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ABSTRACT 
 

Spinel lithium manganese oxide (LiMn2O4), for its low cost, easy preparation and nontoxicity, 

is regarded as a promising cathode material for lithium-ion batteries. However, a key problem 

prohibiting it from large scale commercialization is its severe capacity fading during cycling. 

The improvement of electrochemical cycling stability is greatly attributed to the suppression 

of Jahn-Teller distortion (Robertson et al., 1997) at the surface of the spinel LiMn2O4 

particles. These side reactions result in Mn
2+

 dissolution mainly at the surface of the cathode 

during cycling, therefore surface modification of the cathode is deemed an effective way to 

reduce side reactions. The utilization of a nanocomposite which comprises of metallic Cu and 

Au were of interest because their oxidation gives rise to a variety of catalytically active 

configurations which advances the electrochemical property of Li-ion battery. In this research 

study, an experimental strategy based on doping the LiMn2O4 with small amounts of Cu-Au 

nanocomposite cations for substituting the Mn
3+

 ions, responsible for disproportionation, was 

employed in order to increase conductivity, improve structural stability and cycle life during 

successive charge and discharge cycles. The spinel cathode material was synthesized by co-

precipitation method from a reaction of lithium hydroxide and manganese acetate using 1:2 

ratio. The Cu-Au nanocomposite was synthesized via a chemical reduction method using 

copper acetate and gold acetate in a 1:3 ratio. Powder samples of LiMxMn2O4 (M = Cu-Au 

nanocomposite) was prepared from a mixture of stoichiometric amounts of Cu-Au 

nanocomposite and LiMn2O4 precursor. The novel LiMxMn2O4 material has a larger surface 

area which increases the Li
+ 

diffusion coefficient and reduces the volumetric changes and 

lattice stresses caused by repeated Li
+
 insertion and expulsion. Structural and morphological 

sample analysis revealed that the modified cathode material have good crystallinity and well 

dispersed particles. These results corroborated the electrochemical behaviour of LiMxMn2O4 

examined by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). 

The diffusion coefficients for LiMn2O4 and LiMxMn2-xO4 obtained are 1.90 x10
-3

 cm
2
 / s and 

6.09 x10
-3

 cm
2
 / s respectively which proved that the Cu-Au nanocomposite with energy band 

gap of 2.28 eV, effectively improved the electrochemical property. The charge / discharge 

value obtained from integrating the area under the curve of the oxidation peak and reduction 

peak for LiMxMn2-xO4 was 263.16 and 153.61 mAh / g compared to 239.16 mAh / g and 120 

mAh / g for LiMn2O4. It is demonstrated that the presence of Cu-Au nanocomposite reduced 

side reactions and effectively improved the electrochemical performance of LiMn2O4. 
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1.1  Energy: the World Main Concern 

 

For the past few years, energy deficiencies as well as environmental pollution have become 

the world main concern due to the economic development and the increase in the world 

population. Energy plays an important role in everyday life since the beginning of civilization. 

However, the used sources of energy were non-renewable. Non-renewable energy sources 

such as fossil fuels which are regarded as resources of economic value which cannot be 

voluntarily replaced by natural ways on a level equal to its demand. Oil, natural gas and coal 

are the mainly used non-renewable energy sources. One of their advantages is that they are 

widely available and affordable. Two different models were used to calculate the exhaustion 

time of these non-renewable energy sources. On one hand, using Klass model, the depletion 

time found for oil, coal and gas was approximately 34, 106 and 36 years respectively. On the 

other hand, with the New model the depletion time for oil coal and gas obtained was 35, 107 

and 37 respectively. Consequently, from the obtained new values it can be concluded that coal 

will remain the only available non-renewable energy sources until 2112 (Shafiee and Topal, 

2009). Moreover, the by-products and mining of these fossil fuels contribute significantly to 

the pollution of our environment. Arguably, it came to the attention of the world that these 

non-renewable sources of energy would be exhausted earlier than predicted. 

 

1.2 Renewable Energy as an Alternative Source 

 

As result of the energy sources problems, renewable energy sources such as solar cells and 

wind energy have gained one of the attentions. Nevertheless, during the course of the year 

depending on the season the demand of these renewable energy sources increases. Because of 

these facts, the permanence of these powers source is unstable. Hence the search to a more 

convenient, environmental friendly, cost effective, as well as safe energy source is on the rise. 

Energy storage systems with good response from the recurrent fluctuations of the power 

sources could be the right choice. LIBs are the most suitable solution. LIBs have high volume 

energy density and are able to provide up to 1,5 times in weight energy density than batteries 

such as Nickel metal hydride. LIBs have a nominal voltage of (3.7 V) which is more than 

three times than that of Nickel metal hydride (1.2 V) and Nickel-cadmium battery. The 

development of cost-effective, long-lasting and abuse tolerant LIBs are being widely used 

because of their high energy density and good cycle life which have led them to become the 
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most prevalent alternative for electronic devices. Nanotubes, nanostructured bimetallic alloys, 

nano-oxides and nanocomposites as electrode materials may solve the volume expansion 

problem, avoid the high irreversible capacity and improve the electrochemical properties for 

the next generation of lithium rechargeable batteries. The electrochemical performance of the 

cathode material as part of the battery depends on the particles properties such as morphology, 

specific surface area, crystallinity and composition hence it is an essential part in the battery. 

There are different cathodes materials with good electrochemical performance, low cost as 

well as high stability that are investigated such as  LiNiO2 (Nagaura and Tozawa, 1990) and 

LiCoO2 (Dahn et al., 1994) with layer of (R3m) structure, LiNiVO4 and LiCoVO4 (Fey et al., 

1997) with spinel (Fd3m) structure and LiMn2O4 (Chang et al., 1999) with spinel (Fd3m) 

structure. However, LiMn2O4 has become the most promising cathode material above all 

since it offers lower cost, environmental friendliness, no toxicity and a better safety 

properties.  

Spinel LixMn2O4 mainly exhibits two voltage plateaus, 4 V for 0 < x ˂ 1 and 3 V for 1 < x ˂ 

2. Even though the cycling performance of spinel LiMn2O4 electrode is far better in the 4 V 

range than 3 V range, it shows considerable capacity fading in the 4 V range also, on long-

term cycling. This capacity fading of the material has been attributed to several factors, such 

as: (1) the Jahn–Teller distortion caused by Mn
3+

 would lead to the degradation of cyclability 

in LiMn2O4 during the Li
+
 intercalation and de-intercalation (Robertson et al., 1997), (2) 

dissolution of manganese into the electrolyte and decomposition of the electrolyte (Xia and 

Yoshio, 1997), (3) cation mixing between Li and Mn ion in the spinel lattice (Chan et al., 

2003a) (4) oxygen loss from the spinel lattice (Yang et al., 2003) and (5) break down of the 

spinel lattice (Xia and Yoshio, 1997). 

 

For the past few years, many have tried to improve LiMn2O4 through doping using diverse 

elements improve the electrochemical performance. For example, the non-metals such as B 

(Thirunakaran et al., 2004, Chan et al., 2006, Liu et al., 2013), Br (Du et al., 2011), the 

general metals such as, Ti (Liu et al., 2007b), Fe (Liu et al., 2013), Ni (Wu et al., 2007), Cu 

(Ein-Eli et al., 2005), Ga (Liu et al., 2007a) Ag (Son et al., 2004, Tay and Johan, 2010), Au 

(Tu et al., 2006) the rare-earth metals La (Sun et al., 2012), Ce (Ha et al., 2007) . On the other 

hand, other researchers have also modified LiMn2O4 by surface coating (Li and Xu, 2008, Shi 

et al., 2010, Wang and Sun, 2012), laser annealing (Pröll et al., 2011), pulsed laser deposition 

(Yunjian et al., 2009). Among all these methods, doping method shows improved 

electrochemical performance as it can weaken the Jahn-Teller effect and improve the stability 
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of the structure. The increased stability of the structure and the weakened Jahn-Teller effect 

can both participate in the improvement of the cycle performance.  

This research focus was aimed on doping the LiMn2O4 with small amount of Cu-Au 

nanocomposite cations for substituting the Mn
3+

 in order to prolong the life time of the 

cathode and improve the electrochemical performance of the cathode material  

 

1.3 Research Problems 

 

Due to their characteristics such as high energy and power densities, lithium-ion batteries 

have become the most important type of energy storage. Lithium-ion batteries find their use in 

electrics vehicles (EVs), portable devices. Moreover batteries are also needed in the 

automotive industry to reduce our consumption of oil as well as to make more 

environmentally friendly vehicles (Dresselhaus et al., 2001, Yang et al., 2011, Tarascon and 

Armand, 2001). LiMn2O4 as cathode material plays a crucial role in to the electrochemical 

performance of lithium-ion batteries. However, the disadvantage is that spinel LiMn2O4 

suffers from severe capacity fading, especially at higher temperature (55 °C) during 

discharging / charging. This limits its cycle ability and does not allow its commercialization 

(Liang et al., 2008). But, because of their cost effective as well as their environmental 

friendliness LiMn2O4 spinel systems have become the most promising cathode materials for 

electrical vehicles (EV) and industrial use. In order for rechargeable battery to be 

commercialized, it has to be based on intercalation of compound. This leads to a search into 

improving the properties of the spinel LiMn2O4 cathode material. But, how can this be 

solved? Has become one of the focal concerns. Therefore, this MSc research work proposes a 

new dopant namely: Cu-Au nanocomposite that is used in the surface modification of 

LiMn2O4, with the expectation of improving the electrochemical performance which is 

investigated using cyclic voltammetry (CV) and electrochemical impedance (EIS).  

 

1.4 The Thesis Statement 

 

This study makes use of copper and gold as bimetallic transitions metal nanocomposite as 

doping materials, for the enhancement of the electrochemical performances of LiMn2O4 

spinel system. The properties of copper and gold nanocomposite and LiMn2O4 are expected to 

improve the life cycle of the batteries at high electrode capacity as well as the charge / 

discharge capacity. The MSc. Research study was done based on the following questions: 
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1) Why the choice of LiMn2O4 as cathode materials amongst all others? 

2) How will doping of nanocomposite affect the electrochemical performance of LiMxMn2-

xO4? 

3) Does the pristine LiMn2O4 contribute to the battery performance? 

4) What will the rate determining step in the lithium elimination / addition in the modified 

LiMxMn2-xO2 be? 

 

1.5 Rationale & Motivation 

 

Deintercalation of Li from a transition metal oxide (cathode) causes the material’s lattice to 

contract. Extraction of all, or even 80-90%, of the Li-ions would change the structure so much 

that the electrode would fail after a small number of charge / discharge cycles. In practice, 

batteries are as a rule designed so that only about half of the Li-ions are ever deintercalated 

from the cathode. The gravimetric capacities of cathode materials are thus limited to 120-160 

mAh / g. Anode materials, in contrast, have gravimetric capacities of 372 mAh / g or more. 

The capacity difference between anode and cathode materials means that the cathode in LIBs 

must be several times more massive than the anode. It is thus particularly important to 

develop cathode materials with higher capacities. To achieve this objective, both the energy 

density and the current density require significant improvement. The current density is in 

particular determined by the Li-ion diffusion through the electrode materials. The 

performance of current energy storage devices still require higher energy and power densities, 

faster recharge rates and longer charge-discharge cycle lifetimes. The energy output of LIBs’s 

depends on both the operating voltage (determined by redox reaction), and the charge storage 

capacities of the electrode materials. When a battery is discharged rapidly to provide high 

power, overpotential is needed to drive the electrode reaction at sufficiently fast rates, which 

decreases the operating voltage and the energy. 

The capacity fades mainly due to the following three factors: 

 

 Dissolution of Mn
3+

. After cycling or storage, the surface of LiMnO is rich in Mn
3+

, contrary 

to the bulk structure. The Mn
3+

 at the surface may disproportionate, and Mn
2+

-ions may 

dissolve in the electrolyte solutions (Jang et al., 1996). 

 Jahn-Teller effect. At the end of discharge, distortion causes Li1-x[Mn2-x]O4 structure 

destruction to form a tetragonal structure, which is low in symmetry and high in disorder. 
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This local distortion is related to the vacancy / occupancy of the e.g. antibonding orbital of the 

Mn
3+ 

ionizing successive charge and discharge cycles, respectively (Goodenough, 1998). 

 In organic solvents, the de-lithiated particles are not stable at the end of discharge; the high 

oxidation ability of Mn
4+

 will lead to decomposition of the solvent (Benbow et al., 2011). 

 

1.6 Aims and Objectives of the Research 

 

The aim towards improving Li-ion battery cathode performance includes the following facets 

that are economical and benign to human health and environment: 

 Synthesis of LiMn2O4 cathode materials using cost-effective and nontoxic precursors.  

 Increasing life cycle and performance (decreasing internal resistance and increasing 

output power) by changing the composition of the material used in the cathode; use of 

relatively few numbers of reagents. 

 Increasing the surface area of the electrodes.  

 Improving capacity by improving the structure, to incorporate more active materials.  

 Improving the safety of Lithium-ion batteries.  

 

The objectives were the following: 

 

 To synthesize LiMn2O4 cathode material via co-precipitation method 

  To synthesize Cu-Au nanocomposite via chemical reduction method 

  To dope LiMn2O4 cathode materials with the synthesized Cu-Au nanocomposite 

 To characterize the synthesized cathode materials via, thermal gravimetric analysis 

(TGA), high resolution scanning electron microscopy (HRSEM), high resolution 

transmission electron microscopy (HRTEM), ultraviolet-visible  spectroscopy (Uv - vis), 

x-ray diffraction (XRD), fourier-transform infra-red (FTIR) cyclic-voltammetry (CV), 

electrochemical impedance spectroscopy (EIS)  

 To study the electrochemical properties of the cathode materials. 

 

1.7 Thesis Structure  

 

This thesis comprises six (6) chapters and is structured as follows: 
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Chapter one  

 

This chapter gives us an introduction of different cathode materials used for Li-ion batteries 

but mostly focussed on LiMn2O4 as well as the different dopants such as nanomaterial that 

have been done to improve its electrochemical performance. The aim and objectives are also 

stated in this chapter. 

 

Chapter two 

 

This chapter gives a literature review relating to the definition of Li-ion batteries, its main 

components. A better understanding of LiMn2O4 as well as nanomaterial will be presents in 

this section. 

 

Chapter three 

 

The method used for the synthesis of LiMn2O4, Cu-Au nanocomposite, Cu-Au 

nanocomposite-doped LiMn2O4 as well as the instrumentations and characterization used are 

fully detailed in this section. 

 

Chapter four 

 

The results found for the synthesized LiMn2O4, Cu-Au nanocomposite doped LiMn2O4 are 

presented and discussed in this chapter. 

 

Chapter five 

 

This section displays the results and discussion obtained for the novel LiMxMn2-xO4 

 

Chapter six 

 

Finally this chapter will present the conclusion as well as recommendations. 

 

Reference  

 

This section is ascribed to the references that were used for this thesis. 
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1.8 Research Framework 

 

For the achievement of this MSc research, the following steps had to be followed: 

 

Figure 1: Conceptual diagram of this thesis 
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CHAPTER 2 : LITERATURE REVIEW 
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2.1 Introduction 

 

2.1.1 Background  

 

Batteries can be regarded as unit cells containing chemical energy that can be converted into 

electrical energy (Husain, 2011). These cells are bounded in a case to form a battery unit. A 

battery pack is then defined as an assembly of these separate battery units that are connected 

in a series and parallel grouping to deliver the expected voltage and energy to the power 

storage system. The stored energy in a battery is the difference in free energy between 

chemical components in the charged and discharged states. This available chemical energy in 

a cell is converted into electrical energy only on demand, using the basic components of a unit 

cell. The electrochemically active constituent of the positive or negative electrode is called the 

active material. The redox reaction takes place at the two electrodes, resulting in a bonding 

and releasing of electrons. The electrodes have to be electronically conducting and they are 

positioned at diverse sites, a separator plays the role of splitting them. Throughout battery 

process, electrons flow from one electrode to another. Nevertheless, this flow of electrons in 

the cell is maintainable only if electrons that are generated during the chemical reaction are 

capable to pass through an external electrical circuit that links those two electrodes. The 

battery terminals are regarded as joining points among the two electrodes and the external 

circuit. On the other hand, external circuit make sure that most of the chemical energy that is 

stored is released only on demand and is used as electrical energy. Batteries are divided into 

two different types: primary batteries defined as those that cannot be recharged for examples 

lithium batteries used in clocks, cameras etc. The other type is secondary batteries; these are 

rechargeable and can be reuse. The examples of these rechargeable batteries are: Lead-acid, 

Nickel-cadmium, Lithium-ion, Zinc-air, Lithium-polymer, Sodium-sulphur batteries. Figure 

2.1 is a representation of Ragone plot showing different energy devices and their relative 

power and energy. 
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Figure 2.1: Ragone plot showing different energy storage systems and their relative 

power and energy (Van den Bossche et al., 2006) 

 

2.1.2  Batteries components 

 

2.1.2.1 Positive electrode 

 

The positive electrode can be defined as an oxide or sulphide or some other compound that 

can easily be reduced through cell discharge. This electrode consumes electrons from the 

external circuit during cell discharge. Examples of positive electrodes are lead oxide (PbO2) 

and nickel oxyhydroxide (NiOOH). The electrode materials are in the solid state (Husain, 

2011). 

2.1.2.2 Negative electrode  

 

The negative electrode is a metal or an alloy that is adept of being oxidized through cell 

discharge. This electrode generates electrons in the external circuit during cell discharge. 

Examples of negative electrodes are lead (Pb) and cadmium (Cd). Negative electrode 

materials are also in the solid state within the battery cell (Husain, 2011). 
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2.1.2.3 Electrolyte  

 

The electrolyte is the medium that allows the conduction of ions between the positive and 

negative electrode of a cell. The electrolyte must have high and selective conductivity for the 

ions that take part in electrode reactions, but it must be a non-conductor for electrons in order 

to avoid self-discharge of batteries. The electrolyte can either be solid material, liquid or gel. 

In addition the electrolyte can be acidic or alkaline, depending on the type of battery. 

Traditional batteries such as lead-acid and nickel-cadmium use liquid electrolytes. In lead-

acid batteries, the electrolyte is the aqueous solution of sulphuric acid [H2SO4(aq)]. Advanced 

batteries currently under development for EVs, such as sealed lead-acid, nickel-metal-hydride 

(NiMH), and lithium-ion batteries utilizes an electrolyte that can either be gel, paste or resin. 

Lithium-polymer batteries use a solid electrolyte (Husain, 2011). 

 

2.1.2.4 Separator 

 

The separator can be regarded as an electrically insulating layer of material that is able to 

essentially separate electrodes of opposite polarity. Separator has to allow the flow of ions of 

the electrolyte and may also play the role of storing or allow the electrode to immobilize 

easily (Husain, 2011). 

 

2.2 Lithium-ion Batteries 

 

Lithium as a metal is known to have a high electrochemical reduction potential (3.045 V) and 

the lowest atomic mass (6.94), which shows promise for a battery of 3 V cell potential when 

combined with a suitable positive electrode. The interest towards secondary lithium cells 

soared soon after the arrival of lithium primary cells in the 1970s, although the main 

challenge was the highly reactive nature of the lithium metal with moisture, restricting the use 

of liquid electrolytes. But late in the 1970s, it was revealed by researchers at Oxford 

University that lithium can be intercalated (absorbed) into the crystal lattice of cobalt or 

nickel to form LiCoO2 or LiNiO2 tiled the way toward the development of Li-ion batteries 

(Husain, 2011). The use of metallic-lithium is bypassed in Li-ion batteries by using lithium 

intercalated (absorbed) carbons (LixC) in the form of graphite or coke as the negative 

electrode, alongside with the lithium metallic oxides as the positive electrode. The graphite 

has the capacity of hosting lithium up to a composition of LiC6. Most of Li-ion batteries make 
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use of cobalt as positive electrode, though it is expensive but has proven to be the most 

adequate. Other alternative positive electrode such as nickel oxide LiNiO2, is known to have a 

complex structure and is cost effective. Although, LiNiO2 has the similar performance to 

lithium oxide electrodes. Another positive electrodes is known as manganese oxide based 

(LiMn2O4 or LiMnO2) which are also under investigation, because manganese is less toxic, 

cheaper, and broadly available (Doeff, 2013). Figure 2.2 displayed below is a representation 

of a Li-ion battery. 

 

 

 

Figure 2.2: Li-ion battery (Meng and Arroyo-de Dompablo, 2009) 
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2.2.1 Lithium-ion batteries charge / discharge process 

 

The charge / discharge process is illustrated below: 

 

 

 

Figure 2.3: Schematic representation for the charge / discharge process of Lithium-ion 

batteries (Bazito and Torresi, 2006)  

 

2.2.1.1 Charge process 

 

During cell charge, lithium ions move in the opposite direction from the positive electrode to 

the negative electrode. The nominal cell voltage for a Li-ion battery is 3.6 V, which is 

equivalent to three NiMH or NiCd battery cells.  

 

2.2.1.2 Discharge process 

 

During cell discharge, lithium ions (Li
+
) are released from the negative electrode that travels 

through an organic electrolyte toward the positive electrode. In the positive electrode, the 

lithium ions are quickly incorporated into the lithium compound material. The process is 

completely reversible.  
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2.3 LiMn2O4: the Idyllic Cathode Material for Lithium-ion Batteries 

 

The LiMn2O4 cathode material is known to form (FdЗm) as spinel structure, in which 

manganese occupies the octahedral sites and lithium predominantly occupies the tetrahedral 

sites (Thackeray et al., 1993). Moreover Li
+
 ions reside in the 8a tetrahedral sites then 

manganese resides in the octahedral (16d) site and the other octahedral site (16c) is empty. 

During Li
+
 diffusion within the spinel structure, Li

+
 ion firstly moves from the 8a site to the 

neighbour empty octahedral 16c site, after that to the next 8a site in such a way that the Li
+
 

ion takes the diffusion path (8a-16c-8a). The LiMn2O4 is known to have the following 

empirical formula: AB2X4, where A cations reside on the 8a tetrahedral sites, B cations reside 

on the 16d octahedral sites and the X cations reside on the 32e sites in a ccp (cubic close-

packing) array as shown on Figure 2.4 lithium is in 8a tetrahedral sites, thus can be reversibly 

extracted, leading to the transformation of LiMn2O4 to λ-MnO2.Moreover, the spinel LiMn2O4 

is changed to tetragonal Li2Mn2O4 when there are more lithium ions inserted into the 16c site 

at 2.8V. The overall electrochemical reaction is written as follow (Xia, 2008, Rossouw et al., 

1990). 

 

2 2 4

arg arg

2 2 4arg arg
- - -

Ch e Ch e

Disch e Disch e
MnO Li e LiMn O Li Mn O Li e         (1) 

 

Cubic     Cubic   Tetragonal  

(Eichinger and Besenhard, 1976) 

In this case, the paths for lithiation and delithiation are a 3-dimensional network of channels 

rather than planes. This three-dimensional spinel structure leads to the improvement of the ion 

flow (Zhu et al., 2008) among the electrodes which lowers the internal resistance and 

increases the loading capability. The use of the spinel LiMn2O4 as cathode material in lithium 

ion batteries also presents advantages such as: manganese abundance, non-toxicity, low-cost, 

and possibility of insertion of lithium ions per unit formula. This last aspect is very appealing 

due to the fact that lithium-ion batteries is able to function at both 3 and 4V vs. Li / Li
+
 

(Thackeray, 1995). Lithium ions can be extracted from LiMn2O4 to form the λ-MnO2 phase, 

while still remaining in its cubic symmetry structure (Hunter, 1981). Thus, even a small 

external perturbation to LiMn2O4 spinel, such as a small amount of Li
+
 insertion or λ-MnO2

 

extraction, leads to the reaction of high pin Mn
3+

 ions with accompanying Jahn-Teller 

distortion.  
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Figure 2.4: Structure of LiMn2O4 showing a cubic close-packing arrangement of oxygen 

ion at the 32e site, the lithium ion at the tetrahedral 8a site while the Mn
3+ 

/ Mn
4+

 ions 

reside at the 16d sites. 

 

2.3.1 Characteristics of cathode materials for Lithium–ion batteries 

 

Different cathode materials have been used in the making of the lithium ions batteries, among 

which LiCoO2 is found to be the most currently commercialized cathode material but cannot 

meet the requirement of large scale demands due to its low energy density of 150 wh kg
-1

, 

high cost, safety concern as well as toxicity. However the principal characteristics for the 

cathode material are as follow: 

 High discharge voltage: The charge reaction should have a large negative free energy: 

high discharge voltage. 

 High energy density: The host structure must have a low molecular weight and the ability 

to intercalate a large amount of lithium. 

 High power density: The host structure should have a high chemical diffusion coefficient. 

 Long cycle life: The structural modification during intercalation and deintercalation 

should be as small as possible. 

 The material should be chemically stable, nontoxic and inexpensive. 

 The handling of the material should be easy. 

These characteristics make Li-ion batteries being highly suitable for EV and HEV and other 

applications of rechargeable batteries 
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Table 1: Different cathode materials used in LIBs (Doeff, 2013) 

 

Cathode Materials Advantages Disadvantages 

LFP (LiFePO4 and variants) Moderately low cost Low operating voltage 

Excellent high rate performance Low capacity, especially for 

substituted variants 

No resource limitations Controlling patents 

Very slow reaction with 

electrolyte 

Excellent safety (no oxygen 

release) 

NMC (LiNi1 / 3Co1 / 3Mn1 / 

3O2) and variants 

High operating voltage High cost of Ni and Co 

High capacity Potential resource limitations 

Slow reaction with electrolytes Relatively new in performance 

Moderate safety (oxygen release Controlling patents 

NCA (LiNi0.8Co0.15Al0.05O2) Performance is well established High cost of Ni and Co 

Slow reaction with electrolytes 

High capacity Potential resource limitations 

High voltage Controlling soft patents 

Excellent high rate performance 

LMO (LiMn2O4 and variants) Low cost Mn solubility issue, affecting 

cycle life Excellent high rate performance 

High operating voltage 

No resource limitations Low capacity 

Moderate safety (oxygen 

release) 

 

2.3.2 Methods used for the synthesis of the spinel LiMn2O4 

 

Most of the methods used in the synthesis of LiMn2O4 are: sol-gel method, co-precipitation 

method and hydrothermal method. Compared with the conventional solid-state reactions, the 

sol-gel method is believed to offer many advantages such as lower temperature processing, 

better control of material morphology, smaller and more uniform particles (Liu et al., 2004, 

Fergus, 2010, Amdouni et al., 2006). Sol-gel method is also one of the most cost-saving and 

time-effective ways to produce doped metal oxides in large quantities (Balaji et al., 2012). 

Co-precipitation method can make the product smaller in size and thus higher in specific 

surface which is an important parameter when working with nanomaterials, but with the 
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disadvantages of instability in electrochemical performance. Although it is easier to control 

the stoichiometry of lithium manganese oxide by the co-precipitation method (Chan et al., 

2003b) than by solid state synthesis. On the other hand, the hydrothermal method requires 

high temperature and high pressure (Yang et al., 2003) in order for the synthesis to take place. 

In this method, the particles obtained are superfine powders and it is easier to generate a lot of 

nano-scaled metal oxides powder. The particle sizes obtained from the hydrothermal method 

may vary from numerous nanometers to hundreds of nanometers, which generally are not 

easy to obtain.  

The above discussed synthetic methods show that to improve the cycle performance and 

decrease capacity fading, a better target product which is uniform, appropriate in size, stable 

and pure in spinel structure is highly required, so we should choose the appropriate method 

according to the demands. Based on the above, the choice of co-precipitation method was 

made for the cathode materials synthesis in this present work. 

 

2.3.3 The Jahn-Teller Distortion of LiMn2O4 

 

It has been proven that the Mn
3+

 distort at the octahedral site, when the electrons located in 

the 3d-band of this cation are placed in the high spin of the electronic configuration. Because 

the high spin cation has four 3d-band electrons, it caused the distortion to occur. As a result of 

crystal field splitting, the electronic band splits into two main degenerate energy levels. The 

t2g energy level dxy, dxz and dyx are formed by the 3d electron orbital. Moreover the energy 

level is higher in the t2g energy level and is composed of two 3d orbital such as dx2-y2 and dz2. 

The electrons located in the t2g orbital do not exhibit any bonding with the oxygen ion on one 

hand. On the other hand, the eg level is made of two electrons orbital, and these electrons 

orbital directly face an orbital of the oxide ions. Because the energy levels of these orbitals are 

degenerated, hence they are called antibonding. And if the rule of Hund is obeyed; orbital 

must contain its own unique electron. Henceforth the three orbitals of the t2g and the one in the 

eg orbital in the configuration of high- spin are half filled. If the oxide ions in the z-axis move 

away from dz2 orbital, leading to a more stable dz2 orbital, there will be degeneracy of the eg 

orbital resulting in a gain of energy. Thus, this movement leads to a distortion of the 

octahedral site to form an elongated octahedron called the Jahn–Teller distortion (Yamada 

and Tanaka, 1995). Figure 2.5 represents an illustration of Mn
3+

 in oxygen octehadra. 
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Figure 2.5: Energy splitting of the 3d electron states in an octahedral crystal field (Mn
4+

) 

and the
 
Jahn-Teller effect (Mn

3+
) (Abela et al., 2009)  

 

In the LiMn2O4 stoichiometry, half of the manganese cations are in the Mn
3+

 oxidation station 

and the other half are in the Mn
4+

 oxidation state. Surprisingly, below room temperature the 

stoichiometry of LiMn2O4 is orthogonal, and at temperature higher than 55 
o
C the 

stoichiometry of LiMn2O4 is cubic. Subsequently, the charge ordering of the spinel leads to a 

phenomenon that gives rise to the Jahn-Teller distortion of the cubic material (Rodriguez-

Carvajal et al., 1998). Nevertheless, if some of the Mn cations are substituted for Lithium ion, 

then not half the Mn cation in the LiMn2O4 spinel will be in the 3+ oxidation state, and the 

rest of the cation will be in the 4+ oxidation state. It is known that the Mn
4+

 cation, cannot 

leads to the Jahn-Teller distortion, hence it will not be easier to make structural changes on 

the substituted LiMn2O4 below room temperature (Yamada and Tanaka, 1995). LiMxM2-xO4 

cathodes has the ability to higher Mn valence which may be need to suppress the Jahn-Teller 

distortion and improved of cyclic performances can be expected as well as an increased in the 

charge / discharge at higher voltage (Okada et al., 2000).  
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2.4 Nanotechnology and the Application of Nanomaterials 

 

Nanotechnology is defined as the design, fabrication and application of nanostructures or 

nanomaterials, and it plays a crucial role in the understanding of the relationships between 

physical properties or phenomenon and dimensions of materials. However, some of these 

properties are still yet to be discovered. For instance, the band gap of semiconductors can be 

adjusted by fluctuating the dimensions of the materials. Moreover, nanotechnology also deals 

with materials or structures in nanometer scales, typically ranging from subnanometers to 

several hundred nanometers (Cao, 2004). One nanometer is 10
-9

 meter. Some of the areas in 

which this new technology is applied are: structured applications for instance in aerospace and 

automotive industries, energy conversion, storage and distribution, defence, chemical 

applications, information processing, storage and transmission and nano-biotechnology 

 

2.4.1 The impacts of nanomaterials in Lithium-ion batteries 

 

The decrease in size compared to bulk material could have positive and negative impacts in 

lithium-ion batteries.  

 

2.4.1.1 Positive impacts of nanomaterials in lithium-ion batteries 

 

 The reduced dimensions increase considerably the rate of lithium insertion / removal, 

because of the short distances for lithium-ion transport within the particles. The 

characteristic time constant for diffusion is given by t = L
2
 / D, where L is the diffusion 

length and D the diffusion constant and the time t for intercalation (Aricò et al., 2005). 

 Electron transport within the particles is also enhanced by nanometer-sized particles, as 

described for lithium ions (Aricò et al., 2005). 

 A high surface area permits a high contact area with the electrolyte and hence a high 

lithium-ion fluxes across the interface. 

 For very small particles, the chemical potentials for lithium ions and electrons may be 

modified, resulting in a change of electrode potential (thermodynamics of the reaction) 

(Balaya et al., 2006) . 

 The composition range over which solid solutions exist is frequently more extensive for 

nanoparticles and the strain associated with intercalation is often improved (Bruce et al., 

2008). 
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2.4.1.2 Negative impacts of nanomaterials in lithium ion batteries 

 

 The synthesis of nanoparticles may be difficult, and their dimensions may be tricky to 

control. 

 High electrolyte / electrode surface area may lead to extra considerable side reactions with 

the electrolyte, and make it difficult to maintain the interparticle contact. 

 The density of a nanopowder is usually minus than of the same material formed from 

micrometer-sized particles. The volume of the electrode increases for the same mass of 

material thus reducing the volumetric energy density (Bruce et al., 2008). 

 

2.4.2 Bimetallic nanocomposites 

 

Metal nanoparticles can be alienated into two groups: monometallic or bimetallic. Bimetallic 

nanoparticles are nanoparticles that are made up of two metal nanoparticles. Their increased 

in surface area have lead them to have higher catalytic properties compared to their 

corresponding monometallic nanoparticles (Zhou et al., 2006). Bimetallic nanocomposites are 

obtained as a result of simultaneous reduction of the metal salts to nanoparticles from 

successive reduction of the more noble metal salt followed by the reduction of the less noble 

metal salt. Bimetallic nanocomposite are of considerable interest since they possess 

interesting size depended electrical, chemical and optical properties (Devarajan et al., 2004). 

They are of special importance in the field of catalyst, since they often exhibit better catalytic 

properties than their monometallic counterparts (Zhou et al., 2006). 

 

2.4.3 Copper and gold nanocomposite 

 

Copper and gold as the earliest metal are amongst the first to be known to man. The attractive 

properties which made copper so useful are: good corrosion resistance, attractive colour, 

excellent workability and good mechanical properties and, in addition, copper has the best 

electrical and thermal conductivity of any commercial metal on one hand. On the other hand, 

because of their properties such as optical, electronic, magnetic as well as catalytic, gold 

nanoparticles keep on emerging compared to those of bulk materials. These unusual 

properties make them able to offer a wide range of applications (Daniel and Astruc, 2004, 

Huang and El-Sayed, 2010). Since these properties strongly depend on the shape, the size, the 

crystallinity and the surface structure of nanoparticles, significant progresses in synthesis 

methods emerged in recent years for controlling the particles morphology (Sau and Murphy, 
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2004, Hebié et al., 2013). Among the mentioned synthesis approaches in the literature, the 

template method, the electrochemical method, the microwave rapid heating, the laser ablation, 

and the seed-mediated growth methods have been undertaken to yield gold nanoparticles with 

uniform sizes and morphologies (Langille et al., 2012, Sau and Murphy, 2004). 

Nanocomposites have also attracted considerable attention due to their superior properties in 

comparison with their monometallic counter parts. Thus, copper–gold nanocomposite will 

then have good electronic, chemical and mechanical properties which would be able to 

enhance the electrochemical performances of LiMn2O4. Many methods have been used in 

synthesizing nanocomposites, below in Table 2 is a summary of some of the methods used for 

the synthesis of nanomaterials. 
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Table 2: Different methods for synthesizing nanocomposites 

 

Method Description of the 

Method 

Advantages Disadvantages References 

Molecular Beam Here beams are directed 

to a particular metal 

targets using a variety of 

methods; laser 

vaporization, pulsed arc, 

ion and magnetron 

sputtering. Which leads 

to the formation of 

clusters of metallic 

nanoparticles including 

nanoalloy. 

 

(1) Easiness of creating 

any type of nanoparticle 

or nanoalloy from 

metallic / alloy targets. (2) 

The synthesis of 

nanoparticles is easy and 

quick. 

(1) Procedure is 

costly, and 

requires equipment 

setup in most 

cases. 

(Alonso et 

al., 2009, 

Ferrando et 

al., 2008) 

Ion-

Implantation 

In this method the 

implantation of two or 

more metal ions into a 

particular matrix leads to 

the formation of 

nanoallos. This generates 

metallic / bimetallic 

clusters. 

(1) Metallic ions can be 

implanted into exact 

positions in a matrix. (2) 

Various combinations of 

ions can be used To yield 

nanoalloy clusters. 

(1) Requires 

equipment setup 

which is relatively 

expensive 

compared to 

chemical 

reduction. 

(Ferrando et 

al., 2008) 

Electrochemical 

Synthesis 

Using an electrolysis cell 

and two electrodes of 

metallic elements, 

Bimetallic alloys / 

nanoalloys can 

be created in solution. 

Core–shell structures 

have also been created 

Via this method. 

(1) Various nanoalloy 

combinations can be 

synthesized.  

(2) Cell setup is rather 

easy and does not need 

extensive equipments. 

(1) Use of 

chemicals as 

electrolytes which 

may yield harmful 

/ toxic gases as by 

products from the 

process. 

(Starowicz et 

al., 2006) 

Thermal 

Decomposition 

Thermal decomposition 

of metal or metal 

complexes (for 

nanoalloys) is produced 

using high temperature 

mediums or solvents. 

(1) Nanoparticles can be 

created at relatively low 

temperatures. 

(2) Process can create 

nanoparticles in a wide 

range of sizes. 

1) Requires use of 

chemicals and 

solvents which 

may be harmful to 

the environment. 

(Ferrando et 

al., 2008) 

Chemical 

Reduction 

Use of precursor salts, 

reducing agents and 

stabilizer to synthesize 

nanoparticles. In most 

cases a catalyst and some 

heating is used. 

(1) Can readily produce 

bulk 

quantities of nanoparticles 

and 

nanoalloys. 

 (2) Process can be 

easily scaled up to meet 

mass manufacturing 

needs. (3) Process enables 

synthesis of particles 

close to 1 nm and this can 

easily be controlled. (4) 

Process is relatively 

cheaper compared to 

other synthesis methods 

since the technology is 

quite standard. 

(1) Mass use of 

chemicals and 

some may be 

harmful to the 

environment.  

(2) Processing is 

time consuming 

and depends on 

many parameters. 

(Hu and 

Easterly, 

2009) 
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2.5 Cathode Material Enhancement through Nanotechnology 

 

Various experimental strategies have been carried out in order to optimize the performance of 

LixMn2O4 spinels. Among them, the following are worth noting: change of the morphologies 

and size of the spinel particle (Pistoia and Wang, 1993), introduction of structural defects in 

the spine (Schoonman et al., 1999), and doping of the spinel with diverse metallic ions 

(Pistoia et al., 1997). Electrochemical reactions start at the electrode-electrolyte interface, 

hence control of the interfaces via doping can decrease the interface side-reactions with the 

electrolyte and improve the Li-ion diffusivity. The template method also plays a crucial role 

in improving electrode material efficiencies. A well-structured material improve power 

density, have relatively large surface area and thereby decreases the current density per unit 

surface area, the thin wall reduces Li
+
 diffusion path length and they facilitate ionic motion 

more easily. The substitution of various dopants into LiMn2O4 framework can also contribute 

to obtain significant improvements in its electrochemical performance (Churikov et al., 2009). 

Various dopants in cathode materials improve electrode kinetics, structural modifications and 

microstructural effects. Although the performance of cathode materials can be improved by 

doping, the microstructure formed can also be affected by the dopant additions (Amatucci et 

al., 1996).  

 

2.6 Modification of Lithium Manganese Oxide with Cu-Au Nanocomposite to Increase 

the Electrochemical Performance 

 

Partial substitution of manganese by other metals in LiMn2O4 is a flexible method to improve 

cycle performance (Jang et al., 1996, Hu et al., 2013). Owing to their structural properties, the 

Li
 
ion can be easily intercalated / deintercalated from the host, while incorporation of the 

transition metal conveys redox properties on the system. Copper and gold is promising 

intercalation host for reversible Li
+ 

ion based redox chemistry based on the reversible metal 

redox couple. Nanostructured designs of electrodes are appealing as distance of Li
+
 

diffusion is limited to the diameter of the nanoparticles (Oh et al., 2009). It is well accepted 

that nanomaterial have advantages of good cycling performance and short part length for Li
+
 

transport over their bulk counterparts due to the large contact area between electrode and 

electrolyte. The increased surface area allows the electrolyte to surround individual particles 

for better accessibility of the electro-active material. Hence, the development of an 

electrically conductive nanostructured composite namely Cu-Au nanocomposite with 
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economically viable transition metals can permit efficient utilization of the combinative 

merits to acquire cathode material with higher performance. 

 

2.7 LiMn2O4 Surface Modification through Doping: Work done by Dcientists 

 

Many researchers have modified the surface of LiMn2O4 by using different doping mode.  

 

2.7.1 Bulk doping 

 

Bulk doping can be classified as single-ion doping or multiple ion doping 

2.7.1.1  Single-ion doping 

 

Single-ion doping can have single effect on the structure as well as on the electrochemical 

performance. But at times, it may have no influence on the electrochemical performance. 

Below, are some examples of single-ion doping where an increase in cycle performance and a 

decrease in the first discharge capacity occurred. Below, is an example of surface 

modification of LiMn2O4 done through single-ion doping. 

 

Al-doped LiMn2O4 (LiMn1.8Al0.2O4) were synthesized by a liquid source misted chemical 

deposition technique for a lithium micro-battery. The LiMn1.8Al0.2O4 exhibited more 

improved electrochemical recharge abilities than pure spinel LiMn2O4 film, because the 

substitution of Al
3+

 for Mn
3+

 increased Mn-O bonding strength in the spinel framework and 

suppressed the two-phase behaviour of the unsubstituted spinel during the intercalation / 

deintercalation. It had no capacity fading over 100 cycles and showed an initial discharge 

capacity of 52 μAh / cm
2
 (Kim et al., 2003). Moreover, the LiMn1.8Al0.2O4 suffered from 

large initial capacity losses. 

 

2.7.1.2  Multiple-ion doping 

 

Multiple-ion doping can enable the specified doped LiMn2O4 to obtain strong features of 

different elements. Here is example where multiple-ion doping was used. In order to get an 

improved charge / discharge cycling performance. A chemist synthesized a doped and milled 

spinel Li1.05M0.02Mn1.98O3.98N0.02 (where M = Ga
3+

, Al
3+

 or Co
3+

, N = S
2−

 or F
−
). The doped 

spinel presented higher initial specific discharge capacity (117 –126 mAh / g) and had an 
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excellent electrochemical performance. It also had a low capacity loss even after the 300 th 

charge and discharge cycles (from 120 to 115 mAh / g or 4 %) (Eftekhari, 2003). It is clear 

that the multiple-ion doped product had high initial specific discharge capacity and long cycle 

performance. 

 

2.7.2 Surface doping or coating  

 

Surface doping and coating are not the same, but the likenesses in these two are that they can 

both modify the surface of the material and also save the dopant. Here are some examples of 

researchers who successfully modified the surface of LiMn2O4. 

 

A researcher used Al2O nanoparticles as coating materials, and as a result the capacity 

retention of spinel LiMn2O4 was improved efficiently at room temperature (25 °C) as well as 

at 55 °C. Moreover the surface improvement of the modified LiMn2O4 was attributed to three 

factors: the inhibition of a surface Jahn-Teller distortion, the decreasing of Mn
3+

 dissolution 

and a good electric contact among particles. As a result, the specific capacity of the modified 

LiMn2O4 was lower than that of pristine LiMn2O4 (Tu et al., 2006). The use of Cs as doping 

material for LiMn2O4 film provided a high capacity of 127 mA / g and diffusion coefficient of 

6.4 x10
8
 cm

2
 / s which were attributed to the film’s morphology and electrochemical 

reversibility (Polo Fonseca et al., 2009). A scientist modified the surface of LiMn2O4 by 

doping it with copper. As a result, there was an improvement in the electrochemical property 

through surface modification of LiCuxMn2−xO4 in the LiMn2O4, especially at high C rate. 

Hence, the performance was due to the significant reduction of the side reactions and Mn 

dissolution between the interface of the cathode electrode and electrolyte (Chan et al., 2005). 

Another researcher used cobalt to modify the surface of spherical LiMn2O4 by surface doping, 

and this showed an improvement in the following: an increased in specific capacity and the 

electrochemical performance during cycling (Guo et al., 2007).  

 

For this work, the modification of the surface of the LiMn2O4 was done by surface doping 

using Cu-Au nanocomposite due to the fact that surface doping can decrease the manganese 

dissolution in the electrolyte by reducing the apparent contact area with the electrolyte. 
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2.8 Electrolytes 

 

In principle an idyllic electrolyte for rechargeable lithium batteries should have the following 

criterias (Xu, 2004):  

(1) It must dissolve and dissociate completely in the nonaqueous, and the solvated ions 

(especially lithium cation) must flow with high mobility in the media. 

(2) The anion should be stable against oxidative decomposition at the cathode. 

(3) The anion should be inert to electrolyte solvents. 

(4)The anion and the cation must remain immobile toward the other cell components. 

(5) The anion must be toxic freeand stay stable against any reaction that can be thermally 

induced with electrolyte solvents and other cell components). Here are some examples of 

electrolyte type:  

 

Here are some examples of different electrolyte types 

LiClO4 known as non-aqueous electrolyte has been widely used because of its satisfactory 

solubility and high conductivity(9.0 mS cm
-1

 in EC / DMC at 20 °C) along with its high 

anodic stability (up to 5.1 V on a spinel cathode surface in EC / DMC) (Guyomard and 

Tarascon, 1994). It has been proven that SEI films created in LiClO4 electrolytes, on lithium 

as well as on carbonaceous anode surfaces, result in lower impedance than lithium 

tetrafluoroborate (LiBF4) electrolytes, or those formed in LiPF6 because the HF is not present 

in the former (Aurbach et al., 1997, Aurbach et al., 1995). During hydrolysis of LiPF6 and 

LiBF4, HF is formed, which then reacts with either alkyl carbonate or Li2CO3 and produces 

the highly resistive LiF (Aurbach et al., 1995, Aurbach et al., 1994). LiClO4 has the 

advantages of being relatively less hygroscopic and is stable to ambient moisture compared to 

other electrolyte. On the other hand, when chlorine is in its high oxidation state (VII) in 

perchlorate it becomes a strong oxidant, which eagerly reacts with most organic species under 

high temperature and high current charge (Besenhard and Eichinger, 1976). In fact, in 1970s it 

was established that LiClO4 was impractical as an electrolyte solute for industry work 

(Besenhard and Eichinger, 1976). However, it is still regularly used since it is easy to handle 

and it is low cost (Tan and Johan, 2011, Liu et al., 2001, Kuribayashi et al., 1995, Tarascon et 

al., 1995). Another type is aqueous electrolyte, which has the advantages of higher 

conductance and the fact that purification and drying process during production are less 

stringent. The costs of aqueous electrolytes are usually much lower than suitable organic 

electrolytes. Note: the structure of the electrode has to be adapted for the size and the 
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properties of the respective electrolytes. In order to avoid electrolyte depletion problem during 

charging, the electrolyte concentration has to be kept high. If the electrolyte reservoir is too 

small compared to huge surface area of the electrodes, performance of the cathode is reduced. 

For this MSc research study work, 0.1 M LiClO4, 1 M LiClO4, 1 M LiNO3 and 1 M Li2SO4 

were used as electrolyte for the electrochemical characterization of LiMn2O4 and LiMxMn2-

xO4. 
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3.1 Introduction 

 

This chapter describes the general experimental synthesis of LiMn2O4 via co-precipitation 

method, Cu-Au nanocomposite via chemical reduction and the synthesis of LiMxMn2-xO4 

using a stoichiometric amount of the synthesized LiMn2O4 and Cu-Au nanocomposite as well 

as the instruments and characterizations techniques used. 

 

3.1.1 Reagents and materials 

 

For the success of this work, the reagents and materials used were as follow: Manganese (II) 

acetate (99 %), Lithium Hydroxide (99 %), Copper (II)Acetate (99 %), Gold (III) Acetate (99 

%), Sodium Citrate (99 %), Lithium perchlorate (99 %), Tri-sodium Citrate (99 %), Lithium 

Sulfate (99 %), Sulphuric Acid (99 %) the above mentioned chemical were purchased from 

Sigma-Aldrich and N-methylpyrrolidinone (NMP) (99 %), was purchased from Alfa Aesar. 

Deionized water (18.2 MΩ) purified by a milli-QTM system (Millipore) was used for aqueous 

solution preparations. Analytical grade argon (Afrox, South Africa) was used to degas the 

system.  

 

3.1.2 Powder of preparation nanoparticles LiMn2O4 cathode material 

 

Spinel LiMn2O4 was prepared via a co-precipitation method at low temperature by the 

reaction of a mixture of LiOH and (MnAc2
.
4H2O) (Chan et al., 2005). A stoichiometric 

amount of LiOH and (MnAc2
.
4H2O) with cationic ratio of Li / Mn = 1:2 were dissolved in 

deionized water and mixed well by stirring gently. The mixture was switched to a thermostat 

bath for complete reaction. The solution was then evaporated at 100 °C for 10 h to obtain the 

precursor powder. Finally the precursor was preheated at 400 °C for 1 hour, and then 

subjected to calcinations at 400 
o
C 600 °C, 800 

o
C, 860 

o
C, and 880 

o
C for 10 h, then for 15 h 

respectively in a muffle furnace to form LiMn2O4.  

 

3.1.3 Preparation of copper-gold nanocomposite 

 

Gold nanoparticles (AuNPs) were prepared through the reduction of 1.0 mM gold acetate 

using sodium citrate as the reducing agent. 20 mL of 1.0 mM Gold acetate solution was added 

to a 50 mL Erlenmeyer flask on a stirring hot plate. A magnetic stirrer was added into the 

solution and the solution heated to boil. To the boiling solution, 2 mL of 1% solution of 
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sodium citrate, (C6H5O7Na3) was added. Gold sol progressively formed as the citrate reduced 

Au
3+ 

to Au
0
 as seen in Equation 2. The solution was heated until a deep pink colour was 

observed (McFarland et al., 2004). 

 

Au
3+

 + C6H5NO7Na3 + 2H2O  Au
o
 + C6H5O7H3 + 3Na

+
 + H

+
 + O2   (2) 

 

Copper-gold nanocomposite (Cu-AuNPs) were synthesized via a previously reported 

procedure of Ag-Au alloy nanoparticles (Pal et al., 2009). 49 mL of water was added into a 

100 mL round bottomed flask. 0.5 mL 2% (w / v) sodium citrate was added into the flask of 

water and the reaction mixture heated to 92 °C. 0.5 mL of a mixture of 10 mM gold acetate 

and 10 mM copper acetate solution was added into the reaction mixture and the temperature 

regulated between 90 °C and 92 °C and refluxed for 1 hour. The volume of the mixture was 

adjusted so as to prepare Cu-Au nanocomposite with Cu / Au ratio of 1:3 by mixing 0.125 mL 

of 10 mM Cu(OAc)2 and 0.375 mL of 10 mM Au(O2CCH3)3. After refluxing the mixture at 

temperature between 90 °C and 92 °C for 1 hour, a colour change was observed in the 

solution (light pink) indicating the formation of nanocomposite according to the hallmarks 

reported in the literature (Shin et al., 2008). 

 

3.1.4 Synthesis of LiMxMn2-xO4  

 

For the surface modification of LiMxMn2-xO4, (where M = Cu-Au nanocomposite), a 

stoichiometric amount of the as synthesized copper-gold nanocomposite was poured into a 

beaker, then an addition of a stoichiometric amount of the synthesized semi crystalline power 

of LiMn2O4 was added to the solution then evaporated at 100
o
C until the crystalline LiMxMn2-

xO4 was obtained. Finally, the obtained powder was calcined at 880
o
C for 15h. 

 

3.1.5 Preparation of glassy carbon electrode (GCE) with LiMn2O4 and novel LiMxMn2-

XO4 

 

For the successful achievement of the electrochemical measurements, GCE was polished 

using 1.0 followed by 0.3, then 0.05 μm alumina slurries and rinsed thoroughly with distilled 

water then sonicated in ethanol and water respectively. 4 μL solutions of the as synthesized 

LiMn2O4 and Cu-Au nanocomposite doped LiMn2O4 dissolved in N-methylpyrolidinone 

(NMP) were drop-coated onto the surface of the polished GCE and left to dry at room 
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temperature overnight and it is denoted as LiMn2O4/GCE and LiMxMn2-xO4/GCE (where M = 

Cu-Au nanocomposite) respectively. 

 

3.2 Characterization techniques 

 

In this present work, , thermal gravimetric analysis (TGA), high resolution scanning electron 

microscopy (HRSEM), high resolution transmission electron microscopy (HRTEM, X-ray 

diffraction (XRD), fourier-transform infra-red (FTIR), ultraviolet visible spectroscopy ( Uv-

vis) and cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) were used 

to investigate the physical characteristics and electrochemical properties of LiMn2O4, Cu-Au 

nanocomposite and novel Cu-Au nanocomposite doped- LiMn2O4 samples. 

 

3.2.1 Crystal Structure Analyses, Morphological and Structural Analysis Techniques 

 

3.2.1.1 High resolution scanning electron microscopy (HRSEM) 

 

High resolution scanning electron microscopy (HRSEM) is a versatile imaging technique 

capable of producing three-dimensional images of material surfaces. Today HRSEM is one of 

the most frequently used instruments in material research due to its combination of high 

magnification, large depth of focus, greater resolution and ease of sample observation. The 

basic operation in HRSEM entails the interaction of an accelerated highly monoenergetic 

electron beam, originating from the cathode filament, with the atoms at the sample surface. 

The electron beam is focused into a fine probe which is restored over the sample. The 

scattered electrons are collected by a detector, modulated and amplified to produce an exact 

reconstruction of the sample surface and particle profile. A requirement for effective 

performance is that the surface of the samples should be electrically conductive. During 

operation electrons are deposited onto the sample. These electrons must be conducted away to 

earth, thus conductive materials such as metals and carbon can be placed directly into the 

HRSEM whereas non-metallic samples have to be coated with a gold metal layer to be 

observed (Cherstiouk et al., 2003). Many scanning electron microscopes have an energy 

dispersive spectrometer (EDX) detection system, which detects and displays most of the 

spectra of the elements contributing to the sample composition. 
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HRSEM was used for the characterization of the surface morphology of LiMn2O4 and novel 

LiMxMn2-xO4. The micrographs were obtained using a Zeiss Auriga HRSEM analyser. The 

detector used, was a secondary electron (SE) type with substitutable accelerating voltage of 

25 KV. The maximum resolution used was 10 µm. EDX coupled to the HRSEM was used and 

to determine elemental composition of the as synthesized cathode materials. The samples 

were coated with carbon then placed on a nickel grid. 

 

3.2.1.2 High resolution transmission electron microscopy (HRTEM) 

 

Electron microscope is a type of microscope that uses a beam of electrons to create an image 

of the specimen. It is capable of much higher magnifications and has a greater resolving 

power than a light microscope, allowing it to see much smaller objects in finer detail. They 

are large, expensive pieces of equipment, generally standing alone in a small, specially 

designed room and requiring trained personnel to operate them. Because the TEM has an 

unparalleled ability to provide structural and chemical information over a range of length 

scales down to the level of atomic dimensions, it has developed into an indispensable tool for 

scientists who are interested in understanding the properties of nanostructures materials and in 

manipulating their behaviour (Ariga et al., 2012). High resolution Transmission electron 

microscopy (HRTEM) finds its main application in the determination of size, distribution as 

well as the morphology of synthesized nanoparticles. The principle of HRTEM works in 

much the same way as an optical microscope. A beam of electrons, generated by the high 

voltage electron emitter situated at the top of the lens column, interacts with the sample as it 

passes through the entire thickness of the sample and a series of magnifying magnetic lenses, 

where they are ultimately focused at the viewing screen at the bottom of the column. 

 

For the achievement of this work, HRTEM was used to determine the size, morphology and 

the crystallinity of the materials (Kirkland and Hutchison, 2007) using a Tecnai G
2
 F2O X-

Twin MAT. HRTEM characterizations were performed by placing a drop of the solution on a 

carbon coated nickel grid and dried under electric bulb for 30 min. Furthermore HRTEM was 

used to investigate if LiMxMn2-xO4 had any doping layer of the as prepared Cu-Au 

nanocomposite 
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3.2.1.3 Uv-visible spectroscopy 

 

Uv-vis spectroscopy involves the spectroscopy of photons in the Uv-visible region of the 

electromagnetic spectrum and can be defined as a technique used to study the electronic 

transitions of materials having transition energy between 10
2
-10

3
 kJ / mol. When using Uv-vis 

spectroscopy, one can easily monitor the color as well as the time at once. That monitored 

colour is the wavelength at which the maximum of the absorption band occurs, and it is 

written as: λmax, together with the absorbance which occurs at each of these wavelengths. 

The absorption spectrum tells us about the nature of the material generated. The Absorption 

light at a specific wavelength is determined by the ratio: It / Ii, where It is the transmitted light 

and Ii is the incident light. Henceforth, Absorbance can be expressed by the following: 

A = -log It / Ii,          (3) 

given that each molecule has a definite amount of light. For instance, when Uv-vis light is 

absorbed by a material, its concentration can be monitor using Beer Lambert relationship 

given by  

A = ɛλcl           (4) 

Where λ is the fixed wavelength at which the absorbance is determined, ε is the extinction 

coefficient (cited at the same value of λ), and l is the optical path length of the sample holder. 

Moreover, Uv-vis spectroscopy known as one of the best way to identify the analyte, this is 

due to the fact each precise analyte absorbs energy in the form of photons at different 

wavelengths (Monk, 2008). Consequently, one is able to identify a definite analyte by the 

application of Uv-vis spectroscopy.  

 

Uv-visible spectroscopy was used to study the properties of the synthesized Cu-Au 

nanocomposite as it is known that Uv-visible had the proficiency to the interband electronic 

transition of semiconductors. The measurements were recorded over a range of 400-800 nm 

using 2 cm
3
 quartz cuvettes with Nicolette Evolution 100 Spectrometer (Thermo Electron 

Corporation, UK).  
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3.2.1.4 X-ray diffraction (XRD) 

 

X-ray diffraction (XRD) is a versatile, non-destructive technique which has the ability to 

reveal detailed information about the chemical composition, the crystallographic structure of 

natural as well as manufactured materials. Henceforth, XRD is an essential method for the 

characterization of material. Additionally, XRD is a powerful tool in the study of crystallinity 

and atomic structure of materials and forms an integral part of the comprehensive 

characterization study of the consolidated composite carbon material. It is used extensively in 

the determination of the Bravais lattice types and unit cell dimensions. X-ray diffraction 

methods can be classified into two types: spectroscopic and photographic. The spectroscopic 

technique known as the X-ray powder diffractometry, or simply X-ray diffractometry, is the 

most widely used diffraction method. Because spectroscopic methods can replace most 

photographic methods, photographic techniques are not widely used as diffractometry in 

modern laboratories. Additionally, photographic methods are mostly used for the 

determination of unknown crystal structures (Leng, 2008). In X-ray diffraction, crystalline 

solids are bombarded with a collimated x-ray beam which causes crystal plane atoms, serving 

as diffraction gratings, to diffract x-rays in numerous angles. Each set of crystal planes or 

Miller indices (hkl) with inter-plane spacing (dhkl) can give rise to diffraction at only one 

angle. The diffraction angle is defined from Bragg’s law in the equation 3 below, where the 

intensities of the diffracted X-ray are measured and plotted against the corresponding Bragg 

angles (2θ) to produce a diffractogram. 

nλ=2dSinθ           (5) 

where:  

 

λ = Wavelength of the X-rays 

d = Spacing of the planes in the crystal 

2θ = Angle of diffraction 

 

For the purpose of this study, XRD was used to investigate the crystallinity phase as well as 

the purity of the as synthesized cathode material. The x-ray diffraction (XRD) was conducted 

using Bruker AXS D8 Advance diffractomer (Cu Kα = 1.5406 A
o
, voltage 40 KV and current 

40 mA) and was recorded in the range 10 -75 degrees. Below in Figure 3.1 is an example of 

an x-ray diffraction machine. 
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Figure 3.1: X-Ray Diffraction System 

 

3.2.1.5  Fourier-transform infrared spectroscopy (FT-IR)  

 

Fourier-Transform infrared spectroscopy (FT-IR) is more generally applicable towards many 

samples, since it does not require a Uv chromophore, but rather requires infrared light which 

is absorbed by the molecular bonds to cause transitions between molecular vibrational states 

(Vakkasoglu et al., 2009). So, it is the absorption measurement of different infrared 

frequencies by a sample positioned in the path of an infrared beam. The main goal of FT-IR 

spectroscopic analysis is to determine the chemical functional groups in the sample. The IR 

spectrum refers to electromagnetic waves whose wavelengths range from 0.78 μm to 1000 

μm. However the more manageable, the wave number unit (cm
-1

) is generally used instead of 

microns thus the total IR spectrum ranges from 14,286 cm
-1

 to 28.5 cm
-1

. The advantages of 

FT-IR are: its superior speed, sensitivity and have been applied to many areas that are very 

difficult or nearly impossible to analyse by IR-dispersive instruments. Instead of viewing each 
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component frequency sequentially as in a dispersive IR-spectrometer, all frequencies are 

examined simultaneously in Fourier transform infrared (FT-IR) spectroscopy (Hallam, Online 

2010).  

 

FTIR was used to examine the presence of frequency band responsible for the formation of 

spinel cathode materials in the range of 500 -4000 cm
-1 

using a PerkinElmer model Spectrum 

series. 

 

3.2.2 Electrochemical Techniques 

 

Electrochemistry affords some of the most sensitive and informative analytical techniques in 

the chemists arsenal. Electroanalytical method such as cyclic voltammetry, stripping 

voltammetry, differential pulse polarography, square wave and chronoamperometry 

complements other analytical techniques such as chromatography and spectroscopy and are 

not only capable of assaying trace concentrations of an electroactive analyte, but also supply 

useful information concerning its physical and chemical properties. Electrochemical methods 

of analysis include all methods of analysis that measure current, potential and resistance and 

relate them to analyte concentration. Quantities such as oxidation potentials, diffusion 

coefficients, electron transfer rates, and electron transfer numbers are readily obtained using 

electroanalytical methods, and are difficult to obtain using other techniques. Arguably, the 

most popular electroanalytical techniques are cyclic voltammetry, and square wave. This 

section describes the basic components of the modern electroanalytical system as well as the 

principles of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). 
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Figure 3.2: A schematic representation of the major components of the electroanalytical 

system used for electrochemical analysis 

 

3.2.2.1 Cyclic voltammetry (CV) 

 

Cyclic voltammetry is also called linear scan voltammetry and is classified under sweep 

techniques. The word voltammetry comes from “voltam-” which refers to both potential 

(“volt-”) and current (“am-”). The technique works in the way that different potential are 

applied at a working electrode at some scan rate (v) in both direction (Forward and reverse) 

while the current is simultaneously monitored. The instrumentation components for the cyclic 

voltammetry analysis are: (a) potential equipment (potentiostat) and (b) and electrochemical 

cell which consist of three electrodes namely working electrode (WE), auxiliary electrode 

(AE) and reference electrode (RE). During the analysis an electrochemical analyser is 

connected to a three electrode cell as shown on Figure 3.2. 
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Filgure 3.3: A three electrode cell system 

 

For the duration of a cyclic voltammetric experiment, the potential is ramped from an initial 

potential Ei to a more positive or negative potential but, at the end of the linear sweep there is 

a change in direction of the potential scan which will then reversed, most often stopping at the 

initial potential Ei. This allows the measurement of the potential which is usually measured 

between the reference electrode and the working electrode. However, the current is measured 

between the working electrode and the auxiliary electrode (Monk, 2008) This data is plotted 

as current versus potential as shown below in Figure 3.4. 

 

 

Figure 3.4: An example of a cyclic voltammogram response 
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During cyclic voltammetry, the forward part is where oxidation takes place, when scanned 

from a negative to a positive potential. The reverse part of the CV is where reduction takes 

place, with the potential running from a positive to a negative potential. Additionally if 

potential is scanned during the forward part of the CV scan from a positive to a negative 

value, reduction would then occur and oxidations during the reverse CV scan. The parameters 

obtained from cyclic voltammetry are: peak potentials (Epc, Epa), peak current (Ipc) of the 

cathodic and, peak current (Ipc) of the anodic peaks, respectively.  

 

Consequently, theses above mentioned parameters can be used to obtain the most important 

information needed for the sample under investigation. The information can either be, to 

determine whether the electrochemical process displayed by the sample is reversible, or 

irreversible or quasi –reversible. Moreover it can also give an insight on how fast or how slow 

the electron process is, the same as diffusion process. ΔEp is the peak separation (V), which 

occurs when the electron transfer is fast relative to the diffusion of electroactive species 

present in the solution at the surface of electrode, and the reaction is said to be 

electrochemically reversible. The peak separation is given by the following equation: 

 

RT
ΔEp=[Epa -Epc]= 2.3

nF
          (6) 

Where, Ep is the peak separation, (n) is the number of electrons involved in the 

electrochemical process can be estimated from the above equation, F is the Faraday constant 

(96,485C mol
-1

), R is the gas constant (8.314 J mol
-1

 K
-1

) and T is the absolute temperature 

(K). Thus, for a reversible redox reaction at 25 °C (298 K) with n electrons, ΔEp should be 

0.0592 / n V or about 60 mV for one electron (Gosser, 1993). The diagnostic tests for electro-

reversibility of a redox couple carried out by cyclic voltammetry are listed below. 

 

1. Ipc = Ipa 

2. The peak potentials, Epc and Epa, are independent of the scan rate (v) 

3. The formal potential (Eº′) is positioned mid-way between Epc and Epa, so 

Eº′ = (Epa + Epc) / 2. 

4. Ip is proportional to v½ 

5. The separation between Epc and Epa is 59 mV / n for an n-electron 

couple (i.e. ΔEp = | Epa - Epc | = 0.0592 / n V). 

 

 

 

 

 

 



56 

 

In the present MSc research work, cyclic voltammetry was measured using a BAS 50B 

electrochemical analyzer from Bioanalytical systems inc. (West Lafayette, IN) with 

conventional three- electrode system consisting of glassy carbon electrode (GCE) as the 

working electrode (A = 0.071 cm
2
), platinum wire as the auxiliary electrode and Ag / AgCl (3 

M NaCl) as the reference electrode. Alumina micro powder and polishing pads were obtained 

from Buehler, IL, USA and used for polishing the GCE. All experimental solutions were 

purged with high purity argon gas and blanketed with argon atmosphere during 

measurements. The following 0.1 M LiClO4, 1 M LiClO4, 1 M LiNO3 and 1M Li2SO4 were 

used as electrolyte, with a potential window between -1000 -750 mV. The scan rate used were 

1 -7 mV / s then 9 mV / s was specifically used for comparison purposes between pristine 

LiMn2O4 and modified LiMn2O4. The experiments were carried out at controlled room 

temperature (25 °C). 

 

3.2.2.2  Electrochemical impedance spectroscopy (EIS) 

 

EIS analysers are potentiostats that are designed particularly for the measurement of AC 

impedance and have typical frequency ranges of 10 mHz-100 kHz. A workstation is required 

to control both potentiostats and EIS analyzers. For the signal amplification and elimination 

of the background noise, digital post processing is usually engaged. EIS is known as an 

excellent, non-destructive, accurate as well as rapid insitu technique for inspecting processes 

that occur at the surface of the electrode as for this work glassy carbon electrode (GCE) was 

the case. Throughout a controlled-potential EIS experiment, the electrochemical cell is 

detained at equilibrium and the DC potential is fixed, and a small amplitude (5 –10 mV) AC 

wave form is overlaid on the DC potential which leads to a generation of a response from the 

equilibrium position. The obtained response to the applied perturbation is usually sinusoidal, 

and may differ in phase and amplitude from the applied signal. The obtained data of EIS is 

generally expressed in a Nyquist plot and bode plot as shown below in Figure 3.5 and Figure 

3.6 respectively. Inappropriately, these measurements required a long time in order to be done 

reliant on the frequency range as well as the stability of the electrochemical system. The 

imaginary impedance (ZIm) and the real impedance (ZRe) are chronicled as a function of the 

applied frequency and the obtained data are plotted as ZIm vs ZRe which is the nyquist plot. 

These obtained data are also simulated using ZView software which aid in giving not only the 

electrical equivalent circuits as shown in Figure 3.7 but also important information of the 

interface such as solution resistance (Rs), electron transfer resistance (Rct), Warburg element 

(W) and double layer capacitance (Cdl), are obtained (Macdonald, 2006).  
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Figure 3.5: A representation of the Nyquist plot displaying the kinetics parameters  

 

 

Figure 3.6: A representation of Bode plot showing variation of impedance and phase 

angle with changes in frequency 
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Figure 3.7: An equivalent Randles circuit in series (Macdonald, 2006) 

 

Electrochemical impedance spectroscopy (EIS) measurements were recorded with Zahner 

IM6ex Germany using electrodes from BioAnalytical systems, BAS, US in three-electrode 

electrochemical cell with 1 M Li2SO4 as electrolyte in the frequency range between 100 mHz 

to 100 KHz. The amplitude of the applied sine wave potential was 10 mV, whereas the 

ambient applied dc potential was set at the formal potential (1.05V). The obtained data were 

plotted in the form of complex plane diagrams (Nyquist and Bode plots). 
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CHAPTER 4 : RESULTS AND DISCUSSIONS OF LiMn2O4 

AND Cu-Au NANOCOMPOSITE 
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4.1 Crystal Structure Analyses, Structural Analysis and Electrochemical 

Characterization of LiMn2O4 Spinel 

 

4.1.1 Thermal gravimetric analysis (TGA) 

 

Stoichiometric  LiMn2O4 is known as an n-type semiconductor, in which the dc conductivity 

increases by approximately one order of magnitude as the low-temperature phase 

(orthorhombic) is transformed into the high-temperature phase (cubic) at a temperature close 

to room temperature. 

In This work thermal gravimetric analysis (TGA) was employed in order to establish the 

preheating as well as the minimum calcination temperature by applying a heating rate of 10 

°C / min from room temperature to 880 °C. Figure 4.1 below proved that weight loss occurred 

at the three temperature ranges: 20-200 °C then by 200-500 °C and finally 500-600 °C. The 

miniature weight loss of the first region was ascribed to the superficial water loss due to the 

hygroscopic nature of the precursor. In the second region, the weight loss is due to the 

decomposition of the inorganic and the organic constituents of the precursor then by 

crystallization of LiMn2O4 phase. Finally in the third region, we observe a flatness of the 

TGA, which tells us that there are no phase transformation is present, and that any additional 

heating will simply increase the crystallinity of the sample structure. Henceforth, there is 

about 2.5% weight loss when the sample was heated to 200 °C, which is attributed to the 

adsorption of water. From 200 and 350 °C, about 5.5% weight loss is attributed to removal of 

acetates, followed by 2 wt% loss due to the elimination of the surfactant.  
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Figure 4.1: TGA curves of the as-synthesized LiMn2O4 calcined at 800 
o
C (a), 860 

o
C (b) 

and 880 
o 
C (c), recorded at a heating rate of 10 °C min

-1
 

 

4.1.2 High resolution scanning electron microscopy (HRSEM) 

  

The high resolution scanning electron microscopy is customarily used to acquire phases based 

on crystalline structure or qualitative chemical analysis. In this MSc research work, HRSEM 

was used in order to get high definition morphology of the synthesized spinel LiMn2O4. The 

corresponding morphology of LiMn2O4 as seen in Figure 4.2 is derived from co-precipitation 

method as explained in the previous chapter. HRSEM micrograph of the pristine LiMn2O4 

shows that the nanoparticles have a rough surface and that two types of particles are seen: 

primary particles with a shape of spinel of about 50 nm and the secondary particles which are 

much bigger with a size of more or less 200 nm and which are well agglomerated by those 

smaller particles. One of the most significant effects of small particles is their ability to 

support higher rate of lithium inercalation / deintercalation from the oxide host (Jiang and 

Abraham, 1996). The pristine LiMn2O4 has obvious visible fringes, indicating that the crystals 

of spinel LiMn2O4 grow very well and have good crystallinity which agrees with the XRD 
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results (Li and Xu, 2008). In order to confirm the composition of pristine LiMn2O4, with the 

exception of Lithium as it is not possible to obtain the percentage of lithium, EDX analysis 

was performed and the obtained results are shown in the Figure 4.3 below. Manganese 

appears at: Kα = 5.8951 KeV and Lα = 0.6374 whereas oxygen appears at: Kα = 0.5249 KeV 

which agree perfectly with literature (Williams, 2001). Based on the EDX provided, we 

noticed that the peak intensity of oxygen is higher than that of manganese this is attributed to 

the fact that oxygen had a higher composition during the synthesis of nanoparticles LiMn2O4.  
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Figure 4.2: High resolution scanning electron microscopy of LiMn2O4 calcined at 880 
o
C 

for 15 h. 
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Figure 4.3: HRSEM Energy dispersive X-ray (EDX) of a selected area of pristine 

LiMn2O4 on a Nickel grid 
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4.1.3 X-Ray Diffraction (XRD) 

 

In order to confirm the phase composition and the crystallinity of the heat-treated powder, 

analysis by XRD is essential. The co-precipitated precursor was heated at 400
o
C, 600

o
C and 

800
o
C for 10 h in order to investigate its evolution to the final spinel structure. The XRD 

pattern of the precursor LiMn2O4 calcined at 400
o
C, 600 

o
C and 800 

o
C for 10 h is shown in 

Figure 4.4. There appear some broad diffraction peaks of low intensity at 400 
o
C, which 

indicated the incomplete formation of LiMn2O4. In addition the broadening in peak at 400 
o
C 

is attributed to the small particle present in the HRSEM image of pristine LiMn2O4 as seen in 

Figure 4.2. Several minor peaks are also present, which are identified as impurities such as 

Mn2O3. At this stage, it can be concluded that the material is not phased- pure as yet. Lithium 

manganese oxide with well-developed crystallinity is obtained at 800
o
C for 10 h. LiMn2O4 

was further acclaimed at various temperatures for 15 h as shown in Figure 4.5. With increase 

in temperature, the peak intensity and crystallinity of LiMn2O4 increases while the impurity 

phase still appears. But once, LiMn2O4 powder is treated with 2 M sulphuric acid (H2SO4) the 

impurity phase Mn2O3 disappeared completely. Thus, it is concluded that an effective way to 

avoid the formation of the impurity phase is by raising the heat-treated temperature with 2 M 

sulphuric acid (H2SO4) or by prolonging the sintering time (Ying et al., 2001). The 

broadening of diffraction peaks at high scattered angles is indicative of residual strains, which 

are caused by inhomogeneity of cation or anion non-stoichiometry vacancies, and grain 

boundary effects in the structure (Naghash and Lee, 2000). In fact, the strains can be reduced 

or removed through an increase in the heat-treatment temperature. The XRD patterns of the 

samples from at 800
o
C to 880°C agree with the pattern of the pure cubic spinel phase of 

LiMn2O4 (JCPDS file no. 00-035-0782). The main diffraction peaks, namely, (111), (311), 

and (400) remain at the same 2θ values for all samples. The ratio of the (111) and (311) (or 

(400) peaks are greater than unity. The evolution of the precursor LiMn2O4 with increase in 

temperature can be summarized as: 

Solution based precursor: 

2

Lower temperature

Lower temperature 

Highertemperature

decompositionof theproduct MnO+O

spinelphase

crystalline,singlephasespinel







 

The values of lattice parameter a = 8.24, 8.25, 8.26 Å, respectively, obtained for the samples 

heated at 800, 860 and 880°C agree well with the values reported in the literature (Chan et al., 

2005). It is known that the value of the lattice parameter of LiMn2O4 powders is affected by 
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heating temperature used. For instance, Naghash and Lee synthesized LiMn2O4 by aqueous 

co-precipitation of Li and Mn salts (Naghash and Lee, 2000). The precipitate obtained at 

ambient conditions was calcined at different temperatures and the evolution of the spinel 

structure was monitored by XRD studies. The lattice parameter increased with the increase of 

temperature from 8.17 Å at 250 °C to 8.26 Å at 870 °C. But in this present no increase in 

lattice constant had occurred in the temperature range from 400 
o
C-700 

o
C, rather a slight 

increase in the lattice constant was noticed between 800 -880 
o
C. 

 

. 

 

Figure 4.4 XRD of LiMn2O4 precursor at (a) 400 
o
C, (b) 600 

o
C and (c) 800 

o
C with some 

impurities present represented by the asterisks sign (*: Mn2O3) 
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Figure 4.5: XRD pattern LiMn2O4 treated with 2 M H2SO4 then heated at (a) 400

o
C, (b) 

600 
o
C, (c) 700 

o
C, (d) 800 

o
C, (e) 860 

o
C (f) 880 

o
C for 15 h. 
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4.1.4 Fourier-transform infra-red (FTIR) of LiMn2O4 

 

Spinel lithium manganese oxide (LiMn2O4) powder has been successfully prepared by co-

precipitation method using lithium hydroxide and manganese acetate with a ratio of 1:2 

respectively. Fourier transform infrared (FTIR) spectroscopy was used to study the structure 

coordination of the obtained powder in the range 500 -4000 cm
-1

. The FTIR spectrum is 

shown in Figure. 4.6. In the spectrum we could see few prominent bands and few weak bands 

at different wavelength regions. Amongst the bands that are observed from the FTIR spectra, 

we see that they appeared at, 509, 615, 1220, 1360 and 2970 cm
-1

. Two frequency bands are 

observed 509 and 615 cm
−1

, which are responsible for the formation of LiMn2O4. They are 

assigned to the asymmetric stretching of MnO6 groups which have been reported in the 

literature (Wei et al., 2004). On the other hand, the 1220 and 1360 Cm
-1

 frequency bands are 

attributed to the O-H bending vibration joined with manganese. The absorption band observed 

at 2970 cm
-1

 is ascribed to the O-H stretching vibration. From the FTIR spectra, it is revealed 

that the synthesized product is a single phase LiMn2O4 compound. 

 

 

 

Figure 4.6: FTIR spectra for LiMn2O4 
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4.2 Cyclic Voltammetry of Nanoparticles LiMn2O4 

 

4.2.1 The choice of electrolyte 

 

The choice of 1 M Li2SO4 as electrolyte for electrochemical characterization of this MSc 

research work was done based on few factors that are detailed in the section below. The 

electrochemistry of the synthesized pristine LiMn2O4 was studied in four different 

electrolytes: 0.1 M LiClO4 1 M LiClO4, 1 M LiNO3 and 1 M Li2SO4.  

Figure 4.7 and Figure 4.8 represent the cyclic voltammograms of pristine LiMn2O4 in 0.1 M 

LiClO4 and 1 M LiClO4. It can be clearly seen that as the scan rate is increased the current also 

increases. Additionally, a pair of redox peaks lies on the positive site of the applied potential. 

There is a slight shift that is clearer at 7 mV / s when using 1 M LiClO4. Additionally, the 

cyclic voltammograms seem to be unstable though it is the same electrolyte but different 

concentration. This is suggestive of no moral reversibility behaviour.  

 

 

Figure 4.7: Cyclic Voltammograms of LiMn2O4/GCE in 0.1 M LiClO4 at different scan 

rates 
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Figure 4.8: Cyclic voltammograms of LiMn2O4 / GCE in 1 M LiClO4 at different scan 

rates 

 

Figure 4.9: displays the cyclic voltammograms of pristine in 1 M LiNO3. From the displayed 

CV it can be visibly seen that the change in scan rate doesn’t really make any change on the 

current. This implies that current is not dependent of scan rate. 

 

Figure 4.9: Cyclic Voltammograms of LiMn2O4/GCE in 1 M LiNO3 at different scan 

rates 
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Figure 4.10 parades the cyclic voltammograms of pristine LiMn2O4 in 1 M Li2SO4. The 

anodic peak current increases with increase in scan rate, while the cathodic peak current 

decreases. This indicates a linear dependence of the peak current on scan rates. This means 

that, LiMn2O4 is a conductive material that undergoes a speedy reversible electron transfer 

reaction in 1 M Li2SO4. 

 

 

Figure 4.10: Cyclic Voltammograms of LiMn2O4/GCE in 1 M Li2SO4 at different scan 

rates 

 

From the four displayed cyclic voltammetry responses, it is seen that the obtained 

voltammogram response varies with electrolyte used. Moreover, the synthesized LiMn2O4 is 

found to be more stable in 1 M Li2SO4. Consequently 1 M Li2SO4 is established to be a 

suitable electrolyte in this present MSc research study for LiMn2O4 since it exhibits better 

electrochemical performance. 
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4.2.2 The effect on cyclic voltammetry using 1 M Li2SO4 as electrolyte 

 

Figure 4.11 represents the cyclic voltammogram LiMn2O4 at different scan rates varying from 

1 -7 mV / s, showing an increase in current intensity as the scan rate increases thus proving 

that as the scan rate is increased, more electric field is generated. Two pairs of redox peaks 

were observed in this present work as found by some researchers however, the broadening in 

peak implies that the process takes place in two steps. The pair of peak A and C1 is attributed 

to the insertion / deinsertion of Li
+
 at LiMn2O4 which can be summarized by the following 

equation:  

 



  xexLiOMnLiOLiMn 42x142         (7) 

 

The above equation is a typical characteristic which is ascribed to the deintercalation process 

of Li
+
 in the 8a tetrahedral sites of the spinel (Kiani et al., 2011). A1 peak is ascribed to the 

removal of lithium ion from the tetrahedral sites where Li-Li interaction takes place. Table 3 

shows the peak parameter obtained for LiMn2O4. The effect of sweep rate is examined by 

plotting the peak current Vs υ 
1 / 2

. It is found that the peak current increases linearly with 

increase in scan rate. 

 

 

Figure 4.11: Cyclic Voltammograms of LiMn2O4/GCE in 1 M Li2SO4 at increasing scan 

rates  
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Table 3: Peak current of LiMn2O4 versus square root of scan rate 

 

 

Figure 4.12 below represents a plot of peak current versus root of scan rate which shows that 

the anodic current peak current increases with increase in scan rate while the cathodic peak 

current becomes more negative. 
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Figure 4.12: A graph of peak current Vs square root of scan rate of LiMn2O4 

 

Scan Rate / mV / S Square root of scan rate / (mV)
1 / 2 

s
-1 / 2

 Ip
ox

 / A Ip
red

 / A 

1 1 2.059 -1.615 

3 2.23 3.410 -2.589 

5 2.64 4.298 -3.720 

7 3.16 5.57 -4.483 
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4.3 Morphological Analysis of Cu-Au Nanocomposite 

 

4.3.1 Absoption analysis of Cu-Au nanocomposite by Uv-visible spectrocopy 

 

Uv–vis spectroscopy is a very useful technique for estimating the optical band gap of a 

semiconductor. The optical band gap is related to the electronic conductivity of the materials. 

The formation of Cu-Au (1:3) nanocomposite by simultaneously reducing copper and gold 

was confirmed using Uv-visible spectroscopy. Figure 4.13 below shows the visible absorption 

of copper-gold nanocomposite, and that of gold nanoparticles (inset). Absorption band with 

maximum intensity of 547 nm is observed for copper-gold nanocomposite and of 528 nm for 

gold nanoparticle (inset). Moreover the peak of the latter is broader than that of the former; 

this may be due to the presence of copper and gold. The appearance of a single absorption at 

547 nm shows that Cu-Au nanocomposite was formed. In addition the broadening of the peak 

obtained is due to the residue of the cooperative oscillation of the Plasmon’s surface (Taleb et 

al., 1997). Furthermore, the presence of the red shift as well as the broadening in the 

absorption band of Cu-Au nanocomposite compare to the pure gold nanoparticles that has a 

narrower peak is observed. This implies that the Cu-Au nanocomposite has a larger size 

distribution because they are more clustered. Energy band gap, known as the difference 

between LUMO and HOMO is calculated, and the value of 2.28 eV is obtained for the 

synthesized nanocomposite. This suggests that, it’s a semiconductor as shown in Figure 4.14. 

This implies that, Cu-Au nanocomposite will be able to enhance the conductivity of Li[Cu-

Au]0.02Mn1.98O4 cathode materials. The formula below, was used to calculate the energy band 

gap. 

 

hc
E =

λ
           (8) 

Where, E is the band gap energy, h is the Planck’s constant with a value of 4.135667516 x 10
-

15
 eV, C is the speed of light with a value of 3 x 10

8
 m / s and λ is the absorption peak 

wavelength; the value obtained during this experiment is 547 nm. 
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Figure 4.13: Uv-visible of Cu-Au nanocomposite with Au nanoparticles (in set) 
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Figure 4.14: Energy diagram of Cu-Au nanocomposite 
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4.3.2 High resolution transmission tlectron microscopy (HRTEM) 

 

As stated in the previous section, Cu-Au nanocomposite with a ration of (1:3) was 

synthesized using a chemical reduction method by simultaneously reducing copper acetate 

and gold acetate with sodium citrate as the reducing agent which also played a role of the 

capping agent. Negatively charged trisodium citrate molecules were adsorbed on the surface 

of the nanocomposite leading to a repulsion of the nanoparticles against each other thus 

stabilizing the nanocomposite by stopping them from aggregating. Figure 4.15 shows the 

HRTEM image of Cu-Au nanocomposite. The darker core comes from gold due to the fact 

that they have a higher electron density than copper. From the particle size distribution, it is 

observed that, the particles size is in the range of 20-40 nm were observed for the Cu-Au 

nanocomposite. The use of trisodium citrate affects the size of Cu-Au nanocomposite which 

implies that, with increase of trisodium citrate a decrease in size of the nanocomposite will be 

observed. Figure 4.16 (a) is the selected area electron diffraction (SAED) of Cu-Au 

nanocomposite and Figure 4.16 (b) represents the obtained lattice parameter of the 

nanocomposite. EDX analysis, as seen on Figure 4.17 was further used to confirm the 

presence of copper and gold. The peak intensity of gold is higher than that of copper due to 

the fact more gold was used during the synthesis of Cu-Au nanocomposite. On the other hand, 

nickel and carbon are also observed. This is because; nickel was used as a grid which was 

coated with carbon. The lines of the synthesized Cu-Au nanocomposite are in impeccable 

agreement with literature where copper appears at Kα = 8.0413 KeV and Lα = 0.9297 KeV, 

gold at Lα = 0.7135 KeV and Mα = 2.1205 KeV (Williams, 2001). 
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Figure 4.15: HRTEM of Cu-Au nanocomposite 
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Figure 4.16: SAED (a) and lattice image (b) of Cu-Au nanocomposite 
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Figure 4.17: HRTEM Energy dispersive X-ray (EDX) of Cu-Au nanocomposite on a 

Nickel grid. 
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CHAPTER 5 : CHARACTERIZATION OF A NOVEL 

METALLIC LAYER Cu-Au NANOCOMPOSITE DOPED-

LiMn2O4 
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5.1 Morphological Analysis and Electrochemical Characterization of a Novel Metallic 

Layer of Cu-Au Nanocomposite Doped LiMn2O4 

 

5.1.1 High resolution scanning electron microscopy (HRSEM) 

 

High resolution scanning electron microscopy (HRSEM) is a versatile imaging technique 

capable of producing three-dimensional images of material surfaces. HRSEM was used to 

determine the morphology, the particle size distribution and the elemental composition of Cu-

Au nanocomposite-doped LiMn2O4. The crystallized size of the as prepared particles was 

calculated by use of the Scherrer’s equation: 

 

0.9λ
d=

Bcosθ
            (9) 

Where λ represents the wavelength, d is the mean crystallite in volume; B is the width at the 

maximum hump of the broadened diffraction peak. The high resolution image of Cu-Au 

nanocomposite doped-LiMn2O4 shows a well-developed octahedral structure with sharp edges 

and high crystallinity bounded by eight (111) planes with particles size ranging between 50-

200 nm as seen in Figure 5.1 (Ying et al., 2001). In addition the Cu-Au nanocomposite 

appears as a tinny irregular shape, across the particles of pristine LiMn2O4. As it is known 

that, particles at the nanoscale have a large surface area, thus the Li
+
 diffusion length could 

easily be reduce during the charge / discharge process which would lead to the improvement 

of the cathode material. Consequently, the incorporation of the Cu-Au nanocomposite would 

enhance the electrochemical performances of the cathode. For further confirmation of the 

composition of Li[Cu-Au]0.02Mn1.98O4, EDX analysis was performed. But, with EDX analysis, 

it is not possible to detect the presence of lithium since it is outside the EDX detection range. 

The EDX results obtained, show that manganese appears at: Kα = 5.8951 KeV and Lα = 

0.6374 whereas the oxygen appears at: Kα = 0.5249 KeV, gold at: Lα = 9.7135 KeV and Mα 

= 2.1205 KeV; finally copper appears at: Kα = 8.0413 KeV and Lα = 0.9297 KeV which 

agree with literature (Williams, 2001). EDX analysis thus reveals the evidence of the 

formation of Li[Cu-Au]0.02Mn1.98O4 as seen on Figure 5.2 and Figure 5.3. Figure 5.2 shows 

that the highest peak intensity is observed for oxygen, followed by that of manganese and this 

is also noticed in the EDX of pristine LiMn2O4 (inset). This is due to the fact that the oxygen 

and manganese had the major composition during the synthesis. In the map of the selected 

area of Li[Cu-Au]0.02Mn1.98O4 as seen in Figure 5.3, copper is in light blue colour, gold is in 

yellow, manganese is in green and oxygen is in red. Moreover, with regard to other 
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researchers results obtained in the surface modification of LiMn2O4, here no evident change 

in the surface modification of LiMn2O4 through doping with Cu-Au nanocomposite has been 

observed. Henceforth, HRTEM is done in order to ascertain if there is a doping layer of Cu-

Au nanocomposite present. 

 

 

Figure 5.1: HRSEM images of doped Li[Cu-Au]0.02Mn1.98O4 with HRSEM of pristine 

LiMn2O4 (inset) 
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Figure 5.2: HRSEM Energy-dispersive X-ray (EDX) of a selected area of Li[Cu-

Au]0.02Mn1.98O4 on a nickel grid with EDX of pristine LiMn2O4 (inset) 
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Figure 5.3: Map of a selected area of Li[Cu-Au]0.02Mn1.98O4 
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5.1.2 High resolution transmission electron microscopy (HRTEM) 

 

For a better understanding of the morphology as well as the nanostructure of the synthesized 

Li[Cu-Au]0.02Mn1.98O4 cathode material, HRTEM observation was conducted on the material 

heat-treated at high temperature. Figure 5.4 shows a higher resolution image of Li[Cu-

Au]0.02Mn1.98O4 powder calcined at 880 
o
C for 15 h with HRTEM of Cu-Au nanocomposite 

(inset). The crystallite size of the powder prepared is around 20 -50 nm. Moreover, the 

obtained HRTEM reveals that the surface of Li[Cu-Au]0.02Mn1.98O4 cathode powder is only 

doped with a thin layer of Cu-Au nanocomposite. Figure 5.5 shows the selected area electron 

diffraction of Li[Cu-Au]0.02Mn1.98O4 corresponding to a hexagonal cubic- shape like 

nanoparticles with a size of around 50 nm. The particles appear to be well crystalline with a 

good dispersion which leads to a higher surface area which is in perfect conformity with xrd 

results obtained. Additionally, Figure 5.5 also discloses that Cu-Au nanocomoposite- doped 

LiMn2O4 has the same pattern zone of (111) as pristine LiMn2O4. Contrasting, other material 

used in the surface modification of pristine LiMn2O4 for instance, metal oxides or inorganic 

which would partly obstruct Li
+
 from penetrating the doping layer into LiMn2O4. Here, 

Li[Cu-Au]0.02Mn1.98O4 with nearly the similar structure as pristine LiMn2O4 might render the 

Li
+
 pass over the Cu-Au nanocomposite doping layer more effortlessly. Based on the obtained 

result comparing with the one obtained for Cu-Au nanocomposite we can conclude that Cu-

Au nanocomposite is present in the morphology of Li[Cu-Au]0.02Mn1.98O4. Figure 5.6 displays 

the EDX obtained, which further confirms the presence of copper as well as that of gold. 
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Figure 5.4: HRTEM of Li[Cu-Au]0.02Mn1.98O4 with HRTEM of Cu-Au nanocomposite 

(inset) 
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Figure 5.5: SAED of a selected area of Li[Cu-Au]0.02Mn1.98O4 
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Figure 5.6: HRTEM Energy-dispersive X-ray (EDX) of Li[Cu-Au]0.02Mn1.98O4 

 

 

 

 



89 

 

5.1.3  X-ray diffraction (XRD) 

 

Figure 5.7 represents the X-ray diffraction (XRD) pattern of the as prepared Li[Cu-

Au]0.02Mn1.98O4 calcined at 880
o
C for 15 h. From the XRD below, we notice an increase in 

peak intensity in Li[Cu-Au]0.02Mn1.98O4 as compared to the XRD pattern obtained of 

LiMn2O4. This suggests an increase in crystallinity which is in perfect agreement with the 

HRSEM results obtained. Moreover no change was observed on the lattice parameter of the 

modified LiMn2O4. It has been concluded that LiMn2O4 hasn’t changed its structure after 

surface modification using Cu-Au nanocomposite. The obtained result is also confirmed by 

the HRSEM results. However, we found some closeness in diffraction peaks for copper and 

gold which are indexed with respect to the Joint Committee Powder Diffraction Standards 

(JCPDS: 0004-0784) and (JCPDS: 04-0836) cards respectively. 

 

 

Figure 5.7: XRD pattern of Li[Cu-Au]0.02Mn1.98O4 calcined at 880
o
C for 15 h with an 

increase in peak intensity.  
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5.1.4 Fourier-transform infra-red (FTIR) 

 

FTIR spectroscopy is painstaking to be an active tool in solid-state chemistry because it 

delivers information on the structural environment of inorganic solids. The FTIR spectra of 

the pristine LiMn2O4 as well as that of a novel metallic layer Cu-Au nanocomposite doped-

LiMn2O4 calcined at 880 
o
C are represented by Figure 5.8 in the wave number range of 500 -

4000 cm
-1

. The bands observed in the range of 500 -600 cm
-1

 are characteristics of 

manganese-oxygen (Mn-O) vibration peaks and mirrors the structural environment of MnO6 

octahedral responsible for the formation of LiMn2O4 (Raja et al., 2009). Moreover no 

additional frequency band was observed for copper and gold. Based on XRD results gotten for 

this MSc research work, LiMn2O4 preserved its structure after surface modification through 

doping of Cu-Au nanocomposite the same is observed in the FTIR spectra of Li[Cu-

Au]0.02Mn1.98O4, as no much change is observed in the spectra but only a change in peak 

intensities. Consequently, it is suggested that Cu-Au nanocomposite didn’t diffuse into the 

whole cathode material but only on the surface of LiMn2O4 powder. 

 

 

Figure 5.8: FTIR spectra for LiMn2O4 and Li[Cu-Au]0.02Mn1.98O4 
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5.2 Electrochemical Characterization of Novel Metallic layer of Cu-Au nanocomposite 

doped- LiMn2O4 

 

5.2.1 The effects of electrochemical parameters obtained from the CV of LiMn2O4 and 

LiMxMn2-xO4 at 9 mV / s in 1 M Li2SO4 

 

Table 4 below displays the electrochemical parameters that contribute toward the redox 

reaction taking place at the anode and cathode. The peak separation (ΔEp) for the synthesized 

LiMn2O4 and the novel Li[Cu-Au]0.02Mn1.98O4 are 887 mV and -88 mV respectively. The 

least peak separation was obtained for Li[Cu-Au]0.02Mn1.98O4. Thus, it is concluded that 

Li[Cu-Au]0.02Mn1.98O4 has a more reversible behaviour than the pristine LiMn2O4. Moreover, 

the peak separation values for both are larger than the ideal condition where ΔEp = 0. This 

implies that Mn
3+

 / Mn
4+

 reaction is controlled by the insertion / deinsertion of Li
+
 in the 

cathode materials. Consequently, the least ΔEp would shorten the Li-ion path responsible for 

the faster reaction. This is due to the presence of Cu-Au nanocomposite in the cathode 

material leading to the decrease in peak separation (ΔEp) from 887 to -88 mV. The broadening 

in peak is more obvious in pristine LiMn2O4 than in Li[Cu-Au]0.02Mn1.98O4 as observed in 

Figure 5.9 and Figure 5.10. This is due to the fact that LiMn2O4 has a reduced surface and 

with an elongated diffusion path of Li
+
. 

 

Table 4: Electrochemical parameters from CV for LiMn2O4 and Li[Cu-Au]0.02Mn1.98O4 

 

Cathode 

materials 
Epa1 

(mV) 

Epc1 

(mV) 

ΔEp1 

(mV) 

Ipa1 / 

Ipc1 

(µA) 

Epa2 

(mV) 
Epc2 

(mV) 

ΔEp2  

mV 

Ipa2 / Ipc2 

(µA) 

LiMn2O4 177  -710 887 0.66     

LiMxMn2-xO4 -180 -92 -88 0.45 192 153 39 2 
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Figure 5.9: Cyclic voltammogram of LiMn2O4/GCE 1 M Li2SO4 

 

 

Figure 5.10. Cyclic voltammogram of Li[Cu-Au]0.02Mn1.98O4/GCE in 1 M Li2SO4 
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5.2.2 Redox reaction analysis 

 

The active cathode material of a secondary lithium-ion battery is a host compound, where 

lithium ions can be inserted and extracted reversibly during the cycling process. In the last 

few years, the use of nanomaterials for Li-ion cathodes instead of conventional materials has 

become very attractive to perk up the performance of lithium rechargeable batteries. Several 

groups have shown that nanosized materials are emerging as successful solutions to enhance 

rate capability and cyclic stability of these electrodes (Sides et al., 2005, Odani et al., 2003, 

Curtis et al., 2004). 

In this present work, the cyclic voltammogram results of a glassy carbon electrode (GCE) in 4 

µL of LiMn2O4 and LiMn0.02 Mn1.98O4) heated at 880
o
C for 15 h. 

 

Figure 5.11, shows an increase in current as the scan rate is increased. Even though, it has 

been reported that the stability as well as the insertion /  extraction of Li
+
 takes place in two 

steps (Gummow et al., 1994). Nevertheless in this present study not such two distinct peaks 

during oxidation and reduction were observed for LiMn2O4 except for Li[Cu-Au]0.02Mn1.98O4. 

 

 

Figure 5.11: Cyclic Voltammograms of Li[Cu-Au]0.02Mn1.98O4/GCE in 1 M Li2SO4 at 

different scan rate. 
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Additionally, the broadened peak in LiMn2O4 as seen in Figure 5.12 shows that the process 

takes place in two steps. Similar result was reported by a researcher (Rao et al., 2001). The 

cyclic voltammogram of Li[Cu-Au]0.02Mn1.98O4 shows two pairs of redox peaks. This is 

attributed to the insertion / deinsertion of lithium ion at Li[Cu-Au]0.02Mn1.98O4. Equation 10 is 

a typical characteristic attributed to the deintercalation process of Li ion in 8a tetrahedral sites 

of LiMn2O4 spinel (Kamarulzaman et al., 2009). 

 

+ -
2 4 1-x 2 4LiMn O Li Mn O +xLi +xe        (10) 

 

The first peak C1 is attributed to the removal of lithium ions from the tetrahedral sites where 

Li–Li interactions occur, whereas the second peak C2 is attributed to the removal of lithium 

ions again from the tetrahedral sites but where Li–Li interaction does not occur. However, the 

cathode material doped with Cu-Au nanocomposite Li[Cu-Au]0.02Mn1.98O4 show more than 

2.5 times higher peak current than pristine LiMn2O4 in all corresponding peaks. The peaks for 

the LiMxMn2-xO4 are sharper than those of pristine LiMn2O4. The sharpness in peak in the 

Li[Cu-Au]0.02Mn1.98O4 votltammogram suggests that, electrochemical reaction is complete at 

a shorter period of time which is in perfect agreement with the EIS results obtained in Figure 

5.15. On one hand, the sharpness in the peak in Li[Cu-Au]0.02Mn1.98O4 also indicates an easier 

ion transfer which leads to an improvement of the reaction kinetics. The diffusion coefficient 

was calculated, and found to be -3 2 -11.90×10 cm s  and -3 2 -16.90×10 cm s  for LiMn2O4 and 

Li[Cu-Au]0.02Mn1.98O4 respectively. On the other hand, the sharper peak also implies that the 

deintercalation process of Li ion can take place at a speedy rate. Furthermore, the cathode 

material Li[Cu-Au]0.02Mn1.98O4 with Cu-Au nanocomposite incorporated have a larger 

interface area which provides additional lithium ions for diffusion which need to travel a 

shorter path inside the particle than in LiMn2O4, leading to the high ion exchange current as 

obtained in EIS. In addition, during the discharge process, small particles can provide more 

interfacial region for contact within the liquid electrolyte and can consequently increase the 

opportunity for lithium ions to intercalate back into the host structure, resulting in a higher 

Coulombic efficiency as was calculated in this work, the value found is 50 % and 59 % for 

LiMn2O4 and Li[Cu-Au]0.02Mn1.98O4 respectively (Yi et al., 2007). In addition the decrease in 

peak in the 100 mV region implies that the presence of Mn
3+ 

but in a small amount which 

would not appear at very low scan rate (Lu et al., 2001, Paulsen et al., 2000). This leads us to 

presume that manganese was in its 4+
 
oxidation state (Saıdi et al., 2003). Consequently, we 

can say that the modification of LiMn2O4 surface through doping has an improvement in the 

electrochemical activity of pristine LiMn2O4.  
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Figure 5.12: Cyclic voltammograms of LiMn2O4/GCE and Li[Cu-Au]0.02Mn1.98O4/GCE 

in 1 M Li2SO4 at 9 mV / s 

 

Table 5 displays value obtained for the discharge of LiMn2O4 and Li[Cu-Au]0.02Mn1.98O4 at 

scan rate 9 mV / s which is 120 mAh / g and 153 mAh /g respectively. But, the theoretical 

value of LiMn2O4 is 148 mAh / g as reported by some researchers (Yi et al., 2007). 

Henceforth, our novel Li[Cu-Au]0.02Mn1.98O4 exhibited better electrochemical performance 

additionally a decrease in the dissolution of Mn
2+

 in electrolyte is noticed. The following steps 

were used to calculate the capacities of LiMn2O4 and that of Li[Cu-A]0.02Mn1.98O4. After the 

integration of the selected area of the reduction peak of LiMn2O4, the value obtained is 

-5AV4.66×10 . 

Knowing that charge 
 Area AV

Q=
Scan Rate(V/S)

       (11) 

Hence  
-5

-3

4.66×10 AV
Q=

9 10 (V/S)
        (12) 

-3AVQ = 5.17×10         (13) 
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The unit of battery for capacity are in Amper hour (Ah), since 3600s = 1h, hence 3600 As = 

1Ah 

Thus,  

35.17 10
Q = Ah

3600

 
 
 

          (14) 

-6Q = 1.43 10 Ah           (15) 

The specific capacity of the battery is then obtained by dividing the capacity by the active 

mass used on the surface of the electrode. The amount of -5g1.2×10 was used. 

Consequently, 

Discharge 
Q(Ah)

SpecificCapacity=
ActiveMass(g)

      (16) 

Discharge 
-6

-5

1.43 10 1000
SpecificCapacity=

1.2 10

 


      (17) 

 

Discharge SpecificCapacity=120mAh/g , the same method was used to calculate the 

capacities of charge / discharge of the others. The obtained results are in the table below 

(Martin, 2013).  

 

Table 5: The obtained values of Charge / Discharge capacity 

 

Cathode 

Materials 

Charge / mAh / g Discharge / mAh / g  η* / % 

LiMn2O4 39.16 120 50 

LiMxMn2-xO4 263,04 153.61 59 

 

* η value was calculated with the equation: 
Dischargecapacity

×100%
Chargecapacity

η=   (17)  
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5.2.3 Electrochemical impedance spectroscopy (EIS) 

 

Electrochemical impedance spectroscopy (EIS) studies were performed on fresh cells from 

100 mHz - 100KHz of the LiMn2O4 and Li[Cu-Au]0.02Mn1.98O4 cathodes materials.  

 

Usually, the impedance curves of LiMn2O4 display two partially overlapped semi-circles in 

the high and medium frequency regions and an inclined line in the low frequency region. 

Where, the first semi-circle at higher frequency is related to the formation of a passivation 

film on the surface and the second semi-circle at lower frequency is attributed to the Li
+
 

charge transfer at the interface (Mohamedi et al., 2001). But, not such two semi-circles are 

observed in this present MSc research work. This may be attributed to the frequency window 

used during the experiment, as the frequency window ranged between 100 mHz – 100 KHz. 

The obtained data is in agreement with literature (Zhao et al., 2012). 

Figure 5.13 represents the Nyquist plot of the pristine LiMn2O4 and Li[Cu-Au]0.02Mn1.98O4. 

The low frequency straight line seen can be associated with Li
+
 ion diffusion in the bulk of the 

electrode. A well-defined semicircle at high frequency which is attributed to the complex 

charge transfer processes from the electrolyte to the electrode material. It is known that the 

Rct refers to the charge transfer resistance, and in this case it’s an elevated resistance in the 

high frequency region and is associated with the Li
+
 ion transfer process at the electrode–

electrolyte interface (Wang et al., 2005, Yi et al., 2007). The diffusion rate of Li
+
 in the 

electrolyte solution is far greater than that of Li
+
 in solid-state active material, thus the charge 

transfer resistance can be considered as the rate-determining step of the diffusion process of 

Li
+
 during the charge / discharge of the battery. Moreover, from the Nyquist plot it can be 

concluded that LiMn2O4 is less catalytic than Li[Cu-Au]0.02Mn1.98O4. This means that the 

electron transfer is slow in LiMn2O4, hence a higher value obtained for the resistance charge 

transfer (Rct) and time constant ( τ ) for LiMn2O4 compared to that obtained for Li[Cu-

Au]0.02Mn1.98O4. 
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Figure 5.13: Nyquist plot of LiMn2O4 (a) and Li[Cu-Au]0.02Mn1.98O4 with perturbation 

amplitude of 9 mV / s 

 

Figure 5.14 displays the equivalent circuit obtained from fitting the data using ZView 

software. Where RS is the effective resistance due to electrolyte impedance and electrical 

contacts and is obtained from the intercept of the semicircle at a high frequency with the x-

axis. Ws is the Warburg impedance seen as a slope in the low frequency regime, Cdl is double 

layer capacitance of a solid electrolyte interphase (SEI) represented by CPE (constant phase 

element).  

 

 

Figure 5.14: The model circuit obtained for LiMn2O4 and Li[Cu-Au]0.02Mn1.98O4 
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Table 6 displays the kinetics parameters obtained from EIS for LiMn2O4 and Li[Cu-

Au]0.02Mn1.98O4. The resistance charge transfer (Rct) obtained for Li[Cu-Au]0.02Mn1.98O4 was 

much lower, the decrease in charge resistance transfer implies the Li ion diffusion is enhanced 

in the Cu-Au nanocomposite modified LiMn2O4 more than in the pristine LiMn2O4. In 

addition, the largest Rct value of 201 Ω is observed for LiMn2O4 indicating that it has largest 

electrochemical polarization which results in relatively lower electrochemical performance. 

Additionally, the minimum Rct value of 14,18 Ω was obtained for LiMxMn2-xO4 which 

implies that it has the lowest electrochemical polarization, and this leads to higher cycle 

performance. The increase in exchange current (Io) obtained in Li[Cu-Au]0.02Mn1.98O4 and the 

decrease in impedance suggest an increase in the rate of electron transfer compared to the 

pristine LiMn2O4. Furthermore, the double layer capacitance (Cdl) value for LiMn2O4 and 

Li[Cu-Au]0.02Mn1.98O4 is 0.892 µF and 131.5 µF respectively. The increase in double layer 

capacitance (Cdl) in Li[Cu-Au]0.02Mn1.98O4 proves that Li[Cu-Au]0.02Mn1.98O4 has a higher 

surface area than LiMn2O4 which is ascribed to the surface modification of LiMn2O4 through 

doping of Cu-Au nanocomposite.  

 

Table 6: Kinetics parameters of LiMn2O4 and LiMxMn2-xO4 obtained from 

electrochemical impedance spectroscopy at 298 K 

 

Cathode 

Materials 

Io / A Rct / Ω Ket / cm s
-1

 τ / s rand
-1

 σ / Ω
-1 / 2

 D./ cm
2 

s
-1

 

LiMn2O4 1.28 x10
-4

 201 1.86 x10
-3

 9 x10
-4

 11.73 1.90 x10
-3

 

LiMxMn2-xO4 1.73 x10
-3

 14.18 2.52 x10
-4

 3.8 x10
-4

 6.5 6.09 x10
-3

 

 

From the Bode plot in Figure 5.15, it can be seen that there is a shift towards higher frequency 

as the flow of electrons is faster. This is accredited to the decrease in time constant ( τ ) found 

to be 3 x 10
-4

 s rand
-1

 for Li[Cu-Au]0.02Mn1.98O4 and 9 x 10
-4

s rand
-1

 for LiMn2O4. Current 

exchange (Io), heterogeneous rate transfer of electron (Ket), the constant time ( τ ), the angular 

frequency at maximum imaginary impedance of the semi-circle ( maxω ) and the lithium ion 

diffusion coefficients (D) were all calculated from: 

 

max

1
τ=

ω
           (18) 
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ct

0

RT
=

nFI
R            (19) 

0 etI = nFAK C            (20) 

0

et

I
=

nFAC
K            (21) 

 
1

2
s ctσ= R -R ω           (22) 

R is the gas constant = 8.314 l / mol K, T is the room temperature = 289 K, n is the number of 

Lithium ion transfer, F is the faraday constant = 96485 C / mol and A represents the area of 

the electrode as for this work glassy carbon electrode with area of 0.071 cm
2 

(Bard and 

Faulkner, 1980). The Warburg coefficient σ is defined by the following equation (Bard and 

Faulkner, 1980): 

1/2 1/22 2
o o r

RT 1 1
σ= +

D C D Cr2 n F A

 
 
          (23) 

Let assume that Do = Dr = D, the above equation becomes: 

2 2

RT 1 1
σ= +

2n F A DC DC

 
 
 

        (24) 

2 21 1 σ 2n F A
+ =

RTDC DC
         (25) 

2 22 D σ 2n F A
=

DC RT
          (26) 

By squaring both sides we get: 

2 2
2 22 D σ 2n F A

=
DC RT

   
      
   

         (27) 

 
2

2 = 2, thus the equation becomes       (28) 

2
2 2

2 2

4D σn F A
= 2

D C RT

 
 
 

          (29) 

 

 

 

 



101 

 

2
2 2

2

2 σn F A
=

DC RT

 
 
 

           (30) 

Hence 
 

 

2

2
2 2

2 RT
D =

σn F A
         (31) 

 

Figure 5.15: The Bode plot of LiMn2O4 (a) and Li[Cu-Au]0.02Mn1.98O4 (b) with 

perturbation amplitude of 10 mV 
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6.1 Conclusion 

 

The energy problem faced today has led many researchers to the quest for new alternative 

sources of energy which are environmental friendly, cost effective and non-toxicity. LiMn2O4 

has proven to be the ideal cathode material for Li-ion batteries as it meets these requirements 

but due to its disadvantages such as: the (1) the Jahn–Teller distortion caused by Mn
3+

 would 

lead to the degradation of cyclability in LiMn2O4 during the Li
+
 intercalation and de-

intercalation, (2) dissolution of manganese into the electrolyte and decomposition of the 

electrolyte, (3) cation mixing between Li and Mn ion in the spinel lattice (4) oxygen loss from 

the spinel lattice and (5) break down of the spinel lattice. Novel transition metal 

nanocomposite (Mx = Cu-Au) doped LiMn2O4 with improved stability and electrochemical 

performances has been successfully designed and synthesized. Since the metal nanocomposite 

can penetrate the surface of the spinel LiMn2O4, the modified LiMxMn2O4 suppress the Jahn-

Teller distortion. Good reproducibility was obtained after several experimental runs. LIBs 

have large spread application in computers, cars, and also medical dispositive purposes. At 

present time, their main limitation is that their capacity density cannot exceed 200 µAhcm
-2

. 

In order to increase that, it is suggested that nanomaterials used in positive and negative 

electrode should have the following characteristics: a high surface area which will be able to 

enhance electrochemical performances in order to improve their discharge capacity. This 

work exploited a novel approach for the surface modification of LiMn2O4 through doping of 

Cu-Au nanocomposite in order to improve the electrochemical performances of the LiMn2O4 

cathode material. In fulfilment of the research criteria, following primary objectives were 

achieved: 

 

 The successful synthesis of LiMn2O4 cathode material via co-precipitation method and 

Cu-Au nanocomposite via chemical reduction method by the reduction of copper acetate 

and gold acetate using sodium citrate. 

  Doping the pristine LiMn2O4 cathode materials with an adequate amount of Cu-Au 

nanocomposite  

 Spectroscopic and microscopic sample analysis of pristine LiMn2O4, Cu-Au 

nanocomposite and the modified cathode materials via X-ray diffraction (XRD), thermal 

gravimetric analysis (TGA), resolution scanning electron microscopy (HRSEM), high 

resolution transmission electron microscopy (HRTEM), fourier-transform infra-red 

(FTIR), ultraviolet visible spectroscopy (Uv-vis) and cyclic voltammetry (CV), 

electrochemical impedance spectroscopy (EIS) 
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The results obtained from that UV-visible results show the presence of red shift for the Cu-Au 

nanocomposite compared to the pure gold nanoparticles that have a narrower peak which 

implies that the synthesized Cu-Au nanocomposite has a larger particle distribution. The 

energy band gap of 2.28 eV was obtained for the synthesized Cu-Au nanocomposite which 

suggested that it’s a semiconductor. Henceforth the synthesized Cu-Au nanocomposite would 

be able to enhance the conductivity of the synthesized cathode materials. HRTEM results 

showed that the negatively charged sodium citrate molecules were adsorbed on the surface of 

the nanocomposite leading to a repulsion of the nanoparticles against each other thus 

stabilizing the nanocomposite by stemming aggregation. Therefore a well dispersed Cu-Au 

nanocomposite was obtained with a size range between 20 -30 nm. A mixture of the novel 

Cu-Au nanocomposite with pristine LiMn2O4 was used for the synthesis of LiMxMn2-xO4. 

XRD analysis of the modified LiMxMn2-xO4 revealed good crystallinity with an increase in 

peak intensity. The main diffraction patterns at: (111), (311) and (400) were found to be at 

their specific 2θ values for both the modified and unmodified samples which denote an 

unaltered spinel structure after modification. HRSEM micrograph of the pristine LiMn2O4 

shows two types of particles: small particles with a shape of spinel of about 50 nm and the 

second type of particles are much bigger with a size of more or less 100 nm and are well 

agglomerated by those smaller particles. In addition the Cu-Au nanocomposite appeared as 

well dispersed tinny spherical particles across the pristine LiMn2O4. HRSEM micrograph of 

LiMxMn2-xO4 showed well-developed octahedral structures with sharp edges, which was 

bounded by eight (111) planes. The pristine LiMn2O4 has obvious visible fringes, indicating 

that the crystals of spinel LiMn2O4 grow very well and have good crystallinity which agrees 

with the XRD results. The EDX confirms that manganese appears at: Kα = 5.8951 KeV and 

Lα = 0.6374 whereas the oxygen appears at: Kα = 0.5249 KeV. FTIR results showed a 

presence of MnO6 frequency bands responsible for the formation of spinel LiMn2O4. 

The thermal gravimetric analysis (TGA) of pristine LiMn2O4 shows the weight lost loss takes 

place in three different regions: 20-200 
o
C, 200-500 

o
C and 500-600

o
C. Additionally there is 

about 2.5% weight loss when the sample was heated to 200 °C, which is attributed to the 

adsorption of water. From 200 and 350 °C, about 5.5% weight loss is attributed to removal of 

acetates, followed by 2 wt% loss due to the elimination of the surfactant. The cyclic 

voltammetry of pristine LiMn2O4 didn’t show any two distinct peaks for oxidation and 

reduction as found in the literature, but the broadening in peaks tells us that the process takes 

place in two different steps as found by some researchers as well. The first peak is accredited 

to the removal of lithium ions from the tetrahedral sites where Li–Li interactions occur, 

whereas the second peak is attributed to the removal of lithium ions again from the tetrahedral 
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sites but where Li–Li interaction does not occur. Moreover, the modified LiMn2O4 showed an 

improvement in the electrochemical performance which lead to an increase in discharge 

capacity as it was found to be 153 mAh / g which is higher than the theoretical value (148 

mAh / g) reported in literature (Yi et al., 2007). The decrease in Rct for LiMxMn2-xO4 proves 

that the modified cathode material has lower electrochemical polarization, faster lithium- ion 

diffusion rates and increase material conductivity attributed to the presence of Cu-Au 

nanocomposite in the cathode material which concomitantly leads to improved cycle 

performance. 

 

Based on the results obtained, it can be concluded that the research approach used here, is a 

viable method for synthesizing electrochemically enhanced LiMn2O4 cathode material for Li-

ion batteries. The surface modification of LiMn2O4 through Cu-Au nanocomposite has shown 

a decrease in the dissolution of Mn
2+

 in the electrolyte. Additionally, it has proven to enhance 

the conductivity and provide short charge transportation distance due to smaller particle size 

of the cathode material leading to the improvement of its electrochemical performances. 

These improvements present the Cu-Au nanocomposite doped-LiMn2O4 as a promising 

cathode material for high power LIBs, solar cell and supercapacitors applications. 

 

6.2 Recommendations 

 

The future work that has to be done involve: 

Characterizations such as: 

Nuclear magnetic resonance (NMR), in order to investigate if the Jahn-Teller distortion has 

been diminished  

Inductive Couple plasma (ICP), which would allow us to verify the amount of LiMn2O4 

dissolution in the electrolyte during electrochemical characterization before and after surface 

modification. 

The exploration of other nanocomposites that may be used in order to improve the 

electrochemical performances of the cathode material. 

The application of the synthesized cathode material in a real Li-ion battery. 
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