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Abstract

Tuberculosis (TB) is currently one of the major public health challenges in South Africa,

and in many countries. Mycobacterium tuberculosis is among the leading causes of mor-

bidity and mortality. It is known that tuberculosis is a curable infectious disease. In the

case of incomplete treatment, however, the remains of Mycobacterium tuberculosis in the

human system often results in the bacterium developing resistance to antibiotics. This

leads to relapse and treatment against the resistant bacterium is extremely expensive and

difficult. The aim of this work is to present and analyse mathematical models of the

population dynamics of tuberculosis for the purpose of studying the effects of efficient

treatment versus incomplete treatment. We analyse the spread, asymptotic behavior and

possible eradication of the disease, versus persistence of tuberculosis. In particular, we

consider inflow of infectives into the population, and we study the effects of screening.

A sub-model will be studied to analyse the transmission dynamics of TB in an isolated

population. The full model will take care of the inflow of susceptibles as well as inflow of

TB infectives into the population. This dissertation enriches the existing literature with

contributions in the form of optimal control and stochastic perturbation. We also show

how stochastic perturbation can improve the stability of an equilibrium point. Our meth-

ods include Lyapunov functions, optimal control and stochastic differential equations. In

the stability analysis of the DFE we show how backward bifurcation appears. Various

phenomena are illustrated by way of simulations.
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Chapter 1

Introduction

1.1 The impact of Tuberculosis

Tuberculosis (TB) is a bacterial infectious disease of humans and animals caused by the

pathogen Mycobacterium tuberculosis (MTB). The disease is characterized by the forma-

tion of tubercles on the lungs and other tissue of the body, often developing long after

the initial infection. It is an airborne disease and one of the most common infectious

diseases. TB is one of the oldest recorded human and animal diseases. It has been in

animals before the existence of the human species. Evidence that supports human cases

of TB as well as its role in human mortality goes back for centuries [18]. It is not no-

ticeable when individuals are infected and that makes the transmission of the disease

easier. TB is acquired through interactions with infectious individuals, interactions that

include primarily the sharing of a common closed environment. Once infected, a person

stays infected for many years, possibly latently-infected for life. The clinical observation

of this disease reveals that the patient suffers from a latent fever that begins towards

evening and vanishes again at the break of day. It is accompanied by violent coughing,

which expels thin purulent sputum. The patient speaks with a hoarse voice, breathes

with difficulty and has flushed cheeks. The entire body would turn ashen. The eyes have

a weary expression, the patient is gaunt in appearance but often displays astonishingly
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2 CHAPTER 1. INTRODUCTION

good physical or mental activity. In many cases, wheezes are to be heard in the chest, and

when the disease spreads, sweating is seen on the upper parts of the chest. The patient

loses appetite or suffers hunger pangs. They are often also very thirsty. The ends of the

fingers swell and the fingernails curve abnormally. This infectious disease is so devastating

that it has become a motivating force in the development of the fields of bacteriology and

modern epidemiology [64]. Tuberculosis remains an expanding global crisis, killing about

2 million individuals and causing 8 million new cases of disease every year [11]. As a

result of Mycobacterium replication together with tissue-damaging, the immune response

converts the lung into a highly efficient aerosol-generating chamber that provides the

source for continued transmission. It is estimated that one-third of the global population

is currently infected with M. tuberculosis. TB is now the leading cause of death among

HIV-positive persons worldwide and accounts for 40 percent of AIDS deaths in Africa

and Asia (WHO, 1999). In the United States, active TB is included as an AIDS-defining

opportunistic infection for HIV-infected persons (CDC, 1998). Adding further urgency

to controlling TB, multidrug-resistant TB (MDRTB) has emerged as a serious problem

in many parts of the world, including Russia, Latvia, Estonia, Argentina, the Dominican

Republic, and the Ivory Coast (WHO, 1999). Up to 50 million people worldwide may

be infected with MDRTB (WHO, 1999). In low-prevalence countries, drug resistance

is generally more common in foreign-born populations, most likely reflecting inadequate

treatment programs and inadequate drug availability in high-prevalence countries (Broek-

mans, 2000). Most of the individuals infected by TB stay in a latent stage, and only a

small proportion of individuals develop active TB. Mathematical models have been used

to study communicable diseases such as measles, influenza, chicken pox and rubeola [18].

TB is paradoxically different, despite its fundamental role in modern epidemiology and

the development of bacteriology.

 

 

 

 



1.2. IMMUNOBIOLOGY OF TUBERCULOSIS 3

1.2 Immunobiology of Tuberculosis

This section presents a brief overview on the fundamental idea of the word immunology.

This entails the study of the immune system, which is the body’s defense system against

disease. Viruses, bacteria, fungi and parasites are causative agents called pathogens. Im-

mune response can be divided into two types which are the adaptive immune response and

the innate immune response. An adaptive immune response is usually pathogen specific.

It is developed as an adaptation to infection with that pathogen. An innate immune

response is instant and not pathogen specific.

For immune response to be effective, the following tasks must be done by the immune

system.

1. Immunological recognition: The immune system must be able to discover and recognize

the pathogens.

2. Immune effector functions: Once infection by a pathogen has been detected, the Im-

mune system must be able to contain or to clear the infection.

3. Immune regulation: The immune system can be harmful to the host’s body if it is not

kept in check. Therefore there must also be mechanisms for self-regulation.

4. Immunological memory: Adaptive immunity has a unique feature of generating im-

munological memory. Subsequent exposure to an already encountered pathogen will give

way for a stronger and faster immune response.

For Mycobacterium tuberculosis, the causal agent of the disease is unclear whether an

appropriate immune response at the time of inhalation can be effected. The predominant

outcome appears to be the control of organism replication and spread through granu-

loma formation [27, 40]. This condition is referred to as latent tuberculosis infection and

Mycobacterium tuberculosis has the ability to survive within these conditions and regen-

erate for extended periods of time. During the immunological effectiveness, the disease

is absolutely prevented [55, 59]. Risk of reactivation begins once latent infection with

Mycobacterium tuberculosis has been established [60].

 

 

 

 



4 CHAPTER 1. INTRODUCTION

1.3 Statement of the problem

Despite countless campaigns, and even with management and control strategies currently

in place to achieve a TB free world [31], tuberculosis continues to cause a serious health

problem world-wide. TB continues to claim lives in South Africa despite the interventions

of government and private bodies. Hence there is an urgent need to assess the control

strategies. A number of studies have been done on TB especially, over the past two

decades. However, there is a need for more studies to be done to bring the effect of TB

to the minimal. To the best of the author’s knowledge, there has been no previous study

tailored towards the effect of inflow of TB infectives into a population, at least not from

the mathematical view point. Research has shown that migrant populations have had a

critical role in the spread of infectious diseases since ancient times [8]. A good example

of these is the recent outbreak of Ebola in the west Africa. Between 1989 and 1995,

the population of Israel, a low tuberculosis (TB) prevalence country, rose from 4.5 to 5.6

million, mainly due to mass immigration from high and moderate TB prevalence countries

[20]. Therefore, a mathematical model has been developed to establish the effect of direct

inflow of TB infectives on the dynamics and treatment of TB. This study also intends to

assess the impact of the rolling out of treatments as a control strategy.

1.4 Research objectives

1.4.1 General objectives

One of the objectives of this study is to show the effect of inflow of infectives on the

dynamics and treatment of TB using deterministic and stochastic mathematical models.

It will assist in understanding the impact of the immigrants on the transmission dynamics

of tuberculosis in South Africa.

 

 

 

 



1.5. SIGNIFICANCE OF THE STUDY 5

1.4.2 Specific objectives

The specific objectives of this study are:

- To formulate and analyse a mathematical model on transmission dynamics and

treatment of TB disease in terms of the reproduction number, equilibrium points

and stability.

- To model and analyse the effect of inflow of infectives on the dynamics and treatment

of TB.

- Determine the behavior of each embedded parameter of the model.

- Comprehensive numerical simulations of the proposed model for understanding the

disease dynamics.

- To present an optimal control problem in which the coefficient of the infection and

latent production term in the control results from treatment.The representation of

the optimal control is being utilized to solve numerically the optimality system.

- We also consider the corresponding stochastic model obtained from the deterministic

model by introducing white noise. For this stochastic version, the global stability of

the solution is shown. Comprehensive numerical simulations of the proposed model

are carried out in order to understand the TB dynamics.

1.5 Significance of the study

The significances of the study will include the following:

(1) Our designed model will help health authorities to understand the effect of inflow of

infectives of TB and set strategies on how to reduce the impact of immigration on TB

transmission.

(2) The study can be used as a basis to create awareness and inform people of the effect

of inflow of infectives of TB.

 

 

 

 



6 CHAPTER 1. INTRODUCTION

(3) The evaluation of the outcomes and impact will provide useful information that will

help to minimize or eradicate the disease.

(4) This study can also act as a base for further research on the effect of inflow of infectives

of TB and other related diseases.

(5) This dissertation generates information of the kind which is required by policy makers

on health and / or immigration.

1.6 Dissertation structure

Chapter 1 describes the biological background of TB, and the role of mathematical mod-

els in epidemiology. The aims and objectives of the dissertation are laid out and the

introductory chapter is concluded with a description of the structure of the dissertation.

Chapter 2 comprises a literature review on mathematical modeling of TB and incomplete

treatment. The first part of the chapter is an overview of the mathematical models of

TB. The overview includes the assumptions and results. The second part gives a review

on inflow of infectives.

Chapter 3 provides some mathematical tools that are used throughout the rest of this

dissertation. We present some definitions and notation on dynamical systems, stability

analysis, and theories that are required to analyze such systems. Theorems and lemmas

from optimal control theory and stochastic differential equations used in epidemiology

modeling are presented.

Chapter 4 presents an analysis of a basic model of a TB epidemic with treatment. We

calculate the basic reproduction number R0. Also we develop analytical methods, and

we study two steady states of the system: with and without inflow of infectives. These

are the disease free equilibrium which biologically means the disease dies out, and on the

other hand the endemic equilibrium which means persistence of the disease. We carry

 

 

 

 



1.6. DISSERTATION STRUCTURE 7

out the global stability analysis of this model. Also we look into the bifurcation analysis,

sensitivity analysis of R0, and simulations.

Chapter 5 presents an optimal control problem relating to the model presented in Chapter

4, in which the level of treatment is the control variable. We solve the control problem

analytically and run some numerical simulations to illustrate the behavior of the solution.

Chapter 6 develops a stochastic version of the TB model by adding random fluctuations

onto the deterministic model. We establish the stochastic stability. Finally, qualitative

results are illustrated by means of numerical simulations to verify stability.

We conclude, summarize and make recommendations on the main results in Chapter 7.

 

 

 

 



Chapter 2

Literature on modeling of

tuberculosis

The increasing rate of tuberculosis (TB) cases in many countries of Sub-Saharan Africa

over the past decade is largely attributed to the human immunodeficiency virus (HIV)

and other emerging infections. Meanwhile, Mathematical models of disease transmission

within human populations have been acknowledged in helping policy makers and epidemi-

ologists interpret epidemiological trends and understand the dynamics of disease spread

with efficiency of disease prevention and control [4].

Two decades have passed now with different people coming up with many mathe-

matical models for TB. Susceptible-Infectious-Recovered (SIR) models and variants like

Susceptible-Exposed-Infectious-Recovery (SEIR) models were introduced in the 1920s and

helped to establish the foundations of much of the mathematical epidemiology.

In order to efficiently control and prevent infectious diseases like tuberculosis, one

needs to be adequately informed about the mechanisms of the spread and the trans-

mission dynamics of the disease. This will surely help our predictions as well as our

strategies to eliminate the diseases. The study of epidemic dynamics is an important the-

oretic approach to investigate the transmission dynamics of infectious diseases because

they describe change over time. Mathematical model formulation are literally based on

8

 

 

 

 



9

population dynamics, symptoms of infection, and the link with social and physiologic

factors. By means of different analysis and numeric simulations, mathematical models

can be used as a tool to understand the spread of infectious disease and how to manage or

control it. Mathematical models developed for tuberculosis transmission are numerous.

Connell McCluskey (2004) [43] in his paper considered two models for tuberculosis,

including treatment of latent and infective individuals. The first model in [43] assumes

constant recruitment with a fixed fraction entering each class, with the consequence that

TB never dies out and the stability analysis was done. Their second model concentrated

on a general recruitment function whereby all recruitment is into the susceptible class.

They concluded that the first model incorporates immigration of infectives at a constant

rate, which makes it relevant and indicates that even with treatment in immigration of

infectives, TB still remains endemic. Moreover, they said the differential equation system

for the second model with general recruitment has a singularity at the origin when the

total population size is zero. That concludes that in the absence of infective immigrants,

then the second model of their paper predicts threshold conditions.

Carlos Castilo-Chavez and Zhilan Feng in (1997) [18] formulated a two group model

for one-strain and two-strain TB in order to determine possible mechanisms that may be

useful for the survival and spread of naturally resistant strains of TB as well as antibiotics-

generated resistant strains of TB. They claimed that the analysis of their model will reveal

that non-antibiotic co-existence is possible but rare for naturally resistant strains while

co-existence is almost the rule for strains that result from the lack of compliance with

antibiotic treatment by TB infected individuals. One of the possibilities is that such a

person may develop active TB as a consequence of exogenous reinfection.

Zhilan Feng et al (2001) [29] modeled the qualitative behavior of a system of ordinary

differential equations and a system of differential-integral equations for the dynamics of

disease transmission for tuberculosis TB. They showed that the dynamics of the two mod-

els are directed by a reproduction number. They considered the scenario of R0 > 1, then

the disease-free equilibrium is unstable and there exists a unique positive (endemic) equi-

librium. Moreover, the positive equilibrium is stable. Results showed that the qualitative

 

 

 

 



10 CHAPTER 2. LITERATURE ON MODELING OF TUBERCULOSIS

behaviors predicted by the model with arbitrarily distributed latent stage are similar to

those given by the TB model with an exponentially distributed period of latency. They

solidify the conclusions made above in [18] and also discusses the possibility of a person

infected with TB may develop active TB as a result of endogenous infection.

Zhong-Wei Jia and other authors present two new theoretical frameworks in [32], inves-

tigating the impact of immigration on the transmission dynamics of tuberculosis. Analysis

on the existence and stability of equilibra were presented with numerical simulations il-

lustrating the behavior of their proposed model. They went further to apply the model

in Canadian reported data on tuberculosis and a good match was observed between the

model prediction and the reported data. Moreover, they made analysis on the extended

model which involves the recruitment of the latent and infectious in immigrants to the

main model. They found that the usual threshold condition does not apply and a unique

equilibrium exists for all parameters values. They indicated that the disease does not

disappear and becomes endemic in the host area, and also suggests that immigrants have

a considerable influence on the overall transmission dynamics behavior of tuberculosis.

Yicang Zhou [66] presents a deterministic epidemiological model of TB transmission

in two different demographical populations, in order to investigate the effects of this de-

mographic distinction on the short-term incidence and long-term transmission dynamics,

with special emphasis on the impact of immigration latent TB cases on the overall TB

incidence rate in the whole population. They discussed the qualitative analysis using

Canadian statistical data to estimate their model parameters in order to make short term

predictions.

In the paper [9], a deterministic model is used to explore the potential impact of the

combined effects of TB case detection in the presence of treatment. They analyzed the

features of its equilibria and they made a note that the disease-free equilibrium may not

be globally asymptotically stable when the reproduction number is less than one. The

disease threshold number made it easier for them to assess the impact of active TB case

with and without treatment. Also, they used the centre manifold theory to exhibit the

phenomenon of backward bifurcation and deduced that when the reproduction number is

 

 

 

 



11

less than one, then there is possibility of backward bifurcation occurring decreases with

increase of TB case detection. Their graphical representations suggest that increase in

case finding accompanied by treatment of detected TB cases, result in a marked decrease

of TB cases (both latent and active TB).

Cagri Ozacaglar and other authors in [53] observed and predicted epidemiological

models which reviews earlier study on modeling different aspects of tuberculosis dynam-

ics. They observed that there is an increase in the tuberculosis in 1990s and the emergence

of drug- resistant in the first decade of the 21st century. They base their models on var-

ious mathematical systems such as systems of ordinary differential equations, simulation

models Markov Chain and Monte Carlo method using a statistical analysis of TB patient

data sets.

Carlos Castilo-Chavez and Zhilan Feng in [19] focus on the study of an age-structure

model for the disease transmission dynamics of tuberculosis in populations that are sub-

jected to a vaccination program. They first consider that the infection-free steady state

is globally stable if the basic reproduction number R0 is below one, and that an endemic

steady state exists when the reproductive in the presence of vaccine is above one. They

apply the theoretical results to vaccination policies to determine the optimal age or ages at

which an individual should be vaccinated. It is shown that the optimal strategies can be

either one- or two-age strategies. Their contribution consists of looking at a model where

individuals are allowed to ‘return’ to previously visited classes, studying some global sta-

bility properties of this age-structure model, proving the existence of an endemic steady

state when the commonly used method does not apply, and showing how to compute the

optimal vaccination strategies in such situations.

Nishiura et al. in [50] predicted the future trend of drug-resistant TB in Thailand

and also assessed the impact of the control strategies. They assumed that the present

status of TB and the emergence of drug-resistant TB in Thailand are the consequence of

past epidemics. The control strategies in the model were defined by specifying the value

of the effective treatment rate (baseline value = 0.74) and the relative treatment efficacy

(baseline value=0.84). It was predicted that the total number of new TB cases would

 

 

 

 



12 CHAPTER 2. LITERATURE ON MODELING OF TUBERCULOSIS

continue to decrease at the current level of intervention. Although a dramatic decline in

the incidence rate of drug-sensitive cases is expected, drug-resistant cases are predicted to

increase gradually, so that more than half of the TB strains would not be drug sensitive

after 2020.

Mugisha et al., in [44] formulated mathematical models for the dynamics of tuber-

culosis in a population which require to minimize and therefore eradicating tuberculosis.

Both numerical and qualitative analysis were done and the effect of variation in the area

size and recruitment rates was investigated. Analysis showed that there exists disease

free-equilibrium point provided the characteristic area is greater than the probability of

survival from latent stage to infectious stage and the number of latent infections produced

by a typical infectious individual during his/her mean infectious period. The study recom-

mends that the characteristic area per individual should be at least 0.25 square kilometers

in order to minimize tuberculosis incidence. This work suggested that characteristic area

can as well be looked at as an environmental stress that can lead to tuberculosis. The

authors’ model acted as a basis for the tuberculosis model of this study. However, this

study intends to establish fast progression of the disease that was not looked at by the

authors.

Murphy et al in [45] explicitly focus their TB model on the effects of heterogeneity in

demographically distinct populations. In a deterministic model, the overall population is

split into six sub-populations. They obviously interpret their model in terms of underly-

ing genetic susceptibility, but the results are equally applicable to any environmental or

behavior condition that creates variable susceptibility to TB. Their results indicate that

in a population with a high level of genetic susceptibility, TB prevalence is only slightly

affected by changes in transmission. Conversely, in a population with a small genetically

susceptible sub-population, transmission rates are more important. They determine R0

for an heterogeneous population using numerical simulations. They made several biologi-

cal assumptions for simplicity in their model that differ from other model configurations,

(1) Latently infected individuals cannot be reinfected by active TB individuals; (2) there

exists an annual reactivation rate for latently infected individuals; and (3) the contact

 

 

 

 



13

rates are non-linear.

The above authors did not stop there, they expanded the same model in [45] to form a

new model in [46] considering how the presence of a genetically susceptible sub-population

alters the effects of TB treatment at both latent and active stages. It is assumed that

treatment doesnt confer immunity, but instead it moves individuals from actively infected

to latently infected. Treatment of latently infected individuals reduces their reactivation

rate. Results indicate that exclusive treatment of latently infected individuals alone is not

as effective as treatment of actively infected individuals alone. Treatment strategies of

latently infected individuals show that low chemotherapy levels have almost no effect on

reducing prevalence regardless of the genetic susceptibility level. Neither model considers

MDR-TB, non-compliance with treatment or comorbidity.

Aparicio in [5] formulated a deterministic cluster model to specifically explore the

impact of intense and long exposure to individuals with active TB on population level

transmission dynamics. This was in contrast to Porco and Blower in [54], this model

does not assume an average number of individuals infected per year from one infectious

case. Specifically, this model gives a significant difference between epidemiologically ac-

tive clusters and casual infections. Results generated from the model indicates that casual

infections may be more important than cluster-generated secondary infections at a popu-

lation level, they supported this result with molecular epidemiological data. The authors

recommend the consideration of a lower bound on cluster size required for TB persistence

as a new way to consider critical epidemic thresholds. Schinazi in [56] used a spatial

stochastic model to also explore the role of social clusters in disease transmission. A

similar result is shown in [5] which indicates that stress parameters influence the trans-

mission of TB: the size of each individuals social cluster, and the infection rates within

and outside of the cluster. When the infection rate is low outside the cluster, an epidemic

is only possible when the average cluster size and within-cluster infection rate are large

enough. They then compare this to the mean field model with corresponding parameters

and discover that the qualitative model behavior is unchanged, indicating that the model

results are robust to mixing heterogeneity.
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Mushayabasa and Bhunu made their contributions in [48] towards an effective tuber-

culosis (TB) control by constructing a mathematical model to assess the impact of early

therapy for latent TB and non-adherence on controlling TB transmission dynamics. They

determined the equilibrium states of their model and examined the local stability. They

also adopt the center manifold theory to establish that the model undergoes a backward

bifurcation. Analysis of their model suggests that a high level of latent tuberculosis case

findings, coupled with a decrease of defaulting rate, may be effective in controlling TB

transmission dynamics in the community. Population-level effects of organized campaigns

to improve early therapy and to guarantee successful completion of each treatment are

evaluated through numerical simulations and presented in support of the analytical re-

sults.

Nyabadza and Winkler in [51] formulated a mathematical model that serves as predic-

tive tool in Western Cape Province of South Africa, since tuberculosis is an insurmount-

able health burden in the region. They considered a TB compartmental model that is age

dependent and whose parameters are set as functions of age. The model was fitted to the

TB incidence data from the Cape Town metropole. The effective contact rate, a function

of both age and time, was changed to fit the model to the notification rates of active TB

disease cases. Their simulations illustrate that age structure plays an important role in

the dynamics of TB. Projections on the future of the epidemic were made for each age

group. The projected results show that TB incidence is likely to increase in the lower age

groups of the population. It is clearly evident that even very simple models when applied

to limited data can actually give valuable insights. Our results show that the age groups

who have the highest incidence rates of active TB disease have the highest contribution in

the transmission of TB. Furthermore, interventions should be targeted in the age group

25− 34 years.

An interesting job was done in [3] by considering an SEIR epidemic model with a

limited resource for treatment. It is assumed that the treatment rate is proportional to

the number of patients as long as this number is below a certain capacity and it becomes

constant when that number of patients exceeds this capacity. Mathematical analysis is
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used to study the dynamic behavior of this model. Existence and stability of disease-

free and endemic equilibria are investigated. It is shown in their paper that this kind

of treatment rate leads to the existence of multiple endemic equilibria where the basic

reproduction number plays a big role in determining their stability.

Song, et al in [7] formulated models that incorporated local and individual interactions

are introduced in the context of the trans-mission dynamics of tuberculosis (TB). The

multi-level contact structure implicitly assumes that individuals are at risk of infection

from close contacts in generalized household (clusters) as well as from casual (random)

contacts in the general population. Epidemiological time scales are used to reduce the

dimensionality of the model and singular perturbation methods are used to corroborate

the results of time-scale approximations. The concept and impact of optimal average

cluster or generalized household size on TB dynamics is discussed in their work. They

also discuss the potential impact of their results on the spread of TB.

Generally, a number of gaps has been covered. Moreover, we are still left with un-

answered questions as regards the extent to which modeling the effect of inflow of infectives

on dynamics of TB is treated. This study will add to the existing knowledge by exploring

the impact of optimal control strategies on the transmission and inflow of infectives of

TB in South Africa.

 

 

 

 



Chapter 3

Mathematical preliminaries

3.1 Introduction

This chapter introduces and explain the various definitions and theorems that will be

needed in this research project. In this chapter, we discuss the concepts related to sta-

bility and mathematical control. We will discuss the matrix and Hurwitz conditions in a

simplified form, and present the Lyapunov function theorem. We discuss the reproduction

number R0 for a general compartmental disease transmission model based on a system of

ordinary differential equations. For optimal control, existence and uniqueness of solutions

will also be established. The basics of Brownian motions, SDE and stability of solutions

of SDE systems are also presented.

3.2 Basics on ODE’s in epidemic model

It is important to know whether or not we have a unique solution to a first order ordinary

differential equation (ODE) initial value problem such as,

dx

dt
= F (x, t), x(0) = x0, (3.1)

where F (x) is bounded in a neighborhood of the point x0.

16
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Definition 3.2.1. [10] (Lipschitz condition) A vector-valued function X(x, t) satisfies

the Lipschitz condition in a region U of (x, t)-space if and only if, for some constant L,

|X(x, t)−X(y, t)| ≤ L |x− y| if (x, t) and (y, t) ∈ U (3.2)

Theorem 3.2.2. (See Birkhoff and Rota [10]) Let E be an open subset containing x0 and

assume that F ⊆ C1(E). Then, there exist an a > 0 such that the initial value problem

ẋ = f(x); x(0) = x0 (3.3)

has a unique solution x(t) on the interval [−a, a].

3.3 Equilibrium and stability analysis for ODE

Let us consider of an n dimensional initial value autonomous system of the form:

dX

dt
= F (X), x(0) = x0 (3.4)

where x ∈ R
n and F : Rn → R

n; with all the properties needed.

Definition 3.3.1. [10] An equilibrium solution, or fixed point, or steady-state solution

of the system (3.4) is a constant solution x of the equation.

Theorem 3.3.2. Suppose that x∗ is an equilibrium solution of (3.4), i.e., F (x∗) = 0.

• x∗ is locally asymptotically stable (LAS) if all the eigenvalues of DF (x∗) have

negative real parts.

• If at least one eigenvalue has a positive real part then x∗ is unstable. The eigenvalues

are the roots of the characteristic equations of the Jacobian matrix.

F (x) = 0 (3.5)
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We need to adopt the direct method of Lyapunov and the Routh-Hurwitz criteria in

order to derive sufficient conditions for the global stability and asymptotic stability

for such a point. The Routh-Hurwitz criteria has been used by many. Therefore it

has become an important tool to establish sufficient conditions for all the roots of

the characteristics polynomial. The Routh-Hurwitz Criteria is going to be used to

establish the local stability of an equilibrium in this dissertation as we progress.

Theorem 3.3.3. [2] Routh-Hurwitz Criteria. Consider the characteristic poly-

nomial

I(λ) = λn + a1λ
n−1 + ...+ an−1λ+ an, (3.6)

where the coefficients ai are real constants, such that i = 1, ...n, and λ is the identity

matrix. The n eigenvalues from Hurwitz matrices considering the coefficients ai of

(3.6)

H1 = (a1), H =





a1 1

a3 a2



 , H =











a1 1 0

a3 a2 a1

a5 a4 a3











,

and

H =























a1 1 0 0 ... 0

a3 a2 a1 1 ... 0

a5 a4 a3 a2 ... 0
...

...
...

... ...
...

0 0 0 0 ... an























where aj = 0 if j > n. All of the roots of the polynomial I(λ) are negative or have

negative real part iff the determinants of all Hurwitz matrices are positive,

det(Hj) > 0 j = 1, 2, .., n.
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When n = 2 the Routh-Hurwitz Criteria simplify to detH1 = a1 > 0 and

detH2 = det





a1 1

0 a2



 = a1a2 > 0

or a1 > 0 and a2 > 0. For a polynomial of degree n = 2, 3, 4 and 5, the Routh-

Hurwitz Criteria are summarized as follows:

Routh-Hurwitz Criteria for n = 2, 3, 4, and 5

n = 2 : a1 > 0 and a2 > 0.

n = 3 : a1 > 0, a3 > 0 and a1a2 > a3.

n = 4 : a1 > 0 and a2 > 0, a4 > 0 and a1a2a3 > a23 + a21a4.

n = 5 : ai > 0 i = 1, 2, 3, 4, 5, a1a2a3 > a23 + a21a4 and

(a1a4 − a5)(a1a2a3 − a23 − a21a4) > a5(a1a2 − a3)
2 + a1a

2
5.

Definition 3.3.4. [2] Let U be an open subset of Rn containing the origin. A real-

valued C1(U) function, V : U → R, [(x, y) ∈ U, V (x, y) ∈ R] is said to be positive

definite on the set U if the following two conditions hold.

(i) V (0, 0) = 0

(ii) V (x, y) > 0 for all (x, y) ∈ U with (x, y) 6= 0.

The function V is said to be negative definite if −V is positive definite.

Definition 3.3.5. [34] V (x) is said to be positive (negative) definite in a neighbor-

hood U of the origin if V (x) > 0 (V (x) < 0) for all x 6= 0 in U , and V (0) = 0. V (x)

is positive (negative) semi-definite in a neighborhood U of the origin if V (x) ≥ 0

(V (x) ≤ 0) for all x 6= 0 in U , and V (0) = 0.

Theorem 3.3.6. [34] Let X∗(t) = 0, t ≥ t0, be the zero solution of the regular

system Ẋ = X(x), where X(0) = 0. Then X(x(t)) is uniformly stable for t ≥ t0 if

there exists V (x) with the following properties in some neighborhood of X = 0:
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(i) V (x) and its partial derivatives are continuous;

(ii) V (x) is positive definite;

(iii) V̇ (x) is negative semi-definite.

Theorem 3.3.7. [34] If we observe all the conditions of the Theorem (3.3.6), except

the last condition of (iii) and instead assume that

(iii) V̇ is negative definite.

Then the zero solution is asymptotically stable (and such a function V is called a

strong Lyapunov function for the system).

3.4 The basic reproduction number R0

The research work in [22], [23] and [47] explains reproduction number, denoted by

R0, as the expected number of secondary cases reproduced by one infected individual

in his/her entire infectious period. R0 is one of the most effective threshold param-

eters, which describes the features of mathematical problems concerning infectious

diseases. When R0 < 1, this simply implies that each infected individual can pro-

duce an average of less than one new infected individual during his/her entire period

of infectiousness. In this situation the disease will not persist in the population and

may be wiped out. But in a situation where R0 > 1, then each infected individual

produces on average more than one new infection, and the disease is spread in the

population. The general method for calculating R0 is adopted from [26]. Assume

we have n disease compartments for the disease transmission model of the form:

ẋi = fi(x) = Fi(x)− Vi(x), i = 1, ...., n, (3.7)

where

 

 

 

 



3.4. THE BASIC REPRODUCTION NUMBER R0 21

Vi = V−
i − V+

i

and

f(x) =























f1(x)

0

0

0

fn(x)























,where x =























x1

0

0

0

xn























(3.8)

also

– Fi(x) is the rate of secondary infection increase of the ith disease compartment

– Vi(x) is the rate of appearance of new infections in compartment i,

– V−
i (x) is the rate of transfer out of the ith compartment,

We consider these functions to be continuously differentiable at least twice.

Furthermore,

X0 = {x ≥ 0| xi = 0; i = 1, ....,m}.

where X0 denotes the set of all disease-free states. We assume that these functions

satisfy the assumptions H1 ... H5 as described below:

H1 : If xi ≥ 0, then Vi(x), V
−
i (x), V

+
i (x) ≥ 0 for i=1,...,n.

H2 : If xi = 0, then V−
i (x) = 0 and in particular, V+

i (x) = 0, if X ∈ Xs for i

= 1,...,m this implies that there can be no transfer of individuals out of an empty

compartment by any means. These two assumptions imply that if xi = 0, then

fi(x) ≥ 0. Therefore (3.8) is positively invariant [61]; that for each non-negative

initial condition there is a unique, non-negative solution.
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H3 : Fi = 0 if i > m holding for the fact that the rate at which infection occurs

(incidence of infection) in an uninfected compartment is zero.

H4 : Fi = 0 and V+
i (x) = 0 if x ∈ Xs, i = 1, ....,m. Condition H4 is to guard

against the disease-free subset being altered and this assumption (H4) implies that

if a population is free of disease then it remains free with no room for immigration

of infectives into the diseases free compartment.

H5 : If F(x) is set to zero, then all eigenvalues of Df(x0) have negative real parts.

The following lemma assures that, under conditions (H1) · · · (H5) the Jacobian,

Df(x0) can be partitioned into a matrix of new infections and that of transfer of

individuals in and out of a compartment.

Lemma 3.4.1. [26]. If x0 is a DFE of (3.7) and Fi(x) satisfies the assumptions

(H1) through (H5 ), then the derivatives DF (x0) and DV (x0) are partitioned as

DF(x0) =





F 0

0 0



 , and DV(x0) =





V 0

J3 J4



 ,

where F and V are the m×m matrices defined by

F = [ ∂Fi

∂xj
(x0) ], and V = [ ∂Vi

∂xj
(x0) ], where 1 ≤ i, j ≤ m

Furthermore, F is non-negative, V is a non-singular M -matrix and all the eigen-

values of J4 have positive real parts. Thus the matrix V −1 is non-negative, and so

is FV −1.

If an infected individual is introduced into a compartment k of a disease free popu-

lation, then the (j, k) entry of V −1 can be interpreted as the average length of time

an individual spends in compartment j during its lifetime. The (i, j) entry of F can

be interpreted as the rate at which infected individuals in compartment j produce

new infections in compartment i.
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The matrix FV −1 is called the next generation matrix for the model [26]. The (i, k)

entry of the next generation matrix is the expected number of new infections in com-

partment i produced by the infected individual originally placed into compartment

k. The basic reproduction number, R0 , is obtained as

R0 = ρ(FV −1)

where ρ(FV −1) denotes the spectral radius of FV −1. R0 is a threshold parameter

for the stability of the DFE [22].

3.5 General optimal control method

Optimal control theory is now a mature mathematical discipline with numerous

applications, essentially in decision making regarding complex situations. In deal-

ing with an optimal control problem for ODEs, we have an ultimate goal to ad-

just control u such that it minimizes or maximizes a given objective functional,

J(u(t), x(t), t). Here x(t) is the state variable and u(t) is the control. Our major

considerations are the control and the state variables, because the functional solely

depends on them. There are a number of different methods for calculating the op-

timal control for specific model. We take for example, Hamilton-Jacobi-Bellman

equations which allows the calculation of the optimal control for stochastic differen-

tial equations model system with given constraints, Pontryagin’s maximum principle

which allows the calculation of the optimal control for an ordinary differential equa-

tions model system with given constraints, etc.

We consider a first order ordinary differential equation with the state variable that

satisfies a differential equation which depends on the control variable:

˙x(t) = h(t, x(t), u(t)); x0 = x(0), 0 ≤ t ≤ th, (3.8)
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where ˙x(t) denotes the derivative with respect to time t. We are interested in a

problem of the following form:

max

∫ T

0

f(t, x(t), u(t))dt

subject to the conditions

˙x(t) = h(t, x(t), u(t)),

where

x(0) = x0 and x(T ) is free.

Optimal control theory is based on two fundamental ideas. (1) The dynamic pro-

gramming and the associated optimality principle. (2) The maximum principle

applied only to deterministic problems which was introduced by Pontryagin in the

Soviet Union [57].

Theorem 3.5.1. (Pontryagins Maximum Principle) If u∗ and x∗ are optimal

for problem (3.8), then there exists a piecewise differential adjoint variable λ(t) such

that

H(t, x∗(t), u(t), λ(t)) ≤ H(t, x∗(t), u∗(t), λ(t))

for each control u at each time t, where the Hamiltonian H is

H = f(t, x(t), u(t)) + λh(t, x(t), u(t)) (3.9)

and

λ
′

(t) =
∂H(t, x∗(t), u∗(t), λ(t))

∂x
,

λ(tf ) = 0.

Here f is the integrand of the objective functional and h, the right hand side of the

given dynamical system.
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If the Hamiltonian attains its maximal in the variable u, it has critical points at u∗.

i.e.,
∂H

∂u
= 0.

The function λ(t) is the shadow price or co-state variable. This denotes the increase

of the objective function due to marginal increase of the state variable. At any time

the decision maker can use the control variable to generate direct contributions to

the objective function (represented by the term f(t, x(t), u(t))) in the Hamiltonian

(3.9)), or it can use the control variable to change the value of the state variable in

order to generate contributions to the objective function in the future. These indi-

rect contributions are measured by the term λ(t)g(t, x(t), u(t)) in the Hamiltonian.

3.6 Stochastic Differential Equations

Brownian motion, also known as the Wiener process, is a formal stochastic process

modelled on the irregular random motion of small particles immersed in a liquid or

gas. The concept of stochastic process has application in a wide range of fields, such

as finance, engineering, biology, etc. This is now a useful tool in epidemiology and

other areas of Mathematics, [41].

Definition: Let (Ω,F , P ) be a probability space with filtration {Ft}t≥t0
. A one-

dimensional Brownian motion is a real-valued continuous {Ft}-adapted process

{Bt}t≥t0
with the following properties:

(i) B0 = 0 a.s.;

(ii) for 0 ≤ s < t < ∞, the increment Bt −Bs is independent of {Fs} ,

(iii) Bt is continuous in t ≥ 0.

We consider the possible solutions Xt(ω) of the stochastic differential equation
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dXt = b(t,Xt)dt+ σ(t,Xt)dWt, b(t, x) ∈ R, σ(t,Xt) ∈ R (3.10)

where Wt is a 1-dimensional Wiener process. Interpretation of (3.10) above is that

Xt satisfies the stochastic integral equation,

Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs (3.11)

Taking into consideration the d-dimensional stochastic differential equation

dX(t) = f(x(t), t)dt+ g(x(t), t)dW (t), (3.12)

where f : U → R
n; g : U → R

n × p; U ⊂ R
n, in a given range,

X = (x1, x2, ..., xn) ∈ U ;

W = (W1,W2, ...,Wp)

is the d-dimensional Wiener process.

On t0 ≤ t ≤ T , with initial value of x(t0) = x0. The first term represents the conti-

nuity of f in the deterministic component or drift coefficient while the second term

represents the continuity of the random component or diffusion coefficient [14]. Also

f is chosen as an m-vector-valued function, g is regarded as an m×d matrix-valued

function.

Definition 3.6.1. We define any given initial value x0 ∈ U . Then equation (3.11)

has a unique global solution such that X(t0) = X0, and is denoted by X(t; t−0, X0).

If f(0, t) = 0 and g(0, t) = 0 for all t > t0, then the equation (3.12) has the solution

X(t) = 0 corresponding to the initial value X0, the solution is called the trivial

solution or equilibrium position.
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3.7 Stability

Consider the general n-dimensional stochastic system

dx(t) = f(t, x(t))dt+ g(t, x(t))dB(t) (3.13)

on t ≥ 0 with initial value x(0) = x0. The solution is denoted by x(t, x0). Assume

that f(t, 0) = g(t, 0) = 0 for all t ≥ 0, so the origin point is an equilibrium of (3.20)

The equilibrium x = 0 of the system (3.20) is said to be:

(i) Stable in probability if for all ǫ > 0,

lim
x0→0

P

(

sup
t≥0

|x(t, x0)| ≥ ǫ

)

= 0;

(ii) Almost surely exponentially stable if for all x0 ∈ R
n,

lim sup
x0→∞

1

t
ln |x(t, x0)| < 0 a.s

We refer the reader to the papers of Lahrouz et al., [36] and Witbooi, [62].

 

 

 

 



Chapter 4

A basic model of Tuberculosis

4.1 Introduction

We here introduce a compartmental model of TB in a population. The size of the

population, at a given time t, is denoted by N(t). The model divides the entire

population into four groups or classes according to their epidemiological status. We

explicitly incorporate the inflow of infectives. The first of these groups consists of

individuals in the population who have not come into effective contact with the My-

cobacterium and is known as the class S of susceptibles. When healthy individuals

come into contact with an unhealthy infected person, they get infected but are not

infectious instantly, so they are known as the latent class L. Over time the latent

individuals becomes contagious, capable of transmitting the disease to healthy in-

dividuals in a population. This is called the infectious class I. From the class I an

individual may go into a treatment program, and such individuals form a class T .

These four classes capture the entire population. At any point t in time, the sizes

of these classes are S(t), L(t), I(t) and T (t). We are of the opinion that it is highly

expedient for public health policy makers to understand the significant impact of

inflow of infective immigrants in the transmission dynamics of tuberculosis.

Another objective of this dissertation as earlier indicated is to assess the impact of

28
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optimal control strategies of TB in South Africa and other developing countries in

Sub-Saharan Africa. Also, we consider treatment as an intervention to reduce the

rate at which TB infected immigrants that migrates into our countries and environ-

ments. Ordinarily an indi-vidual can develop TB in different ways but human-to-

human transmission is still the increasing means of transmission of TB. This work

differs from [18] essentially in that we are considering inflow of infectives, and we

study an optimal control problem on the disease.

4.2 Model formulation

Our model is based on the SLIT transmission model [18], but additionally, we allow

for inflow of infected individuals into the population.

The total population size at time t is denoted by N(t) and therefore we have:

N(t) = S(t) + L(t) + I(t) + T (t). (4.1)

The model we study here is a deterministic model of population dynamics of the

Tuberculosis epidemic. The Stochastic version of this model will be looked into in

the later chapter. A flow diagram of the Tuberculosis model is sketched in Figure

4.1 below.

The following system of equations describes the population dynamics with a unique

allowance of direct inflow of infectives into the population.

4.3 Assumptions

1. Here we assume a homogeneous mixing of individuals in the population which

means that every uninfected individual has an equal likelihood of being infected
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Figure 4.1: Compartmentalised diagram showing the TB model with inflow of infectives.

when coming into adequate contact with infectious individuals and that transmis-

sion of the infection occurs with a standard incidence rate.

2. We also assume that some recruits, that is, newborns and immigrants, may pos-

sibly be latently infected at the time they are born or migrate into the population.

Thus they will emerge in the susceptible class, S at a rate, Λ0, the latent class at a

rate Λ1 or the infective class at a rate Λ2 .

3. Infected individuals recover from the symptoms of TB after treatment.

4. Inflow of infectives into the group varies as explained above.

5. We further assume that all parameters to be used in this model are positive.

A full definition of the parameters used in our model are stated in Table 4.1.

 

 

 

 



4.3. ASSUMPTIONS 31

Table 4.1: Symbols and Definitions of Model parameters.

Symbols Description

Λ0 The recruitment rate in the susceptible class

Λ1 The rate of inflow of Latently infected in the Latent class

Λ2 The rate of inflow of infectives in the infective class

µ The natural death rate coefficient

d The disease-induced death rate coefficient

β the probability that susceptible (S) individuals become infected by one infectious

individual per contact per unit of time

α the probability that Treated individuals (T) become infected by one infectious

individual per contact per unit of time

c The per-capita contact rate

k The rate at which an individual leaves the Latent(L) class by becoming infectious

r The treatment rates for infectious individuals

Considering the definitions, assumptions and inter-relations between the variables

and the parameters, the basic dynamics of TB with direct inflow of infectives is

described by the following system of ordinary differential equations:

dS

dt
= Λ0 − βc

SI

N
− µS,

dL

dt
= Λ1 + βc

SI

N
− (µ+ k)L+ αcT

I

N
, (4.2)

dI

dt
= Λ2 + kL− (µ+ d+ r)I,

dT

dt
= rI − αcT

I

N
− µT.

For convenience we introduce extra variables:

µ1 = µ+ k and µ2 = µ+ d+ r.

Therefore our model becomes:
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dS

dt
= Λ0 − βc

SI

N
− µS,

dL

dt
= Λ1 + βc

SI

N
− µ1L+ αcT

I

N
, (4.3)

dI

dt
= Λ2 + kL− µ2I,

dT

dt
= rI − αcT

I

N
− µT.

with initial conditions;

S(0) = S0 > 0, L(0) = L0 ≥ 0, I(0) = I0 ≥ 0, T = T0 ≥ 0.

The force of infection is βc I
N

and c is the per-capita contact rate. The total popu-

lation size of system (4.3) is given by:

dN

dt
= Λ0 − βc

SI

N
− µS + Λ1 + βc

SI

N
− µ1L

+ αcT
I

N
+ Λ2 + kL− µ2I + rI − αcT

I

N
− µT. (4.4)

We recall that µ1 = µ+ k and µ2 = µ+ d+ r. By substitution then:

dN

dt
= Λ0 + Λ1 + Λ2 − µ(S + L+ I + T )− dI, (4.5)

and the system (4.3) can now be written as:

dN

dt
= Λ0 + Λ1 + Λ2 − µN − dI,

dL

dt
= Λ1 + βc

N − L− I − T

N
I − µ1L+ αcT

I

N
, (4.6)

dI

dt
= Λ2 + kL− µ2I,

dT

dt
= rI − αcT

I

N
− µT.

with initial conditions;

N(0) = N0 > 0, L(0) = L0 ≥ 0, I(0) = I0 ≥ 0, T = T0 ≥ 0.
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A good look at the continuity of the right-hand side of the above system of equations

in (4.6) and its derivative reveals that the model is well posed for N > 0.

4.4 Basic properties of the model

In this section, the basic properties of model system (4.3) which are useful in the

proofs of stability are studied. These are the invariant region and positivity of

solutions. The former describes the region in which the solutions of system (4.3)

makes biological sense while the latter describes non-negativity of solutions of system

(4.3). The model under consideration monitors a human population and as such,

we need to have that all the parameters and the variables of the model are positive

for all t ≥ 0.

4.4.1 Invariant region

Note that

dN

dt
≤ Λ− µN, (4.7)

where Λ = Λ0 +Λ1 +Λ2. We now apply Birkhoff and Rota’s theorem on differential

inequality (4.7). By separation of variables of differential inequality (4.7), we get

dN

Λ− µN
≤ dt. (4.8)

Integrating (4.8) on both sides gives,
∫

dN
Λ−µN

≤
∫

dt = −1
µ
ln(Λ− µN) + c,

ln(Λ− µN) ≥ −µ(t+ c).

Therefore,

Λ− µN ≥ Ae−µt, (4.9)
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where A is a constant. Now, applying the initial condition N(0) = N0 in (4.9), we

get

A = Λ− µN0. (4.10)

Substituting (4.10) into (4.9) gives

Λ− µN ≥ Λ− µN0e
−µt (4.11)

Making N the subject in (4.11) we have,

N ≤
Λ

µ
−

[

Λ− µN0

µ

]

e−µt (4.12)

As t → ∞ in (4.12) above, the population size N , approaches

0 ≤ N ≤
Λ

µ
⇒ N →

Λ

µ
(4.13)

Therefore, the feasible solutions set of system (4.3) enters the region

Ω =

{

(S, L, I, T ) ∈ R
4
+ : N ≤

Λ

µ

}

.

In this case, whenever N > Λ0

µ
, then dN

dt
< 0 which means that N → Λ

µ
. On the

other hand, whenever N ≤ Λ0

µ
, every solution with initial condition in R

4
+ remains

in that region for t > 0. Thus, the region Ω is positively-invariant.

4.4.2 Positivity of solutions

Lemma 4.4.1. Let the initial data be {(S0, L0, I0, T0) ≥ 0} ∈ Ω. Then, the solution

set {S(t), L(t), I(t), T (t)} of system (4.3) is positive for all t > 0

Proof. Let λ = βcI

N
. From the first equation of model system (4.3),

dS

dt
= Λ0 − λS − µS ≥ −(λ+ µ)S.

That is,
dS

dt
≥ −(λ+ µ)S. (4.14)
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Integrating (4.14) by separation of variables gives

∫

dS

S
≥ −

∫

(λ+ µ)dt.

Therefore,

S(t) ≥ S(0)e−
∫
(λ+µ)dt > 0.

This proves that S(t) > 0 for all t ≥ 0. Similarly, it can be shown that the remaining

variables of system (4.3) are also positive ∀t > 0.

Remark 4.4.2. ek > 0 for all k ∈ R.

4.5 Equilibrium and stability analysis

This section focuses on the existence and stability of the equilibrium points of the

model system (4.3).

4.5.1 Equilibrium of the model

Our model system in equation (4.3) obviously does not have a disease-free equilib-

rium due to the inflow of infecteds at a constant rate. However, we study the model

(4.3) without the inflow of infectives in the next subsection. There exists a non-

negative equilibrium point of the model in equation (4.6). This endemic equilibrium

E1 = (N∗, L∗, I∗, T ∗) exists when tuberculosis infection persists in the population,

i.e., I∗ 6= 0, where N∗, L∗, I∗ and T ∗ are positive solutions of the following system

of algebraic equations.

0 = Λ0 + Λ1 + Λ2 − µN − dI,
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0 = Λ1 + βc
N − L− I − T

N
I − µ1L+ αcT

I

N
, (4.15)

0 = Λ2 + kL− µ2I,

0 = rI − αcT
I

N
− µT.

4.5.2 The Existence of the disease-free equilibrium, E0

In this subsection, we have a special case whereby all the immigrants are susceptible

in the absence of direct inflow of tuberculosis infectives into the population. Also,

we consider the rate of interaction between the individuals in the latent class to be

low i.e c << β. This scenario is basically found in underdeveloped or poor countries

where people do not migrate much and may not even be aware of their status. This

is different in the case of developed countries where there are high levels of aware-

ness and facilities to detect and control the spread.

In view of this scenario where Λ1 = 0 and Λ2 = 0 for system in (4.3), then R0

is a threshold parameter for local stability of the disease free equilibrium of the

model and there can be a trace of bifurcation which we shall also investigate in this

chapter.

Considering the state where there is no infection i.e (L = I = T = 0), our model

has a steady state E0, given by

E0 =

(

Λ

µ
, 0, 0, 0

)

. (4.16)

4.5.3 Basic reproduction number, R0.

The basic reproduction number R0 is defined as the effective number of secondary

infections caused by a typical infected individual during his entire period of infec-

tiousness [22]. This definition is basically for the models that represent the spreading

of infection in a population. It can be obtained by taking the largest eigenvalue of:
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[

∂Fi(E0)

∂xj

]

.

[

∂Vi(E0)

∂xj

]−1

, (4.17)

where:

Fi is the rate of appearance of new infection in compartment i,

V +
i is the transfer of individuals into compartment i,

V −
i is the transfer of individuals out of the compartment i by all other means,

and E0 is the disease-free equilibrium.

The basic reproductive number R0 is often considered as the threshold quantity that

determines whether an infection can invade and persist in a new host population. In

this model, if R0 ≤ 1 then the infection in the community dies out; while if R0 > 1,

then there is a unique positive epidemic equilibrium.

Consequently, from system 4.3, we obtain Fi and Vi as

Fi =

















0

βcSI

N
+ αcTI

N

0

0

















, (4.18)

and

Vi =

















βcSI

N
+ µS − Λ0

(µ+ k)L

(µ+ d+ r)I − kL

αcTI
N

+ µT − rI

















.

The infected compartments are L and I, we know an equilibrium solution with

L=I=0 has the form x0 = (S0, L0, I0, T0)
t, where S0 is any positive solution of

S = Λ0

µ
. This will be a DFE if and only if Λ′(S0) < µ. Without loss of generality,
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assume S0 = 1 is a DFE. Then x0 = (S0, L0, I0, T0)
t = (1, 0, 0, 0) [26]. Evaluating at

the DFE, we have,

F =





0 βc

0 0



 . (4.19)

V =





(µ+ k) 0

−k µ+ d+ r



 . (4.20)

Now, taking the inverse of matrix (4.20) leads to

V −1 =





1
k+µ

0

k
(k+µ)(d+r+µ)

1
d+r+µ



 . (4.21)

Now, we compute FV −1 by,

FV −1 =





0 βc

0 0









1
k+µ

0

k
(k+µ)(d+r+µ)

1
d+r+µ



 (4.22)

=





kβc

(k+µ)(d+r+µ)
βc

d+r+µ

0 0



 (4.23)

Now, we calculate the eigenvalues of matrix (4.23) to determine the basic reproduc-

tion number, R0 defined as the spectral radius (dominant eigenvalue) of the matrix.

This is computed by |A− Iλ| = 0 where A is matrix (4.23) and I is a 2× 2 identity

matrix. Hence, matrix (4.23) becomes

∣

∣

∣

∣

∣

∣

kβc

(k+µ)(d+r+µ)
βc

d+r+µ

0 0

∣

∣

∣

∣

∣

∣

= 0 (4.24)

From matrix (4.24) we obtain two eigenvalues, λ1 and λ2 which are given by

λ1 =
kβc

(k + µ)(d+ r + µ)
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and

λ2 = 0

The eigenvalues of FV −1 are
{

0, kβc

(k+µ)(d+r+µ)

}

. Clearly, λ1 is the dominant eigen-

value and becomes the basic reproductive number R0 of the model

R0 =
kβc

(k + µ)(d+ r + µ)
=

βc

µ2

k

µ1

. (4.25)

The average number of susceptibles infected by a typical infectious individual dur-

ing his or her contagious period, is βc

µ2

and the fraction of population which survives

the latent period, is given by k
µ1

. R0 can be explained as the average number of

secondary infections that are produced when one infected individual is introduced

into a group of susceptible individuals. For many deterministic TB (Tuberculosis

bacteria) models, an endemic can get started in a fully susceptible population if and

only if R0 > 1.

Theorem 4.5.1. [26] The disease-free equilibrium of system (4.3), is locally asymp-

totically stable if R0 < 1.

4.5.4 Existence and stability of endemic equilibrium

In the presence of infection, that is I 6= 0, model system (4.3) has a non-trivial

equilibrium point, E1 is called the endemic equilibrium point, i.e, the disease persists

in the population. This is given by E1 = (S∗, L∗, I∗, T ∗) 6= 0. Under the assumption

β = α in [17, 18], the use of the variables, N,L, I is enough. Hence, model (4.6)

reduces to;

dN

dt
= Λ0 + Λ1 + Λ2 − µN − dI,

dL

dt
= Λ1 + βc

N − L− I

N
I − µ1L, (4.26)

dI

dt
= Λ2 + kL− µ2I.
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The unique endemic equilibrium of (4.26) is given by E1 = (S∗, L∗, I∗), where

N∗ =
τR0Λ

dk(R0 − 1) + µτR0

L∗ =
µ2I

∗ − Λ2

k

I∗ =
(Λ2 + k(R0 − 1))N∗

τR0

, (4.27)

where

τ = µ+ d+ r + k and Λ = Λ0 + Λ1 + Λ2.

Noticing that
N∗ − L∗ − I∗

N∗
=

1

R0

4.5.5 Local stability of the endemic equilibrium point

An endemic equilibrium means that the disease persists and is endemic in the system

or given population. We investigate the local stability of the endemic equilibrium

point by calculating the variational matrix for E1.

M(E1) =























−µ 0 −d

m21 −m22 m23

0 k −µ2























,

where

m21 = a(R0 − 1), m22 = (aR0 + µ1), m23 =
βc

R0

− aR0, m24 = aR0,

and

a =
βc

R0

I∗

N∗
.
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The characteristic equation corresponding to M(E1) is given by

f(λ) = λ3 + a1λ
2 + a2λ+ a3 = 0, (4.28)

with

a1 = aR0 + 3µ+ k + r + d,

a2 = aR0(2µ+ k + r + d) + µ(2µ+ k + r + d),

a3 = µaR0(µ+ k + r + d) + kad(R0 − 1).

We can easily determine that ai > 0 (i = 1, 2, 3) and a1, a3 > 0. Since it is obvious

that a1a2 > a3, then the Routh Hurwitz criterion is satisfied. It follows that E1 is

locally asymptotically stable [18].

4.6 Sensitivity of Basic Reproduction Number R0

Sensitivity analysis for the basic reproduction number R0 is being investigated to

help determine the parameter value that contributes more on the disease transmis-

sion. In order to find out, then we utilize the sensitivity index analysis by using

partial derivatives when the variable is a differentiable function of the parameter.

Definition 4.6.1. The normalised forward sensitivity index of a variable to a pa-

rameter is a ratio of the relative change in the variable to the relative change in

the parameter. When a variable is a differentiable function of the parameter, the

sensitivity index may be alternatively defined using partial derivatives:

ΥR0

m =
∂R0

∂m
×

m

R0
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The derivation of the sensitivity of R0 to each of the parameters is described in

Table (4.2) below. The sensitivity index for the parameters in our model is shown

as follows:

∂R0

∂µ
×

µ

R0

= −
(µ (d+ r + 2µ+ k)

(k + µ) (d+ r + µ)
,

∂R0

∂β
×

β

R0

= 1,

∂R0

∂k
×

k

R0

=
µ

k + µ
,

∂R0

∂c
×

c

R0

= 1, (4.29)

∂R0

∂d
×

d

R0

= −
d

d+ r + µ
,

∂R0

∂r
×

r

R0

= −
r

d+ r + µ
.

Table 4.2: Parameters values and sensitivity indices of R0

Parameters Parameter description Values Sources Sensitivity

µ Per capita death rate 0.1430 [18] -0.1498

k Rate of Indiv. from L class to I class 0.5 [18] +0.8108

β Prob.that S class and T class become I class. 0.1 Estimated +1.0000

c contact rate 4 Estimated +1.0000

d disease induced rate 0.3500 Estimated -0.2771

r per capita treatment rate for I class 1 [18] -0.66979

Table 4.2 consist of parameter values deduced from [18] and the estimated values

were also deduced relatively to WHO report on Tuberculosis in South African [31].

The most sensitive parameters towards the spread of tuberculosis infection are the

probabilities that susceptible and treated individuals become infected by one infec-

tious individual per contact per unit of time (β) and the per-capita contact rate
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c. Moreover, it is noteworthy that per capita death rate µ, disease induced rate

d, and per capita treatment rate for I class r contribute to a decline in the spread

of TB infection. For all the parameters, the sign of the sensitivity indices of R0

agrees with the intuitive expectation as to whether R0 increases or decreases when

the parameters increases.

4.7 Global stability

In the paper [18] it is assumed that if α = β, then the DFE is globally stable

whenever R0 < 1. We now present a global stability theorem which is slightly

more general and we use the Lyapunov function approach for the formulation of our

stability theorem. We introduce the following invariant R∗ similar to R0.

Let

β∗ = max {β, α} ,

and

R∗ =
kβ∗c

(µ1)(µ2)
. (4.30)

Theorem 4.7.1. If R∗ < 1, then E0 is globally asymptotically stable.

Proof. Let us assume that R∗ < 1. Then R∗ − 1 < 0, and therefore

µ1µ2

k
(R∗ − 1) < 0. (4.31)

We can choose ǫ1 > 0, sufficiently small such that

µ1µ2

k
(R∗ − 1) + ǫ1µ2 < 0. (4.32)

We can also choose ǫ2 > 0, sufficiently small such that the following two conditions

hold:
µ1µ2

k
(R∗ − 1) + ǫ1µ2 + ǫ2r < 0, (4.33)
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and

−ǫ1k < 0. (4.34)

Let A be the constant:

A =
µ1

k
− ǫ1.

Now we define a function V (L, I, T ) as follows:

V = L+ AI + ǫ2T. (4.35)

Then V is a positive definite function. We shall prove that dV
dt

is negative.

dV

dt
=

β cSI

N
− µ1L+

α cIT

N
+ A (kL− µ2I) + ǫ2 (rI)−

α cIT

N
− µT

≤
β cSI

N
− µ1L+

α cIT

N
+ A (kL− µ2I) + ǫ2 (rI)− µT

≤
β∗ cSI

N
+

α∗ cIT

N
− Aµ2I + ǫ2rI + AkL− µ1L− µT.

Now we note that
β∗ cSI

N
+

α∗ cIT

N
= β∗ cI

S + T

N
≤ β∗cI.

Then we have an inequality

dV

dt
≤ QII +QLL− µT, (4.36)

with

QI = β∗c− Aµ2 + ǫ2r, (4.37)

QL = −Ak − µ1. (4.38)

Now we analyse the latter two coefficients

QI = β∗c−
(µ1

k
− ǫ1

)

µ2 + ǫ2r

= β∗c−
µ1µ2

k
+ ǫ1µ2 + ǫ2r

=
µ1µ2

k
(R∗ − 1) + ǫ1µ2 + ǫ2r

< 0.
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QL =
(µ1

k
− ǫ1

)

k − µ1

= −ǫ1k

< 0.

This proves that dV
dt

is negative definite in the variables L, I, T . Therefore E0 is globally

asymptotically stable.

4.8 Bifurcation analysis

The disease-free equilibrium of the model is locally asymptotically stable when

R0 < 1 and unstable if R0 > 1. Generally, when R0 = 1, another equilibrium

point bifurcates from the disease-free equilibrium. One way of determining the di-

rection of bifurcation (forward or backward) in an epidemiological model is the use

of the centre manifold method. This method reduces the system under considera-

tion to a ”smaller” system which has the same qualitative properties and which can

be studied in a relatively easier way. For more details on the centre manifold, see

[15, 61].

In this section we consider the nature of the equilibrium solutions of the disease

transmission model near the bifurcation point x = x0, R0 = 1 in a neighbourhood

of the DFE, x0. For notation convenience, we let τ = R0−1 and rewrite the system

3.7 in chapter 3 to be:

ẋ = f(x, τ) (4.39)

with the assumption that f is continuously differentiable at least twice in both x

and τ [26]. We have the following results.

Theorem 4.8.1. Consider the disease transmission model defined by (3.7) with the

function f(x, τ) satisfying the conditions (A1) − (A5) in [26] and the parameter τ
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as described above. Assume that the zero eigenvalue of Dxf(x0, 0) is simple. Let

a =
v

2
Dxxf(x0, 0)ω

2 =
1

2

n
∑

i,j,k=1

viωjωk

(

∂2fi
∂xj∂xk

(x0, 0)

)

, (4.40)

and

b = vDxτf(x0, 0)ω =
n

∑

i,j=1

viωj

∂2fi
∂xj∂xτ

(x0, 0). (4.41)

and assume that b 6= 0. Then ∃ δ > 0 such that

(i) if a < 0, then there are locally asymptotically stable endemic equilibria near x0

for 0 < τ < δ and

(ii) if a > 0, then there are unstable endemic equilibria near x0 for -δ < τ < 0.

The sign of a determines the nature of the endemic equilibria near the bifurcation

point [26].

Proof. We apply Theorem 4.8.1 to analyse the existence and stability of endemic in

4.3, we have

Dxf(x0, 0) =



































−µ1 βc 0 0

k −µ2 0 0

0 −βc −µ 0

0 r 0 −µ



































L

I

S

T

,

by re-arranging our matrix with respect to L, I, S, T on the right hand side.

Remark 4.8.2. At the disease-free equilibrium point, x0 = (S0, L0, I0, T0)
t = (1, 0, 0, 0).

The eigenvalues of the matrix are given by the solution of

(λ+ µ)2 [(λ+ µ2)(λ+ µ1)− k(βc)]
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When R0 = 1, we obtain the following roots

λ1 = 0, λ2 = −(2µ+ k + r + d), λ3 = −µ, λ4 = −µ

We shall now analyse the existence and stability of endemic equilibria near the

bifurcation point x = x0 and R0 = 1 using the centre manifold.

We let x1 = L, x2 = I, x3 = S, x4 = T. Then the second partial derivatives of f are

given by

∂2fi
∂x1∂x2

=
∂2fi

∂x2∂x1

= −βc,

∂2fi
∂x4∂x2

=
∂2fi

∂x2∂x4

= αc− βc,

∂2fi
∂x2

2

= −2βc,

We get

a = −βcv1ω2

(

ω1 + ω2 +

(

1−
αc

βc

)

ω4

)

.

Biologically, αc < βc and so we shall now calculate the values of v1, ω1, ω2, ω4 to

determine the sign of a. Solving for the left nullvector v corresponding to the zero

eigenvalue,

vDxf(x0, 0) = 0, when R0 = 1, we obtain

v3 = v4 = 0,

and

v2 =
µ1

k
v1. (4.42)

Therefore, the left nullvector is given by

v = (v1, v2, v3, v4) =
(

1,
µ1

k
, 0, 0

)

.
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For the right nullvector, Dxf(x0, 0)ω = 0, we obtain

ω =



































ω1

ω2

ω3

ω4



































=



































(

µ1

βc

)

1

−βc

µ

(

µ

βc

)

µr(µ1)
µβc



































.

This shows that v1, ω1, ω2 and ω4 are positive. Since αc < βc, then a < 0. By

theorem 4.8.2, we conclude that there is a branch of endemic equilibrium points

that exist for values of R0 > 1. Moreover, these equilibrium points are stable.

That is, a forward bifurcation occurs at R0 = 1. As considered by [26], we shall

now include exogenous reinfection for the tuberculosis treatment model see [16],

by adding the reinfection rate χcI

N
L to the infective compartment and -χcI

N
L to the

latent compartment. The second partial derivatives of f are given by the following:

∂2f1
∂x2

2

= −2βc,

∂2f1
∂x1∂x2

=
∂2f1

∂x2∂x1

= −βc− χc,

∂2f1
∂x4∂x2

=
∂2f1

∂x2∂x4

= αc− βc,

∂2f2
∂x1∂x2

=
∂2f2

∂x2∂x1

= χc.

Thus

a = −βcv1ω2

(

ω1 + ω2 +

(

1−
αc

βc

)

ω4 + ω1ω2χc(v2 − v1)

)

.

 

 

 

 



4.8. BIFURCATION ANALYSIS 49

We can notice here that the changes that we made in the system by adding another

force of infection to the infective class and minus it from the latent class do not

affect Df(x0) and therefore, the expression we have for v and ω remain the same.

This implies v2 − v1 > 0 and therefore a > 0 if and only if

χc > χcc :=
βcv1ω2

(

ω1 + ω2 + (1 + α
β
)ω4

)

ω2ω1(v2 − v1)

Thus,

if χc > χcc or χc < χcc then there is a branch of endemic equilibrium points (EEP)

that exists for values of R0 < 1 or R0 > 1 respectively. These EEPs are stable if

χc > χcc and unstable if χc < χcc.

Remark 4.8.3. We demonstrate by this example that accounting for exogenous

reinfection may lead to backward bifurcation. This happens when χc > χcc. This

phenomena of backward bifurcation makes it more difficult to eradicate a disease

when introduced into a purely susceptible population. Infact, to achieve this, any

control measure will have to bring R0 below a critical value and the critical value is

beow 1 for the disease to die out of the population.
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Figure 4.2: Plot I∗ vs R0

4.9 Numerical simulations

In this section, we illustrate the analytical results in this work by carrying out nu-

merical simulations of the model using a set of parameter values given in Table 4.2

Those which are not in the table are Λ0,Λ1 and Λ0, related to parameter values that

are in line with literature on TB and relatively in accordance to the report of WHO

as stated above. We choose:

Λ0 = 2000,Λ1 = 500,Λ0 = 500.

The model system 4.2 is simulated using ODE solvers coded in Matlab programming

language. We simulate both with inflow of infectives and without inflow of infec-

tives of TB dynamics, as well as the effect of varying each intervention parameter

on the number of latent and infected populations. All figures are plotted using the

parameter values presented in Table 4.2 and the following initial conditions;

S(0) = 8000, L(0) = 2000, I(0) = 1000, T (0) = 600.
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The results of numerical simulation are displayed graphically. In Fig.4.3(a) the

variation of population with time is shown for different classes without inflow of

infectives. It is seen that in the absence of infective inflow into the population,

the susceptible population decreases continuously which results in an increase in

latent population first and then it decreases as all latent will either go to infective

or be treated and the infective population decreases. Fig.4.3(b) shows the variation

of population in all classes with inflow of infectives. It is found that susceptible

population first increases with time. It is expected that due to inflow of immigrants

into the population, susceptible population will balance the mortality in all classes,

therefore, infection becomes more endemic and persist. In Figs.(4.13) (a) and (b),

the variation of latent population and that of infective population is shown for dif-

ferent rates of inflow of infectives and the probabilities of infection per contacts

with susceptible and treated. It is clear that when the latent patients do not have

contact with infectives and the inflow of infectives is restricted, then the number of

infectives decreases. Also, Fig. (4.13)(b) shows the variation of infective population

with rate of inflow of infectives Λ2, it is clear that if inflow of infected immigrants in-

creases, the number of infectives increases which ultimately increases the prevalence

of the disease. The effect of increasing the number of contacts with the infective

population is shown in Fig.(4.14) and it is seen that if the number of contacts with

infectives is higher the risk of infection increases. Thus, to reduce the spread of TB

infection it is desired to keep the number of contact with the infectives at minimum

by reducing the inflow of infectives and getting tested for TB. The rate at which

patients in latent class proceed to infective class is plotted in Fig.(4.15)(a) and (b).

It is found that with increase in k, the population in latent class decreases whereas

that of infective class increases.

In the next chapter, we shall deal with the optimal control of the model 4.2

 

 

 

 



52 CHAPTER 4. A BASIC MODEL OF TUBERCULOSIS

0 1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

7000

8000

Time(years)

P
op

ul
at

io
n

Population dynamic of Tuberculosis without inflow of infectives

 

 
S(t)
L(t)
I(t)
T(t)

(a)

0 1 2 3 4 5
1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

Time(years)

po
pu

la
tio

n 
in

 m
ill

io
ns

Population dynamic of Tuberculosis with inflow of infectives

 

 
S(t)
L(t)
I(t)
T(t)

(b)

Figure 4.3: Deterministic variation of population in different classes

with and without the inflow of infectives.
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Figure 4.4: Simulations of TB model showing various classes with and without

inflow of infectives .
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Figure 4.5: susceptibles class without

infectives
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Figure 4.7: Latent class without infec-

tives
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Figure 4.8: Latent class with infectives

 

 

 

 



54 CHAPTER 4. A BASIC MODEL OF TUBERCULOSIS

(e)

0 1 2 3 4 5
0

100

200

300

400

500

600

700

800

900

1000

Time(years)

In
fe

ct
iv

e 
po

pu
la

tio
n 

 

 
I(t)
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Figure 4.10: Infective class with a di-

rect inflow of infectives
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Figure 4.11: Treatment class without

infectives
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Figure 4.13: Deterministic variation of latent population

(a) with diff. inflow rate of infectives and the prob. of infection per contacts in Latent

class. (b) diff. inflow rate of infectives in infective class.
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Figure 4.15: Deterministic variation of latent and infective population
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Chapter 5

Optimal control problem

5.1 Introduction

Optimal control is a systematic mathematical framework for decision making in

complex scenarios. The modelling of tuberculosis in this dissertation is a rational

basis for policies designed to curb or control the spread of TB in South Africa.

There are two major types of control strategies available to curtail the spread of

tuberculosis. There are pharmaceutical interventions (drugs, vaccines) and non-

pharmaceutical interventions such as quarantine or information and education cam-

paigns. In this chapter we apply optimal control theory to determine an effective

roll-out of treatment to control the spread of tuberculosis, using a model in which

there is immigration with direct inflow of infectives.

We assume that rI individuals per time are removed from the infected class and

added to the treated class. The mathematical system with controls is given by the

nonlinear differential equations

dS

dt
= Λ0 − βc

SI

N
− µS,

dL

dt
= Λ1 + βc

SI

N
− (µ+ k)L+ αcT

I

N
, (5.1)
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dI

dt
= Λ2 + kL− (µ+ d+ r(t))I,

dT

dt
= r(t)I − αcT

I

N
− µT.

5.2 Control problem and solution

Our optimal control problem amounts to minimizing the objective function below

J(r(.)) =

∫ τ

0

[

c2r
2(t)− S(t)

]

dt. (5.2)

The control r(t) is the proportion of the infectives that is treated per unit time.

By r∗(t) we denote our optimal treatment rate subject to the system of equations in

model (5.1). We have four state variables S(t), L(t), I(t) and T (t) with appropriate

initial conditions. In other words, we seek the optimal control (r∗(t)) such that

J(r∗(t)) = min {J(r(t)) : (r(t)) ∈ U} , (5.3)

where U is the set of admissible controls defined by

U = {(r(t)) : 0 ≤ r(t) ≤ 1, t ∈ [0, τ ],

r is a Lebesque measurable function.}

Let rmax be the maximum attainable value for r(t). The parameter c2 is the relative

weighting constant. The maximum rmax will depend on the amount of resources

available to implement the control measure.

Our goal is to minimize J(r(.)) subject to the system in (5.1) of differential equa-

tions, together with the initial conditions [1]

S(0) = S0 ≥ 0, L(0) = L0 ≥ 0, I(0) = I0 ≥ 0, T (0) = T0 ≥ 0. (5.4)
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The Hamiltonian for this problem is as follows:

H(t, S, L, I, T, λ1, λ2, λ3, λ4)

= c2r
2(t)− S(t)

+ λ1(t)

[

Λ0 −
βcSI

N
(t)− µ(t)S(t)

]

+ λ2(t)

[

Λ1 +
βcSI

N
(t)− µ(t) + k(t) +

αcTI

N
(t)

]

(5.5)

+ λ3(t) [Λ2 + k(t)L(t)− (µ(t) + d(t) + r(t))I(t)]

+ λ4(t)

[

r(t)I(t)−
αcTI

N
(t)− µ(t)T (t)

]

.

Theorem 5.1 There exists a solution to problem (5.2). It satisfies the following

system of differential equations:

λ̇1 = 1 + λ1

(

βcI

N
+ µ

)

− λ2

(

βcI

N

)

,

λ̇2 = λ2(µ+ k)− λ3k,

λ̇3 = λ1

(

βcS

N

)

− λ2

(

βcS

N
+

αcT

N

)

+ λ3(µ+ d+ r)− λ4

(

r −
αcT

N

)

,

λ̇4 = −λ2

(

αcI

N

)

+ λ4

(

αcI

N
+ µ

)

, (5.6)

with transversality conditions:

λ1(τ) = λ2(τ) = λ3(τ) = λ4(τ) = 0.

The optimal treatment strategy is given by

r∗(t) = min

(

1,max

(

0, I∗(t)(
λ∗
3(t)− λ∗

4(t)

2c2
)

))

. (5.7)

Proof. The existence of an optimal control can be proved since the Hamiltonian is

convex with respect to r(t). Partial derivatives of the Hamiltonian with respect to
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different state variables were calculated in order to obtain the time derivatives λ̇i

of the costate variables. Due to S(τ), L(τ), I(τ) and T (τ) being free, the following

transversality conditions hold [1]:

λ1(τ) = 0, λ2(τ) = 0, λ3 = 0, λ4 = 0. (5.8)

The system of equations (5.5) in the theorem is derived from

λ̇1(t) = −
∂H∗

∂S
, λ̇2(t) = −

∂H∗

∂L
, λ̇3(t) = −

∂H∗

∂I
, λ̇4(t) = −

∂H∗

∂T
. (5.9)

The final section of the proof, is to show how the control is formed, i.e., r∗(t). The

functions r∗i (t) must optimize H. By differentiating H with respect to r we obtain

the optimality conditions that follows:

∂H

∂r
= 2c2r − λ3I + λ4I = 0. (5.10)

Therefore, we substitute r(t) = r∗. Then, we solve the optimal control pair (r∗) to

obtain

r∗ = I

(

λ3 − λ4

2c2

)

, (5.11)

The introduction of bounds 0 ≤ r(t) ≤ rmax on the control gives equ. (5.7). See [1]

and [28]. �
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5.3 Numerical results and discussion

In this section we study the system (5.1) in order to identify the dynamic behavior

of the model numerically. The system in equation (5.1) is integrated by fourth

order Runge-kutta method using the parameter values provided in Table 4.2, our

estimated values were done relatively to suit the World Health Organisation report

on Tuberculosis in South Africa in 2012, [31].

Our deterministic model were examined critically and we study the effects of the

control (r) on the Infectious classes for the following values of Λ1 and Λ2.

(Λ1 = 500,Λ2 = 500) (Λ1 = 1000,Λ2 = 1000) .

For the construction of Fig. 5.1, the initial conditions are:

S(0) = 5000, L(0) = 400, I(0) = 2010, T (0) = 1000.

Figures (c) and (d) represent the number of infected individuals (I) with and without

controls for different value of Λ2. When r is kept fixed, at the value r = 1, (blue

and yellow curves), a sharp increase in the number of infected individuals has been

noticed. In presence of the optimal controls, the number I (red curve) decreases.

Figure (f) gives the optimal control pair (r∗). It is worth mentioning that if r is

fixed, then there is no control. Finally, the table 5.2 below gives a comparison of

the number of infected individuals at the final time 21
2
(years) in both cases with or

without controls.
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Figure 5.1: Simulations of TB model showing the effect of Optimal control

and various classes.
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Λ2 Infectious individuals

W/o controls With controls

500 9800 4100

1000 8200 4200

The number of infected individuals at the final time

 

 

 

 



Chapter 6

A Stochastic Tuberculosis Model

6.1 Introduction

Stochastic differential equations (SDE) arise from the need to model chance variations.

They are used when known heterogeneities are important as in small or isolated popula-

tions. Stochastic models have several advantages and can provide an additional degree of

realism compared to their deterministic counterparts [52]. They, however, can be labori-

ous to set up and need many simulations to yield useful predictions. In general, stochastic

epidemic models can literally be formulated in three different ways: Discrete time Markov

chain (DTMC) models, Continuous time Markov chain (CTMC) models and Stochastic

differential equation (SDE) model. Construction of these stochastic methods differ due

to the underlying assumptions [2]. SDE models are based on a diffusion process, where

both the time and the state variables are continuous. In our model we will use the SDE

approach. It has been applied in various papers, such as [36] by Lahrouz et al., [21] by

Dalal et al., [25] by Ding et al. and [63] by Yang et al. The paper [35] of Jovanovic and

Krstic presents a stochastic model of vector-borne diseases. There are models in which a

stochastic perturbation has been inserted into each of the differential equations. Exam-

ples of these models are found in [39] by Lu, [65], [33] and [35]. We also have found that

there are instances where stochastic perturbation are introduced in such a way that the

64
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total population size is still a deterministic function of time and this is what we do in our

model. Such models are found in [30] by Gray et al., [36] by Lahrouz et al. and [58] by

Tornatore et al. We note that for systems of stochastic differential equations, different

versions of stability are defined and studied in the literature. We refer to the book [41]

of Mao and several papers, for instance, [65], [33], [30], [36] and [58]. One of the most

important differences between the stochastic and deterministic epidemic models is their

asymptotic dynamics.

6.2 Stochastic model

We assume (Ω,F , {Ft}t≥t0
,P) to be a complete probability space with a filtration {Ft}t≥t0

.

Let W (t) be a 3-dimensional Wiener process defined on this probability space. We assume

that the three coordinates W1(t),W2(t), and W3(t) are mutually independent.

We introduce stochastic perturbation into the model (4.2) and we obtain the following

system of stochastic differential equations:

dS =

[

Λ0 − βc
SI

N
− µS

]

dt,

dL =

[

Λ1 + βc
SI

N
− µ1L+ αc

IT

N

]

dt+ σ1LdW1 ,

dI = [Λ2 + kL− µ2I] dt+ σ2IdW2, (6.1)

dT =

[

rI − αc
IT

N
− µT

]

dt+ σ3TdW3.

We note that if Λ1 = 0 and Λ2 = 0, then the disease free state E∗ = (S∗, L∗, I∗, T ∗) =

(Λ0

µ
, 0, 0, 0) is an equilibrium point.

We note that the coefficients are locally Lipschitz in the sense of [41]. Consequently the

system has a unique local solution for any feasible initial state. In order to study stability

of E∗, we assume that there are global solutions which are almost surely non-negative.
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6.3 Stability of the SDE model for Tuberculosis

In this section, we proceed to study the stability. The theorem below can be interpreted

as saying that, at least, the stochastic perturbations do not destabilize the system. Let

us define the invariant β∗ and R∗ as follows:

β∗ = max {β, α} ,

and

R∗ =
kβ∗c

µ1µ2

,

we recall that

µ1 = µ+ k, µ2 = µ+ d+ r.

Theorem 6.3.1. If R∗ < 1, Λ1 = 0 and Λ2 = 0, then disease free equilibrium is a.s

exponentially stable.

Proof. We can choose ǫ1 > 0 and ǫ2 > 0 sufficiently small such that the following condi-

tions hold.

µ1µ2

k
(R∗ − 1) + ǫ1µ2 < 0, (6.2)

and

µ1µ2

k
(R∗ − 1) + ǫ1µ2 + ǫ2r < 0. (6.3)

Now let

A =
µ1

k
− ǫ1.

We define a function V = L + AI + ǫ2T and we note that V (L(t), I(t), T (t)) is positive.

Thus we can define

Z(t) = lnV (t).

We now calculate the differential, dZ:
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dZ =
1

V
dL+

A

V
dI +

ǫ2
V
dT −

1

2

[

1

V 2
dL2 +

A2

V 2
dI 2 +

ǫ2
2

V 2
dT 2

]

=

(

β cSI

N
− µ1L+

α cIT

N

)

V −1dt

+
A (kL− µ2I)

V
dt + ǫ2

(

rI −
α cIT

N
− µT

)

V −1dt

+ [σ1LdW 1 + σ2IdW 2 + σ3TdW 3]V
−1

−
1

2

[(

v1
2 + v2

2 + v3
2
)]

dt ,

where v1
2 = σ1

2L2

V 2 , v2
2 = σ2

2I2

V 2 , and v3
2 = σ3

2T 2

V 2 .

Then,

dZ = LV dt + [σ1LdW 1 + σ2IdW 2 + σ3TdW 3]V
−1,

where

LV =

(

β cSI

N
− µ1L+

α cIT

N

)

V −1

+
A (kL− µ2I)

V
+ ǫ2

(

rI −
α cIT

N
− µT

)

V −1

−
1

2

[(

v1
2 + v2

2 + v3
2
)]

.

Therefore:

Z = Z0 +

∫ t

0

LV dt+
3

∑

i=1

Gi(t) (6.4)

where each Gi(t) is a martingale defined as

G1(t) =

∫ t

0

(σ1L) dW1

V
, G2(t) =

∫ t

0

(σ2I) dW2

V
, G3(t) =

∫ t

0

(σ3T ) dW3

V
.

Then

lim
t→∞

Z

t
= lim

t→∞

Z0

t
+ lim

t→∞

1

t

∫ t

0

LV dt+ lim
t→∞

1

t

3
∑

i=1

Gi(t).

Regarding the quadratic variations of the stochastic integral Gi(t) we have
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∫ t

0

(σ1L)
2

V 2
ds ≤ σ2

1t,

∫ t

0

(σ2I)
2

V 2
ds ≤ σ2

2t,

∫ t

0

(σ3T )
2

V 2
ds ≤ σ2

3t.

By the strong law of large numbers for martingales [41], we therefore have

lim sup
t→∞

1

t

3
∑

i=1

Gi(t) = 0 (a.s).

It finally follows from (6.4) by dividing t on both sides and then letting t → ∞ that

lim sup
t→∞

lnZ(t)

t
≤ lim sup

t→∞

1

t

∫ t

0

LV dt (a.s).

We note that

LV ≤

(

β cSI

N
− µ1L+

α cIT

N

)

V −1

+
A (kL− µ2I)

V
+ ǫ2

(

rI −
α cIT

N
− µT

)

V −1

−
1

2

[(

v1
2 + v2

2 + v3
2
)]

. (6.5)

Now, it follows as in (6.5) that

LV <

(

β cSI

N
− µ1L+

α cIT

N

)

V −1

+
A (kL− µ2I)

V
+ ǫ2

(

rI −
α cIT

N
− µT

)

V −1

−
1

2

[(

v1
2 + v2

2 + v3
2
)]

,

and in fact

lim sup
t→∞

1

t

∫ t

0

LV < 0.

Therefore,

lim sup
t→∞

lnZ(t)

t
< 0.

This finally proves the (a.s.) exponential stability.

Remark 6.3.2. Theorem (6.3.1) implies that Z(t) goes extinct exponentially (a.s.) when-

ever R∗ < 1 with the consequence that T -class also goes to extinction (a.s.)
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6.4 Simulations

In this section we simulate the SDE model in (6.1) numerically for the same parameters

in Table 4.2 except σ. In all simulations we use a single value for all the σi, i.e., σ1 =

σ2 = σ3 = σ, with initial conditions:

S(0) = 5000, L(0) = 400, I(0) = 2010, T (0) = 1000.

Figs.(6.1)(a) and (b) show the variation of S(t), L(t), I(t), T (t) within time, that is the

inflow of infectives and without the inflow of infectives. As we know that the population

dynamics is inevitably subjected to environmental noise. So, it is important to examine

the inclusion of stochastic effects into deterministic models as explained in the introduc-

tion. We observe that there is excellent agreement with the solutions to the corresponding

deterministic case in Fig. 6.2(a,c,d,e,f). In contrast to the deterministic solutions, the

stochastic solutions do not converge to the equilibria in Fig.6.2(b,g,h) of the deterministic

System (4.2). However, Theorems (4.6.1) and (6.3.1) relate the behavior of the stochastic

system to the asymptotic deterministic behavior. Indeed, if the intensities of noise are

sufficiently small, the stochastic solution can be expected to remain close to the inflow

of infectives or without the inflow of infectives. However, in the case when R0 ≤ 1 and

there is no inflow of infected individuals, that is Λ1 = Λ2 = 0, it seems likely that the

number of infectives will tend to 0 almost surely as t goes to infinity. We hope to study

this statement for future investigation.

In summary, the numerical simulations in this study show that adding noise to determin-

istic model affects the stability and able to change the dynamics of the model system from

stable situation to unstable one, which is in line with what was done in [37]. Moreover,

as illustrated in Figs. (6.1)(6.3), (6.4) and (6.5), the strong noise may give a divergence

between stochastic and deterministic behaviors.
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Figure 6.1: Stochastic variation of population in different classes

with and without the inflow of infectives with σ = 0.78
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Figure 6.2: Simulations of TB model showing the various classes with σ = 0.023.
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Figure 6.3: Stochastic variation of latent and Infective population with σ = 0.78

(a) inflow rates of infectives and β in latent class (b) inflow rates of infectives in

infective class.
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Figure 6.5: Stochastic variation of different values of k in latent and infective class

with σ = 0.78

 

 

 

 



Chapter 7

Conclusion

7.1 Introduction

In this study, we have presented and analysed a tuberculosis model with inflow of infec-

tives in a population. It is assumed that susceptibles become infected via contacts with

infectives and all infectives ultimately develop TB.

Qualitative analysis of the model was carried out for when Λ1 = Λ2 = 0 and some

inferences have been drawn regarding the spread of TB by way of establishing local and

global stability results. With the help of the next generation method and theorem by

Van den Driessche and Wat, it was found that whenever the basic reproduction number is

less than one, that is, R0 < 1, the disease free equilibrium point is locally asymptotically

stable and unstable whenever the basic reproduction number is greater than one, that

is, R0 > 1. The existence and stability of the endemic point was determined by using

Routh-Hurwitz criteria. It was found that the TB model with inflow of infectives exhibits

a backward bifurcation at R0 = 1: In this case, the disease-free equilibrium co-exists with

the endemic equilibrium that is locally asymptotically stable when R0 < 1: The stability

nature of solutions will determine whether or not the disease will disappear from the

population. Numerical simulations of the model are carried out in order to look into the
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TB dynamics in usage of treatment.

We propose an effective strategy to reduce and control the number of infected individuals

when there is a constant inflow of infective immigrants. The optimal control theory has

been applied in the context of a TB model with inflow of infectives; and that includes

a control representing the effort that reduces the contact rate between individuals, and

a therapeutic treatment. By using the Pontryagin’s maximum principle, the explicit ex-

pression of the optimal control was obtained. Simulation results indicate that despite the

presence of a constant inflow of infective immigrants, the proposed control strategy of a

complete treatment can help suppress the spread of TB and is effective in reducing the

number of patients.

We looked also at a stochastic model describing the population dynamics of a TB epidemic.

Our focus is on a stochastic differential equation TB model without inflow of infectives.

In our model, we assume that the stochastic perturbation is a white noise type that is

directly proportional to L(t), I(t), T (t) and is influenced on the derivatives dL(t)
dt

, dI(t)
dt

, and

dT (t)
dt

, respectively. This is a well-established way of introducing stochastic environmental

noise into biologically realistic population dynamic models that have been used in various

journals. Our study have provided analytic proof of almost sure exponential stability of

the solution to the SDE model (6.1) in the case R0 < 1, while there is no inflow other

than into the S-class.

7.2 Conclusion

Based on the results of this work, we conclude that unchecked inflow of infectives to

a country like South Africa is a silent killer if it is not dealt with. We conclude that

treatment of sensitive TB results in a reduction of TB in South Africa as most TB cases

come from failure to properly administer TB treatments and the rate at which infective

immigrants migrate into the country. On the other hand, diagnosis, health education of

infectives with sensitive TB and proper policy on infective immigrants are more important
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in the reduction of new TB cases because they lead to appropriate treatment. However,

there is need to treat, diagnose and educate more people if we are to ever dream of com-

pletely eliminating TB in South Africa. Also, the treatment rate of infected individuals

should be correlated to the number of diagnosed individuals to ensure that all TB cases

are not left unattended.

Despite the successful completion of this study, there were challenges met along the way.

For instance, estimating the enhancement of infective immigrant parameters was a big

challenge on how to determine and locate the degree of normal rate of infectives inflow into

South Africa. However, the results are reasonably applicable to the South African context.

7.3 Future Work

As tuberculosis continues to claim more lives, it is imperative to have comprehensive

researches done in order to explore possible new control strategies of the infection as well

as assessing the impact of the existing control strategies. Based on the model of this

study, it is proposed that future work should consider;

• Carrying out a cost-effectiveness analysis of the control strategies of TB in the model.

• Expanding the model to incorporate vaccination of susceptible population, immi-

grants and newborns, thus assess its role on the dynamics of TB.

• An investigation on the efficacy of TB treatments and up-take in educational pro-

grams.

• Usage of real data for the inflow of infectives into the country can be considered.

• It will also be good to Mathematically show the extent to which the global dynamics

of the stochastic version of our model is governed by its reproduction number R0.

• Extinction, persistence [6, 13], ergodic property, herd immunity [24] and the effects

of different types of noise can also be considered in future.
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