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Summary 
 

Environmental pollution is always the hottest topic in public conversation and one of 

the most concerned aspects of human health. The thin film sputtered microelectrode devices 

have been developed to improve the quality of human health, by offering better monitoring 

capabilities. This thesis is divided into three parts and the studies were performed on 

chemical sensor technology currently available and under development using modified 

methods. In the first part of this thesis: (i) the studies are related to synthesis, characterisation 

and polymerisation of polyaniline (PANI) and polyaniline-co-poly(2,2´-dithiodianline) 

(PANI-co-PDTDA). Polyaniline (PANI) and the copolymer of aniline with dithiodianiline, an 

aniline derivative containing S-S-links were of interest in polymer synthesis. Electrochemical 

synthesis was carried out in 1 M HCl and different concentrations of H2SO4 (1, 2.5, and 5 M) 

solutions for PANI and PANI-co-PDTDA respectively. The PANI and PANI-co-PDTDA 

were grown electrochemically on the surface of a glassy carbon electrode (GCE) by repetitive 

cyclic voltammetric scanning. Cyclic voltammetry (CV) was used to evaluate the differences 

between the electrochemical characteristics associated with growth of the copolymer and 

homopolymer, polyaniline (PANI). The surface concentration of PANI was estimated to be 

2.64 × 10-1 mol.cm-2 while the film thickness was estimated to be 7.09 × 10-10cm and 1.49 × 

10-9cm for scan rate and aquare root scan rate. In contrast, PANI-co-PDTDA concentrations 

(1, 2, 5 and 5 M H2SO4 solutions) gained a surface concentration (Γ) falling in the range 6.1 x 

10-2 - 7.9 x 102 mol.cm-2 and a film thickness in the range 8.16 x 10 -9- 2.05x10-8cm. 

The second section of this thesis focused on the development of two sensors, 

Pt/PANI/HRP and Pt/PANI-co-PDTDA/HRP biosensors. The biosensor described in this 

chapter focus on the use of horseradish peroxidise (HRP) with hydrogen peroxide as 

substrate, was constructed with the aim of further investigation of inhibition by heavy metals 

(Cd2+, Pb2+ and Hg2+). To achieve this, the enzyme HRP as the catalytic bio-element, was 

immobilised on the surface of a platinum electrode with PANI as a mediator. Immobilisation 

of HRP in conducting polymer matrices of PANI and PANI-co-PDTDA were achieved by 

electrochemical polymerisation.The use of amperometric detection allowed for the coupling 

of the biosensor with a portable potentiostat system (PalmSens). Differential pulse 

voltammetry (DPV) as technique was used as a detection method for inhibition 

determination. Selection of suitable pH values for biosensor performance was evaluated and 

the system showed optimal performance at pH 6.8 and 7.2 for Pt/PANI/HRP and Pt/PANI-

co-PDTDA/HRP biosensors, respectively. The biosensors developed in this work showed 
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detection limits (LODs) of 0.32 mM and 0.0483 mM for PANI/HRP and PANI-co-

PDTDA/HRP, respectively. For the Pt/PANI/HRP biosensor, the apparent Michaelis-Menten 

constant (Km
app) value and maximum current (Imax) were evaluated from Lineweaver-Burk 

plots at various H2O2 concentrations. The values were found to be 0.6 mM and 1.7 µA for the 

Pt/PANI/HRP biosensor, while for the Pt/PANI-co-PDTDA/HRP biosensor the results were 

0.7 mM and 0.27 µA, respectively. 

The third section investigated the adsorptive cathodic differential pulse stripping 

voltammetric (AdDPSV) determination of platinum group metals (PGMs), using an ex situ 

bismuth coated screen printed carbon electrode (SPCE/Bi) as the working electrode and 

ammonium buffer solution (pH = 9.2) as the supporting electrolyte. The cathodic stripping 

differential pulse method was used for investigating the electrochemical behaviour and the 

quantitative analysis of platinum group metals (Pt, Pd and Rh) at the SPCE/Bi surface in the 

presence of dimethylgloxime (DMG) as a complexing agent. In order to determine the metals 

at improved detection limits ensuring repeatability and sensitivity, a complete optimisation 

study of voltammetric parameters was performed. The proposed method was successfully 

applied to the determination of the real samples (sediments & water) collected in the platinum 

mining area in the North-West and Limpopo Provinces, South Africa. The results were 

compared with those obtained by the glassy carbon bismuth film (GC/BiF) voltammetric and 

ICP-AES spectrometry techniques. Well-shaped voltammograms with clear peak potentials 

were obtained in the analysis of the real samples, offering excellent perspectives on the use of 

the constructed modified electrodes. The calibration curves for all PGMs investigated were 

linear with the limit of detection (LOD) at approximately 0.008, 0.006, and 0.005 µg.L-1 for 

Pd, Pt and Rh, respectively. 
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 Heavy and precious metal toxicity evaluation using a horseradish peroxidase immobilised biosensor 

 
Chapter 1 

 
Introduction 

 

1.1 Introduction 
 

1.1.1 General 
 

 As the world population grows, so does the ever-increasing demands on the 

Earth’s natural resources. Every day, millions of tons of inadequately treated sewage and 

industrial and agricultural wastes are poured into the world’s waters. The generation of these 

waste materials continues and affect the environment in numerous ways, most importantly 

river pollution and disturbance of aquatic ecosystems. This places more pressure on relevant 

water utility companies to maintain the quality of drinking water from its sources (surface 

and ground waters) to final distribution, because of waterborne chemicals entering the rivers 

and streams causing tremendous destruction. There is a constant need for analytical 

techniques that provide a new breakthrough, allowing better monitoring of environmental 

pollutants. The rapid development of science and technology has created an overwhelming 

stream of opportunities for improving and enhancing the quality of human life. A significant 

amount of development is taking place in the area of electrochemical sensors using various 

voltammmetric electrochemical techniques for the determination of environmental 

pollutants. These offer advantages over traditional techniques, e.g. spectrometry, for fresh 

and groundwater monitoring because of their relative cost and are considered to be portable 

and fast-responding. 

The focus of the thesis is on the development and evaluation of sensors based on 

electrochemical or biological recognition processes. Simple electrochemical techniques fall 

into three groups: potentiometry, conductivity, voltammetric / amperometric techniques.  
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This thesis is mostly concerned with the third type of method, the design of this study 

involves the synthesis and characterisation of new electrochemical sensor material and 

biosensors with enzyme and controlled surface structure and chemical activity towards 

metal–contaminated waste-water monitoring. This study also assesses and quantifies other 

metal ion contamination within the aquatic environment. A quantitative determination of 

heavy metals associated with platinum group metals (PGMs) is acquired using carbon 

modified electrodes, while other heavy metals such as lead (Pb), cadmium (Cd) and mercury 

(Hg) are determined with the use of a horseradish peroxidase (HRP) immobilised on 

polyaniline. 

 

1.2 Electrochemical Sensors 
 

 The capability to detect and monitor contaminants in fresh and groundwater 

using real-time in situ measurements promises to be a valuable tool in the environmental 

industry. Chemical sensors and biosensors are very powerful tools in modern analytical 

sciences. The new demands of environmental analysis have driven the development of more 

selective and sensitive sensing systems. An essential component of any detection system is a 

recognition platform, which is able to bind selectively to a target analyte in the presence of 

competing analytes. The development of chemical sensors and biosensors to provide in situ 

information on water pollution parameters will eliminate many problems and significantly 

lower costs associated with conventional sampling and analysis techniques. The main 

advantages are easy construction, possibility of portability and miniaturisation, high 

sensitivity and low costs (Dennison and Turner, 1995; Thevenot et al., 1999). 

A chemical sensor is defined in Eggins (2002) as a device which responds to a 

particular biological analyte or chemical species in a selective way through a chemical 

reaction and can be used for the qualitative and quantitative determination of the analyte. 

Biosensors can be defined as a device incorporating a biological sensing element connected 

to a transducer. The history of biosensor began in 1962 with the development of the first 

device by Clark and Lyons (1967). 
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Advancement in science and technology has enabled biosensors to be used in a wide 

variety of disciplines, including medicine, food industry, and environmental science. 

Nowadays, the main interest of developing chemical and biosensor research field pointed to 

semiconductors nanomaterials due to their excellent properties (Poltolsky et al., 2006; Cui et 

al., 2001). 

 

1.3 Pollutants in the Environment 
 

In recent years, increased concerns with the toxic effects of chemicals in the 

environment have led to the necessity of monitoring pollutant levels at various points in 

industrial processes and recycling processes, in effluents and wastewaters, and at industrial, 

agricultural, and urban sites. After the industrial revolution and the increase in chemical 

technologies, concern for minimisation of pollutants and alternative “clean technologies”, 

have become the common world strategy. The control process started with tighter 

environmental legislation that was introduced in order to minimise the release of harmful 

pollutants into the environment. Consequently, the numbers of sites that need to be sampled 

and monitored for effective environmental monitoring have increased. Additionally, 

continuous monitoring of environmental pollution in the field requires portable fast-response 

sensors that are robust and with sufficient sensitivity and long lifetime (Wang et al., 2008). 

 Agricultural practices affect natural habitats in several ways, such as through 

land conservation, increased fragmentation and agrochemical contamination (Hayes et al., 

2002; Davidson et al., 2002). Since then over 900 pesticides are used throughout the world, 

screening approaches are being developed to analyse as many pesticides as possible. 

 Heavy metals are well known to inhibit the activity of enzymes and 

application of this phenomenon to the determination of these hazardous toxic elements offers 

several advantages such as simplicity and sensitivity (Rodriguez-Mozaz et al., 2006). Heavy 

metals such as cadmium (Cd), lead (Pb) and mercury (Hg) present major hazards to 

ecosystems and are serious danger to humans, because of their ability to accumulate in living 

organisms (Mehrvar et al., 2000). 
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 The concentration of platinum group metals (PGMs) have been increased in the 

environment due to the increasing use of autocatalytic converters and in some industrial 

processes (Locatelli, 2006). In fact use of autocatalytic converters, containing PGMs have 

been the cause of increasing such amounts of the metals in the environment and resulted to 

the decrease of pollution like lead, carbon monoxide, nitrogen oxide and unburned 

hydrocarbons in exhaust gases from motor vehicles. 

 

Due to increasing demand of the toxicity of these metals in soil, environmental 

companies and pollution monitoring agencies have expressed the need (Farrel-Poe, 2000) for 

reliable approved procedures for the determination of these elements. However, at this point, 

its concentration still remains at relatively low level so the methods used for its determination 

should be highly sensitive. (Bobrowski et al., 2009). The toxicity of platinum group metals 

has been investigated in various studies: in the metallic states, PGMs are non-toxic and non-

allergenic, but some of their compounds, especially the chlorinated ones, are very toxic and 

allergenic (WHO, 1991; WHO, 2002). Information of the acute toxicity of some Pt- 

chlorinated salts and evidence of DNA damage due to Pt exposure have been observed both 

in vitro and in vivo (Gagnon et al., 2006). 

 

1.4 Modified Carbon Electrodes 
 

A field of modified solid electrode surface has become very popular with applications 

in industries, quality control of drug and food, determinations in pharmaceutical dosage 

forms. The performance of the voltammetric procedure is influenced by the material of 

working electrode. Carbon-based electrodes usually have wider potential range than the other 

solid electrodes because their broad potential window, low back ground current, rich surface 

area, chemically inertness, low cost and suitability for various sensing and detection 

applications. However electron transfer rates observed at carbon are often slower than those 

observed on noble metal electrodes (Uslu et al., 2007).  
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A variety of methods for the modification of electrode surfaces have been developed 

in the last decades and a number of them possess interesting properties for electrochemical, 

electronic and electrocatalytic purposes. Electrodes are usually chemically modified using 

one of four approaches: (i) chemisorption; (ii) covalent bonding; (iii) polymer film coating; 

and (iv) composite configuration (Wang, 2006). Carbon modified electrodes (CMEs) can also 

contain multiple chemical modifiers, and sometimes these modifiers and / or the electrode 

substrate may have a particularly designed spatial configuration. That is, a CME may contain 

one electrocatalyst that reacts with a substrate or acts as a photon donor or acceptor, and a 

second one to transport charge between the first catalyst and the electrode.  

Alternatively, the carbon modified electrode (CME) may consist of a substrate coated 

with two different chemical polymers, the second polymer overlaid on the first to form a 

bilayer of polymer films. Carbonaceous substrates have already been utilised as electrode 

material, due to their rather attractive electrochemical properties (Vytras et al., 2009; Tang et 

al., 2009). However, it is well known that variations in the performances of these electrodes 

are to be expected depending on the source of the material the percentage of graphite in the 

substrate the type of pasting liquid or impregnating agent used. In comparison to metallic 

electrodes, carbon material has some extraordinary features relating to their structures and 

electrochemistry (McCreery, 2008). 

Basically, the modification of an electrode surface involves immobilisation of 

reagents that change the electrochemical characteristics of the bare surface. Inclusion of 

reagents within the electrode matrix (e.g. carbon paste) is another attractive approach for 

modifying electrodes. Such manipulation of the molecular composition of the electrode thus 

allows one to tailor the electrochemical response to meet specific sensing needs. Sensors 

based on modified electrodes have been the focus of research in the last few decades, such as 

the preparation of structured interfaces holding great promise for the task of environmental 

monitoring. There are different directions by which the resulting modified electrodes can 

benefit environmental analysis, including acceleration of electron-transfer reactions, 

preferential accumulation or permselective transport (Wang, 2006). 
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1.5 Objectives of the Study 
 

1.5.1 General Objectives 
 

This work formed part of a research project conducted for the Water Research 

Commission (WRC) on the development of an analytical sensor for the assessment of heavy 

and precious metal pollution in the vicinity of mining sites. Furthermore, it is hoped that it 

will contribute to the development of the CSIRs and South Africa’s capacity as a major role 

player in trace metal pollution assessment (Somerset, 2009). This research focused on the 

development of sensors and immobilisation methods that will contribute to the construction 

of reliable and sensitive electrochemical sensors for the detection of metals associated with 

mining activities in the environment. 

 

1.5.2 Specific Objectives 
 

The objectives of this study can be summarised as: 

• To construct and develop various sensors and simple methods for the voltammetric 

determination of heavy and precious metals voltammetric techniques with special 

attention to the optimisation of experimental conditions. 

• To electropolymerise polymers such as polyaniline (PANI) and poly (2,2´-dithiodianiline) 

(PANI-co-PDTDA) by employing a dopant during synthesis and characterise the 

synthesised polymers using cyclic voltammetry (CV), Fourier-transformed infrared 

spectroscopy (FTIR) and ultra-violet visible (UV-VIS) spectroscopy. 

• To design, develop and synthesise modified electrochemical sensors with controlled 

surface structure and chemical activity towards specific metal ions under investigation in 

this study.  

• To develop and evaluate an enzyme biosensor based on horseradish peroxidase (HRP) 

immobilisation onto the surface of a platinum electrode modified with either PANI or 

PANI-co-PDTDA, followed by electrochemical interrogation and application of the 

Pt/PANI/HRP and Pt/PANI-co-PDTDA/HRP sensors for metal determination. 
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• To develop and optimise voltammetric methods for the integration, testing and 

application the new developed sensors formats into a portable potentiostat for possible 

on-site analysis of identified heavy and precious metals. 

• To apply the developed Pt/polymer/HRP biosensor in inhibition studies for the 

voltammetric determination of selected heavy metals. 

• To construct, optimise and apply a bismuth (Bi) thin film screen-printed carbon electrode 

(SPCE/BiF) and disposable sensor for the analysis of palladium (Pd), platinum (Pt) and 

rhodium (Rh) in environmental samples. 

 

1.6 Layout of the Thesis 
 

The thesis is arranged and presented in such a manner that the reader can understand 

the scope and goals of the research in a logical approach. Therefore, the structure of this 

thesis has been divided into eight chapters according to the different areas of investigation 

that has been conducted.  

 

Chapter 1 Gives a general introduction, the main objectives of the study as well as an 

overview of the thesis. 

 

Chapter 2 Provides a review of available literature regarding the monitoring of metal 

pollutants using voltammetric methods. This chapter provides a general 

overview of electrochemical sensors and techniques, electrode modifications, 

biosensors, analytes to be investigated such as heavy and precious metals. 

 

Chapter 3 The details of the experimental procedures used to prepare the selected 

electrochemical sensors and the electrochemical techniques used for 

characterisation and investigation is discussed. 
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Chapter 4 The electrochemical characterisations of the polymer modified electrode 

surfaces are discussed. The focus of this chapter is on surface modification 

using electro-polymerisation with polymers in order to functionalise the sensor 

surface and apply voltammetric determination of metal ions. 

 

Chapter 5 Focus on the development and characterisation of a horseradish peroxidase 

(HRP) biosensor in order to conduct inhibition studies for voltammetric 

determination of selected heavy metals. 

 

Chapter 6 Modification of screen-printed electrode surfaces and sensor optimisation 

studies to determine the effect of reagent concentration, supporting electrolyte 

concentration, chelating reagent concentration for voltammetric determination 

of PGMs. Application of the constructed screen-printed carbon electrode sensor 

surface, modified with a bismuth thin film to the determination of PGMs in 

environmental samples. 

 

Chapter 7 Conclusions, Recommendations and Future work. 

 

Chapter 8 References 
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Chapter 2 

 
Literature Review 

 

2.1 Introduction 
 

This chapter covers relevant literature in research on the presence and environmental 

concerns of heavy metals and platinum group metals (PGMs) in the environmental. It further 

covers relevant literature on electro-analytical techniques for the monitoring these metals in 

sample matrices. New methods must therefore be developed to detect and quantify these 

compounds in environmental samples such as water, sediments and biotas. A range of 

analytical techniques have been applied to the analysis and detection of heavy metals and 

PGMs in samples and include flame atomic absorption (FLAA), inductive coupled plasma- 

optical emission spectroscope (ICP-OES), inductive coupled plasma-mass spectroscope (ICP-

MS) and neutron activation analysis (NAA). This chapter also includes a historical overview 

of previous research a description of the evaluation of various techniques, and some ways of 

preventing these pollutants from entering the aquatic environment. The challenges of water in 

the 21st century are one on both quantity and quality, research in this field is concerned with 

the development of the modified electro-analytical sensors, highlighting the link between 

clean water and public health and the health of wider environment. As a result of 

mismanagement, much of the water available in developed economies is polluted and 

contaminated to varying levels. It is, of course, also necessary to consider the problem from 

an economical point of view due to mass application of instrument techniques. Highly 

sensitive physical methods are using very expensive instrumentation, which frequently 

cannot be used as field equipment, from a practical and cost perspective. The instrumentation 

for environmental monitoring should be easy to operate and not only require personnel with 

university training to do so. The requirement is met especially well by electrochemical 

methods because of its sensitivity, simplicity and relatively low investment outlay as well as 

possible field application. 
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In view of the fact that electrochemistry combines the extremely high sensitivity, 

relatively low cost and possibility of construction of the field instrument, it can be concluded 

that it cannot be surpassed by any other methods, in most cases important in the 

environmental protection. There are methods the sensitivity of which might equal that of 

modern electrochemical techniques, they do need, however, extremely expensive equipment 

mostly in capable of field operation. 

In recent years, few environmental issues have aroused the concern of the public in 

relation to the human health and aquatic organisms. In spite of the many published studies on 

the subject of heavy metals and human health, there remains deep controversy surrounding 

this issue. To understand this controversial issue it is helpful to look at the history of heavy 

metals and PGMs that causes risk to human health and aquatic environment. This research 

will try to develop simple electrochemical methods for monitoring of heavy metals associated 

with precious metals in the environmental, and draw conclusions as to the true and simple 

long- term monitoring electrochemical method that might be used.  

 

2.2 Electrochemical sensors in environmental applications 
 

Research has been done on detection of heavy metals associated with PGMs and the 

researchers have used variety of biosensors and chemical sensors with various modifications 

of working electrodes. The basic components of an electrochemical sensor are a working (or 

sensing) electrode, a counter electrode and usually a reference electrode as well. These 

electrodes are enclosed in the sensor housing in contact with a liquid electrolyte. The working 

electrode is on the inner face of a Teflon membrane that is porous to gas, but impermeable to 

the electrolyte. Nowadays many industrial processes produce waste products that contain 

hazardous chemicals, and these are sometimes discharged directly into sewers, rivers or 

wetlands. Even those waste products that are disposed of in landfills or slag heaps, for 

example, may release substances that eventually seep into nearby watercourses (Oberholster 

et al., 2008). Figure 2.1 shows some important aspect to choose when using electrochemical 

sensor for environmental monitoring. 
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Figure 2.1 Important aspects for choosing electrochemical sensors for environmental monitoring. 

 

Legislation has fostered a huge demand for the sensors necessary in environmental 

monitoring, e.g. monitoring toxic gases and vapours in the work place or contaminants in 

natural waters originating from industrial effluents and runoff from agriculture fields, thus, a 

near revolution is apparent in sensor research giving birth to a large number of sensor devices 

for medical and environmental technologies. Electrochemical sensors are developed in order 

to provide information on our physical, chemical and biological environment. It is also 

known that a chemical sensor furnishes information about its environment and consists of a 

physical transducer and a chemically selective layer that will interact with the pollutant of 

choice to provide analytical data on that chosen pollutant (Bonting, 1992). The recent 

development and application of modified electrodes in sensor construction, in which catalytic 

species are attached on the electrode surface, has increased the scope of electro catalytic 

reactions and sensor applications. 
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This present work attempts to describe the development of both a chemical and 

biosensor and its application to the determination of heavy metals and PGMs in 

environmental samples, respectively.  

The work described in this thesis is further concerned with methods that can be used 

for the monitoring of pollutants in different fields of environmental research and protection. 

Particular emphasis is placed on the electrochemical techniques offering an actual advantage 

(in comparison with other non–electrochemical methods) if applied to environmental sample 

analysis. The purpose of a chemical sensor is to transform chemical information ranging from 

concentration of a specific sample component to total composition of its surrounding 

environment (Monk, D.J and Walt, D.R., 2004, Janata, 1992).  

 

2.3  Types of Electrodes for Heavy Metals Analysis Studies 
 

Non-traditional electrode materials have played a very useful role in environmental 

electro-analysis. Portability and non-toxicity have made them useful substitutes of mercury 

electrodes for electro-analytical monitoring of electrochemically reducible substances and 

their mechanical properties makes them compatible with measurements in flow system 

devices. Among the carbon-based electrodes that can be modified not only on the surface but also 

in bulk during their preparation, carbon paste electrodes (CPE) and screen-printed carbon 

electrodes (SPCE) belong to the most frequent choice. For modifications, various organic and 

inorganic compounds can be employed, including metal oxides that are preferably used as bulk 

modifiers and mediators in the configurations of biosensors. Some of the electrodes that might 

be used in such applications are discussed in the section below. 

 

2.3.1. Glassy Carbon Electrodes 
 

Carbonaceous electrodes have been used in electro-analytical fields in which they are 

most often employed for voltammetric measurements and have been very popular because of 

its excellent electrical and mechanical properties, wide potential range, extremely chemical 

inertness and relatively reproducible performance the measurement results with the graphite 

electrode are irreproducible because of its great porosity (Brainina, 1993). 
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However, much more reproducible results were obtained with the pyrolytic graphite 

electrode used as an inert redox electrode in redox titration. 

Glassy-carbon electrodes are prepared by means of a carefully controlled heating 

program of pre-modelled polymeric resin body in an inert atmosphere (Wang, 2006). Unlike 

many non-graphitising carbons, it is impermeable to gases and also highly resistant to acid 

attack. The structure of glassy carbon consists of graphite planes randomly organised in a 

complex topology. Glassy carbon possesses isotropic properties and does not require a 

particular orientation in the electrode device .The performance of the electrode depends on 

the polishing materials and the procedures. Surface treatment is usually employed to create 

active and reproducible surface of the glassy carbon electrode and to enhance its analytical 

performance. Some additional activation steps have also been used to enhance the 

performance such as electro-chemical, chemical, vacuum heat, or laser treatment (Kessinger 

et al., 1996; Uslu et al., 2007). The properties of carbonaceous materials depend on the 

manufacturing process. Carbonaceous electrodes have been used in biomedical fields because 

of their good conductivity, chemical inertness and mechanical stability. 

 

2.3.2. Carbon Paste Electrodes 
 

Carbon paste electrodes (CPEs) represent of more general class of composite 

electrodes, in which chemically useful functionalities can be introduced during physical 

mixing of graphite and pasting liquids. Carbon paste electrodes (CPEs) and related sensors 

underwent an attractive development in the last few decades. CPEs have been employed 

mainly in studying the mechanisms of electrode reactions of various organic compounds and 

their utilisation in analytical electrochemistry are well documented in more than 1500 

original papers (Wang, 2001). 

The carbon paste electrodes are classified as bare or unmodified carbon electrodes. 

The composite nature of carbon pastes and their easy preparation were undoubtedly 

stimulating factors for altering the properties of originally binary mixtures and adding another 

component in the composition. The pasting liquid is chosen for inertness, low solubility in the 

studied solvent and low volatility (Kalcher et al., 1995).  
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The first type containing an organic substance dissolved in the binder and was applied 

to the study the electrode behavior of the substance itself and was considered as a pioneering 

step in the field of carbon paste electro-active electrodes.  

The second electrode was prepared by simply mixing a modifier together with 

graphite-binder paste and the main reason is for improving the electrode with desired 

performance (Kalcher et al., 2006; Svancara et al., 2001). 

The application of this electrode opened various applications for electrochemistry as a 

field and its application to numerous sensing applications, was the driving force to minimize 

the cost of measurements. These electrodes also offer numerous advantages that include: a 

wide working potential window in both the positive and negative direction; easy working 

surface renewal; low background currents; and reasonable repeatability (Barek et al., 2001). 

From 2001 onwards, several new reviews appeared covering the monitoring of environmental 

carcinogens with the use of CPE (together with other types of electrodes) and amperometric 

biosensors for environmental samples (Vytras et al., 2009;). 

 

2.3.3. Screen-Printed Carbon Electrodes 

 

The attractive mass production of cheap and disposable sensors is the screen-printing 

technology. Electrode materials other than carbon such have been successfully utilised for the 

manufacture of screen-printed metals sensors. Principally, these have focused on the 

application of Au, Ag and Pt. In addition many research laboratories in universities possess 

screen printing facilities for in-house production of sensors for prototype devices 

(Honeychurch et al., 2003). The use of screen-printed electrodes (SPEs) in conjunction with 

portable, electrochemical instrumentation greatly facilitates the feasibility of on-site testing 

(Honeychurch et al., 2012). Disposable carbon electrodes have a typical complete 

electrochemical cell configuration, i.e. they combine the working, reference and auxiliary 

electrode together and are highly suitable for working with micro volumes and decentralized 

assays or to develop specific sensors by modifying their surface with various materials.  
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The main advantage of screen printed carbon electrode over conventional carbon 

based electrodes is that the problems of carry over and surface fouling are alleviated, as they 

are only used once and then discarded. These electrodes clearly have economic benefits when 

such analytical systems are operated by unskilled people. (Uslu et al., 2007; Eggins, 2002). 

The main disadvantage of commercial ink formulations is that their compositions are 

usually unknown as an intellectual property of the producer and some of the ink components 

may affect the electrochemical properties of the working electrode (Wang et al., 1998) The 

typical screen printed carbon electrode by Dropsens is based on a ceramic substrate with 

dimensions: (H) 33 x (L) 10 x (W) 0.5 mm; electric contacts: silver. The electrochemical cell 

consists of a working electrode (WE): carbon (4 mm diameter), counter electrode (CE): 

carbon and reference electrode (RE). The screen printed electrode is connected to any model 

of potentiostate by a special type of connector which is manufactured by Dropsens that acts 

as bridge between the screen-printed electrode and potentiostat (www.dropsen.com). Figure 

2.2 show a typical screen printed electrode and the two kinds of connector used for screen-

printed carbon electrodes are shown in Figure 2.3. The sample is usually applied on the 

working electrode part in the form of small drop on in-situ or in the laboratory for stripping 

analysis of environmental or biological samples. Kadara and Tothill (2005) fabricated single 

use Bi preplated SPCEs for the voltammetric stripping analysis of Pb (II) and Cd (II), 

obtaining detection limits of 8 and 10 ng mL−1 in soil extracts and waste waters for Cd (II) 

and Pb (II) respectively. Screen-printed carbon working electrodes (SPCEs) have been also 

explored as supports for Bi modification, including Bi codeposition (so called “in situ” Bi 

film) and preplated Bi (so called “ex situ” Bi film) approaches. Wang et al. (2001) described 

anodic stripping procedures for lead on home-made Bi preplated disposable SPCEs for the 

quantification of trace Pb (II) in drinking water by anodic stripping with a detection limit of 

0.3 ng mL−1.  
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Figure 1.2 Typical Dropsense screen printed carbon electrode (Dropsens, 2010). 

 

 

 

 
 
Figure 2.2 The two common types of connector that links screen printed electrodes to the 

potentiostat (Dropsens, 2010). 

 

2.4 Techniques for the Detection and Analysis of Metals 
 

Past investigations which are known have been conducted on traditional Analytical 

methods and electroanalytical method for analysing of metals. This thesis has been focused 

on the voltammetric measurements that have been sparked by its ability to measure 4 – 6 

trace metals simultaneously at concentration level part per billion without chemical 

separation or prior treatment of sample; carbonaceous and platinum electrodes are employed. 

The advantage to this method of surface testing over traditional techniques is that the analysis 

may be performed on site in about 5 minutes without sending a sample to the laboratory. 
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2.4.1 Spectroscopic techniques for metal detection 
 

The monitoring of heavy metals associated with PGMs`s negative effects requires a 

systematic control of their content remaining in agricultural products, food, soil and water. 

The content of these metals in various matrices can be determined by a number of methods. 

Traditional analytical techniques such as atomic absorption spectroscopy (AAS), inductively 

coupled plasma mass spectrometry (ICP-MS), neutron activation (NAA), etc. can be 

employed for the bio-monitoring of heavy metals but have expensive running costs with the 

samples requiring extensive sample digestion / pre-treatments. 

However, optical and electrochemical methods of determination have also developed 

with this purpose (Liorent-Marteinez et al., 2010). Among spectroscopic competitors, only 

flame atomic absorption has nearly the same sensitivity but at much cost and Neutron 

activation has an overall elemental coverage but also at high costs (Wang, 1985). Multi-

residue metal analysis requires a method with the inherent capability of separating analytes 

from one another to facilitate individual identification and measurement. The advantage of 

traditional techniques compared to voltammetric technique is that they are applicable to a 

large number of elements. Their major drawbacks are their much higher cost and, above all, 

the fact that they allow measurement of total concentration only (Buffle et al., 2005). 

Consequently, speciation measurements, using these detection techniques, are feasible only 

by coupling them with separation and extraction procedures. However, such steps 

significantly increase the risk of contaminations or chemical species modification during 

sample storage or sample handling, dramatically increase the cost of analysis. This is a major 

barrier to their application to routine speciation measurements on large sample sets, even 

though it would be the only means to interpret correctly the environmental impact of metals. 

The spectroscopic methods generally provide data on the elemental composition of 

particulate matter. The underlying principle of spectroscopy is the absorption and emission of 

energy.  
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2.4.2  Electrochemical Techniques 
 

Electroanalytical methods, particularly stripping analysis, are the most widely used 

competition for atomic spectroscopy, as far as trace metal determination are concerned. The 

electrode itself can act as a reactant to pump (reduction) /withdraw (oxidation) electron in the 

reaction, which cannot be expected in spectroscopic characterization methods. 

Electroanalysis is a methodology which is extremely useful for the portable, sensitive and 

selective determination of heavy metals. For example, electro-analysis can offer high 

throughput screening of heavy metals in river water samples at trace levels.  

The main trends on modern electroanalysis include development of chemical and 

biochemical sensors of molecular recognised and development measuring devices of large 

integration scale, including sensor array nanomaterials and nanostructures development of 

sufficiently sensitive and selective voltammetric and amperometric methods of 

electrochemistry (Trajawnowicz, 2009). The voltametric techniques which are referred to 

voltammetric and chronoamperomatric techniques are well suited for automatic in situ 

speciation measurements, with no or minimum sample change, i.e. under conditions that 

dramatically minimize contaminations by reagents or losses by adsorption on containers 

(Buffle et al., 2000). Generally electrochemical methods are based on the transformation of 

chemical information into an analytically useful signal. Any sensor used in electro-analytical 

determination contains two basic functional units; one receptor part, which transforms the 

chemical information into a form of energy and one transducer part which transforms the 

energy, bearing chemical information, into a useful signal. The flow chart presented in Figure 

2.4 illustrates the classes and sub-divisions of electrochemical techniques. 
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Figure 2.3 Flow chart representing electrochemical techniques for sample analysis. 

 

This project focused in voltammetric method which is the division of interfacial. 

Voltammetric techniques may be further divided into controlled potential and controlled 

current method. Frequently used techniques such as votammetry and chronoamperometry are 

an example of controlled potential. It involves controlling the potential while measuring the 

current.The electrode or the faradaic current or both are change with time and there is 

interrelationship between all three of these variables (Bond et al., 1989). The advantage of 

this technique includes high sensitivity and selectivity towards electro-active species, 

portable and low cost instrumentation. 

 

2.4.2.1. Cyclic Voltammetry 

 
Cyclic voltammetry is not sensitive enough for environmental analysis but it is the 

popular method used in many areas of chemistry and is useful to optimise analytical 

conditions. It is rarely used for quantitative determinations but widely used for the study of 

redox processes, electrode mechanism, for the study of intermediate reactions and for 

obtaining stability of reaction products. It was first practiced at a hanging mercury drop 

electrode was used and mainly when solid electrodes like platinum (Pt), gold (Au) and 

carbonaceous were used, particularly to study anodic oxidations (Kemulaet.al. 1958; Adam, 

1968). Several monographs and texts offer excellent information on fundamentals of cyclic 

voltammetry.   
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Samples used in this technique should be dissolved in the liquid solvent and capable of being 

reduced and oxidized within the potential range and should not react with electrode materials. 

In this technique the working electrode potential is ramped linearly versus time like linear 

sweep voltammetry. When cyclic voltammetry reaches a set potential, the working electrode's 

potential ramp is inverted. This inversion can happen multiple times during a single 

experiment. The potentials at which reversal takes place are called switching potentials. The 

range of switching potential chosen for a given experiment is one in which a diffusion-

controlled oxidation or reduction of one or more analytes occurs. A scan in the direction of 

more negative potentials is termed a forward scan while one in the opposite direction is called 

a reverse scan. 

The current at the working electrode is plotted versus the applied voltage to give the 

cyclic voltammogram of results. Cyclic voltammetry is generally used to study the 

electrochemical properties of an analyte in solution. The response obtained from a CV can be 

very simple, as shown in Figure 5 for the reversible redox system.  

 
 

 
 

Figure 2.5 Cyclivc voltametric reaction mechanisms (Gosser, 1994). 

 
From the graph in Figure 2.5 the scan shown cyclic voltammogram containing only 

one species, starting at positive potential, up to some positive switching value, at which the 

scan is reversed back to the starting potential.   
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The difference between peak potential (Ep) and the point where current is half that at 

Ep, halfway potential (Ep/2), is 56.5/n mV at 25 oC, where n is the number of electrons 

transferred. Note that for a Nernstian system, Ep should be independent of scan rate, but Ip 

will depend on the square root of scan rate. Another useful piece of information is that the 

separation of anodic and cathodic peaks is about (59/n) mV at 25 oC. It is very difficult to 

achieve a 59/n mV splitting at most solid electrodes. (If you can achieve 70 mV, you will be 

doing well. This is a function of electrode preparation as well as scan rate.) If the diffusion 

constants for the oxidized and reduced species are similar, the value of peak potential (Eo')can 

be estimated from the average of anodic peak potential (Epa) andcathodic peak potential 

(Epc).Providing that the charge–transfer reaction is reversible, that there is no surface 

interaction between the electrode and the reagents, and that the redox products are stable (at 

least in the time frame of the experiment). 

A theoretical description of polarization overpotential is in part described by the 

Butler-Volmer equation and Cottrell equation. Conveniently in an ideal system the 

relationship reduces to:  

 

           (Eqn. 2.1) 

 

For an n electron process, reversible couples will display a ratio of the peak currents 

passed at reduction (Ipc) and oxidation (Ipa) that is near unity (1 = Ipa/Ipc).  When such 

reversible peaks are observed thermodynamic information in the form of half-cell potential 

E0
1/2 can be determined. The peak current is given by the equation: 

 

 

Ip = 2.69x105n3/2ACD1/2n1/2         (Eqn. 2.2) 

     

Where: n = number of electrons transferred/molecule; A = electrode surface area (cm2); C = 

concentration (mol cm-3) and D = diffusion coefficient (cm2 s-1).  

n

mV
EE papc

57=−
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2.4.2.2. Stripping Voltammetry 

 

The most sensitive electro-analytical technique, stripping analysis, is highly suitable 

for the task of field monitoring of toxic metals and is well known for measuring 4-6 trace 

metals at low concentration levels. In recent years it has become a widely used method for 

food analysis. This electrochemical method encompasses a variety of electro-analytical 

procedures having a common characteristic initial step. In all these procedures; the analyte of 

interest is accumulated on a working electrode by controlled potential electrolysis. After a 

short rest period, this preconcentration step is followed by the stripping step, which involves 

the dissolution of the deposit when a linear ramp is applied to the electrode. Thus, a 

detectable current is produced at the electrode surface following the oxidation or reduction of 

the analyte at a characteristic potential.  

By careful interpretation of the resulted peak shape current–potential voltammogram 

recorded during the stripping step, important and desired analytical information is readily 

obtained. The peak potential (position of Ep) is characteristic of the given substance and thus 

it can be used for qualitative identification, whereas the peak current Ip is proportional to the 

concentration of the corresponding analyte in the test solution. This analytical quantitative 

information can be obtained from the height or area of the stripping voltammetric occurs at 

characteristic potentials, hence several species can often be determined simultaneously.  

A comprehensive treatment and discussion of the principles, instrumentation and 

applications of stripping voltammetry can be found in several monographs (Brainina and 

Neyman, 1993; Wang, 1994). Among the techniques employing a preconcentration step, the 

first to be developed has been anodic stripping voltammetry (ASV), which mainly applied to 

trace analysis of heavy metal ions using a hanging mercury drop electrode. The basis of ASV 

for metals is the electrolytic dissolution of a metal which previously had been deposited on a 

mercury electrode. The preconcentration is achieved by cathodic deposition at a controlled 

time and potential. In the following measurement step, the potential is scanned anodically and 

linearly.  
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In general, stripping voltammetric techniques have had enjoyed the reputation of 

being highly sensitive, selective and in many cases where it has been commercialized, fairly 

inexpensive as well as fairly easy to run. Additionally, the high accuracy and precision with 

the possibility of portable analysis with easy to operate and low cost instrumentation have led 

to the rapid expanding application of stripping voltammetry in food analysis as testified by 

the numerous publication on this subject in the last few years. Over the years, stripping 

voltammetric techniques have been shown to possess a great potential for the determination 

of trace and ultra-trace concentrations of toxic metals such as mercury, arsenic, antimony and 

uranium. Data on the ultra-trace background levels of lead and cadmium in raw agricultural 

crops by differential pulse anodic stripping voltammetry was reported by Stazger and his 

team. Furthermore, stripping voltammetric techniques, especially ASV method, were 

successfully utilized for the determination of these toxic metals content in various foodstuffs 

such as leafy vegetables, wheat and ricecommon table salt, liver and fish, infant formulas and 

canned soft drinks. 

Additionally electroanalytical data on the stripping voltammetric determination of 

toxic metals in food commodities, stripping voltammetric technique proved to be highly 

effective in analyzing various and irrigation water. The adsorptive stripping voltammetric 

(AdSV) technique has been used to develop a method for the determination of fenthion 

pesticide in olive oil after the extraction of fenthion by solid–liquid extraction procedure 

using silica cartridge (Alghamdi, 2010). Similarly adsorptive stripping voltammetric (AdSV) 

method has also been applied successfully on a mercury free sensor for the determination of 

the trace concentration of lead (Pb2+) assay based on chemical modification of screen-printed 

carbon electrodes (SPCEs) with acetamide phosphonic acid self-assembled monolayer on 

mesoporous silica (Ac-Phos SAMMS) (Yantasee et al., 2005.) the anodic stripping 

voltammetric (ASV) technique has been used for the Mercury-free sensors for lead (Pb2+) 

assay based on chemical modification of screen-printed carbon electrodes (SPCEs) with 

acetamide phosphonic acid self-assembled monolayer on mesoporous silica (Ac-Phos 

SAMMS). Recently, Zhuang et al. (2011) reported the applicability of gold microelectrode 

for electrochemical determination of trace copper ions (Cu2+) in water samples by anodic 

stripping voltammetry (ASV). Moreover, there are several published papers dealing with the 

application of stripping technique in the determination of environmental samples. 
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Figure 2.4 Typical current response for stripping voltammetry (Wang, 1985). 

 

2.4.2.3. Chronoamperometry 

 
Chronoamperometry belongs to the family of voltammetric step techniques which is 

potential-controlled technique. This electrochemical technique involves applying a constant 

potential and monitoring the change in current, I, with respect to time, t. the working 

electrode potential is suddenly stepped from an initial potential to a final potential, and the 

step usually crosses the formal potential of the analyte. The solution is not stirred. The initial 

potential is chosen so that no current flows (i.e., the electrode is held at a potential that 

neither oxidises nor reduces the predominant form of the analyte). Then, the potential is 

stepped to a potential that either oxidizes or reduces the analyte, and a current begins to flow 

at the electrode. The potential can be applied for a fixed period of time or until a desired 

charge is reached. Chronoamperometry have been commonly employed to determine 

solution-based physical parameters of electroactive analytes. Such parameters include the 

analyte diffusion coefficient (D), analyte concentration (C), and the electron transfer 

stoichiometry (n) of the redox reaction. In matrices such as aqueous solutions, the system is 

often well characterised and only one of these solution-based parameters is unknown. 

However, there are a significant number of instances where more than one solution-based 

parameter is unknown. Such examples include the determination of diffusion coefficients in 

thermo-sensitive hydrogel media, sol-gels, and polymer films (Petrovic et al., 2000). 
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Figure 2.5 Typical current response for chronoamperometry 
 (www.serotonin.ucla.edu/electroanalytical). 

 

2.5 Heavy Metals in the Environment 
 

Metal extraction is an important industry in our modern industrialised society. 

However, some of these anthropogenic activities such as mining can discharge metals to 

estuaries, rivers, streams, and lakes. Heavy metals are individual metals and metal 

compounds that can impact human health although certain are nutritionally essential for 

health and some are referred to be toxic. These metals become toxic when they are not 

metabolised by the body and accumulate in soft tissues. Eight common heavy metals are: 

arsenic (As), barium (Ba), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), selenium 

(Se), and Aluminium (Al) but among these only four that can be encountered as toxic i.e. Hg, 

Pb, Cd and Al. Although aluminium is not a heavy metal, it makes up about 8% of the 

surface of the earth and is the third most abundant and it is toxic. Scientist known Al as a 

significant neurotoxin and shares many common mechanisms with mercury as a neurotoxin 

(International Occupational Safety & Health Centre, 1999) These are all naturally occurring 

substances which are often present in the environment at low levels. In larger amounts, they 

can be dangerous and detrimental to aquatic and human health. Heavy metals can be 

determined using sensors based on both potentiometric and amperometric methods. A broad 

range of electrochemical techniques can be used for this purpose and some of the most 

commonly used, are described earlier in this chapter.   
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Heavy metals poisoning may often go unrecognised because of a failure to take a 

proper exposure history and can have harmful as well as beneficial effects (those naturally 

found in foodstuff). Contaminated river systems, coastal waters and other ecosystems by 

metals such as Pb, Cd and Hg do not only pose a health risk, but they also pose a threat to 

livelihoods and economies (Mehrvar et al., 2000).Both anthropogenic activities and natural 

phenomena can change the physical, chemical, and biological characteristics of water, and 

will have specific ramifications for human and ecosystem health in case of negative impacts. 

Water quality is affected by changes in nutrients, sedimentation, temperature, pH; and the 

presence of contaminants such as heavy metals, non-metallic toxins, persistent organics and 

pesticides, and biological factors, among many other factors (Carr and Neary, 

2008).Therefore, the monitoring of these contaminants in our water resources and aquatic 

environment has become important in recent decades with increased industrialisation. 

 

2.5.1 Impacts on the Aquatic Ecosystem 
 

Unsafe or inadequate water, sanitation, and hygiene cause approximately 3.1% of all 

deaths worldwide, and 3.7% of DALYs (disability adjusted life years) worldwide (WHO, 

2002). Data on threatened and endangered freshwater species vary by region, and are not 

encouraging in South Africa, where nearly two-thirds of freshwater species are threatened or 

endangered (Revenga et al., 2000). Nearly half of all amphibian species have experienced 

population declines and nearly a third face extinction. Metals dissolve in water and are easily 

absorbed by fish and other aquatic organisms. At small concentrations (trace levels) some of 

these metals can be toxic, especially if the metals undergo bioconcentration 

(orbiomagnification), which means that their concentration in an organism is higher than in 

water or sediment (or their habitual environment). Metal toxicity produces adverse biological 

effects on an organism’s survival, activity, growth, metabolism, or reproduction. Metals can 

be lethal or harm the organism without killing it directly. Adverse effects on an organism's 

activity, growth, metabolism, and reproduction are examples of sublethal effects (Wright and 

Welbourn, 2002).   
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There are several pathways by which this happens, in addition to diffusion into the 

bloodstream via the gills and skin; fish can be exposed by drinking water or eating sediments 

that are contaminated with the metal, or eating other animals or plants that have been exposed 

to the metal. Fish are more sensitive than algae to lead (Pb). When Pb concentrations exceed 

100 ppb, gill function is affected. Embryos and fry are more sensitive to the toxic effects of 

lead than are adults. Cadmium (Cd) effects on aquatic organisms are analogous to those in 

humans and include skeletal deformities and impaired functioning of kidneys in fish. Lead is 

more toxic at lower pH and in soft water (water with few or absolutely no dissolved minerals) 

(Taub, 2004; Wright and Melbourne, 2002). As is the case with other metals, the toxicity of 

Pb to fish depends in part on the species. Goldfish are relatively resistant because they can 

excrete Pb via their gills (Landis and Yu, 2003). Cadmium (Cd) is more toxic in freshwater 

than in saltwater because Cd combines with chlorides in saltwater to form a molecule that is 

less available from solution (Bradl, 2005; Wright and Welbourn, 2002). The mercury (Hg) 

found in fish and shellfish is most often in the more toxic organic form of methylmercury 

(MeHg), which may bioaccumulate in the food chain. 

The reaction takes place at the water-sediment interface and is facilitated by low pH 

and high dissolved organic carbon. Methylmercury dissolves well in water, crosses biological 

membranes, and persists in fatty tissues of organisms. In addition to bioconcentration, 

methylmercury undergoes biomagnification; each level of the food chain has higher tissue 

concentrations than its prey. Mercury levels at the top of the food chain are thousands or 

millions of times higher than in water or sediments. Mercury is of particular concern since the 

harmful effect of this metal to humans is well documented (Wright and Welbourn, 2002). 

 

2.5.2 Impacts on Human Health 
 

Generally humans are exposed to metals via analogous pathways, which include: (i) 

diffusion into the bloodstream via the lungs and skin; (ii) drinking contaminated water; (iii) 

eating contaminated food; and (iv) through inhalation (breathing) Working in or living near 

an industrial site that utilises these metals and their compounds increases ones risk of 

exposure, as does living near a site where these metals have been improperly disposed.  
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Subsistence lifestyles can also impose higher risks of exposure and health impacts 

because of hunting and gathering activities. Cadmium is known as a human carcinogen. 

Smokers get exposed to significantly higher cadmium levels than non-smokers. Severe 

damage to the lungs may occur through breathing high levels of cadmium vapours. The 

International Agency for Research on Cancer has classified cadmium as a category I (human) 

carcinogen (Bradl, 2005; Landis and Yu, 2003; Wright and Welbourn, 2002). Cadmium is 

also of concern as long-term, low-level ingestion is associated with kidney damage and can 

cause bones to become fragile and break easily (ATSDR, 2008). The most bioavailable and 

therefore most toxic form of mercury is the mercury combines with other elements to form 

organic and inorganic mercury compounds. Consumption of methylmercury, particularly by 

small children and pregnant women, can lead to developmental and neurological damage. In 

adults, it has been linked to coronary heart disease (Mozaffarian and Rimm, 2006). Inorganic 

mercury also poses a range of acute and chronic health effects, with long-term oral exposure 

to low amounts potentially leading to renal damage and immunological effects (U.S 

Environmental Agency, 1997).Other metals present in drinking water also pose serious health 

risks. Lead can affect every organ and system in the body. 

Long-term exposure of adults can result in decreased performance in some tests that 

measure functions of the nervous system; weakness in fingers, wrists, or ankles; small 

increases in blood pressure; anaemia and developmental damage to the foetus. Acute 

exposure can cause vomiting or death. While natural waters contain almost no lead, it can be 

leached into water supplies from distribution systems and pipes. Copper, while an essential 

mineral, can cause stomach irritation, nausea, vomiting, and diarrhoea in relatively high 

concentrations (ATSDR, 2004).  

 

2.6 Precious metals in the Environment 
 

Mining, industries, hospitals, and other medical institutions are known to release 

precious group metals (PGMs) into the environment, especially Pt, because it is used in anti-

cancer drugs and dentistry (Rauch et al., 2008; Sures et al., 2005). However, recent studies 

showed the increasing use of PGMs in vehicle catalytic converters; primarily platinum, 

palladium and rhodium.   
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Although the use of catalytic converters has been extremely successful for the 

improvement of urban air quality, it has been shown that particles of PGMs are being 

deposited alongside roadways as a result of abrasion and surface deterioration of the catalyst 

and on adjacent vegetation and soil, and in water bodies either directly, or through run-off (Wei 

and Morrison, 1994).This deposition is leading to increasing concentrations of PGMs 

dramatically over the past two decades, raising concerns about the environmental impact and 

toxicity of these elements in living organisms (Caroli et al., 2000; Palacios et al., 2000; 

Petrucci et al., 2004; Gomez et al., 2002; Moldovan et al.,2002). 

Barbante et al. (2001) have roughly estimated that the annual Pt emission only from 

catalytic converters may be 0.5 - 1.4 ton yr-1. These calculations are based on an emission 

factor of 65 - 180 ng km-1 from automobile sources and considering that there are about 500 

million cars worldwide equipped with catalytic converter and that the averaged mileage is 

about 15000 km per year. PGMs are becoming an emerging class of contaminants with 

potential human and environmental health implications, due to their suspected mutagenic and 

carcinogenic activities (Ravindra et al., 2004).  

Contaminants on land can be transported by rivers either in dissolved, colloidal or 

particulate form to estuaries and finally to coastal oceans, where they enter into the food 

chain and become concentrated in fish and other edible organisms (known as 

bioaccumulation), particularly in near-shore areas ( Essumang et al., 2008). 

 

2.6.1 Impacts on the Aquatic Ecosystem 
 

 Marine organisms take up metals from their environment, which then 

accumulate in their tissues. Analysis of trace metals in tissues of marine organisms is a tool 

employed in marine pollution studies (Darko, 2004).Measurement of PGMs of ecological, 

climatic, and anthropogenic changes underpins the formulation of effective management 

strategies for sustainable use and protection of the marine environment. Studies on PGMs in 

Ghana may serve as an early warning sign that has a direct bearing on vehicular flow. The 

levels of PGMs in organisms such as Sarotherodon melanotheron, Chonophoruslateristriga, 

Macrobrachium vollenhovenii, and Crassostrea tulipa have never been evaluated in Ghana, 

even though most developed countries do have the necessary data (Essumang, 2010).  
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Interestingly, these species are consumed in Ghana, which implies that the continuous  

consumption of these species may not exempt the consumers from all the possible negative 

health effects associated with PGMs. Essumang et al. (2010) measured the extent of Pt, Pd 

and Rh contamination in some aquatic biota species, e.g. blackchin tilapia (Sarotherodon 

melanotheron,Cichlidae), brown goby (Chonophoruslateristriga, Gobiidae), shrimp 

(Macrobrachium vollenhovenii,Palaemonidae), and mangrove oysters (Crassostrea 

tulipa,Ostreidae). The above biota is commonly found in estuaries and lagoons along the 

coastal belt of Ghana. Several studies have given an account on the increasing concentration 

of Pd in aquatic ecosystems. Several Pd compounds have been found to have antiviral, 

antibacterial and/or fungicidal properties. The Pd compounds that have been tested for effects 

on aquatic organisms have been found to be significantly toxic and in all cases the toxicity 

was similar to that of Pt. Platinum is a particular concern as it has known mutagenic and toxic 

effects, even at very low concentrations, which may be problematic if it’s present in urban air 

and urban water (affecting both ecosystem and human health) (Essumang et al., 2010). 

Suspected biomethylation of Pt in the aquatic urban environment gives a similar 

concern to that attached to mercury. Essumang (2010) conducted a first determination of the 

levels of platinum group metals in Manta birostris (Manta Ray) caught along the Ghanaian 

coastline. The analysis showed that Ghana’s coastline is fairly polluted with these platinum 

group metals (PGMs) (Essumang, 2010). 

 

2.6.2 Impacts on Human Health 
 

The general belief is that PGMs are harmless that stems from their chemical inertness. 

Conversely, their role as sensitizers in the evolvement of allergenic conditions such as: 

asthma, conjunctivitis, dermatitis, rhinitis, and urticaria have been thoroughly ascertained and 

found to be prevalent in workers exposed to these metals in processing plants (Rosner et al., 

1990). Palladium is said to have little environmental impact. It is present at low levels in 

some soils, and the leaves of trees have been found to contain approximately 0.4 mg.L-1 of 

this metal, with the specific source origin unknown but sometimes proposed to come from 

exhaust emissions (Moldovan et al., 2001; Gomez et al., 2002). Some plants, such as the 

water hyacinth, are killed by low levels of palladium salts but most plants tolerate it, although 

tests indicate that their growth is affected at levels above 3 mg.L-1.   
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There is no information on the effects of palladium emitted from automobile catalytic 

converters on the general population. Effects have been reported due to iatrogenic and other 

exposures A few case reports reported skin disorders in patients who had exposure to 

palladium-containing jewellery or unspecified sources. Palladium compounds are 

encountered relatively rarely by most people. All palladium compounds should be regarded 

as highly toxic and as carcinogenic. Palladium chloride is toxic, harmful if swallowed, 

inhaled or absorbed through the skin. It causes bone marrow, liver and kidney damage in 

laboratory animals. Irritant, however palladium chloride was formerly prescribed as a 

treatment for tuberculosis at the rate of 0.065 g per day (approximately 1 mg kg-1) without 

too many bad side effects (Shamspur, 2012). 

 

2.7 Modified Electrode Surfaces for Stripping Voltammetry 
 

Sensors based on modified electrodes have been the focus of research in the last two 

decades, since having desirable properties; they have been designed to interact with specific 

pollutants (Horáceket al., 2000). Chemically modified electrodes are still in the early stages of 

their lifetime, such preparation of structured interfaces holds great promise for the task of 

environmental monitoring. Among the carbon-based electrodes that can be modified not only on 

the surface but also in bulk during their preparation, carbon paste electrodes (CPE) and screen-

printed carbon electrodes (SPCE) belong to the most frequent choice. For modifications, various 

organic and inorganic compounds can be employed, including metal oxides that are preferably 

used as bulk modifiers and mediators in the configurations of biosensors (Svobodova et al., 

2012). Chemically modified electrodes (CME) are different from classical (bare) electrodes in 

that the electrode surface is altered by immobilizing molecules in a rational fashion so that 

the electrode thereafter displays new properties. Drawbacks of bare electrodes, such as 

adsorption of molecules or ions, unpredictable surface reactivity and sluggish kinetics can be 

overcome by modifying the electrode surface. Basically, the modification of an electrode 

involves immobilisation (on its surface) of reagents that change the electrochemical 

characteristics (and or properties) of the bare electrode surface. Inclusion of reagents within 

the electrode matrix (e.g. carbon paste) is another attractive approach for modifying 

electrodes. Such manipulation of the molecular composition of the electrode thus allows one 

to tailor the sensor response to meet specific sensing needs.   
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There are different directions by which the resulting modified electrodes can benefit 

environmental analysis, including acceleration of electron-transfer reactions, preferential 

accumulation or perm-selective transport (Wang, 2006). 

 There are numerous techniques that may be used to modify electrode surface. A few 

are listed and described below: 

(i) Electrocatalysis: The objective of electrocatalysis is therefore to provide an 

alternative pathway with lower activation energy and hence to permit such electrode reaction 

to occur at high current densities close to the equilibrium potential. At a modified electrode is 

usually an electron transfer reaction between the electrode and some solution substrate which, 

when mediated by an immobilized redox couple (i-e., the mediator), proceeds at a lower 

overpotential than would otherwise occur at the bare electrode. This type of mediated 

electrocatalysis process can be represented by the scheme in figure 2.8: Such catalytic action 

results in faster electrode reactions at lower operating potentials. Various catalytic surfaces 

have thus been successfully employed for facilitating the detection of environmentally-

relevant analytes (with otherwise slow electron-transfer kinetics). These include the 

electrocatalytic determination of hydrazines or nitrosamines at electrodes coated with mixed-

valent ruthenium films, monitoring of aliphatic aldehydes at palladium-modified carbon paste 

films, sensing of nitrite at a glassy carbon electrode coated with an osmium-based redox 

polymer film, or nitrate at a copper modified screen printed carbon electrode for monitoring 

of organic peroxides at cobalt-phthalocyanine containing carbon pastes, and of hydrogen 

peroxide at a copper heptacyanonitrosylferrate- coated electrode surface (Wang, 2011). 

 

 

Figure 2.6. Electrocatalysis at modified electrodes; electron transfer mediated reaction between the 
target analyte and surface-bound catalyst (Wang, 2000). 
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In this scheme, the substrate is irreversibly (or quasi-reversibly) reduced at the bare 

electrode, which is transported across the film-solution interface (partition coefficient) and 

diffuses into the film membrane.  

The electrocatalyst or mediator undergoes heterogeneous electron transferat the 

electrode surface and charge propagation through the film is described by a rate given by the 

charge-transport diffusion coefficient  The mediator undergoes homogeneous electron 

transfer with the substrate in the film. 

(ii) Drop-dry Coating: (solvent evaporation) or a few drops of polymer, modifier or 

catalyst are dropped onto the electrode surface and left to stand to allow the solvent to dry 

out, to obtain a modified electrode surface (Diab, 2005). 

(iii) Dip- dry coating: the electrode is immersed in a solution of the polymer, modifier 

or catalyst for a period sufficient for spontaneous film formation to occur by adsorption. The 

electrode is then removed from solution and the solvent is allowed to dry out (Deng et al., 

2006). 

(iv) Pre-concentration: the modified electrodes can also be useful for environmental 

sensing. In this case an immobilised reagent (e.g. ligand, ion-exchanger) offers preferential 

uptake of target analytes. This approach enjoys high sensitivity because it is a pre-

concentration procedure. A second major advantage lies in the added dimension of 

selectivity, which is provided by the chemical requirement of the modifier-analyte 

interactions. Such improvements have been documented for the measurement of nickel, 

mercury, or aluminium ions at dimethylglyoxine, crown-ether or alizarin containing carbon 

pastes, respectively, monitoring of nitrite, chromium, or uranyl ions at ion-exchanger 

modified electrodes, and of copper at an algae-modified electrode (Hanrahan et al., 2004). 

(v) Composite: the electrode is prepared by simple impregnation of the bulk electrode 

material with a chemical modifier such as a methylphenylcarbinol (MPc) catalyst a good 

example is the popular carbon paste electrode (Chen et al., 2006). 

(vi) Spin coating: (or spin casting), a droplet ofa dilute solution of the polymer is 

applied to thesurface of a rotating electrode. Excess solution is spunoff the surface and the 

remaining thin polymer film isallowed to dry. Multiple layers are applied in the sameway 

until the desired thickness is obtained. Thisprocedure typically produces pinhole-free thin 

films (Pyun et al, 1997).  
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(vii) Electrodeposition: in this method the electrode surface is immersed in a 

concentrated solution (~10-3 mol L-1) of the polymer, modifier or catalyst followed by 

repetitive voltammetric scans. The first and second scans are similar, subsequent scans 

decrease with the peak current for example electrochemical deposition of poly (o-toluedine 

on activated carbon fabric (Sivakumar et al., 2005). 

(viii) Electropolymerisation: in this technique the electrode is immersed in a 

monomeric polymer, modifier or catalyst solution and layers of the electropolymerised 

material builds on the electrode surface, applying repeated cycling in a specific potential 

window. Generally, the peak current increases with each voltammetric scan such that there is 

a noticeable difference between the first and final scan indicating the presence of the 

polymerised material, for example electropolymerisatin of aniline (to form polyaniline) on a 

platinum electrode (Somerset et al., 2006). 

(ix) Langmuir-Blodgett Technique: this technique involves transferring the 

monolayer or multilayer film formed at the air-water interface onto the electrode surface 

Generally LB film form balancing the interactions at the polymer –water, air-water and 

polymer air interfaces (Wagner and Remmers, 1995).The resulting film is very well ordered, 

single layered and the range of molecular thickness. 

(x) Chemisorption: in this method the chemical film is strongly and ideally 

irreversible adsorbed (chemisorbed) onto the electrode surface electrode using a self-

assembled monolayer, usually a thiol-containing compound on a gold electrode surface 

(Somerset et al., 2007). 

(xi) Covalent reactions: can be used for analogous collection or determination of 

organic analytes, e.g. monitoring of aromatic aldehydes at amine-containing carbon pastes. 

Routine environmental applications of these pre-concentrated electrodes would require 

attention to competition for the surface site and the regeneration of an ‘analyte-free’ surface. 

Another promising avenue is to cover the sensing surface with an appropriate permselective 

film. Discriminative coatings based on different transport mechanisms (differentiating with 

analyte size, charge, or polarity) can thus be used for addressing the limited selectivity of 

controlled-potential probes in complex environmental matrices.  
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The size-exclusion sieving properties of various polymer-coated electrodes offer 

highly selective detection of small hydrogen peroxide or hydrazine molecules. In addition, 

surface passivation (due to adsorption of macromolecules present in natural waters) can be 

prevented via the protective action of these films (Wang, 2011). 

More powerful sensing devices may result from the coupling of several functions 

(permselectivity, pre-concentration or catalysis) onto the same surface. Additional advantages 

can be achieved by designing arrays of independent modified electrodes, each coated with a 

different modifier and hence tuned toward a particular group of analytes. The resulting array 

response offers a unique fingerprint pattern of the individual analytes, as well as multi-

component analysis (in connection with statistical, pattern-recognition procedures). Use of 

different perm selective coatings or catalytic surfaces thus holds great promise for multi-

parameter pollution monitoring. The development and application of electrochemical sensor 

arrays has been suggested with the use of this technique (Wang, 2011). 

Recently related to this process are new molecular devices based on the coverage of 

interdigitated micro-arrays containing conducting polymers. Eventually we expect to see 

molecular devices in which the individual components are formed by discrete molecules. 

Modification of miniaturised screen-printed sensor strips can also be accomplished via the 

inclusion of the desired reagent (e.g. ligand, catalyst, etc.) in the ink used for the micro 

fabrication and manufacturing process (Hanrahan et al., 2004). 

 

2.7.1 Polymer Films 
 

Polymer thin films play an important role in the development of electronic devices, 

passivation coatings, and chemical and biological sensors. However, in order to improve 

device and system performance and to meet future demands, new approaches are needed to 

grow thin films on wafer surfaces or small component Depending on the particular 

application, one may want to deposit films containing single or multilayer structures of 

different organic or polymeric materials, homogeneous composite materials, or materials with 

graded compositions.   
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In many situations, it will be necessary to deposit these materials discretely, achieve 

conformal coverage, and provide highly uniform films, especially with regard to surface 

coverage and thickness control areas with accurate thickness control. Polymers have been 

very popular modifiers and many papers on polymer modifications are available. The 

polymer film can be organic, organometallic or inorganic; it can already contain the desired 

chemical modifier or that chemical can be added to the polymer in a second, functionalizing 

step; and can contain the equivalent of a few up to many thousands of monomolecular layers 

of the chemical modifier. Included in this form of modification are the substrate-decoupled 

surface adsorption monolayer’s SAMs in which adsorbate molecules are arranged on the 

electrode surface independently of any substrate structure. Unfortunately, since polymers 

have molecular weight distribution and the structures are heterogeneous, it is difficult to 

control the functions of the modified layer at the molecular level. Furthermore, it is 

impossible to discuss the mechanism of electron transfer and functions quantitatively. A 

higher order structure can be controlled better if the electrode surface is modified by 

sequential deposition of monolayer of functional molecules. In this case, it is much easier to 

discuss the relation between structure and function of the modified surface at the molecular 

level. Polymerization reactions can proceed by various mechanisms using various initiators. 

For addition polymerization of single compounds, initiation of chains may occur via radical, 

cationic, anionic or coordination-initiators, but some monomers will not polymerize by more 

than one mechanism Copolymerisation of several monomers can lead to multifunctional 

polymers also suitable for the preparation of patternable thin organic films. A work so called 

“terpolymer” concept was developed, where film forming monomers were combined with 

monomers which allow for surface anchoring and those which allow surface patterning by 

lithographic methods. By this method the fabrication of diazosulfonate terpolymers (Braun et 

al., 2002) was demonstrated which allowed to be covalently attached as thin films to glass 

and silicon substrate after spin-coating. The Langmuir-Blodgett (LB) method has been the 

most popular technique to form mono- and multilayers of assembled molecules on solid 

surfaces (Ngu et al., 1997). The LB method has been applied to form many kinds of devices 

such as electric insulators and semiconducting thin layers and also has received strong 

attention as one of the techniques to construct organised molecule structures for molecular 

and biomolecular devices.  
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However, a monolayer formed by the LB method adsorbs on solid substrates only 

physically and therefore, are usually not stable. Recently, a new approach for the formation 

of oriented stable monolayer’s, namely the self-assembling method, has been employed by 

many research groups. In the case of the self-assembling method, molecules that have long 

hydrocarbon chains chemisorbs on a solid surface by making covalent bonds with atoms on 

the solid surface and self-assembling with high structural order. For example, it was reported 

that molecules with terminal trichlorosilyl or trimethoxysilyl groups form self-assembled 

monolayer by reacting with hydroxyl groups on a silicon surface. Similarly, there are many 

reports of self-assembled monolayer formation of thiols on gold surfaces (Salingueet al., 

2009). Some attempts have also been made to form multilayer films by sequential deposition 

of self-assembled monolayer. Although many efforts have been made towards the 

characterisation of self-assembled monolayers of unsubstituted alkanethiols on gold, only a 

few reports are available on the attempt to make functional monolayers on the surface. 

Rubinstein and co-workers have constructed the self-assembled monolayer of 2,2´-thiobis 

(ethy1 acetoacetate) on gold and found that the monolayer showed the ionic recognition and 

ion-selective responses. Recently, Chidsey and co-workers have shown that stable 

monolayers of ferrocene-terminated alkanethiols can be formed by co-adsorption of 

ferrocenylalkanethiol and an unsubstituted alkanethiol on the electrode surface. They further 

studied the electrochemical behaviour of the monolayers and proposed a model to explain the 

adsorption and electrochemical behaviour of the mixed monolayers. In both reports, ester 

type compounds were mainly used to form the monolayers, although it is also reported that 

self-assembled monolayers in which alkanethiols are directly linked to the non-polar 

ferrocene group, can be employed as well (Uosaki et al., 1991). 

 

2.7.2 Biosensors 
 

The remarkable specificity of biological recognition processes has led to the 

development of highly selective biosensing devices. Biosensors and bioanalytical sensors 

appeared well suited to complement, standard analytical methods for a number of 

environmental monitoring applications.   
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The definition for a biosensor is generally accepted in the literature as a self-contained 

integrated device consisting of a biological recognition element (enzymes, antibody, receptor, 

DNA or microorganism which is interfaced to a chemical sensor (i.e. analytical device) that 

together reversible respond in a concentration dependent manner to chemical species. 

Enzymes are still the most appropriate recognition elements because they combine high 

chemical specificity and inherent biocatalytic signal amplification. 

The use of biosensor for environmental applications has been reviewed in considerable 

detailed (Thevenot et al., 2000). Many studies are focused on enhancing the electrochemical 

properties of electrodes through the modification of the working electrode and improving the 

efficiency of enzyme immobilization (Artyukhin et al., 2004; Katz & Willner, 

2004).Different recommendations were postulated for defining and describing the 

characteristic effect on biosensors performance. Some properties and characteristic 

behaviours of ideal biosensors were evaluated accordance with the IUPAC protocols or 

definitions (Andreescuet al., 2004; Daniel et al., 1999), which include selectivity, response 

time, and linear range, limit of detection, reproducibility, stability and lifetimes. Zhang et al. 

(2008) described a controllable layer-by-layer self-assembly modification technique of multi-

walled carbon nanotubes and poly (diallyldimethylammonium chloride) on glassy carbon 

electrode and introduced a controllable direct immobilization of acetylcholinesterase on the 

modified electrode. Some authors propose the use of organic conducting polymers as the 

enzyme-hosting matrix for biomolecules, due to its advantages of permitting a facile 

electronic charge flow through the polymer matrix, easy preparation, high conductivity and 

good stability (Njagi & Andreescu, 2007; Vidal et al., 2003). Recently, nanoparticles, 

specially the gold nanoparticles have been extensively used owing to their extraordinarily 

catalytic activity, good conductivity and biocompatibility. Also, gold nanoparticles and 

polymers can be assembled to act as an immobilization matrix of AChE (Willner et al., 

2006). Figure 2.9 shows a schematic representation of biosensor setup.  
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Figure 2.9 Schematic principle of operation of a biosensor (Borgmann et al., 2011) 
 

2.7.3 Carbon Paste Electrodes 
 

Its inspiring history, illustrating advantages for electrochemistry as a whole and 

revealing numerous connections with the current research trends, can be viewed as the 

driving force for the use of thin metal films. Moreover, their use is driven by low cost of the 

measurements, wide working potential window in both positive and negative direction, ease 

of working surface renewal, low background currents and reasonable repeatability. Since 

2001, several new reviews appeared covering the monitoring of environmental carcinogens 

with the use of CPE (together with other types of electrodes) (Barek et al., 2001), and 

amperometric biosensors for environmental samples (Vytras et al., 2009). In comparison, 

carbon materials are more significant. Their structures, physicochemical characteristic and some 

other specific features are decisive factors for the electrochemical properties of the electrode. So 

they have been paid much attention. From the early era of CPEs up until now, the most often 

selected carbon material is graphite powder (GP) with particles in the low micrometric scale 

(Svancara et al., 2009).  
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2.7.4 Thin Metal Films 
 

Thin metal-film electrodes have become widespread in electrochemical stripping 

analysis due to their relatively simple fabrication and surface regeneration when combined 

with advanced electrochemical stripping protocols (Wang, 2006). They also offer almost 

unsurpassed analytical tools in terms of reliability, simplicity and flexibility. In the last six 

decades mercury (Hg) electrodes were the most extensively used for electrochemical 

stripping analysis of several metal ions and some selected organic species. However, due to 

the toxicity of Hg many other electrode materials have been suggested as substitutes for 

mercury, e.g. different modifications of carbon, gold, platinum, silver, iridium, several alloys 

and amalgams etc.Somerset et al., 2010). Nevertheless, the aforementioned metal substitutes 

struggles to reach mercury’s excellent electro-analytical performance (Wang et al., 2001). A 

decade ago, the bismuth film electrode was introduced and has proved to be a convenient 

alternative to its Hg counterpart. However, due to strict regulations and provisions concerning 

the use of mercury, there are still considerable efforts focused on new mercury–free electrode 

materials, which can be satisfactorily applied in modern stripping electroanalysis (Wang et 

al., 2000; Hutton et al., 2005).Recently, the in situ prepared antimony film electrode (SbFE) 

was suggested as another alternative that approaches the electroanalytical performance of 

mercury- and bismuth-based electrodes featuring some interesting characteristics, such as 

favourably negative overvoltage of hydrogen evolution, wide operational potential window, 

convenient operation in relatively strong acidic medium (pH ≤ 2), and interestingly low 

stripping signal for antimony itself (Hocevar et al., 2007; Tesarova et al., 2009). 

 

2.8 Nanomaterials 
 

Developments in nanotechnology has driven the search for nanoparticles (NPs) in the 

1 to 100 nm range that can be synthesized in a variety of shapes of which the most commonly 

prepared are spheres, rods, cubes, triangles and ellipsoids. Several reviews have addressed the 

synthesis and properties of different NPs (Niemeyer et al., 2001; Grieve et al., 2000: Gupta et 

al., 2005).  
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In this thesis I will use the following definition of nanomaterial, as defined by the 

Royal Society: “Nanomaterials are notable for their extremely small feature size in the range 

of 1-100 nanometers (nm) and have the potential for wide ranging industries” (The Royal 

Society & The Royal Academy of Engineering, 2004). Nanomaterials can also be metalic, 

ceramic, polymeric, or composite materials. The field of nanomaterials has seen a huge 

increase in funding from private enterprises, government and academic researchers to provide 

more information on the synthesis, properties, application and environmental behavior of 

these materials. 

An important application of NPs is at the field of electrochemical sensors and 

biosensors. Other types of NPs, also known as quantum dots (QDs) have been used for 

constructing electrochemical sensors and biosensors that play different roles in the 

immobilisation of biomolecule, the catalysis of electrochemical reactions, the enhancement of 

electron transfer between electrode surface and proteins, labeling of biomolecules, and even 

acting as reactant in different sensing systems (Luo et al., 2005). 
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Figure 2.7 Illustration of the application of nanotechnology (From.Nano Science and Technology 
Consortium). 

 

The above Figure 2.10 shows the applications of nanotechnology to various fields. 

Nanotechnology often brings together different disciplines and this interdisciplinary approach 

is expected to contribute to innovations that might solve many of today’s challenges in 

society. A selection of the applications involving nanomaterials (NMs) that exist or show 

promises are presented here. The cosmetic companies have been active in using 

nanotechnology to improve their existing products, e.g. L’Oreal holds a very high number of 

nanotechnology patents (Wood et al., 2003). Recently, nanomaterials evolve as promising 

alternatives for enzyme modulation. Nanomaterials provide large surface areas for 

biomolecule adsorption and can be engineered to present multiple surface functional groups 

for interacting with biomolecules, such as enzymes and/or their substrates. Fluorescent dyes, 

have been also reported in the use for optical sensors. 

Cai et al. (2004) reported an electrochemical methodology that enables the rapid 

identification of different DNA sequences using a microfabric electrode. The use of NPs as 

fillers has been introduced in the field of composite materials with a current enormous market 

that is still expanding. Nanoparticles have become known to change a material’s properties, 

e.g. metal gets harder, ceramics get softer and mixtures like alloys may get harder up to a 

point where they get softer again.   
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By introducing clay nanoparticles it is possible to make the materials stronger, lighter, 

more durable and often transparent. These properties of NPs have also increased their 

potential use in the aerospace industry, packaging and in car manufacturing where they 

already have been introduced in the General Motor’s(GM) Safari and Chevrolet Astro vans 

(Wood et al., 2003). Other short-term uses includes solar energy collection (photovoltaic’s), 

medical diagnostic tools and sensors, flexible display technologies and e-paper, glues, paints 

and lubricants, various optical components, and new forms of computer memories and 

electronic circuit boards (Twist, 2004).  

There have also been smart textiles developed with the help of nanotechnology and in 

the long run textiles are expected to be able to change their physical properties according to 

the surrounding conditions, or even monitor vital signals (Holister, 2002). The introduction of 

NPs in textiles can make it possible to produce very light and durable textiles with resistance 

against water, stains and wrinkling.  

Medical applications are one of the fields with the biggest expectations regarding 

human welfare. With the development of new materials and a combination of 

nanotechnology and biotechnology, it could become possible to make artificial organs and 

implants through cell growth that could repair damaged nerve cells, replace damaged skin, 

tissue or bone (Wood et al., 2003). Furthermore, in the synergy of information technology 

and medicine there are expectations for advancement in the field of diagnostic instruments 

for personal health monitoring, providing ultra-fine precision and quick response time to 

diagnostic tests. Another application in the field of medicine is drug-delivery, where research 

is especially intensive on the possibility of manipulating NPs to assist in drug delivery in 

order to have a better solubility and absorption potential than in the case of bigger particles. It 

is hoped that NPs can assist in carrying the drug and perhaps release it in fine-tuned doses 

over a longer time period to a targeted area, reducing the side-effects of traditional drug 

applications (Duncan, 2003; Ferari, 2005). Although there is a considerable amount of data 

on toxicity of NPs, and the assumptions that a lot of effects by Particulate matter are driven 

by the ultra-fine particle fraction in it (De Jong and Borm, 2008.).  
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2.8.1 Carbon Nanotubes 
 

CNTs are considered as a new form of pure carbon and they can be visualized as 

rolled hexagonal carbon networks that are capped by pentagonal carbon ring. Carbon 

nanotubes (CNTs) are divided into two classes, e.g. single walled (SWCNTs) and multi-wall 

carbon nanotubes (MWCNTs). Multiwalled carbon nanotubes are potentially more attractive 

electrode materials. Generally, MWCNTs have larger diameters and better electrical 

conductivity compared to SWNTs. Chen et al (2000) indicated that MWNTs films also show 

large specific capacitance while other studies indicated that MWNTs have a fast electron 

transfer rate for various redox reactions. In a typical CNT-based device, nanotubes connect 

two metal electrodes and the conductance between them can be measured as a function of 

gate bias voltage.  

From the chemistry point of view, carbon nanotubes (CNTs) are extremely promising 

electro-catalysts because of their significant mechanical strength, excellent electrical 

conductivity, high surface area and good chemical stability (Salimi et al., 2008). 

Functionalization of carbon nanotubes with various kinds of materials is gaining more 

attention as the different properties of the attached functionalities are required for specific 

applications (De la Torre et al., 2003; Rubianes & Rivas, 2003). Electrodes that are CNTs-

based have shown selective affinity for phosphate groups (Deo et al., 2005; Li et al., 

2005).The images of the nanosized carbon filaments were regarded to be of multi-walled 

tabular nature but, unfortunately due to the cold war, Russian scientists, publications were not 

easily accessible. Therefore it is argued that, maybe they should be credited with the 

discovery of nanotubes. However it is worth mentioning, The first mention of the possibility 

of forming carbon filaments from the thermal decomposition of gaseous hydrocarbon 

(methane) was reported in 1889 i.e., more than a century ago in a patent that proposed the use 

of such filaments in the light bulbs, that had been presented by Edison at the Paris Universal 

Exposition the same year (Monthioux et al., 2006). 

The first group to report the use of CNTs in electro-analysis was Britto and co-

workers in 1996. Using a carbon nanotube paste electrode with bromoform as the binder, the 

electrochemical oxidation of dopamine was explored (Britto, et al., 1996). The concept of a 

carbon nanotube paste electrode was later adapted by Valentini et al. (2003).   
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However, the explosion of interest in CNTs in the early 21st century for use in 

electro-analysis can be traced back to the work pioneered by Professor Joe Wang, whilst at 

New Mexico State University, USA who observed the low-potential stable NADH detection 

at a CNT-modified glassy carbon electrode (Banks and Compton, 2006).It is interesting to 

note that observation of hollow fibers with nanometre dimensions were documented by 

Swedish scientists (Hillert and Lange) as early as 1958. But the renewal of interest in the 

field has suddenly broken out in 1991 from the famous Japanese microscopic Ijima 

publication who was studying the material deposited on the cathodic during the arc- 

evaporation synthesis of fullerenes (Iijima, 1991). In fact, Iijima`s “rediscovery” was at the 

back of a couple of “carbon nanotube” related reports. Wiles and Abrahamson grew fine 

fibres as small as 4 - 100 nm in diameter (viz nanotubes) on graphite and carbon anodes, the 

discovery of carbon nanotubes was attributed to Iijima (Fernandez-Abedul et al 2007). 

Iijima and Ichihashi (1993) were unquestionable the first to discover single- walled carbon 

nanotubes Later that year, Yacaman et al. (1993) used a new technique known as chemical 

vapour decomposition (CVD) to report the catalytic growth of CNT and later Smalley and co-

workers (Thess et al., 1996)reported the synthesis of bundles of aligned SWCNT by use of a 

laser-ablation technique. From these discoveries and other advances made, CNTs are 

commonly categorised as either SWCNTs or MWCNTs. However, today it is possible to also 

have double-walled CNTs (Liu et al., 2008). Single walled nanotubes (SWCNTs) consist of a 

single sheet of graphene rolled up to form a cylinder with diameter of order of few 

nanometres and length up to centimetres. Double-wall carbon nanotubes (DWCNTs), formed 

by two concentric single-wall behave similarly to single-wall carbon nanotubes but they have 

unique properties suitable for specific applications. Multi-walled nanotubes (MWCNTs) 

consist of an array of such cylinders formed concentrically and separated by ~0.35 nm, a 

value similar to the basal plane separation in graphite.Another way to classify carbon 

nanotubes is how the graphene sheet is rolled up. If you roll-up a graphene sheet you can 

characterize the NT structure with a pair (n,m) of integers. The illustration of the unrolled 

honeycomb lattice of a nanotube is shown in Figure 2.11a while the molecular models of the 

rolled up are presented in figure 2.11b. In Figure 2.11b graphene sheet can be rolled more 

than one way, producing different types of carbon nanotubes. The three main types are 

armchair, zigzag, and chiral as shown in Figure 2.11(Osman et al., 2001).  
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Figure 2.11(a) The unrolled honeycomb lattice of a SWNTs (b) Roll- up molecular models of SWNTs in 
different chiralities Nanotube (Odom et al 1998). 

 
A SWNT can be described as a single layer of a graphite crystal rolled up into a 

seamless cylinder, one atom thick, usually with a small number (perhaps 10–40) of carbon 

atoms along the circumference and a long length (microns) along the cylinder axis. A 

nanotube's chiral angle, the angle between the axis of its hexagonal pattern and the axis of the 

tube determines whether the tube is metallic or semiconducting. Theoretical studies on the 

electronic properties of carbon tubules indicate that all armchair tubules are metallic, as well 

as zigzag cylinders exhibiting values of n, m multiples of three (Yu & Liu, 2007). 
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2.8.2 The Gold Nanoparticle 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.12 Solutions of gold nanoparticles of various sizes. The size difference causes differences in 
colour (nanotechnology eLearning centre, 2012). 

 

Generally, gold nanoparticles are produced in a liquid (“liquid chemical methods”) by 

reduction of chloroauric acid (HAuCl4), although more advanced and precise methods do 

exist. The solutions of different intensities of colloidal gold nanoparticles can be observed by 

the change in colour since small nanoparticles of gold are red (Somerset et al., 2011). Gold 

nanopartciles (AuNPs) have shown great potential for applications in the fields of chemistry, 

physics, materials, biology, medicine, and related interdisciplinary fields (Yhang et al., 

2008). Zhou et al. (2008) reported a method to detect copper (II) by azide- and alkyne-

functionalized AuNPs based on the fact that the extinction efficient of AuNPs is several 

orders of magnitude larger than those of traditional organic chromophores. The 50 µM 

minimum concentration sets the record for detection of Cu2+ by the naked eye. Sugunan et 

al., (2005) reported a novel strategy for using gold nanoparticles capped with chitosan for 

sensing ions of heavy metals.   
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Another exciting finding is that AuNPs have shown potential in therapies for HIV by 

attaching multiple copies of a low acting HIV drug onto AuNPs. Bowman et al. (2008) have 

stopped HIV from infecting human white blood cells with the application of their discovery. 

The results demonstrated that we may find a simple strategy to convert therapeutically poorly 

active monovalent small organic molecules into highly active drugs by just conjugating them 

to AuNPs (Bowman et al., 2008). Recently, Lung et al.(2007) reported the preparation of 

AuNPs by arc discharge in water as alternative, cheap effective and environmentally friendly 

methods. Currently the synthesis of novel AuNPs with unique properties and applications in a 

wide variety of areas is subjected of substantial research (Panda and Chattopadhyay, 2007; 

Luo and Sun, 2007 Liang et al., 2007). The catalytic, optical, electrical, magnetic, and 

electrochemical properties that are exhibited by AuNPs have made them an integral part of 

research in Nanoscience. The attractive physiochemical properties of AuNPs are highly 

affected by its shape and size (Burda et al., 2002). 

Ouacha et al. (2005) reported the laser assisted growth of AuNPs and concluded that 

this is a powerful method for controlling the shape of the AuNPs irrespective size. On the 

other hand, size and properties of AuNPs are highly dependent on their preparation 

conditions (Miscoria et al., 2005; Cuenya et al., 2003). Synthesis of AuNPs of different 

shapes and sizes has also been reported by Dos Santos et al.(2005). Some recent publications 

reported the use AuNPs based microfluid for a detection of mercury (Lafleur et al., 2012). 

In conclusion it can be said that gold nanoparticlehave emerged as a new class of 

inexpensive material which attracted intensive attention in many fields of science. A rapid 

highly sensitive method uses gold nanoparticles, has been developed by Oak Ridge National 

Laboratories (ORNL), modified and positively charged by an amine group, to identify 

hazards such as perchlorates, nitrates, and some radioactive materials as little as one minute 

of real time in ground water, surface water, soils, and plant (Gu, 2011). 
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Chapter 3 

 
Experimental Methods and Analytical Technique 

 

3.1 Introduction 
 

This chapter outlines the experimental techniques and procedures performed during this 

research project. A brief description of the electrochemical and spectroscopic techniques and 

some of the voltammetric methods will be presented. The proposed electrochemical sensors 

described in this work, constructed for the monitoring of heavy metals associated with 

precious metals would be sputtered thin film devices. These microelectrodes are based on 

material structures generated by thin metal film or conducting polymer deposition. The study 

design was based on the fabrication, characterisation and development of the desired sensors 

for heavy metals associated with precious metals, as analysed in environmental samples (not 

discussed here). 

 

3.2. Electro-Analytical Techniques 
 

In comparison to other instrumental methods of chemical analysis, electro-analytical 

instrumentation is relatively easy to miniaturise. Despite the difference in instrumentation, all 

electrochemical techniques share several common features. The main trends in modern 

electroanalysis include development of chemical and biochemical sensors based on progress 

in chemical and biochemical methods of molecular recognition, combined with the 

development of measuring devices of a large integration scale, including sensor arrays. This 

is accompanied by the use of new materials, including conducting polymers and 

nanomaterials. In most electrochemical detectors, such as amperometric and potentiometric 

detectors, their construction and application are based as surface detectors. They respond to 

substances that are either oxidisable or reducible and the electrical output results from an 

electron flow caused by the chemical reaction that takes place at the surface of the electrodes 

(Vickers, 2000). 
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3.2.1 Voltammetry Instrumentation
 

In voltammetry there are three important experimental parameters under our control: 

how we change the potential we apply to the 

the current, and whether we choose to stir the

dependent potential excitation signal to the working electrode (WE), changing its potential 

relative to the fixed potential

flows between the working and auxiliary electrodes. The auxiliary electrode (AE) is generally 

a platinum wire, and the reference electrode used in this study is Ag/AgCl electrode. In this 

study we have considered cyclic voltammetry, differential pulse voltammert and cathodic 

differential pulse stripping voltammetry modes. For the working electrode we have chosen 

platinum and carbon among several different materials

carried out using a PalmSens

program and accessories (Palm Instruments BV, 3992 BZ Houten, The Netherlands) 

interfaced to a microcomputer controlled by PS 2.1 software for data acquisition and 

experimental control. Alternatively, experiments were performed with an Epsilon 

electrochemical analyser (BASi Instruments, 2701 Kent Ave., West Lafayette, IN 47906, 

USA). Figure 3.1 represent basic instrument for voltammetry that have been used when this 

study was performed. 

 

 
Figure 3.1 Typical instruments for voltammetry .
http://www.bowdoin.edu/chemistry/instrumentation/cyclic
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Voltammetry Instrumentation  

In voltammetry there are three important experimental parameters under our control: 

how we change the potential we apply to the working electrode, when we choose to measure 

the current, and whether we choose to stir the solution. In this work we applied

dependent potential excitation signal to the working electrode (WE), changing its potential 

relative to the fixed potential of the reference electrode (RE), and measure the current that 

flows between the working and auxiliary electrodes. The auxiliary electrode (AE) is generally 

a platinum wire, and the reference electrode used in this study is Ag/AgCl electrode. In this 

we have considered cyclic voltammetry, differential pulse voltammert and cathodic 

differential pulse stripping voltammetry modes. For the working electrode we have chosen 

platinum and carbon among several different materials. All voltammetric measurements

carried out using a PalmSens handheld potentiostat / galvanostat, with the PS Trace 

program and accessories (Palm Instruments BV, 3992 BZ Houten, The Netherlands) 

interfaced to a microcomputer controlled by PS 2.1 software for data acquisition and 

Alternatively, experiments were performed with an Epsilon 

electrochemical analyser (BASi Instruments, 2701 Kent Ave., West Lafayette, IN 47906, 

represent basic instrument for voltammetry that have been used when this 

Typical instruments for voltammetry .( accessed on 20 October 2012) 
http://www.bowdoin.edu/chemistry/instrumentation/cyclic-voltammetry/index.shtml 

 

d precious metal toxicity evaluation using a horseradish peroxidase immobilised biosensor 

In voltammetry there are three important experimental parameters under our control: 

working electrode, when we choose to measure 

solution. In this work we applied a time-

dependent potential excitation signal to the working electrode (WE), changing its potential 

and measure the current that 

flows between the working and auxiliary electrodes. The auxiliary electrode (AE) is generally 

a platinum wire, and the reference electrode used in this study is Ag/AgCl electrode. In this 

we have considered cyclic voltammetry, differential pulse voltammert and cathodic 

differential pulse stripping voltammetry modes. For the working electrode we have chosen 

. All voltammetric measurements were 

handheld potentiostat / galvanostat, with the PS Trace 

program and accessories (Palm Instruments BV, 3992 BZ Houten, The Netherlands) 

interfaced to a microcomputer controlled by PS 2.1 software for data acquisition and 

Alternatively, experiments were performed with an Epsilon 

electrochemical analyser (BASi Instruments, 2701 Kent Ave., West Lafayette, IN 47906, 

represent basic instrument for voltammetry that have been used when this 
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3.2.1.1 Cyclic voltammetry (CV) 

 
Cyclic voltammetry (CV) is the common characterisation technique in voltammetry 

and is used to search of redox potential(s) which would characterise the electrode (Kissinger 

and Heineman, 1996). Cyclic voltammetry was employed in the process of characterising the 

working surface of the electrodes (unmodified and modified). The three-electrode cell 

consisted of a working electrode (either glassy carbon (GC), platinum (Pt) or a screen-printed 

carbon electrode (SPCE)), a platinum counter electrode and a silver-silver chloride 

(Ag/AgCl) reference electrode. Measurements were performed in a batch cell with all 

electrodes in a vertical position, suspended in a cell with 10 ml of buffer or an appropriate 

electrolyte solution. For the purpose of this study we complete a scan in both directions. In 

chapter 4 all the experiments were performed with an Epsilon electrochemical analyser, we 

first scan the potential from negative to positive values (-0.2 to 1.1 V) vs. Ag/AgCl with 

sensitivity of 10 mA and a scan rate of 60 mVs-1 while in chapter 5 and 6 a PalmSens 

handheld potentiostat was used at a slow scan rate of 0.01 V s-1 and the scanning potential is 

from positive to negate (+0.4 to -1.0 V) vs Ag/AgCl in chapter 5 and cathodic for chapter 6 

(0.8 to -1.4 V) vs Ag/AgCl.  

 

 
 
Figure  3.2 Schematic representation of cyclic voltammetry as an electro-analytical technique 
(en.wikipedia.org/wiki/cyclic_voltammetry). 
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3.2.1.2 Differential Pulse Voltammetry (DPV) 

 
Differential pulse voltammetry (DPV) is a technique similar to CV. In CV, the 

potential across the electrodes is varied linearly with time up and down, in cycles. In DPV, 

the potential across the electrodes is varied in a step pattern. The current is measured before 

and after each step, and the difference is returned This allows the charging current to be 

removed from the output, yielding a more accurate result than CV. Pulse voltammetry was 

developed to improve the sensitivity of voltammetric measurements. This is achieved by 

reducing the double layer capacitance to zero so that the current recorded is totally faradaic. 

There are several types of pulse voltammetry including normal, differential and square wave 

(Kissinger and Ridgway, 1996).  

 

 
Figure 8 Schematic representation of DPV as an electro-analytical technique (www.basinc.com). 

 
All the DPV experiments were performed in a PalmSens handheld potentiostat using the 

scanning potential from positive to negative (0.8 to -1.4 V) vs Ag/AgCl with the sensitivity in 

between the range of 1 µA – 10 mA and a scan rate of 0.05 mVs-1 in chapter 6, while in chapter 5 

we also applied the same parameters except the scanning potential was from 0.4 to -1.0 V. 
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3.2.1.3 Cathodic Stripping Votammetry (CSV) 

 
Cathodic stripping voltammetry is used to determine those materials that form 

insoluble salts with mercurous ion. In this study, the screen printed carbon working electrode 

has taken an active part in the formation of the deposit. The experimental design for cathodic 

stripping voltammetry has involved two steps. First, the deposition step involves the 

oxidation of the BiF electrode to Bi3+ which then reacts with the analyte in the presence of the 

chelating agent to form an insoluble film at the surface of the electrode. Bismuth film was 

formed by ex situ deposition on SPCE. In detail, the bismuth film was deposited from a 

separate acetate buffer solution (pH = 4.5) in the presence of dissolved oxygen, containing 

100 mg.L-1 Bi (III) by electrolysis at -1.0 V vs. vs Ag/AgCl for 300 s while stirring the 

solution. The electrode was washed with distilled water carefully, and transferred to a 20 mL 

electrochemical cell containing 0.01 M ammonium buffer solution. For example, when Cl– is 

the analyte the deposition step is: 

 

3Bi (l) + 2Cl (aq) - Bi3Cl2(s) + 3e-   (Eqn. 3.1) 
 

Second, stripping is accomplished by scanning cathodically toward a more negative potential, 

reducing Bi3+ back to Bi and returning the analyte to solution. 

 

 Bi3Cl2(s) + 3e- 3Bi (l) + 2Cl-(aq)   (Eqn. 3.2) 

 

A BiF/SPCE was dipped into a stirring 0.01 M ammonium buffer solution containing 

0.01 M DMG chelating agent prepared in ethanol and the desired concentrations of the 

selected PGMs. DPSV measurements were performed from 0.8 to -1.4 vs Ag/AgCl with a 

scan rate of 0.5 V vs Ag/AgCl, equilibrium time of 15 s, and a deposition time of 150 s. 

Electrochemical measurements were carried out in deoxygenated solutions, and were 

performed at room temperature. 
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3.2.1.4 Anodic Stripping Voltammetry (ASV) 

 
Anodic Stripping Voltammetry (ASV) involves a combination of a concentration step 

and a stripping step. The most voltammetric techniques employed in ASV are normal pulse 

(NPASV), differential pulse (DPASV) and square wave (SWASV) modes. Furthermore, 

ASV is also used to measure concentration in sub-parts per billion (sub-ppb) ranges. This 

method is normally employed for the detection of species with a positive charge such as 

positively charge metal ions and has been employed widely in stripping voltammetry of 

heavy metals in matrices. Anodic stripping voltammetry is very sensitive to experimental condi-

tions, which we must carefully control if our results are to be accurate and precise. Key variables 

include the area of the mercury film or the size of the hanging Hg drop, the deposition time, the 

rest time, the rate of stirring, and the scan rate during the stripping step. Anodic stripping 

voltammetry is particularly useful for metals that form amalgams with mercury. In deposition 

the working electrode behave as a cathode, allowing the metal ions to be reduced and 

deposited onto the electrode surface at a suitable fixed negative potential for a specific length 

of time (also called the deposition time) (Rodriguez et al., 2006).  

 

3.3 Solids or Metal Disc Electrodes 
 

Solid electrodes constructed using platinum, gold, silver, or carbon may be used over 

a range of potentials, including potentials that are negative and positive with respect to the 

SCE (Figure 3.4). For example, the potential window for a Pt electrode extends from 

approximately +1.2 V to –0.2 V versus the SCE in acidic solutions, and from +0.7 V to –1 V 

versus the SCE in basic solutions. A solid electrode can replace a mercury electrode for many 

voltammetric analyses that require negative potentials, and is the electrode of choice at more 

positive potentials. Except for the carbon paste electrode, a solid electrode is fashioned into a 

disk and sealed into the end of an inert support with an electrical lead (Figure 3.4). Solid 

electrodes are not without problems, the most important of which is the ease with which the 

electrode’s surface is altered by the adsorption of a solution species or by the formation of an 

oxide layer.  
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For this reason a solid electrode needs frequent reconditioning, either by applying an 

appropriate potential or by polishing. Electrodes based on carbon are currently widely used in 

voltammetric techniques because of their broad potential window, low back ground current, 

chemically inertness, and suitability for various sensing and detection applications (Wang, 

2000). These include the carbon paste electrode (CPE), glassy carbon electrode (GCE) and 

screen-printed carbon electrode (SPCE) (Figure 15). The working electrodes explored in this 

study included the platinum (Pt), glassy carbon (GC) and screen-printed carbon electrode 

(SPCE).  

 

 
Figure 3.4 Commonly used solid disc electrodes (BASi Instruments, USA). 

 

3.3.1 Carbon Paste Electrode (CPE) Construction 
 

The carbon paste electrode is made by filling the cavity at the end of the inert support 

with a paste consisting of carbon particles and viscous oil. The carbon paste electrode was 

prepared by thoroughly mixing 0, 6 ml of mineral oil and 2 g of graphite powder in a mortar 

and pestle to obtain a very fine paste. The resulting paste was squeezed into a polyvinyl 

chloride (PVC) tube of 3 mm inside diameter (ID), until a paste length of 6 cm was reached. 

The carbon paste was in turn connected to a copper electric wire (OD = 0.5 mm) to complete 

the measurement circuit. The carbon paste electrode was renewed by extruding 

approximately 0.5 mm of paste and cutting the outer paste layer with a sharp knife and 

polishing the surface on filter paper to produce a smooth shiny surface (Somerset et al., 

2007;Somerset et al., 2009). Figure 3.5 shows a diagram of carbon paste electrode. 
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Figure3.5 Illustration of carbon paste electrode  

 

3.3.2 Screen Printed Carbon Electrodes (SPCE) 
 

A typical screen-printed electrode is presented in Figure 3.6. Materials that is very 

useful for printing electrochemical sensors could be carbon-based inks because they have a 

very low firing temperature (20 - 120 0C) and can be printed on plastic substrate. Carbon ink 

can also be directly mixed with different compounds, such as a mediator and enzyme to 

produce a functionalised chemical or biosensor (Morrin et al., 2008).In this work the SPCEs 

used were purchased from BVT Technologies, Czech Republic. The sensor has a ceramic 

base and was produced as follows. In this work the surface of the SPCE was modified with 

bismuth film (BiF) for a particular application. The sensor is formed on a corundum ceramic 

base. On to this surface the working, the reference and the auxiliary electrodes are applied. 

The working and the auxiliary electrodes are made of variety of materials. At the end of the 

sensor there is a contacting field which is connected with the active part by the carbon 

conducting paths which are covered by a dielectric protection layer. A biochemically active 

substance can also be immobilised on the working electrode of the sensor to create a 

biosensor. 
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   (B)   (C) 
 
Figure 3.6 Commonly used screen printed electrodes, (A) carbon, (B) platinum and (c) Gold 
(www.dropsen.com, accessed on 1 August 2012). 

 

3.3.3 Glassy Carbon Electrode (GCE) Construction 
 

The usual electrode construction is as rod of glassy carbon, sealed into an inert 

electrode body, a disk of electrode material is exposed to the solution. Glassy carbon is 

produced by slowly baking a suitable resin at elevated temperatures until it is carbonized and 

then heating it to a very high temperature to cause vitriation. Vitreous carbon is relatively 

pure, mechanically strong, has good electrical properties and can be readily cleaned 

mechanically. It also performs particularly well when operated at a negative potential. Glassy 

carbon electrodes (GCEs) are preferable to carbon paste electrodes due to their inherent 

resistance to solvents. It is the most commonly used carbon electrode in electro-analytical 

application (Uslu and Ozkan, 2007). The cleaning of this electrode is important to maintain a 

reactive and reproducible surface. Pre-treated electrochemically GCE have increased oxygen 

functionalities that contribute to more rapid electron transfer. 
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3.4 UV-Vis Spectroscopic Characterisation 
 

A Thermo Scientific Helios Omega range UV-VIS spectrometer with vision PC 

Software was used for spectroscopic characterisation. The schematic diagram of a typical 

single beam UV-Visible spectrometer is given in Figure 3.7. .Ultraviolet–visible (UV-Vis) 

spectroscopy is a very useful analytical technique as it can be used to determine the amount 

of substance present in a sample. The absorption of UV-Vis energy gives rise to the 

electronic transition of occupied energy levels to unoccupied energy levels. More 

specifically, energy transitions from the highest occupied molecular orbital (HOMO) to the 

lowest unoccupied molecular orbital (LUMO). The UV-Vis radiation source has wavelengths 

in the range of 200 to 800 nm, with the UV range going from 200 - 400 nm and the visible 

range extending from 400 - 800 nm. In general, the radiation from the source was passed 

through a filter or a suitable monochromator to get a band or a monochromatic radiation. It 

was then passed through the sample (or the reference) and the transmitted radiation was 

detected by the photodetector. Typically, two operations were performed, first, the cuvette 

was filled with the reference solution and the absorbance reading from 200 - 1000 nm range 

was recorded. Second, the cuvette was taken out and rinsed and filled with sample solution 

and the process was repeated. The spectrum of the sample was obtained by subtracting the 

spectrum of the reference from that of the sample solution. The signal so obtained was sent as 

a read out or was recorded. The wavelength at which the maximum absorption occurs is 

known as λmax. At this fixed wavelength, the absorbance changes in accordance with 

concentration, since the absorbance is proportional to the concentration of the absorbing 

species given by the Beer-Lambert law (Mehta, 2012).For the purposes of this study, UV-Vis 

spectroscopy was employed to investigate the stoichiometry of PANI and PANI-co-PDTDA 

as conducting polymers. After electropolymisation, the sample were dissolved in N,N´-

dimethylformamide (DMF) and placed in 1 cm quartz cuvettes and their UV-VIS spectra 

recorded. The spectra were recorded in the region 200 - 1000 nm. The obtained spectra were 

then used to characterise the absorption bands and analyse the polymers samples for 

similarities and differences in structure (Somerset et al, 2010). 
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Figure 3.7 Schematic diagram of a single-beam UV-Vis spectrometer. 

http://www.files.chem.vt.edu/chem-ed/spec/uv-vis/singlebeam.html 
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3.5 FTIR Spectroscopic Characterisation 
 

Figure 3.8 represent the schematic diagram showing the three basic spectrometer 

components in FTIR spectroscopy. An interferometer is used to differentiate and measure the 

absorption component frequencies. It divides radiant beams and generates an optical path 

difference by detector. An interferometer produces interference signals which contain 

infrared spectral information generated after passing through a sample when IR beam is 

directed through the sample, the amplitude of set of waves are reduced by absorption if the 

frequency of set waves is the same as one of the charactereristic frequency of the sample. For 

the purpose of this study a Bruker IFS 66/S FTIR spectrometer was used to characterise all 

the polymer samples synthesised in this study. The polymer samples were prepared by 

electrodeposition on a Pt disc electrode, followed by dissolution from the surface of the 

electrode into a 5 ml DMF solution. This process was repeated several times to ensure 

enough polymer material were dissolved into DMF for characterisation. The FTIR spectra 

were recorded in the region 4000 – 100 cm-1.. This method allowed for characterisation of the 

vibrations in the molecules by measuring the absorption of light of certain energies that 

correspond to the vibrational excitation of the molecules from lower to higher states 

(Somerset et al., 2010).  
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Figure 3.8 Schematic diagram showing working of FTIR spectroscopy (www.macmillan.org.uk, 
2010). 
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Chapter 4 

 
Polymer Modified Electrode Surfaces 

 

4.1 Introduction 
 

In the year 2000, three scientists, A.J. Heeger, A.G. MacDiarmid and H. Shirakawa, 

were credited for the discovery and development of electrically conducting polymers and 

they were awarded the Noble Prize in Chemistry. A bizarre-looking and semi conducting 

polyacetylene was obtained by accidental addition of 1000 time’s excess of catalyst. This was 

a breakthrough in discovered of the conjugated polymers that created an entirely new field of 

chemistry. These polymers are comprised of carbon, hydrogen and simple hetero-atoms such 

as nitrogen and sulphur and contain π-conjugation across the polymer backbone. Typical π-

conjugated conducting polymers include polyaniline (PANi), polypyrrole (PPy) and 

polythiophene (PTh). This chapter presents synthesis, spectroscopic characterisation, and 

electro-analytical characterisation of conducting polymers. Polyaniline and its derivatives 

have been studied extensively due to their conductivity (MacDiarmid et al., 1991) and 

environmentally stability in air (Abraham et al., 1996). This electrochemical method is so 

advantageous compared to the chemical one because the growth rate is easily controlled and 

also offers a possibility of simultaneous characterisation. Electrochemical polymerisation 

occurs when a suitable anodic potential or current is applied to a conducting substrate that has 

been immersed in a monomer electrolyte. A counter (CE) and reference electrode (RE) are 

also needed in conjunction with the working electrode (WE) for this to take place in a three-

electrode electrochemical cell (Somerset et al., 2006).This study has also shown that 2,2´-

dithiodianiline (DTDA) can act as a new co-monomer with aniline in the electrochemical 

copolymerization process to form polyaniline-co-poly (dithiodianiline). Thin films of PANI 

and PANI-co-PDTDA have been synthesised by using electrochemical polymerisation and 

copolymerisation respectively (Somerset et al., 2010).This co-polymer has S–S bonds 

confined among the chains of the polymer.  
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The resulted polymer was in a form of thin layer on a glassy carbon electrode (GCE) 

which was characterised by voltammetry, UV-VIS and FTIR spectroscopy techniques. 

Ultraviolet-visible spectroscopy has been used for determining the polymerisation and band 

gap of the polymer while a CV has been used for determining the polymerisation and redox 

behaviour of the polymer, using voltammetry. The functional groups of the polymers were 

determined using FTIR spectroscopy. 

Polyaniline exists in several oxidation states (Figure 4.1) with electrical conductivity 

varying progressively from 10-8 S cm-1 to more than 102 S cm-1. These steps has shown that 

the PANI can be transformed from the leucoemarldine to the emeraldine state and then from 

the emeraldine to pernigraniline states and the conducting emeraldine salt is the most 

important state in these molecular transformations of polyaniline.The existence of different 

oxidation states for PANI makes it useful as an electrode material in electrochemical 

capacitors (Iwuoha et al., 1996; Fusalba et al., 2001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Molecular designs of the four oxidation states of Polyaniline (Trividi, 1994). 

 

 

 

 



81 
 

Heavy and precious metal toxicity evaluation using a horseradish peroxidase immobilised biosensor 

 

In this chapter, the objective was to apply a thin polymer film of PANI and PANI-co-

PDTDA on the surface of glassy carbon electrode (GCE) for the preparation of a polymer 

modified electrode surface for biosensor preparation since they are composed of simple 

repeating units called monomers and are generally known to have good insulating properties. 

It is this characteristic that has resulted in insulating polymers being used extensively in many 

studies but conducting polymers differ from everyday polymers in that they are intrinsically 

conducting. The enzyme called horseradish peroxidsae (HRP) was then immobilised onto 

both sensor platforms during biosensor construction. The final GCE/PANI/HRP and 

GCE/PANI-co-PDTDA/HRP biosensors were then evaluated and characterised 

independently, both to evaluate the biosensor characteristics of these sensors, but to also 

apply and utilise these biosensors in heavy metal inhibition studies. The heavy metal 

inhibition studies were conducted to evaluate the efficiency of the GCE/PANI/HRP and 

GCE/PANI-co-PDTDA/HRP biosensors as electrochemical sensors for heavy metal 

determination. 

 

4.2 Materials and methods 
 

4.2.1 Chemicals 
 

The reagents aniline (99%) and N, N´-dimethylformamide (98%) were obtained from 

Aldrich (Germany); all solutions were always prepared using deionised water obtained from a 

Milli-Q RO Plus (Millipore Water) system. The potassium dihydrogen phosphate (99%) and 

disodium hydrogen phosphate (98%) were obtained from Aldrich (South Africa), while 

Merck’s (RSA) supplied the sulphuric acid (95%), hydrochloric acid (32%), sodium chloride, 

ethanol (absolute 99.9%) and these were used as received. All electrochemical measurements 

were performed in 0.1 M phosphate buffered (PB) solution (1 M Na2HPO4; 1 M KH2P04; pH 

7.2).  
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4.2.2 Apparatus 
 

Electrochemical protocols were performed with two different electrochemical 

analysers, depending on the objective of the work conducted. Firstly, an Epsilon 

electrochemical analyser (BASi Instruments, 2701 Kent Ave., Westr Lafayette, IN 47906, 

USA), utilising cyclic voltammetry (CV) was used. Alternatively, experiments were 

performed with the PalmSens handheld potentiostat / galvanostat, with the PSTrace 

program and accessories (Palm Instruments BV, 3992 BZ Houten, The Netherlands). A 

conventional three electrode system was employed, consisting of glassy carbon electrode 

(GCE; diameter = 1.6 mm diameter) disc working electrode, an Ag/AgCl in 3 M NaCl 

reference electrode, and a platinum wire auxiliary electrode (Somerset et al., 2006; Somerset 

et al., 2010). UV-Vis spectroscopic results were recorded between 200 and 1100 nm using a 

1-cm path quartz cuvette and N,N´-dimethylformamide (DMF) as the reference solvent, on a 

Thermo Fisher Spectronic Helios Omega range UV-Vis spectrometer with VISION PC 

software. Solutions for subsequent spectroscopic studies were by careful dilution or 

dissolving from the electrode surface in DMF (Somerset et al., 2010).FTIR measurement 

were carried out using a Bruker Optics aligned Rock Solid interferometer. 

 

4.2.3 Electropolymerisation of polymer films 
 

A three electrode electrochemical cell was used to prepare PANI and PANI-co-

PDTDA conducting polymers. A glassy carbon was employed as working electrode, platinum 

wire was used as the auxiliary electrode, and an Ag/AgCl in 3 M NaCl reference electrode 

was used as the reference throughout this work. Electroplymerisation was carried out at room 

temperature. A 10 ml solution consisting of 0.2 M aniline, and 0.02 M of 2,2´-dithiodianiline 

in aqueous H2SO4 (varying concentrations of 1, 2.5, and 5 M) solution were prepared and 

placed in a sonicator for a few minutes to dissolve the mixture. The co-polymer film of 

polyaniline (PANI) and poly (2,2´-dithiodianiline) (called PANI-co-PDTDA) were grown 

electrochemically on the surface of a GCE by repetitive cyclic voltammetric scanning at 60 

mV/s from − 0.2 to + 1.1 V, for 19 cycles at room temperature. 
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Polyaniline was also electropolymerised as a monopolymer on a GCE surface, using a 

10 ml solution of 0.2 M aniline and aqueous 1 M HCl solution, while cycling repetitively at 

60 mVs-1 from – 0.2 to + 1.1 V for 10 cycles at room temperatures. Each GCE was then 

rinsed with deionised before voltammetric measurements (Somerset et al., 2010). 

 

4.3 Results and Discussion 
 

The electrochemical behaviour of PANI and PANI-co-PDTDA were studied in 0.1 M HCl 

solution as supporting electrolyte using cyclic voltammetry (CV) as method.  

 

4.3.1. Cyclic voltammetric characterisation of polymer composites 
 

Cyclic voltammetry (CV) for the electro-analytical studies of PANI and PANI-co-

PDTDA were performed in order to obtain information on its electro-analytical properties. 

The peak potentials of these compounds were measured throughout this investigation against 

an Ag/AgCl reference electrode. The potential was scanned for cyclic voltammetric 

measurement between - 0.2 V and + 1.2 V at scan rate 0.1 Vs-1 and sensitivity = 1 mAV-1. 

Various concentrations of acidic medium have been used in this experiment for the 

electropolymerisation and scan rate studies were performed. Analysis of the current response 

gave considerable information about the thermodynamics of the redox processes involved, 

the kinetics of heterogeneous electron-transfer reaction and the coupled chemical reactions or 

adsorption processes for the synthesised polymers. It was noted that during the growth of 

PANI and PANI-co-PDTDA respectively, the peak current values of the three redox 

processes increased with an increase in the number of cycles performed, as shown in Figures 

20 and 21. 
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4.3.1.1. Cyclic Voltammetric analysis of polyaniline 

 

The possible redox couples that should be expected during the forward (oxidation) 

and backward (reduction) scans of potentials are shown in Figure 4.2 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Cyclicvoltammogram (CV) displaying the electropolymerisation of PANI in 1 M HCl 
solution on a GCE surface. The potential was cycled between −0.2 and +1.1 V (vs. Ag/AgCl) at a scan rate 
of 60 mV s−1 for 19 cycles. 

 

During the scanning in cyclic voltammetry (Figure 4.2), the repeated cycles for anodic 

current has been found to increase in subsequent voltammogram, which confirms the 

(formation of monomer) polymerization of PANI. This voltamogram displays well defined 

redox couples showing that PANI is electro-active. It can be seen that the anodic and cathodic 

current increases with the increase in the number of cycles. This may be due to an increase in 

the mass of PANI film deposited on the surface of the electrode. 
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The first redox couple (a/a´), with a formal potential, around 0.2 V (vs. Ag/AgCl) 

represents the transformation of the leucoemaraldine form to the emeraldineform of the 

polymer. The middle redox couple (b/b´) was observed at around 0.5 V (vs Ag/AgCl) 

anodically and around 0.4 V (vs Ag/AgCl) cathodically, due to the redox reaction involving 

over-oxidized PANI structure indicating degradation products (Wei et.al.,2004).Several 

authors assign this reversible couple to the redox actions of the degradation products 

hydroquinone to quinine (Huang et al., 2006, Somerset et al., 1996). The degradation can be 

visualised by the loss of electro-active sites as well as appearance of the peak at around 0.5 V 

(vs Ag/AgCl). The peaks become more a prominent with increase of current. The middle 

redox couple (b/b´) could also be due to defects in the linear structure of the polymer 

(Castelvetro3et al, 2002).The third redox couple (c/c´), is attributed to the transition of the 

emeraldine form to the pernigraniline form of the polymer. The oxidation of this 

polysemiquinone radical cation (ES) form of PANI (redox couple (c/c`) occurred at 0.8 V (vs 

Ag/AgCl). The formal potentials obtained in this study compare favourably with literature 

values reported for doped PANI (Somerset et al., 2010). 

 

4.3.1.2 Cyclic Voltammetric analysis of polyaniline-co-2,2´-dithiodianiline 
 

The CV of the co-polymer of PANI-co-PDTDA is shown in Figure 4.3. The results 

have demonstrated the deposition of the co-polymer when a mixture of aniline and 2,2´-

dithiodianline (DTDA) was polymerised simultaneously. The result in Figure 22 below 

represents the CV recorded for 19 cycles during copolymerisation. In this case a film of dark 

green colour was seen on the surface of the working electrode.  
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Figure 4.3 Cyclic voltammogram (CV) displaying the electropolymerisation of PANI-co-PDTDA in 
1 M H2SO4 on a GCE surface. The potential was cycled between − 0.2 and + 1.1V (vs. Ag/AgCl) at a scan 
rate of 60 mVs-1 for 19 cycles. 

 

A comparison was made between PANI and PANI-co-PDTDA. Three major redox 

couples are distinguishable. The cyclic voltammetry (CV) of this copolymer at the same scan 

rate (60 mVs-1) shows a shift in all oxidation peaks in comparison to polyaniline (PANI). 

This suggests that the conjugation length of the copolymer decreases as compared to 

polyaniline (PANI). Therefore one may also expect that the other physical properties of 

PANI-co-PDTDA will lie in the polyaniline polymer backbone. The middle peak is found to 

be different to that of PANI , it might be due to the merging of PANI and PDTDA peaks or 

the self-doping/undoping of thiolate anions (S) formed by the reductive cleavage of S-S 

bonds in the PDTDA backbone when the PANI-co-PDTDA co-polymer is formed(Somerset 

et al., 2007).  
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The middle anodic current has been found to increase more in PANI-co-PDTDA than 

in PANI, which confirms the polymerization of PANI-co-PDTDA. The growth of PANI-co-

PDTDA films showed three oxidation peaks around 0.32 V, 0.6 V and 0.85 V (vs. Ag/AgCl). 

Cathodic peaks were observed around 0.5 V, 0.55 V and 0.82 V (vs. Ag/AgCl). The redox 

couple (a/a´) are assigned for the transformation of leucoemeraldine base to emeraldine salt 

and the emeraldine salt to pernigraniline salt forms, while the middle oxidation peak indicates 

the formation of benzoquinone. Analysis of the reduction peaks shows that the first and third 

peaks correspond to the conversion of pernigraniline salt to emeraldine salt and emeraldine 

salt to leucoemeraldine base, while the middle peaks can be attributed to the formation of 

hydroquinoneThese assignments have been made based on the earlier reports on PANI-co-

PDTDA synthesis and characterisation (Somerset et al., 2007). 

 

4.3.2 Effect of electrolyte concentration 
 

The electrochemical behaviour of the PANI-co-PDTDA polymer film was studied in 

different concentrations of H2SO4solution at a scan rate of 60mVs-1. 

 

 

 

 

 

 

 

 

 

Figure 4.4 Cyclic voltamogram for the electropolymerisation of PANI-co-PDTDA on a GCE at a 
scan rate of 60 mV s-1, using different H2SO4 concentrations. The potential was cycled between −0.2 and 
+1.1V (vs. Ag/AgCl). 
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The CV results in Figure 4.4 shows effects in the presence of supporting electrolytes 

containing different concentration of H2SO4 solution of 1 M, 2.5 M and 5 M, respctively. 

Three redox couples were observed at around 0.2 V, 0.55 and 0.74 V (vs. Ag/AgCl) in a 5 M 

H2SO4 solution. In the case of a 1 M H2SO4 solution, the third redox couple has not been 

observed. When a 2.5 M H2SO4solutionwas used, the third oxidation peak was not clear. We 

have also noticed an increase in peak current as the concentration of H2SO4 solution 

increased. This suggested that the film growth was considered greater for the high ionic 

strength media and the results also showed that 5 M H2SO4 solution as a better supporting 

electrolyte for the co-polymerisation of aniline with 2.2’-dithioaniline (Haberska et al., 

2009).  

 

4.3.3. Scan rate studies (Brown-Anson analysis) 
 

4.3.3.1. PANI 

 

The electrochemical behaviour of the PANI polymer film was studied in H2SO4 

solution at scan rate 60 mVs-1. It was noted that for all concentrations of sulphuric acid, the 5 

M one delivered the best results because the anodic and cathodic current was higher. 

Therefore, with PANI displaying the same behaviour, only the results for PANI in the 1 M 

H2SO4 solution are displayed in Figure 4.5. This may be due to the increase in proton 

concentration which favours rapid protonation–deprotonation giving rise to increasing 

currents. The scan rate studies (Figure 4.5) have also shown that both the cathodic and anodic 

currents in PANI (similar to PANI-co-PDTDA) increases as the scan rate increases.  
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Figure 4.5 Cyclic voltammogram of PANI coated on GC electrode in 0.1 M HCl at various scan 
rates. The potential was cycled from - 0.2 to 1.1 V (vs Ag/AgCl) and 1 mA. 

 
For the CV results exhibited in Figure 4.5, two anodic peaks centred approximately at 

0.28 V and 0.50 V (vs. Ag/AgCl)were obtained, with the peak heights increasing with the 

increase in scan ratesThe position of the peak moves toward positive potential, for higher 

scan rates, and the peak height also increases as the scan rate increases. The results further 

suggest that the film was conductive and also electro-active. The peak currents in the cyclic 

voltammogram appeared to increase linearly with the increase of scan rate suggesting that an 

electro-active polymer layer is deposited on the electrode. There is the suggestion of another 

peak, which starts around 0.8 V (vs. Ag/AgCl) but this peak does not appear at higher scan 

rates. 
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4.3.3.2 PANI-co-PDTDA 

 

Cyclic voltammetry (CV) was also used in the scan rate studies of PANI-co-PDTDA, 

using a 5 M H2SO4 electrolyte solution as shown in Figure 4.6. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Cyclic voltammograms of PANI-PDTDA coated on GC electrode in 0.1M HCl at various 
scan rates, The potential was cycled between – 0.2 and + 1.1V and 1 mA. 

 

As shown in Figure 4.6, at a scan rate of 40 mVs-1 the oxidation peak occurred at 

approximately 0.20 V (vs Ag/AgCl) and the corresponding reduction peak appeared at 

approximately 0.10 V (vs Ag/AgCl). A second oxidation peak was observed at approximately 

0.55 V (vs Ag/AgCl). At scan rates 60 to 100 mVs-1 the current peaks shifted outward, which 

indicated the separation between reaction zone and the surface of the electrode that is due to 

the thickness of the thin film. It has been noted that a third cathodic peak for PANI-co-

PDTDA appeared at slower scan rates while we observed only two peaks at faster scan rates. 

The third peak might correspond to faster surface coating processes involving aniline.  

  

 

 

 

 



91 
 

Heavy and precious metal toxicity evaluation using a horseradish peroxidase immobilised biosensor 

 

It is well known that the oxidation of aniline in an acid media involves de-

electronation and de-protonation of the monomers whose repetitive occurrence leads to the 

formation of PANI. The technique of surface polymerization has often been used in the 

coating of various materials with a conducting polymer overlayer (Trchova et al., 2005). The 

first two anodic peaks in the cyclic voltammogram may, therefore be associated with this de-

electronation and de-protonation steps. The absence of the third peak in this present 

experiment can be achieved by choosing an appropriate concentration of the solvent, and also 

by choosing an appropriate scan rate. We experienced well separated peaks at the 

concentration of 5 M H2SO4 solution. The possibility of using higher concentrations of 

H2SO4 as a suitable solvent would result in a co-polymer with higher number of S links.  

 

4.4 Electrochemical calculations and characterisation of polymer films 
 

4.4.1 Brown-Anson analysis 
 

Scan rate studies of the PANI and PANI-co-PDTDA polymer films were performed in 

a 0.1 M HCl solution, in order to calculate the surface concentration of the polymer films on 

the GCE electrode in accordance with Brown–Anson analysis, using a plot of peak current 

(Ip) against scan rate (v) with the results calculated using Equation4.1 (Somerset et al., 2006): 

 

     (Eqn. 4.1) 

 
wheren represents the number of electrons transferred, F is the Faraday constant (96,584 

Cmol-1), ΓPANI is the surface concentration of the PANI film (molcm-2),A is the surface area 

of the electrode (0.0177 cm²), ν is the scan rate (Vs-1), R is the gas constant (8.314 J mol-1 K-

1), and T is the temperature of the system (298 K). The ΓPANI value was estimated to be 1.228 

× 10-8mol cm-² (Somerset et al., 2006). 
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Figure 4.7 The graphs of peak current vs. scan rate and peak current vs. square root of scan rate 
for PANI. 

 

 
 
 
 
 
 
 
 
  
 
 

 
 
 
 
 
Figure 4.8 The graphs of peak current vs. scan rate and peak current vs. square root of scan rate 
for PANI-co-PDTDA. 
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For the reversible reaction of PANI and PANI-co-PDTDA, the dependence of current 

peak to their scan rate are shown in the plots of current  versus scan rate and square root of 

scan rate are shown in Figures 26 and 27 respectively. The regression of this relationship 

shows that the peak current of PANI and PANI-co-PDTDA correlates well with the scan rates 

of the polymers and the list is shown in Table 2. Cyclic voltammograms of PANI and PANI-

co-PDTDA for increasing scan rate are shown in Figures 24 and 25. The calculated kinetic 

parameters, i.e. the surface concentration, diffusion current and the thickness of the film for 

this polymer and copolymer are also listed from Tables 3 – 5. 

The electrochemical characteristics of the PANI and PANI-co-PDTDA polymers 

were calculated using various equations that are shown below, with the results obtained for 

each of the respective polymers. 

 

4.4.1.1 Number of electrons in polymer matrices 

 

Equation 4.2 was used for calculating the number of electrons in each of the polymer 

films (Bard and Faulkner, 2001): 

 

 

   = 2.20      (Eqn. 4.2) 

 
 

Where F is the Faraday constant (96,485 C mol-1.e-), R is the universal gas constant (8.314 

J.K-1.mol-1), T is the absolute temperature of the system (25 ºC = 298.15 K), and n is the 

number of electrons. 
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4.4.1.2. PANI: 

 

Calculation of the number of electron for the PANI polymer film. 

 

(i) Ep = + 448.7 mV; Ip = + 4.61 × 10-2 mA 

 

(ii) Ep/2 = + 523.6 mV; Ip/2 = +2.80 × 10-2  mA 

 

Using Equation 4.3, the following results were obtained: 

 

   = 2.20      (Eqn. 4.3) 

 

With the calculated parameters for this polymer, the above equation becomes: 

 

 

   /448.7 – 523.6/ mV =   at 21 ºC 

 

      

n = 0.7546   

     n = 0.76 e-s    

 

  Note: at 21ºC;  n = 0.76 ≈ 1 e- 
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4.4.1.3 PANI-co-PDTDA: 

 

Calculation of the number of electrons for the PANI-co-PDTDA copolymer film, delivered 

the following results: 

 

(i) Ep = + 424.8 mV; Ip = +3.07 × 10-2 mA 

 

(ii) Ep/2 = + 495.3 mV; Ip/2 = + 2.21 × 102- mA 

 

Using Equation 4.4, the following results were obtained: 

 

 

   = 2.20      (Eqn. 4.4) 

 

 

With the calculated parameters for this polymer, the above equation becomes: 

 

 

   /424.8 – 495.3/ mV =   at 21 ºC 

 

     n = 0.8017 

 

     n = 0.80 e-s    

 

  Note: at 21 ºC;  n = 0.80 ≈ 1 e- 
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4.4.1.4 Summary of results for all polymer matrices: 

 

A summary of the results collected for the calculations of the number of electrons 

involved in the electrosynthesis of the polymer matrices, is shown in Table 4.1. 

 

Table 4.1 Summary of results for the number of electrons for all electrosynthesised 
polymer matrices. 

Polymer Media Current Number of 
electrons 

PANI  1 M HCl Cathodic 0.76 

PANI-co-PDTDA  1 M H2SO4 Cathodic 0.8 

PANI-co-PDTDA  2.5 M H2SO4 Cathodic 1.17 

PANI-co-PDTDA  5 M H2SO4 Cathodic 1.81 

 

When comparing the results, it was found that 5 M H2SO4 gave the highest  number of 

electrons involved in the reaction of  copolymer PANI-co-PDTDA while in the lowest 

concentrations we have noticed similar results in both PANI and PANI-co-PDTDA.  

 

4.4.2 Surface concentration of the polymer matrices 
 

In the next step, the surface concentration of the electro-active species or polymer 

film (e.g. PANI, Γ*
PANI) was calculated. Using Randel-Sevcik plots of peak current vs. scan 

rate (or square root of scan rate); the data needed to perform Brown-Anson analysis were 

collected. The Brown-Anson equation is given in Equation 4.5 (Zanello, 2003): 

 

 

   (Eqn. 4.5)
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Where the slope is equal to: 
 

 Slope = 
      (Eqn. 4.6) 

 
Where F is the Faraday constant (96,485 C. mol-1.e-),Ris the universal gas constant (8.314 

J.K-1.mol-1),T is the absolute temperature of the system (25 ºC = 298.15 K), A is the surface 

area of the electrode, and n is the number of electrons. 

 
 
Table 4.1 Summary of results of slope and R² for all polymer matrices investigated. 

Polymer  Current Slope Slope R2 R2 

(scan 
rate) 

(sqrt scan 
rate) 

(scan 
rate) 

(sqrt scan 
rate) 

PANI (1 M HCl) Cathodic 2.8 × 10-3 4.05 x 10-2 0.987 0.997 

PANI-co-PDTDA 
(1 M H2SO4) 

Cathodic 7.4 × 10-4 1.06 x 10-2 0.983 0.93 

PANI-co-PDTDA 
(2.5 M H2SO4) 

Cathodic 1.9 × 10-3 2.8 x 10-2 0.989 0.955 

PANI-co-PDTDA 
(5 M H2SO4) 

Cathodic 5.5 × 10-3 7.99 x 10-2 0.999 0.973 

 

When comparing the results for both PANI and PANI-co-PDTDA, an appropriate linear 

regression model has been found. 

 

4.2.2.1 PANI 

 
Using the results obtained for the electropolymerisation of PANI, the following results were 

obtained: 

 

(i) For the final cycle: Ip, a = - 5.250 × 10-3 A; Ep, a = + 290.1 mV 

 

(ii) A = surface area of the glassy carbon electrode; diameter = 3 mm; r = 1.5 mm = 0.15 

cm 

 A = πr² = π x (0.15 cm) ² = 0.0707 cm² 

RT

AFn PDMA

4
.².². *Γ
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(iii) The following equation was then used to calculate Γ*
PANI 

 

       (Eqn. 4.7) 

 

  Slope = 
      (Eqn. 4.8)

 

 

 Thus, for PANI  = 
 

 
ΓΓΓΓ*

P = 6.19 × 10-1mol.cm-2 

 

4.4.2.2 Summary of results for surface concentration all polymer matrices: 

 
In a similar method as for PANI, the surface concentration of the PANI-co-PDTDA 

polymer film was also calculated. A summary of the results are shown in Table 3. 

 

Table 4.3 Summary of results for the surface concentration of the polymer matrices. 

Polymer Current Гpolymer 

PANI (1 M HCl) Cathodic 2.64 × 10-1 

PANI-co-PDTDA (1 
M H2SO4) 

Cathodic 6.13 × 10-02 

PANI-co-PDTDA 
(2.5 M H2SO4) 

Cathodic 7.36 × 10-02 

PANI-co-PDTDA (5 
M H2SO4) 

Cathodic 7.93 × 10-02 

 

Using Brown-Anson equation, the surface coverage, Г, was calculated and the results are 

presented in Table 3. When comparing the results, it was found that PANI has the highest 

surface concentration among the concentrations of the PANI-co-PDTDA polymer. 

  

v
RT

AFn
I

P

p ⋅Γ=
4

.².². *

RT

AFn P

4

.².². *Γ

AFn

TRslope
P

².².

..4* ⋅=Γ
0707.0.0)²485.96()²1(

15.298314.84)3108.2(

xx

xxxx −

 

 

 

 



99 
 

Heavy and precious metal toxicity evaluation using a horseradish peroxidase immobilised biosensor 

4.4.3 Electron transport diffusion coefficient in polymer matrices 
 

The electron transport diffusion coefficient, De (in cm²s-1), was calculated from the 

Randle-Sevcik plot of peak current (Ip) versus square root of scan rate (v½). Using the 

Randel-Sevcik data and Equation 4.3 (Bard and Faulkner, 2001), the following Equation 4.9 

was obtained for the determination of De: 

 

 

 
IP = 2.69 X 105 .n3/2 .A. De

1/2 .C. v1/2

                  (Eqn. 4.9) 

 

Where F is the Faraday constant (96,485 C.mol-1.e-), Ris the universal gas constant (8.314 

J.K-1.mol-1),T is the absolute temperature of the system (25 ºC = 298.15 K), A is the surface 

area of the electrode, and n is the number of electrons. 

The result from a plot of Ipvsv½ is then used and the slope is equal to: 

 

 
 Slope = 2.69 X 105 .n3/2 .A. De

1/2 .C      (Eqn. 4.10) 

 

 

and using the individual results, the calculation amounts to: 

4.4.3.1 PANI 

 
 Slope = (2.69 × 105) x n3/2 x A x De

½ x C  

 

 2.8 × 10-3 = 2.69 × 105 x (0.76)3/2 x 0.0707 x De
½ 0.1 

 

  (De)
 ½= 2.22 × 10-6 

 

  De= (2.22 × 10-6)² 

 

  De= 4.94 × 10-12 cm².s-1 
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4.4.3.2 Summary of results for the diffusion coefficients all polymer matrices 

 
In a similar method as for PANI, the diffusion coefficient of the PANI-co-PDTDA 

polymer film was also calculated. A summary of the results are shown in Table 4. 

 

Table 4.4 Summary of results for electron transport diffusion coefficients in polymer matrices. 

 
Polymer Current   De 

PANI (1 M HCl) Cathodic 1.34 × 10-8 

PANI-co-PDTDA (1 M H2SO4) Cathodic 7.65 × 10-10 

PANI-co-PDTDA (2.5 M 
H2SO4) 

Cathodic 1.68 × 10-9 

PANI-co-PDTDA (5 M H2SO4) Cathodic 2.92 × 10-9 

 

When comparing the results, it was found that the rate of electron transport along the polymer chain 

is faster in PANI (0.1 M HCl) solution than the substituted polymer (PANI-co-PDTDA) in 

various concentrations of H2SO4 solution.. 

 

4.4.4 Thickness of the polymer films 
 

The thickness of the polymer film obtained with electrosynthesis on the electrode was 

also calculated. The following equation from Iwuoha et al. (1997) was used in the 

calculation, where a plot of peak current (Ip) versus square root of scan rate (v½), gives the 

slope of the curve equal to Equation 4.7. 

 

  (Eqn. 4.11)
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where F is the Faraday constant (96,485 C.mol-1.e-),Ris the universal gas constant (8.314 

J/.K.mol), T is the absolute temperature of the system (25 ºC = 298.15 K), A is the surface 

area of the electrode, De is the electron transport diffusion coefficient, n is the number of 

electrons, Γ*
P is the surface concentration of the electro-active species or polymer film, and L 

is the thickness of the polymer film (cm). 

Thus, when values are substituted into Equation 4.7, the slope is then equal to Equation 4.8: 

 

 (Eqn. 4.12) 
 
 

And using the individual results, the calculation amounts to: 

 

4.4.4.1 PANI 

 

 L =  

  

L = 2.41 × 10-11 cm 
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4.4.4.2 Summary of results for film thickness of all polymer matrices 

 

In a similar method as for PANI, the film thickness of the PANI-co-PDTDA polymer 

film was also calculated. A summary of the results are shown in Table 5. 

 

Table 4.5 Summary of results for the thickness of the polymer films. 

Polymer Current L (CM)scan rate L (CM  )sqrt scan rate 

PANI (1 M HCl) Cathodic 7.09 × 10-10 1.49 × 10-9 

PANI-co-PDTDA(1 M 
H2SO4) 

Cathodic 3.87 × 10-11 8.16 × 10-9 

PANI-co-PDTDA(2.5 
M H2SO4) 

Cathodic 6.74 × 10-11 1.47 × 10-8 

PANI-co-PDTDA(5 M 
H2SO4) 

Cathodic 9.77 × 10-11 2.05 × 10-8 

 
 

The thickness of the PANI and PANI-co-PDTDA film was calculated and the results 

in table 5 show the highest film thickness at higher concentrations of the acid media. In 

summary it was found that the results that are obtained in this study for the kinetic parameters 

(De, L &Г) of PANI are in close agreement with results reported by Somerset et al. 

(2010)who studied the electropolymerisation of PANI and PANI-co-PDTDA polymer films. 
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4.5. Spectroscopic characterisation of polymers 

4.5.1 UV-Vis spectroscopic characterisation of polymers 
 

The UV-Vis spectra obtained of PANI in 1 M HCl solution and PANI-co-PDTDA in 

three concentrations of H2SO4 solution (e.g. 1, 2.5 and 5 M) are shown in Figure 4.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 UV-VIS spectra of PANI and PANI-co-PDTDA collected on a glassy carbon electrode, 
comparing the absorption maxima of the different polymer films electrosynthesised. 

 
The absorption results obtained from electrochemical polymerisation of PANI and 

PANI-co-PDTDA clearly show the incorporation of PDTDA into the PANI during 

polymerization. This figure indicates that the spectrum of PANI has shown four bands around 

290, 320, 490 and 890 nm Two peaks that could be seen around 320 nm and 490 nm 

represents the transition of emeraldine form of the polymer to more oxidised form while the 

peak at 290nm correspond to palaron formation in the emeraldine chain (Huerta-Vic et al., 

2003).   
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These results are in close agreement with the results of doped PANI found in the 

literature of Michira et al. (2007) and Sharma et al. (2006). The PANI and PANI-co-PDTDA 

polymers investigated in this study, have shown that in 1 M H2SO4 solution some similarities 

exist, although a little difference in the spectroscopic results have been observed for the 5 M 

H2SO4 solution used. 

 

4.5.2 FTIR spectroscopic characterisation of polymers 
 

The FTIR spectra of PANI and PANI-co-PDTDA are presented in Figure 4.10. The 

assignment of the spectra bands were made based on the previous literature values for the IR 

spectra of PANI and PANI-co-PDTDA polymers, which were used for the structural analysis 

of the synthesised polymers. 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Figure 4.10 FTIR spectra of PANI prepared in 1 M HCl solution and PANI-co-PDTDA prepared in 
three different concentrations of sulphuric acid.  
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The peaks for the polymers of PANI doped in HCl and PANI-co-PDTDA in various 

concentrations of H2SOappear at the same region and with similar intensities except for 

marginal differences. Both PANI and PANI-co-PDTDA (1 M H2SO4) polymers showed the 

single peak at approximately 3500 cm-1 that proves the polymerisation occurs through the –

NH3 group while in 2.5 and 5 M concentrations there appears a doublet peak. The peaks at 

around 3500 cm-1 can be assigned as N-H stretching vibrations of secondary amine, while the 

bands around 2900cm-1 are ascribed to the aromatic C-H vibrations. The bands in between 

1500 – 1600 cm-1 are assigned as C=C stretching in aromatic nuclei. The bands obtained at 

1600-1500 cm-1 corresponds to C-H stretching in aromatic compounds while the band around 

1400cm-1 are the evidenced to C=N stretching in aromatic compounds. The absorption peaks 

at 1560 cm-1 assigned to the quinoide structure does not revealed any significant changes for 

both polymer and co-polymer at various concentration of sulphuric acid that concludes that 

the polymers were prepared using di and tri basic acids (Vivekanandan et al., 2011). 

The band around 1300 -1200 cm-1 is due to the C-N stretch of the secondary aromatic 

amine, while the clear presence of the band around 1100 cm-1 is characteristic of the 

conducting polymer due to the delocalisation of electrical charges caused by de-protonation. 

It can furthermore be attributed to bands characteristics of B-NH-Q or B-NH-B, where B is 

the benzenic type rings and Q is quinonic- type rings of the polymer backbone. The 

absorption bands lies below 1000 cm-1 are the characteristics of mono substituted benzene. 

The band around 750 cm-1is assigned to the C-S stretch of the co-polymer, which obviously 

suggests the incorporation of DTDA units in co-polymer structure (Widera et al., 1997). 

The same finding for PANI has been reported elsewhere. It has been reported that 

H2SO4 may interact with PANI by donating either hydrogen sulphate, HSO4 -or sulphate, 

SO4
2- anions as dopant anions. Many authors agreed that HSO4 - dopant anions are present in 

PANI/H2SO4 but in this study it interacted with PANI-co-PDTDA (Palaniappan et al., 2004). 
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4.6 Summary 
 

Cyclic voltammetric (CV) experiments are normally performed for the initial electro-

analytical studies of any electro-active compound to obtain information on the 

electrochemical behaviour of the compounds, before it’s being investigated in depth using 

other electro-analytical techniques (Wang, 2000). This chapter focused on the synthesis of 

PANI and PANI-co-PDTDA as conducting polymers and its electrochemical characterisation 

to investigate the similarities and differences in structure using various acidic media as 

dopant. Cyclic voltammetry, UV-Vis spectroscopyand FTIR spectroscopy were used to 

identify the differences in optical properties and structures between the copolymer and 

polymer. The voltammetric results for PANI and PANI-co-PDTDA have shown a 

resemblance although we have noticed a shift in peaks. Clearly, the peaks corresponding to 

redox processes were shifted to more positive values for the copolymer films in comparison 

with PANI. This informs that incorporation of PANI in the copolymer resulted difficulty in 

converting the copolymer into its more oxidized state. This may be attributed to the presence 

of S–S links in the copolymer which could influence the resonance stabilization of amine 

cation radical/imine structures. 

The ultra-violet visible spectroscopy (UV-VIS) results have shown that PANI in 1 M 

HCl solution and PANI-co-PDTDA in 1 M H2SO4 solution has shown some similarities 

although a little different spectroscopic characteristic has been observed at higher 

concentrations of H2SO4 solution used during polymerisation. The results obtained for the 

Fourier transformer infrared spectroscopy (FTIR) have shown the appearance at the same 

region and with similar intensities except for marginal differences. The infrared spectrum of 

PANI-co-PDTDA in various concentrations of sulphuric acid (Figure 28) were very similar to 

that of PANI, but with an additional douplet of peaks centred around 3500 cm-1. 

The summary of the results obtained from this chapter will be further combined with the 

overall results of Chapter 5.  
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Chapter 5 

 
Inhibition Analysis of Selected Heavy Metals Using 

Amperometric HRP Biosensor 
 

5.1 Introduction 
 

The development of biosensors began with the advancement of biomolecules 

immobilisation and stabilisation on the one hand, and miniaturisation and fictionalisation of 

more sophisticated transducers on the other hand. As enzymes are known to be inhibitors by 

trace quantities of metals and to exploit this, several enzymatic methods have been developed 

for the determination of these species. The number of recently reported biosensors for 

environmental applications and the innovations demonstrated for detection of significant 

pollutants indicate that biosensors may become devices that fill existing technology gaps in 

the area of environmental monitoring. These devices combine the selectivity and specificity 

of the biological component with a suitable transducer (Malhotra et al., 2003, Freire et al., 

2003, Calvo et al., 1997). A large number of reports have been made, utilising enzymatic 

electrodes. The area of biosensors is driven towards the development of small, hand-held and 

battery-operated instruments suited for on-site decentralised environmental technology for 

monitoring pollutants, heavy metals and pesticides. It can also offer many advantages over 

conventional analytical techniques in terms of simplicity, detection limit, specificity and 

sensitivity. Heavy metals are well known to inhibit the activity of enzymes and the 

application of this phenomenon to the determination of these hazardous toxic elements offers 

several advantages, such as simplicity and sensitivity (Rodriguez-Mozaz et al., 2006). 

Polyaniline (PANI)-based biosensors have attracted a great deal of interest in recent years 

due to its capability as a biomolecule entrapment matrix and its ability to couple electrons 

directly from enzyme active site(s) to the electrode (Li et al., 2009). Biosensors can be 

classified into five main groups, which are piezoelectric, calorimetric, photometric, optical 

and amperometric sensors.   
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According to Turner (2005), biosensors are currently defined as analytical devices 

incorporating either a biological material (e.g. a tissue, microorganism, organelle, cell 

receptor, enzyme, antibody or nucleic acid; (ii) a biologically derived material (e.g. 

recombinant antibody, engineered protein or aptamer; (iii) a biomimic (e.g. a synthetic 

catalyst, combinatorial ligand or imprinted polymer (Turner, 2005). Furthermore, the 

recognition element should be intimately associated with, or integrated within, a physico-

chemical transducer or transducing microsystem, which may be optical, electrochemical, 

thermometric, piezoelectric, magnetic or micro-mechanic (Calvo et al.,1997). 

Biosensors have been developed for use in a wide variety of sectors including 

medicine, drug discovery, environment, food, process industries, security and defense where 

analyses represent natural substrates of used enzymes.The main aim of this chapter was to 

develop an enzymatic electrode of horseradish peroxidase that can be used for indirect 

monitoring of heavy metals. The design of the sensor employed involved immobilising 

horseradish peroxidise (HRP) onto PANI and PANI-co-PDTDA films (conducting polymers) 

as mediators on a platinum electrode surface (see Figure 29). These sensors were applied for 

the detection of hydrogen peroxide (H2O2) and for further investigation of the inhibition by 

heavy metals. Although a direct electron transfer is possible between an electrode and an 

enzyme catalysing the reduction of hydrogen peroxide, mediators are generally used to 

accelerate the reaction rates. Enzymes are the most frequently used biological components in 

biosensors, because a wide range of enzymes are suitable for acting as recognition elements 

and very often their catalytic properties and substrate specificity can be modified by means of 

genetic engineering (Rodriguez-Mozaz et al, 2006). The biosensor concept was initiated by 

Clark and Lyons (1962) and subsequent technology was transferred to Yellow Spring 

Company for launching dedicated glucose analyser (YSI analyser, model 23) in 1975 

(Pandey et al., 2003). The hydrogen peroxide (H2O2) is one of the most important products or 

substrate of enzyme catalysed oxidation reactions (Tang et al., 2003). The mechanism of 

electron transfer in the Pt/PANI/HRP biosensor system is as follows:  
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Pt electrode 
   PANIOX   HRPOX   H2O2 
        
 +e- 
 
 
 
  PANI red   HRPred   H2O 

       

Figure 5.1 Proposed mechanism of the catalytic redox enzymatic cycle for the transformation of 
H2O2 as substrate by the HRP enzyme with redox mediated electron transfer to the PANI-modified 
electrode (Adapted from Iwuoha et al., 2004). 

 

PANI+ + [HRP (FeIII)] + H2O2k1 [HRP (FeIV=O)-R+•] (cpd-I) + H2O)  Eqn. 5.1 

 

PANI- + [HRP (FeIV=O)-R+•] (cpd-I) + 2e- + 2H+ [HRP (FeIII)] + H2O  Eqn. 5.2 

 

As a mediator, polyaniline (PANI) is able to accelerate the redox reaction and the 

ping-pong mechanism of the electron transfer taking place in the Pt/PANI/HRP biosensor 

system is shown in Figure5.1. In the presence of H2O2, immobilised peroxidase (HRP-Fe3+) is 

oxidised to compound I (oxyferryl iron) and the porphyrincation radical during the redox 

reaction. The hydrogen peroxide bonds to the vacant octahedral position on the iron atom that 

initiates the reaction. There are three different intermediate horseradish peroxidase 

compounds that form during the reaction. The reduction of compound I to compound II and 

compound II back to the rest state is carried out by reduction substrates. The natural reaction 

(also known as the peroxidative reaction) involves the oxidation of aromatic amines and 

phenols with hydrogen peroxide, thereby producing aromatic radicals which can then 

undergo non-enzymatic polymerisation reaction in aqueous solutions (Veitch et al.,2004). 

Upon oxidation with hydrogen peroxide, the horseradish peroxidase is converted into 

compound I. This oxidation state complex of peroxidase exists in a formal Fe5+ oxidation 

state. Once electron reduction of compound I (via oxidation of phenols) an aromatic amine 

yields compound II (formally at the Fe4+ state).  
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It has been proposed that compound II also has single oxidation equivalent residing 

on the porphyrin similar to that in compound I. A final reduction brings compound II back to 

the native (Fe3+) state again with concomitant oxidation of a molecule of phenol or aromatic 

amines(Dunford, 1999). 

 
Figure 5.2 X-ray crystal structure of ferric horseradish peroxidase in (A) and the corresponding 

chemical structure in (B) (RCSB Protein Database, 2011 accessed on 6 January 2011). 
 

Figure 5.2 shows the three-dimensional structure of horseradish peroxidase. The iron 

heme is in the centre of the enzyme shown in black with the iron atom as the red sphere. The 

two calcium atoms are black spheres and lie within the helical regions of the enzyme, with 

one in the distal region and one in the proximal region.  The α-Helical and β-sheet regions of 

the enzyme are shown as the multi-coloured helical structures.  According to Veitch (2004), it 

is known that each calcium site is seven-coordinated with oxygen-donor ligands provided by 

a combination of amino acid side-chain carboxylates (Asp), hydroxyl groups (Ser, Thr), 

backbone carbonyls and a structural water molecule (distal site only). Both the heme group 

and the calcium atoms are crucial to the enzyme working properly and the loss of one would 

result in instability. In the case of a horseradish peroxidase (HRP)-based electrode, the 

catalytic reaction that produces the mediator is described below: 
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H2O2 + 2H+HRPred →  2H20 + HRPox    (Eqn 5.1) 
 
 
MEDox →MEDred      (Eqn 5.2) 
 

HRPred, HRPox, and MEDred, MEDox are the reduced and oxidised forms of the enzyme 

and the mediator respectively. 

 

5.2 Materials and Methods 
 

In this section horseradish peroxidase (HRP) has been immobilised onto the sensor 

surface using PANI Polymer and PANI-co-PDTDA co-polymer, respectively. The two 

respective biosensors evaluated were Pt/PANI/HRP and Pt/PANI-co-PDTDA/HRP. A three-

electrode arrangement and set-up was employed with the Pt electrode as the working 

electrode, platinum wire as counter electrode and silver/silver-chloride (Ag/AgCl) as the 

reference electrode. The surface of the working electrodes (Pt) was prepared for the 

deposition of polyaniline and polyaniline-co-polydithiodianiline films using a thorough 

cleaning process. The counter electrode was cleaned by first flaming in a Bunsen burner until 

white hot, followed by deionised water rinsing. 

 

5.2.1 Chemicals 
 

The reagents aniline (99%), 2,2´-dithiodianiline (98%), potassium dihydrogen 

phosphate (99%), disodium hydrogen phosphate (98%) and diethyl ether (99.9%) were 

obtained from Sigma-Aldrich, Germany. The enzyme peroxidase (EC 1.11.1.7 type IV from 

horseradish) was also purchased from Sigma-Aldrich, Germany. All reagents were of 

analytical grade and used without further purification. Hydrogen peroxide (30% v/v) was 

obtained from Merck (South Africa). Phosphate buffer solutions (PBS, 0.1 M) with various 

pH values were prepared by mixing stock standard solutions of KH2PO4 and Na2HPO4. 
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The enzyme peroxidase (EC 1.11.1.7 type IV from horseradish, 250-330 units/ mg-1) 

was used for biosensor preparation. A 0.2 M aniline in 1M HCl and a 0.2 M aniline plus 0.02 

M 2,2´-dithiodianiline solution prepared in 5 M H2S04were used for the PANI-co-PDTDA 

co-polymer electrosynthesis. All other solutions were made up with Millipore water. The 

potassium chloride, sulphuric acid (95%), ethanol (98%) and hydrochloric acid (32%) were 

obtained from Merck, South Africa. The standards for cadmium (Cd), lead (Pd) and mercury 

(Hg) were purchased as atomic adsorption standard solutions (1000 mg.L-1, AAS) from 

Sigma-Aldrich, Germany. 

 

5.2.2 Apparatus 
 

All electrochemical measurements were performed with a PalmSens® portable 

electrochemical potentiostat / galvanostat, with the PS Trace program and accessories 

(PalmSens® Instruments BV, 3992 BZ Houten, and Netherlands). Cyclic voltammetry (CV), 

differential pulse voltammetry (DPV) and all amperometric measurements were carried out in 

20 ml electrochemical cells. The electrode set-up consisted of a conventional three electrode 

configuration, which comprised a platinum (Pt) working electrode, a Pt wire as counter 

electrode and silver/silver chloride (Ag/AgCl) as a reference electrode. Alumina micro polish 

and polishing pads (Buehler, IL, USA) were used for electrode polishing. 

 

5.2.3 Construction of Pt/PANI/HRP biosensor 
 

The polymerisation was done by a reported procedure for the electropolymerisation of 

PANI on a Pt electrode (Mathebe et al., 2004; Somerset et al., 2006). In particular, the Pt 

electrode surface was first cleaned by polishing with 1.0, 0.3, 0.05 µm alumina slurry, 

respectively and then washing the electrode thoroughly with double distilled water after each 

polishing. Polymerisation was achieved in 0.2M aniline per 1M HCl solution for polyaniline 

(PANI) and a mixture of 0.2 M aniline with 0.02 M 2,2´-dithiodianiline per 5M H2SO4 

solution for polyaniline-co-poly(2,2´-dithiodianiline) synthesis. The potential was cycled 

repetitively between - 200 and + 1100 mV at a scan rate of 60 mVs-1 for 10 cycles.  
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The enzyme HRP was immobilised by covalent binding onto the PANI film and 

PANI-co-PDTDA film, respectively. The stock solution of HRP (2 mg ml-1) prepared in 1 ml 

of 0.1 M phosphate buffer (PB) (pH = 6.8) solution was adsorbed onto the surface of the 

polymer film. The enzymatic incorporation was done using the methodology outlined in 

Mathebe et al. (2004). 

 

5.2.4 Biosensor response measurements 
 

Cyclic voltammetry (CV) and differential pulse voltammetric (DPV) experiments 

were performed with the portable PalmSens instrument. The PANI and PANI-co-PDTDA 

polymer films were used in the following experiments as mediators in HRP immobilised 

electrodes, having H2O2 as the substrate. A reduction potential of - 0.5 V (vs. Ag /AgCl) was 

used to monitor the electrocatalytic reduction of H2O2, as substrate. The solution was 

degassed with nitrogen before any substrate was added. The Pt/PANI/HRP sensor was 

immersed in the 0.1 M PB (2 ml) under stirring conditions with direct additions of standard 

substrate solutions using a micropipette. The signal for the sequential additions was recorded 

until the current response had reached a steady state. The response of the biosensor towards 

H2O2 was investigated by successively adding aliquots of H2O2 to a continuously stirred 0.1 

M PB (pH = 6.8) solution under the optimised conditions. In all experiments hydrogen 

peroxide was added until a final concentration of 0.86 mM was reached. 

 

5.2.4.1 Cyclic voltammetric measurements 
 

Cyclic voltammetry (CV) measurements allow the rapid location of the potential at 

which the analyte undergoes reduction and oxidation, allowing an understanding of the redox 

activity of the analyte. Cyclic voltammetry (CV) was performed at a slow scan rate of 10 

mVs-1 to study the catalytic oxidation of hydrogen peroxide by applying a potential scan 

between + 0.4 V and + 1.0 V (vs. Ag/AgCl).  
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The cyclic voltammogram was first obtained in the absence of the substrate H2O2, 

followed by analysis in the presence of H2O2assubstrate.Sequential addition of 1ml aliquots 

of 1mM H2O2 to the 1ml of 0.1 M phosphate buffer (pH = 6.8) solution, degassed with 

nitrogen were performed to record the biosensor responses. The phosphate buffer solution 

was stirred after each addition of peroxide and the biosensor signal was recorded in the 

absence of stirring. This was done to ensure homogeneity of the solution before 

measurements were taken (Mathebe et al., 2004; Iwuoha et al., 1997b). 

 

5.2.4.2 Differential pulse voltammetric measurements 

 

Differential pulse voltammetric (DPV) analysis of the Pt/PANI/HRP biosensor in 1 

ml of 0.1 M phosphate buffer (pH = 6.8) solution was also performed to compliment the CV 

measurements. The differential pulse voltammogram (DPV) was collected in the cathodic 

direction only by applying a linear potential scan between + 0.4 V and - 1.0 V (vs. Ag/AgCl) 

at a scan rate of 10 mVs-1 and pulse amplitude of 20 mV. The pulse width of 100 ms was 

used. The DPV was first obtained in the absence of the substrate H2O2, followed by analysis 

in the presence of H2O2 as substrate (Morrin et al., 2004; Iwuoha and Smyth 2003). 

  

 

 

 

 



115 
 

Heavy and precious metal toxicity evaluation using a horseradish peroxidase immobilised biosensor 

 

5.3. Results and discussion 

5.3.1 Optimisation of solution pH 
 

In Figure 5.3 the results for the optimisation of the working pH of the Pt/PANI/HRP 
biosensor is shown 

 
 

 

Figure 5.3 Graph displaying the effect of pH on the Pt/PANI/HRP biosensor in 0.1 M phosphate 
buffer (PB) solutions at various pH values, obtained for experiments performed separately. 

 

In Figure 5.3 it can be seen that the Pt/PANI/HRP biosensor was evaluated at pH 

values of 4.5, 5.5, 6.2, 6.8, 7.0 and 7.2. The amperometric responses of the biosensor was 

collected independently by evaluating the biosensor in a 0.1 M phosphate buffer solution, to 

which sequential addition of 1 mM of H2O2 substrate solution was added. After steady-state 

was reached, the current response data was measured (Somerset et al., 2006). The results 

further indicate that the maximum current response was obtained at pH = 6.8 in accordance 

with the results obtained by Mathebe et al., (2004). It was then decided to collect all the 

Pt/PANI/HRP biosensor data at a pH = 6.8.In a similar manner the optimum pH for the 

Pt/PANI-co-PDTDA/HRP biosensor was determined (graph not shown here). The results 

obtained for this biosensor have shown that the optimum pH value of 7.2 was obtained. 
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5.3.2 Cyclic voltammetric characterisation of Pt/PANI/HRP biosensor 
 

In Figure 5.4 below the results for the cyclic voltammetric (CV) evaluation of the 

Pt/PANI/HRP biosensor in 0.1 M phosphate buffer solution (pH = 6.8) is shown. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.4 Results for the CV evaluation and responses of the Pt/PANI/HRP biosensor in the 
presence of different H2O2concentrations evaluated in 0.1 M PB (pH = 6.8) solution is shown. The 
potential was scanned between + 0.4 and – 1.2 V (vs. Ag/AgCl) at a scan rate of 10 mV/s. 

 

For the results in Figure 5.4, the catalytic reduction of H2O2 at the Pt/PANI/HRP 

biosensor is shown. With each addition of 1 mM H2O2 to the 0.1 M PB (pH = 6.8) solution, it 

was observed that the cathodic peak current of the voltammogram increased. It was further 

observed that the cathodic peak current (Ip,c) showed relatively small increases as the H2O2 

concentrations were varied between 0.8 – 0.86 mM. From these results it was deduced that 

the maximum Ip, c value is obtained at a concentration of 0.86 mM, which was used in the 

inhibition experiments. 
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5.3.3 Differential pulse voltammetric characterisation of Pt/PANI/HRP biosensor 
 

Figure 5.5 shows the results for the cathodic differential pulse voltammograms 

(DPVs) of the Pt/PANI/HRP biosensor in the presence of different H2O2 concentrations 

evaluated in 0.1 M PB (pH = 6.8) solution, plus the calibration lot obtained for the peak 

current vs. increasing H2O2 concentrations. 

 

 

 
 
Figure 5.5 The cathodic differential pulse voltammograms (DPVs) of the Pt/PANI/HRP biosensor 
in the presence of different H2O2concentrations evaluated in 0.1 M PB (pH = 6.8) solution is shown. 
Experimental conditions were: pulse width, amplitude, 20 mV; potential step, 20 mV. 

 

The results for the DPVs shown in Figure 5.5 (a) clearly indicate that the electro-

catalytic reduction of H2O2 at the Pt/PANI/HRP biosensor can be observed around potential 

of – 0.1 V (vs. Ag/AgCl). These results show a clear increasing trend in the cathodic peak 

current (Ip,c) values, compared to the results obtained for the CVs shown in Figure 5.4.  
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In Figure 5.5 (b) the calibration curve generated from the peak current responses 

versus increasing H2O2 substrate concentration is shown. For the six concentrations of H2O2 

investigated with the Pt/PANI/HRP biosensor, a linear calibration curve was obtained for the 

concentrations ranging between 0 and 0.75 mM, with good correlation of 0.997 (n = 6). In a 

higher concentration range of 0.8-0.86 mM, the calibration already exhibited a typical 

curvature due to saturation of the electrode surface with the analyte at high concentration. 

The slope of the above plot represent the sensitivity, which was found to be 0.403 

µAmM-1 with a detection limit of 0.32 mM using equation,��� �  
�  ��	



,where s is the 

standard deviation and m is the slope of the calibration plot. The repeatability in the 

measurement, expressed as relative standard deviation (R.S.D), was 14%, obtained by 

recording 1 mM H2O2 through 10 successive experiments.  

The obtained biosensor data was further used for kinetic modelling of the 

Pt/PANI/HRP biosensor to determine some of its kinetic parameters Michaelis-Menten 

kinetics describes the kinetic properties of many enzymes (Runge et al., 2006). It involves the 

enzyme (E) binding to a substrate (S) to form an enzyme-substrate complex (E-S). The 

Michaelis constant (Km) can be used to describe the kinetics of the reaction, if the data fit the 

hyperbolic curve. A low Km value indicates tight binding, whereas a high Km value suggests 

weak binding. Typical Km values for enzyme systems range from micromolar to millimolar 

concentration range (Liu and Ju, 2002; Nomngongo et al., 2011). The Michaelis-Menton 

kinetics at low substrate concentration is calculated with the following equation: 

 

 

       Eqn. 5.3 
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(Which simplifies to): 

 

  I = [H2O2]     Eqn. 5.4 

 

And when used for the Pt/PANI/HRP biosensor, the value was found to be: 

 

 Sensitivity =  = 4.10 x 10-1 µAmM-1 

 

The Kapp
m in this work was evaluated at 0.6 mM with Imax of 1.7 which revealed that 

that the whole system was controlled by catalytic kinetic process of the enzyme. These results 

are in good agreement with Kapp
m of 0.9 mM obtained by Yao et al (2005).  

The second biosensor constructed in this work is the Pt/PANI-co-PDTDA/HRP 

biosensor. Similarly, the kinetic parameters were also analysed and calculated for this 

biosensor. The results obtained have shown that the Kapp
m and Imaxvalue are 0.7 mM and 0.27 

µA, respectively. 

In comparing the kinetic results obtained for the Pt/PANI/HRP biosensor to that of the 

Pt/PANI-co-PDTDA/HRP biosensor, it was observed that Pt/PANI/HRP biosensor obtained a 

higher Imax value and low Km
app value, which is what is desirable in the construction of a 

biosensor. 

5.3.4 Inhibition of Pt/PANI/HRP biosensor by heavy metals 
 

Inhibition plots for each of the heavy metals studied (e.g. Cd2+, Pb2+, and Hg2+) were 

obtained using the percentage inhibition method. This procedure involved the study of the 

Pt/PANI/HRP biosensor in the presence of H2O2 solution first, followed by exposure to 

sequential additions of the heavy metal solutions. This method is also referred to as the direct 

method, since no incubation is involved. The direct method was further employed to establish 

the metal ion concentration that causes 50% inhibition (IC50) (Nomngongo et al., 2011).The 

heavy metal concentrations evaluated during sequential addition were 0.001 ppb, 0.005 ppb 

and 0.01 ppb for each of Cd2+, Pb2+, and Hg2+ ions. 
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The percentage inhibition was then calculated using the formula (Somerset et al., 

2007; Guascito et al., 2008; Nomngongoet al., 2011): 

 

�% �  

��
�


�

�  100%       Eqn. 5.5 

 

where I% is the degree of inhibition, I1 is the steady-state current obtained in buffer solution 

with no heavy metal ion present, while I2 is the steady-state current obtained after the 

biosensor was exposed to sequential additions of the separate heavy metal ions of Cd2+, Pb2+, 

and Hg2+ respectively. 

 

5.3.4.1 Inhibition results for lowest metal concentration investigated 

 

The percentage inhibition plots obtained for the inhibition of HRP when aliquots of 

0.001 ppb of Cd2+, Pb2+ and Hg2+ was sequentially added to the 0.1 M PB (pH = 6.8) 

solution, are shown in Figure 5.6. 

 

 

Figure 5.6 Results obtained for inhibition of the Pt/PANI/HRP biosensor in the presence of 
sequential aliquots of 0.001 µg. L-1 of Cd2+, Pb2+ and Hg2+, respectively. The individual metal solution was 
added sequentially to a 0.1 M PB (pH = 6.8) solution. 
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For the results shown in Figure 5.7, it was observed that the inhibition results obtained 

for the respective Cd2+, Pb2+ and Hg2+ metal ions, had distinctive patterns. In the 

concentration range between 0.0005 and 0.0008 µg.L-1, the decreasing inhibition trend 

observed was Hg2+> Cd2+> Pb2+. For the concentrations higher than 0.0008 µg.L-1, the 

inhibition trend observed was Hg2+>Pb2+> Cd2+. For the three metal ions investigated, it was 

further observed that Hg2+ had the highest initial inhibition of 59%, while Pb2+ had the lowest 

value of 1.5%. The highest inhibition percentages obtained for the individual metal ions were 

44% for Cd2+, 47% for Pb2+ and 73% for Hg2+. These results have clearly indicated the 

toxicity of the investigated metal ions to HRP as enzyme. 

 

5.3.4.2 Inhibition results for intermediary metal concentration investigated 

 

Figure 5.7 displays the results obtained for the percentage inhibition plots of HRP 

when aliquots of 0.005 µg.L-1 of Cd2+, Pb2+ and Hg2+ was sequentially added to the 0.1 M PB 

(pH = 6.8) solution. 

 

 
Figure 5.7 Results obtained for inhibition of the Pt/PANI/HRP biosensor in the presence of 
sequential aliquots of 0.005 µg.L-1 of Cd2+, Pb2+ and Hg2+, respectively. The individual metal solution was 
added sequentially to a 0.1 M PB (pH = 6.8) solution. 
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Analysis of the results in Figure 5.7 has shown that Cd2+, Pb2+ and Hg2+ inhibited 

HRP at the same pattern and at the same order of magnitude when 0.005 µg.L-1 of the 

inhibitors were sequential added. In the concentration range between 0.0025 and 0.004 µg.L-

1, the decreasing inhibition trend observed was Hg2+ > Cd2+ > Pb2+. For the concentrations 

higher than 0.0008 µg.L-1, the inhibition trend observed was Hg2+ >Pb2+ > Cd2+. For the three 

metal ions investigated, it was further observed that Hg2+ had the highest initial inhibition of 

57%, while Pb2+ had the lowest value of 8%. The highest inhibition percentages obtained for 

the individual metal ions were 42% for Cd2+, 45% for Pb2+ and 74% for Hg2+. These results 

have clearly indicated the toxicity of the investigated metal ions to HRP as enzyme with Hg2+ 

being the highest inhibitor of these metals tested. 

5.3.4.3 Inhibition results for highest metal concentration investigated 

 

The percentage inhibition plots obtained for the inhibition of HRP when aliquots of 

0.01 µg.L-1 of Cd2+, Pb2+ and Hg2+ was sequentially added to the 0.1 M PB (pH = 6.8) 

solution, are shown in Figure 5.8. 

 

Figure 5.8 Results obtained for inhibition of the Pt/PANI/HRP biosensor in the presence of 
sequential aliquots of 0.01  µg.L-1 of Cd2+, Pb2+ and Hg2+, respectively. The individual metal solution was 
added sequentially to a 0.1 M PB (pH = 6.8) solution. 
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For the results shown in Figure 5.8, it was found that the effects of these metal ions 

were also in the same pattern with Figures 5.6 and 5.7. In the concentration range between 

0.005 and 0.008 µg.L-1, the decreasing inhibition trend observed was Hg2+ > Cd2+> Pb2+. For 

the concentrations higher than 0.0008 µg.L-1, the inhibition trend observed was Hg2+ >Pb2+ > 

Cd2+. For the three metal ions investigated, it was further observed that Hg2+ had the highest 

initial inhibition of 59%, while Pb2+ had the lowest value of 9%. The highest inhibition 

percentages obtained for the individual metal ions were 42% for Cd2+, 43% for Pb2+ and 73% 

for Hg2+. These results have clearly indicated the toxicity of the investigated metal ions to 

HRP as enzyme with Hg2+ being the highest inhibitor of these metals tested. 

 

5.3.5 Inhibition of Pt/PANI-co-PDTDA/HRP biosensor by heavy metals 

 

The second sensor evaluated in the inhibition studies of heavy metals was the 

Pt/PANI-co-PDTDA biosensor. This sensor contained the co-polymer of PANI-co-PDTDA 

and this was a novel application of this biosensor for inhibition studies towards heavy metal 

determination. As in section 5.3.4, inhibition plots for each of the heavy metals studied (e.g. 

Cd2+, Pb2+, and Hg2+) were obtained using the percentage inhibition method. This procedure 

involved the study of the Pt/PANI-co-PDTDA/HRP biosensor in the presence of H2O2 

solution first, followed by exposure to sequential additions of the heavy metal solutions. The 

direct method was again applied in the inhibition studies performed. The purpose was to use 

PANI-co-PDTDA as a mediator in order to get better quality of biosensor. 

 

5.3.5.1 Inhibition results for lowest metal concentration investigated 

 

Figure 5.9 displays the results obtained for the inhibition of HRP when aliquots of 

0.001 µg. L-1  of Cd2+, Pb2+ and Hg2+ was sequentially added to the 0.1 M PB (pH = 6.8) 

solution. 
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Figure 5.9 Results obtained for inhibition of the Pt/PANI-co-PDTDA/HRP biosensor in the 
presence of sequential aliquots of 0.001 µg. L-1  of Cd2+, Pb2+ and Hg2+, respectively. The individual metal 
solution was added sequentially to a 0.1 M PB (pH = 6.8) solution. 

 

Analysis of the results in Figure 5.9 has shown that the inhibition trend observed was 

on order Pb2+ > Cd2+ > Hg2+ which is the vice versa for the results we have obtained for 

Pt/PANI/HRP biosensor in higher concentrations of these metals. For the three metal ions 

investigated, it was further observed that Pb2+ had the highest initial inhibition of 50%, while 

Hg2+ had the lowest value of 5%. The highest inhibition percentages obtained for the 

individual metal ions were 48% for Cd2+, 50% for Pb2+ and 24% for Hg2+. These results have 

clearly indicated that only Pb2+ inhibited 50% of the HRP activity. 

 

5.3.5.2 Inhibition results for intermediary metal concentration investigated 

 

Figure 5.10 displays the results obtained for the inhibition of HRP when aliquots of 

0.005 µg. L-1  of Cd2+, Pb2+ and Hg2+ was sequentially added to the 0.1 M PB (pH = 6.8) 

solution.  
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Figure 5.10 Results obtained for inhibition of the Pt/PANI-co-PDTDA/HRP biosensor in the 
presence of sequential aliquots of  0.005  µg.L-1 of Cd2+, Pb2+ and Hg2+, respectively. The individual metal 
solution was added sequentially to a 0.1 M PB (pH = 6.8) solution. 

 

Analysis of the results in Figure 5.10 has shown that metals were inhibitory to HRP at 

metal concentration of 0.00 5 µg.L-1 in order of increasing toxicity Hg2+ > Pb2+ > Cd2+. It was 

further observed that Hg2+ had the highest initial inhibition of 52%, while Pb2+ had the lowest 

value of 19%. The highest inhibition percentages obtained for the individual metal ions were 

49% for Cd2+, 59% for Pb2+ and 78% for Hg2+. These results have clearly indicated the 

toxicity of the investigated metal ions to HRP as enzyme with Hg2+ being the highest 

inhibitor of these metals tested.   

 

5.3.5.3 Inhibition results for highest metal concentration investigated 

 

Figure 5.11 displays the results obtained for the inhibition of HRP when aliquots of 

0.01 µg. L-1  of Cd2+, Pb2+ and Hg2+ was sequentially added to the 0.1 M PB (pH = 6.8) 

solution.  
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Figure 5.11 Results obtained for inhibition of the Pt/PANI-co-PDTDA/HRP biosensor in the 
presence of sequential aliquots of 0.01 µg.L-1 of Cd2+, Pb2+ and Hg2+, respectively. The individual metal 
solution was added sequentially to a 0.1 M PB (pH = 6.8) solution. 

 
Analysis of the results in Figure 5.11 has shown that metals were inhibitory to HRP at 

metal concentration of 0.01 µg.L-1 in order of increasing toxicity Hg2+ > Pb2+ > Cd2+. It was 

further observed that Pb2+and Hg2+ interacted initial inhibition of around 40%, while Cd2+ 

had the lowest value of 2.5%. The highest inhibition percentages obtained for the individual 

metal ions were 38% for Cd2+, 59% for Pb2+ and 75% for Hg2+. These results have clearly 

indicated the toxicity of the investigated metal ions to HRP as enzyme with Hg2+ being the 

highest inhibitor of these metals tested. 
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5.3.6 Voltammetric results for Pt/PANI/HRP biosensor 

5.3.6.1 Voltammetric results for Cd inhibition 

 
Figure 5.12 shows the DPVs obtained for the Pt/PANI/HRP biosensor for the 

successive increments of aqueous cadmium ions (Cd2+) with starting concentrations of 0.001, 

0.005 and 0.01 µg.L-1, respectively.  

 

Figure 5.12 Results for the cathodic differential pulse voltammograms (DPVs) of the Pt/PANI/HRP 
biosensor in the presence of three different Cd concentrations evaluated in 0.1 M PB (pH = 6.8) solution. 
In (a) the Cd concentration used was 0.001 µg.L-1, followed by 0.005 µg.L-1 in (b) and 0.01 µg.L-1 in (c). 
Experimental conditions were: E pulse, 0.02V; scan rate 0.010V/s; potential step, 0.005 V. 
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Analysis of the results in Figure 5.12 indicates that an amperometric response was 

still obtained for the Pt/PANI/HRP biosensor when exposed to Cd2+ ions in the voltammetric 

evaluation of the biosensor. When the [Cd2+] = 0.001 µg.L-1, comparison of the DPV results 

in Figure 5.12 (a) to that of the biosensor response in Figure 5.5, it was clearly observed that 

a diminished peak current response was obtained. Comparison of the results in Figure 5.12 

(a) and (b) also shows that relatively small differences in the peak current responses for these 

concentrations were observed. However, when the [Cd2+] = 0.01 µg.L-1, the difference in 

peak current response to that of the 2 smaller concentrations were more apparent. These 

results further indicate that the concentration of the metal ions, determine the extent of the 

inhibition of HRP enzyme observed. 

Figure 5.13 shows the calibration curves for the DPV responses evaluated for peak 

current versus increasing concentrations of cadmium (Cd). The three plots in Figure 5.12 

were obtained for each of the 0.001, 0.005 and 0.01 µg.L-1 Cd concentrations evaluated. This 

information was further used to determine the sensitivity for each of the concentrations 

evaluated and were found to be 3.04x10-2 uA ppb-1 for [Cd2+] = 0.001 µg.L-1, 5.52x10-2 

uAppb-1for [Cd2+] = 0.005 µg.L-1 and 2.41x10-2 uAppb-1for [Cd2+] = 0.01 µg.L-1. The 

apparent Michaelis–Menten constant (Km
app) and Imax were also calculated and their values 

are presented in Table 6. 
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Figure 5.13 Calibration curves obtained for peak current (Ip) vs. Cd concentration with0.001 µg.L-1 
Cd in (a), 0.005 µg.L-1 Cd in (b) and 0.01 µg.L-1 Cd in (c). Results were obtained using DPV as 
technique in a 0.1 M PB (6.8) solution. 
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The results obtained for the characteristics of the performance of the Pt/PANI/HRP 

biosensor for Cd2+ evaluation are shown in Table 5.1. The parameters for the analytical 

characteristics of the sensor evaluated are presented. 

 

Table 5.1 Performance characteristics of the Pt/PANI/HRP biosensor in the presence of 
Cd2+ as inhibitor. 

Metal ion Cd2+ 
[Cd2+], µg.L-1 0.001 0.005 0.01 
Linear range 

(µg.L-1) 
0-3 

(n = 4) 
0-5 

(n = 5) 
0-3 

(n = 4) 
Sensitivity 
(µAppb-1) 

3.04× 10-2 5.52 × 10-2 2.41 × 10-2 

Correlation 
coefficient (R2) 

0.962 0.964 0.961 

LOD (ppb) 6.64× 10-4 
LOQ (ppb) 2.21 × 10-3 

 

Analysis of the results in Table 5.1 indicates that the Pt/PANI/HRP biosensor had a 

linear range that ranged between 0 – 5 µg.L-1 for the three concentrations evaluated. It was 

also found that the sensitivity was uniform at the same order, although some variations in the 

magnitude were obtained. The LOD value obtained for the biosensor in the presence of Cd2+ 

was 6.64 × 10-4 ppb, with the LOQ 2.21 × 10-3ppb. 

 

5.3.6.2. Voltammetric results for Pb inhibition 

 

Figure 5.14 shows the DPV recordings obtained at the Pt/PANI/HRP biosensor for the 

successive increments of aqueous lead ions with starting concentrations of 0.001, 0.005 and 

0.01 µg.L-1, respectively. 
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Figure 5.14 Results for the cathodic differential pulse voltammograms (DPVs) of the Pt/PANI/HRP 
biosensor in the presence of three different Pb concentrations evaluated in 0.1 M PB (pH = 6.8) solution. 
In (a) the Pb concentration used was 0.001 µg.L-1, followed by 0.005 µg.L-1 in (b) and 0.01 µg.L-1 in (c). 
Experimental conditions were: E pulse, 0.02V; scan rate 0.010V/s; potential step, 0.005 V. 
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Analysis of the results in Figure 5.14 indicates that the Pt/PANI/HRP biosensor when 

exposed to Pb2+ ions in the voltammetric evaluation of the biosensor. When the [Pb2+] = 

0.001 µg.L-1, comparison of the DPV results in Figure 5.14 (a) to that of the biosensor 

response in Figure 5.5, it was clearly observed that a diminished peak current response was 

obtained. Comparison of the results in Figure 5.14 (a) also shows that relatively small 

differences in the peak current responses for these concentrations were observed. However, 

when the [Pb2+] = 0.005 and 0.01 µg.L-1, the difference in peak current response to that of the 

smaller concentrations (a) were more apparent. These results further indicate that the 

concentration of the metal ions, determine the extent of the inhibition of HRP enzyme 

observed. 

Figure 5.15 shows the linearity between the lead (II) concentrations for the DPV 

responses evaluated. The three plots in Figure 5.14 were obtained for each of the 0.001, 0.005 

and 0.01 µg.L-1 Pb concentrations evaluated. This information was further used to determine 

the sensitivity for each of the concentrations evaluated and were found to be 1.32x10-2 

uAppb-1for [Cd2+] = 0.001 µg.L-1, 1.71x10-2 uAppb-1for [Cd2+] = 0.005 µg.L-1 and 1.70x10-2 

uAppb-1for [Cd2+] = 0.01 µg.L-1. The apparent Michaelis–Menten constant (Km
app) and Imax 

were also calculated and their values are presented in Table 7. 
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Figure 5.15 Calibration curves obtained for peak current (Ip) vs. Pb concentration with0.001 ppb Pb 
in (a), 0.005 µg.L-1 Pb in (b) and 0.01 µg.L-1 Pb in(c). Results were obtained using DPV as technique in 
a 0.1 M PB (pH = 6.8) solution. 
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The results obtained for the characteristics of the performance of the Pt/PANI/HRP 

biosensor for Pb2+ evaluation are shown in Table 5.2. The parameters for the analytical 

characteristics of the sensor evaluated are presented. 

 

Table 5.2 Performance characteristics of the Pt/PANI/HRP biosensor in the presence of 
Pb2+ as inhibitor. 

Metal ion Pb2+ 
[Pb2+], µg. L-1 0.001 0.005 0.01 
Linear range 

(µg.L-1) 
1-4 

(n = 4) 
1-4 

(n = 4) 
2-4 

(n = 3) 
Sensitivity  
(µA/ppb) 

1.32 × 10-2 1.71 × 10-2 1.70 × 10-2 

Correlation 
coefficient (R2) 

0.986 0.992 0.996 

LOD(ppb) 1.23 × 10-3 
LOQ (ppb) 4.09 × 10-3 

 

Analysis of the results in Table 5.2 has shown that the Pt/PANI/HRP biosensor had a 

linear range that ranged between 0 – 0.86 µg.L-1 for the three concentrations evaluated. It was 

also found that the sensitivity was uniform at the same order, although some variations in the 

magnitude were obtained. The LOD value obtained for the biosensor in the presence of Pb2+ 

was 1.23 × 10-3 µg.L-1, with the LOQ 4.09 × 10-3 µg.L-1. 
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5.3.6.3 Voltammetric results for Hg inhibition 

 
Figure 5.16 shows the DPV recordings obtained at the Pt/PANI/HRP biosensor for the 

successive increments of aqueous mercury ions with starting concentrations of 0.001, 0.005 

and 0.01 µg.L-1, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16 Results for the cathodic differential pulse voltammograms (DPVs) of the Pt/PANI/HRP 
biosensor in the presence of three different Hg concentrations evaluated in 0.1 M PB (pH = 6.8) solution. 
In (a) the Cd concentration used was 0.001 µg.L-1, followed by 0.005 µg.L-1 in (b) and 0.01 µg.L-1 in (c). 
Experimental conditions were: E pulse, 0.02V; scan rate 0.010V/s; potential step, 0.005 V. 
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Analysis of the results in Figure 5.16 indicates that an amperometric response was 

still obtained for the Pt/PANI/HRP biosensor when exposed to Hg2+ ions in the voltammetric 

evaluation of the biosensor. When the [Hg2+] = 0.001 µg.L-1, comparison of the DPV results 

in Figure 5.16(a) to that of the biosensor response in Figure 5.5, it was clearly observed that a 

diminished peak current response was obtained. Comparison of the results in Figure 5.16 (a) 

(b) and (c) also shows no significant different in the peak current responses.  

Figure 5.17 shows the calibration curves for the DPV responses evaluated for peak 

current versus increasing concentrations of mercury (Hg). The three plots in Figure 5.16 were 

obtained for each of the 0.001, 0.005 and 0.01 µg.L-1 Hg concentrations evaluated. This 

information was further used to determine the sensitivity for each of the concentrations 

evaluated and were found to be 1.54x10-2 uAppb-1for [Hg2+] = 0.001 µg.L-1, 1.47x10-2 uAppb-

1for [Hg2+] = 0.005 µg.L-1 and 7.69x10-2 uAppb-1for [Hg2+] = 0.01 µg.L-1. The apparent 

Michaelis–Menten constant (Km
app) and Imax were also calculated and their values are 

presented in Table 8. 
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Figure 5.17 Calibration curves obtained for peak current (Ip) vs. Hg concentration with0.001 µg.L-1 
Hg in (a), 0.005 µg.L-1 Hg in (b) and 0.01 µg.L-1 Hg in (c). Results were obtained using DPV as 
technique in a 0.1 M PB (pH = 6.8) solution. 
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The results obtained for the characteristics of the performance of the Pt/PANI/HRP 

biosensor are shown in Table 5.3. The parameters for the analytical characteristics of the 

sensor evaluated are presented. 

 

Table 5.3 Performance characteristics of the Pt/PANI/HRP biosensor in the presence of 
Hg2+ as inhibitor. 

Metal ion Hg2+ 
[Hg2+], µg. L-1 0.001 0.005 0.01 
Linear range  

(µg.L-1) 
0-4 

(n = 4) 
0-2 

(n = 3) 
0-2 

(n = 3) 
Sensitivity  
(µAppb-1) 

1.56×10-2 1.47×10-2 7.69×10-2 

Correlation 
coefficient (R2) 

0.964 0.968 0.962 

LOD(ppb) 1.59 × 10-3 
LOQ (ppb) 5.29 × 10-3 

 
 

Analysis of the results in Table 5.3 has shown that the Pt/PANI/HRP biosensor had a 

linear range that ranged between 0 – 4 µg.L-1 for the three concentrations evaluated. It was 

also found that the sensitivity was uniform at the same order, although some variations in the 

magnitude were obtained. The LOD value obtained for the biosensor in the presence of Pb2+ 

was 1.59 × 10-3 µg.L-1, with the LOQ 5.29 × 10-3 µg.L-1. 

In summary, when the results shown in Tables 5.1, 5.2 and 5.3 are compared it was 

observed that the best linear range was obtained for Cd2+, ensuring that a wider range of 

concentrations are covered. The best sensitivity was obtained for Hg2+with a value of 7.69 × 

10-2(µAppb-1). Furthermore, the lowest LOD value was 6.64 × 10-4 µg.L-1, which was 

obtained for Cd2+. 

 

5.3.7 Voltammetric results for Pt/PANI-co-PDTDA/HRP biosensor 
 

The voltammetric results for the Pt/PANI-co-PDTDA/HRP biosensor was also 

evaluated and obtained for the successive addition of H2O2 concentrations in 0.1 M PB (pH = 

7.2) solution. These results are discussed in this section. 
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5.3.7.1 Differential pulse voltammetric characterisation of Pt/PANI-co-PDTDA/HRP biosensor 

 
In Figure 5.18 the results obtained for the cathodic differential pulse voltammograms 

(CDPVs) of the Pt/PANI-co-PDTDA/HRP biosensor in the presence of increasing 

H2O2concentrations in 0.1 M PB (pH = 7.2) solution is shown, including the calibration plot 

obtained for the peak current vs. increasing H2O2 concentrations. 

 
 

 

 

 

 

 

 

 

 

 

Figure 5.18 The cathodic differential pulse voltammograms (DPVs) in (a) of the Pt/PANI-co-
PDTDA/HRP biosensor in the presence of different H2O2 concentrations evaluated in 0.1 M PB (pH = 7.2) 
solution is shown, with the calibration plot in (b). Experimental conditions were: amplitude, 20 mV; 
potential step, 20 mV. 

 

Figure 5.18 shows an increase in H2O2 concentration is accompanied by an increase in 

reduction currents obtained at a constant applied potential of - 0.25 V. As can be seen in 

Figure 5.18, the gaps in between at higher concentrations become to close compared to lower 

concentrations. The current is close to its maximum, suggesting saturation with H2O2. 

Therefore, the concentration of H2O2 was set at 0.67 for all the subsequent experiments. A 

detection limit of 4.83 × 10-2 mM was achieved with a relative standard deviation of 4.3% 

under DPV conditions. Figure 5.18 (b) shows the dependencies of the signal and background 

current the calibration curve was linear in concentration between 0 – 0.67 mM of hydrogen 

peroxide correlation with coefficient R2 = 0.993.  
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The sensitivity was 5.0 µA/mM compared to lower value of 0.40 µA/mM obtained for 

the Pt/PANI/HRP biosensor. Furthermore, for the Pt/PANI-co-PDTDA/HRP biosensor, a 

smaller Km
app value of 0.7m M with Imax of 0.27 µA was obtained. 

 

5.3.7.2 Optimisation of solution pH 

 
This study has broadened the biosensor investigation by using the co-polymer of 

PANI-co-PDTDA as a second mediator for enzyme immobilisation, in order to compare the 

biosensor results to that of the homopolymer of PANI. As a first step the pH optimisation of 

the Pt/PANI-co-PDTDA/HRP biosensor was performed with the results shown in Figure 

5.19. The purpose of this experiment was to determine which pH would allow for the 

optimum value in both sensors and also which sensor would allow a greater current signal. 

 

 

Figure 5.19 Graph displaying the effect of pH on the Pt/PANI/HRP biosensor in 0.1 M phosphate 
buffer solutions (PBS) at various pH values. 
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Analysis of the results in Figure 5.19 has shown that the Pt/PANI-co-PDTDA/HRP 

biosensor gave the greatest current signal and the optimum value pH =7.2, compared to most 

reported PANI values, which gave pH = 6.8 (Mathebe et al., 2004). The effect of pH was 

studied in 3 mM H2O2 in 0.2 M phosphate buffer (pH = 7.2) solution. Both these values are 

close to the optimum pH observed for soluble peroxidase (Mello et al., 2003). In an 

optimised polymerisation the pH of the reaction medium, allow an efficient covalently 

bonding of the enzyme. It also prevents the loss of the enzyme activity under polymerisation 

conditions(Gaikwad et al., 2006). 

 

5.3.7.3 Voltammetric results for metal ion inhibition 

 

In Figure 5.20 the results obtained for the sequential addition of aliquots of 0.01 µg. 

L-1  of Hg2+ solution is shown. Comparison of the results shown in Figure 5.20 to that in 

Figure 5.18, it was observed that a diminished current response was obtained. Although there 

was an increase in the current response for successive addition of the Hg2+ concentrations, the 

peak current values are smaller, indicating that inhibition of the HRP enzyme is occurring. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.20 Results for the cathodic differential pulse voltammograms (DPVs) of the Pt/PANI-co-
PDTDA/HRP biosensor in the presence of 0.001 µg.L-1 Hg concentrations evaluated in 0.1 M PBS (pH = 
7,2. Experimental conditions were: E pulse, 0.02V; scan rate 0.010V/s; potential step, 0.005 V. 
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In Figure 5.21 the calibration plot for the DPV results obtained in Figure 5.19 is 

shown. These results were used to determine the inhibition parameters for the Pt/PANI-co-

PDTDA/HRP biosensor that are discussed further below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21 Calibration curve obtained for peak current (Ip) vs. Hg concentration of 0.01 µg.L-1 Hg 
for the use of the Pt/PANI-co-PDTDA/HRP biosensor in 0.1 M PB (pH = 7.2) solution. 

 

The above results will be discussed in the next section where the voltammetric results 

for Hg inhibition are shown. 

 

5.3.7.3.1 Voltammetric results for Cd inhibition 

 
As for the Pt/PANI/HRP biosensor, differential pulse voltammetric (DPV) evaluation 

of the Pt/PANI-co-PDTDA/HRP biosensor in the presence of Cd2+, Pb2+ and Hg2+ metal ions 

were performed. The results obtained for the characteristics of the performance of the 

Pt/PANI-co-PDTDA/HRP biosensor for Cd2+ analysis are shown in Table 9. The parameters 

for the analytical characteristics of the sensors evaluated are presented. 
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Table 5.4 Performance characteristics of the Pt/PANI-co-PDTDA/HRP biosensor in the 
presence of Cd2+ as inhibitor. 

Metal ion Cd2+ 
[Cd2+], µg. L-1 0.001 0.005 0.01 
Linear range  

(µg.L-1) 
0-1 × 10-2 

(n = 3) 
0-1 × 10-2 

(n = 3) 
0-1 × 10-2 

(n = 3) 
Sensitivity  
(µAppb-1) 

1.07 × 10-2 1.93 × 10-2 1.59 × 10-2 

Correlation 
coefficient (R2) 

0.993 0.996 0.998 

LOD(ppb) 8.01 × 10-4 
LOQ (ppb) 2.67 × 10-3 

 

Analysis of the results in Table 5.4 has shown that indicates that the Pt/PANI/HRP 

biosensor had a linear range that ranged between 0 – 0.01 µg.L-1 for the three concentrations 

evaluated. It was also found that the sensitivity was uniform at the same order, although some 

variations in the magnitude were obtained. The LOD value obtained for the biosensor in the 

presence of Cd2+was 8.01 × 10-4 µg.L-1, with the LOQ 2.67 × 10-3 µg.L-1. 

 

5.3.7.3.2 Voltammetric results for Pb inhibition 

 
The results obtained for the characteristics of the performance of the Pt/PANI-co-

PDTDA/HRP biosensor for Pb2+ analysis are shown in Table 5.5. The parameters for the 

analytical characteristics of the sensors evaluated are presented. 

 

Table 5.5 Performance characteristics of the Pt/PANI-co-PDTDA/HRP biosensor in the 
presence of Pb2+ as inhibitor. 

Metal ion Pb2+ 
[Pb2+], µg. L-1 0.001 0.005 0.01 
Linear range  

(µg.L-1) 
0-1 

(n = 3) 
0-1 

(n = 3) 
0-1 

(n = 3) 
Sensitivity  
(µAppb-1) 

5.37 × 10-2 2.36 × 10-2 1.22 × 10-2 

Correlation 
coefficient (R2) 

0.949 0.983 0.958 

LOD(ppb) 9.38 × 10-4 
LOQ (ppb) 3.13 × 10-3 
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Analysis of the results in Table 5.5 indicates that the Pt/PANI/HRP biosensor had a 

linear range that ranged between 0 – 1µg.L-1 for the three concentrations evaluated. It was 

also found that the sensitivity was uniform at the same order, although some variations in the 

magnitude were obtained. The LOD value obtained for the biosensor in the presence of 

Pb2+was 9.38 × 10-4 µg.L-1, with the LOQ 3.13 × 10-3 µg.L-1. 

 

5.3.7.3.3 Voltammetric results for Hg inhibition 

 
The results obtained for the characteristics of the performance of the Pt/PANI-co-

PDTDA/HRP biosensor for Hg2+ analysis are shown in Table 5.6. The parameters for the 

analytical characteristics of the sensors evaluated are presented. 

 
Table 5.6 Performance characteristics of the Pt/PANI-co-PDTDA/HRP biosensor in the 

presence of Hg2+ as inhibitor. 

Metal ion Hg2+ 
[Hg2+], µg. L-1 0.001 0.005 0.01 
Linear range  

(µg.L-1) 
0-1 

(n = 3) 
0-1 

(n = 3) 
0-1 

(n = 3) 
Sensitivity  
(µAppb-1) 

1.02 × 10-2 2.56 × 10-2 2.14 × 10-2 

Correlation 
coefficient (R2) 

0.987 0.993 0.983 

LOD(ppb) 7.89 × 10-4 
LOQ (ppb) 2.63 × 10-3 

 

Analysis of the results in Table 5.6 has shown that the Pt/PANI/HRP biosensor had a linear 

range that ranged between 0 – 1µg.L-1 for the three concentrations evaluated. It was also 

found that the sensitivity was uniform at the same order, although some variations in the 

magnitude were obtained. The LOD value obtained for the biosensor in the presence of 

Hg2+was 7.89 × 10-4 µg.L-1, with the LOQ 2.63 × 10-3 µg.L-1. 
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5.3.8 Evaluation of biosensor inhibition kinetics 

5.3.8.1 Analysis of PANI/HRP biosensor inhibition kinetics 

 
In this section the inhibition kinetics and parameters of the Pt/PANI/HRP biosensor 

was evaluated by collecting the amperometric responses of the biosensor to increasing H2O2 

concentrations in 0.1 M PB (pH = 6.8) solution. This was evaluated in the absence and 

presence of metal ion (Cd2+; Pb2+; Hg2+) inhibitors. The results obtained for each of the metal 

inhibitors are discussed below. 

In Figure 5.22 the results obtained for the response of the Pt/PANI/HRP biosensor to 

various H2O2 concentrations in the presence and absence of Cd2+ as inhibitor is shown. 

 

Figure 5.22 The Line weaver-Burk plot results obtained for the Pt/PANI/HRP biosensor response to 
successive additions of H2O2 substrate in the absence and presence of Cd2+ metal ions. 

 

The results for the response of the biosensor to increasing H2O2 concentrations were 

first collected in the absence of the metal ion inhibitor in 0.1 M PB (pH = 6.8) solution. The 

Pt/PANI/HRP biosensor was then exposed to 0.04 µg.L-1 Cd2+ (IC50 value determined) in 0.1 

M PB (pH = 6.8) solution. 
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In Figure 5.22 the Lineweaver-Burk plots for the HRP biosensor performance is 

shown and the results obtained for the slope and y-intercept values were calculated. These 

values were further used to calculate the apparent Michaelis-Menten constants (KM
app) in the 

absence and presence of Cd2+ (Table 9). Analysis of these results indicates that the HRP 

enzyme undergoes non-competitive inhibition in the presence of Cd2+ metal ions, for two 

reasons. Firstly, the line plots have different y-intercept values that is an indication of the 

Vmax values (y-intercept = �
����

), with Vmax being the reaction velocity. Secondly, in the case 

of Cd2+ ions it was observed that the �

����

 value is bigger compared to the results in the 

absence of the inhibitor (Figure 5.22), therefore resulting in a smaller Vmax value for Cd as 

inhibitor. 

In Figure 5.23 the results obtained for the response of the Pt/PANI/HRP biosensor to 

various H2O2 concentrations in the presence and absence of Pb2+ as inhibitor is shown. The 

Pt/PANI/HRP biosensor was exposed to 0.008 µg.L-1 Pb2+ (IC50 value determined) in 0.1 M 

PB (pH = 6.8) solution. 

 

 

Figure 5.23 The Lineweaver-Burk plot results obtained for the Pt/PANI/HRP biosensor response to 
successive additions of H2O2substrate in the absence and presence of Pb2+ metal ions. 
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Analysis of the shapes of the Lineweaver-Burk plots in Figure 5.23, also gave 

interesting results on the enzyme inhibition behaviour. It can be assumed that the HRP 

enzyme undergoes non-competitive inhibition  metal ions Pb2+. Firstly, the line plots have 

different y-intercept values that is an indication of the Vmax values (y-intercept = �
����

), with 

Vmax being the reaction velocity. Secondly, in the case of Pb2+ ions it was observed that the 
�

����

 value in the presence of inhibitor is bigger compared to the results in the absence of the 

inhibitor (Figure 5.23), therefore resulting in a bigger Vmax value in the absence of inhibitor. 

Figure 5.24 displays the results obtained for the response of the Pt/PANI/HRP 

biosensor to various H2O2 concentrations in the presence and absence of Hg2+ as inhibitor. 

The Pt/PANI/HRP biosensor was then exposed to 0.005 µg.L-1 Hg2+ (IC50 value determined) 

in 0.1 M PB (pH = 6.8) solution. 

Figure 5.24 The Lineweaver-Burk plot results obtained for the Pt/PANI/HRP biosensor response to 

successive additions of H2O2 substrate in the absence and presence of Hg2+ metal ions. 
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Analysis of the results for the Lineweaver-Burk plot in Figure 5.24, indicate that the 

HRP enzyme undergoes non-competitive inhibition in the presence of Hg2+ metal ions, for 

two reasons. Firstly, the line plots have different y-intercept values that is an indication of the 

Vmax values (y-intercept =�

����

), with Vmax being the reaction velocity. Secondly, in the case of 

Hg2+ ions it was observed that the �

����

 value is bigger compared to the results in the absence 

of the inhibitor (Figure 5.21), therefore resulting in a bigger Vmax value in the absence of 

inhibitor. 

In Table 5.7 a summary of the results obtained for the inhibition kinetics of the 

Pt/PANI/HRP biosensor in the absence and presence of Cd, Pb and Hg as metal ion inhibitors 

are shown. 

 

Table 5.7 Apparent Michealis- Menten (Km
app) values and Imaxparameters obtained in the 

absence of heavy metals and at different concentrations (IC50values) of heavy 
metals (Cd, Pb and Hg). Results evaluated for the Pt/PANI/HRP biosensor in 0.1 
M PB (pH = 6.8) solution is shown. 

 Metal ion inhibitor 

Kinetic 

parameters 

0 µg.L-1 

Cd2+ 

0.04 µg.L-1 

Cd2+ 

0 µg.L-1 

Pb2+ 

0.008 µg.L-1 

Pb2+ 

0 µg.L-1 

Hg2+ 

0.005 µg.L-1 

Hg2+ 

Slope 

(uA/mM) 

2.25 × 10-3 1.72 × 10-3 4.33 × 10-4 1.46 × 10-3 3.87 × 

10-4 

8.42 × 10-4 

y-intercept 

(1/uA) 

2.049 1.718 1.076 1.453 1.723 2.829 

Km
app (mM) 2.41 2.94 2.05 4.32 1.47 4.11 

Imax (uA) 0.54 0.51 0.89 0.63 0.57 0.35 

 

Comparison and analysis of the results shown in Table 5.7 indicate that the best 

sensitivity has been obtained in Cd2+ for all the three metals analysed. It was also found that 

the Km
app value was affected by the presence of Cd2+ ions and absence slightly increased 

whereas the is no significant different in Imax value. This is the indication of the competitive 

inhibition.  
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A competitive inhibitor decreases the apparent affinity of the substrate for the enzyme 

thus increasing Km
app but does not alter the reactivity of the enzyme hence Imax remain 

unchanged. This observation explain that the Cd2+ compete with H2O2 to bind to the active 

site of HRP. The presence of Pb2+and Hg2+ ions affected the Km
app value in the presence of 

inhibitor which leads to decrease Imax values. The decrease in Imax values suggest that the 

inhibition mechanism is mixed inhibitor. As a non-competitive, this inhibitor at a site other 

than the active site and causes changes in the overall 3d shape of the enzyme that lead to a 

decrease in in activity. 

 

5.3.8.2 Analysis of PANI-co-PDTDA/HRP biosensor inhibition kinetics 

 
The inhibition kinetics and parameters of the Pt/PANI-co-PDTDA/HRP biosensor 

was also evaluated by collecting the amperometric responses of the biosensor to increasing 

H2O2 concentrations in 0.1 M PBS (pH = 6.8). This was evaluated in the absence and 

presence of metal ion (Cd2+; Pb2+; Hg2+) inhibitors. The results obtained for each of the metal 

inhibitors are discussed below. 
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In Figure 5.25 the results obtained for the response of the Pt/PANI-co-PDTDA/HRP 

biosensor to various H2O2 concentrations in the presence and absence of Cd2+ as inhibitor is 

shown. 

 

Figure 5.25 The Lineweaver-Burk plot results obtained for the Pt/PANI-co-PDTDA/HRP biosensor 
response to successive additions of H2O2 substrate in the absence and presence of Cd2+ metal ions. 

 

Analysis of the results in Figure 5.25 the Lineweaver-Burk plots for the HRP 

biosensor performance is shown and the results obtained for the slope and y-intercept values 

were calculated. These values were further used to calculate the apparent Michaelis-Menten 

constants (KM
app) in the absence and presence of Cd2+ (Table 10). 
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Analysis of these results indicates that the HRP enzyme undergoes non-competitive 

inhibition  in the presence of Cd2+ metal ions, for two reasons. Firstly, the line plots have 

different y-intercept values that is an indication of the Vmax values (y-intercept =�

����

), with 

Vmax being the reaction velocity. Secondly, in the case of Cd2+ ions it was observed that the 
�

����

 value is bigger compared to the results in the absence of the inhibitor (Figure 50), ), 

therefore resulting in a smaller Vmax value for Cd as inhibitor. 

Figure 5.26 displays the results obtained for the response of the Pt/PANI-co-

PDTDA/HRP biosensor to various H2O2 concentrations in the presence and absence of Pb2+ 

as inhibitor. 

 

 

Figure 5.26 The Lineweaver-Burk plot results obtained for the Pt/PANI-co-PDTDA/HRP biosensor 
response to successive additions of H2O2 substrate in the absence and presence of Pb2+ metal ions. 
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In Figure 5.27 the results obtained for the response of the Pt/PANI-co-PDTDA/HRP 

biosensor to various H2O2 concentrations in the presence and absence of Hg2+ as inhibitor 

were first collected in in 0.1 M PB (pH = 7.2) solution. The Pt/PANI/HRP biosensor was then 

exposed to 0.167 µg. L-1  Hg2+ (IC50 value determined) in 0.1 M PB (pH = 6.8) solution. 

Figure 5.27 The Lineweaver-Burk plot results obtained for the Pt/PANI-co-PDTDA/HRP biosensor 

response to successive additions of H2O2 substrate in the absence and presence of Hg2+ metal ions. 

 

In Figure 5.27 the Lineweaver-Burk plots for the HRP biosensor performance is 

shown and the results obtained for the slope and y-intercept values were calculated. These 

values were further used to calculate the apparent Michaelis-Menten constants (KM
app) in the 

absence and presence of Hg2+ (Table 9). Analysis of these results indicates that the HRP 

enzyme undergoes non-competitive inhibition in the presence of Hg2+ metal ions, for two 

reasons. Firstly, the line plots have different y-intercept values that is an indication of the 

Vmax values (y-intercept =�

����

), with Vmax being the reaction velocity. Secondly, in the case of 

Hg2+ ions it was observed that the �

����

 value is bigger compared to the results in the absence 

of the inhibitor (Figure 56), therefore resulting in a smaller Vmax value for Hg  as inhibitor. 
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In Table 5.8 a summary of the results obtained for the inhibition kinetics of the 

Pt/PANI-co-PDTDA/HRP biosensor in the absence and presence of Cd, Pb and Hg as metal 

ion inhibitors are shown. 

 

Table 5.8 Apparent Michealis- Menten (Km
app) values and Imaxparameters obtained in the 

absence of heavy metals and at different concentrations (IC50 values) of heavy 
metals (Cd, Pb and Hg). Results evaluated for the Pt/PANI-co-PDTDA/HRP 
biosensor in 0.1 M PB (pH = 7.2) solution is shown. 

 Metal ion inhibitor 

Kinetic 

parameters 

0 µg.L-1 

Cd2+ 

0.028 µg.L-1 

Cd2+ 

0 µg.L-1 

Pb2+ 

0.167 µg.L-1 

Pb2+ 

0 µg.L-1 

Hg2+ 

0.008 µg.L-1 

Hg2+ 

Slope 

(uA/mM) 

2.10 × 10-3 8.97 × 10-4 5.90 × 

10-3 

6.57 × 10-3 3.60 × 

10-3 

5.59 × 10-3 

y-intercept 

(1/uA) 

0.833 0.725 1.536 1.049 1.620 1.685 

Km
app (mM) 5.37 7.45 1.08 1.39 1.68 1.67 

Imax (uA) 1.127 1.337 0.637 0.919 0.607 0.937 

 

Comparison and analysis of the results shown in Table 5.8 indicate the best sensitivity 

has been obtained in Cd2+ for all the three metals analysed. It was also found that the 

presence of Cd2+ ions affected the Km
app value although there is no apparent change in Imax 

value for Cd2+ in the presence and absence of the inhibitor. This is the indication of the 

competitive inhibition and this process is reversible as increasing concentration of substrate 

act to wash out the inhibitor from the active site. The Km
app value in the presence of Pb2+ and 

Hg2+ ions were not significantly different whereas the Imax value became affected. The 

increase in Imax values suggests that the inhibition mechanism is reversible and non-

competitive. 

5.3.9 Comparison between Pt/PANI/HRP and Pt/PANI-co-PDTDA/HRP biosensors 

 
The important parameters obtained for the enzyme electrodes are summarized in 

Table 14. The lowest Km
app andImax values were calculated for the Pt/PANI/HRP., the best 

detection limit was observed in Pt/PANI-co-PDTDA/HRP with a smaller relative standard 

deviation (%RSD) of 4.3% to that of 14% for Pt/PANI/HRP.  
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Sensitivities were calculated as 0.410 µAmM-1 and 5.00 µAmM-1for PANI and PANI-

PDTDA enzyme electrodes, respectively by dividing Imax to Km
app. The Pt/PANI-co-

PDTDA/HRP biosensor was also found to be more sensitive than Pt/PANI/HRP for detecting 

these metal ions; unfortunately, there are no other reports of the values for LOD and kinetic 

parameters for Pt/PANI-co-PDTDA/HRP biosensor. The Pt/PANI/HRP biosensor has 

obtained the highest Imax than Km
app of which this is what is desirable in the construction of 

biosensor. The Pt/PANI-co-PDTDA/HRP biosensor has obtained lower Imaxthan Km
app, 

however the Imax value issmaller.It is likely that the lower Imax arises due to complex 

formation between H2O2 and the polymer, which effectively decreases the binding. A 

comprehensive literature survey reveals that many assays for developing the enzymatic 

activity of HRP from H2O2 have been previously reported and the previously reported 

literatures are based on different electrodes, mediators and different enzymes. This 

comparison is only specific to electrodes that were immobilised with conducting polymers 

and other films. This comparison shows that the Km and Imax value obtained from the 

Pt/PANI/HRP biosensor is in close agreement with values obtained using other 

assays;(Michira et al., 2007, Yang et al., 1997) and the value of Km
app was lower compared to 

the studies of (Nomngongo et al., 2011, Wang et al 2005, Wang et al., 2009a).The Km
app 

value for Cd 2+ is higher than the one reported by Nomngongo et al, (2007). 

 

Table 5.9  Kinetic parameters for the Pt/PANI/HRP and Pt/PANI-co-PDTDA/HRP 
biosensors. 

Immob. 
Matrices 

Km(mM) Imax (µAcm-2) LOD (mM) Sensitivity 
(µAmM-1) 

 
 
PANI 

 
0.6 

 

 
1.7 

 
0.32 

 
0.410 

 
PANI-PDTDA 

 
0.7 

 
0.27 

 
0.00483 

 
5.00 
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5.4 Summary 
 

An amperometric biosensor based on the inhibitory effects on horseradish peroxidises 

(HRP) activity towards the reduction of hydrogen peroxide (H2O2 substrate) by selected 

heavy metals (Hg, Cd, and Pb) has been investigated. The polymer (PANI) and PANI-co-

PDTDA were used as mediators since they provide a suitable platform for the immobilisation 

of HRP on the platinum electrode surface and it also mediate in electron transfer between 

HRP and the electrode (Gerard et al., 2002). 

The results obtained by both of these methods were compared. A 0.1 M buffer 

solution (pH = 6.8) was used throughout the study for Pt/PANI/HRP biosensor, while a pH = 

7.2 solutoin was used for the Pt/PANI-co-PDTDA/HRP biosensor. These were optimum pH 

values obtained for maximal current output, which correspond to the one that was reported by 

Mathebe et al. (2004) for Pt/PANI/HRP. The kinetic studies were also investigated using the 

Lineweaver-Burk method. The important part of the curve is usually the linear range where 

variation in substrate concentration gives a variation in the current. The slope of the curve in 

the linear zone corresponds to the sensitivity of the biosensor because it expresses a variation 

in the signal obtained as a function of the analyte concentration. Through this information it 

was able to find the Michaelis-Menten parameters. The apparent Michaelis – Menten 

parameters (Km
app) and Imax values, which provide an indication of catalytic activity of an 

enzyme were calculated to be 0.6 mM and 1.7 µA for the Pt/PANI/HRP biosensor, and 0.7 

mM and 0.27 µA for the Pt/PANI-co-PDTDA/HRP biosensor in 1 mM H2O2 substrate 

solution. The smaller value of Km
app indicates that the complex formed in both biosensors 

with H2O2 is strong. The evidence of high Imax and low Km
app value in the case of 

Pt/PANI/HRP is what is actually desired in the construction of a biosensor. The heavy metals 

detection limit has also shown close agreement with previous reported literature values of 

Pt/PANI/HRP biosensors. For repeatability, 10 successive measurements were done of 1 mM 

H2O2 in order to see the current response of Pt/PANI/HRP biosensor. The %RSD values for 

the Pt/PANI/HRP and Pt/PANI-PDTDA/HRP biosensors were calculated to be 14% and 

4.3% respectively. The Hg(II) ions were noted to have higher degree of enzyme inhibition 

with a value of 73% and 84% for Pt/PANI/HRP and Pt/PANI-PDTDA/HRP biosensors, 

respectively. Although additional development is required before this technique is ready for 

widespread use, it shows great promise as a means of rapidly screening numerous aqueous 

samples for metal contamination. 
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Chapter 6  

 
Voltammetric Stripping Analysis of PGMs 

 

6.1 Introduction 
 

The year 2012 represent the twentieth anniversary of the first reported application of 

screen-printed electrodes (SPCEs) for the determination of metal ions(Honeychurch, 2012). 

By Combining these electrode with stripping voltammetry, the mass transport which occurs 

as the result of this type of diffusion can increase and also enhanced the signal to noise ratio. 

The acceptance of stripping methods has however suffered from the use of mercury working 

electrodes, with lack of market penetration compared to other techniques. The beauty of 

electrochemical techniques is the construction of a chemically modified electrode (CME), 

tailor made for sensitive and selective analytical applications, avoiding application of the 

toxic mercury film (Kalcher et al., 2006 ; Svancara et al., 2009;Khaled et al., 2012). 

The rough surface of SPCEs has shown itself to be an excellent approach to pre-

concentrate a substrate on the electrode surface, providing more sensitive methods using lab-

constructed hand-held instruments. Voltammetric stripping methods involve a pre-

concentration step that is generally very sensitive when used for metal-ion determination. The 

combination of chemically modified electrodes with stripping methods can offer an excellent 

alternative for electrochemical analysis of metals at trace levels, increasing not only the 

sensitivity but also selectivity of the analysis. A common approach to increasing selectivity is 

to attach host molecules, which selectively interact with specific guest molecules. The 

coupling of disposable SPCEs with stripping techniques is more favourable in comparison 

with conventional stripping analysis, as the design and operation are greatly simplified, in 

accordance with the requirements of a decentralized assay (Khaled et al., 2010). 
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The biosensor that was developed in chapter 5 was not suitable for the determination 

of PGMs because of this; our research was diverted to develop a sensor that is suitable for 

these metals since they were part of our project.  In this study the construction and evaluation 

of SPCEs chemically modified with a bismuth film (BiF) were used as a working electrode 

for the determination of PGMs (Pd, Pt, and Rh) in alkaline medium, in the presence of a 

chelating agent of dimethylglyoxime (DMG). 

 

6.2 Materials and Methods 
 

6.2.1 Chemicals and reagents 

 
The standards for platinum (Pt), palladium (Pd) and rhodium (Rh) (1000 mg/L atomic 

absorption standard solution) and a standard Bi (III) solution (999 mg/L, AAS) and DMG 

were provided by Fluka (Germany). All other reagents used were provided by Merck (South 

Africa) and included sodium acetate, ammonia with a purity of ca 25% ammonium chloride, 

hydrochloric acid with purity 32% and nitric acid with purity 55%. Glacial acetic acid and 

ethanol (95%) were purchased from Kimix (South Africa). 

Precious group metal (PGM) stock solutions were prepared from 1000 mg/L AAS 

standards solutions and standardised Bi (III) (100 mg.L-1) was used for the formation of the 

film on a SPCE. A stock solution of 0.01 M DMG was prepared by dissolution of the pure 

substance in absolute ethanol. Ammonium buffer solution was prepared from ammonium 

chloride and the pH was adjusted to the value of 9.2 with the addition of ultra-pure ammonia 

(NH3; 25%) and employed as supporting electrolyte solution. Acetic acid was used for pH 

control for the preparation of a sodium acetate buffer (pH = 4.8) solution. Ultrapure water 

(Milli-Q plus; 18.2 MΩ; Millipore systems) was used in all experiments. 

 

6.2.2 Apparatus 

 
Voltammetric measurements were performed using a PalmSensportablepotentiostat / 

galvanostat, with the PS Trace program and accessories (PalmSens® Instruments BV, 3992 

BZ Houten, The Netherlands), interfaced to a microcomputer controlled by PS 2.1 software 

for data acquisition and experimental control.  
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The measurements were performed in a conventional electrochemical cell of 20.0 mL, 

employing the bismuth modified carbon screen-printed electrode (SCPE/Bi) with 4 mm 

diameter provided by Dropsens (Oviedo, Spain) as working electrodes. The electrochemical 

system set-up is shown in Figure 6.1 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 6.1 The photograph showing of a portable Palmsens® electrochemical system and set-up 
used in this study. 

 
The measurement of pH values during the experiments was carried out by means of a 

microprocessor pH meter with custom buffers (the model HI 221 series, Hanna, instruments). 

All experiments were performed at a controlled room temperature of 20 ± 1 ºC. 
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6.2.3 Preparation of bismuth film electrode (BiFE) 

 
The screen-printed carbon electrode (SPCE) was connected to the potentiostat as 

working electrode using a 1 meter length cable provided by the electrode manufacturer 

(PalmSens®). The three electrode system was placed into cell containing a 10 mL solution of 

100 mg.L-1 Bi (III) in 0.2 M acetate buffer (pH = 4.8) solution. The solution was 

deoxygenated with pure nitrogen for 5 min followed by deposition of bismuth onto the 

screen-printed electrode at a deposition potential of - 1.0. V (vs. Ag/AgCl) for 300 seconds 

with solution stirred (by means of a mechanical stirrer bar), and then the solution was left for 

15 s without stirring to equilibrate.  

Next, the whole electrode system was rinsed with ultrapure water several times 

without scratching or disturbing the bismuth film on the SPCE. Finally, this was followed 

using voltammetric stripping measurements of the analyte solution and employing adsorptive 

differential pulse stripping voltammetry (AdDPSV) in the cathodic scanning direction.  

 

6.2.4 Analytical procedure for the determination of PGMs 

 

Before each voltammetric titration process, the presence of PGMs was checked by 

recording the DPAdSV of the blank buffer solution. The electrode surface was activated by 

10 replicate direct current sweeps from + 0.8 to – 1.4 V with scan rate 50 mVs-1 in 0.01 M 

ammonium buffer (pH = 9.2) solution. The solution was then exchanged by a sample solution 

containing the same supporting electrolyte purged by pure nitrogen gas for 5 min. The 

procedure used to obtain the differential pulse adsorptive stripping voltammograms 

(DPAdSVs) was as follows. A 10 mL of 0.01 M ammonium buffer (pH = 9.2) solution 

containing 5 × 10-5 M DMG was transferred into the voltammetric cell. The stirrer was 

switched on and the solution was purged with nitrogen gas for 5 min. Then the analyte was 

pre-concentrated for 150 s at - 0.7 V (vs. Ag/AgCl) whilst stirring the solution at 2000 rpm. 

At the end of the accumulation time the stirrer was switched off. After resting for 10 s, the 

AdDPSV was performed, with the potential scanned from + 0.8 to - 1.4 V at a scan rate 50 

mVs-1.  
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When further metal solution was added to the cell, the solution was deoxygenated 

with nitrogen before performing further voltammetric analysis. The peak current was used for 

the construction of calibration curves for each metal investigated. 

6.3. Results and Discussion 
 

6.3.1 Characterisation of modified screen-printed electrode surface 
 

Initial studies of the SPCE/BiF were carried out using cyclic voltammetry (CV) in 

different types of supporting electrolytes. The supporting electrolytes examined included 0.01 

M NH3 buffer (pH = 9.2), 0.2 M NaOAc buffer (pH = 4.8), 0.1 M HCl, 1 mM K3Fe (CN)6, 

and 4 × 10-3 M LiCIO4 solutions. It was found that the SPCE/BiF gave the highest reduction 

peak current response in the 0.2 M NaOAc buffer (pH = 4.8) solution. In this study ammonia 

buffer (pH = 9.2) was selected for further studies because it was pointed out that basic pH 

conditions give the widest potential range with minimum solvent reduction signal. This 

voltammetric behaviour of ammonium buffer (pH = 9.2) solution is seen in Figure 6.2 and 

was in close agreement with the one reported in literatures (Hutton et al., 2001). 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 Cyclic voltamograms for the SPCE/BiF sensor in different buffer solutions at a scan rate 
of 0.05 Vs-1 in: (I) 0.01M NH3 buffer (pH = 9); (II) 0.2 M NaOAc buffer (pH = 4.8); (III) 0.1 M HCl (IV); 1 
mM K 3Fe(CN)6; and (V) 4 x10-3M LiCIO4 solution. 
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Moreover, the SPCE was compared with SPCE/BiF in ammonium and SPCE/BiF in 

ammonium buffer with 0.01 M DMG solution using AdDPSV. When the SPCE/BiF was 

immersed in buffer solution with the DMG complex agent, the signal was more enhanced. 

Furthermore, when comparing the signal from the SPCE/BiF electrode in ammonium buffer (pH 

= 9.2) solution with that of the SPCE/BiF in ammonium buffer (pH = 9.2) solution containing 

DMG, the results show the characteristics are different and a well-behaved reduction response at 

a peak potential of – 0.35 V (vs. Ag/AgCl) was obtained 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 Comparative DPAdSVs of the various electrodes of: (I) SPCE; (II) SPCE/BIF and; (III) 
SPCE/BiF/DMG in NH3 buffer (pH = 9) solution. 

 

6.3.2 Optimisation of complexing reagent concentration 

 

The concentration of dimethylglyoxime (DMG) were varied using three different 

concentrations to establish the optimal analytical condition for the determination of PGMs 

(e.g. Pt, Pd& Rh), using bismuth modified SPCE. These DMG concentrations were chosen 

after consideration of the recent work done by Van der Horst (2012).  
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During the experimental phase the reagent concentration of DMG were varied 

between the three concentrations of 1 × 10-4 M, 5 × 10-5 M and 1 × 10-5 M. With the results 

obtained for this work, the best results were obtained when a DMG concentration of 1 × 10-5 

M was used. The voltammetric results obtained are presented in Figure 6.4. The Pt(HDMG)2 

complex showed a maximum current response at a peak potential of - 0.45 V (vs. Ag/AgCl) 

as shown in Figure 6.4 (B). One cathodic peak with a maximum current response was 

observed at - 0.60 V (vs. Ag/AgCl) in the presence of Rh(HDMG)3 complex (see Figure 6.4 

(C)). The Pd(HDMG)2complex was reduced yielding a well-defined peaks at 0.40 V (Figure 

44 (A). The concentration of chelating complex can affect the electrochemical response of the 

complexes and these parameters were optimised as the results showed in Figure 6.4. 

 

 

 

Figure 6.4 Results obtained for the effects of various DMG concentration upon the response to 1 
ppb of  Pd(II) in (A), Pt(II) in (B) and Rh(III) in (C), collected in the presence of 0.01 M ammonium 
buffer (pH =9.2) solution. 
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Table 6.1 presents the current response of PGMs complexes (Pd(HDMG)2, 

Pt(HDMG)2,, Rh (HDMG)3 and the potentials in different concentrations of DMG. 

 

Table 2 Results obtained for the effects of various DMG concentration upon the response to 1 
ppb of PGMs Pd(II) , Pt(II) and Rh(III), collected in the presence of 0.01 M ammonium 
buffer (pH =9.2) solution. 

 

DMG Concentration (M)  

Metal complex 
1 × 10-5 5 × 10-5 1 × 10-4 Potential 

(V) Current (µA) 

Pd(HDMG)2 
- 1.721 - 1.448 - 1.381 - 0.40 

Pt(HDMG)2 
- 1.675 - 1.633 - 1.588 - 0.45 

Rh(HDMG)3 
- 0.7693 - 0.6797 - 0.5451 - 0.60 

 

In summary, the results obtained for the optimisation of the DMG concentration have 

showed that among all the concentrations of DMG evaluated, the best results were obtained 

in 1 × 10-5 M. Certainly 1 × 10-5 M. concentration and was used in further work.  

 

6.3.3 Deposition potential optimisation studies 

 
As discussed by other authors (Gonzalez et al., 2004), the deposition potential (Ed) at 

which the metal ion is able to deposit on the electrode surface is critical. Thus, the effect of 

deposition potential was optimised in order to obtain maximum sensitivity and optimum 

results. The voltammetric analysis of Pd(II), Pt(II) and Rh(III) as dimethylglyoxime (DMG) 

complexes on the SPCE/BiF sensor was determined as a function of deposition potential (Ed) 

in ammonium buffer (pH = 9.2) solution and plotted against the peak current (Ip) values to 

make it easy to select the optimal deposition potential.  
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The deposition potential was varied in the + 0.3 to - 0.8V potential range but only 

negative deposition potential has been considered in this study (as determined by Van der 

Horst, (2011)) and the solution was stirred during the deposition time of 120 s. Figure 6.5 

represent the results obtained for the optimisation of the deposition potential for all three 

PGMs investigated. 

In Figure 6.5 (A), the results obtained for the Pd(II) peak current is displayed, 

indicating that the Ip values increased as the deposition potential became more negative. The 

results obtained for the Pt(II) peak current is shown in Figure 6.5 (B) For Pt(II) it was 

observed that the peak current decreased over most of the potentials investigated and 

increased minimally only at - 0.7 V (vs. Ag/AgCl), before it started decreasing again. .The 

results for Rh(III) in displayed in Figure 61 (C). The peak current for Rh(III) remained a 

maximum and the deposition potential only displayed a minimum value at 0.0 V (vs. 

Ag/AgCl), and slightly increase at - 0.7 V (vs. Ag/AgCl) Pd(II), Pt(II) and Rh(II) are 

positively charged ions which are thus preferentially reduced at more negative potential, 

Hence, for all the metals - 0.7 V (vs. Ag/AgCl) as deposition potential was applied in all 

subsequent experiments. 
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Figure 6.5 Results obtained for effects of deposition potential (Ed) upon the peak current responses 
to 1 µg. L-1 of Pd(II) in (A), Pt(II) in (B) and Rh(II) in (C), evaluated in the presence of 0.01 M ammonium 
buffer (pH = 9.2) solution. 
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After analysis of the results shown in Figure 6.5, it was decided that a deposition 

potential of -0.7 V (vs. Ag/AgCl) was used as an optimum value through the rest of the 

experiment. 

 

6.3.4 Deposition time optimisation studies 

 
Deposition time (td) is another important stripping voltammetric parameter, which 

should be precisely controlled during the stripping experiment. The effect of the deposition 

time on the cathodic stripping peak of platinum group metals (PGMs = Pd, Pt and Rh) was 

studied in ammonia buffer (pH = 9.2) solution, containing 1 ppb of the selected PGMs in the 

time range from 0 – 300 s. The results obtained are illustrated in Figure 6.6 showing that the 

current intensity increased slowly to reach a maximum value between 150 and 180 s for all 

three PGMs. After 180 s of deposition, a sharp increase was observed for all the selected 

metals as seen in Figure 6.6. For both Pd(II) and Pt(II) the increase was linear after 180 s to 

300 s, whereas there was a sharp fall at 240 s for Rh(III), followed by another increase.  

In summary, it was decided in order to prevent a long deposition time of 300 s as the 

increasing peak current values suggest in Figure 6.6, to rather use a deposition time of 150 s 

as the optimum value. For all stripping experiments, I have chosen the optimum values of - 

0.7 V (vs. Ag/AgCl) for deposition potential and 150 s as the deposition time to proceed with 

in the experiments. 
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Figure 6.6 Effects of deposition time (td) upon the response to 1 µg. L-1  (A) Rh(III), (B) Pd (II) and 
(C) Pt(II) in the presence of 0.01M ammonia buffer (pH = 9.2) solution. 
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6.3.5 Stability testing of the SPCE/BiF electrode 

 
The operational stability of a bismuth-modified screen-printed carbon electrode was 

investigated in 0.01 M ammonia buffer (pH = 9.2) solution, containing various concentrations 

of the PGM-(HDMG)x complexes and using cathodic adsorptive stripping voltammetry in the 

potential range from + 0.8 to - 1.4 V at a scan rate of 50 mVs-1. The SPCE/BiF electrode was 

stored in ammonium buffer (pH = 9.2) solution at 4° C. The peak current results obtained for 

the selected PGMs was plotted against time for each of the DMG concentration investigated, 

as shown in Figure 63. The prepared sensors were stored for up to 28 hours when the results 

reported in this section were collected. The results obtained for the evaluation of the 

Pd(HDMG)2, complex as shown in Figure 6.7 (A), indicate that for the [DMG] = 1 × 10-5 M, 

it was observed that the peak current results was the lowest over the time period investigated. 

For the [DMG] = 5 × 10-5 M and 1 × 10-4 M, the results have shown close similarities in the 

peak current for the entire duration of the experiment, with the only difference obtained at the 

end of the experiment. 

The results for the Pt(HDMG)2 complex shown in Figure 6.7 (B) indicate that for the 

[DMG] = 1 × 10-5 M, it was observed that the peak current results was the highest with the 

lowest current obtained over the time period of 15 hours. For the [DMG] = 5 × 10-5 M and 1 

× 10-4 M, the results have shown close similarities in the peak current for the entire duration 

of the experiment, with the only little difference obtained in at the end of the experiment. 

In the case of the Rh(HDMG)3 complex, the results in Figure 6.7 (C) indicated that 

indicate that for all DMG concentration, the results have shown close similarities in the peak 

current for the entire duration of the experiment especially for [DMG] = 5 × 10-5 M and 1 × 

10-4 M. For the [DMG] = 1 × 10-5 M stability was observed between 7 and 28 hours and 

between 14 and 28 hours a higher signal was observed while we observed the stability 

between 14 and 28 hours for [DMG] = 5 × 10-5 M and 1 × 10-4 M., with the a slightly current 

enhancement obtained at the end of the experiment for [DMG] = 5 × 10-5 M. 
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Figure 6.7 Results obtained Stability test of the BiSPCE in 0.01 M ammonium buffer of pH 9.2 
containing 1 µg. L-1  of selected PGMs with various DMG concentration Ed = - 0.7V, (vs Ag/AgCl) and td = 
120 s. 
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In summary, after evaluation of the results for each of the PGM-(HDMG)x complexes 

[DMG] = 5 × 10-5 M and 1 × 10-4 M has shown similar behaviour throughout of the 

experiment. [DMG] = 1 × 10-5 M, in Figure 6.7 (C) has shown stability over a period of 7 to 

28 hours. 

 

6.3.6 Analytical features of the adsorptive stripping procedure 

 
The sensitivity of the SPCE/BiF sensor was tested using various standard solutions of 

the selected PGMs and a [DMG] = 1 × 10-5 M. The calibration curve for each PGM 

determination was established by applying the developed stripping voltammetric procedure as 

outlined in Table 16.  

 

Table 6.2 Summary of the optimal conditions for PGMs determination with the SPCE/BiF 
sensor platform and DMG as complexing agent. 

 

 

 

 

 

 

Step Condition / Analysis 

PGM Pd(II) Pt(II) Rh(III) 

Reduction step    

  pH 9.2 9.2 9.2 

  Reduction potential - 700 mV - 700 mV - 700 mV 

  Reduction time 150 s 150 s 150 s 

  Complexing agent Dimethylglyoxime (DMG) 

  Supporting electrolyte 0.01 M ammonia buffer solution 

    

Measurement step    

  Supporting electrolyte 0.01 M ammonia buffer solution 

  Measurement 
technique 

Adsorptive differential pulse voltammetry 

  Potential window Sweep potential from + 0.8 to - 1.4 V 
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Table 6.2 provides a summary of the optimal conditions for the adsorptive differential 

pulse stripping voltammetric (AdDPSV) evaluation of 

parameters were applied in the next stage of the investigation for the analysis of the PGMs.

The results obtained showed that a deposition time of 150 s and deposition potential 

of - 0.7 V (vs. Ag/AgCl) gave well defined 

(HDMG)x complexes. Calibration curves were obtained from the results obtained from 

standard addition of PGMs and the corresponding equation for this dependence is shown on 

each graph. The results obtained for the pe

increasing concentration is shown in Figure 6

has a stripping potential at approximately 

positive potential direction as t

the results obtained for the blank, while after a potential of 

obtained for hydrogen generation is observed. A good linear increase in the peak current was 

observed that is reflected in the calibration curve shown in Figure 6

 

Figure 6.8 Results obtained for the AdDPVs for the increasing concentrations of Pd(HDMG)
– 0.1 µg. L-1) evaluated using the SPCE/BiF sensor, with 
curve is shown. 
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provides a summary of the optimal conditions for the adsorptive differential 

pulse stripping voltammetric (AdDPSV) evaluation of Pd(II), Pt(II) and Rh(III). These 

parameters were applied in the next stage of the investigation for the analysis of the PGMs.

The results obtained showed that a deposition time of 150 s and deposition potential 

0.7 V (vs. Ag/AgCl) gave well defined peaks for the SPCE/BiF electrode and PGM

complexes. Calibration curves were obtained from the results obtained from 

standard addition of PGMs and the corresponding equation for this dependence is shown on 

each graph. The results obtained for the peak current of the Pd(HDMG)

increasing concentration is shown in Figure 6.8. The voltammograms shown in Figure 64 (A) 

has a stripping potential at approximately – 0.7 V (vs. Ag/AgCl), which shifted in the more 

positive potential direction as the concentration increased. The peak potential is also absent in 

the results obtained for the blank, while after a potential of – 1.0 V (vs. Ag/AgCl) the peaks 

obtained for hydrogen generation is observed. A good linear increase in the peak current was 

erved that is reflected in the calibration curve shown in Figure 6.8 (B).  

 

Results obtained for the AdDPVs for the increasing concentrations of Pd(HDMG)
) evaluated using the SPCE/BiF sensor, with Ed = -0.7 V and td = 150s. In (B) the calibration 

Heavy and precious metal toxicity evaluation using a horseradish peroxidase immobilised biosensor 

provides a summary of the optimal conditions for the adsorptive differential 

Pd(II), Pt(II) and Rh(III). These 

parameters were applied in the next stage of the investigation for the analysis of the PGMs. 

The results obtained showed that a deposition time of 150 s and deposition potential 

peaks for the SPCE/BiF electrode and PGM-

complexes. Calibration curves were obtained from the results obtained from 

standard addition of PGMs and the corresponding equation for this dependence is shown on 

ak current of the Pd(HDMG)2 complex with 

. The voltammograms shown in Figure 64 (A) 

0.7 V (vs. Ag/AgCl), which shifted in the more 

he concentration increased. The peak potential is also absent in 

1.0 V (vs. Ag/AgCl) the peaks 

obtained for hydrogen generation is observed. A good linear increase in the peak current was 

 

 

Results obtained for the AdDPVs for the increasing concentrations of Pd(HDMG)2 (0.01 
= 150s. In (B) the calibration 
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The evolution of hydrogen gas (H2 (g)) was observed during each of the PGMs 

investigated. This observation is in accordance with recent studies that have shown that the 

use of ammonia buffer solution (pH = 9) can be attributed to H2 (g) formation (Cordon et al., 

2002; Hutton et al., 2003). When ammonia buffer solution is used, a catalytic hydrogen wave 

is also absorbed, which can be explained by the following reactions taking place: 

 

Pd(HDMG)2 + NH4
+ 

      Pd(HDMG)2 H
+ 

+ NH3 (g)  (Eqn. 6.1)  

     

Pd(HDMG)2 H
+
+ e

-
   Pd(HDMG)2 H   (Eqn.6.2) 

 

2Pd(HDMG)2 H    2Pd(HDMG)2 + H2   (Eqn.6.3) 

     

The gas formation deliver a characteristic peak at approximately – 1.4 V (vs. 

Ag/AgCl), which are not shown in the AdDPSVs. Figure 6.9 displays the results obtained for 

the Pt(HDMG)2 complex with increasing concentration. The voltammograms shown in 

Figure 6.9 (A) has a stripping potential at approximately – 0.7 V (vs. Ag/AgCl), with increase 

in peak current as the concentration increased. 
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Figure 6.9 Results obtained for the AdDPVs for the increasing concentrations of Pt(HDMG)
– 0.1 µg. L-1) evaluated using the SPCE/BiF sensor, with 
curve is shown. 

 

In this voltammogram the hydrogen evolution peak is absent in the results obtained 

for the blank compared to Pd(HDMG)

was observed that is reflected in the calibration curve shown in Figure 65 (B). 

Figure 6.10 displays the results obtained for the 

in peak current as concentration increases

a stripping potential at approximately 

peak current was observed that is reflected in the calibration curve shown in Figure 6
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Results obtained for the AdDPVs for the increasing concentrations of Pt(HDMG)
) evaluated using the SPCE/BiF sensor, with Ed = - 0.7 V and td = 150 s. In (B) the calibration 

In this voltammogram the hydrogen evolution peak is absent in the results obtained 

for the blank compared to Pd(HDMG)2 complex. A good linear increase in the peak current 

was observed that is reflected in the calibration curve shown in Figure 65 (B). 

displays the results obtained for the Rh(HDMG)3 complex with increasing 

in peak current as concentration increases. The voltammograms shown in Figure 6

a stripping potential at approximately – 0.85 V (vs. Ag/AgCl). A good linear increase in the 

peak current was observed that is reflected in the calibration curve shown in Figure 6
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Results obtained for the AdDPVs for the increasing concentrations of Pt(HDMG)2 (0.01 

= 150 s. In (B) the calibration 

In this voltammogram the hydrogen evolution peak is absent in the results obtained 

ncrease in the peak current 

was observed that is reflected in the calibration curve shown in Figure 65 (B).  

complex with increasing 

shown in Figure 6.10 (A) has 

0.85 V (vs. Ag/AgCl). A good linear increase in the 

peak current was observed that is reflected in the calibration curve shown in Figure 6.10 (B).  
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Figure 6.10 Results obtained for the AdDPVs for the increasing concentrations of Rh(HDMG)
– 0.1 µg. L-1) evaluated using the SPCE/BiF sensor, with 
curve is shown. 

 

Figure 6.11 displays the results obtained for the simultaneous determination of 

Pd(HDMG)2 and Rh(HDMG)

noble elements was done successfully, although 

around – 0.1 V (vs. Ag/AgCl) 

be due to interferences in the solution. 

height displayed an increase in conc
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Results obtained for the AdDPVs for the increasing concentrations of Rh(HDMG)
) evaluated using the SPCE/BiF sensor, with Ed = - 0.7 V and td = 150s. In (B) the calibration 

displays the results obtained for the simultaneous determination of 

and Rh(HDMG)3 complexes. This simultaneous determination of these two 

noble elements was done successfully, although we have noticed a broad peak for Pd(II) 

(vs. Ag/AgCl) and - 0.95 V (vs. Ag/AgCl) for Rh(III). The broad peak might 

be due to interferences in the solution. The stripping peaks obtained are almost the same 

height displayed an increase in concentrations as the current. 

 

aluation using a horseradish peroxidase immobilised biosensor 

 
Results obtained for the AdDPVs for the increasing concentrations of Rh(HDMG)3 (0.01 

= 150s. In (B) the calibration 

displays the results obtained for the simultaneous determination of 

complexes. This simultaneous determination of these two 

we have noticed a broad peak for Pd(II) 

for Rh(III). The broad peak might 

The stripping peaks obtained are almost the same 
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Figure 6.11 Adsorptive differential pulse cathodic stripping voltammetry for the simultaneous 
determination of Pd-Rh–(HDMG)
and td = 150s. In (B) the linear regression curve is shown

 

A good linear increase in the peak current was observed that is reflected in the 

calibration curve shown in Figure 6

Figure 6.12 displays the results obtained for the simultaneous determination of 

Pt(HDMG)2 and Rh(HDMG)

Pt(II) is possible but the current for Rh(III) peak is smaller than that of Pt(II) for the same

concentration. This simultaneous determination of this two noble elements was done 

successfully and Pd(II) stripping peak has been observed at 

by the stripping peaks obtained at potential 
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Adsorptive differential pulse cathodic stripping voltammetry for the simultaneous 
(HDMG) x complexes (0.01 – 0.1 µg. L-1) using a SPCE/BiF sensor, 

= 150s. In (B) the linear regression curve is shown. 

A good linear increase in the peak current was observed that is reflected in the 

calibration curve shown in Figure 6.11 (B). 

displays the results obtained for the simultaneous determination of 

and Rh(HDMG)3 complexes. The simultaneous determination of Rh(III) and 

Pt(II) is possible but the current for Rh(III) peak is smaller than that of Pt(II) for the same

concentration. This simultaneous determination of this two noble elements was done 

successfully and Pd(II) stripping peak has been observed at – 0.25 V (vs. Ag/AgCl) followed 

the stripping peaks obtained at potential - 0.7 V (vs. Ag/AgCl) for Rh(III).
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Adsorptive differential pulse cathodic stripping voltammetry for the simultaneous 
) using a SPCE/BiF sensor, Ed = - 0.7 V 

A good linear increase in the peak current was observed that is reflected in the 

displays the results obtained for the simultaneous determination of 

complexes. The simultaneous determination of Rh(III) and 

Pt(II) is possible but the current for Rh(III) peak is smaller than that of Pt(II) for the same 

concentration. This simultaneous determination of this two noble elements was done 

0.25 V (vs. Ag/AgCl) followed 

for Rh(III). 
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Figure 6.12 Adsorptive differential pulse cathodic stripping voltammetry for the simultaneous 
determination of Pt-Rh–(HDMG)
and td = 150 s. In (B) the linear regression curve is shown.

 

A good linear increase in the peak current was observed that is reflected in the 

calibration curve shown in Figure 6.12

In Table 17 the results 

complexes analysed with the SPCE/BiF sensor is displayed. The stripping voltammograms 

were obtained with the experimental conditions outlined in Table 16.
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Adsorptive differential pulse cathodic stripping voltammetry for the simultaneous 
(HDMG) x complexes (0.01 – 0.1 µg. L-1) using a SPCE/BiF sensor , 

= 150 s. In (B) the linear regression curve is shown. 

A good linear increase in the peak current was observed that is reflected in the 

bration curve shown in Figure 6.12 (B). 

In Table 17 the results obtained from the calibration plots for the PGM

complexes analysed with the SPCE/BiF sensor is displayed. The stripping voltammograms 

were obtained with the experimental conditions outlined in Table 16. 
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Adsorptive differential pulse cathodic stripping voltammetry for the simultaneous 
) using a SPCE/BiF sensor , Ed = - 0.7 V 

A good linear increase in the peak current was observed that is reflected in the 

obtained from the calibration plots for the PGM-(HDMG)x 

complexes analysed with the SPCE/BiF sensor is displayed. The stripping voltammograms 
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Table 6.3 Calibration data for the determination of PGMs in the presence of [DMG] = 1 × 
10-5 M as chelating agent, using the SPCE/BiF sensor and a supporting 
electrolyte of ammonia buffer (pH = 9.2) solution. 

 

PGM Regression R2 
Pd y = 2.234x + 0.259 0.995 
Pt y = 193.3x + 1.456 0.982 
Rh y = 0.49x + 0.064 0.977 

Pd – Rh y = 10.05x + 0.088 (Pd) 0.983 (Pd)  
Pd – Rh y = 11.43x + 0.045 (Rh) 0.986 (Rh) 
Pt – Rh y = 423.9x + 8.364 (Pt) 0.982 (Pt) 
Pt – Rh y = 118.1x + 4.391(Rh) 0.968 (Rh) 

 

From all the results for the AdDPSV studies, it was evident that all PGMs are reduced 

and adsorbed onto the SPCE/BiF sensor and gave cathodic peaks for the stripping 

voltammetric analysis. In both case (single and simultaneous determination), the slope of the 

linear regression equation of the calibration plot was the highest for platinum, a factor which 

is favourable for the use in potentiometric determination. Even though the plot of the 

calibration for Pd was relatively linear compared to other metals, the slope was lower than 

that for platinum. Due to these properties, an adsorptive cathodic stripping voltammetric 

technique was developed to obtain more sensitive method for the determination of trace 

levels of PGMs. Standard additions of each PGM analysed showed that the peak current 

increases with increasing concentrations. The results of the calibration plots are proof of this 

and the summary of the corresponding regression equations for this dependence are given in 

Table 6.3. 

 

6.3.7 Interference studies  
 

The effect of interferences between metals is potentially important because the metals 

compete for complexation with the same ligands and for adsorption on electrode. It is, 

therefore, necessary to check if the standard addition of one of the metals affects the peak 

height and therefore the sensitivity of the others. In this work, interferences were investigated 

under the optimum conditions described and they were considered to be common cations and 

anions present in PGM side-stream solutions or effluent. 
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Specifically Fe(II), Ni(II), Co(II), sodium (Na+), sulphate (SO4
2-) and phosphate 

(PO4
3-) ions were investigated. The interfering effect of these cations and anions on the 

determination of PGMs with the SPCE/BiF sensor was studied by addition the interfering 

ions in standard solutions containing the supporting electrolyte solution plus 1 ppb of 

interfering ions and the PGM-(HDMG)x complex solutions (in the concentration range of 0.3, 

0.6, and 0.9 ppb). Figure 6.13 illustrate the behaviour of the SPCE/BiF sensor in the presence 

of sodium and iron cations. The peaks of PGMs were monitored and compared to those 

without any impurities added. 

The detection of the Pd(HDMG)2 complex with the SPCE/BiF sensor has been 

seriously affected by the addition of sodium and iron ions to the standard solution, as shown 

in Figure 6.13. The presence of the interfering ions caused broadening and diminishing of the 

stripping peaks for the Pd(HDMG)2 complex as observed in Figure 6.13 (A). As a result, a 

poorly defined peak at a stripping potential of approximately – 0.3 V (vs. Ag/AgCl) has been 

obtained. An adjacent shoulder peak at a stripping potential of approximately – 0.6 V (vs. 

Ag/AgCl) is also visible in the voltammograms for concentrations of 0.3 and 0.9 ppb of 

Pd(II). The presence of this peak may be attributed to Fe3+ ions present in the solution. 

In the case of the Pt(HDMG)2 complex, the results displayed in Figure 6.13 (B) has 

shown that the sodium and iron ions did not actually interfere with the complex as we seen 

well-defined stripping peaks at potential of approximately – 0.4 V (vs. Ag/AgCl). The 

presence of the interfering ions only have an impact on the stripping peaks height for the 

Pt(HDMG)2 complex as observed in Figure 6.13 (B). An additional peak around - 0.9 V (vs. 

Ag/AgCl) at a low concentration of Pt(II) of 0.3 ppb, also be attributed to the presence of 

Fe3+ in the solution as observed for Pd(II) in Figure 6.13 (A). 

The Rh(HDMG)3 complex was not affected by the addition of sodium and iron 

interfering ions, as the well-defined stripping peaks shown in Figure 6.13 (C). The stripping 

peaks were obtained at a stripping potential of approximately – 0.9 V (vs. Ag/AgCl), and a 

slight shift in potential to a less negative value for higher concentrations. 
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Figure 6.13 AdDPSVs obtained for the effect of Na+ and Fe3+ as interfering ions on the stripping 
voltammetric results for Pd(II) in (A), Pt(II) in (B), and Rh(III) in (C) using the SPCE/BiF sensor. The 
concentrations of Pd(II), Pt(II) and Rh(III) used were 0.3 µg. L-1 in (a), 0.6 µg. L-1 in (b) and 0.9 µg. L-1 in 
(c) respectively, with 0.01 M ammonia buffer (pH = 9.2) solution containing 1 × 10-5 DMG solution. 
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Interferences arising from oxygen containing inorganic ions, phosphate and sulphate 

(PO4
3-and SO4

2-) that are expected to co-exist in PGM sidestream solutions, were also 

evaluated. The AdDPSVs for the PGM-DMG complexes are shown in Figure 6.14.  

In Figure 6.14 (A) the results obtained for the Pd(HDMG)2 complex in the presence 

of phosphate and sulphate interfering ions are shown. The AdDPVs shows that for the lower 

concentration of Pd(II), broad stripping peaks at approximately - 0.40 V (vs. Ag/AgCl) were 

obtained, which are well defined at higher concentration and shifted to more negative 

potential. These broad peaks are indicating that phosphate and sulphate ions interfere with the 

measurement of Pd at higher concentrations. Another observation when this high 

concentration (0.9 ppb) of Pd(II) was analysed, two smaller shoulder peaks at approximately 

– 0.45 V (vs. Ag/AgCl) and – 0.95 V (vs. Ag/AgCl) were observed. 

In Figure 6.14 (B) the results obtained for the Pt(HDMG)2 complex in the presence of 

phosphate and sulphate interfering ions are shown. Analysis of the AdDPSVs has shown that 

a single stripping peak at approximately + 0.1 V (vs. Ag/AgCl) for all the three 

concentrations of Pt, which followed by Pt peak at approximately – 0.50 V (vs. Ag/AgCl). In 

these voltammograms we have seen an increase in current. 

Figure 6.14 (C) displays the results obtained for the Rh(HDMG)3 complex in the 

presence of phosphate and sulphate interfering ions. Analysis of the results has shown that 

the AdDPVs for the lower concentration of Rh(III), a stripping peak at approximately - 0.80 

V (vs. Ag/AgCl) was obtained, which shifted to more negative potential at higher 

concentrations of Rh (III). This peak was found at approximately – 0.95 V (vs. Ag/AgCl). 
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Figure 6.14 AdDPSVs obtained for the effect of PO4
3-and SO4

2- as interfering ions on the stripping 
voltammetric results for Pd(II) in (A), Pt(II) in (B), and Rh(III) in (C) using the SPCE/BiF sensor. The 
concentrations of Pd(II), Pt(II) and Rh(III) used were 0.3 µg. L-1 in (a), 0.6 µg. L-1 (b) and 0.9 µg. L-1 in (c) 
respectively, with 0.01 M ammonia buffer (pH = 9.2) solution containing 1 × 10-5 DMG solution. 
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The presence of cobalt and nickel (Co2+- and Ni2+) as interfering ions was next 

investigated in the voltammetric determination of all studied PGMs. The results obtained are 

displayed in Figure 6.15. 

In Figure 6.15 (A) the results obtained for the Pd(HDMG)2 complex in the presence 

of cobalt and nickel (Co2+- and Ni2+) as interfering ions are shown. Analysis of the AdDPSVs 

has shown that this metal has not been affected by the presence of these interfering ions as we 

seen the extra peaks are in the vicinity of - 0.6 and - 1.2V (vs. Ag/AgCl). We have also 

experienced a good signal compared to other interferences that have been diminished the 

signal of the stripping peaks. 

In Figure 6.15 (B) the results obtained for the Pt(HDMG)2 complex in the presence of 

cobalt and nickel as interfering ions are shown. Analysis of the AdDPSVs has shown that it 

was possible to determine Pt(II) in the presence of cobalt and nickel. None of them were 

found to affect the Pt(II) peaks when present in solution. As observed from the stripping 

peaks the signal has not been affected by these interfering ions. 

Figure 6.15 (C) displays the results obtained for the Rh(HDMG)3 complex in the 

presence of cobalt and nickel as interfering ions. Analysis of the AdDPSVs has shown that it 

was also possible to determine Rh(III) in the presence of cobalt and nickel although we have 

experienced a diminished in signal. This diminished in current must be the results of close 

proximity of the reduction potential of these metals. As shown in the voltammograms, one 

cathodic peak at - 0.3 V (vs. Ag/AgCl) was observed. Therefore it can be related with reduction 

of cobalt (II). These findings of the cobalt peak agreed with Mohadesil et al (2011). The stripping 

peak followed at potential - 0.95V (vs. Ag/AgCl) is proportional to Rh(III) concentrations in 

solution. We have noticed an extra peak at potential - 1.2V (vs. Ag/AgCl) and this peak is 

referred to Ni(II). These peaks affected the Rh(III) signal, probably due to the close proximity 

of the reduction potential of these metals. 
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Figure 6.15 AdDPSVs obtained for the effect of Co2+- and Ni2+-as interfering ions on the 
stripping voltammetric results for Pd(II) in (A), Pt(II) in (B), and Rh(III) in (C) using the 
SPCE/BiF sensor. The concentrations of Pd(II), Pt(II) and Rh(III) used were 0.3 µg. L-1 in (a), 
0.6 µg. L-1 in (b) and 0.9 µg. L-1 in (c) respectively, with 0.01 M ammonia buffer (pH = 9.2) 
solution containing 1 × 10-5 DMG solution. 
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In summary, the determination of interfering ions was made by forming the selected 

PGM-(HDMG)x complexes that are adsorbed on the BiF/SPCE. The results obtained for the 

effect of interfering ions on the stripping analysis of PGM-(HDMG)x complexes were 

monitored and compared to those without any interference. The difference between the PGM-

(HDMG)complex peaks with interferences and without interferences indicate that the metal 

that has been affected showed slight variations in the magnitude of the signal responses. 

 

6.4. Analytical features of adsorptive stripping voltammetry at a SPCE/BiF sensor 
 

The behaviour of the selected PGMs was studied by adsorptive cathodic differential 

pulse stripping voltammetry between + 0.8 to - 1.4 V (vs. Ag/AgCl) in water and sediments 

samples collected in the Limpopo and North-West Provinces, South Africa. For each PGM 

investigated, the calibration curve was prepared by a series of standard addition of PGMs to a 

0.01 M ammonia buffer (pH = 9.2) solution. Statistical parameters such as linearity range for 

concentrations evaluated, R2 value (regression), limit of detection (LOD), limit of 

quantification (LOQ), accuracy and precision were also evaluated. The actual amount of 

PGMs found in the water samples were calculated using the obtained regression equation (y 

= mx + c). The results obtained with the SPCE/BiF sensor were further compared to that 

obtained using ICP-OES analysis. The results obtained are discussed in the following 

paragraphs. 

 

6.4.1 PGMs analysis in freshwater samples 
 

Initially, the analysis of the real samples was performed in a 10 ml voltammetric cell 

vial containing 1 ml of water sample and 9 ml of ammonium buffer (pH = 9.2) solution, with 

1 × 10-5 DMG and using the developed AdDPSV procedure. The amount of water sample 

was determined through the standard addition method using standard solutions containing 

appropriate concentrations of Pd(II), Pt(II) and Rh(III).  
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For the validation of this method for quantitative determination of the PGMs, 

calibration curves were obtained from the results obtained and the corresponding equations 

for this dependence are given below. 

For Pd(II) analysis, the regression equation obtained is given below: 

 

Ip (µA) = 0.342x + 0.204 (R2 = 0.993; n = 5; Pd(II))   (Eqn. 6.4) 

 

Using the same approach, the calibration curve for Pt(II) analysis was obtained equation is as 

follows: 

 

 Ip (µA) = 2.542x + 0.120 (R2 = 0.986, n = 6; Pt(II))  (Eqn. 6.5) 

 

The results for Rh(III) analysis is given by the following equation: 

 

Ip (µA) = 28.96x + 0.051 (R2 = 0.983, n = 7; Rh(III))  (Eqn. 6.6) 

 

In the next paragraph the results obtained for the analysis of freshwater samples 

collected from sampling sites closely situated to PGM mining activities, are discussed. The 

sampling sites were ER2 (on the ElandsRiver) and HX1, HX2 (on the HexRiver) in the 

vicinity of Rustenburg, North-WestProvince. The determination of PGMs in environmental 

samples was performed with an adapted procedure from Locatelli (2006). 

 

Table 6.4 Results for concentrations of PGMs in freshwater samples obtained using 
AdDPSV analysis with the SPCE/BiF and GCE/BiF sensors, compared with 
results from ICP-AES spectrophotometric analysis. 

 SPCE/BiF GCE/BiF ICP-AES 

Sample 
Pd 
(µg.L-1)  

Pt  
(µg.L1) 

Rh 
(µg.L-1) 

Pd 
 (µg.L-1) 

Pt  
(µg.L-1) 

Rh 
(µg.L-1) 

Pd  
(µg.L-1) 

Pt  
(µg.L-1) 

Rh 
(µg.L-1) 

ER2 
5.17± 
0.41 

0.71± 
0.32 

0.07± 
0.38 

0.44 ± 
0.025 

0.19 ± 
0.014 

0.29 ± 
0.019 

7.4 ±  
0 .32 

8.5 ± 
0.19 

5.8 ± 
0.23 

HX1 
3.73 ± 
0.41 

0.45 ± 
0.11 

0.04 ± 
0.14 

0.41 ± 
0.031 

0.08 ± 
0.012 

0.27 ± 
0.035 

7.2 ± 
0.14 

9.3 ± 
0.17 

6.7± 
0.22 

HX2 
2.56 ± 
0.18 

0.41 ± 
0.17 

0.04 ± 
0.19 

0.43 ± 
0.018 

0.14 ± 
0.011 

0.37 ± 
0.038 

5.8 ± 
0.28 

20.08 ± 
0.15 

6.4 ± 
0.18 
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Results in Table 6.4 have indicated that the SPCE/BiF sensor was more sensitive than 

the GCE/BiF sensor (Van der Horst, 2011) and ICP-AES spectrometer in the determination 

of the Pd(II), Pt(II) and Rh(III) concentrations in the freshwater samples. This was observed 

for all three samples of ER2, HX1 and HX2 analysed. Comparison of the AdDPSV results 

further indicates that the SPCE/BiF sensor was more sensitive than the GCE/BiF sensor in the 

PGMs determination. This was a promising result for future optimisation of a portable 

potentiostat and stripping analysis set-up for sample analysis and possible on-site 

applications. 

 

6.4.2 PGMs analysis in sediment samples 

 

Next, the stripping voltammetric method optimised in this study was applied to the 

determination of PGMs in environmental sediments samples. There are only a few studies in 

which the determination of PGMs in soil and sediment samples has been conducted. The 

sequential extraction method for evaluating different fractions in sediments samples for its 

metal content have been applied in this study (Li et al., 2010; Morera et al., 2001). This was 

further done to determine in which fraction of the sediment extraction process, the highest 

yield of PGMs with minimum matrix effect, can be determined. For quantitative 

determination of the PGMs, calibration curves were obtained from the results obtained and 

the corresponding equations for this dependence are given below 

 

For Pd(II) analysis, the regression equation obtained is given below: 

 

Ip (µA) = 223.1 x + 0.587  (R2 = 0.976; n = 4; Pd(II))   (Eqn. 6.7) 

 

Using the same approach, the calibration curve for Pt(II) analysis was obtained equation is as 

follows: 

 

 Ip (µA) = 287.6 x + 0.012  (R2 = 0.968, n = 6; Pt(II))  (Eqn. 6.8) 
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The results for Rh(III) analysis is given by the following equation: 

 

Ip (µA) = 204 x + 0.794  (R2 = 0.9857, n = 6; Rh(III))    (Eqn. 6.9) 

 

The results obtained are displayed in Table 19. The sampling sites were CR1 (on the 

Crocodile River) near Rustenburg, North-West Province, while sites ZX1 (on the Olifants 

River) and ZX2 (on the Motse River) were in the vicinity of Burgersfort, Limpopo Province. 

 

Table 6.5 Results for concentrations of PGMs in sediment fractions obtained using AdDPSV 
analysis with the SPCE/BiF and GCE/BiF sensors, compared with results from ICP-AES 
spectrophotometric analysis. 

 

# Van der Horst (2011) 

 

Analysis of the results in Table 6.5 again indicated that the SPCE/BiF sensor was 

more sensitive than the GCE/BiF sensor and ICP-AES spectrometer in the determination of 

the Pd(II), Pt(II) and Rh(III) concentrations in the sediment fractions. Similar to the 

freshwater results obtained, comparison of the AdDPSV results further indicates that the 

SPCE/BiF sensor was more sensitive than the GCE/BiF sensor in the PGMs determination. It 

was further observed that the sediment fractions that pose matrix interferences for the 

different chemicals used during the extraction procedure, had no limiting effect on the PGM 

determination, as was the case for the analysis done by Van der Horst (2011).  

 

 

 

 SPCE/BiF GCE/BiF# ICP-AES 

 
Carbona
te-bound 

Fe-Mn 
oxides 
bound 

Organic 
bound 

Carbonat
e-bound 

Fe-Mn 
oxides 
bound 

Organic 
bound 

Carbonat
e-bound 

Fe-Mn 
oxides 
bound 

Organic 
bound 

Sample 
Pd  
(µg.L-) 

Pt  
(µg.L-) 

Rh 
(µg.L-1) 

Pd  
(µg.L-1) 

Pt  
(µg.L-1) 

Rh  
(µg.L-1) 

Pd 
(µg.L-1) 

Pt  
(µg.L-1) 

Rh  
(µg.L-1) 

CR 1 
0.04 ± 
0.41 

0.01 ± 
0.67 

0.07 ± 
1.14 

0.43 ± 
0.007 

0.14 ± 
0.007 

0.37 ± 
0.015 

4.12± 
0.23 

5.19 ± 
0.49 

6.37 ± 
0.25 

ZX1 
0.02 ± 
0.14 

0.03 ± 
0.60 

0.01 ± 
0.11 

0.44 ± 
0.011 

0.19 ± 
0.012 

0.29 ± 
0.016 

4.47 ± 
0.21 

3.59 ± 
0.28 

4.57 ± 
0.28 

ZX2 
0.03 ± 
1.62 

0.01 ± 
0.005 

0.05 ± 
0.74 

0.41 ± 
0.016 

0.08 ± 
0.006 

0.27 ± 
0.010 

11.08 ± 
0.42 

5.82 ± 
0.35 

3.29 ± 
0.43 
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6.5. Comparison of calculated results for different sensor platforms 
 

Thompson (1998) reported that the detection limit caused problems for analytical 

chemists because they are difficult to interpret and the arbitrary dichotomising of the 

concentration domain, provides misleading viewpoints of the behaviour of analytical systems. 

However, with stripping analysis the main aim has always been the construction of a better 

optimised system to obtain an improved detection limit. The limit of detection was evaluated 

as the minimum detectable concentration, which is the lowest concentration of analyte that 

can be distinguished at a stated level of probability, from a sample not containing the analyte 

or any one of the analyte (PGMs standards) solutions at the lowest working concentration. 

This concentration value was calculated using of the formula ( ) (Somerset et al., 

2009). In this study 10 blanks were used to calculate standard deviation. Limit of 

quantification (LOQ) were calculated using the formula, .  

 

Table 6.6 shows the comparison of the LOD, LOQ values and the %RSD obtained for 

both the SPCE/BiF and GCE/BiF sensors. 

 
Table 6.6 Results obtained for the analytical parameters of applying the SPCE/BiF and 

GCE/BiF sensors in the AdDPSV analysis of Pd(II), Pt(II) and Rh(III) in 
ammonia buffer (pH = 9.2) solution as the supporting electrolyte. 

 
SPCE/BiF GCE/BiF 

PGMs R2 
LOD 

(µg.L-1) 
LOQ 

(µg.L-1) 
RSD 
(%) R2 

LOD 
(µg.L-1) 

LOQ 
(µg.L-1) 

RSD 
(%) 

Pd 0.994 0.008 0.029 8.95 0.961 0.12 1.07 7.06 

Pt 0.981 0.006 0.018 5.16 0.983 0.04 0.26 6.68 

Rh 0.987 0.005 0.016 7.36 0.979 0.23 0.03 6.18 
 
 

By comparing the responses and results of the two sensors applied in AdDPSV 

analysis, the results indicate that a lower detection limit was obtained for the SPCE/BiF 

sensor, compared to the GCE/BiF sensor in terms of sensitivity.  
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The results obtained has further indicated that the use of the adsorptive differential 

pulse techniques offer a more sensitive technique for the single determination of PGMs, when 

compared to traditional ICP - AES spectrometry. The deposition time for the stripping 

analysis used was 150 s, adding to the better results obtained in a shorter analysis times. 

6.6. Summary 
 

Interesting recent progress in the development and application of a bismuth modified 

screen-printed carbon electrode (SPCE/BiF) has been presented in this work. The adsorptive 

stripping voltammetric method was coupled with the use of a screen-printed carbon electrode 

(SPCE) in order to improve the sensitivity and selectivity, because of the advantages the 

SPCE offers with its high mass transport and the enhancement of signal-to-noise ratio. In this 

study it was evident that parameters such as deposition potential (Ed) and the deposition time 

(td) were adequately optimised, before the electro-analytical determination of the PGM 

analytes were performed, improving the quality of the results obtained. The determination of 

PGMs was made by forming Pd(HDMG)2, Pt(HDMG)2 and Rh(HDMG)3 complexes which 

are adsorbed on the SPCE/ BiF sensor surface. The developed method was further 

successfully applied in the determination of PGMs in freshwater and sediment extraction 

samples. This was followed by comparing the results obtained with the GCE/BiF sensor, to 

that obtained by the SPCE/BiF sensor. It was observed that the SPCE/BiF sensor gave an 

advantage in terms of sensitivity and detection limit. However, the ICP-AES spectrometry 

analysis was able to separate and analyse all three PGMs simultaneously compared, while the 

simultaneous stripping voltammetric determinationof PGM mixtures needs further 

optimisation. The LOD values obtained with the SPCE/BiF sensor was 0.008 µg.L-1 for 

Pd(II), 0.006 µg.L-1 ppb for Pt(II) and 0.005 µg.L-1  for Rh(III). In the case of the GCE/BiF 

sensor a detection limit of 0.12, 0.04 and 0.23 was found for Pd, Pt and Rh respectively. 

It can also be concluded that the proposed AdDPSV method can also be able to 

determine this metals in the presence of interferences at certain concentrations. This method 

was found to be sensitive, accurate, precise, fast, and provides an alternative low-cost method 

for the determination of PGMs (e.g. Pd, Pt, and Rh) in freshwater and sediment samples. This 

method has a great potential as an alternative method for the future of environmental 

analysis. 
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Chapter 7 

 
Conclusion and Recommendations 

 

7.1. Conclusion 
 

The future is promising for finding the inexpensive, portable and robust analytical 

techniques for monitoring of environmental pollutants. The major aims and objectives of this 

thesis have been met with regards to the development of analytical techniques for heavy 

metals and precious metals determination. In this work the improved development of sensors 

and effects of heavy metals on human health were described, probably sources of these 

pollutants were enumerated. The future importance of stripping voltammetry will most likely 

be found in trace metal monitoring and metal speciation studies. 

An introductory chapter was provided to highlight the cause of these pollutants and 

environment in which sensor technology can be used. The literature review is the supplement 

for the following chapters: Chapters 3 to 6. All the chapters comprise research using modified 

electrodes for metal ion determination.  

In Chapter 4, majority of work was on the research performed using polymerisation 

and the copolymerisation of polyaniline (PANI) and 2,2´-polydithiodianiline (PANI-PDTDA) 

on a GCE surface and in 0.1 M HCl (PANI) and various concentrations of H2SO4 (1, 2.5 and 

5 M) solution (PANI-co-PDTDA). The films were characterised by cyclic voltammetry (CV), 

FTIR and UV-Vis spectroscopy. No supporting electrolyte was necessary for the formation of 

the PANI and PANI-co-PDTDA films. This ensured that the polymer was only doped by the 

HCl and H2SO4 solutions. The surface concentration, diffusion coefficient and the thickness 

of the film were also investigated in this study and reported. 

In Chapter 5 a method for investigating inhibition of HRP as enzyme by heavy metals 

was interrogated, but the work has shown the detection of hydrogen peroxide and heavy 

metals in the range of the latest literature. The Pt/PANI/HRP and Pt/PANI-co-PDTDA/HRP 

biosensors were successfully designed and constructed for the investigation of inhibition by 

heavy metals.  
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This chapter has further seen the novel construction of the Pt/PANI-co-PDTDA/HRP 

biosensor for metal inhibition studies. The interaction of horseradish peroxidase and 

hydrogen peroxide produced dissolved oxygen, which is anticipated to be altered by the 

binding of heavy metals. The Michaelis-Menten constants were also calculated in this study 

using Lineweaver-Burk method. The use of differential pulse voltammetry (DPV) detection 

allowed for the coupling of the biosensor with a portable detection system (PalmSens®). The 

reported biosensor showed percentage relative standard deviation (% RSD) of 14% and 4.3% 

for the Pt/PANI/HRP and Pt/PANI-co-PDTDA/HRP biosensors, respectively. 

In Chapter 6 an analytical procedure was developed, using differential pulse cathodic 

stripping voltammetry (DPCSV) technique as an analytical tool for determining trace 

amounts of PGMs (Pd(II), Pt(II) and Rh(III)) pollutants in the presence of DMG as a 

complexing agent in water and sediments samples using a SPCE/BiF sensor. This has been 

successfully applied for the first time in South Africa for the determination of palladium, 

platinum and rhodium. The performance of the SPCE/BiF sensor was found to be superior 

than the GC/BiFE that was constructed in our laboratory, with a detection limit of 10 times 

less although we have experience a slowly increase in voltammetric responses for higher 

metal concentrations. Probably the sensor has almost reached the saturation of Bi nucleation 

sites. Analytical parameters (linearity, LOD, LOQ, and repeatability) related to PGMs 

detection for bismuth-coated SPCE have been given. The sensor response in terms of stability 

was also investigated. The transduction of the signal was obtained using a portable 

potentiostat (PalmSens®). Screen-printed electrodes were selected for the project 

development due to low cost and easy manufacture. Good reproducibility of measurements 

(RSD = 5 to 8.5%) was obtained. The lower limit of detection of 5 × 10-3 to 8 × 10-3 µg.L-1 

has proven the suitability of the sensor for environmental applications. 
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7.2.  Recommendations for future work 
 

The construction of the biosensors has shown desirable results and the modified 

bismuth screen-printed carbon electrode has shown interesting results for PGMs 

determination. More optimisation work needs to be done in order to realise this possibility in 

practice. The options for further study includes: (i) the effects of temperature and the 

operational and storage stability in the biosensors; (ii) evaluation of the aforementioned 

parameters forbiosensors constructed on a glassy carbon and screen-printed carbon 

electrodes. Future work could also include some of the unresolved work encountered in 

chapter 6. In that case the study should solve the problem for the simultaneous determination 

of PGMs, using the sensor fomrat applied in this study or a modified sensor. The possible 

solution could be reached by doing more optimisation of the parameters for stripping 

voltammetric determination of PGMs. 
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