ + µh)(ηh + µh)Φhµv

.
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Hence, we develop the matrix determinant M = |FV −1 − Iλ| = 0

M =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ 0 a1 a2

0 −λ 0 0

a3 a4 −λ 0

0 0 0 −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (2.19)

The eigenvalues from the matrix (2.18) gives

0

0

0

√
µvβξκ2ε2ηvηh( Γµh

µvΦh
)(α+γ+µh)(ηh+µh)(ηv+µv)

µv(α+γ+µh)(ηh+µh)(ηv+µv)

−

√
µvβξκ2ε2ηvηh( Γµh

µvΦh
)(α+γ+µh)(ηh+µh)(ηv+µv)

µv(α+γ+µh)(ηh+µh)(ηv+µv)



. (2.20)

Hence, the reproduction number, R0, from the matrix (2.20), which is the spectral
radius ρ(FV −1), defined as the dominant eigenvalue of FV −1 is given by

R0 =
√
µ2
vΦhβξκ2ε2ηvηhΓvµh(α+ γ + µh)(ηh + µh)(ηv + µv)

(µ2
vΦh(α+ γ + µh)(ηh + µh)(ηv + µv))2 (2.21)

Simplifying equation (2.21) further we have

R0 =
√

βξκ2ε2ηvηhΓvµh
µ2
vΦh(α+ γ + µh)(ηh + µh)(ηv + µv)

(2.22)
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The term ηh
ηh+µh is the probability of survival of individuals from exposed class to the

infectious class. Similarly, ηv
ηv+µv is the probability of survival of mosquitoes from

exposed class to the infectious class of the mosquito population. The term βεκηv
µv(ηv+µv)

describes the number of humans that one mosquito infects during the lifetime it sur-
vives as infectious, when all humans are susceptible. Also, the term ξεκηh

(α+γ+µh)(ηh+µh)
describes the number of mosquitoes that are infected through contacts with one
infectious human, while the human survives as infectious, when no infection among
vectors.
However, we can likewise say

R0 =
√
R0h ×R0v (2.23)

where R0h is the number of humans that one mosquito infects through its infectious
lifetime and defined as

R0h =
√

βεκηhµh
Φh(α+ γ + µh)(ηh + µh) (2.24)

and R0v is the number of mosquitoes that one human infects through the duration
of the infectious period.

R0v =
√

ξεκηvΓv
µ2
v(ηv + µv)

(2.25)

Hence,

R0 =
√

βεκηhµh
Φh(α+ γ + µh)(ηh + µh) .

ξεκηvΓv
µ2
v(ηv + µv)

(2.26)

2.5.2 Local stability of the disease-free equilibrium point

The local stability of the disease-free equilibrium (DFE) is computed by the next
generation method of van den Driessche and Watwough [196] as in the basic repro-
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duction number shown in equation (2.22), and can be discussed by examining the
linearized form of the system (2.1) at the steady state E0.

Lemma 2.5.1. The disease-free equilibrium point E0 for the system (2.1) is locally
asymptotically stable (LAS) if R0 < 1 and unstable if R0 > 1

Proof: The Jacobian matrix of the system (2.1) with Sh = Nh − (Eh + Ih +Rh) at
the diseases-free equilibrium point is given by



−(ηh + µh) 0 0 0 0 βεκ

ηh −(α+ γ + µh) 0 0 0 0

0 α −(q + µh) 0 0 0

0 − ξεκΓvµh
Φhµv 0 −µh 0 0

0 ξεκΓvµh
Φhµv 0 0 −(ηv + µv) 0

0 0 0 0 ηv −µv



(2.27)

The third and the fourth columns have diagonal entries, Therefore, we reduce the
matrix by excluding the corresponding rows and columns of −(q+µh) and µv which
are the eigenvalues of the Jacobian. The reduced matrix thus



−(ηh + µh) 0 0 βεκ

ηh −(α+ γ + µh) 0 0

0 ξεκΓvµh
Φhµv −(ηv + µv) 0

0 0 ηv −µv


(2.28)

We calculate the remaining eigenvalues and the solutions of the characteristic equa-
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tion of the reduced matrix (2.28) is given by

(x+ µv)(x+Q1)(x+Q2)(x+Q3)− βξηvε
2κ2Γvηhµh
Φhµv

(2.29)

where
Q1 = ηh + µh, Q2 = ηv + µv, and Q3 = α+ γ + µh

This reduces equation (2.22) to

R2
0 = βξκ2ε2ηvηhΓvµh

µ2
vΦhQ1Q2Q3

(2.30)

and equation (2.29) to

x4 + T3x
3 + T2x

2 + T1x+ T0 = 0 (2.31)

where

T0 = µvQ1Q2Q3 −
βξε2κ2Γvηhηvµh

Φhµv

T1 = µvQ2Q3 +Q1Q3(2µv + ηv) + µvQ1Q2

(2.32)

T2 = (Q1 +Q3)(2µv + ηv) + µvQ2 +Q1Q3

T3 = Q1 +Q3 + 2µv + ηv

To ensure that all roots of the polynomial given by (2.31) have negative real parts, we
introduce the Routh-Hurwitz conditions [33], which usually have different forms for
sufficient and necessary conditions on the coefficients of a polynomial. The Routh-
Hurwitz conditions for polynomial (2.31) are T0 > 0, T1 > 0, T2 > 0, T3 > 0, and
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H1 = T3 > 0,

H2 =

∣∣∣∣∣∣∣∣
T3 1

T1 T2

∣∣∣∣∣∣∣∣ > 0, (2.33)

H3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T3 1 0

T1 T2 T3

0 T0 T1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0, (2.34)

H3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T3 1 0 0

T1 T2 T3 1

0 T0 T1 T2

0 0 0 T0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

> 0. (2.35)

It is clearly seen that H4 = T0H3.

Since Q1 > 0, Q2 > 0, Q3 > 0, we have Ti > 0, i = 1, 2, 3. Moreover, if
R0 < 0, it follows that T0 > 0. Hence we prove that H2 > 0 and H3 > 0. Clearly
H3 = T1(T2T3 − T1)− T0T

2
3 and H2 = T2T3 − T1.

We show further that

H2 = T2T3 − T1

= Q2
3(µv +Q1 +Q2) +Q2Q3(2µv +Q1 + 2Q2) (2.36)

+µ2
v(Q1 +Q2 +Q3) +Q2

1(µv +Q2 +Q3)

+2µvQ1(Q2 +Q3) +Q2
2(µv +Q1).

It is seen that equation (2.36) above is positive.
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Also we show that,

H3 = T1(T2T3 − T1)− T0T
2
3

= (Q2 +Q3)(Q1 +Q3)(Q1 +Q2)W (2.37)

+βξε2κ2Γvηhηvµh
Φhµv

whereW = (µv+Q1)(µv+Q2)(µv+Q3) is also positive. Hence, all of the eigenvalues
of the Jacobian matrix have negative real parts when R0 < 1.

However, R0 > 1 implies that T0 < 0; and since all of coefficients (T1, T2, and T3) of
the polynomial (2.31) are positive, not all roots of this polynomial can have negative
real parts. This means, R0 > 1, the disease-free equilibrium point is unstable.

2.5.3 The endemic equilibrium point E1

In the presence of malaria, the model system (2.1) has an equilibrium point called
the endemic equilibrium denoted by E1 and is given by,

E1 = (S∗∗h , E∗∗h , I∗∗h , R∗∗h , S∗∗v , E∗∗v , I∗∗v ).

That is, E1 is a steady-state endemic equilibrium point whereby the disease persists
in the population. Its coordinates should satisfy the following conditions for its
existence and uniqueness of a particular point.

0 < S∗∗h , 0 < E∗∗h , 0 < I∗∗h , 0 < R∗∗h , 0 < S∗∗v , 0 < E∗∗v , 0 < I∗∗v

so, from the model system (2.1), we have the first order system of differential equa-
tions expressed as

S
′
h = E

′
h = I

′
h = R

′
h = S

′
v = E

′
v = I

′
v = 0,

from which the model system (2.1) turns into the homogeneous system of differential
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equations (2.38). So we compute the system (2.38) below for endemic equilibrium
points in terms of β∗∗ and ξ∗∗ values.

0 = Φh + qRh − βhSh − µhSh

0 = βhSh − (ηh + µh)Eh

0 = ηhEh − (α+ γ + µh)Ih

0 = αIh − (q + µh)Rh (2.38)

0 = Γv − ξvSv − µvSv

0 = ξvSv − (ηv + µv)Ev

0 = ηvEv − µvIv

Using Maple and Mathematica programming language, the model system (2.1) has
an equilibrium point E1 = (S∗∗h , E∗∗h , I∗∗h , R∗∗h , S∗∗v , E∗∗v , I∗∗v ) and the solutions (in
terms of β∗∗h and ξ∗∗v ) are presented in a simplified structure in equation (2.39)
below,
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dS∗∗h
dt

= (ηh + µh) (α+ γ + µh) Φh (q + µh)(
β∗∗h + µh

)
(ηh + µh) (α+ γ + µh) (q + µh)− qα ηhβ∗∗h

,

dE∗∗h
dt

= (α+ γ + µh) Φh (q + µh)β∗∗h(
β∗∗h + µh

)
(ηh + µh) (α+ γ + µh) (q + µh)− qα ηhβ∗∗h

,

dI∗∗h
dt

= Φh (q + µh)β∗∗h ηh(
β∗∗h + µh

)
(ηh + µh) (α+ γ + µh) (q + µh)− qα ηhβ∗∗h

,

dR∗∗h
dt

= αΦhβ
∗∗
h ηh(

β∗∗h + µh
)

(ηh + µh) (α+ γ + µh) (q + µh)− qα ηhβ∗∗h
, (2.39)

dS∗∗v
dt

= Γv
ξv + µv

,

dE∗∗v
dt

= ξvΓv
(ηv + µv) (ξv + µv)

,

dI∗∗v
dt

= ξvΓvηv
(ηv + µv)µv (ξv + µv)

,

(2.41)

where, β∗∗h = βεκI∗∗v
S∗∗
h

+E∗∗
h

+I∗∗
h

+R∗∗
h
.

Putting equation (2.39) into expression ξ∗∗v = ξεκI∗∗h
S∗∗
h

+E∗∗
h

+I∗∗
h

+R∗∗
h
, after some alge-

braic manipulations, the endemic equilibria of the malaria model (2.1) satisfy the
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polynomial

P (ξ∗∗v ) = ξ∗∗v (A1(ξ∗∗v )2 +A2(ξ∗∗v )), (2.42)

we have

A1(ξ∗∗v ) +A2 = 0, (2.43)

where,

A1 = ηh (q + α+ µh) + (q + µh) (α+ γ + µh) (2.44)

A2 = (α+ γ + µh) (ηh + µh)2 φh
2

ηh µh2

[
1− Φh(ηh + µh)

µhηh
R2

0h

]
. (2.45)

Clearly, A1 > 0 and A2 ≥ 0 whenever R0h ≤ 1, implying that ξ∗∗v = −A2
A1
≤ 0.

Therefore the mass action of the malaria model has no endemic equilibrium whenever
R0h ≤ 1 and one unique endemic equilibrium when R0h > 1.

2.6 Summary

In this chapter, a basic deterministic malaria model is formulated and analysed.
The seven compartments model consist of four human and three adults mosquito
compartments. The analysis of the model has shown that there exists a domain
where the model is epidemiologically meaningful and mathematically well-posed.
The model has been qualitatively analysed for the existence and stability of the
disease-free equilibrium and endemic equilibrium points. Thereafter, the next gen-
eration method has been used to calculate the reproduction number, R0, as an
important parameter that plays a big role in the control of the malaria infection.
The stability of the equilibrium points is also analyzed using R0. We also showed
that the disease-free equilibrium E0 is locally asymptotically stable if R0 < 1, and
become unstable, and there exists endemic equilibrium E1 stable when R0 > 1.

 

 

 

 



Chapter 3

Modelling the impact of
climatic variables on malaria
transmission
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In this chapter, we develop and analyse mosquito-human malaria model similar
to that in Chapter 2. We incorporate climate-dependent parameters of Anopheles
gambiae into the model to understudy malaria transmission over Limpopo province
in South Africa.

3.1 Abstract

Malaria is one of the most severe disease in the world. A projected climate change
will probably alter the region and transmission potential of malaria in Africa. In
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this study, a climate-based mathematical model to investigate the impact of tem-
perature and rainfall on malaria transmission is developed and analysed. The basic
reproduction number (R0) is derived along with stability analysis. The effect of the
larval death rate on the reproduction number is also investigated. The model is
validated on observed malaria transmission in Limpopo province, South Africa, giv-
ing a reasonable fit and in particular, detecting accurately all the spikes in malaria
prevalence. The model provides a numerical basis for further refinement towards
prediction of the impact of climate variability on malaria transmission.

3.2 Introduction

Malaria remains one of the largest killer diseases in Africa, and most of its victims
are women and children [205]. Sub-Saharan Africa continues to carry an extremely
high portion of the global malaria burden [208]. In South Africa, over 10% of the
population are living in malaria-epidemic provinces and are posed to the danger
of contacting the disease [128]. Malaria is caused by a protozoan from the genus
Plasmodium, and it is spread through mosquitoes. A single bite by a malaria-
carrying mosquito can lead to extreme sickness or death. Malaria starts with an
extreme cold, followed by high fever and severe sweating. These can be accompanied
by joint pain, abdominal pain, headaches, vomiting, and extreme fatigue.

Malaria is very sensitive to climatic conditions, which explains why it is most
prevalent in tropical climates, where there is sufficient breeding sites and conducive
temperatures for mosquitoes. The high sensitivity of malaria to climate cannot be
over-emphasized. For instance, a slight change in temperature can drastically affect
the lifespan and patterns of mosquitoes because they are cold-blooded, and more-
over, the protozoan itself can only survive in certain temperatures. With higher
temperatures, the mosquitoes can mature faster, and thus have more time to spread
the disease. The malaria parasite also matures more quickly at warmer tempera-
tures. However, if temperatures become too high, neither mosquitoes nor the malaria
parasite can survive. In addition, water is also a major contributor to the spread
of malaria, since the vector mosquitoes breed in small pools of water. More rainfall
increases the possible breading grounds for mosquito larvae, which eventually results
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in more vectors to spread the disease. With little rainfall, there are few places for
the mosquitoes to breed.

When attempting to control the mosquito population, it is important to exam-
ine the weather parameters such as temperature and rainfall which are imperative
in determining the disease epidemics. Having accurate seasonal climate forecasts
of these parameters, it is possible to utilize malaria models that account for early
warning systems in endemic regions [175]. These models can also be used to evaluate
the possible changes in malaria prevalence regions under climate change scenarios
[93]. Malaria transmission models play a significant role in understanding the dy-
namics of the disease [119] and have long been applied to assess the possible means
of intervention [89]. The dynamics have been investigated through deterministic
models in many studies [36] and some through stochastic models [135, 175]. Some
of these studies either neglect the impact of climate or incorporate it through the
force-of-infection. For instance, Okosun and Makinde [141] derived and analyzed a
model for the transmission of malaria disease that includes the class of individuals
with drug resistance and treatment measures. These parameters were used to for-
mulate optimal strategies for disease control in the population. The local stability
of the disease free equilibrium and the existence of an endemic equilibrium were also
established in the study.

In addition to these, many studies have also considered climate as a major factor
of the disease epidemic. Craig et al [41], for instance examined both seasonal case
totals and seasonal changes in cases aligned with a series of climatic indicators
obtained from three weather stations in KwaZulu-Natal, South Africa. In the study,
linear regression analysis with several climate variables is used to verify that seasonal
changes are important. Eckhoff et al [52] also offered a new model for mosquito
population dynamics with the effect of weather and impacts of multiple concurrent
interventions. The model is set in large-scale individual-based simulation and results
for local elimination of malaria are discussed. More dynamic models for vector
life-cycle have been set up and designed to run on a local scale with treatment
of water bodies. The Liverpool Malaria Model (LMM) has also been useful in
forecasting and climate projection analysis [84]. It includes the effect of temperature
on the sporogonic and gonotrophic cycles, and clearly explains the parasite and egg
growth stages with consideration to temperature impact on vector death rates [80].
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Although the model was made to run over a regional scale, it did not embrace a clear
representation of the surface hydrology, and egg laying rates were proportional to
the 10-day rain rate. The updated version of LMM (that is LMM2010) which works
on daily mean temperature and rainfall was later introduced to fill the lapses above,
[55]. In the previous study of Okosun and Makinde [142], the impact of climate
on malaria transmission was not put into consideration. Hence this study aims to
extend the work of [142] by examining the impact of climate variability on malaria
epidemics over Limpopo province, South Africa.

3.3 Methodology

3.3.1 Model formulation

Our model sub-divides the total human population, denoted byNh into sub-populations
of susceptible individuals (Sh), those exposed to malaria parasite (Eh), individuals
with malaria symptoms (Ih) and recovered humans (Rh) as illustrated in Fig. 3.1,
such that Nh = Sh + Eh + Ih +Rh.
The total vector (mosquito) population is denoted by Nv and is sud-divided into
susceptible mosquitoes (Sv), mosquitoes exposed to malaria parasite (Ev) and in-
fectious mosquitoes (Iv). Hence, Nv = Sv + Ev + Iv.
Susceptible individuals are recruited (by birth or immigration) into the community
at a rate Φh and acquire malaria through contact with infectious mosquitoes at a
rate βh. Exposed individuals move to infectious class at a rate ηh while infected
individuals recover spontaneously at a rate α to join the immune class as some re-
covered due to treatment at a rate ς. Recovered individuals lose their immunity and
return to susceptible class at a rate q while the natural death and disease-induced
death rate are denoted by µh and γ respectively.
Susceptible mosquitoes (Sv) are recruited at the rate ϑv(T,R)Nv(1 − Nv

P )(1 − δv),
where P is the larval carrying capacity and δv represent the proportion of larvae
that died in the process of becoming adult mosquito. We assume that larvae be-
come adult at the rate ϑv(T,R) which is dependent on temperature (T ) and rainfall
(R). Mosquitoes are assumed to suffer death due to natural causes at a rate µv(T )
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and their numbers are further reduced due to the use of insecticide spray at a rate
%.

Rh

IhSh

Φh

Eh

SvIv

Ev

qRh

βhSh ηhEh

(α + ς)Ih

µhRh

µhIh

γIh

µhSh

µhEh

ξv(T )Svηv(T )Ev

ϑv(T,R)Nv(1− Nv
P

)(1− δv)Sv

µv(T )Sv
µv(T )Iv

µv(T )Ev

Figure 3.1: Flow diagram for malaria transmission model

The susceptible mosquitoes acquire malaria through contact with infected humans
at a rate ξv and move to the exposed class (Ev), later to progress towards the
infected class (Iv) at a rate ηv(T ). It is noted that βh = υεκIv

Nh
and ξv(T ) = ξε(T )κIh

Nh
,

where υ and ξ represent the transmission probability of humans and mosquitoes
respectively, with contact rate κ of mosquito per human per unit time. We also
assume that mosquito biting rate ε(T ) and mortality rate µv(T ) are temperature
dependent [4, 137, 190]. The dynamics of the disease are described by the following
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system of differential equations:

dSh
dt = Φh + qRh − βhSh − µhSh

dEh
dt = βhSh − (ηh + µh)Eh

dIh
dt = ηhEh − (α+ γ + ς + µh)Ih

dRh
dt = (α+ ς)Ih − (q + µh)Rh

dSv
dt = ϑv(T,R)Nv(1− Nv

P )(1− δv)− (ξv + %+ µv(T ))Sv

dEv
dt = ξvSv − (ηv(T ) + %+ µv(T ))Ev

dIv
dt = ηv(T )Ev − (%+ µv(T ))Iv

(3.1)

3.3.2 Model analysis without climate parameters

In this section, we begin our mathematical analysis without climate-dependent pa-
rameters. We assume all parameters are constant. The malaria model (3.1) will be
analyzed in a biologically feasible region as follows. This region should be feasible
for both human and vector populations. More precisely, we have

Theorem 3.3.1. If Sh(0), Eh(0), Ih(0), Rh(0), Sv(0), Ev(0) and Iv(0) are non-negative,
then so are Sh(t), Eh(t), Ih(t), Rh(t), Sv(t), Ev(t) and Iv(t) for all t > 0. Hence
lim sup
t→∞ Nh(t) ≤ Φh

µh
and lim sup

t→∞ Nv(t) ≤ P (1 + (%+µv)
ϑv(1−δv)).

Furthermore, if in addition Nh(0) ≤ Φh
µh

and Nv(0) ≤ P (1+ (%+µv)
ϑv(1−δv)) respectively,

then Nh(t) ≤ Φh
µh

and Nv(t) ≤ P (1 + (%+µv)
ϑv(1−δv)) respectively. In particular, the region

D = Dh ×Dv with,

Dh =
{

(Sh, Eh, Ih, Rh) ∈ R4
+ : Sh + Eh + Ih +Rh ≤

Φh

µh

}
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and
Dv =

{
(Sv, Ev, Iv) ∈ R3

+ : Sv + Ev + Iv ≤ P (1 + (%+ µv)
ϑv(1− δv)

)
}

is positively invariant.

Proof. Let t1 = sup {t > 0 : Sh, Eh, Ih, Rh, Sv, Ev, are Iv are positive on [0, t]}.
Since Sh(0) > 0, Eh(0) > 0, Ih(0) > 0, Rh(0) > 0, Sv(0) > 0, Ev(0) > 0, Iv(0) > 0,
then t1 > (0). If t1 < +∞, then by using the variation of constants formula to the
first equation of the system 3.1, we have

Sh(t1) = U(t1, 0)Sh(0) +
∫ t1

0
ΛU(t1, τ)dτ

where U(t1, τ) = e−
∫ t1
τ

(βh+µh)(s)ds.

Clearly, Sh(t1) > 0 and it can be shown in the same manner that this is the case
for the other variables. This contradicts the fact that t1 is the supremum because
at least one of the variable should be equal to zero at t1. Therefore t1 = ∞ which
implies that Sh, Eh, Ih, Rh, Sv, Ev, are Iv are positive for all t > 0.

For the second part of the proof, we obtain by adding the first four equations and
the last three equations of the system 3.1 gives

dNh
dt (t) = Φh − γIh(t)− µhNh(t)

dNv
dt (t) = ϑv(T,R)Nv(t)(1− Nv(t)

P )(1− δv)− (%+ µv)Nv(t) .
(3.2)

Since 0 < Ih(t) ≤ Nh(t)

Φh − (γ + µh)Nh(t) ≤ dNh

dt
(t) ≤ Φh − µhNh(t) (3.3)

By using a standard comparison theorem [94], we obtain

Nh(0)e−(γ+µh)t + Φh

γ + µh
(1− e−(γ+µh)t) ≤ Nh(0)e−µht + Φh

µh
(1− e−µht)
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Nv(t) = Nv(0)e−ϑv(1−δv)t + P

[
1 + (%+ µv)

ϑv(1− δv)

] (
1− e−ϑv(1−δv)t

)
.

Therefore, if Nh(0) ≤ Φh
µh

(resp. Nv(0) ≤ P
[
1 + (%+µv)

ϑv(1−δv)

]
) then

Nh(t) ≤ Φh
µh

(resp. Nv(t) ≤ P
[
1 + (%+µv)

ϑv(1−δv)

]
).

Moreover

lim sup
t→∞ Nh(t) ≤ Φh

µh
and lim sup

t→∞ Nv(t) ≤ P
[
1 + (%+ µv)

ϑv(1− δv)

]
.

This establishes the invariance of D as required.

From Theorem 3.3.1 we conclude that it is sufficient to consider the dynamics of
the model in [125] on D. In this region, the model can be considered as being
epidemiologically meaningful and mathematically well-posed [78].

3.3.2.1 Existence and stability of equilibria

Disease-free equilibrium (DFE)

The basic model (3.1) has a DFE given by,

E0 = (S∗h, E∗h, I∗h, R∗h, S∗v , E∗v , I∗v ) =
(Φh

µh
, 0, 0, 0, P (1 + (%+ µv)

ϑv(1− δv)
), 0, 0

)
(3.4)

At this point we find it convenient to introduce the symbol µ̄, µ̄ = α+γ+ ς+µh, in
order to simplify a number of expressions. The linear stability of E0 is ascertained
as in [196]. Using the next generation operator method on model (3.1) the basic
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reproduction number, denoted by R0, is found to be given by

R0 = r(FV −1) =
√
R0h ×R0v =

√
Pξυ(εκ)2ηhµhηv (ϑv (1− δv)− (%+ µv))

Φhµ̄ϑv(1− δv)(%+ µv) (ηv + %+ µv)
(3.5)

where r is the spectra radius (dominant eigenvalue in magnitude) of the next gen-
eration matrix FV −1. The term R0h represents the number of humans that one
mosquito infects through its infectious lifetime and it is defined as

R0h =
√

υεκηhµh
Φhµ̄(ηh + µh) (3.6)

and R0v is the the number of mosquitoes that one human infects through the dura-
tion of the infectious period, which is also defined as

R0v =
√
Pξεκηv (ϑv (1− δv)− (%+ µv))
ϑv(1− δv)(%+ µv) (ηv + %+ µv)

. (3.7)

Furthermore, using Theorem 2 of [196], the following result is established.

Theorem 3.3.2. The disease free equilibrium, E0, of the model (3.1), is locally
asymptotically stable (LAS) if R0 < 1 and unstable otherwise.

We refer readers to other studies (e.g., [138, 141, 142]) for the proof of this theorem.
The basic reproduction number R0 measures the average number of new infections
generated by a single infected individual in a completely susceptible population
[5, 47, 196]. Thus, Theorem 3.3.2 implies that malaria can be eliminated from
human population (when R0 < 1) if the initial sizes of the sub-populations are in
the basin of attraction of the DFE.

3.3.2.2 Existence of endemic equilibria

In search of an endemic equilibrium point of model (3.1) (that is, equilibria where
at least one of the infected components in model (3.1) is non-zero), we take the
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following steps. Let E1 = (S∗∗h , E∗∗h , I∗∗h , R∗∗h , S∗∗v , E∗∗v , I∗∗v ) represent any arbitrary
endemic equilibrium of model (3.1). Also let

β∗∗h = υεκI∗∗v
N∗∗h

, and ξ∗∗v = ξεκI∗∗h
N∗∗h

(3.8)

be the forces of infection of human and vectors at steady state, respectively. Setting
the right hand side of equation (3.1) to zero gives the following expressions.

S∗∗h = Φh+qR∗∗h
β∗∗
h

+µh ,

E∗∗h = β∗∗h S∗∗h
ηh+µh ,

I∗∗h = ηhE
∗∗
h

µ̄ ,

R∗∗h = (α+ς)I∗∗h
q+µh ,

S∗∗v = P µv (ϑv (1−δv)+(%+µv))
ϑv (1−δv) ((%+µv)+ξ∗∗) ,

E∗∗v = ξ∗∗v S∗∗v
ηv+%+µv ,

I∗∗v = ηvE∗∗v
%+µv .



(3.9)

Substituting (3.9) in (3.8) gives,

ξ∗∗v = ε κ ξ β∗∗
h
ηh µh (q+µh) Φh(

(µ̄)µh (q+µh) (ηh+µh)+β∗∗
h

((µ̄)µh (q+µh)+ηh (q (γ+µ)+(µ̄)µh))
)
−
(
γ β∗∗

h
ηh (q+µh) Φh

)
Φh

(3.10)

It can be shown that the non-zero equilibria of the model satisfy the following
polynomial (in terms of β∗∗h )

P (β∗∗h ) = A(β∗∗h )3 +B(β∗∗h )2 + C(β∗∗h ))
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A(β∗∗h )2 +B(β∗∗h ) + C = 0, (3.11)

where,

A = ϑv(1− δv) [(µ̄)µh(q + µh) + ηh(qµh + (α + µh)µh)] (ηv + µv)
[(µ̄)µh(q + µh)µv + ηh(εκξµh(q + µh) + (qµh + (α + µh)µh)(%+ µv))] Φh

B = µh(q + µh)ϑv(1− δv)(µ̄)(ηh + µh)(ηv + %+ µv)Φh [Rk −R2
0]G1

C = (µ̄)2µ2
h(q + µh)2(ηh + µh)2ϑv(1− δv)(ηv + %+ µv)Φh [1−R2

0] ,
(3.12)

where,

Rk = εκξηhµh(q + µh) + 2 [(µ̄)µh(q + µh) + ηh(qµh + (µ̄)] (%+ µv)
(%+ µv) [(µ̄)µh(q + µh)ηh(q(γ + µh) + (µ̄)µh)]

and
G1 = (µ̄)µh(q + µh)ηh(q(γ + µh) + (µ̄)µh).

It is noted that coefficient A is always positive and C is positive if R0 is less
than 1 (resp

√
Rk) respectively.

We have the following results:

Proposition 3.3.3.

1. If Rk ≥ 1 then system (3.1) exhibits a forward bifurcation.

2. If Rk < 1 then system (3.1) exhibits a backward bifurcation.

Proof:
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1. For Rk ≥ 1 we obtain when R0 > 1 that C < 0. This implies that system
(3.1) has a unique endemic steady state. If R0 ≤ 1, then C ≥ 0 and
B ≥ 0. In this case system (3.1) has no endemic steady states.

2. For Rk < 1 we discuss the following cases:

i. R0 > 1, in this case C < 0 and system (3.1) has a unique endemic
steady state.

ii. R0 ≤
√
Rk, in this case both B and C are positive implying that

system (3.1) has no endemic steady states.

iii.
√
Rk < R0 < 1, here C > 0 and B < 0 while the discriminant

of (3.11), ∆(R0) = B2 − 4AC, can be either positive or negative. We
have ∆(1) = B2 > 0 and ∆(

√
Rk) = −4AC < 0, then there exists R0c

such that ∆(R0c) = 0, ∆(R0) < 0 for
√
Rk < R0 < R0c and ∆(R0) > 0

for R0c < R0. This together with the signs of B and C imply that
system (3.1) has no endemic steady states when

√
Rk < R0 < R0c, one

endemic steady state when R0 = R0c and two endemic steady states
when R0c < R0 < 1. �

3.3.3 Model analysis with climate-dependent parame-
ters

3.3.3.1 Study case and data

Over the years, Plasmodium falciparum has been identified as the main causes
of malaria in three northeastern provinces of South Africa namely; Mpumalanga,
KwaZulu-Natal and Limpopo [41, 105]. In this study, we validate our model
against the malaria transmission case in Limpopo Province. The province is
situated in the northernmost corner of South Africa (as in Fig. 3.2). It ex-
periences long sunny days and dry weather on most days with high rainfall
between October - March every year [60] as shown in Fig. 3.3. In Fig. 3.3a,
four peaks with three nadirs are observed for temperature between January
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Figure 3.2: Map of South Africa showing (in red) Limpopo province.

2002 - December 2004. The peaks occur between December-February while
the nadirs falls within June - August each year. Similar patterns are observed
for rainfall in Fig. 3.3b. This implies that the province simultaneously ex-
periences high temperature and rainfall between December - February with
low temperature and rainfall between June-August every year. Also, malaria
transmission in this province is seasonal with climatic conditions affecting the
development of mosquitoes and malaria parasites [60, 177]. Hence, we limit
our study on the effects of temperature and rainfall on the transmission of
malaria in Limpopo province. The input climate data used for this study is
obtained from the South African Weather Service (SAWS). The data consists
of daily rainfall, minimum and maximum temperature that spans the period
of 2002 to 2004, while the monthly malaria cases for the same period were
obtained from the South African Department of Health.
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Figure 3.3: (a) Daily mean temperature and (b) rainfall of Limpopo province
between January 2002 - December 2004.
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3.3.3.2 Parameter estimates

Some of the parameters relevant to our study has also featured in previous
studies of malaria transmission modeling such as in [35, 105, 106, 141]. In
these papers the authors have obtained fairly good numerical values for these
parameters and we reference such parameter values in Table 3.1. Following
the approach of [105], we estimate below the death and birth rate of humans
in Limpopo province.

Human death rate µh

According to theWorld Health Organization (WHO) report, the life expectancy
for South Africa in 2002 was 49.1 years. Hence, the human death rate is cal-
culated as

µh = 1
49.1× 365 = 0.000056 Day−1 (3.13)

Human birth rate Φh

The South Africa Census for 2001 stated that the total human population for
Limpopo province was 5,273,642 [179]. Therefore, the human birth rate for
Limpopo province is estimated as

Φh = µh × 5, 273, 642 = 295 Human/day (3.14)

The climate-dependent parameters affect the processes occurring during either
the larva or adult stage. For instance, adequate rainfall is essential for survival
of eggs, larva and pupae, while temperature is influential in the gonotropic
cycle, a period between blood meal and oviposition [4].
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Mosquito birth rate

We assume that the mosquito birth rate depends on temperature and rainfall
(through the dependence on breeding site availability). From the study of
Parham and Michael [150], we adopt the mosquito birth rate ϑv as

ϑv(T,R) = nepe(R)pl(R, T )pp(R)
te + tl(T ) + tp

(3.15)

where ne is the number of eggs laid per adult female mosquito, per oviposi-
tion, pe(R), pl(R, T ) and pp(R) are the survival probabilities of eggs, larvae
and pupae respectively. The duration of each development stage is given as
te, tl(T ) and tp and the average larval duration tl(T ) = 1/(0.0554T − 0.06737).
We assume that temperature and rainfall act independently on the survival
probability pl of larvae (cf. [150]) such that pl(R, T ) = π1(T )π2(R). In this
product the first factor is taken as

π1(T ) = e−(0.0554T−0.06737). (3.16)

Rainfall has been shown to positively correlate with malaria incidence [145],
although excessive rainfall may flush out larvae and breeding sites [45, 190].
Hence we assume a quadratic relationship between the survival probabilities
of eggs, larvae and pupae and rainfall. For larvae, we assume

π2(R) =
[

4p∗l
R2
l

]
R(Rl −R), (3.17)

where Rl is the rainfall limit beyond which breeding site get flushed out and
no immature stages survive [150]. The constant p∗l is the maximum survival
probability.
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Mosquito mortality rate

To estimate the temperature-dependent mortality rate of adult mosquito, we
adopt the expression of [4, 110, 137] that;

µv(T ) = 1
(−4.4 + 1.31T − 0.03T 2) Day−1 (3.18)

Larval carrying capacity

We assume that rainfall generates available water for larval development, and
that the carrying capacity P evolves according to a dynamical equation that
takes into account habitable per unit area and unit time [4]. It is measured
in terms of an effective maximum number of larvae available in a given region
and we say

P = PA
PE

R (3.19)

where PE = 10−3 < PE < 100 is the carrying capacity decaying rate, and the
conversion factor PA varies between 0 and 104. Other parameters are shown
in Table 3.1 with references.

3.4 Results and discussion

3.4.1 Effects of temperature-dependent parameters

In this section, we illustrate the relationship between temperatures and mosquito
death rate, biting rate, progression rate and reproduction number in Fig. 3.4.
The U-curve in Fig. 3.4a explains in line with [137, 168], that the mosquito
death rate is high at low temperature (below 18oC), low between 18−25oC and
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increases at temperature beyond 25oC. Fig. 3.4b and Fig. 3.4d show unimodal
curves (as also appeared in [128, 137]) which are thermally constrained at both
low and high temperature. Fig. 3.4b demonstrates low mosquito biting rate
at temperatures below 12oC, gradually increasing with a slight declination
at upper thermal limit of 35oC. Although the limit is considerably different
from that obtained in the study [21] which is 30oC, it matches the findings of
[128, 137] which is 35oC. However, the reproduction number R0 in Fig. 3.4d
indicates that the optimal temperature for malaria transmission is 30oC, with
threshold where R0 > 1 between 18 − 38oC. The transmission range is closer
to the new estimate of [128] which is 15 − 35oC, while the optimal tempera-
ture and the threshold is similar to the findings of [137] which are 31.5oC and
22.34− 38.6oC respectively. Over a certain temperature interval, the parasite
development rate in Fig. 3.4c increases with temperature.

In Fig. 3.5, the incidence cases of malaria infection is simulated by our model
and compared with malaria monthly cases for Limpopo province as reported
by South African Department of Health. The figure shows a good fit between
the observed and predicted incidence over wide range of time. It can be seen
in both results that malaria is climate-driven with epidemic peaks between
December-February when temperature and rainfall is high in the province (as
shown in Fig. 3.3). The results indicate a seasonal pattern as both curves
decrease progressively from February through August and then gradually in-
crease from September through January. However, we observe high tempera-
ture and rainfall in December 2002 resulting in an epidemic peak (in Fig. 3.5)
in January 2003. At the ideal temperature (28oC) and conditions, the develop-
ment of Anopheles from juvenile to adult stage takes about 14 days [45, 190],
while symptoms of falciparum malaria arise between 7-15 days depending on
immunity of the host [55].
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Figure 3.4: Simulation of (a) mosquito death rate, (b) mosquito biting rate,
(c) progression rate of mosquitoes, and (d) R0 versus temperature.
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Figure 3.5: The reported cases and modelled cases for Limpopo province,
South Africa 2002 - 2004.

3.4.2 Spatial distribution of malaria reproduction num-
ber over Limpopo

In rainy summer, we assume several water pools serving as mosquito breeding
sites are generated by rainwater. This allows mosquitoes to lay their eggs,
which later develop to adult mosquitoes if the pools are sustained for at least
14 days. We also assumed that additional pools are intentionally created for
the purpose of cattle watering, irrigation and so on [210]. Using our model
with Observational−Reanalysis hybrid datasets for daily temperature, we nu-
merically calculate a time-varying approximation to the basic reproduction
number (R̂0) over Limpopo between December 2002 and December 2003 with
the assumption that R0 varies with time. To achieve this, we incorporate the
climate-dependent parameters into expression (3.5). The 1.0−degree spatial
resolution and Global Meteorological Forcing Dataset for land surface mod-
elling, are produced by the Terrestrial Hydrology Research Group at Princeton
University (hereafter, [174]). The results in Fig. 3.6 and Fig. 3.7 show that
malaria transmission in South Africa is distinctly seasonal, with high trans-
mission limited to the warm and rainy summer months (September to May)
with very low cases in June, July and August [60]. We further investigate the
impact of larval population abundance on the reproductive number by consid-
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Figure 3.6: Simulation of basic reproduction number when δv is low (δv = 0.2).

ering a low and high proportion of larva that died in the process of becoming
adult. It is observed in Fig. 3.6 that when the proportion δv = 0.2, the maxi-
mum value of R̂0 over Limpopo, which is found in summer is 0.84. The value
reduces to 0.48 when δv = 0.9. This implies that when δv is low, it increases
the proportion of larvae (1−δv) that made it to the adult stage, thus increases
the number of mosquitoes available for transmission. On the other hand, high
δv reduces the proportion of adult mosquitoes available for transmission, thus
reduces the reproduction number.

3.5 Conclusion

In this study, a deterministic malaria model to explore the impact of tem-
perature and rainfall on malaria transmission is presented and analysed. We
derived the basic reproduction number and examined the model for the ex-
istence of disease-free and endemic equilibrium points. The system has an
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Figure 3.7: Simulation of basic reproduction number when δv is high (δv = 0.9).

equilibrium point in which the disease persist in the population.

In Section 3.4.1, we examined the effect of temperature on mosquito death,
biting rate, parasite development rate and reproduction number. It is veri-
fied that parasite development rate increases along with temperature, while
mosquito biting rate and reproduction number are thermally constrained at
both low and high temperatures. In the same section, the model is validated
against malaria transmission in Limpopo province, South Africa for 2002-2004.
The results indicate that malaria transmission in the province is seasonal with
epidemic peak between December-February when temperature and rainfall are
relatively high.

We further investigate the effect of larva death rate on the reproduction
number over the entire South Africa for 2003 in Section 3.4.2. Our findings
show that a high rate of larva mortality reduces the reproduction number, and
increases it when low. This suggests that destruction of mosquitoes breed-
ing sites and regular use of larvicides have high potential to reduce malaria
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Table 3.1: Parameters of the malaria model 3.1
Description Symbol Value Ref

Mosquito biting rate ε(T ) 0.000203D1D2 [137, 148]
D1 = T 2 − 11.7T
D2 =

√
42.3− T

Adult mosquito death rate µv(T ) 1
(−4.4+1.31T−0.03T 2) [4, 137]

Progression rate of mosquitoes ηv(T ) (T−Tmin)
111 [137, 150]

Duration of egg development te 1 (days) [150]
Duration of pupa development tp 1 (days) [150]
Maximum survival probability of egg p∗e 0.9 [150]
Maximum survival probability of pupa p∗p 0.25 [150]
Maximum survival probability of larva p∗l 0.75 [150]
Rainfall limit to flushing Rl 50 (mm) [150]
Num. of eggs laid per adult per ovip. ne 200 [137, 150]
Min. temp. for P. falciparum survival Tmin 16 (oC) [150]
Carrying capacity of larva P 1000000 Est.
Induced death rate γ 0.0004 [36, 137]
Loss of immunity α 0.00014 [137]
Recovery rate of humans q 0.005 [36, 137]
Progression rate of humans from the
exposed class to infectious class ηh 1/14 [36, 137]
Natural death rate of humans µh 0.000056 Est.
Rate of treatment % 0.01-0.7 Est.
Probability of transmission of
infection from an infectious human
to a susceptible mosquito υ 0.09 [137, 150]
Probability of transmission of infection
from an infectious mosquito to a
susceptible human ξ 0.04 [137, 150]
Birth rate of humans Φh 295 human/day Est.
Contact rate κ 0.6 [106]
Carying capacity decaying rate PE 0.01 [150]
Conversion factor PA 1000 [150]
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transmission. Further activities like spraying, use of treated bed nets that con-
tribute to mosquitoes death should be encouraged mostly between September
and May when the climatic conditions are favourable for mosquitoes’ develop-
ment in South Africa.

However, there are other factors aside climatic reasons which need to be
considered in studying malaria transmission. Some of these factors include;
migration of infected human, economic development and so on. We leave
these aspects for future studies.

 

 

 

 



Chapter 4

Analysis of mosquito model
without climate variables

In this chapter, we present and analyse a detailed mosquito model without
climate-dependent parameters.

4.1 Model formulation

The mosquito population model is based and developed around phases of the
mosquito life cycle in the study of Lutambi et al [103, 104]. A Mosquito’s life
begins with eggs, which hatch into larvae under a conducive condition. The
larvae further develop into pupae that advance and emerge into adults. The
model consists of three aquatic stages; Eggs (E), Larvae (L), and Pupae (P ),
and three adult classes; Adult searching for host (Ah), Adult at resting state
(Ar) and Adult searching for oviposition site. The compartmental model is
based on a system of six ordinary differential equations with the assumption
that the dynamics are mainly driven by temperature and rainfall. Tempera-
ture has a strong impact on the progression rates at the aquatic stage and on
the survival of adult populations [164] while; rainfall plays a significant role in
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provision of the breeding sites. Female mosquitoes feed on human or animal
blood to produce protein for their eggs. After biting, the female mosquitoes
rest a while in order to develop their eggs. Once the eggs are fully developed,
they find a suitable breeding site to lay their eggs and then proceed to find
another blood meal. This completes the mosquito feeding cycle [35, 103, 104].
We ignore the effects of hibernation and breaks in the reproductive cycle, and
assumed that eggs deposited at breeding sites proceed through development
immediately (as in [103, 104, 172]). We also overlook the male population in
this model since only female mosquitoes are involved in the transmission of
vector-borne diseases. The six subgroups have diverse mortality and progres-
sion rates. Each subgroup is affected by three processes: (i) increase due to
recruitment, (ii) decrease due to mortality, and (iii) development or progres-
sion of survivors into the next state. The parameter n is the average number
of eggs which are expected to hatch into female mosquitoes laid during an
oviposition and ρAo (day−1) is the rate at which new eggs are oviposited (i.e.
reproduction rate). Exit from the egg stage is either due to mortality at µe
(day−1), or hatching into larvae, ρe (day−1). In the larval stage, individuals
exit by death or progress to pupal stage at a rate, ρL (day−1). Assuming a
stable environment, inter-competition for food and other resources for larvae
may occur, leading to density-dependent mortality, µLL

K
(day−1 mosquito−1)

or natural death at an intrinsic rate, µL (day−1), where K is the carrying ca-
pacity of the breeding site. Pupae die at a rate, µP (day−1), and survivors
progress and emerge as adults at rate ρP (day−1). In the adult stage, host
seeking mosquitoes die at a rate µAh (day−1). Those surviving this stage, and
if they are successful in feeding, enter the resting stage at a rate ρAh (day−1).
In the resting stage, mosquitoes die at a rate, µAr (day−1). Survivors progress
to the oviposition site searching stage at a rate ρAr (day−1). Oviposition site
seekers die at rate µAo (day−1) and after laying eggs return to the host seeking
stage. We assume an additional mortality rate of adult mosquito µr (day−1)
related to seeking behaviour. Hence, the dynamics of the mosquito population
are described by the following flow diagram in Fig. 4.1 and the system of
differential equations 4.1:
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Figure 4.1: Flow diagram of the mosquito population model

dE
dt

= nρAoAo − (ρe + µe)E

dL
dt

= ρeE − (ρL + µL(1 + L
K

))L

dP
dt

= ρLL− (ρP + µP )P

dAh
dt

= ρPP + ρAoAo − (ρAh + µAh + µr)Ah

dAr
dt

= ρAhAh − (ρAr + µAr)Ar

dAo
dt

= ρArAr − (ρAo + µAo + µr)Ao

(4.1)
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with initial conditions E(0), L(0), P (0), Ah(0), Ar(0), and Ao(0), where the car-
rying capacity, K is assumed to be constant. Mosquito survival in each stage
and the progression period from one stage to the next are assumed to be ex-
ponentially distributed. Since the system (4.1) monitors populations in each
stage of mosquito development and because all model parameters are positive,
there exists a region D such that

D = {E,L, P,Ah, Ar, Ao ∈ R6 | E ≥ 0, L ≥ 0, P ≥ 0, Ah ≥ 0, Ar ≥ 0, Ao ≥ 0} ,

where the model is mathematically and biologically meaningful and all so-
lutions of the system (4.1) with non-negative initial data will remain non-
negative in the feasible region D for all time t ≥ 0. We use the notation X ′ to
represent dX

dt
here and denote the boundary of D by ∂D.

Theorem 4.1.1. If the initial conditions of system (4.1) lie in region D, then
there exists a unique solution for (4.1), giving E(t), L(t), P (t), Ah(t), Ar(t),
and Ao(t) that remains in D for all time t ≥ 0.

Proof. The right hand side of the system (4.1) is continuous with continuous
partial derivatives in D, therefore (4.1) has a unique solution that exists for
all time. It remains to be shown that D is forward-invariant. We see from
system (4.1) that if E = 0, then E ′ = nρAoAo ≥ 0; if L = 0, then L′ ≥ 0; if
P = 0, then P ′ ≥ 0; if Ah = 0, then Ah

′ ≥ 0; if Ar = 0, then Ar
′ ≥ 0; and if

Ao = 0, then Ao
′ ≥ 0. Therefore all solutions of the system of equations (4.1)

are contained in the region D. 2

4.2 Existence and stability of equilibria

4.2.1 Existence of equilibrium points

Theorem 4.2.1. The model in (4.1) has exactly one equilibrium point on ∂D
given by P0 = (0, 0, 0, 0, 0, 0). We label P0 the mosquito-free equilibrium point.
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Proof. It is easy to check that P0 is the only equilibrium point on ∂D. The
linear stability of P0 is ascertained (as in [196]) using next generation operator
method on model (4.1). We calculate spectral radius r (dominant eigenvalue
in magnitude) of the next generation matrix FV −1, where

F =



0 0 0 0 0 n ρAo

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(4.2)

and

V =



Z1 0 0 0 0 0
−ρe Z2 0 0 0 0

0 −ρL Z3 0 0 0
0 0 −ρP Z4 0 −ρAo
0 0 0 −ρAh Z5 0
0 0 0 0 −ρAr Z6


(4.3)

where,
Z1 = (ρe + µe), Z2 = (ρL + µL), Z3 = (ρP + µP ), Z4 = (ρAh + µAh + µr),
Z5 = (ρAr + µAr) and Z6 = (ρAo + µAo + µr).

Then the basic reproduction number, denoted by R0 is given by

R0 = nρeρLρPρAhρArρAo
Z1Z2Z3Z4Z5Z6

. (4.4)

In search of a persistence equilibrium point of system (4.1), we take the fol-
lowing steps. Let Pe = (E∗, L∗, P ∗, A∗h, A∗r, A∗o) be a persistence equilibrium
of model (4.1). Setting the right hand side of equation (4.1) to zero gives the
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following expression.

E∗ = nA∗o ρAo
Z1

,

L∗ = Z2 (R0−1)
ϕ4

,

P ∗ = ρL (K Z1 Z2+ϕ1)
2µL Z1 Z3

,

A∗h = 2A∗o µL Z1 Z3 ρAo+ρL ρP (K Z1 Z2+ϕ1)
2µL Z1 Z3 Z4

,

A∗r = ρAh ((ρL ρP ϕ1)+Z1 (K ρL Z2 ρP+2A∗o µL Z3 ρAo ))
2µL Z1 Z3 Z4 Z5

,

A∗o = K ρL ρP ρAh ρAr (ρe (µAr Z2 Z3 Z4 Z6+ϕ2 ρAr )+µe ϕ3)

µL Z1 Z32 (µAh Z6 Z5+ρAh (µAr ρAo+µAo Z5))2



(4.5)

where,

ϕ1 =
√
K Z1

(
K Z1 Z2

2 + 4nA∗o µL ρe ρAo
)
,

ϕ2 = (µAo Z2 Z3 Z4 + (µAh Z2 Z3 + n ρL ρP ρAh) ρAo),

ϕ3 = Z2 Z3 (µAh Z6 Z5 + ρAh (µAr Z6 + µAo ρAr))

ϕ4 = L
K
.

Substituting Pe = (E∗, L∗, P ∗, A∗h, A∗r, A∗o) into 4.1 shows that Pe is an equi-
librium point of 4.1. If R0 > 1, we see that all components Pe are positive.
Thus, Pe exist in the interior of D if R0 > 1.

4.2.2 Stability of the equilibrium points

Theorem 4.2.2. The persistence equilibrium is locally asymptotically stable
whenever R0 > 1 and unstable when R0 < 1. When R0 = 1, Pe = Po

Proof. Let JPe be the Jacobian matrix of system (4.1) at the mosquito per-
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sistent equilibrium given by

JPe =



−Z1 0 0 0 0 nρAo

ρe −Q1 0 0 0 0
0 ρL −Z3 0 0 0
0 0 ρP −Z4 0 ρAo

0 0 0 ρAh −Z5 0
0 0 0 0 ρAr −Z6


(4.6)

where,
Q1 = Z2−Q3 and Q3 = 2Z2(R0−1). In order to obtain the eigenvalues of JPe ,
we solve det(JPe − λI) = 0. Using the concept of block matrices to compute
this determinant, let J = JPe − λI be a block matrix given by

J =
 D1 D2

D3 D4

 (4.7)

where

D1 =


−Z1 − λ 0 0

ρe −Z2 −Q3 − λ 0
0 ρL −Z3 − λ

 ,

D2 =


0 0 bρAo

0 0 0
0 0 0

 ,

D3 =


0 0 ρP

0 0 0
0 0 0

 , and
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D4 =


−Z4 − λ 0 ρAo

ρAh −Z5 − λ 0
0 ρAr −Z6 − λ

 .

It follows from the concept of block matrices that det(J) = det(D1D4 −
D2D3). But here, D2D3 is a zero matrix leading to det(JPe − λI) = det(J) =
det(D1D4) = 0. Solving the equation gives three eigenvalues λ1 = −(µe +
ρe), λ2 = −Z2−Q3 and λ3 = −Z3.When R0 > 1, then λ2 < 0, which forms the
necessary condition for a stable equilibrium point. When R0 < 1, then λ2 >

0, and Pe is unstable. The remaining three eigenvalues are obtained as the
roots of the following equation:

c0λ
3 + c1λ

2 + c2λ+ c3 = 0

where
c0 = 1,
c1 = µAh + µAo + µAr + 2µr + ρAh + ρAo + ρAr ,
c2 = Z4Z5Z6

c3 = 2µAr µr + µr
2 + µAr ρAh + µr ρAh + µAr ρAo + µr ρAo + ρAh ρAo

+ (2µr + ρAh + ρAo) ρAr + µAo (µAr + µr + ρAh + ρAr)
+ µAh (Z5 + Z6) .

It is clear that c0 > 0, c1 > 0, c2 > 0, and c3 > 0 always. Also, by the Routh-
Hurwitz criteria (Meinsma, 1995), we show that c1c2 − c3 > 0 since

c1c2 − c3 = Z5 + Z6 + Z5Z6 + Z4 + Z4Z5 + Z5Z6(R0 − 1).

Thus, the roots of the polynomial have negative real parts. Therefore, when
R0 > 1, the six eigenvalues have negative real parts and the persistence equi-
librium points is locally asymptotically stable. 2
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4.2.3 Global stability of mosquito-free equilibrium

Theorem 4.2.3. Given Z1, Z2, ..., Z6 as defined above. If Z1
Z2

< 1, Z2
Z3

<

1, Z3
Z4

< 1, Z4 < 1, and R0 ≤ 1, then the mosquito-free equilibrium of the
system (4.1) is globally asymptotically stable on D.

Proof. We construct a Lyapunov function by introducing the following posi-
tive constants α1, α2, α3, α4, α5 and α6. We let

α1 = ρeρLρPρAhρAr
Z2Z3Z4Z5

, α2 = ρLρPρAhρAr
Z3Z4Z5

, α3 = ρPρAhρAr
Z4Z5

, α4 = ρAhρAr
Z5

and α5 = ρArZ4

Z5
.

We then define V (t) to be the function

V (t) = α1E(t) + α2L(t) + α3P (t) + α4Ah(t) + α5Ar(t) + Ao(t). (4.8)

Calculating the Lyapunov derivative of V along the solutions of system (4.1),
we obtain

V
′(t) = α1[nρAoAo − Z1E] + α2[ρeE − Z2L] + α3[ρLL− Z3P ]

+ α4[ρPP + ρAoAo − Z4Ah] + α5[ρAhAh − Z5Ar] + [ρArAr − Z6Ao]

where ′ denotes the derivative. We prove that V ′(t) is a negative-definite
function in the variable (E(t), L(t), P (t), Ah(t), Ar(t), Ao(t)), such that

V
′(t) = χ1E(t) + χ2L(t) + χ3P (t) + χ4Ah(t) + χ5Ar(t) + χ6Ao(t), (4.9)

where,

χ1 = α2ρe − α1Z1, χ2 = α3ρL − α2Z2, χ3 = α4ρP − α3Z3,

χ4 = α5ρAh − α4Z4, χ5 = ρAr − α5Z5, χ6 = nα1ρAo + α4ρAo − Z6.
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Now we prove that coefficients χ1, χ2, χ3, χ4, χ5, andχ6 are negative.

From above expressions, we note that

χ1 < α1Z1 − α2ρe < 0

= ρeρLρPρAhρArZ1

Z2Z3Z4Z5
− ρeρLρPρAhρAr

Z3Z4Z5
= ρeρLρPρAhρAr

Z3Z4Z5

[
Z1

Z2
− 1

]
< 0.

Similarly,

χ2 <
ρLρPρAhρAr

Z4Z5

[
Z2

Z3
− 1

]
< 0, χ3 = ρLρPρAhρAr

Z5

[
Z3

Z4
− 1

]
< 0,

χ4 < α4Z4 − α5ρAh = 0, χ5 < ρAr [Z4 − 1] < 0, and

χ6 < −
ρAhρArρAo

Z5
+ nρeρLρPρAhρAr

Z2Z3Z4Z5
[R0 − 1] < 0.

Thus V ′(t) is negative if R0 ≤ 1. Also note that V ′(t) = 0 if and only if
E = L = P = Ah = Ar = Ao = 0. That is, the region D is positively-invariant,
hence, the mosquito-free equilibrium is globally asymptotically stable in D if
R0 ≤ 1. 2

4.3 Numerical analysis of the model

To explore the behavior of system (4.1) and to demonstrate the stability of
the mosquito-free and persistence equilibrium, we examine the time series plot
of the mosquito population with constant parameter values as shown in Fig.
4.2-4.5. We observe in Fig. 4.2a-c and Fig. 4.3a-c that each population tends
to zero with time when R0 = 0.55. This is an evidence to Theorem 4.2.3,
that at mosquito-free equilibrium, the system converges and is globally stable
whenever R0 < 1, which implies that the population is eradicated. On the
other hand, in Fig. 4.4a-c and Fig. 4.5a-c, the mosquito-free equilibrium
of the system becomes unstable as R0 > 1. To achieve this, we double the
progression rate (ρP ) of pupa to adult searching for host, that is from 0.04 to
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0.08. This increment gives rise to the previous value of R0 from 0.55 to 1.01,
thus makes mosquito-persistence equilibrium to be stable as stated in Theorem
4.2.2.
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Figure 4.2: Simulated aquatic-stage mosquito population with low progression
rate of pupa; n = 100, ρE = 0.5, ρL = 0.14, ρP = 0.04, µE = 0.56, µL =
0.44, µP = 0.37, ρAh = 0.46, ρAr = 0.43, ρAo = 0.5, µAh = 0.18, µAr =
0.0043, µAo = 0.41, µr = 0.043, R0 = 0.55.
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Figure 4.3: Simulated adult-stage mosquito population with low progression
rate of pupa; n = 100, ρE = 0.5, ρL = 0.14, ρP = 0.04, µE = 0.56, µL =
0.44, µP = 0.37, ρAh = 0.46, ρAr = 0.43, ρAo = 0.5, µAh = 0.18, µAr =
0.0043, µAo = 0.41, µr = 0.043, R0 = 0.55.
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Figure 4.4: Simulated aquatic-stage mosquito population with high progression
rate of pupa; n = 100, ρE = 0.5, ρL = 0.14, ρP = 0.08, µE = 0.56, µL =
0.44, µP = 0.37, ρAh = 0.46, ρAr = 0.43, ρAo = 0.5, µAh = 0.18, µAr =
0.0043, µAo = 0.41, µr = 0.043, R0 = 1.01.
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Figure 4.5: Simulated adult-stage mosquito population with high progression
rate of pupa; n = 100, ρE = 0.5, ρL = 0.14, ρP = 0.08, µE = 0.56, µL =
0.44, µP = 0.37, ρAh = 0.46, ρAr = 0.43, ρAo = 0.5, µAh = 0.18, µAr =
0.0043, µAo = 0.41, µr = 0.043, R0 = 1.01.
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In this chapter, we incorporate climate-dependent parameters into the mosquito
model in Chapter 4 with an additional mosquito compartments. Hence, the
model is used to study the population dynamics of An. arabiensis over Kwa-
Zulu Natal province.
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5.1 Abstract

Malaria continues to be one of the most devastating diseases in the world,
killing more humans than any other infectious disease. Malaria parasites are
entirely dependent on Anopheles mosquitoes for transmission. For this reason,
vector population dynamics is a crucial determinant of malaria risk. Conse-
quently, it is important to understand the biology of malaria vector mosquitoes
in the study of malaria transmission. Temperature and precipitation also play
a significant role in both aquatic and adult stages of the Anopheles. In this
study, a climate-based, ordinary-differential-equation model is developed to
analyse how temperature and the availability of water affect mosquito pop-
ulation size. In the model, the influence of ambient temperature on the de-
velopment and the mortality rate of Anopheles arabiensis is considered over a
region in KwaZulu-Natal province, South Africa. In particular, the model is
used to examine the impact of climatic factors on the gonotrophic cycle and
the dynamics of the mosquito population over the study region. The results
fairly accurately quantify the seasonality of the population of Anopheles arabi-
ensis over the region and also demonstrate the influence of climatic factors on
the vector population dynamics. The model simulates the population dynam-
ics of both immature and adult Anopheles arabiensis. The simulated larval
density produces a curve which is similar to observed data obtained from an-
other study. The model is efficiently developed to predict Anopheles arabiensis
population dynamics, and to assess the efficiency of various control strategies.
In addition, the model framework is built to accommodate human population
dynamics with the ability to predict malaria incidence in future.

5.2 Introduction

Malaria is still one of the deadliest mosquito-borne diseases in the world.
In 2015, an estimated 214 million malaria cases occured, leading to almost
438,000 deaths [208]. Malaria is not present on all continents, mainly occur-

 

 

 

 



98
CHAPTER 5. MODELLING THE INFLUENCE OF TEMPERATURE AND RAINFALL ON

THE POPULATION DYNAMICS OF ANOPHELES ARABIENSIS

ring in Africa, South-east Asia, Central and South America. It is caused by
the protozoan Plasmodium, which is transmitted by mosquitoes of the genus
Anopheles [4, 9, 35, 41, 141, 190]. In Africa, three Anopheles species, namely
Anopheles gambiae, Anopheles arabiensis and Anopheles funestus are consid-
ered to be the major vectors responsible for malaria transmission. The first two
species are considered to be the most effective malaria vectors in the world and
are classified as a group called the An. gambiae complex [55, 97]. Anopheles
arabiensis and An. funestus are found in South Africa, living in sympatry.

Malaria as a mosquito-borne disease is strongly influenced by climate vari-
ables (temperature, rainfall and humidity). It is well established that weather
fluctuations significantly affect not only the life expectancy or completion of
the life-cycle of the mosquito, but also the development of sporogonic stages
of the malarial parasite within the mosquitos body [55, 157]. The biting rate
and gonotrophic processes are also temperature dependent [55, 145, 190]. For
these reasons, a qualitative relationship between the vector abundance and
the climate variables can help to identify the peaks of the vector population
through meteorological monitoring and forecast [55, 170].

Although many studies have explored the impact of climate variables on
An. gambiae at global and regional levels, little research has been carried out
on An. arabiensis. For instance on An. gambiae, Ronald Ross [165] developed
a simple mathematical model to describe the relationship between the number
of mosquitoes and incidence of malaria in humans. Parham and Edwin [150]
used published, as well as unpublished field and experimental data to examine
the relationships between vector ecology and environmental variables. These
relationships are incorporated within a validated deterministic model of An.
gambiae s.s. population dynamics to offer a valuable tool for highlighting vec-
tor response to biotic and abiotic variables. Minakawa et al [124] examined
the dynamics of adult An. gambiae mosquitoes, their larval habitats, and egg
survival potential during the dry season in the basin region of Lake Victoria,
western Kenya. In the study, An. gambiae showed a strong inclination for
wet soil as an oviposition substrate rather than dry soil substrate under the
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insectary surroundings. Also their findings show that in the dry season, eggs
remain latent in the wet soil to resist dryness, and are hatched shortly after
they are sufficiently wetted. This suggests why anopheline mosquitoes do not
necessarily suffer a severe population bottleneck during the dry season and
thus maintain a large effective population size [124]. Craig et al [41] developed
a climate-based distribution model to investigate the impact of climate change
on An. gambiae and malaria transmission over Sub-Saharan Africa. Their
model in conjunction with population, morbidity and mortality data is used
to estimate the burden of disease and to support strategic control of malaria.
Also, Martens et al [108] used a rules-based modelling method to explore how
climate change might affect vector abundance and global malaria transmission.
Lindsay and Martens [101] extended this study by investigating the implica-
tions of climate change scenarios on An. gambiae and highland malaria in
Africa and, more specifically, in Zimbabwe. Hoshen and Morse [80] also devel-
oped a mathematical-biological model, comprising both the climate-dependent
within-vector (An. gambiae s.l.) stages and the climate-independent within
host stages to simulate malaria incidence in Zimbabwe. The model shows a
qualitative reconstruction of infection prevalence and a suitable prediction of
malaria transmission based on seasonal climate forecasts.

Anopheles arabiensis is generally found in Africa, mostly in southern Africa.
They live long enough to become infected and infective with Plasmodium fal-
ciparum [114]. Studies have also shown that their life expectancy is highly
influenced by climate variables. In the study of Maharaj [114], it is established
in laboratory experiments that An. arabiensis feeds and produces eggs but
does not oviposit during winter. This is also in line with the study of Omer
and Cloudsley-Thompson [144]. Although Le Sueur [182] found some first
instar larvae during winter, this suggests that to a lesser extent, oviposition
may occur in the field [114, 182]. The laboratory experiments further suggest
that An. arabiensis could possibly transmit malaria during winter since they
do feed during this period. The sporogonic process would be faster during
summer than winter period [114]. This suggestion is in line with the previ-
ous study of [158] that malaria incidence is directly attributable to the vector
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feeding habits, abundance and survivorship. However, these studies are labo-
ratory experiments with a limited number of An. arabiensis used as samples.
Also, the breeding site is assumed to be stagnant. The aim of this study is to
develop a deterministic mosquito model that gives a detailed account of the
impact of climate variables on the population dynamics of An. arabiensis, and
to consider a dynamical breeding site being influenced by rainfall and temper-
ature. The laboratory experimental data obtained from the study of Maharaj
[114] is used in calibrating the model.

5.3 Methods

5.3.1 Study area

The study area is a village called Dondotha in KwaZulu-Natal province, South
Africa. The village (28o34′S, 31o56′E) is situated in the northeast of the
province that share borders with three other provinces (Mpumalanga, Free
State and Eastern Cape) and countries (Mozambique, Swaziland and Lesotho)
as shown in Fig. 5.3.1. It experiences long sunny days and dry weather on
most days with high rainfall during December - April (see Fig. 5.2). In the
study period (January 2002 to December 2004), the heaviest rainfall occurred
around December 2002 (78 mm); whereas the highest temperature occurred
around January 2003 (mean = 32oC). Also from Fig. 5.3, the average daily
mean temperature and rainfall increased from January and peaked in February
before declining gradually toward June every year.

5.3.2 Entomological data

The entomological data used in this study is based on laboratory experiments
in the study of Maharaj [114]. In the experiment, An.arabiensis were collected
from Dondotha village. Fresh breeding stock was caught at the start of each
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Figure 5.1: Map showing the location of Dondotha in KwaZulu-Natal province.
Source: GIS unit of the Medical Research Council of South Africa.

set of experiments and newly laid eggs were kept under insectary conditions
of temperature (27 ±2oC), relative humidity (70 ± 10%) and photoperiod
(12L:12D with 1 hour simulated crepuscular period) [114]. Identification was
obtained by using the Polymerase Chain Reaction (PCR) method on samples
of the first larval instars of each female [114, 153]. Also, in their studies,
all experiments were conducted in a Specht Scientific programmable growth
cabinet (model SFPGR066) fitted with a Dumo Dicon P temperature and
humidity control unit [114]. The development and survivorship of immature
An. arabiensis were studied at four fluctuations temperatures. Temperature
levels with mean values (17.9, 23.2, 26.1 and 21.4oC) were used to represent
winter, spring, summer and autumn profiles respectively. The output data were
used in their study to describe the life table characteristics of An. arabiensis.

5.3.3 Climate data

In the present study, the Observational-Reanalysis hybrid datasets for the daily
precipitation, minimum and maximum daily temperature are considered over
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Figure 5.2: Daily rainfall over calibration period showing the daily rainfall
of the study area; Dondotha village in KwaZulu-Natal province, South Africa
between January 2002 and December 2004.

the study region for the period 2002 - 2004. The Princeton University Global
Meteorological Forcing Datasets for land surface modelling are produced by
the Terrestrial Hydrology Research Group at Princeton University (hereafter,
[174]). Also in this study, it is assumed in line with previous studies (e.g.,
[55, 190]) that the population dynamics of Anopheles is mainly driven by two
major factors: (i) temperature - has a strong impact on the survival of An.
arabiensis populations, and on the development of aquatic stages (e.g., [114]);
(ii) precipitation - provides breeding sites for immature Anopheles. However,
excess rainfall can flush away the breeding sites (e.g., [55, 190]).

5.3.4 Model formulation

The vector population dynamics model used in the present study is based
on previously developed models by others [24, 81, 103, 104, 193]. The com-
partmental models of [103],Lutambi2013thesis consists of three aquatic stages;
Eggs (E), Larvae (L), and Pupae (P ), and three adult classes; Adult searching
for host (Ah), Adult at resting state (Ar) and Adult searching for oviposition
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Figure 5.3: Daily mean temperature over calibration period showing the daily
mean temperature of the study area; Dondotha village in KwaZulu-Natal
province, South Africa between January 2002 and December 2004.

site (Ao). One more compartment of adult female An. arabiensis searching
for mating (Am) is added as shown in Fig. 5.4. Temperature has a strong
impact on the progression rates at the aquatic stage and on the survival of
adult populations [164], while rainfall plays a significant role in provision of
the breeding sites. In this study, the impact of these factors were incorpo-
rated into the model, and additional attention is given to the dynamics of
the mosquito breeding sites (puddle dynamics). A Mosquito’s life begins with
eggs, which hatch into larvae under conducive conditions. The larvae fur-
ther develop into pupae that advance and emerge into adults. Adult female
mosquitoes feed on human or animal blood to produce eggs. After biting, the
female mosquitoes rest a while in order to develop their eggs. Once the eggs
are fully developed, they find a suitable breeding site to lay their eggs and
then proceed to find another blood meal. This completes the mosquito feeding
cycle [35, 103, 104]. The effects of hibernation and breaks in the reproductive
cycle is ignored, and it is assumed that eggs deposited at breeding sites proceed
through development immediately (as in [103, 104, 172]. The male population
in this model is also overlooked since only female mosquitoes are involved in

 

 

 

 



104
CHAPTER 5. MODELLING THE INFLUENCE OF TEMPERATURE AND RAINFALL ON

THE POPULATION DYNAMICS OF ANOPHELES ARABIENSIS

the transmission of malaria. The seven subgroups have diverse mortality and
progression rates. Each subgroup is affected by three processes: (i) increase
due to recruitment, (ii) decrease due to mortality, and (iii) development or
progression of survivors into the next state. The parameter n is the average
number of eggs which are expected to hatch into female mosquitoes laid during
an oviposition and ρAo (day−1) is the rate at which new eggs are oviposited
(i.e. reproduction rate). Exit from the egg stage is either due to mortality at
µe (day−1), or hatching into larvae, ρe (day−1). In the larval stage, individuals
exit by death or progress to pupal stage at a rate, ρL (day−1). Assuming a
stable environment, inter-competition for food and other resources for larvae
may occur, leading to density-dependent mortality, µLL

K
(day−1 mosquito−1) or

natural death at an intrinsic rate, µL (day−1), where K is the carrying capacity
of the breeding site. Pupae die at a rate, µP (day−1), and survivors progress
and emerge as adults at a rate ρP (day−1). In the adult stage, mate seeking
mosquitoes die at a rate µAm (day−1) while the survivors proceed to search
for blood meal at a rate ρAm (day−1). Host seeking mosquitoes die at a rate
µAh (day−1). Those surviving this stage, and if they are successful in feeding,
enter the resting stage at a rate ρAh (day−1). In the resting stage, mosquitoes
die at a rate, µAr (day−1). Survivors progress to the oviposition site searching
stage at a rate ρAr (day−1). Oviposition site seekers will lay their eggs and
return to the host seeking stage or die at a rate µAo (day−1). An additional
mortality rate of adult mosquitoes µr (day−1) related to seeking behaviour is
also considered. In line with other studies (e.g., [55, 190]), it is assumed in
this study that Anopheles female mosquitoes require a blood meal to produce
eggs.
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Figure 5.4: Flow diagram of the mosquito population model
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Hence, the dynamics of the mosquito population are described by the following
system of differential equations:

dE
dt

= nρAo(Ta)Ao − (ρe(Tw) + µe(Tw))E

dL
dt

= ρe(Tw)E − (ρL(Tw) + µL(Tw)(1 + L
K

))L

dP
dt

= ρL(Tw)L− (ρP (Tw) + µP (Tw))P

dAm
dt

= ρP (Tw)P − (ρAm + µAm(Ta) + µr)Am

dAh
dt

= ρAmAm + ρAo(Ta)Ao − (ρAh + µAh(Ta) + µr)Ah

dAr
dt

= ρAhAh − (ρAr + µAr(Ta))Ar

dAo
dt

= ρArAr − (ρAo(Ta) + µAo(Ta) + µr)Ao

(5.1)

with initial conditions E(0), L(0), P (0), Ah(0), Ar(0), and Ao(0), where Tw and
Ta are water and air temperatures respectively.

5.3.4.1 Puddle dynamics

In this study, it is assumed in line with [45, 102] that the larval carrying
capacity K is a function of water availability at the breeding site; that is,
the water volume of the pond, Vpond, is such that K = Lmax × Vpond, where
Lmax is the maximum larval biomass per surface area. The Lmax is set to
300 mg m−2, following [45, 190]. Although An. arabiensis is associated with
small ponds [63], it is also established that, aside rainfall, rivers and human
activities (such as irrigation, pipe leakage) could serve as water source to the
breeding sites [102, 210]. In an irrigated area, one can expect to have pools of
water even outside the raining season. Other studies [108, 145, 190] have also
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suggested that heavy rainfall can flush off the breeding sites, leading to high
larvae mortality. For these reasons, in this study, the puddle dynamics of [190]
is considered for the breeding site, that is

dVpond
dt

= Kv [Rf (Vmax − Vpond)− Vpond(%+ If )] , (5.2)

such that Vmin ≤ Vpond ≤ Vmax, where, Vmin and Vmax respectively represent
the pond minimum and maximum water volume. The rainfall or precipitation
rate is denoted as Rf , while Kv represents the puddle geometry. Evaporation
and infiltration rates are hence denoted by % and If respectively. A cylindrical
shape puddle of 1.2m diameter and 0.5m height is considered for the puddle ge-
ometry with the assumption that water depth is much less than puddle height.
In line with [190], a fixed constant parameter is assigned for the infiltration
rate as shown in Table 5.1. The evaporation rate by Hamon’s equation [73] is
similarly considered as used in other studies (e.g., [3, 72, 146, 156]). The effect
of waves in the puddle is ignored since An. arabiensis is less common in the
areas that are exposed to waves [124]. In the expression for % below,

% = 2.1×H2
t ×

(
es

Ta + 273.3

)
. (5.3)

Ht is the average number of daylight hours per day during the month in which
day t falls. Also, es denotes saturation vapor pressure, given by

es(Ta) = 0.6108e(
17.27Ta
Ta+237.3) (5.4)

In addition to pond dimension the other important parameter of water
bodies is the temperature of the water near the surface [190]. For small ponds
and puddles the temperature is often one or two degrees warmer than the air
temperature [45, 146, 147]. We therefore assumed the temperature of puddles
to have a fixed offset relative to the air temperature (such that Tw = Ta+2oC).
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5.3.4.2 Parameters and functions of the model

The parameters used for this model are adopted from the data generated from
the laboratory experiments of Maharaj [114]. The extensive data highlight the
impact of temperature on developmental attributes of immature An. arabiensis
under simulated seasonal conditions. The results from the study is used to
estimate the parameters and the forcing functions for the gonotrophic rate
(ρAo), development and mortality rate of immature An. arabiensis.

Using MATLAB software, the best fit curves are found (as seen in Fig.
5.5 and Additional file 1) for the gonotrophic rate (ρAo), development and
mortality rate of immature stages. Their parameter functions were further
derived as given in the Table 5.1.

5.4 Results and discussion

5.4.1 Model validation

Although it is difficult to find mosquito data to validate the model, in order
to ascertain the robustness of the model, the model output is compared with
the results obtained from the study of Himeidan and Rayah [79]. In the study,
larvae are collected over different breeding sites and sources in New Halfa town,
eastern Sudan. The collection was done between March 1999 and March 2000.
In the town, temperature is noted to be high in summer (March - June) as
shown in Fig. 5.6b. During this period, rainfall is noted to be minimal (see
Fig. 5.6a). In the raining season (July - September), temperature reaches a
minimum as indicated in Fig. 5.6a. Based on the observed temperature and
rainfall during the study period, the dynamics of larvae population at time t
(red line) is simulated and compared with the mean number of larvae collected
(dashed blue line) over New Halfa town as shown in Fig. 5.6c. The model
produces a similar curve (in red) with the observed larvae populations. Also,
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Figure 5.5: Parameter estimates and curves fit for (a) larvae development rate,
(b) larvae mortality rate of An. arabiensis. See additional files in Appendices
for other parameters.
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both graphs (in Fig. 5.6c) indicate that larvae abundance reaches a minimum
between October and June, increases between June and October while reaching
the peak in August. The reason for this could easily be linked to low and high
rainfall in October - June and June - October respectively. High temperature
in summer negatively impacts the larvae and other immature An. arabiensis
as the breeding sites dry up quickly during this period.

5.4.2 Sensitivity analysis

5.4.2.1 Model sensitivity to parameters

In this section, the sensitivity of the model is examined with two important
parameters, that is, the rate at which host seeking adult An. arabiensis enters
the resting state (ρAh) and the rate at which resting adult An. arabiensis
enters the oviposition searching state (ρAr). To accomplish this, parameter
ρAh is held constant at ρAh = 0.3, while varying ρAr between 0.3 - 0.9 in Fig.
5.7a. Similarly, ρAh is held constant at ρAh = 0.5, as ρAr is varied between
0.3 - 0.9 in Fig. 5.7b. Finally, in Fig. 5.7c, ρAh is held constant at ρAh = 0.9
as ρAr varies between 0.3 - 0.9. All figures show a good correlation between
the modelled and observed larvae. Also, the results show that the model is
sensitive to both parameters, but more sensitive to ρAh than ρAr . For instance,
in Fig. 5.7a, when ρAh = 0.3 and ρAr = 0.9 (in green), there is a significant
difference of about 90 larvae between the peaks of the modelled and collected
larvae. The peak difference reduces to about 30 larvae when ρAh = 0.5 and
ρAr = 0.9 in Fig. 5.7b. The number of simulated larvae overshoots that of
observed in Fig. 5.7c by 50 when ρAh = ρAh = 0.9. For all the simulations,
these were considered ρAh = 0.9 and ρAr = 0.5 because it produces the closest
simulation to observed larvae data.
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Figure 5.6: Model validation and climate monthly data of New Halfa town,
eastern Sudan. (a) Monthly rainfall, (b) mean monthly temperature, and (c)
showing the simulated and observed collected larvae over the study area and
period.
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Figure 5.7: Model sensitivity to parameters. This highlights the sensitivity of
the model to parameters. See main text for details.
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5.4.2.2 Model sensitivity to temperature

For better understanding of the relationship between temperature and vector
dynamics, the sensitivity to temperature on both immature and adult mosquito
population is examined in Fig. 5.8 and Fig. 5.9 respectively. To analyse
this, it is assumed that rainfall is constant for the first 30 days with varied
temperature. In each class, the dynamics is checked when the temperature is
10oC, 15oC, 20oC, 25oC, 30oC and 35oC. It is noticed in both figures (Fig. 5.8
and Fig. 5.9) that the aquatic mosquitoes are more sensitive to temperatures
at 25oC than the adult. It is also noticed that temperatures below 15oC have
negative impact on An. arabiensis. Consequently, the dynamics are negatively
influenced by temperatures above 30oC as specified in other studies (e.g., [190]).

Incorporating the daily climate data of Dondotha village between January
2002 - December 2004, the model is used to simulate the dynamics of An. ara-
biensis populations in the region. The model simulates well the abundance of
mosquitoes per stage (E,L, P,Am, Ah, Ar, Ao) over time and presents a strong
seasonal variability as shown in Fig. 5.10 and 5.11.

With the assumption that the first eggs of the year are laid at the beginning
of January, eggs density reaches a maximum in mid-January, February and
early March as shown in Fig. 5.10a. Oviposition activity decreases between
June and mid-August of every year. Larvae and pupae populations follow the
same pattern for each year through the study period. Due to human activities
such as irrigation and water leakage leading to creation of breeding sites, the
model allows the immature An. arabiensis population to remain non-zero even
in unfavourable conditions between June and August. Differences between
years were due to differences in climate variables, the model being otherwise
deterministic.

Similar results of the aquatic stages over the adult group were observed as
shown in Fig. 5.11a-d. It is noted that the adult populations also present a
strong seasonal variability with a 6-month period of adult activity as mosquito
density is minimal through June, July and August. This suggests that the
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Figure 5.8: Sensitivity of aquatic-stage mosquito population dynamics to
temperature. Effect of constant temperature on (a) eggs, (b) larvae, and (c)
pupa An. arabiensis.
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Figure 5.9: Sensitivity of adult mosquito population dynamics to temperature.
Effect of constant temperature on adult An. arabiensis (a) searching for host,
(b) resting, and (c) searching for oviposition site.
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number of adults old enough to transmit malaria is intensely influenced by
the aquatic stage dynamics, which is in line with the study of [9]. The results
also indicate that An. arabiensis mosquitoes are present in the region over the
study periods, and that the population of An. arabiensis in the province is
highly seasonal with the peak in summer and minimal in winter as shown in
Fig. 5.11a-d.

Also, temperature is noted to have a stronger influence on adult An. arabi-
ensis abundance than precipitation, and it is also the main driver of the model.
In fact, most of the mortality and progression rates are temperature-dependent
functions. Temperature drives the mortality and transition rates functions in
two different ways: higher temperatures favour higher transition rates between
stages, although mortality rates decrease with temperature. Yet, according to
the simulations in the province, the impact of temperatures is rather favourable
to An. arabiensis populations as the peak of abundance occurs with the highest
temperatures observed in summer period.

Running the model over the daily temperature of the 1.0−degree spatial
resolution dataset, the oviposition rate is spatially simulated over South Africa
for December 2001 to December 2002. The results as shown in Fig. 5.12
suggest why malaria transmission in South Africa is distinctly seasonal. It is
noticed that more eggs are produced in summer (December - February) than
winter (June - August) period (see Fig. 5.12b). Some eggs are also produced
in Spring (September - November) and Autumn (March - May). This is in line
with previous studies [114, 144, 182] that An. arabiensis do not oviposit in
dry and cold conditions. Similarly, as a result of high temperature in summer,
it is established that gonotrophic activities are faster during this period as
mosquitoes bite more aggressively for survival and oviposition (e.g., [190]).

 

 

 

 



5.4. Results and discussion 117

Jan 02 Jun 02 Jan 03 Jun 03 Jan 04 Jun 04 Dec 04
0

50

100

150

200

250

300

350

400

450

Time (Days)

E
g

g
s

a

Jan 02 Jun 02 Jan 03 Jun 03 Jan 04 Jun 04 Dec 04
0

20

40

60

80

100

120

140

160

180

200

Time (Days)

L
a
rv

a
e

b

Jan 02 Jun 02 Jan 03 Jun 03 Jan 04 Jun 04 Dec 04
0

10

20

30

40

50

60

70

Time (Days)

P
u

p
a
e

c

Figure 5.10: Simulated population of immature An. arabiensis. Simula-
tions of (a) eggs, (b) larvae, and (c) pupae population dynamics with climate
variables.

 

 

 

 



118
CHAPTER 5. MODELLING THE INFLUENCE OF TEMPERATURE AND RAINFALL ON

THE POPULATION DYNAMICS OF ANOPHELES ARABIENSIS

Jan 02 Jun 02 Jan 03 Jun 03 Jan 04 Jun 04 Dec 04
0

10

20

30

40

50

60

70

80

Time (Days)

A
d

u
lt

 m
o

s
q

u
it

o
e

s
 s

e
a

rc
h

in
g

 f
o

r 
m

a
ti

n
g

a

Jan 02 Jun 02 Jan 03 Jun 03 Jan 04 Jun 04 Dec 04
0

5

10

15

20

25

30

35

40

45

50

Time (Days)

A
d

u
lt

 m
o

s
q

u
it

o
e

s
 s

e
a

rc
h

in
g

 f
o

r 
h

o
s

t

b

Jan 02 Jun 02 Jan 03 Jun 03 Jan 04 Jun 04 Dec 04
0

5

10

15

20

25

30

35

40

45

50

Time (Days)

A
d

u
lt

 m
o

s
q

u
it

o
e

s
 a

t 
re

s
t

c

Jan 02 Jun 02 Jan 03 Jun 03 Jan 04 Jun 04 Dec 04
0

5

10

15

20

25

30

35

40

45

50

Time (Days)

A
d

u
lt

 m
o

s
q

u
it

o
e
s
 s

e
a
rc

h
in

g
 f

o
r 

o
v
ip

o
s
it

io
n

 s
it

e d

Figure 5.11: Simulated population of adult An. arabiensis. Simulations of
adult mosquitoes (a) searching for mating, (b) searching for host, (c) resting,
and (d) searching for oviposition site with climate variables.
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Figure 5.12: Spatial distribution of temperature and oviposition rate over
South Africa. This highlights the spatial distribution of (a) observed tem-
perature, and (b) simulated oviposition rate over South Africa.

 

 

 

 



120
CHAPTER 5. MODELLING THE INFLUENCE OF TEMPERATURE AND RAINFALL ON

THE POPULATION DYNAMICS OF ANOPHELES ARABIENSIS

5.5 Conclusion

In this paper, a mathematical mosquito model is presented and analysed, this
was motivated by the compartmental model of [103],Lutambi2013thesis. Two
climatic factors (rainfall and temperature) and puddle dynamics are incorpo-
rated into the model to understudy the dynamics of immature An. arabiensis.

The forcing functions for gonotrophic cycle, progression and mortality rate
of eggs, larvae and pupae are also derived from the laboratory experiment
in the study of Maharaj [114]. The efficiency of the model are also verified
by comparing the simulated larvae with total average number of larvae col-
lected over a town in eastern Sudan from the study of Himeidan and Rayah
[79]. Furthermore, the model sensitivity analysis is carried out to examine the
sensitivity of the model to parameters.

In addition, the climate data of Dondotha village in KwaZulu-Natal province
are incorporated into the model to simulate the dynamics of the mosquito pop-
ulation over the region. The results highlight the importance of climate on An.
arabiensis which is accountable for malaria transmission in Africa. It also in-
creases the understanding of significance of the role of mosquito biology in
malaria models. The model structure demonstrates a level of robustness as it
can be tested on varied climate conditions and on various other species. In
particular, the model can be used to study the effect of climate change and
variability on vector population dynamics.

Additionally, the model can be developed further by incorporating other
processes such as malaria infection. Also, since all mosquito vectors share the
same basic life cycle, the model can be converted to other mosquito-borne
disease systems, such as Dengue Fever and West Nile Virus. It can be used
efficiently as a tool to predict An. arabiensis population dynamics. The frame-
work of the model is also designed to accommodate human population dynam-
ics, with the ability to predict malaria incidence in future.

However, the model neglects other important factors influencing the dy-
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namics of the vector population. For instance, humidity has been identified
to play a crucial role in both vector and puddle dynamics [102]. Low levels of
relative humidity are known to decrease the lifespan of mosquitoes [209]. It
has also been established that land cover affects the duration of larval devel-
opment through its effect on water temperature [44]. Other missing factors in
the model includes irrigation [71], deforestation [65], and so on. Hence, the
present study leaves these factors for future consideration.
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analysis of mosquito-human
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Ignoring the impact of climate in this chapter, we further modify the mosquito
model in Chapter 4 by incorporating into the model exposed and infected
mosquitoes and human compartments. The detailed mosquito-human malaria
model is analytically and numerically analysed with presented results.
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6.1 Abstract

In this study, we derive and analyse a deterministic model for the transmis-
sion of malaria disease. We consider in detailed the human population and
both stages (aquatic and adult) of mosquito population are also included. We
analyse the basic reproduction number, R0, and investigate the existence and
stability of equilibria. In an attempt to examine the effectiveness of control
measure, we study the sensitivity analysis of the reproductive number and
highlight the importance of mosquito biting rate on malaria transmission. Fi-
nally, we perform the numerical simulations to verify the global stability of
both disease-free and endemic equilibrium.

6.2 Introduction

Malaria as one of the oldest and lethal infectious diseases in humans mostly
infects the infants and the poor in sub-Saharan Africa [207]. Over the world
in 2006, an estimated 247 million malaria cases which led to almost a million
deaths, mostly of children under-five were recorded [205]. More recently in
2013, it was also recorded that over 437 000 African children lost their lives to
malaria before their fifth birthday, while an estimated 453 000 children of the
same age group died globally in the same year [208]. However, the population
dynamics of adult anopheles; the main carrier of malaria is highly dependent
on the dynamics of the aquatic-stage. For this reason, a detailed malaria
model incorporating a complete mosquito life cycle could be a crucial tool for
providing early warning on malaria outbreaks.

Mathematical modelling of the spread of infectious diseases continues to of-
fer important perceptions into diseases behaviour and control [141]. It has also
become an important tool in understanding the dynamics of diseases and also
in decision making processes in many countries over the years. Several efforts
have also been made in the past to develop a mathematical model to analyse
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the interaction between human and mosquito population and the transmission
of the disease within the host. For instance, Ronald Ross [166] discovered that
mosquitoes transmit malaria and used mathematical model to examined the
dynamics of disease transmission. Kribs-Zaleta and Velasco-Hernandez [91]
derived a simple two-dimensional SIS (susceptible-infected-susceptible) model
with vaccination and multiple endemic states. Dietz et al [49] developed a
model that accounts for acquired immunity in a mass action model. Also,
Chiyaka et al [36] formulated a deterministic model with two latent periods in
the hosts and vector populations. Li [99] examined a compartmental model for
malaria transmission that includes incubation periods for both infected human
hosts and mosquitoes. Okosun and Makinde [142] derived and analysed a de-
terministic model for the transmission of malaria disease with drug resistance
in the infectives. In the study, they calculated the basic reproduction number,
and investigated the existence and stability of equilibria.

Incorporating mosquito aquatic stage into models becomes more important
when considering other factors (such as, climate variables) affecting mosquito
abundance. In such cases, all stages are paramount to the study of mosquito
population dynamics. However, most models often ignore a complete mosquito
life cycle since eggs, larvae and pupae are not directly involved in the trans-
mission cycle. Also, based on the assumption that eggs, larvae, and pupa
have similar development and mortality rate, some studies have used only the
larval stage to represent the entire immature stage. For instance, Ngarakana-
Gwasira et al [137] developed and analysed a mosquito-human model to assess
the impact of temperature on transmission of malaria. In the study, one com-
partment was used to represent the juvenile stages. However, the assumption
contradicts the findings of other studies. For example, in the study of Maharaj
[114], the laboratory experiment highlighted the differences in progression and
mortality rate of each stage. In this study, we adopt and modify the model of
Lutambi et al [103]. We aim to develop a detailed mosquito-human malaria
model that overcomes the weakness of conventional malaria models. Since sev-
eral factors such as climate and ecology affect the dynamics of aquatic-stage
mosquitoes, we include this stage in our model and analysis. This is to prepare
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a strong frame-work that can easily incorporate the impact of these factors in
future. Also to carefully monitor the development in each of the mosquito
stages for helpful interventions and control strategies.

6.3 Model formulation

The total human population, denoted by Nh is sub-divided into susceptible
individuals (Sh), those exposed to malaria parasite (Eh), individuals with
malaria symptoms (Ih) and recovered human (Rh) such that Nh = Sh + Eh +
Ih + Rh. Susceptible individuals are recruited (by birth or immigration) into
the community at a rate φh and acquire malaria through contact with infec-
tious mosquitoes at a rate βh. Exposed individuals move to infectious class
at a rate ρEh . Infectious individuals move to the recovered class at a rate ρIh
while infected individuals die at a rate α. Recovered individuals loose immu-
nity at a rate ρRh and become susceptible again and the natural death rate is
denoted by µh.
The mosquito population model is based and developed on phases of the
mosquito life cycle. Mosquito life begins with eggs, which hatch into lar-
vae under suitable conditions. The larvae develop into pupae that mature
and emerge into adults. The total mosquito population is denoted by Nv

and is sud-divided into three aquatic stages; Eggs (E), Larvae (L), and Pu-
pae (P ), and five adult classes; Susceptible adult searching for host (Ah),
Adult at resting state (Ar), Adult searching for oviposition site (Ao), Adult
exposed to malaria parasite (Ev) and infectious mosquitoes (Iv). Hence, Nv =
E+L+P +Ah+Ar +Ao+Ev +Iv as shown in Figure 6.1. Female mosquitoes
then feed on human or animal blood to provide protein for their eggs. After
biting, female mosquitoes rest while their eggs develop. Once eggs are fully
developed, the females oviposit and then proceed to find another blood meal
thus completing the mosquito feeding cycle [35].
We ignore the effects of hibernation and breaks in the reproductive cycle, and
assumed that eggs deposited at breeding sites proceed through development
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immediately [103, 104, 172]. In contrast to other models [99], we distinguish
all of these stages because interventions may be applied to any one (or more)
of them. We also ignore the male population in this model since only female
mosquitoes are involved in the transmission of vector-borne diseases. The six
subgroups have different mortality and progression rates. Each subgroup is
affected by three processes: increase due to recruitment, decrease due to mor-
tality, and development or progression of survivors into the next state. The
parameter n is the average number of eggs which are expected to hatch into fe-
male mosquitoes laid during an oviposition and ρAo (day−1) is the rate at which
new eggs are oviposited (i.e. reproduction rate). Exit from the egg stage is
either due to mortality, µe (day−1), or hatching into larvae, ρe (day−1). In the
larval stage, individuals exit by death or progress to pupal stage at a rate, ρL
(day−1). Assuming a stable environment, inter-competition for food and other
resources for larvae may occur, leading to density-dependent mortality, µLL

K

(day−1 mosquito−1) or natural death at an intrinsic rate, µL (day−1), where K
is the carrying capacity of the breeding site. Pupae die at a rate, µP (day−1),
and survivors progress and emerge as adults at rate ρP (day−1). In the adult
stage, host seeking mosquitoes die at a rate µAh (day−1). Those surviving this
stage, and if they are successful in feeding, enter the resting stage at a rate ρAh
(day−1). In the resting stage, mosquitoes die at a rate, µAr (day−1). Survivors
progress to the oviposition site searching stage at a rate ρAr (day−1). Oviposi-
tion site seekers die at rate µAo (day−1) and after laying eggs return to the host
seeking stage. Although mosquitoes might require more than one blood meal
to produce eggs [10, 103, 104], this model assumes the simplified case where
only one blood meal is enough for eggs to mature. After feeding, we assume
that some proportion (DvAh) of susceptible mosquito move to resting class Ar
for gonotrophic process without being infected while others (βvAh) move to
exposed class (Ev) for sporogonic process. They acquire malaria through con-
tact with infected humans at rate βv, and later progress to the infected class
(Iv) at a rate ρEv . It is noted that βh = β1εκIv

Nh
, βv = β2εκIh

Nh
and Dv = εκAh

Nh
,

where β1 and β2 represent the transmission probability of human and mosquito
respectively with contact rate κ of mosquito per human per unit time.
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Figure 6.1: Flow diagram for malaria transmission model
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The dynamics of the mosquito population are described by the following system
of differential equations:

dSh
dt

= φh + ρRhRh − (βh + µh)Sh

dEh
dt

= βhSh − (ρEh + µh)Eh

dIh
dt

= ρEhEh − (ρIh + µh + α)Ih

dRh
dt

= ρIhIh − (ρRh + µh)Rh

dE
dt

= n(ρAoAo + ρIvIv)− (ρe + µe)E

dL
dt

= ρeE − (ρL + µL(1 + L/K))L

dP
dt

= ρLL− (ρP + µP )P

dAh
dt

= ρPP + ρAoAo − (βv +Dv + µAh)Ah

dAr
dt

= DvAh − (ρAr + µAr)Ar

dAo
dt

= ρArAr − (ρAo + µAo)Ao

dEv
dt

= βvAh − (ρEv + µEv)Ev

dIv
dt

= ρEvEv − µIvIv

(6.1)

In the model, the term β2εκIhAh
Nh

denotes the rate at which the susceptible
mosquitoes searching for host Ah are infected by human Ih and β1εκIvSh

Nh
refers

to the rate at which the susceptible humans Sh, become infected by infectious
female Anopheles mosquito Iv. It is important to note that the rate of infection
of susceptible humans Sh by infected mosquito Iv is dependent on the total
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number of humans Nh available per vector.

The total population sizes are Nh = Sh +Eh + Ih +Rh and Nv = E+L+P +
Ah + Ar + Ao + Ev + Iv with their differential equations

dNh
dt

= dSh
dt

+ dEh
dt

+ dIh
dt

+ dRh
dt

= φh − µhNh − αIh
(6.2)

and

dNv
dt

= dE
dt

+ dL
dt

+ dP
dt

+ dAh
dt

+ dAr
dt

+ dAo
dt

+ dEv
dt

+ dIv
dt

= n(ρAoAo + ρIvIv)− µvNv − µLL
2

K

(6.3)

where µv = µe + µL + µP + µAh + µAr + µAo + µEv + µIv .

6.4 Mathematical analysis of the model

We analyse the model to check if intervention strategies have any impact on
the diseases, that is, whether the disease can be eradicated or not. The thresh-
olds parameters which determine persistence or elimination of malaria will be
determined and studied. Therefore, we start by determining the invariant re-
gion to check whether the model is biologically meaningful and showing that
all solutions of (6.1) are positive for all t ≥ 0 and are attracted in that region.

6.4.1 Invariant region

This region can be obtained by the following theorem.

Theorem 6.4.1. The solutions of the system (6.1) are feasible for all t > 0 if
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they enter the invariant region Ω = Ωh ×Ωv

Proof: Let Ω = (Sh, Eh, Ih, Rh, E, L, P, Ah, Ar, Ao, Ev, Iv) ∈ R12
+ be

any solution of the system (6.1) with non-negative initial conditions.

In absence of the disease, that is Ih = 0, equation (6.2) becomes

dNh

dt
≤ φh − µhNh,

dNh
dt

+ µhNh ≤ φh (6.4)

Multiplying both side of equation (6.4) by the integrating factor e
∫
µhdt = eµht

gives

eµht
dNh

dt
+ µhNhe

µht ≤ φhe
µht,

d
dt

(Nhe
µht) ≤ φhe

µht (6.5)

integrating both sides of equation (6.5), we have

Nhe
µht ≤ φh

µh
eµht + C (6.6)

where C is integration constant.

Dividing equation (6.6) through by eµht gives

Nh ≤
φh
µh

+ Ce−µht

Using the initial conditions at t = 0, Nh(0) = Nh0 :
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Nh0 ≤
φh
µh

+ C ⇒ Nh0 −
φh
µh
≤ C,

Nh ≤ φh
µh

+ (Nh0 − φh
µh

)e−µht
(6.7)

Applying the theorem of differential inequality [13], we obtain

0 ≤ Nh ≤
φh
µh

Therefore, as t→∞ in (6.7), the human population Nh ≤ φh
µh
.

Hence all feasible solutions set of the human population of the model (6.1)
enters region

Ωh =
{

(Sh, Eh, Ih, Rh) ∈ R4
+ : Sh > 0, Eh ≥ 0, Ih ≥ 0, Rh ≥ 0, Nh ≤

φh
µh

}

Similarly, the feasible solutions set of the mosquito population enters the region

Ωv = {(E, L, P, Ah, Ar, Ao, Ev, Iv) ∈ R8
+ :

E > 0, L ≥ 0, P ≥ 0, Ah ≥ 0, Ar ≥ 0, Ao ≥ 0, Ev ≥ 0, Iv ≥ 0,

Nv ≤
nK(ρAoAo + ρIvIv)− µLL2

Kµv
≤ nKρAoAo − µLL2

Kµv
}.

Therefore, the feasible solution set for model (6.1) is given by

Ω = {(Sh, Eh, Ih, Rh, E, L, P, Ah, Ar, Ao, Ev, Iv) ∈ R12
+ :

(Sh, E) > 0, (Eh, Ih, Rh, L, P, Ah, Ar, Ao, Ev, Iv) ≥ 0 :

Nh ≤
φh
µh

: Nv ≤
nKρAoAo − µLL2

Kµv
}.
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Therefore, the region Ω is positive-invariant (i.e. solutions remain positive for
all times, t) and the model (6.1) is biologically meaningful and mathematically
well-posed in the domain Ω 2

6.4.2 Positivity of solutions

Lemma 6.4.2. Let the initial conditions be

{(Sh(0), E(0)) > 0, (Eh(0), Ih(0), Rh(0), L(0), P (0), Ah(0),

Ar(0), Ao(0), Ev(0), Iv(0)) ≥ 0} ∈ Ω.

Then the solution set {Sh, Eh, Ih, Rh, E, L, P, Ah, Ar, Ao, Ev, Iv} (t) of
the system (6.1) is positive for all t > 0.

Proof
From the equation (6.1), we have

dSh
dt

= φh + ρRhRh − (βh + µh)Sh ≥ −(βh + µh)Sh

∫ 1
Sh
dSh ≥ −

∫
(βh + µh)dt⇒ lnSh ≥ −(βh+µh)t+C ⇒ Sh(t) = e[−(βh+µh)t+C]

⇒ Sh(t) ≥ e−(βh+µh)t × A = Ae−(βh+µh)t, A = eC

⇒ Sh(t) ≥ Ae−(βh+µh)t

At t = 0,
Sh(0) ≥ A⇒ Sh(t) ≥ Sh(0)e−(βh+µh)t ≥ 0

Therefore,
Sh(t) ≥ Sh(0)e−(βh+µh)t ≥ 0.

Similarly, it can be shown that the remaining equation of system (6.1) are also
positive for all t > 0, because eη > 0 ∀ η ∈ R. 2
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6.4.3 Disease-free equilibrium and stability analysis

The disease-free equilibrium of model (6.1) is given by,

ε0 =
(
S0
h, E

0
h, I

0
h, R

0
h, E

0, L0, P 0, A0
h, A

0
r, A

0
o, E

0
v , I

0
v

)

=
(
φh
µh
, 0, 0, 0, nKρAoAo − µLL

2

Kµv
, 0, 0, 0, 0, 0, 0, 0

)

We use the next generation operator approach as described by Diekmann et al
[47] to define the basic reproduction number, R0, as the number of secondary
infections that one infectious individual would create over the duration of
the infectious period, provided that everyone else is susceptible. The basic
reproduction number (reproduction ratio) R0 is given by

R0 = ϕ(FV −1),

where ϕ(M) denotes the spectral radius of a matrix M ,

F =


0 0 0 β1εκ

0 0 0 0
0 β2εκµhθ1

φhθ2
0 0

0 0 0 0

 (6.8)

where θ1 = nKρAoAo − µLL2, and θ2 = Kµv. Also,

V =


(ρEh + µh) 0 0 0
−ρEh (ρIh + µh + α) 0 0

0 0 (ρEv + µEv) 0
0 0 −ρEv µIv

 , (6.9)
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such that

R0 =

√√√√ ρEhρEvβ1β2(εκ)2µhθ1

φhθ2µIv(ρEh + µh)(ρIh + µh + α)(ρEv + µEv)
(6.10)

6.4.4 Local stability of the disease-free equilibrium

We analyse the local stability of the disease-free equilibrium using the Jacobian
matrix of the malaria model (6.1) at the disease free equilibrium point. Using
[196], the following theorem holds.

Theorem 6.4.3. The disease free equilibrium point for system (6.1) is locally
asymptotically stable if R0 < 1 and unstable if R0 > 1.

Proof:
Setting C1 = µIv , C2 = ρEv + µEv , C3 = ρIh + µh + α and C4 = ρEh + µh, the
Jacobian matrix (J) of the malaria model (6.1) with Sh = Nh− (Eh+ Ih+Rh)
and Ah = Nv − (Ev + Iv) at the disease-free equilibrium point is given by



−C4 0 0 0 β1εκ

ρEh −C3 0 0 0
0 ρIh −(ρRh + µh) 0 0
0 β2εκµhθ1

φhθ2
0 −C2 0

0 0 0 ρEv −C1


(6.11)

The eigenvalues of the Jacobian matrix are the solutions of the characteristics
equation

|J − λI| = 0.

 

 

 

 



136
CHAPTER 6. MATHEMATICAL MODELLING AND ANALYSIS OF MOSQUITO-HUMAN

MALARIA MODEL

That is

−(C4 + λ) 0 0 0 β1εκ

ρEh −(C3 + λ) 0 0 0
0 ρIh −(ρRh + µh + λ) 0 0
0 β2εκµhθ1

φhθ2
0 −(C2 + λ) 0

0 0 0 ρEv −(C1 + λ)


= 0

(6.12)

The third column has diagonal entry, therefore one of the eigenvalues of the
Jacobian matrix is (ρRh + µh). The remaining eigenvalues can be obtained as
follows:


−(C4 + λ) 0 0 β1εκ

ρEh −(C3 + λ) 0 0
0 β2εκµhθ1

φhθ2
−(C2 + λ) 0

0 0 ρEv −(C1 + λ)

 = 0 (6.13)

(C4 + λ)(C3 + λ)(C2 + λ)(C1 + λ)−Q1 = 0 (6.14)

where, Q1 = ρEhρEvβ1β2(εκ)2µhθ1
φhθ2µIv

. Hence,

λ4 +D1λ
3 +D2λ

2 +D3λ+D = 0, (6.15)

where,
D1 = C1 + C2 + C3 + C4

D2 = C1C2 + C3(C1 + C2) + C4(C1 + C2 + C3)
D3 = C1C2C3 + C1C2C4 + C1C3C4 + C2C3C4

D4 = C1C2C3C4 −Q1

(6.16)
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Also from (6.10),

R2
0 = ρEhρEvβ1β2(εκ)2µhθ1

φhθ2C1C2C3C4
(6.17)

Using the Routh-Hurwitz Criteria on polynomial, we prove that all roots of
the polynomial (6.15) have negative real part.

Theorem 6.4.4. Routh-Hurwitz Criteria
Given the polynomial

P (λ) = λn +D1λ
n−1 + ...+Dn−1λ+Dn,

where the coefficients Di are constants, i = 1, ..., n define n Hurwitz matrices
using the coefficients Di of the characteristic polynomial

H1 = (D1), H2 =
 D1 1
D3 D2

 , H3 =


D1 1 0
D3 D2 D1

D5 D4 D3

 and

Hn =



D1 1 0 0 ... 0
D3 D2 D1 1 ... 0
D5 D4 D3 D2 ... 0
... ... ... ... ...

...
0 0 0 0 ... Dn


where
Dj = 0 if j > n. All of the roots of the polynomial P (λ) are negatives or have
negative real parts if and only if the determinants of all Hurwitz matrices are
positive:

det(Hj) > 0, j = 1, 2, ..., n.

For the characteristic polynomial in equation (6.15), where n = 4, the Routh-
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Hurwitz Criteria are
D1 > 0, D2 > 0, D3 > 0, D4 > 0,
det(H1) = D1 = C1 + C2 + C3 + C4 > 0

det(H2) =
 D1 1

0 D2

 = D1D2 > 0,

= 3C3C4(C1 + C2) + 3C2C1(C3 + C4) + C2
4(C1 + C2 + C3 + C4)

+ C2
3(C1 + C2 + C4) + C3

2(C1 + C3 + C4) + C2
1(C2 + C3 + C4) > 0

det(H3) =


D1 1 0
D3 D2 D1

D5 D4 D3

 = D1D2D3 −D2
3 = D1D2 −D3

= 2C3C4(C1 + C2) + 2C1C2(C3 + C4) + C2
4(C1 + C2 + C3)

+ C2
3(C1 + C2 + C4) + C2

2(C1 + C3 + C4) + C2
1(C2 + C3 + C4) > 0

and

det(H4) =


D1 1 0 0
D3 D2 D1 1
0 D4 D3 D2

0 0 0 D4

 = D3(D1D2 −D3)−D4D
2
1

= D3(D1D2 −D3)−D4D
2
1 = D3Q2 +Q1D

2
1 − C1C2C3C4D

2
1 > 0

where, Q2 = D1D2D3.

Since all determinants of the Hurwitz matrices are positive, which means all
the eigenvalues of the Jacobian (6.15) have negative real part and R0 < 1.
Therefore, disease-free equilibrium point is stable. Conversely, if R0 > 1, it
implies that D4 < 0, and since the remaining coefficients (D1, D2 and D3) of
the polynomial (6.15) are positive, then all the roots of this polynomial cannot
have negative real parts. Therefore, the DFE point is unstable. 2
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6.4.5 Endemic equilibria and stability analysis

The endemic equilibrium (ε1) of the model is given by

ε1 = (S∗h, E∗h, I∗h, R∗h, E∗, L∗, P ∗, A∗h, A∗r, A∗o, E∗v , I∗v ) , where,

S∗h = φh(ρRh+µh)+ρRhρIhI
∗
h

(ρRh+µh)(β∗
h

+µh)

E∗h = β∗h[φh(ρRh+µh)+ρRhρIhI
∗
h]

(ρEh+µh )(ρRh+µh)(β∗
h

+µh)

I∗h = ρEhE
∗
h

(ρIh+µh+α)Ih

R∗h = I∗h ρIh
µh+ρRh

E∗ = n(ρAoA∗o+ρIv I∗v )
(ρe+µe)

L∗ =
√

4E∗K µL ρe+(K(µL+ρL))2−(K(µL+ρL))
µL

P ∗ = ρLL
∗

(ρP+µP )

A∗h = ρPP
∗+ρAoA∗o

Dv+ε κ I∗
h
β2+µr+µAh

A∗r = Dv (ρPP ∗+ρAoA∗o)
(Dv+ε κ I∗

h
β2+µr+µAh)Z5

A∗o = Dv (ρPP ∗+ρArAr∗)
(Dv+ε κ I∗

h
β2+µr+µAh) (µr+µAo+ρAo )Z5

E∗v = ε κ I∗h β2 (ρPP ∗+ρAoAo∗)
(Dv+ε κ I∗

h
β2+µr+µAh) (µEv+ρEv )

I∗v = ε κ I∗h β2 (ρPP ∗+ρAoA∗o) ρEv
µIv (Dv+ε κ I∗

h
β2+µr+µAh) (µEv+ρEv )

(6.18)
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The endemic equilibrium satisfies the following polynomial

G1(I∗h)2 +G2(I∗h) +G3 = 0, (6.19)

with

G1 = β2ρIhρRhµhNhR2
0 − (εκ)2βhµh(ρRh + µh)(θ2µIv + β2µhNh)

G2 = ρIhρRhµhN
2
h(θ2µIv)R2

0 −M1
[
β2µhNh(φhR2

0 − φh − µhNh)−M2R0v
]

G3 = µh(θ2µIv)2N2
hφh(ρRh + µh)

[
R2

0 − 1
]
,

where
M1 = θ2µIvεκ(ρRh + µh), M2 = φhθ2µIvβ2 and R0v = ρEvβ2εκθ1

θ2µIv (ρEv+µEv ) .

Hence, the model has:

Theorem 6.4.5.
1. A unique endemic equilibrium if G3 < 0, it implies that R0 < 1.
2. A unique endemic equilibrium if G2 < 0 and G3 = 0 or G2 − 4G1G3 > 0.
3. Two endemic equilibria if G3 > 0, G2 < 0 and
4. No endemic otherwise.

6.4.6 Local stability of the endemic equilibrium

The stability of the endemic equilibrium of the model (6.1) is analysed using
the Centre Manifold Theory described by Castillo-Chavez and Song, 2004 [27].

Theorem 6.4.6. Castillo-Chavez and Song [141]
Consider the following general system of ordinary differential equations with a
parameter Ψ.

dx

dt
= h(x,Ψ), h : Rn × R→ R and h ∈ C2(Rn × R) (6.20)
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where 0 is an equilibrium point of the system, that is, h(0,Ψ) ≡ 0 for all Ψ
and

1. A = Dxh(0, 0) =
(
∂hi
∂xi

(0, 0)
)
is the linearization matrix of the system

around the equilibrium 0 with Ψ evaluated at 0.

2. Zero is a simple eigenvalue of A and other eigenvalues of A have negative
real parts.

3. Matrix A has a nonnegative right eigenvector w and a left eigenvector v
corresponding to the zero eigenvalue.

Let hk be the kth component of h and

a =
n∑

k,i,j=1
vkwiwj

∂2hk
∂xi∂xj

(0, 0)

and
b =

n∑
k,i=1

vkwi
∂2hk
∂xi∂Ψ(0, 0)

then the local dynamics of the system (6.20) around 0 is totally determined by
the sign of a and b.

1. a > 0, b > 0. When Ψ < 0 with |Ψ| << 1, 0 is locally asymptotically
stable and there exists a positive unstable equilibrium; when 0 < Ψ <<

1, 0 is unstable and there exists a negative, locally asymptotically stable
equilibrium.

2. a < 0, b < 0. When Ψ < 0 with |Ψ| << 1, 0 is unstable; when 0 < Ψ <<

1, 0 is locally asymptotically stable, and there exists a positive unstable
equilibrium.

3. a > 0, b < 0. When Ψ < 0 with |Ψ| << 1, 0 is unstable, and there exists
a locally asymptotically stable negative equilibrium; when 0 < Ψ << 1, 0
is stable, and a positive unstable equilibrium appears.
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4. a < 0, b > 0, when Ψ changes from negative to positive, 0 changes
its stability from stable to unstable. Correspondingly a negative unstable
equilibrium becomes positive and locally asymptotically stable.

To apply this theorem we make the following changes of variables in the system
(6.1).

Let x1 = Sh, x2 = Eh, x3 = Ih, x4 = Rh, x5 = E, x6 = L, x7 = P, x8 =
Ah, x9 = Ar, x10 = Ao, x11 = Ev, x12 = Iv

The system (6.1) is written in vector form as

dXi

dt
= H(Xi)

where Xi = (x1, x2, ..., x12)T and H = (h1, h2, ..., h12)T are transposed matri-
ces.

The system of equations (6.1) becomes
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dx1
dt

= φh + ρRhx4 − (Ψ∗εκµhx12
φh

+ µh)x1 = h1

dx2
dt

= Ψ∗εκµhx12
φh

x1 − (ρEh + µh)x2 = h2

dx3
dt

= ρEhx2 − (ρIh + µh + α)x3 = h3

dx4
dt

= ρIhx3 − (ρRh + µh)x4 = h4

dx5
dt

= n(ρAox10 + ρIvx12)− (ρe + µe)x5 = h5

dx6
dt

= ρex5 − (ρL + µL(1 + x6/K))x6 = h6

dx7
dt

= ρLx6 − (ρP + µP )x7 = h7

dx8
dt

= ρPx7 + ρAox10 − (β2εκµhx3
φh

+Dv + µAh + µr)x8 = h8

dx9
dt

= Dvx8 − (ρAr + µAr)x9 = h9

dx10
dt

= ρArx9 − (ρAo + µAo + µr)x10 = h10

dx11
dt

= β2εκµhx3
φh

x8 − (ρEv + µEv)x11 = h11

dx12
dt

= ρEvx11 − µIvx12 = h12

(6.21)

where Nh = x1 +x2 +x3 +x4 and Nv = x5 +x6 +x7 +x8 +x9 +x10 +x11 +x12

with Ψ∗ = β1.
Let Ψ∗ be the bifurcation parameter, the system (6.21) is linearized at disease
free equilibrium point when Ψ = Ψ∗ with R0 = 1. Thus Ψ∗ can be solved from
(6.10) when R0 = 1 as
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such that

R0 =

√√√√ ρEhρEvβ1β2(εκ)2µhθ1

φhθ2µIv(ρEh + µh)(ρIh + µh + α)(ρEv + µEv)

12 = Ψ∗ρEhρEvβ1β2(εκ)2µhθ1

φhθ2µIv(ρEh + µh)(ρIh + µh + α)(ρEv + µEv)

Ψ∗ = φhθ2µIv (ρEh+µh)(ρIh+µh+α)(ρEv+µEv )
ρEhρEvβ1β2(εκ)2µhθ

(6.22)

Then zero is a simple eigenvalue of the following Jacobian matrix, Jbif with
the application of the bifurcation parameters.



z1 0 0 ρRh 0 0 0 0 0 0 0 −Ψεκ
0 z2 0 0 0 0 0 0 0 0 0 Ψεκ
0 ρEh z3 0 0 0 0 0 0 0 0 0
0 0 ρIh z4 0 0 0 0 0 0 0 0
0 0 0 0 z5 0 0 0 0 nρAo 0 nρIv

0 0 0 0 ρe z6 0 0 0 0 0 0
0 0 0 0 0 ρL z7 0 0 0 0 0
0 0 z13 0 0 0 ρP z8 0 ρAo 0 0
0 0 0 0 0 0 0 Dv z9 0 0 0
0 0 0 0 0 0 0 0 ρAr z10 0 0
0 0 0 0 0 0 0 z14 0 0 z11 0
0 0 0 0 0 0 0 0 0 0 ρEv z12



(6.23)

where,
z1 = −µh, z2 = −(ρEh + µh), z3 = −(ρIh + µh + α), z4 = −(ρRh + µh), z5 =
−(ρe + µe),
z6 = −(ρL + µL1 + µL2), z7 = −(ρP + µP ), z8 = −(Dv + µAh + µr), z9 =
−(ρAr + µAr),
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z10 = −(ρAo +µAo +µr), z11 = −(ρEv +µEv), z12 = −µIv , z13 = −β2εκµhθ1
φhθ2

and
z14 = β2εκµhθ1

φhθ2
.

A right eigenvector associated with the eigenvalue zero is w = (w1, w2, w3, ..., w12).
We get

−µhw1 + ρRhw4 −Ψεκw12 = 0

−(ρEh + µh)w2 + Ψεκw12 = 0

ρEhw2 − (ρIh + µh + α)w3 = 0

ρIhw3 − (ρRh + µh)w4 = 0

−(ρe + µe)w5 + nρAow10 + nρIvw12 = 0

ρew5 − (ρL + µL1 + µL2)w6 = 0

ρLw6 − (ρP + µP )w7 = 0

−β2εκµhθ1
φhθ2

w3 + ρPw7 − (Dv + µAh + µr)w8 + ρAow10 = 0

Dvw8 − (ρAr + µAr)w9 = 0

ρArw9 − (ρAo + µAo + µr)w10 = 0

β2εκµhθ1
φhθ2

w8 − (ρEv + µEv)w11 = 0

ρEvw11 − µIvw12 = 0

(6.24)
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Solving the system (6.23), we have the following eigenvector

w1 = ρRhw4 −Ψεκw12

µh
, w2 = Ψεκw12

(ρEh + µh)
, w3 = ρEhw2

(ρIh + µh + α) , w4 = ρIhw3

(ρRh + µh)
,

w5 = n(ρAow10 + ρIvw12)
(ρe + µe)

, w6 = ρew5

(ρL + µL1 + µL2) , w7 = ρLw6

(ρP + µP ) ,

w8 = ρPw7 + ρAow10 − β2εκµhθ1w3

φhθ2(Dv + µAh + µr)
, w9 = Dvw8

(ρAr + µAr)
, w10 = ρArw9

(ρAo + µAo + µr)
,

w11 = β2εκµhθ1w8

φhθ2(ρEv + µEv)
, w12 = ρEvw11

µIv
,

and the left eigenvector satisfying v.w = 1 is v = (v1, v2, ..., v12). To find these
left eigenvector associated with the eigenvalue 0, the matrix (6.23) should be
transposed and gives matrix, Jleft



z1 0 0 0 0 0 0 0 0 0 0 0
0 z2 ρEh 0 0 0 0 0 0 0 0 0
0 0 z3 ρIh 0 0 0 z13 0 0 0 0
ρRh 0 0 z4 0 0 0 0 0 0 0 0
0 0 0 0 z5 ρe 0 0 0 0 0 0
0 0 0 0 0 z6 ρL 0 0 0 0 0
0 0 0 0 0 0 z7 ρP 0 0 0 0
0 0 0 0 0 0 0 z8 Dv 0 z14 0
0 0 0 0 0 0 0 0 z9 ρAo 0 0
0 0 0 0 nρAo 0 0 ρAo 0 z10 0 0
0 0 0 0 0 0 0 0 0 0 z11 ρEv

−ε κΨ ε κΨ 0 0 nρAo 0 0 0 0 0 0 z12



(6.25)
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we have the following system

−µhv1 = 0

−(ρEh + µh)v2 + ρEhv3 = 0

−(ρIh + µh + α)v3 + ρIhv4 − β2εκµhθ1
φhθ2

v8 = 0

ρRhv1 − (ρRh + µh)v4 = 0

−(ρe + µe)v5 + ρev6 = 0

−(ρL + µL1 + µL2)v6 + ρLv7 = 0

−(ρP + µP )v7 + ρPv8 = 0

−(Dv + µAh + µr)v8 +Dvv9 + β2εκµhθ1
φhθ2

v11 = 0

−(ρAr + µAr)v9 + ρAov10 = 0

nρAov5 + ρAov8 − (ρAo + µAo + µr)v10 = 0

−(ρEv + µEv)v11 + ρEvv12 = 0

−εκΨv1 + εκΨv2 + nρAov5 − µIvv12 = 0

(6.26)

From the left eigenvector we have the following results

v1 = 0, v2 = v2 > 0, v3 = β2εκµhθ1v8 − φhv4θ2ρIh
φhθ2(ρIh + µh + α) , v4 = ρRhv1

(ρRh + µh)
= 0,
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v5 = ρev6

(ρe + µe)
, v6 = ρLv7

(ρL + µL1 + µL2) , v7 = ρPv8

(ρP + µP ) , v8 = Dvφhθ2v9 + β2εκµhθ1v11

φhθ2(Dv + µAh + µr)
,

v9 = ρAov10

(ρAr + µAr)
, v10 = nρAov5 + ρAov8

(ρAo + µAo + µr)
, v11 = ρEvv12

(ρEv + µEv)
,

v12 = −εκΨv1 + εκΨv2 + nρAov5

µIv
= εκΨv2 + nρAov5

µIv
.

Particularly, if a > 0 and b > 0, then, a backward bifurcation occurs at Ψ = 0

Computation of a and b
For the system (6.21), the associated non-zero second order partial derivatives
(at DFE) are given by

a =
3∑

k,i,j=2
vkwiwj

∂2hk
∂xi∂xj

(0, 0) +
12∑

k,i,j=5
vkwiwj

∂2hk
∂xi∂xj

(0, 0)

b =
3∑

k,i=2
vkwi

∂2hk
∂xi∂Ψ(0, 0) +

12∑
k,i=5

vkwi
∂2hk
∂xi∂Ψ(0, 0).

Since v1 = v4 = 0 for k = 1, 4; then k = 2, 3, 5, 6, 7, 8, 9, 10, 11, 12 should be
considered. It implies that the following functions will be used to compute a
and b from the system (6.21).

h2 = Ψεκµhx12x1

φh
− (ρEh + µh)x2 = Ψεκµhx12

φh
(Nh − x2 − x3)− (ρEh + µh)x2
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= Ψεκµhx12Nh

φh
− Ψεκµhx12x2

φh
− Ψεκµhx12x3

φh
− (ρEh + µh)x2

h11 = β2εκµhx3N
s
v

φh
−(ρEv+µEv)x11 = β2εκµhx3

φh
(Nv−x11−x12)−(ρEv+µEv)x11

= β2εκµhx3Nv

φh
− β2εκµhx3x11

φh
− β2εκµhx3x12

φh
− (ρEv + µEv)x11

we let N s
v represents uninfected mosquito population, such that N s

v = x5 +
x6 + x7 + x8 + x9 + x11. Hence the partial derivatives that are not zero at the
disease-free equilibrium are

∂2h2

∂x2∂x12
= −εκµh

φh
,

∂2h2

∂x3∂x12
= −εκµh

φh
,

∂2h2

∂x3∂x11
= −β2εκµh

φh
,

∂2h2

∂x3∂x12
= −β2εκµh

φh
.

Hence

a = v2w2w12
∂2h2

∂x2∂x12
+v2w3w12

∂2h2

∂x3∂x12
+v11w3w11

∂2h2

∂x3∂x11
+v11w3w12

∂2h2

∂x3∂x12

= −εκµh
φh

[v2w12Ψ(w2 + w3) + v6w3β2(w11 + w12)]

a = −εκµh
φh

[
v2w

2
12Ψ2

12εκ

(
ρIh + µh + αρEh

(ρEh + µh)(ρIh + µh + α)

)
+

v6w3β2

(
1 + µhρEhρRhΨβ2(εκ)2

φhθ2µIv (ρEv+θ2µIv )(ρIh+µhα)(ρEh+µh)

)
< 0.(6.27)

Similarly, the partial derivatives that are not zero for b are
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∂h2

∂Ψ = εκµhx12x1

φh
,

∂2h2

∂x12∂Ψ = εκµhx1

φh
= εκ

Therefore,

b = v2w12
∂2h2

∂x12∂Ψ = v2w12εκ > 0. (6.28)

Hence a < 0 and b > 0. Therefore the following holds.

Theorem 6.4.7. The malaria model has a unique endemic equilibrium which
is locally asymptotically stable when R0 < 1 and unstable when R0 > 1.

Our analyses reveal the existence of the phenomenon of backward bifurca-
tion (See Fig. 6.2). This implies that the stable disease-free equilibrium of
the model co-exists with a stable endemic equilibrium when the reproduction
number of the disease is less than unity. The epidemiological consequence of
backward bifurcation is that the typical requirement of having the reproduc-
tion number less than unity, while necessary, is no longer sufficient for malaria
elimination from the population [15].

6.5 Sensitivity analysis of model parameters

We carried out the sensitivity analysis to determine the model robustness to
parameter values, also to know the parameters that have a high impact on the
disease transmission. The analysis also determines the effects of parameters on
model outcomes [26]. To carry out local sensitivity analysis, we use a simple
approach to compute the sensitivity index, which is a partial derivative of the
output variable with respect to the input parameters [26, 35].

Definition.
The normalized forward sensitivity index of a variable, d1, that depends on a
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differentiable parameter, d2, is defined as:

Υd1
d2 := ∂d1

∂d2
× d2

d1
.

Sensitivity analysis of reproduction number
Hence, we derive the sensitivity of R0 to each of the parameters described in
Table 6.1. The sensitivity index of R0 with respect to ρEv , for example is,

ΥR0
ρEv

:= ∂R0

∂ρEv
× ρEv
R0

:= −R0

2(µEv + ρEv)
= −0.5

The detail sensitivity indices of R0 resulting from the evaluation to some other
parameters of the model are shown in Fig. 6.3. Since ΥR0

ρEv
= −0.5, increasing

(or decreasing) the biting rate ε by 10%, increases (or decreases) theR0 by 5%.
In the same way, increasing (or decreasing) the mosquito biting rate rate, ε
by 10%, increases (or decreases) the R0 by 10%. This suggests that strategies
that can be applied in combating malaria are to focus on the mosquito biting
rate and death rate.

6.6 Results and discussion

Numerical analysis without climate variables
Ignoring climatic influence on our model, we carry out numerical simulations
using a fourth order Runge-Kutta scheme in Matlab to verify some of the
analytical results on the stability of the system (6.1). We also aim to illustrate
the dynamics of each epidemiological class of our model with time using the
constant parameter values presented in Table 6.1 with the following initial
conditions; Sh = 2000, Eh = 15000, Ih = 1000, Rh = 300, E = 10000, L =
700, P = 500, Ah = 100, Ar = 80, Ao = 60, Ev = 40, Iv = 30. we examine
the time series plot of both mosquito and human population with constant
parameter values as shown in Fig. 6.4 and Fig. 6.5 respectively. With low
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Figure 6.2: Bifurcation diagram for model 6.1 showing the endemic equilibrium
values for the proportion of infectious, using parameters in Table 6.1

biting rate (ε), we observe in Fig. 6.4(a - c) that each population tends to
zero with time and R0 = 0.3. This is evidence to Theorem 6.4.3, that at
disease-free equilibrium, the system converges and is globally stable whenever
R0 < 1, which implies that the population is eradicated. On the other hand,
in Fig. 6.5(a - c), the disease-free equilibrium of the system becomes unstable
as R0 > 1. To achieve this, we increase the mosquito biting rate (ε) from 0.2
to 0.5. This increment gives rise to the previous value of R0 from 0.3 to 1.1,
thus makes disease-persistence equilibrium to be stable as stated in Theorem
6.4.3.

6.7 Conclusion

We developed a compartmental model for malaria transmission involving the
human host and mosquito populations. The mosquito population was divided
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Figure 6.3: Sensitivity index of R0 to parameters evaluated at the baseline
parameter values given in Table 6.1

into six classes: egg, larva, pupa, susceptible adult searching for host, resting
adult and adult searching for breeding site. We established that the model is
epidemiologically feasible and well-posed and we also showed the existence of
the disease-free equilibrium.
Furthermore, we employed the next generation matrix technique to derive
the reproduction number R0. We proved that the model has two equilib-
rium points; the disease-free equilibrium which is locally asymptotically stable
whenever R0 < 1, unstable otherwise giving rise to the existence of the en-
demic equilibrium for R0 > 1.
We found that the system exhibits backward bifurcation, meaning that the
stability of the disease-free equilibrium of the model co-existed with a stable
endemic equilibrium even when R0 < 1.
We performed the sensitivity analysis on the reproductive number, R0. Our
analyses revealed that mosquito biting rate is highly sensitive over the repro-
duction number. This implies that biting rate plays a crucial part in transmit-
ting malaria. Since Anopheles need blood-meals to complete their gonotrophic
and sporogonic cycle, activities (such as bed netting, use of insecticides) to
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Figure 6.4: Simulations of human and mosquito population with low biting
rate, ε = 0.2, R0 = 0.3
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Figure 6.5: Simulations of human and mosquito population with high biting
rate, ε = 0.5, R0 = 1.1
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Table 6.1: Parameters of the malaria model 6.1

Description Parameter Value Source

Number of eggs laid per oviposition n 100 [103, 104, 172]
Egg hatching rate into larvae ρE 0.5 day−1 [42, 103, 104, 172]
Development rate of L to P ρL 0.14 day−1 [103, 104, 172]
Development rate of pupae to adult ρP 0.5 day−1 [103, 104, 172]
Egg mortality rate µE 0.56 day−1 [103, 104, 140]
Density-independent larvae mortality rate µL 0.44 day−1 [103, 104, 140]
Pupa mortality rate µP 0.37 day−1 [103, 104, 140]
Rate at which Ah move to Ar ρAh 0.46 day−1 [35, 103, 104]
Rate at which Ar move to Ao ρAr 0.43 day−1 [35, 103, 104]
Oviposition rate ρAo 3.0 day−1 [35, 103, 104]
Mortality rate of Ah µAh 0.18 day−1 [35, 103, 104]
Mortality rate of Ar µAr 0.0043 day−1 [35, 103, 104]
Mortality rate of Ao µAo 0.41 day−1 [35, 103, 104]
Carrying capacity K 100000 Assumed
Probability of human getting infected β1 0.533 Assumed
Probability of mosquito getting infected β2 0.09 [14, 106, 142]
Natural death rate in human µh 0.00004 day−1 [34, 142]
Natural death rate in mosquitoes µr 0.1429 day−1 [14, 106, 142]
Human recruitment rate φh 100 day−1 [14, 106, 142]
Contact rate of mosquito per human κ 0.6 day−1 [34, 142]
Mosquito biting rate ε 0.2 [14, 106, 142]
Disease induced death rate α 0.05 day−1 [106, 142]
Progression from Eh to Ih ρEh 1/17day−1 [14, 106, 142]
Progression from Ev to Iv ρEv 1/18day−1 [14, 106, 142]
Recovered individuals’ loss of immunity ρRh 1/730 [14, 106, 142]

prevent biting rate should be constantly practiced in a malaria-epidemic re-
gion. We implemented and carried out the numerical simulations to confirm
the theoretical analysis and explored more patterns of dynamical behaviors of
our model.

 

 

 

 



Chapter 7

Exploring the impact of climate
variability on malaria
transmission using a dynamic
mosquito-human malaria model
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Here in this chapter, we incorporate climate parameters into the model in
Chapter 6. We use the model outputs to investigate the impact of climate
variability on malaria transmission over KwaZulu-Natal province using some
statistical analyses.
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7.1 Abstract

The reasons for malaria resurgence mostly in Africa are yet to be well un-
derstood. Although the causes are often linked to regional climate change,
it is important to understand the impact of climate variability on the dy-
namics of the disease. However, this is difficult due to the unavailability of
long-term malaria data over the study areas. In this study, we develop a
climate-based mosquito-human malaria model to study malaria dynamics in
the human population over KwaZulu-Natal, one of the epidemic provinces in
South Africa, from 1970-2005. We compare the model output with available
observed monthly malaria cases over the province from 2002-2004. We fur-
ther use the model outputs to explore the relationship between the climate
variables (rainfall and temperature) and malaria incidence over the province
using Principal Component Analysis (PCA), Wavelet Power Spectrum (WPS)
and Wavelet Coherence Analysis (WCA). The model produces a reasonable fit
with the observed data and in particular, it captures all the spikes in malaria
prevalence. Our results highlight the importance of climate factors on malaria
transmission and show the seasonality of malaria epidemics over the province.
Results from the PCA on the model outputs suggest that there are two major
processes in the model simulation. One of the processes indicate high loadings
on Susceptible, Exposed and Infected humans, while the other is more corre-
lated with Susceptible and Recovered humans. However, both factors reveal
an inverse correlation between Susceptible-Infected and Susceptible-Recovered
humans respectively. Through the spectrum analysis, we notice a strong an-
nual cycle of malaria incidence over the province and ascertain a dominant
periodicity of one year. Consequently, our findings indicate that an average of
0 to 120-day lag is generally noted over the study period, but the 120-day lag is
more associated with temperature than rainfall. This is consistent with other
results obtained from our analyses that malaria transmission is more tightly
coupled with temperature than with rainfall in KwaZulu-Natal province.
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7.2 Introduction

Malaria continues to be a serious concern as it causes almost one million deaths
globally every year [208]. It is also estimated that approximately half of the
worlds population is at risk of contracting malaria [208]. The disease is closely
associated with Africa, which is classified as a region carrying the largest share
of the global malaria burden [208]. For instance, in 2015, 90% of recorded
malaria cases led to death in Africa [208]. Malaria is sensitive to atmospheric
conditions and the occurrence is strongly influenced by climate variability [55].
For this reason, the recent concerns about global warming have triggered sev-
eral studies on the impact of climate variability and climate change on inter-
annual patterns of the disease [29, 118, 120, 154].

Previous studies have examined year-to-year variation of seasonal epidemics
over the African highlands [152]. For example, using the time-series modelling
approach, Zhou et al [212] recently ascertained that rainfall and temperature
play a significant role in the interannual variability of malaria across multiple
East African highlands. Their results in contrast to Hay et al [75] suggested
that malaria epidemics in the highlands are initiated by climate variability.
More recently, Pascual et al [152] combined both a time-series epidemiological
model and a statistical approach to analyse monthly cases of malaria from
1970 to 2003 over a highland in Western Kenya. The findings from their study
revealed the existence of multiyear cycles of malaria incidence over the study
period. Their findings also demonstrated the impact of rainfall over malaria
resurgence in 1990. It is concluded in line with the study of Zhou et al [212]
that climate variables play significant roles at different temporal scales and
should be considered when building predictive malaria models.

However, assessing the impact of climate variability on malaria transmis-
sion over a region is difficult without long-term data series of malaria cases
of the region [212]. For this reason, several studies have considered using dy-
namical malaria models to generate reported cases of epidemic regions over a
long period. For instance, in the study of Laneri et al [95], dynamical mod-
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els are used to understudy the impact of immunity and climate variability on
malaria transmission in Senegal over two decades. Their results highlighted
the possibility of forecasting malaria from climate in endemic regions but only
after accounting for the interaction between climate and immunity. Following
the same trend, Roy et al [167] examined the impact of climate variability and
the predictability of epidemic malaria over different districts in India using dy-
namical models. It is established in their study that process-based models and
climate variables, are informative and useful under non-stationary conditions.
More recently, in the study of Abiodun et al [2], a climate-based mosquito
model was presented to examine the impact of climate variables on mosquito
population dynamics over Dondotha village, KwaZulu-Natal province in South
Africa. The model demonstrates and quantifies the influence of temperature
and rainfall on the abundance of Anopheles arabiensis over time and presents
a strong seasonal variability over the region.

The current study aims to further develop the mosquito model presented in
[2] to investigate the impact of climate variability on malaria transmission over
KwaZulu-Natal province during the period 1970-2005. The newly developed
mosquito-human malaria model will be used to analyse the temporal dynamics
of the diseases over the province.

7.3 Material and methods

7.3.1 Study area

The study area focuses on KwaZulu-Natal province in South Africa. The
province is situated in the northeast of the country, and share borders with
three other provinces (Mpumalanga, Free State and Eastern Cape) and coun-
tries (Mozambique, Swaziland and Lesotho) as shown in Fig. 7.1.
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Figure 7.1: The map of KwaZulu-Natal province, South Africa. Source: GIS
unit of the Medical Research Council of South Africa.

7.3.2 Climate and malaria data

Two different datasets were considered for the purpose of this study. To
estimate the climate data of KwaZulu-Natal province, we averaged the cli-
mate data of three towns within malaria risk areas in the province. The
towns namely; Ingwavuma (27.1322oS, 31.9942oE), Richards Bay (28.7807oS,
32.0383oE) and Ulundi (28.2997oS, 31.4342oE) are selected from Umkhanyakude,
Uthungulu, and Zululand districts respectively. The Observational-Reanalysis
hybrid datasets of each town is obtained from the Princeton University Global
Meteorological Forcing Datasets ((PUGMFD), see [174] for details), and con-
sist of the daily precipitation, minimum and maximum temperatures between
1970-2005. The averaged climate data of the three towns for the daily mean
temperature and rainfall over the study period is shown in Fig. 7.4a and 7.4b
respectively. The monthly provincial malaria cases data of KwaZulu-Natal be-
tween 2002-2004 were obtained from the South African Department of Health.
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7.3.3 Mosquito-malaria model formulation

In this study, we develop a climate-based mosquito-human malaria model
to examine malaria transmission over KwaZulu-Natal province. We incor-
porate into the mosquito model of [2], additional mosquito classes and hu-
man compartments. The total mosquito population Nv, is sud-divided into:
Eggs (E), Larvae (L), Pupae (P ), Susceptible adult searching for host (Ah),
Adult at resting state (Ar), Adult searching for oviposition site (Ao), Adult
exposed to malaria parasite (Ev) and infectious mosquitoes (Iv), and then
Nv = E + L + P + Ah + Ar + Ao + Ev + Iv. After feeding, we assume
that some proportion (DvAh) of susceptible mosquito move to resting class
for gonotrophic process without being infected while others (βvAh) move to
exposed class for sporogonic process. They acquire malaria through contact
with infected humans at rate βv, and later progress to the infected class at a
rate ρEv . It is noted that βh = β1εκIv

Nh
, βv = β2εκIh

Nh
and Dv = εκAh

Nh
, where β1

and β2 represent the transmission probability of human and mosquito respec-
tively with contact rate (κ) and biting rate (ε) of mosquito per human per unit
time. We refer readers to the study of [2] for details on the formulation of the
mosquito model.

The total human population, denoted by Nh is sub-divided into suscep-
tible individuals (Sh), those exposed to malaria parasite (Eh), individuals
with malaria symptoms (Ih) and recovered humans (Rh) such that Nh =
Sh +Eh + Ih +Rh. Since (a) not all individuals in KwaZulu-Natal are living in
malaria transmission area, (b) there is significant migration away from rural
areas where malaria mostly occur, (c) some people might take malaria medica-
tion or live in regions where nets are used or dichlorodiphenyltrichloroethane
(DDT) is sprayed to reduce mosquito populations and (d) susceptible humans
also die of other causes, we assume susceptible individuals are recruited into
the community at a rate φh and acquire malaria through contact with infec-
tious mosquitoes at a rate βh. Exposed individuals move to infectious class at
a rate ρEh . Infectious individuals move to the recovered class at a rate ρIh ,
while infected individuals die at a rate α. Recovered individuals loose immu-
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nity at a rate ρRh , and become susceptible again and the natural death rate
is denoted by µh. The dynamics of the mosquito-human malaria model are
described by the following system of differential equations (7.1) with the flow
diagram illustrated in Fig. 7.2.

dSh
dt

= φh + ρRhRh − (βh + µh)Sh

dEh
dt

= βhSh − (ρEh + µh)Eh

dIh
dt

= ρEhEh − (ρIh + µh + α)Ih

dRh
dt

= ρIhIh − (ρRh + µh)Rh

dE
dt

= n(ρAoAo + ρIvIv)− (ρe + µe)E

dL
dt

= ρeE − (ρL + µL(1 + L/K))L

dP
dt

= ρLL− (ρP + µP )P

dAh
dt

= ρPP + ρAoAo − (βv +Dv + µAh)Ah

dAr
dt

= DvAh − (ρAr + µAr)Ar

dAo
dt

= ρArAr − (ρAo + µAo)Ao

dEv
dt

= βvAh − (ρEv + µEv)Ev

dIv
dt

= ρEvEv − µIvIv

(7.1)
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Figure 7.2: The flow diagram of the mosquito-human malaria model
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The mosquito climate-dependent parameters used for this model are adopted
from the data generated from the laboratory experiments of Maharaj [114]. For
details on this, we refer readers to [2]. Parameters are estimated and adopted
from other studies as shown in Table 7.2.

Since mosquitoes and malaria parasites respond to weather conditions in
days [55], the impact of climate variables on malaria transmission will be un-
derestimated when using a monthly dataset. For this reason, we run our model
with daily climate data to simulate the daily human population dynamics over
the study region. Considering the assumptions a-d above and the parameters
in Table 7.2, we chose the following initial conditions for the model simu-
lations; Sh = 1000000, Eh = 600, Ih = 250, Rh = 120, E = 10000000, L =
8000000, P = 6000000, Ah = 5000000, Ar = 4000000, Ao = 100000, Ev =
8000, Iv = 5000. Although the model output is obtained on daily basis, in
order to ascertain the validity of the simulated data, we calculate the monthly
number of infected humans over the province between 2002-2004 and compare
our results with the observed monthly malaria cases over the province.

7.3.4 Analysis of the model outputs

In order to investigate the impact of climate variability on malaria transmis-
sion, we perform the following analysis on the model outputs.

7.3.4.1 Principal Component Analysis (PCA)

In this study, Principal Component Analysis (PCA) is used to analyse the data
generated from the model. PCA is useful in identifying common modes of vari-
ability between variables [83, 139, 161], and can reduce numerous number of
inter-related variables to a few principal components that capture much of
the variance of the original dataset [139]. PCA has been widely and success-
fully used to help understand, interpret, and reconstruct large, multivariate
datasets, both with spatial extent [197] and at single sites [160]. Here, PCA
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is applied to identify the meteorological variables that are coupled with the
model outputs. To achieve this, Statistica software (Statsoft Inc., 2013) using
the varimax rotation option to obtain a clear pattern of loadings is used for
the analysis.

7.3.4.2 Wavelet Power Spectrum (WPS)

Wavelet analysis is a method of decomposing a time series into time-frequency
space. This view offers interesting insights into the dominant modes of a time
series and how those modes vary over time. In contrast to Fourier analysis,
wavelet analysis highlights the study of signals whose spectra change with time.
In addition, the time-frequency analysis reveals further characteristics such as
the periodic components with time progression [29, 152, 191]. The WPS also
calculates the distribution of variance between frequency f and different time
locations τ . In order to compare the WPS with classical spectral methods, the
global wavelet spectrum is computed as the time average of the WPS for each
frequency component [152]. For a better understanding of this method and
analysis, see [30].

Here in this study, we introduce the basic approach of using wavelet anal-
ysis to extract periodic components from the climate variables and our model
outputs. The wavelet analysis investigates the time-scale decomposition of the
signal by estimating its spectral characteristics as a function of time [191, 202].
This approach reveals how the different scales (periodic components) of the
time series change over time as the wavelet function is stretched in time by
varying its scale [43, 202]. We have considered here the continuous Morlet
wavelet transform as the wavelet base function since it provides a good bal-
ance between time and frequency localization, which is desirable for feature
extraction purposes [67, 202]. The Morlet function is essentially a damped
complex exponential, which can capture local (in time) cyclical fluctuations in
the time series [202]. Although, the wavelet spectra are scale dependent and
can produce distorted power spectra by underestimating short-period peaks
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[98, 191], the problem can be corrected through normalising the power spec-
tra by the corresponding scale, so that spectral peaks can be compared across
scales [98, 202].

7.3.4.3 Wavelet Cross-coherence Analysis (WCA)

Time-series analyses have been used to examine the dynamics of several disease
epidemics, as it seemed to be the only substitute [28, 77], they are more useful
in short-term analyses [11, 50]. They are typically noisy and complex [30]. For
these reasons, and in order to qualitatively explore the correspondence of the
wavelet spectra of rainfall and temperature on malaria incidence, we examine
their cross-coherence spectrum as shown in Fig. 7.10 and Fig. 7.11 using
Wavelet Cross-coherence Analysis (WCA).

Wavelet Cross-coherence Analysis is a method for analyzing the coher-
ence and phase lag between two time series as a function of both time and
frequency [31]. As given in Fourier analysis, the univariate WPS can be ex-
tended to quantify statistical relationships between two time series x(t) and
y(t) by computing the wavelet coherence

Rx,y(f, τ) = | 〈Wx,y(f, τ)〉 |
| 〈Wy(f, τ)〉 |1/2 . | 〈Wy(f, τ)〉 |1/2 ,

where 〈〉 indicates smoothing in both time and frequency; Wx(f, τ) represents
the wavelet transform of series x(t); Wy(f, τ) is the wavelet transform of series
y(t); and Wx,y(f, τ) = Wx(f, τ).W ∗

y (f, τ) is the cross WPS. The wavelet coher-
ence provides local information about the extend to which two non-stationary
signals x(t) and y(t), are linearly correlated at a particular frequency (or pe-
riod). Rx,y(f, τ) is equal to 1 when there is a perfect linear relationship at a
particular time and frequency between the two signals [30].
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Figure 7.3: The modelled and reported cases of malaria over KwaZulu-Natal
province, South Africa for 2002-2004.

7.4 Results and discussion

7.4.1 Model validation

Comparing the model output with observed data, our results produce a fairly
similar curve with the observed data as shown in Fig. 7.3. However, we
do notice some discrepancies between the simulated and observed data. For
instance, in January 2002, our model estimates almost 600 infected humans,
whereas only 300 cases were observed. This is one of the limitations of the
model, it could also be as a result of some control measures implemented at
that particular period which are not considered in our model. Also, our model
underestimates malaria incidence as noticed in June 2003, which might be
the lack of other factors affecting malaria in our model. However, the model
output further indicates along with observed data that malaria transmission
over the province is seasonal, and that malaria incidence in the province was
higher in 2004 than in 2003. These results are consistent with the previous
study of Craig et al [41].
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7.4.2 Time series of human population dynamics

More relationships between climate variables and malaria transmission over
KwaZulu-Natal province are shown in Fig. 7.4. The results (in Fig. 7.4 (a-f))
further highlight the seasonality of malaria transmission over the province. The
effect of the climatic spikes are clearly reflected in the human classes as shown
in Fig. 7.4 (c-f). Although the relationships are not well captured in some of
the classes over the 35-year period. For example, we notice a weak similarity
between the recovered human population and climate variables as shown in
Fig. 7.4f. There are several factors to be considered for this particular class.
For instance, infected individuals could have undergone several treatments
for quick recovery. These factors are not considered in the present model.
However, it is interesting to see that the model captures the fact that an
increase in malaria epidemics will reduce the human population who are still
vulnerable to the disease. This can be seen in Fig. 7.4c and Fig. 7.4 (d-e) that
each curve decreasing in the susceptible humans results to a peak in exposed
and infected humans.

7.4.3 Malaria and climate variability

7.4.3.1 Correlation between climate variables and model outputs

In order to investigate the possible correlation between malaria and climate,
we perform PCA on the model outputs. Our results indicate that there are
two principal factors or processes coordinating the relationship between climate
variables and malaria. As indicated in Table 7.1, the first principal factor (PF1)
shows high loadings on Eh and Ih. It also increases Eh and Ih, at the same
time decreases Sh. The second principal factor (PF2) shows an increase in Sh,
decreases the population of Rh. This is reasonable to the fact that recovered
humans can be infected again if bitten by infected mosquito. Our findings here
are also consistent with the previous studies of Okosun [141], that an increase
in infected humans negatively influences the susceptible human population.
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Figure 7.4: Time series of (a) daily mean temperature, (b) rainfall and simu-
lated (c) Susceptible human, (d) Exposed human, (e) Infected human and (f)
Recovered human over KwaZulu-Natal province from 1970 - 2005.
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Table 7.1: The Principal Component Analyses (with varimax normalized load-
ings) showing the possible correlation between the model outputs.

Variable Principal Factor 1 (PF1) Principal Factor 2 (PF2)
Sh -0.68 0.62
Eh 0.94 0.15
Ih 0.76 -0.42
Rh 0.01 -0.97

Expl. Var 1.92 1.53
Prp. Totl 0.48 0.38

7.4.3.2 Wavelet time series analysis of climate variables and malaria

In general, two dominant peaks are noticed over the province between 1970-
2005 as shown in Fig. 7.5 (c & f), Fig. 7.6 (c, f, i & l) and Fig. 7.7 (c & f). The
figures also reveal that 1-year periodicity is highly significant over the study
period and describe the largest proportion of the time series. In addition, the
monthly time-series, as shown in Fig. 7.5 (a & d), Fig. 7.6 (a, d, g & j) and
Fig. 7.7 (a & d), highlight a recurrent cycle with an apparent 1-year period,
and additional components of variability in some years.

The WPS, as illustrated in Fig. 7.5 (b & e), Fig. 7.6 (b, e, h & k) and Fig.
7.7 (b & e) indicate the decomposition of the series in time (along the x-axis)
and period (along the y-axis) scale. The results from the analyses identify a
strong annual cycle and ascertained a dominant 1-year periodicity (in red).
Additional components of variability at shorter periods are also highlighted
in the figures. In particular, the cycles in Fig. 7.5b over the study period
are noticeable for rainfall between 1986-1996 and 2001-2003, while those of
temperature are significantly noticeable between 1986-1991 as revealed in Fig.
7.5e. However, both climate variables show similar patterns in the cycles. This
is an indication that on a seasonal scale, both variables increase and decrease
simultaneously over the province. Other cycles for human population dynamics
and connecting factors are also similarly in patterns and are noticeable between
1972-1988 as shown in Fig. 7.6 (b, e, h & k) and Fig. 7.7 (b & e). This is an
indication that the climate variability affects the human population dynamics
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in a similar pattern.

7.4.3.3 The lag and cross-correlation of climate variability and malaria

Also, the results in Fig. 7.8 (a-c) and Fig. 7.9 (a-c) show that malaria trans-
mission over KwaZulu-Natal province between 1970-2005 is more influenced
by temperature than rainfall. For instance, the highest correlation between
rainfall and malaria incidence as shown in Fig. 7.8c is below 0.4, while that of
temperature is 0.9. In addition, the red and blue bars clearly indicate the exis-
tence of both positive and negative correlation between climate variables and
and malaria transmission over the study period. However, the positive corre-
lation are more noticeable in all the figures. This is an indication that both
rainfall and temperature contribute positively to the transmission of malaria
over the province. Furthermore, an average of 0 to 120-day lag is generally
noticeable over the years. The 120-day lag is more associated with tempera-
ture than rainfall. Also, in some of the years, rainfall is negatively correlated
with number of malaria cases at lags of 0 and 1 month. This is consistent with
the previous study of Sena et al [171]. However, our result here contradicts
their findings that temperature is weakly correlated at lags of 0 to 4 months. A
stronger correlation in the case of temperature is obtained in this study. Other
study in line with our findings here is the study of Mohammadkhani et al [126].
It is established in their study that the maximum positive cross-correlation was
observed between malaria and climatic factors with 1 to 4 months lag [126].
Further studies associated with these findings are Bi et al [12], Wangdi et al
[198] and Zhang et al [211].

In addition, the results in Fig. 7.10 (a-f) and Fig. 7.11 (a-f) show a strong
relationship and significant cross-coherence between the climate variables and
malaria incidence over the province. The results, in line with our previous
findings clearly indicate that malaria incidences over the province are more
and closely associated with the temperature rather than with rainfall. For
instance, the annual cycle is dominated and fairly consistent, through the year
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Figure 7.5: The wavelet analysis of the climate variables of KwaZulu-Natal province from 1970-2005.
The time series of average monthly (a) rainfall and (d) temperature. The WPS of (b) rainfall and (e)
temperature time series. The cross-hatched region is the cone of influence, where zero padding has reduced
the variance and only pattern above the region are considered reliable. The colour code values from blue
(low values) to red (high values). The power has been scaled by the global wavelet spectrum (at right).
The global WPS of (c) rainfall and (f) temperature. The black contour line corresponds to 10% significance
level, using the global wavelet as the background spectrum.
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Figure 7.6: The wavelet analysis of simulated human population dynamics of KwaZulu-Natal province from 1970-2005.
The time series of monthly (a) Susceptible, (d) Exposed, (g) Infected and (j) Recovered human. The WPS of (b) Susceptible,
(e) Exposed, (h) Infected and (k) Recovered human monthly time series. The cross-hatched region is the cone of influence,
where zero padding has reduced the variance and only pattern above the region are considered reliable. The colour code
values from blue (low values) to red (high values). The power has been scaled by the global wavelet spectrum (at right).
The global WPS of (c) Susceptible, (f) Exposed, (i) Infected and (l) Recovered human. The black contour line corresponds
to 10% significance level, using the global wavelet as the background spectrum.
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Figure 7.7: The wavelet analysis of the principal components connecting the simulated human population
from 1970-2005. The time series of average monthly (a) Factor 1 and (d) Factor 2. The WPS of (b) Factor
1 and (e) Factor 2 time series. The cross-hatched region is the cone of influence, where zero padding has
reduced the variance and only pattern above the region are considered reliable. The colour code values from
blue (low values) to red (high values). The power has been scaled by the global wavelet spectrum (at right).
The global WPS of (c) Factor 1 and (f) Factor 2. The black contour line corresponds to 10% significance
level, using the global wavelet as the background spectrum.
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(a)

(b)

(c)

Figure 7.8: Cross-correlation coefficients of time series of daily climate vari-
ables and simulated (a) Susceptible human, (b) Exposed human, and (c) In-
fected human at several lags.
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(a)

(b)

(c)

Figure 7.9: Cross-correlation coefficients of time series of daily climate vari-
ables and simulated (a) Recovered human, (b) Factor 1, and (c) Factor 2 at
several lags.
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for both rainfall and temperature as shown in Fig. 7.10 and Fig. 7.11. The
biennial pattern are additionally noted and more pronounced for temperature
than rainfall. Malaria occurrence period is also noticed to fall within 256-512
days on both figures. Focusing more on Fig. 7.10c and 7.11c, the cross-
spectral analysis reveals that the correlation between malaria incidence and
rainfall are noticeably stronger between 1971-1978 and 1987-2003, while that of
temperature are noticeable all through the year as highlighted in both figures.
Although we notice a weak in-phase relationship between temperature and
malaria incidence on the biennial cycle between 1984-1987 as shown in Fig.
7.10c, no significant cycle or coherence is noted between this period for rainfall
(see Fig. 7.11c). These results are consistent with the findings of Cazelles et al
[29] that temperature and rainfall are highly significant on dengue (which are
also transmitted by mosquitoes) transmission in Thailand. Their findings also
made emphasis on the stronger relationship between temperature and dengue
fever than that of rainfall. In addition, similar associations were documented
for Colombia [155], India [18], and Venezuela [19], among others.

7.5 Conclusion

In this study, we have developed a climate-based mosquito-malaria model to
examine malaria incidence over KwaZulu-Natal province between 1970-2005.
The model is developed from the previous study of Abiodun et al [2] to in-
vestigate the human population dynamics of the province between the study
period.

The model outputs are further analysed with Principal Component Anal-
ysis, Wavelet Power Spectrum and Wavelet Coherence Analysis to investigate
the relationship between the climate variables and malaria incidence over the
province.

Our results highlighted the importance of climate factors on malaria trans-
mission and ascertained that malaria transmission in KwaZulu-Natal province
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Figure 7.10: Wavelet coherence of rainfall and simulated (a) Susceptible hu-
man, (b) Exposed human, (c) Infected human, (d) Recovered human, (e) Fac-
tor 1 and (f) Factor 2 over KwaZulu-Natal province between 1970-2005. The
arrows indicate the relative phasing of the variables, while the faded regions
represent the cone of influence and are not considered for the analyses
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Figure 7.11: Wavelet coherence of temperature and simulated (a) Susceptible
human, (b) Exposed human, (c) Infected human, (d) Recovered human, (e)
Factor 1 and (f) Factor 2 over KwaZulu-Natal between 1970-2005. The arrows
indicate the relative phasing of the variables, while the faded regions represent
the cone of influence and are not considered for the analyses.
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is seasonal. The findings from our analyses further suggested that, there are
two principal factors controlling climate variables and the model outputs. The
first principal factor is more correlated with Susceptible, Exposed and Infected
humans, while the other is associated with Susceptible and Recovered humans.
It is further established in our findings that both temperature and rainfall are
responsible for the transmission of the disease, but malaria is more influenced
by temperature than rainfall over the province. We also concluded that the
average of 0 to 120-day lag is noticeable over the study period, but the 120-day
lag is more prominent with temperature than rainfall

The findings of this study would be useful in early warning or forecasting
of malaria transmission over KwaZulu-Natal province. More importantly, at-
tention should be paid to the more expected occurrences of malaria between
the period of 256-512 days.

Currently, the model ignores some other important factors influencing the
dynamics of the vector population and malaria transmission over KwaZulu-
Natal province. Several studies [55, 65, 102] have highlighted the importance of
migration, relative humidity, land cover, irrigation and deforestation mosquito
abundance and malaria incidence over a region. We therefore leave these as-
pects for further studies.
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Table 7.2: Parameters of the mosquito-malaria model

Description Parameters/Functional form Ref.

Number of eggs, n(Ta) −0.61411T3
a + 38.93T2

a − 801.27Ta + 5391.4 [2]
Egg development rate, ρe(Tw) 0.012T 3

w − 0.81T 2
w + 18Tw − 135.93 [2]

Larva development rate, ρL(Tw) −0.002T 3
w + 0.14T 2

w − 3Tw + 22 [2]
Pupa development rate, ρP (Tw) −0.0018T 3

w + 0.12T 2
w − 2.7Tw + 20 [2]

Egg mortality rate, µe(Tw) 0.0033T 3
w − 0.23T 2 + 5.3Tw − 40 [2]

Larva mortality rate, µL(Tw) 0.00081T 3
w − 0.056T 2

w + 1.3Tw − 8.6 [2]
Pupa mortality rate, µP (Tw) 0.0034T 3

w − 0.22T 2
w − 4.9Tw − 34 [2]

Gonotrophic rate, ρAo(Ta) 0.00054T 3
a − 0.038T 2

a + 0.88Ta [2]
Adult mortality rate µA(Ta) exp[−1/(−4.4 + 1.31Ta − 0.03T 2

a )] [41, 190]
Mosquito biting rate, ε 0.000203Ta(Ta − 11.7)

√
42.3− T [137, 148]

Progression from Ev to Iv, ρEv(Ta) (Ta−Tmin)
111 [137, 190]

Min. temp. for P. falc. survival, Tmin 16 oC [41, 137]
Rate adult seeks blood meal, ρAh 0.46 [35, 103, 104]
Rate adult seeks resting site, ρAr 0.43 [35, 103, 104]
Prob. of human getting infected, β1 0.533 Nominal
Prob. of mosquito getting infected, β2 0.09 [14, 106, 141]
Natural death rate in human, µh 1/49.1/365 day−1 [105, 204], Est.
Human recruitment rate, φh 51.67 day−1 [105, 204], Est.
Contact rate of mosquito per human, κ 0.6 day−1 [34, 141]
Disease induced death rate, α 0.05 day−1 [106, 141]
Progression from Ev to Iv, ρEv 1/18day−1 [14, 106, 141]
Recovered ind. loss of immunity, ρRh 1/730 [14, 106, 141]

 

 

 

 



Chapter 8

Concluding remarks and scope
for future research

8.1 Concluding remarks

The main aim of this thesis was to develop, analyse and implement mosquito-
human climate-based malaria model to be validated over epidemic regions in
South Africa. We began with detailed background on malaria in Chapter 1. In
the same chapter, we described to a certain length, the mosquito binomics, that
is, the ecology of mosquito species and its behaviour. Malaria parasite cycles
and the various malaria species were also discussed with images. Furthermore,
the chapter highlighted some factors affecting malaria and offered few literature
reviews on malaria models.

A basic deterministic malaria model without climate-dependent variables or
control interventions was formulated and analysed in Chapter 2. The analysis
of the seven compartmental model was shown to be epidemiologically meaning-
ful and mathematically well-posed. We investigated the existence and stability
of the disease-free equilibrium and endemic equilibrium points, and hence cal-
culated the reproduction number, R0 using the next generation matrix. We
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further showed that the disease-free equilibrium E0 is locally asymptotically
stable if R0 < 1, and become unstable, and there exists endemic equilibrium
E1 stable when R0 > 1.

The model was extended in Chapter 3 by incorporating the climate-dependent
parameters of Anopheles gambiae. The model was analysed and used to in-
vestigate the impact of temperature and rainfall on malaria transmission over
Limpopo province. The model was used to provide a numerical basis for further
refinement towards prediction of the impact of climate variability on malaria
transmission.

Focusing only on mosquito population dynamics, and ignoring climate-
dependent parameters, we analysed a mosquito model in Chapter 4. The model
which was motivated by the study of [103],Lutambi2013thesis comprises of
three aquatic and adult stages. The six compartmental model was analytically
and numerically analysed. Both analyses indicated that the mosquito-free
equilibrium point is locally and globally asymptotically stable whenever R0 <

1, and becomes unstable when R0 > 1.

In an attempt to understudy the impact of climate on the dynamics of both
immature and adult An. arabiensis, in Chapter 5 of this thesis, we further de-
veloped the mosquito model of Chapter 4 by incorporating climate factors and
puddle dynamics into the model. Additional mosquito compartments, that is,
mate seeking adult mosquito (Am) was also included in the model. We derived
the functions for the climate-dependent parameters from the study of [114]
and validated the model over a town in eastern Sudan. The model sensitivity
analysis was further carried out to investigate the sensitivity of the model to
parameters. Incorporating the climate data of Dondotha village in KwaZulu-
Natal province, the model was hence used to simulate the dynamics of the
mosquito population over the province. The results indicated the importance
of climate on An. arabiensis which is responsible for malaria transmission over
the province.

The mosquito model in Chapter 4 was further developed in Chapter 6 by
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coupling human compartments into the model. Also ignoring climate variable
in the same chapter, the model was analytically and numerically analysed.
It was established that the model is epidemiologically feasible and well-posed
and we also showed the existence of the disease-free equilibrium. Furthermore,
we also used the next generation matrix technique to derive the reproduction
number R0 and proved the disease-free equilibrium which is locally asymptoti-
cally stable whenever R0 < 1, unstable otherwise giving rise to the existence of
the endemic equilibrium for R0 > 1. We also verified that the system exhibits
backward bifurcation, which implies that the stability of the disease-free equi-
librium of the model co-exists with a stable endemic equilibrium even when
R0 < 1. We carried out the sensitivity analysis on the reproductive number,
R0 and noticed that mosquito biting rate is highly sensitive over the repro-
duction number. This is an indication that the biting rate plays a significant
role in transmitting malaria. Our findings suggested that activities (such as
bed netting, use of insecticides) to prevent biting rate should be constantly
practiced in a malaria-epidemic region since Anopheles need blood-meals to
complete their gonotrophic and sporogonic cycle.

In Chapter 7, we further developed the model of Abiodun et al [2] as in
Chapter 4 by introducing human compartments into the model. We hence
used the climate-based mosquito-malaria model to examine malaria incidence
over KwaZulu-Natal province between 1970-2005. The model produced a rea-
sonable fit with the observed data over the province which ascertained that
malaria transmission over the province is seasonal. Also, in order to under-
study the population dynamics of humans, and to investigate the impact of
climate variability on malaria transmission over the province between the study
period, we performed Principal Component Analysis (PCA), Wavelet Power
Spectrum (WPS) and Wavelet Cross-coherence Analyses (WCA) on the model
outputs. Results from the PCA highlighted two principal factors associated
with climates variables and the model outputs. One of the factors is more
correlated with to Susceptible, Exposed and Infected humans, while the other
is traceable to Susceptible and Recovered humans. However, both factors
revealed the inverse correlation between Susceptible-Infected and Susceptible-
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Recovered humans respectively. Consequently, our findings showed that an
average of 0 to 120-day lag is generally noted over the study period, but the
120-day lag is more associated with temperature than rainfall. This is in
line with other findings from previous sections that malaria transmission is
more tightly coupled with temperature than with rainfall in KwaZulu-Natal
province. Furthermore, our findings suggest that more attention should be
given to the expected malaria occurrences period. The findings of this study
would be useful in early warning or forecasting of malaria transmission over
the province.

8.2 Scope for future research

Currently, the models presented in this study lack some other important factors
influencing the dynamics of the vector population and malaria transmission.
Several studies [55, 65, 102] have highlighted the importance of migration,
relative humidity, land cover, irrigation and deforestation on mosquito popu-
lation dynamics over epidemics regions. We aim to consider these factors in
our subsequent studies.

In our mosquito model, we have have used cylindrical shape for the puddle
dynamics. In future, we would like to consider other shapes such as cone to
understudy the population dynamics of mosquito and validate the model on
adult mosquito population over malaria epidemic regions in South Africa as
soon as we have access to such data.

We would also like to consider the impact of more climate variability phe-
nomena such as oscillations (including El Nino/La Nina, MJO, North Atlantic
Oscillation) and Indian Ocean Dipole (IOD) on malaria transmission in our
future studies. We also aim to extend this work in future by examining the im-
pact of climate change on malaria transmission of the epidemic-prone regions
over South Africa.
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Model parameterization

The following figures (Fig. 1) show the curve fits for other temperature-
dependent parameter in Chapter 5.

Spatial distribution

The following figures (Fig. 2 and Fig. 3) illustrate the spatial distribution of
An. arabiensis biting rate and larvae development over South Africa for 2002.
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Figure 1: Additional File 1: Curves fit for gonotrophic rate, development and
mortality rate of immature An. arabiensis.
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Figure 2: Additional File 2: Simulated biting rate of An. arabiensis for 2002.

Figure 3: Additional File 3: Simulated larvae development rate of An. arabi-
ensis for 2002.
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Figure 4: Maple code for endemic equilibrium
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