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Abstract 

Tomopterna delalandii occurs throughout the west coast, Western Cape and south coast of South 

Africa. This range stretches across three distinct biogeographical assemblages. Based on 

historical records and the fact that Tomopterna is a genus of cryptic frogs, it is possible that there 

are unknown genetic variations within the species. To investigate whether population structure is 

present within T. delalandii a mitochondrial gene and nuclear gene, 16S and Tyrosinase, was 

sequenced from across the range. Haplotype networks and cladograms were constructed to look 

at the relationship between the genetic samples. This revealed definite population structuring 

between samples from the western edge of the range and samples from the eastern edge of the 

range. It also revealed that samples taken from the northern edge of the range, while matching 

general T. delalandii tadpole morphology, are genetically different. Further study needs to be 

made into the identity of this new form. This study shows that by using both mitochondrial and 

nuclear DNA patterns can be discovered about the genetic structure of a species as well as 

revealing a new one. 

 

Keywords: South Africa, Tomopterna, haplotypes, population structure 
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1. Introduction 

 

1.1 Brief Taxonomic history 

In 1838 the cape sand frog was described where it was grouped in the genus Pyxicephalus 

(Tschudi 1838). In 1841 however, a new genus of frog was described as Tomopterna, to which 

the cape sand frog now belonged (Duméril & Bibron 1841). Later scientists still referred to these 

frogs as belonging to the genus Pyxicephalus (see Günther 1858, Cope 1863). There was still 

some confusion to the taxonomic grouping of Tomopterna and in 1911 they were classified 

under the genus Rana while later classifications still referred to them as being part of the genus 

Pyxicephalus (see Hewitt 1911, Van Dijk 1978, Bowker & Bowker 1979).  

Their grouping in Pyxicephalus led to their common name, pyxies (see Jacobsen 1978). Later on 

in the year the common name was proposed as sand frogs, as pyxies is only apt for true members 

of the genus Pyxicephalus (see Passmore & Carruthers 1978). It is now accepted that they belong 

to the family Pyxicephalidae and the sub family Cacosterninae (Zimkus & Larson 2011, Frost 

2014).  

The genus Tomopterna included species from East Asia and Madagascar until 2000, when 

Vences et al. assigned the Asian and Malagasy species to new genera, Sphaerotheca and 

Laliostoma respectively. Tomopterna is now used to describe only the African species. 

Tomopterna delalandii was the first species of sand frog described (Tschudi 1838). The type 

locality was given as “Promontorium Bonae Spei” which is the Cape of Good Hope. Early 

studies refer to T. delalandii being found as far north as Zimbabwe and West Africa (Balinsky 

1969, Broadley 1974, Jurgens 1978, Van Dijk 1978, Branch et al. 1988). Samples of T. 
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delalandii were also recorded as being found in Somalia, very far from its currently described 

range. This misidentification is mostly due to the similar morphology and colouration of the 

species within the genus Tomopterna.   

1.2 Tomopterna  

The genus Tomopterna currently consists of 15 species. They are T. cryptotis, T. damarensis, T. 

delalandii, T. elegans, T. gallmanni, T. kachowski, T. krugerensis, T. luganga, T. marmorata, T. 

milletihorsini, T. monticola, T. natalensis, T. tandyii, T. tuberculosa and T. wambensis (Frost 

2014). 

Tomopterna cryptotis is found in the central highlands of South Africa, Swaziland, Lesotho and 

north into Mozambique, Zimbabwe, Botswana, Namibia, Angola, Zambia and Malawi 

(Channing 2001). Tomopterna damarensis is only known from the type locality in northern 

Namibia, Khorixas (Dawood & Channing 2002). Tompterna delalandii is described below. 

Tomopterna elegans is found in north-eastern Somalia. Tomopterna gallamanni is found on the 

Laikipia Plateau of Kenya as well Maralal and Baragoi areas in the north of Kenya (Wasonga 

and Channing 2013). Tomopterna kachowski has been found in central Ethiopia into Eritrea and 

possibly into Sudan (Zimkus and Larson 2011). Tomopterna krugerensis is found from southern 

Angola to Namibia, through Botswana and Zimbabwe into the north eastern parts of South 

Africa and southern Mozambique (Channing 2001). Tomopterna luganga is found on the central 

plateau of Tanzania (Channing et al. 2004). Tomopterna marmorata is found in north eastern 

South Africa, Zimbabwe, Mozambique, Malawi, eastern Botswana and   Zambia (Channing 

2001). Tomopterna milletihorsini is known only from two localities in Mali (Frost 2014). 

Tomopterna monticola is known only from a single locality in Kenya (Frost 2014). Tomopterna 
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natalensis occurs from southern Mozambique southward to the Eastern Cape Province and the 

central highlands of South Africa (Channing 2001). Tomopterna tandyii is found in a broad 

swathe from southern Angola through Namibia and Botswana and Zimbabwe into the central 

highlands of South Africa and down to the south eastern coast (Channing 2001). Tomopterna 

tuberculosa is found in Namibia and Angola across the Democratic Republic of Congo and in 

Zimbabwe (Channing 2001). Tomopterna wambensis is found in north eastern Kenya and into 

Tanzania (Wasonga and Channing 2013). 

1.3 The range of Tomopterna delalandii 

 

Figure 1. Distribution map for Tomopterna delalandii showing museum records of previously collected 

samples in grey squares. Study sites represented by the green circles.  
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 The Cape Sand Frog is found in the south west of South Africa from the Cape Peninsula and 

Little Karoo eastward to the Eastern Cape (Port Alfred) and northward to Springbok (Van Dijk 

1971, Carruthers & Carruthers 1979, Wager 1986, Channing 1988, Channing 2001) (Figure 1). 

Based on distribution data it appears that the species is restricted to the coastal plain and the 

escarpment. Even though the range seems to have a similar basic geography, the habitats in 

which T. delalandii are found cover three different biomes.  

1.4 Climate and Vegetation 

The Northern Cape is the driest province in South Africa with annual precipitation, along the 

coast less than 100 mm and as much as 400 mm at Springbok (Channing 1988, Moon & Dardis 

1988, Cowling et al. 1999, Meadows & Hoffman 2003, Channing & Wahlberg 2011). This 

rainfall only occurs during the winter months, May−September (Støwer 2013). The aridity of the 

coast is mostly due to the Benguela current. The cool waters result in a low evaporation rate and 

therefore less moisture in the atmosphere (Moon & Dardis 1988). Similarly in the Western Cape, 

precipitation occurs mostly during the winter months (Støwer 2013). It is however more than the 

Northern Cape, about 500–650 mm per annum. The Western Cape has a Mediterranean climate 

with summer droughts and winter rains. In the east, however, rainfall drastically increases to 

more than 1000 mm per annum. This change in precipitation affects the vegetation found in the 

area. The Northern Cape range of T. delalandii is dominated by Succulent Karoo vegetation 

while the Western Cape range is dominated by Fynbos (Cowling 1990). The eastern edge of the 

T. delalandii range is dominated by Albany Thicket. 
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1.5 Geology  

The range of T. delalandii within the Northern Cape falls mostly within the boundaries of the 

Namaqua and Natal Metamorphic Provinces. This region was prone to granite intrusions that 

were formed in the late Protozoic (Botha 1983). Over the years these rocks have been eroded and 

resulted in granite based sandy sediment (Desmet 2007). The result is a hilly landscape with flat 

valleys created by the eroded sandy sediment.  

Along the western coast of South Africa the soil is composed of marine based sediment (Desmet 

2007). This soil is composed of gray sand at the coast and red sand inland with yellow sand 

forming an intermediate between the two soil types. The Western Cape and Eastern Cape are 

mostly composed of the Cape Super Group, Cenozoic deposits and Archaen Granite. The 

Archaen granite is the oldest of these geological features, the intrusion of the granite resulted in 

the formation of gneiss. The Cape Super Group consists of various formations which are 

predominantly sandstone and shale based (Moon and Dardis 1988) resulting in similarly based 

sandy soils.  

A major feature of the group is the Cape Fold Belt which stretches eastwards from the Cedarburg 

in the northwest through to Port Elizabeth. The Cenozoic deposits found in the Eastern Cape are 

the result of submergence and sediment being deposited that are of marine or fluvial origin 

(Johnson 1976). 

The origin and underlying geology is different throughout T. delalandii‟s range. The common 

factor is that in each specific area the resultant sediment is sandy, ideal for T. delalandii.  
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1.6 Biology 

Tomopterna are found in sandy environment. They have flanged metatarsals that aid in burying 

themselves to escape predation. The burrowing also allows them to escape the heat of their 

environment (Rose 1926, Channing 1976). This means that throughout the year the sand needs to 

remain loose so that the frogs can burrow.  

Although Tomopterna has adapted to live in dry conditions by being semi-fossorial, it still needs 

water to reproduce. Sand frogs commence breeding as soon as the rain falls, where they breed 

along river courses in shallow water and temporary pools (Balinsky 1969, Jurgens 1978, Stuart 

1980). The habitat, however, still needs to be suitable for adults i.e. suitable for them to burrow 

during the day and feed and reproduce at night. Shallow ponds with sandy banks are ideal for the 

frogs. In the north this would be ephemeral river beds and natural ponds.  

The main restricting factor in such an arid area will be water (Channing 1988). When looking at 

the Western and Eastern Cape other determining factors will effect where T. delalandii is found. 

Water is not as scarce in the Western Cape (during the rainy season) and therefore the frogs have 

many potential breeding sites, providing that the surrounding sediment is suitable.  

Temporary factors that affect breeding are wind and temperature. If the temperature is too low it 

may prohibit calling, as seen in other frogs (Docherty et al. 1995). If the wind is too high it 

increases evaporation and therefore increases water loss from the frog. Wind will also interfere 

with the advertisement call of the frog, decreasing the chances of it attracting a mate. 

Looking at the variation of the environments across the range of the cape sand frog, vast 

differences are notable. The same species of frog shows remarkable tolerance for fluctuating 

water availability, tolerating very arid conditions to areas where water is available throughout the 
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year. The varying amount of water available affects the vegetation types found in each region, 

from Succulent Karoo in the north, Fynbos in the south and Albany Thicket long the east coast.  

With all the variations across the range, is the population itself genetically homogenous? 

One of the factors to take into consideration when examining genetic variation is population 

distribution. Spatial distribution of a species within a population is often fragmented. It is 

important to note the gene flow between these fragments. If the gene flow is high, individuals 

will be similar to one another and the fragments will behave as one population. If the gene flow 

between the fragments is low it will result in genetically variable individuals being found within 

the population. Gene flow is affected by distance, amongst other things. If the distance between 

two fragmented patches is too far, individuals will not be able to reach the fragmented patch and 

interbreed which each other. This will decrease the overall gene flow of the population but 

increase the genetic variability. This could come into effect when looking at the population of T. 

delalandii. Approximately 1400 km separate Springbok along the coast to Port Alfred with only 

950 km separating them as the crow flies.  

1.7 Rationale  

A study like this has the possibility to define population structuring in amphibians. This has been 

demonstrated by other genetic investigations.   

A study was conducted looking at the genetic variation and distribution of Amietophrynus 

pantherinus (Measey & Tolley 2011). They discovered that there were genetically separated 

individuals across the range represented by two distinct populations. A genetic study was carried 

out on the spadefoot toads, and although on a larger scale, genetic variation based on geographic 

location was shown to be present within Spea intermontana (Wiens & Titus 1991). Other 
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molecular studies have yielded similar results, with population structure being noted in Bufo 

canorus (Shaffer et al. 2000) and Hyla meridionalis (Recuero et al. 2007), while others resulted 

in the discovery of new species (Channing et al. 1994, Zimkus & Larson 2011).  

1.8 Aim 

This study will examine genetic samples of T. delalandii across its range, which extends from 

the north west coast to the south east coast of South Africa covering very different biomes. 

This study will examine genetic data based on 16S ribosomal DNA and tyrosinase exon 1 

nuclear DNA. The analysis of the data will reveal whether there are any intraspecific differences. 

These differences will then be correlated with the sample locations to determine whether 

distance does play a role in the genetic variation of T. delalandii. 

1.9 Research questions 

1. With the population of T. delalandii covering such a variable area, is there genetic structuring 

within the population? 

2. Does the geographic distance between the samples have an effect on the overall genetic 

variation? 

3. Is the genetic variation, if any, similar to that found in other species of frogs? 
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2. Materials and Methods 

2.1 Sampling 

 

Figure 2. Map showing the localities of samples used in the study. Buff – Buffels River, CaFr – Cape St. 

Francis, Nord – Noordhoek, PA – Port Alfred, PE – Port Elizabth, Rond – Rondevlei, Stel – 

Stellenbosch, StFr –St. Francis Bay. 

Samples were collected from seven sites within the range of T. delalandii: Noordhoek, 

Rondevlei, the University of the Western Cape (UWC), Stellenbosch, Port Elizabeth, St. Francis 

Bay and Buffels River (Figure 2). Additional tissue samples, from Cape St. Francis and Port 

Alfred were obtained from the Port Elizabeth Museum and the South African Institute for 

Aquatic Biodiversity. For the purpose of this study, samples from the west will refer to the 

localities Noordhoek, Rondevlei, UWC and Stellenbosch, samples from the east will refer to the 

localities Port Elizabeth, St. Francis Bay, Cape St. Francis and Port Alfred, while samples from 

north will be samples from the Buffels River. Tissue was collected from tadpoles and adults. 

Tadpoles were collected during the day by exploring puddles in suitable habitats. They were later 

Buff 

Stel 
UWC 

Nord 

Rond CaFr 

StFr 

PE 

PA 
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identified using a morphological key (Channing, unpublished). Frogs were collected at night by 

driving along roads, where they can easily be seen against the tarmac. They were also collected 

by investigating ponds and other suitable habitats. At ponds, male frogs were located by their 

calls. Tomopterna advertisement calls are species specific (Channing and Bogart 1996, Dawood 

et al. 2002).  By comparing the vocalisations in the field to other previously recorded and 

confirmed calls of T. delalandii it ensured that the samples collected were indeed T. delalandii. 

Frogs and tadpoles were euthanized with a solution of Tricaine methanesulfonate (MS 222). In 

total 59 samples were collected from nine localities (Table 1). 

2.2 DNA extraction from tissue samples (Modified from Hillis et al. 1990)  

See appendix 1 for recipes.  

Tissue samples were placed in labeled 1500 µl eppendorf tubes, to which 500 µl extraction 

buffer was added. The tissue was then macerated using sterile scissors and 15 µl of proteinase K 

was added to the solution. This was then left in a dry bath at 55 °C. Once the tissue was digested 

500 µl of Phenol: Chloroform: Isoamyl alcohol (25: 24: 1) was added to the eppendorf. 

The solution was then shaken slightly and centrifuged for 10 min at 3 000 x g. By doing this the 

solution was split into two layers, the aqueous (upper) and organic (lower) phases. The nucleic 

acids separate out in the aqueous phase, while proteins separate into the organic phase. The 

aqueous layer was then carefully removed using a micropipette with a wide bore tip and 

transferred to a new eppendorf. Care was taken not to disturb the interface and draw any proteins 

into the aqueous solution. A second, more stringent separation was carried out by adding 500 µl 

of Chloroform: Isoamyl alcohol (24: 1) to the previous aqueous layer. The eppendorf was gently 

shaken and centrifuged for a further 10 min at 3 000 x g. The aqueous layer was removed and 
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transferred to a new eppendorf. To force the DNA to precipitate 45 µl of 3 M Sodium Acetate 

and 650µl of ice cold absolute ethanol was added. The solution was then placed in a freezer 

overnight to allow the DNA to precipitate. 

The following day, the samples were removed from the freezer, placed in a centrifuge and spun 

at 12 000 x g for 10 min. The eppendorf was then slowly emptied of excess liquid leaving behind 

the precipitated DNA pellet. The tube was then left open to dry at room temperature until all the 

excess liquid evaporated. The pellet was then suspended in 50 µl TE.  To samples that had a 

small amount of tissue initially, 30 µl TE was added. 

In order to determine the concentration of DNA in the solution, it was quantified, following the 

instructions provided by Invitrogen for a Qubit fluorometer. The solution was then diluted with 

sterile water to attain a DNA template of 2 ng/ µl.  

2.3 Polymerase Chain Reaction (Modified from Hillis et al. 1990) 

PCR tubes were prepared with 12.5 µl Kapa ready mix , 1 µl of 16Sar-L primer (10nm), 1 µl 

16Sbr-H primer (10 nm), 6.5 µl purified water and 4 µl of diluted template DNA (2ng/ µl). A 

negative control was made by following the same recipe except replacing the DNA with purified 

water. This process was repeated using primers for nuclear genes, tyrosinase exon 1C (Tyr C) 

and tyrosinase exon 1G (Tyr G). 

16SA: 5‟ – CGC CTG TTT ATC AAA AAC AT – 3‟ (Palumbi et al. 1991) 

16SB: 5‟ – CCG GTC TGA ACT CAG ATC ACG T – 3‟ (Palumbi et al. 1991) 

Tyr C: 5‟ – GGC AGA GGA WCR TGC CAA GAT GT – 3‟ (Bossuyt and Milinkovitch 2000) 

Tyr G: 5‟ – TGC TGG CRT CTC TCC ART CCC A – 3‟ (Bossuyt and Milinkovitch 2000) 
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The samples were then placed in a Techne TC-512 PCR machine and run in 3 stages. For 16S: 

Stage 1: 95 °C for 1min 

Stage 2: 95 °C for 10 s, 51 °C for 10 s, 72 °C for 1 s (Stage 2 was repeated 35 times) 

Stage 3: hold at 10 °C 

For tyrosinase exon 1: 

Stage 1: 95 °C for 1 min  

Stage 2: 95 °C for 10 s, 55 °C for 10 s, 72 °C for 1 s (Stage 2 was repeated 35 times) 

Stage 3: hold at 10 °C 

To visualize the amplified PCR product a 0.8 % agarose gel was prepared. Prior to the gel setting 

2 µl of ethidium bromide was added. The ethidium bromide inserts into the DNA strand, and 

makes it visible under UV light. The PCR product was then visualized using a Spectroline 

ultraviolet transilluminator and sent to the Central Analytical Facility at Stellenbosch University 

for clean up and sequencing.  

2.4 Analysis 

2.4.1 16S  

Sequences received from the Central Analytical Facility were opened and viewed in BioEdit 

(Hall 2007). Each sequence and associated chromatogram was individually examined. At sites 

where no definite base was given, they were replaced with the appropriate base based on that 

sequence‟s chromatogram. The dataset was then combined with sequences from GenBank. 
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Sequences were then aligned in Clustal X v2.1 (Larkin et al. 2007) where a complete alignment 

was run in multiple alignment mode. Sequences were subsequently trimmed using BioEdit (Hall 

2007) to ensure equal sequence length. These were then used to create a haplotype network in 

TCS v1.21 (Clement et al.2000). Gaps were selected as missing data. 

Phylogenetic analyses were carried out using Bayesian Inference (MrBayes v3.0b4, Huelsenbeck 

& Ronquist 2001, Ronquist & Huelsenbeck 2003). To determine which model to use in Mr 

Bayes, jModelTest 0.1.1 was used (Dariba et al. 2012). The Bayesian analysis was then run 

using the GTR + gamma model (nst=6, rates = gamma). A search was run using the Markov 

Chain Monte Carlo algorithm. The search contained four Markov chains, one cold and three 

heated, which was run for 9 000 000 generations with trees saved every 1000 generations. The 

first 2250 trees were discarded as burnin and a consensus tree was constructed from the 

remaining sampled trees. For these analyses, Pyxicephalus adspersus was selected as the out 

group as amphibian phylogeny shows that they are grouped in the same clade to Tomopterna yet 

are phylogenetically basal (van der Meijden et al. 2005, Pyron & Wiens 2011). 

From the dataset used to create the consensus tree, a haplotype list was created in MacClade 

v4.05 (Maddison & Maddison 2002). This process combined sequences that have exactly the 

same order of bases into one sequence, turning 40 sequences into nine distinct haplotypes. The 

haplotype dataset was transferred into Arlequin v3.5 (Excoffier & Lischer 2010) where details 

such as locality and grouping, Western or Eastern Cape, were attached to each haplotype. In 

Arlequin v3.5 an analysis of molecular variance (AMOVA) was carried out to test variability 

between sequences within a group and between groups.  
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Neutrality tests were also conducted using Arlequin v3.5 (Excoffier & Lischer 2010). Selective 

neutrality was measured using Fu‟s Fs-test (Fu 1997) and Tajima‟s D statistic (Tajima 1989), 10 

000 samples were simulated. F statistics were calculated to show population structure. 

To support the population structure produced by the AMOVA analysis a Mantel test was run. 

The test correlates geographic distance and genetic variation. An uncorrected p matrix of genetic 

variation was generated in PAUP* v4.0b10 (Swofford 2003). ArcView GIS 3.3 was used to 

generate a geographic distance matrix. These two matrices were combined in MANTEL v1.19 

(Cavalcanti 2008) and the analysis run. 

2.4.2 Tyrosinase exon 1 

Nuclear DNA is diploid unlike the haploid mitochondrial DNA. This is important when 

analysing the sequence and chromatogram. When looking at a chromatogram of nuclear DNA, 

polymorphic positions would appear as two peaks of similar height, each allele carrying a 

different base. This means that ambiguous bases cannot be resolved by selecting one base in 

favour of another based on the chromatogram as done with mitochondrial DNA. This is because 

each base comes from one of the parents. To solve the ambiguity, PHASE v 2.1 (Stephens et al. 

2001, Stephens & Scheet 2005) estimates the haplotypes for both parents from the single 

sequence. PHASE input files are generated by SEQPHASE (Flot 2010). Output files from 

PHASE are then converted back into a more compatible format using SEQPHASE. This returns 

all the possible haplotypes with their respective probability. From this, the two sequences with 

the highest probability are selected, representing each parent. 

Both sequences, for each sample, are then aligned and trimmed as with the 16S methodology. 

Haplotype networks were then constructed using the tyrosinase exon1 data set. 
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For the Bayesian analysis the GTR + gamma model was also indicated to be the best model. The 

Markov Chain Monte Carlo analysis was run for 20 000 000 generations with trees saved every 

1000 generations. The first 5000 trees were discarded as burnin and a consensus tree was 

constructed from the remaining trees. 

The analyses run for 16S were then repeated using the tyrosinase exon 1 data set. 

2.4.3 Comparative Analysis 

Genetic variation is expected within a species. Differences between samples from within a 

species would suggest population structuring. To compare whether the genetic variation within 

T. delalandii is low enough to suggest only one population, sequence data of the 16S 

mitochondrial gene of other frogs were taken and compared to the 16S results of T. delalandii. 

The species used for the comparative analysis were Amietophrynus rangeri and A. regularis, 

Phrynobatrachus parvulus, Ptychadena anchietae and (Table 2). Species were selected on 

whether they share a similar range with T. delalandii. If species were not from the same area, 

they were selected on whether the distance between the furthest points of their range is similar or 

more than that of T. delalandii.
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3. Results 

3.1 Sequences 

The data set for T. delalandii consists of 59 individuals. For the 16S gene, 53 of those samples 

sequenced successfully. The data set for tyrosinase exon 1, 23 samples sequenced successfully 

(resulting in 46 sequences overall due to the polymorphic base pairs).The 16S dataset was 

supplemented with six haplotypes from GenBank. Sequences received from the Central 

Analytical Facility had varying sequence lengths, with an average of 572 base pairs per sequence 

for 16S and 552 base pairs per sequence for tyrosinase exon 1. The sequences from GenBank 

consisted of sequences that had 444 base pairs to 2408 base pairs (Table 1.1). To prepare them 

for analysis the sequences were trimmed to 344 base pairs for 16S and 528 base pairs for the 

tyrosinase exon 1 sequences. This was done to trim bases from the front and ends of the 

sequences and to ensure uniformity between the sequences. 

3.2 Haplotype network 

Haplotype networks show the relationships between sequences. Closely connected haplotypes 

mean that there a few base pair changes between them. Haplotypes that are further apart have 

many base pair changes between them. If two clusters of haplotypes are far apart it would 

suggest that there is some population structure present. When a haplotype network is combined 

with geographic locations it also visually shows whether isolation by distance is occurring within 

the species. 
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Figure 3. Haplotype network of the 16S gene for Tomopterna delalandii. Haplotypes represented by 

abbreviations, including other localities that share the haplotype, are BR1-Buffels River (n=2); 

BR2-Buffels River (n=2); NH1-Noordhoek (n=2), and Stellenbosch (n=2); ); NH2-Noordhoek 

(n=1); PA-Port Alfred (n=21); PE1-Port Elizabeth (n=1); PE2-Port Elizabeth (n=1); SF-St. 

Francis Bay (n=6);  UW-University of the Western Cape (n=2), Rondevlei (n=1) and 

Stellenbosch (n=5). 

The haplotype network for 16S (Figure 3) shows a definite clustering of haplotypes in three 

distinct groups. Haplotypes PA, PE1, PE2 and SF are found in the eastern edge of the population 

range, around Port Elizabeth, while haplotypes UW, ST and NH are found in the western edge of 
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the range, around Cape Town, approximately 790 km away. The results show population 

structuring within the species. 

Haplotypes BR1 and BR2 are not connected to the rest of the network under the 95 % connection 

limit. Haplotype BR1 is shared by two individuals and haplotype BR2 is shared by two 

individuals. These specimens were found in the Buffels River in the northern part of T. 

delalandii‟s range. Approximately 450 km separate the northern sampling site from the western 

sites. That is 350 km shorter than the distance separating the western and eastern groupings. It 

would be expected that individuals closer to one another would be more similar to each other. 

The rate at which individuals will be able to interbreed will be higher therefore an increase in the 

gene flow (Amos & Harwood 1998).  
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Figure 4. Haplotype network for the tyrosinase exon 1 nuclear gene for Tomopterna delalandii. 

Haplotypes represented by abbreviations, including other localities that share the haplotype, are 

BR-Buffels River (n=2); CF1-Cape St. Francis (n=1); CF2-Cape St. Francis (n=2); NH1-

Noordhoek (n=1); NH2-Noordhoek (n=1); NH3-Noordhoek (n=1);PA1-Port Alfred (n=1); PA2-

Port Alfred (n=2); PE1-Port Elizabeth (n=2); PE2-Port Elizabeth (n=2); RV1-Rondevlei (n=1); 

RV2-Rondevlei (n=1); SF1-St. Francis Bay (n=1);; SF2-St. Francis Bay (n=2); ST1-

Stellenbosch (n=2); ST2-Stellenbosch (n=4); ST3-Stellenbosch (n=2); ST4-Stellenbosch (n=1); 

ST5-Stellenbosch (n=1); ST6-Stellenbosch (n=1); ST7-Stellenbosch (n=1); ST8-Stellenbosch 

(n=1); UW1-University of the Western Cape (n=2); UW2-University of the Western Cape (n=2) 

In the tyrosinase exon 1 network (Figure 4) many haplotypes are present. The haplotypes are 

grouped into two distinct regions. The first grouping of haplotypes is from the western edge of 

the species range, Stellenbosch, UWC, Noordhoek and Rondevlei. Within the western grouping, 

there is high variability between the haplotypes themselves, with as many as 13 base pair 
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changes between two haplotypes. The other grouping of the haplotypes is from the eastern edge 

of the range, Port Elizabeth, Port Alfred, Cape St. Francis and St. Francis Bay. In comparison to 

the previous group, the variation between the haplotypes is low. Haplotype PE2 is only 6 base 

pair changes away from haplotype ST1. Haplotype BR1 is from the northern part of the range, 

and is not connected to the other haplotypes. The results question the validity of the samples 

from the Buffels River as it differs in the mitochondrial gene and the nuclear gene. Based on the 

morphological key it was clear that the tadpoles collected from the Northern Cape were in fact 

Tomopterna. Based on the high variation between the samples, it is questionable whether they 

are the same species. 

When comparing the uncorrected p values between localities, values varied from 0.0 % to 3.5 %. 

Samples from the Buffels River had higher p values when compared to the rest of the localities, 

2.0 to 3.5 %. The Buffels River samples were then removed from the dataset and compared to 

other sequences on GenBank using the Nucleotide BLAST option. The result was that the 

sequences had a 97 % maximum identity to sequences from T. tandyii, T. damarensis, T. 

elegans, T. cryptotis, and T. delalandii. Based on the lack of connectivity in the haplotype 

network and the high variability shown using uncorrected p values data from the Northern Cape 

has been omitted from the AMOVA and Mantel analysis.    
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3.3 Cladograms 

For the 16S cladogram (Figure 5) there is strong support for two separate clades, one from the 

western edge of the range and the other from the eastern edge of the range. There is a clade 

support of 51 % grouping the samples from the western edge. There is however a stronger 

support (83 %) for the grouping of the samples from the eastern edge of the range. There are also 

outliers GB 1 and 2, which are most likely of another species of Tomopterna.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. Cladogram generated by MrBayes for the 16S mitochondrial gene 
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For the tyrosinase exon 1 cladogram (Figure 6) the eastern edge grouping is clearly visible in the 

top half of the cladogram with 100 % support of the tree. The eastern edge samples are all 

definitively grouped together with a clade credibility of 97 %. The northern samples are also 

visible and are most closely related to samples from the western range. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Cladogram generated by MrBayes for the tyrosinase exon 1 nuclear gene 

0.97 

1 

0.85 

0.93 

1 

0.88 

0.96 

0.96 

0.91 

0.88 

1 

Port Alfred, Port Elizabeth, 

Cape St. Francis and               

St. Francis Bay 

Stellenbosch and Rondevlei 

Noordhoek 

Stellenbosch and UWC 

Stellenbosch and Noordhoek 

Buffels River 

 

 

 

 



33 
 

3.4 Analysis of Molecular Variance 

Table 3: Analysis of Molecular Variance between the Western Cape and Eastern Cape grouping 

of haplotype samples of Tomopterna delalandii, giving the sum of squares, variance components 

and percentage variation between the haplotypes. 

The AMOVA analysis (Table 3) had haplotypes that were grouped according to their geography. 

There was a difference of 8.34 % among the 16S samples. This is to be expected as there are no 

major physical boundaries within each group preventing organisms from breeding with each 

other. Each group also has similar climate with localities being no further than 43.2 km apart in 

the western grouping and 204 km in the eastern grouping. This low genetic variation between 

populations is mirrored by the low variation within the populations themselves, 8.15 %. The low 

variation is due to the fact that samples from each locality were found close to one another, less 

 
16S Tyrosinase exon 1 

Source of 
variation d.f. 

Sum of 
squares 

Variance 
components 

Percentage 
variation d.f. 

Sum of 
squares 

Variance 
components 

Percentage 
variation 

Among 
groups 1 53.248 2.6642 va 83.51 1 84.045 31.3072 va 22.88 
Among 

populations 
within 
groups 6 7.535 0.26627 vb 8.34 6 81.367 0.75828 vb 5.54 

Within 
populations 33 8.583 0.26010 vc 8.15 36 352.542 9.79282 vc 71.58 

FSC 0.50586 0.07187 
FST 0.91853 0.28425 
FCT 0.83514 0.22882 
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than 100 m apart and genetic variation is not expected to change over such a small distance. A 

high variation was noted between the group in the eastern edge of the range and the group in the 

western edge of the range 83.51 %.  

Fixation Indices are used to examine levels of variation within a population. These variations, if 

any, are the result of population structure. The variance between samples in a group (FSC) was 

0.505. While not as low as expected, this median value shows that there is some variation within 

the groups. This value is not high enough to warrant the formation of another group. The 

variance between groups (FCT) is high at 0.84. This means that group 1 from the western end of 

the range is significantly different to group 2 on the eastern edge of the range. This supports the 

AMOVA results. The variation between all sites (FST) was 0.92. This high fixation index 

suggests that there is definite population structuring within T. delalandii. The fact that it is so 

high suggests very little interbreeding occurs between the two groups. 

 AMOVA results are more conservative when looking tyrosinase exon 1. The variation between 

groups is low (22.88 %). This is expected as a high variation within nuclear DNA would suggest 

that two different organisms were used in the analysis. There was however a low variation 

between populations within a group (5.5 %) which show that even though there is variation 

within the groups it is not significant. The variation within a population was however relatively 

high (72.58 %). This is most likely due to the base variation of haplotype seven compared to 

other samples from the same area. Similarly for haplotypes 12 and 18 which both come from 

Stellenbosch. 
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3.5 Test for neutrality and diversity 

Table 4: Diversity and Neutrality test results between the 16S gene and tyrosinase exon 1 gene 

for T. delalandii.  

Together with the AMOVA analysis, diversity and neutrality tests were carried out. The western 

group has high gene diversity at 0.69 ± 0.09. This high gene diversity value would explain the 

FSC value being higher than expected. Gene diversity looks at the loci between two sequences, 

while nucleotide diversity focuses on the population as a whole. The nucleotide diversity for the 

western group is 0.004 ± 0.003 (Table 4).  

When looking at the eastern grouping of populations, it is evident that they are more similar to 

each other than the western group due to having lower gene diversity (0.47 ± 0.09). The 

nucleotide diversity is also low, 0.002 ± 0.002. The low diversity values indicate that samples 

from the eastern grouping, St. Francis bay, Cape St. Francis, Port Elizabeth and Port Alfred, are 

more similar to each other than when compared to the western grouping. 

Neutrality tests allow insight as to whether population is growing and evolving randomly or if 

there is another non-random process taking place. The Tajima‟s D value of -0.08 suggests that 

the population is either going through purifying selection or expansion. This is the same for the 

 
16S Tyrosinase exon 1 

  Western Cape  Eastern Cape Western Cape Eastern Cape 

Gene Diversity 0.6917 ± 0.0864 0.4701 ± 0.0962 1 ± 0.0137 0.9957 ± 0.0153 

Nucleotide Diversity 0.003596 ± 0.002693 0.001894 ± 0.001686 0.016455 ± 0.008807 0.061077 ± 0.030905 

Tajima's D -0.08238 -0.63229 -1.17392 -1.12723 

Tajima's D p value 0.4136 0.3051 0.1138 0.1138 

Fu's Fs 0.21471 -0.7048 -15.9874 -3.7929 

Fs p value 0.5493 0.2608 0 0.0583 
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grouping from the east, Tajimas D = -0.63. Although negative, these values are too small to be 

considered significant, similarly with Fu‟s neutrality test. 

The western grouping has positive value of 0.21. This would suggest that the western population 

has undergone a bottleneck. The eastern grouping alternatively has a negative value of -0.71. 

This would suggest that the population is expanding. The p value, however, does not support 

either Fs value. 

3.6 Mantel Analysis 

Table 5: Results of Mantel test for T. delalandii and four other species with accompanying t and 

p values 

  r t p Source     

A. rangeri 0.308 1.572 0.942 Cunningham & Cherry (2000) 

P. parvulus -0.012 -0.127 0.449 Siow et al. (2009), Zimkus & Schick (2010( 

P. anchietae 0.515 3.761 0.999 Vences et al. (2004), Measey et al. (2007), Siow et al. (2009) 

A. regularis -0.106 -1.023 0.153 Vasconcelos et al. (2010) 

T. delalandii 0.935 29.018 1 This study 

 

While the r values suggest that there is at least a certain amount of correlation between 

geographic distance and genetic variation (Table 5), the lack of a supporting p value reveals no 

significant relationship between the two variables being investigated. 
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3.7 Comparative results 

As seen from the previous results the genetic variation of T. delalandii differs significantly with 

geographical distance. Comparative analyses were carried out to test if this level of variation is 

found in the selected species of frogs.  

Figure 7. Graph showing the relationship between genetic distance and geographic distance in various 

species of frogs.  

To ensure that each sequence used was of the same area of the gene they were aligned and 

trimmed. This resulted in each sequences for each specific species having the same number of 

base pairs. For A. rangeri seven sequences were collected and they were trimmed to a 546 base 

pairs. Amietophrynus regularis had 22 available on GenBank and each trimmed to 435 base pairs 

while P. parvulus had 16 sequences available and each sequence was trimmed to 424 base pairs. 

Ptychadena anchietae had 12 sequences available and they were trimmed to 437 base pairs.  
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The graph (Figure 7) was then created using the genetic variation from PAUP* v4.0b10 

(Swofford 2003) and the geographic data from ESRI. 

The figure shows that generally as distance increases so does the genetic variation. What is 

interesting to note is the fact that T. delalandii has a faster rate of change over other species that 

have a much larger range. This is especially true when being compared to A. rangeri, a toad also 

from South Africa. This species has a larger range than T. delalandii yet it also overlaps with the 

cape sand frog‟s range. The graph shows that the peak of variation in A. rangeri does not 

correlate with the peak of T. delalandii. 

Amietophrynus regularis has the lowest genetic variation compared to all the species yet it has 

the greatest distance between points. Phrynobatrachus parvulus has the highest initial variation 

but as the distance increases the genetic variation does increase slowly. This is most likely due to 

very isolated populations close to one another. The same can be seen in P. anchietae, but more 

data points will have to be collected before conclusions can be drawn from that species. 
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4. Discussion 

4.1 Population Structuring: East vs. West 

This study shows that when looking at the mitochondrial DNA as well as the nuclear DNA, there 

is definite population structuring within Tomopterna delalandii. Both the cladogram and the 

networks (Figures 3-6, 8) show that the western edge of the population is different from the 

eastern edge within South Africa. This is supported by the AMOVA results. When looking at 

these two geographic locations of the eastern and western groupings there are many possible 

reasons for a lack of gene flow. 

 

Figure 8. A comparison of the 16S and tyrosinase exon 1 trees for Tomopterna delalandii. 

Rainfall is usually associated with amphibian distribution. Along the south coast of South Africa 

there are two main rainfall patterns. The western edge of the range falls under the winter rainfall 

zone and the eastern edge falls in the southern rainfall zone. The fact that the rains fall at 

different times however could be a reason as to why the frog‟s breeding times are not concurrent. 
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There are also no major physical barriers between the two areas. While the mountain ranges to 

the north are possible barriers to north-south movement, there is no physical barrier preventing 

them from moving in an east-west direction. This is corroborated by the neutrality tests which 

show that no isolation is occurring due to distance. It would then be beneficial to collect samples 

of T. delalandii from intermediated distances between the two populations. Previous studies, 

which showed similar patterns of population structure, suggest that although there are no current 

boundaries between the two clades, barriers that existed in the past may have influenced present 

day patterns (Tolley et al. 2006, Price et al. 2007, Swart et al. 2007, Tolley et al. 2010). Climate 

change events during the late Pliocene and Pleistocene altered and changed the landscape of the 

South African coast. Sea level changes have exposed and inundated much of the continental 

shelf and crustal upliftment resulted in altering altitudes and different rain shadows. These 

changes most likely presented barriers to T. delalandii. Another possibility is that is that with the 

overall climate change, the winter rainfall zone became fragmented resulting in isolated dry areas 

(Swartz et al. 2007). This would have prevented individuals from dispersing.  

When looking at the data as a whole and noting which localities have genetic differences, each 

population (western, eastern and northern) falls within a different biogeographical assemblage 

(Alexander et al. 2004). Samples from the western edge of the population range fall within the 

South Western Cape assemblage. This assemblage belongs to a greater Winter/ Transitional 

District. This greater district does still not include the population found on the eastern side of T. 

delalandii‟s range. The population here falls under the Eastern Escarpment/ Coastal District. It 

appears that there exists or existed a boundary between these two districts that is driving the 

population structuring present in T. delalandii. The authors have also tied in their descriptions of 

these biogeographical units with similarities found in ecological vegetation units (Alexander et 
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al. 2004). This suggests that there might also be ecological processes that are driving the changes 

seen in the population structure (Alexander et al. 2004).  

The Tomopterna frogs from the northern edge of the range fall within a totally different 

assemblage, the Namaqualand Assemblage. This assemblage has a low species richness 

(Alexander et al. 2000). This means that the discovery of a new species within this assemblage is 

in itself important. Similarly as above, the fact that it is found within a separate assemblage 

implies that ecological, and even allopatric, factors have been in play. Unlike in the case above, 

where the population of T. delalandii is structured but still in essence a single species, these 

factors have resulted in a separate species. 

Dispersal evidently was hindered when moving north. Samples from the Buffels River in the 

Northern Cape were initially assumed to be Tomopterna based on the tadpole morphology. The 

sample‟s locality, near previously recorded sites of T. delalandii, led to the decision that the 

samples were also T. delalandii. When analyzing the genes though, the specimens from the 

Buffels River were significantly different to the others in both the 16S mitochondrial DNA and 

the tyrosinase exon 1 nucleic DNA.  

In terms of geographic location the nearest Tomopterna species is T. tandyii. To rule out the 

possibility that the tadpoles were washed down tributaries from another locality (Channing 

1976), the river and all its tributaries were traced in Google Earth and overlaid with a distribution 

map of T. tandyii. This revealed that there was no overlap between the river and range T. tandyii. 

Based on the high p value compared to the rest of the species and the locality of the specimen, 

the samples collected from the Buffels River are not T. delalandii.  
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Further research needs to be done to ascertain whether this is a new species of Tomopterna. With 

the genetic differences as presented, there is definitely an undescribed species of Tomopterna in 

the Northern Cape. This then raises the question of whether preciously record specimens of 

Tomopterna in the Northern Cape were in fact T. delalandii or this new species of Tomopterna. 

Based on the Mantel analysis, it cannot be said conclusively that there is a correlation between 

distance and genetic variation, but when looking at T. delalandii compared to other species of 

frog, the species seems to show more variation within a smaller region compared to other species 

(Figure 7). 

4.2 A New Species 

While the eastern grouping is slightly different from the genetically defined T. delalandii, 

samples from the Buffels River are clearly different. The haplotype networks show no immediate 

connection the samples from this locality. Uncorrected p values showed a 2.0 – 3.5 % difference 

between the Buffels River samples and T. delalandii from all other localities. A BLAST analysis 

showed that the Buffels River sequences were 3 % different to sequences of T. tandyii, T. 

damarensis, T. elegans, T. cryptotis and T. delalandii in GenBank. 

An uncorrected p matrix was generated using known sequences of only T. delalandii from 

GenBank to double check inter species variation. These sequences only had a variation of 0.0–

0.75 %. Channing et al. (2004) showed a 2.9–3.2 % sequence divergence between T. delalandii 

and T. cryptotis and a 1.4–1.6 % sequence divergence between T. delalandii and T. tandyii. This 

is similar to the divergence shown by Dawood and Channing (2002), 3.5 % between T. 

delalandii and T. cryptotis and 1.6 % between T. delalandii and T. tandyii. When looking at the 
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variation between Tomopterna species it is clear that a variation of 2–3.5 % is sufficient enough 

to distinguish two species from each other. 

While understandably these previous studies had more than just genetic information as the basis 

for the description of a new species, the fact that the difference in the Buffels river samples is 

larger than previously described margins cannot be ignored.  

4.3 A Speciation Event 

The data shows that the eastern half of the population is distinctly different from the western 

half. Based on the results it appears as if the eastern grouping is going through a speciation 

event. Looking at the haplotype networks it is evident that no haplotypes, mitochondrial or 

nuclear, are shared between the two groupings. So while there are no physical barriers preventing 

the two from interbreeding, there appears to be no interbreeding between them anyway. This 

would mean that the populations themselves are allowed to diversify and therefore evolve 

separately from one another. The cladograms suggest that the eastern grouping is younger and 

therefore the most recent. This adds to the notion that this group in particular is going through 

the speciation event rather than western grouping. 

This would suggest that the eastern grouping is not only different from the western grouping but 

also that the group has diverged and is becoming a new species.  

4.4 Conclusion 

The overall pattern in T. delalandii shows that population structuring is present. This is to be 

expected as the range that they cover is variable. It appears that the distance between the samples 

does have an effect on the overall genetic variation, however negligible the mantel analysis 
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suggests. This would be better supported if more samples were collected from along the south 

coast. A new study along this west-east axis would provide a better understanding of how 

individuals are interacting between the western and eastern edge of the range. It would also show 

whether there are any definite barriers, ancient or present, preventing individuals from migrating. 

It appears that the variation found within T. delalandii is uniquely high. This supports the 

population structuring found in the haplotype networks and the cladograms. This shows that the 

species needs more study, especially samples from Noordhoek and the eastern edge of the range 

(Port Alfred and Port Elizabeth). The Noordhoek samples corroborates that high variation can be 

found within a short geographic distance.   

16S and Tyrosinase exon 1 proved to be successful for this kind of genetic study. The amplified 

barcode region that these primers produced was successful in showing variations within a 

species. This is significant when trying to identify if there is any population structuring in a 

given population.  

Within the species T. delalandii, as presently understood, there appears to be at least two species 

of frog and definite population structuring. Further studies need to be carried out in the northern 

edge of the range to ascertain fully whether the frogs identified as T. delalandii are in fact a 

different species or whether T. delalandii and this different species share a range. If they are a 

new species, population boundaries need to be re-examined. 

Based on the above further research questions would be: 

Is there further evidence to support the differences found in the genetics between the eastern and 

western samples of T. delalandii? 

 

 

 

 



45 
 

What does the population of T. delalandii look like between Stellenbosch and Cape St. Francis? 

Are there any breeding gaps? Are there any distinct genetic boundaries? 

Are there morphological and acoustic differences that would support the finding of a new species 

from the Buffels River?  
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Table  1: Specimens used for sequencing listing field numbers, locality, district, province, geographic co-ordinates and tissue source. 

Field number Locality District Province Co-ordinates Source of Tissue 

AC 3222 Stellenbosch Air Field Cape Town Western Cape  33°58'56.34"S,  18°49'12.91"E adult thigh 

AC 3223 Stellenbosch Air Field Cape Town Western Cape  33°58'56.34"S,  18°49'12.91"E adult thigh 

AC 3224 Stellenbosch Air Field Cape Town Western Cape      33°58'40.74"S,  18°49'6.71"E adult thigh 

AC 3225 Rondevlei Cape Town Western Cape  34° 3'30.29"S,  18°30'15.43"E adult thigh 

AC 3226 UWC Cape Town Western Cape  33°55'54.07"S,  18°37'24.88"E adult thigh 

AC 3227 UWC Cape Town Western Cape  33°55'54.07"S,  18°37'24.88"E adult thigh 

AC 3228 Stellenbosch Air Field Cape Town Western Cape  33°58'56.34"S,  18°49'12.91"E adult thigh 

AC 3229 Stellenbosch Air Field Cape Town Western Cape  33°58'56.34"S,  18°49'12.91"E adult thigh 

AC 3230 Stellenbosch Air Field Cape Town Western Cape  33°58'56.34"S,  18°49'12.91"E adult thigh 

AC 3231 Stellenbosch Air Field Cape Town Western Cape  33°58'56.34"S,  18°49'12.91"E adult thigh 

AC 3232 Noordhoek Cape Town Western Cape  34° 5'49.07"S,  18°22'24.34"E adult thigh 

AC 3233 Noordhoek Cape Town Western Cape  34° 5'49.07"S,  18°22'24.34"E adult thigh 

AC 3234 Noordhoek Cape Town Western Cape  34° 5'49.07"S,  18°22'24.34"E adult thigh 

AC 3235 Lovemore Park Port Elizabeth Eastern Cape 34°0'6" S, 25°31'40" E adult thigh 

AC 3236 Lovemore Park Port Elizabeth Eastern Cape 34°0'6" S, 25°31'40" E adult thigh 

AC 3237 Lovemore Park Port Elizabeth Eastern Cape 34°0'6" S, 25°31'40" E adult thigh 

AC 3238 Lovemore Park Port Elizabeth Eastern Cape 34°0'6" S, 25°31'40" E adult thigh 

AC 3239 St. Francis Bay St. Francis Bay Eastern Cape  34° 9'36.47"S,  24°49'26.31"E adult thigh 

AC 3240 St. Francis Bay St. Francis Bay Eastern Cape  34° 9'36.47"S,  24°49'26.31"E adult thigh 

DNA 0102 Lovemore Heights, PE Port Elizabeth Eastern Cape 34°0'4.8" S, 25°31'38.1" E adult thigh 

DNA 0105 Seal Point Nature Reserve Cape St. Francis Eastern Cape 34°12'25" S, 24°49'6.9" E tadpole tail tip 

WC 10-104 Seal Point Nature Reserve Cape St. Francis Eastern Cape 34°12'25" S, 24°49'6.9" E tadpole tail tip 

WC 10-125 Seal Point Nature Reserve Cape St. Francis Eastern Cape 34°12'25" S, 24°49'6.9" E tadpole tail tip 

WC 10-149 Seal Point Nature Reserve Cape St. Francis Eastern Cape 34°12'25" S, 24°49'6.9" E tadpole tail tip 

WC 10-150 Seal Point Nature Reserve Cape St. Francis Eastern Cape 34°12'25" S, 24°49'6.9" E tadpole tail tip 

AC 3241 Springbok Namaqualand Northern Cape  29°41'3.28"S,  17°53'14.45"E tadpole tail tip 

AC 3242 Springbok Namaqualand Northern Cape  29°41'3.28"S,  17°53'14.45"E tadpole tail tip 

AC 3243 Springbok Namaqualand Northern Cape  29°41'3.28"S,  17°53'14.45"E tadpole tail tip 

AC 3244 Springbok Namaqualand Northern Cape  29°41'3.28"S,  17°53'14.45"E tadpole tail tip 

 

 

 

 



47 
 

AC 3245 Springbok Namaqualand Northern Cape  29°41'3.28"S,  17°53'14.45"E tadpole tail tip 

AC 3246 Buffels River Namaqualand Northern Cape  29°41'3.28"S,  17°53'14.45"E tadpole tail tip 

AC 3247 Buffels River Namaqualand Northern Cape  29°59'30.71"S,  17°52'35.50"E tadpole tail tip 

AC 3248 Buffels River Namaqualand Northern Cape  29°59'30.71"S,  17°52'35.50"E tadpole tail tip 

AC 3249 Buffels River Namaqualand Northern Cape  29°59'30.71"S,  17°52'35.50"E tadpole tail tip 

AC 3250 Buffels River Namaqualand Northern Cape  29°59'30.71"S,  17°52'35.50"E tadpole tail tip 

AC 3251 Buffels River Namaqualand Northern Cape  29°59'30.71"S,  17°52'35.50"E tadpole tail tip 

AC 3252 Buffels River Namaqualand Northern Cape  29°59'30.71"S,  17°52'35.50"E tadpole tail tip 

AC 3253 Namaqualand Namaqualand Northern Cape 33° 35' 52" S, 26° 54' 07" E tadpole tail tip 

AC 3254 Namaqualand Namaqualand Northern Cape 33° 35' 52" S, 26° 54' 07" E tadpole tail tip 

AC 3255 Namaqualand Namaqualand Northern Cape 33° 35' 52" S, 26° 54' 07" E tadpole tail tip 

RB0409-005 East Beach Port Alfred Eastern Cape 33° 35' 52" S, 26° 54' 07" E adult toe clip 

RB0409-007 East Beach Port Alfred Eastern Cape 33° 35' 52" S, 26° 54' 07" E adult toe clip 

RB0409-008 East Beach Port Alfred Eastern Cape 33° 35' 52" S, 26° 54' 07" E adult toe clip 

RB0409-009 East Beach Port Alfred Eastern Cape 33° 35' 52" S, 26° 54' 07" E adult toe clip 

RB0409-010 East Beach Port Alfred Eastern Cape 33° 35' 52" S, 26° 54' 07" E adult toe clip 

RB0409-011 East Beach Port Alfred Eastern Cape 33° 35' 52" S, 26° 54' 07" E adult toe clip 

RB0409-014 East Beach Port Alfred Eastern Cape 33° 35' 52" S, 26° 54' 07" E adult toe clip 

RB0409-015 East Beach Port Alfred Eastern Cape 33° 35' 52" S, 26° 54' 07" E adult toe clip 

RB0409-017 East Beach Port Alfred Eastern Cape 33° 35' 52" S, 26° 54' 07" E adult toe clip 

RB0409-019 East Beach Port Alfred Eastern Cape 33° 35' 52" S, 26° 54' 07" E adult toe clip 

RB11-E028 East Beach Port Alfred Eastern Cape 33° 35' 52" S, 26° 54' 07" E adult toe clip 

RB11-E034 East Beach Port Alfred Eastern Cape 33° 35' 52" S, 26° 54' 07" E adult toe clip 

RB11-E035 East Beach Port Alfred Eastern Cape 33° 35' 52" S, 26° 54' 07" E adult toe clip 

RB11-E036 East Beach Port Alfred Eastern Cape 33° 35' 52" S, 26° 54' 07" E adult toe clip 
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Table 2: Other sequences used in the comparative analysis listing species, country, region, latitude, longitude, the GenBank accession 

number and reference. 

Species Country  Region Lattitude Longitude GenBank Author 
Amietophrynus 
rangeri South Africa Pietermaritzburg -29.60036 30.37936 AF220868 Cunningham & Cherry, 2000 

A. rangeri South Africa Pietermaritzburg -29.60036 30.37936 AF220869 Cunningham & Cherry, 2000 

A. rangeri South Africa Weza -30.59202 29.74598 AF220868 Cunningham & Cherry, 2000 

A. rangeri South Africa Bloefontein -29.11835 26.22492 AF220871 Cunningham & Cherry, 2000 

A. rangeri South Africa Grahamstown -33.30566 26.52453 AF220870 Cunningham & Cherry, 2000 

A. rangeri South Africa Stellenbosch -33.92318 18.86531 AF220872 Cunningham & Cherry, 2000 

A. rangeri South Africa Stellenbosch -33.92318 18.86531 AF220873 Cunningham & Cherry, 2000 

A. rangeri South Africa Cederburg -32.32056 19.10329 AF220874 Cunningham & Cherry, 200 

A.regularis Niger Tapou 12.47480 2.42760 HM77002 Vasconcelos et al. 2010 

A.regularis Niger Tapou 12.47480 2.42760 HM770003 Vasconcelos et al. 2010 

A.regularis 
Burkina 
Faso Gourma 12.06033 0.36933 HM770004 Vasconcelos et al. 2010 

A.regularis 
Burkina 
Faso Gourma 12.06033 0.36933 HM770005 Vasconcelos et al. 2010 

A.regularis 
Burkina 
Faso Gourma 12.06033 0.36933 HM770006 Vasconcelos et al. 2010 

A.regularis Mali Kayes 14.50400 -11.09098 HM770007 Vasconcelos et al. 2010 

A.regularis 
Guinea-
Bissau Bissau 11.86031 -15.57870 HM770008 Vasconceloset al. 2010 

A.regularis 
Guinea-
Bissau Bissau 11.86031 -15.57870 HM770009 Vasconcelos et al. 2010 

Phrynobatrachus 
parvulus Malawi Nyika Plateau -10.58330 33.80000 FJ829306 Zimkus & Schick,  2010 

P. parvulus Tanzania 
Rubeho Managalisa 
Forest Reserve -7.16670 36.41670 FJ829309 Zimkus & Schick,  2010 

P. parvulus Tanzania 
Rubeho Managalisa 
Forest Reserve -7.16670 36.41670 FJ829310 Zimkus & Schick,  2010 

P. parvulus Tanzania West Kilombero Scarp -7.91670 36.50000 FJ829307 Zimkus & Schick,  2010 

 

 

 

 



49 
 

Forest Reserve, 
Udzungwa Mountains 

P. parvulus Tanzania 

West Kilombero Scarp 
Forest Reserve, 
Udzungwa Mountains -7.91670 36.50000 FJ829308 Zimkus & Schick,  2010 

P. parvulus Uganda 
Bundibugyo District, 
Bundibugyo 0.67680 30.06940 FJ889465 Zimkus & Schick,  2010 

P. parvulus Uganda 
Bundibugyo District, 
Bundibugyo 0.67680 30.06940 FJ889466 Zimkus & Schick,  2010 

P. parvulus Uganda 
Bundibugyo District, 
Bundibugyo 0.67680 30.06940 FJ889467 Zimkus & Schick,  2010 

P. parvulus Uganda 
Bundibugyo District, 
Bundibugyo 0.67680 30.06940 FJ889468 Zimkus & Schick,  2010 

P. parvulus Malawi Nyika Plateau -10.58330 33.80000 EU075296 Zimkus 

P. parvulus Malawi Nyika Plateau -10.58330 33.80000 EU075297 Zimkus 

P. parvulus Malawi Nyika Plateau -10.58330 33.80000 EU075298 Zimkus 

P. parvulus Uganda 
Rwenzori Mountains, 
Bundibugyo 0.55165 29.95036 GQ183589  Siow et al., 2009 (Unpublished) 

P. parvulus Uganda 
Rwenzori Mountains, 
Bundibugyo 0.55165 29.95036 GQ183590  Siow et al., 2009 (Unpublished) 

P. parvulus Uganda 
Rwenzori Mountains, 
Bundibugyo 0.55165 29.95036 GQ183588   Siow et al., 2009 (Unpublished) 

Ptycahdena anchietae Tanzania 

Dar Es Salaam 
University, Dar Es 
Salaam -6.74711 39.20536 KC179964 de Sa et al.  2012 

P. anchietae Kenya 
Karacha Pools, Arabuko 
Sokoke Forest -3.39382 39.87995 DQ525920 Measey et al.2007 

P. anchietae Somalia Karin, Bari Region 10.98264 49.21954 DQ525921 Measey et al.2007 

P. anchietae Somalia Karin, Bari Region 10.98264 49.21954 DQ525922 Measey et al.2007 

P. anchietae Kenya  Kakamega Forest 0.26667 4447.48 AY517609 Vences et al. 2004 

P. anchietae Tanzania Makuyuni -4.07986 38.10333 AY517610 Vences et al. 2004 

P. anchietae Kenya Runda-Gigiri -1.23135 36.80768 AY517611 Vences et al. 2004 

P. anchietae Kenya Runda-Gigiri -1.23135 36.80768 AY517612 Vences et al. 2004 
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P. anchietae Uganda  Semliki National Park 0.80554 30.04041 GQ183596 Siow et al., 2009 (Unpublished) 

P. anchietae Uganda  Semliki National Park 0.80554 30.04041 GQ183597 Siow et al., 2009 (Unpublished) 

P. anchietae Uganda  Semliki National Park 0.80554 30.04041 GQ183598 Siow et al., 2009 (Unpublished) 
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Appendix 
 

Recipes used for chemical solutions used in the DNA Extraction. 

 

Sodium Chloride-Tris-EDTA buffer (STE): 

Sodium Chloride – 0.58 g 

Tris – 0.6g 

Ethylenediaminetetraacetic acid (EDTA) – 0.037 g 

Distilled Water – 100ml 

 

Sodium dodecyl sulfate solution (10 %) (SDS): 

Sodium dodecyl sulfate – 10 g 

Distilled Water – 100 ml 

 

Extraction Buffer: 

STE – 50ml 

SDS (10 %) – 7.5ml 

 

Tris-EDTA buffer (TE): 

Tris – 0.12 g 

EDTA – 0.037g 

Distilled Water – 100 ml 
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