Character Tables of Some Selected Groups of Extension Type Using Fischer-Clifford Matrices

A thesis submitted in fulfilment of the requirements for the degree of M.Sc in the Department of Mathematics and Applied Mathematics, University of the Western Cape

Supervisor: Prof. R. Fray Co-supervisor: Dr. A.L. Prins

December 2015

Declaration

I declare that *Character Tables of Some Selected Groups of Extension Type Using Fischer-Clifford Matrices* is my own work, that it has not been submitted before for any degree or assessment to any other university, and that all the sources that I have used or quoted have been indicated and acknowledged by means of complete references.

WESTERN CAPE

.....

R. L. Monaledi

December 2015

Abstract

The aim of this dissertation is to calculate character tables of group extensions. There are several well-developed methods for calculating the character tables of some selected group extensions. The method we study in this dissertation, is a standard application of Clifford theory, made efficient by the use of Fischer-Clifford matrices, as introduced by Fischer. We consider only extensions \overline{G} of the normal subgroup N by the subgroup G with the property that every irreducible character of N can be extended to an irreducible character of its inertia group in \overline{G} , if N is abelian. This is indeed the case if \overline{G} is a split extension, by a well known theorem of Mackey.

UNIVERSITY of the WESTERN CAPE

A brief outline of the classical theory of characters pertinent to this study, is followed by a discussion on the calculation of the conjugacy classes of extension groups by the method of coset analysis. The Clifford theory which provide the basis for the theory of Fischer-Clifford matrices is discussed in detail. Some of the properties of these Fischer-Clifford matrices which make their calculation much easier, are also given.

We restrict ourselves to split extension groups $\overline{G} = N:G$ in which N is always an elementary abelian 2-group. In this thesis we are concerned with the construction of the character tables (by means of the technique of Fischer-Clifford matrices) of certain extension groups which are associated with the orthogonal group $O_{10}^+(2)$, the automorphism groups $U_6(2):2$, $U_6(2):3$ of the unitary group $U_6(2)$ and the smallest Fischer sporadic simple group Fi_{22} . These groups are of the type $2^8:(U_4(2):2), (2^9:L_3(4)):2, (2^9:L_3(4)):3$ and $2^6:(2^5:S_6)$.

UNIVERSITY of the WESTERN CAPE

Acknowledgement

I would like to bear witness to our Lord Jesus Christ, for being my ultimate frame of reference. I would like to thank Him for all the blessings He bestowed on me. I would like to express my gratitude to the following people for their invaluable support:

- my supervisor, Prof R.L. Fray, for his patience and resolute support. It was an honour as well as an immense pleasure being his student.
- my co-supervisor Dr A.L. Prins, for the constant encouragement, guidance and advice he gave me during my studies. His readiness to assist and passion for mathematics has made a huge impact on me. I learnt a lot from working with him.
- Pastor Okito, for all the spiritual food in due season and his family for the accommodation they offered me during my time in Bellville and Kuilsriver.
- all the lecturers in the mathematics department at Stellenbosch University, especially those who have taught me at some point in my study career.
- my special thanks go to my wife Mary and my children Morepi, Mary-ann and David for all the sacrifices they made and whose love, constant support and encouragement will always be the source of inspiration for me. Special thanks are also due to my family in Hammanskraal especially my mother Dorah who never spared the rod in bringing me up under difficult circumstances.

- very big thank you to my friend Maj L. Ncubukezi for supporting and encouraging me in my studies.
- I gratefully acknowledge financial support from the Military Academy at Saldanha especially the transport section for ensuring the availability of transport between the Military Academy and Cape Town.

UNIVERSITY of the WESTERN CAPE

Notation and conventions

Throughout the thesis all groups will be assumed to be finite, unless otherwise stated. We will use the notation and terminology from the ATLAS [22] and [37].

\mathbb{N}	natural numbers
\mathbb{Z}	integers
\mathbb{Q}	rational numbers
\mathbb{R}	real numbers
\mathbb{C}	complex numbers
\overline{G}, N, G, H	groups
1_G	the identity element of G .
F	a field WESTERN CAPE
F^*	F - 0
$H \leq G$	H is a subgroup of G
$H \trianglelefteq G$	H is a normal subgroup of G
$H \cong G$	H is isomorphic to G
$\langle x, y \rangle$	the subgroup generated by x and y
$N{\cdot}G$	an extension of N by G
N:G	a split extension of N by G
o(g)	order of $g \in G$
[g]	a conjugacy class of ${\cal G}$ with representative g
$N_G(H)$	the normalizer of the subgroup H in G
Hg	the right coset of H in G
X, Y, Ω	sets

$ \Omega $	the cardinality of the set Ω
G_{θ}	stabilizer of θ in G
$I_G(\theta)$	inertia group of θ in G
n^g	conjugation of n by g
$g_1 \sim g_2$	g_1 is conjugate to g_2
$\psi \downarrow H$	the restriction of the character ψ of G to the subgroup H
ϕ^G	the induction of the character ϕ of subgroup H to G
$C_G(g)$	centralizer of g in G
Irr(G)	set of irreducible characters of G
I_G	the identity character of G
$\chi(G/H)$	the permutation character of G on H
dim(V)	the dimension of a vector space \boldsymbol{V}
S_n	the symmetric group on n symbols
GF(q)	the Galois field of q elements
V(n,q)	a vector space of dimension n over $GF(q)$
Sp(2n,q)	symplectic group of dimension $2n$ over $GF(q)$
$U_n(q)$	unitary group
	UNIVERSITY of the
	WESTERN CAPE

Contents

D	eclar	ation		ii
\mathbf{A}	bstra	ct		iii
Acknowledgement		wledgement		v
N	otati	on and conventions		vii
1	Intr	oduction	WESTERN CAPE	1
2	Gro	up Characters		6
	2.1	Representations and C	haracters	. 7
	2.2	Normal Subgroups .		. 12
	2.3	Restriction of Charact	ers	. 14
	2.4	Induced Characters .		. 16
	2.5	Permutation Character	rs	. 19

3	Cor	Conjugacy Classes of Group Extensions 2	
	3.1	Extensions of Groups	27
	3.2	Conjugacy classes of semi-direct products.	28
	3.3	Conjugacy classes of group extensions (not necessarily split)	30
4	Clif	ford Theory	37
	4.1	Clifford's Theorem	38
5	$\mathrm{Th}\epsilon$	Fischer–Clifford matrices	50
	5.1	Definitions and Preliminaries	51
	5.2	Properties of Fischer-Clifford matrices	53
6	On	a maximal subgroup of the automorphism group $U_6(2)$:2 of $U_6(2)$	59
	6.1	WESTERN CAPEThe group $2^9:(L_3(4):2)$	60
	6.2	The conjugacy classes of $\overline{G} = 2^9:(L_3(4):2)$	64
	6.3	The inertia groups of $\overline{G} = 2^9:(L_3(4):2)$	68
	6.4	The fusion of H_2 , H_3 and H_4 into G	69
	6.5	The Fischer-Clifford Matrices of $2^9:(L_3(4):2)$	70
	6.6	Character Table of $2^9:(L_3(4):2)$	74
	6.7	The Fusion of $2^9:(L_3(4):2)$ into $U_6(2):2$	80

7	On	a maximal subgroup of the automorphism group $U_6(2)$:3 of $U_6(2)$ 85
	7.1	The group $2^9:(L_3(4):3)$
	7.2	The conjugacy classes of $\overline{G} = 2^9:(L_3(4):3)$
	7.3	The inertia groups of $\overline{G} = 2^9:(L_3(4):3)$
	7.4	The fusion of H_2 , H_3 and H_4 into G
	7.5	The Fischer-Clifford Matrices of $2^9:(L_3(4):3)$
	7.6	Character Table of $2^9:(L_3(4):3)$
	7.7	The Fusion of $2^9:(L_3(4):3)$ into $U_6(2):3102$
8	The	Fischer-Clifford matrices of $2^8:(U_4(2):2)$ as a subgroup of $O_{10}^+(2)$ 104
	8.1	On the group $2^8:(U_4(2):2)$ and its conjugacy classes
	8.2	The Inertia groups of $2^8:(U_4(2):2)$
	8.3	The Fischer-Clifford Matrices of $2^8:(U4(2):2)$
	8.4	Character Table of $2^8:(U_4(2):2)$
	8.5	The fusion of $2^8:(U_4(2):2)$ into $2^8:Sp_6(2)$
9	The	Character Table of an inertia group of the maximal subgroup 2^6 : $Sp_6(2)$
	of F	124
	9.1	The group $2^6:(2^5:S_6)$
	9.2	The conjugacy classes of $2^6:(2^5:S_6)$

9.3	The Inertia groups of $2^6:(2^5:S_6)$
9.4	The Fusions of the Inertia Factor Groups into $2^5:S_6$
9.5	The Fischer-Clifford Matrices of $2^6:(2^5:S_6)$
9.6	Character Table of $2^6:(2^5:S_6)$
9.7	The Fusion of $2^6:(2^5:S_6)$ into $2^6:SP_6(2)$

Bibliography

Appendix A

Appendix B

180

176

170

UNIVERSITY of the WESTERN CAPE

Chapter 1

Introduction

The Classification of the Finite Simple Groups (CFSG) emphasizes the importance of the finite simple groups in Group Theory. It is one of the most impressive achievements in the history of Mathematics. The reader is referred to [69] for more literature on the CFSG theorem. Classification of Finite Simple Groups states that each finite simple group is isomorphic to exactly one of the following

- A cyclic group of prime order,
- An Alternating group A_n of degree at least 5,
- A group of Lie type,
- One of twenty–six sporadic simple groups.

Since the CFSG, more recent work in group theory has involved methods for the computation of character tables of finite groups, and in particular, the character tables of the maximal subgroups of the sporadic simple groups and their automorphism groups. The character tables of most of these maximal subgroups are known but there are still some of the character tables of the maximal subgroups of the Baby Monster group B and the Monster group M which are not yet computed. Many of these maximal subgroups

are extensions of elementary abelian groups, so methods have been developed for the calculation of the character table of extensions of elementary abelian groups. A knowledge of the character table of a group provides considerable information about the group, and hence it is of importance in the physical sciences as well as in pure mathematics. Bernd Fischer developed a powerful and interesting technique for calculating the character tables of group extensions although there exist techniques such as the Schreier-Sims algorithm, Todd-Coxeter coset enumeration method, the Burnside-Dixon algorithm, etc, to construct character tables of finite groups. This technique, known as the technique of the Fischer–Clifford matrices [26], derives its fundamentals from the Clifford theory. If $\overline{G} = N.G$ is an appropriate extension of N by G, the method involves the construction of a nonsingular matrix for each conjugacy class of \overline{G}/N . In this thesis, we apply the Fischer-Clifford theory only to split extensions. This technique has also been discussed and used by many other researchers, but applied only to split extensions or to the case when every irreducible character of N can be extended to an irreducible character of its inertia group in \overline{G} (see for example [1], [4], [5], [6], [8], [10], [24], [27], [41], [42], [48], [49], [51], [50], [57], [60], [61] and [64]).

UNIVERSITY of the

However the same method cannot be used to construct character tables of certain nonsplit group extensions. For example, it cannot be applied to the non-split extensions of the forms $3^{7} \cdot O_7(3)$ and $3^{7} \cdot (O_7(3):2)$ which are maximal subgroups of Fischer's largest sporadic simple group Fi'_{24} and its automorphism group Fi_{24} [22], respectively. In an attempt to generalize these methods to such type of non-split group extensions, Ali[1] considered the projective representations and characters and showed how the technique of Fischer-Clifford matrices can be applied to any such type of non-split extension. However in order to apply this technique, the projective characters of the inertia factors must be known and these can be difficult to determine for some groups. Ali (see [2] and [7]), successfully applied the technique of Fischer-Clifford matrices and determined the Fischer-Clifford matrices and hence the character table of the non-split extensions $3^{7} \cdot O_7(3)$ and $3^{7} \cdot (O_7(3):2)$. More recent publications in this regards can be found in [9], [51] and [62]. In Chapter 2, we present some results on group characters which are used in the later chapters. We mostly concentrate on those results which are applied in Chapters 4 and 5 to describe the Fischer-Clifford matrix methods. We start by discussing the general theory of representations and characters, and go on to discuss the restricted, induced and permutation characters, which will be used in the later chapters for constructing the character tables of the groups that are studied in this thesis. The characters being studied are ordinary complex characters.

In Chapter 3 we give some preliminary results on group extensions that will be needed in subsequent chapters. In Section 3.1 we define group extensions and then we describe the method of *coset analysis* to compute the conjugacy classes of group extensions, where we first restrict ourselves to split extensions of abelian groups (Section 3.2) and then the case where the extension is not necessarily split (Section 3.3). In the remainder of Section 3.3 we prove and discuss techniques that are useful in the determination of the orders of the elements of $\overline{G} = N:G$. The technique of coset analysis was developed and first used by Moori in [44], [45] and has since been widely used for computing the conjugacy classes of group extensions.

Chapter 4 is devoted to the study of Clifford theory for ordinary representations of a group \overline{G} and its related results which will be required to describe the Fischer-Clifford matrices. In Section 4.1 we study the relationship between characters of a group \overline{G} and its normal subgroup N. We present various sufficient conditions for the extendability of an irreducible character θ of N to its inertia group \overline{H} in \overline{G} .

In Chapter 5 we describe the theory of the Fischer-Clifford matrices. If $\overline{G} = N \cdot G$ is an appropriate extension of N by G, the method involves the construction of a Fischer matrix for each conjugacy class of $\overline{G}/N \cong G$. Then by using these matrices together with the fusion maps and character tables of some subgroups of G which are inertia factors of the inertia groups in \overline{G} , we are able to construct the complete character table of \overline{G} . Section 5.1 gives definitions and preliminaries, Section 5.2 deals with the properties of the Fischer-Clifford matrices, in particular we study a special case of Fischer-Clifford matrices of an extension $\overline{G} = N \cdot G$ with the property that every irreducible character of N can be extended to an irreducible character of its inertia group in \overline{G} . In the last part of Section 5.2 we discuss additional properties of the Fischer-Clifford matrix M(g) for a split extension $\overline{G} = N \cdot G$, where N is an elementary abelian 2-group.

In Chapters 6 and 7 we study the maximal subgroups $(2^9:L_3(4)):2$ and $(2^9:L_3(4)):3$ of the automorphism groups $U_6(2):2$ and $U_6(2):3$ of the unitary group $U_6(2)$, respectively. We will show with the aid of the computer algebra systems GAP [67] and MAGMA [15] that the groups $(2^9:L_3(4)):2$ and $(2^9:L_3(4)):3$ are isomorphic to the split extension groups of the type $2^9:(L_3(4):2)$ and $2^9:(L_3(4):3)$, respectively. The conjugacy classes of both of these split extension are determined by the technique of coset analysis. For this purpose of finding all the classes of $2^9:(L_3(4):2)$ and $2^9:(L_3(4):3)$, we are assisted by the Programme A and Progamme B which are based on the technique of coset analysis. These MAGMA programmes are found in [1]. Having the classes of these groups in the format allowed by coset-analysis, we can proceed to compute the Fischer-Clifford matrices of these groups. Hence we can construct the associated character tables which are partitioned into blocks according to the inertia groups of $2^9:(L_3(4):2)$ and $2^9:(L_3(4):3)$. Lastly, the complete fusion of each of these groups into their respective main groups $U_6(2):2$ and $U_6(2):3$ will be fully determined using the technique of set intersections (see [44],[45] and [48]).

In the ATLAS [22] we see that one of the 9 classes of maximal subgroups of the orthogonal simple group $O_{10}^+(2)$ has the form $2^8:O_8^+(2)$. Ali in [4] study a group of the form $2^8:Sp_6(2)$ which sits maximally in $2^8:O_8^+(2)$. Also, in the ATLAS we observed that the group $U_4(2):2$ is one of the maximal subgroups of the symplectic group $Sp_6(2)$. Now, the pre-image of $U_4(2):2$ in $2^8:Sp_6(2)$ is a group of the form $2^8:(U_4(2):2)$. In Chapter 8 we study the group $2^8:(U_4(2):2)$ and apply Fischer-Clifford theory to determine its character table. The complete fusion of the classes of $2^8:(U_4(2):2)$ into the classes of $2^8:Sp_6(2)$ will also be determined.

In the paper [48] the authors study the maximal subgroup $2^6:Sp_6(2)$ of the smallest Fischer sporadic simple group Fi_{22} of index 694980. They constructed the character table of $2^6:Sp_6(2)$ by using the technique of Fisher-Clifford matrices. It was found that one of the two inertia groups of $2^6:Sp_6(2)$ has the form $2^6:(2^5:S_6)$, where $2^5:S_6$ is maximal and affine in $Sp_6(2)$ of index 63. In general it is more complicated to construct the character tables of the inertia groups $\overline{H_i} = N \cdot H_i$ of an extension group $\overline{G} = N \cdot G$ by using Fischer-Clifford theory. In the final chapter we use the same methodology as in Chapters 6,7 and 8 to construct the character table of the split extension $2^6:(2^5:S_6)$ and as well as the fusion of $2^6:(2^5:S_6)$ into the group $2^6:Sp_6(2)$.

Most of our computations are carried out with the assistance of the computer algebra systems MAGMA and GAP. Our notation is standard and the reader may refer to the AT-LAS and the ATLAS of Brauer Characters [37]. All our groups and sets are finite unless otherwise specified. Programmes A and B that have been used to compute the conjugacy classes of our groups are given in Appendix A. Consistency and accuracy checks for the character tables of our 4 split extension groups were implemented using GAP codes labelled as Programme C in Appendix A.

Chapter 2

Group Characters

Two ways of approaching representation and character theory are through the use of modules on the one hand (for instance, the approach used by James and Liebeck [37]), and through the classical approach used by Feit [25] for example, on the other hand. Our discussion is along the classical approach and for this purpose we follow the lecture notes of Moori [47], the works of Mpono [53] and Whitley [68].

In this chapter we give preliminary results on group characters that will be needed in later chapters to construct the character tables of the groups that are studied in this thesis. We start by presenting in section 2.1 the general theory on representations and characters of groups. In section 2.2 we discuss the role of normal subgroups in finding some characters of a group. In sections 2.3 to 2.5 restricted, induced and permutation characters are discussed to establish the relationship between characters of groups and the characters of their subgroups. For further reading on representations and characters, readers are referred to [11], [13], [16], [18], [19], [25], [34], [35], [36], [40], [43], [55] and many other relevant sources.

2.1 Representations and Characters

In this section we give some preliminary results on representations and characters of groups .

Definition 2.1.1. Let G be a finite group and F a field. A homomorphism

 $\rho: G \to GL_n(F)$ is called a representation of G over F or simply an F-representation. The general linear group, $GL_n(F)$, is the multiplicative group of all non-singular $n \times n$ matrices over F for some integer n. The representation ρ is said to have degree n.

Two *F*-representations ρ_1 and ρ_2 are said to be *equivalent* if there exists $P \in GL_n(F)$ such that $\rho_1(g) = P\rho_2(g)P^{-1}$ for all $g \in G$. An *F*-representation ρ of *G* is said to be *reducible* if it is equivalent to a representation α which is given by

$$\alpha(g) = \begin{pmatrix} \beta(g) & \gamma(g) \\ 0 & \delta(g) \end{pmatrix}$$

for all $g \in G$, where β, γ, δ are *F*-representations of *G*. If ρ is not reducible, then it is said to be *irreducible*. ρ is defined to be fully reducible if it is equivalent to a representation α where

$$\alpha(g) = \left(\begin{array}{cc} \beta(g) & 0\\ 0 & \delta(g) \end{array}\right)$$

for all $g \in G$. ρ is completely reducible if it is equivalent to a representation α given by

$$\alpha(g) = \begin{pmatrix} \beta_1(g) & 0 & \cdots & 0 \\ 0 & \beta_2(g) & \cdots & 0 \\ \vdots & \ddots & \cdots & 0 \\ 0 & 0 & \cdots & \beta_r(g) \end{pmatrix}$$

for all $g \in G$ and where each β_i is an irreducible *F*-representation of *G*. Then $\beta_1, \beta_2, ..., \beta_r$ are called constituents of ρ .

Theorem 2.1.2. (Mashke's Theorem) Let G be a finite group. If F is a field of characteristic zero, or whose characteristic does not divide the order of G, then every F-representation of G is completely reducible.

Proof:See[[25],(1.1)].

Theorem 2.1.3. (Schur's Lemma) Let ρ_1 and ρ_2 be two irreducible *F*-representations of a group *G* over a field *F*. Suppose *P* is a non-zero matrix over *F* such that $\rho_1(g)P = P\rho_2(g)$ for all $g \in G$. Then *P* is nonsingular and ρ_1 is equivalent to ρ_2 .

Proof:See[[25],(1.2)]

Corollary 2.1.4. [45] Let F be an algebraically closed field, and ρ an irreducible Frepresentation of a group G. Then the only matrices that commute with every matrix $\rho(g), g \in G$ are the scalar matrices aI_n , where $a \in F$ and I_n is the $n \times n$ identity matrix.

Proof: Let P be an $n \times n$ matrix such that $P\rho(g) = \rho(g)P$ for all $g \in G$. Then for any $a \in F$ we have that

$$(aI_n - P).\rho(g) = \rho(g).(aI_n - P), \text{ for all } g \in G.$$
(1)

Let $m(x) = det(xI_n - P)$ be the characteristic polynomial of P. Since m(x) is a polynomial over F and F is algebraically closed, then there exists $a_1 \in F$ such that $m(a_1) = 0_F$. Hence $det(a_1I_n - P) = 0_F$ and thus $a_1I_n - P$ is singular. Then from relation (1) and Schur's Lemma, we obtain that $a_1I_n - P = 0$ and thus $a_1I_n = P$. \Box

Definition 2.1.5. The function $\chi_{\rho} : G \to F$ defined by $\chi_{\rho}(g) = trace(\rho(g))$ is called the F-character of G afforded by the F-representation ρ . The degree of χ_{ρ} is the degree of ρ . The trivial character is the character 1_G defined by $1_G(g) = 1_F$ for every $g \in G$. An irreducible character is a character afforded by an irreducible representation.

Lemma 2.1.6. [68] The following properties hold for a group G:

- 1. A character of G is constant on the conjugacy classes of G.
- 2. Equivalent representations afford the same character.
- 3. $\chi(1)$ is the degree for any character χ .
- 4. The sum of any two characters of G is again a character of G.

Proof: Parts 1 and 2 follow from the fact that for matrices A and P, $trace(P^{-1}AP) = trace(A).$

3. Let χ have degree n. Then $\chi(1) = trace(I_n) = n$.

4. Let χ_{ρ_1} and χ_{ρ_2} be characters of G, afforded by the representations ρ_1 and ρ_2 , respectively. Define the function ψ on G by $\psi(g) = \begin{pmatrix} \rho_1(g) & 0 \\ 0 & \rho_2(g) \end{pmatrix}$. Then ψ is a representation of G with $\chi_{\psi} = \chi_{\rho_1} + \chi_{\rho_2}$. \Box

Definition 2.1.7. Let G be a group, F a field and $\phi : G \to F$ be a function which is *constant* on conjugacy classes. Then ϕ is called a *class function* of G.

From the above definition, we observe that every character is a class function. We shall use the notation Irr(G) to denote the set of all irreducible characters of the group G. From now on, we will consider representations and characters of a finite group G over the complex field \mathbb{C} .

If ϕ is any class function on G, then ϕ can be uniquely expressed in the form $\phi = \sum_{i=1}^{r} a_i \chi_i$ where $a_i \in \mathbb{C}$ and $Irr(G) = \{\chi_1, ..., \chi_r\}$. Moreover ϕ is a character if and only if all $a_i \in \mathbb{N} \cup 0.(\text{See}[[32], (2.8)]).$

Theorem 2.1.8. The following properties hold:

- 1. Two representations of G have the same character if and only if they are equivalent.
- 2. The number of irreducible characters of G is equal to the number of conjugacy classes of G.
- 3. Any character can be written as a sum of irreducible characters.

Proof:

- 1. See [[25], (2.6)]
- 2. See [[25], (2.16)]
- 3. This follows from Mashke's Theorem. $\hfill \Box$

Lemma 2.1.9. Let χ be a character of G afforded by a representation ρ of degree n. Then

- 1. for $g \in G$, $\rho(g)$ is similar to a diagonal matrix $diag(\epsilon_1, ..., \epsilon_n)$ where each ϵ_i is a complex root of unity.
- 2. $\chi(g) = \epsilon_1 + \ldots + \epsilon_n$ and $\chi(g^{-1}) = \overline{\chi(g)}$, where $\overline{\chi(g)}$ denotes the complex conjugate of $\chi(g)$.

Proof See[[33], (2.15)].

Irr(G) are presented in a table, called the *character table* of G. In this character table of G, the rows correspond to the irreducible characters of G and the columns to the conjugacy classes of G. The entry a_{ij} in this table is the value of the *i*-th irreducible character on an element of the *j*-th conjugacy class. This character table of G satisfies certain orthogonality relations, which are given in the next few theorems following the definition.

Definition 2.1.10. Let χ_1 and χ_2 be two characters of a group G. Then the *inner product* of χ_1 and χ_2 is defined by

$$\langle \chi_1, \chi_2 \rangle = \frac{1}{|G|} \sum_{g \in G} \chi_1(g) \overline{\chi_2(g)}.$$

Theorem 2.1.11. (Generalized Orthogonality Relation) Let G be a group and $Irr(G) = \{\chi_1, \chi_2, ..., \chi_r\}$. Then the following holds for every $h \in G$.

$$\frac{1}{|G|} \sum_{g \in G} \chi_i(gh) \chi_j(g^{-1}) = \delta_{ij} \frac{\chi_i(h)}{\chi_i(1_G)}$$

Proof: See Theorem 2.13 of [33]. \Box

Theorem 2.1.12. [33] (*First Orthogonality Relation*) Let G be a group and $Irr(G) = \{\chi_1, \chi_2, ..., \chi_r\}$. Then

$$\frac{1}{|G|} \sum_{g \in G} \chi_i(g) \overline{\chi_j(g)} = \delta_{ij} = \langle \chi_i, \chi_j \rangle.$$

Proof: Let $h = 1_G$ in the generalized orthogonality relation to obtain the desired result. \Box

Theorem 2.1.13. [33], [53] (Second Orthogonality Relation) Let G be a group and $Irr(G) = \{\chi_1, \chi_2, ..., \chi_r\}$ and $\{g_1, g_2, ..., g_r\}$ be a set of representatives of the conjugacy classes of elements of G. Then

$$\sum_{\chi \in Irr(G)} \chi(g_i) \overline{\chi(g_j)} = \delta_{ij} |C_G(g_i)|.$$

Proof Let X be the character table of G. Then viewed as a matrix, X is an $r \times r$ matrix whose (i, j)-th entry is given by $\chi_i(g_j)$. Let C_i be the conjugacy class which contains g_i and D be the diagonal matrix with entries $\delta_{ij}|C_i|$. Then by the first orthogonality relation, we obtain that

$$|G|\delta_{ij} = \sum_{g \in G} \chi(g_i) \overline{\chi(g_j)} = \sum_{t=1}^r |C_t| \chi_i(g_t) \overline{\chi_j(g_t)}.$$

Then we obtain a system of r^2 equations which can be written as a single matrix equation as follows

$$|G|I = XD\overline{X}^T,$$

where I is the identity matrix and \bar{X}^T is the transpose of \bar{X} . Since X is a nonsingular matrix, then we obtain that

$$|G|I = D\overline{X}^T X.$$

Rewriting the above matrix system as a system of equations yields

$$|G|\delta_{ij} = \sum_{t=1}^{\prime} |C_i| \overline{\chi_t(g_i)} \chi_t(g_j).$$

Hence we obtain that

$$\sum_{\chi \in Irr(G)} \chi(g_i) \overline{\chi(g_j)} = |C_G(g_i)| \delta_{ij}. \quad \Box$$

Theorem 2.1.14. [68] Let $Irr(G) = \{\chi_1, \chi_2, ..., \chi_r\}$ and χ be any character of G. Then

- 1. χ can be expressed uniquely as $\chi = \sum_{i=1}^{r} a_i \chi_i$ where $a_i \in \mathbb{N} \cup \{0\}$.
- 2. If $\chi = \sum_{i=1}^{r} a_i \chi_i$ then $\langle \chi, \chi \rangle = \sum_{i=1}^{r} a_i^2$.
- 3. χ is irreducible if and only if $\langle \chi, \chi \rangle = 1$.

Proof:

1. By Theorem 2.1.8(3), $\chi = \sum_{i=1}^{r} a_i \chi_i$ for $a_i \in \mathbb{N} \cup \{0\}$. For each $i, \langle \chi, \chi_i \rangle = \langle \sum_{i=1}^{r} a_i \chi_i, \chi \rangle = a_i \langle \chi_i, \chi_i \rangle = a_i$ by the First Orthogonality Relation, so the a_i are unique. 2. Follows from First Orthogonality Relation.

3. Follows from parts 1 and 2.

Definition 2.1.15. Let G be a group, χ be a character of G and $Irr(G) = {\chi_1, \chi_2, ..., \chi_r}$ such that $\chi = \sum_{i=1}^r a_i \chi_i$, where $a_i \in \mathbb{N} \cup {0}$. Then those χ_i with $a_i \in \mathbb{N}$ are called the *irreducible constituents* of χ . We also say that χ contains a_i copies of the *irreducible character* χ_i . In general, if ϕ is a character of G such that $\chi - \phi$ is a character or is zero, then ϕ is a constituent of χ .

2.2 Normal Subgroups

Lemma 2.2.1. [68] Let χ be a character of a group G afforded by a representation ρ . Then $g \in ker(\rho)$ if and only if $\chi(g) = \chi(1)$.

Proof: Let $n = \chi(1)$, so n is the degree of ρ . If $g \in ker(\rho)$ then $\rho(g) = I_n = \rho(1)$, where I_n is the $n \times n$ identity matrix, so $\chi(g) = n = \chi(1)$. Conversely, assume $\chi(g) = \chi(1) = n$. By Lemma 2.1.9, $\chi(g) = \epsilon_1 + \ldots + \epsilon_n$ where each ϵ_i is a complex root of unity. Therefore, $\epsilon_1 + \epsilon_2 + \ldots + \epsilon_n = n$. But $|\epsilon_i| = 1$ for each i, so we must have $\epsilon_i = 1$ for each i. Hence $\rho(g)$ is similar to diag $(\epsilon_1, \epsilon_2, \ldots, \epsilon_n) = I_n$, so $g \in ker(\rho)$. \Box **Definition 2.2.2.** Let χ be a character of a group G. We define

$$ker(\chi) = \{g \in G : \chi(g) = \chi(1)\}.$$

From Lemma 2.2.1, it follows that $ker(\chi) = ker(\rho)$ and hence $ker(\chi)$ is a normal subgroup of G. If $Irr(G) = \{\chi_1, \chi_2, ..., \chi_r\}$, then every normal subgroup is the intersection of some of the $ker(\chi_i)$.

Theorem 2.2.3. Let N be a normal subgroup of a group G. Then

- 1. If χ is a character of G and $N \subseteq ker(\chi)$, then χ is constant on the cosets of N in G and the function $\hat{\chi}$ defined on G/N by $\hat{\chi}(Ng) = \chi(g)$ is a character of G/N.
- 2. If $\hat{\chi}$ is a character of G/N, then the function χ defined by $\chi(g) = \hat{\chi}(Ng)$ is a character of G and the χ has the same degree as $\hat{\chi}$.
- 3. In both of the statements above , $\chi \in Irr(G)$ if and only if $\hat{\chi} \in Irr(G/N)$.

Proof: See Theorem 2.2.2 of [68] **WESTERN CAPE**

If N is a normal subgroup of G and ρ is a representation of G such that $N \subseteq ker(\rho)$, then there exists a unique representation $\hat{\rho}$ of G/N defined by $\hat{\rho}(Ng) = \rho(g)$. Thus knowing ρ , we can obtain $\hat{\rho}$ and vice versa. We also obtain that ρ is irreducible if and only if $\hat{\rho}$ is irreducible. Hence ρ and $\hat{\rho}$ can be identified. If ρ affords a character χ of G, then $\hat{\rho}$ affords a character $\hat{\chi}$ of G/N and hence χ and $\hat{\chi}$ can be identified. Under this identification, we obtain that

$$Irr(G/N) = \{\chi \in Irr(G) | N \subseteq ker(\chi)\}.$$

Therefore the irreducible characters of G/N are precisely those irreducible characters of G which contain N in their kernels.

Definition 2.2.4. Let N be a normal subgroup of G and let $\hat{\chi}$ be a character of G/N, then the character χ which is defined by

$$\chi(g) = \hat{\chi}(Ng) \text{ for } g \in G$$

is called the *lift* of $\hat{\chi}$ to G.

The process of obtaining characters of a group from the characters of any of its quotient groups using theorem 2.2.3 is called the *lifting process*.

2.3 Restriction of Characters

Definition 2.3.1. Let G be a group and H be a subgroup of G. If $\rho : G \longrightarrow GL_n(\mathbb{C})$ is a representation of G, then $(\rho \downarrow H): H \longrightarrow GL_n(\mathbb{C})$ given by

$$(\rho \downarrow H)(h) = \rho(h), \quad \forall \ h \in H,$$

is a representation of H. We say that $\rho \downarrow H$ is the restriction of ρ to H. If χ is a character of G afforded by ρ , then we say $\chi \downarrow H$ is the restriction of χ to H and is a character of H. $\chi \downarrow H$ is a character of H afforded by the representation $\rho \downarrow H$ such that

$$\chi \downarrow H = \sum_{\psi \in Irr(H)} \delta_{\psi} \psi, \quad where \quad \delta_{\psi} \in \mathbb{N} \cup \{0\}.$$

The characters $\chi \downarrow H$ and χ take on the same values on the elements of H. If $\chi \downarrow H$ is irreducible, then χ is irreducible in G but the converse is not true in general. Karpilovsky in [39] proves a theorem (Theorem 23.1.4) due to Gallagher(1966) that if $H \leq G$, $\chi \in$ Irr(G) such that $\chi(g) \neq 0$ for each $g \in G \setminus H$, then $\chi \downarrow H$ is irreducible and for any $g \in G \setminus H$, $\chi(g)$ is a root of unity. We also observe that (see [36]) every irreducible character of H is a constituent of some irreducible character of G restricted to H. **Theorem 2.3.2.** [36] Let G be a group, $H \leq G$, $\chi \in Irr(G)$ and $Irr(H) = \{\psi_1, \psi_2, ..., \psi_r\}$. Then

$$\chi \downarrow H = \sum_{i=1}^r \delta_i \psi_i,$$

where $\delta_i \in \mathbb{N} \cup \{0\}$ satisfy the following inequality

$$\sum_{i=1}^{r} \delta_i^2 \le [G:H] \qquad (**)$$

Moreover, we have equality in (**) if and only if $\chi(g) = 0$, for all $g \in (G \setminus H)$.

Proof: We obtain that

$$\sum_{i=1}^{r} \delta_i^2 = \frac{1}{|H|} \sum_{h \in H} \chi(h) \cdot \overline{\chi(h)} \quad \text{so that}$$
$$|H| \sum_{i=1}^{r} \delta_i^2 = \sum_{h \in H} \chi(h) \cdot \overline{\chi(h)} \quad (***)$$

Since χ is irreducible, then we have that

$$1 = \langle \chi, \chi \rangle_G = \frac{1}{|G|} \sum_{g \in G} \chi(g) \cdot \overline{\chi(g)}$$
$$= \frac{1}{|G|} \sum_{g \in H} \chi(g) \cdot \overline{\chi(g)} + \frac{1}{|G|} \sum_{g \in (G \setminus H)} \chi(g) \cdot \overline{\chi(g)}$$
$$= \frac{|H|}{|G|} \sum_{i=1}^r \delta_i^2 + \frac{1}{|G|} \sum_{g \in (G \setminus H)} \chi(g) \cdot \overline{\chi(g)} \quad by \quad (* * *)$$
$$= \frac{|H|}{|G|} \sum_{i=1}^r \delta_i^2 + \frac{1}{|G|} \sum_{g \in (G \setminus H)} |\chi(g)|^2$$

and therefore

$$\frac{|H|}{|G|} \sum_{i=1}^{r} \delta_i^2 = 1 - \frac{1}{|G|} \sum_{g \in (G \setminus H)} |\chi(g)|^2 \le 1$$

Hence

$$\sum_{i=1}^r \delta_i^2 \leq \frac{|G|}{|H|} = [G:H]$$

Equality in (**) will be obtained if

$$\frac{1}{|G|} \sum_{g \in (G \setminus H)} |\chi(g)|^2 = 0$$

if and only if $|\chi(g)|^2 = 0 \quad \forall \ g \in (G \setminus H)$
if and only if $\chi(g) = 0 \quad \forall \ g \in (G \setminus H)$

Thus the equality in (**) holds. \Box

Theorem 2.3.3. Let G be a group, H be a normal subgroup of G and $\chi \in Irr(G)$. Then all the constituents of $\chi \downarrow H$ have the same degree.

Proof: See Proposition 20.7 of [36]. \Box

We have seen how the irreducible characters of G can be used to find characters of a subgroup H and can now look at a technique of finding the characters of G from the irreducible characters of any subgroup H.

2.4 Induced Characters

Definition 2.4.1. Let H be a subgroup of G. The right transversal, $\{x_1, x_2, ..., x_r\}$, of H in G is a set of representatives for the right cosets of H in G.

Let *H* be a subgroup of a group *G* such that the set $\{x_1, x_2, ..., x_r\}$ is a transversal for *H* in *G*. Let ϕ be a representation of *H* of degree *n*. Then we define ϕ^* on *G* as follows :

where $\phi(x_i g x_j^{-1})$ are $n \times n$ submatrices of $\phi^*(g)$ satisfying the property that

$$\phi(x_i g x_i^{-1}) = 0_{n \times n} \ \forall x_i g x_i^{-1} \notin H$$

Then we can show $\phi^*(g)$ is a representation of G of degree nr.

Definition 2.4.2. Let G, H, ϕ and ϕ^* be as above. Then the representation ϕ^* is called the representation of G induced from the representation ϕ of H and we denote it by ϕ^G .

If ψ is a representation of H which is equivalent to ϕ , then it can be shown that ψ^G is equivalent to ϕ^G . Thus the induction process preserves equivalence between representations.

Definition 2.4.3. Let G be a group and $H \leq G$. Let χ be a class function of H. Then we define χ^G as follows:

$$\chi^{G}(g) = \frac{1}{|H|} \sum_{x \in G} \chi^{o}(xgx^{-1}), \ g \in G,$$

where $\chi^{o}(h) = \begin{cases} \chi(h) & \text{if } x \in H \\ 0 & \text{otherwise} \end{cases}$

Then χ^G is a class function of G, called the induced class function of G induced from χ . Also we have that $deg(\chi^G) = [G:H]deg(\chi)$.

Theorem 2.4.4. [33] (*Frobenius Reciprocity*) Let $H \leq G$, χ be a class function on H and ϕ a class function on G. Then

$$\langle \chi , \phi \downarrow H \rangle_H = \langle \chi^G, \phi \rangle_G$$

Proof:

$$\langle \chi^{G}, \phi \rangle_{G} = \frac{1}{|G|} \sum_{g \in G} \chi^{G}(g) . \overline{\phi(g)}$$

$$= \frac{1}{|G|} \sum_{g \in G} \left(\frac{1}{|H|} \sum_{x \in G} \chi^{0}(xgx^{-1}) \right) . \overline{\phi(g)}$$

$$= \frac{1}{|G| . |H|} \sum_{g \in G} \sum_{x \in G} \chi^{0}(xgx^{-1}) . \overline{\phi(g)}$$

$$(* * **)$$

Let $y = xgx^{-1}$. Then as g runs over G, xgx^{-1} runs through G. Also since ϕ is a class function on G, $\phi(y) = \phi(xgx^{-1}) = \phi(g)$. Thus by (****) we have

$$\langle \chi^G, \phi \rangle_G = \frac{1}{|G| \cdot |H|} \sum_{y \in G} \sum_{x \in G} \chi^0(y) \cdot \overline{\phi(y)}$$

$$= \frac{1}{|G| \cdot |H|} \sum_{x \in G} \left(\sum_{y \in G} \chi^0(y) \cdot \overline{\phi(y)} \right)$$

$$= \frac{1}{|G| \cdot |H|} |G| \sum_{y \in G} \chi^0(y) \cdot \overline{\phi(y)}$$

$$= \frac{1}{|H|} \sum_{y \in H} \chi(y) \cdot \overline{\phi(y)}$$

$$= \langle \chi, \phi \downarrow H \rangle_H \square$$

Let $H \leq G$ and ϕ be a representation of H that affords a character χ of H. Then χ^G is a character of G afforded by the induced representation ϕ^G of G. The character χ^G is called the *induced character* of G. The induction and restriction processes do not necessarily preserve irreducibility of characters.

Theorem 2.4.5. Let G be a group and $H \leq G$. Let χ be a character of H, $g \in G$ and $\{x_1, x_2, ..., x_m\}$ be a set of representatives of conjugacy classes of elements of H which fuse into the conjugacy class [g] in G. Then we have

- 1. $\chi^G(g) = 0$ if $H \cap [g] = \emptyset$.
- 2. $\chi^{G}(g) = |C_{G}(g)| \sum_{i=1}^{m} \frac{\chi(x_{i})}{|C_{H}(x_{i})|}$ if $H \cap [g] \neq \emptyset$.

Proof: We obtain that

$$\chi^G(g) = \frac{1}{|H|} \sum_{x \in G} \chi^0(xgx^{-1}).$$

If $H \cap [g] = \emptyset$, then $xgx^{-1} \notin H$ and thus $\chi^0(xgx^{-1}) = 0 \quad \forall x \in G$ and hence $\chi^G(g) = 0$. Now if $H \cap [g] \neq \emptyset$, then as x runs over G, $xgx^{-1} = y$ covers [g] exactly $|C_G(g)|$ times, thus we have

$$\chi^{G}(g) = \frac{1}{|H|} \times |C_{G}(g)| \sum_{y \in [g]} \chi^{0}(y)$$

$$= \frac{1}{|H|} \times |C_{G}(g)| \sum_{y \in ([g] \cap H)} \chi(y)$$

$$= \frac{|C_{G}(g)|}{|H|} \times \sum_{i=1}^{m} [H : C_{H}(x_{i})] \cdot \chi(x_{i})$$

$$= |C_{G}(g)| \sum_{i=1}^{m} \frac{\chi(x_{i})}{|C_{H}(x_{i})|}.$$

Hence the result. \Box

Theorem 2.4.6. Let G be a group, K and H subgroups of G such that $K \leq H \leq G$ and χ be a character of K. Then for all $g \in G$ we have

1. $(\chi^H)^g = (\chi^g)^{g^{-1}Hg}$

2.
$$(\chi^g)^G = (\chi^G)$$

Proof: See[39]

Readers are referred to [12], [14] [35]and [54] for further reading on induced characters.

2.5 Permutation Characters

Let G be a finite group throughout.

Definition 2.5.1. G acts on a finite set Ω if for each $g \in G$ and $\alpha \in \Omega$, there is an element α^g in Ω such that $\alpha^1 = \alpha$ and $(\alpha^g)^h = \alpha^{gh}$ for all $\alpha \in \Omega$ and $g, h \in G$.

Proposition 2.5.2. *G* acts on $\Omega \Leftrightarrow$ there is a homomorphism $\rho : G \to S_{\Omega}$, where S_{Ω} is the symmetric group on Ω .

Proof: Suppose G acts on Ω . Define a mapping $\rho: G \to S_{\Omega}$ by $\rho(g): \alpha \mapsto \alpha^g \quad \forall \alpha \in \Omega, g \in G$. If $\alpha, \beta \in \Omega$ then $(\alpha)\rho(g) = (\beta)\rho(g)$ implies that $\alpha^g = \beta^g$ and $\alpha = \alpha^1 = \alpha^{gg^{-1}} = (\alpha^g)^{g^{-1}} = (\beta^g)^{g^{-1}} = \beta^{gg^{-1}} = \beta^1 = \beta$. Also if $\beta \in \Omega$ then $(\beta)^{g^{-1}} \in \Omega$ and $(\beta)^{g^{-1}} \rho(g) = (\beta^{g^{-1}})^g = \beta^{g^{-1}g} = \beta^1 = \beta$. Therefore $\rho(g) \in S_{\Omega}$.

Furthermore,

 $(\alpha)\rho(gh) = \alpha^{gh} = (\alpha^g)^h = (\alpha^g)\rho(h) = (\alpha\rho(g))\rho(h) = (\alpha)(\rho(g)\rho(h))$. This proves that $\forall \alpha \in \Omega : \rho(gh) = \rho(g)\rho(h)$; so ρ is the required homomorphism from G to S_{Ω} . Conversely, suppose $\rho : G \to S_{\Omega}$ is a homomorphism. Then $\rho(1) = 1_{S_{\Omega}}$ and $\rho(gh) = \rho(g)\rho(h)$; so

1. $(\alpha)\rho(1) = \alpha \mathbf{1}_{S_{\Omega}} = \alpha$ and

2.
$$(\alpha)\rho(gh) = (\alpha)(\rho(g)\rho(h)) = ((\alpha)\rho(g))\rho(h) \quad \forall \alpha \in \Omega.$$

Define an action of G on Ω by $\alpha^g = \alpha(\rho(g)) \quad \forall \alpha \in \Omega, g \in G$. Then $\alpha = \alpha^1$ and $\alpha^{gh} = (\alpha^g)^h$ by (1) and (2). This shows that G acts on Ω . \Box

If G acts on Ω then this defines an equivalence relation on Ω as follows: If $\alpha, \beta \in \Omega$ then $\alpha \sim \beta \Leftrightarrow \exists g \in G$ such that $\alpha = \beta^g$. The relation \sim on Ω is

- (i) reflexive: For $\alpha = \alpha^1$ implies $\alpha \sim \alpha$
- (ii) symmetric: If $\alpha \sim \beta$ then $\exists g \in G$ such that $\alpha = \beta^g$. Then $\beta = \beta^1 = \beta^{gg^{-1}} = (\beta^g)^{g^{-1}} = \alpha^{g^{-1}}$ so $\beta \sim \alpha$.
- (iii) transitive: If $\alpha \sim \beta$ and $\beta \sim \gamma$ then $\alpha = \beta^g$ and $\beta = \gamma^h$ for some $g, h \in G$. Therefore, $\alpha = (\gamma^h)^g = \gamma^{hg}$ hence $\alpha \sim \gamma$.

Denote by $[\alpha]$ the equivalence class containing $\alpha \in \Omega$. Then

$$[\alpha] = \{\beta \in \Omega | \beta \sim \alpha\}$$

= $\{\beta \in \Omega | \beta = \alpha^g \text{ for some } g \in G\}$
= $\{\alpha^g | g \in G\}$
= α^G

 α^G is called the *orbit of* G *on* Ω containing α . The equivalence relation \sim determines a partition of Ω by these equivalence classes, that is, $\Omega = \bigcup_{\alpha \in \Omega} [\alpha]$ and $[\alpha] \cap [\beta] = \emptyset$ if $\alpha \neq \beta$.

Let $G_{\alpha} = \{g \in G | \alpha^g = \alpha\}$. Then $G_{\alpha} \leq G$. Since $\alpha = \alpha^1$ we have $1 \in G_{\alpha}$. Also if $g, h \in G_{\alpha}$, then $\alpha^{gh} = (\alpha^g)^h = \alpha^h = \alpha$ and $\alpha = \alpha^1 = \alpha^{gg^{-1}} = (\alpha^g)^{g^{-1}} = \alpha^{g^{-1}}$, which shows that $gh \in G_{\alpha}, g^{-1} \in G_{\alpha}$.

Hence, G_{α} is a subgroup of G, called the stabilizer of α in G. Let $T = \{G_{\alpha}g | g \in G\}$ be the set of right cosets of G_{α} in G. We show next that there is a one-to-one correspondence between T and the orbit α^{G} of G on Ω containing α .

Lemma 2.5.3. $G_{\alpha}g = G_{\alpha}h \Leftrightarrow \alpha^g = \alpha^h$.

Proof:

UNIVERSITY of the
WESTERN CAPE
$$G_{\alpha}g = G_{\alpha}h \iff gh^{-1} \in G_{\alpha}$$

 $\Leftrightarrow \alpha^{gh^{-1}} = \alpha$
 $\Leftrightarrow (\alpha^g)^{h^{-1}} = \alpha$
 $\Leftrightarrow \alpha^g = \alpha^h \square$

Define a mapping $\Phi : T \to \alpha^G$ by $G_{\alpha}g \mapsto \alpha^g$. If $G_{\alpha}g = G_{\alpha}h$ then $\alpha^g = \alpha^h$ and so $\Phi(G_{\alpha}g) = \Phi(G_{\alpha}h)$, which shows that Φ is well-defined, by lemma 2.5.3. If $G_{\alpha}g, G_{\alpha}h \in T$ with $\Phi(G_{\alpha}g) = \Phi(G_{\alpha}h)$ then $\alpha^g = \alpha^h$ and so $G_{\alpha}g = G_{\alpha}h$, by lemma 2.5.3. Hence Φ is injective.

If $x \in \alpha^G$ then $x = \alpha^h$ for some $h \in G$. So $\Phi(G_{\alpha}h) = \alpha^h = x$. This shows that Φ is also surjective. Thus Φ is the required one-to-one correspondence between T and α^G . Therefore $|\alpha^G| = |T| = [G:G_{\alpha}] = \frac{|G|}{|G_{\alpha}|}$ or $|\alpha^G||G_{\alpha}| = |G|$. **Corollary 2.5.4.** The length of any orbit of G on Ω divides the order of G.

Proof: $|\alpha^G||G_\alpha| = |G|$ and therefore $|\alpha^G|$ divides |G|. \Box

If G acts on Ω , this action defines a representation of G as follows:

Let $\Omega = \{\alpha_1, \alpha_2, \cdots, \alpha_n\}$ and for each $g \in G$ define the $n \times n$ matrix π_g by $\pi_g = (a_{ij})$ where

$$a_{ij} = \begin{cases} 1, & \text{if } \alpha_i^g = \alpha_j \\ 0, & \text{if otherwise} \end{cases}$$

Remark 2.5.5. $a_{ii} = 1$ if $\alpha_i^g = \alpha_i$ and so a point $\alpha_i \in \Omega$ is fixed by $g \Leftrightarrow$ the entry in the (i, i) position on the main diagonal of the matrix (a_{ij}) is 1.

Then $\pi: G \to \operatorname{GL}(\mathbf{n}, \mathbb{C})$ defined by $\pi: g \mapsto \pi_g = (a_{ij})_{n \times n}$ is a representation of G. For $g, h \in G$, let $\pi_g = (a_{ij})$ and $\pi_h = (b_{ij})$. Then $\pi_g \pi_h = (a_{ij})(b_{ij}) = (c_{ij})$ and so

$$c_{ij} = 1 \iff a_{ik}b_{kj} = 1 \text{ for some } 1 \le k \le n$$
$$\Leftrightarrow a_{ik} = 1 \text{ and } b_{kj} = 1$$
$$\Leftrightarrow \alpha_i^g = \alpha_k \text{ and } \alpha_k^h = \alpha_j$$
$$\Leftrightarrow \alpha_i^{gh} = (\alpha_i^g)^h = \alpha_k^h = \alpha_j$$

Hence $\pi_{gh} = (c_{ij}) = \pi_g \pi_h$ and so $\pi(gh) = \pi(g)\pi(h)$. Therefore $\pi(g) = \pi_g$ is a representation of G.

Denote by χ_{π} the character, called the *permutation character*, afforded by the representation $\pi: G \to \operatorname{GL}(n, \mathbb{C})$ then $\chi_{\pi}(g) = tr(\pi(g)) = tr(\pi_g) = |\{\alpha \in \Omega | \alpha^g = \alpha\}|$ = number of points of Ω fixed by g, by the above remark. Therefore, $\chi_{\pi}(1)$ = degree of the permutation character = $|\Omega|$.

Definition 2.5.6. The action of G on Ω is said to be *transitive* if G has only one orbit on Ω i.e. if $\alpha \in \Omega$ then $\Omega = \alpha^G$

Example 2.5.7. Let H be a subgroup of G ($H \leq G$) and let $\Omega = \{Ha | a \in G\} =$ set of right cosets of H in G. Define $(Ha)^g := Hag$. Then $(Ha)^1 = Ha.1 = Ha$ and

 $(Ha)^{gh} = Ha(gh) = H(ag)h = (Hag)^h = ((Ha)^g)^h$ Therefore $(Ha)^g = Hag$ defines an action of G on Ω . Since $(Ha)^G = \{(Ha)^g | g \in G\} = \{Hag | g \in G\} = \Omega$, it follows that the action of G on Ω has only one orbit and so the action is transitive i.e. G acts transitively on Ω .

Let $\Omega = \{Ha_1, Ha_2, \cdots, Ha_r\}$ where $\{a_1, a_2, \cdots, a_r\}$ is a transversal for H in G.

This action of G on Ω gives rise to a permutation character χ_{π} of degree $|\Omega| = [G:H] =$ index of H in G. In fact $\chi_{\pi} = (1_H)^G =$ trivial character 1_H of H induced to G. $\chi_{\pi}(g) =$ number of points of $\Omega = \{Ha_1, Ha_2, \cdots, Ha_r\}$ fixed by g. Now $(Ha_i)^g = Ha_i \Leftrightarrow Ha_ig =$ $Ha_i \Leftrightarrow a_i ga_i^{-1} \in H$. In other words, Ha_i is fixed by $g \Leftrightarrow a_i ga_i^{-1} \in H$. Therefore

$$\chi_{\pi}(g) = \sum_{i=1}^{r} \Phi^{0}(a_{i}ga_{i}^{-1}) ,$$

where

Thus $\chi_{\pi} = (1_H)^G$

Conversely, if G acts transitively on any set, then the associated permutation character is induced from the trivial character of some subgroup of G, according to the following theorem.

Theorem 2.5.8. Let G act transitively on Ω . Let $\alpha \in \Omega$ and let $H = G_{\alpha}$. Then $(1_H)^G$ is the permutation character of the action, where 1_H is the trivial character of H.

Proof: $\Omega = \alpha^G$ since G acts transitively on Ω . There is a one-to-one correspondence between Ω and $T = \{G_{\alpha}g | g \in G\}$ given by $\alpha^g \mapsto G_{\alpha}g$ for $g \in G$. Let $g \in G$. Then $(\alpha^k)^g = \alpha^k \Leftrightarrow \alpha^{kg} = \alpha^k \Leftrightarrow \alpha^{kgk^{-1}} = \alpha \Leftrightarrow kgk^{-1} \in G_{\alpha} = H \Leftrightarrow kg \in$ $Hk \Leftrightarrow Hkg = Hk \Leftrightarrow (Hk)^g = Hk$, where G acts on the right cosets of H as in the

example 2.5.7.

Therefore the permutation character of the action of G on Ω is the same as the permutation character of the action of G on the right cosets of H in G, which is $(1_H)^G$. \Box

Corollary 2.5.9. If G acts on Ω with permutation character χ and has k orbits on Ω , then $\langle \chi, 1_G \rangle = k$.

Proof: Write $\Omega = \bigcup_{i=1}^{k} \theta_i$, where θ_i are the orbits of G on Ω . Let χ_i be the permutation character of G on θ_i , so $\chi = \sum_{i=1}^{k} \chi_i$ (this is because $\chi_i(g)$ = number of points in θ_i fixed by g and so $\chi(g) = \sum_{i=1}^{k} \chi_i(g)$ = number of points in Ω fixed by g).

For $\alpha_i \in \theta_i, \chi_i = (1_{G_{\alpha_i}})^G$, by theorem 2.5.8, so

$$\langle \chi_i, 1_G \rangle = \langle (1_{G_{\alpha_i}})^G, 1_G \rangle_G$$
$$= \langle 1_{G_{\alpha_i}}, 1_G \downarrow G_{\alpha_i} \rangle_{G_{\alpha_i}},$$
by Frobenius Reciprocity
$$= \langle 1_{G_{\alpha_i}}, 1_{G_{\alpha_i}} \rangle_{G_{\alpha_i}} = 1$$

Therefore,

Every subgroup of G gives rise to a permutation character, as shown by the previous results.

Conversely, we can show the existence of a subgroup H if we can identify the character $(1_H)^G$. Because this character is a transitive permutation character, it must satisfy certain necessary conditions. We give these conditions in theorem 2.5.11 but first prove a lemma.

Lemma 2.5.10. If G acts transitively on Ω , then all subgroups G_{α} of G (for $\alpha \in \Omega$) are conjugate in G.

Proof: Let $\alpha, \beta \in \Omega$. Then $\beta = \alpha^h$ for some $h \in G$.
Now

$$g \in G_{\alpha} \quad \Leftrightarrow \quad \alpha^{g} = \alpha$$
$$\Leftrightarrow \quad \beta^{h^{-1}g} = \beta^{h^{-1}}$$
$$\Leftrightarrow \quad \beta^{h^{-1}gh} = \beta$$
$$\Leftrightarrow \quad h^{-1}gh \in G_{\beta}$$
$$\Leftrightarrow \quad g \in hG_{\beta}h^{-1},$$
so
$$G_{\alpha} = hG_{\beta}h^{-1} \text{ as required} \quad \Box$$

Theorem 2.5.11. Let $H \leq G$ and $\chi = (1_H)^G$ then

χ(1) divides |G|
 < χ, ψ >≤ ψ(1) for all ψ ∈ Irr(G)
 < χ, 1_G >= 1
 χ(g) is a nonnegative integer for all g ∈ G
 χ(g) ≤ χ(g^m) for all g ∈ G and m a nonnegative integer
 χ(g) = 0 if order of g does not divide |G|/χ(1)
 χ(g) |[g]|/χ(1) is an integer for all g ∈ G

Proof:

- 1. $\chi(1) = [G:H]$ and [G:H]||G|
- 2. $\langle \chi, \psi \rangle = \langle (1_H)^G, \psi \rangle_G = \langle 1_H, \psi \downarrow H \rangle_H \leq \psi(1)$, by Frobenius Reciprocity Theorem.
- 3. G acts transitively on the set of all right cosets of H in G, by $(Ha)^g = Hag$. This action gives rise to the permutation character $\chi = (1_H)^G$ with $deg\chi = [G:H]$. Therefore $\langle \chi, 1_G \rangle = 1$ by corollary 2.5.9.

- 4. $\chi(g)$ is the number of points of Ω fixed by g, so must be a nonnegative integer.
- 5. For any $\alpha_i \in \Omega$, $\alpha_i^g = \alpha_i \Rightarrow \alpha_i^{g^m} = \alpha_i$ and so $\chi(g) \le \chi(g^m)$ i.e the number of points of Ω fixed by g cannot exceed the number of points fixed by g^m .
- 6. If ord(g) does not divide $\frac{|G|}{\chi(1)} = |H|$ $(\chi(1) = [G:H] = \frac{|G|}{|H|})$ then no conjugate of g lies in H).

Therefore,

$$\chi(g) = (1_H)^G(g)$$

= $\sum_{i=1}^r (1_H)^0 (x_i g x_i^{-1})$
= 0

7. Let $S = \{(\alpha, x) | \alpha \in \Omega, x \in [g], \alpha^x = \alpha\}$. If $x \in [g]$ then $\chi(x) =$ number of points in Ω fixed by x. Therefore $|S| = \sum_{x \in [g]} \chi(x)$. But $\chi(x) = \chi(y)$ if $x \sim y$ (i.e. if $x, y \in [g]$) and so $|S| = |[g]|\chi(g)$. However $|S| = \sum_{\alpha \in \Omega} |[g] \cap G_{\alpha}|$ and for any $\alpha, \beta \in \Omega$, define $\Phi_h : [g] \cap G_{\alpha} \to [g] \cap G_{\beta}$ by $x \mapsto hxh^{-1}$ where $G_{\beta} = hG_{\alpha}h^{-1}$. Note: since $x \in [g], x = kgk^{-1}$ for some $k \in \overline{G}$ and so $hxh^{-1} = hkgk^{-1}h^{-1} = hkg(hk)^{-1} \in [g] \cap (hG_{\alpha}h^{-1})$. Then Φ_h is a bijection and so for any $\alpha, \beta \in \Omega$, $|[g] \cap G_{\alpha}| = |[g] \cap G_{\beta}| = m$, say. Hence $|S| = |\Omega|m = |[g]|\chi(g)$. Therefore, $m = \frac{\chi(g)|[g]|}{|\Omega|} = \frac{\chi(g)|[g]|}{\chi(1)}$

Theorem 2.5.12. Let $H \leq G$ with $\chi = (1_H)^G$. Let $g \in G$ and let $x_1, x_2, ..., x_m$ be representatives of the conjugacy classes of H that fuse to [g]. Then

$$\chi(g) = \sum_{i=1}^{m} \frac{|C_G(g)|}{|C_H(x_i)|}$$

(If $H \cap [g] = \emptyset$, then $\chi(g) = 0$)

Proof: This follows from Theorem 2.4.5. \Box

Chapter 3

Conjugacy Classes of Group Extensions

In this chapter we describe a method that can be used to determine the conjugacy classes of group extensions. We first restrict ourselves to split extensions of abelian groups. These methods were used by Moori ([44],[45]), Salleh [64], Whitley [68], Mpono [53] and Ali [1]to determine the conjugacy classes of extensions of elementary abelian groups.

3.1 Extensions of Groups

Definition 3.1.1. If N and G are groups, an *extension* of N by G is a group \overline{G} such that

- (i) $N \trianglelefteq \overline{G}$
- (ii) $\overline{G}/N \cong G$

We denote the fact that \overline{G} is an extension of N by \overline{G} by $\overline{G} = N.G$.

Definition 3.1.2. If \overline{G} is an extension of N by G such that there exists a subgroup G_1 of \overline{G} satisfying

- (i) $G_1 \cong G$
- (ii) $NG_1 = \overline{G}$
- (iii) $N \cap G_1 = \{1\},\$

then we say that \overline{G} is a split extension and we denote this fact by $\overline{G} = N:G$. If an extension is not split, then it is called non-split and is denoted by $N \cdot G$.

Remark 3.1.3. If \overline{G} is a split extension of N by G, then \overline{G} is also called a semi-direct product of N by G and we identify G and G_1 .

3.2 Conjugacy classes of semi-direct products.

Let \overline{G} be a *semi-direct product* of N by G where N is abelian. Then every $y \in \overline{G}$ has a unique expression of the form y = ng, $n \in N$, $g \in G$. For suppose $y = n_1 g_1 = n_2 g_2$, then $n_2^{-1} n_1 = g_2 g_1^{-1}$; hence $g_2 g_1^{-1}$, $n_2^{-1} n_1 \in N \cap G = \{1\}$ and so $n_1 = n_2$ and $g_1 = g_2$. It is clear that $\bigcup_{a \in G} Ng \subseteq \overline{G}$. For any $\overline{g} \in \overline{G}$, $\overline{g} = ng$ for some $n \in N$, $g \in G$.

Hence $\overline{g} \in Ng$ for some $g \in G$ and so $\overline{G} \subseteq \bigcup_{g \in G} Ng$. Therefore $\overline{G} = \bigcup_{g \in G} Ng$ and furthermore, suppose $z \in Ng \cap Ny$ for any two elements $g, y \in G$. Then $z = n_1 g = n_2 y$ and so $n_1 = n_2$ and g = y, that is, $g \neq y$ implies that $Ng \cap Ny = \emptyset$ and so G can be regarded as a *right transversal* for N in \overline{G} . To determine the conjugacy classes of \overline{G} , we analyze the cosets Ng for each conjugacy class of G with representative g, and corresponding classes of \overline{G} are determined by the action (by conjugation) of C_g , the set stabilizer in \overline{G} of Ng. For $g \in G$, define $C_g = \{y \in \overline{G} \mid (Ng)^y = Ng\} = \{y \in \overline{G} \mid y(Ng) =$ $(Ng)y\} = C_{\overline{G}}(Ng)$. Now C_g is a subgroup of \overline{G} because $C_{\overline{G}}(H)$ is a subgroup of \overline{G} for any subset H of \overline{G} .

We now prove (i) $N \leq C_g$ and (ii) $C_g = N:C_G(g)$

- (i) $\forall n \in N, n_1g \in Ng$, $(n_1g)^n = n(n_1g)n^{-1} = nn_1gn^{-1}g^{-1}g \in Ng$, which implies that $(Ng)^n = Ng$ and thus $N \subseteq C_g$ and so $N \leq C_g$. Since $N \trianglelefteq \overline{G}$, it follows that $N \trianglelefteq C_g$.
- (ii) If $y \in C_G(g)$ then $y(Ng) = yNy^{-1}yg = Nyg = Ngy = (Ng)y$; so $C_G(g) \leq C_g$ and since $N \cap G = \{1\}$, it follows that $N \cap C_G(g) = \{1\}$. Since $N \leq C_g$ and $C_G(g) \leq C_g$, it follows that $NC_G(g) \leq C_g$. For any $y \in C_g$, $(Ng)^y = Ng$ $\Leftrightarrow Ng^y = Ng \Leftrightarrow g^y g^{-1} \in N$. Now y = n'q' for some $n' \in N$, $q' \in G$ and so $g^y g^{-1} = n'q'g(n'q')^{-1}g^{-1}$ $= n'q'gq'^{-1}n'^{-1}q^{-1} \in N \Leftrightarrow q' \in C_G(q)$

For if
$$q' \in C_G(g)$$
 then $n'q'gq'^{-1}n'^{-1}g^{-1} = n'gq'q'^{-1}n'^{-1}g^{-1} = n'gn'^{-1}g^{-1} \in N$. Conversely if $n'q'gq'^{-1}n'^{-1}g^{-1} \in N$ then $q'gq'^{-1}g^{-1}g^{-1}g^{-1} \in N$. Therefore $q'gq'^{-1}g^{-1} \in N$ of $G = \{1\}$ and so $q'g = gq'$ which implies $q' \in C_G(g)$. This proves that $y = n'q' \in C_g \Leftrightarrow q' \in C_G(g)$. Therefore $C_g \leq NC_G(g)$ and so $C_g = NC_G(g)$; that is, $C_g = N:C_G(g)$, a semi-direct product of N by $C_G(g)$. \Box

UNIVERSITY of the

Now $C_g = \{y \in \overline{G} \mid (Ng)^y = Ng\}$ and so C_g acts on Ng by conjugation. It follows that N and $C_G(g)$ act on Ng. We consider the *action of* N and $C_G(g)$ on Ng separately.

1. Action of N on Ng by conjugation

Let $z \in Ng$, then under the action of N on Ng, $N_z = \{n \in N \mid nz = zn\} = C_N(z)$, the stabilizer of z in N. Now $C_N(g) = C_N(z)$, for if $n \in C_N(g)$ then nz = n(n'g)for some $n' \in N$; hence nz = n'(ng), since N is abelian. But then nz = n'(gn) =(n'g)n = zn, because $n \in C_N(g)$, and this proves that $n \in C_N(z)$, so $C_N(g) \subseteq$ $C_N(z)$. Conversely, if $n \in C_N(z)$, then $ng = nn'^{-1}n'g = nn'^{-1}z = n'^{-1}nz$, since Nis abelian, so $ng = n'^{-1}zn$, because $n \in C_N(z)$. This shows that $ng = n'^{-1}n'gn = gn$ and $n \in C_N(g)$. Therefore $C_N(z) \subseteq C_N(g)$; so we have equality $C_N(z) = C_N(g)$ and $C_N(g) \leq N$.

Now $z^N = \{z^n \mid n \in N\} = \{nzn^{-1} \mid n \in N\}$ and under the action of N on Ng, Ng

splits into orbits Q_{z_1}, \dots, Q_{z_k} where $|Q_{z_i}| = \frac{|N|}{|C_N(z_i)|} = \frac{|N|}{|C_N(g)|} = [N:C_N(g)]$. Let $|C_N(g)| = k$. Then as N acts on Ng, Ng splits into k orbits $Q_{z_1}, Q_{z_2}, \dots, Q_{z_k}$, that is, $Ng = \bigcup_{i=1}^k Q_{z_i}$ and for each $i, 1 \le i \le l, |Q_{z_i}| = [N:C_N(g)] = \frac{|Ng|}{k}, 1 \le i \le k$. Equivalently, $|Ng| = |N| = k |Q_{z_i}|$ for $1 \le i \le k$.

2. Action of $C_G(g)$ on Ng

From (1) above, the elements of Ng are in the orbits Q_{z_1}, \dots, Q_{z_k} ; thus we act $C_G(g)$ on these orbits. Suppose under this action that f of the orbits Q_{z_1}, \dots, Q_{z_k} fuse together to form an orbit Δ_f of $C_G(g)$.

Then $|\triangle_f| = f \frac{|N|}{k}$. Let $y \in \triangle_f$, then the stabilizer in C_g of y is

Thus to compute the conjugacy classes of $\overline{G} = N:G$ we just need to find the values of k and f for each conjugacy class representative g of G.

3.3 Conjugacy classes of group extensions (not necessarily split)

Proposition 3.3.1. Suppose that \overline{G} is any extension of N by G, not necessarily split. There is an onto homomorphism $\lambda : \overline{G} \longrightarrow G$ with kernel N. **Proof:** Define $\lambda : \overline{G} \longrightarrow G$ by $\lambda = \phi \circ \gamma$, where $\lambda : \overline{G} \xrightarrow{\gamma} \overline{G}/N \xrightarrow{\phi} G$ where $\overline{G}/N \stackrel{\phi}{\cong} G$. $\forall \overline{g_1}, \overline{g_2} \in \overline{G}$

 $\lambda(\overline{g_1} \ \overline{g_2}) = (\phi \circ \gamma)(\overline{g_1} \ \overline{g_2}) = \phi(\gamma)(\overline{g_1} \ \overline{g_2}) = \phi(N\overline{g_1} \ \overline{g_2}) = \phi(N\overline{g_1}N\overline{g_2}) = \phi(N\overline{g_1})\phi(N\overline{g_2}).$ On the other hand, $\lambda(\overline{g_1})\lambda(\overline{g_2}) = (\phi \circ \gamma)(\overline{g_1})(\phi \circ \gamma)(\overline{g_2}) = \phi(\gamma(\overline{g_1}))\phi(\gamma(\overline{g_2})) = \phi(N\overline{g_1})\phi(N\overline{g_2}).$ Therefore $\lambda(\overline{g_1} \ \overline{g_2}) = \lambda(\overline{g_1})\lambda(\overline{g_2});$ hence λ is a homomorphism. Let $x \in G$. Then $\phi(N\overline{g}) = x$ for some $\overline{g} \in \overline{G}$, since ϕ is surjective. But then $\gamma(\overline{g}) = N\overline{g}.$ Hence $\lambda(\overline{g}) = (\phi \circ \gamma)(\overline{g}) = \phi(\gamma(\overline{g})) = \phi(N\overline{g}) = x;$ therefore λ is surjective. Furthermore,

Therefore $Ker\lambda = N$

For $g \in G$ define a *lifting of* g to be an element $\overline{g} \in \overline{G}$ such that $\lambda(\overline{g}) = g$. Choosing a lifting of each element of G, we get the set $\{\overline{g}:g \in G\}$ which is a transversal for N in \overline{G} (that is, a complete set of right coset representatives of N in \overline{G}).

For, let \overline{x} be an arbitrary element of \overline{G} . Then $\lambda(\overline{x}) = y$ for some $y \in G$ consider the lifting of \overline{y} of y in \overline{G} then $\lambda(\overline{y}) = y = \lambda(\overline{x})$. Hence $\lambda(\overline{x})\lambda(\overline{y})^{-1} = 1_G$ so . $\lambda(\overline{x} \ \overline{y}^{-1}) = \lambda(\overline{x})\lambda(\overline{y}^{-1}) = \lambda(\overline{x})\lambda(\overline{y})^{-1} = 1_G$

Therefore $\overline{x} \ \overline{y}^{-1} \in Ker\lambda = N$. Hence $\overline{x} \in N\overline{y}$. This shows $\overline{G} = \bigcup_{g \in G} N\overline{g}$. If $\overline{x} \in N\overline{g} \bigcap N\overline{g'}$ then $\overline{x} = n_1\overline{g} = n_2\overline{g'}$ for some $n_1, n_2 \in N$. Hence $\overline{g} \ \overline{g}^{-1} = n_1^{-1}n_2 \in N$. Thus $\overline{g} \in N\overline{g'}$ and so $N\overline{g} = N\overline{g'}$. This proves that $\{\overline{g}: g \in G\}$ is a traversal for N in \overline{G} .

Lemma 3.3.2. For any set of liftings $\{\bar{g} : g \in G\}$, the map $\phi : G \longrightarrow \overline{G}/N$ defined by $\phi(g) = N\bar{g} \forall g \in G$ is an isomorphism and ϕ is independent of the choice of liftings.

Proof: If g = g' then $\lambda(\overline{g}) = g = g' = \lambda(\overline{g'})$. Hence $\lambda(\overline{g}\overline{g'}^{-1}) = 1_G$ and so $\overline{g}\overline{g'} \in N$ and so $\overline{g} \in N\overline{g'}$. Therefore $N\overline{g} = N\overline{g'}$ but $\phi(g) = N\overline{g} = n\overline{g'} = \phi(g')$. This shows that ϕ is well defined. Conversely, suppose $\phi(g) = \phi(g')$ for any $g, g' \in G$. Then $N\overline{g} = N\overline{g'}$, thus $\overline{g}\overline{g'}^{-1} \in N$. Hence $\lambda(\overline{g}\overline{g'}^{-1}) = 1_G$. Therefore $g = \lambda(\overline{g}) = \lambda(\overline{g'}) = g'$ and so λ is injective. If $X \in \overline{G}/N$ then $X = N\overline{y}$ for some $\overline{y} \in \overline{G}$. But $\lambda(\overline{y}) = x$ for some $x \in G$. Hence $\lambda(\overline{y}) = x = \lambda(\overline{x})$, so $\overline{y} \ \overline{x}^{-1} \in N$. Therefore $\overline{y} \in N\overline{x}$ and so $N\overline{y} = N\overline{x}$ for some $\overline{x} \in \overline{G}$. Hence $\phi(x) = N\overline{x} = N\overline{y} = X$, which shows that ϕ is surjective.

For any $g, g' \in G, \lambda(\overline{g}) = g$ and $\lambda(\overline{g'}) = g'$. Then $\lambda(\overline{gg'}) = gg' = \lambda(\overline{g})\lambda(\overline{g'}) = \lambda(\overline{g} \ \overline{g'}) \Rightarrow \overline{gg'} \in N\overline{gg'} \Rightarrow N\overline{g} \ \overline{g'} = N\overline{gg'}$. Therefore $\phi(gg') = N\overline{gg'} = N\overline{g}N\overline{g'} = \phi(g)\phi(g')$, thus ϕ is a homomorphism.

If $\{\overline{g}:g \in G\}$ is another choice of liftings then for any $x \in G$, $x = \lambda(\overline{g})$ and $x = \lambda(\overline{g'})$ for some $\overline{g} \in \overline{G}$, $\overline{g'} \in \overline{G}$. Therefore $\lambda(\overline{g}) = \lambda(\overline{g'})$ implies $\lambda(\overline{g}\overline{g'}^{-1}) = 1_G$, so $\overline{g}\overline{g'}^{-1} \in N$. Therefore $N\overline{g} = N\overline{g'}$ thus ϕ is independent of the choice of liftings.

We now show that even for a non-split extension of N by G, if N is abelian, G acts on N, that is, there \exists a homomorphism $\theta: G \longrightarrow Aut(N)$.

Lemma 3.3.3. Let \overline{G} be an extension of N by G, with N abelian. Then there is a homomorphism $\theta: G \to Aut(N)$ such that $\theta_g(n) = \overline{g}n\overline{g}^{-1}$ for all $n \in N$, and θ , and θ is independent of the choice of liftings $\{\overline{g}: g \in G\}$.

Proof: For $a \in \overline{G}$, define $\gamma_a : \overline{G} \longrightarrow \overline{G}$ by $\gamma_a(\overline{g}) = a\overline{g}a^{-1}$. Since $N \leq \overline{G}$, $\gamma_a|_N \in Aut(N)$, the restriction of γ_a to N, and the function $\mu : \overline{G} \longrightarrow Aut(N)$ defined by $\mu(a) = \gamma_a|_N$ $\forall a \in \overline{G}$ is a homomorphism. This is because $\gamma_{ab}|_N(n) = abn(ab)^{-1} = abna^{-1}b^{-1} =$ $(\gamma_a|_N \circ \gamma_b|_N)(n)$ and therefore $\mu(ab) = \gamma_{ab}|_N = \gamma_a|_N \circ \gamma_b|_N = \mu(a) \circ \mu(b)$. If $a \in N$, then $\mu(a) = \gamma_a|_N$ where $\gamma_a|_N : n \longrightarrow ana^{-1} = naa^{-1} = n \quad \forall n \in N$, so $\mu(a) = \gamma_a|_N = 1_N$, since N is abelian. Define $\mu^* : \overline{G}/N \longrightarrow Aut(N)$ by $\mu^*(Na) = \mu(a)$. If Na = Nb then $Nab^{-1} = N$, so $ab^{-1} \in N$. But then $\mu(ab^{-1}) = 1_N$, as above, which implies $\mu(a)\mu(b^{-1}) = \mu(a)(\mu(b))^{-1} = 1_N$ and $\mu(a) = \mu(b)$. But then $\mu^*(Na) = \mu^*(Nb)$ and so μ^* is well-defined.

Furthermore, $\mu^*(NaNb) = \mu^*(Nab) = \mu(ab) = \mu(a)\mu(b) = \mu^*(Na)\mu^*(Nb)$, therefore μ^* is a homomorphism.

Now let $\theta: G \longrightarrow Aut(N)$ be the composite map $\mu^* \circ \phi$, where ϕ is the map defined in Lemma 3.3.2. If $g \in G$ and \overline{g} is a lifting, then $\theta(g) = (\mu^* \circ \phi)(g) = \mu^*(\phi(g)) = \mu^*(N\overline{g}) = \mu(\overline{g}) \in Aut(N)$, so for $n \in N$, $\theta_g(n) = \mu(\overline{g})(n) = \overline{g}n\overline{g}^{-1}$, as required.

If $\{\bar{g'}:g'\in G\}$ is another choice of liftings then as in Lemma 3.3.2 $N\bar{g} = N\bar{g'}$ but then $\theta_g = \theta(g) = (\mu^* \circ \phi)(g) = \mu^*(\phi(g)) = \mu^*(N\bar{g}) = \mu^*(N\bar{g'}) = \mu(\bar{g'})$, and so for $\theta_g(n) = \mu(\bar{g'})(n) = \bar{g'}n\bar{g'}^{-1} = \bar{g}n\bar{g}^{-1}$ for any $n \in N$. This shows that θ is independent of the choice of liftings.

Conjugacy Classes of $\overline{G} = N \cdot G$ (N abelian).

To determine the conjugacy classes of \overline{G} , we analyse the cosets $N\bar{g}$, where $\overline{G} = \bigcup_{g \in G} N\bar{g}$ and \bar{g} is a lifting of g in G. It is only necessary to consider one coset $N\bar{g}$ for each conjugacy class of G with representative g, and the corresponding classes of \overline{G} are determined by the action (by conjugation) of $C_{\bar{g}}$, the set stabilizer in \overline{G} of $N\bar{g}$, that is, $C_{\bar{g}} = \{g \in \overline{G} | g(N\bar{g}) = (N\bar{g})g\} = \{g \in \overline{G} | gn\bar{g}g^{-1} \in N\bar{g}, \forall n \in N\}$. Now $N \subseteq C_{\bar{g}}$, since for $n \in N$ and $n_1\bar{g} \in N\bar{g}, n(n_1\bar{g})n^{-1} = nn_1\bar{g}n^{-1}\bar{g}^{-1}\bar{g} = nn_1(n^{-1})^{\bar{g}}\bar{g} \in N\bar{g}$. Therefore $N \trianglelefteq C_{\bar{g}}$ and we have $C_{\bar{g}}/N = C_{\overline{G}/N}(N\bar{g})$ because

$$\begin{split} Nh \in C_{\overline{G}/N}(N\bar{g}) & \iff NhN\bar{g}(Nh)^{-1} = N\bar{g} \\ & \iff NhN\bar{g}Nh^{-1} = N\bar{g} \\ & \iff NhN\bar{g}N\bar{g}^{-1}\bar{g}h^{-1} = N\bar{g} \\ & \iff NhN\bar{g}h^{-1} = N\bar{g} \\ & \iff NhNn\bar{g}h^{-1} = N\bar{g} \quad \forall \ n \in n \\ & \iff NhNh^{-1}hn\bar{g}h^{-1} = N\bar{g} \quad \forall \ n \in N \\ & \iff Nhn\bar{g}h^{-1} = N\bar{g} \\ & \iff Nhn\bar{g}h^{-1} = N\bar{g} \\ & \iff Nhn\bar{g}h^{-1} \in N\bar{g} \quad \forall \ n \in N \\ & \iff h \in C_{\bar{g}} \\ & \iff Nh \in C_{\bar{g}}/N \end{split}$$

Therefore, $C_{\bar{g}}/N = C_{\bar{G}/N}(N\bar{g}) = C_G(g)$, identifying $C_{\bar{G}/N}(N\bar{g})$ and $C_G(g)$. This shows that $C_{\bar{g}}$ is an extension of N by $C_G(g)$, that is, $C_{\bar{g}} = N \cdot C_G(g)$.

Remark 3.3.4. If $\overline{G} = N : G$ we can identify $C_{\overline{g}} = N \cdot C_G(g)$ with $C_g = \{y \in G | y(Ng) = (Ng)y\}$, where the lifting of g in $\overline{\overline{G}}$ is g itself since $G \leq \overline{\overline{G}}$ in the case of a split extension.

Next we determine the orbits of $C_{\bar{g}}$ on $N\bar{g}$. Let $z \in N\bar{g}$. Then under the action of N on $N\bar{g}$, $N_z = \{n \in N | z^n = z\} = C_N(z)$, is the stabilizer in N of z. Then for any $nz \in N\bar{g} \ (n \in N), \ (nz)^y = n^y z^y = yny^{-1}yzy^{-1} = nyy^{-1}yzy^{-1} = nyzy^{-1} = nzyy^{-1} = nz$, for $y \in C_N(z)$, since N is abelian. Therefore $C_N(z)$ fixes each element in $N\bar{g}$. Let $k = |C_N(z)|$. Then $|[z]| = \frac{|N|}{|C_N(z)|} = \frac{|N|}{k}$, that is, under conjugation by N, each element of $N\bar{g}$ is conjugate to $\frac{|N|}{k}$ elements of $N\bar{g}$, so $N\bar{g}$ splits into k blocks with $\frac{|N|}{k}$ elements in each block. Denote these blocks by Q_1, \dots, Q_k . The orbits of $C_{\bar{g}}$ (that is, the conjugacy classes of $N\bar{g}$) are unions of these blocks which fuse together by the action of $C_{\bar{g}}$. Since $C_{\bar{g}} = N.C_G(g)$, this fusion is completely determined by the action of $\{\bar{y}|y \in C_G(g)\}$ (there is a homomorphism $\lambda: C_{\bar{g}} \to C_G(g)$ with kernel $N; \ \bar{y} \mapsto y$). For suppose Q_i and Q_j fuse

 $(i \neq j)$. Then there exist $n_1 \bar{g} \in Q_i$, $n_2 \bar{g} \in Q_j$ such that $(n_1 \bar{g})^l = n_2 \bar{g}$ for some $l \in C_{\bar{g}}$.

But $l \in C_{\bar{g}}$ implies that $l = n\bar{y}$ for some $n \in N$, $y \in C_G(g)$. So $(n_1\bar{g})^{n\bar{y}} = n_2\bar{g}$ implies that

 $((n_1\bar{g})^n)^{\bar{y}} = n_2\bar{g}$. Now $(n_1\bar{g})^n \in Q_i$, so by the action of \bar{y} , Q_i and Q_j have fused. Suppose f blocks fuse to form an orbit Ω of $C_{\bar{g}}$. Then $|\Omega| = \frac{f \cdot |N|}{k}$. Let $y \in \Omega$. Then the stabilizer in $C_{\bar{g}}$ of y is $C_G(y)$, so $|\Omega| = \frac{|C_{\bar{g}}|}{|C_G(y)|} = \frac{|N||C_G(g)|}{|C_G(y)|}$. Therefore $|C_{\overline{G}}(y)| = \frac{|N||C_G(g)|}{|\Omega|} = \frac{k|N||C_G(g)|}{f|N|} = \frac{k}{f}|C_G(g)|$. So to calculate the conjugacy classes of \overline{G} we need to find the values of k and f for each conjugacy class of G. Note that the values of k can be determined from the action of G on N given in lemma 3.3.3. Consider a class representative g of G. For this class, k is the number of elements of N that fix z for $z \in N\bar{g}$. Take $z = \bar{g}$. Now for $n \in N$, n fixes $\bar{g} \Leftrightarrow \bar{g}^n = \bar{g} \Leftrightarrow n\bar{g}n^{-1} = \bar{g} \Leftrightarrow n\bar{g} = \bar{g}n \Leftrightarrow n = \bar{g}n\bar{g}^{-1} \Leftrightarrow n = n^{\bar{g}} \Leftrightarrow n = n^{g}$. Therefore k is the number of elements of N fixed by g, which equals $\chi(g)$ where χ is the permutation character of the action of G on N.

Theorem 3.3.5. [53] Let $\overline{G} = N:G$ and $dg \in \overline{G}$ where $d \in N$ and $g \in G$ such that o(g) = m and o(dg) = k. Then m divides k.

Proof: We have that

$$1_G = (dg)^k = dd^g d^{g^2} d^{g^3} \dots d^{g^{k-1}} g^k \quad .$$

Since G acts on N and $d \in N$, we have $d, d^g, d^{g^2}, d^{g^3}, \dots, d^{g^{k-1}} \in N$. Hence $dd^g d^{g^2} d^{g^3} \dots d^{g^{k-1}} \in N$. Thus we have that $dd^g d^{g^2} d^{g^3} \dots d^{g^{k-1}} = 1_K$ and $g^k = 1_G$. Hence m divides k. \Box

Theorem 3.3.6. Let $\overline{G} = N:G$ such that N is an elementary abelian p-group, where p is prime. Let $dg \in \overline{G}$ where $d \in N$ and $g \in G$ such that o(g) = m and o(dg) = k. Then either k = m or k = pm.

Proof: See [53], Theorem 2.3.10.

Remark 3.3.7. Let $\overline{G} = N:G$ where N is an elementary abelian p-group, where p is prime. Let $dg \in \overline{G}$ with $d \in N$, $g \in G$ such that o(g) = m and o(dg) = k, then we observe that

$$1_{\overline{G}} = (dg)^m = dd^g d^{g^2} d^{g^3} \dots d^{g^{m-1}} g^m$$
 .

Since $g^m = 1_G$, we obtain that $(dg)^m = w$, where $w \in N$ and is given by

$$w = dd^g d^{g^2} d^{g^3} \dots d^{g^{m-1}}$$
 .

By Theorem 3.2.4 above, we have that if $w = 1_N$ then k = m and if $w \neq 1_N$ then k = pm.

By using the method of coset analysis(discussed earlier) together with Theorems 3.3.5 and 3.3.6 and Remark 3.3.7,[1] developed Programmes A and B (see Appendix A) in MAGMA [15] to compute the conjucacy classes and the orders of the class representatives of the extension $\overline{G} = N:G$ where N is an elementary abelian p - group for prime p on which a linear group G acts.

WESTERN CAPE

Chapter 4

Clifford Theory

If \overline{G} is an extension of N by G, then Fischer showed how the character table of \overline{G} can be determined by constructing a matrix corresponding to each conjugacy class of G. The character table of \overline{G} can then be determined from these matrices (the so-called Clifford matrices) and the character tables of certain subgroups of \overline{G} called the *inertia factors*. In this thesis we describe how the method of the Fischer-Clifford matrices is applied in the case of extensions of elementary abelian groups. However this method also applies to extensions of any normal subgroup N with the property that each character of N can be extended to its inertia group. The theoretical foundation for this method is the Clifford theory and the theory of the Fischer matrices.

In this chapter we discuss the Clifford theory which will be applied to describe the Fischer matrices method in the next chapter. We refer the reader to Moori [47] for the definitions and results not given here.

4.1 Clifford's Theorem

Let $\overline{G} = N \cdot G$ be the extension of N by G. Here N is any group, not necessarily abelian. Let $\theta \in Irr(N)$ be an irreducible character of N. Define θ^g by $\theta^g(n) = \theta(gng^{-1})$ for $g \in \overline{G}, n \in N$.

Let P be a representation of N affording θ , that is, $P:N \longrightarrow GL(n, \mathbb{F})$ is a homomorphism such that $\chi_p = \theta$. Then

$$\chi_{p^g}(n) = tr(P^g(n)) = tr(P(gng^{-1})) = \chi_p(gng^{-1}) = \theta(gng^{-1}) = \theta^g(n)$$

for all $n \in N$. Therefore, $\chi_{p^g} = \theta^g$ and furthermore $\theta \in Irr(N)$ implies $\theta^g \in Irr(N)$ because $\langle \theta^g, \theta^g \rangle_N = \langle \theta, \theta \rangle_N = 1$ (Prop. v.5(iii), [47]).

Moreover, $\theta^{n'}(n) = \theta(n'nn'^{-1}) = \theta(n)$ (since $n \sim n'nn'^{-1}$ in N, $\theta(n) = \theta(n'nn'^{-1})$) and therefore $\theta^{n'} = \theta$ for all $n' \in N$, that is, N acts trivially on Irr(N).

Remark 4.1.1. $P^g : N \longrightarrow GL(n, \mathbb{F})$ defined by $P^g(n) = P(gng^{-1})$ is a representation of N affording θ^g . This is because $\forall n_1, n_2 \in N$, $P^g(n_1n_2) = P(gn_1n_2g^{-1}) = P(gn_1g^{-1}gn_2g^{-1}) = P(gn_1g^{-1}) P(gn_2g^{-1}) = P^g(n_1) P^g(n_2)$. Since $\theta^1(n) = \theta(1n1) = \theta(n)$, $\forall n \in N, \ \theta^1 = \theta$. Moreover we have $\theta^{gg'} = (\theta^g)^{g'}$ (Prop.v.5(ii), [47]). It follows that G acts on Irr(N) with $G_{\theta} = \{g \in G | \theta^g = \theta\}$, the stabilizer of θ in G. Denote G_{θ} by $I_G(\theta)$ and call it the *inertia group of* θ *in* G.

Remark 4.1.2. The action of G on Irr(N) determines a partition of Irr(N) by the orbits θ^G for $\theta \in Irr(N)$, that is,

$$Irr(N) = \bigcup_{\theta \in Irr(N)} \theta^G$$

and $\theta^G \cap \phi^G \neq \emptyset \Rightarrow \theta^G = \phi^G$ for any $\theta, \phi \in Irr(N)$.

Now $I_G(\theta)$ is a subgroup of G and $N \leq I_G(\theta)$ since N acts trivially on Irr(N), that is, $\theta^n = \theta \ \forall n \in N$. Also $|\theta^G| = |\{\theta^g | g \in G\}| = [G:I_G(\theta)]$, that is, the size of the orbit $\theta^G = \{\theta^g | g \in G\}$ containing θ is $[G:I_G(\theta)]$, the index of the subgroup $I_G(\theta)$ in G. We say that θ extends to an irreducible character of $\overline{H} = I_{\overline{G}}(\theta)$ if there exists $\phi \in Irr(\overline{H})$ such that $\theta = \phi \downarrow N$. **Theorem 4.1.3.** ([[18], Theorem 3.3.1],[33]) (**Clifford's Theorem**) Let $N \leq \overline{G}$ and $\chi \in Irr(\overline{G})$. Let θ be an irreducible constituent of $\chi \downarrow N$, that is, $\theta \in Irr(N)$ and $\langle \theta, \chi \downarrow N \rangle_N \neq 0$. Then

$$\chi \downarrow N = c \sum_{i=1}^t \theta_i$$

where $\theta = \theta_1, \theta_2, \cdots, \theta_t$ are the distinct conjugates of θ in \overline{G} and c is a constant such that $c = \langle \chi \downarrow N, \theta \rangle_N$

Proof: We compute $\theta^{\overline{G}} \downarrow N$. Define θ° on \overline{G} by

$$\theta^{\circ}(x) = \begin{cases} \theta(x) & if \quad x \in N \\ 0 & if \quad x \notin N \end{cases}$$

Let $n \in N$. Then

$$\theta^{\bar{G}}(n) = |N|^{-1} \sum_{x \in \bar{G}} \theta^{\circ}(xnx^{-1}) = |N|^{-1} \sum_{x \in \bar{G}} \theta(xnx^{-1}),$$

since $xnx^{-1} \in N$ for all $x \in \overline{G}$ (Prop.iv.2.3, [47]). Therefore,

$$\theta^{\bar{G}}(n) = |N|^{-1} \sum_{x \in \bar{G}} \theta^x(n)$$
 and hence $\theta^{\bar{G}} \downarrow N = |N|^{-1} \sum_{x \in \bar{G}} \theta^x$

Now if $\phi \in Irr(N)$ and $\phi \notin \{\theta = \theta_1, \theta_2, \cdots, \theta_t\}$, then $\langle \phi, \theta^x \rangle_N = 0 \ \forall x \in \overline{G}$. Therefore

$$\left\langle \sum_{x \in \bar{G}} \theta^x, \phi \right\rangle_N = 0,$$

whence $\langle \theta^{\bar{G}} \downarrow N, \phi \rangle_N = 0$. Using the Frobenius Reciprocity Theorem (Theorem 2.4.4) we get

$$0 = <\theta^{\bar{G}} \downarrow N, \phi >_N = <\theta^{\bar{G}}, \phi^{\bar{G}} >_{\bar{G}} \text{ and } 0 \neq <\theta, \chi \downarrow N >_N = <\theta^{\bar{G}}, \chi >_{\bar{G}}.$$

Then $\langle \chi, \phi^{\bar{G}} \rangle_{\bar{G}} = 0$, for if $\langle \chi, \phi^{\bar{G}} \rangle \neq 0$ then χ is a constituent of $\phi^{\bar{G}}$, but then $\langle \theta^{\bar{G}}, \phi^{\bar{G}} \rangle_{\bar{G}} \neq 0$ because χ is a constituent of $\theta^{\bar{G}}$, contradicting $\langle \theta^{\bar{G}}, \phi^{\bar{G}} \rangle_{\bar{G}} = 0$.

Therefore $\langle \chi \downarrow N, \phi \rangle_N = \langle \phi^{\bar{G}}, \chi \rangle_{\bar{G}} = 0$ for all $\phi \in Irr(N) \setminus \{\theta = \theta_1, \cdots, \theta_t\}$, again by the Frobenius Reciprocity Theorem. Thus all the irreducible constituents of $\chi \downarrow N$ are among the θ_i , so

$$\chi \downarrow N = \sum_{i=1}^{t} < \chi \downarrow N, \theta_i >_N \theta_i$$

But $\langle \chi \downarrow N, \theta_i \rangle_N = \langle \chi \downarrow N, \theta \rangle_N = c$, for all $i = 1, 2, \dots, t$ because θ_i and θ are conjugate (Prop.v.5(iv), [47]). Thus

$$\chi \downarrow N = \sum_{i=1}^{t} c \,\theta_i = c \sum_{i=1}^{t} \theta_i$$

Definition 4.1.4. Let $N \leq \overline{G}$ and $\theta \in Irr(N)$. Then $I_{\overline{G}}(\theta) = \{g \in \overline{G} : \theta^g = g\}$ is the inertia group of θ in \overline{G} .

Remark 4.1.5. Since $I_{\overline{G}}(\theta)$ is the stabilizer of θ in the action of \overline{G} on Irr(N), we have that $I_{\overline{G}}(\theta)$ is a subgroup of \overline{G} and $N \subseteq I_{\overline{G}}(\theta)$. Also, $[\overline{G}:I_{\overline{G}}(\theta)]$ is the size of the orbit containing θ , so in the above formula $\chi \downarrow N = c \sum_{i=1}^{t} \theta_i$, we have $t = [\overline{G}:I_{\overline{G}}(\theta)]$. As a consequence of Clifford's Theorem we have the following result.

Theorem 4.1.6. [68] Let $N \leq \overline{G}$, $\theta \in Irr(N)$ and $\overline{H} = I_{\overline{G}}(\theta)$. Then induction to \overline{G} maps the irreducible characters of \overline{H} that contain θ in their restriction to N faithfully onto the irreducible characters of \overline{G} which contain θ in their restriction to N.

Proof: Let $\mathcal{A} = \{ \psi \in Irr(\overline{H}) \mid \langle \psi \downarrow N, \theta \rangle \neq 0 \}$, $\mathcal{B} = \{ \chi \in Irr(\overline{G}) \mid \langle \chi \downarrow N, \theta \rangle \neq 0 \}$. Define the mapping $\Phi : \mathcal{A} \longrightarrow \mathcal{B}$ by $\psi \mapsto \psi^{\overline{G}}$ where $\psi^{\overline{G}}$ is the character of G induced by ψ .

For $\psi \in \mathcal{A}$ we first show that

(i) $\psi^{\bar{G}} \in Irr(\overline{G})$

(ii)
$$\langle \psi^{\bar{G}} \downarrow N, \theta \rangle \neq 0$$

(iii) $\langle \psi \downarrow N, \theta \rangle = \langle \psi^{\bar{G}} \downarrow N, \theta \rangle$.

(i) Let χ be an irreducible constituent of $\psi^{\bar{G}}$, that is, $\chi \in Irr(\overline{G})$ and $\langle \chi, \psi^{\bar{G}} \rangle_{\bar{G}} \neq 0$. Now $0 \neq \langle \chi, \psi^{\bar{G}} \rangle_{\bar{G}} = \langle \psi, \chi \downarrow \bar{H} \rangle_{\bar{H}}$, by Frobenius Reciprocity Theorem and so ψ is an irreducible constituent of $\chi \downarrow \bar{H}$. Thus $\chi \downarrow \bar{H} = \cdots + \lambda \psi + \cdots, \lambda \geq 1$, and therefore

$$\chi \downarrow N = \cdots \lambda \psi \downarrow N + \cdots = \cdots \lambda (\cdots + \delta \theta + \cdots) = \cdots + \lambda \delta \theta + \cdots, \delta \ge 1$$

which shows that $\langle \chi \downarrow N, \theta \rangle \neq 0$. Since $\chi \in Irr(\overline{G})$, it follows that $\chi \in \mathcal{B}$. We show that $\chi = \psi^{\overline{G}}$.

By Clifford's theorem

$$\chi \downarrow N = e \sum_{i=1}^t \theta_i$$

where $\theta = \theta_1, \theta_2, \cdots, \theta_t$ are the distinct conjugates of θ in \overline{G} and e is a constant such that $e = \langle \chi \downarrow N, \theta \rangle_N$ and $t = [\overline{G}: I_{\overline{G}}(\theta)] = |\theta^{\overline{G}}|$. Therefore

$$\chi(1) = (\chi \downarrow N)(1) = e \sum_{i=1}^{t} \theta_i(1) = e \cdot t \cdot \theta(1)$$
(4.1)

because $\theta^g(1) = \theta(g1g^{-1}) = \theta(1) \ \forall g \in \overline{G}$. Now $N \leq \overline{H}, \psi \in Irr(\overline{H})$ and $\langle \psi \downarrow N, \theta \rangle \neq 0$, that is, θ is an irreducible constituent of $\psi \downarrow N$. Therefore, again by Clifford's Theorem

$$\psi \downarrow N = f\theta \tag{4.2}$$

for some constant f since $\{\theta^h \mid h \in \overline{H} = I_{\overline{G}}(\theta)\} = \{\theta\}$, and thus $\langle \psi \downarrow N, \theta \rangle = f$. As before $\chi \downarrow \overline{H} = \cdots + \lambda \psi + \cdots, \lambda \geq 1$, therefore

$$\chi \downarrow N = \dots + \lambda(\psi \downarrow N) + \dots = \dots + \lambda(\dots + f \theta + \dots) = \dots + \lambda f \theta + \dots$$

and so

$$e = \langle \chi \downarrow N, \theta \rangle_N = \lambda f \ge f \text{ since } \lambda \ge 1$$

$$(4.3)$$

Also $0 \neq \langle \psi^{\bar{G}}, \chi \rangle_{\bar{G}}$ implies

$$\psi^G = \dots + \delta \chi + \dots, \ (\delta \ge 1) \tag{4.4}$$

and hence $\psi^{\bar{G}}(1) = \cdots + \delta\chi(1) + \cdots \geq \chi(1) = e \cdot t \cdot \theta(1)$ by (4.1.1). But $\psi^{\bar{G}}(1) = [\bar{G}:\bar{H}]\psi(1) = t f \theta(1)$ by (4.1.2) and Defn.iv.2.2 [47]. Therefore $t f \theta(1) \leq t e \theta(1) = \chi(1)$, since $f \leq e$ by 4.3.

Since $e t \theta(1) = \chi(1) \le \psi^{\bar{G}}(1) = t f \theta(1) \le t e \theta(1) = \chi(1)$, it follows that $\chi(1) = \psi^{\bar{G}}(1)$ and e = f. That is,

$$e = \langle \chi \downarrow N, \theta \rangle = \langle \psi \downarrow N, \theta \rangle = f \tag{4.5}$$

Also $0 \neq \langle \psi^{\bar{G}}, \chi \rangle_{\bar{G}}$ implies that $\psi^{\bar{G}} = \lambda_1 \chi + \lambda_2 \chi_2 + \cdots$ and so $\chi(1) = \psi^{\bar{G}}(1) = \lambda_1 \chi(1) + \lambda_2 \chi_2(1) + \cdots$ Hence $\lambda_1 = 1, \lambda_2 = \lambda_3 = \cdots = 0$, which proves that $\psi^{\bar{G}} = \chi$. (ii) Restating (4.1.5) we get

$$\langle \psi^G \downarrow N, \theta \rangle = \langle \psi \downarrow N, \theta \rangle \neq 0$$
 (4.6)

(iii) The map $\psi \mapsto \psi^{\bar{G}}$ is onto. Let $\chi \in \mathcal{B}$. Then $\chi \in Irr(\bar{G})$ and $\langle \chi \downarrow N, \theta \rangle \neq 0$. If $\chi \downarrow \bar{H} = \lambda_1 \psi_1 + \lambda_2 \psi_2 + \dots + \lambda_r \psi_r, \psi_i \in Irr(\bar{H})$ for $i = 1, 2, \dots, r$, then $\chi \downarrow N = \lambda_1(\psi_1 \downarrow N) + \dots + \lambda_r(\psi_r \downarrow N)$. So $\exists i, 1 \leq i \leq r$ such that $\langle \psi_i \downarrow N, \theta \rangle \neq 0$, since $\langle \chi \downarrow N, \theta \rangle \neq 0$. Let $\psi = \psi_i$, then $\psi \in Irr(\bar{H})$ and $\langle \psi \downarrow N, \theta \rangle \neq 0$. Hence $\psi \in \mathcal{A}$ and $\langle \psi, \chi \downarrow \bar{H} \rangle_{\bar{H}} \neq 0$ and so $\langle \psi^{\bar{G}}, \chi \rangle = F^{-R} \langle \psi, \chi \downarrow \bar{H} \rangle_{\bar{H}} \neq 0$. This shows that χ is an irreducible constituent of $\psi^{\bar{G}}$. The fact that $\chi = \psi^{\bar{G}}$ can be proved by repeating the above steps. To show that the map $\psi \mapsto \psi^{\bar{G}}$ is one-to-one, we need to show that for $\psi \in \mathcal{A}, \psi$ is the unique irreducible constituent of $\psi^{\bar{G}} \downarrow \bar{H}$ which lies in \mathcal{A} . Let $\chi = \psi^{\bar{G}}$. Suppose $\psi_1 \in \mathcal{A}$ such that ψ_1 is a constituent of $\chi \downarrow \bar{H}$ and $\psi_1 \neq \psi$. That

Let $\chi = \psi^{G}$. Suppose $\psi_{1} \in \mathcal{A}$ such that ψ_{1} is a constituent of $\chi \downarrow H$ and $\psi_{1} \neq \psi$. That is, $\chi \downarrow \bar{H} = \lambda_{1}\psi + \lambda_{2}\psi_{1} + \cdots$ and so $\chi \downarrow N = \lambda_{1}(\psi \downarrow N) + \lambda_{2}(\psi_{1} \downarrow N) + \cdots$ Hence

$$< \chi \downarrow N, \theta > = \lambda_1 < \psi \downarrow N, \theta > +\lambda_2 < \psi_1 \downarrow N, \theta > + \cdots$$

$$\ge < \psi \downarrow N, \theta > + < \psi_1 \downarrow N, \theta >$$

$$> < \psi \downarrow N, \theta >$$

contradicting $\langle \chi \downarrow N, \theta \rangle = \langle \psi \downarrow N, \theta \rangle$ by (4.1.6). This completes the proof. \Box Theorem 4.1.6 implies that, to obtain the irreducible characters of \overline{G} that contain θ in their restriction to N, it is sufficient to find the irreducible characters of \overline{H} that contain θ in their restriction to N. If θ can be extended to an irreducible character of $\overline{H} = I_{\overline{G}}(\theta)$ (that is, $\exists \psi \in Irr(\overline{H})$ and $\theta = \psi \downarrow N$), then the relevant characters of \overline{H} can be obtained by using the following theorem.

Theorem 4.1.7. [28] Let $N \leq \overline{G}$, $\theta \in Irr(N)$ and $\overline{H} = I_{\overline{G}}(\theta)$. If θ extends to an irreducible character φ of \overline{H} , then $\mathcal{A} = \{\psi | \psi \in Irr(\overline{H}), \langle \psi \downarrow N, \theta \rangle \neq 0\} = \{\beta \varphi | \beta \in Irr(\overline{H}), N \subseteq ker\beta\} = \{\beta \varphi | \beta \in Irr(\overline{H}/N)\}$

Proof: If $\{x_1, \dots, x_f\}$ is a right transversal for N in \overline{H} , it follows that for every $n \in N$,

$$\begin{split} \theta^{\bar{H}}(n) &= \sum_{i=1}^{f} \theta^{\circ}(x_{i} n \, x_{i}^{-1}) = \sum_{i=1}^{f} \theta(x_{i} n \, x_{i}^{-1}) = \sum_{i=1}^{f} \theta^{x_{i}}(n) = \sum_{i=1}^{f} \theta(n) = f \, \theta(n) \\ \text{since } x_{i} n \, x_{i}^{-1} \in N \text{ for each } i = 1, 2, \cdots, f \text{ and } \bar{H} = I_{\bar{G}}(\theta) \text{ implies that } \theta \text{ is the only} \\ \overline{H}\text{-conjugate (that is, } \theta^{x_{i}} = \theta \text{ for each } i, 1 \leq i \leq f). \text{ Hence } \theta^{\bar{H}} \downarrow N = f\theta \text{ for some integer} \\ f. \\ \text{Now } f \, \theta(1) = (\theta^{\bar{H}} \downarrow N)(1) = \overline{\theta^{\bar{H}}(1)} = [\bar{H}:N] \, \theta(1) \text{ by Definition iv.2.2 [47] , and so} \\ f = [\bar{H}:N]. \\ \text{Therefore } \theta^{\bar{H}} \downarrow N = [\bar{H}:N] \, \theta \text{ . Hence} \\ < \theta^{\bar{H}}, \theta^{\bar{H}} >_{\bar{H}} =^{F-R} < \theta, \theta^{\bar{H}} \downarrow N >_{N} = < \theta, [\bar{H}:N] \, \theta >_{N} = [\bar{H}:N] < \theta, \theta >_{N} = [\bar{H}:N], \\ \text{since } \theta \in Irr(N). \end{split}$$

Claim :

$$\theta^{\bar{H}} = \sum_{\beta} \beta(1) \,\beta \,\varphi$$

where β runs over all irreducible characters of \overline{H} that contain N in their kernel, or equivalently over all irreducible characters of \overline{H}/N .

For $g \notin N$, $xgx^{-1} \notin N$ for all $x \in \overline{N}$, so $\theta^{\overline{H}}(g) = 0$ and

$$\sum_{\beta} \beta(1) \left(\beta \varphi\right)(g) = \left(\sum_{\beta} (\beta(1) \beta(g))\right) \varphi(g) = 0$$

(column orthogonality for the character table of \overline{H}/N , since $g \notin N$). By Note 7 [47] and the fact that $\beta(g) = \beta(1)$ since $N \subseteq ker\beta$, then for $g \in N$

$$\sum_{\beta} \beta(1) (\beta \varphi)(g) = \sum_{\beta} \beta(1) \beta(g) \varphi(g) = \left(\sum_{\beta} (\beta(1))^2\right) \varphi(g) = |\bar{H}/N| \varphi(g),$$
$$= [\bar{H}:N] \varphi(g) = [\bar{H}:N] \theta(g)$$

since for $g \in N$, $\theta(g) = (\varphi \downarrow N)(g) = \varphi(g)$. Therefore,

$$\theta^{\bar{H}} \downarrow N = [\bar{H}:N]\theta = \left(\sum_{\beta} \beta(1) \beta \varphi\right) \downarrow N.$$

This proves that

$$\theta^{\bar{H}} = \sum_{\beta} \beta(1) \, \beta \, \varphi$$

as claimed.

Now

$$\begin{split} [\bar{H}:N] &= \langle \theta^{\bar{H}}, \theta^{\bar{H}} \rangle \\ &= \left\langle \sum_{\beta} \beta(1) \beta \varphi, \sum_{\gamma} \gamma(1) \gamma \varphi \right\rangle \\ &= \sum_{\beta,\gamma} \beta(1) \gamma(1) < \beta \varphi, \gamma \varphi \rangle \\ &= \sum_{\beta} (\beta(1))^2 < \beta \varphi, \beta \varphi > + \sum_{\beta \neq \gamma} \beta(1) \gamma(1) < \beta \varphi, \gamma \varphi \rangle \\ &\geq \sum_{\beta} (\beta(1))^2 + \sum_{\gamma \neq \beta} \gamma(1) \beta(1) < \beta \varphi, \gamma \varphi \rangle \\ &\geq [\bar{H}:N] + \sum_{\gamma \neq \beta} \gamma(1) \beta(1) < \beta \varphi, \gamma \varphi \rangle \end{split}$$

Therefore

$$\sum_{\gamma \neq \beta} \gamma(1) \,\beta(1) < \beta \,\varphi, \gamma \,\varphi >= 0$$

and hence $\langle \beta \varphi, \gamma \varphi \rangle = 0 \ \forall \gamma, \beta$, $\gamma \neq \beta$, that is, the $\beta \varphi$ are distinct. But then

$$[\bar{H}:N] = \sum_{\beta} (\beta(1))^2 < \beta \varphi, \beta \varphi >$$

and so $\langle \beta \varphi, \beta \varphi \rangle = 1$. This shows that $\beta \varphi$ is irreducible, where β runs over all irreducible characters of \bar{H}/N . Since

$$\theta^{\bar{H}} = \sum_{\beta} \beta(1)(\beta \, \varphi)$$

these $\beta \varphi$ are all the irreducible constituents of $\theta^{\bar{H}}$ ($\langle \beta \varphi \downarrow N, \theta \rangle = F^{-R} \langle \beta \varphi, \theta^{\bar{H}} \rangle_{\bar{H}} \neq 0$), so are all the irreducible characters of \overline{H} that contain θ in their restriction, since for $\gamma \in Irr(\bar{H})$ with $0 \neq \langle \gamma \downarrow N, \theta \rangle_N$ we have $0 \neq \langle \gamma \downarrow N, \theta \rangle_N = F^{-R} \langle \gamma, \theta^{\bar{H}} \rangle$ and so γ is an irreducible constituent of $\theta^{\bar{H}}$. Thus $\gamma = \beta \varphi$ for some $\beta \in Irr(\bar{H}/N)$ and this completes the proof of the theorem. \Box

In Theorem 4.1.6 the set $\mathcal{B} = \{\chi \in Irr(\bar{G}) \mid \langle \chi \downarrow N, \theta \rangle \neq 0\} = \{\chi \in Irr(\bar{G}) \mid \chi = \psi^{\bar{G}} \}$ where $\psi \in Irr(\bar{H})$ and $\langle \psi \downarrow N, \theta \rangle \neq 0\}$. If $\gamma \in Irr(\bar{H})$ with $\langle \gamma \downarrow N, \theta \rangle_N \neq 0$ then $\gamma = \beta \varphi$ for some $\beta \in Irr(\bar{H}/N)$, where $\varphi \in Irr(\bar{H})$ and $\varphi \downarrow N = \theta$, by Theorem 4.1.3. Hence

$$\mathcal{B} = \{ \chi \in Irr(\bar{G}) \mid \chi = (\beta \varphi)^{\bar{G}} \text{ for some } \beta \in Irr(\bar{H}/N) \}$$
$$= \{ \chi \in Irr(\bar{G}) \mid \chi = (\beta \varphi)^{\bar{G}}, \beta \in Irr(\bar{H}), N \subseteq ker\beta \}$$

Now suppose that \overline{G} is an extension of N by G and suppose further that every irreducible character of N can be extended to its inertia group in \overline{G} . Let $\theta_1, \dots, \theta_t$ be representatives of the distinct orbits of \overline{G} on Irr(N).

For each $i, 1 \leq i \leq t$, let $\psi_i \in Irr(\bar{H}_i)$ where $\bar{H}_i = I_{\bar{G}}(\theta_i)$ such that $\psi_i \downarrow N = \theta_i$. If $\mathcal{B}_i = \{\chi \in Irr(\bar{G}) \mid \chi = (\beta \, \psi_i)^{\bar{G}}, \beta \in Irr(\bar{H}_i), N \subseteq ker\beta\}$ then it is clear that

$$\bigcup_{i=1}^{t} \mathcal{B}_i \subseteq Irr(\bar{G})$$

Conversely, let $\chi \in Irr(\bar{G})$. If $\langle \gamma, \chi \downarrow N \rangle_N \neq 0$ where $\gamma \in Irr(N)$, then $\gamma \in \theta_j^{\bar{G}}$ for some $j, 1 \leq j \leq t$. Then by Clifford's Theorem,

$$\chi \downarrow N = c \sum_{i=1}^{\prime} \delta_i \tag{4.7}$$

where $\delta_1, \delta_2, \cdots, \delta_r$ are the distinct conjugates of γ in \overline{G} and $c = \langle \chi \downarrow N, \gamma \rangle_N$. It is clear that $\gamma^{\bar{G}} = \{\gamma^x \mid x \in \bar{G}\} = \theta_j^{\bar{G}}$. Hence it follows from 4.7 that $\langle \chi \downarrow N, \theta_j \rangle \neq 0$ and so $\chi = \psi^{\bar{G}}$ where $\psi \in Irr(\bar{H}_j)$ such that $\langle \chi \downarrow N, \theta_j \rangle \neq 0$. Therefore $\psi = \beta \psi_j$ for some $\beta \in Irr(\bar{H}_j)$ where $\psi_j \downarrow N = \theta_j$ and so $\chi = (\beta \psi_j)^{\bar{G}}, \beta \in Irr(\bar{H}_j), N \subseteq ker\beta$. Hence

$$Irr(\overline{G}) = \bigcup_{i=1}^{t} \left\{ (\beta \, \psi_i)^G \, | \, \beta \in Irr(\overline{H_i}) \text{ and } N \subseteq ker\beta \right\}. \quad \Box$$

Hence the character table of \overline{G} is partitioned into t blocks $\triangle_1, \triangle_2, \cdots, \triangle_t$ where \triangle_i is produced from the subgroup $\overline{H_i}$. We now give some results which give sufficient conditions for the irreducible characters of N to be extendible to their respective inertia groups, so that the above method can be used to calculate the characters of \overline{G} .

The first of these results is Mackey's theorem. The proof given here is obtained from Curtis and Reiner [53], page 353.

Theorem 4.1.8. ([23],[68]) Suppose that N is a normal subgroup of \overline{G} such that N is abelian and \overline{G} is a semi-direct product of N by G for some $G \leq \overline{G}$. If $\theta \in Irr(N)$ is invariant in \overline{G} , that is, $\theta^g = \theta \ \forall g \in \overline{G}$, then θ can be extended to a linear character of \overline{G} .

Proof: Since \overline{G} is a semi-direct product, any $g \in \overline{G}$ can be written uniquely as g = nx, $n \in N, x \in G$. Define χ on \overline{G} by $\chi(nx) = \theta(n)$. Since N is abelian, θ has degree 1, so is linear, and the fact that $\theta = \theta^g$ for all $g \in G$ implies that $\theta(n) = \theta(gng^{-1})$ for all $g \in \overline{G}$. Then if $g_1 = n_1 x_1$, $g_2 = n_2 x_2$, we have

$$\chi(g_1g_2) = \chi(n_1x_1 n_2x_2) = \chi(n_1n_2^{x_1} x_1x_2) = \theta(n_1n_2^{x_1}) = \theta(n_1) \theta(n_2^{x_1}) = \theta(n_1) \theta(x_1n_2 n_1^{-1})$$
$$= \theta(n_1) \theta^{x_1}(n_2) = \theta(n_1) \theta(n_2) = \chi(g_1) \chi(g_2), \text{ since } \theta \text{ is linear.}$$

Therefore χ is a linear character of \overline{G} and $\chi \downarrow N = \theta$

Mackey's theorem is a corollary of a more general result by Karpilovsky [38] which we state without proof.

Theorem 4.1.9. [38] Let the group \overline{G} contain a subgroup G of order n such that $\overline{G} = N:G$ for some N normal in \overline{G} and let $\chi \in Irr(N)$ be invariant in G. Then χ extends to an irreducible character of \overline{G} if the following conditions hold:

(i) gcd(m, n) = 1 where $m = \chi(1)$;

(ii) $N \cap G \leq N'$ where N' is the derived subgroup of N. \Box

Another extension theorem is the following.

Theorem 4.1.10. [53] Suppose \overline{G} is a split extension of N by G, then any linear character $\theta \in Irr(N)$ can be extended to its inertia group $I_{\overline{G}}(\theta)$.

Proof: Let $\overline{G} = N:G$ and $\theta \in Irr(N)$ which is linear. Let $\overline{H} = I_{\overline{G}}(\theta)$ and let $H = I_G(\theta)$. Then $\overline{H} = N:H$ and so $\overline{H}/N \cong H$ can be regarded as the inertia group of θ in the factor group $\overline{G}/N \cong G$. We have $N \cap H = \{1\} \leq N'$ and since θ is linear, $deg(\theta) = 1$. Furthermore θ is clearly H-invariant, and $\langle deg(\theta), |H| \rangle = \langle 1, |H| \rangle = 1$. Therefore θ can be extended to $\overline{H} = I_{\overline{G}}(\theta)$, by Theorem 4.1.8. \Box

Remark 4.1.11. We give a different proof of Mackey's theorem using Theorem 4.1.8. Let $\overline{G} = N:G$, a split extension of N by G. Since N is abelian, $N' = \{1\}$ and $deg(\theta) = 1$. Also $N \cap G = \{1\}$ and so $N \cap G \leq N'$. Since $gcd(deg(\theta), |G|) = 1$, it follows from Theorem 4.1.8 that θ can be extended to \overline{G} .

Let ϕ be a representation of \overline{G} and α an automorphism of \overline{G} . Define ϕ^{α} by $\phi^{\alpha}(x) = \phi(\alpha(x)) \quad \forall x \in \overline{G}$. It follows that for $x, y \in \overline{G}$, $\phi^{\alpha}(xy) = \phi(\alpha(xy)) = \phi(\alpha(x)\alpha(y)) = \phi(\alpha(x)) \quad \phi(\alpha(y)) = \phi^{\alpha}(x) \quad \phi^{\alpha}(y)$ and hence ϕ^{α} is a representation of \overline{G} .

Let the representation ϕ afford the character χ_{ϕ} . Define χ_{ϕ}^{α} by $\chi_{\phi}^{\alpha}(x) = \chi_{\phi}(x^{\alpha}) \quad \forall x \in \overline{G}$. Then $\chi_{\phi^{\alpha}}(x) = tr(\phi^{\alpha}(x)) = tr(\phi(x^{\alpha})) = \chi_{\phi}(x^{\alpha}) = \chi_{\phi}^{\alpha}(x)$ and so $\chi_{\phi^{\alpha}} = \chi_{\phi}^{\alpha}$, that is, ϕ^{α} affords the character χ_{ϕ}^{α} .

The representation ϕ^{α} and the character χ^{α}_{ϕ} are called the *algebraic conjugates* of ϕ and χ_{ϕ} , respectively, induced by the automorphism α . Furthermore, if χ_{ϕ} is irreducible then

$$<\chi_{\phi}^{\alpha},\chi_{\phi}^{\alpha}> = \frac{1}{|\bar{G}|}\sum_{g\in\bar{G}}\chi_{\phi}^{\alpha}(g)\,\chi_{\phi}^{\alpha}(g^{-1})$$
$$= \frac{1}{|\bar{G}|}\sum_{g\in\bar{G}}\chi_{\phi}(g^{\alpha})\,\chi_{\phi}((g^{\alpha})^{-1})$$
$$= <\chi_{\phi},\chi_{\phi}>=1 \text{ because }\alpha(\bar{G})=\bar{G}$$

and thus χ_{ϕ} irreducible implies χ_{ϕ}^{α} irreducible. Also if $a \in [x]$, where x is a representative of a conjugacy class of \overline{G} then $a = gxg^{-1}$ for some $x \in \overline{G}$ and so $a^{\alpha} = \alpha(a) = \alpha(gxg^{-1}) = \alpha(g) \alpha(x) \alpha(g^{-1}) = \alpha(g) \alpha(x) (\alpha(g))^{-1} = g^{\alpha} x^{\alpha} (g^{\alpha})^{-1} \in [x^{\alpha}]$. Thus $([x])^{\alpha} \subseteq [x^{\alpha}]$.

Conversely, for any $a \in [x^{\alpha}]$, $a = g x^{\alpha} g^{-1} = (h x h^{-1})^{\alpha} \in ([x])^{\alpha}$. Thus $([x])^{\alpha} = [x^{\alpha}]$ and therefore $\alpha \in Aut(\overline{G})$ induces a permutation on the conjugacy classes of \overline{G} .

Let $X = (\chi_i(x_j))$ be the character table of \overline{G} , where $\chi_i \in Irr(G)$, $1 \leq i \leq n$ and x_j , $1 \leq j \leq n$ are representatives of the conjugacy classes of elements of \overline{G} . The automorphism α induces a permutation on the columns of X. Also for each $\chi_i \in Irr(\overline{G})$, we know that $\chi_i^{\alpha} \in Irr(\overline{G})$.

Hence α induces a permutation on the irreducible characters χ_i of \overline{G} and thus induces a permutation on the rows of X. Moreover, since $\chi_i^{\alpha}(x_j) = \chi_i(x_j^{\alpha})$, the matrices obtained from X by these two operations are identical.

Theorem 4.1.12. (Brauer's Theorem) [29] Let G be a group and N be a group of automorphisms of G. Then the number of orbits of N as a group of permutations on the irreducible characters of G is the same as the number of orbits of N as a group of permutations on the conjugacy classes of G.

Proof: Let X be the character table of G. Then as a matrix, X is square and nonsingular. Let α be an automorphism of G such that $\alpha \in N$. Then α induces a permutation on the conjugacy classes of G and thus a permutation on the columns of X.

Hence N acts on the conjugacy classes of G. Since $\alpha \in N$, then to each character χ of G, we obtain a character χ^{α} of G such that $\chi^{\alpha} \in Irr(G)$ whenever $\chi \in Irr(G)$. For $y \in G$

we obtain that $\chi^{\alpha}(y) = \chi(y^{\alpha})$, thus α induces a permutation on the rows of X. Hence N acts on the irreducible characters of G.

Let X^{α} denote the image of X under α . Then we obtain that $P(\alpha) X = X^{\alpha} = X Q(\alpha)$ where $P(\alpha)$, $Q(\alpha)$ are appropriate permutation matrices which are uniquely determined by $\alpha \in N$. Suppose that $\alpha, \beta \in N$, then $X^{\alpha\beta} = (X^{\alpha})^{\beta}$ and hence

$$P(\alpha \beta) X = X^{\alpha \beta} = (X^{\alpha})^{\beta} = (P(\alpha) X)^{\beta} = P(\beta) P(\alpha) X$$
(4.8)

Also

and

$$X Q(\alpha \beta) = X^{\alpha \beta} = (X^{\alpha})^{\beta} = (X Q(\alpha))^{\beta} = X Q(\alpha) Q(\beta)$$
(4.9)

Since X is nonsingular, it follows from 4.8 and 4.9 that $P(\alpha \beta) = P(\beta) P(\alpha)$ and $G(\alpha \beta) = G(\alpha) G(\beta)$. Define mappings π_1 and π_2 on N by $\pi_1(\alpha) = (P(\alpha))^t$ and $\pi_2(\alpha) = G(\alpha)$, where t denotes the transpose operation on matrices. Since

$$\pi_1(\alpha \beta) = (P(\alpha \beta))^t = (P(\beta) P(\alpha))^t = (P(\alpha))^t (P(\beta))^t = \pi_1(\alpha) \pi_1(\beta)$$
$$\pi_2(\alpha \beta) = G(\alpha \beta) = G(\alpha) G(\beta) = \pi_2(\alpha) \pi_2(\beta),$$

it follows that π_1 and π_2 are permutation representations of N. Let θ_1 and θ_2 be the permutation characters afforded by π_1 and π_2 , respectively.

Since $X^{-1}P(\alpha)X = G(\alpha)$, $P(\alpha)$ and $G(\alpha)$ are similar and thus have the same trace. Therefore $trace(P(\alpha))^t = trace(P(\alpha)) = trace(G(\alpha))$ and so $\theta_1(\alpha) = \theta_{\pi_1}(\alpha) = tr(\pi_1(\alpha)) = tr((P(\alpha))^t) = tr(P(\alpha)) = tr(G(\alpha)) = tr(\pi_2(\alpha)) = \theta_{\pi_2}(\alpha) = \theta_2(\alpha), \forall \alpha \in N.$

Hence $\theta_1 = \theta_2$. Let d_1, d_2 be the number of orbits of N on the irreducible characters and on the conjugacy classes of G, respectively. Thus we observe that d_1 is the number of orbits of $\pi_1(N)$ in its action as a group of permutations. Also d_2 is the number of orbits of $\pi_2(N)$ in its action as a group of permutations. Since θ_1 and θ_2 are the permutation characters of N acting on the irreducible characters of G and on the conjugacy classes of G, respectively, we have $d_1 = \langle \theta_1, 1_N \rangle = \langle \theta_2, 1_N \rangle = d_2$ by Corollary 2.5.9. This completes the proof. \Box

Chapter 5

The Fischer–Clifford matrices

Character tables of finite groups can be constructed using various techniques. We are particularly interested in the method known as the technique of the Fischer–Clifford matrices. The technique derives its fundamentals from the Clifford theory and provides very powerful information for constructing character tables of group extensions. Given a group extension $\overline{G} = N \cdot G$ such that every irreducible character of N can be extended to its inertia group then for each conjugacy class representative $g \in G$, we are able to construct a matrix M(g) called the Fischer-Clifford matrix. By using these matrices together with the fusion maps and character tables of some subgroups of G which are inertia factors of the inertia groups in \overline{G} , the complete character table of \overline{G} can be constructed. These constructions of Fischer-Clifford matrices have been discussed and used by Salleh [64], List [41], List and Mahmoud [42], Fischer [26], Darafshesh [24], Pahlings [56], Moori and Mpono [48], Whitley [68], Ali [1] and Zimba [71].

We first discuss the theory of the Fischer–Clifford matrices and follow closely the work of Whitley [68].

Let $\overline{G} = N \cdot G$ such that every irreducible character of N is extendible to its inertia group.

We have that \overline{G} permutes Irr(N) by $x: \theta \mapsto \theta^x$, where $x \in \overline{G}$ and $\theta \in Irr(N)$. Now let $\theta_1 = 1_N, \theta_2, \cdots, \theta_t$ be representatives of the orbits of \overline{G} on $Irr(N), \overline{H_i} = I_{\overline{G}}(\theta_i), 1 \leq i \leq t$, $\psi_i \in Irr(\overline{H_i})$ be an extension of θ_i to $\overline{H_i}$ and $\beta \in Irr(\overline{H_i})$ such that $N \subseteq ker(\beta)$. It was shown in Chapter 4 that

$$Irr(\overline{G}) = \bigcup_{i=1}^{t} \{ (\beta \, \psi_i)^{\overline{G}} \, | \, \beta \in Irr(\overline{H_i}), N \subseteq ker(\beta) \}$$

Hence the irreducible characters of \overline{G} will be divided into blocks, where each block corresponds to an inertia group $\overline{H_i}$.

5.1 Definitions and Preliminaries

Remark 5.1.1. If $\overline{G} = N:G$, with N abelian, is a semi-direct product then by theorem 4.1.7 (Mackey's theorem) every irreducible character of N can be extended to its inertia group in \overline{G} . Hence the above result can be used to calculate the full character table of \overline{G} .

Let $\overline{G} = N \cdot G$ with the property that every irreducible character of N can be extended to its inertia group. Let $\overline{g} \in \overline{G}$ be a lifting of $g \in G$ under the natural homomorphism $\overline{G} \longrightarrow G$ and [g] be a conjugacy class of elements of G with representative g. Let $X(g) = \{x_1, x_2, \cdots, x_{c(g)}\}$ be a set of representatives of the conjugacy classes of \overline{G} from the coset $N\overline{g}$ whose images under the natural homomorphism $\overline{G} \longrightarrow G$ are in [g] and we take $x_1 = \overline{g}$. Let $\{\theta_1, \theta_2, \cdots, \theta_t\}$ be representatives of the orbits of \overline{G} on Irr(N) such that for $1 \leq i \leq t$, we have $N \leq \overline{H_i} = I_{\overline{G}}(\theta_i)$ with $H_i = \overline{H_i}/N \leq G$ and that $\psi_i \in Irr(\overline{H_i})$ is an extension of θ_i to H_i . Then without loss of generality suppose that $\theta_1 = I_N$ is the identity character of N. Then $\overline{H_1} = \overline{G}$ and $H_1 = G$. Now choose y_1, y_2, \cdots, y_r to be the representatives of the conjugacy classes of elements of H_i which fuse to [g] in G. Since $y_k \in H_i$ for $1 \leq k \leq r$, then we define $y_{l_k} \in \overline{H_i}$ such that y_{l_k} ranges over all the representatives of the conjugacy classes of elements of H_i which map to y_k under the homomorphism $\overline{H_i} \longrightarrow H_i$ whose kernel is N. Let $\beta \in Irr(H_i)$ such that $N \subseteq ker(\beta)$. Then β is a lifting of $\hat{\beta} \in Irr(\overline{H_i})$ such that $\beta(y_{l_k}) = \hat{\beta}(y_k)$ for any lifting $y_{l_k} \in \overline{H_i}$ of $y_{k} \in H_{i}. \text{ Then we obtain that } (\psi_{i} \beta)^{\bar{G}}(x_{j}) = \sum_{1 \leq k \leq r} \sum_{k \in T}^{\prime} \frac{|C_{\bar{G}}(x_{j})|}{|C_{\bar{H}_{i}}(y_{l_{k}})|} (\psi_{i} \beta)(y_{l_{k}})$ $= \sum_{1 \leq k \leq r} \sum_{k \in T}^{\prime} \frac{|C_{\bar{G}}(x_{j})|}{|C_{\bar{H}_{i}}(y_{l_{k}})|} \psi_{i}(y_{l_{k}}) \beta(y_{l_{k}})$ $= \sum_{1 \leq k \leq r} (\sum_{k \in T}^{\prime} \frac{|C_{\bar{G}}(x_{j})|}{|C_{\bar{H}_{i}}(y_{l_{k}})|} \psi_{i}(y_{l_{k}})) \hat{\beta}(y_{k})$

where \sum_{k}' is the summation over all k for which $y_{l_k} \sim x_j$ in \overline{G} . Now we define a matrix $M_i(g)$ by $M_i(g) = (a_{uv})$, where $1 \le u \le r$ and $1 \le v \le c(g)$, and $a_{uv} = \sum_{k}' \frac{|C_{\overline{G}}(x_j)|}{|C_{\overline{H}_i}(y_{l_k})|} \psi_i(y_{l_k})$. Then we obtain that

$$(\psi_i \beta)^{\bar{G}}(x_j) = \sum_{1 \le k \le r} a_{uv} \hat{\beta}(y_k) \,.$$

By doing this for all $1 \leq i \leq t$ such that H_i contains an element in [g] we obtain the matrix M(g) given by

$$M(g) = \begin{bmatrix} M_1(g) \\ M_2(g) \\ \vdots \\ M_t(g) \end{bmatrix},$$

where $M_i(g)$ is the submatrix corresponding to the inertia group $\overline{H_i}$ and its inertia factor H_i . If $H_i \cap [g] = \emptyset$, then $M_i(g)$ will not exist and M(g) does not contain $M_i(g)$. The size of the matrix M(g) is $p \times c(g)$ where p is the number of conjugacy classes of elements of the inertia factors H_i 's for $1 \leq i \leq t$ which fuse into [g] in G and c(g) is the number of conjugacy classes of elements of G which correspond to the coset $N\bar{g}$. Then M(g) is the *Fischer-Clifford matrix* of G corresponding to the coset $N\bar{g}$. We will see later that M(g) is a $c(g) \times c(g)$ nonsingular matrix.

Let $R(g) = \{(i, y_k) | 1 \le i \le t, H_i \cap [g] \ne \emptyset, 1 \le k \le r\}$ and we note that y_k runs over representatives of the conjugacy classes of elements of H_i which fuse into [g] in G. Following the notation used in Whitley [68] we denote M(g) by writing $M(g) = (a_{(i,y_k)}^j)$, where

$$a_{(i,y_k)}^j = \sum_k' \frac{|C_{\bar{G}}(x_j)|}{|C_{\bar{H}_i}(y_k)|} \psi_i(y_{l_k}) \text{ , with columns indexed by } X(g) \text{ and rows indexed by } R(g).$$

Then the partial character table of \overline{G} on the classes $\{x_1, x_2, \cdots, x_{c(g)}\}$ is given by

$$\begin{bmatrix} C_1(g) \ M_1(g) \\ C_2(g) \ M_2(g) \\ \vdots \\ C_t(g) \ M_t(g) \end{bmatrix}$$

where the Fischer-Clifford matrix M(g) is divided into blocks $M_i(g)$ with each block corresponding to an inertia group $\overline{H_i}$ and $C_i(g)$ is the partial character table of H_i consisting of the columns corresponding to the classes that fuse into [g] in G. We can also observe that the number of irreducible characters of \overline{G} is the sum of the numbers of irreducible characters of the inertia factors H_i 's.

5.2 Properties of Fischer-Clifford matrices

We shall discuss the properties which are useful in the computation of the Fischer-Clifford matrices. We only provide a selection of proofs of these properties. At the end of the section the properties of the Fischer-Clifford matrices will be summarized. Let K be a group and $A \leq Aut(K)$. Then by Brauer's theorem A acts on the conjugacy classes of elements of K and on the irreducible characters of K resulting in the same number of orbits.

Lemma 5.2.1. Suppose we have the following matrix describing the above actions :

$$1 = l_{1} \quad l_{2} \quad \dots \quad l_{j} \quad \dots \quad l_{t}$$

$$s_{1} \begin{pmatrix} 1 & 1 & \cdots & 1 & \cdots & 1 \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2t} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots & a_{it} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ s_{t} \begin{pmatrix} a_{t1} & a_{t2} & \cdots & a_{tj} & \cdots & a_{tt} \\ \end{pmatrix}$$

where $a_{1j} = 1$ for $j \in \{1, 2, \dots, t\}$, l_j 's are lengths of orbits of A on the conjugacy classes of K, s_i 's are the lengths of orbits of A on Irr(K) and a_{ij} is the sum of s_i irreducible characters of K on the element x_j , where x_j is an element of the orbit of length l_j . Then the following relation holds for $i, i' \in \{1, 2, \dots, t\}$: $\sum_{j=1}^{t} a_{ij} \overline{a_{i'j}} l_j = |K| s_i \delta_{ii'}$.

Proof: Let $\underline{s_i}$ denote the sum of s_i irreducible characters of K, so $\underline{s_i}(x_j) = a_{ij}$. Then $\langle \underline{s_i}, \underline{s_{i'}} \rangle = \frac{1}{|K|} \sum_{j=1}^t l_j \underline{s_i}(x_j) \overline{\underline{s_{i'}}(x_j)} = |K|^{-1} \sum_{j=1}^t l_j a_{ij} \overline{a_{i'j}}$

By the orthogonality of irreducible characters,

 $\langle \underline{s}_i, \underline{s}_{i'} \rangle = s_i \delta_{ii'}$, and hence $\sum_{j=1}^t l_j a_{ij} \overline{a_{i'j}} = |K| s_i \delta_{ii'}$. \Box

Let $x_j \in X(g)$ and define $m_j = [C_{\bar{g}}:C_{\bar{G}}(x_j)]$. The Fischer-Clifford matrix M(g) is partitioned row-wise into blocks, where each block corresponds to an inertia group. The columns of M(g) are indexed by X(g) and for each $x_j \in X(g)$, at the top of the columns of M(g), we write $|C_{\bar{G}}(x_j)|$ and at the bottom we write m_j . The rows of M(g) are indexed by R(g) and on the left of each row we write $|C_{\bar{H}_i}(y_k)|$, where y_k fuses into [g] in G. Then in general we can write M(g) with corresponding weights for rows and columns as follows, where blocks corresponding to the inertia groups are separated by horizontal lines.

	$ C_{\bar{G}}(x_1) $	$ C_{\bar{G}}(x_2) $		$ C_{\bar{G}}(x_{c(g)}) $
$ C_G(g) $	$\left(\begin{array}{c}a^{1}_{(1,g)}\end{array}\right)$	$a^2_{(1,g)}$		$a_{(1,g)}^{c(g)}$
$\left C_{H_{2}}(y_{1})\right $	$a^{1}_{(2,y_{1})}$	$a^2_{(2,y_1)}$		$a^{c(g)}_{(2,y_1)}$
$ C_{H_2}(y_2) $	$a^{1}_{(2,y_{2})}$	$a^2_{(2,y_2)}$		$a^{c(g)}_{(2,y_2)}$
:	:		:	:
$\left C_{H_{i}}(y_{1})\right $	$a^1_{(i,y_1)}$	$a_{(i,y_1)}^2$		$a_{(i,y_1)}^{c(g)}$
$\left C_{H_{i}}(y_{2})\right $	$a^1_{(i,y_2)}$	$a^2_{(i,y_2)}$		$a^{c(g)}_{(i,y_2)}$
:	:	:	:	
$\left C_{H_{t}}(y_{1})\right $	$a^1_{(t,y_1)}$	$a^2_{(t,y_1)}$		$a^{c(g)}_{(t,y_1)}$
$\left C_{H_{t}}(y_{2})\right $	$a^1_{(t,y_2)}$	$a^2_{(t,y_2)}$		$a^{c(g)}_{(t,y_2)}$
-				
	\ 	m_2		m _{c(g)}
UNIVERSITY of the				

From the theory of coset analysis for computing the conjugacy classes of elements of $\overline{G} = N \cdot G$ where N is abelian, we observe that

$$m_j = [C_{\bar{g}} : C_{\bar{G}}(x_j)] = \frac{f \cdot |N|}{k}.$$

The following result gives the orthogonality relation for M(g).

Proposition 5.2.2. (Column orthogonality) Let $\overline{G} = N \cdot G$, then

$$\sum_{(i,y_k)\in R(g)} |C_{\bar{H}_i(y_k)}| \, a_{(i,y_k)}^j \, \overline{a_{(i,y_k)}^{j'}} = \delta_{jj'} \, |C_{\bar{G}}(x_j)| \, .$$

Proof: The partial character table of \overline{G} at classes $x_1, \dots, x_{c(g)}$ is given by

$$\begin{bmatrix} C_1(g) M_1(g) \\ C_2(g) M_2(g) \\ \vdots \\ C_t(g) M_t(g) \end{bmatrix}$$

By column orthogonality of the character table of \overline{G} , we have

$$\begin{split} |C_{\bar{G}}(x_{j})| \, \delta_{jj'} &= \sum_{i=1}^{t} \sum_{\beta_{i} \in Irr(\bar{H}_{i})} (\sum_{y_{k}:(i,y_{k}) \in R(g)} a_{(i,y_{k})}^{j} \beta_{i}(y_{k})) (\overline{\sum_{y_{k}':(i,y_{k}') \in R(g)} a_{(i,y_{k}')}^{j'} \beta_{i}(y_{k}')}) \\ &= \sum_{i=1}^{t} \sum_{\beta_{i} \in Irr(\bar{H}_{i})} (\sum_{y_{k}} a_{(i,y_{k})}^{j} \overline{a_{(i,y_{k})}^{j'}} \overline{a_{(i,y_{k})}^{j'}} \beta_{i}(y_{k}) \overline{\beta_{i}(y_{k})} + \\ &\sum_{y_{k}} \sum_{y_{k}' \neq y_{k}} a_{(i,y_{k})}^{j} \overline{a_{(i,y_{k})}^{j'}} \beta_{i}(y_{k}) \overline{\beta_{i}(y_{k})}) \\ &= \sum_{i=1}^{t} (\sum_{y_{k}} a_{(i,y_{k})}^{j} \overline{a_{(i,y_{k})}^{j'}} \sum_{\beta_{i} \in Irr(\bar{H}_{i})} \beta_{i}(y_{k}) \overline{\beta_{i}(y_{k})} + \\ &\sum_{y_{k}} \sum_{y_{k}' \neq y_{k}} a_{(i,y_{k})}^{j} \overline{a_{(i,y_{k})}^{j'}} \sum_{\beta_{i} \in Irr(\bar{H}_{i})} \beta_{i}(y_{k}) \overline{\beta_{i}(y_{k})}) \\ &= \sum_{i=1}^{t} (\sum_{y_{k}} a_{(i,y_{k})}^{j} \overline{a_{(i,y_{k})}^{j'}} \overline{a_{(i,y_{k})}^{j'}} |C_{\bar{H}_{i}}(y_{k})| + 0) \\ &= \sum_{(i,y_{k}) \in R(g)} a_{(i,y_{k})}^{j} \overline{a_{(i,y_{k})}^{j'}} |C_{\bar{H}_{i}}(y_{k})| . \Box \end{split}$$

Theorem 5.2.3. $a_{(1,g)}^j = 1$ for all $j = \{1, \dots, c(g)\}$

Proof: For $y_{l_k} \sim x_j$ in \overline{G} , we have $|C_{\overline{G}}(x_j)| = |C_{\overline{H}_i}(y_{l_k})|$. Thus we obtain that $a_{(1,g)}^j = \sum_l' \frac{|C_{\overline{G}}(x_j)|}{|C_{\overline{H}_1}(y_{l_k})|} \psi_1(y_{l_k}) = \sum_l' 1 = 1$. Hence the result. \Box

The properties of the Fischer–Clifford matrix ${\cal M}(g)$ can be summarized as follows :

(a)
$$|X(g)| = |R(g)|$$

(b) $\sum_{j=1}^{c(g)} m_j a_{(i,y_k)}^j \overline{a_{(i',y'_k)}^j} = \delta_{(i,y_k),(i',y'_k)} \frac{|C_G(g)|}{|C_{\bar{H}_i}(y_k)|} |N|$

- (c) $\sum_{(i,y_k)\in R(g)} a_{(i,y_k)}^j \overline{a_{(i,y_k)}^{j'}} |C_{\bar{H}_i}(y_k)| = \delta_{jj'} |C_G(x_j)|$
- (d) M(g) is a square and nonsingular.

If N is elementary abelian, then we obtain the following additional properties of M(g).

(e) $a_{(i,y_k)}^1 = \frac{|C_G(g)|}{|C_{\bar{H}_i}(y_k)|}$ (f) $|a_{(i,y_k)}^1| \ge |a_{(i,y_k)}^j|$

Remark 5.2.4. Let $\overline{G} = N:G$ be a split extension, where N is an elementary abelian 2-group. It was shown in section 5.2.2 [53] that the Fischer-Clifford matrix M(g) satisfies the following properties:

- 1. $a_{(i,y_k)}^j \equiv a_{(i,y_k)}^1 \pmod{2}$ for all $j \ge 2$
- 2. $a_{(1,y_k)}^1 \in \mathbb{N}$
- 3. For any *j*-th column of M(g) for which $j \ge 2$, we obtain $\sum_{i} a_{(i,y_k)}^j = 0$

Since $a_{(i,y_k)}^j \in \mathbb{Z}$, we deduce that the Fischer-Clifford matrix M(g) in Remark 5.2.4 will have integer entries $a_{(i,y_k)}^j$ such that $a_{(i,y_k)}^1 \ge |a_{(i,y_k)}^j|$ and $a_{(i,y_k)}^j \equiv a_{(i,y_k)}^1 (mod2)$. If $a_{(i,y_k)}^1 = n$ for some $n \in \mathbb{N}$, then for $j \ge 2$ we have $a_{(i,y_k)}^j \in \{\pm 1, \pm 3, ..., \pm n\}$ if n is odd and $a_{(i,y_k)}^j \in \{0, \pm 2, \pm 4, ..., \pm n\}$ if n is even. It is easy to see that for a fixed n there are n+1 possible values for each $a_{(i,y_k)}^j$ with $j \ge 2$.

The following additional information obtained from [53] is sometimes useful in the computations of the entries of M(g):

- 1. For χ a character of any group H and $h \in H$, we have $|\chi(h)| \leq \chi(1_H)$, where 1_H is the identity element of H.
- 2. For χ a character of any group H and h a p-singular element of H, where p is a prime, then we have $\chi(h) \equiv \chi(h^p) modp$.

3. For any irreducible character χ of a group H and for $h_i \in C_i$ then $d_i = \frac{b_i \chi(h_i)}{\chi(1_H)}$ is an algebraic integer, where C_i is the *i*th conjugacy class of H and $b_i = |C_i| = [H:C_H(h_i)]$. It is clear if $d_i \in \mathbb{Q}$, then $d_i \in \mathbb{Z}$.

WESTERN CAPE

Chapter 6

On a maximal subgroup of the automorphism group $U_6(2)$:2 of $U_6(2)$

The unitary simple group $U = U_6(2)$ has outer automorphisms of order 2, 3 and 6 and hence automorphism groups of the form $U_1 = U_6(2)$:2, $U_2 = U_6(2)$:3 and $U_3 = U_6(2)$: S_3 exist for U (see the ATLAS [22]). The reader is referred to [66] for more information about the construction of matrix representations for the covering and automorphism groups of $U_6(2)$. Recently in [58], a 3-local identification is given for the group $PSU_6 \cong U_6(2)$ and its automorphism groups $PSU_6(2):3$, $PSU_6(2):2$ and $PSU_6(2):S_3$. Also, we found in the ATLAS that one of the 16 maximal subgroups of U is a split extension group, say A, of the type $2^9: L_3(4)$ of index 891 and has order 10321920. The group A has automorphism groups of the form $A_1 = (2^9:L_3(4)):2$, $A_2 = (2^9:L_3(4)):3$ and $A_3 = (2^9:L_3(4)):S_3$ which sit maximally inside the groups U_1 , U_2 and U_3 , respectively. The character table of A is stored in the GAP Library [67], where as the character table of A_1 and A_2 are not yet uploaded in GAP. Also, since the Fischer-Clifford matrices of A_1 and A_2 are still not known, we will calculate the character tables of A_1 and A_2 by using the method of Fischer-Clifford matrices. In this chapter the Fischer-Clifford matrices of A_1 and its associated character table will be constructed and similar computations will be carried out for the group A_2 in Chapter 7. The method of coset-analysis as discussed in Chapter 3

will be used in the computation of the conjugacy classes of elements in both of the groups A_1 and A_2 . The Fischer-Clifford matrices and character table of A_3 was determined in [59].

6.1 The group $2^9:(L_3(4):2)$

In this section, using a suitable permutation representation of $U_6(2)$:2, we identify our group $A_1 = (2^9:L_3(4))$:2 as the split extension 2^9 by $L_3(4)$:2 with the aid of GAP [67] and MAGMA [15]. Then with the help of MAGMA we represent $L_3(4)$:2 as a matrix group G of degree 9 over the Galois field GF(2). We found that G acts absolutely irreducibly on its natural module 2^9 and hence the existence of a split extension $S = 2^9:(L_3(4):2)$. Then we create S as a subgroup of $SL_{10}(2)$ and show with the help of MAGMA that A_1 is indeed an isomorphic copy of S.

We construct $U_1 = U_6(2)$:2 within GAP, using its smallest permutation representation of degree 672 found in Wilson's online ATLAS [70]. Next, we use the GAP commands "MS:= ConjugacyClassesMaximalSubgroups (U_1) ", "A1:=MS[4]" and "Size(A1)" to represent $A_1 = (2^9:(L_3(4)):2$ as a permutation group on 672 points and then use this permutation representation to construct A_1 within MAGMA. Using the sequence of MAGMA commands "a,b:=ChiefSeries(A1)", "N:= a[3]", "NormalSubgroups(A1)", "Is-Normal(A1,a[3])", "IsElemenataryAbelian(N)", "C:= Complements(A1,N)", "Order(C[1])", "C[1] meet N" and "IsIsomorphic(C[1], $L_3(4)$:2)", we verified that $A_1 = (2^9:L_3(4))$:2 \cong $2^9:(L_3(4)$:2).

Having A_1 as a permutation group on 672 points, we use the MAGMA commands "M:=GModule(A1,N)" and "'M:Maximal" to represent $L_3(4)$:2 as a matrix group G of degree 9 over the Galois field GF(2). Thus we obtain the matrix group $G = \langle g_1, g_2 \rangle$,
where $o(g_1) = 2$ and $o(g_2) = 12$. The generators g_1 and g_2 of G are as follows:

	(1	0	0	0	0	1	1	1	0		(1	0	0	1	1	0	0	1	1	
	0	1	0	1	0	1	0	0	0		1	1	0	0	0	1	1	1	1	l.
	1	1	0	1	0	0	0	0	0		0	0	0	0	0	1	1	1	0	
	1	0	0	1	1	1	0	0	1		0	1	0	1	0	1	1	1	0	
$g_1 =$	0	0	1	1	1	1	1	1	1	$g_2 =$	1	0	1	0	1	1	0	0	0	
	0	1	1	1	1	0	0	0	1		1	1	1	1	1	0	1	1	1	
	0	1	0	0	1	0	0	0	0		0	1	1	1	0	1	1	1	1	
	1	0	1	0	1	1	1	0	0		1	0	1	1	0	0	1	0	1	
	\ o	1	0	0	1	0	1	0	1 /		0	1	0	1	0	1	1	0	0 /	1

The class representatives of each class $[g]_G$ of $G = L_3(4)$:2 are given in terms of 9×9 matrices over GF(2) and in total there are 14 conjugacy classes of elements and are listed in Table 6.1. The computation to determine the classes of G is carried out in MAGMA.

$[g]_{L_3(4):2}$	Class representative	$ [g]_{L_3(4):2} \qquad [g]_{L_3(4):2}$	Class representative	$ [g]_{L_3(4):2} $
14	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 1 2A 0 0 0 0 1 2A 0 0 0 1 2A	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	120
2B	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 0\\ 1\\ 1\\ 1\\ 0\\ 1\\ 1\\ 1\\ 1\\ 1\\ 0\\ \end{array} $ 315 3A	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	2240
4.4	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{array} $ $ \begin{array}{c} 1260 \\ 4B \\ 4B \\ 1 \\ 0 \\ 0 \\ 1 \end{array} $	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	2520

Table 6.1: The conjugacy classes of $L_3(4)$:2

$[g]_{L_3(4):2}$	Class representative	$ [g]_{L_3(4):2} $	$[g]_{L_{3}(4):2}$	Class representative	$ [g]_{L_3(4):2} $
4C	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	2520	5.4	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	8064
6A	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	6720	7 <i>A</i>	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	2880
78	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	2880	84	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	5040
14A	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	IVERSI STERN 2880	TY of the CAPE 14B	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	2880

Table 6.1 (continue)

The MAGMA command "IsAbsolutelyIrreducible(G)" tells us that the action of the matrix group G on its natural module 2^9 is absolutely irreducible. Thus a split extension of the type $2^9:(L_3(4):2)$ does exist. Hence we can construct $2^9:(L_3(4):2)$ as a subgroup S of $SL_{10}(2)$ such that $S = \langle s_1, s_2, s_3 \rangle$ and $L_3(4):2 = \langle s_1, s_2 \rangle$, where $o(s_1) = 4$, $o(s_2) = 14$ and $o(s_3) = 2$. The generators of the matrix group S of degree 10 over GF(2) are as follows:

	$\begin{pmatrix} 1 \end{pmatrix}$	0	0	0	0	1	1	1	0	0		(1	0	0	1	1	0	0	1	1	0)
	0	1	0	1	0	1	0	0	0	0			1	1	0	0	0	1	1	1	1	0
	1	1	0	1	0	0	0	0	0	0			0	0	0	0	0	1	1	1	0	0
	1	0	0	1	1	1	0	0	1	0			0	1	0	1	0	1	1	1	0	0
e. —	0	0	1	1	1	1	1	1	1	0	80-		1	0	1	0	1	1	0	0	0	0
31-	0	1	1	1	1	0	0	0	1	0	32-		1	1	1	1	1	0	1	1	1	0
	0	1	0	0	1	0	0	0	0	0			0	1	1	1	0	1	1	1	1	0
	1	0	1	0	1	1	1	0	0	0			1	0	1	1	0	0	1	0	1	0
	0	1	0	0	1	0	1	0	1	0			0	1	0	1	0	1	1	0	0	0
	0	0	0	0	0	0	0	0	0	1 /		ĺ	0	0	0	0	0	0	0	0	0	1 /
	$\begin{pmatrix} 1 \end{pmatrix}$	0	0	0	0	0	0	0	0	0 \												
	0	1	0	0	0	0	0	0	0	0												
	0	0	1	0	0	0	0	0	0	0												
	0	0	0	1	0	0	0	0	0	0												
so —	0	0	0	0	1	0	0	0	0	0												
33-	0	0	0	0	0	1	0	0	0	0												
	0	0	0	0	0	0	1	0	0	0												
	0	0	0	0	0	0	0	1	0	0												
	0	0	0	0	0	0	0	0	1	0												
	$\backslash 1$	0	0	0	0	0	0	0	0	1 /	1											

We also generate $2^9 = \langle n_1, n_2, n_3, n_4, n_5, n_6, n_7, n_8, n_9 \rangle$ as a matrix group of degree 10 over GF(2) within S and the generators are listed in Table 6.2.

$n_1 =$	$\left(\begin{array}{c} 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 1 \end{array} \right)$	0 1 0 0 0 0 0 0 0 0	0 0 1 0 0 0 0 0 0 0	$egin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{array}$	0 0 0 0 0 0 0 1 0 0	0 0 0 0 0 0 0 0 1 0	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{array} $		$ \left(\begin{array}{c} 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 1 \end{array}\right) $	0 1 0 0 0 0 0 0 0 0 1		$egin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{array}$	$\left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{array} \right)$
$n_3 =$	$\left(\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{array} \right)$	$egin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{array}$	$ \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{array} \right) $	$n_4 =$	$\left(\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{array} \right)$	$egin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{array}$	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{array} $
$n_5 \!=\!$	$\left(\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$egin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{array}$	$egin{array}{ccc} 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 1 \\ 1 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{array}$	$egin{array}{ccc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 \end{array}$	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{array} \right) $	$n_6 =$	$\left(\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$egin{array}{ccc} 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{array}$	$egin{array}{ccc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$egin{array}{ccc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{array}$	$egin{array}{ccc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 \end{array}$	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{array} $

Table 6.2 (continue)

n7=	$\left(\begin{array}{c} 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 1\end{array}\right)$	$egin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{array}$	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{array} $	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \end{array}$		$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{array}$	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{array} \right) $	$n_8 = \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
n9=	$\left(\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$egin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{array}$	$ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{array} \right) $	

Since we can represent S and A_1 as a matrix and permutation group, respectively, we use the MAGMA command "IsIsomorphic (S, A_1) to confirm that $S \cong A_1$. Hence we can regard $S = (2^9: L_3(4)):2$ as the split extension $S = 2^9: (L_3(4):2)$.

In this section, the conjugacy classes of \overline{G} are computed using the technique of coset analysis as discussed in Chapter 3.

Throughout the remainder of this chapter, let $\overline{G} = 2^9:(L_3(4):2)$ be a split extension of $N = 2^9$ by $L_3(4):2$, where N is the vector space $V_9(2)$ of dimension 9 over GF(2) on which the linear group G acts. Since $G = \langle g_1, g_2 \rangle$ is represented as a matrix group, we used the MAGMA commands "O:= Orbits(G)", "#O", "#O[1]", "#O[2]", #O[3]" and "#O[4]" to compute the orbit lengths of the action of G on N. We obtain 4 orbits of lengths 1, 21, 210 and 280 and using the MAGMA commands "P1:= Stabilizer(G,O[1,1])", "P2:= Stabilizer(G,O[2,1])", "P3:= Stabilizer(G,O[3,1])" and "P4:= Stabilizer(G,O[4,1])", we are able to compute the corresponding point stabilizers P_i , i = 1, 2, 3, 4, which are

subgroups of G. With the aid of MAGMA and also checking the indices of the maximal subgroups of G in the ATLAS, the structures of the stabilizers P_i are identified as $P_1 = L_3(4)$:2, $P_2 = 2^4$: S_5 , $P_3 = 2^4$: $(2 \times S_3)$ and $P_4 = 3^2$: $(Q_8.2)$, where P_2 and P_4 are maximal subgroups of P_1 . We should note here that the group $L_3(4)$:2 has two non-conjugate isomorphic maximal subgroups $L_1 = P_2$ and L_2 , having the same structure 2^4 : S_5 . The stabilizer P_3 sits maximally in L_2 . Alternatively, we can use [21] to identify the structures of the groups P_i . Since the action of G on N does not fix any nontrivial subspace of 2^9 , we have that 2^9 is an irreducible module for G. We can readily verify this fact by using the MAGMA command "IsIrreducible(G)".

Let $\chi(L_3(4):2|2^9)$ be the permutation character of $L_3(4):2$ on the classes of 2^9 . Then, from methods that were developed by Mpono [53], we obtain that $\chi(L_3(4):2|2^9) = I_{P_1}^{P_1} + I_{P_2}^{P_1} + I_{P_3}^{P_1} + I_{P_3}^{P_1} = 4 \times 1a + 4 \times 20a + 2 \times 35a + 45a + 45b + 2 \times 64a + 2 \times 70a$, where $I_{P_1}^{P_1}$, $I_{P_2}^{P_1}$, $I_{P_3}^{P_1}$ and $I_{P_4}^{P_1}$ are the identity characters of the point stabilizers P_i , i = 1, 2, 3, 4, induced to G. Note that the identity characters $I_{P_1}^{P_1}$ are identified with the permutation characters $\chi(L_3(4):2|P_i)$ of $L_3(4):2$ acting on the classes of the point stabilizers P_i . We found that $I_{P_1}^{P_1} = \chi(L_3(4):3|P_1) = 1a$, $I_{P_1}^{P_2} = \chi(L_3(4):2|P_2) = 1a + 20a$, $I_{P_1}^{P_3} = \chi(L_3(4):2|P_3) = 1a + 2 \times 20a + 35a + 64a + 70a$ and $I_{P_1}^{P_4} = \chi(L_3(4):3|P_4) =$ 1a + 20a + 35a + 45a + 45b + 64a + 70a. The permutation characters $\chi(L_3(4):2|P_i)$ are written in terms of the ordinary irreducible characters of G. Since we have the generators g_1 and g_2 for G, we compute the character tables of G and the P_i 's directly in MAGMA and use these tables together with the fusion maps of the stabilizers into G, to compute $\chi(L_3(4):2|P_i)$ and $\chi(L_3(4):2|2^9)$. The values of $\chi(L_3(4):2|2^9)$ on the different classes of Gdetermine the number k of fixed points of each $g \in G$ in 2^9 . The values of k are listed in Table 6.3.

$[h]_{L_3(4):2}$	1A	2A	2B	3A	4A	4B	4C	
$\chi(L_3(4):3 P_1)$	1	1	1	1	1	1	1	
$\chi(L_3(4):3 P_2)$	21	7	5	3	1	1	3	
$\chi(L_3(4):3 P_3)$	210	28	18	3	2	2	4	
$\chi(L_3(4):3 P_4)$	280	28	8	1	4	4	0	
k	512	64	32	8	8	8	8	
$[h]_{L_3(4):3}$	5A	6A	7A	7B	8A	14A	14B	
$\chi(L_3(4):3 P_1)$	1	1	1	1	1	1	1	
$\chi(L_3(4):3 P_2)$	1	1	0	0	1	0	0	
$\chi(L_3(4):3 P_3)$	0	1	0	0	0	0	0	
$\chi(L_3(4):3 P_4)$	0	1	0	0	2	0	0	
k	2	4	1	1	4	1	1	

Table 6.3: The values of $\chi(L_3(4):2|2^9)$ on the different classes of $L_3(4):2$

The values of k enabled us to determine the number f_j of orbits Q_i 's, $1 \leq i \leq k$, which have fused together under the action of $C_G(g)$, for each class representative $g \in G$, to form one orbit Δ_f . Mpono in [53] used the technique of coset analysis to develop Programmes A and B (see Appendix A) in CAYLEY [20] for the computation of the conjucacy classes of a split extension $\overline{G} = N:G$, where N is an elementary abelian p - group for a prime p on which a linear group G acts. Ali [1] adapted Programmes A and B to be used in MAGMA. Programme A computes the values of the $f'_j s$, whereas Programme B determines the order of the elements for each conjugacy class [x] in \overline{G} . We obtain that \overline{G} has exactly 49 conjugacy classes. See Section 3.3 of Chapter 3 and Programmes A and B for information about the parameters d_j and w. The formula $|C_{\overline{G}}(x)| = \frac{k}{f}|C_G(g)|$ obtained from Chapter 3 is used to calculate the centralizer order of each class [x] of \overline{G} . All the information involving the conjugacy classes of \overline{G} are listed in Table 6.4.

Table 6.4: The conjugacy classes of elements of $\overline{G} = 2^9:(L_3(4):2)$

$[g]_G$	k	f_j	d_j	w	$[x]_{\overline{G}}$	$ [x]_{\overline{G}} $	$ C_{\overline{G}}(x) $
1A	512	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	1A	1	20643840
		$f_2 = 21$	(0, 0, 0, 0, 1, 1, 0, 1, 1)	(0, 0, 0, 0, 1, 1, 0, 1, 1)	2A	21	983040
		$f_3 = 210$	(1, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(1,0,0,0,0,0,0,0,0,0)	2B	210	98304
		$f_4 = 280$	(1, 0, 1, 0, 1, 1, 1, 0, 1)	(1,0,1,0,1,1,1,0,1)	2C	280	73728
24	64	$f_1 - 1$			20	960	21504
24	04	$f_0 = 7$	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)		2D 2E	6720	3072
		$f_2 = 7$	(0, 0, 0, 0, 0, 0, 1, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	14	6720	3072
		$\int 3 = 7$ $f_A = 21$	(0, 0, 0, 0, 0, 0, 0, 0, 1, 1)	(0, 1, 1, 1, 1, 0, 0, 1, 0)	4A 4B	20160	1024
		$f_{r} = 21$	(1, 0, 0, 0, 0, 1, 1, 1, 0, 0)	(0, 0, 0, 0, 0, 1, 1, 1, 0, 0)	4D 4C	26880	768
		55 - 20	(0, 0, 0, 0, 0, 0, 0, 0, 0, 1)	(0, 1, 1, 1, 0, 1, 1, 1, 0)	40	20000	100
2B	32	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	2F	5040	4096
		$f_2 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 1, 1)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	2G	5040	4096
		$f_3 = 1$	(1, 1, 1, 1, 1, 1, 1, 1, 1, 1)	(0, 1, 1, 1, 1, 0, 0, 0, 1)	4D	5040	4096
		$f_4 = 1$	(1, 1, 0, 0, 0, 0, 0, 1, 1)	(0, 1, 1, 1, 1, 0, 0, 0, 1)	4E	5040	4096
		$f_5 = 4$	(1, 1, 1, 0, 1, 0, 0, 1, 1)	(0, 0, 1, 0, 0, 1, 1, 0, 0)	4F	20160	1024
		$f_6 = 8$	(0, 1, 1, 1, 0, 1, 0, 1, 0)	(0, 0, 1, 1, 1, 1, 1, 1, 1)	4G	40320	512
		$f_7 = 8$	(1, 1, 1, 1, 1, 1, 0, 1, 1, 1)	(0, 0, 0, 0, 1, 1, 1, 1, 0)	4H	40320	512
		$f_8 = 8$	(1, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 1, 1, 0, 0, 0, 0, 1)	4I	40320	512
24		£ _ 1			24	149960	144
JA	°	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	5A 64	143300	144
		$f_{2} = 1$	(1, 0, 0, 1, 0, 1, 1, 1, 1)	(1, 0, 0, 1, 0, 1, 1, 1, 1)	6P	143300	144
		$f_3 = 3$	(1, 1, 1, 1, 1, 0, 1, 0, 0, 1)	(1, 1, 1, 1, 0, 1, 0, 0, 1)	6 <i>C</i>	430080	40
		$J_4 - 3$	(0, 0, 0, 0, 0, 0, 0, 0, 1, 0)	(1, 0, 0, 1, 1, 0, 1, 1, 0)	00	430080	40
4A	8	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	4J	80640	256
		$f_2 = 1$	(0, 1, 0, 0, 1, 0, 0, 1, 1)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	4K	80640	256
		$f_3 = 2$	(0, 0, 1, 0, 0, 0, 0, 0, 0)	(0, 1, 1, 1, 1, 0, 0, 0, 1)	8A	161280	128
		$f_4 = 4$	(1, 0, 1, 0, 1, 0, 1, 1, 1)	(0, 1, 0, 1, 1, 1, 1, 0, 1)	8B	322560	64
4B	8	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	4L	161280	128
		$f_2 = 1$	(1, 0, 0, 0, 0, 0, 0, 1, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	4M	161280	128
		$f_3 = 2$	(1, 0, 0, 0, 1, 1, 1, 1, 1)	(0, 0, 1, 1, 0, 0, 0, 1, 0)	8C	322560	64
		$f_4 = 4$	(1, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(1, 1, 0, 1, 1, 0, 0, 1, 0)	8D	645120	32
4C	8	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	4N	161280	128
		$f_2 = 1$	(1, 0, 1, 1, 1, 0, 1, 1, 1)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	40	161280	128
		$f_3 = 1$	(1, 0, 0, 0, 1, 1, 0, 1, 0)	(1, 0, 1, 0, 1, 1, 1, 1, 0)	8E	161280	128
		$f_4 = 1$	(0, 1, 1, 1, 1, 1, 1, 1, 0)	(1, 0, 1, 0, 1, 1, 1, 1, 0)	8F	161280	128
		$f_5 = 2$	(1, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(1, 1, 0, 1, 1, 1, 0, 0, 1)	8G	322560	64
		$f_6 = 2$	(1, 0, 1, 0, 0, 1, 0, 0, 1)	(0, 1, 1, 1, 0, 0, 1, 1, 1)	8H	322560	64
5A	2	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	5A	2064384	10
		$f_2 = 1$	(1, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 1, 1, 0, 0, 1)	10A	2064384	10
6 <i>A</i>	4	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	6D	860160	24
	.	$f_2 = 1$	(1, 0, 0, 0, 1, 0, 1, 1, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	6 <i>E</i>	860160	24
		$f_3 = 1$	(1, 0, 0, 1, 1, 0, 1, 1, 1)	(1,0,0,1,0,1,1,1,0)	12A	860160	24
		$f_4 = 1$	(1, 1, 1, 0, 1, 0, 1, 1, 1)	(1, 0, 0, 1, 0, 1, 1, 1, 0)	12B	860160	24
7A	1	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	7A	1474560	14
78	1	$f_1 - 1$			78	1474560	14
		J1 - 1	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]		1414000	14
8A	4	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	8H	645120	32
		$f_2 = 1$	(1, 0, 0, 1, 1, 1, 1, 1, 1)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	8	645120	32
		$f_3 = 1$	(1, 1, 1, 0, 1, 0, 1, 1, 1)	(0, 0, 0, 0, 0, 0, 0, 0, 1, 1)	16A	645120	32
		$f_4 = 1$	(1, 1, 1, 1, 1, 1, 1, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 1, 1)	16B	645120	32
144		L 1			144	1474500	1.4
14A		$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	14A	1474560	14
14B	1	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	14B	1474560	14
		, , , , , , , , , , , , , , , , , , ,	(-, -, -, -, -, -, 0, 0, 0, 0, 0)	(-, -, -, -, -, -, 0, 0, 0, 0, 0)			
<u> </u>							

6.3 The inertia groups of $\overline{G} = 2^9:(L_3(4):2)$

Since G has four orbits on N, then by Brauer's Theorem [29] G acts on Irr(N) with the same number of orbits. The lengths of the 4 orbits will be 1, r, s and t where r + s + t =511, with corresponding point stabilizers H_1 , H_2 , H_3 and H_4 as subgroups of G such that $[G:H_1] = 1, [G:H_2] = r, [G:H_3] = s$ and $[G:H_4] = t$. We generate G as a permutation group on a set of cardinality 672 within MAGMA. Then the maximal and submaximal subgroups of G are computed. Now, considering the indices of these subgroups in G, the number of the classes of these subgroups, and also the fact that \overline{G} has 49 conjugacy classes, we deduce that the action of G on Irr(N) has orbits of lengths 1, r = 21, s = 210and t = 280 with respective point stabilizers $H_1 = L_3(4):2, H_2 = 2^4:S_5, H_3 = 2^4:(2 \times S_3)$ and $H_4 = 3^2:Q_8:2$. Thus we obtain four inertia groups $\overline{H}_i = 2^9:H_i, i \in \{1, 2, 3, 4\}$, in $2^9:(L_3(4):2)$. Alternatively, we can also determine the inertia factor groups if we let T be the matrix group of dimension 9 over GF(2) formed by the transpose of the generators of G. Then the action of T on the classes of $N = 2^9$ is the equivalent of G acting on Irr(N). Then with the help of MAGMA or GAP, we can easily verify that the action of T on N has orbits of lengths 1, 21, 210 and 280 with corresponding point stabilizers T, $2^4:S_5$, $2^4:(2 \times S_3)$ and $3^2:Q_8:2$. The structures of H_2 and H_4 have been identified by checking the indices of the maximal subgroups of $L_3(4):2 \cong L_3(4).2_2$ in the ATLAS. The structure of H_3 was determined by direct computations in MAGMA. The groups H_2 , H_3 and H_4 are constructed from elements within G and the generators are as follows:

• $H_2 = \langle \alpha_1, \alpha_2 \rangle$, $\alpha_1 \in 3A$, $\alpha_2 \in 6A$ where

0 (0	0	0	1	0	1	0	0 \		1 1	1	0	0	0	1	1	0	0	0)	\
0	1	0	0	1	0	1	0	0		(0	1	1	1	1	0	0	1	0	١
1 (0	0	1	0	0	1	1	1		1	1	1	0	0	1	0	1	1	1	
1	1	1	0	1	1	1	0	0			1	0	1	0	0	0	0	1	0	t
0 0	0	0	0	0	0	1	1	0	, $\alpha_2 =$	1	1	0	0	0	0	1	1	0	0	l
0 0	0	0	0	0	1	0	0	0		(0	0	0	0	0	1	0	0	0	l
1 (0	0	0	1	0	0	1	0		(0	0	0	0	0	1	0	1	0	L
1 (0	0	0	0	1	1	0	0			0	0	0	0	0	1	1	1	0	
0 0	0	1	1	0	1	0	1	0 /		$\langle 0 \rangle$	0	0	1	1	0	1	1	0	0,	/
	0 0 1 0 0 1 1 0	$\begin{array}{cccc} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \\ 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							

• $H_3 = \langle \beta_1, \beta_2 \rangle$, $\beta_1 \in 4C$, $\beta_2 \in 6A$ where

	(1)	0	0	0	0	0	0	0	0 \		/ 1	0	0	0	0	0	0	0	0 \	•
	1	1	0	1	0	1	1	0	0		1	0	0	1	1	1	0	0	1	۱
	0	0	0	1	1	1	1	1	1		1	0	0	1	1	1	1	1	1	l
	0	0	1	1	1	1	0	1	1		0	1	0	0	1	0	0	0	1	l
$\beta_1 =$	1	0	0	1	1	1	0	0	0	, $\beta_2 =$	1	0	0	1	1	1	0	0	0	l
	1	0	1	0	0	0	1	1	1		1	0	1	0	0	0	1	1	1	l
	1	0	0	1	0	1	1	0	0		0	0	1	1	0	1	0	1	1	l
	1	1	0	1	0	1	1	0	1		1	1	0	1	0	1	1	0	1	ł
	$\backslash 1$	1	0	1	1	0	1	1	0 /		$\backslash 1$	1	0	1	1	0	1	1	0 /	1

•
$$H_4 = \langle \gamma_1, \gamma_2 \rangle$$
, $\gamma_1 \in 2A$, $\gamma_2 \in 8A$ where

	/	0	0	0	0	1	0	1	0	0 \		/ 1	1	0	1	0	0	0	0	0
	(0	1	0	0	0	0	0	0	0		1	1	0	0	0	1	1	1	1
		1	0	0	1	1	0	0	1	1		0	1	1	1	1	1	1	0	0
		1	0	0	1	1	0	1	0	0		0	1	0	0	0	0	0	0	0
$\gamma_1 =$		1	0	0	0	0	0	1	0	0	, $\gamma_2 =$	0	0	0	0	0	1	0	1	1
		0	0	0	0	0	1	0	0	0		0	0	0	0	1	1	0	0	1
		0	0	0	0	0	0	1	0	0		0	0	0	1	1	0	0	1	1
	ł	0	0	0	0	0	1	1	1	0		0	0	0	0	1	1	0	0	0
		0	0	1	1	0	1	0	1	0 /		0	0	0	0	1	0	0	0	1,

For the purpose of constructing the character table of \overline{G} , we use the above generators of the H_i 's to compute their character tables and these tables are available in the Appendix A.

6.4 The fusion of H_2 , H_3 and H_4 into G

We obtain the fusions of the inertia factors H_2 , H_3 and H_4 into G by using direct matrix conjugation in G and their permutation characters in G of degrees 21, 210 and 280, respectively. MAGMA was used for the various computations. The fusion maps of H_2 , H_3 and H_4 into G are shown in Tables 6.5, 6.6 and 6.7.

Table 6.5: The fusion of H_2 into $L_3(4)$:2

$[h]_{H_2} \ \rightarrow \ \ $	$[g]_{L_3(4):2}$	$[h]_{H_2} \rightarrow$	$[g]_{L_3(4):2}$	$[h]_{H_2} \rightarrow$	$[g]_{L_3(4):2}$	$[h]_{H_2} \ \rightarrow \ \ $	$[g]_{L_3(4):2}$
1A	1A	2C	2B	4B	4B	5A	5A
2A	2B	3A	3A	4C	4C	6A	6A
2B	2A	4A	4A	4D	4C	8A	8A

Table 6.6: The fusion of H_3 into $L_3(4)$:2

$[h]_{H_3} \rightarrow$	$[g]_{L_3(4):2}$						
1A	1A	2D	2B	4A	4C	4E	4B
2A	2B	2E	2B	4B	4C	6A	6A
2B	2A	2F	2A	4C	4A		
2C	2B	3A	3A	4D	4C		

Table 6.7: The fusion of H_4 into $L_3(4)$:2

$[h]_{H_4} \rightarrow$	$[g]_{L_3(4):2}$						
1A	1A	2B	2A	4B	4B	6B	6B
2A	2B	3A	3A	4A	4A		

The Fischer-Clifford Matrices of $2^9:(L_3(4):2)$ 6.5

Having obtained the fusions of the inertia factors into $L_3(4)$:2 and the conjugacy classes of $L_3(4):2$ displayed in the format of Table 6.4, we can proceed to use the theory and properties discussed in Chapter 5 to help us in the construction of the Fischer-Clifford matrices of $2^9:(L_3(4):2)$. Note that all the relations hold since 2^9 is an elementary abelian group.

For example, consider the conjugacy class 2A of $L_3(4)$:2. Then we obtain that M(2A)has the following form with corresponding weights attached to the rows and columns:

	$ C_{\overline{G}}(2D) $	$ C_{\overline{G}}(2E) $	$ C_{\overline{G}}(4A) $	$ C_{\overline{G}}(4B) $	$ C_{\overline{G}}(4C) $	
$ C_G(2A) $	(a	f	$_{k}$	p	u)	
$\left C_{H_{2}}(2B)\right $	b	g	l	q	v	
$M(2A) = C_{H_3}(2B) $	с	h	m	r	w	
$\left C_{H_{3}}(2F)\right $	d	i	n	s	x	
$ C_{H_4}(2B) $	(e	$_{j}$	0	t	y)	
	m_1	m_2	m_3	m_4	m_5	

		21504	3072	3072	1024	768
	336	(a	f	$_{k}$	p	u
	48	Ь	g	l	q	v
M(2A) =	48	c	h	m	r	w
	16	d	i	n	s	x
	12	(e	$_{j}$	0	t	y
		8	56	56	168	224

By Theorem 5.2.3 and property (e) of the Fischer-Clifford matrix M(g) (see Chapter 5), we have a = f = k = p = u = 1, b = c = 7, d = 21 and e = 28. Thus we get the following form

By the orthogonality relations for columns and rows (see properties (b) and (c) of Fischer-Clifford matrices in Chapter 5), we obtain 28 equations and are listed as follows:

- 1. $12g^{2} + 12h^{2} + 4i^{2} + 3j^{2} = 684.$ 2. $12l^{2} + 12m^{2} + 4n^{2} + 3o^{2} = 684.$ 3. $12q^{2} + 12r^{2} + 4s^{2} + 3t^{2} = 172.$ 4. $12v^{2} + 12w^{2} + 4x^{2} + 3y^{2} = 108.$ 5. 12gl + 12hm + 4ni + 3jo = -84.6. 12gq + 12hr + 4si + 3jt = -84.7. 12gv + 12hw + 4xi + 3jy = -84.8. 12lq + 12mr + 4ns + 3ot = -84.9. 12lv + 12mw + 4nx + 3oy = -84.10. 12qv + 12rw + 4sx + 3yt = -84.
- 11. g + h + i + j = -1.

12.
$$l + m + n + o = -1$$
.
13. $q + r + s + t = -1$.
14. $v + w + x + y = -1$.
15. $hi + mn + 3sr + 4xw = -21$.
16. $gi + ln + 3sq + 4xv = -21$.
17. $i + n + 3s + 4x = -3$.
18. $gh + ml + 3qr + 4wv = -7$.
19. $h + m + 3r + 4w = -1$.
20. $g + l + 3q + 4v = -1$.
21. $ij + on + 3st + 4xy = -84$.
22. $jh + om + 3rt + 4yw = -28$.
23. $jg + ol + 3qt + 4yv = -28$.
24. $j + o + 3t + 4y = -4$.
25. $j^2 + o^2 + 3t^2 + 4y^2 = 144$.
26. $i^2 + n^2 + 3s^2 + 4x^2 = 129$.
27. $h^2 + m^2 + 3r^2 + 4w^2 = 57$.
28. $g^2 + l^2 + 3q^2 + 4r^2 = 57$.

Solving these equations and with the help of the remaining properties discussed in Chapter 5, we obtain the desired Fischer-Clifford matrix M(2A) of \overline{G} given below:

$$M(2A) = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 7 & -1 & -5 & 3 & -1 \\ 7 & 7 & -1 & -1 & -1 \\ 21 & -3 & 9 & 1 & -3 \\ 28 & -4 & -4 & -4 & 4 \end{pmatrix}.$$

For each class representative $g \in L_3(4)$:2, we construct a Fischer-Clifford matrix M(g). These are listed in Table 6.8.

M(q)	M(q)
$M(1A) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 21 & -11 & 5 & -3 \\ 210 & 50 & 2 & -6 \\ 280 & -40 & -8 & 8 \end{pmatrix}$	$M(2A) = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 7 & -1 & -5 & 3 & -1 \\ 7 & 7 & -1 & -1 & -1 \\ 21 & -3 & 9 & 1 & -3 \\ 28 & -4 & -4 & -4 & 4 \end{pmatrix}$
$M(2B) = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 &$	$M(3A) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 3 & -3 & -1 & 1 \\ 3 & 3 & -1 & -1 \\ 1 & -1 & 1 & -1 \end{pmatrix}$
$M(4A) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & -1 \\ 2 & 2 & -2 & 0 \\ 4 & -4 & 0 & 0 \end{pmatrix}$	$M(4B) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & -1 \\ 2 & 2 & -2 & 0 \\ 4 & -4 & 0 & 0 \end{pmatrix}$
$M(4C) = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1$	$M(5A) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ of the
$M(6A) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & -1 & 1 \\ 1 & 1 & -1 & -$	\mathbf{APE} $M(7A) = \begin{pmatrix} 1 \end{pmatrix}$
$M(7B) = \begin{pmatrix} 1 \end{pmatrix}$	$M(8A) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -$
$M(14A) = \left(\begin{array}{c} 1 \end{array}\right)$	$M(14B) = \left(\begin{array}{c} 1 \end{array}\right)$

Table 6.8: The Fischer-Clifford Matrices of $2^9:(L_3(4):2)$

6.6 Character Table of $2^9:(L_3(4):2)$

Having obtained the Fischer-Clifford matrices, the fusion maps of the H_i 's into $L_3(4)$:2, and the character tables of the inertia factors H_i , we construct the character table of $2^9:(L_3(4):2)$ following the methodology discussed in Chapter 5. For example, we calculate the partial character table of $2^9:(L_3(4):2)$ corresponding to the coset of $2A \in L_3(4)$:2. From the Fischer-Clifford matrix M(2A) we obtain that

$$M_1(2A) = (1 \ 1 \ 1 \ 1 \ 1)$$
, $M_2(2A) = \begin{pmatrix} 7 \ -1 \ -5 \ 3 \ -1 \end{pmatrix}$,

$$M_3(2A) = \begin{pmatrix} 7 & 7 & -1 & -1 & -1 \\ 21 & -3 & 9 & 1 & -3 \end{pmatrix} \text{ and } M_4(2A) = (28 - 4 - 4 - 4 4).$$

Let $C_1(2A)$, $C_2(2A)$, $C_3(2A)$ and $C_4(2A)$ be the partial character tables of the inertia factors for the classes which fuse to $2A \in L_3(4)$:2. Then the partial character table of $2^9:(L_3(4):2)$ on the classes $\{2D, 2E, 4A, 4B, 4C\}$ is given by:

		UNIVERSITY of the				
((1)	WESTERN CAPE	1	1	1	1
	-1	-1	-1	-1	-1	-1
	-6	-6	-6	-6	-6	-6
	6	6	6	6	6	6
	$^{-7}$	-7	-7	-7	-7	$^{-7}$
	7	7	7	7	7	7
$C_{4}(2A)M_{4}(2A) =$	$^{-3}$	(1, 1, 1, 1, 1, 1) = -3	$^{-3}$	$^{-3}$	$^{-3}$	$^{-3}$
$C_1(2A)M_1(2A) =$	$^{-3}$	$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix} = -3$	$^{-3}$	$^{-3}$	-3	$^{-3}$
	3	3	3	3	3	3
	3	3	3	3	3	3
	8	8	8	8	8	8
	$^{-8}$	-8	$^{-8}$	$^{-8}$	$^{-8}$	$^{-8}$
	0	0	0	0	0	0
((0)		0	0	0	0 /

Similarly, the partial character table associated with each coset Ng is computed. If necessary, we will restrict some characters of $Irr(U_6(2):2)$ to \overline{G} , to ensure that each partial character table corresponding to a coset Ng, will give rise to the desired set $Irr(\overline{G})$.

The character table of \overline{G} will be partitioned row-wise into 4 blocks Δ_1 , Δ_2 , Δ_3 and Δ_4 where each block corresponds to an inertia group $\overline{H}_i = 2^9$: H_i . Therefore $Irr(2^9:(L_3(4):2)) = \bigcup_{i=1}^4 \Delta_i$, where $\Delta_1 = \{\chi_j | 1 \le j \le 14\}$, $\Delta_2 = \{\chi_j | 15 \le j \le 26\}$, $\Delta_3 = \{\chi_j | 27 \le j \le 40\}$ and $\Delta_4 = \{\chi_j | 41 \le j \le 49\}$. The character table of $2^9:(L_3(4):2)$ is shown in Table 6.9. The consistency and accuracy of the character table of $2^9:(L_3(4):2)$ have been tested by using the GAP codes labelled as Programme C (see Appendix A).

	1A				2A					2B		
	1A	2A	2B	2C	2D	2E	4A	4B	4C	2F	2G	4D
χ_1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	1	-1	-1	-1	-1	-1	1	1	1
χ_3	20	20	20	20	-6	-6	-6	-6	-6	4	4	4
χ_4	20	20	20	20	6	6	6	6	6	4	4	4
χ_5	35	35	35	35	-7	-7	-7	-7	-7	3	3	3
χ_6	35	35	35	35	7	7	7	7	7	3	3	3
χ_7	45	45	45	45	-3	-3	-3	-3	-3	-3	-3	-3
χ_8	45	45	45	45	-3	-3	-3	-3	-3	-3	-3	-3
χ_9	45	45	45	45	3	3	3	3	3	-3	-3	-3
χ_{10}	45	45	45	45	3	3	3	3	3	-3	-3	-3
χ_{11}	64	64	64	64	8	8	8	8	8	0	0	0
χ_{12}	64	64	64	64	-8	-8	-8	-8	-8	0	0	0
χ_{13}	70	70	70	70	0	0	0	-0	0	6	6	6
χ_{14}	126	126	126	126	0	0	0	0	0	-2	-2	-2
χ_{15}	21	-11	5	-3	7	-1	-5	3	-1	5	-3	5
χ_{16}	21	-11	5	-3	-7	1	5	-3	1	5	-3	5
χ_{17}	84	-44	20	-12	14	-2	-10	6	-2	4	4	4
χ_{18}	84	-44	20	-12	-14	2	10	-6	2	4	4	4
χ_{19}	105	-55	25_{-}	-15	-7	C 1-	5	-3	1	9	1	9
χ_{20}	105	-55	25	-15	7	ю. <u>н</u> .	-50	3	-1	9	1	9
χ_{21}	126	-66	30	-18	0	0	0	0	0	-2	14	-2
χ_{22}	315	-165	75	-45	-21	3	15	-9	3	11	-13	11
χ_{23}	315	-165	75	-45	-21	3	15	-9	3	-5	3	-5
χ_{24}	315	-165	75	-45	21	-3	-15	9	-3	11	-13	11
χ_{25}	315	-165	75	-45	21	-3	-15	9	-3	-5	3	-5
χ_{26}	630	-330	150	-90	0	0	0	0	0	-10	6	-10
χ_{27}	210	50	2	-6	28	4	8	0	-4	18	10	2
χ_{28}	210	50	2	-6	-28	-4	-8	0	4	18	10	2
χ_{29}	210	50	2	-6	-14	10	-10	-2	2	2	-6	18
χ_{30}	210	50	2	-6	14	-10	10	2	-2	2	-6	18
χ_{31}	420	100	4	-12	-14	-14	2	2	2	20	4	20
χ_{32}	420	100	4	-12	14	14	-2	-2	-2	20	4	20
χ_{33}	630	150	6	-18	0	24	-12	-4	0	-10	-2	6
χ_{34}	630	150	6	-18	-42	-18	-6	2	6	6	14	-10
χ_{35}	630	150	6	-18	42	18	6	-2	-6	6	14	-10
χ_{36}	630	150	6	-18	0	-24	12	4	0	-10	-2	6
χ_{37}	1260	300	12	-36	0	0	0	0	0	-20	-4	12
χ_{38}	1260	300	12	-36	0	0	0	0	0	12	28	-20
χ_{39}	1260	300	12	-36	-42	6	-18	-2	6	-4	-20	-4
χ_{40}	1260	300	12	-36	42	-6	18	2	-6	-4	-20	-4
χ_{41}	280	-40	-8	8	28	-4	-4	-4	4	8	-8	-8
χ_{42}	280	-40	-8	8	-28	4	4	4	-4	8	-8	-8
χ_{43}	280	-40	-8	8	-28	4	4	4	-4	8	-8	-8
χ_{44}	280	-40	-8	8	28	-4	-4	-4	4	8	-8	-8
χ_{45}	560	-80	-16	16	0	0	0	0	0	16	-16	-16
χ_{46}	560	-80	-16	16	0	0	0	0	0	-16	16	16
χ_{47}	560	-80	-16	16	0	0	0	0	0	-16	16	16
χ_{48}	2240	-320	-64	64	-56	8	8	8	-8	0	0	0
2/10	1 9940	330	64	64	1 56	Ŷ	8	8	8	0	0	0

Table 6.9: The Character table of $2^9:(L_3(4):2)$

	2B					3A				4 <i>A</i>			
	4E	4F	4G	4H	4I	3A	6A	6B	6C	4J	4K	8A	8B
χ1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	1	1	1	1	1	1	1	1	1	1
χ3	4	4	4	4	4	2	2	2	2	0	0	0	0
χ_4	4	4	4	4	4	2	2	2	2	0	0	0	0
χ_5	3	3	3	3	3	-1	-1	-1	-1	3	3	3	3
χ_6	3	3	3	3	3	-1	-1	-1	-1	3	3	3	3
χ_7	-3	-3	-3	-3	-3	0	0	0	0	1	1	1	1
χ_8	-3	-3	-3	-3	-3	0	0	0	0	1	1	1	1
χ9	-3	-3	-3	-3	-3	0	0	0	0	1	1	1	1
χ_{10}	-3	-3	-3	-3	-3	0	0	0	0	1	1	1	1
χ11	0	0	0	0	0	1	1	1	1	0	0	0	0
χ_{12}	0	0	0	0	0	1	1	1	1	0	0	0	0
χ_{13}	6	6	6	6	6	-2	-2	-2	-2	-2	-2	-2	-2
χ14	-2	-2	-2	-2	-2	0	0	0	0	-2	-2	-2	-2
χ_{15}	-3	1	-3	1	1	3	-3	1	-1	1	1	1	-1
χ_{16}	-3	1	-3	1	1	3	-3	1	-1	1	1	1	-1
χ_{17}	4	4	-4	-4	4	3	-3	1	-1	0	0	0	0
X18	4	4	-4	-4	4	3	-3	1	-1	0	0	0	0
χ_{19}	1	5	-7	-3	5	-3	3	-1	1	1	1	1	-1
χ_{20}		5	-7	-3	5	-3	3	-1	1	1	1	1	-1
χ_{21}	14	6	-2	-10	6	0	0	0	0	-2	-2	-2	2
χ_{22}	-13	-1	-5	-7	-1	0	0	0	0	-1	-1	-1	1
χ_{23}	3	-1	3	-1	-1	0	0	0	0	3	3	3	-3
χ_{24}	-13	-1	-ə	1	-1		0	0	0	-1	-1	-1	1
χ_{25}	3	-1	3	-1	-1	0	0	0	0	3	3	3	-3
X26	6	-2	0	-2	-2	2	0	1	1	-2	-2	-2	2
X27	-0	-2	2	UN	-2		SI Ĵ	Y of	the	2	2	-2	0
X28	10	-2	2	-2	-2	3	3		-1	-2	-2	-2	0
X29 X20	10	-2	2	-2	-2	3	N ⁰	CA	P E	-2	-2	2	0
X21	4	-4	4	-4	-4	-3	-3	1	1	0	0	0	0
X32	4	-4	4	-4	-4	-3	-3	1	1	0	0	0	0
X33	14	10	-2	2	-6	0	0	0	0	-2	-2	2	0
X34	-2	10	-2	2	-6	0	0	0	0	2	2	-2	0
X35	-2	10	-2	2	-6	0	0	0	0	2	2	-2	0
X36	14	10	-2	2	-6	0	0	0	0	-2	-2	2	0
X37	28	-12	-4	4	4	0	0	0	0	4	4	-4	0
X38	-4	-12	-4	4	4	0	0	0	0	-4	-4	4	0
χ_{39}	-20	4	4	-4	4	0	0	0	0	0	0	0	0
χ_{40}	-20	4	4	-4	4	0	0	0	0	0	0	0	0
χ41	8	0	0	0	0	1	-1	-1	1	4	-4	0	0
χ_{42}	8	0	0	0	0	1	-1	-1	1	4	-4	0	0
χ_{43}	8	0	0	0	0	1	-1	-1	1	4	-4	0	0
χ_{44}	8	0	0	0	0	1	-1	-1	1	4	-4	0	0
χ_{45}	16	0	0	0	0	2	-2	-2	2	-8	8	0	0
χ_{46}	-16	0	0	0	0	2	-2	-2	2	0	0	0	0
χ_{47}	-16	0	0	0	0	2	-2	-2	2	0	0	0	0
χ_{48}	0	0	0	0	0	-1	1	1	-1	0	0	0	0
χ_{49}	0	0	0	0	0	-1	1	1	-1	0	0	0	0

Table 6.9 (continue)

			4B					4C				5A
	4L	4M	8C	8D	4N	4E	8F	4O	8G	8H	5A	10A
χ1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	1	-1	-1	-1	-1	-1	-1	1	1
<i>χ</i> 3	0	0	0	0	-2	-2	-2	-2	-2	-2	0	0
χ_4	0	0	0	0	2	2	2	2	2	2	0	0
χ_5	-1	-1	-1	-1	1	1	1	1	1	1	0	0
χ_6	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	0
χ_7	1	1	1	1	1	1	1	1	1	1	0	0
χ_8	1	1	1	1	1	1	1	1	1	1	0	0
<i>χ</i> 9	1	1	1	1	-1	-1	-1	-1	-1	-1	0	0
χ_{10}	1	1	1	1	-1	-1	-1	-1	-1	-1	0	0
χ_{11}	0	0	0	0	0	0	0	0	0	0	-1	-1
χ_{12}	0	0	0	0	0	0	0	0	0	0	-1	-1
χ_{13}	2	2	2	2	0	0	0	0	0	0	0	0
χ_{14}	-2	-2	-2	-2	0	0	0	0	0	0	1	1
χ_{15}	1	1	1	-1	3	-1	1	-3	-1	1	1	-1
χ_{16}	1	1	1	-1	-3	1	-1	3	1	-1	1	-1
χ_{17}	0	0	0	0	2	2	-2	-2	-2	2	-1	1
χ_{18}	0	0	0	0	-2	-2	2	2	2	-2	-1	1
χ_{19}	1	1	1	-1	1	-3	3	-1	1	-1	0	0
χ_{20}	1	1	1	-1	-1	3	-3	1	-1	1	0	0
χ_{21}	-2	-2	-2	2	0	0	0	0	0	0	1	-1
χ_{22}	-1	-1	-1	1	-1	3	-3	1	-1	1	0	0
χ_{23}	-1	-1	-1	1	3	-1	1	-3	-1	1	0	0
χ_{24}	-1	-1	-1	1	1	-3	3	-1	1	-1	0	0
χ_{25}	-1	-1	-1	1	-3	1	-1	3	1	-1	0	0
χ_{26}	2	2	2	-2	0	0	0	0	0	0	0	0
χ_{27}		2	-2		4	RST	T^2	of th	0	-2	0	0
χ_{28}		2	-2	0	-4	0	2	-2	0	2	0	0
χ_{29}	-2	-2	2	0	-2	\mathbb{R}^2	0	AF ⁴ F	2	0	0	0
χ_{30}	-2	-2	2	0		-2	0	4	-2	0		0
X31		0	0	0	-2	-2	2	2	-2	2	0	0
X32		0	0	0		2	-2	-2	2	-2	0	0
X33		2	-2	0	2	-4	-2	2	2	2		0
X34	2	-2	2	0	2	-2	-4	0	2	0		0
X35	2	-2	2	0	0	4	-4 -2	2	-2	2		0
X35		0	-2	0		0	0	-2	0	-2	0	0
X31		0	0	0		0	0	0	0	0	0	0
X38		0	0	0	2	2	2	2	-2	-2	0	0
×40	0	0	0	0	-2	-2	-2	-2	2	2	0	0
×40	4	-4	0	0	0	0	0	0	0	0	0	0
×41	-4	4	0	0	0	0	0	0	0	0	0	0
X12	4	-4	0	õ	0	0	0	õ	0	0	0	0
X14	-4	4	0	õ	0	0	0	õ	0	0	0	0
X45	0	0	0	õ	0	0	0	õ	0	0	0	0
X46	0	0	0	õ	0	0	0	õ	0	0	0	0
X47	0	0	0	õ	0	0	0	õ	0	0	0	0
X48	0	0	0	Ũ	0	0	0	Ũ	0	0	0	0
χ49	0	0	0	0	0	0	0	0	0	0	0	0

Table 6.9 (continue)

			6A		7A	7B			8A		14A	14B
	6D	6E	12A	12B	7A	7B	81	8J	16A	16B	14A	14B
χ1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	-1	-1	-1	-1	1	1	-1	-1	-1	-1	-1	-1
Χз	0	0	0	0	-1	-1	0	0	0	0	1	1
χ_4	0	0	0	0	-1	-1	0	0	0	0	-1	-1
χ_5	-1	-1	-1	-1	0	0	1	1	1	1	0	0
χ_6	1	1	1	1	0	0	-1	-1	-1	-1	0	0
χ_7	0	0	0	0	A	В	-1	-1	-1	-1	-A	-B
χ_8	0	0	0	0	В	Α	-1	-1	-1	-1	-B	-A
χ_9	0	0	0	0	A	В	1	1	1	1	A	B
χ_{10}	0	0	0	0	B	Α	1	1	1	1	В	A
χ_{11}	-1	-1	-1	-1	1	1	0	0	0	0	1	1
χ_{12}	1	1	1	1	1	1	0	0	0	0	-1	-1
χ_{13}	0	0	0	0	0	0	0	0	0	0	0	0
χ_{14}	0	0	0	0	0	0	0	0	0	0	0	0
χ_{15}	1	-1	-1	1	0	0	1	1	-1	-1	0	0
χ_{16}	-1	1	1	-1	0	0	-1	-1	1	1	0	0
χ_{17}	-1	1	1	-1	0	0	0	0	0	0	0	0
χ_{18}	1	-1	-1	1	0	0	0	0	0	0	0	0
χ_{19}	-1	1	1	-1	0	0	1	1	-1	-1	0	0
χ_{20}	1	-1	-1	1	0	0	-1	-1	1	1	0	0
χ_{21}	0	0	0	0	0	0	0	0	0	0	0	0
χ_{22}	0	0	0	0	0	0	1	1	-1	-1	0	0
χ_{23}	0	0	0	- 0	0	0	-1	-1	1	1	0	0
χ_{24}	0	0	0	0	0	0	-1	-1	1	1	0	0
χ_{25}	0	0	0	0	0	0	1	1	-1	-1	0	0
χ_{26}	0	0	0	0	0	0	0	0	0	0	0	0
χ_{27}	1	1	-1	-1	0	0	0	0	0	0	0	0
χ_{28}	-1	-1	1	UNI	0	R 01	0	o ⁰ t	he^{0}	0	0	0
χ_{29}	1	1	-1	-1	0	0	0	0	0	0	0	0
χ_{30}	-1	-1	1	W 113	0	0	0	0	0	0	0	0
χ_{31}	1	1	-1	-1	0	0	0	0	0	0	0	0
χ_{32}	-1	-1	1	1	0	0	0	0	0	0	0	0
χ_{33}	0	0	0	0	0	0	0	0	0	0	0	0
χ_{34}	0	0	0	0	0	0	0	0	0	0	0	0
χ_{35}	0	0	0	0	0	0	0	0	0	0	0	0
χ_{36}	0	0	0	0	0	0	0	0	0	0	0	0
χ_{37}	0	0	0	0	0	0	0	0	0	0	0	0
χ_{38}	0	0	0	0	0	0	0	0	0	0	0	0
χ_{39}	0	0	0	0	0	0	0	0	0	0	0	0
χ_{40}	0	0	0	0	0	0	0	0	0	0	0	0
χ_{41}	1	-1	1	-1	0	0	2	-2	0	0	0	0
χ_{42}	-1	1	-1	1	0	0	2	-2	0	0	0	0
χ_{43}	-1	1	-1	1	0	0	-2	2	0	0	0	0
χ_{44}		-1	1	-1	0	0	-2	2	0	0	0	0
χ_{45}	0	0	0	0	0	0	0	0	0	0	0	0
χ_{46}	0	0	0	0	0	0	0	0	C	-C	0	0
χ_{47}	0	0	0	0	0	0	0	0	-C	C	0	0
χ_{48}	1	-1	1	-1	0	0	0	0	0	0	0	0
χ_{49}	-1	1	-1	1	0	0	0	0	0	0	0	0

Table 6.9 (continue)

where $A = E(7)^3 + E(7)^5 + E(7)^6$, $B = E(7) + E(7)^2 + E(7)^4$ and $C = 2 * E(8) + 2 * E(8)^3$.

The information about the conjugacy classes found in Table 6.4 can be used to compute the power maps for the elements of \overline{G} and then with the aid of Programme C (see Appendix A) we can verify that we obtained the unique *p*-power maps listed in Table 6.10 for our Table 6.9.

$[g]_G$	$[x]_{\overline{G}}$	2	3	5	7	$[g]_G$	$[x]_{\overline{G}}$	2	3	5	7
1A	1A					2A	2D	1A			
	2A	1A					2E	1A			
	2B	1A					4A	2B			
	2C	1A					4B	2B			
							4C	2B			
2B	2F	1A				3A	3A		1A		
	2G	1A					6A	3A	2C		
	4D	2A					6B	3A	2A		
	4E	2A					6C	3A	2B		
	4F	2B									
	4G	2B									
	4H	2B									
	4I	2B									
4 <i>A</i>	4J	2F			_	4B	4L	2F			
	4K	2F	_	-			4M	2F			
	8A	4E	2				8C	4E			
	8B	4F	100	-101			8D	4I			
4C	4N	2F	T	- 11	- m	5A	5A	í.		1A	
	4O	2F					10A	5A		2A	
	8E	4F									
	8F	4F									
	8G	4D									
	8H	4F	UN	IV	ER	SIT	Y of t				
6 <i>A</i>	6D	3A	2D	0.0	i in an	7A	7A	12			1A
	6E	3A	2E	12.1		CIN .	CAP	L.			
	12A	6C	4C								
	12B	6C	4A								
7B	7B				1A	8A	8I	4J			
							8J	4J			
							16A	8A			
							16B	8A			
14A	14A	7A			2D	14B	14B	7B			2D

Table 6.10: The power maps of the elements of $2^9:(L_3(4):2)$

6.7 The Fusion of $2^9:(L_3(4):2)$ into $U_6(2):2$

Since \overline{G} is a maximal subgroup of $U_6(2)$:2 of index 891, then the action of $U_6(2)$:2 on the cosets of \overline{G} gives rise to a permutation character $\chi(U_6(2):2|\overline{G})$ of degree 891. We deduce from the character table of $U_6(2)$:2 found in GAP that $\chi(U_6(2):2|\overline{G}) =$ 1a + 22a + 252a + 616a, where 1a, 22a, 252a and 616a are irreducible characters of $U_6(2)$:2 of degrees 1, 22, 252 and 616, respectively.

We are able to obtain the partial fusion of \overline{G} into $U_6(2)$:2, using the information provided by the values of $\chi(U_6(2):2|\overline{G})$ on the classes of \overline{G} and the power maps of \overline{G} and $U_6(2)$:2. Then, the technique of set intersections for characters (see [45],[46],[48] and [53]) is applied to restrict some ordinary irreducible characters of $U_6(2)$:2 of small degrees to \overline{G} , to determine fully the fusion of the classes of \overline{G} into $U_6(2)$:2.

Let ζ be the character afforded by the regular representation of $L_3(4)$:2. We obtain that $\zeta = \sum_{i=1}^{14} \alpha_i \Phi_i$, where $\Phi_i \in Irr(L_3(4)$:2) and $\alpha_i = deg(\Phi_i)$. Then ζ can be regarded as a character of $2^9:(L_3(4)$:2) which contains 2^9 in its kernel such that

$$\zeta(x) = \begin{cases} |L_3(4):2| & \text{if } x \in 2^9\\ 0 & \text{otherwise} \end{cases}$$

If ϕ is a character of $U_6(2)$:2 than we have that

$$\begin{split} <\zeta,\phi>_{\overline{G}} = & \frac{1}{|2^9:(L_3(4):2)|}\{\zeta(1A)\phi(1A) + 21\zeta(2A)\phi(2A) + 210\zeta(2B)\phi(2B) + 280\zeta(2C)\phi(2C)\} \\ = & \frac{1}{|2^9:(L_3(4):2|}\{|L_3(4):2|(\phi(1A) + 21\phi(2A) + 210\phi(2B) + 280\phi(2C))\} \\ = & \frac{1}{512}\{\phi(1A) + 21\phi(2A) + 210\phi(2B) + 280\phi(2C)\} \\ = & <\phi_{2^9}, 1_{2^9}>. \end{split}$$

Here 1_{2^9} is the identity character of 2^9 and ϕ_{2^9} is the restriction of ϕ to 2^9 . We obtain that

$$\phi_{2^9} = a_1\theta_1 + a_2\theta_2 + a_3\theta_3 + a_4\theta_4,$$

where $a_i \in \mathbb{N} \cup \{0\}$ and θ_i are the sums of the irreducible characters of 2⁹ which are in the same orbit under the action of $L_3(4)$:2 on $Irr(2^9)$, for $i \in \{1, 2, 3, 4\}$. Let $\varphi_j \in Irr(2^9)$, where $j \in \{1, 2, 3, ..., 49\}$. Then we obtain that

$$\theta_1 = \varphi_1 \quad , \quad \deg(\theta_1) = 1$$

$$\theta_2 = \sum_{j=2}^{22} \varphi_j \quad , \quad \deg(\theta_2) = 21$$

$$\theta_3 = \sum_{j=23}^{232} \varphi_j \quad , \quad \deg(\theta_3) = 210$$

$$\theta_4 = \sum_{j=233}^{512} \varphi_j \quad , \quad \deg(\theta_4) = 280 \quad .$$

Hence

$$\begin{split} \phi_{2^9} &= a_1 \varphi_1 + a_2 \sum_{j=2}^{22} \varphi_j + a_3 \sum_{j=23}^{232} \varphi_j + a_4 \sum_{j=233}^{512} \varphi_j, \\ \text{and therefore} \\ \langle \phi_{2^9}, \phi_{2^9} \rangle &= a_1^2 + 21a_2^2 + 210a_3^2 + 280a_4^2 \\ &= \frac{1}{512} \{ \phi(1A)\phi(1A) + 21\phi(2A)\phi(2A) + 210\phi(2B)\phi(2B) + 280\phi(2C)\phi(2C) \} \;, \end{split}$$

where $a_1 = \langle \zeta, \phi \rangle_{2^9:(L_3(4):2)}$.

We apply the above results to some of the irreducible characters of $U_6(2)$:2 of small degrees, which in this case are $\phi_1 = 22a$, $\phi_2 = 22b$, $\phi_3 = 231a$, $\phi_4 = 231b$, $\phi_5 = 440a$ and $\phi_6 = 440b$. Their respective degrees are 22, 22, 231, 231, 440 and 440. For ϕ_1 we calculate that

$$<\zeta, \phi_1>_{2^9:(L_3(4):2)} = \frac{1}{512} \{22 + 21(-10) + 210(6) + 280(-2)\} = 1.$$

Now $a_1 + 21a_2 + 210a_3 + 280a_4 = 22$, since $deg\phi_1 = 22$. Since $a_1 = 1$, we must have that $a_2 = 1$, $a_3 = a_4 = 0$. Note that $2^9:(L_3(4):2)$ does not have irreducible characters of degree 22. We obtain that $(\phi_1)_{2^9:(L_3(4):2)} = \chi_1 + \chi_{15}$ if the partial fusion of $2^9:(L_3(4):2)$ into $U_6(2):2$ is taken into consideration. Similarly, for ϕ_3 and ϕ_5 we calculate that

$$\langle \zeta, \phi_3 \rangle_{2^9:(L_3(4):2)} = \frac{1}{512} \{ 231 + 21(39) + 210(7) + 280(-9) \} = 0$$

and

$$\langle \zeta, \phi_5 \rangle_{2^9:(L_3(4):2)} = \frac{1}{512} \{ 440 + 21(120) + 210(24) + 280(8) \} = 20$$

Since the respective degrees of ϕ_3 and ϕ_5 are 231 and 440, we have to solve the equations (i) $a_1 + 21a_2 + 210a_3 + 280a_4 = 231$ and (ii) $a_1 + 21a_2 + 210a_3 + 280a_4 = 440$, separately. If we are taking into account that the set $Irr(\overline{G})$ (See Table 6.9) does not have any irreducible characters of degrees 231 and 440 and also that $\langle \zeta, \phi_3 \rangle_{2^9:(L_3(4):2)} = 0$ and $\langle \zeta, \phi_5 \rangle_{2^9:(L_3(4):2)} = 20$, we deduce that the two sets of values $\{a_1 = a_4 = 0, a_2 = a_3 = 1\}$ and $\{a_1 = 20, a_2 = 10, a_3 = 1, a_4 = 0\}$ are the only possibilities that satisfy equation (i) and (ii) respectively, hence we obtained that $(\phi_3)_{2^9:(L_3(4):2)} = \chi_{16} + \chi_{27}$ and $(\phi_5)_{2^9:(L_3(4):2)} = \chi_4 + \chi_{32}$. Similar computations were carried out to restrict the characters ϕ_2 , ϕ_4 and ϕ_6 to \overline{G} and we found that $(\phi_2)_{2^9:(L_3(4):2)} = \chi_2 + \chi_{16}, (\phi_4)_{2^9:(L_3(4):2)} = \chi_{15} + \chi_{28}$ and $(\phi_6)_{2^9:(L_3(4):2)} = \chi_3 + \chi_{31}$.

By making use of the values of ϕ_1 , ϕ_2 , ϕ_3 , ϕ_4 , ϕ_5 and ϕ_6 on the classes of $U_6(2)$:2 and the values of $(\phi_1)_{2^9:(L_3(4):2)}$, $(\phi_2)_{2^9:(L_3(4):2)}$, $(\phi_3)_{2^9:(L_3(4):2)}$, $(\phi_4)_{2^9:(L_3(4):2)}$, $(\phi_5)_{2^9:(L_3(4):2)}$ and $(\phi_6)_{2^9:(L_3(4):2)}$ on the classes of $2^9:(L_3(4):2)$ together with the partial fusion, the complete fusion map of $2^9:(L_3(4):2)$ into $U_6(2)$:2 is given in the Table 6.11.

$[g]_{L_3(4):2}$	$[x]_{2^9:(L_3(4):2)}$	$\longrightarrow [y]_{U_6(2):2}$	$[g]_{L_3(4):2}$	${[x]_{2^9:(L_3(4):2)}} \longrightarrow$	$[y]_{U_6(2):2}$
1A	1A	1A	2A	2D	2D
	2A	2A		2E	2E
	2B	2B		4A	4G
	2C	2C		4B	4H
				4C	4I
2B	2F	2B	3A	3A	3C
	2G	2C		6A	6G
	4D	4A		6B	6E
	4E	4B		6C	6F
	4F	4C			
	4G	4E			
	4H	4F			
	4I	4D			
4 <i>A</i>	4J	4C	4B	4L	4D
	4K	4F		4M	4F
	8A	8A		8C	8A
	8B	8B		8D	8C
4B	4N	4H	5A	5A	5A
	4O	4I		10A	10A
	8E	8F			
	8F	8G			
	8G	8D			
	8H	8E			
6 <i>A</i>	6D	6K	7A	7A	7A
	6E	6L		Щ.	
	12A	12K	.T. T.	TT	
	12B	12J			
7B	7B	7A	8A	81	8E
		,		8J	8F
				16A	16A
		UNIVER	SITY of	the $16B$	16B
14A	14A	14A	14B	14B	14A
		WESTER	N GAL	P IS	

Table 6.11: The fusion of $2^9:(L_3(4):2)$ into $U_6(2):2$

Chapter 7

On a maximal subgroup of the automorphism group $U_6(2)$:3 of $U_6(2)$

As we mentioned in Chapter 6 that $A_2 = (2^9:L_3(4)):3$ is a maximal subgroup of the automorphism group of the unitary group $U_6(2)$. In this chapter, it will be shown with the aid of GAP and MAGMA that A_2 is a split extension of 2^9 by $L_3(4)$:3. Firstly, the group A_2 will be constructed as a permutation group of degree 693 within $U_6(2)$:3, and secondly we show that A_2 also exists as a subgroup of $SL_{10}(2)$. Having obtained A_2 as permutation group on 672 points, we use a similar method as in Section 6.1 to represent A_2 as a split extension $\overline{G} = 2^9:(L_3(4):3)$, where we regard 2^9 as the vector space $V_9(2)$, where upon $L_3(4)$:3 acts irreducibly as a matrix group of dimension 9 over Galois field GF(2). Then the technique of coset analysis will be used (as in the case of $2^9:(L_3(4):2)$) to compute the conjugacy classes of \overline{G} . The point stabilizers for the action of $L_3(4)$:3 on $Irr(2^9)$ and as well their fusion maps into $L_3(4):3$ will be determined. Next, we will compute the Fischer-Clifford matrices of \overline{G} and then use these matrices and all the relevant information which is needed to construct the character table of $\overline{G} \cong A_2$. Lastly, the fusion of the classes of \overline{G} into $U_6(2)$:3 will be computed. If details or explanations of computations are left out, the reader is referred to Chapter 6 for clarification.

7.1 The group $2^9:(L_3(4):3)$

In this section, we identify our group $A_2 = (2^9:L_3(4)):3$ as the split extension 2^9 by $L_3(4):3$ with the aid of GAP, MAGMA and the Wilson's online ATLAS. Then with the help of MAGMA we represent $L_3(4):3$ as a matrix group G of dimension 9 over the Galois field GF(2). Since G acts absolutely irreducibly on its natural module 2^9 , we construct an isomorphic copy of A_2 , say S, as a subgroup of $SL_{10}(2)$.

Using the smallest permutation representation of degree 693 of $U_6(2):S_3$ found in Wilson's online ATLAS, we construct a copy of $U_6(2):3$ within $U_6(2):S_3$ with the help of GAP. Having obtained a permutation representation of $U_6(2):3$ we generate $A_2 = (2^9:L_3(4)):3$ within $U_6(2):3$. Using appropriate GAP and MAGMA commands, as explained in Section 6.1, it is verified that A_2 is a split extension of 2^9 by $L_3(4):3$ and also we manage to represent $L_3(4):3$ as a matrix group of dimension 9 over the Galois field GF(2). The generators g_1 and g_2 obtained to represent $G \cong L_3(4):3$ as a matrix group of dimension 9 over the Galois field GF(2), are as follows:

						Ň	VE	S	TE	R	N	CA	P	E						
	(1	0	0	0	0	1	1	1	0)			/ 1	1	0	0	0	1	1	1	1 \
	0	1	0	1	0	1	0	0	0			0	1	0	1	0	1	1	0	1
	1	1	0	1	0	0	0	0	0			1	0	1	1	1	0	0	0	1
	1	0	0	1	1	1	0	0	1			1	1	0	1	0	1	1	0	0
$g_1 =$	0	0	1	1	1	1	1	1	1		$g_2 =$	0	0	0	0	1	0	0	1	1
	0	1	1	1	1	0	0	0	1			0	0	0	0	0	1	0	0	1
	0	1	0	0	1	0	0	0	0			1	0	0	1	1	0	1	0	0
	1	0	1	0	1	1	1	0	0			0	0	0	0	0	0	0	1	0
	0	1	0	0	1	0	1	0	1 /			0	0	0	0	0	0	0	0	1)

where $o(g_1) = 2$ and $o(g_2) = 12$. We obtained 22 conjugacy classes for $L_3(4):3 = \langle g_1, g_2 \rangle$ and they are listed in Table 7.1.

$[g]_{L_3(4):3}$	Class representative	$ [g]_{L_3(4):3} $ [$[g]_{L_3(4):3}$	Class representative	$ [g]_{L_3(4):3} $
14	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	2A	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	315
3A	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	336	3B	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	336
3C	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	960	3D	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	960
3E	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	2240	Y of the CAPR	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	3780
5A	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	4032	5 <i>B</i>	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	4032
6A	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	5040	6B	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	5040

Table 7.1: The conjugacy classes of $L_3(4)$:3

$[g]_{L_3(4):3}$	Class representative	$ [g]_{L_3(4):3} $ [g] _{L3(4):3}	Class representative	$ [g]_{L_3(4):3} $
7A	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	2880	78	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	2880
15 <i>A</i>	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	4032	15 <i>B</i>	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	4032
15C	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	4032 VERSI STERN	15D Y of the	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	4032
21A	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	2880	21 <i>B</i>	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	2880
21C	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	2880	21 <i>D</i>	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	2880

Table 7.1 (continue)

Using the MAGMA command "IsAbsolutelyIrreducible(G)", we found that G acts absolutely irreducibly on its natural module 2^9 and hence we can construct an isomorphic copy of A_2 , say S, as a subgroup of $SL_{10}(2)$. The generators for $S = 2^9:(L_3(4):3)$ as a subgroup of $SL_{10}(2)$ are given as:

where $o(s_1) = 4$, $o(s_2) = 6$ and $o(s_3) = 2$. We can construct the groups $L_3(4)$:3 and 2^9 within $S = \langle s_1, s_2, s_3 \rangle$, such that $L_3(4)$:2 = $\langle s_1, s_2 \rangle$ and $2^9 = \langle n_1, n_2, n_3, n_4, n_5, n_6, n_7, n_8, n_9 \rangle$. The generators $n_i, i = 1, 2, 3, ..., 9$, for 2^9 are listed in Table 7.2.

Table 7.2: The generators of 2^9

7.2 The conjugacy classes of $\overline{G} = 2^9:(L_3(4):3)$

In this section, we will determine the orbit lengths resulting from the action of $\overline{G} = 2^9:(L_3(4):3)$ on $N = 2^9$. The structure of the stabilizers corresponding to these orbit lengths, are also identified. The information obtained from the permutation character of $L_3(4):3$ on the conjugacy classes of 2^9 , Programme A and Programme B is then used to compute the conjugacy classes of $2^9:(L_3(4):3)$.

Throughout the remainder of this chapter, let $\overline{G} = 2^9:(L_3(4):3)$ be a split extension of $N = 2^9$ by $G = L_3(4):3$, where N is the vector space $V_9(2)$ of dimension 9 over GF(2) on which the linear group $G = \langle g_1, g_2 \rangle$ acts irreducibly. Using MAGMA (as in Section 6.2), it is found that the action of G on N partitioned the classes of N into 4 orbits of lengths 1, 21, 210 and 280. The structure of the point stabilizers P_i , i = 1, 2, 3, 4, corresponding to these orbit lengths are $P_1 = L_3(4):3$, $P_2 = 2^4:(3 \times A_5)$, $P_3 = 2^4:(3 \times S_3)$ and $P_4 = 3^2:(2A_4)$, respectively. The structures of P_2 and P_4 were obtained by checking the indices of the maximal subgroups of $L_3(4):3$ in the ATLAS. MAGMA is used to generate the submaximal subgroups of G and represented as a permutation group, then their indices in G are checked. We obtained that $P_3 = 2^4:(3 \times S_3)$ sits maximally inside one of the two maximal subgroups of G of the form $2^4:(3 \times A_5)$. This group, say L, is isomorphic to P_2 but they are not in the same conjugacy class.

Let $\chi(G|2^9)$, $\chi(G|P_i)$ and $I_{P_i}^{P_1}$ be the permutation character of G on the classes of 2^9 , the permutation character of G on the classes of a point stabilizer P_i , and the identity character of a stabilizer P_i induced to G. We obtain that $\chi(L_3(4):3|2^9) = \sum_{i=1}^4 I_{P_i}^{P_1}$ $= \sum_{i=1}^4 \chi(L_3(4):3|P_i) = \chi(L_3(4):3|P_1) + \chi(L_3(4):3|P_2) + \chi(L_3(4):3|P_3) + \chi(L_3(4):3|P_4)$ $= 1a + (1a + 20a) + (1a + 2 \times 20a + 64a + 105a) + (1a + 20a + 45a + 45b + 64a + 105a)$ $= 4 \times 1a + 4 \times 20a + 45a + 45b + 2 \times 64a + 2 \times 105a$. The information provided by the character tables of G and the P_i 's (See Appendix B) and the fusion maps of the point stabilizers P_i into G was used to calculate $\chi(L_3(4):3|P_i)$, i = 1, 2, 3, 4, and $\chi(L_3(4):3|2^9)$. The values of $\chi(L_3(4):3|2^9)$ on the different classes of G determine the number k of fixed points of each $g \in G$ in 2^9 . The values of k are listed in Table 7.3. These values of k help us to determine the number f_j of orbits Q_i 's, $1 \le i \le k$, which have fused together under the action of $C_G(g)$, for $g \in [g]_G$.

We use Programme A to compute the values f_j and Programme B to determine the class orders of the elements of \overline{G} . Having obtained all the relevant information we can compute the centralizer orders for each class $[x]_{\overline{G}}$ of \overline{G} with the equation $|C_{\overline{G}}(x)| = \frac{k}{f}|C_G(g)|$. The information pertaining to the conjugacy classes of \overline{G} is summarized in Table 7.4.

Table 7.3: The values of $\chi(I)$	$L_3(4):3 2^9)$ on th	e different classe	s of $L_3(4):3$
------------------------------------	-----------------------	--------------------	-----------------

$[h]_{L_3(4):3}$	1A	2A	3A	3B	3C	3D	3E	4A	5A	5B	6A
$\chi(L_3(4):3 P_1)$	1	1	1	1	1	1	1	1	1	1	1
$\chi(L_3(4):3 P_2)$	21	5	6	6	0	0	3	1	1	1	2
$\chi(L_3(4):3 P_3)$	210	18	15	15	0	0	3	2	0	0	3
$\chi(L_3(4):3 P_4)$	280	8	10	10	7	7	1	4	0	0	2
k	512	32	32	32	8	8	8	8	2	2	8
L											
$[h]_{L_3(4):3}$	6B	7A	7B	15A	15B	15C	15D	21A	21B	21C	21D
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6B 1	7A 1	7 <i>B</i> 1	15A	15 <i>B</i> 1	15C	15D	21 <i>A</i> 1	21 <i>B</i> 1	21C 1	21 <i>D</i> 1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6B 1 2	7A 1 0	7 <i>B</i> 1 0	15A 1 1	15 <i>B</i> 1 1	15C 1 1	15 <i>D</i> 1 1	21A 1 0	21 <i>B</i> 1 0	21 <i>C</i> 1 0	21 <i>D</i> 1 0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6B 1 2 3	7A 1 0 0	7 <i>B</i> 1 0 0	15A 1 1 0	15 <i>B</i> 1 1 0	15C 1 1 0	15D 1 1 0	21A 1 0 0	21 <i>B</i> 1 0 0	21 <i>C</i> 1 0 0	21 <i>D</i> 1 0 0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 6B \\ 1 \\ 2 \\ 3 \\ 2 \end{array}$	7A 1 0 0 0	7 <i>B</i> 1 0 0 0	15A 1 1 0 0	15 <i>B</i> 1 1 0 0	15C 1 1 0 0	15 <i>D</i> 1 1 0 0	21A 1 0 0 0	21 <i>B</i> 1 0 0 0	21 <i>C</i> 1 0 0 0	21D 1 0 0 0

Table 7.4: The conjugacy classes of elements of $G = 2^9:(L_3(4):3)$

$[g]_{L_3(4):3}$	k	f_j	d_j	w	$[x]_{2^9:(L_3(4):3)}$	$ [x]_{2^9:(L_3(4):3)} $	$ C_{2^9:(L_3(4):3)}(x) $
1A	512	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	1A	1	30965760
		$f_2 = 21$	(0, 0, 1, 0, 1, 1, 0, 1, 1)	(0, 0, 1, 0, 1, 1, 0, 1, 1)	2A	21	1474560
		$f_3 = 210$	(0, 0, 1, 1, 0, 1, 1, 0, 1)	(0, 0, 1, 1, 0, 1, 1, 0, 1)	2B	210	147456
		$f_4 = 280$	(0, 0, 1, 0, 1, 1, 1, 0, 1)	(0, 0, 1, 0, 1, 1, 1, 0, 1)	2C	280	110592
2A	32	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	2D	5040	6144
		$f_2 = 1$	(1, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	2E	5040	6144
		$f_3 = 1$	(0, 0, 0, 1, 1, 0, 1, 0, 0)	(0, 0, 1, 0, 1, 1, 0, 1, 1)	4A	5040	6144
		$f_4 = 1$	(1, 0, 0, 1, 1, 0, 1, 0, 0)	(0, 0, 1, 0, 1, 1, 0, 1, 1)	4B	5040	6144
		$f_5 = 8$	(1, 1, 0, 1, 0, 0, 1, 1, 0)	(1, 1, 1, 1, 1, 0, 0, 0, 0)	$\mathbf{D} \mathbf{E} 4C$	40320	768
		$f_6 = 8$	(0, 0, 0, 1, 1, 1, 1, 1, 1)	(0, 1, 0, 1, 1, 1, 1, 1, 1)	4D	40320	768
		$f_7 = 12$	(1, 0, 0, 0, 1, 0, 0, 0, 0)	(1, 0, 0, 0, 0, 1, 0, 0, 0)	4E	60480	512
3A	32	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	3A	5376	5760
		$f_2 = 1$	(1, 0, 1, 1, 0, 0, 1, 1, 0)	(1, 0, 1, 1, 0, 0, 1, 1, 0)	6A	5376	5760
		$f_3 = 5$	(1, 0, 0, 1, 0, 1, 0, 0, 1)	(1, 0, 0, 1, 0, 1, 0, 0, 1)	6B	26880	1152
		$f_4 = 5$	(0, 1, 1, 1, 0, 0, 1, 1, 1)	(0, 1, 1, 1, 0, 0, 1, 1, 1)	6C	26880	1152
		$f_5 = 10$	(0, 0, 0, 1, 1, 1, 1, 1, 1)	(1, 1, 1, 0, 0, 1, 1, 1, 0)	6D	53760	576
		$f_6 = 10$	(0, 0, 1, 1, 1, 1, 1, 1, 1)	(1, 0, 0, 1, 0, 0, 1, 1, 1)	6E	53760	576
3B	32	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	3B	5376	5760
		$f_2 = 1$	(1, 0, 1, 1, 0, 0, 1, 1, 0)	(1, 0, 1, 1, 0, 0, 1, 1, 0)	6F	5376	5760
		$f_3 = 5$	(1, 0, 1, 1, 0, 1, 1, 1, 1)	(1, 0, 1, 1, 0, 0, 1, 1, 1)	6G	26880	1152
		$f_4 = 5$	(1, 1, 1, 1, 1, 1, 1, 0, 0)	(0, 0, 0, 0, 0, 1, 1, 1, 0)	6H	26880	1152
		$f_5 = 10$	(1, 1, 0, 0, 0, 1, 0, 0, 0)	(1, 1, 0, 0, 0, 1, 0, 0, 0)	61	53760	576
		$f_6 = 10$	(1, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(1, 1, 1, 0, 0, 0, 0, 0, 0)	6J	53760	576
3C	8	$f_1 = 1$	(0,0,0,0,0,0,0,0,0,0)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	3C	61440	504
		$f_2 = 7$	(1,0,0,0,0,0,0,0,0,0)	(1, 1, 0, 1, 1, 0, 1, 0, 0)	6 <i>K</i>	430080	72
3D	8	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	3D	61440	504
		$f_2 = 7$	(1, 1, 1, 1, 1, 0, 0, 0, 0)	(0, 1, 0, 0, 0, 1, 0, 1, 0)	6L	430080	72

Table 7.4 (continue)

$[g]_{(L_3(4):3)}$	k	f_j	d_j	w	$[x]_{2^9:(L_3(4):3)}$	$ [x]_{2^9:(L_3(4):3)} $	$ C_{2^9:(L_3(4):3)}(x) $
3E	8	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	3E	143360	216
		$f_2 = 1$	(1, 0, 0, 1, 1, 0, 1, 1, 1)	(1, 0, 0, 0, 0, 1, 0, 0, 1)	6M	143360	216
		$f_3 = 3$	(0, 0, 1, 1, 1, 1, 1, 0, 1)	(0, 0, 1, 0, 1, 1, 0, 1, 1)	6N	430080	72
		$f_4 = 3$	(0, 0, 0, 1, 0, 0, 0, 0, 0)	(1, 0, 1, 0, 1, 0, 0, 1, 0)	60	430080	72
4A	8	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	4F	241920	128
		$f_2 = 1$	(1, 1, 1, 1, 1, 1, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	4G	241920	128
		$f_3 = 2$	(0, 1, 1, 0, 1, 0, 0, 1, 1)	(0, 0, 0, 0, 1, 1, 1, 0, 0)	8A	483840	64
		$f_4 = 4$	(0, 1, 0, 0, 0, 1, 0, 0, 0)	(0, 0, 0, 0, 1, 1, 1, 0, 0)	88	967680	32
= 4	0	£ _ 1			= 1	1020100	20
5A	2	$f_{1} = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	5A 10.4	1032192	30
		$J_2 = 1$	(1, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 1, 1, 0, 1, 1)	10/4	1032192	50
5B	2	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	58	1032192	30
02	-	$f_{2} = 1$	(1, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 1, 1, 0, 1, 1)	10B	1032192	30
		52 -	(-, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, -, -, 0, -, -, -)			
6A	8	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	6P	322560	96
		$f_2 = 1$	(0, 1, 1, 0, 1, 1, 1, 0, 0)	(0, 1, 1, 0, 1, 1, 1, 0, 0)	6Q	322560	96
		$f_3 = 1$	(1, 1, 0, 1, 1, 1, 0, 1, 0)	(1, 1, 0, 1, 1, 1, 0, 1, 0)	12A	322560	96
		$f_4 = 1$	(0, 0, 0, 0, 0, 0, 0, 1, 1, 0)	(0, 0, 0, 0, 0, 0, 0, 1, 1, 0)	12B	322560	96
		$f_5 = 2$	(0, 0, 1, 0, 0, 1, 0, 1, 1)	(0, 0, 1, 0, 0, 1, 0, 1, 1)	12C	645120	48
		$f_6 = 2$	(0, 1, 1, 1, 1, 1, 1, 1, 1)	(0, 1, 1, 1, 1, 1, 1, 1, 1)	12D	645120	48
6B	8	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	6R	322560	96
		$f_2 = 1$	(0, 1, 0, 1, 0, 1, 0, 1, 0)	(0, 1, 0, 1, 0, 1, 0, 1, 0)	6 <i>S</i>	322560	96
		$f_3 = 1$	(0, 1, 1, 0, 1, 1, 1, 0, 0)	(0, 1, 1, 0, 1, 1, 1, 0, 0)	12E	322560	96
		$f_4 = 1$	(0, 0, 0, 0, 0, 0, 0, 1, 1, 0)	(0, 0, 0, 0, 0, 0, 0, 1, 1, 0)	12F	322560	96
		$f_5 = 2$	(1, 1, 1, 1, 1, 1, 1, 0, 1)	(1, 1, 1, 1, 1, 1, 1, 0, 1)	12G	645120	48
		$f_6 = 2$	(0, 1, 1, 1, 1, 1, 1, 1, 1, 1)	(0, 1, 1, 1, 1, 1, 1, 1, 1, 1)	12H	645120	48
				NIVERSITY	of the		
7A	1	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	APE	1474560	21
7.D	1	£ _ 1			7.D	1474560	01
18	1	$J_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	18	1474560	21
15 <i>A</i>	2	$f_1 = 1$		(0 0 0 0 0 0 0 0 0 0)	15.4	1032192	30
10/1	-	$f_{2} = 1$	(0,0,0,0,0,0,0,0,0,0)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	30.4	1032192	30
		52 -		(0,0,0,0,-,-,0,-,-)			
15B	2	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	15B	1032192	30
		$f_2 = 1$	(1, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 1, 1, 0, 1, 1)	30 <i>B</i>	1032192	30
15C	2	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	15C	1032192	30
		$f_2 = 1$	(1, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 1, 1, 0, 1, 1)	30C	1032192	30
15D	2	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	15D	1032192	30
		$f_2 = 1$	(1, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 1, 1, 0, 1, 1)	30 <i>D</i>	1032192	30
21A	1	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	21A	1474560	21
01.7	-				01.5	1454500	0.1
21B	1	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0)	21B	1474560	21
210	1	$f_4 = 1$			210	1474560	-01
210	1	J1 = 1	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	210	1414000	41
21 <i>D</i>	1	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	21D	1474560	21
L			1		1		1

7.3 The inertia groups of $\overline{G} = 2^9:(L_3(4):3)$

Since G has four orbits on N, then by Brauer's Theorem [29] G acts on Irr(N) with the same number of orbits. The lengths of the 4 orbits will be 1, r, s and t where r + s + t = 511, with corresponding point stabilizers H_1 , H_2 , H_3 and H_4 as subgroups of G such that $[G : H_1] = 1$, $[G : H_2] = r$, $[G : H_3] = s$ and $[G : H_4] = t$. We let T be the matrix group of dimension 9 over GF(2) formed by the transpose of the generators of G. Then the action of T on the classes of $N = 2^9$ is the equivalent of G acting on Irr(N). Then with the help of MAGMA it is easily verified that the action of T on N has orbits of lengths 1, 21, 210 and 280. We deduce that the action of G on Irr(N) has orbits of lengths 1, r = 21, s = 210 and t = 280 with respective point stabilizers $H_1 = L_3(4)$:3, $H_2 = 2^4$: $(3 \times A_5)$, $H_3 = 2^4$: $(3 \times S_3)$ and $H_4 = 3^2$: $(2A_4)$. Thus the four groups $\overline{H_i} = 2^9$: H_i are the inertia groups obtained in \overline{G} of the linear characters of 2^9 which are partitioned into four orbits. The reader is referred to Section 7.2 to see how the structures of the H_i were obtained. The groups H_2 , H_3 and H_4 are constructed from elements within G and the generators are as follows:

UNIVERSITY of the

•
$$H_2 = \langle \alpha_1, \alpha_2 \rangle$$
, $\alpha_1 \in 3B$, $\alpha_2 \in 5A$ where

$\alpha_1 =$	$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$ \begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$ \begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$ \begin{array}{c} 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$ \begin{array}{c} 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	$ \begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$ \begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$ \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	0 \ 1 0 0 0 0 0 0 0 0 0 0	, $\alpha_2 =$	$ \left(\begin{array}{c} 1\\ 0\\ 0\\ 1\\ 0\\ 1\\ 0\\ 1 \end{array}\right) $	$ \begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	0 0 1 0 0 0	0 1 1 0 0 0	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$ \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	0 0 0 0 0 0 1	$ \begin{array}{c} 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $		
		0 0 0	0 0 0	0 0 0	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array}$	$\begin{array}{c} 1\\ 0\\ 0\\ 0\end{array}$	$\begin{array}{c} 0\\ 1\\ 0\\ 0\end{array}$		0 0 1 /		$\begin{pmatrix} 1\\ 0\\ 1 \end{pmatrix}$	0 0 0			0 0 0	$\begin{array}{c} 1\\ 1\\ 0\\ 0\end{array}$	$\begin{array}{c} 0\\ 1\\ 1\\ 0\end{array}$	$\begin{array}{c} 0\\ 1\\ 1\\ 0\end{array}$	0 0 0)

• $H_3 = \langle \beta_1, \beta_2 \rangle$, $\beta_1 \in 6B$, $\beta_2 \in 6B$ where

	/	1	0	0	0	0	0	0	0	0 \		(1)	0	0	0	0	0	0	0	0 \
		1	1	0	1	1	0	0	1	0		1	0	1	0	1	1	0	0	0
		0	1	0	1	0	1	0	1	0		1	0	1	0	0	0	0	0	0
		0	1	1	1	0	0	1	0	0		0	1	1	1	0	1	0	0	0
$\beta_1 =$		0	0	1	1	1	1	1	1	1	, $\beta_2 =$	1	0	0	1	1	0	0	1	0
		1	0	1	0	0	0	1	1	1		0	0	1	0	0	1	1	1	1
		0	0	0	1	0	1	1	0	0		0	0	1	1	0	0	0	0	1
		0	1	0	0	1	0	1	0	1		0	1	1	0	0	0	0	0	0
	(1	0	1	0	1	1	1	0	0 /		$\backslash 1$	1	0	1	0	0	1	1	0 /

• $H_4 = \langle \gamma_1, \gamma_2 \rangle$, $\gamma_1 \in 4A$, $\gamma_2 \in 6A$ where

1	0	0	0	0	1	1	0	0 \		1	1	1	0	0	0	0	0	0	1	١
1	1	0	1	1	0	0	1	1		1	1	0	0	1	0	0	0	1	0	١
0	1	0	1	0	0	0	0	1			1	0	0	0	0	1	1	1	0	
0	0	0	1	0	1	1	0	0			0	1	0	1	0	0	0	0	1	l
1	1	1	1	1	0	1	0	0	, $\gamma_2 =$		0	0	1	1	0	1	1	0	1	l
1	0	1	1	0	0	1	1	0			0	1	1	0	1	1	1	1	1	L
0	1	0	0	1	0	1	0	0			1	1	1	0	0	1	1	0	1	
1	1	1	0	0	1	0	1	0			1	1	1	1	0	0	0	0	0	
0	1	0	0	1	0	0	0	1 /		(0	1	0	1	1	1	0	1	1,	/
	(1 1 0 0 1 1 0 1 0	$\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \\ 0 & 0 \\ 1 & 1 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \\ 0 & 1 \\ \end{pmatrix}$	$ \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \\ \end{pmatrix} $	$ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ \end{pmatrix} $	$ \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ \end{pmatrix} $	$ \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ \end{pmatrix} $	$ \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ \end{pmatrix} $	$ \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ \end{pmatrix} $	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ \end{pmatrix} , \ \gamma_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} $	$ \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ \end{pmatrix} , \ \gamma_2 = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ \end{pmatrix} , \ \gamma_2 = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$	$ \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ \end{pmatrix} , \ \gamma_2 = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix} $	$ \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ \end{pmatrix} $	$ \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ \end{pmatrix} $	$ \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ \end{pmatrix} $	$ \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	$ \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ \end{pmatrix} $	$ \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\ \end{pmatrix} $

For the purpose of constructing the character table of \overline{G} , we use the above generators of the H_i 's to compute their character tables and these tables are available in the Appendix B.

7.4 The fusion of H_2 , H_3 and H_4 into G

We obtain the fusions of the inertia factors H_2 , H_3 and H_4 into G by using direct matrix conjugation in G and their permutation characters in G of degrees 21, 210 and 280, respectively. MAGMA was used for the various computations. The fusion maps of H_2 , H_3 and H_4 into G are shown in Tables 7.5, 7.6 and 7.7.

WESTERN CAPE

Table 7.5: The fusion of H_2 into $L_3(4)$:3

$[h]_{H_2} \rightarrow$	$[g]_{L_3(4):3}$	$[h]_{H_2} \rightarrow$	$[g]_{L_3(4):3}$	$[h]_{H_2} \rightarrow$	$[g]_{L_3(4):3}$	$[h]_{H_2} \ \rightarrow \ \ $	$[g]_{L_3(4):3}$
1A	1A	3C	3A	5B	5B	15A	15C
2A	2A	3D	3B	6A	6B	15B	15D
2B	2A	3E	3E	6B	6A	15C	15B
3A	3A	4A	4A	6C	6A	15D	15A
3B	3B	5A	5A	6D	6B		

Table 7.6: The fusion of H_3 into $L_3(4)$:3

$[h]_{H_3} \rightarrow$	$[g]_{L_3(4):3}$						
1A	1A	3 <i>A</i>	3B	3E	3E	6C	6A
2A	2A	3B	3A	4A	4A	6D	6B
2B	2A	3C	3B	6A	6B		
2C	2A	3D	3A	6B	6A		

Table 7.7: The fusion of H_4 into $L_3(4)$:3

$[h]_{H_4} \rightarrow$	$[g]_{L_3(4):3}$						
1A	1A	3B	3B	3E	3C	6B	6B
2A	2A	3C	3A	4A	4A		
3A	3E	3D	3D	6A	6A		

7.5 The Fischer-Clifford Matrices of $2^9:(L_3(4):3)$

The conjugacy classes of \overline{G} which are displayed in the format of Table 7.4 together with the fusion maps of the inertia factor groups H_1 , H_2 , H_3 and H_4 into G, enabled us to compute the Fischer-Clifford matrices for G. The properties of the Fischer-Clifford matrices, as discussed in Chapter 5, are used in the construction of these matrices for \overline{G} . In Section 6.5 the application of these properties are sufficiently addressed. A Fischer-Clifford matrix M(g) is constructed for each class representative g in G and they are listed in Table 7.8.

7.6 Character Table of $2^9:(L_3(4):3)$

Having obtained the Fischer-Clifford matrices, the fusion maps of the H_i 's into $L_3(4)$:3, and the character tables of the inertia factors H_i , we construct the character table of $2^9:(L_3(4):3)$ using the methodology discussed in Chapter 5. The reader is referred to Section 6.6 for an example on the application of this methodology. Altogether we obtain 65 irreducible characters of \overline{G} . The set of irreducible characters of \overline{G} will be partitioned into 4 blocks Δ_1 , Δ_2 , Δ_3 and Δ_4 where each block corresponds to the inertia factor groups $\overline{H}_i = 2^9: H_i$. Therefore $Irr(2^9:(L_3(4):3)) = \bigcup_{i=1}^4 \Delta_i$, where $\Delta_1 = \{\chi_j | 1 \le j \le 22\}, \Delta_2 =$ $\{\chi_j | 23 \le j \le 41\}, \Delta_3 = \{\chi_j | 42 \le j \le 55\}$ and $\Delta_4 = \{\chi_j | 56 \le j \le 65\}$. The character table of $2^9:(L_3(4):3)$ is shown in Table 7.9. The consistency and accuracy of the character table of \overline{G} have been tested by using Programme C (see Appendix A).
M(g)	M(g)
$M(1A) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 21 & -11 & 5 & -3 \\ 210 & 50 & 2 & -6 \\ 280 & -40 & -8 & 8 \end{pmatrix}$	$M(2A) = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 &$
$M(3A) = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 & -$	$M(3B) = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 & -$
$M(3C) = \left(\begin{array}{rrr} 1 & 1\\ 7 & -1 \end{array}\right)$	$M(3D)=\left(egin{array}{cc} 1&1\ 7&-1\end{array} ight)$
$M(3E) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -3 & 1 & -1 \\ 3 & 3 & -1 & -1 \\ 1 & -1 & -1 & 1 \end{pmatrix}$	$M(4A) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & -1 \\ 2 & 2 & -2 & 0 \\ 4 & -4 & 0 & 0 \end{pmatrix}$
$M(5A) = \left(\begin{array}{rrr} 1 & 1 \\ 1 & -1 \end{array}\right)$	$M(5B) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ SITY of the
$M(6A) = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 & 1 & -1 \\ 1 & 1 & 1 & 1 & -1 & -$	$\mathbf{RN} \mathbf{GA} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 & -1 \\ 1 & 1 & 1 & 1 & -1 & -$
$M(7A) = \left(\begin{array}{c} 1 \end{array}\right)$	$M(7B) = \left(\begin{array}{c} 1 \end{array}\right)$
$M(15A) = \left(\begin{array}{rrr} 1 & 1 \\ 1 & -1 \end{array}\right)$	$M(15B) = \left(\begin{array}{rrr} 1 & 1\\ 1 & -1 \end{array}\right)$
$M(15C) = \left(\begin{array}{rrr} 1 & 1\\ 1 & -1 \end{array}\right)$	$M(15D) = \left(\begin{array}{rrr} 1 & 1\\ 1 & -1 \end{array}\right)$
$M(21A) = \left(\begin{array}{c} 1 \end{array}\right)$	$M(21B) = \left(\begin{array}{c} 1 \end{array}\right)$
$M(21C) = \left(\begin{array}{c} 1 \end{array}\right)$	$M(21D) = \left(\begin{array}{c} 1 \end{array}\right)$

Table 7.8: The Fischer-Clifford matrices of $2^9:(L_3(4):3)$

			1A					2A							3A		
	1A	2A	2B	2C	2D	2E	4A	4B	4C	4D	4E	3A	6A	6B	6C	6D	6E
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	1	1	1	1	1	1	1	1	A	A	A	A	A	A
χ_3	1	1	1	1	1	1	1	1	1	1	1	Ā	\overline{A}	\overline{A}	\overline{A}	\overline{A}	\overline{A}
χ_4	20	20	20	20	4	4	4	4	4	4	4	5	5	5	5	5	5
χ_5	20	20	20	20	4	4	4	4	4	4	4	B	B	B	B	B	B
χ_6	20	20	20	20	4	4	4	4	4	4	4	\overline{B}	\overline{B}	\overline{B}	\overline{B}	\overline{B}	\overline{B}
χ_7	45	45	45	45	-3	-3	-3	-3	-3	-3	-3	0	0	0	0	0	0
χ_8	45	45	45	45	-3	-3	-3	-3	-3	-3	-3	0	0	0	0	0	0
χ_9	45	45	45	45	-3	-3	-3	-3	-3	-3	-3	0	0	0	0	0	0
χ_{10}	45	45	45	45	-3	-3	-3	-3	-3	-3	-3	0	0	0	0	0	0
χ_{11}	45	45	45	45	-3	-3	-3	-3	-3	-3	-3	0	0	0	0	0	0
χ_{12}	45	45	45	45	-3	-3	-3	-3	-3	-3	-3	0	0	0	0	0	0
χ_{13}	63	63	63	63	-1	-1	-1	-1	-1	-1	-1	3	3	3	3	3	3
χ_{14}	63	63	63	63	-1	-1	-1	-1	-1	-1	-1	3	3	3	3	3	3
χ_{15}	63	63	63	63	-1	-1	-1	-1	-1	-1	-1	C	C	C	C	C	C
χ_{16}	63	63	63	63	-1	-1	-1	-1	-1	-1	-1	$\frac{C}{\overline{C}}$	$\frac{C}{\overline{C}}$	$\frac{C}{\overline{\alpha}}$	$\frac{C}{\alpha}$	$\frac{C}{\overline{\alpha}}$	$\frac{C}{\overline{\alpha}}$
χ_{17}	63	63	63	63	-1	-1	-1	-1	-1	-1	-1	$\frac{C}{\overline{\alpha}}$	$\frac{C}{\overline{\alpha}}$	$\frac{C}{\overline{\alpha}}$		$\frac{C}{\alpha}$	$\frac{C}{\alpha}$
χ_{18}	63	63	63	63	-1	-1	-1	-1	-1	-1	-1	C	C	C	C	C	C
χ_{19}	64	64	64	64	0	0	0	0	0	0	0	4	4	4	4	4	4
χ_{20}	64	64	64	64	0	0	0	0	0	0	0	$\frac{D}{D}$	$\frac{D}{D}$	$\frac{D}{D}$	$\frac{D}{D}$	$\frac{D}{D}$	$\frac{D}{D}$
χ_{21}	105	105	64 105	105	0	0	0	0	0	0	0		<i>D</i>				
X22	105	105	102	102	9	9	9	9	9	9	9	0	0	0	0	0	0
X23	21	-11	о Е	-3	Э Е	-3 0	э Е	-3 9	-3	1	1	0	4	-2 1/	-4 D	0	2
X24	21	-11	0 K	-3	9 K	-3	9 5	-3	-3	1	1	$\frac{L}{T}$	$\frac{D}{D}$	$\frac{n}{k}$	$-\frac{D}{D}$	0	$-\frac{\kappa}{k}$
X25	63	-11	15	-3	1	-3	0	-3	-3	5	3	2	3	2	-D 3	3	- 1
X26	63	-33	15	-9	-1	7	-1	7	-1	-5	3	3	-3	3	-3	-3	3
X27 X00	63	-33	15	-9	-1	7	1	7	_1	-5	3	C	-0 -C	C	-C	- <u>-</u> C	Ċ
X 28	63	-33	15	-9	-1	7	-1	7	-1	-5	3		-C	C	-C	-C	C
×29	63	-33	15	-9	-1	7	-1	7	-1	-5	3	$\frac{\overline{C}}{\overline{C}}$	$-\overline{C}$	$\frac{\overline{C}}{\overline{C}}$	$-\overline{C}$	$-\overline{C}$	$\frac{\overline{C}}{\overline{C}}$
X21	63	-33	15	-9	-1	7	-1	7	-1	-5	3	$\frac{\overline{C}}{\overline{C}}$	$-\overline{C}$	$\frac{\overline{C}}{\overline{C}}$	$-\overline{C}$	$-\overline{C}$	$\frac{\overline{C}}{\overline{C}}$
X 22	84	-44	20	-12	4	4	4	4	-4	-4	4	9	1	1	-7	-3	5
732 722	84	-44	20	-12	4	4	4	4	-4	-4	4	F	$\frac{1}{\overline{A}}$	$\frac{1}{A}$	-M	$-\tilde{C}$	B
X24	84	-44	20	-12	4	4	4	4	-4	-4	4	$\frac{1}{F}$	A	A	$-\overline{M}$	$-\overline{\overline{C}}$	$\frac{-}{B}$
X34 X35	105	-55	25	-15	9	1	9	1	-7	-3	5	0	-10	8	-2	-6	4
X36	105	-55	25	-15	9	11	9	T I	CT-7	-3	5	0	-H	L	K	-E	D
X37	105	-55	25	-15	9	U ₁ r	- 9	- 1	-7	-3	5	0	$-\overline{H}$	\overline{L}	\overline{K}	$-\overline{E}$	\overline{D}
χ_{38}	315	-165	75	-45	11	-13	11	-13	-5	7	-1	15	15	-9	-9	3	3
χ_{39}	315	-165	75	-45	11	-13	11	-13	-5	7	-1	G	G	-F	-F	C	C
χ_{40}	315	-165	75	-45	11	-13	11	-13	-5	7	-1	\overline{G}	\overline{G}	$-\overline{F}$	$-\overline{F}$	\overline{C}	\overline{C}
χ_{41}	945	-495	225	-135	-15	9	-15	9	9	-3	-3	0	0	0	0	0	0
χ_{42}	210	50	2	-6	18	10	2	-6	2	-2	-2	15	5	-1	5	-3	-1
χ_{43}	210	50	2	-6	2	-6	18	10	2	-2	-2	15	5	-1	5	-3	-1
χ_{44}	210	50	2	-6	2	-6	18	10	2	-2	-2	\underline{G}	\underline{B}	$-\overline{A}$	\underline{B}	$-\underline{C}$	$-\overline{A}$
χ_{45}	210	50	2	-6	2	-6	18	10	2	-2	-2	G	B	$-\underline{A}$	B	-C	$-\underline{A}$
χ_{46}	210	50	2	-6	18	10	2	-6	2	-2	-2	$\frac{G}{G}$	B	-A	B	$-\underline{C}$	-A
χ_{47}	210	50	2	-6	18	10	2	-6	2	-2	-2	G	B	-A	B	-C	-A
χ_{48}	420	100	4	-12	20	4	20	4	4	-4	-4	15	25	7	1	-3	-5
χ_{49}	420	100	4	-12	20	4	20	4	4	-4	-4	$\frac{G}{\pi}$	$\frac{J}{-}$	$\frac{M}{M}$	A	$-\underline{C}$	$-\frac{B}{=}$
χ_{50}	420	100	4	-12	20	4	20	4	4	-4	-4	G	J	M	A	-C	-B
χ_{51}	1260	300	12	-36	-4	-20	-4	-20	4	-4	4	15	-15	-9	9	-3	3
χ_{52}	1260	300	12	-36	-4	-20	-4	-20	4	-4	4	$\frac{G}{a}$	$-\frac{G}{\overline{G}}$	$-\frac{F}{\overline{\Sigma}}$	$\frac{F}{T}$	$-\frac{C}{\overline{C}}$	$\frac{C}{\overline{\alpha}}$
χ_{53}	1260	300	12	-36	-4	-20	-4	-20	4	-4	4	G	-G	-F	F'	-C	C
χ_{54}	1890	450	18	-54 54	18	42	-30	-6 49	-6 6	6	-2		0	0	0	0	0
X55	1990	40	10	-04	-30	-0	10	42	-0	0	-2	10	10	0	0	0	0
X56	280	-40	-0	0 8	8	-0	-0	0 8	0	0	0	н 10 10	-10 _H		-2 K		-2 V
X57 X52	280	_40	-0	o Q	8	-0	-0	0 8	0	0	0	$\frac{\Pi}{\Pi}$	$-\frac{11}{H}$	$-\frac{K}{K}$	$\frac{K}{K}$	$-\frac{K}{K}$	$\frac{K}{K}$
X58 X50	560	-40	-16	16	-16	16	16	-16	0	0	0	_10	10	-1	2	-1	2
7.59 7.60	560	-80	-16	16	-16	16	16	-16	0	0	0	-H	H	- <u>-</u>	$-\vec{K}$	ĸ	$-\vec{K}$
X61	560	-80	-16	16	-16	16	16	-16	0	0	õ	$-\frac{H}{H}$	$\frac{11}{H}$	$\frac{1}{K}$	$-\frac{\pi}{K}$	$\frac{1}{K}$	$-\frac{\pi}{K}$
X62	840	-120	-24	24	24	-24	-24	24	õ	õ	ŏ	0	0	0	0	0	0
X63	2240	-320	-64	64	0	0	0	0	õ	õ	õ	20	-20	4	-4	4	-4
X64	2240	-320	-64	64	0	0	0	0	0	0	0	I	-I	\overline{D}	$-\overline{D}$	\overline{D}	$-\overline{D}$
Y65	2240	-320	-64	64	Ő	Õ	Ő	0	0	õ	õ	$\frac{1}{T}$	$-\overline{T}$	- D	- D	_ D	- D

Table 7.9: The Character table of $2^9:(L_3(4):3)$

				$_{3B}$				3C		3D			3E				4A	
	3B	6F	6G	6H	61	6J	3C	6K	3D	6L	3E	6M	6N	6O	4F	4G	8A	8B
V1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
X0	4	$\frac{1}{4}$	$\frac{-}{4}$	$\frac{1}{4}$	$\frac{-}{4}$	4	$\frac{1}{A}$	-	4	4	1	1	1	1	1	1	1	1
X2	1	1	1	1	1	1		1	$\frac{\Lambda}{\Lambda}$	$\frac{\Lambda}{\Lambda}$	1	1	1	1	1	1	1	1
X3	A	A	A	A	A	A	A 1	A 1	A 1	A 1		1	1	1	1	1	1	1
X4	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-1	-1	-1	-1	2	2	2	2	0	0	0	0
χ_5	B	B	B	B	B	B	$-\underline{A}$	$-\underline{A}$	-A	-A	2	2	2	2	0	0	0	0
X6	B	B	B	B	B	B	-A	-A	-A	-A	2	2	2	2	0	0	0	0
X7	0	0	0	0	0	0	3	3	3	3	0	0	0	0	1	1	1	1
X8	0	0	0	0	0	0	3	3	3	3	0	0	0	0	1	1	1	1
Ya	0	0	0	0	0	0		C	\overline{C}	\overline{C}	0	0	0	0	1	1	1	1
×10	0	0	0	0	0	0	C	C	\overline{C}	\overline{C}	0	0	0	0	1	1	1	1
X10 X	ő	0	0	0	0	0		$\frac{\overline{C}}{\overline{C}}$	C	C		0	0	0	1	1	1	1
X11	0	0	0	0	0	0			C	C		0	0	0	1	1	1	1
X12	0	0	0	0	0	0		0	0	0		0	0	0	1	1	1	1
X13	3	3	3	3	3	3		0	0	0		0	0	0	-1	-1	-1	-1
X14	3	3	3	3	3	3	0	0	0	0	0	0	0	0	-1	-1	-1	-1
χ_{15}	C	C	C	\underline{C}	C	C	0	0	0	0	0	0	0	0	-1	-1	-1	-1
X16	C	C	C	C	C	C	0	0	0	0	0	0	0	0	-1	-1	-1	-1
X17	C	C	C	C	C	C	0	0	0	0	0	0	0	0	-1	-1	-1	-1
X18	C	C	C	C	C	C	0	0	0	0	0	0	0	0	-1	-1	-1	-1
X19	4	4	4	4	4	4	1	1	1	1	1	1	1	1	0	0	0	0
X 20	\overline{D}	\overline{D}	\overline{D}	\overline{D}	\overline{D}	\overline{D}	A	A	\overline{A}	\overline{A}	1	1	1	1	0	0	0	0
X 20		- Л	- Л	- Л	- Л	– D	$\frac{1}{A}$	$\frac{1}{A}$	A	A	1	- 1	- 1	1	Ő	õ	õ	ñ
X00	0	0	0	0	0	0	0	0	0	0	-3	-3	-3	-3	1	1	1	1
×22	6	4	2	4	0	2	0	0	0	0	3	-3	-5		1	1	1	
×23		-4 	$\frac{-\Delta}{V}$	-4	0	$\frac{2}{V}$		0	0	0	1 3	-0	1	-1	1	1	1	-1
X24			n V	-D	0	-n		0	0	0		-0	1	-1	1	1	1	-1
X25	E	D	K	-D	0	-K	0	0	0	0	3	-3	1	-1	1	1	1	-1
X26	3	-3	3	-3	-3	3	0	0	0	0	0	0	0	0	-1	-1	-1	1
X27	3	-3	3	-3	-3	3	0	0	0	0	0	0	0	0	-1	-1	-1	1
X28	C	-C	C	$-\underline{C}$	-C	C	0	0	0	0	0	0	0	0	-1	-1	-1	1
χ_{29}	\overline{C}	$-\overline{C}$	\overline{C}	$-\overline{C}$	$-\overline{C}$	\overline{C}	0	0	0	0	0	0	0	0	-1	-1	-1	1
X30	C	-C	C	-C	-C	C	0	0	0	0	0	0	0	0	-1	-1	-1	1
X31	C	-C	C	-C	-C	C	0	0	0	0	0	0	0	0	-1	-1	-1	1
X32	9	1	1	-7	-3	5	0	0	0	0	3	-3	1	-1	0	0	0	0
X 33	\overline{F}	A	A	$-\overline{M}$	$-\overline{C}$	\overline{B}	0	0	0	0	3	-3	1	-1	0	0	0	0
Y24	F	\overline{A}	\overline{A}	-M	-C	B	0	0	0	0	3	-3	1	-1	0	0	0	0
X25	0	-10	8	-2	-6	4	0	Ő	Ő	Ő	-3	3	-1	1	1	1	1	-1
135 X00	0	$-\overline{H}$	$\frac{0}{L}$	$\frac{-}{K}$	$-\overline{E}$	\overline{D}	0	Ő	Ő	Ő	_3	3	-1	1	1	1	1	-1
×05	ő	_ H	L	ĸ		D	NIO	Ő	Ő	Vool	3	3	1	1	1	1	1	1
X37	15	15	0	0	-12	3	0	0	0	0	-5	0	-1	0	1	1	1	-1
X38	$\frac{15}{\overline{C}}$	70	-9	-9	$\frac{3}{\alpha}$	0	0	0	0	0	0	0	0	0	-1	-1	-1	1
X39	G	G	- r	- r	C	C	0	0		0	0	0	0	0	-1	-1	-1	1
X40	G	G	- F	- F	C	C		0	0	0		0	0	0	-1	-1	-1	1
X41	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	-1
X42	15	5	-1	5	-3	-1	0	0	0	0	3	3	-1	-1	2	2	-2	0
X43	15	5	-1	5	-3	-1	0	0	0	0	3	3	-1	-1	-2	-2	2	0
X44	G	B	$-\underline{A}$	B	-C	$-\underline{A}$	0	0	0	0	3	3	-1	-1	-2	-2	2	0
X45	G	B	$-\overline{A}$	B	-C	$-\overline{A}$	0	0	0	0	3	3	-1	-1	-2	-2	2	0
X46	\overline{G}	\overline{B}	-A	\overline{B}	$-\overline{C}$	-A	0	0	0	0	3	3	-1	-1	2	2	-2	0
χ_{47}	G	B	$-\overline{A}$	B	-C	$-\overline{A}$	0	0	0	0	3	3	-1	-1	2	2	-2	0
X48	15	25	7	1	-3	-5	0	0	0	0	-3	-3	1	1	0	0	0	0
X49	\overline{G}	\overline{J}	\overline{M}	A	$-\overline{C}$	$-\overline{B}$	0	0	0	0	-3	-3	1	1	0	0	0	0
χ ₅₀	G	.1	M	\overline{A}	-C	-B	0	0	0	0	-3	-3	1	1	0	0	0	0
χ ₅₁	15	-15	-9	9	-3	- 3	Ő	õ	Ő	õ	0	õ	0	0	Ő	õ	õ	Õ
× 51		$-\overline{\overline{G}}$	$-\overline{F}$	$\frac{U}{F}$	$-\overline{C}$	\overline{C}	ň	ň	0	ň	Ň	ň	ň	ň	ň	ň	ň	ň
×52	C		_ 5	1. E		C		0	0	0		0	0	0	0	0	0	0
X53	6	-6	-r	r O	-0	0		0	0	0		0	0	0	0	0	0	0
X54	0	0	0	0	0	0		0	0	0		0	0	0	-2	-2	4	0
X55	10	10	0	0	0	0	0	0	0	0	0	0	0	0	2	2	-2	0
X56	10	$-\frac{10}{10}$	2	-2	2	-2	$\frac{7}{1}$	-1	7	$-\frac{1}{4}$		-1	-1	1	4	-4	0	0
<i>χ</i> 57	H	-H	-K	K	-K	K	M	$-\underline{A}$	<u>M</u>	-A		-1	-1	1	4	-4	0	0
χ_{58}	H	-H	-K	K	-K	K	M	-A	M	-A	1	-1	-1	1	4	-4	0	0
χ_{59}	-10	10	-2	2	-2	2	-7	1	-7	1	2	-2	-2	2	0	0	0	0
X60	$-\overline{H}$	\overline{H}	\overline{K}	$-\overline{K}$	\overline{K}	$-\overline{K}$	$-\overline{M}$	A	-M	\overline{A}	2	-2	-2	2	0	0	0	0
X61	H	-H	-K	K	-K	K	M	$-\overline{A}$	\overline{M}	-A	2	-2	-2	2	0	0	0	0
X62	0	0	0	0	0	0	0	0	0	0	3	-3	-3	3	-4	4	0	0
X63	20	-20	4	-4	4	-4	-7	1	-7	1	-1	1	1	-1	0	0	0	0
X64	Ī	$-\overline{I}$	D	-D	D	-D	-M	\overline{A}	$-\overline{M}$	A	-1	1	1	-1	0	0	0	0
X65	Ī		\overline{D}	$-\overline{D}$	\overline{D}	$-\overline{D}$	$-\overline{M}$	A	-M	$\frac{1}{A}$	-1	1	1	-1	Ő	õ	õ	õ

Table 7.9 (continue)

		5A		5B				6A						6B		
	5A	10A	5B	10B	6P	6Q	12A	12B	12C	12D	6R	6S	12E	12F	12G	12H
X1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
X2	1	1	1	1	\overline{A}	\overline{A}	\overline{A}	\overline{A}	\overline{A}	\overline{A}	A	A	A	A	A	A
X3	1	1	1	1	A	A	A	A	A	A	\overline{A}	\overline{A}	\overline{A}	\overline{A}	\overline{A}	\overline{A}
X4	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
χ5	0	0	0	0	Α	A	A	A	A	A	\overline{A}	\overline{A}	\overline{A}	\overline{A}	\overline{A}	\overline{A}
X6	0	0	0	0	\overline{A}	\overline{A}	\overline{A}	\overline{A}	\overline{A}	\overline{A}	A	A	A	A	A	A
X7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{10}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{12}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{13}	N	N	N	N^*	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
χ_{14}	N	N^*	N	N	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
χ_{15}	N	N	N	N^*	-A	-A	-A	-A	-A	-A	$-\overline{A}$	$-\overline{A}$	$-\overline{A}$	$-\overline{A}$	$-\overline{A}$	$-\overline{A}$
χ_{16}	* N	N^*	N	N	-A	-A	-A	-A	-A	-A	$-\overline{A}$	$-\overline{A}$	$-\overline{A}$	$-\overline{A}$	$-\overline{A}$	$-\overline{A}$
χ_{17}	N	N	N	N^*	$-\overline{A}$	$-\overline{A}$	$-\overline{A}$	$-\overline{A}$	$-\overline{A}$	$-\overline{A}$	-A	-A	-A	-A	-A	-A
χ_{18}	* N	*N	N	N	$-\overline{A}$	$-\overline{A}$	$-\overline{A}$	$-\overline{A}$	$-\overline{A}$	$-\overline{A}$	-A	-A	-A	-A	-A	-A
χ_{19}	-1	-1	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
χ_{20}	-1	-1	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
χ_{21}	-1	-1	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
χ_{22}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{23}	1	-1	1	-1	2	0	2	0	0	-2	2	0	2	0	0	-2
χ_{24}	1	-1	1	-1	-K	0	-K	0	0	-K	$-\underline{K}$	0	$-\underline{K}$	0	0	K
χ_{25}	1	-1	1	-1	-K	0	-K	0	0	K	-K	0	-K	0	0	K
χ_{26}	N	-N	* N	-*N	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1
χ_{27}	* N	-*N	N	-N	-1		-1	1	-1	1	-1	1	-1	1	-1	1
χ_{28}	N	- N	* N	$-^{*}N$	-A	A	-A	A	-A	A	$-\underline{A}$	$\frac{A}{1}$	$-\underline{A}$	A	$-\underline{A}$	A
χ_{29}	* N	- " N	N	-N	$-\frac{A}{4}$	$\frac{A}{4}$	$-\frac{A}{4}$	$\frac{A}{4}$	$-\frac{A}{4}$	$\frac{A}{A}$	-A	A	-A	A	-A	A
χ_{30}	" N	$-^{T}N$	N * N	- N * N	$-\frac{A}{4}$	$\frac{A}{A}$	$-\frac{A}{4}$	$\frac{A}{4}$	$-\frac{A}{A}$	$\frac{A}{4}$	-A	A	-A	A	-A	A
χ_{31}	N	-N	N	-N	-A	A	-A	A	-A	A	-A	A	-A	A	-A	A
χ_{32}	-1	1	-1	1	1	1	1	1	-1	-1	$\frac{1}{4}$	1	1	1	-1	-1
χ_{33}	-1	1	-1	1	$\frac{A}{4}$	$\frac{A}{A}$	$\frac{A}{A}$	$\frac{A}{4}$	$-\frac{A}{A}$	$-\frac{A}{A}$	A	A	A	A	-A	-A
X34	-1	1	-1	1	A	A 2	A 0	A	-A	-A	A	A	A	A 0	-A	-A
X35	0	0	0	0	0	$\frac{-2}{V}$	0	$\frac{-2}{V}$	$\frac{2}{V}$	0	0	-2 V	0	-2 V	2 V	0
X36	0	0	0	0	0	N	0		$-\kappa$	6 410	0	$\frac{K}{V}$	0	$\frac{K}{V}$	$-\frac{\kappa}{V}$	0
X37	0	0	0	0	1	1	1	1	1-1	1	1	1	1	1	- 1	1
X38 X00	0	0	0	0	_ 4	-1		-1	4	1	$-\frac{1}{4}$	$-\frac{-1}{4}$	$-\frac{1}{4}$	$-\frac{-1}{4}$	- 1	<u>1</u>
X39	0	0	0	0	$-\frac{A}{4}$	$-\frac{A}{A}$	$-\frac{A}{4}$	$-\frac{A}{4}$	$\frac{A}{A}$	$\frac{A}{A}$	- A _ A	- A _ A	- A _ A	- A _ A	4	4
X40 X41	0	0	0	0	-A	-A 0	-A	-A	0	0	-A	-A	-A	-A	0	0
×49	0	0	0	0	3	1	-1	-3	-1	1	3	1	-1	-3	-1	1
142 X12	ő	0	Ő	0	-1	-3	3	1	-1	1	-1	-3	3	1	-1	1
X44	0	õ	0	õ	-A	$-\overline{\overline{C}}$	$\tilde{\overline{C}}$	Ā	-A	Ā	$-\overline{A}$	$-\tilde{C}$	\tilde{C}	$\overline{\overline{A}}$	$-\overline{A}$	$\overline{\overline{A}}$
χ_{45}	0	0	0	0	$-\overline{A}$	-C	C	\overline{A}	$-\overline{A}$	\overline{A}	-A	$-\overline{C}$	$-\overline{C}$	A	-A	A
χ46	0	0	0	0	$-\overline{C}$	A	-A	$-\overline{C}$	-A	A	C	\overline{A}	\overline{A}	-C	$-\overline{A}$	\overline{A}
χ47	0	0	0	0	C	\overline{A}	$-\overline{A}$	-C	$-\overline{A}$	\overline{A}	\overline{C}	A	-A	$-\overline{C}$	-A	A
χ_{48}	0	0	0	0	-1	1	-1	1	1	-1	-1	1	-1	1	1	-1
χ_{49}	0	0	0	0	-A	A	-A	A	A	-A	$-\overline{A}$	\overline{A}	$-\overline{A}$	\overline{A}	\overline{A}	$-\overline{A}$
χ_{50}	0	0	0	0	$-\overline{A}$	\overline{A}	$-\overline{A}$	\overline{A}	\overline{A}	$-\overline{A}$	-A	A	-A	A	A	-A
χ_{51}	0	0	0	0	-1	1	-1	1	1	-1	-1	1	-1	1	1	-1
χ_{52}	0	0	0	0	-A	A	-A	A	A	-A	$-\overline{A}$	\overline{A}	$-\overline{A}$	\overline{A}	\overline{A}	$-\overline{A}$
χ_{53}	0	0	0	0	$-\overline{A}$	\overline{A}	$-\overline{A}$	\overline{A}	\overline{A}	$-\overline{A}$	-A	A	-A	A	A	-A
χ_{54}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{55}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{56}	0	0	0	0	2	-2	-2	2	0	0	2	-2	-2	2	0	0
χ_{57}	0	0	0	0	$-\overline{K}$	\overline{K}	\overline{K}	$-\overline{K}$	0	0	-K	K	K	-K	0	0
χ_{58}	0	0	0	0	-K	K	K	-K	0	0	$-\overline{K}$	\overline{K}	\overline{K}	$-\overline{K}$	0	0
χ_{59}	0	0	0	0	2	-2	-2	2	0	0	2	-2	-2	2	0	0
χ_{60}	0	0	0	0	$-\overline{K}$	\overline{K}	\overline{K}	$-\overline{K}$	0	0	-K	K	K	-K	0	0
χ_{61}	0	0	0	0	-K	K	K	-K	0	0	$-\overline{K}$	\overline{K}	\overline{K}	$-\overline{K}$	0	0
χ_{62}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{63}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{64}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{65}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 7.9 (continue)

Table 7.9 (continue)

	7A	7B		15A		15B		15C		15D	21A	21B	21C	21D
	7A	7B	15A	30A	15B	30B	15C	30C	15D	30D	21A	21B	21C	21D
X1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
X2	1	1	Ā	\overline{A}	A	A	Ā	\overline{A}	A	A	\overline{A}	A	\overline{A}	A
X3	1	1	A	A	\overline{A}	\overline{A}	A	A	\overline{A}	\overline{A}	A	\overline{A}	A	\overline{A}
χ_4	-1	-1	0	0	0	0	0	0	0	0	-1	-1	-1	-1
χ_5	-1	-1	0	0	0	0	0	0	0	0	$-\underline{A}$	-A	$-\underline{A}$	-A
χ_6	-1	-1	0	0	0	0	0	0	0	0	$-\underline{A}$	$-\underline{A}$	-A	-A
X7	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X8	0	$\frac{O}{a}$	0	0	0	0	0	0	0	0	0	$\frac{O}{\pi}$	0	$\frac{O}{R}$
X9	$\frac{O}{\Box}$	0	0	0	0	0	0	0	0	0	R	<u><u>S</u></u>	S	$\frac{R}{\alpha}$
X10	0	$\frac{0}{2}$		0	0	0		0	0	0	3	R	$\frac{R}{D}$	5
X11	$\frac{0}{2}$			0	0	0		0		0	$\frac{S}{D}$	R	$\frac{R}{C}$	
X12 X19	0		* N	* N	* N	* N		N	N	N		0	0	
×13	Ő	0	N	N	N	N	* N	* N	* N	* N	0	0	0	0
×14 ×15	Ő	Ő	P	P	$\frac{1}{P}$	$\frac{1}{P}$	0	0	$\frac{1}{\overline{O}}$	$\frac{1}{O}$	0	0	Ő	Ő
X16	Ő	Ő	0	Q	$\frac{1}{O}$	\overline{O}	P	\tilde{P}	$\frac{1}{\overline{P}}$	$\frac{2}{P}$	Ő	Ő	Ő	Ő
X17	0	0	$\frac{1}{\overline{P}}$	$\frac{1}{P}$	\tilde{P}	\tilde{P}	\overline{Q}	\overline{Q}	Q	Q	0	0	0	0
χ_{18}	0	0	\overline{Q}	\overline{Q}	Q	Q	$\frac{1}{P}$	$\frac{1}{P}$	P	\dot{P}	0	0	0	0
X19	1	1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1
X20	1	1	-A	-A	$-\overline{A}$	$-\overline{A}$	-A	-A	$-\overline{A}$	$-\overline{A}$	A	\overline{A}	A	\overline{A}
X21	1	1	$-\overline{A}$	$-\overline{A}$	-A	-A	$-\overline{A}$	$-\overline{A}$	-A	-A	\overline{A}	A	\overline{A}	
χ22	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X23	0	0	1	-1	1	-1	1	-1	1	-1	0	0	0	0
χ_{24}	0	0	$\frac{A}{1}$	$-\underline{A}$	A	-A	$\frac{A}{1}$	$-\underline{A}$	A	-A	0	0	0	0
χ_{25}	0	0		-A * N	A * N	-A		-A		-A	0	0	0	0
X26	0		N	- ' N N	· N N	- ' N	1N * N	- /N * N	N * N	- N * N	0	0	0	
X27	0	0			$\frac{N}{D}$	$-\frac{N}{D}$		- N	$\frac{N}{O}$	$-\frac{1}{4}$	0	0	0	
X28	0	0		-0	$\frac{I}{O}$	$-\frac{1}{O}$		-Q -P		-A $-\overline{P}$	0	0	0	
X29	0	0	Ť	$-\frac{2}{O}$	õ	-Q -0	$\frac{1}{P}$	$-\frac{1}{P}$	P	-P	0	0	0	0
X31	Ő	ő	$\frac{\sqrt{2}}{B}$	$-\frac{q}{P}$	P	-P	$\frac{1}{\overline{O}}$	$-\overline{O}$	0	-0	0	0	0	0
X32	Ő	Ő	-1	1	-1	1	-1	1	-1	1	0	0	Ő	Ő
X33	0	0	-A	A	$-\overline{A}$	\overline{A}	-A	A	$-\overline{A}$	\overline{A}	0	0	0	0
X34	0	0	$-\overline{A}$	\overline{A}	-A	A	$-\overline{A}$	\overline{A}	-A	A	0	0	0	0
X35	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X36	0	0	0	0	0	0	0	0	-0	0	0	0	0	0
X37	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X38	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X39	0			0	0	0	0	0	0	0	0	0	0	
X40	0	0		0	0	0	0	0	0	0	0	0	0	
X41	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ ₄₂	0	0	0	0	TON		ROI	T 0	0	0	0	0	0	0
χ ₄₀	ŏ	ŏ	ŏ	ŏ	0	0	0	0	0	ŏ	ŏ	ŏ	ŏ	ŏ
χ ₄₅	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0
X46	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X47	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X48	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X49	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X50	0			0	0	0		0		0	0		0	
X51	0			0	0	0		0		0				
X52	0			0	0	0		0		0				
X53	0			0	0	0		0	0	0	0	0	0	0
χ ₅₅	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X56	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{57}	Ũ	Ő	Ő	Ő	õ	Ő	Ő	ŏ	Ő	Ő	Ő	Ő	Ő	Ő
X58	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X59	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X60	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X61	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X62	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X63	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X64	0	0		0	0	0		0	0	0	0	0	0	0
X65	0	0	0	0	0	0	0	0	0	0	0	0	0	0

where $A = \frac{-1+i\sqrt{3}}{2} = b3$, $B = \frac{-5-5i\sqrt{3}}{2} = -5-5b3$, $C = \frac{-3-3i\sqrt{3}}{2} = -3-3b3$, $D = -2 - 2i\sqrt{3} = -2-2i\sqrt{3} = -2-2i\sqrt{3}$

The information about the conjugacy classes found in Table 7.4 can be used to compute the power maps for the elements of \overline{G} and then Programme C (see Appendix A) is used to verify that we obtained the unique *p*-power maps listed in Table 7.10 for our Table 7.9.

$[g]_G$	$[x]_{\overline{G}}$	2	3	5	7	$[g]_G$	$[x]_{\overline{G}}$	2	3	5	7
1A	1A					2A	2D	1A			
	2A	1A					2E	1A			
	2B	1A					4A	2A			
	2C	1A					4B	2A			
							4C	2B			
							4D	2B			
							4E	2B			
3A	3A		1A			3B	3B		1A		
	6A	3B	2A				6F	3A	2A		
	6B	3B	2A				6G	3A	2A		
	6C	3B	2B				6H	3A	2B		
	6D	3B	2C				6I	3A	2C		
	6E	3B	2B				6J	3A	2B		
3C	3C		1A			3D	3D		$1 \mathrm{A}$		
	6K	3D	2C	-			6L	3C	2C		
3E	3E		1A	-		4A	4F	2D			
	6M	3E	2C		100		$4\mathrm{G}$	2D			
	6N	3E	2A			THE T	8A	4B			
	6O	3E	2B				$^{8\mathrm{B}}$	4E			
5A	5A			1A		5B	5B			1A	
	10A	5B	,	2A			10B	5A		2A	
6A	6P	3A	2D			6B	6R	3B	2D		
	6Q	3A	2E	IV.	ERS	SITY	6S	<i>€</i> 3B	2E		
	12A	6B	4A	0.00	10.10	21 6	12E	6G	4A		
	12B	6B	4B	19.1	ĽK	IN C	12F	6G	4B		
	12C	6E	4C				12G	6J	4C		
	12D	6E	4D				12H	6J	4D		
7A	7A				1A	7B	7B				$1\mathrm{A}$
15A	15A		5A	3A		15B	15B		5A	$_{3B}$	
	30A	15D	10A	6A			30B	15C	10A	6F	
15C	15C		5B	3A		15D	15D		5B	$_{3B}$	
	30C	15B	10B	6A			30D	15A	10B	6F	
21A	21A		7A		3C	21B	21B		7A		3D
21C	21C		$7\mathrm{B}$		3C	21D	21D		7B		3D
L											

Table 7.10: The power maps of the elements of $2^9:(L_3(4):3)$

7.7 The Fusion of $2^9:(L_3(4):3)$ into $U_6(2):3$

The group \overline{G} is a maximal subgroup of $U_6(2)$:3 of index 891. Hence the action of $U_6(2)$:3 on the cosets of \overline{G} gives rise to a permutation character $\chi(U_6(2):3|\overline{G})$ of degree 891. We deduce from the ordinary character table of $U_6(2)$:3 uploaded in the GAP Library that $\chi(U_6(2):3|\overline{G}) = 1a + 22a + 252a + 616a$. The partial fusion of \overline{G} into $U_6(2)$:3 is made possible by using the values of $\chi(U_6(2):3|\overline{G})$ on the classes of \overline{G} and the information provided by the power maps of the classes of $U_6(2)$:3 and \overline{G} . Similarly, the technique of set intersections (as it was done in Section 6.7) is used to restrict the irreducible ordinary characters $\phi_1 = 22a$, $\phi_2 = 22b$, $\phi_3 = 231a$, $\phi_4 = 385a$, $\phi_5 = 440a$ and $\phi_6 = 440b$ of $U_6(2)$:3 to \overline{G} . Hence based on the partial fusion of \overline{G} into $U_6(2)$:3, we obtain that $(\phi_1)_{2^9:(L_3(4):3)} = \chi_1 + \chi_{23}, (\phi_2)_{2^9:(L_3(4):3)} = \chi_3 + \chi_{24}, (\phi_3)_{2^9:(L_3(4):3)} = \chi_{23} + \chi_{43}, (\phi_4)_{2^9:(L_3(4):3)} = \chi_{35} + \chi_{56}, (\phi_5)_{2^9:(L_3(4):3)} = \chi_4 + \chi_{48}$ and $(\phi_6)_{2^9:(L_3(4):3)} = \chi_6 + \chi_{50}$. Thus the complete fusion map of \overline{G} into $U_6(2)$:3 is obtained and is listed in Table 7.11.

$[g]_{L_3(4):3}$	$[x]_{2^9:(L_3(4):3)}$	\rightarrow $[y]_{U_6(2):3}$	$[g]_{L_3(4):3}$	$[x]_{2^9:(L_3(4):3)} \longrightarrow$	$[y]_{U_6(2):3}$
1A	1A	1A	2A	2D	2B
	2A	2A		2E	2C
	2B	2B		4A	4A
	2C	2C		4B	4B
		_		4C	4D
				4D	4E
				4E	4C
3A	3A	3F	3B	3B	3G
	6A	6K		6F	6L
	6B	6 <i>O</i>		6G	6P
	6C	GS D	SITVof	6H	6T
	6D	6Y	DITIOJ	61	6Z
	6E	W = C 6U = D	NCAL	6J	6V
3C	3C	3K	3D	3D	3J
	6K	6AD		6L	6AC
3E	3E	3C	4A	4F	4C
	6M	6H		4G	4E
	6N	6F		8A	8A
	6O	6G		8B	8B
5A	5A	5A	5B	5B	5A
	10A	10A		10B	10A
6A	6P	6V	6B	6R	6U
	6Q	6Z		6S	6Y
	12A	12M		12E	12L
	12B	12Q		12F	12P
	12C	12U		12G	12T
	12D	12Y		12H	12X
7A	7A	7A	7B	7B	7A
15A	15A	15C	15B	15B	15B
	30A	30 <i>B</i>		30 <i>B</i>	30A
15C	15C	15C	15D	15D	15B
	30C	30B		30D	30A
21A	21A	21B	21B	21B	21A
21C	21C	21B	21D	21D	21A

Table 7.11: The fusion of $2^9:(L_3(4):3)$ into $U_6(2):3$

Chapter 8

The Fischer-Clifford matrices of $2^8:(U_4(2):2)$ as a subgroup of $O_{10}^+(2)$

In the ATLAS we see that the orthogonal group $O_{10}^+(2)$ has a maximal subgroup L = $2^8:O_8^+(2)$, where the quotient group $L/2^8 \cong O_8$ has three non-conjugate maximal subgroups K_1 , K_2 and K_3 of the type $Sp_6(2)$. We should mention here that the ordinary character table of L was computed in [52]. Two of these groups, say K_1 and K_2 , have eight-dimensional absolutely irreducible modules over GF(2) and their pre-images in L are isomorphic groups L_1 and L_2 of the type $2^8:Sp_6(2)$, having 70 classes of elements. This can be easily verified by first obtaining a permutation representation on 496 points of L from Wilson's online ATLAS [70] and then computing all the classes of maximal subgroups of L using the computer algebra system GAP [67]. The permutation representation of degree 496 is the smallest permutation representation $O_{10}^+(2)$ has on the cosets of all its maximal subgroups (see Wilson's online ATLAS) and hence it make our computations for the group L relatively faster. We could also use the permutation representation of degree 527 the group $O_{10}^+(2)$ has on the cosets of L. Also, with the aid of GAP we found that the pre-image $L_3 = 2^8: Sp_6(2)$ of K_3 in L is a group having 168 conjugacy classes of elements. It was shown in [26] that L_3 is one of the inertia factors of the factor group $F = D/2^{10} \cong 2^{16}: O_{10}^+(2)$, where $2^{10+16} \cdot O_{10}^+(2)$ is one of the maximal subgroups of the Fischer-Griess "Monster" group M.

Ali and Moori in [4] computed the Fischer-Clifford matrices and the associated ordinary character of a maximal subgroup $\overline{G}_1 = 2^8 : Sp_6(2)$ of L. This group \overline{G}_1 is isomorphic to the groups L_1 and L_2 . Since $Sp_6(2)$ has only one maximal subgroup of the type $U_4(2):2 \cong GO_6^-(2)$, the pre-image of this group in G_1 is a split extension group $\overline{G} = 2^8: (U_4(2):2)$. As we will see in Section 8.1 of this chapter, the action of $U_4(2):2$ on 2^8 has three orbits of lengths 1, 120 and 135. Therefore, we can deduce that $U_4(2):2$ does not fix any non-trivial subspace of 2^8 and hence 2^8 is an irreducible module for $U_4(2):2$. Since the Fischer-Clifford matrices of the group \overline{G} are not yet known, these matrices and the associated ordinary character table of \overline{G} will be calculated.

The method of coset-analysis will be used to compute the conjugacy classes of elements in \overline{G} . Also, the fusion map of the conjugacy classes of \overline{G} into the classes of \overline{G}_1 will be determined. Most of our computations were carried out with the aid of the computer algebra systems MAGMA and GAP.

WESTERN CAPE

8.1 On the group $2^8:(U_4(2):2)$ and its conjugacy classes

In this section, we apply the method of coset analysis, as discussed in Chapter 3, to determine the conjugacy classes of elements of $2^8:(U_4(2):2)$. Let $\overline{G} = N \cdot G$ be an extension of N by G, where N is abelian. Then for $g \in G$, we write \overline{g} for a lifting of g in \overline{G} under the natural homomorphism $\overline{G} \longrightarrow G$. We consider a coset $N\overline{g}$ for each class representative gof G, writing k for the number of orbits of N acting by conjugation on the coset $N\overline{g}$, and f_j for the number of these fused by the action of $\{\overline{h}: h \in C_G(g)\}$. These values of k are determined by the values of $\chi(G|2^8)$ on the different classes of G, where $\chi(G|2^8)$ denotes the permutation character of G on the classes of 2^8 . Note if \overline{G} is a split extension then \overline{g} becomes g since $G \leq \overline{G}$. The order of the centralizer $C_{\overline{G}}(x)$ for each element $x \in \overline{G}$ in a conjugacy class $[x]_{\overline{G}}$ is given by $|C_{\overline{G}}(x)| = \frac{k|C_G(g)|}{f_j}$.

The authors in [4] constructed the group $Sp_6(2)$ as a matrix group of dimension 8 over the Galois field GF(2). The two generators α and β of $Sp_6(2)$ with respective orders of 2 and 6 are given as:

	(0	1	0	0	0	0	0	0		(0	0	1	0	0	0	0	0	\
	1	0	0	0	0	0	0	0		0	0	0	1	0	0	0	0	
	0	0	0	0	1	0	0	0		0	0	0	0	0	1	0	0	
~-	1	0	0	1	1	1	0	0	8-	0	0	0	0	0	0	1	0	
u_	0	0	1	0	0	0	0	0	β=	0	0	0	1	1	0	1	0	
	1	1	1	0	1	1	0	0		1	0	1	0	0	0	0	0	
	0	0	0	0	0	0	0	1		0	1	1	1	1	1	1	0	
	0	0	0	0	0	0	1	0 /		$\backslash 1$	0	0	1	1	1	1	1,)

Using GAP we are able to find a copy of $U_4(2)$:2 within $Sp_6(2) = \langle \alpha, \beta \rangle$ and the elements g_1 and g_2 , with respective orders of 2 and 9, generating $U_4(2)$:2 are as follows:

	$\begin{pmatrix} 1 \end{pmatrix}$	1	0	0	0	0	0	0		(1	0	1	1	1	0	0	1 \	١
	0	1	0	0	0	0	0	0		0	0	0	1	0	0	1	0	
	1	1	1	1	0	1	1	0		0	0	0	1	1	1	1	0	
a. —	1	0	1	1	1	1	0	1		1	0	0	1	1	1	1	0	
$g_1 -$	1	0	0	1	1	-0	0	7121	92-	V1	c 1.1.	0	1	0	0	0	1	ľ
	1	1	1	0	1	1	1	0	1011	0	1	1	0	0	1	1	1	
	0	0	0	0	0	1	0	1	RN		0	0	1	1	0	0	1	
	$\backslash 1$	1	1	0	1	1	0	0 /		0	0	0	0	0	0	1	0 /	ļ

The class representatives of each class $[g]_{U_4(2):2}$ of $2^8:(U_4(2):2)$ are given in terms of 8×8 matrices over GF(2) and in total there are 25 conjugacy classes of elements and are listed in Table 8.1.

$[g]_{U_4(2):2}$	Class representative	$ [g]_{U_4(2):2} $	$[g]_{U_4(2):2}$	Class representative	$ [g]_{U_4(2):2} $
1A	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	2A	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	36
2B	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	45	2C	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	270
2D	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	540	3.4	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	80
3B	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	NIVERS ES ₂₄₀ ER	SITY of N CAI	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	480
4A	$\left(\begin{array}{cccccccccccc} 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \end{array}\right)$	540	4B	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	540
4C	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	1620	4D	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	3240

Table 8.1: The conjugacy classes of $U_4(2)$:2

Table 8.1 (continue)

$[g]_{U_4(2):2}$	Class representative	$ [g]_{U_4(2):2} $	$[g]_{U_4(2):2}$] $_{U_4(2):2}$ Class representative	
5A	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	5184	6A	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	720
6B	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	1440	6C	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	1440
6D	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	1440	6 <i>E</i>	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	1440
6F	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	2160 NIVERS	6G ITY of N CAI	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	4320
84	$\left(\begin{array}{ccccccccccc} 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \end{array}\right)$	6480	9A	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	5760
10.4	$\left(\begin{array}{ccccccccccc} 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{array}\right)$	5184	12A	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	4320
12 <i>B</i>	$\left(\begin{array}{cccccccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \end{array}\right)$	4320			

Throughout this chapter, let $\overline{G} = N:G$ be the split extension of $N = 2^8 \cong V_8(2)$ (the vector space of dimension 8 over GF(2)) by $G = U4(2):2 = \langle g_1, g_2 \rangle$, where G acts irreducibly on N. As a result of the action of G on N (using MAGMA), we obtain that the elements of N are partitioned into 3 orbits with respective lengths of 1, 120 and 135.

We should add here that in the paper (see Proposition 2.12 in [58]) it is shown that according to Witt's lemma, $G = Aut(SU_4(2)) \cong U4(2)$:2 has exactly two orbits of lengths 135 and 120 on the non-zero elements of its irreducible 8-dimensional module $2^8 \cong V_8(2)$, where these correspond to the singular and non-singular vectors. Further it shown that since $2^8 - 1$ does not divide $|SP_6(2)|$, it follows that these orbits are also orbits under the action of $Sp_6(2) = \langle \alpha, \beta \rangle$. In fact the MAGMA command "IsAbsolutelyIrreducible(G)" confirms that the linear group G acts absolutely irreducibly on its 8-dimensional module. Hence \overline{G} as a split extension $2^8:(U_4(2):2)$ exists as a subgroup S of $SL_9(2)$. The group Scan be generated by the following elements of $SL_9(2)$:

where $o(s_1) = 4$, $o(s_2) = 14$ and $o(s_3) = 2$.

Since the group \overline{G} can be generated as permutation group on 496 points, it is easily verified that $\overline{G} \cong S$ by using the MAGMA command, "IsIsomorphic (\overline{G}, S)". With the aid of MAGMA and the ATLAS, we are able to identify the structures of the stabilizers corresponding to the 3 orbits of elements of N. The point stabilizers, which are subgroups of G, are identified as $P_1 = G$, $P_2 = 3^{1+2}_+: (2D_8)$ and $P_3 = 2^4: S_4$.

Let $\chi(G|2^8)$ be the permutation character of G on the classes of 2^8 . Then using the same method as in Chapters 6 and 7, we can easily write $\chi(G|2^8) = I_{U_4(2):2}^{U_4(2):2} + I_{3^{1+2}_+(2D_8)}^{U_4(2):2}$ $+I_{2^4:S_4}^{U_4(2):2} = \chi(U_4(2):2|P_1) + \chi(U_4(2):2|P_2) + \chi(U_4(2):2|P_3) = 1a + 1a + 15b + 20c + 24a + 12b + 20c + 20c$ $60c + 1a + 15a + 15c + 20a + 24a + 60c = 3 \times 1a + 15abc + 20a + 2 \times 24a + 2 \times 60c$ as the sum of the permutation characters of G acting on the classes of P_1 , P_2 and P_3 . For the purpose of computing $\chi(G|2^8)$, we used the character table of $U_4(2):2$ which was computed directly in MAGMA with the generators g_1 and g_2 (see Appendix B). The permutation character $\chi(G|2^8)$ is written in terms of the irreducible characters of $U_4(2)$:2. The values of $\chi(G|2^8)$ on the different classes of G determine the number k of fixed points of each $g \in G$ in 2^8 . The values of k are listed in the second column of Table 8.2. The values of the f'_{is} (as mentioned earlier in this section) are calculated by Programme A and hence we obtain that \overline{G} has exactly 59 conjugacy classes. Having obtained all the values for the parameters k and $f'_j s$, the centralizer order $|C_{\overline{G}}(x)|$ for each class [x] of \overline{G} are determined. Programme B is used to compute the order of the elements for each conjugacy class [x]in \overline{G} . All the information involving the conjugacy classes of \overline{G} are listed in Table 8.2. WESTERN CAPE

$[g]_{U_4(2):2}$	k	f_j	d_j	w	$[x]_{2^8:(U_4(2):2)}$	$ [x]_{2^8:(U_4(2):2)} $	$ C_{2^8:(U_4(2):2)}(x) $
1A	256	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0)	1A	1	13271040
		$f_2 = 120$	(0, 0, 1, 0, 1, 1, 0, 1)	(0, 0, 1, 0, 1, 1, 0, 1)	2A	120	110592
		$f_3 = 135$	(0, 0, 1, 1, 0, 1, 0, 1)	(0, 0, 1, 1, 0, 1, 0, 1)	2B	135	98304
2A	16	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0)	2C	596	23040
		$f_2 = 15$	(1, 0, 0, 0, 0, 0, 0, 0, 0)	(1, 0, 0, 0, 0, 1, 0, 0)	4A	8640	1536
2B	64	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0)	2D	180	73728
		$f_2 = 6$	(0, 1, 1, 0, 0, 1, 1, 0)	(0, 1, 1, 0, 0, 1, 1, 0)	2E	1080	12288
		$f_3 = 9$	(0, 0, 1, 0, 1, 0, 0, 1)	(0, 0, 1, 0, 1, 0, 0, 1)	2F	1620	8192
		$f_4 = 48$	(1, 1, 1, 0, 0, 1, 1, 1)	(1, 1, 1, 0, 0, 1, 1, 1)	4B	8640	1536
						1000	
20	16	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0)	2G	4320	3072
		$f_2 = 3$	(0, 1, 1, 0, 0, 1, 1, 0)	(0, 1, 1, 0, 0, 1, 1, 0)	6 <i>F</i>	12960	1024
		$f_3 = 6$	(0, 1, 1, 0, 1, 1, 1, 1)	(0, 1, 1, 0, 0, 1, 1, 1)	6 <i>G</i>	25920	512
		$f_4 = 6$	(1, 1, 1, 1, 1, 1, 1, 0, 0)	(0, 0, 0, 0, 1, 1, 1, 0)	6H	25920	512
20	16	$f_{1} = 1$			211	8640	1526
20	10	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0)	4 E	8640	1536
		$f_2 = 1$	(0, 1, 1, 0, 0, 1, 1, 0)	(0, 1, 1, 0, 0, 1, 1, 0)	41	51840	256
		$f_{3} = 0$	(0, 1, 1, 0, 1, 1, 1, 1)	(0, 1, 1, 0, 0, 1, 1, 1)	40	60120	102
		$J_4 - 8$	(1, 1, 1, 1, 1, 1, 0, 0)	(0, 0, 0, 0, 1, 1, 1, 0)	411	09120	192
3.4	4	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	34	5120	2592
	-	$f_2 = 3$	(1, 1, 1, 1, 1, 0, 0, 0, 0)	(1, 0, 0, 0, 1, 0, 1, 0)	PE ₆ A	15360	864
		J2 ~	(-, -, -, -, 0, 0, 0, 0, 0)	(-, 0, 0, 0, -, 0, -, 0)			
3B	1	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0)	3B	61440	216
3C	16	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0)	3C	7680	1728
		$f_2 = 6$	(1, 1, 1, 1, 1, 0, 0, 0)	(0, 0, 1, 0, 0, 0, 0, 0)	6B	46080	288
		$f_3 = 9$	(1, 1, 0, 1, 0, 0, 1, 1)	(0, 0, 0, 1, 1, 1, 0, 0)	6C	69120	192
4A	4	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0)	4A	34560	384
		$f_2 = 3$	(1, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 1, 1, 0, 1, 1)	8A	103680	128
4B	16	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0)	4J	8640	1536
		$f_2 = 1$	(1, 1, 1, 1, 1, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0)	4K	8640	1536
		$f_3 = 2$	(1, 1, 0, 1, 0, 0, 1, 1)	(0, 0, 0, 0, 0, 0, 0, 0, 0)	4L	17280	768
		$f_4 = 12$	(1, 0, 0, 0, 1, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0)	4M	103680	128

Table 8.2: The conjugacy classes of elements of $G = 2^8:(U_4(2):2)$

Table 8.2(continue)

$[g]_{U_4(2):2}$	k	f_j	d_{j}	w	$[x]_{2^8:(U_4(2):2)}$	$ [x]_{2^8:(U_4(2):2)} $	$ C_{2^8:(U_4(2):2)}(x) $
4C	4	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0)	4N	103680	128
		$f_2 = 1$	(1, 1, 0, 1, 1, 1, 0, 0)	(1, 1, 0, 1, 1, 1, 0, 0)	88	103680	128
		$f_3 = 2$	(1, 0, 1, 1, 1, 0, 1, 0)	(1, 0, 1, 1, 1, 0, 1, 0)	8C	207360	64
4 <i>D</i>	4	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0)	40	207360	64
		$f_2 = 1$	(1, 0, 1, 0, 1, 0, 1, 0)	(1, 0, 1, 0, 1, 0, 1, 0)	8D	138240	96
		$f_3 = 2$	(1, 1, 0, 1, 1, 1, 0, 0)	(1, 1, 0, 1, 1, 1, 0, 0)	8E	138240	96
5A	1	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0)	5A	1327104	10
6A	4	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0)	6D	46080	288
		$f_2 = 3$	(1, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0)	6E	138240	96
68		$f_4 = 1$			6 F	92160	144
010	4	$f_{-} = 2$	(0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0)	12.4	92100	144
		$J_2 = 3$	(1, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 1, 1, 0, 1, 1)	12A	270480	48
6C	1	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0)	6G	368640	36
6D	1	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0)	6H	368640	36
6E	4	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0)	61	92160	144
		$f_2 = 3$	(1, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 1, 1, 0, 1, 1)	21B	276480	48
6F	1	$f_1 = 1$	(0 0 0 0 0 0 0 0 0)		61	552960	24
01		J1 - 1		(0,0,0,0,0,0,0,0,0)		002000	21
6G	4	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0)	6K	276480	48
		$f_2 = 1$	(1, 1, 0, 1, 1, 1, 0, 0)	(1, 1, 0, 1, 1, 1, 0, 0)	12C	276480	48
		$f_3 = 2$	(1, 0, 1, 1, 1, 0, 1, 0)	(1, 0, 1, 1, 1, 0, 1, 0)	12D	552960	24
					······		
8A	4	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0)	8F	414720	32
		$f_2 = 1$	(1, 1, 1, 1, 1, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0)	$0 \int t 8G$	414720	32
		$f_3 = 1$	(1, 1, 0, 1, 0, 0, 1, 1)	(0, 0, 0, 0, 0, 0, 0, 0, 0)	8H	414720	32
		$f_4 = 1$	(1, 0, 0, 0, 1, 0, 0, 0)	(0,0,0,0,0,0,0,0,0)	81	414720	32
94	1	$f_1 = 1$			9.4	1474560	Q
371		J1 - 1	(0, 0, 0, 0, 0, 0, 0, 0, 0)		54	1414500	3
10A	1	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0)	(0,0,0,0,0,0,0,0)	10A	1327104	10
12A	1	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0)	12E	1105920	12
105					107		
12B	4	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0)	12F	276480	48
		$f_2 = 1$	(1, 1, 1, 1, 1, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0)	12G	276480	48
		$f_3 = 1$	(1, 1, 0, 1, 0, 0, 1, 1)	(0, 0, 0, 0, 0, 0, 0, 0)	12H	276480	48
		$f_4 = 1$	(1, 0, 0, 0, 1, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 0)	121	276480	48

8.2 The Inertia groups of $2^8:(U_4(2):2)$

Since G has 3 orbits on N, then by Brauer's Theorem [29] G acts on Irr(N) with the same number of orbits. The lengths of the 3 orbits will be 1, r, and s where r + s = 255, with corresponding point stabilizers H_1 , H_2 and H_3 as subgroups of G such that $[G:H_1] = 1$, $[G:H_2] = r$ and $[G:H_3] = s$.

The action of \overline{G} on $Irr(2^8)$ can be seen as the action of \overline{G} on the dual space N^* of N, since $N = 2^8$ is regarded as the vector space $V_8(2)$ (see [56]). Hence we act the group Tformed by the transpose of the generators g_1 and g_2 of G on N. The action of T on Npartitioned the vectors of N into 3 orbits of lengths 1, r = 120 and s = 135. Thus the action of \overline{G} on Irr(N) is self-dual to the action of \overline{G} on N, since the respective actions give rise to orbits of the same lengths. We deduce that the action of G on N has orbits of lengths 1, r = 120 and s = 135 with respective point stabilizers $H_1 = G$, $H_2 = 3^{1+2}_+:(2D_8)$ and $H_3 = 2^4:S_4$. Thus we obtain 3 inertia groups $\overline{H}_i = 2^8:H_i$, i = 1, 2, 3, in $2^8:(U_4(2):2)$. The groups H_2 and H_3 are constructed from elements within G and the generators are as follows:

• $H_2 = \langle \alpha_1, \alpha_2 \rangle$, $\alpha_1 \in 8A$, $\alpha_2 \in 12B$ where

	(0	0	0	1	1	1	0	0 \		$\begin{pmatrix} 0 \end{pmatrix}$	1	0	1	0	0	0	0 \
	0	1	0	0	1	1	0	0		1	0	1	1	1	1	0	0
	0	1	1	1	1	0	0	1		1	1	0	0	1	0	1	1
a	0	0	0	0	0	1	1	1	0	0	0	1	0	0	1	0	1
$\alpha_1 -$	1	0	0	1	1	1	0	1	, α_2	1	1	0	1	1	0	0	0
	1	0	0	0	0	1	0	0		1	0	0	1	1	0	1	0
	1	0	0	1	1	1	0	0		0	1	1	1	1	0	1	1
	$\begin{pmatrix} 1 \end{pmatrix}$	0	0	1	0	1	0	0 /		$\begin{pmatrix} 1 \end{pmatrix}$	1	0	1	0	0	0	1 /

• $H_3 = \langle \beta_1, \beta_2 \rangle$, $\beta_1 \in 2C$, $\beta_2 \in 8A$ where

	(1	0	0	0	0	0	1	0 \		(1)	0	1	0	0	1	0	0
	1	1	0	1	1	1	1	1		1	0	0	0	1	1	0	0
	1	0	1	0	1	1	0	0		1	1	0	1	1	1	1	1
8	0	0	0	1	0	0	0	0	8	0	0	0	1	0	0	0	1
$p_1 -$	1	0	0	1	0	1	0	0	, 22-	0	1	1	0	1	1	0	1
	1	0	0	1	1	0	1	0		1	0	0	1	1	0	0	0
	0	0	0	0	0	0	1	0		1	1	1	1	1	1	0	0
	0	0	0	0	0	0	0	1 /		0	0	0	0	0	0	0	1 /

We obtain the fusion maps of the inertia factors H_2 and H_3 into G (see Tables 8.3 and 8.4) by using their permutation characters in G of degrees 120 and 135, and if necessary direct matrix conjugation in G. MAGMA was used for the various computations. The character tables of H_1 , H_2 and H_3 are also computed using their generators obtained in this section and can be found in Appendix B.

Table 8.3: The fusion of H_2 into $U_4(2)$:2

$[h]_{H_2} \rightarrow$	$[g]_{U_4(2):2}$	$[h]_{H_2} \rightarrow$	$[g]_{U_4(2):2}$	$[h]_{H_2} \rightarrow$	$[g]_{U_4(2):2}$
1A	1A	4A	4B	8B	8A
2A	2B	4B	4B	12A	12B
2B	2D	6A	6A	12B	12B
3A	3A	6B	6G	12C	12B
3B	3C	8A	8A		

Table 8.4: The fusion of H_3 into $U_4(2)$:2

$[h]_{H_3} \rightarrow$	$[g]_{U_4(2):2}$	$[h]_{H_3} \rightarrow$	$[g]_{U_4(2):2}$	$[h]_{H_3} \rightarrow$	$[g]_{U_4(2):2}$	$[h]_{H_3} \rightarrow$	$[g]_{U_4(2):2}$
1A	1A	2E	2B	4A	4B	4F	4D
2A	2B	2F	2C	4B	4C	6A	6B
2B	2D	2G	2C	T4C V	4A	6B	6G
2C	2A	2H	2D	4D	4D	6C	6E
2D	2C	3A 🚺	$\mathbb{E} \subseteq 3C \mathbb{E} \mathbb{R}$	4E	$P \equiv 4C$	8A	8A

8.3 The Fischer-Clifford Matrices of $2^8:(U4(2):2)$

We use the fusion maps of the classes of H_2 and H_3 into G, the information in Table 8.2, and the properties of Fischer-Clifford matrices found in Chapter 5 to compute the entries of the Fischer-Clifford matrices for $2^8:(U_4(2):2)$. For example, see Chapter 6 for explicit computations to construct Fischer- Clifford matrices for a split extension group. For each class representative $g \in U_4(2):2$, we construct a Fischer-Clifford matrix M(g) which are listed in Table 8.5.

M(g)	M(g)
$M(1A) = \begin{pmatrix} 1 & 1 & 1 \\ 120 & 8 & -8 \\ 135 & -9 & 7 \end{pmatrix}$	$M(2A) = \left(\begin{array}{rrr} 1 & 1\\ 15 & -1 \end{array}\right)$
$M(2B) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 24 & 8 & -8 & 0 \\ 3 & 3 & 3 & -1 \\ 36 & -12 & 4 & 0 \end{pmatrix}$	$M(2C) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 3 & 3 & -1 & -1 \\ 6 & -2 & -2 & 2 \\ 6 & -2 & 2 & -2 \end{pmatrix}$
$M(2D) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 8 & -8 & 0 & 0 \\ 1 & 1 & 1 & -1 \\ 6 & 6 & -2 & 0 \end{pmatrix}$	$M(3A) = \begin{pmatrix} 1 & 1 \\ 3 & -1 \end{pmatrix}$
$M(3B) = \left(\begin{array}{c} 1 \end{array}\right)$	$M(3C) = \left(\begin{array}{rrrr} 1 & 1 & 1 \\ 6 & 2 & -2 \\ 9 & -3 & 1 \end{array}\right)$
$M(4A) = \left(\begin{array}{rrr} 1 & 1\\ 3 & -1 \end{array}\right)$	$M(4B) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 4 & 4 & -4 & 0 \\ 8 & -8 & 0 & 0 \\ 3 & 3 & 3 & -1 \end{pmatrix}$
$M(4C) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 2 & -2 & 0 \end{pmatrix}$	$M(4D) = \left(\begin{array}{rrrr} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 2 & -2 & 0 \end{array}\right)$
$M(5A) = \left(\begin{array}{c} 1 \end{array}\right)$	$M(6A) = \left(\begin{array}{rrr} 1 & 1\\ 3 & -1 \end{array}\right)$
$M(6B) = \begin{pmatrix} 1 & 1 \\ 3 & -1 \end{pmatrix} $	$M(6C) = \begin{pmatrix} 1 \end{pmatrix}$
$M(6D) = \begin{pmatrix} 1 \end{pmatrix}$	$M(6E) = \left(\begin{array}{rrr} 1 & 1 \\ 3 & -1 \end{array}\right)$
$M(6F) = \left(\begin{array}{c} 1 \end{array}\right)$	$M(6G) = \begin{pmatrix} 1 & 1 & 1 \\ 2 & -2 & 0 \\ 1 & 1 & -1 \end{pmatrix}$
$M(8A) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -$	$M(9A) = \begin{pmatrix} 1 \end{pmatrix}$
$M(10A) = \left(\begin{array}{c} 1 \end{array}\right)$	$M(12A) = \left(\begin{array}{c} 1 \end{array}\right)$
$M(12B) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -$	

Table 8.5: The Fischer-Clifford matrices of $2^8:(U_4(2):2)$

8.4 Character Table of $2^8:(U_4(2):2)$

Following the method of Fischer-Clifford matrices as explained in Chapter 5, the character table of $2^8:(U_4(2):2)$ can be constructed from the Fischer-Clifford matrices (Table 8.5), the fusion maps of the H'_i s (Tables 8.3 and 8.4), and the character tables of the inertia factors H_i (found in Appendix B).

The character table of \overline{G} (see Table 8.6) is partitioned row-wise into 3 blocks Δ_1 , Δ_2 and Δ_3 , where each block corresponds to an inertia group $\overline{H}_i = 2^8 : H_i$. Therefore $Irr(2^8:(U_4(2):2)) = \bigcup_{i=1}^3 \Delta_i$, where $\Delta_1 = \{\chi_j | 1 \le j \le 25\}$, $\Delta_2 = \{\chi_j | 26 \le j \le 39\}$ and $\Delta_3 = \{\chi_j | 40 \le j \le 59\}$. The consistency and accuracy of the character table of $2^8:(U_4(2):2)$ are tested as Programme C (see Appendix A).

		1A			2A		2B					2C	
	1 <i>A</i>	2A	2B	2C	4A	2D	2E	2F	4B	2G	4C	4D	4E
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	-1	-1	1	1	1	1	1	1	1	1
X3	6	6	6	-4	-4	-2	-2	-2	-2	2	2	2	2
χ_4	6	6	6	4	4	-2	-2	-2	-2	2	2	2	2
χ_5	10	10	10	0	0	-6	-6	-6	-6	2	2	2	2
χ_6	15	15	15	-5	-5	-1	-1	-1	-1	-1	-1	-1	-1
X7	15	15	15	-5	-5	7	7	7	7	3	3	3	3
χ_8	15	15	15	5	5	-1	-1	-1	-1	-1	-1	-1	-1
χ_9	15	15	15	5	5	7	7	7	7	3	3	3	3
χ_{10}	20	20	20	-10	-10	4	4	4	4	4	4	4	4
χ_{11}	20	20	20	10	10	4	4	4	4	4	4	4	4
χ_{12}	20	20	20	0	0	4	4	4	4	-4	-4	-4	-4
χ_{13}	24	24	24	-4	-4	8	8	8	8	0	0	0	0
χ_{14}	24	24	24	4	4	8	8	8	8	0	0	0	0
χ_{15}	30	30	30	-10	-10	-10	-10	-10	-10	2	2	2	2
χ_{16}	30	30	30	10	10	-10	-10	-10	-10	2	2	2	2
χ_{17}	60	60	60	-10	-10	-4	-4	-4	-4	4	4	4	4
χ_{18}	60	60	60	10	10	-4	-4	-4	-4	4	4	4	4
χ_{19}	60	60	60	0	0	12	12	12	12	4	4	4	4
χ_{20}	64	64	64	-16	-16	0	0	0	0	0	0	0	0
χ_{21}	64	64	64	16	16	0	0	0	0	0	0	0	0
χ_{22}	80	80	80	0	0	-16	-16	-16	-16	0	0	0	0
χ_{23}	81	81	81	9	9	9	9	9	9	-3	-3	-3	-3
χ_{24}	81	81	81	-9	-9	9	9	9	9	-3	-3	-3	-3
χ_{25}	90	90	90	0	0	-6	-6	-6	-6	-6	-6	-6	-6
χ_{26}	120	8	-8	0	0	24	8	-8	0	0	0	0	0
X27	120	8	-8	0	0	24	8	-8	0	0	0	0	0
X28	120	0 0	-0	0	0	24	0	-0	0	0	0	0	0
X29	240	16	-0 16	0	0	4	16	-0	0	0	0	0	0
X30	240	16	-16	0	0	-48	-16	16	0	0	0	0	0
X 32	240	16	-16		0	-48	-16	16	the	0	0	0	0
X 33	720	48	-48	0	C 0	-48	-16	16		0	0	0	0
χ34	720	48	-48	0	0	-48	-16	16	0	0	0	0	0
χ_{35}	720	48	-48	0	0	-48	-16	16	0	0	0	0	0
χ_{36}	720	48	-48	0	0	-48	-16	16	0	0	0	0	0
χ_{37}	960	64	-64	0	0	0	0	0	0	0	0	0	0
χ_{38}	960	64	-64	0	0	0	0	0	0	0	0	0	0
χ_{39}	1440	96	-96	0	0	96	32	-32	0	0	0	0	0
χ_{40}	135	-9	7	15	-1	39	-9	7	-1	15	-1	-1	-1
χ_{41}	135	-9	7	15	-1	-33	15	-1	-1	3	3	-5	3
χ_{42}	135	-9	7	-15	1	-33	15	-1	-1	3	3	-5	3
χ_{43}	135	-9	7	-15	1	39	-9	7	-1	15	-1	-1	-1
χ_{44}	270	-18	14	-30	2	6	6	6	-2	18	2	-6	2
χ_{45}	270	-18	14	30	-2	6	6	6	-2	18	2	-6	2
χ_{46}	405	-27	21	-45	3	-27	21	5	-3	-3	13	-3	-3
χ_{47}	405	-27	21	-45	3	45	-3	13	-3	9	9	1	-7
χ_{48}	405	-27	21	45	-3	-27	21	10	-3	-3	13	-3	-3
X49	405 540	-21	21	45	-3	45	-3	13	-3	10	9	1	- (
X50	540	-30 -36	28 28	30	-2	_84	-30	-4 _20	4	12	4	-4 1	4
X51	540	-30	20 28	_20	-2	-04 60	-36	-20	4 1	_12	-4 1	4	-4
χ52 χεο	540	-36	20 28	-30	2 2	-84	-30	-4 -20	ч 1	19	-4 -1	-4 1	-4 -4
7.03 X 5.1	810	-54	42	0	0	-54	42	10	-6	-6	-6	-6	10
Л04 Хаа	810	-54	42	0	0	90	-6	26	-6	18	-14	2	2
X56	810	-54	42	0	0	18	18	18	-6	-18	-2	6	-2
χ ₅₇	810	-54	42	0	0	18	18	18	-6	-18	-2	6	-2
X58	1080	-72	56	60	-4	-24	-24	-24	8	0	0	0	0
χ_{59}	1080	-72	56	-60	4	-24	-24	-24	8	0	0	0	0

Table 8.6: The Character table of $2^8:(U_4(2):2)$

Table 8.6 (continue)

			2D			$_{3A}$	3B		3C			4A			4B	
	2H	4F	4G	4H	3A	6A	3B	3C	6B	6C	4I	8A	4J	4K	4L	4M
X1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
×2	-1	-1	-1	-1	1	1	1	1	1	1	-1	-1	1	1	1	1
×2	0	0	0	0	-3	-3	3	0	0	0	2	2	2	2	2	2
χ ₄	0	0	0	0	-3	-3	3	0	0	0	-2	-2	2	2	2	2
Λ4 	0	0	0	0	1	1	-2	4	4	4	0	0	2	2	2	2
7.5 X.c	3	3	3	3	6	6	3		0	0	-1	-1	3	3	3	- 3
70 X=	1	1	1	1	3	3		3	3	3	3	3	1	1	1	1
X7	-1	-1	-1	-1	-5	-5	9		0	0	-5	-5	-1	-1	-1	-1
X8 X0	-0	-5	-5	-5	3	3		3	3	3	3	3	1	1	1	1
X9 X(1-	2	1 0	2	2	-5	-0	5	1	1	1	2	3	-1	-1	-1	-1
X10	-2	-2	-2	-2	2	2	5	-1	-1	-1	-2	-2	0	0	0	0
X11 X12	0	0	0	0	7	2	2	-1	-1	-1		0		4	4	4
X12	4	4	4	4	-1	-1		3	2	2		0	0	4	4	4 0
X13 X14	-4	-4	-4	-4	6	6		3	3	3		0	0	0	0	0
X14	4	4 0	4 0	4 0	2	2	2	2	2	2		4	2	2	2	0
X15	2	2	2	2	2	2	9	2	2	2	4	4	-2	-2	-2	-2
X16	-2	-2	-2	-2	6	6	9	2	2	2	-4	-4	-2	-2	-2	-2
X17	-2	-2	-2	-2	6	6	-3	-3	-3	-3	2	2	0	0	0	0
X18	2	2	2	2	2	0 2	-3	-3	-3	-3	-2	-2		4	4	4
X19	0	0	U	U	-3	-3	-6		0	U		0	4	4	4	4
χ_{20}	0	0	0	0	-8	-8	4	-2	-2	-2		0	0	0	0	0
X21	0	0	0	0	-0	-0	4	-2	-2	-2		0	0	0	0	0
X22	0	0	2	0	-10	-10	-4	2	2	2	2	2	2	2	2	2
X23	-0	-0	-3	-3	0	0	0	0	0	0	3	3 2	-3	-3	-3	-3
χ_{24}	3	3	3	3	0	0	0	0	0	0	-3	-3	-3	-3	-3	-3
χ_{25}	0	0	0	0	9	9	0	0	0	0	0	0	2	2	2	2
χ_{26}	8	-8	0	0	3	-1	0	6	2	-2	0	0	12	-4	-4	0
χ_{27}	-8	8	0	0	3	-1	0	6	2	-2	0	0	-4	12	-4	0
χ_{28}	8	-8	0	0	3	-1	0	6	2	-2	0	0	-4	12	-4	0
χ_{29}	-8	8	0	0	3	-1	0	6	2	-2	0	0	12	-4	-4	0
χ_{30}	0	0	0	0	6	-2	0	12	4	-4	0	0	-8	-8	8	0
χ_{31}	0	0	0	0	6	NU	0	12		of the	0	0	0	0	0	0
χ_{32}	0	0	0	0	6	-2	0	12	4	-4	0	0	0	0	0	0
X33	0	0	0	0	-9	3	0	RU	0	0	0	0	-8	24	-8	0
χ_{34}	0	0	0	0	-9	3			0	0	0	0	24	-8	-8	0
χ_{35}	0	0	0	0	-9	3			0	0	0	0	-8	-8	8	0
X36	10	10	0	0	-9	3			0	0	0	0	-0	-0	0	0
X37	-10	10	0	0	24	-8		-0	-2	2	0	0	0	0	0	0
X38	10	-10	0	0	24	-8		-0	-2	2	0	0	0	0	0	0
X39	0		0	0	-18	6	0	0	0	0	0	0	0	0	0	0
χ_{40}	7	7	-1	-1	0	0		9	-3	1	3	-1	3	3	3	-1
χ41	-5 ~	-5 ~	3	-1		U		9	-3	1	-3	1	3	3	3	-1
χ42	5	5	-3	1		U		9	-3	1	3	-1	3	3	3	-1
X43	- (-7	1	1		U		9	-3 0	1	-3	1	3	3	3 C	-1
X44	-2	-2	-2	2		0		-9	ა ი	-1		0	e	0 E	0 6	-2
X45	⊿ 9	⊿ 9	⊿ ≍	-2		0		-9	о 0	-1	9	1	9	0 9	0 9	-2
X46	о 0	о 0	-ə 1	ა ა		0			0	0	3	-1	-0	-ə 9	-ə 9	1
X47	-9	-9	-1 F	ა ი		0			0	0	-3	1	-3	-ə 9	-ə 9	1
X48	-3	-ə 0	ы т	-ə 9		0			0	0	-3	1	-3	-ə ->	-ə 9	1
X49	9	9	1	-3 0		0			0	1	5	-1	-3	-3	-3	1
X50	-2	-2	-2	2		0		9	-ə 9	1	e	-2	0	0	0	0
X51	-2	-2	-2	2		0		9	-3 9	1	-0	2		0	0	0
X52	2	2	2	-2		U		9	-3 0	1	-0	2		U	0	0
<i>χ</i> 53	2	2	2	-2		U		9	-3	1	6	-2		0	0	0
X54	0	0	U	U		U			0	U		0	-0	-0	-0	2
χ_{55}	10	10	0	U		0			0	0		0	-0	-6 C	-0	2
X56	-12	-12	4	0		0			0	0	6	-2	6	0	0	-2
X57	12	12	-4	0		U			0	1	-0	2	0	0	0	-2
χ_{58}	-4	-4	-4	4		U		-9	3	-1	0	0	0	U	0	0
X 59	4	4	4	-4		0	1 0	i -9	3	-1	0	0		0	0	0

Table 8.6 (continue)

		4C			4D		5A		6A		6B	6C	6D		6E
	4N	8B	8C	40	8D	8E	5A	6D	6E	6F	12A	6G	6H	61	12B
X1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
x2	-1	-1	-1	1	1	1	1	1	1	-1	-1	-1	1	1	1
×3	-2	-2	-2	0	0	0	1	1	1	2	2	-1	1	-2	-2
×4	2	2	2	0	0	0	1	1	1	-2	-2	1	1	-2	-2
74 75	0	0	0	-2	-2	-2	0	-3	-3	0	0	0	0	0	0
7.5 7.0	-1	-1	-1	-1	-1	-1		2	2	-2	_2	1	-1	2	2
20	0	1	1	1	1	1		1	1	1	-2	2	-1	1	1
	1	1	1	1	1	1		2	2	2	2	1	1	2	2
7.8	1	1	1	1	1	1		1	1	1	1	-1	-1	1	1
X9	-1	-1	-1		0	0		2	2	1	-1		1	1	1
X10	-2	-2	-2		0	0		-2	-2	-1	-1	-1		1	1
X11		2	2		0	0		-2	-2	0	1		2	2	1
X12	0	0	0		0	0	1	2	2	1	1		-2	1	-2
X13	0	0	0		0	0	1	2	2	1	-1	2	2	1	-1
X14	0	0	0		0	0	-1	1		1	1	-2		-1	-1
X15	0	0	0		0	0		-1	-1	-1	-1	-1	-1	-1	-1
X16	0	0	0		0	0		-1	-1	1	1		-1	-1	-1
X17	2	2	2		0	0		2	2	-1	-1	-1	-1	-1	-1
X18	-2	-2	-2		0	0		2	2	1	1		-1	-1	-1
X19	0	0	0		0	0		-3	-3	0	0			0	0
X20	0	0	0		0	0	-1	0	0	2	2				0
X21	0	0	0		0	0	-1	0	0	-2	-2	-2		0	0
X22	0	1	1		1	1	0	2	2	0	0				2
X23	-1	-1	-1	-1	-1	-1	1	0	0	0	0			0	0
X24	1	1	1	-1	-1	-1		0	0	0	0			0	0
X25	0	0	0	2	2	2	0	-3	-3	0	0	0	0	0	0
X26	0	0	0	0	0	0	0	3	111	0	0			0	0
X27	0	0	0	0	0	0	0	3	-1	0	0			0	0
X28	0	0	0	0	0	0	0	3	-1	0	0	0	0	0	0
X29	0	0	0	0	0	0	0	3	-1	0	0	0	0	0	0
X30	0	0	0		0	0	0	6	-2	0	0			0	0
X31	0	0	0			UIV	0	5-0	IY of	the	0			0	0
X32	0	0	0	0	0	0	0	-6	2	0	0			0	0
X33	0	0	0		0	0	0	3	CA	0	0			0	0
X34	0	0	0		0	0		3	-1	0	0			0	0
X35	0	0	0		0	0		3	-1	0	0			0	0
X36	0	0	0	0	0	0		3	-1	0	0			0	0
X37	0	0	0	0	0	0		0	0	0	0			0	0
X38	0	0	0	0	0	0		0	0	0	0			0	0
X39	0	0	0	0	0	0	0	-6	2	0	0	0	0	0	0
X40	3	-1	-1	3	-1	-1		0	0	3	-1			3	-1
X41	1	-3	1	-3	1	1		0	0	3	-1			3	-1
X42	-1	3	-1	-3	1	1		0	0	-3	1				-1
X43	-3	1	1		-1	-1		0	0	-3	1				-1
X44	-4	4	0		0	0		0	0	3	-1			-3	1
X45	4	-4	U -		0	0		0	0	-3	1			-3	1
X46	3	-1	-1		-3	1	0	0	0	0	0	0	0	0	0
X47	1	-3	1	-1	3	-1	0	0	0	0	0	0	0	0	0
X48	-3	1	1		-3	1		0	0	0	0			0	0
X49	-1	3	-1	-1	3	-1		0	0	0	0		0	0	0
χ_{50}	-2	-2	2	0	0	0	0	0	0	-3	1	0	0	-3	1
X51	2	2	-2	0	0	0	0	0	0	-3	1	0	0	-3	1
χ_{52}	2	2	-2	0	0	0	0	0	0	3	-1	0	0	-3	1
χ_{53}	-2	-2	2	0	0	0	0	0	0	3	-1	0	0	-3	1
χ_{54}	0	0	0	2	2	-2	0	0	0	0	0	0	0	0	0
χ_{55}	0	0	0	-2	-2	2	0	0	0	0	0	0	0	0	0
χ_{56}	2	2	-2	0	0	0	0	0	0	0	0	0	0	0	0
χ_{57}	-2	-2	2	0	0	0	0	0	0	0	0	0	0	0	0
χ_{58}	0	0	0	0	0	0	0	0	0	3	-1	0	0	3	-1
χ_{59}	0	0	0	0	0	0	0	0	0	-3	1	0	0	3	-1

Table 8.6 (continue)

	6F		6G				8A		9A	10A	12A			12B	
	6J	6K	12C	12D	8F	8G	8H	8I	9A	10A	12E	12F	12G	12H	12I
X1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	-1	-1	-1	-1	-1	-1	1	-1	-1	1	1	1	1
X3	-1	0	0	0	0	0	0	0	0	1	-1	-1	-1	-1	-1
X4	-1	0	0	0	0	0	0	0	0	-1	1	-1	-1	-1	-1
χ_5	2	0	0	0	0	0	0	0	1	0	0	-1	-1	-1	-1
χ_6	-1	0	0	0	1	1	1	1	0	0	-1	0	0	0	0
X7	0	-1	-1	-1	1	1	1	1	0	0	0	-1	-1	-1	-1
X8	-1	0	0	0	-1	-1	-1	-1	0	0	1	0	0	0	0
X9	0	1	1	1	-1	-1	-1	-1	0	0	0	-1	-1	-1	-1
X10	1	1	1	1	0	0	0	0	-1	0	1	0	0	0	0
X11	1	-1	-1	-1	0	0	0	0	-1	0	-1	0	0	0	0
X12	2	0	0	0	0	0	0	0	-1	0	0	1	1	1	1
X13	0	-1	-1	-1	0	0	0	0	0	1	0	0	0	0	0
X14	0	1	1	1	0	0	0	0	0	-1	0	0	0	0	0
X15	-1	-1	-1	-1	0	0	0	0	0	0	1	1	1	1	1
X16	-1	1	1	1	0	0	0	0	0	0	-1	1	1	1	1
X17	1	1	1	1		0	0	0	0	0	-1	0	0	0	0
X18		-1	-1	-1		0	0	0				0	0	0	0
X19	-2	0	0	0		U	0	U				1	1	1	1
X20			0	0		0	0	0	1	-1		0	0	U	0
X21	0	0	0	0		0	0	0	1		0	0	0	0	0
×22	0	0	0	0	1	1	1	1	-1	_1	0	0	0	0	0
X23	0	0	0	0	-1	-1	-1	.1	0	-1	0	0	0	0	0
X24 X25	0	0	Ő	0	0	0	0	0	0	0	0	-1	-1	-1	-1
×26	0	2	-2	0	2	0	-2	0	0	0	0	3	-1	-1	-1
X20	0	-2	2	0	2	0	-2	0		0	0	-1	-1	-1	3
X28	0	2	-2	0	-2	0	2	0	0	0	0	-1	-1	-1	3
X29	0	-2	2	0	-2	0	2	0	0	0	0	3	-1	-1	-1
X30	0	0	0	0	0	0	0	0	0	0	0	-2	2	2	-2
X31	0	0	0	0	0	A	0	-A	0	0	0	0	0	0	0
X32	0	0	0	0	0	-A	-0	S_A	Y 00	the	0	0	0	0	0
X33	0	0	0	0	0	0	0	0	0	0 0	0	1	1	1	-3
X34	0	0	0	0	0	0	0	0	0	0	0	-3	1	1	1
X35	0	0	0	0	0	0	0	0	0	0	0	1	B	\overline{B}	1
X36	0	0	0	0	0	0	0	0	0	0	0	1	\overline{B}	B	1
X37	0	2	-2	0	0	0	0	0	0	0	0	0	0	0	0
X38	0	-2	2	0	0	0	0	0	0	0	0	0	0	0	0
X39	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X40	0	1	1	-1	1	-1	1	-1	0	0	0	0	0	0	0
X41	0	1	1	-1	-1	1	-1	1	0	0	0	0	0	0	0
X42	0	-1	-1	1	1	-1	1	-1	0	0	0	0	0	0	0
X43	0	-1	-1	1	-1	1	-1	1	0	0	0	0	0	0	0
X44	0	1	1	-1		0	0	0	0	0	0	0	0	0	0
χ_{45}	0	-1	-1	1		0	0	0	0	0	0	0	0	0	0
X46	0	0	0	0	-1	1	-1	1	0	0	0	0	0	0	0
X47		0	0	U		-1	1	-1				0	0	0	0
X48		0	0	U		-1	1	-1				0	0	0	0
X49	0	1	1	1	-1	1	-1	1	0	0	0	0	0	0	0
X50	0	1	1	-1		0	0	0	0	0	0	0	0	0	0
×51	0	_1	_1	-1		0	0	0	0	0	0	0	0	0	0
X52	0	-1	-1	1	0	0	0	0	0	0	0	0	n	0	0
1.03 YEA	0	0	-1	0		0	0	0	0		0	0	0	0	0
χ ₅₅	0	0	0	0		0	0	0	0	0	0	0	0	0	0
100 XE6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X57	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X58	0	-1	-1	1	0	0	0	0	0	0	0	0	0	0	0
X59	0	1	1	-1	0	0	0	0	0	0	0	0	0	0	0
	1	1			whe	ere $A =$	$2i\sqrt{2}$ a	and B =	= -1 -	$2i\sqrt{3}$					

120

The information in Table 8.2 can be used to compute the power maps for the conjugacy classes of elements of \overline{G} and Programme C is used to confirm that the character table of \overline{G} produced the unique p-power maps listed in Table 8.7.

$[g]_G$	$[x]_{\overline{G}}$	2	3	5	$[g]_G$	$[x]_{\overline{G}}$	2	3	5
1A	1A				2A	2C	1A		
	2A	1A				4A	2B		
	2B	1A							
2B	2D	1A			2C	2G	1A		
	2E	1A				4C	2B		
	2F	1A				4D	2B		
	4B	2B				4E	2B		
2D	2H	1A			3A	3A		1A	
	4F	2B				6A	3A	2A	
	4G	2B							
	4H	2A							
3B	3B		1A		3C	3C		1A	
						6B	3C	2A	
						6C	3C	2B	
4A	4I	2G			4B	4J	2D		
	8A	4C		-	_	4K	2D		
		Ģ	2			4L	2D		
		1				4M	2E		
4C	4N	2G			4D	4O	2G		
	8B	4C				8D	$4\mathrm{C}$		
	8C	4C				8E	$4\mathrm{E}$		
5A	5A			1A	6A	6D	$_{3A}$	2D	
		1				6E	3A	2E	
6B	6F	3C	2D	VERS	6C	6G	3B	2D	
	12A	6C	4B						
6D	6H	3B	2C	TER	6E	61	3C	2C	
						12B	6C	4A	
6F	6J	3B	2G		6G	6K	3C	2H	
						12C	6C	$4\mathrm{F}$	
						12D	6B	$4\mathrm{H}$	
8A	8F	4J			9A	9A		$_{3A}$	
	8G	4M							
	8H	4K							
	81	4M							
10A	10A	5A		2C	12A	12E	6J	4I	
12B	12F	6D	4J						
	12G	6D	4K						
	12H	6D	4L						
	12I	6D	4L						

Table 8.7: The power maps of the elements of $2^8:(U_4(2):2)$

8.5 The fusion of $2^8:(U_4(2):2)$ into $2^8:Sp_6(2)$

Since $U_4(2):2$ is a subgroup of $Sp_6(2)$, then its fusion into $Sp_6(2)$ (see Table 8.8) will help to determine the fusion of \overline{G} into $2^8:Sp_6(2)$ by using the proposition below which is obtained from [53].

Proposition 8.5.1. Let G, H and N be groups such that $H \leq G$ and that class kA of H fuses into class kB of G. Let $a \in kA$ and $b \in kB$. Then the classes of N:H corresponding to the coset Na will fuse into the classes of N:G corresponding to the coset Nb.

Remark 8.5.2. When H and G act on N, then a and b will have the same number fixed points in N. This is true since a and b are conjugate in G and thus will have the same number of fixed points in N.

$[g]_{U_4(2):2} \longrightarrow$	$[g_1]_{SP(6,2)}$	$[g]_{U_4(2):2}$	$\longrightarrow [g_1]_{SP(6,2)}$	$[g]_{U_4(2):2} \longrightarrow$	$[g_1]_{SP(6,2)}$	$[g]_{U_4(2):2} \ \longrightarrow \ $	$[g_1]_{SP(6,2)}$
1A	1A	3C	3C	6A	6E	6G	6B
2A	2A	4A	4B	6B	6C	8A	8A
2B	2B	4B	4C	-6C	6E	9A	9A
2C	2C	4C	4D	6D me	6B	10A	10A
2D	2D	4D	WES4BER	6EAPE	6A	12A	12A
3A	3C	5A	5A	6F	6E	12B	12C
3B	3C						

Table 8.8: The fusion of $U_4(2)$:2 into SP(6,2)

Since \overline{G} has index 28 in \overline{G}_1 , the action of \overline{G}_1 on the cosets of \overline{G} gives rise to a permutation character $\chi(\overline{G}_1|\overline{G})$ of degree 28. We deduce from the character table of \overline{G} found in [4] (or the GAP Library) that $\chi(\overline{G}_1|\overline{G}) = 1a + 27a$, where 1a and 27a are irreducible characters of \overline{G}_1 of degrees 1 and 27, respectively.

Using the values of $\chi(\overline{G}_1|\overline{G})$ on the classes of \overline{G} , the information provided by the conjugacy classes, Proposition 8.51 and Remark 8.52 we are able to compute the partial fusion map of \overline{G} into \overline{G}_1 . In order to complete the fusion map, we use the technique of set intersections for characters to restrict the ordinary irreducible characters 120*a*, 135*a*, 405*c* and 810b of \overline{G}_1 to \overline{G} . We obtained that $(\phi_1)_{2^8:(U_4(2):2)} = \chi_{26}, (\phi_2)_{2^8:(U_4(2):2)} = \chi_{40}, (\phi_3)_{2^8:(U_4(2):2)} = \chi_{48}$ and $(\phi_4)_{2^8:(U_4(2):2)} = \chi_{55}$ if the partial fusion of $2^8:(U_4(2):2)$ into $2^8:SP_6(2)$ is taken into consideration. The complete fusion map of \overline{G} into \overline{G}_1 is listed in Table 8.9.

$[g]_G$	$[x]_{2^8:(U_4(2):2)}$	\rightarrow $[y]_{2^8:Sp_6(2)}$	$[g]_G$	$[x]_{2^8:(U_4(2):2)}$	$\longrightarrow [y]_{2^8:Sp_6(2)}$
1A	1A	1A	2A	2C	2C
	2A	2A		4A	4A
	2B	2B			
2B	2D	2D	2C	2G	2G
	2E	2E		4C	4C
	2F	2F		4D	4D
	4B	4B		4E	4D
2D	2H	2H	3A	3A	3B
	4F	4E		6A	6A
	4G	4F			
	4H	4G			
3B	3B	3A	3C	3C	3C
				6B	6B
				6C	6C
4A	4I	4M	4B	4J	4H
	8A	8B		4K	4I
				4L	4J
				4M	4K
4C	4N	4L	4D	40	4S
	8B	8A		8D	8C
	8C	8A		8E	8D
		,		<u> </u>	
5A	5A	5A	6A	6D	6F
		UNIVER	SITY	6E	6G
			37 2	ATT	
6B	6F	$WE S_{6I} ER$	-6C	6G	6E
ļ	12A	12A			
6D	6H	6D	6E	6I	6J
				12B	12B
6F	6J	6H	6G	6K	6K
				12C	12C
				12D	12D
8 <i>A</i>	8F	8E	9A	9A	9A
	8G	8G			
	8H	8F			
	81	8G			
10A	10A	10A	12A	12E	12F
12B	12F	12G			
	12G	12H			
	12H	12J			
	12I	12I			

Table 8.9: The fusion of $2^8:(U_4(2):2)$ into $\overline{G} = 2^8:Sp_6(2)$

Chapter 9

The Character Table of an inertia group of the maximal subgroup $2^6:Sp_6(2)$ of Fi_{22}

In the ATLAS we found that $N_{Fi_{22}}(2^6) \cong 2^6:SP_6(2)$ is a maximal subgroup of the smallest Fischer sporadic simple group (discovered by Bernd Fischer) of index 694980. Here 2^6 is a pure 2*B*-group, where 2*B* denotes a class of involutions in Fi_{22} . The character table of $2^6:SP_6(2)$ was constructed by J. Moori and Z.E. Mpono in [48] and it was also shown in this paper that a group \overline{G} of the form $2^6:(2^5:S_6)$ is the inertia group in $2^6:SP_6(2)$ of one of the linear characters of the normal 2^6 subgroup. This group \overline{G} of index 63 in $2^6:SP_6(2)$ is a split extension of an elementary abelian 2-group of order 2^6 by the centralizer of a transvection in $SP_6(2)$, which has the form $2^5:S_6 \cong 2^5:SP_4(2)$. In this chapter the character table of $\overline{G} = 2^6:(2^5:S_6)$ is calculated. The methodology in the paper [48], as in the current chapter, is a standard application of Clifford theory, made efficient by the use of Fischer-Clifford matrices, as introduced by Fischer to assist in such calculations.

The character table of a submaximal subgroup $\overline{H_3} = 2^7:(2^5:S_6)$ of $Aut(Fi_{22})$ was com-

puted in [27] by the method of Fischer-Clifford matrices. This group $\overline{H_3}$ is a direct product of the group $\overline{G} = 2^6:(2^5:S_6)$ by cyclic group group C_2 of order 2. In general it is always more difficult to construct the character table of any inertia group $N:H_i$ of an appropriate split extension N:G. In Section 9.1 of this chapter it is shown how we can use Wilson's online ATLAS and MAGMA to represent \overline{G} as a permutation group within $2^6:SP_6(2)$. Appropriate MAGMA commands are then used to confirm that \overline{G} sits maximally inside $2^6:SP_6(2)$ and that \overline{G} is indeed the split extension 2^6 by $2^5:S_6$. The remainder of this chapter consists largely of data concerning conjugacy classes, inertia groups, and Fischer-Clifford matrices, with descriptions of the methods used for the computations, which were assisted by the use Programme A in the computer package MAGMA. Consistency checks for the actual character table of \overline{G} were implemented using Programme C, written in GAP. Finally the technique of set intersections is used to determine the fusion of \overline{G} into $2^6:SP_6(2)$.

Using the Wilson's online ATLAS we can obtain a permutation representation of degree 3510 of Fi_{22} . Then the MAGMA straight line program in [70] is used to generate $D = 2^6:SP_6(2)$ as a permutation group inside Fi_{22} . The MAGMA commands "c:=Classes(D)" and "C=:Centralizer(D,c[2,3])" are used to construct $\overline{G} = 2^6:(2^5:S_6)$ as the centralizer $C_D(2A)$ of the conjugacy class 2A of D. The further MAGMA commands "IsMaximal(D,C)" and "Index(D,C)" are a confirmation that the group C sits maximally inside D and has index 63 in D. We use similar commands as in Section 6.1 to confirm that $C = C_D(2A)$ is a split extension of 2^6 by $2^5:S_6$. We generated $2^5:S_6$ as a linear group, consisting of 6×6 matrices over the field GF(2), by the two elements $g_1 \in 2B$ and $g_2 \in 12A$ in $Sp_6(2)$.

	(0	1	0	0	0	1	(´ 1	0	0	0	0	0)
	0	0	1	0	0	0		1	0	0	1	1	0
a. –	1	0	1	0	1	1		1	1	1	1	0	0
91-	0	0	1	0	0	1	92-	1	0	0	0	1	0
	1	0	1	1	1	0		0	0	1	0	1	0
	0	1	0	0	1	1)		1	1	0	1	0	1)

The class representatives of each class $[g]_{2^5:S_6}$ of $2^5:S_6$ are given in terms of 6×6 matrices over GF(2) and in total there are 37 conjugacy classes of elements and are listed in Table 9.1.

$1A \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ \end{pmatrix} 1 2A \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{pmatrix} 30 2E \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{pmatrix} 30 2E \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{pmatrix} 60 2G \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ \end{pmatrix} 60 30 30 30 30 30 30 30$	$[g]_{2^{5}:S_{6}}$	Class representative $ [g]_{2^5:S_6} $	$[g]_{2^5:S_{\overline{6}}}$ Class representative	$ [g]_{2^5:S_6} $
$2B \qquad \begin{pmatrix} 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \end{pmatrix} \qquad 15 \qquad 2C \qquad \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} \qquad 30 \qquad 2E \qquad \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} \qquad 30 \qquad 2E \qquad \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} \qquad 30 \qquad 2F \qquad \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \qquad 60 \qquad 2G \qquad \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 & 1 \end{pmatrix} \qquad 60$	1A	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2A \\ \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}$	1
$2D \qquad \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} \qquad 30 \qquad 2E \qquad \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} \qquad 30$ $2F \qquad \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \qquad 60 \qquad 2G \qquad \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \end{pmatrix} \qquad 60$	2B	$\left(\begin{array}{cccccccccccc} 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 0 \end{array}\right) $ 15	$2C \qquad \left(\begin{array}{cccccc} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{array} \right)$	15
$2F \qquad \left(\begin{array}{ccccccc} 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{array} \right) \qquad 60 \qquad 2G \qquad \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	2D	$\left(\begin{array}{cccccccccccc} 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{array}\right)$ 30	$2E \qquad \left(\begin{array}{cccccc} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{array} \right)$	30
	2F	$\left(\begin{array}{ccccccccc} 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{array}\right) $ 60	$2G \qquad \left(\begin{array}{ccccccc} 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{array} \right)$	60
$2H \qquad \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	2H	$\left(\begin{array}{ccccccccccc} 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{array}\right)$ 180	$2I \qquad \left(\begin{array}{cccccc} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 \end{array}\right)$	180

Table 9.1: The conjugacy classes of $2^5:S_6$

$[g]_{2^5:S_6}$	Class representative	$ [g]_{2^5:S_6} $	$[g]_{2^5:S_6}$	Class representative	$ [g]_{2^5:S_6} $
2J	$\left(\begin{array}{ccccccc} 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \end{array}\right)$	180	3A	$\left(\begin{array}{cccccccccccc} 1 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{array}\right)$	160
3 <i>B</i>	$\left(\begin{array}{ccccccc} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{array}\right)$	640	4A	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	120
4B	$\left(\begin{array}{ccccccc} 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \end{array}\right)$	120	4C	$\left(\begin{array}{ccccccccc} 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{array}\right)$	180
4D	$\left(\begin{array}{ccccccccc} 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 \end{array}\right)$	180	4E	$\left(\begin{array}{cccccccc} 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 1 \end{array}\right)$	360
4F	$\left(\begin{array}{cccccccccccc} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{array}\right)$	720	4G	$\left(\begin{array}{cccccccccc} 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{array}\right)$	720
4H	$\left(\begin{array}{cccccccc} 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 \end{array}\right)$	720	41	$\left(\begin{array}{ccccccccccc} 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{array}\right)$	720
4J	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	720	5A	$\left(\begin{array}{ccccccc} 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \end{array}\right)$	2304

Table 9.1 (continue)

$[g]_{2^5:S_6}$	Class representative	$ [g]_{2^5:S_6} $ $[g]_{2^5:S_6}$	Class representative	$ [g]_{2^5:S_6} $
6A	$\left(\begin{array}{ccccccccc} 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{array}\right)$	160 6 <i>B</i>	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	480
6C	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	480 6 <i>D</i>	$\left(\begin{array}{cccccccccc} 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \end{array}\right)$	640
6E	$\left(\begin{array}{cccccccc} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 & 1 \end{array}\right)$	960 6 <i>F</i>	$\left(\begin{array}{ccccccccc} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \end{array}\right)$	960
6G	$\left(\begin{array}{cccccccc} 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \end{array}\right)$	1920 6H	$\left(\begin{array}{cccccccc} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 \end{array}\right)$	1920
8A	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	ESTERNC. 1440 8 <i>B</i>	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	1440
10A	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2304 12.4	$\left(\begin{array}{ccccccccccc} 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 \end{array}\right)$	960
12 <i>B</i>	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	960		

Table 9.1 (continue)

9.2 The conjugacy classes of $2^6:(2^5:S_6)$

In this section the conjugacy classes of $\overline{G} = 2^6:(2^5:S_6)$ are determined by the method of coset analysis as it was used in the previous three chapters.

Let $\overline{G} = 2^6:(2^5:S_6)$ be the split extension of $N = 2^6$ by $G = 2^5:S_6$. Having obtained $G = \langle g_1, g_2 \rangle$ as a matrix group, we act G on the conjugacy classes of $N \cong V_6(2)$, where $V_6(2)$ is the vector space of dimension 6 over the Galois field GF(2). As a result of this action, we obtain that the elements of N are partitioned into 4 orbits with respective lengths of 1,1, 30 and 32. With the aid of MAGMA and the ATLAS, we are able to identify the structures of the stabilizers corresponding to the 4 orbits of elements of N. The point stabilizers, which are subgroups of G, are identified as $P_1 = 2^5:S_6$, $P_2 = 2^5:S_6$, $P_3 = 2^4:S_5$ and $P_4 = S_6$.

Let $\chi(2^5:S_6|2^6)$ be the permutation character of $2^5:S_6$ on 2^6 . We obtain that $\chi(2^5:S_6|2^6) = I_{2^5:S_6}^{2^5:S_6} + I_{2^5:S_6}^{2^5:S_6} + I_{2^4:S_5}^{2^5:S_6} + I_{2^4:S_5}^{2^5:S_6} = \chi(L_3(4):3|P_1) + \chi(L_3(4):3|P_2) + \chi(L_3(4):3|P_3) + \chi(L_3(4):3|P_4) = 1a + (1a + 5b + 6b + 15b) + (1a + 9a + 10f + 15b) = 4 \times 1a + 5b + 6b + 9a + 10f + 2 \times 15b$, which is the sum of the identity characters of the point stabilizers induced to $2^5:S_6$ are the permutation characters of $2^5:S_6$ on the point stabilizers.

The values of $\chi(2^5:S_6|2^6)$ on the different classes of $2^5:S_6$ determine the number k of fixed points of each $g \in 2^5:S_6$ in 2^6 (see Table 9.2). The value of k is the number of orbits formed as N acts on a coset Ng. Then the action of $C_G(g)$ determines the fusion of f_j of these k orbits. These values of the f'_js are calculated by programme A. Programme B is used to compute the order of the elements for each conjugacy class [x] in \overline{G} . Since we have determined all the necessary information, the centralizer order $|C_{\overline{G}}(x)| = \frac{k|C_G(g)|}{f_j}$ for each class [x] of \overline{G} is obtained. See Table 9.3 for all the information about the conjugacy

•

$[h]_{2^5:S_6}$	1A	2A	2B	2C	2D	2E	2F	2G	2H	2I	2J	3A	
$\chi(2^5:S_6 2^5:S_6)$	1	1	1	1	1	1	1	1	1	1	1	1	
$\chi(2^5:S_6 2^5:S_6)$	1	1	1	1	1	1	1	1	1	1	1	1	
$\chi(2^5:S_6 2^4:S_5)$	30	30	14	14	14	14	6	6	6	6	6	6	
$\chi(2^5:S_6 S_6)$	32	0	0	0	0	16	8	0	0	8	0	8	
k	64	32	16	16	16	32	16	8	8	16	8	16	
$[h]_{25:S_6}$	3B	4A	4B	4C	4D	4E	4F	4G	4H	4I	4J	5A	
$\chi(2^5:S_6 2^5:S_6)$	1	1	1	1	1	1	1	1	1	1	1	1	
$\chi(2^5:S_6 2^5:S_6)$	1	1	1	1	1	1	1	1	1	1	1	1	
$\chi(2^5:S_6 2^5:S_4)$	0	6	6	2	2	2	2	2	2	2	2	0	
$\chi(2^5:S_6 S_6)$	2	0	0	0	0	0	0	0	0	4	4	2	
k	4	8	8	4	4	4	4	4	4	8	8	4	
$[h]_{2^5:S_6}$	6A	6B	6C	6D	6E	6F	6G	6H	8A	8B	10A	12A	12B
$\chi(2^5:S_6 2^5:S_6)$	1	1	1	1	1	1	1	1	1	1	1	1	1
$\chi(2^5{:}S_6 2^5{:}S_6)$	1	1	1	1	1	1	1	1	1	1	1	1	1
$\chi(2^5:S_6 2^5:S_4)$ $\chi(2^5:S_6 S_6)$	6 0	$2 \\ 0$	$2 \\ 0$	0 0	2 2	2 0	0 0	0 1	0 0	0 0	0 0	0 0	0 0
$\chi(2^5:S_6 S_6)$	0	0	₀ U	N		₹S ₀ I′	Γγ	of the	0	0	0	0	0
k	8	4	4	2	8	RN 4	2	4	2	2	2	2	2

Table 9.2: The values of $\chi(2^5{:}S_6|2^6)$ on the different classes of $2^5{:}S_6$

$[g]_{2^5:S_6}$	k	f_j	d_j	w	$[x]_{2^6:(2^5:S_6)}$	$[x]_{2^6:(2^5:S_6)} $	$ C_{2^{6}:(2^{5}:S_{6})}(x) $
1A	64	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0)	1A	1	1474560
		$f_2 = 1$	(1, 0, 1, 0, 0, 1)	(1, 0, 1, 0, 0, 1)	2A	1	1474560
		$f_3 = 30$	(0, 1, 0, 0, 0, 0)	(0, 1, 0, 0, 0, 0)	2B	30	49152
		$f_4 = 32$	(1, 0, 0, 0, 0, 0)	(1,0,0,0,0,0)	2C	32	46080
2A	32	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0)	2D	2	737280
		$f_2 = 15$	(0, 1, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0)	2E	30	49152
		$f_3 = 16$	(1, 0, 0, 0, 0, 0)	(1, 0, 1, 0, 0, 0)	4A	32	46080
2B	16	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0)	2F	60	24576
		$f_2 = 3$	(1, 1, 1, 1, 1, 0)	(0, 0, 0, 0, 0, 0, 0)	2G	180	8192
		$f_3 = 4$	(0, 0, 0, 1, 1, 1)	(1, 0, 1, 0, 0, 1)	4B	240	6144
		$f_4 = 8$	(1, 0, 0, 0, 0, 0)	(0, 1, 0, 0, 1, 0)	4C	480	3072
2C	16	$f_1 = 1$	(0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0)	2H	60	24576
		$f_2 = 3$	(0, 1, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0)	21	180	8192
		$f_3 = 4$	(1, 1, 0, 0, 1, 1)	(1, 0, 1, 0, 0, 1)	4 <i>D</i>	240	6144
		$f_4 = 8$	(1, 0, 0, 0, 0, 0)	(0, 1, 1, 0, 0, 0)	4E	480	3072
2D	16	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0)	2.J	120	12288
		$f_2 = 3$	(1, 0, 0, 0, 0, 1)	(0, 0, 0, 0, 0, 0, 0)	2K	360	4096
		$f_3 = 4$	(1, 0, 0, 0, 0, 0)	(0, 1, 1, 0, 0, 0)	4F	480	3072
		$f_4 = 4$	(1, 1, 1, 1, 0, 0)	(1, 1, 0, 0, 0, 1)	4G	480	3072
		$f_5 = 4$	(1, 0, 1, 0, 1, 0)	(1, 0, 1, 0, 0, 1)	4H	480	3072
2E	32	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0)	2L	60	24576
		$f_2 = 1$	(1, 1, 0, 0, 0, 1)	(0, 0, 0, 0, 0, 0, 0)	2M	60	24576
		$f_3 = 6$	(1, 0, 0, 0, 0, 1)	(0, 0, 0, 0, 0, 0)	2N	360	4096
		$f_4 = 8$	(1, 1, 0, 0, 1, 1)	(0, 1, 1, 0, 0, 0)	4I	480	3072
		$f_5 = 8$	(0, 1, 0, 0, 1, 1)	(0, 1, 1, 0, 0, 0)	$Y o ^{4Jhe}$	480	3072
		$f_6 = 8$	(0, 1, 0, 0, 0, 1)	(0, 0, 0, 0, 0, 0, 0)	20	480	3072
			WE	STERN	CAPE		
2F	16	$f_1 = 1$	(0,0,0,0,0,0)	(0,0,0,0,0,0)	2P	240	6144
		$f_2 = 1$	(1, 1, 1, 1, 1, 0)	(0,0,0,0,0,0)	2Q	240	6144
		$f_3 = 2$	(1, 1, 1, 1, 0, 1)	(0, 0, 0, 0, 0, 0, 0)	2R	480	3072
		$f_4 = 6$	(1, 1, 1, 1, 1, 1, 1)	(0, 0, 0, 1, 0, 1)	4K	1440	1024
		$f_5 = 6$	(0, 1, 1, 1, 1, 1)	(1, 1, 1, 0, 1, 1)	4L	1440	1024
2G	8	$f_1 = 1$	(0,0,0,0,0,0)	(0,0,0,0,0,0)	25	480	3072
		$f_2 = 1$	(1, 0, 0, 1, 1, 1)	(1, 0, 1, 0, 0, 1)	4M	480	3072
		$f_3 = 3$	(1, 1, 1, 1, 1, 1, 1)	(1, 1, 1, 1, 1, 0)	4N	1440	1024
		$f_4 = 3$	(1, 1, 1, 1, 0, 0)	(1, 0, 1, 1, 0, 0)	40	1440	1024
24		$f_{1} = 1$			977	1440	1024
211	°	$f_{1} = 1$	(0, 0, 0, 0, 0, 0, 0)			1440	1024
		$J_2 = 1$ $f_0 = 1$	(1, 1, 1, 0, 1, 1)	(1,0,0,0,0,1)	41	1440	1024
		$J_3 = 1$ $f_4 = 1$	(1, 1, 1, 1, 0, 0)	(1, 1, 0, 0, 0, 1)	400	1440	1024
		$f_{\pi} = 1$	(1, 1, 1, 1, 1, 0)		45	2880	519
		$f_6 = 2$	(1, 1, 1, 1, 1, 0, 1)	(1, 0, 0, 0, 0, 1) (1, 1, 1, 0, 0, 1)	4T	2880	512
							-

Table 9.3: The conjugacy classes of elements of the groups $2^6:(2^5:S_6)$

 $[g]_{2^{5}:S_{6}}$ $[x]_{2^6:(2^5:S_6)}$ ${}^{[x]}_{2^6:(2^5:S_6)}|$ $_{k}$ f_j d_{j} w $|C_{2^6:(2^5:S_6)}(x)|$ 2I16(0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0)2U2048 $f_1 = 1$ 720 (0, 1, 1, 1, 0, 1)(0, 0, 0, 0, 0, 0)2V7202048 $f_2 = 1$ (0, 1, 1, 1, 1, 1)(1, 0, 1, 1, 1, 0)4U1440 1024 $f_3 = 2$ $f_4 = 2$ (1, 1, 1, 1, 1, 1) $\left(1,0,1,1,1,0\right)$ 4V14401024 $f_5 = 2$ (1, 1, 1, 1, 0, 1)2W1024 (0, 0, 0, 0, 0, 0)1440 $f_6 = 4$ (1, 1, 1, 1, 0, 0)(1, 1, 0, 1, 0, 0)4W2880 512 $f_7 = 4$ (1, 0, 1, 1, 1, 1)(1, 1, 0, 1, 0, 0)4X28805122J(0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0)2X1024 8 $f_1 = 1$ 1440 $f_2 = 1$ (1, 1, 1, 1, 0, 1)(1, 0, 1, 0, 0, 1)4Y1440 1024 $f_3 = 1$ (1, 1, 1, 0, 0, 1)(1, 0, 1, 1, 1, 0)4Z14401024 $f_4 = 1$ (1, 1, 1, 1, 1, 1)(0, 0, 0, 1, 1, 1)1024 4AA1440 $f_5 = 2$ (1, 1, 1, 1, 1, 0)(0, 1, 1, 0, 1, 0)4AB2880 512 $f_6 = 2$ (1, 1, 0, 1, 1, 1)(1, 1, 0, 0, 1, 1)4AC2880 5123A(0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0)2304 16 $f_1 = 1$ 3A640 (1, 0, 1, 0, 0, 1)(1, 0, 1, 0, 0, 1)6A640 2304 $f_2 = 1$ $f_3 = 6$ $\left(0,0,0,1,0,0\right)$ $\left(0,0,0,0,1,1\right)$ 6B3840384(0, 0, 0, 0, 0, 1)6C $f_4 = 8$ $\left(0,0,0,0,0,1\right)$ 51202883B(0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0)3B102401444 $f_1 = 1$ $f_2 = 1$ (1, 0, 1, 0, 0, 1)(1, 0, 1, 0, 0, 1)6D10240144(1, 0, 0, 0, 0, 0)6E $\left(1,0,0,0,0,0\right)$ 20480 $f_3 = 2$ 724A8 $f_1 = 1$ (0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0)4AD 960 1536 $f_2 = 3$ (1, 0, 0, 0, 0, 1)(0, 0, 0, 0, 0, 0, 0)4AE2880 5124AF(0, 0, 0, 0, 0, 0)(1, 0, 0, 0, 0, 0) $f_3 = 4$ 3840 384 4B8 $f_1 = 1$ (0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0)4AG2880 15364AH $f_2 = 3$ (0, 1, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0)2880 512(1, 0, 0, 0, 0, 0)(1, 0, 1, 0, 0, 1)8A3840 384 $f_3 = 4$ 4C4 $f_1 = 1$ (0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0)4AI2880 512 $f_2 = 1$ (1, 0, 0, 1, 0, 0)(0, 0, 0, 0, 0, 0, 0)4AJ2880 512 $f_3 = 2$ (1, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0)4AK3840 2564D4 $f_1 = 1$ $\left(0,0,0,0,0,0\right)$ $\left(0,0,0,0,0,0\right)$ 4AL2880 512(1, 0, 0, 1, 0, 0)4AM(0, 0, 0, 0, 0, 0)2880 512 $f_2 = 1$ (0, 0, 1, 0, 0, 1)(0, 0, 0, 0, 0, 0)4AN $f_3 = 2$ 5760256 $\left(0,0,0,0,0,0\right)$ 4E4 $f_1 = 1$ $\left(0,0,0,0,0,0\right)$ 4AO5760256 $f_2 = 1$ 4AP5760(1, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0)256(1, 0, 0, 0, 0, 1)4AQ5760256 $f_3 = 1$ (0, 0, 0, 0, 0, 0) $f_4 = 1$ $\left(1,0,0,0,1,0\right)$ (0, 0, 0, 0, 0, 0, 0)4AR5760256

Table 9.3 (continue)
$[g]_{25:S_6}$	k	f_j	d_{j}	w	$[x]_{2^6:(2^5:S_6)}$	$[x]_{2^6:(2^5:S_6)} $	$ C_{2^{6}:(2^{5}:S_{6})}(x) $
4F	4	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0)	4AS	11520	128
		$f_2 = 1$	(1, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0)	4AT	11520	128
		$f_3 = 1$	(0, 1, 0, 0, 0, 0)	(1, 0, 1, 1, 1, 0)	88	11520	128
		$f_4 = 1$	(1, 1, 0, 0, 0, 0)	(1, 0, 1, 1, 1, 0)	8C	11520	128
4G	4	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0)	4AU	11520	128
		$f_2 = 1$	(0, 0, 0, 1, 1, 0)	(1, 0, 1, 0, 0, 1)	8D	11520	128
		$f_3 = 1$	(1, 1, 0, 0, 0, 1)	(0, 0, 0, 0, 0, 0, 0)	4AV	11520	128
		$f_4 = 1$	(1, 1, 0, 1, 1, 1)	(1, 0, 1, 0, 0, 1)	8E	11520	128
4.77		6 1			4 4 117	11500	100
411	4	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0)	4AW	11520	128
		$J_2 = 1$	(1, 0, 0, 0, 1, 0)	(1, 0, 1, 0, 1, 1)		11520	128
		$f_3 = 1$	(0, 1, 0, 0, 0, 1) (1, 1, 0, 0, 1, 1)	(0, 0, 0, 0, 0, 0, 0)	4AA 8C	11520	128
		<i>J</i> 4 – 1	(1, 1, 0, 0, 1, 1)	(1, 0, 1, 0, 1, 1)	80	11520	120
4I	8	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0)	4AY	5760	256
		$f_{2} = 1$	(1, 0, 1, 0, 0, 1)	(0, 0, 0, 0, 0, 0, 0)	4AZ	5760	256
		$f_3 = 2$	(1, 0, 0, 0, 1, 0)	(1, 0, 1, 0, 1, 1)	8H	11520	128
		$f_4 = 2$	(1, 1, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0)	4BA	11520	128
		$f_5 = 2$	(1, 1, 0, 0, 1, 1)	(0, 0, 1, 0, 0, 0)	81	11520	128
4J	8	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0)	4BB	5760	256
		$f_2 = 1$	(1, 0, 1, 1, 1, 0)	(0, 0, 0, 0, 0, 0, 0)	4BC	5760	256
		$f_3 = 2$	(1, 0, 0, 0, 0, 0)	(0, 0, 0, 1, 1, 1)	Y 0 ₈ J ¹⁰	11520	128
		$f_4 = 2$	(1, 1, 1, 1, 0, 0, 1)	$\left(0,0,0,1,1,1 ight)$	$C \land ^{8K}$	11520	128
		$f_5 = 2$	(1, 1, 0, 0, 1, 1)	(0, 0, 0, 0, 0, 0)	4BD	11520	128
5A	4	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0)	5A	36864	40
		$f_2 = 1$	(1, 0, 1, 0, 0, 1)	(1, 0, 1, 0, 0, 1)	10A	36864	40
		$f_3 = 2$	(1, 0, 0, 0, 0, 0)	(1, 1, 0, 0, 0, 0)	10B	73728	20
					0.7	1000	
6A	8	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0)	6F	1280	1152
		$f_2 = 3$	(1, 1, 0, 0, 0, 1)	(0, 0, 0, 0, 0, 0, 0)	6G	3840	384
		$J_3 = 4$	(1, 0, 0, 0, 0, 0, 0)	(1, 0, 1, 0, 0, 1)	12A	5120	288
6 P	4	$f_{1} = 1$			6 11	7680	102
00	4	$f_0 = 1$	(0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0)	128	7680	192
		$f_2 = 1$ $f_2 = 2$	(1, 0, 1, 1, 0, 1)	(1, 0, 1, 0, 0, 1) (0, 1, 1, 0, 0, 0)	12D	15360	96
		J3 — -	(-, -, -, -, -, 0, -)	(-, -, -, 0, 0, 0)			
6C	4	$f_1 = 1$	(0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0)	61	15360	192
		$f_2 = 1$	(1, 0, 1, 0, 1, 1)	(1, 0, 1, 0, 0, 1)	12D	15360	192
		$f_3 = 2$	(1, 0, 1, 1, 1, 1)	(0, 1, 1, 0, 1, 0)	12E	15360	96

Table 9.3 (continue)

$[g]_{2^5:S_6}$	k	f_j	d_j	w	$[x]_{2^6:(2^5:S_6)}$	$[x]_{2^6:(2^5:S_6)} $	$ C_{2^{6}:(2^{5}:S_{6})}(x) $
C D		6 1			C I	00.490	70
6D	2	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0)	6J 107	20480	72
		$J_2 = 1$	(0, 0, 1, 0, 0, 1)	(0, 0, 1, 0, 0, 1)	12F	20480	12
6E	8	$f_1 = 1$		(0 0 0 0 0 0)	6K	7680	192
•	-	$f_2 = 1$	(1, 0, 1, 0, 0, 1)	(0, 0, 0, 0, 0, 0, 0)	6L	7680	192
		$f_3 = 2$	(1, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0)	6M	15360	96
		$f_4 = 2$	(1, 0, 1, 0, 1, 1)	(0, 1, 1, 0, 0, 0)	12G	15360	96
		$f_5 = 2$	(1, 0, 0, 0, 1, 0)	(0, 1, 1, 0, 0, 0)	12H	15360	96
6F	4	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0)	6N	15360	96
		$f_2 = 1$	(1, 0, 0, 0, 0, 0)	(0, 1, 1, 0, 0, 0)	12I	15360	96
		$f_3 = 1$	(1, 0, 1, 0, 1, 1)	(1, 1, 0, 0, 0, 1)	12J	15360	96
		$f_4 = 1$	(1, 0, 0, 0, 1, 0)	(1, 0, 1, 0, 0, 1)	12K	15360	96
6G	2	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0)	6 <i>O</i>	61440	24
		$f_2 = 1$	(1, 0, 0, 0, 0, 0)	(1, 0, 1, 0, 0, 1)	12L	61440	24
64	4	$f_{1} = 1$			6.0	20720	19
011	4	$f_{1} = 1$ $f_{2} = 1$	(0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0)	60	30720	48
		$f_2 = 1$ $f_2 = 2$	(1, 1, 1, 0, 1, 1)	(0, 0, 0, 0, 0, 0, 0)	6 <i>B</i>	61440	24
		73 - 2	(1,0,0,0,0,0,0)	(0, 0, 0, 0, 0, 0)	011	01440	24
8A	2	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0)	8L	46080	32
		$f_2 = 1$	(1, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0)	8M	46080	32
8B	2	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0)	$\left(0,0,0,0,0,0 ight)$	8N	46080	32
		$f_2 = 1$	(1, 0, 0, 0, 0, 0)	$\left(1,0,0,0,0,0 ight)$	80	46080	32
10A	2	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0)	10C	73728	20
		$f_2 = 1$	(1,0,0,0,0,0)	(1, 0, 1, 0, 0, 1)	20A	73728	20
10.4		C 1			10.14	20720	40
12A	2	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0)	12M	30720	48
		$J_{2} = 1$	(1, 0, 0, 0, 0, 0, 0)	(1,0,1,0,0,1)	244	30720	40
12B	2	$f_1 = 1$	(0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0)	12N	30720	48
	-	$f_2 = 1$	(1, 0, 0, 0, 0, 0, 0)	(1, 0, 1, 0, 0, 1)	24B	30720	48
		, <u> </u>	(-, -, -, -, 0, 0, 0)	(-, -, -, -, 0, 0, 1)	TY of the		
	I	I	l		-	1	1

Table 9.3 (continue)

WESTERN CAPE

9.3 The Inertia groups of $2^6:(2^5:S_6)$

Since G has 4 orbits on N, then by Brauer's Theorem [29] G acts on Irr(N) with the same number of orbits. The lengths of the 4 orbits will be 1, r, s and t, where r + s+t= 63, with corresponding point stabilizers H_1 , H_2 , H_3 and H_4 as subgroups of G such that $[G:H_1] = 1$, $[G:H_2] = r$, $[G:H_3] = s$ and $[G:H_4] = t$. Let T be the matrix group of dimension 6 over GF(2) formed by the transpose of the generators of G. The action of T on the classes of $N = 2^6$ is the equivalent of G acting on Irr(N). The action of T on N has orbits of lengths 1, 1, 30 and 32 with point stabilizers T, T, $(2^5:S_6)$ and $(2^5:S_4)$, respectively. We deduce that r = 1, s=30, and t = 32, thus we obtain 4 inertia groups $\overline{H}_i = 2^6: H_i$ in $2^6: (2^5:S_6)$, $i \in \{1, 2, 3, 4\}$, with corresponding inertia factor groups $H_1 = G$, $H_2 = 2^5: S_6$, $H_3 = 2^5: S_4$ and $H_4 = S_6$. We use similar techniques as in the previous chapters to identify the structural information of the inertia factor groups H_i . Note that the action of G on N and Irr(N) is self dual. The inertia factor groups $H_3 = 2^5: S_4$ and $H_4 = S_6$ are constructed from elements within $2^5: S_6$ and the generators are as follows:

•
$$\langle \zeta_1, \zeta_2, \zeta_3 \rangle = 2^5 : S_4, \, \zeta_1 \in 4A, \, \zeta_2 \in 4J, \, \zeta_3 \in 6F$$
 where

	0	1	1	1	0	0)) ((1	0	0	0	0	0))	0	1	0	1	0	0)
	0	1	0	0	0	0		0	1	0	0	0	0		0	1	0	0	0	0
<i>c.</i> –	1	0	0	0	0	1	Č	0	1	1	0	0	0	<i>C</i>	0	1	1	0	0	0
ς1-	1	0	0	0	0	0	, 52-	0	0	1	1	0	0	, ς3-	0	0	1	1	0	0
	0	1	1	0	1	0		1	1	1	1	1	0		1	1	1	1	1	0
	0	1	0	1	0	0))	0	1	0	0	0	1))	0	1	0	0	0	1)

•
$$\langle \eta_1, \eta_2 \rangle = S_6, \ \eta_1 \in 2I, \ \eta_2 \in 6E$$
 where

$$\eta_{1} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} , \ \eta_{2} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

The above generators were used to construct the character tables of the inertia factor groups (see Appendix B).

9.4 The Fusions of the Inertia Factor Groups into $2^5:S_6$

We obtain the fusions of the inertia factors H_i into $2^5:S_6$ by using direct matrix conjugation in $2^5:S_6$ and the permutation characters of the inertia factor groups in $2^5:S_6$ of degrees 30 and 32 respectively. MAGMA was used for the various computations. The fusion maps of the inertia factor groups into $2^5:S_6$ are shown in the Table 9.4 and Table 9.5.

$[h]_{2^5:S_4}$ –	\rightarrow [g] _{25:S6}	${[h]}_{2^5:S_4} \ \longrightarrow \ $	$g]_{2^{5}:S_{6}}$	${{\left[h \right]}_{2^{5}:S_{4}}} \; \longrightarrow \;$	$[g]_{2^5:S_6}$	${{\left[h \right]}_{2^{5}:S_{4}}} \; \longrightarrow \;$	$[g]_{2^5:S_6}$
1A	1A	2M	2J	2Z	2J	4K	4J
2A	2D	2N	2H	2AA	2E	4L	4B
2B	2D	20	2F	3 <i>A</i>	3A	4M	4I
2C	2A	2P	2H	4 <i>A</i>	4C	4N	4G
2D	2B	2Q	2G	4B	4D	40	4A
2E	2E	2R	2J	4C	4E	4P	4H
2F	2E	25	2G	4 <i>D</i>	4E	6A	6C
2G	2C	2T	2I	4E	4I	6B	6E
2H	2C	2U	2J	4F	4G	6C	6E
2I	2F	2V	2D	4G	4J	6 <i>D</i>	6F
2J	2B	2W	2H	4H	4F	6E	6A
2K	2I	2X	2I	41	4F	6F	6F
2L	2I	2Y	2H	4J	4H	6G	6B

Table 9.4: The fusion of $2^5:S_4$ into $2^5:S_6$

Table 9.5: The fusion of S_6 into $2^5:S_6$

UNIVERSITY of the

9.5 The Fischer-Clifford Matrices of $2^6:(2^5:S_6)$

Having obtained the fusions of the inertia factor groups H_i into $2^5:S_6$, and the conjugacy classes of \overline{G} lying above each coset Ng, we are now able to compute the Fischer-Clifford matrices of the group $2^6:(2^5:S_6)$. The properties discussed in Chapter 5 are used and applied to our groups as was done in the previous three chapters, in the construction of these matrices. Note that all the relations hold since 2^6 is an elementary abelian group. For each class representative $g \in 2^5:S_6$, we construct a Fischer-Clifford matrix M(g) which are listed in Table 9.6.

M(g)	M(g)
$M(1A) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & -1 \\ 30 & 30 & -2 & 0 \\ 32 & -32 & 0 & 0 \end{pmatrix}$	$M(2A) = \begin{pmatrix} 1 & 1 & 1 & \\ 1 & 1 & -1 & \\ 30 & -2 & 0 & \end{pmatrix}$
$M(2B) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & -1 \\ 2 & 2 & -2 & 0 \\ 12 & -4 & 0 & 0 \end{pmatrix}$	$M(2C) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & -1 \\ 2 & 2 & -2 & 0 \\ 12 & -4 & 0 & 0 \end{pmatrix}$
$M(2D) = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & 1 & -1 \\ 1 & 1 & 1 & -1 & -$	$M(2E) = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 &$
$M(2F) = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 & 1 \\ 3 & 3 & 3 & -1 & -1 \\ 3 & 3 & -3 & 1 & -1 \\ 8 & -8 & 0 & 0 & 0 \end{pmatrix}$	$M(2G) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 3 & -3 & -1 & 1 \\ 3 & 3 & -1 & -1 \end{pmatrix}$
$M(2H) = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1$	$M(2I) = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -$
$M(2J) = \begin{pmatrix} 1 & 1 & -1 & -1 & 1 & -1 \\ 1 & 1 & 1 & 1 & -1 & -$	$M(3A) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & -1 \\ 6 & 6 & -2 & 0 \\ 8 & -8 & 0 & 0 \end{pmatrix}$
$M(3B) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 2 & -2 & 0 \end{pmatrix}$	$M(4A) = \left(\begin{array}{rrrr} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 6 & -2 & 0 \end{array}\right)$
$M(4B) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 6 & -2 & 0 \end{pmatrix}$	$M(4C) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 2 & -2 & 0 \end{pmatrix}$
$M(4D) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 2 & -2 & 0 \end{pmatrix}$	$M(4E) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & -1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -$
$M(4F) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & -1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -$	$M(4G) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & -1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -$

Table 9.6: The Fischer-Clifford Matrices of $2^6:(2^5:S_6)$

M(g)	M(g)
$M(4H) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & -1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -$	$M(4I) = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 & 1 \\ 1 & 1 & -1 & 1 & -1 \\ 1 & 1 & 1 & -1 & -$
$M(4J) = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 & 1 \\ 1 & 1 & -1 & 1 & -1 \\ 1 & 1 & 1 & -1 & -$	$M(5A) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 2 & -2 & 0 \end{pmatrix}$
$M(6A) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 6 & -2 & 0 \end{pmatrix}$	$M(6B) = \left(\begin{array}{rrrr} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 2 & -2 & 0 \end{array}\right)$
$M(6C) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 2 & -2 & 0 \end{pmatrix}$	$M(6D) = \left(\begin{array}{rrr} 1 & 1\\ 1 & -1 \end{array}\right)$
$M(6E) = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 & 1 \\ 1 & 1 & -1 & 1 & -1 \\ 1 & 1 & 1 & -1 & -$	$M(6F) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & -1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -$
$M(8A) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$	$M(8B) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$
$M(10A) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \mathbf{TER}$	$\mathbf{N} \mathbf{C} M(12A) = \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right)$
$M(12B) = \left(\begin{array}{rrr} 1 & 1\\ 1 & -1 \end{array}\right)$	

Table 9.6 (continue)

9.6 Character Table of $2^6:(2^5:S_6)$

The character table of \overline{G} is constructed following the method discussed in Chapter 5 and applied in Chapters 6, 7 and 8. The character table of \overline{G} will be partitioned rowwise into blocks B_i , where each block corresponds to an inertia group $\overline{H}_i = 2^6:H_i$. Therefore $Irr(\overline{G}) = \bigcup_{i=1}^4 B_i$, where $B_1 = \{\chi_j | 1 \le j \le 37\}, B_2 = \{\chi_j | 38 \le j \le 74\},$ $B_3 = \{\chi_j | 75 \le j \le 126\}, B_4 = \{\chi_j | 127 \le j \le 137\}.$ The character table of $2^6: (2^5:S_6)$ is shown in Table 9.7.

		1A				2A				2B				2C				2D		
	1A	2A	2B	2C	2D	2E	4A	2F	2G	4B	4C	2H	2I	4D	4E	2J	2K	4F	4G	4H
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1
χ3	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	3	3	3	3	3
χ_4	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	-3	-3	-3	-3	-3
χ_5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	-1	-1	-1	-1	-1
χ_6	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	1	1	1	1	1
χ_7	6	6	6	6	-6	-6	-6	-2	-2	-2	-2	2	2	2	2	-4	-4	-4	-4	-4
χ_8	6	6	6	6	-6	-6	-6	-2	-2	-2	-2	2	2	2	2	4	4	4	4	4
χ9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	-3	-3	-3	-3	-3
χ_{10}	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	3	3	3	3	3
χ_{11}	10	10	10	10	-10	-10	-10	2	2	2	2	-2	-2	-2	-2	4	4	4	4	4
χ_{12}	10	10	10	10	-10	-10	-10	2	2	2	2	-2	-2	-2	-2	4	4	4	4	4
χ_{13}	10	10	10	10	-10	-10	-10	2	2	2	2	-2	-2	-2	-2	-4	-4	-4	-4	-4
χ_{14}	10	10	10	10	-10	-10	-10	2	2	2	2	-2	-2	-2	-2	-4	-4	-4	-4	-4
χ_{15}	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	-2	-2	-2	-2	-2
χ_{16}	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10		2	2	2	2
X17	15	15	15	15	15	15	15	-1		1	-1	-1	-1	-1	-1	-5	-5	-5	-5	-5
X18	15	15	15	15	15	15	15	-1	-1	-1	-1	-1	-1	-1	-1	- (-1	- (- (- (
X19	15	15	15	15	15	15	15	-1	-1	-1	-1	-1	-1	-1	-1	7	5 7	7	7	5
X20	16	16	16	16	16	16	16	16	-1	-1	-1	16	-1	-1	-1		0	0	0	0
X21	20	20	20	20	20	20	20	10	10	10	10	10	10	10	10		0	0	0	0
X22	20	20	20	20	-20	-20	-20	-8	-8	-8	-8	-4	-4	-4	-4	8	8	8	8	8
X23	24	24	24	24	-24	-24	-24	-8	V 8	R _8	T _8	of the	8	8	8	-8	-8	-8	-8	-8
X24 X25	30	30	30	30	-30	-30	-30	-10	-10	-10	-10	10	10	10	10	4	4	4	4	4
X26	30	30	30	30	-30	-30	-30	-10	-10	-10	-10	10	10	10	10	-4	-4	-4	-4	-4
X27	30	30	30	30	30	30	30	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
X28	30	30	30	30	30	30	30	-2	-2	-2	-2	-2	-2	-2	-2	2	2	2	2	2
X29	36	36	36	36	-36	-36	-36	-12	-12	-12	-12	12	12	12	12	0	0	0	0	0
X30	40	40	40	40	-40	-40	-40	8	8	8	8	-8	-8	-8	-8	-8	-8	-8	-8	-8
χ_{31}	40	40	40	40	-40	-40	-40	8	8	8	8	-8	-8	-8	-8	8	8	8	8	8
χ_{32}	40	40	40	40	-40	-40	-40	8	8	8	8	-8	-8	-8	-8	0	0	0	0	0
χ_{33}	40	40	40	40	-40	-40	-40	8	8	8	8	-8	-8	-8	-8	0	0	0	0	0
χ_{34}	45	45	45	45	45	45	45	-3	-3	-3	-3	-3	-3	-3	-3	9	9	9	9	9
χ_{35}	45	45	45	45	45	45	45	-3	-3	-3	-3	-3	-3	-3	-3	-9	-9	-9	-9	-9
χ_{36}	45	45	45	45	45	45	45	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3
χ_{37}	45	45	45	45	45	45	45	-3	-3	-3	-3	-3	-3	-3	-3	3	3	3	3	3
χ_{38}	1	1	1	-1	1	1	-1	1	1	1	-1	1	1	1	-1	1	1	-1	1	-1
χ_{39}	1	1	1	-1	1	1	-1	1	1	1	-1	1	1	1	-1	-1	-1	1	-1	1
χ_{40}	5	5	5	-5	5	5	-5	5	5	5	-5	5	5	5	-5	3	3	-3	3	-3
χ_{41}	5	5	5	-5	5	5	-5	5	5	5	-5	5	5	5	-5	-3	-3	3	-3	3
χ_{42}	5	5	5	-5	5	5	-5	5	5	5	-5	5	5	5	-5	-1	-1	1	-1	1
χ_{43}	5	5	5	-5	5	5	-5	5	5	5	-5	5	5	5	-5		1	-1	1	-1
χ_{44}	6	6	6	-6	-6	-6	6	-2	-2	-2	2	2	2	2	-2	-4	-4	4	-4	4
χ_{45}	6	6	6	-6	-6	-6	6	-2	-2	-2	2	2	2	2	-2	4	4	-4	4	-4

Table 9.7: The Character table of $2^6:(2^5:S_6)$

Table 9.7 (continue)

		1A				2A				2B				2C				2D		
	1A	2A	2B	2C	2D	2E	4A	2F	2G	4B	4C	2H	2I	4D	4E	2J	2K	4F	4G	4H
X46	9	9	9	-9	9	9	-9	9	9	9	-9	9	9	9	-9	-3	-3	3	-3	3
X47	9	9	9	-9	9	9	-9	9	9	9	-9	9	9	9	-9	3	3	-3	3	-3
X48	10	10	10	-10	-10	-10	10	2	2	2	-2	-2	-2	-2	2	4	4	-4	4	-4
X49	10	10	10	-10	-10	-10	10	2	2	2	-2	-2	-2	-2	2	4	4	-4	4	-4
X50	10	10	10	-10	-10	-10	10	2	2	2	-2	-2	-2	-2	2	-4	-4	4	-4	4
X51	10	10	10	-10	-10	-10	10	2	2	2	-2	-2	-2	-2	2	-4	-4	4	-4	4
X52	10	10	10	-10	10	10	-10	10	10	10	-10	10	10	10	-10	-2	-2	2	-2	2
X53	10	10	10	-10	10	10	-10	10	10	10	-10	10	10	10	-10	2	2	-2	2	-2
χ_{54}	15	15	15	-15	15	15	-15	-1	-1	-1	1	-1	-1	-1	1	-5	-5	5	-5	5
X55	15	15	15	-15	15	15	-15	-1	-1	-1	1	-1	-1	-1	1	-7	-7	7	-7	7
X56	15	15	15	-15	15	15	-15	-1	-1	-1	1	-1	-1	-1	1	5	5	-5	5	-5
X57	15	15	15	-15	15	15	-15	-1	-1	-1	1	-1	-1	-1	1	7	7	-7	7	-7
X58	16	16	16	-16	16	16	-16	16	16	16	-16	16	16	16	-16	0	0	0	0	0
X59	20	20	20	-20	-20	-20	20	4	4	4	-4	-4	-4	-4	4	0	0	0	0	0
X60	24	24	24	-24	-24	-24	24	-8	-8	-8	8	8	8	8	-8	8	8	-8	8	-8
X61	24	24	24	-24	-24	-24	24	-8	-8	-8	8	8	8	8	-8	-8	-8	8	-8	8
X62	30	30	30	-30	-30	-30	30	-10	-10	-10	10	10	10	10	-10	4	4	-4	4	-4
X63	30	30	30	-30	-30	-30	30	-10	-10	-10	10	10	10	10	-10	-4	-4	4	-4	4
X64	30	30	30	-30	30	30	-30	-2	-2	-2	2	-2	-2	-2	2	-2	-2	2	-2	2
X65	30	30	30	-30	30	30	-30	-2	-2	-2	2	-2	-2	-2	2	2	2	-2	2	-2
X66	36	36	36	-36	-36	-36	36	-12	-12	-12	12	12	12	12	-12	0	0	0	0	0
X67	40	40	40	-40	-40	-40	40	8	8	8	-8	-8	-8	-8	8	-8	-8	8	-8	8
X68	40	40	40	-40	-40	-40	40	8	8	8	-8	-8	-8	-8	8	8	8	-8	8	-8
X69	40	40	40	-40	-40	-40	40	8	8	8	-8	-8	-8	-8	8	0	0	0	0	0
X70	40	40	40	-40	-40	-40	40	8	8	8	-8	-8	-8	-8	8	0	0	0	0	0
X71	45	45	45	-45	45	45	-45	-3	-3	-3	- 3	-3	-3	-3	3	9	9	-9	9	-9
X72	45	45	45	-45	45	45	-45	-3	-3	-3	3	-3	-3	-3	3	-9	-9	9	-9	9
X73	45	45	45	-45	45	45	-45	-3	-3	-3	3	-3	-3	-3	3	-3	-3	3	-3	3
X74	45	45	45	-45	45	45	-45	-3	-3	-3	3	-3	-3	-3	3	3	3	-3	3	-3
X75	30	30	-2	0	30	-2	0	14	-2	-2	0	14	-2	-2	0	14	-2	0	-2	0
X76	30	30	-2	0	-30	2	0	-10	6	-2	0	10	-6	2	0	12	-4	-2	0	2
X77	30	30	-2	0	30	-2	0	14	-2	-2	0	14	-2	-2	0	-14	2	0	2	0
X78	30	30	-2	0	-30	2	0	-10	6	-2	0	10	-6	2	0	12	-4	2	0	-2
X79	30	30	-2	0	30	-2	0	14	-2	-2	0	14	-2	-2	0	-10	6	0	-2	0
X80	30	30	-2	0	-30	2	0	-10	6	-2	0	10	-6	2	0	-12	4	-2	0	2
X81	30	30	-2	0	30	-2	0	14	-2	-2	0	14	-2	-2	0	10	-6	0	2	0
X82	30	30	-2	0	-30	2	0	-10	6	-2	0	10	-6	2	0	-12	4	2	0	-2
X83	60	60	-4	0	60	-4	0	28	-4	-4	0	28	-4	-4	0	4	4	0	-4	0
X84	60	60	-4	0	-60	4	0	-20	12	-4	0	20	-12	4	0	0	0	4	0	-4
X85	60	60	-4	0	60	-4	0	28	-4	-4	0	28	-4	-4	0	-4	-4	0	4	0
X86	60	60	-4	0	-60	4	0	-20	12	-4	0	20	-12	4	0	0	0	-4	0	4
X87	90	90	-6	0	-90	6	0	18	2	-6	0	-18	-2	6	0	12	-4	-6	0	6
X88	90	90	-6	0	90	-6	0	-6	10	-6	0	-6	10	-6	0	-18	-2	0	6	0
X89	90	90	-6	0	-90	6	0	18	2	-6	0	-18	-2	6	0	12	-4	6	0	-6
X90	90	90	-6	0	90	-6	0	-6	10	-6	0	-6	10	-6	0	-6	10	0	-6	0
X91	90	90	-6	0	-90	6	0	18	2	-6	0	-18	-2	6	0	-12	4	-6	0	6

Table 9.7 (continue)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
χ_{98} 90 90 -6 0 -6 10 -6 10 -6 10 -6 10 0 -6 χ_{09} 90 90 -6 0 -6 10 -6 0 -6 10 0 -6 χ_{09} 90 90 -6 0 18 2 -6 0 -12 4 6 0
$ x_{00} 90 90 -6 0 -90 6 0 18 2 -6 0 -18 -2 6 0 -12 4 6 0 -12 -$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 9.7 (continue)

												1				1					
			2E						2F					2G					2H		
	2L	2M	2N	41	4J	2O	2P	2Q	2R	4K	4L	2S	4M	4N	4O	2T	4P	4Q	4R	4S	4T
X1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
X3	3	3	3	3	3	3	-1	-1	-1	-1	-1	-1	-1	-1	-1	3	3	3	3	3	3
χ_4	-3	-3	-3	-3	-3	-3	1	1	1	1	1	1	1	1	1	-3	-3	-3	-3	-3	-3
χ_5	-1	-1	-1	-1	-1	-1	3	3	3	3	3	3	3	3	3	-1	-1	-1	-1	-1	-1
χ_6	1	1	1	1	1	1	-3	-3	-3	-3	-3	-3	-3	-3	-3	1	1	1	1	1	1
X7	4	4	4	4	4	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X8	-4	-4	-4	-4	-4	-4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X9	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3
X10	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
X11	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	4	4	4	4	0	0	0	0	0	0
X12	-4	-4	-4	-4	-4	-4	4	4	4	4	4	-4	-4	-4	-4	0	0	0	0	0	0
X13	4	4	4	4	4	4	-4	-4	-4	-4	-4	4	4	4	4	0	0	0	0	0	0
χ_{14}	4	4	4	4	4	4	4	4	4	4	4	-4	-4	-4	-4	0	0	0	0	0	0
χ_{15}	-2	-2	-2	-2	-2	-2	2	2	2	2	2	2	2	2	2	-2	-2	-2	-2	-2	-2
χ_{16}	2	2	2	2	2	2	-2	-2	-2	-2	-2	-2	-2	-2	-2	2	2	2	2	2	2
X17	-5	-5	-5	-5	-5	-5	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
X18	-7	-7	-7	-7	-7	-7	-3	-3	-3	-3	-3	-3	-3	-3	-3	1	1	1	1	1	1
X19	5	5	5	5	5	5	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3
X20	7	7	7	7	7	7	3	3	3	3	3	3	3	3	3	-1	-1	-1	-1	-1	-1
χ_{21}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X23	-8	-8	-8	-8	-8	-8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X24	8	8	8	8	8	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{25}	-4	-4	-4	-4	-4	-4	0	0	V 0	\mathbb{R}^{0}	0	0	0	0	0	0	0	0	0	0	0
χ_{26}	4	4	4	4	4	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X27	-2	-2	-2	-2	-2	-2	-6	-6	-6	-6	-6	-6	-6	-6	-6	-2	-2	-2	-2	-2	-2
X28	2	2	2	2	2	2	6	6	6	6	6	6	6	6	6	2	2	2	2	2	2
X29	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X30	8	8	8	8	8	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X31	-8	-8	-8	-8	-8	-8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X32	0	0	0	0	0	0	-8	-8	-8	-8	-8	8	8	8	8	0	0	0	0	0	0
X33	0	0	0	0	0	0	8	8	8	8	8	-8	-8	-8	-8	0	0	0	0	0	0
χ_{34}	9	9	9	9	9	9	-3	-3	-3	-3	-3	-3	-3	-3	-3	1	1	1	1	1	1
χ_{35}	-9	-9	-9	-9	-9	-9	3	3	3	3	3	3	3	3	3	-1	-1	-1	-1	-1	-1
χ_{36}	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	5	5	5	5	5	5
X37	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	-5	-5	-5	-5	-5	-5
X38	1	1	1	-1	-1	1	1	1	-1	-1	1	1	-1	1	-1	1	1	1	1	-1	-1
X39	-1	-1	-1	1	1	-1	-1	-1	1	1	-1	-1	1	-1	1	-1	-1	-1	-1	1	1
X40	3	3	3	-3	-3	3	-1	-1	1	1	-1	-1	1	-1	1	3	3	3	3	-3	-3
X41	-3	-3	-3	3	3	-3	1	1	-1	-1	1	1	-1	1	-1	-3	-3	-3	-3	3	3
X42	-1	-1	-1	1	1	-1	3	3	-3	-3	3	3	-3	3	-3	-1	-1	-1	-1	1	1
X43	1	1	1	-1	-1	1	-3	-3	3	3	-3	-3	3	-3	3	1	1	1	1	-1	-1
X44	4	4	4	-4	-4	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{45}	-4	-4	-4	4	4	-4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 9.7 (continue)

			2E						2F					2G					2H		
	2L	2M	2N	4I	4J	2O	2P	2Q	2R	4K	4L	2S	4M	4N	4O	2T	4P	4Q	4R	4S	4T
X46	-3	-3	-3	3	3	-3	-3	-3	3	3	-3	-3	3	-3	3	-3	-3	-3	-3	3	3
X47	3	3	3	-3	-3	3	3	3	-3	-3	3	3	-3	3	-3	3	3	3	3	-3	-3
X48	-4	-4	-4	4	4	-4	-4	-4	4	4	-4	4	-4	4	-4	0	0	0	0	0	0
X49	-4	-4	-4	4	4	-4	4	4	-4	-4	4	-4	4	-4	4	0	0	0	0	0	0
χ_{50}	4	4	4	-4	-4	4	-4	-4	4	4	-4	4	-4	4	-4	0	0	0	0	0	0
X51	4	4	4	-4	-4	4	4	4	-4	-4	4	-4	4	-4	4	0	0	0	0	0	0
χ_{52}	-2	-2	-2	2	2	-2	2	2	-2	-2	2	2	-2	2	-2	-2	-2	-2	-2	2	2
χ_{53}	2	2	2	-2	-2	2	-2	-2	2	2	-2	-2	2	-2	2	2	2	2	2	-2	-2
χ_{54}	-5	-5	-5	5	5	-5	3	3	-3	-3	3	3	-3	3	-3	3	3	3	3	-3	-3
χ_{55}	-7	-7	-7	7	7	-7	-3	-3	3	3	-3	-3	3	-3	3		1	1	1	-1	-1
χ_{56}	5	5	5	-5	-5	5	-3	-3	3	3	-3	-3	3	-3	3	-3	-3	-3	-3	3	3
X57	7	7	7	-7	-7	7	3	3	-3	-3	3	3	-3	3	-3	-1	-1	-1	-1	1	1
X58	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X59	0	0	0	0	0	0		0	0	0	0	0	0	0	0		0	0	0	0	0
χ_{60}	-8	-8	-8	8	8	-8		0	0	0	0	0	0	0	0		0	0	0	0	0
X61	8	8	8	-8	-8	8		0	0	0	0		0	0	0		0	0	0	0	0
X62	-4	-4	-4	4	4	-4		0	0	0	0	0	0	0	0		0	0	0	0	0
X63	4	4	4	-4	-4	4		0	0	0	0	0	0	0	0		0	0	0	0	0
X64	-2	-2	-2	2	2	-2	-0	-0	6	6	-0	-0	6	-0	6	-2	-2	-2	-2	2	2
X65	2	2	2	-2	-2	2	0	0	-0	-0	0	0	-0	0	-0		2	2	2	-2	-2
X66	0	0	0	0	0	0		0	0	0	0	0	0	0	0		0	0	0	0	0
X67	0 0	°	°	-0	-0	。 。		0	0	0	0	0	0	0	0		0	0	0	0	0
X68	-0	-0	-0	0	0	-0	0	0	0		•	•	0	0	•		0	0	0	0	0
X69	0	0	0	0	0	0	-0	-0	8	8	-0	8	-0	8	-0		0	0	0	0	0
X70	9	9	9	-9	-9	9	-3	JN-3	Va	RS3	-3	-3h	6 3	-3	3	1	1	1	1	-1	-1
×71	-9	-9	-9	9	9	-9	3	3	-3	-3	3	3	-3	3	-3	-1	-1	-1	-1	1	1
X73	-3	-3	-3	3	3	-3	-3	-3	- 3	3	-3	-3	3	-3	3	5	5	5	5	-5	-5
X74	3	3	3	-3	-3	3	3	3	-3	-3	3	3	-3	3	-3	-5	-5	-5	-5	5	5
X75	14	14	-2	0	0	-2	6	6	0	0	-2	6	0	-2	0	6	-2	-2	-2	0	0
X76	-12	-12	4	2	-2	0	0	0	6	-2	0	0	-6	0	2	0	0	4	-4	-2	2
X77	-14	-14	2	0	0	2	-6	-6	0	0	2	-6	0	2	0	-6	2	2	2	0	0
X78	-12	-12	4	-2	2	0	0	0	-6	2	0	0	6	0	-2	0	0	4	-4	2	-2
X79	-10	-10	6	0	0	-2	6	6	0	0	-2	6	0	-2	0	-2	6	-2	-2	0	0
X80	12	12	-4	2	-2	0	0	0	6	-2	0	0	-6	0	2	0	0	-4	4	-2	2
X81	10	10	-6	0	0	2	-6	-6	0	0	2	-6	0	2	0	2	-6	2	2	0	0
X82	12	12	-4	-2	2	0	0	0	-6	2	0	0	6	0	-2	0	0	-4	4	2	-2
X83	4	4	4	0	0	-4	12	12	0	0	-4	12	0	-4	0	4	4	-4	-4	0	0
X84	0	0	0	-4	4	0	0	0	-12	4	0	0	12	0	-4	0	0	0	0	4	-4
X85	-4	-4	-4	0	0	4	-12	-12	0	0	4	-12	0	4	0	-4	-4	4	4	0	0
X86	0	0	0	4	-4	0	0	0	12	-4	0	0	-12	0	4	0	0	0	0	-4	4
X87	-12	-12	4	6	-6	0	12	12	6	-2	-4	-12	-6	4	2	0	0	4	-4	2	-2
X88	-18	-18	-2	0	0	6	-6	-6	-12	4	2	-6	-12	2	4	-2	6	-2	-2	0	0
X89	-12	-12	4	-6	6	0	-12	-12	-6	2	4	12	6	-4	-2	0	0	4	-4	-2	2
X90	-6	-6	10	0	0	-6	6	6	12	-4	-2	6	12	-2	-4	-6	2	2	2	0	0
X91	12	12	-4	6	-6	0	12	12	6	-2	-4	-12	-6	4	2	0	0	-4	4	2	-2

Table 9.7 (continue)

			2E						2F					2G					2H		
	2L	2M	2N	4I	4J	2O	2P	2Q	2R	4K	4L	2S	4M	4N	4O	2T	4P	4Q	4R	4S	4T
X92	6	6	-10	0	0	6	-6	-6	-12	4	2	-6	-12	2	4	6	-2	-2	-2	0	0
X93	12	12	-4	-6	6	0	-12	-12	-6	2	4	12	6	-4	-2	0	0	-4	4	-2	2
X94	18	18	2	0	0	-6	6	6	12	-4	-2	6	12	-2	-4	2	-6	2	2	0	0
χ_{95}	-12	-12	4	6	-6	0	-12	-12	6	-2	4	12	-6	-4	2	0	0	4	-4	2	-2
X96	-18	-18	-2	0	0	6	-6	-6	12	-4	2	-6	12	2	-4	-2	6	-2	-2	0	0
X97	-12	-12	4	-6	6	0	12	12	-6	2	-4	-12	6	4	-2	0	0	4	-4	-2	2
X98	-6	-6	10	0	0	-6	6	6	-12	4	-2	6	-12	-2	4	-6	2	2	2	0	0
X99	12	12	-4	6	-6	0	-12	-12	6	-2	4	12	-6	-4	2	0	0	-4	4	2	-2
X100	6	6	-10	0	0	6	-6	-6	12	-4	2	-6	12	2	-4	6	-2	-2	-2	0	0
X101	12	12	-4	-6	6	0	12	12	-6	2	-4	-12	6	4	-2	0	0	-4	4	-2	2
X102	18	18	2	0	0	-6	6	6	-12	4	-2	6	-12	-2	4	2	-6	2	2	0	0
X103	-12	-12	4	6	-6	0	0	0	-6	2	0	0	6	0	-2	0	0	4	-4	-6	6
X104	-18	-18	-2	0	0	6	6	6	0	0	-2	6	0	-2	0	-10	-2	6	6	0	0
X105	-12	-12	4	-6	6	0	0	0	6	-2	0	0	-6	0	2	0	0	4	-4	6	-6
X106	-6	-6	10	0	0	-6	-6	-6	0	0	2	-6	0	2	0	2	10	-6	-6	0	0
X107	12	12	-4	6	-6	0	0	0	-6	2	0	0	6	0	-2	0	0	-4	4	-6	6
X108	6	6	-10	0	0	6	6	6	0	0	-2	6	0	-2	0	-2	-10	6	6	0	0
X109	12	12	-4	-6	6	0	0	0	6	-2	0	0	-6	0	2	0	0	-4	4	6	-6
X110	18	18	2	0	0	-6	-6	-6	0	0	2	-6	0	2	0	10	2	-6	-6	0	0
X111	32	32	0	0	0	-8	0	0	0	0	0	0	0	0	0	0	0	8	-8	0	0
X112	-16	-16	16	0	0	-8	0	- 0	0	0	0	0	0	0	0	0	0	-8	8	0	0
X113	16	16	-16	0	0	8	0	0	0	0	0	0	0	0	0	0	0	8	-8	0	0
X114	-32	-32	0	0	0	8	0	0	0	0	0	0	0	0	0	0	0	-8	8	0	0
X115	24	24	-8	-8	8	0	0	0	0	0	0	0	0	0	0	-8	8	0	0	0	0
X116	-24	-24	8	-8	8	0	0	0	0	0	0	0	0	0	0	8	-8	0	0	0	0
X117	24	24	-8	8	-8	0	0	0	0	0_0	0	0	0	0	0	-8	8	0	0	0	0
X118	-24	-24	8	8	-8	0	- 0-	0	0	0	C 0	0	0	0	0	8	-8	0	0	0	0
X119	12	12	12	0	0	-12	-12	-12	0	0	4	-12	0	4	0	-4	-4	4	4	0	0
X120	0	0	0	-12	12	0	0	0	12	-4	0	0	-12	0	4	0	0	0	0	-4	4
X121	-12	-12	-12	0	0	12	12	12	0	0	-4	12	0	-4	0	4	4	-4	-4	0	0
X122	0	0	0	12	-12	0	0	0	-12	4	0	0	12	0	-4	0	0	0	0	4	-4
X123	16	16	16	0	0	-16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X124	-16	-16	-16	0	0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X125	0	0	0	-16	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X126	0	0	0	16	-16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X127	16	-16	0	0	0	0	8	-8	0	0	0	0	0	0	0	0	0	0	0	0	0
X128	-16	16	0	0	0	0	-8	8	0	0	0	0	0	0	0	0	0	0	0	0	0
X129	-48	48	0	0	0	0	8	-8	0	0	0		0	0	0	0	0	0	0	0	0
X130	48	-48	0	0	U	0	-8	8	0	0	0		U	0	0	0	U	0	0	0	0
X131	-16	16	0	0	0	0	24	-24	0	0	0		0	0	0	0	0	0	0	0	0
X132	16	-16	0	0	0	0	-24	24	0	0	0		0	0	0	0	0	0	0	0	0
X133	-48	48	0	U	U	0	-24	24	0	0	0		U	0	0	0	U	0	0	0	0
X134	48	-48	0	0	0	0	24	-24	0	0	0		0	0	0	0	0	0	0	0	0
X135	-32	32	0	U	U	0	16	-16	0	0	0		U	0	0	0	U	0	0	0	0
X136	32	-32	0	0	0	0	-16	16	0	0	0	0	0	0	0	0	0	0	0	0	0
X137	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 9.7 (continue)

					2I						2J					$_{3A}$				$_{3B}$	
L		2U	2V	4U	4V	2W	4W	4X	2X	4Y	4Z	4AA	4AB	4AC	3A	6A	6B	6C	3B	6D	6E
	χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	χ_2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	χ_3	1	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	-1	-1	-1
	χ_4	1	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	-1	-1	-1
	χ_5	1	1	1	1	1	1	1	1	1	1	1	1	1	-1	-1	-1	-1	2	2	2
	χ_6	1	1	1	1	1	1	1	1	1	1	1	1	1	-1	-1	-1	-1	2	2	2
	χ_7	2	2	2	2	2	2	2	-2	-2	-2	-2	-2	-2	3	3	3	3	0	0	0
	χ_8	2	2	2	2	2	2	2	-2	-2	-2	-2	-2	-2	3	3	3	3	0	0	0
	χ_9	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0
	χ_{10}	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0
	χ_{11}	2	2	2	2	2	2	2	-2	-2	-2	-2	-2	-2	1	1	1	1	1	1	1
	χ_{12}	2	2	2	2	2	2	2	-2	-2	-2	-2	-2	-2	1	1	1	1	1	1	1
	χ_{13}	2	2	2	2	2	2	2	-2	-2	-2	-2	-2	-2		1	1	1	1	1	1
	X14	2	2	2	2	2	2	2	-2	-2	-2	-2	-2	-2	1	1	1	1	1	1	1
	X15	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	1	1	1	1	1	1	1
	X16	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	3	3	3	3	0	0	0
	X17 X10	-1	-1	-1	-1	-1	-1	3	3	3	3	-1	-1	-1	3	3	3	3	0	0	0
	X10	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	3	3	3	3	0	0	0
	X20	3	3	3	3	3	3	3	3	3	3	- 3	3	3	3	3	3	3	0	0	0
	X21	0	0	0	0	0	0	0	0	0	0	0	0	0	-2	-2	-2	-2	-2	-2	-2
	X22	-4	-4	-4	-4	-4	-4	-4	4	4	4	4	4	4	2	2	2	2	2	2	2
	X23	0	0	0	0	0	0	0	0	0	0	0	0	0	3	3	3	3	0	0	0
	χ_{24}	0	0	0	0	0	0	0	0	0	0	0	0	0	3	3	3	3	0	0	0
	χ_{25}	2	2	2	2	2	2	2	-2	-2	C -2	-2	-2	-2	-3	-3	-3	-3	0	0	0
	χ_{26}	2	2	2	2	2	2	2	-2	-2	-2	-2	-2	-2	-3	-3	-3	-3	0	0	0
	χ_{27}	2	2	2	2	2	2	2	E 2	2	2	C 2	PE_2	2	-3	-3	-3	-3	0	0	0
	χ_{28}	2	2	2	2	2	2	2	2	2	2	2	2	2	-3	-3	-3	-3	0	0	0
	χ_{29}	-4	-4	-4	-4	-4	-4	-4	4	4	4	4	4	4	0	0	0	0	0	0	0
	χ_{30}	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	-2	-2	-2
	χ_{31}	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	-2	-2	-2
	χ_{32}	0	0	0	0	0	0	0	0	0	0	0	0	0	-2	-2	-2	-2	1	1	1
	χ_{33}	0	0	0	0	0	0	0	0	0	0	0	0	0	-2	-2	-2	-2	1	1	1
	χ_{34}	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0
	χ_{35}	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0
	χ_{36}	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	0	0	0	0	0	0	0
\vdash	χ_{37}	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	0	0	0	0	0		0
	χ_{38}	1	1	-1	-1	1	-1	1		1	-1	-1	1	-1	1	1	1	-1	1	1	-1
	X39	1	1	-1	-1	1	-1	1		1	-1	1- 1	1	-1	1	1	1	-1	1	1	-1
	X40	1	1	-1	-1	1	-1	1		1	-1	-1	1	-1 1	2	∠ 2	∠ 2	-2	-1	-1	1
	A41 X42	1	1	-1	-1	1	-1	1	1	1	-1	-1	1	-1	_1	_1	_1	-2	-1	-1	-2
	A42 Y42	1	1	-1	-1	1	-1	1		1	-1	-1	1	-1	-1	-1	-1	1	2	2	-2
	X41	2	2	-2	-2	2	-2	2	-2	-2	2	2	-2	2	3	3	3	-3	0	0	0
	X45	2	2	-2	-2	2	-2	2	-2	-2	2	2	-2	2	3	3	3	-3	0	0	0
															1				1		

Table 9.7 (continue)

				21						2J					3A				3B	
	2U	2V	4U	4V	2W	4W	4X	2X	4Y	4Z	4AA	4AB	4AC	3A	6A	6B	6C	3B	6D	6E
X46	1	1	-1	-1	1	-1	1	1	1	-1	-1	1	-1	0	0	0	0	0	0	0
X47	1	1	-1	-1	1	-1	1	1	1	-1	-1	1	-1	0	0	0	0	0	0	0
X48	2	2	-2	-2	2	-2	2	-2	-2	2	2	-2	2	1	1	1	-1	1	1	-1
X49	2	2	-2	-2	2	-2	2	-2	-2	2	2	-2	2	1	1	1	-1	1	1	-1
χ_{50}	2	2	-2	-2	2	-2	2	-2	-2	2	2	-2	2	1	1	1	-1	1	1	-1
χ_{51}	2	2	-2	-2	2	-2	2	-2	-2	2	2	-2	2	1	1	1	-1	1	1	-1
χ_{52}	-2	-2	2	2	-2	2	-2	-2	-2	2	2	-2	2	1	1	1	-1	1	1	-1
X53	-2	-2	2	2	-2	2	-2	-2	-2	2	2	-2	2	1	1	1	-1	1	1	-1
χ_{54}	-1	-1	1	1	-1	1	-1	-1	-1	1	1	-1	1	3	3	3	-3	0	0	0
χ_{55}	3	3	-3	-3	3	-3	3	3	3	-3	-3	3	-3	3	3	3	-3	0	0	0
χ_{56}	-1	-1	1	1	-1	1	-1	-1	-1	1	1	-1	1	3	3	3	-3	0	0	0
X57	3	3	-3	-3	3	-3	3	3	3	-3	-3	3	-3	3	3	3	-3	0	0	0
χ_{58}	0	0	0	0	0	0	0	0	0	0	0	0	0	-2	-2	-2	2	-2	-2	2
χ_{59}	-4	-4	4	4	-4	4	-4	4	4	-4	-4	4	-4	2	2	2	-2	2	2	-2
χ_{60}	0	0	0	0	0	0	0	0	0	0	0	0	0	3	3	3	-3	0	0	0
X61	0	0	0	0	0	0	0	0	0	0	0	0	0	3	3	3	-3	0	0	0
X62	2	2	-2	-2	2	-2	2	-2	-2	2	2	-2	2	-3	-3	-3	3	0	0	0
X63	2	2	-2	-2	2	-2	2	-2	-2	2	2	-2	2	-3	-3	-3	3	0	0	0
X64	2	2	-2	-2	2	-2	2	2	2	-2	-2	2	-2	-3	-3	-3	3	0	0	0
χ_{65}	2	2	-2	-2	2	-2	2	2	2	-2	-2	= ²	-2	-3	-3	-3	3	0	0	0
X66	-4	-4	4	4	-4	4	-4	4	4	-4	-4	4	-4	0	0	0	0	0	0	0
X67	0	0	0	0	0	0	0		0	0	0	0	0		1	1	-1	-2	-2	2
X68	0	0	0	0	0	0	0	0	0	0	0	0	0		1	1	-1	-2	-2	2
X69	0	0	0	0	0	0	0	0	0	0	0	0	0	-2	-2	-2	2	1	1	-1
X70	0	0	0	1	0	0	1	NIN	7 F.R	ST	L V of	the	0	-2	-2	-2	2	1	1	-1
X71	1	1	-1	-1	1	-1	1		1	1		1	-1	0	0	0	0	0	0	0
X72	1	1	-1	-1	1	-1		EŚ	ΤĘΪ	RŊ	CA	\mathbf{PE}_{2}^{1}	-1	0	0	0	0	0	0	0
X73	-3	-3	ა ა	3 2	-ə 9	3 9	-3	-3	-3	о 2	о 2	-3	3 2	0	0	0	0	0	0	0
X74	-3	-3	0	0	-3	0	-3	-3	-3	0	0	-3	0	6	6	2	0	0	0	0
X75	2	0	4	4	-2	0	-2	2	-2	4	4	-2	0	6	6	-2	0	0	0	0
X76	6	6	4	-4	2	0	-2	-2	-2	-4	4	2	0	6	6	-2	0	0	0	0
X77	2	2	-4	4	-2	0	-2	_2	-2	4	_4	-2	0	6	6	-2	0	0	0	0
×70	-2	-2		1	- 6	0	-2	-2	-2	0	-4	-2	0	6	6	-2	0	0	0	0
× 19	2	2	-4	4	2	0	-2	-2	-2	4	_4	-2	0	6	6	-2	0	0	0	0
×01	-2	-2	0	0	-	0	-2	-2	6	0	0	-2	ů 0	6	6	-2	0	0	0	0
1 X 80	2	2	4	-4	2	0	-2	-2	-2	-4	4	2	0 0	6	6	-2	0	0	0	0
X83	4	4	0	0	4	0	-4	4	4	0	0	-4	0	-6	-6	2	0	0	0	0
×84	4	4	0	0	4	0	-4	-4	-4	0	0	4	0	-6	-6	2	0	0	0	0
X85	4	4	0	0	4	0	-4	4	4	0	0	-4	0	-6	-6	2	0	0	0	0
X86	4	4	0	0	4	0	-4	-4	-4	0	0	4	0	-6	-6	2	0	0	0	0
χ87	2	2	8	0	2	-4	-2	-2	-2	-8	0	2	4	0	0	0	0	0	0	0
X88	6	6	4	4	-2	-4	-2	6	-2	4	4	-2	-4	0	0	0	0	0	0	0
X89	2	2	0	8	2	-4	-2	-2	-2	0	-8	2	4	0	0	0	0	0	0	0
X90	-2	-2	4	4	6	-4	-2	-2	6	4	4	-2	-4	0	0	0	0	0	0	0
X91	2	2	0	8	2	-4	-2	-2	-2	0	-8	2	4	0	0	0	0	0	0	0

Table 9.7 (continue)

	1							-						-				1		
				2I						2J					3A				$_{3B}$	
	2U	2V	4U	4V	2W	4W	4X	2X	4Y	4Z	4AA	4AB	4AC	3A	6A	6B	6C	3B	6D	6E
2/00	2	2	4	4	6	4	2	2	6	4	4	2	4	0	0	0	0	0	0	0
X92	-2	-2	-	-	0		-2	-2	0	-1	-	-2			0	0	0		0	0
X93	2	2	8	0	2	-4	-2	-2	-2	-8	0	2	4		0	0	0	0	0	0
X94	6	6	4	4	-2	-4	-2	6	-2	4	4	-2	-4	0	0	0	0	0	0	0
X95	2	2	0	-8	2	4	-2	-2	-2	0	8	2	-4	0	0	0	0	0	0	0
X96	6	6	-4	-4	-2	4	-2	6	-2	-4	-4	-2	4	0	0	0	0	0	0	0
Nor	2	2	-8	0	2	4	-2	-2	-2	8	0	2	-4	0	0	0	0		0	0
1 297		2	-0		-	-	-2	-2	-2			2			0	0	0		0	0
X98	-2	-2	-4	-4	0	4	-2	-2	0	-4	-4	-2	4		0	0	0		0	0
X99	2	2	-8	0	2	4	-2	-2	-2	8	0	2	-4	0	0	0	0	0	0	0
X100	-2	-2	-4	-4	6	4	-2	-2	6	-4	-4	-2	4	0	0	0	0	0	0	0
X101	2	2	0	-8	2	4	-2	-2	-2	0	8	2	-4	0	0	0	0	0	0	0
Y102	6	6	-4	-4	-2	4	-2	6	-2	-4	-4	-2	4	0	0	0	0	0	0	0
20102	2	2	4	4	2	0	2	2	2	4	4	2	0	0	0	0	0	0	0	0
X103	-2	-2	4	-4	-2	0	2	2	2	-4	4	-2	0		0	0	0		0	0
X104	2	2	0	0	-6	0	2	2	-6	0	0	2	0	0	0	0	0	0	0	0
X105	-2	-2	-4	4	-2	0	2	2	2	4	-4	-2	0	0	0	0	0	0	0	0
X106	-6	-6	0	0	2	0	2	-6	2	0	0	2	0	0	0	0	0	0	0	0
X107	-2	-2	-4	4	-2	0	2	2	2	4	-4	-2	0	0	0	0	0	0	0	0
X100	-6	-6	0	0	2	0	2	-6	2	0	0	2	0	0	0	0	0	0	0	0
×108		ů	4	4	-	0	-		-	4	4	-	0		ő	Ő	Ő		Ő	0
X109	-2	-2	4	-4	-2	0	2	2	2	-4	4	-2	0		0	0	0		0	0
X110	2	2	0	0	-6	0	2	2	-6	0	0	2	0	0	0	0	0	0	0	0
X111	8	8	0	0	-8	0	0	-8	8	0	0	0	0	6	6	-2	0	0	0	0
X112	-8	-8	0	0	8	0	0	8	-8	0	0	0	0	6	6	-2	0	0	0	0
X113	-8	-8	0	0	8	0	0	8	-8	0	0	0	0	6	6	-2	0	0	0	0
Y114	8	8	0	0	-8	0	0	-8	8	0	0	0	0	6	6	-2	0	0	0	0
200	0	0	•	•	0	0	0	0	0	0	0		0	6	6	-	Ő		0	0
X115	0	0	0	-0	0	0	0		0		-0	0	0		0	-2	0		0	0
X116	0	0	-8	8	0	0	0	0	0	-8	8	0	0	6	6	-2	0	0	0	0
X117	0	0	-8	8	0	0	0	0	0	-8	8	0	0	6	6	-2	0	0	0	0
X118	0	0	8	-8	0	0	0	0	0	8	-8	0	0	6	6	-2	0	0	0	0
X119	-4	-4	0	0	-4	0	4	-4	-4	0	0	4	0	0	0	0	0	0	0	0
X120	-4	-4	0	0	-4	0	4	4	4	0	0	-4	0	0	0	0	0	0	0	0
×101	-4	-4	0	0	-4	0	4	-4	-4	0	0	4	0	0	0	0	0		0	0
A121		-1	0	0		0	TIN	JIN	FD	STAT	V	hai	0		0	0	0		0	0
X122	-4	-4	0	0	-4	0	4	4	4		1 09 1	-4	0		0	0	0		0	0
X123	0	0	0	0	0	0	- 0	1 S ⁰ 1	0	0	CAP	0	0	-6	-6	2	0	0	0	0
X124	0	0	0	0	0	0	0	0	0	0	0	0	0	-6	-6	2	0	0	0	0
X125	0	0	0	0	0	0	0	0	0	0	0	0	0	-6	-6	2	0	0	0	0
X126	0	0	0	0	0	0	0	0	0	0	0	0	0	-6	-6	2	0	0	0	0
X197	8	-8	0	0	0	0	0	0	0	0	0	0	0	8	-8	0	0	2	-2	0
244	l õ	0	Ň	Ň	Ő	0	Ň		0	0	Ő	0	ů.		0	Ň	Ň			0
X128	ð	-8	-	0	0	0	0		0	-	0	0	0	ð	-8	0	0		-2	-
X129	8	-8	0	0	0	0	0	0	0	0	0	0	0	16	-16	0	0	-2	2	0
X130	8	-8	0	0	0	0	0	0	0	0	0	0	0	16	-16	0	0	-2	2	0
X131	8	-8	0	0	0	0	0	0	0	0	0	0	0	-8	8	0	0	4	-4	0
X132	8	-8	0	0	0	0	0	0	0	0	0	0	0	-8	8	0	0	4	-4	0
X122	8	-8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24-5		0	Ň	Ň	Ő	0	Ň		0	0	Ő	0	ů.		Ň	Ň	Ň		Ň	0
X134		-0	0	0	0	0	0		0	0	0	0	0		0	0	0		0	U C
X135	-16	16	0	0	0	0	0	0	0	0	0	0	0	8	-8	0	0		-2	0
X136	-16	16	0	0	0	0	0	0	0	0	0	0	0	8	-8	0	0	2	-2	0
X137	0	0	0	0	0	0	0	0	0	0	0	0	0	-16	16	0	0	-4	4	0

Table 9.7 (continue)

		4A			4B			4C			4D			$4\mathrm{E}$		
	4AD	4AE	8A	4AF	4AG	8B	4AH	4AI	4AJ	4AK	4AL	4AM	4AN	4AO	4AP	4AQ
<i>χ</i> 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
X2	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1	-1	-1	-1	-1
X3	3	3	3	3	3	3	1	1	1	1	1	1	-1	-1	-1	-1
χ_4	-3	-3	-3	-3	-3	-3	1	1	1	1	1	1	1	1	1	1
χ_5	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1	3	3	3	3
χ_6	1	1	1	1	1	1	1	1	1	1	1	1	-3	-3	-3	-3
X7	-2	-2	-2	2	2	2	-2	-2	-2	2	2	2	0	0	0	0
X8	2	2	2	-2	-2	-2	-2	-2	-2	2	2	2	0	0	0	0
X9	-3	-3	-3	-3	-3	-3	1	1	1	1	1	1	-3	-3	-3	-3
X10	3	3	3	3	3	3	1	1	1	1	1	1	3	3	3	3
X11	-2	-2	-2	2	2	2	2	2	2	-2	-2	-2	0	0	0	0
X12	-2	-2	-2	2	2	2	2	2	2	-2	-2	-2	0	0	0	0
X13	2	2	2	-2	-2	-2	2	2	2	-2	-2	-2	0	0	0	0
X14	2	2	2	-2	-2	-2	2	2	2	-2	-2	-2	0	0	0	0
X15	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	2	2	2	2
X16	1	1	1	1	1	1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
X17	1	-1	-1	-1	-1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
×10	1	1	1	1	1	1	3	3	3	3	3	3	1	1	1	1
×20	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
X21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X22	0	0	0	0	0	0	-4	-4	-4	4	4	4	0	0	0	0
X23	4	4	4	-4	-4	-4	0	0	0	0	0	0	0	0	0	0
X24	-4	-4	-4	4	4	4	0	0	0	0	0	0	0	0	0	0
χ_{25}	2	2	2	-2	-2	-2	-2	-2	-2	2	2	2	0	0	0	0
χ_{26}	-2	-2	-2	2	2	2	-2	-2	-2	oft_2^e	2	2	0	0	0	0
X27	2	2	2	2	2	2		2	2	A D2	2	2	2	2	2	2
X28	-2	-2	-2	-2	-2	-2	2	2	2	2	2	2	-2	-2	-2	-2
X29	0	0	0	0	0	0	4	4	4	-4	-4	-4	0	0	0	0
X30	4	4	4	-4	-4	-4	0	0	0	0	0	0	0	0	0	0
X31	-4	-4	-4	4	4	4	0	0	0	0	0	0	0	0	0	0
X32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X34	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	1	1	1	1
χ_{35}	3	3	3	3	3	3	-3	-3	-3	-3	-3	-3	-1	-1	-1	-1
X36	-3	-3	-3	-3	-3	-3	1	1	1	1	1	1	1	1	1	1
X37	3	3	3	3	3	3	1	1	1	1	1	1	-1	-1	-1	-1
X38	1	1	-1	1	1	-1	1	1	-1		1	-1	1	-1	-1	1
X39	-1	-1	1	-1	-1	1	1	1	-1		1	-1	-1	1	1	-1
X40	3	3	-3	3	3	-3	1	1	-1		1	-1	-1	1	1	-1
X41	-3	-3	3 1	-3	-3	3 1	1	1	-1		1	-1	1	-1	-1	1
X42	-1	-1	1	-1	-1	1	1	1	-1		1	-1	3	-3	-3	3
X43	-2		-1	2	1 2	-1	-2	-2	-1		2	-1	-3	О	0	-3
X44	2	-2	-2	-2	-2	2	-2	-2	2		2	-2	0	0	0	0

		4A			4B			4C			4D			$4\mathrm{E}$		
	4AD	4AE	8A	4AF	4AG	8B	4AH	4AI	4AJ	4AK	4AL	4AM	4AN	4AO	4AP	4AQ
χ_{46}	-3	-3	3	-3	-3	3	1	1	-1	1	1	-1	-3	3	3	-3
χ_{47}	3	3	-3	3	3	-3	1	1	-1	1	1	-1	3	-3	-3	3
χ_{48}	-2	-2	2	2	2	-2	2	2	-2	-2	-2	2	0	0	0	0
χ_{49}	-2	-2	2	2	2	-2	2	2	-2	-2	-2	2	0	0	0	0
χ_{50}	2	2	-2	-2	-2	2	2	2	-2	-2	-2	2	0	0	0	0
χ_{51}	2	2	-2	-2	-2	2	2	2	-2	-2	-2	2	0	0	0	0
χ_{52}	-2	-2	2	-2	-2	2	-2	-2	2	-2	-2	2	2	-2	-2	2
χ_{53}	2	2	-2	2	2	-2	-2	-2	2	-2	-2	2	-2	2	2	-2
χ_{54}	-1	-1	1	-1	-1	1	3	3	-3	3	3	-3	-1	1	1	-1
χ_{55}	1	1	-1	1	1	-1	-1	-1	1	-1	-1	1	1	-1	-1	1
χ_{56}	1	1	-1	1	1	-1	3	3	-3	3	3	-3	1	-1	-1	1
χ_{57}	-1	-1	1	-1	-1	1	-1	-1	1	-1	-1	1	-1	1	1	-1
χ_{58}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{59}	0	0	0	0	0	0	-4	-4	4	4	4	-4	0	0	0	0
χ_{60}	4	4	-4	-4	-4	4	0	0	0	0	0	0	0	0	0	0
χ_{61}	-4	-4	4	4	4	-4	0	0	0	0	0	0	0	0	0	0
χ_{62}	2	2	-2	-2	-2	2	-2	-2	2	2	2	-2	0	0	0	0
χ_{63}	-2	-2	2	2	2	-2	-2	-2	2	2	2	-2	0	0	0	0
χ_{64}	2	2	-2	2	2	-2	2	2	-2	2	2	-2	2	-2	-2	2
χ_{65}	-2	-2	2	-2	-2	2	2	2	-2	2	2	-2	-2	2	2	-2
χ_{66}	0	0	0	0	0	0	4	4	-4	-4	-4	4	0	0	0	0
χ_{67}	4	4	-4	-4	-4	4	0	0	0	0	0	0	0	0	0	0
χ_{68}	-4	-4	4	4	4	-4	0	0	0	0	0	0	0	0	0	0
χ_{69}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{70}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X71	-3	-3	3	-3	-3	3	-3	-3	3	of the	-3	3	1	-1	-1	1
χ72	3	3	-3	3	3	-3	-3	-3	3	-3	-3	3	-1	1	1	-1
X73	-3	-3	3	-3	-3	3	E 10 11		- 1 . (ALL	1	-1	1	-1	-1	1
χ74	3	3	-3	3	3	-3	1	1	-1	1	1	-1	-1	1	1	-1
X75	6	-2	0	6	-2	0	2	-2	0	2	-2	0	2	0	0	-2
X76	0	-2	0	-0	2	0	-2	2	0		-2	0	0	2	-2	0
X77	-0	2	0	-0	2	0	2	-2	0		-2	0	-2	0	0	2
X78	6	-2	0	-0	2	0	-2	2	0		-2	0	0	-2	2	0
X79	-0	2	0	-0	2	0	2	-2	0	2	-2	0	2	2	0	-2
X80	-0	2	0	6	-2	0	-2	2	0	2	-2	0	2	2	-2	2
X81	6	-2	0	6	-2	0	2	-2	0	2	-2	0	-2	2	0	2
X82	-0	0	0	0	-2	0	-2	_4	0		-2	0	4	-2	2	-4
X83	0	0	0	0	0	0	-4	-4	0	4	-4	0	- -	-4	4	-4
184 Vor	0	0	0	0	0	0	-4	-4	0	4	-4	0	-4	-4	-+ 0	4
185 Vec	0	0	0	0	0	0	-4		0	4	-4	0		4	-4	ن 0
180 Vo7	-6	2	0	6	-2	0	2	-2	0	-2	2	0	0	-2	2	0
181 100	-0	~	0	U V	- 2			-2			-	0	0		-	0
1 1.00	6	-2	0	6	-2	0	-2	2	0	-2	2	0	2	()	0	- 2.
700	6 -6	-2 2	0	6 6	-2 -2	0	-2 2	2 -2	0	-2	2	0	2	0 2	-2	-2
X89 χορ	6 -6 6	-2 2 -2	0 0 0	6 6 6	-2 -2 -2	0 0 0	-2 2 -2	2 -2 2	0 0 0	-2 -2 -2	2 2 2	0	2 0 -2	0 2 0	0 -2 0	-2 0 2

Table 9.7 (continue)

		4A			4B			4C			4D			$4\mathrm{E}$		
	4AD	4AE	8A	4AF	4AG	8B	4AH	4AI	4AJ	4AK	4AL	4AM	4AN	4AO	4AP	4AQ
X92	-6	2	0	-6	2	0	-2	2	0	-2	2	0	2	0	0	-2
X93	6	-2	0	-6	2	0	2	-2	0	-2	2	0	0	2	-2	0
χ_{94}	-6	2	0	-6	2	0	-2	2	0	-2	2	0	-2	0	0	2
χ_{95}	-6	2	0	6	-2	0	2	-2	0	-2	2	0	0	-2	2	0
χ_{96}	6	-2	0	6	-2	0	-2	2	0	-2	2	0	2	0	0	-2
χ_{97}	-6	2	0	6	-2	0	2	-2	0	-2	2	0	0	2	-2	0
χ_{98}	6	-2	0	6	-2	0	-2	2	0	-2	2	0	-2	0	0	2
χ_{99}	6	-2	0	-6	2	0	2	-2	0	-2	2	0	0	-2	2	0
χ_{100}	-6	2	0	-6	2	0	-2	2	0	-2	2	0	2	0	0	-2
χ_{101}	6	-2	0	-6	2	0	2	-2	0	-2	2	0	0	2	-2	0
χ_{102}	-6	2	0	-6	2	0	-2	2	0	-2	2	0	-2	0	0	2
χ_{103}	6	-2	0	-6	2	0	2	-2	0	-2	2	0	0	-2	2	0
χ_{104}	-6	2	0	-6	2	0	-2	2	0	-2	2	0	2	0	0	-2
χ_{105}	6	-2	0	-6	2	0	2	-2	0	-2	2	0	0	2	-2	0
χ_{106}	-6	2	0	-6	2	0	-2	2	0	-2	2	0	-2	0	0	2
χ_{107}	-6	2	0	6	-2	0	2	-2	0	-2	2	0	0	-2	2	0
χ_{108}	6	-2	0	6	-2	0	-2	2	0	-2	2	0	2	0	0	-2
χ_{109}	-6	2	0	6	-2	0	2	-2	0	-2	2	0	0	2	-2	0
χ_{110}	6	-2	0	6	-2	0	-2	2	0	-2	2	0	-2	0	0	2
χ_{111}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{112}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{113}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{114}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{115}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X116	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{117}	0	0	0	0	0	01	0	ERG	0	of the	0	0	0	0	0	0
X118	0	0	0	0	0	0	EST	FRI	U O	APE	0	0	0	0	0	0
X119	0	0	0	0	0	0	4	-4	0	4	-4	0	4	0	0	-4
X120	0	0	0	0	0	0	-4	4	0	4	-4	0	0	-4	4	0
X121	0	0	0	0	0	0	4	-4	0	4	-4	0	-4	4	4	4
X122	0	0	0	0	0	0	-4	т О	0		-4	0	0		-4	0
X123	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X124 X105	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X125 X196	0	0	0	0	ů 0	0	0	0	0	0	0	ů 0	0	0	0	0
X120	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
×127	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X120	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X130	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ ₁₃₁	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ ₁₃₂	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X133	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X134	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X135	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X136	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X137	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 9.7 (continue)

Table 9.7 (continue)

			4F				4G				$4\mathrm{H}$				4I		
	4AR	4AS	8C	8D	4AJ	8E	4AU	8F	4AV	4AW	8G	8H	4AX	4AY	4AZ	8I	8J
X1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
X2	1	1	1	1	1	1	1	1	-1	-1	-1	-1	1	1	1	1	1
χ3	1	1	1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1	-1
χ_4	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
χ_5	1	1	1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1	-1
X6	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
X7	0	0	0	0	0	0	0	0	-2	-2	-2	-2	0	0	0	0	0
X8	0	0	0	0	0	0	0	0	2	2	2	2	0	0	0	0	0
X9		1	1	1		1	1	1	1	1	1	1		1	1	1	1
X10		1	1	1		1	1	1	-1	-1	-1	-1		1	1	1	1
X11	0	0	0	0	-2	-2	-2	-2	0	0	0	0		2	2	2	2
X12	0	0	0	0		2	2	2	0	0	0	0	-2	-2	-2	-2	-2
X13	0	0	0	0		2	2	2	0	0	0	0	-2	-2	-2	-2	-2
X14	-2	-2	-2	-2	-2	-2	-2	-2	0	0	0	0		2	2	0	0
×15	-2	-2	-2	-2		0	0	0	0	0	0	0	0	0	0	0	0
×10 ×17	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
X17 X18	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1	1	1	1	1	1
X19	-1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1	-1
X20	-1	-1	-1	-1	1	1	1	1	1	1	1	1	1	1	1	1	1
X21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X25	0	0	0	0	0	0	0	0	-2	-2	-2	-2	0	0	0	0	0
χ_{26}	0	0	0	0	0	0	-0	0	\mathbf{D}_2	2^{2}	e 2	2	0	0	0	0	0
X27	-2	-2	-2	-2	0	0	0	0		A O	0	0	0	0	0	0	0
X28	-2	-2	-2	-2	0	0	0	0	0	0	0	0	0	0	0	0	0
X29	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X34	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
X35	1	1	1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1	-1
X36	1	1	1	1		1	1	1	1	1	1	1		1	1	1	1
X37	1	1	1	1	1	1	1	1	-1	-1	-1	-1	1	1	1	1	1
X38		-1	-1	1		-1	-1	1	1	-1	-1	1		1	-1	-1	1
×39	1	-1	-1	1		-1	-1	_1	-1	_1	-1	-1		_1	-1	-1	_1
X40	1	-1	-1	1		1	1	-1	_1	-1	1	-1		-1	1	1	-1
X41 X42	1	-1	-1	1	-1	1	1	-1	1	-1	-1	1	-1	-1	1	1	-1
X42	1	-1	-1	1	-1	1	1	-1	-1	1	1	-1	-1	-1	1	1	-1
χ43	0	- 0	0	0	0	0	- 0	0	-2	2	2	-2	0	- 0	- 0	0	0
X45	0	0	0	0	0	0	0	0	2	-2	-2	2	0	0	0	0	0

			4F				4G				4H				4I		
	4AR	4AS	8C	8D	4AJ	8E	4AU	8F	4AV	4AW	8G	8H	4AX	4AY	4AZ	8I	8J
X46	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1	1	-1	-1	1
X47	1	-1	-1	1	1	-1	-1	1	-1	1	1	-1	1	1	-1	-1	1
X48	0	0	0	0	-2	2	2	-2	0	0	0	0	2	2	-2	-2	2
X49	0	0	0	0	2	-2	-2	2	0	0	0	0	-2	-2	2	2	-2
X50	0	0	0	0	2	-2	-2	2	0	0	0	0	-2	-2	2	2	-2
X51	0	0	0	0	-2	2	2	-2	0	0	0	0	2	2	-2	-2	2
X52	-2	2	2	-2	0	0	0	0	0	0	0	0	0	0	0	0	0
X53	-2	2	2	-2	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{54}	-1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	-1	1	1	-1
X55	-1	1	1	-1	1	-1	-1	1	-1	1	1	-1	1	1	-1	-1	1
X56	-1	1	1	-1	-1	1	1	-1	1	-1	-1	1	-1	-1	1	1	-1
X57	-1	1	1	-1	1	-1	-1	1	1	-1	-1	1	1	1	-1	-1	1
X58	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X59	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X60	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X61	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X62	0	0	0	0	0	0	0	0	-2	2	2	-2	0	0	0	0	0
X63	0	0	0	0	0	0	0	0	2	-2	-2	2	0	0	0	0	0
X64	-2	2	2	-2	0	0	0	0	0	0	0	0	0	0	0	0	0
X65	-2	2	2	-2	0	0	0	0	0	0	0	0	0	0	0	0	0
X66	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X67	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X68	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X69	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X70	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X71	1	-1	-1	1	-1	U	NIV	E-R	SIT	Y of th	e 1	-1	-1	-1	1	1	-1
X72	1	-1	-1	1	-1	1	1	-1	1	-1	-1	1	-1	-1	1	1	-1
X73	1	-1	-1	1	1	-1	E -1	1	(N_1)	A-1	S -1	1	1	1	-1	-1	1
X74	1	-1	-1	1	1	-1	-1	1	-1	1	1	-1	1	1	-1	-1	1
χ75	2	0	0	-2	2	0	0	-2	2	0	0	-2	2	2	0	0	-2
X76	0	-2	2	0	0	-2	2	0	2	0	0	-2	0	0	-2	2	0
X77	2	0	0	-2	2	0	0	-2	-2	0	0	2	2	2	0	0	-2
X78	0	2	-2	0	0	2	-2	0	2	0	0	-2	0	0	2	-2	0
X79	-2	0	0	2	-2	0	0	2	-2	0	0	2	-2	-2	0	0	2
X80	0	2	-2	0	0	2	-2	0	-2	0	0	2	0	0	2	-2	0
X81	-2	0	0	2	-2	0	0	2	2	0	0	-2	-2	-2	0	0	2
X82	0	-2	2	0	0	-2	2	0	-2	0	0	2	0	0	-2	2	0
X83	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X84	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X85	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X86	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X87	0	2	-2	0	2	0	0	-2	0	2	-2	0	-2	-2	0	0	2
X88	-2	0	0	2	0	-2	2	0	0	-2	2	0	0	0	2	-2	0
X89	0	-2	2	0	-2	0	0	2	0	2	-2	0	2	2	0	0	-2
X90	2	0	0	-2	0	2	-2	0	0	-2	2	0	0	0	-2	2	0
X91	0	-2	2	0	-2	0	0	2	0	-2	2	0	2	2	0	0	-2

Table 9.7 (continue)

			4F				4G				$4\mathrm{H}$				4I		
	4AR	4AS	8C	8D	4AJ	8E	4AU	8F	4AV	4AW	8G	8H	4AX	4AY	4AZ	8I	8J
X92	2	0	0	-2	0	2	-2	0	0	2	-2	0	0	0	-2	2	0
X93	0	2	-2	0	2	0	0	-2	0	-2	2	0	-2	-2	0	0	2
χ_{94}	-2	0	0	2	0	-2	2	0	0	2	-2	0	0	0	2	-2	0
χ_{95}	0	2	-2	0	-2	0	0	2	0	-2	2	0	2	2	0	0	-2
X96	-2	0	0	2	0	2	-2	0	0	2	-2	0	0	0	-2	2	0
X97	0	-2	2	0	2	0	0	-2	0	-2	2	0	-2	-2	0	0	2
X98	2	0	0	-2	0	-2	2	0	0	2	-2	0	0	0	2	-2	0
χ_{99}	0	-2	2	0	2	0	0	-2	0	2	-2	0	-2	-2	0	0	2
χ_{100}	2	0	0	-2	0	-2	2	0	0	-2	2	0	0	0	2	-2	0
X101	0	2	-2	0	-2	0	0	2	0	2	-2	0	2	2	0	0	-2
χ_{102}	-2	0	0	2	0	2	-2	0	0	-2	2	0	0	0	-2	2	0
χ_{103}	0	-2	2	0	0	2	-2	0	-2	0	0	2	0	0	2	-2	0
χ_{104}	2	0	0	-2	-2	0	0	2	2	0	0	-2	-2	-2	0	0	2
χ_{105}	0	2	-2	0	0	-2	2	0	-2	0	0	2	0	0	-2	2	0
χ_{106}	-2	0	0	2	2	0	0	-2	2	0	0	-2	2	2	0	0	-2
χ_{107}	0	2	-2	0	0	-2	2	0	2	0	0	-2	0	0	-2	2	0
X108	-2	0	0	2	2	0	0	-2	-2	0	0	2	2	2	0	0	-2
X109	2	-2	2	0	0	2	-2	0	2	0	0	-2	2	0	2	-2	2
X110		0	0	-2	-2	0	0	0	-2	0	0	0	-2	-2	0	0	0
X111 X119	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X112 X112	0	0	0	0	0	0	Ő	0	0	0	0	0	0	0	0	0	0
X114	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X115	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X116	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{117}	0	0	0	0	0	0	NIO	0	0	C of Ohe	0	0	0	0	0	0	0
X118	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X119	0	0	0	0	0	0	0	0	N oC	A 0	0	0	0	0	0	0	0
X120	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{121}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{122}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{123}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X124	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X125	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X126	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X127	0	0	0	0	0	0	0	0		0	0	0	4	-4	0	0	0
X128	0	0	0	0	0	0	0	0		0	0	0	4	-4	0	0	0
X129	0	0	0	0	0	0	0	0		0	0	0	-4	4	0	0	0
X130 X121	0	0	0	0	0	0	0	0	0	0	0	0	-4	4	0	0	0
X132	0	0	0	0	0	0	0	0	o o	0	0	0	-4	4	0	0	0
X132	0	0	0	0	0	0	0	0	0	0	0	0	4	-4	Ũ	0	0
X134	0	0	0	0	0	0	0	0	0	0	0	0	4	-4	0	0	0
X135	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X136	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X137	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 9.7 (continue)

Table 9.7 (continue)

			4J				5A			6A			6B			6C	
	4BA	4BB	4BC	8K	8L	5A	10A	10B	6F	6G	12A	6H	12B	12C	61	12D	12E
χ1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	-1	-1	-1	-1	-1	1	1	1	1	1	1	1	1	1	1	1	1
X3	1	1	1	1	1	0	0	0	2	2	2	2	2	2	2	2	2
χ_4	-1	-1	-1	-1	-1	0	0	0	2	2	2	2	2	2	2	2	2
χ_5	1	1	1	1	1	0	0	0	-1	-1	-1	-1	-1	-1	-1	-1	-1
X6	-1	-1	-1	-1	-1	0	0	0	-1	-1	-1	-1	-1	-1	-1	-1	-1
X7	2	2	2	2	2	1	1	1	-3	-3	-3	1	1	1	-1	-1	-1
X8	-2	-2	-2	-2	-2	1	1	1	-3	-3	-3	1	1	1	-1	-1	-1
X9	1	1	1	1	1	-1	-1	-1	0	0	0	0	0	0	0	0	0
X10	-1	-1	-1	-1	-1	-1	-1	-1	0	0	0	0	0	0	0	0	0
X11	0	0	0	0	0	0	0	0	-1	-1	-1	-1	-1	-1		1	1
X12	0	0	0	0	0		0	0	-1	-1	-1	-1	-1	-1		1	1
χ_{13}	0	0	0	0	0		0	0	-1	-1	-1	-1	-1	-1		1	1
X14	0	0	0	0	0		0	0	-1	-1 1	-1	-1	-1 1	-1		1	1
X15	0	0	0	0	0		0	0		1	1		1	1		1	1
X16 X17	-1	-1	-1	-1	-1	0	0	0	3	3	3	-1	-1	-1	-1	-1	-1
×17 ×19	-1	-1	-1	-1	-1	0	0	0	3	3	3	-1	-1	-1	-1	-1	-1
×10	1	1	1	1	1	0	0	0	3	3	3	-1	-1	-1	-1	-1	-1
×20	1	1	1	1	1	0	0	0	3	3	3	-1	-1	-1	-1	-1	-1
X21	0	0	0	0	0	1	1	1	-2	-2	-2	-2	-2	-2	-2	-2	-2
X22	0	0	0	0	0	0	0	0	-2	-2	-2	-2	-2	-2	2	2	2
X23	0	0	0	0	0	-1	-1	-1	-3	-3	-3	1	1	1	-1	-1	-1
X24	0	0	0	0	0	-1	-1	-1	-3	-3	-3	1	1	1	-1	-1	-1
X25	2	2	2	2	2	_0_	0	0	3	3	3	-1	-1	-1	1	1	1
χ_{26}	-2	-2	-2	-2	-2	0	0	E K ₀	- 3	031	he ₃	-1	-1	-1	1	1	1
X27	0	0	0	0	0	- 0	ES ⁰	0	-3	-3	-3	1	1	1	1	1	1
X28	0	0	0	0	0	0	0	0	-3	-3	-3	1	1	1	1	1	1
X29	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
X30	0	0	0	0	0	0	0	0	-1	-1	-1	-1	-1	-1	1	1	1
χ31	0	0	0	0	0	0	0	0	-1	-1	-1	-1	-1	-1	1	1	1
X32	0	0	0	0	0	0	0	0	2	2	2	2	2	2	-2	-2	-2
X33	0	0	0	0	0	0	0	0	2	2	2	2	2	2	-2	-2	-2
χ34	-1	-1	-1	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
X35	1	1	1	1	1		0	0		0	0	0	0	0		0	0
X36	1	1	1	1	1		0	0		0	0	0	0	0		0	0
X37	-1	-1	-1	-1	-1	1	1	1		1	1	1	1	1	1	0	1
X38	1	1	-1	-1	1		1	-1		1	-1		1	-1		1	-1
X39	-1	-1	1	1	-1		1	-1		1 2	-1	2	1 2	-1		1 2	-1
X40	-1	-1	-1	-1	-1		0	0		2	-2	2	2	-2		2	-2
×41	-1	-1	-1	-1	1		0	0	-1	-1	-2	-1	-1	-2		-1	-2
X42	-1	-1	-1	-1	-1		0	0	1	-1	1	1	-1	1	1	-1	1
χ ₄₄	2	2	-2	-2	2		1	-1	-3	-3	3	1	-1	-1	-1	-1	1
χ45	-2	-2	2	2	-2	1	-	-1	-3	-3	3	1	- 1	-1	-1	-1	1

Table 9.7 (continue)

			4J				5A			6A			6B			6C	
	4BA	4BB	4BC	8K	8L	5A	10A	10B	6F	6G	12A	6H	12B	12C	61	12D	12E
X46	1	1	-1	-1	1	-1	-1	1	0	0	0	0	0	0	0	0	0
X47	-1	-1	1	1	-1	-1	-1	1	0	0	0	0	0	0	0	0	0
X48	0	0	0	0	0	0	0	0	-1	-1	1	-1	-1	1	1	1	-1
X49	0	0	0	0	0	0	0	0	-1	-1	1	-1	-1	1	1	1	-1
X50	0	0	0	0	0	0	0	0	-1	-1	1	-1	-1	1	1	1	-1
X51	0	0	0	0	0	0	0	0	-1	-1	1	-1	-1	1	1	1	-1
X52	0	0	0	0	0	0	0	0	1	1	-1	1	1	-1	1	1	-1
X53	0	0	0	0	0	0	0	0	1	1	-1	1	1	-1	1	1	-1
X54	-1	-1	1	1	-1	0	0	0	3	3	-3	-1	-1	1	-1	-1	1
X55	-1	-1	1	1	-1	0	0	0	3	3	-3	-1	-1	1	-1	-1	1
X56	1	1	-1	-1	1	0	0	0	3	3	-3	-1	-1	1	-1	-1	1
X57	1	1	-1	-1	1	0	0	0	3	3	-3	-1	-1	1	-1	-1	1
X58	0	0	0	0	0	1	1	-1	-2	-2	2	-2	-2	2	-2	-2	2
X59	0	0	0	0	0	0	0	0	-2	-2	2	-2	-2	2	2	2	-2
X 60	0	0	0	0	0	-1	-1	1	-3	-3	3	1	1	-1	-1	-1	1
X61	0	0	0	0	0	-1	-1	1	-3	-3	3	1	1	-1	-1	-1	1
X62	2	2	-2	-2	2	0	0	0	3	3	-3	-1	-1	1	1	1	-1
X63	-2	-2	2	2	-2	0	0	0	3	3	-3	-1	-1	1	1	1	-1
X64	0	0	0	0	0	0	0	0	-3	-3	3	1	1	-1	1	1	-1
X 65	0	0	0	0	0	0	0	0	-3	-3	3	1	1	-1	1	1	-1
X66	0	0	0	0	0	1	1	-1	0	0	0	0	0	0	0	0	0
X67	0	0	0	0	0	0	0	0	-1	-1	1	-1	-1	1	1	1	-1
X 68	0	0	0	0	0	0	0	0	-1	-1	1	-1	-1	1	1	1	-1
X 69	0	0	0	0	0	0	0	0	2	2	-2	2	2	-2	-2	-2	2
X70	0	0	0	0	0	0	0	0	2	2	-2	2	2	-2	-2	-2	2
X71	-1	-1	1	1	-1	0	0	0	0	7 .0 4	. 0	0	0	0	0	0	0
X72	1	1	-1	-1	1	0	0	0	0	0	0	0	0	0	0	0	0
X73	1	1	-1	-1	1	0	ESO	0	N _o C	AoP	E o	0	0	0	0	0	0
X74	-1	-1	1	1	-1	0	0	0	0	0	0	0	0	0	0	0	0
X75	2	2	0	0	-2	0	0	0	6	-2	0	2	-2	0	2	-2	0
X76	-2	-2	0	0	2	0	0	0	-6	2	0	2	-2	0	-2	2	0
X77	-2	-2	0	0	2	0	0	0	6	-2	0	2	-2	0	2	-2	0
X78	-2	-2	0	0	2	0	0	0	-6	2	0	2	-2	0	-2	2	0
χ79	-2	-2	0	0	2	0	0	0	6	-2	0	2	-2	0	2	-2	0
X80	2	2	0	0	-2	0	0	0	-6	2	0	2	-2	0	-2	2	0
χ ₈₁	2	2	0	0	-2	0	0	0	6	-2	0	2	-2	0	2	-2	0
X82	2	2	0	0	-2	0	0	0	-6	2	0	2	-2	0	-2	2	0
χ 83	0	- 0	õ	0	0	0	0	0	-6	2	0	-2	2	0	-2	2	0
X 84	0	0	0	0	0	0	0	0	6	-2	0	-2	2	0	2	-2	0
X85	0	0	0	0	0	0	0	0	-6	2	0	-2	2	0	-2	2	0
X86	0	0	0	0	0	0	0	0	6	-2	0	-2	2	0	2	-2	0
X87	0	õ	-2	2	0	0	0	0	0	0	0	0	0	0	0	0	0
1 200	0	õ	-2	2	0	0	0	0	0	õ	0	0	0	0	0	0	0
100 Yen	0	0	-2	2	0	0	0	0	0	õ	0	0	0	0	0	0	0
X00	0	Ő	-2	2	Ő	Ő	õ	õ	0	Ő	õ	0	Ő	õ		Ő	õ
X 91	0	0 0	2	-2	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 9.7 (continue)

			4J				5A			6A			6B			6C	
	4BA	4BB	4BC	8K	8L	5A	10A	10B	6F	6G	12A	6H	12B	12C	6I	12D	12E
X92	0	0	2	-2	0	0	0	0	0	0	0	0	0	0	0	0	0
X93	0	0	2	-2	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{94}	0	0	2	-2	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{95}	0	0	2	-2	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{96}	0	0	2	-2	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{97}	0	0	2	-2	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{98}	0	0	2	-2	0	0	0	0	0	0	0	0	0	0	0	0	0
X 99	0	0	-2	2	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{100}	0	0	-2	2	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{101}	0	0	-2	2	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{102}	0	0	-2	2	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{103}	2	2	0	0	-2	0	0	0	0	0	0	0	0	0	0	0	0
χ_{104}	2	2	0	0	-2	0	0	0	0	0	0	0	0	0	0	0	0
χ_{105}	2	2	0	0	-2	0	0	0	0	0	0	0	0	0	0	0	0
χ_{106}	2	2	0	0	-2	0	0	0	0	0	0	0	0	0	0	0	0
χ_{107}	-2	-2	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0
χ_{108}	-2	-2	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0
χ_{109}	-2	-2	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0
X110	-2	-2	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0
X111	0	0	0	0	0	0	0	0	-6	2	0	-2	2	0	2	-2	0
χ_{112}	0	0	0	0	0	0	0	0	-6	2	0	-2	2	0	2	-2	0
X113	0	0	0	0	0	0	0	0	-6	2	0	-2	2	0	2	-2	0
X114	0	0	0	0	0	0	0	0	-6	2	0	-2	2	0	2	-2	0
χ_{115}	0	0	0	0	0	0	0	0	6	-2	0	-2	2	0	-2	2	0
X116	0	0	0	0	0	0	0	0	6	-2	0	-2	2	0	-2	2	0
χ_{117}		0	0	0	0		0	ERG	6	$(0^{j^2}th$	e 0	-2	2	0	-2	2	0
X118	0	0	0	0	0	0	ST	0	6	-2	0	-2	2	0	-2	2	0
X119	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X120		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X121		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X122		0	0	0	0	0	0	0	6	2	0	2	2	0	2	2	0
X123		0	0	0	0	0	0	0	6	-2	0	2	-2	0	-2	2	0
X124		0	0	0	0		0	0	-6	-2	0	2	-2	0	-4	-2	0
X125		0	0	0	0		0	0	6	2	0	2	-2	0	2	-2	0
X120	4	-4	0	0	0	2	-2	0	-0	0	0	0	-2	0	0	-2	0
X127	-4	-4	0	0	0	2	-2	0	0	0	0	0	0	0	0	0	0
X128	-4	4	0	0	0		-2	0	0	0	0	0	0	0	0	0	0
×129 ¥120	4	-4	0	0	0	0	0	0	0	0	0	0	0	0	0	n	0
X130	4	-4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X101 X122	-4	4	0	0	0	0	0	0	0	Ő	Ő	0	0	0	0	0 0	0 0
X192	4	-4	Ő	õ	0	-2	2	0	0	Ő	Ő	Ő	õ	õ	0	0 0	0 0
X133	-4	4	Ő	õ	0	-2	2	0	0	0 0	0	0	0	0	0	0	0
X134 X135	0	0	0	0	0	0	0	0	0	õ	õ	0	0	0	0	õ	0
X136	0	õ	õ	0	0	0	0	0	0	õ	0	0	0	0	0	Ũ	Ũ
X137	0	0	0	0	0	2	-2	0	0	0	0	0	0	0	0	0	0

Table 9.7 (continue)

		6D			6E					6F			6G
	6J	12F	6K	6L	6M	12G	12H	6N	12I	12J	12K	60	12L
X1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
X3	-1	-1	0	0	0	0	0	0	0	0	0	-1	-1
χ_4	-1	-1	0	0	0	0	0	0	0	0	0	1	1
χ_5	2	2	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	0
X6	2	2	1	1	1	1	1	1	1	1	1	0	0
X7	0	0	1	1	1	1	1	-1	-1	-1	-1	0	0
X8	0	0	-1	-1	-1	-1	-1	1	1	1	1	0	0
X9	0	0	0	0	0	0	0	0	0	0	0	0	0
X10	0	0	0	0	0	0	0	0	0	0	0	0	0
X11	-1	-1	-1	-1	-1	-1	-1		1	1	1		1
X12	-1	-1	-1	-1	-1	-1	-1		1	1	1	-1	-1
X13	-1	-1	1	1	1	1	1	-1	-1	-1	-1		1
X14	-1	-1 1	1	1	1	1	1	1	-1	-1	-1	-1	-1
X15	1	1	1	1	1	1	1	1	1	1	1	1	-1
X16	0	0	1	-1	-1	-1	-1	1	-1	-1	-1		0
	0	0	-1	-1	-1	-1	-1	-1	-1	-1	-1		0
×10	0	0 0	-1	-15	-1	-1	-1	-1	-1	-1	-1	0	0
X20	0	0	1	1	1	1	1	1	1	1	1	0	0
X21	-2	-2	0	0	0	0	0	0	0	0	0	0	0
X22	-2	-2	0	0	0	0	0	0	0	0	0	0	0
X23	0	0	1	1	1	1	1	-1	-1	-1	-1	0	0
X24	0	0	-1	-1	-1	-1	-1	1	1	1	1	0	0
X25	0	0	-1	-1	-1	-1		1	1	1	1	0	0
χ_{26}	0	0	1	1	NI	EK	211	Y Af	the ₁	-1	-1	0	0
X27	0	0	1	1	ES	TEF	N1		E1	1	1	0	0
X28	0	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	0
X29	0	0	0	0	0	0	0	0	0	0	0	0	0
X30	2	2	-1	-1	-1	-1	-1	1	1	1	1	0	0
X31	2	2	1	1	1	1	1	-1	-1	-1	-1	0	0
X32	-1	-1	0	0	0	0	0	0	0	0	0	-1	-1
X33	-1	-1	0	0	0	0	0	0	0	0	0		1
X34	0	0		0	0	0	0		0	0	0		0
X35		0	0	0	0	0	0		0	0	0		0
X36		U		0	0	0	U		0	0	U		U
X37	1	1	1	1	1	1	1	1	1	1	1	1	1
X38	1	-1	_1	_1	-1	-1	_1	_1	-1	-1	_1	1	-1
X40	-1	-1	0	-1	0	0		0	0	0		-1	1
X40	-1	1	0	õ	0	0	0	0	0	0	0		-1
X41	2	-2	-1	-1	1	1	-1	-1	1	1	-1	0	0
X43	2	-2	1	1	-1	-1	1	1	-1	-1	1	0	0
X44	0	0	1	1	-1	-1	1	-1	1	1	-1	0	0
X45	0	0	-1	-1	1	1	-1	1	-1	-1	1	0	0

		6D			6E					6F			6G
	6J	12F	6K	6L	6M	12G	12H	6N	12I	12J	12K	60	12L
χ_{46}	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{47}	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{48}	-1	1	-1	-1	1	1	-1	1	-1	-1	1	1	-1
χ_{49}	-1	1	-1	-1	1	1	-1	1	-1	-1	1	-1	1
χ_{50}	-1	1	1	1	-1	-1	1	-1	1	1	-1	1	-1
χ_{51}	-1	1	1	1	-1	-1	1	-1	1	1	-1	-1	1
χ_{52}	1	-1	1	1	-1	-1	1	1	-1	-1	1	-1	1
χ_{53}	1	-1	-1	-1	1	1	-1	-1	1	1	-1	1	-1
χ_{54}	0	0	1	1	-1	-1	1	1	-1	-1	1	0	0
χ_{55}	0	0	-1	-1	1	1	-1	-1	1	1	-1	0	0
χ_{56}	0	0	-1	-1	1	1	-1	-1	1	1	-1	0	0
χ_{57}	0	0	1	1	-1	-1	1	1	-1	-1	1	0	0
χ_{58}	-2	2	0	0	0	0	0	0	0	0	0	0	0
χ_{59}	-2	2	0	0	0	0	0	0	0	0	0	0	0
χ_{60}	0	0	1	1	-1	-1	1	-1	1	1	-1	0	0
χ_{61}	0	0	-1	-1	1	1	-1	1	-1	-1	1	0	0
χ_{62}	0	0	-1	-1	1	1	-1	1	-1	-1	1	0	0
χ_{63}	0	0	1	1	-1	-1	1	-1	1	1	-1	0	0
χ_{64}	0	0	1	1	-1	-1	1	1	-1	-1	1	0	0
χ_{65}	0	0	-1	-1	1	1	-1	-1	1	1	-1	0	0
χ_{66}	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{67}	2	-2	-1	-1	1	1	-1	1	-1	-1	1	0	0
χ_{68}	2	-2	1	1	-1	-1	1	-1	1	1	-1	0	0
χ_{69}	-1	1	0	0	0	0	0	0	0	0	0	-1	1
χ_{70}	-1	1	0	0	0	0	0	0	0	0	0	1	-1
χ_{71}	0	0	0	0	NOV	0	SIO	Y 0	the^0	0	0	0	0
χ_{72}	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{73}	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{74}	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{75}	0	0	2	2	0	0	-2	2	0	0	-2	0	0
χ_{76}	0	0	0	0	2	-2	0	0	2	-2	0	0	0
χ_{77}	0	0	-2	-2	0	0	2	-2	0	0	2	0	0
χ_{78}	0	0	0	0	-2	2	0	0	-2	2	0	0	0
χ_{79}	0	0	2	2	0	0	-2	2	0	0	-2	0	0
χ_{80}	0	0	0	0	2	-2	0	0	2	-2	0	0	0
χ_{81}	0	0	-2	-2	0	0	2	-2	0	0	2	0	0
χ_{82}	0	0	0	0	-2	2	0	0	-2	2	0	0	0
χ_{83}	0	0	-2	-2	0	0	2	-2	0	0	2	0	0
χ_{84}	0	0	0	0	2	-2	0	0	2	-2	0	0	0
χ_{85}	0	0	2	2	0	0	-2	2	0	0	-2	0	0
χ_{86}	0	0	0	0	-2	2	0	0	-2	2	0	0	0
χ_{87}	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{88}	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{89}	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{90}	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{91}	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 9.7 (continue)

6E6D6F6G12F6M12H12J12L6J6K6L12G6N12I12K6O χ_{92} χ_{93} χ_{94} χ_{95} χ_{96} χ_{97} χ_{98} χ_{99} χ_{100} χ_{101} χ_{102} χ_{103} χ_{104} χ_{105} χ_{106} χ_{107} χ_{108} χ_{109} χ_{110} $\mathbf{2}$ -2 -2 χ_{111} -2 -2 χ_{112} -2 -2 $\mathbf{2}$ -2 χ_{113} -2 -2 χ_{114} -2 -2 -2 χ_{115} -2 -2 χ_{116} χ_{117} -2 -2 $\mathbf{2}$ $\mathbf{2}$ -2 -2 χ_{118} \mathbb{N}_{0} χ_{119} χ_{120} χ_{121} χ_{122} -2 -2 $\mathbf{2}$ -2 χ_{123} $\mathbf{2}$ -2 -2 $\mathbf{2}$ χ_{124} $\mathbf{2}$ -2 χ_{125} -2 $\mathbf{2}$ $\mathbf{2}$ -2 -2 χ_{126} 4 -4 χ_{127} -4 χ_{128} χ_{129} χ_{130} -4 4 χ_{131} -4 χ_{132} χ_{133} χ_{134} -4 χ_{135} -4 χ_{136} χ_{137}

Table 9.7 (continue)

Table 9.7 (continue)

		6H			8A		8B		10A		12A		12B
	6P	6Q	6R	8M	8N	80	8P	10C	20A	12M	24A	12N	24B
χ1	1	1	1	1	1	1	1	1	1	1	1	1	1
X2	-1	-1	-1	1	1	-1	-1	1	1	-1	-1	-1	-1
X3	-1	-1	-1	-1	-1	1	1	0	0	0	0	0	0
χ_4	1	1	1	-1	-1	-1	-1	0	0	0	0	0	0
χ_5	0	0	0	-1	-1	1	1	0	0	-1	-1	-1	-1
X6	0	0	0	-1	-1	-1	-1	0	0	1	1	1	1
X7	0	0	0	0	0	0	0	-1	-1	1	1	-1	-1
X8	0	0	0	0	0	0	0	-1	-1	-1	-1	1	1
X9	0	0	0	1	1	1	1	-1	-1	0	0	0	0
X10	0	0	0	1	1	-1	-1	-1	-1	0	0	0	0
X11	-1	-1	-1	0	0	0	0	0	0	1	1	-1	-1
X12	1	1	1	0	0	0	0	0	0	1	1	-1	-1
X13	-1	-1	-1	0	0	0	0	0	0	-1	-1	1	1
X14	1	1	1	0	0	0	0	0	0	-1	-1	1	1
χ_{15}	-1	-1	-1	0	0	0	0	0	0	1	1	1	1
X16	1	1	1	0	0	0	0	0	0	-1	-1	-1	-1
X17	0	0	0	1	1	1	1	0	0	-1	-1	-1	-1
X18	0	0	0	-1	-1	1	1	0	0	1	1	1	1
X19	0	0	0	1	1	-1	-1	0	0	1	1	1	1
X20	0	0	0	-1	-1	-1	-1	0	0	-1	-1	-1	-1
X21	0	0	0	0	0	0	0	1	1	0	0	0	0
X22	0	0	0	0	0	0	0	0	0	0	0	0	0
X23	0	0	0	0	0	0	0	1	1	1	1	-1	-1
X24	0	0	0	0	0	0	0	1	1	-1	-1	1	1
X25	0	0	0	0		0	RSI	TYO	fthe	-1	-1	1	1
X26	0	0	0	0	0	0	- 0	0	0	1	1	-1	-1
X21	0	0	0	0	0	0	R		0	1	1	1	1
×20	0	0	0	0	0	0	0	-1	-1	0	0	0	0
×20	0	0	0	0	0	0	0	0	0	1	1	-1	-1
X31	0	0	0	0	0	0	0	0	0	-1	-1	1	1
X32	1	1	1	0	0	0	0	0	0	0	0	0	0
X33	-1	-1	-1	0	0	0	0	0	0	0	0	0	0
X34	0	0	0	1	1	1	1	0	0	0	0	0	0
X35	0	0	0	1	1	-1	-1	0	0	0	0	0	0
X36	0	0	0	-1	-1	-1	-1	0	0	0	0	0	0
X37	0	0	0	-1	-1	1	1	0	0	0	0	0	0
X38	1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1
X39	-1	-1	1	1	-1	-1	1	1	-1	-1	1	-1	1
X40	-1	-1	1	-1	1	1	-1	0	0	0	0	0	0
X41	1	1	-1	-1	1	-1	1	0	0	0	0	0	0
X42	0	0	0	-1	1	1	-1	0	0	-1	1	-1	1
X43	0	0	0	-1	1	-1	1	0	0	1	-1	1	-1
X44	0	0	0	0	0	0	0	-1	1	1	-1	-1	1
χ ₄₅	0	0	0	0	0	0	0	-1	1	-1	1	1	-1

6H8A 8B 10A12A12B8N8P24A24B6P6Q6R8M10C20A12M12N-1 -1 -1 χ_{46} -1 -1 -1 χ_{47} -1 -1 -1 -1 χ_{48} -1 -1 -1 χ_{49} -1 -1 -1 χ_{50} -1 -1 -1 -1 χ_{51} -1 -1 -1 -1 χ_{52} -1 -1 -1 χ_{53} -1 -1 -1 -1 χ_{54} -1 -1 -1 -1 χ_{55} -1 -1 -1 -1 χ_{56} -1 -1 χ_{57} -1 -1 -1 χ_{58} χ_{59} -1 -1 -1 χ_{60} -1 χ_{61} -1 -1 -1 -1 χ_{62} -1 -1 χ_{63} χ_{64} -1 -1 -1 χ_{65} -1 -1 χ_{66} -1 -1 χ_{67} -1 -1 χ_{68} -1 χ_{69} -1 -1 χ_{70} 0 0 **ERS**] χ_{71} -1 -1 χ_{72} -1 E -1 Ri CoA χ_{73} -1 -1 χ_{74} χ_{75} χ_{76} χ_{77} χ_{78} χ_{79} χ_{80} χ_{81} χ_{82} χ_{83} χ_{84} χ_{85} χ_{86} χ_{87} χ_{88} χ_{89} χ_{90} χ_{91}

Table 9.7 (continue)

		6H			8A		8B		10A		12A		12B
	6P	6Q	6R	8M	8N	80	8P	10C	20A	12M	24A	12N	24B
χ_{92}	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{93}	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{94}	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{95}	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{96}	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{97}	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{98}	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{99}	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{100}	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{101}	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{102}	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{103}	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{104}		0	0	0	0	0	0	0	0	0	0	0	0
χ_{105}		0	0	0	0	0	0	0	0	0	0	0	0
X106		0	0	0	0	0	0	0	0	0	0	0	0
X107		0	0	0	0	0	0	0	0	0	0	0	0
X108	0	0	0	0	0	0	0	0	0	0	0	0	0
X109 X110	0	0	0	0	0	0	0	0	0	0	0 0	0	0
X110 X111	0	0	0	0	0	0	0	0	0	0	0	0	0
X112	0	0	0	0	0	0	0	0	0	0	0	0	0
X112 X113	0	0	0	0	0	0	0	0	0	0	0	0	0
X114	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{115}	0	0	0	0	0	0	-0	0	0	0	0	0	0
X116	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{117}	0	0	0	0	N0	0	0	0	f +],0,	0	0	0	0
χ_{118}	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{119}	0	0	0	0	0	0	0	CoA	0	0	0	0	0
χ_{120}	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{121}	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{122}	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{123}	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{124}	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{125}	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{126}	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{127}	2	-2	0	0	0	0	0	0	0	0	0	0	0
χ_{128}	-2	2	0	0	0	0	0	0	0	0	0	0	0
χ_{129}	2	-2	0	0	0	0	0	0	0	0	0	0	0
χ_{130}	-2	2	0	0	0	0	0	0	0	0	0	0	0
χ_{131}	0	0	0	0	0	0	0	0	0	0	0	0	0
X132		0	0		0	0	0	0	0	0	U	0	0
X133		0	0	0	0	0	0	0	0	0	0	0	0
X134	_2	2	0	0	0	0	0	0	0	0	0	0	0
X135 X126	2	-2	0	0	0	0	0	0	0	0	0	0	0
X130	0	0	0	0	0	0	0	0	0	0	0	0	0
AT01	u v	~	~	, v	~	u v	~	~	~		~		~

Table 9.7 (continue)

We restrict characters of $Irr(2^6:SP_6(2))$ to \overline{G} and also compute the structure constants (using GAP) for the set $Irr(\overline{G})$ such that the consistency checks which were implemented by Programme C are satisfied. The information about the conjugacy classes found in Table 9.3 can be used to compute the power maps for the elements of \overline{G} and the Programme C is used to confirm that our Table 9.7 produces the unique p-powers listed in Table 9.8.

$[g]_G$	$[x]_{\overline{G}}$	2	3	5	$[g]_G$	$[x]_{\overline{G}}$	2	3	5	
1A	1A				2A	2D	1A			
	2A	1A				2E	1A			
	2B	1A				4A	2A			
	2C	1A								
2B	2F	1A			2C	2H	1A			
	2G	1A				2I	1A			
	4B	2A				4D	2A			
	4C	2B				4E	2B			
2D	2J	1A			2E	2L	1A			
	2K	1A				2M	1A			
	4F	2A				2N	1A			
	4G	2B	-	_		2O	1A			
	4H	2B		_		4I	2B			
		1				4J	2B			
2F	2P	1A			2G	2S	1A			
	2Q	1A				4M	2A			
	2R	1A				4N	2B			
	4K	2B		1 111		40	2B			
	4L	2B								
2H	2T	1A	NIV	VER	21	2U	1A			
	4P	2A		1.11		2V	1A			
	4Q	2B	ES	TER	N C	4U	2B			
	4R	2B				2W	1A			
	4S	2B				4V	2B			
	4T	2B				4W	2B			
						4X	2B			
2J	2X	1A			3A	3A		1A		
	4Y	2B				6A	3A	2A		
	4Z	2B				6B	3A	2B		
	4AA	2A				6C	3A	2C		
	4AB	2B								
	4AC	2B								
3B	3B		1A		4A	4AD	2H			
	6D	3B	2A			4AE	2H			
	6E	3B	2C			8A	4D			
4B	4AF	2H			4C	4AH	2F			
	4AG	2H				4AI	2G			
	8B	4D				4AJ	2G			
4D	4AK	2F			4E	4AN	2F			
	4AL	2G				4AO	2G			
	4AM	2G				4AP	2G			
						4AQ	2G			

Table 9.8: The power maps of the elements of $2^6:(2^5:S_6)$

r									
$[g]_G$	$[x]_{\overline{G}}$	2	3	5	$[g]_G$	$[x]_{\overline{G}}$	2	3	5
4F	4AR	2H			4G	4AT	2U		
	8C	4D				8E	4V		
	8D	4D				4AU	2V		
	4AS	2I				8F	4V		
4H	4AV	2U			4I	4AX	2U		
	4AW	2V				4AY	2U		
	8G	4V				4AZ	2U		
	8H	4V				8I	4V		
						8J	4V		
4J	4BA	2U			5A	5A			1A
	4BB	2U				10A	5A		2B
	4BC	2U				10B	5A		2C
	8K	4V	-						
	8L	4V	THE						
6A	6F	3A	2D		6B	6H	3A	2F	
	6G	3A	2E			12B	6A	4B	
	12A	6A	4A			12C	6B	4C	
6C	6I	3A	2H		6D	6J	3B	2D	
	12D	6A	4D			12F	6D	4E	
	12E	6B	4E	TTED	TIT	\$7 6.17			
6E	6K	3A	2L	VER	6F	6N	$^{e}_{3A}$	2J	
	6L	3A	2M	STER	N	121	6B	4A	
	6M	3A	2O			12J	6A	4F	
	12G	6B	4I			12K	6B	4G	
	12H	6B	4J						
6G	6O	3B	2S		6H	6P	3B	2P	
	12L	6D	4M			6Q	3B	2Q	
						6R	3B	2R	
8A	8M	4AH			8B	80	4AK		
	8N	4AI				8P	4AL		
10A	10C	5A		2D	12A	12M	6I	4AD	
	20A	10A		4A		24A	12D	8D	
12B	12N	6I	4AF						
	24B	12D	8B						
·									

Table 9.8 (continue)

9.7 The Fusion of $2^6:(2^5:S_6)$ into $2^6:SP_6(2)$

Let $\chi(2^6:SP_6(2)|\overline{G})$ be the permutation character of degree 63 of $2^6:SP_6(2)$ acting on $2^6:(2^5:S_6)$. We obtain that $\chi(2^6:SP_6(2)|2^6:(2^5:S_6)) = 1a + 27a + 35b$. We are able to obtain the partial fusion of $2^6:(2^5:S_6)$ into $2^6:SP_6(2)$ by using the information provided by the conjugacy classes of the elements of $2^6:(2^5:S_6)$ and $2^6:Sp_6(2)$, their power maps, together with the permutation character of $2^6:SP_6(2)$ of degree 63, the fusion map of $2^5:S_6$ into $SP_6(2)$ (see Table 9.9), Proposition 8.51 and Remark 8.52. We used the technique of set intersections for characters to restrict the ordinary irreducible characters 63a, 315a, 63b, 315b, 440a and 440b of $(2^6:SP_6(2))$ to $2^6:(2^5:S_6)$ to determine fully the fusion of the classes of $2^6:(2^5:S_6)$ into $2^6:SP_6(2)$.

Table 9.9:	The fusion	of $2^5:S_6$ into	$\rightarrow SP($	(6, 2)
------------	------------	-------------------	-------------------	--------

		1				1	
$[h]_{25:S6}$	$\rightarrow [g]_{SP(6,2)}$	$[h]_{2^5:S_6}$	$\rightarrow [g]_{SP(6,2)}$	$[h]_{2^5:S_6} \longrightarrow$	$[g]_{SP(6,2)}$	$[h]_{2^5:S_6} \longrightarrow$	$[g]_{SP(6,2)}$
		0		Ū		Ŭ	
1A	1A	2J	2D	4G	4E	6E	6B
2A	2D	3A	3C	4H	4C	6F	6G
2B	2D	3B	3A	41	4E	6G	6D
2C	2A	4 <i>A</i>	UNIT ⁴ C R	1-4J of the	4B	6 <i>H</i>	6F
2D	2B	4B	4B	5A	5A	8A	8A
2E	2D	4C	WES 4DER	N 6AAPE	6E	88	8B
2F	2C	4D	4D	6 <i>B</i>	6B	10A	10A
2G	2A	4E	4A	6C	6D	12A	12A
2H	2D	4F	4E	6 <i>D</i>	6A	12B	12B
21	2C						

Let ζ be the character afforded by the regular representation of $2^5:S_6$. We obtain that $\zeta = \sum_{i=1}^{37} \alpha_i \Phi_i$, where $\Phi_i \in Irr(2^5:S_6)$ and $\alpha_i = deg(\Phi_i)$. Then ζ can be regarded as a character of $2^6:(2^5:S_6)$ which contains 2^6 in its kernel such that

$$\zeta(x) = \begin{cases} |2^5:S_6| & \text{if } x \in 2^6\\ 0 & \text{otherwise} \end{cases}$$

If ϕ is a character of $2^6:SP_6(2)$ than we have that

$$\begin{aligned} <\zeta,\phi>_{2^{6}:(2^{5}:S_{6})} = & \frac{1}{|2^{6}:(2^{5}:S_{6})|} \{\zeta(1A)\phi(1A) + \zeta(2A)\phi(2A) + 30\zeta(2B)\phi(2B) + 32\zeta(2C)\phi(2C)\} \\ = & \frac{1}{|2^{6}:(2^{5}:S_{6})|} \{|2^{5}:S_{6}|(\phi(1A) + \phi(2A) + 30\phi(2B) + 32\phi(2C))\} \\ = & \frac{1}{64} \{\phi(1A) + \phi(2A) + 30\phi(2B) + 32\phi(2C)\} \\ = & <\phi_{2^{6}}, 1_{2^{6}} > . \end{aligned}$$

Here 1_{2^6} is the identity character of 2^6 and ϕ_{2^6} is the restriction of ϕ to 2^6 . We obtain that

$$\phi_{2^6} = a_1\theta_1 + a_2\theta_2 + a_3\theta_3 + a_4\theta_4,$$

where $a_i \in \mathbb{N} \cup \{0\}$ and θ_i are the sums of the irreducible characters of 2^6 which are in the same orbit under the action of $(2^5:S_6)$ on $Irr(2^6)$, for $i \in \{1, 2, 3, 4\}$. Let $\varphi_j \in Irr(2^6)$, where $j \in \{1, 2, 3, ..., 137\}$. Then we obtain that

Hence

$$\phi_{2^6} = a_1 \varphi_1 + a_2 \varphi_2 \varphi_j + a_3 \sum_{j=3}^{32} \varphi_j + a_4 \sum_{j=33}^{64} \varphi_j,$$

and therefore

$$\begin{split} \langle \phi_{2^6}, \phi_{2^6} \rangle &= \quad a_1^2 + a_2^2 + 30a_3^2 + 32a_4^2 \\ &= \quad \frac{1}{64} \{ \phi(1A)\phi(1A) + \phi(2A)\phi(2A) + 30\phi(2B)\phi(2B) + 32\phi(2C)\phi(2C) \} \ , \end{split}$$

where $a_1 = \langle \zeta, \phi \rangle_{2^6:(2^5:S_6)}$.

We apply the above results to some of the irreducible characters of $2^6:SP_6(2)$, which in this case are $\phi_1 = 63a$, $\phi_2 = 315a$, $\phi_3 = 63b$ and $\phi_4 = 315b$. Their respective degrees are 63, 315, 63 and 315. For ϕ_1 we calculate that

$$\langle \zeta, \phi_1 \rangle_{2^6:(2^5:S_6)} = \frac{1}{64} \{ 63 + (-1) + 30(-1) + 32(-1) \} = 0$$

Now $a_1 + a_2 + 30a_3 + 32a_4 = 63$, since $deg\phi_1 = 63$. Since $a_1 = 0$, we must have that $a_2 = a_3 = a_4 = 1$. Note that $2^6:(2^5:S_6)$ does not have irreducible characters of degree 63. We obtain that $(\phi_1)_{2^6:(2^5:S_6)} = \chi_1 + \chi_{27} + \chi_{128}$ if the partial fusion of $2^6:(2^5:S_6)$ into $2^6:SP_6(2)$ is taken into consideration. Similarly for ϕ_2 , ϕ_3 and ϕ_4 we obtain that

By making use of the values of ϕ_1 , ϕ_2 , ϕ_3 and ϕ_4 on the classes of $2^6:SP_6(2)$ and the values of $(\phi_1)_{2^6:(2^5:S_6)}, (\phi_2)_{2^6:(2^5:S_6)}, (\phi_3)_{2^6:(2^5:S_6)}$ and $(\phi_4)_{2^6:(2^5:S_6)}$ on the classes of $2^6:(2^5:S_6)$ together with the partial fusion, the complete fusion map of $2^6:(2^5:S_6)$ into $2^6:SP_6(2)$ is given in the Table 9.10.

$[g]_{(2^5:S_6)}$	$[x]_{2^6:(2^5:S_6)}$	$\rightarrow [y]_{26:SP_6(2)}$	$[g]_{(2^5:S_6)}$	$[x]_{2^6:(2^5:S_6)} \longrightarrow$	$[y]_{26:SP_6(2)}$
1A	1A	1A	2A	2D	2B
	2A	2A		2E	2B
	2B	2B		4A	4A
	2C	2C			
2B	2F	2D	2C	2H	2F
	2G	2D		2I	2F
	4B	4B		4D	4C
	4C	4B		4E	4C
2D	2J	2D	2E	2L	2H
	2K	2D		2M	2H
	4F	4B		2N	2H
	4G	4B		2O	2H
	4H	4B		4I	4E
				4J	4E
2F	2P	2F	2G	2S	2B
	2Q	2F		4M	4A
	2R	2F		4N	4A
	4K	4C		40	4A
	4L	4C			
2H	2T	2H	2I	2U	2F
	4P	4F		2V	2F
	4Q	4F		4U	4C
	4R	4F		2W	2F
	4S	UNI4FER	SITY of	the $4V$	4C
	4T	4F	at a Li	4W	4C
		WESTER	N GAI	4X	4E
2J	2X	2H	3A	3A	3C
	4Y	4E		6A	6B
	4Z	4E		6B	6B
	4AA	4E		6C	6B
	4AB	4E			
	4AC	4E			
3B	3B	3A	4A	4AD	4L
	6D	6A		4AE	4L
	6E	6A		8A	8B
4B	4AF	4J	4C	4AH	4N
	4AG	4J		4AI	4N
	8B	8A		4AJ	4N
4D	4AK	4N	4E	4AN	4H
	4AL	4N		4AO	4H
	4AM	4N		4AP	4H
				4AQ	4H

Table 9.10: The fusion of $2^6:(2^5:S_6)$ into $2^6:SP_6(2)$
$[g]_{(2^5:S_6)}$	$[x]_{26:(25:S_6)} \longrightarrow$	$[y]_{26:SP_6(2)}$	$[g]_{(2^5:S_6)}$	$[x]_{26:(25:S_6)} \longrightarrow$	$[y]_{26:SP_6(2)}$
4F	4AR	4Q	4G	4AT	4Q
	8C	8C		8E	8C
	8D	8C		4AU	4Q
	4AS	4Q		8F	8C
4H	4AV	4C	4I	4AX	4Q
	4AW	4C		4AY	4Q
	8G	8B		4AZ	4Q
	8H	8B		81	8C
				8J	8C
4J	4BA	4J	5A	5A	5A
	4BB	4J		10A	10A
	4BC	4J		10B	10A
	8K	8A			
	8L	8A			
6A	6F	6H	6B	6H	6D
	6G	6H		12B	12B
	12A	12E		12C	12B
6C	6I	6G	6D	6J	6C
	12D	12C		12F	12A
	12E	12C			
6E	6K	6D	6F	6N	6K
	6L	6D		12I	12F
	6M	6D		12J	12F
	12G	12B		12K	12F
	12H	12B			
6G	6O	6G	6H	6P	6I
	12L	12C	TT TT	6Q	6I
				6R	6I
8A	8M	8E	8B	80	8G
	8N	8E		8P	8G
10A	10C	10B	12A	12M	12G
	20A	20A	SITY of	24A	24A
12B	12N	12H			
	24B	24B	N CAI	PE	

Table 9.10 (continue)

π

Bibliography

- F. Ali, Fischer-Clifford Theory and Character Tables of Group Extensions, PhD Thesis, University of Natal, Pietermaitzburg, 2001
- [2] F. Ali and J. Moori, The Fischer-Clifford matrices of a maximal subgroup of Fi'_{24} , Representation Theory 7 (2003), 300-321.
- [3] F. Ali and J.Moori, Fischer-Clifford matrices and character table of the group $2^7:Sp_6(2)$, Int. J. Math. Game Theory and Algebra 14 (2004), 101 121.
- [4] F. Ali and J. Moori, Fischer-Clifford matrices and character table of the group $2^6:Sp_8(2)$, Int. J. Math. Game Theory and Algebra 14 (2004), 123 135.
- [5] F. Ali, The Fischer-Clifford matrices of a maximal subgroup of the sporadic simple group of Held, *Algebra Colloquium* 141 (2007), 135-142.
- [6] F. Ali and J.Moori, The Fischer-Clifford matrices of the non-split group extension $2^{6} U_4(2)$, Quaestiones Mathematicae **31** (2008), 27-36.
- [7] F. Ali and J. Moori, The Fischer-Clifford matrices and character table of a maximal subgroup of Fi₂₄, Algebra Colloquium 17 (2010), 389-414.
- [8] F. Ali and J.Moori, The Fischer-Clifford matrices and character table of the split extension 2⁶:S₈, *Hacettepe Journal of Mathematics and Statistics* 43 (2014), 153-171.
- [9] A.Basheer and J. Moori, Fischer matrices of Dempwolff group 2⁵·GL(5,2), Int. J. Group Theory 1(4) (2012), 43-63.

- [10] A.Basheer and J. Moori, On the non-split group 2⁶ Sp(6,2), Bull. Iranian Math. Soc. 39 (2013), 1189-1212.
- [11] Z. Arad, Zeros in character tables of finite groups, Algebra Colloquium 1 (1994), 225 232.
- [12] Y. Berkovich, Finite groups in which the degrees of non-linear constituents of some induced characters are distinct, *Publ. Maths. Debrecen* 44 (1994), 225 - 234.
- [13] Y. Berkovich, Finite groups with small sums of degrees of some non-linear irreducible characters, J. Algebra 171 (1995), 426 - 443.
- [14] Y. Berkovich, On induced characters, Proc. Amer. Math. Soc. 121 (1994), 679 685.
- [15] W. Bosma and J.J. Canon, Handbook of Magma Functions, Department of Mathematics, University of Sydney, Sydney, November 1994.
- [16] R. Brauer, *Representations of finite groups*, Lectures on Modern Mathematics (T.L. Saaty, ed), J. Wiley and Sons (1963), 133 175.
- [17] P.J. Cameron, Notes on Classical Groups, School of Mathematical Science, Queen Mary and Westfield College London, U.K.
- [18] A.H. Clifford, Representations induced in an invariant subgroup, Ann. of Math. 38 No.3 (1937), 533 - 550.
- [19] M.J. Collins, Representations and Characters of Finite Groups, Cambridge Studies in Advanced Mathematics 22, Cambridge University Press, Cambridge, 1990.
- [20] J. J. Cannon, An introduction to the group theory language CAYLEY, Computational Group Theory (M. Atkinson, eds), Academic Press, San Diego, 1984, 145 - 183.
- [21] T. Connor and D. Leemans, An atlas of subgroup lattices of finite almost simple groups, Ars Mathematica Contemporanea 8 (2015) 259 -266
- [22] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, and R.A. Wilson, Atlas of Finite Groups, Oxford University Press, Oxford, 1985.

- [23] C.W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Pure and Applied Mathematics, Vol.XI, Interscience, New York, 1962.
- [24] M.R. Darafsheh and A. Iranmanesh, Computation of the character table of affine groups using Fischer matrices, London Mathematical Society Lecture Note Series
 211, Vol. 1, C.M. Campbell et al., Cambrigde University Press (1995), 131 - 137.
- [25] W. Feit, Characters of Finite Groups, W.A. Benjamin, New York, 1967.
- B. Fischer, *Clifford-matrices*, Progr. Math. 95, Michler G.O. and Ringel C.(eds), Birkhauser, Basel (1991), 1 - 16.
- [27] R. L. Fray and A.L. Prins, On the inertia groups of the maximal subgroup $2^7:SP(6,2)$ in $Aut(Fi_{22})$, Quaestiones Mathematicae **38** (2015), 83-102.
- [28] P.X. Gallagher, Group characters and normal Hall subgroups, Nagoya Math. Journal 24 (1962), 223-230.
- [29] D. Gorenstein, *Finite Groups*, Harper and Row Publishers, New York, 1968.
- [30] R. Gow, Some characters of affine subgroups of classical groups, J. London Math. Soc. 2 (1976), 231 - 238.
- [31] J.F. Humphreys, A course in Group Theory, Oxford University Press, New York, 1996.
- [32] B. Huppert, *Eindliche Gruppen I*, Springer, Berlin, 1967.
- [33] I. M. Isaacs, Character Theory of Finite Groups, Academic Press, San Diego, 1976.
- [34] I.M. Isaacs, A Graduate Course, Brookes/Cole Publising Company, Pacific Grove, California, 1994.
- [35] I. M. Isaacs and I. Zisser, Squares of characters with few irreducible constituents in finite groups, Arch. Math 63 (1994), 197 - 207.
- [36] G. James and M. Liebeck, Representations and Characters of Groups, Cambridge Mathematical Textbooks, Cambridge University Press, Cambridge, 1993.

- [37] C. Jansen, K. Lux, R. Parker and R. Wilson, An Atlas of Brauer Characters, Londen Mathematical Society Monographs New Series 11, Oxford University Press, Oxford, 1995.
- [38] G. Karpilovsky, On extension of characters from normal subgroups, Proc. Edinburgh Math. Soc. 27 (1984), 7 - 9.
- [39] G. Karpilovsky, Group Representations: Introduction to Group Representations and Characters, Vol 1 Part B, North - Holland Mathematics Studies 175, Amsterdam, 1992.
- [40] W. Ledermann, Introduction to Group Characters, Cambridge University Press, Cambridge, 1977.
- [41] R.J. List, On the characters of $2^{n-\epsilon}S_n$, Arch. Math. **51** (1988), 118-124.
- [42] R.J. List and I.M.I. Mahmoud, Fischer matrices for wreath products $G\omega S_n$, Arch. Math. 50 (1988), 394-401
- [43] D.E. Littlewood, The Theory of Group Characters, Oxford University Press, Oxford, 1958.
 UNIVERSITY of the WESTERN CAPE
- [44] J. Moori, On the Groups G^+ and \overline{G} of the forms $2^{10}:M_{22}$ and $2^{10}:\overline{M}_{22}$, PhD thesis, University of Birmingham, Birmingham, 1975.
- [45] J. Moori, On certain groups associated with the smallest Fischer group, J. London Math. Soc.2 (1981), 61 - 67.
- [46] J. Moori, On the Groups G^+ and \overline{G} of the forms $2^{10}:M_{22}$ and $2^{10}:\overline{M}_{22}$, PhD thesis, University of Birmingham, Birmingham, 1975.
- [47] J. Moori, *Representation Theory*, Lecture Notes, University of Kwazulu-Natal, Pietersmaritzburg.
- [48] J. Moori and Z.E. Mpono, The Fischer-Clifford matrices of the group $2^6:SP_6(2)$, Quaestiones Mathematicae **22** (1999), 257-298.

- [49] J. Moori and Z.E. Mpono, Fischer-Clifford matrices and the character table of a maximal subgroup of F₂₂, Intl. J. Math. Game Theory and Algebra 10 (2000), 1 -12.
- [50] J. Moori and T.T. Seretlo, On 2 non-split extensions groups associated with HS and HS:2, Turkish J. Math. 38(1) (2014), 60-78.
- [51] J. Moori and T.T. Seretlo On Fischer-Clifford matrices of a maximal subgroup of the Lyons group Ly, Bull. Iranian Math. Soc. 39 (2013), 1037-1052.
- [52] J. Moori and and T.T. Seretlo, On a maximal subgroup of $O_{10}^+(2)$, Southeast Asian Bull. Math. **39** (2015), 249-263.
- [53] Z. Mpono, Fischer-Clifford Theory and Character Tables of Group Extensions, PhD Thesis, University of Natal, Pietermaitzburg, 1998.
- [54] G. Navarro, Characters with stable irreducible constituents, J. Algebra 172 (1995), 320 - 334.
- [55] H. Nagao and Y. Tsushima, *Representations of Finite Groups*, Academic Press, San Diego, 1987.
 WESTERN CAPE

- [57] H. Pahlings, The character table of 2^{1+22} Co₂, J. Algebra **315**(1) (2007), 301-325
- [58] C. Parker and G. Stroth, An identification theorem for $PSU_6(2)$ and its automorphism group, preprint, arXiv:1102.5392v2.
- [59] A.L.Prins, The Fischer-Clifford Matrices and Character Table of the Maximal Subgroup $2^9:(L_3(4):S_3)$ of $U_6(2):S_3$, Bull. Iranian Math. Soc., accepted for publication.
- [60] A.L. Prins and R. L. Fray, The Fischer-Clifford matrices of the inertia group 2⁷:O⁻(6,2) of a maximal subgroup 2⁷:SP(6,2) in Sp₈(2), Int. J. Group Theory 2(3) (2013), 19-38.

- [61] A.L. Prins and R. L. Fray, The Fischer-Clifford matrices of an extension group of the form 2⁷:(2⁵:S₆), Int. J. Group Theory 3(2) (2014), 21-39.
- [62] A.L. Prins, The character table of an involution centralizer in the dempwolff group $2^{5}GL_5(2)$, Quaestiones Mathematicae, DOI:10.2989/16073606.2015.1113210.
- [63] B.G. Rodriques, On the theory and examples of group extensions, MSc thesis, University of Kwazulu-Natal, Pietermaritzburg, 1999.
- [64] R.B. Salleh, On the Construction of the Character Tables of Extension Groups, Ph.D.thesis, University of Birmingham, Birmingham, 1982.
- [65] T.T. Seretlo Fischer Clifford Matrices and Character Tables of Certain Groups Associated with Simple Groups O⁺₁₀(2), HS and Ly, PhD Thesis, University of KwaZulu Natal, Pietermaitzburg, 2011.
- [66] I.A.I. Suleiman and R.D. Wilson, Covering and automorphism groups of $U_6(2)$, Quart.J.Math.(Oxford) 48(1997), 511-517.
- [67] The GAP Group, GAP --Groups, Algorithms, and Programming, Version 4.6.3; 2013. (http://www.gap-system.org).

WESTERN CAPE

- [68] N.S. Whitley, Fischer Matrices and Character Tables of Group Extensions, MSc Thesis, University of Natal, Pietermaitzburg, 1994.
- [69] R.A. Wilson, The Finite Simple Groups, Springer-Verlag London Limited, 2009.
- [70] R.A. Wilson, P. Walsh, J. Tripp, I. Suleiman, S. Rogers, R. Parker, S. Norton, S. Nickerson, S. Linton, J. Bray and R. Abbot, ATLAS of Finite Group Representations, http://brauer.maths.qmul.ac.uk/Atlas/v3/.
- [71] K. Zimba, Fischer-Clifford Matrices of the Generalized Symmetric Group and some Associated Groups, PhD Thesis, University of KwaZulu Natal, Pietermaitzburg, 2005.

Appendix A

$\label{eq:progamme} \textbf{Progamme} ~ \textbf{A} ~ V := VectorSpace(FiniteField(q), n);$

 $S < g1, g2 >:= MatrixGroup < n, Finite\ Field(GF(2))|generators >;$ c := classes(S); $O_o := Orbit(S, elt < V | \alpha_1, ..., \alpha_n >);$ $O_1 := Orbit(S, elt < V | \beta_1, ..., \beta_n >);$ ÷ $O_{k'} := Orbit(S, elt < V | \delta_1, ..., \delta_n >);$ $O := O_o \ join \ O_1 \ join \ O_2 \ join...join \ O_{k'};$ for i to n(c) do; print c[i, 1];WESTERN CAPE $w := elt < V|0_1, 0_2, ..., 0_n >;$ $e := \{\}$ $while(O \text{ diff } e) ne \{\} do$ $d := \{\};$ for x in O do; $y := \{x + w + (x * c[i, 3])\};\$ d := d join y;end for;

print d;

e := d join e;

 $if(O \text{ diff } e) ne \{\} then$

 $w = Representative(O \operatorname{diff} e);$

 $end \ if;$

end while;

 $r := \{\}$

; u := elt < V | 0, 0, ..., 0 >;

 $while(O \text{ diff } r) ne \{\} do;$

 $m := \{\};$

for g in Centralizer(S, c[i, 3]) do

l := u * g;

m = m join l;

end for;

print" A block for the vectors under the action of centralizer : ";

print m;

 $r := m \ join \ r;$

if (O diff r) ne $\{\}$ then

```
u := Representative(O \operatorname{diff} r);
```

 $end \; if;$

UNIVERSITY of the WESTERN CAPE

 $end \ while;$

end for;

Progamme B

V := VectorSpace(FiniteField(q), n);

S < g1, g2 >:= MatrixGroup < n, Finite Field(GF(2))|generators >;

Progamme C

gap>ct:=fuction()local ct;ct:=rec();

>ct.SizesCentralizers:=[m Centralizer Orders];

>ct.OrdersClassRepresentatives:=[m Class Representatives Orders];

>ct.Irr:=[$[m \times m \text{ irreducibles}]$; >ct.UnderlyingCharacteristic:=0;ct.Id:= \overline{G} ;

>ConvertToLibraryCharacterTable NC(ct);return ct;end;ct:=ct();

gap>SetInfoLevel(InfoCharacterTable,2);

gap>IsInternallyConsistent(ct);

gap>PossiblePowerMaps(ct, p); (p-prime divisor of |G|).

UNIVERSITY of the WESTERN CAPE

Appendix B

Character Tables of inertia factor groups of $2^9:(L_3(4):2)$

Class	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Size	1	120	315	2240	1260	2520	2520	8064	6720	2880	2880	5040	2880	2880
Order	1A	2A	2B	3A	4A	4B	4C	5A	6A	7A	7B	8A	14A	14B
P = 2	1	1	1	4	3	3	3	8	4	10	11	5	11	10
P = 3	1	2	3	1	5	6	7	8	2	11	10	12	14	13
P = 5	1	2	3	4	5	6	7	1	9	11	10	12	14	13
P = 7	1	2	3	4	5	6	7	8	9	1	1	12	2	2
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	1	1	1	1	-1	1	-1	1	1	-1	-1	-1
χ3	20	6	4	2	0	0	2	0	0	-1	-1	0	-1	-1
χ_4	20	6	4	2	0	0	-2	0	0	-1	-1	0	1	1
χ_5	35	7	3	-1	3	-1	-1	0	1	0	0	-1	0	0
χ_6	35	-7	3	-1	3	-1	1	0	-1	0	0	1	0	0
χ_7	45	3	-3	0	1	1	-1	0	0	A	\overline{A}	1	-A	$-\overline{A}$
χ_8	45	3	-3	0	1	1	1	0	0	\overline{A}	A	1	$-\overline{A}$	-A
χ_9	45	-3	-3	0	1	1	1	0	0	A	\overline{A}	1	A	\overline{A}
χ_{10}	45	-3	-3	0	1	1	-1	0	0	\overline{A}	A	1	\overline{A}	A
χ_{11}	64	8	0	1	0	0	0	-1	-1	1	1	0	1	1
χ_{12}	64	-8	0	1	0	0	0	-1	1	1	1	0	-1	-1
χ_{13}	70	0	6	-2	-2	2	0	0	0	0	0	0	0	0
χ_{14}	126	0	-2	0	-2	-2	K 0	1 Y ₁ (of th_0	0	0	0	0	0

Table 9.11: The Character table of ${\cal H}_1$

Where A = -1 - b7.

Table 9.12: The Character table of ${\cal H}_2$

Class	1	2	3	4	5	6	7	8	9	10	11	12
Size	1	15	40	60	320	60	120	120	240	384	320	240
Order	1A	2A	2B	2C	3A	4A	4B	4C	4D	5A	6A	8A
P = 2	1	1	1	1	5	2	2	2	4	10	5	6
P = 3	1	2	3	4	5	6	7	8	9	10	3	12
P = 5	1	2	3	4	1	6	7	8	9	1	11	12
χ1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	-1	1	1	1	1	-1	-1	1	-1	-1
χ3	4	4	2	0	1	0	0	2	0	-1	-1	0
χ_4	4	4	-2	0	1	0	0	-2	0	-1	1	0
χ_5	5	5	1	1	-1	1	1	1	-1	0	1	-1
χ_6	5	5	-1	1	-1	1	1	-1	1	0	-1	1
X7	6	6	0	-2	0	-2	-2	0	0	1	0	0
X8	15	-1	3	3	0	-1	-1	-1	1	0	0	-1
χ9	15	-1	3	-1	0	3	-1	-1	-1	0	0	1
X10	15	-1	-3	3	0	-1	-1	1	-1	0	0	1
X11	15	-1	-3	-1	0	3	-1	1	1	0	0	-1
X12	30	-2	0	-2	0	-2	2	0	0	0	0	0

Class	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Size	1	3	4	6	6	12	12	32	12	12	12	24	24	32
Order	1A	2A	2B	2C	2D	2E	2F	3A	4A	4B	4C	4D	4E	6A
P = 2	1	1	1	1	1	1	1	8	2	2	2	5	4	8
P = 3	1	2	3	4	5	6	7	1	9	10	11	12	3	3
χ1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	-1	1	1	1	-1	1	-1	-1	1	-1	1	-1
Χз	1	1	1	1	1	-1	-1	1	1	-1	-1	-1	-1	1
χ_4	1	1	-1	1	1	-1	1	1	-1	1	-1	1	-1	-1
χ_5	2	2	2	2	2	0	0	-1	2	0	0	0	0	-1
χ_6	2	2	-2	2	2	0	0	-1	-2	0	0	0	0	1
χ_7	3	3	3	-1	-1	-1	-1	0	-1	-1	-1	1	1	0
χ_8	3	3	3	-1	-1	1	1	0	-1	1	1	-1	-1	0
χ_9	3	3	-3	-1	-1	1	-1	0	1	-1	1	1	-1	0
χ_{10}	3	3	-3	-1	-1	1	-1	0	1	-1	1	1	-1	0
χ_{11}	6	-2	0	-2	2	0	-2	0	0	2	0	0	0	0
χ_{12}	6	-2	0	-2	2	0	2	0	0	-2	0	0	0	0
χ_{13}	6	-2	0	2	-2	-2	0	0	0	0	2	0	0	0
χ_{14}	6	-2	0	2	-2	2	0	0	0	0	-2	0	0	0

Table 9.13: The Character table of H_3

Table 9.14: The Character table of H_4

Class	1	2	3	4	5	6	7	8	9
Size	1	9	12	8	18	36	24	18	18
Order	1A	2A	2B	3A	4A	4B	6A	8A	8B
P = 2	1	TIN	111	4	2	2	4	5	5
P = 3	1	2	3	1	5	6	3	8	3
χ1	1	WE	ST	ER	N1(CAI	PE1	1	1
χ_2	1	1	1	1	1	-1	1	-1	-1
χ_3	1	1	-1	1	1	-1	-1	1	1
χ_4	1	1	-1	1	1	1	-1	-1	-1
χ_5	2	2	0	2	-2	0	0	0	0
χ_6	2	-2	0	2	0	0	0	A	-A
χ_7	2	-2	0	2	0	0	0	-A	A
χ_8	8	0	2	-1	0	0	-1	0	0
χ_9	8	0	-2	-1	0	0	1	0	0
			W	here A	= -2i				

Character Tables of inertia factor groups of 2^9 : $(L_3(4):3)$

Class	1	2	3	4	5	6	7	8	9	10	11
Size	1	315	336	336	960	960	2240	3780	4032	4032	5040
Order	1A	2A	3A	3B	3C	3D	3E	4A	5A	5B	6A
P = 2	1	1	4	3	6	5	7	2	10	9	3
P = 3	1	2	1	1	1	1	1	8	10	9	2
P = 5	1	2	4	3	6	5	7	8	1	1	12
P = 7	1	2	3	4	5	6	7	8	10	9	11
X1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	A	$-\overline{A}$	A	$-\overline{A}$	1	1	1	1	A
X3	1	1	A	A	A	A	1	1	1	1	\overline{A}
χ_4	20	4	5	5	-1	-1	2	0	0	0	1
χ_5	20	4	-A	$-\overline{A}$	F	\overline{F}	2	0	0	0	A
χ_6	20	4	$-\overline{A}$	-A	\overline{F}	F	2	0	0	0	\overline{A}
X7	45	-3	0	0	3	3	0	1	0	0	0
χ_8	45	-3	0	0	3	3	0	1	0	0	0
X9	45	-3	0	0	B	\overline{B}	0	1	0	0	0
X10	45	-3	0	0	B	\overline{B}	0	1	0	0	0
X11	45	-3	0	0	\overline{B}	B	0	1	0	0	0
X12	45	-3	0	0	\overline{B}	B	0	1	0	0	0
χ_{13}	63	-1	3	3	0	0	0	-1	H	$^{*}H$	-1
χ_{14}	63	-1	3	3	0	0	0	-1	$^{*}H$	H	-1
χ_{15}	63	-1	B	\overline{B}	0	0	0	-1	H	$^{*}H$	-A
χ_{16}	63	-1	B	\overline{B}	0	0	0	-1	$^{*}H$	H	-A
X17	63	-1	\overline{B}	В	0	0	0	-1	H	$^{*}H$	$-\overline{A}$
X18	63	-1	\overline{B}	В	0	0	0	-1	$^{*}H$	H	$-\overline{A}$
X19	64	0	4	4	1	1	1	0	-1	-1	0
χ_{20}	64	0	G	\overline{G}	Α	\overline{A}	1	0	-1	-1	0
χ_{21}	64	0	\overline{G}	G	Ā	Α	1	0	-1	-1	0
1											

Table 9.15: The Character table of H_1

Where A = -1 - b3, B = -3 - b3, C = -1 - b7, $D = E(21)^5 + E(21)^{21} + E(21)^{20}$, $E = E(21)^2 + E(21)^{8} + E(21)^{11}$, F = -5 - 5b3, G = -2 - 2i3, H = -b5, $I = E(15)^{11} + E(15)^{14}$ and $J = E(15)^2 + E(15)^8$.

WESTERN CAPE

Class	12	13	14	15	16	17	18	19	20	21	22
Size	5040	2880	2880	4032	4032	4032	4032	2880	2880	2880	2880
Order	6B	7A	7B	15A	15B	15C	15D	21A	21B	21C	21D
P = 2	4	13	14	17	18	15	16	20	19	22	21
P = 3	2	14	13	10	9	9	10	13	13	14	14
P = 5	11	14	13	4	4	3	3	21	22	19	20
P = 7	12	1	1	16	15	18	17	6	5	5	6
χ_1	1	1	1	1	1	1	1	1	1	1	1
χ_2	$-\overline{A}$	1	1	\overline{A}	A	\overline{A}	A	A	\overline{A}	A	\overline{A}
χ_3	A	1	1	A	\overline{A}	A	\overline{A}	\overline{A}	A	\overline{A}	Α
χ_4	1	-1	-1	0	0	0	0	-1	-1	-1	-1
χ_5	\overline{A}	-1	-1	0	0	0	0	-A	$-\overline{A}$	-A	$-\overline{A}$
χ_6	A	-1	-1	0	0	0	0	$-\overline{A}$	-A	$-\overline{A}$	-A
χ_7	0	C	\overline{C}	0	-0	_ 0_	0	\overline{C}	\overline{C}	C	C
χ_8	0	\overline{C}	C	0	0	0	0	C	C	\overline{C}	\overline{C}
χ_9	0	C	\overline{C}	0	0	0	0	D	\overline{E}	E	\overline{D}
χ_{10}	0	\overline{C}	C	0	0	0	0	E	\overline{D}	D	\overline{E}
χ_{11}	0	C	\overline{C}	0	0	0	0	\overline{E}	D	\overline{D}	E
χ_{12}	0	\overline{C}	C_{-}	NTO		0	0	\overline{D}	E	\overline{E}	D
χ_{13}	-1	0	0	* H	* H	Н	Η	0	0	0	0
χ_{14}	-1	0	0	H	H	$\mathbb{N}^{*}H$	A^*H	0	0	0	0
χ_{15}	$-\overline{A}$	0	0	Ι	\overline{I}	J	\overline{J}	0	0	0	0
χ_{16}	$-\overline{A}$	0	0	J	\overline{J}	Ι	\overline{I}	0	0	0	0
χ_{17}	-A	0	0	\overline{I}	Ι	\overline{J}	J	0	0	0	0
χ_{18}	-A	0	0	\overline{J}	J	\overline{I}	Ι	0	0	0	0
χ_{19}	0	1	1	-1	-1	-1	-1	1	1	1	1
χ_{20}	0	1	1	$-\overline{A}$	-A	$-\overline{A}$	-A	A	\overline{A}	A	\overline{A}
χ_{21}	0	1	1	-A	$-\overline{A}$	-A	$-\overline{A}$	\overline{A}	A	\overline{A}	A
χ_{22}	0	0	0	0	0	0	0	0	0	0	0

Table 9.15 (Continue)

Where A = -1 - b3, B = -3 - b3, C = -1 - b7, $D = E(21)^5 + E(21)^{21} + E(21)^{20}$, $E = E(21)^2 + E(21)^8 + E(21)^{11}$, F = -5 - 5b3, G = -2 - 2i3, H = -b5, $I = E(15)^{11} + E(15)^{14}$ and $J = E(15)^2 + E(15)^8$.

Class	1	2	3	4	5	6	7	8	9	10
Size	1	15	60	16	16	80	80	180	320	192
Order	1A	2A	2B	3A	3B	3C	3D	3E	4A	5A
P = 2	1	1	1	5	4	7	6	8	2	11
P = 3	1	2	3	1	1	1	1	1	9	11
P = 5	1	2	3	5	4	7	6	8	9	1
χ1	1	1	1	1	1	1	1	1	1	1
X2	1	1	1	A	\overline{A}	A	\overline{A}	1	1	1
X3	1	1	1	\overline{A}	A	\overline{A}	A	1	1	1
X4	3	3	-1	3	3	0	0	0	-1	E
χ_5	3	3	-1	3	3	0	0	0	-1	*E
X6	3	3	-1	B	\overline{B}	0	0	0	-1	E
X7	3	3	-1	3	3	0	0	0	-1	*E
x8	3	3	-1	\overline{B}	B	0	0	0	-1	*E
X9	3	3	-1	\overline{B}	B	0	0	0	-1	E
X10	4	4	0	4	4	1	1	1	0	-1
X11	4	4	0	C	\overline{C}	1	1	1	0	-1
X12	4	4	0	\overline{C}	C	A	\overline{A}	1	0	-1
X13	5	5	1	5	5	-1	-1	-1	1	0
X14	5	5	1	D	\overline{D}	$-\overline{A}$	-A	-1	1	0
χ_{15}	5	5	1	\overline{D}	D	-A	$-\overline{A}$	-1	1	0
X16	15	-1	3	0	0	3	3	0	-1	0
χ17	15	-1	3	0	0	\overline{B}	B	0	-1	0
χ18	15	-1	3	0	0	В	\overline{B}	0	-1	0
X19	45	-3	-3	0	0	0	0	0	1	0

Table 9.16: The Character table of H_2

Table 9.16 (Continue)

Class	11	12	13	14	15	Y 16	the 17	18	19]
Size	192	240	240	240	240	192	192	192	192]
Order	5B	6A	6B	6C	6D	15A	15B	15C	15D	1
P = 2	10	5	4	6	7	19	18	17	16	1
P = 3	10	3	3	2	2	10	11	10	11	
P = 5	1	13	12	15	14	4	4	5	5	
χ_1	1	1	1	1	1	1	1	1	1]
χ_2	1	A	\overline{A}	A	\overline{A}	\overline{A}	A	A	\overline{A}	
Χ3	1	\overline{A}	A	\overline{A}	A	A	\overline{A}	\overline{A}	A	
χ_4	* E	-1	-1	0	0	E	E	*E	*E	
χ_5	E	-1	-1	0	0	*E	*E	E	E	
χ_6	* E	-A	$-\overline{A}$	0	0	F	\overline{F}	\overline{G}	G	
χ_7	E	-A	$-\overline{A}$	0	0	\overline{G}	G	F	\overline{F}	
χ_8	E	$-\overline{A}$	-A	0	0	\overline{G}	G	F	\overline{F}	
χ_9	* E	$-\overline{A}$	-A	0	0	\overline{F}	F	G	\overline{G}	
χ_{10}	-1	0	0	1	1	-1	-1	-1	-1	
χ_{11}	-1	0	0	A	\overline{A}	$-\overline{A}$	-A	A	$-\overline{A}$	
χ_{12}	-1	0	0	\overline{A}	A	-A	$-\overline{A}$	$-\overline{A}$	-A	
χ_{13}	0	1	1	-1	-1	0	0	0	0	
χ_{14}	0	A	\overline{A}	-A	$-\overline{A}$	0	0	0	0	
χ_{15}	0	\overline{A}	A	$-\overline{A}$	A	0	0	0	0	
χ_{16}	0	0	0	-1	-1	0	0	0	0	
χ_{17}	0	0	0	0	-A	$-\overline{A}$	0	0	0	
χ_{18}	0	0	0	$-\overline{A}$	-A	0	0	0	0	
χ_{19}	0	0	0	0	0	0	0	0	0	

Where A = -1 - b3, B = -3 - 3b3, C = -2 - 2i3, D = -5 - 5b3, E = -b5, $F = -E(15)^2 - E(5)^8$ and $G = -E(15)^{11} - E(5)^{14}$.

Table 9.17: The Character table of H_3

WESTERN CAPE

Table 9.18: The Character table of ${\cal H}_4$

Class	1	2	3	4	5	6	7	8	9	10
Size	1	9	8	12	12	24	24	54	36	36
Order	1A	2A	3A	3B	3C	3D	3E	4A	6A	6B
P = 2	1	1	3	5	4	7	6	2	5	4
P = 3	1	2	1	1	1	1	1	8	2	2
χ1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	\overline{A}	A	A	A	1	\overline{A}	$-\overline{A}$
X3	1	1	1	A	\overline{A}	\overline{A}	A	1	A	A
χ_4	2	-2	2	-1	-1	-1	-1	0	1	1
χ_5	2	-2	2	$-\overline{A}$	-A	-A	$-\overline{A}$	0	\overline{A}	A
χ_6	2	-2	2	-A	$-\overline{A}$	\overline{A}	-A	0	A	\overline{A}
X7	3	3	3	0	0	0	0	-1	0	0
X8	8	0	2	2	2	-1	-1	0	0	0
X9	8	0	-1	B	\overline{B}	\overline{A}	-A	0	0	0
X10	8	0	-1	\overline{B}	B	A	$-\overline{A}$	0	0	0
			Whe	ere $A =$	b3 and	B = 2	b3.			

Character Tables of inertia factor groups of 2^8 : $(U_4(2):2)$

Class	1	2	3	4	5	6	7	8	9	10	11	12	13
Size	1	36	45	270	540	80	240	480	540	540	1620	3240	5184
Order	1A	2A	2B	2C	2D	3A	3B	3C	4A	4B	4C	4D	5A
P = 2	1	1	1	1	1	6	7	8	4	3	4	4	13
P = 3	1	2	3	4	5	1	1	1	9	10	11	12	13
P = 5	1	2	3	4	5	6	7	8	9	10	11	12	13
χ1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	1	1	-1	1	1	1	-1	1	-1	1	1
X3	6	4	-2	2	0	-3	3	0	-2	2	2	0	1
χ_4	6	-4	-2	2	0	-3	3	0	2	2	-2	0	1
χ_5	10	0	-6	2	0	1	-2	4	0	2	0	-2	0
χ_6	15	-5	7	3	-1	-3	0	3	-3	-1	1	1	0
χ_7	15	-5	-1	-1	3	6	3	0	-1	3	-1	-1	0
χ_8	15	5	7	3	1	-3	0	3	3	-1	-1	1	0
χ_9	15	5	-1	-1	-3	6	3	0	1	3	1	-1	0
χ_{10}	20	10	4	4	2	2	5	-1	2	0	2	0	0
χ_{11}	20	-10	4	4	-2	2	5	-1	-2	0	-2	0	0
χ_{12}	20	0	4	-4	0	-7	2	2	0	4	0	0	0
χ_{13}	24	4	8	0	4	6	0	3	0	0	0	0	-1
χ_{14}	24	-4	8	0	-4	6	0	3	0	0	0	0	-1
χ_{15}	30	-10	-10	2	2	3	3	3	4	-2	0	0	0
χ_{16}	30	10	-10	2	-2	3	3	3	-4	-2	0	0	0
χ_{17}	60	10	-4	4	2	6	-3	-3	-2	0	-2	0	0
X18	60	-10	-4	4	-2	6	-3	-3	2	0	2	0	0
χ_{19}	60	0	12	4	0	-3	-6	0	0	4	0	0	0
χ_{20}	64	16	0	0	0	-8	4	-2	0	0	0	0	-1
χ_{21}	64	-16	0	0	0	-8	4	-2	0	0	0	0	-1
χ_{22}	80	0	-16	0	0	-10	-4	2	0	0	0	0	0
χ_{23}	81	9	9	-3	-3	0	0	-0	- 3	-3	-1	-1	1
χ_{24}	81	-9	9	-3	3	0	0	0	-3	-3	1	-1	1
χ_{25}	90	0	-6	-6	0	9	0	0	0	2	0	2	0
					UU				щ				

Table 9.19: The Character table of H_1

UNIVERSITY of the WESTERN CAPE

Class	14	15	16	17	18	19	20	21	22	23	24	25
Size	720	1440	1440	1440	1440	2160	4320	6480	5760	5184	4320	4320
Order	6A	6B	6C	6D	6E	6F	6G	8A	9A	10A	12A	12B
P = 2	6	8	7	7	8	7	8	10	22	13	19	14
P = 3	3	3	3	2	2	4	5	21	6	23	9	10
P = 5	14	15	16	17	18	19	20	21	22	2	24	25
X1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	-1	-1	1	-1	-1	1	-1	-1	1
X3	1	-2	1	1	-2	-1	0	0	0	-1	1	-1
χ_4	1	-2	1	-1	2	-1	0	0	0	1	-1	-1
χ_5	-3	0	0	0	0	2	0	0	1	0	0	-1
χ_6	1	1	-2	-2	1	0	-1	1	0	0	0	-1
χ7	2	2	-1	1	-2	-1	0	1	0	0	-1	0
χ_8	1	1	-2	2	-1	0	1	-1	0	0	0	-1
X9	2	2	-1	-1	2	-1	0	-1	0	0	1	0
X10	-2	1	1	1	1	1	-1	0	-1	0	-1	0
X11	-2	1	1	-1	-1	1	1	0	-1	0	1	0
X12	1	-2	-2	0	0	2	0	0	-1	0	0	1
X13	2	-1	2	-2	1	0	1	0	0	-1	0	0
X14	2	-1	2	2	-1	0	-1	0	0	1	0	0
X15	-1	-1	-1	-1	-1	-1	-1	0	0	0	1	1
X16	-1	-1	-1	1	1	-1	1	0	0	0	-1	1
X17	2	-1	-1	1	1	1	-1	0	0	0	1	0
X18	2	-1	-1	-1	-1	1	1	0	0	0	-1	0
X19	-3	0	0	0	0	-2	0	0	0	0	0	1
X20	0	0	0	-2	-2	0	0	0	1	1	0	0
X21	0	0	0	2	2	0	0	0	-1	-1	0	0
X22	2	2	2	0	0	0	0	0	-1	0	0	0
X23	0	0	0	0	0	0	0	1	0	-1	0	0
X24	0	0	0	0	0	0	0	-1	0	1	0	0
χ_{25}	-3	0	0	0	0	0	0	0	0	0	0	-1

Table 9.19 (Continue)

UNIVERSITY of the

WESTERN CAPE

Table 9.20: The Character table of H_2

Size1Order $1A$ $P = 2$ 1 $P = 3$ 1 χ_1 1	9 2A 1 2 1	36 2 <i>B</i> 1 3	2 3A 4 1	24 3B 5 1	18 4A 2	36 4B 2	18 6A	72 6 <i>B</i>	54 8A	54 8B	36 12A	36 12 <i>B</i>	36 12C
Order $1A$ $P = 2$ 1 $P = 3$ 1 χ_1 1	$\begin{array}{c} 2A \\ 1 \\ 2 \\ 1 \end{array}$	2B 1 3	3A 4 1	3B 5 1	4A	$\frac{4B}{2}$	6A	6B	8A	8B	12A	12B	12C
$ \begin{array}{c cccc} P = 2 & 1 \\ P = 3 & 1 \\ \hline \chi_1 & 1 \end{array} $	1 2 1	1 3	4 1	5 1	2	2							
$P = 3 \qquad 1$ $\chi_1 \qquad 1$	2	3	1	1			4	5	6	6	8	8	8
χ ₁ 1	1	1			6	7	2	3	10	11	6	7	7
		1	1	1	1	1	1	1	1	1	1	1	1
χ ₂ 1	1	-1	1	1	1	-1	1	-1	1	1	1	-1	-1
χ ₃ 1	1	1	1	1	1	-1	1	1	-1	-1	1	-1	-1
χ ₄ 1	1	-1	1	1	1	1	1	-1	-1	-1	1	1	1
χ ₅ 2	2	0	2	2	-2	0	2	0	0	0	-2	0	0
χ ₆ 2	-2	0	2	2	0	0	-2	0	B	-B	0	0	0
χ ₇ 2	-2	0	2	2	0	0	-2	0	-B	B	0	0	0
χ ₈ 6	-2	0	-3	0	2	-2	1	0	0	0	-1	1	1
χ ₉ 6	-2	0	-3	0	2	2	1	0	0	0	-1	-1	-1
χ ₁₀ 6	-2	0	-3	0	-2	0	1	0	0	0	1	A	-A
χ ₁₁ 6	-2	0	-3	0	-2	0	1	0	0	0	1	-A	A
χ ₁₂ 8	0	2	8	-1	0	0	0	-1	0	0	0	0	0
χ ₁₃ 8	0	-2	8	-1	0	0	0	1	0	0	0	0	0
χ ₁₄ 12	4	0	-6	0	0	0	-2	0	0	0	0	0	0

Class	1	2	3	4	5	6	7	8	9	10
Size	1	1	4	4	6	12	12	12	24	32
Order	1A	2A	2B	2C	2D	2E	2F	2G	2H	3A
P = 2	1	1	1	1	1	1	1	1	1	10
P = 3	1	2	3	4	5	6	7	8	9	1
χ1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	1	1	-1	1	-1	-1	1
χ_3	1	1	-1	-1	1	-1	1	-1	1	1
χ_4	1	1	-1	-1	1	1	1	1	-1	1
χ_5	2	2	-2	-2	2	0	2	0	0	-1
χ_6	2	2	2	2	2	0	2	0	0	-1
χ7	3	3	-3	-3	3	-1	-1	-1	1	0
χ_8	3	3	-3	-3	3	1	-1	1	-1	0
χ_9	3	3	3	3	3	1	-1	1	1	0
X10	3	3	3	3	3	-1	-1	-1	-1	0
X11	4	-4	-2	2	0	2	0	-2	0	1
χ_{12}	4	-4	-2	2	0	-2	0	2	0	1
X13	4	-4	2	-2	0	2	0	-2	0	1
χ_{14}	4	-4	-2	2	0	-2	0	2	0	1
χ_{15}	6	6	0	0	-2	2	2	2	0	0
χ_{16}	6	6	0	0	-2	-2	2	-2	0	0
χ_{17}	6	6	0	0	-2	0	-2	0	-2	0
χ_{18}	6	6	0	0	-2	0	-2	0	2	0
χ_{19}	8	-8	-4	4	0	0	0	0	0	-1
χ_{20}	8	-8	4	-4	0	0	0	0	0	-1

Table 9.21: The Character table of ${\cal H}_3$

		TT	NITS	7 12 1	DOT	1 1 7	6 17			
Class	11	12	13	14	15	16	17	18	19	20
Size	12	12	12	24	24	48	32	32	32	48
Order	4A	4B	4C	4D	4E	4F	6A	6A	6A	8A
P = 2	2	5	5	5	5	7	10	10	10	11
P = 3	11	12	13	14	15	16	2	3	4	20
X1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	-1	-1	1	-1	1	1	1	-1
X3	1	1	1	-1	-1	-1	1	-1	-1	1
χ4	1	-1	-1	1	-1	1	1	-1	-1	-1
χ_5	2	0	0	0	-2	0	-1	1	1	0
χ_6	2	0	0	0	2	0	-1	-1	-1	0
X7	-1	1	1	-1	1	1	0	0	0	-1
<u>χ</u> 8	-1	-1	-1	1	1	-1	0	0	0	1
X9	-1	1	1	1	-1	-1	0	0	0	-1
X10	-1	-1	-1	-1	-1	1	0	0	0	1
X11	0	-2	2	0	0	0	-1	1	-1	0
X12	0	2	-2	0	0	0	-1	1	-1	0
χ13	0	-2	2	0	0	0	-1	1	-1	0
X14	0	2	-2	0	0	0	-1	-1	1	0
X15	-2	0	0	-2	0	0	0	0	0	0
X16	-2	0	0	2	0	0	0	0	0	0
X17	2	2	2	0	0	0	0	0	0	0
X18	2	-2	-2	0	0	0	0	0	0	0
X19	0	0	0	0	0	0	1	-1	1	0
X20	0	0	0	0	0	0	1	1	-1	0

Character Tables of inertia factor groups of 2^6 : $(2^5:S_6)$

Class	1	2	3	4	5	6	7	8	9	10	11	12
Size	1	1	15	15	30	30	60	60	180	180	180	160
Order	1A	2A	2B	2C	2D	2E	2F	2G	2H	2I	2J	3A
P = 2	1	1	1	1	1	1	1	1	1	1	1	12
P = 3	1	2	3	4	5	6	7	8	9	10	11	1
P = 5	1	2	3	4	5	6	7	8	9	10	11	12
χ1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	1	-1	-1	-1	-1	-1	1	1	1
X3	5	5	5	5	1	1	-3	-3	1	1	1	-1
χ_4	5	5	5	5	3	3	-1	-1	3	1	1	2
χ_5	5	5	5	5	-3	-3	1	1	-3	1	1	2
χ_6	5	5	5	5	-1	-1	3	3	-1	1	1	-1
χ7	6	-6	2	-2	-4	4	0	0	0	-2	2	3
X8	6	-6	2	-2	4	-4	0	0	0	-2	2	3
χ_9	9	9	9	9	3	3	3	3	3	1	1	0
X10	9	9	9	9	-3	-3	-3	-3	-3	1	1	0
X11	10	10	10	10	2	2	-2	-2	2	-2	-2	1
χ_{12}	10	10	10	10	-2	-2	2	2	-2	-2	-2	1
X13	10	-10	-2	2	-4	4	-4	4	0	-2	2	1
χ_{14}	10	-10	-2	2	-4	4	4	-4	0	-2	2	1
χ_{15}	10	-10	-2	2	4	-4	-4	4	0	-2	2	1
χ_{16}	10	-10	-2	2	4	-4	4	-4	0	-2	2	1
χ_{17}	15	15	-1	-1	5	5	-3	-3	-3	-1	-1	3
X18	15	15	-1	-1	7	7	3	3	-1	3	3	3
χ_{19}	15	15	-1	-1	-7	-7	-3	-3	1	3	3	3
χ_{20}	15	15	-1	-1	-5	-5	3	3	3	-1	-1	3
χ_{21}	16	16	16	16	0	0	0	0	0	0	0	-2
X22	20	-20	-4	4	0	0	0	0	0	4	-4	2
X23	24	-24	8	-8	-8	8	0	0	0	0	0	3
χ_{24}	24	-24	8	-8	8	-8	0	0	0	0	0	3
χ_{25}	30	30	-2	-2	2	2	6	6	2	2	2	-3
χ_{26}	30	30	-2	-2	-2	-2	-6	-6	-2	2	2	-3
χ_{27}	30	-30	10	-10	-4	4	0	0	0	-2	2	-3
χ_{28}	30	-30	10	-10	4	-4	0	0	0	-2	2	-3
X29	36	-36	12	-12	0	0	0	0	0	4	-4	0
χ_{30}	40	-40	-8	8	-8	8	0	0	0	0	0	1
χ_{31}	40	-40	-8	8	8	-8	0	0	0	0	0	1
X32	40	-40	-8	8	0	0	-8	8	0	0	0	-2
X33	40	-40	-8	ð			ð	-8	U P	0	0	-2
X34	45	45	-3	-3	0	3	3	3	-5	-3	-3	0
χ_{35}	40	40	-3	-3	9	9	-3	-3	1	1	1	0
X36	45	45	-3	-3	-9	-9	3	3	-1	1	1	0
X 37	1 40	40	-3	-3	-3	-3	-3	-3	- D	-3	-3	0

Table 9.22: The Character table of $H_1 = H_2$

Class	13	14	15	16	17	18	19	20	21	22	23	24
Size	640	120	120	180	180	360	720	720	720	720	720	2304
Order	3A	4A	4B	4C	4D	4E	4F	4G	4H	4I	4J	5A
P = 2	13	3	3	4	4	4	10	3	10	10	10	24
P = 3	1	14	15	16	17	18	19	20	21	22	23	24
P = 5	13	14	15	16	17	18	19	20	21	22	23	24
χ_1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	-1	1	1	-1	-1	1	1	1	-1	1
χ3	2	1	1	1	1	-3	-1	1	-1	-1	-1	0
χ_4	-1	3	3	1	1	-1	1	1	-1	-1	1	0
χ_5	-1	-3	-3	1	1	1	-1	1	-1	-1	-1	0
χ_6	2	-1	-1	1	1	3	1	1	-1	-1	1	0
χ_7	0	2	-2	2	-2	0	-2	0	0	0	2	1
<i>χ</i> 8	0	-2	2	2	-2	0	2	0	0	0	-2	1
χ9	0	3	3	1	1	3	-1	1	1	1	-1	-1
χ_{10}	0	-3	-3	1	1	-3	1	1	1	1	1	-1
χ_{11}	1	2	2	-2	-2	-2	0	-2	0	0	0	0
χ_{12}	1	-2	-2	-2	-2	2	0	-2	0	0	0	0
χ_{13}	1	-2	2	-2	2	0	0	0	2	-2	0	0
χ_{14}	1	-2	2	-2	2	0	0	0	-2	2	0	0
χ_{15}	1	2	-2	-2	2	0	0	0	-2	2	0	0
χ_{16}	1	2	-2	-2	2	0	0	0	2	-2	0	0
χ_{17}	0	1	1	3	3	1	1	-1	-1	-1	1	0
χ_{18}	0	-1	-1	-1	-1	-1	1	-1	1	1	1	0
χ_{19}	0	1	1	INT	VII		rv.	f the	1	1	-1	0
χ_{20}	0	-1	-1	3	3	-1	-1	J -1	-1	-1	-1	0
χ_{21}	-2	0	0	0	0	RN	0	D 0	0	0	0	1
χ_{22}	2	0	0	4	-4	0	0	0	0	0	0	0
χ_{23}	0	4	-4	0	0	0	0	0	0	0	0	-1
χ_{24}	0	-4	4	0	0	0	0	0	0	0	0	-1
χ_{25}	0	-2	-2	2	2	-2	0	-2	0	0	0	0
χ_{26}	0	2	2	2	2	2	0	-2	0	0	0	0
χ_{27}	0	2	-2	2	-2	0	2	0	0	0	-2	0
χ_{28}	0	-2	2	2	-2	0	-2	0	0	0	2	0
χ_{29}	0	0	0	-4	4	0	0	0	0	0	0	1
χ_{30}	-2	-4	4	0	0	0	0	0	0	0	0	0
χ_{31}	-2	4	-4	0	0	0	0	0	0	0	0	0
χ_{32}	1	0	0	0	0	0	0	0	0	0	0	0
Χ33	1	0	0	0	0	0	0	0	0	0	0	0
χ_{34}	0	3	3	1	1	-1	-1	1	1	1	-1	0
χ_{35}	0	-3	-3	-3	-3	1	-1	1	-1	-1	-1	0
χ_{36}	0	3	3	-3	-3	-1	1	1	-1	-1	1	0
χ_{37}	0	-3	-3	1	1	1	1	1	1	1	1	0

Table 9.22 (continue)

Class	25	26	27	28	29	30	31	32	33	34	35	36	37
Size	160	480	480	640	960	960	1920	1920	1440	1440	2304	960	960
Order	6A	6B	6C	6D	6E	6F	6G	6H	8A	8B	10A	12A	12B
P = 2	12	12	12	13	12	12	13	13	16	17	24	26	26
P = 3	2	3	4	2	6	5	8	7	33	34	35	14	15
P = 5	25	26	27	28	29	30	31	32	33	34	2	36	37
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	1	-1	-1	-1	-1	-1	1	1	-1	-1
χ_3	-1	-1	-1	2	1	1	0	0	-1	-1	0	1	1
χ_4	2	2	2	-1	0	0	-1	-1	1	-1	0	0	0
χ_5	2	2	2	-1	0	0	1	1	-1	-1	0	0	0
χ_6	-1	-1	-1	2	-1	-1	0	0	1	-1	0	-1	-1
χ_7	-3	-1	1	0	-1	1	0	0	0	0	-1	1	-1
χ_8	-3	-1	1	0	1	-1	0	0	0	0	-1	-1	1
χ_9	0	0	0	0	0	0	0	0	-1	1	-1	0	0
χ_{10}	0	0	0	0	0	0	0	0	1	1	-1	0	0
χ_{11}	1	1	1	1	-1	-1	1	1	0	0	0	-1	-1
χ_{12}	1	1	1	1	1	1	-1	-1	0	0	0	1	1
χ_{13}	-1	1	-1	-1	-1	1	1	-1	0	0	0	-1	1
χ_{14}	-1	1	-1	-1	-1	1	-1	1	0	0	0	-1	1
χ_{15}	-1	1	-1	-1	1	-1	1	-1	0	0	0	1	-1
χ_{16}	-1	1	-1	-1	1	-1	-1	1	0	0	0	1	-1
χ_{17}	3	-1	-1	0	-1	-1	0	0	<u> </u>	1	0	1	1
χ_{18}	3	-1	-1	0	1	1	0	0	-1	-1	0	-1	-1
χ_{19}	3	-1	-1	0	INI	VEF	SIL	Y	the .	-1	0	1	1
χ_{20}	3	-1	-1	0	1	1	0	0	1	1	0	-1	-1
X21	-2	-2	-2	-2	0	0	RN	CAI		0	1	0	0
X22	-2	1	-2	-2	1	1	0	0	0	0	1	1	1
X23	-3	-1	1	0	1	-1	0	0	0	0	1	-1	1
X24	-3	-1	1	0	-1	1	0	0	0	0	1	1	-1
X25	-3	1	1	0	-1	-1	0	0	0	0	0	-1	-1
X26	-3	1	-1	0	-1	1	0	0	0	0	0	-1	-1
X27 X28	3	1	-1	0	1	-1	0	0	0	0	0	-1	1
X20	0	0	0	0	0	0	0 0	0 0	0 0	0	-1	0	0
X29	-1	1	-1	2	1	-1	0 0	0 0	0 0	0	0	1	-1
X21	-1	1	-1	2	-1	1	0	0	0	0	0	-1	1
X22	2	-2	2	-1	0	0	-1	1	0	0	0	0	0
X22	2	-2	2	-1	0	0	1	-1	0	0	0	0	0
X34	0	0	0	0	0	0	- 0	- 0	1	-1	0	0	Ũ
X35	0	0	0	0	0	0	0	0	- 1	- 1	0	0	Ũ
X36	0	0	0	0	0	0	0	õ	-1	- 1	0	0	Ũ
X37	0	0	0	0	0	0	0	0	-1	-1	0	0	0

Table 9.22 (continue)

Class	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Size	1	1	1	1	1	1	1	1	6	6	6	6	6	6	6	6	6
Order	1A	2A	2B	2C	2D	2E	2F	2G	2H	2I	2J	2K	2L	2M	2N	2O	2P
P = 2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
P = 3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
X3	1	1	-1	1	1	-1	-1	-1	-1	1	-1	1	1	1	-1	-1	-1
X4 X5	1	-1	-1	1	-1	-1	-1	-1	-1	1	-1	1	1	-1	-1	-1	-1
X6	1	-1	-1	1	-1	1	1	-1	-1	1	1	1	1	-1	1	-1	-1
X7	1	-1	1	1	-1	-1	-1	1	1	1	-1	1	1	-1	-1	1	1
χ8	1	-1	1	1	-1	-1	-1	1	1	1	-1	1	1	-1	-1	1	1
χ9	2	2	-2	2	2	-2	-2	-2	-2	2	-2	2	2	2	-2	-2	-2
χ_{10}	2	-2	-2	2	-2	2	2	-2	-2	2	2	2	2	-2	2	-2	-2
X11	2	-2	2	2	-2	-2	-2	2	2	2	-2	2	2	-2	-2	2	2
χ_{12}	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
χ13	3	3	3	3	3	3	3	3	-1	-1	-1	-1	3	-1	-1	3	-1
χ_{14}	3	3	3	3	3	3	3	3	3	-1	-1	3	-1	3	3	-1	-1
X15	3	3	3	3	3	3	3	3	-1	3	3	-1	-1	-1	-1	-1	3
X16	3	3 9	3	3	3	3	3	3	-1 o	-1	-1	-1 2	3	-1	-1 2	3	-1 1
X17	3	3 3	3 3	3 3	3 3	3 3	3 3	3 3	-1	-1	-1	-1	-1	-1	-1	-1	-1
X18 X10	3	-3	3	3	-3	-3	-3	3	3	-1	1	3	-1	-3	-3	-1	-1
X20	3	-3	3	3	-3	-3	-3	3	-1	3	-3	-1	-1	1	1	-1	3
X21	3	-3	3	3	-3	-3	-3	3	11.1	-1	1	-1	3	1	1	3	-1
χ_{22}	3	-3	3	3	-3	-3	-3	3	3	-1	1	3	-1	-3	-3	-1	-1
χ_{23}	3	-3	3	3	-3	-3	-3	3	-1	3	-3	-1	-1	1	1	-1	3
χ_{24}	3	-3	3	3	-3	-3	-3	3	-1	-1	1	-1	3	1	1	3	-1
χ_{25}	3	-3	-3	3	-3	3	3	-3	1	3	3	-1	-1	1	-1	1	-3
χ_{26}	3	-3	-3	3	-3	3	3	-3	-3	-1	-1	3	-1	-3	3	1	1
χ_{27}	3	-3	-3	3	-3	3	3	-3		(of	the	-1	3	1	-1	-3	1
χ_{28}	3	-3	-3	3	-3	3	S^{3}	-3	N of	3		-1	-1	1	-1	1	-3
X29	3	-0 3	-0 3	3 3	-0 3	3	3	-3	-3	1	-1	3 1	-1	-3 1	3 1	3	1
X30 X31	3	3	-3	3	3	-3	-3	-3	1	-1	1	-1	3	-1	1	-3	1
X31 X32	3	3	-3	3	3	-3	-3	-3	1	3	-3	-1	-1	-1	1	1	-3
X33	3	3	-3	3	3	-3	-3	-3	-3	-1	1	3	-1	3	-3	1	1
χ_{34}	3	3	-3	3	3	-3	-3	-3	1	-1	1	-1	3	-1	1	-3	1
χ_{35}	3	3	-3	3	3	-3	-3	-3	1	3	-3	-1	-1	-1	1	1	-3
χ_{36}	3	3	-3	3	3	-3	-3	-3	-3	-1	1	3	-1	3	-3	1	1
X37	4	4	4	-4	-4	4	-4	-4	0	0	0	0	0	0	0	0	0
χ_{38}	4	4	4	-4	-4	4	-4	-4	0	0	0	0	0	0	0	0	0
X39	4	-4	4	-4	4	-4	4	-4	0	0	0	0	0	0	0	0	0
X40	4	-4	4	-4	4	-4	4	-4	0	0	0	0	0	0	0	0	0
X41	4	-4 _4	-4 -4	-4 _4	4 4	4 4	-4 _4	4 1	0	0	0	0	0	0	0	0	0
X42 X42	4	-4	-4	-4	-4	-4	-4	4	0	0	0	0	0	0	0	0	0
χ ₄₄	4	4	-4	-4	-4	-4	4	4	ũ 0	õ	0	0	0	0	0	0	0
X45	6	6	-6	6	6	-6	-6	-6	2	-2	2	-2	-2	-2	2	2	2
χ_{46}	6	-6	-6	6	-6	6	6	-6	2	-2	-2	-2	-2	2	-2	2	2
χ_{47}	6	-6	6	6	-6	-6	-6	6	-2	-2	2	-2	-2	2	2	-2	-2
χ_{48}	6	6	6	6	6	6	6	6	-2	-2	-2	-2	-2	-2	-2	-2	-2
χ_{49}	8	8	8	-8	-8	8	-8	-8	0	0	0	0	0	0	0	0	0
χ_{50}	8	-8	8	-8	8	-8	8	-8	0	0	0	0	0	0	0	0	0
χ_{51}	8	-8	-8	-8	8	8	-8	8	0	0	0	0	0	0	0	0	0
χ_{52}	8	8	-8	-8	-8	-8	8	8	0	0	0	0	0	0	0	0	0

Table 9.23: The Character table of ${\cal H}_3$

Table 9.23 (continue)

Class	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Size	6	6	6	12	12	12	12	12	12	12	12	32	12	12	12	12	24
Order	2Q	2R	25	27	20	2V	2W	2X	2 Y	22	2AA	3A	4 <i>A</i>	48	4C	4D	4E
P = 2 P = 3	18	10	20	21	22	23	24	25	26	1 27	1 28	29	8 30	8 31	30	33	34
r = 3	10	19	20	1	1	23	1	2.5	20	1	1	1	1	1	1	1	1
	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	-1
X3	1	-1	1	1	1	1	-1	-1	-1	1	-1	1	1	1	-1	-1	1
χ_4	1	-1	1	-1	-1	-1	1	1	1	-1	1	1	1	1	-1	-1	-1
χ_5	-1	1	-1	1	-1	-1	-1	-1	1	1	1	1	1	-1	-1	1	1
χ_6	-1	1	-1	-1	1	1	1	1	-1	-1	-1	1	1	-1	-1	1	-1
X7	-1	-1	-1	1	-1	-1	1	1	-1	1	-1	1	1	-1	1	-1	1
X8	-1	-1	-1	-1	1	1	-1	-1	1	-1	1	1	1	-1	1	-1	-1
χ9	2	-2	2	0	0	0	0	0	0	0	0	-1	2	2	-2	-2	0
X10	-2	2	-2	0	0	0	0	0	0	0	0	-1	2	-2	-2	2	0
X11	-2	-2	-2	0	0	0	0	0	0	0	0	-1	2	-2	2	-2	0
X12 X10	-1	3	3	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
X13 X14	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	-1	1
X15	3	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	-1	1
X16	-1	3	3	1	1	1	1	1	1	1	1	0	-1	-1	-1	-1	1
X17	-1	-1	-1	1	1	1	1	1	1	1	1	0	-1	-1	-1	-1	-1
X18	3	-1	-1	1	1	1	1	1	1	1	1	0	-1	-1	-1	-1	-1
X19	1	1	1	1	-1	-1	1	1	-1	1	-1	0	-1	1	-1	1	-1
X20	-3	1	1	1	-1	-1	1	1	-1	1	-1	0	-1	1	-1	1	-1
X21	1	-3	-3	1	-1	-1	1	1	-1	1	-1	0	-1	1	-1	1	1
X22	1	1	1	-1	1	1	-1	-1	1	-1		0	-1	1	-1	1	1
X23	-3	3	3	-1	1	1	-1	-1	1	-1	1	0	-1	1	-1	1	1
X24 X25	-3	-1	-5	-1	1	1	1	1	-1	-1	-1	0	-1	1	-1	-1	-1
X26	1	-1	1	-1	1	1	1	1	-1	-1	-1	0	-1	1	1	-1	1
X27	1	3	-3	-1	1	1	1	1	-1.	-1	-1	0	-1	1	1	-1	-1
χ28	-3	-1	1	1	-1	U_1	-1 -1	$\mathbf{E}\mathbf{K}_{1}$	1	Y of	the $_1$	0	-1	1	1	-1	-1
X29	1	-1	1	1	-1	W ¹	S-T	E-R	N^1	CAI	E 1	0	-1	1	1	-1	-1
X30	1	3	-3	1	-1	-1	-1	-1	1	1	1	0	-1	1	1	-1	1
X31	-1	-3	3	1	1	1	-1	-1	-1	1	-1	0	-1	-1	1	1	1
χ32	3	1	-1	1	1	1	-1	-1	-1	1	-1	0	-1	-1	1	1	-1
X33	-1	1	-1	1	1	1	-1	-1	-1	1	-1	0	-1	-1	1	1	-1
X34 X35	-1	-3	-1	-1	-1	-1	1	1	1	-1	1	0	-1	-1	1	1	-1
X36	-1	1	-1	-1	-1	-1	1	1	1	-1	1	0	-1	-1	1	1	1
X37	0	0	0	-2	-2	2	2	-2	-2	2	2	1	0	0	0	0	0
X38	0	0	0	2	2	-2	-2	2	2	-2	-2	1	0	0	0	0	0
X39	0	0	0	2	-2	2	-2	2	-2	-2	2	1	0	0	0	0	0
χ_{40}	0	0	0	-2	2	-2	2	-2	2	2	-2	1	0	0	0	0	0
X41	0	0	0	-2	2	-2	-2	2	-2	2	2	1	0	0	0	0	0
χ_{42}	0	0	0	2	-2	2	2	-2	2	-2	-2	1	0	0	0	0	0
χ_{43}	0	0	0	2	2	-2	2	-2	-2	-2	2	1	0	0	0	0	0
X44	0	0	0	-2	-2	2	-2	2	2	2	-2	1	0	0	0	0	0
X45	-2	2	-2	0	0	0	0	0	0	0	0	0	2	2	-2	-2	0
X46	2	-2 2	⊿ ?	0	0	0	0	0	0	0	0	0	∠ 2	-2 -2	-2	∠ -2	0
X47 X48	-2	-2	-2	0	0	0	0	0	0	0	0	0	2	-2	2	-2	0
χ ₄₉	0	0	0	0	0	õ	0	ũ 0	0	0	ů 0	-1	0	0	0	0	0
X50	0	0	0	0	0	0	0	0	0	0	0	-1	0	0	0	0	0
X51	0	0	0	0	0	0	0	0	0	0	0	-1	0	0	0	0	0
X52	0	0	0	0	0	0	0	0	0	0	0	-1	0	0	0	0	0

Table 9.23 (continue)

Class	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52
Size	24	24	24	24	24	24	24	24	24	24	24	32	32	32	32	32	32	32
Order	4F	4G	4H	4I	4J	4K	4L	4M	4N	4O	4P	6A	6B	6C	6D	6E	6F	6G
P = 2	11	13	12	13	13	12	11	13	11	11	12	29	29	29	29	29	29	29
P = 3	35	36	37	38	39	40	41	42	43	44	45	8	7	6	3	4	2	5
X1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1	1
X3	-1	1	-1	1	-1	1	-1	-1	-1	1	1	-1	-1	1	1	1	-1	-1
X4 X5		-1	-1	-1	1	-1	-1	1	-1	-1	-1	-1	-1	-1	-1	1	-1	-1
76 76	-1	1	1	-1	-1	-1	1	-1	1	1	1	1	-1	-1	-1	1	1	-1
x7	-1	-1	1	1	-1	1	1	-1	1	-1	-1	-1	1	-1	-1	1	-1	1
x8	1	1	-1	-1	1	-1	-1	1	-1	1	1	-1	1	-1	-1	1	-1	1
X9	0	0	0	0	0	0	0	0	0	0	0	1	1	-1	-1	-1	1	1
X10	0	0	0	0	0	0	0	0	0	0	0	-1	1	1	1	-1	-1	1
X11	0	0	0	0	0	0	0	0	0	0	0	1	-1	1	1	-1	1	-1
X12	0	0	0	0	0	0	0	0	0	0	0	-1	-1	-1	-1	-1	-1	-1
χ_{13}	-1	1	-1	1	1	1	1	1	1	1	-1	0	0	0	0	0	0	0
χ14	1	-1	1	1	1	-1	-1	-1	1	1	1	0	0	0	0	0	0	0
χ_{15}	1	1	1	-1	-1	1	1	1	-1	-1	1	0	0	0	0	0	0	0
X16		-1	1	-1	-1	-1	-1	-1	-1	-1	1	0	0	0	0	0	0	0
X17	-1	1	-1	-1	-1	1	1	1	-1	-1	-1	0	0	0	0	0	0	0
X18	1	-1	-1	1	1	-1	-1	-1	1	1	-1	0	0	0	0	0	0	0
× 20		1	-1	1	-1	-1	-1	1	1	-1	1	0	0	0	0	0	0	0
X21	-1	1	1	-1	1	-1	-1	1	-1	1	-1	0	0	0	0	0	0	0
X22	-1	1	1	1	-1	-1	-1	1	1	-1	-1	0	0	0	0	0	0	0
χ_{23}	-1	-1	1	-1	1	1	1	-1	-1	1	-1	0	0	0	0	0	0	0
χ_{24}	1	-1	-1	1	-1	1	1	-1	1	-1	1	0	0	0	0	0	0	0
χ_{25}	1	-1	-1	-1	-1	1	-1	1	1	1	-1	0	0	0	0	0	0	0
χ_{26}	1	1	-1	1	1	-1	1	-1	-1	-1	-1	0	0	0	0	0	0	0
χ_{27}	-1	-1	1	1	1	1	NT		ST.	$\Gamma \nabla^1 a$	f the	0	0	0	0	0	0	0
X28	-1	1	1	1	1	-1	1	-1	-1	-1	1 1	0	0	0	0	0	0	0
X29	-1	-1	1	-1	-1	W	ES	TE.	RN	CA	PE	0	0	0	0	0	0	0
X30		-1	-1	-1	-1	-1	1	-1	1	-1	-1	0	0	0	0	0	0	0
×22	1	-1	1	1	-1	-1	1	1	-1	1	-1	0	0	0	0	0	0	0
X33	1	1	1	-1	1	1	-1	-1	1	-1	-1	0	0	0	0	0	0	0
X34	1	1	1	1	-1	1	-1	-1	-1	1	-1	0	0	0	0	0	0	0
X35	-1	1	-1	-1	1	1	-1	-1	1	-1	1	0	0	0	0	0	0	0
X36	-1	-1	-1	1	-1	-1	1	1	-1	1	1	0	0	0	0	0	0	0
X37	0	0	0	0	0	0	0	0	0	0	0	-1	-1	-1	1	-1	1	1
X38	0	0	0	0	0	0	0	0	0	0	0	-1	-1	-1	1	-1	1	1
X39	0	0	0	0	0	0	0	0	0	0	0	1	-1	1	-1	-1	-1	1
X40		0	0	0	0	0	0	0	0	0	0	1	-1	1	-1	-1	-1	1
X41		0	0	0	0	0	0	0	0	0	0	-1	1	1	-1	-1	1	-1
X42 X42		0	0	0	0	0	0	0	0	0	0	-1	1	-1	-1	-1	-1	-1
X44	0	0	0	0	0	0	0	0	0	0	0	1	1	-1	1	-1	-1	-1
X45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X47	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X48	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X49	0	0	0	0	0	0	0	0	0	0	0	1	1	1	-1	1	-1	-1
χ_{50}	0	0	0	0	0	0	0	0	0	0	0	-1	1	-1	1	1	1	-1
X51		0	0	0	0	0	0	0	0	0	0	1	-1	-1	1	1	-1	1
χ_{52}		0	0	0	0	0	0	0	0	0	0	-1	-1	1	-1	1	1	1

Class	1	2	3	4	5	6	7	8	9	10	11
Size	1	15	15	45	40	40	90	90	144	120	120
Order	1A	2A	2B	2C	3A	3B	4A	4B	5A	6A	6B
P = 2	1	1	1	1	5	6	4	4	9	5	6
P = 3	1	2	3	4	1	1	7	8	9	2	3
P = 5	1	2	3	4	5	6	7	8	1	10	11
X1	1	1	1	1	1	1	1	1	1	1	1
X2	1	-1	-1	1	1	1	-1	1	1	-1	-1
X3	5	-3	1	1	2	-1	-1	-1	0	0	1
χ_4	5	-1	3	1	-1	2	1	-1	0	-1	0
χ_5	5	1	-3	1	-1	2	-1	-1	0	1	0
χ_6	5	3	-1	1	2	-1	1	-1	0	0	-1
X7	9	3	3	1	0	0	-1	1	-1	0	0
X8	9	-3	-3	1	0	0	1	1	-1	0	0
X9	10	-2	2	-2	1	1	0	0	0	1	-1
X10	10	2	-2	-2	1	1	0	0	0	-1	1
X11	16	0	0	0	-2	-2	0	0	1	0	0

Table 9.24: The Character table of ${\cal H}_4$

The conjugacy classes of SP(6,2)

$[g]_{SP(6,2)}$	Class representative	$[g]_{SP(6,2)} $	$[g]_{SP(6,2)}$	Class representative $ [g]_{SF}$	² (6,2)
1A	$\left(\begin{array}{cccccccccccc} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{array}\right)$	IVERS	2A SITY of	$\left(\begin{array}{ccccccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \end{array}\right) $;3
2B	$\left(\begin{array}{ccccccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 \end{array}\right)$	315	N CAR	$\left(\begin{array}{cccccccccc} 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{array}\right) \qquad \qquad$	45
2D	$\left(\begin{array}{ccccccc} 0 & 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 \end{array}\right)$	3780	3A	$\left(\begin{array}{ccccccc} 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 & 0 \end{array}\right) $	72
3B	$\left(\begin{array}{cccccccc} 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 \end{array}\right)$	2240	3C	$\left(\begin{array}{ccccccc} 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{array}\right) $ 13.	440
4A	$\left(\begin{array}{cccccccc} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 \end{array}\right)$	3780	4B	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	60
4C	$\left(\begin{array}{ccccccc} 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 \end{array}\right)$	7560	4D	$\left(\begin{array}{cccccccc} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{array}\right) $ 11:	340

Table 9.25: The conjugacy classes of SP(6,2)

$[g]_{SP(6,2)}$	Class representative	$ [g]_{SP(6,2)} $	$[g]_{SP(6,2)}$	Class representative	$ [g]_{SP(6,2)} $
4E	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	45360	5A	$\left(\begin{array}{ccccccccccc} 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \end{array}\right)$	48384
6A	$\left(\begin{array}{ccccccc} 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{array}\right)$	10080	6B	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	10080
6C	$\left(\begin{array}{cccccccccccc} 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 \end{array}\right)$	20160	6D	$\left(\begin{array}{ccccccccccc} 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{array}\right)$	30240
6E	$\left(\begin{array}{ccccccccccc} 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 1 \end{array}\right)$	NIVER 40320	SITY of N ^{6F} AI	$\left(\begin{array}{cccccccccccc} 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 \end{array}\right)$	40320
6G	$\left(\begin{array}{cccccccccccc} 1 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{array}\right)$	120960	7A	$\left(\begin{array}{cccccccc} 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 \end{array}\right)$	207360
84	$\left(\begin{array}{ccccccccc} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{array}\right)$	90720	8 <i>B</i>	$\left(\begin{array}{cccccccccc} 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \end{array}\right)$	90720

Table 9.25 (continue)

$[g]_{SP(6,2)}$	Class representative	$ [g]_{SP(6,2)} $ $[g]_{SP(6,2)}$	2) Class representative	$ [g]_{SP(6,2)} $
9A	$\left(\begin{array}{ccccccccc} 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 \end{array}\right)$	161280 10.4	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	145152
12.4	$\left(\begin{array}{ccccccccc} 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 \end{array}\right)$	60480 12 <i>B</i>	$\left(\begin{array}{cccccccccc} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \end{array}\right)$	60480
12C	$\left(\begin{array}{ccccccccc} 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{array}\right)$	ESTERN CA 120960 15A	$\left(\begin{array}{ccccccccc} 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{array}\right)$	96768

Table 9.25 (continue)