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ABSTRACT 

 

The incidence of type 2 diabetes (T2D) is persistently increasing globally. T2D is associated 

with pancreatic β cell dysfunction and insulin resistance in peripheral tissues such as the liver 

and skeletal muscle. Skeletal muscle is the major site for insulin stimulated glucose uptake. 

Maintenance on a gestational high fat diet may programme insulin resistance. Programming 

is induced by the exposure of organisms to either a stimulus or insult during foetal and/or 

early neonatal life and alters offspring physiology and metabolism. The aim of the present 

study was therefore to investigate the effects of maternal diets, varying in fat content, on 

neonatal hepatic and skeletal muscle gene (mRNA) and protein (immunoreactivity) 

expression of proximal insulin signalling factors: insulin receptor alpha (IRα), insulin 

receptor substrate 2 (IRS2) and phosphoinositide 3-kinase-p110 alpha (PI3K-p110α), and to 

assess the therapeutic potential of Aspalathus linearis extract after high fat programming.  

Pregnant rats were randomised into groups maintained on diets with varying fat proportions: 

10% (control), 20% (20F), 30% (30F) and 40% (40F) fat as energy throughout gestation. 

Neonatal liver and skeletal muscle were collected to determine the proximal insulin signalling 

expression profiles of the target factors: IRα, IRS2 and PI3K-p110α. Quantitative polymerase 

chain reaction (qPCR) was applied to determine mRNA expression of these target insulin 

signalling factors. Immunostaining of the target proteins in the liver and skeletal muscle was 

performed followed by relative quantification with image analysis software. Further, 

Aspalathus linearis (Al) extract was orally administered to mothers during gestation in the 

10% (Control-Al) and 40% (HFD-Al) diets at a dose of 150 mg/kg. Body weight, food intake 

and blood glucose concentrations were monitored throughout gestation in mothers.  

 

Maternal diets, varying in the percentage of fat content, showed no significant effect on 

neonatal hepatic IR and IRS2 mRNA expression. However, hepatic PI3K mRNA expression 

was elevated in 30F neonates compared to 20F neonates. Skeletal muscle IR and PI3K 

mRNA expression were reduced in the 30F and 40F neonates compared to 20F neonates. 

There was reduced hepatic IRα immunoreactivity in 40F neonates compared to control and 

20F neonates. Further, skeletal muscle IRα immunoreactivity was significantly reduced in 

30F and 40F neonates compared to control neonates. Therefore foetal high fat programming 
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reduced IRα in both the liver and skeletal muscle which may impair proximal insulin 

signalling in these glucose recipient organs. Aspalathus linearis had no effect on maternal 

serum insulin and glucagon concentrations. In addition, maternal caloric intake, body weight 

and organ weights (liver, brain and pancreas) were not altered amongst the groups. Further, 

HFD-Al neonates were heavier than control neonates. In conclusion, Aspalathus linearis, at a 

dose of 150 mg/kg, had neither harmful nor ameliorative effects in pregnant mothers fed high 

fat diet during gestation. In addition, Aspalathus linearis treatment had no ameliorative 

effects on neonates from mothers fed high fat diet throughout gestation.  

.  
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CHAPTER 1 

LITERATURE REVIEW 

 

1.1 Diabetes 

Diabetes is a chronic metabolic disorder characterised by an abnormal elevation in blood 

glucose concentrations (hyperglycaemia). Pancreatic β cells produce insulin, a hormone that 

stimulates glucose uptake from the blood stream into peripheral tissues. Diabetes may present 

due to β cell failure to synthesise and/or secrete insulin, or insulin resistance in peripheral 

(glucose recipient) tissues such as skeletal muscle, liver and adipose tissue (Lin and Sun, 

2010). Type 1 (T1D), type 2 (T2D) and gestational diabetes mellitus (GDM) are the major 

forms of diabetes. T1D mostly occurs in children and adolescents and is an autoimmune 

disorder characterised by few or no pancreatic β cells that results in reduced insulin 

production (Ku et al., 2012). T2D is mainly due to β cell dysfunction and insulin resistance 

(Ku et al., 2012) although this association remains complex. GDM first occurs during 

pregnancy and may disappear upon delivery or progress to T2D. The symptoms of diabetes 

include thirst, excessive urination, unexplained weight loss, blue-red vision, lethargy and 

changes in energy production (Lin and Sun, 2010; Spellman, 2010). 

1.1.2 Type 2 diabetes mellitus (T2D) 

1.1.2.1 Overview on the prevalence of T2D 

T2D has increased in all age groups globally. The number of people with diabetes was 

projected to increase from 171 million in 2000 to 366 million by 2030 (Wild et al., 2004). 

This projection signals that the number of individuals with diabetes will be double by 2030. 

T2D is linked with an increase in obesity, one of the core factors in metabolic syndrome 

(MetS) and insulin resistance. An increase in T2D and obesity results due to nutritional 

transition to a westernised diet and sedentary lifestyle particularly in developing countries 

(Gupta et al., 2012). Nutritional transition can be driven by urbanisation, globalisation and 

social changes (Amuna and Zotor, 2008). People tend to change their traditional diets (plant 

based food) due to urbanisation to adopt more westernised diets. Traditional diets contain 

more fibre and low fat unlike westernised diets that contain low fibre, high fat and 
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carbohydrate content that may lead to obesity. Obesity is associated with development of 

T2D and cardiovascular diseases.  

1.1.2.2 Overview of the pathophysiology of T2D 

Physiologically, insulin is constantly synthesised by pancreatic β cells and stored in vacuoles 

regardless of circulating glucose concentrations (Lin and Sun, 2010; Spellman, 2010). Insulin 

release from the vacuoles is triggered by elevated circulating glucose concentrations. In 

addition to glucose uptake, insulin converts glucose to glycogen for internal storage in 

skeletal muscle and liver (Seino, 2012; Spellman, 2010). In response to hypoglycaemia, 

glucagon is released from the pancreatic α cells. On the other hand, the insulin is released 

from pancreatic β cells to maintain glucose homeostasis (Seino, 2012).   

Glucose homeostasis is impaired in T2D. Apart from β cell failure, insulin resistance is the 

major pathophysiological event in T2D (Lin and Sun, 2010). Pancreatic β cell failure to 

synthesise and secrete insulin further exacerbates hyperglycaemia (Lin and Sun, 2010; 

Spellman, 2010). In addition, factors such glucotoxicity, lipotoxicity, oxidative stress, 

endoplasmic reticulum (ER) stress and adipokines can reduce pancreatic β cell mass and 

function (Weir and Bonner-Weir, 2013). These factors can directly or indirectly lead to 

pancreatic β cell failure and demise.  

1.1.3 Gestational diabetes mellitus (GDM) 

GDM is glucose intolerance first detected during pregnancy (Gobl et al., 2013). Pregnant 

women can be screened for clinical risk factors such as pre-diabetes, impaired glucose 

tolerance, maternity age (women >35 are more susceptible to GDM), overweight, obesity and 

family history of T2D (Gobl et al., 2013). GDM results from an inadequate supply of insulin 

to tissues for normal blood glucose regulation and it accounts for about 3-10% of pregnancies 

depending on the population (Buchanan and Xiang, 2005).  

1.2 Metabolic Syndrome (MetS) 

MetS is important for the identification and diagnosis of individuals at high risk for T2D and 

cardiovascular disease (Alberti et al., 2005). MetS refers to a cluster of metabolic risk factors, 

including central obesity, insulin resistance, dyslipidaemia, glucose intolerance and 

hypertension (Eckel et al., 2010; Shen et al., 2003; Alberti et al.,2005) and is also known as 

syndrome X or the insulin resistance syndrome (Eckel et al. 2005).  
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Table 1: Metabolic syndrome as defined by the World Health Organization (WHO) 

Core factors of MetS Values  

Diabetes or impaired fasting glycaemia, 

impaired glucose tolerance or insulin 

resistance  

Hyperinsulinaemic, euglycaemic clamp-glucose 

uptake in lowest 25% 

Obesity BMI >30 or waist to hip ratio >0.9 (male) or 

>0.85 (females)  

Dyslipidaemia  Triglycerides ≥1.7 mmol/L or HDL-cholesterol 

<0.9 (male) or 1.0 (female) mmol/L  

Hypertension  Blood pressure ≥140/90 mmHg  

Microalbuminuria Albumin excretion >20µg/min 

Fasting plasma glucose  Glucose concentration ≥6.1 mmol/L 

Adapted from Eckel et al 2005 

1.2.1 Factors contributing to MetS (Table 1) 

1.2.1.1 Insulin resistance 

The overabundance of circulating fatty acids is a major contributor to insulin resistance 

(Eckel et al., 2005). Plasma albumin-bound free fatty acids (FFA) are derived from adipose 

tissue triglyceride stores and released through the action of cyclic AMP-dependent enzyme 

hormone sensitive lipase (Eckel et al., 2005). Lipolysis of triglycerides in tissues by the 

action of lipoprotein lipase increases the concentrations of circulating of FFA (Wang and 

Eckel, 2009; Bruckert and Dejager, 1994). Insulin is important for both anti-lipolysis and the 

stimulation of lipoprotein. Plasma FFA can inhibit insulin stimulated glucose transport and 

phosphorylation in peripheral tissues and also inhibit glycogen synthase activity 

(Straczkowski and Kowalska, 2008). Elevated FFA inhibits insulin action on endogenous 

glucose production in the liver and enhances gluconeogenesis. The generation of excess acyl 

CoAs or acyl-CoA derivatives such as sphingolipid ceramide can reduce Akt1 activation 
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(Straczkowski and Kowalska, 2008; de la Monte et al., 2010). Glycerolipids such as 

diacylglycerol (DAG) derived from long-chain acyl-coenzymes A (LC-ACoA) inhibit insulin 

receptor substrate 1 (IRS1) phosphorylation via activation of PKC-θ and PKC-ε, and 

phosphatidylinositol 3-kinase (PI3K) activity (Straczkowski and Kowalska, 2008; Erion and 

Shulman, 2010). 

 

Figure 1.1: Molecular mechanism of insulin resistance in skeletal muscle and liver 

Taken from Erion and Shulman, 2010 

1.2.1.2 Central obesity 

Central or abdominal obesity is defined by an increase in waist to thigh ratio, waist 

circumference and sagittal abdominal diameter (Iribarrene et al., 2006). Obesity is linked to 

an increased risk of cardiovascular disease. Central obesity is associated with a higher risk of 

heart disease, hypertension, insulin resistance and T2D (Buettner et al., 2007).  

Despite the importance of obesity in MetS, people of normal weight can also develop MetS 

(Ruderman et al., 1998; Hayes et al., 2010). Intra-abdominal adipose tissue-derived FFA can 

enter the liver through splanchnic circulation and have direct effects on hepatic metabolism 

(including glucose production and lipid synthesis) (Aubert et al., 2003). 

1.2.1.3 Dyslipidaemia 

Dyslipidaemia occurs with an increase in FFA flux to the liver and increased production of 

apo B-containing triglyceride-rich very low-density lipoproteins (Lewis et al., 1995; Darioli 

et al., 2002). Insulin resistance and increased flux of FFA to the liver increases hepatic 

triglyceride synthesis; however, under physiological conditions, insulin inhibits rather than 

increases the secretion of very low-density lipoproteins into the systemic circulation (Soska, 
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2003). This response is partially due to insulin’s effect on the degradation of apo B (Eckel at 

al., 2005). MetS is also characterised by a reduction of high density lipoprotein (HDL) 

cholesterol. In the presence of hypertriglyceridaemia, a decrease in the cholesterol content of 

HDL results from decreases in the cholesteryl ester content of the lipoprotein core with 

variable increases in triglyceride rendering the particle small and dense (He et al., 2008). This 

change in lipoprotein composition also results in increased clearance of HDL from circulation 

(Tian et al., 2010; He et al., 2008).  

1.2.1.4 Glucose intolerance  

Glucose intolerance includes deficiencies in the ability of the hormone to suppress glucose 

production by the liver and kidney and to mediate glucose uptake and metabolism in insulin 

sensitive tissues such as the muscle, liver and adipose tissue (Eckel et al., 2005).  

1.2.1.5 Hypertension  

Insulin is a vasodilator when administered intravenously to people of normal weight (Eckel et 

al. 2005, Steinberg et al., 1994), with secondary effects on sodium reabsorption in the kidney 

(Eckel et al. 2005). In insulin resistant patients, the vasodilatory effect of insulin is usually 

lost (Tooke and Hannemann, 2000) whereas the renal effect on sodium reabsorption is 

preserved (Kuroda et al., 1999). FFA can mediate relative vasoconstriction (Tripathy et al., 

2003). Insulin also increases the activity of the sympathetic nervous system, an effect that 

may be preserved in insulin resistance (Eckel et al., 2005).  

1.3 Developmental programming 

Growth and development in utero is a complex dynamic process requiring interacting 

components from the mother and foetus to sustain optimal foetal growth and survival 

throughout pregnancy (Warner and Ozanne, 2010). Programming refers to effects of an 

altered metabolic environment during a critical or sensitive period of development inducing 

immediate, transient or durable effects in offspring (O'Brien et al., 2008). The physiology and 

metabolism of the foetus and neonate can be altered by an insult or stimulus during critical 

developmental periods. Maternal nutrition plays an important role in the health of the 

offspring, with maternal high fat feeding inducing deleterious effects on pancreatic islet 

development and altering the expression, both at gene and protein level, of key genes 

involved in pancreatic β cell maintenance (Cerf et al., 2005; Cerf et al., 2006). An increase in 
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the prevalence of metabolic diseases in adult life is associated with an imbalance in energy 

intake and expenditure (Grant et al., 2011). Emerging evidence suggests that the response to 

metabolic challenges during postnatal life is modified by environment influences during 

foetal development (Grant et al., 2011). The exposure to an environmental insult at a critical 

stage has permanent effects on the structure of organs, tissue and systems in offspring (Grant 

et al., 2011). 

 

Figure 1.2: Developmental programming  

Adapted from Alfaradhi and Ozanne, 2011 

1.3.1 Maternal high fat diet 

Strong evidence suggests that maternal nutrition during pregnancy can programme nutritional 

imbalances that may lead to obesity (Grant et al., 2011). Among other factors, maternal 

obesity and GDM have been implicated in the development of metabolic disorders, impaired 

glucose tolerance and risk of developing obesity and diabetes in adulthood (Boney et al., 

2005; Grant et al., 2011). An increase in the consumption of low nutrient dense foods 

(carbohydrates and saturated fat) was identified as major contributors of energy in a cohort of 

pregnant woman (Grant et al., 2011; Siega-Riz et al., 2002). The exposure to diets rich in 

animal fat during gestation and lactation may contribute to offspring obesity and the 

development of MetS (Ashino et al., 2011). Offspring from mothers fed a high fat diet 
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presented clinical features of MetS, lipid accumulation and activation of c-Jun N-terminus 

kinases consistent with the development of non-alcoholic fatty liver disease (Ashino et al., 

2011). High fat diets directly insult β cells, which respond by increasing both replication and 

neogenesis resulting in increased β cell mass and hyperinsulinaemia (Gniuli et al., 2008). 

This dietary insult can be permanent on the β cell function of the foetus and also worsen in 

early neonatal life (Gniuli et al., 2008). Another study demonstrated that 12 week old 

offspring from mothers fed lard rich diets were insulin resistant compared to offspring from 

mothers fed polysaturated fat rich fish oil (Taylor et al., 2005). 

1.3.2 Maternal obesity 

Maternal high fat consumption often leads to maternal obesity. Maternal obesity has an 

independent effect on high fat feeding on programming adiposity, hyperphagia and insulin 

resistance (Alfaradhi and Ozone, 2011). Offspring exposed to maternal obesity during 

gestation and lactation while maintained on high fat diet displayed an increase in weight gain 

and fat mass (Shankar et al., 2008). Maternal obese mothers displayed hyperleptinemia in 

both serum and milk during lactation compared to non-obese mothers (White et al., 2009). 

Offspring from maternal obese mothers were insulin insensitive compared to offspring from 

non-obese mothers suggesting that the exposure of neonates to maternal obesity induces an 

increase in body weight similar to the effect of offspring maintained on high fat diets in adult 

life (White et al., 2009). 

1.3.3 Impaired glucose tolerance and GDM 

Obesity is a risk factor for the development of T2D and the development of glucose 

intolerance during gestation leading to GDM (Buchanan and Xiang, 2005). Reduced insulin 

sensitivity and inadequate insulin response are metabolic defects related to development of 

GDM (Buchanan and Xiang, 2005). Maternal hyperglycaemia leads to maternal insulin 

resistance that may lead to offspring obesity (Chandler-Laney and Bush 2011). Offspring 

from obese mothers with GDM developed intrahepatic fat which may lead to non-alcoholic 

fatty liver disease and insulin resistance (Brumbaugh et al., 2013). Insulin is known to induce 

adiposity; foetal hyperinsulinaemia is associated with adiposity in young and adult life 

(Chandler-Laney and Bush 2011). Therefore maternal glucose is hypothesised to increase 

foetal insulin concentrations that may alter foetal programming (Chandler-Laney and Bush 

2011).  
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1.3.4 Hyperlipidaemia 

Lipids also play a role in reducing insulin sensitivity as an increase in FFA concentrations 

impair the ability of insulin to suppress lipolysis in late gestation (Catalano, 2010). Increased 

FFA also provides energy in late gestation to meet maternal energy requirements. The 

increased FFA may also play a role in excessive foetal growth. Although foetal insulin 

production is stimulated by increased glucose production as observed in obese and gestational 

diabetic women, the nutrient substrates for foetal growth, particularly in adiposity, are less 

described (Catalano, 2010). Total cholesterol, HDL cholesterol and triglyceride 

concentrations increase in normal pregnancy compared to non-pregnant women (Chandler-

Laney and Bush 2011). In comparison to lean pregnant women, obese pregnant women have 

higher triglyceride and lower HDL cholesterol concentrations (Chandler-Laney and Bush 

2011). Elevated cholesterol and triglyceride concentrations either prior to or during 

pregnancy are associated with increased risk of complications during pregnancy such as 

preeclampsia, glucose intolerance and GDM (Chandler-Laney and Bush 2011). In a study in 

women with well controlled GDM, maternal FFA and triglyceride concentrations were 

positively associated with foetal abdominal circumference during the third trimester 

(Schaefer-Graf et al., 2008). Those parameters measured close to delivery were positively 

associated with concentrations measured in cord blood, increased the risk of delivering large 

for gestational age (LGA) infants (Schaefer-Graf et al., 2008). Elevated maternal triglyceride 

concentrations in these women were also associated with increased neonatal fat mass 

(Schaefer-Graf et al., 2008). 

1.3.6 Leptin 

Maternal leptin is produced from adipose stores and the placenta (Henson and Castracane, 

2006). During pregnancy and lactation, leptin modulates energy expenditure and metabolism 

(Stocker et al., 2005). During early life, both insulin and leptin function as trophic factors and 

have been shown to impact neuronal development during early life (Bouret and Simerly, 

2004). The lack of leptin, as observed in ob/ob mice, has been shown to underlie the 

development of obesity in these mice (Bouret et al., 2004; Srinivasan et al., 2008). Abnormal 

insulin concentrations in the foetal or early postnatal periods induce alterations in the 

hypothalamic appetite regulating mechanisms resulting in adult onset obesity (Srinivasan et 

al., 2008). The roles of leptin and insulin in regulating feeding behaviour in adults are well 

established. The functional leptin receptor, ObRb, is largely expressed in brain regions 
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known to control energy balance. Leptin administration in postnatal mice has been shown to 

act on neuropeptide Y (NPY) and pro-opiomelanocortin (POMC) neurons (Caron et al., 

2010).  

1.4 Insulin signalling  

1.4.1 Insulin secretion  

Circulating glucose is derived from three sources: (1) intestinal absorption during the fed 

state, (2) conversion of glycogen to glucose (glycogenolysis), and (3) generation of glucose 

(gluconeogenesis) from non-carbohydrate substrate such as lactate, glycerol and glucogenic 

amino acids in the liver (Aronoff et al., 2004). Under physiological conditions, plasma 

glucose concentrations are determined by the rate at which glucose enters the circulation and 

balanced by the rate of glucose removal (glucose uptake) from blood (Aronoff et al., 2004).  

Pancreatic β cells are derived from neuroendocrine cells and equipped to sense nutrients, 

primarily glucose (Aronoff et al., 2004). β cells function as glucose sensors with the 

important task of adjusting insulin release to control blood glucose concentrations (Maechler 

et al., 2005; Henquin, 2000). Insulin and glucagon are effective regulators of glucose 

metabolism (Aronoff et al., 2004). The hormone, insulin, is synthesised and secreted by 

pancreatic β cells. Insulin is a small protein composed of two polypeptide chains containing 

51 amino acids (Aronoff et al., 2004). The actions of insulin affect glucose metabolism, 

storage of ingested nutrients, glucose uptake by the cells and the use of glucose as the 

primary source of energy (Aronoff et al., 2004). Insulin also promotes protein and fat 

synthesis (Aronoff et al., 2004). Like other hormones, insulin’s actions are mediated through 

binding to its receptors present on many cells of the body including myocytes, hepatocytes 

and adipocytes (Aronoff et al, 2004).  

Insulin secretion occurs when glucose is metabolised in the β cell and the ATP/ADP ratio 

increases (Ashcroft et al., 1994; Winzell et al., 2006). This leads to closure of ATP-sensitive 

K
+
-channels, depolarisation of the cell membrane and opening of voltage-gated Ca

2+
-

channels resulting in a rise in intracellular Ca
2+

 which, in turn, results in insulin excocytosis 

(Ashcroft et al., 1994; Winzell et al., 2006). Insulin’s primary action is to stimulate glucose 

clearance (Aronoff et al., 2004). The insulin signalling pathway is triggered when insulin 

stimulates insulin sensitive peripheral tissues such as the skeletal muscle and liver to increase 
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their glucose uptake (Aronoff et al., 2004). Insulin then acts on the liver to promote 

glycogenesis (Aronoff et al., 2004). Finally, insulin simultaneously inhibits glucagon 

secretion from pancreatic α cells and signals the liver to stop glycogenolysis and 

gluconeogenesis (Girard, 2006; Choukem and Gautier, 2008). 

1.4.2 Overview of insulin signalling and insulin receptor (IR) phosphorylation  

IR is a trans-membrane receptor (Ward and Lawrence, 2009; Patti and Kahn, 1998) that 

belongs to the sub-family of receptor tyrosine kinases that includes insulin like-growth factor 

(IGF) and insulin-related receptor (IRR) (Patti and Kahn, 1998; Saltiel and Kahn, 2001). IR is 

composed of two extracellular α subunits and two trans-membrane β subunits linked by 

disulphide bonds (Ward and Lawrence, 2009). Binding of insulin to the α-subunit causes a 

conformational change resulting in autophosphorylation of tyrosine residues present on β 

subunits (Van et al., 2001). Adaptor proteins such as members of the insulin receptor 

substrate (IRS) family have phosphotyrosine binding domains that recognise the tyrosine 

residues present in the β subunit (Saltiel and Kahn, 2001; Lizcano and Alessi, 2002). IR 

activation leads to phosphorylation of the key tyrosine residues on IRS proteins, some of 

which are recognised by the Src homology 2 (SH2) domain of the p85 regulatory subunit of 

phosphatidylinositol 3-kinase (PI3K; a lipid kinase) (Saltiel and Kahn, 2001; Ande and 

Mishra, 2009). The catalytic subunit of PI3K, p110, then phosphorylates PtdIns(4,5)P2 on the 

plasma membranes of cells to generate the second messenger PtdIns(3,4,5)P3 (Ande and 

Mishra, 2009). The key downstream effector of PtdIns(3,4,5)P3 in insulin signalling is Akt or 

protein kinase B (PKB) (Lizcano et al., 2002). Akt binds to PtdIns(3,4,5)P3 via a pleckstrin 

homology domain located at its amino terminus (Ande and Mishra, 2009; Scheid and 

Woodgett, 2003). This results in the recruitment of Akt from the cytosol to the plasma 

membrane where PtdIns(3,4,5)P3 is located. The interaction between Akt and PtdIns(3,4,5)P3 

does not directly activate Akt, instead it recruits the other protein kinases that directly 

phosporylate Akt at Thr308 and Ser473 (Scheid and Woodgett, 2003). When Akt is activated, 

it dissociates from the plasma membrane and phosphorylates numerous substrates in the 

cytoplasm and nucleus, which play important roles in regulating insulin dependent processes 

that include glucose uptake, protein synthesis and the regulation of lipid synthesis (Lizcano et 

al 2002). 

 

 

 

 



 

 

11 

 

 

Figure 1.3: Insulin signalling pathway  

Adapted from http://www.cellsignalling.com 

Insulin is the primary hormone that controls both glucose and lipid metabolism. Insulin 

activates insulin receptor (IR) a tyrosine kinase that phosphorylates adaptor proteins that 

include the IRS family proteins. Phosphorylated IRS displays binding sites for PI3K (a lipid 

kinase). PI3K phosphorylates PtdIns(4,5)P2 at the plasma membrane to generate a second 

messenger PtdIns(3,4,5)P3. PtdIns(3,4,5)P3 indirectly activates Akt. Akt induces glycogen 

synthesis by inhibiting GSK-3, protein synthesis via mTOR and GLUT4 translocation to the 

plasma membrane. 

1.4.3 Insulin receptor substrate 1 (IRS1) and insulin receptor substrate 2 (IRS2) 

phosphorylation 

1.4.3.1 IRS1  

IRS1 is one of the key members of IRS family proteins (Gual et al., 2005). IRS1 is tyrosine 

phosphorylated in response to insulin, cytokines and IGF-1 (Patti and Kahn, 1998). In 

response to insulin, IRS1 becomes tyrosine phosphorylated and recruits a number of SH2 

containing signal transducers including PI3K (Gual et al., 2005). Tyrosine phosphorylation of 
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IRS1 initiates insulin signalling. Reductions in tyrosine phosphorylation of IRS1 have been 

reported in 30% of subjects at high risk of obesity and type 2 diabetes (Gual et al., 2005). 

Reduced IRS1 tyrosine phosphorylation and PI3K activation severely impairs insulin 

signalling and glucose transporter 4 (GLUT4) translocation in skeletal myocytes and 

adipocytes (Rains and Jain, 2011). The activation of serine/threonine kinases impairs IRS1 

downstream signalling to PI3K and Akt which reduces GLUT4 expression and translocation 

to the plasma membrane (Rains and Jain, 2011). This subsequently reduces glucose uptake 

and metabolism leading to insulin resistance and eventually T2D (Rains and Jain, 2011). 

Regarding insulin resistance, several studies have suggested that agents that induce insulin 

resistance such as pro-inflammatory cytokines (Kanety et al., 1995), FFA, cellular stresses 

and hyperinsulinaemia can also activate serine/threonine kinases that inhibit phosphorylation 

of IRS1 and inhibit its function (Gual et al., 2005). Pro-inflammatory cytokine gene 

expression of IL6, TNF-α and MCP1 may also lead to insulin resistance and T2D (Rains and 

Jain, 2011). Several studies have reported that TNF-α inhibits tyrosine phosphorylation by 

promoting serine phosphorylation that changes conformation (Rains and Jain, 2011). 

Conformation changes reduce recruitment of PI3K and also stimulate the IRS1 degradation 

pathway (Rains and Jain, 2011). 

1.4.3.2 IRS2 

IRS2 is a cytoplasmic signal molecule that mediates the effects of insulin, IGF-1 and other 

cytokines by acting as a molecular adaptor between receptor tyrosine kinase and downstream 

effectors (Jiang et al., 2000; Valverde et al., 1998). IRS2 was initially identified as an 

alternative substrate in animals with targeted disruption of IRS1 (Sesti et al., 2001). IRS2 

contains 22 potential tyrosine phosphorylation sites with only 13 conserved in IRS1 (Sesti et 

al., 2001). Both IRS1 and IRS2 may regulate unique signalling pathways in different tissues, 

subcellular locations, kinetics activation/deactivation or specific interactions with 

downstream effectors (Sesti et al., 2001). In addition, both IRS1 and IRS2 mediate metabolic 

pathways. Hepatic IRS1 functions immediately after feeding and IRS2 functions mainly 

during fasting (Kubota et al., 2008). IRS2 does not fully compensate for reduced levels of 

IRS1 and only partially compensates for improving insulin action on IRS2 (Hennige et al., 

2003). In mice, systemic failure of IRS2 causes peripheral insulin resistance followed by β 

cell failure and diabetes (Hennige et al 2003). IRS2 protects β cells from destruction by 

 

 

 

 



 

 

13 

 

streptozotocin and improves function in isolated β cells used in transplantation (Hennige et al 

2003). Upregulation of IRS2 in β cells may help in treatment of diabetes (Hennige et al 

2003). 

1.4.4 Phosphatidylinositol 3-kinase (PI3K) signalling  

PI3K is a heterodimetric lipid kinase with important functions in metabolic, cell growth, 

proliferation, differentiation and mitogenic actions of insulin (Foukas and Shepherd, 2004). 

PI3K comprises a heterodimer between the p110 catalytic subunit and p85 regulatory subunit 

with two SH2 domains that bind to phosphotyrosine motifs on the tyrosine kinase receptor or 

substrate (Foukas and Shepherd, 2004). The family is divided into three classes (I-III) 

(Foukas and Shepherd, 2004). The insulin sensitive tissues that include skeletal muscle, liver 

and adipose tissue express variations of regulatory subunits such as p50α and p55α (Chen et 

al., 2004). IRS1 and IRS2 dock with p85 regulatory subunits that activate the p110α catalytic 

subunits (Chen et al., 2004). PtdIns(4,5)P2 is phosphorylated on the 3-OH position of the 

inositol ring to produce PtdIns(3,4,5)P3 and formation of this lipid recruits Akt and protein 

kinase C (PKC) (Chen et al., 2004). The insulin action of PI3K is impaired in skeletal muscle 

from obese insulin resistant and T2D patients (Krook et al., 2000; Cusi et al., 2000).  

PI3K is involved in insulin stimulated glucose uptake, basal glucose transporter recycling and 

phosphorylation of other intracellular second messengers (O'Brien et al., 2008). The 

association of p85 with IRS1 is an indirect marker of insulin stimulated PI3K activation and 

therefore insulin sensitivity (LeRoith et al., 1995; Rordorf-Nikolic et al., 1995; White, 

1997).The catalytic p110α subunit plays a critical role in hepatic insulin/PI3K signalling and 

is required for normal glucose and lipid homeostasis (Sopasakis et al., 2010). A lack of 

p110α results in impaired insulin signalling with a decrease in activation of downstream 

molecules including Akt (Sopasakis et al., 2010).  

1.4.5 Biological actions of insulin in metabolism  

1.4.5.1 Glucose uptake 

IR activation leads to the phosphorylation of cannabinoide receptor type 1 (Cbl), which is 

associated with the adaptor protein, catabolite activator protein (CAP) following 

phosphorylation of the Cbl-CAP complex and translocation to lipid rafts in the plasma 

membrane (Saltiel and Kahn 2001; Gupte and Mora 2006). Cbl then interacts with the 
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adaptor protein, chicken tumor virus no. 10 (CT10) regulator of kinase (Crk) that is 

constitutively associated with the Rho-family guanine nucleotide exchange factor, C3G 

(Gupte and Mora 2006). C3G in turn activates members of the guanosine triphosphate (GTP)-

binding protein family, TC10, which promotes GLUT4 translocation to the plasma membrane 

(Saltiel and Kahn 2001, Lizcano and Alessi 2002). Glucose is then taken up into the insulin 

sensitive tissues for metabolism and/or storage.  

1.4.5.2 Regulation of lipid synthesis  

Insulin promotes the uptake of FFA and the synthesis of lipids whilst inhibiting lipolysis. 

Lipid synthesis requires an increase in the transcription factor, steroid regulatory element 

binding protein (SREBP) (Shimomura et al., 1999). Insulin inhibits lipid metabolism by 

decreasing the cellular concentrations of cAMP by activating a cAMP specific 

phosphodiesterase in adipocytes (Kitamura et al., 1999). 

1.4.5.3 Protein synthesis  

Insulin stimulates amino acid uptake into cells, inhibits protein degradation and promotes 

protein synthesis (Saltiel and Kahn 2001). Under basal conditions the constitutive activity of 

glycogen synthase kinase (GSK3) leads to the phosphorylation and inhibition of a guanine 

nucleotide exchange factor, eIF2B, which regulates the initiation of protein translation 

(Asnaghi et al., 2004). Therefore, upon receiving an insulin signal, inactivation of glycogen 

synthase kinase 3 GSK3 by Akt leads to the dephosphorylation of eIF2B thereby promoting 

protein synthesis and the storage of amino acids (Lizcano and Alessi, 2002). Akt also 

activates mammalian target of rapamycin (mTOR) that promotes protein synthesis through 

p70 ribosomal S6 kinase (p70s6k) and inhibition of eIF-4E binding protein (4E-BP1) 

(Asnaghi et al., 2004). 

1.4.6 Insulin resistance 

1.4.6.1 Skeletal muscle insulin signalling and resistance 

Skeletal muscle is the major site for insulin stimulated glucose uptake (Lin and Sun, 2010; 

Abdul-Ghani and DeFronzo, 2010). Approximately 75% of insulin stimulated glucose uptake 

occurs in the skeletal muscle (Lin and Sun, 2010). Skeletal muscle utilises both glucose and 

FFA as energy sources (Abdul-Ghani and DeFronzo, 2010). Plasma insulin concentration is 

the co-factor for glucose uptake in skeletal muscle and suppresses lipolysis (Abdul-Ghani and 
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DeFronzo, 2010). During fasting, skeletal muscle glucose uptake is low and plasma FFA 

concentrations are increased; FFA therefore serve as the main energy source during fasting 

(Abdul-Ghani and DeFronzo, 2010). T2D patients may have impaired insulin stimulated 

tyrosine phosphorylation of IRS1 in skeletal myocytes that may not be related to a decrease 

in protein expression of IRS1 (Lin and Sun 2010). Similar observations were evident at the 

level of PI3K in fatty obese rats (Asano et al., 2007). IR and IR protein family dysregulation 

is the common feature of insulin resistance in skeletal muscle. This dysregulation may 

include TNFα mediated and kinase mediated serine/threonine phosphorylation, proteasome 

mediated degradation and phosphatase mediated phosphorylation, all resulting in impaired 

glucose transport in skeletal myocytes. Excessive intake of a palatable cafeteria (but low fat) 

diet induces obesity and insulin resistance both at whole body and skeletal muscle levels 

(Brandt, De, Richter, and Hespel, 2010). G-protein coupled receptor kinase 2 (GRK2) is a 

key modulator of insulin sensitivity in vivo (Garcia-Guerra et al., 2010). In cultured 

myoblasts and adipocytes, increased GRK2 levels inhibited insulin stimulated glucose uptake 

and signalling in a kinase activity independent manner by mechanisms involving the 

formation of dynamic GRK2/IRS1 complexes (Garcia-Guerra et al 2010). 

1.4.6.2 Hepatic insulin signalling and resistance 

In the liver, insulin regulates fasting glucose concentrations by inhibiting hepatic glucose 

production and stimulating glycogen synthesis. Glycogenolysis and gluconeogenesis are two 

different mechanisms involved in hepatic glucose production (Weickert and Pfeiffer, 2006). 

Glycogenolysis produces glucose in a relative short period within several hours of fasting 

(Weickert and Pfeiffer, 2006). Glycogenolysis is then suppressed by insulin after 1-2 hours 

after food intake (Weickert and Pfeiffer, 2006). During longer periods of fasting, the liver 

glycogen stores become depleted and gluconeogenesis kicks in by producing glucose from 

precursors such as pyruvate, lactate, glycerol and glucogenic amino acids (Weickert and 

Pfeiffer, 2006).  

At the molecular level, the IRS2/PI3K pathway is the major signal transduction pathway in 

the liver; abnormal IRS2 signalling is closely associated with hepatic insulin resistance 

(Valverde et al., 2003). In the liver, insulin also stimulates glycolysis, glycogen synthesis and 

the synthesis of long chain fatty acids while suppressing lipolysis (Rebrin et al., 1996). When 

the amount of p85α or p85β was increased in the liver of obese and diabetic ob/ob mice, 
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glucose tolerance was substantially increased and blood glucose concentrations reduced to 

normoglycaemic levels (Park et al., 2010). Tyrosine phosphorylation of IRβ, IRS1, IRS2 and 

the interactions between IRS1 or IRS2 and PI3K declined significantly in hepatic 

ischemia/reperfused rats suggesting that insulin signalling was impaired after hepatic 

ischemia/reperfusion (Liu et al., 2008). Hepatic ischemia/reperfusion inhibited insulin 

secretion and induced insulin resistance via reduced tyrosine phosphorylation of IRβ, IRS1, 

IRS2 and the interactions between IRS and PI3K in rats (Liu et al., 2008).  

1.5. Aspalathus linearis (rooibos) 

1.5.1 Taxonomy  

Rooibos tea is a popular South African herbal tea and is derived from Afrikaans translated as 

red bush. Rooibos tea is produced from the leaves of the indigenous South African Cape 

fynbos plant called Aspalathus linearis (Figure 1.4) (Beltran-Debon et al., 2011). Aspalathus 

linearis is a member of the family Fabaceae under the tribe Crotalaria (Joubert et al., 2008). 

Rooibos grows naturally in certain areas in the Western Cape Province of South Africa 

(Beltran-Debon et al., 2011). 
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Figure 1.4: Aspalathus linearis (rooibos) 

 

 

1.5.2 History and the discovery of rooibos  

In 1771, the Swedish botanist Carl Thunberg reported that the South African Khoisan tribe 

drank tea from a “good plant” (rooibos) for health purposes (Figure 1.4) (Joubert et al., 

2008). Rooibos was also later discovered by Dutch settlers as a cheap alternative to black tea 

imported from China and India. In the 1900s, the Russian settler and tea tradesman Benjamin 

Ginsberg developed an interest in rooibos brewing (Joubert et al., 2008) and applied the 

method of traditional Chinese fermenting of Keemun tea.  

In recent years, green tea and herbal teas have gained popularity due to their health 

promoting, particularly antioxidant, properties. Currently rooibos tea consumption has 

gradually increased since its introduction to the domestic market in 1904 by Ginsberg 

(Joubert et al., 2008). In 2010, rooibos tea secured 23% of the South African tea market 

exceeding 500 tons (Joubert and de Beer, 2012). Rooibos tea is estimated to be consumed in 

10.9 million households (Joubert et al., 2008) 

1.5.3 Major chemical constituents of rooibos  

Flavonoids hold a remarkable range of biochemical and pharmaceutical properties that 

include anti-inflammatory, anti-oxidant, anti-carcinogenic and anti-thrombotic properties 

(Snijman et al., 2007). Rooibos is the only known natural source of a C-C linked 

dihydrochalcone glucoside, aspalathin and a cyclic dihydrochalcone, aspalinin (Joubert et al., 

2008). These rare compounds are unique to rooibos. Nothofagin, a 3-dehydroxy 

dihydrocholcone glucoside, has previously been shown to be present in Nothofagus fusca 
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(heartwood) and is the second most abundant flavonoid in rooibos after aspalathin (Joubert et 

al., 2008). Rooibos also contains several C-C linked β-D-glucopyranosides, namely, the 

flavones orientin, iso-orientin, vitexin and iso-vitrxin; and the flavanones dihydro-orientin, 

dihydro-iso-orientin and hemiplorin (Joubert et al., 2008).  

1.5.4 Health benefits of rooibos  

Oxidative stress is caused by an imbalance in the production of reactive oxygen species 

(ROS) and a biological system's ability to readily detoxify the reactive intermediates or easily 

repair the resulting damage (Bansal and Bilaspuri, 2010). The elevated production of ROS 

has been suggested to play a role development of insulin resistance (Kawano et al., 2009). In 

a physiological state, ROS is removed by internal enzymatic and non-enzymatic processes 

and the failure of these two mechanisms may lead to an elevation of ROS (Ulicna et al., 

2006), thus leading to pathological complications such as insulin resistance (Ulicna et al., 

2006). Compounds that possess anti-oxidant properties can prevent insulin resistance and 

T2D by lowering oxidative stress and hence maintain glucose homeostasis (Kawano et al., 

2009). Numerous studies have been conducted on the anti-oxidant, anti-cancer and anti-

diabetic properties of rooibos tea. Rooibos tea, particularly non-fermented (green rooibos), 

contains large amounts of flavonoids and other anti-oxidants with potent scavenging for ROS 

(Bramati et al., 2003; Joubert et al., 2010). Studies have reported on the anti-oxidant activity 

of rooibos tea using different extracts and assays. Aspalathin, a major flavonoid of rooibos 

tea, improved glucose tolerance in type 2 diabetic model db/db mice (Kawano et al., 2009). 

In humans, a recent study provided clinical evidence that the chronic consumption of rooibos 

tea significantly improved several biomarkers of blood lipid status (Marnewick et al., 2011). 

Rooibos tea reduced oxidative stress by lowering lipid peroxidation and improved redox 

status in adults at risk for cardiovascular diseases (Marnewick et al., 2011).  
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Table 1.2: Major chemical constituents of rooibos (Joubert et al., 2008; Joubert et al., 

2012) 

Compound type, names and substituents General structure 

Dihydrochalcones 

Aspalathin: R1 = OH, R2 = C-β-D-glucosyl 

Nothofagin: R1 = H, R2 = C-β-D –glucosyl  

 

Cyclic dihydrochalcone 

Aspalalinin: R = C-β-D-glucosyl 
 

 

Flavanones 

Hemiphlorin: R1 = C-β-D-glucosyl, R2 = R3 = H 

(R)/(S)-eriodictyol-8-glucoside : R1 = C-β-D-glucosyl, 

R2 = H, R3 = OH 

(R)/(S)-eriodictyol-6-glucoside: R1 = H, R2 = C-β-D-

glucosyl, R3 = OH  

 

 

 

Flavones 

Orientin: R1 = C-β-D-glucosyl, R2 = R4 =OH, R3 = H 

Isoorientin: R1 = H, R2 = R4 =OH, R3 = C-β-D-

glucosyl 

Vitexin: R1 = C-β-D-glucosyl, R2 = OH, R3 = R4 = H 

Isovitexin: R1 = R4 = H, R2 = OH, R3 = C-β-D-

glucosyl 

Luteolin: R1 = R3 = H, R2 = R4 = OH 

Luteolin-7-O-glucosided: R1 = R3 = H, R2 = O-β-D-

glucosyl, R4 = OH 

Chrysoeriol: R1 = R3 = H, R2 = OH, R4 = OCH3 
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Flavonols 

Quercetin: R = H 

Isoquercitrin: R = O-β-D-glucosyl 

Hyperoside: R = O-β-D-galactosyl 

Rutin: R = O-β-D-rutinosyl 

Quercetin-3-O-β-D-robinosideg: R = O-robinosyl 
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CHAPTER 2 

STUDY AIMS  

 

2.1 Study aim  

To investigate the effects of maternal diets varying in fat content on neonatal gene and 

protein expression profiles of proximal insulin signalling factors (IRα, IRS2 and PI3K-

p110α). 

2.2 Specific objectives  

 To determine the maternal circulating total cholesterol, triglyceride and free fatty acid 

concentrations. 

 To determine the relative gene and protein expression profiles of IR, IRS2 and the 

p110 subunit of PI3K in neonatal skeletal muscle and liver. 

 To assess the therapeutic potential of Aspalathus linearis (green rooibos) on the 

programming effects of a high fat diet. 

2.3 Expected outcomes  

 Exposure to varying dietary fat content, in utero, may have differential effects on the 

expression profiles of insulin signalling factors in neonatal skeletal muscle and liver.  

 A high fat diet may programme neonatal insulin resistance characterised by reduced 

expression of proximal insulin signalling factors.  

 Aspalathus linearis supplementation may ameliorate the adverse programming effects 

of a maternal high fat diet in neonatal offspring.  
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CHAPTER 3 

MATERIALS AND METHODS 

 

3.1 Main study  

3.1.1 Experimental design 

The animal experiments were carried out according to the protocol approved by the Medical 

Research Council ethics committee (Ref. 07/11). Virgin Wistar rats (3 months old), weighing 

220-275 g, were individually housed and mated overnight with pregnancy confirmed by 

presence of vaginal plug(s). The pregnant rats were then randomly assigned to groups. The 

groups (n = 4 rats per group) were 10% fat (as energy) diet (control), 20% fat (as energy) diet 

(20F), 30% fat (as energy) diet (30F) and 40% fat (as energy) (40F or high fat diet) (Table 

3.1). Therefore the groups were control (10% fat diet), 20F, 30F and 40F mothers and their 

one-day-old neonatal offspring (Table 3.1). The pregnant rats had free access to food and 

water and were housed at a temperature of 22-25ºC, humidity of 45-55% and a 12 hour 

light/dark (light daily from 06h00-18h00). The rats were treated in accordance with the 

United States National Institutes of Health (NIH) guidelines for animal care and usage.  

Table: 3.1 Experimental diets 

Macronutrient Control  20F  30F  40F  

Fat (%) 10.69 20.68 31.00 40.17 

Protein (%) 15.13 15.09 15.77 15.09 

Carbohydrate (%) 

Total kcal/100g 

74.16 

453.37 

64.22 

525.51 

53.23 

554.08 

44.73 

600.81 
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    Termination (neonates) 

Weeks     -1   0   1  2   3 

   Start 

       Gestation (mothers) 

         

e0   e7    e14 

     

e20  d1 

Before pregnancy  

Gestation period  

Laboratory chow Experimental diets (Control, 20F, 30F and 40F) 

 

Food and water intake 

Body weights 

Blood collection 

Fasting glucose 

Food and water intake 

Body weights 

Blood collection 

Fasting glucose 

Fasting glucose 

Blood collection 

Tissue collection 

 

Figure 3.1 Experimental timeline  

Diets:  
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Figure 3.2 Experimental design (main study)  
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3.1.2 Maternal and neonatal blood collection  

Blood analyses were performed to determine the circulating lipid profiles in mothers and 

neonates. Pregnant rats were fasted for four hours; a volume of 0.5 ml blood was collected 

weekly from the tail vein. Blood was collected before mating, at days 7, 14 and 20 of gestation 

(e7, e14 and e20 respectively) and on the day of delivery (d1). On d1, the mothers were 

euthanized and blood was immediately collected from the aorta with 6 ml syringes and 

transferred to tubes (BD Vacutainer blood collection tubes, BD, New Jersey, USA) for the 

determination of serum insulin, glucagon, free fatty acid (FFA; total and individual), total 

triglyceride and total cholesterol concentrations. Neonatal offspring were euthanized on postnatal 

day one (d1). Trunk blood from the litter of neonates per dam was pooled for sampling (a 

minimum of 500 l per sample) for each experimental group.  

3.1.3 Determination of serum cholesterol and total triglyceride concentrations 

In mothers, serum triglyceride concentrations were determined by the GPO-PAP method with 

the enzymatic colorimetric test for triglycerides with clearing factor (LCF) and measured in an 

autohumalyzer A5 (Human Biochemical and Diagnostics, Wiesbaden, Germany). Serum total 

cholesterol concentrations were determined by the CHOD-PAP method with the enzymatic 

colorimetric test for cholesterol with LCF and measured with an autohumalyzer A5 (Human 

Biochemical and Diagnostics).  

3.1.4 Determination of total free fatty acids (FFA) concentrations  

FFA were extracted from maternal serum samples. A volume of 200 µl of serum was added to 3 

ml methanol + butylated hydroxytoluene and 50 µl of internal standard for quantification of FFA 

then vortex mixed for 15 seconds. A volume of 6 ml of chloroform was added and the mixture 

was centrifuged at 2500 rpm for 10 min. The lower chloroform layer was removed and re-

suspended into a clean test tube. The chloroform layer was then evaporated completely in a water 

bath at 37°C for 15 min. When dried completely, 2 ml of transmethylating reagent was added. 

Hexane (HPLC grade) was used for FFA extraction. The hexane phase was re-suspended into a 

clean test tube and evaporated completely in a water bath at 37°C. Carbon disulphide was added 

to re-dissolve lipids and injected in gas chromatography.  
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3.1.5 Relative PCR quantification 

3.1.5.1 Housekeeping gene selection  

In skeletal muscle, β-actin and TBP displayed the most stable expression in rat gastrocnemius 

and soleus muscles (Yuzbasioglu et al., 2010). In the liver, β-actin and TATA-binding protein 

(TBP) were the most stable housekeeping genes in the regenerating mouse model (Tatsumi et al., 

2008). Therefore β-actin and TBP were selected as housekeeping genes for qRT-PCR analyses. 

3.1.5.2 RNA preparation and quantitative RT-PCR 

Skeletal muscle and liver were harvested; snap frozen in liquid nitrogen and stored at -80C. 

Total RNA was isolated from 100 mg of skeletal muscle and liver using QIAzol lysis reagent 

(Qiagen, Hilden, Germany). RNA was purified using RNeasy mini kits according to the 

manufacturer’s instructions (Qiagen, Hilden, Germany). The RNA samples were then treated 

with TURBO DNA-free kits (Ambion, Applied Biosystems, Foster City, California, USA) to 

remove any contamination with genomic DNA. The RNA yield and quality were assessed using 

a nanodrop spectrophotometer and RNA integrity was assessed using an Agilent Bioanalyser and 

Agilent RNA 600 nano kit (Agilent technologies, Santa Clara, CA, USA). A total of 1 µg total 

RNA per sample constituted to 10 µl with sterile water was reverse transcribed into first strand 

complementary DNA (cDNA) using a high capacity cDNA kit (Applied Biosystems). A positive 

control was prepared by constituting 1 µg of Amb rat liver RNA control template to 10 µl with 

sterile water and the negative control by adding 10 µl of sterile water to a PCR tube. The PCR 

tubes were prepared in duplicate and placed in a thermal cycler (Applied Biosystems 2720). 

Taqman probes for insulin receptor, insulin substrate 2 and PI3K were used along with the 

housekeeping genes β-actin mRNA and TBP mRNA. Quantitative PCR was performed using the 

applied Biosystems 7500 RT-PCR system and the Power SYBER Green PCR kit (Applied 

Biosystems) using a cycler programme consisting of an activation step of 10 min at 95°C, 40 

cycles with a 15 second denaturing step at 95ºC and 1 min at 60ºC for annealing and extension. 

Data analysis was performed with 7500 SDS software to run a relative quantification plate and to 

analyse the RT-PCR results. The relative mRNA expression was expressed as the quantity mean 

of IR, IRS2 and PI3K divided by an average quantity mean of β-actin and TBP. 
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3.1.6 Tissue collection and processing for immunohistochemistry (IHC) 

Skeletal muscle and liver were collected in 10% buffered formalin and processed in paraffin wax 

for IHC followed by image analysis.  

3.1.7 IHC 

Neonatal skeletal muscle and liver were fixed in 10% buffered formalin (pH 7.4) for 12 hours, 

processed using Leica TP11020 Automatic Tissue Processor (Leica, Wetzlar, Germany) and 

embedded in paraffin wax. Sections of 4 µm thick were cut using a Leica RM2125 RT rotary 

microtome (Leica) and mounted onto APES-coated microscope glass slides. Serial wax sections 

of skeletal muscle and liver were rehydrated through xylene, alcohol and distilled water. The 

sections were then incubated in 3% hydrogen peroxide (H2O2) for 10 minutes at room 

temperature, placed in heat resistant staining jars filled with 1.01 M citrate buffer (pH 6.0) and 

cooked in a Dako Pascal pressure chamber (Dako cytomation, DK-2600, Glostrup, Denmark) 

(125°C for 3 minutes; 90°C for 30 seconds). All sections were then jet washed with 50mM Tris 

buffer (pH 7.2) for 5 minutes at room temperature. 

Sections immunostained for IRα (1:500; Abcam, Cambridge, UK) were blocked with normal 

goat serum for 20 minutes, incubated with IRα overnight at 4°C then incubated in 1:200 

biotinylated anti-rabbit IgG (Vector, Laboratories, Burlingame, CA, USA) for 30 minutes. 

Sections immunostained for IRS2 (1:500; Santa Cruz Biotechnology, Santa Cruz, CA, USA) 

were blocked with normal goat serum for 20 minutes, incubated with insulin receptor substrate 2 

overnight at 4°C then incubated in 1:200 biotinylated anti-rabbit IgG (Vector, Laboratories) for 

30 minutes. Sections immunostained for PI3K-p110α antibody (1:10; Cell Signalling 

Technology, Danvers, MA, USA) were blocked with normal horse serum for 20 minutes, 

labelled with PI3K-p110α overnight at 4°C, then incubated in 1:200 biotinylated anti-rabbit IgG 

(Vector Laboratories) for 30 minutes. All sections were then washed with 50 mM Tris buffer (pH 

7.2) for 5 minutes and incubated with ABC complex (Vector Laboratories) for 60 minutes at 

room temperature, washed in 50 mM tris buffer (pH 7.2) for 5 minutes and stained with 0.05% 

diaminobenzadine containing 0.01% H2O2 for 5-10 minutes at room temperature. All sections 

were counterstained with haematoxylin for 2 minutes, left to dry and mounted with entellan.  
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3.1.8 Image analysis  

Images were captured with a Nikon-DS Fi1 digital camera mounted onto an Olympus BX50 light 

microscope (Olympus, Hamburg, Germany). All images were captured at X20 and stored in tiff 

format at a final resolution of 1024 X 796. Stored images were analysed with Leica QwinPro 

V3.0 image analysis software (Leica Microsystems GmbH, Wetzlar, Germany) to differentiate 

between immunohistochemical positive and negative areas using RGB colour thresholding. 

Immunoreactivity was expressed as the area of immunostained target protein, namely, IRα, IRS2 

and PI3K-p110α, in the skeletal muscle and liver per total tissue area. This generated a relative 

quantification as a percentage.  

3.2 Pilot study  

3.2.1 Mothers  

3.2.1.1 Experimental design 

The pilot study was separately approved by the Medical Research Council ethics committee 

(Ref. 07/11). Twenty virgin female Wistar rats (3-month-old) with an average weight of 234.75 g 

(weight range of 205 - 252 g) were individually housed and mated overnight with pregnancy 

confirmed by presence of vaginal plug(s). The pregnant rats were then randomly assigned to 

groups (n = 5 rats per group), namely: 10% fat (as energy) diet (control), 10% fat (as energy) diet 

supplemented with Aspalathus linearis enriched aqueous extract (control + Al), 40% fat (as 

energy) diet (40F; high fat diet) and a 40% fat (as energy) diet supplemented with Aspalathus 

linearis enriched aqueous extract (40F + Al) (Table 3.2). Therefore the groups were control 

(10% fat diet), control + Al, 40F (40% fat diet) and 40F + Al mothers and their neonatal 

offspring (Table 3.2). The mothers had free access to food and water and were housed at a 

temperature of 22-25ºC, humidity of 45-55% and a 12 hour light/dark (light daily from 06h00-

18h00). The rats were treated in accordance with the United States NIH guidelines for animal 

care and usage.  
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Table 3.2: Experimental groups  

Group Diet   Nomenclature 

1 10% fat    Control 

2 10% fat + Aspalathus linearis   Control + Al 

3 40% fat   HFD  

4 40% fat + Aspalathus linearis   HFD + Al 

 

3.2.1.2 Aspalathus linearis extraction and formulation 

Powdered green rooibos extract was obtained from the Raps Foundation (Freising-

Weihenstephan, Germany). The extract is an aspalithin-enriched solvent-based extract prepared 

according to a patented process (Grüner-Richter et al., 2008). The basic preparation entailed 

extraction of the plant material with an 80% ethanol-water mixture at room temperature, 

filtration and vacuum-drying. The powder was then extracted with ethyl acetate to reduce the 

chlorophyll content, filtered and vacuum-dried. 

 

        

Figure 3.3: HPLC chromatogram of an unfermented green rooibos 80% ethanol-water 

extract at 288 nm (A) and at 350 nm (B) [1, enolic phenylpyruvic acid-2-O-glucoside; 2, iso-

orientin; 3, orientin; 4, aspalathin; 5, quercetin-3-O-robinobioside; 6, vitexin; 7, hyperoside; 8, 

rutin; 9, isovitexin; 10, isoquercitrin; 11, nothofagin] (Muller et al., 2012). 

A B 
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Table.3.3 Chemical characterization of Aspalathus linearis (Muller et al., 2012) 

Compound Concentration in g/100 g Aspalathus linearis 

extract 

PPAG 0.491 

Aspalathin 18.440 

Nothofagin 1.292 

Iso-orientin 2.054 

Quercetin-3-O-robinobioside 1.053 

Vitexin 0.270 

Hyperoside 0.266 

Rutin 0.536 

IsoVitexin 0.389 

Isoquercitrin 0.377 

3.2.1.3 HPLC chromatography and phenolic acid content of a Aspalathus linearis extract  

The unfermented Aspalathus linearis water extract revealed that aspalathin (peak 4) had the 

highest peak at 280 nm (Figure 3.3A) and at 350 nm iso-orientin (peak 2), orientin (peak 3) and 

aspalathin (peak 4) had the highest peaks, in decreasing order (Figure 3.3B). Unfermented 

rooibos also had the highest concentration of aspalathin followed by iso-orientin in g/100g of 

green rooibos extract (Table 3.3) (Muller et al., 2012).  

3.2.1.4. Extract preparation and administration  

The extract was orally administered to the 10% (control) and 40% (40F or HFD) diet groups via 

jelly cubes according to an established Diabetes Discovery Platform SOP for administering 

treatment to rats. Aspalathus linearis enriched aqueous extract was obtained from the 

Agricultural Research Council (ARC). The extract was added and dissolved in jelly. Jelly stock 

comprised 80 g jelly, 7 g gelatin (Pick and Pay, Rosmead Avenue, Kenilworth, South Africa) 
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and 300 ml of boiled distilled water. The Aspalathus linearis dose of 150 mg/kg per day was 

transferred into ice cube trays corresponding to the experimental rat numbers. Quality control 

procedures were to maintain a clean working environment, servicing pipettes and calibrating 

scales. The Aspalathus linearis extract was freshly prepared daily to prevent the degradation of 

unstable compounds, bacterial and fungal contamination.  

Table 3.4: Experimental outline 

Time Phase Diet  

1 week  prior to mating (e-7 

to e-1) 

Habituation: jelly habituation Control 

Weeks 1-3 gestation period 

(e0-e21) 

Experiments: 

 Pregnancy confirmed  

 Mothers assigned to 

diets 

 Maternal food intake 

 Blood collection  

Control and high fat 

diets 

End of week 3 (delivery; 

d1) 

Terminations: 

 Neonatal blood and 

tissue collection 

 Maternal blood and 

tissue collection  

Control and high fat 

groups 

 

3.2.1.3 Maternal body weight and food intake 

Maternal body weights were recorded prior to mating (e0), on days 7, 14 and 20 of gestation (e7, 

e14 and e20) and on the day of delivery (d1). Food consumption was recorded daily.  

3.2.1.4 Maternal blood collection  

Pregnant rats were fasted for four hours and 0.5 ml blood was collected a week prior to mating 

(e-7), e0, e7, e14, e20 and d1. Further, on d1 the rats were terminated and maternal blood was 

immediately collected from the aorta using 6 ml syringe and transferred to BD Vacutainer blood 

collection tubes (BD, Franklin Lakes, NJ, USA) for the determination of serum insulin, 

glucagon, FFA, total triglyceride and total cholesterol concentrations.  
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3.2.1.5 Maternal blood glucose concentrations  

Four hour fasted blood glucose concentrations were measured weekly (e0, e7, e14, e20 and d1). 

A drop of blood was used to determine maternal blood glucose concentrations using a One 

Touch Ultra glucometer (Life Scan, Milpitas, CA, USA).   

3.2.1.6 Serum insulin and glucagon concentrations  

Radioimmunoassays were applied to determine the serum insulin (
125

I-labelled rat anti-insulin; 

Linco, St. Charles, MO, USA) and glucagon (
125

I-labelled rat anti-glucagon; Linco) 

concentrations. I-labelled samples were counted in a Perkin Elmar 1470 automatic gamma 

counter (Perkin Elmar, Turku, Finland). 

3.2.2 Neonates  

3.2.2.1 Anthropometric measurements  

At birth, all neonates were removed from the mothers and separated according to gender. The 

anthropometric measurements were conducted within 24 hours of birth (postnatal day 1). 

Neonatal body weights were measured on a calibrated scale. Neonatal body dimensions were 

measured with a measuring tape. The head length (from the tip of the snout to the base of the 

skull), head width (distance from ear to ear), head circumference, crown-rump (distance from the 

top of the head to the rump) and crown-tail (distance from the top of the head to the tip of the 

tail) were recorded.  

3.2.2.2 Neonatal blood collection  

One-day-old neonates were removed from mothers and fasted for four hours. For neonatal blood 

collection, neonates were decapitated and trunk blood was collected from each neonatal group. 

Trunk blood from each litter per mother was pooled for sampling (a minimum of 500 µl per 

sample) for each experimental group. The neonatal blood samples were separated according to 

gender.  
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3.2.2.3 Neonatal blood glucose concentrations 

Neonatal glucose concentrations were measured on the day of birth. A drop of blood (trunk 

blood) was used to determine blood glucose concentrations with a glucometer (Life Scan).  

3.2.2.3 Neonatal serum insulin concentrations 

All neonatal blood samples were collected and centrifuged at 4000 rpm for 15 minutes and 

stored at -20°C for analysis. Radioimmunoassays were applied to determine the serum insulin 

concentrations. I-labelled samples were counted in a Perkin Elmar 1470 automatic gamma 

counter (Perkin Elmar, Turku, Finland). 

3.2.2.4 Homeostasis model assessment for insulin resistance (HOMA-IR) 

HOMA-IR was calculated as HOMA-IR = [Fasting glucose (mmol/L)/Fasting insulin 

(mU/L)]/22.5 (Lisa et al., 2009). 

3.3 Statistical analysis  

All data are presented as means ± SEM. Comparisons of groups were performed by One-way 

ANOVA followed by Bonnferroni’s post-test using GraphPad Prism 5 software (GraphPad 

Software, San Diego, CA, USA). Significance was established at p < 0.05. 
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CHAPTER 4 

RESULTS 

4.1 MAIN STUDY  

4.1.1 Mothers  

4.1.1.1 Maternal total triglyceride, cholesterol and fatty acid concentrations 

Serum total triglyceride, cholesterol and fatty acid concentrations were not significantly different 

before gestation, during gestation or on the day of delivery amongst the groups (Table 4.1). 

 

Table 4.1 Maternal total serum triglyceride, cholesterol and fatty acid concentrations 

 Control 20F 30F 40F 

 

Triglycerides (mmol/l) 

    

    Before pregnancy 1.49 ± 0.28 1.16 ± 0.16 1.27 ± 0.20 1.13 ± 0.14 

    Day 7 of gestation 1.20 ± 0.12  0.95 ± 0.17  1.24 ± 0.29  1.15 ± 0.16   

    Day 14 of gestation 1.57 ± 0.20 1.31 ± 0.50 1.64 ± 0.20 1.11 ± 0.04 

    Day 20 of gestation 1.93 ± 0.26 1.36 ± 0.41 3.38 ± 0.68 4.32 ± 1.06 

    Day of delivery 0.82 ± 0.17 1.22 ± 0.42 0.83 ± 0.31 0.81 ± 0.10 

Cholesterol (mmol/l)     

    Before pregnancy 1.11 ± 0.11 1.17 ± 0.09 1.38 ± 0.08 1.32 ± 0.12 

    Day 7 of gestation 1.49 ± 0.16 1.16 ± 0.08 1.53 ± 0.07 1.36 ± 0.10 

    Day 14 of gestation 0.98 ± 0.14 0.92 ± 0.08 1.22 ± 0.17 0.82 ± 0.08 

    Day 20 of gestation 1.59 ± 0.12 1.24 ± 0.11 1.82 ± 0.16 1.50 ± 0.32 

    Day of delivery 2.36 ± 0.49 1.58 ± 0.07  1.74 ± 0.08 2.03 ± 0.27 

     

     

     

 

Table 4.1 continued on page 35  
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Data are means ± SEM (n = 5). Control; 20F, 20% fat diet; 30F, 30% fat diet; 40F, 40% fat diet.
 
 

All groups were compared with One-way ANOVA. 

 

4.1.1.2 Maternal total saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), 

omega 3 polyunsaturated fatty acids (n-3 PUFA) and omega 6 polyunsaturated fatty acids 

(n-6 PUFA) 

On the day of delivery, both 30F and 40F mothers had reduced total SFA compared to control 

mothers (Table 4.2). On the day of delivery, 40F mothers had increased total MUFA compared 

to 20F and 30F mothers (Table 4.2). At day 7 of gestation, total n-3 PUFA were reduced in 30F 

and 40F mothers compared to control mothers; further, the 30F mothers had reduced total n-3 

PUFA compared to 20F mothers (Table 4.2). At day 7 of gestation, there was an increase in total 

n-6 PUFA in 30F mothers compared to control mothers (Table 4.2).  

 

 

 

 

 

 

 

 

 

     

 Control 20F 30F 40F 

Fatty acid (µg/ml)     

    Before pregnancy 1035 ± 209 8734 ± 149 881 ± 80 1530 ± 540 

    Day 7 of gestation 1465 ± 66 1695 ± 350 1291 ± 92 1247 ± 92 

    Day 14 of gestation 1071 ± 145 1537 ± 95 1565 ± 365 1690 ± 181 

    Day 20 of gestation 2208 ± 162 1887 ± 247 1543 ± 494 2627 ± 196 

    Day of delivery 1340 ± 79 1255 ± 92. 1424 ± 132 1467 ± 141 
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Table 4.2 Maternal total SFA, MUFA, n-3 PUFA and n-6 PUFA compositions (%) 

 Control 20F 30F 40F 

SFA (%)     

    Before pregnancy 49.49 ± 2.74 46.43 ± 1.40 58.82 ± 4.334 61.67 ± 3.53 

    Day 7 of gestation 39.62 ± 0.70 40.78 ± 1.46 42.68 ± 0.92 42.89 ± 1.53 

    Day 14 of gestation 41.95 ± 1.50 38.76 ± 1.41 53.31 ± 7.32 43.45 ± 4.14 

    Day 20 of gestation 36.43 ± 1.28 38.50 ± 2.15 43.54 ± 2.44 36.85 ± 2.33 

    Day of delivery 43.17 ± 0.84 40.44 ± 0.16 39.20 ± 0.30
*
 38.37 ± 1.22

*
 

MUFA (%)     

    Before pregnancy 20.41 ± 1.90 16.73 ± 1.32 12.08 ± 1.65 16.42 ± 5.80 

    Day 7 of gestation 26.77 ± 1.21 22.96 ± 2.76 18.54 ± 0.81 19.99 ± 1.11 

    Day 14 of gestation 26.99 ± 1.58 25.40 ± 1.86 20.81 ± 2.46 25.01 ± 1.05 

    Day 20 of gestation 29.95 ± 1.70 27.75 ± 0.69 24.67 ± 3.68 26.93 ± 1.81 

    Day of delivery 

n- 3 PUFA (%) 

11.96 ± 0.60 10.39 ± 0.42 10.69 ± 0.99 14.78 ± 0.96
†‡

 

    Before pregnancy 2.33 ± 0.40 3.40 ± 0.50 2.93 ± 0.17 3.33 ± 0.63 

    Day 7 of gestation 4.52 ± 0.21 4.16 ± 0.11 2.76 ± 0.15
*†

 3.46 ± 0.19
*
 

    Day 14 of gestation 5.51 ± 0.59 4.62 ± 0.29 2.42 ± 0.58 3.83 ± 0.79 

    Day 20 of gestation 5.61 ± 0.66 5.45 ± 0.97 3.18 ± 0.67 5.45 ± 0.28 

    Day of delivery 6.23 ± 0.42 7.08 ± 0.28 5.74 ± 0.44 5.87 ± 0.62 

n- 6 PUFA (%)     

    Before pregnancy 27.76 ± 4.19 33.44 ± 2.51 26.17 ± 3.46 26.73 ± 2.33 

    Day 7 of gestation 29.09 ± 0.67 32.10 ± 1.32 36.02 ± 0.96
*
 33.67 ± 2.06 

    Day 14 of gestation 25.55 ± 0.79 31.22 ± 1.93 23.46 ± 4.57 27.73 ± 3.06 

    Day 20 of gestation 28.02 ± 2.32 28.31 ± 1.86 28.61 ± 3.49 30.78 ± 0.25 

    Day of delivery 28.02  ± 2.32 28.31 ± 1.86 28.61 ± 3.49 30.78 ±0.25 

Data are means ± SEM (n = 5). Control; 20F, 20% fat diet; 30F, 30% fat diet; 40F, 40% fat diet.
 
 

*
p < 0.05 vs. Control, 

†
p < 0.05 vs. 20F, 

‡
p < 0.05 vs. 30F. All groups were compared with One-

way ANOVA.  
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4.1.1.3 Individual SFA and MUFA percentages  

SFA 

On day 7 of gestation, 30F mothers had increased behenic acid (22:0) compared to 20F mothers 

(Table 4.3). On day 14 of gestation and on the day of delivery, 40F mothers had reduced behenic 

acid (22:0) compared to 30F mothers.  

 

Table 4.3 Maternal serum saturated fatty acids compositions (%)  

 Control 20F 30F 40F 

  Myristic acid (14:0)      

    Before pregnancy 4.01 ± 2.10 2.21 ± 1.79 6.75 ± 3.19 9.07 ± 2.62 

    Day 7 of gestation 0.83 ± 0.10 1.08 ± 0.22 1.09 ± 0.20 0.89 ± 0.04 

    Day 14 of gestation 0.76 ± 0.12 0.86 ± 0.10 7.41 ± 2.97 3.10 ± 1.80 

    Day 20 of gestation 0.75 ± 0.12 1.17 ± 0.16 1.45 ± 0.61 1.88 ± 0.45 

    Day of delivery 0.37 ± 0.10 0.24 ± 0.07 0.49 ± 0.11 0.51 ± 0.05 

  Palmitic acid (16:0)      

    Before pregnancy 24.75 ± 0.96 23.38 ± 1.29 24.46 ± 2.90 23.52 ± 1.97 

    Day 7 of gestation 18.82 ± 0.79 18.85 ± 1.08 18.24 ± 0.30 18.16 ± 0.88 

    Day 14 of gestation 21.43 ± 0.77 19.03 ± 1.41 24.20 ± 2.73 20.25 ± 1.57 

    Day 20 of gestation 19.01 ± 0.01 19.27 ± 1.52 22.13 ± 1.79 18.02 ± 1.04 

    Day of delivery 21.72 ± 0.31 19.10 ± 0.56 19.14 ± 1.21 19.26 ± 0.61 

Stearic acid (18:0)      

    Before pregnancy 19.56 ± 0.96 20.71 ± 1.15 25.69 ± 0.92 21.16 ± 2.13 

    Day 7 of gestation 18.65 ± 0.48 19.72 ± 1.77 21.67 ± 1.04 22.40 ± 22.40 

    Day 14 of gestation 18.67 ± 1.38 18.04 ± 0.25 20.53 ± 1.68 18.99 ± 0.99 

    Day 20 of gestation 15.70 ± 1.11 17.07 ± 0.71 18.59 ± 0.48 16.22 ± 1.74 

    Day of delivery 19.80 ± 0.90 19.92 ± 0.49 18.33 ± 1.10 17.68 ± 0.62 

     

     

Table 4.3 continued on page 38 
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 Control 20F 30F 40F 

Arachidic acid (20:0)      

    Before pregnancy 0.33 ± 0.03 0.30 ± 0.05 0.31 ± 0.06 0.40 ± 0.17 

    Day 7 of gestation 0.32 ± 0.03 0.33 ± 0.10 0.34 ± 0.04 0.32 ± 0.08 

    Day 14 of gestation 0.42 ± 0.11 0.21 ± 0.06 0.42 ± 0.06 0.54 ± 0.18 

    Day 20 of gestation 0.31 ± 0.09 0.40 ± 0.07  0.44 ± 0.05 0.38 ± 0.18 

    Day of delivery 0.08 ± 0.01 0.15 ± 0.06 0.11 ± 0.02 0.18 ± 0.10 

Behenic acid (22:0)      

    Before pregnancy 1.11 ± 0.70 0.41 ± 0.03 0.37 ± 0.02 0.32 ± 0.05 

    Day 7 of gestation 0.28 ± 0.01 0.26 ± 0.05 0.41 ± 0.03
†
 0.36 ± 0.04 

    Day 14 of gestation 0.23 ± 0.01 0.18 ± 0.02 0.24 ± 0.02 0.18 ± 0.003
‡
 

    Day 20 of gestation 0.23 ± 0.02 0.22 ± 0.02 0.33 ± 0.08 0.19 ± 0.01 

    Day of delivery 0.31 ± 0.02 0.29 ± 0.02 0.35 ± 0.04 0.21 ± 0.003
‡
 

Data are as means ± SEM (n = 5). Control; 20F, 20% fat diet; 30F, 30% fat diet; 40F, 40% fat diet.
 
 

†
p < 0.05 vs. 20F, 

‡
p < 0.05 vs. 30F. All groups were compared with One-way ANOVA. 

 

MUFA 

On day 14 of gestation, the 30F and 40F mothers had reduced palmitoleic acid (16:1 n-7) 

compared to control mothers (Table 4.4). On the day of delivery, 40F mothers had increased 

oleic acid (18:1 n-9) compared to 20F and 30F mothers. On day 7 of gestation, vaccenic acid 

(18:1 n-7) was reduced in 30F and 40F mothers compared to control and 20F mothers. Further, 

on the day of delivery, vaccenic acid (18:0 n-7) was reduced in 20F, 30F and 40F mothers 

compared control mothers and in 40F mothers compared to control mothers. On day 7 of 

gestation, nervonic acid (24:1 n-9) was increased in 30F mothers compared to control mothers.  
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Table 4.4 Maternal serum monounsaturated fatty acid composition (%)  

Data are means ± SEM (n = 5). Control; 20F, 20% fat diet; 30F, 30% fat diet; 40F, 40% fat diet.
 
 

*
p < 0.05 vs. Control, 

†
p < 0.05 vs. 20F,

 ‡
p < 0.05 vs. 30F. All groups were compared with One-

way ANOVA.  

 Control 20F 30F 40F 

Palmitoleic acid (16:1 n-7)    

    Before pregnancy 1.86 ± 0.29 1.01 ± 0.09 0.84 ± 0.16 0.89 ± 0.26 

    Day 7 of gestation 2.96 ± 0.29 1.62 ± 0.66 1.41 ± 0.08 1.41 ± 0.14 

    Day 14 of gestation 3.30 ± 0.08 2.06 ± 0.46 1.10 ± 0.21
*
 1.27 ± 0.16

*
 

    Day 20 of gestation 3.76 ± 0.94 2.55 ± 0.23 1.63 ± 0.41 1.51 ± 0.26 

    Day of delivery 1.01 ± 0.12 0.66 ± 0.12 0.64 ± 0.07 0.84 ± 0.07 

Oleic acid (18:1 n-9)     

    Before pregnancy 15.65 ± 1.23 12.27 ± 1.02 8.89 ± 1.14 11.51 ± 3.80 

    Day 7 of gestation 19.94 ± 0.90 18.53 ± 2.54 15.50 ± 0.71 16.96 ± 1.15 

    Day 14 of gestation 20.30 ± 1.26 20.60 ± 1.31 17.92 ± 1.83 21.87 ± 0.82 

    Day 20 of gestation 21.69 ± 0.06 21.73 ± 0.74 19.48 ± 3.30 22.97 ± 0.47 

    Day of delivery 8.72 ± 0.63 7.79 ± 0.31 8.47 ± 1.02 12.67 ± 0.84
†‡

 

Vaccenic acid (18:1 n-7)     

    Before pregnancy 2.79 ± 0.18 2.28 ± 0.30 1.76 ± 0.37 1.76 ± 0.37 

    Day 7 of gestation 3.08 ± 0.16 2.09 ± 0.44 1.02 ± 0.07
*†

 0.97 ± 0.02
*†

 

    Day 14 of gestation 2.92 ± 0.15 2.10 ± 0.58 1.38 ± 0.50 1.48 ± 0.42 

    Day 20 of gestation 3.88 ± 0.68 2.89 ± 0.13 2.92 ± 0.08 1.93 ± 1.01 

    Day of delivery 1.63 ± 0.06 1.26 ± 0.04
*
 1.04 ± 0.09

*
 0.85 ± 0.05

*†
 

Nervonic acid (24:1 n-9)     

    Before pregnancy 0.40 ± 0.11 0.99 ± 0.26 0.73 ± 0.30 1.13 ± 0.10 

    Day 7 of gestation 0.59 ± 0.04 0.74 ± 0.10 0.94 ± 0.08* 0.76 ± 0.08 

    Day 14 of gestation 0.28 ± 0.11 0.36 ± 0.01 0.49 ± 0.09 0.36 ± 0.02 

    Day 20 of gestation 0.34 ± 0.10 0.39 ± 0.05 0.91 ± 0.46 0.33 ± 0.00 

    Day of delivery 0.65 ± 0.04 0.59 ± 0.07 0.47 ± 0.09 0.52 ± 0.07 

 

 

 

 



 

 

40 

 

4.1.1.4 Individual n-3 PUFA and n-6 PUFA composition (%)  

n-3 PUFA 

On day 7 of gestation, linolenic acid (18:3 n-3) was reduced in 30F and 40F mothers compared 

to control mothers (Table 4.5). On day 7 of gestation, eicosatrienoic acid (20:3 n-3) was reduced 

in 30F mothers compared to the other groups and in 20F mothers compared to control mothers 

(Table 4.5). On day 14 of gestation, eicosapentaenoic acid (20:5 n-3) was reduced in 40F 

mothers compared to control mothers whereas on the day delivery, the 40F mothers had 

increased eicosapentaenoic acid (20:5 n-3) compared to the other groups (Table 4.5). On day 14 

of gestation, docosapentaenoic acid (22:5 n-3) was reduced in 30F and 40F mothers compared to 

control mothers and remained reduced on the day of delivery in 40F mothers compared control 

mothers (Table 4.5). 

 

Table 4.5 Maternal serum n-3 polyunsaturated fatty acids compositions (%) 

 Control 20F 30F 40F 

Linolenic acid (18:3 n-3)      

    Before pregnancy 0.41 ± 0.02 0.55 ± 0.08 0.51 ± 0.13 0.80 ± 0.18 

    Day 7 of gestation 0.77 ± 0.04 0.63 ± 0.10 0.48 ± 0.04
*
 0.49 ± 0.03

*
 

    Day 14 of gestation 0.96 ± 0.14 0.53 ± 0.02 0.47 ± 0.13 0.67 ± 0.09 

    Day 20 of gestation 1.05 ± 0.49 0.75 ± 0.20 0.49 ± 0.10 1.04 ± 0.32 

    Day of delivery 0.31 ± 0.02 0.24 ± 0.02 0.28 ± 0.06 0.30 ± 0.00 

Eicosatrienoic acid (20:3 n-3)     

    Before pregnancy - 0.05 ± 0.01 0.07 ± 0.00 0.10 ± 0.03 

    Day 7 of gestation 0.07 ± 0.003 0.05 ± 0.003
*
 0.04 ± 0.00

*†§
 0.06 ± 0.03 

    Day 14 of gestation 0.07 ± 0.01 0.05 ± 0.003 0.04 ± 0.00 0.05 ± 0.01 

    Day 20 of gestation 0.06 ± 0.01 0.05 ± 0.01 0.03 ± 0.00 0.05 ± 0.01 

    Day of delivery - 0.09± 0.001 0.05 ± 0.00 0.07 ± 0.00 

     

Table 4.5 continued on page 41 
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Control 20F 30F 40F Control 

Eicosapentaenoic acid (20:5 n-3)     

    Before pregnancy 0.27 ± 0.02 0.25 ± 0.03 0.23 ± 0.02 0.24 ± 0.05 

    Day 7 of gestation 0.79 ± 0.17 0.61 ± 0.20 0.25 ± 0.03 0.29 ± 0.05 

    Day 14 of gestation 0.88 ± 0.13 0.59 ± 0.24 0.22 ± 0.02 0.22 ± 0.05
*
 

    Day 20 of gestation 0.57 ± 0.03 0.35 ± 0.04 0.23 ± 0.07 0.80 ± 0.25 

    Day of delivery 0.27 ± 0.04 0.25 ± 0.01 0.25 ± 0.04 0.62 ± 0.10
*†‡

 

Docosapentaenoic acid (22:5 n-3)    

    Before pregnancy 0.42 ± 0.07 0.79 ± 0.32 0.49 ± 0.09 0.56 ± 0.15 

    Day 7 of gestation 0.90 ± 0.04 0.71 ± 0.05 0.49 ± 0.02 0.55 ± 0.04 

    Day 14 of gestation 1.16 ± 0.25 0.83 ± 0.03 0.41 ± 0.11
*
 0.49 ± 0.10

*
 

    Day 20 of gestation 1.15 ± 0.15 0.92 ± 0.18 0.40 ± 0.05 0.82 ± 0.18 

    Day of delivery 1.20 ± 0.09 1.12 ± 0.07 0.98 ± 0.08 0.82 ± 0.02
*
 

Data are means ± SEM (n = 5). Control; 20F, 20% fat diet; 30F, 30% fat diet; 40F, 40% fat diet.
 
 

*
p < 0.05 vs. Control, 

†
p < 0.05 vs. 20F,

 ‡
p < 0.05 vs. 30F, 

§
p < 0.05 vs. 40F; -, insufficient 

sample volumes. All groups were compared with One-way ANOVA. 

 

n-6 PUFA 

On day 7 of gestation, linoleic acid (18:2 n-6) was increased in 30F mothers compared to the 

other groups (Table 4.6). On day 14 of gestation, the 30F mothers had a reduced dihomo-γ 

linolenic acid (20:3 n-6) compared to control mothers; on day 20 of gestation, dihomo-γ linolenic 

acid (20:3 n-6) was reduced in 30F mothers compared to the other groups (Table 4.6). On the 

day of delivery, docosapentaenoic acid (20:5 n-6) was reduced in 40F mothers compared to 

control and 20F mothers (Table 4.6). 
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Table 4.6 Maternal serum n-6 polyunsaturated fatty acids compositions (%) 

 Control 20F 30F 40F 

Linoleic acid (18:2 n-6)     

    Before pregnancy 16.15 ± 1.93 19.97 ± 1.02 13.67 ± 1.80 14.72 ± 1.36 

    Day 7 of gestation 16.71 ± 0.47 18.63 ± 0.41 22.47 ± 0.97
*†§

 17.58 ± 0.76 

    Day 14 of gestation 15.39 ± 0.53 18.18 ± 0.11 14.86 ± 3.04 16.32 ± 1.77 

    Day 20 of gestation 18.49 ± 2.46 17.91 ± 0.57 19.44 ± 1.05 16.87 ± 0.28 

    Day of delivery 20.65 ± 1.23 16.02 ± 1.26 21.22 ± 0.91 16.95 ± 1.84 

Dihomo-γ linolenic acid  

(20:3 n-6) 

    

    Before pregnancy 0.50 ± 0.04 0.48 ± 0.05 0.46 ± 0.07 0.48 ± 0.11 

    Day 7 of gestation 1.06 ± 0.10 0.86 ± 0.12 0.77 ± 0.06 1.00 ± 0.14 

    Day 14 of gestation 0.92 ± 0.08 0.76 ± 0.09 0.49 ± 0.07
*
 0.65 ± 0.07 

    Day 20 of gestation 0.84 ± 0.05 0.68 ± 0.06 0.37 ± 0.07
*†§

 0.77 ± 0.04 

    Day of delivery 0.94 ± 0.05 0.54 ± 0.03 0.79 ± 0.12 0.78 ± 0.18 

Docosapentaenoic acid  

(22:5 n-6) 

    

    Before pregnancy - 0.10 ± 0.00 - 0.90 ± 0.57 

    Day 7 of gestation 0.22 ± 0.03 0.58 ± 0.35 0.08 ± 0.04 0.36 ± 0.03 

    Day 14 of gestation 0.25 ± 0.05 0.27 ± 0.05 0.34 ± 0.23  0.66 ± 0.19 

    Day 20 of gestation 0.46 ± 0.02 0.90 ± 0.27 1.66 ± 1.19 2.78 ± 0.04 

    Day of delivery 0.66 ± 0.06 1.11 ± 0.15 1.60 ± 0.16 2.59 ± 0.48
*†

 

Data are means ± SEM (n = 5). Control; 20F, 20% fat diet; 30F, 30% fat diet; 40F, 40% fat diet.
 

*
p < 0.05 vs. Control, 

†
p < 0.05 vs. 20F,

 
-, insufficient sample volumes. All groups were 

compared with One-way ANOVA. 

4.1.1.5 Maternal serum fatty acids ratios on the day of delivery  

The 30F mothers had increased total PUFA/total SFA ratios compared to control mothers (Table 

4.7). The ratio of total MUFA/total SFA was elevated in 40F mothers compared to 20F and 30F 

mothers (Table 4.7). 
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Table 4.7 Maternal serum fatty acids ratios  

Ratio Control 20F 30F 40F 

16:1 n-7/16:0 0.05 ± 0.01 0.03 ± 0.01 0.03 ± 0.005 0.043 ± 0.01 

Total PUFA/Total SFA 1.03 ± 0.06 1.23 ± 0.03 1.28 ± 0.03
* 1.23 ± 0.07 

Total MUFA/Total SFA 0.28 ± 0.01 0.26 ± 0.01 0.27 ± 0.03 0.38 ± 0.04†‡ 

Total PUFA/Total MUFA 3.79 ± 0.25 4.75 ± 0.26 4.83 ± 0.50 3.20 ± 0.21 

Total n-6 PUFA/Total n-3 

PUFA  6.28 ± 0.42 5.97 ± 0.24 7.85 ± 0.51 7.17 ± 0.83 

Data are means ± SEM (n = 5). Control; 20F, 20% fat diet; 30F, 30% fat diet; 40F, 40% fat diet. 

*
p < 0.05 vs. Control, 

†
p < 0.05 vs. 20F,

 ‡
p < 0.05 vs. 30F. All groups were compared with One-

way ANOVA. 

4.1.2.1 Neonatal hepatic and skeletal muscle IR, IRS2 and PI3K mRNA expression 

Foetal programming, with maternal diets varying in fat content, did not affect neonatal hepatic 

IR (Fig. 4.1A) and IRS2 (Fig. 4.1B) mRNA expression. However, hepatic PI3K mRNA 

expression was elevated in 30F neonates compared to 20F neonates (Fig. 4.1C). Gel 

electrophoresis for total RNA is shown in Appendix C (Fig C.1A).  
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Figure 4.1 Neonatal hepatic IR, IRS2 and PI3K mRNA expression. (A), Neonatal hepatic 

IR mRNA expression; (B), Neonatal hepatic IRS2 mRNA expression; (C), Neonatal hepatic 

PI3K mRNA expression. Data are means ± SEM. n = 3-10 for hepatic mRNA expression. 

Control; 20F, 20% fat diet; 30F, 30% fat diet; 40F, 40% fat diet.
 †

p<0.05 vs. 20F. 

 

 

Skeletal muscle IR mRNA was reduced in the 30F and 40F neonates compared to 20F neonates 

(Fig. 4.2A). There were no significant differences in neonatal skeletal muscle IRS2 mRNA 

expression among the groups (Fig. 4.2B). However, neonatal skeletal muscle PI3K mRNA 

expression was reduced in 30F and 40F neonates compared to 20F neonates (Fig. 4.2C). Gel 

electrophoresis for total RNA is shown in Appendix C (Fig C.1B).  
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Figure 4.2 Skeletal muscle IR, IRS2 and PI3K mRNA expression. (A), Neonatal skeletal 

muscle IR mRNA expression; (B), Neonatal skeletal muscle IRS2 mRNA expression; (C), 

Neonatal skeletal muscle PI3K mRNA expression. Data are means ± SEM. n = 10 for 

skeletal muscle mRNA expression. Control; 20F, 20% fat diet; 30F, 30% fat diet; 40F, 40% 

fat diet.
 †

p<0.05 vs. 20F. 

4.1.2.2 Neonatal hepatic and skeletal muscle IRα, IRS2 and PI3K-p110α immunoreactivity  

Hepatic IRα immunoreactivity was reduced in 40F neonates compared to control and 20F 

neonates (Fig. 4.3B). Further, skeletal muscle IRα immunoreactivity was reduced in 30F and 40F 

neonates compared to control neonates (Fig. 4.4B). There were however no significant 

differences in hepatic (4.5B) and skeletal muscle IRS2 (Fig. 4.6B) and p110α immunoreactivity 

(Fig. 4.7A and B). Neonatal liver and skeletal muscle H and E staining are shown in Appendix A 

(Fig A.1). IRβ and IRS1 were also immunostained but not analysed as it was outside of the scope 

of this study. The representative immunoreactivity images for IRβ (Fig. B.1) and IRS1 (Fig. B.2) 

are shown in Appendix B.  
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Figure 4.3 Neonatal hepatic IRα immunoreactivity. (A), Neonatal liver immunostained with anti-IRα in Control (Ai), 20F (Aii), 30F 

(Aiii) and 40F (Aiv); (B), Neonatal hepatic IRα immunoreactivity. Data are means ± SEM. n = 6 for immunoreactivity. Control; 20F, 20% 

fat diet; 30F, 30% fat diet; 40F, 40% fat diet.
 *
p<0.05 vs. control; 

†
p<0.05 vs. 20F. 
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Figure 4.4 Neonatal skeletal muscle IRα immunoreactivity. (A), Neonatal skeletal muscle immunostained with anti-IRα in Control (Ai), 

20F (Aii), 30F (Aiii) and 40F (Aiv); (B), Neonatal hepatic IRα immunoreactivity. Data are means ± SEM. n = 6 for immunoreactivity. 

Control; 20F, 20% fat diet; 30F, 30% fat diet; 40F, 40% fat diet.
 *
p<0.05 vs. control. 

Control 20F 

30F 40F 

* 

A B 

Control 20F 30F 40F
0.00

0.05

0.10

0.15

0.20

0.25

S
k

e
le

ta
l 

m
u

sc
le

IR


 I
m

m
u

n
o

r
e
a

c
ti

v
it

y
  
(%

)

* 

Aiv Aiii 

Aii Ai 

 

 

 

 



 

 

48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Neonatal hepatic IRS2 immunoreactivity. (A), Neonatal liver immunostained with anti-IRS2 in Control (Ai), 20F (Aii), 30F 

(Aiii) and 40F (Aiv); (B), Neonatal hepatic IRS2 immunoreactivity. Data are means ± SEM. n = 6 per group. Control; 20F, 20% fat diet; 

30F, 30% fat diet; 40F, 40% fat diet.
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Figure 4.6 Neonatal skeletal muscle IRS2 immunoreactivity. (A), Neonatal skeletal muscle immunostained with ant-IRS2 in Control (Ai), 

20F (Aii), 30F (Aiii) and 40F (Aiv); (B), Neonatal hepatic IRS2 immunoreactivity. Data are means ± SEM. n = 6 per group. Control; 20F, 

20% fat diet; 30F, 30% fat diet; 40F, 40% fat diet. 
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Figure 4.7 Neonatal hepatic and skeletal muscle PI3K-p110α immunoreactivity. (A), 

Neonatal hepatic PI3K-p110α immunoreactivity; (B), Neonatal skeletal muscle PI3K-p110α 

immunoreactivity. Data are means ± SEM. n = 6 per group. Control; 20F, 20% fat diet; 30F, 30% 

fat diet; 40F, 40% fat diet. 
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4.2 PILOT STUDY  

4.2.1. Maternal food intake and body weight and litter size  

There were no differences in maternal calorie intake and body weights throughout gestation and 

on the day of delivery or in litter size amongst the groups (Table 4.8). Further, there were no 

differences in maternal liver, heart, brain and pancreas weights amongst the groups (Table 4.8). 

 

Table 4.8 Maternal food intake and body weight during gestation, organ weights and litter 

size 

Parameter Control Control-Al HFD HFD-Al 

Calorie intake 

(Kcal/g) 

        

Week 1 (e0-e7) 1691 ± 57.33 1671 ± 63.54  1723 ± 90.58 1900 ± 137.3 

Week 2 (e8-e14 1570 ± 42.58 1688 ± 35.79 1715 ± 44.25 1611 ± 63.81 

Week 3 (e15-e21) 1510 ± 52.05 1467 ± 50.98 1538 ± 58.09 1640 ± 85.32 

Overall (Kcal/g) 4771 ± 151.96 4826 ± 150.31 4976 ± 192.92 5151 ± 286.43 

Body weight (g)         

Week 1 (e7) 261 ± 6.35 2720 ± 6.99 282 ± 2.34 285 ± 12.71 

Week 2 (e0) 295 ± 7.35 303 ± 6.72 315 ± 6.72 318 ± 12.53 

Week 3 (e20) 356 ± 12.86 369 ± 5.69 382 ± 20.84 395 ± 16.20 

Day of delivery  267 ± 12.74 300 ± 18.42 304 ± 6.43 302 ± 14.11 

Organ weights (g)     

   Liver 10.01 ± 0.38 10.65 ± 0.45 11.18 ± 0.47 11.32 ± 0.47 

   Heart 0.89 ± 0.08 0.91 ± 0.06 0.97 ± 0.02 1.12 ± 0.07 

   Brain 1.75 ± 0.05 1.82 ± 0.08 1.87 ± 0.02 1.79 ± 0.03 

   Pancreas 1.03 ± 0.10 1.34 ± 0.20 1.47 ± 0.12 1.25 ± 0.13 

Litter size 12.0 ± 0.95 11.2 ± 1.39 12.0 ± 2.04 12.8 ± 1.56 

Data are means ± SEM; n = 5 per group. Control; Control-Al, control-Aspalathus linearis; HFD, 

high fat diet; HFD-Al, HFD-Aspalathus linearis. All groups were compared with One-way 

ANOVA. 
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4.2.2. Maternal blood glucose, serum insulin and glucagon concentrations and homeostasis 

model assessment for insulin resistance (HOMA-IR) 

The HFD-Al mothers presented elevated blood glucose concentrations on day 20 of gestation 

compared to control mothers (Fig. 4.8A). There were no other differences in blood glucose 

concentrations throughout gestation (Fig. 4.8A) and on the day of delivery (Fig.4.8B). Further, 

on the day of delivery, there were no differences in serum insulin (Fig. 4.8C) and serum 

glucagon (Fig. 4.8D) concentrations and HOMA-IR (Fig. 4.8E).  
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Figure 4.8 Maternal blood glucose, serum insulin and serum glucagon concentrations, 

and HOMA-IR. (A), Maternal blood glucose concentrations during pregnancy; (B), Maternal 

blood glucose concentrations on the day of delivery; (C), Maternal serum insulin 

concentrations on the day of delivery; (D), Maternal serum glucagon concentrations on the day 

of delivery; (E), Maternal HOMA-IR on the day of delivery. Data are means ± SEM; n = 5 per 

group. Control; Control-Al, control-Aspalathus linearis; HFD, high fat diet; HFD-Al, HFD-

Aspalathus linearis. *p<0.05 vs. control. 
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4.2.3 Neonatal anthropometric measurements  

For each group of neonates, head length, width, circumference, crown-rump and crown-tail 

lengths were measured in millimetres (mm) (Table 4.9). The HFD-Al neonates had increased 

head length and width compared to control neonates. The head circumference of HFD-Al 

neonates were increased compared to control and control-Al neonates also increased in HFD 

neonates compared to control neonates (Table 4.9). The crown-rump length and crown-tail 

length of Control-Al neonates were increased compared to control and HFD-Al neonates; the 

crown-tail length of the HFD-Al neonates was reduced compared to HFD neonates (Table 4.9).  

 

Table 4.9 Neonatal anthropometry (head length, width, circumference, crown-rump and 

crown-tail length)  

 Control Control-Al HFD HFD-Al 

Head length (mm) 15.4 ± 0.12 15.69 ± 0.15 15.7 ± 0.14 16.24 ± 0.22
*
 

Head width (mm) 12.47 ± 0.32  12.52 ± 0.17 12.74 ± 0.19 13.46 ± 0.32
*
 

Head circumference 

(mm) 

32.53 ± 0.32 33.04 ± 0.25 34.33 ± 0.29
*
 35.19 ± 0.49

*†
 

Crown-rump (mm) 41.33 ± 0.42 43.66 ± 0.69
*§

 41.93 ± 0.46 40.83 ± 0.23 

Crown-tail (mm) 58.59 ± 0.97  62.77 ± 0.88
*§

 61.5 ± 1.01 56.35 ± 0.70
‡
 

Data are means ± SEM; n = 24-31. Control; HFD, Control-Al, control-Aspalathus linearis; high 

fat diet; HFD-Al, HFD-Aspalathus linearis. 
*
p < 0.05 vs. Control, 

†
p < 0.05 vs. Control-Al, 

‡
p < 

0.05 vs. HFD, 
§
p < 0.05 vs. HFD-Al. All groups were compared with One-way ANOVA. 

4.2.4 Neonatal gender distribution, body weight and organ weights 

There was no difference in the distribution of male and female neonates between the groups 

(Table 4.10). Control-Al, HFD and HFD-Al neonates were all heavier than control neonates 

(Table 4.10). Brain weight was increased in the HFD neonates compared to control and Control-

Al neonates (Table 4.10). There were no significant differences in liver and pancreas weights 

amongst the groups. 
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Table 4.10 Neonatal gender distribution, body weight, and liver, brain and pancreas 

weights 

  Control Control-Al HFD HFD-Al 

Male (%) 59.46 ± 4.94 54.8 ± 7.64 40.63 ± 4.86 50.34 ± 2.16 

Female (%) 40.58 ± 4.95 45.2 ± 7.64 59.18 ± 4.88 49.66 ± 2.16 

Body weights 

(g) 

6.052 ± 0.10 6.595 ± 0.11
*
 6.831 ± 0.12

*
 6.665 ± 0.11

*
 

Liver (g) 0.223 ± 0.01 0.237 ± 0.01 0.243 ± 0.004 0.238 ± 0.01 

Brain (g) 0.244 ± 0.01 0.241 ± 0.01 0.274 ± 0.004
*†

 0.252 ± 0.01 

Pancreas (g) 0.025 ± 0.003 0.02 ± 0.001 0.024 ± 0.003 0.026 ± 0.01 

Heart (g) 0.89 ± 0.08 0.91 ± 0.06 0.97 ± 0.02 1.12 ± 0.07 

Data are means ± SEM; n = 24-31). Control; Control-Al, control-Aspalathus linearis; HFD, high 

fat diet; HFD-Al, HFD-Aspalathus linearis. 
*
p < 0.05 vs. Control, 

†
p < 0.05 vs. Control-Al. All 

groups were compared with One-way ANOVA. 

 

4.2.5 Neonatal blood glucose and serum insulin concentrations and HOMA-IR 

HFD and HFD-Al neonates had reduced glucose concentrations compared to control and 

Control-Al neonates (Fig. 4.9A). There were no significant differences in serum insulin 

concentrations (Fig. 4.9B) or HOMA-IR (Fig. 4.9C) amongst the groups. There were insufficient 

sera volumes for the determination of glucagon concentrations. 
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Figure 4.9 Neonatal blood glucose and serum insulin concentrations and HOMA-IR. (A), 

Neonatal blood glucose concentrations; (B), Neonatal serum insulin concentrations; (C), 

HOMA-IR in neonates. Data are means ± SEM. Control; Control-Al, control-Aspalathus 

linearis; HFD, high fat diet; HFD-Al, HFD-Aspalathus linearis.
 *

p<0.05 vs. control; 
†
p<0.05 

vs. Control-Al.  
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CHAPTER 5 

DISCUSSION 

 

5.1 Introduction to the main study 

In our previous studies, the 20F neonates had elevated blood glucose concentrations compared to 

control neonates but this did not reflect hyperglycaemia as it was within the physiological range 

(Cerf et al., 2011). The serum insulin and glucagon concentrations remained unaltered (Cerf et 

al., 2011). We further investigated neonatal brain glucose transporter 2 (GLUT2) and 

neuropeptide Y expression. Both the 30F and 40F neonates displayed increased brain GLUT2 

and neuropeptide Y immunoreactivity (Cerf et al., 2010) which may represent early events in the 

development of obesity and T2D. Hepatic GLUT2 and glucokinase (GCK) mRNA expression 

and immunoreactivity showed no significant differences amongst the groups (Cerf et al., 2011). 

This prompted further studies on foetal programming of metabolic disease. The present study 

therefore aimed to investigate the effect of gestational maternal diets varying fat (as energy) on 

proximal hepatic and skeletal muscle insulin signalling in neonatal Wistar rat offspring 

specifically focusing on IRα, IRS2 and PI3K-p110α.  

5.1.1. Skeletal muscle  

Skeletal muscle is the major site for insulin stimulated glucose uptake (Lin and Sun, 2010). The 

development of insulin resistance in skeletal muscle is critical in the pathogenesis of T2D (Yan 

et al., 2011). Foetal life is important for skeletal muscle development; after birth there is no net 

increase in the number of muscle fibers (Nissen et al., 2003). Late foetal life is also important for 

adipogenesis which may increase intracellular adipogenesis in skeletal muscle leading to insulin 

resistance (Du et al., 2010). Abnormal skeletal muscle development has been reported in several 

studies; offspring from mothers fed a cafeteria during gestation and lactation had reduced 

myocyte proliferation and insulin receptor mRNA expression (Bayol et al., 2005). In this study, 

neonates from mothers fed a 30% fat (30F) or 40% fat (40F) fat diet during gestation had a 

reduced IR and PI3K mRNA expression compared to neonates from mothers fed a 20% fat (20F) 

diet. These findings suggest compromised proximal insulin signalling, at the gene level, in 30F 
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and 40F neonates relative to 20F neonates. In skeletal muscle, reduced PI3K-p110β mRNA 

expression was reported in female offspring from obese mice (Shelley et al., 2009).  

In the present study, the 30F and 40F neonates had a reduced IRα immunoreactivity compared to 

control neonates with no significant changes in both IRS2 and PI3K-p110α immunoreactivity. 

The reduced IRα immunoreactivity may reflect impaired skeletal muscle proximal insulin 

signalling in 30F and 40F neonates. A decline in IR autophosphorylation of IRS1 and PI3K-p110 

phosphorylation suggests impairment in early events of the insulin signalling pathway in high fat 

fed animals (Hansen et al., 1998). 

The present study did not investigate IRS1 mRNA and protein expression but instead focused on 

IRS2. IRS2 was initially identified as an alternative in animals with IRS1 defects (Sesti et al., 

2001). Both IRS1 and IRS2 may regulate unique signalling pathways in different tissues but both 

mediate metabolic pathways (Sesti et al., 2001). Based on the results obtained, further 

investigation on the phosphorylation of these insulin signalling cascades is warranted. In 

addition, the programming effects of maternal fat diets on offspring physiology and metabolism 

should be gender specific. 

5.1.2. Liver 

Offspring from mothers fed a “junk” diet had reduced hepatic IR and IGF mRNA expression 

with reduced hepatic IRS2 and GLUT2 mRNA expression compared to control offspring (Bayol 

et al., 2010), which was indicative of hepatic insulin resistance. We previously found no 

significant changes in both hepatic GLUT2 and GK mRNA expression and immunoreactivity 

(Cerf et al., 2011). In the present study, no changes in hepatic IR and IRS2 mRNA expression 

were found. However, hepatic IRα immunoreactivity was reduced in 40F neonates compared to 

control and 20F neonates which may reflect impaired hepatic insulin signalling at the receptor 

level. Therefore proximal insulin signalling may be compromised thereby limiting the effect of 

insulin’s action in the liver. Specifically, reduced hepatic IRα immunoreactivity induced by high 

fat foetal programming may result in the inability of insulin to suppress hepatic gluconeogenesis 

thereby stimulating glycogen synthesis leading to hyperglycaemia and insulin resistance. 

However, there were no changes in glycaemia in 40F neonates (Cerf et al., 2011). β cell 
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compensation may prevent hyperglycaemia at the neonatal life stage but these neonates may be 

glucose intolerant. Further, with age, the adverse effects of foetal programming may become 

more profound particularly with additional insults such as prolonged high fat diet consumption. 

In rodents, offspring from high fat fed mothers showed reduced protein expression of hepatic 

IRβ and IRS1 but elevated protein expression of PKC-ζ, independent of hyperglycaemia 

(Buckley et al., 2005; Considine et al., 1995). Based on the results, further investigation on the 

phosphorylation of insulin signalling cascades, including PKC, PKB, DAG and ceramide is 

required to link the proximal and distal factors of insulin signalling.  

The RNA integrity number for all the liver samples was less than 6 (the quality standard) 

therefore the RNA integrity of the samples was degraded. New samples should be analysed by 

qPCR to validate the hepatic gene expression findings. Further, there was disparity between the 

mRNA and protein expression (immunoreactivity) in liver samples which may be due to 

stability, degradation or contamination of mRNA samples. The IR mRNA and IRα protein 

expression (immunoreactivity) were reduced in 30F and 40F neonates compared to 20F neonates 

reflecting some changes in gene expression. The IRS2 mRNA and protein expression were not 

altered in both liver and skeletal muscle.  

5.2. Maternal serum lipid profiles  

The current evidence shows that FFA are implicated in obesity, insulin resistance and type 2 

diabetes (Eckel et al., 2005). Endogenous fatty acids are the best biomarkers for FFA intake 

since they cannot be synthesised from carbohydrates (Riserus et al.,2009). The various FFA 

consumed by mothers during gestation play crucial roles in the growth and development of their 

foetuses. Maternal circulating FFA are correlated to the foetal circulating FFA with reduced total 

concentrations in foetuses relative to mothers (Cetin et al., 2002). Changes in maternal and foetal 

plasma FFA concentrations may lead to the development of metabolic disease including type 2 

diabetes. Animal studies demonstrated that insulin sensitivity is impaired by SFA and improved 

by PUFA (omega 3) (Siri-Tarino et al., 2010). In rats, SFA have shown to increase intramuscular 

palmitic acid (16:0) accumulation that may lead to insulin resistance in (Reynoso et al., 2003).  
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The present study investigated the changes in serum lipids of pregnant mothers fed diets varying 

in fat (as energy) throughout the gestation period. Previous studies have demonstrated that high 

fat diet fed rats exhibited a significant increase in total triglyceride and cholesterol 

concentrations compared to control rats (Srinivasan et al., 2008). In contrast, in our study, there 

were no significant changes in serum total triglyceride, cholesterol and FFA concentrations. 

Therefore we further investigated serum total and individual FFA composition.  

Previous studies in humans reported a positive association between serum FFA composition and 

diabetes, characterised by higher proportions of palmitic acid (16:0), dihomo-γ-linolenic (20:3 n-

6) and palmitoleic acid (16:1 n-7) in cholesterol esters with low proportions of linoleic acid (18:2 

n-6) (Coelho et al., 2011; Vessby et al., 1994). In this study, we found a reduction in total SFA 

composition in 30F and 40F mothers compared to control mothers. Further, circulating palmitic 

acid (16:0) and stearic acid (18:0) were not affected by diet varying in fat (as energy) in these 

mothers. We further investigated the palmitoleic (16:1 n-7)/palmitic (16:0) ratio which is a better 

marker for palmitic acid (16:0) intake via activity of desaturate enzyme (Warensjo et al., 2008). 

The serum palmitoleic (16:1 n-7)/palmitic (16:0) ratio was unaltered. However, circulating 

palmitoleic acid was reduced in both 30F and 40F mothers on day 14 of gestation. Therefore, a 

reduction in SFA and circulating palmitoleic acid may reflect transient improved insulin 

sensitivity in both 30F and 40F mothers at this specific time points in gestation.  

MUFA have been reported to improve insulin sensitivity and SFA reduced insulin sensitivity by 

24% compared to MUFA in overweight subjects (Riserus et al., 2009). The total MUFA and 

oleic acid (18:1 n-9) composition was increased in 40F mothers compared to both 20F and 30F 

mothers on the day of delivery with no detected changes in 40F mothers compared to control 

mothers. This may reflect improved insulin sensitivity at delivery in 40F mothers relative to 20F 

and 30F mothers.  

PUFA, particularity the omega-3 fatty acids docosahexaeonic acid (22:6 n-3) and 

eicosapentaenoic acid (20:5 n-3), have been reported to improve insulin sensitivity compared to 

SFA (Riserus et al., 2009). In high fat diet fed rats, dietary intake of medium and long-chain 

triglycerols ameliorated insulin resistance (Terada et al., 2012). This may be due to their greater 

oxidative rates compared to SFA (Coelho et al., 2011). Other studies have shown that FFA 
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oxidation increases proportionately with PUFA/SFA ratio (Bradshaw et al., 2009; Coelho et al., 

2011). In this study, the total n-3 PUFA was reduced in both 30F and 40F mothers on day 7 of 

gestation which may reflect insulin insensitivity in early gestation. On the day of delivery, the 

total n-3 PUFA remained reduced (albeit not significant) in 30F and 40F mothers. Linoleic acid 

(18:3 n-3) was also reduced in both 30F and 40F mothers on day 7 of gestation. On day 14 of 

gestation, docosapentaenoic acid (22:5 n-3) was reduced in 30F and 40F mothers. This reduction 

in total and specific n-3 PUFA may reduce insulin sensitivity of the mothers and developing 

foetus. However, the n-6 PUFA/n-3 PUFA ratio was not affected.  

5.3. Pilot study: Aspalatus linearis (green rooibos) 

The prevalence of T2D in children continues to increase globally. Maternal over-nutrition is 

associated with an increased risk of metabolic disease including T2D later in life. Rooibos tea is 

considered healthy and safe to drink during pregnancy due to the absence of alkaloids and low 

tannin content (Joubert et al., 2008). Rooibos tea contains several active compounds; one of the 

major active compounds is aspalatin, a flavanoid that is unique to rooibos and believed to be 

partially responsible for its hypoglycaemic effects (Son et al., 2012; Kawano et al., 2009). 

Aspalatin has been reported to improve glucose tolerance in vivo (Kawano et al., 2009). In this 

study, we assessed the therapeutic potential of Aspalatus linearis extract (aspalatin-enriched) on 

the programming effects of a high fat diet. The HFD-Al mothers had elevated blood glucose 

concentrations on day 20 of gestation; however this did not reflect hyperglycaemia as it was 

within the physiological range. The rooibos tea extract had no effect on maternal serum insulin 

and glucagon concentration. In addition, there were no differences in insulin sensitivity as 

estimated by HOMA-IR. Further, there were no changes in maternal calorie intake, body weights 

and organ weights (liver, heart, brain and pancreas). We also found no differences in litter size 

among the groups. These findings suggested that rooibos tea extract had neither harmful nor 

ameliorative effects in pregnant mothers.  

In the present study, HFD neonates had increased head circumference, brain weight and body 

weight compared to control neonates reflecting more rapid growth and development. Increased 

body weight in HFD neonates may reflect adiposity which should be investigated further. 

Offspring from rats fed a high fat diet (35% fat) during gestation displayed elevated FFA 
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concentrations which could lead to increased adiposity and insulin resistance late in life 

(McCurdy et al., 2009). The HFD-Al neonates were heavier than control neonates with no 

differences between HFD and HFD-Al neonates. Therefore Aspalathus linearis supplementation 

in offspring maintained on a high fat diet increased body weight and did not reduce body weight 

in high fat exposed neonatal progeny.  

The hypoglycaemic effect of aspalatin has been reported to be via AMPK activation to promote 

endogenous GLUT4 translocation in L6 myocytes (Son et al., 2012). However, the HFD and 

HFD-Al neonates displayed reduced blood glucose concentrations compared to control neonates. 

With the insult of high fat diet consumption, Aspalathus linearis treatment may therefore hold 

some glucose lowering potential. This should be confirmed in further studies. Serum insulin 

concentrations and HOMA-IR were not affected but these could potentially be altered as 

glycaemia fluctuates.  

ROS triggers insulin resistance (Kawano et al., 2009). By reducing oxidative stress, Aspalathus 

linearis may prevent peripheral and tissue-specific insulin resistance. In STZ-induced diabetic 

rats, rooibos tea partially ameliorated oxidative stress (Ulicna et al., 2006). Therefore oxidative 

stress should be assessed in foetal programmed progeny and their mothers.  
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

 

6.1 Study limitations 

A limitation of the present study was low sera volumes for maternal lipidaemia analyses as only 

total cholesterol concentrations were determined without measuring HDL and LDL cholesterol.  

The study could be strengthened by determining insulin signalling phosphorylation which 

reflects activity of these insulin signalling cascades and could reinforce some of the findings. 

Further, Western blot analyses could confirm our immunoreactivity findings.  

Gender specific programming effects also present a limitation as the physiological systems and 

hormones differ in males and females. 

6.2 Conclusion and future work  

The overall aims of the study was to investigate the effects of maternal diets varying in fat 

content on neonatal gene and protein expression profiles of proximal insulin signalling factors 

(IRα, IRS2 and PI3K-p110α) and to assess the therapeutic potential of Aspalathus linearis (green 

rooibos) on the programming effects of a high fat diet.  

Foetal high fat programming reduced neonatal IRα immunoreactivity in both the liver and 

skeletal muscle which may impair proximal insulin signalling in these organs at the receptor 

level. Further, skeletal muscle IR and PI3K mRNA expression were also reduced by high fat diet 

in the 30F and 40F neonates compared to 20F neonates. However, hepatic IR and IRS2 mRNA 

expression was not affected and further studies are needed. High fat diet had no effect of 

maternal circulating total FFA, triglycerides and cholesterol concentrations. The reduction in 

total and specific omega 3 fatty acids may have a negative impact on the insulin sensitivity of the 

mother and foetus.  

Aspalathus linearis had no effect of maternal serum insulin and glucagon concentrations. In 

addition, maternal calorie intake, body weight and organ weights (liver, brain and pancreas) were 
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not altered amongst the groups, suggesting that rooibos had neither harmful nor ameliorative 

effects pregnant mothers. The HFD-Al neonates were heavier than control neonates suggesting 

that rooibos treatment at the dose of 150 mg/kg had no ameliorative effect on the body weight of 

offspring from mothers fed high fat diet during pregnancy.  

Futures studies  

New samples should be analysed for qPCR to validate the gene expression findings of the 

present study. Based on the results obtained, further investigation on the phosphorylation of 

these insulin signalling cascades is warranted. In addition, the programming effects of maternal 

fat diet on offspring physiology and metabolism should be gender specific.  
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APPENDIX A 

HAEMATOXYLIN AND EOSIN STAINING OF NEONATAL LIVER AND SKELETAL MUSCLE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

 

Figure A.1 Morphological analysis of neonatal tissue using haematoxylin and eosin stain. (A), Neonatal liver, Control (Ai), 20F (Aii), 

30F (Aiii) and 40F (Aiv); (B), Neonatal skeletal muscle, Control (Bi), 20F (Bii), 30F (Biii) and 40F (Biv). Control; 10F, 10% fat diet; 20F, 

20% fat diet; 30F, 30% fat diet; 40F, 40% fat diet.  
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APPENDIX B 

 IMMUNOHISTOCHEMICAL STAINING FOR NEONATAL LIVER AND SKELETAL MUSCLE IRβ AND IRS1 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure B.1 Neonatal hepatic and skeletal muscle IRβ immunoreactivity. (A), Neonatal liver immunostained with ant-IRβ in Control (Ai), 

20F (Aii), 30F (Aiii) and 40F (Aiv); (B) Neonatal skeletal muscle immunostained with ant-IRβ in Control (Bi), 20F (Bii), 30F (Biii) and 40F 

(Biv). Control; 10F, 10% fat diet; 20F, 20% fat diet; 30F, 30% fat diet; 40F, 40% fat diet.  

B 

Control 20F 

30F 40F 

Control 

30F 

A 

 

20F 

40F Aiv Aiii 

Aii 

Biv Biii 

Bii Bi Ai 

 

 

 

 



 

 

84 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.2 Neonatal hepatic and skeletal muscle IRS1 immunoreactivity. (A), Neonatal liver immunostained with ant-IRS1 in Control 

(Ai), 20F (Aii), 30F (Aiii) and 40F (Aiv); (B) Neonatal skeletal muscle immunostained with ant-IRS1 in Control (Bi), 20F (Bii), 30F (Biii) and 

40F (Biv).Control; 10F, 10% fat diet; 20F, 20% fat diet; 30F, 30% fat diet; 40F, 40% fat diet. 
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APPENDIX C 

TOTAL RNA QUALITY CONTROL  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.1 Total RNA quality control. (A) Liver samples; (B) Skeletal muscle samples 
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APPENDIX D 

 

Table D.1 Antibodies used in immunehistochemical (IHC) staining  

Antibody Clonality Company  

IRα (ab78424) Rabbit polyclonal Abcam, Cambridge, UK 

IRS2 (H-205) : (sc-8299) Rabbit polyclonal Santa Cruz Biotechnology, Santa 

Cruz, CA, USA 

PI3K-p110α (C73F8) Rabbit monoclonal Cell signalling Technology, 

Danvers, MA, USA 

IRβ (C-19) : (sc-711) Rabbit polyclonal  Santa Cruz Biotechnology, Santa 

Cruz, CA, USA 

IRS1 (1M92-7)  Mouse monoclonal  Millipore upstate, Singe Oak Drive, 

Temecula, CA, USA 
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Table D.2 Buffer and reagents used in IHC 

 

Reagent  Supplier 

0.05M Tris-Buffered Saline (TBS) pH 7.2  

Tris (hydroxymethyl aminomethan)   Merck 

Sodium chloride  Merck 

  

0.1M Phosphate Buffered Saline (PBS) pH 

7.2 

 

Sodium dihydrogen orthophosphate (NaH2PO4)  Merck 

Disodium dihydrogen orthophosphate 

(Na2HPO4) 

Merck 

Sadium chloride Merck 

Bovine serum albumen Merck 

Sodium azide Merck 

  

0.01M Citrate Buffer   

Citric acid (C6H8O7.H2O) Merck 

Tri-sodium citrate  (C6H5Na3O7.2H2O) Merck 

  

Liquid DAB + Substrate Chromagen System DAKO Corporation (Diagnostech) 

  

Normal Horse Serum (NHS)  

65µl NHS diluted in 1235µl 0.1M PBS pH 7.2  

  

Normal Goat Serum (NGS)  

 65µl NGS diluted in 1235µl 0.1M PBS  

  

Biotinylated anti-Mouse IgG Vector Labolatories 

Biotinylated anti-Rabbit IgG Vector Labolatories 

Vectastain ABC kit Vector Labolatories 
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