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ABSTRACT 

 

SOURCES OF HEAVY METALS IN VEGETABLES IN CAPE TOWN, AND 

POSSIBLE METHODS OF REMEDIATION 

M. Meerkotter  

PhD thesis, Department of Biodiversity and Conservation Biology, University of the Western 

Cape 

 

Cape Town includes two vegetable farming areas within the city limits, the 

Joostenbergvlakte/  

Kraaifontein area and the Philippi area.  Both areas supply produce to local markets and 

further afield.  Sporadically, high levels of cadmium, copper, lead and zinc have been 

found to occur in some of the soils, irrigation water resources and crops.  To find the 

sources of specifically Cd, Pb and Zn to these agricultural systems, extensive analysis of 

several heavy metals in inputs such as fertilizers, agrochemicals and supplementary 

water resources to these farming areas was undertaken.  Heavy metal concentrations in 

soils, irrigation water resources and crops were also determined.  Two mitigation 

techniques that could be used to remediate Cd, Pb and Zn contamination were 

investigated.  The first mitigation method included immobilization of heavy metals as 

phosphate complexes by using a triple super phosphate fertilizer, while the second 

method involved mobilisation and thus leaching of heavy metals away from plant roots 

using EDTA.  These mitigation methods were tested in a pot experiment using cabbage 

as the experimental crop and soil from these areas as growth medium.  A survey of 

common farming practices in these two areas and farmers‟ willingness to use 

remediation methods was conducted.  The results in general indicated that crops from 
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these two areas were fit for human consumption and that raw (unprocessed) cattle 

manure and chicken manure were the greatest sources of heavy metals in both farming 

areas.  It was found that the use of EDTA led to elevated levels of Cd, Pb and Zn in 

cabbage, while the use of triple super phosphate at a low concentration contributed to 

limiting the uptake of Cd, Pb and Zn, but only minimally.  Most farmers are willing to 

apply remediation methods but only when they have been proven necessary.  In general, 

the same farming practices occurred in both areas.  Farmers from the Philippi area tended 

to rely more heavily on subterranean water resources.  It became clear that unprocessed 

manures should be used with caution and that more appropriate heavy metal remediation 

methods should be sought. 
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CHAPTER 1 

 

INTRODUCTION TO THE STUDY ‘SOURCES OF HEAVY METALS IN 

VEGETABLES IN CAPE TOWN, AND POSSIBLE METHODS OF REMEDIATION’ 

AND A LITERATURE REVIEW 

 

1.1.  Aims of the research 

Research done during the past ten years in both the Philippi, Joostenbergvlakte and 

Kraaifontein agricultural areas of Cape Town revealed that the concentrations of heavy 

metals, cadmium, copper, lead and zinc in respectively, soil, water and vegetables exceeded 

the limits set by South African regulations and guidelines (Aza-Gnandji, 2011; Meerkotter, 

2003; Qoko, 2003; Sogayise, 2003).  Guidelines used for evaluating the irrigation water were 

from the reference: Department of Water Affairs and Forestry (1996) South African Water 

Quality Guidelines (Second edition), Volume 4: Agricultural Use, Irrigation.  Guidelines for 

concentrations of elements in the soils were adopted from: Water Research Commission 

(1997) Permissible Utilization and Disposal of Sewage Sludge.  Regulations proclaimed 

under the Foodstuffs, Cosmetics and Disinfectants Act (Department of Health, 2003; 

Government Gazette, 1994;) were used to test vegetables against. 

 

This research therefore aimed firstly, to determine, the sources of the specific heavy metals 

cadmium, lead and zinc (amongst other elements such as calcium, cobalt, chromium, copper, 

iron, mercury, magnesium, manganese, molybdenum, nickel, phosphorous, selenium, tin and 

vanadium) in various inputs to both the Philippi, Joostenbergvlakte and Kraaifontein farming 

areas.  In the event of heavy metal contamination of agricultural resources in these areas 

becoming a health hazard, this research secondly investigated, two mitigation treatments in a 
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pot experiment using soils from these farming areas as growth medium.  The one mitigation 

method involved the application of EDTA and the other the application of triple super 

phosphate fertilizer.  Thirdly through this research, awareness was to be raised amongst the 

farmers of these farming areas, with regard to heavy metal pollution in the agricultural 

system and its various implications.  Gathering information about general farm practices in 

these farming areas was to be attempted. 

 

This study mainly focused on the scientific issues involved.  Socially, however, there rested 

an obligation on the researcher to inform farmers of the Philippi, Joostenbergvlakte and 

Kraaifontein agricultural areas of the heavy metal contamination problem that could be 

looming.  Although it was important to raise this potential problem that could develop in the 

near future, it had to be done in a manner that would not cause harm to these farming 

communities, through loss of agricultural activity due to unnecessary exaggeration of the 

issue (Furness, 1996; The Constitution of the Republic of South Africa, 1996).  Conducting a 

brief survey to gather some farming practice information from the farmers, as well as their 

thoughts on mitigation, was aimed at addressing this looming problem more effectively. 

 

Scientifically, determination of the source(s) of the problem heavy metals would be a 

“reactionary response” to lessen the scale of heavy metal contamination bound to occur in the 

future if intervention is not made, while investigating different methods of mitigation would 

be a “proactive response” to determine useful heavy metal mitigation/remedial methods if 

needed in the future in these agricultural areas.  Important issues relating to these agricultural 

areas are discussed in the following section of this chapter, after which this research is related 

to global studies of similar nature in the Literature Review section of this chapter. 
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1.2.  Background to the vegetable farming areas of Cape Town 

This research contributes towards the „Sustainable utilization of subterranean water resources 

for the improvement of the quality of life‟ project, which falls under the broader; „Dynamics 

of Building a Better Society Programme (DBBS)‟.  The DBBS programme combined the 

expertise and knowledge base of the University of the Western Cape with that of the Flemish 

Universities through the Flemish Interuniversity Council (Vlaamse Interuniversitaire Raad). 

 

The quality of subterranean water resources is often affected by agricultural activities above 

ground.  Heavy metals and other pollutants in agricultural soils and surface irrigation waters 

could enter subterranean water resources through runoff and leaching thus affecting the 

sustainable utilization of subterranean water resources (Li and Shuman, 1997 a; Li and 

Shuman, 1997 b; Tijani, 2009).  Once subterranean water resources have been contaminated 

they are not easily decontaminated.  Use of contaminated subterranean water, above ground, 

may lead to further pollution of surface water resources and agricultural soil as pollutants 

cycle from below ground to above ground and vice versa (Alam et al., 2003).  Addition of 

pollutants to the agricultural environment could intensify the existing problem and thus, 

monitoring of surface and subterranean water resources and agricultural soil is of importance 

to ultimately ensure, good quality potable and irrigation water and production of consumer 

safe crops (Arora et al., 2008). 

 

The Cape Metropolitan Area contains both primary and secondary aquifers, some of which 

have been studied since 1966.  Of these, the primary aquifer, the Cape Flats aquifer, has been 

explored since 1980 as possible supplementary resource to the current domestic water supply 

of Cape Town.  All subsequent investigations of this aquifer indicated that it would be a 

significant resource to supplement the current municipal water supply and that abstraction 
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could begin immediately.  To date abstraction from this aquifer, to supplement municipal 

water resources of the Cape Metropole, aimed for domestic use, has not happened, yet, 

conservation of the quality of this water resource is necessary as the demand for potable 

water increases, with increase in Cape Town‟s population size (Fraser and Weaver, 2000; 

Rose, 1996, Vandoolaeghe, 1990; Wright and Conrad, 1995). 

 

It was reported in June 2005 that the Western Cape‟s water resources were almost fully 

utilized and that there was already a deficit in some areas, hence the need for effective use of 

subterranean water resources to supplement surface water resources has become more urgent 

(Yeld, 2005).  These subterranean water resources and the proper management thereof have, 

in view of the above, become increasingly important.  Presently, Cape Town‟s farming 

communities use water from both primary and secondary aquifers for irrigation purposes and 

some private landowners have boreholes and well points fed by these aquifers.  Proposals 

were placed on the table in 2002 to encourage the installation of more private boreholes and 

well points in the Cape Metropole, to help minimize the amount of treated municipal water 

currently used for irrigation of gardens, sports fields and recreational areas.  Abstraction of 

water from the Cape Flats aquifer and secondary aquifers for domestic use has been 

accomplished successfully in the Atlantis area and Cape Flats aquifer water is used for 

irrigation in the Mitchell‟s Plain area (Harris et al., 1999, Rose, 1996; Saayman and Adams, 

2002; Vandoolaeghe, 1990). 

 

Saayman and Adams (2002) reported that the water of both the primary and secondary 

aquifers of the Cape Flats is generally of good quality.  However, in light of the 

abovementioned, it should be clear that the demand for water in the Western Cape, 

necessitates that the quality of not only surface water resources, but indeed also subterranean 
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water resources, be protected, and that proper management of use of these water resources is 

of extreme importance. 

 

Intrusion of seawater into the Cape Flats aquifer has been suspected in isolated areas in Cape 

Town.  Fortunately, a recent study by Aza-Gnandji (2011) reported it not so in the Philippi 

farming area, which is near the False Bay coast line.  The research did, however, indicating 

that over-abstraction was taking place in some areas (Aza-Gnandji, 2011).  Phosphate 

contamination of the Cape Flats aquifer has been detected especially in the Philippi 

agricultural area and this has been correlated positively with agricultural practices such as 

fertilizer use (Bertram, 1989).  Mineralisation of subterranean water in the Philippi farming 

area, as well as leaching of wastewater, into subterranean water resources, from treatment 

plants in the adjacent Mitchell‟s Plain area has also been indicated (Chittenden Nicks 

Partnership, 1997; Fraser and Weaver, 2000; Harris et al., 1999; Rose, 1996; Wright and 

Conrad, 1995).  Focussed attention has not been paid to the level of pollution of these 

aquifers.  This study indirectly addresses this issue with regard to heavy metal contamination 

of Cape Town‟s agricultural areas (Fraser and Weaver, 2000; Vandoolaeghe, 1990; Wright 

and Conrad, 1995,). 

 

Cape Town‟s two agricultural areas, the Joostenbergvlakte/Kraaifontein and Philippi areas‟ 

soils are of the Cenozoic Sandveld group deposit, which lies on top of the meta-sedimentary 

Malmesbury Shales and Cape Granite bedrock.  The Cape Flats aquifer, a primary aquifer, 

lies in the Sandveld group deposit.  Many farmers abstract water from this primary aquifer for 

irrigational purposes.  Some farmers also abstract water from the secondary aquifer in the 

Malmesbury shales meta-sediment (Cole and Roberts, 1996; Fraser and Weaver, 2000; Harris 

et al., 1999; Rose, 1996; Saayman and Adams, 2002; Wright and Conrad, 1995). 
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The Cape Flats aquifer is a regionally unconfined aquifer and hence subject to pollution from 

various activities and sources aboveground, i.e. air pollution, surface water pollution and soil 

pollution amongst other (Itoh et al., 2006; Tijani, 2009; Wei and Yang, 2010).  The 

secondary Malmesbury shale aquifer, is less influenced by aboveground activities, however, 

there may be areas of linkage between the primary and secondary aquifers, which means that 

the primary aquifer could contaminate the secondary aquifer or vice versa, depending on 

either aquifer‟s water quality (Fraser and Weaver, 2000; Harris et al., 1999; Rose, 1996; 

Saayman and Adams, 2002; Wright and Conrad, 1995). 

 

At several sites in the Philippi farming area, the water table is approximately 1,5m below the 

surface most of the year and hence the transfer of surface pollutants, and specifically heavy 

metals, to the subterranean water resources is a pressing issue that needs to be addressed.  

Furthermore, the common practice of using a combination of both surface and subterranean 

water for irrigation of many of Cape Town‟s agricultural areas perpetuates the cycling of 

pollutants and heavy metals in these agricultural environments, and may be directly or 

indirectly linked to the contamination of subterranean water resources and hence influence 

the sustainability of these resources (Alam et al., 2003). 

 

To determine the extent of heavy metal contamination, agricultural soils, irrigation water and 

vegetables were sampled intermittently between 2000 and 2004 from Cape Town‟s two major 

agricultural areas, Philippi and the Joostenbergvlakte/Kraaifontein area.  Samples collected 

from the Joostenbergvlakte, in 2003, indicated that lead was the most abundant heavy metal, 

specifically in vegetables and some soils collected from the area.  Cadmium was also present 

in excess in most vegetable samples from the Joostenbergvlakte/Kraaifontein area.  Samples 

collected from the Philippi area, in 2000, revealed contamination of soils and vegetables with 
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cadmium, lead and excess levels of zinc.  Excessive levels of copper were also found in some 

soils of the Philippi area in 2000 (Meerkotter, 2003; Sogayise, 2003).  These recorded 

incidences of heavy metal contamination called for further investigation into the sources of 

these heavy metals to these agricultural areas.  Once the sources have been identified, control 

over the extent of heavy metal contamination might be achieved.  This should enable the 

development of activities that will make sustainable utilization of all agricultural resources 

(soil, irrigation water and subterranean water resources) possible. 

 

Both the Philippi and Joostenbergvlakte/Kraaifontein farmers contribute significantly as 

suppliers to Cape Town‟s fresh produce market; therefore addressing the issue of heavy metal 

contamination in these areas‟ crops is of great importance.  The Cape Town fresh produce 

market in turn, is the third largest contributor to South Africa‟s fresh produce among 16 of 

South Africa‟s major fresh produce markets (Directorate Agricultural Statistics, 2000).  In the 

light of South Africa‟s growing population it is imperative that as the demand for vegetables 

grows, the importance of ensuring sustainable utilization of agricultural land is ensured 

(Meerkotter, 2003). 

 

In light of the above findings from previous studies, this research entitled “Heavy Metals, and 

Vegetable Farming in Cape Town:  Sources and Remediation”, was to investigate means of 

dealing with the existing heavy metal contamination problems in both the Joostenbergvlakte, 

Kraaifontein and Philippi farming areas.  Finding the sources of the heavy metals that are 

problematic in these areas would be a stepping-stone towards finding means of remediation 

or at least mitigation, which might lead to enabling action in alleviating heavy metal 

contamination problems on these farms, should they arise in the near future.  Globally, a 
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heavy metal contamination of agricultural systems has been investigated and is highlighted in 

the following section of this chapter. 

 

1.3.  Literature review on global examples of heavy metal contamination on vegetable 

farms and methods of remediation 

A survey, in the summer and winter of 2000, to determine the extent of heavy metal 

contamination in the Philippi agricultural area indicated that lead, zinc and cadmium 

concentrations in vegetables exceeded the concentrations allowed under regulations 

formulated in the South African Foodstuffs, Cosmetics and Disinfectants Act of 1972.  

Although the concentrations of cadmium, lead and zinc exceeded the levels set by these 

regulations, based on Dietary Reference Intake values the vegetables were still fit for human 

consumption as the measured metals concentrations contributed minimally towards the diet 

(Meerkotter, 2003).  Studies done in Bangladesh and Beijing and New Zealand also found 

that, although their respective maximum permissible concentrations for foodstuffs may be 

exceeded in the edible parts of some crops, these crops were still not a health risk and thus 

safe for consumption, indicating that set maximum permissible concentrations for foodstuffs 

in various countries are often almost too stringent (Alam et al., 2003; Furness, 1996; Khan et 

al., 2008 a; Song et al., 2009). 

 

Although excess levels of essential elements, such as zinc, in vegetables, could be 

advantageous and boost the consumer‟s immune system, excess levels of cadmium and lead 

may adversely affect the consumer in the long run, as these elements bio-accumulate in the 

consumer‟s body.  Studies in northern Pakistan for example, declared vegetables that did not 

exceed health risk values for a host of heavy metals as unsafe for consumption even though 

only Pb was present in excess, since Pb posed a health risk to consumers (Khan et al., 2010).  
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A study in Nanning, China found that the consumption of vegetables that contained Cd and 

Pb were particularly hazardous to consumers‟ health and that the selection of vegetable crops 

that accumulated less Cd and Pb was necessary in areas where Cd and Pb contamination was 

prominent in agricultural systems (Cui et al., 2004).  The intake of heavy metals through 

consumption of contaminated vegetables is thus a real health risk.  The effects of cadmium, 

lead and zinc, in the human body were discussed by Meerkotter (2003) in the thesis “Heavy 

Metals, and Vegetable Farming in Cape Town”.  Table 1 summarises the human body‟s 

systems affected by these elements. 

 

Table 1:  Human body systems affected adversely by excess amounts of cadmium, 

copper, lead and/or zinc intake (Meerkotter, 2003) 

Human body systems Cadmium Copper Lead Zinc 

Integumentary system   X X 

Muscular system    X 

Skeletal system X X X  

Nervous system   X  

Endocrine system   X X 

Circulatory system  X X X 

Lymphatic system    X 

Respiratory system   X  

Digestive system X X X X 

Urinary system X X X X 

Reproductive system   X  

 

Ingestion of heavy metal contaminated vegetables is a main source of heavy metals to the 

human body.  Vegetables may become contaminated through irrigation with heavy metal 

contaminated water (Nayek et al., 2010).  It is thus desirable to keep irrigation water 

resources relatively free from heavy metals, but in many counties such as Jordan, Serbia and 

parts of India, fresh water resources are limited and the use of wastewater has become 

necessary (Al-Zu‟bi, 2007; Singh et al., 2010 b; Surdyk et al., 2010).  Though Surdyk et al. 

(2010) and a study done in Beijing by Khan et al. (2008 b) found that wastewater treated 

vegetable crops they studied were not a health risk in terms of heavy metal content, this was 
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not the case in studies elsewhere.  Contrary to the studies of Surdyk et al. (2010) and Khan et 

al. (2008 b), the studies of Singh et al. (2010 b) in India, Mapanda et al. (2007) in Zimbabwe, 

Zeng et al. (2008) on a vegetable land in eastern China and pot experiments by Akbar et al. 

(2010) and Khan et al. (2008 b) indicated that irrigating crops with wastewater elevated the 

health risk of these crops in terms of heavy metal content. 

 

A study done in urban areas of Uganda found however that crops could be safely grown on 

contaminated soils and treated with wastewater as long as these vegetables were washed 

properly before cooking (Nabulo et al., 2010).  Kiziloglu et al. (2008) pointed out that the 

level of treatment of wastewater greatly determined its usefulness for vegetable irrigation.  It 

was found that untreated wastewater could only be used for a short period of time before 

posing a threat to crops in terms of heavy metal contamination.  The use of primary treated 

wastewater could, however, be used over a much longer period of time on agricultural land 

(Kiziloglu et al., 2008).  It has also been found in some studies that the organic content of 

soils may be increased through irrigation with wastewater, which could be a benefit by 

leading to increased crop yields as found in a study by Wang et al. (2007).  A study in the 

Shandong Province of China found that Pb was often added to agricultural soils by 

wastewater irrigation, as well as, through vehicle and industrial fumes, while Cd, Cu and Zn 

were mainly added to agricultural systems through the use of agrochemicals (Liu et al., 

2011). 

 

As important as quality irrigation water resources are to ensure the production of quality 

crops, so important is the quality of the soil in which they are grown.  Several studies 

worldwide indicated that agricultural soil may become contaminated with heavy metals 

through irrigation with wastewater as mentioned, loading with sewerage sludge, dust from 
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metal processing industries, electronic waste recycling and atmospheric deposition (Itoh et 

al., 2006; Larcher, 2003; Luo et al., 2011, Nicholson et al., 2003; Sharma et al., 2008).  Run-

off from urban areas and atmospheric depositions are a great source of heavy metals to soils, 

but it needs to be noted that the sources of heavy metals to respectively urban soils and 

agricultural soils are not necessarily the same (Shirasuna et al., 2006; Wei and Yang, 2010).  

Agricultural soils, like those of the Philippi, Joostenbergvlakte and Kraaifontein areas of 

Cape Town are, however, most likely to be contaminated with heavy metals through addition 

of inorganic fertilizers, manures; agrochemicals and sewage sludge (Al-Zu‟bi, 2007, 

Heijerick et al., 2006; Jinadasa et al., 1997; Muchuweti et al., 2006; Nicholson et al., 2003).  

It is important to note that each possible source of heavy metals should be monitored 

specifically rather than be subject to a general observation, in some cases for example the 

addition of manures increase the levels of Cd measured in lettuce while in other studies the 

addition of manures reduced the uptake of Cd by Beta vulgaris (Jinadasa et al., 1997; Singh 

et al., 2010 a).  None the less, some general observations pertaining to the cycling of nutrients 

and heavy metals in an agricultural ecosystem should be considered to find a remedy in cases 

where heavy metal pollution exists. 

 

In general, heavy metals can cycle through water, soils and the biosphere much like 

phosphorus cycles through an ecosystem, since most heavy metals do not exist in a gaseous 

state.  Heavy metals may occur naturally in the soil or rocks of an area, or could be 

introduced to the soil in many ways, for example, through application of fertilizers that 

contain traces of heavy metals, deposition from polluted air or dumping of heavy metal 

containing substances in an area.  Heavy metals may exist in the soil as ionic species that can 

be taken up by plants and could then be passed on to various consumers in the food-chain.  

The heavy metals can then return to soils through defecation, excretion or decay that follows 
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the death of consumers of heavy metal contaminated foods.  The cycle may then repeat itself 

and heavy metals may even reach water resources through runoff from various contaminated 

sites.  Groundwater resources may also be contaminated as heavy metals percolate through 

the soil with water that would naturally recharge aquifers.  Use of contaminated groundwater 

for irrigation, in turn, may re-contaminate, heavy metal polluted soil and thus accumulation 

of heavy metals could occur in an ecosystem and the crops grown in contaminated 

agricultural fields (McLaughlin et al, 1997; Miller, 1996; Sauvé et al, 1996). 

 

Although vegetables most likely take heavy metals up from the soil in which they are grown, 

the fact that soils may be heavily contaminated with heavy metals may not necessarily mean 

that the vegetables grown in such soils would be a risk to consumers‟ health.  Khan et al.‟s 

study (2008 b) focussing on heavy metal contaminated soils in Beijing found that although 

the soils exceeded the permissible limits set for heavy metals therein, the crops grown on 

these soils did not pose a threat to consumers‟ health.  On the contrary, studies by Jinadasa et 

al. (1997) in Sydney, Australia, Sharma et al. (2007) in Varanasi, India and Hao et al. (2009) 

in Southern Jiangsu Province, China showed that though agricultural soils contained 

relatively low concentrations of selected heavy metals, these metals were in concentrations 

greater than these countries‟ respective permissible levels in foodstuffs in the vegetables 

grown on these soils. 

 

In a study by Azimi et al. (2006), it was found that the concentration of Cd in soil did not 

affect the concentration of Cd in the organs of pumpkins grown on these soils compared to 

pumpkins grown on uncontaminated soils.  Similar results were obtained by Nabulo et al. 

(2010) who found that Cucurbita maxima and Vigna unguiculata were more able to restrict 

Cd uptake from contaminated soils.  In the study by Azimi et al. (2006) the roots of radish 
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were shown to accumulate less Cd than the stems and leaves.  A study done by Queirolo et al. 

(2007), it was found that potatoes skins accumulated more Cd and Pb than the other part of 

the potato.  Cao et al. (2010) found that leafy vegetables were more likely to accumulate 

heavy metals than Solanaceae vegetables.  A study done by Nabulo et al. (2011) showed that 

though grown on the same soil medium, leafy vegetables from tropical areas accumulated 

more Cd than temperate types.  Furthermore, in a study where soil was saline and heavy 

metal contamination a problem, the growth of several vegetable crops was tested and most 

successful was the salt tolerant tomato plant, which was also able to accumulate less heavy 

metals than other crops (Li et al., 2010).  These studies indicated that different crops respond 

differently to similar heavy metal concentrations (Yusuf et al., 2003).  When faced with 

heavy metal contamination of agricultural soils farmers may be wise to plant crops that would 

be less likely to accumulate great amounts of heavy metals. 

 

Though the washing of crops prior to cooking can reduce the presence of heavy metals 

thereon, it is important to reduce the uptake of heavy metals by crops (Sharma et al., 2008; 

Sharma et al., 2009).  This may be achieved though various remediation techniques, some of 

which are mentioned in the following sections of this chapter.  An obvious way of reducing 

heavy metals in the agricultural system would be to simply reduce the use of fertilizers and 

chemicals that contain heavy metals.  Elevation of soil‟s organic matter content to bind 

metals to the soil and render them unavailable to plants can also be achieved rather easily 

(Paradelo et al., 2011).  Soil pH can also be elevated to immobilize heavy metals (Marschner, 

1995). 

 

Other methods involve the removal of polluted topsoil and its replacement with unpolluted 

topsoil or simply covering the polluted soil layer with a layer of unpolluted topsoil.  These 
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methods are, however, not very practical.  The removal of polluted topsoil may cause 

pollution in the area where it is dumped and obtaining unpolluted topsoil from elsewhere to 

substitute the removed soil would damage the source area‟s ecosystems by causing erosion 

(Miller, 1996).  Polluted topsoil could, instead of removal, be stabilized through addition of 

additives that can immobilize metals in the soil (Boisson et al., 1999).  Other remedies might 

include the in situ or ex situ “washing” of soil with chelating agents or acids to remove heavy 

metals.  The “washing” of soil could also be combined with phyto-remediation (Sun et al., 

2001).  Phyto-remediation with economically viable crops is an additional option farmers 

might have (Zheljazkov and Nielsen 1996). 

 

The use of plants species to remove or extract heavy metals from the soil and in so doing 

clean the soil for planting of less tolerant crops could be considered (Qoko, 2003).  Phyto-

remediation though having benefits may however take years to clean soils sufficiently and 

thus might make this method less plausible to commercial farmers.  Getting rid of the 

polluted plant material after remediation is also problematic.  Phyto-remediation may, 

however, be useful when applied to contaminated sites where human contact is not frequent 

(Salido et al., 2003).  If an economically viable crop could be used for phyto-remediation, 

farmers may choose this form of remediation above the addition of amendments or, removal 

of topsoil or, the “washing” of soil which may in cases be unpractical and also more costly.  

Growth of essential oil crops on contaminated agricultural fields, in Bulgaria, for the purpose 

of phyto-remediation, proved not only viable but also a profitable way of ridding soil of 

unwanted heavy metals (Zheljazkov and Nielsen, 1996).  Helianthus annuus (sunflower), has 

also been shown useful in the removal of Pb and Zn from contaminated soils (Solhi et al., 

2005).  Farmers of the Joostenbergvlakte/Kraaifontein and Philippi areas might be more 

inclined to use methods of mitigation that are profitable, such as phyto-remediation with 
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economically valuable/viable crops.  The question of farmers‟ willingness to use a 

remediation method such as phyto-remediation was addressed in this research and is 

discussed in Chapter four of this thesis. 

 

Extraction of Cd, Cu, Pb and Zn by Brassica juncea (Indian mustard) has also been tested in 

the presence of nitrilotriacetate (NTA) and citric acid to help mobilize these heavy metals for 

uptake by plant roots.  The ability of Indian mustard plants to take up heavy metals was 

significantly enhanced in the presence of NTA (Quartacci et al., 2006).  The use of EDTA 

and EDDS was also tested as amendments that can be used to facilitate phyto-remediation 

with, amongst other species, Brassica rapa, Cannabis sativa, Helianthus annuus and Zea 

mays (Meers et al., 2005).  These tests showed that neither EDTA nor EDDS were more 

useful to assist extraction of heavy metals by Brassica rapa, Cannabis sativa, Helianthus 

annuus and Zea mays, it was however clear that EDDS was more biodegradable than EDTA 

and this emphasized that caution needs to be taken when applying amendments to soils 

(Meers et al., 2005). 

 

Various chelates such as EDTA, EDDS, NTA and citric acid can be used to mobilize heavy 

metals in soils and leaching the metals from the reach of plant roots, reducing phytotoxicity 

of heavy metals in the rhizosphere (Meers et al., 2005; Quartacci et al., 2006).  In situ 

mobilization of heavy metals may, however, be detrimental to the environment as heavy 

metals may be leached vertically and horizontally from one soil layer to the next as well as 

into surface and subterranean water resources.  Ex situ washing of soil with chelating agents 

or acids to remove heavy metals would be possible, but is an unlikely solution when dealing 

with large areas of contamination.  In combination with phyto-remediation, chelates may be 
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used to solubilize heavy metals, making uptake of these heavy metals, by the remedial plant 

more effective.  However, a combination of in situ application of chelating agents with phyto-

remediation, though more effective, still leaves the possibility of contamination of 

subterranean water resources with heavy metals (Sun et al., 2001).  Therefore, in situ 

immobilization of heavy metals is considered a safer option in dealing with heavy metal 

contaminated soils. 

 

Immobilization involves application of amendments to the soil that renders the heavy metals 

unavailable to plants.  Applications of amendments that immobilize heavy metals in 

agricultural soils are viewed as the most cost effective and environmentally safe way to 

reduce the phyto-toxicity of contaminated soils.  Application of vermiculite as an 

immobilizer to contaminated soils from Piedmont, Italy in a pot experiment, showed that the 

availability of heavy metals to Spinach oleracea were significantly reduced (Malandrino et 

al., 2011).  Various phosphate sources have also been used to immobilize heavy metals in 

soils and render them unavailable to plant roots.  The use of a combination of phosphates, for 

example, biogenic apatite and mined phosphate proved to be better than using just mineral 

rock phosphates, since mineral rock phosphates often contained more heavy metals and thus 

nullified the effect of immobilizing heavy metals in the soil (Knox et al., 2006). 

 

Much attention has been given to the use of phosphate containing substances as 

amendments, examples are bentonite, zeolite, cyconic ash, compost, lime, steelshot-dolomite 

and hydroxyapatite among others.  A study done by Zhu et al. (2004) on the effects of 

various phosphate containing amendments on lead uptake by two vegetable crops in an 

alkaline soil, indicated that hydroxyapatite was one of the most effective amendments for 

remediation of lead contaminated soils.  Phosphogypsum, red gypsum and dolomite were 
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also shown to be effective in reducing the mobility and bioavailability of lead, copper and 

cadmium in heavy metal contaminated soil (Illera et al., 2004). 

 

The substance Palygorskite was pointed out as contributing towards zinc deficiency in plants 

grown in Egyptian soils.  Based on this, the use of Palygorskite to reduce the mobility of Cd, 

Cu, Pb and Zn in polluted soils was investigated by lvarez-Ayuso and Garcia-Sanchez 

(2003).  Low-grade MgO was found a suitable and economically feasible stabilizing agent 

prior to landfill, and hence it has been suggested that it might also be useful for in situ 

remediation of less polluted soils (Garcia et al., 2004).  Stirk and Van Staden (2001) 

investigated the use of organic soil amendments such as kelp to immobilize heavy metals in 

agricultural resources (water and soil). 

 

The use of dried kelp to alleviate heavy metal contamination in water resources was proved 

viable (Stirk and Van Staden, 2001).  Remediation of contaminated irrigation water might be 

done in a cost effective way through application of dried kelp (Ecklonia maxima and 

Laminaria pallida) and Kelpak waste, which can easily be obtained by farmers in the 

Western Cape.  The addition of powdered kelp to polluted irrigation water caused sorption of 

metals to the kelp particles, which was filtered off from the remainder of water used for 

irrigation (Stirk and Van Staden, 2001).  The use of dried, powdered kelp might also be 

useful in immobilization of heavy metals from polluted soils.  However, use of organic 

material such as kelp and other chemical sorbants, poses a problem when looking at disposal 

of the contaminants after removal from irrigation water and/or soils. 

 

From the above it is clear that various methods of remediation/mitigation exist, and in this 

research the use of EDTA and triple super phosphate was compared with regard to their 
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ability to reduce uptake of specifically Cd, Pb and Zn by cabbage grown on a growth medium 

prepared from soils of the Philippi, Joostenbergvlakte and Kraaifontein areas.  Before 

implementing remediation or mitigation techniques as means of reducing the uptake of heavy 

metals by crops from the local Joostenbergvlakte, Kraaifontein and Philippi farming areas, it 

is necessary to establish the sources of the problem heavy metals, Cd, Cu, Pb and Zn, to these 

farming communities.  If these heavy metals could be traced to point sources, it may be 

relatively simple to remedy the situation by simply eliminating or reducing the use of the 

particular sources, or products.  However, it is likely that several heavy metals may be 

sourced from inputs to these farmlands that are not necessarily under the farmers‟ control. 

 

Finding the sources and inputs of heavy metals to these farmlands which included sampling 

of various fertilizers, manures, pesticides and crop sprays from these areas formed a central 

part of this research and is discussed in Chapter three of this thesis.  Farmers of these farming 

communities were informed of the existing contamination problem in their areas and a survey 

was conducted amongst farmers to obtain their opinions about threats to their agricultural 

resources and their willingness to apply remediation methods if needed in the future. 

 

1.4.  The research problem and hypotheses for the study ‘Sources of heavy metals in 

vegetables in Cape Town and possible methods of remediation’ 

Determining Cd, Cu, Pb and Zn sources to the Joostenbergvlakte/Kraaifontein and Philippi 

farming areas was a main focus of this research.  Equally, this research aimed to find ways of 

reducing the uptake of these heavy metals by cabbage, a common crop produced in these two 

major farming areas, through mitigation with respectively EDTA and triple super phosphate 

as soil amendments.  The research problem was therefore summarized as the “Identification 
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of Cd, Pb and Zn inputs to the Joostenbergvlakte, Kraaifontein and Philippi farming areas 

and, suitable methods of mitigation, to reduce, the uptake of these metals by crops.” 

 

Heavy metals such as Cd, Pb and Zn are often byproducts in the production of phosphate 

fertilizers.  It has also been indicated that poultry manure, sewerage sludge as well as 

fungicides, pesticides and herbicides, often contain heavy metals, such as copper and zinc 

(Heijerick et al., 2006; Jinadasa et al., 1997; Larcher, 2003; Meerkotter, 2003; Nicholson et 

al.; 2003).  Based on these and similar findings in other studies it was hypothesised that 

significant concentrations of Cd, Pb and Zn would be measured in phosphate fertilizer 

samples, poultry manure samples, fungicides, pesticides and herbicide samples. 

 

The attenuation capacity of the Joostenbergvlakte, Kraaifontein and Philippi‟s agricultural 

soils, being sandy soils, is not very high.  These soils may hold heavy metals for a time, but 

eventually these metals may become available to crops or subterranean water resources, from 

where or through which it may be passed to the consumer.  Possible leaching of elements 

such as, cadmium, copper, iron, manganese, potassium and zinc from surface soil layers to 

subterranean waters, during the rainy winter season, is suspected in the Philippi soils, as a 

lower concentration of these elements was measured in the winter of 2000, compared to the 

summer of 2000 (Meerkotter, 2003).  This information led to the hypothesis that the 

concentrations of Cd, Cu, Pb and Zn in surface and subterranean water samples would be 

greater than seen in studies of previous years.  Use of polluted water by Kraaifontein farmers 

from river systems such as the Kuilsriver system and storm water canals may also contribute 

to the presence of heavy metals in the agricultural field (Personal communication with 

farmers; Qoko, 2003).  Various irrigation water sources were therefore to be examined and it 
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was hypothesised that significant amounts of cadmium, copper, lead and zinc would be 

present in surface water resources, used to supplement irrigation water resources. 

 

Irrigation water and cropped soils are intimately connected and contamination of the one will 

either directly or indirectly lead to further contamination of the other.  The status of both thus 

needs to be monitored with consideration of the interchange of elements that happen between 

these two kinds of resources.  It was hoped that a cost-effective amendment, to help 

immobilized heavy metals from polluted agricultural soils would be identified through this 

research.  Based on literature, phosphate-containing amendments are effective immobilisers 

of heavy metals such as cadmium, lead and zinc; therefore it was hypothesised that 

application of appropriate amounts of triple super phosphate fertilizer would help immobilize 

heavy metals from a growth medium prepared from soils of the Joostenbergvlakte, 

Kraaifontein and Philippi farming areas, and render Cd, Pb and Zn unavailable to cabbage, 

thus being a better remedial amendment to immobilize metals in the soul than EDTA (Knox 

et al., 2006). 

 

1.5.  Delimitation of the research 

This research only reported on the different sources of heavy metals to the Joostenbergvlakte, 

Kraaifontein and Philippi farming communities, the better mitigation treatment between 

addition of EDTA and triple super phosphate to soil from these farming areas contaminated 

with Cd, Pb and Zn at maximum permissible soil concentrations set in South African 

guidelines and double these concentrations for each metal independently.  A brief survey on 

farming practices in these areas also served to pin down information given by farmers from 

these areas through personal communication over the past decade. 
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This study did not seek to implement means of mitigation, but only to inform farmers of the 

sources of heavy metals to their farmlands and also the possibilities around reducing the ill-

effects of heavy metals on their crops, in the soil and irrigation water, as well as subterranean 

water resources, through various mitigation treatments.  This study is to be concluded not 

only with this thesis, but also by the compilation of a brochure to be made available to 

farmers highlighting legal limits for heavy metals in the agricultural system, disclosure of 

sources of problematic heavy metals such as Cd and Pb and options in terms of mitigation 

treatments that could be used if in the future it should be needed.  An outline for a brochure 

that could impart the results gathered through this research to farmers as explained here can 

be found on the last page of the Appendix to this thesis.  Prior to this study and as part of the 

survey to gather farming practice information from farmers, a brochure was handed out to 

farmers to inform them of the results around heavy metal contamination in their farming 

areas in previous studies.  An Afrikaans and English copy of this brochure are to be found in 

the first pages of the Appendix to this thesis. 

 

Due to the sensitivity of this type of contamination problem i.e. possible legal and health 

implications, the results of this study are to be disclosed to academic and scientific 

communities rather than published in popular journals and magazines accessed by the broader 

group of vegetable consumers (Furness, 1996). 

 

1.6.  Overview of the research methodology 

The research of this thesis was divided into three main studies namely; a study focused on 

heavy metal analysis of various inputs to farms as possible sources of heavy metals, a study 

focused on assessment of EDTA and triple super phosphate as possible mitigation/remedial 

treatments to decrease the uptake of Cd, Pb and Zn by cabbage grown on contaminated soil 

 

 

 

 



 37 

from the study areas and lastly, a study was conducted to gather information about farming 

practices from the study areas and to ascertain farmers‟ willingness to apply remediation 

methods if it was ever proven necessary.  A brief summary of the methodologies of each of 

these studies is given in sections 1.6.1, 1.6.2 and 1.6.3 of this chapter. 

 

1.6.1.  Analysis of various inputs to farms as possible sources of heavy metals 

Vegetables and soil from fields in the Joostenbergvlakte, Kraaifontein and Philippi areas 

were to be collected and tested for heavy metals.  Various irrigation water resources from 

these areas were also sampled and tested for heavy metals.  Livestock manures and crop 

sprays were also collected and tested for heavy metals.  The chemical analysis of the 

collected samples was done by a local testing laboratory and statistical processing of the data 

was done with the help of a bio-statistician. 

 

1.6.2.  Assessment of mitigation techniques (Pot experiment) 

A multifactor experiment was designed, with the help of a bio-statistician, to evaluate the 

effectiveness of EDTA and triple super phosphate amendments respectively in reducing the 

uptake of Cd, Pb and Zn by cabbage.  Materials and methods used by Geebelen et al. (2002), 

Wu et al. (2004) and Zhu et al. (2004), amongst others, were used to plan this experiment.  A 

randomised block design with three replicates, in othe words, three plants for each treatment 

was constructed.  The growth medium for this pot experiment was prepared from topsoil 

collected from the Philippi and Joostenbergvlakte/Kraaifontein areas.  The growth medium 

was altered with respectively Cd, Pb and Zn at three different concentrations; In situ 

concentration of the respective metals in the growth medium, the maximum permissible 

concentrations for these heavy metals in soil (South African guidelines) and double the 

maximum permissible concentrations for these heavy metals (South African guidelines). 
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Three different EDTA concentrations were tested to mobilise heavy metals in the soil, away 

from plant roots, to deeper soil levels and three different concentrations of triple super 

phosphate fertilizer was applied to immobilise heavy metals in the soil, rendering them 

unavailable to plant roots for uptake.  The control treatment entailed the growth of cabbage at 

the different concentrations of the different heavy metals without any added amendment.  

Chemical analysis of the cabbage and soil samples from this pot experiment was also 

conducted by a local testing laboratory while the results of this study were also processed 

with the help of a biostatistician. 

 

Neither of the mitigation treatments were successful enough to justify testing them in the 

field, as discussed in Chapter three of this thesis.  A field trial would typically have involved 

the selection of an agricultural site that showed significant heavy metal pollution.  The field 

trial would involve, applying a range of amendment concentrations to the site‟s soil and 

selection of a relevant crop species to test the mitigation treatments on (Brown, et al., 2004; 

Melamed et al., 2003). 

 

1.6.3.  Farming practice survey 

A survey was to be conducted among farmers of the Joostenbergvlakte, Kraaifontein and 

Philippi farming areas to find out what the common farming practices were in these areas.  

Survey methods as suggested by Serumaga-Zake et al. (2004) were followed.  Information of 

the two main farming communities (the Philippi area and the Joostnebergvlakte/Kraaifontein 

area) was to be compiled separately to allow for comparison between these two farming 

communities as they may be influenced by different factors.  The questionnaire was compiled 

according to principles and guidelines provided by Serumaga-Zake et al. (2004) and skills 

obtained during a workshop organized by the Postgraduate Education and Throughput 
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programme of the University of the Western Cape in August 2005.  The questionnaire was 

constructed to gather information that attempted to provide answers to the following 

questions: 

1.  How long farming has taken place in these farming areas? 

2.  Which crops were planted most frequently? 

3.  How much and what kinds of fertilizers, manures and agrochemicals were used? 

4.  What were the sources of irrigation water? 

5.  Are there any specific pollution threats in these areas? 

6.  Is there a problem with irrigation water becoming saline? 

7.  What mitigation techniques would farmers prefer to use? 

8.  Are farmers aware of the legal implications regarding pollution of their agricultural 

resources? 

 

The researcher adhered to the ethics guidelines for performing a survey as described by the 

South African Medical Research Council to avoid infringing on the rights of farmers through 

this research (Labuschagne, 2005; The Constitution of the Republic of South Africa, 1996).  

The results for this study were processed with the help of a biostatistician. 

 

1.7.  Outline of chapters in this thesis 

This first chapter focuses on introducing the thesis topic and in the context of related studies 

in the literature.  Chapter two describes the results gathered about the heavy metal content of 

various inputs to the Joostenbergvlakte, Kraaifontein and Philippi vegetable farming areas of 

Cape Town.  The study investigating the use of EDTA and triple super phosphate 

respectively as remediation methods on soils from these areas, with cabbage as test crop, is 

described in detail in Chapter three of this thesis.  Chapter four records the most significant 
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data gathered about farming practices in these farming areas and discusses farmers‟ 

willingness to employ remedial treatments, while Chapter five highlights the main results and 

conclusions that were made during the course of this research project as a whole. 
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CHAPTER 2 

 

A SURVEY OF HEAVY METAL CONTENT IN WATER, SOIL AND VEGETABLES 

PRODUCED IN THE AGRICULTURAL AREAS OF PHILIPPI, KRAAIFONTEIN 

AND JOOSTENBERGVLAKTE AND POSSIBLE SOURCES OF HEAVY METALS 

 

2.1.  Introduction 

The Philippi, Joostenbergvlakte and Kraaifontein agricultural areas in the Western Cape 

supply local and national markets with vegetables and as such it is important that quality 

vegetable produce is ensured through compliance with regulatory standards.  The demand for 

vegetables from these two Cape Town agricultural areas is also increased as stress is 

experienced in agricultural areas elsewhere in South Africa.  Decreased production of 

potatoes in the Sandveld area of the Western Cape for example, due to increased infection 

with plant viruses and water shortages led to a greater demand for potatoes from the local 

Cape Town vegetable farmers in Philippi and the Joostenbergvlakte/Kraaifontein area during 

2005, while heavy metal pollution of crops in the Wonderfonteinspruit area in Gauteng 

placed Cape Town farmers on alert in terms of supplying crops to markets beyond Cape 

Town in 2007 (Bonthuys, 2005; Tempelhoff, 2007). 

 

In the Wonderfonteinspruit area, heavy metals and radioactive elements leaching from 

goldmine sludge dams posed a threat to agricultural areas and though cabbage sampled in the 

area did not contain radioactive elements, it did contain elevated levels of iron (136 mg/kg), 

manganese (59 mg/kg), vanadium (98 mg/kg) and zinc (112 mg/kg), which exceeded limits 

set for these element in vegetables, emphasizing how vulnerable agricultural lands are to 

surrounding mining and industrial areas (Tempelhoff, 2007).  Locally, the Philippi farming 
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area and Joostenbergvlakte/Kraaifontein farming areas are threatened by urban expansion of 

both residential and industrial nature and thus careful monitoring of the health of these 

agricultural areas is needed (Cao et al., 2010; Hao et al., 2009; Map Studio, 2007; Rule et al., 

2005).  Research done during the past ten years in both the agricultural areas of Philippi, 

Kraaifontein and the Joostenbergvlakte revealed that the concentrations of heavy metals, 

cadmium, copper, lead and zinc in respectively, soil, water and vegetables exceeded on 

occasion the limits set by South African regulations and guidelines (Meerkotter, 2003; 

Sogayise, 2003). 

 

It is useful to note that in relation to guidelines set in other countries, South African 

guidelines are very stringent and though some agricultural resources may exceed South 

African guidelines they may still be considered fit for agricultural use and human 

consumption (Commissie van de Europese Gemeenschappen, 2001; Commission of the 

European Community, 2006; Murphy, 1997).  Nonetheless, this research aimed at verifying 

again the status of heavy metal contamination in water, soil and vegetables produced in these 

areas and to find possible sources of heavy metal inputs to these areas.  This study focused 

specifically on the amounts of cadmium, copper, lead and zinc, which were found to be 

problematic elements in various kinds of samples from these farmland systems during 

surveys conducted between 2000 and 2003 (Meerkotter, 2003; Sogayise, 2003).  Guidelines 

most relevant to the time of sampling were used to evaluate samples against and are 

mentioned in the Materials and Methods section of this chapter. 

 

Irrigation water resources, cropped soils, and soils prepared for cropping as well as the edible 

portions of crops were to be tested for heavy metals during this part of the research.  It was 

hypothesised that the status of heavy metal contamination of irrigation water resources, soil 
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and vegetables would be the same or only marginally greater than measured in previous 

years‟ tests.  The reason for this hypothesis was that not much time had passed since previous 

surveys, the maximum time gap being five years (Meerkotter, 2003; Sogayise, 2003).  Times 

of summer drought may have shown increased concentrations of heavy metals in soils, crops 

and water but these situations could easily have be altered as winter rains could have played a 

role in diluting heavy metal contents of soils.  Balance may thus have been maintained in 

terms of heavy metal concentrations in these agricultural systems as seasonal rainfalls 

fluctuated.  This may have been achieved as rainfall may have lead to the leaching of heavy 

metals to deeper soil layers thus possibly resulting in lower heavy metal concentrations in 

crops harvested in the winter rainfall season compared to crops harvested in the previous 

summer season (Li et al., 2008; Miller, 1996; Summerfield, 1994). 

 

The two farming areas are not located in close proximity to each other, their virtual centres 

being about 25 km apart (Map Studio, 2007; Figure 2.1).  The two areas differ slightly in 

lithology making direct comparisons somewhat difficult, however, similar patterns may be 

expected, though for different physical reasons.  Since these two farming areas, though 

separate in many ways, are major suppliers of vegetables to communities in specifically Cape 

Town and they were expected to bear more similarities than differences to one another, 

compared to vegetable farming communities elsewhere in South Africa.  These farming areas 

are often spoken of as „one‟ representing Cape Town‟s vegetable produce as a whole 

(Personal communication with farmers, 2007). 

 

Philippi‟s soils are sandy and rich in silica which leads to easy leaching of nutrients to deeper 

soil layers beyond the roots of crops and subsurface water resources.  The accompanying 

high water table in the Philippi area can however in turn lead to the cycling of heavy metals 
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from deeper soil layers back to surface soils and also into irrigation water resources (Brown, 

1996; Chittenden Nicks Partnership, 1997; Rice and Rice, 1997).  The application of 

fertilizers, crop sprays etc which may be loaded with contaminants such as heavy metals can 

thus be diluted and flushed away from the top soil layers, from where crops will extract it, 

through irrigation, rain or the rising and lowering water table.  The sandy soils of the Philippi 

area give relief in that contaminants can easily be leached away from crop roots, however; the 

presence of a high water table in this area is a concern as underground water resources can 

easily be polluted since the soil has a low attenuation capacity (Brown, 1996; Eigenhuis, 

1997; Rice and Rice, 1997). 

 

Soils from the Joostenbergvlakte and Kraaifontein area is slightly different in that they are 

sandy, but deeper layers are rich in clay which in winter often leads to much water logging 

(Brown, 1996; Cole and Roberts, 1996; Rice and Rice, 1997).  In the Joostenbergvlakte/ 

Kraaifontein area, nutrients and contaminants such as heavy metals may be leached from 

surface waters to soils and vice versa but, contaminants may remain in top soil layers longer 

since it can not easily be leached past deeper clay rich soil layers (Brown, 1996; Eigenhuis, 

1997; Rice and Rice, 1997).  Due to the fact that the Joostenbergvlakte is topographically 

slightly lower than the Kraaifontein area and has deeper sandy soils, it is slightly more 

comparable to the Philippi area in terms of lithology (Personal communication with 

consultants from Agri Mark, Durbanville and Kraaifontein, 2011).  Based on lithology and 

the possible cycling of elements through the agricultural system during different seasons of 

the year, it seems that Philippi‟s groundwater is a target for accumulation of heavy metal and 

other contaminants, while in the Kraaifontein area, the groundwater resources seem to be 

protected by clay layers leaving the topsoil a target for accumulation of heavy metal and 

 

 

 

 



 58 

other contaminants.  The mere presence of contaminants in soils do not necessarily imply that 

crops will be contaminated. 

 

Though contaminants may be present in topsoil layers they will not necessarily be available 

to plants.  In winter, for example, water logging and/or flooding, as seen in both study areas, 

often leads to damage of crop roots to the extent that crops will not readily take up nutrients 

and contaminants from the soil, though they may be present in high concentrations.  In both 

areas, in summer, though concentrations of nutrients and contaminants may be high in soils, 

the absence of rain and thus often lower soil water content can prevent crop roots from 

readily taking up nutrients and contaminants and much irrigation is needed to keep soil 

moisture at levels enabling crops to take up nutrients effectively. (Brown, 1996; Eigenhuis, 

1997; Li et al., 2008; Rice and Rice, 1997). 

 

In the two farming areas concerned, sprinkler irrigation is most often used during summer 

while especially in the Philippi area, during the rainy winter season, little sprinkler irrigation 

is needed as land is often waterlogged due to a high water table.  In these two areas the flow 

of water is often regulated where run-off from land is collected in canals and in the case of 

winter drained away or, as in the case of dry summers, recycled.  In the Philippi area, where 

farmers often face a lack of water in summers due to water leaching speedily into the deeper 

levels of very sandy soils, many farmers have lined their irrigation water holding dams with 

water impermeable layers and have even done so under some cropped fields so that water 

may not be lost to readily during dry summer months (Kane, 2002; Kinchen and King, 2003; 

Personal communication with farmers, 2007; Rice and Rice, 1997; Summerfield, 1994). 
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Though lining of dams and soils is beneficial in summer, this kind of intervention holds a 

possible problem as pollutants may become more concentrated in cropped soils and irrigation 

water holding dams lined with impermeable layers to keep water from leaching to deeper soil 

levels.  Such interventions of this kind could see waters not necessarily being diluted in terms 

of heavy metals during rainy seasons, but rather becoming more contaminated with rain not 

diluting as much as needed (Kane, 2002; Kinchen and King, 2003). 

 

Research done in Philippi, during 2000, showed seasonal variations in heavy metal 

concentrations in soils and in water resources but not in vegetables (Meerkotter, 2003).  

Seasonality could however play a role in keeping heavy metal concentrations though 

fluctuating still balanced in the agricultural system.  In dry summer seasons, heavy metal 

accumulation in soils is a greater likelihood in the face of continued addition of fertilizers 

compared to the accumulation of heavy metals in soils during the rainy winter seasons, when 

heavy metals may be leached to deeper soil layers through percolation and top soil thus 

become slightly diluted in terms of heavy metals.  Though one would expect a greater 

accumulation of heavy metals in vegetables in the dry summer seasons, this does not happen, 

as balance is maintained in that low soil water content during dry summers renders much of 

the heavy metals unavailable to crop roots and prevents excessive uptake of heavy metals 

from the soil despite continued addition of fertilizers (Li et al., 2008; Marschner, 1995; Rice 

and Rice, 1997). 

 

Where winter rains may dilute the concentrations of heavy metals, the simultaneous addition 

of fertilizers can cause negation of this natural form of dilution.  In a system where natural 

dilution is negated and dry summers coincide with further application of fertilizers, the 

problem of heavy metal contamination is only expected to increase and as little addition of 
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fertilizers, pesticides and fungicides as possible is recommended (Kane, 2002; Webber and 

Singh, 2003). 

 

Whilst addition of fertilizers may lead to increased heavy metal concentrations in soils, crops 

and irrigation water resources, the concentration of heavy metals may overall remain fairly 

constant in agricultural soils as crops may extract significant amounts of heavy metals from 

these soils each growing season leaving soils relatively depleted of heavy metals, a principle 

used in bioremediation.  Cabbage produced in the extremely contaminated 

Wonderfonteinspruit area accumulated heavy metals and spinach accumulated even more 

heavy metals.  A study in Aznalcóllar in Spain showed that Brassica juncea  was able to 

extract copper, lead and zinc from heavy metal contaminated soils, though not as successfully 

as other crops often used in bioremediation (Clemente et al, 2005; Kothe et al., 2005; Li et 

al., 2010; Tempelhoff, 2007; Wang et al., 2006).  While the concentration of heavy metals in 

agricultural soils may be lowered through harvesting, this is most likely negated by speedy 

addition of fertilizers for the planting of new crops.  Though planting and harvesting of crops 

could potentially keep the amount of heavy metals fairly constant in agricultural soils, the 

total removal of heavy metals in such a way may take years, if ever accomplished, as often 

seen in bioremediation trials.  Beets, mustard and sunflowers have been used in 

bioremediation trials such as these, but problematic is the fact that heavy metals accumulate 

in the roots and thus often remain in soils post harvesting (Clemente et al, 2005; Kothe et al., 

2005; Marschner, 1995).  Total removal of heavy metals or decrease in its present levels in 

agricultural soils is however highly unlikely as continued input of fertilizers and the use of 

agrochemicals is the status quo. 
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This study glanced over the concentrations of cadmium, copper, lead and zinc in fertilizers, 

manures and crop sprays (which is often a mixture of various agrochemicals) used on the 

selected farms.  It was expected that manures would contain significant amounts of certain 

heavy metals, which may explain the elevated levels thereof seen in soils and vegetables.  

Manures have been shown by various researchers to contribute significant amounts of 

cadmium, lead, and more specifically zinc to agricultural soils and therefore possibly the 

concentrations of these in vegetables as well as related water resources (Kane, 2002; Webber 

and Singh, 2003).  It was hypothesized that significant levels of cadmium and lead were to be 

measured in various fertilizer samples and that significant levels of zinc were to be measured 

in poultry manure.  It was also hypothesized that significant copper concentrations were to be 

measured in crop sprays often containing a mixture of fungicides, insecticides, herbicides and 

nutrients, since copper has historically been used in various pesticides. 

 

While the addition of fertilizers and use of crop sprays that contain elevated levels of 

problematic heavy metals can be controlled, there are several factors that are almost out of a 

farmer‟s control in terms of preventing pollution on his lands.  As stated in chapter one, 

heavy metals can enter agricultural fields in various ways and finding point sources of 

pollution into these agricultural areas is fairly difficult.  Those sources that can be identified 

as problematic should best be monitored in terms of its influx to the agricultural field and 

eliminated or be reduced in terms of its use as far as possible.  Water flowing into an 

agricultural area is an example of a source of possible pollutants, not necessarily under the 

control of the farmer while pesticides, fungicides and various fertilizers could be sources of 

pollutants and their use is more directly under the control of the farmer (Kane, 2002, Khan et 

al., 2008).  It is important to note that a deduction about the safety of a soil amendment such 

as a fertiliser or manure can not simply be made based on its heavy metal content since, for 
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example, the presence of high zinc concentrations in a fertilizer, may inhibit a crop from 

taking up excessive amounts of cadmium which may be present in the same fertiliser or soil, 

since these metals are similar and not distinguished among by certain crop‟s roots (Kirkham, 

2006; Marschner, 1995). 

 

In terms of fertilizers such as sewage sludge and manures, several researchers evaluating the 

contaminant limits of South Africa against those used in other countries, commented that the 

limits set in South Africa for several heavy metals and other contaminants in sludge and 

manures used in agricultural were unnecessarily restrictive.  Based on several studies, they 

found that the application of sludge and manures to agricultural land, at agronomic rates, 

should not significantly contaminate associated groundwater or surface water resources.  

Application of sludge and manures are accordingly only a concern in areas with an important 

and vulnerable aquifer.  These researchers however warned that bulk storage of sludge or 

manures near irrigation water resources are a great source of concern as they are most likely 

to form point sources of pollution (Murphy, 1997; Webber and Singh, 2003).  Relating this 

again to what is under a farmers‟ control in terms of preventing pollution, it is obvious that 

some farming practices in the Philippi and Joostenbergvlakte/Kraaifontein farming areas need 

to be changed, as heaps of manure are often situated next to irrigation water holding dams 

and they pose a clear threat as possible point sources of pollution if not covered properly 

especially during the rainy season (Murphy, 1997, Webber and Singh, 2003).  The Philippi 

area is also situated on the Cape Flats Aquifer and this is an important and vulnerable aquifer 

in Cape Town, thus use of manures and sludge must be monitored carefully, especially the 

Philippi area (Bertram, 1989; Chittenden Nicks Partnership, 1997, Eigenhuis, 1997). 
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The Kraaifontein farmers often use water from the Theewaterskloof dam and the local 

Scottsdene Waste Water Treatment Plant next to the Botfontein Road along which many 

Kraaifontein farms lie (Figure 2.1).  In Philippi especially in times of drought, some farmers 

make use of water from storm water canals that flow through industrial areas, residential 

areas and informal settlements before it reaches the farm lands to supplement irrigation water 

resources (Cao et al., 2010; Meerkotter, 2003; Map Studio, 2007; Personal communication 

with farmers, 2007; Qoko, 2003).  Pollutants can enter the agricultural land via these 

additional water resources that are not directly situated on the farms and the amount of 

contaminants gathered from these resources my further be concentrated as fertilizers, 

agrochemicals and run-off from nearby roads flow into the agricultural system‟s soils or 

irrigation water resources (Owens and Niemeyer, 2005; Rule et al., 2005; Webber and Singh, 

2003). 

 

Major roads and Cape Town‟s International Airport also lie between these two farming areas 

and thus deposits from air pollution can also contribute to contamination of irrigation water 

resources and soils (Kane, 2002; Figure 2.1).  In this study various water resources, on the 

farms, that contribute to irrigation waters were tested for heavy metals.  Significant amounts 

of cadmium, copper, lead and zinc were expected to be seen in various water resources, used 

to supplement irrigation water resources.  Following is a discussion of the collection and 

analysis of the various samples that were collected from the Philippi, Joostenbergvlakte and 

Kraaifontein farming areas. 

 

2.2.  Materials and Methods 

The methods for sample collection are reported on in this section while the specific kinds of 

samples collected are summarised in Table 2.1.  Sampling took place in the summer of 2006 
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and specifically in the month of February.  Sampling sites were from the two major vegetable 

production agricultural areas in Cape Town, namely, the Joostenbergvlakte/Kraaifontein and 

Philippi agricultural areas (Figure 2.1).  The Philippi farming area is situated about 16 km 

southwest of the Cape Town City Centre.  Philippi‟s farming areas can easily be accessed via 

Strandfontein Road which forms its eastern border as well as Weltevreden Road which forms 

its western border.  The Joostenbergvlakte/Kraaifontein area is divided into two areas, the 

Joostenbergvlakte farmlands and the Kraaifontein farmlands.  These two areas are divided by 

the N1 national road.  From the Cape Town City Centre, the Joostenbergvlakte lies about 36 

km in a north-western direction and north of the N1 national road while the Kraaifontein area 

is about 34 km northwest of the City Centre and south of the N1 national road.  The 

Joostenbergvlakte can be accessed via Maroela Road which is a main road off the N1 and the 

Kraaifontein area can more easily be accessed via Van Riebeeck Street, a main road off the 

N1, which becomes Botfontein Street and ends in a T-junction with Bottelary Road which 

forms the southern border for the vegetable farming area of Kraaifontein (Map Studio, 2007, 

Figure 2.1). 

 

In both the Philippi and Joostenbergvlakte/Kraaifontein agricultural farming areas, a total of 

five farmers agreed to partake in the sample collecting survey.  It is important to note that 

many farmers rent land for cropping, especially in the Philippi farming area and it was 

observed that the same land may be used for cropping by several different farmers over a 

relatively short period of time.  The number of farmers that participated in the survey is thus 

not to be used as indicative of statistical relevance but rather the number of samples that 

could be collected from each area as well as the spread of the collected samples over each 

farming area as a whole. 
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Obtaining samples of livestock manures (poultry and cattle manures), irrigation waters (from 

canals, dams, borehole inlet pipes and sprinkler systems), soils from cropped lands, crop 

sprays and crops were dependent on each farmers‟ co-operation and permission to access 

various parts of their agricultural lands.  Sample numbers were not only subject to a farmer‟s 

extent of co-operation, but also the availability of a particular sample type upon sampling.  In 

the case of collecting vegetable samples, for example, the number of samples that could be 

collected of a specific crop species could not be regulated and neither could the same 

developmental stage between cropped sites of the same species be guaranteed. 

 

Table 2.1:  Comparison of samples and the sample quantities collected from the 

Joostenbergvlakte/Kraaifontein agricultural area and the Philippi agricultural area 

Sample Type Joostenbergvlakte/Kraaifontein area Philippi area 

Water from dams 23 37 

Tributaries/canals 3 3 

Dam piped water inputs 17 26 

Sprinkler water 9 8 

Crop spray 3 5 

Cattle manure 8 8 

Chicken manure 3 10 

Soil planted with beetroot 2 0 

Soil planted with cabbage 6 8 

Soil prepared for cabbage 4 9 

Soil planted with carrots 4 8 

Soil prepared for carrots 3 5 

Soil prepared for cauliflower 0 3 

Soil planted with lettuce 1 2 

Soil prepared for lettuce 3 5 

Methylbrominde treated soil 2 1 

Beetroot 2 0 

Cabbage 6 8 

Carrots 4 8 

Lettuce 1 2 

 

Collection of crop sprays was also problematic as sprays were collected from actual crop 

spray vehicles while in the process of spraying crops.  Crop spray vehicles were not present 

on all farms upon sampling and the labourers were not always able to indicate the content of 
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the sprays they were applying to crops.  Borehole water inlet pipes were not always 

accessible for sampling neither was the collection of water from sprinkler systems always 

possible. 

 

In the case of collecting soil samples, soils at times already lay bare after harvesting or soils 

were freshly prepared and fertilized for the next crop planting season, making the collection 

of soils in the same state difficult.  Overall collecting samples that were statistically 

comparable was problematic.  Nonetheless average concentrations of heavy metals could be 

calculated for the various sample types that gave sufficient representation of the agricultural 

areas concerned ( Cao et al., 2010; Khan et al., 2008; Wang et al., 2006). 

 

The heavy metals that were tested for specifically, but not exclusively, included cadmium, 

chromium, copper, mercury, lead, nickel and zinc, which have clear regulatory standards and 

were tested for in previous studies in these two areas (Meerkotter, 2003; Qoko, 2003; 

Sogayise, 2003).  Heavy metal analysis of soils, waters, vegetables, manures, crop sprays and 

other samples was done by BemLab, an independent research and test laboratory, based in the 

Strand (Figure 2.1).  The collection of samples in this study and its preparation for analysis 

by BemLab is discussed here below. 

 

Water was collected from irrigation water holding dams, borehole water inlet pipes, sprinkler 

water systems, canals and tributaries that entered the irrigation water holding dams at several 

points on several farm lands.  The pH of each water sample was determined upon return to 

the lab.  Water was then filtered and concentrated Nitric acid added to reduce the pH of the 

water to pH 2 as means of preservation.  The water was kept at 4 °C until the samples could 

be taken to BemLab for analysis (Meerkotter, 2003).  The total concentrations of elements, in 
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each sample, were measured with a Varian Vista MegaPixel Detecor Inductively Coupled 

Plasma - Optical Emission Spectrometer (MPX ICP-OES) at BemLab‟s laboratories. 

 

Soil samples were collected from cropping sites as near as possible if not adjacent to each 

dam from which water was collected.  Each site was represented by one composite soil 

sample.  Each composite soil sample consisted of ten subsamples that were collected 

randomly across a particular cropped field selected for sampling.  The collected soil only 

consisted of topsoil to the approximate average depth of 15 cm in which crop roots grew.  

The soil samples were air-dried in a laboratory for approximately three weeks.  Once soils 

were dry, they were sieved in a 2 mm particle size sieve and this soil was then taken to 

BemLab for chemical analysis (Meerkotter, 2003; Wang et al., 2006). 

 

BemLab‟s procedures for determining total concentrations of Cd, Cu, Fe, Hg, Mn, Pb, Sn and 

Zn from each soil sample included its extraction from the soils with a 0.1M hydrochloric acid 

solution (normally 5.0 g of soil:20 ml of a 0.1M hydrochloric acid) by shaking the mixture in 

an extraction bottle for 15 min on a reciprocal shaker.  Determination of Ca, K, Mg and Na 

concentrations included the extraction thereof with an ammonium acetate solution (normally 

5.0 g of soil extracted with 50 ml ammonium acetate solution) through shaking the solution in 

an extraction bottle on a reciprocal shaker for 30 min.  All extractions were then filtered and 

the concentration of each sample‟s Ca, Cd, Cr, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, Pb, Sn, V and 

Zn, amongst other elements, were determined by a MPX ICP-OES (Personal communication 

Dr. W.A.G. Kotzé and A. Van Deventer, BemLab, 2006).  Soil pH was determined by mixing 

20 cm
3 

deionized water with 20 g soil (a 1:1 weight/volume ratio) then stirring it occasionally 

and measuring its pH after one hour (Meerkotter, 2003, Wang et al., 2006). 
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Crop collection involved collection of available crops on the same site from which soil was 

collected.  A composite sample of a particular crop was collected for each site.  Each 

composite sample was made up of ten subsamples.  In the laboratory, the crops were washed 

with tap water and the edible portions separated for use in further analysis.  The composite 

sample (edible parts only) for each site was oven-dried at 80 °C for four days, ground and 

then sent for analysis at BemLab.  At BemLab, standard procedure was followed which 

would normally be 1.00 g of each sample placed in a crucible and muffle furnace for eight 

hours at 480° C.  After ashing in the muffle furnace the crucibles were allowed to cool and be 

wet with deionised water followed by addition of 5 ml of hydrochloric acid which was then 

warmed to cause total dissolution of the material.  The residue was transferred to a volumetric 

flask and made up to 50 ml with distilled water.  The solutions were then submitted to the 

MPX ICP-OES for measurement of total Ca, Cd, Cr, Cu, Hg, K, Mg, Mn, Na, Ni, Pb, Sn, V, 

Zn and other elements.  In the case of measuring Cd and Pb, a 10 – 20% loss of the element 

was estimated using this procedure (Personal communication with Dr. W.A.G. Kotzé, 

BemLab, 2006). 

 

A list of the most commonly used agrochemicals was compiled as access to chemical storage 

facilities on farms was allowed.  One farmer kindly gave access to the official agrochemical 

product description documents of several commonly used agrochemicals in the studied areas.  

The amount of heavy metals in each agrochemical was gleaned from the product description 

documents and is summarized in Table 2.8 in the Results section of this chapter. 

 

Guidelines for maximum permissible heavy metal concentrations in various agricultural 

resources were obtained from the following documents and are used in the results tables of 

this chapter:  Guidelines for irrigation water resources:  Department of Water Affairs and 
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Forestry (1996) South African Water Quality Guidelines.  2
nd

 Edition.  Volume 4: 

Agricultural Use: Irrigation.  DWAF, Pretoria. 

Guidelines for agricultural soils:  Water Research Commission (1997)  Permissible 

Utilisation and Disposal of Sewage Sludge.  1
st
 Edition.  WRC, Pretoria. 

Guidelines for vegetable crops:  Department of Health (2004)  Regulations relating to 

maximum levels for metals in foodstuffs: Amendment to Foodstuffs, Cosmetics and 

Disinfectants Act 54 of 1972.  Government Gazette 26279, 

Department of Health (2003)  Regulations relating to maximum levels for metals in 

foodstuffs: Amendment to Foodstuffs, Cosmetics and Disinfectants Act 54 of 1972.  

Government Gazette 25015 and 

Commission of the European Communities (2006)  Setting maximum levels for certain 

contaminants in foodstuffs: Commission regulation 1881. 

Guidelines for sludge used agriculturally:  Water Research Commission (1997)  Permissible 

Utilisation and Disposal of Sewage Sludge.  1
st
 Edition.  WRC, Pretoria. 

 

Statistical processing of the data gathered in the lab about the collected samples was done by 

Mr. F. Calitz from the Biometry Unit of the Agricultural Research Counsel, Infruitec, 

Stellenbosch.  The most useful statistical information was found to be in the simple statistics 

(means, standard deviations, minimums and maximums) which was supported by T-tests that 

showed significant differences and is reported on in Table 2.12 in the Results section of this 

chapter.  Pearson Correlations were also done but these were not as useful and are reported 

on in Table 2.13 in the Results section. 
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2.3.  Results 

The results for this research are indicated in several tables at the end of this section of this 

chapter.  In the results tables the Philippi area will be abbreviated as „Plp‟ while the 

Joostenbergvlakte/Kraaifontein area will be abbreviated as „J/K‟.  Table 2.2 and Table 2.3 

display the main results that were found for various surface irrigation water resources.  

Tables 2.4, 2.5 and 2.6 display the main results for the various cropped soils in the studied 

areas.  Fertilizers‟, manures‟ and crop sprays‟ heavy metal concentrations are indicated in 

Tables 2.7.  Table 2.8 indicate the heavy metal contents of several agrochemicals used in the 

studied areas and Tables 2.9, 2.10 and 2.11 summarize the concentrations of heavy metals in 

cabbage, carrots and lettuce.  T-tests were performed on all data and those reflecting 

significant differences are indicated in Table 2.12.  The most useful Pearson Correlations are 

reported on in Table 2.13.  A brief summary of each table‟s apparent main trends is given in 

this section and discussed in details in the Discussion section which follows hereafter.  

Reference is made mainly to Cd, Cr, Cu, Hg, Pd, Ni and Zn concentrations in collected 

samples, as these have clear regulatory guidelines in South Africa and in the European 

Community.  Though other heavy metals were tested for (Co, Fe, Mn, Mo, Sn and V), they 

were found either in such low quantities that it was not deemed necessary to indicate them in 

the results or their maximum permissible concentrations were not indicated in South African 

regulations nor in European regulations. 

 

With regards to samples collected from irrigation water holding dams, a comparable number 

of samples were collected from each farming area and were in numbers also comparable to 

samples collected in 2000 from the Philippi farming area.  It was expected for both study 

areas that significant amounts of Cd, Cu, Pb and Zn would be seen in various surface 

irrigation water resources based on previous research in these areas as mentioned in the 
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Introduction and these metals are specifically reported on here.  Considering the averages and 

standard deviations in Table 2.2 it would seem that the concentrations of most heavy metals, 

in irrigation water from holding dams, were not obviously different between the 

Joostenbergvlakte/Kraaifontein areas and the Philippi area during 2006.  Still only referring 

to averages and standard deviations, comparing the concentrations of heavy metals measured 

in Philippi in 2000 to those measured in Philippi in 2006, it would appear that almost all 

heavy metal concentrations (except for Fe) were slightly lower in irrigation water from 

holding dams in 2006, the significance of these differences were however not confirmed by 

further statistical tests.  Though in Philippi in 2000 differences were seen between samples 

collected in winter compared to those collected in summer, they were not significantly 

different except for total Cu.  Neither in 2006 nor in 2000 did any of the above mentioned 

heavy metals exceed permissible total concentrations set therefore in agricultural irrigation 

waters according to South African guidelines.  

 

Various water inputs to irrigation water holding dams were measured and are indicated in 

Table 2.3.  Comparisons between the various water inputs showed that none of the heavy 

metals exceeded the maximum set for agricultural irrigation water by South African 

regulations.  Looking only at averages and standard deviations it would seem that in the case 

of Cd, no concentration differences between the different types of supplementary water 

resources and water issuing from sprinkler systems during irrigation occurred.  It was 

interesting to note that piped water inputs, except for Cr and Pb concentrations, did not seem 

to differ between the two main study areas though they may have had very different origins.  

In the case of Cd, Co, Cr, Fe and Ni there seemed to be differences between sprinkler water 

from Philippi compared to sprinkler water from the Kraaifontein area but this could not be 

confirmed by further statistical analysis (Table 2.12).  From the results it could not be stated 
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conclusively whether tributaries and or canals or piped inlet waters were the greater in terms 

of total heavy metal content overall. 

 

Table 2.2:  Mean heavy metal concentrations in samples collected from irrigation water 

holding dams measured in mg.l
-1

, from the farming areas of Joostenbergvlakte, 

Kraaifontein (J/K) and Philippi (Plp)
 

Heavy 

Metal 

Plp 2000 

Summer 

(n=35) 

Plp 2000 

Winter 

(n=46) 

Plp 2006 

Sumer 

(n=37) 

J/K 2006 

Summer 

(n=27) 

SA’s Maximum 

Permissible 

Concentration 

Cd 0.010 0.020 0.001 0.000 0.050 

Std dev 0.007 0.006 0.001 0.000  

Maximum  0.050 0.060 0.006 0.001  

Cr 0.050 0.040 0.001 0.002 1.000 

Std dev 0.011 0.010 0.004 0.002  

Maximum  0.230 0.150 0.020 0.008  

Cu 0.010 0.020 0.004 0.005 5.000 

Std dev 0.009 0.000 0.002 0.005  

Maximum  0.300 0.070 0.009 0.020  

Fe 0.240 0.250 0.196 0.103 20.000 

Std dev 0.107 0.051 0.220 0.093  

Maximum  0.680 0.870 1.240 0.361  

Mn 0.030 0.030 0.013 0.089 10.000 

Std dev 0.009 0.010 0.013 0.148  

Maximum  0.070 0.140 0.052 0.662  

Ni 0.020 0.020 0.003 0.007 2.000 

Std dev 0.005 0.000 0.005 0.004  

Maximum  0.050 0.050 0.024 0.013  

Pb 0.140 0.170 0.007 0.004 2.000 

Std dev 0.018 0.077 0.007 0.006  

Maximum  0.050 2.220 0.021 0.024  

Zn 0.050 0.040 0.006 0.007 5.000 

Std dev 0.009 0.012 0.004 0.004  

Maximum  0.080 0.260 0.020 0.019  

 

The results gathered for soils are summarized in Tables 2.4, 2.5 and 2.6 and they indicate the 

concentrations of heavy metals in soils planted with specifically cabbage, carrots and lettuce, 

which are main crops in these farming areas.  It is interesting to note that the results in 

general did not support the hypothesis, which expected greater heavy metal concentrations 

than seen before.  Using the averages and standard deviations only, soils were in general not 

necessarily more contaminated than previously measured but rather appeared to be 
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marginally less contaminated than measured in previous studies.  Where the measured 

concentrations were lower they were however not significantly less than those measured in 

previous years (Table 2.5). 

 

Table 2.4, 2.5 and 2.6 also indicate the average concentration of heavy metals in soils prior to 

planting of specifically cabbage, carrots and lettuce and it was noted that there was not a 

difference between the concentrations of heavy metals in the soils before planting and well 

into the growing season.  In 2000, some seasonal variations in soil heavy metal 

concentrations were observed for selected heavy metals and this may also apply today.  In 

Philippi in 2000, in soils planted with cabbage, a seasonal variation in Cu and Zn 

concentrations seemed evident (Table 2.4), in soils planted with carrots, Zn showed seasonal 

variation (Table 2.5) and in soils planted with lettuce Cr, Cu and Pb varied between the 

winter and summer season (Table 2.6).  Considering averages and standard deviations only 

Tables 2.4, 2.5, 2.6 and 2.12 seemed to indicate that Philippi‟s soils had greater 

concentrations of Cd, Co, Cr, Ni, Pb and Zn during 2006 compared to the soils of the 

Joostenbergvlakte/Kraaifontein area, this could however not be verified by further statistical 

analysis. 

 

With regard to the maximum permissible concentrations of heavy metals set for South 

African agricultural soils, in Philippi, Cu, Pb and Zn concentrations exceeded the limits set 

for soils planted with cabbage and carrots, while Cu and Zn was too high in soils planted with 

lettuce.  In general soils from the Joostenbergvlakte/Kraaifontein area were below maximum 

limits set for heavy metals in South African soils.  In the case of both areas, none of the soils 

exceeded limits set by the European Community as their limits are much more lenient than 

South African limits (Murphy, 1997). 

 

 

 

 



 75 

Table 2.3:  Mean heavy metal concentrations in supplementary water sesources measured in mg.l
-1

, for samples collected in the summer of 

2006 in the farming areas of Joostenbergvlakte, Kraaifontein (J/K) and Philippi (Plp) 

Heavy Metal Plp tributries & 

canals (n=3) 

J/K tributries 

& canals (n=3) 

Plp piped water 

inputs (n=26) 

J/K piped water 

inputs (n=11) 

Plp sprinkler 

water (n=8) 

J/K sprinkler 

water (n=9) 

SA’s Maximum 

permissible 

concentration 

Cd 0.0002 0.0006 0.0007 0.0001 0.0007 0.0003 0.050 

Std dev 0.0002 0.0008 0.0005 0.0003 0.0004 0.0005  

Maximum  0.0003 0.0015 0.0022 0.0009 0.0014 0.0015  

Cr 0.0000 0.0028 0.0005 0.0023 0.0001 0.0013 1.000 

Std dev 0.0000 0.0011 0.0008 0.0015 0.0003 0.0012  

Maximum  0.0000 0.0035 0.0029 0.0063 0.0008 0.0028  

Cu 0.0106 0.0033 0.0039 0.0064 0.0039 0.0037 5.000 

Std dev 0.0044 0.0017 0.0033 0.0063 0.0032 0.0021  

Maximum  0.0155 0.0051 0.0117 0.0177 0.0091 0.0081  

Fe 0.0507 0.1239 2.0791 1.0069 0.1330 0.0480 20.000 

Std dev 0.0162 0.0844 8.1320 2.8200 0.0295 0.0264  

Maximum  0.0672 0.2108 41.4979 9.5056 0.1754 0.0973  

Mn 0.0038 0.0484 0.0311 0.1721 0.0153 0.0328 10.000 

Std dev 0.0018 0.0374 0.0275 0.3043 0.0116 0.0585  

Maximum  0.0048 0.0915 0.0897 1.0027 0.0308 0.1842  

Ni 0.0067 0.0059 0.0040 0.0064 0.0025 0.0077 2.000 

Std dev 0.0038 0.0039 0.0041 0.0038 0.0021 0.0059  

Maximum  0.0102 0.0103 0.0143 0.0126 0.0063 0.0190  

Pb 0.0171 0.0033 0.0068 0.0050 0.0029 0.0016 2.000 

Std dev 0.0067 0.0040 0.0095 0.0076 0.0066 0.0026  

Maximum  0.0243 0.0078 0.0319 0.0234 0.0188 0.0070  

Zn 0.0072 0.0157 0.0066 0.0121 0.0577 0.0220 5.000 

Std dev 0.0041 0.0190 0.0052 0.0072 0.1258 0.0288  

Maximum  0.0118 0.0375 0.0215 0.0237 0.3685 0.0817  
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Table 2.4:  Mean heavy metal concentrations in mg.kg
-1 

for
 
soils planted with cabbage, from Joostenbergvlakte/Kraaifontein and Philippi farms  

Heavy 

Summer 

2000 

Winter 

2000 Summer 2006 SA's Maximum EC's Maximum 

 Metals Philippi Philippi 

Plp 

planted 

Plp 

unplanted 

J/K 

planted 

J/K 

unplanted Permissible Soil Permissible Soil 

   (n = 4)  (n = 11) 

soils  

(n = 8) soil (n = 9) 

soils  

(n = 7) soils (n = 4) Concentrations (mg.kg
-1

) Concentrations (mg.kg
-1

) 

Cd 0.57 0.71 0.41 0.42 0.25 0.43 2.00 1.00 - 3.00 

std dev 0.68 0.43 0.13 0.15 0.14 0.23     

Maximum 1.57 1.59 0.68 0.67 0.39 0.66     

Cr 51.69 19.30 9.56 9.39 1.80 2.25 80.00 100.00 (Belgium) 

std dev 52.94 29.86 5.41 6.10 0.78 1.67     

Maximum 130.00 107.70 19.88 18.41 2.92 4.63     

Cu  37.34 7.85 11.97 11.46 6.85 4.67 6.60 . 

std dev 24.84 3.69 5.09 6.18 2.59 3.44     

Maximum 72.95 13.74 21.51 22.48 11.97 9.21     

Hg . . 0.04 0.01 0.01 0.01 0.50 1.00 - 1.50 

std dev . . 0.04 0.02 0.01 0.01     

Maximum . . 0.13 0.04 0.03 0.03     

Ni 3.60 2.94 1.77 2.09 0.97 1.26 50.00 30.00 - 75.00 

std dev 4.37 2.04 0.68 0.97 0.39 0.60     

Maximum 9.91 5.89 3.16 3.49 1.57 2.10     

Pb 29.84 18.20 7.58 7.06 1.49 1.57 6.60 50.00 - 300.00 

std dev 22.29 9.62 5.08 5.26 0.71 1.11     

Maximum 60.79 38.47 16.57 14.61 2.46 2.41     

Zn  148.15 36.90 64.59 62.49 42.74 32.81 46.50 150.00 - 300.00 

std dev 138.81 22.61 22.00 27.14 14.58 24.30     

Maximum 352.29 87.03 103.24 106.59 67.16 67.91     
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Table 2.5:  Mean heavy metal concentrations in mg.kg
-1 

for
 
soils planted with carrots, from Joostenbergvlakte/Kraaifontein and Philippi farms 

Heavy 

Summer 

2000 

Winter 

2000 Summer 2006 SA's Maximum EC's Maximum 

 Metals Philippi Philippi 

Plp 

planted 

Plp 

unplanted 

J/K 

planted 

J/K 

unplanted Permissible Soil Permissible Soil 

   (n = 10)  (n = 22) 

soils  

(n = 8) soil (n = 5) 

soils  

(n = 4) soils (n = 3) Concentrations (mg.kg
-1

) Concentrations (mg.kg
-1

) 

Cd 0.59 0.93 0.47 0.48 0.20 0.26 2.00 1.00 - 3.00 

std dev 0.51 0.53 0.16 0.21 0.12 0.11     

Maximum 1.77 1.63 0.72 0.82 0.36 0.37     

Cr 36.04 18.51 6.88 6.69 1.76 1.15 80.00 100.00 (Belgium) 

std dev 17.76 12.28 3.12 3.40 1.11 0.73     

Maximum 62.48 47.51 13.42 12.13 2.86 1.68     

Cu  25.02 13.42 8.69 12.31 4.94 2.33 6.60 . 

std dev 10.92 9.50 4.40 5.23 2.62 2.15     

Maximum 45.21 36.28 16.31 19.86 7.87 4.77     

Hg . . 0.02 0.02 0.01 0.01 0.50 1.00 - 1.50 

std dev . . 0.02 0.02 0.01 0.01     

Maximum . . 0.04 0.04 0.03 0.01     

Ni 2.70 3.58 1.94 1.95 1.12 0.48 50.00 30.00 - 75.00 

std dev 2.86 2.39 0.94 0.91 0.75 0.45     

Maximum 7.30 6.91 3.36 3.48 1.76 0.88     

Pb 27.72 22.84 4.93 6.26 1.58 1.40 6.60 50.00 - 300.00 

std dev 6.23 8.48 2.79 4.14 0.64 0.86     

Maximum 60.04 35.31 8.87 10.68 2.53 2.15     

Zn  113.10 52.24 47.53 69.60 25.55 12.57 46.50 150.00 - 300.00 

std dev 61.15 36.74 19.91 33.45 10.63 4.09     

Maximum 246.53 137.51 76.00 121.00 41.08 16.92     
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Table 2.6:  Mean heavy metal concentrations in mg.kg
-1 

for
 
soils planted with lettuce, from the Joostenbergvlakte/Kraaifontein and Philippi farms 

Heavy 

Summer 

2000 

Winter 

2000 Summer 2006 SA's Maximum EC's Maximum 

 Metal Philippi Philippi 

Plp 

planted 

Plp 

unplanted 

J/K 

planted 

J/K 

unplanted Permissible Soil Permissible Soil 

   (n = 6)  (n = 3)  

soils  

(n = 2) soil (n = 5) 

soils  

(n = 1) soils (n = 3) Concentrations (mg.kg
-1

) Concentrations (mg.kg
-1

) 

Cd 0.31 0.31 0.39 0.41 0.15 0.23 2.00 1.00 - 3.00 

std dev 0.21 0.17 0.15 0.18 . 0.23     

Maximum 0.53 0.49 . 0.68 . 0.48     

Cr 31.92 3.23 4.06 6.63 1.56 0.98 80.00 100.00 (Belgium) 

std dev 10.16 1.56 0.84 4.56 . 0.15     

Maximum 43.51 4.65 . 13.59 . 1.11     

Cu  19.84 4.52 5.23 8.81 3.11 3.65 6.60 . 

std dev 10.45 1.31 0.65 7.44 . 1.10     

Maximum 32.11 5.69 . 17.74 . 4.78     

Hg . 0.04 0.05 0.01 0.01 0.06 0.50 1.00 - 1.50 

std dev . 0.04 0.04 0.01 . 0.01     

Maximum . 0.08 . 0.02 . 0.01     

Ni 3.07 1.17 1.32 1.57 0.89 1.31 50.00 30.00 - 75.00 

std dev 1.18 0.37 0.38 0.87 . 0.23     

Maximum 4.56 1.59 . 2.66 . 1.54     

Pb 16.93 1.47 1.44 5.05 1.54 1.76 6.60 50.00 - 300.00 

std dev 10.26 0.64 0.90 4.04 . 1.82     

Maximum 27.45 2.08 . 10.70 . 3.64     

Zn  78.39 29.14 34.42 54.96 18.58 27.95 46.50 150.00 - 300.00 

std dev 31.14 9.84 5.15 39.33 . 6.72     

Maximum 108.88 38.06 . 100.03 . 35.25     
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Table 2.7 summarizes the concentrations of heavy metals in all agricultural soil samples, 

manures and crop sprays from both the Philippi and Joostenbergvlakte/Kraaifontein farming 

areas to represent Cape Town‟s agricultural areas as a whole.  The mean concentrations of Cd 

and Pb in a phosphate fertilizer were found to be relatively high compared to the permissible 

concentration of these allowed in soils, but it was far below that permissible for sludge that 

can be applied to agricultural land.  The levels of Cd and Pb measured in cattle manure was 

greater than that measured in chicken manure, the specific significance of this difference 

could however not be verified by further statistical analysis (Table 2.7).  It was expected that 

Zn concentrations would be great in poultry manures and indeed it was found to be very rich 

therein compared to maximum limits set for dry sludge used in agriculture.  Cattle manure 

also contained very high concentrations of Zn which exceeded limits set for Zn 

concentrations in dry sludge applied agriculturally (Dach and Starmans, 2005).  Phosphate 

fertilizer in comparison to chicken manure and cattle manure contained more Hg even though 

it was not as great a source of any of the heavy metals concerned in relation to regulatory 

guidelines (Table 2.7).  In comparison to maximum limits set for sludge used in agriculture, 

cattle manure and chicken manure exceeded the limits set for Cu.  Cattle and chicken manure 

are thus sure sources of Cu and Zn to the studied agricultural areas‟ soils. 

 

It was expected that significant Cu concentrations were to be measured in crop sprays since 

they often contain a mixture of fungicides, insecticides, herbicides and nutrients.  Table 2.7 

however shows that crop sprays contained very little heavy metals compared to other 

agricultural chemical additives such as manures and fertilizers (Table 2.8).  Several farmers 

apply lime to their soils and samples taken on farms in the Joostenbergvlakte area showed 

lime to contain relatively high concentrations of Cu, Hg and Pb compared to other additives 

summarized in Table 2.7. 
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Table 2.7: Mean heavy metal concentrations in mg.kg
-1

 in crop sprayes, manures and soils from Joostenbergvlakte/Kraaifontein and Philippi farms 

Heavy Crop Chicken  Cattle Phosphate Lime *Cultivated South African Maximum 

Permissible Heavy Metal 

Concentrations for soils and in 

sludge used unrestrictedly in 

agricultural soils (mg.kg
-1

) 

 Metal Sprayes Manure Manure Fertilizer   Plp & J/K 

  (n = 9) (n = 16) (n = 20) (n = 1) (n = 4) soils (n = 68) 

Cd 0.00 0.12 0.49 0.49 0.06 0.37 2.00 (soil)        15.70 (dry sludge) 

std dev 0.00 0.03 0.82   0.09 0.17   

Maximum 0.00 0.16 3.82   0.19 0.82   

Cr 0.01 10.55 36.59 18.22 7.53 5.35 80.00 (soil)      1750.00 (dry sludge) 

std dev 0.01 7.21 35.85   1.99 4.70   

Maximum 0.04 27.24 160.00   10.05 19.88   

Cu  0.18 52.16 63.66 0.75 6.52 8.31 6.60 (soil)        50.50 (dry sludge) 

std dev 0.20 10.12 42.88   4.69 5.31   

Maximum 0.56 75.22 227.51   10.86 22.48   

Hg 0.00 0.02 0.01 4.58 2.11 0.02 0.50 (soil)        10.00 (dry sludge) 

std dev 0.00 0.02 0.01   2.00 0.02   

Maximum 0.00 0.09 0.02   4.77 0.13   

Ni 0.12 12.07 29.69 5.23 4.27 1.53 50.00 (soil)      200.00 (dry sludge) 

std dev 0.32 5.41 26.61   0.78 0.82   

Maximum 0.97 23.40 123.44   4.93 4.00   

Pb 0.01 0.58 4.04 2.99 8.61 4.27 6.60 (soil)        50.50 (dry sludge) 

std dev 0.01 0.37 9.47   6.44 4.00   

Maximum 0.02 1.50 39.75   14.17 16.57   

Zn  1.32 444.97 453.70 7.60 23.36 47.14 46.50 (soil)      353.30 (dry sludge) 

std dev 2.51 78.94 213.24   28.79 26.10   

Maximum 7.22 525.47 970.65   65.35 121.00   

* The combined averages for Philippi and Joostenbergvlakte/Kraaifontein soil samples represent not only soils planted with- or prepared for- cabbage, carrots 

and lettuce but, also include, soils planted with beetroot, cauliflower, spinach and soils undergoing methylbromide treatment. 
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To ascertain more regarding the contribution crop sprays make in terms of heavy metal 

contamination, several agrochemicals used in the farming areas concerned were evaluated by 

obtaining their official patent content and usage descriptions documents, as summarized in 

Table 2.8.  The evaluated agrochemicals included fertilizers, fungicides, herbicides and 

insecticides commonly applied to crops in the studied areas.  From Table 2.8 it could be 

deduced that in general most agrochemicals did not contain amounts of heavy metals that 

necessitated it being indicated as ingredients of note.  Only two fungicides out of thirteen 

contained a heavy metal, respectively Cu in Coprox Super and Zn in Trimangol SC, as active 

ingredients while all other fungicides, herbicides and insecticides proclaimed the virtual 

absence of heavy metals in their constituency.  All agrochemical fertilizers mentioned in 

Table 2.8 were loaded with heavy metals.  The heavy metals indicated as present in the 

mentioned chemical fertilizers were however only those needed by plants such as Cu, Fe, 

Mn, Mo and Zn, while the presence or absence of heavy metals such as Pb and Cd were not 

stated. 

 

Despite continued application of fertilizers and other agrochemicals, it was hypothesized that 

the status of heavy metal contamination of vegetables would be marginally greater than seen 

in previous years.  In the case of Pb concentrations in cabbage and carrots, differences were 

seen between Philippi 2000 and Philippi 2006 samples but, unlike hypothesized, there 

seemed to be a reduced concentration observed rather than an increased concentration in 

these vegetables‟ Pb contents (Table 2.9 and Table 2.10).  No significant differences were 

however seen between cabbage, carrots and lettuce produced in the Philippi area in 2006 

compared to vegetables produced in the Joostenbergvlakte/ Kraaifontein area in 2006.  The 

concentration of Hg was relatively high in carrots produced in the Joostenbergvlakte/ 

Kraaifontein area in 2006 in terms of the maximum permissible concentration allowed by 
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South African regulations.  This concentration of Hg in carrots produced in the 

Joostenbergvlakte/Kraaifontein areas was relatively higher than that seen in carrots produced 

in the Philippi area in 2006 (Table 2.9 and 2.12).  Carrots from the Philippi area, however, 

had a relatively greater concentration of Cu and seemingly greater concentration of Cd in 

their edible parts compared to those produced in the Joostenbergvlakte/ Kraaifontein area 

(Table 2.10 and 2.12).  These noted differences where however not reflect as significant by 

other statistical tests. 

 

In the case of Pb, a lower concentration was measured in cabbage and carrots produced in 

both farming areas compared to the concentration of Pb seen in these vegetables produced in 

Philippi in 2000 (Table 2.9 and Table 2.10).  Though in the case of cabbage, carrots and 

lettuce; Pb and Zn exceeded South African limits set for vegetables, these concentrations did 

not exceed the European Community‟s limits (Tables 2.9, 2.10 and 2.11).  Cd concentrations 

exceeded South African limits in carrots produced in Philippi in 2006 and lettuce produced in 

both areas in 2006 (Tables 2.10 and 2.11), but again one needs to note that South African 

limits are very restrictive (Murphy, 1997).  The accumulation of Cd in carrots, related to soil 

Cd concentrations, is supported by Pearson Correlations seen in Tables 2.13.  Other 

correlations were not conclusive as they did not support findings seen in other research.  Soil 

pH also affects the uptake of metals and was supported by Correlations summarized in Table 

2.13 (Kirkham, 2006, Marschner, 1995). 
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Table 2.8:  List of common agrochemicals used on Cape Town’s agricultural soils and their heavy metal content 

Agrochemical Producer Use Main Vegetable crop(s)
*
 Active ingredient(s) Heavy metals in mg/kg 

Amistar Syngenta Fungicide Potatoes, Cruciferae, 

cucurbits, onions 

Strobilurien None indicated 

Aphox Syngenta Insecticide Potatoes, Cruciferae Piricarbamate None indicated 

Ballona Terona Plant 

Nutrition 

Fertilizer All crops N, P, K, Mg, S and B, Cu, Fe, 

Mn, Mo and Zn 

Cu 90mg/kg, Fe 1440mg/kg, 

Mn 1300mg/kg, Mo 120mg/kg 

and Zn 1500mg/kg 

Bladbuff 5 Gouws and 

Scheepers 

Water improver All crops Wetting-, spreading-, penetrating 

agents, acidifier, and pH 

indicator not named 

None indicated 

Bravo 270 Syngenta Fungicide Potatoes, Cruciferae, 

cucurbits, beans, peas 

Chlorophthalimide None indicated 

Break-Thru Degussa Africa Wetting-, 

spreading-, 

penetrate 

surfactant  

All crops Polyether- polymethylsiloxane- 

copolymer 

None indicated 

Cabrio Top BASF Chemical 

Company 

Fungicide Wine- and table grapes Metiram dithiocarbamate, 

pyraclostrobin strobilurine 

None indicated 

CalMag Nitrate 

Plus B 

Agrizone Water soluble 

fertilizer 

Potatoes, onions, beans N, Ca, Mg, B None indicated 

Coprox Super Tsunami Plant 

Protection 

Fungicide Potatoes, celery, Cruciferae, 

cucurbits, beans 

Copper oxychloride Copper oxychloride 

8500mg/kg which is equivalent 

to 50% metallic copper 

Crop Guard Illovo Sugar Nematicide Potatoes, onions, carrots, 

lettuce 

Furfural aldehyde None indicated 

Delta-Thrin 25 

EC 

Villa Crop 

Protection 

Insecticide Potatoes, Peas, Onions, 

lettuce, Cruciferae, beans 

Deltamethrin pyrethoid None indicated 

Dithane M45 

800 WP 

Dow Agro Sciences Fungicide All crops Mancozeb dithiocarbamate None indicated 

Dursban 2E Dow Agro Sciences Insecticide Only deciduous fruit, citrus, 

cabbage, Brussels‟ sprouts 

Chlorpyrifos None indicated 

Eco Pellets Organic Choice Composted All crops N, P, K, Mg, Ca, B, S, Mn, Cu, Mn 5700mg/kg, Fe 
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poultry manure Fe, Zn 35770mg/kg, Cu 750mg/kg, 

Zn 6850mg/kg 

Agrochemical Producer Use Main Vegetable crop(s)
*
 Active ingredient(s) Heavy metals in mg/kg 

Enhance Pellets Avison Composted 

chicken manure 

All crops N, P, K, Mg, Ca, B, S, Mn, Cu, 

Fe, Zn 

Mn 676mg/kg, Fe 1919mg/kg, 

Cu 91mg/kg, Zn 562mg/kg 

Fusilade Forte  Syngenta Herbicide All crops Aryloxyphenoxyproprionate None indicated 

Gallant Super Dow Agro Sciences Herbicide All crops Haloxyfop-R methyl ester None indicated 

Goal 2XL 240 

EC 

Dow Agro Sciences Herbicide All crops Oxyfluorfen diphenyl ether None indicated 

Goëmar BM 86 

E 

Terason Fertilizer Potatoes, peas, spinach, 

lettuce, carrots, cucurbits, 

celery, brassicas, beans 

Seaweed cream GA14, B, Mg, 

Mo, S, Auxins, and Citokinins 

Molybdenum 0.02% 

Grab 500 EC Gouws and 

Scheepers 

Insecticide Cucurbits Fenthion organophosphate None indicated 

Herbi-Thal 480 

SC 

Ag-Chem Africa Herbicide Onions, lettuce, cauliflower, 

cabbage 

Chlorthal-dimethyl phthalic acid 

compound 

None indicated 

Hunter 5C BASF Chemical 

Company 

Insecticide Potatoes, Cruciferae Chlorefenapir None indicated 

Judo 50 EC Villa Crop 

Protection 

Insecticide Potatoes, Crufiferae, beans Lambda-cyhalothrin pyrethroid None indicated 

Karate EC Syngenta Insecticide Potatoes, peas, onions, 

Cruciferae, beans 

Lambda-cyhalthrin pyrethroid None indicated 

Kelpak Kelp Products Fertilizer Potatoes, peas, onions, 

lettuce, carrots, Cruciferae, 

beans 

Auxins, Cytokinins None indicated 

Linagan SC Makhteshim Agan  Herbicide Potatoes, carrots Linuron (Urea) None indicated 

Methamidofos 

585 SL 

Dow Agro Sciences Insecticide Potatoes, Cruciferae Methamidophos 

(organophosphate) 

None indicated 

Methomex 200 

SL 

Makhteshim Agan Insecticide Potatoes, Cruciferae, beans Methomyl carbamate None indicated 

Methomyl 200 

SL 

Dow Agro Sciences Insecticide Potatoes, Cruciferae, beans Methomyl carbamate None indicated 

Nu-Film P Miller Chemical 

and Fertilizer  

Non-ionic 

sticker/spreader 

All crops Poly-1-p-Menthene None indicated 

Orius 2 WS Makhteshim Agan Fungicide All crop seeds Tebuconazole (triazole) None indicated 
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Agrochemical Producer Use Main Vegetable crop(s)
*
 Active ingredient(s) Heavy metals in mg/kg 

Phosdrin SL Villa Crop 

Protection 

Insecticide Peas, Cruciferae, beans Mevinphos (organophosphate) None indicated 

Proclaim Syngenta Insecticide Tomatoes Emamectin benzoate None indicated 

Quatro Induce Terason Fertilizer All crops N, P, Zn, Fe, Mn, Cu, B, Mo, 

Auxins and Cytokinins 

Cu 504mg/kg, Fe 1001mg/kg, 

Zn 510mg/kg, Mn 507mg/kg 

and Mo 76mg/kg 

Ridomil Gold 

Flo 

Syngenta Fungicide Potatoes, Cruciferae Mefenoxam phenylamide, 

chlorothalonil (chloronitrate) 

None indicated 

Sanamectin 18 

EC 

Dow Agro Sciences Insecticide Potatoes Abamectin None indicated 

Sanlaxyl 700 

WP 

Dow Agro Sciences Fungicide Potatoes Metalaxyl phenylamide, 

Mancozeb dithiocarbamate 

None indicated 

Score Syngenta Fungicide Potatoes, beans Difenoconazole triazole None toxic 

Selecron 500 

EC 

Syngenta Insecticide Potatoes, onions, 

cauliflower, cabbage 

Profenofos premium grade 

organophosphate 

None indicated 

Sorba Syngenta Insecticide Cabbage Iufenuron benzamide None indicated 

Sovin Flo Meridian Agritech Fungicide Potatoes Dimethomorph cinnamic acid 

derivative 

None indicated 

Steward Du Pont Insecticide Peas, Cruciferae, beans Indoxacarb (Oxadiazine) None indicated 

Sumisclex Philagro Fungicide Table grapes Procymidone, Sulphur None indicated 

Suntap 500 SP Gouws and 

Scheepers 

Insecticide Potatoes, peas, onions, 

cabbage, beans 

Cartap hydrochloride None indicated 

Telone II Dow Agro Sciences Insecticide Potatoes and all seeds 1,3 dichloropropene None indicated 

Topaz 200 EW Syngenta Fungicide Peas, cucurbits Penconazole triazole None indicated 

Totril Bayer Crop Science Herbicide Onions, garlic Loxynil (nitrile) (octanoate 

ester) 

None indicated 

Tracer 120 SC Dow Agro Sciences Insecticide Peas, beans Spinosad None indicated 

Tracer 480 SC Dow Agro Sciences Insecticide Potatoes, peas, onions, 

spinach, lettuce, leeks, 

cucurbits, cabbage 

Spinosad (naturalyte) None indicated 

Trimangol SC Tsunami Plant 

Protection 

Fungicide Potatoes, beans Maneb (dithiocarbamate), Zinc 

Oxide 

Zinc oxide 4.7g/L 

*The above agrochemicals are specifically effective for use on the indicated crop(s), but it does not exclude their use on other crops unless stated so. 
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Table 2.9:  Mean heavy metal concentrations for cabbage produced in the Joostenbergvlakte/Kraaifontein and Philippi farming areas in mg.kg
-1

 

Heavy Summer Winter Summer SA's Maximum EC's Maximum 

 Metal 2000 2000 2006 Permissible Permissible 

  Plp (n = 4) Plp (n = 13) Plp (n = 8) J/K (n = 6) Concentrations (mg.kg
-1

) Concentrations (mg.kg
-1

) 

Cd 0.38 0.37 0.04 0.04 0.05 0.20 wet weight 

std dev 0.28 0.21 0.02 0.01     

Maximum 0.72 0.60 0.06 0.06     

Cu  4.25 5.23 4.02 4.19 30.00 . 

std dev 1.17 1.09 0.58 1.46     

Maximum 5.35 7.83 5.05 7.07     

Hg . . 0.01 0.01 0.03 . 

std dev . . 0.01 0.01     

Maximum . . 0.02 0.03     

Pb 3.03 4.76 0.25 0.21 0.10 0.30 wet weight 

std dev 2.15 2.84 0.08 0.08     

Maximum 6.18 8.58 0.41 0.31     

Zn  60.03 48.00 45.59 50.07 40.00 . 

std dev 6.99 21.31 10.34 17.09     

Maximum 66.10 82.02 60.38 71.17     
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Table 2.10:  Mean heavy metal concentrations for carrots produced in the Joostenbergvlakte/Kraaifontein and Philippi farming areas in mg.kg
-1

 

Heavy Summer Winter Summer SA's Maximum EC's Maximum 

 Metal 2000 2000 2006 Permissible Permissible 

  Plp (n = 10) Plp (n = 24) Plp (n = 8) J/K (n = 4) Concentrations (mg.kg
-1

) Concentrations (mg.kg
-1

) 

Cd 0.46 0.31 0.18 0.09 0.05 0.10 wet weight 

std dev 0.43 0.33 0.08 0.03     

Maximum 1.51 1.54 0.30 0.11     

Cu  10.77 5.28 7.76 5.97 30.00 . 

std dev 5.58 4.63 1.65 1.45     

Maximum 24.00 26.50 10.51 7.91     

Hg . . 0.01 0.06 0.03 . 

std dev . . 0.01 0.10     

Maximum . . 0.03 0.21     

Pb 2.86 3.64 0.29 0.33 0.10 0.10 wet weight 

std dev 2.01 2.29 0.14 0.09     

Maximum 6.33 9.96 0.55 0.41     

Zn  58.30 25.74 64.33 61.80 40.00 . 

std dev 17.92 12.57 15.97 10.35     

Maximum 84.52 57.2 90.28 76.54     
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Table 2.11:  Mean heavy metal concentrations for lettuce produced in the Joostenbergvlakte/Kraaifontein and Philippi farming areas in mg.kg
-1

 

Heavy Summer Summer SA's Maximum EC's Maximum 

 Metal 2000 2006 Permissible Permissible 

  Plp (n = 6) Plp (n = 2) J/K (n = 1) Concentrations (mg.kg
-1

) Concentrations (mg.kg
-1

) 

Cd 0.33 0.25 0.1 0.05 0.20 wet weight 

std dev 0.41 0.15 .     

Maximum 0.98 0.36 .     

Cu  12.17 11.86 9.28 30.00 . 

std dev 4.02 0.48       

Maximum 16.91 12.20       

Hg . 0.01 0.01 0.03 . 

std dev . 0.00 .    

Maximum . 0.01 .    

Pb 4.11 0.19 0.46 0.10 0.30 wet weight 

std dev 1.69 0.21 .    

Maximum 5.41 0.34 .    

Zn  93.27 205.69 301.23 40.00 . 

std dev 23.65 47.53 .    

Maximum 117.24 239.30 .    
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Table 2.12:  T-tests that showed significant differences between samples collected in 2006 from Joostenbergvlakte, Kraaifontein and Philippi 

farms 

Heavy metals in sample Joostenbergvlakte mean 

and sample number 

Kraaifontein mean and 

sample number 

Philippi mean and sample 

number 

LSD (least significant 

difference) 

Irrigation dam water Zn 0.0142 mg/l (n = 5) 0.0068 mg/l (n = 20) 0.0057 mg/l (n = 47) 0.0042 

Water inlet pipe to dam Cr 0.0033 mg/l (n = 3) 0.0020 mg/l (n = 8) 0.0005 mg/l (n = 26) 0.0012 

Water inlet pipe to dam Pb 0.0154 mg/l (n = 3) 0.0011 mg/l (n = 8) 0.0068 mg/l (n = 26) 0.0078 

Sprinkler water Cd 0.0008 mg/l (n = 4) 0.0001 mg/l (n = 8) 0.0007 mg/l (n = 9) 0.0005 

Sprinkler water Co 0.0009 mg/l (n = 4) 0.0016 mg/l (n = 8) 0.0008 mg/l (n = 9) 0.0006 

Sprinkler water Cr 0.0025 mg/l (n = 4) 0.0012 mg/l (n = 8) 0.0001 mg/l (n = 9) 0.0005 

Sprinkler water Fe 0.0605 mg/l (n = 4) 0.0444 mg/l (n = 8) 0.1299 mg/l (n = 9) 0.0235 

Sprinkler water Ni 0.0033 mg/l (n = 4) 0.0083 mg/l (n = 8) 0.0027 mg/l (n = 9) 0.003 

All soils Cd 0.2144 mg/kg (n = 9) 0.3041 mg/kg (n = 19) 0.3970 mg/kg (n = 85) 0.174 

All soilsCr 1.3810 mg/kg (n = 9) 1.8120 mg/kg (n = 19) 6.1910 mg/kg (n = 85) 4.0215 

All soils Pb 0.9690 mg/kg (n = 9) 1.1830 mg/kg (n = 19) 5.1230 mg/kg (n = 85) 3.641 

All soil Zn 26.4900 mg/kg (n = 9) 35.6200 mg/kg (n = 19) 50.1100 mg/kg (n = 85) 22.219 

Soil with cabbage Cd . 0.2448 mg/kg (n = 10) 0.3833 mg/kg (n = 10) 0.0774 

Soil with cabbage Co . 0.3690 mg/kg (n = 10) 0.7001 mg/kg (n = 10) 0.2231 

Soil with cabbage Cr . 1.9310 mg/kg (n = 10) 8.7134 mg/kg (n = 10) 1.8178 

Soil with cabbage Cu . 7.4170 mg/kg (n = 10) 11.4610 mg/kg (n = 10) 2.2183 

Soil with cabbage Hg . 0.0111 mg/kg (n = 10) 0.0380 mg/kg (n = 10) 0.0103 

Soil with cabbage Ni . 1.0777 mg/kg (n = 10) 1.8387 mg/kg (n = 10) 0.4858 

Soil with cabbage Pb . 1.4212 mg/kg (n = 10) 7.1296 mg/kg (n = 10) 1.2458 

Soil with cabbage Zn . 43.1540 mg/kg (n = 10) 63.0160 mg/kg (n = 10) 15.1620 

Soil with carrots Cr . 1.7640 mg/kg (n = 4) 6.8840 mg/kg (n = 8) 2.9950 

Soil with carrots Fe . 1525.5000 mg/kg (n = 4) 941.6000 mg/kg (n = 8) 394.3100 

Soil with carrots Ni . 1.1168 mg/kg (n = 4) 1.9399 mg/kg (n = 8) 0.7002 

Cu in carrots 7.9080 mg/kg (n = 1) 5.3530 mg/kg (n = 2) 7.9080 mg/kg (n = 8) 2.2476 

Hg in carrots 0.0070 mg/kg (n = 1) 0.1135 mg/kg (n = 2) 0.0064 mg/kg (n = 8) 0.0345 
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Table 2.13: Pearson correlations between soil pH and heavy metals in soils and heavy 

metals in vegetables produced in February 2006 in Cape Town’s agricultural areas    

Metal in soil Metal in vegetable and sample 

number (n) 

Correlation Coefficient 

(P-value) 

pH Cr in cabbage (n = 14) - 0.70014 (0.0053) 

pH Fe in cabbage (n = 14) - 0.74212 (0.0024) 

pH Zn in cabbage (n = 14) - 0.56783 (0.0342) 

pH Cr in lettuce    (n = 3) - 0.99996 (0.0055) 

pH Fe in lettuce    (n = 3) - 0.99993 (0 0073) 

pH Cd in carrots   (n = 12) + 0.60552 (0.0369) 

Cd Cd in carrots   (n = 12) + 0.70644 (0.0102) 

Cr Cd in carrots   (n = 12) + 0.79123 (0.0022) 

Cu Cd in carrots   (n = 12) + 0.60467 (0.0373) 

Fe  Fe in lettuce    (n = 3) + 0.99566 (0.0593) 

Ni Cd in carrots   (n = 12) + 0.56634 (0.0549) 

Ni Pb in lettuce    (n = 3) - 0.99857 (0.0341) 

Pb Hg in lettuce   (n = 3) + 0.99630 (0.0548) 

Pb Cd in carrots   (n = 12) + 0.87129 (0.0002) 

Pb Cr in lettuce    (n = 3) - 0.99459 (0.0662) 

Zn Cd in carrots   (n = 12) + 0.59038 (0.0433) 

 

2.4.  Discussion 

The Joostenbergvlakte/Kraaifontein farming area and the Philippi farming area differ in terms 

of their irrigation water resources‟ origins.  The Joostenbergvlakte/Kraaifontein area‟s 

farmers obtain water via boreholes from the Malmesbury shale meta-sediment aquifer, from 

the Teewaterskloofdam and the Scottsdene Waste Water Treatment Plant while the Philippi 

farmers extract water via boreholes from the Cape Flats aquifer in the Sandveld group deposit 

and obtain water from surrounding storm water canals (Cole and Roberts, 1996; Fraser and 

Weaver, 2000; Personal communication with farmers, 2007).  Though the origins of 

irrigation water sources for these two farming areas‟ are different, overall, differences 

between the concentrations of heavy metals in irrigation waters from these two main areas 

were minimal and even insignificant (Table 2.2 and 2.3). 

 

Significant amounts of Cd, Cu and Zn was expected in various types of irrigation water 

resources from the studied areas however, the South African maximum permissible 

 

 

 

 



 91 

concentrations for Cd, Cu and Zn were not exceeded in either study area.  In neither study 

area did the other measured heavy metals (Cr, Co, Fe, Hg, Mn, Mo, Ni, Sn and V) exceeded 

set South African maximum permissible concentrations in piped water inputs to dams, 

irrigation dam water it self or sprinkler water.  The concentrations of most heavy metals from 

Philippi‟s irrigation dam waters showed no significant differences to that measured in 

Philippi in 2000.  Indicating that these systems have not necessarily become more 

contaminated, but that as in the case of Philippi, a balance is maintained by the present 

system‟s ecological functions.  This is supported by the fact that little seasonal variations 

were seen in the case of most heavy metal concentrations in irrigation dam water resources in 

Philippi in 2000 (Li et al., 2008; Meerkotter, 2003; Miller, 1996; Summerfield, 1994). 

 

It was interesting to note that piped water inputs, except for Cr and Pb concentrations, did not 

seem to differ between the two main study areas though they may have had very different 

origins.  All these inputs were subject to various factors and could not be expected as present 

on each farm in similar numbers as discussed to some extent in the Materials and Methods 

section of this chapter and summarized in Table 2.1.  The number of canals and the presence 

of tributaries from rivers depended on the topographical position of each farm, whereas the 

collection of sprinkler water depended on the time of irrigation coinciding with sampling on a 

particular land.  The amount of pipes that lead towards irrigation water holding dams also 

varied from farm to farm and not all pipes were permanent inlet structures at any particular 

dam.  Some pipes were connected to boreholes while others directed flow of water from 

canals and tributaries or other dams to a specific dam at the time of sampling.   

 

In the case of Cd, Co, Cr, Fe and Ni there seemed to be differences between sprinkler water 

from Philippi compared to sprinkler water from the Kraaifontein area (Table 2.12).  The 
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reasons for the differences in sprinkler waters were however not investigated and could be 

related to an array of factors, just one being for example, possible differences in materials 

used for the sprinkler system pipes itself, which was not investigated in this research 

(Department of Water Affairs and Forestry, 1996).  From the results it can be seen that heavy 

metal contamination of irrigation water resources is not a major concern in either area at 

present.  Irrigation water resources are currently not contaminated enough neither to 

jeopardize the production of quality vegetables in terms of heavy metal content, nor to pollute 

soils. 

 

Water is cycled between irrigation water holding dams and various canals/tributaries and 

heavy metals from contaminated soils could easily be leached through percolation to these 

water resources and vice versa (Miller, 1996; Rice and Rice, 1997; Summerfield, 1994).  

Previous research showed that several soils from Philippi and Kraaifontein‟s farming areas 

contained heavy metals and this research aimed to determine whether the concentrations of 

heavy metal had increased in the soils since it was last tested (Meerkotter, 2003; Qoko, 2003; 

Sogayise, 2003).  Taking into consideration that soils may have been flushed from heavy 

metals after each rainy season; that heavy metals could have been removed from soils by 

harvested crops and that addition of fertilizers, composts and pesticides may not have 

changed significantly, it was hypothesized that the concentrations of heavy metals would be 

marginally greater than measured in previous studies (Brown, 1996; Marschner, 1995; Miller, 

1996; Rice and Rice, 1997; Summerfield, 1994).  This hypothesis was however not supported 

by the results of this study. 

 

A greater threat to irrigation water resources at present is salinization which is aggravated by 

bad farming practices, for example the storing of manure in heaps in close proximity to 
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irrigation water holding dams, often seen on the studied farms (Murphy, 1997).  Over-

abstraction of underground water is also a great concern in that it can lead to salinization of 

irrigation waters and even intrusion of sea water into aquifers; fortunately this has not 

happened yet in the Philippi area and is a lesser threat in the Joostenbergvlakte/Kraaifontein 

area.  Nonetheless, continued application of fertilizers especially in the form of manures in 

areas that have distinct dry seasons, such as seen in Cape Town, leave soils prone to 

salinization and this can also lead to salinization of water resources, especially underground 

water resources, which was confirmed in a recent study in the Philippi area (Aza-Gnandji, 

2011; Brown, 1996; Li et al., 2010; Rice and Rice, 1997). 

 

Other threats to both agricultural areas are related to the expansion of residential and 

industrial areas that are encroaching farm land and in some cases has led to the loss of farm 

land since 2006 (Map Studio, 1999; Orthophoto Map Series A, 2001; Orthophoto Map Series 

A, 2007; Orthophoto Map Series A, 1992; Orthophoto Map Series B, 1992; Orthophoto Map 

Series B, 1999; Orthophoto Map Series B, 2001; Orthophoto Map Series C, 2001; 

Orthophoto Map Series D, 2001;).  Apart from the great threat that urbanization has on these 

two farming areas, in terms of heavy metal contamination of these farm lands, increased air-

pollution also poses a threat.  Air-pollution is measured daily by several stations in and 

around Cape Town, however, the extent of contamination is described in terms of „particulate 

concentration‟ where the identity of all the measured particles is unfortunately not given.  In 

the absence of the revealed identity of air pollution particles, the actual contribution of air 

pollution in terms of Cd, Pb and other heavy metals to agricultural land is not clear, but well 

present (Webber and Singh, 2003).  Though irrigation water resources are fairly 

uncontaminated in terms of heavy metals, agricultural soils are loaded with heavy metals and 

can pose a threat to irrigation water resources in the future (Miller, 1996). 
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Heavy metal contamination of agricultural soils of the Philippi and Joostenbergvlakte/ 

Kraaifontein farming areas was expected to be marginally greater than measured in studies 

prior to 2006.  Concentrations of Cu, Pb and Zn were not significantly greater than measured 

prior to 2006.  In Philippi‟s soils prepared for the planting of cabbage, carrots and lettuce the 

concentrations of Cu, Pb and Zn exceeded the maximum permissible concentrations set by 

South African guidelines, while soils form the Joostenbergvlakte/Kraaifontein area were 

below these maximum permissible concentrations.  None of the heavy metals in soils of 

either area exceeded European maximum permissible concentrations.  In the case of Cu the 

European limits were not clearly indicated but it is safely assumed that according to European 

standards our soils are overall fairly „clean‟ in terms of their heavy metal content (Murphy, 

1997).  It is interesting to note that specifically Cu, Pb and Zn are also problematic metals 

elsewhere in the world in agricultural systems (Cao et al., 2010; Hao et al., 2009).  Soil Cu, 

Pb and Zn content thus need more monitoring in future.  The amount of cropped soils that 

could be sampled during the period of sample collecting, in for example the case of lettuce, 

was very low and a greater sample number might have been more conclusive and should be 

aimed for in future studies if practically possible. 

 

Looking at averages and standard deviations the heavy metal concentrations of Philippi soils 

were greater than those of the Joostenbergvlakte/Kraaifontein area.  This was an interesting 

observation since soils of the Philippi area have a lower attenuation capacity than soils form 

the Joostenbergvlakte/ Kraaifontein area (Eigenhuis, 1997).  These higher concentrations 

seen in Philippi soils could be due to more intense farming as the Philippi farms often see as 

much as three crops per year per land and the Philippi farms have been farmed on for a 

greater number of years than the Joostenbergvlakte/Kraaifontein farms (Personal 

communication with farmers from Philippi and Joostenbergvlakte/Kraaifontein area, 2007). 
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It was interesting to note that in both areas, soils which were already carrying crops well into 

the growing season, were not significantly different in heavy metal concentrations than soils 

prepared for planting and not yet subjected to extraction of elements by vegetable crops.  This 

may indicate that the soils are supplied with more than adequate amounts of fertilizer in 

comparison to what the crops actually need throughout the growing season thus soils are not 

significantly depleted of nutrients and heavy metals by crops upon harvesting.  Furthermore, 

some agrochemical fertilizers are continually applied and thus as heavy metals and nutrients 

are extracted from soils during the growing season, these are replaced through application of 

agrochemical fertilizers and thus cropped soils do not appear significantly poorer in nutrients 

and heavy metals than soils prepared for cropping (Marschner, 1995; Rice and Rice, 1997; 

Webber and Singh, 2003).  Continued application of fertilizers can however not be avoided as 

these areas have sandy soils that do not hold nutrients very well and thus soils need a fresh 

injection of nutrients after each harvest and in preparation for the next crop (Brown, 1996; 

Marschner, 1995; Rice and Rice, 1997). 

 

Regulating the application rate of phosphate fertilizers should ensure that the final amounts of 

Cd and Pb added to soils are kept at a minimum, which is supported by the evidence of little 

increase in Cd and Pb concentrations in Philippi‟s agricultural soils since 2000 till 2006 as 

seen in Tables 2.4, 2.5 and 2.6.  These results agree with those seen in studies by Brown, 

1996; Marschner, 1995; Rice and Rice, 1997; Webber and Singh, 2003.  It is important to 

note that the phosphate fertilizer sample measured represented but one general fertilizer brand 

while several other brands of phosphate fertilizers are also used by farmers but were not 

available for sampling.  The use of chemical fertilizers seem to be a sure source of heavy 

metals to the agricultural field, however, use thereof according to the set application rates, 

under the supervision of an agronomist/agriculturalist, should help minimize the chances of 
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produce, soils or water resources becoming contaminated to the point of exceeding 

permissible limits (Marschner, 1995; Webber and Singh, 2003). 

 

Though soils may appear to contain high levels of heavy metals and other nutrients, these 

may not always be in a form that can by taken up by crops and thus the concentrations of 

heavy metals of concern often remain unchanged in soils throughout the growing season.  

Soil pH, P and Zn concentrations as well as organic matter content often reduce the uptake of 

heavy metals and thus alleviate stress caused by elevated heavy metal concentrations in 

agricultural soils (Brown, 1996; Kirkham, 2006; Rice and Rice, 1997).  Some crops may have 

roots that are selective in terms of the heavy metals that they take-up and thus heavy metals 

may not necessarily be extracted by crops as in bioremediation processes (Clemente et al., 

2005; Kothe et al., 2005; Marschner, 1995; Li et al., 2008; Li et al., 2010).  It is important to 

note that bioremediation also requires the use of crops that are capable of effectively 

extracting the necessary heavy metals form soils.  Though leafy vegetables do extract more 

heavy metals than non-leafy vegetables, they are not as effective as beets, mustard and 

sunflowers.  Not all vegetable crops are good candidates for bioremediation as all crops do 

not necessarily extract significant amounts of heavy metals (Clemente el al, 2005; Kothe et 

al., 2005; Li et al., 2010; Wang et al., 2006). 

 

Soils planted with cabbage in Philippi in 2000 showed seasonal variation in Cu and Zn 

concentrations (Table 2.4), while soils planted with carrots, showed seasonal Zn variation 

(Table 2.5) and soils planted with lettuce showed seasonal variations in Cr, Cu and Pb 

concentrations (Table 2.6).  These variations could be related to various possible factors such 

as the ability of these specific crops to extract the mentioned heavy metals more readily in 

favorable weather conditions or these variations could have coincided with application of 
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agrochemicals that contained trace amounts of these metals and thus the observed seasonal 

variation may have been false or elevated.  The presence of other elements in the soil may 

also have affected the uptake of these heavy metals by crops.  Pearson Correlations showed 

that high soil pH, as seen in the study areas, can reduce the amount of Zn taken up by 

cabbage, while elevated levels of Cu in soils coincide with elevated levels of Cd in carrots 

(Marschner, 1995, Rice and Rice, 1997; Table 2.13). 

 

It would be interesting to determine what the background soil heavy metal concentrations are 

in these two farming areas as one can then more closely evaluate the cycling of heavy metals 

in these agricultural systems (Cao et al., 2010; Li et al.; 2008).  It would seem that the 

applications of fertilizer are done in a very responsible manner as concentrations of heavy 

metals measured in Philippi soils in 2000, for example, are not significantly different from 

that measured in Philippi in 2006 (Table 2.4, 2.5 and 2.6).  Each farmer makes use of an 

agronomist/agriculturalist to help calculate the amounts of fertilizers, manures and other 

agrochemicals that are needed per growing season.  Since the application rates are very 

specific to particular cropping sites on each farms, crops intended for planting and seasonal 

vulnerability to pests, this study only briefly evaluated the contents of agrochemicals used in 

the studied areas and this was summarized in Table 2.8.  For the purpose of this discussion it 

is assumed that these agrochemicals are applied as prescribed by their manufacturers, which 

should ensure that maximum permissible limits are not exceeded, if applied correctly (Brown, 

1996; Marschner, 1995; Rice and Rice, 1997). 

 

Farmers from the Joostenbergvlakte/Kraaifontein area and the Philippi area make use of 

similar agrochemicals and the same agronomists, agriculturalists and consultants are spoken 

of by farmers from both areas.  Since agrochemicals used in these two areas are similar they 
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were summarized in Table 2.8 as representative for the whole of vegetable farming in Cape 

Town.  It was hypothesized that significant levels of Cd and Pb were to be measured in 

chemical fertilizers, and significant levels of Zn was expected to be seen in poultry manures 

(Dach and Starmans, 2005; Webber and Singh, 2003).  Crop sprays were expected to contain 

significant Cu concentrations as they often contain mixtures of fungicides, pesticides, 

herbicides and nutrients. 

 

The results indicated in Table 2.7 showed that indeed poultry manure, more specifically 

chicken manure, contained great amounts of Cd, Pb and Zn and that cattle manure was an 

even more substantial source of these heavy metals, this being a common finding in many 

agricultural areas worldwide (Dach and Starmans, 2005; Webber and Singh, 2003).  

Although phosphate fertilizer did contain Cb and Pb and as such would be a source thereof to 

the agricultural field, manures pose a greater threat in terms of elevation of heavy metal 

content of soils than phosphate fertilizers and agrochemical fertilizers such as Ballona, 

Goëmar BM 86 E, Quatro Induce, Eco pellets and Enhance pellets (Table 2.7 and 2.8). 

 

The use of chicken manure is often replaced by or limited by additional use of chicken or 

poultry manures in the form of pellets such as the products Eco pellets and Enhance pellets.  

The Cu and Zn content of chicken manure was found to be very high compared to that 

permissible in dry sludge used agriculturally and as such use of chicken manure pellets which 

have altered or controlled concentrations of Cu and Zn would be preferable, especially since 

Cu and Zn concentrations in some farms‟ soils have been noted as problematic in the past and 

in this study (Meerkotter, 2003, Table 2.4, 2.5, 2.6, 2.7 and 2.8). 
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The use of chicken manure in the form of pellets is advantageous in that the storage of dry 

but raw chicken manure in heaps outside on agricultural land, where it is often drenched in 

rain or irrigation water and thus become possible point sources of contamination to water 

resources is avoided, since pellets are easily kept in store rooms as they are packed in 

convenient bags.  Chicken/poultry manure pellets are also more advantageous in terms of the 

lesser amounts of bacteria that it exposes crops to in that these pellets are sterilized, unlike 

chicken manure and cattle manure.  These pellets can also be enriched with other nutrients 

and a farmer can select the more appropriate pellets, where as chicken or cattle manure‟s 

quality and content is rarely guaranteed.  The use of liquid chemical fertilizers such as 

Ballona, Goëmar BM 86 E and Quatro Induce is also common practice in these two 

agricultural areas (Brown, 1996; Rice and Rice, 1997, Table 2.8). 

 

Ballona, Goëmar BM 86 E and Quatro Induce are examples of Group 2 fertilizers commonly 

used by the farmers from the studied areas.  These fertilizers are applied to crops through out 

the growing season, commonly every 14 days, depending on the product and agronomist‟ or 

agriculturalist‟s advice.  Though these fertilizers are placed in the same group they contain 

very different concentrations of various nutritional elements and heavy metals.  Ballona for 

example contains 1440 mg/kg Fe, 1500 mg/kg Zn and only 90 mg/kg Cu, while Quatro 

Induce contains 1001 mg/kg Fe, 510 mg/kg Zn and 504 mg/kg Cu.  These differences in 

concentrations do make better management practices possible as needs can be addressed 

more specifically and in the case of heavy metal contamination being a problem, fertilizers 

with lower concentrations of heavy metals can be selected for use (Brown, 1996; Rice and 

Rice, 1997). 
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For example, to avoid unnecessary increase in Cu concentrations in/on crops and in 

agricultural soils, a fertilizer such as Ballona which is low in Cu can be used during the 

period in which a crop spray such as Coprox Super that contains Cu as its active ingredient to 

prevent growth of fungi is used.  So also, for example, to avoid excessive accumulation of Zn 

in the agricultural system a fertilizer such as Quatro Induce that is relatively low in Zn can be 

used during the period when a fungicide such as Trimangol SC which has Zn in its active 

ingredient is applied to crops.  It was interesting to note that only Coprox Super and 

Trimangol SC each contained a heavy metal as part of its active ingredients while all other 

fungicides, herbicides and insecticides claimed the absence of heavy metals as part of their 

constituents (Product usage documentation; Tsunami Plant Protectoin Ltd. Terona Plant 

Nutrition Ltd. and Terason Ltd.; Table 2.8).  From Table 2.8 it can be deduced that crop 

sprays, other than the indicated liquid fertilizers and manure pellets, do not pose a great threat 

in the agricultural environment in terms of heavy metal pollution, this is also the case in other 

countries as agrochemicals with less heavy metals and less harmful organic compounds are 

introduced to fight pests (Webber and Singh, 2003).  The crop sprays collected on the studied 

farms, from spraying vehicles, did not contain significant amounts of heavy metals and 

probably did not contribute significant amounts of Cd, Cr, Cu, Hg, Ni or Pb to the studied 

agricultural lands (Table 2.7). 

 

Of all the chemical input to these two agricultural areas, cattle manure and chicken manure 

are the most likely sources of heavy metals to these altered ecological systems, followed by 

chemical fertilizers of various kinds, this is also a common observation in other countries 

(Dach and Starmans; 2005; Webber and Singh, 2003).  Lime also seemed a possible source of 

Cu, Hg and Pb and the use of it should be monitored carefully.  Though no specific source 

could be pinpointed as greater heavy metal input to these agricultural areas it is recommended 
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that soil Cu, Hg, Pb and Zn be monitored and application of fertilizers and manures adapted 

accordingly. 

 

The application of fertilizers and various pesticides are crucial to the production of a 

successful crop for selling.  Since fertilizers are continually applied to the agricultural lands 

of the two studied areas it was hypothesized that the status of heavy metal contamination of 

vegetables would be marginally greater than measured prior to this study.  The results 

showed however that in the case of vegetables produced in Philippi in 2000 compared to 

those produced in Philippi in 2006, that heavy metal concentrations in vegetables were not 

significantly greater.  In 2006 heavy metal concentrations in vegetables and specifically 

cabbage, carrots and lettuce were not significantly different between the two farming areas.  

This is good news since farmers from both agricultural areas often work together.  Farmers 

supply one another with vegetables to help make-up vegetable orders; a farmer from Philippi 

may for example supply cabbage to a farmer in the Kraaifontein area who is short in terms of 

an order placed with him and this Kraaifontein farmer may at a later stage help a Philippi 

farmer to meet his order for carrots to a specific supplier for example (Personal 

communication with consultant from Agri Mark, Durbanville, 2011). 

 

In this study it was observed that carrots produced in the Joostenbergvlakte/Kraaifontein area 

had a relatively great Hg content compared to carrots produced in the Philippi area, while 

carrots produced in the Philippi had a relatively greater Cu concentration compared to carrots 

produced in the Joostenbergvlakte/Kraaifontein area.  In both cases South African regulations 

for Hg and Cu in carrots were exceeded (Table 2.9 and 2.10).  It is important to note that the 

high concentration of Hg and Cu measured in carrots could have been induced by application 

of a fertilizer or other agrochemical just prior to sampling, and that one should not accept 
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these measurements as the status quo.  It is common practice to allow a period of rest, called 

a „withholding period‟, between the last spraying of a crop with fertilizer or any other 

agrochemical and the date of harvesting.  This withholding period helps to ensure that the 

active ingredients of agrochemicals will not exceed regulatory limits set therefore on crops.  

So for example a withholding period of 3 days is recommended by the producers of Coprox 

Super to ensure a significant decrease of Cu concentration on the leaves of cabbage prior to 

harvesting (Product usage documentation: Tsunami Plant Protection Ltd.).  It is thus possible 

that the greater concentrations of Cu and Hg in carrots sampled in this survey could have 

coincided with a recent crop spraying event and the appropriate waiting period had not 

elapsed prior to sampling of carrots from the sampled fields.  This is however not verifiable 

as the timing of crop spraying events and harvesting of samples for this study was not 

coordinated. 

 

Nonetheless vegetables from the two farming areas are generally low in heavy metal contents 

and thus good for human consumption.  South African regulatory concentrations set for 

vegetables are much more stringent than those of the European Community, even in the light 

of the fact that South African regulations refer to dry mass of samples while European 

regulations refer to wet mass of samples (Commission of the European Communities, 2006; 

Department of Health, 2003, Department of Health, 2004). 

 

2.5.  Conclusion 

Though South African limits were exceeded in several agricultural resource samples, ranging 

from irrigation waters and soils to vegetables, there is no need for alarm, since South African 

regulations are very stringent compared to European regulations and thus our resources may 

be considered fairly „clean‟ if measured against European standards.  The greatest sources of 
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contamination in terms of heavy metals were cattle and chicken manure samples collected on 

farms of both agricultural areas studied.  The use of cattle and chicken manures should thus 

be monitored carefully and reduced where possible.  Use of chemical fertilisers, should be 

kept at a minimum, but could help keep heavy metals at considerable low concentrations if 

used to supplement and/or reduce the use of cattle and chicken manures.  Soils should be 

monitored in terms of their Cu, Pb and Zn concentrations according to South African 

regulations as these elements are present in high concentrations. 

 

Future studies could focus on the cycling of nutrients from various fertilizers and manures as 

specified in regimes set by agronomists/agriculturalists in these two farming areas.  Models 

for possible soil contamination from various heavy metal sources identified in this study 

could be focussed on in future research and even the fodder consumed by cattle and chicken 

from which manure is obtained could be investigated in terms of heavy metal content.  

Sampling methods can be improved by timing the sampling of crop sprays and sprinkler 

waters with actual application times thereof on farms.  This can be done by contacting 

farmers prior to sample collecting to find out when sprinkler systems will be switched on and 

when crops will be sprayed with agrochemicals.  Knowing when crops will be sprayed with 

agrochemicals will also help ensure that crops are collected after an appropriate withholding 

period has passed between the last crop spray date and the date of collecting crop samples.  

The dates of collecting vegetables samples should also be checked with farmers more closely 

to increase the amount of samples of the same age that can be collected during a specific time 

frame. 

 

Coordinating the sampling of crops may be more difficult than coordinating the sampling of 

sprinkler water and crop sprays but farmers of these two study areas are not resistant to 
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giving their cooperation to researchers.  It is very important that farmers be kept in the loop 

of progress with research and be allowed access to the findings of research so that future 

studies may be received favourably in these farming areas.  The findings of this study will be 

presented to farmers and indicate that there is not a cause for alarm but that the use of 

manures should be monitored carefully and where possibly be reduced, since it appears to be 

one of the main contributors of heavy metals to these agricultural soils.  Chapter three will 

discuss methods of remediation in the event of soils and crops exceeding Cd, Cu, Pb and Zn 

concentration limits in the future. 
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CHAPTER 3 

PHOSPHATE FERTILISER AND EDTA TREATMENTS AS MEANS OF 

MITIGATING THE UPTAKE OF CADMIUM, LEAD AND ZINC BY CABBAGE 

GROWN ON SOIL FROM CAPE TOWN’S AGRICULTURAL AREAS 

 

3.1.  Introduction 

This study aimed to investigate the use of different concentrations of a triple super phosphate 

fertiliser and EDTA solutions to mitigating the uptake of cadmium, lead and zinc by cabbage 

plants.  Investigating the application of EDTA and Phosphate fertiliser to mitigate the uptake 

of cadmium, lead and zinc by cabbage, is a preventative response in that the existing levels of 

cadmium, lead and zinc in soils of Cape Town‟s agricultural areas are sporadically and in few 

cases above the maximum permissible levels set for South African soils, but generally not in 

excess in cabbage and other crops.  Cabbage is one of the main crop species produced in the 

Joostenbergvlakte, Kraaifontein and Philippi farming areas and ensuring quality production 

thereof is important (Meerkotter, 2003). 

 

Various means of controlling excessive uptake of harmful heavy metals such as cadmium and 

lead as well as required heavy metals such as copper and zinc, by cabbage, have been studied 

and some are discussed in this chapter.  In Chapter one, several other means of controlling the 

uptake of heavy metals, by various crops were discussed.  It included the simple decrease in 

use of fertilizers and agrochemicals that contained heavy metals and also, more costly 

methods such as elevation of soil organic matter content, changing soil pH, adding stabilizing 

chemicals to the soil or making use of phyto-remediation and/or adding less costly 

amendments such as municipal solid waste compost to contaminated soils ( lvarez-Ayuso 

and Garcia, 2003; Bjelková et al., 2011; Boisson et al., 1999; Garcia et al., 2004; Malandrino 
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et al., 2011; Paradelo et al., 2011; Qoko, 2003; Salido et al., 2003; Stirk and Van Staden, 

2001; Sun et al., 2000; Zeng et al., 2011; Zheljazkov and Nielsen 1996).  Many studies have 

also looked at the reduction of various microbial organisms (bacterial, archaeal and fungal 

communities) in soils contaminated with heavy metals and in future the introduction of 

specific microbial organisms to polluted soils might be useful in reducing the uptake of heavy 

metals by agricultural crops (Bhattacharyya et al., 2008; Duan et al., 2010; Macdonald et al., 

2011; Srivastava et al., 2011). 

 

Various chelates can be used to mobilize heavy metals in soils and to leach metals away from 

the reach of plant roots.  EDTA is often used as a heavy metal mobilizing treatment and was 

therefore investigated in this study (Aldrich et al., 2004; Cui et al., 2004; Lai and Chen, 

2004; Lai and Chen 2005, Liphadzi and Kirkham, 2006, Lou et al., 2005; Luo et al., 2006; 

Palma and Mecozzi, 2007; Sun et al., 2001; Thayalakumaran et al., 2003; Turgut et al., 2005; 

Wu et al., 2004).  In the light of the fact that leaching of heavy metals from soils could lead 

to contamination of subterranean water resources, immobilization treatments may be 

considered safer options (Wu et al., 2004).  Immobilization involves application of 

amendments to the soil which may bind the metals into soil organic complexes and so render 

them unavailable to plants.  Phosphate-containing substances are often used as amendments 

for this purpose and some have been found very effective in alkaline soils, especially in 

reducing the uptake of lead (Brown et al., 2005; Cao et al., 2003; Huang et al., 2003; Illera et 

al., 2004; Jiao et al., 2004; 2004; Melamed et al., 2003; Owenby et al., 2005; Pardo, 2004; 

Tan et al., 2011; Tang et al., 2004; Zhu et al., 2004).  The effectiveness of a triple super 

phosphate fertilizer was thus investigated in this study. 
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A study done on mine waste soils with a soil pH of 5.9 where cadmium was present at 92 

mg.kg
-1

, lead at 5022 mg.kg
-1

 and Zn at 18532 mg.kg
-1 

found that the application of 

phosphate in the form of a triple super phosphate amendment was most useful at reducing 

the phytotoxicity to plants grown on this soil (Brown et al., 2005).  Thus the ability to deal 

with possible future problems with excess levels of cadmium, lead and or zinc in Cape 

Town‟s agricultural soils by simple addition of more triple super phosphate fertilizer seems 

plausible.  It is important to note that although this amendment improved the growth of the 

plants in this particular study by Brown et al. (2005) it did not fully reduce the 

bioavailability of cadmium, lead and zinc to the plants.  Treatment of agricultural soils with 

inorganic fertilizers that contained phosphate as one of its main constituents have however 

been found to rather contribute to the increased bioavailability of cadmium, copper, lead and 

zinc to crops compared to the non application of a remedial treatment (Singh et al., 2010).  

In comparison then an EDTA treatment at the right concentration level may be more useful 

to leach heavy metals away from crop roots. 

 

A study done by Wu et al. (2003) found that the application of 3 mmol.kg
-1

 EDTA to paddy 

soil contaminated with cadmium, copper, lead and zinc significantly increased the solution 

of these elements in the soil and thus its bioavailability to Brassica juncea, emphasizing the 

importance of using the correct amount of EDTA in a contaminated system.  A 

phytoextraction study by Meer et al. (2005) found that the mobilizing effects of EDTA 

treatments were long-lived and this could be problematic in the agricultural field should 

micro-nutrients like copper and zinc become too readily available to plant roots or contrary 

be leached away from plant roots to readily.  Studies have been done to recover used EDTA 

from contaminated soil for its reuse; however this may be impractical for farmers in the open 

agricultural field (Di Palma et al., 2003; Lim et al., 2005).  If future studies should prove the 
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use of EDTA suitable for use in extracting heavy metals form contaminated agricultural soils 

with properties such as those of Cape Town‟s agricultural lands, another consideration that 

will come into play is the means of applying the treatment.  Since iron and calcium 

concentrations have been shown to affect the usefulness of EDTA as a remedial treatment, 

application of more than one dose of EDTA to a field may be needed (Finžgar and Leštan, 

2007).  The possibility of using more doses of EDTA to leach heavy metals such as lead and 

zinc from plant roots is however a concern in that these heavy metals amongst others could 

then become concentrated in underground water systems (Finžgar and Leštan, 2007; Wu et 

al., 2004). 

 

The initial application of EDTA treatments may render heavy metals momentarily more 

available to plant roots.  Since EDTA is specifically used to mobilize heavy metals and is 

therefore often used in phyto-remediation treatments, thus it was expected that it would most 

likely enhance heavy metal uptake by cabbage plants in this experiment (Lai and Chen, 2004; 

Lai and Chen, 2005; Luo et al., 2005; Luo et al., 2006; Palma and Mecozzi, 2007; Sun et al., 

2001; Thayalakumaran et al., 2003; Wu et al., 2003; Wu et al., 2004).  It was thus 

hypothesized that higher concentrations of heavy metals would be seen in cabbage plants that 

were treated with EDTA solutions compared to plants treated with triple super phosphate 

fertiliser.  It was therefore hypothesized that application of triple super phosphate fertiliser 

treatments would be more effective at reducing the uptake of lead, cadmium and zinc than 

EDTA treatments.  Phosphate fertiliser and phosphate containing fertilizers often contain 

heavy metals and if used in great amounts these heavy metals may become available to crop 

roots.  Phosphates can however form complexes with heavy metals in the soil and so 

immobilize heavy metals and render then unavailable to plant roots (Cao et al., 2003; Huang 

et al., 2003; Jiao et al., 2003; Melamed et al., 2003; Singh et al., 2010; Tang et al., 2004; 
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Zhang et al., 2003).  It was thus also hypothesized that application of a moderate amount of 

triple super phosphate fertiliser would be more effective at reducing the uptake of lead, 

cadmium and zinc than application of greater amounts of triple super phosphate fertilizer. 

 

3.2.  Materials and Methods 

The usefulness of this study‟s findings is very specific to the soils of the Philippi and 

Joostenbergvlakte/Kraaifontein farming areas, since the growth medium was prepared from a 

mixture of soils obtained from these areas.  Cabbage is one of the main crops produced in 

these areas and as such was selected for this experiment.  The uptake of specifically 

cadmium, lead and zinc by cabbage was monitored as these elements may become 

problematic in the near future.  Crop performance was to be measured by comparing dry 

masses of the different plant organs and by comparing the amount of heavy metals taken up 

by the different plant organs across the different mitigation treatments.  Chemical analysis of 

the plant samples from this experiment was done by BemLab, an independent research and 

test laboratory, based in the Strand.  The statistical design and processing of data from this 

pot experiment was done by Ms. Mardé Booyse from the Biometry Unit of the Agricultural 

Research Counsel at Infruitec, based in Stellenbosch. 

 

A multifactor experiment was designed to evaluate the effectiveness of triple super 

phosphate fertilizer and ETDA, for reducing the uptake of Cd, Pb and Zn, by cabbage.  A 

randomised block design with three replicates for each treatment was constructed (Brown et 

al., 2005; Cui et al., 2004; Huang et al., 2003; Jiao et al., 2004; Lai and Chen, 2004; Lai and 

Chen, 2005; Luo et al., 2006; Wu et al., 2004).  The pot experiment was conducted in a 

glasshouse at the Environmental Education and Resources Unit of the University of the 

Western Cape.  For the duration of the experiment the average minimum temperature in the 
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glasshouse was 13.5 ˚C, the average maximum temperature 26.6 ˚C and the average day 

temperature in the greenhouse 20.1 ˚C.  The average humidity in the glasshouse for the 

duration of the study was 76.25% (standard deviation of 8.1), the maximum measured 

humidity was 90% and the minimum measured was 58%.  The glasshouse was partly shaded. 

 

3.2.1.  Preparation of the growth medium 

Soil freshly prepared for the planting of cabbage seedlings as well as soil from planted 

cabbage patches were collected from five farms from both the Philippi and the 

Joostenbergvlakte/Kraaifontein areas.  At each site soil was collected across the sites and to a 

depth of 20 cm.  The soils were air-dried over several months and care was taking to remove 

weeds as they emerged whilst the soil was still moist.  The soils were crushed by hand and 

sieved through a 4 mm sieve to remove pebbles, pieces of building material, broken glass, 

plastic waste, plant roots, seeds, snail shells, worms etc.  The soils were then mixed together 

in a newly manufactured concrete mixer that was hired from a local company.  This soil 

mixture was used as growth medium for the entire pot experiment (Alvarez-Ayuso and 

Garcia-Sanches, 2003; Cui et al., 2004; Huang et al., 2003; Jiao et al., 2004; Lai and Chen, 

2004; Luo et al., 2005; Luo et al., 2006; Melamed et al., 2003; Pardo, 2004; Sun et al., 2001; 

Tang et al., 2004; Turgut et al., 2005; Wu et al., 2004; Zhang et al., 2003; Zhu et al., 2004). 

 

Pots with a top diameter of 20 cm were used.  To ensure that no soil was lost through holes in 

the base of a pot, each pot was lined with a thin film of silica glass fibre before addition of 

the growth medium.  The growth medium was sieved through a 2 mm sieve as it was poured 

into each pot to remove smaller pebbles, snail shells, seeds, insect cocoons and glass not 

removed upon prior sifting, so as to increase homogeneity within the growth medium.  Each 

pot was weighed and amended to contain approximately 3.4 kg of the growth medium.  Prior 
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to altering the soil with heavy metals, five pots were randomly selected and soil collected 

from it to measure the background total concentrations of Ca, Cd, Co, Cr, Cu, Fe, Hg, Mg, 

Mn, Mo, Ni, P, Pb, Se, Sn, V, Zn, and PBray II and soil pH by BemLab (Alvarez-Ayuso and 

Garcia-Sanches, 2003; Cui et al., 2004; Geebelen et al., 2002; Jiao et al., 2004; Lai and Chen, 

2004; Luo et al., 2006; Ownby et al., 2005; Sun et al., 2001; Tang et al. , 2004; Wu et al., 

2004; Zhang et al., 2003; Zhu et al., 2004). 

 

The growth medium‟s background concentrations for the selected elements were as follows; 

Ca 22428.00 mg/kg,  Cd 0.00 mg/kg,  Co 0.22 mg/kg, 

Cr 4.94 mg/kg,  Cu 3.78 mg/kg,  Fe 815.06 mg/kg, 

Hg 0.00 mg/kg,  Mg 433.68 mg/kg,  Mn 28.70 mg/kg, 

Mo 0.12 mg/kg,  Ni 1.67 mg/kg,  P 595.99 mg/kg, 

Pb 2.18 mg/kg,  Se 1.36 mg/kg,  Sn 1.84 mg/kg, 

V 1.82 mg/kg,   Zn 16.71 mg/kg,   P Bray II 586.00 mg/kg 

and it had a pH of 7.6.  Chemical analysis of the growth medium was done by BemLab and 

followed the same procedures for the analysis of soils as described in Chapter two and is 

summarized later in this section. 

 

3.2.2.  Heavy metal altering of the growth medium 

The effectiveness of the selected two amendments was tested on three different concentration 

levels of the selected three heavy metals, Cd, Pb and Zn.  The concentration levels of the 

heavy metals was decided upon against the background of the South African guidelines, for 

the maximum permissible, total concentration, of each heavy metal in South African soils 

(WRC, 1997).  The different heavy metal concentration levels were; (1) the in situ 

concentration of each heavy metal in the growth medium, (2) the maximum permissible 
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concentration for each heavy metal in South African soils and thus the growth medium and 

(3) double the maximum permissible concentration for each heavy metal in the growth 

medium.  The resultant concentrations were thus: 

In situ Cd (0.0 mg/kg soil),  2.0 mg Cd /kg soil,  4.0 mg Cd /kg soil 

In situ Pb (2.2 mg/kg soil),  6.6 mg Pb /kg soil,  13.2 mg Pb /kg soil 

In situ Zn (16.7 mg/kg soil),  46.5 mg Zn /kg soil,  93.0 mg Zn /kg soil 

 

The uptake of Cd, Pb and Zn, by cabbage, was examined individually among treatments and 

not in combination.  Mono-elemental aqueous stock solutions were prepared for each heavy 

metal at the mentioned concentrations and used to alter the growth medium/soil.  Each 

solution was prepared by dissolving the appropriate amount of the specific metal-nitrate; 

Cadmium nitrate tetra hydrate (99%), Lead (II) nitrate (99%) and Zinc nitrate hex hydrate 

(99%) in 15 L of tap water.  The concentrations of Cd, Pb and Zn in the tap water supply to 

the nursery was negligible, hence it was a practical source of water for irrigation of the potted 

plants and as such it was also used to prepare the various stock solutions.  Each pot‟s soil was 

spiked by gradually pouring the required volume of a specific mono-elemental solution onto 

the soil to attain 70% of the soil‟s water holding capacity.  To the pots, which were 

representative of the in situ heavy metal concentrations, the appropriate amount of tap water 

was added to attain 70% of the soil‟s water holding capacity.  The altered soils were left to 

equilibrate for 45 days (Geebelen et al., 2002; Illera et al., 2004; Lai and Chen, 2004; Lai and 

Chen, 2005; Luo et al., 2005; Luo et al., 2006; Wu et al., 2004; Ximenez-Embun et al., 

2002). 
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3.2.3.  Addition of soil amendments 

The two amendment types investigated in this study represented a heavy metal immobilizing 

amendment and a heavy metal mobilizing amendment.  The immobilizing amendment was a 

triple super  phosphate fertilizer treatment and the mobilizing amendment an EDTA solution 

treatment. 

 

Phosphate amendments can theoretically bind heavy metals in the soil thus rendering them 

unavailable to plant roots for uptake while providing P, an essential plant mineral nutrient 

(Brown et al., 2005).  The average available phosphate concentration (P Bray II) of the 

Philippi and Joostenbergvlakte/Kraaifontein farming areas, is usually very high and when 

planting cabbage, phosphate is not often applied directly to the soil, but rather as a foliar 

spray (Personal communication with agriculturist, Ms P. Van Tonder).  However, application 

of minor concentrations of a phosphate fertilizer, to the soil, could prove helpful to reduce the 

uptake of heavy metals by cabbage in these areas‟ soils.  The effectiveness of a triple super 

phosphate fertilizer, used for the specific purpose of binding heavy metals in the soil, was 

tested at three different concentration levels. 

 

Several studies that looked at the immobilization of Pb, Cd, Cu and Zn, using various 

phosphate treatments indicated that a 4.0 molar ratio of P/Pb was effective in immobilizing 

Pb and also to some extent other heavy metals.  It was thus decided to use this molar ratio of 

P/Pb as starting point to determine an appropriate concentration range for the phosphate 

immobilization treatment in this experiment (Alvarez-Ayuso and Garcia-Sanches, 2003; Cao 

et al., 2003; Kumpiene et al., 2007; Melamed et al., 2003; Ownby et al., 2005; Zhu et al., 

2004).  The three phosphate concentrations used in this experiment were:  1 mg P/kg soil (in 

situ Pb), 4 mg P/kg soil (Pb 6.6 mg/kg soil) and 8 mg P/kg soil (Pb 13.2 mg/kg soil). 
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A granular triple super phosphate (TSP) fertilizer was used as source for the phosphate 

amendment treatment.  BemLab verified the total concentration of heavy metals, mineral 

elements and P in the fertilizer.  BemLab tests of the TSP fertilizer used in this experiment 

showed that it contained; 

11.2% Ca,    Cd 19.52 mg/kg,   Co 0.53 mg/kg,  

Cr 52.67 mg/kg,   Cu 55.95 mg/kg,   Fe 1157.08 mg/kg, 

Hg 0.00 mg/kg,   Mg 2606.93 mg/kg,   Mn 128.64 mg/kg, 

Mo 60.42 mg/kg,   Ni 44.45 mg/kg,   Pb 0.29 mg/kg, 

Se 9.49 mg/kg,   Sn 0.14 mg/kg,   V 179.10 mg/kg 

and Zn 604.90 mg/kg.  The appropriate amount of P needed for each treatment was calculated 

based on the percentage of P in the TSP fertilizer (19.8% P).  Appropriate amounts of 

fertilizer were weighed out and then crushed and sieved through a 0.42 mm sieve before 

application to the soil.  The fertilizer was mixed into the soil to a depth of 15 cm.  After 

addition of fertilizer the soil was watered to 40% of its water holding capacity (Alvarez-

Ayuso and Garcia-Sanches, 2003; Brown et al., 2004; Brown et al., 2005; Huang et al., 2003; 

Jiao et al., 2004; Tang et al., 2004; Zhu et al., 2004). 

 

The second set of amendment treatments were three EDTA treatments.  EDTA solution 

amendments are usually investigated for use in bio-remediation programmes, to facilitate and 

enhance the uptake of heavy metals by metal-accumulating plants.  This study, however, 

investigated the possibility of applying an EDTA solution to the soil, prior to planting of 

vegetable seedlings, as means of washing/leaching heavy metals away from the root zone and 

thus diluting the concentration of heavy metals available for uptake by plant roots (Aldrich et 

al., 2004; Cui et al., 2004; Lai and Chen, 2004; Lai and Chen, 2005; Liphadzi and Kirkham, 
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2006; Luo et al., 2005; Luo et al., 2006; Palma and Mecozzi, 2007; Penalosa et al., 2007; Sun 

et al., 2001; Thayalakumaran et al., 2003; Turgut et al., 2005; Wu et al., 2004). 

 

For the EDTA amendment treatment, three different concentration levels were investigated 

and the solutions were prepared with Ethylenediaminetetraacetic acid disodium salt dihydrate 

(Na2-EDTA.2H2O) (99%).  The heavy metal concentrations used in this study were 

considerably lower than those seen in most phyto-remediation type studies involving the use 

of EDTA, hence the use of EDTA concentrations based on equimolar concentrations of 

EDTA and Pb was used as starting point to select suitable EDTA concentration levels for this 

experiment (Aldrich et al., 2004, Liphadzi and Kirkham, 2006).  The three selected EDTA 

concentrations were:  4mg EDTA/kg soil (in situ Pb concentration), 12 mg EDTA/kg soil (Pb 

6.6 mg/kg soil) and 24 mg EDTA/kg soil (Pb 13.2 mg/kg soil). 

 

For each concentration an EDTA stock solution was prepared, by dissolving the appropriate 

amount of Na2-EDTA.2H2O in 12 L of tap water.  The three EDTA concentrations were used 

across Cd, Pb and Zn concentration treatments.  EDTA was added to the soil by gradually 

pouring it onto the soil surface.  The volume of each EDTA solution used was such to attain 

40% of the soil‟s water holding capacity (Cui et al., 2004; Lai and Chen, 2005; 

Thayalakumaran et al., 2003; Wu et al., 2004). 

 

A seventh treatment served as a control and entailed the growth of cabbage seedlings at the 

three different concentrations of the heavy metals, Cd, Pb and Zn, without any added 

amendment treatments.  To the control treatments only tap water was added to equal the 

moisture content of amendment treated soils (initially 40% of soil water holding capacity). 
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3.2.4.  Soil incubation period 

After preparation of the soils with the amendments, the soils were left to equilibrate for 15 

days.  After 15 days, all soils were watered with tap water to attain 20% of the soil‟s water 

holding capacity.  The soils were then left for another 7 days to equilibrate, after which 

seedlings were planted in the soils (Cui et al., 2004; Geebelen et al., 2002; Jiao et al., 2004; 

Zhu et al., 2004). 

 

3.2.5.  Planting of cabbage seedlings 

Performance tested “Drumhead” cabbage seeds, chemically treated and packaged by Starke 

Ayres, were obtained from a local supermarket.  The seeds were sown in a non-contaminated 

silica soil substrate, in a seedling tray.  The seeds were watered every second day with tap 

water and Chemicult hydroponics nutrient solution.  The seedlings were transplanted into the 

treated soils after having grown in seedling trays for 27 days.  One seedling was planted in 

each pot.  Upon planting, the seedlings were watered with a known volume of tap water.  As 

the treatment progressed known amounts of tap water were applied as needed.  Each plant 

was watered so as to avoid the collecting of leachate in the saucer underneath its pot (Brown 

et al., 2005; Cui et al., 2004; Geebelen et al., 2002; Huang et al., 2003; Jiao et al., 2004; 

Penalosa et al., 2007; Thayalakumaran et al., 2003; Wu et al., 2004; Ximenez-Embun et al., 

2002; Zhu et al., 2004).  Throughout the experiment weed seedlings were removed on a 

regular basis upon germination and emergence above the soil surface. 

 

3.2.6.  Harvesting of the cabbage 

After 74 days the cabbage plants were harvested.  The plants were divided into roots and 

shoots, and the fresh mass thereof determined.  The shoots were further divided into stems 

and leaves, and the fresh mass of each was determined.  The plant samples were oven-dried, 
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dry mass determined for each sample and then each sample was ground.  The root, stem and 

leave samples were sent to BemLab for determination of total Cd, Pb and Zn concentrations, 

as well as total Ca, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, P, Se, Sn, V and PBray II therein.  

The total concentration of Cd, Pb, Zn, Ca, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, P, Se, Sn, V, 

PBray II and pH of soil from each treatment pot was also determined by BemLab (Cui et al., 

2004; Geebelen et al., 2002; Huang et al., 2003; Jiao et al., 2004; Lai and Chen, 2004; Wu et 

al., 2004; Ximenez-Embun et al., 2002; Zhu et al., 2004). 

 

3.2.7.  Chemical analysis of samples 

BemLab‟s chemical analysis of the soils and plant samples of this experiment was done 

according to the procedures described in Chapter two and is summarized here.  Determining 

the total concentrations of Cd, Cu, Fe, Hg, Mn, Pb, Sn and Zn in each soil sample included its 

extraction from the soils with a 0.1 M hydrochloric acid solution, while determination of total 

Ca, K, Mg and Na concentrations included its extraction from soil with an ammonium acetate 

solution.  Analysis of soil P Bray II involved its extraction from the soil with a Bray II 

extraction solution.  To make the Bray II extraction solution an ammonium fluoride solution 

was made from 185.5 g ammonium fluoride diluted with water to 5 L.  The Bray II extraction 

solution was made up in a 5 L volumetric flask and contained 150 ml of the above-mentioned 

ammonium fluoride solution, approximately 4 L of water, 50 ml of hydrochloric acid and was 

then made-up to 5 L.  For the extraction of P Bray II from the soil 6.67 g of soil was placed in 

a stopper bottle, 50 ml of Bray II extraction solution added and the solution shaken by hand 

for 40 sec.  All the resultant extractions were filtered and the total concentration of various 

elements determined with an ICP-OES.  Cabbage leaf, stem and root samples were ashed and 

further digested with hydrochloric acid.  The residue was made up to 50 ml with distilled 

water and submitted to the ICP-OES for measurement of total Ca, Cd, Cr, Cu, Hg, K, Mg, 
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Mn, Na, Ni, Pb, Sn, V, Zn and other elements (Personal communication with Dr. W.A.G. 

Kotzé and A. Van Deventer, BemLab, 2006). 

 

The data obtained from this experiment was used to compare the effectiveness of treatments 

at decreasing the uptake of respectively Cd, Pb and Zn by cabbage plants.  Statistics that were 

used included Pearson correlation Coefficients, ANOVA‟s, T-tests and Univariate tests with 

focus on the Shapiro-Wilk „p‟ value.  T-tests were used for the post-hoc test since the sample 

numbers were vary low, there only being three replicates for each treatment.  Analysis of 

variance was used to determine if any differences existed in the experiment as a whole and 

the least significant differences were calculated to find out what the differences were between 

any two means.  The statistical analysis procedures were run by Ms. Mardé Booyse from the 

Biometry Unit of the Agricultural Research Counsel. 

 

3.3.  Results 

The most significant results are reported on in this section.  The heavy metals focused on in 

this experimental research are Cd, Pb and Zn.  Table 3.1 reports on significant Pearson‟s 

correlations, Table 3.2 on significant variances and Table 3.3 till Table 3.13 records results 

from the T-test analysis and the mean concentrations and standard deviations for each 

element measured in each experimental treatment. 

 

From Pearson‟s correlations in Table 3.1 it was deduced that Ca, Mg and K played a role in 

the uptake of certain elements and the growth of the cabbage plants (Marschner, 1995).  A 

negative correlation between cabbage stem dry mass and the Cu content of stems indicate that 

excess Cu could stunt the growth of cabbage (Marschner, 1995; Salisbury and Ross, 1992).  

As can be expected, the concentration of Ca, Mg and K were significant in terms of 
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indicating plant health, as was seen in its positive correlation to Ca, Mg and water content in 

cabbage stems (Marschner, 1995; Salisbury and Ross, 1992). 

 

Table 3.1:  Significant Pearson’s correlations between elements in cabbage organs 

across all experimental treatments 

Plant system or 

plant organ 

Variable Variable Sample 

number (n) 

Correlation r (p) 

Shoot Fresh mass Dry mass 188  0.8596 (0.0001) 

Shoot Mg Ca 188  0.8734 (0.0001) 

Stem Cu Dry mass 188 -0.7033 (0.0001) 

Stem K Water content 188  0.7530 (0.0001) 

Stem Mg Ca 188  0.8527 (0.0001) 

 

The minerals, Ca, Mg and K are macro nutrients for plants and in general applied to cropped 

soils along with other fertilisers.  Analysis of variance between treatments for Ca, Mg and K 

are thus indicated in Table 3.2.  Sodium and P are also macro nutrients for plants and are 

indicated in Table 3.2 (Marschner, 1995; Salisbury and Ross, 1992).  Research done in 

Philippi in 2010 indicated that irrigation water was becoming increasingly more saline and 

for this reason also the Na content of cabbage organs is also indicated in Tables 3.2 and Table 

3.8 (Aza-Gnandji, 2011).  The sodium salt of EDTA was used in this experimental research 

and this emphasizes the need for sodium to be mentioned in the results.  Variation in P 

concentrations between the various plant organs across the various treatments are also 

indicated since phosphate is the main constituent (19.8%) of the triple super phosphate 

fertiliser used in this experimental research.  The concentrations of P in various cabbage plant 

organs are indicated in Table 3.2 and Table 3.7. 

 

Analysis of variance for Ca, Cd, Cu, Fe, K, Mg, Na, P, Pb, Zn and dry mass of shoots and 

roots across all experiments are recorded in Table 3.2.  Analysis of variance was measured at 

different levels.  The information gathered at the different levels was sourced from 

respectively the experimental block as a whole, for each metal in totality only, for each set 
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metal concentration only, for a combination of the metal and its different set concentrations 

only, the different treatments only, the different metals in conjunction with the different 

treatments only, the different concentration levels in conjunction with the different treatments 

only and finally the different metals with their different set concentrations in conjunction 

with the different treatments as a whole.  Since the last level of comparing variances was 

most representative of each pot experiment as a whole, and thus the reality of each cabbage 

plant‟s response to its specific growth substrate and subjected treatment, it is mentioned in 

the results recorded here, despite significant variances being observed on other levels as well.  

Comments on the observed variances for the selected metals and minerals in cabbage organs 

are mentioned here below and discussed in more detail in the discussion section of this 

chapter. 

 

Calcium was indicated as a % of each plant organs constituency in Table 3.2.  In Table 3.2 it 

was observed that stems differed significantly across the different experimental treatments in 

terms of Ca content.  It was observed that Ca was in general more concentrated in the leaves 

compared to the stems.  In the case of Cd, significant variances were noted across the 

experimental treatments for all plant organs, roots, stems and leaves.  Cabbage roots had a 

greater concentration of Cd compared to the stems and leaves.  The fact that cabbage stems 

had a much lower Cd concentration than the roots indicate that the cabbage plant is probably 

able to partition Cd between its organs.  Cabbage stems showed a lower Cd concentration 

than cabbage leaves. 

 

In general the leaves had a lesser Cu concentration than the stems but no significant 

differences in Cu concentrations were observed across the various experimental treatments in 

either plant organ.  The cabbage plants do however appear to be selectively taking up Cu and 
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to differentially partition it between its organs since a much greater concentration of Cu was 

observed for the roots in general compared to that in the stems and leaves of the cabbage 

plants.   

 

Table 3.2:  Analysis of concentration variance of Ca, Cd, Cu, Fe, K, Mg, Na, P, Pb and 

Zn in cabbage leaves, stems and roots and variances in dry masses of cabbage shoots 

and roots across all the experimental treatments  

Dependen

t variable 

Plant 

organs 

DF Means  F value P value 

Ca Leaves 24 3.917 % 1.41 0.1155 

Ca Stem 24 0.985 % 1.79 0.0212 

Ca Roots 24 2.013 % 1.48 0.0854 

K Leaves 24 4.458 % 0.86 0.6482 

K Stem 24 7.826 % 1.13 0.3199 

K Roots 24 2.077 % 0.89 0.6187 

Mg Leaves 24 0.615 % 1.56 0.0608 

Mg Stem 24 0.278 % 1.32 0.1657 

Mg Roots 24 0.232 % 1.03 0.4384 

Na Leaves 24 2.446 % 1.21 0.2437 

Na Stem 24 1.373 % 0.74 0.7071 

Na Roots 24 0.419 % 1.30 0.1802 

P Leaves 24 0.437 % 0.69 0.8498 

P Stem 24 0.432 % 1.02 0.4455 

P Roots 24 0.546 % 1.84 0.0167 

Cd Leaves 24 0.263 mg.kg
-1

 2.98 <0.0001 

Cd Stem 24 0.176 mg.kg
-1

 2.01 0.0071 

Cd Roots 24 8.741 mg.kg
-1

 2.53 0.0005 

Cu Leaves 24 3.603 mg.kg
-
 0.62 0.9114 

Cu Stem 24 5.563 mg.kg
-1

 1.57 0.0594 

Cu Roots 24 19.554 mg.kg
-1

 1.18 0.2728 

Fe Leaves 24 56.220 mg.kg
-1

 1.01 0.4649 

Fe Stem 24 23.270 mg.kg
-1

 1.01 0.4542 

Fe Roots 24 578.670 mg.kg
-1

 1.16 0.2963 

Pb Leaves 24 0.304 mg.kg
-1

 0.54 0.9589 

Pb Stem 24 4.003 mg.kg
-1

 1.15 0.2974 

Pb Roots 24 11.208 mg.kg
-1

 1.31 0.1699 

Zn Leaves 24 58.548 mg.kg
-1

 2.01 0.0072 

Zn Stem 24 52.651 mg.kg
-1

 0.82 0.7087 

Zn Roots 24 1906.461 mg.kg
-1

 1.14 0.3149 

Dry mass Shoots 24 4.530 g 1.04 0.4178 

Dry mass Roots 24 0.459 g 1.32 0.1651 
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In the case of Fe, similar concentrations are seen in the roots and the shoots in general.  No 

significant differences were seen across the experimental treatments and in the case of each 

plant organ (Table 3.2). 

 

No significant differences were observed for K in any plant organ across the experiment as a 

whole.  Active uptake of K seemed evident as the plant roots had a much lesser K 

concentration than seen in the stems and leaves of the cabbage plants in general.  Active 

uptake of Mg also seemed evident since much greater concentrations of Mg were seen in the 

stems and leaves of the cabbage plants in general compared to the roots of the plants.  No 

significant differences were however noted between the different treatments for each organ‟s 

Mg concentration in general (Table 3.2). 

 

No significant variations were seen in the average Na concentration in each plant organ 

across the experiment as a whole.  The cabbage plants did however seem to readily take Na 

up since a lower Na concentration was seen in the stems compared to the leaves of the 

cabbage plants.  Phosphate on the other hand did show significant variations across the 

experimental treatments with regards to the concentration of P in the roots.  This significant 

difference at root level was expected since P fertiliser was applied at differing concentrations 

in some treatments.  No significant difference was seen in P concentration in stems and 

leaves respectively across the experiment as a whole (Table 3.2). 

 

In the case of Pb, no significant difference was noted between the various experimental 

treatments in any of the plant organs.  In general, however, Pb seemed to be more 

concentrated in the roots than in the stems and leaves.  The cabbage plant thus seemed to 

differentially partition Pb between the plant organs.  It was also noted that the leaves of the 
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cabbage plants in general had a much lower concentration of Pb than the stems.  Zinc also 

seemed to be partitioned differentially between cabbage plant organs.  This assumption was 

made since the roots of the cabbage plants in general showed a significantly greater 

concentration of Zn than either the stems or leaves of the cabbage plant.  The leaves of the 

cabbage plants varied significantly across the experimental treatments with regards to Zn 

concentration.  No significant differences in Zn concentrations were evident in the case of 

stems and roots respectively across the experimental treatments (Table 3.2). 

 

According to the analysis of variance tests, no significant differences were seen between dry 

masses of shoots across the pot experiment as a whole, since the „p‟ value in this case was 

0.4178.  According to the analysis of variance for root dry masses, there seemed to be no 

significant differences across the pot experiment as a whole, since the „p‟ value in this case 

was 0.1651.  The dry masses of the shoot were in general significantly greater than the dry 

masses of the roots (Table 3.2).  T-tests done for this pot experiment indicated a slightly 

different scenario to the analysis of variance tests and this may be because the T-tests looked 

specifically at each experimental treatment and its replicates within the greater pot 

experiment as a whole. 

 

The results of the T-tests are given in this section of this chapter in Tables 3.3 to Table 3.13.  

Each experiment was represented by three replicates and a very high standard deviation was 

thus observed in almost all experiments for all measured variables.  The standard deviations 

are indicated in brackets adjacent to each mean concentration given in the T-test tables.  For 

all T-tests, Alpha was 0.05 and the Error Degrees of Freedom was 123.  Interpretation of the 

T-test analysis tables should be done as explained here below.  Each colour in a specific T-

test analysis table denotes a significantly different concentration to that of another colour 
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(Figure 3.1).  The greater concentrations are in hues of yellow, orange, red and purple with 

yellow ( █ ) indicating the greatest concentration or mass.  The lesser concentrations are in 

hues of blue and green with dark green ( █ ) denoting the lowest concentration or mass.  The 

colours used across all T-test tables are indicated in Figure 3.1.  The same colours used in 

different tables do not necessarily refer to similar concentration ranges and any similarities 

are subject to coincidence or possible indirect correlations.  As far as possible colours were 

used to not only indicate the T-test results but also subjectively the general trends in 

concentration ranges between cabbage leaves, stems and roots across all experiments in one 

table. 

 

High                                              Mean Concentrations                                                    

Low 

Figure 3.1:  Colour key to T-test tables 

 

In Table 3.3 root dry mass yields can be compared across the different sections of  the table 

assigned to either Cd, Pb or Zn and similarly shoot dry mass yield can be compared across 

the different sections of this table.  Across all experiments the least significant difference 

between shoot mean dry masses was 1.947 g and between root mean dry masses it was 0.402 

g.  The most important trends in terms of root and shoot dry masses are emphasized here and 

elaborated on in the Discussion section of this chapter. 

 

Across all experiments where different concentrations of either Cd, Pb or Zn were applied 

along with different treatments, the root dry masses remained significantly lower than the 

shoot dry masses.  The greatest average root dry mass recorded was 1.006 g in the case where 
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Pb was at its maximum permissible soil concentration according to South African regulations 

and this experiment‟s soil was treated with 24 mg EDTA/kg soil.  Most root dry masses 

however fell between 0.2 g and 0.5 g.  The greatest average shoot dry mass was 6.070 g for 

the treatment of soil with 24 mg EDTA/kg soil where Pb was at the maximum permissible 

concentration set for South African soils.  Shoots varied more in dry mass across the 

experiments than did roots.  Most shoot dry masses seemed to lie between 3.9 g and 5.5 g 

(WRC, 1997; Table 3.3). 

 

Several significant differences were seen in soils spiked with either Cd, Pb or Zn at different 

concentrations.  The greatest shoot dry mass for cabbage planted in soils spiked with different 

concentrations of Cd and where different remediation treatments were applied, was obtained 

where Cd was at in situ concentration levels and triple super phosphate fertilizer (TSP) 

applied at the rate of 8 mg TSP/kg soil.  A similar dry mass yield was obtained when Cd was 

present at the maximum permissible concentration and respectively remediation treatments of 

4 mg EDTA/kg soil and 4 mg TSP/kg soil was applied.  The highest average shoot yield 

where Cd was present at double the maximum permissible soil concentration was obtained 

where 8 mg TSP/kg soil was applied.  The greatest shoot yield in the case where Cd was set 

at twice the maximum permissible concentration was however significantly lower than those 

mentioned in the cases where Cd was set at the maximum permissible concentration and in 

situ concentration (WRC, 1997; Table 3.3). 

 

Where no remediation treatment was applied at in situ, maximum and double the maximum 

Cd concentrations set for South African soils, no significant difference was observed in shoot 

dry masses and thus shoot yields.  The greatest root dry mass was obtained when cabbage 

planted in soils at in situ Cd concentration levels was treated with 8 mg TSP/kg soil.  Root 
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dry mass yields were also great, though significantly less than in the above-mentioned case, 

when Cd was present at in situ concentration and 1 mg TSP/kg applied as well as when Cd 

was present at the maximum permissible concentration and respectively 12 mg EDTA/kg soil 

and 4 mg TSP/kg soil was applied.  Similar average root dry masses were recorded when Cd 

was present at twice the maximum permissible concentration and respectively 4 mg 

EDTA/kg soil and 4 mg TSP/kg soil was applied (Table 3.3). 

 

In experiments where different Pb was present at in situ concentration level, the greatest root 

dry mass was seen when 12 mg EDTA/kg soil was applied.  When Pb was present at the 

maximum permissible concentration for South African soils, the root dry mass yield was 

greatest when 24 mg EDTA/kg soil was applied.  The greatest root dry masses obtained when 

Pb was present at double the maximum permissible concentration were measured when 

respectively 4 mg EDTA/kg soil and 8 mg TSP/kg soil was applied.  The yields obtained in 

the last mentioned cases where Pb was at double the maximum permissible concentration was 

however much less than the greatest mentioned for Pb at maximum and in situ concentrations 

(Table 3.3). 

 

The cabbages with the greatest root dry mass yields did not necessarily have the greatest 

shoot dry mass yields.  For example, the greatest average root dry mass yield, where Pb was 

at in situ concentration and 12 mg EDTA/kg soil applied, had an average shoot dry mass 

yield that was significantly less than that measured where 4 mg TSP/kg soil was supplied.  In 

the case however where the greatest root dry mass was observed, where Pb was at the 

maximum permissible concentration and 24 mg EDTA/kg soil was applied, the 

corresponding shoot dry mass yield was also the greatest seen across all other experiments.  

The second greatest shoot dry mass yield and corresponding root dry mass yield was seen 
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where Pb was at the maximum permissible concentration in the soil and 8 mg TSP/kg soil 

was applied (Table 3.3). 

 

Where Pb was present at double the maximum permissible concentration for South African 

soils, the greatest shoot yield was obtained when 4 mg EDTA/kg soil was obtained.  This was 

the treatment with the greatest average shoot and root dry masses where Pb was at double the 

maximum concentration.  This shoot mass was however not significantly different to that 

obtained where Pb was at double the maximum concentration and no treatment was applied 

(Table 3.3). 

 

From Table 3.3 it is seen that the greatest shoot dry mass in the presence of Zn at in situ soil 

concentration was obtained when 1 mg TSP/kg soil was applied.  A similarly great shoot 

yield was obtained when in the presence of Zn at twice the maximum permissible soil 

concentration respectively 4 mg EDTA/kg soil and 12 mg EDTA/kg soil was applied.  When 

Zn was at the maximum permissible concentration set for South African soils a significantly 

lesser shoot dry mass yield was obtained when 12 mg EDTA/kg soil was applied, this was 

however significantly greater than the yields obtained at this Zn concentration with other 

remediation treatments.  In general, the root dry masses corresponding with the above-

mentioned shoot dry masses were significantly greater than the root dry masses observed in 

other treatments applied in the presence of Zn at different concentration levels (WRC, 1997). 
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Table 3.3:  T-test analysis of differences in shoot mean dry masses and root mean dry 

masses in grams across all experimental treatments  

 Cd in situ Cd maximum Cd double maximum 

Root Shoot Root Shoot Roots Shoot 

LSD 0.402 1.947 0.402 1.947 0.402 1.947 

No 

Treatment 

0.360 

(0.153) 

4.740 

(0.820) 

0.496 

(0.104) 

4.700 

(0.831) 

0.366 

(0.155) 

4.180 

(0.399) 

4 mg EDTA/ 

kg soil 

0.433 

(0.210) 

4.500 

(1.191) 

0.503 

(0.142) 

4.970 

(0.356) 

0.536 

(0.105) 

4.506 

(0.930) 

12 mg EDTA/ 

kg soil 

0.310 

(0.026) 

4.036 

(0.405) 

0.543 

(0.315) 

4.663 

(0.900) 

0.403 

(0.120) 

4.076 

(0.455) 

24 mg EDTA/ 

kg soil 

0.420 

(0.137) 

4.130 

(1.676) 

0.310 

(0.196) 

3.446 

(1.197) 

0.453 

(0.304) 

3.946 

(1.397) 

1 mg TSP/ kg 

soil 

0.516 

(0.170) 

4.746 

(0.828) 

0.453 

(0.312) 

4.726 

(2.263) 

0.430 

(0.193) 

4.166 

(1.613) 

4 mg TSP/ kg 

soil 

0.476 

(0.132) 

3.980 

(1.516) 

0.553 

(0.225) 

5.026 

(1.012) 

0.553 

(0.246) 

4.593 

(1.528) 

8 mg TSP/ kg 

soil 

0.786 

(0.583) 

5.236 

(1.955) 

0.386 

(0.150) 

4.556 

(1.151) 

0.506 

(0.331) 

4.810 

(2.193) 

 Pb in situ Pb maximum Pb double maximum 

Root Shoot Root Shoot Roots Shoot 

No 

Treatment 

0.420 

(0.271) 

3.993 

(1.078) 

0.593 

(0.061) 

5.140 

(0.841) 

0.426 

(0.310) 

5.060 

(2.706) 

4 mg EDTA/ 

kg soil 

0.503 

(0.185) 

4.846 

(1.240) 

0.270 

(0.104) 

3.300 

(0.589) 

0.460 

(0.088) 

5.096 

(0.421) 

12 mg EDTA/ 

kg soil 

0.566 

(0.478) 

4.480 

(1.510) 

0.463 

(0.231) 

4.840 

(1.568) 

0.366 

(0.204) 

4.476 

(1.596) 

24 mg EDTA/ 

kg soil 

0.393 

(0.050) 

4.510 

(0.502) 

1.006 

(0.575) 

6.070 

(2.058) 

0.226 

(0.061) 

3.676 

(0.615) 

1 mg TSP/ kg 

soil 

0.266 

(0.015) 

3.656 

(0.510) 

0.520 

(0.450) 

4.553 

(2.006) 

0.225 

(0.289) 

2.940 

(2.107) 

4 mg TSP/ kg 

soil 

0.440 

(0.157) 

4.960 

(1.145) 

0.490 

(0.287) 

4.773 

(1.522) 

0.293 

(0.028) 

4.236 

(0.271) 

8 mg TSP/ kg 

soil 

0.456 

(0.220) 

4.500 

(0.565) 

0.906 

(0.557) 

5.953 

(2.733) 

0.390 

(0.157) 

4.306 

(1.267) 

 Zn in situ Zn maximum Zn double maximum 

Root Shoot Root Shoot Roots Shoot 

No 

Treatment 

0.480 

(0.199) 

4.506 

(1.090) 

0.416 

(0.153) 

5.063 

(1.242) 

0.390 

(0.145) 

4.523 

(1.179) 

4 mg EDTA/ 

kg soil 

0.326 

(0.151) 

5.210 

(0.408) 

0.573 

(0.448) 

4.840 

(3.150) 

0.576 

(0.115) 

5.780 

(0.292) 

12 mg EDTA/ 

kg soil 

0.206 

(0.064) 

2.780 

(0.800) 

0.553 

(0.047) 

5.250 

(1.260) 

0.583 

(0.323) 

5.690 

(2.387) 

24 mg EDTA/ 

kg soil 

0.426 

(0.357) 

3.736 

(1.382) 

0.330 

(0.183) 

3.373 

(1.230) 

0.370 

(0.175) 

4.790 

(0.524) 

1 mg TSP/ kg 

soil 

0.803 

(0.667) 

5.850 

(2.587) 

0.570 

(0.453) 

4.273 

(1.485) 

0.303 

(0.200) 

4.376 

(0.768) 

4 mg TSP/ kg 

soil 

0.490 

(0.199) 

4.900 

(0.424)  

0.300 

(0.060) 

4.043 

(0.764) 

0.546 

(0.643) 

5.006 

(2.774) 

8 mg TSP/ kg 

soil 

0.453 

(0.360) 

4.286 

(1.428) 

0.443 

(0.158) 

4.400 

(1.009) 

0.283 

(0.110) 

3.326 

(0.165) 
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The T-tests results for the concentrations of Cd, Pb and Zn in cabbage leaves, stems and roots 

across all experiments are summarised in respectively Table 3.4, 3.5 and 3.6.  The T-tests for 

the concentrations of P, Na, Cu, Fe, Ca, Mg and K in cabbage leaves, stems and roots are 

given in Table 3.7, 3.8, 3.9, 3.10, 3.11, 3.12 and 3.13 in order of relevance to this specific 

study.  In these T-test tables colours are used to denote significant differences between 

average concentrations of a specific element in either leaves, stems or roots across all 

treatments in conjunction with different Cd, Pb and Zn concentrations.  Similar colours used 

for respectively leaves, stems or roots do not necessarily refer to the same concentration 

ranges under investigation.  As far as possible colour was used to indicate relative 

concentration range differences between leaves stems and roots, but this was done with some 

subjectivity and any comparisons between leaves, stems and roots should be verified with 

information from Table 3.2.  To be more objective with regard to interpretation of the T-test 

results, leaves should be looked at independently from stems and/or roots and visa versa.  

Comments regarding clear trends observed across the tables between leaves, stems and roots 

are mentioned and discussed in the Discussion section of this chapter. 

 

Table 3.4 summarises T-test results and concentrations of Cd in cabbage leaves, stems and 

roots across all experiments conducted.  As expected, in general, cabbage plants in 

experiments where Cd was increased to either the maximum or double the maximum 

permissible concentration set for South African soils, elevated Cd concentrations were seen 

in roots, leaves and to a lesser extent in stems across all remedial treatments, compared to 

experiments with in situ Cd concentrations and/or elevated levels of Pb and/or elevated levels 

of Zn.  In the cases where Cd was present at maximum and double the maximum 

concentration set for South African soils, cabbage leaves, stems and roots exceeded the 
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maximum permissible level set for South African foodstuffs of 0.05 mg.kg
-1 

(WRC, 1997; 

DoH, 2004).
 

 

From Table 3.4 is observed that the Cd concentrations in roots in experiments where Cd was 

at in situ concentrations (this includes experiments with elevated levels of Pb and Zn), no 

significant differences were observed across any remedial treatments.  The greatest average 

Cd root concentrations were seen when Cd was present at the maximum permissible soil 

concentration and 24 mg EDTA/kg soil was applied as well as when twice the maximum 

permissible Cd concentration and 12 mg EDTA/kg soil was applied.  The lowest Cd 

concentration in roots was observed when no remedial treatments were applied in both the 

case of Cd set at the maximum permissible soil concentration and Cd at twice the maximum 

permissible soil concentration in South Africa (WRC, 1997). 

 

Cabbage stems showed the greatest Cd concentration where 12 mg EDTA/kg soil was 

applied and Cd set at the maximum permissible soil concentration and in the case where it 

was set at double the maximum permissible concentration.  In case of Cd at double the 

maximum permissible concentration for soil, similar Cd concentrations were seen in cabbage 

stems when 4 mg EDTA/kg soil was applied.  The lowest Cd concentration in stems was seen 

when Cd was at the maximum permissible soil concentration and 1 mg TSP/kg soil applied.  

Where Cd was present at double the maximum permissible soil concentration, the lowest Cd 

in stems were seen where respectively 24 mg EDTA/kg soil, 1 mg TSP/kg and 4 mg TSP/kg 

soil was applied (WRC, 1997; Table 3.4). 

 

From Table 3.4, the greatest Cd concentrations in leaves were seen in the treatment of 24 mg 

EDTA/kg soil, where Cd was set at the maximum permissible soil concentration and in the 
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treatment where 12 EDTA/kg soil was applied and Cd present at double the permissible soil 

concentration.  The lowest Cd concentrations in cabbage leaves were seen where Cd was set 

at the maximum permissible soil concentration and 1 mg TSP/kg soil applied and where Cd 

was set at twice the maximum permissible Cd soil concentration and 8 mg TSP/kg soil 

applied.  Cabbage leaves are generally the part eaten by consumers and in the case where Cd 

was elevated to the maximum and double the maximum permissible soil concentrations both 

South African (0.05 mg.kg
-1

) and European (0.10 mg.kg
-1

) standards set for foodstuffs were 

exceeded (CoEC, 2006; DoH, 2004; WRC, 1997). 

 

From Table 3.4 it would appear that the presence of Zn also affects the concentration of Cd 

across all treatments.  Cd in leaves was the lowest in cases where Zn was present at twice the 

maximum permissible concentration across all treatments except where 4 mg TSP/kg soil was 

applied.  In general, the uptake of Cd seemed significantly greater in the roots, followed by 

stems and leaves where Cd was at in situ soil concentration.  When Cd was elevated in soils, 

the leaves appeared to accumulate Cd across all treatments. 

 

The stems of cabbage in general, across all treatments and at various concentrations of Cd, Pb 

and Zn did not seem to accumulate much Pb.  When the soil Pb concentration was at in situ 

level and 4 mg EDTA/kg soil applied and also when Pb was at in situ and together with Zn at 

its maximum permissible soil concentration and 12 mg EDTA/kg soil was applied, slightly 

higher concentrations of Pb were observed in stems than in the other experimental treatments.  

In general, across almost all experiments, Pb in stems exceeded the maximum permissible 

concentration allowed in food stuffs of both South Africa (0.10 mg.kg
-1

) and Europe (0.30 

mg.kg
-1

) (CoEC, 2006; DoH, 2004; WRC, 1997; Table 3.5). 
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The leaves of cabbage, in general, do not appear to accumulate Pb however, in many of the 

experimental treatments, Pb exceeded the limits set for Pb in food stuffs according to South 

African regulations (Table 3.5).  Lead did not even appear to be accumulated in leaves when 

it was elevated in experimental soils.  Leaves had, in general, a lower Pb content than stems.  

In the case where Pb was at in situ soil concentration, Zn at the maximum permissible 

Table 3.4:  T-test results for cadmium concentrations in mg.kg
-1

 in respectively cabbage 

leaves, stems and roots in various remediation treatments at various concentrations of Cd, 

Pb and Zn 

Concentration Cd in 

situ 

Cd 

maximum 

Cd 2 x 

maximum 

Pb in 

situ 

Pb 

maximum 

Pb 2 x 

maximum 

Zn in 

situ 

Zn 

maximum 

Zn 2 x 

maximum 

Leaves     LSD     0.455  mg.kg-1 

No Treatment 0.020 

(0.020) 

0.560 

(0.215) 

0.773 

(0.325) 

0.030 

(0.030) 

0.047 

(0.021) 

0.020 

(0.026) 

0.030 

(0.017) 

0.023 

(0.025) 

0.013 

(0.023) 

4 mg 

EDTA/kg soil 

0.017 

(0.021) 

1.080 

(0.848) 

1.247 

(0.648) 

0.023 

(0.006) 

0.027 

(0.038) 

0.020 

(0.026) 

0.007 

(0.006) 

0.017 

(0.029) 

0.000 

(0.000) 

12 mg 

EDTA/kg soil 

0.007 

(0.006) 

0.863 

(0.438) 

3.087 

(1.682) 

0.000 

(0.000) 

0.027 

(0.015) 

0.043 

(0.025) 

0.010 

(0.010) 

0.020 

(0.020) 

0.007 

(0.012) 

24 mg 

EDTA/kg soil 

0.020 

(0.035) 

1.573 

(0.552) 

1.713 

(0.236) 

0.037 

(0.006) 

0.023 

(0.032) 

0.017 

(0.029) 

0.020 

(0.020) 

0.007 

(0.006) 

0.000 

(0.000) 

1 mg TSP/kg 

soil 

0.013 

(0.012) 

0.470 

(0.239) 

1.270 

(0.332) 

0.033 

(0.031) 

0.023 

(0.021) 

0.050 

(0.014) 

0.027 

(0.023) 

0.003 

(0.006) 

0.010 

(0.017) 

4 mg TSP/kg 

soil 

0.020 

(0.020) 

0.620 

(0.115) 

0.953 

(0.228) 

0.030 

(0.010) 

0.033 

(0.015) 

0.013 

(0.015) 

0.013 

(0.006) 

0.010 

(0.017) 

0.073 

(0.081) 

8 mg TSP/kg 

soil 

0.013 

(0.023) 

0.580 

(0.386) 

0.710 

(0.325) 

0.027 

(0.023) 

0.017 

(0.015) 

0.007 

(0.012) 

0.023 

(0.015) 

0.023 

(0.021) 

0.013 

(0.023) 

Stems     LSD     0.412  mg.kg-1 

No Treatment 0.030 

(0.052) 

0.300 

(0.316) 

0.443 

(0.417) 

0.116 

(0.125) 

0.030 

(0.052) 

0.076 

(0.124) 

0.040 

(0.036) 

0.333 

(0.577) 

0.236 

(0.230) 

4 mg 

EDTA/kg soil 

0.053 

(0.092) 

0.436 

(0.171) 

0.916 

(0.618) 

0.000 

(0.000) 

0.000 

(0.000) 

0.003 

(0.005) 

0.000 

(0.000) 

0.273 

(0.398) 

0.090 

(0.115) 

12 mg 

EDTA/kg soil 

0.073 

(0.127) 

0.546 

(0.450) 

2.066 

(0.998) 

0.143 

(0.239) 

0.073 

(0.127) 

0.063 

(0.085) 

0.000 

(0.000) 

0.023 

(0.032) 

0.146 

(0.127) 

24 mg 

EDTA/kg soil 

0.013 

(0.015) 

0.286 

(0.234) 

0.293 

(0.295) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.266 

(0.247) 

0.143 

(0.190) 

1 mg TSP/kg 

soil 

0.110 

(0.190) 

0.006 

(0.011) 

0.186 

(0.172) 

0.040 

(0.069) 

0.090 

(0.155) 

0.125 

(0.176) 

0.063 

(0.065) 

0.196 

(0.258) 

0.166 

(0.147) 

4 mg TSP/kg 

soil 

0.280 

(0.131) 

0.380 

(0.185) 

0.393 

(0.179) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.020 

(0.034) 

0.060 

(0.095) 

0.023 

(0.040) 

8 mg TSP/kg 

soil 

0.000 

(0.000) 

0.296 

(0.259) 

0.490 

(0.840) 

0.126 

(0.110) 

0.096 

(0.090) 

0.003 

(0.005) 

0.000 

(0.000) 

0.253 

(0.245) 

0.130 

(0.112) 

Roots     LSD     14.860  mg.kg-1 

No Treatment 0.740 

(0.085) 

14.983 

(3.389) 

24.786 

(18.565) 

1.476 

(0.557) 

0.706 

(0.261) 

0.513 

(0.392) 

0.900 

(0.246) 

0.426 

(0.273) 

0.790 

(0.298) 

4 mg 

EDTA/kg soil 

0.730 

(0.726) 

21.673 

(5.500) 

39.776 

(12.339) 

0.603 

(0.234) 

1.170 

(0.375) 

0.693 

(0.130) 

0.550 

(0.020) 

0.6000 

(0.701) 

0.973 

(0.248) 

12 mg 

EDTA/kg soil 

0.976 

(0.319) 

28.346 

(10.767) 

105.650 

(59.207) 

0.623 

(0.150) 

0.750 

(0.440) 

0.833 

(0.208) 

0.663 

(0.344) 

0.476 

(0.375) 

0.870 

(0.304) 

24 mg 

EDTA/kg soil 

0.846 

(0.436) 

30.856 

(9.552) 

63.923 

(15.239) 

1.076 

(0.420) 

0.580 

(0.448) 

1.293 

(0.234) 

0.786 

(0.275) 

0.956 

(0.312) 

0.653 

(0.145) 

1 mg TSP/kg 

soil 

0.760 

(0.329) 

19.203 

(9.076) 

41.510 

(13.115) 

1.256 

(0.839) 

0.586 

(0.560) 

1.590 

(0.919) 

0.556 

(0.159) 

0.883 

(0.220) 

0.766 

(0.241) 

4 mg TSP/kg 

soil 

0.636 

(0.224) 

18.653 

(5.450) 

50.600 

(19.555) 

0.676 

(0.453) 

0.610 

(0.183) 

1.010 

(0.166) 

0.900 

(0.246) 

0.903 

(0.329) 

0.503 

(0.147) 

8 mg TSP/kg 

soil 

0.720 

(0.308) 

17.676 

(2.880) 

31.857 

(13.727) 

0.820 

(0.602) 

0.973 

(0.447) 

0.710 

(0.190) 

0.476 

(0.109) 

0.820 

(0.390) 

0.670 

(0.255) 
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concentration and 12 mg EDTA/kg soil applied, the Pb concentration in cabbage leaves was 

greatest and exceeded the South African and European limits set for food stuffs.  In general 

the stems and roots of cabbage plants exceeded the limits set in South Africa and Europe for 

Pb foodstuffs (CoEC, 2006; DoH, 2004). 

Table 3.5.  T-test results for lead concentrations in mg.kg
-1

 in respectively cabbage leaves, 

stems and roots in various remediation treatments at various concentrations of Cd, Pb and Zn 
Concentration Cd in 

situ 

Cd 

maximum 

Cd 2 x 

maximum 

Pb in 

situ 

Pb 

maximum 

Pb 2 x 

maximum 

Zn in 

situ 

Zn 

maximu

m 

Zn 2 x 

maximum 

Leaves     LSD     1.290 mg.kg-1 

No Treatment 0.277 

(0.285) 

0.297 

(0.405) 

0.167 

(0.015) 

0.300 

(0.052) 

0.450 

(0.607) 

0.210 

(0.289) 

0.257 

(0.114) 

0.253 

(0.227)  

0.203 

(0.241) 

4 mg 

EDTA/kg soil 

0.087 

(0.150) 

0.230 

(0.241) 

0.083 

(0.074) 

0.300 

(0.305) 

0.183 

(0.251) 

0.293 

(0.228) 

0.147 

(0.123) 

0.000 

(0.000) 

0.027 

(0.046) 

12 mg 

EDTA/kg soil 

0.190 

(0.329) 

0.333 

(0.093) 

0.193 

(0.190) 

0.200 

(0.207) 

0.497 

(0.633) 

0.783 

(0.476) 

0.273 

(0.286) 

0.077 

(0.124) 

2.450 

(4.157) 

24 mg 

EDTA/kg soil 

0.077 

(0.133) 

0.143 

(0.223) 

0.407 

(0.387) 

0.147 

(0.116) 

0.460 

(0.579) 

0.527 

(0.692) 

0.013 

(0.023) 

0.153 

(0.142) 

0.613 

(0.801) 

1 mg TSP/kg 

soil 

0.133 

(0.231) 

0.167 

(0.231) 

0.203 

(0.200) 

0.183 

(0.127) 

0.290 

(0.292) 

0.040 

(0.057) 

0.150 

(0.095) 

0.117 

(0.153) 

0.193 

(0.200) 

4 mg TSP/kg 

soil 

0.253 

(0.225) 

0.190 

(0.271) 

0.217 

(0.193) 

0.150 

(0.110) 

0.430 

(0.336) 

0.087 

(0.151) 

0.160 

(0.145) 

0.070 

(0.075) 

2.003 

(3.470) 

8 mg TSP/kg 

soil 

0.160 

(0.197) 

0.253 

(0.439) 

0.230 

(0.128) 

0.090 

(0.082) 

0.187 

(0.242) 

0.233 

(0.110) 

0.143 

(0.136) 

0.033 

(0.031) 

1.680 

(2.679) 

Stems     LSD     7.578 mg.kg-1 

No Treatment 2.620 

(1.053) 

2.260 

(2.509) 

7.116 

(3.188) 

8.933 

(6.730) 

4.153 

(2.496) 

5.310 

(2.595) 

2.760 

(2.391) 

2.853 

(2.478) 

6.070 

(6.433) 

4 mg EDTA/kg 

soil 

0.010 

(0.017) 

1.026 

(1.692) 

3.373 

(1.552) 

9.206 

(15.575) 

3.786 

(2.086) 

0.880 

(1.524) 

0.170 

(0.294) 

3.893 

(5.981) 

2.256 

(2.117) 

12 mg 

EDTA/kg soil 

4.086 

(3.611) 

1.156 

(2.003) 

4.846 

(4.980) 

0.000 

(0.000) 

0.976 

(1.691) 

3.500 

(4.027) 

2.533 

(1.283) 

20.490 

(20.992) 

6.300 

(2.501) 

24 mg 

EDTA/kg soil 

6.536 

(7.201) 

5.856 

(6.139) 

2.800 

(1.272) 

1.096 

(0.988) 

3.636 

(3.518) 

4.236 

(4.012) 

4.083 

(4.860) 

4.270 

(5.629) 

3.573 

(1.906) 

1 mg TSP/kg 

soil 

0.316 

(0.548) 

2.690 

(1.216) 

1.736 

(1.562) 

5.506 

(1.421) 

2.770 

(2.943) 

4.350 

(5.119) 

3.120 

(2.548) 

4.516 

(3.932) 

3.750 

(4.549) 

4 mg TSP/kg 

soil 

8.083 

(3.040) 

5.270 

(5.845) 

5.006 

(0.741) 

4.460 

(1.411) 

3.066 

(3.526) 

5.183 

(2.420) 

4.500 

(4.375) 

2.613 

(2.910) 

4.036 

(2.707) 

8 mg TSP/kg 

soil 

2.120 

(2.781) 

4.696 

(2.810) 

1.506 

(1.973) 

6.206 

(2.101) 

4.303 

(3.456) 

4.663 

(2.044) 

3.416 

(3.042) 

4.020 

(2.615) 

3.723 

(3.957) 

Roots     LSD     10.105 mg.kg-1 

No Treatment 9.273 

(9.797) 

10.443 

(11.067) 

2.230 

(2.433) 

11.646 

(6.892) 

11.336 

(6.909) 

19.110 

(6.197) 

8.630 

(0.542) 

9.210 

(4.573) 

9.476 

(4.018) 

4 mg EDTA/kg 

soil 

12.573 

(0.912) 

4.486 

(7.224) 

4.670 

(2.867) 

5.426 

(6.383) 

24.010 

(16.598) 

24.403 

(3.609) 

4.973 

(3.501) 

8.093 

(4.136) 

7.306 

(3.002) 

12 mg 

EDTA/kg soil 

10.313 

(8.774) 

15.046 

(14.006) 

11.506 

(5.767) 

7.506 

(6.193) 

14.130 

(9.199) 

30.010 

(20.728) 

7.923 

(2.179) 

7.743 

(7.624) 

1.693 

(1.670) 

24 mg 

EDTA/kg soil 

6.726 

(8.284) 

10.443 

(2.417) 

8.113 

(7.078) 

4.993 

(7.404) 

22.706 

(7.952) 

34.150 

(2.581) 

6.863 

(4.379) 

10.163 

(3.530) 

9.233 

(5.563) 

1 mg TSP/kg 

soil 

4.236 

(2.177) 

9.110 

(8.993) 

4.220 

(6.298) 

10.906 

(9.079) 

16.673 

(10.900) 

10.835 

(15.323) 

7.416 

(2.754) 

9.733 

(4.487) 

8.200 

(7.930) 

4 mg TSP/kg 

soil 

13.110 

(8.602) 

8.356 

(3.226) 

15.696 

(9.021) 

7.190 

(8.083) 

11.910 

(3.732) 

26.333 

(3.328) 

11.446 

(7.661) 

13.480 

(8.023) 

10.986 

(2.158) 

8 mg TSP/kg 

soil 

7.910 

(1.391) 

18.166 

(14.351) 

4.283 

(3.333) 

9.120 

(10.352) 

14.130 

(4.650) 

25.736 

(4.274) 

5.180 

(5.032) 

7.570 

(9.439) 

7.590 

(7.552) 
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In general, cabbage leaves only exceeded South African limits set for Pb in food stuffs.  

Where Pb was at maximum concentration and twice the maximum concentration and either 

12 mg EDTA/kg soil, 24 mg EDTA/kg soil or 4 mg TSP/kg soil applied, European standards 

set for Pb in foodstuffs was exceeded in cabbage leaves.  When Zn was set at twice the 

maximum permitted concentration for South African soils, and respectively 12 mg EDTA/kg 

soil, 4 mg TSP/kg soil and 8 mg TSP/kg soil applied Pb also exceeded South African and 

European standards set for foodstuffs.  Roots did not seem to accumulate much Pb as 

inconsistent concentrations of Pb were measured in treatments where Pb was at in situ 

concentration levels.  Cabbage plants thus seemed able to tolerate the in situ level of Pb 

which was 2.2 mg/kg experimental soil (CoEC, 2006; DoH, 2004; Marschner, 1995; Prasad 

and De Oliveira, 2003; Salisbury and Ross, 1992; WRC, 1997; Table 3.5). 

 

Table 3.6 reflects the T-test results for the accumulation of Zn across all experiments in 

cabbage leaves, stems and roots.  Across all experiments, the trend seemed to indicate that 

cabbage roots accumulated more Zn than cabbage stems and leaves especially where Zn was 

elevated in the soil to both the maximum and twice the maximum concentration set for Zn in 

South African soils.  In general, cabbage leaves across all experiments exceeded the 

maximum concentration set in South Africa for Zn (40.0 mg.kg
-1

) in foodstuffs.  In all the 

cases where Zn was elevated to the maximum and double the maximum concentration in soil 

according to South African limits set for soil, the concentration of Zn in cabbage leaves also 

exceeded that set for foodstuffs in South Africa (DoH, 2004; WRC, 1997). 

 

When Zn was elevated to a maximum, the greatest concentration in roots was when 4 mg 

TSP/kg soil was applied.  When Zn was elevated to twice the maximum concentration set for 

soil, the greatest Zn concentration in roots was seen when 1 mg TSP/kg soil was applied.  
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When Zn was at in situ concentration in soil and 4 mg EDTA/kg soil applied, Zn was greatest 

in roots.  The lowest Zn concentration in roots occurred when no treatment was applied and 

Cd was present at twice the maximum concentration set for South African soils.  The roots, 

though containing more Zn than the stems and leaves in general, did not show clear 

accumulation of Zn since its concentrations across all treatments and set concentrations of 

Cd, Pb and Zn, were inconsistent (WRC, 1997; Table 3.6). 

 

In the stems of cabbage plants, the greatest Zn concentration was seen when Zn in the soil 

was at in situ, Cd at the maximum concentration and 24 mg EDTA/kg soil applied.  The 

lowest Zn concentration in cabbage stems on the other hand was seen when Zn was at in situ, 

Pb at twice the maximum and 1 mg TSP/kg soil applied (Table 3.6).  In the case of cabbage 

leaves the lowest Zn concentration was also seen where Zn was at in situ concentration in the 

soil and 1 mg TSP/kg soil applied as well as when Zn was at in situ concentration in the soil, 

Cd at twice the maximum concentration for soil and 1 mg TSP/kg soil applied.  The greatest 

Zn concentration in cabbage leaves was seen when Zn was at twice the maximum 

concentration set for soil and 24 mg EDTA/kg soil applied.  No clear accumulation of Zn in 

either leaves or stems could be pinpointed as much variation occurred across the treatments 

of this experiment as a whole (Table 3.6). 

 

The percentage concentration of P across all experiments is summarised in Table 3.7.  This 

element is present as a main ingredient in the TSP treatments, but was also present in the 

growth mediums prior to addition of TSP or EDTA treatments.  The uptake of P is thus 

evaluated across experiments to see if the TSP treatments had any added nutritional value 

compared to treatments where TSP was not applied as remedial treatment. 
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Table 3.6.  T-test results for zinc concentrations in mg.kg
-1

 in respectively cabbage leaves, stems 

and roots in various remediation treatments at various concentrations of Cd, Pb and Zn 

Concentration Cd in 

situ 

Cd 

maximum 

Cd 2 x 

maximum 

Pb in 

situ 

Pb 

maximum 

Pb 2 x 

maximum 

Zn in 

situ 

Zn 

maximum 

Zn 2 x 

maximum 

Leaves     LSD     16.985 mg.kg-1 

No 

Treatment 

42.307 

(5.587) 

37.450 

(4.848) 

44.523 

(12.441) 

45.460 

(10.388) 

44.297 

(9.721) 

49.250 

(16.364) 

39.093 

(7.728) 

76.560 

(3.855) 

126.717 

(9.435) 

4 mg 

EDTA/kg 

soil 

43.553 

(16.722) 

40.633 

(3.333) 

34.647 

(3.811) 

44.327 

(12.366) 

47.070 

(3.968) 

44.567 

(1.735) 

37.700 

(8.494) 

79.140 

(21.631) 

133.040 

(10.039) 

12 mg 

EDTA/kg 

soil 

46.650 

(1.014) 

48.310 

(3.444) 

49.123 

(3.902) 

38.580 

(8.142) 

45.763 

(4.627) 

45.867 

(3.332) 

48.573 

(11.953) 

92.157 

(23.320) 

111.147 

(15.820) 

24 mg 

EDTA/kg 

soil 

48.910 

(0.053) 

53.230 

(6.956) 

47.360 

(5.073) 

56.560 

(6.089) 

55.780 

(6.925) 

53.133 

(7.370) 

70.450 

(21.040) 

128.880 

(5.221) 

146.853 

(12.925) 

1 mg TSP/kg 

soil 

37.150 

(6.493) 

35.860 

(5.004) 

33.033 

(0.785) 

42.290 

(5.392) 

43.873 

(14.588) 

38.770 

(1.838) 

33.350 

(11.036) 

89.530 

(10.496) 

132.967 

(10.731) 

4 mg TSP/kg 

soil 

46.513 

(18.981) 

43.257 

(9.737) 

41.503 

(5.475) 

37.640 

(8.132) 

78.757 

(26.105) 

39.343 

(2.695) 

51.393 

(17.761) 

85.723 

(15.128) 

90.230 

(7.876) 

8 mg TSP/kg 

soil 

34.833 

(5.092) 

39.940 

(5.417) 

39.183 

(10.654) 

37.757 

(5.987) 

44.703 

(23.912) 

43.050 

(3.607) 

36.537 

(0.764) 

93.880 

(14.887) 

112.903 

(27.571) 

Stems     LSD     73.610 mg.kg-1 

No 

Treatment 

43.483 

(34.564) 

45.880 

(24.570) 

29.947 

(3.776) 

28.400 

(7.810 ) 

25.710 

(5.677) 

43.037 

(17.972) 

23.657 

(5.490) 

39.560 

(5.246) 

120.517 

(112.462) 

4 mg 

EDTA/kg 

soil 

41.350 

(24.240) 

25.707 

(7.513) 

80.387 

(40.524) 

20.247 

(5.031) 

32.833 

(1.510) 

22.067 

(2.537) 

108.027 

(50.206) 

47.420 

(15.719) 

100.997 

(64.454) 

12 mg 

EDTA/kg 

soil 

33.330 

(11.157) 

26.563 

(3.972) 

50.930 

(11.204) 

26.463 

(11.242) 

42.657 

(24.826) 

22.797 

(5.194) 

45.863 

(19.348) 

74.047 

(10.770) 

112.753 

(107.218) 

24 mg 

EDTA/kg 

soil 

56.333 

(25.667) 

138.257 

(148.945) 

77.763 

(47.557) 

38.007 

(11.305) 

25.180 

(11.280) 

63.423 

(43.468) 

79.213 

(79.829) 

123.217 

(71.510) 

90.577 

(18.078) 

1 mg TSP/kg 

soil 

20.575 

(8.267) 

33.723 

(9.582) 

28.947 

(7.787) 

39.120 

(22.220) 

66.210 

(58.801) 

14.025 

(15.182) 

39.480 

(44.510) 

41.677 

(2.896) 

71.403 

(22.878) 

4 mg TSP/kg 

soil 

61.560 

(25.192) 

40.183 

(30.162) 

43.880 

(20.586) 

41.797 

(24.526) 

41.237 

(23.438) 

34.660 

(15.633) 

52.537 

(18.155) 

83.320 

(86.622) 

56.737 

(45.563) 

8 mg TSP/kg 

soil 

118.163 

(155.560) 

46.277 

(24.952) 

26.763 

(6.817) 

83.677 

(56.555) 

53.150 

(37.233) 

29.573 

(5.432) 

31.607 

(13.977) 

47.663 

(19.432) 

47.703 

(14.081) 

Roots     LSD     1980.300 mg.kg-1 

No 

Treatment 

1452.823 

(1166.114) 

3196.003 

(2240.670) 

640.177 

(439.201) 

2357.267 

(342.778) 

1837.873 

(1870.977) 

1101.623 

(772.477) 

1868.583 

(184.733) 

1605.830 

(1119.425) 

2691.277 

(2033.280) 

4 mg 

EDTA/kg 

soil 

3528.180 

(750.380) 

1495.650 

(255.271) 

1265.583 

(920.699) 

2415.647 

(2039.155) 

1922.330 

(687.987) 

3104.563 

(1973.595) 

2661.470 

(2090.231) 

1444.443 

(891.383) 

1677.777 

(1113.849) 

12 mg 

EDTA/kg 

soil 

1934.277 

(1288.001) 

1424.577 

(652.278) 

2355.247 

(1645.982) 

1090.483 

(238.056) 

1678.340 

(1654.581) 

1489.750 

(849.603) 

1889.073 

(2084.564) 

1648.790 

(1424.494) 

1419.553 

(837.524) 

24 mg 

EDTA/kg 

soil 

2857.683 

(2290.282) 

2916.803 

(881.335) 

1093.487 

(474.714) 

1543.397 

(1002.434) 

1229.853 

(963.419) 

1766.197 

(723.584) 

2130.300 

(292.114) 

2244.827 

(924.988) 

2199.030 

(853.888) 

1 mg 

TSP/kg 

soil 

1135.990 

(612.437) 

2568.327 

(703.405) 

1875.357 

(1157.881) 

2363.480 

(970.553) 

1017.570 

(238.874) 

1605.950 

(870.859) 

2135.663 

(725.175) 

1001.930 

(1153.511) 

3534.990 

(1417.313) 

4 mg 

TSP/kg 

soil 

2093.157 

(1246.631) 

1835.923 

(893.870) 

2275.283 

(1071.622) 

1312.840 

(695.931) 

1894.040 

(524.702) 

747.533 

(591.756) 

1207.237 

(1037.603) 

3415.817 

(3425.933) 

1817.603 

(530.456) 

8 mg 

TSP/kg 

soil 

1035.330 

(107.736) 

2894.820 

(791.376) 

1049.633 

(770.915) 

795.940 

(280.743) 

1719.540 

(1280.990) 

2346.840 

(598.827) 

1617.367 

(2235.322) 

2611.000 

(1841.974) 

2918.977 

(3174.214) 
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From Table 3.7 it is clear that the greatest P % concentrations were seen in cabbage roots 

across all experiments.  The greatest percentage concentration of P in cabbage roots was seen 

when Pb was at twice the maximum concentration and 1 mg TSP/kg soil applied.  The second 

greatest root P % concentration was, however, seen where no treatment was applied and Pb 

was in situ soil concentration.  Treatments with EDTA showed greater P levels in roots than 

treatments with TSP in general.  The lowest percentage concentration of P was seen where no 

treatment was applied and Cd was at twice the maximum permissible concentration set for 

soils (WRC, 1997). 

 

Looking at the percentage concentration of P in stems, in general, the lowest P % 

concentrations were seen where Zn was in excess in the soil.  P was lowest in the presence of 

Pb at twice the maximum set soil concentration where 1 mg TSP/kg soil was applied.  

Equally low was the percentage concentration of P in stems when Zn was at twice the 

maximum permitted soil concentration and 1 mg TSP/kg soil applied.  The exact influence of 

Zn was not investigated in the experiment and is unclear since the greatest percentage 

concentration of P in stems was seen where Zn was set at the maximum soil concentration 

and 12 mg EDTA/kg soil applied (WRC, 1997; Table 3.7). 

 

In general, it seemed that P accumulated in cabbage leaves but similar P concentrations were 

also seen in cabbage stems.  In the leaves of cabbage, the greatest P % concentration was 

seen where Zn was at in situ level and 24 mg EDTA/kg soil applied.  The lowest P % 

concentration in cabbage leaves was seen where Cd was present at the maximum permissible 

level for South African soils and 1 mg TSP/kg soil applied.  Equally low was the P % 

concentration in leaves where Zn was set at twice the maximum in the soil and 4 mg 

EDTA/kg soil applied.  When Zn was present at the maximum set for South African soils and 
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4 mg EDTA/kg soil applied, the resultant P % concentration in cabbage leaves was only 

slightly greater than in the last mentioned treatment (WRC, 1997; Table 3.7). 

 

Table 3.7.  T-test results for phosphorus percentage concentrations in respectively cabbage 

leaves, stems and roots in various remediation treatments at various concentrations of Cd, Pb 

and Zn 

Concentration Cd in situ Cd 

maximum 

Cd 2 x 

maximum 

Pb in 

situ 

Pb 

maximum 

Pb 2 x 

maximum 

Zn in 

situ 

Zn 

maximum 

Zn 2 x 

maximum 

Leaves     LSD     0.068 % 

No Treatment 0.467 

(0.006) 

0.443 

(0.012) 

0.440 

(0.017) 

0.487 

(0.012) 

0.417 

(0.040) 

0.433 

(0.076) 

0.477 

(0.051) 

0.407 

(0.040) 

0.443 

(0.061) 

4 mg EDTA/kg 

soil 

0.423 

(0.045) 

0.447 

(0.032) 

0.443 

(0.051) 

0.460 

(0.036) 

0.467 

(0.050) 

0.443 

(0.006) 

0.457 

(0.025) 

0.393 

(0.076) 

0.383 

(0.025) 

12 mg 

EDTA/kg soil 

0.423 

(0.021) 

0.433 

(0.032) 

0.450 

(0.056) 

0.460 

(0.062) 

0.433 

(0.045) 

0.447 

(0.031) 

0.410 

(0.046) 

0.443 

(0.023) 

0.403 

(0.051) 

24 mg 

EDTA/kg soil 

0.447 

(0.059) 

0.440 

(0.035) 

0.400 

(0.046) 

0.447 

(0.025) 

0.427 

(0.051) 

0.467 

(0.025) 

0.493 

(0.047) 

0.443 

(0.015) 

0.410 

(0.050) 

1 mg TSP/kg 

soil 

0.420 

(0.026) 

0.380 

(0.053) 

0.423 

(0.015) 

0.447 

(0.032) 

0.417 

(0.084) 

0.435 

(0.078) 

0.420 

(0.128) 

0.430 

(0.026) 

0.433 

(0.015) 

4 mg TSP/kg 

soil 

0.443 

(0.035) 

0.450 

(0.026) 

0.417 

(0.017) 

0.450 

(0.020) 

0.430 

(0.092) 

0.460 

(0.035) 

0.453 

(0.049) 

0.413 

(0.012) 

0.400 

(0.046) 

8 mg TSP/kg 

soil 

0.447 

(0.072) 

0.467 

(0.050) 

0.413 

(0.025) 

0.447 

(0.015) 

0.423 

(0.064) 

0.447 

(0.015) 

0.480 

(0.000) 

0.453 

(0.023) 

0.440 

(0.046) 

Stems     LSD     0.211 % 

No Treatment 0.443 

(0.092) 

0.443 

(0.041) 

0.413 

(0.032) 

0.530 

(0.036) 

0.463 

(0.066) 

0.436 

(0.076) 

0.456 

(0.090) 

0.410 

(0.096) 

0.376 

(0.056) 

4 mg 

EDTA/kg soil 

0.493 

(0.051) 

0.430 

(0.078) 

0.416 

(0.055) 

0.510 

(0.087) 

0.426 

(0.005) 

0.416 

(0.049) 

0.530 

(0.055) 

0.346 

(0.030) 

0.353 

(0.055) 

12 mg 

EDTA/kg soil 

0.486 

(0.055) 

0.423 

(0.037) 

0.426 

(0.005) 

0.466 

(0.066) 

0.420 

(0.087) 

0.500 

(0.098) 

0.456 

(0.015) 

0.573 

(0.319) 

0.336 

(0.020) 

24 mg 

EDTA/kg soil 

0.510 

(0.095) 

0.433 

(0.095) 

0.406 

(0.058) 

0.496 

(0.020) 

0.436 

(0.040) 

0.450 

(0.026) 

0.416 

(0.089) 

0.373 

(0.041) 

0.336 

(0.072) 

1 mg TSP/kg 

soil 

0.436 

(0.111) 

0.370 

(0.087) 

0.436 

(0.072) 

0.396 

(0.011) 

0.363 

(0.032) 

0.255 

(0.289) 

0.460 

(0.108) 

0.356 

(0.061) 

0.310 

(0.026) 

4 mg TSP/kg 

soil 

0.470 

(0.034) 

0.500 

(0.043) 

0.423 

(0.075) 

0.530 

(0.079) 

0.453 

(0.047) 

0.453 

(0.106) 

0.423 

(0.072) 

0.326 

(0.150) 

0.386 

(0.077) 

8 mg TSP/kg 

soil 

0.440 

(0.010) 

0.493 

(0.066) 

0.493 

(0.097) 

0.436 

(0.055) 

0.493 

(0.023) 

0.433 

(0.104) 

0.486 

(0.100) 

0.330 

(0.151) 

0.343 

(0.057) 

Roots     LSD     0.211 % 

No Treatment 0.583 

(0.060) 

0.493 

(0.090) 

0.307 

(0.222) 

0.693 

(0.276) 

0.483 

(0.055) 

0.567 

(0.144) 

0.543 

(0.038) 

0.577 

(0.095) 

0.513 

(0.067) 

4 mg 

EDTA/kg soil 

0.567 

(0.125) 

0.517 

(0.085) 

0.493 

(0.083) 

0.543 

(0.071) 

0.667 

(0.112) 

0.530 

(0.026) 

0.547 

(0.133) 

0.497 

(0.083) 

0.417 

(0.046) 

12 mg 

EDTA/kg soil 

0.560 

(0.040) 

0.587 

(0.117) 

0.523 

(0.102) 

0.550 

(0.069) 

0.490 

(0.092) 

0.657 

(0.057) 

0.677 

(0.050) 

0.493 

(0.150) 

0.410 

(0.101) 

24 mg 

EDTA/kg soil 

0.597 

(0.101) 

0.567 

(0.064) 

0.660 

(0.114) 

0.522 

(0.047) 

0.397 

(0.083) 

0.650 

(0.131) 

0.567 

(0.212) 

0.593 

(0.186) 

0.463 

(0.040) 

1 mg TSP/kg 

soil 

0.517 

(0.150) 

0.483 

(0.025) 

0.520 

(0.044) 

0.570 

(0.087) 

0.497 

(0.118) 

1.275 

(0.856) 

0.527 

(0.103) 

0.493 

(0.136) 

0.553 

(0.047) 

4 mg TSP/kg 

soil 

0.477 

(0.067) 

0.607 

(0.101) 

0.553 

(0.091) 

0.533 

(0.060) 

0.557 

(0.040) 

0.560 

(0.061) 

0.520 

(0.046) 

0.527 

(0.106) 

0.530 

(0.184) 

8 mg TSP/kg 

soil 

0.457 

(0.142) 

0.587 

(0.119) 

0.590 

(0.225) 

0.510 

(0.104) 

0.577 

(0.102) 

0.566 

(0.137) 

0.570 

(0.118) 

0.470 

(0.036) 

0.610 

(0.090) 
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It was noted that TSP treatments did not significantly elevate P % content in cabbage plant 

organs across all experiments compared to EDTA treatments at various Cd, Pb and Zn 

concentrations in the growth mediums.  The contribution of EDTA which has Na as 

constituent of its salt, was also measured in terms of its addition of Na to cabbage organs 

across all treatments (Table 3.7; Table 3.8). 

 

In Table 3.8 it can be seen that Na across all treatments and concentrations of Cd, Pb and Zn 

was in general greater in the leaves and stems of the cabbage plants than in the roots.  The 

greatest Na concentration in roots was seen where Pb was set at double the maximum 

permissible soil concentration and 1 mg TSP/kg soil was applied as remedial treatment.  The 

lowest Na concentration in roots was seen where Cd was set at twice the maximum 

permissible soil concentration and no treatment was applied and also where Pb was set at 

maximum in the soil and 24 mg EDTA/kg soil was applied (WRC, 1997). 

 

In contrast the greatest Na concentration in stems was seen where Zn was at a maximum and 

12 mg EDTA/kg soil was applied.  Relatively high Na concentrations were also seen where 

Cd was at twice the maximum permissible soil concentration and respectively no treatment 

was applied and also when 24 mg EDTA/kg soil was applied.  The same trend was seen when 

Cd was at the maximum permissible soil concentration and no treatment was applied but also 

when 12 mg EDTA/kg soil was applied.  Of the higher Na concentrations in stems were also 

seen where Pb was set at twice the maximum permissible soil concentration and where Zn 

was set at the maximum and twice the maximum permissible soil concentration and 24 mg 

EDTA/kg soil was applied.  The lowest stem Na concentration was seen when Pb was at 

twice the maximum permissible soil concentration and 1 mg TSP/kg soil was applied as well 

as when Cd was at in situ soil concentration and 8 mg TSP/kg soil was applied (Table 3.8). 
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A different trend was seen in the case of cabbage leaves across the experiments, where the 

higher Na concentrations were seen when Pb was at twice the maximum permissible soil 

concentration and respectively either 24 mg EDTA/kg soil, 1 mg TSP/kg soil and 4 mg 

EDTA/kg soil was applied.  The greatest Na concentration in leaves was seen when Cd was 

set at twice the maximum permissible soil concentration and 12 mg EDTA/kg soil applied.  

The lowest Na concentration was seen where Zn was at twice the maximum permissible soil 

concentration and 4 mg TSP/kg soil applied as well as where Pb was set at the maximum 

permissible soil concentration and 8 mg TSP/kg soil was applied (WRC, 1997; Table 3.8). 

 

The concentration of copper in cabbage plant organs is recorded in Table 3.9.  Copper was 

observed to be very high in soils of the Philippi and Kraaifontein area as discussed in Chapter 

two and for this reason its uptake by cabbage plants across all remedial treatments was also 

noted.  The concentration of copper in the soil medium for the treatments was at in situ level.  

Across all plant organs the trends seemed to indicate that Cu was accumulated in the plant 

roots, transferred to the stems with relatively little accumulating in the leaves.  At no point 

did any plant organs exceed the South African maximum permissible concentration set for Cu 

(30.0 mg.kg
-1

) in foodstuffs (DoH, 2004). 

 

The maximum concentration of Cu in the leaves of cabbage, the edible portion of cabbage, 

was seen where no treatment was applied and Zn at in situ soil concentration.  A slightly 

lower Cu concentration was seen where 1 mg TSP/kg soil was applied to soils with Zn and 

Pb at in situ soil concentrations.  The lowest Cu concentration in leaves was seen where 12 

mg EDTA/kg soil was applied and Cd at in situ soil concentration (Table 3.9). 

 

 

 

 

 

 



 147 

Table 3.8.  T-test results for sodium concentrations in mg.kg
-1

 in respectively cabbage leaves, stems and roots in various remediation treatments at various 

concentrations of Cd, Pb and Zn 
Concentration Cd in situ Cd maximum Cd 2 x 

maximum 

Pb in situ Pb maximum Pb 2 x 

maximum 

Zn in situ Zn maximum Zn 2 x 

maximum 

Leaves     LSD     5122.800 mg.kg
-1 

No Treatment 22231.613 

(1203.420) 

24385.570 

(2474.550) 

27004.043 

(653.337) 

24863.963 

(1759.097) 

22910.187 

(691.167) 

21882.123 

(3948.698) 

24509.407 

(5308.918) 

21821.650 

(2670.587) 

22808.430 

(1306.376) 

4 mg EDTA/kg 

soil 

21548.910 

(2850.625) 

25074.473 

(3746.463) 

24065.160 

(2766.437) 

24458.223 

(3883.176) 

26079.220 

(1929.672) 

22671.283 

(3100.974) 

24009.037 

(2336.373) 

22559.027 

(7214.903) 

23131.053 

(2368.671) 

12 mg EDTA/kg 

soil 

23649.747 

(3802.357) 

28254.880 

(2182.729) 

29056.133 

(2156.416) 

25154.973 

(2584.076) 

25574.547 

(4713.724) 

26417.720 

(1991.490) 

25823.207 

(111.213) 

25184.143 

(928.430) 

23102.963 

(1666.623) 

24 mg EDTA/kg 

soil 

20842.980 

(3016.290) 

26409.910 

(2711.006) 

28729.433 

(2235.251) 

26663.410 

(3309.271) 

24260.773 

(6948.292) 

27253.190 

(2484.814) 

24316.103 

(1447.700) 

24682.750 

(4233.437) 

26310.237 

(1509.485) 

1 mg TSP/kg 

soil 

24548.893 

(3883.002) 

22884.143 

(7157.665) 

24129.330 

(1974.221) 

26856.057 

(2194.190) 

21147.163 

(4768.905) 

27153.515 

(549.344) 

21820.413 

(9650.733) 

25413.593 

(3336.708) 

24583.003 

(1284.498) 

4 mg TSP/kg 

soil 

22829.343 

(2360.916) 

24639.227 

(2662.176) 

26104.730 

(1442.246) 

23805.897 

(1083.185) 

24846.930 

(5146.397) 

28606.143 

(3105.913) 

26810.443 

(2500.881) 

24471.153 

(2102.127) 

20879.593 

(1920.580) 

8 mg TSP/kg 

soil 

21471.080 

(7338.109) 

25288.323 

(4401.406) 

21560.590 

(6872.538) 

25936.747 

(1744.208) 

20285.917 

(6970.481) 

24460.757 

(2015.806) 

23919.617 

(1867.921) 

26826.340 

(2469.923) 

23938.177 

(2161.496) 

Stems     LSD     5917.400 mg.kg
-1 

No Treatment 12833.423  

(3434.738) 

16873.027 

(4304.638) 

17433.687 

(1988.484) 

13285.653 

(548.100) 

12324.993 

(680.215) 

11841.840 

(4509.944) 

11212.653 

(4696.785) 

11712.233 

(1299.835) 

12673.797 

(3407.171) 

4 mg EDTA/kg 

soil 

12646.127 

(4527.651) 

13765.437 

(3816.718) 

11825.197 

(3132.059) 

12593.613 

(2748.271) 

15742.460 

(3211.917) 

9984.970 

(893.817) 

14500.757 

(1147.323) 

14074.677 

(5186.715) 

14524.757 

(2058.335) 

12 mg EDTA/kg 

soil 

17198.917 

(3972.990) 

16773.527 

(2204.413) 

13908.677 

(1281.112) 

13902.593 

(4263.319) 

14843.023 

(5715.544) 

15490.087 

(3472.306) 

16587.397 

(156.349) 

19219.503 

(5368.700) 

11706.157 

(470.843) 

24 mg EDTA/kg 

soil 

14028.863 

(3795.880) 

15479.183 

(3671.947) 

16906.810 

(3863.890) 

14129.967 

(6023.769) 

10657.063 

(4840.923) 

16259.613 

(3463.675) 

12935.147 

(4803.675) 

16417.380 

(4154.161) 

16608.477 

(6734.368) 

1 mg TSP/kg 

soil 

12542.813 

(481.703) 

14123.380 

(5454.036) 

14083.653 

(3811.432) 

14242.290 

(4061.489) 

10035.327 

(4253.617) 

8911.110 

(10015.277) 

10389.390 

(7789.236) 

13828.700 

(1477.040) 

10984.617 

(4529.952) 

4 mg TSP/kg 

soil 

14855.027 

(5820.730) 

12348.180 

(2672.707) 

15183.440 

(2924.424) 

14349.530 

(3532.219) 

14519.573 

(1396.912) 

15805.427 

(1912.775) 

14209.433 

(3966.326) 

12206.537 

(5258.309) 

12910.363 

(4596.594) 

8 mg TSP/kg 

soil 

9560.913 

(3561.406) 

15932.240 

(2402.839) 

14206.730 

(9602.329) 

12577.273 

(1713.227) 

10786.657 

(6845.737) 

12684.460 

(2989.339) 

11173.447 

(1684.260) 

13930.187 

(4025.545) 

13896.430 

(1842.933) 

Roots     LSD     1944.100 mg.kg
-1 

No Treatment 5108.300 

(988.823) 

4492.480 

(2154.539) 

2660.040 

(1879.336) 

4285.123 

(1035.570) 

3367.280 

(648.399) 

4121.493 

(1330.809) 

3118.160 

(962.556) 

4403.847 

(1533.023) 

4496.337 

(824.481) 

4 mg EDTA/kg 

soil 

4527.980 

(1353.932) 

3688.483 

(1496.616) 

3146.277 

(742.785) 

3919.406 

(795.649) 

4773.800 

(1353.986) 

4051.053 

(336.250) 

5092.640 

(2001.462) 

3481.220 

(502.285) 

4041.170 

(718.323) 

12 mg EDTA/kg 

soil 

5313.790 

(86.572) 

4320.680 

(1089.430) 

5233.413 

(1471.041) 

3871.443 

(1423.189) 

4105.700 

(1309.451) 

5794.887 

(2075.157) 

4431.097 

(364.125) 

3612.757 

(427.524) 

3210.680 

(701.196) 

24 mg EDTA/kg 

soil 

3885.413 

(693.901) 

5853.287 

(1353.111) 

3966.817 

(398.206) 

4185.480 

(1930.403) 

2722.783 

(1681.918) 

4952.827 

(678.423) 

4134.733 

(1602.267) 

5372.877 

(1131.028) 

4557.300 

(939.516) 

1 mg TSP/kg 

soil 

4272.337 

(1343.486) 

4404.900 

(1464.386) 

4145.910 

(530.890) 

4846.883 

(1100.066) 

3024.123 

(684.741) 

6894.360 

(3072.421) 

3552.720 

(1691.203) 

3825.210 

(1562.588) 

4507.107 

(919.918) 

4 mg TSP/kg 

soil 

3711.187 

(1344.028) 

3919.267 

(965.596) 

3799.853 

(662.470) 

4175.927 

(766.419) 

4450.903 

(615.325) 

4156.153 

(419.343) 

4197.857 

(1298.818) 

3602.167 

(1090.746) 

4556.097 

(2272.337) 

8 mg TSP/kg 

soil 

2981.910 

(1344.744) 

5243.123 

(163.342) 

3949.217 

(1779.796) 

3645.687 

(549.361) 

3487.773 

(1892.989) 

4370.170 

(589.256) 

3658.193 

(1150.185) 

4360.953 

(1558.127) 

4790.487 

(2037.045) 
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In cabbage stems, the greatest concentration of Cu was seen where 4 mg TSP/kg soil was 

applied for Cu in situ while the lowest was seen where Pb was at twice the maximum 

concentration and 1 mg TSP/kg soil applied.  A clear trend for accumulation of Cu in stems 

could not be traced across treatments.  In the case of cabbage leaves, the average Cu 

concentration across all treatments was about 3.0 mg.kg
-1

 while the maximum permitted in 

South African foodstuffs is 30.0 mg.kg
-1

 (DoH, 2004; Table 3.9). 

 

Copper seemed to accumulate in cabbage roots across all treatments with the greatest Cu 

concentration seen in roots where Pb was set at twice the maximum permissible soil 

concentration and 4 mg TSP/kg soil applied.  The lowest concentration of Cu was seen where 

Zn was set at twice the maximum permissible soil concentration and 4 mg TSP/kg soil 

applied, but also where Cd was at twice the maximum permissible soil concentration and no 

treatment applied.  In general, the greater Cu concentrations were seen in the roots of cabbage 

plants and the lowest concentrations in the leaves of cabbage across almost all treatments.  In 

a few cases stems did appear to accumulate Cu and on average overall experimental 

treatments Cu in stems were around 5.0 mg.kg
-1 

(WRC, 1997; Table 3.9). 

 

Iron is also a metal and essential to plants and its uptake is often influenced by the presence 

of Pb (Meerkotter, 2003).  The uptake of Fe was thus investigated and recorded in Table 3.10.  

A clear trend was observed across plant organs and all treatments, namely that roots appeared 

to accumulate Fe, that it was translocated to the leaves with stems having the lowest 

concentration of Fe in general. 
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Table 3.9.  T-test results for copper concentrations in mg.kg
-1

 in respectively cabbage leaves, 

stems and roots in various remediation treatments at various concentrations of Cd, Pb and 

Zn 

Concentration Cd in 

situ 

Cd 

maximum 

Cd 2 x 

maximum 

Pb in 

situ 

Pb 

maximum 

Pb 2 x 

maximum 

Zn in 

situ 

Zn 

maximum 

Zn 2 x 

maximum 

Leaves     LSD    1.727 mg.kg-1 

No Treatment 3.090 

(0.391) 

2.917 

(0.099) 

2.747 

(0.686) 

4.340 

(1.368) 

4.310 

(2.035) 

4.527 

(1.021) 

6.010 

(3.847) 

3.413 

(0.660) 

3.420 

(1.375) 

4 mg 

EDTA/kg soil 

2.543 

(0.138) 

2.543 

(0.441) 

3.293 

(0.781) 

4.673 

(2.276) 

3.923 

(0.806) 

3.293 

(0.204) 

3.660 

(0.918) 

3.200 

(2.016) 

3.137 

(1.976) 

12 mg 

EDTA/kg soil 

2.247 

(0.666) 

3.180 

(0.340) 

3.770 

(0.306) 

4.453 

(2.630) 

4183 

(1.665) 

3.817 

(1.466) 

3.557 

(1.683) 

3.287 

(1.202) 

2.847 

(0.637) 

24 mg 

EDTA/kg soil 

2.320 

(0.789) 

3.020 

(0.760) 

4.087 

(1.789) 

4.430 

(2.245) 

4.050 

(1.767) 

3.950 

(0.938) 

3.033 

(1.793) 

3.210 

(1.150) 

3.633 

(0.615) 

1 mg TSP/kg 

soil 

3.363 

(1.456) 

2.993 

(0.501) 

3.057 

(0.386) 

5.533 

(2.309) 

3.533 

(0.968) 

4.600 

(1.287) 

5.353 

(1.707) 

3.417 

(1.339) 

4.303 

(1.422) 

4 mg TSP/kg 

soil 

2.800 

(1.018) 

2.857 

(0.653) 

2.913 

(0.523) 

3.693 

(0.195) 

3.530 

(1.054) 

3.460 

(0.665) 

3.623 

(1.223) 

3.327 

(1.740) 

4.557 

(1.803) 

8 mg TSP/kg 

soil 

3.150 

(0.373) 

3.430 

(1.543) 

4.010 

(0.894) 

3.607 

(0.856) 

3.247 

(1.131) 

3.483 

(0.760) 

3.747 

(1.149) 

4.177 

(2.399) 

3.463 

(1.385) 

Stems     LSD    3.156 mg.kg-1 

No Treatment 4.383 

(1.725) 

6.006 

(3.859) 

5.700 

(2.792) 

6.053 

(0.930) 

5.813 

(3.537) 

7.826 

(6.568) 

4.056 

(0.763) 

4.253 

(2.283) 

6.640 

(3.307) 

4 mg 

EDTA/kg soil 

5.896 

(3.015) 

4.140 

(1.977) 

6.200 

(3.796) 

4.363 

(1.540) 

8.446 

(0.906) 

3.556 

(0.675) 

4.820 

(1.361) 

5.986 

(4.580) 

4.093 

(0.867) 

12 mg 

EDTA/kg soil 

5.536 

(2.596) 

4.453 

(0.921) 

5.986 

(1.521) 

6.186 

(4.297) 

6.120 

(2.311) 

5.200 

(2.388) 

5.346 

(1.033) 

5.543 

(1.483) 

4.390 

(1.538) 

24 mg 

EDTA/kg soil 

7.610 

(2.242) 

7.573 

(2.774) 

5.070 

(3.230) 

4.793 

(2.058) 

4.060 

(0.532) 

6.120 

(1.965) 

6.336 

(4.359) 

5.446 

(0.429) 

5.286 

(2.220) 

1 mg TSP/kg 

soil 

3.896 

(1.648) 

5.650 

(2.394) 

6.703 

(2.895) 

5.383 

(1.949) 

5.690 

(2.661) 

2.580 

(1.979) 

6.563 

(4.292)  

6.280 

(3.703) 

4.876 

(1.430) 

4 mg TSP/kg 

soil 

9.270 

(5.248) 

4.166 

(0.861) 

5.140 

(2.687) 

4.103 

(2.912) 

5.553 

(2.174) 

5.323 

(1.475) 

4.913 

(1.037) 

5.233 

(0.756) 

5.496 

(1.874) 

8 mg TSP/kg 

soil 

5.676 

(3.527) 

5.586 

(2.579) 

5.960 

(3.788) 

5.066 

(2.572) 

5.206 

(2.716) 

6.523 

(2.216) 

7.320 

(1.680) 

4.870 

(1.120) 

7.130 

(0.555) 

Roots     LSD    6.770 mg.kg-1 

No Treatment 21.156 

(5.312) 

17.386 

(0.355) 

13.866 

(10.285) 

19.730 

(0.726) 

16.096 

(0.185) 

15.350 

(1.031) 

18.630 

(3.131) 

18.066 

(3.669) 

21.200 

(4.570) 

4 mg 

EDTA/kg soil 

19.203 

(3.638) 

17.523 

(2.988) 

18.186 

(1.709) 

17.733 

(1.557) 

21.083 

(1.950) 

17.160 

(4.176) 

16.760 

(7.266) 

21.866 

(6.178) 

20.336 

(2.667) 

12 mg 

EDTA/kg soil 

22.353 

(2.930) 

20.313 

(3.963) 

23.620 

(3.307) 

16.993 

(4.840) 

18.546 

(2.627) 

19.693 

(2.545) 

16.710 

(4.671) 

19.370 

(2.860) 

16.826 

(3.958) 

24 mg 

EDTA/kg soil 

21.486 

(2.333) 

21.460 

(3.309) 

21.656 

(7.801) 

19.683 

(1.393) 

16.230 

(6.398) 

20.856 

(4.881) 

17.013 

(3.264) 

23.710 

(6.485) 

20.160 

(0.790) 

1 mg TSP/kg 

soil 

20.106 

(2.871) 

23.050 

(7.243) 

22.376 

(2.875) 

23.413 

(5.188) 

22.716 

(6.677) 

17.730 

(8.570) 

18.610 

(2.868) 

22.866 

(3.984) 

20.550 

(4.788) 

4 mg TSP/kg 

soil 

17.613 

(5.870) 

18.156 

(1.008) 

23.540 

(2.771) 

19.156 

(1.583) 

19.306 

(4.400) 

27.673 

(7.643) 

20.736 

(1.436) 

21.166 

(1.576) 

13.940 

(0.748) 

8 mg TSP/kg 

soil 

18.000 

(1.959) 

22.426 

(4.702) 

19.473 

(4.921) 

20.163 

(6.348) 

20.203 

(0.793) 

20.913 

(2.272) 

14.206 

(1.335) 

19.370 

(2.860) 

15.900 

(1.569) 
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Table 3.10.  T-test results for iron concentrations in mg.kg
-1

 in respectively cabbage leaves, stems and roots in various remediation treatments at 

various concentrations of Cd, Pb and Zn 
Concentration Cd in situ Cd maximum Cd 2 x 

maximum 

Pb in situ Pb maximum Pb 2 x 

maximum 

Zn in situ Zn maximum Zn 2 x 

maximum 

Leaves     LSD     48.002 mg.kg
-1 

No Treatment 69.510 (18.866) 50.290 (9.809) 52.233 (4.620) 47.380 (3.781) 53.597 (6.776) 62.367 (19.897) 141.987 

(143.851) 

49.150 (2.209) 46.253 (1.323) 

4 mg EDTA/kg 

soil 

84.847 (65.925) 53.670 (4.441) 47.003 (4.436) 52.737 (4.939) 47.073 (7.544) 59.567 (10.321) 46.080 (15.766) 50.723 (16.829) 71.553 (23.625) 

12 mg EDTA/kg 

soil 

62.153 (23.834) 46.110 (1.075) 49.977 (5.237) 45.870 (9.223) 53.890  (15.137)    

 

59.270 (10.708) 55.883 (5.391) 56.757 (9.803) 51.350 (1.633) 

24 mg EDTA/kg 

soil 

51.790 (6.758) 42883 (7.776) 56.760 (5.670) 55.460 (4.789) 44.283 (5.235) 51.950 (8.244) 50.667 (5.391) 46.403 (7.918) 58.443 (12.105) 

1 mg TSP/kg 

soil 

55.763 (5.913) 41.583 (4.818) 46.730 (7.305) 52.267 (4.245) 53.210 (10.092) 49.965 (15.818) 49.747 (14.364) 51.587 (6.166) 67.233 (22.627) 

4 mg TSP/kg 

soil 

46.107 (10.254) 48.213 (3.475) 53.950 (7.788) 74.710 (16.315) 61.627 (13.162) 61.013 (25.711) 45.627 (8.313) 52.447 (6.427) 49.813 (1.858) 

8 mg TSP/kg 

soil 

42.463 (5.928) 55.657 (5.146) 49.423 (11.682) 79.880 (37.278) 42.413 (2.582) 58.063 (6.858) 46.557 (1.818) 48.787 (8.936) 44.393 (8.457) 

Stems     LSD     34.038  mg.kg
-1 

No Treatment 12.187 (6.066) 22.670 (7.271) 38.637 (34.171) 22.287 (16.486) 14.957 (2.428) 25.170 (11.119) 17.857 (10.941) 27.893 (13.076) 23.403 (14.235) 

4 mg EDTA/kg 

soil 

34.600 (21.985) 19.370 (10.819) 31.470 (26.995) 10.393 (0.379) 14.323 (2.260) 24.223 (7.345) 16.073 (2.837) 22.010 (8.694) 20.670 (5.005) 

12 mg EDTA/kg 

soil 

22.040 (2.709) 13.310 (11.049) 15.317 (5.598) 23.283 (19.744) 16.960 (8.574) 11.280 (5.478) 17.260 (2.513) 29.447 (7.967) 26.507 (12.849) 

24 mg EDTA/kg 

soil 

20.313 (6.944) 10.317 (4.006) 14.213 (5.614) 19.343 (14.761) 14.290 (3.875) 23.353 (6.594) 35.693 (34.982) 27.753 (12.154) 18.217 (11.886) 

1 mg TSP/kg 

soil 

15.577 (3.056) 19.530 (6.279) 20.937 (4.884) 19.753 (11.760) 25.870 (7.042) 12.240 (11.186) 31.790 (28.488) 22.790 (9.537) 16.040 (4.494) 

4 mg TSP/kg 

soil 

27.753 (22.888) 13.697 (3.947) 21.050 (12.351) 19.900 (6.265) 24.150 (4.560) 21.463 (0.245) 31.615 (19.099) 21.360 (12.570) 21.067 (11.611) 

8 mg TSP/kg 

soil 

14.293 (3.282) 40.557 (38.853) 36.260 (13.552) 21.387 (6.212) 26.403 (7.732) 22.297 (11.766) 48.317 (34.675) 18.003 (14.419) 20.780 (7.461) 

Roots     LSD     292.55 mg.kg
-1 

No Treatment 547.527 (18.080) 502.047 

(133.651) 

350.197 

(249.411) 

585.170 

(141.347) 

634.777 (51.836) 431.443 

(125.457) 

585.217 

(161.908) 

511.190 

(143.766) 

590.177 (23.623) 

4 mg EDTA/kg 

soil 

521.523 (48.880) 636.813 (97.114) 513.513 (39.649) 690.700 

(126.660) 

527.870 (45.375) 475.917 (60.531) 518.857 

(228.538) 

655.763 

(128.034) 

644.740 

(211.399) 

12 mg EDTA/kg 

soil 

479.723 (59.949) 666.923 

(160.338) 

623.847 (64.221) 510.700 (21.145) 579.997 

(131.270) 

583.253 

(240.683) 

495.943 (93.425) 640.410 

(169.607) 

543.050 (77.335) 

24 mg EDTA/kg 

soil 

636.637 (96.686) 519.047 

(129.788) 

630.830 

(172.532) 

508.183 (28.283) 627.467 

(158.204) 

458.260 (44.265) 561.073 (20.188) 533.153 

(159.978) 

574.183 

(142.008) 

1 mg TSP/kg 

soil 

652.690 

(149.669) 

580.907 

(162.013) 

554.107 

(120.158) 

556.710 (99.724) 597.170 

(141.661) 

393.035 

(395.647) 

484.740 (51.227) 715.433 

(175.258) 

678.863 

(315.803) 

4 mg TSP/kg 

soil 

562.883 (73.167) 493.387 (37.061) 782.237 

(193.494) 

590.763 (22.340) 906.440 

(803.245) 

611.280 

(154.854) 

595.370 (26.850) 564.080 

(156.235) 

467.307 (80.878) 

8 mg TSP/kg 

soil 

502.087 (51.606) 538.557 

(124.999) 

475.067 (44.065) 615.390 (53.980) 650.073 

(136.716) 

940.853 

(480.279) 

669.567 

(353.970) 

580.097 (37.875) 539.143 

(124.455) 
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Where Pb was at twice the maximum permissible soil concentration the greatest Fe 

concentration was seen in roots where 8 mg TSP/kg soil was applied.  The lowest Fe 

concentration in roots was seen where Cd was set at double the maximum permissible South 

African soil concentration and no treatment applied.  Equally low Fe concentrations in 

cabbage roots were seen when Pb was at twice the maximum permissible soil concentration 

and 1 mg TSP/kg soil applied.  In the case of cabbage stems, the greatest Fe concentrations 

were seen when Zn was at in situ soil concentration and 4 mg TSP/kg soil applied, as well as 

when 8 mg TSP/kg soil was applied.  The average lowest concentration of Fe across all other 

treatments and concentrations of Cd, Pb and Zn ranged between 11.0 mg.kg
-1

 and 38.0 

mg.kg
-1

with very few significant differences.  The average concentration of Fe in cabbage 

leaves in contrast across all experiments was between 41.0 mg.kg
-1

 and 84.0mg.kg
-1

.  The 

highest concentration of Fe in cabbage leaves was seen where no treatments were applied and 

Cd as well as Zn respectively at their in situ soil concentrations (WRC, 1997; Table 3.10). 

 

In Tables 3.11, 3.12 and 3.13, the T-test results for the percentage of Ca, Mg and K in 

cabbage organs across all treatments were recorded.  These three elements are macro 

nutrients to plants and its uptake could be affected by remediation treatments and elevated 

levels of Cd, Pb and Zn in soils (Meerkotter, 2003).  In the case of Ca, a clear pattern could 

not be seen in Ca concentrations in either leaves or stems across all the experimental 

treatments at various concentrations of Cd, Pb and Zn.  On average, cabbage leaves varied in 

Ca % concentration between 3.3 % to 4.4 % of the dry mass. 

 

The greatest Ca % in roots was seen when Pb was at double the maximum permissible soil 

concentration and 1 mg TSP/kg soil applied, while the lowest Ca % concentration was seen 

when Cd was at double the set maximum permissible soil concentration and no treatment 
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applied and where Pb was at in situ concentration and 8 mg TSP/kg soil applied.  In stems the 

lowest Ca % was seen where Pb was at twice the maximum permissible soil concentration 

and 1 mg TSP/kg soil applied, while the greatest was seen when Zn was at the maximum 

permissible soil concentration and 12 mg EDTA/kg soil applied (WRC, 1997; Table 3.11). 

 

In cabbage leaves, the greatest Ca % concentration was seen when Pb was at twice the 

permissible maximum soil concentration and 4 mg TSP/kg soil applied, while the lowest Ca 

% concentration was when Zn was set at the maximum soil concentration allowed in South 

Africa and no treatment was applied.  Great Ca % concentrations were also seen where Cd 

was set at double the maximum concentration allowed in South African soils and respectively 

12 mg EDTA/kg soil and 1 mg TSP/kg soil applied, as well as when Pb was set at its 

maximum permissible soil concentration and 4 mg EDTA/kg soil applied.  Similar 

concentrations to the last mentioned were also seen when Zn was set at twice its maximum 

permissible soil concentration and respectively 24 mg EDTA/kg soil and 8 mg TSP/kg soil 

applied (WRC, 1997; Table 3.11). 

 

A clearer trend was seen in the case of Mg % concentrations in cabbage plant organs across 

the experiment as a whole.  Magnesium seemed to be at greatest concentrations in the leaves, 

followed by similar concentrations in the stems as in the roots in general across all 

experiments.  The greatest Mg % concentration seen in roots was when Pb was set at twice 

the maximum permissible concentration and 1 mg TSP/kg soil applied.  The greatest Mg % 

concentration in stems was seen when Zn was at the maximum permissible soil concentration 

and 12 mg EDTA/kg soil applied.  The lowest concentration in roots was seen where Cd was 

at double the maximum permissible soil concentration and no treatment applied, while in the 
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case of stems the lowest Mg % concentration was seen where Pb was at twice the maximum 

permissible soil concentration and 1 mg TSP/kg soil applied (WRC, 1997; Table 3.12). 

 

Table 3.11.  T-test results for calcium percentage concentrations in respectively cabbage 

leaves, stems and roots in various remediation treatments at various concentrations of 

Cd, Pb and Zn 
Concentration Cd in 

situ 

Cd 

maximum 

Cd 2 x 

maximum 

Pb in 

situ 

Pb 

maximum 

Pb 2 x 

maximum 

Zn in 

situ 

Zn 

maximum 

Zn 2 x 

maximum 

Leaves     LSD     0.573 % 

No Treatment 3.587 

(0.084) 

3.927 

(0.006) 

3.943 

(0.222) 

4.270 

(0.530) 

4.033 

(0.440) 

3.977 

(0.605) 

4.133 

(0.389) 

3.307 

(0.380) 

3.803 

(0.222) 

4 mg 

EDTA/kg soil 

3.447 

(0.501) 

3.627 

(0.181) 

3.727 

(0.373) 

4.077 

(0.412) 

4.230 

(0.166) 

3.530 

(0.322) 

3.990 

(0.171) 

3.570 

(0.802) 

4.127 

(0.422) 

12 mg 

EDTA/kg soil 

3.730 

(0.436) 

3.957 

(0.427) 

4.283 

(0.312) 

4.097 

(0.087) 

3.793 

(0.648) 

4.107 

(0.240) 

4.157 

(0.040) 

4.013 

(0.682) 

3.623 

(0.484) 

24 mg 

EDTA/kg soil 

3.713 

(0.482) 

4.087 

(0.156) 

4.167 

(0.153) 

4.280 

(0.491) 

3.880 

(0.732) 

3.987 

(0.308) 

3.767 

(0.117) 

3.877 

(0.396) 

4.220 

(0.328) 

1 mg TSP/kg 

soil 

3.957 

(0.633) 

3.773 

(0.280) 

4.203 

(0.305) 

4.003 

(0.606) 

3.490 

(0.243) 

3.925 

(0.205) 

3.853 

(0.797) 

3.977 

(0.147) 

4.173 

(0.218) 

4 mg TSP/kg 

soil 

3.550 

(0.447) 

3.877 

(0.197) 

3.820 

(0.096) 

4.063 

(0.315) 

3.943 

(0.897) 

4.427 

(0.371) 

3.917 

(0.251) 

3.920 

(0.277) 

3.847 

(0.552) 

8 mg TSP/kg 

soil 

3.383 

(0.425) 

3.820 

(0.404) 

3.957 

(0.287) 

4.140 

(0.236) 

3.563 

(1.069) 

4.423 

(0.196) 

3.613 

(0.370) 

3.873 

(0.320) 

4.250 

(0.210) 

Stems     LSD     0.376 % 

No Treatment 0.797 

(0.146) 

1.080 

(0.321) 

1.233 

(0.057) 

1.157 

(0.289) 

0.827 

(0.195) 

0.933 

(0.420) 

1.010 

(0.190) 

0.983 

(0.200) 

0.950 

(0.110) 

4 mg 

EDTA/kg soil 

0.940 

(0.355) 

0.937 

(0.040) 

0.783 

(0.152) 

0.997 

(0.125) 

1.123 

(0.203) 

0.723 

(0.266) 

0.813 

(0.211) 

1.006 

(0.345) 

1.047 

(0.180) 

12 mg 

EDTA/kg soil 

0.907 

(0.215) 

1.187 

(0.220) 

1.057 

(0.176) 

0.957 

(0.232) 

0.813 

(0.345) 

0.827 

(0.238) 

1.290 

(0.176) 

1.497 

(0.956) 

0.860 

(0.276) 

24 mg 

EDTA/kg soil 

1.030 

(0.290) 

1.060 

(0.089) 

1.150 

(0.262) 

0.803 

(0.047) 

0.790 

(0.303) 

1.093 

(0.196) 

1.016 

(0.374) 

1.197 

(0.032) 

1.040 

(0.121) 

1 mg TSP/kg 

soil 

0.887 

(0.047) 

0.960 

(0.308) 

1.177 

(0.251) 

1.133 

(0.201) 

0.783 

(0.182) 

0.510 

(0.608) 

0.780 

(0.350) 

0.936 

(0.235) 

1.143 

(0.154) 

4 mg TSP/kg 

soil 

1.013 

(0.321) 

0.797 

(0.172) 

0.923 

(0.199) 

0.950 

(0.219) 

0.923 

(0.261) 

1.340 

(0.139) 

0.836 

(0.134) 

0.983 

(0.106) 

0.900 

(0.269) 

8 mg TSP/kg 

soil 

0.817 

(0.267) 

1.027 

(0.286) 

1.017 

(0.244) 

1.080 

(0.171) 

0.920 

(0.380) 

1.003 

(0.091) 

0.866 

(0.124) 

0.917 

(0.361) 

1.347 

(0.163) 

Roots     LSD     0.800 % 

No Treatment 2.503 

(0.677) 

1.817 

(0.340) 

1.343 

(1.168) 

2.607 

(1.048) 

1.893 

(0.381) 

1.860 

(0.837) 

2.193 

(0.281) 

1.727 

(0.221) 

2.167 

(0.124) 

4 mg 

EDTA/kg soil 

2.337 

(0.631) 

1.857 

(0.771) 

2.170 

(0.255) 

2.080 

(0.311) 

2.070 

(0.407) 

1.653 

(0.156) 

1.857 

(0.854) 

1.667 

(0.285) 

2.670 

(0.606) 

12 mg 

EDTA/kg soil 

1.707 

(0.547) 

2.160 

(0.950) 

2.440 

(0.348) 

1.787 

(0.530) 

1.913 

(0.540) 

1.960 

(0.252) 

1.830 

(0.386) 

1.870 

(0.381) 

1.890 

(0.589) 

24 mg 

EDTA/kg soil 

1.953 

(0.544) 

1.880 

(0.730) 

2.243 

(0.168) 

1.840 

(0.297) 

1.760 

(0.985) 

1.950 

(0.141) 

2.090 

(0.401) 

2.207 

(0.338) 

2.660 

(0.853) 

1 mg TSP/kg 

soil 

2.087 

(9988) 

2.373 

(0.915) 

1.657 

(0.300) 

2.217 

(0.692) 

1.990 

(0.785) 

3.645 

(1.450) 

1.640 

(0.342) 

2.137 

(0.683) 

2.373 

(0.777) 

4 mg TSP/kg 

soil 

1.793 

(0.235) 

1.797 

(0.362) 

2.390 

(0.487) 

2.010 

(0.231) 

1.840 

(0.445) 

1.873 

(0.152) 

2.270 

(0.450) 

1.787 

(0.357) 

1.880 

(0.193) 

8 mg TSP/kg 

soil 

1.943 

(1.004) 

1.917 

(0.470) 

2.017 

(0.761) 

1.483 

(0.146) 

1.840 

(0.481) 

1.937 

(0.524) 

1.637 

(0.096) 

2.070 

(0.624) 

2.143 

(0.076) 

                        

 

 

In the case of cabbage leaves, the greatest percentage concentration of Mg was seen where 

Cd was set at double the maximum permissible soil concentration and 12 mg EDTA/kg soil 
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applied, while the lowest Mg % concentration in leaves was seen where Zn was at a 

maximum and no treatment applied to the soil (Table 3.12). 

 

In the case of K % concentration across all treatments, K seems to accumulate in cabbage 

stems, with leaves having almost half as much K and roots about half as much K as leaves 

across all treatments.  The greatest percentage concentrations of K in roots was seen where 

Pb was at in situ soil concentration and no treatment was applied.  The lowest K % 

concentration in roots was seen when Cd was set at twice the maximum permissible soil 

concentration and no treatment was applied (Table 3.13). 

 

In the case of cabbage stems, the lowest K % concentration was seen when Pb was set at 

twice the maximum soil concentration and 1 mg TSP/kg soil applied, while the greatest K % 

concentration was seen when Zn was set at the maximum soil concentration and 12 mg 

EDTA/kg soil applied.  In the case of cabbage leaves the greatest K concentration was seen 

when Zn was at twice the maximum and 1 mg TSP/kg soil applied.  The lowest K % 

concentration in leaves were seen when respectively Cd and Zn was at their in situ soil 

concentrations and respectively no treatment, 24 mg EDTA/kg soil and 1 mg TSP/kg soil 

applied.  Similarly, K was also low when Cd was set at twice the maximum permissible soil 

concentration and 1 mg TSP/kg soil applied and also when Zn was set at the maximum 

permissible soil concentration and 4 mg EDTA/kg soil applied.  In the case where Pb was at 

the maximum permissible soil concentration, a similar percentage concentration of K was 

seen, when 24 mg EDTA/kg soil and also when 8 mg TSP/kg soil was applied as remedial 

treatments (Table 3.13).  These results and others highlighted in this section of Chapter three 

are discussed in the Discussion section of this chapter. 
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Table 3.12.  T-test results for magnesium percentage concentrations in respectively 

cabbage leaves, stems and roots in various remediation treatments at various 

concentrations of Cd, Pb and Zn 
Concentration Cd in 

situ 

Cd 

maximum 

Cd 2 x 

maximum 

Pb in 

situ 

Pb 

maximum 

Pb 2 x 

maximum 

Zn in 

situ 

Zn 

maximum 

Zn 2 x 

maximum 

Leaves     LSD     0.093 % 

No Treatment 0.560 

(0.010) 

0.610 

(0.046) 

0.630 

(0.046) 

0.653 

(0.042) 

0.613 

(0.055) 

0.560 

(0.036) 

0.640 

(0.070) 

0.503 

(0.050) 

0.630 

(0.050) 

4 mg 

EDTA/kg soil 

0.553 

(0.040) 

0.563 

(0.076) 

0.590 

(0.040) 

0.623 

(0.064) 

0.677 

(0.040) 

0.587 

(0.055) 

0.587 

(0.006) 

0.580 

(0.130) 

0.673 

(0.051) 

12 mg 

EDTA/kg soil 

0.563 

(0.055) 

0.627 

(0.068) 

0.697 

(0.058) 

0.620 

(0.052) 

0.600 

(0.104) 

0.623 

(0.023) 

0.630 

(0.010) 

0.620 

(0.072) 

0.590 

(0.089) 

24 mg 

EDTA/kg soil 

0.590 

(0.070) 

0.683 

(0.064) 

0.660 

(0.036) 

0.657 

(0.092) 

0.583 

(0.125) 

0.647 

(0.055) 

0.597 

(0.021) 

0.643 

(0.047) 

0.657 

(0.078) 

1 mg TSP/kg 

soil 

0.647 

(0.090) 

0.593 

(0.093) 

0.657 

(0.086) 

0.640 

(0.115) 

0.563 

(0.064) 

0.630 

(0.042) 

0.593 

(0.144) 

0.650 

(0.036) 

0.677 

(0.035) 

4 mg TSP/kg 

soil 

0.583 

(0.071) 

0.577 

(0.021) 

0.620 

(0.050) 

0.637 

(0.061) 

0.607 

(0.150) 

0.647 

(0.015) 

0.617 

(0.071) 

0.613 

(0.025) 

0.610 

(0.062) 

8 mg TSP/kg 

soil 

0.553 

(0.064) 

0.593 

(0.029) 

0.613 

(0.118) 

0.640 

(0.035) 

0.547 

(0.150) 

0.680 

(0.036) 

0.583 

(0.059) 

0.607 

(0.059) 

0.680 

(0.061) 

Stems     LSD     0.113 % 

No Treatment 0.237 

(0.006) 

0.290 

(0.052) 

0.307 

(0.023) 

0.310 

(0.026) 

0.263 

(0.085) 

0.263 

(0.076) 

0.303 

(0.120) 

0.270 

(0.030) 

0.277 

(0.015) 

4 mg 

EDTA/kg soil 

0.290 

(0.087) 

0.247 

(0.042) 

0.247 

(0.032) 

0.250 

(0.036) 

0.260 

(0.017) 

0.213 

(0.092) 

0.243 

(0.055) 

0.297 

(0.067) 

0.280 

(0.026) 

12 mg 

EDTA/kg soil 

0.267 

(0.061) 

0.327 

(0.071) 

0.300 

(0.010) 

0.270 

(0.053) 

0.233 

(0.080) 

0.233 

(0.045) 

0.340 

(0.087) 

0.477 

(0.341) 

0.237 

(0.031) 

24 mg 

EDTA/kg soil 

0.273 

(0.047) 

0.273 

(0.049) 

0.303 

(0.031) 

0.240 

(0.020) 

0.250 

(0.100) 

0.310 

(0.075) 

0.277 

(0.071) 

0.303 

(0.021) 

0.297 

(0.049) 

1 mg TSP/kg 

soil 

0.247 

(0.023) 

0.287 

(0.115) 

0.327 

(0.031) 

0.363 

(0.051) 

0.230 

(0.035) 

0.140 

(0.156) 

0.243 

(0.107) 

0.267 

(0.061) 

0.290 

(0.010) 

4 mg TSP/kg 

soil 

0.287 

(0.064) 

0.230 

(0.062) 

0.277 

(0.100) 

0.273 

(0.006) 

0.233 

(0.058) 

0.383 

(0.042) 

0.253 

(0.055) 

0.263 

(0.055) 

0.257 

(0.051) 

8 mg TSP/kg 

soil 

0.240 

(0.026) 

0.267 

(0.061) 

0.340 

(0.141) 

0.303 

(0.031) 

0.273 

(0.067) 

0.293 

(0.025) 

0.247 

(0.047) 

0.267 

(0.137) 

0.323 

(0.040) 

Roots     LSD     0.074 % 

No Treatment 0.257 

(0.055) 

0.247 

(0.076) 

0.140 

(0.105) 

0.293 

(0.070) 

0.237 

(0.051) 

0.233 

(0.051) 

0.240 

(0.017) 

0.253 

(0.006) 

0.193 

(0.006) 

4 mg 

EDTA/kg soil 

0.243 

(0.021) 

0.210 

(0.017) 

0.260 

(0.066) 

0.227 

(0.023) 

0.227 

(0.055) 

0.203 

(0.006) 

0.210 

(0.046) 

0.230 

(0.010) 

0.193 

(0.031) 

12 mg 

EDTA/kg soil 

0.240 

(0.020) 

0.237 

(0.050) 

0.243 

(0.076) 

0.273 

(0.025) 

0.217 

(0.015) 

0.273 

(0.067) 

0.230 

(0.040) 

0.217 

(0.083) 

0.220 

(0.078) 

24 mg 

EDTA/kg soil 

0.220 

(0.053) 

0.253 

(0.023) 

0.240 

(0.062) 

0.233 

(0.006) 

0.213 

(0.068) 

0.270 

(0.035) 

0.230 

(0.082) 

0.213 

(0.040) 

0.203 

(0.021) 

1 mg TSP/kg 

soil 

0.223 

(0.076) 

0.250 

(0.026) 

0.273 

(0.040) 

0.233 

(0.031) 

0.213 

(0.040) 

0.330 

(0.085) 

0.247 

(0.042) 

0.223 

(0.090) 

0.217 

(0.040) 

4 mg TSP/kg 

soil 

0.230 

(0.010) 

0.257 

(0.006) 

0.220 

(0.036) 

0.223 

(0.038) 

0.253 

(0.047) 

0.213 

(2.029) 

0.250 

(0.052) 

0.200 

(0.046) 

0.223 

(0.038) 

8 mg TSP/kg 

soil 

0.223 

(0.085) 

0.197 

(0.015) 

0.280 

(0.026) 

0.223 

(0.032) 

0.237 

(0.025) 

0.240 

(0.070) 

0.217 

(0.012) 

0.220 

(0.017) 

0.213 

(0.021) 
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Table 3.13.  T-test results for potassium percentage concentrations in respectively 

cabbage leaves, stems and roots in various remediation treatments at various 

concentrations of Cd, Pb and Zn 
Concentration Cd in 

situ 

Cd 

maximum 

Cd 2 x 

maximum 

Pb in 

situ 

Pb 

maximum 

Pb 2 x 

maximum 

Zn in 

situ 

Zn 

maximum 

Zn 2 x 

maximum 

Leaves     LSD     0.961 % 

No Treatment 4.446 

(0.370) 

4.673 

(0.350) 

4.930 

(0.680) 

4.703 

(0.323) 

4.597 

(1.020) 

4.497 

(0.536) 

3.997 

(0.210) 

4.153 

(0.908) 

5.063 

(0.332) 

4 mg 

EDTA/kg soil 

4.460 

(1.081) 

4.877 

(0.772) 

4.320 

(0.517) 

4.887 

(0.586) 

4.447 

(0.835) 

4.413 

(0.667) 

4.790 

(0.572) 

3.957 

(0.894) 

4.243 

(0.234) 

12 mg 

EDTA/kg soil 

4.280 

(0.149) 

4.523 

(0.760) 

4.817 

(0.374) 

4.450 

(0.419) 

4.093 

(0.511) 

4.610 

(0.658) 

4.110 

(0.104) 

4.257 

(0.565) 

4.420 

(0.320) 

24 mg 

EDTA/kg soil 

3.953 

(0.522) 

4.780 

(0.330) 

4.263 

(0.549) 

4.790 

(0.305) 

3.973 

(0.638) 

4.923 

(0.375) 

4.560 

(0.356) 

4.680 

(0.291) 

4.830 

(0.243) 

1 mg TSP/kg 

soil 

4.547 

(0.505) 

4.097 

(0.847) 

3.920 

(0.917) 

4.987 

(0.585) 

4.037 

(0.925) 

4.235 

(0.544) 

3.940 

(0.975) 

4.603 

(0.679) 

5.080 

(0.350) 

4 mg TSP/kg 

soil 

4.619 

(0.489) 

4.390 

(0.942) 

4.333 

(0.525) 

4.410 

(0.304) 

4.130 

(0.825) 

4.587 

(0.900) 

4.297 

(0.276) 

4.867 

(0.012) 

4.367 

(1.010) 

8 mg TSP/kg 

soil 

4.127 

(1.115) 

4.677 

(0.547) 

4.287 

(0.116) 

4.493 

(0.348) 

3.960 

(0.824) 

4.273 

(0.472) 

4.887 

(0.886) 

4.610 

(0.537) 

4.463 

(0.724) 

Stems     LSD     2.719 % 

No Treatment 8.273 

(1.467) 

8.177 

(2.885) 

9.327 

(1.797) 

8.443 

(0.948) 

7.497 

(3.639) 

7.207 

(3.577) 

8.167 

(1.891) 

7.210 

(0.386) 

9.950 

(0.785) 

4 mg 

EDTA/kg soil 

8.123 

(2.086) 

8.517 

(1.976) 

6.357 

(2.336) 

8.200 

(1.707) 

8.490 

(1.811) 

6.277 

(1.610) 

7.783 

(1.617) 

6.857 

(2.910) 

8.160 

(0.173) 

12 mg 

EDTA/kg soil 

8.893 

(0.800) 

7.907 

(1.484) 

8.803 

(0.340) 

7.457 

(1.920) 

6.430 

(2.826) 

8.220 

(2.626) 

8.420 

(1.733) 

10.213 

(3.020) 

7.360 

(1.581) 

24 mg 

EDTA/kg soil 

8.513 

(1.662) 

8.963 

(1.282) 

8.597 

(1.684) 

8.887 

(0.775) 

6.423 

(3.090) 

8.117 

(0.705) 

8.000 

(1.389) 

8.353 

(0.162) 

8.023 

(0.103) 

1 mg TSP/kg 

soil 

7.237 

(0.597) 

7.390 

(2.697) 

7.603 

(2.270) 

8.963 

(0.844) 

7.087 

(3.306) 

4.255 

(5.042) 

6.593 

(3.894) 

7.687 

(1.285) 

8.673 

(1.239) 

4 mg TSP/kg 

soil 

7.877 

(1.648) 

7.607 

(2.830) 

8.180 

(1.846) 

8.017 

(1.405) 

6.747 

(2.241) 

8.337 

(2.034) 

6.993 

(1.302) 

7.553 

(1.916) 

6.973 

(0.924) 

8 mg TSP/kg 

soil 

7.710 

(3.158) 

8.037 

(1.059) 

7.513 

(2.561) 

7.613 

(0.405) 

6.520 

(2.954) 

7.937 

(1.304) 

7.527 

(0.748) 

6.403 

(2.365) 

8.233 

(1.828) 

Roots     LSD     0.736 % 

No Treatment 2.520 

(0.442) 

1.827 

(0.153) 

1.347 

(0.990) 

2.677 

(0.849) 

1.813 

(0.067) 

2.127 

(0.575) 

2.140 

(0.219) 

2.037 

(0.210) 

2.197 

(0.029) 

4 mg 

EDTA/kg soil 

2.067 

(0.388) 

2.047 

(0.677) 

2.090 

(0.150) 

1.887 

(0.315) 

2.343 

(0.357) 

2.143 

(0.102) 

1.980 

(0.726) 

1.867 

(0.724) 

1.893 

(0.234) 

12 mg 

EDTA/kg soil 

2.407 

(0.402) 

2.080 

(0.392) 

2.070 

(0.246) 

2.193 

(0.586) 

1.867 

(0.150) 

2.150 

(0.272) 

2.397 

(0.381) 

1.863 

(0.400) 

1.920 

(0.295) 

24 mg 

EDTA/kg soil 

2.163 

(0.374) 

1.983 

(0.428) 

2.397 

(0.440) 

2.060 

(0.467) 

1.470 

(0.756) 

2.343 

(0.517) 

2.043 

(0.769) 

2.557 

(0.823) 

2.050 

(0.320) 

1 mg TSP/kg 

soil 

1.867 

(0.165) 

2.170 

(0.297) 

2.040 

(0.285) 

2.330 

(0.350) 

1.980 

(0.630) 

2.020 

(0.735) 

1.990 

(0.299) 

2.027 

(0.427) 

2.460 

(0.231) 

4 mg TSP/kg 

soil 

1.787 

(0.333) 

2.270 

(0.265) 

2.107 

(0.105) 

1.930 

(0.339) 

1.953 

(0.525) 

2.110 

(0.255) 

2.130 

(0.108) 

2.160 

(0.468) 

1.967 

(0.739) 

8 mg TSP/kg 

soil 

2.070 

(0.694) 

1.850 

(0.333) 

2.293 

(0.650) 

1.970 

(0.288) 

2.023 

(0.544) 

2.160 

(0.344) 

2.193 

(0.245) 

1.827 

(0.300) 

2.120 

(0.606) 

                        

 

 

3.4.  Discussion 

The purpose of this study was to investigate the use of respectively EDTA and TSP as 

remediation treatments in case soils of Cape Town‟s agricultural areas should become so 

contaminated with specifically Cd, Pb and/or Zn, that the quality of specifically cabbage, a 

main crop produced here, is seriously compromised.  The heavy metals Cd, Pb and Zn were 
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studied at three different concentrations (in situ, maximum permissible, and double the 

maximum permissible soil concentration allowed in South Africa) in conjunction with seven 

different treatments independently (no treatment, 4 mg EDTA/kg soil, 12 mg EDTA/kg soil, 

24 mg EDTA/kg soil, 1 mg TSP/kg soil, 4 mg TSP/kg soil and 8 mg TSP/kg soil).  It is 

important to note that the levels of Cd, Pb and Zn used in this study were much lower than 

those seen in most other studies of this nature (Amrate and Akretche, 2005; Brown et al., 

2005; Clemente et al., 2005; Madejón et al., 2005; Meer et al., 2005).  Over the experiment, 

as a whole, the general appearance of cabbage plants were not significantly different.  It was 

noted that, in almost all cases, the shoots of cabbage plants were significantly greater in dry 

mass than the roots, indicating that all experimental plants probably had enough nutrients at 

their disposal thus, differences seen across the individual experimental treatments were most 

likely due to the applied treatments and differing concentrations of respectively Cd, Pd and 

Zn in the experimental soils (Table 3.2; Table 3.3). 

 

The greatest average root and shoot dry mass was obtained in the presence of Pb at 6.6 

mg.kg
-1

 soil (the maximum permissible soil concentration) when 24 mg EDTA was applied 

as a remediation treatment.  It is possible that despite the risk that application of EDTA at 

such a large dosage could have led to the increased uptake of Pb, it could also have led to the 

increased uptake of macro- and micro-nutrients that stimulated shoot and root growth.  In the 

presence of Zn at 46.5 mg.kg
-1

 soil (the maximum permitted soil concentration) application 

of 12 mg EDTA/kg soil was effective to yield the greatest shoot and root growth expressed in 

terms of dry mass.  In the presence of Cd at 2.0 mg.kg
-1

 soil (the maximum permitted soil 

concentration) the use of 4 mg TSP/kg soil was most effective to produce the greatest root 

and shoot mass (Table 3.3).  In the presence of either Cd at 4.0 mg.kg
-1

 soil, Pb at 13.2 

mg.kg
-1

 soil or Zn at 93.0 mg.kg
-1

 soil, the best remedial treatment in terms of shoot dry mass 
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could not be determined but application of 4 mg EDTA/kg soil allowed for significantly 

greater root production compared to other concentrations of EDTA treatment (Table 3.3). 

 

The fact that an equally great shoot mass was obtained when 4 mg EDTA/ kg soil was 

applied compared to application of no remedial treatment where Pb was at 13.2 mg/kg
-1 

in the 

soil, shows that both the EDTA and TSP remedial treatments are not necessarily the most 

effective and that other treatments should also be investigated.  Supporting this argument is 

the fact that both the independent use of 4 mg EDTA/kg soil and 12 mg EDTA/kg soil 

produced similar root dry masses and also shoot dry masses when Zn was present at 93.0 

mg.kg
-1 

soil.  The suggestion that other remedial treatments should also be investigated is also 

supported in that, independently, similar root dry masses and similar shoot dry masses were 

obtained when Cd, Pb and Zn was at the in situ soil concentrations and treated independently 

with 1 mg TSP/kg soil and 8 mg TSP/kg soil, while none of the EDTA treatments showed 

similar great root or shoot dry masses (Table 3.3).  The fact that shoot dry masses were not 

significantly different across the experiment as a whole according to analysis of variance 

tests, may have indicated that the presence of Cd, Pb and/or Zn in excess in these soils did not 

greatly affect plant growth (Table 3.2). 

 

In general, heavy metals were more concentrated in the roots of cabbage plants than in the 

shoots across all experiments, as is seen in general literature (Greene, 1993; Marschner, 1995; 

Prasad and De Oliveira, 2003; Salisbury and Ross, 1992).  The levels of Cd, Pb and Zn in this 

experiment was, however, relatively low compared to other studies and thus, not likely to 

stunt plant growth (Amrate and Akretche, 2005; Brown et al., 2005; Clemente et al., 2005; 

Madejón et al., 2005; Meer et al., 2005).  The observation that plant growth was not affected 

much by elevated Cd, Pb or Zn concentrations in the soil, measured by comparing shoot dry 
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mass, did not mean that the cabbages produced in these soil were suitable for consumer 

consumption.  More important to consumers however is the concentration of macro-, micro-

nutrients and heavy metals in the edible portion of the cabbage plant.  Though some plants 

may be able to cope with elevated levels of Cd, Pb and/or Zn, this was not always the case 

and the uptake of macro-nutrients, Ca, Mg, K and P, amongst others may be hindered by the 

presence of excess levels of heavy metals in the soil (Marschner, 1995; Meerkotter, 2003; 

Salisbury and Ross, 1992). 

 

In general, the uptake of Mg and Ca were found to be correlated in both the shoots and 

specifically the stems of cabbage plants in this experiment (Table 3.1).  The absence of other 

clear statistical correlations between specifically Cd, Pb and Zn and the mentioned macro-

nutrients in this experiment does not mean that it does not exist in the field.  Active uptake of 

the macro-nutrients Ca, Mg and K seemed evident as the concentrations of these elements in 

the shoots were much greater than seen in the roots (Table 3.2). 

 

From T-tests it was clear that in the presence of Cd at 4.0 mg.kg
-1 

in the soil, in the absence of 

any of the tested remedial treatments, Cd may have led to the inhibited uptake of Ca, Mg and 

K by cabbage roots (Tables 3.11, 3.12 and 3.13).  Similarly in the presence of Zn at 46.5 

mg.kg
-1 

soil, the non-application of a remedial treatment, but also the application of 4 mg 

EDTA/kg soil, lead to much lesser percentage concentrations of Ca and Mg in cabbage plant 

leaves (Tables 3.11 and 3.12).  When Cd was present in the soil at 4.0 mg.kg
-1 

soil, the 

application of 1 mg TSP/kg soil also showed very low percentage concentrations of Ca, Mg 

and K in cabbage plant stems (Tables 3.11, 3.12 and 3.13). 
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These findings may have indicated that the use of any of the suggested remedial treatments at 

greater concentration levels would have been preferred to not applying a remedial treatment 

when either Cd, Pb or Zn was in excess, even if it should not necessarily contribute to the 

significant increase of root or shoot yield in terms of dry mass.  The need for caution in 

selecting a remedial treatment was also observed, since in the case of K uptake and 

specifically K transport to cabbage leaves it seemed that the application of several different 

EDTA treatments and TSP treatments in the presence of respectively Cd, Pb and Zn at 

elevated levels yielded significantly low K % concentrations in the leaves of cabbage plants 

(Table 3.13).  Contrary, the use of especially EDTA solutions at different concentrations and 

even the use of different TSP treatments were helpful to increase the percentage 

concentrations of both Ca and Mg in cabbage plant leaves and stems and roots in the presence 

of respectively elevated Cd, Pb and Zn soil concentrations (Tables 3.11 and 3.12). 

 

In the case of the macro-nutrient P, significant differences were seen across the experiment as 

a whole (Table 3.2).  This indicated that the concentrations of TSP used, or the absence 

thereof, was probably significant.  It could also have indicated that in the presence of EDTA 

treatments, soil P could have become more available to plant roots for uptake, since great P 

concentrations were seen in roots, stems and leaves in several of the EDTA treatments.  The 

mere application of TSP treatments clearly did not necessarily mean P would be taken up 

more readily by plants that received TSP treatments (Table 3.7). 

 

It was for example observed that the lowest P % concentrations in cabbage plant stems were 

in the presence of respectively elevated Cd, Pb and Zn soil concentrations in conjunction with 

the application of TSP treatments (Table 3.7).  In fact, despite the application of TSP 

treatments, in the presence of excess Zn in the soil, P uptake seemed to have been hampered 
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(Table 3.7).  The treatments that seemed to enhance the uptake of P in the presence of excess 

Cd, Pb and Zn were mostly EDTA treatments.  In the case of cabbage leaves, several EDTA 

treatments and only one TSP treatment (8 mg TSP/kg soil), resulted in the highest P 

concentrations in the leaves, while in the case of cabbage stems, the greater P concentrations 

were seen in case of the application of 12 mg EDTA/kg soil and the more concentrated TSP 

treatments (Table 3.7).  Therefore, the use of TSP treatments did not necessarily contribute to 

the nutritional pool of cabbage plants in a significant measure, since the fluctuation in P 

concentrations across all treatments could also have been due to the application of EDTA 

treatments. 

 

Though the concentration of P was significantly different in the roots of cabbage plants 

across the various treatments, the use of TSP fertilizers could not be singled out as the sole 

reason for this fluctuation, and similarly, the mere presence of Na in EDTA solutions did not 

seem to contribute to it being significantly different in cabbage plants across the various 

treatments and levels of Cd, Pb and Zn (Table 3.2).  Na is a beneficial element to plants at 

certain concentration levels and the leaves of cabbage plants seemed accumulate Na in this 

experiment (Li et al., 2010; Marschner, 1995; Table 3.2).  Sodium can easily become toxic to 

plants and excessive uptake by cabbage plant is thus not necessarily wanted (Li et al., 2010; 

Marschner, 1995; Salisbury and Ross, 1992). 

 

In the presence of elevated levels of Cd, Pb and Zn, the use of EDTA treatments at various 

concentrations seemed to elevate the amount of Na accumulated in cabbage plant leaves and 

stems, while the use of use of TSP treatments seemed to lead to a lesser Na yield in cabbage 

stems and leaves (Table 3.8).  In the presence of specifically excess Zn and Cd, the absence 

of any of the remedial treatments led to a much lower concentration of Na in respectively 
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cabbage leaves, stems and roots (Table 3.8).  Therefore, the use of a specific remedial 

treatment needs to consider the amount of Na that is desirable in the edible portions of the 

plant and the ability of the plant to cope with Na since it is not a beneficial element to all 

plants (Brownell and Crossland, 1972; Brownell, 1979; Li et al., 2010; Marschner, 1995; 

Ohta et al., 1988; Salisbury and Ross, 1992).  

 

The concentrations of the micro-nutrients Cu, Fe and Zn were also investigated and are 

discussed here.  In the case of Fe, in general the roots and leaves had the higher 

concentrations of Fe across all treatments and the leaves seemed to accumulate Fe, even 

though they had a lower Fe concentration than the roots of the plants (Table 3.10).  In 

general, none of the remedial treatments seemed to significantly influence the amount of Fe 

that was eventually stored in the leaves of cabbage plants (Tables 3.2 and 3.10).  It appeared 

that the application of any of the remedial treatments would have been effective to ensure that 

the uptake of Fe was not negated in the presence of elevated levels of either Cd, Pb or Zn.  

However, this may not be true, since in the absence of the application of any remedial 

treatment, Fe was equally great in cabbage leaves and in two cases even greater than that seen 

in any remedial treatment (Table 3.10). 

 

The fact that the concentrations of Fe in both organs of the shoots were rather consistent 

across all the experiments, might indicate that the integrity of the roots were not 

compromised that much in the presence of the remedial treatments, despite the elevated levels 

of Cd, Pb and Zn in terms of Fe uptake (Table 3.10).  Other elements that also seemed to 

show a consistent pattern of its specific uptake across either the shoot organs or roots, despite 

the elevated levels of Cd, Pb and Zn in the presence of any remedial treatment; or rather, 

irrespective of the applied remedial treatments were Pb, Mg and K (Tables 3.5, 3.12 and 
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3.13).  This information again emphasized that the selection of a remedial treatment should 

not to be decided based on the concentration of one element in the soil and its subsequent 

concentration in the plant alone. 

 

Like iron, copper is an essential micro nutrient to plants, however in excess it can be toxic to 

plants and stunt plant growth (Marschner, 1995, Meerkotter, 2003; Salisbury and Ross, 

1992).  Toxicity to crop plants is a concern since the soils of both Philippi and the 

Kraaifontein/Joostenbergvlakte area contain much Cu as discussed in Chapter two 

(Meerkotter 2003, Sogayise, 2003).  This fact was supported by the results seen here in that a 

negative correlation was seen between Cu concentration in cabbage plant stems and the dry 

weight of the stems in general across all experiments (Table 3.1). 

 

In general, analysis of variance showed that the roots of cabbage plants contained the greater 

concentrations of Cu while relatively, much less was found in the stems and leaves of 

cabbage plants.  This indicated that the roots of cabbage plants were probably able to take Cu 

up selectively and partition it differentially between its organs despite elevated levels of Cd, 

Pb or Zn in the soil and to some extent irrespective of the remedial treatment applied (Table 

3.2).  This observation also supported, to some extent, the notion that the roots of cabbage 

plants were not compromised too much in the presence of elevated levels of either Cd, Pb or 

Zn in conjunction with the various remedial treatments or absence thereof in general.  This 

may further support the emerging idea that the studied EDTA and TSP treatments were not 

necessarily the most appropriate to use in cases of marginal Cd, Pb and/or Zn contamination 

of soils, since none seemed to showed a particularly clear benefit or danger in terms of the 

uptake of the mentioned plant nutrients (Tables 3.9 and 3.10). 
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The limit set for Cu in foodstuffs in South Africa is 30.00 mg.kg
-1

 and despite the elevation 

of independently Cd, Pb and Zn and the use of the various remediation treatments, the 

concentrations of Cu accumulated in cabbage plant shoots never neared this limit (DOH, 

2004).  The various remedial treatments had such varying results in terms of its effect on the 

increased content of Cu in either the roots, stems or leaves of cabbage plants in the presence 

of any concentration of either Cd, Pb or Zn that a clear elimination or recommendation of any 

particular remedial treatment was not really possible (Table 3.9). 

 

Pinpointing the treatments that resulted in the lower concentrations of Cu in plant organs was 

easier.  In the presence of Cd at 2.0 mg.kg
-1 

soil, the use of 4 mg EDTA/kg soil gave low 

concentrations of Cu in both the stems and leaves of cabbage plants.  In the presence of Pb at 

6.6 mg.kg
-1 

soil, the absence of a remedial treatment or use of the lower concentration TSP 

treatments (1 mg TSP or 4 mg TSP per kilogram soil) was most effective to limit the Cu 

content in cabbage roots and leaves.  In the case of Zn set at 46.5 mg.kg
-1 

soil, applying no 

treatment was best at limiting the concentration of Cu in cabbage leaves (Table 3.9). 

 

“Counter productive” information was gained from the experiment in terms of limiting Cu in 

the roots of cabbage plants in the event of agricultural soils ever becoming polluted with 

great excess levels of Cd, Pb and/or Zn simultaneously.  Where Cd was present in 

experimental soil at 4.0 mg.kg
-1 

soil for example, the absence of a remedial treatment resulted 

in the lowest Cu contents in cabbage roots, while in the case of Zn set at 93.0 mg.kg
-1 

soil, the 

use of 4 mg TSP/kg soil gave the lowest concentration of Cu in cabbage roots and contrary to 

this, the use of 4 mg TSP/kg soil in soils where Pb was set at 13.2 mg/kg soil, yielded the 

greatest Cu concentrations in cabbage roots (Table 3.9).  This again emphasized the 
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importance of not recommending a remedial treatment by looking at the concentration of one 

element in either the crop and/or soil only. 

 

Zinc is also a micro-nutrient to plants and humans (Marschner, 1995, Meerkotter, 2003; 

Salisbury and Ross, 1992).  The permissible concentration of Zn in foodstuffs in South Africa 

is 40.00 mg.kg
-1 

and across several of the experiments this limit was exceeded in plant roots, 

stems and leaves (DoH, 2004).  The greatest Zn concentrations were seen in cabbage roots 

while cabbage stems and leaves had fairly similar concentrations of Zn, except where Zn was 

applied to the soil in excess, indicating that Zn is differentially partitioned between cabbage 

plant organs.  The concentration of Zn varied significantly between the different experimental 

treatments (Tables 3.2 and 3.6).  The use of 12 mg EDTA/kg soil, seemed to be a problematic 

treatment in that it led to excessive levels of Zn in cabbage leaves in the presence of Cd at 2.0 

mg.kg
-1 

soil, 6.6 mg Pb/kg soil, 13.2 mg Pb/kg soil and 93.0 mg Zn/kg soil independently, as 

well as in stems in the case where soil was spiked to 2.0 mg Cd/kg
 
soil (Table 3.6). 

 

Treatment with 1 mg TSP/kg soil seemed particularly good at leading to a low Zn yield in 

cabbage leaves when Cd was present at both 2.0 mg.kg
-1 

soil and 4.0 mg.kg
-1 

soil.  The non-

application of a remedial treatment, however, also yielded low Zn concentrations in cabbage 

leaves in the presence of 2.0 mg Cd/kg soil, 6.6 mg Pb/kg soil and even in the presence of 

46.5 mg Zn/kg soil (Table 3.6).  These observations might support the idea that other factors 

could also have been at play and that the resultant Zn concentrations in the leaves were not 

necessarily only due to the application of 1 mg TSP/kg soil as a remediation treatment. 

 

This idea was further supported by the observation that in the presence of 46.5 mg Zn/kg soil, 

the resultant concentrations of Zn in cabbage stems were also relatively low in both the case 
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of applying 1 mg TSP/kg soil as well as when not applying a remedial treatment at all (Table 

3.6).  It would appear that the use of 12 mg EDTA/kg soil was most useful to reduce the 

uptake of Zn by plant roots in the presence of respectively 2.0 mg Cd/kg soil and 93.0 mg 

Zn/kg soil, while application of 1 mg TSP/kg soil was more useful in the presence of 6.6 mg 

Pb/kg soil and 46.5 mg Zn/kg soil.  However, it is likely that more effective remediation 

treatments exist to reduce the uptake of Zn by cabbage plants than those mentioned here, 

since in the case of Cd being present in the soil at 4.0 mg.kg
-1 

soil application of no remedial 

treatment yielded the lowest Zn concentrations in cabbage roots (Table 3.6).  From the results 

in Table 3.6 it could be seen that in the presence of excess Zn in the soil, be it at the 

maximum or twice the maximum permissible soil concentration according to South African 

regulations; that cabbage plants actively took up Zn and translocated it to its stem and leaves, 

and that none of the remedial treatments studied here proved particularly useful to reduce the 

uptake of Zn to levels that did not exceed South African limits set therefore in foodstuffs. 

 

The limit set for Cd in South African foodstuffs is 0.05 mg.kg
-1 

and in Europe it is 0.20 

mg.kg
-1 

(CoEC, 2006; DoH, 2004).  Cadmium is a non-essential element and toxic to both 

animals and plants in excess (Marschner, 1995, Meerkotter, 2003).  In plants, Cd in excess 

can interfere with the metabolic processes that involve Zn, since it is similar to Zn.  It can to 

some extent also inhibit respiration, photosynthesis, gas exchange and water-regulation 

processes in plants.  Research has shown that cabbage production yields could be reduced by 

as much as 20% to 25% in the presence of a solution of only 1 mg.l
-1 

Cd (DWAF, 1996; 

Meerkotter, 2003; WRC, 1997). 

 

Significant differences in the concentration of Cd in both cabbage leaves and roots were seen 

across the experiment as a whole (Table 3.2).  At in situ soil concentrations of Cd, the uptake 
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of Cd was consistent across all remedial treatments. This indicated that cabbage roots were 

probably able to tolerate the in situ concentrations of Cd and to take Cd up selectively to 

some extent.  Across all experiments, Cd concentrations in cabbage roots were greater than 

those of stems and leaves.  The concentration of Cd in cabbage leaves were, however, almost 

twice that of Cd accumulated in cabbage stems across all treatments and where Cd was 

elevated to both 2.0 mg.kg
-1 

soil and 4.0 mg.kg
-1 

soil (Tables 3.2 and 3.4).  The probability 

that Cd may exceed maximum permissible soil concentrations and may lead to its 

accumulation in cabbage leaves is a concern since it would mean the crops could become 

unsuitable for consumer consumption.  It is thus extremely important to monitor the 

concentration of Cd in soils and to know which remedial treatments would be effective in 

limiting the uptake of Cd by cabbage plants. 

 

The fact that Cd seemed to accumulate in cabbage leaves and stems under conditions where 

Cd was elevated above the maximum permissible soil concentrations, despite the application 

of either EDTA or TSP treatments, indicated that more suitable remediation treatments 

should be sought to cope with Cd contamination in agricultural soils (Table 3.4).  In general, 

the uptake of Cd seemed significantly low in the presence of Zn at 93.0 mg.kg
-1

 soil.  Though 

93.0 mg.kg
-1

 soil is not permissible in South Africa, this finding could indicate that a 

remedial treatment that contains Zn might be more useful to cope with Cd in agricultural soils 

than either TSP or EDTA treatments (Table 3.4). 

 

The absolute “worst” treatment in the presence of 2.0 mg Cd/kg soil was 24 mg EDTA/kg 

soil and the “worst” in the case of 4.0 mg Cd/kg soil the application of 12 mg EDTA/kg soil.  

These treatments seemed to make Cd more available to cabbage roots and hence resultant 

accumulation in the stem and leaves.  These results were consistent with those seen in phyto-
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remediation studies where EDTA was used to mobilize heavy metals in the soil (Cui et al., 

2004; Lai and Chen, 2004; Lai and Chen 2005, Liphadzi and Kirkham, 2006, Lou et al., 

2005; Luo et al., 2006; Thayalakumaran et al., 2003; Wu et al., 2004).  In the presence of Cd 

at 2.0. mg.kg
-1 

soil and 4.0 mg.kg
-1 

soil, TSP treatments seemed more effective in limiting the 

uptake of Cd than EDTA treatments.  In the presence of 2.0. mg Cd/kg soil the application of 

1 mg TSP/kg soil was most effective to limit the uptake of Cd and its accumulation in stems 

and leaves.  In the presence of 4.0 mg Cd/kg soil, however, a slightly confusing result was 

seen in that the lowest amounts of Cd in cabbage leaves were found when respectively 8 mg 

TSP/kg soil was applied and also when no remedial treatment was given.  Similarly, in the 

case of cabbage stems in the presence of 4.0 mg Cd/kg soil, respectively the application of 1 

mg TSP/kg soil, 4 mg TSP/kg soil and 24 mg EDTA/kg soil resulted in significantly low Cd 

concentration in stems (Table 3.4).  These results indicated again that both EDTA and TSP 

treatments were not necessarily the most advantageous remedial treatments. 

 

Where no remediation treatments were applied at in situ, at maximum and double the 

maximum permitted Cd concentrations set for South African soils, no significant differences 

were observed in shoot dry masses and thus shoot yields (Table 3.3).  This may have 

indicated that excess Cd stunted plant growth.  It may also have indicated that the various 

remediation treatments did in fact help increase plant growth but; not necessarily by 

decreasing Cd uptake by the roots but, rather by making micro- and macro-nutrients more 

available to the plant than in the absence of a remediation treatment. 

 

Lead is also a non-essential element to plants and can be toxic to plants in that it could stunt 

plant growth (Marschner, 1995; Prasad and De Oliveira, 2003; Salisbury and Ross, 1992).  

Lead concentrations were in general greatest in the roots of cabbage plants, indicating that 
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cabbage roots were probably able to store Pb thus little translocation of Pb to the stems and 

leaves occurred.  Root growth did appear to be stunted however in the presence of Pb at 13.2 

mg.kg
-1 

soil, which is one of the best known effects of Pb in plants (Li et al., 2010; 

Marschner, 1995; Prasad and De Oliveira, 2003; Salisbury and Ross, 1992; Zhu et al., 2004; 

Tables 3.2 and 3.5).  The probability that cabbage roots can regulate the uptake of Pb is good 

since Pb is not wanted in the edible portions of the plant. 

 

It is important to note that across the majority of experimental treatments, even in the cases 

where Pb was at in situ soil concentration, Pb was accumulated in all plant organs above the 

limits set for South African foodstuffs which is 0.10 mg.kg
-1

 (DoH, 2006).  As expected, 

application of 12 mg EDTA/kg soil seemed particularly problematic, in that it resulted in the 

equally high Pb concentrations in leaves when Pb was present in the soil at 2.2 mg/kg
-1

, 6.6 

mg/kg
-1 

and 13.2 mg/kg
-1

.  When Pb was in the soil at in situ concentration and also when Zn 

was present in the soil at 93.0 mg/kg
-1 

soil, the use of 12 mg EDTA/kg soil led to excess Pb 

accumulation in cabbage stems.  Application of 24 mg EDTA/kg soil was equally 

problematic when Pb in the soil was present at 13.2 mg.kg
-1

 soil as it resulted in equally great 

concentrations of Pb in the leaves of cabbage plants (Table 3.5). 

 

None of the remediation treatments seemed particularly useful at limiting Pb accumulation in 

cabbage stems and leaves and rather conflicting results were obtained.  When Pb was at in 

situ  soil concentration in some cases, the respective application of 4 mg EDTA/kg soil and 1 

mg TSP/kg soil seemed to results in less Pb accumulating in the stems of cabbage plants.  

However, in some instances the use of 12 mg EDTA/kg soil also resulted in equally low 

concentrations of Pb in stems, which contradicted the above mentioned findings.  It was also 
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seen that in some cases the application of 12 mg EDTA/kg soil in the presence of 6.6 mg 

Pb/kg soil resulted in relatively low Pb concentrations in cabbage stems (Table 3.5). 

 

It was hoped that TSP treatments would help alleviate the uptake of Pb specifically, but this 

could not be stated unequivocally by the results of this study.  Though several other studies 

found phosphate treatments were useful at regulating and limiting the uptake of not only Pb 

but also Cd, Cu and Zn this could not be confirmed with clarity in this research at relatively 

low heavy metal concentrations (Alvarez-Ayuso and Garcia-Sanches, 2003; Brown et al., 

2005; Cao et al., 2003; Kumpiene et al., 2007; Melamed et al., 2003; Ownby et al., 2005; 

Singh et al., 2010; Tan et al., 2011; Zhu et al., 2004).  The use of EDTA as a remedial 

treatment is, however, not recommended because it has been found in other research to pose a 

risk to underground water resources and since it could also make heavy metals more available 

to crops as has been shown in other studies (Luo et al., 2005; Luo et al., 2006; 

Thayalakumaran et al., 2003; Wu et al., 2004).  The conflicting results in this study indicate 

mainly that the remedial treatments investigated here are not necessarily the most effective 

and that other treatments should be investigated to control the uptake of either Cd, Pb or Zn 

in excess, should agricultural soil in future become contaminated far above regulatory limits 

for either or all three of these heavy metals. 

 

The best remedial treatment of all those tested here, to limit the translocation of Cd to 

cabbage leaves, in an event where Cd exceeded the maximum permissible soil concentration 

set in South Africa (2.0 mg.kg
-1

) was thus 1 mg TSP/kg soil.  The better remedial treatments 

to use, to limit the accumulation of Pb in cabbage leaves if Pb should ever be in the soil at the 

maximum permissible soil concentration set in South Africa (6.6 mg.kg
-1

), are respectively 1 

mg TSP/kg soil, 8 mg TSP/kg soil or even 4 mg EDTA/kg soil.  If Zn should ever be in the 
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soil at 46.5 mg.kg
-1 

soil (the maximum permissible soil concentration set in South Africa) 

then application of 1 mg TSP/kg soil in the coinciding presence of Cd being present at 2.0 

mg.kg
-1 

soil, would be best.  However, when Cd levels in the soil are not in excess but Zn is 

at 46.5 mg/kg
-1

 soil even the absence of any of the remedial treatments tested here could be 

preferred.  Thus 1 mg TSP/kg soil was overall the best treatment. 

It could, however, be seen that the use of 24 mg EDTA/kg soil when Cd was in the soil at 2.0 

mg.kg
-1

 was dangerous in that high levels of Cd were accumulated in cabbage leaves.  It 

could also be seen that the application of 12 mg EDTA was problematic, as it led to Pb 

accumulation in cabbage leaves when Pb was present in the experimental soil at 6.6 mg.kg
-1

.  

Similarly when Zn was present in the experimental soils at 46.5 mg/kg and 12 mg EDTA/kg 

soil was applied, more Zn accumulated in cabbage leaves than under normal circumstances, 

especially when Cd and Pb was also present in the soil in excess of the maximum permitted 

soil concentrations set for South Africa. 

 

3.5.  Conclusion 

As stated in the Discussion section of this chapter, the remedial treatments investigated here 

did not appear to be sufficiently effective to negate excess accumulation of the selected heavy 

metals in the edible portions of cabbage plants.  More tests will be needed to verify the true 

effectiveness of these specific treatments in specifically the soils of the Philippi and 

Kraaifontein/Joostenbergvlakte farming areas of Cape Town.  Future studies could also 

investigate soil pH and its role in terms of heavy metal uptake by vegetable crops from these 

areas‟ soils.  Other variables that could be monitored in future studies are respiration, 

photosynthesis and gas exchanges in various crops planted in heavy metal contaminated soils. 
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From the results it is clear that the selection of any specific remedial treatment is rather 

complicated since many variables must be considered.  This again emphasizes the importance 

of not recommending a remedial treatment by examining the concentration of one element 

only.  The first hypothesis set for this study was that TSP treatments would be more effective 

at reducing the uptake of Cd, Pb and Zn than EDTA treatments.  This hypothesis is not 

supported fully by this study‟s results, since the use of TSP treatments were not necessarily 

more effective at reducing the uptake of Cd, Pb and Zn by cabbage plants, but rather that it 

was not as liable to elevate the uptake of Cd, Pb and Zn by cabbage plants as EDTA 

treatments seemed to be. 

 

The second hypothesis for this study stated that application of a moderate amount of TSP 

fertilizer would be more effective at reducing the uptake of Cd, Pb and Zn than application of 

a greater concentration of TSP.  Looking at the before mentioned results, one would think 

this hypothesis is supported but more correct would be to say the hypothesis is only partly 

supported.  Though according to T-tests, on several occasions the use of 1 mg TSP/kg soil 

pointed to lesser concentrations of either Cd, Pb and Zn in cabbage plant organs, it did not 

unequivocally exclude the effectiveness of 4 mg TSP/kg soil or 8 mg TSP/kg in some cases. 

 

Since neither the TSP nor EDTA remedial treatments were particularly effective at reducing 

the uptake of either Cd, Pb or Zn by cabbage plants in this study, it is advised that other 

remedial treatments be tested on soils of both the Philippi and Kraaifontein/Joostenbergvlakte 

areas to provide farmers with more plausible solutions in the event of their soils ever 

exceeding set limits for either Cd, Pb and/or Zn according to South African limits.  Future 

studies should also take into consideration the cost of each remedial treatment‟s use in 

practice.  The use of TSP or EDTA treatments that may not be that effective in reducing the 
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uptake of heavy metals by crop plants for example, could lead to great financial losses to any 

particular farmer. 

 

Not only should the financial implications to farmers themselves be considered, but also 

possible costs to the surrounding environments.  Application of TSP as a remedial treatment 

may for example be the easiest to execute but, one needs to take into consideration that the 

surrounding environment‟s surface and subterranean waters may become polluted with 

excess levels of P.  Similarly, the use of EDTA treatments could lead to the leaching of toxic 

chemicals and/or heavy metals to subterranean waters, which may not be reversible.  A 

combination of EDTA and TSP as a remedial treatment could be investigated, but it needs to 

be considered that long term application of either of these could decrease soil quality.  

Further investigations to find more suitable remedial treatments are strongly advised. 
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CHAPTER 4  

SURVEY OF AGRICULTURAL PRACTICES IN CAPE TOWN’S VEGETABLE 

FARMING AREAS 

 

4.1.  Introduction 

The majority of vegetable farmers in the Joostenbergvlakte, Kraaifontein and Philippi areas 

of Cape Town are commercial farmers.  The Joostenbergvlakte and Kraaifontein areas can be 

grouped together as a unit, while the Philippi area is further removed from these two areas 

(Figure 4.1 and Figure 4.2).  This survey aimed to gather information around the farming 

practices in these main two vegetable farming areas of Cape Town.  This survey also aimed 

to raise awareness amongst the farmers of the potential near future problem of soil and 

resultant crop contamination with heavy metals.  A third aim was to inform farmers of 

possible mitigation methods in the event of a heavy metal pollution problem emerging in the 

future and fourthly to ascertain farmers‟ interest in and willingness to implement mitigation 

treatments should they be needed in the future.  The survey also aimed at gathering 

information on farmers‟ identification of perceived risks to their agricultural lands from the 

surrounding areas, in terms of adding to the threat of heavy metal pollution of soils, water 

resources and ultimately crops. 

 

Historically, mostly Dutch settlers engaged in commercial cattle farming in the Kraaifontein 

area in the 1600‟s according to Saayman (2010), while in 1870 German settlers started to 

engage in vegetable and flower farming in the Philippi area (Bamford, 2001; Chittenden 

Nicks Partnership, 1997; Meerkotter, 2003; Sawyer, 1994).  Later commercial vegetable 

farms, fruit farms and vineyards became more prominent in the Kraaifontein and 

Joostenbergvlakte areas.  Today, mostly vineyards and commercial vegetable farming 
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continues in the Joostenbergvlakte and Kraaifontein area whereas, mainly, commercial 

vegetable farming continues in the Philippi farming area (Bamford, 2001; Chittenden Nicks 

Partnership, 1997; CoCTH, 2007; Meerkotter, 2003; Saayman, 2010; Sawyer, 1994).  

Produce from the Philippi, Joostenbergvlakte and Kraaifontein farms contribute largely to 

Cape Town‟s fresh produce market.  As much as 50% of Cape Town‟s fresh produce market 

vegetables reportedly come from Philippi farms (Theobald, 2011).  Cape Town‟s fresh 

produce market in turn, is one of the largest contributors to South Africa‟s total fresh produce 

market (Directorate Agricultural Statistics, 2000).  Since the demand for vegetables is 

growing, sustainable agricultural practices are imperative. 

 

Cape Town‟s farmers follow the traditional styles of farming practice as opposed to the types 

of modern mass production practices that are seen abroad.  On Cape Town‟s vegetable farms 

soil is still tilled with a small one-man driven tractor, either driven by the farmer himself or a 

farm worker.  Manure and other fertilizers are tossed onto cultivated soil from one-man 

operated tractors.  Seedlings are planted by hand and seeds sown by hand or sprinkled onto 

the soil from a small tractor.  Agrochemicals are sprayed onto crops from a small one-man 

driven tractor with an attached spray dispenser unit.  Irrigation sprinklers are raised about a 

meter above the soil, connected to the farm dam‟s water pump and sprinkle crops as needed 

throughout the day, while harvesting of crops takes place by hand.  Sometimes potatoes are 

bagged in the field upon harvesting, ready to be transported to the market as is.  On several 

farms vegetables are carefully washed and packed according to stringent regulations for 

distribution to shops and export markets that require more quality packaging (Kinchen and 

King, 2003; Personal communication with farmers, 2006 - 2010). 
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Over the years, decades and in a few cases the last century, the practice of vegetable farming 

in Cape Town has resulted in the agricultural soils becoming more and more contaminated 

with heavy metals such as copper, zinc and today even lead and cadmium.  On occasion the 

concentrations of cadmium and lead posed a risk to the production of quality crops and in 

future these events could become more frequent and thus of greater concern (Meerkotter, 

2003; Sogayise, 2003).  This has spurred on the research for this thesis. 

 

From the results of a survey done by Sogayise (2003) in Kraaifontein and Meerkotter (2003) 

in Philippi, as well as the results from Chapter two of this thesis, actual direct heavy metal 

contamination threats to the Philippi, Kraaifontein and the Joostenbergvlakte agricultural 

areas would include the use of raw organic cattle and chicken manures and moreover the 

storage of these next to irrigation water dams.  To a lesser extent the use of pesticides that 

contain copper or zinc as active ingredients and chemical fertilizers that contain nominal 

amounts of these and other heavy metals may also become problematic.  Other possible 

future threats to these agricultural areas in terms of heavy metal contamination may be waste 

effluent from informal settlements, leakages from waste water treatment plants and effluent 

or leaching from dumping sites as well as illegal dumping of waste in the farming areas, air 

pollution and pollution of rivers, streams and aquifers used by these farmers (Aza-Gnandji, 

2011; Bertram, 1989; CoCTH, 2007; Gophe et al., 1998; Meerkotter, 2003; Miller; 1996; 

Qoko, 2003; Sawyer, 1994; Wright and Conrad, 1995; Yeld and Gophe, 1998). 

 

From Orthophoto‟s produced between 1992 and 2001, possible indirect sources of heavy 

metals to the Joostenbergvlakte and Kraaifontein agricultural areas could include the 

following which may in the future become problematic; railway run-off along the boarders of 

the Joostenbergvlakte farms, run-off and air pollution from the national road (N1) passing 
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through some farms of the Joostenbergvlakte area and potential petrol leakage from a filling-

station‟s underground storage tanks adjacent to one of the Joostenbergvlakte farm water 

resources and cropped soils.  Run-off and illegal dumping of waste from formal and informal 

settlements in Bloekombos could pose a threat to some Joostenbergvlakte farm lands.  Run-

off from higher lying vineyards poses a threat to respectively Joostenbergvlakte and 

Kraaifontein vegetable farms.  Run-off and illegal waste dumping from formal and informal 

settlements in Wallacedene and Scottsdene pose a threat to Kraaifontein farms.  Potential run-

off and leakage from the Waste water treatment plant in Scottsdene along the Botfontein road 

poses a threat to some Kraaifontein farm lands as well as air pollution from Bottelary road 

(Orthophoto Map Series A, 1992; Orthophoto Map Series B, 1992; Orthophoto Map Series C, 

2001; Orthophoto Map Series D, 2001; Figures 4.1 and 4.3; Personal communication with 

farmers). 

 

Possible indirect sources of heavy metals to the Philippi agricultural area could be the 

following; air pollution from surrounding formal and informal residential areas as well as 

industrial areas and air pollution and run-off from roads around and through Philippi that 

connect various surrounding residential areas.  The occurrence of illegal dumping of 

household waste, building rubble and even toxic chemicals on farms has been a problem in 

the past and could occur again (Gophe et al., 1998; Yeld and Gophe, 1998; Yeld, 1998; 

Personal communication with farmers).  Pollution of surface and underground water 

resources by surrounding residential and industrial activities is also a problem where water is 

extracted for irrigation from shared water resources (Bertram, 1989; Wright and Conrad, 

1995).  Pollution of underground water resources, which are used for irrigation, could happen 

through percolation of heavy metals to these water resources from surrounding informal 

settlements, residential areas and industrial areas.  Surface water resources, from which 
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farmers often extract water for irrigation, can be polluted with heavy metals through run-off 

from surrounding roads, railway lines, residential and industrial areas (Meerkotter, 2003; 

Orthophoto Map Series A, 2001; Orthophoto Map Series A, 1999; Orthophoto Map Series B, 

2001; Orthophoto Map Series B, 1999; Figure 4.2). 

 

Threats from the areas surrounding the Kraaifontein, Joostenbergvlakte and Philippi 

agricultural areas are summarised in Figure 4.1 and Figure 4.2, while Figures 4.3 and 4.4, 

indicate how these areas have changed to date.  These figures have been composed by using 

the mentioned Orthophotos from 1992, 1999 and 2001 and by making the necessary 

adjustments as seen through physical observations made in these areas during 2011 as the 

researcher drove through the areas and as gleaned from road maps (Map Studio, 2007). 

 

It is important to note that no geographic points were recorded to verify the exact start and 

end points of areas indicated in Figures 4.3 and 4.4.  The changes indicated in Figures 4.3 and 

4.4 could be verified in future research.  Where smallholdings are indicated it may refer to 

plots where animals such as cattle or horses are kept, flowers are grown, small farm stalls are 

run or mechanical workshops operate.  Formal residential areas refer to areas with formally 

built houses.  Formal and informal residential areas refer to areas where formally built houses 

and shacks are found, while informal residential areas refer to areas where mostly shacks are 

found.  Areas indicated as industrial areas refer to various industrial activities, ranging from 

metal and concrete and waste recycling plants, mechanical workshops, factory warehouses, 

storage warehouses, factory outlet shops and other commercial shops such as Macro and 

Ottery Pick ‟n Pay Hypermarket.  A legend/key for Figures 4.1, 4.2, 4.3 and 4.4 is given in 

Table 4.1. 
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Table 4.1:  Key to Figure 4.1, Figure 4.2, Figure 4.3 and Figure 4.4 

Vegetable farms  

Vineyards  

Fruit farms  

Smallholdings  

Sand mining  

Formal residential area  

Formal and informal residential area  

Informal residential area  

Industrial area  

Waste water treatment plant  

Surface waters  

Sea  

Railway line  

Main road  

Road  

Contour line  

Height above sea level  

Filling station  
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Figure 4.1:  The Joostenbergvlakte and Kraaifontein vegetable farming areas and surrounding areas in 2000  

(print to A3 size for  correct scale) 
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Figure 4.2:  The Philippi vegetable farming area and surrounding areas in 2000 

(print to A3 size for  correct scale) 
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Figure 4.3:  The Joostenbergvlakte and Kraaifontein vegetable farming areas and surrounding areas as seen in 2011 

(print to A3 size for  correct scale) 
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Figure 4.4:  The Philippi vegetable farming area and surrounding areas as seen in 2011\

(print to A3 size for  correct scale) 
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Based on informal discussions the researcher has had with vegetable farmers from these 

areas, most farmers seemed to know of these threats even if it they were not directly linked to 

the possible heavy metal contribution thereof to their soils, irrigation waters and crops.  The 

extent of farmer‟s knowledge and concern about these threats were investigated indirectly 

and is only alluded to through this survey‟s results. 

 

From informal discussions with farmers it was not clear if farmers knew of the legal 

obligations they would have in case their land, irrigation waters or crops became too 

contaminated with heavy metals.  Though farmers seemed aware of the existence of 

regulations, the actual implementation of legislative regulations and monitoring of 

specifically heavy metals in either their soils and/or water resources were apparently not done 

by local government, municipalities or the farmers themselves regularly.  Farmers‟ crop 

quality was tested often to determine its suitability for distribution to different fresh produce 

markets, but these tests did not often, if at all, include testing for heavy metals, but rather 

tested bacterial counts and concentrations of organic-agrochemical residues thereon (Personal 

communication farmers). 

 

The findings reported in Chapter three of this thesis and similar findings by Sogayise (2003) 

and Meerkotter (2003) regarding the heavy metal content of crops produced in these farming 

areas could be of great reputational risk to farmers if it should be interpreted out of context.  

It is thus important that the problem is not inflated and that no sensation is created around the 

issue but; it is also important to not underestimate the necessity of monitoring the now 

relatively clean soils, irrigation water resources and crops produced in these areas.  It is 

important to note in cases where crops have exceeded South African and/or even European 

limits set for foodstuffs, that these limits often fell well beneath that allowed by the daily 
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permissible dietary intake for humans (Meerkotter, 2003; Noss and Rolfes, 2002; Smith, 

1994). 

 

Informal discussions with farmers often revealed, from the researcher‟s perspective, a slight 

concern with farmers, that unnecessary questions around the general agricultural practices on 

their lands were being generated which may impact on their reputations as well as subsequent 

sales of their produce.  Farmers did not seem to see the actual issue of heavy metal 

contamination of their agricultural soils, irrigation water resources and possibly crops as such 

a big risk compared to the reputational risk they could face if researchers ever misused the 

gathered information.  This research did not specifically aim to ascertain farmers‟ feelings 

about the issue of heavy metal pollution on their agricultural lands, but instead aimed at 

gathering general information about farming practices on these farms and information about 

the actual agricultural land and environments themselves.  Informal conversations with 

farmers about the research, and specifically on the topic of remedial treatments, gave the 

impression that farmers would be willing to make the necessary adjustments if in the future 

remediation of any kind should be needed.  Nonetheless, farmers‟ views of the priority of 

remediation of agricultural soils with regard to heavy metal contamination did not seem very 

high in comparison to other issues farmers faced. 

 

A study conducted by Grasmück and Scholz (2005) to evaluate the role of knowledge and 

emotional concern about an environmental risk on the perception of that particular risk, found 

that emotional concern was most important at leading to action, such as implementation of 

remedial treatments.  The risk perception of heavy metal contamination of soils from which 

vegetables were harvested and eaten in a community in northern Switzerland, indicated that 

the risk was considered more seriously by those who were emotionally concerned and bore 
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actual knowledge of the risk than those who through dissonance-reducing heuristics judged 

the problem as minimal and not worth much attention in terms of needing to take remedial 

action.  In this case heuristics included observations by inhabitants that some have lived in 

the contaminated area for many years and since they have never seen the need to move away 

the problem could not have been that great (Grasmück and Scholz, 2005). 

 

The same kind of factors may also be at play in the agricultural farming areas of Cape Town 

where farmers‟ perception of the heavy metal contamination risk to their farms is cardinal to 

effect implementation of preventative and/or remedial treatments.  Emotional concern 

amongst farmers about the dangers of heavy metal contamination on their cropped lands in 

conjunction with appropriate knowledge about sources of heavy metal contamination to their 

agricultural lands would probably help reduce many of the dissonance-reducing heuristics 

encountered in conversations with farmers.  Heuristics that seemed to reduce some farmers‟ 

perception of the risk of heavy metal pollution amongst other arguments included the 

following; that though heavy metals were probably added to cropped soils through 

application of agrochemicals and organic fertilizers (as indicated in Chapter two), farmers 

never had complaints from consumers about crop quality.  Consequently farming practices 

have remained rather consistent over the years and since the agrochemicals used were from 

reputable sources farmers did not seem emotionally concerned about heavy metal 

contamination (Grasmück and Scholz, 2005; Personal communication farmers).  This kind of 

argument could also be supported by the fact that cabbage plant growth, for example, was not 

stunted at the in situ concentrations of Cd, Cu, Pb and Zn in the growth medium prepared 

from soils of these farms for the pot experiment performed in Chapter three of this thesis. 
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Dissonance heuristics may play a big part in farmers perception of the risks associated with 

heavy metals contamination of agricultural lands in that farmers' non-encounter of problems 

relating to heavy metals with regard to crop quality and yield might lead them to conclude 

that there is not really a problem.  This may lead to no action being taken in terms of 

monitoring the levels of heavy metals in the agricultural environment by farmers and even 

local municipalities.  This may also lead to little attention being paid to recommendations for 

preventative or remedial farm practices as it might require “burdensome” changes to be made 

to current farming practices (Grasmück and Scholz, 2005; Personal communication farmers). 

 

Farmers in certain cases use agrochemicals that contain specific heavy metals, but the 

usefulness of using these chemicals to ensure crop productivity is often of much greater 

benefit compared to the likelihood of ever encountering an event where consumers could be 

negatively affected by consumption of a specific crop.  This is especially used as a heuristic 

to reduce the perception of the risk of heavy metal contamination since farmers take care to 

keep with holding periods between the last spraying of a crop with any agrochemical and its 

harvesting date.  However, should the risk to the consumer become more pronounced farmers 

could possibly become more prone to consider taking remedial action especially if it would 

not negatively impact on crop productivity and financial gain (Grasmück and Scholz, 2005; 

Personal communication farmers). 

 

An increased emotional involvement and concern about heavy metal pollution could probably 

increase the rating of the perceived risk and lead to a greater possibility that action might be 

taken to prevent or remedy further contamination.  The results of this survey aimed at 

encouraging more emotional concern amongst farmers by making more knowledge available 

on the issue (Grasmück and Scholz, 2005).  This study however did not focus on measuring 
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farmers‟ emotional concern about heavy metal contamination on their lands.  The view of 

farmers regarding the application of certain remedial treatments was tested indirectly.  The 

farmers‟ perception of the risk of pollution from encroaching residential and industrial areas 

and thus the possible resultant increased heavy metal contamination was also measured 

indirectly through this study‟s survey about farming practices.  The value and role of the 

community in preventing contamination of agricultural land should not be underestimated but 

it was not directly evaluated in this survey (Grasmück and Scholz, 2005). 

 

As part of the research strategy, gaining cooperation from the farmers was of utmost 

importance as the outcomes of this research is ultimately aimed at benefitting these farming 

communities.  The methods applied for this survey are discussed in the Materials and 

methods section of this chapter.  Constitutionally, all South Africans have the right to receive 

or impart information freely therefore, clear and transparent communication with the farmers 

was compulsory.  All South African citizens also have the right to access information held by 

another person that is necessary for protection of their rights thus, farmers were to some 

extent obliged to divulge information on farming practices that could affect consumers (The 

Constitution of the Republic of South Africa, 1996).  This survey about the farming practices 

on Cape Town‟s vegetable farms aimed at gathering information that may be of use to 

implement preventative or remedial practices to curb heavy metal pollution on these farms. 

 

According to the South African constitution everyone has the right to an environment that is 

not harmful to his/her health and therefore pollution must be prevented (The Constitution of 

the Republic of South Africa, 1996).  Farmers could thus be held accountable for the level of 

contaminants in their soils, water resources and produce.  Landowners are for example 

expected to pay for whatever mitigation should be needed in the event of a water pollution 
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problem (Republic of South Africa, 1998).  This survey thus also aimed to raise more 

awareness amongst farmers around the importance of addressing the need for at least 

monitoring the concentrations of heavy metals in the agricultural environment. 

 

4.2.  Materials and Methods 

This research involved the interviewing of farmers to gathering information about their 

farming practices.  The farmers‟ rights to privacy and the researcher‟s obligation to use the 

gathered information responsibly were ensured through ethics clearance of the survey 

procedure and survey questions by the University of the Western Cape‟s Ethics Committee.  

The Ethics statements for this survey are given in section 4.2.1, the survey method described 

in section 4.2.2 and the survey questionnaire discussed in section 4.2.3 of this chapter. 

 

4.2.1.  Survey ethics statement 

The survey on farming practices and the collection of agricultural samples (for Chapter two) 

from the Joostenbergvlakte, Kraaifontein and Philippi vegetable farms was done in good faith 

towards the farmers and followed ethical guidelines of the South African Medical Research 

Council (Labuschagne, 2005).  Interviews were only conducted on farms where farmers gave 

consent and a meeting time could be established and materialized. 

 

According to the South African Constitution everyone has the right to an environment that is 

not harmful to his/her health and therefore pollution must be prevented (The Constitution of 

the Republic of South Africa, 1996).  Farmers could thus be held accountable for the level of 

contaminants in their soils, water resources and produce.  Farm owners could for example be 

expected to pay for whatever mitigation should be needed in the event of a water pollution 

event occurring (Republic of South Africa, 1998).  This study thus ultimately aimed at 
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helping farmers gain more knowledge about the need for prevention of heavy metal pollution 

and means of addressing it should it arise in the future.  Due to the sensitivity of the issue, the 

identities of the farmers were to be protected as far as possible.  The results of this study if 

ever published should be done using aliases and codes to protect the identities of farmers who 

participated (Labuschagne, 2005).  It is imperative that awareness around the issue of heavy 

metal contamination be raised amongst farmers.  The issue however was to be raised in a 

manner that would encourage sustainable development of these agricultural communities 

instead of causing harm through loss of agricultural activity in these areas in the future (The 

Constitution of the Republic of South Africa, 1996). 

 

4.2.2.  Survey method 

Upon obtaining ethics clearance the survey was conducted among farmers of the 

Joostenbergvlakte/Kraaifontein and Philippi vegetable farming areas.  The Joostenbergvlakte/ 

Kraaifontein area had a total of approximately 12 land owning vegetable farmers while the 

Philippi area had about 24 land owning farmers, during the time period of this survey.  An 

interview sample number representative of at least 80% of the farmers in each area was 

aimed for.  In the end, however, 75% of the farmers in the Joostenbergvlakte/Kraaifontein 

area agreed to be interviewed and 71% of the farmers in the Philippi area.  The survey was 

conducted as suggested by Serumaga-Zake et al., (2004) and adhered to the South African 

Medical Research Council‟s ethics guidelines and thus followed the process described here 

below. 

 

Farmers were firstly informed of the proposed survey through verbal communication and 

presentation of an information sheet about the proposed study as a whole.  A copy of the 

English version of the information sheet can be found in the Appendix of this thesis.  Each 
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farmer who agreed to engage in the survey signed a consent form upon making an 

appointment for the survey interview.  A copy of the English version of the consent form can 

also be found in the Appendix.  Prior to the survey, general information was gathered about 

the surveyed areas, to help the researcher understand some dynamics of these two farming 

areas.  Maps were obtained of Philippi, the Joostenbergvlakte and Kraaifontein vegetable 

farming areas to keep record of the locality of the farms surveyed. 

 

To encourage homogeneity in the survey, the researcher conducted the survey using the same 

questionnaire for both farming communities and attempted to do the survey over the shortest 

period of time possible.  The survey took two weeks to complete.  The same researcher 

interviewed all the farmers (Serumaga-Zake et al., 2004).  During each interview the 

objectives of the survey was stated clearly to the interviewed farmer so that he/she could see 

the importance of the study even if they did not benefit from it directly.  It was indicated to 

each interviewed farmer that their given information would remain anonymous through the 

use of an alias and/or codes.  In each interview, the interviewer remained polite and neutral in 

attitude with regard to answers given by the farmers.  The interviewer took care to clearly 

explain the questions where needed but avoided the making of comments that could influence 

or guide the interviewed farmer‟s answers. 

 

The responses for each interview were recorded on a separate questionnaire.  The answers 

were checked before entry into the database to ensure correctness of the entered data.  

Checking the answers also helped identify questions that were answered reluctantly and 

hence needed to be approached with caution during interpretation of the survey results.  The 

survey data was entered into an Excel spread sheet in a way that would later allow for 

statistical comparisons between these two farming communities since different factors could 
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have been at play in contributing to heavy metal pollution on the different farms (Figures 4.1, 

4.2, 4.3 and 4.4).  Statistical processing of the data was done by Ms. Marieta Van Der Rijst 

from the Biometry Unit of the Agricultural Research Counsel at Infruitec in Stellenbosch.  

Statistical analysis included the use of ANOVA‟s, T-tests, compilation of frequency tables 

and Chi-Square tests where possible.  In some cases only descriptive analysis of the interview 

answers were possible. 

 

4.2.3.  Survey questionnaire 

The researcher designed the questionnaire.  The questionnaire was compiled according to 

principles and guidelines given by Serumaga-Zake et al. (2004).  The questionnaire was 

evaluated by specialists, tested by colleagues and translated into Afrikaans before the actual 

survey was conducted.  A copy of the actual survey questionnaire in English is given in the 

Appendix of this thesis.  The questionnaire was constructed to gather the following 

information, which is discussed in the same order in the Results section of this chapter. 

 

Question 1 focused on gathering a brief history of each surveyed farm in terms of the name of 

the farm, the size of the farm and age of the farm.  Question 2 and 3 asked how many 

boreholes were present on the surveyed farm and what the depths of the different boreholes 

were, while Question 4 asked how many dams were present on the surveyed farm.  Question 

5 and 6 looked at how deep the water table was, on average, on the surveyed farms, in the 

winter and summer months, while Question 7 asked which water resources were used to 

supplement irrigation water resources on the particular farm surveyed. 

 

To answer Question 7, farmers could choose from any of the following water resources, as 

sources used to supplement normal irrigation water resources; the drawing of water from 
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storm water canals, municipal water resources and/or drawing water from a nearby stream or 

river.  Farmers could also choose any of the following water resources to answer Question 7; 

the distributing of water from one borehole to more than one irrigation water holding dam 

and/or the drawing of water from one dam to fill another dam and/or making use of recycled 

irrigation water or waste water to supplement irrigation water resources.  Farmers could also 

indicate if they made use of any other resources not mentioned here, which could add 

valuable information to the existing knowledge bank about these farming areas.  In informal 

conversations with a few farmers in the Philippi farming area, the issue of salinization of 

irrigation waters was raised.  Question 8 thus specifically asked farmers if their borehole 

waters were becoming more saline. 

 

Determining what the main vegetables were that were grown on each farm, was done by 

asking Question 9.  Question 9 not only asked which vegetable crops were farmed with but 

also how many hectares of each kind of crop were grown per year.  With Question 10 it was 

hoped to ascertain how much of the different kinds of fertilizers was used for specific crops 

grown on the surveyed farm.  The amount of agrochemicals and in particular pesticides used 

was covered by Question 11.  Question 11 asked how many litres of each pesticide were used 

per hectare, per planting season for the respective crops grown on the particular farm. 

 

Question 12 focused on the willingness of farmers to employ mitigation methods should 

heavy metals or other harmful chemicals become a problem in their farm soils or crops in the 

future.  Question 12 listed several remedial methods and asked whether or not a farmer would 

employ each of the specific methods.  The mitigation methods mentioned were the following; 

an increase in the amount of manure used, an increase in the amount of phosphate fertilizer 

used, the ceasing of use of a fertilizers that contained harmful chemicals, the ceased use of 
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any pesticides that contain harmful chemicals, the addition of a chemical to the soil to 

immobilise the harmful chemicals and/or the planting of a crop that could remove harmful 

chemicals or heavy metals from their agricultural soil. 

 

Question 13 aimed to gather information about the farm and surrounding areas in terms of the 

interviewed farmers‟ knowledge of activities in the area that led him/her to be concerned that 

it may affect the quality of irrigation water resources on the farm.  The farmer was asked to 

identify the perceived threats to irrigation water on the farm.  Question 14 supported 

Question 13 by asking if the farmer if he/she knew of any activities in the area that could 

decrease the quality of the soil on the specific farm.  The interviewed farmer was asked to 

identify the activities that caused him/her concern around the sustained quality of the soil. 

 

Lastly the awareness of each interviewed farmer about the legal implications in the event of 

excess levels of harmful chemicals being found in either farm soils, irrigation water resources 

and/or crops intended for sale was determined through Question 15.  The answers to these 

questions, for the two main farming areas of Cape Town, are given in the Results section of 

this chapter.  The results are given in order of the asked questions. 

 

5.3.  Results 

Some farmers were reluctant to give full answers and in most cases farmers were in a hurry 

thus; despite making an official appointment with them, the questionnaire could often not be 

completed in detail.  The information that could, however, be collected with confidence is 

represented in the tables and figures that follow.  Information relating to the actual sizes of 

farms and the amounts of fertilizers and agrochemicals applied per hectare for specific crops 

was given reluctantly and vaguely.  The answers that were given in these cases were treated 
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with caution and in cases left out of statistical calculations since it was not possible to collect 

enough information for comparisons to be made with confidence.  Where results are reflected 

but there was uncertainty as to the accuracy of any number of farmers answers “?” is 

indicated adjacent to the particular question result in the appropriate results table. 

 

Question 1 focused on gathering some historical and general information about the farms in 

the Joostenbergvlakte/Kraaifontein farming area and the Philippi farming area.  The results 

for Question 1 are summarized in Table 4.2.  Information gathered for Question 2 and 

Question 3 regarding the number of boreholes found on each farm and thus in each farming 

area and the approximate depths of most boreholes in the two farming areas are also 

summarized in Table 4.2.  Question 4 gathered information that reflected the number of dams 

present on each farming area and is also summarized in Table 4.2.  The average depth of the 

water table in each farming area in winter and in summer answered Questions 5 and 6 and 

was also given in Table 4.2.  This data is elaborated on in the Discussion section of this 

Chapter. 

 

As reflected in Table 4.2, it was not easy to verify which farming area occupied the greatest 

amount of land surface since a great standard deviation was observed for the given hectares 

in both farming areas.  The gathered data seemed to reflect that the Philippi farming area was 

slightly older than the Kraaifontein farming area, if one looks at the age of the older farms 

and this agrees with literature (Bamford, 2001; Chittenden Nicks Partnership, 1997; 

Meerkotter, 2003; Sawyer, 1994).  Other comparisons are discussed in the Discussion section 

of this report.  Through performing ANOVA‟s and T-tests on the data displayed in Table 4.2, 

only the number of boreholes and approximate depth of the boreholes differed significantly 
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between the Joostenbergvlakte/Kraaifontein (Kraaifontein) and Philippi farming areas.  These 

results are given in Table 4.3. 

 

Table 4.2:  General and historical information about the Joostenbergvlakte/ 

Kraaifontein and Philippi farming areas gathered from farmers in 2007 

Joostenbergvlakte/Kraaifontein farming area 

Variable n Mean Standard deviation 

Farm size (?) 9 75.4 hectares 73.9 hectares 

Age of older farms 7 43 years 19 years 

Age of new farms 5 15 years 11 years 

Average number of boreholes on farm (1) 9 1 1 

Approximate depth of most boreholes 6 85.4 meters 28.3 meters 

Average number of dams on a farm 9 4 3 

Average depth of water table in winter 5 0.9 meters 0.5 meters 

Average depth of water table in summer 5 1.5 meters 0.4 meters 

Philippi farming area 

Variable n Mean Standard deviation 

Farm size (?) 17 50.4 hectares 34.9 hectares 

Age of older farms 14 59 years 23 years 

Age of new farms 6 12 years 6 years 

Average number of boreholes on farm 17 7 7.5 

Approximate depth of most boreholes 17 52.4 meters 23.8 meters 

Average number of dams on a farm 16 6 5 

Average depth of water table in winter (?) 15 1.9 meters 2.6 meters 

Average depth of water table in summer 9 4.2 meters 3.0 meters 

 

Table 4.3:  Analysis of variance and T-test results for the number of boreholes and 

approximate depth of boreholes from the Joostenbergvlakte/Kraaifontein and Philippi 

farming areas as indicated by farmers in 2007 

Dependent 

variable 

Farming 

Area 

Sample 

number 

(n) 

Mean for 

dependent 

variable 

P-value for 

ANOVA 

LSD for 

T-tests 

Number of 

boreholes 

Kraaifontein n = 9 

 

1.333 0.0374 

 

5.253 

Philippi n = 17 

 

6.941 

Approximate 

depth of 

boreholes 

Kraaifontein n = 6 

 

85.42 m 0.0111 

 

24.64 m 

Philippi n = 17 

 

52.40 m 

 

The results in Table 4.3 indicate that farmers of the Philippi area are possibly more dependent 

on the availability of groundwater than farmers of the Joostenbergvlakte/Kraaifontein area.  
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The data also indicates that in general different aquifers probably supply these two areas, 

since the approximate depth of most boreholes from these two areas are significantly 

different.  This is expanded on in the Discussion section of this chapter.  Question 7 

determined what supplementary water resources were used most often in these two farming 

areas apart from the primary source of irrigation water in the holding dams.  These results 

were analyzed using Frequency tables and Chi-square tests and are represented in Figures 

4.5, 4.6 and 4.7. 

 

In Figures 4.5 and 4.6 it can be seen that in general there was a significant difference between 

farmers use and non-use of a specific supplementary water resource in both the Philippi and 

Joostenbergvlakte/Kraaifontein farming areas.  Farmers of the Joostenbergvlakte/ 

Kraaifontein farming area mentioned under the category of “Other” supplementary water 

resources the Theewaterskloofdam scheme.  From Figure 4.5 it seems that supplementary 

water resources that are used most often in the Joostenbergvlakte/Kraaifontein area are water 

from storm water canals (containing rain water and water from the local waste water 

treatment plant) and water from the Theewaterskloofdam.  From Figure 4.6 it seems that the 

most important supplementary water resources in the Philippi farming area are waters gained 

from recycling irrigation water and by pumping water from a more profitable borehole into 

more than one dam. 
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Figure 4.6:  Percentage use of supplementary water resources for 

irrigation in the Joostenbergvlakte/Kraaifontein area 

(Chi-Square = 0.0008)
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Figure 4.7:  Percentage use of supplementary water resources for 

irrigation in the Philippi area  (Chi-Square = 0.0039)
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In Figure 4.7 no significant difference was seen between the types of supplementary water 

resources used in the Joostenbergvlakte/Kraaifontein and Philippi farming area since the Chi-

square value was 0.1324.  The trend however supports that seen in Figures 4.5 and 4.6 in that 

the farmers from the Philippi farming area seem to use relatively more borehole water and 

recycled water than farmers of the Joostenbergvlakte/Kraaifontein farming area.  Farmers of 

the Joostenbergvlakte/Kraaifontein area also seem to have a greater variety of supplementary 

water resources than those in the Philippi farming area.  Joostenbergvlakte/Kraaifontein 

Figure 4.5:  Percentage use of supplementary water resources for 

irrigation in the Joostenbergvlakte/Kraaifontein area 

(Chi-Square = 0.0008) 

Figure 4.6:  Percentage use of supplementary water resources for 

irrigation in the Philippi area  (Chi-Square = 0.0039) 
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farmers can for example make use of water from rivers and the Theewaterskloofdam to 

supplement their irrigation water resources. 

 

Figure 4.8:  Comparison of use of supplementary irrigation water 

resources in the Joostenbergvlakte/Kraaifontein and Philippi area as a 

percentage of the total use per area  (Chi-Square = 0.1324)

18

12
15

24

9

3

2120

33 33

13

0 0 0
0

5

10

15

20

25

30

35

Dam to

dam

Borehole

to many

dams

Recycled

water

Storm

water canal

River Stream Other

Water resources

P
e
r
c
e
n

ta
g

e
 u

se

Kraaifontein

Philippi

 

 

Salinization and mineralization of underground water in the Philippi farming area has been 

reported (Aza-Gnandji, 2011; Bertram, 1989).  Question 8 was used to specifically ask 

farmers if their borehole waters were becoming more saline.  The farmers' responses are 

reflected in Figures 4.8, 4.9 and 4.10.  Aza-Gnandji (2011) aimed to determine if sea water 

had already intruded the Cape Flats aquifer from which water is drawn by Philippi farmers.  

One of the parameters used to determine sea water intrusion is the presence of Cl in 

concentrations greater than 100 mg.l
-1

 and Na in concentrations greater than 70 mg.l
-1

 in 

borehole water.  It was found that sea water intrusion had not happened in the Philippi area to 

date, but that salinization of underground water resources could become problematic in the 

near future (Aza-Gnandji, 2011).  From Figure 4.8 and Figure 4.9 a significant difference 

between answering “yes” and “no” was seen when farmers were asked if their borehole 

waters were becoming more saline.  Farmers from both the Philippi and Kraaifontein areas 

seemed not to be experiencing problems with salinization of their borehole waters. 

Figure 4.7:  Comparison of use of supplementary irrigation water resources 

for irrigation in the Joostenbergvlakte/Kraaifontein and Philippi area as a 

percentage of the total use per area  (Chi-Square = 0.1324) 
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Figure 4.9:  Salinization of borehole water in the Joostenbergvlakte/ 

Kraaifontein area  (Chi-Square = 0.0342)
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Figure 4.10:  Salinization of borehole water in the Philippi area 

(Chi-Square = 0.0413)
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Comparing the answers to Question 8 between the two farming areas, as represented in 

Figure 4.10, no significant difference was observed in farmers‟ responses.  Farmers from both 

areas claimed to not be experiencing salinization of their underground water resources in 

2007. 

 

Figure 4.8:  Salinization of borehole water in the 

Joostenbergvlakte/Kraaifontein area  (Chi-Square = 0.0342) 

Figure 4.9:  Salinization of borehole water in the Philippi area 

(Chi-Square = 0.0342) 

 

 

 

 



 211 

Figure 4.11:  Comparison of salinization of borehole water resources in 

the Joostenbergvlakte/Kraaifontein and Philippi area  

(Chi-Square = 0.3664)
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Question 9 determined which vegetable crops were farmed with during the year.  Farmers 

were reluctant to disclose the number of hectares they planted of the specific crops per year 

and this detail was thus excluded from statistical analysis.  The gained data is summarized in 

Figures 4.11, 4.12 and 4.13.  From both Figures 4.11 and 4.12 a significant difference 

between answering “yes” and “no” was seen when farmers were asked which crops they 

planted.  Farmers in the Joostenbergvlakte/Kraaifontein area seemed to plant carrots, 

cabbage, cauliflower, lettuce and beetroot most frequently, while garlic was not planted by 

these farmers as a rule (Figure 4.11).  Farmers in the Philippi area seemed to plant cabbage, 

carrots, cauliflower and potatoes most frequently (Figure 4.12). 

 

In Figure 4.13 a comparison is made between the kinds of crops grown in the Philippi area 

and the Joostenbergvlakte/Kraaifontein farming area.  The Chi-square value of 0.8086 

indicated that there was not a significant difference in the kinds of crops grown in these two 

areas.  However, from Figure 4.13 it could be seen that farmers from the Joostenbergvlakte/ 

Kraaifontein area tended to grow more beetroot and lettuce compared to Philippi farmers, 

while in comparison farmers from the Philippi area seemed to grow more garlic, leaks and 

Figure 4.10:  Comparison of salinization of borehole water in the 

Joostenbergvlakte/Kraaifontein and Philippi area  (Chi-Square = 

0.0366) 
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spinach.  Cabbage, carrots and cauliflower are the major crops grown in both areas and thus 

in Cape Town‟s vegetable farming areas. 

Figure 4.12:  Vegetable crops grown by farmers in the 

Joostenbergvlakte/Kraaifontein area  (Chi-Square = < 0.0001)
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Figure 4.13:  Vegetable crops grown by farmers in the Philippi area 

(Chi-Square = < 0.0001)
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Figure 4.11:  Vegetable crops grown by farmers in the 

Joostenbergvlakte/Kraaifontein area  (Chi-Square = < 0.0001) 

Figure 4.12:  Vegetable crops grown by farmers in the Philippi area  

(Chi-Square = < 0.0001) 
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Figure 4.14:  Comparison of vegetable crops grown in the 

Joostenbergvlakte/Kraaifontein and Philippi area as a percentage of the 

total crops produced per area  (Chi-Square = 0.8086)
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With Question 10 it could be ascertained which kinds of fertilizers were used most frequently 

in the two farming areas.  With Question 10 it was also hoped to determine how much was 

used of each fertilizer kind.  Farmers however did not always have the necessary data at hand 

to be able to answer this question completely and thus it could not be determined how much 

of the different kinds of fertilizers were used on the surveyed farms.  The data that could be 

gathered for Question 10 is summarized in Figures 4.14, 4.15 and 4.16.  From Figure 4.14 it 

could be seen that farmers from the Joostenbergvlakte/Kraaifontein area used cattle manure, 

chicken manure and chemical fertilizers and that the frequency of its use or non-use was not 

significantly different even though the trend seemed to be that cattle manure was used less 

frequently.  From Figure 4.15 it could be seen that farmers from the Philippi area used the 

three fertilizer groups with significantly different frequency.  Chemical fertilizers and chicken 

manure were used frequently while cattle manure was used significantly less in Philippi.  

Figure 4.16 compared the frequency of use of the three main fertilizer types between the 

Philippi and the Joostenbergvlakte/Kraaifontein farming areas.  The differences in use were 

not indicated as truly significant since the Chi-square value was 0.4910. 

Figure 4.13:  Comparison of vegetable crops grown in the 

Joostenbergvlakte/Kraaifontein and Philippi area as a percentage of 

the total crops produced per farming area (Chi-Square = 0.8086) 
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Figure 4.15:  Most frequently used fertilizers in the 

Joostenbergvlakte/Kraaifontein area  (Chi-Square = 0.1282)
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Figure 4.16:  Most frequently used fertilizers in the Philippi area 

(Chi-Square = < 0.0001)
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Figure 4.17:  Comparison of use of fertilizers in the 

Joostenbergvlakte/Kraaifontein and Philippi area as percentage of the 

total use per area  (Chi-Square = 0.4910)
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Figure 4.14:  Most frequently used fertilizers in the 

Joostenbergvlakte/Kraaifontein area  (Chi-Square =  0.1282) 

Figure 4.15:  Most frequently used fertilizers in the Philippi area 

(Chi-Square =  0.1282) 

Figure 4.16:  Comparison of use of fertilizers in the 

Joostenbergvlakte/Kraaifontein and Philippi area as a percentage of 

the total use per farming area (Chi-Square =  0.4910) 
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Figure 4.18:  Comparison of use of selected agrochemicals in the Joostenbergvlakte/Kraaifontein and Philippi 

area as a percentage of the total use per area (Chi-Square = 0.9663)
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With Question 11 it could only be ascertained which pesticides from a given list of 

agrochemicals found on some farms during 2007 were used most frequently in the two 

farming areas.  Question 11 also meant to determine how much of each pesticide was used 

but in most cases farmers were not willing or able to give this information in enough detail.  

In most cases farmers were also reluctant to declare the use of agrochemicals not found on 

the presented list of agrochemicals.  It is important to note that at the time of this survey the 

names of the various agrochemicals used were different to those seen in Chapter two.  In 

several cases the same companies manufactured the agrochemicals mentioned here and in 

Chapter two and for some the basis of the chemical remained the same but only the name 

changed (Personal communication farmers; Personal communication consultants, Agri Mark, 

Durbanville, 2011). 

 

Figure 4.17 summarized the differences in use of the various listed agrochemicals by farmers 

from both farming areas.  The results for Question 11 as seen in Figure 4.17 indicate that 

farmers from these two areas use the same agrochemicals and that their frequency in use is 

not significantly different between the two areas since the Chi-square was 0.9663. 

 

Figure 4.17:  Comparison of use of selected agrochemicals in the 

Joostenbergvlakte/Kraaifontein and Philippi area as a percentage of the total use per 

farming area (Chi-Square =  0.9663) 
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The answers to Question 12 reflected the willingness or unwillingness of farmers to use 

remedial methods to alleviate contamination of their agricultural resources, soil, water and 

crops, with harmful chemicals and or heavy metals.  The results to Question 12 are 

summarized in Figures 4.18, 4.19, 4.20 and 4.21.  From Figure 4.18 it is seen that in general 

all farmers, from both areas, were willing to apply remedial methods should it ever be 

necessary. 

 

Figure 4.19:  Willingness of farmers to use specific remediation methods  

(Chi-Square = 0.0246)
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Farmers from the Joostenbergvlakte/Kraaifontein area showed a clear willingness to apply 

any remedial method needed to keep their agricultural resources which are soil, water and 

crops relatively free from harmful contaminants such as heavy metals as can be seen in 

Figure 4.19. 

 

Farmers from the Philippi area had some significantly different yes/no responses pertaining to 

their willingness to use remediation methods.  From Figure 4.20 it can be seen that farmers 

from the Philippi area were significantly hesitant to indicate their willingness to use 

phytoremediation as means of alleviating contamination of their agricultural soil with 

Figure 4.18:  Willingness of farmers to use specific 

remediation methods  (Chi-Square =  0.0246) 
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harmful chemicals and or heavy metals.  Figure 4.21 compared the willingness of farmers 

from the two areas to use certain remediation methods and it was seen that their overall 

responses were not significantly different.  

 

Figure 4.20:  Willingness of Joostenbergvlakte/Kraaifontein farmers to 

use specific remediation methods  (Chi-Square = 0.4045)
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Figure 4.21:  Willingness of Philippi farmers to use specific remediation 

methods  (Chi-Square = 0.0093)
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Figure 4.19:  Willingness of Joostenbergvlakte/Kraaifontein farmers to 

use specific remediation methods  (Chi-Square =  0.4045) 

Figure 4.20:  Willingness of Philippi farmers to use specific 

remediation methods  (Chi-Square =  0.0093) 
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Figure 4.22:  Comparison of willingness of Joostenbergvlakte/Kraaifontein and 

Philippi farmers as a percentage of total use of specific remediation methods 

per area  (Chi-Square = 0.9593)
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Verbally, farmers from both the Joostenbergvlakte/Kraaifontein and Philippi areas indicated 

their willingness to apply remediation methods once tests proved it absolutely necessary.  

Farmers were also only willing to apply remediation methods if they were not so costly as to 

affect their profits negatively.  Some farmers indicated that they were already using “soft 

agrochemicals” and that they used well balanced programmes designed by well-known 

agriculturists and hence they did not believe the mentioned remediation methods would be of 

much greater benefit to them. 

 

Activities in the areas surrounding the Philippi and the Joostenbergvlakte/Kraaifontein 

farming areas could pose a threat to various agricultural resources such as irrigation waters 

and cropped soils.  By answering Question 13 farmers were able to indicate if they were 

concerned about activities in their area that could lead to contamination of their irrigation 

water resources.  Figure 4.22 summarized whether farmers, from both areas, were concerned 

that their irrigation water resources could become contaminated due to activities in the 

surrounding areas.  From Figure 4.22 it was deduced that farmers in both areas were not 

Figure 4.21:  Comparison of willingness of Joostenbergvlakte/Kraaifontein 

and Philippi farmers as a percentage of total use of specific remediation 

methods per farming area  (Chi-Square =  0.9593)  

 

 

 



 219 

significantly concerned about threats to their irrigation water resources as Chi-square was 

0.2162. 

 

Figure 4.23:  Comparison of awareness of environmental threats to the 

quality of irrigation water resources in the Joostenbergvlakte/Kraaifintein 

and Philippi area (Chi-Square = 0.2162) 
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Farmers from the Philippi area indicated that treatment of soils with Methyl bromide, run-off 

from badly sanitized informal settlements, poor town planning that caused poor flood water 

drainage from agricultural land, pollution from nearby factories, dumping of various kinds of 

rubble, competition for water with surrounding industries and mineralization of underground 

water resources were the greatest potential threats to their irrigation water resources.  Sea 

water intrusion was also raised as a concern by a farmer whose farm land was close the 

Strandfontein area and approximately 4 km from the coast (Figure 4.2 and Figure 4.4).  The 

Joostenbergvlakte/Kraaifontein area farmers indicated that poor sanitation in informal 

settlements and subsequent run-off from these informal settlements as well as littering were 

the greatest threats to their irrigation water resources at the time of this survey. 

 

Question 14 was to ascertain farmers concern about activities in the surrounding areas that 

could decrease the quality of their agricultural soils.  The results for this question were 

Figure 4.22:  Comparison of awareness of environmental threats to the 

quality of irrigation water resources in the Joostenbergvlakte/ 

Kraaifontein and Philippi area  (Chi-Square =  0.2162) 
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summarized in Figure 4.23 and showed that farmers from neither area were significantly 

concerned about soil pollution due to activities in surrounding areas. 

 

Figure 4.24:  Comparison of awareness of environmental threats to the 

quality of agricultural soils in the Joostenbergvlakte/Kraaifontein and 

Philippi area  (Chi-Square = 0.4434)  
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Farmers from the Philippi area mentioned that dumping along some roads in the area could 

become problematic while fumigation of the soil every three years was probably a greater 

threat to the quality of their soils than activities in surrounding areas.  Farmers from the 

Joostenbergvlakte/Kraaifontein area also mentioned that littering, dumping and specifically 

methyl bromide fumigation treatment of their agricultural soils could become problematic in 

the future. 

 

It was important to find out if farmers were aware of the legal implications that come into 

play if agricultural resources are contaminated with harmful chemicals and or heavy metals.  

Question 15 was used to determine farmers‟ awareness of these legal implications and the 

results were summarized in Figures 4.24, 4.25 and 4.26.  From Figure 4.24 it was clear that 

farmers from both farming areas were equally unsure of the legal implications should their 

soil be contaminated excessively with heavy metals and or harmful chemicals.  Figure 4.25 

Figure 4.23:  Comparison of awareness of environmental threats to the 

quality of agricultural soils in the Joostenbergvlakte/Kraaifontein and 

Philippi area  (Chi-Square =  0.4434) 
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indicated that farmers of both areas were equally unsure of the legal implications should their 

irrigation water resources be contaminated with heavy metals or harmful chemicals, while in 

Figure 4.26 it was shown that farmers from both areas were unsure about the legal 

consequences if their crops were ever found to be contaminated with excess amounts of 

heavy metals or harmful chemicals. 

 

Figure 4.25:  Comparison of Joostenbergvlakte/Kraaifontein and Philippi 

area farmers' knowledge of legal implications around soil contamination  

(Chi-Square = 0.2147)
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Figure 4.26:  Comparison of Joostenbergvlakte/Kraaifontein and Philippi 

area farmers' knowledge of legal implications around irrigation water 

contamination  (Chi-Square = 0.1610)
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Figure 4.24:  Comparison of Joostenbergvlakte/ Kraaifontein and Philippi 

area farmers’ knoweledge of legal implication around soil contmination  

(Chi-Square =  0.2147) 

Figure 4.25:  Comparison of Joostenbergvlakte/ Kraaifontein and Philippi 

area farmers’ knoweledge of legal implication around irrigation water 

contmination  (Chi-Square =  0.1610) 
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Figure 4.27:  Comparison of Joostenbergvlakte/Kraaifontein and Philippi 

area farmers' knowledge of legal implications around crop contamination  

(Chi-Square = 0.6341) 
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4.5.  Discussion 

The information gained in this survey was useful to verify existing common knowledge that 

is not necessarily recorded in literature.  General information about the two farming areas 

was summarized in Table 4.2 and is elaborated on here.  From Figures 4.1, 4.2, 4.3 and 4.4 it 

can be seen that the Joostenbergvlakte/Kraaifontein area and Philippi farming area differ in 

size, with the Philippi area appearing slightly larger in terms of cropped soils.  In Table 4.2 it 

is shown that farmers claimed the average farm sizes in the Joostenbergvlakte area to be 75.4 

hectares each while Philippi farmers claimed average farm sizes of 50.4 hectares each.  The 

farm sizes given by farmers in this survey calculated to roughly a total of 678 hectares farmed 

on in the Joostenbergvlakte/Kraaifontein area and 856 hectares farmed on in the Philippi area, 

which agrees with the visual observations that the Philippi farming area is the larger area 

(Orthophoto Map Series A, 2001; Orthophoto Map Series A, 1999; Orthophoto Map Series 

A, 1992; Orthophoto Map Series B, 2001; Orthophoto Map Series B, 1999; Orthophoto Map 

Series B, 1992; Orthophoto Map Series C, 2001; Orthophoto Map Series D, 2001; Figures 

4.1, 4.2; 4.3 and 4.4). 

 

Figure 4.26:  Comparison of Joostenbergvlakte/ Kraaifontein and Philippi 

area farmers’ knoweledge of legal implications around crop contmination  

(Chi-Square =  0.6341) 
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From Figure 4.1 a total of approximately 687.5 hectares was calculated as vegetable cropped 

land between 1992 and 2000 in the Joostenbergvlakte/Kraaifontein area, which did not differ 

much from that given by farmers in this survey in 2007.  Using Figure 4.2 a total of 

approximately 1440.9 hectares was calculated as used for vegetable propagation in the 

Philippi farming area between 1999 and 2000 and this was more than indicated by farmers in 

this survey in 2007. 

 

Literature would suggest that the Philippi vegetable farming area is older than the 

Joostenbergvlakte/Kraaifontein vegetable farming area (Bamford, 2001; Chittenden Nicks 

Partnership, 1997; Meerkotter, 2003; Saayman, 2010; Sawyer, 1994).  The literature is 

supported slightly in that current land owners of the older farms in the Philippi area claim 

their land to be about 59 years old while the current owners of the older farms in the 

Joostenbergvlakte/Kraaifontein area claim their land to be about 43 years old (Table 4.2).  

The fact that vegetables have been farmed with longer in the Philippi area might attribute to 

this area being slightly larger than the Joostenbergvlakte/Kraaifontein vegetable farming area 

to date. 

 

In both areas new farms were indicated as roughly 12 to 15 years of age and this may indicate 

that these vegetable farming areas are not dwindling but still very productive despite 

encroaching industries and residential areas (Table 4.2; Figures 4.3 and 4.4).  Using Figures 

4.3 and 4.4 an approximate 1214.1 hectares was calculated for the Joostenbergvlakte/ 

Kraaifontein area and an approximate 1534.4 hectares for the Philippi area as being farmed 

on with vegetables in 2011.  This needs to be verified in the actual field but indicates that 

both vegetable farming areas are growing or are at least stable despite urbanization.  These 

figures translate to approximately 2128 to 2749 hectares of land being used for vegetable 
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farming in the greater City of Cape Town (Table 4.2; Figures 4.1, 4.2, 4.3 and 4.4).  The 

types of vegetable crops grown in the two farming areas are not significantly different and the 

major crops include cabbage, carrots and cauliflower (Figures 4.11, 4.12 and 4.13).  Some 

crops, though grown significantly less than cabbage, carrots and cauliflower, seemed to be 

able to open niche markets to farmers from the two different areas, thus potentially reducing 

competition between farmers of these two farming areas on the Cape Town fresh produce 

market.  Garlic, leaks, potatoes and spinach for example seemed to be grown more frequently 

in the Philippi area, while beetroot and lettuce seemed to be more frequently grown in the 

Kraaifontein area (Figure 4.13).  These farming areas are thus precious resources to Cape 

Town as a whole and local government should help farmers safeguard their resources 

especially vulnerable water resources. 

 

General practice in both areas seems to be the storing of irrigation water in surface holding 

dams (Personal communication farmers).  The dams in the Joostenbergvlakte/Kraaifontein 

area are often larger than those seen in the Philippi area and thus comparatively lower in 

number (Table 4.2).  In both areas boreholes fill these irrigation water holding dams, but in 

the Philippi area more boreholes are used than in the Kraaifontein farming area (Tables 4.2 

and 4.3).  Farmers from the Joostenbergvlakte/Kraaifontein area seem to have a greater 

variety of supplementary water resources than those in the Philippi farming area.  

Joostenbergvlakte/Kraaifontein farmers can for example make use of water from nearby 

rivers and the Theewaterskloofdam to supplement their irrigation water resources (Figure 4.5 

and Figure 4.7).  Philippi farmers on the other hand seem to rely more heavily on 

underground water resources by having relatively more boreholes and by recycling water on 

their farms to supplement the existing irrigation water resources in holding dams (Figure 4.6 

and Figure 4.7).  Apart from the differences in supplementary irrigation water resources, in 
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general the farmers from both areas seem to have similar practices around which resources 

they use for irrigation water and how they use it (Figure 4.7). 

 

Farmers of the Philippi area seem to depend more heavily on ground water emphasizing the 

need to protect underground water resources in Cape Town.  In Table 4.2 and Table 4.3, it is 

indicated that the approximate depth of boreholes in the Philippi area are 52.4 meters, while 

the approximate depth of boreholes in the Joostenbergvlakte/Kraaifontein area are 85.4 

meters, and that it was significantly different with a p-value of 0.0111 for the ANOVA and a 

LSD of 24.64 meters in the T-test.  The significant difference in approximate depth of 

boreholes from these two farming areas may indicate that different aquifers are used to draw 

irrigation waters from.  This information supported literature that indicated that Philippi 

farmers drew water from the Cape Flats aquifer while Kraaifontein farmers most likely drew 

groundwater from secondary aquifers in the Malmesbury shales meta-sediment (Cole and 

Roberts, 1996; Fraser and Weaver, 2000; Harris et al., 1999; Rose, 1996; Saayman and 

Adams, 2002; Wright and Conrad, 1995). 

 

In Table 4.2 it was indicated that both the Kraaifontein and Philippi areas had rather high 

water tables which often lead to waterlogging in the winter in these areas (Personal 

communication with farmers).  The changes in the water table level can play a role in the 

circulation of elements in the soil and thus salinization and mineralization of irrigation waters 

could occur (Aza-Gnandji; 2011; Miller, 1996).  Farmers from both areas claimed however 

that their borehole waters were not becoming more saline in 2007, while Aza-Gnandji (2011) 

reported that in 2010 salinization was becoming a problem in the Philippi farming area.  The 

fact that in 2007 Cl and Na concentrations in borehole waters did not exceed 100 mg.l
-1

 Cl 

and 70 mg.l
-1

 Na could have been a heuristic that caused farmers to be rather unconcerned in 
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2007, about the possibility of salinization of their irrigation waters in the future compared to 

Philippi farmers‟ concern about irrigation water and soil salinization today (Aza-Gnandji, 

2011; Grasmück and Scholz, 2005; Figures 4.8, 4.9 and 4.10).  Salinization and 

mineralization of irrigation waters can be a result of years of application of fertilizers (Miller, 

1996). 

 

In Chapter two, it was concluded that cattle manure and chicken manure were the greatest 

sources of heavy metals on farms of these two farming areas.  It was noted that farmers from 

both areas used relatively less cattle manure compared to the use of chicken manure and 

chemical fertilizers (Figures 4.14, 4.15 and 4.16).  The use of cattle manure was significantly 

less in the Philippi area compared to the use of chicken manure and chemical fertilizers in 

this area (Figure 4.15) which should preferably be maintained since salinization of water 

resources and soil in this area is a concern (Aza-Gnandji, 2011).  Agrochemicals other than 

fertilizers could also be harmful if in excess in the agricultural system and the use of certain 

general agrochemicals was compared between the two farming areas in Figure 4.17. 

 

In general, similar agrochemicals seemed to be used by farmers from the Philippi and the 

Joostenbergvlakte/Kraaifontein farming areas (Figure 4.17).  The names of the agrochemicals 

listed in Figure 4.17, which represents 2007 data, is different to those seen in Table 2.8 of 

Chapter three, which represents data gathered in 2011, but this is due to product name 

changes as the original patents for agrochemicals expired and the products may subsequently 

have been marketed under several new names (Personal communication consultant, Agri 

Mark, Durbanville, 2011).  Nonetheless the trend shows that farmers from these two areas 

used similar products.  The similarity in fertilizer and agrochemical use between these two 

areas indicated indirectly that providing similar information with regards to chemical and 
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heavy metal contamination prevention and remediation to farmers would be appropriate 

(Figures 4.16 and 4.17). 

 

In general farmers from both areas were willing to apply remedial methods providing it was 

proven to be necessary (Figure 4.18; Personal communication with farmers).  Farmers from 

the Joostenbergvlakte/Kraaifontein farming area were only slightly hesitant to apply more P 

fertilizer than usual as a remedial method but, this was not significant to indicate their 

unwillingness to do so if needed (Figure 4.19).  Farmers from the Philippi farming area 

though willing to apply remedial methods if needed, were more cautious to say “yes” to 

remedial methods that called for the use of additional immobilizers and or phytoremediation.  

Farmers commented in both areas that the application of a remedial method should preferably 

not reduce their profits and not be too costly to employ.  The possibility of using 

phytoremediation was thus not as readily said “yes” to by Philippi farmers as it would imply 

the temporary non-use of land for vegetable cropping which would probably impact on their 

income (Figure 4.20). 

 

It was thus in general shown that farmers from both areas were willing to apply remediation 

treatments (Figure 4.21).  It was clear from discussions with farmers in both areas that they 

would only employ remedial methods if the benefits of doing so outweighed the costs of not 

doing so.  Some farmers commented that they were using “soft agrochemicals” that were 

environmentally friendly and part of well-balanced programmes designed specifically for the 

farmers by agriculturists in the local sector.  This may have created a sense of security with 

farmers in terms of the safety they may perceive to have from contamination of their 

agricultural systems with excess harmful chemicals and heavy metals.  This kind of 

dissonance heuristic may cause farmers to be less motivated to monitor the presence of heavy 
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metals in their soils, water resources and crops which could be problematic in the future.  

Greater emotional awareness of the threats to these specific farming areas among farmers 

might cause farmers to use less heuristics to avoid the issue of heavy metal contamination 

and the consequent need to know about preventative and remediation methods (Grasmück 

and Scholz, 2005). 

 

From the data in Figures 4.22 and 4.23, it can be seen that farmers from both areas are not 

significantly concerned about threats to their agricultural lands from the surrounding areas.  It 

may be that the threats from surrounding areas are not really significant, but it could also be 

that farmers might underestimate these threats.  Farmers in both areas for example, indicated 

that the fumigation of their soils with Methyl bromide, amongst other chemicals, could be a 

threat to their irrigation water resources and soils yet, from Figures 4.22 and 4.23 no 

significant difference was evident as to farmers being aware of threats or not.  Farmers also 

indicated that illegal dumping of various forms of waste and run-off from informal 

settlements were also threats to their irrigation water resources and soils, but again it was not 

clearly evident that farmers truly perceived any real threats to their resources since, their 

“yes” and “no” responses to perceiving any threats to their waters and soils were not 

significantly different (Figures 4.22 and 4.23).  Emotional awareness of surrounding threats 

to these agricultural areas may increase the risk perception farmers may have of particular 

threats and thus their willingness to take action to protect their agricultural resources from 

future threats (Grasmück and Scholz, 2005). 

 

Farmers were aware of some particular threats to their agricultural resources, but it was not 

clear if they were planning to change their farming practices, by for example, not fumigating 

their soils with Methyl bromide any longer, or by asking the local municipalities to penalize 
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those who dump waste on their farms illegally.  It would be of great value to inform the 

communities surrounding these farming areas of the importance of ensuring that the activities 

they take part in around these farming areas must encourage sustainability of these farms for 

the benefit of all vegetable consumers.  It was also noted from Figures 4.24, 4.25 and 4.26, 

that farmers themselves were unsure of the legal responsibilities that rested upon them in 

terms of ensuring that their agricultural resources are used sustainably and are of good 

quality.  Local authorities could thus play a valuable role in educating the broader 

communities in these two farming areas about means of preventing pollution of these 

agricultural resources. 

 

4.5.  Conclusion 

As stated in the Discussion section, these two farming areas together account for about 2749 

hectares of vegetable farming land in Cape Town.  It is imperative that the local government 

should thus protect this valuable resource and work closely with farmers and communities 

around these farming areas to ensure sustainable growth in these areas.  These agricultural 

systems are fragile and intimately connected to all who get vegetables from them.  The 

communities surrounding these farming areas also need to be made more aware of the fact 

that these agricultural areas are of importance to them also and not only to the farmers.  The 

communities surrounding these farming areas can play a valuable role in protecting these 

agricultural lands from pollution by reducing their contribution to pollution, by for example, 

ceasing to dump litter along farm roads. 

 

The local municipalities should also ensure that the communities in the areas surrounding 

these farmlands have proper sanitation.  Proper sanitation is not only a basic right the 

members of these communities have, but it will reduce run-off pollution to the farmlands.  
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Farmers can also play a role by insisting that local municipalities deliver basic sanitation to 

the communities surrounding their farms, which will in turn reduce the risk of pollution to 

their farmlands.  Future studies could thus look at means of evaluating and increasing 

legitimately the emotional concerns of local farmers and the surrounding communities about 

activities they are involved in that could pollute these agricultural areas and lead to loss in the 

sustainability of these areas as a vegetable basket for Cape Town. 

 

Future studies could include raising awareness amongst the communities of these two 

farming areas with regard to heavy metal pollution and other forms of environmental 

pollution.  Since pollution in these agricultural environments could ultimately affect 

groundwater resources another study could look at the quality of the secondary and primary 

aquifers used in the Joostenbergvlakte/Kraaifontein and Philippi farming areas to abstract 

irrigation water from.  Farmers also need to be informed of the legal consequences and 

obligations in the event of contamination of agricultural resources with excess amounts of 

heavy metals and other harmful chemicals and this kind of environmental education study 

could be done by those who have some expertise in environmental law. 

 

Overall the results of this chapter seemed to indicate that farmers from the Joostenbergvlakte/ 

Kraaifontein area had relatively similar agricultural practices to those of the Philippi farming 

area.  The differences between these farming areas would thus seem to stem from physical 

parameters such as differences in soil types, topography and availability of surface and 

groundwater resources as well as if industries or residential areas were encroaching. 
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CHAPTER 5 

 

GENERAL DISCUSSION AND CONCLUSION:  WHAT IS THE HEAVY METAL 

SITUATION ON CAPE TOWN VEGETABLE FARMS? 

 

5.1.  Introduction 

Taking into consideration that the Philippi and Joostenbergvlakte/Kraaifontein vegetable 

farming areas are currently Cape Town‟s most prominent and commercially viable in terms 

of vegetable production, it is imperative that these agricultural areas be taken care of.  It has 

been indicated that over the past few years the concentrations of heavy metals, with specific 

reference to cadmium, copper, lead and zinc had neared and on a few occasions, exceeded the 

limits set therefore in irrigation water resources, agricultural soils and vegetable crops as 

stipulated in the South African regulations and guidelines (DoH, 2003; DWAF, 1996; 

Meerkotter, 2003; Sogayise, 2003; WRC, 1997).  Since the Philippi, Joostenbergvlakte and 

Kaaifontein farmers are major suppliers of vegetables to Cape Town‟s fresh produce market 

this study aimed to investigate some issues around heavy metal contamination of agricultural 

resources from these farming areas (Directorate Agricultural Statistics, 2000). 

 

This research also falls under the “Sustainable utilization of subterranean water resources for 

the improvement of life” project, which is but one of many projects that falls under the 

“Dynamics of Building a Better Society Programme (DBBS)” at the University of the 

Western Cape in collaboration with various Flemish universities.  Investigation of the heavy 

metal contents of various agricultural water resources in this study, and how they may have 

become contaminated due to certain farming practices in the mentioned farming areas thus 

added to the knowledge bank of the DBBS programme as a whole.  This thesis looked to 
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meet more specifically the following aims; the analysis of various inputs to farms to find 

possible sources of heavy metals, the investigation of the effectiveness of using triple super 

phosphate fertilizer (TSP) and EDTA respectively as means of mitigating heavy metal 

pollution in a pot experiment using soils from these farms and the gathering of farming 

practice information from the Philippi and the Joostenbergvlakte/Kraaifontein farming areas. 

 

The research process for this thesis was divided into three main studies each of which is 

discussed, in terms of, their main outcomes, means of improving the materials and methods 

that were used and suggestions for future research relating to these specific studies.  The 

overall success of this research as a whole is also discussed in the sections that follow and 

concludes this thesis. 

 

5.2.  Analysis of inputs to the farms as possible heavy metal sources 

This study looked at the heavy metal contents of various inputs to the farms of the two main 

study areas (the Philippi area and then the Joostenbergvlakte and Kraaifontein areas grouped 

together as one large area).  The following hypotheses were formulated about the heavy metal 

contents of various samples that were to be collected on the farms from these areas:  It was 

expected that raw/unprocessed manures would contain significant amounts of heavy metals 

and more specifically Cd, Pb and Zn.  It was also expected that Zn concentrations would be 

high in chicken manure.  The concentrations of Cd, Pb and Zn were also expected to be high 

in phosphate fertilizers (Kane, 2002; Meerkotter; 2003; Webber and Singh, 2003).  It was 

also expected that copper concentrations would be great in various agrochemicals such as 

fungicides and pesticides. 
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Results indicated that cattle and chicken manure were the greatest sources of heavy metals 

and specifically Cd, Pb and Zn.  The levels of Zn and Cu found in cattle and chicken manure 

exceeded limits set therefore in agriculturally applied dry sludge (Dach and Starmans, 2005).  

Compared to chicken and cattle manure, phosphate fertilizers contained comparatively lower 

levels of most heavy metals except for Hg.  Individual agrochemicals could not be collected 

and the only way to test the heavy metal contents of the agrochemicals used on these farms 

was to obtain already mixed solutions of various undisclosed agrochemicals that were being 

sprayed on crops from small tractors with crop-spray-dispensers attached.  The amount of Cu 

measured in crop spray samples was very low and almost negligible which was unexpected.  

The main direct sources of heavy metals to the agricultural soils of both farming areas thus 

appeared to be cattle manure as well as chicken manure. 

 

This part of the research also aimed to determine the heavy metal content of various water 

resources on these farming areas, soils and vegetable crops.  Significant concentrations of Cd, 

Cu, Pb and Zn were expected in surface waters used to supplement irrigation water resources 

(Qoko, 2003).  None of the irrigation water resources were however found to exceed the 

limits set for these heavy metals by South African regulatory guidelines (DWAF, 1996).  It 

was further expected that the concentrations of heavy metals in collected soil samples would 

be greater than seen in previous studies due to possible accumulation of heavy metals in 

agricultural soils (Brown, 1996; Marschner, 1995; Miller, 1996; Rice and Rice, 1997; 

Summerfield, 1994).  This hypothesis was not supported as the collected soils were in general 

not more contaminated than measured in studies of previous years (Meerkotter, 2003; 

Sogayise, 2003).  The maximum permissible concentrations for Cu, Pb and Zn in soils were 

however, exceeded in several soil samples from the Philippi area but, these samples did not 

exceed limits set by the European Community (CoEC, 2006; Murphy, 1997; WRC, 1997). 
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The concentration of heavy metals in vegetables produced in these two farming areas was 

expected to be marginally greater than seen in studies of previous years (Meerkotter, 2003; 

Sogayise, 2003).  The levels of heavy metals, measured in this study, in various vegetable 

crops were, however, less than those measured in vegetables in previous years.  Overall there 

was not a significant difference in the concentration of heavy metals in cabbage, carrots and 

lettuce sampled in the two main farming areas.  The limits set by South African regulations 

for Pb and Zn was exceeded in cabbage, carrots and lettuce samples from both areas, while 

the concentration limit set for Cd was exceeded in carrots and lettuce produced in the Philippi 

area only (DoH, 2003).  Though South African limits for Cd, Pb and Zn were exceeded in 

some vegetables, European limits set for heavy metals in the specific vegetable types were 

not exceeded (Murphy, 1997). 

 

The results of this study could have been improved by increasing sample numbers but this 

was complicated by various factors that will be mentioned below.  These factors should, 

where possible, be avoided or at least lessened in future surveys.  It is important to note that 

the collecting of enough samples, of a crop species that is of similar age, was very difficult 

and could realistically only be achieved if several sampling periods were established during a 

research period/year.  The collection of a large number of comparable samples over a short 

time period was not possible in this research.  Finding out what the time schedules for 

irrigation and crop spraying on farms are, may also help to increase the amount of sprinkler 

water and crop spray samples that could be collected in future studies.  In future studies it 

could also improve the quality of the research results if the researcher were in a position to 

determine when crops have passed the withholding period prior to harvesting and since the 

last crop spray application.  The reason being that measurements of contaminants in the crops 
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are then, more likely to be representative of the actual quality of the crops and not partly due 

to residues of crop sprays thereon. 

 

Future studies that relate to this part of this thesis could include the extensive listing of 

agrochemicals used in the two main farming areas and the determination of heavy metal 

content of these agrochemicals, prior to the mixing thereof for the crop spraying process.  

The actual amounts of heavy metals added to soils through addition of various fertilizers 

could also be studied and determined by sourcing fertilizer application programmes from 

agriculturists that serve the farmers and by making the necessary calculations from there.  A 

similar process could be followed with regard to the contribution of heavy metals through 

spraying crops with various agrochemicals such as fungicides, pesticides and other growth 

stimulants (Nicholson et al., 2003). 

 

Future studies could, in addition, draw attention to the contribution of air pollution in terms 

of deposition of heavy metals on crops, soils and water resources in these farming areas.  A 

study that investigated both primary and secondary aquifers used by farmers from these areas 

in terms of heavy metal content would be useful.  Further, a more in-depth study that looks at 

the differences between maximum limits set for heavy metals in soils and crops in South 

African and in Europe could also be useful.  Using both South African and the less stringent 

European standards, to measure the quality of crops and soils from these two farming areas, it 

was clear that compared to other case studies across the globe, the agricultural systems of the 

Philippi and Joostenbergvlakte/Kraaifontein areas were reasonably “clean” in terms of heavy 

metal pollution (DoH, 2003; Murphy, 199, Republic of South Africa, 1998). 
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5.3.  Assessment of mitigation techniques (Pot experiment) 

Although the Philippi and Joostenbergvlakte/Kraaifonyein farming areas are not as 

contaminated as seen elsewhere in the world, it is important to ascertain which remedial 

methods would be useful to inhibit the effects of heavy metals in the agricultural system if 

ever heavy metals became too concentrated in these agricultural systems.  The use of a triple 

super phosphate fertilizer (TSP) at three different concentrations and respectively, the use of 

three different EDTA solutions, were investigated as means of reducing the uptake of heavy 

metals and more specifically Cd, Pb and Zn by cabbage plants grown in growth mediums 

prepared from soil from these two farming areas, altered with different concentrations of Cd, 

Pb and Zn respectively.  It was hypothesized that the use of TSP treatments would be more 

effective than EDTA treatments in reducing the uptake of specifically Cd, Pb and Zn by 

cabbage plants, since TSP was expected to be able to immobilize these heavy metals and 

thus render them unavailable for uptake by plant roots, while EDTA was expected to 

increase the solution of Cd, Pb and Zn in the soil solution, thus making them more available 

for uptake by plant roots.  Secondly, it was hypothesized that a lower TSP concentration 

treatment would be most effective at reducing the uptake of Cd, Pb and Zn by cabbage plants 

than greater TSP concentration treatments, since heavy metals are often byproducts in TSP 

fertilizers and greater TSP concentrations could increase the concentrations of these heavy 

metals in the soil medium (Aldrich et al., 2004; Brown et al., 2005; Cao et al., 2003; Cui et 

al., 2004; Finžgar and Leštan, 2007; Huang et al., 2003; Illera et al., 2004; Jiao et al., 2004; 

Lai and Chen, 2004; Lai and Chen, 2005; Liphadzi and Kirkham, 2006; Luo et al., 2005; 

Luo et al., 2006; Melamed et al., 2003; Owenby et al., 2005; Palma and Mecozzi, 2007; 

Pardo, 2004; Sun et al., 2001; Tan et al., 2011; Tang et al., 2004; Thayalakumaran et al., 

2003; Wu et al., 2003; Wu et al., 2004; Zhu et al., 2004). 
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The results partly supported the first hypothesis that TSP treatments would be better to use 

than EDTA treatments in that it was indicated that the use of 24 mg EDTA/kg soil in the 

presence of Cd at 2.0 mg/kg soil (the maximum concentration allowed in South African soils) 

was dangerous in that it lead to accumulation of much Cd in the leaves of cabbage plants.  

Furthermore, the application of 12 mg EDTA/kg soil in the presence of respectively 6.6 mg 

Pb/kg soil and 46.5 mg Zn/kg soil (their maximum permissible concentrations in South 

African soil) lead to accumulation of respectively Pb and Zn in cabbage leaves above 

permissible levels set therefore in foodstuffs in South Africa.  The second hypothesis which 

stated that concentrations of TSP at lower levels would be more effective at reducing the 

uptake of respectively Cd, Pb and Zn, was only partly supported in that the use of 1 mg 

TSP/kg soil overall seemed to lead to lesser accumulation of these heavy metals in cabbage 

leaves, although it did not unequivocally exclude the possibility that using 4 mg TSP/kg soil 

or 8 mg TSP/kg soil could also be effective under certain circumstances. 

 

What was clear from the results of this study was that the recommendation of remedial 

treatments of any kind should not be made by looking at the concentration of only one or two 

particular elements in the soil but, rather, that a number of variables need to be considered.  

Nonetheless, the results of this study did seem to indicate that 1 mg TSP/kg soil would be the 

most appropriate treatment to use in the presence of excess Cd, Pb and/or Zn in the soils from 

the two study areas at levels near the maximum permissible concentrations set therefore in 

South African soils.  The results of this study could have been more conclusive if, perhaps, a 

greater number of replicates were used for each treatment.  The application of the results 

from this experiment might also be different for other varieties of cabbage and other crops.  

Taking the above-mentioned into consideration, it is clear that several factors need to be 

taken into consideration before recommending a remedial treatment to farmers. 
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Future studies could look at other remedial treatments that may be more appropriate in the 

soils of the Philippi, Joostenbergvlakte and Kraaifontein areas, while field trials could be 

done on particular portions of land in these farming areas, which may be more contaminated 

with heavy metals than other portions.  Running future pot experiments could also investigate 

the movement of heavy metals to deeper layers, in soils from these farming areas, in order to 

ascertain the risk of remedial methods leaching heavy metals and other elements to 

underground water resources.  Ultimately, for remedial tests and trials to be more useful, by 

leading to the best methods being employed on farms if ever needed, collaboration with 

agriculturists that serve the farmers of the study areas is essential in the selection of 

appropriate remedial treatments to be tested. 

 

5.4.Farming practice survey 

In the end this research was intended to benefit farmers who could gain most from the 

information gathered.  It was thus important to establish what farmers‟ views were about 

addressing possible pollution threats to their farmlands, as well as, farmers‟ willingness to 

employ remedial methods.  It was expected that farming practices would be summarized 

more accurately by conducting a survey with farmers from the two study areas.  Informal 

discussions with farmers lead to the following expectations; firstly, that farmers would be 

proved willing to employ remedial treatments but, secondly, that farmers did not view 

addressing heavy metal contamination of agricultural resources as a priority. 

 

The results did support the expectation that farmers from both areas would be willing to 

consider the application of remedial methods.  Farmers from both areas did comment, 

however, that they would only employ remedial methods should they be needed, have been 

proven to work and will outweigh the cost of applying them.  It was also found that farmers 
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from neither area were significantly concerned about threats specifically related to heavy 

metal pollution of their agricultural resources.  Farmers, for example, indicated their 

awareness of threats such as those related to the fumigation of their soils with Methyl 

bromide, run-off from ineffectively sanitized nearby informal settlements and illegal 

dumping along roads in these farming areas but, even these threats mentioned by farmers 

themselves did not seem to be viewed as needing urgent attention. 

 

Gathering information around farming practices in the Philippi and Joostenbergvlakte/ 

Kraaifontein farming areas revealed that both areas had similar farming patterns.  Farmers 

from both areas used significantly less cattle manure than chicken manure and chemical 

fertilizers.  Similar agrochemicals were used in the two areas.  Farmers in both areas grew 

cabbage, carrots, cauliflower and lettuce in abundance as their main produce.  Farmers from 

the Joostenbergvlakte/Kraaifontein area seemed however to have more supplementary 

irrigation water resources to draw from than farmers from the Philippi area.  Farmers from 

the Philippi farming area seemed to rely heavily on underground water resources while 

farmers in the Joostenbergvlakte/Kraaifontein area used underground water resources but also 

drew water from nearby rivers, storm water canals and the Theewaterskloofdam. 

 

Although both areas are surrounded by urban areas that are expanding it was found that in 

both farming areas the latest farms were between 12 and 15 years old and that the farming 

areas seemed to have expanded to some extent.  Farmers were however reluctant to answer 

questions that probed the actual size of land they farmed on, the amount of hectares they 

planted of a crop type per year and how much fertilizer and agrochemicals they applied per 

year.  Since it is the right of farmers to withhold this information if they so desired all the 

information desired could not be gathered as planned (The Constitution of the Republic of 
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South Africa, 1996).  Although it was envisaged to interview at least 80% of the farmers from 

both areas, about 71-75% of the farmers were interviewed in each area. 

 

Nonetheless, from the survey with farmers several ideas for future studies became evident.  

Firstly future studies could look at issues around farmers‟ views and knowledge about 

pollution threats to their agricultural resources, secondly, their emotional concern about the 

threats and thirdly, their consequent likeliness to act upon these threats (Grasmück and 

Scholz, 2005).  Another study could investigate the ways in which local municipalities and 

authorities could educate communities around these farming areas about the importance of 

these farming areas to all citizens and the importance of reducing pollution to these areas to 

allowing sustainability of these farming areas.  Other studies could compare the two studied 

agricultural systems with other farming methods related to pollution, not mentioned here, in 

commercial, rural and organic farming systems across the globe.  Studies could also be 

carried out to determine the physical growth of these farming areas and their surrounding 

urban communities. 

 

It would be interesting to study the changes in these farming areas and their surrounding 

communities by redefining the makeup of areas that were once defined as smallholdings, 

informal residential areas and industrial areas, but have now expanded and perhaps been 

restructured to include various other activities.  More scientific studies could be conducted to 

determine the effects of years of fertilizer application to soils in these farming areas in terms 

of salinization and mineralization of these soils.  Studies that could link to soil sustainability 

might evaluate the effect of the seasonal fluctuation in the water table in these areas on the 

mineral and salt concentrations in soil and water resources in these agricultural systems (Aza-

Gnandji, 2011; Miller, 1996). 
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5.5.  Final conclusion 

Judging by the number of possible future studies around pollution issues in the Philippi, 

Joostenbergvlakte and Kraaifontein farming areas that have been raised in this chapter alone, 

the research of this thesis could be considered useful and even successful.  One of the aims of 

this thesis was to identify major sources of heavy metals to these farming areas, which was 

successfully done by identifying cattle manure and chicken manure as the greatest sources of 

heavy metals, as discussed earlier in this chapter and in Chapter two.  Another aim was to 

investigate the usefulness of either TSP or EDTA as a remedial treatment in the possible 

event of excess Cd, Pb and/or Zn contamination of agricultural soils from the study areas.  

Though it could not be conclusively said which TSP treatment would be the best option, at 

least it was clear that EDTA treatments would most likely not be suitable for use in the 

agricultural soils of these areas, as was discussed in detail in Chapter three.  Lastly, it was 

aimed to gather information on the farming practices in the study areas and also to ascertain 

farmers‟ willingness to employ remedial methods if needed in the future.  To a great extent 

the last aim was achieved in that much information around farming practices could be 

verified and it was found that farmers were willing to employ suitable remedial methods if 

they ever proved necessary in the future to ensure sustainability of their agricultural 

resources, as was discussed in Chapter four. 

 

Linking this thesis research to the DBBS programme, it is clear that, as increased pressure is 

being placed on subterranean water resources of Cape Town due to limited surface water 

resources, the management and protection of subterranean water resources by monitoring 

agricultural activities that can affect them is important.  Since farmers may be held 

accountable for the contamination of water resources on their farms by needing to bear the 

cost of remediation, the monitoring of not only heavy metals such as Cd, Cu, Pb and Zn in 
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agricultural resources, but also other harmful chemicals is essential, even if their 

concentrations are not necessarily problematic at present. 

 

Though the concentration of some heavy metals have exceeded limits in certain agricultural 

resources according to South African regulations, it is important to note that in comparison to 

European regulations ours are very restrictive and as such the results of this study need to be 

dispensed with much caution.  Unnecessary sensation that could cause harm to farmers‟ 

reputations should be avoided at all costs.  The information gathered through this study is to 

benefit farmers and thus the results of this study will be shared with farmers as it is the 

farmers‟ right to have access to this information relating to their farming.  In conclusion, the 

findings of this thesis are to be used as a measure to encourage sustainable farming practices 

and activities around the Philippi, Joostenbergvlakte and Kraaifontein farming areas and 

elsewhere. 
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University of the Western Cape 
DEPARTMENT OF BIODIVERSITY AND CONSERVATION BIOLOGY 
Private Bag X17 Bellville 7535 South Africa  

Telephone +27-21-959-2301  

Fax +27-21-959-2312 

 

 

Consent Form 

 

 

I, ………………………………………………… hereby confirm that I have been informed 

of the purpose of the study “Sources of heavy metals in vegetables in Cape Town, and 

possible methods of remediation”. 

 

I agree to participate in: 

The survey for gathering farm practice information   yes / no 

The collecting of various samples on my farm   yes / no 

Giving soil from my farm to be used in a pot experiment  yes / no 

 

I understand that I have the right to withdraw from this study at any time without giving a 

reason and without incurring displeasure or penalty. 

 

I also understand that the information given by me will not be used against me or any other 

person or institution and will be treated as if anonymous through use of codes and aliases. 

 

Respondent      Researcher:  Marÿke Meerkotter 

       Cell phone:  083 534 2460 

       E-mail:  mmeerkotter@uwc.ac.za 

Date 
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University of the Western Cape 
DEPARTEMENT VAN BIODIVERSITEIT EN 

BEWARINGSBIOLOGIE 
Privaatsak X17 Bellville 7535 Suid-Afrika 

Telefoon +27-21-959-2301  

Fax +27-21-959-2312 

 

Toestemmingsvorm 

 

 

Ek, ………………………………………………… bevestig hierdeur dat ek bewus gemaak is 

van die studie “Sources of heavy metals in vegetables in Cape Town, and possible methods of 

remediation” se doelwitte. 

 

Ek stem in om deel te neem aan die volgende: 

Die opname aangaande toegepaste plaas praktyke    ja / nee 

Die versameling van verskeie monsters op my plaas    ja / nee 

Vereskaffing van grond van my plaas vir  gebruik in „n pot eksperiment ja / nee 

 

Ek verstaan dat ek die reg het om enige tyd te onttrek van die studie, sonder verduideliking en 

sonder enige onaangename gevolge. 

 

Ek verstaan ook dat die inligting wat ek verskaf nie teen my of enige ander persoon of 

instansie gebruik sal word nie, en dat die informasie as anoniem behandel sal word deur die 

gebruik van skuilname en kodes. 

 

Respondent      Navorser:  Marÿke Meerkotter 

       Selfoon:  083 534 2460 

       E-pos:  mmeerkotter@uwc.ac.za 

Datum 
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