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Abstract

Missing data are common in survey data sets. Enrolled subjects do not often have

data recorded for all variables of interest. The inappropriate handling of missing

data may lead to bias in the estimates and incorrect inferences. Therefore, spe-

cial attention is needed when analysing incomplete data. The multivariate normal

imputation (MVNI) and the multiple imputation by chained equations (MICE)

have emerged as the best techniques to impute or fill in missing data. The former

assumes a normal distribution of the variables in the imputation model, but can

also handle missing data whose distributions are not normal. The latter fills in

missing values taking into account the distributional form of the variables to be

imputed. The aim of this study was to determine the performance of these meth-

ods when data are missing at random (MAR) or completely at random (MCAR)

on unordered or nominal categorical variables treated as predictors or response

variables in the regression models. Both dichotomous and polytomous variables

were considered in the analysis. The baseline data used was the 2007 Demographic

and Health Survey (DHS) from the Democratic Republic of Congo. The analysis

model of interest was the logistic regression model of the woman’s contraceptive

method use status on her marital status, controlling or not for other covariates

(continuous, nominal and ordinal). Based on the data set with missing values,

data sets with missing at random and missing completely at random observations

on either the covariates or response variables measured on nominal scale were first

simulated, and then used for imputation purposes. Under MVNI method, un-

ordered categorical variables were first dichotomised, and then K − 1 (where K is

the number of levels of the categorical variable of interest) dichotomised variables

were included in the imputation model, leaving the other category as a reference.

These variables were imputed as continuous variables using a linear regression

model. Imputation with MICE considered the distributional form of each variable

to be imputed. That is, imputations were drawn using binary and multinomial

logistic regressions for dichotomous and polytomous variables respectively. The

performance of these methods was evaluated in terms of bias and standard errors

in regression coefficients that were estimated to determine the association between
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the woman’s contraceptive methods use status and her marital status, controlling

or not for other types of variables. The analysis was done assuming that the sam-

ple was not weighted first, then the sample weight was taken into account to assess

whether the sample design would affect the performance of the multiple imputation

methods of interest, namely MVNI and MICE. As expected, the results showed

that for all the models, MVNI and MICE produced less biased smaller standard

errors than the case deletion (CD) method, which discards items with missing

values from the analysis. Moreover, it was found that when data were missing

(MCAR or MAR) on the nominal variables that were treated as predictors in the

regression model, MVNI reduced bias in the regression coefficients and standard

errors compared to MICE, for both unweighted and weighted data sets. On the

other hand, the results indicated that MICE outperforms MVNI when data were

missing on the response variables, either the binary or polytomous. Furthermore,

it was noted that the sample design (sample weights), the rates of missingness and

the missing data mechanisms (MCAR or MAR) did not affect the behaviour of

the multiple imputation methods that were considered in this study. Thus, based

on these results, it can be concluded that when missing values are present on the

outcome variables measured on a nominal scale in regression models, the distribu-

tional form of the variable with missing values should be taken into account. When

these variables are used as predictors (with missing observations), the parametric

imputation approach (MVNI) would be a better option than MICE.
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Chapter 1

Introduction

1.1 Background on missing data

In this chapter, the fundamental reasoning behind sampling and nonresponse is

discussed. Furthermore, missing data and mechanisms that generate them are

reviewed. The motivation of the study, research questions and objectives, hy-

potheses, research design and thesis overview are presented.

1.1.1 Sampling and nonresponse

Researchers are constantly faced with problems of limited resources and time to

take measurements on populations of interest. They are often bound by circum-

stances to measure some population units or samples using various techniques

commonly known as sampling methods. The information resulting from these

methods or procedures are analysed and the results are extrapolated to the whole

population. Probability sampling, a method that takes into account the variability

among items when selecting samples, is one of these techniques. It reduces the

risk of a distorted view of the population and allows valid statistical inferences to

be made.

A host of scholars provide a comprehensive review of sampling methods

(Cochran, 1977; Kalton, 1983; Kish, 1965). These assessments reveal a number

of errors identified with statistics based on sample survey estimates. These errors

including biased estimates and large standard errors amongst others (Bethlehem,
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Chapter 1. Introduction 2

2009) commonly known as total error, have an impact on survey estimates. Since

survey estimates are never equal to the population parameters, by implication er-

rors are involved in these estimates. The causes of such errors are numerous. A

classification of the possible causes of these errors is shown in Figure 1.1 as sug-

gested by Kish (1965) and Bethlehem (2009). The figure indicates that the total

error is due to sampling and nonsampling errors.

Sampling errors arise when a researcher surveys only a subset of the popu-

lation of interest instead of completely enumerating the whole population. These

errors can disappear if and only if the whole population is enumerated. Sampling

errors can be split into two categories: (1) selection errors, which denote effects re-

sulting from the use of probability samples; and (2) estimation errors, which occur

when the wrong selection probabilities are used to compute estimators (Bethle-

hem, 2009).

Nonsampling errors occur at anytime, even when the whole population is

surveyed. According to Lessler and Kalsbeek (1992), nonsampling errors arise

mainly during the data capturing process. They can be divided into four cate-

gories, namely the frame error, measurement error, processing error and nonre-

sponse error.

The frame errors are errors that result from the divergences or differences

between the frame and actual population. Such types of errors are observed when

for instance units that are not part of the population of interest are sampled. The

former situation is referred to as overcoverage and the latter as undercoverage.

The measurement error refers to the difference between the reported value from

the sample and the true value of the population of interest. High rates of nonre-

sponses are an indication of such type of errors. The processing error arises when

data are being processed (coded, weighted, etc) after data collection. On the other

hand, the nonresponse error occurs when the entire data collection fails for reasons

such as respondents not being at home, refusing to participate, amongst others, or

when only partial data are available. In other words the respondents participate

but do not respond to all individual items. Examples of such situations are mostly

found for example in household surveys where respondents tend to refuse to answer

questions on income, in health surveys where questions on sexual behaviour are

not fully answered and in opinion surveys where respondents fail to express their

choice or preference of individuals over others (Little & Rubin, 2002). The former

situation is referred to as the unit nonresponse and latter as the item nonresponse.

These two types of nonresponses are the only source of missing data. Throughout
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this study, only item nonresponse is considered.

Kish (1965) and Bethlehem (2009) on the other hand, split nonsampling

errors into two categories: observation and nonobservation errors. Observation

errors cover the overcoverage and measurement errors previously stated. Process-

ing errors occur when data are being processed, such as during the data capturing

process. Nonobservation errors occur due to the fact that estimations that the

researcher planned to perform can no longer be done. They include both under-

coverage and nonresponse errors described earlier.

Figure 1.1: Classification of survey errors (Bethlehem, 2009, page 180)

1.1.2 Missing data

Missing data are common and a major problem in different fields of research, such

as in operation management (Tsikriktsis, 2005), psychology (Graham, 2009) and

epidemiology (Cattle et al., 2011) amongst others. Missing data are not always
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given much attention by some researchers especially those who are not methodol-

ogists or statistical experts. This is due mainly to the lack of familiarity with the

existing statistical literature on missing values or the ignorance of the impact that

they can have on statistical inferences (McKnight et al., 2007). A traditional way

of dealing with missing data is to eliminate them from the analysis, a strategy that

is provided by default in most of the statistical software packages such as SPSS,

SAS and STATA. This may substantially affect data analysis especially when deal-

ing with chunks of missing data. Discarding missing observations from analysis

reduces the sample size and as a result, a sample that is not representative of

the population is obtained, leading to a lower power of the statistical test, biased

parameter estimates and large standard errors, especially when the proportion of

missing data is high (De Leeuw et al., 2003; Enders, 2010; McKnight et al., 2007).

Most researchers are not always willing to discard data that they spend a

great amount of money and time on, they often try to find ways of rescuing missing

data in order to make valid inferences. On this view, various methods have been

developed to handle missing data (Little & Rubin, 2002; Schafer & Graham, 2002;

Tsikriktsis, 2005). They are discussed in Chapter 2 of this study. The primary

goal of these methods is to obtain valid and efficient statistical inferences about

the population of interest but not to recover missing data or to obtain what would

have been obtained if data were complete (Schafer & Graham, 2002).

The seriousness of the problems caused by missing data depends on amongst

other things the amount of missing data, although there is no stated rule con-

cerning how much is too much missing data. According to Cohen (1983), missing

data are considered to be small if 5 to 10% of the data are missing and high when

at least 40% of the data are missing (Raymond & Roberts, 1987). The degree

of missingness impacts negatively on the data analysis when missing values are

excluded from the analysis (when case deletion is used). Monte Carlo simulation

studies have shown for instance that if 2% of the data are missing at random and a

researcher deletes entire cases with missing data (which can result in up to 18.3%

loss of the total data set) (Kim & Curry, 1977), this can affect the statistical power

and lead to incorrect results and conclusions.

In general, no matter how much the degree of missingness is, problems as-

sociated with missing data will always arise. The only way to completely remedy

these problems is to avoid missing data in data sets, which can be done during

the data collection process or before, otherwise whatever approach used to handle

missing data will be to reduce bias or any other associated problem.
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1.1.3 Missing data patterns

A missing data pattern refers to the configuration or classification of observed

missing data values that describes the location of holes in data (Baraldi & Enders,

2010). Six types of missing data patterns can be distinguished: the univariate

pattern, unit nonresponse pattern, monotone missing data pattern, general pat-

tern, planned missing pattern and latent variable pattern. A detailed description

of these patterns is given by Little and Rubin (2002), Schafer and Graham (2002)

and Baraldi and Enders (2010).

To understand missing data patterns, we consider an example in Figure 1.2

that was proposed by Baraldi and Enders (2010). A missing data pattern con-

taining missing values that are isolated to a single variable is called a univariate

pattern (panel A) which occurs mostly in experimental studies. A unit nonre-

sponse (panel B) occurs in surveys, when one or two respondents refuse to answer

a particular questionnaire. A monotone missing data pattern (panel C) occurs in

longitudinal studies when participants drop out and never come back. Monotone

missing data look like a staircase in such a way that cases with missing data on

a particular consideration are always missing in successive measurements. The

general missing pattern (panel D) is a pattern that has missing data that are dis-

seminated all the way through the data matrix in a haphazard way. It is the most

common configuration of missing data (Baraldi & Enders, 2010).

The planned missing data pattern corresponds to the three-form question-

naire design that is used to distribute questionnaires across different forms and

administer a subset of the forms to each respondent as suggested by (Graham et

al., 1996). For example, in Panel E, four questionnaires are distributed across

three forms in such a way that Y1 is included in each form but Y2 to Y4 are miss-

ing. This type of missing data pattern is very helpful when a researcher wants to

collect a large amount of data and reduce the respondent burden. Lastly, a latent

variable pattern (panel F) is a pattern for which the values of the latent variables

are missing for the entire sample. From a practical point of view, distinguishing

among missing data patterns is no longer regarded as important because newly

developed missing data techniques such as the Maximum Likelihood and Multiple

Imputation are not sensitive to missing data patterns (Baraldi & Enders, 2010).

In this thesis, missing patterns are ignored since the missing observations methods

that will be used are based on the multiple imputation approach.
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Figure 1.2: Types of missing data patterns (Enders, 2010, page 4). The
shaded areas symbolize the missing data

1.1.4 Missingness mechanisms

Statisticians and methodologists classify missing data into three categories: (1)

Missing Completely at Random (MCAR), (2) Missing at Random (MAR) and

(3) Missing Not at Random (MNAR) (Schafer & Olsen, 1998; Schafer & Yucel,

2002). This classification is termed missing mechanism and refers to the possible

relationship between variables in the data set and the probability of missing data

or missingness (missing or not missing). The classification was initially introduced

by Rubin (1976) and it is currently used to facilitate communication, diagnose and

identify the proper techniques for handling missing data (McKnight et al., 2007).

Data are MCAR if the probability that a particular value is missing is not

related to the value itself or any other observed values in the data set. An exam-

ple of such case is, for instance, in health surveys where subjects are randomly

selected to undergo more extensive physical examination. When the probability

of a particular value being missing depends on observed values in the data set, the
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missing mechanism is referred to as MAR. This happens for example in surveys

when more women tend to answer some questions than men.

These two mechanisms are termed ignorable, because conditional on the ob-

served data set, one can draw valid inferences without explicitly modelling the

missing mechanism. If the missing information depends on unobserved values,

the missing mechanism is called non-ignorable. In this case, even conditioning on

observed data does not yield valid inferences. The missing data mechanism needs

to be modelled to estimate the parameter vectors (Allison, 2002). Data with such

missing mechanism is known as NMAR (Schafer & Graham, 2002). Income is an

example of such a case. People with very low income tend to answer questions

about their income differently when compared to people with very high income.

In terms of probability, the above assumptions can be explained as follows:

Let Y = (Yobs, Ymis) be a partition of the dataset Y in an observed part, Yobs and

a missing part, Ymis. Let also R1, R2, ..., RN represent response indicators that

indicate which survey items are missing and which are not. In the case of item

nonresponse, Ri is a binary variable indicating for each sample element i whether

survey items are observed (Ri = 1) or missing (Ri = 0). The distribution of the

missingness is characterized by the conditional distribution of R which is given by:

P (R|Y ) = P (R|Yobs, Ymis, φ) (1.1)

where P is a general symbol for a probability distribution and φ is a parameter or

a set of parameters that describes the relationship between missingness (R) and

the data. This form of missing mechanism is referred to as MNAR and it says that

the probability that R takes on values 1 (observed) or 0 (missing) can depend on

both Yobs and Ymis via some parameter or set of parameters φ. The data are said

to be MAR when the following equation holds:

P (R|Y ) = P (R|Yobs, φ). (1.2)

This indicates that the conditional probabilities of missingness depend on the

observed portion of data via some parameter or a set of parameters that relate

Yobs to R. When the conditional probabilities of missingness do not depend on the

data at all, the data are said to be MCAR. This can be mathematically written

as:

P (R|Y ) = P (R|φ). (1.3)
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A graphical representation of Rubin’s (1976) missing data mechanisms is

provided in Figure 1.3. Assuming that X represents variables that are completely

observed, Y denotes variables that are partly missing, Z represents the component

of causes of missingness not related to X and Y , and R is the missingness (missing

or not). As Figure 1.3 indicates, MCAR requires that the causes of missingness

be entirely contained within the unrelated part Z. MAR allows some causes of

missingness to be related to X, whereas MNAR allows the causes of missingness

to be related to Y after a relationship between X and Y is considered (Enders,

2010; Schafer & Graham, 2002).

Understanding this classification can help in choosing the appropriate meth-

ods for handling missing data. If not modelled or fixed, all these missingness

mechanisms may lead to serious consequences. Discarding cases with missing data

from the analysis for instance, may lead to efficiency or greater variability in the

obtained results. Not modelling MAR and NMAR data leads to bias and efficiency

problems. When modelling MCAR and MAR data to look like non-missing data,

observed data are used to impute or fill in missing values. As a result, bias and

efficiency problems are reduced.

A number of methods to model MAR and MCAR data have been developed.

These include single-based imputation methods such as the mean imputation, re-

gression imputation, interpolation (for panel data), multiple imputation such as

the multivariate normal imputation (Schafer, 1997) and the multiple imputation

by chained equations (Raghunathan et al., 2001; Van Buuren, 2007). These meth-

ods are discussed in detail in Chapter 3 of this thesis.
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Figure 1.3: Types of missing data patterns (Enders, 2010, page 12)

1.1.5 Testing for missingness mechanisms

Before handling missing data, researchers need to know why data are missing

(Carpenter & Kenward, 2012; Little & Rubin, 1989). There are many reasons

that cause missing data. These include amongst others; data entry errors, failure

to complete the entire questionnaire which occur at random, and reasons such as

refusal to respond to certain questions such as income level, etc, which are not

random responses. It is thus important to establish the mechanism to use and

how item nonresponse should be treated in the statistical analysis (De Leeuw et

al., 2003). Missing data mechanisms need to be random (MCAR or MAR); other-

wise there is no statistical means to simplify the problem (Tsikriktsis, 2005). By

implication all the methods that are used to deal with missing data should assume

that the pattern of data loss is random (either MCAR or MAR). Identifying the

underlying missing mechanism is very important because this influences how miss-

ing data will be handled. MCAR data have been found less likely to introduce
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serious bias, regardless of the methods used to deal with missing data (Graham,

2009; Musil et al., 2002), whereas NMAR data remain the most difficult to identify

and handle because true values of missing values are not known (Little & Rubin,

2002).

Testing for the missing mechanism is equivalent to testing for randomness

of missing data. Several methods have been developed for this matter (Baraldi &

Enders, 2010; McKnight et al., 2007; Schafer & Graham, 2002). Previous work

has confirmed that the MCAR mechanism is the only testable mechanism (Enders,

2010; Schafer, 1997; Schafer & Graham, 2002). The traditional way of diagnosing

the MCAR mechanism is to use t-tests to access whether missing data are MCAR

when one or few data are missing (McKnight et al., 2007). Normally these tests

consist of creating dummy codes of missing variables and two groups for each vari-

able of interest: those missing and those with complete data. Then t-tests are

conducted to compare the means of each of the two groups on some or all of the

remaining variables in the data set to see if there is a difference between variables

with or without missing data in the data set. A statistical significant difference

between the two groups indicates the departure from the MCAR mechanism. How-

ever, when there is a large number of variables in the data set, this test becomes

problematic; the analyst will have to conduct a maximum number of t-tests equal

to the number of variables in the data set, say q minus one (q − 1), with missing

data on which the two groups are based. This can lead to a large alpha and Type

1 error, which consists of incorrectly rejecting the null hypothesis that there is no

difference between the variables with missing and no missing data, in favour of

the alternative hypothesis that the variables differ (Enders, 2010; McKnight et al.,

2007).

To avoid this problem, Little (1988) has proposed a method based on a chi-

square distributed variable to test for MCAR in large data sets. The observed

variable means or averages for each pattern of missing data are compared with

expected population means for which an overall weighted squared deviation is

computed. If data are MCAR, each subsample meeting the requirements of a

specific pattern of missing data will yield the same mean for each variable as the

variables computed for the entire data set using any robust method for parame-

ter estimation. The aim here is generally to compare what would appear to be

missing at random and what is observed. If data indicate a departure from the

completely random process (i.e., missing and non-missing cases differ for all ob-

served data), then the chi-square test becomes statistically significant, indicating
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that data are not MCAR. This test works appropriately for continuous variables

but can produce biased estimates for categorical variables. Alternatively, Allison

(2005) proposes running a logistic regression of Ri on a set of explanatory variables

to test for the MCAR mechanism in data sets. Significant coefficients will indicate

a departure from MCAR, which suggest the MAR or MNAR mechanism.

On the other hand, researchers investigate missing mechanisms by means of

the test for correlation between missingness and other variables in the dataset.

Low correlation coefficients will reflect more randomness or MCAR data, whereas

high correlation coefficients will indicate nonrandomness which is associated with

MAR (Musil et al., 2002). A detailed description of some of the methods for test-

ing for the MCAR mechanism in data sets is given amongst others by Kim and

Bentler (2002) and Chen and Little (1999).

When the MCAR mechanism test is rejected in the data set, MAR or MNAR

are assumed. These two mechanisms have no statistical procedure, either numeric

or graphic, to detect them (Little & Rubin, 2002; Schafer & Graham, 2002). Re-

searchers rely on the logic and sound understanding of the study design and do-

main in order to decide whether data are MAR or MNAR (McKnight et al., 2007;

Schafer, 1997). To determine whether data are MAR for instance, the researcher

needs to look at the sources of the data outside their studies (eg., previous find-

ings) or to the follow-up with respondents, or if double sampling was done during

the study (McKnight et al., 2007). Data are assumed to be MNAR if for instance

there is no follow-up to understand the sources of missingness in sample surveys

or if observations in the data set were missed unintentionally. Alternatively, when

the prevention of data from missing is beyond the researcher’s control, the MNAR

mechanism is assumed (Enders, 2010; McKnight et al., 2007; Schafer, 1997).

1.2 Motivation for the study

Missing data are common in survey research. Enrolled subjects do not often have

data recorded for all variables of interest. As previously stated, this may be due to

data entry errors or refusal by the respondents to answer some items from a survey.

As a result, missing values are created in data sets, and if they are not modelled

properly, it can lead to incorrect inferences. The common way of handling missing

values is to discard them from the analysis. This approach is referred to as case

deletion or complete case analysis and can lead to low power of the statistical test
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and biased parameter estimates when the proportion of missing values is high and

data are missing in a systematic manner or at random (Graham, 2009).

To reduce these problems, various methods of rescuing missing data have

been developed (Graham, 2009; Schafer & Graham, 2002; Tsikriktsis, 2005). Items

with no observations at all are directly discarded from the analysis because they

do not provide any particular information about the data. However, if data are

partially missing on variables of interest, the latter should not be discarded as

they still contain some information that can be used to draw useful inferences.

Estimating a model without doing any kind of processing when data are

missing is difficult. For example, if a linear regression has to be run, say Y as

a function of X1 and X2, but some of the values of X1 and X2 are missing, it is

still possible to fit regression coefficients to the independent variables. One way

of doing this is to get rid of the missing information and use the available data,

which is sometimes problematic. But when the researcher is forced to use the data

set with missing data without discarding cases, it has to be done in a way that

minimizes the damage in the inferences to be drawn.

The first thing to do is to identify the missingness mechanisms in the data

set or the reasons why data are missing. These include the MCAR, MAR and

NMAR mechanisms. Data are MCAR if the probability that a particular value is

missing is not related to the value itself or any other observed values in the data

set. When the probability that a particular value is missing depends on observed

values in the data set, the missing mechanism is referred to as MAR data. These

two mechanisms are termed ignorable as mentioned before, because conditional on

the observed data set, one can draw valid inferences. If missingness is related to

unobserved values in the data set, the missing mechanism is called non-ignorable.

In this case, even conditioning on observed data does not lead to valid inferences.

Data sets with such missing mechanism is known as not missing at random or

NMAR (Graham, 2009; Schafer & Graham, 2002).

If not fixed, all these missingness mechanisms may lead to serious conse-

quences. Discarding cases with missing data from the analysis for instance, leads

to inefficiency or greater variability in the obtained results. Not modelling MAR

and NMAR data lead to bias and efficiency problems. Modelling MCAR and MAR

data to look like non-missing data, observed data are used to impute missing val-

ues. As a result, bias and efficiency problems are reduced.

A number of methods have been developed to model MAR and MCAR data.

These include single-based imputation methods such as the mean imputation,
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regression imputation, interpolation (for panel data), multiple imputation based

methods such as the multivariate normal imputation (MVNI) and the multiple

imputation by chained equations (MICE) (Raghunathan et al., 2001; Van Buuren,

2007) also known as imputation by fully conditional specification (Van Buuren et

al., 1999), conditional model (Carpenter & Kenward, 2012) or sequential regres-

sion multiple imputation (Raghunathan et al., 2001; Van Buuren, 2007).

These last two multiple imputation-based methods are increasingly being

used and have been made popular in almost all the main statistical software pack-

ages such as SAS, STATA and R. They are considered the best as they account for

the statistical uncertainty in the imputations, which is not the case when single-

based imputation methods are used (Lee & Carlin, 2010). The description of these

methods is provided in Chapter 3.

Despite the popularity of MVNI and MICE, there is still no clear guidance

on which method to choose between the two when the multiple imputation needs

to be done on continuous, binary and categorical (polytomous with more than

two categories) variables containing missing values. It is against this backdrop

that this study attempted to explore mainly the performance of these methods

when data are missing at random or missing completely at random on unordered

or nominal variables treated as predictors in regression models rather than out-

come variables that were explored by (Kropko et al., 2014). As the performance

of these two methods is still ongoing research in different fields, researchers always

recommend the use of other data sets to compare the obtained results with the

previous ones (Kropko et al., 2014). In this regard, this study considered also

the case where missing values are observed on the outcome variables (binary and

polytomous variables).

The ignorability of missing data was assumed throughout this study. That

is, based on the available data, estimates of missing observations were obtained.

Therefore, the MCAR and MAR assumptions were only considered. This was

done to investigate whether or not the missingness mechanisms have an impact on

the performance of MVNI and MICE techniques. Thus, simulated data sets with

missing values at random or completely at random on the variables of interest

were used to assess the performance of these methods.

This study also used a 2007 Democratic Republic of Congo Demographic

Health Survey (DHS) data set, which is a complex survey with a complex sam-

pling design and weighting procedure that need to be taken into consideration

during the analysis. Various studies have demonstrated that when survey data
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sets contain weight variables, weighted results are preferred as they produce less

bias in the estimates than unweighted results (Korn & Graubard, 1995). This

issue is also addressed by Reiter et al. (2006), Schenker et al. (2006), He et al.

(2009) and Molenberghs et al. (2014) amongst others. Therefore, the results of

this study were based on both the regular data sets (without taking into account

the randomization distribution due to the sample selection procedure) and the

weighted data sets to investigate whether the performance of MVNI and MICE

may be influenced by this issue as data analysts have to always deal with both

weighted and unweighted data sets.

1.3 Significance of the study

Non-ordered categorical missing data are common in survey data sets and the

inadequate handling of such data may lead to incorrect results and conclusions.

Hence, understanding and mastering how missing data should be treated is im-

portant to any researcher or survey data set user. This study is significant to

academics, researchers and other users of survey data sets in filling gaps in knowl-

edge and understanding of how non-ordered categorical missing data should be

handled in order to obtain unbiased statistical estimates from incomplete data,

thereby leading to valid inferences.

1.4 Research objectives

The primary objective of this study was to determine the performance of MVNI

and MICE methods when data are missing at random or missing completely at

random on unordered categorical variables treated as predictors in the regression

models. As the performance of these two methods is still ongoing research, this

study explored also their performance in the situation where missing values were

found on the outcome variables, either binary (with two outcomes) or polytomous

(more than two outcomes). Although this case has partly been explored before

(Kropko et al., 2014), the findings from this study could strengthen existing knowl-

edge about these methods as the author used only one data set and suggested (in

the study limitation section) that other data sets should be used to look at the
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performance of these two methods.

Other specific objectives were:

1. To review the literature on MVNI and MICE methods and illustrate their

performance when data are missing on continuous variables.

2. To show that as expected, multiple imputation of interest produce less bi-

ased estimates than the case deletion which discard missing values from the

analysis.

3. To investigate whether the rates of missing values in the data sets can impact

on the performance of the multiple imputation methods of interest, namely

MVNI and MICE.

4. To determine whether the sample design can impact on the performance of

MVNI and MICE.

5. To draw relevant conclusions on how specifically non-ordered or nominal

categorical data containing MCAR or MAR data should be imputed under

different circumstances, especially when missing values are present on the

outcome or predictor variables in the regression models.

1.5 Research questions

The study thought to answer the following questions about non-ordered or nominal

categorical data:

1. What is the performance (in terms of bias and standard errors) of MVNI and

MICE methods when data are MCAR or MAR on non-ordered categorical

variables with more than two levels or categories treated as predictors in

regression models?

2. What is the performance (in terms of bias and standard errors) of MVNI and

MICE methods when data are MCAR or MAR on non-ordered categorical

variables with three or more levels treated as outcome or response variables

in the regression models?
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3. What is the performance (in terms of bias and standard errors) of MVNI and

MICE methods when data are MCAR or MAR on non-ordered dichotomous

variables treated as outcome or response variables in the regression models?

1.6 Hypotheses

The following hypotheses were tested:

1. The MVNI method which assumes a normal distribution for the variables in

the imputation model and MICE which fills in missing values taking into con-

sideration the distributional form of the variables with missing values, yield

similar parameter estimates for specifically non-ordered categorical variables

containing missing data, which are treated either as predictors or outcome

variables in the regression models.

2. The performance of MVNI and MICE is not affected by the survey design.

3. Missing data mechanisms (MAR and MCAR) have no impact on the perfor-

mance of MVNI and MICE.

1.7 Research Design

The research design used in this thesis conforms to a quantitative paradigm. This

is chosen because of its ideologies and compatibility with numerical data, which is

relevant for addressing the thesis research questions and hypotheses.

1.8 Thesis overview

This thesis is structured as follows. Chapter 1 provides a general introduction and

background of the study including the introduction to missing data and mech-

anisms that generate them. The motivation, significance of the study, research

objectives and questions, hypotheses, research design and motivation underlying

the study are highlighted. In Chapter 2, The Markov Chain Monte Carlo (MCMC)
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process is presented. Understanding the idea behind this procedure is very impor-

tant as the multiple imputation methods used in this study use a MCMC procedure

to draw imputed values from their predictive distributions. Therefore, the Monte

Carlo integration, importance sampling and MCMC techniques are discussed in

general and in the context of missing data in particular. These discussions are

illustrated by practical examples.

In Chapter 3, the literature review on missing data methods is provided

in general and discussed in particular for missing data designed for categorical

variables. Thus, single-based, model-based and multiple imputation methods are

briefly reviewed. The literature on multiple imputation methods of interest; multi-

variate normal imputation (MVNI) and multiple imputation by chained equations

or MICE is provided. A real data set is used to evaluate the performance of these

two methods when data are missing completely at random on continuous and nor-

mally distributed variables containing missing values. The performance of these

two methods is also investigated when different data sets (data sets with different

rates of missing values) are considered.

In Chapter 4, the methodology used to analyse data is explained. The data

sets and specific variables used for analysis are described. The missing data models

as well as the analysis method (imputation of missing values, model development

and computation of the performance measures and imputation diagnostics) are

explained. The results are presented and discussed in Chapter 5, whilst Chapter

6 provides further discussion, draws conclusion and recommendations based on

emerging findings. Areas for further research are suggested in this last Chapter.

Some sections of this thesis have already been published. These include the

results on Chapter 3 where the performance of the MVNI and MICE was evalu-

ated when data were missing completely at random on continuous and normally

distributed variables in the regression model. In Chapter 5, the results on the

performance of these methods when data are missing at random on nominal cate-

gorical that are treated as predictors in the regression models were also published.

These papers are summarised as follows:

1. I Karangwa, D Kotze and RJ Blignaut. (2015). Multiple imputation of

unordered categorical missing data: A comparison of the multivariate normal

imputation and multiple imputation by chained equations. Brazilian Journal

of Probability and Statistics.
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2. I Karangwa and D Kotze. (2013). Using the Markov Chain Monte Carlo

Method to Make Inferences on Items of Data Contaminated by Missing Val-

ues. American Journal of Theoretical and Applied Statistics 2(3):48-53.
 

 

 

 



Chapter 2

Markov Chain Monte Carlo

process

2.1 Introduction

In statistics, the MCMC process is used to estimate parameters of interest under

difficult conditions such as when data are missing or when underling distributions

do not meet the assumptions of the maximum likelihood process (Enders, 2010).

The main objective of this process is to find a probability distribution known as

a posterior distribution in Bayesian statistics that can be used to estimate target

parameters. Robert and Casella (2010) amongst others provide a comprehensive

description of MCMC methods.

The objective of this chapter is to review the theory behind this process and

its link with the estimation of missing values in data sets. In the second section

(Section 2.2), the idea behind the Monte Carlo integration is described. Section 2.3

reviews the importance sampling, which is a method used to increase the accuracy

of the Monte Carlo estimates. In Section 2.4, the MCMC process is explained

and two of its algorithms, namely the Metropolis-Hastings and Gibbs sampling

algorithms, are discussed. The use of the MCMC procedure in the presence of

missing values in the data set is explained in Section 2.5. The last section (Section

2.6) summarises the main points of this chapter.
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2.2 Monte Carlo integration

Monte Carlo integration is a technique used to evaluate complex integrals by sam-

pling randomly in the domain of integration from the function to be integrated as

mentioned by Robert and Casella (2010). To illustrate this technique, suppose we

have to estimate the following integral of a function h over some domain G:

I(h) =

∫
G

h(x)dx. (2.1)

Let the function h(x) be broken down into two functions l(x) and the probability

density function (p.d.f) p(x) defined over the domain G such that h(x) = l(x)p(x).

Then the following equation holds:∫
G

h(x)dx =

∫
G

l(x)p(x)dx = E[l(X)]. (2.2)

This shows that the integral I(h) in equation (2.1) can be expressed as an ex-

pectation of l(x) with respect to the probability density function p(x). If a large

number of independent samples say X1, X2, ..., Xn are drawn from the probability

density function p(x), then∫
G

h(x)dx = E[l(X)] ≈ 1

n

∑
l(Xi) = Î(h). (2.3)

This approach is referred to as the Monte Carlo method and is described in detail

by Robert and Casella (2010), Gentle (2009) and Metropolis and Ulam (1949)

amongst others.

For large samples, the estimate of I(h) will converge to the correct answer.

That is,

Î(h) = Pr( lim
n→∞

1

n

∑
l(Xi)) = 1. (2.4)

The variance V of Î(h) is given by:

V (Î(h)) = V (
1

n

∑
l(Xi)) =

σ2

n
(2.5)

where σ2 = V (l(X)) and is obtained from the data as follows:

V̂ (l(X)) =
1

n− 1

∑
l(Xi)

2 − 1

(n− 1)n
(
∑

l(Xi))
2. (2.6)
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For the multivariate case, the following is obtained:

I(h) =

∫
...

∫
G

h(x1, x2, ..., xk)dx1...dxk (2.7)

for G a given k-dimension region. Therefore, given a probability density function

p(x) on the dimension G the following equation holds:

I(h) =

∫
...

∫
G

h(X)dX =

∫
...

∫
G

l(x)p(x)dX = E[l(X)] ≈ 1

n

∑
l(Xi) = Î(h).

The variance V of Î(h) in this case is given by:

V (Î(h)) = V (
1

n

∑
l(Xi)) =

1

n
V (l(Xi)). (2.8)

To illustrate the Monte Carlo integration, consider the function h(x) defined as

follows:

h(x) = exp

(
−(x− 2)2

2

)
+ exp

(
−(x− 4)2

2

)
. (2.9)

To evaluate the integral of this function over the domain D using the Monte Carlo

Integral, the following is done:

I(h(x)) =

∫
D

h(x)p(x)dx = Ep[h(X)] (2.10)

where h(x) is the function in (2.9), p(x) is the normal probability function that

was chosen arbitrarily and Ep[h(X)] is an expectation with respect to the density

p. The Monte Carlo method for approximating the equation in (2.10) consists of

generating a sample (X1, X2, ..., Xn) from the density function p which is in this

case a normal distribution and then compute the following empirical average:

h̄n =
1

n

∑
h(xj) (2.11)

which is an approximated estimate that converges to Ep[h(X)]. In this example,

h(x) is first plotted in Figure 2.1 and then a sample Xi = (X1, X2, ..., Xn) of

random variables is generated from the normal distribution and used to compute

the average h̄n = 1
n

∑
h(xj) which converges to Ep[h(X)] by the law of large

numbers known as the Central Limit Theorem (CLT). The plot of this quantity is
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also shown in Figure 2.2, together with its confidence bands (mean ± 2 standard

errors against iterations for a single sequence of iterations).

Figure 2.1: Plot of the function h(x) in Equation (2.9)

Figure 2.2: Approximation of the integral of the function h(x) by Monte
Carlo method when f is a normal density: mean ± two standards errors against
iterations for the single sequence of simulations

The variance of the approximation h̄n is given by:

V (h̄n) =
1

n

∫
(h(x)− Ep[h(x)])2 p(x)dx (2.12)

which can be estimated from the sample through the following equation:

Vn =
1

n2

∑
[h(xj)− h̄n]2. (2.13)
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The quantity h̄n−Ep[h(x)]√
Vn

is distributed as a normal random variable with a mean

of 0 and a variance of 1, and hence a standard error of 1 according to the Central

Limit Theorem (CLT) for large numbers. This allows to test for convergence and

confidence bounds on the approximation Ep[h(x)], the expectation with respect to

the density p(x).

2.3 Importance sampling

An alternative mathematical representation of equation (2.1) can be presented as:∫
D

h(x)dx =

∫
D

h(x)f(x)

f(x)
dx = E[

h(x)

f(x)
] = Ef [

l(x)p(x)

f(x)
] (2.14)

which is an expectation under the density f . In the above cases, the density f(x)

is arbitrary and positive (f(x) > 0) on condition that h× f 6= 0.

The estimate of I(h) is

Î(h) =
1

n

∑ h(Xi)

f(Xi)
(2.15)

where the Xi’s denote random samples from the density function f and f(Xi) 6= 0

for all Xi in the domain D for which h(Xi) 6= 0.

The Monte Carlo technique in equations (2.14) and (2.15) consists of computing

the average of the quantity h(Xi)
f(Xi)

for a number of samples. If p is very small for a

given sample, the ratio h(Xi)
f(Xi)

will be arbitrarily large. This large sample skews the

sample mean away from the true mean and increases the sample variance. In order

to cancel out these negative effects, one needs to increase the number of samples.

To avoid cases like these, it is necessary to choose the values of f as close to h as

possible, so that the variance and hence the error can be reduced. This method

of choosing a probability density function that corresponds to the integrand h is

referred to as importance sampling and is used to increase the accuracy of the

Monte Carlo estimates.

To illustrate the importance sampling technique, consider the function in

equation (2.14), which is evaluated as in equation (2.15) by the Monte Carlo

method. Assume that p(x) is a normal distribution with mean 0 and variance 1.
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This equation can be rewritten as:∫
h(x)p(x)g(x)

g(x)
dx = Eg[

h(x)p(x)

g(x)
] (2.16)

where g corresponds to the uniform distribution U(-9,-2). To approximate the

quantity in (2.9), a sample (U1, U2, ..., Un) must be generated from the density

g and used to compute the empirical average 1
n

∑ p(xj)h(Xj)

g(xj)
, which converges to

the average in (2.9) according to the law of large numbers. In this example, the

function h(x)p(x) must be used as a new h(x) in the previous example. It can be

evaluated as follows:

h(x)∗ = h(x)p(x) = exp

[(
−(x− 2)2

2

)
+ exp

(
−(x− 4)2

2

)]
1√
2Π

exp

(
−1

2
x2

)
=

1√
2Π

exp

(
−1

2
x2

)[
exp

(
−1

2
(x2 − 4x+ 4

)
+exp

(
−1

2
(x2 − 8x+ 16)

)]
=

1√
2Π

[
exp

(
−x2 + 2x− 2

)
+ exp

(
−x2 + 4x− 8

)]
.

(2.17)

A sample (U1, U2, ..., Un) is generated from the density g and used to approximate

the expectation with respect to this density. The plot of the function in (2.17) is

shown in Figure 2.3 and the convergence of the importance sampling approxima-

tion of this function based on a sequence generated from a uniform distribution is

shown in Figure 2.4.
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Figure 2.3: Plot of the function in Equation (2.17)

Figure 2.4: Convergence of the importance sampling approximation of the
function (h(x))∗ = h(x)p(x) using a sequence of samples generated from a uni-
form distribution: mean ± two standard errors against iterations for the single
sequence of simulations

As shown by Figure 2.4, the accuracy in this figure seems to be better (close to

a straight line) than the accuracy in Figure 2.2 where the original function is

evaluated by the Monte Carlo method and improved by the importance sampling.
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2.4 Markov Chain Monte Carlo

2.4.1 Introduction

Nowadays, information on many events goes into assessing their probability distri-

butions. This information is often divided into two types; the general background

knowledge and the information specific to the situation at hand. When these two

sources of information are combined, an overall distribution of the parameters of

interest, say θ, is obtained.

To illustrate this, let p(θ) be the marginal distribution of θ, which represents

the background information and p(Y = Y1, ..., Yn|θ) is the conditional distribution

of the data Y given the parameter θ, which represents the available information.

The combination of these two distributions yields p(θ|Y = Y1, ..., Yn), which is

the state of knowledge about a particular event when the background information

and the data specific to the problem at hand are taken into consideration. This

situation is referred to as Bayesian statistics, where p(θ) stands for the prior dis-

tribution, p(Y = Y1, ..., Yn|θ) is the likelihood function and p(θ|Y = Y1, ..., Yn) is

the posterior distribution. In this case, the parameter θ represents all unknown

quantities in the model, which include for instance missing data and model pa-

rameters such as the mean and covariance matrix amongst others (Deltour et al.,

1999).

A practical example in real life is when weather forecasters for instance want

to determine the probability of rainfall at a particular time during the year. Sup-

pose that from their past experience, they know that normally, during that particu-

lar time, the probability of rainfall is p(θ), which represents the general background

knowledge about rainfall during that particular time. To be sure about this past

information, they collect data on rainfall to obtain p(Y = Y1, ..., Yn|θ); the infor-

mation specific to rainfall. The combination of these two pieces of information

gives p(θ|Y = Y1, ..., Yn), which is the probability of raining given the evidence or

data on rainfall.

In Bayesian statistics, the posterior distribution is mathematically written

as follows:

p(θ|y) =
p(y|θ)p(θ)

Σp(y|θ)p(θ)
(2.18)

where the summation in the denominator represents the accumulation across all

possible outcomes of θ and therefore can be taken as the probability of Y . When
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parameters are continuous values, equation (2.18) becomes

f(θ|y) =
f(y|θ)f(θ)∫
f(y|θ)f(θ)dθ

(2.19)

which is referred to as a joint posterior density of the model parameter given

the outcome or data Y . In this case, the use of f(.) and
∫

in place of p and

Σ respectively accounts for the continuous nature of the parameter values in the

Bayesian theorem. The parameter θ and the outcome Y which represent a single

event in equation (2.18), combine multiple parameters and outcomes respectively

in equation (2.14).

In Bayesian theory, equation (2.19) leads to the following results:

f(θ|y) =
f(y|θ)f(θ)∫
f(y|θ)f(θ)dθ

=
f(θ)l(θ)∫
f(θ)l(θ)dθ

=
f(θ)l(θ)

C
(2.20)

where l(θ) is the likelihood function of θ and C =
∫
f(θ)l(θ)dθ is a constant

that is independent of θ. In fact, by integrating with respect to θ, the results

will not depend on θ, which means that θ is automatically eliminated after the

integration (Lavine, 2005). C is known as a normalizing constant which has a role

of rescaling the function in the numerator so that it can integrate to one, that is,∫
f(y|θ)dθ = 1.

Therefore equation (2.20) is always written as:

f(θ|y) ∝ f(θ)l(θ) (2.21)

which states that the joint posterior density function of θ given Y is proportional

to the prior density function of the model parameter or the likelihood of particular

parameter values before the collection of data and the likelihood of the response

data given all parameters (Lavine, 2005).

Some posterior distributions can be analytically intractable and therefore

need to be integrated numerically. MCMC methods are powerful techniques used

to evaluate these kinds of integrals in Bayesian analysis.

The term Markov Chain Monte Carlo consists of two parts; Monte Carlo and
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Markov Chain. The former means evaluating the integral using random draws from

given distributions, whereas the latter refers to how these draws or samples are

produced (Lavine, 2005). This technique is explained in the following example.

Suppose that the following equation needs to be evaluated:

p(θ1|y) =

∫
...

∫
p(θ1, ..., θk|y)dθ2...dθk. (2.22)

Let ~θ = (θ1, ..., θk). We can generate or draw many samples ~θ1, ..., ~θM of ~θ from

its posterior distribution and then evaluate equation (2.22). These draws are

produced using transition densities.

In the Markov Chain technique, there exists a transition density also known

as a transition kernel K(~θi| ~θi−1) which is a density for generating ~θi given ~θi−1.

The first sample ~θ1 is normally chosen arbitrarily and then K(~θ2|~θ1), K(~θ3|~θ2),

... samples are generated in as many steps as needed. Each ~θi is associated with

density p ≡ p(~θi) which depends on ~θ1 and the transition kernel. Under some

conditions the sequence pi will converge to a limiting or stationary distribution

that does not depend on ~θ1 and the transition kernel K(~θi| ~θi−1) can be chosen in

such a way that the stationary distribution p equals p(~θ|y).

With the MCMC method, when a target density f or a posterior distribution

in the Bayesian statistics term is given, the primary goal is to build a Markov kernel

K with a stationary distribution f and then, generate a Markov chain ~θ
(t)
i using

this kernel in such a way that the limiting distribution of the drawn samples ~θ
(t)
i

is f . Next, integrals can be used to approximate 1
T

∑
f(~θ

(t)
i ).

To construct the kernel K associated with an arbitrary density f is a difficult

task (Lavine, 2005). Luckily, MCMC algorithms can be used to derive such kernels.

These include the Metropolis-Hastings algorithm (Hastings, 1970; Metropolis et

al., 1953) and the Gibbs sampling (Geman & Geman, 1984) amongst others. A

detailed description of these methods is given in Robert and Casella (2010) and

Chib and Greenberg (1995) and many others. The next two sections provide a brief

description of these two methods as they are the most frequently used algorithms

of MCMC.

2.4.2 Metropolis-Hastings algorithm

Metropolis et al. (1953) initiated the first MCMC process and later on, Hastings

(1970) generalized the process; giving rise to the term Metropolis-Hastings.
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A Markov chain having a kernel K normally satisfies the following so-called

balance condition or equation

f(~θi)K(~θi|~θi−1) = f(~θi−1)K(~θi−1|~θi) (2.23)

If this equation holds, then f is a stationary distribution of the chain ~θ(t) and the

chain is reversible. Therefore, finding a Markov chain with a stationary distribu-

tion is the same as deriving a transition density from equation (2.23) which in case

of the Metropolis-Hastings algorithm can be constructed as follows:

K(~θi, ~θ
∗
i−1) = q(~θi, ~θ

∗
i−1)α(~θi, ~θ

∗
i−1) (2.24)

where q stands for the proposal or candidate distribution and α denotes the ac-

ceptance probability (Robert & Casella, 2010). Therefore, the new value has to be

generated using the proposal distribution q and then accepted with the probability

α given by:

α(~θi, ~θ
∗
i−1) =

 min
{
f(~θi−1)q(~θi−1,~θi)

f(~θi)q(~θi,~θi−1)
, 1
}

if f(~θi)q(~θi, ~θi−1) > 0,

1 elsewhere
(2.25)

In general, the Metropolis-Hastings algorithm works as follows:

1. Choose a starting value ~θ1

2. Choose a proposal density q(~θ∗|~θi−1)

3. For i = 2, 3, ... generate a proposal ~θ∗ from q(~θ∗|~θi−1) and set

α ≡
{
min

{
f(~θi−1)q(~θi−1,~θi)

f(~θi)q(~θi,~θi−1)
, 1
}

(2.26)

set ~θi = ~θ∗ with probability α and ~θi = ~θi−1 with probability 1− α.

The last step of the algorithm defines the transition density or Kernel K.

To illustrate how the Metropolis-Hasting algorithm works, consider Figure

2.5 which was produced by generating 20000 random samples from a Beta distri-

bution Be(3,7) using a proposal density q(θ∗|θ) = U(θ − 0.02, θ + 0.02) and an

arbitrary chosen initial value θ1 = 0.5. The Be(3,7) distribution is indicated by

the curve around the histogram that was produced using the Metropolis-Hastings

samples. The figure shows that they match closely, which is an indication that
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the Metropolis-Hastings algorithm performed well. That is, the MCMC chains

converged and delivered samples from the target distribution which is the Be(3,7)

distribution.

Early samples of the chain are not normally considered as they are accused

of being non-representative of the state of the chain (Deltour et al., 1999). In-

deed, these samples are influenced by the distribution of the initial sample θ
(0)
1 ,

which is not seemingly drawn from the posterior distribution p(θ|y). In the Be(3,7)

distribution example, we dropped the first 1000 samples to attain convergence.

Figure 2.5: 20000 MCMC samples produced by a Be(3,7) distribution. His-
togram from a Metropolis-Hastings algorithm and a Be(3,7) distribution.

2.4.3 Gibbs sampling

An alternative method to the Metropolis-Hastings is the Gibbs sampling devel-

oped by Geman and Geman (1984) and later demonstrated by Gelfand and Smith

(1990).

This method works as follows. Let θ(t) = {θ(t)
1 , θ

(t)
2 , ..., θ

(t)
p }

′
and f(x) be a

vector of items that constitute θ(t) and a joint distribution of θ respectively. The

Gibbs sampling method consists of the transition from θ(t) to θ(t+1), where the

items in the vector are updated one after the other using their conditional dis-

tributions given the other. The value of θ(t+1) will be consecutively obtained as

follows:

Draw θ
(t+1)
1 from f1{θ1|θ(t)

2 , θ
(t)
3 , ..., θ

(t)
p }

Draw θ
(t+1)
2 from f2{θ2|θ(t+1)

1 , θ
(t)
3 , ..., θ

(t)
p }
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Draw θ
(t+1)
3 from f3|{θ3|θ(t+1)

1 , θ
(t+1)
2 , θ

(t)
4 , ..., θ

(t)
p }

...

Draw θ
(t+1)
p from fp{θp|θ(t+1)

1 , θ
(t+2)
2 , θ

(t+3)
3 , ..., θ

(t+1)
p−1 }.

The obtained sample elements form θ(t) and the densities f1, f2, ..., fp are referred

to as ”full conditionals” and are only used for simulation purposes in the Gibbs

sampling method (Robert & Casella, 2010). This process is iterated in order to

get a sequence {θ(t)} (where the iteration t takes place over t = 1, 2, ...,M) that

forms the Markov chain.

The Gibbs sampling is a special case of a Metropolis-Hastings where the

proposal distribution is the target distribution. Thus, the acceptance probability

in equation (2.26) becomes

α =
f(~θi−1)q(~θi|~θi−1)

f(~θi)f(~θi−1|~θi)
=
f(~θi−1, ~θi)

f(~θi, ~θi−1)
= 1 (2.27)

which means that every move or sampled value is accepted (Robert & Casella,

2010). The Gibbs sampler normally draws samples from full conditionals. If it is

not possible, the Metropolis-Hastings is used.

To illustrate the Gibbs sampler procedure, consider the bivariate normal

distribution of two independent random variables X and Y which are correlated.

In this case, X and Y are normally distributed with means of 0 (0,0) and a variance

and correlation matrix of

(
1 ρ

ρ 1

)

where ρ denotes the correlation between X and Y . The conditional distributions

of X and Y for the bivariate normal case are given by:

P (X|Y = y) ∼ N(ρy, 1− ρ2) (2.28)

and

P (Y |X = x) ∼ N(ρx, 1− ρ2). (2.29)

In Figure 2.6, the Gibbs sampler is used to simulate a bivariate normal distribu-

tion by iteratively sampling from these conditionals. This works properly because

it is a Markov chain. Given that the starting value of the chain is 0 for instance

 

 

 

 



Chapter 2. Markov Chain Monte Carlo process 32

for the random variable X, if X(0) = x0, then the distribution of X(n) becomes

N(ρ2nx0, 1−ρ4n), which converges to a standard normal distribution as n tends to

infinity (Seefeld & Linder, 2007). Thus, no matter what the starting values of the

chain are, X and Y will be normally distributed with a mean and standard devia-

tion of 0 and 1 respectively after enough runs or iterations. The joint distribution

of these two random variables were plotted (Figure 2.6), with different starting

values of the chain for X and Y respectively; (0,0), (5,5), (-5,5), (10,10), (-10,10),

(15,15). A correlation of 0 between X and Y and 1000 runs were used. As shown

by the figure, after 1000 iterations, the joint distribution of X and Y simulated

using the Gibbs algorithm seems to be the same as if the chain started at (0,0).

However, a difference is observed if the values of the correlation coefficients differ

(Figure 2.7) and 10000 runs are used. As shown by the figure, the larger the value

of the correlation coefficient, the more the distribution tends to a straight line.
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Figure 2.6: Plot of the bivariate normal distribution of random variables X
and Y simulated by iteratively sampling from the conditional distributions of
these two variables using 1000 runs, different starting values of the chain and a
correlation coefficient of 0 between X and Y

.
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Figure 2.7: Plot of the bivariate normal distribution of random variables X
and Y simulated by iteratively sampling from the conditional distributions of
these two variables using 10000 runs, different values of the correlation coeffi-
cients between X and Y as well as a starting value of the chain of 0 for both X
and Y

.
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2.5 Markov Chain Monte Carlo methods in the

presence of missing data

2.5.1 Introduction

When data are missing, the primary goal of a researcher is to generate unbiased

estimates in order to make good inferences. This is not generally easy when

the available data (observed data after discarding missing items) are used. With

MCMC methods, the available data need to be augmented with simulated values

of the missing data in order to obtain good parameter estimates. This section

explains the idea behind the MCMC method and how it is used to draw imputation

values from the desired distributions.

2.5.2 Markov Chain Monte Carlo versus missing data

In the presence of missing values in the data set, the target variable Y becomes Y =

(Yobs, Ymis), where Yobs and Ymis are the observed and missing part respectively.

In this case, the posterior distribution is

p(θ|Yobs) =

∫
p(θ|Yobs, Ymis)p(Ymis|Yobs)dYmis. (2.30)

To evaluate this distribution, one needs to condition on Ymis and then estimate

its values, which is done by integrating over the density of Ymis, p(Ymis|Yobs),
which averages over more or less the values of Ymis (Lavine, 2005). Equiva-

lently, using the Monte Carlo method, one needs to draw n independent copies of

Ymis (Ymis(1), Ymis(2), ..., Ymis(n)) from the conditional distribution p(Ymis|Yobs),
and then compute the average 1

n

∑
p(θ|Y (j)) as an approximation of p(Yobs),

where Y(j) denotes the augmented dataset (Yobs, Ymis(j)) for j = 1, 2, ..., n and

Ymis(j) = (Ymis)1(j), (Ymis)2(j), ..., (Ymis)n(j).

In the MCMC context, the above mentioned idea can be simply done us-

ing the Imputation-Parameter (IP) algorithm suggested by Schafer (1997) which

works as follows. Assuming multivariate normally distributed data, at the tth it-

eration one needs to draw Y
(t+1)
mis from p(Ymiss|Yobs, θ(t)), and then draw θ(t+1) from

p(θ|Yobs, Y (t+1)
mis , θ(t)). The former step is referred to as the Imputation (I) step and

the latter as the Parameter (P) step. The resulting sequence forms the following
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Markov chain:

{Y (1)
mis, θ

(1)}, {Y (2)
mis, θ

(2)}, {Y (3)
mis, θ

(3)}, ..., {Y (t+1)
mis , θ(t+1)}, which must converge to the

distribution p(Ymis|Yobs, θ) (Horton & Lipsitz, 2001) and then used in the Multiple

Imputation of missing values. In words, at the I-step missing values (Ymis) are sim-

ulated for each observation independently by using the observed data (Yobs) and

the estimates of the mean vector and covariance matrix represented by θ(t). The

P-step uses the complete data set (full data with generated missing values) from

the I-step to generate new estimates of the mean vector and covariance matrix,

which are to be used in the next I-step to simulate new values. The repetition of

these two steps (I-step and P-step) creates a Markov chain (sequence of random

variables in which the distribution of each element is related to the values of the

previous one) whose role is to generate a distribution of values from which random

samples of simulated missing values are obtained and used in Multiple Imputa-

tion methods to estimate the parameters of interest. The chain needs to be long

enough for the distribution of the elements to stabilize to a common distribution

referred to as the stationary distribution (Schafer, 1997).

The advantage of the MCMC methods over the maximum likelihood methods

is their efficiency and flexibility. Indeed, they allow researchers to estimate param-

eters when the underlying distributions are unknown or not normally distributed

(Allison, 2002).

2.6 Summary of the chapter

Multiple imputation methods used in this study rely on the MCMC process to

estimate missing values in the data sets. This chapter discussed the theory behind

this process in general and its use in estimating missing data in particular. It was

explained that in the Bayesian framework, missing values are considered as a set

of other parameters to estimate using the MCMC to draw imputation values that

must converge to the desired distributions.

In the next chapter, the literature review on missing data methods is pro-

vided. Multiple imputation methods of interest, namely MVNI and MICE, are

discussed and a practical example using a real data set is given to illustrate the

performance of these methods when data are missing completely at random on
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continuous variables. The aim is to get a better understanding of these tech-

niques and explore their performance when data are missing on continuous data

as background theory and literature.
 

 

 

 



Chapter 3

Literature review on missing data

methods

3.1 Introduction

As previously stated, a common way of handling missing values is to discard them

from the analysis; a technique that is provided by default in many statistical

packages such as the statistical package for social sciences (SPSS), Stata, and SAS

amongst others. This approach is referred to as case deletion or complete case

analysis, and it leads to low power of the statistical test and biased parameter

estimates, especially when the proportion of missing values is high and data are

missing in a systematic manner or missing at random (Graham, 2009). Although

its problems are well known, it is still the most popular missing data method as a

high number of researchers still use it (Kropko et al., 2014). To reduce problems

associated with complete case analysis, various methods of rescuing missing data

have been implemented (Carpenter & Kenward, 2012; Graham, 2009; Little &

Rubin, 2002; Schafer & Graham, 2002; Tsikriktsis, 2005). Items with completely

missing data are directly discarded from the analysis because they do not provide

any particular information about the data. However, if data are partially missing

on items of interest, these items should not be discarded as they still contain some

information that can be used to draw inferences on the variables of interest.

This chapter reviews the literature related to developed methods that are

used to treat missing data. The chapter covers five main sections. The first section

introduces the content of the chapter. In Section 3.2, a brief review of single
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imputation methods is provided. Section 3.3 discusses model-based imputation

methods. In Section 3.4, the idea behind multiple imputation is explained and two

multiple imputation techniques (MVNI and MICE) that are currently considered

as the best are presented. A practical example using real data is also provided

to illustrate the performance of these two methods when data are missing on

continuous data. The last section (Section 3.5) provides a summary of the content

of the chapter.

3.2 Single-based imputation methods

3.2.1 Mean imputation

The mean imputation technique replaces missing values with the observed mean

of the available data on the variable containing missing data. With this tech-

nique, the efficiency problem is solved, however, standard errors of the estimates

are underestimated (Carpenter & Kenward, 2012; Graham, 2009; Schafer, 1997).

In addition, the estimate of the mean is treated as true whereas it is not the case,

and the method does not even attempt to recover the existing relationship between

variables. This is not optimal because the key objective of doing imputation is

to try to recover or preserve an initially existing relationship between variables.

However, imputing missing values using the mean of the observed data is a good

guess, better than not doing anything at all if there are no other options or the

researcher does not have any knowledge about other missing data handling meth-

ods, especially when there is a large amount of missing values in the data set to

be used for a particular study. This technique is discussed by many researchers

including (Graham, 2009).

3.2.2 Hot-deck imputation

The hot-deck imputation method replaces missing values with the actual values

from respondents or donors in the available sample. The advantage of this tech-

nique is that it is a nonparametric method and hence it does not need strong

modelling assumptions to be made in order to estimate individual values, apart

from the fact that data need to be missing at random (MAR) with regards to the
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auxiliary variables in data sets. Three common hot-deck imputations can be dis-

tinguished: (1) Sequential hot-deck imputation, (2) Random hot-deck imputation

and (3) Nearest neighbour imputation.

The sequential hot-deck imputation consists of replacing a missing item value

with a value from the last responding unit preceding it in the data file. Before

using this method, the data file needs to be sorted first if auxiliary variables are

quantitative or divided into subclasses if these variables are categorical. The short-

coming of this method is that for a large amount of missing data, the accuracy

of the survey parameter estimates is reduced and its variance is underestimated,

which therefore leads to incorrect statistical inference.

The random hot-deck imputation consists first of allocating respondents into

imputation classes based on auxiliary data in order to be able to consider elements

in the same class as similar. Then an item value of a randomly selected respondent

within an imputation class is assigned to the missing item value.

The nearest neighbour imputation is a kind of hot-deck imputation method

in which donors are selected from the neighbours (i.e., the complete cases) in such

a way that they minimize some similarity measure. Unlike the mean substitution

in which replacement values are influenced by all values, replacement values in

this method depend on the most similar or related cases. For more details about

these approaches, see Batista and Monard (2001) amongst others.

3.2.3 Cold-deck imputation

Cold-deck imputation consists of substituting missing item’s values with values

from an external source such as administrative data, which must be matched to

the survey in order to recover missing information. Ford (1983) and Sande (1983)

provide a detailed description of the hot-deck and cold-deck imputation techniques.

3.2.4 Regression imputation

Regression imputation uses some selected prediction of a missing value on a vari-

able of interest. For instance, to predict a missing value for the variable say, X1,

this variable is used as a function of other variables, say, X2 and X3, in a model

that could even include the dependent variable, say Y . As an illustration, suppose
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that the initial model is as follows:

Y = β0 + β1X1 + β2X2 + β3X3 + ε, ε ∼ N(0, σ2
ε). (3.1)

To obtain the best guess of X1, the following prediction is proposed:

X1 = φ̂0 + φ̂1X2 + φ̂2X3 + φ̂3Y + ε1, ε1 ∼ N(0, σ2
ε1

). (3.2)

Just like the mean imputation, the uncertainty is not incorporated very well be-

cause the estimates are random variables. Therefore, there is uncertainty in φ̂ that

should be incorporated in the model of Y . That is, if the estimated X1 is substi-

tuted in the model of Y , the uncertainty on how the φ̂ coefficients were obtained

should fit into uncertainty in β. However, the problem of this method is that it

yields small standard errors (Carpenter & Kenward, 2012).

3.2.5 Imputation using interpolation

In panel data, interpolation is used to impute missing values (Norazian et al.,

2008). For instance, suppose that a variable X is measured at times t = 1, 2,

3 (X1, X2 and X3) and some of the values are missing at time = 2 (X2). With

this method, the quantity X2 = X1+X3

2
is computed and then substituted into the

missing values. As highlighted by Norazian et al. (2008), this technique creates

bias and large confidence intervals.

3.3 Model-based methods

3.3.1 Expectation maximisation

The Expectation maximisation (EM) method is an iterative process in two stages:

Expectation step or E-step and maximisation-step or M-step (Dempster et al.,

1977; Schafer & Graham, 2002), which estimates values for missing data. In the E-

step, expected values based on available data are calculated. In the M-step, missing

values are replaced with values generated in the E-step and then new expected

values are recomputed. This two-step process iterates until similar values are

obtained (Gelman et al., 2005; Graham, 2009) or changes in expected values from
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iteration to iteration become insignificant (Hedderley, 1995). The EM technique

works well under MCAR compared to other single imputation approaches (Acock,

2005; Graham, 2009; Schafer & Graham, 2002). However, the method yields low

standard errors which can affect some test statistics such as the t-test (Allison,

2002).

3.3.2 Maximum likelihood method

The maximum likelihood (ML) method estimates parameters based on available

data and uses these estimates to estimate missing data. It is considered to be

better than all the missing data methods discussed previously because it satisfies

all three criteria for a good missing data technique mentioned earlier (Graham,

2009). It works well under the MAR assumption, and produces good estimates

especially when large samples are used. The ML method for missing data is

mathematically described as follows (Graham, 2009):

The likelihood function that expresses the probability of the data as a function

of unknown parameters needs to be specified first. Let X, Z and p(x, z|θ) be

discrete variables and a joint probability function respectively, where p(x, z|θ)
refers to the probability that X = x and Z = z. In the absence of missing data

and if observations are independent, the following likelihood is obtained:

L(θ) =
n∏
i=1

p(xi, zi|θ). (3.3)

To obtain the maximum likelihood, it is necessary to find the value of the param-

eter θ that maximises this function or the value of the parameter θ for which the

observed data are most likely. In the presence of missing values in the data set,

assume that data are missing at random or MAR on Z for the first r cases and

then on X for the next s cases. The following holds:

g(x|θ) =
∑
z

p(xi, zi|θ) (3.4)

and

h(z|θ) =
∑
x

p(xi, zi|θ) (3.5)
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which are the marginal distributions of X and Z respectively. The likelihood is

then given by:

L(θ) =
r∏
i=1

g(xi|θ)
r+s∏
i=r+1

h(zi|θ)
n∏

i=r+s+1

p(xi, zi|θ) (3.6)

which can be factored into parts corresponding to different missing data patterns.

To find a likelihood of each pattern, the joint distribution over all possible values

of the variables with missing data is summed. Summation signs must be replaced

by integral signs when the variables used are continuous.

To implement ML for missing data, one needs a model for the joint distribu-

tion of all relevant variables and a numerical method for maximizing the likelihood.

In case all variables are categorical, the unlimited multinomial model or log-linear

model should be used.

When all variables are continuous, a multivariate normal model is assumed.

This means that each variable is normally distributed and can be expressed as a

linear combination of other variables, with homoscedastic errors and mean of zero.

Under this assumption, the maximum likelihood can be obtained using the Expec-

tation maximisation (EM) or the direct maximum likelihood (Allison, 2003). The

disadvantages associated with the ML method for missing data is that it is often

difficult to specify the joint distribution for all variables. As noted by Graham

(2009), only linear and log-linear modelling cases are provided in commercial soft-

ware but nothing is provided for ML with missing data in Poisson, Cox or Logistic

regressions.

3.4 Multiple imputation-based methods

3.4.1 Introduction

Single-based imputation methods mentioned in the previous section constitute

an improvement over the case deletion method, but they do not account for un-

certainty in the imputations as imputed values are treated as true rather than

estimates of the missing values. This leads to the underestimation of the variance

of the estimates and the distortion of relationships among variables (Stuart et al.,

2009).
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Currently, many researchers view multiple imputation as a better way of

filling in missing values (Schafer & Graham, 2002; Stuart et al., 2009). The goal

of this method is to impute missing values in such a way that the uncertainty in

the imputed values is accounted for. That is, imputed values are estimates rather

than known values of missing observations, thus leading to the appropriate stan-

dard errors of the estimates.

The multiple imputation methods use a selected model such as the regres-

sion model to predict missing values based on observed data. Instead of picking

one value for the missing value, many values are chosen and the uncertainty is

represented in the variance covariance matrix (V CV ) of β estimates used to pre-

dict missing values. As an example, suppose that a regression model of Y on X1

and X2 is estimated but the variable X1 contains missing values. The following

imputation model is specified:

X1 = φ1 + φ2X2 + φ3Y + ε2, ε2 ∼ N(0, σ2
ε2

). (3.7)

In this case, there is a V CV matrix of the φi estimates that incorporates and

measures uncertainty in extent to which Y and X2 can be used to plug in the values

of X1. This can be done by just picking many copies of φ from its asymptotic

distribution (for example a multivariate normal distribution for this regression

model), and use the estimates of φ and the V CV (Σ) to fill in the mean and V CV

of the distribution Φ(φ̂, Σ̂).

Consider the following substantive model:

Y = β0 + β1X1 + β2X2 + ε3, ε3 ∼ N(0, σ2
ε3

). (3.8)

The values of X1 are imputed using the imputation model in (3.7) and m copies of

φ̂ are drawn from the asymptotic distribution of φ̂. Now m copies of the data that

gives m copies of the β estimates are created when those m data sets are plugged

back into the original model of Y . Therefore, m estimates of β for each data set

are obtained, and from there, the final estimate of β̂ is calculated. In other words,

all the estimates of β are combined by taking the mean of the m estimates of β.

The variance Vβ of the new (combined) estimate of β is a function of the within

(W ) data set variance, S2
m, which is an ordinary least square (OLS) estimate of

the normal σ2, and B is the between data set variance, which is a variance due to

uncertainty in the imputation of X1.

The above mentioned quantities can be technically presented as: β̂ =
∑M

m=1 β̂m,
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Vβ = W + (1 + 1
m

)B where W = 1
m

∑M
m=1 S

2
m and B = 1

m−1

∑M
m=1(β̂m − β̂)2. The

factor (1+ 1
m

)B corresponds to the inflation in the standard errors (SEs) of β̂ which

is done in order to correct for imputation (Rubin, 1978). These quantities are not

computed manually; many statistical software packages do that. The multivari-

ate normal imputation or MVNI and multiple imputation by chained equations

or MICE are among the best ways of combining these estimates or implementing

these procedures (Carpenter & Kenward, 2012). Both techniques are currently

available in many statistical packages. A brief description of MVNI and MICE is

given in the next two sections of this thesis.

Although this technique is applicable to different types of data and produces

more reliable estimates, it is still an underused approach (Helenowski, 2015). It

was developed taking into account the missing data mechanisms, a fact which is

generally ignored by other missing data approaches (Helenowski, 2015). These

mechanisms consist of the missing at random (MAR) and missing completely at

random (MCAR) mechanisms (Demirtas, 2004; Helenowski, 2015), as well as the

missing not at random (MNAR) mechanism (Demirtas, 2005; Siddique et al., 2008,

2012). In this thesis, only the first two mechanisms are assumed.

3.4.2 Description of multivariate normal imputation

As stated in the previous section, the multivariate normal imputation or MVNI

assumes that all the variables in the imputation model are normally distributed.

Furthermore, it implies that each variable used in the imputation process can be

expressed as a linear function of all other variables, plus a normal homoscedas-

tic error term. However, in practical settings, the MVNI can be used to impute

missing values of the variables whose distributions deviate from the normal distri-

bution (Schafer, 1997).

Under this method, a linear regression of each variable with missing data

is estimated. In this case, the regression parameters in these models are random

draws from the posterior distribution as in Bayesian statistics. The predicted

values for the cases with missing values are then generated using the estimated re-

gression equations, and a random draw of the residual normal distribution of that

variable is added to each predicted value. The most difficult task during this pro-

cess is to randomly draw samples from the posterior distribution of the regression

parameters. Luckily, algorithms that perform that task have been implemented

in software packages such as SAS, STATA and R, amongst others. These include
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the data augmentation (DA) developed by Schafer (1997).

Under MVNI, the data augmentation process is a type of MCMC algorithm

that is used to construct a posterior distribution in Bayesian statistics. Prior

to starting DA, all the variables in the imputation model of interest need to be

specified. Then, the following steps are followed during the DA process (Schafer,

1997).

1. The starting values for the parameters (means and covariance matrix of the

multivariate normal model) are chosen. These values can be obtained using

the case deletion method or the maximum likelihood estimation method.

2. The current values of the means and covariances are used to obtain the

estimates of the regression coefficients for equations in which the variables

with missing values are regressed on all observed variables.

3. The regression estimates are used to produce predicted values for missing

values and a random draw from the residual normal distribution of that

variable is added to each predicted value.

4. The completed data set (observed plus imputed values) is utilised to compute

the means and covariance matrix using the standard formulas.

5. The estimated means and variances in (4) are used to make a random draw

from the posterior distribution of the means and covariances.

6. Using the randomly drawn means and covariances in (5), return to (2) and

keep iterating through the steps until stables estimates are obtained or con-

vergence is reached. The imputation values obtained at the last iteration are

the ones that are used to form a complete data set.

To obtain a posterior distribution in (5), a noninformative prior (prior that has

little or no information about the parameters) is used. MVNI generally uses a

uniform prior.

In mathematical terms, the DA or MCMC procedure is used to obtain im-

puted values from the estimated multivariate distribution, allowing appropriately

for uncertainty in the estimated model parameters, which is a requirement for

proper imputation (Rubin, 1978). Assuming multivariate normally distributed

data, at the tth iteration missing values Y
(t+1)
mis are drawn from p(Ymis|Yobs, θ(t)),

which is the distribution of missing data given the observed data Yobs and the model
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parameters θ(t) (such as regression coefficients and covariance matrix) of the previ-

ous iteration. Then new model parameters θ(t+1) are drawn from p(θ|Yobs, Y t+1
mis , θ

(t));

the posterior distribution of the unknown parameters given the observed data, the

estimated missing values and previously estimated model parameters. The result-

ing sequence forms a Markov chain
{
Y 1
mis, θ

1;Y 2
mis, θ

2; . . . ;Y t+1
mis , θ

t+1
}

, which must

converge to the conditional distribution p(Ymis|Yobs, θ) and is used to impute miss-

ing values (Horton & Lipsitz, 2001; Jackman, 2000).

MVNI works properly under the MAR assumption and can handle both con-

tinuous and categorical missing data whose distributions are not normal (Allison,

2001; Graham, 2009; Lee et al., 2012). According to Allison (2001), dichotomous

variables, which are normally represented by dummies (0 or 1) can be imputed

as continuous variables and the imputed values rounded to the nearest integer

(0 or 1). When categorical variables contain more than two levels, they are di-

chotomised first before being imputed. Then K − 1 variables, where K is the

number of variables, are included in the imputation model, leaving the other cat-

egory as a reference. To illustrate the procedure, let no method (NM), traditional

(T) and modern (M) be the categories forming contraceptive method use status

respectively. To impute this variable using MVNI, dummies for NM, T and M are

created, and T and M new variables are included in the imputation model, leaving

NM as a reference category. Imputed values (of T and M) are used to produce the

final coding as shown in Table 3.1.

Table 3.1: Imputation of categorical variables with more than two levels

Imputed values Reference Final values
N M 1-N-M N M
0.3 0.4 0.3 0 1

0.6 0.4 0 1 0

-0.1 0.3 0.8 0 0

Suppose that the values in Table 3.1, represent the imputed values of the dummies

T and M. To produce the final imputed values, the values of these dummies are

subtracted from 1 (1-T-M) where the value (1-T-M) is considered as a reference,

and the following rule is used to determine the final coding of the imputed values.

1. Determine the category with the highest imputed value.

 

 

 

 



Chapter 3. Literature review on missing data methods 48

2. If the highest value corresponds to the reference category (1-T-M), assign a

value of 0 to each dummy variable (T and M), otherwise assign a value of 1

to the dummy with the highest value (a value greater than the values of the

other dummy and reference category) and 0 for the other dummy variable.

3.4.3 Description of multiple imputation by chained equa-

tions

As any other imputation method, the MICE technique discards observations with

no information at all. This makes sense because if there is no information provided

on the variables to be used, regression coefficients for instance cannot be fitted.

However, when information is partially missing on these variables, the procedure

works as follows: (1) For all missing observations in the data set, missing values are

filled in with random draws from the observed values first or a simple imputation

such as the mean imputation is done for every missing value in a data set (Azur

et al., 2011). (2) By moving through the columns of variables, a single variable

imputation is performed using a method such as regression imputation. The ob-

tained new guess is temporally used to fill in the missing value of the variable on

which the regression was performed. Note that as we go along, previous guesses

are used in the regressions of other variables to be imputed until the whole data

set is imputed. (3) The new fitted values are used as replacements to the original

inputs in stage (1). (4) The process is repeated until a certain number of cycles is

completed or until convergence is attained (or until the distribution of parameters

governing the imputations becomes stable). By repeating steps 1 − 4 above m

times, m imputed data sets are generated and analyzed using simple rules (Little

& Rubin, 2002). According to Raghunathan et al. (2001), ten cycles are generally

performed. However, as suggested by Azur et al. (2011), research is needed to de-

termine the best possible number of cycles required to impute data under different

conditions. On the other hand, the number of m imputed data sets depends on

the size of the data set and the amount of missing information in the data set.

When generating imputations, a linear regression model is used for continu-

ous data, a logistic regression is applied for binary variables, multinomial logistic

and Poisson regressions are utilised for polytomous and count variables respec-

tively. With this method, the choice of regression models depend on the nature of

the variables to be imputed. White et al. (2011) has suggested the way imputation
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of variables should be done. As indicated these variables are imputed as follows:

Suppose that data are missing at random on the random variable Y whose

missing values have to be imputed from other variables, say X = (X1, X2, ..., Xk).

To make the imputation simple, assume that the variable X includes the column

of ones, so that one can be able to estimate the k number of regression coefficients.

Let also nobs be the number of individuals with available observations of Y . When

Y is a normally distributed continuous variable, a linear regression model is used

to impute missing values. That is,

Y |X; β N(βX, σ2). (3.9)

Suppose that β̂ is the estimated parameter which is a row vector of length

k from fitting this model to individuals with observed values of Y . Let V and

σ̂ be the estimated covariance matrix of β̂ and the estimated root mean-square

respectively. The imputation parameters σ∗ and β∗ are drawn from the joint

distribution of σ and β. In the first case, σ∗ is drawn as:

σ∗ = σ̂

√
nobs − k

g
(3.10)

where g is a random draw from a chi-square (χ2) distribution with nobs−k degrees

of freedom. In the second case, β∗ is drawn as

β∗ = β̂
σ∗

σ̂
u1V

1
2 (3.11)

where u1 refers to the row vector of k independent draws from the standard normal

distribution and V
1
2 is the Cholesky decomposition of V . The imputed values Y ∗i

are then obtained as

Y ∗i = β∗Xi + u2iσ
∗ (3.12)

where u2i is randomly drawn from a standard normal distribution.

When Y is a binary variable, a logistic regression model is used to impute it

given X. Technically, the model is given by

logitP (Y = 1|X; β) = βX. (3.13)

Suppose that β̂ is the estimated parameter that is obtained from fitting the logistic

regression model above to the observed values of Y , with estimated variance−covariance

matrix V . Suppose also that β∗ is a draw from the posterior distribution of β,
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which is approximated by MVN(β̂, V ) according to (Little & Rubin, 1989). For

each missing observation Yi, an imputed value Y ∗i is drawn as

Y ∗i =

{
1 if ui < p∗i

0 otherwise

where p∗i is estimated by

p∗i = [1 + exp(−β∗)Xi]
−1 (3.14)

and ui is random sample from a uniform distribution over the interval (0, 1) or

U(0,1). When Y is an unordered or nominal variable with more than two levels

or categories, say L > 2, a multinomial logistic regression model is used to impute

missing values. In this case, each of the categories forming this variable, has a

logistic regression equation that compares it with the baseline category:

P (Y = l|X; β) = [
n∑

l′=1

exp(βl′X)]−1 (3.15)

where βl is a vector that has dimension k = dim(X) and β1 = 0. Suppose

that β∗ is a random draw from the normal approximation of β = (β2, ..., βL),

which is a vector of length k(L − 1). For each missing value Yi, assume that

p∗il = P (Yi = l|Xi; β
∗)(l = 1, ..., L) is the drawn class membership probabilities

and cil =
l∑

l′=1

p∗
il′

. The imputed values are given by

Y ∗i = 1 +
L−1∑
l=1

I(ui > cil) (3.16)

where ui is randomly drawn from the uniform distribution U(0, 1) and I(ui >

cil) = 1 if ui > cil, and 0 otherwise.

MICE Bayesian data augmentation (Little & Rubin, 1989) is another tech-

nique that is considered the best in terms of drawing imputations from their pre-

dictive distributions, and can be compared to a Markov chain. It starts with

imputation values (obtained from the mean imputation for example) and update

each imputation based on the state of the rest of the imputed values. For instance,

given variables Y , X1, X2 and X3 with initial values chosen randomly. To impute

X3 the values of Y , X1 and X2 are used to generate imputation values. To im-

pute X2, the imputed values of X3 are used together with the values of Y and
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X1 and so on. This is in fact how the Markov chain is updated using the Gibbs

sampling method (Gelfand et al., 1990; Geman & Geman, 1984). In other words,

the previous states of the Markov chains are utilised plus any update that was

already made about this particular iteration to create a new link in the chain for

the variable of interest.

As this method is compared to a Markov chain, the aim is to build Markov

chains as part of the Bayesian estimates to draw samples from the posterior dis-

tribution in order to derive inferences about that posterior. To build a missing

data model that fits the Bayesian approach, missing values are treated as other

parameters to estimate by drawing them from their posterior distribution. The

model is as follows:

f(β, Ymis|Yobs) ∝ f(Yobs|β, Ymis)f(β, Ymis) (3.17)

where β denotes the model parameters, Ymis and Yobs are the missing part and ob-

served data respectively. Equation (3.17) says that f(β, Ymis) is a function of the

data at hand rather than f(β). It is written as f(β, Ymis|Yobs) and is proportional

to the distribution of observed data conditional on model parameters β and the

missing values, Ymis, times some prior about β and Ymis. This proportional rela-

tionship between the right and the left of the equation (3.17) constitutes a key to

the Bayes law (Rubin, 1978). In this case, what is done (which is an augmentation

process) is sampling not only the model parameters β, but also the missing values,

Ymis, out of the posterior distribution using the MCMC procedure. By doing so,

many samples of Ymis and β are obtained. The draws or samples of Ymis serve as

imputations or filled in missing values.

Despite the growing popularity of MICE, it lacks theoretical justification

(Raghunathan et al., 2001). One concern is the incompatibility among the condi-

tional models; that is, the possibility that there is no joint distribution with the

conditionals of the assumed forms (He, 2010). However, as suggested by Brand

(1999) and Schafer and Graham (2002), this should not be a big problem in ap-

plied settings. A number of researchers continuously use this technique as they

believe that it is the right method to handle any missing data given its flexibility

and capability to be used in a broad range of settings (Azur et al., 2011; Lee &

Carlin, 2010; Twisk et al., 2013). MICE works under the assumption that data

are missing at random (MAR) and unbiased results can only be obtained when

this assumption is met.

 

 

 

 



Chapter 3. Literature review on missing data methods 52

3.4.4 Multivariate normal imputation versus multiple im-

putation by chained equation: a practical example

using a survey data set to impute missing values of

continuous variables

3.4.4.1 Introduction

Prior to investigating the performance of MVNI and MICE on unordered data,

these methods were compared in terms of parameters’ estimation and standard

errors of the regression models estimated when data are missing completely at

random on normally distributed continuous random variables. Previous studies

have already compared these two techniques and have indicated that these two

methods produce similar results when data are missing on continuous and normally

distributed data (Kropko et al., 2014; Raghunathan et al., 2001). Based on a

complex data set for the current study contained in the subsequent chapter, the

comparison of the two methods was verified using simulated data sets with different

rates of missing completely at random data (5%, 10%, 15%, 20%, 25%, 30%, 35%

and 40% ). This was done to assess whether the amount of missing values can

have an impact on the performance of these two methods, a fact that was not

investigated by these authors. Furthermore, it was also intended to determine the

impact of the amount of missing values on the inferences through the p-values of

the models estimated using data sets generated using different rates of missingness

(5%, 10%, 15%, 20%, 25%, 30%, 35% and 40% ). The findings from this analysis

were published in Karangwa and Kotze (2013) and could strengthen the existing

knowledge about multiple imputation of missing values on continuous variables

using MVNI and MICE.

3.4.4.2 Data

Throughout this thesis, the DHS conducted in the Democratic Republic of Congo

(DRC) in 2007 was used. It consists of a household and women’s questionnaire

where a sample of women between 15 and 49 years of age were interviewed regard-

less of their marital status in each sampled household. Information was collected

on fertility and family planning in addition to socio-demographic and economic

data. The sample of women in the analysis included women of reproductive age
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who were not pregnant at the time of interview and who were sexually active.

Respondents were asked about their knowledge and use of contraception methods

amongst other things. Information on whether they have ever used contracep-

tion was first obtained and then the types of contraceptive methods used were

asked. Contraceptive methods used included the modern (i.e. pill, injections and

other), traditional (i.e. abstinence and other) and folkloric (i.e. herbal plant and

other) methods. The purpose was to determine whether and to what extent cer-

tain covariates such as her marital status, are associated with the woman’s use of

contraception. Thus, slopes, standard errors and results of hypothesis tests were

considered as outcomes of interest to be analysed.

In order to assess the performance of the MVNI and MICE techniques, data

sets were created with partially missing completely at random (MCAR) data on

variables age and education that were statistically significant in the regression

model estimated with the data set with no missing values. This assumption means

that missingness probabilities are not related at all to any variable in the data set.

Eight data sets were generated with different rates of missingness; 5%, 10%,

15%, 20%, 25%, 30%, 35% and 40% on variables age and education. Therefore,

based on the variables of interest (age and education) with no missing data, a 0 −
1 random generator if the observation was missing (1) or not (0) was constructed

if the observation was missing or not. This means that missing data are random

samples from the Bernouilli distribution with the parameter p that represents the

percentage of missing values of interest. Technically, this can be represented as

follows: let Yi be a complete data vector for respondent i. Then Yi can be par-

titioned into Yi,obs and Yi,mis, the observed and missing parts respectively. That

is, Yi = (Yi,obs, Yi,mis). Let also Ri = (rij) be the missing data indicator, where

rij = 1 if a value is missing and rij = 0 otherwise. Given some parameter θ, the

MCAR assumption states that

P (rij|Yi,obs, Yi,mis, θi) = P (rij) (3.18)

which in words means that the distribution of missingness does not depend on

the data at all. This can be seen as a Bernouilli distribution with the following

probability density function:

∏
p(rij|θrj) = θrjj (1− θrjj )1−rj = prji q

1−rj (3.19)
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for q = 1− prji and rj ⊂ (0, 1).

The purpose of creating the different data sets with different rates of missing

values was to investigate whether the amount of missing data can have an impact

on the multiple imputation methods of interest.

3.4.4.3 Analysis method

For each simulated data set with missing values on the variables of interest (age

and education in years), the MVNI method which assumes normality of the vari-

ables in the imputation model and the MICE technique which uses a sequence of

regression models to impute missing values, were applied. The regression models

were estimated using the data set with no missing values, data sets with missing

values (incomplete data), as well as imputed (observed + imputed) data sets. The

results were compared in terms of slopes, standard errors and p-values. The MVNI

method was performed using the STATA implementation of Schafer’s NORM pro-

gram (Galati & Carlin, 2009) whereas the MICE was carried out using the mice

command in STATA (Van Buuren et al., 1999).

3.4.4.4 Findings

Table 3.2 presents the results of the parameters’ estimation, standard errors and

p-values of the two slopes from the binary regression of women’s contraceptive use

status (dependent variable) on their age and education in years (independent vari-

ables). The results of the data set with no missing data and data sets with missing

values (8 datasets with 5%, 10%, 15%, 20%, 25%, 30%, 35% and 40% missing com-

pletely at random observations on age and education respectively). As expected,

the results indicate that multiple imputation-based methods, namely MVNI and

MICE, produce less biased estimates than the case deletion (CD) method, which

discard the items with missing values from the analysis. It is also shown that the

MVNI and MICE yield similar parameter estimates (Figures 3.1 and 3.2) when

applied to continuous and normally distributed variables. Furthermore, the results

indicate that all the missing data methods considered in the analysis overestimate

the standard errors of the models (Figures 3.3 and 3.4). In Figures 3.3 and 3.4, it is

observed that the CD produces larger standard errors than the MVNI and MICE,

and the larger the percentage of missing data, the more inflated standard errors

are obtained. In Figure 3.5, the p-values of education are reported. It is shown

 

 

 

 



Chapter 3. Literature review on missing data methods 55

that at lower percentages of missing values (at most 15%), the three missing data

methods produced similar and unbiased p-values, otherwise the CD yields higher

p-values. The findings indicate also that the higher the percentage of missing data,

the more the relationship between the dependent and the independent variables

(which were all statistically significant in the regression model of the data set

with no missing data) is distorted when missing observations are excluded from

the analysis. Indeed, the results show that when at least 20% of observations are

missing on independent variables, some of them lose their statistically significant

relationship with the dependent variable. Finally, it is also observed that at some

stage (when at least 25% of the data are missing), neither the imputation meth-

ods used nor the CD can help to maintain the relationship that exists between

the dependent and independent variables when the analysis is done using the data

set with no missing values (see Figure 3.2). This shows that at some stage, the

missing values techniques may not be successful and therefore the data users may

be forced to give up on the data set that was intended to be used.
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Table 3.2: Parameter estimates of a set of logistic regression models for pre-
dicting the contraceptive methods use status by women of reproductive age in
Democratic Republic of Congo in 2007, using age (1st covariate) and education
(2nd covariate) in years as explanatory variables

Proportion
of missing
data

Slopes Std errors P-values

CD MVNI MICE CD MVNI MICE CD MVNI MICE

0.00
0.0261 NA NA 0.0029 NA NA 0.000* NA NA
0.0067 NA NA 0.0026 NA NA 0.011* NA NA

0.05
0.0272 0.0267 0.0272 0.0032 0.0030 0.0030 0.000* 0.000* 0.000*
0.0067 0.0069 0.0073 0.0028 0.0027 0.0027 0.017* 0.010* 0.007*

0.10
0.0251 0.0269 0.0271 0.0033 0.0032 0.0031 0.000* 0.000* 0.000*
0.0065 0.0067 0.0071 0.0029 0.0027 0.0028 0.028* 0.014* 0.011*

0.15
0.0302 0.0296 0.0284 0.0037 0.0034 0.0034 0.000* 0.000* 0.000*
0.0065 0.0078 0.0076 0.0031 0.0031 0.0028 0.021* 0.006* 0.006*

0.20
0.0293 0.0290 0.0279 0.0041 0.0037 0.0035 0.000* 0.000* 0.000*
0.0045 0.0059 0.0052 0.0033 0.0030 0.0028 0.172 0.045* 0.066

0.25
0.0275 0.0268 0.0279 0.0041 0.0033 0.0036 0.000* 0.000* 0.000*
0.0027 0.0045 0.0038 0.0035 0.0028 0.0031 0.451 0.105 0.075

0.30
0.0252 0.0263 0.0262 0.0041 0.0038 0.0037 0.000* 0.000* 0.000*
0.0029 0.0043 0.0038 0.0037 0.0031 0.0032 0.433 0.169 0.228

0.35
0.0262 0.0264 0.0265 0.0047 0.0034 0.0038 0.000* 0.000* 0.000*
0.0023 0.0043 0.0041 0.0040 0.0032 0.0032 0.564 0.177 0.211

0.40
0.0262 0.0248 0.0250 0.0050 0.0041 0.0039 0.000* 0.000* 0.000*
0.0008 0.0047 0.0043 0.0044 0.0033 0.0037 0.855 0.155 0.249

∗: Significant at 5% level.
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Figure 3.1: Estimates of slopes for age when the CD, MVNI and MICE meth-
ods are used at different rates of missingness

Figure 3.2: Estimates of slopes for education when the CD, MVNI and MICE
methods are used at different rates of missingness

Figure 3.3: Estimates of standard errors for age when the CD, MVNI and
MICE methods are used at different rates of missingness
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Figure 3.4: Estimates of standard errors for education when the CD, MVNI
and MICE methods are used at different rates of missingness

Figure 3.5: P-values of the models estimated using the CD, MVNI and MICE
methods at different rates of missingness
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3.4.4.5 Conclusion

In general, the results indicated that the higher the proportion of missing data, the

more the relationship between variables is distorted when missing data techniques

(CD, MVNI and MICE) are used to impute continuous variables containing missing

values. As expected, it was also shown that the multiple imputation methods of

interest; MVNI and MICE, yield less biased estimates than the CD method which

discard items with missing values from the analysis. Furthermore, the findings

indicated that the MVNI and the MICE produce similar parameter estimates as

was noted by Van Buuren (2007) but the MVNI is better in terms of preserving

an existing relationship between variables at higher rates of missing values (at

least 25% missing data). Finally, it was found that at some stage (when the

proportion of missing data becomes high), neither the imputation methods nor

the case deletion method can help to maintain the existing relationship between

variables in the models estimated using the data set with no missing values.

It is important to note at this stage that although continuous variables were

used in Section 3.4.4, the investigation into the behaviour of MVNI and MICE

for different rates of missingness (5%, 10%, 15%, 20%, 25%, 30%, 35% and 40%)

(Karangwa et al., 2015) contributed to the new knowledge with respect to these

methods in the continuous case. These continuous comparisons were the starting

point of the exploration for the scenario where unordered categorical data and

variables were used in a similar exercise (Model 1.1 of Section 5.2)

3.4.5 Multivariate normal imputation versus multiple im-

putation by chained equations of categorical data

A categorical variable is a variable that has a measurement scale consisting of a

set of categories (Agresti, 2001). For instance, the marital status of an individual

is frequently measured as single, married, divorced, widow, living together and not

living together. The wealth status of respondents in demographic health surveys

is categorized as poorest, poorer, poor, rich, richer and richest. These kinds of

variables are ubiquitous in survey data sets in fields such as epidemiology and

public health (eg. types of contraceptive methods used), demography (eg. region

where the respondent comes from), biostatistics (eg. types of diseases), marketing

(eg. brands of cars such as BMW, VW, TOYOTA, etc.), and so on.
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There are two types of scales of categorical variables, namely nominal and or-

dinal scaled variables. Nominal variables have no natural ordering whereas ordinal

variables are characterized by ordered categories. For nominal variables, examples

include the person’s religious affiliation (eg. catholic, muslim, etc.), food choice

(fruits, vegetables, cereals, etc), means of transport (bicycle, car, train, etc) and re-

gion or province of origin. Ordinal data include the Likert-scale (strongly disagree,

disagree, agree and strongly agree) which is used to study perceptions, attitudes

or opinions of people, educational attainment (no schooling, primary, secondary

and tertiary education) amongst others.

As stated by Agresti (2002), when listing categories of nominal variables,

the order does not matter and statistical tests performed on these variables do not

take into consideration this order. These methods can be used for ordinal data

by just ignoring the order of the categories but not vice versa. Ordinal data can

also be statistically analysed using methods designed for continuous data as they

are believed to have some important quantitative features; that is, each category

has a smaller or a bigger magnitude of characteristic than another category that

is not easy to measure but in some way has a continuous nature.

In missing data analysis, methods designed to handle missing data of con-

tinuous variables have also been applied to missing data of ordinal and binary

variables (Finch, 2010; Lee & Carlin, 2010). As suggested by these authors, there

is a need to look at the performance of these methods when data are missing on

non-ordered or nominal variables with more than two categories.

As mentioned earlier, the two multiple imputation methods; MVNI and

MICE, are increasingly being used to fill in missing values of both continuous

and categorical variables. They have been made popular in almost all the main

statistical software packages such as SAS, STATA, etc. They are currently con-

sidered the best as they account for the statistical uncertainty in the imputations,

which is not the case when single-based imputation methods are used (Lee & Car-

lin, 2010).

A number of studies compared these methods (Lee & Carlin, 2010; Van Bu-

uren, 2007; Yu & Schaid, 2007). These studies concentrated on different aspects

and applied the two methods to data with a mixture of variables (continuous,

discrete and semi-continuous). Mixed results were obtained; some concluded that

the MVNI was better than the MICE (Lee & Carlin, 2010; Van Buuren, 2007; Yu

& Schaid, 2007) and others found the opposite (Demirtas et al., 2008; Kropko et

al., 2014).
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The MVNI was initially designed to handle missing data of continuous and

normally distributed variables, but it was later used to impute missing values of

categorical data which do not assume normality (Allison, 2001). It works prop-

erly under the MAR assumption and can handle both continuous and categorical

missing data although the latter do not assume normality (Allison, 2001; Graham,

2009). Given for instance a binary or a two-level categorical variable coded as 1

and 0, the proportion of responses with 1s will be the same as the mean of that

variable. Therefore, unbiased estimates for the variables are obtained even if mul-

tiple imputation-based models that assume normality are used. When a two-level

categorical variable is used as a covariate or independent variable in regression

analysis, the imputed values should be used without rounding. If this variable is

to be used in the analysis as a discrete binary variable, then rounding should be

done to the nearest value (0 or 1) as suggested by Bernaards et al. (2007). For

categorical variables with more than two levels, these need to be dummy-coded

first and K − 1 (where K is the number of categories) dummy variables are in-

cluded in the imputation model (Allison, 2001). For example, if a variable such as

marital status with six categories (never married, married, divorced, widow, living

together and not living together) contains missing values and therefore needs to be

imputed, it has to be dichotomized to obtain dummies for never married, married,

divorced, widow and living together respectively. The imputation is done with

only these five variables and filled-in values are used to produce final coding, while

the sixth category (not living together) is treated as a reference category.

On the other hand, MICE fills in missing values sequentially, taking into

account the distributional form of the variables to be imputed. That is, a linear

regression is used for continuous variables, a binary logistic regression is suitable

for binary variables, whereas the ordinal and multinomial regressions are used for

ordinal and unordered or nominal variables respectively. The detail about this

method is also given in Van Buuren (2007), White et al. (2011), Carpenter and

Kenward (2012) and Kropko et al. (2014) amongst others.

Several studies have compared MVNI and MICE in terms of parameter es-

timation and standard errors and have indicated that these two methods produce

similar results when data are missing on continuous and normally distributed data

(Kropko et al., 2014; Raghunathan et al., 2001). The multivariate normal imputa-

tion outperformed the multiple imputation by chained equations when data were

missing on ordinal data (Finch, 2010; Lee & Carlin, 2010) and on binary variables

Lee and Carlin (2010). As suggested by these two authors, an empirical study is
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still needed to determine the performance of these two methods when data are

missing on non-ordered or nominal categorical variables. This study was designed

based on the recommendations from these authors in 2011. Three years later,

Kropko et al. (2014) attempted to compare the performance of these methods

when data were missing at random on continuous, binary, ordinal and unordered

categorical variables that were used as outcome variables in the regression mod-

els. Their findings indicated that MICE performed better than MVNI in terms of

regression coefficients’ accuracy.

This study considered the suggestion by Finch (2010) and Lee and Carlin

(2010) and extended the analysis by Kropko et al. (2014) to missing at random or

missing completely at random data on unordered or nominal variables treated as

either predictors or response variables in the regression models.

3.5 Summary of the chapter

In this chapter, the literature related to methods that are used to fill in miss-

ing values of items with partially missing data were reviewed. These included

single-based, model-based methods and multiple imputation methods. A brief de-

scription of the two multiple imputation methods that have been made popular in

most of the statistical software packages, and constitute a subject of an ongoing re-

search regarding their performance in terms of parameter estimates’ accuracy were

discussed. Using a practical example with a real survey data set, the performance

of these methods was compared in terms of regression coefficients and standard

errors. The results indicated that MVNI and MICE produce similar results when

data are missing completely at random on continuous data. The main objective

here is to illustrate the performance of these methods when data are missing on

continuous variables and to address the knowledge gap of these methods when it

comes to treating missing values of categorical data measured on nominal scales

and are used as either response or independent variables in the regression models.

In the next chapter, the methodology used for the analysis is presented. The

data sets used for analysis are described and the stochastic models used to impute

missing values of the variables of interest are specified.
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Methodology

This chapter outlines the methodology used in this study. The initial section (Sec-

tion 4.1) describes the data set and variables used. Section 4.2 explains how data

sets with missing data were generated. The missing data models considered in the

analysis are highlighted in Section 4.3, whilst the analysis methods used are cov-

ered in Section 4.4. The stochastic models used to impute variables with missing

values are specified in this section. The model development, computation of the

performance measures for the CD, MVNI and MICE, as well as the imputation

models diagnostics are also explained in this section. A summary of the whole

chapter is provided in Section 4.5.

4.1 Description of data set and variables used in

the study

The data set described in Chapter 3 was used for analysis. The variables of interest

were the woman’s contraceptive method use status, marital status, region or origin,

age in single years, education in completed years as well as her wealth index. The

woman’s contraceptive method use status was measured in two ways; (1) as a

dichotomous variable that was measured as any contraceptive method used by

including all women who reported using modern, traditional and folkloric methods.

In this case, it was coded as 1 if a woman has ever used any contraceptive method

and 0 otherwise. This variable was used as a dependent variable in the binary

logistic regression models that were estimated to investigate the effect of marital
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status on contraceptive method use status, controlling or not for other variables.

(2) Contraceptive method use status was also used as an outcome measure coded 1

if a woman has not used any contraceptive method, 2 if she has used a traditional

or folkloric method and 3 if she has used a modern contraceptive method. This

variable was used to determine the association between contraceptive method use

and marital status through the multinomial logistic regression models. Marital

status has six categories, namely: never married, married, divorced, widow, living

together and not living together, while wealth index has five levels, which are:

poorest, poorer, middle, richer, and richest. The variable region on the other hand

contains eleven categories; Kinshasa, Bas Kongo, Bandundu, Equateur, Oriental,

Nord Kivu, Maniema, Sud Kivu, Katanga, Kasai Oriental and Kasai Occidental.

Age and education completed in years are both continuous variables. Table 4.1

provides the description of these variables. These variables were used either in the

estimation of the regression models or multiple imputation models of interest.

Table 4.1: Description of the variables used in the study

Variable Description Type

Contraceptive method Do not use any contraceptive method, Nominal
use status 1 use a contraceptive method (dichotomous)
Contraceptive method Do not use any contraceptive method, Nominal
use status 2 use a traditional or folkloric method, (multinomial)

use a modern method
Marital status Never married, married, divorced, Nominal

widow, living together and (multinomial)
not living together

Region Kinshasa, Bas Kongo, Bandundu, Nominal
Equateur, Oriental, Nord Kivu, (multinomial)
Maniema, Sud Kivu, Katanga,
Kasai Oriental, Kasai Occidental

Wealth index Poorest, poorer, middle, Ordinal
richer and richest

Age Age in single years Continuous
Education Number of years spent at school Continuous
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4.2 Simulation of the data sets with missing val-

ues

Throughout this study, missing values are assumed to be ignorable, which means

that based on the available data, they can be estimated. Therefore, to obtain data

sets with missing values, a data set with no missing values or baseline data set was

used to simulate data sets containing MAR or MCAR values on the variables of

interest. Data sets with values missing at random (MAR) were arbitrary created

in such a way that missingness was related to variables of interest but not on the

values of the variables that had missing data. Concerning the MCAR mechanism,

data are a random sample where missing values are a result of random reasons,

independent of observed and unobserved variables. Therefore, to obtain data sets

with missing values according to this assumption, values were deleted such that

missingness was not associated with any variable in the data set that was used as

explained in Chapter 3. Although this assumption is accused of being unrealistic, it

can give insight on the performance of the different imputation methods concerning

point estimation of the parameters obtained by running different models using data

sets generated under this assumption.

4.3 Missing data models

This study considered two scenarios (see Figure 4.1). The first scenario contains

two binary logistic regression models (Models 1.1 and 1.2 in Figure 4.1). In the first

model (Model 1.1), a single covariate (marital status) containing misssing values

is considered. This was done to assess the performance of the multiple imputation

methods of interest on the unordered categorical variable alone, with no influence

of other covariates. This model was also used to investigate whether the rates of

missingness can impact on the performance of the multiple imputation techniques

used in this study. This fact is true according to the literature (Karangwa &

Kotze, 2013), but we believe that an empirical study is needed to confirm it when

missing values are MAR or MCAR on unordered categorical variables. Therefore

data sets with 50%, 30% and 10% missing values were considered for analysis for

only this model, whereas only 50% rate of missing values was considered for other

models. The second model or Model 1.2 in Scenario 1 is split into two models,
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namely Models 1.2.1 and 1.2.2 as shown in Figure 4.1. Model 1.2.1 considers a

binary logistic regression model with two covariates measured on nominal scale,

whereas in Model 1.2.2 various covariates (nominal, continuous and ordinal) are

used, with missing values on only the nominal or unordered categorical ones. The

aim of considering these models was to assess the performance of MICE and MVNI

when missing values are present on unordered categorical variables that are used

as independent variables alone or with other covariates to see if the introduction

of other covariates can impact on the performance of these methods. The sec-

ond scenario contains two regression models as well, but in this case with missing

values on the outcome variables (binary and polytomous) that have no natural

order. The first model or Model 2.1 in Figure 4.1 is a binary logistic regression

model with missing values on the binary outcome variable. The second model

or Model 2.2 is a multinomial logistic regression model of the response variable

(contraceptive method use status) with more than two levels measured on nominal

scale. Both models considered a single covariate to investigate the performance of

the multiple imputation methods of interest. All the models regress contraceptive

method use status on marital status to investigate the effect of marital status on

contraceptive method use status, in order to fully observe the performance of the

multiple imputation methods of interest (MVNI and MICE) when missing values

are present on the nominal categorical variables alone first and then in the pres-

ence of the other covariates in regression models.
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Figure 4.1: Missing data models considered in the analysis.

As previously explained, under the MAR assumption, data sets with missing data

on the covariates were arbitrary and randomly deleted if a woman was not using

any contraceptive method, thus allowing missingness to depend on contraceptive

method use status. The same percentage of missing data was imposed on the

data set with no missing values to simulate the MCAR data set, in this case with

missingness not related to any variable used in the regression model of interest or

data set used. On the other hand, missing values on the outcome variables were

arbitrary deleted at random if a woman was at least 35 years old, thus allowing

missingness on the outcome variables to depend on the woman’s age. MCAR

data were also generated such that no variables in the data set was related to

missingness on the response variables. The descriptive statistics of missingness for

all these cases is provided in Chapter 5.
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4.4 Analysis method

4.4.1 Imputation of missing values

Existing multiple imputation methods assume that data are MAR, but as sug-

gested by Rubin and Schenker (1986) and White et al. (2011), other missing data

mechanisms such as MCAR can also be assumed if the objective is to compare

the performance of multiple imputation methods. This study aimed to determine

the performance of the multivariate normal model (MVNI) and the multiple im-

putation by chained equations (MICE) in terms of bias in the estimated regression

coefficients and standard errors of the regression coefficients, when data are miss-

ing at random or missing completely at random on either the response variables

or the covariates in the regression models.

Multiple imputation methods normally replace each missing value by an ar-

ray of m > 1 pseudo random values generated by a computer algorithm (Little &

Rubin, 2002) included in many statistical software packages such as SPSS, STATA

and SAS. As explained in Chapter 3, these values are drawn from the posterior

predictive distributions of the variables to be imputed, which allows the multiple

imputations to capture the sampling variability as well as the uncertainty in the

imputation model. As highlighted by White et al. (2011), various studies on mul-

tiple imputations state that 3 to 5 imputations are enough. However, according

to these authors, larger numbers of imputations are required if the objective is

to compare imputation methods, or to obtain stable and less unbiased estimates.

To obtain sufficient accuracy while comparing these methods, this study used 100

imputations for each data set with missing values, which resulted in 100 different

imputed simulated versions of complete data sets. Each imputed data set was

analysed separately using standard statistical techniques, and the point estimates

as well as standard errors were combined (averaged) to produce single estimates

that account for uncertainty due to missing data as suggested by Little and Rubin

(2002).

The imputation models included the analysis model covariates and depen-

dent variables of interest, as well as the auxiliary variables or variables that were

associated with missingness on the variables to be imputed although they were not

part of the substantive or analysis model. This was done to improve the imputa-

tion quality as suggested by White et al. (2011) and Enders (2010). The regression

models (binary and multinomial) with no missing data were fitted and the results
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were compared to the models estimated using data sets with missing data (case

deletion method) and the completed (observed + imputed) data sets using MICE

and MVNI.

The stochastic models of the variables with missing values on either the out-

come or the predictor variables are as follows. As previously stated, Model 1.1 is

a binary logistic regression of contraceptive method use status (measured as 1 if

a woman use any contraceptive method and 0 otherwise) on marital status. Mar-

ital status is an unordered or nominal variables with 6 categories; never married,

married, living together, widowed, divorced and not living together.

To impute this variable using MVNI, the Allison (2001) approach was uti-

lized. That is, it was first dichotomised before being imputed. Thus, five dummy

variables of marital status (never married, living together, widowed, divorced and

not living together) were included in the imputation model, treating married as

a reference category. Assuming that MSL denotes the levels of marital status to

be imputed, the following linear regression model was estimated for each marital

status dichotomised level or category:

MSL = β0 + β1C + β2A+ β3E + β4W + β5R + ε (4.1)

where βi denote the regression coefficients and C,A,E,W,R and ε denote contra-

ceptive method use status, age, education in completed years, wealth index, region

and random variation respectively. This means that MSL is imputed taking in ac-

count information on contraceptive method use status, age, education in completed

years, wealth index and region of origin. Recall that under the MAR assumption,

missing values were created such that missingness depended on whether a woman

was using a contraceptive method or not. Thus, variables that are not part of the

analysis model but are related to missingness such as age, education in completed

years, wealth index and region were all included in the imputation model as aux-

iliary variables to improve the imputation quality. The same imputation model

was also used when data were MCAR as all these variables are associated with

the dependent variable (contraceptive method use status) that was used in the

substantive model. The predicted values from the regression estimates were used

to impute missing values of the dichotomised categories forming marital status.

Imputed values were treated as explained in Chapter 3 (imputation of categorical

variables with more than 2 categories using MVNI).

Under the MICE, marital status was imputed using the following multino-

mial logistic regression model of marital status on the same variables as in equation

 

 

 

 



Chapter 4. Methodology 70

4.1:

MS = β0 + β1C + β2A+ β3E + β4W + β5R + ε (4.2)

where MS denotes marital status and other terms are as explained in equation

4.1.

Models 1.2.1 in Scenario 1 regress contraceptive method use status on two

nominal variables containing missing values, namely marital status and region.

Under the MVNI method, marital status and region were dichotomised before be-

ing imputed. Marital status was dichotomised as in Model 1.1, whereas dummy

variables of region were Bas Kongo, Bandundu, Equateur, Oriental, Nord Kivu,

Maniema, Sud Kivu, Katanga, Kasai Oriental and Kasai Occidental, leaving Kin-

shasa a reference category. The stochastic imputation model of these variables

is similar to the one specified in equation 4.1, except that they were imputed

conditional on contraceptive method use status, age, education and wealth index.

Under MICE technique, these variables were imputed using a multinomial logis-

tic regression conditional on contraceptive method use status, age, education and

wealth index. Model 1.2.2 was imputed as Model 1.2.1, as missing values were

observed on the same variables.

Imputation methods of interest were also compared when data were miss-

ing on nominal variables that were treated as response variables in the regression

models. For the first case (Model 2.1), missing values were deleted on the binary

outcome variable (contraceptive method use status) coded 1 if a woman has used

a contraceptive method and 0 otherwise. As suggested by several authors, vari-

ables with binary outcomes can be imputed using the parametric-based imputation

method MVNI (Catellier et al., 2005; Efron, 1994). Therefore, under the MVNI

method, this variable was imputed taking into account the suggestions of these

authors. The following linear regression model was used to impute contraceptive

method use status:

C = β0 + β1MS + β2A+ β3E + β4W + β5R + ε (4.3)

where C,MS,A,E,W,R and ε denote contraceptive method use status, marital

status, age, education in completed years, wealth index, region and random varia-

tion respectively. The generated imputations were rounded to the nearest integer

(0 or 1) to keep the dichotomy nature of the imputed variable, as it had to be used

as a dependent variable in the substantive binary logistic regression model.
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Under MICE, imputation values of contraceptive method use status (dichoto-

mous variable) were drawn using the following binary logistic regression model:

C = β0 + β1MS + β2A+ β3E + β4W + β5R + ε (4.4)

where the terms are defined as in equation 4.3.

The performance of the multiple imputation methods of interest was also

evaluated when missing values were missing on unordered or nominal variables

with more than two categories (three categories in this case), treated as outcome

variables in the regression models (see Model 2.2). For this particular case, con-

traceptive method use status, coded 1 if a woman did not use any contraceptive

method, 2 if she used a traditional or folkloric method 3 if she utilised a modern

method, was used. Under the MICE method, the following multinomial logistic

regression model was utilised to impute this variable:

C∗ = β0 + β1MS + β2A+ β3E + β4W + β5R + ε (4.5)

where C∗ denotes contraceptive method use status with 3 categories and other

terms are defined as in equations 4.3 and 4.4.

Under the MVNI technique, contraceptive method use status was dichotomised

and two of its levels (traditional and modern contraceptive method use) were im-

puted as continuous variables using a linear regression model, leaving the other

category (use no contraceptive method) as a reference. The model is as follows:

CL = β0 + β1MS + β2A+ β3E + β4W + β5R + ε (4.6)

where CL stands for contraceptive method levels or categories to be imputed.

As mentioned previously, this study used a DHS data set, which is a complex

survey with a complex sampling design and weighting procedure that need to be

taken into consideration during the analysis. In survey sampling, all the units

do not have the same probabilities to be included in the sample. With complex

survey data sets, these probabilities are computed and then used to calculate the

sample weights. As an example, consider a population for which the estimator of

the total X is as follows:

X̂w =
n∑
i=1

wixi (4.7)
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where xi represent the observed values of X and wi is the weight that depends on

the probability that the unit i will be included in the sample. The weight in this

case is the inverse selection probability and it represents the number of individuals

in the target population represented by sample unit i (Levy & Lemeshow, 2013).

As an example, a weight of 1000 means that the sample unit represents itself and

the other 999 units which are in the population of interest. In most of the cases,

weights are greater than one, since a unit should at least represent itself and they

vary even when all the sample units have equal inclusion probability. As noted

by Levy and Lemeshow (2013), ignoring the sample weights during the analysis

results in more biased estimators than weighted estimators. In fact, a sample is

a small subset of the respondent population which when weighted, is enlarged

to the level of the target population, and therefore, improved estimators will be

obtained if weights are accounted for. Various studies have demonstrated that

when survey data sets contain weight variables, weighted results are preferred as

they produce less bias in the estimates than unweighted results (Korn & Graubard,

1995). This issue was also addressed by Reiter et al. (2006), Schenker et al. (2006),

He et al. (2009), Horvitz and Thompson (1952), as well as Molenberghs et al.

(2014) amongst others. However, in some cases, the non-use of weights may be

justified in situations such as when the software packages used for analysis does

not accommodate the survey weighting procedure (Levy & Lemeshow, 2013).

The results of this study were based on both the regular data sets (without

taking into account the randomization distribution due to the sample selection

procedure) and the weighted data sets to obtain estimators that account for the

unequal probabilities of selection for each sample unit. The objective of doing this

was not to compare the estimators from unweighted and weighted data sets, but

to investigate whether weighting or not may have an impact on the performance

of the multiple imputation methods of interest, namely MVNI and MICE. Thus,

besides the results from the weighted data sets, the analysis was also done using

unweighted data sets, assuming that there was no sample weight variable in the

data set that was used (which is not true).

The MVNI was performed using the STATA 13 command ”impute mvn”

with a uniform prior distribution whereas the mice command in the same Stata

version was used to perform imputation with MICE. SPSS 22 (SPSS, 2013) and

R were used for data preparation. Data analysis was carried out using STATA 13.

Most of the graphs were produced in Microsoft Excel.
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4.4.2 Model development and computation of the perfor-

mance measures

The regression models with the baseline data set or data set with no missing

values were first estimated to get the values of the regression coefficients (true

coefficients) and their corresponding standard errors. The results from this model

were considered as true results that served as a benchmark of results from the

imputed data sets and data sets with missing values. Then regression models with

the data sets with missing values and imputed data sets using MVNI and MICE

were estimated and the results (in terms of bias and standard errors’ estimates)

were recorded.

To judge the performance of the multiple imputation methods of interest

(MVNI and MICE), these estimates were considered. They were compared for

each data set to assess the performance of the CD, MVNI and MICE when data

were arbitrary MAR or MCAR on unordered or nominal categorical variables,

treated as predictors or outcome measures in the regression models.

4.4.3 Imputation models’ diagnostics

Current results based on MCMC computations require the reporting of the Monte

Carlo error (MCE), which is a measure of the accuracy of the resulting estimates

such as the mean, standard errors of the estimates and test statistics. According

to Hoaglin and Andrews (1975), it is essential to report these measures to allow

the reader to make objective assessments of the numerical quality of the results

obtained after MCMC calculations. In the context of missing values analysis, the

objective of reporting the MCE is to show that similar results across repeated uses

of the same imputation procedures are obtained. That is, the simulation error re-

lated to the results obtained after multiple imputations need to be minimized.

This error is assessed using the MCE of the multiple imputation results such as

parameter estimates, p-values and confidence intervals (Lee et al., 2012; White et

al., 2011). According to White et al. (2011), MCE estimates of coefficients should

be less than 10% of the standard errors of the coefficients; MCE estimates of t-

test statistic should be approximately less than or equal 0.1; and MCE estimates

of p-values should be approximately 0.01 when the true p-value is 0.05 and 0.02

when the true p-value is 0.1. The analysis results based on 100 imputations were

 

 

 

 



Chapter 4. Methodology 74

assessed to see if they satisfy these conditions, so that one can be reasonably sure

about their statistical reproducibility.

The convergence check was done through the MCMC sequence to investigate

whether imputation values with MVNI and MICE converged to the desired dis-

tributions. This process is always accompanied by the investigation of the serial

dependence among the MCMC draws to obtain independent imputations. In fact,

at each iteration, say T th for instance, the imputation model is first estimated

using the observed data and the imputed data from the previous iteration, say

T t−1 and so on. New imputed values are then drawn from their distributions.

Consequently, each iteration is correlated with the previous imputation. The first

iteration is normally known to be atypical or different from other iterations and

because iterations are correlated, it can make other following iterations atypical

too. To avoid this problem, the algorithm of the multiple imputation methods

goes through the 10 first iterations and save only the results of the 10th. The con-

vergence of imputations is discussed amongst others by Allison (2001) and Schafer

(1997).

4.5 Summary of the chapter

To determine the performance of the multiple imputation methods of interest,

namely MVNI and MICE, the methodology used to impute missing values on the

variables of interest is explained in this chapter. Using a real data set (the 2007

Democratic Republic of Congo demographic health survey or DHS), the regression

models in which missing values were observed on either the response or predic-

tor variables measured on a nominal scale, were estimated. Two scenarios were

considered for analysis. The first scenario consisted on regression models with

missing values on the covariates, whereas the second scenario contained models

with missing values on the outcome variables measured on nominal scale. In Sce-

nario 1, two types of models were used. The first model or Model 1.1 regressed

contraceptive method use status on marital status alone, with missing values on

the independent variable (marital status). The second model or Model 1.2 re-

gressed contraceptive method use status on marital status, controlling for other

variables (nominal, continuous and ordinal). Model 1.2 was split into two models;

Models 1.2.1 and 1.2.2. In Model 1.2.1, two nominal covariates (marital status and

region) were considered for analysis. Model 1.2.2 regressed contraceptive method
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use status on various variables (continuous, nominal and ordinal) with missing

values on only nominal variables. The second scenario contained two models with

missing values on the response variables. The first model or Model 2.1 in this

scenario regressed contraceptive method use status (a dichotomous variable) on

marital status, whereas the second model or Model 2.2 regressed contraceptive

method use status (measured as a polytomous variable). Throughout this thesis,

the rate of missingness that was considered is 50%. However, to verify whether

the rates of missingness could have an effect on the performance of the multiple

imputation methods of interest, 50%, 30% and 10% missing data were considered

for only Model 1.1.

Missing values on the variables of these models were imputed using the para-

metric imputation technique (MVNI) and the MICE method which takes into

account the distributional form of the variables to be imputed. Stochastic impu-

tation models of the variables to be imputed were developed and explained. The

imputation models diagnostics to assess whether or not imputation values were

drawn from the desired distributions or similar results across repeated uses of the

same imputation procedures were obtained, were indicated.

Under MVNI, dichotomous nominal variables were imputed as a continuous

variable using linear regression models and imputed values were rounded to the

nearest integer (0 or 1) to keep the dichotomy nature of the imputed variables that

had to be used as dependent variables in the regression models. On the other hand,

polytomous variables (marital status and contraceptive method use status with 3

categories) with missing data were dichotomised first and K − 1 (where K is the

number of categories forming the variable) dichotomised variables were included

in the imputation models, leaving one of the categories as a reference. Imputa-

tion using MICE was done such that the distributional form of the variables with

missing values was accounted for. That is, imputation values were drawn from the

binary and multinomial logistic regressions for the dichotomous and polytomous

variables respectively. The analysis using both the weighted and unweighted data

sets and under MAR and MCAR assumptions, was considered.

In the next chapter, the results (in terms of bias and standard errors) are pre-

sented and used to compare the multiple imputation methods of interest, namely

MVNI and MICE.
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Results

5.1 Introduction

This chapter presents the results based on the regular data sets (without taking

into account the sample weights) and the weighted data sets (in which the sample

selection procedure is accounted for), when data are missing at random or missing

completely at random. Four sections are covered. The first section (Section 5.1)

provides an overview of the chapter. The second section (Section 5.2) presents

the results of the first scenario. The results of Model 1.1 are presented when

50%, 30% and 10% data are missing at random or completely at random on

a single covariate. Moreover, the findings on Models 1.2.1 and 1.2.2, on which

missing values are observed on more than one covariate with missing values, are

also presented. The third section (Section 5.3) presents the results for the second

scenario, which contains two models (Models 2.1 and 2.2) with missing values on

the outcome variables; binary and polytomous. For each model in each scenario,

the descriptive statistics of the data sets with missing values is provided. The

estimates of bias and standard errors in the regression coefficients obtained using

the case deletion or CD, MVNI and MICE techniques are reported. The results

on the imputation models’ diagnostics are also provided in this section. In Section

4 (Section 5.4), the summary of the chapter is given.
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5.2 Scenario 1: Logistic regression models with

missing values on the covariates

As mentioned in Chapter 4, Scenario 1 contains the regression models with missing

values on the covariates. In Model 1.1, a single covariate with missing values is

considered. This model is used to investigate whether the rates of missing values in

the data sets may have an impact on the imputation methods of interest, namely

MVNI and MICE. The rates of missingness considered for this case are 50%, 30%

and 10%. For all other models in the study, only 50% rate of missingness was

used for analysis. In Model 1.2, regression models with at least two covariates

containing missing values on only the nominal ones are considered for analysis. A

graphical representation of these models is given in Figure 5.1.

The objective of using all these models was to explore the behaviour of

MVNI and MICE when missing values were observed on the unordered categorical

variables alone first, then in the presence of other types of variables (continuous

and ordinal variables).
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Figure 5.1: Scenario 1: Logistic regression models with missing values on the
covariates.

5.2.1 Model 1.1: Binary logistic regression model with

missing values on a single covariate measured on a

nominal scale

5.2.1.1 Results when 50% of data are missing at random or completely

at random on the covariate

Descriptive statistics As stated in Chapter 4, Model 1.1 regresses contracep-

tive method use status on marital status, to determine the performance of the

multiple imputation methods of interest when data are missing at random or com-

pletely at random on nominal variables (marital status) treated as predictors in

the regression models. Recall that under MAR assumption, missing values were

deleted in a random manner such that missingness depended on the target vari-

ables in the data set that was used. In this case, 50% missing values were arbitrary
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and randomly deleted on marital status if a woman was not using any contracep-

tive method, thus allowing the missing value indicator or missingness to depend

on contraceptive method use status. As shown in Table 5.1, deleting 50% of the

data at random on marital status when a woman was not using any contraceptive

method resulted in approximately 39.30% missing values on the entire variable.

This makes sense because values were deleted on one side (only if a woman was

not using any contraceptive method).

Table 5.1: Model 1.1: Frequency distribution of missingness on marital status
under MAR assumption.

Missingness Frequency Percent Cumulative frequency
Not missing 17937 60.70 60.70
Missing 11611 39.30 100.00
Total 29548 100.00

To investigate whether data were missing at random, a bivariate analysis of the

data was conducted to see if the proportions or means of missing values differed

across the demographic particulars of the respondents. Therefore, the cross tabu-

lations of categorical variables against missingness (present or missing) were first

generated. Frequencies in every category for each categorical variable were pro-

duced to determine whether there were differences in missing values among cat-

egories of variables. The results are shown in Table 5.2. As indicated, approxi-

mately 50% of data were arbitrary and randomly deleted on marital status if a

woman was not using any contraceptive method, and no value (0%) was deleted if

she was using it. This significant difference in proportions of missing values across

the contraceptive method use status was confirmed by the Pearson chi-square test

for association with a p-value less than 5% level of significance (χ2
(1) = 5.2e + 03,

p-value = 0.000). This indicates that missingness is associated with contraceptive

method status. This is a sufficient evidence to confirm that the missing at random

assumption was met, as this assumption requires missingness to be associated with

at least one variable in the data set to be used.

The cross tabulation of wealth index and the missingness was also done. The

results indicate that the percentages of missing values in the indicator variables

appear to vary much across the wealth index levels. As observed, the percentages

of missing values varied between 30% and 43% across the wealth index categories.

It can be seen that the poorer the respondent, the more missing values are ob-

served. This difference is likely due to chance and is also an indication that the

missing at random assumption was met. Furthermore, the Chi-square test for
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association confirms that missingness is associated to the woman’s wealth status

(χ2
(14) = 239.5261, p-value = 0.000) which is less that the level of significance of

0.05 that was used. A similar analysis was also done to assess whether missingness

was related to the woman region of origin. As indicated in Table 5.2, missingness

was found to be associated with region (p-value = 0000 less than 0.05).

Table 5.2: Model 1.1: Distribution of missingness across selected categorical
variables when 50% data are MAR on marital status if a woman is not using
any contraceptive method.

Missingness
Not Missing Missing Total P-values

Contraceptive
method use status 0.000
No method 50.10 49.90 100
At least one method 100 0.00 100
Total 60.70 39.30 100
Wealth index 0.000
Poorest 57.08 42.92 100
Poorer 57.48 42.52 100
Middle 58.78 41.22 100
Richer 62.36 37.64 100
Richest 69.32 30.68 100
Total 60.70 39.30 100
Region 0.000
Kinshasa 69.71 30.29 100
Bas Kongo 67.94 32.06 100
Bandundu 63.31 36.69 100
Eguateur 61.81 38.19 100
Oriental 58.56 41.44 100
Nord Kivu 58.27 41.73 100
Maniema 58.75 41.25 100
Sud Kivu 56.32 43.68 100
Katanga 60.77 39.23 100
Kasai Oriental 56.65 43.35 100
Kasai Occidental 56.71 43.29 100
Total 60.92 39.30 100

The independent-samples t-test was also conducted to identify variables whose

pattern of missing values might be influencing the continuous variables of interest.

In this case, age and education in completed years were considered. The means of

age and education in completed years for missingness were calculated. The results

are found in Appendix B in Figure 6.1 (age) and Figure 6.2 (education). As indi-

cated, there was a significant difference in means age scores for not missing (Mean

= 35.0, SD = 8.0) and missing (Mean = 35.4, SD = 8.3). Similarly, a significant
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difference in means education (in completed years) for the groups missing (Mean

= 4.0, SD = 3.7) and not missing (Mean = 4.8, SD = 4.0) was found. These

findings were supported by the t-test of equality of the means with p-values less

than 5% significance level (p-value = 0.000). This indicates that missingness is

associated with age and education in completed years as well, which is additional

information that observations were missing at random on marital status.

Under the MCAR assumption, 50% missing values were also arbitrary deleted

on marital status such that missingness was not related to the values of any vari-

ables in the data set subject to analysis. The frequency distribution of missingness

on this variable is presented in Table 5.3. As indicated, approximately 50% of val-

ues were deleted on marital status.

Table 5.3: Model 1.1: Frequency distribution of missingness when 50% data
are MCAR on marital status.

Missingness Frequency Percent Cumulative frequency
Not missing 14563 49.43 49.43
Missing 14985 50.57 100.00
Total 29548 100.00

To ensure that these values were deleted completely at random, a bivariate anal-

ysis of the missing value indicator or missingness and other socio-demographic

characteristics of the respondent was conducted. The variables considered in this

case are the woman’s contraceptive method use status, region and wealth index.

The results are shown in Table 5.4. As indicated, missingness on marital status

is not associated with any of these variables. This fact is confirmed by the Chi-

square test for association with p-values greater than 0.05 for each variable, an

indication that data were missing completely at random on marital status.
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Table 5.4: Model 1.1: Distribution of missingness by selected categorical vari-
ables when 50% data are MCAR on marital status.

Missingness
Not Missing Missing Total P-values

Contraceptive
method use status 0.280
No method 49.27 50.73 100
At least one method 50.04 49.96 100
Total 49.43 50.53 100
Wealth index 0.053
Poorest 47.83 52.17 100
Poorer 49.69 50.31 100
Middle 49.92 50.08 100
Richer 50.34 49.66 100
Richest 49.57 50.43 100
Total 49.43 50.57 100
Region 0.989
Kinshasa 49.05 50.95 100
Bas Kongo 48.71 51.29 100
Bandundu 49.51 50.49 100
Eguateur 48.71 51.29 100
Oriental 49.84 50.16 100
Nord Kivu 50.27 49.73 100
Maniema 49.23 50.77 100
Sud Kivu 49.33 50.67 100
Katanga 49.47 50.53 100
Kasai Oriental 49.98 50.02 100
Kasai Occidental 49.80 50.20 100
Total 49.43 50.57 100

The independent-samples t-test was also conducted to examine if there was a

significant difference in means of age and education in completed years across

missingness. The results are shown in Appendix B in Figures 6.3 and 6.4 for age

and education in completed years respectively. The results indicated that there

was no significant difference in means of age and education in single years between

the two groups (missing and not missing) as confirmed by the p-values associated

with the test (p-values of 0.33 and 0.071 for age and education respectively),

which are greater than the significance level of 5% that was used. This shows that

no association exists between missingness and these two continuous variables, an

additional information that the MCAR assumption was met.
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Performance measures To assess the performance of the imputation methods

of interest (MVNI and MICE), the bias in the regression coefficients and the

standard errors of the regression coefficients were considered for analysis. The

logistic regression models of contraceptive method use status on marital status

were estimated using the data set with no missing values (baseline data set or

BD), the data set with missing values of interest (case deletion or CD method)

and the completed or imputed data sets with MVNI and MICE. Then, the bias

was computed and reported along with the standards errors. In Tables 5.5 and 5.6,

these estimates are presented for both weighted and unweighted data sets, when

approximately 50% of data are missing at random on marital status if a woman

is not using any contraceptive method. In Tables 5.7 and 5.8, the same statistics

are reported when approximately 50% data are missing completely at random on

marital status. The plot of bias and standard errors are shown in Figures 5.2

and 5.3 for both unweighted and weighted data sets to look at the pattern of

performance of the missing data methods of interest; case deletion (CD), MVNI

and MICE.

As expected, the results show that under the MAR and MCAR assumptions,

multiple imputations with MVNI and MICE yields less biased (estimates of bias

closer to zero) and more accurate standard errors (standards errors close to the

standard errors obtained using the true data set or data set with no missing values)

than case deletion, which discards items with missing values from the analysis.

The results indicate also that the MVNI technique is less biased and yields more

accurate standard errors than MICE, either when data are missing at random

or missing completely at random for both unweighted (Figure 5.2) and weighted

(Figure 5.3) data sets.

Table 5.5: Model 1.1: Estimates of bias when approximately 50% of data are
MAR on marital status if a woman is not using any contraceptive method.

Marital status
Never Living Widowed Divorced Not living
married together together

CD-unweighted 0.030 0.014 0.008 0.012 -0.060
CD-weighted -0.012 0.026 0.007 0.026 -0.072
MVNI-unweighted 0.017 0.009 0.003 0.012 -0.043
MVNI-weighted -0.009 0.014 0.002 0.016 -0.064
MICE-unweighted 0.027 0.013 0.006 0.010 -0.057
MICE-weighted -0.010 0.025 0.003 0.024 -0.069
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Table 5.6: Model 1.1: Estimates of standard errors when approximately 50%
of data are MAR on marital status if a woman is not using any contraceptive
method.

Marital status
Never Living Widowed Divorced Not living
married together together

BD-unweighted 0.119 0.044 0.135 0.108 0.067
BD-weighted 0.166 0.062 0.154 0.163 0.095
CD-unweighted 0.137 0.050 0.149 0.121 0.074
CD-weighted 0.211 0.072 0.170 0.179 0.104
MVNI-unweighted 0.130 0.048 0.141 0.118 0.074
MVNI-weighted 0.179 0.067 0.155 0.179 0.103
MICE-unweighted 0.137 0.049 0.149 0.120 0.074
MICE-weighted 0.200 0.069 0.162 0.179 0.104

Table 5.7: Model 1.1: Estimates of bias when approximately 50% of data are
MCAR on marital status.

Marital status
Never Living Widowed Divorced Not living
married together together

CD-unweighted 0.052 0.042 -0.113 -0.046 0.087
CD-weighted -0.058 0.072 0.049 -0.021 -0.034
MVNI-unweighted 0.028 0.036 -0.083 -0.028 0.077
MVNI-weighted -0.051 0.041 0.024 0.014 -0.006
MICE-unweighted 0.051 0.040 -0.103 -0.041 0.078
MICE-weighted -0.057 0.063 0.030 -0.018 -0.017

Table 5.8: Model 1.1: Estimates of standard errors when approximately 50%
of data are MCAR on marital status.

Marital status
Never Living Widowed Divorced Not living
married together together

BD-unweighted 0.119 0.044 0.135 0.108 0.067
BD-weighted 0.166 0.062 0.154 0.163 0.095
CD-unweighted 0.137 0.050 0.149 0.121 0.074
CD-weighted 0.211 0.072 0.170 0.179 0.104
MVNI-unweighted 0.130 0.048 0.141 0.118 0.074
MVNI-weighted 0.179 0.067 0.155 0.179 0.103
MICE-unweighted 0.137 0.049 0.149 0.120 0.074
MICE-weighted 0.200 0.069 0.162 0.179 0.104
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Figure 5.2: Model 1.1: Plot of bias and standard errors when 50% data are
MAR or MCAR on marital status for unweighted data sets.

Figure 5.3: Model 1.1: Plot of bias and standard errors when 50% data are
MAR or MCAR on marital status for weighted data sets.
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Model diagnostics The MCEs after MVNI and MICE of the statistics involved

in the estimation of the regression models were computed. These estimates are the

regression coefficients, standard errors, t-values, p-values and confidence limits of

the regression coefficients. Note that the estimates of the MCEs of the confidence

limits are measures of the accuracy of these limits after 100 imputations, they

have nothing to do with the estimates of the MCEs of the regression coefficients,

which are also measures of accuracy of the coefficients. This means that it is

not expected that the MCEs of the regression coefficients lie between the MCEs

of the confidence limits, or the MCEs of the upper limits to be higher than the

MCES of the lower limits of the confidence interval or vice versa. These estimates

are presented in Appendix C in Tables 6.1, 6.2, 6.3 and 6.4 when 50% data were

missing at random on marital status if a woman was not using any contraceptive

method, and in Appendix C in Tables 6.5, 6.6, 6.7 and 6.8 when data were miss-

ing completely at random on marital status. The results show that the suggested

criteria for the Monte Carlo errors are met. In fact, the Monte Carlo errors on the

coefficients are less than 10% of the standard error for unweighted and weighted

data sets. The Monte Carlo errors of the p-values are also approximately less than

0.1 when 5% level of significance was used for both MVNI and MICE. The Monte

Carlo errors of the t-test statistic were found to be approximately less than 0.1

for all the methods and data sets (White et al., 2011). Therefore, based on these

results, one can reasonably be sure about their statistical reproducibility. This

suggests that the number of imputations used (100 imputations) were enough to

produce stable results.

To ensure that imputations converged to the desired distributions, the con-

vergence was investigated for both unweighted and weighted data sets, under MAR

and MCAR assumptions. The estimates of the worst linear function (WLF) were

plotted against the iteration numbers first and then versus the lag numbers for both

MVNI and MICE methods. Under MAR assumption, the results are presented

in Appendix D in Figures 6.25 and 6.26 for the MVNI approach, and in Figures

6.27 and 6.28 for the MICE technique for unweighted data sets. For weighted data

sets, the results are shown in Figures 6.29 and 6.30 for MVNI, and in Figures 6.31

and 6.32 for MICE. Under MCAR assumption, the same estimates are shown in

Figures 6.33, 6.34, 6.35 and 6.36 for unweighted data sets, and in Figures 6.37,

6.38, 6.39 and 6.40 for weighted data. As indicated, the plots of the estimates

of WLF against the iteration numbers show no visible trend, thus indicating that

convergence is assured with the number of iterations used (1000 iterations). On
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the other hand, the plots of WLF’s estimates against the lag numbers show the

autocorrelations that die off quickly, which implies that even a smaller number (of

iterations) than what was used, such as 10 iterations between imputations, can be

used to obtain independent samples.

5.2.1.2 Results when 30% of data are missing at random or completely

at random on the covariate

Descriptive statistics The performance of the multiple imputation methods

of interest was also investigated when approximately 30% of the data were deleted

at random or completely at random on the covariate.

Under the MAR assumption, 30% missing values were arbitrary and ran-

domly deleted on marital status if a woman was not using any contraceptive

method. This allowed the missing value indicator or missingness to depend on

contraceptive method use status. As shown in Table 5.9, deleting 30% of the

data at random on marital status when a woman was not using any contraceptive

method resulted in approximately 23.46% missing values on the entire variable

(marital status).

Table 5.9: Model 1.1: Frequency distribution of missingness when approx-
imately 50% data are MAR on marital status if a woman is not using any
contraceptive method.

Missingness Frequency Percent Cumulative frequency
Not missing 22617 76.54 76.54
Missing 6931 23.46 100.00
Total 29548 100.00

To investigate whether or not data were missing at random, a bivariate analysis

of the data was conducted to assess whether the proportions or means of missing

values differed across the demographic particulars of the respondents. The results

show that missingness is associated with the woman’s contraceptive method use

status, wealth index, region, age and education in completed years as indicated

by the p-values associated with the Chi-square test for association (for categorical

variables) and the t-test for equality of the means (for continuous variables) that

are less than the significance level of 5%. The results are shown in Table 5.10

for categorical variables (contraceptive method use status, wealth index and re-

gion) and in Appendix B in Figures 6.5 and 6.6 for continuous variables (age and

education respectively).
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Table 5.10: Model 1.1: Distribution of missingness across selected categorical
variables when approximately 30% data are MAR on marital status if a woman
is not using any contraceptive method.

Missingness
Not Missing Missing Total P-values

Contraceptive
method use status 0.000
No method 70.21 29.79 100
At least one method 100 0.00 100
Total 76.54 23.46 100
Wealth index 0.000
Poorest 73.65 26.35 100
Poorer 75.65 24.35 100
Middle 75.79 24.21 100
Richer 77.54 22.46 100
Richest 80.94 19.06 100
Total 76.54 23.46 100
Region 0.000
Kinshasa 81.49 18.51 100
Bas Kongo 81.00 19.00 100
Bandundu 78.79 21.21 100
Eguateur 78.09 21.91 100
Oriental 74.42 25.58 100
Nord Kivu 75.18 24.82 100
Maniema 74.36 25.64 100.00
Sud Kivu 74.49 25.51 100
Katanga 75.94 24.06 100
Kasai Oriental 73.68 26.32 100
Kasai Occidental 73.80 26.20 100
Total 76.54 23.46 100

Under the MCAR assumption, 30% missing values were arbitrary deleted on

marital status such that missingness was not associated with any variable in the

data set subject to analysis. The frequency distribution of missingness on this

variable is presented in Table 5.11. As indicated, approximately 30% of values

were deleted on marital status.

Table 5.11: Model 1.1: Frequency distribution of missingness when approxi-
mately 30% data are MCAR on marital status.

Missingness Frequency Percent Cumulative frequency
Not missing 20611 69.75 69.75
Missing 8937 30.25 100.00
Total 29548 100.00

 

 

 

 



Chapter 5. Results 89

To ensure that these values were deleted completely at random, a bivariate anal-

ysis of the missing value indicator or missingness and other socio-demographic

characteristics of the respondent was conducted. The results are shown in Table

5.12 for categorical variables and in Appendix B in Figures 6.7 and 6.8 for con-

tinuous variables; age and education respectively. As indicated, missingness on

marital status is not associated with the woman contraceptive method use status,

wealth index and region as confirmed by the Chi-square test for association (cat-

egorical variables) and the independent-samples t-test (for continuous variables)

with p-values greater than 0.05, an indication that data were missing completely

at random on marital status.

Table 5.12: Model 1.1: Distribution of missingness by selected categorical
variables when approximately 30% data are MCAR on marital status.

Missingness
Not Missing Missing Total P-values

Contraceptive
method use status 0.166
No method 69.56 30.44 100
At least one method 70.47 29.53 100
Total 69.75 30.25 100
Wealth index 0.391
Poorest 68.77 31.23 100
Poorer 70.10 29.90 100
Middle 70.20 29.80 100
Richer 70.01 29.99 100
Richest 69.79 30.21 100
Total 69.75 30.25 100
Region 0.856
Kinshasa 68.80 31.20 100
Bas Kongo 68.36 31.64 100
Bandundu 70.31 29.69 100
Eguateur 70.24 29.76 100
Oriental 70.45 29.55 100
Nord Kivu 69.99 30.01 100
Maniema 70.17 29.83 100
Sud Kivu 69.43 30.57 100
Katanga 70.07 29.93 100
Kasai Oriental 69.44 30.56 100
Kasai Occidental 70.09 29.91 100
Total 69.75 30.25 100
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Performance measures To assess the performance of the imputation methods

of interest (MVNI and MICE), the logistic regression models of contraceptive

method use status on marital status were first estimated using the data set with

no missing values (baseline data set or BD), the data set with missing values of

interest (case deletion or CD method) and the completed or imputed data sets

with MVNI and MICE. Then, the bias was computed and reported along with the

standards errors.

In Tables 5.13 and 5.14, these estimates are presented for both weighted and

unweighted data sets respectively, when approximately 30% of data are missing

at random on marital status if a woman is not using any contraceptive method.

In Tables 5.15 and 5.16, the same statistics are reported when approximately 30%

data are missing completely at random on marital status. The plot of bias and

standard errors are shown in Figure 5.4 and 5.5 for both unweighted and weighted

data sets to look at the pattern of performance of the missing data methods of

interest; case deletion (CD), MVNI and MICE. The results show that under MAR

and MCAR assumptions, multiple imputations with MVNI and MICE produce

less biased and more accurate standard errors than case deletion. Furthermore, it

is observed that MVNI is less biased and yields better standard errors than MICE,

either when data are missing at random or missing completely at random for both

unweighted (Figure 5.4) and weighted (Figure 5.5) data sets.

Table 5.13: Model 1.1: Estimates of bias when approximately 30% of data
are MAR on marital status if a woman is not using any contraceptive method.

Marital status
Never Living Widowed Divorced Not living
married together together

CD-unweighted -0.035 -0.023 0.024 -0.059 -0.025
CD-weighted -0.051 -0.130 -0.041 -0.052 -0.040
MVNI-unweighted -0.018 -0.009 0.006 -0.044 -0.013
MVNI-weighted -0.022 -0.104 -0.014 -0.030 -0.020
MICE-unweighted -0.023 -0.012 0.007 -0.052 -0.018
MICE-weighted -0.026 -0.113 -0.031 -0.040 -0.026
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Table 5.14: Model 1.1: Estimates of standard errors when approximately 30%
of data are MAR on marital status if a woman is not using any contraceptive
method.

Marital status
Never Living Widowed Divorced Not living
married together together

BD-unweighted 0.119 0.044 0.135 0.108 0.067
BD-weighted 0.166 0.062 0.154 0.163 0.095
CD-unweighted 0.126 0.047 0.136 0.113 0.069
CD-weighted 0.177 0.067 0.157 0.167 0.099
MVNI-unweighted 0.124 0.046 0.136 0.112 0.069
MVNI-weighted 0.172 0.064 0.156 0.165 0.098
MICE-unweighted 0.125 0.047 0.136 0.112 0.069
MICE-weighted 0.173 0.065 0.157 0.168 0.099

Table 5.15: Model 1.1: Estimates of bias when approximately 30% of data
are MCAR on marital status.

Marital status
Never Living Widowed Divorced Not living
married together together

CD-unweighted 0.031 0.031 -0.095 -0.121 0.033
CD-weighted 0.163 -0.085 0.140 0.045 0.097
MVNI-unweighted 0.020 0.025 -0.056 -0.106 0.014
MVNI-weighted 0.102 -0.062 0.116 0.009 0.064
MICE-unweighted 0.029 0.028 -0.068 -0.116 0.026
MICE-weighted 0.132 -0.063 0.136 0.016 0.071

Table 5.16: Model 1.1: Estimates of standard errors when approximately 30%
of data are MCAR on marital status.

Marital status
Never Living Widowed Divorced Not living
married together together

BD-unweighted 0.119 0.044 0.135 0.108 0.067
BD-weighted 0.166 0.062 0.154 0.163 0.095
CD-unweighted 0.149 0.056 0.157 0.128 0.081
CD-weighted 0.187 0.079 0.180 0.193 0.118
MVNI-unweighted 0.147 0.053 0.155 0.126 0.073
MVNI-weighted 0.182 0.077 0.167 0.186 0.116
MICE-unweighted 0.148 0.054 0.157 0.126 0.078
MICE-weighted 0.184 0.078 0.172 0.187 0.116
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Figure 5.4: Model 1.1: Plot of bias and standard errors when approximately
30% data are MAR and MCAR for unweighted data sets.

Figure 5.5: Model 1.1: Plot of bias and standard errors when approximately
30% data are MAR and MCAR for weighted data sets.
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Model diagnostics The estimates of Monte Carlo errors (MCE) after MVNI

and MICE of the statistics involved in the estimation of the regression models

were also estimated. These estimates are presented in Appendix C in Tables 6.9,

6.10, 6.11 and 6.12 when 30% data were missing at random on marital status if

a woman was not using any contraceptive method, and in Appendix C in Tables

6.13, 6.14, 6.15 and 6.16 when data were missing completely at random on marital

status. The results indicate that the suggested criteria for the Monte Carlo errors

are met. Indeed, the Monte Carlo errors on the coefficients are less than 10% of

the standard error for unweighted and weighted data sets. The Monte Carlo errors

of the p-values are also approximately less than 0.1 when 5% level of significance

was used for both MVNI and MICE. The Monte Carlo errors of the t-test statistic

were found to be approximately less than 0.1 for all the methods and data sets.

Therefore, based on these results, one can reasonably be sure about their statis-

tical reproducibility. This indicates that the number of imputations used (100

imputations) were enough to produce stable results.

To ensure that imputations converged to the desired distributions, the con-

vergence check was done for both unweighted and weighted data sets, under MAR

or MCAR assumptions. The estimates of the worst linear function (WLF) were

plotted against the iteration numbers first and then versus the lag numbers for

both MVNI and MICE methods. Under the MAR assumption, the results are

presented in Appendix D in Figures 6.41 and 6.42 for the MVNI approach, and

in Figures 6.43 and 6.44 for the MICE technique for unweighted data sets. For

weighted data sets, the results are shown in Figures 6.45 and 6.46 for MVNI, and

in Figures 6.47 and 6.48 for MICE. Under the MCAR assumption, the same results

are provided in Appendix D in Figures 6.49, 6.50, 6.51, 6.52, 6.53, 6.54, 6.55 and

6.56. As indicated, the plots of the estimates of WLF against the iteration num-

bers show no visible trend, thus indicating that convergence is attained with the

number of iterations used (1000 iterations). On the other hand, the plots of WLF’s

estimates against the lag numbers show the autocorrelations that die off quickly,

which implies that even a smaller number (of iterations) than what was used, such

as 10 iterations between imputations, can be used to obtain independent samples.

 

 

 

 



Chapter 5. Results 94

5.2.1.3 Results when 10% of data are missing at random or completely

at random on the covariate

Descriptive statistics Data sets with 10% missing at random or missing com-

pletely at random data were also considered for analysis, to determine the perfor-

mance of MICE and MVNI. Under the MAR assumption, 10% missing values were

randomly deleted on marital status if a woman was not using any contraceptive

method. This allowed missingness on marital status to depend on contraceptive

method use status. As shown in Table 5.17, deleting 10% of the data at random

on marital status when a woman was not using any contraceptive method led to

approximately 7.86% missing values on the entire variable.

Table 5.17: Model 1.1: Frequency distribution of missingness when approxi-
mately 10% of the data are MAR on marital status if a woman is not using any
contraceptive method.

Missingness Frequency Percent Cumulative frequency
Not missing 27227 92.14 92.14
Missing 2321 7.86 100.00
Total 29548 100.00

To investigate whether or not data were missing at random, a bivariate analysis

of the data was conducted to see if the proportions or means of missing values

differed across the demographic particulars of the respondents. The results show

that missingness is related to contraceptive method use status, wealth index and

region and education in completed years as indicated by the p-values associated by

both the t-test (for continuous variables) and Chi-square test (for the categorical

variable) that are less than the significance level of 5%. The results are shown in

Table 5.18 for categorical variables (contraceptive method use status, wealth index

and region) and in Appendix B in Figures 6.9 and 6.10 for continuous variables

(age and education in completed years).
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Table 5.18: Model 1: Distribution of missingness across selected categorical
variables when approximately 10% of the data are MAR on marital status if a
woman is not using any contraceptive method.

Missingness
Not Missing Missing Total P-values

Contraceptive
method use status 0.000
No method 90.02 9.98 100
At least one method 100 0.00 100
Total 92.14 7.86 100
Wealth index 0.000
Poorest 91.49 8.51 100.00
Poorer 91.85 8.15 100.00
Middle 91.96 8.04 100.00
Richer 91.98 8.02 100.00
Richest 93.71 6.29 100.00
Total 92.14 7.86 100.00
Region 0.000
Kinshasa 93.34 6.66 100.00
Bas Kongo 93.73 6.27 100.00
Bandundu 93.10 6.90 100.00
Eguateur— 93.01 6.99 100.00
Oriental 91.01 8.99 100.00
Nord Kivu 91.75 8.25 100.00
Maniema 92.34 7.66 100.00
Sud Kivu 90.93 9.07 100.00
Katanga 92.48 7.52 100.00
Kasai Oriental 90.90 9.10 100.00
Kasai Occidental 90.65 9.35 100.00
Total 92.14 7.86 100.00

Under the MCAR assumption, 10% missing values were arbitrary deleted

on marital status such that missingness was not associated with any variables in

the data set subject to analysis. The frequency distribution of missingness on

this variable is presented in Table 5.19. As indicated, around 10% of values were

deleted on marital status.

Table 5.19: Model 1.1: Frequency distribution of missingness when approxi-
mately 10% of the data are MCAR on marital status.

Missingness Frequency Percent Cumulative frequency
Not missing 26581 89.96 89.96
Missing 2967 10.04 100.00
Total 29548 100.00
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To ensure that these values were deleted completely at random, a bivariate anal-

ysis of the missing value indicator or missingness and other socio-demographic

characteristics of the respondent was conducted. The results are shown in Table

5.20 for categorical variables and in Appendix B in Figures 6.11 and 6.12 for age

and education respectively. As indicated, missingness on marital status is not as-

sociated with the woman’s contraceptive method use status, wealth index, region,

age and education in completed years as confirmed by the Chi-square test for asso-

ciation (categorical variables) and the independent-samples t-test for continuous

variables that showed p-values greater than 0.05, which is an indication that data

were missing completely at random on marital status.

Table 5.20: Model 1: Distribution of missingness by selected categorical vari-
ables when approximately 10% of the data are MCAR on marital status.

Missingness
Not Missing Missing Total P-values

Contraceptive
method use status 0.593
No method 90.01 9.99 100
At least one method 89.78 10.22 100
Total 89.96 10.04 100
Wealth index 0.965
Poorest 89.83 10.17 100.00
Poorer 89.82 10.18 100.00
Middle 89.96 10.04 100.00
Richer 90.18 9.82 100.00
Richest 90.03 9.97 100.00
Total 89.96 10.04 100.00
Region 0.805
Kinshasa 89.43 10.57 100.00
Bas Kongo 89.30 10.70 100.00
Bandundu 89.92 10.08 100.00
Eguateur 90.54 9.46 100.00
Oriental 90.56 9.44 100.00
Nord Kivu 90.25 9.75 100.00
Maniema 89.79 10.21 100.00
Sud Kivu 90.54 9.46 100.00
Katanga 90.02 9.98 100.00
Kasai Oriental 89.47 10.53 100.00
Kasai Occidental 89.90 10.10 100.00
Total 89.96 10.04 100.00
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Performance measures In this section, the performance of the multiple im-

putation methods, MVNI and MICE, was assessed. Logistic regression models of

contraceptive method use status on marital status were first estimated using the

data set with no missing values, the data set with missing values and the completed

or imputed data sets using MVNI and MICE. Then, the bias was computed and

reported along with the standards errors of the regression coefficients. In Tables

5.21 and 5.22, these estimates are presented for both weighted and unweighted

data sets, when approximately 10% of data are missing at random on marital

status if a woman is not using any contraceptive method. In Tables 5.23 and

5.24, the same statistics are reported when approximately 10% data are missing

completely at random on marital status. The plot of bias and standard errors

are shown in Figures 5.6 and 5.7 for both unweighted and weighted data sets to

look at the pattern of performance of the missing data methods of interest; case

deletion (CD), MVNI and MICE. The results show that under MAR and MCAR

assumptions, multiple imputations with MVNI and MICE yields less biased and

more accurate standard errors than case deletion or complete case analysis. It

can also be seen that the MVNI technique outperforms MICE in terms of bias

in the regression coefficients and standard errors, either when data are missing at

random or missing completely at random for both unweighted (Figure 5.6) and

weighted (Figure 5.7) data sets.

Table 5.21: Model 1.1: Estimates of bias when approximately 10% of the data
are MAR on marital status if a woman is not using any contraceptive method.

Marital status
Never Living Widowed Divorced Not living
married together together

CD-unweighted 0.002 0.001 0.001 0.001 0.001
CD-weighted 0.003 0.001 0.001 0.001 0.002
MVNI-unweighted 0.001 0.001 0.000 0.001 0.000
MVNI-weighted 0.002 0.001 0.000 0.001 0.001
MICE-unweighted 0.001 0.001 0.001 0.001 0.000
MICE-weighted 0.003 0.001 0.000 0.001 0.001
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Table 5.22: Model 1.1: Estimates of standard errors when approximately 10%
of the data are MAR on marital status if a woman is not using any contraceptive
method.

Marital status
Never Living Widowed Divorced Not living
married together together

BD-unweighted 0.119 0.044 0.135 0.108 0.067
BD-weighted 0.166 0.062 0.154 0.163 0.095
CD-unweighted 0.121 0.045 0.136 0.109 0.068
CD-weighted 0.169 0.063 0.154 0.164 0.097
MVNI-unweighted 0.121 0.045 0.135 0.109 0.067
MVNI-weighted 0.168 0.063 0.154 0.164 0.096
MICE-unweighted 0.121 0.045 0.135 0.109 0.067
MICE-weighted 0.169 0.063 0.154 0.164 0.097

Table 5.23: Model 1.1: Estimates of bias when approximately 10% of the data
are MCAR on marital status.

Marital status
Never Living Widowed Divorced Not living
married together together

CD-unweighted 0.024 0.015 -0.086 -0.080 -0.009
CD-weighted 0.077 -0.068 -0.124 0.007 -0.026
MVNI-unweighted 0.013 0.011 -0.024 -0.075 -0.005
MVNI-weighted 0.051 -0.066 -0.043 -0.002 -0.002
MICE-unweighted 0.017 0.012 -0.040 -0.077 -0.005
MICE-weighted 0.054 -0.068 -0.060 -0.004 -0.007

Table 5.24: Model 1.1: Estimates of standard errors when approximately 10%
of the data are MCAR on marital status.

Marital status
Never Living Widowed Divorced Not living
married together together

BD-unweighted 0.119 0.044 0.135 0.108 0.067
BD-weighted 0.166 0.062 0.154 0.163 0.095
CD-unweighted 0.126 0.046 0.147 0.114 0.071
CD-weighted 0.174 0.068 0.171 0.170 0.108
MVNI-unweighted 0.127 0.046 0.144 0.111 0.070
MVNI-weighted 0.174 0.067 0.170 0.167 0.102
MICE-unweighted 0.127 0.046 0.145 0.113 0.070
MICE-weighted 0.174 0.068 0.170 0.168 0.105
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Figure 5.6: Model 1.1: Plot of bias and standard errors when 10% of the data
are MAR and MCAR for unweighted data sets.

Figure 5.7: Model 1.1: Plot of bias and standard errors when 10% of the data
are MAR and MCAR for weighted data sets.
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Model diagnostics The estimates of Monte Carlo errors (MCE) after MVNI

and MICE of the statistics involved in the estimation of the regression models were

estimated. These estimates are presented in Appendix C in Tables 6.17, 6.18, 6.19

and 6.20 when 10% data were missing at random on marital status if a woman was

not using any contraceptive method, and in Appendix C in Tables 6.21, 6.22, 6.23

and 6.24 when the same proportion of data were missing completely at random on

marital status. The results show that the suggested criteria for the Monte Carlo

errors are met. In fact, the Monte Carlo errors on the coefficients are less than

10% of the standard error for unweighted and weighted data sets. The Monte

Carlo errors of the p-values are also approximately less than 0.1 when 5% level of

significance was used for both MVNI and MICE. The Monte Carlo errors of the

t-test statistic were found to be approximately less than 0.1 for all the methods

and data sets. Therefore, based on these results, one can be reasonably sure about

their statistical reproducibility. This suggests that the number of imputations used

(100 imputations) were enough to produce stable results.

To assess whether imputations converged to the desired distributions, the

convergence check was done for both unweighted and weighted data sets, under

MAR and MCAR assumptions. The estimates of the worst linear function (WLF)

were plotted against the iteration numbers first and then versus the lag numbers

for both MVNI and MICE methods. Under MAR assumption, the results are

presented in Appendix D in Figures 6.57 and 6.58 for the MVNI approach, and

in Figures 6.59 and 6.60 for the MICE technique for unweighted data sets. For

weighted data sets, the results are shown in Figures 6.61 and 6.62 for MVNI, and

in Figures 6.63 and 6.64 for MICE. Under MCAR assumption, similar results are

presented in Figures 6.65, 6.66, 6.67 and 6.68 for unweighted data and in Figures

6.69, 6.70, 6.71 and 6.72 for weighted data. As shown by the figures, the plots of

the estimates of WLF against the iteration numbers show no visible trend, thus

indicating that convergence is assured with the number of iterations used (1000

iterations). On the other hand, the plots of WLF’s estimates against the lag

numbers show the autocorrelations that die off quickly, which implies that even a

smaller number (of iterations) than what was used, such as 10 iterations between

imputations, can be used to obtain independent samples.
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5.2.2 Model 1.2: Binary logistic regression model with

more than two covariates in which two are measured

on a nominal scale containing missing values

5.2.2.1 Model 1.2.1: Model with two nominal covariates both with

50% of their values missing at random or completely at random

Descriptive statistics Data sets with 50% missing at random or missing com-

pletely at random were considered for analysis to determine the performance of

MVNI and MICE when more than one covariates with missing values are used.

These covariates are the woman’s marital status and region of origin, which are

both categorical variables that have no natural order. Under the MAR assump-

tion, 50% missing values were randomly deleted on marital status and region if

a woman was not using any contraceptive method. This allowed missingness on

these variables to depend on contraceptive method use status. As shown in Ta-

ble 5.25, deleting 50% of the data at random on marital status and region when a

woman was not using any contraceptive method led to approximately 39% missing

values on these two variables.

Table 5.25: Model 1.2.1: Frequency distribution of missingness when 50% of
the data are MAR on marital status and region if a woman is not using any
contraceptive method.

Missingness Frequency Percent Cumulative frequency
Not missing 18002 60.92 60.92
Missing 11546 39.08 100.00
Total 29548 100.00

To investigate whether data were missing at random, a bivariate analysis of the

data was conducted to see if the proportions or means of missing values differed

across the demographic particulars of the respondents. The results are shown in

Table 5.26 for categorical variables (contraceptive method use status and wealth

index) and in Appendix B in Figures 6.13 and 6.14 for continuous variables (age

and education respectively). It is observed that missingness is related to contra-

ceptive method use status, wealth index, age and education in completed years as

indicated by the p-values that are less than the significance level of 5% that was

used.
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Table 5.26: Model 1.2.1: Distribution of missingness across selected categori-
cal when 50% of the data are MAR on marital status and region if a woman is
not using any contraceptive method.

Missingness
Not Missing Missing Total P-values

Contraceptive
method use status 0.000
No method 50.38 49.62 100
At least one method 100 0.00 100
Total 60.92 39.08 100
Wealth index 0.000
Poorest 56.16 43.84 100.00
Poorer 58.91 41.09 100.00
Middle 59.74 40.26 100.00
Richer 62.31 37.69 100.00
Richest 69.03 30.97 100.00
Total 60.92 39.08 100.00

Under the MCAR assumption, 50% missing values were also arbitrary deleted

on marital status and region such that missingness was not associated with any

variables in the data set subject to analysis. The frequency distribution of miss-

ingness on these variables is presented in Table 5.27. As indicated, around 50% of

values were deleted on marital status and region.

Table 5.27: Model 1.2.1: Frequency distribution of missingness when 50% of
the data are MCAR on marital status and region.

Missingness Frequency Percent Cumulative frequency
Not missing 14607 49.43 49.43
Missing 14941 50.57 100.00
Total 29548 100.00

To determine whether these values were deleted completely at random, a bivariate

analysis of the missing value indicator or missingness and other socio-demographic

characteristics of the respondents was conducted. The results are shown in Table

5.28 for categorical variables and in Appendix B in Figures 6.15 and 6.16 for con-

tinuous variables (age and education respectively). As indicated, missingness on

marital status and region is not associated with the woman contraceptive method

use status, wealth index, age and education in completed years as confirmed by the

chi-square test for association (categorical variables) and the independent-samples

t-test (for continuous variables) with p-values greater than the significance level of
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0.05. This is indication that data were missing completely at random on marital

status.

Table 5.28: Model 1.2.1: Distribution of missingness when 50% of the data
are MCAR on marital status and region.

Missingness
Not Missing Missing Total P-values

Contraceptive
method use status 0.280
No method 49.27 50.73 100
At least one method 50.04 49.96 100
Total 49.43 50.57 100
Wealth index 0.053
Poorest 47.83 52.17 100.00
Poorer 49.69 50.31 100.00
Middle 49.92 50.08 100.00
Richer 50.34 49.66 100.00
Richest 49.57 50.43 100.00
Total 49.43 50.57 100.00

Performance measures To determine the performance of the imputation

methods of interest (MVNI and MICE), the logistic regression models of con-

traceptive method use status on marital status and region were first estimated

using the data set with no missing values, the data set with missing values and

the completed or imputed data sets with MVNI and MICE. Then, the bias was

computed and reported along with the standards errors. In Tables 5.29 and 5.30,

these estimates are presented for both weighted and unweighted data sets, when

approximately 50% of data are missing at random on marital status if a woman is

not using any contraceptive method. In Tables 5.31 and 5.32, the same parame-

ters are reported when approximately 50% data are missing completely at random

on marital status. The plots of bias and standard errors are shown in Figure 5.8

and 5.9 for both unweighted and weighted data sets to examine the pattern of

performance of the missing data methods of interest; case deletion (CD), MVNI

and MICE. The results show that under MAR and MCAR assumptions, multiple

imputations with MVNI and MICE yields less bias and more accurate standard er-

rors than case deletion which discards items with missing values from the analysis.

It can also be seen that MVNI technique is less biased and yields more accurate

standard errors than MICE, either when data are missing at random or missing
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completely at random for both unweighted (Figure 5.8) and weighted (Figure 5.9)

data sets.

Table 5.29: Model 1.2.1: Estimates of bias and standard errors (SE) obtained
when 50% of the data are MAR on variables marital status and region if a
woman is not using any contraceptive method: results from the unweighted
data set.

Variable CD MVNI MICE

Marital status
Never married 0.038 (0.170) 0.015 (0.136) 0.033 (0.142)
Living together -0.057 (0.055) -0.028(0.050) -0.044 (0.052)
Widowed 0.082(0.151) 0.054 (0.140) 0.062 (0.141)
Divorced 0.127 (0.130) 0.109 (0.120) 0.119 (0.124)
Not living together 0.009 (0.080) 0.002 (0.075) -0.004 (0.076)
Region
Bas Kongo -0.046 (0.068) -0.028 (0.063) -0.040 (0.065)
Bandundu 0.041 (0.065) 0.025 (0.061) 0.031 (0.062)
Equateur -0.057 (0.066) -0.023 (0.064) -0.036 (0.065)
Orientale 0.066 (0.073) 0.037 (0.071) 0.052 (0.072)
Nord Kivu 0.096 (0.073) 0.085 (0.071) 0.089 (0.072)
Maniema 0.062 (0.073) 0.039 (0.068) 0.046 (0.069)
Sud Kivu 0.071 (0.080) 0.037 (0.077) 0.050 (0.078)
Katanga -0.037 (0.067) -0.018 (0.065) -0.032 (0.066)
Kasai Occidental 0.029 (0.078) 0.013 (0.073) 0.022 (0.076)
Kasai Oriental 0.042 (0.076) 0.009 (0.073) 0.034 (0.075)
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Table 5.30: Model 1.2.1: Estimates of bias and standard errors (SE) obtained
when 50% of the data are MAR on variables marital status and region if a
woman is not using any contraceptive method: results from the weighted data.

Variable CD MVNI MICE

Marital status
Never married 0.116 (0.217) 0.074 (0.194) 0.085 (0.209)
Living together -0.055 (0.076) -0.035 (0.070) -0.036 (0.071)
Widowed 0.051 (0.178) 0.026 (0.163) 0.040 (0.164)
Divorced 0.077 (0.185) 0.142 (0.177) 0.066 (0.183)
Not living together 0.054 (0.117) 0.014 (0.109) 0.034 (0.112)
Region
Bas Kongo -0.064 (0.088) -0.028 (0.078) -0.042 (0.081)
Bandundu 0.061 (0.086) 0.037 (0.079) 0.053 (0.081)
Equateur 0.071 (0.087) 0.041 (0.086) 0.052 (0.087)
Orientale 0.033 (0.101) 0.011 (0.097) 0.023 (0.099)
Nord Kivu -0.043 (0.102) -0.031 (0.096) -0.034 (0.101)
Maniema -0.030 (0.101) -0.006 (0.096) -0.020 (0.100)
Sud Kivu -0.038 (0.116) -0.022 (0.114) -0.029 (0.114)
Katanga 0.056 (0.079) 0.038 (0.077) 0.040 (0.079)
Kasai Occidental -0.068 (0.096) -0.027 (0.089) -0.037 (0.089)
Kasai Oriental 0.057 (0.093) 0.002 (0.089) 0.026 (0.092)

Table 5.31: Model 1.2.1: Estimates of bias and standard errors (SE) obtained
when 50% of the data are MCAR on variables marital status and region: results
from the unweighted data set.

Variable CD MVNI MICE

Marital status
Never married -0.087 (0.269) -0.064 (0.182) -0.076 (0.207)
Living together 0.078 (0.095) 0.045 (0.069) 0.065 (0.071)
Widowed 0.131 (0.271) 0.086 (0.155) 0.115 (0.189)
Divorced 0.037 (0.228) 0.018 (0.154) 0.021 (0.158)
Not living together 0.053 (0.146) 0.036 (0.102) 0.042 (0.106)
Region
Bas Kongo -0.096 (0.117) -0.060 (0.077) -0.074 (0.079)
Bandundu -0.148 (0.114) -0.078 (0.076) -0.088 (0.078)
Equateur -0.092 (0.121) -0.052 (0.078) -0.056 (0.079)
Orientale -0.208 (0.140) -0.122 (0.094) -0.138 (0.099)
Nord Kivu -0.013 (0.131) -0.011 (0.086) -0.012 (0.092)
Maniema -0.061 (0.126) -0.016 (0.087) -0.037 (0.088)
Sud Kivu -0.083 (0.149) -0.033 (0.102) -0.054 (0.103)
Katanga -0.098 (0.122) -0.036 (0.084) -0.049 (0.088)
Kasai Occidental -0.068 (0.130) -0.042 (0.090) -0.047 (0.092)
Kasai Oriental -0.033 (0.135) -0.020 (0.088) -0.028 (0.099)
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Table 5.32: Model 1.2.1: Estimates of bias and standard errors (SE) obtained
when 50% of the data are MCAR on variables marital status and region: results
from the weighted data set.

Variable CD MVNI MICE

Marital status
Never married -0.041 (0.329) -0.015 (0.241) -0.025 (0.245)
Living together 0.042 (0.135) 0.027 (0.092) 0.035 (0.094)
Widowed 0.050 (0.314) 0.006 (0.167) 0.029 (0.259)
Divorced -0.033 (0.349) -0.015 (0.211) -0.020 (0.220)
Not living together 0.046 (0.209) 0.024 (0.136) 0.034 (0.142)
Region
Bas Kongo -0.071 (0.133) -0.028 (0.110) -0.054 (0.114)
Bandundu 0.058 (0.150) 0.037 (0.097) 0.049 (0.099)
Equateur -0.053 (0.165) -0.017 (0.103) -0.035 (0.104)
Orientale -0.059 (0.196) -0.034 (0.119) -0.044 (0.123)
Nord Kivu -0.093 (0.179) -0.052 (0.125) -0.058 (0.132)
Maniema 0.053 (0.145) 0.016 (0.131) 0.030 (0.138)
Sud Kivu -0.040 (0.213) -0.026 (0.143) -0.034 (0.147)
Katanga -0.047 (0.145) -0.025 (0.094) -0.033 (0.112)
Kasai Occidental -0.123 (0.161) -0.065 (0.104) -0.079 (0.116)
Kasai Oriental 0.127 (0.163) 0.043 (0.115) 0.095 (0.109)
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Figure 5.8: Model 1.2.1: Plot of bias and standard errors when 50% of the
data are MAR and MCAR for unweighted data sets. Numbers 1-5 and 6-15 refer
to levels or categories of the variable marital status and region respectively.

Figure 5.9: Model 1.2.1: Plot of bias and standard errors when 50% of the
data are MAR and MCAR for weighted data sets. Numbers 1-5 and 6-15 refer
to levels or categories of the variable marital status and region respectively.

Model diagnostics The estimates of Monte Carlo errors (MCE) after MVNI

and MICE of the statistics involved in the estimation of the regression models
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were estimated. These estimates are presented in Appendix C in Tables 6.25,

6.26, 6.27 and 6.28 when 50% data were missing at random on marital status and

region if a woman was not using any contraceptive method, and in Appendix C

in Tables 6.29, 6.30, 6.31 and 6.32 when data were missing completely at random

on marital status. The results indicate that Monte Carlo errors on the coefficients

are less than 10% of the standard error for unweighted and weighted data sets.

The Monte Carlo errors of the p-values are also approximately less than 0.1 when

5% level of significance was used for both MVNI and MICE. The Monte Carlo

errors of the t-test statistic were found to be approximately less than 0.1 for all

the methods and data sets. Therefore, based on these results, one can reasonably

be sure about their statistical reproducibility. This suggests that the number of

imputations used (100 imputations) were enough to produce stable results.

To ensure that imputations converged to the desired distributions, conver-

gence was assessed for both unweighted and weighted data sets, under MAR and

MCAR assumptions. The estimates of the worst linear function (WLF) were plot-

ted against the iteration numbers first and then versus the lag numbers for both

MVNI and MICE methods. Under the MAR assumption, the results are presented

in Appendix D in Figures 6.73 and 6.74 for the MVNI approach, and in Figures

6.75 and 6.76 for the MICE technique for unweighted data sets. For weighted data

sets, the results are shown in Figures 6.77 and 6.78 for MVNI, and in Figures 6.79

and 6.80 for MICE. Under the MCAR assumption, similar results are presented

in Figures 6.81, 6.82, 6.83, 6.84, 6.85, 6.86, 6.87 and 6.88. As indicated, the plots

of the estimates of WLF against the iteration numbers show no visible trend, thus

indicating that convergence is assured with the number of iterations that were

used (1000 iterations). On the other hand, the plots of WLF’s estimates against

the lag numbers show the autocorrelations that die off quickly, which implies that

even a smaller number (of iterations) than what was used, such as 10 iterations

between imputations, can be used to obtain independent samples.

5.2.2.2 Model 1.2.2: Model with various covariates with 50% miss-

ing values at random or completely at random on only the

unordered categorical ones

Descriptive statistics A binary logistic regression model of contraceptive

method use status on various covariates was fitted to determine the performance

of MICE and MVNI on unordered or nominal variables (marital status and region)
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controlling for other types of variables (continuous and ordinal). Data sets with

50% missing at random or missing completely at random data on the woman’s

marital status and region were also considered for analysis.

Under the MAR assumption, 50% missing values were randomly deleted on

marital status and region if a woman was not using any contraceptive method.

This allowed the missing value indicator or missingness to depend on contracep-

tive method use status. Under the MCAR assumption, 50% missing values were

also arbitrary deleted on marital status and region such that missingness was not

associated with any variables in the data set subject to analysis. The descriptive

statistics of missingness on these variables is the same as in Model 1.2.1, as the

same rate of missing values were deleted on the same variables. The difference

is on the regression models that were estimated for these two models. In fact,

a regression model was estimated using only two nominal variables as indepen-

dent variables in Model 1.2.1, whereas various variables; continuous, ordinal and

nominal, were considered as independent variables in Model 1.2.2.

Performance measures To determine the performance of the MVNI and

MICE techniques, the logistic regression models of contraceptive method use sta-

tus on marital status and region were estimated using the data set with no missing

values, the data set with missing values and the completed or imputed data sets

with MVNI and MICE. Then, the bias was computed and reported along with

the standards errors. In Tables 5.33 and 5.34, these estimates are presented for

both weighted and unweighted data sets, when approximately 50% of data are

missing at random on marital status if a woman is not using any contraceptive

method. In Tables 5.35 and 5.36, the same statistics are reported when approxi-

mately 50% data are missing completely at random on marital status. The plot of

bias and standard errors are shown in Figure 5.10 and 5.11 for both unweighted

and weighted data sets to look at the pattern of performance of the missing data

methods of interest; case deletion (CD), MVNI and MICE. The results show that

under MAR and MCAR assumptions, multiple imputations with MVNI and MICE

yields less bias in regression coefficients and more accurate standard errors than

case deletion. It can also be seen that MVNI technique is less biased and yields

better standard errors than MICE, either when data are missing at random or

missing completely at random for both unweighted (Figure 5.10) and weighted

(Figure 5.11) data sets.
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Table 5.33: Model 1.2.2: Estimates of bias and standard errors (SE) obtained
when 50% of the data are MAR on variables marital status and region if a
woman is not using any contraceptive method: results from the unweighted
data set.

Variable CD MVNI MICE

Marital status
Never married 0.066 (0.164) 0.014 (0.136) 0.015 (0.152)
Living together -0.028 (0.054) -0.024 (0.050) -0.025 (0.052)
Widowed 0.078 (0.147) 0.031 (0.145) 0.038 (0.145)
Divorced 0.111 (0.128) 0.089 (0.123) 0.102 (0.123)
Not living together 0.037 (0.079) 0.017 (0.077) 0.026 (0.077)
Region
Bas Kongo -0.025 (0.082) 0.001 (0.076) -0.002 (0.079)
Bandundu 0.035 (0.082) 0.026 (0.077) 0.029 (0.080)
Equateur -0.043 (0.082) -0.035 (0.080) -0.037 (0.081)
Orientale 0.034 (0.088) 0.016 (0.086) 0.029 (0.087)
Nord Kivu 0.041 (0.084) 0.004 (0.082) 0.017 (0.083)
Maniema 0.032 (0.084) 0.018 (0.082) 0.026 (0.083)
Sud Kivu 0.041 (0.089) 0.030 (0.085) 0.038 (0.086)
Katanga -0.016 (0.078) -0.011 (0.073) -0.014 (0.075)
Kasai Occidental 0.029 (0.091) 0.008 (0.083) 0.016 (0.089)
Kasai Oriental -0.055 (0.091) -0.019 (0.085) -0.034 (0.087)
Age -0.004 (0.006) -0.001 (0.003) -0.002 (0.004)
Education 0.002 (0.009) 0.001 (0.006) 0.001 (0.007)
Wealth index
Poorer 0.023 (0.057) 0.001 (0.053) 0.020 (0.054)
Middle 0.036 (0.056) 0.022 (0.053) 0.027 (0.053)
Richer -0.032 (0.057) -0.019 (0.053) -0.024 (0.054)
Richest -0.035 (0.078) -0.025 (0.066) -0.032 (0.067)
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Table 5.34: Model 1.2.2: Estimates of bias and standard errors (SE) obtained
when 50% of the data are MAR on variables marital status and region if a
woman is not using any contraceptive method: results from the weighted data
set.

Variable CD MVNI MICE

Marital status
Never married 0.115 (0.209) 0.039 (0.192) 0.092 (0.204)
Living together -0.040 (0.079) -0.023 (0.072) -0.034 (0.073)
Widowed -0.073 (0.173) -0.032 (0.166) -0.047 (0.171)
Divorced 0.158 (0.191) 0.071 (0.181) 0.075 (0.183)
Not living together -0.035(0.111) -0.010(0.107) -0.029(0.109)
Region
Bas Kongo -0.404 (0.101) -0.012 (0.093) -0.387 (0.095)
Bandundu 0.033 (0.107) 0.021 (0.100) 0.027 (0.103)
Equateur -0.137 (0.108) -0.075 (0.106) -0.108 (0.107)
Orientale -0.029 (0.114) -0.022 (0.110) -0.023 (0.113)
Nord Kivu -0.065 (0.115) -0.034 (0.112) -0.036 (0.114)
Maniema -0.052 (0.110) -0.036 (0.098) -0.045 (0.104)
Sud Kivu -0.026 (0.125) -0.020 (0.120) -0.022 (0.121)
Katanga 0.060 (0.089) 0.047 (0.086) 0.058 (0.087)
Kasai Occidental 0.038 (0.110) 0.016 (0.099) 0.017 (0.100)
Kasai Oriental 0.026 (0.110) 0.012 (0.105) 0.012(0.109)
Age 0.005 (0.005) 0.002 (0.003) 0.003 (0.004)
Education -0.008 (0.010) -0.004 (0.008) -0.006 (0.009)
Wealth index
Poorer -0.033 (0.088) -0.012 (0.079) -0.013 (0.084)
Middle 0.023 (0.088) 0.010 (0.082) 0.013 (0.084)
Richer 0.030 (0.084) 0.020 (0.080) 0.026 (0.081)
Richest 0.074 (0.094) 0.048 (0.089) 0.054 (0.090)
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Table 5.35: Model 1.2.2: Estimates of bias and standard errors (SE) obtained
when 50% of the data are MCAR on variables marital status and region: results
from the unweighted data set.

Variable CD MVNI MICE

Marital status
Never married -0.193 (0.276) -0.093 (0.184) -0.097 (0.188)
Living together 0.098 (0.098) 0.069 (0.069) 0.071 (0.072)
Widowed -0.152 (0.276) -0.119 (0.140) -0.129 (0.192)
Divorced 0.198 (0.232) 0.147 (0.157) 0.158 (0.158)
Not living together -0.181 (0.148) -0.127 (0.106) -0.148 (0.102)
Region
Bas Kongo -0.078 (0.139) -0.055 (0.100) -0.060 (0.100)
Bandundu -0.208 (0.142) -0.168 (0.101) -0.178 (0.107)
Equateur -0.279 (0.147) -0.147 (0.102) -0.189 (0.108)
Orientale -0.344 (0.160) -0.152 (0.113) -0.226 (0.120)
Nord Kivu -0.247 (0.149) -0.152 (0.102) -0.163 (0.113)
Maniema -0.288 (0.151) -0.184 (0.109) -0.199 (0.116)
Sud Kivu -0.215 (0.165) -0.100 (0.119) -0.116 (0.119)
Katanga -0.306 (0.134) -0.225 (0.094) -0.241 (0.102)
Kasai Occidental -0.047 (0.149) -0.016 (0.113) -0.035 (0.114)
Kasai Oriental -0.312 (0.159) -0.280 (0.107) -0.289 (0.123)
Age -0.064 (0.004) -0.039 (0.002) -0.054 (0.002)
Education 0.070 (0.009) 0.018 (0.005) 0.043 (0.005)
Wealth index
Poorer -0.204 (0.110) -0.142 (0.054) -0.162 (0.054)
Middle 0.177 (0.105) 0.118 (0.054) 0.127 (0.055)
Richer -0.076 (0.109) -0.046 (0.054) -0.055 (0.055)
Richest -0.141 (0.131) -0.079 (0.072) -0.094 (0.077)
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Table 5.36: Model 1.2.2: Estimates of bias and standard errors (SE) obtained
when 50% of the data are MCAR on variables marital status and region: results
from the weighted data set.

Variable CD MVNI MICE

Marital status
Never married -0.133 (0.315) -0.068 (0.233) -0.080 (0.246)
Living together 0.235 (0.140) 0.142 (0.094) 0.164 (0.096)
Widowed 0.320 (0.325) 0.205 (0.171) 0.205 (0.263)
Divorced -0.252 (0.359) -0.221 (0.213) -0.228 (0.218)
Not living together 0.164 (0.213) 0.101 (0.136) 0.126 (0.142)
Regioin
Bas Kongo -0.136 (0.157) -0.081 (0.130) -0.086 (0.133)
Bandundu -0.236 (0.185) -0.136 (0.127) -0.151 (0.135)
Equateur -0.269 (0.199) -0.166 (0.131) -0.176 (0.135)
Orientale -0.156 (0.215) -0.116 (0.142) -0.132 (0.148)
Nord Kivu -0.262 (0.204) -0.168 (0.149) -0.169 (0.149)
Maniema -0.198 (0.178) -0.116 (0.152) -0.123 (0.169)
Sud Kivu -0.222 (0.227) -0.152 (0.157) -0.157 (0.164)
Katanga -0.264 (0.157) -0.149 (0.105) -0.226 (0.125)
Kasai Occidental 0.130 (0.178) 0.091 (0.118) 0.094 (0.148)
Kasai Oriental -0.132 (0.190) -0.065 (0.129) -0.072 (0.137)
Age 0.063 (0.006) 0.022 (0.004) 0.033 (0.004)
Education -0.128 (0.013) -0.065 (0.007) -0.080 (0.008)
Wealth index
Poorer -0.092 (0.164) -0.052 (0.080) -0.055 (0.082)
Middle -0.048 (0.164) -0.032 (0.082) -0.039 (0.082)
Richer -0.155 (0.161) -0.115 (0.079) -0.118 (0.080)
Richest -0.189 (0.184) -0.132 (0.097) -0.136 (0.100)
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Figure 5.10: Model 1.2.1: Plot of bias and standard errors when 50% of the
data are MAR and MCAR for unweighted data sets. Numbers 1-5 and 6-15 refer
to levels or categories of the variable marital status and region respectively, 16-
17 refer to variables age and education respectively, and 18-21 refer to levels of
wealth index.
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Figure 5.11: Model 1.2.1: Plot of bias and standard errors when 50% of the
data are MAR and MCAR for weighted data sets. Numbers 1-5 and 6-15 refer
to levels or categories of the variable marital status and region respectively, 16-
17 refer to variables age and education respectively, and 18-21 refer to levels of
wealth index.
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Model diagnostics The estimates of Monte Carlo errors (MCE) after MVNI

and MICE of the statistics involved in the estimation of the regression models were

computed. These estimates are presented in Appendix C in Tables 6.33, 6.34, 6.35

and 6.36 when 50% data were missing at random on marital status if a woman

was not using any contraceptive method, and in Appendix C in Tables 6.37, 6.38,

6.39 and 6.40 when data were missing completely at random on marital status and

region. The results show that the suggested criteria for the Monte Carlo errors are

met. In fact, the Monte Carlo errors on the coefficients are less than 10% of the

standard error for unweighted and weighted data sets. The Monte Carlo errors

of the p-values are also approximately less than 0.1 when 5% level of significance

was used for both MVNI and MICE. The Monte Carlo errors of the t-test statis-

tic were found to be approximately less than 0.1 for all the methods and data

sets. Therefore, based on these results, one can reasonably be sure about their

statistical reproducibility. This suggests that the number of imputations used (100

imputations) were enough to produce stable results.

To ensure that imputations converged to the desired distributions, conver-

gence was assessed for both unweighted and weighted data sets, under MAR and

MCAR assumptions. The estimates of the worst linear function (WLF) were plot-

ted against the iteration numbers first and then versus the lag numbers for both

MVNI and MICE methods. Under the MAR assumption, the results are presented

in Appendix D in Figures 6.89 and 6.90 for the MVNI approach, and in Figures

6.91 and 6.92 for the MICE technique for unweighted data sets. For weighted data

sets, the results are shown in Figures 6.93 and 6.94 for MVNI, and in Figures 6.95

and 6.96 for MICE. Under the MCAR assumption, similar results were obtained

and presented in Figures 6.97, 6.98, 6.99, 6.100, 6.101, 6.102, 6.103 and 6.104. As

indicated, the plots of the estimates of WLF against the iteration numbers show

no visible trend, thus indicating that convergence is assured with the number of

iterations used (1000 iterations). On the other hand, the plots of WLF’s estimates

against the lag numbers show the autocorrelations that die off quickly, which im-

plies that even a smaller number (of iterations) than what was used, such as 10

iterations between imputations, can be used to obtain independent samples.

5.2.3 Scenario 1: Summary of findings

As explained earlier, Scenario 1 investigates the behaviour of MICE and MVNI

when missing values are observed on the independent variables. Two types of
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results were presented for this case. These include the results of the model with

a single nominal covariate containing missing values (Model 1.1), and the results

of the models with at least two covariates on which missing values are found on

only the unordered categorical variables (ModelS 1.2.1 and 1.2.2). In Model 1.1,

the behaviour of MVNI and MICE was assessed using three rates of missingness,

namely 50%, 30% and 10%. The purpose of doing this was first of all to determine

the performance of these methods on a single unordered categorical variable alone,

with no influence of other variables. Furthermore, this model was used to inves-

tigate whether the amount of missing observations in the data sets may have an

impact on the performance of MVN and MICE. The results indicated that MVNI

outperformed MICE in terms of bias and standard errors. In addition, it was

found that no matter what rate of missingness used, the behaviour of MVNI and

MICE did not change the direction. That is, MVNI outperformed MICE at lower

and higher rates of missingness in the data sets. The results of Models 1.2.1 and

1.2.2 were also presented. In Model 1.2.1, two unordered independent variables

containing missing values were considered for analysis. This model was estimated

to strengthen the results in Model 1.1 that assessed the performance of MVNI and

MICE when missing values were present on only unordered categorical variables

that were treated as predictors in the regression models. With the results from

this model, MVNI outperformed MICE as well. Model 1.2.2 is an extension of

Model 1.2.1 to the model with covariates of different types (nominal, continuous

and ordinal). This was done to assess whether the behaviour of MICE and MVNI

on unordered categorical variables may be affected when variables of other types

that have no missing values are introduced in the model. It was found that this

fact did not have any impact on the behaviour of MICE and MVNI when missing

values were present on only the nominal variables. Indeed, MVNI still performed

better than MICE when other types of variables were introduced in the model.

Thus, based on all the findings in Scenario 1, it can be concluded that when

missing values are observed on unordered categorical variables that are treated as

predictors in the regression models, MVNI would be a better imputation technique

than MICE.
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5.3 Scenario 2: Logistic regression models with

missing variables on the response variables

5.3.1 Model 2.1: Binary logistic regression model with

missing values on the response variable

5.3.1.1 Description of data sets with missing values

In the second scenario, logistic regression models with missing values on the out-

come variables were considered for analysis. The objective of doing this was to

determine the behaviour of the multiple imputation methods of interest when

missing values are present on unordered categorical variables which are treated

as response variables in the regression models. A graphical representation of this

scenario is presented in Figure 5.12.

Figure 5.12: Scenario 2: Logistic regression models with missing variables on
the response variables.

In this scenario, two logistic regression models were fitted. The first model or

Model 2.1 as described in Figures 4.1 and 5.12 consists of a binary logistic regres-

sion model of contraceptive method use status on marital status. In this case,

missing values were observed on the outcome variable; contraceptive method use
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status, which is coded 1 if the respondent uses a contraceptive method and 0 oth-

erwise.

Under MAR assumption, 50% missing values were randomly deleted on con-

traceptive method use status if a woman was aged at least 35 years, thus allowing

missingness to depend on the woman’s age. In Table 5.37, the frequency distribu-

tion of missingness on this variable is given. The results show that removing 50%

of the values from the variable contraceptive method use status if a woman is at

least 35 years old resulted in approximately 26.89% of the values missing on the

whole variable.

Table 5.37: Model 2.1: Frequency distribution of missingness when 50% of
the data are MAR on contraceptive method use status if a woman is aged at
least 35 years.

Missingness Frequency Percent Cumulative frequency
Not missing 21604 73.11 73.11
Missing 7944 26.89 100.00
Total 29548 100.00

The t-test was conducted to investigate if the means of age in single years differed

across missingness. The results (see Appendix B Figure 6.17) showed that the

mean age (approximately 33 years) when data are missing is different from the

mean age when data are not missing (around 42 years). These findings were also

supported by the t-test of equality of the means with a p-value less than 5% sig-

nificance level (p-value = 0.000). This shows that missingness is associated with

age of the woman, which is an indication that data are missing at random on the

variable age. Similar analysis was done for the woman’s education in completed

years. The results indicated that this variable was associated with missingness as

was confirmed by the p-value (p-value = 0.000) associated with the independent

samples t-test for the equality of the means of missing and not missing (see Ap-

pendix B Figure 6.18).

Beside being related to age (a sufficient condition to meet the MAR assump-

tion) and education in completed years, missingness was also found to be associ-

ated with the woman’s marital status, wealth index and region of origin as shown

in Table 5.38. As indicated, the proportions of missing values on contraceptive

methods use status varied across the levels or categories of these variables. The

Chi-square test for association confirmed also the existing relationship between

missingness and these variables as the p-values associated with the independent

samples t-test were less than 5% significance level. These results are in fact an
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additional information that the MAR assumption on contraceptive method use

status was met.

Table 5.38: Model 2.1: Distribution of missingness across categorical variables
when 50% of the data are MAR on contraceptive method use status if a woman
is aged at least 35 years.

Missingness
Not Missing Missing Total P-values

Marital status 0.000
Never married 92.26 7.74 100.00
Married 73.42 26.58 100.00
Living together 77.55 22.45 100.00
Widowed 53.57 46.43 100.00
Divorced 62.06 37.94 100.00
Not living together 74.74 25.26 100.00
Total 73.11 26.89 100.00
Region 0.000
Kinshasa 70.92 29.08 100.00
Bas Congo 72.65 27.35 100.00
Bandundu 70.61 29.39 100.00
Equateur 72.23 27.77 100.00
Oriental 72.98 27.02 100.00
Nord Kivu 75.18 24.82 100.00
Maniema 75.31 24.69 100.00
Sud Kivu 74.10 25.90 100.00
Katanga 71.65 28.35 100.00
Kasai Oriental 74.51 25.49 100.00
Kasai Occidental 75.00 25.00 100.00
Total 73.11 26.89 100.00
Wealth index 0.002
Poorest 73.85 26.15 100.00
Poorer 72.13 27.87 100.00
Middle 71.75 28.25 100.00
Richer 74.61 25.39 100.00
Richest 73.20 26.80 100.00
Total 73.11 26.89 100.00

Under MCAR assumption, approximately 50% of the data were arbitrary

deleted at random on contraceptive methods use status. The results indicate that

approximately 50% of the values were deleted on marital status (see Table 5.39).
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Table 5.39: Model 2.1: Frequency distribution of missingness when 50% of
the data are MCAR on contraceptive method use status.

Missingness Frequency Percent Cumulative frequency
Not missing 14858 50.28 550.28
Missing 14690 49.72 100.00
Total 29548 100.00

To assess whether data were missing completely at random on contraceptive meth-

ods use status, the bivariate analysis was conducted to investigate whether miss-

ingness was associated with variables in the data set. As indicated in Table 5.40,

deleting 50% values on contraceptive method use status resulted in non significant

differences in proportions of missingness across the marital status, wealth index

and region categories. The Chi-square test for association confirmed also that

there was no statistical significant difference in proportions of missing values of

these groups as the p-value associated with this test were greater than the signif-

icance level of 0.05 that was used. The independent samples t-test showed also

that there was no significant difference in means of age and education in completed

years across missingness on contraceptive method use status. The results are found

in Appendix B in Figures 6.19 and 6.20 for age and education respectively.
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Table 5.40: Model 2.1: Distribution of missingness across marital status when
50% of the data are MCAR on contraceptive method use status.

Missingness
Not Missing Missing Total P-values

Marital status 0.673
Never married 51.79 48.21 100.00
Married 50.11 49.89 100.00
Living together 50.82 49.18 100.00
Widowed 49.64 50.36 100.00
Divorced 49.92 50.08 100.00
Not living together 52.05 47.95 100.00
Total 50.28 49.72 100.00
Region 0.068
Kinshasa 52.44 47.56 100.00
Bas Congo 51.01 48.99 100.00
Bandundu 51.31 48.69 100.00
Equateur 48.47 51.53 100.00
Oriental 50.25 49.75 100.00
Nord Kivu 50.19 49.81 100.00
Maniema 49.20 50.80 100.00
Sud Kivu 49.73 50.27 100.00
Katanga 51.50 48.50 100.00
Kasai Oriental 48.98 51.02 100.00
Kasai Occidental 49.76 50.24 100.00
Total 50.28 49.72 100.00
Wealth index 0.061
Poorest 49.36 50.64 100.00
Poorer 50.69 49.31 100.00
Middle 49.93 50.07 100.00
Richer 49.81 50.19 100.00
Richest 51.92 48.08 100.00
Total 50.28 49.72 100.00

5.3.1.2 Performance measures

The binary logistic regression models of contraceptive method use status on mar-

ital status were estimated using the data set with no missing values, the data

set with missing at random values and the completed or imputed data sets with

MVNI and MICE. Thereafter, the bias and standard errors’ estimates were re-

ported and used to compare the multiple imputation methods of interest, namely

MVNI and MICE. These estimates are reported in Table 5.41 (bias estimates)

and Table 5.42 (standard errors) for MAR data and in Table 5.43 (bias) and in
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Table 5.44 (standard errors) for MCAR data. In Figures 5.13 and 5.14, the esti-

mates of bias and standard errors when data are MCAR and MAR are plotted for

unweighted and weighted data sets respectively. It can be seen that MVNI and

MICE produced less bias than case deletion method. The figure shows also that

when data are missing either at random or completely at random on the dependent

variable, MICE produces more accurate results than MVNI for both unweighted

and weighted data sets respectively.

Table 5.41: Model 2.1: Estimates of bias when approximately 50% of the data
are MAR on contraceptive method use status if a woman is aged at least 35
years.

Marital status
Never Living Widowed Divorced Not living
married together together

CD-unweighted -0.014 0.022 0.204 0.167 0.058
CD-weighted -0.039 0.050 0.329 0.072 0.091
MVNI-unweighted -0.009 0.005 0.173 0.158 0.057
MVNI-weighted -0.019 0.060 0.198 0.068 0.087
MICE-unweighted 0.000 -0.007 0.157 0.147 0.025
MICE-weighted -0.013 0.029 0.169 0.060 0.074

Table 5.42: Model 2.1: Estimates of standard errors when approximately 50%
of the data are MAR on contraceptive method use status if a woman is aged 35
years or more.

Marital status
Never Living Widowed Divorced Not living
married together together

BD-unweighted 0.119 0.044 0.135 0.108 0.067
BD-weighted 0.166 0.062 0.154 0.163 0.095
CD-unweighted 0.135 0.053 0.172 0.138 0.078
CD-weighted 0.189 0.073 0.206 0.192 0.118
MVNI-unweighted 0.124 0.049 0.166 0.128 0.076
MVNI-weighted 0.173 0.071 0.190 0.186 0.109
MICE-unweighted 0.123 0.050 0.164 0.124 0.075
MICE-weighted 0.172 0.070 0.180 0.172 0.109
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Table 5.43: Model 2.1: Estimates of bias when approximately 50% of the data
are MCAR on contraceptive method use status.

Marital status
Never Living Widowed Divorced Not living
married together together

CD-unweighted 0.367 -0.067 -0.094 -0.028 0.050
CD-weighted 0.327 -0.034 -0.424 -0.092 -0.080
MVNI-unweighted 0.329 -0.041 -0.039 0.014 0.037
MVNI-weighted 0.173 -0.015 -0.084 -0.083 -0.065
MICE-unweighted 0.315 -0.024 -0.019 0.011 0.019
MICE-weighted 0.125 -0.002 -0.022 -0.055 -0.018

Table 5.44: Model 2.1: Estimates of standard errors when approximately 50%
of the data are MCAR on contraceptive method use status.

Marital status
Never Living Widowed Divorced Not living
married together together

BD-unweighted 0.119 0.044 0.135 0.108 0.067
BD-weighted 0.166 0.062 0.154 0.163 0.095
CD-unweighted 0.160 0.063 0.195 0.156 0.095
CD-weighted 0.221 0.089 0.227 0.219 0.136
MVNI-unweighted 0.142 0.056 0.162 0.133 0.091
MVNI-weighted 0.197 0.083 0.172 0.182 0.119
MICE-unweighted 0.139 0.054 0.148 0.118 0.082
MICE-weighted 0.191 0.078 0.168 0.174 0.118

 

 

 

 



Chapter 5. Results 125

Figure 5.13: Model 2: Plot of bias and standard errors when 50% of the data
are MAR and MCAR for unweighted data sets.

Figure 5.14: Model 2: Plot of bias and standard errors when 50% of the data
are MAR or MCAR for weighted data sets.
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5.3.1.3 Model diagnostics

The Monte Carlo errors (MCE) after MVNI and MICE for the regression models’

statistics were also reported. The MCE of the coefficients were less than 10% of

the standard error for the unweighted and weighted data sets, for both MVNI

and MICE. Those of the p-values were also less than 0.1 when the 5% level of

significance was used for both MVNI and MICE. The Monte Carlo errors of the

t-test statistic were approximately less than 0.1 for all the methods and data sets.

Under the MAR assumption, the results are presented in Appendix C in Tables

6.41, 6.42, 6.43 and 6.44 for MAR data and Tables 6.45, 6.46, 6.47 and 6.48 for

MCAR data. Based on these results, it can be concluded that the number of

imputations used (100) were sufficient to produce stable results.

The convergence of imputations to desired distributions was also investigated

for both unweighted and weighted data sets, when data were MAR and MCAR

on contraceptive method use status. The estimates of the WLF were plotted

against the iteration numbers first and then versus the lag numbers for both MVNI

and MICE techniques. Under the MAR assumption, the results are presented in

Appendix D in Tables 6.105, 6.106, 6.107 and 6.108 for unweighted data and Tables

6.109, 6.110, 6.111 and 6.113 for weighted data. Under the MCAR assumption,

similar results are provided in Figures 6.114, 6.115, 6.116, 6.117, 6.118, 6.119 and

6.120. The plots of the estimates of WLF against the iteration numbers show

no visible trend for both methods, thus indicating that convergence was attained

when 1000 iterations were used. On the other hand, the plots of WLF’s estimates

against the lag numbers showed that the autocorrelations die off quickly, which is

an indication that even a smaller number of iterations than what was employed,

can be used to obtain independent samples.

5.3.2 Model 2.2: Multinomial logistic regression model

with missing values on the response variable

5.3.2.1 Description of data sets with missing values

As stated in the methodology chapter, the second logistic regression model in

Scenario 2 is multinomial. The outcome measure is contraceptive methods use

status but in this case coded 1 if a woman has not used any contraceptive method,

2 if she has used a traditional or folkloric method and 3 if she has utilised a
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modern contraceptive method. It is assumed that the levels of this variable have

no natural ordering. The multinomial logistic regression was used to determine

the association between contraceptive methods use status and marital status.

Under MAR assumption, the frequency distribution of missingness on the

dependent variable is given in Table 5.45. The results show that removing 50% of

the values from the variable contraceptive method use status if a woman is at least

35 years old led to approximately 26.20% missing values on the whole variable.

Table 5.45: Model 2.2: Frequency distribution of missingness when 50% of
the data are MAR on contraceptive method use status if a woman is at least 35
years old.

Missingness Frequency Percent Cumulative frequency
Not missing 21806 73.80 73.80
Missing 7742 26.20 100.00
Total 29548 100.00

The frequency distribution of missingness across categorical variables in the model

or data set was done to investigate whether they were associated with missing-

ness. The results indicated that beside the woman’s age and education completed

in years (see Appendix B in Figures 6.21 and 6.22), marital status and region were

also found to be associated with missingness (see Table 5.46). Indeed, the pro-

portions of missing values across the marital status categories varied significantly,

and this was also confirmed by the Chi-square test for association with p-values

less than the significance level of 5% that was used. These results indicate that

the MAR assumption was met.
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Table 5.46: Model 2.2: Distribution of missingness by marital status when
approximately 50% of the data are MAR on contraceptive method use status if
a woman is at least 35 years old.

Missingness
Not Missing Missing Total P-values

Marital status 0.000
Never married 93.15 6.85 100.00
Married 74.13 25.87 100.00
Living together 77.69 22.31 100.00
Widowed 56.42 43.58 100.00
Divorced 63.59 36.41 100.00
Not living together 74.25 25.75 100.00
Total 73.80 26.20 100.00
Region 0.012
Kinshasa 72.37 27.63 100.00
Bas Congo 73.94 26.06 100.00
Bandundu 71.40 28.60 100.00
Equateur 73.50 26.50 100.00
Oriental 75.19 24.81 100.00
Nord Kivu 74.68 25.32 100.00
Maniema 75.82 24.18 100.00
Sud Kivu 74.57 25.43 100.00
Katanga 73.14 26.86 100.00
Kasai Oriental 73.58 26.42 100.00
Kasai Occidental 74.48 25.52 100.00
Total 73.80 26.20 100.00

Under the MCAR assumption, approximately 50% of the data were arbitrary

deleted on contraceptive method use status such that no variable in the substantive

model or data set of interest was related to missingness. In Table 5.47, the results

indicate that approximately 50% of the values were deleted completely at random

on contraceptive method use status.

Table 5.47: Model 2.2: Frequency distribution of missingness when 50% of
the data are MCAR on contraceptive method use status

Missingness Frequency Percent Cumulative frequency
Not missing 14833 50.20 50.20
Missing 14715 49.80 100.00
Total 29548 100.00

To investigate whether values were deleted completely at random, the bivariate

analysis was conducted to assess whether missingness was associated with vari-

ables in the data set. In Table 5.48, the results show that by deleting 50% values
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completely at random on contraceptive methods use status, no significant differ-

ence was found in the proportions of missing values across the marital status,

region and wealth index categories. The Chi-square test for association confirmed

also that there was no association between missingness and these three categorical

variables as the p-values associated with this test were bigger than the significance

level of 5% that was used.

Table 5.48: Model 2.2: Distribution of missingness by selected categorical
variables when 50% data are MCAR on contraceptive methods use status.

Missingness
Not Missing Missing Total P-values

Marital status 0.711
Never married 49.70 50.30 100.00
Married 50.20 49.80 100.00
Living together 50.51 49.49 100.00
Widowed 51.96 48.04 100.00
Divorced 48.39 51.61 100.00
Not living together 49.30 50.70 100.00
Total 50.20 49.80 100.00
Wealth index 0.560
Poorest 50.41 49.59 100.00
Poorer 49.34 50.66 100.00
Middle 48.94 51.06 100.00
Richer 51.32 48.68 100.00
Richest 51.09 48.91 100.00
Total 50.20 49.80 100.00
Region 0.0.860
Kinshasa 50.23 49.77 100.00
Bas Congo 50.83 49.17 100.00
Bandundu 50.04 49.96 100.00
Equateur 49.88 50.12 100.00
Oriental 51.24 48.76 100.00
Nord Kivu 50.57 49.43 100.00
Maniema 49.67 50.33 100.00
Sud Kivu 49.65 50.35 100.00
Katanga 51.40 48.60 100.00
Kasai Oriental 49.72 50.28 100.00
KasaiO ccidental 49.12 50.88 100.00
Total 50.20 49.80 100.00

The t-test was also conducted to determine the association between missingness

and continuous variables in the data set; age in single years and education com-

pleted in years. The results indicated that there was no significant difference in the

means of age and education of the two groups (present or missing), as the p-values
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associated with the independent samples t-test are more than the significance level

of 5% that was used. The results are found in Appendix B in Figure 6.23 for age

and Figure 6.24 for education.

5.3.2.2 Computation of the performance measures

As previously stated, the multinomial logistic regression was used to determine

the association between contraceptive methods use status and marital status. The

second and third levels (traditional and modern contraceptive methods use respec-

tively) of contraceptive method use status served as replicates of the dependent

variable, representing two models that were estimated: the second level relative to

the first (use no method) and the third level relative to the first. In other words,

the multinomial logistic regression parameters were estimated for these two levels,

relative to the first level. Marital status was treated as an independent variable

and its parameters were estimated for each of its levels, leaving married as a ref-

erence category (as it is a category with the highest frequency to avoid the bias

in the regression coefficients as suggested by Wißmann et al. (2007)). The models

were estimated using the data set with no missing values (baseline data set or BD),

the data set with missing values (case deletion or CD method) and the completed

or imputed data sets with MVNI and MICE. The results about the estimated

parameters are presented in tables and interpreted using figures. In Tables 5.49

and 5.50, the estimates of bias and standard errors when approximately 50% data

are missing at random on contraceptive methods use status if a woman is aged at

least 35 years, are given. The same parameters are reported in Tables 5.51 and

5.52 when data are missing completely at random on the same variable.

In Figures 5.15 and 5.16, the plots of bias in the regression coefficients and

standard errors of the respondents who use traditional relative to those who do

not use any contraceptive method are plotted, for both unweighted and weighted

data sets, when data are MAR or MCAR. The results indicate that for both un-

weighted and weighted data sets, multiple imputation-based methods (MVNI and

MICE) are less biased and produce more accurate standard deviations than the

case deletion method, which discards items with missing values from the analy-

sis. The figures indicate also that MICE produces better parameter estimates (less

bias in coefficients and standard errors) than MVNI when data are missing on con-

traceptive method use status, treated as an outcome variable in the multinomial

logistic regression models. In Figures 5.17 and 5.18, the bias and standard errors

 

 

 

 



Chapter 5. Results 131

for women who use modern methods relative to those who do not use any con-

traceptive method are plotted. As indicated, imputations with MICE and MVNI

lead to unbiased results compared to case deletion that discards missing values

from the analysis. The figures show also that MICE produced better estimates of

bias and standard deviations than MVNI, for both unweighted and weighted data

sets, when data are MAR or MCAR.

Table 5.49: Model 2.2: Estimates of bias in the regression coefficients of
traditional and modern contraceptive methods when approximately 50% of data
are MAR on contraceptive method use status if a woman is aged at least 35
years.

Traditional Method
Never
married

Living
together

Widowed Divorced Not living
together

CD-unweighted 0.050 0.032 0.277 0.153 -0.046
CD-weighted 0.059 0.090 0.482 0.172 0.091
MVNI-unweighted 0.046 0.024 0.274 0.142 -0.034
MVNI-weighted 0.066 0.058 0.470 0.067 0.083
MICE-unweighted 0.019 0.006 0.226 0.112 -0.025
MICE-weighted 0.046 0.030 0.432 0.056 0.052

Modern method
Never
married

Living
together

Widowed Divorced Not living
together

CD-unweighted -0.069 -0.045 0.130 0.021 0.027
CD-weighted -0.083 -0.082 0.089 0.083 0.054
MVNI-unweighted -0.050 -0.025 0.109 0.021 0.011
MVNI-weighted -0.046 -0.065 0.067 0.053 0.025
MICE-unweighted -0.023 -0.015 0.073 0.018 0.007
MICE-weighted -0.038 -0.040 0.046 0.027 0.001
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Table 5.50: Model 2.2: Estimates of standard errors of the regression coef-
ficients of traditional and modern contraceptive methods when approximately
50% of data are MAR on contraceptive method use status if a woman is aged
at least 35 years.

Traditional Method
Never
married

Living
together

Widowed Divorced Not living
together

BD-unweighted 0.151 0.051 0.232 0.133 0.078
BD-weighted 0.213 0.072 0.261 0.227 0.110
CD-unweighted 0.155 0.058 0.273 0.169 0.092
CD-weighted 0.219 0.082 0.316 0.255 0.132
MVNI-unweighted 0.154 0.057 0.272 0.158 0.089
MVNI-weighted 0.217 0.080 0.308 0.237 0.129
MICE-unweighted 0.154 0.054 0.262 0.148 0.085
MICE-weighted 0.215 0.076 0.281 0.229 0.128

Modern method
Never
married

Living
together

Widowed Divorced Not living
together

BD-unweighted 0.161 0.069 0.164 0.164 0.112
BD-weighted 0.217 0.095 0.187 0.206 0.155
CD-unweighted 0.176 0.080 0.207 0.191 0.125
CD-weighted 0.229 0.109 0.246 0.240 0.169
MVNI-unweighted 0.170 0.079 0.198 0.186 0.120
MVNI-weighted 0.224 0.104 0.235 0.234 0.165
MICE-unweighted 0.169 0.076 0.186 0.178 0.120
MICE-weighted 0.220 0.099 0.221 0.221 0.161
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Table 5.51: Model 2.2: Estimates of bias in the regression coefficients of
traditional and modern contraceptive methods when approximately 50% of data
are MCAR on contraceptive method use status.

Traditional Method
Never
married

Living
together

Widowed Divorced Not living
together

CD-unweighted -0.068 0.012 0.057 -0.098 0.042
CD-weighted -0.114 0.081 0.117 0.046 0.089
MVNI-unweighted -0.061 0.007 0.040 -0.092 0.037
MVNI-weighted -0.086 0.071 0.104 0.040 0.069
MICE-unweighted -0.044 0.005 0.037 -0.089 0.028
MICE-weighted -0.056 0.062 0.085 0.029 0.052

Modern method
Never
married

Living
together

Widowed Divorced Not living
together

CD-unweighted 0.020 -0.042 0.064 0.057 -0.055
CD-weighted 0.069 -0.055 -0.070 0.053 -0.046
MVNI-unweighted 0.010 -0.038 0.053 0.047 -0.005
MVNI-weighted 0.049 -0.051 -0.060 0.044 -0.031
MICE-unweighted 0.001 -0.030 0.045 0.034 -0.004
MICE-weighted 0.033 -0.030 -0.050 0.022 -0.026
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Table 5.52: Model 2.2: Estimates of standard errors of the regression coef-
ficients of traditional and modern contraceptive methods when approximately
50% of data are MCAR on contraceptive method use status.

Traditional Method
Never
married

Living
together

Widowed Divorced Not living
together

BD-unweighted 0.151 0.051 0.232 0.133 0.078
BD-weighted 0.213 0.072 0.261 0.227 0.110
CD-unweighted 0.214 0.072 0.320 0.197 0.109
CD-weighted 0.249 0.102 0.348 0.302 0.148
MVNI-unweighted 0.210 0.070 0.320 0.180 0.109
MVNI-weighted 0.240 0.099 0.328 0.281 0.140
MICE-unweighted 0.209 0.069 0.314 0.169 0.104
MICE-weighted 0.231 0.091 0.313 0.261 0.130

Modern method
Never
married

Living
together

Widowed Divorced Not living
together

BD-unweighted 0.161 0.069 0.164 0.164 0.112
BD-weighted 0.217 0.095 0.187 0.206 0.155
CD-unweighted 0.223 0.098 0.231 0.217 0.149
CD-weighted 0.290 0.138 0.262 0.274 0.201
MVNI-unweighted 0.211 0.089 0.226 0.208 0.150
MVNI-weighted 0.281 0.130 0.248 0.261 0.191
MICE-unweighted 0.206 0.081 0.203 0.201 0.132
MICE-weighted 0.273 0.130 0.237 0.253 0.190
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Figure 5.15: Model 2.2: Plot of bias and standard errors of the traditional
method use category when 50% data are MAR and MCAR for unweighted data
sets.

Figure 5.16: Model 2.2: Plot of bias and standard errors of the traditional
method use category when 50% data are MAR and MCAR for weighted data
sets.
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Figure 5.17: Model 2.2: Plot of bias and standard errors of the modern
method use category when 50% data are MAR and MCAR for unweighted data
sets.

Figure 5.18: Model 2.2: Plot of bias and standard errors of the modern
method use category when 50% data are MAR and MCAR for weighted data
sets.

 

 

 

 



Chapter 5. Results 137

5.3.2.3 Model diagnostics

The Monte Carlo errors of the statistics involved in the estimation of the multi-

nomial logistic regression models are reported in Appendix C in Tables 6.49, 6.50,

6.51, 6.52, 6.53, 6.54, 6.55 and 6.56. The results show that the Monte Carlo errors

on the coefficients are less than 10% of the standard errors for unweighted and

weighted data for both MVNI and MICE. The Monte Carlo errors of the p-values

are also less than 0.1 when 5% level of significance was used for both MVNI and

MICE. The Monte Carlo errors of the t-test statistics are approximately less than

0.1 for all the methods and data sets. Therefore, based on these results, it can be

concluded that the imputation values were drawn from the desired distributions

under MAR and MCAR assumptions.

The convergence of imputations to the desired distributions was assessed for

both unweighted and weighted data sets, under MAR and MCAR assumptions.

The estimates of the WLF were plotted against the iteration numbers first and

then versus the lag numbers for both MVNI and MICE methods. Under the MAR

assumption, the results are shown in Appendix D for unweighted (see Tables 6.121,

6.122, 6.123 and 6.124) and weighted (see Tables 6.125, 6.126, 6.127 and 6.128)

data sets. Under the MCAR assumption, similar results were obtained and pre-

sented in Figures 6.129, 6.130, 6.131, 6.132, 6.133, 6.134, 6.135 and 6.136. As

observed, the plots of the estimates of WLF against the iteration numbers show

no visible trend, which is an indication that convergence was attained when 1000

iterations were used. On the other hand, the plots of WLF’s estimates against the

lag numbers showed that the autocorrelations that died off quickly, which is an

indication that even a smaller number of iterations than what was used could be

utilised to obtain independent samples.

5.3.3 Scenario 2: Summary of findings

Scenario 2 contains the results of the regression models with missing values on

the responses variables. Two types of results are presented. These include the

results of Model 2.1, which is a binary logistic regression model with missing values

on the unordered outcome variable (contraceptive method use status) that was

dichotomous (coded 1 if a woman uses any contraceptive method and 0 otherwise).

This variable was imputed using MVNI and MICE, and the results showed that

MICE produced more accurate estimates of bias and standard errors than MVNI.
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In Model 2.2, the response variable was coded as a a categorical variable that

has no natural order (1 if a woman has not used any contraceptive method, 2

if she has used a traditional or folkloric method and 3 if she has used a modern

contraceptive method). MAR and MCAR data were simulated on this variable and

then imputation with MVNI and MICE was performed. The results were presented

in terms of bias and standard errors as well. It was found that MICE performed

better than MVNI as well, thus suggesting that when missing values are present

on the unordered categorical variables that have to be used as outcome variables in

the regression models, MICE, which takes into account the distributional form of

the variables to be imputed, would be a better imputation technique than MICE.

5.4 Summary of the chapter

This chapter presents the results on the performance (in terms of bias in regression

coefficients and standard errors) of the multiple imputation methods of interest,

namely MVNI and MICE. The 2007 Democratic Republic of Congo Demographic

Health Survey was used for analysis. Using this data set, data sets with missing

at random (MAR) or missing completely at random (MCAR) were simulated for

imputation purposes.

Two scenarios were considered for this study. The first scenario contained

logistic regression models in which missing values were observed on nominal vari-

ables with more than three categories or levels that were treated as predictors in

the regression models. In this scenario, the performance of the multiple imputa-

tion methods of interest was explored on a single and multiple predictors as well

as on different rates of missingness. The second scenario contained two regression

models in which missing values were observed on the response variables; binary

and polytomous. The first model or Model 2.1 consisted of a binary logistic re-

gression model of contraceptive method use status (coded 1 if a woman has used a

contraceptive method and 0 otherwise). The second model or Model 2.2 consisted

of a multinomial logistic regression model of contraceptive method use status as

well, but in this case coded 1 if a woman has not used any contraceptive method,

2 if she has used a traditional folkloric method and 3 if she has used a modern

contraceptive method.

For each model, variables with missing values were imputed using MVNI or
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MICE. Under MVNI, missing values on the binary variables were imputed as con-

tinuous as suggested by Allison (2001). Categorical variables with more than three

levels were dichotomised first and then imputed as binary variables. Imputation

with MICE was done taking into account the distributional form of the variables

with missing data. That is, a binary and multinomial regression models were used

to draw imputation values of the binary and polytomous variables respectively.

Baseline models (models from data sets with no missing values) were es-

timated first. Then models with missing values (using the case deletion or CD

method) and models with completed (observed + imputed) data sets were fitted.

To ensure that the imputed values came from the desired distributions, the models

diagnostics were done for each model and the results indicated that convergence

was attained. The estimates of bias in the regression coefficients were computed

and reported along with the standard errors for each model and under MCAR

and MAR assumptions. The analysis was done assuming that the sample was not

weighted first, then the sample weight was taken into account to assess whether

the sample design would affect the performance of the multiple imputation meth-

ods of interest, namely MVNI and MICE.

As expected, the results showed that for all the models, MVNI and MICE

produced less biased smaller standard errors than the case deletion method, which

discards items with missing values from the analysis. Furthermore, it was found

that when data were missing (MCAR or MAR) on the nominal variable treated

as a predictor in the regression model (Scenario 1 Model 1), MVNI produced less

bias in the regression coefficients and standard errors, for both unweighted and

weighted data sets. However, the results indicated that when data were missing

on the response variables, either the binary or polytomous, MICE produced less

biases estimates than MVNI, which suggests that the imputation of outcome vari-

ables in the regression models should take into account the distributional form of

the variables with missing values. Furthermore, it was noted that the sample de-

sign (sample weights), the rates of missingness and the missing data mechanisms

(MCAR or MAR) did not affect the performance of the multiple imputation meth-

ods (MVNI and MICE) that were considered in this study.

Note that the results from Model 1.2.1 (model with missing values on two

predictors measured on nominal scales) were summarized into an article that was

accepted for publication in the Brazilian Journal of Probability and Statistics un-

der the heading: ”Multiple imputation of unordered categorical missing data: A

comparison of the multivariate normal imputation and multiple imputation by
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chained equations” (Karangwa et al., 2015).
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Discussion and conclusion

Missing data commonly arise in many fields of empirical research. They lead to a

loss of information and more importantly may cause serious bias into the estimates

and lead to incorrect inferences, especially when there is a lot of missing data in

the data sets subject to analysis. Therefore, there is a need to adequately handle

them in order to obtain reliable results.

In recent years, the multiple imputation technique has gained popularity as

the best technique to handle missing values (Carrig et al., 2015; Mukhopadhyay,

2015). With this technique, missing values are replaced with random draws from

a predictive distribution based on the available data. The imputation is done

multiple times, which results in multiple data sets that are analysed individually

and the resulting estimates are combined using Rubin (1978) rule to produce a final

estimate that is used for imputation. MVNI and MICE have emerged as the best

ways of combining these estimates, and as noted by Ware et al. (2012), researchers

are increasingly being encouraged to use them. The former is a parametric-based

multiple imputation technique in which variables in the imputation model are

assumed to follow a normal distribution, whereas the latter is a flexible technique

that takes into account the distributional form of the variables with missing data.

The two techniques were designed under the Bayesian framework in which, given

specific priors, imputation values are drawn from the conditional distribution of

missing values given the observed data.

The primary objective of this study was to examine the behaviour of MVNI

and MICE, when missing values are observed specifically on unordered categorical

variables treated as either predictors or response variables in the regression models.

Other specific objectives were:
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1. To review the literature on MVNI and MICE methods and illustrate their

performance when data are missing on continuous variables.

2. To show that as expected, multiple imputation methods of interest produce

less biased estimates than the case deletion technique, which discard missing

values from the analysis.

3. To investigate whether the rates of missing values in the data sets can impact

on the performance of the multiple imputation methods of interest, namely

MVNI and MICE.

4. To determine whether the sample design can impact on the performance of

MVNI and MICE.

5. To draw relevant conclusions on how specifically non-ordered or nominal

categorical data containing MCAR or MAR data should be imputed under

different circumstances, especially when missing values are present on the

outcome or predictor variables in the regression models.

The purpose of doing this research was to provide some guidance on how and

when MVNI and MICE should be used in similar cases. Van Buuren (2007), Lee

and Carlin (2010) and Kropko et al. (2014) have previously compared these two

methods and obtained mixed results: van Buuren and Kropko, Goodrich, Gelman

and Hill found that MICE outperformed MVNI, whereas Lee and Carlin found

that MVNI performed equally well as MICE.

The scope of these studies is limited. However, the common approach to

all these authors is that they compared the ability of MICE and MVNI to return

less or more biased estimates of the regression coefficients. Lee and Carlin (2010)

for instance considered a regression model of a continuous variable on binary and

ordinal variables containing missing values. The research topic of this study that

was started in 2011 was formulated based on the recommendations by these two

authors, who suggested that further investigations were still needed to look at the

performance of MVNI and MICE when data are missing at random on nominal

variables. Three years later, Kropko et al. (2014) explored this topic. They con-

sidered four models: 1) a regression model with a continuous response variable

and a set of covariates in which missing values were only found on the outcome

variable (continuous). 2) A regression model in which the outcome variable was

binary and contained missing values, and the covariates were as in model 1. 3) A
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regression model with an ordered outcome categorical variable, and covariates as

in models 1 and 2. 4) A regression model in which the response variable was an

unordered categorical variable and predictors were continuous, binary or nominal.

This study considered regression models as well, with missing values on ei-

ther the response or independent variables measured on the nominal scale. This

approach is totally different from that of Lee and Carlin (2010), who considered

only regression models with missing values on binary and ordinal variable pre-

dictors. The study is partly similar to that of Kropko et al. (2014) in the case

where missing values were observed on the outcome variables measured as binary

or polytomous. However, the difference was on the fact that the performance of

these methods was investigated when missing values were present on the nominal

variables alone, with no influence of other types of variables first, then in the pres-

ence of other types of variables (ordinal and continuous) as in the case of Kropko

et al. (2014).

A common similarity that was observed for all the approaches is that they

all focused on the ability of MVNI and MICE to return accurate regression coef-

ficients. This study reported the bias in the regression coefficients and standard

errors from the regression models estimated after the CD, MVNI and MICE ap-

proaches were used.

In relation to the main objective, two scenarios were considered for analy-

sis. The first scenario contained regression models in which missing values were

observed on the covariates that were measured on nominal scales. The second

scenario contained regression models as well, but in this case with missing values

on the outcome categorical variables that have no natural order. In Scenario 1,

two types of regression models were estimated. The first model regressed con-

traceptive method use status on marital status alone, with missing values on the

independent variable (marital status). The second model regressed contraceptive

method use status on marital status, controlling for other variables (nominal, con-

tinuous and ordinal). This model was split into two models; Models 1.2.1 and

1.2.2. In Model 1.2.1, two unordered categorical covariates (marital status and

region) were considered for analysis, whereas in Model 1.2.2 independent variables

of different types (continuous, nominal and ordinal) with missing values on only

the nominal ones were considered for analysis. These variables were the woman’s

age, education in completed years (continuous variables), marital status, region

(nominal variables) and wealth index (ordinal variable). The second scenario con-

tained two models with missing values on the response variables. The first model
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or Model 2.1 regressed contraceptive method use status (a dichotomous variable)

on marital status, whereas the second model or Model 2.2 regressed contraceptive

method use status (measured as a polytomous variable). Throughout this thesis,

the rate of missingness that was considered is 50%. However, to verify whether

the rates of missingness could have an effect on the performance of the multiple

imputation methods of interest, 50%, 30% and 10% missing data were considered

for only Model 1.1.

Missing values on the variables of these models were imputed using the para-

metric imputation technique (MVNI) and the MICE method which took into ac-

count the distributional form of the variables to be imputed. Two main findings

were highlighted for this specific objective:

1. MVNI outperformed MICE when data were missing on the unordered cate-

gorical variables treated as predictors in the regression models.

2. MICE outperformed MVNI when missing values were observed on the nom-

inal outcome variables (binary or polytomous), treated as response variables

in the regression models.

The first finding was neither highlighted by Lee and Carlin (2010) nor by Kropko

et al. (2014) and therefore constitutes one of the contributions of this thesis to the

missing data research field. This finding was summarised into a research paper

that was accepted for publication in Brazilian Journal of Probability and Statis-

tics (Karangwa et al., 2015). The second finding is consistent with the findings

by Kropko et al. (2014), who showed that MICE outperformed MVNI when these

two techniques were used to impute missing values of the unordered categorical

variables with more than two levels that were treated as outcome measures in the

regression models. Note that in addition of what Kropko et al. (2014) has done,

this study explored this fact in several circumstances such as under different miss-

ing mechanisms (MAR and MCAR) and considering or not the sample design or

weights. However, this fact has not affected the behaviour of MICE and MVNI.

When data were missing on the binary categorical variables that were treated as

response variables in the regression model, the results differed. Our findings indi-

cated that MICE outperformed MVNI, whereas it was the opposite in the Kropko

et al. (2014) study. This disparity may be due to the fact that under the MVNI

technique, the response variable was imputed as a continuous variable and im-

puted values were rounded to the nearest integer (0 or 1) to keep its dichotomous
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nature as it had to be used as binary variable in the logistic regression model.

This fact was not explained by Kropko et al. (2014) and if the same approach was

not used, the source of difference may lie there. The difference may also be due

to the data sets and the number of imputations that were used.

In relation to other specific objectives, objective 1 was addressed in Chapter

3 where the literature review on the MVNI and MICE methods was provided. A

practical example using a real data set was used to illustrate the behaviour of

these methods when data were missing completely at random on continuous vari-

ables that were treated as predictors in the regression model. Similar results as in

the literature were found (Raghunathan et al., 2001). In fact, it was found that

the MVNI and MICE produced similar results when missing values were observed

on the continuous variables that were used. In addition to this finding and the

existing knowledge about the behaviour of MICE and MVNI on continuous data,

this study was able to explore the impact of different rates of missing data on

the behaviour of these methods. The results revealed that at some stage, neither

the imputation methods used nor the CD can help to maintain the relationship

that exists between the dependent and independent variables when the analysis

is done using the data set with no missing values. This is an indication that at

some stage, the missing values techniques may not be successful and therefore the

data users may be forced to give up on the data set that was intended to be used

or the analysis that needed to be done. This finding was not highlighted before

and therefore is a contribution to the existing knowledge about the imputation of

continuous variables. These results were summarised into a single article that was

published in Karangwa and Kotze (2013).

Concerning the specific objective 2, models with missing values on the vari-

ables of interest (using the CD method) were estimated and the results were com-

pared to the results from the models fitted after MVNI and MICE were used. As

expected, the multiple imputation methods of interest yielded more accurate esti-

mates than the CD technique. This is generally the case, but we believed that an

empirical research would also be needed to indicate that imputations were needed.

In relation to the specific objective 3, the impact of the rates of missing

values in the data sets on the behaviour of MVNI and MICE was explored. This

was done using Model 1.1 in the first scenario where 50%, 30% and 10% rates of

missingness were considered for analysis. The results indicated that whatever rate

of missingness used, the behaviour of the two methods did not change. That is,

MVNI outperformed MICE at lower and higher rates of missingness. This fact was
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not also explored by Lee and Carlin (2010) and Kropko et al. (2014) and therefore

could add value to the existing knowledge about the missing values’ treatment for

unordered categorical data.

Regarding the specific objective 4, the analysis took into account the sample

design (sample weights) first and then assumed that there was no sample weights

in the data set that was used. In reality, the data set that was used is a complex

survey data set that contains the sample weights. Therefore, only the results ob-

tained when the sample design was taken into account are valid. However, as all

the data sets do not contain sample weights, the study assumed that the data set

had no sample weights (which is not true) and explored the behaviour of MVNI

and MICE. This was done to assess whether the sample design may affect the

behaviour of these methods. The results indicated that this fact had no impact on

the behaviour of the multiple imputation methods of interest. That is, the same

conclusion was obtained when the survey design was taken into account and not.

This fact was not highlighted by missing data analysts, especially Lee and Carlin

(2010) and Kropko et al. (2014), and therefore could also add value to the existing

knowledge about missing data handling.

Finally, as always suggested by researchers on this particular topic such as

Lee and Carlin (2010) and Kropko et al. (2014) amongst others, it is not easy

to draw general conclusions from a single data or simulation study, however we

believe that this research has given a good setting for comparing the multiple im-

putation techniques of interest, namely MICE and MVNI. Further investigations

using different data sets are still needed to strengthen the findings from this study,

but it is beyond the scope of this thesis.
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The following program codes were developed by the author and are available on

request. The headings of the specific routines are supplied.
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R codes

R code to generate samples from a beta (3, 7) using the

Metropolis-Hastings technique.

Function that uses the Gibbs sampler to simulate a bivari-

ate normal distribution by iteratively sampling from the

conditional distributions of random variables X and Y.

R code to generate missing completely at random (MCAR)

data on the variables of interest.

R code to generate missing at random (MAR) data on the

variables of interest.

STATA codes

STATA codes to impute missing values on the variable mar-

ital status that was treated as an independent variable in

the binary logistic regression model.

STATA codes to impute missing values on the variable con-

traceptive method use status that was treated as an out-

come variable in the binary logistic regression model.

STATA codes to impute missing values on the variable con-

traceptive method use status that was treated as an out-

come variable in the multinomial logistic regression model.
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Models with missing values on the covariates

Model with only one nominal covariate with missing values

Model 1.1 with 50% missing values on the covariate

Figure 6.1: Model 1.1: Independent-samples t-test to compare age (in V012)
for missing (coded 1 in the table) and present or not missing (coded 0) under
MAR assumption.
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Figure 6.2: Model 1.1: Independent-samples t-test to compare education in
completed years (V133) for missing (coded 1 in the table) and present or not
missing (coded 0) under MAR assumption.
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Figure 6.3: Model 1.1: Independent-samples t-test to compare age (V012)
for missing (coded 1 in the table) and present or not missing (coded 0) under
MCAR assumption.
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Figure 6.4: Model 1.1: Independent-samples t-test to compare education in
completed years (V133) for missing (coded 1 in the table) and present or not
missing (coded 0) under MCAR assumption.
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Model 1.1 with 30% missing values on the covariate

Figure 6.5: Model 1.1: Independent-samples t-test to compare age (in V012)
for missing (coded 1 in the table) and present or not missing (coded 0) under
MAR assumption.

 

 

 

 



Appendix B. Bivariate analysis 163

Figure 6.6: Model 1.1: Independent-samples t-test to compare education in
completed years (V133) for missing (coded 1 in the table) and present or not
missing (coded 0) under MAR assumption.
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Figure 6.7: Model 1.1: Independent-samples t-test to compare age (V012)
for missing (coded 1 in the table) and present or not missing (coded 0) under
MCAR assumption.
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Figure 6.8: Model 1.1: Independent-samples t-test to compare education in
completed years (V133) for missing (coded 1 in the table) and present or not
missing (coded 0) under MCAR assumption.
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Model 1.1 with 10% missing values on the covariate

Figure 6.9: Model 1.1: Independent-samples t-test to compare age (in V012)
for missing (coded 1 in the table) and present or not missing (coded 0) under
MAR assumption under MAR assumption.
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Figure 6.10: Model 1.1: Independent-samples t-test to compare education in
completed years (V133) for missing (coded 1 in the table) and present or not
missing (coded 0) under MAR assumption.
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Figure 6.11: Model 1.1: Independent-samples t-test to compare age (V012)
for missing (coded 1 in the table) and present or not missing (coded 0) under
MCAR assumption.
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Figure 6.12: Model 1.1: Independent-samples t-test to compare education in
completed years (V133) for missing (coded 1 in the table) and present or not
missing (coded 0) under MCAR assumption.
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Model with with missing values on more than one nominal

variable

Figure 6.13: Model 1.2.1: Independent-samples t-test to compare age (in
V012) for missing (coded 1 in the table) and present or not missing (coded 0)
under MAR assumption.
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Figure 6.14: Model 1.2.1: Independent-samples t-test to compare education
in completed years (V133) for missing (coded 1 in the table) and present or not
missing (coded 0) under MAR assumption.
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Figure 6.15: Model 1.2.1: Independent-samples t-test to compare age (V012)
for missing (coded 1 in the table) and present or not missing (coded 0) under
MCAR assumption.
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Figure 6.16: Model 1.2.1: Independent-samples t-test to compare education
in completed years (V133) for missing (coded 1 in the table) and present or not
missing (coded 0) under MCAR assumption.
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Model 2: Models with missing values on the out-

come variables

Model 2.1 with missing at random values on the binary

outcome variable if a woman is aged at least 35 years

Figure 6.17: Model 2.1: Independent-samples t-test to compare age (in V012)
for missing (coded 1 in the table) and present or not missing (coded 0) under
MAR assumption.
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Figure 6.18: Model 2.1: Independent-samples t-test to compare education in
completed years (V133) for missing (coded 1 in the table) and present or not
missing (coded 0) under MAR assumption.

Model 2.1 with missing completely at random values on the

binary outcome variable
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Figure 6.19: Model 2.1: Independent-samples t-test to compare age (in V012)
for missing (coded 1 in the table) and present or not missing (coded 0) under
MAR assumption.
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Figure 6.20: Model 2.1: Independent-samples t-test to compare education in
completed years (V133) for missing (coded 1 in the table) and present or not
missing (coded 0) under MAR assumption.
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Model 2.2 with missing at random values on the polytomous

variable if a woman is aged at least 35 years

Figure 6.21: Model 2.1: Independent-samples t-test to compare age (in V012)
for missing (coded 1 in the table) and present or not missing (coded 0) under
MAR assumption.
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Figure 6.22: Model 2.1: Independent-samples t-test to compare education in
completed years (V133) for missing (coded 1 in the table) and present or not
missing (coded 0) under MAR assumption.

Model 2.2 with missing completely at random values on the

polytomous outcome variable
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Figure 6.23: Model 2.1: Independent-samples t-test to compare age (in V012)
for missing (coded 1 in the table) and present or not missing (coded 0) under
MAR assumption.
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Figure 6.24: Model 2.1: Independent-samples t-test to compare education in
completed years (V133) for missing (coded 1 in the table) and present or not
missing (coded 0) under MAR assumption.
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Model 1.1: Estimates of Monte Carlo errors after

MVNI and MICE are used

Estimates of Monte Carlo errors after MVNI and MICE are

applied to data sets with 50% MAR and MCAR data on the

covariate

Table 6.1: Model 1.1: Estimates of Monte Carlo errors after MVNI is applied
to unweighted data set with approximately 50% MAR data on marital status if
a woman is not using any contraceptive method.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.005 0.001 0.050 0.000 0.005 0.005
Living together 0.002 0.000 0.080 0.000 0.002 0.002
Widowed 0.007 0.003 0.260 0.000 0.010 0.008
Divorced 0.005 0.001 0.050 0.004 0.006 0.005
Not living together 0.003 0.001 0.070 0.000 0.004 0.004

Table 6.2: Model 1.1: Estimates of Monte Carlo errors after MVNI is applied
to weighted data set with approximately 50% MAR data on marital status if a
woman is not using any contraceptive method.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.007 0.002 0.060 0.001 0.009 0.006
Living together 0.003 0.001 0.060 0.000 0.003 0.003
Widowed 0.008 0.004 0.360 0.000 0.011 0.011
Divorced 0.005 0.001 0.030 0.021 0.006 0.005
Not living together 0.005 0.001 0.060 0.000 0.006 0.005

 

 

 

 



Appendix C. Estimates of Monte Carlo errors 184

Table 6.3: Model 1.1: Estimates of Monte Carlo errors after MICE is applied
to unweighted data set with approximately 50% MAR data on marital status if
a woman is not using any contraceptive method.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.007 0.002 0.070 0.000 0.008 0.008
Living together 0.002 0.001 0.140 0.000 0.003 0.003
Widowed 0.003 0.001 0.060 0.000 0.003 0.004
Divorced 0.005 0.001 0.050 0.004 0.005 0.005
Not living together 0.003 0.001 0.060 0.000 0.004 0.004

Table 6.4: Model 1.1: Estimates of Monte Carlo errors after MICE is applied
to weighted data set with approximately 50% MAR data on marital status if a
woman is not using any contraceptive method.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.011 0.005 0.090 0.004 0.016 0.013
Living together 0.003 0.001 0.100 0.000 0.004 0.004
Widowed 0.005 0.001 0.070 0.000 0.005 0.005
Divorced 0.007 0.002 0.040 0.027 0.007 0.008
Not living together 0.004 0.001 0.060 0.000 0.004 0.005

Table 6.5: Model 1.1: Estimates of Monte Carlo errors after MVNI is applied
to unweighted data set with approximately 50% MCAR data on marital status.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.011 0.005 0.100 0.000 0.015 0.013
Living together 0.004 0.002 0.020 0.000 0.005 0.006
Widowed 0.010 0.005 0.100 0.000 0.013 0.016
Divorced 0.011 0.006 0.020 0.005 0.015 0.016
Not living together 0.006 0.003 0.100 0.016 0.008 0.010
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Table 6.6: Model 1.1: Estimates of Monte Carlo errors after MVNI is applied
to weighted data set with approximately 50% MCAR data on marital status.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.016 0.009 0.100 0.016 0.029 0.020
Living together 0.007 0.004 0.060 0.000 0.008 0.012
Widowed 0.014 0.007 0.070 0.000 0.018 0.020
Divorced 0.015 0.007 0.070 0.016 0.024 0.017
Not living together 0.008 0.005 0.080 0.015 0.014 0.010

Table 6.7: Model 1.1: Estimates of Monte Carlo errors after MICE is applied
to unweighted data set with approximately 50% MCAR data on marital status.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.011 0.005 0.100 0.001 0.014 0.016
Living together 0.005 0.002 0.080 0.000 0.007 0.006
Widowed 0.014 0.007 0.030 0.000 0.018 0.020
Divorced 0.011 0.006 0.100 0.004 0.017 0.015
Not living together 0.006 0.003 0.100 0.022 0.008 0.010

Table 6.8: Model 1.1: Estimates of Monte Carlo errors after MICE is applied
to weighted data set with approximately 50% MCAR data on marital status.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.015 0.010 0.090 0.009 0.020 0.028
Living together 0.005 0.002 0.100 0.000 0.007 0.007
Widowed 0.019 0.011 0.080 0.000 0.030 0.026
Divorced 0.013 0.006 0.070 0.010 0.019 0.015
Not living together 0.009 0.004 0.070 0.014 0.014 0.010
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Estimates of Monte Carlo errors after MVNI and MICE are

applied to data sets with 30% MAR and MCAR data on the

covariate

Table 6.9: Model 1.1: Estimates of Monte Carlo errors after MVNI is applied
to unweighted data set with approximately 30% MAR data on marital status if
a woman is not using any contraceptive method.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.003 0.001 0.040 0.000 0.004 0.003
Living together 0.001 0.000 0.050 0.000 0.001 0.001
Widowed 0.005 0.001 0.020 0.000 0.006 0.005
Divorced 0.004 0.001 0.030 0.000 0.004 0.004
Not living together 0.002 0.000 0.030 0.000 0.002 0.002

Table 6.10: Model 1.1: Estimates of Monte Carlo errors after MVNI is applied
to weighted data set with approximately 30% MAR data on marital status if a
woman is not using any contraceptive method.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.005 0.001 0.040 0.001 0.006 0.004
Living together 0.002 0.000 0.040 0.000 0.002 0.002
Widowed 0.008 0.003 0.070 0.000 0.010 0.008
Divorced 0.004 0.001 0.020 0.007 0.005 0.003
Not living together 0.003 0.001 0.030 0.000 0.003 0.003

Table 6.11: Model 1.1: Estimates of Monte Carlo errors after MICE is applied
to unweighted data set with approximately 30% MAR data on marital status if
a woman is not using any contraceptive method.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.004 0.001 0.050 0.000 0.005 0.005
Living together 0.002 0.000 0.080 0.000 0.002 0.002
Widowed 0.002 0.000 0.030 0.000 0.002 0.002
Divorced 0.003 0.001 0.030 0.000 0.003 0.003
Not living together 0.002 0.000 0.040 0.000 0.002 0.002
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Table 6.12: Model 1.1: Estimates of Monte Carlo errors after MICE is applied
to weighted data set with approximately 30% MAR data on marital status if a
woman is not using any contraceptive method.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.005 0.001 0.030 0.001 0.005 0.005
Living together 0.002 0.001 0.040 0.000 0.002 0.002
Widowed 0.003 0.000 0.030 0.000 0.003 0.003
Divorced 0.004 0.001 0.020 0.008 0.004 0.004
Not living together 0.003 0.000 0.030 0.000 0.003 0.003

Table 6.13: Model 1.1: Estimates of Monte Carlo errors after MVNI is applied
to unweighted data set with approximately 30% MCAR data on marital status.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.008 0.004 0.100 0.000 0.009 0.012
Living together 0.003 0.001 0.090 0.000 0.003 0.004
Widowed 0.008 0.003 0.070 0.000 0.010 0.010
Divorced 0.007 0.003 0.070 0.004 0.010 0.008
Not living together 0.005 0.002 0.080 0.002 0.007 0.006

Table 6.14: Model 1.1: Estimates of Monte Carlo errors after MVNI is applied
to weighted data set with approximately 30% MCAR data on marital status.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.010 0.004 0.080 0.000 0.011 0.013
Living together 0.004 0.002 0.110 0.000 0.005 0.006
Widowed 0.015 0.006 0.030 0.000 0.018 0.021
Divorced 0.009 0.003 0.060 0.024 0.010 0.012
Not living together 0.007 0.003 0.080 0.007 0.008 0.009
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Table 6.15: Model 1.1: Estimates of Monte Carlo errors after MICE is applied
to unweighted data set with approximately 30% MCAR data on marital status.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.007 0.003 0.020 0.000 0.011 0.008
Living together 0.003 0.001 0.090 0.000 0.004 0.004
Widowed 0.009 0.004 0.040 0.000 0.011 0.012
Divorced 0.007 0.003 0.070 0.003 0.010 0.009
Not living together 0.004 0.001 0.070 0.001 0.005 0.005

Table 6.16: Model 1.1: Estimates of Monte Carlo errors after MICE is applied
to weighted data set with approximately 30% MCAR data on marital status.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.010 0.004 0.080 0.000 0.013 0.013
Living together 0.004 0.002 0.030 0.000 0.006 0.004
Widowed 0.012 0.006 0.070 0.000 0.018 0.016
Divorced 0.009 0.004 0.040 0.021 0.014 0.008
Not living together 0.007 0.003 0.060 0.006 0.010 0.007
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Estimates of Monte Carlo errors after MVNI and MICE are

applied to data sets with 10% MAR and MCAR data on the

covariate

Table 6.17: Model 1.1: Estimates of Monte Carlo errors after MVNI is applied
to unweighted data set with approximately 10% MAR data on marital status if
a woman is not using any contraceptive method.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.001 0.000 0.010 0.000 0.002 0.001
Living together 0.001 0.000 0.030 0.000 0.001 0.001
Widowed 0.003 0.001 0.060 0.000 0.004 0.003
Divorced 0.002 0.000 0.020 0.000 0.002 0.002
Not living together 0.001 0.000 0.010 0.000 0.001 0.001

Table 6.18: Model 1.1: Estimates of Monte Carlo errors after MVNI is applied
to weighted data set with approximately 10% MAR data on marital status if a
woman is not using any contraceptive method.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.002 0.000 0.010 0.000 0.002 0.002
Living together 0.001 0.000 0.020 0.000 0.001 0.001
Widowed 0.006 0.002 0.060 0.000 0.007 0.006
Divorced 0.002 0.000 0.010 0.004 0.003 0.002
Not living together 0.002 0.000 0.020 0.000 0.002 0.002

Table 6.19: Model 1.1: Estimates of Monte Carlo errors after MICE is applied
to unweighted data set with approximately 10% MAR data on marital status if
a woman is not using any contraceptive method.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.002 0.000 0.020 0.000 0.002 0.003
Living together 0.001 0.000 0.030 0.000 0.001 0.001
Widowed 0.001 0.000 0.010 0.000 0.001 0.001
Divorced 0.002 0.000 0.010 0.000 0.002 0.002
Not living together 0.001 0.000 0.010 0.000 0.001 0.001
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Table 6.20: Model 1.1: Estimates of Monte Carlo errors after MICE is applied
to weighted data set with approximately 10% MAR data on marital status if a
woman is not using any contraceptive method.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.003 0.000 0.020 0.000 0.003 0.003
Living together 0.001 0.000 0.020 0.000 0.001 0.001
Widowed 0.002 0.000 0.010 0.000 0.002 0.002
Divorced 0.003 0.000 0.010 0.005 0.003 0.002
Not living together 0.001 0.000 0.010 0.000 0.001 0.001

Table 6.21: Model 1.1: Estimates of Monte Carlo errors after MVNI is applied
to unweighted data set with approximately 10% MCAR data on marital status.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.004 0.001 0.050 0.000 0.005 0.004
Living together 0.001 0.000 0.060 0.000 0.002 0.001
Widowed 0.006 0.002 0.100 0.000 0.008 0.006
Divorced 0.003 0.001 0.030 0.000 0.004 0.003
Not living together 0.002 0.001 0.040 0.000 0.002 0.002

Table 6.22: Model 1.1: Estimates of Monte Carlo errors after MVNI is applied
to weighted data set with approximately 10% MCAR data on marital status.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.005 0.001 0.040 0.000 0.006 0.005
Living together 0.002 0.001 0.060 0.000 0.003 0.002
Widowed 0.010 0.004 0.030 0.000 0.012 0.012
Divorced 0.004 0.001 0.020 0.009 0.006 0.004
Not living together 0.004 0.001 0.040 0.000 0.006 0.004
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Table 6.23: Model 1.1: Estimates of Monte Carlo errors after MICE is applied
to unweighted data set with approximately 10% MCAR data on marital status.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.004 0.001 0.040 0.000 0.005 0.004
Living together 0.001 0.000 0.060 0.000 0.001 0.002
Widowed 0.005 0.001 0.080 0.000 0.005 0.005
Divorced 0.004 0.001 0.040 0.001 0.004 0.004
Not living together 0.002 0.001 0.040 0.000 0.003 0.003

Table 6.24: Model 1.1: Estimates of Monte Carlo errors after MICE is applied
to weighted data set with approximately 10% MCAR data on marital status.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.005 0.001 0.030 0.000 0.005 0.007
Living together 0.003 0.001 0.060 0.000 0.003 0.003
Widowed 0.010 0.005 0.080 0.000 0.009 0.016
Divorced 0.005 0.001 0.030 0.013 0.006 0.005
Not living together 0.003 0.001 0.050 0.000 0.003 0.004
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Model 1.2: Estimates of Monte Carlo errors after

MVNI and MICE are used

Model 1.2.1: Estimates of Monte Carlo errors after MVNI

and MICE are applied to data sets with 50% MAR and

MCAR data on the covariate

Table 6.25: Model 1.2.1: Estimates of Monte Carlo errors after MVNI is
applied to unweighted data set with approximately 50% MAR data on marital
status and region if a woman is not using any contraceptive method.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.001 0.040 0.027 0.007 0.006
Living together 0.000 0.050 0.000 0.002 0.002
Widowed 0.002 0.200 0.000 0.006 0.008
Divorced 0.002 0.070 0.000 0.008 0.007
Not living together 0.001 0.080 0.000 0.004 0.004
Bas Kongo 0.001 0.040 0.001 0.003 0.003
Bandundu 0.000 0.070 0.000 0.002 0.002
Equateur 0.001 0.060 0.000 0.003 0.003
Orientale 0.001 0.060 0.000 0.004 0.004
Nord Kivu 0.001 0.080 0.000 0.003 0.003
Maniema 0.001 0.080 0.000 0.003 0.003
Sud Kivu 0.001 0.060 0.000 0.003 0.004
Katanga 0.001 0.080 0.000 0.003 0.003
Kasai Occidental 0.001 0.030 0.000 0.004 0.005
Kasai Oriental 0.001 0.050 0.000 0.004 0.004

 

 

 

 



Appendix C. Estimates of Monte Carlo errors 193

Table 6.26: Model 1.2.1: Estimates of Monte Carlo errors after MVNI is
applied to weighted data set with approximately 50% MAR data on marital
status and region if a woman is not using any contraceptive method.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.007 0.002 0.040 0.022 0.009 0.007
Living together 0.003 0.001 0.040 0.006 0.003 0.003
Widowed 0.008 0.003 0.300 0.000 0.009 0.010
Divorced 0.007 0.002 0.040 0.011 0.008 0.007
Not living together 0.004 0.001 0.050 0.000 0.005 0.004
Bas Kongo 0.004 0.002 0.190 0.000 0.006 0.006
Bandundu 0.002 0.000 0.030 0.000 0.002 0.002
Equateur 0.003 0.001 0.070 0.000 0.003 0.003
Orientale 0.003 0.001 0.080 0.000 0.004 0.003
Nord Kivu 0.005 0.002 0.070 0.000 0.007 0.006
Maniema 0.006 0.002 0.050 0.000 0.007 0.008
Sud Kivu 0.005 0.001 0.080 0.000 0.006 0.006
Katanga 0.003 0.001 0.010 0.000 0.003 0.003
Kasai Occidental 0.004 0.001 0.010 0.000 0.004 0.005
Kasai Oriental 0.003 0.001 0.020 0.000 0.003 0.003

Table 6.27: Model 1.2.1: Estimates of Monte Carlo errors after MICE is
applied to unweighted data set with approximately 50% MAR data on marital
status and region if a woman is not using any contraceptive method.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.012 0.005 0.060 0.032 0.011 0.019
Living together 0.003 0.001 0.100 0.000 0.003 0.003
Widowed 0.003 0.001 0.050 0.000 0.004 0.004
Divorced 0.005 0.001 0.050 0.000 0.006 0.005
Not living together 0.003 0.001 0.090 0.000 0.003 0.004
Bas Kongo 0.004 0.001 0.070 0.001 0.004 0.004
Bandundu 0.003 0.001 0.110 0.000 0.003 0.003
Equateur 0.003 0.001 0.010 0.000 0.003 0.004
Orientale 0.003 0.001 0.030 0.000 0.003 0.003
Nord Kivu 0.003 0.001 0.020 0.000 0.004 0.004
Maniema 0.003 0.001 0.090 0.000 0.003 0.003
Sud Kivu 0.003 0.001 0.040 0.000 0.003 0.003
Katanga 0.003 0.001 0.090 0.000 0.003 0.003
Kasai Occidental 0.004 0.001 0.030 0.000 0.005 0.004
Kasai Oriental 0.003 0.001 0.030 0.000 0.004 0.003
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Table 6.28: Model 1.2.1: Estimates of Monte Carlo errors after MICE is
applied to weighted data set with approximately 50% MAR data on marital
status and region if a woman is not using any contraceptive method.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.010 0.003 0.050 0.025 0.010 0.014
Living together 0.003 0.001 0.040 0.007 0.003 0.004
Widowed 0.004 0.001 0.070 0.000 0.004 0.005
Divorced 0.005 0.001 0.030 0.009 0.006 0.005
Not living together 0.004 0.001 0.060 0.000 0.004 0.005
Bas Kongo 0.005 0.002 0.150 0.000 0.007 0.006
Bandundu 0.003 0.001 0.050 0.000 0.003 0.003
Equateur 0.003 0.001 0.100 0.000 0.003 0.003
Orientale 0.003 0.001 0.070 0.000 0.003 0.003
Nord Kivu 0.004 0.001 0.080 0.000 0.005 0.005
Maniema 0.004 0.002 0.090 0.000 0.005 0.005
Sud Kivu 0.004 0.001 0.120 0.000 0.004 0.004
Katanga 0.004 0.001 0.090 0.000 0.004 0.005
Kasai Occidental 0.004 0.001 0.090 0.000 0.005 0.004
Kasai Oriental 0.004 0.001 0.090 0.000 0.004 0.004

Table 6.29: Model 1.2.1: Estimates of Monte Carlo errors after MVNI is
applied to unweighted data set with approximately 50% MCAR data on marital
status and region.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.013 0.006 0.070 0.053 0.018 0.017
Living together 0.005 0.003 0.080 0.000 0.007 0.008
Widowed 0.010 0.006 0.040 0.000 0.017 0.015
Divorced 0.011 0.007 0.030 0.003 0.018 0.017
Not living together 0.008 0.004 0.030 0.001 0.011 0.010
Bas Kongo 0.005 0.002 0.100 0.004 0.006 0.007
Bandundu 0.005 0.002 0.020 0.000 0.007 0.006
Equateur 0.005 0.002 0.080 0.000 0.007 0.006
Orientale 0.006 0.003 0.040 0.000 0.009 0.008
Nord Kivu 0.006 0.002 0.050 0.000 0.007 0.006
Maniema 0.006 0.003 0.070 0.000 0.008 0.009
Sud Kivu 0.008 0.004 0.063 0.000 0.009 0.011
Katanga 0.006 0.003 0.054 0.000 0.008 0.008
Kasai Occidental 0.006 0.003 0.060 0.000 0.009 0.009
Kasai Oriental 0.006 0.003 0.060 0.000 0.009 0.008
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Table 6.30: Model 1.2.1: Estimates of Monte Carlo errors after MVNI is
applied to weighted data set with approximately 50% MCAR data on marital
status and region.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.016 0.008 0.070 0.052 0.021 0.023
Living together 0.006 0.003 0.120 0.001 0.009 0.008
Widowed 0.012 0.006 0.270 0.000 0.016 0.017
Divorced 0.014 0.007 0.080 0.018 0.020 0.018
Not living together 0.009 0.004 0.110 0.002 0.013 0.012
Bas Kongo 0.007 0.003 0.080 0.018 0.009 0.010
Bandundu 0.005 0.002 0.180 0.000 0.006 0.007
Equateur 0.006 0.002 0.240 0.000 0.008 0.006
Orientale 0.007 0.003 0.370 0.000 0.009 0.010
Nord Kivu 0.008 0.004 0.320 0.000 0.012 0.011
Maniema 0.010 0.004 0.330 0.000 0.013 0.014
Sud Kivu 0.011 0.004 0.330 0.000 0.013 0.014
Katanga 0.008 0.004 0.390 0.000 0.011 0.011
Kasai Occidental 0.008 0.004 0.440 0.000 0.010 0.011
Kasai Oriental 0.007 0.003 0.400 0.000 0.008 0.010

Table 6.31: Model 1.2.1: Estimates of Monte Carlo errors after MICE is
applied to unweighted data set with approximately 50% MCAR data on marital
status and region.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.017 0.009 0.080 0.061 0.021 0.028
Living together 0.005 0.003 0.090 0.000 0.007 0.009
Widowed 0.013 0.007 0.031 0.000 0.020 0.018
Divorced 0.012 0.007 0.050 0.004 0.017 0.019
Not living together 0.008 0.005 0.040 0.001 0.014 0.010
Bas Kongo 0.005 0.002 0.010 0.006 0.006 0.008
Bandundu 0.005 0.002 0.030 0.000 0.007 0.006
Equateur 0.005 0.002 0.090 0.000 0.007 0.007
Orientale 0.007 0.003 0.040 0.000 0.009 0.009
Nord Kivu 0.007 0.003 0.050 0.000 0.011 0.008
Maniema 0.006 0.002 0.060 0.000 0.009 0.007
Sud Kivu 0.007 0.003 0.030 0.000 0.010 0.009
Katanga 0.006 0.004 0.030 0.000 0.010 0.009
Kasai Occidental 0.006 0.004 0.030 0.000 0.010 0.009
Kasai Oriental 0.007 0.004 0.050 0.000 0.012 0.010
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Table 6.32: Model 1.2.1: Estimates of Monte Carlo errors after MICE is
applied to weighted data set with approximately 50% MCAR data on marital
status and region.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.018 0.010 0.070 0.056 0.022 0.032
Living together 0.006 0.003 0.120 0.001 0.009 0.008
Widowed 0.019 0.009 0.250 0.000 0.024 0.026
Divorced 0.014 0.008 0.070 0.015 0.025 0.017
Not living together 0.010 0.005 0.120 0.003 0.013 0.015
Bas Kongo 0.008 0.005 0.090 0.024 0.014 0.012
Bandundu 0.006 0.003 0.200 0.000 0.009 0.007
Equateur 0.006 0.003 0.250 0.000 0.009 0.007
Orientale 0.007 0.004 0.420 0.000 0.009 0.012
Nord Kivu 0.010 0.005 0.340 0.000 0.013 0.015
Maniema 0.009 0.004 0.330 0.000 0.012 0.013
Sud Kivu 0.010 0.004 0.320 0.000 0.012 0.013
Katanga 0.006 0.003 0.350 0.000 0.007 0.008
Kasai Occidental 0.006 0.002 0.290 0.000 0.007 0.007
Kasai Oriental 0.007 0.004 0.400 0.000 0.010 0.010

Model 1.2.2: Estimates of Monte Carlo errors after MVNI

and MICE are applied to data sets with 50% data missing

at random or completely at random on the covariate
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Table 6.33: Model 1.2.2: Estimates of Monte Carlo errors after MVNI is
applied to unweighted data set with approximately 50% of data missing at
random on marital status and region if a woman is not using any contraceptive
method.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.006 0.002 0.050 0.005 0.007 0.007
Living together 0.002 0.001 0.060 0.000 0.002 0.002
Widowed 0.006 0.002 0.080 0.000 0.007 0.008
Divorced 0.006 0.002 0.050 0.004 0.009 0.007
Not living together 0.003 0.001 0.070 0.000 0.004 0.004
Bas Kongo 0.003 0.001 0.110 0.000 0.004 0.003
Bandundu 0.003 0.001 0.040 0.000 0.003 0.003
Equateur 0.003 0.001 0.040 0.013 0.004 0.004
Orientale 0.004 0.001 0.070 0.000 0.004 0.004
Nord Kivu 0.003 0.001 0.050 0.001 0.004 0.004
Maniema 0.003 0.001 0.050 0.001 0.004 0.004
Sud Kivu 0.003 0.001 0.020 0.000 0.003 0.004
Katanga 0.003 0.001 0.070 0.000 0.003 0.003
Kasai Occidental 0.004 0.001 0.020 0.000 0.004 0.005
Kasai Oriental 0.004 0.001 0.120 0.000 0.004 0.004
Age 0.000 0.000 0.030 0.000 0.000 0.000
Education 0.000 0.000 0.040 0.000 0.000 0.000
Poorer 0.001 0.000 0.020 0.000 0.001 0.001
Middle 0.001 0.000 0.020 0.000 0.001 0.001
Richer 0.001 0.000 0.030 0.000 0.001 0.001
Richest 0.002 0.000 0.050 0.000 0.002 0.002
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Table 6.34: Model 1.2.2: Estimates of Monte Carlo errors after MVNI is
applied to weighted data set with approximately 50% of data missing at random
on marital status and region if a woman is not using any contraceptive method.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.007 0.002 0.040 0.024 0.009 0.007
Living together 0.003 0.001 0.040 0.005 0.003 0.003
Widowed 0.008 0.003 0.300 0.000 0.010 0.010
Divorced 0.007 0.002 0.030 0.024 0.008 0.006
Not living together 0.004 0.001 0.050 0.000 0.005 0.004
Bas Kongo 0.005 0.002 0.070 0.008 0.006 0.006
Bandundu 0.003 0.001 0.050 0.000 0.003 0.003
Equateur 0.004 0.001 0.030 0.026 0.004 0.004
Orientale 0.004 0.001 0.040 0.000 0.004 0.004
Nord Kivu 0.006 0.002 0.100 0.000 0.007 0.006
Maniema 0.006 0.002 0.090 0.000 0.008 0.008
Sud Kivu 0.005 0.001 0.100 0.000 0.005 0.005
Katanga 0.003 0.001 0.050 0.000 0.004 0.003
Kasai Occidental 0.004 0.001 0.100 0.000 0.005 0.005
Kasai Oriental 0.003 0.001 0.070 0.000 0.004 0.004
Age 0.000 0.000 0.020 0.000 0.000 0.000
Education 0.000 0.000 0.020 0.000 0.000 0.000
Poorer 0.001 0.000 0.020 0.005 0.001 0.001
Middle 0.001 0.000 0.020 0.001 0.001 0.001
Richer 0.001 0.000 0.020 0.000 0.001 0.002
Richest 0.002 0.000 0.040 0.000 0.002 0.002
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Table 6.35: Model 1.2.2: Estimates of Monte Carlo errors after MICE is
applied to unweighted data set with approximately 50% MAR data on marital
status and region is a woman is not using any contraceptive method.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.010 0.004 0.080 0.025 0.011 0.015
Living together 0.003 0.001 0.010 0.000 0.003 0.004
Widowed 0.004 0.001 0.050 0.000 0.004 0.004
Divorced 0.005 0.001 0.040 0.002 0.006 0.005
Not living together 0.003 0.001 0.090 0.000 0.003 0.004
Bas Kongo 0.004 0.001 0.030 0.000 0.005 0.005
Bandundu 0.004 0.001 0.080 0.000 0.004 0.004
Equateur 0.004 0.001 0.050 0.016 0.005 0.005
Orientale 0.003 0.001 0.070 0.000 0.004 0.004
Nord Kivu 0.004 0.001 0.060 0.001 0.004 0.004
Maniema 0.004 0.001 0.060 0.001 0.005 0.005
Sud Kivu 0.004 0.001 0.110 0.000 0.004 0.004
Katanga 0.003 0.001 0.020 0.000 0.004 0.004
Kasai Occidental 0.005 0.002 0.060 0.000 0.006 0.005
Kasai Oriental 0.004 0.001 0.100 0.000 0.005 0.004
Age 0.000 0.000 0.020 0.000 0.000 0.000
Education 0.000 0.000 0.050 0.000 0.000 0.000
Poorer 0.001 0.000 0.020 0.000 0.001 0.001
Middle 0.001 0.000 0.020 0.000 0.001 0.001
Richer 0.001 0.000 0.020 0.000 0.001 0.001
Richest 0.002 0.000 0.070 0.000 0.002 0.002
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Table 6.36: Model 1.2.2: Estimates of Monte Carlo errors after MICE is
applied to weighted data set with approximately 50% MAR data on marital
status and region is a woman is not using any contraceptive method.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.010 0.003 0.050 0.037 0.009 0.013
Living together 0.003 0.001 0.040 0.006 0.003 0.004
Widowed 0.004 0.001 0.070 0.000 0.004 0.005
Divorced 0.006 0.001 0.030 0.021 0.006 0.006
Not living together 0.004 0.001 0.060 0.000 0.004 0.005
Bas Kongo 0.006 0.002 0.070 0.015 0.008 0.007
Bandundu 0.004 0.001 0.080 0.000 0.005 0.005
Equateur 0.004 0.001 0.040 0.026 0.005 0.005
Orientale 0.004 0.001 0.040 0.000 0.004 0.004
Nord Kivu 0.005 0.002 0.090 0.000 0.006 0.006
Maniema 0.005 0.002 0.080 0.000 0.006 0.006
Sud Kivu 0.004 0.001 0.080 0.000 0.004 0.005
Katanga 0.004 0.001 0.080 0.000 0.004 0.005
Kasai Occidental 0.004 0.002 0.110 0.000 0.006 0.004
Kasai Oriental 0.004 0.001 0.100 0.000 0.005 0.005
Age 0.000 0.000 0.020 0.000 0.000 0.000
Education 0.000 0.000 0.020 0.000 0.000 0.000
Poorer 0.001 0.000 0.020 0.005 0.001 0.001
Middle 0.001 0.000 0.020 0.002 0.001 0.001
Richer 0.002 0.000 0.030 0.000 0.002 0.002
Richest 0.002 0.000 0.060 0.000 0.002 0.002
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Table 6.37: Model 1.2.2: Estimates of Monte Carlo errors after MVNI is
applied to unweighted data set with approximately 50% MCAR data on marital
status and region.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.012 0.006 0.090 0.008 0.019 0.016
Living together 0.005 0.003 0.200 0.000 0.007 0.008
Widowed 0.011 0.006 0.050 0.000 0.018 0.015
Divorced 0.012 0.007 0.100 0.023 0.019 0.017
Not living together 0.007 0.004 0.030 0.001 0.011 0.010
Bas Kongo 0.007 0.004 0.022 0.000 0.009 0.010
Bandundu 0.007 0.003 0.090 0.024 0.010 0.009
Equateur 0.007 0.003 0.090 0.003 0.010 0.008
Orientale 0.008 0.004 0.090 0.000 0.010 0.011
Nord Kivu 0.007 0.003 0.050 0.000 0.010 0.009
Maniema 0.008 0.004 0.070 0.000 0.011 0.011
Sud Kivu 0.009 0.005 0.030 0.000 0.013 0.013
Katanga 0.006 0.003 0.050 0.000 0.008 0.010
Kasai Occidental 0.008 0.004 0.030 0.000 0.012 0.011
Kasai Oriental 0.008 0.004 0.090 0.000 0.011 0.010
Age 0.000 0.000 0.050 0.000 0.000 0.000
Education 0.000 0.000 0.100 0.000 0.000 0.000
Poorer 0.001 0.000 0.020 0.001 0.001 0.002
Middle 0.001 0.000 0.030 0.000 0.001 0.001
Richer 0.001 0.000 0.040 0.000 0.001 0.001
Richest 0.003 0.001 0.030 0.000 0.004 0.004
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Table 6.38: Model 1.2.2: Estimates of Monte Carlo errors after MVNI is
applied to weighted data set with approximately 50% MCAR data on marital
status and region.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.016 0.009 0.080 0.033 0.022 0.025
Living together 0.006 0.003 0.030 0.000 0.009 0.008
Widowed 0.012 0.006 0.050 0.000 0.017 0.017
Divorced 0.014 0.007 0.070 0.038 0.021 0.018
Not living together 0.009 0.004 0.010 0.002 0.013 0.012
Bas Kongo 0.009 0.004 0.020 0.000 0.011 0.012
Bandundu 0.008 0.004 0.070 0.037 0.011 0.012
Equateur 0.008 0.004 0.090 0.002 0.011 0.010
Orientale 0.010 0.005 0.021 0.000 0.013 0.016
Nord Kivu 0.010 0.005 0.030 0.000 0.015 0.014
Maniema 0.013 0.005 0.040 0.000 0.016 0.017
Sud Kivu 0.012 0.005 0.010 0.000 0.016 0.016
Katanga 0.009 0.004 0.021 0.000 0.012 0.013
Kasai Occidental 0.010 0.005 0.021 0.000 0.014 0.015
Kasai Oriental 0.008 0.004 0.021 0.000 0.011 0.011
Age 0.000 0.000 0.030 0.000 0.000 0.000
Education 0.000 0.000 0.040 0.000 0.000 0.000
Poorer 0.002 0.000 0.020 0.010 0.002 0.002
Middle 0.002 0.000 0.020 0.004 0.002 0.002
Richer 0.002 0.000 0.040 0.000 0.002 0.002
Richest 0.005 0.001 0.100 0.000 0.005 0.005
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Table 6.39: Model 1.2.2: Estimates of Monte Carlo errors after MICE is
applied to unweighted data set with approximately 50% MCAR data on marital
status and region.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.014 0.007 0.100 0.019 0.019 0.019
Living together 0.005 0.003 0.200 0.000 0.006 0.008
Widowed 0.014 0.007 0.090 0.000 0.019 0.019
Divorced 0.012 0.007 0.100 0.022 0.017 0.018
Not living together 0.008 0.004 0.030 0.001 0.013 0.010
Bas Kongo 0.007 0.004 0.021 0.000 0.009 0.011
Bandundu 0.008 0.004 0.010 0.011 0.012 0.011
Equateur 0.008 0.004 0.090 0.028 0.010 0.011
Orientale 0.009 0.004 0.070 0.000 0.011 0.012
Nord Kivu 0.008 0.005 0.030 0.001 0.014 0.011
Maniema 0.009 0.004 0.020 0.001 0.013 0.011
Sud Kivu 0.009 0.004 0.090 0.000 0.012 0.012
Katanga 0.008 0.005 0.050 0.000 0.012 0.012
Kasai Occidental 0.008 0.005 0.031 0.000 0.013 0.012
Kasai Oriental 0.009 0.006 0.040 0.000 0.015 0.015
Age 0.000 0.000 0.040 0.000 0.000 0.000
Education 0.000 0.000 0.100 0.000 0.000 0.000
Poorer 0.001 0.000 0.030 0.001 0.001 0.001
Middle 0.001 0.000 0.030 0.000 0.002 0.001
Richer 0.002 0.000 0.060 0.000 0.002 0.002
Richest 0.004 0.001 0.090 0.000 0.005 0.005
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Table 6.40: Model 1.2.2: Estimates of Monte Carlo errors after MICE is
applied to weighted data set with approximately 50% MCAR data on marital
status and region.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.017 0.009 0.090 0.049 0.021 0.028
Living together 0.006 0.003 0.030 0.001 0.009 0.008
Widowed 0.019 0.009 0.040 0.000 0.025 0.027
Divorced 0.013 0.007 0.060 0.030 0.023 0.016
Not living together 0.010 0.005 0.020 0.003 0.013 0.014
Bas Kongo 0.009 0.006 0.021 0.000 0.017 0.015
Bandundu 0.008 0.005 0.100 0.028 0.014 0.011
Equateur 0.008 0.004 0.080 0.010 0.011 0.011
Orientale 0.009 0.004 0.060 0.000 0.011 0.013
Nord Kivu 0.011 0.006 0.040 0.002 0.014 0.017
Maniema 0.011 0.005 0.030 0.001 0.015 0.016
Sud Kivu 0.011 0.005 0.020 0.000 0.014 0.015
Katanga 0.007 0.003 0.090 0.000 0.008 0.010
Kasai Occidental 0.007 0.003 0.070 0.000 0.009 0.008
Kasai Oriental 0.009 0.005 0.020 0.000 0.014 0.013
Age 0.000 0.000 0.020 0.000 0.000 0.000
Education 0.000 0.000 0.030 0.000 0.000 0.000
Poorer 0.002 0.000 0.020 0.009 0.002 0.002
Middle 0.002 0.000 0.020 0.004 0.002 0.002
Richer 0.002 0.000 0.040 0.000 0.002 0.002
Richest 0.004 0.002 0.050 0.000 0.006 0.005
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Model 2: Estimates of Monte Carlo errors after

MVNI and MICE are used

Model 2.1: Estimates of Monte Carlo errors after MVNI

and MICE are applied to data set with missing values on

the binary outcome variable

Table 6.41: Model 2.1: Estimates of Monte Carlo errors after MVNI is applied
to unweighted data set with approximately 50% MAR data on contraceptive
method use status if a woman is aged at least 35 years.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.000 0.000 0.000 0.000 0.000 0.000
Living together 0.000 0.000 0.000 0.000 0.000 0.000
Widowed 0.000 0.003 0.000 0.000 0.000 0.000
Divorced 0.000 0.000 0.000 0.000 0.000 0.000
Not living together 0.003 0.000 0.000 0.000 0.000 0.000

Table 6.42: Model 2.1: Estimates of Monte Carlo errors after MVNI is ap-
plied to weighted data set with approximately 50% MAR data on contraceptive
method use status if a woman is aged at least 35 years.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.000 0.000 0.000 0.000 0.000 0.000
Living together 0.000 0.000 0.000 0.000 0.000 0.000
Widowed 0.000 0.003 0.000 0.000 0.000 0.000
Divorced 0.000 0.000 0.000 0.000 0.000 0.000
Not living together 0.003 0.000 0.000 0.000 0.000 0.000
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Table 6.43: Model 2.1: Estimates of Monte Carlo errors after MICE is applied
to unweighted data set with approximately 50% MAR data on contraceptive
method use status if a woman is aged at least 35 years.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.002 0.000 0.010 0.000 0.002 0.002
Living together 0.002 0.000 0.090 0.000 0.002 0.002
Widowed 0.002 0.000 0.020 0.000 0.002 0.002
Divorced 0.002 0.000 0.010 0.000 0.002 0.002
Not notliving together 0.002 0.000 0.030 0.000 0.002 0.002

Table 6.44: Model 2.1: Estimates of Monte Carlo errors after MICE is ap-
plied to weighted data set with approximately 50% MAR data on contraceptive
method use status if a woman is aged at least 35 years.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.002 0.000 0.010 0.000 0.002 0.002
Living together 0.002 0.001 0.050 0.000 0.002 0.002
Widowed 0.002 0.000 0.020 0.000 0.002 0.002
Divorced 0.002 0.000 0.010 0.004 0.002 0.002
Not notliving together 0.002 0.000 0.020 0.000 0.002 0.002

Table 6.45: Model 2.1: Estimates of Monte Carlo errors after MVNI is applied
to unweighted data set with approximately 50% MCAR data on contraceptive
method use status.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.011 0.005 0.100 0.000 0.015 0.013
Living together 0.004 0.002 0.020 0.000 0.005 0.006
Widowed 0.010 0.005 0.100 0.000 0.013 0.016
Divorced 0.011 0.006 0.020 0.005 0.015 0.016
Not living together 0.006 0.003 0.100 0.016 0.008 0.010
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Table 6.46: Model 2.1: Estimates of Monte Carlo errors after MVNI is applied
to weighted data set with approximately 50% MCAR data on contraceptive
method use status.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.016 0.009 0.100 0.016 0.029 0.020
Living together 0.007 0.004 0.060 0.000 0.008 0.012
Widowed 0.014 0.007 0.070 0.000 0.018 0.020
Divorced 0.015 0.007 0.070 0.016 0.024 0.017
Not living together 0.008 0.005 0.080 0.015 0.014 0.010

Table 6.47: Model 2.1: Estimates of Monte Carlo errors after MICE is applied
to unweighted data set with approximately 50% MCAR data on contraceptive
method use status.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.011 0.005 0.100 0.001 0.014 0.016
Living together 0.005 0.002 0.080 0.000 0.007 0.006
Widowed 0.014 0.007 0.030 0.000 0.018 0.020
Divorced 0.011 0.006 0.100 0.004 0.017 0.015
Not living together 0.006 0.003 0.100 0.022 0.008 0.010

Table 6.48: Model 2.1: Estimates of Monte Carlo errors after MICE is applied
to weighted data set with approximately 50% MCAR on contraceptive method
use status.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Never married 0.015 0.010 0.090 0.009 0.020 0.028
Living together 0.005 0.002 0.100 0.000 0.007 0.007
Widowed 0.019 0.011 0.080 0.000 0.030 0.026
Divorced 0.013 0.006 0.070 0.010 0.019 0.015
Not living together 0.009 0.004 0.070 0.014 0.014 0.010
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Model 2.2: Estimates of Monte Carlo errors after MVNI

and MICE are applied to outcome variable with more than

two levels or categories

Table 6.49: Model 2.2: Estimates of Monte Carlo errors after MVNI is applied
to unweighted data set with approximately 50% MAR data on contraceptive
method use status if a woman is aged at least 35 years.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Traditional method
Never married 0.000 0.000 0.000 0.000 0.000 0.000
Living together 0.000 0.000 0.000 0.000 0.000 0.000
Widowed 0.000 0.000 0.000 0.000 0.000 0.000
Divorced 0.000 0.000 0.000 0.000 0.000 0.000
Not living together 0.000 0.000 0.000 0.000 0.000 0.000
Modern method
Never married 0.000 0.000 0.000 0.000 0.000 0.000
Living together 0.000 0.000 0.000 0.000 0.000 0.000
Widowed 0.000 0.000 0.000 0.000 0.000 0.000
Divorced 0.000 0.000 0.000 0.000 0.000 0.000
Not living together 0.000 0.000 0.000 0.000 0.000 0.000

Table 6.50: Model 2.2: Estimates of Monte Carlo errors after MVNI is ap-
plied to weighted data set with approximately 50% MAR data on contraceptive
method use status if a woman is aged at least 35 years.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Traditional method
Never married 0.000 0.000 0.000 0.000 0.000 0.000
Living together 0.000 0.000 0.000 0.000 0.000 0.000
Widowed 0.000 0.000 0.000 0.000 0.000 0.000
Divorced 0.000 0.000 0.000 0.000 0.000 0.000
Not living together 0.003 0.000 0.000 0.000 0.000 0.000
Modern method
Never married 0.000 0.000 0.000 0.000 0.000 0.000
Living together 0.000 0.000 0.000 0.000 0.000 0.000
Widowed 0.000 0.000 0.000 0.000 0.000 0.000
Divorced 0.000 0.000 0.000 0.000 0.000 0.000
Not living together 0.003 0.000 0.000 0.000 0.000 0.000
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Table 6.51: Model 2.2: Estimates of Monte Carlo errors after MICE is applied
to unweighted data set with approximately 50% MAR data on contraceptive
method use status if a woman is aged at least 35 years.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Traditional method
Never married 0.004 0.001 0.030 0.008 0.005 0.004
Living together 0.002 0.001 0.080 0.000 0.003 0.003
Widowed 0.018 0.009 0.230 0.000 0.029 0.019
Divorced 0.009 0.005 0.110 0.005 0.011 0.016
Not living together 0.005 0.002 0.070 0.000 0.006 0.005
Modern method
Never married 0.005 0.001 0.040 0.000 0.005 0.005
Living together 0.004 0.002 0.140 0.000 0.005 0.005
Widowed 0.015 0.008 0.120 0.003 0.021 0.022
Divorced 0.010 0.004 0.060 0.027 0.012 0.013
Not living together 0.006 0.002 0.050 0.037 0.007 0.008

Table 6.52: Model 2.2: Estimates of Monte Carlo errors after MICE is ap-
plied to weighted data set with approximately 50% MAR data on contraceptive
method use status if a woman is aged at least 35 years.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Traditional method
Never married 0.006 0.030 0.030 0.018 0.006 0.006
Living together 0.003 0.050 0.050 0.003 0.004 0.004
Widowed 0.021 0.240 0.240 0.000 0.031 0.027
Divorced 0.011 0.050 0.050 0.011 0.013 0.012
Not living together 0.007 0.110 0.110 0.000 0.008 0.010
Modern method
Never married 0.006 0.030 0.030 0.000 0.006 0.007
Living together 0.005 0.090 0.090 0.000 0.005 0.006
Widowed 0.016 0.110 0.110 0.001 0.019 0.022
Divorced 0.012 0.050 0.050 0.012 0.012 0.020
Not living together 0.007 0.002 0.040 0.019 0.008 0.009
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Table 6.53: Model 2.2: Estimates of Monte Carlo errors after MVNI is applied
to unweighted data set with approximately 50% MCAR data on contraceptive
method use status.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Traditional method
Never married 0.000 0.000 0.000 0.000 0.000 0.000
Living together 0.000 0.000 0.000 0.000 0.000 0.000
Widowed 0.000 0.000 0.000 0.000 0.000 0.000
Divorced 0.000 0.000 0.000 0.000 0.000 0.000
Not living together 0.000 0.000 0.000 0.000 0.000 0.000
Modern method
Never married 0.000 0.000 0.000 0.000 0.000 0.000
Living together 0.000 0.000 0.000 0.000 0.000 0.000
Widowed 0.000 0.000 0.000 0.000 0.000 0.000
Divorced 0.000 0.000 0.000 0.000 0.000 0.000
Not living together 0.000 0.000 0.000 0.000 0.000 0.000

Table 6.54: Model 2.2: Estimates of Monte Carlo errors after MVNI is applied
to weighted data set with approximately 50% MCAR data on contraceptive
method use status.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Traditional method
Never married 0.000 0.000 0.000 0.000 0.000 0.000
Living together 0.000 0.000 0.000 0.000 0.000 0.000
Widowed 0.000 0.000 0.000 0.000 0.000 0.000
Divorced 0.000 0.000 0.000 0.000 0.000 0.000
Not living together 0.003 0.000 0.000 0.000 0.000 0.000
Modern method
Never married 0.000 0.000 0.000 0.000 0.000 0.000
Living together 0.000 0.000 0.000 0.000 0.000 0.000
Widowed 0.000 0.000 0.000 0.000 0.000 0.000
Divorced 0.000 0.000 0.000 0.000 0.000 0.000
Not living together 0.003 0.000 0.000 0.000 0.000 0.000
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Table 6.55: Model 2.2: Estimates of Monte Carlo errors after MICE is applied
to unweighted data set with approximately 50% MCAR data on contraceptive
methods use status.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Traditional method
Never married 0.015 0.008 0.070 0.052 0.022 0.022
Living together 0.005 0.002 0.100 0.000 0.006 0.006
Widowed 0.021 0.011 0.090 0.000 0.032 0.028
Divorced 0.014 0.006 0.120 0.000 0.019 0.018
Not living together 0.007 0.004 0.100 0.008 0.010 0.011
Modern method
Never married 0.016 0.008 0.070 0.000 0.022 0.023
Living together 0.006 0.003 0.090 0.000 0.009 0.008
Widowed 0.017 0.007 0.110 0.002 0.023 0.021
Divorced 0.015 0.007 0.070 0.046 0.020 0.020
Not living together 0.011 0.005 0.080 0.058 0.018 0.011

Table 6.56: Model 2.2: Estimates of Monte Carlo errors after MICE is applied
to weighted data set with approximately 50% MCAR data on contraceptive
methods use status.

Statistics
Coef. Std. t P > t Lower limit of Upper limit of

Error the 95% C.I the 95% C.I
Traditional method
Never married 0.023 0.011 0.070 0.059 0.030 0.032
Living together 0.006 0.002 0.100 0.002 0.008 0.007
Widowed 0.031 0.019 0.070 0.000 0.052 0.045
Divorced 0.013 0.004 0.050 0.004 0.017 0.013
Not living together 0.009 0.006 0.110 0.004 0.018 0.013
Modern method
Never married 0.016 0.007 0.110 0.000 0.020 0.022
Living together 0.009 0.005 0.090 0.000 0.013 0.012
Widowed 0.023 0.013 0.100 0.003 0.039 0.029
Divorced 0.015 0.007 0.060 0.039 0.019 0.021
Not living together 0.012 0.006 0.060 0.050 0.015 0.017
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Model 1.1: Imputation models diagnostics

Imputation models’s diagnostics when 50% of data are miss-

ing at random or completely at random on the covariate

Unweighted data sets

Figure 6.25: Model 1.1: Convergence of MCMC after MVNI under MAR
assumption on marital status: plot of the estimates of WLF against the iteration
numbers for unweighted data set.

Figure 6.26: Model 1.1: Convergence of MCMC after MVNI under MAR
assumption on marital status: plot of the estimates of WLF versus the lag
numbers for unweighted data set.
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Figure 6.27: Model 1.1: Convergence of MCMC after MICE under MAR
assumption on marital status: plot of the estimates of WLF against the iteration
numbers for unweighted data set.

Figure 6.28: Model 1.1: Convergence of MCMC after MICE under MAR
assumption on marital status: plot of the estimates of WLF versus the lag
numbers for unweighted data set.
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Figure 6.29: Model 1.1: Convergence of MCMC after MVNI under MCAR
assumption on marital status: plot of the estimates of WLF against the iteration
numbers for unweighted data set.

Figure 6.30: Model 1.1: Convergence of MCMC after MVNI under MCAR
assumption on marital status: plot of the estimates of WLF versus the lag
numbers for unweighted data set.
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Figure 6.31: Model 1.1: Convergence of MCMC after MICE under MCAR
assumption on marital status: plot of the estimates of WLF against the iteration
numbers for unweighted data set.

Figure 6.32: Model 1.1: Convergence of MCMC after MICE under MCAR
assumption on marital status: plot of the estimates of WLF versus the lag
numbers for unweighted data set.

Weighted data sets
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Figure 6.33: Model 1.1: Convergence of MCMC after MVNI under MAR
assumption on marital status: plot of the estimates of WLF against the iteration
numbers for weighted data set.

Figure 6.34: Model 1.1: Convergence of MCMC after MVNI under MAR
assumption on marital status: plot of the estimates of WLF versus the lag
numbers for weighted data set.
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Figure 6.35: Model 1.1: Convergence of MCMC after MICE under MAR
assumption on marital status: plot of the estimates of WLF against the iteration
numbers for weighted data set.

Figure 6.36: Model 1.1: Convergence of MCMC after MICE under MAR
assumption on marital status: plot of the estimates of WLF versus the lag
numbers for weighted data set.
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Figure 6.37: Model 1.1: Convergence of MCMC after MVNI under MCAR
assumption on marital status: plot of the estimates of WLF against the iteration
numbers for weighted data set.

Figure 6.38: Model 1.1: Convergence of MCMC after MVNI under MCAR
assumption on marital status: plot of the estimates of WLF versus the lag
numbers for weighted data set.

 

 

 

 



Appendix D. Model 1: Imputation models diagnostics 220

Figure 6.39: Model 1.1: Convergence of MCMC after MICE under MCAR
assumption on marital status: plot of the estimates of WLF against the iteration
numbers for weighted data set.

Figure 6.40: Model 1.1: Convergence of MCMC after MICE under MCAR
assumption on marital status: plot of the estimates of WLF versus the lag
numbers for weighted data set.

Imputation models’s diagnostics when 30% of data are miss-

ing at random or completely at random on the covariate

Unweighted data sets
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Figure 6.41: Model 1.1: Convergence of MCMC after MVNI under MAR
assumption on marital status: plot of the estimates of WLF against the iteration
numbers for unweighted data set.

Figure 6.42: Model 1.1: Convergence of MCMC after MVNI under MAR
assumption on marital status: plot of the estimates of WLF versus the lag
numbers for unweighted data set
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Figure 6.43: Model 1.1: Convergence of MCMC after MICE under MAR
assumption on marital status: plot of the estimates of WLF against the iteration
numbers for unweighted data set

Figure 6.44: Model 1.1: Convergence of MCMC after MICE under MAR
assumption on marital status: plot of the estimates of WLF versus the lag
numbers for unweighted data set
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Figure 6.45: Model 1.1: Convergence of MCMC after MVNI under MCAR
assumption on marital status: plot of the estimates of WLF against the iteration
numbers for unweighted data set.

Figure 6.46: Model 1.1: Convergence of MCMC after MVNI under MCAR
assumption on marital status: plot of the estimates of WLF versus the lag
numbers for unweighted data set
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Figure 6.47: Model 1.1: Convergence of MCMC after MICE under MCAR
assumption on marital status: plot of the estimates of WLF against the iteration
numbers for unweighted data set

Figure 6.48: Model 1.1: Convergence of MCMC after MICE under MCAR
assumption on marital status: plot of the estimates of WLF versus the lag
numbers for unweighted data set

Weighted data sets
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Figure 6.49: Model 1.1: Convergence of MCMC after MVNI under MAR
assumption on marital status: plot of the estimates of WLF against the iteration
numbers for weighted data set.

Figure 6.50: Model 1.1: Convergence of MCMC after MVNI under MAR
assumption on marital status: plot of the estimates of WLF versus the lag
numbers for weighted data set.
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Figure 6.51: Model 1.1: Convergence of MCMC after MICE under MAR
assumption on marital status: plot of the estimates of WLF against the iteration
numbers for weighted data set.

Figure 6.52: Model 1.1: Convergence of MCMC after MICE under MAR
assumption on marital status: plot of the estimates of WLF versus the lag
numbers for weighted data set
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Figure 6.53: Model 1.1: Convergence of MCMC after MVNI under MCAR
assumption on marital status: plot of the estimates of WLF against the iteration
numbers for weighted data set.

Figure 6.54: Model 1.1: Convergence of MCMC after MVNI under MCAR
assumption on marital status: plot of the estimates of WLF versus the lag
numbers for weighted data set.

 

 

 

 



Appendix D. Model 1: Imputation models diagnostics 228

Figure 6.55: Model 1.1: Convergence of MCMC after MICE under MCAR
assumption on marital status: plot of the estimates of WLF against the iteration
numbers for weighted data set.

Figure 6.56: Model 1.1: Convergence of MCMC after MICE under MCAR
assumption on marital status: plot of the estimates of WLF versus the lag
numbers for weighted data set

Imputation models’s diagnostics when 10% of data are miss-

ing at random or completely at random on the covariate

Unweighted data sets
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Figure 6.57: Model 1.1: Convergence of MCMC after MVNI under MAR
assumption on marital status: plot of the estimates of WLF against the iteration
numbers for unweighted data set.

Figure 6.58: Model 1.1: Convergence of MCMC after MVNI under MAR
assumption on marital status: plot of the estimates of WLF versus the lag
numbers for unweighted data set.
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Figure 6.59: Model 1.1: Convergence of MCMC after MICE under MAR
assumption on marital status: plot of the estimates of WLF against the iteration
numbers for unweighted data set.

Figure 6.60: Model 1.1: Convergence of MCMC after MICE under MAR
assumption on marital status: plot of the estimates of WLF versus the lag
numbers for unweighted data set.
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Figure 6.61: Model 1.1: Convergence of MCMC after MVNI under MCAR
assumption on marital status: plot of the estimates of WLF against the iteration
numbers for unweighted data set.

Figure 6.62: Model 1.1: Convergence of MCMC after MVNI under MCAR
assumption on marital status: plot of the estimates of WLF versus the lag
numbers for unweighted data set.
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Figure 6.63: Model 1.1: Convergence of MCMC after MICE under MCAR
assumption on marital status: plot of the estimates of WLF against the iteration
numbers for unweighted data set.

Figure 6.64: Model 1.1: Convergence of MCMC after MICE under MCAR
assumption on marital status: plot of the estimates of WLF versus the lag
numbers for unweighted data set.

Weighted data sets
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Figure 6.65: Model 1.1: Convergence of MCMC after MVNI under MAR
assumption on marital status: plot of the estimates of WLF against the iteration
numbers for weighted data set.

Figure 6.66: Model 1.1: Convergence of MCMC after MVNI under MAR
assumption on marital status: plot of the estimates of WLF versus the lag
numbers for weighted data set.
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Figure 6.67: Model 1.1: Convergence of MCMC after MICE under MAR
assumption on marital status: plot of the estimates of WLF against the iteration
numbers for weighted data set.

Figure 6.68: Model 1.1: Convergence of MCMC after MICE under MAR
assumption on marital status: plot of the estimates of WLF versus the lag
numbers for weighted data set.
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Figure 6.69: Model 1.1: Convergence of MCMC after MVNI under MCAR
assumption on marital status: plot of the estimates of WLF against the iteration
numbers for weighted data set.

Figure 6.70: Model 1.1: Convergence of MCMC after MVNI under MCAR
assumption on marital status: plot of the estimates of WLF versus the lag
numbers for weighted data set.
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Figure 6.71: Model 1.1: Convergence of MCMC after MICE under MCAR
assumption on marital status: plot of the estimates of WLF against the iteration
numbers for weighted data set.

Figure 6.72: Model 1.1: Convergence of MCMC after MICE under MCAR
assumption on marital status: plot of the estimates of WLF versus the lag
numbers for weighted data set.

Model 1.2: Imputation models diagnostics

Model 1.2.1: Imputation models diagnostics

Unweighted data sets
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Figure 6.73: Model 1.2.1: Convergence of MCMC after MVNI under MAR
assumption on marital status: plot of the estimates of WLF against the iteration
numbers for unweighted data set.

Figure 6.74: Model 1.2.1: Convergence of MCMC after MVNI under MAR
assumption on marital status: plot of the estimates of WLF versus the lag
numbers for unweighted data set.
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Figure 6.75: Model 1.2.1: Convergence of MCMC after MICE under MAR
assumption on marital status: plot of the estimates of WLF against the iteration
numbers for unweighted data set.

Figure 6.76: Model 1.2.1: Convergence of MCMC after MICE under MAR
assumption on marital status: plot of the estimates of WLF versus the lag
numbers for unweighted data set.
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Figure 6.77: Model 1.2.1: Convergence of MCMC after MVNI under MCAR
assumption on marital status: plot of the estimates of WLF against the iteration
numbers for unweighted data set.

Figure 6.78: Model 1.2.1: Convergence of MCMC after MVNI under MCAR
assumption on marital status: plot of the estimates of WLF versus the lag
numbers for unweighted data set.
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Figure 6.79: Model 1.2.1: Convergence of MCMC after MICE under MCAR
assumption on marital status: plot of the estimates of WLF against the iteration
numbers for unweighted data set.

Figure 6.80: Model 1.2.1: Convergence of MCMC after MICE under MCAR
assumption on marital status: plot of the estimates of WLF versus the lag
numbers for unweighted data set.

Weighted data sets
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Figure 6.81: Model 1.2.1: Convergence of MCMC after MVNI under MAR
assumption on marital status: plot of the estimates of WLF against the iteration
numbers for weighted data set.

Figure 6.82: Model 1.2.1: Convergence of MCMC after MVNI under MAR
assumption on marital status: plot of the estimates of WLF versus the lag
numbers for weighted data set.
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Figure 6.83: Model 1.2.1: Convergence of MCMC after MICE under MAR
assumption on marital status: plot of the estimates of WLF against the iteration
numbers for weighted data set.

Figure 6.84: Model 1.2.1: Convergence of MCMC after MICE under MAR
assumption on marital status: plot of the estimates of WLF versus the lag
numbers for weighted data set.
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Figure 6.85: Model 1.2.1: Convergence of MCMC after MVNI under MCAR
assumption on marital status: plot of the estimates of WLF against the iteration
numbers for weighted data set.

Figure 6.86: Model 1.2.1: Convergence of MCMC after MVNI under MCAR
assumption on marital status: plot of the estimates of WLF versus the lag
numbers for weighted data set.

 

 

 

 



Appendix D. Model 1: Imputation models diagnostics 244

Figure 6.87: Model 1.2.1: Convergence of MCMC after MICE under MCAR
assumption on marital status: plot of the estimates of WLF against the iteration
numbers for weighted data set.

Figure 6.88: Model 1.2.1: Convergence of MCMC after MICE under MCAR
assumption on marital status: plot of the estimates of WLF versus the lag
numbers for weighted data set.

Model 1.2.2: Imputation models diagnostics

Unweighted data sets
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Figure 6.89: Model 1.2.2: Convergence of MCMC after MVNI under MAR
assumption on marital status: plot of the estimates of WLF against the iteration
numbers for unweighted data set.

Figure 6.90: Model 1.2.2: Convergence of MCMC after MVNI under MAR
assumption on marital status: plot of the estimates of WLF versus the lag
numbers for unweighted data set.
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Figure 6.91: Model 1.2.2: Convergence of MCMC after MICE under MAR
assumption on marital status: plot of the estimates of WLF against the iteration
numbers for unweighted data set.

Figure 6.92: Model 1.2.2: Convergence of MCMC after MICE under MAR
assumption on marital status: plot of the estimates of WLF versus the lag
numbers for unweighted data set.
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Figure 6.93: Model 1.2.2: Convergence of MCMC after MVNI under MCAR
assumption on marital status: plot of the estimates of WLF against the iteration
numbers for unweighted data set.

Figure 6.94: Model 1.2.2: Convergence of MCMC after MVNI under MCAR
assumption on marital status: plot of the estimates of WLF versus the lag
numbers for unweighted data set.
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Figure 6.95: Model 1.2.2: Convergence of MCMC after MICE under MCAR
assumption on marital status: plot of the estimates of WLF against the iteration
numbers for unweighted data set.

Figure 6.96: Model 1.2.2: Convergence of MCMC after MICE under MCAR
assumption on marital status: plot of the estimates of WLF versus the lag
numbers for unweighted data set.

Weighted data sets
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Figure 6.97: Model 1.2.2: Convergence of MCMC after MVNI under MAR
assumption on marital status: plot of the estimates of WLF against the iteration
numbers for weighted data set

Figure 6.98: Model 1.2.2: Convergence of MCMC after MVNI under MAR
assumption on marital status: plot of the estimates of WLF versus the lag
numbers for weighted data set.
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Figure 6.99: Model 1.2.2: Convergence of MCMC after MICE under MAR
assumption on marital status: plot of the estimates of WLF against the iteration
numbers for weighted data set.

Figure 6.100: Model 1.2.2: Convergence of MCMC after MICE under MAR
assumption on marital status: plot of the estimates of WLF versus the lag
numbers for weighted data set.
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Figure 6.101: Model 1.2.2: Convergence of MCMC after MVNI under MCAR
assumption on marital status: plot of the estimates of WLF against the iteration
numbers for weighted data set

Figure 6.102: Model 1.2.2: Convergence of MCMC after MVNI under MCAR
assumption on marital status: plot of the estimates of WLF versus the lag
numbers for weighted data set.
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Figure 6.103: Model 1.2.2: Convergence of MCMC after MICE under MCAR
assumption on marital status: plot of the estimates of WLF against the iteration
numbers for weighted data set.

Figure 6.104: Model 1.2.2: Convergence of MCMC after MICE under MCAR
assumption on marital status: plot of the estimates of WLF versus the lag
numbers for weighted data set.

Model 2.1: Imputation models diagnostics

Unweighted data sets
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Figure 6.105: Model 2.1: Convergence of MCMC after MVNI under MAR
assumption on contraceptive method use status (dichotomous variable): plot of
the estimates of WLF against the iteration numbers for unweighted data set.

Figure 6.106: Model 2.1: Convergence of MCMC after MVNI under MAR
assumption on contraceptive method use status (dichotomous variable): plot of
the estimates of WLF versus the lag numbers for unweighted data set.

 

 

 

 



Appendix D. Model 1: Imputation models diagnostics 254

Figure 6.107: Model 2.1: Convergence of MCMC after MICE under MAR
assumption on contraceptive method use status (dichotomous variable): plot of
the estimates of WLF against the iteration numbers for unweighted data set.

Figure 6.108: Model 2.1: Convergence of MCMC after MICE under MAR
assumption on contraceptive method use status (dichotomous variable): plot of
the estimates of WLF versus the lag numbers for unweighted data set.
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Figure 6.109: Model 2.1: Convergence of MCMC after MVNI under MCAR
assumption on contraceptive method use status (dichotomous variable): plot of
the estimates of WLF against the iteration numbers for unweighted data set.

Figure 6.110: Model 2.1: Convergence of MCMC after MVNI under MCAR
assumption on contraceptive method use status (dichotomous variable): plot of
the estimates of WLF versus the lag numbers for unweighted data set.
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Figure 6.111: Model 2.1: Convergence of MCMC after MICE under MCAR
assumption on contraceptive method use status (dichotomous variable): plot of
the estimates of WLF against the iteration numbers for unweighted data set.

Figure 6.112: Model 2.1: Convergence of MCMC after MICE under MCAR
assumption on contraceptive method use status (dichotomous variable): plot of
the estimates of WLF versus the lag numbers for unweighted data set.

Weighted data sets
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Figure 6.113: Model 2.1: Convergence of MCMC after MVNI under MAR
assumption on contraceptive method use status (dichotomous variable): plot of
the estimates of WLF against the iteration numbers for weighted data set.

Figure 6.114: Model 2.1: Convergence of MCMC after MVNI under MAR
assumption on contraceptive method use status (dichotomous variable): plot of
the estimates of WLF versus the lag numbers for weighted data set.
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Figure 6.115: Model 2.1: Convergence of MCMC after MICE under MAR
assumption on contraceptive method use status (dichotomous variable): plot of
the estimates of WLF against the iteration numbers for weighted data set.

Figure 6.116: Model 2.1: Convergence of MCMC after MICE under MAR
assumption on contraceptive method use status (dichotomous variable): plot of
the estimates of WLF versus the lag numbers for weighted data set.
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Figure 6.117: Model 2.1: Convergence of MCMC after MVNI under MCAR
assumption on contraceptive method use status (dichotomous variable): plot of
the estimates of WLF against the iteration numbers for weighted data set.

Figure 6.118: Model 2.1: Convergence of MCMC after MVNI under MCAR
assumption on contraceptive method use status (dichotomous variable): plot of
the estimates of WLF versus the lag numbers for weighted data set.
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Figure 6.119: Model 2.1: Convergence of MCMC after MICE under MCAR
assumption on contraceptive method use status (dichotomous variable): plot of
the estimates of WLF against the iteration numbers for weighted data set.

Figure 6.120: Model 2.1: Convergence of MCMC after MICE under MCAR
assumption on contraceptive method use status (dichotomous variable): plot of
the estimates of WLF versus the lag numbers for weighted data set.

Model 2.2: Imputation models diagnostics

Unweighted data sets
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Figure 6.121: Model 2.2: Convergence of MCMC after MVNI under MAR
assumption on contraceptive method use status (dichotomous variable): plot of
the estimates of WLF against the iteration numbers for unweighted data set.

Figure 6.122: Model 2.2: Convergence of MCMC after MVNI under MAR
assumption on contraceptive method use status (dichotomous variable): plot of
the estimates of WLF versus the lag numbers for unweighted data set.
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Figure 6.123: Model 2.2: Convergence of MCMC after MICE under MAR
assumption on contraceptive method use status (dichotomous variable): plot of
the estimates of WLF against the iteration numbers for unweighted data set.

Figure 6.124: Model 2.2: Convergence of MCMC after MICE under MAR
assumption on contraceptive method use status (dichotomous variable): plot of
the estimates of WLF versus the lag numbers for unweighted data set.
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Figure 6.125: Model 2.2: Convergence of MCMC after MVNI under MCAR
assumption on contraceptive method use status (dichotomous variable): plot of
the estimates of WLF against the iteration numbers for unweighted data set.

Figure 6.126: Model 2.2: Convergence of MCMC after MVNI under MCAR
assumption on contraceptive method use status (dichotomous variable): plot of
the estimates of WLF versus the lag numbers for unweighted data set.
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Figure 6.127: Model 2.2: Convergence of MCMC after MICE under MCAR
assumption on contraceptive method use status (dichotomous variable): plot of
the estimates of WLF against the iteration numbers for unweighted data set.

Figure 6.128: Model 2.2: Convergence of MCMC after MICE under MCAR
assumption on contraceptive method use status (dichotomous variable): plot of
the estimates of WLF versus the lag numbers for unweighted data set.

Weighted data sets
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Figure 6.129: Model 2.2: Convergence of MCMC after MVNI under MAR
assumption on contraceptive method use status (dichotomous variable): plot of
the estimates of WLF against the iteration numbers for weighted data set.

Figure 6.130: Model 2.2: Convergence of MCMC after MVNI under MAR
assumption on contraceptive method use status (dichotomous variable): plot of
the estimates of WLF versus the lag numbers for weighted data set.
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Figure 6.131: Model 2.2: Convergence of MCMC after MICE under MAR
assumption on contraceptive method use status (dichotomous variable): plot of
the estimates of WLF against the iteration numbers for weighted data set.

Figure 6.132: Model 2.2: Convergence of MCMC after MICE under MAR
assumption on contraceptive method use status (dichotomous variable): plot of
the estimates of WLF versus the lag numbers for weighted data set.

 

 

 

 



Appendix D. Model 1: Imputation models diagnostics 267

Figure 6.133: Model 2.2: Convergence of MCMC after MVNI under MCAR
assumption on contraceptive method use status (dichotomous variable): plot of
the estimates of WLF against the iteration numbers for weighted data set.

Figure 6.134: Model 2.2: Convergence of MCMC after MVNI under MCAR
assumption on contraceptive method use status (dichotomous variable): plot of
the estimates of WLF versus the lag numbers for weighted data set.
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Figure 6.135: Model 2.2: Convergence of MCMC after MICE under MCAR
assumption on contraceptive method use status (dichotomous variable): plot of
the estimates of WLF against the iteration numbers for weighted data set.

Figure 6.136: Model 2.2: Convergence of MCMC after MICE under MCAR
assumption on contraceptive method use status (dichotomous variable): plot of
the estimates of WLF versus the lag numbers for weighted data set.
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