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ABSTRACT 

Monitoring water quality with riparian trees along the Berg River, Western Cape 
 
MM Ruiters 
  
 MSc thesis, Department of Biodiversity and Conservation Biology, University of 

the Western Cape 

 

Heavy metals and nutrients have long been regarded as pollutants to freshwater 

ecosystems. These elements have a detrimental effect on plants, animals and the water 

quality of rivers in South Africa. The Berg River flows from the mountains of 

Franschhoek to the West Coast of the Western Cape. It is an important river in Cape 

Town, as it is essential for water distribution to town, for agriculture and industry and 

also supports a rich diversity of organisms in the ecosystem. Along the river, many 

farms and towns are situated and many tributaries enter the river. The Berg River dam 

provides for a water supply during the drier periods of the year. Therefore it is crucial to 

maintain a good water quality. The study was driven by the need to increase the 

knowledge of water quality in the upper Berg River after the construction of a new major 

Berg River dam, constructed in 2007. 

  

This study investigated oxygen, water temperature, electrical conductivity, pH, 

ammonium, nitrate, nitrite in the water and cadmium, copper, lead, iron, zinc, 

potassium, sodium, calcium, magnesium and phosphorus found in water, sediment and 

three plant species at ten sites along the upper Berg River, Western Cape.   
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The results showed that the electrical conductivity, pH and the concentrations of nitrate, 

calcium and magnesium increased downstream, whereas the water temperature 

decreased downstream. Nitrate, cadmium, copper, potassium, sodium, calcium and 

magnesium displayed a general increase towards the colder period in the water. 

Seasonally, copper and magnesium showed significant winter increase within the 

sediment. Nitrogen, iron and calcium levels within Salix sp., Acacia mearnsii and 

Brabejum stellatifolium increased downstream. Nitrogen, cadmium, copper, potassium, 

calcium, magnesium and phosphorus in the three species were higher in the warmer 

seasons and decreased in the colder. Sources of pollution stem from the Franschhoek 

and Dwars tributaries, urban and farm runoff. 
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CHAPTER 1 

 

LITERATURE REVIEW 

 

Water quality of rivers and use of riparian trees as biomonitors 
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1.1 INTRODUCTION 

Clean water is an important resource that is necessary for many purposes such as 

consumption, irrigation and it also maintains aquatic ecosystems (Carpenter et al.  

1998). South Africa requires a large amount of freshwater to sustain people and their 

livelihoods. Davies and Day (1998) state that water extraction from rivers in South Africa 

is up to approximately two thirds of the standard quantity of accessible surface water 

per annum. These water bodies have been under increasing threat because of the fast 

“demographic changes, which have coincided with the establishment of human 

settlements lacking appropriately sanitary infrastructure” (Fatoki et al. 2003). 

 

Rivers are referred to as lotic systems (Jeffries and Mills 1990) because water is 

continuously moving (Johnson et al. 2008). Haslam (1990) explains that rivers flow 

down the length of a bed on the surface of the earth towards the ocean. As the water 

moves down the length of the river, it transports dissolved and inorganic material that 

originates from weathered rocks (Townsend 1980). Jeffries and Mills (1990) state that 

when the river course alters as the river moves downstream, the type of vegetation and 

habitats changes. Rivers have been altered by human activities and this has caused 

serious ecological impacts on these ecosystems (Townsend 1980). 

 

Allan and Flecker (1993) explain factors that contribute to the destruction of rivers. The 

first way that the authors describe is through habitat loss and degradation. These 

impacts include farming practices and human dwellings. Farmers often bulldoze certain  
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areas in which many indigenous species are removed from the environment. This 

causes erosion to be more significant in riparian interfaces.  

 

The second contribution to the destruction of rivers stems from alien species. A huge 

danger to riparian ecosystem function is caused by invasive species. Invasive woody 

species increase nutrient cycling as well as decrease the amount of runoff that should 

occur (Holmes and Richardson 1999). Invasive plants can swiftly dominate a riparian 

ecosystem because propagules are transferred by the river. The reason why riparian 

vegetation is sensitive to invasion of exotic species is because of the hydrological 

character of rivers (Blanchard and Holmes 2008).  

 

The word “riparian” refers to the banks of aquatic systems like rivers, vleis or wetlands 

and riparian vegetation plays an important role in a catchment (Brown and Magoba 

2009). Riparian vegetation offers habitat and migration pathways for a diverse range of 

animals (Anon. 2004). It is able to control and reuse inputs from upper reaches and also 

the river (Tabacchi et al. 1998). It also decreases the input of matter from land surfaces 

into the rivers and this then decreases the deterioration of a river’s water quality (Kuhar 

et al. 2007).  

 

Water pollution is common in densely populated areas. The water quality deterioration 

is largely due to the impacts of humans (Struyf et al. 2012). The quality of water is not 

only due to direct human impacts but also through the contribution of interbasin 

transfers (Luger 1996) which have become more common. Both man made and natural 
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influences decrease the quality of water for various uses such as for drinking, recreation 

and industry. The quality of water can be assessed by measuring various parameters 

within the river- which points towards the amount of pollution in the aquatic system 

(Morrison et al. 2001). The changes in the water quality conditions have an impact on 

the amount and variety of organisms found in the river and also downstream (Camargo 

et al. 2005). Sánchez et al. (2007) states that because of the temporal and spatial 

differences in the chemistry of water, it is important to monitor the water quality.  

 

Biomonitoring is essentially the use of a biological organism to evaluate changes that 

occur in an area (Wolterbreek 2002). It has become important in research of pollutants 

in organisms, which shows how much if these pollutants have accumulated over time 

(Nirmal Kumar et al. 2008). Vegetation is the most commonly used biomonitor due to 

the fact that plants are immobile (Wuytack et al. 2010). The use of plant leaves for 

biomonitoring heavy metals can be dated back since the 1950’s (Ataabadie et al. 2011). 

Heavy metals are able to accumulate in plant biomass due to the fact that heavy metals 

cannot be degraded (Schulze et al. 2002). The accumulation of heavy metals within 

plants provides information on the surrounding environment and therefore one can use 

plants as biomonitors of an area (Miretzky et al. 2004).  This is significant for riparian 

vegetation because the input of a pollutant may be diluted rapidly in the aquatic system, 

but riparian vegetation can provide accumulated information about the quality of the 

system (Nirmal Kumar et al. 2008). 
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Rivers are important ecosystems that needed to be protected from degradation and 

pollution. The Berg River offers a home to a diverse array of organisms- some of which 

are endemic to the river and this river renders many ecosystem services. Water quality 

research in the Berg River has been dated back to at least the 1960’s (Anon. 2004). 

The major sources contributing to the deterioration of the Berg River are “agricultural 

return flow, irrigation releases, urban and industrial runoff and wastewater discharges” 

(Anon. 2004). It is therefore of utmost importance to investigate the water quality of the 

Berg River. Monitoring on a continual basis is required, so that there can be more data 

for long term progress. Key problems that are faced are lack of knowledge and lack of 

implementation. Many efforts have been attempted such as protection procedures, use 

of indicator species to gain insight on the quality of rivers, as well as invasive species 

removal. It is therefore imperative to improve knowledge on these complex ecosystems. 
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1.2 RIVERINE POLLUTION: 

Pollution into rivers has elevated drastically in the past decades and has decreased the 

water quality tremendously (Carpenter et al. 1998). Jeffries and Mills (1990) state that 

pollutants are able to interact with one another and this often elevates or minimizes the 

consequences of their toxicity. These pollutants may be transported down a river or may 

land up on the bottom of the riverbed and build up there (Haslam 1990).  

 

The term pollution is one that is loosely used and has a general meaning. According to 

Tripathi et al. (2006) biologists refer to water pollution as an alteration in the water 

environment, which results in a decrease in the biodiversity of the habitat and that will 

consequently degrade the equilibrium of life in lotic ecosystems. Davies and Day (1998) 

state that pollution can be referred to as the “befouling or contaminating or making 

offensive to human, animal or plant life”.  Pollutants may be found in the atmosphere, 

sediment and water (Gadzala- Kopciuch et al. 2004). 

 

Pollution may occur in two ways. Pollution is categorized as point source and non-point 

source pollution. Point source pollution is defined by being a single source of pollution 

that can easily be recognized and has a small variability over time (Carpenter et al. 

1998). This form of pollution includes sources from waste treatment release and storm 

water runoff (Sliva and Williams 2001). It is frequently examined by determining the 

release and chemical levels from time to time at a particular area. It can be treated, 

calculated and regulated at the point where the pollution occurs. Point source pollution 

has negative effects on the water, but Davies and Day (1998) provide two advantages 
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for this form of pollution. The first one is that one is able to calculate or approximate the 

amount of pollutants being released. The second advantage is that it is relatively 

uncomplicated to control. 

 

Non-point source pollution occurs when pollution is released by many sources. Sources 

include mine seepages, atmospheric pollution and farming runoff (Davis and Day 1998). 

According to Carpenter et al. (1998) non-point discharges are connected to farming 

activity or events that do not occur often such as a large amount of rainfall or 

construction activities. It is generally hard to identify as it covers a large surface area of 

a catchment (Sliva and Williams 2001). Non-point source pollution is generally the 

largest contributor to water contamination (Carpenter et al. 1998). 

  

Water is used to “remove” pollutants or to dilute them. There is generally more than one 

pollutant in a river (Haslam 1990).  The pollutants are then carried downstream or seep 

into underground water which may be transported to other bodies of water (Carpenter et 

al. 1998). The disadvantage of this is that the pollution moves further away from the 

individual sources (Jeffries and Mills 1990).  
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1.3 HEAVY METAL POLLUTION: 

According to Dosskey (2001) aquatic pollution results in decreasing water quality for 

consumption, decreasing the quality of the habitat and consequent sedimentation. 

Heavy metal output into rivers is of utmost concern globally (Altun et al. 2009). By 

definition, heavy metals “are metallic elements with a density ≥ 5 g/ cm3” (Schulze et al. 

2002). These elements include Cd, Cu, Fe, Pb and Zn to name a few. Metals cannot be 

degraded, as in the case of organic compounds and therefore to remove metal toxicity, 

it would then need to be “immobilized” (Jadia and Fulekar 2009). Some heavy metals 

are “essential trace elements” that can occur at higher levels than are required for 

growth and reproduction (Haslam 1990). Many heavy metals have become familiar 

contaminants and are indicators of both man-made and natural causes (Kļaviņs et al. 

2000). Sources of heavy metals in rivers include weathering of rocks, runoff from the 

river banks and the release of waste from industrial sites (Soares et al. 1999).  

 

In particular circumstances, metals may build up to poisonous levels that are 

ecologically harmful (Altun et al. 2009). Heavy metals like Cd and Pb are toxic due to 

their “strong complexing ability” (Moon and Chae 2007). Lead is very toxic and is 

accessible to many aquatic organisms such as fish (Fatoki et al. 2002). Cadmium is 

toxic even in small quantities and is often found in aquatic systems at levels that range 

between 0.1µg/ l and 10 µg /l (Sanders et al. 1999). Zinc is more common than Cd. Zn 

often leads to the release of Cd into the surroundings because Cd is linked with Zn ores 

(Sanders et al. 1999). Zn is needed for metabolic activity in an organism such as fish 

(Fatoki et al. 2002). Zn is unique in the fact that is very toxic to fish but not man (Fatoki 

et al. 2002). Copper is required in small quantities and is important for plant processes 
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such as photosynthesis, seed production and protection against diseases (Jadia and 

Fulekar 2009). 

 

Pollution of water and sediment by heavy metals is universal (Mowat and Bundy 2001). 

Heavy metals cannot be broken down and therefore build up in water, sediments, fauna 

and flora (Miretzky et al. 2004). The amount of heavy metals in freshwater affects 

people who require the water for their daily needs (Miretzky et al. 2004). According to 

Davies and Day (1998) it is hard to determine the definite effects of heavy metals in 

water due to the toxicity being controlled by various chemical and physical properties. 

Binning and Baird (2001) state that the heavy metal levels in freshwater (upper, middle 

and lower reaches of the river) are mostly lower than the levels that occur in the 

estuary. According to Nicholson et al. (2003) sediment is a long-standing “sink” that 

stores heavy metals. This allows the heavy metals to build up in the sediment over an 

extended period of time. The consequence of this is that the quality of the sediment and 

the “maintenance of sediment microbial processes” are greatly decreased. The size of 

sediment particles can assist in identifying heavy metal sources. According to Sanders 

et al. (1999) when high concentrations of heavy metals are present in finer grained 

particles of sediment, it is normally linked to pollution, whereas higher levels of heavy 

metals that occur in coarser particles are mainly from the lithology of the geographical 

area.  
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1.4 THE ROLE OF THE SPECIFIC PHYSICO- CHEMICAL PROPERTIES 

AND ELEMENTS STUDIED IN WATER, SEDIMENT AND PLANTS: 

1.4.1 WATER: 

1.4.1.1 Physico-chemical variables 

Oxygen is a significant property for water quality control (Fatoki et al. 2003). It is also 

essential for all aquatic organisms (Araoye 2009). The lack of oxygen in water reduces 

growth rate and fecundity of organisms as oxygen is required for metabolic processes 

(Batuik et al. 2009). Oxygen content may be improved during daytime because of 

photosynthesis, but may decrease at night “with respiratory oxygen demand and may 

fail to recover the next day” (Madejón et al. 2004). According to Harris et al. (1992) 

dissolved oxygen is represented in two ways, namely concentration and as a 

percentage. In this study concentration as mg/ l was used. The level of dissolved 

oxygen in rivers that are characterized as unpolluted ranges between 8 to 10 mg/ l 

(Drolc and Končan 1996, Fatoki et al. 2003).  

 

Oxygen and temperature are associated with one another. The ability of a gas to 

dissolve in water reduces with an elevation in temperature. Therefore if water 

temperature increases as one moves down a river, it will cause the amount of oxygen to 

lessen (Townsend 1980). It also affects the “chemical, physical and biological 

processes in rivers” (Rajele 2004). For instance, the rate of a chemical reaction may 

increase if the temperature is raised. Not only will the rate of chemical reactions 

increase, but also the toxicity of heavy metals such as Zn; this in turn causes more 
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organisms and plants to be susceptible to the toxins as temperatures rises (Dallas 

2008).  

 

Electrical conductivity (EC) is essentially the measurement of the ability of the water to 

conduct electricity (Rajele 2004).The more elevated the levels of ions are in the water, 

the greater the current transported by the water. Ions are direct products of dissolved 

metals and dissolved matter (Rajele 2004). The EC of water may also be affected by 

water temperature and also pH.  Olias et al. (2006) state that if there is an elevation in 

the pH there is a reduction in the electrical conductivity of the water. 

 

The pH is a physico-chemical characteristic used to determine whether or not the water 

is acidic or alkaline. According to Morrison et al. (2001) pH has a significant affect on 

lotic systems. If the pH is low it will affect the plants and animals in the river. Acidic pH 

values (such as 4.5 - 5.8) may cause serious damage to plants (Camargo and Alonso 

2006). Low pH values can also lead to the inhibition or change of microbial processes.  

Heavy metals are generally more soluble at lower OH (Taiz and Zeiger 2010) and 

therefore the toxicity of the heavy metals can change. Long term monitoring showing 

changes in pH is an important indicator of modifications in water quality (Harris et al. 

1992).  
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1.4.1.2 Elements 

Elevated levels of pH (alkaline conditions) causes ammonium to become more 

poisonous than it would be in acidic conditions (Morrison et al. 2001) that cause 

ammonium to become volatile as ammonia.  The presence of ammonium in water 

systems in their natural state is due to the decomposition of nitrogen containing organic 

and inorganic waste in sediment and rivers (Facliran and Dube 2009). It may also occur 

due to gas exchange with the atmosphere and when it is reduced by microbes (nitrogen 

fixating bacteria). Man made sources of ammonium in the environment include farming 

practices like the use of fertilizers as well as animal excretions, the food that the animals 

eat and sewage (Facliran and Dube 2009). 

 

According to de Villiers (2007) inorganic nitrogen in the form of nitrate, nitrite and 

ammonium ions are nutrients that result in eutrophication when in excess. Nitrate may 

be derived from farming waste, as well as fertilizers that contain nitrogen (Morrison et al. 

2001). Nitrate can also originate from waste treatments, as well as groundwater (Naidoo 

and van Staden 2001). It may also stem from bacterial production, atmospheric 

deposition (Fenech et al. 2012) and irrigation and poor sanitation in densely populated 

regions (Suthar et al. 2009). 

 

The formation of nitrite is due to nitrification of ammonium. This nitrate is then oxidized 

to nitrate (Jooste and van Leeuwen 1993). The accumulation of nitrite is rare and the 

reason for this is due to the rapid conversion to nitrate (Jooste and van Leeuwen 1993). 

Nitrite may be harmful to humans as it is able to come into contact with the blood 
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pigment to create methemoglobinaemia (Legnerova et al. 2002), especially in the young 

and very old. 

 

Cadmium (Cd) is a damaging heavy metal of danger to both plants and animals 

(Kirkham 2006 and Oste et al. 2010).  This heavy metal is not required for any biological 

function within an organism (Pretto et al. 2011). It is also a well known ecological 

contaminant that is commonly dispersed in aquatic ecosystems (Fatoki et al. 2004) and 

is toxic due to the fact that it accumulates in freshwater systems (Pretto et al. 2011). 

Sources of cadmium are from agriculture (Abe 2008), weathering of sediment and 

rocks, coal burning and runoff from urban areas (Fatoki et al. 2004).   

 

Copper (Cu) is a trace element that is beneficial to organisms; however, when found in 

large quantities, it may be detrimental to the organisms in the environment (Lu and 

Johnson 1997). Sources of Cu include waste from industrial areas, sewage waste, as 

well as fertilizers (DWAF 1996, Lu and Johnson 1997). Cu occurs in high amounts in 

rivers with acidic pH as copper easily dissolves in acidic media (DWAF 1996). 

   

Lead and cadmium are heavy metals that may often hinder the function of necessary 

nutrients that have similar characteristics to those of zinc and calcium. Lead has a 

similar charge and shape as calcium and therefore can replace calcium (Nduka and 

Orisakwe 2011). There is a relationship between pH and Pb; when pH is low the 

concentration of Pb will be elevated in the system (Fatoki et al. 2002). Sewage waste 

and runoff from both urban and rural settlements are causes of Pb input into rivers 
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(Fatoki et al. 2002).  Lead (Pb) is harmful to the majority of living organisms as it affects 

the nervous- and renal systems and reproductive systems (Jaunakais et al. 2010). 

 

Iron is an important nutrient that is required by organisms to grow (Filgueiras and Prego 

2007). It comprises 5% of the earth’s crust (DWAF 1996) and is commonly found in 

various rocks and minerals. The availability of this micronutrient is dependant on pH 

(Vuori 1995). If the pH is high (alkaline) then the iron levels tend to be low and 

conversely, when the pH is acidic, then iron levels are extremely high (McKnight et al. 

2001).  

 

Zinc is a necessary element and is required by most living organisms for growth. 

Anthropogenic sources of zinc include fertilizers and pesticides, as well as degrading 

tyres (Naito et al. 2010). Other sources of zinc include waste water from municipalities 

and also storm water (Pistelok and Galas 1999). It may also be sourced from mineral 

weathering, sediment, atmospheric deposition and industrial effluents (DWAF, 1996). 

The average concentration of zinc in surface water is 3 mg/ l (Fatoki et al. 2004). 

 

One of the main sources of potassium (K) is the weathering of silicate rock (Chaudhuri 

et al. 2007). Wastewater also contains K, which comes from a variety of food 

processing factories, wood processing plants, vineyards, industry and sewage (Arienzo 

et al. 2009). Potassium is required by plants for photosynthesis and protein synthesis 

(Kanai et al. 2011). It is also the primary intracellular cation in organisms and is required 

in dietary needs (DWAF 1996). 
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Na together with K are the most significant cations needed for intracellular and 

extracellular activities of organisms (DWAF 1996). Sources of sodium may come from 

household products such as soaps, cleaning agents and bleach (Masamba and 

Mazvimavi 2008). It is commonly found as sodium chloride and is largely found in 

household waste water because of salt usage in homes. It reacts with water where it 

produces highly soluble sodium ions (DWAF 1996). Salt in solvent form may change the 

physical characteristics of rivers by elevating the density (Goodrich et al. 2009). 

 

.A large amount of calcium in the water would cause it to be hard, whereas a lower 

concentration of calcium in water causes the water to be soft (DWAF 1996). 

Temperature has an affect on calcium (DWAF 1996) and Ca has an influence on the 

electrical conductivity of water (Ahmed et al. 2011). The amount of calcium (and other 

cations) is the reason why there can be an electrical current within the water. 

 

Magnesium (Mg) is required by both plants and animals. Magnesium influences bacteria 

adhesion and flocculation of biologically large molecules (de Kerchove and Elimelech 

2008). Inputs of Mg are largely in the form of industrial waste (de Kerchove and 

Elimelech 2008). Magnesium may also be introduced into a system from silicate and 

carbonate rocks that have weathered (Pogge von Strandmann et al. 2008). It is also 

found in fertilizers, food and pharmaceuticals (Masamba and Mazvimavi 2008). 

 

Phosphorus is generally found in short supply in surface water, but due to urban 

expansion and rapid agricultural offloading, P has increased dramatically within river 
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systems (Withers and Jarvie 2008). Phosphorus causes the rapid growth of 

phytoplankton and with nitrogen causes eutrophication (Withers and Jarvie 2008). The 

result of intensification of P decreases the amount of oxygen in a river, which may 

cause fish and other species of animals to perish (Cornell 1998, Withers and Jarvie 

2008). Sources of P may stem from the atmosphere, from plants found along the river 

and from sediment material or may be introduced by man through urban and agricultural 

runoff as well as wastewater effluent and street runoff being released into rivers  

(Withers and Jarvie 2008). 

 

1.4.2 SEDIMENT 

 

1.4.2.1 Physico-chemical variables 

EC is controlled by a variety of factors such as salts, the amount of water in the 

sediment as well the minerals present within the sediment and the temperature of the 

sediment (Brevik et al. 2006). EC is an indicator of elevated nutrient status and also 

functions as a way in which one can measure soluble nutrients in soil (it can measure 

both cations and anions in the soil) (Eigenberg et al. 2002). The variations in the river 

and the sediment EC are proportional to one another (Verma and Saskena 2010). 

 

The pH is a significant property that controls the movement of metals in sediment (Peng 

et al. 2009). Many heavy metals are more mobile in highly acidic environments (Schulz- 

Zunkel and Krueger 2009). It also has a primary affect on the sediment nutrient 

condition and that of the surrounding water (Verma and Saskena 2010). According to 

Peng et al. (2009) a reduction of pH in sediment generally leads to the competition for 
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ligands by heavy metals and hydrogen ions. Following this, there is a reduction in 

adsorption capacity and the bioavailability of heavy metals, causing the metals to 

become more mobile (Peng et al. 2009). 

 

1.4.2.2 Elements 

Nitrogen is an important nutrient and contributes to sediment fertility (Verma and 

Saskena 2010). The number of plants or plant biomass may increase due to an 

elevation in N amounts (Camargo et al. 2005). Nitrogen is commonly known as the most 

limiting nutrient needed by plants (Spargo et al. 2011). This may be due to the complete 

flushing of nitrogen through the rainy season, as well as the possibility of leaching of N 

to lower sediment profiles.  

 

Cadmium is highly mobile in sediment (An 2004). A large amount of Cd present in the 

sediment may be due to zinc ores, where Cd is found naturally in large quantities with 

Pb (Akkajit and Tongcumpou 2010). Cd normally remains in the sediment solution, 

however if the pH in the sediment is reduced then the concentration of Cd in a plant 

rises (Kirkham 2006). Cadmium may remain available to plants in the sediment, due to 

the adsorption of Pb by soil which is preferred over Cd (Akkajit and Tongcumpou 2010). 

 

Copper is normally found in the sediment surface not exceeding 15 cm down the 

sediment profile (van Aardt and Erdmann 2004) and is present naturally in sediment 

(Mouta et al. 2008). It is the metal that is the least mobile in sediment (Akkajit and 

Tongcumpou 2010). Copper that is readily accessible in sediment is influenced by the 
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wetness of the sediment, other elements that are present in the sediment with it and 

sediment organic matter (Wu et al. 2011). Elevated pH of the sediment causes elevated 

concentrations of accessible copper (Wu et al. 2011). 

 

When lead is present in sediment, it becomes less mobile (Brown et al. 2008). 

According to Martínez-Villegas et al. (2004) lead is able to replace calcium and 

potassium and it can interact with sediment components. Lead is present in sediments 

at levels that range between 1 mg kg-1 to 200 mg kg-1 (Chirenje et al. 2004). 

 

Iron is one of the common metals (Karlsson et al. 2008). Iron availability and the various 

ways in which it can exist in ion form is dependant on pH and redox potential (Veado et 

al. 2000). Acidic pH is known to encourage the solution of iron. Alkaline pH of the 

sediment enhances the production of iron oxides (Khan et al. 2010). 

 

Zinc is closely associated with cadmium in the sediment (Kirkham 2006). When 

concentrations of zinc are low, plants absorb more cadmium from the sediment 

(Kirkham 2006). Zinc and cadmium contend for adsorption on sediment components 

(Lambert et al. 2007). 

 

Potassium is abundant in many types of sediment, but only a small portion is accessible 

to crops (Ghosh and Singh 2001). The amount of potassium in the sediment ranges 

from 0.04 % to 3.00 % (Ashley et al. 2006). The exchange of potassium in various kinds 

 

 

 

 



19 

 

of sediment is influenced by other macronutrients that occur in the sediment (Ghosh 

and Singh 2001).  

 

A buildup of salts occurs in sediment, when plants only take up small quantities of Na 

(Berthrong et al. 2009) and the buildup of Na specifically causes the exchangeable 

sodium percentage in the sediment to decrease, in regards to water penetrating the 

sediment and water retention in sediment (Walker and Bernal 2008). The amount of 

sodium in the sediment is associated with the amounts calcium and magnesium (Sarah 

2004). 

 

Calcium is known to enhance activity of bacteria present in sediment that are 

responsible for the fixation of nitrogen and or the production of nitrate (Verma and 

Saskena 2010). A lack of Ca is normally related to acidic conditions, which in turn 

results in the buildup of poisonous salts of iron in the sediment. 

 

A shortage of Mg often occurs in low pH sediments and coarse textured sediments 

(Senthurpandian et al. 2009).The amount of Mg in sediment is often lower than the 

concentration of Ca in the sediment. 

 

The quantity of phosphorus lost to the water above sediment rises with the phosphorus 

content of the sediment (Carpenter et al. 1998). According to Kulhánek et al. (2009) the 

amount of phosphorus in sediment is generally lowest in sediment solution. Soil that 
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contains a large amount of P may be due to a continuous application of fertilizers and 

manure onto the land (Verma and Saskena 2010).  

 

1.4.3 PLANTS 
 
1.4.3.1 Elements 
 
According to Hultine et al. (2008) the quantity of plant accumulated nitrogen may be 

associated with the level of N in surface and groundwater, as well as mineralization in 

sediments. Nitrate is the most significant source of N for plants (Chen et al. 2008) and 

plants that are found in sediments with an acidic pH normally take up N in this form 

(Maathuis 2009). Buskiene and Uselis (2008) state that N promotes the growth of plants 

and N may influence plant characteristics like the quality, production and the number of 

leaves, as well as roots, and the rate of decay of senesced leaves (Drake et al. 2008). 

 
 
Cadmium in plants is able to build up to high concentrations, which are poisonous to 

animal life, yet may cause little harm to the plants (Pinto et al. 2004). When cadmium 

concentration does reach toxic levels for the plants, it results in stunting and chlorosis 

(Stout et al. 2010) and it is also able to deactivate enzymes in plants, which leads to 

slowing down processes such as photosynthesis (Pinto et al. 2004). Other elements 

such as iron are able to minimize the amount of Cd uptake by plants (Peralta-Videa et 

al. 2009). 
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Copper is an important element that is necessary for plant metabolism (Shi et al. 2011), 

and pigment substances within a plant (Olette et al. 2008). Its concentration in plants 

can be promoted if there is a lack of iron and zinc uptake, whereas a large amount of 

Cu may inhibit Fe and Zn uptake into the plant (Shi et al. 2011). A toxic concentration of 

Cu leads to chlorosis, as well as inhibition of cell division. Copper toxicity also leads to 

the reduction of electron flow in the oxygen-evolving complex and slows down the 

photosynthetic ability of vegetation (Olette et al. 2008). 

 

Lead is regarded as having a low solubility and accessibility for plant absorption as it is 

able to precipitate (Peralta- Videa et al. 2009). Lead toxicity may cause inhibition of 

germination in seeds, plant growth and chlorophyll production (Peralta- Videa et al. 

2009). It is also able to inhibit mitosis and may cause wilting (John et al. 2008). A large 

amount of Pb in a plant may cause a disruption in mineral nourishment (Pb has the 

ability to inhibit the uptake of Ca and Fe) (Sharma and Dubey 2005). 

 

Iron is a nutrient required by plants for processes such as respiration and 

photosynthesis (Kim and Guerinot 2009). Another important role of iron is that it is a 

cofactor for some enzymes and it is required for chlorophyll production (Jeong and 

Connolly 2009). A large amount of Fe is found within sediment, but many times, plants 

lack Fe, as it has a low solubility (Ma and Ling 2009). The amount of iron that is 

unacceptable for crops is if it reaches a level of more than 20 mg/ kg-1 in the sediment 

(Majerus et al. 2007). The symptoms of iron toxicity include stunting and an excess 
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manufacture of ethylene in crops and it may also cause a decrease in Ca, Mg and P 

(Majerus et al. 2007). 

 

Zinc is a micronutrient that is necessary for plant metabolism (Durand et al. 2010). It is 

needed in some enzymes and has a significant role in DNA transcription (Jadia and 

Fulekar 2009). If levels of Zn are low within the sediment it causes plants (such as the 

tomato plant for instance) to have stem growth problems (Broadley et al. 2006) as well 

as chlorosis in leaves (Jadia and Fulekar 2009). An overload of zinc causes heavy 

metals to be moved from active sites on proteins, minimizes the tissue water content 

and alters the P and Mg content in plants (Sagardoy et al. 2008).  

 

Potassium is one of the most common elements found abundantly in the cells of plants 

(Britto and Kronzucker 2008). It is needed for maintaining electrical potential gradients 

across the cell membranes, production of turgor and enzyme activation (Britto and 

Kronzucker 2008).  The addition of K significantly raises the N and P absorption by 

plants (Rani and Jose 2009). The functions of potassium in vegetation include moving 

photosynthates into the sink organs and decreasing excess absorption of Na and Fe in 

inundated soils (Cakmak 2005).   

 

 The presence of sodium in large concentrations within plants causes a reduction in 

growth, the leaves become damaged, and normally this is evident in more mature 

leaves (Blumwald et al. 2000) and it is the leading cause of ion-specific harm (Zhang et 

al. 2010). Sodium and potassium ions contend for entrance into the plant, as they are 
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alike in ionic structure (Zhang et al. 2010). Plants normally prefer the uptake of K over 

Na (generally the concentrations of K are higher than Na within a plant). The 

concentration of calcium ions in the sediment has the ability to adjust the amount of 

sodium ions taken up by a plant and is able to prohibit a toxic buildup of sodium within a 

plant (Melgar et al. 2006). 

 

Calcium is important for plants and is involved in many aspects of a plant’s growth. It is 

needed in large concentrations and calcium ions are able to help a plant to respond to 

light, temperature, salt and plant hormones (Kudla et al. 2010). The lack of calcium 

within a plant may be due to large concentrations of potassium and magnesium 

(Chaney et al. 2008). High amounts of calcium stop seeds from germinating and 

minimize the development of the plant (White and Broadley 2003). The optimal level of 

calcium in the leaves of vegetation is about 5 g kg-1 (Chaney et al. 2008). 

 

Plants need magnesium for photosynthesis (Hermans et al. 2010). It aids in the 

activation of approximately 300 enzymes and is needed for synthesis of organic 

molecules that are necessary for plants to grow (Bolou- Bi et al. 2010). One of the key 

roles of magnesium is coupled to its function in chlorophyll, where it is the central point 

(Bolou- Bi et al. 2010). A lack of Mg within a plant may lead to chlorosis in leaves 

(Cakmak and Kirkby 2008), chlorophyll decay between veins (Hermans et al. 2010) and 

a decrease in stomatal conductance (Cakmak and Kirkby 2008). Toxic levels of Mg in 

plants may damage photosynthesis by slowing down K transport (Cakmak and Kirkby 

2008). 
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Phosphorus is a large contributor in aiding the establishment and production of alien 

species (Fisher et al. 2006). Alien vegetation normally has higher concentrations of P 

than indigenous species (Fisher et al. 2006). The growth of herbaceous species occurs 

rapidly when compared to that of woody species (Fisher et al. 2006). Mainstone and 

Parr (2002) discuss four possible ways in which increased P levels can influence 

riparian vegetation. The first way that the authors describe is by an elevation in the 

growth rate of vegetation. The second way is by the promotion of vegetation species 

that rely on larger nutrient concentrations and this in turn modifies “species composition 

or balance”. It can also affect riparian vegetation by promoting algal growth and 

therefore decreasing the amount of solar radiation that penetrates the water. Algae 

hinder seed germination and growth of seedlings. Lastly, P can also affect riparian 

vegetation by decreasing the penetration of the roots (into the sediment) and this 

causes the plants to be easily removed when the velocity of the river is high. Toxic 

levels of P in a plant may cause necrosis of leaves and death (Lambers et al. 2008). 
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1.5 NUTRIENT AVAILABILITY AND EUTROPHICATION: 

The amount of nutrients that occur in river ecosystems has increased due to farming 

activities and also because of domestic waste (de Villiers 2007). Gregory et al. (1991) 

explain that these nutrients are moved from land ecosystems into the rivers or into 

streams and pass through riparian vegetation rooting areas. The “sediment solution” 

first moves into the rooting zone before it passes into the river. Vegetation along river 

banks provides seasonal leachates into rivers. Gregory et al. (1991) states that because 

of seasonal leachates, the river bank community greatly alters the quantity and timing of 

nutrient export.  

 

Inorganic nitrogen (N) and phosphorus (P) amounts in rivers arise from natural and 

man-made causes. Nutrient enrichment in the form of N and P are in part due to farms 

(de Villiers et al. 2007). Fertilizers contain large amounts of N and P that build up in the 

sediment. “The amount of P lost to surface waters increases with the P content of the 

sediment” (Carpenter et al. 1998). Jeffries and Mills (1990) explain that N and P are 

used to increase crop production. The applications of N and P to crops are often 

mismanaged and the fertilizers cause the excessive amounts to land up in the water 

and not the crops. The number of plants or plant biomass may increase due to an 

elevation in N amounts (Camargo and Alonso 2006). Large amounts of nutrients are 

discharged from sewage management plants constructed to remove organic effluents 

(Jeffries and Mills 1990). 
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Eutrophication results from an increased input of P and N into rivers (Carpenter et al. 

1998). This process develops when the habitat is no longer able to “buffer” against an 

extreme amount of nutrients that enter the system, particularly that of P (Jeffries and 

Mills 1990). This has negative impacts on freshwater systems. It causes an elevation in 

the growth of algae and invasive plants that in turn has an impact on the water in terms 

of increase in eutrophication. Carpenter et al. (1998) state that cyanobacteria are well-

known indicators that eutrophication is occurring. Smith (2003) states that 

cyanobacteria can decrease the quality of water. When cyanobacteria prevail in big 

rivers, it is predicted in most cases to be due to an increase in P (Smith 2003). This also 

has an effect on deep water oxygen, which becomes exhausted when eutrophication 

occurs (Smith 2003) and ultimately this decreases the water quality of rivers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



27 

 

1.6 RIPARIAN VEGETATION AND ITS ROLE IN FRESHWATER 

ECOSYSTEMS: 

Riparian plant life plays a significant role in maintaining ecosystem function. It 

decreases the possibility of erosion, promotes nutrient storage and provides an 

environment in which organisms can live and reproduce (Castelli et al. 2000).  It also 

reduces the velocity of floods and is important for its role in bank steadiness, particularly 

when alien plants are removed (Sieben and Reinecke 2008). Riparian vegetation is able 

to retain water and this therefore raises evapotranspiration and groundwater recharge 

(Esler et al. 2008).  It also serves as natural fire breaks and supplies corridors for 

distribution and mobility of fauna and flora.  

 

Riparian vegetation also provides oxygen, regulates organic material flow, as well as 

the equilibrium of the sediment and sediment that falls onto the river bed (Gadzala-

Kopciuch et al. 2004). These plants are “sensitive indicators” of the surroundings in 

which they occur. Haslam (1978) states that the vegetation found in an area where 

pollution occurs can provide a substantial amount of information about that area. The 

amount of metals and toxins that the plants take up are considerably higher than that 

amount found in the water (Miretzky et al. 2004). 

 

Jadia and Fulekar (2009) state that plants have adapted three ways that enable them to 

tolerate heavy metal toxicity. Exclusion is the process by which the movement of metals 

is limited and steady metal levels are maintained in the shoots. Inclusion occurs when 

the shoot metal levels mirror the metal levels in the sediment in a “linear relationship”. 
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The last process is known as bioaccumulation. This process occurs when metals build 

up in the roots and the aerial parts of the plants at both elevated and minimized levels. 

Plants take up metals from the water and sediment into the roots (Haslam 1990). A lot 

of plants accumulate metals and trace elements in the upper parts of the plant, 

especially the leaves and the absorption of the concentration of the trace elements and 

heavy metals is dependent on the species of plant and the particular metal being taken 

up (Madejón et al. 2004). 

 

When pollutants accumulate in plants, the toxicity of these pollutants are reduced. The 

presence of “microflora” on roots allows various metals to be absorbed and changed in 

the plant (Haslam 1990). These metals are then accumulated in various organs of the 

plant and the accumulated pollutants are degraded during the process of oxidation 

(Haslam 1990).  Miretzky et al. (2004) state that the degree to which metals are 

adsorbed and where they are found in the plant has a significant influence on the ability 

and speed of the elimination of the metal. The plants are essentially filters and purifiers 

of both water and sediment (Haslam 1990). 
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1.7 THE RELATIONSHIP BETWEEN WATER, SEDIMENT AND PLANTS: 

Land found adjacent to a river that has an interaction with the river and connects water 

pathways with runoff are known as riparian zones (Dosskey et al. 2010). This boundary 

between land and water is sensitive to changes in the environment (Naiman and 

Décamps 1997).  Riparian zones are known by the well developed floodplains, a wide 

variety of vegetation and wet soils (Naiman and Décamps 1997). These riparian zones 

have a significant role in controlling the water and chemical exchange between the 

terrestrial and aquatic systems.  

 

There is a significant link between water nutrient content and sediment and riparian 

vegetation (Castelli et al. 2000). Sediment characteristics, such as the physical, 

chemical and morphological ones, are strongly associated with both plant distribution 

and hydrological regimes. Sediment determines the chemical properties of plants and 

surface water. Topsoil characteristics direct water motion and the ability to retain water 

and manage the amount of water that the riparian communities receive (Nilsson and 

Svedmark 2002). Soil is able to retain water and this also affects the distribution of 

riparian plants (Naiman and Décamps 1997).   

 

Rivers receive particulate and dissolved material from sediment (Townsend 1980). 

Arrays of elements are found in freshwater and this influences the kind of vegetation 

that occurs there. Plants also change many characteristics of the river body, like 

temperature and by sediment trapping (Jeffries and Mills 1990). The motion of water 

has a great influence on plants (Haslam 1978). The movement of water replenishes the 
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plant with necessary oxygen (for respiration) and carbon dioxide (for photosynthesis) 

required for the plants biological processes (Haslam 1978).  

 

The water chemistry can be influenced by riparian plants. This may be due to the 

chemical absorption and nutrient cycling by the plants or by providing detritus to soil 

(Dosskey et al. 2010). Aquatic plants change the river system through their 

development and metabolic activity (Madsen et al. 2001). When plants are able to 

colonize an area they can often reduce the velocity of the current. The plant roots are 

found within soil and young soil is made by decomposing plants or roots, which 

ultimately influence the chemical quality of soil water (Dosskey et al. 2010). 

  

According to Dosskey et al. (2010) in river systems where soil is wet, the decay of plant 

detritus uses up the oxygen supply found within soil that is required by roots of the 

vegetation. The absorption of nutrients by plants influences the amount of nutrients 

within the river (Dosskey et al. 2010). The hydrology of an ecosystem is the main 

reason for the types of vegetation found in an area. The way in which vegetation, the 

roots of the vegetation and plant debris is distributed within the riparian zone and the 

river is what drives the relationship between riparian plants and water (Dosskey et al. 

2010).  
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 1.8 DAMS AND ENVIRONMENTAL IMPACTS ON RIVERS: 

Dams are often built to lessen water shortages. It is thought that there are 

approximately 42 000 large dams and 800 000 small dams across the world (Freeman 

2003). Dams are valuable structures for the management, as well as storage of water. 

The bigger dams are important for economic value and social development and offer 

significant functions like electricity production and flood management (Wei et al. 2009). 

Although dams provide economic and social advantages, the construction and structure 

of dams causes negative impacts on the river ecosystems.  

 

Negative impacts caused by dams: 

Nutrients, heavy metals and water temperature changes: 

Dams are able to change the nutrient and heavy metal content, as well as water 

temperature. Richardson et al. (2007) provide an example of a dam that catches fine 

sediments and nutrients that are carried by floods, causing modifications in the lower 

areas of the river. This is due to the buildup of elements in the dammed water, which 

has a longer standing period than that of flowing water (Wei et al. 2009). It further 

disrupts the movement of organic materials and heavy metals (Wei et al. 2009). Nutrient 

overload in the dammed area not only reaches the river by flooding but also by 

decomposition. When a dam is constructed, the amount of water increases and floods 

the land and riparian zones (Nilsson and Berggren 2000). This causes the vegetation 

that is not adapted to such a disturbance to decompose. The chemistry of rivers is 

altered and becomes more acidic because of the decay of plants (Allan and Flecker 

1993). Animals may also perish with the large volume of water, also decomposing and 
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releasing nutrients (Nilsson and Berggren 2000). Organic matter in soils that have been 

inundated with water may also decompose, liberating P and N, which may increase 

eutrophication. The water temperature is increased by dams, as a variation is normally 

present between the water found above the dam and the water that is released from the 

dam (Hancock 2002). The changes in temperature cause changes in the kinds of 

vegetation found in the ecosystem, impacting the exchanges that are required between 

leaves and root areas (Hancock 2002). 

 

Hydrology: 

Many rivers are altered by damming in terms of modified flow. A dam changes the rivers 

arrangement and flow (Wei et al. 2009). The amount of water flowing and speed of the 

water are affected by dams and these factors are then limited in terms of its role in 

water cleansing. The amount of water released downstream is reduced. In some 

instances large decreases in flow influences the water temperature by minimizing the 

capacity for retaining heat (Poole and Berman 2001).The amount of water released 

changes the morphology and geomorphology of the area (Poole and Berman 2001). 

Dams alter geomorphology through altering sediment cycling (Nilsson and Berggren 

2000). The dam lake accumulates large amounts of sediments that were formerly 

carried to lower reaches of the river. When water is discharged, the river below the dam 

is more prone to erosion. This causes channels to be simplified and alters 

geomorphology in the river bed (Nilsson and Berggren 2000). 
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Riparian communities: 

The changes caused by dams (nutrients and heavy metal status and hydrology) have 

serious implications for plants. Many species are adapted to rivers and may become 

locally extinct as the flow of the river changes. The first sign of stress to plants 

subjected to inundation occurs in the roots (Nilsson and Berggren 2000). The soil is 

saturated with water and therefore becomes oxygen depleted, which causes the plant to 

undergo oxygen stress (Nilsson and Berggren 2000). Mantel et al. (2010) state that 

species of riparian plants experience changes in habitat structure due to sediment that 

accumulates. Sediment is trapped within the dam, causing sediment depletion 

downstream. The lack of sediment causes difficulty in root systems of plants to establish 

themselves in the soil. This and flow also have a negative impact on the ability of seeds 

to germinate, especially seeds that are not adapted to dispersal by floating in the water.  

 

 

 

 

 

 

 

 

 

 

 

 

 



34 

 

1.9 AIMS AND OBJECTIVES 

The aim of this study was to investigate water quality, including heavy metal pollution in 

the water and riparian vegetation of the Berg River.  

 

1.9.1 Research objectives: 

The main objectives of the study were: 

 To determine water quality of the Berg River in terms of nutrients and heavy 

metals, as well as selected physico- chemical properties of the river, 

 To assess the heavy metal accumulation of Salix sp., Acacia mearnsii and 

Brabejum stellatifolium for possible use as indicator species. 

 

1.9.2 Research Questions: 

  What are the main sources of pollution in the river? 

 Are there heavy metals present in the Berg River that are significantly high in 

both water and plants?  

 Which of the above plant species accumulates the highest concentrations of 

heavy metals in its leaves? 
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CHAPTER 2 

 

Monitoring water quality and pollution in the upper Berg River  
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2.1 THE BERG RIVER LOCATION AND CHARACTERISTICS: 

The Berg River occurs in the Western Cape, South Africa. It originates in the mountains 

above Franschhoek, at 1500 masl and declines to 180 masl at the convergence with the 

Franschhoek River (Luger 1996). It extends for a length of 285 km and includes at least 

sixteen tributaries. The river drains an area of about 8980 km2 (Anon. 2004). The river 

flows northwards, through the towns of Paarl and Wellington as well as passing near 

Gouda, Piketberg and Hopefield (Luger 1996) (Figure 2.1). The largest modification that 

occurred to the river from the 1930's up until now is that the “braided systems” that 

flowed near Franschhoek and Paarl cannot be found there anymore (Anon 2007). This 

is due to the isolation that weirs and levees cause, which prohibits flooding of the land 

away from the main system. This area is currently farmland, which channeled the river 

into a single system. 

  

This catchment provides much of Cape Town’s water and also provides irrigation along 

the length of the river (de Villiers 2007). At least half of the catchment is used for 

farming (de Villiers 2007). The drainage area lies within the winter precipitation portion 

of the south-western Cape (Anon. 2004). The amount of evaporation is far higher than 

the amount of rainfall, across the catchment, but despite this, the catchments “water 

budget” is dominated by runoff (de Villiers 2007).  The geology of the upper region is 

largely Table Mountain Sandstone and here the river is fast flowing. This type of 

geology is “well weathered” and the rocks are dated to the Ordovician age (between 

488- 443 million years ago) (Anon 2005) and this is the reason as to why these rocks 

leach very few ions (Anon 2007). The river flows slowly through shale in the middle 
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reaches and there is an extensive estuary. According to Davies and Day (1998) the 

Berg River has been exposed to degradation by a variety of causes since the 1950’s. 

This includes the input of excessive amounts of nutrients from farming runoff, return 

flows from effluent stemming from waste water treatment plants, from industries and 

from vineyards. The Berg River has also been exposed to degradation by alien species 

of both aquatic and riparian fauna and flora and also largely due to informal settlements 

found near or on the banks of the river and the input of pollution it brings (Davies and 

Day 1998). 

 

A          B 

 

Figure 2.1. A: A map of the Western Cape, indicating the Berg River location in the green circle. B: The Berg 

River drainage area (DWAF 2004). 
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2.2 CHARACTERISTICS OF THE STUDY AREA: 

Ten sites were chosen along the upper reaches of the Berg River for the purposes of 

this study (Figure 2.2 and Table 2.1). 

 

Figure 2.2. The locality of the Berg River sampling sites (Google Earth). 
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The study area was determined by taking sampling areas along the river over a 30 km 

stretch. Ten locations were sampled from the source of the river to the Paarl area. The 

first two (B 1 and B 2) and second last (B 9) sampling sites correspond with the Berg 

River dam baseline research monitoring sites. In this study the sites are called B 1, B 2 

etc. 

 

2.2.1 Berg River 1 (B 1): 

The Berg River Baseline Monitoring Programme (BMP) has aimed to describe the 

status of the Berg River prior to the construction of the Berg River Dam. Berg River 1 (B 

1) site is one of the official monitoring sites (termed Berg River Monitoring Site 1- BRM 

1). The river bank has been stabilised where the fynbos vegetation is found. Alien 

vegetation has been cut and burnt extensively and therefore riparian fynbos has been 

able to cover the banks of the river again. The mountains have also been cleared of 

alien vegetation, which has been cut and burnt. Remains of pine trees are still evident. 

This site was chosen as it is above most human activity, and is one of the BMP official 

sites. 

 

2.2.2 B 2:  

It is situated just below the Berg River Dam. It contains many herbaceous and woody 

species of fynbos. The water at this site is fast flowing due to the release of water from 

the dam. The alien vegetation has been removed and the fynbos is returning. This site 

is also an official monitoring site i.e. BRM 2. 
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2.2.3 B 3:  

The site below the Franschhoek tributary shows signs of human activities or remnants 

thereof. Not many fynbos species occur on the site, but many Acacia plants are present 

and Brabejum stellatifolium is clumped on the riverbank. The Waste Water Treatment 

Works (WWTW) in Franschhoek (treats 73 000 cubic metres per year) releases treated 

effluent water into the Franschhoek River (Anon 2004). The Berg River and the polluted 

Franschhoek River have converged and are joined at this site. 

 

2.2.4 B 4:  

The fourth site is found below the Wemmershoek tributary. The sampling site is a farm 

known as La Chanelle farm. Clearing of all vegetation along the riverbank has occurred, 

as well as burning of vegetation along the banks of the river.  Large, dense masses of 

Myriophyllum heterophyllum occur along the banks of the river. Compared to many of 

the other sites, few fynbos species occur here. The alien vegetation has been removed 

from the site. On the adjacent side of the river a pipe outlet releases water into the river. 

The WWTW in Wemmershoek (treats 36 500 cubic metres per year) releases treated 

effluent water into the Wemmershoek River (Anon 2004). 

 

2.2.5 B 5:  

Site five occurs below the Dwars tributary and is known as Bieun Donne farm. This site 

lies adjacent to an experimental agricultural farm. Most of the vegetation, both 

indigenous and alien has been removed. There is a concrete drift across the river. The 

water flows over this when the river is full. The area contains lush vegetation. The 
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Dwars Tributary produces 28 % of the runoff for the Berg River (Anon 2004). There are 

WWTW that discharge effluent into this tributary.  

 

2.2.6 B 6:  

Site six is Simondium which is a large arable farm. There is much alien vegetation such 

as Acacia mearnsii, Typha capensis and Phragmites australis along the river. The water 

contains rusted metal and some litter. The water is fast flowing, the bed sandy and has 

dense vegetation. The riverbank has been altered by bulldozing, destroying parts of the 

banks, causing erosion and destroying many of the plants that occurred there. 

 

2.2.7 B 7, B 8 and B 9:  

Site seven is at a horse ranch (Dieu farm), where the water is fast flowing and dense 

masses of alien vegetation occur along the river bank. In between site seven and site 

eight, there is a resort and camping site where sewage could possibly be illegally 

discharged into the river. The eighth - and ninth - sites are both deciduous fruit farms, 

where alien vegetation was considered a large problem and was removed by “Working 

for Water”. Lindenhof farm is the eighth site and Firwoods farm is site nine. A golf 

course is adjacent to site nine, where surface runoff from fertilizers and pesticides flow 

into the river system increasing water pollution. 
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2.2.8 B 10:  

Site ten is at a recreational park in Paarl (Paarl Arboretum). It occurs adjacent to a road 

and next to it is a vineyard. The river has been channelized. All alien vegetation has 

been removed. The WWTW situated in Paarl releases treated effluent water (16 million 

cubic metres per year) into the Berg River (Anon 2004) but it is located below this site. 
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2.3 MATERIALS AND METHODS: 

Sampling commenced in February 2009 and was conducted at the ten sites described 

above (Figure 2.2). The Berg River sampling sites stretched over an approximate 30 

kilometres from above Franschhoek to Paarl.  

 

Table 2.1. List of sampling sites across the Berg River. 

Sites Description Coordinates 

B 1 Above the dam S33.95646 E19.07270 

B 2 Below the dam S33.89977  E19.05296 

B 3 
Below Franschhoek 

tributary S33.87805 E19.03524 

B 4 La Chanelle Farm S33.87577 E19.01863 

B 5 Bieun Donne Farm S33.83994  E18.98460 

B 6 Simondium S33.82481 E18.96481 

B 7 Dieu Farm S33.80527 E18.95595 

B 8 Lindenhof Farm S33.79082 E18.96880 

B 9 Firwoods S33.76944 E18.97669 

B 10 Paarl Park S33.74803 E18.96789 

 

 

 

 

 

 

 

 

 

Franschhoek 
Berg River Dam 

Paarl 
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2.3.1 FIELD PROCEDURES: 

 

Samples were taken during the months depicted in Table 2.2. The seasons in which the 

months occur are important, as seasonal changes of the weather have an effect on 

inorganic pollution in the river. 

 

Table 2.2. The months of data sampling, as well as the season in which sampling occurred along 

the river during 2009 and 2010. 

Month Year Season 
Day of 

Sampling 

February 2009 Summer 0 

March 2009 Autumn 31 

April 2009 Autumn 59 

June 2009 Winter 120 

June 2009 Winter 141 

August 2009 Winter 175 

September 2009 Spring 218 

October 2009 Spring 252 

December 2009 Summer 295 

January 2010 Summer 352 

February 2010 Summer 378 

April 2010 Autumn 415 
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2.3.1.1 WATER SAMPLING: 

The oxygen content and temperature of the water were determined in situ using a YSI 

Model 55 Oxygen and Temperature Meter. The temperature of rivers differs due to 

response to the different temperatures of the sediment and of the air (Townsend 1980). 

A Metrohm Conductivity Meter was used to determine the electrical conductivity of the 

water. Electrical conductivity is an “indicator” of the salt concentration of the water 

(Morrison et al. 2001). A large amount of salts causes high salinity and causes water to 

become “brackish” (Morrison et al. 2001). Water samples were collected in 300 ml 

plastic bottles. The water samples were filtered using Whatman number 42 filter paper 

and were preserved by placing them in a refrigerator in the dark at 4 ºC to prevent algal 

growth. The samples were analyzed after the very last month of sampling. 

 

2.3.1.2 SEDIMENT SAMPLING: 

The sediment was sampled during the wet and dry seasons, near the river bank at each 

site. This occurred during the wet season (August 2009) and dry season (April 2010). 

The sediment was collected using a garden trowel and placed in a zip lock bag, then 

dried and stored in a cool area until all other samples were collected in the twelve 

month period.  The sediment was dried at ambient temperature (air dried) and sieved 

(through a 2 mm sieve) to remove larger plant and sediment particles.   
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2.3.1.3 PLANT SAMPLING: 

Leaf samples from alien and indigenous species (Salix sp: Figure 2.3., Acacia mearnsii: 

Figure 2.4 and Brabejum stellatifolium: Figure 2.5) were taken, once a month at the ten 

sites adjacent to the river. Large, mature leaves from various branches were placed into 

brown paper bags. Mature leaves were preferred over young leaves, as the leaves 

contain more nutrients and show which nutrients may have accumulated in the plants 

for a longer period of time and this may be due to water relations within a plant that 

corresponds to the age of leaves (Tomašević et al. 2008). Some 20 to 25 leaves were 

collected from each site. Table 2.3 indicates which species occurred at each site. The 

indigenous species Brabejum stellatifolium has sclerophyllous leaves (Marschner 1995). 

 

Table 2.3. The Berg River sites and the plant species found along the river. 

Description Salix sp. A.mearnsii B.stellatifolium 

Above the dam 
 

√ √  

Below the dam 
 

√ √ 

  Below Franschhoek tributary 
 

√ √ 

La Chanelle Farm 
 

√ √ 

Bieun Donne Farm √ √ √ 

Simondium √ √ 
 Dieu Farm √ √ 
 Lindenhof Farm √ √ 
 Firwoods √ √ 
 Paarl Park √ √ 
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Figure 2.3. Salix sp. a common riparian species found along rivers. 

 

 

Figure 2.4. Acacia mearnsii an invasive species. 
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Figure 2.5. Indigenous species Brabejum stellatifolium, endemic to the Western Cape found here 
along the bank of the Berg River. 
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2.4 LABORATORY PROCEDURES:   

2.4.1 WATER: 

The filtered water samples were tested for ammonium, nitrate and nitrite, using 

Aquamerck reagent kits (with a resolution of 1.0%). The pH was determined using a 

Radiometer PHM 64 Research pH Meter. Reduced pH has an influence “on the 

dissolving or sedimentation of heavy metals” (Levkov and Krstic 2002). Analysis of 

cadmium, copper and lead, as well as iron, zinc, potassium, sodium, calcium and 

magnesium present in the water was carried out with a Unicam Solaar M Series Atomic 

Absorption Spectrophotometer (AAS). Phosphorus concentrations were obtained by 

using an ICP Spectrometer (Thermo, iCAP 6000 series) at Elsenburg: Institute for Plant 

Production Laboratory. 

  

2.4.2 SEDIMENT: 

The sediment pH was determined using the sticky point method (Tan 1996). It is known 

as the sticky point method because a small amount of water is added to the sediment 

until it reaches a point where it will stick to a surface. The sticky point method required 

100 g of dried sediment that was weighed, distilled water was added and stirred to 

make it into a paste consistency. After 10 minutes, measurements were taken with a 

Radiometer PHM 64 research pH meter. The conductivity of the sediment was also 

determined by using the sticky point method with a YSI Model 35 Conductance Meter.   
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Sediment digestion took place by utilizing the aqua regis solution, 3:1 HCL: HNO3. One 

gram of dried sediment was inserted into a digestion tube, which contained 12 ml of the 

3: 1 HCL: HNO3 digestion solution. The sediment samples were placed in a heating 

block for three hours at 110 °C. When the solution was evaporated to near dryness, the 

tubes were left to cool and were diluted by using 20 ml of 2 % (v/v with H2O) nitric acid. 

The solution was then filtered using Whatman number 42 filter paper and made up to 

100 ml with distilled water in a volumetric flask.  

 

Total nitrogen was determined by using the Kjeldahl distillation and titration method 

(Bremner and Mulvaney 1982). Five ml of the digested samples were used. The 

distillate was titrated with 0.01 N HCL, where N is the normality. The nitrogen 

percentage present was calculated as follows: 

 

%N = (Vol. ml HCl – blanks average ml HCL) * NHCl * 14007 / sample mass (mg) 

(Moore and Chapman 1986) 
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2.4.3 PLANTS: 

Leaves were rinsed in distilled water and oven dried at 70 ºC. The plants were milled 

(using a Wiley Mill), 0.4 g was weighed into cigarette paper and digested using 4.4 ml of 

a sulphuric-peroxide solution (Allen et al. 1986).  Using the digestion method from Allen 

et al. (1986), the sulphuric peroxide was prepared.The sulphuric- peroxide solution was 

made up of 14 g lithium, 0.42 g of selenium powder and 350 ml of hydrogen peroxide. 

Sulphuric acid (420 ml) was slowly added to the mixture, which was placed on ice to 

keep it cool (Grimshaw 1987). The mixture was stored at 2 ºC in a refrigerator and 

covered in foil to prevent sunlight from penetrating. The samples were placed in 

digestion heat blocks with a starting temperature of 150 ºC, thereafter the temperature 

was increased by 50 ºC every hour up until a maximum temperature of 350 ºC was 

reached. As soon as the solution reached a colourless or light milk colour, it was 

removed from the digestion block and left to cool. The clear solution was filtered through 

Whatmans number 42 filter paper and made up to 100 ml. Blanks were prepared in the 

same way but contained only the cigarette paper and the digestion mixture. The same 

elements were analysed in plants as in water and sediment. 

 

 

2.5 STATISTICAL ANALYSIS: 

A statistical programme (SAS 9.2) was used to analyse the results of the chemical 

analyses.  The statistical analysis used in the analyses is that of ANOVA’s. In order to 

compare means of samples, T - tests were used in the form of student T - tests.  
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CHAPTER 3 

 

RESULTS  

 

Site specific and seasonal accumulation of heavy metals and physico- 

chemical properties 
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RESULTS  

3.1 WATER 

Many of the parameters for water displayed similar trends and can be divided 

accordingly into: no pattern, constant pattern, increase in variables and decrease in 

variables over space and also: no pattern, constant pattern, a wet season high and a 

wet season low over time. 

 

 The amount of rainfall (mm) that occurred over the sampling period is given in Figure 

3.1. Rainfall has an effect on the input of inorganic pollution into the river. The seasonal 

differences in precipitation cause variations in the river’s water quality. This can be seen 

in Figure 3.2.1 (a and c) and Figure 3.2.3 (a, b and g). 

 

 

 

Figure 3.1. The mean monthly rainfall, which occurred along the Berg River from Franschhoek to 

Paarl during 2009 and 2010. 
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3.1 (A) No pattern across the sites:  

Figure 3.1.1 shows that some of the chemical parameters showed no discernable 

pattern within the water samples over the ten sites. The mean values for oxygen (mg/ l) 

ranged between 6.38 mg/ l and 7.88 mg/ l (Figure 3.1.1. (a)). The lowest mean value for 

dissolved oxygen occurred at site 10 and the highest at sites 5 and 8. Copper 

concentrations ranged between 0.0007 mg/ l and 0.0016 mg/ l across the sampling 

sites. The lowest mean concentration occurred at site 9 and the highest value occurs at 

site 7 (Figure 3.1.1. (b)). Significant differences between means were seen for iron 

concentrations across the sampling sites (Figure 3.1.1. (c)). The mean values for iron 

across the sites ranged between 0.02 mg/ l and 0.08 mg/ l with the lowest values at 

sites 2 and 3 and the highest at sites 5 and 6. 
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Figure 3.1.1. (a): Mean oxygen concentration (mg/ l), (b) mean copper concentration (mg/ l) and (c) 

mean iron concentration (mg/ l) at the ten sampling sites along the upper Berg River over the 

2009- 2010 study period. Means with the same letter are not significantly different (p ≤ 0.05). 
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3.1 (B) Constant pattern across the sites:  

The following chemical parameters in Table 3.1.1 showed no significant changes across 

the ten sites over the study period. The mean and standard deviation values for the 

parameters are representatives of the concentrations that were present at the sites. 

Ammonium levels ranged between 0.1 mg/ l and 0.25 mg/ l. Mean nitrite levels were 

very low throughout as they ranged between 0.09 mg NO2
-/ l and 0.11 mg NO2

-/ l. The 

mean cadmium concentrations along the sites also remained low with a range between 

0.005 mg/ l and 0.078 mg/ l. The mean concentrations for zinc ranged between 0.0014 

mg/ l and 0.0025 mg/ l and for phosphorus it ranged between 1.00 mg/ l and 1.08 mg/ l. 

 

Table 3.1.1 The averages and standard deviations of ammonium, nitrite, cadmium, zinc and 

phosphorus at the ten sampling sites along the Berg River over 2009- 2010 study period. 

Parameter Units Mean StDev 

NH4
+ mg/ l NH4

+ 0.146 0.040 

NO2
- mg/ l NO2

- 0.098 0.008 

Cd mg/ l 0.024 0.027 

Zn mg/ l 0.002 0.000 

P mg/ l 1.040 0.042 
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3.1 (C) Increase in parameters and concentrations downstream: 

Almost half of the parameters that were tested increased downstream. The levels of the 

various parameters were lowest at the first two sites and increased from site 3 onwards 

(Figure 3.1.2). Electrical conductivity mean values across the sites ranged from 32.92 

µS cm-1 to 103.92 µS cm-1 (Figure 3.1.2. (a)). The highest EC mean was experienced at  

site 7. The mean pH values ranged between 5.59 and 6.61 across the sampling sites. 

As seen in Figure 3.1.2. (b), the lowest pH value was found at site 1 and the highest at 

site 8. In Figure 3.1.2. (c) site 1 had the lowest mean nitrate value (0.17 mg NO3
-  l) of 

the ten sites. No differences were evident from site 3 to site 10. The sampling sites had 

mean nitrate levels ranging between 0.17 mg NO3
- l and 1.50 mg NO3

- l. The potassium 

concentration ranged between 0.79 mg/ l and 2.11 mg/ l. The lowest mean 

concentration of potassium occurred at site 1 and the highest occurred at site 8 (Figure 

3.1.2. (d)). The mean concentrations of sodium ranged between 0.42 mg/ l and 0.92 

mg/ l, for calcium it ranged between 0.05 mg/ l and 0.27 mg/ l and both of these 

elements were highest at site 10 (Figure 3.1.2. (e and f)). Site 3 had the highest mean 

concentration of magnesium as seen in Figure 3.1.2. (g) and it was caused by input 

from the Franschhoek River. The values ranged between 0.04 mg/ l and 0.89 mg/ l. 
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Figure 3.1.2. (a): Mean electrical conductivity (µS cm
-1

), (b) mean pH, (c) mean nitrate 

concentration (mg/ l), (d) mean potassium concentration (mg/ l) in the upper Berg River. Means 

with the same letter are not significantly different (p ≤ 0.05). 

 

 

 

(a) (b) 

(c) (d) 
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Figure 3.1.2.continued (e): Mean sodium concentration (mg/ l), (f) mean calcium concentration 

(mg/ l) and (g) mean magnesium concentration (mg/ l) at the ten sampling sites along the upper 

Berg River over the 2009- 2010 study period. Means with the same letter are not significantly 

different (p ≤ 0.05). 

 

 

 

 

 

(e) (f) 

(g) 
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3.1 (D) Decrease in parameters downstream: 

The mean water temperature and mean lead concentrations displayed a trend of 

decreasing in the downstream direction. The mean surface water temperature ranged 

between 18.19 °C and19.63 °C (Figure 3.1.3. (a)) across the ten sites sampled. The 

lowest mean temperature was experienced at site 5 and the highest mean temperature 

across the ten sites occurred at site 2. The mean lead concentrations ranged between 

0.006 mg/ l and 0.070 mg/ l. In Figure 3.1.3. (b) the lowest reading was observed at site 

4 and the highest reading was observed at site 1. The higher level of Pb at site 1 is 

attributed to the fact that the pH of site 1 was low (Figure 3.1.2. (b)) and also due to the 

geology of the catchment. 

 

  

Figure 3.1.3. (a): Mean water temperature (°C) and (b) mean lead concentration (mg/ l) at the ten 

sampling sites along the upper Berg River over the 2009- 2010 study period. Means with the same 

letter are not significantly different (p ≤ 0.05). 

 

 

(a) (b) 
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Water results over the sampling period: 

3.2 (A) No pattern over the sampling period: 

Electrical conductivity, pH and iron displayed no evident seasonal trends. The three 

variables showed many fluctuations over the year of study (Figure 3.2.1). Seasonal 

fluctuations in mean EC values ranged between 39.5 µS/ cm-1 and 131.6 µS/ cm-1 over 

the study period. Electrical conductivity was the lowest during summer (day 378) of 

2010 and peaked during the winter month (day 120) of 2009 (Figure 3.2.1. (a)). 

Seasonal variation of mean pH values was low and ranged from 5.90 and 6.59 (Figure 

3.2.1. (b)). The lowest pH (5.90) was experienced on day 31 during autumn and the 

highest pH (6.59) was measured on day 175 during winter. The mean iron 

concentrations were low during the end of autumn and the beginning of winter of 2009, 

with a sharp increase to day 120 and steadily increased over the spring and summer 

months. The results show that iron concentrations were lowest in autumn (days 31 and 

59) and highest in summer (day 352) (Figure 3.2.1. (c)). Seasonal mean concentrations 

of Fe varied between 0.03 mg/ l and 0.09 mg/ l. 
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Figure 3.2.1. (a):  Seasonal variation of mean electrical conductivity (µS cmˉ
1
), (b) mean pH and (c) 

mean iron concentration (mg/ l) in the upper Berg River. Means with the same letter are not 

significantly different (p ≤ 0.05). 
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3.2 (B) A constant pattern over the sampling period: 

Nitrite and phosphorus remained constant throughout most of the year. A significant 

variation of both nitrite and phosphorus concentrations occurred in the first three months 

after which the levels stayed constant. In Figure 3.2.2. (a and b) it is evident that on day 

31 the highest level of  mean nitrite concentration ( 0.65 mg NO2
-/ l) occurred and on 

day 59 for mean phosphorus concentration (1.50 mg/ l).  

 

  

 

Figure 3.2.2. (a):  Seasonal variation of mean nitrite concentration (mg/ l) and (b) mean 

phosphorus concentration (mg/ l)  in the upper Berg River. Means with the same letter are not 

significantly different (p ≤ 0.05). 
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3.2 (C) A wet season high: 

A general increase in some of the variables occurred towards the colder period. The 

levels of the variables (nitrate, cadmium, copper, zinc, potassium, sodium, calcium and 

magnesium) remained fairly high compared to the summer and autumn months.  During 

the study period there was a significant change in the mean nitrate concentration which 

ranged between 0.0 mg NO3
-/ l and 3.7 mg NO3

-/ l (Figure 3.2.3. (a)). On day 120 

(winter) the highest nitrate concentration was reached. In Figure 3.2.3. (b), the mean 

cadmium concentrations were fairy low during the winter and autumn months but the 

mean cadmium concentration was highest during the spring (day 218). The mean 

values throughout the year ranged between 0.002 mg/ l and 0.100 mg/ l. The mean 

concentrations of copper decreased during the autumn and winter months and 

increased in the early spring months and decreased in autumn again. The lowest 

concentration occurred during the winter months and highest during spring, and ranged 

between 0.0003 mg/ l and 0.0020 mg/ l (Figure 3.2.3. (c)). The mean concentrations of 

zinc over the study period ranged from 0.0003 mg/ l to 0.0032 mg/ l. Figure 3.2.3. (d) 

showed seasonal variation, as concentrations are lower during the winter months and 

higher during the summer months. Zinc was completely washed out during the last two 

months of winter (days 141 and 175).  Potassium levels increased abruptly during June 

(winter).  The mean concentration ranged between 0.51 mg/ l and 4.93 mg/ l as seen in 

Figure 3.2.3. (e). Sodium levels increased for the first three months and peaked in 

winter and gradually decreased during the summer months. There was a significant 

change in the mean sodium concentration of the surface water on the onset of winter 

rainfall. Levels of sodium were very low during autumn (Figure 3.2.3. (f)) and the values 
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for sodium ranged between 0.29 mg/ l and 1.16 mg/ l. There was a significant difference 

by day 120 (winter) and then a steady decrease of calcium concentrations during the 

summer months (Figure 3.2.3. (g)). The calcium concentrations that occurred over the 

year ranged between 0.05 mg/ l and 0.39 mg/ l. Concentrations of magnesium remained 

low during the autumn months with a peak occurring on day 120  (Figure 3.2.3. (h)) and 

decreased at the end of summer and the beginning of the autumn (Figure 3.1.16. B). 

Magnesium levels over the year ranged between 0.05 mg/ l and 0.17 mg/ l.  As with 

many of the other metals, there was a significant difference in the mean concentrations 

of Mg by day 120. 

 
 

Figure 3.2.3. (a):  Seasonal variation of mean nitrate concentration (mg/ l) and (b) mean cadmium 

concentration (mg/ l) in the upper Berg River. Means with the same letter are not significantly 

different (p ≤ 0.05). 
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Figure 3.2.3.continued:  Seasonal variation of (c) mean copper concentration (mg/ l), (d) mean zinc 

concentration (mg/ l), (e) mean potassium concentration (mg/ l) and (f) mean sodium 

concentration (mg/ l) in the upper Berg River. Means with the same letter are not significantly 

different (p ≤ 0.05). 
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Figure 3.2.3. continued:  Seasonal variation of (g) mean calcium concentration (mg/ l) and (h) 

mean magnesium concentration (mg/ l)  in the upper Berg River. Means with the same letter are 

not significantly different (p ≤ 0.05). 

 

3.2 (D) A wet season low: 

Oxygen (mg/ l) as well as ammonium and lead showed an increase in concentrations at 

the onset of spring. The levels of each variable remained fairly low in the first six months 

of sampling after which there was a significant increase. As the late summer and early 

autumn months arrived, the concentrations of the various variables began to decrease. 

In Figure 3.2.4. (a), the mean levels of dissolved oxygen ranged between 2.04 mg/ l and 

9.49 mg/ l. Oxygen levels were steady during the last summer month and autumn 

months of 2009 then decreased in the winter months of 2009. There was a peak in the 

first month of spring due to heavy rainfall during the spring months of 2009 and then 

oxygen levels declined in the months of summer and early autumn. The mean levels of 

ammonium (Figure 3.2.4 (b)) remained low throughout the autumn and winter months 

(days 0 - 175) (these months are associated with rainfall) and sharply increased in mid 

spring (days 218 - 295) where it remained high during the summer months over the 

(g) (h) 
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study period. Ammonium concentrations for the duration of the year ranged between 

0.00 mg/ l and 0.37 mg/ l. The mean lead concentration was highest during the summer 

month (day 295) and lowest during the first month of sampling. The mean values for 

lead during the year of study ranged between 0.000 mg/ l and 0.070 mg/ l (Figure 3.2.4. 

(c)).  

 

There was also a clear seasonal trend in terms of water temperature. Temperatures 

were high in the summer months, gradually decreasing over the cooler period and 

increasing again in late spring. Seasonal fluctuations in mean temperatures as given in 

Figure 3.2.4. (d)  varied between 13.41 °C and 25.15 °C. The lowest mean temperature 

occurred during the winter of 2009 and the highest mean temperature during the 

summer of 2010. 
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Figure 3.2.4. (a):  Seasonal variation of mean oxygen concentration (mg/ l), (b) mean ammonium 

concentration (mg/ l), (c) mean lead concentration (mg/ l), and (d) mean water temperature (°C) in 

the upper Berg River. Means with the same letter are not significantly different (p ≤ 0.05). 
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3.3 SEDIMENT 

Table 3.3.1 indicates the seasonal concentration the various elements, electrical 

conductivity and pH of the sediment that was sampled in the wet and in the dry season.  

Results showed that there was no significant difference (p > 0.05) between the wet and 

dry season sampling for the physico–chemical properties and metals excluding copper 

and magnesium. This was because the variation between sites was greater in general 

than that between seasons. 

 

Table 3.3.1. Comparisons of the sediment chemical characteristics occurring over the wet and dry 

seasons at ten sites on the upper Berg River. Means followed by the same letter are not 

significantly different p ≤ 0.05. 

 

Parameters Units Dry season (day 175) Wet season (day 415) 

EC μS cm-1 71.23 (a) 264.07 (a) 

pH   5.75 (a) 5.65 (a) 

N    mg kg-1 0 (a) 0 (a) 

Cd    mg kg-1 0.10 (a) 0.01 (a) 

Cu    mg kg-1 0.40 (b) 0.86 (a) 

Pb    mg kg-1 0.01 (a) 0.02 (a) 

Fe    mg kg-1 10.84 (a) 21.30 (a) 

Zn    mg kg-1 6.87 (a) 6.69 (a) 

K    mg kg-1 0.00 (a) 0.73 (a) 

Na     mg kg-1 29.62 (a) 31.32 (a) 

Ca    mg kg-1 47.56 (a) 37.19 (a) 

Mg    mg kg-1 11.84(b) 17.19 (a) 

P    mg kg-1 1 (a) 1 (a) 
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In Table 3.3.1 it can be seen that the sediment pH was slightly acidic. Nitrogen was 

below the detection limits in the sediment samples during the dry and wet season.  The 

mean copper and magnesium concentrations were significantly higher in the wet 

season.  The mean phosphorus levels remained constant in both the dry and the wet 

season (Table 3.3.1).  
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3.4 PLANTS 

During the course of the sampling period, many of the acacias were removed by the 

“Working for Water” project as these are alien species. Leaves of Salix sp. were absent 

during some of the winter and the spring months, as it is a deciduous species. This 

species was initially found at the last 6 sites, but over the sampling period trees were 

removed at certain sites. Brabejum stellatifolium, on the other hand, was only found at 

the first five sites and was also removed at one site. This has implications for the 

relative values of the three species, as some missing data occurred for monthly 

samples. Many of the elements present within Salix sp., Acacia mearnsii and Brabejum 

stellatifolium displayed similar trends and can be divided accordingly into different 

categories over space and time. 
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3.4 [A] Overall, no significant differences across the sites: 

The results for cadmium, lead, zinc and sodium showed no significant variations across 

the sites within the three species (Figure 3.4.1). Mean cadmium levels (Figure 3.4.1. 

(a)) ranged between 0.0 mg kg-1 and 0.3 mg kg-1  for Salix sp., for Acacia mearnsii it 

ranged between 0.0 mg kg-1 and 0.6 mg kg-1 and for Brabejum stellatifolium it ranged 

between 0.00 mg kg-1 and 0.07 mg kg-1. In Figure 3.4.1. (b) the mean levels of  Pb in B. 

stellatifolium displayed a sharp spike in Pb concentration that occurred at site 2. The 

mean Pb concentrations in Salix sp. leaves were in the range of 0.000 mg kg-1 and 

0.001 mg kg-1 and in Acacia mearnsii, between 0.001 mg kg-1 and 0.008 mg kg-1. The 

mean concentration of Pb ranged between 0.000 mg kg-1 and 0.003 mg kg-1 for B. 

stellatifoilum. Salix sp. displayed mean concentrations of zinc (Figure 3.4.1. (c)) 

between 111.18 mg kg-1  and 180. 00 mg kg-1, Acacia mearnsii between 38 mg kg-1  

and 77.65 mg kg-1   and B. stellatifoilum ranging between 38.18 mg kg-1  and 57.21 mg 

kg-1 . There was no significant difference over the study area for the three species other 

than the increase of Na levels at site 10 in Acacia mearnsii. Sodium levels ranged 

between 177.14 mg kg-1 and 298.00 mg kg-1 in Salix sp. Mean levels of Na in Acacia 

mearnsii ranged between 293.60 mg kg-1 and 5281.00 mg kg-1 and the mean levels of 

Na in Brabejum stellatifolium ranged between 121.08 mg kg-1 and 145.19 mg kg-1 

(Figure 3.4.1. (d)). 
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Figure 3.4.1. (a): Mean cadmium (mg kg
-1

) concentration, (b) mean lead (mg kg
-1

) concentration, (c) 

mean zinc (mg kg
-1

) concentration and (d) mean sodium (mg kg
-1

) concentration within the leaves 

of Salix sp. (highlighted in blue), Acacia mearnsii (highlighted in red) and Brabejum stellatifolium 

(highlighted in green), at the ten sampling sites along the upper Berg River over the 2009- 2010 

study period. Means with the same letter are not significantly different (p ≤ 0.05). 
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3.4 [B] A random pattern across the sites: 

The four variables (copper, potassium, magnesium and phosphorus) showed no clear 

pattern and showed increases in concentrations at random sites. In some of these 

variables, within the species there were no significant variations (Figure 3.4.2.(a and d)), 

whereas in other species no common trend was clear between the species. Copper 

levels in the three species showed little differences between the sites. Salix sp. however 

showed a peak at site 5 and Acacia mearnsii at site 9 (Figure 3.4.2.(a)). The mean Cu 

levels for Salix sp. ranged between 3.00 mg kg-1 and 14.98 mg kg-1. Mean Cu 

concentrations in Acacia mearnsii ranged between 8.70 mg kg-1 and 12.38 mg kg-1. 

Brabejum stellatifolium had mean Cu concentrations ranged between 4.90 mg kg-1 and 

5.74 mg kg-1. Acacia mearnsii and Brabejum stellatifolium followed a similar trend in 

potassium across the first five sites, both peaked at site 4 and then decreased again. 

The mean K concentrations in Salix sp. decreased at sites 7 and 9 and increased 

significantly at site 10. Overall, K appears to increase downstream. The mean K 

concentrations ranged between 860.0 mg kg-1 and 8095.0 mg kg-1 in Salix sp. The 

mean levels of K within the leaves of Acacia mearnsii ranged between 230.0 mg kg-1 

and 6009.4 mg kg-1. Brabejum stellatifolium contained mean K concentrations that 

ranged between 153.2 mg kg-1 and 3534.6 mg kg-1 (Figure 3.4.2. (b)). In Figure 

3.4.2.(c), little variation between sites can be seen. The levels of Mg remained fairly 

constant throughout for both Acacia mearnsii and Brabejum stellatifolium, with site 1 

which contained a high level and decreased again at site 2. In both Acacia mearnsii and 

Salix sp. the Mg levels were low at the downstream site (site 10). The mean levels of 

Mg in Salix sp. ranged between 275.75 mg kg-1 and 1040.00 mg kg-1. Acacia mearnsii 

displayed mean concentrations of Mg that ranged between 140 mg kg-1 and  
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210 mg kg-1.  The mean concentration of Mg in Brabejum stellatifolium ranged between 

111.43 mg kg-1 and 168.94 mg kg-1. Phosphorus tended to be higher downstream in 

Brabejum stellatifolium, as shown in Figure 3.4.2.(d). Salix sp. contained higher levels of 

P at site 9 (Figure 3.4.2. (d)). In Salix sp., mean levels of P ranged between  

10.25 mg kg-1 and 27.00 mg kg-1 and the mean concentrations of P in Acacia mearnsii 

ranged between 5.17 mg kg-1 and 8.00 mg kg-1. Mean levels of P in Brabejum 

stellatifolium over the sites varied between 2.58 mg kg-1 and 3.50 mg kg-1. 

 

 

 

  
 

 
Figure 3.4.2. (a): Mean copper (mg kg

-1
) concentration, (b) mean potassium (mg kg

-1
) 

concentration within the leaves of Salix sp. (highlighted in blue), Acacia mearnsii (highlighted in 

red) and Brabejum stellatifolium (highlighted in green), at the ten sampling sites along the upper 

Berg River over the 2009- 2010 study period. Means with the same letter are not significantly 

different (p ≤ 0.05). 
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Figure 3.4.2. continued: (c) Mean magnesium (mg kg
-1

) concentration and (d) mean phosphorus 

(mg kg
-1

)  concentration within the leaves of Salix sp. (highlighted in blue), Acacia mearnsii 

(highlighted in red) and Brabejum stellatifolium (highlighted in green), at the ten sampling sites 

along the upper Berg River over the 2009- 2010 study period. Means with the same letter are not 

significantly different (p ≤ 0.05). 

 

3.4 [C] Increase in concentrations downstream: 

In Figure 3.4.3 the levels of nitrogen, iron and calcium within the three species showed 

an increase in the downstream direction. The concentrations of nitrogen and iron 

remained low at the first 6 sites. An increase in nitrogen levels occurred from site 7 

onwards. It is apparent that there were no clear differences across the sites for the three 

species, although Salix sp. and Acacia mearnsii seem to have peaked at the 

downstream sampling sites, 9 and 10 (Figure 3.4.3. (a)). No significant change occurred 

in the N levels of the leaves of Brabejum stellatifolium whereas the mean N 

concentrations across the sites showed significant variation in Salix sp. and Acacia 

mearnsii. Nitrogen means ranged between 19680 mg kg-1 and 33700 mg kg-1 for Salix 

sp., for Acacia mearnsii it ranged between 13731 mg kg-1 and 27400 mg kg-1 and lastly 
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for Brabejum, it ranged between 3241 mg kg-1 and 10886 mg kg-1. The mean Fe 

concentration displayed very little significant difference over the study area (Figure 

3.4.3(b)). The levels of Fe remained very low in the first six sites and showed some 

significant increases further downstream. The mean concentrations of Fe in Salix sp. 

across the sites ranged between 19.11 mg kg-1 and 606.00 mg kg-1. Acacia mearnsii 

leaves contained levels of Fe that ranged between 10.43 mg kg-1 and 202.00 mg kg-1. 

The mean values for Brabejum stellatifolium ranged between 4.93 mg kg-1 and 10.70 

mg kg-1.  Figure 3.4.3.(c) shows that the calcium levels, displayed variation in Salix sp. 

and Acacia mearnsii with spikes occurring at sites 5 and 9. The mean Ca concentration 

in Salix sp. ranged between 688.70 mg kg-1 and 1658.70 mg kg-1. Acacia mearnsii 

mean Ca concentrations ranged between 470.50 mg kg-1 and 1031.60 mg kg-1and for 

Brabejum stellatifolium, it ranged between 721.09 mg kg-1 and 941.04 mg kg-1. 
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Figure 3.4.3. (a): Mean nitrogen (mg kg
-1

) concentration, (b) mean iron (mg kg
-1

) concentration and 

(c) mean calcium (mg kg
-1

) concentration within the leaves of Salix sp. (highlighted in blue), 

Acacia mearnsii (highlighted in red) and Brabejum stellatifolium (highlighted in green), at the ten 

sampling sites along the upper Berg River over the 2009- 2010 study period. Means with the same 

letter are not significantly different (p ≤ 0.05). 
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Plant results over the sampling period: 

3.4 [D] No significant differences over the sampling period: 

Iron levels displayed no evident seasonal trends within the leaves of the three species. 

The iron levels remained constant throughout the period of sampling. The mean Fe 

concentration displayed very little significant difference over the study area (Figure 

3.4.4). The levels of Fe were highest in the first month of sampling and remained very 

low for the rest of the sampling period. The mean concentrations of Fe in Salix sp. 

across the sites ranged between 0.98 mg kg-1 and 280.33 mg kg-1. Acacia mearnsii 

leaves contained levels of Fe that ranged between 1 mg kg-1 and 203 mg kg-1. The 

mean values for Brabejum stellatifolium ranged between 0.15 mg kg-1 and  

88.40 mg kg-1. 

 

Figure 3.4.4. Seasonal variation of mean iron (mg kg
-1

) concentration within the leaves of Salix sp. 

(highlighted in blue), Acacia mearnsii (highlighted in red) and Brabejum stellatifolium (highlighted 

in green) found along the upper Berg River. Means with the same letter are not significantly 

different (p ≤ 0.05). 
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3.4 [E] A random pattern over the sampling period: 

During the study period, Pb concentrations showed no clear trend (Figure 3.4.5. (a)). 

Lead levels peaked in the late autumn and then dropped for the most part of the 

remaining sampling time. The mean Pb concentration in Salix sp. ranged between 

0.000 mg kg-1 and 0.001 mg kg-1.  The mean levels of Pb in Acacia mearnsii ranged 

between 0.0000 mg kg-1 and 0.0007 mg kg-1. The mean Pb levels in Brabejum 

stellatifolium ranged between 0.000 mg kg-1 and 0.001 mg kg-1. The levels of Zn were 

higher during the first four months of sampling, during the late summer towards early 

winter for all three species. Zinc levels decreased over the late winter and late spring 

months and tended to increase again in the summer months as the sampling period 

came to an end (Figure 3.4.5 (b)). The mean Zn levels ranged between 24.55 mg kg-1 

and 173.15 mg kg-1 in Salix sp. The mean levels ranged from 13.21 mg kg-1 and 153.04 

mg kg-1 for Zn in Acacia mearnsii and Brabejum stellatifolium ranged between 3.46 mg 

kg-1 and 1433.92 mg kg-1. In the early months of sampling mean Na concentrations 

were higher compared to the rest of the year. Sodium levels hardly fluctuated over the 

year and seasonally mean levels of sodium were higher in the autumn and late winter 

months. The mean concentration for Salix sp. ranged between 32.89 mg kg-1 and 

290.17 mg kg-1 (Figure 3.4.5.(c)). Mean Na concentrations of Acacia mearnsii ranged 

between 146.40 mg kg-1 and 2820.40 mg kg-1 and in Brabejum stellatifolium ranged 

between 45.96 mg kg-1 and 366.00 mg kg-1. 
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Figure 3.4.5. (a): Seasonal variation of mean lead (mg kg

-1
) concentration, (b) mean zinc (mg kg

-1
) 

concentration and (c) mean sodium (mg kg
-1

) concentration within the leaves of Salix sp. 

(highlighted in blue), Acacia mearnsii (highlighted in red) and Brabejum stellatifolium (highlighted 

in green) found along the upper Berg River. Means with the same letter are not significantly 

different (p ≤ 0.05). 

 

 

 

 

 

 

(a) (b) 

(c) 

 

 

 

 



83 

 

3.4 [F] A cool season trough: 

Salix sp., Acacia mearnsii and Brabejum stellatifolium showed similar trends for 

nitrogen, cadmium, copper, potassium, calcium, magnesium and phosphorus as seen in 

Figure 3.4.6. The levels were generally high in the warmer seasons. The levels then 

decreased during the colder months. As summer approached, the levels of the 

elements increased again within the species.  There was a distinct change in leaf 

nitrogen levels from late winter to early summer.  In each species it appeared that levels 

of N remained fairly high for the first six months (the autumn and winter months), after 

which there was a decrease in the spring and early summer months. The levels of N 

then increased in the late summer months and early autumn (Figure 3.4.6. (a)). 

Seasonally there were significant variations in each species, with mean levels of N that 

ranged between 2099 mg kg-1 and 28540 mg kg-1 for Salix sp., 3001 mg kg-1 and 31090 

mg kg-1 for A. mearnsii and 15 mg kg-1 and 28370 mg kg-1 for B. stellatifolium. There 

was no significant difference of the mean concentration of cadmium (Figure 3.4.6. (b)) 

over the study period in Salix sp., whereas there were significant differences that 

occurred in Acacia mearnsii and Brabejum stellatifolium. Over the duration of sampling, 

mean levels of Cd for Salix sp. ranged between 0 mg kg-1 to 0.35 mg kg-1, for Acacia it 

ranged between 0 mg kg-1 and 0.34 mg kg-1 and for Brabejum it ranged between 0 mg 

kg-1 and 0.27 mg kg-1. The three species displayed similar seasonal trends in Cu 

concentrations. A general increase in mean Cu levels occurred in the late summer and 

autumn months, followed by a decrease in levels during the winter and spring months. 

The levels of Cu increased again in the late summer months. The mean Cu 

concentration for Salix sp. ranged between 1.94 mg kg-1 and 24.43 mg kg-1, in Acacia 
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mearnsii it ranged between 3.79 mg kg-1 and 27.02 mg kg-1 and in Brabejum 

stellatifolium it ranged between 1.33 mg kg-1 and 22.64 mg kg-1 (Figure 3.4.6. (c)). 

Seasonally, mean K levels remained fairly constant in Acacia mearnsii and Brabejum 

stellatifolium (Figure 3.4.6. (d)). The mean K levels hardly fluctuated in the winter and 

spring months of sampling, thereafter a dip occurred in summer for the three species. 

Levels of K in Salix sp. ranged between 1143.0 mg kg-1 and 13987.0 mg kg-1, in Acacia 

measrnsii it ranged between 612.0 mg kg-1 and 5886.8 mg kg-1 and for Brabejum it 

ranged between 1344.0 mg kg-1 and 2932.5 mg kg-1. Calcium levels decreased from 

day 141, in mid winter up until the beginning of summer. In the summer months the 

level of Ca increased significantly, peaking at the last month of sampling in early 

autumn (Figure 3.4.6. (e)). The mean Ca levels for Salix sp. ranged between  

203.1 mg kg-1 and 1376.9 mg kg-1. The mean Ca levels for Acacia mearnsii ranged 

between 594.4 mg kg-1 and 1254.0 mg kg-1. In Brabejum stellatifolium mean levels of 

Ca ranged between 588.8 mg kg-1 and 1113.4 mg kg-1. The Mg concentrations 

remained high up until day 141 within the leaves of the three riparian trees (Figure 

3.4.6. (f)). The levels of Mg remained fairly constant through the winter and spring 

months but as the summer months arrived the Mg concentrations decreased even 

more. The last four months showed a trend of increased levels of Mg with the arrival of 

late summer and early autumn. Seasonally the mean Mg levels for Salix sp. ranged 

between 97.00 mg kg-1 and 632.80 mg kg-1. The mean Mg concentrations for Acacia 

mearnsii ranged between 59.86 mg kg-1 and 228.93 mg kg-1. In B. stellatifolium, means 

for Mg ranged between 66.12 mg kg-1 and 207.29 mg kg-1. The first month of the 

sampling period showed a significantly higher level of P (during summer) as shown in 
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Figure 3.4.6. (g). Over the autumn, winter and spring months the levels of P remained 

fairly constant, with a further dip that was evident on day 295, the P levels increased 

again over the late summer months. In Salix sp., mean levels of P ranged between 

 2.50 mg kg-1 and 19.34 mg kg-1. Acacia mearnsii mean P concentrations ranged 

between 2.50 mg kg-1 and 11.60 mg kg-1. Brabejum stellatifolium’s P levels ranged 

between 1.80 mg kg-1 and 4.25 mg kg-1. 

 

 
 

Figure 3.4.6. (a): Seasonal variation of mean nitrogen (mg kg
-1

) concentration and (b) mean 

cadmium (mg kg
-1

) concentration within the leaves of Salix sp. (highlighted in blue), Acacia 

mearnsii (highlighted in red) and Brabejum stellatifolium (highlighted in green) found along the 

upper Berg River. Means with the same letter are not significantly different (p ≤ 0.05). 
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Figure 3.4.6. continued: Seasonal variation of (c) mean copper (mg kg
-1

) concentration, (d) mean 

potassium (mg kg
-1

) concentration, (e) mean calcium (mg kg
-1

) concentration, (f) mean magnesium 

(mg kg
-1

) concentration within the leaves of Salix sp. (highlighted in blue), Acacia mearnsii 

(highlighted in red) and Brabejum stellatifolium (highlighted in green) found along the upper Berg 

River. Means with the same letter are not significantly different (p ≤ 0.05). 
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Figure 3.4.6. continued: Seasonal variation of (g) mean phosphorus (mg kg
-1

) concentration within 

the leaves of Salix sp. (highlighted in blue), Acacia mearnsii (highlighted in red) and Brabejum 

stellatifolium (highlighted in green) found along the upper Berg River. Means with the same letter 

are not significantly different (p ≤ 0.05). 
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4.1 WATER 

4.1  (A) No pattern across the sites: 

The low mean dissolved oxygen value at site 10 (Figure 3.1.1. (a)) may be due to 

decomposition of organic material and reduced turbulence (Vega et al. 1998). This site 

has a density of macrophytes and the water is generally slow flowing. Izonfuo and 

Bariweni (2001) state that an elevation in temperature results in a lower solubility of 

oxygen and therefore a reduction in temperature results in an elevation of oxygen 

solubility. This corresponds with the results from sites 5 and 8, which have the highest 

dissolved oxygen and as seen in Figure 3.1.3. (a), the low temperatures were 

experienced at sites 5 and 8. 

 

Iron concentrations are affected by pH, if the pH is low then concentrations of Fe will 

increase (DWAF 1996). The pH shown in Figure 3.1.2. (b) remained low throughout the 

sampling sites and tended to be lower upstream, although Fe concentrations in this 

study (Figure 3.1.1. (c)) were also lower there. 
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4.1 (B) Constant across the sites: 

It is possible that variations over the year at sites masked differences along the river. 

The constant ammonium, nitrite and phosphorus concentrations across the sites (Table 

3.1.1) can be explained by the fact that sites, further downstream may have nutrient 

concentrations similar to that of upstream reaches because of algae and vegetation that 

use the nutrients within the river (de Villiers 2007). In the upper areas of a river, forest 

and land runoff occur as well as dams, which increase the residence time of headwaters 

(Camargo et al. 2005). These factors result in addition of these nutrients into the river 

and when dam water is released, these nutrients travel downstream. Nitrite may have 

remained constant (Table 3.1.1) and in low concentrations across the sites because of 

the rapid conversion to nitrate (Jooste and van Leeuwen 1993). The nitrate levels 

increased as seen in Figure 3.1.2. (c) and this could be attributed in part to the oxidation 

process that occurred. It was surprising to find P constant when in previous studies; it 

increased downstream (Ruiters 2008) and subsequently (Struyf et al. 2012) showed an 

increase. 

 

Cd and Zn are chemically similar and often interact with one another in an aquatic 

ecosystem (Nawrot et al. 2010). The Zn:Cd ratio in nature is usually 300:1 (DWAF 

1996) but in Table 3.1.1 the opposite trend occurred, where the concentration of Cd was 

higher than that of Zn. In a study conducted by Guay et al. (2010) levels of Cd were also 

higher than that of Zn and were attributed to the geology having an enriched amount of 

Cd relative to Zn by an approximate constant amount or also due to human input of Cd. 
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Zn is also affected by pH and if pH is of acidic nature then Zn leaching will occur, which 

increases Zn concentration in the water (DWAF 1996). The levels of Zn measured were 

low, although the pH remained acidic throughout the sampling sites and according to 

DWAF (1996) this is the general standard in water. 

 

4.1 (C) Increase in parameters and concentrations downstream: 

The general trend for the parameters, as expected was that the first two sites would 

have lower values and tended to increase from the site where the Berg River and 

Franschhoek River confluence (site 3) as evident in Figure 3.1.2. Anon. (2004) states 

that interbasin transfer of water to the Berg River may occur as a result of irrigation 

demand. However, increased human activity (Struyf et al. 2012) can account for these 

increases. 

 

The EC of water shows the occurrence of ions within the water like that of nitrate, 

sodium, calcium and magnesium (DWAF 1996). Begum et al. (2009) observed that high 

EC values are predominant with Na ions. EC in this study (Figure 3.1.2. (a)) is a 

reflection of the amount of ions in the river, as all of the parameters in this section had 

increased downstream just as EC increased. 

 

The natural pH condition of the upper Berg River can be classified as acidic due to 

leached humic acids from the fynbos vegetation (Ractliffe 2007). This acidic nature of 

the river is affected by sewage inflow and runoff from both industry and agriculture 

(Ractliffe 2007). The increased pH following site 4 (Figure 3.1.2. (b)) may arise from 
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agriculture as Ractliffe (2007) stated and also from the diluted effluent flowing into the 

river from the tributaries.  A rise in pH changes the “toxicity of other pollutants in the 

river” (Morrison et al. 2001). This pattern can be seen in the various concentrations in 

Figure 3.1.2. where there was an increase of the various parameters. 

 

The Franschhoek River’s waste water treatment works’ effluent water runs into the Berg 

River. Morrison et al. (2001) states that high levels of nitrate are commonly found in 

treated waste water because ammonium is oxidized to nitrate. In Figure 3.1.2. (c) levels 

of nitrate increased significantly at sites 3 and 4- where the Franschhoek and 

Wemmershoek tributaries enter the Berg River system.    

 

It may be possible that cation competition could have occurred (Orzepowski and 

Pulikowski 2008). K and Na concentrations were higher than that of Ca and the higher 

level of these cations could have decreased the availability of Ca as shown in Figure 

3.1.2. (d, e and f). Potassium is highly soluble in water, resulting in high concentrations 

of K in aquatic systems (Griffioen 2001). Generally, with the increase of pH 

downstream, there was an increase of Ca and as pH dropped at site 4, so did Ca. 

According to Fernández-Aláez and Fernández-Aláez (2010) significant reductions in 

calcium levels can be related to elevated H+ concentrations.  
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Calcium is used as a primary flocculant to treat effluent water (Parker 1971) and the 

increase of Ca from site 3 onwards (Figure 3.1.2. (f)) may be due to the various inputs 

from the Franschhoek, Wemmershoek and Dwars tributaries. In Figure 4.1 one can see 

the Franschhoek River joining the Berg River, where the colour of the Franschhoek 

River is darker in colour and can have a higher salinity and poor water quality (Anon. 

2004, Adams 2011). The treated effluent flows into the Franschhoek River and is further 

diluted when the two rivers merge. The Ca levels can also be due to the acidic pH 

levels, as acidic pH often decreases the concentration of Ca of a river (Adams 2011). 

This is also evident in Figure 3.1.2. (b and f).   

 

Figure 4.1. The confluence where the Franschhoek River (on the left) and Berg River (right) join. 
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Mg levels remained low before the river converged with the Franschhoek River, where it 

increased significantly (Figure 3.1.2. (g)). This shows that the input from the tributary 

increased the amount of Mg dramatically at site 3. Inputs of Mg can also come from 

agricultural wastes and tributaries (de Kerchove and Elimelech 2008). Sites 4- 10 are 

largely cultivated areas and had gradual increases in Mg concentrations downstream 

and it is thought that it was due to agricultural waste.  

 

(D) Decrease in parameters downstream: 

Water temperature depicted in Figure 3.1.3. (a) decreasing downstream may have been 

caused by the time at which sampling commenced. The time of day and the weather 

may also have had an influence on the temperature decreasing downstream. Low 

temperatures may also be caused by dams or by the transport of water from one river 

basin to the next, or may be caused by changes in the kinds of plant life on the 

riverbanks (Davies and Day 1998). In this study it could be that the three main 

tributaries that enter the Berg River may have decreased the water temperatures as 

well. The plant life of the upper reaches include more smaller shrubs, but as one moves 

downstream there are much larger trees (such as Salix spp. which was found from site 

6 onwards). These trees provide shading and therefore decrease the surface water 

temperature. Johnson (2004) reviewed other literature and has suggested that a 

decrease in surface water temperature may occur within reaches downstream. 
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The Pb decrease downstream may be influenced by the pH results found in the study. 

As stated before, there is a relationship between pH and Pb; when pH is low the 

concentration of Pb will be elevated in the system (Fatoki et al. 2002). Conversely, as 

seen in Figure 3.1.2. (b) the pH increased downstream and with that Pb levels 

decreased downstream (Figure 3.1.3. (b)). The geology of the system can also be an 

input of Pb into rivers (Fatoki et al. 2002). At site 1 the river is surrounded by the 

Drakenstein Mountain and it could be due to runoff from the mountains that the levels of 

Pb were highest at this site. The higher lead levels at site 1 are unexpected. 

 

 

Water results over the sampling period: 

4.2 (A) No pattern over the sampling period: 

Electrical conductivity is usually a reflection of discharge of water which displays the 

dilution effect (Müller et al. 2012). In the first 7 months (about 200 days) of sampling this 

pattern can be seen (Figure 3.1 and Figure 3.2.1. (a)). Much of the rainfall in the 

catchment area occurred during the first 8 months of the sampling period, especially on 

day120, where there was a significant increase in EC due to runoff. 

 

The pH range (Figure 3.2.1. (b)) that the river displayed falls with the range of the pH 

(6.5- 8.5) of the lotic systems where pollution is not prevalent (Harris et al. 1992). 

According to Reza and Singh (2010) pH values higher than 6 generally shows that 

carbonates of Ca and Mg are present in water. This can be seen in the seasonal 

variations of Ca and Mg in Figure 3.2.3 (g and h). 
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The low pH raises the solubility of Fe (Morrison et al. 2001). pH and Fe follow a similar 

trend in variations as indicated in Figure 3.2.1. (b and c). Filgueiras and Prego (2007) 

state that high iron values may be due to mineralization of organic material that occurs 

in the river. Another reason why Fe levels could have been variable is due to the soil- 

water interaction that occurs in the wet winter months (Reza and Singh 2010). 

 

 

4.2 (B) A constant pattern over the sampling period: 

With the exception of day 32, no significant variation in concentrations was observed for 

nitrite and phosphorus (Figure 3.2.2 (a and b)). The strange sudden increase in those 

concentrations may possibly be attributed to the low flow rate of the summer months. 

According to Bowes et al. (2009) the concentration of P decreases as the flow rate of 

the river increases and causes the dilution of P. Dilution of nitrite may have occurred to 

such an extent, that it was below detection level. The pattern of no seasonality 

differences in P was also observed from 1985-1994 (de Villiers 2007). The constant 

values experienced over time and across seasons suggest a constant input throughout 

the year.   

 

(C) A wet season high: 

The concentrations of the parameters nitrate, Cd, Cu, Zn, K, Na, Ca and Mg increased 

during winter as shown in Figure 3.2.3. (a- h). The high concentrations may be due to 

runoff entering the system. In a study conducted on the Berg River by de Villiers (2007) 

it was deduced that in previous years (from 1985- 2004) runoff increases during the wet 
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season, which is consistent with the winter precipitation of this catchment area (de 

Villers 2007). When surface runoff reaches the river, it may bring with it nutrients, 

sediments and heavy metals (Tong and Chen 2002).  

 

The seasonal [NOx] profile used in de Villiers’ (2007) study increased during winter, 

where runoff was high and it was concluded that this was as a result of non point source 

enrichment from agricultural runoff. There was also an increase of the use of nitrate 

based fertilizer that could have caused NOx to have increased during that sampling 

period. The nitrate concentrations in this study also increased during the winter months 

and significantly on day 120 (Figure 3.2.3. (a)) where rainfall was also highest during 

the year of sampling (Figure 3.1).  

 

In a study conducted by Reza and Singh (2010) Cu increased with heavy rainfall 

because of runoff from farmed areas and domestic sewage waste from these areas. 

The heavy rainfall occurred during the early spring months. Similar to the above study, 

the Cu concentrations (Figure 3.2.3. (c)) increased in the early months of spring in the 

Berg River, where there was heavy rainfall (Figure 3.1).  

 

Zinc concentration in water largely depends on water inflow (Pistelok and Galas 1999) 

and therefore the concentration of zinc increased dramatically during the spring month 

(day 252) (Figure 3.2.3.(d)). In a study by Jackson et al. (2007) on metal contamination 

of the Berg River it was found that the increase in Zn concentrations could be a result of 

pesticides that contain Zn. 
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The results of K, Na, Ca and Mg all had a peak on day 120 (June 2009) and Cd on day 

252 (Figure 3.2.3. (b- h)). Müller et al. (2012) state that these ions determine the ionic 

strength of the water. Jeffries and Mills (1990) state that rivers with great acidity bring 

with them a larger metal output and often these metals increase with acidic pH. The 

acidity of the Berg River over the sampling period ranged between 5.90 and 6.59 

(Figure 3.2.1. (b)) which is acidic. The increase of the concentrations may have 

occurred because of the acidic pH and heavy rainfall. 

 

4.2 (D) A wet season low: 

Various literature conclude that dissolved oxygen is the result of high temperatures, as 

temperature lowers the solubility of oxygen (Dragun et al. 2009, Townsend 1980). In the 

results (Figure 3.2.4. (a and d)) however, the two parameters follow a similar trend. The 

dissolved oxygen decreased in the winter months of 2009, which results in the release 

of metals found in solution (Dragun et al. 2009).  

 

Dissolved oxygen, ammonium, lead and water temperature showed lower values in 

winter than in summer (Figure 3.2.4). In Reza and Singh’s (2010) research, it was found 

that many heavy metals displayed an increase in concentration in the summer period of 

sampling. The plausible reason these authors give is due to metal accumulation in times 

where river flow is low.  
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Reza and Singh (2010) also state that high levels of metals may be due to high 

evaporation rates of the river followed by higher temperatures. Increased temperature 

and low flow rates can have the same affect on ammonium.  Water levels were lower in 

summer and more organic matter may have decomposed during the summer months, 

which may have caused an increase in ammonium Figure 3.2.4 (b)). Dragun et al. 

(2009) had similar findings, as Pb was highest during the summer months due to high 

water temperatures. The temperature in the Berg River displayed seasonal changes, as 

temperatures were lower during the late autumn and winter months and increased 

during late spring and summer (Figure 3.2.4 (d)). According to Dallas (2008) seasonal 

patterns of temperature displays a sinusoidal pattern; where temperatures are highest in 

summer and lowest in winter. 
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CONCLUSION 

The present study aimed to determine water quality with respect to nutrients, heavy 

metals and physico-chemical properties within the river system. 

 

The spatial results revealed that there was an increase in parameters downstream. In a 

study conducted by Ruiters (2008) results shown that nutrient enrichment had occurred 

in the upper lower portion of the Berg River. Many of the parameters (such as EC, pH, 

Na, Ca and Mg) of this current study mirrored the results of the 2008 study. However, 

there was an increase in the concentrations of nitrate and potassium. Compared to the 

results obtained from Ruiters (2008) and from the research of Struyf et al. (2012) it can 

be concluded that an increase in pollution has occurred and that the water quality has 

decreased.  

 

Seasonal trends of nitrate, Cd, Cu, Zn, K, Na Ca and Mg displayed higher 

concentrations during the wet season than in the dry season. de Villiers (2007) states 

that “a worst case scenario for the nutrient status of the Berg River” would be a mixture 

of more farming runoff and direct pollution. Due to the heavy rainfall, runoff may account 

for much of the increase in parameters during the wet season. It can be estimated that 

nutrient levels will increase if discharges of runoff from various sources do not decrease 

(de Villiers 2007). 
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4.3 SEDIMENT 

Cu and Mg were the only two parameters to show significant differences over the wet 

and dry season (Table 3.3.1). The seasonal metal concentration of the analysed 

sediment is shown in Table 3.3.1. 

 

The electrical conductivity was very variable across the sites down the river and 

therefore showed no significant difference between the wet and dry season (Table 

3.3.1). Variability of EC was explained by Thirumala et al. (2011) as being caused by 

greater ionic concentration of the river during the flooding time.  

 

The pH remained fairly low and was of an acidic nature (Table 3.3.1).  The soil pH is a 

significant parameter that controls the transfer behaviour in sediment (Peng et al. 2009). 

The lower pH values cause an increase in the competition between H+ dissolved metals 

for ligands, which results in increased mobility of the heavy metals (Schulz- Zunkel and 

Krueger 2009, Peng et al. 2009). This may be the case in this study as pH was low. The 

pH of the soil was lower than that of the river (Figure 3.2.1. (b)). The low pH values 

(below 7) may be attributed to the leaching of humic acids from the fynbos found at the 

sites (Ractliffe 2007).   

 

N remained the same in the sediment during the dry and the wet season. Struyf et al. 

(2012) observed N increases downstream within the sediment of the upper Berg River. 

The results for N (Table 3.3.1) are very surprising, as in previous studies (de Villiers 
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2007, Ruiters 2008) N was detected within the sediment. The absence of N within the 

sediment may be due to an error in methodology.  

 

The highest seasonal concentration of Cd was exactly the same in both the water and 

sediment (Figure 3.2.3. (b) and Table 3.3.1).  When concentrations of Zn were low, 

plants absorb more cadmium from the sediment (Kirkham 2006). The Zn levels are low 

(they were lower than the average level of 90 mg kg given by Larcher (2001)) for soil 

(Table 3.3.1). 

 

The average content of Pb in soil is 30 mg kg (Larcher 2001). The average Pb level in 

the river water over the sampling period (Figure 3.2.4. (c) and Table 3.3.1) was higher 

than that of the sediment. In sediment however, Pb concentration was lower than the 

average content value as expressed by Larcher (2001). Kalavrouziotis et al. (2009) 

states that Pb is generally an immobile element, therefore it could have accumulated in 

the sediment.  

 

Fe generally is found at an average concentration of 40000 mg kg in the soil (Larcher 

2001). The level of Fe in the river was much less than that found in the sediment (Figure 

3.2.1. (c) and Table 3.3.1). The sediment Fe levels were much lower than the average 

given by Larcher (2001). Na in the river was also less than that found in the sediment 

(Figure 3.2.3. (f) and Table 3.3.1). Generally Na content found in the soil is 5000 mg kg 

(Larcher 2001) and the Berg River sediment’s levels were well below this. 
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The levels of K were higher in the river water compared to that of the sediment (Figure 

3.2.3. (e) and Table 3.3.1). The seasonal levels of K in the river are much higher than 

that of the sediment, which is lower than the average soil content (14000 mg kg) given 

by Larcher (2001). The release of K is usually slower than the rate by which it is taken 

up by plants (Ashley et al. 2006) and this may possibly be the reason why the amount of 

K was higher in water than in the sediment. 

 

Ca as stated in Larcher (2001) resides in the soil on average as 15000 mg kg. The level 

of Ca in the Berg River sediment was lower than this (Table 3.3.1). Sediment Ca was 

higher than the Ca concentrations in the water. As explained in the section before, Ca is 

used as an ingredient in flocullants and these ions may have accumulated in the 

sediment.  When looking at the levels of Ca compared to the levels of Mg in the 

sediment, one can see that the levels of Ca are also higher than Mg. Sediment 

generally contains a lower amount of Mg than Ca due to the fact that Mg2+ ions are not 

absorbed as strongly as Ca2+ ions (Senthurpandian et al. 2009) and are thus more 

prone to leaching compared to Ca ions (Senthurpandian et al. 2009) and therefore Mg 

levels are less than Ca within the sediment.  

 

Copper and magnesium displayed significant variations over the wet and dry seasons 

within the sediment. Both concentrations were higher in the wet season than in the dry 

season. The seasonal Cu concentration in the river was much lower than in the 

sediment (Figure 3.2.3. (c) and Table 3.3.1). The Cu concentration within the sediment 

was much lower than the average Cu content (30 mg kg) in soils (Larcher 2001). The 
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input of Cu may be due to the fact that Cu can easily complex with organic material and 

thus a large amount of organic-Cu compounds are formed in the sediment (Fagbote and 

Olanipekun 2010). The organic-Cu compounds make Cu more readily available in the 

residue fraction (Fagbote and Olanipekun 2010). A low pH causes an increased 

availability in Cu in sediments for the plants to absorb (Henning et al. 2001). 

 

Mg input also displayed significant variation within the sediment over the dry and wet 

seasons. The average value for Mg in the soil (5000 mg kg- Larcher 2001) was higher 

than that of the Berg River sediment as seen in Table 3.3.1. Similar to Cu, the river 

water’s concentration of Mg was much lower than in the sediment. Mg is mainly present 

in inorganic compounds and also significant amounts are found with organic material in 

humus (Wu et al. 2002).  

 

According to Kulhánek et al. (2009) the amount of phosphorus in sediment is generally 

lowest in sediment solution, and the amount of sediment in the study remained low 

during the two seasons (Table 3.3.1). The P of the sediment is mirrored by the P of the 

water, which was also constant for the most part. The average content of P in sediment 

is 800 mg kg (Larcher 2001) and the amount of P in the sediment was well below this 

value. 
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CONCLUSION 

When the seasonal concentrations of the sediment are compared to that of water, it can 

be observed that overall; the concentrations of the parameters in sediment are much 

higher than that of the water. This suggests that the sediment is a significant sink of 

elements in the river, where they accumulate (Kesavan et al. 2010). Coetzee (1993) 

explains that it is usually accepted that the elements found in the top layers of the 

sediment mirror the present water quality of a natural water body and this applies to the 

results of the Berg River, as it is evident that there was a larger amount of elements 

accumulated in the sediment.  The significant increases in Cu and Mg in the wet season 

within the sediment are reflected by the seasonal Cu and Mg concentrations in the 

water- therefore displaying an input of pollution in the sediment and thus the river.  

 

When the seasonal sediment concentrations of the elements are compared to that of 

the average content of mineral elements in soil (Larcher 2001), it can be seen that all of 

the elements are much lower than the average content values. These values can be 

used to compare with the vegetation as vegetation reflects the chemical nature of the 

soil on which plants grow (Larcher 2001). 
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4.4 PLANTS 

Analyses were carried out to check for differences down the course of the river and over 

time (seasonal effects). The elements with similar patterns were then grouped together. 

 

4.4 (A) Overall, no significant differences across the sites: 

Critical Cd concentrations in plants range between 5 mg kg and 30 mg kg 

(Vandecasteele et al. 2002) and the Cd concentrations within the leaves of the three 

species were much lower than this (Figure 3.4.1. (a)). According to Doğanlar and 

Atmaca (2011) trees that accumulate large concentrations of Zn do not accumulate Cd. 

In Figure 3.4.1. (a) and  Figure 3.4.1. (c) it is evident that all three species accumulated 

Cd, but the Cd concentrations within the leaves are much lower than the Zn 

concentrations found across the sites. Doğanlar and Atmaca (2011) also state that Salix 

caprae (used in their study) accumulated a higher concentration of Cd than the other 

shrub species used in the study. This was confirmed by Vandescasteele et al. (2002) 

who stated that Cd accumulation in willow species is high, even if the plants are growing 

in unpolluted soils. However, Acacia mearnsii in this study accumulated a higher 

concentration across the sampling sites than both Salix sp. and Brabejum stellatifolium 

(Figure 3.4.1. (a)). 

 

The Pb concentration in leaves of the three species remained fairly constant throughout 

the sites. What was surprising was the peak of Pb in Brabejum stellatifolium, at site 2 as 

it was the least viable bioaccumulator of the three species (Figure 3.4.1 (b)). The normal 

limit of Pb within a plant is 3 mg kg (Doğanlar and Atmaca 2011) and therefore Pb 
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pollution did not pose a threat to the health of the three species. Larcher (2001) lists the 

normal range as up to 20 mg kg. 

 

Similarly to the results of the water, Zn concentrations within the plant species were not 

significantly different (Table 3.1.1 and Figure  3.4.1 (c)). The pattern of no significant 

differences in the accumulation of Pb in the leaves of the plants across the sites was 

also seen by Doğanlar and Atmaca (2011), showing relatively pristine sites and polluted 

sites reflecting these results. Salix sp. accumulated the highest concentration of Pb, but 

the concentrations of Pb were well below toxic amounts (between 300 mg kg- 400 mg 

kg) given by Doğanlar and Atmaca (2011). 

 

Na concentrations along the length of the Berg River also displayed minimal trends 

within the three species (Figure  3.4.1 (d)). In the study conducted by Ruiters (2008) this 

pattern was also observed across the sites. However in the present study there was a 

significant difference at site 10. The Na concentration at site 10 within the leaves of the 

plants is reflected by the increase in the Na concentration that was present at site 10 in 

the water (Figure 3.1.2. (e)). It can be assumed that there was a Na input in the river 

where the plants accumulated Na as well. 
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4.4 (B) A random pattern across the sites: 

The Cu concentration in water of the last three sites (Figure 3.2.3. (c)) corresponds with 

the Cu concentration within the leaves of Salix sp. at sites 8-10 (Figure 3.4.2. (a)). Since 

there was variability within the Cu concentration within the sediment (Table 3.3.1)  

during the sampling period, one can assume that Cu  may have accumulated in the 

sediment and have been taken up in plants (Cardwell et al. 2002).  

 

Acacia mearnsii  and Brabejum stellatifolium both displayed the same pattern in K 

concentrations within the leaves of the plants across the sites, increasing from site 4 

onwards (Figure 3.4.2. (b)). The increase in K concentrations downstream reflects the 

increase of K levels downstream in the water (Figure 3.1.2. (d)). However, the results 

for Salix sp. are more erratic, with many fluctuations that occurred across the sites. The 

K concentration for site 9, when compared to the Ruiters (2008) study, shows that K 

concentrations within the plants were in the same range and remained constant at this 

site. 

 

Larcher (2001) states that the plant requirement for Mg ranges between 1000-3000 mg 

kg. Mg concentrations within the leaves of Salix sp. fell within this range and it 

accumulated the highest concentration of Mg (Figure 3.4.2. (c)). The Mg concentrations 

in the leaves of Acacia mearnsii and Brabejum stellatifolium were much lower than 

Larcher’s required levels. The increase in Mg concentrations in Salix sp. also parallels 

the increase downstream of Mg concentration in the water (Figure 3.1.2. (g)). This trend 

was also seen in the study by Ruiters (2008). 
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According to Zhang and Lu (2011) aquatic vegetation species may differ in their means 

to accumulate nutrients from the surrounding area. This can clearly be seen in Figure 

3.4.2 (d), where the P concentrations were significantly higher in Salix sp. and Brabejum 

stellatifolium but not Acacia mearnsii. Acacia mearnsii reflects the constant trend that 

was seen in the water and sediment. This also correlates with the study done by Ruiters 

(2008).  

 

4.4 (C) Increase in concentrations downstream: 

N, Fe and Ca concentrations within the leaves of the three species increased 

downstream. As mentioned before, plant N is largely obtained from nitrate in water and 

sediment. The levels of N in the plant surpassed the nitrate concentration within the 

water (Figure 3.1.2. (c)). Salix sp. accumulated the largest amount of N and Brabejum 

stellatifolium the lowest (Figure 3.4.3. (a)). Struyf et al. (2012) explains that the riparian 

habitats withholds N inputs into the aquatic system and thus the potential for larger 

inputs of riparian nutrients is high with increasing anthropogenic use of land. The 

mineralisation of N increases downstream in the presence of anthropogenic intrusion 

(Struyf et al. 2012). The authors also noted a strong increase in N downstream at a 35 

km distance and concluded that N increased due to nutrient increases by human 

practices. The results of this study show similar findings to Struyf et al. (2012) in terms 

of N.  
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Plants require 100 mg kg of Fe (Larcher 2001). The levels of Fe within the leaves of 

Salix sp. and Acacia mearnsii increased to well above the requirement level, particularly 

at the last four sites. In Figure 3.4.3. (b) site 7 displayed an increase that is six times 

higher than the required amount, showing that a significant input of Fe occurred. In the 

study conducted by Demirezen and Askoy (2006), the authors compared Fe 

concentrations in water, sediment and plants and concluded that plants accumulated 

more Fe than found in the water and sediment. This correlates with the Berg River 

results as shown in Figure 3.2.1. (c), Table 3.3.1 and Figure 3.4.3 (b). 

When comparing the Fe concentrations of the leaves of the three species it can be seen 

that Salix sp. accumulated more Fe than the other two species. 

 

Calcium is required in large quantities by plants. The concentrations of Ca found within 

the leaves of the three species are lower than what plants normally require (between 

3000-15000 mg kg- Larcher 2001) and are generally in the same range of 

concentrations (Figure 3.4.3. (b)). The downstream increase of Ca also occurred in the 

water (Figure 3.2.3. (g)). The concentrations of Ca were higher in Salix sp. than Acacia 

mearnsii and Brabejum stellatifolium. 
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Plant results over the sampling period: 

4.4 (D) No significant differences over the sampling period: 

The Fe concentrations showed minimal variation, where maximum concentrations within 

the leaves were highest during the first month of sampling and then decreased (Figure 

3.4.4.). Plants require 100 mg kg of Fe and in the first month of sampling the Fe 

concentrations within the leaves exceeded this in Salix sp. and Acacia mearnsii. The 

concentrations of Fe were acceptable in Brabejum stellatifolium. In the study done by 

Adams (2011), the same pattern was seen within the leaves of the three species along 

the Franschhoek River.  

 

4.4 (E) A random pattern over the sampling period: 

According to Peralta-Videa et al. (2009) Pb is known to have a low solubility and 

availability for plant absorption due to the fact that it can precipitate as phosphates. This 

may be the reason as to why Pb concentrations were low within the plants over the 

sampling period (Figure 3.4.5. (a)). In a study conducted by Bidar et al. (2009) the 

authors found that low concentrations of metals were found during spring months within 

the leaves where most of the metals were found within the roots of the plants. As the 

months passed, the metal concentration increased within the leaves, which 

corresponded with the decrease of metal concentration in the roots. Although root metal 

concentration was not analysed during this study, Pb within the leaves displayed similar 

increases and decreases during the autumn and spring months respectively. 
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Zn and Na show a similar pattern over the year with one random increase occurring 

within Brabejum stellatifolium and Acacia mearnsii (Figure 3.4.5. (b and c)). Zn is 

required in small quantities ranging between 10 – 50 mg kg (Larcher 2001) and the 

levels within the plants exceeded these values. The higher levels within the plants show 

an influx of Zn for most part of the year (Figure 3.4.5. (b)). 

 

 

4.4 (F) A cool season trough: 

Most of the elements (N, Cd, Cu, K, Ca, Mg and P) were generally higher in the warmer 

seasons (Figure 3.4.6.).  Bidar et al. (2009) state that many other studies have shown a 

decrease of element concentrations in the growing season compared with autumn. The 

inverse pattern can be seen in this study. The increase in N, Cd, Cu, K, Ca, Mg and P 

concentrations during the growing season corresponds with work done by Richardson 

and Marshall (1986) where highest accumulation of P occurred during the growing 

season. In a study done by Fife et al. (2008) the concentrations of N, P and K in older 

leaves decreased steadily from August to April months and found that  Acacia mearnsii 

showed much more variation than other species anaylsed. A. mearnsii was also the 

highest accumulator of N in this study (Figure 3.4.6. (a)). 

 

Decreases in concentrations of elements occurred at the time of plant senescence (Fife 

et al. 2008). Kabata- Pendias (2010) states that during the winter season, vegetation 

may have low concentrations of various trace elements. The elements in Figure 3.4.6 all 

portray similar patterns of being lower during the winter season. According to Dosskey 
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et al. (2010) the vegetation demand for P, K, Ca and Mg is smaller than that of N. 

Therefore when plants take up nutrients, their uptake highest during the growing 

season. When the plants mature the growth of leaves slows down and the uptake of 

elements decreases (Dosskey et al. 2010). 

 

 

When looking at the water results in Figure 3.2.3 the concentrations of the elements 

increased significantly during the winter time. It is speculated that the plants 

accumulated these high levels of elements during their growing season. The results for 

Figure 3.2.3 correspond with the increase of concentrations seen in the plants in Figure 

3.4.6. 
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CONCLUSION  

The spatial results revealed that there was an increase in several parameters 

downstream. The concentrations of the N, Fe and Ca tested within the leaves of the 

three species displayed significant variation and the Ca concentrations correlates with 

the Ca levels that increased in the water.  

 

Seasonal trends of N, Cd, Cu, Zn, K, Na Ca and Mg displayed higher concentrations 

during the plants growing season. When comparing this to the water data, it is evident 

that these same parameters were much higher during the wet season as discussed 

before. The plants show an increase in concentrations just after the wet season. Plants 

tend to accumulate more elements during the growing season (Dosskey et al. 2010).  

 

When comparing the three species to one another in terms of bioaccumulation, it is 

evident that, overall, Salix sp. was the better accumulator of the three species. 

However, Acacia mearnsii also displayed higher accumulation of some elements at 

times. Brabejum stellatifolium generally displayed much lower element concentrations.  
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CHAPTER 5 

 

Summary and Recommendations 
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5.1 SUMMARY 

Riparian trees were used as bioindicators to provide knowledge about the pollution 

status of the upper Berg River system. This study was undertaken in part because of 

the new Berg River dam. The river’s health was determined by using both biotic 

(riparian vegetation) and abiotic factors (water and sediment).  

 

5.1.1 Water 

Surface water results revealed that spatially, site 1 in the headwaters had the lowest 

values for EC, pH, nitrate, K, Ca and Mg. It was expected that the outcome for many of 

the factors examined would be that the least impacted site would show the lowest 

concentrations. Ammonium, nitrite, Cd, Zn and P showed no significant differences 

across the sampling sites. Electrical conductivity, pH and concentrations of nitrate, K, 

Na, Ca and Mg increased downstream, possibly due to input of pollution by the rivers’ 

tributaries, whereas water temperature and lead decreased downstream. The major 

sources of pollution that occur along the Berg River that may have contributed to the 

deterioration of water quality are agricultural runoff and urban runoff as well as inputs 

from tributaries.  

 

 Seasonally, the colder season (winter) displayed the highest concentrations of 

elements over the study period. These high concentrations of water quality factors 

experienced in the colder seasons were probably due to the initial runoff caused by the 

high rainfall experienced (Adams 2011, Struyf et al. 2012) during the sampling period. 

Other variables such as water temperature, ammonium and lead decreased during the 
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colder months. Lower temperatures obviously occur in the colder months and dilution or 

flushing out of concentrations of the elements within the river appeared to occur after 

the initial increase. 

 

5.1.2 Sediment 

Copper and magnesium concentrations in the sediment were both higher in the wet 

season, showing that the levels of Cu and Mg increased with the amount of rainfall that 

entered the system. Nitrogen was absent in sediment and this suggests that an error in 

the methodology may have occurred. Phosphorus concentrations remained constant at 

1 mg kg -1 in both the dry and wet season. All other elements, as well as physico- 

chemical properties showed no significant differences in seasonality. 

 

5.1.3 Plants 

The trees showed no visible differences between the sampling sites. Cadmium, lead 

and zinc showed no significant variation between sites. Spatially, some elements 

(copper, sodium, magnesium and phosphorus) showed a random pattern across the 

sites. The levels of nitrogen and iron in the leaves of the trees increased towards the 

downstream area of the river.   

 

Seasonally, only iron remained constant within the three species and displayed no 

significant differences over the duration of the sampling period. Lead, zinc and sodium 

had random patterns that occurred throughout the year. There was a distinct increase in 

the levels of many of the elements in the leaves during the warmer seasons over the 
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year of sampling.  The summer months are the growing season for the plants and the 

leaves tended to accumulate higher concentrations of elements.  

 

Of the three riparian species analyzed, Salix sp. displayed the highest accumulation of 

heavy metals over the sampling period. According to Ladislas et al. (2012) an ideal 

bioindicator is expected to show certain traits. These include the fact that the organism 

must be able to accumulate high concentrations of heavy metals without dying and to 

be sessile- therefore representing the pollution within the surrounding environment. The 

organism must also be widely distributed in the sampling area, for scientific repetition 

and to survive for a long period of time. Although Salix sp. was not found at all the 

sampling sites, it did accumulate the highest concentrations of metals and also showed 

more variation than the other two species. If one takes the traits given by Ladislas et al. 

(2012) into regard, then Acacia mearnsii and Salix sp. are the better two species for 

bioaccumulation.  Due to the fact that Brabejum stellatifolium has sclerophyllous leaves, 

it generally accumulates lower concentrations of elements (Marschner 1995) than the 

other two species and therefore would not be as effective for riverine pollution 

biomonitoring. However, if the vegetation along the river is well managed, it may 

become the species with the evident distribution.  
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5.2 RECOMMENDATIONS 

Two of the three species of plants investigated in this study can be used as viable 

indicators of pollution; however, they are invasive species. Acacia mearnsii grows 

rapidly and absorbs much more water and nutrients from the system, causing 

indigenous species to suffer. Although management of these species has been put into 

place, it was evident during the period of investigation that mismanagement of the 

removal of the alien species was occurring. Many of the indigenous species were 

removed together with the alien species, therefore it is recommended that proper 

management and education must be extended to all parties involved in removing alien 

species.  

 

If this study were to be repeated, the species used in this study may not be present 

along the river in the future due to their removal. It would be ideal to use a species that 

is found across all the sites, however no such plants presently occur, as many of the 

Acacia’s were being removed by Working for Water. 

 

 

Many farms are found adjacent to the river and use the river as a source of irrigation. 

Conversely, it may be in part because of agricultural runoff that water quality has 

deteriorated. Agricultural inputs have caused heavy metal accumulation elsewhere in 

the Berg River Management area (Meerkotter 2012). Thus monitoring of not only 

surface water and water-interface sediment of rivers, but also crop soils and crops is 

recommended. 
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As runoff is a source of pollution, it may be reduced by the use of wetlands both artificial 

and natural. Areas that produce higher runoff input may possibly use restricted areas 

into which the runoff can be drained, or riparian vegetation can be encouraged to help 

filter excessive nutrients. 

 

This study provided seasonal information of sediment analysis. Monthly sampling of 

river sediment may offer more insight into the accumulation of nutrients and heavy 

metals into the sediment from the rivers, which in turn may provide more information 

into the accumulation of these nutrients and heavy metals in the plants at specific sites.  

 

The Berg River has many tributaries that contribute to the pollution of the river.  

Future studies could quantify the amount of pollution that is released via these 

tributaries.  
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5.3 CONCLUSION 
 
This study adds to the body of evidence (de Villiers 2007, Ruiters 2008, Struyf et al. 

2012) for deteriorating water quality downstream in the upper Berg River. It did not 

indicate any lasting negative effects (that were investigated in this study ) due to the 

construction of the Berg River dam. 

 

Monitoring with trees has been shown to be an option, but the alien species will 

hopefully continue to be removed, allowing for re-establishment of indigenous species.  

 

There is a need to watch the pollution from the tributaries (Knight 2009, Adams 2011) 

and other sources, especially during low flow (de Villiers 2007). This points to the 

requirement for continued research into the effects of pollution caused by smaller 

tributaries in to the Berg River. 
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