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Abstract

The aim of this dissertation is to calculate character tables of group extensions. There
are several well-developed methods for calculating the character tables of some selected
group extensions. The method we study in this dissertation, is a standard application of
Clifford theory, made efficient by the use of Fischer-Clifford matrices, as introduced by
Fischer. We consider only extensions G of the normal subgroup N by the subgroup G
with the property that every irreducible character of NV can be extended to an irreducible
character of its inertia group in G, if N is abelian. This is indeed the case if G is a split

extension, by a well known theorem of Mackey.

A brief outline of the classical theory of characters pertinent to this study, is followed by
a discussion on the calculation of the conjugacy classes of extension groups by the method
of coset analysis. The Clifford theory which provide the basis for the theory of Fischer-
Clifford matrices is discussed in detail. Some of the properties of these Fischer-Clifford

matrices which make their calculation much easier, are also given.

We restrict ourselves to split extension groups G = N:G in which N is always an el-
ementary abelian 2-group. In this thesis we are concerned with the construction of the
character tables (by means of the technique of Fischer-Clifford matrices) of certain ex-
tension groups which are associated with the orthogonal group Of;(2), the automorphism

groups Ug(2):2, Ug(2):3 of the unitary group Ug(2) and the smallest Fischer sporadic sim-
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Notation and conventions

Throughout the thesis all groups will be assumed to be finite, unless otherwise stated.

We will use the notation and terminology from the ATLAS [22] and [37].

N natural numbers

) integers

Q rational numbers

R real numbers

C complex numbers
G,N,G,H groups

lg the identity element of G.
F a field

F* F—-0

HLG H is a subgroup of G
HJG H is a normal subgroup of GG
H=dG H is isomorphic to G

<z,y> the subgroup generated by x and y

N-G an extension of N by G

N:G a split extension of N by GG

o(g) order of g € G

q] a conjugacy class of G with representative g
Ne(H) the normalizer of the subgroup H in G

Hg the right coset of H in G

X, Y. Q sets

vil



|| the cardinality of the set Q

Gy stabilizer of # in G
1(0) inertia group of # in G
n? conjugation of n by g

g1 ~ go g1 1s conjugate to go

v H the restriction of the character ¥ of G to the subgroup H
¢ the induction of the character ¢ of subgroup H to G
Ca(g) centralizer of g in G

Irr(G) set of irreducible characters of G

Iq the identity character of G

X(G/H) the permutation character of G on H

dim(V')  the dimension of a vector space V'

Sh the symmetric group on n symbols

GF(q) the Galois field of ¢ elements

V(n,q)  a vector space of dimension n over GF(q)

Sp(2n,q) symplectic group of dimension 2n over GF(q)

Un(q) unitary group
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Chapter 1

Introduction

The Classification of the Finite Simple Groups (CFSG) emphasizes the importance of the
finite simple groups in Group Theory. It is one of the most impressive achievements in the
history of Mathematics. The reader is referred to [69] for more literature on the CFSG
theorem. Classification of Finite Simple Groups states that each finite simple group is

isomorphic to exactly one of the following

A cyclic group of prime order,

An Alternating group A,, of degree at least 5,

A group of Lie type,

One of twenty—six sporadic simple groups.

Since the CFSG, more recent work in group theory has involved methods for the com-
putation of character tables of finite groups, and in particular, the character tables of
the maximal subgroups of the sporadic simple groups and their automorphism groups.
The character tables of most of these maximal subgroups are known but there are still
some of the character tables of the maximal subgroups of the Baby Monster group B and

the Monster group M which are not yet computed. Many of these maximal subgroups



are extensions of elementary abelian groups, so methods have been developed for the
calculation of the character table of extensions of elementary abelian groups. A knowl-
edge of the character table of a group provides considerable information about the group,
and hence it is of importance in the physical sciences as well as in pure mathematics.
Bernd Fischer developed a powerful and interesting technique for calculating the charac-
ter tables of group extensions although there exist techniques such as the Schreier-Sims
algorithm, Todd-Coxeter coset enumeration method, the Burnside-Dixon algorithm, etc,
to construct character tables of finite groups. This technique, known as the technique of
the Fischer—Clifford matrices [26], derives its fundamentals from the Clifford theory. If
G = N.G is an appropriate extension of N by G, the method involves the construction
of a nonsingular matrix for each conjugacy class of G/N. In this thesis, we apply the
Fischer-Clifford theory only to split extensions. This technique has also been discussed
and used by many other researchers, but applied only to split extensions or to the case
when every irreducible character of V can be extended to an irreducible character of its
inertia group in G (see for example [1], [4], [5], [6], [8], [10], [24], [27], [41], [42], [48], [49],
[51], [50], [57], [60], [61] and [64]).

However the same method cannot be used to construct character tables of certain non-
split group extensions. For example, it cannot be applied to the non-split extensions
of the forms 37 0(3) and 37 (07(3):2) which are maximal subgroups of Fischer’s largest
sporadic simple group F z'/24 and its automorphism group Flioy [22], respectively. In an
attempt to generalize these methods to such type of non-split group extensions, Ali[l]
considered the projective representations and characters and showed how the technique
of Fischer-Clifford matrices can be applied to any such type of non-split extension. How-
ever in order to apply this technique, the projective characters of the inertia factors must
be known and these can be difficult to determine for some groups. Ali (see [2] and [7]),
successfully applied the technique of Fischer-Clifford matrices and determined the Fischer-
Clifford matrices and hence the character table of the non-split extensions 3" Oz(3) and

37(07(3):2). More recent publications in this regards can be found in [9], [51] and [62].



In Chapter 2, we present some results on group characters which are used in the later
chapters. We mostly concentrate on those results which are applied in Chapters 4 and
5 to describe the Fischer-Clifford matrix methods. We start by discussing the general
theory of representations and characters, and go on to discuss the restricted, induced
and permutation characters, which will be used in the later chapters for constructing the
character tables of the groups that are studied in this thesis. The characters being studied

are ordinary complex characters.

In Chapter 3 we give some preliminary results on group extensions that will be needed
in subsequent chapters. In Section 3.1 we define group extensions and then we describe
the method of coset analysis to compute the conjugacy classes of group extensions, where
we first restrict ourselves to split extensions of abelian groups (Section 3.2) and then the
case where the extension is not necessarily split (Section 3.3). In the remainder of Section
3.3 we prove and discuss techniques that are useful in the determination of the orders of
the elements of G = N:G. The technique of coset analysis was developed and first used
by Moori in [44], [45] and has since been widely used for computing the conjugacy classes

of group extensions.

Chapter 4 is devoted to the study of Clifford theory for ordinary representations of a
group G and its related results which will be required to describe the Fischer-Clifford
matrices. In Section 4.1 we study the relationship between characters of a group G and
its normal subgroup N. We present various sufficient conditions for the extendability of

an irreducible character  of N to its inertia group H in G.

In Chapter 5 we describe the theory of the Fischer-Clifford matrices. If G = N-G is

an appropriate extension of N by G, the method involves the construction of a Fischer



matrix for each conjugacy class of G/N = . Then by using these matrices together with
the fusion maps and character tables of some subgroups of G which are inertia factors
of the inertia groups in G, we are able to construct the complete character table of G.
Section 5.1 gives definitions and preliminaries, Section 5.2 deals with the properties of
the Fischer-Clifford matrices, in particular we study a special case of Fischer-Clifford
matrices of an extension G = N - G with the property that every irreducible character of
N can be extended to an irreducible character of its inertia group in G. In the last part
of Section 5.2 we discuss additional properties of the Fischer-Clifford matrix M (g) for a

split extension G = N:G, where N is an elementary abelian 2-group.

In Chapters 6 and 7 we study the maximal subgroups (2°:L3(4)):2 and (2°:L3(4)):3 of
the automorphism groups Ug(2):2 and Ug(2):3 of the unitary group Us(2), respectively.
We will show with the aid of the computer algebra systems GAP [67] and MAGMA [15]
that the groups (2%:L3(4)):2 and (2%:L3(4)):3 are isomorphic to the split extension groups
of the type 2%:(L3(4):2) and 2°:(L3(4):3), respectively. The conjugacy classes of both of
these split extension are determined by the technique of coset analysis. For this purpose of
finding all the classes of 2%:(L3(4):2) and 2°:(L3(4):3), we are assisted by the Programme
A and Progamme B which are based on the technique of coset analysis. These MAGMA
programmes are found in [1]. Having the classes of these groups in the format allowed by
coset-analysis, we can proceed to compute the Fischer-Clifford matrices of these groups.
Hence we can construct the associated character tables which are partitioned into blocks
according to the inertia groups of 2°:(L3(4):2) and 2%:(L3(4):3). Lastly, the complete fu-
sion of each of these groups into their respective main groups Us(2):2 and Ug(2):3 will be

fully determined using the technique of set intersections (see [44],[45] and [48]).

In the ATLAS [22] we see that one of the 9 classes of maximal subgroups of the orthog-
onal simple group Of;(2) has the form 2%:0F(2). Ali in [4] study a group of the form
28:Sp6(2) which sits maximally in 2%:04 (2). Also, in the ATLAS we observed that the
group Uy(2):2 is one of the maximal subgroups of the symplectic group Spg(2). Now, the
pre-image of Uy(2):2 in 2%:Spg(2) is a group of the form 2%:(U;(2):2). In Chapter 8 we



study the group 28:(U,;(2):2) and apply Fischer-Clifford theory to determine its character
table. The complete fusion of the classes of 2%:(Uy(2):2) into the classes of 2%:Spg(2) will

also be determined.

In the paper [48] the authors study the maximal subgroup 2%:Sps(2) of the smallest Fis-
cher sporadic simple group Figs of index 694980. They constructed the character table of
20:Sp6(2) by using the technique of Fisher-Clifford matrices. It was found that one of the
two inertia groups of 2%:Spg(2) has the form 2°:(25:S5), where 2°:Ss is maximal and affine
in Spg(2) of index 63. In general it is more complicated to construct the character tables
of the inertia groups H; = N - H; of an extension group G = N -G by using Fischer-Clifford
theory. In the final chapter we use the same methodology as in Chapters 6,7 and 8 to
construct the character table of the split extension 2%:(2%:S5) and as well as the fusion of

20:(2°:S6) into the group 2%:Spg(2).

Most of our computations are carried out with the assistance of the computer algebra
systems MAGMA and GAP. Our notation is standard and the reader may refer to the AT-
LAS and the ATLAS of Brauer Characters [37]. All our groups and sets are finite unless
otherwise specified. Programmes A and B that have been used to compute the conjugacy
classes of our groups are given in Appendix A. Consistency and accuracy checks for the
character tables of our 4 split extension groups were implemented using GAP codes la-

belled as Programme C in Appendix A.



Chapter 2

Group Characters

Two ways of approaching representation and character theory are through the use of
modules on the one hand (for instance, the approach used by James and Liebeck [37]),
and through the classical approach used by Feit [25] for example, on the other hand. Our
discussion is along the classical approach and for this purpose we follow the lecture notes
of Moori [47], the works of Mpono [53] and Whitley [68].

In this chapter we give preliminary results on group characters that will be needed in
later chapters to construct the character tables of the groups that are studied in this
thesis. We start by presenting in section 2.1 the general theory on representations and
characters of groups. In section 2.2 we discuss the role of normal subgroups in finding
some characters of a group. In sections 2.3 to 2.5 restricted, induced and permutation
characters are discussed to establish the relationship between characters of groups and
the characters of their subgroups. For further reading on representations and characters,
readers are referred to [11], [13], [16], [18], [19], [25] , [34], [35], [36], [40], [43], [55] and

many other relevant sources.



2.1 Representations and Characters

In this section we give some preliminary results on representations and characters of

groups .

Definition 2.1.1. Let G be a finite group and F' a field. A homomorphism
p: G — GL,(F) is called a representation of G over F' or simply an F-representation.
The general linear group, GL,(F), is the multiplicative group of all non-singular n x n

matrices over F' for some integer n. The representation p is said to have degree n.

Two F-representations p; and po are said to be equivalent if there exists P € GL,(F)
such that p;(g)=Pps(g)P~" for all ¢ € G. An F-representation p of G is said to be

reducible if it is equivalent to a representation v which is given by

Blg) (9)
0 d(g)
for all g € G, where (3,7, 6 are F-representations of GG. If p is not reducible, then it is said

alg) =

to be irreducible. p is defined to be fully reducible if it is equivalent to a representation o

where
plg) 0
alg) =
0 4(g)
for all g € G. p is completely reducible if it is equivalent to a representation « given by
Pilg) 0 -0
0 Bag) -0
alg) = _ .

.0

0 0--- B(g)
for all ¢ € G and where each (; is an irreducible F-representation of G. Then Sy, fs, .., B,

are called constituents of p.

Theorem 2.1.2. (Mashke’s Theorem) Let G be a finite group. If F is a field of
characteristic zero, or whose characteristic does not divide the order of G, then every

F-representation of G is completely reducible.

7



Proof:See[ [25],(1.1)].

Theorem 2.1.3. (Schur’s Lemma) Let p; and py be two irreducible F-representations
of a group G over a field F. Suppose P is a non-zero matriz over F' such that p1(g)P =
Pps(g) for all g € G. Then P is nonsingular and p; is equivalent to ps.

Proof:See] [25],(1.2)]

Corollary 2.1.4. [/5] Let F be an algebraically closed field, and p an irreducible F-
representation of a group G. Then the only matrices that commute with every matriz

p(9), g € G are the scalar matrices al,, where a € F and I, is the n x n identity matriz.

Proof: Let P be an n x n matrix such that Pp(g) = p(g)P for all g € G. Then for any
a € F' we have that

(al, — P).p(g9) = p(g9).(al, — P), for all g € G. (1)
Let m(z) = det(x1,— P) be the characteristic polynomial of P. Since m(x) is a polynomial
over I and F is algebraically closed, then there exists a; € F' such that m(a;) = 0r. Hence
det(ay I, — P) = Op and thus ay7, — P is singular. Then from relation (1) and Schur’s
Lemma, we obtain that a1, — P = 0 and thus a/, = P. [J

Definition 2.1.5. The function x, : G — F defined by x,(g) = trace(p(g)) is called the
F — character of G afforded by the F' — representation p. The degree of x, is the degree
of p. The trivial character is the character 1 defined by 1¢(g) = 1r for every g € G. An

wrreducible character is a character afforded by an irreducible representation.

Lemma 2.1.6. [68] The following properties hold for a group G:

1. A character of G is constant on the conjugacy classes of G.
2. Equivalent representations afford the same character.
3. x(1) is the degree for any character x.

4. The sum of any two characters of G is again a character of G.



Proof: Parts 1 and 2 follow from the fact that for matrices A and P,
trace(P~YAP) = trace(A).
3. Let x have degree n. Then x(1) = trace(l,,) = n.
4. Let x,, and x,, be characters of GG, afforded by the representations p; and p,, respec-
tively. Define the function ¢ on G by ¥(g)= p1(9) . Then 1) is a representation
0 pa2(g)
of G with xy = Xp, + Xp,. U
Definition 2.1.7. Let GG be a group, F' a field and ¢ : G — F be a function which is

constant on conjugacy classes. Then ¢ is called a class function of G.

From the above definition, we observe that every character is a class function. We shall
use the notation Irr(G) to denote the set of all irreducible characters of the group G.
From now on, we will consider representations and characters of a finite group G over the
complex field C.

If ¢ is any class function on G, then ¢ can be uniquely expressed in the form ¢ = >\ a;x;
where a; € C and Irr(G) = {x1,...,xr}. Moreover ¢ is a character if and only if all
a; € NUO0.(See[[32],(2.8)]).

Theorem 2.1.8. The following properties hold:

1. Two representations of G have the same character if and only if they are equivalent.

2. The number of irreducible characters of G is equal to the number of conjugacy classes

of G.

3. Any character can be written as a sum of irreducible characters.

Proof:

1. See [ [25], (2.6)]

2. See [ [25], (2.16)]

3. This follows from Mashke’s Theorem. [

Lemma 2.1.9. Let x be a character of G afforded by a representation p of degree n. Then

9



1. for g € G, p(g) is similar to a diagonal matriz diag(e, ..., €,) where each €; is a

complex root of unity.

2. x(9) = €1+ ... + €, and x(g7) = x(g), where x(g) denotes the complex conjugate
of x(9).

Proof See[[33], (2.15)]. O

Irr(G) are presented in a table, called the character table of G. In this character table
of GG, the rows correspond to the irreducible characters of G and the columns to the
conjugacy classes of G. The entry a;; in this table is the value of the i-th irreducible
character on an element of the j-th conjugacy class. This character table of GG satisfies
certain orthogonality relations, which are given in the next few theorems following the

definition.

Definition 2.1.10. Let x; and x> be two characters of a group G. Then the inner product
of x1 and Yy is defined by

1
<XuXe = g > xa(@)x2(9).

geG

Theorem 2.1.11. (Generalized Orthogonality Relation) Let G be a group and
Irr(G)= {x1, X2, ---s Xr}- Then the following holds for every h € G.

|—(1;| > xilgh)x;(g7") = 3

geG

Proof: See Theorem 2.13 of [33]. O

Theorem 2.1.12. [33] (First Orthogonality Relation) Let G be a group and Irr(G )=
{x1,x2, -, Xr}- Then

1 -
@l > xil9)xi(g) = 0 =< xi: x5 > -

geG

10



Proof: Let h = 1g in the generalized orthogonality relation to obtain the desired

result. O

Theorem 2.1.13. [35], [53](Second Orthogonality Relation) Let G be a group and
Irr(G)= {x1,X2s s X} and {g1,92,...,9-} be a set of representatives of the conjugacy

classes of elements of G. Then

Z X(gz‘)m = 0;|Ca(g:)]-

x€lrr(G)

Proof Let X be the character table of G. Then viewed as a matrix, X is an r X r matrix
whose (7, 7)-th entry is given by xi(g;). Let C; be the conjugacy class which contains
g; and D be the diagonal matrix with entries 0;;|C;|. Then by the first orthogonality

relation, we obtain that

|Gy = Zx(%)@ = Z [Celxi(90) X (ge)-

geG

Then we obtain a system of r? equations which can be written as a single matrix equation

as follows
|Gl = XDX .,

where I is the identity matrix and X7 is the transpose of X. Since X is a nonsingular

matrix, then we obtain that
T
|G|l = DX X.
Rewriting the above matrix system as a system of equations yields

|Gldij = Z |Cilxe(9:)xt(95)-
=1
Hence we obtain that
> xlg)x(g) = [Calg)ls. O

x€lrr(G)

Theorem 2.1.14. [68] Let Irr(G) = {x1, X2, ---, X} and x be any character of G. Then

11



1. x can be expressed uniquely as x =Y ;_, a;x; where a; € NU{0}.

2. If x =3 i, aixi then (x,x) =>_;_, a; .

3. x is irreducible if and only if (x,x) =1 .

Proof:
1. By Theorem 2.1.8(3), x = Y., a;x; for a; € NU{0}. For each i, (x,xi) =
(>or_ L aixis X) = a; (xi» xi) = a; by the First Orthogonality Relation, so the a; are unique.
2. Follows from First Orthogonality Relation.
3. Follows from parts 1 and 2 .

Definition 2.1.15. Let GG be a group, x be a character of G and Irr(G) = {x1, X2, ---» X+ }
such that x = Y7 | a;x;, where a; € NU {0}. Then those x; with a; € N are called the
wrreducible constituents of xy. We also say that y contains a; copies of the irreducible
character x;. In general, if ¢ is a character of G such that x — ¢ is a character or is zero,

then ¢ is a constituent of y.

2.2 Normal Subgroups

Lemma 2.2.1. [68] Let x be a character of a group G afforded by a representation p.
Then g € ker(p) if and only if x(g) = x(1).

Proof: Let n = x(1), so n is the degree of p. If g € ker(p) then p(g) = I, = p(1), where
I, is the n x n identity matrix, so x(g) = n = x(1). Conversely, assume x(g) = x(1) = n.
By Lemma 2.1.9, x(g9) = €1 + ... + €, where each ¢; is a complex root of unity. Therefore,
€1+ €2+ ... + €, = n. But |¢;| = 1 for each i, so we must have ¢; = 1 for each i. Hence

p(g) is similar to diag(ey, €3, ..., €,) = I, s0 g € ker(p). O
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Definition 2.2.2. Let y be a character of a group G. We define

ker(x) ={g9 € G :x(9) =x(1)}.

From Lemma 2.2.1, it follows that ker(x) = ker(p) and hence ker(x) is a normal sub-
group of G. If Irr(G) = {x1, X2, ---, X»}, then every normal subgroup is the intersection
of some of the ker(x;).

Theorem 2.2.3. Let N be a normal subgroup of a group G. Then

1. If x is a character of G and N C ker(x), then x is constant on the cosets of N in
G and the function x defined on G/N by xX(Ng) = x(g) is a character of G/N.

2. If x is a character of G/N, then the function x defined by x(g9) = x(Ng) is a

character of G and the x has the same degree as X.

3. In both of the statements above , x € Irr(G) if and only if x € Irr(G/N).

Proof: See Theorem 2.2.2 of [6§]

If N is a normal subgroup of G and p is a representation of G such that N C ker(p), then
there exists a unique representation p of G/N defined by p(Ng) = p(g). Thus knowing
p, we can obtain p and vice versa. We also obtain that p is irreducible if and only if p is
irreducible. Hence p and p can be identified. If p affords a character x of GG, then p affords
a character x of G/N and hence x and y can be identified. Under this identification, we
obtain that

Irr(G/N) ={x € Irr(G)|N C ker(x)}.

Therefore the irreducible characters of G/N are precisely those irreducible characters of

GG which contain N in their kernels.
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Definition 2.2.4. Let N be a normal subgroup of G and let x be a character of G/N,
then the character x which is defined by

x(9) = x(Ng) for g€ G

is called the lift of x to G.

The process of obtaining characters of a group from the characters of any of its quotient

groups using theorem 2.2.3 is called the lifting process.

2.3 Restriction of Characters

Definition 2.3.1. Let G be a group and H be a subgroup of G. If p: G — GL,(C) is
a representation of G, then (p | H):H — GL,(C) given by

(p L H)(h) = p(h), VheH,

is a representation of H. We say that p | H is the restriction of p to H. If x is a character
of G afforded by p, then we say x | H is the restriction of x to H and is a character of
H. x| H is a character of H afforded by the representation p | H such that

X4 H= Z dytp, where dy, € NU{0}.
Yelrr(H)

The characters xy | H and y take on the same values on the elements of H. If y | H is
irreducible, then y is irreducible in G but the converse is not true in general. Karpilovsky
in [39] proves a theorem (Theorem 23.1.4) due to Gallagher(1966) that if H < G, x €
Irr(G) such that x(g) # 0 for each g € G\ H, then x | H is irreducible and for any
g € G\ H, x(g) is a root of unity. We also observe that (see [36]) every irreducible

character of H is a constituent of some irreducible character of G restricted to H.
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Theorem 2.3.2. [36] Let G be a group, H < G, x € Irr(G) and Irr(H) = {41, 1s, ...

Then
x1H = i 0iti,
i=1
where §; € NU {0} satisfy the following inequality
Z 02 <[G:H]  (x%)

Moreover, we have equality in (xx) if and only if x(g) =0, for all g € (G \ H).

Proof: We obtain that
§ 2 = — E h).x(h that
£ i 7 X( )X( ) S0 tha

HIY 0 = S WX (ex)

l=(xxl¢ = ZX
gEG
- lGlZH" %
H 2
= |\G]’Z(S |G] Z by (% * %)

and therefore
[H| & o 1 5
55:1——5 Ix(g))” <1
1G] & G|

Hence

7w’l"}'



Equality in (s*) will be obtained if

ﬁ S k@P = 0

9€(G\H)
if and only if |x(¢)]? = 0 Vge(G\H)
ifand only if  x(9) = 0 Vge(G\H)
Thus the equality in (*x*) holds. O

Theorem 2.3.3. Let G be a group, H be a normal subgroup of G and x € Irr(G). Then
all the constituents of x I H have the same degree.

Proof: See Proposition 20.7 of [36]. O

We have seen how the irreducible characters of G can be used to find characters of a
subgroup H and can now look at a technique of finding the characters of G from the

irreducible characters of any subgroup H.

2.4 Induced Characters

Definition 2.4.1. Let H be a subgroup of G. The right transversal, {z1,zs,..., 2.}, of

H in (G is a set of representatives for the right cosets of H in G.

Let H be a subgroup of a group G such that the set {z1,zs,...,x,} is a transversal for H
in GG. Let ¢ be a representation of H of degree n. Then we define ¢* on G as follows :

d(xrgry')  dlzrgryt) o o o (azrgzt)

p(zagri')  d(ragay’) o o . Plazaga;t)
¢*(g) =

O(Tngry") d(rngry') o o o Glangat)
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where (b(:l:iga:j_l) are n X n submatrices of ¢*(g) satisfying the property that
O(xigr; ') = Opun Vaigz; ' ¢ H
Then we can show ¢*(g) is a representation of G of degree nr.

Definition 2.4.2. Let G, H, ¢ and ¢* be as above. Then the representation ¢* is called

the representation of G induced from the representation ¢ of H and we denote it by ¢©.

If v is a representation of H which is equivalent to ¢, then it can be shown that ¢ is
equivalent to ¢“. Thus the induction process preserves equivalence between representa-

tions.

Definition 2.4.3. Let G be a group and H < (. Let x be a class function of H. Then
we define y¢ as follows:

"
X(g) = T > X(zgzh), g €G,

zeG

h) it xre H
where  x?(h) = xth)

0  otherwise

Then \“ is a class function of G, called the induced class function of G induced from Y.

Also we have that deg(x®) = [G:H]deg(x).

Theorem 2.4.4. [35] (Frobenius Reciprocity) Let H < G, x be a class function on
H and ¢ a class fuction on G. Then

(x., oL H)g=(x" ¢)q

Proof:

éZxG(g)-@

geG

- = > (7 > e ™) 80

- mﬁ S Y g ) ()

geG ze@G

< XG7 ¢>G =

17



1

Let y = xgxz~!. Then as g runs over G, xgx~! runs through G. Also since ¢ is a class

function on G, ¢(y) = ¢(xzgz™) = ¢(g). Thus by (* * *x) we have

G _ 1 0 YR
(X% 0 = G > XWw)ey)

yeG zeG
1 0 —
= o X (X))
zeG yeG
= o 1 A6
yeG
= i W)

=(x,¢{H)g O

Let H < G and ¢ be a representation of H that affords a character x of H. Then ¢ is a
character of G afforded by the induced representation ¢¢ of G. The character ¢ is called
the induced character of G. The induction and restriction processes do not necessarily

preserve irreducibility of characters.

Theorem 2.4.5. Let G be a group and H < . Let x be a character of H, g € G and
{1, 29, ..., 2} be a set of representatives of conjugacy classes of elements of H which

fuse into the conjugacy class [g] in G. Then we have

1. x%g)=0 ifHNlg = 0.

2. X9) = Cal9)| S0 ey if HNg] # 0.

Proof: We obtain that

If HN[g] = 0, then zgx~! ¢ H and thus x\°(zgz~') =0 Vaz € G and hence x“(g) = 0.

1

Now if HN[g] # ), then as  runs over G, xgz~' =y covers [g] exactly |Cg(g)| times,
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thus we have

1

X°(9) = il ICG(Q)IEMXO(M
- ﬁ < Calg)l 3 )
ye([glnH)
[Calg)| <

= g X Y [H : Cyl:)] x(x:)

=1
= (Gl 3 X
— |Cr ()]
Hence the result. O

Theorem 2.4.6. Let G be a group, K and H subgroups of G such that K < H < G and
X be a character of K. Then for all g € G we have

1 (x") = (xo)7 ' He

2. (x9)° = (x%)

Proof: See[39]
Readers are referred to [12], [14] [35]and [54] for further reading on induced characters.

2.5 Permutation Characters

Let GG be a finite group throughout.

Definition 2.5.1. G acts on a finite set € if for each ¢ € G and a € €, there is an

element o in 2 such that a! = a and ()" = a9" for all « € Q and g,h € G.

Proposition 2.5.2. G acts on Q) < there is a homomorphism p : G — Sq, where Sq is

the symmetric group on €.

Proof: Suppose G acts on €). Define a mapping
p:G—Sqbyplg):a—a? Yae N ge G If a,f € Q then (a)p(g) = (B)p(g) implies
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that a9 = 89 and a = o' = @99 ' = (ag)g_1 = (59)9_1 = 399~

then (8) € Q and ()7 plg) = (B )? =59 = 5! = 6.
Therefore p(g) € Sq.

1

=pt= 3. Also if B € Q

Furthermore,

(@)p(gh) = a = (a?)" = (a?)p(h) = (ap(g))p(h) = (@)(p(g)p(h)). This proves that
Va € Q: p(gh) = p(g)p(h); so p is the required homomorphism from G to Sg,.
Conversely, suppose p : G — Sq is a homomorphism. Then p(1) = 1g, and p(gh) =

p(g)p(h); so
1. ()p(1l) = alg, = a and
2. (@)plgh) = (@)(p(g)o(h) = ((@)p(g))p(h) Va € Q.

Define an action of G on Q by af = a(p(g)) Ya € Q,g € G.
Then o = ol and a9" = (a?)" by (1) and (2). This shows that G acts on Q. O

If G acts on €2 then this defines an equivalence relation on  as follows: If a, 8 € ) then

a~ << 3 g e G such that a = (9. The relation ~ on €2 is

(i) reflexive: For a = ! implies a ~ «

1

(i) symmetric: If & ~ 3 then 3 g € G such that a = 9. Then 8 = ' = p99 =

(ﬁg)f1 =a9% ' s0f~a.

(iii) transitive: If & ~ B and 8 ~ 7 then a = 39 and 8 = " for some g,h € G.

Therefore, a = (y")9 = v"9 hence a ~ 7.
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Denote by [a] the equivalence class containing o € Q. Then

o] = {#eQ|B~a}
= {Be€Q|B=ar for some g € G}
= {a’lg e G}
— o
a% is called the orbit of G on  containing o. The equivalence relation ~ determines a

partition of © by these equivalence classes, that is, Q = U,cq[a] and [o]N[B] = 0 if « # B.

Let G, = {g € G|a? = a}. Then G, < G. Since a = a! we have 1 € G,. Also if

g, h € Gq, then a?" = (a9)" = o* = a and a = o' = a9 " = (a9)9 ' = ¢ ', which

shows that gh € G,,¢97! € Gl,.
Hence, G, is a subgroup of G, called the stabilizer of o in G. Let T = {G,g|g € G} be
the set of right cosets of G, in G. We show next that there is a one-to-one correspondence

between T and the orbit a® of G on € containing .

Lemma 2.5.3. G,g = G,h < o = ol

Proof:

Gog=G.h = gh™ted,
s o =a
s () =a
& af=a" O
Define a mapping ® : T — a% by Gog — a9. If Gog = G,h then o = o" and so
P(Gng) = P(Gyh), which shows that ® is well-defined, by lemma 2.5.3. If Gog9, Goh € T
with ®(Gng) = ®(G,h) then of = o and so Gog = G h, by lemma 2.5.3. Hence @ is

injective.

If v € a then x = o for some h € G. So ®(G,h) = o’ = z. This shows that ® is also
surjective. Thus ® is the required one-to-one correspondence between 7' and a“.

Therefore [a| = |T| = [G:Ga] = 154 or |a%]|Ga| = |G.

21



Corollary 2.5.4. The length of any orbit of G on ) divides the order of G.

Proof: |a%||G,| = |G| and therefore |a%| divides |G|. O
If G acts on €, this action defines a representation of GG as follows:
Let @ = {1, 9, - ,a,} and for each g € G define the n x n matrix m, by 7, = (a;;)
where

1, ifof =aq;

aij =

0, if otherwise

Remark 2.5.5. a; = 1 if o = «; and so a point oy € Q is fized by g < the entry in the

(i,1) position on the main diagonal of the matriz (a;;) is 1.

Then 7 : G — GL(n, C) defined by 7 : g — 7, = (a;j)nxn is a representation of G.
FOI' g, h € G, let 7Tg = (aij) and Th — (bU) Then ’/Tgﬂ'h = (au)(bu) = (Cij)

and so

cij=1 & apby; =1 forsome 1 <k<n
& ajp =1 and by =1
< o = and Ozﬁ:aj
& af" = (o) = ap = q

Hence 7y, = (¢;5) = mymy, and so w(gh) = w(g)m(h). Therefore 7(g) = m, is a representa-
tion of G.

Denote by x,. the character, called the permutation character, afforded by the represen-
tation m:G — GL(n, C) then x,(g) = tr(n(g)) = tr(r,) = {a € Q|a? = a}| = number of
points of Q fixed by g, by the above remark. Therefore, y.(1) = degree of the permutation

character = |Q2].

Definition 2.5.6. The action of G on (2 is said to be transitive if G has only one orbit

on Qie. if € Qthen Q = aC

Example 2.5.7. Let H be a subgroup of G (H < @) and let Q = {Hala € G}=
set of right cosets of H in G. Define (Ha)? := Hag. Then (Ha)! = Ha.l = Ha and
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(Ha)™ = Ha(gh) = H(ag)h = (Hag)" = ((Ha)*)"
Therefore (Ha)? = Hag defines an action of G on §.
Since (Ha)® = {(Ha)%g € G} = {Hag|g € G} = Q, it follows that the action of G on

has only one orbit and so the action is transitive i.e. G acts transitively on (2.

Let Q ={Hay, Hay,--- ,Ha,} where {ay,a,--- ,a,} is a transversal for H in G.

This action of G on € gives rise to a permutation character x, of degree || = [G:H] =
index of H in G. In fact x, = (15)¢ = trivial character 1y of H induced to G. x.(g) =
number of points of Q = {Hay, Has,--- , Ha,} fixed by g. Now (Ha;)? = Ha; < Ha;g =

Ha; < a;ga; ' € H. In other words, Ha; is fixed by g < a;ga; ' € H. Therefore
Xx(9) =Y ®(aiga; ") ,
i=1

where

arrrirgrand?
0, ify¢H,

(y) =

Thus x» = (11)°
Conversely, if G acts transitively on any set, then the associated permutation character
is induced from the trivial character of some subgroup of GG, according to the following

theorem.

Theorem 2.5.8. Let G act transitively on Q. Let o € Q and let H = G,. Then (1g)% is

the permutation character of the action, where 1y is the trivial character of H.

Proof: Q) = a% since G acts transitively on . There is a one-to-one correspondence
between Q and T'= {G,g|lg € G} given by o — G,g for g € G.

Let g€ G. Then (%) = b @ =db e o' =a o kih ' e G, = H & kg e
Hk < Hkg = Hk < (Hk)? = Hk, where G acts on the right cosets of H as in the
example 2.5.7.

Therefore the permutation character of the action of G on €2 is the same as the permutation

character of the action of G on the right cosets of H in G, which is (15)¢. O
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Corollary 2.5.9. If G acts on Q) with permutation character x and has k orbits on €,

then < x,1lg >= k.

Proof: Write ) = Ule 0;, where 0; are the orbits of G on ). Let y; be the permutation
character of G on 6;, so y = Zle X: (this is because x;(g) = number of points in 6; fixed
by ¢g and so x(g) = Zle Xi(g) = number of points in 2 fixed by g).

For a; € 0;, x; = (1Gai)G, by theorem 2.5.8, so

< Xi, 1G > = <K (1Gai)G7 1G >a
= <la.,:1¢ I Go; >a,,, by Frobenius Reciprocity

= < lGai’ lgai >Go‘i: 1

Therefore,
k
<x,lg> = <ZX1’71G >
i=1

k
=1

Every subgroup of GG gives rise to a permutation character, as shown by the previous
results.

Conversely, we can show the existence of a subgroup H if we can identify the character
(1z)%. Because this character is a transitive permutation character, it must satisfy certain

necessary conditions. We give these conditions in theorem 2.5.11 but first prove a lemma.

Lemma 2.5.10. If G acts transitively on ), then all subgroups G, of G (for o € Q1) are

conjugate in G.

Proof: Let a, 3 € . Then 3 = o” for some h € G.
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Now

geG, & o=
o Blflg _ 5,,1
& ph=p
& hlghe Gy
& gehGgh!,
G

SO o« = hGﬁh_1 as required [

Theorem 2.5.11. Let H < G and x = (15)Y then

1. x(1) divides |G|

2. < x, ¥ >< (1) for all ¢ € Irr(G)

3. <x,lg>=1

4. x(g) is a nonnegative integer for all g € G

5. x(9) < x(g™) for all g € G and m a nonnegative integer

6. x(g) = 0 if order of g does not divide %
1lgll - :
7. X(g)x(n is an integer for all g € GG
Proof:
1. x(1) = [G:H] and [G:H]||G|
2. < x> = < (g >¢ = <1y | H >y < (1), by Frobenius

Reciprocity Theorem.

3. G acts transitively on the set of all right cosets of H in G, by (Ha)? = Hag.
This action gives rise to the permutation character y = (1) with degy = [G:H].
Therefore < y,1g >= 1 by corollary 2.5.9.
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4. x(g) is the number of points of 2 fixed by g, so must be a nonnegative integer.

5. For any a; € Q, 0 = o; = ozfm = «a; and so x(g) < x(¢g™) i.e the number of points

of 2 fixed by g cannot exceed the number of points fixed by ¢™.

6. If ord(g) does not divide % =|H| (x(1)=[G:H]= %) then no conjugate of g
lies in H).
Therefore,

x(9) = (1a)%(9)

T

= D (1) (wigz; )

i=1

=0

7. Let S = {(a,x)|a € Q,z € [g],a” = a}. If 2 € [g] then x(x) = number of points in
Q fixed by . Therefore |S| =3 1 x(2).
But x(z) = x(y) if x~y (ie if z,y € [g] ) and so |S| = |[g]|x(g). However
S| = > .callgl NG| and for any a, 3 € Q, define @, : [g] N G, — [g] N Gg by
o+ hoh~! where G5 = hG,h~!. Note: since x € [g], v = kgk~! for some k € G and
so hah™ = hkgk™'h=' = hkg(hk)™" € [g] N (hG4h™1). Then @), is a bijection and

so for any «a, 5 € Q, |[g] NG| = |[g] " Gp| = m, say. Hence |S| = |Q2m = |[g]|x(9).

— x@ldll _ x@lldll

Therefore, m o] )

Theorem 2.5.12. Let H < G with x = (15)¢. Let g € G and let 1,2, ...,1,, be

representatives of the conjugacy classes of H that fuse to [g]. Then

(If HN [g] = 0, then x(g) =0)

Proof: This follows from Theorem 2.4.5. [
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Chapter 3

Conjugacy Classes of Group

Extensions

In this chapter we describe a method that can be used to determine the conjugacy classes
of group extensions. We first restrict ourselves to split extensions of abelian groups. These
methods were used by Moori ([44],[45]), Salleh [64], Whitley [68], Mpono [53] and Ali [1]to

determine the conjugacy classes of extensions of elementary abelian groups.

3.1 Extensions of Groups

Definition 3.1.1. If N and G are groups, an extension of N by G is a group G such that

We denote the fact that G is an extension of N by G by G = N.G.
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Definition 3.1.2. If G is an extension of N by G such that there exists a subgroup G;
of G satisfying

i) G1 =G

(i) NG, =G

(il) N NG, = {1},

then we say that G is a split extension and we denote this fact by G = N:G. If an

extension is not split , then it is called non-split and is denoted by N - G.

Remark 3.1.3. If G is a split extension of N by G , then G is also called a semi-direct
product of N by G and we identify G and G;.

3.2 Conjugacy classes of semi-direct products.

Let G be a semi-direct product of N by G where N is abelian . Then every y € G has a
unique expression of the form y =ng, n € N, g € G. For suppose y = ny g1 = na go, then
ny'ny = gagy ' hence gagit, ny'ny € NNG = {1} and so n; = ny and g; = go. It is

clear that UgeGNg CG. Foranyge G, g=ng forsomen € N, g € G.

Hence § € Ng for some g € G and so G C |J, .o Ng. Therefore G = |J . Ng and

9geG geG

furthermore, suppose z € Ng N Ny for any two elements g,y € G. Then z =n; g =nay
and so n; = ny and g = y, that is, g # y implies that Ng N Ny = @ and so G can
be regarded as a right transversal for N in G. To determine the conjugacy classes of
G, we analyze the cosets Ng for each conjugacy class of G with representative g, and
corresponding classes of G are determined by the action (by conjugation) of Cy, the set
stabilizer in G of Ng. For g € G, define C, = {y € G|(Ng)? = Ng} = {y € G |y(Ng) =
(Ng)y} = Cz(Ng). Now C, is a subgroup of G because Cz(H) is a subgroup of G for
any subset H of G.

We now prove (i) N <C, and (ii) Cy = N:Cg(g)
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(i) Vn e N, nig € Ny,
(n1g)™ = n(nig)n™' = nnign~tg~'g € Ng, which implies that (Ng)" = Ng and
thus N € Cy and so N < (. Since N < G, it follows that N < Cy .

(ii) If y € Ce(g) then y(Ng) = yNy~'yg = Nyg = Ngy = (Ng)y; so Cca(g) < Cy and
since N NG = {1}, it follows that N N Cqx(g) = {1}.
Since N < Cy and Cg(g) < Cy, it follows that NCg(g) < Cy. For any y € Cy,
(Ng)¥ = Ng
& Ng¥ = Ng < gvg ' € N. Now y = n/q’ for some n’ € N, ¢ € G and so

gyg—l — n/q/g(n/q/)—lg—l

= n'dgd g €N & ¢ € Calg)

For if ¢ € Ca(g) then n'q'gq "0/ '~ = n'gq'¢ '’ "¢~ =n'gn’ "¢~ € N. Con-

versely if n'q'g¢' " 'n/ g~ € N then ¢'g¢’ ‘¢ tgn''g~! € N. Therefore ¢'gq¢ 'g~' €
NNG = {1} and so ¢'g = gq which implies ¢ € Cg(g). This proves that
y=nq € C, & ¢ € Cglg). Therefore C; < NCq(g) and so C; = NCq(9);

that is, Cy = N:Cg(g), a semi-direct product of N by Cs(g). O

Now C, = {y € G|(Ng)¥ = Ng} and so C, acts on Ng by conjugation. It follows that
N and Cg(g) act on Ng. We consider the action of N and Cg(g) on Ng separately.

1. Action of N on Ng by conjugation

Let z € Ng, then under the action of N on Ng, N, = {n € N |nz = zn} = Cy(2),
the stabilizer of z in N. Now Cy(g) = Cn(z), for if n € Cy(g) then nz = n(n'g)
for some n’ € N; hence nz = n/(ng), since N is abelian. But then nz = n'(gn) =
(n'g)n = zn, because n € Cx(g), and this proves that n € Cy(z), so Cn(g) C
Cn(z). Conversely, if n € Cy(2), then ng = nn'"'n’g = nn'~'z = ' 'nz, since N
is abelian, so ng = n'~ zn, because n € Cy(z). This shows that ng = n’~'n’gn = gn
and n € Cy(g). Therefore Cx(z) C Cn(g); so we have equality Cy(z) = Cn(g) and
Cn(g) < N.

Now 2V = {2"|n € N} = {nzn~!|n € N} and under the action of N on Ng, Ng
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V] V]
[Cn(zi)]  1Cn(9)]
|Cn(g)] = k. Then as N acts on Ng, Ng splits into k orbits Q.,,Q.,, - ,@.,, that

k

splits into orbits @, - ,Q,, where |Q.,

' N
is, Ng = | JQ., and for each i, 1 <i <1, |Q.,| = [N:Cx(g)] = %, 1<i<k.
i=1
Equivalently, [Ng| = |N| = k|Q.,| for 1 <i < k.
2. Action of C;(g) on Ng
From (1) above, the elements of Ng are in the orbits Q.,,---,Q.,; thus we act

Ce(g) on these orbits. Suppose under this action that f of the orbits Q,,, -, Q.,
fuse together to form an orbit Af of C(g).
Then |Af| = f% Let y € Ay, then the stabilizer in Cj of y is

(Cg>y ={g ¢ Cy |9y = yg} = Ca(y).
Gl IN|[Cala)]
[Ca(y)l [Ca(y)l

Therefore |Af| = and

hence

INTICs(g)l
| A
kINT[Ca(9)]
k| Ayl
k|N||Ca(9)]
fIN]

- %CG(g)\

ICay)l =

Thus to compute the conjugacy classes of G = N:G we just need to find the values

of k and f for each conjugacy class representative g of G.

3.3 Conjugacy classes of group extensions (not nec-
essarily split)

Proposition 3.3.1. Suppose that G is any extension of N by G, not necessarily split.

There is an onto homomorphism X : G — G with kernel N.
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Proof: Define A : G — G by X = ¢or~, where A:@%@/Ng G
— ¢ _
where G/N = G. Vg, € G

g1 92) = (607)(@1 52) = ¢(V)(@1 52) = ¢(NG1 §2) = S(NGiNGa) = (NG1)p(NG).
On the other hand,

AGD)A(G2) = (907)(91)(907)(92) = ¢(7(91))¢(7(92)) = ¢(NG1)(Ngz). Therefore A(g192) =
A(@1)A(g2); hence A is a homomorphism.

Let € G. Then ¢(Ng) = for some g € G, since ¢ is surjective. But then v(g) = Ng.
Hence \(g) = (¢ 07)(g) = ¢(7(7)) = ¢(INg) = x; therefore A is surjective.

Furthermore,

7 € Ker) A@) = 1o
(po)(®) =1c
o(7(@)) = 1g
O(NT) = 1

N% € Ker¢g = N

Nz =N

[ A A

TeN

Therefore KerA = N

For g € G define a lifting of g to be an element g € G such that A\(g) = g. Choosing a
lifting of each element of G, we get the set {g:g € G} which is a transversal for N in G
(that is, a complete set of right coset representatives of N in G).

For, let T be an arbitrary element of G. Then A\(ZT) = y for some y € G consider
the lifting of 7 of ¥ in G then A7) = y = AZ). Hence A(@)A[@)™' = lg so
AME Y = ADAT ) = A@A@) ' = Le

Therefore T % € KerA = N. Hence T € Ny. This shows G = |J .. Ng. If

geG

1

7€ Ng(\Ng then T =n,g=nyg forsome ny,ny € N. Hencegg ' =n;'ny, € N.

Thus g € N¢’ and so Ng = Ng'. This proves that {g:g € G} is a traversal for N in G.
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Lemma 3.3.2. For any set of liftings {g: g € G}, the map ¢ : G — G/N defined by

¢(g) = Ng Vg € G is an isomorphism and ¢ is independent of the choice of liftings.

Proof: If g = ¢’ then \(g) = g = ¢’ = A\(¢/). Hence )\@E—l) = 1g and so g¢’ € N and
so g € Ng'. Therefore Ng = Ng’ but ¢(g) = Ng = ng = ¢(g’). This shows that ¢ is
well defined. Conversely, suppose ¢(g) = ¢(g’) for any g,¢' € G. Then Ng = Ng¢/, thus
§g7_1 € N. Hence )\@E_l) = 1g. Therefore g = A\(g) = M¢’) = ¢’ and so \ is injective.
If X € G/N then X = Ny for some § € G. But A\(7) = z for some € G. Hence
A7) =z = AT), s0 § T+ € N. Therefore 7 € N7 and so Nj = N7 for some T € G.
Hence ¢(r) = NT = Ny = X, which shows that ¢ is surjective.

For any g,¢9' € G,\(g) =g and A(¢') = ¢’. Then \(gg') = g9’ = X))\ (¢) =g ¢) =
99 € Ng¢ = Ng ¢’ = Ngg'. Therefore o(gg’) = Ngg = NgNg' = #(g)o(g'), thus ¢ is a

homomorphism.

If {g:g € G} is another choice of liftings then for any z € G, x = A(g) and x = \(¢')
for some g € G, ¢ € G. Therefore A(g) = A(¢’) implies )\@E_l) = 1g, so 557_1 € N.
Therefore Ng = N¢' thus ¢ is independent of the choice of liftings.

We now show that even for a non-split extension of N by G , if N is abelian, G acts on

N ,that is, there 3 a homomorphism 0:G — Aut(N).

Lemma 3.3.3. Let G be an exstension of N by G, with N abelian. Then there is a
homomorphism 0:G — Aut(N) such that 8,(n) = gng=* for alln € N, and 6 , and § is
independent of the choice of liftings {g : g € G}.

Proof: For a € G, define 7, : G — G by 7,(g) = aga™*. Since N < G, v4|n € Aut(N),
the restriction of v, to N, and the function y : G — Aut(N) defined by u(a) = vu|n

VYa € G is a homomorphism. This is because vu|n(n) = abn(ab)™ = abna™'b~! =
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(Valn © |n)(n) and therefore p(ab) = Yap|n = Yaln © W|v = p(a) o p(b). If a € N, then

1 1

p(a) = vo|n where v4|ny :m — ana™" = naa™ =n VYn € N, so u(a) = v|n = 1n,
since N is abelian. Define p* : G/N — Aut(N) by p*(Na) = u(a). If Na = Nb
then Nab™' = N, so ab™* € N. But then u(ab™!) = 1y, as above, which implies
p(a)p(b~") = p(a)(u(b)) ™ = 1y and p(a) = p(b). But then p*(Na) = p*(Nb) and so p*
is well-defined.

Furthermore, p*(NaNb) = p*(Nab) = p(ab) = p(a)pu(b) = p*(Na)u*(Nb), therefore p* is
a homomorphism.

Now let 6 : G — Aut(N) be the composite map u* o ¢, where ¢ is the map defined in
Lemma 3.3.2 . If g € G and 7 is a lifting, then 6(g) = (u* 0 ¢)(g9) = p* (¢ (9)) = p*(Ng) =
w(g) € Aut(N), so for n € N, 0,(n) = u(g)(n) = gng—*, as required.

If {¢g:g € G} is another choice of liftings then as in Lemma 3.3.2 Ng = Ng' but
then 0, = 0(g) = (1" ° ¢)(9) = p* (¢(9)) = p*(Ng) = p*(Ng') = p(g'), and so for
0,(n) = p(g')(n) = g_’ng_’_1 = gng * for any n € N. This shows that @ is independent of
the choice of liftings.

Conjugacy Classes of G = N - G (N abelian).

To determine the conjugacy classes of G , we analyse the cosets Ng, where G = | gec NG

and g is a lifting of g in G. It is only necessary to consider one coset Ng for each
conjugacy class of G with representative g, and the corresponding classes of G are de-
termined by the action (by conjugation) of Cj, the set stabilizer in G of Ng, that is,
C; = {9 €Glg(Ng) = (Ng)g} = {9 € Glgngg™" € Ng, Yne N}. Now N C Cj; , since

1

for n € N and n1g € Ng, n(nig)n=' = nnign='g7'g = nni(n")9g € Ng. Therefore
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N <9 Cj and we have C3/N = Cg,y(Ng) because

Nh e Cg/y(Ng) <= NhNg(Nh)™' = Ng
< NAhNGNh™' = Ng
<= NhNgNg 'gh™' = Ng
<= NhNgh™' =Ny
< NhNngh™'=Ng Vnen
<= NAhNR 'hngh™'=Ng VneN
<= Nhngh ' = Ng
<~ hngh '€ Ng VneN
<~ he(j
<= Nhe(C;/N

Therefore, C3/N = Cg/x(Ng) = Cclg), identifying Cgz/y(Ng) and Cg(g). This shows
that Cj is an extension of N by C¢(g), that is, C; = N.Cs(g).

Remark 3.3.4. If G = N : G we can identify C; = N -Cg(g) with C, = {y € G|y(Ng) =
(Ng)y}, where the lifting of ¢ in G is g itself since G < G in the case of a split extension.

Next we determine the orbits of C; on Ng. Let z € Ng. Then under the action of
N on Ng, N, = {n € N|z" = z} = Cn(z), is the stabilizer in N of z. Then for any

1 1

nz € Ng (n € N), (nz)V =n¥2¥ = yny lyzy ' = nyy 'yzy~' = nyzy~' = nzyy™" = nz,

for y € Cn(z), since N is abelian. Therefore Cy(z) fixes each element in Ng.

Let k = |Cy(z)]. Then |[z]| = \C‘]iv(Lﬂ = %, that is, under conjugation by N, each element
[NV]

of Ng is conjugate to = elements of Ng, so Ng splits into k blocks with |—JZ| elements in

each block. Denote these blocks by @1, -+, Q). The orbits of Cj (that is, the conjugacy
classes of Ng) are unions of these blocks which fuse together by the action of Cj. Since
C3 = N.Cg(g), this fusion is completely determined by the action of {g|ly € Cs(g)} (there
is a homomorphism \:C3 — Cg(g) with kernel N; y — y). For suppose @); and Q); fuse
(i # j). Then there exist n;g € Q;, n2g € Q; such that (n1g)! = nag for some I € Cj.

But [ € Cj implies that | = ny for some n € N, y € Cs(g). So (n19)™ = nyg implies that
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((n1g)™)? = neg. Now (n19)" € Q;, so by the action of g, Q; and @; have fused. Suppose
f blocks fuse to form an orbit 2 of Cj. Then Q] = % Let y € 2. Then the stabilizer
in Cy of y is Ce(y), so || = | NlIGe(o)]

ICa(y)l ICa(y)]
Therefore |Ca(y)| = ‘N”%"(g)' = kw}ugﬁ(g)' = %|Cg(g)|. So to calculate the conjugacy

classes of G we need to find the values of k and f for each conjugacy class of G. Note
that the values of k£ can be determined from the action of G on N given in lemma 3.3.3.
Consider a class representative g of GG. For this class, k is the number of elements of N

that fix z for 2 € Ng. Take z = §. Now for n € N, n fixes § & §" = § < ngn "

ng=gn<n=gng < n=n? < n=nd. Therefore k is the number of elements of N
fixed by g, which equals x(g) where y is the permutation character of the action of G on

N.

Theorem 3.3.5. [59] Let G = N:G and dg € G where d € N and g € G such that
o(g) =m and o(dg) = k. Then m divides k.

Proof: We have that

g = (dg)* = dd?d” d”..d*" " ¢* .

k—1 1

Since G actson N and d € N, we have d, d9,d*,d%",...,d*""" € N. Hence ddods*ds’ ...d9""

N. Thus we have that dd9d9’d?"...d9" " = 1 and ¢* = 1. Hence m divides k. O

Theorem 3.3.6. Let G = N:G such that N is an elementary abelian p-group, where p
is prime. Let dg € G where d € N and g € G such that o(g) = m and o(dg) = k. Then

either k =m or k = pm.

Proof: See [53], Theorem 2.3.10.

Remark 3.3.7. Let G = N:G where N is an elementary abelian p-group, where p is
prime. Let dg € G with d € N, g € G such that o(g) = m and o(dg) = k, then we observe
that

m—1

g = (dg)™ = dd?d?" d%° ..d%" " g™ .
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Since g™ = 1¢, we obtain that (dg)”™ = w, where w € N and is given by

m—1

w = dd9ds’ do’ ...d9

By Theorem 3.2.4 above , we have that if w = 1y then £ = m and if w # 1y then k = pm.

By using the method of coset analysis(discussed earlier) together with Theorems 3.3.5
and 3.3.6 and Remark 3.3.7,[1] developed Programmes A and B (see Appendix A) in
MAGMA [15] to compute the conjucacy classes and the orders of the class representatives
of the extension G = N:G where N is an elementary abelian p - group for prime p on

which a linear group G acts.
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Chapter 4

Clifford Theory

If G is an extension of N by G, then Fischer showed how the character table of G can
be determined by constructing a matrix corresponding to each conjugacy class of G. The
character table of G can then be determined from these matrices ( the so-called Clifford
matrices ) and the character tables of certain subgroups of G called the inertia factors.
In this thesis we describe how the method of the Fischer—Clifford matrices is applied in
the case of extensions of elementary abelian groups. However this method also applies to
extensions of any normal subgroup N with the property that each character of N can be
extended to its inertia group. The theoretical foundation for this method is the Clifford
theory and the theory of the Fischer matrices.

In this chapter we discuss the Clifford theory which will be applied to describe the Fis-
cher matrices method in the next chapter. We refer the reader to Moori [47] for the

definitions and results not given here.
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4.1 Clifford’s Theorem

Let G = N - G be the extension of N by G. Here N is any group, not necessarily abelian.
Let @ € Irr(N) be an irreducible character of N. Define #9 by 69(n) = 6(gng™') for
ge€G,nEN.

Let P be a representation of NV affording 6, that is, P:N — G L(n,F) is a homomorphism
such that x, = 0. Then

Xps(n) = tr(P?(n)) = tr(P(gng™")) = xp(gng™") = 0(gng™") = 6%(n)

for all n € N. Therefore, x,0 = 09 and furthermore § € Irr(N) implies §9 € Irr(N)
because < 09,09 >y =< 6,0 >y = 1 (Prop. v.5(iii), [47] ).
Moreover, 8" (n) = 6(n'nn’~") = 6(n) (since n ~ n'nn/~" in N, 8(n) = (n'nn’")) and

therefore " = @ for all ’ € N, that is, N acts trivially on Irr(N).

Remark 4.1.1. P9 : N — GL(n,F) defined by P(n) = P(gng™!) is a represen-
tation of N affording 69. This is because Vni,ns € N, P9(niny) = P(gninag™!) =
P(gnig='gnag™") = P(gnig™') P(gnag ) = P?(n1) P9 (ny).

Since 0'(n) = 6(1nl) = O(n), Yn € N, 0' = 6. Moreover we have 699 = (§9)9
(Prop.v.5(ii), [47]). It follows that G acts on Irr(N) with Gy = {g € G|#9 = 0}, the
stabilizer of 6 in G. Denote Gy by I5(0) and call it the inertia group of 0 in G.

Remark 4.1.2. The action of G on Irr(N) determines a partition of Irr(N) by the
orbits ¢ for § € Irr(N), that is,
Irr(N) = U 0¢
ocIrr(N)

and 09 N ¢% #£ ) = 09 = ¢Y for any 0, ¢ € Irr(N).

Now () is a subgroup of G and N < I5(f) since N acts trivially on Irr(N), that
is, " = 0 Vn € N. Also |0¢] = |{09|g € G}| = [G:15(0)], that is, the size of the orbit
0% = {09 | g € G} containing 0 is [G:I¢()], the index of the subgroup I¢(#) in G. We say
that 6 extends to an irreducible character of H = Iz(0) if there exists ¢ € Irr(H) such
that 6 = ¢ | N.
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Theorem 4.1.3. ([[18], Theorem 3.3.1],[33]) (Clifford’s Theorem) Let N I G and

X € Irr(G). Let 0 be an irreducible constituent of x | N, that is, 6 € Irr(N) and
<O, x I N>y#0.

Then
t
XAN=c) 0
i=1
where O = 01,04, , 0, are the distinct conjugates of 6 in G and c is a constant such that

c=< x4 N,0 >y

Proof: We compute ¢ | N. Define 6° on G by

O(x) if €N
0 if v¢N

0°(x) =

Let n € N. Then

0%(n) = N2 0% (ana!) = [N|71) " 0(zna™?),

zeq@ zeG

since znx~! € N for all z € G (Prop.iv.2.3, [47]). Therefore,

0%(n) = |N|™* Zﬁx(n) and hence 6% | N = |N|™! ZQ“”

zeG zeG

Now if ¢ € Irr(N) and ¢ & {0 = 61,04, ,0;}, then < ¢,0% >y = 0 Va € G. Therefore

<Z e@:¢> =0,
ze@G N

whence < 8¢ | N, ¢ >y= 0. Using the Frobenius Reciprocity Theorem (Theorem 2.4.4)

we get
0=<0%|N,d>y=<0%¢">5and 0 £<0,x L N >y=<6%y >¢5 .
Then < x, % >a= 0, for if < y, ¢¢ >+ 0 then y is a constituent of ¢¢, but then

< 09, ¢C >&7# 0 because y is a constituent of 0%, contradicting < 0%, ¢© >a= 0.
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Therefore < x | N, ¢ >y=< ¢%, x >5= 0 for all ¢ € Irr(N)\{0 = 64,--- ,0:}, again
by the Frobenius Reciprocity Theorem. Thus all the irreducible constituents of x | N are

among the 6;, so

t
XIN=> <x|IN.b>y0
=1

But < x | N,0; >y=< x | N,0 >y= ¢, for all ¢ = 1,2,--- ,t because 6; and 6 are
conjugate (Prop.v.5(iv), [47]). Thus

t t
i=1 =1
0

Definition 4.1.4. Let N < G and § € Irr(N). Then I5(0) = {g € G : 67 = g} is the

inertia group of 6 in G.

Remark 4.1.5. Since I5(0) is the stabilizer of 6 in the action of G on Irr(N), we have
that Iz(0) is a subgroup of G and N C I5(0). Also, [G:I5(0)] is the size of the orbit
containing @, so in the above formula x | N = ¢3'_ 6;, we have t = [G:I5(0)]. As a

consequence of Clifford’s Theorem we have the following result.

Theorem 4.1.6. [68] Let N <G, 6 € Irr(N) and H = I5(0). Then induction to G maps
the irreducible characters of H that contain 0 in their restriction to N faithfully onto the

irreducible characters of G which contain 0 in their restriction to N.

Proof: Let A= {1y € Irr(H)| <¢ | N,0 ># 0}, B={x € I'r(G)| < x | N,0 >#
0}. Define the mapping ® : A — B by ¥ — ¢ where ¢C is the character of G induced
by .

For ¢ € A we first show that
(i) ¥C € Irr(G)
(i) <9 | N,0>%# 0
(iii) < | N, 0 >=< 9% | N, >.
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(i) Let x be an irreducible constituent of YO, that is, y € Irr(G) and < ¥, VG >a 0.
Now 0 #< ¥, wé >a = <1,x | H >g, by Frobenius Reciprocity Theorem and so 9
is an irreducible constituent of y | H. Thus

X+ H=- -4+ X+, A >1, and therefore
XIN=-- M| N+ - = ...)\(...+59+...) = -+ X0+, 0>1

which shows that < y | N,6 > 0. Since x € Irr(G), it follows that xy € B. We show
that y = ¢°.
By Clifford’s theorem

t
XiN:eZQi
i=1

where § = 01, 6,,-- - , 8, are the distinct conjugates of  in G and e is a constant such that
e=<x1N,0>yand t = [G:15(0)] = |0°|.
Therefore

t

(1) = (4 N)(1) = e ST0(1) = e-t-9(1) (4.1)

i=1
because §9(1) = 0(glg™) = (1) Vg € G. Now N<H 1) € Irr(H) and < | N,0 >#0,
that is, € is an irreducible constituent of ¥» | N. Therefore, again by Clifford’s Theorem

YIN =10 (4.2)

for some constant f since {#"|h € H = I5(0)} = {0}, and thus < ¢ | N,0 >= f. As

before x | H = ---+ Xy +---, A\ > 1, therefore
XIN = AW L N) 4+ = oot A4 fO+-2) = -+ AfO+---
and so
e=< x4 N,0>y=Af > [ since A > 1 (4.3)

Also 0 #< Ve x >& implies

P = g o, (62>1) (4.4)
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and hence ¢%(1) = --- + dx(1) +--- > x(1) = e-t-6(1) by (4.1.1). But (1) =
(G:H](1) =t f0(1) by (4.1.2) and Defn.iv.2.2 [47]. Therefore t f0(1) < tef(1) = x(1),
since f < e by 4.3.

Since et 6(1) = x(1) < ¢¥C(1) =t fO(1) < ted(1) = x(1), it follows that y(1) = )%(1)
and e = f. That is,
e=<x!lN,0>=<y | N,O>=f (4.5)
Also 0 #< 9% x > implies that ¢ = A\x + doxa + --- and so x(1) = @bé(l) =
Ax(1) + Aoxa(l) + -+ Hence Ay = 1, A = A3 = - -- = 0, which proves that e = y.
(i) Restating (4.1.5) we get
<% N, >=<1¢ | N,0 >£0 (4.6)
(iii) The map 1 — < is onto. Let y € B. Then x € Irr(G) and < y | N, > 0. If
X4 H =My + Xobg + -+« + Ny, 1y € Irr(H) for i = 1,2, ,r, then
XIN=XW1 } N+ + (¢ L N). SoFi, 1 <i <rsuchthat <; | N,0 >#0,
since < x | IV,0 ># 0.
Let ¢ = 4;, then ¢ € Irr(H) and <+ | N,0 > 0. Hence vy € Aand < ¢, x | H >5# 0
and so < YO, x >=F"R< ),y | H >4+ 0. This shows that  is an irreducible constituent
of ). The fact that y = 1% can be proved by repeating the above steps. To show that the
map v — wé is one-to-one, we need to show that for ) € A, 1 is the unique irreducible
constituent of ¢¢ | H which lies in A.
Let y = ¢¢. Suppose 11 € A such that ¢ is a constituent of y | H and ¢; # ¢. That
is, Y\ L H= MY + Xty +--- andso x L N =X (¥ L N)+ Xa(apy L N) +---
Hence
<xIN, 0> = M<Y]NO>4+ <P [ N,OI>+---
> <YPINO>4+ < [N, O>
> <3| N,0>

contradicting < x 4 N,0 >=<1 | N,0 > by (4.1.6).
This completes the proof. [
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Theorem 4.1.6 implies that, to obtain the irreducible characters of G that contain € in
their restriction to N, it is sufficient to find the irreducible characters of H that contain 0
in their restriction to N . If § can be extended to an irreducible character of H = Iz(6) (
that is, 3¢ € Irr(H) and = | N), then the relevant characters of H can be obtained

by using the following theorem.

Theorem 4.1.7. [28] Let N < G , 6 € Irr(N) and H = 1a(0). If 0 extends to an
irreducible character ¢ of H, then

A=yl € Irr(H), <y L N,0 ># 0} = {Bp| 8 € Irr(H),N C kerf} =

{Be|B € Irr(H/N)}

Proof: If {xy,--- ,x;} is a right transversal for N in H, it follows that for every n € N,

f f f
OH(n):ZQ (rinwz;~ ZG rinaz; ) :ZH“(n):ZH(n)Z
=1 i—1 i—1

since ;nx; 7t € N for each i = 1,2,---, f and H = I5(f) implies that 6 is the only
H-conjugate ( that is, 6% = 0 for each i, 1 < i < f). Hence 7 | N = f6 for some integer
f.

Now f6(1) = (8% | N)(1) = #"(1) = [H:N]6(1) by Definition iv.2.2 [47] , and so
f =[H:N].

Therefore #7 | N = [H:N]6 . Hence

<07 0" >5 =F"R <9 0" | N>y =<0, [H:N|0>y = [H:N] <6,0 >y = [H:N],

since 6 € Irr(N).

Claim :

0" =>"B(1) By

B
where 3 runs over all irreducible characters of H that contain N in their kernel, or

equivalently over all irreducible characters of H/N.

For g ¢ N, zgz—" ¢ N for all z € N, so 67 (g) = 0 and

> B(1) (Be)(g) = (Z(ﬁ(l) ﬁ@)) p(g) =0
B

B
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(column orthogonality for the character table of H/N, since g ¢ N).
By Note 7 [47] and the fact that 5(g) = B(1) since N C ker[3, then for g € N

DB Beg) =D B1)Bg) elg) = (Z(ﬂ(l))2> p(g) = |H/N|p(g),
B B

B

= [H:N]p(g) = [H:N]0(g)

since for g € N, 0(g) = (¢ 4 N)(g9) = v(g). Therefore,

60" | N = [H:N]6 = (Zﬁ(l)ﬁso) LN
B

This proves that
=> B1)Be
B

as claimed.

Now
[H:N] = <67 67 >

= <ZB(1)/3%27(1)W>
= ZB 1) <Be,ye>

= Z(ﬂ( ))? < B, B>+ B1)y(1) <Bp,ve>

B BFEY

> Z )+ > (1) B(1) < Be,ye >

Y#£B

> [H:NJ+ Y v(1)B(1) < Bp,ye >
V#B

Therefore

D A1) A1) < B,y >=0
v#B

and hence < B, vp >=0Vy, [, v # 5, that is, the 8 ¢ are distinct. But then

[H:N] =) (B(1))* < B, Bep >
B
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and so < f¢,B¢ >= 1. This shows that ¢ is irreducible, where [ runs over all

irreducible characters of H/N. Since
0" =" B(1)(By)
B

these 3 ¢ are all the irreducible constituents of 07 (< S | N,0 >=F~B< B 67 > 5+ 0),

so are all the irreducible characters of H that contain 6 in their restriction, since for

v € Irr(H) with 0 #< v | N, 0 >y we have
0 #< v | N,0 >y=""F< ’y,@H > and so 7 is an irreducible constituent of 6. Thus

v = B for some $ € Irr(H/N) and this completes the proof of the theorem. [

In Theorem 4.1.6 the set B = {x € Ir7(G)| < x | N,0 ># 0} = {x € I7(G) | x = ¢

where ¢ € Irr(H) and < ¢ | N,0 >#0}. If v € Irr(H) with < | N,6 >y # 0 then
v = B for some B € Irr(H/N), where ¢ € Irr(H) and ¢ | N = 0, by Theorem 4.1.3.

Hence

B = {xelIrr(G)|x=(B¢)" for some B ¢€ Irr(H/N)}
= {xeIrr(G)|x = (8)% 8 € Irr(H), N C kerf}

Now suppose that G is an extension of N by G and suppose further that every irreducible
character of N can be extended to its inertia group in G. Let 6y, - - - , 6, be representatives

of the distinct orbits of G on Irr(N).

For each i, 1 <i <t, let v; € Irr(H;) where H; = I5(6;) such that ¢; | N = 6;.
If B; = {x € Irr(G) | x = (B4)%, B € Irr(H;), N C kerf3} then it is clear that

t
U B; C Irr(G)
i=1

Conversely, let x € Irr(G). If < v,x | N >y # 0 where v € Irr(N), then v € QJG for
some j, 1 < j <t. Then by Clifford’s Theorem,

XiN:CZ(Si (4.7)
i=1
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where 61, 8s,--- ,0, are the distinct conjugates of v in G and ¢ =< x | N,y >x. It is
clear that 7¢ = {y* |z € G} = GJG. Hence it follows from 4.7 that < x | N,6; ># 0 and
so y = ¢ where ¢ € Irr(H;) such that < x } N,6; >+ 0. Therefore 1) = $1; for some
B € Irr(H;) where ¢; | N =6, and so x = (81;)%, B € Irr(H;), N C ker3. Hence

t

Irr(G) = U {(Bv:)Y|B € Irr(H;) and N C kerB}. O

i=1
Hence the character table of G is partitioned into ¢ blocks Ay, Ay, -+, A, where /A\; is
produced from the subgroup H;. We now give some results which give sufficient conditions
for the irreducible characters of N to be extendible to their respective inertia groups, so

that the above method can be used to calculate the characters of G.

The first of these results is Mackey’s theorem. The proof given here is obtained from

Curtis and Reiner [53], page 353.

Theorem 4.1.8. ([23],[68]) Suppose that N is a normal subgroup of G such that N is
abelian and G is a semi-direct product of N by G for some G < G. If 0 € Irr(N) is

invariant in G, that is, 09 = 0 Vg € G, then @ can be extended to a linear character of G.

Proof: Since G is a semi-direct product, any ¢ € G can be written uniquely as ¢ = nz,
n € N, x € G. Define y on G by x(nz) = 6(n). Since N is abelian, § has degree 1, so is
linear, and the fact that 6 = 69 for all g € G implies that 8(n) = 0(gng~?!) for all g € G.

Then if g = n1x1, go = noxs, we have

X(g192) = x(mzinawe) = x(ning' 2122) = 6(nyn3') = 0(ny) (n3') = 6(ny) 6(z1nany ")

=0(ny) 0" (ny) = 0(n1) O(na) = x(91) x(g2), since @ is linear.

Therefore y is a linear character of G and y ] N =60 O

Mackey’s theorem is a corollary of a more general result by Karpilovsky [38] which we

state without proof.

46



Theorem 4.1.9. [38] Let the group G contain a subgroup G of order n such that G = N:G
for some N normal in G and let x € Irr(N) be invariant in G. Then x extends to an

irreducible character of G if the following conditions hold:

(i) ged(m,n) =1 where m = x(1);

(ii)) NNG < N’ where N' is the derived subgroup of N. O

Another extension theorem is the following.

Theorem 4.1.10. [55] Suppose G is a split extension of N by G, then any linear character
0 € Irr(N) can be extended to its inertia group I5(0).

Proof: Let G = N:G and 6 € Irr(N) which is linear. Let H = I5(0) and let H = I5(6).
Then H = N:H and so H/N = H can be regarded as the inertia group of 6 in the factor
group G/N = G. We have NN H = {1} < N’ and since @ is linear, deg(f) = 1.
Furthermore 0 is clearly H-invariant, and < deg(),|H| >=< 1,|H| >= 1. Therefore 0
can be extended to H = I5(6), by Theorem 4.1.8. [0

Remark 4.1.11. We give a different proof of Mackey’s theorem using Theorem 4.1.8.
Let G = N:G, a split extension of N by G. Since N is abelian, N’ = {1} and deg(#) = 1.
Also NNG = {1} and so NNG < N'. Since ged(deg(0), |G|) = 1, it follows from Theorem
4.1.8 that 6 can be extended to G.

Let ¢ be a representation of G and a an automorphism of G. Define ¢ by ¢*(x) =
d(a(z)) Vo € G. Tt follows that for 2,y € G, ¢*(xy) = ¢(a(ry)) = d(a(x)aly)) =
d(a(x)) dlay)) = ¢%(x) ¢*(y) and hence ¢* is a representation of G.

Let the representation ¢ afford the character x4. Define x3 by x§(z) = x¢(z*) Vo € G.
Then xgo(z) = tr(¢%(z)) = tr(d(a*)) = xo(z%) = x§(x) and so xgo = xg, that is, ¢

affords the character xg.

The representation ¢® and the character xg are called the algebraic conjugates of ¢

and x4, respectively, induced by the automorphism «. Furthermore, if y, is irreducible
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then

(e} « 1 o « —
<X5LXS > = @ZX¢(9)X¢(9 D)
geqG

— ‘—;Zm(aa)xqs«ga)*)

geG

= < X4 Xo >= 1 because a(G) = G

and thus y, irreducible implies xg irreducible. Also if a € [z], where x is a representative
of a conjugacy class of G then a = grg~" for some 2 € G and so a® = a(a) = a(grg™') =

alg) a(r) alg™) = alg) a(z) (a(g) " = g%z (¢*) " € [#*].Thus ([z])* C [2°].

Conversely, for any a € [z°], a = ga® g~ = (ha h™')* € ([z])*. Thus ([z])* = [z°] and
therefore o € Aut(G) induces a permutation on the conjugacy classes of G.
Let X = (xi(z;)) be the character table of G, where x; € Irr(G), 1 <i<nand x;, 1 <
j < n are representatives of the conjugacy classes of elements of G. The automorphism

« induces a permutation on the columns of X. Also for each x; € Irr(G), we know that
x& € Irr(G).

Hence « induces a permutation on the irreducible characters y; of G and thus induces a
permutation on the rows of X. Moreover, since x{(z;) = x;(*$), the matrices obtained

from X by these two operations are identical.

Theorem 4.1.12. (Brauer’s Theorem) [29] Let G be a group and N be a group of
automorphisms of G. Then the number of orbits of N as a group of permutations on
the irreducible characters of G is the same as the number of orbits of N as a group of

permutations on the conjugacy classes of G.

Proof: Let X be the character table of G. Then as a matrix, X is square and nonsingular.
Let a be an automorphism of G such that & € N. Then « induces a permutation on the

conjugacy classes of G and thus a permutation on the columns of X.

Hence N acts on the conjugacy classes of GG. Since o € N, then to each character x of

G, we obtain a character x® of G such that x* € Irr(G) whenever x € Irr(G). Fory € G
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we obtain that x*(y) = x(y*), thus « induces a permutation on the rows of X. Hence N
acts on the irreducible characters of G.

Let X* denote the image of X under a. Then we obtain that P(a) X = X* = X Q(«)
where P(a), Q(«) are appropriate permutation matrices which are uniquely determined

by a € N. Suppose that «, 3 € N, then X*? = (X%)? and hence
Plaf) X = X*% = (X*)? = (P(a) X)* = P(8) P(a) X (1)
Also

XQ(apf) =X = (X" = (X Q) =X Q(a) Q(B) (4.9)

Since X is nonsingular, it follows from 4.8 and 4.9 that P(a3) = P(8) P(«) and
G(a ) = G(a) G(B). Define mappings 7 and 7y on N by 71 (a) = (P(a))" and ma(a) =
G(a), where t denotes the transpose operation on matrices.

Since

and

m(af) = Glaf) = Gla) G(B) = ma(a) m2(F),

it follows that m; and my are permutation representations of N. Let 6; and 6y be the
permutation characters afforded by 7; and 7y, respectively.

Since X! P(a) X = G(a), P(a) and G(a) are similar and thus have the same trace.
Therefore trace(P(a))! = trace(P(a)) = trace(G(a)) and so 61 () = 0., () = tr(m(a)) =
tr((P(a))t) = tr(P(a)) = tr(G(a)) = tr(m(a)) = 0., (a) = O5(a), Ya € N.

Hence 6; = 0. Let dq, dy be the number of orbits of NV on the irreducible characters and
on the conjugacy classes of GG, respectively. Thus we observe that d; is the number of
orbits of 71 (/N) in its action as a group of permutations. Also dj is the number of orbits
of mo(N) in its action as a group of permutations. Since #; and f are the permutation
characters of N acting on the irreducible characters of G and on the conjugacy classes
of GG, respectively, we have dy =< 01,1y >=< 0,15y >= ds by Corollary 2.5.9. This
completes the proof. [J
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Chapter 5

The Fischer—Clifford matrices

Character tables of finite groups can be constructed using various techniques. We are
particularly interested in the method known as the technique of the Fischer—Clifford ma-
trices. The technique derives its fundamentals from the Clifford theory and provides very
powerful information for constructing character tables of group extensions. Given a group
extension G = N - G such that every irreducible character of N can be extended to its
inertia group then for each conjugacy class representative g € GG, we are able to construct
a matrix M(g) called the Fischer-Clifford matrix. By using these matrices together with
the fusion maps and character tables of some subgroups of G which are inertia factors
of the inertia groups in G, the complete character table of G can be constructed. These
constructions of Fischer-Clifford matrices have been discussed and used by Salleh [64],
List [41] , List and Mahmoud [42] , Fischer [26] , Darafshesh [24], Pahlings [56], Moori
and Mpono [48], Whitley [68], Ali [1] and Zimba [71].

We first discuss the theory of the Fischer—Clifford matrices and follow closely the work
of Whitley [68].

Let G = N -G such that every irreducible character of N is extendible to its inertia group.
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We have that G permutes Irr(N) by x : § +— 6, where x € G and 6 € Irr(N). Now let
01 = 1n,0,- -+ ,0; be representatives of the orbits of G on Irr(N), H; = Iz(6;), 1 <i < t,
Y; € Irr(H;) be an extension of §; to H; and 8 € Irr(H;) such that N C ker(3). It was
shown in Chapter 4 that

t

Irr(G) = | J{(B%:)?| B € Irr(H;), N C ker(B)}

=1
Hence the irreducible characters of G will be divided into blocks, where each block corre-

sponds to an inertia group H;.

5.1 Definitions and Preliminaries

Remark 5.1.1. If G = N:G, with N abelian, is a semi-direct product then by theorem
4.1.7 (Mackey’s theorem) every irreducible character of N can be extended to its inertia

group in G. Hence the above result can be used to calculate the full character table of G.

Let G = N - G with the property that every irreducible character of N can be extended
to its inertia group. Let g € G be a lifting of ¢ € G under the natural homomorphism
G — G and [g] be a conjugacy class of elements of G with representative g.

Let X(g) = {1,22, -+ ,%,q)} be a set of representatives of the conjugacy classes of G
from the coset Ng whose images under the natural homomorphism G — G are in [g] and
we take 71 = g. Let {6;,0,,--- ,0;} be representatives of the orbits of G on Irr(N) such
that for 1 <i <t, we have N < H; = I=(0;) with H; = H;/N < G and that ; € Irr(H,)
is an extension of #; to H;. Then without loss of generality suppose that 6, = Iy is
the identity character of N. Then H; = G and H; = G. Now choose y1,4a, -,y t0
be the representatives of the conjugacy classes of elements of H; which fuse to [g] in G.
Since y; € H; for 1 < k < r, then we define y;, € H, such that y;, ranges over all the
representatives of the conjugacy classes of elements of H; which map to y; under the

homomorphism H; — H; whose kernel is N. Let 8 € Irr(H;) such that N C ker(3).
Then 3 is a lifting of 3 € Irr(H;) such that B(y,) = B(yx) for any lifting y, € H; of
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y € Hy. Then we obtain that (4 5)%(2;) = X<, Siel oy (01 ) ()
= Di<ker > \lcC; zl] ‘¢l<ylk) By,)
= Vi (0 |‘§; i) Blye)

where 37, is the summation over all k for which y;, ~ z; in G. Now we define a matrix

M;(g) by M;(g) = (ayy), where 1 <u <r and 1 < v < ¢(g), and

Calx .
Quw = Y 1 |‘CHG yf)l|¢z(ylk) . Then we obtain that

(1/]1 /B)G(x]) = Z auvé(yk) .

1<k<r

By doing this for all 1 < ¢ < ¢ such that H; contains an element in [g] we obtain the

matrix M (g) given by

M(g) = : ,

| My(g)

.

where M;(g) is the submatrix corresponding to the inertia group H; and its inertia factor
H;. It H;N[g] =0, then M;(g) will not exist and M (g) does not contain M;(g). The size
of the matrix M (g) is p X ¢(g) where p is the number of conjugacy classes of elements of
the inertia factors H,’s for 1 < i < ¢ which fuse into [¢g] in G and ¢(g) is the number of
conjugacy classes of elements of G which correspond to the coset Ng. Then M(g) is the
Fischer—Clifford matriz of G corresponding to the coset Ng. We will see later that M (g)
is a ¢(g) X ¢(g) nonsingular matrix.

Let R(g) = {(i,yr) |1 <i <t,H;N[g] # 0,1 <k <r} and we note that y, runs over rep-
resentatives of the conjugacy classes of elements of H; which fuse into [¢g] in G. Following

the notation used in Whitley [68] we denote M(g) by writing M(g) = (a{wk)), where

= | gCHGE";J )|wz(ylk) , with columns indexed by X (g) and rows indexed by R(g).

(i yk)
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Then the partial character table of G on the classes {x1, 2, , Te(g) } 18 given by

Ci(g) Mi(g)
Ca(g) Ma(g)

Ci(g) My(g)

where the Fischer-Clifford matrix M(g) is divided into blocks M;(g) with each block cor-
responding to an inertia group H; and Cj(g) is the partial character table of H; consisting
of the columns corresponding to the classes that fuse into [g] in G. We can also observe
that the number of irreducible characters of G is the sum of the numbers of irreducible

characters of the inertia factors H;’s.

5.2 Properties of Fischer-Clifford matrices

We shall discuss the properties which are useful in the computation of the Fischer—Clifford
matrices. We only provide a selection of proofs of these properties. At the end of the
section the properties of the Fischer—Clifford matrices will be summarized. Let K be a
group and A < Aut(K). Then by Brauer’s theorem A acts on the conjugacy classes of
elements of K and on the irreducible characters of K resulting in the same number of

orbits.

Lemma 5.2.1. Suppose we have the following matrix describing the above actions :

1=1 I l; I
S1 1 1 ... 1 ... 1

52 21 Qoo -+ Q25 -0 Ayt
Si a1 Qig o0 Qg ot Qg
St a1 Qg - Qgy - Ay
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where a1; =1 for j € {1,2,--- ,t}, [;’s are lengths of orbits of A on the conjugacy classes
of K, s;’s are the lengths of orbits of A on Irr(K) and a;; is the sum of s; irreducible
characters of K on the element z;, where x; is an element of the orbit of length [;. Then

the following relation holds for i, ¢/ € {1,2,--- ¢} : Z;zl a;;arjly = |K|s; 0

Proof: Let s; denote the sum of s; irreducible characters of K,

50 si(x;) = ai;. Then < s;, 87 >= g 51 Lsa(ay)se (25) = | K7 300_, Ly
By the orthogonality of irreducible characters,
< S;, 8y >= s;0;, and hence 2221 Liaijar; = |K|s; 0. O

Let z; € X(g) and define m; = [C:Cq(z;)]. The Fischer-Clifford matrix M(g) is par-
titioned row—wise into blocks, where each block corresponds to an inertia group. The
columns of M(g) are indexed by X(g) and for each z; € X(g), at the top of the columns
of M(g), we write |Cg(z;)| and at the bottom we write m;. The rows of M(g) are in-
dexed by R(g) and on the left of each row we write |Cz. (yx)|, where y;, fuses into [g] in G.
Then in general we can write M(g) with corresponding weights for rows and columns as

follows, where blocks corresponding to the inertia groups are separated by horizontal lines.
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[Ca(z)| [Cg(z2)l -+ [Calze(g))l

1 2 (9)
ICa(9)l 1,9) e 1)
1 2 c(9)
|CHy (1)l *(2,91) Y2y “2,91)
1 2 c(g)
[CHy (y2)] @ (2,y4) A(2,y9) " %(2,y2)
1 2 c(g)
1Cr (Ol | iy %G @(i,y1)
1 2 c(g)
|CH, (y2)] %(i,y2) %(iy2) “(i,y2)
1 2 (9)
[CH, (y1)] At y1) tyr) a?tifl)
1 2 c(9)
[Cr, (y2)] Ut o) Wty) (t,yq)
my mo Me(g)

From the theory of coset analysis for computing the conjugacy classes of elements of

G = N - G where N is abelian, we observe that

7N

my =[Gy Celeg)) =

The following result gives the orthogonality relation for M (g).

Proposition 5.2.2. (Column orthogonality) Let G = N - G, then

D Crl sy @iy = Gir |Cala))]

(ivyk)eR(g)

Proof: The partial character table of G at classes z, - - - , Te(g) 18 given by
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Ci(g) My(g)

By column orthogonality of the character table of G, we have

Cate)loy = > > (D au Bl Y afy Biy)

=1 gielrr(H;) yr:(iyr)ER(g) Yi: (69, )E€R(9)

=2 > (Zagi,yk)%&<yk>ﬁi<yk>+

i=1 ﬂiEITT(Hi) Yk

Z Z a{iyyk) a{;’yk) Bi(yr) Bi(vi,))

Yk Y EYk
! T -
- Z(Z T ) Vi) Z Bi(yr) Bi(yw) +
=1 Yk Bi€Irr(H;)
S A Uiy D Bilun) Bilu)
Yk Y 7Yk BicIrr(H,)
t 1
- Z(Z a%i,yk) a’%i,yk) |Oﬁ7 (yk)| =F O)
=1y

5/

- Z azi,yk) azi,yk) ’Cﬁi (yp)| . O
(i,yx)ER(g)

Theorem 5.2.3. a{lvg) =1foralj={1--,c(9)}

Proof: For y, ~ z; in G, we have |Cg(z;)| = |Cg,(y,)| . Thus we obtain that
j Cal(x;
ap g = S IC‘Jng((yj,zl)lwl (y1,) = >_;1 = 1. Hence the result. [

The properties of the Fischer—Clifford matrix M(g) can be summarized as follows :

(a) [X(g9)] = [R(g)]
@, § T _ ICa(g)
(b) 22521 M5 0 0 Oy = O, T (o V|
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(©) X tim)erte) i) Wi |Cr ()| = 050 |Ca(;)]
(d) M(g) is a square and nonsingular.

If N is elementary abelian, then we obtain the following additional properties of

M(g).
1 _ _Cc(9)]
(e> i) = ICx, ()]

(f) ’a%i,yk)‘ > ‘azi,yk)’
Remark 5.2.4. Let G = N:G be a split extension, where N is an elementary abelian
2-group. It was shown in section 5.2.2 [53] that the Fischer-Clifford matrix M(g) satisfies

the following properties:

J
(i’yk)

1. a (s, (mod 2) for all j > 2

2. )EN

( yYk

3. For any j-th column of M(g) for which j > 2, we obtain >, al, , =0

i)
Since a{i s € Z, we deduce that the Fischer-Clifford matrix M(g) in Remark 5.2.4
will have integer entries aj; ., such that a(zy ) = laj;, | and aj; = a%i7yk)(mod2). If
a%i’yk) = n for some n € N, then for 7 > 2 we have a%i ) € {£1,43,...,£n} if n is odd

and a{i w) € {0,42,£4,...,+n} if n is even. It is easy to see that for a fixed n there are

n + 1 possible values for each a{i ) with j > 2.

The following additional information obtained from [53] is sometimes useful in the com-

putations of the entries of M (g):

1. For x a character of any group H and h € H, we have |x(h)| < x(1g), where 1y is
the identity element of H.

2. For x a character of any group H and h a p—singular element of H, where p is a

prime, then we have x(h) = x(h?)modp.
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3. For any irreducible character xy of a group H and for h; € C; then d; = %(Z’))

is an algebraic integer, where C; is the ith conjugacy class of H and b; = |C;| =

[H:Cy(h;)]. It is clear if d; € Q, then d; € Z.
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Chapter 6

On a maximal subgroup of the

automorphism group Us(2):2 of Us(2)

The unitary simple group U = Ug(2) has outer automorphisms of order 2, 3 and 6 and
hence automorphism groups of the form U; = Us(2):2, Uy = Us(2):3 and Us = Us(2):53
exist for U (see the ATLAS [22]). The reader is referred to [66] for more information about
the construction of matrix representations for the covering and automorphism groups of
Us(2). Recently in [58], a 3-local identification is given for the group PSUs = Us(2) and
its automorphism groups PSUg(2):3, PSUs(2):2 and PSUs(2):S3. Also, we found in the
ATLAS that one of the 16 maximal subgroups of U is a split extension group, say A, of
the type 2%:L3(4) of index 891 and has order 10321920. The group A has automorphism
groups of the form A; = (2°:L3(4)):2, Ay = (2%:L3(4)):3 and A3 = (2°:L3(4)):S3 which
sit maximally inside the groups U;, Us and Us, respectively. The character table of A
is stored in the GAP Library [67], where as the character table of A; and A, are not
yet uploaded in GAP. Also, since the Fischer-Clifford matrices of A; and A, are still
not known, we will calculate the character tables of A; and A, by using the method of
Fischer-Clifford matrices. In this chapter the Fischer-Clifford matrices of A; and its as-
sociated character table will be constructed and similar computations will be carried out

for the group A, in Chapter 7. The method of coset-analysis as discussed in Chapter 3
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will be used in the computation of the conjugacy classes of elements in both of the groups

Ay and Ay. The Fischer-Clifford matrices and character table of A3 was determined in [59].

6.1 The group 2%:(L3(4):2)

In this section, using a suitable permutation representation of Ug(2):2, we identify our
group A; = (29:L3(4)):2 as the split extension 22 by L3(4):2 with the aid of GAP [67] and
MAGMA [15]. Then with the help of MAGMA we represent L3(4):2 as a matrix group
G of degree 9 over the Galois field GF(2). We found that G acts absolutely irreducibly
on its natural module 2° and hence the existence of a split extension S = 2%:(L3(4):2).
Then we create S as a subgroup of SLq(2) and show with the help of MAGMA that A4,

is indeed an isomorphic copy of S.

We construct U; = Ug(2):2 within GAP, using its smallest permutation representa-
tion of degree 672 found in Wilson’s online ATLAS [70]. Next, we use the GAP com-
mands "MS:= ConjugacyClassesMaximalSubgroups (U;)”, " Al:=MS[4]” and ”Size(A1)”
to represent A; = (2:(L3(4)):2 as a permutation group on 672 points and then use
this permutation representation to construct A; within MAGMA. Using the sequence of
MAGMA commands ”a,b:=ChiefSeries(A1)”, "N:= a[3]”, ”NormalSubgroups(A1)”, "Is-
Normal(Al,a[3])”, ”IsElemenataryAbelian(N)”, ” C:= Complements(A1,N)”, ” Order(C[1])”,
?C[1] meet N” and ”IsIsomorphic(C[1], L3(4):2)”, we verified that A; = (2°:L3(4)):2 =
29:(L3(4):2).

Having A; as a permutation group on 672 points, we use the MAGMA commands
"M:=GModule(A1,N)” and ”*M:Maximal” to represent L3(4):2 as a matrix group G of

degree 9 over the Galois field GF'(2). Thus we obtain the matrix group G =< ¢y, 9> >,
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where 0(g1) = 2 and o(g2) = 12. The generators g; and go of G are as follows:

g91=

L3(4):2 are given in terms of 9 x 9

The class representatives of each class [g]¢ of G

matrices over GF'(2) and in total there are 14 conjugacy classes of elements and are listed

in Table 6.1. The computation to determine the classes of G is carried out in MAGMA.

Table 6.1: The conjugacy classes of L3(4):2

1[9] L5 (4):2]

120

2240

2520

Class representative

l9]Lg(a):2

2A

3A

4B

[[9]Lg(a):2]

315

1260

Class representative

(9]L5(4):2

1A

2B

4A
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Table 6.1 (continue)

9] L5 (a):2]

8064

2880

5040

2880

Class representative

[9]n5(a):2

TA

8A

14B

I[9) L5 (a):2]

2520

6720

2880

2880

Class representative

(9] L5 (a):2

4C

6A

7B

14A

The MAGMA command ”IsAbsolutelylrreducible(G)” tells us that the action of the ma-

trix group G on its natural module 2° is absolutely irreducible. Thus a split extension of

the type 2%:(L3(4):2) does exist. Hence we can construct 27:(L3(4):2) as a subgroup S of

SL10(2) such that S

4, 0(52) =14

< 81,82 >, where o(s1)

< 81, 89,53 > and L3(4):2

2. The generators of the matrix group S of degree 10 over GF(2) are as

and o(s3)

follows:

62



sg=

s1=

s3=

We also generate 2% =< ny, ng, ns, na, ns, Ng, N7, Ng, Ng > as a matrix group of degree 10

over GF(2) within S and the generators are listed in Table 6.2.

Table 6.2: The generators of 2°

—

[eNoloNoloNoleNoNai S

—
[=lejojcloololoNollsl

P ———
[eBoloBoloBooloRol S

CO000O00C0OHO coocococococomm OCOOOO0OOO—HO
C0000O0OHOO ocooco0cOO~HOO COOOOCOOHOH
CO0OOO—-HO00O ocoo00O0OHOO~ QPOOOOOHOOO
00000 HO00O0Or coococomococon O0O0O0OOHOOOO
CO00O0H0O000O coocomocococon O00O0O—-0O0OOOH
OO0 —-0000O~ cooMOOOOCON OCOHOOOOOH
COHO0O00000 comocoocococococo OOHOOOOOOO
OH0000000r cHoCOCOOCOCON OHOOOOOOOO
HO0O0O0O000O0O- Hooococoococom HOOOOOOOOO
N~

I 1 I

g 3 £
I E———
bocococococococond O0O0O00O0O0O0OH OOO0OOO0OOOOOH
Ccocmcocococoro O0O0O00O0O0O0O—-HO 000000000
CcoccococorMon OO0O0O000O0O~HOO 0000000 —HOO
OC0O000O0O-HOO0OO SCoococooOHOOH [=NeNeNoloolo ol [=}
cCococomococoo O0O0O0O0OHOOOH ©OO0OO0OO0OOHOOOH
Cocomocoococo O0O0O0OHO0O00O 0O0O0OO0O—H0O0O0OH
CcoomocOocoocoo OO0OO0OHOOO0O00O ©O0O0O-HOOOOOH
OO0~ 0O00C0CO0OCO SCOHOOOOOO - (=N oReloloolo] [=}
cHOoOCOCOCOcocoo OHOOO0O0O0O0OH OHOOOOOOOO
CcocOCcOocOocCcOON HOOOOOOOO- HOOOOOOOOO
S

Il Il 1

: :
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Table 6.2 (continue)

1 0 0 0 0O O O O 0 O 1 0 0 0 0 0 0 0 0 O
01 0 0 0 0 O 0 0 O 01 0 0 0 0 O 0 0 O
00 1.0 0 0 0 0 0 O 00 1 0 0 0 O 0 0 O
00 0 1 0 0 O 0 0 O 00 0 1 0 0 O 0 0 O

moe| 00 0 0 1 0 0 0 0 O mee| 00 0 0 1 0 0 0 0 ©

7~ o o o o 0o 1 0 0 0 O 8~ o o o o 0o 1 0 0 0 O
00 0 00O 01 0 0 0 00 0 0 0O 0O 1 0 0 O
00 0 0 0O 00O 1 0 0 00 0 0 0O 0O 0O 1 0 O
00 0 0O 0O 0 0O 0 1 0 00 0 0 0 0O 0O 0 1 O
11 1 1 1 1 1 0 1 1 o0 0o 0o 1 1 1 1 0 1
1 0 0 0 0 0 0 0 0 O
01 0 0 0 0 0 0 O O
00 1. 0 0 0 O 0 0 O
00 0 1 0 0 O 0 0 O
00 0 0 1 0 0 0 0 O

ng=| 0 0 0 0O O 1 O 0 0 O
00 0 0 0 0 1 0 0 O
00 0 0 0 0 0 1 0 O
00 0 0 0 0 O 0 1 O
00 0 1 0 0 O 1 0 1

Since we can represent S and A; as a matrix and permutation group, respectively, we
use the MAGMA command ”IsIsomorphic (S, A;) to confirm that S = A;. Hence we can
regard S = (2%:L3(4)):2 as the split extension S = 29:(L3(4):2).

6.2 The conjugacy classes of G = 2%(L3(4):2)

In this section, the conjugacy classes of G are computed using the technique of coset

analysis as discussed in Chapter 3.

Throughout the remainder of this chapter, let G = 2°:(L3(4):2) be a split extension of
N = 29 by L3(4):2, where N is the vector space Vy(2) of dimension 9 over GF(2) on which
the linear group G acts. Since G =< ¢y, go > is represented as a matrix group, we used the
MAGMA commands ”O:= Orbits(G)”, "#0”, "#0I[1]", "#O0]2]”,#0I3]” and "#O[4]”
to compute the orbit lengths of the action of G on N. We obtain 4 orbits of lengths 1,
21, 210 and 280 and using the MAGMA commands "P1:= Stabilizer(G,0[1,1])”, "P2:=
Stabilizer(G,0]2,1])”, "P3:= Stabilizer(G,0[3,1])” and "P4:= Stabilizer(G,0[4,1])”, we

are able to compute the corresponding point stabilizers P;, ¢« = 1,2,3,4, which are
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subgroups of G. With the aid of MAGMA and also checking the indices of the maxi-
mal subgroups of G in the ATLAS, the structures of the stabilizers P; are identified as
Py = L3(4):2, P, = 2%:55, P3 = 2%:(2x S3) and Py = 3%:(Qs.2), where P, and P; are maxi-
mal subgroups of P; . We should note here that the group L3(4):2 has two non-conjugate
isomorphic maximal subgroups L; = P, and L, having the same structure 2*:S5. The
stabilizer P sits maximally in L,. Alternatively, we can use [21] to identify the structures
of the groups P;. Since the action of G on N does not fix any nontrivial subspace of 29,

we have that 2° is an irreducible module for G. We can readily verify this fact by using

the MAGMA command "IsIrreducible(G)”.

Let x(L3(4):2]2%) be the permutation character of L3(4):2 on the classes of 2°. Then,
from methods that were developed by Mpono [53], we obtain that x(Ls(4):2[2°) = I f;ll
HIPHIR TR = 4 x 1a + 4 x 20a + 2 x 35a + 45a + 45b + 2 x 64a + 2 x T0a,
where [ 1]3311, I 11;;1, 1 113331 and [ 1]3341 are the identity characters of the point stabilizers P;, ¢ =
1,2,3,4, induced to GG. Note that the identity characters [ }f’; are identified with the
permutation characters y(Ls(4):2|P;) of L3(4):2 acting on the classes of the point stabi-
lizers P;. We found that ]113311 = x(L3(4):3| A1) = la, Igf = x(L3(4):2|P) = la + 20aq,
I} = x(L3(4):2|Ps) = la + 2 x 20a + 35a + 64a + 70a and I;' = x(L3(4):3|P) =
la 4 20a + 35a + 45a + 45b + 64a + 70a. The permutation characters x(L3(4):2|P;) are
written in terms of the ordinary irreducible characters of GG. Since we have the generators
g1 and g for GG, we compute the character tables of G and the P,’s directly in MAGMA
and use these tables together with the fusion maps of the stabilizers into G , to compute
x(L3(4):2|P;) and x(L3(4):2|2%). The values of x(L3(4):2]2%) on the different classes of G
determine the number & of fixed points of each g € G in 2°. The values of k are listed in

Table 6.3.
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Table 6.3: The values of x(L3(4):2]2%) on the different classes of L3(4):2

[h]L3(4):2 1A 2A 2B 3A 4A 4B 4C
X(L3(4):3|P1) 1 1 1 1 1 1 1
X(L3(4):3| P2) 21 7 5 3 1 1 3
x(L3(4):3|P3) 210 28 18 3 2 2 4
x(L3(4):3|Py) 280 28 8 1 4 4 0

k 512 64 32 8 8 8 8

[Mpg(a):3 54 6A TA 7B 8A 14A 14B

X(L3(4):3|P1)

x(L3(4):3|P2)

X(L3(4):3|P3)

X(L3(4):3| Py)
k

vw|lo o~ =~
P R
=l © © +
~|lo o o =~
alo o = =
~|lo o o =~
—~|lo o o =~

The values of k£ enabled us to determine the number f; of orbits @;’s, 1 < ¢ < k, which
have fused together under the action of Cg(g), for each class representative g € G, to form
one orbit Ay. Mpono in [53] used the technique of coset analysis to develop Programmes
A and B ( see Appendix A) in CAYLEY [20] for the computation of the conjucacy classes
of a split extension G = N:G, where N is an elementary abelian p - group for a prime
p on which a linear group G acts. Ali [1] adapted Programmes A and B to be used in
MAGMA. Programme A computes the values of the fis, whereas Programme B deter-
mines the order of the elements for each conjugacy class [z] in G. We obtain that G has
exactly 49 conjugacy classes. See Section 3.3 of Chapter 3 and Programmes A and B for
information about the parameters d; and w. The formula |Cx(z)| = §|Cg(g)| obtained
from Chapter 3 is used to calculate the centralizer order of each class [z] of G. All the

information involving the conjugacy classes of G are listed in Table 6.4.
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29:(L3(4):2)

Table 6.4: The conjugacy classes of elements of G
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6.3 The inertia groups of G = 2%:(L3(4):2)

Since G has four orbits on NN, then by Brauer’s Theorem [29] G acts on Irr(N) with the
same number of orbits. The lengths of the 4 orbits will be 1 ,r, s and t where r + s + t =
511, with corresponding point stabilizers Hy, Hy, H3 and H, as subgroups of GG such that
|G : Hi] =1, [G: Hy] =r, |G : H3]= s and [G : Hy] = t. We generate G as a permutation
group on a set of cardinality 672 within MAGMA. Then the maximal and submaximal
subgroups of G are computed. Now, considering the indices of these subgroups in G,
the number of the classes of these subgroups, and also the fact that G has 49 conjugacy
classes, we deduce that the action of G on Irr(N) has orbits of lengths 1, r = 21, s = 210
and t = 280 with respective point stabilizers H; = L3(4):2, Hy = 2*:S5, Hy = 2%:(2 x S3)
and Hy = 3%:Qg:2. Thus we obtain four inertia groups H; = 2%:H;, i € {1,2,3,4}, in
29:(L3(4):2). Alternatively, we can also determine the inertia factor groups if we let T be
the matrix group of dimension 9 over GF(2) formed by the transpose of the generators
of G. Then the action of T on the classes of N = 2 is the equivalent of G acting on
Irr(N). Then with the help of MAGMA or GAP, we can easily verify that the action
of T on N has orbits of lengths 1, 21, 210 and 280 with corresponding point stabilizers
T, 2455, 2%:(2 x S3) and 3%:Qs:2. The structures of Hy and H, have been identified by
checking the indices of the maximal subgroups of L3(4):2 = L3(4).25 in the ATLAS. The
structure of Hs was determined by direct computations in MAGMA. The groups H,, Hs

and H, are constructed from elements within G and the generators are as follows:

o Hy =(aj,as) , a € 3A, ay € 6A where

y 2=

Q
i
O~ MHOORFOO
[=NeoleNeNel el Nl
HFOOOOrOOO
HOOOOO+rOO
OO OOMOMM
HR,OROROOO
(=N NeNel
HOHOFROROO
[=Nelololelol e Ne]
OO0 OHMMOF
[=NeoleNoNeNoN i o]
HFOOOOrROFO
HOOOOO0OOKO
[=NeoleNeNeNeRN
FRERRPROOOR
HFHOOHOKROO
OFRFROORKRRFO
cooococoroOO
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[ ] H3 :</8]_,/32> 3 61 € 40, 62 & 6A Where

1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 1 0 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1
0 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1
0 0 1 1 1 1 0 1 1 0 1 0 0 1 0 0 0 1
= 1 o 0o 1 1 1 0 0 0 JB2=| 1 0 0 1 1 1 0 0 O
1 0 1 0 0 0 1 1 1 1 0 1 0 0 0 1 1 1
1 0 0 1 0 1 1 0 0 0 0 1 1 0 1 0 1 1
1 1 0 1 0 1 1 0 1 1 1 0 1 0 1 1 0 1
1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0
o Hy =(m1,7%) , 71 € 24, v, € 8A where
0 0 0 0 1 0 1 0 0 1 1 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1
1 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 0 0
1 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0
Y11= 1 0 0 0 0 0 1 0 0 , Y2= 0 0 0 0 0 1 0 1 1
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0
0 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1

For the purpose of constructing the character table of G, we use the above generators of

the H;’s to compute their character tables and these tables are available in the Appendix

A.

6.4 The fusion of Hy, H3 and H; into G

We obtain the fusions of the inertia factors Hy, Hs and H, into G by using direct matrix
conjugation in GG and their permutation characters in G of degrees 21, 210 and 280,
respectively. MAGMA was used for the various computations. The fusion maps of Hs,

Hj3 and Hy into G are shown in Tables 6.5, 6.6 and 6.7.

Table 6.5: The fusion of H, into L3(4):2

[MH, —  ldlpsa):2 [MH, —  ldlps):2 (Muy, =  ldlria):2 [Mu, =  ldlnsa):2
1A 1A 2C 2B 4B 4B 5A 5A
2A 2B 3A 3A 4C 4C 6A 6A
2B 2A 4A 4A 4D 4C 8A 8A
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Table 6.6: The fusion of Hj into L3(4):2

[MHg = ldlpsa):2 [Mug =  ldlps):2 (Mug = ldlnia):2 [MHg =  ldlpaa):2
1A 1A 2D 2B 4A ac 4E 4B
24 2B 2F 2B 4B ac 6A 6A
2B 24 2F 2A 4c 4A

2c 2B 3A 3A 4D 4c

Table 6.7: The fusion of H, into L3(4):2

Ma, =  ldlpg):2 Ma, —  ldlg@):2 (M, = ldlpg):2 May, = ldlng@):2
1A 14 2B 2A 4B 4B 6B 6B
24 2B 3A 3A 4A 4A

6.5 The Fischer-Clifford Matrices of 2%:(L3(4):2)

Having obtained the fusions of the inertia factors into L3(4):2 and the conjugacy classes
of L3(4):2 displayed in the format of Table 6.4, we can proceed to use the theory and
properties discussed in Chapter 5 to help us in the construction of the Fischer-Clifford

matrices of 2°:(L3(4):2). Note that all the relations hold since 2 is an elementary abelian

group.

For example, consider the conjugacy class 2A of L3(4):2. Then we obtain that M (2A)

has the following form with corresponding weights attached to the rows and columns:

|C&@2D)|  |CH

2E)| |C74A)| |CgAB)| [Ca(4C)]

0 (24)] a f K » u
Cir, (2B)] b g ! 0 v

M(2A) = |CH, (2B)] c h m T w
[CHy (2F)] d % n s x

|Cr, (2B)] . i 0 ¢ y

mi1 m2 m3 mq ms
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21504 3072 3072 1024 768

336 a f k P u

48 b g l q v

M(2A) = 48 c h m T w
16 d i n s x

12 e 7 o t Y

8 56 56 168 224

Fischer-Clifford matrix M (g) (see Chapter 5),

By Theorem 5.2.3 and property (e ) f the
=c=17,d=21and e = 28. Thus we get the following

we havea=f=k=p=u=1,b
form

21504 3072 3072 1024 768

336 1 1 1 1 1

48 7 g ! q v

M(2A) = 48 7 h m E w
16 21 @ n s x

12 28 J o t Yy

8 56 56 168 224

By the orthogonality relations for columns and rows (see properties (b) and (¢) of Fischer-

Clifford matrices in Chapter 5 ), we obtain 28 equations and are listed as follows:

—_

. 12¢7 4+ 12h% + 44% + 35% = 684.
2. 1212 + 12m? + 4n? + 30* = 684.
3. 12¢% + 12r% + 452 + 312 = 172.
4. 1202 4+ 12w? + 422 + 3y = 108.
5. 12gl + 12hm + 4ni 4 350 = —84.
6. 12gq + 12hr + 4si + 35t = —84.
7. 12gv + 12hw + 4zi + 3jy = —84.
8. 12lq + 12mr + 4ns + 3ot = —84.
9. 12lv 4+ 12mw + 4nz + 3oy = —84.
10. 12qv + 12rw + 4sx + 3yt = —84.
11. g+h+i1+j=-1
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12.l+4m+n+o=—1.

13. g+r+s+t=—1.

4. v+w+zrz+y=-1.

15. hi 4+ mn + 3sr + 4dzw = —21.
16. gt + In + 3sq + 4ov = —21.
17. i+ n+3s+4x = 3.

18. gh +ml + 3qr + 4wv = —T7.
19. h+m+3r+4w = —1.

20. g+ 14+ 3q+4v=—1.

21. 15 +on + 3st + dxy = —84.
22. jh 4+ om + 3rt + dyw = —28.
23. jg+ ol + 3qt + 4yv = —28.
24. j+ o0+ 3t +4y = —4.

25. j2 4 0% + 3t? + 4y* = 144.
26. i* + n® + 3s* + 4a® = 129.
27. h* +m? + 3r? 4 4w?® = 57.

28. g% + 12 + 3¢* + 4r* = 57.

Solving these equations and with the help of the remaining properties discussed in Chap-
ter 5, we obtain the desired Fischer-Clifford matrix M (2A) of G given below:

M(2A)= 7 7 -1 -1 -1



For each class representative g € L3(4):2, we construct a Fischer-Clifford matrix M(g).

These are listed in Table 6.8 .

Table 6.8: The Fischer-Clifford Matrices of 2%:(L3(4):2)
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6.6 Character Table of 2°:(L3(4):2)

Having obtained the Fischer-Clifford matrices, the fusion maps of the H;’s into L3(4):2,
and the character tables of the inertia factors H;, we construct the character table of
29:(L3(4):2) following the methodology discussed in Chapter 5. For example, we calculate
the partial character table of 2%:(L3(4):2) corresponding to the coset of 24 € L3(4):2.
From the Fischer-Clifford matrix M (2A) we obtain that

M@eA=(1 111 1), M2(2A):(7 1 -5 3 _1),

707 -1 -1 -1
M;3(24)= and My(2A) = (28 —4 —4 —44).
21 =3 9 1 -3

Let C1(24), C3(2A), C3(2A) and C4(2A) be the partial character tables of the inertia
factors for the classes which fuse to 2A € L3(4):2. Then the partial character table of
29:(L3(4):2) on the classes {2D,2FE,4A,4B,4C} is given by:

1 1 1 1 1 1

-1 -1 -1 —1 -1 -1
—6 6 -6 -6 -6 -6
6 6 6 6 6 6
7 7 -7 -7 -7 7
7 7 7 7 7 7
C1(24)M; (24)=| 3 (v 111 1) B
-3 3 -3 -3 -3 -3
3 3 3 3 3 3
3 3 3 3 3 3
8 8 8 8 8 8
—8 -8 -8 -8 -8 —8
0 0 0 0 0 0
0 0 0 0 0 0
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-1 —7 1 5 -3 1

2 14 -2 —10 6 -2

-2 —14 2 10 -6 2

-1 -7 1 5 -3 1

Co@A)Ma(24)=| ! (7 1 5 3 1) = 7 -1 -5 3 -

0 ) o 0 o0

=3 —21 3 15 -9 3

=3 —21 3 15 -9 3

3 21 -3 -15 9 -3

3 21 -3 —15 9 -3

0 0 0 0 0 0
1 1 28 4 8 0 -4
-1 -1 —28 -4 -8 0 4
1 -1 —14 10 —10 -2 2
-1 14 —10 10 2 -2
-2 0 —14 —14 2 2 2
2 0 14 14 -2 —2 _—39
C3(24)M3(24)= S ( 7 T —lemgl -1 ) _ 0 24 —12 —4 0
-3 -1 AR e T —42 -18 -6 2 6
31 42 18 6 -2 -6
-3 1 0 —24 12 0
) 0 0 0 0
) 0 0 0 0
0 -2 —42 6 —18 -2 6
0 2 42 -6 18 2 —6
1 28 —4 -4 -4 4
-1 —28 4 4 4 -4
-1 —28 4 4 4 -4
1 28 -4 -4 -4 4
CaaMy2)=| o [( 28 -4 -4 -4 4)= o o o o o
0 o 0o 0 0 0
0 o 0 o0 0 0
-2 -5%6 8 8 8 -8
2 56 -8 -8 —8 -8

Similarly, the partial character table associated with each coset Ng is computed. If nec-
essary, we will restrict some characters of Irr(Us(2):2) to G, to ensure that each partial

character table corresponding to a coset Ng, will give rise to the desired set Irr(G).
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The character table of G will be partitioned row-wise into 4 blocks Ay, Ay, Az and Ay
where each block corresponds to an inertia group H; = 2°:H;. Therefore Irr(2%:(L3(4):2)) =
Uiy A, where Ay = {x]1 < j < 14}, Ay = {x;]15 < j < 26}, Ay = {x[27 < j < 40}
and Ay = {x;[41 < j <49}. The character table of 2°:(L3(4):2) is shown in Table 6.9.
The consistency and accuracy of the character table of 2%:(L3(4):2) have been tested by
using the GAP codes labelled as Programme C (see Appendix A).

Table 6.9: The Character table of 27:(L3(4):2)

1A 2A 2B

1A 2A 2B 2C | 2D 2E 4A 4B 4C | 2F 2G 4D
X1 1 1 1 1 1 1 1 1 1 1 1 1
X2 1 1 1 1 -1 -1 -1 -1 -1 1 1 1
X3 20 20 20 20 -6 -6 -6 -6 -6 4 4 4
X4 20 20 20 20 6 6 6 6 6 4 4 4
X5 35 35 35 35 -7 -7 -7 -7 -7 3 3 3
X6 35 35 35 35 7 7 7 7 7 3 3 3
X7 45 45 45 45 -3 -3 -3 -3 -3 -3 -3 -3
X8 45 45 45 45 -3 -3 -3 -3 -3 -3 -3 -3
X9 45 45 45 45 3 3 3 3 3 -3 -3 -3
X10 45 45 45 45 3 3 3 3 3 -3 -3 -3
X11 64 64 64 64 8 8 8 8 8 0 0 0
X12 64 64 64 64 -8 L8 -8 -8 -8 0 0 0
X13 70 70 70 70 0 0 0 0 0 6 6 6
X14 126 126 126 126 0 0 0 0 0 -2 -2 -2
X15 21 11 5 -3 7 Lhl -5 3 -1 5 -3 5
X16 21 11 5 -3 o, 1 5 13 1 5 -3 5
x17 84 44 ogddlj3 14 LoL_Li6 6 -2 4 4 4
X18 84 44 20 -12 | -14 2 10 -6 2 4 4 4
X19 105 -55 25  -15 s | 5 -3 1 9 1 9
X20 105 55 25 -15 7 & -5 3 -1 9 1 9
X21 126 -66 30  -18 0 0 0 0 0 ) 14 )
X22 315  -165 75 .45 | -21 3 15 -9 3 11 -13 11
X23 315  -165 75 45 | -21 3 15 -9 3 -5 3 -5
X24 315  -165 75 45 | 21 -3 -15 9 -3 11 -13 11
X25 315  -165 75 -45 | 21 -3 -15 9 -3 -5 3 -5
X26 630 -330 150  -90 0 0 0 0 0| -10 6 -10
X27 210 50 2 6 | 28 4 8 0 4 18 10 2
X28 210 50 2 -6 | -28 -4 -8 0 4 18 10 2
X29 210 50 2 -6 | -14 10 -10 -2 2 2 -6 18
X30 210 50 2 -6 14 -10 10 2 -2 2 -6 18
X31 420 100 4 12 | -14 -14 2 2 2 | 20 4 20
X32 420 100 4 12 14 14 -2 -2 2 | 20 4 20
X33 630 150 6  -18 0 24 -12 -4 0| -10 -2 6
X34 630 150 6 -18 | -42  -18 -6 2 6 6 14 -10
X35 630 150 6 -18 | 42 18 6 -2 -6 6 14 -10
X36 630 150 6 -18 0 -24 12 4 o | -10 -2 6
x37 | 1260 300 12 -36 0 0 0 0 0 | -20 -4 12
x38 | 1260 300 12 -36 0 0 0 0 0 12 28 -20
X390 | 1260 300 12 -36 | -42 6 -18 -2 6 -4 20 -4
x40 | 1260 300 12 -36 | 42 -6 18 2 -6 4 =20 -4
a1 280 40 -8 8 | 28 4 4 4 4 8 -8 -8
X42 280 -40 -8 8 | -28 4 4 4 -4 8 -8 -8
X43 280 -40 -8 8 | -28 4 4 4 -4 8 -8 -8
X44 280 -40 -8 8 | 28 -4 -4 -4 4 8 -8 -8
X45 560 -80  -16 16 0 0 0 0 0 16 -16 -16
X46 560 -80  -16 16 0 0 0 0 0| -16 16 16
X47 560 -80  -16 16 0 0 0 0 0| -16 16 16
X48 | 2240 -320  -64 64 | -56 8 8 8 -8 0 0 0
X490 | 2240 -320 -64 64 | 56 -8 -8 -8 8 0 0 0
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Table 6.9 (continue)

4A
8A

8B

4K

4J

3A
6B

6C

6A

3A

2B
4G

41

4H

4F

4E

-10

14
-13

-13

10
10

10
10
10
10
-12

14

14
28

-20
-20

16
-16
-16

X1

X2

X3

X4

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

X16

X17

X18

X19

X20

X21

X22

X23

X24

X25

X26

X27

X28

X29

X30

X31

X32

X33

X34

X35

X36

X37

X38

X39

X40

X41

X42

X43

X44

X45

X46

X47

X48

X49

7



Table 6.9 (continue)

5A
10A

5A

4C
40

8H

8G

4E 8F

4N

4B

4M 8C 8D

4L

X2

X3

X4

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

X16

X17

X18

X19

X20

X21

X22

X23

X24

X25

X26

X27

X28

X29

X30

X31

X32

X33

X34

X36

X37

X38

X39

X40

X41

X42

X43

X44

X45

X46

X47

X48

X49
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Table 6.9 (continue)

14B

14B

14A

14A

8A
16 A

16 B

8J

81

0

7B
7B

TA
TA

6A
12A

12B

6E

6D

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

X16

X17

X18

X19

X20

X21

X22

X23

X24

X25

X26

X27

X28

X29

X30

X31

X32

X33

X34

X35

X36

X37

X38

X39

X40

X41

X42

X43

X44

X45

X46

X47

X48

X49

E(M3+E(7)°+E(M), B=E(T)+E(7)*+E(7)* and C = 2% E(8)+2x E(8)>.
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The information about the conjugacy classes found in Table 6.4 can be used to compute
the power maps for the elements of G and then with the aid of Programme C (see Appendix
A) we can verify that we obtained the unique p-power maps listed in Table 6.10 for our

Table 6.9.

Table 6.10: The power maps of the elements of 2°:(L3(4):2)

e g 2 38 5 7 |lde lelg 2 3 5 T
1A 1A 2A 2D 1A
2A 1A 2FE 1A
2B 1A 4A 2B
2C 1A 4B 2B
4C 2B
2B 2F 1A 3A 3A 1A
2G 1A 6A 3A 2C
4D 2A 6B 3A 2A
4F 2A 6C 3A 2B
4F 2B
4G 2B
4H 2B
41 2B
4A 4J 2F 4B 4L 2F
4K 2F 4M 2F
8A 4FE 8C 4F
8B 4F 8D 41
4C 4N 2F 5A 5A 1A
40 2F 10A 5A 2A
8E 4F
8F 4F
8G 4D
8H 4F
6A 6D 3A 2D TA TA 1A
6FE 3A 2E
12A 6C 4C
12B 6C 4A
7B 7B 1A 8A 81 4J
8J 4J
16 A 8A
16B 8A
14A 14A TA 2D 14B 14B B 2D

6.7 The Fusion of 2°:(L3(4):2) into Ug(2):2

Since G is a maximal subgroup of Us(2):2 of index 891, then the action of Ug(2):2
on the cosets of G gives rise to a permutation character x(Us(2):2|G) of degree 891.
We deduce from the character table of Ug(2):2 found in GAP that y(Us(2):2|G) =
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la + 22a + 252a + 616a, where la, 22a, 252a and 616a are irreducible characters of
Us(2):2 of degrees 1, 22, 252 and 616, respectively.

We are able to obtain the partial fusion of G into Us(2):2, using the information pro-
vided by the values of x(Us(2):2|G) on the classes of G and the power maps of G and
Us(2):2. Then, the technique of set intersections for characters (see [45],[46],[48] and [53]
) is applied to restrict some ordinary irreducible characters of Ug(2):2 of small degrees to

G, to determine fully the fusion of the classes of G into Us(2):2.

Let ¢ be the character afforded by the regular representation of L3(4):2. We obtain that
¢ = Sl a;P;, where ®; € Irr(L3(4):2) and o; = deg(®;). Then ( can be regarded as a
character of 2°:(L3(4):2) which contains 2° in its kernel such that

|Ly(ay2|nvitig e 2°
() =

0 otherwise .

If ¢ is a character of Ug(2):2 than we have that

<(, 0 >a= ! ‘{C(lA)qb(lA) + 21¢(2A)p(2A) 4+ 210¢(2B)¢(2B) + 280¢(2C)p(2C) }

129:(L3(4):2)

1
= m{wg(@.m@(M) + 21¢(24) + 2106(2B) + 2804(2C))}
= 5—12{¢(1A) + 216(2A) + 2104(2B) + 280¢(2C)}

- <¢29,129 > .

Here 14 is the identity character of 2% and ¢ is the restriction of ¢ to 2°. We obtain
that

¢29 = a101 + &292 + (1393 + a494,

where a; € NU{0} and 6; are the sums of the irreducible characters of 2° which are in the
same orbit under the action of L3(4):2 on Irr(2%), for i € {1,2,3,4}. Let ¢; € Irr(27)
where j € {1,2,3,...,49}. Then we obtain that
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91 = Y1 s deg(@l) = 1

22
Oh=> @, deg(fy) = 21

j=2
232
63 = Z Pj deg(@;g) = 210
j=23
512
04 = Z PLj deg(94) = 280.
=233
Hence
232 512
P20 = a1 +GQZ% +G3Z% +ay Z ©js
=23 j=233
and therefore
(o9, o) = af + 21a3 + 210a3 + 280a3
= —{(b(lA) (1A) + 2190(2A)p(2A) 4 2106(2B)d(2B) + 2800(2C)p(2C) }

012

where a1= < (, ¢ >99.(14(2):2)-

We apply the above results to some of the irreducible characters of Ug(2):2 of small
degrees, which in this case are ¢ = 22a, ¢ = 22b, ¢35 = 231a, ¢4 = 231D, ¢5 = 440a
and ¢g = 4400 . Their respective degrees are 22, 22, 231, 231, 440 and 440. For ¢, we

calculate that

< C, ¢1 >29:(L3(4):2) {22 + 21( 10) + 210(6) =+ 280(—2)} =1.

512

Now ay + 21las + 210a3 + 280ay = 22 , since degp; = 22. Since a; = 1 , we must have
that ap = 1, a3 =ay = 0 . Note that 2%:(L3(4):2) does not have irreducible characters of
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degree 22. We obtain that (¢1)9:(154)2 = X1 + X15 if the partial fusion of 29:(L3(4):2)

into Ug(2):2 is taken into consideration. Similarly, for ¢3 and ¢5 we calculate that

1
< G, P3 >99:(Ly(4):2)= 53{231 +21(39) +210(7) +280(—=9)} =0

and

1

=15 {440 + 21(120) + 210(24) + 280(8)} = 20 .

< C, 05 >99:(Ly(4):2)=

Since the respective degrees of ¢3 and ¢5 are 231 and 440, we have to solve the equations
(i) a1 + 2lay + 210a3 + 280ay = 231 and (ii) a; + 2lag + 210a3 + 280a, = 440, sepa-
rately. If we are taking into account that the set Irr(G) (See Table 6.9) does not have
any irreducible characters of degrees 231 and 440 and also that < ¢, ¢3 >29.(7,(4):2)= 0 and
< (, P5 >99.(Ly(a)2)= 20, we deduce that the two sets of values {a; = a4 = 0,a; = ag = 1}
and {a; = 20,as = 10,a3 = 1,a4 = 0} are the only possibilities that satisfy equation (i)
and (ii) respectively, hence we obtained that (¢3)e9.(1,(4):2) = X16 + X7 and (@5)99.(L,(a):2)
= x4 + X32. Similar computations were carried out to restrict the characters ¢o, ¢4

and ¢6 to @ and we found that (¢2)29:(L3(4):2) — X2 . X16; (¢4)29:(L3(4):2) = X15 + X28 and
(06)29:(L3(4):2)= X3 + X31-

By making use of the values of ¢1, ¢, ¢3, ¢4, ¢5 and ¢ on the classes of Ug(2):2 and

the values of (¢1)29:(L3(4):2)7 (¢2)29:(L3(4):2)7 (¢3)29:(L3(4):2)7 (¢4)29:(L3(4):2), <¢5)29:(L3(4):2) and
(§6)29:(L4(4):2) On the classes of 2%:(L3(4):2) together with the partial fusion, the complete
fusion map of 2%:(L3(4):2) into Ug(2):2 is given in the Table 6.11.
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Table 6.11: The fusion of 2%:(L3(4):2) into Ug(2):2

oz [#lo a2y —  Bluge):2 9z [y aayey —  Wluge):2
1A 1A 1A 2A 2D 2D
2A 2A 2F 2F
2B 2B 4A 4G
2C 2C 4B 4H
4C 41
2B 2F 2B 3A 3A 3C
2G 2C 6A 6G
4D 4A 6B 6E
4FE 4B 6C 6F
4F 4C
4G 4F
4H 4F
41 4D
4A 4J 4C 4B 4L 4D
4K 4F 4M 4F
8A 8A 8C 8A
8B 8B 8D 8C
4B 4N 4H 5A 5A 5A
40 41 10A 10A
8E 8F
8F 8G
8G 8D
8H 8E
6A 6D 6K TA TA TA
6FE 6L
12A 12K
12B 12J
7B 7B TA 8A 81 8E
8J 8F
16A 16A
16B 16 B
14A 14A 14A 14B 14B 14A
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Chapter 7

On a maximal subgroup of the

automorphism group Us(2):3 of Us(2)

As we mentioned in Chapter 6 that Ay = (2%:L3(4)):3 is a maximal subgroup of the
automorphism group of the unitary group Ug(2). In this chapter, it will be shown with
the aid of GAP and MAGMA that A, is a split extension of 2° by L3(4):3. Firstly, the
group A, will be constructed as a permutation group of degree 693 within Us(2):3, and
secondly we show that A, also exists as a subgroup of SL10(2). Having obtained A, as
permutation group on 672 points, we use a similar method as in Section 6.1 to represent
Aj as a split extension G = 2°:(L3(4):3), where we regard 2° as the vector space Vy(2),
where upon L3(4):3 acts irreducibly as a matrix group of dimension 9 over Galois field
GF(2). Then the technique of coset analysis will be used (as in the case of 2°:(L3(4):2))
to compute the conjugacy classes of G. The point stabilizers for the action of L3(4):3
on Irr(2%) and as well their fusion maps into L3(4):3 will be determined. Next, we will
compute the Fischer-Clifford matrices of G’ and then use these matrices and all the rel-
evant information which is needed to construct the character table of G = A,. Lastly,
the fusion of the classes of G into Us(2):3 will be computed. If details or explanations of

computations are left out, the reader is referred to Chapter 6 for clarification.
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7.1 The group 2°:(L3(4):3)

In this section, we identify our group Ay = (2%:L3(4)):3 as the split extension 2 by L3(4):3
with the aid of GAP, MAGMA and the Wilson’s online ATLAS. Then with the help of
MAGMA we represent L3(4):3 as a matrix group G of dimension 9 over the Galois field
GF(2). Since G acts absolutely irreducibly on its natural module 2%, we construct an

isomorphic copy of Ay, say S, as a subgroup of SLi(2).

Using the smallest permutation representation of degree 693 of Ug(2):S5 found in Wil-
son’s online ATLAS,; we construct a copy of Ug(2):3 within Us(2):S3 with the help of GAP.
Having obtained a permutation representation of Us(2):3 we generate Ay = (2:L3(4)):3
within Ug(2):3. Using appropriate GAP and MAGMA commands, as explained in Sec-
tion 6.1, it is verified that A, is a split extension of 2° by L3(4):3 and also we manage
to represent L3(4):3 as a matrix group of dimension 9 over the Galois field GF'(2). The
generators g, and go obtained to represent G = L3(4):3 as a matrix group of dimension 9

over the Galois field GF'(2), are as follows:

g1= 92=

O R O 0 O R R O R
H O K = O O = = O
O r O R+~ OO O O
©C 0O O KR R K K R O
T ==}
O R 0O 0 R B O R R
- K O O O O O &~
© 0O 0o 0~ O O O K
H O O R R R O O O

©C O O O r ~ O &
O 0000 K O R R
o o 0o 0o o o~ o o
O O = 0O O KR R L O
O 0o~ O~ O KR O O
O 0O 0O R O K O R R
O O = OO0 KR O R R
O OO0+~ O O O r
[ =T N S~ S SO U

where 0(g;) = 2 and o(gy) = 12. We obtained 22 conjugacy classes for L3(4):3 =<
g1, g2 > and they are listed in Table 7.1.
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Table 7.1: The conjugacy classes of L3(4):3

9] (a):3l

315

336

960

3780

4032

5040

Class representative

[9]L5(a):3

2A

3B

3D

4A

5B

6B

[[9)L5(a):3]

960

2240

4032

5040

Class representative

l9lL5(a):3

1A

3A

3C

3E

5A

6A
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Table 7.1 (continue)

1[9) L5 (4):3]

2880

4032

4032

2880

2880

Class representative

l9lng(a):3

7B

15B

15D

21B

21D

9] L4 (a):3]

2880

4032

4032

2880

2880

Class representative

(9]L5(4):3

TA

15A

15C

21A

21C
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Using the MAGMA command ”IsAbsolutelylrreducible(G)”, we found that G acts ab-
solutely irreducibly on its natural module 2° and hence we can construct an isomorphic
copy of Ay, say S, as a subgroup of SL(2). The generators for S = 2%:(L3(4):3) as a
subgroup of SLiy(2) are given as:

S1= s2=

O R O R R OO R = O
© O = O Rr = O O O O
O R B B R B 2 O O O
O = 0O 0O kR R L O O O
-~ O 0O o O oo o o o

= O O O © © © o o ©

O O R OO0 O R K O =
O OO0 O R R KB R = O
©C O R O O R KB O R K
O - = OO KrRr OO O =
©O 0o o o or O O O &
©C 0O 0O r OO R KR O K
O 0O 0O 00 O kR O R &
© o 0o oo o o~ o o
O O O O O R R~ L O
©O 0o 0o O Kr O R O O
©O 0O 0O 0O K O KR O R &
O O O O O R O = =
© o » OO0 = O 0 O K
O R O O R B O R R K

s3=

= O O O O © © © O =
o O O O O O O o = o
© O © ©O O © © ~ O o
O O O O O O = O O O
o O O O O~ O O O o
o O ©O O O O 0o o o
o O O B O 0 o0 o O o
O O = O O O O o o o
O H O O O O O o o o
H O © O O © © © o o

where o(s;) = 4, o(s2) = 6 and o(s3) = 2. We can construct the groups L3(4):3 and 2°
within S =< s1, 89, 83 >, such that L3(4):2 =< s1, 59 > and 2° =< ny, ny, n3, ng, ns, ng, N7, Ng, Ny >.

The generators n;,7 = 1,2,3,...,9, for 2° are listed in Table 7.2.
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Table 7.2: The generators of 2°

S
[oNolololoNoloNoNoi sl

OCOO0OO0OO0OO0OOO =~
[ejejejefeleclel 2=
[=lejojcoNel oo}
OCOO0OO0O0OHOOO
COO0OO0O-HOOOOO
COO0OHOOOOOO
CoHOOOOOOO
OHOOOOOOOO

HOOOOOOOO~

N~
|

no

S
ococococococooH

QOO0 O0OO0OOHH
OO0 O0OO0OO~=O ™
[=eolalololal =Rela)
cocococo~HOoO0COH
OO0 HOOOOO
OO0 O0OOO~
=Nl NololololoRoR S
oO—HOoOCcoococooH

O OO0 O0OO0OOO -

N
Il
<
S

[oNoloNoloNolNeNoNei S

OO0 O0OOOCO-HO

[=jejejejelelal Nela)

[=jeojeleclolel Bolohs

[=NeoloNoNoisNoloNeNol

OO0 O0OO0O-HOOOOO

OO0 O0O0OOO ™

[=NeRoNeloololoNole)

OHOOO0OOOOOH

O O0OO0OO0OOOOOO

[=eololololoNoNoNol ]

OO0 O0OO0OO0OO0OO -

ocoococococo—-HOO

cocoococo—=Ho0oO

o000 HOOOH

OO0 O0OHOOOOO

oo -HO0OO0OO0OOO -

co-HoOoCocOoOO

[=RoRelololojoNoNoNs]

OO0 O0OOO0OOO~

Il
©
£

I
o
£

—
[=lejojcloololoNalisl

[oNeolololoNoloNoi ol
[elejleleleleBal =l=]
COoOO0OO0O0OO =000
SO0 O0O0OHOOOO
OO0 O0OHOOOOO
COO0OHOOOOOO
OCOoOHOOOOOOO
[=RalelelojololoNolo}

HOOO0OOOOOO~

A ———
Il
=
e

[eBoloBoloBoNoloRol S

[=leolelololoNo ol 1=

OO0 OCOO0CO 0O

ocCcoococo—HOOO

o000 HOOOO

OO0 OHOOOOO

[=Reolal Nelalolaool=]
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7.2 The conjugacy classes of G = 2":(L3(4):3)

In this section, we will determine the orbit lengths resulting from the action of G =

The structure of the stabilizers corresponding to these orbit

29,

29:(L3(4):3) on N

lengths, are also identified. The information obtained from the permutation character of

L3(4):3 on the conjugacy classes of 2%, Programme A and Programme B is then used to

compute the conjugacy classes of 2%:(L3(4):3).
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Throughout the remainder of this chapter, let G = 2°:(L3(4):3) be a split extension of
N = 2 by G = L3(4):3, where N is the vector space Vy(2) of dimension 9 over GF(2)
on which the linear group G =< g1, go > acts irreducibly. Using MAGMA (as in Section
6.2), it is found that the action of G on N partitioned the classes of N into 4 orbits of
lengths 1,21,210 and 280. The structure of the point stabilizers P;, i = 1,2, 3, 4, corre-
sponding to these orbit lengths are P, = L3(4):3, P, = 2%:(3 x Aj), P = 2%:(3 x S3) and
Py = 3%:(24,), respectively. The structures of P, and P; were obtained by checking the
indices of the maximal subgroups of L3(4):3 in the ATLAS. MAGMA is used to generate
the submaximal subgroups of G and represented as a permutation group, then their in-
dices in G are checked. We obtained that P3 = 2%:(3 x S3) sits maximally inside one of
the two maximal subgroups of G of the form 2%:(3 x A5). This group, say L, is isomorphic
to P, but they are not in the same conjugacy class.

Let x(G|2?), x(G|P;) and I}jj be the permutation character of G on the classes of 2,
the permutation character of G on the classes of a point stabilizer P;, and the iden-
tity character of a stabilizer P; induced to G. We obtain that x(Ls(4):3]2°) = S+ Iﬁl
= S X(Ls(@):31P) —x(Ls():31Py) + x(Es(4)31P) + X(La():31Bs) + x(La(4):31Py)
=la + (la + 20a) + (1a + 2 x 20a + 64a + 105a) + (1la + 20a + 45a + 45b + 64a + 105a)
=4 x la+ 4 x 20a + 45a + 45b + 2 x 64a + 2 x 105a. The information provided by the
character tables of G and the P;’s (See Appendix B) and the fusion maps of the point
stabilizers P; into G was used to calculate x(L3(4):3]|P), i = 1,2,3, 4, and x(L3(4):3]2%).
The values of x(L3(4):3|2?) on the different classes of G determine the number k of fixed
points of each g € G in 2°. The values of k are listed in Table 7.3. These values of k help
us to determine the number f; of orbits );’s, 1 <7 < k, which have fused together under

the action of Cx(g), for g € [¢]¢-

We use Programme A to compute the values f; and Programme B to determine the class
orders of the elements of G. Having obtained all the relevant information we can compute

the centralizer orders for each class []g of G with the equation |Cz(z)| = ?|C’G(g)|. The
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information pertaining to the conjugacy classes of G is summarized in Table 7.4.

Table 7.3: The values of x(L3(4):3]2%) on the different classes of L3(4):3

[MLg(a):a 1A  2A 3A 3B 3C 3D 3B 4A 5A 5B 6A
x(L3(4):3|Py) 1 1 1 1 1 1 1 1 1 1 1
x(L3(4):3|Py) | 21 5 6 6 0 0 3 1 1 1 2
x(L3(4):3|P3) | 210 18 15 15 0 0 3 2 0 0 3
x(L3(4):3|Py) | 280 8 10 10 7 7 1 4 0 0 2

k 512 32 32 32 8 8 8 8 2 2 8

(Mg (a):3 6B TA 7B 15A 15B 15C 15D 21A 21B 21C 21D
x(L3(4):3|Py) 1 1 1 1 1 1 1 1 1 1 1
x(L3(4):3| Pa) 2 0 0 1 1 1 1 0 0 0 0
x(L3(4):3| P3) 3 0 0 0 0 0 0 0 0 0 0
x(L3(4):3| Py) 2 0 0 0 0 0 0 0 0 0 0

k 8 1 1 2 2 2 2 1 1 1 1

Table 7.4: The conjugacy

classes of elements of G = 2%:(L3(4):3)

(9]L5(4):3 k fj d; a (@]9 (Laa):3) | 1[99 Lgay:my] | €29 (1q(a):3) (@)
1A 512 fi=1 (0,0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0,0) 1A 1 30965760
f2 =21 (0,0,1,0,1,1,0,1,1) | (0,0,1,0,1,1,0,1,1) 24 21 1474560
fs =210 | (0,0,1,1,0,1,1,0,1) | (0,0,1,1,0,1,1,0,1) 2B 210 147456
fa =280 | (0,0,1,0,1,1,1,0,1) | (0,0,1,0,1,1,1,0,1) 2c 280 110592
2A 32 f1 (0,0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0,0) 2D 5040 6144
f2 = (1,0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0,0) 2E 5040 6144
f3 = (0,0,0,1,1,0,1,0,0) | (0,0,1,0,1,1,0,1,1) 4A 5040 6144
fa=1 (1,0,0,1,1,0,1,0,0) | (0,0,1,0,1,1,0,1,1) 4B 5040 6144
f5 = (1,1,0,1,0,0,1,1,0) | (1,1,1,1,1,0,0,0,0) ac 40320 768
fo =8 (0,0,0,1,1,1,1,1,1) | (0,1,0,1,1,1,1,1,1) 4D 40320 768
fr =12 | (1,0,0,0,1,0,0,0,0) | (1,0,0,0,0,1,0,0,0) 4E 60480 512
3A 32 f1 (0,0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0,0) 3A 5376 5760
f2 = (1,0,1,1,0,0,1,1,0) | (1,0,1,1,0,0,1,1,0) 6A 5376 5760
fa=5 (1,0,0,1,0,1,0,0,1) | (1,0,0,1,0,1,0,0,1) 6B 26880 1152
fa=5 (0,1,1,1,0,0,1,1,1) | (0,1,1,1,0,0,1,1,1) 6C 26880 1152
fs =10 | (0,0,0,1,1,1,1,1,1) | (1,1,1,0,0,1,1,1,0) 6D 53760 576
fé¢ =10 | (0,0,1,1,1,1,1,1,1) | (1,0,0,1,0,0,1,1,1) 6E 53760 576
3B 32 fi=1 (0,0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0,0) 3B 5376 5760
fa=1 (1,0,1,1,0,0,1,1,0) | (1,0,1,1,0,0,1,1,0) 6F 5376 5760
f3=5 (1,0,1,1,0,1,1,1,1) | (1,0,1,1,0,0,1,1,1) 6G 26880 1152
fa=5 (1,1,1,1,1,1,1,0,0) | (0,0,0,0,0,1,1,1,0) 6H 26880 1152
fs =10 | (1,1,0,0,0,1,0,0,0) | (1,1,0,0,0,1,0,0,0) 61 53760 576
f¢ =10 | (1,0,0,0,0,0,0,0,0) | (1,1,1,0,0,0,0,0,0) 6J 53760 576
3C 8 fi=1 (0,0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0,0) 3C 61440 504
fa=7 (1,0,0,0,0,0,0,0,0) | (1,1,0,1,1,0,1,0,0) 6K 430080 72
3D 8 fi=1 (0,0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0,0) 3D 61440 504
fa=7 (1,1,1,1,1,0,0,0,0) | (0,1,0,0,0,1,0,1,0) 6L 430080 72
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Table 7.4 (continue)

[9](L3(4):3) fi d; w [1129:(L3(4):3) |[Z]29;(L3(4);3)| |029;(L3(4);3)(T)‘
3E fi=1 (0,0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0,0) 3E 143360 216
fo=11 (1,0,0,1,1,0,1,1,1) | (1,0,0,0,0,1,0,0,1) 6M 143360 216
f3 =3 (0,0,1,1,1,1,1,0,1) (0,0,1,0,1,1,0,1,1) 6N 430080 72
fa=3 (0,0,0,1,0,0,0,0,0) (1,0,1,0,1,0,0,1,0) 60 430080 72
4A fi=1 (0,0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0,0) 4F 241920 128
fo=11 (1,1,1,1,1,1,0,0,0) | (0,0,0,0,0,0,0,0,0) 4G 241920 128
f3 =2 (0,1,1,0,1,0,0,1,1) (0,0,0,0,1,1,1,0,0) 8A 483840 64
fa=4 (0,1,0,0,0,1,0,0,0) (0,0,0,0,1,1,1,0,0) 8B 967680 32
5A fi=1 (0,0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0,0) 5A 1032192 30
fo=1 (1,0,0,0,0,0,0,0,0) (0,0,0,0,1,1,0,1,1) 10A 1032192 30
5B fi=1 (0,0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0,0) 5B 1032192 30
fa = (1,0,0,0,0,0,0,0,0) (0,0,0,0,1,1,0,1,1) 10B 1032192 30
6A fi 1 (0,0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0,0) 6P 322560 96
fo=1 (0,1,1,0,1,1,1,0,0) (0,1,1,0,1,1,1,0,0) 6Q 322560 96
fs=1] (1,1,0,1,1,1,0,1,0) | (1,1,0,1,1,1,0,1,0) 12A 322560 96
fa=1 (0,0,0,0,0,0,1,1,0) (0,0,0,0,0,0,1,1,0) 12B 322560 96
fs =2 (0,0,1,0,0,1,0,1,1) (0,0,1,0,0,1,0,1,1) 12C 645120 48
fe =2 (0,1,1,1,1,1,1,1,1) (Ot e T ] o] 1) 12D 645120 48
6B fi=1 (0,0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0,0) 6R 322560 96
fo=1 (0,1,0,1,0,1,0,1,0) ((0) g1y (0 g g0 11 (@Il (0)) 6S 322560 96
fs3=1] (0,1,1,0,1,1,1,0,0) | (0,1,1,0,1,1,1,0,0) 12E 322560 96
fa=1 (0,0,0,0,0,0,1,1,0) (0,0,0,0,0,0,1,1,0) 12F 322560 96
fs =2 (1,1,1,1,1,1,1,0,1) S e b e e 12G 645120 48
fe=2 | (0,1,1,1,1,1,1,1,1) | (0,1,1,1,1,1,1,1,1) 12H 645120 48
TA fi=1 (0,0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0,0) TA 1474560 21
7B fi=1 (0,0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0,0) 7B 1474560 21
15A fi=1 (0,0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0,0) 15A 1032192 30
fo=1 (1,0,0,0,0,0,0,0,0) (0,0,0,0,1,1,0,1,1) 30A 1032192 30
15B fi=1 (0,0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0,0) 158 1032192 30
fa=1 (1,0,0,0,0,0,0,0,0) (0,0,0,0,1,1,0,1,1) 30B 1032192 30
15¢ fi=1 (0,0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0,0) 15C 1032192 30
fo=1 (1,0,0,0,0,0,0,0,0) (0,0,0,0,1,1,0,1,1) 30C 1032192 30
15D fi=1 (0,0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0,0) 15D 1032192 30
fo=1 (1,0,0,0,0,0,0,0,0) (0,0,0,0,1,1,0,1,1) 30D 1032192 30
21A fi=1 (0,0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0,0) 21A 1474560 21
21B fi=1 (0,0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0,0) 21B 1474560 21
21C fi=1 (0,0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0,0) 21C 1474560 21
21D fi=1 (0,0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0,0) 21D 1474560 21
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7.3 The inertia groups of G = 2°:(L3(4):3)

Since G has four orbits on NN, then by Brauer’s Theorem [29] G acts on Irr(N) with the
same number of orbits. The lengths of the 4 orbits will be 1 ,r, s and ¢t where r + s
+ t = 511, with corresponding point stabilizers Hy, Hy, H3 and H, as subgroups of GG
such that [G : Hy] =1, [G : Hy] =r, [G : H3]= s and [G : Hy = t. We let T be the
matrix group of dimension 9 over GF'(2) formed by the transpose of the generators of G.
Then the action of T on the classes of N = 2% is the equivalent of G acting on Irr(N).
Then with the help of MAGMA it is easily verified that the action of T on N has orbits
of lengths 1, 21, 210 and 280. We deduce that the action of G on Irr(N) has orbits of
lengths 1, r = 21, s = 210 and ¢t = 280 with respective point stabilizers H; = L3(4):3,
Hy = 2%:(3 x Aj), Hz = 2*:(3 x S3) and Hy = 3%:(2A,). Thus the four groups H; = 2°:H,
are the inertia groups obtained in G of the linear characters of 2° which are partitioned
into four orbits.The reader is referred to Section 7.2 to see how the structures of the H;
were obtained. The groups H,, H3 and H, are constructed from elements within GG and

the generators are as follows:

o Hy =(ay,a3) , a1 € 3B, ap € 5A where

s Q2=

Q
[
cococooococor
cocoocooroOO
cocoocoocoroO
Coo0co0ORRKO
O R = =O
cooroOORRFO
corooOrRRO
HOOOKR KO R
HOOOOOKKO
HOROROOOR
cocoocoorrROO
—rooo0OrROOO
HOOOORKKO
COO0OO R K HK
COoOrR R RORKFE
orrOOOOOO
ORHORRROR
cococoocoroOO

o Hy =(B1, ) , f1 €68, B, € 6B where

B1= , Ba=

HOOFROOOM M
O OO0OOKKFFO
HFOOrRHFHOOO
corRrORRRRO
= OO~OOMO
HOFRFOFROFOO
mFRERERERR,OOO
coorrORRO
ORORMHFOOOO
FoOOCOROR KK
HEOOOROOO
OrFRFFRFOFRFRFO
HORORFL,OOO
cococor~ocoroO
OCOO0O~ROROKRO
HOOFROOOOO
~roorRr~OOOO
corroOCOOO
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o Hy=(v1,%) , 7 € 44, 72 € 6A where

10 0 0 0 1 1 0 O 11 0 0 0 0 0 O 1
1 1 0 1 1 0 0 1 1 10 0 1.0 0 0 1 O
01 0 1 0 0 0 0 1 10 0 0 0 1 1 1 O
00 0 1 0 1 1 0 0 o1 0 1 0 0 0 0 1
=] 1 1 1 1 1 0 1 0 0 ,y2=| 0 0o 1 1 0 1 1 0 1
1 0 1 1 0 0 1 1 0 o 1 1 0 1 1 1 1 1
01 0 0 1 0 1 0 0 1 1 1 0 0 1 1 0 1
1 1 1 0 0 1 0 1 0 11 1 1 0 0 0 0 O
01 0 0 1 0 0 0 1 o 1 0 1 1 1 0 1 1

For the purpose of constructing the character table of G, we use the above generators of
the H;’s to compute their character tables and these tables are available in the Appendix

B.

7.4 The fusion of Hy, H; and H, into G

We obtain the fusions of the inertia factors Hs, H3 and H,4 into G' by using direct matrix
conjugation in GG and their permutation characters in G of degrees 21, 210 and 280,
respectively. MAGMA was used for the various computations. The fusion maps of H,

Hj3 and Hy into G are shown in Tables 7.5, 7.6 and 7.7.

Table 7.5: The fusion of H, into L3(4):3

(Muy, —  [9lLs):3 [Ma, =  ldlps):3 (M, =  ldlrga):3 [Ma, = ldlrs):3
1A 1A 3C 3A 5B 5B 15A 15C
2A 2A 3D 3B 6A 6B 15B 15D
2B 2A 3E 3E 6B 6A 15C 15B
3A 3A 4A 4A 6C 6A 15D 15A
3B 3B 5A 5A 6D 6B
Table 7.6: The fusion of H; into L3(4):3

[MHgs —  ldlps):3 [Mug —  ldlps):3 (hMug =  [drsa):3 [MHg =  ldlps):3
1A 1A 3A 3B 3E 3E 6C 6A
2A 2A 3B 3A 4A 4A 6D 6B
2B 2A 3C 3B 6A 6B

2C 2A 3D 3A 6B 6A
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Table 7.7: The fusion of H, into L3(4):3

[ha, —

[9]L4(4):3

[hg, —

l9lL5(4):3

(hlg, —

l9lp5(4):3

hlg, —

l9]L5(4):3

1A
2A
3A

1A
2A
3E

3B
3C
3D

3B
3A
3D

3E
4A
6A

3C
4A
6A

6B

6B

7.5 The Fischer-Clifford Matrices of 2°:(L3(4):3)

The conjugacy classes of G which are displayed in the format of Table 7.4 together with the
fusion maps of the inertia factor groups H,, Hy, H3 and H, into GG, enabled us to compute
the Fischer-Clifford matrices for G. The properties of the Fischer-Clifford matrices, as
discussed in Chapter 5, are used in the construction of these matrices for G. In Section 6.5
the application of these properties are sufficiently addressed. A Fischer-Clifford matrix
M (g) is constructed for each class representative g in G and they are listed in Table 7.8.

7.6 Character Table of 2%:(L;(4):3)

Having obtained the Fischer-Clifford matrices, the fusion maps of the H;’s into L3(4):3,
and the character tables of the inertia factors H;, we construct the character table of
29:(L3(4):3) using the methodology discussed in Chapter 5. The reader is referred to
Section 6.6 for an example on the application of this methodology. Altogether we obtain
65 irreducible characters of G. The set of irreducible characters of G will be partitioned
into 4 blocks Ay, As,As and A, where each block corresponds to the inertia factor groups
H; = 2°:H;. Therefore Irr(2%:(L3(4):3)) = Ui, Ai, where Ay = {x;|1 <j <22}, Ay =
{123 <j <41}, Az = {x;]42 < j <55} and Ay = {x;]56 < j <65}. The character
table of 2%:(L3(4):3) is shown in Table 7.9. The consistency and accuracy of the character
table of G have been tested by using Programme C (see Appendix A).
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Table 7.8: The Fischer-Clifford matrices of 2°:(L3(4):3)

N - - ~ O N
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= | [ ~ .
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= 1w w0 o I I &) I I 9 2
I a3 a I I = Q Q g a
< ~—
! = ) = g 2 = =
- = 1w 0w o o et Il o = o = o N~ = =
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Table 7.9: The Character table of 29:(L3(4):3)

@1AZ5B§0000003300664D50QK?3300665334D53c6044Jﬂﬂ%5433céooaK?2K?0459
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The information about the conjugacy classes found in Table 7.4 can be used to compute
the power maps for the elements of G and then Programme C (see Appendix A) is used

to verify that we obtained the unique p-power maps listed in Table 7.10 for our Table 7.9.

Table 7.10: The power maps of the elements of 2°:(L3(4):3)

lala [zl 2 3 5 7 l9la [zl 2 3 5 7
1A 1A 2A 2D 1A
2A 1A 2FE 1A
2B 1A 4A 2A
2C 1A 4B 2A
4C 2B
4D 2B
4FE 2B
3A 3A 1A 3B 3B 1A
6A 3B 2A 6F 3A 2A
6B 3B 2A 6G 3A 2A
6C 3B 2B 6H 3A 2B
6D 3B 2C 61 3A 2C
6FE 3B 2B 6J 3A 2B
3C 3C 1A 3D 3D 1A
6K 3D 2C 6L 3C 2C
3E 3E 1A 4A 4F 2D
6M 3E 2C 4G 2D
6N 3E 2A 8A 4B
60 3E 2B 8B 4E
5A 5A 1A 5B 5B 1A
10A 5B 2A 10B 5A 2A
6A 6P 3A 2D 6B 6R 3B 2D
6Q 3A 2E 6S 3B 2E
12A 6B 4A 12E 6G 4A
12B 6B 4B 12F 6G 4B
12C 6F 4C 12G 6J 4C
12D 6E 4D 12H 6J 4D
TA TA 1A 7B 7B 1A
15A 15A 5A 3A 15B 15B 5A 3B
30A 15D 10A 6A 30B 15C 10A 6F
15C 15C 5B 3A 15D 15D 5B 3B
30C 15B 10B 6A 30D 15A 10B 6F
21A 21A TA 3C 21B 21B TA 3D
21C 21C 7B 3C 21D 21D 7B 3D

7.7 The Fusion of 2%:(L3(4):3) into Ug(2):3

The group G is a maximal subgroup of Us(2):3 of index 891. Hence the action of Us(2):3
on the cosets of G gives rise to a permutation character x(Us(2):3|G) of degree 891. We
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deduce from the ordinary character table of Us(2):3 uploaded in the GAP Library that
x(Us(2):3|G) = la + 22a + 252a + 616a. The partial fusion of G into Us(2):3 is made
possible by using the values of x(Us(2):3|G) on the classes of G and the information
provided by the power maps of the classes of Ug(2):3 and G. Similarly, the technique of
set intersections (as it was done in Section 6.7) is used to restrict the irreducible ordinary
characters ¢1 = 22a, ¢y = 22b, ¢p3 = 231a, ¢4 = 385a, ¢5 = 440a and ¢g = 440b of Us(2):3
to G. Hence based on the partial fusion of G into Ug(2):3, we obtain that (¢1)a9.(14)3 =
X1+ X23, (92)29:(L54):3) = X3+ X245 (93)29:(L3(4):3) = X23 + Xa3, (D4)29:(L54):3) = X35 + X565
(¢5)29:(Ls(a):3) = Xa + Xag and (P6)29:(L4(4):3)= X6 + Xs0- Thus the complete fusion map of
G into Us(2):3 is obtained and is listed in Table 7.11.

Table 7.11: The fusion of 2°:(L3(4):3) into Us(2):3

Wlrg@y:s  [#lo9, a3 —  Bluge)s 9oz [#ly9. oz — Bluge)s

1A 1A 1A 2A 2D 2B
24 24 2E 2c

2B 2B 1A 4A

2c 2C 4B 4B

4c 4D

4D AE

AE ac

3A 3A 3F 3B 3B 3G
6A 6K 6F 6L

6B 60 6G 6P

6C 65 6H 6T

6D 6Y 6 62

6E 6U 6J 6V

3C 3C 3K 3D 3D 3J
6K 6AD 6L 6AC

3E 3E 3C 1A AF ac
6M 6H 4G 4E

6N 6F 8A 8A

60 6G 8B 8B

5A 5A 5A 5B 5B 5A
104 104 10B 104

6A 6P 6V 6B 6R 6U
6Q 62 6S 6Y

124 12M 12E 12L

12B 12Q 12F 12P

12C 12U 12G 12T

12D 12Y 12H 12X

TA TA TA 7B 7B TA
154 154 15C 15B 15B 15B
304 30B 30B 304

15C 15C 15C 15D 15D 15B
30C 30B 30D 304

214 21A 21B 21B 21B 21A
21C 21C 21B 21D 21D 214
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Chapter 8

The Fischer-Clifford matrices of
28:(U4(2):2) as a subgroup of 0/,(2)

In the ATLAS we see that the orthogonal group Oj;(2) has a maximal subgroup L =
28:04 (2), where the quotient group L/2® = Og has three non-conjugate maximal sub-
groups Ki, Ky and K3 of the type Spg(2). We should mention here that the ordinary
character table of L was computed in [52]. Two of these groups, say K; and K, have
eight-dimensional absolutely irreducible modules over GF(2) and their pre-images in L
are isomorphic groups L; and Lo of the type 28:Spg(2), having 70 classes of elements.
This can be easily verified by first obtaining a permutation representation on 496 points
of L from Wilson’s online ATLAS [70] and then computing all the classes of maximal
subgroups of L using the computer algebra system GAP [67]. The permutation represen-
tation of degree 496 is the smallest permutation representation Of;(2) has on the cosets of
all its maximal subgroups (see Wilson’s online ATLAS) and hence it make our computa-
tions for the group L relatively faster. We could also use the permutation representation
of degree 527 the group Of,(2) has on the cosets of L. Also, with the aid of GAP we
found that the pre-image L3 = 2%:Spg(2) of K3 in L is a group having 168 conjugacy
classes of elements. It was shown in [26] that Lj is one of the inertia factors of the factor

group F' = D /20 = 216:0f/(2), where 2'°71°0Of(2) is one of the maximal subgroups of
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the Fischer-Griess "Monster” group M.

Ali and Moori in [4] computed the Fischer-Clifford matrices and the associated ordi-
nary character of a maximal subgroup G; = 2%:Spg(2) of L. This group G is isomor-
phic to the groups L; and L,. Since Spg(2) has only one maximal subgroup of the
type Us(2):2 = GOg (2), the pre-image of this group in G is a split extension group
G = 28:(Uy(2):2). As we will see in Section 8.1 of this chapter, the action of U(2):2 on
2% has three orbits of lengths 1, 120 and 135. Therefore, we can deduce that Uy(2):2 does
not fix any non-trivial subspace of 2% and hence 2% is an irreducible module for Uy(2):2.
Since the Fischer-Clifford matrices of the group G are not yet known, these matrices and

the associated ordinary character table of G will be calculated.

The method of coset-analysis will be used to compute the conjugacy classes of elements
in G. Also, the fusion map of the conjugacy classes of G into the classes of Gy will be
determined. Most of our computations were carried out with the aid of the computer

algebra systems MAGMA and GAP.

8.1 On the group 2%(U,(2):2) and its conjugacy classes

In this section, we apply the method of coset analysis, as discussed in Chapter 3, to deter-
mine the conjugacy classes of elements of 28:(U;(2):2). Let G = N-G be an extension of
N by G, where N is abelian. Then for g € G, we write g for a lifting of g in G under the
natural homomorphism G — G. We consider a coset Ng for each class representative g
of G, writing k for the number of orbits of N acting by conjugation on the coset Ng, and
f; for the number of these fused by the action of {E :h € Cg(g)}. These values of k are
determined by the values of x(G|2®) on the different classes of G, where y(G|2®) denotes

the permutation character of G on the classes of 2°. Note if G is a split extension then g
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becomes ¢ since G < G. The order of the centralizer Cw(z) for each element x € G in a

_ HCc(9)|

conjugacy class [z]g is given by |Cx ()| A8
J

The authors in [4] constructed the group Sps(2) as a matrix group of dimension 8 over
the Galois field GF'(2). The two generators «a and /3 of Spg(2) with respective orders of 2

and 6 are given as:

o 1 0 O o O 0 O o 0 1 o O O 0 O
1 0 o O O O o0 o o o o 1 o 0 0 o
o o o o 1 o0 o0 o o o o o o 1 o0 o
o 1 0 0 1 1 1 0 O f= o o o o o o 1 o
o o 1 0 0O o0 o0 o 0O 0 0 1 1 0 1 O
1 1 1 0 1 1 0 O i1 0 1 0 0 O o0 O
o o o o o o0 o 1 0 1 1 1 1 1 1 0
o o o o o o 1 o 1 0 o0 1 1 1 1 1

Using GAP we are able to find a copy of Uy(2):2 within Sps(2) =< «a,f > and the

elements g; and go, with respective orders of 2 and 9, generating U, (2):2 are as follows:

= O R B R = O =
= O R O K B O O
H O R B R O O O
Lol e B | | i e =

o = O O

0
0
0
=L
1
0
1
0

O B O O = ~ K
O O O = = = O O
O e O.rR H| owoOTE
o O = O O O O =
O R O R K R R R
O = O O K = O =
O O = O = = O O
O B O K = = O
o B = = O O O -

o o = o

The class representatives of each class [g]y,(2)2 of 2°:(Uy(2):2) are given in terms of 8 x 8
matrices over GF'(2) and in total there are 25 conjugacy classes of elements and are listed

in Table 8.1.
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Table 8.1: The conjugacy classes of Uy(2):2
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Table 8.1 (continue)
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Throughout this chapter, let G = N:G be the split extension of N = 28 = 14(2) (the
vector space of dimension 8 over GF'(2)) by G = U4(2):2 =< ¢1,92 >, where G acts
irreducibly on N. As a result of the action of G on N (using MAGMA), we obtain that
the elements of N are partitioned into 3 orbits with respective lengths of 1, 120 and 135.

We should add here that in the paper (see Proposition 2.12 in [58]) it is shown that
according to Witt’s lemma, G = Aut(SU,4(2)) = U4(2):2 has exactly two orbits of lengths
135 and 120 on the non-zero elements of its irreducible 8-dimensional module 2% 2 V5(2),
where these correspond to the singular and non-singular vectors. Further it shown that
since 28 — 1 does not divide |SP5(2)], it follows that these orbits are also orbits under the
action of Spg(2) =< «, f >. In fact the MAGMA command ”IsAbsolutelylrreducible(G)”
confirms that the linear group G acts absolutely irreducibly on its 8-dimensional module.
Hence G as a split extension 28:(U4(2):2) exists as a subgroup S of SLg(2). The group S
can be generated by the following elements of SLg(2):

1 1 0 0 O O O 0 o 0 0 1 0 0 0O 0O 0 o
0 1 0 0O 0O O 0o 0 O o o0 o 1 0 0O 0 0 O
1 1 1 1 0 1 (i1, 0o o0 o o o 1 0 0 O
1 0 1 1 1 1 0 1 0 0O o0 o0 o0 o0 O 1 0 O
s1= 1 0 o0 1 1 Of |0y LY G S2= O Phs0 1 1 0 1 0 0
1 1 1 0 1 1 1 o o0 1 0 1 0 0 0O 0O 0 O
0o o0 o0 o o 1 o 1 O Ok I'1 1 1 1 1 1 0 O
1 1 1 0 1 1 0 0 O 1 0 0 1 1 1 1 1 0
0O 0 o0 o o o o o0 1 0o o0 o o o o o o0 1
1P 0 0 o0 o o o o0 o
o 1 o0 O O O O o0 o
o o 1 0o 0O O O o0 o0
o 0 O 1 0 0 O 0 O
s3= o o o o 1 o0 o0 o0 o0
o o o o o 1 o0 o0 ©O
o 0 o0 o0 o o0 1 0 O
o o o o o o0 o 1 0
o o o o o o o0 o0 1

where o(s1) =4, o(sy) = 14 and o(s3) = 2.

Since the group G can be generated as permutation group on 496 points, it is easily
verified that G = S by using the MAGMA command, ”IsIsomorphic (G, S)”. With the
aid of MAGMA and the ATLAS, we are able to identify the structures of the stabilizers

corresponding to the 3 orbits of elements of N. The point stabilizers, which are subgroups
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of G, are identified as P, = G, P, = 37%:(2Dg) and P3 = 2*:9,.

Let x(G|2%) be the permutation character of G on the classes of 28. Then using the

same method as in Chapters 6 and 7, we can easily write x(G|28) = [gf((;)); + [5‘1(22_)(:221)8)
: L2,

HIED? = X (U4(2):2|P) + x(Ua(2):2|P) + x(Us(2):2|P3) = la+ la+15b + 20c + 24a +
60c+1la+15a+15¢+20a+24a+60c = 3 x la+15abc+20a+2 x 24a+2 x 60c as the sum of
the permutation characters of GG acting on the classes of Py, P, and P3. For the purpose of
computing x(G|2%), we used the character table of Uy(2):2 which was computed directly
in MAGMA with the generators g; and g, (see Appendix B). The permutation character
x(G|2®) is written in terms of of the irreducible characters of Uy(2):2. The values of
x(G|2%) on the different classes of G determine the number k of fixed points of each g € G
in 28, The values of k are listed in the second column of Table 8.2. The values of the
fis (as mentioned earlier in this section) are calculated by Programme A and hence we
obtain that G has exactly 59 conjugacy classes. Having obtained all the values for the
parameters k and f/s, the centralizer order [C(z)| for each class [z] of G are determined.
Programme B is used to compute the order of the elements for each conjugacy class [z]

in G. All the information involving the conjugacy classes of G are listed in Table 8.2.
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Table 8.2: The conjugacy classes of elements of G = 28:(U,(2):2)

9luy(2):2 k fj dj w [@lo8. vy 2):2) | 1[®la8: vy 20:2y] | €08 (v, (2):2) (@)
14 256 fi=1 (0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0) 14 1 13271040
fo =120 | (0,0,1,0,1,1,0,1) (0,0,1,0,1,1,0,1) 2A 120 110592
f3 =135 | (0,0,1,1,0,1,0,1) (0,0,1,1,0,1,0,1) 2B 135 98304
24 16 fi=1 (0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0) 20 596 23040
f2=15 | (1,0,0,0,0,0,0,0) (1,0,0,0,0,1,0,0) 1A 8640 1536
2B 64 f1= (0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0) 2D 180 73728
f2=6 | (0,1,1,0,0,1,1,0) | (0,1,1,0,0,1,1,0) 2E 1080 12288
fa = (0,0,1,0,1,0,0,1) (0,0,1,0,1,0,0,1) 2F 1620 8192
fa=48 | (1,1,1,0,0,1,1,1) (1,1,1,0,0,1,1,1) 4B 8640 1536
20 16 fi=1 (0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0) 2G 4320 3072
fo = 0,1,1,0,0,1,1,0) (0,1,1,0,0,1,1,0) 6F 12960 1024
fz= (0,1,1,0,1,1,1,1) RO oo mm e e e 6G 25920 512
fa=6 (1,1,1,1,1,1,0,0) (0,0,0,0,1,1,1,0) 6H 25920 512
2D 16 fi=1 (0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0) 2H 8640 1536
fo = (0,1,1,0,0,1,1,0) 0,1,1,0,0,1,1,0) 4F 8640 1536
fz = (0,1,1,0,1,1,1, 1) S O e i 4G 51840 256
fa = (1,1,1,1,1,1,0,0) (0,0,0,0,1,1,1,0) 4H 69120 192
3A 4 f1= (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0,0) 3A 5120 2592
fa=3 (1,1,1,1,0,0,0,0) (1,0,0,0,1,0,1,0) 6A 15360 864
3B 1 fi=1 (0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0) 3B 61440 216
3C 16 fi=1 (0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0) 3C 7680 1728
fo=6 (1,1,1,1,1,0,0,0) (0,0,1,0,0,0,0,0) 6B 46080 288
fa=9 (1,1,0,1,0,0,1,1) (0,0,0,1,1,1,0,0) 6C 69120 192
4A 4 fi=1 (0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0) 4A 34560 384
f2=3 (1,0,0,0,0,0,0,0) (0,0,0,1,1,0,1,1) SA 103680 128
4B 16 fi=1 (0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0) 4J 8640 1536
fa=1 (1,1,1,1,1,0,0,0) (0,0,0,0,0,0,0,0) 4K 8640 1536
f3 =2 (1,1,0,1,0,0,1,1) (0,0,0,0,0,0,0,0) 4L 17280 768
fa =12 (1,0,0,0,1,0,0,0) (0,0,0,0,0,0,0,0) 4M 103680 128
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Table 8.2(continue)

9]u,(2):2 fj d; w [©]o8.(uy2):2) | 1[®la8: vy 2.y | €98, (2):2) (@)
ac fi=1 (0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0) AN 103680 128
fo=1 (1,1,0,1,1,1,0,0) (1,1,0,1,1,1,0,0) sB 103680 128
f3=2 (1,0,1,1,1,0,1,0) (1,0,1,1,1,0,1,0) 8C 207360 64
4D fi=1 (0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0) 40 207360 64
fo=1 (1,0,1,0,1,0,1,0) (1,0,1,0,1,0,1,0) 8D 138240 96
f3=2 (1,1,0,1,1,1,0,0) (1,1,0,1,1,1,0,0) SE 138240 96
5A fi=1 (0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0) 54 1327104 10
6A fi=1 (0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0) 6D 46080 288
fo=3 (1,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0) 6E 138240 96
6B f1=1 (0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0) 6F 92160 144
f2=3 (1,0,0,0,0,0,0,0) (0,0,0,1,1,0,1,1) 124 276480 48
6C fi=1 (0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0) 6G 368640 36
6D fi=1 (0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0) 6H 368640 36
6E fi=1 (0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0) 61 92160 144
f2=3 (1,0,0,0,0,0,0,0) (0,0,0,1,1,0,1,1) 21B 276480 48
6F fi=1 (0,0,0,0,0,0,0, 0) (0,0,0,0,0,0,0,0) 6.J 552960 24
6G fi=1 (0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0) 6K 276480 48
fa=1 (1,1,0,1,1,1,0,0) (1,1,0,1,1,1,0,0) 12C 276480 48
fz3=2 (1,0,1,1,1,0,1,0) (1,0,1,1,1,0,1,0) 12D 552960 24
8A fi=1 (0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0) SF 414720 32
fa=1 (1,1,1,1,1,0,0,0) (0,0,0,0,0,0,0,0) 8G 414720 32
f3=1 (1,1,0,1,0,0,1,1) (0,0,0,0,0,0,0,0) SH 414720 32
fa=1 (1,0,0,0,1,0,0,0) (0,0,0,0,0,0,0,0) 81 414720 32
94 fi=1 (0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0) 94 1474560 9
104 fi=1 (0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0) 104 1327104 10
124 fi=1 (0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0) 12E 1105920 12
128 fi=11 (0,0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) 12F 276480 48
fa=1 (1,1,1,1,1,0,0,0) (0,0,0,0,0,0,0,0) 12G 276480 48
fa=1 (1,1,0,1,0,0,1,1) (0,0,0,0,0,0,0,0) 12H 276480 48
fa=1 (1,0,0,0,1,0,0,0) (0,0,0,0,0,0,0,0) 121 276480 48
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8.2 The Inertia groups of 2°:(U4(2):2)

Since G has 3 orbits on N, then by Brauer’s Theorem [29] G acts on Irr(N) with the
same number of orbits. The lengths of the 3 orbits will be 1, r, and s where r + s = 255,

with corresponding point stabilizers Hy, Hs and Hs as subgroups of G such that [G:H;]
=1, [G:H,] =r and [G:H3] = s.

The action of G on Irr(2%) can be seen as the action of G on the dual space N* of N,
since N = 2% is regarded as the vector space V3(2) ( see [56]). Hence we act the group T
formed by the transpose of the generators g; and g of G on N. The action of 7" on N
partitioned the vectors of N into 3 orbits of lengths 1, »r = 120 and s = 135. Thus the
action of G on Irr(N) is self-dual to the action of G on N, since the respective actions
give rise to orbits of the same lengths. We deduce that the action of G on N has orbits of
lengths 1, 7 = 120 and s = 135 with respective point stabilizers H, = G, Hy = 317%:(2Dg)
and Hs = 2%:5, . Thus we obtain 3 inertia groups H; = 28:H;, i = 1,2, 3, in 2%:(U4(2):2).
The groups Hs and Hj are constructed from elements within G and the generators are as

follows:

o Hy =(aj,a9) , a; € 8A, as € 12B where

00 0 1 1 1 0 0 01 0 1 0 0 0 0
01 0 0 1 1 0 0 1 0 1 1 1 1 0 0
o1 1 1 1 0 0 1 1 1 0 0 1 0 1 1
00 0 0 0 1 1 1 00 1 0 0 1 0 1
Tl 0 001 11 0 o1 Tl 1 1 0011 0 0 o
10 0 0 0 1 0 O 1 0 0 1 1 0 1 0
1 0 0 1 1 1 0 0 001 1 1 1 0 1 1
10 0 1 0 1 0 O 1 1.0 1 0 0 0 1
° H3 :<ﬁ1,ﬁ2> , 61 c 20, 52 € 8A where
1 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0
11 0 1 1 1 1 1 1 0 0 0 1 1 0 0
1 0 1 0 1 1 0 0O 11 0 1 1 1 1 1
s_| © 0 0 1 0 0 00 g 0 00 1 0 0 01
1 0 0 1 0 1 0 O 001 1 0 1 1 0 1
1 0 0 1 1 0 1 0 1 0 0 1 1 0 0 0
0 0 0 00 0 1 0 11 1 1 1 1 0 o0
00 0 0 0 0 0 1 00 0 0 0 0 0 1
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We obtain the fusion maps of the inertia factors Hy and Hj into G (see Tables 8.3 and
8.4) by using their permutation characters in G of degrees 120 and 135, and if necessary
direct matrix conjugation in G. MAGMA was used for the various computations. The
character tables of Hy, Hy and Hjs are also computed using their generators obtained in

this section and can be found in Appendix B.

Table 8.3: The fusion of H, into Uy(2):2

(Muy, = [dluy2):2 May, = ldluy2):2 Ma, = ldluy2):2
1A 1A 4A 4B 8B 8A
24 2B 4B 4B 124 12B
2B 2D 6A 6A 12B 12B
3A 3A 6B 6G 12C 12B
3B 3C 8A 8A

Table 8.4: The fusion of H; into Uy(2):2

(hlag —  l9luy2):2 (Mug = ldu,2):2 (Mg —  lduy2):2 (Mus = lduy2):2
1A 1A 2F 2B 4A 4B 4F 4D
24 2B 2F 2C 4B 4C 6A 6B
2B 2D 2G 2C ac 4A 6B €]
2C 24 2H 2D 4D 4D 6C 6E
2D 2C 3A 3C 4E 4c 8A 8A

8.3 The Fischer-Clifford Matrices of 2°%:(U4(2):2)

We use the fusion maps of the classes of Hy and Hj into GG, the information in Table 8.2,
and the properties of Fischer-Clifford matrices found in Chapter 5 to compute the entries
of the Fischer-Clifford matrices for 28:(U;(2):2). For example, see Chapter 6 for explicit
computations to construct Fischer- Clifford matrices for a split extension group. For each
class representative g € Uy(2):2, we construct a Fischer-Clifford matrix M (g) which are

listed in Table &.5.
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Table 8.5: The Fischer-Clifford matrices of 2%:(Uy(2):2)

Pl -
M) = (1)
()
M(6B) =
3 -1
m@Ep)=( 1)
M@©F) =( 1)
1 1 1 1
11 -1 -1
M(8A) =
1 -1 -1 1
111 -1
Moy =( 1)
1 1 1 1
1 1 -1 —1
M(12B) =
1 -1 -1 1
1 -1 1 -1

M(4D) = (
M(6A) = (

Moy = (1)

1
M(6E) = ( 3
M(6G) = (

M(9A) :( 1 )

1
2
1

M(12A) :( 1 )

M (g) M(g)
1 1 1 1
M(1A) =] 120 8 -8 M(24) = ( )
15 -1
135 -9 7
1 1 1 1 1 1 1 1
24 8 -8 0 3 3 -1 -1
M(2B) = M(2C) =
3 3 3 -1 6 -2 -2 2
36 —12 4 0 6 -2 2 -2
1 1 1 1
8 —8 0 0 1 1
M(2D) = M(3A) =
1 1 1 -1 3 -1
6 6 -2 0
1 1 1
M(3B) = ( 1 ) M@3BC) =] 6 2 -2
9 -3 1
1 1 1 1
1 1 4 4 —4 0
M(4A) = M(4B) =
3 -1 8 -8 0 0
3 3 3 -1
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8.4 Character Table of 2°:(U4(2):2)

Following the method of Fischer-Clifford matrices as explained in Chapter 5, the character
table of 2%:(U;(2):2) can be constructed from the Fischer-Clifford matrices (Table 8.5),
the fusion maps of the H/s (Tables 8.3 and 8.4), and the character tables of the inertia
factors H; (found in Appendix B).

The character table of G (see Table 8.6) is partitioned row-wise into 3 blocks A,
A, and Aj, where each block corresponds to an inertia group H; = 2%:H;. There-
fore Irr(28:(Us(2):2)) = U2, Ai, where Ay = {x;]1 <7 <25}, Ay = {x;]26 < j < 39}
and Az = {x;]40 < j <59}. The consistency and accuracy of the character table of
28:(U4(2):2) are tested as Programme C (see Appendix A).
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Table 8.6: The Character table of 28:(U,(2):2)

<
CD11222.43434440022444000836000OOOOOOOOOOOJ%64ﬁ£31%14444626600
N
| | i i
< '
G11222131344400224440003360000000000000053358839392222688800
N | | i [ S — - = =i i B B A B
| b D
B1129_.Pw.l_47474448800442006996mOOOOOOOOOOOOOO.I_A.I_A.I_A_I_An/_~9_.a4_um«_un<_un\_u4444£ﬂ_y£$88
- = — —
< [ '
F112261717444880044200699688886666666002711766..03534040068844
] D | i b — I T I R I ) [ ot SIS B S B o B S BN N
[ f
~ e DD f oo T — T S B B - M| T A = L I B - = B T B B
D11226171744488004420069964444888888800693396675750404408844
a T TR = i ===/l R LR FFQFERSHN S S Sqq
T
glg|— = ¥ ¥ O 0w 0w 0 n O O O F ¥ o o0 o0 o0 o0 vV Voo o0 o000 00000000 O0oOHHHH A ®mM®MNMmMmAAANo o o o F
e D [ = 5 i B = i [ h [S SR i
' f
C11440555500044000006609900000000000000055550055550000000000
& [ [T - - 1 LA A oo 1 114%3344443333 Gnﬂ
B11660555500044000004401108888666888844677774411118888222266
a 111112222233666668889..,_.I_A.I_A.I_AA_..A_’A,’A"Aﬁf\wO_J LB B\ B0 B I S A I T A R T I 1o
||~ = © © O W W W o o o F F o o 0 Qo F F O A4 = Of0 00 0 00 W O © WO F F OSSN0 00 O O O F NN
= = © © o w0 0 o F F o0 90 Q0 Q0 o F F o 4 4 00 0 Q0 Q0 O O 0 0 Q0 QO QO Q0 QO O v o oWy Wy o 0000000 o C0Q
— S e H = =AM MmO 00O O 000NN F AN NN O O F[N NN N -0 0 O O ¥ ¥ 4 A4~ = 00 0
111122277779941111224444555588880w
— —
O ~ &N M ¥ 1 O N~ W O O = A ® ¥ WO WO A A @Y WO N 0 O A4 A O F WO N0 OO0 4 M T w0~ 0 O
I T TS T s - T ST > T T B R B TR S S TP~ NN TN TR S S T T S e S - - B - S S S | (T T T S T T T T S T Y= B V= B o B (oS TR Yo S Yo SR Y- S Y= B Yo
X XX R X X X X XX XXX XX XXXXXXXXXXHPXXXXXXXXXXXXXXNXXXXXXXXXXXXXXXXXXXX
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Table 8.6 (continue)

4B
4L

4M

4K

4J

12

12

12

24

4A
8A

471

3C
6B

6C

3C

12
12
12

3B
3B

0

0

3A
6A

3A

-10

-10

24
24
-18

2D
4G

4H

4F

2H

16
-16

-16

16

-12

-12

12

12

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12
X13
X14

X15

X16

X17
X18
X19

X20

X21

X22

X23

X24
X25

X26

X27

X28
X29
X30

X31

X32

X33
X34
X35

X36

X37

X38
X39

X40
X41

X42
X43
X44

X46
X47
X48

X49

X51

X52

X54

X56

X58

X59
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Table 8.6 (continue)

6E
12B

61

6D
6H

6C
6G

6B
12A

6F

6A
6E

6D

5A
5A

4D
8D

8E

40

4C
8B

8C

4N

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

X16

X17

X18

X19

X20

X21

X22

X23

X24

X25

X26

xX27

X28

X29

X30

X31

X32

X33

X34

X35

X36

X37

X38

X39

X40

X41

X42

X43

X44

X46

X47

X48

X49

X51

X52

X53

X54

X56

X58

X59
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Table 8.6 (continue)

12B

12H

121

12G

12F

12A

12FE

10A

10A

9A
9A

8A
8H

81

8G

8F

0

6G
12C

12D

6K

6F
6J

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

X16

X17
X18
X19

X20

X21

X22

X23

X24

X25

X26

X27

X28
X29
X30

X31

X32

X33

X34

X35

X36

X37

X38
X39

X40

X41

X42

X43

X44

X45

X46

Xa7

X48

X49

X51

X52

X54

X56

X59

where A = 2iv/2 and B = —1 — 2iV/3.
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The information in Table 8.2 can be used to compute the power maps for the conjugacy
classes of elements of G and Programme C' is used to confirm that the character table of

G produced the unique p-power maps listed in Table 8.7.

Table 8.7: The power maps of the elements of 28:(U4(2):2)

e [alg 2 3 5 o llg 2 3 5

1A 1A 2A 2C 1A
2A 1A 4A 2B
2B 1A

2B 2D 1A 2C 2G 1A
2F 1A 4C 2B
2F 1A 4D 2B
4B 2B 4F 2B

2D 2H 1A 3A 3A 1A
4F 2B 6A 3A 2A
4G 2B
4H 2A

3B 3B 1A 3C 3C 1A

6B 3C 2A
6C 3C 2B

4A 41 2G 4B 4J 2D
8A 4C 4K 2D
4L 2D
4M 2E
4C 4N 2G 4D 40 2G
8B 4C 8D 4C
8C 4C 8E 4E
5A 5A 1A 6A 6D 3A 2D
6E 3A 2E
6B 6F 3C 2D 6C 6G 3B 2D
12A 6C 4B
6D 6H 3B 2C 6F 61 3C 2C
12B 6C 4A
6F 6J 3B 2G 6G 6K 3C 2H

12C 6C 4F
12D 6B 4H

8A 8F 4] 9A 9A 3A
8G aM
8H 4K
81 4M

10A 10A 5A 2C 12A 12E 6J 41

12B 12F 6D 4]
12G 6D 4K
12H 6D 4L
121 6D 4L
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8.5 The fusion of 2°:(U4(2):2) into 2%:Spg(2)

Since Uy(2):2 is a subgroup of Spg(2), then its fusion into Spg(2) (see Table 8.8) will
help to determine the fusion of G into 2%:Spg(2) by using the proposition below which is
obtained from [53].

Proposition 8.5.1. Let G, H and N be groups such that H < G and that class kA of H
fuses into class kB of G. Let a € kA and b € kB. Then the classes of N:H corresponding

to the coset Na will fuse into the classes of N:G corresponding to the coset Nb.

Remark 8.5.2. When H and G act on N, then a and b will have the same number fixed
points in N. This is true since a and b are conjugate in G and thus will have the same

number of fixed points in .

Table 8.8: The fusion of Uy(2):2 into SP(6,2)

llug2y2 —  loilspe,2) glug2y2 —  l9ilsp(e,2) Ylu, 22 —  loilspes,2) v, 22 —  lo1lsp(s,2)

1A 1A 3C 3C 6A 6E 6G 6B
2A 2A 4A 4B 6B 6C 8A 8A
2B 2B 4B 4C 6C 6FE 9A 9A
2C 2C 4C 4D 6D 6B 10A 10A
2D 2D 4D 4B 6E 6A 12A 12A
3A 3C 5A 5A 6F 6FE 12B 12C
3B 3C

Since G has index 28 in G, the action of G; on the cosets of G gives rise to a permu-
tation character x(G:|G) of degree 28. We deduce from the character table of G found
in [4] (or the GAP Library) that x(G|G) = la + 27a, where la and 27a are irreducible

characters of G of degrees 1 and 27, respectively.

Using the values of x(G1|G) on the classes of G, the information provided by the conju-
gacy classes, Proposition 8.51 and Remark 8.52 we are able to compute the partial fusion
map of G into G;. In order to complete the fusion map, we use the technique of set inter-

sections for characters to restrict the ordinary irreducible characters 120a, 135a, 405¢ and
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810b of Gy to G. We obtained that (¢1)os.(1,(2)2) = X26, (92)25:w42):2) = X0, (93)25:42):2)
= Xas and (P4)2s.(,(2):2) = Xss if the partial fusion of 2%:(Uy(2):2) into 28:SPg(2) is taken

into consideration. The complete fusion map of G into G, is listed in Table 8.9.

Table 8.9: The fusion of 2%:(U(2):2) into G = 2%:Sps(2)

ldle  [=las. 2020 = Wlasispa(o vl [=las. 22y = Wlasispea)
1A 1A 1A 2A 2C 2C
2A 2A 4A 4A
2B 2B
2B 2D 2D 2C 2G 2G
2F 2FE ac 4c
2F 2F 4D 4D
4B 4B 4E 4D
2D 2H 2H 3A 3A 3B
4F AE 6A 6A
4G 4F
4H 4G
3B 3B 3A 3C 3C 3C
6B 6B
6C 6C
4A ar am 4B 4 4H
8A 8B 4K 41
ar 47
aM 4K
ac 4N 4L 4D 40 45
8B 8A 8D 8C
8C 8A 8E 8D
5A 5A 5A 6A 6D 6F
6E 6G
6B 6F 61 6C 6G 6F
124 124
6D 6H 6D 6E 61 6J
12B 12B
6F 6J 6H 6G 6K 6K
12C 12C
12D 12D
8A 8F 8E 9A 9A 9A
8G 8G
8H 8F
81 8G
10A 10A 10A 124 12E 12F
12B 12F 12G
12G 12H
12H 127
121 121
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Chapter 9

The Character Table of an inertia

group of the maximal subgroup

26:Sp6(2) of F'i99

In the ATLAS we found that Np,,,(2°) = 26:5Ps(2) is a maximal subgroup of the smallest
Fischer sporadic simple group (discovered by Bernd Fischer) of index 694980. Here 2° is
a pure 2B-group, where 2B denotes a class of involutions in F'iss. The character table
of 26:5P(2) was constructed by J. Moori and Z.E. Mpono in [48] and it was also shown
in this paper that a group G of the form 26:(2°:5) is the inertia group in 26:9P;(2) of
one of the linear characters of the normal 2° subgroup. This group G of index 63 in
26:SPs(2) is a split extension of an elementary abelian 2-group of order 2° by the central-
izer of a transvection in SPs(2), which has the form 2°:55 = 2°:SP,(2). In this chapter
the character table of G = 26:(2°:55) is calculated. The methodology in the paper [48],
as in the current chapter, is a standard application of Clifford theory, made efficient by

the use of Fischer-Clifford matrices, as introduced by Fischer to assist in such calculations.

The character table of a submaximal subgroup Hz = 27:(2%:S5) of Aut(Figy) was com-
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puted in [27] by the method of Fischer-Clifford matrices. This group Hj is a direct product
of the group G = 2%:(2°:S5) by cyclic group group Cs of order 2. In general it is always
more difficult to construct the character table of any inertia group N:H; of an appropriate
split extension N:G. In Section 9.1 of this chapter it is shown how we can use Wilson’s
online ATLAS and MAGMA to represent G as a permutation group within 26:5Ps(2).
Appropriate MAGMA commands are then used to confirm that G sits maximally inside
26:5Ps(2) and that G is indeed the split extension 2° by 2°:Ss . The remainder of this
chapter consists largely of data concerning conjugacy classes, inertia groups, and Fischer-
Clifford matrices, with descriptions of the methods used for the computations, which were
assisted by the use Programme A in the computer package MAGMA. Consistency checks
for the actual character table of G were implemented using Programme C, written in

GAP. Finally the technique of set intersections is used to determine the fusion of G into

QGSPG(Z)

9.1 The group 2% (2°:Ss)

Using the Wilson’s online ATLAS we can obtain a permutation representation of de-
gree 3510 of Fligy. Then the MAGMA straight line program in [70] is used to gen-
erate D = 20:5P(2) as a permutation group inside Fisy. The MAGMA commands
"c:=Classes(D)” and ”C=:Centralizer(D,c[2,3])” are used to construct G = 26:(2°:5) as
the centralizer C'p(2A) of the conjugacy class 2A of D. The further MAGMA commands
?IsMaximal(D, C')” and "Index(D,C)” are a confirmation that the group C' sits maxi-
mally inside D and has index 63 in D. We use similar commands as in Section 6.1 to

confirm that C'= Cp(2A) is a split extension of 2% by 2°:S.
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We generated 2°:S5 as a linear group, consisting of 6 x 6 matrices over the field GF(2),

by the two elements g; € 2B and g, € 12A in Spg(2).

The class representatives of each class [g]gs.s, of 2°:Ss are given in terms of 6 X 6 matrices

over GF'(2) and in total there are 37 conjugacy classes of elements and are listed in Table

9.1.

Table 9.1: The conjugacy classes of 2°:S

91555

15

30

60

180

Class representative

955,54

2A

2C

2E

2G

21

1913555

15

30

60

180

Class representative

(913554

1A

2B

2D

2F

2H
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9.2 The conjugacy classes of 29:(2°:5)

In this section the conjugacy classes of G = 2%:(2°:S5) are determined by the method of

coset analysis as it was used in the previous three chapters.

Let G = 2%:(2°:S5) be the split extension of N = 26 by G = 2°:Ss. Having obtained
G =< g1, g2 > as a matrix group, we act G on the conjugacy classes of N = V;(2), where
V6(2) is the vector space of dimension 6 over the Galois field GF'(2). As a result of this
action, we obtain that the elements of N are partitioned into 4 orbits with respective
lengths of 1,1, 30 and 32. With the aid of MAGMA and the ATLAS, we are able to
identify the structures of the stabilizers corresponding to the 4 orbits of elements of N.
The point stabilizers, which are subgroups of G, are identified as P, = 2°:S5, P> = 2°:S5;,
Py =2%S; and P, = S;.

Let x(2°:54]2%) be the permutation character of 2°:S5 on 2°. We obtain that
X (2%:55/2°) = [2255;5: + [2255::55 +1225::§§+I§Z:SG = X(L3(4):3|P1) + x(L3(4):3| P) + x(L3(4):3| P3)
+ Xx(L3(4):3|Py) = la+ (la+ 5b+ 6b+ 15b) + (la+9a+ 10f 4+ 15b) = 4 x la+ 5b+ 6b+
9a 4+ 10f + 2 x 15b, which is the sum of the identity characters of the point stabilizers
induced to 2°:S5. We observe that the identity characters of the point stabilizers induced

to 2°:Sg are the permutation characters of 2°:Ss on the point stabilizers.

The values of x(2°:54/2°) on the different classes of 2°:Sg determine the number k of
fixed points of each g € 2°:55 in 2° (see Table 9.2). The value of k is the number of orbits
formed as N acts on a coset Ng. Then the action of Cg(g) determines the fusion of f;
of these k orbits. These values of the fs are calculated by programme A. Programme B
is used to compute the order of the elements for each conjugacy class [z] in G. Since we
have determined all the necessary information, the centralizer order |Ca(z)| = k‘Cij(g)' for

each class [z] of G is obtained. See Table 9.3 for all the information about the conjugacy
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classes of G.

Table 9.2: The values of x(2°:595/2°) on the different classes of 2°:Ss

[hl,s. 1A 24 2B 2C 2D 2E 2F 2G 2H 2I 2J 3A
25:5g
x(2°:5612°:S6) 1 1 1 1 1 1 1 1 1 1 1 1
x(2°:56]2°:S6) 1 1 1 1 1 1 1 1 1 1 1 1
x(2%:56|2%:S5) | 30 30 14 14 14 14 6 6 6 6 6 6
x(2°:86|S¢) 32 0 0 0 0 16 8 0 0 8 0 8
k 64 32 16 16 16 32 16 8 8 16 8 16
hl,s. 3B  4A 4B 4C 4D 4E AF 4G 4H Al 47 5A
25:5g
x(2%:56]2°:S6) 1 1 1 1 1 1 1 1 1 1 1 1
x(2%:56]2%:5¢) 1 1 1 1 1 1 1 1 1 1 1 1
x(2°:56]2°:54) 0 6 6 2 2 2 2 2 2 2 2 0
x(2%:56|56) 2 0 0 0 0 0 0 0 0 4 4 2
k 4 8 8 4 4 4 4 4 4 8 8 4
(M55, 54 6A 6B 6C 6D 6E 6F 6G 6H 8A 8B 104 124 12B
x(2°:56]2°:S6) 1 1 1 1 1 1 1 1 1 1 1 1 1
x(2°:56]2°:S6) 1 1 1 1 1 1 1 1 1 1 1 1 1
x(2%:56]2%:54) 6 2 2 0 2 2 0 0 0 0 0 0 0
x(2%:56|56) 0 0 0 0 2 0 0 1 0 0 0 0 0
x(2°:56|S6) 0 0 0 0 2 0 0 1 0 0 0 0 0
k 8 4 4 2 8 4 2 4 2 2 2 2 2
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Table 9.3: The conjugacy classes of elements of the groups 2%:(2%:5¢)

l9]55.5, k fj d; w [2]36.(25.54) | [#]26.(95.54)] | 1C26.(25.54) (@)
1A 64 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) 1A 1 1474560
fo = (1,0,1,0,0,1) | (1,0,1,0,0,1) 24 1 1474560
f3 =30 | (0,1,0,0,0,0) | (0,1,0,0,0,0) 2B 30 49152
fa =32 | (1,0,0,0,0,0) | (1,0,0,0,0,0) 2c 32 46080
24 32 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) 2D 2 737280
fo =15 | (0,1,0,0,0,0) | (0,0,0,0,0,0) 2E 30 49152
f3=16 | (1,0,0,0,0,0) | (1,0,1,0,0,0) 44 32 46080
2B 16 | fi=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) 2F 60 24576
f2=3 | (1,1,1,1,1,0) | (0,0,0,0,0,0) 2G 180 8192
fs=4 | (0,0,0,1,1,1) | (1,0,1,0,0,1) 4B 240 6144
fa =238 (1,0,0,0,0,0) (0,1,0,0,1,0) 4C 480 3072
2C 16 | fi=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) 2H 60 24576
f2=3 | (0,1,0,0,0,0) | (0,0,0,0,0,0) 21 180 8192
f3=4 | (1,1,0,0,1,1) | (1,0,1,0,0,1) 4D 240 6144
fa=8 | (1,0,0,0,0,0) | (0,1,1,0,0,0) 4E 480 3072
2D 16 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 2J 120 12288
f2=3 | (1,0,0,0,0,1) | (0,0,0,0,0,0) 2K 360 4096
fs=4 | (1,0,0,0,0,0) | (0,1,1,0,0,0) 4F 480 3072
fa=4 | (1,1,1,1,0,0) | (1,1,0,0,0,1) 4G 480 3072
fs=4 | (1,0,1,0,1,0) | (1,0,1,0,0,1) 4H 480 3072
2FE 32 | ;=1 (0,0,0,0,0,0) | (0,0,0,0,0,0) 2L 60 24576
fo=1 | (1,1,0,0,0,1) | (0,0,0,0,0,0) 20 60 24576
fs=6 | (1,0,0,0,0,1) | (0,0,0,0,0,0) 2N 360 4096
fa=8 | (1,1,0,0,1,1) | (0,1,1,0,0,0) ar 480 3072
fs=8 | (0,1,0,0,1,1) | (0,1,1,0,0,0) 47 480 3072
fe =8 | (0,1,0,0,0,1) | (0,0,0,0,0,0) 20 480 3072
2F 16 | fi=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) 2P 240 6144
fa=1 | (1,1,1,1,1,0) | (0,0,0,0,0,0) 2Q 240 6144
fs=2 | (1,1,1,1,0,1) | (0,0,0,0,0,0) 2R 480 3072
fa=6 | (1,1,1,1,1,1) | (0,0,0,1,0,1) 4K 1440 1024
fs=6 | (0,1,1,1,1,1) | (1,1,1,0,1,1) 4L 1440 1024
2G 8 fi=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) 25 480 3072
fz=1 | (1,0,0,1,1,1) | (1,0,1,0,0,1) aM 480 3072
fs=3 | (1,1,1,1,1,1) | (1,1,1,1,1,0) 4N 1440 1024
fa=3 | (1,1,1,1,0,0) | (1,0,1,1,0,0) 40 1440 1024
2H 8 fi=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) 2T 1440 1024
fz=1 | (1,1,1,0,1,1) | (1,0,0,0,0,1) apP 1440 1024
f3=1 | (1,1,1,1,0,0) | (1,1,0,0,0,1) 4Q 1440 1024
fa=1 | (1,1,1,1,1,0) | (1,0,1,0,0,1) 4R 1440 1024
fs=2 | (1,1,1,1,1,1) | (1,0,0,0,0,1) 45 2880 512
fe=2 | (1,1,1,1,0,1) | (1,1,1,0,0,1) AT 2880 512
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Table 9.3 (continue)

[9]25;56 k fi d;j w [1]26;(25;56) [“7]26:(25:56)‘ ‘026;(25;SG)<I>‘
21 16 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 2U 720 2048
fo=1 (0,1,1,1,0,1) (0,0,0,0,0,0) 2V 720 2048
fa =2 (0,1,1,1,1,1) (1,0,1,1,1,0) 4U 1440 1024
fa=2 | (1,1,1,1,1,1) | (1,0,1,1,1,0) av 1440 1024
fs =2 (1,1,1,1,0,1) (0,0,0,0,0,0) 2W 1440 1024
fe =4 (1,1,1,1,0,0) (1,1,0,1,0,0) 4w 2880 512
fr=4 | (1,0,1,1,1,1) | (1,1,0,1,0,0) ax 2880 512
2J 8 | fi=1| (0,0,0,0,0,0) | (0,0,0,0,0,0) 2X 1440 1024
fo=1 (1,1,1,1,0,1) (1,0,1,0,0,1) 4Y 1440 1024
fz =1 (1,1,1,0,0,1) (1,0,1,1,1,0) 4z 1440 1024
fa=1 (1,1,1,1,1,1) (0,0,0,1,1,1) 4AA 1440 1024
fs =2 (1,1,1,1,1,0) (0,1,1,0,1,0) 4AB 2880 512
fe=2 | (1,1,0,1,1,1) | (1,1,0,0,1,1) 4AC 2880 512
3A 16 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 3A 640 2304
fo=1 (1,0,1,0,0,1) (1,0,1,0,0,1) 6A 640 2304
fza =6 (0,0,0,1,0,0) (0,0,0,0,1,1) 6B 3840 384
fa=38 (0,0,0,0,0,1) (0,0,0,0,0,1) 6C 5120 288
3B 4 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 3B 10240 144
fo=1 (1,0,1,0,0,1) (1,0,1,0,0,1) 6D 10240 144
fza =2 (1,0,0,0,0,0) (1,0,0,0,0,0) 6E 20480 72
4A 8 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 4AD 960 1536
fo=3 (1,0,0,0,0,1) (0,0,0,0,0,0) 4AE 2880 512
fa =4 (1,0,0,0,0,0) (0,0,0,0,0,0) 4AF 3840 384
4B 8 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 4AG 2880 1536
fo=3 (0,1,0,0,0,0) (0,0,0,0,0,0) 4AH 2880 512
fz =4 (1,0,0,0,0,0) (1,0,1,0,0,1) 8A 3840 384
4C 4 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 4AI 2880 512
fo=1 (1,0,0,1,0,0) (0,0,0,0,0,0) 4AJ 2880 512
fza =2 (1,0,0,0,0,0) (0,0,0,0,0,0) 4AK 3840 256
4D 4 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 4AL 2880 512
f2=1| (1,0,0,1,0,0) | (0,0,0,0,0,0) 4AM 2880 512
fa =2 (0,0,1,0,0,1) (0,0,0,0,0,0) 4AN 5760 256
4E 4 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 4A0 5760 256
fo=1 (1,0,0,0,0,0) (0,0,0,0,0,0) 4AP 5760 256
fz=1 (1,0,0,0,0,1) (0,0,0,0,0,0) 4AQ 5760 256
fa=1 (1,0,0,0,1,0) (0,0,0,0,0,0) 4AR 5760 256
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Table 9.3 (continue)

[9]25_56 fj dj w [x]QG:(Q\r):SG) [x]QG:(ri):SG)‘ |026:(25:56)(1>‘
4F fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 4AS 11520 128
fo=1 (1,0,0,0,0,0) (0,0,0,0,0,0) 4AT 11520 128
f3=1 (0,1,0,0,0,0) (1,0,1,1,1,0) 8B 11520 128
fa=1 (1,1,0,0,0,0) (1,0,1,1,1,0) 8C 11520 128
4G f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 4AU 11520 128
fo=1 (0,0,0,1,1,0) (1,0,1,0,0,1) 8D 11520 128
f3=1 (1,1,0,0,0,1) (0,0,0,0,0,0) 4AV 11520 128
fa=1 (1,1,0,1,1,1) (1,0,1,0,0,1) 8E 11520 128
4H f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 4AW 11520 128
fo=1 (1,0,0,0,1,0) (1,0,1,0,1,1) SF 11520 128
fza=1 (0,1,0,0,0,1) (0,0,0,0,0,0) 4AX 11520 128
fa=1 (1,1,0,0,1,1) (1,0,1,0,1,1) 8G 11520 128
a1 f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 1Ay 5760 256
fo=1 (1,0,1,0,0,1) (0,0,0,0,0,0) 4AZ 5760 256
f3 =2 (1,0,0,0,1,0) leplianlo Ganinl) SH 11520 128
fa=2 (1,1,0,0,0,0) (0,0,0,0,0,0) 4BA 11520 128
f5 =2 (1,1,0,0,1,1) (0,0,1,0,0,0) 81 11520 128
4J f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 4BB 5760 256
fo=1 (1,0,1,1,1,0) (0,0,0,0,0,0) 4BC 5760 256
f3 =2 (1,0,0,0,0,0) (0,0,0,1,1,1) 8J 11520 128
fa=2 | (1,1,1,1,0,0,1) | (0,0,0,1,1,1) 8K 11520 128
f5 =2 (1,1,0,0,1,1) (0,0,0,0,0,0) 4BD 11520 128
5A f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 5A 36864 40
fo=1 (1,0,1,0,0,1) (1,0,1,0,0,1) 10A 36864 40
fza=2 (1,0,0,0,0,0) (1,1,0,0,0,0) 10B 73728 20
6A f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 6F 1280 1152
fo=3 (1,1,0,0,0,1) (0,0,0,0,0,0) 6G 3840 384
f3 =4 (1,0,0,0,0,0) (1,0,1,0,0,1) 124 5120 288
6B fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 6H 7680 192
fa=1 (1,0,1,0,1,1) (1,0,1,0,0,1) 12B 7680 192
f3 =2 (1,0,1,1,0,1) (0,1,1,0,0,0) 120 15360 96
6C fr=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 61 15360 192
fo=1 (1,0,1,0,1,1) (1,0,1,0,0,1) 12D 15360 192
f3=2 (1,0,1,1,1,1) (0,1,1,0,1,0) 12E 15360 96
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Table 9.3 (continue)

l9ly5.5, | * fj d; w [@]96.(25.54) | [#l26.(25.55)] | 1C€26.(25.54) (@)
6D 2| fi=11 (0,0,0,0,0,0) | (0,0,0,0,0,0) 6J 20480 72
fa=1 | (0,0,1,0,0,1) | (0,0,1,0,0,1) 12F 20480 72
6E 8 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 6K 7680 192
fo=1 | (1,0,1,0,0,1) | (0,0,0,0,0,0) 6L 7680 192
fs=2 | (1,0,0,0,0,0) | (0,0,0,0,0,0) 6M 15360 96
fa=2 | (1,0,1,0,1,1) | (0,1,1,0,0,0) 12G 15360 96
fs=2 | (1,0,0,0,1,0) | (0,1,1,0,0,0) 12H 15360 96
6F 4| f1=11 (0,0,0,0,0,0) | (0,0,0,0,0,0) 6N 15360 96
fa=1| (1,0,0,0,0,0) | (0,1,1,0,0,0) 121 15360 96
fs=1| (1,0,1,0,1,1) | (1,1,0,0,0,1) 127 15360 96
fa=1| (1,0,0,0,1,0) | (1,0,1,0,0,1) 12K 15360 96
6G 2| f1=11 (0,0,0,0,0,0) | (0,0,0,0,0,0) 60 61440 24
fa=1 | (1,0,0,0,0,0) | (1,0,1,0,0,1) 12L 61440 24
6H 4| f1 =11 (0,0,0,0,0,0) | (0,0,0,0,0,0) 6P 30720 48
fo=1| (1,1,1,0,1,1) | (0,0,0,0,0,0) 6Q 30720 48
fs=2 | (1,0,0,0,0,0) | (0,0,0,0,0,0) 6R 61440 24
8A 2 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 8L 46080 32
fo=1 | (1,0,0,0,0,0) | (0,0,0,0,0,0) 8M 46080 32
8B 2| f1=11 (0,0,0,0,0,0) | (0,0,0,0,0,0) 8N 46080 32
fa=1 | (1,0,0,0,0,0) | (1,0,0,0,0,0) 80 46080 32
10A 2| fi=11 (0,0,0,0,0,0) | (0,0,0,0,0,0) 10C 73728 20
fa=1| (1,0,0,0,0,0) | (1,0,1,0,0,1) 204 73728 20
124 2 | f1=1 | (0,0,00,0,0) | (0,0,0,0,0,0) 12M 30720 48
fo=1 | (1,0,0,0,0,0) | (1,0,1,0,0,1) 24 A 30720 48
12B 2 | f1=11 (0,0,0,0,0,0) | (0,0,0,0,0,0) 12N 30720 48
fo=1| (1,0,0,0,0,0) | (1,0,1,0,0,1) 24B 30720 48

9.3 The Inertia groups of 2°:(2°:5;)

Since G has 4 orbits on N, then by Brauer’s Theorem [29] G acts on Irr(N) with the
same number of orbits. The lengths of the 4 orbits will be 1, r, s and ¢, where r + s+t
= 63, with corresponding point stabilizers H,, Hy, H3 and H, as subgroups of G such
that [G:Hy] =1, [G:H,| =r, [G:H3] = s and [G:Hy| = t. Let T be the matrix group of
dimension 6 over GF(2) formed by the transpose of the generators of G. The action
of T on the classes of N = 2¢ is the equivalent of G acting on Irr(N). The action of
T on N has orbits of lengths 1, 1, 30 and 32 with point stabilizers T, T, (2°:S5) and
(2°:8,), respectively. We deduce that r = 1, s=30, and ¢ = 32, thus we obtain 4 inertia
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groups H; = 25:H; in 20:(2°:55), i € {1,2,3,4}, with corresponding inertia factor groups
H, =G, Hy =2%S;, Hy = 2°:S4 and Hy = S;. We use similar techniques as in the previ-
ous chapters to identify the structural information of the inertia factor groups H;. Note
that the action of G on N and Irr(N) is self dual. The inertia factor groups Hz = 2°:5,

and H, = Sg are constructed from elements within 2°:Sg and the generators are as follows:

o ((1,C0,(3)=2%8y, (1 €4A, (o €4J, (3 € 6F where

0 1 1 1 0 0 1 0 0 0 0 0 0 1 0 1 0 0

0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

1 0 0 0 0 1 0 1 1 0 0 0 0 1 1 0 0 0
= , C2= , C3=

1 o 0 O 0o 0 0o 0 1 1 0o 0 0o 0 1 1 0o 0

0 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 0

0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1

o (n,nm2)= Se, m € 21, ny € 6E where

1 0 poS—go-=iy 1 0 0 O 0 O

0 1 TORSCTHOST0 il 1 1 1 1 0

0O o0 1 0 0 O 0 1 1 0 0 O
m= > M2=

0o 0 1 1110 (|0 1 0o 1 0o 1 O

0O 1 0 0 1 O 1 1 0 1 1 0

0O 0 0 0 O 1 o 1 0 0 o0 1

The above generators were used to construct the character tables of the inertia factor

groups (see Appendix B).

9.4 The Fusions of the Inertia Factor Groups into
25356

We obtain the fusions of the inertia factors H; into 2°:Sg by using direct matrix conju-
gation in 2°:Ss and the permutation characters of the inertia factor groups in 2°:Sg of
degrees 30 and 32 respectively. MAGMA was used for the various computations. The

fusion maps of the inertia factor groups into 2°:Sg are shown in the Table 9.4 and Table 9.5.
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Table 9.4: The fusion of 2°:5, into 2°:S

(Mlos.s, —  l9la5.g4 (hlgs.5, =  9la5.g4 [hlps.g, =  [9la5.54 (Mlos.s, —  [9lp5.54
14 1A 2M 2J 27 2J 4K 4J
24 2D 2N 2H 24A 2B 4L 4B
2B 2D 20 2F 34 34 aM 41
2C 24 2P 2H 4A 4c 4N 4G
2D 2B 2Q 2G 4B 4D 40 4A
2F 2F 2R 2J ac 4B 4P 4H
2F 2E 25 2G 4D 4E 6A 6C
2G 2C 2T 27 4E 41 6B 6E
2H 2C 2U 2J 4F 4G 6C 6E
21 2F 2V 2D 4G 4J 6D 6F
2J 2B 2W 2H 4H 4F 6E 6A
2K 21 2X 21 41 4F 6F 6F
2L 21 2Y 2H 4J 4H 6G 6B

Table 9.5: The fusion of Sg into 2°:S
[hlsg —  lalys.g4 [Msg —  lglas.g, [hlsg —  lglas.g,
1A 1A 34 34 54 54
24 2F 3B 3B 6A 6F
2B 2F 4A 4J 6B 6H
2C 21 4B a1

9.5 The Fischer-Clifford Matrices of 2%:(2°:55)

Having obtained the fusions of the inertia factor groups H; into 2°:Ss, and the conjugacy
classes of G lying above each coset Ng, we are now able to compute the Fischer-Clifford
matrices of the group 2%:(2°:S5). The properties discussed in Chapter 5 are used and
applied to our groups as was done in the previous three chapters, in the construction of
these matrices. Note that all the relations hold since 2° is an elementary abelian group.

For each class representative g € 2°:S5, we construct a Fischer-Clifford matrix M (g) which

are listed in Table 9.6.
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Table 9.6: The Fischer-Clifford Matrices of 25:(2°:Sg)
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Table 9.6 (continue)

M(g) M (g)
1 1 1 1 1
1 1 1 1
1 1 -1 -1 1
1 -1 -1 1
M(4H) = M(4I) = 1 1 -1 1 -1
1 -1 1 -1
1 1 1 -1 -1
1 1 -1 -1
4 -4 0 0 0
1 1 1 1 1
1 1 -1 -1 1 1 1 1
M@4J) = 1 1 -1 1 -1 M(5A) = 1 1 -1
1 1 1 -1 -1 2 2 0
4 -4 0 0 0

M(6E) =

N

M(6G) =

1 1 1
M@6B)=| 1 1 -1
( 11
M(6D) =
1

M(6F) =

L
|
-

M(6H) =

M(8B) =

M(124) =

2 =2
1 1
1 -1
1 1
1 -1

9.6 Character Table of 29:(2°:5)

The character table of G is constructed following the method discussed in Chapter 5
and applied in Chapters 6, 7 and 8. The character table of G will be partitioned row-
wise into blocks B;, where each block corresponds to an inertia group H; = 2°:H;.

Therefore Irr(G) = Ui_, Bi, where B; = {x;]1 <j <37}, By = {x;|38 <j < 74},




Bs = {x;|75 < j <126}, By = {x;|127 < j < 137}. The character table of 2%:(2°:Sg)

is shown in Table 9.7.

Table 9.7: The Character table of 2°:(2°:Sg)
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Table 9.7 (continue)
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Table 9.7 (continue)

H (=} © O © O vV O O O © O W W W W o N O N O O VW VY|l O o O o O o o o o o
T T i T T [ — — — o~
< ' '
< CE
AlK|@ © © © © © © © © © O © O © © © O © © © © O © W W 0 0V o d o A o O v vIo O © 0o 0o © ©o 0 o © o
=< T T T T [T — I o=
K0424240404242404042066088882020660000000000000
— [N R} — [ B——] — - v I — — —
| f | f b b
N @ 0 0 O AN O A 0 N0 N0 N O A0 O O A F F I F Ao N O O O O Ol o0 O O o o o o o o o
o~ o= = = = — = = = = - = M = = M a4 a4 a4 O — — o~
| ) ' ) ' | | i ) h ) ' b
R © © © 0 0 0O o0 o0 o0 o0 o0 o0 o0 o0 o0 o o0 o0 o0 o0 o0 o0 o0 o0 o0 o0 o0 o0 o0 o0 o000 o000 o0 o0 o0 o0 o0 o0 o0 oo
<
T T T T T T T T T T T H o4 o H = = =3 =
A < ' ' [
~NlO 1 O O 1O A O N O W YV W YW W W oW YW W W W W W owowowo F o IF © © OV | o o O o o o o o o o
Sl =T T = T = e e e i Sy Sy e et | [ S e S-S HR RN~ SR R R S R}

} | | | v
H6868686868602020202888888882626666600000000000
S T S S S I R ol B
V@ © © © 0o o 0O o o o o o0 o0 o o0 o0 o o0 o o o0 o0 o0 o0 o0 o o0 o0 o0 o0 o0 o0 o0 o0 ol o0 o o0 o0 o o o o oo
<t

=~ e S S S S A A A H o+ o H = = =9 =
o
| 9 © 0 0o o o O ® © W O WV O W © o 00 0 0 W oW W oo F O F O OO Voo o0 o0 o0 o0 o0 o0 o0 o o0
Q= = = = = =R e A L LR i i e | U I = O e~ & e B
K|© 0 © 0 © 0 © 0 © 0 © 9 A 9 N o A 9 N 0 W W 00 W W W B A YV N Y Vv © O© VIO © O 0o 0 o o 0o o o o
= R L - B I I L L R A B B B B B
| © 0 0 0 00 o0 o0 o0 o0 o0 o0 o0 o0 o0 o0 o0 o0 o0 o0 o0 o0 o0 o000 o0 o0 o0 o0 o0 o0 o0 o0l o0 o0 o0 o o o o oo o
<t
4IRQR|O© © © © V © vV OV YV OV OV YV O O OV OV OV © VO W W W W W K oW oW A I ITAIA OOV OO OO0 O O o0 o0 o o o o
Slal’ T T T T T T T T T [ S S G S B b e e e
| b [
D0000000000000OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
[ R e A T o B o B o o o I B o B O I R s s
(3} V v v v | v [ [ [ - 4 4 4 4 4 4 4 4 4 < 4 a4 4 O a
o T | R
V@ © © © 00 0 o0 o0 o0 o0 o0 0 o0 o0 o0 o o0 o0 o0 o0 o0 o0 o0 o0 o o0 o0 o0 o0 o0 o0 o0 o0 o0l o0 o o o o o o o o o0
[a]
M© © © © © V V O YV V O OV YV O OV YV O YV YV W W W 0 W W 0 W A A NN VOO OO OO0 o0 O o0 o0 o o o o0
P e B e B R
[ T TR
<< Q@ QL O QO QO Q9 Q0 Q Q9 Q9 Q0 Q0 Q Q9 9 Q0 90 Q0 0 0 Q0 90 Q0 0 Q0 0 0 90 0 0 0 Q o009 9 9 9 0 N Qo O A
H|la[® @ o o 00 3 0 0 0 0 0o o0 adaa a0 0 00 0 FoHFE FIm MmO O O O 0 0 A N =
B R R i A A A ARSI~ B~ R T I T B S B o I B B B Yo}
Fh T
T Q@ QQ QO QO QO Q9 Q0 QO Q9 Q 9O Q0 Q0 Q9 Q0 90 Q Q0 Q0 0 0 Q0 0 0 00 0 0 Qoo Qo 9o 9 KV VO QA
-l o o o o o o 0 00 ;00 o000 aAJdadaAaa Q@ o000 0o FF I FINM MmO O O O 0w AN A
- = = = H A - o = = < 4 & & & N - = 4 ~ O a4 M M 0
O - A M ¥ W v~ PO = A M F WO~ 0 OO =4 NN F oW O~ 0 O A4 NN Y W O I
a M F W Ok O 0 O O O 6 O O O 0 A H 2 =& 4 A = =4 4 4 & 4O 4 & J A A ¥ AN H W N DM D M M
@ 3 9 8 9 o o O A A A4 4 A4 4 A4 4 = A o = A A = A = A =~ A A A A A A A +A[ A4 A4 A 4 A =4 =4 4 =< A =
X X X X X X X X X X X X X X X X XXX XXX xX XXX xX2XXXXXXXZ|XXXXXXXXX XX

141



Table 9.7 (continue)
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Table 9.7 (continue)
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Table 9.7 (continue)

3B
6D

6E

3B

3A
6A

6C

6B

3A

2]

4Y 4z 4AA 4AB 4AC

2X

21

4V

4w 4X

2W

2V 4U

2U

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

X16

X17

X18

X19

X20

X21

X22

X23

X24

X25

X26

X27

X28

X29

X30

X31

X32

X33

X34

X35

X36

X37

X38

X39

X40

X41

X42

X43

X44

X45
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Table 9.7 (continue)

3B
6D

6E

3B

3A
6A

6C

6B

3A

2]

4Y 4z 4AA 4AB 4AC

2X

21

4V

4w 4X

2W

2V 4U

2U

X46

xXa7

X48

X49

X50

X52

X53

X55

X56

X57

X60

X61

X62

X63

X64

X65

X66

X67

X68

X69

X70

X71

X72

X73

X74

X75

X76

X77

X78

X79

X80

X81

X82

X83

X84

X85

X86

X87

X88

X89

X90

X91
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Table 9.7 (continue)
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Table 9.7 (continue)

4E
4A0

4AQ

4AP

4AN

4D
4AL

4AM

4AK

4C
4AT1

4AJ

4AH

4B
4AG

8B

4AF

4A
4AE

8A

4AD

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

X16

X17

X18

X19

X20

X21

X22

X23

X24

X25

X26

X27

X28

X29

X30

X31

X32

X33

X34

X35

X36

X37

X38

X39

X40

X41

X42

X43

X44

X45
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Table 9.7 (continue)

4E
4A0

4AQ

4AP

4AN

4D
4AL

4AM

4AK

4C
4AT

4AJ

4AH

4B
4AG

8B

4AF

4A
4AE

8A

4AD

X46

xX47

X48

X49

X50

X51

X53

X54

X56

X58

X60

X61

X62

X63

X64

X65

X66

X67

X68

X69

X70

X71

X72

X73

X74

X75

X76

X77

X78

X79

X80

X81

X82

X83

X84

X85

X86

X87

X88

X89

X90

X91
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Table 9.7 (continue)

4E
4A0

4AQ

4AP

4AN

4D
4AL

4AM

4AK

4C
4AT

4AJ

4AH

4B
4AG

8B

4AF

4A
4AE

8A

4AD

-6

-6

-6

-6

X92

X93

X94

X95

X96

X97

X98

X99

X100

X101

X102

X103

X104

X105

X106

X107

X108

X109

X110

X111

X112

X113

X114

X115

X116

X117

X118

X119

X120

X121

X122

X123

X124

X125

X126

X127

X128

X129

X130

X131

X132

X133

X134

X135

X136

X137
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Table 9.7 (continue)

41

4AZ

8J

81

4AY

4AX

4H
8G

8H

4AW

4AV

4G
4AU

8F

8E

4AJ

4F
8C

8D

4AS

4AR

X1

X2

X3

X4

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

X16

X17

X18

X19

X20

X21

X22

X23

X24

X25

X26

xX27

X28

X29

X30

X31

X32

X33

X34

X35

X36

X37

X38

X39

X40

X41

X42

X43

X44

X45
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Table 9.7 (continue)

41

4AZ

8J

81

4AY

4AX

4H
8G

8H

4AW

4AV

4G
4AU

8F

8E

4AJ

4F
8C

8D

4AS

4AR

X46

xX47

X48

X49

X50

X51

X54

X55

X56

X58

X60

X61

X62

X63

X64

X65

X66

X67

X68

X69

X70

X71

X72

X73

X74

X75

X76

X77

X78

X79

X80

X81

X82

X83

X84

X85

X86

X871

X88

X89

X90

X91
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Table 9.7 (continue)

41

4AZ

8J

81

4AY

4AX

4H
8G

8H

4AW

4AV

4G
4AU

8F

8E

4AJ

0

4F
8C

8D

4AS

4AR

-2

-2

X92

X93

X94

X95

X96

X97

X98

X99

X100

X101

X102

X103

X104

X105

X106

X107

X108

X109

X110

X111

X112

X113

X114

X115

X116

X117

X118

X119

X120

X121

X122

X123

X124

X125

X126

X127

X128

X129

X130

X131

X132

X133

X134

X135

X136

X137
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Table 9.7 (continue)

6C
12D

12E

61

6B
12B

12C

6H

6A
6G

12A

6F

5A

10A

10B

5A

0

4J
4BC

8L

8K

4BB

4BA

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

X16

X17

X18

X19

X20

X21

X22

X23

X24

X25

X26

X27

X28

X29

X30

X31

X32

X33

X34

X35

X36

X37

X38

X39

X40

X41

X42

X43

X44

X45
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Table 9.7 (continue)

6C
12D

12E

61

6B
12B

12C

6H

6A
6G

12A

6F

5A
10A

10B

5A

0

0

4J

4BC

8L

8K

4BB

4BA

X46

xX47

X48

X49

X50

X51

X53

X54

X56

X58

X60

X61

X62

X63

X64

X65

X66

X67

X68

X69

X70

X71

X72

X73

X74

X75

X76

X77

X78

X79

X80

X81

X82

X83

X84

X85

X86

X87

X88

X89

X90

X91
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Table 9.7 (continue)

6C
12D

12E

61

6B
12B

12C

6H

6A
6G

12A

6F

6

5A
10A

10B

5A

4J

4BC

8L

8K

4BB

4BA

-2

-4

X92

X93

X94

X95

X96

X97

X98

X99

X100

X101

X102

X103

X104

X105

X106

X107

X108

X109

X110

X111

X112

X113

X114

X115

X116

X117

X118

X119

X120

X121

X122

X123

X124

X125

X126

X127

X128

X129

X130

X131

X132

X133

X134

X135

X136

X137

156



Table 9.7 (continue)

6G

12L

60

6F
12J

12K

121

6N

6E
6 M

12H

12G

6L

6K

6D
12F

6J

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

X16

X17

X18

X19

X20

X21

xX22

X23

X24

X25

X26

X27

X28

X29

X30

X31

X32

X33

X34

X35

X36

X37

X38

X39

X40

X41

X42

X43

X44

X45
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Table 9.7 (continue)

6G

12L

60

6F
12J

12K

121

6N

6E
6M

12H

12G

6L

6K

6D
12F

6J

X46

xX47

X48

X49

X51

X53

X54

X56

X58

X60

X61

X62

X63

X64

X65

X66

X67

X68

X69

XT70

XT71

X72

X73

X74

XT75

X76

X717

X718

X79

X80

X81

X82

X83

X84

X86

X87

X88

X89

X90

X91

158



Table 9.7 (continue)

6G

12L

60

6F
12J

12K

121

6N

6E
6M

12H

12G

6L

6K

6D
12F

6J

0

0
0
0

0

0

0

0

0

0
0
0

0

0

0

0

0
0

X92

X93

X94

X95

X96

X97

X98

X99

X100

X101

X102

X103

X104

X105

X106

X107

X108

X109

X110

X111

X112

X113

X114

X115

X116

X117

X118

X119

X120

X121

X122

X123

X124

X125

X126

X127

X128

X129

X130

X131

X132

X133

X134

X135

X136

X137
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Table 9.7 (continue)

12B

24B

12N

12A
24A

12M

10A

20A

10C

8B
8P

80

8A
8N

8M

6H
6Q

6R

6P

X1

X2

X3

X4

X6

X7

X8

X9

X10

X11

X12

X13
X14

X16

X17

X18

X19

X20

X21

X22

X23

X24

X25

X26

x27

X28

X29

X30

X31

X32

X33

X34

X35

X36

X37

X38

X39

X40

X41

X42

X43

X44

X45
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Table 9.7 (continue)

12B

24B

12N

12A

24A

12M

10A

20A

10C

0

8B
8P

80

8A
8N

8M

6H
6Q

6R

6P

X46
x47
X48

X49

X50

X51

X54

X55

X56

X58

X60

X61

X62

X63

X64

X65

X66

X671

X68
X69
X70

X71

X72

X73

X74

X75
X76

X771
X718
X79

X80

X81

X82

X83

X84

X86

X87

X88

X89
X90
X91
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Table 9.7 (continue)

12B
24B

12N

12A

24A

12M

10A

20A

10C

8B
8P

80

8A
8N

8M

0

6H
6Q

6R

6P

0
0
0

0

0
0

0
0
0

0

0
0

0

0
0

2
-2

-2

0
0
-2

0

X92

X93

X94

X95

X96

X97

X98

X99

X100

X101

X102

X103

X104

X105

X106

X107

X108

X109

X110

X111

X112

X113

X114

X115

X116

X117

X118

X119

X120

X121

X122

X123

X124

X125

X126

X127

X128

X129

X130

X131

X132

X133

X134

X135

X136

X137
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We restrict characters of Irr(2°:SP5(2)) to G and also compute the structure constants
(using GAP) for the set Irr(G) such that the consistency checks which were implemented
by Programme C are satisfied. The information about the conjugacy classes found in Table
9.3 can be used to compute the power maps for the elements of G and the Programme C

is used to confirm that our Table 9.7 produces the unique p-powers listed in Table 9.8.

Table 9.8: The power maps of the elements of 2°:(25:5¢)

fg el 2 3 5 g [¢lg 2 3 5
1A 1A 2A 2D 1A
2A 1A 2FE 1A
2B 1A 4A 2A
2C 1A
2B 2F 1A 2C 2H 1A
2G 1A 21 1A
4B 2A 4D 2A
4C 2B 4FE 2B
2D 2J 1A 2F 2L 1A
2K 1A 2M 1A
4F 2A 2N 1A
4G 2B 20 1A
4H 2B 47 2B
4J 2B
2F 2P 1A 2G 2S 1A
2Q 1A aM 24
2R 1A 4N 2B
4K 2B 40 2B
4L 2B
2H 2T 1A 21 2U 1A
4P 2A 2V 1A
4Q 2B 4U 2B
4R 2B 2W 1A
4S8 2B 4V 2B
4T 2B 4W 2B
4X 2B
2J 2X 1A 3A 3A 1A
4Y 2B 6A 3A 2A
4z 2B 6B 3A 2B
4AA 2A 6C 3A 2C
4AB 2B
4AC 2B
3B 3B 1A 4A 4AD 2H
6D 3B 2A 4AFE 2H
6E 3B 2C 8A 4D
4B 4AF 2H 4C 4AH 2F
4AG 2H 4AT 2G
8B 4D 4AJT 2G
4D 4AK 2F 4F 4AN 2F
4AL 2G 4A0 2G
4AM 2G 4AP 2G
4AQ 26

163



Table 9.8 (continue)

ge g 2 3 5 de [l 2 3 5
4F 4AR 2H 4G 4AT 2U
8C 4D 8E 4V
8D 4D 4AU 2V
4AS 21 8F 4V
4H 4AV 2U 41 4AX 2U
4AW 2V 4AY 2U
8G 4V 4AZ 2U
8H 4V 81 4V
8J 4V
4J 4BA 22U 5A 5A 1A
4BB 22U 10A 5A 2B
4BC 2U 10B 5A 2C
8K 4V
8L 4V
6A 6F 3A 2D 6B 6H 3A 2F
6G 3A 2F 12B 6A 4B
12A 6A 4A 12C 6B 4C
6C 61 3A 2H 6D 6J 3B 2D
12D 6A 4D 12F 6D 4F
12FE 6B 4F
6F 6K 3A 2L 6F 6N 3A 2J
6L 3A 2M 121 6B 4A
6M 3A 20 12J 6A 4F
12G 6B 41 12K 6B 4G
12H 6B 4J
6G 60 3B 28 6H 6P 3B 2P
12L 6D 4M 6Q 3B 2Q
6R 3B 2R
8A 8M 4AH 8B 80 4AK
8N 4AT 8P 4AL
10A 10C 5A 2D 12A 12M 61 4AD
20A 10A 4A 24A 12D 8D
12B 12N 61 4AF
24B 12D 8B
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9.7 The Fusion of 26:(2°:S;) into 2°:5P(2)

Let x(2%:SP5(2)|G) be the permutation character of degree 63 of 26:SP;(2) acting on
26:(25:S5). We obtain that x(26:5P(2)[2%:(25:55)) = la + 27a + 35b. We are able to
obtain the partial fusion of 2%:(2°:S¢) into 25:5P(2) by using the information provided
by the conjugacy classes of the elements of 2°:(25:Sg) and 2°:Spg(2), their power maps,
together with the permutation character of 26:5Ps(2) of degree 63, the fusion map of 25: S
into SPs(2) (see Table 9.9), Proposition 8.51 and Remark 8.52. We used the technique of
set intersections for characters to restrict the ordinary irreducible characters 63a, 315a,
63b, 315b, 440a and 4400 of (2°:SPs(2)) to 29:(2°:S6) to determine fully the fusion of the
classes of 26:(2%:5) into 2°:5Ps(2).

Table 9.9: The fusion of 2°:5s into SP(6,2)

(hlys.5s —  ldlsp(s,2) (hlys.55 —  ldlsp(s.2) [hlys.55 —  ldlsp(s,2) [hlys. 5 —  ldlsp(s,2)
14 1A 2J 2D 4G 4E 6E 6B
2A 2D 3A 3C 4H 4C 6F 6G
2B 2D 3B 3A ar AE 6G 6D
2c 24 44 4C 4J 4B 6H 6F
2D 2B 4B 4B 5A 5A 8A 8A
2E 2D ac 4D 6A 6E 8B 8B
2F 2C 4D 4D 6B 6B 10A 10A
2G 2A 4E 4A 6C 6D 124 124
2H 2D AF AE 6D 6A 12B 12B
21 2c

Let ¢ be the character afforded by the regular representation of 25:S5. We obtain that
¢ = 337,0;®;, where ®; € Irr(2°:S) and o; = deg(®;).Then ¢ can be regarded as a
character of 2°:(2°:Ss) which contains 2° in its kernel such that

120:55] if @€ 26
((x) =

0 otherwise .
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If ¢ is a character of 26:5Ps(2) than we have that

1

<Gy >96:(25:56) = M{C(MW(M) +((24)¢(24) + 30¢(2B)p(2B) + 32¢(2C)p(2C)}

= G (S04 + 624) +3062B) +320(20))

1
= 6—4{¢(1A) + ¢(2A) + 300(2B) + 32¢(2C)}
- < ¢26, ]_26 > .
Here 146 is the identity character of 2° and @96 is the restriction of ¢ to 2°.We obtain that
P6 = a101 + agby + azbz + asby,

where a; € NU{0} and 6; are the sums of the irreducible characters of 25 which are in the
same orbit under the action of (2°:5¢) on Irr(2°), for i € {1,2,3,4}. Let ¢, € Irr(2°),
where j € {1,2,3,...,137}. Then we obtain that

th = ¢ , deg(6h) = 1
0y = o , deg(bz) = 1
32
93 = Z(p] s deg(93) = 30
j=3
64
0, = Z w;, deg(fy) = 32.
7=33

Hence

32 64
P96 = a1p1 + aspap; + as Z Pj + a4 Z ®is

j=3 =33

and therefore

(o6, 020) = af + a3 + 30a3 + 32a;
= L {60400(14) + 6(24)6(24) + B06(2B)6(2B) + 326(2C)6(2C)}
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where a1= < (, ¢ >96.(25.5)-

We apply the above results to some of the irreducible characters of 2°:5Ps(2), which in
this case are ¢; = 63a, ¢ = 315a, ¢3 = 63b and ¢4 = 3150 . Their respective degrees are
63, 315, 63 and 315. For ¢; we calculate that

< C\ b1 Saoimasy= 6i4{63 F(=1) +30(=1) 4+ 32(—1)} =0 .

Now ay + as + 30as + 32a4 = 63 | since degp; = 63. Since a; = 0 , we must have that
as = a3 =ay; = 1 . Note that 26:(25:55) does not have irreducible characters of degree
63. We obtain that (¢1)2s.(25:5,) = X1 + Xa7 + X128 if the partial fusion of 20:(2°:55) into

26:SPs(2) is taken into consideration. Similarly for ¢o, ¢3 and ¢, we obtain that

(d2)28:(25:55) = X7 + X111 + X119
(P3)26:(25:565) = X2 + Xas + Xi27
(@4)26:(25:5) = X18 + X112 + X120-

By making use of the values of ¢1, ¢, ¢3 and ¢4 on the classes of 2°:5P(2) and the

values of (¢1)26:(25:54), (02)26:(25:5))» (P3)26:(25:54) and (P4)a6.(25.5,) 0N the classes of 20:(2°:Sg)
together with the partial fusion, the complete fusion map of 25:(2°:Ss) into 25:5P(2) is
given in the Table 9.10.
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Table 9.10: The fusion of 2%:(2°:S5) into 2°:5P(2)

[g](25:5‘6) [x]26:(25:56) i [y]QG:SPG(Q) [91(25:56) [1’]26:(25:56) i [9]26:5136(2)
1A 1A 1A 2A 2D 2B
2A 2A 2FE 2B
2B 2B 4A 4A
2C 2C
2B 2F 2D 2C 2H 2F
2G 2D 21 2F
4B 4B 4D 4C
4C 4B 4FE 4C
2D 2J 2D 2E 2L 2H
2K 2D 2M 2H
4F 4B 2N 2H
4G 4B 20 2H
4H 4B 41 4FE
4J 4FE
2F 2P 2F 2G 25 2B
2Q oF aM 4A
2R 2F 4N 4A
4K 4C 40 4A
AL 4C
2H 2T 2H 21 2U 2F
4P 4F 2V 2F
4Q 4F 4U 4C
4R 4F 2W 2F
45 4F 4V 4C
4T 4F 4W 4C
4X 4FE
2J 2X 2H 3A 3A 3C
4Y 4FE 6A 6B
47z 4E 6B 6B
4AA 4E 6C 6B
4AB 4FE
4AC 4FE
3B 3B 3A 4A 4AD 4L
6D 6A 4AE 4L
6E 6A 8A 8B
4B 4AF 4J 4C 4AH 4N
4AG 4J 4AI1 4N
8B 8A 4AJ 4N
4D 4AK AN 4FE 4AN 4H
4AL 4N 4A0 4H
4AM AN 4AP 4H
4AQ 4H
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Table 9.10 (continue)

[9)(95.55)  [#l36.(95.55) —  [WWla6.5p,(2) l9](25.54)  [#la6.(95.55) —  [¥la6.5p4(2)
aF 4AR 4Q 4G 4AT 4Q
8C 8C 8E 8C
8D 8C 4AU 4Q
4AS8 4Q 8F 8C
4H 4AV ac ar 4AX 4Q
4AW 4c 4AY 4Q
8G 8B 4AZ 4Q
8H 8B 8I 8C
8.J 8C
4J 4BA 4J 5A 5A 5A
4BB 4J 10A 10A
4BC 47 10B 10A
8K 8A
8L 8A
6A 6F 6H 6B 6H 6D
6G 6H 12B 12B
124 12E 12C 12B
6C 61 6G 6D 6.J 6C
12D 12C 12F 124
12E 12C
6E 6K 6D 6F 6N 6K
6L 6D 121 12F
6M 6D 12J 12F
12G 12B 12K 12F
12H 12B
6G 60 6G 6 H 6P 61
12L 12C 6Q 61
6R 61
8A 8M 8E 8B 80 8G
8N 8E 8P 8G
10A 10C 10B 124 12M 12G
20A 204 24A 24A
12B 12N 12H
24B 24B
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Appendix A

Progamme Av- Vector Space( FiniteField(q),n);

S < gl,92 >:= MatrizGroup < n, Finite Field(GF(2))|generators >;
¢ := classes(S);

O, := Orbit(S,elt < Vo, ...,qn >);

Oy = Orbit(S,elt < V|B1, ..., Bn >);

Oy = Orbit(S,elt < V|d1, ..., 6, >);
O := 0, join Oy join Oz join...join O;
for i to n(c) do;

print cli, 1];

w:=elt < V|01,02,...,0, >;

e:={}

while(O diff e) ne {}do

d:={};

for xz in O do;

yi={r+w+ (zxcli,3])};

d:= d join y;

end for;
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print d;

e:=d join €

if(O diff €) ne {} then

w = Representative(O diff e);

end if;

end while;

ri= {}

;uci= elt <V|0,0,...,0 >;

while(O diff r) ne {} do;

m = {};

for g in Centralizer(S,cli, 3]) do

l:= uxg;
m = m join l;
end for;

print” A block for the vectors under the action of centralizer :”;

print m;

Ti= m join r;

if (O diff r) ne {} then

u = Representative(O diff r);

end if;
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end while;

DIETE” * sk sk sk sk sk ok sk 5k k %k %k %k % Kk Kk Kk Kk ok K K K Kk ok ok ok ok ok ok ok k)

end for |

Progamme B
V := VectorSpace(FiniteField(q),n);
S < gl,g92 >:= MatrizGroup < n, Finite Field(GF(2))|generators >;
¢ := classes(S);
g = cli,3;
d = elt <Vl]ag,...,an >
w =‘d+dxg+dx(g®)+dx(¢°) +d*(g°) + .. +d* (g™ ")

print w

Progamme C

gap>ct:=fuction()local ct;ct:=rec();
>ct.SizesCentralizers:=[m Centralizer Orders];
>ct.OrdersClassRepresentatives:=[m Class Representatives Orders];
>ct.Irr:=[[m x m irreducibles]]; >ct.UnderlyingCharacteristic:=0;ct.Id:=G;

>ConvertToLibraryCharacterTable NC(ct);return ct;end;ct:=ct();
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gap>SetInfoLevel(InfoCharacterTable,2);

gap>IsInternallyConsistent(ct);

gap>PossiblePowerMaps(ct,p); (p-prime divisor of |G]).
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Appendix B

(L3(4):2)

Character Tables of inertia factor groups of 2°

Table 9.11: The Character table of H;

14
2880
14B

13
2880
14A

12
5040

11

2880

10
2880

315 2240 1260 2520 2520 8064 6720

120

8A

7B

TA

6A

2A 2B 3A 4A 4B 4C

1A

10
13
13

11
14
14

11

10
11
11

12
12
12

10
10

0

20
20
35

45

<

45

45

45

64
64
70
126

0

Where A = —1 — b7.

Class

Size

Order

X1

X2

X3

X4

X6

X7

X8

X9

X10

X11

X12

X13

X14

Table 9.12: The Character table of Hy

12
240

11

320

10
384

60 320 60 120 120 240
4A

2C

40

2B

4D 5A 6A 8A
10
10

4C

4B

3A

2A

1A

12
12

11

15
15
15

30

Class
Size

Order

X1

X2

X3

X4

X6

X7

X8

X9

X10
X11

X12

180



Table 9.13: The Character table of Hj

14
32

13
24

10 11 12
4E

12

4B

24

12 32 12 12
3A 4A 4C 4D

2F

12

2E

6A

2A 2B 2C 2D

1A

12

11

10

Class

Size

Order

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

Table 9.14: The Character table of Hy

10

18

18 36 24 18
4B 6A 8A 8B

4A

12

2A 2B 3A

1A

Class

Size

Order

X1

X2

X3

X4

X6

X7

X8

X9

—21.

Where A
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Character Tables of inertia factor groups of 2%:(L3(4):3)

Table 9.15: The Character table of H;

Class 1 2 3 4 5 6 7 8 9 10 11
Size 1 315 336 336 960 960 2240 3780 4032 4032 5040
Order 1A 2A 3A 3B 3C 3D 3E 4A 5A 5B 6A
P= 1 1 4 3 6 5 7 2 10 9 3
P=3 1 2 1 1 1 1 1 8 10 9 2
P=5 1 2 4 3 6 5 7 8 1 1 12
P=7 1 2 3 4 5 6 7 8 10 9 11
X1 1 1 1 1 1 1 1 1 1 1 1
X2 1 1 A —A A —A 1 1 1 1 A
X3 1 1 A A A A 1 1 1 1 A
X4 20 4 5 5 -1 -1 2 0 0 0 1
X5 20 4 —A —A F F 2 0 0 0 A
X6 20 4 —-A -A F F 2 0 0 0 A
X7 45 -3 0 0 3 3 0 1 0 0 0
X8 45 -3 0 0 3 3 0 1 0 0 0
X9 45 -3 0 0 B B 0 1 0 0 0
X10 45 -3 0 0 B B 0 1 0 0 0
X11 45 -3 0 0 B B 0 1 0 0 0
X12 45 -3 0 0 B B 0 1 0 0 0
X13 63 -1 3 3 0 0 0 -1 H *H -1
X14 63 -1 3 3 0 0 0 -1 *H H -1
X15 63 -1 B B 0 0 0 -1 H *H —A
X16 63 -1 B B 0 0 0 -1 *H H —A
X17 63 -1 B B 0 0 0 -1 H *H —A
X18 63 -1 B B 0 0 0 -1 *H H —A
X19 64 0 4 4 il 1l 1 0 -1 -1 0
X20 64 0 e} G| A A 1 0 -1 -1 0
X21 64 0 el el A A 1 0 -1 -1 0
X22 105 9 0 0 0 0 = 1 0 0 0

Where A = —1 — b3, B=—3 — b3, C = —1 — b7, D = E(21)° + E(21)?! + E(21)?°, E = E(21)? + E(21)% + E(21)'!, F = —5 — 5b3,
G=-2-2i3, H=—b5, I = E(15)*' + E(15)'* and J = E(15)? + E(15)8.
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Table 9.15 (Continue)

vlglalg 3 g e" R TR TURRMBEQ OSSO oo ~ g O
o| [

S

S T2 TSR TR ORDRARRS eSS e TN
Q| 3 |

N
glglalezagel"R <7 <PORIARAQAE@SSSS S0 ~|x< o
Q| = |

la
N%M%BﬂG1A7AdAfamchDEfEiDOOOOAU\OlAfAO
o |5 |

a
m%www3NlAfAOOOOOOOOOHH,J,IJIJ.AfAO
2|8 . ro
”MMWw93mlfAAOOOOOOOOUHHJIfJ,I.I_AfAAO
=N =] * [
<
wﬁww94zlu1A7AOOOOOOOOOHH,I,JIJJAfAO
= = * [
<
.b%MNm4wlfAAOOOOOOOOOHHIJ,I,JJA*AAO
=N * [
<
M%mmwwl111J.I_._I_,fccfccfccoooooo.lllo
&
B%MBMMlllldeCiccfccch000001110
&
mmw.a.?ﬂulfAAlfAAOOOOOO,I_.defAAAOOOO
2 | [

" Blov o oo

slef=|momon O 4 a4 ™ ¥ W O N~ ® O O = o
= .~ &R =~ a4 o ¢ »nwn v~ 0o o = A H A4 =4 ~ =4 ~ = =4 O o o
Old|[O|&% A A A X X X X X X X X X 2 X X 2 X X X X 2 X X %X

E(21)? + E(21)8 + BE(21)!!, F = —5 — 503,

E(21)° + E(21)?' + E(21)?°, E
G=-2-2i3, H=—b5, 1= E(15)! + E(15)'* and J = E(15)? + E(15)3.

Where A = —1—b3, B=—-3—b3,C =—1—0b7, D
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Table 9.16: The Character table of Hy

10
192

60 16 16 80 80 180 320
3A 3B 3C 3D

2B

15

2A

5A
11
11

4A

3E

1A

<

*E

*E
*E

15
15

45

Class

Size

Order

X1

X2

X3

X4

X6

X7

X8

X9

X10

X11

X12

X13

X14

X16

X17

X18

X19

Where A = —1 — b3, B= —3 — 3b3, C = —2 — 2i3, D = —5 — 5b3, E = —b5, F = —E(15)%> — E(5)% and G = —E(15)'! — E(5)'4.

Table 9.16 (Continue)

wwwmur\ulfAAWchfFfFfG.l_.fAAOOOOOOO
=9 [
wmwnwralAfAWuEiGFFGJAJnOOOOOOO
=1
wawu4lAfAEWufFGGFJAanOOOOOOO
i
wmmmm41,AAETF,GfG,Fl_T_n%OOOOJUOO
wmw72M1,AA0000001,AA1_;A,“A1_AA,“%O
[a]
HMMSSBIA,AJJ.A_nA,n,A_anOOOIA,AOOOO
—| o o o H|lH ~ =~ ~ 4 4 O O O O © o O
1ww11 BOEREe R
0 sl Moo
o
SISIE) P e s e 233222822
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Where A = —1 — b3, B= —3 —3b3, C = —2 — 2i3, D = —5 — 5b3, E = —b5, F = —E(15)%> — E(5)% and G = —E(15)'! — E(5)'4.
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14
48

6D

13
48
6C
—A

12

24
10
36

6B

6B

11

24

6A
36
6A

10
36
4A
10
54
4A

32

3E
24
3E

16
24
3D

3D

16
12
3C

3C

3B
12
3B

3A
3A

12
2C

Where A = —1 — b3, B = —3 — 3b3 and C = 2b3.
2A

2B

Table 9.18: The Character table of Hy
1A

Table 9.17: The Character table of Hj

lfAAlAfAOOOU
|

"Rt oeooo

SRy T e
I R

1,AA1_.7._“A,n02B,B

2A
Class
Size
Order

X1
X2
X3
X4
X5
X6
X7
X8
X9
X10

1A

Class
Size
Order
X1
X2

X3

X4

X5

X6

X7
X8

X9
X10
X11
X12
X13
X14

Where A = b3 and B = 2b3.
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(U4(2)2)

Character Tables of inertia factor groups of 2°

Table 9.19: The Character table of H;
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Table 9.19 (Continue)
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Table 9.20: The Character table of Hy

14
36

12C

13
36

12B

12
36
12A

11
54
8B

10
54

8A

72

24 18 36 18
4A 4B 6A 6B

3B

36

2B

3A

2A

1A

11

10

‘Where A = —3¢ and B = 21.

12

Class

Size

Order

X1

X2

X3

X4

X6

X7

X8

X9

X10

X11

X12

X13

X14
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Table 9.21: The Character table of Hs

10
32

10

24

12 12
2G 2H

2F

12

2FE

3A
10

2A 2B 2C 2D

1A

-4

Class

Size

Order

X1

X2

X3

X4

X6

X7

X8

X9

X10
X11

X12

X13

X14

X15

X16

X17

X18
X19

X20

Table 9.21 (Continue)
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(25356)

Character Tables of inertia factor groups of 2°

Table 9.22: The Character table of H; = H,

12
160

11

180

10
180

30 60 60 180
2F

2K

30

2D

2H 27 2J 3A

2G

2A 2B 2C

1A

12

11
11

10
10

12

-6

10
10

10
10

10
10
-10
-10
-10
-10
15
15
15
15
16
-20
-24

10
10
10
10
10
10
15
15
15

16

16

16
20
24
24
30
30
30
30
36
40

-24

30
30
-30

-10
-10
-12

10
10
12

-30

-36

-40

-8
-8
-8

3

-40
-40
-40

45

40
40
40
45

45

45

45

45

45

45

Class
Size

Order

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10
X11

X12

X13

X14

X15

X16

X17

X18

X19
X20
X21

X22

X23
X24

X26
X27
X28
X29
X30

X35

X36
X37
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Table 9.22 (continue)
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Table 9.22 (continue)

37
960
12B

36
960

12A

35
2304

34
1440

33
1440

32
1920

31
1920

30
960

26 27 28 29
480 640 960

480

25
160

6B 6C 6D 6E 6F 6G 6H 8A 8B 10A
12 12

6A

12

26

26
14
36

17 24
35

34

13 16
33
33

13

12

13

12

37

34

32

31

30

29

28

27

26

25

Class

Size

Order

X1

X2

X3

X4

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

X16

X17

X18

X19

X20

X21

X22

X23

X24

X25

X26

X27

X28

X29

X30

X31

X32

X33

X34

X35

X36

X37
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Table 9.23: The Character table of Hg

17

16

15

14

13

12

11

10

2A 2B 2C 2D 2E 2F 2G 2H 27 2J 2K 2L 2M 2N 20 2P

1A

17

16

15

14

13

12

11

10

-3

Class

Size

Order

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

X16

X17

X18

X19

X20

X21

X22

X23

X24

X25

X26

X27

X28

X29

X30

X31

X32

X33

X34

X35

X36

X37

X38

X39

X40

X41

X42

X43

X44

X45

X46

xX47

X48

X49

X50

X51

X52
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Table 9.23 (continue)

34
24
4E
12
34

33
12

31 32
4D

30
12

29
4A

28
12

2AA

27
12
2Z

26
12

2Y

25
12

2X

24
12

2W

23
12

2V

20 21 22
12
2U

19

18

12

4C

12

4B

32
3A

12

2T

2R 28

2Q

29

33

32

31

30

28

27

26

25

24

23

22

21

20

19

18

Class

Size

Order

X1

X2

X3

X4

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

X16

X17

X18

X19

X20

X21

X22

X23

X24

X25

X26

xX27

X28

X29

X30

X31

X32

X33

X34

X35

X36

X371

X38

X39

X40

X41

X42

X43

X44

X45

X46

xa47

X48

X49

X50

X52
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Table 9.23 (continue)
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Table 9.24: The Character table of Hy

11
120

10
120

15 45 40 40 90 90 144
4A 4B

2B

15

2A

6A 6B

5A

3A 3B

2C

1A

10

11

10

10
10
16

Class

Size

Order

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

The conjugacy classes of SP(6,2)

Table 9.25: The conjugacy classes of SP(6,2)

a

! = =)
S - 0 o 3 3 3
& © 3 B 3 B a
K& S E =
S

° cocoH o~ co =00 co cococo
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B co~o oo o~ O o~ o~oo
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Iy < q Q q < Q
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Table 9.25 (continue)

llglsp6,2)l

48384

10080

30240

40320

207360

90720

Class representative

lglsp(s,2)

5A

6B

6D

6F

TA

8B

llglspe,2)l

45360

10080

20160

40320

120960

90720

Class representative

lglsp(s,2)

4E

6A

6C

6E

6G

8A
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Table 9.25 (continue)

llglsps,2)l

145152

60480

96768

Class representative

(9]sP(6,2)

10A

12B

15A

ll9)lsp(s,2)!

161280

60480

120960

Class representative

l9lsp(s6,2)

9A

12A

12C
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