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ABSTRACT 

Purpose: One of the leading causes of death reported in women worldwide is breast cancer. Many 

tumours, including breast cancer, associated with poor prognosis, have received a renewed focus and 

increased perspective with regard to drug discovery and innovation towards developing rational 

combination regimens of first-line anticancer drugs with novel compounds that target diverse 

hallmarks of the cancer phenotype. Multidrug resistance (MDR), which has been found to 

significantly decrease the efficacy of anticancer drugs and causes tumor recurrence, has been a 

major challenge in clinical cancer treatment with chemotherapeutic drugs for decades. Several 

mechanisms of overcoming drug resistance have been postulated and the well known P-glycoprotein 

(P-gp) including other drug efflux transporters are considered to be critical in pumping anticancer 

drugs out of cells which in turn results in unsuccessful chemotherapy treatments. The endoplasmic 

reticulum (ER) is an interconnecting organelle which synthesizes proteins and its quality control 

processes ensures the proper protein folding, post-translational modifications and conformation of 

secretory and trans-membrane proteins. Previous studies demonstrated that geldanamycin (GA), a 

benzoquinone ansamycin antibiotic, the antibiotic, tunicamycin (TM) and the sesquiterpene lactone, 

thapsigargin (TG) have been found to cause ER stress and consequently, cellular arrest. GA is 

known to manifest anti-cancer activity through the inhibition of Hsp90-chaperone, TM interferes 

with N-glycosylation of newly synthesized proteins triggering the unfolded protein response, while 

TG inhibits intracellular Ca2+ ATPases resulting in increased cytosolic Ca2+. Cellular stress 

conditions, lead to accumulation of unfolded or misfolded proteins in the endoplasmic reticulum 

lumen which results in a unfolded protein response (UPR) to maintain cell survival in cancer cells. 

ERS has been previously reported to enhance MDR1 transcriptional induction and P-gp transport 

function in cancer cells, however, prolonged endoplasmic reticulum stress conditions and inadequate 

unfolded protein response force cells undergo apoptosis. In this study, we examined the effects of 

GA, TG and TM alone and in combination to determine the cellular response of the MCF-7 breast 

carcinoma cell line with regard to proliferation and P-gp-mediated drug efflux activity and 

apoptosis. 

Methods: Analyses of MCF-7 breast carcinoma cells exposed to Endoplasmic Reticulum Stress 
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(ERS) inducers geldanamycin, thapsigargin and tunicamycin, alone and in combination, included 

growth curves alone and in the presence of 24 hour IC50 inhibitory concentrations of the 3 ERS 

inducers alone, dose-response curves (MTT cytotoxicity assays) of the ERS alone and in 

combination, analysis of P-glycoprotein-mediated efflux pump activity in the presence of the ERS 

inducers alone and in combination (Calcein-AM efflux assays), analysis of viability, cytotoxicity 

and early apoptosis via caspase-3/7 expression (Triplex assay) and morphological staining of 

apoptotic and/or necrotic cells in the presence of IC50 inhibitory concentrations of the ERS inducers 

alone with Annexin V-FITC. 

Results: This study investigated the effects of Endoplasmic Reticulum Stress (ERS) inducers on 

growth and proliferation of MCF-7 breast carcinoma cells in culture. The MCF-7 cell line was 

exposed to different concentrations of ERS inducers alone and in combination with each other. All 

responses occurred in a dose- and time- dependent manner. When combined at equimolar log dose 

concentrations, integrated effects yielded enhanced cytotoxic properties as IC50 values were 

drastically decreased in combination as opposed to single ERS inducer responses. Combined effect 

on P-glycoprotein-mediated drug efflux activity yielded minor but insignificant decreases in efflux 

pump activity at different time intervals as opposed to the increase in cellular efflux in the presence 

of the ERS inducers alone at different time intervals. Caspase-3/7 apoptotic protein expression was 

increased as log doses of ERS inducers alone were increased, leading to cell necrosis at higher 

cytotoxic concentrations. The determined IC50 growth inhibitory concentrations after 24 hours were 

confirmed by the Annexin V-FITC demonstrating early apoptotic, necrotic and viable cells in the 

presence of the ERS inducers alone. 

Conclusion: This study demonstrated a significant growth inhibition of MCF-7 breast carcinoma 

cells upon exposure to ERS inducers alone. Results suggested that when ERS inducers are used in 

combination, their efficacy is enhanced as 50 percent inhibitory concentrations were considerably 

lower in combination as opposed to when used alone. The present study is consistent with previous 

studies with geldanamycin, and was the 1st to investigate the effects of geldanamycin, thapsigargin 

and tunicamycin in combination and with reference to P-gp efflux activity. Results suggested that in 

combination, efflux activity may be reduced, and efficacy may be enhanced. To enhance efficacy 

would be a major breakthrough in cancer drug discovery and development-targeting specific 

populations of cancer cells and reducing ERS-induced toxicity to normal cells and vital organs.
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

1.1 Introduction and Background to the Study 

The objective of this chapter is to outline and briefly elaborate on our understanding of the functional 

anatomy and physiology of the female breast. It also covers breast cancer with regard to 

epidemiology, incidence and mortality statistics and the research efforts directed towards its 

prevention and the development of targeted molecular and personalized therapies. In addition, it 

includes a review of pertinent literature to introduce and contextualize the specialized areas of breast 

cancer research, the hypothesis to be tested, and a discussion of the rationale for the choice of 

methods to investigate the research problem and analyze the results to achieve the set objectives. 

1.2 Functional Anatomy of the Breast 

Breasts, also referred to as mammae, are composed of breast tissue, fat, nerves, veins, arteries, 

lymphatic vessels, connective tissue and Cooper’s ligaments which serve for breast support and 

provide its shape1. Figure 1.1 illustrates the different parts of the lactating female breast. 

Anatomically, the breast overlies the 2nd to 6th ribs, with the main chest muscle anatomically termed 

the pectoralis major muscle located between the chest and ribs.  

The basic parts of a mature mammary gland are the alveoli lined with milk-secreting cuboidal cells 

which are surrounded by myoepithelial cells (MEPs or MECs). The alveoli (glandular tissue) are 

contained in lobules. Each lobule contains a duct that drains into the nipple known as the lactiferous 

duct. Contractions of the MECs are synchronized by oxytocin and results in milk secretion by 

alveolar units into the lobule lumen toward the nipple. 
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Mosby items and derived items © 2010, 2007, 2003 by Mosby, Inc., an affiliate of Elsevier, Inc. 

Figure 1.1: Micro-anatomical structure of the lactating female breast 

A.: Saggital section showing how glandular structures are anchored to the overlying skin and to the pectoral muscles by the 

suspensory ligaments of Cooper. Each lobule of glandular tissue is drained by a lactiferous duct that opens through the 

nipple. B: Anterior view showing overlying skin and connective tissue removed from the medial side to reveal the internal 

structure of the breast and underlying skeletal muscle. In the non-lactating breast, the glandular tissue is much less 

prominent with adipose tissue constituting most of the breast. Source: Patton & Thibodeau: Anatomy & Physiology, 7th 

edition.2 

The complex interconnections of lobules (minute oval sacs that produce milk) and ducts (that 

transport milk from the lobules to the nipple openings during lactation) form a structure that 

resembles bunches of grapes, referred to as lobes (Figure 1.2). The dark area of skin surrounding the 

nipple is termed the areola. Nerves, in turn, impart sensation to the breast. 

Breast development occurs during foetal growth, infancy (prepuberty), puberty, pregnancy as well as 

lactation-associated remodelling, and post-lactational and post-menopausal involution (shrinking). 

Mammary differentiation and specialization surge during the pregnancy and the lactation cycle 

(PLC) once the mammary gland transforms into a mature and functional milk-secretory organ. 
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©2013, WebMD, LLC. All rights reserved; http://www.webmd.com. 

Demonstrated above includes the areola, nipple arteries and veins, lymph nodes and lymphatic vessels, ducts 

and fatty tissue. Source: http://women.webmd.com/picture-of-the-breasts. 

Figure1.2: Structure of the lactating female breast 

The PLC can recur in multiparous females and therefore, childbearing and breastfeeding offer some 

protection against the development of breast cancer in the long term.3-6 However, in humans, 

crosstalk occurs between the signalling pathways that drive normal mammary morphogenesis during 

PLC and those oncogenic (aberrantly activated or suppressed) signals associated with breast cancer 

initiation, progression and metastasis. In particular, self-renewal transcription factors are shared 

between normal human breast milk stem cells (hBSCs) and various types of aggressive breast 

tumours, implying that generalizations about the protective effects of PLC should be made with 

prudence.7,8 

The onset of post-menopausal involution is paralleled by a decreased ovarian function and blood 

levels of oestrogen and progesterone which cause regression and atrophy of the glandular tissue of 

the breast and a concomitant buildup of adipose tissue and correlated sequalae such as dysregulated 

mammary cell transformation and the development of breast cancer.8 
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1.3 Breast Cancer 

Breast cancer has been found to originate within the breast tissue, commonly the milk ducts or 

lobules, and has the propensity to spread to the lymph nodes in the armpits as well. The type of 

cancer can be classified by TNM staging of malignant tumors (T designates the size of the tumor and 

whether it has been colonized by the adjacent tissue; N refers to the regional lymph nodes that are 

implicated; M represents the distant metastasis or spread of the cancer from one body part to 

another), pathology, grade, receptor status and the presence or absence of genes as determined by 

DNA (deoxyribonucleic acid) analysis.9,10 

Many risk factors pertaining to breast cancer include unchangeable circumstances, such as gender, 

aging, genetic risk factors, family history of breast cancer, personal history of breast cancer, race and 

ethnicity, however other cancer causing factors are related to personal lifestyle.11 

Based on distinctive histopathological types, dissemination patterns to distant sites, therapeutic 

responses and patient outcomes, breast cancer is referred to as a heterogeneous group of diseases.12,13 

Some breast cancers are referred to as in situ, as they are confined between the ducts (ductal 

carcinoma in situ or DCIS) or lobules (lobular carcinoma in situ or LCIS) from which they 

originated. Of the two, it was been found that approximately 83% of in situ cases diagnosed were 

DCIS, and LCIS being less common only accounting for 11% of in situ breast cancers diagnosed 

during 2004-2008.14 

1.4 Breast Cancer Epidemiology: Incidence and Mortality Statistics 

According to the World Health Organization (WHO) and its cancer research agency, the 

International Agency for Research on Cancer (IARC), an estimated 12.7 million new cancer cases 

were diagnosed worldwide in 2008. It was also found that cancer caused more than 7.6 million 

deaths in that year (http://globocan.iarc.fr/factsheets/populations/factsheet.asp?uno=900; accessed 

14 October 2013). The most frequently diagnosed cancers which exceeded 40% of all cases were 

lung, female breast, colorectal and stomach cancers. 
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Globally, breast cancer is found to be the most common type known to affect women and 

approximately 1.38 million new cases of this neoplasm was diagnosed in 2008, this found to 

represent approximately 11% of new cases and roughly 23% of all female cancers. 

(http://www.wcrf.org/cancer_statistics/data_specific_cancers/breast_cancer_statistics.php). 

Figure 1.3 depicts the world incidence and mortality rates for breast cancer by region. Recent 

estimates have corroborated that breast cancer persists to be the most prevalent cancer in the vast 

majority of countries globally, i.e., by world region, country and human development index (HDI).15 

Incidence of breast cancer is higher in developed countries than in developing countries, however, 

this difference may be due, in part, to factors such as lifestyle, screening and incidence reporting 

practices.16,17 A recent systematic analysis of the Global Burden of Disease reported 438,000 breast 

cancer deaths globally in 2010.18 

Estimates for Europe in 2012 were 3.45 million new cases of cancer and 1.75 million deaths from 

cancer—most notably female breast cancer (464,000 cases), colorectal (447,000), prostate (417,000) 

and lung (410,000). Together, these four cancers represented almost half of the overall burden of 

cancer in Europe. The most common causes of death from cancer were cancers of the lung (353,000 

deaths), colorectal (215,000), breast (131,000) and stomach (107,000).19 In the United States alone, 

it was estimated that 232,340 new cases of invasive breast cancer and 39,620 breast cancer deaths 

would occur among women in 2013.20 

Breast cancer persists to be the most prevalent female cancer in the vast majority of countries 

worldwide (Figure 1.4).15 An appraisal of current trends approximate that in 2030 more than 747,802 

women will die from breast cancer worldwide if surveillance, i.e., detection of life-threatening 

familial or sporadic disease at an earlier or more curable stage using diagnostic mammography ( 

MMG) and clinical breast examination, prevention and treatment programmes are not implemented 

or improved.21,22 
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Figure1.3: World incidence and mortality rates for breast cancer by region 

The estimates for 2008 presented here were taken from the International Agency for Research on Cancer 

GLOBOCAN database which presents cancer statistics for all cancers combined and for specific types of 

cancer for most countries or territories of the world. 

(Source: Cancer Research UK: http://www.cancerresearchuk.org/cancer‐info/cancerstats/world/cancer‐

worldwide‐the‐global‐picture, Accessed 13 October 2013; See also Ferlay J, Shin HR, Bray F, Forman D, 

Mathers C and Parkin DM. GLOBOCAN 2008 v2.0, Cancer Incidence and Mortality Worldwide: IARC 

CancerBase No. 10 [Internet]. Lyon, France: International Agency for Research on Cancer; 2010. Available 

from: http://globocan.iarc.fr, Accessed 13 October 2013). 

The intensification of breast cancer MMG (an X-ray of the breast) and frequency reporting in the 

United States and the rest of the world since 1980 has seen an increase in incidence registration of 

ductal carcinoma in situ (DCIS).22 The abnormal DCIS cells are mostly confined to the milk ducts 

and do not transform into invasive cancer cells. Presently, it is difficult to discriminate DCIS that 

will develop into aggressive malignant cancer from the benign type, and thus many women are 

exposed to redundant therapeutic regimens that may lead to short- and long-term morbidities. 

However, a recent study has shown, using univariate and multivariate analyses, that basal-like DCIS 
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correlates with a higher risk of invasive- or general recurrence compared with non-basal-like 

DCIS.23 

 

Figure: 1.4: Most prevalent female cancers by country 

Data for 2008 presented here were taken from the International Agency for Research on Cancer GLOBOCAN 

database which presents cancer statistics for all cancers combined and for specific types of cancer for most 

countries or territories of the world. (Source: Cancer Research UK: http://www.cancerresearchuk.org/cancer-

info/cancerstats/world/cancer-worldwide-the-global-picture, Accessed 13 October 2013; See also: 

http://globocan.iarc.fr, Accessed 13 October 2013).  

Therefore, DCIS does necessitate therapy with breast-conserving surgery (BCS) and radiation to 

block development of invasive breast cancer. It should be noted though that women do not only die 

of tumours limited to the breast or draining lymph nodes, but that the majority of breast cancer 

deaths may be caused by metastasis to vital organs such as bone, lung, liver, and brain, and 

consequential failure of these organ systems. 

It is currently estimated that triple-negative breast cancers (TNBC), i.e., tumours that tested negative 

for oestrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 

2 (HER2), contribute to 10-17% of all breast carcinomas, with higher incidence rates and poor 
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survival outcomes observed for certain ethnic patient populations (such as African Americans) and 

young age groups,24-27 and women who are obese, premenopausal or of low socioeconomic 

background.28 A recent study has demonstrated that guideline-adherent adjuvant treatment 

significantly improves survival of TNBC patients <50 and ≥65 years old.29  

Several histochemical distinct subtypes of TNBC have been identified that express varying 

responses to chemo- and radiation therapy,30,31 but basaloid triple-negative breast cancer (B-TNBC) 

probably represents one of the most invasive and therapy-resistant metastatic tumours of this 

type.32,33 TNBC has defective DNA repair pathways, including BRCA1 mutations, which correlate 

with increased genomic instability, aggressive tumour behaviour and worst clinical history, even in 

the face of initial, yet short-term, extreme chemosensitivity.34 Current classifications based on 

histologic and immunohistochemical profiles may contribute to a substantial advance in predicting 

the outcome in TNBC patients.35 

1.5 Breast Cancer Therapies 

According to the Global Cancer Report issued by the World Health Organization (WHO), there are 

over 10 million new cases of cancer each year and over 7.9 million annual deaths from the disease.36 

The various types of treatments currently used in the management of breast cancer include surgery, 

chemotherapy, hormone therapy, radiation therapy and targeted therapy.37-40  

Due to dissemination of the disease to other organs and sites, surgery has not been found to be a very 

effective method of treatment for metastatic breast cancer. Major factors influencing the decision 

making of whether or not to resort to surgery as a form of treatment are most likely to be influenced 

by prognostic factors such as clinically undetectable or small tumour size, few metastatic sites (1 vs 

many), fewer liver metastases, metastases in bones and soft tissues rather than visceral negligible 

lymph node invasion, tumour grade, presence of ERs, HER2 overexpression, and the optimal choice 

of chemotherapy as first-line treatment. However, the primary objective of the tumor removal in 
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breast conserving surgery is to maintain the contour and shape of the breast while removing the 

tumour bulk and a perimeter of adjacent normal tissues. 

Despite variability amongst patients, resistance to conventional chemo-and radiation- therapies have 

been linked with breast cancer relapse and metastasis, as well as complications in clinical 

responses.37,41,42 In recent studies, it was concluded that low doses of doxorubicin produced minimal 

toxicity in T47D and SKBR3 breast cancer cells, particularly when combined with ionizing 

radiation. This combined therapeutic modality may prove advantageous if extended to patients with 

localized breast cancer, and principally a method to overcome the adverse effects of doxorubicin, 

such as cardiomyopathy, acute arrhythmia, irreversible congestive heart failure, radiation recall 

dermatitis (an acute inflammatory reaction or focal lesion at previously irradiated areas triggered by 

the administration of precipitating systemic anticancer agents after radiation treatment),43 decreased 

full blood counts and associated risks of infection and haemorrhage, loss of appetite, stomatitis, 

alopecia, nausea and vomiting, mouth sores, birth defects and hepatotoxicity.44  

Neoadjuvent chemotherapy is known as chemotherapy administered before surgery and after surgery 

administration referred to as adjuvant chemotherapy. There are several classes of conventional 

cytotoxic agents known to have distinct and overlapping mechanisms of action with moderate toxic 

effects which have proved to be efficacious as mono- or combination therapies in patients with 

metastatic breast cancer. The most active antineoplastics agents against metastatic breast cancer 

include the anthracyclines (doxorubicin, epirubicin and liposomal formulations of doxorubicin)45 

alkylating agents (cyclophosphamide, melphalan, thiotepa and cisplatin), the anthraquinones 

(mitoxantrone), antimetabolites (methotrexate, 5-fluorouracil, capecitabine and gemcitabine), the 

vinca alkaloids (vinorelbine, vinblastine and vincristine), epothilone-derivatives (ixabepilone) and 

the taxanes (paclitaxel, nab-paclitaxel and docetaxel).46 Regrettably, continuous use of the above 

mentioned antineoplastic agents may result in multidrug resistance (MDR), this posing a major 

problem in the successive treatment and eradication of cancers. 
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1.6 Multidrug Resistance 

Multidrug resistance (MDR), which has been found to significantly decrease the efficacy of 

anticancer drugs and causes tumor recurrence, has been a major challenge in clinical cancer 

treatment with chemotherapeutic drugs for decades.36 Several mechanisms of overcoming drug 

resistance have been postulated and the well known P-glycoprotein (P-gp) and other drug efflux 

transporters are considered to be critical in pumping anticancer drugs out of cells which in turn 

results in unsuccessful chemotherapy treatments.36 

Tumors generally develop significant resistance to repeated anticancer treatment with one kind of 

agent and often become resistant to similar or completely different drugs.36 This mechanism for 

tumor survival under chemotherapeutic treatment is known as multidrug resistance (MDR). 

MDR can be intrinsic or acquired through chemotherapeutic drug exposure, and multiple 

mechanisms are likely to contribute to clinical MDR. Historically, the most significant discovery 

about MDR was the identification of P-glycoprotein (P-gp),36 which was found to be overexpressed 

on the plasma membrane of cancer cells with MDR.36 Following P-gp, other transporters, such as 

multidrug resistance-associated protein 1 (MRP1)36 and multixenobiotic resistance (MXR),47 are also 

recognized to relate with drug efflux. 

The changes found to drive antitumor drug resistance include increased activity of the drug eflux 

pump, such as the ATP-binding cassette (ABC) superfamily, decreased drug influx, activation of 

DNA repair, metabolic modification or detoxification and altered expression of apoptosis associated 

protein Bcl-236and tumor supressor protein p53.47,48 Of the above mentioned mechanisms, 

overexpression of ABC transporters is the most frequent.36 

ABC transport molecules are generally expressed on plasma membranes and on the membranes of 

cellular vesicles. They are transmembrane proteins that use the energy of ATP hydrolysis to shuttle 

various substrates across the cell membrane as well as affect the pharmacokinetic properties of 
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chemotherapeutics in humans and thus play vital physiologic functions within the cell.36 To date, 

there are 48 known transporters in the ABC family,49of which thirteen ABC transporters have been 

found to contribute to tumor MDR, including P-gp (MDR1/ABCB1), multidrug resistance proteins 

(MRPs/ABCCs), and breast cancer resistance protein (BCRP/ABCG2), all of which are the most 

characterized ABC transporters.50 

1.7 P-Glycoprotein 

The normal function of ABC transporters as pumps is to extrude toxins and foreign substances out of 

the cell. P-glycoprotein (P-gp) has been found to be the best-known membrane pump molecule of 

the ABC transporters involved in MDR.36 The Human P-gp, a 170 kDa membrane-associated protein 

which contains 1280 aminoacids, is able to carry out an ATP-dependent conformational change that 

is able to extrude intracellular substrates to the exterior of the cell.51 It is able to transport a broad 

range of structurally expression -related or -unrelated compounds including anticancer drugs out of 

cells and as a result, decreases the intracellular accumulation of these compounds.36 

Being able to extrude anticancer drugs from a cell, the P-gp can physiologically prevent cytotoxic 

compounds from staying in the cell by pumping them out to reduce their intracellular 

concentration.36 In patients with tumors, P-gp is able to efflux various anticancer drugs such as 

doxorubicin and paclitaxel,52 out of cancer cells. Overexpression of P-gp is a common feature of 

most acquired MDR in solid tumors.36 

P-gp is synthesized and exported from the Endoplasmic Reticulum as a 150 kDa species that is N-

glycosylated to a 170 kDa form which translocates to the cell surface as a mature drug efflux pump 

or, alternatively, the 150 kDa P-gp is cleaved to a 130 kDa proteolytic product by ER-resident 

proteases or it undergoes ubiquitylation and proteasomal degradation.53 The upregulation of P-gp has 

been linked to evasion of apoptosis and hyperproliferation which promote tumorigenesis and the 

adaptive changes that characterize the MDR phenotype.54 
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1.8 The Endoplasmic Reticulum and Endoplasmic Reticulum Stress 

In eukaryotic cells, the endoplasmic reticulum (ER) is a dynamic membranous organelle which plays 

a crucial role in protein folding, transport, and processing.55 It is the cellular compartment where 

proteins enter the secretory pathway, undergo post translational modifications and acquire a correct 

conformation.56 In addition,the ER also contains the molecular machines required to ensure the 

quality control and degradation of terminally misfolded secretory proteins, as well as the signaling 

components known to mediate communications with the rest of the cell.56 

The ER is the organelle where protein folding occurs prior to transport to the extracellular matrix or 

to different intracellular sites.57 This process depends on molecular chaperones that provide local 

environments favorable for protein folding. However, under a variety of conditions (ER stress), 

these folding reactions are compromized, and protein aggregation occurs.58 When protein folding in 

the ER is disrupted by alterations in homeostasis in the ER lumen, eukaryotic cells have been found 

to activate a series of signal transduction cascades collectively termed the unfolded protein response 

(UPR).59 

The UPR promotes normal and tumour cell survival by adjusting ER protein folding capacity during 

ERS. This protective and adaptive function of the UPR is reinforced by the endoplasmic reticulum-

associated degradation (ERAD) pathway, a precision proteolytic and quality control machinery 

which decomposes proteins with abnormal or mutated conformations, preventing their toxic 

intracellular aggregation and accumulation.60 Furthermore, the efficiency of UPR and ERAD in 

removing aberrant proteins is dependent on and coupled to the ubiquitin proteasome system (UPS, 

also referred to as the UPP - the ubiquitin proteasome pathway).61,62 The UPS serves as a mono- or 

polyubiquitylation tagging system for many proteins implicated in cancer pathogenesis. Once 

proteins are covalently modified by ubiquitylation, their destruction by the 26S proteasome is 

imminent.63 Therefore, malfunctioning of the UPS in relation to protein quality control, DNA repair 

mechanisms, cell growth and proliferation, apoptosis (programmed cell death, PCD) and the immune 
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response, can lead to cancer development.61,62 Interestingly, but not surprising, ubiquitylation also 

regulates the stability of the MDR1 gene product, P-glycoprotein (P-gp), an ATP-dependent efflux 

pump that mediates multidrug resistance in cancer cells.64 ERS also enhances MDR1 transcriptional 

induction and P-gp transport function in cancer cells.65 

ERS activates many UPR target genes that encode protein folding enzymes (foldases) and molecular 

chaperones such as heat shock proteins (Hsps)66,67 and glucose-regulated protein 78 (Grp78), also 

called immunoglobulin heavy chain binding protein (BiP).68 Failure by the UPR transcriptional 

emergency response to establish cellular homeostatic or nontoxic levels of unfolded proteins invokes 

apoptosis, a cascade of PCD events that serves to protect the organism from harmful and fatal 

cellular insults.69 Upregulation of the UPR generally confers a growth advantage on tumour cells,69 

although this may not always be the case, e.g, in mouse models of prostate tumorigenesis, the UPR 

appears to be selectively downregulated.70 Thus, the ERS and UPR signalling pathways are finely 

tuned such that moderate ERS favours an anti-apoptotic UPR mode that will maintain tumour 

survival, metastasis, angiogenesis and chemoresistance, whereas chronic ERS will switch on an 

assertive pro-apoptotic UPR mode that will arrest tumour cell growth and induce apoptosis.60 

Dysregulated apoptosis is one of the hallmarks of cancer cells that not only allows them to sustain 

rapid growth and metastases, but also to develop resistance to radiation or cancer chemotherapeutic 

drugs. Cancer cells are by definition defective cells,71,72 and their ability to evade apoptosis (the very 

genetic programme designed to eliminate them), and thus survive cytocidal purging, is orchestrated 

through specific cancer gene mutations and chromosomal abnormalities, many of which are 

unfolded protein response-responsive elements (UPRE) and ER-stress-responsive elements 

(ERSE).69 Specific molecular cell stress sensors involved in ERS, UPR and apoptosis include the 

tumour suppressor protein p53 and its negative regulator, human/mouse double minute 2 (H/Mdm2, 

an E3 ubiquitin ligase),73 growth arrest and DNA damage-inducible protein, also called CHOP 

(Gadd153/CHOP),60 heat shock proteins (including Grp78/BiP, a member of Hsp70 family, Hsp27 

and Hsp90),74 the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA),75 a transmembrane ER Ca2+ 
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pump whose overexpression induces the activation of ERS markers such as Xbp1 (X-box binding 

protein-1 which, in turn, regulates UPR genes that promote ERAD of misfolded proteins),76 and 

nuclear factor kappa B (NF-κB) which is expressed in many cancer cells and implicated in the 

transcriptional activation of inhibitor of apoptosis proteins (IAPs).77 

Though better known for their actions upon mitochondria, Bcl-2/Bax–family proteins also integrate 

into ER membranes, where they modulate ER Ca2+ homeostasis and control cell death induced by 

ER stress agents, including tunicamycin, brefeldin A (an inhibitor of ER-Golgi transport), 

thapsigargin, and oxidants.78 

Common and well studied ER stressors include heat shock, proteasome inhibition (e.g., by 

MG132)79,80 or Hsp90 inhibition (e.g., by geldanamycin),81,82 ER homeostasis disruption (e.g., by 

tharpsigargin and tunicamycin)83-89 or chemotherapeutic drugs (e.g., taxanes).86,90 

1.9 Geldanamycin 

Geldanamycin (GA) is a benzoquinone ansamycin antibiotic, known to manifest anti-cancer activity 

through the inhibition of Heat shock protein 90 (Hsp90) chaperone function,91 and was the first 

benzoquinone ansamycin antibiotics identified from Streptomyces hygrocopicus in 1970.91 Initially, 

GA was regarded as a tyrosine kinase inhibitor,92 as it was found to block several signalling kinase 

activities.91,93  

Hsp90 is a molecular chaperone that plays a key role in the conformational maturation of oncogenic 

signalling proteins, including HER-2/Er bB2, Akt, Raf-1, Bcr-Abl and mutated p53. Hsp90 

inhibitors bind to Hsp90, and induce the proteasomal degradation of Hsp90 client proteins. Although 

Hsp90 is highly expressed in most cells, Hsp90 inhibitors selectively kill cancer cells compared to 

normal cells.94 

GA targets the 90-kDa heat shock protein (Hsp90),93,95,96 known to be an essential protein, expressed 

in both eukaryotic and prokaryotic cells, which serves to maintain the stability of “client proteins” 
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implicated in tumour growth and survival by regulating the physiology of cells exposed to 

environmental stress.96,97 

GA inhibits the chaperone function of Hsp90 by competing with ATP for binding to the ATP-biding 

pocket or N-terminal ATPase site, a highly conserved nucleotide binding site near the N-terminus of 

the protein of Hsp90 and as a result, prevents Hsp90 protein binding causing the inhibition of ATP-

dependent chaperone activities.91,95,97 GA releases Hsp90 from its client proteins, thus destabilizing 

them. Once the Hsp90 is released from ErbB2, both the Hsp70 and the co-chaperone and E3 

ubiquitin ligase, CHIP, are enlisted to the receptor. CHIP then ubiquitylates ErbB2, resulting in its 

intracellular accumulation and proteosome-mediated degradation.91,98 

 

Figure 1.5: Heat shock protein 90 chaperone-client protein cycle and mechanism of action of geldanamycin91 

Fig. 1.5 (above) Illistrates the Hsp90 chaperone–client protein cycle. Initially, the client protein is 

bound to the early complex (Hsp40/Hsp70), which then interacts with the Hsp90 homodimer through 

HOP (a Hsp90/Hsp70 organizing protein). By means of ATP hydrolysis, the release of Hsp40/Hsp70 

and HOP from the intermediate complex occurs. In addition, the mature protein complex is then 
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formed by association between Hsp90 and cochaperones such as CDC37, p23, Immunophilin, 

HARC, AH1 or client proteins. 

GA then acts by blocking the formation of the mature complex by binding to the ATP-binding site of 

Hsp90, leading to ubiquitin proteasome dependent degradation of the client proteins which are 

targeted by the CHIP E3 ligase. HOP, Hsp90/Hsp70 organizing protein; CHIP, carboxy-terminus of 

Hsp70-interacting protein.91 

GA has exhibited potent antiproliferative activity in various cancer cell lines, however, no extensive 

clinical evaluation of GA has been undertaken because of its severe hepatotoxicity at therapeutic 

doses in animals and its poor water solubility. However, GA variants have been developed, leading 

to improvements in potency, tolerance, metabolic stability and water solubility, and are currently in 

various stages of clinical trials for the treatment of cancer.91,95,96,99 

1.10 Thapsigargin 

Thapsigargin (TG) is a sesquiterpene-У-lactone extracted from the seeds and roots of Thapsia 

garganica. It inhibits the endoplasmic reticulum (ER) Ca2+ pump that leads to the depletion of the 

ER Ca2+ pool, which in turn activates the plasma membrane calcium channels resulting in an influx 

of extracellular calcium.100 

 
Figure 1.6: Chemical structure of thapsigargin101 
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Different mechanisms by which elevated Ca2+ levels may induce apoptosis has been proposed, such 

as: (i) a signal transduction pathway to activate Ca2+-dependent protein kinases and phosphatases (ii) 

the activity of DNA catabolic enzymes may be catalyzed by sustained concentrations of Ca2+ in the 

nucleus (iii) the depletion of intracellular bound-calcium stores could trigger apoptosis by disrupting 

intracellular structures (iv) mitochondrial changes associated with the nitric oxide generation, the 

cytochrome c release and the activation of caspases.100 

It has been suggested that this Ca2+ flux perturbant may be used to induce ER stress102 and has been 

found not only to act on the ER and intracellular Ca2+ signalling pathways,101 but also has the ability 

to diffuse across cell membranes and inhibit the sarcoplasmic endoplasmic reticulum calcium 

ATPase (SERCA).103 It has also been reported that TG acts by directly inhibiting ER Ca2+-ATPase 

resulting in the release of all sequestered Ca2+ as well as ATP-dependent Ca2+ from microsomal 

membrane vesicles.104 

Intracellularly, TG rapidly increases cytosolic sequestered Ca2+ as a result of ER overstimulation, the 

Ca2+ permeates through Ca2+ specific pores and with it releasing inositol 1,4,5 trisphosphate and 

guanosine-5'-triphosphate (GTP).105 

Due to TG’s lipophilic nature, conversion to a structure with poor affinity for Ca2+ and ATP occurs. 

The weakened affinity for Ca2+ inhibits the sequestering of intracellular Ca2+ and subsequently, a 

secondary accumulation of extracellular Ca2+ occurs, thus initiating ER stress and as a result, 

apoptosis is induced.101TG inhibits SERCA, blocks the release of Ca2+ from the ER lumen and has 

been found to decreases the affinity of GRP78/BiP for Ca2+ as well as its ER chaperone anti-

apoptotic effects102.  

As a result of Ca2+ increases, the accumulation of incompetent proteins occurs and by means of the 

ubiquitin proteasome system (UPS), caspase-3 mediated apoptosis occurs.106 
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1.11 Tunicamycin 

Tunicamycin (TM) is a prototypic antibiotic. Figure .1.7 below depicts the chemical structure and 

numbering system, which has been discovered to play a role in, and has also been found to inhibit 

the biosynthesis of N-linked oligosaccharides85 by the inhibition of UDP-N- acetylglucosamine: 

dolichol/polyprenol phosphate GlcNAc-1-P transferase (GPT) which inhibits the primary step of 

protein N-glycosylation.107 

 
Figure 1.7: Chemical structure of tunicamycin and its relative numbering system107 

Extensive research on the chemical composition and structure of TM reveals that it contains a four 

ring system (A, B, C, and D). Ring D contains uracil and ring C is linked to a D-pseudoribose in a N-

glycosidically manner. Ring C is linked to D-N-acyl- pseudogalactosamine (Ring B) by C-5–C-6. 

Ring B is attached by an O-glycosidic bond to D-Nacetylglucosamine (Ring A).107  

It was previously reported that TM induced apoptosis via tumour necrosis factor-related apoptosis-

inducing ligand (TRAIL).108 It was then further substantiated by reporting that MCF-7 cells were 

resistant to TM-induced apoptosis due to the lack of caspase-3 expression,109 however, both studies 

had reported that TM-induced apoptosis was enhanced with the addition of TRAIL and caspase-

3.108 

In TM-induced apoptosis, the inhibition of glycosylation and accumulation of unfolded and mis-

folded proteins occurs in ER.110 As a result, newly synthesized protein formation is inhibited, which 
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may lead to aberrant post translational modifications of important proteins, and ultimately 

perturbing normal cell function resulting in ER stress.111 Following ER stress, a homeostatic 

mechanism is triggered, which facilitates the removal of those perturbant proteins known as the 

unfolded protein response (UPR).112 As a result of inadequate UPR responses, cytosolic proteins 

increase and was found to induce apoptosis in various cell types.113 

1.12 The Integrated Effects of Drugs 

Due to the number of possible drug combinations being essentially limitless, a strategy for 

determining the most promising combinations and prioritizing their evaluation is vital.114 The rapid 

development of hundreds of new agents that modulate an ever-growing list of cancer-specific 

molecular targets offers tremendous hope for cancer patients.114 The introduction of the so-called 

“targeted therapies”, predominantly those drugs that have been discovered to inhibit the activity of 

tyrosine kinases, has represented a remarkable progress in the treatment of cancer.115 Although these 

drugs improve survival rates in cancer, significant cardiotoxicity, which could result in left 

ventricular dysfunction and/or heart failure, has emerged.115  

Targeted therapies that inhibit the activity of tyrosine kinase receptors have shown activity against 

solid malignancies when used as single agents or in combination with chemotherapy.116 The use of 

multiple drugs with different mechanisms or modes of action may also direct the effect against 

single target or a disease and treat it more effectively. The possible favourable outcomes for 

synergism include increasing the efficacy of the therapeutic effect, decreasing the dosage, but 

increasing or maintaining the same efficacy to avoid toxicity, minimizing or attenuating the 

development of drug resistance, and providing selective synergism against target (or efficacy 

synergism) versus host (or toxicity antagonism).117 

1.13 Breast Cancer Cell Lines 

Cancer cell cultures grown in vitro have been fundamental in delineating the complexities of tumour 

biology and the robust pursuit of identifying novel drug targets to develop a wide spectrum of 
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context-specific (proof-of-concept) anticancer drugs. Many cancer cell lines, including the National 

Cancer Institute (NCI) panel of cancer cell lines118 and the widely used BC cell lines, closely 

resemble their primary tumours and CSCs—a property that has firmly secured their continued 

relevance in oncology, even though contentiously encouraging the use of primary cancer cells are 

undisputable.119-127 Notwithstanding, several BC cell lines, including the MCF-7 breast carcinoma 

cell line used in this study, have been adequately validated to exhibit similar extensive genomic, 

transcriptional, and biological heterogeneity expressed by their corresponding primary tumours and 

are frequently used to distinguish various molecular BC diagnostic markers and as experimental 

model systems to study the effects of potential BC therapeutic modalities.126,128-131  

The MCF-7 (Michigan Cancer Foundation—human cell line 7 derived from a pleural effusion of a 

primary breast carcinoma) was originally isolated in 1970 from a 69-year-old Caucasian American 

woman.132,133 The main features of MCF-7 cells include their luminal epithelial nature, 

exemplification of invasive breast ductal carcinoma, ER+/PR+, marked proliferative response to 

oestrogen, ERBB2 gene amplification (with Her2/neu protein overexpression),134 and tumorigenic 

potential in mice following oestrogen supplementation. This cell line also exhibits several 

characteristics of differentiated mammary epithelial cells, including the ability to metabolize 

oestradiol, a ligand for the cytoplasmic ER.  

1.14 Research Proposal 

1.14.1 Problem Statement 

Approximately 90% of all cancer deaths arise from the metastatic spread of primary tumours.135 

Breast cancer is one of the leading causes of death among women worldwide and is the most 

frequently diagnosed form of cancer among females.136 Many tumours commonly associated with 

poor prognosis, including breast cancer, have received a renewed focus and increased perspective 

with regard to drug discovery and innovation towards the development of rational combination 

regimens of first-line anticancer drugs and novel compounds that target diverse hallmarks of the 

cancer phenotype.137 Cancer drug development is said to be leading the way in exploiting molecular, 

 

 

 

 



INTRODUCTION AND LITERATURE REVIEW | 1.14 RESEARCH PROPOSAL 

21 

biological and genetic information to develop “tailored” medicines.138 The new paradigm is to 

design agents that target the precise molecular pathology that drive the progression of individual 

cancers.139 Several molecularly targeted agents are now being developed in the hope that greater 

anticancer activity with fewer side effects might be attainable.114,140 

Chemotherapy is a common, effective method for the treatment of malignant tumours. However, 

some tumours are inherently resistant to the majority of chemotherapeutic agents (i.e., intrinsic 

resistance), and many other tumours exhibit broad-spectrum or multidrug resistance (MDR) after 

several sessions of chemotherapy (i.e., acquired resistance).141 MDR is a major concern for 

efficacious and successful treatment of cancer and a plethora of approaches that target the molecular 

mechanisms of this cancer hallmark are intensely pursued.142-149 The overexpression of P-

glycoprotein (P-gp), an ATP-binding cassette (ABCB1) transporter, which is usually associated with 

MDR cancer cells, is encoded by the mdr1 gene, has been found to correlate with the emergence of 

the MDR phenotype in malignant cells.141  

In cancer cells, P-gp actively extrudes chemotherapeutic agents,146,150 and is known to confer 

resistance to a variety of structurally and functionally unrelated antitumour drugs, such as 

daunorubicin, doxorubicin, etoposide, paclitaxel, vinblastine and vincristine.151 P-gp, localized on the 

plasma membrane of resistant cancer cells, can bind and transport antitumor drugs in an ATP-

dependent manner, and its mdr1 promoter activity is upregulated by various stimuli, including 

anticancer drugs, DNA-damaging agents, heat shock, serum starvation, ultraviolet irradiation and as 

a consequence of tumour progression, such as tumour suppressor gene p53 mutation and activation 

of ras oncogene.152 

Many cellular stress conditions, such as alterations in glycosylation status, disturbances of calcium 

flux and hypoxia lead to accumulation of unfolded or misfolded proteins in the endoplasmic 

reticulum (ER) lumen which results in ER stress.153 The ER responses to such stress conditions are 

mediated by the activation of a range of stress-response signalling pathways which couple the ER 
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protein folding load with the ER protein folding capacity termed the unfolded protein response 

(UPR), a finely tuned transcriptional response.59,154 Three important ER transmembrane proteins, i.e., 

activating transcription factor 6 (ATF6), inositol-requiring enzyme 1 (IRE1) and double stranded 

RNA-activated protein kinase-like ER kinase (PERK) are initiated by the UPR of mammalian 

cells.154 During unstressed conditions in a cell, the domains within the lumen of these sensors are 

occupied by the ER chaperone glucose-regulated protein 78 (GRP78), variously known as 

immunoglobulin heavy chain binding protein (BiP) or Hsp5A. As a result of ER stress, sequestration 

of GRP78 by unfolded proteins activates these sensors by inducing phosphorylation and homo-

dimerization of IRE1 and PERK, and also induces relocation and proteolytic cleavage of ATF6 in 

the cell.154  

The UPR is activated in various solid tumours, such as breast cancer and prostate cancer, by nutrient 

deprivation, hypoxia and elevated expression of GRP78.154-156 Overexpression of GRP78 is also 

associated with tumour development and growth, and correlates with resistance to certain forms of 

chemotherapy.157 GRP78 is located predominantly in the ER, ensuring proper folding of aberrant 

proteins, preventing their aggregation and accumulation, targeting misfolded proteins for degradation 

and binding Ca2+ and regulating ER stress signalling.157 It has been previously observed that GRP78 

overexpression in tumour cells appears necessary for their survival during oncogenic stress.157 

Raised glucose metabolism results in glucose starvation, low pH and severe hypoxia, extreme 

conditions under which cancers are extraordinarily well adapted to survive.  

All these factors induce ER stress via activation of the GRP78 promoter.157 Known inhibitors 

targeting GRP78 activity or its induction have been derived from natural products such as genistein 

and (-)-epigallocatechin gallate (EGCG) that inhibit the pathophysiological activity of GRP78.157 

These agents selectively inhibit the growth of cancer cells or sensitize them to cytotoxic 

chemotherapy. Genistein and EGCG act on numerous cellular pathways and components, in addition 

to GRP78. The GRP78 down-regulator, versipelostatin, blocks the transcriptional activation of the 

UPR, targets the GRP78 and GRP94 genes and inhibits tumour xenograft growth. GRP78 is also 
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found in the cell membranes of cancer cells, and recent therapeutic approaches have targeted the 

membrane-attached substrate-binding domain of this chaperone.157 

Heat shock proteins (Hsps) are evolutionarily conserved molecules which are synthesized by cells 

that are exposed to sub-lethal stresses.156 Acting as molecular chaperones, Hsps protect cells from 

environmental stress damage by assisting in proper folding and stabilization of proteins and also help 

to sequester severely damaged proteins for degradation by the UPR. Owing to the nature of their 

function, Hsps are often found to be overexpressed in a wide range of cancers.156 There are several 

major classes of Hsps (e.g., Hsp110, Hsp90, Hsp70, Hsp27, Hsp25) that are commonly found in 

mammalian cells and named in accordance with their molecular weights. Members of the Hsp family 

have been implicated in tumour promotion, uncontrolled cancer cell proliferation and inhibition of 

cell death pathways.158-161 Hsp27 has recently been demonstrated to play a pivotal role in HER2-

induced mammary tumourigenesis,158 whereas its induced expression perturbs P-gp (ABCB1)-

mediated drug efflux and mdr1 gene expression in doxorubicin-resistant human breast cancer 

cells.160 Moreover, inhibition of Hsp90 sensitizes HeLa human cervical cancer cells and MCF-7 

human breast cancer cells to DNA damage by γ-ionizing radiation.159 

The Hsp70 family of molecular chaperones, of which GRP78 is a member, represents one of the 

most evolutionarily conserved groups of chaperone proteins involved in protein folding.157 In the 

Hsp90 chaperone–client protein cycle, the client protein is bound to the early complex 

(Hsp40/Hsp70), which then interacts with the Hsp90 homodimer through HOP (a Hsp90/Hsp70 

organizing protein). ATP hydrolysis releases Hsp40/Hsp70 and HOP from the intermediate complex. 

In addition, the mature protein complex is then formed by association between Hsp90 and 

cochaperones 91 indicating that Hsp90 is yet another important molecular chaperone involved in the 

folding, assembly, maturation, and stabilization of several oncogenic client proteins (e.g., ErbB2, c-

Raf, Cdk4, Akt, steroid hormone receptors, mutant p53, hypoxia-inducible factor-1-alpha (HIF-1α), 

survivin, and human telomerase (hTERT) that regulate the survival of malignant cells.162 These 

proteins are involved in transcriptional regulation, signal transduction, cell cycle control and other 
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crucial steps that result in the expression of the malignant phenotype, invasion, angiogenesis, and 

metastasis of cancer cells.162 Hsp90 inhibitors can bind to Hsp90, to induce the proteasomal 

degradation of Hsp90 client proteins.  

ER stressors include heat shock, proteasome inhibition (e.g., by MG132)79,163 or Hsp90 inhibition 

(e.g., by geldanamycin),81,82 ER homeostasis disruption (e.g., by tunicamycin and tharpsigargin)83-89 

or chemotherapeutic drugs (e.g., taxanes)86,90 can induce ER stress in cells. GA binds to the amino-

terminal ATP-binding pocket of Hsp90 and inhibits ATP binding and hydrolysis. The binding of GA 

to Hsp90 interferes with Hsp-mediated target protein folding, leading to target aggregation and 

degradation.164 GA and its synthetic derivatives have been shown to possess a higher affinity for 

Hsp90 in tumour cells compared to normal tissues and constitute a class of potential antitumour 

drugs.91 TM is a prototype antibiotic that inhibits the biosynthesis of N-linked oligosaccharides85 by 

the inhibition of UDP-N-Acetylglucosamine:dolichol/polyprenol phosphate GlcNAc-1-P transferase 

that catalyzes the primary step of protein N-glycosylation.165 TG interferes with various cellular 

signal transduction pathways which rely on regulation of ER Ca2+ ion movements.104 This Ca2+ flux 

perturbant may be used to induce ER stress since it inhibits the sarcoplasmic endoplasmic reticulum 

calcium ATPase (SERCA).166 Intracellularly, TG rapidly increases the cytosolic sequestered Ca2+ by 

overstimulation of the ER, Ca2+ permeates through Ca2+ pores to stimulate the release of inositol 

1,4,5-triphosphate and guanosine-5'-triphosphate, which then activate their signalling cascades.104 

Due to TG’s lipophilic nature, it is able to inhibit intracellular Ca2+ sequestering which leads to ER 

stress and subsequent apoptosis.167  

1.14.2 Reasearch Hypothesis 

Inhibiting Hsp90 expression or even limiting its pharmacological activity in cells could have 

important therapeutic benefits for successful cancer treatment as previous studies linked high Hsp90 

expression levels with decreased survival in breast cancer, 162 thus indicating that Hsp90 inhibition 

may be a favourable target for investigational therapy in breast cancer. Recently, the MDR 

phenotype, in particular the overexpression of P-gp, has been associated with increased resistance to 
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Hsp90 inhibitors. Hence, ablation of the resultant stress response induced by GA treatment via 

inhibition of P-gp may have implications for resistance to Hsp90-targeted therapy.82 GA, a Hsp90 

inhibitor, has exhibited potent antiproliferative activity in various cancer cell lines, however, no 

extensive clinical evaluation of GA has been undertaken because of its severe hepatotoxicity at 

therapeutic doses in animals and its poor water solubility.91 Therefore, by combining the Hsp 90 

inhibitor with other ER stress inducers such as TG and TM, as well as intergrating the effects of TG 

and TM, synergistic behaviour may occur to yeild an improved therapeutic effect, at a decreased 

dosage, by either maintaining or enhancing the efficacy to avoid toxicity, minimizing or attenuating 

the development of drug resistance such as MDR and P-gp expression and providing selective 

synergism against target (or efficacy synergism) versus host (or toxicity antagonism).117 The 

integration of the ER stress inducers may also have positive implications in reducing the effects of 

P-gp-mediated drug efflux activity compared to the ER stress inducers alone. 

1.14.3 Research Aims and Objectives 

This study aimed to investigate the effects of Endoplasmic stress inducers GA, TG and TM alone, 

and in combination to observe implications that integrated effects of drugs may yield in terms of 

efficacy or synergism, with relevance to effects it may have on P-gp-mediated drug efflux activity. 

The objectives of the present study were to:  

 Investigate the normal growth pattern at which MCF-7 breast carcinoma cells proliferate 

under ideal conditions for up to 72 hours. 

 Expose the MCF-7 breast carcinoma cells to incremental log10 concentrations of 

geldanamycin, thapsigargin and tunicamycin alone, and in combination to determine their 

respective 50% inhibitory concentrations (IC50 values) at 24, 48 and 72 hours. 

 Examine cell proliferation patterns in the presence of relative IC50 concentrations of each 

drug alone for 24, 48 and 72 hours. 
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 Evaluate the MCF-7 breast carcinoma cell response in the presence of calculated IC20 and 

IC50 values of ER stress inducers alone and in combination with regard to its P-gp-mediated 

efflux pump at 4, 8 and 16 hour intervals using P-gp-specific modulators (e.g., cyclosporin 

A and verapamil) as controls. 

 Determine cell viability with relation to cytotoxicity and early apoptosis via caspase-3 

activation in the presence of the ER stress inducers alone at 6,12 and 24 hour intervals 

 Morphologically confirm the early apoptosis and/or necrosis in the presence of ER stress 

inducers at relative IC50 values alone. 
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CHAPTER 2 

MATERIALS AND METHODS 

2.1 Introduction 

The focus of this chapter outlines and describes the research methodology and design that has been 

chosen for the study. It summarizes the materials and methods used such as chemicals required, 

drugs tested and the maintenance of MCF-7 breast carcinoma cell cultures. Analyses of MCF-7 

breast carcinoma cells exposed to geldanamycin (GA), thapsigargin (TG) and tunicamycin (TM) 

included growth and dose response curves (cytotoxicity assays), determining cellular drug efflux by 

means of calcein-AM assays, triplex assays focusing on cell viability, cytotoxicity and apoptosis 

caspase-3 activation and morphological staining of apoptotic cells making use of the Annexin V-

FITC. The statistical methods used for data analysis are also described. 

2.2 Approval to Conduct the Study and Ethical Considerations 

The research described in this dissertation was approved by the University of the Western Cape 

Faculty Board Research and Ethics Committee and the Senate Research Committee 

(Registration/Ethical Clearance Numbers: Project Registration #: ScRIRC 2007/3/29; Funding 

Application #: ScRIRC 2007/3/44 and Senate Registration #: 07-3-37). This study involved in vitro 

cell culture work. The extensive use of continuous cancer cell lines, such as MCF-7 breast 

carcinoma cells, an authenticated cell line of known provenance (www.atcc.org), carries little risk to 

humans from routine cell culture.  

However, risk of exposure to any form of infection was minimized by avoiding the use of "sharps" 

(such as needles and blades) and any items or processes likely to create aerosols. Aseptic technique 

and good cell culture practice and the recommended procedures for handling, use, storage, 

transportation and disposal of genetically modified organisms, including modified cell lines, have 
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been adhered to in this study as provided in the Genetically Modified Organisms (Contained Use) 

Regulations Health and Safety Commission. ISBN 0717611868 Guide to Genetically Modified 

Organisms (Contained Use) Regulations, 1992. HSE Guide, L29, HSE Books, PO Box 1999, 

Sudbury, Suffolk CO10 6FS, 1992. See also http://www.sigmaaldrich.com/Area_of_Interest/ 

Life_Sciencesources/ECACC_Handbook/Cell_Culture_Techniques_2.html. 

A level 2 containment, the minimum requirement for manipulating human cancer cell lines as 

described in the Advisory Committee on Dangerous Pathogens (ACDP) guidelines Advisory 

Committee on Dangerous Pathogens, 4th edition. Categorization of biological agents according to 

hazard and categories of containment, The Stationery Office Books, PO Box 276, London SW8 

5DT) was applied in this study. Control of the disposal of laboratory waste to prevent exposure of 

staff and the environment to infectious hazards and to prevent contamination was executed 

according to recommended procedures (Health Services Advisory Committee. ISBN 0717604470 

Safe Disposal of Clinical Waste. HSE Books, PO Box 1999, Sudbury, Suffolk CO10 6FS, 1992).  

2.3 Drugs and Chemicals 

Drugs and chemicals used in this study include GA from Streptomyces hygroscopicus (CAS: 30562-

34-6;Sigma-Aldrich), TG (CAS:67526-95-8; Sigma, SA), tunicamycin (CAS: 11089-65-9; Sigma, 

SA), heat inactivated foetal bovine serum (Biochrome, The Scientific Group), phosphate buffered 

saline (PBS) (Gibco, Life Technologies), Dulbecco’s modified Eagles medium supplemented with 

F-12 glutamax (DMEM F-12 glutamax) (GibcoLife Technologies), penicillin/streptomycin (Gibco, 

Life Technologies), trypsin-EDTA (Gibco, Life Technologies), dimethyl sulfoxide (DMSO) ( 

Sigma-Aldrich), isopropanol, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) MTT 

(CAS: 298-93-1; Sigma, SA), Trypan Blue (CAS: 72-57-1; Sigma SA), Cayman Chemicals Multi 

Drug Resistance kit ( Calcein-AM) (Item no. 600370), Annexin V-CY3 ( Cat no: APOAC; Sigma-

Aldrich), ApoTox-glo triplex assay kit (Cat no: G6320; Promega). 
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2.4 Maintenance of MCF-7 Breast Carcinoma Cells 

All tissue culture operations were carried out in a model NU-5510E NuAire DHD autoflow 

automatic CO2 air-jacketed incubator (and an AireGard NU-201-430E horizontal laminar airflow 

table top workstation which provides a HEPA filtered clean work area (NuAire). The human breast 

cancer cell line, MCF-7, was kindly provided by Professor Maryna De Kock, Department of Medical 

Biosciences, University of the Western Cape, South Africa. The MCF-7 cells were maintained in 

Dulbecco’s Modified Eagle Medium (DMEM) and supplemented with 10% heat-inactivated foetal 

bovine serum (HIFBS), 1% penicillin/streptomycin (100 µg/ml penicillin and 10 µg/ml 

streptomycin) and grown as monolayer cultures at 37C in a humidified incubator (Relative 

Humidity/RH 80%) in an atmosphere of 5% CO2:95% air. 

Cryovials containing the MCF-7 breast carcinoma cells frozen away in 90% FBS and 10% DMSO 

were removed from -80°C storage and placed in a 37°C water bath and allowed to thaw. The caps 

were wiped with 70% ethanol and the contents of the vial transferred aseptically to a T-25 culture 

flask (surface area (SA) 2500 mM2) containing 5 ml of complete medium (GIBCO® Dulbecco’s 

Modified Eagles Medium/F-12 supplemented with 1% penicillin-streptomycin, and 10% HIFBS, all 

acquired from Invitrogen). The flask was placed on a PrimoVert phase-contrast microscope to 

visualize the presence of suspended cells, and then placed in a 37°C incubator at 5% CO2 and 80% 

relative humidity, the incubation specifications were kept constant throughout for cells to 

acclimatize and attach to the substratum of the flask. The cells were allowed to attach for 24h, after 

which the flask was removed from the incubator and attachment confirmed by microscopy. The flask 

was incubated under ideal tissue culture conditions and growth medium periodically changed until 

approximately 80-90% of the flask substratum had been occupied by MCF-7 cells. 

Once confluency had been reached, cells were gently trypsinized. The medium was aspirated and the 

cells rinsed with 2 ml of PBS. After 1 minute, the PBS was aspirated and replaced with 1ml of 

0.25% Trypsin-EDTA and placed in the incubator for 5-15 minutes in order for detachment of the 

cell monolayer to be achieved. The flask was then removed from the incubator and placed in a 
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laminar flow cabinet. Thereafter, 2 ml complete medium was added to the flask to deactivate the 

trypsin. The cells were gently mixed using an electronic pipette aid and detached cells aspirated and 

transferred to a 15 ml conical centrifuge tube, placed in a centrifuge and spun for 5 minutes at 2500 

rpm to separate the cells from the medium-trypsin solution. After centrifugation, the supernatant was 

discarded and the cell pellet resuspended in 5 ml of complete medium. The cells were mixed to 

ensure a homogeneous cell suspension, 1ml of which was transferred to T-75 culture flask (SA 7500 

mM2) containing 12 ml complete medium to maintain stock cultures.  

2.5 MCF-7 Mammary Carcinoma Growth Curve Analysis 

MCF-7 breast carcinoma cells were trypsinized and transferred to a 15ml centrifuge tube and spun at 

2500 rpm for 5 min. The supernatant was removed and the pellet resuspended in 5ml of complete 

medium. Cells were seeded into 24-well plates at 1 x 104 cells/ml per well. Following a 24 hour 

attachment period, Cells were exposed to approximate 24 hour IC50 inhibitory concentrations of each 

drug based on data generated from the MTT cell proliferation assay. The IC50 values were 

determined using the latest version 6.05 of GraphPad Prism®. The cells were exposed to 199.1 µM 

of GA, 12 µM TG, 100 µM of TM, including a control row containing no drug, just growth medium 

used to maintain cell cultures and plates were incubated for 24, 48 and 72h. After the relative time 

intervals elapsed, cells were trypsinized with 0.25% trypsin-EDTA and counted using the Bio-Rad 

TC-20 cell counter at a ratio 1:1 cell suspension: 0.4 µM trypan blue. 

2.6 MTT Cell Viability Assay 

MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) is reduced to formazan, 

following cleavage of the tetrazolium ring by succinate dehydrogenase within the mitochondria of 

metabolically active cells.168,169 The inability of formazan to diffuse through the cell membrane 

allows its accumulation within healthy living cells. The insoluble formazan crystals that form within 

the cell can be dissolved in acidified isopropanol, dimethylsulfoxide (DMSO) or sodium dodecyl 

sulfate (SDS). 
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MCF-7 breast carcinoma cells were seeded at a density of 5 x 104 cell/ml into 96-well flat-bottom 

tissue culture plates of which a 100 µl cell suspension was added to each well and cells were allowed 

to attach for 24 h under normal incubation conditions. After 24 hours, medium was aspirated and 

replaced with 100 µl complete medium alone (served as control) and medium containing increasing 

log10 concentrations of GA, TG and TM alone (0.001 0.01, 0.1, 1, 10, 100 and 1000 µM) and in 

combination (0.005, 0.05, .0.5, 5, 50 and 500 µM) at equimolar concentrations in six replicate wells. 

Plates were incubated for 24, 48 and 72 h, respectively. After the elapsed incubation period, 10 µl of 

MTT solution (5 mg/ml MTT in PBS) was added to each well and the plate was covered with 

aluminium foil and incubated for a further 2 hours. Thereafter, the supernatant was aspirated and 200 

µl of neat isopropanol was added to each well, incubated at room temperature but placed on a vortex 

shaker for 25 min, still enclosed in foil. Plates were read at 560 nm using the Promega GloMaxTM 

multiscan plate reader. 

2.7 Measurement of P-glycoprotein-mediated Efflux 

Cayman’s Multi-Drug Resistance Assay Kit provides a convenient tool for studying MDR protein 

modulators.170 The kit employs calcein-AM, a substrate for MDR proteins including P-gp and MRP, 

as a probe for the detection of chemical compounds interacting with MDR proteins. Hoechst dye is 

used as a marker of cell nuclei. Cyclosporin A, a competitive inhibitor, and verapamil, a non-

competitive inhibitor of P-gp, are included as positive controls. 

All experiments using the Calcein-AM kit was carried out in black, clear bottom 96-well tissue 

culture treated plates. MCF-7 breast carcinoma cells were seeded at a density of 1 x 104 cells/well in 

100 µl of complete DMEM cell culture medium and incubated allowing for cells to attach and grow 

over night (24 hours). Following the elapsed time period, medium was aspirated and replaced with 

100 µl of test compounds GA, TG and TM alone and in combination at both IC 20 and IC 50 values 

based on MTT data analysis using the latest GraphPad Prism® software. Included in the kit was 

cyclosporin A and verapamil which were used as positive controls, which were diluted 1:1000 into 

culture medium. 
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At the end of the specified treatment interval, 100 µl of the calcein-AM/Hoechst dye staining 

solution was added to each well, and the plate was gently shaken, to allow the calcein-AM/Hoechst 

dye staining solution to mix with the culture medium. The plate was then placed in a CO2 incubator 

at 37°C for 30 minutes to allow sufficient uptake of the calcein-AM to occur. Cells were then 

analysed immediately and Cells taking up calcein-AM displayed strong fluorescence intensity with 

ex 355 nm and em 465 nm, respectively. Cell number/density was reflected by the fluorescence 

intensity with Hoechst dye staining that was measured using ex 355 nm and em 465 nm, 

respectively using the Promega GloMaxTM multiscan plate reader. 

2.8 Apotox-Glo™ Triplex Cell Viability, Cytotoxicity and Apoptosis Assays 

2.8.1 Principle of the Apotox-Glo™ Triplex Assay 

The ApoTox-Glo™ Triplex Assay combines three Promega assay chemistries to assess viability, 

cytotoxicity and caspase activation events within a single assay well. The first part of the assay 

simultaneously measures two protease activities; one is a marker of cell viability, and the other is a 

marker of cytotoxicity. The live-cell protease activity is restricted to intact viable cells and is 

measured using a fluorogenic, cell-permeant, peptide substrate (glycylphenylalanyl-

aminofluorocoumarin; GF-AFC). The substrate enters intact cells, where it is cleaved by the live-cell 

protease activity to generate a fluorescent signal proportional to the number of living cells. This live-

cell protease becomes inactive upon loss of cell membrane integrity and leakage into the 

surrounding culture medium. A second, fluorogenic cell-impermeant peptide substrate (bis-

alanylalanyl-phenylalanyl-rhodamine 110; bis-AAF-R110) is used to measure dead-cell protease 

activity, which is released from cells that have lost membrane integrity. Because bis-AAF-R110 is 

not cell-permeant, essentially no signal from this substrate is generated by intact, viable cells. The 

live- and dead-cell proteases produce different products, AFC and R110, which have different 

excitation and emission spectra, allowing them to be detected simultaneously. 
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The second part of the assay uses the Caspase-Glo ® Assay Technology by providing a luminogenic 

caspase-3/7 substrate, which contains the tetrapeptide sequence DEVD, in a reagent optimized for 

caspase activity, luciferase activity and cell lysis. Adding the Caspase Glo® 3/7 Reagent in an “add-

mix-measure” format results in cell lysis, followed by caspase cleavage of the substrate and 

generation of a “glow-type” luminescent signal produced by luciferase. Luminescence is 

proportional to the amount of caspase activity present. The Caspase-Glo® 3/7 Reagent relies on the 

properties of a proprietary thermostable luciferase (Ultra-Glo™ Recombinant Luciferase), which is 

formulated to generate a stable “glow-type” luminescent signal and improve performance across a 

wide range of assay conditions. 

2.8.2 Assay Conditions for the ApoTox-Glo™ Triplex Assay 

All Apotox-GloTM Triplex assays were carried out in white opaque bottom 96-well plates. 1 x 104 

cells were seeded into each well in a final volume of 100 µl per well and allowed to attach for 24 

hours. After the attachment period, culture medium was removed and replaced with vehicle controls 

and test compounds GA, TG and TM at log doses (0.01. 0.1, 1, 10, 100, 1000 µM) to the appropriate 

wells. Plates were placed in a CO2 incubator at 37°C for the appropriate time intervals 6 hours, 12 

hours and 24 hours. After the exposure time intervals have elapsed, 20 µl of Viability/ Cytotoxicity 

reagent containing both GF-AFC Substrate and bis-AAF-R110 Substrate was added to all wells, 

plate covered in foil and briefly mixed by orbital shaking at 300 rpm for 30 seconds. After the 

reagents were added and allowed to mix, plates were placed in the CO2 incubator at 37°C for 1 hour. 

Following the incubation period, plates were removed from the incubator, the foil was removed, and 

fluorescence was measured at 400 Ex/505Em and 485 Ex/520Em for viability and cytotoxicity 

respectively using the Promega GloMaxTM multiscan plate reader. To determine apoptosis, 100 µl of 

Caspase-Glo® 3/7 reagent was added to each well; the plate was covered in foil, and briefly mixed 

by orbital shaking at 300 rpm for 30 seconds. Thereafter, the plate was incubated for 1 hour and 

luminescence was measured (caspase-3 activation, a hallmark of apoptosis) using the Promega 

GloMaxTM multiscan plate reader. 
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2.9 Annexin V Cy3™ Apoptosis Assay 

MCF-7 breast carcinoma cells were seeded into 24 well plates, at 2x105 cells per well in 1 ml of 

culture medium. Cells were then incubated and allowed to attach for 24 hours. After 24hours, cells 

were exposed to relative IC50 concentrations of GA, TG and TM alone for 24 hour time intervals in 

order to induce apoptosis. After inducing apoptosis using the specified concentrations of ER stress 

inducers, cells were washed in phosphate buffered saline (PBS). Thereafter, cells were trypsinized 

and resuspended in PBS. A 2- mM tip PAP pen (Sigma-Aldrich), a special marking pen that delivers 

a thin film-like green-tinged hydrophobic barrier when a circle is drawn around a specimen on a 

slide, was used to draw circles of 1 cm diameter on poly-prep-poly-L-lysine-coated slides to restrict 

movement of cell suspension to the slide. A droplet (50 µl) of cell suspension was placed inside the 

circle and cells were allowed to attach to the slide by incubating at room temperature. 

The cells were washed with binding buffer (10 mM Hepes/NaOH, pH 7.5, containing 150 mM 

NaCl, 5 mM KCl, 1 mM CaCl2 and 1.8 mM CaCl2)171 and a double label staining solution (Sigma-

Aldrich; Annexin V Cy3.18 and 6-carboxyfluorescein diacetate) added onto each circle and covered 

with foil. Cells were incubated at room temperature for 10min. Slides were washed with 1X binding 

buffer in order to remove excess unbound staining solution. A cover slip was added onto the slide 

and results were viewed using a fluorescent microscope. 

Cells starting the apoptotic process were stained with stains-Annexin Cy3.18 (red) and 6-

carboxyfluorescein diacetate (green). Annexin-Cy3.18 (AnnCy3) binds to phosphatidylserine 

present in the outer leaflet of the plasma membrane of cells starting the apoptotic process. The 

binding is observed as red fluorescence. 6-Carboxyfluorescein diacetate (6-CFDA) is used to 

measure viability. When this non-fluorescent compound enters living cells, esterases present 

hydrolyze it, producing the fluorescent compound, 6-carboxyfluorescein (6-CF). This appears as a 

green fluorescence (Source: Sigma-Aldrich Annexin V-Cy3™ Apoptosis DetectionKit. 

(http://www.sigmaaldrich.com /content/dam/sigmaaldrich/docs/Sigma/Bulletin/apoacbul.pdf).  
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2.10 Statistical Analysis 

Regression analysis of dose-response curves, IC50s and p values using One-Way ANOVA or 

Student’s t-test were calculated using GraphPad Prism (GraphPad Prism version 6.04 for Windows, 

GraphPad Software, San Diego California USA, www.graphpad.com). Data obtained for the growth 

inhibitory effects The ER stress inducers TG, TM and GA on MCF-7 breast carcinoma cells were 

also analysed by One-Way ANOVA using GraphPad Prism (GraphPad Prism version 6.04 for 

Windows, GraphPad Software, San Diego California USA, http://www.graphpad.com. All pairwise 

multiple comparisons were performed according to the Holm-Sidak method and the overall 

significance level was set at 0.05. Actual p-values are indicated in the text. Best-fit IC50 values and 

corresponding 95% confidence intervals were obtained from non-linear regression analysis of 

sigmoidal dose-response curves, using the three-parameter logistic equation of GraphPad Prism 

(GraphPad Prism version 6.04 for Windows, GraphPad Software, San Diego California USA, 

http://www.graphpad.com. All data were derived from 2-3 independent experiments where sample 

size (n ≥ 6). 
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CHAPTER 3 

RESULTS 

3.1 Introduction 

In this chapter, the results of the research undertaken in this study are presented. Details of the 

research methodology used to obtain and analyze the data have been presented in Chapter 2. In this 

study, MCF-7 breast carcinoma cells were exposed to 3 Endoplasmic Reticulum stress inducers, 

geldanamycin (GA), thapsigargin (TG) and tunicamycin (TM) alone, and in combination. Initially, 

growth curves for MCF-7 breast carcinoma cells were generated to establish their behaviour under 

normal culture conditions and their proliferation in response to 24 hour IC50 values of GA, TG and 

TM for 24, 48 and 72 hour time intervals, once it had been determined via dose response curves. 

Dose response curves were generated to determine relative IC20 and IC50 values of each drug at 24, 

48 and 72 hour time intervals. 

A carefully designed time interval study was conducted to ascertain the effects of the ER stress 

inducers on the effect of the P-gp cellular efflux pump activity of the cells. The triplex assay was 

performed at different time intervals, which include intervals lower than and 24 hours to determine 

the log dose effect of the ER stress inducers on the MCF-7 breast carcinoma cells. This was then 

followed by the by Annexin V-Cy3 fluorescent staining of the cells exposed to their relative 24 hour 

IC50 concentrations. The results are presented and briefly discussed in the sections that follow. 

3.2 MCF-7 Cell Growth Curve Analysis  

MCF-7 breast carcinoma cells were seeded at 1x104 cells/ml, allowed to attach for 24 hours, and 

replaced with cell medium alone, which served as the control (i.e. cells not treated with inhibitor) 

and in the presence of the endoplasmic reticulum stress inducers GA (199.1 µM), TG (12 µM) and 

TM (100 µM). Results obtained after 24, 48 and 72 hours is depicted in Figure 3.1. These 
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concentrations were based on the actual 24 hour IC50 values generated from the MTT cell 

proliferation assays performed (Figure 3.3). 

 

Figure 3.1: MCF-7 breast carcinoma cell Growth curve at 24 hour intervals 

Cells seeded at a constant density and exposed to geldanamycin (199.1 µM), TG (100 µM) and tunicamycin (12 µM)) 

constantly for the different time intervals relative to control. Data were analyzed by One-way ANOVA using Graphpad 

Prism®. All pairwise multiple comparisons were performed according to the Holm-Sidak method and the overall 

significance level was set at 0.05. Actual p- values are indicated in the text. 

 

In Figure 3.1, a visible increase in cell proliferation has been obtained between 0-24 hours (initial 

seeding and exposure interval), whereby a significant increase in cell proliferation (p<0.001) in the 

control was seen, as well as in the presence of TG, but no significant increase in cell number in the 

presence of GA and TM (p=0.9305 and p=0.2383 respectively). Although there was an increase in 

cell number, responses in the presence of the stress inducers do not surpass the cell number obtained 

by the control group.  

As cell number increases with time duration in the control group, a lag phase was observed between 

24 and 48 hours with no significant difference in cell proliferation (p>0.05), and a log growth phase 

was visible with a significant increase in cell growth between the 48 and 72 hour time interval 
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(p=0.0015). Cell proliferation inhibition in the presence of GA is evident with no significant increase 

in cell number between 24 and 48 hours (p>0.05) and no significant difference (p>0.05) but a 

sustained decrease in cell number after 72 hours. In the presence of TG, a decrease in cell 

proliferation is observed between 24 and 48 hours and a significant (p<0.0001) sustained decrease in 

cell number is clearly visible at 72 hours. TM was found to hinder cell proliferation between 24 and 

48 hours but not significantly (p=0.7537), with a minor but not significant (p>0.999) increase in 

proliferation between 48 and 72 hours. 

3.2.1 Cell Growth Analysis of MCF-7 cells exposed to Geldanamycin, Thapsigargin and 
Tunicamycin 

Figure 3.2: Growth inhibitory effects of geldanamycin , tunicamycin and thapsigargin on MCF-7 breast carcinoma cells 

at 24, 48 and 72 hour intervals. Data were analysed by One-way ANOVA using the latest Graphpad prism® software 

version 6.05. All pairwise multiple comparisons were performed according to the Holm-Sidak method and the overall 

significance level was set at 0.05. Actual p- values are indicated in the text. 

 

In Figure 3.2, a significant inhibition of cell viability was obtained after 24 hours in the presence of 

GA and TM relative to control (p=0.0008 and p=0.0219 respectively). Although there was a decrease 

in cell viability in the presence of TG, it was not significant (p>0.05). After 48 hours of exposure to 
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the endoplasmic reticulum stress inducers GA, TG and TM, a significant decrease in cell viability 

was achieved (p=0.0007,p=0.224 and p<0.0001 respectively). Exposure for 72 hours resulted in a 

significant decreased cell viability relative to control (p<0.0001 in all cases) and maintained a 

constant decrease in viability as time progressed, apart from that found in the presence of TM, where 

there was a negligible yet non-significant decrease in cell viability (p>0.05). 

3.3 Potencies of ERS Inducers Geldanamycin, Thapsigargin and Tunicamycin Alone 
and in Combination 

Figure 3.3 summarizes the effects of the endoplasmic reticulum stress inducers GA, TG and TM 

alone, on the MCF-7 breast carcinoma cell line. The IC50 values determined are indicated on the 

graphs in conjunction with their relative 95% Confidence Interval (95% CI) values and regression 

line (R2) values. 

The IC50 values determined for GA were 199.1 µM, 113 µM and 38, 60 µM for 24, 48 and 72 hours where R2 

= 0.80,0 .93 and 0.92 respectively. A dose dependant decrease in cell viability was obtained, and the IC50 value 

was found to decrease as time intervals increased. A visible dose and time dependent response from the cells in 

the presence of the drug was achieved as the IC50 value decreased as time intervals increased and cell viability 

decreased as the log dose of the drug increased. 

The IC50 values determined for TG were 11.93 µM, 1.655 µM and 8, 96 µM for 24, 48 and 72 hours where R2 

= 0.80,0 .92 and 0.93 respectively. A dose dependant decrease in cell viability was obtained, and the IC50 value 

at 48 hours was found to be lower than found at 24 and 72 hours, however at 72 hours, the IC50 value was 

lower (1.655 µM ) than that at 24 hours (11.93 µM ). A clearly visible dose and time dependent response from 

the cells in the presence of the drug was achieved as the IC50 value decreased as time intervals increased and 

cell viability decreased as the log dose of the drug increased. 

The IC50 values determined for TM were 115.2 µM, 108.2 µM and 26.64 µM for 24, 48 and 72 hours where 

R2 = 0.85,0 .90 and 0.88 respectively. A dose dependant decrease in cell viability was obtained, and the IC50 

 

 

 

 



RESULTS | 3.3 POTENCIES OF ERS INDUCERS GELDANAMYCIN, THAPSIGARGIN AND TUNICAMYCIN ALONE 

AND IN COMBINATION 

40 

value at 72 hours was found to be prominently lower than found at 24 and 48 hours. A dose and time 

dependent response from the cells in the presence of the drug was achieved as the IC50 value decreased as time 

intervals increased and cell viability decreased as the log dose of the drug increased. 

Figure 3.4 summarizes the effects of the endoplasmic reticulum stress inducers GA, TG and TM in 

combination, on the MCF-7 breast carcinoma cell line. The IC50 values determined are indicated on 

the graphs in conjunction with their relative 95% Confidence Interval (95% CI) values and 

regression line (R2) values. 

The IC50 values determined for the combination of the GA and TG were 11.01 µM, 7.798 µM and 18.13 µM 

for 24, 48 and 72 hours where R2 = 0.95,0 .96 and 0.81 respectively. A dose dependant decrease in cell 

viability was obtained, and the IC50 value was found to decrease as time intervals increased. A visible dose and 

time dependent response from the cells in the presence of the drug was achieved as the IC50 value decreased as 

time intervals increased and cell viability decreased as the log dose of the drug increased. 

The IC50 values determined for the combination of the GA and TM were 91.66 µM, 4.648 µM and 0.372 µM 

for 24, 48 and 72 hours where R2 = 0.92,0 .88 and 0.78 respectively. A dose dependant decrease in cell 

viability was obtained, and the IC50 value was found to decrease as time intervals increased. A visible dose and 

time dependent response from the cells in the presence of the drug was achieved as the IC50 value decreased as 

time intervals increased and cell viability decreased as the log dose of the drug increased. 

The IC50 values determined for the combination of the TG and TM were 20.81 µM, 15.32 µM and 0.622 µM 

for 24, 48 and 72 hours where R2 = 0.92,0 .93 and 0.90 respectively. A dose dependant decrease in cell 

viability was obtained, and the IC50 value was found to decrease as time intervals increased. A visible dose and 

time dependent response from the cells in the presence of the drug was achieved as the IC50 value decreased as 

time intervals increased and cell viability decreased as the log dose of the drug increased.  
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Figure 3.3: Dose response curves obtained by nonlinear regression analysis following exposure of MCF-7 breast carcinoma cells to geldanamycin thapsigargin and tunicamycin for 24, 

48 and 72h, respectively. Indicated are the 50% inhibitory concentrations (IC50s) and 95% Confidence Intervals (CI) and Regression line analysis (R2 ) 
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Figure 3.4: Dose response curves obtained by nonlinear regression analysis following exposure of MCF-7 breast carcinoma cells to decreased but equimolar concentrations of geldanamycin 

thapsigargin and tunicamycin combined for 24, 48 and 72h, respectively. Indicated are the 50% inhibitory concentrations (IC50s) and 95% Confidence Intervals (CI) and Regression line 

analysis (R2). 
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3.4 Measurement of P-gp-Mediated Efflux via Calcein-AM 

3.4.1 Measurement of P-gp-Mediated Efflux in the Presence of Geldanamycin 

Figures to 3.5 to 3.7 summarize the effects of calculated IC20 ( 50 µM) and IC50 (199.1 µM) values of 

the endoplasmic reticulum stress inducer GA alone, on the MCF-7 breast carcinoma cell line with 

regard to its response to P-gp-mediated efflux after 4, 8 and 16 hour intervals. Decrease in calcein-

AM substrate indicated an increased cellular efflux, as less calcein-AM was retained in the cells after 

the specified time interval. Actual p values are indicated in the text. 

 

Figure 3.5: The effects of geldanamycin on P-glycoprotein-mediated efflux after 4 hours 

 

After 4hours (Figure 3.5), a minor insignificant increase in cell viability in the presence of verapamil 

was observed compared to control (p>0.05) with no significant difference found in the presence of 

Cyclosprorin A or varapimal compared to control. A significant increase in cellular efflux was 

observed in the presence of GA at both IC20 and IC50 concentrations compared to control, verapamil 

and cyclosporin A (p<0.0001) as a decrease in cellular influx was present. A significant decrease in 

cell viability only in the presence of geldanamycins’ IC50 concentration was found (p=0.005) relative 
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to control. A significant increase in cellular efflux in the presence of the both IC20 and IC50 

concentrations was also seen relative to its viability (p<0.05 in both cases). 

 

Figure 3.6: The effects of geldanamycin on P-glycoprotein-mediated efflux after 8 hours 

 

After 8 hours (Figure 3.6), no significant differences in either viability or calcein-AM retention were 

seen in the presence of cyclosporin A and verapamil compared to control (p>0.05). An insignificant 

decrease in viability is present at GAs IC20 concentration (p=0.0914) and a significant decrease in 

cell viability was seen in the presence of GAs IC50 concentration (p<0.0001), however in both cases, 

a significant increase in cellular efflux was seen relative to control (p<0.0001) and relative to its 

respective viability percentages (p<0.0001). 

Following 16 hours of exposure (Figure 3.7), no significant differences in cellular efflux or viability 

was found in the presence of cyclosporin A and verapamil (p>0.05) compared to control. A 

significant decrease in cell viability was seen in both IC20 and IC50 concentrations (p=0.0198 and 

0.0118 respectively) compared to control, however both concentrations showed a decreased cellular 

efflux, where by the IC20 concentration was insignificantly lower (p=0.3167) and the IC50 
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concentration significantly lower compared to control (p=0.0118), however at the IC20 concentration, 

an insignificant decrease in cellular efflux was seen relative to its viability (p>0.05) and a significant 

decrease in cellular efflux was seen at the IC50 concentration relative to its viability (p<0.05). 

 

Figure 3.7: The effects of geldanamycin on P-glycoprotein-mediated efflux after 16 hours 

 

3.4.2 Measurement of P-gp-Mediated Efflux in the Presence of Thapsigargin 

Figures to 3.8 to 3.10 summarize the effects of calculated IC20 ( 3 µM) and IC50 ( 12 µM) values of 

the endoplasmic reticulum stress inducer TG alone, on the MCF-7 breast carcinoma cell line with 

regard to its response to P-gp-mediated efflux after 4, 8 and 16 hour intervals. Decrease in calcein-

AM substrate indicated an increased cellular efflux, as less calcein-AM was retained in the cells after 

the specified time interval. Actual p values are indicated in the text. 

Following a 4 hour exposure period (Figure 3.8), no significant differences in cellular efflux or 

viability was found in the presence of cyclosporin A and verapamil (p>0.05) compared to control. A 

minor insignificant increase in cell viability was seen the presence of verapamil. The only significant 
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difference present was a weak significant decrease in cellular influx in the presence if TGs IC50 

concentration (p=0.0483) relative to control. 

 

Figure 3.8: The effects of thapsigargin on P-glycoprotein-mediated efflux after4 hours 

 

Following an 8 hour exposure period (Figure 3.9), no significant differences in cellular efflux or 

viability was found in the presence of cyclosporin A and verapamil (p>0.05) compared to control. 

No significant differences in cell viability was found, however significant increases in cellular efflux 

was noticeable at both IC20 and IC50 concentrations (p=0.0004 and <0.0001 respectively) compared to 

control. At both concentrations there was a significant increase in cellular efflux relative to its 

relative viability (p<0.05 in both cases). 

After a 16 hour exposure period (Figure 3.10), no significant differences in cellular efflux or viability 

was found in the presence of cyclosporin A and verapamil (p>0.05) compared to control. No 

significant differences in cell viability or cellular efflux were found in the presence of TG at both 

concentrations, however, at both concentrations, insignificant decreases in both viability and efflux 

was noticeable (p>0.05) relative to control. 
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Figure 3.9: The effects of thapsigargin on P-glycoprotein-mediated efflux after 8 hours 

 

 

 

 

Figure 3.10: The effects of thapsigargin on P-glycoprotein-mediated efflux after 16 hours 
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3.4.3 Measurement of P-gp-Mediated Efflux in the Presence of Tunicamycin 

Figures to 3.11 to 3.13 summarize the effects of calculated IC20 ( 28.8 µM) and IC50 ( 115 µM) 

values of the endoplasmic reticulum stress inducer TM alone, on the MCF-7 breast carcinoma cell 

line with regard to its response to P-gp-mediated efflux after 4, 8 and 16 hour intervals. Decrease in 

calcein-AM substrate indicated an increased cellular efflux, as less calcein-AM was retained in the 

cells after the specified time interval. Actual p values are indicated in the text. 

Following a 4 hour exposure period (Figure 3.11), no significant differences in cellular efflux or 

viability was found in the presence of cyclosporin A and verapamil (p>0.05) compared to control. A 

minor insignificant increase in cell viability was seen the presence of verapamil No significant 

difference in viability or cell efflux was seen at both concentrations. 

 

 

Figure 3.11: The effects of tunicamycin on P-glycoprotein-mediated efflux after 4 hours 

 

Following an 8 hour exposure period (Figure 3.12), no significant differences in cellular efflux or 

viability was found in the presence of cyclosporin A and verapamil (p>0.05) compared to control. 
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No significant differences in cell viability was observed (p>0.05), however significant increases in 

cellular efflux was noticeable at both IC20 and IC50 concentrations (p=0.0005 and <0.0001 

respectively) compared to control. It was also visible that a significant decrease in cellular efflux is 

visible at both concentrations relative to each concentrations viability percentage (p<0.05). 

 

 

Figure 3.12: The effects of tunicamycin on P-glycoprotein-mediated efflux after 8 hours 

 

Following a 16 hour exposure period (Figure 3.13), no significant differences in cellular efflux or 

viability was found in the presence of cyclosporin A and verapamil (p>0.05) compared to control. 

No significant differences in cell viability or cellular efflux were observed at both IC20 and IC50 

concentrations compared to control. In the presence of TM at its IC20 and IC50 concentration, an 

insignificant decrease in calcein-AM accumulation was seen relative to its viability percentage 

(p<0.05.  
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Figure 3.13: The effects of tunicamycin on P-glycoprotein-mediated efflux after 16 hours 

 

3.4.4 Measurement of P-gp-Mediated Efflux in the Presence of Geldanamycin and 
Thapsigargin 

Figures to 3.14 to 3.16 summarize the effects of calculated IC20 ( 11 µM) and IC50 ( 28.8 µM) values 

of the endoplasmic reticulum stress inducers GA and TG in combination, on the MCF-7 breast 

carcinoma cell line with regard to its response to P-gp-mediated efflux after 4, 8 and 16 hour 

intervals. Decrease in calcein-AM substrate indicated an increased cellular efflux, as less calcein-AM 

was retained in the cells after the specified time interval. Actual p values are indicated in the text. 

Following a 4 hour combination exposure (Figure 3.14), no significant differences in cellular efflux 

or viability was found in the presence of cyclosporin A and verapamil compared to control (p>0.05), 

with an insignificant increase in cell viability in the presence of verapamil. No significant differences 

in cell viability or cellular efflux were observed at both IC20 and IC50 concentrations compared to 

control with an insignificant decrease in cell viability in the presence of the IC50 concentration. 

However, a minor but insignificant increase in calcein-AM was seen in the presence of the IC50 

concentration compared to its relative viability percentage (p>0.05). 
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Figure 3.14: The combined effects of geldanamycin and thapsigargin on P-glycoprotein-mediated efflux after 4 hours 

 

Following an 8 hour exposure period (Figure 3.15), no significant differences in cellular efflux or 

viability was found in the presence of cyclosporin A and verapamil (p>0.05) compared to control. 

No significant differences in cell viability was observed in all cases (p>0.05), apart from the IC50 

concentration where a minor significant decrease in cell viability was seen relative to control 

(p=0.038). 

After 16 hours (Figure 3.16), no significant differences in cellular efflux or viability was found in the 

presence of cyclosporin A and verapamil (p>0.05) compared to control. No significant differences in 

cell viability or cellular efflux were observed at both IC20 and IC50 concentrations compared to 

control as well (p>0.05), however, minor but insignificant increases in cellular influx is seen at both 

concentrations relative to their viability percentages (p>0.05). 

 

 

 

 

 



RESULTS | 3.4 MEASUREMENT OF P-GP-MEDIATED EFFLUX VIA CALCEIN-AM 

52 

 

Figure 3.15: The combined effects of geldanamycin and thapsigargin on P-glycoprotein-mediated efflux after 8 hours 

 

 

 

 

Figure 3.16: The combined effects of geldanamycin and thapsigargin on P-glycoprotein-mediated efflux after 16 hours 
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3.4.5 Measurement of P-gp-Mediated Efflux in the Presence of Geldanamycin and 
Tunicamycin 

Figures to 3.17 to 3.19 summarize the effects of calculated IC20 ( 22.92 µM) and IC50 (91.66 µM) 

values of the endoplasmic reticulum stress inducers GA and TG in combination, on the MCF-7 

breast carcinoma cell line with regard to its response to P-gp-mediated efflux after 4, 8 and 16 hour 

intervals. Decrease in calcein-AM substrate indicated an increased cellular efflux, as less calcein-AM 

was retained in the cells after the specified time interval. Actual p values are indicated in the text. 

 

Figure 3.17: The combined effects of geldanamycin and tunicamycin on P-glycoprotein-mediated efflux after 4 hours 

 

Following a 4 hour combination exposure of GA and TM (Figure 3.17), no significant differences in 

cellular efflux or viability was found in the presence of cyclosporin A and verapamil compared to 

control (p>0.05), with a minor but insignificant increase in cell viability in the presence of verapamil 

(p>0.05) and a minor insignificant decrease in cellular efflux relative to control seen at the IC20 

concentration (p>0.05). A significant decrease in viability was seen at the IC50 concentration relative 

to control, cyclosporin A and verapamil (p=0.0218, 0.0315 and 0.0009 respectively) with an 
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insignificant increase in cellular efflux compared to control (p>0.05), however displaying a minor 

but insignificant decrease in cellular efflux relative to its viability (p>0.05). 

 

Figure 3.18: The combined effects of geldanamycin and tunicamycin on P-glycoprotein-mediated efflux after 8 hours 

 

Following an 8 hour exposure period (Figure 3.18), no significant differences in cellular efflux or 

viability was found in the presence of cyclosporin A and verapamil (p>0.05) compared to control. In 

the presence of both, the IC20 and IC50 concentrations, a significant decrease in cell viability 

(p=0.0017 and <0.0001 respectively) and increase in cellular efflux (p=0.007 and 0.0004 

respectively) was seen relative to control, however an insignificant decrease in cellular efflux was 

seen compared to its viability at the IC50 concentration (p>0.05) 

After 16 hours (Figure 3.19), no significant differences in cellular efflux or viability was found in the 

presence of cyclosporin A and verapamil (p>0.05) compared to control. In the presence of the IC50 

concentration, a significant decrease in cell viability relative to control, cyclosporin A and verapamil 

was observed (p<0.0001, <0.0001 and 0.0292 respectively), and a significant decrease in cellular 
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efflux was seen relative to its viability (p<0.0001). A significant decrease in cell viability of the IC50 

compared to the IC20 concentration was also observed (p=0.0005).  

 

Figure 3.19: The combined effects of geldanamycin and tunicamycin on P-glycoprotein-mediated efflux after 16 hours 

 

3.4.6 Measurement of P-gp-Mediated Efflux in the Presence of Thapsigargin and 
Tunicamycin 

Figures to 3.20 to 3.22 summarize the effects of calculated IC20 ( 5.2 µM) and IC50 ( 20.81 µM) 

values of the endoplasmic reticulum stress inducers TG and TM in combination, on the MCF-7 

breast carcinoma cell line with regard to its response to P-gp-mediated efflux after 4, 8 and 16 hour 

intervals. Decrease in calcein-AM substrate indicated an increased cellular efflux, as less calcein-

AM was retained in the cells after the specified time interval. Actual p values are indicated in the 

text. After a 4 hour combination exposure (Figure 3.20), no significant differences in cellular efflux 

or viability was found in the presence of cyclosporin A and verapamil compared to control (p>0.05), 

with an insignificant increase in cell viability in the presence of verapamil. No significant differences 

in cell viability or cellular efflux were observed at both IC20 and IC50 concentrations compared to 

control with an insignificant decrease in cell viability in the presence of the IC50 concentration. 
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Figure 3.20: The combined effects of thapsigargin and tunicamycin on P-glycoprotein-mediated efflux after 4 hours 

 

Following an 8 hour exposure period (Figure 3.21), no significant differences in cellular efflux or 

viability was observed in the presence of cyclosporin A and verapamil compared to control (p>0.05). 

In the presence of the IC50 concentration, a significant decrease in viability was observed (p=0.0007) 

compared to control and cellular efflux was significantly increased at both IC20 and IC50 

concentrations compared to control (p=0.0049 and <0.0001 respectively). A significant increase in 

efflux was also seen in the presence of both concentrations (p=0.0336 and 0.0006 respectively) 

compared to cyclosporin A. No significant differences in cellular efflux were observed in the 

presence of both concentrations relative to its viability (p>0.05). 

After 16 hours (Figure 3.22), no significant differences in cellular efflux or viability was found in the 

presence of cyclosporin A and verapamil (p>0.05) compared to control. In the presence of the IC50 

concentration, significant decreases in viability were observed compared to control, cyclosporin A, 

and verapamil (p=0.0161, 0.0251 and 0.0055 respectively). No significant differences in cellular 

efflux was observed, however at the IC50 concentration, a minor but insignificant decrease in cellular 

efflux was observed relevant to its viability (p>0.05).  

 

 

 

 



RESULTS | 3.4 MEASUREMENT OF P-GP-MEDIATED EFFLUX VIA CALCEIN-AM 

57 

 

Figure 3.21: The combined effects of thapsigargin and tunicamycin on P-glycoprotein-mediated efflux after 8 hours 

 

 

 

 

Figure 3.22: The combined effects of thapsigargin and tunicamycin on P-glycoprotein-mediated efflux after 16 hours 
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3.5 Measurement of MCF-7 Cell Viability, Cytotoxicity and Caspase-3 Activation 

3.5.1 Effects of Geldanamycin 

Figures 3.23 to 3.25 summarize the effects of the MCF-7 breast carcinoma cells in response to the 

endoplasmic reticulum stress inducer GA alone with regards to viability (Panel A), cytotoxicity 

(Panel B) and early apoptosis via caspase-3/7 activation (Panel C) after exposure over 6, 12 and 24 

hour intervals. 

In Figure 3.23, following a 6 hour exposure period, cell viability patterns (Panel A) remained similar 

at lower doses, with a minor significant decrease at 1 and 100 µM (p=0.0482 for both cases) relative 

to control and at 1000 µM, there was a highly significant decrease in cell viability (p<0.0001). 

Cell cytotoxicity levels (Panel B) were significantly lower at 0.01, 0.1 and 10 µM (p=0.019, 0.0009 

and 0.019 respectively), and a highly significant increase was found at 1000 µM (p<0.0001), with an 

increasing trend of cytotoxicity as the drug concentrations increased. At lower doses, a decreasing 

trend in caspase-3/7 activation (Panel C) relative to control was present, with minor, but insignificant 

increases between 0.01 and 100 µM (p>0.05 in all cases), however at 1000 µM there was a highly 

significant (p<0.0001) 3 fold increase in caspase-3/7 activation measuring apoptosis. 

In Figure 3.24, following a 12 hour exposure period to GA, no significant decrease in viability (Panel 

A) patterns were visible between 0.01 and 10 µM (p>0.05), however at 100 and 1000 µM, a 

significant decrease in cell viability was found (p=0.0021 and <0.0001 respectively) relative to 

control. Cell cytotoxicity (Panel B) was found to be significantly lower at 0.01, 1and 10 µM 

(p=0.0392, 0.0392 and 0.0219 respectively) relative to control, and a noticeable but insignificant 

trend to an increase in cytotoxicity (Panel C) at 100 µM with a highly significant (p<0.0001), almost 

2 fold increase in cell cytotoxicity at 1000 µM. No significant differences were present relative to 

control at concentrations ranging from 0.01 to 100 µM, however, at 1000 µM a highly significant 

(p<0.0001) increase in apoptosis (Panel C) was found. 
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Figure 3.23: Treatment of MCF-7 breast carcinoma cells with geldanamycin following a 6 hour exposure period. The 3 

parameters measured were cell viability (Panel A), Cytotoxicity (Panel B) and apoptosis (Panel C) 
 

In Figure 3.25, a dose dependant trend after 24 hour exposure is noticeable in Panel A. With an 

increase in log dose concentrations of GA, a decrease in cell viability is present, however only 

significant decreases are present at 100 and 1000 µM (p<0.0001 for both cases) relative to control. A 

highly significant (p<0.0001) increase in cell cytotoxicity (Panel B) was only achieved at 1000 µM. 

At 0.01 µM an insignificant (p>0.05) increase in cell cytotoxicity was present, and at concentrations 

0.1, 1, 10 and 100 µM, cell cytotoxicity was found to be lower than that of control, but not 

significantly (p>0.05). Apoptosis expression via caspase-3/7 activation (Panel C) significantly 

decreases at 100 and 1000 µM (p=0.0038 and p<0.0001 respectively). 
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Figure 3.24: Treatment of MCF-7 breast carcinoma cells with geldanamycin following a 12 hour exposure period. The 3 

parameters measured were cell viability (Panel A), Cytotoxicity (Panel B) and apoptosis (Panel C) 
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Figure 3.25: Treatment of MCF-7 breast carcinoma cells with geldanamycin following a 24 hour exposure period. The 3 

parameters measured were cell viability (Panel A), Cytotoxicity (Panel B) and apoptosis (Panel C) 
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3.5.2 Effects of Thapsigargin 

Figures 3.26 to 3.28 summarize the effects of the MCF-7 breast carcinoma cells in response to the 

endoplasmic reticulum stress inducer TG alone with regards to viability (Panel A), cytotoxicity 

(Panel B) and early apoptosis via caspase-3/7 activation (Panel C) after exposure over 6, 12 and 24 

hour intervals. 

 

 

Figure 3.26: Treatment of MCF-7 breast carcinoma cells with thapsigargin following a 6 hour exposure period. The 3 

parameters measured were cell viability (Panel A), Cytotoxicity (Panel B) and apoptosis (Panel C) 
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In Figure 3.26, the trend in cell viability ( Panel A) remained unchanged after 6 hour exposure to TG, 

and a significant increase in cell viability was found at 100 µM (p=0.0012), however at 1000 µM, a 

highly significant (p<0.0001) decrease in cell viability was present. No significant changes in cell 

cytotoxicity (Panel B) was present in concentrations ranging from 0.01 to 100 µM (p>0.05 in all 

cases), however at 1000 µM, a significant increase in cell cytotoxicity is visible. Caspase-3/7 activity 

(Panel C) was higher than control, however not significantly higher at concentrations ranging from 

0.1 to 100 µM. At 1000 µM there was a significant decrease in caspase-3/7 activity. 

In Figure 3.27, the effects of TM on viability at 12 hours (Panel A) show a significant increase in cell 

viability when exposed to lower doses 0.01 to 1 µM (p= 0.0013,0.0020,0.003 and 0.003 

respectively), however at 1000 µM, a significant decrease in cell viability was seen (p<0.0001) 

relative to control. Cell cytotoxicity (Panel B) was found to be insignificantly lower than that of 

control at lower doses 0.01, 0.1,1 (p>0.05) and a weakly less significant than control at 10 µM 

(p=0.0412). At 1000 µM, a highly significant (p<0.0001) 3 fold increase in cell cytotoxicity was 

observed. An increasing but insignificant trend in apoptosis (Panel C) was seen at concentrations 

0.01 and 0.1 µM (p>0.05), however as the log drug concentrations increased from 1 to 100 µM, a 

decrease but not significant in caspase-3/7 activity was seen (p>0.05). Clearly visible at 1000 µM is 

the significant decrease in cell apoptosis protein expression. 

Following a 24 hour exposure period in Figure 3.28, cell viability (Panel A) was found to be higher 

than control, with no significant increase between concentrations 0.01 to 10 µM (p>0.05 in all 

cases), however at 100 and 1000 µM, a highly significant decrease in cell viability was found 

relative to control (p<0.0001). It was found that at concentrations lower than 100 µM, cell 

cytotoxicity (Panel B) was lower but no significant decrease was found relative to control. There was 

a highly significant increase in cell cytotoxicity with a 1.5 fold increase at 100 µM, and more than a 

2 fold increase at 1000 µM (p<0.0001 for both cases respectively). As concentrations increased, 

there was a significant decrease in early apoptotic protein expression (p values indicated in Panel C) 

for all concentrations with an increase in significant differences as concentrations increased. 
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Figure 3.27: Treatment of MCF-7 breast carcinoma cells with thapsigargin following a 12 hour exposure period. The 3 

parameters measured were cell viability (Panel A), Cytotoxicity (Panel B) and apoptosis (Panel C) 
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Figure 3.28: Treatment of MCF-7 breast carcinoma cells with thapsigargin following a 24 hour exposure period. The 3 

parameters measured were cell viability (Panel A), Cytotoxicity (Panel B) and apoptosis (Panel C) 
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3.5.3 Effects of Tunicamycin 

Figures 3.29 to 3.31 summarize the effects of the MCF-7 breast carcinoma cells in response to the 

endoplasmic reticulum stress inducer TG alone with regard to viability (Panel A), cytotoxicity (Panel 

B) and early apoptosis via caspase-3 activation (Panel C) after exposure over 6, 12 and 24 hour 

intervals.  

 

Figure 3.29: Treatment of MCF-7 breast carcinoma cells with tunicamycin following a 6 hour exposure period. The 3 

parameters measured were cell viability (Panel A), Cytotoxicity (Panel B) and apoptosis (Panel C) 
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In Figure 3.29, after a 6 hour exposure period to TM, there was a minor but insignificant increase in 

the viability (Panel A) trend between 0.01 µM and 100 µM (p>0.05), however at 1000 µM, there was 

a significant decrease in cell viability (p<0.0001). Cell cytotoxicity (Panel B) gradually increased 

with no significant difference (p>0.05) relative to control whereas at 1000 µM, a highly significant 3 

fold increase was seen. An increase in apoptosis expression was found at concentrations ranging 

from 0.01 µM to 10 µM with a significant increase only found at 1 µM (p=0.0398). At 

concentrations 100 µM and 1000 µM, a decreasing trend in apoptosis caspase3/7 expression (Panel 

C) was seen, with a highly significant decrease at 1000 µM relative to control (p<0.0001).  

In Figure 3.30, after 12 hours, a noticeable but insignificant increase in cell viability (Panel A) was 

found at lower concentrations 0.01 to 10 µM (p>0.05), however at higher concentrations 100 and 

1000 µM, a decrease trend was found with a highly significant decrease in cell viability at 1000 µM. 

Cytotoxicity levels (Panel B) remained unchanged at concentrations 0.01 to 10 µM with no 

significant increase or decrease in cell viability relative to control (p>0.05), however it was found 

that at higher concentrations (100 and 1000 µM), an increase trend in cell cytotoxicity was present, 

with a highly significant more or less 3 fold increase in cell cytotoxicity relative to control 

(p<0.0001). 

A highly significant (p<0.0001) increase in caspase-3/7 early apoptotic proteases (Panel C) activity 

were present at concentrations 0.01, 1 and 10 µM with an increasing trend. As concentrations 

increased, a decreasing trend was found, however at 10 µM, apoptotic caspase activity were still 

significantly higher than that of control. At 100 and 1000 µM, there was a significant decrease in 

early apoptosis relative to control (p=0.0154 and <0.0001 respectively). 

In Figure 3.30, after 24 hours exposure to TM, an insignificant increasing trend in cell viability 

(Panel A) was found at concentrations 0.01 to 1 µM following an insignificant decrease in cell 

viability at 10 and 100 µM, with a highly significant decrease in cell viability at 1000 µM relative to 

control (p<0.0001). 
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Figure 3.30: Treatment of MCF-7 breast carcinoma cells with tunicamycin following a 12 hour exposure period. The 3 

parameters measured were cell viability (Panel A), Cytotoxicity (Panel B) and apoptosis (Panel C) 

 

Cell cytotoxicity (Panel B) levels at all concentrations lower than 1000 µM were insignificantly 

lower relative to control, however at 0.01 and 1 µM cell cytotoxicity was found to be significantly 

lower relative to control (p=0.0340 and 0.0434 respectively). At 1000 µM, cell cytotoxicity was 

significantly higher relative to control (p<0.0001) with almost a 2 fold increase in cell cytotoxicity 

relative to control. As log concentrations of TM increased, an insignificant decreasing trend in 

caspase 3/7 protein expression (Panel C) was visible relative to control, with significant decreases in 

caspase activity at log concentrations surpassing 10 µM (p<0.0001) to 1000 µM. 
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Figure 3.31: Treatment of MCF-7 breast carcinoma cells with tunicamycin following a 24 hour exposure period. The 3 

parameters measured were cell viability (Panel A), Cytotoxicity (Panel B) and apoptosis (Panel C) 

 

3.6 Annexin V-Cy3 Fluorescent Staining Analysis of ERS-Induced Apoptosis in MCF-7 
Breast Carcinoma Cells 

MCF-7 breast carcinoma cells were exposed to endoplasmic reticulum stress inducers GA, TG and TM, at 

1991 µM, 12 µM and 115 µM respectively which were their relative IC50 values determined by Graphpad 

prism for 24 hours. In Figures 3.32A-E, viable cells (green fluorescence), early apoptotic cells (outer 

membrane stained red) and cell necrosis (majority of cell stained red) are visible. 
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Figure 3.32-A: Untreated apoptosis negative control MCF-7 breast carcinoma cells stained with Annexin V-Cy3 fluorescent dye. Green 

fluorescence indicates viable cells 

 

Figure 3.32-B: Staurosporine (1 µg/ml) induced apoptosis as positive control. MCF-7 breast carcinoma cells stained with Annexin V-Cy3 

fluorescent dye. Blue arrow indicates early apoptotic cells 

 

Figure 3.32-C: Annexin V-Cy3staining with 199.1 µM geldanamycin following 24 hours. Blue arrow indicates early apoptotic cells and 

the red arrow indicates cell necrosis 
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Figure 3.32-D: Annexin V-Cy3staining with 12 µM thapsigargin following 24 hours. Blue arrow indicates early apoptotic cells and the 

red arrow indicates cell necrosis 

 

Figure 3.32-E: Annexin V-Cy3staining with 119 µM tunicamycin following 24 hours. White arrow indicates viable cells, blue arrow 

indicates early apoptotic cells and the red arrow indicates cell necrosis 
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CHAPTER 4 

DISCUSSION, CONCLUSIONS AND FUTURE PERSPECTIVES 

4.1 Introduction 

In this chapter, the results of the research undertaken in this study are discussed. Results obtained 

were presented in chapter 3 in which MCF-7 breast carcinoma cells were exposed to 3 Endoplasmic 

Reticulum stress inducers, geldanamycin (GA), thapsigargin (TG) and tunicamycin (TM) alone and 

in combination to determine cellular response to various log dose, IC20 and IC50 concentrations with 

reference to viability, P-gp-mediated efflux pump activity, and apoptosis. 

4.2 Discussion 

Ordinary cells undergo a variety of growth phases such as alterations within the cell in order to 

proliferate, repair or segregate the genome,172 however, tumorgenesis due to the down regulation of 

tumor suppressor genes, occurs in cancer cells that have been mutated and either genetically or 

phenotypically altered.173 Although the implementation of screening/prevention programs and novel 

treatment strategies are decreasing breast cancer mortality rates, more than 120,000 estimated deaths 

due to breast cancer are expected annually in the US and Europe combined.174 This emphasizing the 

fact that the need to further elucidate breast cancer mechanisms, circumventing multidrug resistance 

and discovering methods to reduce host cytotoxicity and increasing efficacy of treatments is crucial. 

GA binds to the molecular chaperone protein Hsp90, inhibiting the chaperone molecule, which leads 

to the ubiquitination of its client proteins,175 thus activating the unfolded protein response (UPR). As 

a result of prolonged and inadequate UPR, cells undergo apoptosis.113 Cell proliferation was 

negatively affected and sustained in a time dependent manner, as shown in the results obtained in 

this study when MCF-7 breast carcinoma cells were exposed to a constant IC50 concentration over 

24, 48 and 72 hours. It was also observed that cell sensitivity increased with a decrease in 
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proliferation in a dose-and time-dependent manner in the presence of GA the same trend which was 

also previously reported in a study conducted by Hartmann and colleagues.92  

Endoplasmic Reticulum stress (ERS) has been found to enhance MDR1 transcriptional induction 

and P-gp transport function in cancer cells.65,176 This was investigated by exposing MCF-7 breast 

cancer cells to determined 24 hour less (IC20) and more cytotoxic (IC50) concentrations of GA in 

order to induce ERS over shorter time intervals (4, 8 and 16 hours) to determine effects (if any) on 

P-glycoprotein (P-gp) mediated drug efflux. Although it was previously reported that MCF-7 breast 

carcinoma cells do not readily express P-gp and that it is overly expressed in resistant cell lines such 

as MCF-7/Adriamycin resistant cell lines,177 tumors generally develop significant resistance to 

repeated anticancer treatment with one kind of agent and often become resistant to similar or 

completely different drugs which can be intrinsic or acquired through chemotherapeutic drug 

exposure in which multiple mechanisms are likely to contribute to Multidrug Resistance (MDR).36 It 

was observed in the study that at 4 and 8 hour intervals, cellular efflux was increased in the presence 

of the IC20 and IC50 concentrations compared to control, and relative to its viability, which may 

indicate that cellular stress was evoked, and as a result, an increase in efflux activity of the cells was 

observed. Surprisingly after a 16 hour exposure interval, it was found that cellular influx was 

significantly higher compared to its relative cell viability, which may indicate that due to prolonged 

ERS, cellular efflux and P-gp activity and was perturbed.  

In this study, it was observed that as the log dose concentration of GA increased, cell viability 

decreased (consistent with previous findings),92 with both an increase in cytotoxicity and early 

apoptosis at 6 and 12 hour intervals, whereas at 24 hours, significantly higher cytotoxic 

concentrations induced a decrease in apoptosis expression proteins, suggesting cell necrosis.178 This 

was further validated by Annexin staining in the presence of the IC50 concentration. 

TG inhibits the endoplasmic reticulum (ER) Ca2+ pump that leads to the depletion of the ER Ca2+ 

pool, which in turn activates the plasma membrane calcium channels resulting in an influx of 
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extracellular calcium100. In this study MCF-7 breast carcinoma cells were exposed to a constant 24 

hour IC50 concentration of TG over 24, 48 and 72 hours. 

It was observed that after 24 hours, cell viability had decreased, but not significantly, whereas at 

longer time intervals, a highly significant 2 and 8 fold decrease in cell viability was seen at 48 and 

72 hours respectively compared to cellular response in the presence of TG at 24 hours, indicating 

that cells failed to recover and remained sensitive to the drug exposure over prolonged periods of 

time. These findings are consisitant with previous reports,179 whereby MCF-7 cells were treated with 

TG,following a >4 fold increase in Ca2+ levels after treatment which returned to baseline following a 

few hours, however they discovered that a second elevation occurred with prolonged periods of 

exposure to the ERS inducer followed by cell death. 

In the present study, a dose- and time-dependant pattern was observed when cells were treated with 

increasing log concentrations of TG, the same patten was observed previously and it was found that 

the IC50 concentration following 120 hours was decreased to 3 nM from 100 nM after a 1 hour 

exposure period,179 indicating that cells responded in both a time and dose dependant manner. In this 

study, TG at 72 hours was more potent in the presence of most concentrations compared to the 

viability seen at 24 and 48 hours at the same concentrations. After 48 hours, the IC50 concentration 

determined in this study was 1.655 µM, which was relatively consistant with previous findings, as it 

was established that 1 µM of TG was found to induce the delayed secondary rise in Ca2+ after 36 

hours, and temporarily precede the onset of apoptotic morphological changes and DNA 

fragmentation in MCF-7 cells.179  

TG has been found to inhibit the sarcoplasmic endoplasmic reticulum calcium ATPase 

(SERCA).103,180Previous studies have also shown that TG not only increased intracellular Ca2+, but 

also increased P-gp expression in human colon cancer cells by inducing Doxorubicin resistance via 

P-gp induction.180 In this study, stress was induced at 24 hour IC20 and IC50 concentrations for 4, 8 

and 16 hours. At 4 and 16 hour interval exposures, no effect on P-gp activity was presented, 
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however, following an 8 hour exposure period, results yielded a significant increase in cellular 

efflux, which may indicate that as a result of SERCA inhibition, increased Ca2+ concentrations and 

possible UPR mechanisms, P-gp activity in ER stressed MCF-7 cells may have either been activated 

or purturbed, which may relate to previous findings.180 

In the present study, following 6, 12 and 24 hours, a time and dose dependant relationship was 

observed with reference to cell viability and cytotoxicity, whereas increasing log doses at higher 

concentrations resulted in significant decreases in cell death with increased cell cytotoxicty. At 

lower log doses, early apoptotic proteins are expressed over 6 and 12 hour exposure periods, 

however at 24 hours, cell necrosis occured in response to doses increases. Apoptosis and necrosis 

was further validated by means of Annexin staining in the presence of the IC50 concentration after 24 

hours.  

Previous studies reported that TM induced apoptosis via tumour necrosis factor-related apoptosis-

inducing ligand (TRAIL).108 It was then further substantiated by reporting that MCF-7 were found 

to tolerate long term treatments of TM, due to high levels of cells were resistant to TM-induced 

apoptosis due to the lack of caspase-3 expression and high levels of calnexin expression, 109 which 

is a type 1 integral membrane chaperone that binds to glycosylated glycoproteins thereby promoting 

their folding and oligomerization. Calnexin has been reported to be involved in the late apoptotic 

processes following prolonged ERS.109. These findings could provide an understanding as to why the 

cellular response in the presence of 100 µM yielded significant death after 24, 48 and 72 hours, 

however at 72 hours cells, cell sensitivity to TM was reduced, which may be due to calnexin activity 

in response to prolonged ERS and may also suggest possible explanations behind the non-cytotoxic 

effects of the drug on MCF-7 cells to lower log doses and yielding a high IC50 concentration (115.2 

µM) at 24 hours, however, based on present findings, also reveals that TM acts in both a dose and 

time dependant manner as IC50 concentration values decreased as exposure time to TM increased 
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TM is generally known to inhibit the protein N-glycosylation process within the endoplasmic 

reticulum (ER) by blocking the transfer of N-acetylglucosamine-1-phosphate from uridine 

diphosphate Nacetyl-glucosamine to dolichol phosphate.88 However, tunicamycin also induced an 

elevation of P-gp expression (at both the mRNA and protein levels) including efflux activity in Fao 

hepatoma cells.88 In the present study, no significant effect on P-gp efflux pump activity was seen at 

4 and 16 hours, which may be due to lack of expression of P-gp in MCF-7 cells,181 however after 

exposure to the drug for 8 hours, significant increase in cellular efflux was seen in both 

concentrations relative to its viability. 

In a recent study, it was reported that the inhibition of P-gp glycosylation by tunicamycin was 

associated with increased ubiquitination and subsequent degradation of P-gp, thus stating that 

tunicamycin may induce either a decrease or increase in drug resistance associated with an 

improvement or impairment of P-gp function, respectively and reported that TM induced the 

inhibition of N-glycosylation P-gp without altering its function as a plasma membrane drug efflux 

pump in L1210 resistant cells.88 

The present study demonstrates that after 6, 12 and 24 hours, cells were less sensitive to TM at lower 

doses, with increased but insignificant changes cell proliferation at those doses compared to control, 

and significant differences in cell death and cell cytotoxicity was only present at higher 

concentrations (100-1000 µM) relative to control, however after a 6 and 12 hour exposure, at lower 

doses, expression of apoptotic proteins were significantly higher compared to control, whereas at 24 

hours, lack of apoptotic proteins and increased cell cytotoxicity suggests cell necrosis.178 Apoptosis 

and necrosis was further validated by means of Annexin staining in the presence of the IC50 

concentration after 24 hours.  

The combination studies carried out in the present study have not been performed previously, 

therefore, this is the first study to investigate the integrated effects of GA combined with TG, GA 
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combined with TM and TG combined with TM on cell viability, and cellular responses based on P-

gp efflux activity of MCF-7 breast carcinoma cells. 

GA binds to the Hsp90 chaperone inhibiting the molecule, which leads to the ubiquitination of its 

client proteins,175 thus activating the unfolded protein response (UPR) and as a result of prolonged 

and inadequate UPR, cells undergo apoptosis.113 TG is a sarcoplasmic endoplasmic reticulum 

calcium ATPase (SERCA) pump inhibitor.103,180 The combination of these two ER stress inducers 

have proved more potent in combination, then when used alone. The IC50 concentration of GA alone 

was 199.1 µM and the IC50 concentration of TG alone was 11.93 µM. The combined effect at lower 

concentration log doses yielded an IC50 concentration of 11.01 µM. The IC50 concentration yeilded 

by the combination of the 2 ER stress inducers was substatially lower then GA alone, and slightly 

lower than TG had yielded alone after 24 hours, and it was observed that the response in 

combination at the lower concentrations had more of a cytotoxic effect on the cells compared to the 

cytotoxicity seen in the presence of the drugs alone indicating that in combination, drug potency was 

increased compared to the drug potency alone. This may suggest synergism amongst the drugs when 

used in combination, as a decreased dose maintained the same efficacy where as compared to the 

drugs used alone Cell viability was decreased in a dose and time dependant manner as IC50. Values 

at 48 and 72 hours were drastically decreased in combination, as apposed to when drugs were used 

alone which suggests that when combined, efficacy was drastically increased at lower and/ same 

doses. 

When assessing the P-gp efflux activity of the cells in the presence of the drugs in combination, a 

significant decrease in cellular efflux in the presence of the IC50 concentration was seen after 4 hours. 

No significant differences were present at after 8 hour exposure and a significant decrease in cellular 

efflux at 16 hours in the presence of the IC50 concentration was seen, with an insignificant decrease 

in efflux pump activity in the presence of the IC20 concentration. When assessed alone, GA and TG 

showed no cellular efflux at 4 hours relative to its viability. Following an 8 hour exposure period, 

GA alone had shown no effect, however an increase in cellular efflux was seen in the presence of TG 
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relative to its viability. Following 16 hour exposure periods, a decreased efflux activity was seen in 

the presence of GA, and no effect was seen in the presence of TG. This may suggest that by 

integrating GA and TG, mechanisms of action with regard to P-gp pump activity may act 

synergistically to decrease cellular efflux activity. 

The combined effects of GA and TM causes in cellular stress and as a result of the UPR, apoptosis 

occurs. This mechanism of action combines the inhibition of the Hsp90 chaperone activity,175 and 

inhibition of protein N-glycosylation process within the endoplasmic reticulum (ER) by blocking the 

transfer of N-acetylglucosamine-1-phosphate from uridine diphosphate N-acetyl-glucosamine to 

dolichol phosphate.88 The integrated effects of the 2 ERS inducers combined yielded a lower IC50 

concentration (91.66 µM) compared to GA (199.1 µM) and TM (115.2 µM) alone after 24 hours. 

This suggests that by combining the 2 mechanisms of action, they may work synergistically to yield 

a higher potency at a lower dose. At both 48 and 72 hours, the combination yielded lower IC50 

concentrations (4.648 µM and 0.032 µM respectively) compared to GA (113 µM and 36.89 µM 

respectively) and TM (108.2 µM and 26.64 µM respectively) alone, decreasing cell viability in both 

a dose and time dependant manner, but with increased efficacy. 

By integrating the mechanisms of action on the P-gp activity of both GA and TM, minor, yet 

insignificant decreases in cellular efflux activity was seen after 4 (IC20 and IC50 concentrations) and 8 

hours (IC50 concentration), whereas in the presence of GA alone, cellular efflux activity was higher 

compared to its viability, and no effect was seen in the presence of TM after 4 hours. Following 8 

hours of exposure, no change in efflux pump activity was seen in the presence of GA and was 

increased in the presence of TM alone, however after 16 hours, efflux activity was decreased in the 

presence of the combination of GA and TM, whereas, alone, GA showed a decreased efflux and TM 

showed no effect alone. These results may suggest that both GA and TM work in a synergistic 

manner with regard to decreasing P-gp efflux pump activity in ERS induced cells. 
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TG is known to inhibit the SERCA of a cell,103,180 TM inhibits the protein N-glycosylation process 

within the endoplasmic reticulum (ER) by blocking the transfer of N-acetylglucosamine-1-phosphate 

from uridine diphosphate N-acetyl-glucosamine to dolichol phosphate.88 Integrating both 

mechanisms of action with regard to its effect on cell viability yielded IC50 concentrations 20.81 µM, 

15.32 µM and 0.622 µM after 24, 48 and 72 hour exposure periods respectively. IC50 concentrations 

yielded by the ERS inducers alone yielded 11.93 µM, 1.655 µM and 8.962 µM in the presence of TG 

alone, and 115.2 µM, 108.2 µM and 26.64 µM in the presence of TM after exposure periods of 24,48 

and 72 hours respectively. Although The IC50 values of TM were drastically decreased, the IC50 

values of TG were slightly increased, however after 72 hours, the IC50 value of TG was drastically 

decreased. This may suggest that weak levels of antagonism or synergism can exist between the 2 

ERS inducers when in combination, however at longer time exposures, strong levels of synergism 

may be suggested.  

In terms of its effects on P-gp-mediated efflux activity, the combination of TG and TM, No changes 

in perturbing pump the activity was seen after 4 hours, this same result was obtained in the presence 

of the ERS inducers alone. Following an 8 hour exposure period, no change in the presence the ERS 

in combination had been obtained compared to the ERS inducers alone. All resulted in an increased 

P-gp-mediated efflux activity. Following a 16 hour time exposure, no effect on P-gp-mediated efflux 

was seen in the presence of the ERS inducers alone, however after 16 hours the integrated effects 

yielded a decrease in P-gp-mediated efflux pump activity relevant to its viability.  

4.3 Conclusion 

It can be concluded that GA, TG and TM alone yielded a dose- and time- dependant response with 

regard to effects on cell viability. When combined, GA yielded enhanced cell cytotoxic effects when 

integrated with ERS inducers TG and TM, as relative IC50 concentrations at 24, 48 and 72 hours were 

drastically reduced when compared to their IC50 concentrations alone, as well as increasing and/or 

maintaining efficacy of combined drugs at lower doses. The combination of TG and TM had 

drastically reduced the IC50 concentrations of TM alone; however IC50 concentrations of TG alone 
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were slightly lower than that found in combination. Interestingly enough, The IC50 concentration 

after 72 hours was reduced compared to the ERS inducers alone, thus suggesting that an increase in 

time may have yielded an increase in synergistic effects of the ERS inducers when combined. It can 

also be concluded that all ERS inducers decreased cell viability in both dose-and time-dependant 

manners With regard to P-gp-mediated efflux pump activity, the integrated effects of GA and TG 

reduced efflux pump activity at 4 and 16 hours however not significantly. GA and TM combined, 

reduced efflux pump activity at 4 and 8 hours however not significantly, whereas after 16 hours at its 

IC50 concentration, significantly reduced efflux pump activity and TG and TM in combination had no 

effect on P-gp efflux mediated activity after 4 and 8 hours, however after 16 hours, an insignificant 

decrease in cellular efflux was yielded. The combination of GA with TG and with TM alone 

drastically decreased its IC50 inhibitory concentration, which may be an alternative treatment solution 

to drug use alone, as severe hepatotoxicity at therapeutic doses in animals and its poor water 

solubility were the reasons behind the drug alone being a unsuccesful theapeutic agent in the 

treatment of cancer. 

4.4 Limitations and future perspectives of the study 

This study is limited to MCF-7 breast carcinoma cells. Every effort was made to study all possible 

combinations with the ERS inducers in terms of viability and P-gp-mediated efflux responses. Due to 

funding constraints, apoptosis by means of caspase-3/7 activity was not be carried out as well as a 

Western Blot analysis to verify P-gp presence once cellular stress was induced. Therefore this study 

did not measure all possible integration effects on the MCF-7 cell line. Although MCF-7 breast 

carcinoma cells do not readily express P-gp, its effects were still tested to see the UPR response and 

activity. The comparison of these findings in conjunction with cells known to overly express P-gp in 

resistant cell lines such as MCF-7/Adriamycin resistant cell lines,177 would be a good future 

perspective as well as determining levels of synergism and/or antagonism at which these drugs in 

combination may act given specific doses and time intervals via dose reduction indices .
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