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Abstract

The Birch and Swinnerton-Dyer Conjecture for Elliptic Curves

D. A. Smith

MSc Thesis, Department of Mathematics and Applied Mathematics,

The University of the Western Cape

The aim of this dissertation is to provide an exposition of the Birch

and Swinnerton-Dyer Conjecture, considered by many to be one of

the most important unsolved problems in modern Mathematics.

A review of topics in Algebraic Number Theory and Algebraic Ge-

ometry is provided in order to provide a characterisation for elliptic

curves over rational numbers. We investigate the group structure of

rational points on elliptic curves, and show that this group is �nitely

generated by the Mordell-Weil Theorem.

The Shafarevich-Tate group is introduced by way of an example.

Thereafter, with the use of Galois Cohomology, we provide a gen-

eral de�nition of this mysterious group. We also discuss invariants

like the regulator and real period, which appear in the Birch and

Swinnerton-Dyer Conjecture.

After de�ning the L-function, we state the Birch and Swinnerton-Dyer

Conjecture and discuss results which have been proved and some con-

sequences. We discuss numerical veri�cation of the Conjecture, and

show some computations, including an example of our own.
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Chapter 1

Introduction

The study of Diophantine equations, named after Diophantus of Alexandria, in-

volves �nding solutions to polynomial equations in integers or rational numbers.

Geometrically, linear and quadratic equations in two variables are curves with

genus 0. In the simplest case, linear equations can be solved using the Euclidean

algorithm. With the use of the Hasse-Minkowski Theorem, a quadratic equation

will have a solution in Q if and only if it has a solution in every p-adic comple-

tion of Q. If there are solutions to quadratic equations, by Hensel's Lemma and

quadratic reciprocity, we can piece together all the local information to obtain

results for the global �eld Q. Thus, the matter of �nding solutions to curves of

genus 0 is largely settled. The next simplest case considers curves of genus 1.

The study of these curves, which are given by cubic equations in two variables,

is known as the theory of elliptic curves.

The theory of elliptic curves is a subject where various branches of mathematics

such as number theory, complex analysis, algebraic geometry and representation

theory converge. One important aspect is the group of rational points found on

an elliptic curve. Work by Louis Mordell, and extensions thereof to abelian va-

rieties by Andre Weil, have proven that this group of rational points is �nitely

generated. The number of these generators is known as the arithmetic rank of

the elliptic curve. Currently, there is no known algorithm which is guaranteed to

terminate when calculating the rank of an elliptic curve. This shortcoming led

Birch and Swinnerton-Dyer in formulating their famous Conjecture.
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Brian Birch and Peter Swinnerton-Dyer investigated numerous elliptic curves of

a special form. Their computations resulted in the Birch and Swinnerton-Dyer

Conjecture, or BSD Conjecture for short. There are two versions:

BSD 1 relates the arithmetic rank of an elliptic curve to its L-function,

BSD 2 provides a formula for the residue of the Taylor series of its L-function

in terms of several arithmetic invariants of an elliptic curve.

The main aim of this dissertation is to give an exposition of this important,

complex and fascinating Conjecture. Its signi�cance is underlined by its being

selected as one of the Millennium Prize Problems by the Clay Mathematics In-

stitute. A secondary aim will be to present a few computations using established

software packages such as the SAGE platform.

The exposition requires a review of a few essential topics in Algebra, Algebraic

Number Theory and Algebraic Geometry as preliminaries; these topics are neces-

sary for a brief account of the basic theory of elliptic curves. We then present, in

more detail, those topics in the theory of elliptic curves which are necessary for

understanding the BSD Conjecture. Key to this is the Shafarevich-Tate group, an

altogether complex and mysterious object in the theory of elliptic curves, which

represents a substantial part of the exposition.

In Chapter Two we discuss topics in Algebra, Algebraic Number Theory and

Algebraic Geometry. The main topics covered are the Unit Theorem and the

Class Number Formula; p-adic integers, numbers and valuations; and Algebraic

Varieties. Results are generally stated without proof, but we do give a few proofs

of results which are deemed to provide more insight into a subject central to the

theory of elliptic curves.

Chapter Three covers the basic theory of elliptic curves, as well as giving an

account of more specialised topics which are essential to the BSD Conjectures.

These include the Mordell-Weil Theorem, the Shafarevich-Tate Group and ellip-

tic curves over the complex numbers, among others. Our approach in this chapter
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is to use explicit equations, as we would like to give concrete examples of some

concepts.

Chapter Four focuses on the Birch and Swinnerton-Dyer Conjecture (BSD for

short). We introduce the L-function followed by the full statement of the BSD

conjecture. We then note developments which have veri�ed the Birch and Swinnerton-

Dyer Conjecture in certain cases. Thereafter, we perform calculations to verify

the �rst BSD conjecture for a particular elliptic curve, and then predict the order

of the Shafarevich-Tate group of this curve with the use of second BSD conjecture.

We conclude the dissertation with a discussion of a few recent developments.
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Chapter 2

Preliminaries

This chapter discusses certain topics in Algebra, Algebraic Number Theory and

Algebraic Geometry which are used in subsequent chapters. Results within this

chapter are generally stated without proof; proofs that have been provided will

fall into two categories:

1. proofs that provide a deeper understanding of a result which is central to a

later section(s), or

2. proofs which have been left as exercises in their respectivpe sources, e.g.

Lemma 2.1.

2.1 Unit Theorem and Class Group

We review basic concepts in Algebraic Number Theory in order to discuss the

Unit Theorem and the ideal Class Group. The Unit Theorem and ideal Class

Group will be used in Section 3.6.1 to show that the group of rational points

on an elliptic curve is �nitely generated. In Chapter 4, we will remark on their

analogy to the Second Birch and Swinnerton-Dyer Conjecture.

The following section is sourced from [9] and [17].

All rings are commutative with 1.
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De�nition 1. A ring is Noetherian if every ideal is �nitely generated.

Remark. It follows that a factor ring of a Noetherian ring is Noetherian.

Proposition 1 ([9],X �1). Let R be Noetherian. Any nonempty set of ideals

contains a member which is maximal for inclusion. If R is nonzero, then it

contains a maximal ideal.

De�nition 2. For an ideal I in a ring R, the radical is

√
I = {a ∈ R|an ∈ I for some n} .

The nilradical, denoted
√

0, is the ideal which contains all elements x ∈ R such

that xn = 0 for some positive integer n. A ring is said to be reduced if
√

0 = 0.

Proposition 2 ([9], X). Let R be a Noetherian ring. The radical of an ideal I is

the intersection of all prime ideals containing I. High powers of the radical are

contained in the ideal itself (√
I
)s
⊂ I.

Theorem 1 ([9], IV �4.). Let R be a Noetherian ring. The ring of polynomials

R[T ] is Noetherian.

De�nition 3. Let K be a �eld. For an ideal I of the ring of polynomials

K[T1, . . . , Tn] the factor ring K[T1, . . . , Tn]/I is an a�ne ring.

Theorem 2 (Hilbert's Basis Theorem). An a�ne ring is Noetherian.

Proof. Follows from Theorem 1.

De�nition 4. Let R be a ring. An element b ∈ R is said to be integral over a

subring A of R if it is a root of a monic polynomial whose coe�cients are elements

of A, i.e.

bn + an−1b
n−1 + · · ·+ a1b+ a0 = 0,

where n ≥ 1, and ai ∈ A for each i = 0, 1, . . . , n− 1.

De�nition 5. Elements of R which are not roots of polynomials with coe�cients

in A are called transcendental over A.
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Denote the integral closure O = OR as the set of all integral elements con-

tained in R, that is O = {b ∈ R | b is integral over some subring A of R}. The

set with operators (O,+, ∗) satis�es all ring properties, where + and ∗ are the

additive and multiplicative operators on R, hence O is referred to as the ring of

integers of R.

Suppose K and A are �elds with A ⊂ K. We say that K is an extension �eld of

A. We may view K as a vector space over A, and we say that K is a �nite or

in�nite extension of A depending on whether the dimension of the vector space

is �nite or in�nite.

If K is a �nite extension of A, then the degree of K over A is the dimension of

K as a vector space over A.

De�nition 6. A number �eld is a �nite extension of the �eld of rational numbers.

De�nition 7. A subset S of K is algebraically independent over a sub�eld A of

K if the elements of S consists solely of elements transcendental over A.

De�ne an ordering among algebraically independent subsets ofK by ascending

inclusion. These subsets are inductively ordered, and thus there exist maximal

elements.

De�nition 8. Let S be a subset of K which is algebraically independent over

A. If the cardinality of S is greatest among all such subsets, then we call this

cardinality the transcendence degree (or dimension) of K over A.

De�nition 9. Let K be a number �eld. An element α ∈ K is an algebraic

number if it is a root of some polynomial with coe�cients in Q. If α is a root

of a monic polynomial with coe�cients in Z, then we say that it is an algebraic

integer.

De�nition 10. Let K be a �eld with α ∈ K. The minimal polynomial of α ∈ K
is the monic polynomial f(X) ∈ K[X] of least positive degree such that f(α) = 0.

De�nition 11. Let K be a �eld. A polynomial f(X) ∈ K[X] is said to be

separable if it has no multiple roots.
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De�nition 12. Let K be an algebraic extension of A. We say that K is a

separable extension of A if, for every α ∈ A, the minimal polynomial of α over K

is separable.

Remark. If K is not a separable extension of A, then it is called an inseparable

extension of A. Moreover, if A has characteristic n and every element of K is a

root of an equation of the form xm = a, with m a power of n and a ∈ A, then we

say that K is a purely inseparable extension of A.

Lemma 1 ([17], V �1). If α is an algebraic integer, then the minimal polynomial

of α has coe�cients in Z.

De�nition 13. The ring of integers of a number �eld K is the ring

OK = {x ∈ K|x is an algebraic integer} .

Lemma 2 ([17] V �1). Let O be the ring of integers of a number �eld K. Then

O ∩Q = Z and QO = K, where QO is the extension of Q by O.

Proposition 3 ([17] V �1). The ring of integers O of a number �eld K is a lattice

in K, i.e., QO = K and O is an abelian group of rank [K : Q].

Corollary 1 ([17] V �1). The ring of integers O of K is Noetherian.

Suppose K ⊂ L is an inclusion of number �elds and let a ∈ L. Then left

multiplication by a de�nes a K-linear transformation `a : L→ L.

De�nition 14. The norm and trace from L to K are

NL/K(a) = Det(`a) and trL/K(a) = tr(`a).

Determinants and traces are multiplicative and additive respectively, so for

a, b ∈ L we have

NL/K(ab) = NL/K(a) · NL/K(b)

and

trL/K(a+ b) = tr(a) + tr(b).
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De�nition 15. An integral domain R is integrally closed in its �eld of fractions

if whenever α is in the �eld of fractions of R and α satis�es a monic polynomial

f ∈ R[x], then α ∈ R.

Proposition 4 ([17] VI �1). If K is any number �eld, then OK is integrally

closed. In particular, the ring Z of all algebraic integers is integrally closed.

De�nition 16. An integral domain R is a Dedekind domain if it is Noetherian,

integrally closed in its �eld of fractions, and every nonzero prime ideal of R is

maximal.

Proposition 5 ([17] VI �1). The ring of integers O of a number �eld is a Dedekind

domain.

De�nition 17. A fractional ideal is an O-submodule of I ⊂ K that is �nitely

generated as an O-module.

Lemma 3 ([17] VI). Let I be a non-zero ideal of O. Then there exist prime ideals

p1, . . . , pr of O such that

p1p2 · · · pr ⊂ I.

Let PK denote the subgroup of the fractional ideal IK formed by the principal

ideals, i.e. ideals of the form αOK , α ∈ K×.

De�nition 18. The ideal class group, denoted by Cl(K), is

Cl(K) = IK/PK .

De�nition 19. Let B ⊂ A be rings, and assume B is free of rank m as an

A-module. Let β1, . . . , βm be elements of B. We de�ne their discriminant to be

D(β1, . . . , βm) = det(trB/A(βi, βj)).

Theorem 3 (Finiteness of the Ideal Class Group, [14] IV �1). Let K be a number

�eld with discriminant ∆K. Then:

(a) there exists a constant C = C(r1, r2) > 0 such that every ideal class contains

an integral ideal whose norm is at most

C
√
|∆K |.
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(b) The group Cl(K) is �nite.

De�nition 20. The class number, denoted by hK , is the cardinality of Cl(K).

De�nition 21. The group of units O∗ associated to a number �eld K is the

group of elements of OK that have an inverse in OK .

Proposition 6 ([17], XII). An element a ∈ O is a unit if and only if NK/Q(a) =

±1.

Let r be the number of real embeddings and s the number of complex conju-

gate embeddings of K into C, so n = [K : Q] = r + 2s. De�ne a map

φ : O∗ → Rr+s

by

φ(a) = (log|σ1(a)|, . . . , log|σr+s(a)|) .

Lemma 4 ([17], XII). The image of φ lies in the hyperplane

H = {(x1, . . . , xr+s) ∈ Rr+s : x1 + · · ·+ xr + 2xr+1 + · · ·+ 2xr+s = 0}.

Lemma 5 ([17], XII). The kernel of φ is �nite.

Lemma 6 ([17], XII). The kernel of φ is a �nite cyclic group.

Proof. Let G be a �nite subgroup of the multiplicative group of a �eld K. Choose

n as the maximum of the orders of the elements in G. Hence, gn = 1 for all g ∈ G,
and by extension every element of G is a root of the monic polynomial xn−1 = 0,

which has at most n roots. Thus |G| ≤ n. Conversely, by Lagrange's theorem n

divides |G|, so n ≤ |G|. Hence |G| = n. Finally, G contains an element of order

|G|, so G is cyclic.

We de�ne an embedding

σ : K ↪→ Rn

given by σ(x) = (σ1(a), . . . , σr+s(a)) where we view C ∼= R×R by way of a+bi 7→
(a, b).
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Lemma 7 ([17], XII). The image of φ is discrete in Rr+s.

Theorem 4 (Dirichlet's Unit Theorem). The group O∗ is the product of a �nite

cyclic group of roots of unity with a free abelian group of rank r + s− 1, where r

is the number of real embeddings of K and s is the number of complex conjugate

pairs of embeddings.

Explicitly,

O∗K
∼= Zr1+r2−1 × µ(OK).
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2.2 p-adic Integers and p-adic Numbers

We discuss the basic theory of the p-adics which, as we will see in subsequent

chapters, play a signi�cant role in the theory of elliptic curves. Most of the results

are stated with proofs, but we include a proof of the theorem of Ostrowski which

is of fundamental importance to the completeness of Qp.

The sources used are [8] and [9].

2.2.1 Absolute Values, Norms and Valuations

De�nition 22 ([8] I, �1). Let X be a nonempty set. A metric d on X is a

function d : X ×X → R≥0 satisfying

M 1. d(x, y) = 0 ⇐⇒ x = y.

M 2. d(x, y) = d(y, x).

M 3. d(x, y) ≤ d(x, z) + d(z, y) for all z ∈ X.

A set X possessing a metric d is called a metric space and we may write the

pair as (X, d).

De�nition 23 ([9] XII, �1). Let K be a �eld. An absolute value on K is a

real-valued function x 7→ |x|v on K satisfying the following three properties:

AV 1. We have |x|v ≥ 0 for all x ∈ K, and |x|v = 0 if and only if x = 0.

AV 2. For all x, y ∈ K, we have |xy|v = |x|v|y|v.

AV 3. For all x, y ∈ K, we have |x+ y|v ≤ |x|v + |y|v.

If instead of AV 3 the absolute value satis�es the stronger condition

AV 4. |x+ y|v ≤ max(|x|v, |y|v)

then we shall say that it is a valuation, or that it is non-archimedean. Note that

(F, | · |v) satis�es all conditions of a metric space if we de�ne d(x, y) = |x− y|v.
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De�nition 24 ([9] XII, �2). Let K be a �eld with non-trivial absolute value | · |K ,
and let V be a vector space over K. A norm on V (compatible with | · |K) is a
function ‖ · ‖ : V → R satisfying

N 1. ‖x‖ ≥ 0 ∀x ∈ V, and ‖x‖ = 0 ⇐⇒ x = 0.

N 2. For a ∈ K, x ∈ V we have ‖ax‖ ≤ |a|K‖x‖.

N 3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

As with the absolute value, the norm ||·|| is called non-archimedean if the triangle

inequality (N 3) can be replaced by the stronger ultrametric inequality

‖x+ y‖ ≤ max(‖x‖, ‖y‖) for x, y ∈ X.

A norm not satisfying the ultrametric inequality is called archimedean.

Remark. If we view a �eld K endowed with absolute value | · |K as a vector space

over itself, then | · |K is clearly a norm on K.

Let p be a rational prime. Given any nonzero integer a, let ordpa be the

highest power of p which divides a, i.e. the greatest m such that a ≡ 0 (mod pm).

For a rational number x =
a

b
, de�ne ordpx to be ordpa− ordpb.

We de�ne a map | · |p : Q→ R≥0 as follows:

|x|p =


1

pordpx
, if x 6= 0,

0 if x = 0.

Proposition 7 ([8] I, �1). | · |p is a norm on Q.

Proof. If x = 0 or y = 0, or if x + y = 0 then property (3) is trivial, so assume

x, y and x + y are all nonzero. Let x =
a

b
and y =

c

d
in lowest terms. Then we

have

x+ y =
ad+ bc

bd
,
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with

ordp(x+ y) = ordp(ad+ bc)− ordpb− ordpd.

The highest power of p which divides the sum of two numbers is at least the

minimum of the highest power dividing the �rst and the highest power dividing

the second, thus

ordp(x+ y) ≥ min(ordp ad, ordpbc)− ordpb− ordpd

= min(ordpa+ ordpd, ordpb+ ordpc)− ordpb− ordpd

= min(ordpa− ordpb, ordpc− ordpd)

= min(ordpx, ordpy)

Therefore

|x+ y|p = p−ordp(x+y) ≤ max(p−ordpx, p−ordpy) = max(|x|p, |y|p) ≤ |x|p + |y|p.

Remark. From the �nal line in the proof above we see that the norm | · |p is

non-archimedean on Q.

Let {xn} be a sequence in a metric space (X, | · |).

De�nition 25. A sequence is said to be Cauchy if, given ε > 0, there exists an

integer N , dependent on ε, such that whenever we have integers m,n > N then

|xm − xn| < ε.

De�nition 26. Two metrics d1 and d2 are said to be equivalent if a sequence is

Cauchy with respect to d1 if and only if it is Cauchy with respect to d2. We say

two norms are equivalent if they induce equivalent metrics.

Theorem 5 (Ostrowski, [8] I �1). Every nontrivial norm || · || on Q is equivalent

to | · |p for some prime p ≤ ∞.
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Proof. Case(i). Suppose there exists a positive integer n such that ||n|| > 1. Let

n0 be the least such n. Since both n0, ||n0|| > 1, we can �nd a positive real number

α such that ||n0|| = nα0 (simply set α =
log ‖n0‖
logn0

, where both the numerator and

denominator are positive since n0, ‖n0‖ > 1). We write any positive integer n to

the base n0,

n = a0 + a1n0 + · · ·+ asn
s
0,

where 0 ≤ ai ≤ n0 and as 6= 0. Then

||n|| < ||a0||+ ||a1n0||+ · · ·+ ||asns0||

= ||a0||+ ||a1|| · nα0 + · · ·+ ||as|| · nsα0 .

We have that ai < n0 for each i, by our choice of n0 we have ||ai|| ≤ 1, thus

||n|| ≤ 1 + nα0 + n2α
0 + · · ·+ nsα0

= nsα0 (1 + n−α0 + · · ·+ n−sα0 )

≤ nα

[
∞∑
i=0

(
1

nα0

)i]
,

as n ≥ ns0. The summation in brackets is a �nite positive constant, so we may

denote it as C. Thus,

||n|| ≤ Cnα for all n = 1, 2, 3, . . . .

Take any n with any large N , and replace n by nN in the above inequality; then

take Nth roots. This results in

||n|| ≤ N
√
Cnα.

Letting N →∞ for n �xed gives ||n|| ≤ nα.

We now show that ||n|| ≥ nα.

We have ns+1
0 > n ≥ ns0. Since ||ns+1

0 || = ||n+ns+1
0 −n|| ≤ ||n||+ ||ns+1

0 −n||, we
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have

||n|| ≥ ||ns+1
0 || − ||ns+1

0 − n||

≥ n
(s+1)α
0 − (ns+1

0 − n)α,

since ||ns+1
0 || = ||n0||s+1. Using ||n|| ≤ nα on the term that is subtracted results

in

||n|| ≥ n
(s+1)α
0 − (ns+1

0 − n)α

= n
(s+1)α
0

[
1−

(
1− 1

n0

)α]
≥ C ′nα

for some constant C ′(n0, α) independent of n. As before, we introduce a large

integer N , take Nth roots, and let N →∞ to derive ||n|| ≥ nα.

Thus ||n|| = nα.

We may now proceed to investigate the rationals.

For any x ∈ Q, with x =
a

b
for integers a, b and b 6= 0,

||x|| =
∣∣∣∣∣∣a
b

∣∣∣∣∣∣
=
∣∣∣∣ab−1

∣∣∣∣
= ||a|| · ||b−1|| Property N 2

= ||a|| · ||b||−1

= |a|α |b|−α

=
∣∣∣a
b

∣∣∣α = |x|α,

Since α > 0, it is clear that a sequence is Cauchy with respect to || · || if and
only if it is Cauchy with respect to | · |, and hence || · || is equivalent to the usual

absolute value | · |.
Case(ii). Suppose ||n|| ≤ 1 for all positive integers n. Let n0 be the least n such

that ||n|| < 1; n0 exists since we have assumed that || · || is nontrivial.
If n0 = n1 ·n2 for some integers n1, n2 < n0, then ||n1|| = ||n2|| = 1 implying that
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||n0|| = ||n1|| · ||n2|| = 1. Thus n0 must be prime. Let us rename it p.

We claim that ||q|| = 1 if q is a prime not equal to p. If not, then ||q|| < 1 and for

some large N we have that ||qN || = ||q||N < 1
2
. Also, for some large M we have

that ||pM || < 1
2
. Clearly, pM and qN are relatively prime; we can �nd integers

m,n such that mpM + nqN = 1. It follows that

1 = ||1|| = ||mpM + nqN || ≤ ||mpM ||+ ||nqN || = ||m|||pM ||+ ||n||||qN ||.

However ||m||, ||n|| ≤ 1, which implies that

1 ≤ ||pM ||+ ||qN || < 1

2
+

1

2
= 1,

a contradiction. Hence ||q|| = 1.

Note that any positive integer a can be factored into prime divisors:

a = pb11 p
b2
2 · · · pbrr .

Then ||a|| = ||p1||b1 · ||p2||b2 · · · · · ||pr||br . But the only ||pi|| which is unequal to

1 will be ||p|| on the condition that one of the primes pi is p. Its corresponding

bi will be ordpa. Let ρ = ||p|| < 1, and

||a|| = ρordpa.

Remark. The above theorem is an important one; essentially, every non-trivial

absolute value on Q is equivalent to a p-adic absolute value for some p ≤ ∞ so

we need only consider the p-adic absolute values as metrics when investigating

Q.

De�nition 27. If K1, K2 are �elds with absolute values | · |1, | · |2 respectively,

we say that an isomorphism φ : K1 → K2 preserves the absolute values if for any

x ∈ K1, |φ(x)|2 = |x|1.

De�nition 28. A �eld K is said to be complete with respect to | · | if every
Cauchy sequence with respect to | · | in K converges to a limit in K.
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By following the blueprint of constructing R from Q, one can show that every

�eld K with absolute value can be extended to a unique �eld K̃ such that K̃ is

complete and every element of K̃ is the limit of some Cauchy sequence in K.

Theorem 6. Let K be a �eld with absolute value |·|. There is an extension �eld K̃

of K, unique up to absolute value-preserving isomorphism, called the completion

of K, having the following properties:

i | · | can be continued to an absolute value on K̃, also denoted | · |, such that K̃

is complete with respect to | · |;

ii K is dense in K̃, i.e. every element of K̃ is the limit of a sequence in K.

Corollary 2. If | · | is a non-archimedean absolute value on K, then the extension

of | · | to K̃ is also non-archimedean.

Remark. For a real-valued sequence {an}, it is not necessary for
∞∑
n

an to converge

if lim
n→∞

an = 0. However, for the p-adics we have:

Lemma 8. Let K be a �eld with respect to a non-archimedean absolute value | · |.
Let {ak}∞k=0 be a sequence in K. Then

∑∞
k=0 ak converges in K if and only if

limk→∞ak = 0.

Proof. Suppose that α =
∑∞

k=0 ak converges. Then

an =
n∑
k=0

ak −
n−1∑
k=0

ak → α− α = 0.

Conversely, suppose that ak → 0 as k → ∞. Let α :=
n∑
k=0

ak. Then for any

integers m,n with 0 < m < n we have that

|αn − αm| =

∣∣∣∣∣
n∑

k=m+1

ak

∣∣∣∣∣ ≤ max(|am+1, . . . , an)| → 0 as m,n→∞.

Thus, the partial sums αn form a Cauchy sequence, hence it must converge to a

limit in K.
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Lemma 9. Given k a �eld with respect to a non-archimedean absolute value | · |.
Then every series

∑∞
k=0 ak convergent in K with respect to | · | is unconditionally

convergent, i.e. neither the convergence nor the value of the series, are a�ected

if the terms of ak are rearranged.

2.2.2 p-Adic Numbers and p-Adic Integers

Let p be prime. Let Qp be the �eld which is the completion of Q with respect to

the absolute value | · |p.

Lemma 10. The value set of | · |p on Qp is {0}
⋃
{pm : m ∈ Z}.

The ring of p-adic integers is de�ned by

Zp := {x ∈ Qp : |x|p ≤ 1}.

It indeed is a ring since, for any x, y ∈ Zp:

|x− y|p ≤ max(|x|p, |y|p) ≤ 1

|xy|p ≤ 1.

Hence, x− y ∈ Zp, xy ∈ Zp.
The group of invertible elements of Zp is

Z∗p = {x ∈ Qp : |x|p = 1}.

Lemma 11. For every α ∈ Zp and every integer m there is a unique am ∈ Z
such that

α ≡ am(mod pm), 0 ≤ am < pm.

Hence, Z is dense in Zp.

We complete this section by stating Hensel's Lemma, which is use in �3.7.2.

Theorem 7 (Hensel's Lemma, [8] I �5). Let F (x) = c0 + c1x + · · · + cnx
n be a

polynomial whose coe�cients are p-adic integers. Let F ′(x) = c1 +2c2x+3c3x
2 +

· · · + ncnx
n−1 be the derivative of F (x). The a0 be a p-adic integer such that
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F (a0) ≡ 0 (mod p) and F ′(a0) 6≡ 0 (mod p). Then there exists a unique p-adic

integer a such that

F (a) = 0 and a ≡ a0 (mod p).
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2.3 Algebraic Varieties

In order to provide a precise de�nition of elliptic curves, the notion of genus is

needed. We therefore sketch the basics of Algebraic Geometry so that we can

state the Riemann-Roch Theorem. We shall �eetingly deal with a�ne and pro-

jective varieties; algebraic curves and maps between curves as such; and discuss

divisors on algebraic curves. Details not covered may be found in [16].

2.3.1 A�ne and Projective Varieties

We use the following notation within this subsection:

K a perfect �eld, i.e. every �nite extension of K is separable.

K a �xed algebraic closure of K.

GK/K the Galois group of K/K.

De�nition 29. The a�ne n-space over K, which we denote by An, is the set of
n-tuples

An = An(K) =
{
P = (x1, . . . , xn)|xi ∈ K

}
.

Similarly, the set of K-rational points of An is the set

An(K) = {P = (x1, . . . , xn)|xi ∈ K} .

The Galois group GK/K acts on An since for σ ∈ GK/K and P ∈ An,

P σ = (xσ1 , . . . , x
σ
n).

It then follows that An(K) may be characterised by

An(K) =
{
P ∈ An : P σ = P for all σ ∈ GK̃/K

}
.
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Let K[X] = K[X1, . . . , Xn] be a polynomial ring in n variables, and let I ⊂ K[X]

be an ideal. To each such I associate a subset of An,

VI = {P ∈ An : f(P ) = 0 for all f ∈ I} .

De�nition 30. An a�ne algebraic set is any set of the form VI . If V is an

algebraic set, the ideal of V is given by

I(V ) =
{
f ∈ K[X] : f(P ) = 0 for all P ∈ V

}
.

An algebraic set is de�ned over K if its ideal I(V ) can be generated by poly-

nomials in K[X]. We denote this by V/K. If V is de�ned over K, then the set

of K-rational points of V is the set

V (K) = V ∩ An(K).

Remark. By the Hilbert Basis Theorem, all ideals in K[X] and K[X] are �nitely

generated.

Let V be an algebraic set. We de�ne the ideal I(V/K) by

I(V/K) = {f ∈ K[X]|f(P ) = 0 for all P ∈ V } = I(V )/K[X].

Thus, V is de�ned over K i�

I(V ) = I(V/K)K[X].

If V is de�ned over K, we choose generators f1, . . . , fm ∈ K[X] for I(V/K). Then

V (K) is the set of solutions to the simultaneous polynomial equations

f1(X) = · · · = fm(X) = 0 with x1, . . . , xn ∈ K.

Further, if f(X) ∈ K[X] and P ∈ An, then for any σ ∈ GK/K ,

f(P σ) = f(P )σ.
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So if V is de�ned over K then the action of GK/K on An induces an action on V ,

and

V (K) =
{
P ∈ V |P σ = P for all σ ∈ GK/K

}
.

De�nition 31. An a�ne algebraic set V is called an a�ne variety if I(V ) is a

prime ideal in K[X].

De�nition 32. Let V/K be a variety. We de�ne the a�ne coordinate ring of

V/K as

K[V ] =
K[X]

I(V/K)
.

The ring K[V ] is an integral domain. Its �eld of fractions is denoted by K(V )

and is called the function �eld of V/K. Similarly K[V ] and K(V ) are de�ned

by replacing K with K.

De�nition 33. Let V be a variety. The dimension of V , denoted dim(V ), is the

transcendence degree of K(V ) over K.

De�nition 34. Let V be a variety, P ∈ V , and f1, . . . , fm ∈ K[X] a set of

generators for I(V ). Then V is nonsingular (or smooth) at P if the m×n matrix(
∂fi
∂Xj

(P )

)
1≤i≤m

1≤j≤n

has rank n − dim(V ). If V is nonsingular at every point, then we say that V is

nonsingular.

A further characterisation for smoothness may also be described. For P ∈ V ,
de�ne the ideal MP of K[V ] by

MP =
{
f ∈ K[V ]|f(P ) = 0

}
.

There is an isomorphism

K[V ]/MP −→ K given by f 7−→ f(P ),

thus MP is a maximal ideal. The quotient MP/M
2
P is a �nite-dimensional K-

vector space.

22

 

 

 

 



Proposition 8 ([5], I �5). Let V be a variety. A point P ∈ V is nonsingular if

and only if

dimKMP/M
2
P = dimV.

De�nition 35. The local ring of V at P , denoted K[V ]P , is the localisation of

K[V ] at MP . Explicitly,

K[V ]P =
{
F ∈ K(V )|F = f/g for some f, g ∈ K[V ] with g(P ) 6= 0

}
.

De�nition 36. Projective n-space (over K), denoted Pn or Pn(K), is the set of

all (n+ 1)-tuples

(x0, . . . , xn) ∈ An+1

with at least one xi is nonzero, modulo the equivalence relation

(x0, . . . , xn) ∼ (y0, . . . , yn)

if there exists a λ ∈ K∗ such that xi = λyi for all i. An equivalence class{
(λx0, . . . , λxn)|λ ∈ K∗

}
is denoted by [x0, . . . , xn] and the individual x0, . . . , xn are called homogeneous

coordinates for the corresponding point in Pn. The set of K-rational points in Pn

is the set

Pn(K) = {[x0, . . . , xn] ∈ Pn| all xi ∈ K} .

De�nition 37. Let P = [x0, . . . , xn] ∈ Pn(K). The minimal �eld of de�nition

for P (over K) is the �eld

K(P ) = K(x0/xi, . . . , xn/xi) for any i with xi 6= 0.

De�nition 38. Given a polynomial f ∈ K[X] = K[X0, . . . , Xn], we say that f

is homogeneous of degree d if

f(λX0, . . . , λXn) = λdf(X0, . . . , Xn) for all λ ∈ K.

An ideal I ⊂ K[X] is homogeneous if it is generated by homogeneous polynomials.
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De�nition 39. A projective algebraic set is any set of the form VI for a homo-

geneous ideal I. If V is a projective algebraic set, the homogeneous ideal of V

denoted I(V ), is the ideal of K[X] generated by

{
f ∈ K[X]|f is homogeneous and f(P ) = 0 for all P ∈ V

}
.

The set V is said to be de�ned over K, which we write in shorthand as V/K, if

its ideal I(V ) can be generated by homogeneous polynomials in K[X]. If V is

de�ned over K, then the set of K-rational points of V is the set

V (K) = V ∩ Pn(K).

We may also characterise V (K) as

V (K) =
{
P ∈ V |P σ = P for all σ ∈ GK/K

}
.

De�nition 40. A projective algebraic set is call a projective variety if its homo-

geneous ideal I(V ) is a prime ideal in K[X].

Clearly, Pn contains many copies of An; to see that this is the case, we de�ne

an inclusion map

φi : An −→ Pn,

(y1, . . . , yn) 7−→ [y1, y2, . . . , yi−1, 1, yi, . . . , yn]

De�nition 41. Let V ∈ An be an a�ne algebraic set with ideal I(V ), and

consider V as a subset of Pn by way of

V ⊂ A φi−→ Pn.

The projective closure of V , which we write as V , is the projective algebraic set

whose homogeneous ideal I(V ) is generated by

{f ∗(X)|f ∈ I(V )} .
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De�nition 42. Let V/K be a projective variety and choose An ⊂ Pn such that

V ∩ An 6= ∅. The dimension of V is the dimension of V ∩ An.
The function �eld of V , writtenK(V ), is the function �eld of V ∩An and similarly

for K(V ).

De�nition 43. Let V be a projective variety and P ∈ V . Choose An ⊂ Pn with

P ∈ An. Then V is nonsingular at P if V ∩ An is nonsingular at P . The local

ring of V at P , denoted K[V ]P , is the local ring of V ∩ An at P . A function

F ∈ K(V ) is said to be regular at P if it is in K[V ]P .

2.3.2 Maps Between Varieties

De�nition 44. Let V1, V2 ∈ Pn be projective varieties. A rational map from

V1 → V2 is a map of the form

φ = [f0, . . . , fn],

where f0, . . . , fn ∈ K(V1) have the property that for every P ∈ V1 at which

f0, . . . , fn are all de�ned,

φ(P ) = [f0(P ), . . . , fn(P )] ∈ V2.

Moreover, if there are λ ∈ K∗ such that λf0, . . . , λfn ∈ K(V1), then φ is said to

be de�ned over K.

De�nition 45. A rational map

φ = [f0, . . . , fn] : V1 → V2

is regular at P ∈ V1 if there is a function g ∈ K(V1) such that

(a) each gfi is regular at P ,

(b) there is some i for which (gfi)(P ) 6= 0.

If such a map g exists, we set

φ(P ) = [(gf0)(P ), . . . , (gfn)(P )] .
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A rational map that is regular at every point is called a morphism.

De�nition 46. Let V1 and V2 be varieties. We say that V1 and V2 are isomorphic,

denoted by V1
∼= V2, if there are morphisms φ : V1 → V2 and ψ : V2 → V1 such

that ψ ◦φ and φ◦ψ are the identity maps on V1 and V2 respectively. We say that

V1/K and V2/K are isomorphic over K if φ and ψ can be de�ned over K.

2.3.3 Maps Between Curves

We de�ne a curve as a smooth (nonsingular) projective variety of dimension one.

Proposition 9 ([16], II �1). Let C be a curve and P ∈ C be a smooth point.

Then K[C]P is a discrete valuation ring.

Proof.

The valuation on K[C]P is given by

ordP : K[C]P → {0, 1, 2, . . .} ∪ {∞}

ordP (f) = sup{d ∈ Z : f ∈Md
P}

A uniformizer for C at P is a function f ∈ K(C) with ordP (f) = 1.

De�nition 47. Let C be a curve with a smooth point P , and let f ∈ K(C). If

ordP (f) > 0, then f has a zero at P ; if ordP (f) < 0, then f has a pole at P and

we write f(P ) =∞. If ordP (f) ≥ 0, then f is regular at P .

Proposition 10 ([16], II �1). Let C be a smooth curve, f ∈ K(C) and f 6= 0.

There are only �nitely many points of C at which f has a pole or zero. If f has

no poles, then f ∈ K.

Proposition 11 ([16], II �1). Let C/K be a curve and let t ∈ K(C) be a uni-

formizer at some nonsingular P ∈ C(K). Then K(C) is a �nite separable exten-

sion of K(t).

Proposition 12 ([16], II �2). Let C be a curve, V ⊂ Pn a variety, P ∈ C

a smooth point and φ : C → V a rational map. Then φ is regular at P . In

particular, if C is smooth, then φ is a morphism.
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Proposition 13 ([16], II �2). Let φ : C1 → C2 be a morphism of curves. Then φ

is either constant or surjective.

Theorem 8 ([16], II �2). Let C1/K and C2/K be curves.

(a) Let φ : C1 → C2 be a nonconstant map de�ned over K. Then K(C1) is a

�nite extension of φ∗(K(C2)).

(b) Let i : K(C2)→ K(C1) be a injection of function �elds �xing K. then there

exists a unique nonconstant map φ : C1 → C2 such that φ∗ = i.

(c) Let K ⊂ K(C1) be a sub�eld of �nite index containing K. Then there exists a

smooth curve C ′/K, unique up to K-isomorphism, and a nonconstant map

φ : C1 → C ′ de�ned over K, such that φ∗K(C ′) = K.

De�nition 48. Let φ : C1 → C2 be a map of curves de�ned over K. If φ is

constant, we de�ne the degree of φ to be 0. Otherwise we say that φ is a �nite

map and we de�ne its degree to be

degφ = [K(C1) : φ∗K(C2)] .

We say that φ is separable, inseparable, or purely inseparable if the �nite �eld

extension K(C1)/φ∗K(C2) has the corresponding property, and we denote the

separable and inseparable degrees of the extension by degsφ and degiφ respec-

tively.

De�nition 49. Let φ : C1 → C2 be a nonconstant map of smooth curves, and

let P ∈ C1. The rami�cation index of φ at P , denoted eφ(P ), is the quantity

eφ(P ) = ordP (φ∗tφ(P )),

where tφ(P ) ∈ K(C2) is a uniformizer at φ(P ). We say that φ is unrami�ed at P

if eφ(P ) = 1, and that it is unrami�ed if it is unrami�ed at every point of C1.

Proposition 14 ([16], II �2). Let φ : C1 → C2 be a nonconstant map of smooth

curves.
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(a) For every Q ∈ C2, ∑
P∈φ−1(Q)

eφ(P ) = deg(φ).

(b) For all but �nitely many Q ∈ C2,

#φ−1(Q) = degs(φ).

(c) Let ψ : C2 → C3 be another nonconstant map of smooth curves. Then for all

P ∈ C1,

eψ◦φ(P ) = eφ(P )eψ(φP ).

2.3.4 Divisor Group

The divisor group of C, denoted Div(C) is the free abelian group generated by

the points of C. A divisor D ∈ Div(C) is a formal sum

D =
∑
P∈C

np(P ),

where np are integers all but �nitely many of which are zero. The degree of D is

de�ned by

degD =
∑
P∈C

np.

Further, we de�ne the divisors of degree 0,

Div0(C) = {D ∈ Div(C) : degD = 0},

which clearly is a subgroup of Div(C). Suppose C is de�ned over K. Let GK/K

act on Div(C) and Div0(C) by

Dα =
∑
P∈C

np(P
α).

Then D is de�ned over K if Dα = D for all α ∈ GK/K . We denote the group of

divisors de�ned over K by DivK(C), and similarly for Div0
K(C).

28

 

 

 

 



Let f ∈ K(C)∗. We can associate to f the divisor div(f) given by

div(f) =
∑
P∈C

ordP (f)(P ).

By de�nition of ordP (f), it is clear that div(f) is a divisor. If α ∈ GK/K , we see

that

div(fα) = (div(f))α.

In particular, if f ∈ K(C), then div(f) ∈ DivK(C).

De�nition 50. A divisor D ∈ Div(C) is principal if it has the form D = div(f)

for some f ∈ K(C)∗. Two divisors are linearly equivalent, written D1 ∼ D2 if

D1 −D2 is principal. The divisor class group, or Picard group, denoted Pic(C),

is the quotient of Div(C) by its subgroup of principal divisors. We let PicK(C)

be the subgroup of Pic(C) �xed by GK/K .

Proposition 15 ([16], II �3). Let C be a smooth curve and let f ∈ K(C)∗.

(a) div(f) = 0 if and only if f ∈ K∗.

(b) deg (div(f)) = 0.

Remark. The degree-zero part of the Picard group is denoted Pic0(C). We have

an exact sequence

1→ K
∗ → K(C)∗ → Div0(C)→ Pic0(C)→ 1,

which is the function-�eld analogue of the exact sequence

1→ {units} → K∗ → {fractional ideals} → Cl(K)→ 1.

Let φ : C1 → C2 be a non-constant map of smooth curves. As we have seen, φ

induces maps on the function �elds of C1 and C2,

φ∗ : K(C2) −→ K(C1) and φ∗ : K(C1) −→ K(C2).
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Similarly, de�ne maps of divisor groups as follows:

φ∗ : Div(C2) −→ Div(C1), φ∗ : Div(C1) −→ Div(C2),

(Q) 7−→
∑

P∈φ−1(Q)

eφ(P )(P ), (P ) 7−→ (φP ),

and extend Z-linearly to arbitrary divisors.

Proposition 16 ([16], II �3). Let φ : C1 → C2 be a non-constant map of smooth

curves.

(a) deg(φ∗D) = (deg φ) degD for all D ∈ Div(C2).

(b) φ∗(div f) = div(φ∗f) for all f ∈ K(C2)∗.

(c) deg(φ∗D) = deg D for all D ∈ Div(C1).

(d) φ∗(div f) = div(φ∗f) for all f ∈ K(C1)∗.

(e) φ∗ ◦ φ∗ acts as multiplication by degφ on Div(C2).

(f) if ψ : C2 → C3 is another such map, then

(ψ ◦ φ)∗ = φ∗ ◦ ψ∗ and (ψ ◦ φ)∗ = ψ∗ ◦ φ∗.

Remark. From the previous proposition we see that φ∗ and φ∗ take divisors of

degree 0 to divisors of degree 0, and principal divisors to principal divisors. They

thus induce maps

φ∗ : Pic0(C2) −→ Pic0(C1) and φ∗ : Pic0(C1) −→ Pic0(C2).

In particular, if f ∈ K(C) gives the map f : C → P1, then

deg div(f) = deg f ∗ ((0)− (∞)) = deg f − deg f = 0.

We now discuss the vector space of di�erential forms on a curve. It provides

a useful criterion for determining if an algebraic map is separable.
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De�nition 51. Let C be a curve. The space of di�erential forms on C, denoted

ΩC is the K-vector space generated by symbols of the form dx for x ∈ K(C),

subject to

(i) d(x+ y) = dx+ dy for all x, y ∈ K(C).

(ii) d(xy) = xdy + ydx for all x, y ∈ K(C).

(iii) da = 0 for all a ∈ K.

Proposition 17 ([16], II �3). Let C be a curve.

(a) ΩC is a 1-dimensional K(C)-vector space.

(b) Let x ∈ K(C). Then dx is a K(C)-basis for ΩC if and only if K(C)/K(x)

is a �nite separable extension.

(c) Let φ : C1 → C2 be a non constant map of curves. Then φ is separable if and

only if the map

φ∗ : ΩC2 → ΩC1

is injective.

De�nition 52. Let ω ∈ ΩC . The divisor associated with ω is

div(ω) =
∑
P∈C

ordP (ω)(P ) ∈ Div(C).

The di�erential ω ∈ ΩC is regular if

ordP (ω) ≥ 0 for all P ∈ C.

It is nonvanishing if

ordP (ω) ≤ 0 for all P ∈ C.

De�nition 53. The canonical divisor class on C is the image in Pic(C) of div(ω)

for any nonzero di�erential ω ∈ ΩC . Any divisor in this divisor class is called a

canonical divisor.

We apply a partial order on Div(C) in the following way.
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De�nition 54. A divisor D =
∑
nP (P ) is e�ective, denoted by

D ≥ 0,

if nP ≥ 0 for every P ∈ C. Similarly, given any two divisors D1, D2 ∈ Div(C) we

write

D1 ≥ D2

to indicate that D1 −D2 is e�ective.

De�nition 55. Let D ∈ Div(C). Associate to D the set of functions

L(D) =
{
f ∈ K(C)∗ : div(f) ≥ −D

}
∪ {0} .

The set L(D) is a �nite-dimensional K-vector space and we denote its dimension

by

`(D) = dimKL(D).

Proposition 18 ([16], II �5). (a) If degD < 0 then L(D) = {0} and `(D) = 0.

(b) L(D) is a �nite-dimensional K-vector space.

(c) If D′ ∈ Div(C) is linearly equivalent to D, then

L(D) ∼= L(D′), and so `(D) = `(D′).

Theorem 9 (Riemann-Roch, [16] �5). Let C be a smooth curve and let KC be

a canonical divisor on C. There is an integer g ≥ 0, called the genus of C, such

that for every divisor D ∈ Div(C),

`(D)− `(KC −D) = degD − g + 1.

Corollary 3 ( [16] �5). (a) `(KC) = g.

(b) degKC = 2g − 2.

(c) If degD > 2g − 2, then

`(D) = degD − g + 1.
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Chapter 3

Elliptic Curves

We introduce the main focus of the dissertation: elliptic curves over the rational

numbers.

It will be shown that a group structure can be de�ned on rational points on

elliptic curves. Furthermore we will show, by Mordell's Theorem, that this group

of rational points is �nitely generated. Explicitly, if E is an elliptic curve over Q
then

E(Q) ∼= Zr ⊕ E(Q)Tors

where r is the rank of the free abelian group which contains the points of in�nite

order and E(Q)Tors is the torsion subgroup, the points of �nite order. Moreover,

by the Mordell-Weil Theorem, we may replace Q as above with arbitrary num-

ber�elds K resulting in E being �nitely generated over K.

Mordell's Theorem does not provide an e�ective method for determining the ex-

act value of the rank r. This shortcoming led Birch and Swinnerton-Dyer to

investigate elliptic curves on the EDSAC computer in the 1960s, culminating in

their groundbreaking conjecture, covered in Chapter 4.

We provide a precise de�nition for elliptic curves in the next section, and also

de�ne useful invariants needed in later sections. We show that the rational points

on an elliptic curve form a group, then investigate how this group behaves under

reduction modulo primes. We then turn to the points of �nite order where we
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�rst show that only points with integer coordinates can qualify as torsion points,

and secondly determine a bound on the number of points which can occur.

Thereafter, the weak Mordell Theorem is investigated. The computation of the

Mordell Group involves computing the generators for the group E(K)/mE(K)

where E is an elliptic curve over a number�eld K. This computation is reduced

to the problem of determining whether each of a certain �nite set of auxiliary

curves, called homogeneous spaces, has a single rational point. The existence (or

non-existence) of this rational point is often shown by �nding a point (resp. not

�nding a point) in each (resp. some) completion Kv of K. However, it may occur

that each completion Kv has a Kv-rational point yet there is no K-rational point.

The extent of the failure is quanti�ed by the Shafarevich-Tate group. Surprisingly,

the second Birch and Swinnerton-Dyer conjecture makes use of the cardinality of

the Shafarevich-Tate group, which itself is conjectured to be �nite.

We complete the chapter by investigating elliptic curves over the complex plane.

The sources used in this chapter are mainly, but not limited to, [6, 13, 15, 16, 18].

3.0 Elliptic Curves

Let k be a number�eld.

De�nition 56 ([13]). An elliptic curve over k can be de�ned as

(a) a nonsingular projective plane curve E over k of degree 3 together with a

point O ∈ E(k);

(b) precisely as (a) except that O is required to be a point of in�ection;

(c) a nonsingular projective plane curve over k with generalised Weierstrass equa-

tion

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3;
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(d) a nonsingular projective curve E of genus 1 together with a point O ∈ E(k).

The reference [13] proves the equivalence of statements (a) ⇒ ... ⇒ (d) ⇒
(a); we shall prove that (d) ⇒ (c).

Proof. [13] II �1, [16] III �3. Let E be a nonsingular projective curve of genus 1

over a �eld k and let O ∈ E(k). By Riemann-Roch, the rational functions on E,

having no poles except at O and having at worst a pole of order m ≥ 1 at O, form

a vector space of dimension m over k, i.e., k(m[O]) has dimension m for m ≥ 1.

The constant functions lie on L([O]), and by Riemann-Roch, there are no other.

Thus {1} is a basis for L([O]). Choose x so that {1, x} is a basis for L(2[O]).

Choose y so that {1, x, y} is a basis for L(3[O]). Then {1, x, y, x2} is a basis for

L(4[O]) - if it were linearly dependent, x2 would have to be a linear combination

of 1, x, y, but then we would have a quadruple pole at O. Further, {1, x, y, x2, xy}
is a basis for L(5[O]) for a similar reason as in the previous sentence.

The subset {1, x, y, x2, xy, x3, y2} of L(6[O]) contains 7 elements, so it must be

linearly dependent: there exist ai ∈ k such that

a0y
2 + a1xy + a3y = a′0 + a2x

2 + a4x+ a6.

Moreover, a0 and a′0 must be nonzero otherwise the set with either x3 or y2

omitted is linearly independent, so without loss of generality we may scale both x

and y to make these two coe�cients both equal to 1. The map P 7→ (x(P ), y(P ))

sends E�{O} onto the plane a�ne curve

C : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6.

The function x has a double pole at O and no other pole, and so it has only two

zeros. Similarly, x + c has two zeros for any c ∈ k (with multiplicities), so the

composite

E�{O} → C → A1, P 7→ (x(P ), y(P )) 7→ x(P )

has degree 2 by Proposition 14. Similarly, the composite

E�{O} → C → A1, P 7→ (x(P ), y(P )) 7→ y(P )
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has degree 3. The degree of E�{O} → C divides both 2 and 3, so it must be

1. If C were singular, it would have genus 0, a contradiction. Therefore C is

nonsingular, and so the map is an isomorphism and it extends to an isomorphism

of E onto

C : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3,

proving our assertion.

Remark. The above result means that we may think of an elliptic curve E as an

a�ne curve with Weierstrass equation with an additional point called the point

at in�nity, denoted O. We de�ne the point at in�nity as the identity of the group

of rational points on E. The point at in�nity is found above (and below) every

vertical line in the a�ne plane. We may thus write the Weierstrass equation for

our elliptic curve using non-homogeneous coordinates with x = X/Z and y = Y/Z

as

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (3.1)

while being cognisant of the point at in�nity O = [0, 1, 0].

In the above proof, we started by choosing functions x, y ∈ k(E) to de�ne

our basis points for E. If we had chosen di�erent functions x′, y′, the resulting

Weierstrass equation would be di�erent. However, one would think that the

two curves should have some sort of relationship. We now characterise that

relationship with the following proposition.

Proposition 19 ([16] III �3). Any two Weierstrass equations for an elliptic curve

E are related by a linear change of variables of the form

X = u2X ′ + r, Y = u3Y ′ + su2X ′ + t,

with u ∈ k∗, r, s, t ∈ k.

Remark. Such a change of variables is called an admissible change of variables.

Depending on the characteristic of the algebraic extension k of k, we may

simplify an elliptic curve's generalised Weierstrass equations [16]. If char(k) 6=
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2, simpli�cation of the equation can be done by completing the square. The

substitution

y 7→ 1

2
(y − a1x− a3)

yields an equation for E of the form

E : y2 = 4x3 + b2x
2 + 2b4x+ b6,

where

b2 = a2
1 + 4a4, (3.2)

b4 = 2a4 + a1a3, (3.3)

b6 = a2
3 + 4a6. (3.4)

Before providing further simpli�cations of Weierstrass equations, we also intro-

duce the quantities

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4, (3.5)

c4 = b2
2 − 24b4, (3.6)

c6 = −b3
2 + 36b2b4 − 216b6, (3.7)

∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6, (3.8)

j = c3
4/∆, (3.9)

ω =
dx

2y + a1x+ a3

=
dy

3x2 + 2a2x+ a4 − a1y
. (3.10)

where j is known as the j-invariant of the elliptic curve, ∆ is known as the

discriminant of the Weierstrass equation and ω is known as the invariant di�er-

ential associated to the Weierstrass equation. These newly introduced quantities

(∆, j, ω) will be elaborated upon in later sections.

We now return to the simpli�cation of Weierstrass equations. If char(k) 6= 2, 3,

then the substitution

(x, y) 7→
(
x− 3b2

36
,
y

108

)
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eliminates the x2 term, resulting in

E : y2 = x3 − 27c4x− 54c6.

We provide a table for admissible change of variable formulas for Weierstrass

equations

ua′1 = a1 + 2s

u2a′2 = a2 − sa1 + 3r − s2

u3a′3 = a3 + ra1 + 2t

u4a′4 = a4 − sa3 + 2ra2 − (t+ rs)a1 + 3r2 − 2st

u6a′6 = a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1

u2b′2 = b2 + 12r

u4b′4 = b4 + rb42 + 6r2

u6b′6 = b6 + 2rb4 + r2b2 + 4r3

u8b′8 = b8 + 3rb6 + 3r2b4 + r3b2 + 3r4

u4c′4 = c4

u6c′6 = c6

u12∆′ = ∆

j′ = j

u−1ω′ = ω

We now return to the j-invariant and discriminant. If the characteristic of k is

not 2 nor 3, our elliptic curve E has Weierstrass equation

E : y2 = x3 + Ax+B.

We can de�ne quantities

∆ = −16(4A3 + 27B2) and j = −1728
(4A)3

∆
.
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The only change of variables preserving the Weierstrass form of the equation is

x = u2x′ and y = u3y′ for some u ∈ k∗.

Then

u4A′ = A, u6B′ = B, u12∆′ = ∆.

Proposition 20 ([16], III �1). (a) The curve given by a Weierstrass equation is

nonsingular if and only if ∆ 6= 0.

(b) Let j0 ∈ k. There exists an elliptic curve de�ned over k(j0) whose j-invariant

is equal to j0.

Proposition 21 ([16], III �1). Let E be an elliptic curve. The invariant di�eren-

tial ω associated to a Weierstrass equation for E is holomorphic and nonvanishing,

i.e., div(ω) = 0.

De�nition 57. A Weierstrass equation is in Legendre Form if it can be written

as

y2 = x(x− 1)(x− λ) (3.11)

for some λ ∈ k.

We shall use the Weierstrass equation characterisation (3.1) as the basis of

our study of elliptic curves. We can then give a concrete interpretation of the

Shafarevich-Tate group, as well as cover some of the computational aspects of

the Birch and Swinnerton-Dyer Conjecture.

3.1 Group Structure of Elliptic Curves

Let E be an elliptic curve with respective Weierstrass equation. Let L ⊂ P2

be a line. Since the equation of E has degree three, the line L intersects E at

exactly three points, say P,Q,R. If L is tangent to E, then P,Q,R need not be

distinct. The fact that L∩E, with multiplicities, consists of exactly three points

is a consequence of Bézout's theorem [16].

We de�ne a Composition Law ⊕ on E by the following rule:
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Composition Law ([16]). Let P,Q ∈ E, let L be the line through P and Q (if

P = Q then L is a tangent to E at P ), and let R be the third point of intersection

of L with E. Let L′ be the line through R and O. Then L′ intersects E at R, O

and a third point. We denote that third point by P ⊕Q.

Proposition 22 ([16], III �2). The Composition Law has the following properties:

(a) If a line L intersects E at the (not necessarily distinct) points P,Q,R, then

(P ⊕Q)⊕R = O.

(b) P ⊕ O = P for all P ∈ E.

(c) P ⊕Q = Q⊕ P for all P,Q ∈ E.

(d) Let P ∈ E. There is a point of E, denoted by 	P , satisfying

P ⊕ (	P ) = O.

(e) Let P,Q,R ∈ E. then

(P ⊕Q)⊕R = P ⊕ (Q⊕R).

That is, the composition law makes E into an abelian group with identity

element O. Further:

(f) Suppose that E is de�ned over k. Then

E(k) = {(x, y) ∈ k2 : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6} ∪ {O}

is a subgroup of E.

Group Law. Let E be an elliptic curve given by a Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.
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(a) Let P0 = (x0, y0).Then

−P0 = (x0,−y0 − a1x0 − a3).

Next let

P1 + P2 = P3 with Pi = (xi, y1) ∈ E for i = 1, 2, 3.

(b) If x1 = x2 and y1 + y2 + a1x2 + a3 = 0, then

P1 + P2 = O.

Otherwise de�ne λ and ν by the following formulas:

x1 6= x2 ⇒ λ =
y2 − y1

x2 − x1

, ν =
y1x2 − y2x1

x2 − x1

x1 = x2 ⇒ λ =
3x2

1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3

, ν =
−x3

1 + a4x1 + 2a6 − a4y1

2y1 + a1x1 + a3

Then y = λx+ ν is the line through P1 and P2 or tangent to E if P1 = P2.

(c) The point P3 = P1 + P2 thus has coordinates

x3 = λ2 + a1λ− a2 − x1 − x2,

y3 = −(λ+ a1)x3 − ν − a3.

(d) For P1 6= ±P2,

x(P1 + P2) =

(
y2 − y1

x2 − x1

)2

+ a1

(
y2 − y1

x2 − x1

)
− a2 − x1 − x2,

and the duplication formula for P = (x, y) ∈ E,

x([2]P ) =
x4 − b4x

2 − 2b6x− b8

4x3 + b2x2 + 2b4x+ b6

,

where b2, b4, b6, b8 are the polynomials in the ai's of (3.2) - (3.10).
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Remark. The group law on an elliptic curve can be proved with the use of the

Riemann-Roch theorem. We provide an overview of the method:

Group Law by Riemann-Roch. Let E be a projective curve as in De�nition 56 (d)

de�ned over a �eld k. For every degree-zero divisor D, there exists a unique point

P ∈ E such that D ∼ (P ) − (O). If σ : Div0(E) → E denotes this map, then σ

is a bijection between Pic0(E) and E. The group law induced from Pic0(E) via

σ is equivalent to the geometric group law.

Further details regarding uniqueness of P , or that σ as above is not only a bijection

but also homomorphic can be found in [16] Proposition 3.4 or [13] IV Proposition

4.10.

Theorem 10 ([16] Theorem 3.6). The group law de�nes morphisms

+ : E × E −→ E, and − : E −→ E,

(P1, P2) 7−→ P1 + P2 P 7−→ −P

Proof. The negative map

(x, y) 7−→ (x,−y − a1x− a3)

is clearly a rational map E → E. Since E is smooth, it follows from proposition

12 that negation is a morphism.

Fix a point Q 6= O and consider the translation-by-Q map

τ : E −→ E, τ(P ) = P +Q.

From the addition formula in the Group Law (c), this is a rational map and a

morphism by Proposition 12. Moreover, since τ has an inverse P 7→ P −Q, it is
an isomorphism.

Now consider the general addition map + : E × E → E. From the Group Law

(c), it is a morphism with the possible exceptions of points having one of the

following forms,

(P, P ), (P,−P ) (P,O) (O, P ),
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since for pairs of points not of this form, the rational functions

λ =
y2 − y1

x2 − x1

and ν =
y1x2 − y2x1

x2 − x1

on E × E are well-de�ned. We investigate the exceptions by de�ning τ1 and

τ2 as translation maps as above for points Q1 and Q2 respectively, thereafter

considering the composition of maps:

φ : E × E
τ1×τ2

−−−−−−→ E × E
+

−−−−−−→ E
τ−1
1

−−−−−−→ E
τ−1
2

−−−−−−→ E.

Since the group law on E is associative and commutative, the above maps are

essentially as follows:

(P1, P2)
τ1×τ2

−−−−−−→ (P1 +Q1, P2 +Q2)

+

−−−−−−→ P1 +Q1 + P2 +Q2

τ−1
1

−−−−−−→ P1 + P2 +Q2

τ−1
2

−−−−−−→ P1 + P2.

Thus the rational map φ agrees with the addition map wherever they are both

de�ned.

Since the translation maps are isomorphisms, it follows from the above that φ is

a morphism with the possible exceptions at pairs of points of the form

(P −Q1, P −Q2), (P −Q1,−P −Q2) (P −Q1,−Q2) (−Q1, P −Q2).

However, both Q1 and Q2 were arbitrarily chosen. Hence by varying Q1 and Q2,

we can �nd a �nite set of rational maps

φ1, φ2, . . . , φn : E × E −→ E

with the following properties:

(i) φ1 is the addition map given in the Group Law (c).
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(ii) For each (P1, P2) ∈ E × E, some φi is de�ned at (P1, P2).

(iii) If φi and φj are both de�ned at (P1, P2), then φi(P1, P2) = φj(P1, P2).

It follows that addition is de�ned on all of E × E, so it is a morphism.

We have seen that the set of rational points on an elliptic curve E together

with the composition law form a group. We now investigate maps between elliptic

curves.

De�nition 58. Let E and E ′ be elliptic curves de�ned over a �eld k. An isogeny

from E1 to E2 is a morphism

φ : E1 → E2 satisfying φ(OE1) = OE2 .

Two elliptic curves E1 and E2 are isogenous if there is an isogeny from E1 to

E2 with φ(E1) 6= {OE2}. It turns out that this is an equivalence relation.

It would be natural to suppose that we should focus on isogenies which are ho-

momorphisms. In fact, isogenies are automatically homomorphisms.

Theorem 11 ([16] Theorem 4.8). Let

φ : E1 → E2

be an isogeny. Then φ(P +Q) = φ(P ) + φ(Q) for all P,Q ∈ E1.

Proof. If φ(P ) = O ∀ P ∈ E1, the assertion is satis�ed. Otherwise, φ is a �nite

map, so by 2.3.4, it induces a homomorphism

φ∗ : Pic0(E1)→ Pic0(E2)

de�ned by

φ∗

(
class of

∑
ni(Pi)

)
= class of

∑
ni(φPi).

On the other hand, by 2.3.4, we have group homomorphisms

κi : Ei → Pic0(Ei), P 7→ class of (P )− (O).
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We can obtain the following commutative diagram since φ(O) = O:

E1

∼=
−−−−−−→

κ1
Pic0(E1)

φ

y
yφ∗

E2

∼=
−−−−−−→

κ2
Pic0(E2)

Since κ1, κ2 and φ∗ are all group homomorphisms with κ2 injective, it follows that

φ is also a homomorphism.

The maps between elliptic curves form groups since the elliptic curves them-

selves are abelian groups. Denote the set of isogenies from E1 to E2 by

Hom(E1, E2) = {isogenies E1 → E2}.

Proposition 23 ([16], III �4). Let E1 and E2 be elliptic curves. Then the group

of isogenies

Hom(E1, E2)

is a torsion-free Z-module.

If E1 = E2, let End(E) = Hom(E,E) be the endomorphism ring with addition

and multiplicative laws

(φ+ ψ)(P ) = φ(P ) + ψ(P )

(φψ)(P ) = φ(ψ(P ))

respectively, with the latter being composition.

De�nition 59. If the endomorphism ring End(E) is strictly larger than Z, then
E is said to have complex multiplication (CM curves for short).

Remark. There are special properties attributed to CM curves. We will brie�y

elaborate on one such property in Chapter 4.
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We return to the quantity j. De�ne the j-invariant of E to be

j = j(E) = 1728
c3

4

∆
.

Theorem 12 ([6] III (4.2)). Let y2
1 = x3

1 +A1x1 +B1 and y2
2 = x3

2 +A2x2 +B2 be

two elliptic curves with j-invariants j1 and j2 resp and k (which has characteristic

unequal to 2 or 3) be the algebraic closure of k. If j1 = j2 then there exists µ 6= 0

in k such that

A2 = µ4A1, B2 = µ6B1.

The transformation

x2 = µ2x1, y2 = µ3y1

takes one equation to the other.

Remark. Under an admissible change of variable we have, for the corresponding

ci and j, the relations

u4c4 = c4, u6c6 = c6 and j = j.

For the j-invariant we have j = j. This means that j(E) is an invariant of

an elliptic curve E up to isomorphism. Moreover, if k is a �eld of characteristic

di�erent from 2 and 3, then for y′′ = y′ and x′′ = x′ + b2/12 the equation in

normal form becomes

y′′ = (x′′)3 − c4

48
x′′ − c6

864
(3.12)

and ω = dx′′/2y′′.

Let φ : E1 → E2 be a nonconstant isogeny. By Remark (2.3.4), φ induces a

map

φ∗ : Pic0(E1)→ Pic0(E1).

We also have, for i = 1, 2, group isomorphisms by Remark (2.3.4)

κi : Ei → Pic0(Ei), P 7−→ class of (P )− (O).
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This gives a homomorphism in the opposite direction to φ

E2
κ2−→ Pic0(E2)

φ∗−→ Pic0(E1)
κ−1
1−→ E1.

We want to show that if Q ∈ E2 and any P ∈ E1 satisfying φ(P ) = Q that

κ−1
1 ◦ φ∗ ◦ κ2(Q) = [deg φ](P ).

Theorem 13 ([16] III Theorem 6.1). Let E1 → E2 be a nonconstant isogeny of

degree m.

(a) There exists a unique isogeny

φ̂ : E2 → E1 em satisfying φ̂ ◦ φ = [m].

(b) As a group homomorphism, φ̂ equals the composition

E2 −−−−−−→ Div0(E2)
φ∗

−−−−−−→ Div0(E1)
sum

−−−−−−→ E1,

Q 7→ (Q)− (O)
∑
np(P ) 7→

∑
[nP ]P.

De�nition 60. Let φ : E1 → E2 be an isogeny. The dual isogeny to φ is the

isogeny

φ̂ : E2 → E1

given by Theorem 13 (a) where φ 6= [0]. If φ = [0], then φ̂ = [0] is suitable as a

dual.

Theorem 14 ([16] III Theorem 6.2). Let

φ : E1 → E2

be an isogeny.

(a) Let m = deg φ. Then

φ̂ ◦ φ = [m] on E1 and φ ◦ φ̂ = [m] on E2.
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(b) Let λ : E2 → E3 be another isogeny. Then

λ̂ ◦ φ = φ̂ ◦ λ̂.

(c) Let ψ : E1 → E2 be another isogeny. Then

φ̂+ ψ = φ̂+ ψ̂.

(d) For all m ∈ Z,
[̂m] = [m] and deg[m] = m2.

(e) deg φ̂ = deg φ.

(f)
ˆ̂
φ = φ.

3.2 Intersection of Two Quadratic Surfaces

We take a brief detour to show that the intersection between two quadratic curves

de�ne an elliptic curve over K if the intersection contains a K-rational point.

These intersections are the homogeneous spaces we alluded to earlier in the intro-

duction to Chapter 3; the homogeneous spaces are used extensively in Sections

3.7 and 4.3.3. We follow [18] �2.5.3-2.5.4.

Let C be the curve de�ned as

C : v2 = au4 + bu3 + cu2 + du+ e, (3.13)

with a 6= 0. If we have a point (p, q) ∈ C with p, q ∈ K, then the equation, if it

is nonsingular, it can be transformed into a Weierstrass equation by an invertible

change of variables that uses rational functions with coe�cients in the �eld K.

We provide the details for this transformation in Theorem 15. Note that curves

of the form as in (3.13) are not required to have points with coordinates in K.

Suppose (p, q) ∈ C where C has the form (3.13) and p, q ∈ K. By changing u to

u+ p, we may assume p = 0, so the point has the form (0, q).
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Suppose q = 0. If d = 0, the curve has a singularity at (u, v) = (0, 0). Therefore,

assume d 6= 0. Then

( v
u2

)2

= d

(
1

u2

)3

+ c

(
1

u2

)2

+ b

(
1

u2

)
+ a,

which can be transformed into a Weierstrass equation in d/u and dv/u2.

For q 6= 0, we have the following theorem.

Theorem 15 ([18], II �5.3). Let K be a �eld with characteristic unequal to 2.

Consider the equation

v2 = au4 + bu3 + cu2 + du+ qq

with a, b, c, d, q ∈ K. Let

x =
2q(v + q) + du

u2
, y =

4q2(v + q) + 2q(du+ cu3)− (d2u2/2q)

u3
.

De�ne

a1 = d/q a2 = c− (d2/4q2), a3 = 2qp, a4 = −4q2a, a6 = a2a4.

where the elliptic curve E has Weierstrass form (3.1). The inverse transformation

is

u =
2q(x+ c)− (d2/2q)

y
, v = −q +

u(ux− d)

2q
.

The point (u, v) = (0, q) corresponds to the point (x, y) =∞ and (u, v) = (0,−q)
corresponds to (x, y) = (−a2, a1a2 − a3).

The intersection of two quadratic surfaces in three-dimensional space, along

with a point on this intersection, usually results in an elliptic curve. For the sake

of simplicity, we opt not to fully generalise the idea, but rather consider pairs of

equations of the form

au2 + bv2 = e, cu2 + dw2 = f,

where a, b, c, d, e, f are nonzero elements of a �eld K of characteristic not 2.
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Each separate equation may be regarded as a surface in the uvw-space, and they

intersect in a curve. If we have a point P in this intersection, we can transform

this curve into an elliptic curve in Weierstrass form.

The equations above can be regarded as giving a curve C in the uv-plane. Let

P = (u0, v0) be a point on C. Let L be the line through P with slope m:

u = u0 + t, v = v0 +mt.

We wish to �nd other points where L intersects C. By way of substitution and

au2
0 + bv2

0 = e, we obtain

a(2u0t+ t2) + b(2v0mt+m2t2) = 0.

Since t = 0 corresponds to (u0, v0), factoring out t results in

t = −2au0 + 2bv0m

a+ bm2
.

Therefore,

u = u0 −
2au0 + 2bv0m

a+ bm2
, v = v0 −

2amu0 + 2bv0m

a+ bv0m2
.

We use the convention that m =∞ yields (u0,−v0). If the denominator a+ bm2

vanishes, we get points at in�nity in the uv-projective plane.

If (u, v) is any point on C with coordinates in K, then the slope m of the line

through (u, v) and P is in K (or is in�nite). Thus, we have obtained a bijection,

save for a few technicalities, between values of m and points on C. The overarch-

ing idea is that we have obtained a parametrisation of the points on C. Similar

procedures work for any conic section containing a point with coordinates in K.

We now check which value of m corresponds to the original point (u0, v0). Let

m be the slope of the tangent line at (u0, v0). The second point of intersection

of the tangent line with the curve is again the point (u0, v0), so this slope is the

desired value of m. If m = 0, we obtain (−u0, v0).

We now want to intersect C with the surface cu2 + dw2 = f . We substitute the
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expression just obtained for u to obtain

dw2 = f − c
(
u0 −

2au0 + 2bv0m

a+ bm2

)2

.

We rewrite the above as

d(w(a+ bm2))2 = (a+ bm2)2f − c(bu0m
2 − 2bv0m− au0)2

= (b2f − cb2u2
o)m

4 + · · · .

This can be changed to Weierstrass form by the procedure given earlier. The

leading coe�cient b2f − cb2u2
0 equals b

2dw2
0. If w0 = 0, the fourth degree polyno-

mial becomes a cubic polynomial, hence the equation just obtained can easily be

put into Weierstrass form. The leading term of the resultant cubic polynomial

vanishes if v0 = 0. However, then the point (u0, v0, w0) = (u0, 0, 0) is a singular

point of the uvw curve, a situation we wish to avoid.

The procedure for changing "square = quartic polynomial" into Weierstrass form

requires a point satisfying this equation. We could let m be the slope of the

tangent line at (u0, v0), which corresponds to the point (u0, v0). The formula of

Theorem 15 requires that we shift the value of m to obtain m = 0. However, it

is expedient to use m = 0 directly, since this value corresponds to (−u0, v0), as

pointed out in the discussion above.

3.3 Minimal Normal Form of an Elliptic Curve

This entire section is sourced from [6], V �2.

We have been using admissible changes of variables throughout much of the pre-

vious sections. A natural question thus arises: Is there an optimal change of

variables, i.e. is there a change of variables which results in the simplest normal

form for an elliptic curve?

We shall shortly see that there is such an optimal form, referred to as the minimal

normal form for an elliptic curve.
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Proposition 24 ([6], V Prop 2.1). Let R be an integral domain with �eld of

fractions k, and E an elliptic curve over k. Then there is a cubic equation for E

in normal form with all ai ∈ R.

Proof. Choose any normal form for E(k) with coe�cients ai in variables x and y.

Let u be a common denominator for all coe�cients ai, thus uai ∈ R. Let x = u2x

and y = u3y be a change of variable. Then the coe�cients ai = uiai ∈ R for all

i.

De�nition 61. Let K be a �eld with discrete valuation v, and let E(K) be an

elliptic curve. A minimal normal form for E is a normal form with all aj in the

valuation ring R of K such that v(∆) is minimal among all such equations with

coe�cients aj in R.

We will use the terms minimal model, minimal normal form, and minimal

Weierstrass model interchangeably.

Proposition 25 ([6], V Prop 2.3). Let E and E ′ be elliptic curves in minimal

normal form having coe�cients aj and a′j resp. Suppose f : E ′ → E be an

isomorphism with f(x) = u2x′+r and f(y) = u3y′+su2x′+t. Then v(∆) = v(∆′),

u ∈ R∗, and r, s, t ∈ R. The di�erential ω is unique up to a unit in R.

Proof. By de�nition, v(∆) = v(∆′), and hence v(u) = 0 so u ∈ R∗ from u12∆′ =

∆. The relation u8b′8 = b8+· · · in R imples that 3r is in R, and the relation u6b′6 =

b6 + · · · in R implies that 4r is in R. Hence the di�erence r is in R. The relation

u2a′2 = a6 + · · · in R implies that s is in R and the relation u6a′6 = a6 + · · · implies

that t is in R. The last assertion follows from the formula f(ω) = u−1ω′.

Proposition 26 ([6], V Prop 2.4). If all aj are in R, and if 0 ≤ v(∆) < 12, then

the model is minimal.

Proposition 27 ([6], V Prop 2.5). Let E(K) be an elliptic curve, and further

assume that the characteristic of K is unequal to 2 or 3. For a minimal model

the valuation of the discriminant satis�es

v(∆) + min{v(j), 0} < 12 + 12v(2) + 6v(3).
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In addition, assuming that the residue class characteristic is di�erent from 2 and

3, it follows that a model over R is minimal if and only if v(∆)+min{v(j), 0)} <
12.

Proof. Since c3
4 = ∆ · j and c2

6 = ∆(j − 123), we have the relations v(∆) + v(j) =

3v(c4) and v(∆) + v(j − 123) = 2v(c6). By equation 3.12, we can thus transform

the equation of the cubic into the form

y2 = x3 − c4

48
− c6

864
.

Hence, if 48p4|c4 and 864p6|c6, then the equation is not minimal. Since the

equation is minimal it follows that

v(∆) + v(j) = 3(c4) < 12 + 3v(48) = 12 + 12v(2) + 3v(3),

or

v(∆) + v(j − 123) = 6(c6) < 12 + 2v(864) = 12 + 10v(2) + 6v(3).

As v(∆) + {v(j), 0} ≤ v(∆) + v(j) or v(∆) + v(j − 123), the �rst inequality is

obtained.

For the second statement note that for v(2) = v(3) = 0, the minimal model satis-

�es v(∆) + min{v(j), 0} < 12. The converse holds since 0 < v(∆) + min{v(j), 0}
and the relation between the two valuations of the discriminants.

3.4 Reduction Modulo p

We provide motivation for investigating elliptic curves modulo primes by stating

the following theorem:

Theorem (Hasse-Minkowski). Let F (X1, . . . , Xn) ∈ Q[X1, . . . , Xn] be a quadratic

form (homogeneous polynomial of degree 2 in n variables). The equation

F (X1, . . . , Xn) = 0

has non-trivial solutions in Q if and only if it has non-trivial solutions in Qp for

each p ≤ ∞.
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The thrust of the theorem above, also known as the local-global principle, is

that local solutions, i.e. reduction modulo p, may provide information for global

solutions. As elliptic curves are quite complicated structures, it may be useful to

investigate curves locally.

We use [6], V �3.

Let R be a factorial ring with �eld of fractions k. Given any irreducible p in

R we can form R/p = R/Rp and denote its �eld of fractions by k(p). Each

element a in k can be decomposed as

a = pn
u

v

where n is an integer uniquely determined by a and p 6 |u, v.
De�ne an order function ordp(a) = n associated with p. Let rp(a) = a denote the

canonical reduction modulo p de�ned from R→ k(p). If R(p) = {a ∈ k|ordp(a) ≥
0}, then the mod p reduction is well de�ned on R(p) → k(p).

The order function satis�es the valuation properties

ordp(ab) = ordp(a) + ordp(b)

and

ordp(a+ b) ≥ min{ordp(a), ordp(b)}.

De�nition 62. The reduction modulo p function rp : P(k)→ Pn(k(p)) is de�ned

by the relation

rp(y0 : · · · : yn) = (y0 : · · · : yn)

where (y0 : · · · : yn) are the homogeneous coordinates of a point Pn(k) with all

yi in R without a common irreducible factor. Such a representative of a point is

called reduced.

De�nition 63. Let E be an elliptic curve in minimal normal form over k with

equation y2 + a1xy+ a3y = x3 + a2x+ a4x+ a6. The reduction E of E modulo p

is given by

y2 + a1xy + a3y = x3 + a2x+ a4x+ a6.
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The discriminant of the reduced curve E is ∆, the reduction modulo p of the

discriminant ∆ of E. The curve E is nonsingular if and only if ∆ 6= 0, or

alternatively, if and only if ordp∆ = 0.

De�nition 64. An elliptic curve E de�ned over k has good reduction at p provided

E, the reduced curve at p is nonsingular. When E is singular, we say that E has

bad reduction at p.

Proposition 28 ([6], V Prop 3.4). Let E be an elliptic curve over k which has

good reduction at p. Then the reduction function rp : E(k)→ E(k(p)) is a group

morphism.

Proof. Certainly the identity is preserved as rp(0 : 1 : 0) = (0 : 1 : 0). For any

P,Q ∈ E(k) let L be the line connecting P and Q with P 6= Q, or the tangent

line to E when P = Q. The line L reduces to L, the line through rp(P ) and

rp(Q). Then for any P,Q ∈ E(k),

rp(P +Q) = rp((PQ)O) = (rp(P )rp(Q))rp(O) = rp(P ) + rp(Q).

Thus rp is a group morphism.

Remark. The identity O = (0 : 1 : 0) is found both on E and the reduced curve

over k(p). Thus, the p-reduced points (X : Y : Z) on E(k) is in kerp(rp) if and

only if ordp(Y ) = 0, ordp(Z) > 0 and ordp(X) > 0. We can thus divide by Y and

assume that the point is of the form (X : 1 : Z).

For the sake of completeness, we state the following:

(a) Good Reduction. If p 6= 2 and p 6 |∆, then E is an elliptic curve over Fp.
Given a point P = (x : y : z) on E, we can choose a representative (x, y, z)

for P with x, y, z ∈ Z and having no common factor, then P
def
= (x : y : z)

is a well-de�ned point on E. Since (0 : 1 : 0) reduces to (0 : 1 : 0) and lines

reduce to lines, the map E(Q)→ E(Fp) is a homomorphism.

(b) Additive Reduction (Cusp). This is the case in which the reduced curve

E has a cusp if and only if ordp(c4) > 0 or ordp(b2) > 0
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(c) Multiplicative Reduction (Node). This is the case in which the reduced

curve E has a node if and only if ordp(c4) = 0 or ordp(b4) = 0. The

tangents at the node are rational over Fp if and only if −2ab becomes a

square in Fp. As a result E
ns ≈ Gm. The curve E is said to have split

multiplicative reduction in this case. If −2ab is not a square modulo p,

then E
ns ≈ Gm[−2ab]. The curve E is said to have nonsplit multiplicative

reduction in this case.

If E has good or nodal reduction, then the minimal equation remains minimal

after replacing the ground �eld by a larger �eld. However, this is not so for

cuspidal reduction. As an example, consider the curve

E : Y 2Z = X3 + pXZ2 + pZ3.

After passing to an extension �eld in which p becomes a sixth power, say p = π6,

we can make a change of variables so that the equation becomes

E : Y 2Z = X3 + π2XZ2 + Z3.

This reduces modulo π to

Y 2Z = X3 + Z3,

which is nonsingular. In fact, for any curve E with cuspidal reduction at p,

there exists a �nite extension of the ground �eld such that E will have either

good or nodal reduction at the primes over p. Thus, good or nodal reduction are

not changed by a �eld extension (further, the minimal equation remains minimal)

but cuspidal reduction always becomes good or nodal reduction in an appropriate

�nite extension. For this reason a curve is said to have semistable reduction at p

if it has good or nodal reduction there.

Remark. If E has multiplicative reduction at p then ordp(j(E)) < 0 since j(E) =

c3
4/∆ and ordp(c4) = 0.

Let E be an elliptic curve over k with j(E) ∈ R, that is, with ordp(j(E)) ≥ 0

for all p, even at those irreducibles p where E has bad reduction.
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Proposition 29 ([6], V Prop 4.1). Let E be an elliptic curve over k, and

(X, 1, Z) ∈ E(k). If ordp(Z) > 0, then ordp(X) > 0, and the relation ordp(Z) =

3 ordp(X) holds.

Proof. For Y = 1, the projective normal form for E has the form

Z + a1ZX + a3Z
2 = X3 + a2ZX

2 + a4Z
2X + a6Z

3.

We prove by contradiction, so assume that ordp(Z) > 0 and ordp(X) ≤ 0. For

the right hand side of the equation RHS,

ordp(RHS) = ordp(X
3) = 3 ordp(X) ≤ 0,

and for the left hand side LHS,

ordp(LHS) = min{ordp(Z), ordp(X) + ordp(Z) + ordp(a1)}.

Since ordp(Z) > 0, we have the relation

3 ordp(X) ≥ ordp(X) + ordp(Z) or 0 ≥ 2 ordp(X) ≥ ordp(Z),

a contradiction.

Observe that ordp(Z) = ordp(Z+a1ZX+a3Z
2) since ordp(Z) < min{ordp(a1ZX), ordp(a3Z

2)}.
Thus we obtain

ordp(Z) = ordp
(
X3 + a2ZX

2 + a4Z
2X + a6Z

3
)

= 3 ordp(X)

where we have checked the four possible minima in

ordp(Z) ≥ min
{
ordp(X

3), ordp(a2ZX
2), ordp(a4Z

2X), ordp(a6Z
3)
}
,

proving the proposition.
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3.5 The Torsion Subgroup

Reference [6] is used, while we have provided an alternative proof of Theorem 17.

For primes p, we use the notation Fp for the �nite �eld of p elements.

The main results here, Theorems 16, 17 and 18, were discovered independently

by Lutz and Nagell in the 1930s; di�erent authors ([6], [16], [7]) refer to any one

or more of them as "the Lutz-Nagell Theorem".

We restrict ourselves to Q in this section. In the next section we will see that by

applying Dirichlet's Unit Theorem and the �niteness of the Ideal Class group to

an elliptic curve E de�ned over Q,

E(Q) ∼= ZrE × µ (E(Q)) ,

where rE is the arithmetic rank of the curve. In this section we investigate

E(Q)Tors = µ(E(Q)), points P which satisfy nP = O for some integer n; i.e.

points with �nite order.

We begin by de�ning a �ltration

E(Qp) ⊃ E0(Qp) ⊃ E1(Qp) ⊃ · · ·En(Qp) ⊃ · · ·

and identify the quotients. First, we de�ne

E0(Qp) = {P |P is nonsingular}.

It is as a subgroup since (0 : 1 : 0) is always nonsingular. A line through two

nonsingular points on a cubic will either meet the cubic again at another unique

nonsingular point for a total of three unique points, or it will be a tangent at one

point and intersect the curve at another unique point (possibly at O) for a total

of two points. If a line is tangent to the curve at a point P , we say that P has

multiplicity two.

Let E
ns

= {P ∈ E |P is nonsingular}. The reduction map

P 7→ P : E0(Qp)→ E
ns

(Fp)
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is a homomorphism, and we de�ne E1(Qp) to be its kernel. Thus, E
1(Qp) consists

of points P which can be represented as (x : y : z) with p|x, z but p 6 |y. De�ne

En(Qp) =

{
P ∈ E1(Qp) |

x(P )

y(P )
∈ pnZp

}
.

Theorem 16 ([6], V Corollary 5.3). Let E be an elliptic curve over Q.

(a) The subgroup E(Q)Tors ∩ E1(Q) is zero for each odd prime p and

E(Q)Tors ∩ E2(Q)

is zero for p = 2.

(b) The restriction of the reduction homomorphism rp|E(Q)Tors : E(Q)Tors →
Ep(Fp) is injective for any odd prime p where E has good reduction and

r2|E(Q)Tors : E(Q)Tors → E2(F2) has kernel at most Z/2Z when E has good

reduction at 2.

Remark. If C is a cubic de�ned by an equation over Fq in normal form, then for

each x in Fq we have at most two corresponding y-values on the curve C(Fq),
thus the cardinality #C(Fq) ≤ 2q + 1.

Corollary 4 ([6], V Corollary 5.3). Let E be an elliptic curve de�ned over Q. If E
has good reduction at an odd prime p, then the cardinality of the torsion subgroup

satis�es #E(Q)Tors ≤ 2p+ 1. If E has good reduction at 2, the #E(Q)Tors ≤ 10.

Corollary 5 ([6], V Corollary 5.4). For every elliptic curve E de�ned over Q,
the torsion subgroup E(Q)Tors of E(Q) is �nite and is either cyclic or cyclic direct

sum with Z/2Z.

3.5.1 Computing the Torsion Subgroup

Theorem 17 ([6], V �6). Let E be an elliptic curve de�ned over Q with an

equation in normal form with integer coe�cients. If (x, y) ∈ E(Q)Tors then the

coordinates x and y are integers.
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Proof. If y = 0, then x is a solution to

0 = x3 + a2x
2 + a4x+ a6 (3.14)

where ai ∈ Z. Since x is rational, we may write x =
m

n
for some integers m,n

with gcd(m,n) = 1. Thus, we may write (3.14) as

0 = m3 + a2m
2n+ a4mn

2 + a6n
3,

and any prime dividing n must divide m. Thus x = m is an integer.

If y 6= 0, then the point with homogeneous coordinates has the form (x′ : 1 : w) =

(x : y : 1) where w = 1/y and x′ = x/y. By Proposition 29, we have ordp(w) ≤ 0

for p odd and ord2(w) ≤ −1 at 2. This condition means that ordp(y) ≥ 0 for all

odd p and ord2(y) ≤ −1 at w. Thus y has the form
h

2
for an integer h. Write

x =
m

n
where gcd(m,n) = 1, and note that it satis�es a cubic equation

(
h

2

)2

=
(m
n

)3

+ c
(m
n

)2

+
d

2

(m
n

)
+
e

4
(3.15)

for integers c, d, e.

We show that n is odd.

Suppose n is even; we may write n = 2t for some integer t. It follows that

(h2 − e)
4

=
m3

8t3
+ c · m

2

4t2
+
d

2
· m

2t

=
m3 + 2ctm2 + 2dt2m

8t3

=
m3 + 2ctm2 + 2dt2m

4(2t3)
(3.16)

The numerator on the RHS in (3.16) contains a factor of 2t3 (a necessary condition

for the LHS's denominator to be 4), thus it is divisible by 2t = n. Since 2t is a

factor found in the latter two of the three terms in the numerator, the �rst term,

i.e. m3, is forced to be divisible by 2t = n. Our supposition that n is even results

in a contradiction. Hence n is odd.
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All that is required is to show that n = 1.

We currently have
m3

n3
+ c · m

2

n2
+
d

2
· m
n

=
h2 − e

4
.

Clearing denominators results in

4m3 + 4cm2n+ 2dmn2 = (h2 − e)n3.

As per the previous argument, n divides each term in the LHS, especially the

term 4m3. We may now say that

n|4m3

=⇒ n|4m

=⇒ n|4 or n|m

Since n is odd, the only outcome is that n = 1. Thus, x = m. It follows that

y2 = integer since a2, a4, a6 are integers, so y itself must be an integer since it is

rational by de�nition.

The following and preceding Theorems are interchangeably called the Lutz-

Nagell Theorem.

Theorem 18 ([6], V Theorem 6.2). Let E be an elliptic curve over Q, and let

y2 = f(x) be a Weierstrass equation for E where f(x) has integer coe�cients.

If (x, y) is a torsion point on E, then the integer y is zero or y divides the

discriminant of the cubic polynomial f(x).

Proof. If y = 0 then (x, 0) is of order 2. Otherwise, 2(x, y) = (x′, y′) unequal

to O on E(Q). The tangent line to E at (x, y) has slope
f ′(x)

2y
, and when its

equation y = λx + β is substituted into the Weierstrass equation y2 = f(x) =

x3 + ax2 + bx + c, we obtain a cubic equation with x as double root and x′ as

single root. This equation has coe�cient a − (
f ′(x)

2y
)2 of x2, and hence the sum
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of the roots of the cubic in x is the negative of this coe�cient, so

2x+ x′ = a−
(
f ′(x)

2y

)2

.

Since x, x′ and a are integers, it follows that
f ′(x)

2y
is an integer, and 2y divides

f ′(x).

We can write the discriminant ∆f of f(x) as a linear combination ∆f = u(x)f(x)+

v(x)f ′(x) where u(x), v(x) ∈ Z[x]. Since y = f(x) and y divides f ′(x) for the

point (x, y) on E, we deduce that y divides ∆f . This proves the theorem.

3.6 Finite Basis for an Elliptic Curve

The following section investigates Mordell's Theorem, which is the basis for the

formulation of the Birch and Swinnerton-Dyer conjecture. This theorem was

proven in 1922 by Louis Mordell after a Henri Poincare conjecture in 1901. Fur-

ther, it was generalised to abelian varieties by Andre Weil in 1928.

3.6.1 Mordell's Theorem

This section is sourced from [6], VI �4.

Let R be a factorial ring with �eld of fractions k. Observe that c is a square

in k if and only if ordp(c) is an even number for all irreducibles p. Let (x, y)

be a point on the elliptic curve E(k) de�ned by a factored Weierstrass equation

y2 = (x− r1)(x− r2)(x− r3). A point (x, y) ∈ 2E(k) if and only if all x− ri are
squares for i = 1, 2, 3. In particular, ordp(x− ri) is even for such points. We have

the following proposition.

Proposition 30 ([6], VI Prop 4.1). Let E be an elliptic curve de�ned by

y2 = (x− r1)(x− r2)(x− r3) (3.17)

where distinct r1, r2 and r3 are in R. If (x, y) is a point of E(k), then ordp(x−ri)
is even for all irreducibles p not dividing any elements ri − rj for i 6= j.
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Proof. Let p be an irreducible not dividing ri−rj, or equivalently, ordp(ri−rj) = 0

for i 6= j. If ordp(x− ri) < 0 for one i, then for all j = 1, 2, 3 we have ordp(x) =

ordp(x− ri) = ordp(x− rj) since each ordp(rj) ≥ 0. It follows that

2ordp(y) = ordp(y
2) = ordp((x− r1)(x− r2)(x− r3) = 3ordp(x),

and hence ordp(x) =ordp(x − rj) is even for each j. Hence, if ordp(x − ri) > 0,

for one root ri, then we have the relation

2ordp(y) = ordp(y
2) = ordp(x− ri),

and thus all ordp(x− rj) are even. This proves the proposition.

Remark. The equation (3.17), written as y2 = f(x), may seem to be a special

case of an elliptic curve in that f(x) is separable in R, but in fact it is not. If

any of the roots ri ∈ k but ri 6∈ R, an admissible change of variables transforms

the equation to one with all ri ∈ R [18]. We comment later on the general case,

where the ri may not even be in k (see Remark C).

Notation. Let E be an elliptic curve de�ned by the equation

y2 = (x − ri)(x − r2)(x − r3)

where each ri ∈ R.

(a) Let P (E) denote the set of all irreducibles p (up to units in R) such that

p divides some ri − rj, where i 6= j. Then P (E) is a �nite set. Let A(E)

denote the subgroup of all cosets a(k∗)2 in k∗/(k∗)2 such that ordp(a) is

even for p 6∈ P (E).

(b) Let θ1, θ2, θ3 be three functions with θi : E(k) → A(E) ⊂ k∗/(k∗)2 for

i = 1, 2, 3 given by the relations

(i) θi(0) = 1;

(ii) θi((ri, 0)) = (ri − rj)(rk − ri)mod(k∗)2 for {i, j, k} = {1, 2, 3};

(iii) θi((x, y)) = (x− ri)mod(k∗)2 otherwise.
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Proposition 31 ([6], VI Prop 4.3). The functions θi : E(k) → A(E) are group

homomorphisms and

ker(θ1) ∩ ker(θ2) ∩ ker(θ3) ⊂ 2E(k).

Proof. Consider three points Pi = (xi, yi) on E(k) ∩ L, where L is a line inter-

secting E. The line is vertical if and only if some Pj = O, and then by inspection

θi(P1)θi(P2)θi(P3) = 1 in k∗/(k∗)2. Otherwise the line is of the form y = λx+ β,

and x1, x2 and x3 are roots of the equation (λx+ β)2 = (x− r1)(x− r2)(x− r3).

Hence x1 − ri, x2 − ri, x3 − ri are roots of the equation

(λ(x+ ri) + β)2 = f(x+ ri) = x3 + ax2 + bx,

where f(ri) = 0. Rearranging, we obtain

0 = x3 + (a− λ2)x2 + (b− 2λ(λri + β))x− (λri + β)2,

which lead to the following cases.

Case 1. All Pj = (rj, 0) for j = 1, 2, 3. Then we calculate

θi(P1)θi(P2)θi(P3) = (x1 − ri)(x2 − ri)(x3 − ri) = −[−(ri + β)2]

≡ 1 mod(k∗)2.

Case 2. Some Pj = (ri, 0) which we can take to be Pi = (ri, 0). Then 0, x2 −
r1, x3 − r1 are the roots of the cubic which means β = −λri, and the

equation becomes 0 = x3 + (a− λ2)x2 + bx. Now we have

(x2 − r1)(x3 − r1) = b = (r2 − r1)(r3 − r1),
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and we calculate for {i, j, k} = {1, 2, 3}

θi(Pi)θi(Pj)θi(Pk) = (rj − ri)(rk − ri)(xj − ri)(xk − ri)

= (rj − ri)2(rk − ri)2

≡ 1 mod (k∗)2.

Hence, each θi is a group morphism.

Remark (A). The three morphisms of the previous proposition combine to de�ne

a group homomorphism

θ = (θ1, θ2, θ3) : E(k)→ A(E)3, (3.18)

where ker(θ) ⊂ 2E(k) by the previous proposition. Thus E(k)/2E(k) is a sub-

quotient of A(E)3, and (E(k) : 2E(k)) is �nite whenever A(E) is �nite. This

map θ is known as the descent map in honour of Fermat, who �rst used descent

arguments.

Remark (B). The group A(E) is �nite for any principal ideal ring R where each

k(p) and R∗/(R∗)2 are �nite. This holds for R = Z and k = Q, hence we have:

Theorem 19 (Weak Mordell Theorem, [6] VI �4). Let y2 = (x−r1)(x−r2)(x−r3)

de�ne an elliptic curve E over Q where each ri ∈ Z. Then the index (E(Q) :

2E(Q)) is �nite.

Remark (C). If f(x) is not separable in k, we extend to a number �eld K where

f(x) is separable, then (E(k) : 2E(k)) is �nite if (E(K) : 2E(K)) is �nite. We

then have:

Theorem 20 (Weak Mordell-Weil Theorem, [6] VI �4). Let E be an elliptic curve

over an algebraic number �eld k. Then the index (E(k) : 2E(k)) is �nite.

Proof. We may assume E is de�ned by an expression y2 = f(x) where f(x) is

a cubic with three integral roots in k by Remark C. We take for R in k the

principal ideal ring equal to the ring of integers in k with a �nite set of primes in

k localised. By the �niteness of the ideal class group we could localise at those
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primes which divide a �nite set of representatives of the ideal class group. If the

ideal class group is zero, the ring is principal.

The group of units R∗ is �nitely generated by the Dirichlet Unit Theorem,

thus R∗/(R∗)2 is �nite. Now A(E) is �nite by Remark B and we can apply

Remark A to prove the theorem.

Among the elementary quantities associated with elliptic curves over Q, the
rank is usually the most computationally intensive to determine. With this in

mind, we now consider a useful approach with which to �nd generators for elliptic

curves.

3.6.2 De�ning the Regulator

We use [11] in this section.

Given an elliptic curve E over Q, Mordell's Theorem states that

E(Q) ∼= E(Q)Tors ⊕ Zr.

We will investigate a method which can determine if a set of points is linearly

independent or not, thereby giving, at least, a lower bound for the rank of a curve.

Note that as these computations can be demanding, we will check whether the

linear combination of a set of points results not only in O but possibly other

torsion points as well. Ultimately, some scalar multiple of a torsion point will

take us to O, but being open to linear combinations resulting in torsion points

should, in theory at least, allow computations to terminate more quickly.

De�nition 65. Let curve E be an elliptic curve over Q. The rational points

P1, . . . , Pm ∈ E(Q) are linearly dependent over Z if there are integers n1, . . . , nm ∈
Z such that

n1P1 + · · ·+ nmPm = T

where T is a torsion point. If no such expression exists, we say that the points

are linearly independent over Z.
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We introduce the height function h : Q→ Z de�ned by

h
(m
n

)
= log(max{|m|, |n|})

for m,n ∈ Z. We now de�ne the canonical height of P ∈ E(Q) by

ĥ(P ) =
1

2
lim
N→∞

H(2N · P )

4N
.

Proposition (Neron-Tate). Let E/Q be an elliptic curve and ĥ the canonical

height on E.

(i) For all P,Q ∈ E(Q), ĥ(P +Q) + ĥ(P −Q) = 2ĥ(P ) + 2ĥ(Q).

(ii) For all P ∈ E(Q) and m ∈ Z, ĥ(mP ) = m2 · ĥ(P ).

(iii) Let P ∈ E(Q). Then ĥ(P ) ≥ 0, and ĥ(P ) = 0 if and only if P is a torsion

point.

We now give the framework for determining if a set of points is linearly inde-

pendent.

De�nition 66. The Neron-Tate pairing attached to an elliptic curve is de�ned

by

〈·, ·〉 : E(Q)× E(Q)→ R, 〈P,Q〉 = ĥ(P +Q)− ĥ(P )− ĥ(Q).

Let P1, . . . , Pr be r rational points on E(Q). The elliptic height matrix associated

to {Pi}ri=1 is

H = H({Pi}ri=1) := (〈Pi, Pj〉)1≤i≤r, 1≤j≤r.

The determinant of H is called the elliptic regulator of the set of points {Pi}ri=1.

If {Pi}ri=1 is a complete set of generators of the free part of E(Q), then the de-

terminant H({Pi}ri=1) is called the elliptic regulator of E/Q, denoted Reg(E/Q).

Theorem 21 ([11] II �7). The Néron-Tate pairing 〈·, ·〉 associated to E is a

non-degenerate symmetric bilinear form on E(Q)/ETors(Q), that is

(i) For all P,Q ∈ E(Q), 〈P,Q〉 = 〈Q,P 〉.
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(ii) For all P,Q,R ∈ E(Q) and all m,n ∈ Z,

〈P,mQ+ nR〉 = m 〈P,Q〉+ n 〈P,R〉 .

(iii) Suppose P ∈ E(Q) and 〈P,Q〉 = 0 for all Q ∈ E(Q). Then P ∈ Etors(Q).

In particular, P is a torsion point if and only if 〈P, P 〉 = 0.

The previous theorem has the following important corollary:

Corollary 6 ([11] II �7). Let E/Q be an elliptic curve and let P1, . . . , Pr ∈ E(Q)

be rational. Let H be the elliptic height matrix associated to {Pi}ri=1 .

(i) Suppose det(H) = 0 and u = (n1, . . . , nr) ∈ Ker(H), with ni ∈ Z. Then

the points {Pi}ri=1 are linearly dependent and
∑r

k=1 nkPk = T where T is a

torsion point on E(Q).

(ii) If det(H) 6= 0 then the points {Pi}ri=1 are linearly independent and the rank

of E(Q) is greater than or equal to r.

3.6.3 Numerical Example

We discuss the numerical example [18], VIII �2 Example 8.5. We then generalise

the concepts used in this section to provide a link with the Shafarevich-Tate group.

Let E(Q) be an elliptic curve with Weierstrass equation

E : y = x(x− 2)(x+ 2).

If y = 0, then x = 0,±2. Therefore, assume y 6= 0. The product of x, x− 2, x+ 2

is a square; each of these factors should, in some sense, be close to being square.

Write

x = au2

x− 2 = bv2

x+ 2 = cw2
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for rationals a, b, c, u, v, w. Then y = abc(uvw)2, so abc must be a square.

We adjust u, v, w to have a, b, c as squarefree integers. We claim that

a, b, c ∈ {±1,±2}.

Suppose p is an odd prime dividing a. Since a is squarefree, p2 - a, so the exact

power pk dividing x = au2 has k odd. If k < 0, then pk is the exact power of

p in the denominator of x ± 2, so p3k is the power of p in the denominator of

y2 = x(x− 2)(x+ 2). However, this is a contradiction since 3k is odd and y2 is a

square. If k > 0, then x ≡ (mod p), so x ± 2 6≡ (mod p). There pk is the power

of p dividing y2. Again, k is odd so this is impossible. Thus, p - a. Similarly, no

odd prime divides b or c. Therefore, each of a, b, c is, up to sign, a power of 2.

They are squarefree, proving the claim.

The procedure we are using is called descent; precisely, it is a 2-descent. If

x is rational with at most N digits in its numerator and denominator, then

u, v, w should have at most N/2 digits approximately in their numerators and

denominators. So if we are searching for points (x, y), we can instead search for

smaller numbers u, v, w. This method is name so in honour of Fermat.

We have four choices for a and a further four for b. Since a and b together

determine c (abc is a square), there are 16 possibilities for a, b, c, some of which can

be eliminated fairly easily. Since x(x−2)(x+2) = y2 > 0, we have cw2 = x+2 > 0,

so c > 0. Since abc > 0, it follows that a and b must have the same sign. This,

there are now 8 possible combinations.

Consider (a, b, c) = (1, 2, 2). We have

x = u2, x− 2 = 2v2, x+ 2 = 2w2

for rationals u, v, w. Therefore,

u2 − 2v2 = 2, u2 − 2w2 = −2.

If v has 2 in its denominator, then 2v2 has an odd power of 2 in its denominator.

But u2 has an even power of 2 in its denominator, so u2 − 2v2 cannot be an

integer. Therefore, u and v have odd denominators, meaning we may consider
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u, v mod powers of 2. Since 2|u2, we have 2|u, and hence 4|u2. Therefore, −2v2 ≡
2(mod 4), which implies that 2 - v. Similarly, −2w2 ≡ −2 (mod 4), so 2 - w. It

follows that v2 ≡ w2 ≡ 1 (mod 8), so

2 ≡ u2 − 2v2 ≡ u2 − 2 ≡ u2 − 2w2 ≡ −2 (mod 8),

a contradiction. It follows that (a, b, c) = (1, 2, 2) is impossible. Similarly, we can

eliminate (−1,−1, 1), (2, 1, 2) and (−2,−2, 1) for (a, b, c), and the points

(a, b, c) = (1, 1, 1), (−1,−2, 2), (2, 2, 1), (−2,−1, 2)

remain. These combinations correspond to

O, (0, 0), (2, 0), (−2, 0).

By Lutz-Nagell, there are no nontrivial points of odd order. Therefore we have

found all rational points on E.

3.7 The Shafarevich-Tate Group

References [4, 6, 16, 18] are used.

Let E be an elliptic curve de�ned over Q. As noted earlier, one of the meth-

ods used to calculate the rank of the Mordell-Weil group E(Q) is to look for

generators for E(Q)/mE(Q) by way of homogeneous spaces [4]. These homoge-

neous spaces are twists of E, i.e. curves of genus 1 isomorphic to E over some

number �eld. Further, these homogeneous spaces are not required to have ra-

tional points, thus they are not required to be elliptic curves. If they do have

rational points, those points map to rational points on E. The homogeneous

spaces have equations of the form

H : y2 = g(x) = ax4 + bx3 + cx2 + dx+ e (3.19)
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where g(x) is a quartic with rational coe�cients. Whether H has points over Q
or some completion, i.e. the p-adics Qp or the reals R, will be of interest to us.

The set of all the rational points on the quartics will cover the cosets of 2E(Q)

in E(Q). Quartics with no rational point but which are locally soluble in each

completion arise from non-trivial elements in the Shafarevich-Tate group, denoted

X. The non-triviality of the Shafarevich-Tate group means there is no general

procedure for �nding the rank of E(Q). However, the conjectured �niteness of

the Shafarevich-Tate group is closely linked with the BSD Conjecture. This will

be discussed in more detail in Chapter 4.

3.7.1 A First Look at X

We begin by generalising the procedure used in Section 3.6.3.

Let E be an elliptic curve of the form

y2 = (x− e1)(x− e2)(x− e3)

with e1, e2, e3 ∈ Z. If y = 0, we have that x = e1, e2 or e3. Therefore assume

y 6= 0. Since the product of x − e1, x − e2 and x − e3 is a square, each of these

factors should not be squarefree. Write

x− e1 = au2

x− e2 = bv2

x− e3 = cw2

with rationals a, b, c, u, v, w. Then y2 = abc(uvw)2, and hence

abc is a square.

Assume that a, b, c are squarefree as we can adjust u, v, w if necessary.

Proposition 32 ([18], VIII Proposition 8.3). Let

S = {p| p is a prime and p|(e1 − e2)(e1 − e3)(e2 − e3)}.
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If p is a prime and p|abc, then p ∈ S.

Proof. Suppose that p|a. Then pk, with k odd, is the exact power of p dividing

x − e1. If k < 0, then pk is the power of p in the denominator of x − e2 and

x− e3. Therefore k > 0. This means that x ≡ e1(mod p). Also, x has no p in its

denominator, so the same is true for bv2 = x − e2 and cw2 = x − e3. Moreover,

bv2 ≡ e1 − e2 and cw2 ≡ e1 − e3 (mod p). If p 6∈ S, then the power of p in

y2 = (au2)(bv2)(cw2)

is pkp0p0 = pk, a contradiction as k is odd. Therefore, p ∈ S.

Further, for the elliptic curve E, noting the equations

x− e1 = au2

x− e2 = bv2

x− e3 = cw2,

it follows that

au2 − bv2 = e2 − e1, au
2 − cw2 = e3 − e1.

This de�nes a curve Ca,b,c in u, v, w. To be precise, it is the intersection of two

quadratic surfaces. If it has a rational point, it can be transformed into an elliptic

curve; in fact, it can be shown that this is the original elliptic curve. See [18] 2.5.4

for more details. If Ca,b,c does not have a rational point, then the triple (a, b, c) is

eliminated. Elimination of points usually depends on whether they do not have

points in some completion Qp for p ≤ ∞ (p =∞ means the reals). The 2-Selmer

group S2 is de�ned to be the set of (a, b, c) such that Ca,b,c has a real point and

has p-adic points for p ≤ ∞.

S2 = {(a, b, c)|Ca,b,c(Qp) is nonempty for all p ≤ ∞},

i.e., those points that cannot be eliminated by sign or congruence considerations.

We regard

S2 ⊂ (Q×/Q×2

)⊕ (Q×/Q×2

)⊕ (Q×/Q×2

).
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The prime divisors of a, b, c divide (e1 − e2)(e1 − e3)(e2 − e3), which implies that

S2 is a �nite group.

The descent map φ gives a map

φ : E(Q)/2E(Q) ↪→ S2. (3.20)

The 2-torsion in the Shafarevich-Tate group is the cokernel of this map:

X2 = S2/Imφ,

so we can construct an exact sequence

0→ E(Q)/2E(Q)→ S2 →X2 → 0. (3.21)

The group X2 represents those triples (a, b, c) such that Ca,b,c has a p-adic point

for all p ≤ ∞, but has no rational point. If (a, b, c) represents a nontrivial element

of X then it is usually di�cult to show that Ca,b,c does not have rational points.

The possible nontriviality of X means that we do not have an e�cient algorithm

for �nding the rank of the group E(Q). The group S2 can be computed exactly,

and provides an upper bound for the rank.

3.7.2 An Example of a Nontrivial X

The following is sourced from [18] VIII.

Let E(Q) be an elliptic curve given by

y2 = x(x− 2p)(x+ 2p),
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with p prime. We encounter the following equations after applying 2-descent on

E,

x = u2,

x− 2p = pv2,

x+ 2p = pw2.

These equations de�ne an intersection of two quadratic surfaces

C1,p,p : u2 − pv2 = 2p, u2 = pw2 = −2p. (3.22)

Theorem 22 ([18], VIII Theorem 8.28). If p ≡ 9 (mod 16), then C1,p,p has q-adic

points for all primes q ≤ ∞, but has no rational points.

Proof. We show that there are no rational points by contradiction. Suppose

there is a rational point (u, v, w). Without loss of generality, we may assume

u, v, w > 0. If p divides the denominator of v, then an odd power of p is present

in the denominator of pv2, an even power of p is found in the denominator of u2,

so u2− pv2 cannot be an integer, a contradiction. Thus, u, v, w have no p in their

denominators.

We show that the denominators of u, v, w are equal.

Since u2 = 2p+ pv2, we have u ≡ 0 (mod p). Write

u =
pr

e
, v =

s

e
, w =

t

e
,

for positive integers r, s, t, e and with

gcd(r, e) = gcd(s, e) = gcd(r, e) = 1.

The equations for C1,p,p become

pr2 − s2 = 2e2, pr2 − t2 = −2e2.

Subtraction yields

s2 + 4e2 = t2.
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If s is even, then pr2 = s2 + 2e2 is even, so r is even. Then 2e2 = pr2 − s2 ≡
0 (mod 4), which implies that e is even, a contradiction to gcd(s, e) = 1. Therefore

s is odd, and

gcd(s, 2e) = 1.

By Euclid's formula for Pythagorean triples (hereafter EFPT), there are integers

m,n with gcd(m,n) = 1 such that

2e = 2mn, s = m2 − n2, t = m2 + n2.

So

pr2 = s2 + 2e2 =
(
m2 − n2

)2
+ 2 (mn)2 = m4 + n4.

Let q be a prime divisor of r. Withm 6≡ n (mod 2) by EFPT, we see that pr2 must

be odd. Thus, q 6= 2. Since gcd(m,n) = 1, at least one of m,n is not divisible

by q. Hence, both m and n are not multiples of q since m4 + n4 ≡ 0 (mod q).

Therefore,

(m/n) ≡ −1 (mod q) .

It follows that m/n has order 8 in F×q , so q ≡ 1(mod 8). Since r is a positive

integer and all prime factors of r are 1 mod 8, we obtain

r ≡ 1 (mod 8).

Therefore, r2 ≡ 1 (mod 16), so

m4 + n4 = pr2 ≡ 9 (mod 16).

But, for any integer j, we have j4 ≡ 0, 1 (mod 16). Thus,

m4 + n4 ≡ 0, 1, 2 (mod 16),

so pr2 6= m4 + n4, a contradiction, proving that C1,p,p has no rational points.

We now show that C1,p,p has q-adic points for all primes q ≤ ∞. We consider

four cases, namely: q =∞, q = 2 , q = p and all other q.

We �rst consider the case of the reals, i.e. q = ∞. We choose u large so that
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u2 > 2p. Then choose v, w satisfying (3.22).

For q = 2, write

u = 1/2, v = v1/2, w = w1/2.

The equations for C1,p,p become

1− pv2
1 = 8p, 1− pw2

1 = −8p.

We need to solve

v2
1 =

1− 8p

p
, w2

1 =
1 + 8p

p

in the 2-adics. Since
1± 8p

p
≡ 1 (mod 8),

and since any number congruent to 1 mod 8 has a 2-adic square root, v1, w1 exist.

Thus, C1,p,p has a 2-adic point.

Consider q = p. Since p ≡ 1 (mod 4), there is a square root of −1 mod p. Since

p ≡ 1(mod 8), there is a square root of −2 mod p. Thus, both 2 and −2 have

square roots mod p. by Hensel's Lemma, both 2 and −2 have square roots in the

p-adics. Let

u = 0, v =
√
−2, w =

√
2.

Then u, v, w is a p-adic point on C1,p,p..

We now consider q 6=∞, 2, p. Subtracting the two equations for C1,p,p results in

w2 − v2 = 4, u2 − pv2 = 2p.

Suppose there is a solution (u0, v0, w0)mod q. We cannot have that u0 = w0 =

0mod q.

Suppose u0 ≡ 0 (mod q). Then w0 6≡ 0 (mod q). Also, v0 6≡ 0 (mod q). Let

u = 0. Since −pv2
0 ≡ 2p (mod q), Hensel's Lemma implies that there exists

v ≡ v0 (mod q) in the q-adics such that −pv2 = 2p. Hensel's Lemma applied

again provides the existence of w = w0 satisfying w2 − v2 = 4. Therefore, we

have found a q-adic point. Similarly, if w0 = 0 (mod q), there is a q-adic point.

Finally, suppose u0 6= 0 (mod q) and w0 6= 0 (mod q). Choose any v ≡ v0 (mod q).
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We use Hensel's Lemma to �nd u,w. This yields a q-adic point.

We now need to prove that there is indeed a point mod q. Let n be a quadratic

nonresidue mod q. Then every element of F×q is either of the form u2 or nu2.

De�ne a curve

C ′ : w2 − v2 = 4, nu2 − pv2 = 2p.

Let N be the number of points mod q on C1,p,p and let N ′ be the number of points

mod q on C ′.

If N > 0, the result follows. If N ′ > 0, then C ′ can be transformed into an elliptic

curve with approximately N ′ points. Hasse's theorem provides a bound on N ′

which, extending to N = 2(q − 1)−N ′ > 0, shows that there must be points on

C1,p,p. It remains to show that N > 0, which will follow from the next 3 Lemmas.

Lemma 12 ([18], VIII Lemma 8.29). N +N ′ = 2(q − 1).

Proof. Let x 6≡ 0 (mod q). We solve

w + v ≡ x, w − v ≡ 4/x (mod q),

yielding a pair (v, w) for each x. we have q−1 choices for x, hence there are q−1

pairs (v, w) satisfying w2 − v2 = 4. Let (v, w) be such a pair. Consider

y2 ≡ 2p+ pv2, nu2 ≡ 2p+ pv2 (mod q).

If 2p+ pv2 6≡ 0 (mod q), then exactly one of these has a solution, and it has two

solutions. If 2p + pv2 ≡ 0 (mod q), then both congruences have one solution.

therefore, each of the q − 1 pairs (v, w) contributes 2 to the sum of N + N ′, so

N +N ′ = 2(q − 1).

Lemma 13 ([18], VIII Lemma 8.30). If q ≥ 11, then N > 0.

Proof. If N = 0 then N ′ = 2(q − 1) > 0, by lemma 12. We may transform C ′ to

an elliptic curve E ′; by Hasse's theorem, E ′ has less than q+ 1 + 2
√
q points. We

parameterise w2 − v2 = 4:

v =
4t

1− t2
, w =

2 + 2t2

1− t2
,
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where the value t = ∞ corresponds to (v, w) = (0 − 2). All other points (v, w)

correspond to �nite values of t. No �nite pair corresponds to t = ±1. Substituting

the parameterisation into nu2 − pv2 = 2p yields the curve

Q′ : u2
1 =

2p

n
(t4 + 6t2 + 1),

where u1 = (1 − t2)u. A point C ′ with (v, w, ) 6= (0,−2) yields a �nite point on

the quartic curve Q′. Since C ′ has 2(q − 1) > 1 points mod q, there is at least

one �nite point on Q′. Every point mod q on Q′ yields a point on E ′ (points at

in�nity on Q′ yield points of order 2 on E ′). Thus, the number of points on C ′ is

less than or equal to the number of points on E ′. By Hasse's theorem,

2(q − 1) = N ′ ≤ q + 1 + 2
√
q.

We may rearrange to obtain

(
√
q − 1)2 ≤ 4,

yielding q ≤ 9. Therefore, if q ≥ 11 we must have N 6= 0.

Lemma 14 ([18], VIII Lemma 8.31). If q = 3, 5 or 7, then N > 0.

Proof. First, suppose p is a square mod q. There are no points C1,p,p with coor-

dinates in F3, so we introduce denominators,

u = u1/q, v = 1/q, w = w1/q.

We solve for

w2
1 + 4q2, u2

1 = p+ 2pq2.

Since p is assumed to be a square mod q, Hensel's lemma implies that there are

q-adic solutions u1, w1.

Suppose that p is not a square mod q. We divide the equation in 8.15 to obtain

w2 − v2 = 4,
1

p
u2 − v2 = 2.

Let n be any �xed quadratic nonresidue mod q, and write 1/p ≡ nx2 (mod q).
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Letting u1 = xu, we obtain

w2 − v2 = 4, nu2
1 − v2 = 2.

For q = 3 and q = 5, we may take n = 2 and obtain

w2 − v2 ≡ 4, 2u2
1 − v2 ≡ 2 (mod q).

This has the solution (u1, v, w) = (1, 0, 2). As above, Hensel's lemma yields a

q-adic solution.

For q = 7, take n = 3 to obtain

w2 − v2 ≡ 4, 3u2
1 − v2 ≡ 2 (mod 7).

this has the solution (u1, v, w) = (3, 2, 1), which yields a 7-adic solution.

3.7.3 Galois Cohomology

We now provide the de�nition of the full Shafarevich-Tate group. We shall utilise

Galois cohomology to interpret the descent calculations.

Let G be a group acting on an additive abelian group M , i.e. for any g ∈ G,

there is an automorphism g : M →M , such that

(g1g2)m = g1(g2m)

for all m ∈M and all g1, g2 ∈ G. The group M is termed a G-module.

A homomorphism φ : M1 → M2 of G-modules is a homomorphism of abelian

groups that is compatible with the action of G, that is:

φ(gm1) = gφ(m1)
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for all g ∈ G and all m1 ∈M . Recall that in a short exact sequence (of modules

and homomorphisms),

0→M1
f1→M2

f2→M3 → 0,

f1 is injective, f2 is surjective, and the image of f1 equals the kernel of f2. In

general, a sequence of abelian groups and homomorphisms

· · · → A→ B → C → · · ·

is said to be exact at B if the image of A → B is the kernel of B → C. Such a

sequence is said to be exact if it is exact at each group in the sequence.

We de�ne the zeroth cohomology group to be

H0(G,M) = MG = {m ∈M |gm = m for all g ∈ G} .

We see that if G acts trivially, then H0(G,M) = M.

Further, we de�ne the cocycles

Z(G,M) = { maps f : G→M |f(g1g2) = f(g1) + g1f(g2) for all g1, g2 ∈ G} .

The maps f are maps of sets that are required to satisfy the given conditions.

The set Z is often referred to as the set of twisted homomorphisms from G to M .

It is a group under addition of maps.

We may construct elements of Z(G,M) in the following manner: Let m be a

�xed element of M and de�ne

fm(g) = gm−m.

Clearly, fm gives a map from G to M , and since

fm(g1g2) = g1(g2m)−m

= g1m−m+ g1(g2m−m)

= fm(g1) + g1fm(g2),
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we �nd that fm ∈ Z(G,M). Let

B(G,M) = {fm|m ∈M} .

Then B(G,M) ⊂ Z(G,M) is called the set of coboundaries. De�ne the �rst

cohomology group

H1(G,M) = Z/B.

A homomorphism φ : M1 →M2 of G-modules induces a map

φ∗ : Hj(G,M1)→ Hj(G,M2)

of cohomology groups for j = 0, 1. For H0, this is simply the restriction of φ to

MG
1 . Note that if G acts trivially, then gφ(m1) = φ(gm1) = φ(m1), so φ maps

MG
1 into MG

2 . For H
1, we obtain φ∗ by taking an element f ∈ Z and de�ning

(φ∗(f)) (g) = φ (f(g)) .

Proposition 33 ([18], VIII �9). An exact sequence

0→M1 →M2 →M3 → 0

of G-modules induces a long exact sequence

0→ H0(G,M1)→ H0(G,M2)→ H0(G,M3)

→ H1(G,M1)→ H1(G,M2)→ H1(G,M3) (3.23)

of cohomology groups.

Now that we have our �rst two cohomology groups H0 and H1 de�ned, we

consider an elliptic curve E de�ned over Q. Let n be a positive integer. By

Theorem 10, multiplication by n gives an endomorphism of E. By [18] II Theorem

2.22, it is surjective from E(Q)→ E(Q) sinceQ is algebraically closed. Therefore,

we have an exact sequence

0→ E[n]→ E(Q)
n→ E(Q)→ 0.
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Let

G = Gal(Q/Q)

be the Galois group of Q/Q. We have the property that

H0(G,E(Q)) = E(Q)G = E(Q).

Applying Proposition 3.23 to the exact sequence yields the long exact sequence

0→ E(Q)[n]→ E(Q)
n→ E(Q)

→ H1(G,E[n])→ H1(G,E(Q))
n→ H1(G,E(Q))

This induces the short exact sequence

0→ E(Q)/nE(Q)→ H1(G,E[n])→ H1(G,E(Q))[n]→ 0.

This sequence is similar to the sequence

0→ E(Q)/2E(Q)→ S2 →X2 → 0.

We shall now investigate how the two sequences relate when n = 2, then later

consider arbitrary n.

Let C be a curve de�ned over Q such that C is isomorphic to E over Q. Hence,
there are a maps φ : E → C and φ−1 : C → E given by rational functions with

coe�cients in Q. Choose g ∈ G, and let φg denote the map obtained by applying

g to the coe�cients of the rational functions de�ning φ. Since C is de�ned over

Q, φg maps E to gC = C. Note that

g(φ(P )) = (φg)(gP )

for all P ∈ E(Q).

We say that a map φ is de�ned over Q if φg(P ) = φ(P ) for all P ∈ E(Q) and all

g ∈ G.
The map φ−1φg gives a map from E to E. We assume the following: There is a
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point Tg ∈ E(Q) such that

φ−1(φg(P )) = P + Tg

for all P ∈ E(Q). The above can be rewritten as

φg(P ) = φ(P + Tg)

for all P ∈ E(Q). If P = (φg)−1(Q) for a point Q ∈ C(Q), the assumption

becomes

φ−1(Q) = (φg)−1(Q) + Tg,

which implies that φ−1 and (φg)−1 di�er by translation.

Lemma 15 ([18], VIII �9). De�ne τφ : G → E(Q) by τφ(g) = Tg. Then τφ ∈
Z(G,E(Q)).

Proof.

g−1
1 φ(P + Tg1g2) = g−1

1 φg1g2(P )

= φg2(g−1
1 P )

= φ(g−1
1 P + Tg2)

= g−1
1 φg1(P + g1Tg2)

= g−1
1 φ(P + g1Tg2 + Tg1).

Applying g1 then φ−1 yields

Tg1g2 = g1Tg2 + Tg1 .

Suppose we have curves Ci and maps φi : E → Ci for i = 1, 2 as above. The

pairs (C1, φ1) and (C2, φ2) are equivalent if there is a map θ : C1 → C2 de�ned

over Q and a point P0 ∈ E(Q) such that

φ−1
2 θφ1(P ) = P + P0
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for all P ∈ E(Q). Thus, if we identify C1 and C2 with E by φ1 and φ2, then θ is

a translation by P0.

Proposition 34 ([18], VIII �9). The pairs (C1, φ1) and (C2, φ2) are equivalent if

and only if the cocycles τφ1 and τφ2 di�er by a coboundary. This means that there

is a point P1 ∈ E(Q) such that

τφ1(g)− τφ2(g) = gP1 − P1

for all g ∈ G.

Proof. If τφi(g) = T ig for i = 1, 2, then

φgi (P ) = φi(P + T ig)

for all P ∈ E(Q). Suppose (C1, φ1) and (C2, φ2) are equivalent, i.e. there exist

θ : C1 → C2 and P0 as above. For any P ∈ E(Q), we have

P + T 1
g + P0 = φ−1

2 θφ1(P + T 1
g )

= φ−1
2 θφg1(P )

= φ−1
2 φg2(φ−1

2 θφ1)g(P )

= (φ−1
2 θφ1)g(P ) + T 2

g

= g(φ−1
2 θφ1)(g−1P ) + T 2

g

= g(g−1P + P0) + T 2
g

= P + gP0 + T 2
g .

Therefore

T 1
g − T 2

g = τφ1(g)− τφ2(g) = gP0 − P0.

Conversely, suppose there exists P1 such that

τφ1(g)− τφ2(g) = gP1 − P1.

De�ne θ : C1 → C2 by

θ(Q) = φ2(φ−1
1 (Q) + P1).
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It is clear that θ de�nes an equivalence relation on the set of cocycles. However,

we need to show that θ is de�ned over Q. If Q ∈ C(Q), then

θg(Q) = gθ(g−1Q)

= gφ2(φ−1
1 (g−1Q) + P1)

= φg2
(
(φg1)−1(Q) + gP1

)
= φ2(φ−1

2 φg2)((φg1)−1(Q) + gP1)

= φ2

(
(φg1)−1(Q) + gP1 + T 2

g

)
= φ2

(
φ−1

1 (Q)− T 1
g (g) + gP1 + T 2

g

)
= φ2

(
φ−1

1 (Q) + P1

)
= θ(Q)

Thus, θ is de�ned over Q, so the pairs (C1, φ1) and (C2, φ2) are equivalent.

The above proposition says that we have a map

equivalence classes of pairs (C, φ) ↪→ H1(G,E(Q)).

It can be shown that this is a bijection (see [16] for further details). The following

is an important property.

Proposition 35 ([18], VIII �9). Let τφ correspond to the pair (C, φ). Then

τφ ∈ B(G,E(Q)) if and only if C has a rational point.

Proof. Let P ∈ E(Q). Then

gP + Tg = φ−1φg(gP ) = φ−1(gφ(P ))

and

P = φ−1(φ(P )).

Thus,

Tg = P − gP ⇐⇒ gφ(P ) = φ(P ).

If C has a rational point Q, choose P such that φ(P ) = Q. then gQ = Q for all
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g implies that

Tg = g(−P )− (−P )

for all g ∈ G. Conversely, if Tg = g(−P )− (−P ) for all g, then gφ(P ) = φ(P ) for

all g ∈ G, so φ(P ) is a rational point.

The above two propositions give us a reinterpretation in terms of cohomology

groups of the fundamental question: when do certain curves have rational points?

Example. Consider the curve C1,p,p from the previous section. We have equations

x = u2

x− 2p = pv2

x+ 2p = pw2.

These were rewritten as

w2 − v2 = 4, u2 − pv2 = 2p.

We may change this to

C : s2 = 2p(t4 + 6t2 + 1).

Finally, the transformation

t =

√
2p(x+ 2p)

y
, s = −

√
2p+

2t2(x− p)√
2p

=
√

2p
x2 + 4px− 4p2

x(x− 2p)

changes the equation to

E : y2 = x(x− 2p)(x+ 2p).

Now we attempt to relate the curve C1,p,p to a cohomology class in H1(G,E(Q)).

The map

φ : E → C

(x, y) 7→ (t, s)

gives a map from E to C. Since the equations for E and C have coe�cients in
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Q, these curves are de�ned over Q. However, φ is not de�ned over Q.
Computation shows that

(x, y) + (−2p, 0) = (x1, y1)

on E, where

x1 = 2p
2p− x
2p+ x

, y1 =
−8p2y

(x+ 2p)2

Further calculations show that

φ(x1, y1) = (−t,−s).

Choose g ∈ G such that g(
√

2p) = −
√

2p. Then φg is the transformation obtain-

ing by changing
√

2p to −
√

2p in the formulae for φ. Therefore,

φg(x, y) = (−t,−s) = φ(x1, y1).

We obtain

φ−1φg(x, y) = (x, y) + (−2p, 0).

Now suppose g ∈ G satis�es g(
√

2p) = +
√

2p. Then φg = φ, so

φ−1φg(x, y) = (x, y).

Putting everything together, we see that the pair (C, φ) is of the type considered

above. We obtain an element of H1(G,E[2]) that can be regarded as an element

of H1(G,E(Q)). The cocycle τφ is given by

τφ(g) = Tg =

{
∞ if g(

√
2p) = +

√
2p

(−2p, 0) if g(
√

2p) = −
√

2p

The cohomology class of τφ is nontrivial in H1(G,E(Q)), and hence also in

H1(G,E[2]) since C has no rational points.

In general, if E is given by y2 = (x−e1)(x−e2)(x−e3) with e1, e2, e3 ∈ Q, then
a 2-descent yields curves Ca,b,c. These curves yield elements of H1(G,E[2]). The
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curves that have rational points give cocyles in Z(G,E(Q)) that are coboundaries.

We also saw in the descent procedure that a rational point on a curve Ca,b,c comes

from a rational point on E. All of this may be summarised by the exact sequence

0→ E(Q)/2E(Q)→ H1(G,E[2])→ H1(G,E(Q))[2]→ 0.

We may replace Q by the p-adic �eld Qp with p ≤ ∞. We have an exact sequence

0→ E(Qp)/2E(Qp)→ H1(Gp, E[2])→ H1(Gp, E(Qp))[2]→ 0.

where

Gp = Gal(Qp/Qp).

The group Gp can be regarded as a subgroup of G. Recall that cocycles in

Z(G,E[2]) are maps from G to E[2] with certain properties. Such maps may

be restricted to Gp to obtain elements of Z(Gp, E[2]). A curve Ca,b,c yields an

element of H1(G,E[2]), which, in turn, yields an element of H1(Gp, E[2]) that

becomes trivial in H1(Gp, E(Qp)) if and only if Ca,b,c has a p-adic point.

We had previously de�ned S2 to be those triples (a, b, c) such that Ca,b,c has a

p-adic point for all p ≤ ∞. This means that S2 is the set of triples (a, b, c)

such that the corresponding cohomology class in H1(G,E[2]) becomes trivial in

H1(Gp, E(Qp) for all p ≤ ∞. Moreover, X2 is S2 modulo those triples coming

from points in E(Q). All of this can be expressed in terms of cohomology. We

can also replace 2 by an arbitrary n ≥ 1. De�ne the Shafarevich-Tate group to

be

X = Ker

(
H1(G,E(Q))→

∏
p≤∞

H1(Gp, E(Q)p)

)
and de�ne the n-Selmer group to be

Sn = Ker

(
H1(Gp, E[n])→

∏
p≤∞

H1(Gp, E(Q)p)

)
.

The Shafarevich-Tate group can be thought of as consisting of equivalence classes

of pairs (C, φ) such that C has a p-adic point for all p ≤ ∞. This group is
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nontrivial if there exists such a C that has no rational points. The n-Selmer

group Sn can be regarded as the generalisation to n-descents of the curves Ca,b,c

that arise in 2-descents. We deduce the basic descent sequence with the use of

the de�nitions, resulting in

0→ E(Q)/nE(Q)→ Sn →X[n]→ 0,

where X[n] is the n-torsion in X. During descent, the aim is to obtain informa-

tion about E(Q)/nE(Q). However, the calculations are done in Sn. The group

X[n] is the obstruction to transferring information back to E(Q)/nE(Q).

The group Sn is dependent on n, whereas the group X is not. Since Sn is �nite,

so is X[n] (X[n] is the quotient group of Sn). It has been conjectured that X

is �nite in general.

3.8 Elliptic Curves over C

We provide a brief overview of elliptic curves over C in order to de�ne the invari-

ant Ω which is central to the BSD Conjecture. We use [6, 16, 18].

De�nition 67 ([6] IX, �1). A lattice L in C is a discrete subgroup of the form

L = Zω1 + Zω2, where ω1, ω2 are linearly independent over R. A complex torus

T is the quotient group C/L of the complex plane C by a lattice with projection

usually denoted p : C→ T = C/L.

De�nition 68 ([6] IX, �1). Two lattices L and L′ in C are equivalent if there exists

λ ∈ C∗ = C−{0} with λL = L′, i.e., L and L′ are homothetic. Multiplication by

λ de�ned C → C induces an isomorphism T = C/L → C/L′ = T ′, also denoted
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by λ, de�ned by the commutative diagram

C
λ

−−−−−−→ Cy
y

T = C/L
λ

−−−−−−→ C/L′ = L′

Theorem 23 ([18] IX, �2). If L is a lattice in C, there exists an elliptic curve E

over C so that C/L and EL(C) are isomorphic as groups.

Conversely, we have the following.

Theorem 24 ([18] IX, �3). If E is an elliptic curve over C, there exists a lattice

LE over C so that E(C) and C/LE are isomorphic as groups.

Theorem 25 ([16], VI �4). Let E/C and E ′/C be elliptic curves corresponding

to lattices L and L′ respectively. Then E and E ′ are isomorphic over C if and

only if L and ′ are homothetic.

The above theorems state that for any elliptic curve E over C, there is a lat-

tice L such that C/L ∼= E(C). To �nd the corresponding lattice L of E, we need

to �nd ω1, ω2 where L = Zω1 + Zω2.

These can be computed using elliptic integrals [18], IX �4 . A fast and e�cient

method for calculating these integrals is the arithmetic-geometric mean, due to

Gauss.

We now de�ne the invariant Ω which appears in the Birch and Swinnerton-Dyer

Conjecture. Let E be an elliptic curve over R, and let L be the lattice corre-

sponding to E. Then we can choose a basis {ω1, ω2} for L with ω2 ∈ R [18].

De�nition 69. Let E be an elliptic curve over Q. Then

ΩE =

{
2ω2 if E[2] ⊂ E(R)

ω2 otherwise.
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Remark. Ω is the number of components of E(R) times the real period of E.

We may alternatively de�ne ΩE =

∫
E(R
|ω|, where ω =

dx

2y + a1x+ a3

is the

di�erential form associated with a global minimal model for E.
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Chapter 4

The Birch and Swinnerton-Dyer

Conjecture

In the early 1960s, Brian Birch and Peter Swinnerton-Dyer investigated a special

class of elliptic curves over Q with the use of the British computer EDSAC. The

general aim of the investigation was to relate the arithmetic rank r of an ellip-

tic curve E(Q) to the densities of the p-adic points on E, for all primes p. It

was thought that greater densities of p-adic points would generally correspond to

larger values of r.

A useful measure for the density of p-adic points is lim
n→∞

Npn/p
n, where Npn de-

notes the number of solutions to the congruence y2z ≡ x3−Axz2−Bz3(mod pn).

By Hensel's Lemma, this limit is Np/p for all but �nitely many p. Hence, Birch

and Swinnerton-Dyer examined the function f(P ) =
∏

p≤P (Np/p) for large P

for a number of curves E(Q). The results of the examination suggested that

f(P ) ∼ C(log P )r as P →∞, where C is dependent on the elliptic curve E(Q).

The ζ-function associated with E can be expressed as ζE(s) = ζ(s)ζ(s−1)/LE(s),

where, for all but �nitely many p,

LE(s) =
∏
p

(1 + (Np − p− 1)p−s + p1−2s)−1.
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Thus, LE(1) =
∏

(Np/p)
−1. However, at that time it was not known whether

LE(s) converged as s → 1 for all elliptic curves E, but it had been proven by

Deuring that LE(s) could be analytically continued to all of C if E admits com-

plex multiplication. This occurs when the endomorphism ring of a given elliptic

curve is larger than Z; these are the special curves alluded to at the beginning of

this section with which Birch and Swinnerton-Dyer studied in the formulation of

their groundbreaking conjecture.

The sources for this chapter are [1, 3, 4, 6, 10, 19].

4.1 The Birch and Swinnerton-Dyer Conjecture

The L-series of an elliptic curve is an analytic function that is used to encode

arithmetic information about the curve. One then hopes to deduce further arith-

metic properties of the elliptic curve by studying the analytic properties of its

L-series, much as one uses the Riemann ζ function to study the set of rational

primes.

The BSD Conjecture makes explicit this link between the arithmetic invariants

of an elliptic curve and the analysis of its L-function. The L-function is de�ned

in terms of local arithmetic invariants of E, but encodes information about the

global arithmetic invariants of E, e.g. the rank. We follow [18] for the discussion

involving the L-function.

Let E be an elliptic curve over Q and ∆ the discriminant of E.

For primes p of good reduction, de�ne ap = p + 1 − #E(Fp). Otherwise, for

primes p of bad reduction,

ap =


0 if E has additive reduction at p,

1 if E has split multiplicative reduction at p,

−1 if E has non-split multiplicative reduction at p.
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The L-function of E is the product

LE(s) =
∏
p|∆

(1− app−s)−1 ·
∏
p6|∆

(1− app−s + p1−2s)−1.

It follows from the estimate |ap| < 2
√
p that the product converges for Re(s) > 3

2
.

Each "good" factor can be expanded in the form

(1− app−s + p1−2s)−1 = 1 + app
−s + ap2p

−2s + · · · ,

where ap2 = a2
p − p, ap3 = a3

p − 2pap, · · · , and for "bad factors" apk = akp.

The product over all p yields LE(s) =
∑∞

n=1 ann
−s, where

an =
∏
j

aejpj if n =
∏
j

p
ej
j .

As the L-function is closely related to the zeta function ζ(s), it would be natural

to ask whether LE(s) has an analytic continuation to all of C; In fact, this deep

property of LE(s) is a consequence of modularity (Breuil, Conrand, Diamond,

Taylor, Wiles, 1995, 2001):

Corollary 7 ([18], XIV, �2). LE(s) admits an analytic continuation to C.

Remark. The L-function LE/K(s) can be de�ned for an elliptic curve over a num-

ber �eld K. LE/K is analytic for Re(s), but it is only conjectured that LE/K(s)

has analytic continuation to the entire complex plane. This is known as the

Hasse-Weil Conjecture.

We can now �nally state the �rst (weak) version of the BSD Conjecture.

Let E be an elliptic curve de�ned over Q. By Mordell's Theorem,

E(Q) ∼= E(Q)Tors ⊕ Zr,

for some non-negative integer r called the arithmetic rank of E often denoted rE

or r(E), and E(Q)Tors denotes the �nite subgroup of torsion points of E.
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First Birch and Swinnerton-Dyer Conjecture (Millennium Prize Problem

7, [11] V �2). Let LE(s) be the L-function of E(Q). Then the Taylor expansion

of LE(s) at s = 1 has the form

LE(s) = cr(s− 1)r + cr+1(s− 1)r+1 + · · · ,

where cr is a non-zero constant and r (often denoted as rE or r(E)) is the arith-

metic rank.

We will refer to this as the Rank Conjecture. Due to this conjecture, we call the

order of the zero of LE(s) at s = 1 the analytic rank of E, denoted ran(E).

Birch and Swinnerton-Dyer later re�ned the Rank Conjecture to provide rich in-

formation on elliptic curves. The second BSD Conjecture makes the link between

arithmetic invariants of the elliptic curve and the L-function more explicit.

Second Birch and Swinnerton-Dyer Conjecture ([11] V �2). Let E be an

elliptic curve over Q such that the Shafarevich-Tate group of E is �nite. The

residue of LE(s) at s = 1. i.e. the coe�cient C0, has a concrete expression in

terms of invariants of E/Q. Explicitly,

C0 = lim
s→1

L(E, s)

(s− 1)r
=
|X| · ΩE · Reg(E/Q) ·

∏
p cp

|ETors(Q)|2
.

The invariants on the right hand side of the above equation are

r the arithmetic rank of E(Q).

ΩE either the real period or twice the real period of a minimal model for

E dependent on whether E(R) is connected or not. See Section 3.8.

XE the Shafarevich-Tate group for E/Q. See Section 3.7. The BSD

conjecture is dependent on the cardinality of X, which itself is con-

jecturally �nite.

Reg(E/Q) is the elliptic regulator of E(Q). See Section 3.6.2

cp is an elementary local factor, equal to the cardinality of E(Qp)/E0(Qp),

where E0(Qp) is the set of points in E(Qp) whose reduction modulo p
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is non-singular in E(Fp). The number cp is usually referred to as the

Tamagawa number of E at p.

E(Q)Tors is the set of torsion points on E/Q. See Section 3.5.

The profound depth and scope of the BSD Conjecture is succinctly stated in a

quote attributed to Tate in 1974:

This remarkable conjecture relates the behavior of a function L at a

point where it is not at present known to be de�ned to the order of a

group X which is not known to be �nite!

Corollary 7 takes care of the �rst unknown; we will comment on the second un-

known later.

The second BSD conjecture is very similar to that of the analytic class number

formula. We now discuss analogies between the two, with the use of the source

[18].

Given an imaginary quadratic �eld K, the zeta function of K satis�es

ζK(s) = (s− 1)−1 2πh

w
√
|d|

+ · · · ,

where h is the class number of K, d the discriminant of K, and w is the number

of roots of unity in K.

In the case real quadratic �elds K, by the class number formula,

ζK(s) = (s− 1)−1 4hlog(ν)

2
√
d

,

where h is the class number of K, d the discriminant and ν is the fundamental

unit. We now compare these two formulae with the residues of the Taylor expan-

sion of the L-function of elliptic curves E at s = 1 with rank r = 0 and r = 1,

namely

cr =
Ω ·
∏

p cp ·#(XE) · Reg(E)

|E(Q)Tors|2
.

For an elliptic curve E with rank r = 0, we compare the residue cr to that of the

zeta function of an imaginary quadratic �eld K. The group XE can be regarded

96

 

 

 

 



as the analogue of the ideal class group, Ω
∏

p cp is the analogue to 2π/
√
|d|, and

|E(Q)Tors| is the analogue of w.
For an elliptic curve of rank r = 1, we compare the residue cr to that of the real

quadratic �eld K. Again, XE can be regarded as the analogue of the ideal class

group, however Ω is now the analogue of 4/
√
d and #E(Q)Tors has analogue 2,

which is the number of roots of unity in K. The elliptic regulator Reg(P ) is the

analogue to log(ν).

Recall that we used the Unit Theorem in the proof of the Mordell-Weil Theorem;

in fact the Unit Theorem in algebraic number theory can be seen as the analogue

of the Mordell-Weil Theorem for abelian varieties. Moreover, the �niteness of the

ideal class group in algebraic number theory can be seen as the analogue of the

conjectured �niteness of the Shafarevich-Tate group XE. This lends credence to

the conjecture of the �niteness of XE.

4.2 Discussion and Comments

In this section we do not give any proofs as they require concepts and results

which are beyond the scope of this thesis.

We begin by discussing partial results. The most signi�cant of these is:

Theorem 26 ([3], Theorem 5.16). If ran ≤ 1, then r = ran and X(E/Q) is

�nite.

This result is built on work of Gross-Zagier (1986), Zhang (2001), Kolyvagin

(1990), Bump et. al. (1990) and Murty-Murty (1991). Instances of these results

were established earlier for curves with complex multiplication by Coates-Wiles

(1977) and Rubin (1987).

There is a weaker form of the Conjecture. Some results on this have been proved.

Conjecture 1 (Parity Conjecture, [3], Conjecture 4.1).

r(E) ≡ ran(E) (mod 2).
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Theorem 27 (Monsky, 1996). The Parity Conjecture holds true for an elliptic

curve E over Q if X(E) is �nite.

Theorem 28 (Dokchitser-Dokchitser, 2009, [1]). If the p-primary part ofX(E/Q)

is �nite for at least one prime p then the parity conjecture for E/Q holds.

Remark. BSD Conjecture generalises to elliptic curves over number �elds [3] and

to abelian varieties [19].

There is an analogous conjecture for elliptic curves over function �elds [19]

and the following has been proven.

Theorem 29 (Artin-Tate, 1960s). The BSD Conjecture holds for an elliptic curve

E over a function �eld k if and only if X(E) is �nite.

Finding X is impossible in general; it is only known to be �nite when ran ≤ 1

[1].

The second BSD Conjecture implies an algorithm to compute a basis for E(Q),

by Manin [3, 19].

It is hoped that a proof of BSD would also yield a proof of the �niteness of

X [19]. We note two consequences of the BSD Conjecture.

Theorem 30 (Tunnel's Theorem, [8] I �1). Let n be an odd squarefree natural

number. Consider the two conditions:

(A) n is congruent;

(B) the number of triples of integers (x, y, z) satisfying 2x2 + y2 + 8z2 = n is

equal to twice the number of triples satisfying 2x2 + y2 + 32z2 = n.

Then (A) implies (B), and, if the weak form of the Birch-Swinnerton-Dyer con-

jecture is true, then (B) implies (A).

In 2010, Mazur and Rubin proved that if X is �nite, then Hilbert's 10th

problem has a negative answer over OK for any number �eld K[10].
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4.3 Computations

The main purpose of this section is to perform computations to

(a) verify BSD1, and

(b) assuming the BSD conjecture is true, predict the order of the Shafarevich-

Tate (S-T) group.

We �rst investigate the general approach to performing (a) and (b) by discussing

J.E. Cremona's conference proceedings on the BSD conjecture [1]. As an exam-

ple, we verify BSD1 for an elliptic curve of rank 3, and predict the order of its

S-T group. Thereafter, we discuss the mwrank package which is used for rank cal-

culations. We provide a detailed overview of how mwrank approaches 2-descent

by 2-isogeny since, with the theory to be provided, we will perform simpli�ed

calculations for determining the rank of an elliptic curve.

Finally, for the rank 2 elliptic curve E : y2 = x3 + 33x, we verify BSD1 and

predict the order of its S-T group.

This section makes extensive use of the SAGE package as it incorporates vari-

ous algorithms for elliptic curves. These include rank calculation, determining

analytic rank and calculation of various other invariants.

Sources used are [1, 4].

4.3.1 General Approach

We give an overview of the conference proceeding given by J. E. Cremona in 2011

[1].

Let E be an elliptic curve over Q with rank r, LE(s) the L-function of E, and

ran the analytic rank of LE(s).

We note the following:
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(1) The root number w(E/Q) can be computed, which in e�ect gives us the

parity of the analytic rank ran(E).

(2) Although beyond the scope of this thesis, by the Modularity Theorem, the

ratio L(E, 1)/Ω(E) is rational and can be determined exactly using modular

symbols. We note this development as it is possible determine whether or

not L(E, 1) is zero, and equivalently whether ran(E) = 0.

We can thus determine whether

ran(E) = 0 or ran(E) = 1, 3, 5, . . . or ran(E) = 2, 4, 6, . . . .

If ran(E) is odd, then evaluating L′(E, 1) approximately can prove that it is non-

zero, and hence that ran(E) = 1 if it is. Similarly, if ran(E) is even and positive,

then evaluating L′′(E, 1) approximately can prove that it is non-zero, and hence

that ran(E) = 2 if it is. Further, if ran(E) is odd, L′(E, 1) is approximately zero,

then we can show that it is exactly zero by �nding at least two independent points

in E(Q). This implies that r(E) > 1, and hence that ran(E) > 1. So computing

L′′′(E, 1) approximately can establish that ran(E) = 3 if it is.

If ran(E) ≤ 3, we can �nd the exact value of ran(E) using

(1) the root number for the parity;

(2) modular symbols to determine whether ran(E) = 0;

(3) the works of Kolyvagin and Gross-Zagier to distinguish ran(E) = 1 from

ran(E) = 3; and

(4) numerical evaluation of L(j)(E, 1).

However, if ran(E) > 3, we cannot determine it rigorously.

We now verify a rank 3 example found in [1]. The author of the conference

proceedings has used the computing package SAGE; we shall follow that syntax.

Let E = 234446a1 = [1, 1, 0,−696, 6784], which has conductor 234446. The
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root number wE = −1, thus ran(E) is odd.

|L′(E, 1)| < 10−22, so we should have ran(E) ≥ 3. Applying 2-descent �nds gener-

ators (15,-7),(16,-16) and (19,20) where Reg(E) = 2.159011 . . . andX(E/Q)[2] =

0. Thus r(E) = 3.

By Kolyvagin and Gross-Zagier, ran(E) > 1. Now L′′′(E, 1) = 59.09365958 . . . im-

plies that ran(E) = 3. Also, Ω(E) = 2.2808923 . . ., so L′′′(E, 1)/(3!Ω(E)Reg(E) =

2.00000 . . . approximately.

Finally,
∏
cp = 2 · 1 = 2 and #E(Q)textrmTors = 1.

BSD predicts that #X(E/Q) = L′′′(E,1)/6·Reg(E)·Ω(E)∏
cp/(#E(Q)Tors)2

= 1.

In closing, we note the general approach to quantifying, if possible, XE exactly.

X is a torsion abelian group. Let X(p) denote the p-primary part of X. Then

�nding |X| involves �nding |X(p)| for all p. In practice, one could try to show:

(a) |X(p)| is trivial for almost all p,

(b) Use p-descent and p-adic methods to determine |X(p)| for the remaining

primes.

(a) is currently only possible when ran ≤ 1, and (b) is often possible for individual

primes when ran ≥ 2.

4.3.2 Cremona's mwrank

We now consider the computing package mwrank authored by J. E. Cremona,

used extensively in the SAGE computing package for rank calculations of elliptic

curves.

The following is sourced from [4].

We start by noting two procedures.
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General two-descent: determine the image of the descent map φ (3.18). If the

image of the descent map has order 2t, then the rank of E(Q) is t, t− 1 or

t− 2, depending on whether the number of points or order 2 in E(Q) is 0,1

or 3 respectively.

Two-descent via 2-isogeny: used when E has a rational point P of order two.

This procedure has the advantage of being easier to calculate than general

two-descent, provided that we know of a rational point P on E of order

two.

We will cover two-descent via 2-isogeny as we will provide a crude example in the

following section based on it. Further details regarding general descent can be

found in [4] III �6.

We consider homogeneous spaces H of the form ( 3.13) and check if they have a

rational point. To do this, both methods used by mwrank make use of algorithms

which determine local solubility and, if at all possible, determine global solubility.

Let H be a curve of the form (3.13). The local solubility algorithm used by

mwrank can easily determine solubility of H over the reals. If g(x) has a real root

then it takes positive values, so H has real points. If however g(x) has no real

roots then the values of g(x) have constant sign, thus mwrank merely has to check

that a > 0.

Next, if p is an odd prime not dividing the discriminant of g, then H has points

modulo p which are nonsingular. These points lift to p-adic points.

For the other primes, it su�ces to check solubility in Zp for either g(x) or

g∗(x) = ex4 + dx3 + cx2 + bx + a. If g∗(x) is used, assume x ∈ pZp. Given

xk modulo pk, mwrank tries to lift to a p-adic point (x, y) with x ≡ xk(mod pk).

There are three cases: lifting is de�nitely possible; lifting is de�nitely not possi-

ble; or it cannot be computed without considering xk modulo a higher power of

p. The third case essentially makes use of Hensel's Lemma to e�ectively deter-

mine if lifting is possible or not. Finally, the prime p = 2 needs to be considered

separately.

The algorithm for global solubility used by mwrank starts by searching for a small
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rational point. If the search fails, local solubility is checked. If the local solubility

check passes, then a more thorough search is attempted using a quadratic sieving

procedure. The main point of departure is that it is of no use to do a thorough

search for points if local solubility everywhere is not assured, but also that there

is no point in checking local solubility if an obvious global point can be found.

The sieve-assisted search works as follows. For each possible denominator of x

mwrank precomputes, for each of several sieving moduli m, the residues to which

the numerator of x must belong if the right-hand side of the equation is to be

a square modulo m. For every odd prime p dividing the denominator of the x-

coordinate of a rational point, we must have
(
a
p

)
= +1, otherwise it would mean

that the leading coe�cient a is a square. Further, mwrank precomputes a list of

primes p for which
(
a
p

)
= −1, and discards the possible denominators divisible

by any of there primes. For p = 2, a similar condition holds. The searches are

restricted to ranges of x for which g(x) is positive. For two-descent via 2-isogeny,

mwrank simply restricts to positive x as the quartics are polynomials in x2.

We now provide an overview of 2-descent by 2-isogeny.

Let E be an elliptic curve with point P of order 2. We may translate P to

the origin by a change of coordinates, so assume E has equation

E : y2 = x(x2 + cx+ d) (4.1)

with c, d ∈ Z. Let x0 be a root of the cubic x3 + b2x
2 + 8b4x + 16b6, and set

c = 3x0 + b2, d = (c + b2)x0 + 8b4. If a1 = a3 = 0, we can avoid a scaling factor

of 2 by letting x0 be the root of x3 + a2x
2 + a4x + a6, and set c = 3x0 + a2, d =

(c+ a2)x0 + a4. Now, the 2-isogenous curve E
′ = E/ < P > has equation

E ′ : y2 = x(x2 + c′x+ d′)

where

c′ = −2c and d′ = c2 − 4d.
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E is nonsingular if and only if dd′ 6= 0. The 2-isogeny φ : E → E ′ has kernel

{O, P} and maps (x, y) to
(
y2

x2
, y(x2−d)

x2

)
. On the other hand, the dual isogeny

φ′ : E ′ → E maps (x, y) to
(
y2

4x2
, y(x2−d′)

8x2

)
.

For each factorisation d = d1d2 with d1 squarefree, we consider the homogeneous

space

H(d1, c, d2) : v2 = d1up
4 + cu2 + d2.

Let N1 = n1(c, d) be the number of factorisations of d for which the quartic

H(d1, c, d2) has a rational point, and n2 = n2(c, d) the number for which the

quartic has a point everywhere locally. Similarly, de�ne n′1 = n1(c′, d′) and

n′2 = n2(c′, d′). By an explicit calculation, E(Q)/φ′(E ′(Q)) is isomorphic to

the subgroup of Q∗/(Q∗)2 generated by the factors d1 for which H(d1, c, d2) has

a rational point. Thus we have

|E(Q)/φ′(E ′(Q))| = n1,

which must be a power of 2, say n1 = 2e1 ; similarly

|E ′(Q)/φ(E(Q))| = n′1 = 2e
′
1 .

Thus,

rank(E(Q)) = rank(E ′(Q)) = e1 + e′1 − 2.

If we �nd rational points on all quartics which have them everywhere locally, then

n1 = n2. However, there are possible cases where n1 < n2; these correlate with

either

(1) the rational point on the quartic could not be found as the search bound was

too small, or

(2) there being points everywhere locally but no rational point on some quartic.

In the case of (1), we could increase our search bound and hope that the program

terminates by �nding a rational point. However, it could be that case (2) is in

e�ect. Those quartics in case (2) above arise from elements of order 2 in XE,

investigated in section 3.7. We derived the exact sequence (3.21) which we can

104

 

 

 

 



apply to our current case as

0→ E(Q)/φ′E ′(Q)→ S(φ′)→X(E ′/Q)[φ′]→ 0. (4.2)

The injective map E(Q)/φ′E ′(Q) → S(φ′) is induced by taking a point (x, y) ∈
E(Q) with x 6= 0 to the space H(d1, c, d2) where d1 = x modulo squares: if

x = d1u
2 and v = uy/x then (u, v) is a rational point on H(d1, c, d2). P = (0, 0)

maps to d modulo squares. Conversely, if (u, v) is a rational point on H(d1, c, d2)

then (x, y) = (d1u
2, d1uv) ∈ E is rational. It follows that n1 is the order of

E(Q/φ′(E ′(Q)), and so

|X(E ′/Q)[φ′]| = n2/n1.

Similarly we �nd that

|X(E/Q)[φ]| = n′2/n
′
1,

when we construct an exact sequence similar to (4.2) by replacing E ′ with E and

φ′ with φ.

Local solubility of H(d1, c, d2) follows for all primes p which do not divide 2dd′;

for all other p we follow the criteria of Birch and Swinnerton-Dyer. For local

solubility in R, if d′ < 0 then we require d1 > 0. If either d′ < 0, or d′ > 0 and

c +
√
d′ < 0, we only consider positive divisors d1 of d, and need not apply the

general test for solubility in R.
Each rational point (u, v) maps to the point (d2

u, d1uv) on E. Similarly, a rational

point (u, v) on H(d′1, c
′, d′2) maps to a point on E ′, and hence via the dual isogeny

φ′ to the point (
v2

4u2
,
v(d′1u

4 − d′2)

8u2

)
in E(Q). Thus, the n1n

′
1 many points in E(Q) determined cover the cosets of

E(Q)/2E(Q), either once each, or twice each. When |E(Q[2]| = 2,

n1n
′
1

2
= |E(Q)/2E(Q)| = 2r+1,

while if |E(Q[2]| = 4,

n1n
′
1 = |E(Q)/2E(Q)| = 2r+2.
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So 2r = n1n
′
1/4 in both cases. This concludes two-descent via 2-isogeny.

4.3.3 Numerical Example

In this section we will give our own numerical example. We will verify that this

example satis�es the �rst BSD conjecture, and then calculate the order of XE

predicted by the second BSD conjecture. We have used [15] and [11], along with

the computational package Sage. Also, we follow the blueprint laid out in section

4.3.2.

Consider the elliptic curve

E : y2 = x3 + 33x.

We can factor E as y2 = x(x2 + 33). E has the point (0, 0) which is of order 2,

so we may use 2-descent via 2-isogeny.

Comparing E to equation (4.1), we see that c = 0, thus

c′ = 0 and d′ = −4d.

We can now attempt to calculate the rank rE of E to verify BSD1.

First BSD Conjecture. We calculate rE: We have that a = 0 and b = 33.

We factor b in all possible ways:

33 = 33× 1 and 33 = −33×−1.

The equations we consider are

(i) N2 = −M4 − 33e4

(ii) N2 = M4 + 33e4

(iii) N2 = 33M4 + e4

(iv) N2 = −33M4 − e4

We may disregard equations (i) and (iv) since we are required to calculate a real-

valued N . Further, note that equations (ii) and (iii) are similar with the variables

106

 

 

 

 



M and e reversed.

We have solutions

232 = 1 · 14 + 33 · 24,

922 = 33 · 44 + 24

Next, we consider E : y2 = x3 − 132x. The possibilities for b1 are

b1 = ±1,±2,±3,±4,±6,±11,±12± 22,±33,±44± 66,±132.

We can eliminate ±12,±44,±66 and ±132 as they are not squarefree. Thus, we

need check which of following 16 diophantine equations are solvable:

N2 = M4 − 132e4 N2 = 2M4 − 66e4 N2 = 3M4 − 44e4

N2 = 6M4 − 22e4 N2 = 11M4 − 12e4 N2 = 22M4 − 6e4

N2 = 33M4 − 4e4 N2 = 66M4 − 2e4 N2 = −M4 + 132e4

N2 = −2M4 + 66e4 N2 = −3M4 + 44e4 N2 = −6M4 + 22e4

N2 = −11M4 + 12e4 N2 = −22M4 + 6e4 N2 = −33M4 + 4e4

N2 = −66M4 + 2e4

We �nd 8 solutions:

12 = 14 − 132× 04 42 = 22× 14 − 6× 14 42 = −6× 14 + 22× 14

342 = −33× 44 + 4× 74 12 = −11× 14 + 12× 14 82 = −2× 14 + 66× 14

22 = 3× 24 − 44× 14 82 = 66× 14 − 2× 14

Thus, we �nd that

2r =
2× 8

4
= 4 = 22,

so the rank of the curve E is 2.

With the use of SAGE, we want to show that LE has a zero of order 2 at s = 1:

Firstly, we de�ne the elliptic curve E : y2 = x3 + 33x by the following com-

mand
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e = EllipticCurve([0,0,0,33,0])

Output: Elliptic Curve defined by y2 = x3 + 33 ∗ x over Rational

Field

Although determined already, for educational purposes we use mwrank to deter-

mine the rank:

e.rank()

Output: 2

We determine the root number w(E/Q). The function returns 1 if the root

number is even, and -1 if it is odd.

e.root_number()

Output: 1

BSD predicts that the Taylor series expansion of the LE(s) has a zero of order

equal to the rank of the E at s = 1. We run the commands:

l = e.lseries()dokchitser();

l.taylor_series(1,4)

Output: -1.14596351251186e-23 + (3.62222607041402e-23)*z +

8.23392136922372*z2 - 26.0262428251028*z3 + O(z4)

The root number w(E/Q) implies that the parity of ran(E) is even, so ran(E) 6= 1.

Also, by the Modularity theorem we can show that ran(E) 6= 0. Finally, L′′(E, 1)

is approximately non-zero, and thus ran(E) = 2. Hence, the rank conjecture cor-

responds with our �ndings that E has rank 2 as the Taylor series expansion of E

at s = 1 indeed has a zero of order two.

108

 

 

 

 



Second BSD Conjecture. We now calculate the invariants attached to the

elliptic curve.

Regulator

r = e.regulator();

Output: r => 5.32203813587631

Cardinality of Torsion Subgroup

tor = e.torsion_subgroup();

len(tor)

Output: 2

Real Period

e.period_lattice().real_period()

Output: 1.54713685979027

Tamagawa Product

e.tamagawa_product()

Output: 4

We now have all the invariants needed to predict the order of XE. By BSD2,

X =
LE(1) · |Etors(Q)|2

ΩE · Reg(E/Q) ·
∏

p cp

=
8, 23392136922372× 22

1.54713685979027× 5.32203813587631× 4

≈ 1.

4.4 Concluding Remarks

The �rst BSD Conjecture has been proven for elliptic curves E over Q with

ran ≤ 1 (Kolyvagin et. al.). Using theoretical and computational methods, the
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full BSD Conjecture can be proved for many elliptic curves, all of rank at most 1

and all but a �nite number with complex multiplication.

It is possible (in principle and in practice) to determine the exact value of ran

when at most 3, and it is also often possible to determine the (arithmetic) rank

in these cases, and hence verify BSD1 in many cases where ran ≤ 3. [1].

No example of a veri�cation of BSD for E for which ran > 3 is known, although

in�nitely many equations for which rank greater than 3 can be written down

(there exists an example, done by Elkies in 2006, which has rank at least 28) [3].

For no curve with ran > 2 is X known to be �nite, so there is no hope of verifying

BSD2 in these cases.[1]

Despite these obstacles to proving the Conjecture, the results discussed in Section

4.2 constitute theoretical evidence for its validity. Since isogenous elliptic curves

have the same L-function, the BSD Conjecture can be true only if the product
|X| · ΩE · Reg(E/Q) ·

∏
p cp

|ETors(Q)|2
is isogeny invariant; this result was proved by Cas-

sels (1965) assuming the �niteness of X(E). Note that the individual factors

may change under isogeny, the product however does not[16].

The numerical evidence, in cases where computation is possible, is also posi-

tive. Stein et. al. has veri�ed BSD for any elliptic curve E(Q) with ran ≤ 1, and

conductor ≤ 5000 [12].

We have the following result.

Theorem 31 (Bhargava-Shankar [2]). The average size of the 3-Selmer group

of all elliptic curves over Q, when ordered by height, is 4. This implies that the

average rank of all elliptic curves over Q, when ordered by height, is less than

1.17

This last result may suggest that proving the Conjecture for small rank covers

most elliptic curves, but it is entirely possible that failure may occur in higher

rank cases.
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