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ABSTRACT 

 

Introduction 

Cissampelos capensis, is commonly known by the Afrikaans name ‟dawidjies” or 

‟dawidjieswortel”. C. capensis is the most important and best known medicinal plant 

of the family Menispermaceae used by the Khoisan and other rural people in the 

western regions of South Africa. Among numerous other ailments, it is traditionally 

taken to treat male fertility problems. Yet, no studies have investigated the effects of 

this plant or its extracts on human spermatozoa. The aim of study was to investigate 

the effects of C. capensis rhizome extracts on sperm function. 

 

Materials and Methods 

Fresh Cissampelos capensis rhizomes were collected from the Cape Nature Reserve 

near Belhar in the Western Cape, South Africa, during the summer season (February). 

The rhizomes were cleaned and chopped into smaller segments, these pieces were 

oven-dried at 25
o
C for approximately 3 days and milled to form a powdery substance 

which was infused with hot (about 70
o
C) distilled water for 1 hour. After cooling and 

filtration extract was frozen at -20
o
C until it was freeze-dried, the dried extract was 

then stored at 4
o
C in a closed container until experimentation. 

 

This study includes two parts (part 1: investigation of the effect of Cissampelos 

capensis rhizomes extract CRE on sperm functions; part 2: investigation of CRE 

fractions with and without progesterone on sperm functions). 

 

Part 1: A total of 77 semen samples was collected. Spermatozoa were washed with 

Human tubular fluid-Bovine serum albumin (HTF-BSA) medium and incubated with 

different concentrations of C. capensis (0, 0.05, 0.5, 5, 50, 200 µg/ml) for 1 hour at 

37°C. Sperm motility, vitality, acrosome reaction, reactive oxygen species (ROS), 

capacitation, annexin V-binding, DNA fragmentation and mitochondrial membrane 

potential (Aψm) were determined.  
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Part 2: A total of 26 semen samples was collected. Spermatozoa were washed with 

HTF-BSA medium and incubated for 2 hours. Fractionation (F) of CRE with 

methanol was  prepared as F1= 0% MeOH, F2= 30% MeOH, F3= 60% MeOH and 

F4= 100% MeOH in combination with 20 µg/ml progesterone (P4) or without P4 and 

incubated with different concentrations of C. capensis (0, 0.05, 0.5, 5, 50, 200 µg/ml) 

for 1.5 hour at 37°C. Sperm motility, reactive oxygen species (ROS), capacitation 

were determined. 

 

Results 

Part 1: While viability, annexin V-positivity and Aψm were not affected, the 

percentages of ROS-positive, TUNEL-positive, capacitated and hyperactivated 

spermatozoa increased significantly and dose-dependently.  

Part 2: F1 yielded higher significance than F2, F3 and F4 for ROS, capacitation and 

hyperactivation. No effect was found for the other parameters. 

 

Conclusion 

It is concluded that the alkaloids present in the F1 of the extract of C. capansis 

rhizomes triggered sperm intrinsic superoxide production leading to sperm 

capacitation and acrosome reaction induced by P4. 
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Chapter 1: Introduction 

 

1.1 Male Reproductive System 

The organs and structures of the male reproductive system provide men the ability 

to fertilise a women's ovum (egg) to generate offspring. Furthermore, the organs 

and structures which comprise the male reproductive system, include the testes, 

where spermatozoa are produced, the epididymis where the male germ cells 

mature and are stored, as well as the penis (Foley, 2001; Seeley et al., 2003). The 

penis has a single duct called the urethra; this releases both spermatozoa and 

urine. In addition, included in the male reproductive system are the accessory sex 

glands, which consist of the prostate gland, bulbourethral (Cowper’s) glands and 

the seminal vesicles (Figure 1) (Greenspan and Gardner, 2001; Pearson Education, 

2004). These glands excrete special fluids known as seminal fluid which supports, 

maintains and protects spermatozoa as they travel through the male reproductive 

tract and the female vagina. 

 

The hypothalamic-pituitary-gonadal axis (HPGA) is an important system in 

reproduction as it maintains hormonal homeostasis. It comprises of the 

hypothalamus, pituitary and gonads. Gonadotropin Releasing Hormone (GnRH) is 

released from the hypothalamus in pulse rate intervals every 90-120 minutes 

(Mruk and Cheng, 2010; Kopera et al., 2010) to stimulate the release of 

gonadotrophins, Follicular-stimulating hormone (FSH) and Luteinizing hormone 

(LH) from the anterior lobe of the pituitary. Subsequently, as a result of the 

stimulation by gonadotrophins, steroidal hormones such as testosterone, estrogen 

and progesterone are consequently stimulated and released at target organs (testes 

in males and ovaries in females). These hormones are important for male and 

female secondary characteristics which include maintaining, supporting and 

ensuring reproduction, bone density and muscle mass (Greenspan and Baxter, 

1994; Greenspan and Gardner, 2001).  

 

The main male hormone testosterone causes the appearance of the male sexual 

characteristics, such as facial hair growth and other masculine features together 

with growth hormones, FSH and LH (Greenspan and Baxter, 1994; Greenspan 

and Gardner, 2001). Immature germ cells develop through several stages and 
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finally become mature sperm cells called spermatozoa. This development of 

spermatogenic stem cells into mature spermatozoa is called spermatogenesis 

(Norton et al., 1994; Hess and De Franca, 2008; Mathur and D’Cruz, 2011). 

 

 

   Figure 1: Cross section of the male reproductive system (Pearson Education, 2004). 

 

 

1.2 Spermatogenesis 

Innate to their function to fertilize oocytes, spermatozoa ejaculated from the male 

reproductive tract have unique features in terms of structure and physiology. The 

most immature male germinal cell is the spermatogonium. It is the basic, self-

renewing stem cell of the male germ cell line (Figure 2). The first mitotic division 

of spermatogonia are to increase their number with daughter cells, either 

proceeding into spermatogenesis, forming replacement stem cells, or degeneration 

(Bart et al., 2002). At the onset of puberty, large primary spermatocytes are 

formed by spermatogonia which pass through the blood testis barrier (BTB) 

formed by tight junctions of adjacent Sertoli cells (Kato et al., 2009). After an 

additional few days, these spermatogonia continue in division thereby forming 

more spermatocytes which eventually develops into spermatids that are eventually 

modified to become spermatozoa. 
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       Figure 2: Illustration of seminiferous tubules (Pearson Education, 2004). 

 

 

The spermatocytes are diploid (23 chromosomes in duplicate). During the meiotic 

change from the spermatocyte stage to the spermatid stage they emerge as 

haploid. Therefore, this implies that one set of 23 chromosomes will go to one 

spermatid and the other set to the second spermatid (Cheng and Mruk, 2002). The 

entire period of development from germinal cell to spermatozoa takes 

approximately 75 days in the human (Clermont and Trott, 1969; Clermont and 

Antar, 1973; Andersen Berg et al., 1990; Russell et al., 1990; Rosiepen et al., 

1994, 1997).  

 

The production of spermatozoa from the onset of puberty in human males is a 

continuous process resulting in up to 120 million mature spermatozoa per day 

(Clermont and Antar, 1973; Franca and Godinho, 2003). Each round spermatid 

still has to progress into an elongated spermatozoon (Figure 3) composed of a 

head, mid-piece and tail (Roosen-Runge, 1962; Cleremont, 1972; Hess, 1999), as 

spermatids still have epithelial characteristics. The condensed nucleus is found 
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within the head of the sperm cell and a thin cytoplasmic and cell membrane layer 

surrounding its surface (Okanlawon and Dym, 1996; Olofsson, 1999). At the 

anterior two thirds of the head on the outside is a thick cap called the acrosome 

that is formed mainly from the Golgi apparatus. This contains a number of 

enzymes which are essential for entry into the ovum allowing for fertilization. 

 

 

Figure 3: Spermiogenesis and spermatozoon structure (Pearson Education, 2004). 

 

 

1.3 Infertility 

About 15% of all couples, which amounts to 50-80 million couples at 

reproductive age globally and annually, have difficulties conceiving (WHO, 1992; 

Tielemans et al., 2002). In more than half of these cases the problem lies with the 

male partner (Hull et al., 1985; de Kretser and Baker, 1999). Infertility is 

described as the inability of a couple to induce pregnancy after one year of 

regular, unprotected intercourse during the fertility phase of the menstrual cycle 

(WHO, 1992; Nieschlag et al., 2000; Evers, 2002). 
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In Africa, within male dominated societies, infertility is considered as a female 

problem (Dyer et al., 2004). This often leaves the couple with overwhelming 

feelings of hopelessness, frustration and despair. 

 

Assisted reproductive techniques (ART) such as in vitro fertilization (IVF), 

intracytoplasmic sperm injection (ICSI) to alleviate and treat male infertility are 

available in many countries. However, these methods are expensive and the 

surgery may cause added negative impact on enhancing male fertility (Gleicher 

and Barad, 2006). On other hand, in Africa, these techniques are not readily 

available or accessible mainly because they are unaffordable for the majority of 

people. Therefore, approximately 70% of patients are resorting to traditional or 

complementary medicine (Bannerman, 1993; Calixto, 2000). For this reason, 

many people with male fertility problems turn to traditional medicines. 

 

1.4 Measures of Sperm Function Parameters 

1.4.1 Motility 

Sperm motility is a complex function, the understanding of which requires 

integration of cell biology with reproductive physiology, biochemistry, biophysics 

and clinical andrology. This parameter is part of the standard semen analysis 

according to WHO (WHO, 2010). Sperm motility is dependent on the sperm 

flagellum, which provides the propulsion for swimming (Coetzee et al., 1989; 

Shulman et al., 1998). Motility patterns of spermatozoa have been investigated 

throughout the years and expressed as different parameters. These parameters 

were often mistaken to be similar and described with the same characteristics until 

a consensus on these parameters was reached by the Automated Sperm Motility 

Analysis (Mortimer, 1990). With the aid of motion analysis systems, these 

parameters have now been standardized. The motility of each spermatozoon is 

graded as follows: 

 Total motility: total spermatozoa moving actively (moving linearly movement 

or in a large circle, not considering speed) and all other patterns of motility 

with an absence of progression. 

 Progressive motility: spermatozoa moving forward actively in a straight 

pattern. 
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 Curvilinear velocity (VCL): measurement of the speed of travel of the centroid 

of the sperm head over a given period of time, i.e. the local speed along the 

curvilinear path traced by the sperm head. 

 Straight line velocity (VSL): straight line distance between the first and last 

centroid positions for a given period of time rather than the sum of all 

intermediate distances. 

 Average path velocity (VAP): spatially averaged path that eliminates the 

wobble of the sperm head, while preserving the basic curvature of the path, i.e. 

average path velocity based on every 5
th

 frame of VCL path. 

 Linearity of forward progression (LIN): ratio of VSL to VCL, values range 

from 0 to 100 with a value of 100 representing cells swimming in a straight 

line pattern and expressed as percentage. 

 Straightness (STR): linearity of the spatial average path, expressed as ratio of 

VSL to VAP. 

 Beat cross frequency (BCF): timed average rate at which the Curvilinear 

sperm trajectory crosses its average path trajectory. 

 Hyperactivation: calculated capacitation of mature spermatozoa of all humans 

and functionally associated with sperm acrosome reaction  

 

1.4.2 Mitochondrial membrane potential 

The synthesis of metabolic energy in the form of adenosine triphosphate (ATP) 

via oxidative phosphorylation, fatty acid oxidation, regulation of reduction-

oxidation and calcium signalling, and the control of apoptosis are all regulated in 

the mitochondria (Van Loo et al., 2002; Mattson et al., 2008). These organelles 

have inner and outer membranes that separate the matrix from the inter membrane 

space (IMS) and the IMS from the cytosol. The respiratory chain complexes of the 

electron transport chain and ATP synthesis occurs in the inner mitochondrial 

membrane (IMM) (Mattson et al., 2008). This inner membrane is a special 

structure folded into cristae. 

 

Since sperm motility is one of the key factors for fertilizing ova (Ruiz-Pesini  

et al., 2000) and requires energy provided by the mitochondria. This relationship 
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can be seen by the significant correlations between motility and mitochondrial 

membrane potential (Kasai et al., 2002; Henkel et al., 2012). 

 

 

1.4.3 DNA fragmentation 

DNA fragmentation can be described as single and double DNA strand breaks within 

spermatozoa and can be associated with some male infertility cases (Irvine et al., 

2000). Improper DNA packaging and chromatin condensation, ligation 

(McPherson and Longo, 1992; Sakkas et al., 1999, 2002) and apoptosis, oxidative 

stress (Agarwal et al., 2003; Henkel et al., 2003; 2005a) are only a few of the 

causes resulting from sperm DNA fragmentation/damage. Life style and 

environmental factors as causative parameters for this kind of DNA damage 

should also be taken into account (Fraga et al., 1996). 

 

Spermatozoa with damage DNA are still capable of fertilizing oocytes (Twigg et 

al., 1998; Henkel et al., 2004) when using ART techniques as they escape the 

natural screening of DNA fragmented sperm in the female genital tract. This may 

lead to detrimental  outcomes as embryos that developed through these methods of 

conception may reach full term and may present later in life with genetic disorders 

or even cancers (Aruoma, 1994; Aitken and Krausz, 2001; Gandini et al., 2004). 

Also, DNA-damaged spermatozoa can be associated with a reduction in 

fertilization ability, impaired pre-implantation development, miscarriage and 

morbidity in the offspring (Zini and Sigman, 2009; Aitken and De Iuliis, 2010; 

Avendaño and Oehninger, 2011). 

 

As the importance of DNA damage within spermatozoa has been established, the 

examination of this principle aspect is of equal importance. It is not only 

mandatory to understand the principles these different test systems are based on, 

but also to know which aspects of DNA damage these test system are measuring 

to distinguish between assays that measure potential DNA damage or real DNA 

damage for example the assay TdT (terminal deoxynucleotidyl transferase) 

mediated dUDP nick end labelling (TUNEL) (Gorczyca et al., 1993; Henkel et al., 

2003; Henkel and Franken, 2011). 
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The TUNEL assay is the specific test to detect single and double-strand DNA 

breaks (Gorczyca et al., 1993; Henkel et al., 2007). It works by means of an 

enzymatically catalysed reaction using the template-independent terminal 

deoxynuleotidyl transferase (TdT) it incorporates biotinylated or fluorescinated 

dUTP to the 3'-OH ends of the DNA, which increase with the number of strand 

breaks (Shamsi et al., 2008). Its relevance in respect of sperm function as well as 

of fertilization and pregnancy has been proven repeatedly (Sun et al., 1997; 

Henkel et al., 2004). The TUNEL assay evaluates DNA fragmentation, which is a 

late stage of apoptosis. However, the assay cannot distinguish between apoptosis 

and necrotic cells and other parameter of apoptosis (Henkel et al., 2004).  

 

1.4.4 Apoptosis 

Cell death can be distinguished into two modes namely apoptosis and necrosis. In 

context, apoptosis is the "ability of a cell to self-destruct". In doing so, cells 

activate intrinsic cellular suicide signalling programs when they are defective, 

damaged or the renewal of cells are needed (Kerr et al., 1972; Wyllie et al., 1980). 

It can also be further distinguished on the basis of differences in morphological 

and biochemical characteristics and classified as early and late onset of cell death 

(Kerr et al., 1972). When cells undergo apoptosis, several morphological and 

biochemical changes occur such as cell shrinkage, surface membrane anamolies, 

apoptotic body formation, chromatin condensation and fragmentation of DNA 

(Fadok et al., 1992).  

 

The early onset of apoptosis may be characterized by plasma membrane 

alterations in which translocation of phosphatidyserine (PS) from the inner to the 

outer leaflet and phospholipid asymmetry occurs from the inner part to the outer 

layer of the plasma. This externalization of the PS aids in the detection process 

during apoptosis. In sperm, such cells with exposed PS can be identified by the 

fluorescence-labelled, Ca
2+

-dependent phospholipid-binding protein Annexin-V 

(Vermes et al., 1995; Glander and Schaller, 1999). In combination with propidium 

iodide (PI) or 4',6-diamidino-2-phenylindole (DAPI), a simultaneous distinction 

between live and dead spermatozoa is possible (Pinkel et al., 1982; Garner, 2006; 

Kuželová and Chrenek, 2013). 
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1.4.5 Reactive oxygen species  

During oxidative metabolism, unstable oxygen molecules are formed by any cell 

in their mitochondria as by-products which are called reactive oxygen species 

(ROS). Some of them are free radicals, i.e. molecules with a single, impaired 

electron. Examples of ROS are hydroxyl ions (·OH
-
) and superoxide (·O2

-
) and 

non-free radicals are hydrogen peroxide and lipid peroxide (Petersen et al., 1980; 

Alaa Hamada et al., 2012). ROS are extremely reactive with half-life times in the 

nano-second to milli-second range. Other forms of highly reactive molecules also 

include reactive nitrogen species (RNS); some examples include nitrous oxide, 

nitroxyl ion, and peroxynitrite. ROS and RNS also exist within spermatozoa or 

externally the semen (Darley-Usmar et al., 1995; Sikka, 2001; Lee and Cheng, 

2004; Pacher et al., 2007). The external sources of ROS within the male genital 

tract and semen may derive from leukocytes or immature/damaged spermatozoa 

(Henkel, 2012). At high levels, ROS also causes damage to lipids, proteins, 

carbohydrates and nucleic acid. The latter, contributing to poor DNA packaging 

and effecting the quality of sperm fertilizing potential and function (Aitken and 

West, 1990; Keating et al.,1997; Esfandiari et al., 2003). On the other hand, at low 

levels, ROS are beneficial and essential to stimulate sperm function such as 

capacitation (Leclerc et al., 1997), enhance zona pellucida binding (Aitken et al., 

1998), and promote acrosome reaction and hyperactivation (De Lamirande et al., 

1997). Biochemically, ROS trigger capacitation through the redox regulation of 

tyrosine phosphorylation (Leclerc et al., 1997; Aitken et al., 1998). 

 

1.4.6 Capacitation and acrosome reaction 

Capacitation is a sequence of biochemical and physiological changes spermatozoa 

undergo when they exit the seminal plasma and pass through the female genital 

tract in order to be able to undergo acrosome reaction (Yanagimachi, 1994). The 

changes in this process include an increase in sperm plasma membrane fluidity 

which is due to cholesterol loss (Osterhoff et al., 1999), an increase in ionic influx 

by membrane hyperpolarization and an increase in the degree of protein 
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phosphorylation (Zeng et al., 1995; Tardif et al., 2001; Jha and Shivaji, 2002). 

These changes aid the sperm cells cause a change in the motility pattern  

to hyperactivation (Yanagimachi, 1994). Subsequently, sperm are enabled to 

undergo the acrosome reaction. These events are crucial for the spermatozoon  

to penetrate the zona pellucida and fuse with the oocyte plasma membrane 

(Yanagimachi, 1994).  

 

The acrosome is an organelle that covers the anterior one-half to two-thirds of the 

sperm head by a membrane which resembles a cap-like structure (Figure 4). This 

organelle houses essential enzymes such as hyaluronidase and acrosin (Breitbart 

and Spungin, 1997). Morphologically, the release of these ezymes, exocytotically 

during fusions between the outer acrosomal and sperm plasma membrane is 

characterized as acrosome reaction (Breitbart and Spungin, 1997). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Shows the process of Acrosome reaction. (A) Cap-like structure: Fusion 

of outer acrosomal membrane with plasma membrane after stimulation. (B) 

Membrane vesicles with acrosomal content (acrosin) is released. (C) Inner 

acrosomal membrane forms outer surface in the area of the sperm head  (Mann 

and Lutwak-Mann 1981). 
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Yet, in order for acrosome reaction (AR) to commence capacitation needs to be 

initiated. Normally, the acrosome reaction occurs only after physiologically and 

biochemically altered intracellular events within the spermatozoa has already 

taken place, under physiological conditions, the reaction is induced by follicular 

fluid, serum albumin, glycosaminoglycans or glycoproteins (G1 protein) from the 

zona pellucida (ZP) (Yanagimachi, 1981; Suarez et al., 1986; Cross et al., 1988). 

In an in vitro set-up it is not easy to obtain the ZP; an alternative would be the 

steroid hormone, progesterone (Harper et al., 2006). 

 

Progesterone arising from the HPGA in the female initiates AR similar to that of 

ZP by using the Ca
+2 

-influx pathway (Blackmore et al., 1990; Garcia and Meizel, 

1999; Kirkman-Brown et al., 2000). This Ca
2+ 

-influx is necessary for capacitation 

and successful fertilization in invertebrates for and its importance for mammalian 

fertilization was reported by Iwamatsu and Chang (1971). 

 

These intracellular events mentioned above triggered by spermatozoa binding to 

the ZP and thyrosine kinase receptor and the interaction with G1 protein (Ward 

and Kopf, 1993; Breitbart and Spungin, 1997) causing membrane depolarization 

allowing the influx of Ca
+2 

(Figure 5). This influx triggers activation of protein-C 

kinase (PKC) increase membrane fluidity (Baldi et al 1996), protein tyrosine 

phosphorylation (PTP) (Brucker and Lipford, 1995) an increase in cyclic 

adenosine monophosphate (cAMP) concentrations and protein phosphorylation 

(PP) (Baldi et al 1996; Breitbart and Spungin, 1997). In addition, it decreases the 

cholesterol/phospholipid relation of the plasma membrane and activates changes 

in swimming patterns to hyperactivated motility of the sperm. Increased levels, of 

thyrosine kinase trigger increases in capacitation which also leads to membrane 

fusion of acrosome reaction. Under stressed conditions, heat shock protein 90-

alpha (HSP90ɑ) which is an abundant cellular protein (Richter and Buchner, 

2001; Picard, 2002) plays a significant role in the signal transduction pathways of 

a variety of cellular processes including spermatogenesis (Gruppi et al., 1991), 

induces the triggering of capacitation and the initiation of acrosome reaction 

(Richter and Buchner, 2001; Picard, 2002).  
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Figure 5: Hypothetical signal pathway of capacitation and acrosome reaction. The binding of zona 

protein (ZP) to the ZP and the Thyrocine Kinase receptor on the plasma membrane follows an 

reactive cascade of events. Increase of protein thyrocine phosphorylation (PTP); the G1 protein 

relays the signal to the membrane-bound enzyme adenylate cyclase (AC) to increase the 

generation of cyclic adenosine monophosphate (cAMP). This triggers secondary messengers, 

protein kinase (PKA- which is cAMP dependant), Ca
2+

 and phospholipid kinase (PKC) to increase 

protein phospharylation. The increase of intracellular Ca
2+

 as a result of the ZP activation may be 

due to the membrane fluidity of cholesterol binding to extracellular acceptors. The activation of 

cAMP consequently results in more energy required and increases the (+) ATP-ase release. This in 

turn results in capacitation and allowing sperm hyperactivated motility to commence leading to 

membrane fusion and acrosome reaction. On the other hand an alternate pathway in the increase of 

nitro-oxide (NO) and reactive oxygen species (ROS) may also activate thyrocine phospharylation 

(TP) resulting in capacitation and ending in acrosome reaction. HSP90ɑ: Heat Shock Protein 90ɑ; 

MAPK/MEK: Mitogen Activated Protein Kinase (according to Brucker and Lipford, 1995; Baldi 

et al., 1996; Breitbart and Spungin, 1997). 
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1.5 Traditional Medicine 

The World Health Organization (WHO) defines traditional medicine as "the 

knowledge, skills and practice of holistic care, recognized and accepted for its role 

in the maintenance of health and the treatment of diseases. It is based on 

indigenous theories handed down from generation to generation for its beliefs and 

experiences" (WHO, 2000). 

 

Non-industrilized countries (third world and developing countries) have adopted 

this method of treatment as their basic health care system and in high demand as a 

new therapy worldwide (Bannerman, 1993; WHO, 2000; Calixto, 2000) in  

60-80% of cultures such as Chinese, Arabic and African. Traditional medicine 

practices approaches illness in a holistic manner and is deeply rooted in a specific 

social-cultural context and varies between communities and therefore gives 

traditional medicine its diversity. The African continent, currently has changed its 

focus on widespread health-care application. This has highlighted and driven new 

research, investment and design of programmes into this field to improve the 

health care system in several developing countries such as India and China 

including the African countries (Yuan and Lin, 2000; Rukangira, 2001; Fouche  

et al., 2008; Ashidi et al., 2010). 

 

In Africa traditional healers play an important role in the health of millions of 

people. In South Africa, an estimated 27 million indigenous medicine consumers 

are located. Specifically, households in KwaZulu-Natal spend between 4% and 

6% of their annual incomes on indigenous medicine and services (Mander, 1999). 

 

Many medicinal herbs have been claimed to enhance sexual functioning and 

fertilizing potential in men. In Asia and Eastern Europe, Tribulus terrestris is a 

medicinal plant that has been used for centuries to increase sexual desire and 

enhance erection (Adimoelja, 2000). People have also been using plants such as 

Panax ginseng for the treatment of impotency and improving sexual stamina 

(Nocerino et al., 2000). Additionally, Tongkat Ali (Eurycama longifolia), a plant 

growing throughout South East Asia has also been used as an aphrodisiac to 

enhance testosterone levels and to treat erectile dysfunction by the countries 

natives (Tambi and Imran, 2010; Tambi et al., 2012).  
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The central Andes in South America, Gonzalez et al. (2003) has investigated three 

species of Lepidium meyenni (Maca) that have also been traditionally used as an 

aphrodisiac by the aboriginal folk to enhance male fertility for centuries. Research 

proved Maca to reduce spermatogenic damage (Gonzalez et al., 2005). With 

further investigation of one of the hypocotyls, Black Maca, the spermatogenic 

cycle in rats revealed that it affects sperm count as early as 1 day after beginning 

of treatment. Red Maca has an antagonistic effect on prostatic hyperplasia in adult 

mice (Gonzalez et al., 2006, 2008) and prostate zinc levels in rats with 

testosterone-induced prostatic hyperplasia (Gonzalez et al., 2012). 

 

In West Africa, Hibiscus macranthus and Basella alba have been shown  to 

significantly increase testosterone production (Moundipa et al., 2006). In Ghana, 

Mondia whitei, a known aphrodisiac has also revealed that aqueous administration 

enhances sperm total and progressive motility (Lampiao et al., 2008). 

Furthermore, the yombi tree (Pausinystalia yohimbi) is use to increase sexual 

arousal and dysfunction mainly due to its alkaloid Yohimbine as the active 

compound. Additionally, Securidaca longipedunculata (Polygalaceae) and 

Fadogia agrestis (Rubiaceae), also found in Africa, are used by traditional healers 

to treat erectile dysfunction (Meyer et al., 2008). 

 

1.6 Cissampelos capensis 

Cissampelos capensis (Figure 6), is found in the Western Cape Region of South 

Africa and locally known by the Khoisan and rural folk by the Afrikaans name 

'dawidjies' or 'dawidjieswortel' and Xhosa ‘mayisake’. It is the most commonly 

used medicinal plant species from the Menispermacae family (De Wet et al., 

2011). The Menispermaceae family, is indigenous to Southern Africa, has seven 

genera which include Cissampelos. Their popular medicinal usages locally and 

throughout the world are due to its rich content of isoquinoline alkaloids (Table 1) 

(Barbosa-Filho, 2000; De Wet et al., 2011). The genus is represented in Southern 

Africa with four species, namely: C. capensis, C. hirta Klotzsch, C. mucronata A. 

Rich and C. torulosa E. Mey. ex Harv (De Wet and Van Wyk, 2008). 
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Figure 6: Cissampelos Capensis known as 'dawidjies/dawidjieswortel' A) shrub 

with twining stems, sprawling about 1 m tall, B) small silver grey leaves and C) 

Rhizomes when cut has star-like appearance (www.southrenafricanplants.net; 

www.ispot.org.za; Van Wyk et al., 2000). 

 

Table 1: The main components of which the C. capensis extract is composed as 

determined by HPLC in C. capensis leaves, stems and rhizomes (according to De 

Wet et al., 2011). 

      Isolated alkaloid Type of the alkaloid Plant part 

Bulbocapnine An aporphine alkaloid Leaves  

Dicentrine An aporphine alkaloid Leaves  

Salutaridine A morphinane alkaloid Leaves  

Cissacapine Bisbenzyltetrahydroisoquinolin alkaloid Stems 

Rhizome 

Cycleanine Bisbenzyltetrahydroisoquinolin alkaloid Stems 

Rhizome 

Insularine Bisbenzyltetrahydroisoquinolin alkaloid Stems 

12-O-methylcurine Bisbenzyltetrahydroisoquinolin alkaloid Rhizome 

A 

C 

B 

http://www.southrenafricanplants.net/
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Cissampelos capensis is a dioecious perennial sprawling or twining rambling 

shrub with thick, divergent branches and twining stems is the only endemic 

species in Southern Africa occurring in the winter rainfall region. Its leaves are 

alternate without hairs, ovate to heart-shaped, up to 2.5cm wide and 2.5cm long 

and thin petioles up to 3cm long. Interestingly, variations in the leaves arise 

between inland and coastal populations. Its xerophytic adaptations appear with 

small glaucous leaves and along the coast the leaves tend to be larger and less 

glaucous (De Wet el al., 2002; Van Wyk et al., 2002, 2009). Flowering occurs 

during February to May bearing fruit with small fleshy orange berries. The 

rhizomes are measured as and up to 2.5cm in diameter.  

 

In Khoisan ethnomedicine, Cissampelos capensis is of special significance 

because of its variety in treatment applications (Van Wyk and Gericke, 2000; Van 

Wyk el al., 2002; De Wet and Van Wyk, 2008). The rhizomes are widely used as 

a blood purifier and a diuretic medicine; it is also applied to treat ailments such as 

fever, diabetes, stomach and skin cancer, cholera, syphilis, colic, bladder 

problems, snakebite, tuberculosis, menstrual problems, prevention of miscarriage 

and expelling the placenta (Watt and Breyer-Brandwijk, 1962; Smith, 1966; Rood, 

1994; Van Wyk and Gericke, 2000; Von Koenen, 2001). Amongst these different 

usages, it is also said that the rhizome extract can be used to treat male fertility 

problems. 

 

In general, it is assumed that the medicinal therapeutic activity of the rhizomes  

is due to alkaloids such as the alkaloid bisbenzyltetrahydroisoquinoline, which is 

known to have anti-inflammatory effects, muscle relaxant and anti-carcinogenic 

activity (Van Wyk et al., 2002; De Wet, 2008; Van Wyk et al., 2009). However, 

no studies are available reporting the effect of C. capensis rhizomes extract  

on male reproduction function. Therefore, this study aimed at investigating the 

effects of an aqueous C. capensis extract on the functions of spermatozoa in 

humans. 
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1.7 Aim of the study  

C. capensis is widely used as a medicinal plant but no studies are available 

reporting the effect of this plant on male sperm function. Thus, this study aimed at 

investigating the effect of an aqueous C. capensis rhizome extract on the 

following parameters: 

 

 Capacitation  

 Acrosome reaction 

 Motility 

 Vitality  

 DNA fragmentation 

 Mitochondrial Membrane Potential 

 Sperm ROS production 
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Chapter 2: Materials and Methods 

 

2.1 Chemicals and Equipment 

In this study, all chemicals used were, where possible, of analytical or in vitro 

culture standard.  

 

BDH Biochemical, Poole, England supplied: 

 Sodium Pyruvate  

 

Corning Incorporated, New York, USA, supplied: 

 Test tubes (15 ml and 50 ml) 

 Eppendorf vials (1.5 ml) 

 

Kimix Chemicals, Eppingdust, South Africa, supplied: 

 Calcium chloride dihydrate (CaCl2 * 2 H2O) 

 Disodiumphosphate (Na2HPO4) 

 Ethanol 

 Magnesium sulphate heptahydrate (MgSO4 * 7 H2O) 

 Potassuim chloride (KCl) 

 Sodium bicarbonate (NaHCO3) 

 Xylene 

 40 % Formaldehyde 

 

Knittel Gläser, Braunschweig, Germany, supplied: 

 Superfrost slides 

 Standard count 4 chamber slides (Leja
®
) 

 Microscope slides 

 

Lasec, Cape Town, South Africa, supplied: 

 Filter paper (Munk Tell) 

 

Merck, Wadeville Gauteng, South Africa, supplied: 

 Glucose (anhydrous) 
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 Hydrochloric acid (HCl) 

 Hydroxymethyl amino methane (TRIS) 

 Potassium diphosphate (KH2PO4)  

 Sodium chloride (NaCl) 

 Sodium hydroxide (NaOH) 

 Triethanolamine hydrochloride 

 25% Glutaraldehyde 

 

Millipore, Billerica, USA: 

 Millipore distilling machine 

 

Molecular Probes, Eugene, USA, supplied: 

 Dihydroethidine (DHE) 

 

Oxoid, Hampshire, England, supplied: 

 Phosphate Buffered Saline (PBS) 

 

Promega, Madison, USA, supplied: 

 (TUNEL kit) terminal deoxynucleotide transferase mediated dUTP 

nick-end labelling 

 

Sigma-Aldrich, Steinheim, Germany, supplied: 

 Annexin V 

 Bismarck Brown Y (BBY) 

 Bovine serum albumin (BSA) (analytical grade) 

 Chlortetracycline (CTC) 

 Cysteine 

 Dimethylsulphoxide (DMSO) 

 Eosin Y 

 Glycerol 

 Hoechst bid-benzimide 33258 

 Mounting medium 

 Methanol (MeOH) 
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 Nigrosin 

 Phenol red (dye) 

 Progesterone  

 Rosè Bengal (RB) 

 Supelco-Visiprep
TM

  manifold 

 Triton X-100 

 Trypan Blue (TB)  

 1,4 diazabicyclo(2.2.2)octane (DABCO) 

  polyvinylpyrrolidone (PVP40) 

  paraformaldehyde 

 60 % Sodium lactate (Na-Lactate) 

 

Trevigen, Gaithersburg, USA, supplied: 

 DePsipher kit  

 

Waters Corporation, Milford, USA: 

 Oasis
®
 Hydrophilic-Liphophilic Balance (HLB) 6cc cartridge 

 

Whatman, Madestone, England: 

 Filter paper 

 

Virtis, Warminste, USA: 

 Virtis freeze drier 

 

Centrifuges 

Labortechnik, Wehingen, Germany, supplied: 

 Hermle Z160M  

 Hermle Z200A  

 

Incubators 

Lasec, Cape Town, South Africa, supplied: 

 Series 2000  
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Microscopes 

Zeiss, Oberkochen, Germany, supplied: 

 Epifluorescence 

Zeiss, Cape Town, South Africa, supplied: 

 Photomicroscope III  

 

Sperm Class Analyzer (SCA)  

Microptic S.L., Barcelona, Spain, supplied: 

 Version 4.1.0.1 

 

2.2 Media  

2.2.1 Medium used for spermatozoa 

For washing of spermatozoa, the medium Human Tubular Fluid (HTF) was 

prepared according to Quinn et al. (1985). This medium is described as the best 

for the preparation of spermatozoa as it allows for optimum working time and 

delays death (Quinn et al.,1985). HTF medium is composed of the following 

substances, which are similar to those found in the female fallopian tube milieu: 

101.60 mM NaCl, 4.69 mM KCl, 2.04 mM CaCl2 * 2 H2O, 0.02 mM MgSO4 * 7 

H2O, 0.37 mM KH2PO4, Phenol red (dye indicator), 25 mM NaHCO3, 2.78 mM 

Glucose (anhydrous), 0.33 mM Na-Pyruvate, 21.40 mM Na-Lactate (60% syrup), 

20 mM HEPES and dissolved in distilled water. After the solution has dissolved 

completely, osmolarity was adjusted to 280  mOsmol/kg and 10 mg/ml bovine 

serum albumin (BSA) were added before working with the medium (HTF-BSA).  

 

2.3 Study design 

The effects of the extract on ejaculated human spermatozoa on the following 

parameters were investigated: Motility, viability, DNA fragmentation, 

mitochondrial membrane potential, acrosome reaction, capacitation, ROS 

production and apoptosis (Annexin V binding) (Figure 7). 
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Figure 7: Study design for spermatozoa with C. capensis rhizomes extract incubation at different 

concentrations displaying investigative parameters and testing procedures. A) before fractionation 

and B) after fractionation with the addition of progesterone. CTC-chlortetracycline, SCA-Sperm 

Class Analyzer, E&N-Eosin-Nigrosin, AR-acrosome reaction, FITC-Fluorescein isothiocyanate, 

DHE-dihydroethidine, ROS-Reactive oxygen species, MMP-mitochondrial, AR-acrosome 

reaction, P4-progesteron and F-fractionation.  
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2.4 Collection and processing of Cissampelos capensis rhizomes  

2.4.1 Collection and freeze drying of Cissampelos capensis rhizomes 

Fresh Cissampelos capensis rhizomes (Figure 8) were collected from the Cape 

Nature Reserve near Belhar in the Western Cape, South Africa, during the 

summer season (February). In preparation for use in this project, the rhizomes 

were cleaned and chopped into smaller segments of approximately 2-3 cm of 

length. Then, these pieces were oven-dried at 25
o
C for approximately 3 days. 

Subsequently, segments were placed in a mill to form a powdery substance which 

was infused with hot (about 70
o
C) distilled water for 1 hour. After cooling and 

filtration through Whatman 1 filter paper, the filtered extract was frozen at -20
o
C 

until it was freeze-dried using a Virtis freeze-drier machine under the supervision 

of Mr. Liburne Cyster (Department Biodiversity and Conservation Biology, 

UWC). The dried extract was then stored at 4
o
C in a closed container until 

experimentation. 

 

The concentrations of the plant extract used in this study were deduced by the 

assumption that an average adult male weighs 80 kg. The traditional healers 

''prescribe'' the use of a handful of rhizomes to be used for making the concoction 

per day. Based on this information, three handful of rhizomes were weighed to 

obtain the averages (36 g per handful). Aqueous extraction resulted in 9.47 g 

extract per 100 g powdered rhizome. Subsequent calculation resulted in an amount 

of 3.41 g extract per man per day. From there, a standard 'normal' concentration of 

50 µg/ml C. capensis rhizome extract (CRE) was calculated. A stock solution 

containing 2000 µg/ml CRE in HTF-BSA was prepared and mixed with sperm 

samples in HTF-BSA to obtain final concentrations 0.05, 0.5, 5, 50, 200 µg/ml 

CRE. HTF-BSA without the extract served as a control.   
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Figure 8: Cissampelos capensis rhizomes shown in its natural habitat at the Cape Flats nature 

reserve, University of the Western Cape. 

 

 

2.4.2 Fractionation of aqueous Cissampelos capensis rhizomes extract for in 

vitro experiments  

Fractionating a crude extract of a plant in which the active compounds are 

unknown allows for insight into further investigation. Based on chemical or 

physical properties a plant extract is separated into sub-fractions to isolate and 

identify one or more active compounds which sets this technique apart from other 

separation techniques (Bertaux and Montmessin, 2001). Therefore, in order to 

further understand the effect the C. capensis rhizomes extract, fractionation was 

performed under the supervision of Prof. Patrick Bouic at the Synexa Life 

Sciences Laboratory in Milnerton, South Africa. 

 

The fractionations were established with various concentrations of methanol 

(MeOH), namely; 0%, 30%, 60% and 100%. This technique separates the extract 

into hydrophobic or hydrophilic compounds. In accord, the fraction gradient is 

estimated as fraction 1 being most hydrophibic (0% MeOH) and fraction 4 as 

most hydropholic (100% MeOH). Freeze-dried fractions C. capensis rhizome 

extract was dissolved in double-distilled water (ddH2O) which was dispensed 

from a Millipore distilling machine to a concentration of 0.1 g/ml (Figure 9). 
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Thereafter, a vacuum pump was connected to the Supelco-Visiprep
TM

  manifold 

where a glass test tube was inserted for solvent collection. The Oasis
®

 

Hydrophilic-Liphophilic Balance (HLB) 6cc cartridge was mounted on 1 nipple 

(Figure 10) and a constant pressure was maintained at 7 kPa by controlling the 

nipple and pressure valves. Following, the activation of the bed with 4 ml 

methanol and calibrated with 4 ml purified water before 1 ml of sample was 

loaded. The test tube was then removed and replaced with one for F1 (0% MeOH) 

collection. After absorption of the extract into the bed, 4 ml of purified water was 

added to clean out the remaining debris. This process was continued for F2 to F4. 

For F2, the cartridge bed was loaded with 1 ml 30% MeOH, F3 60% MeOH and 

F4 100% MeOH. As a precaution when changing the tubes, the vacuum pump was 

turned off and the nipple valves opened. 

 

After obtaining the completed fractions F1, F2 and F3 were frozen at -20 C
o
 and 

freeze-dried where as F4 due to the 100% MeOH had to undergo an evaporation 

step  before freeze-drying procedure. The differences in the effects of C. capensis 

crude extract (0.05, 0.5, 5, 50, 200 µg/ml) on the male reproductive system, could 

subsequently be investigated with the 4 fractions, in vitro. 

 

 

Figure 9: The freeze-dried C. capensis rhizome diluted in ddH2O at a concentration of 0.1 g/ml to 

be used in fractionation.  
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Figure 10: Oasis
®
 HLB 6cc cartridge mounted on a Supelco-Visiprep

TM
 manifold during pump 

vacuum of C. capensis fractionation. 

 

 

2.5 Investigation of sperm parameters in vitro 

2.5.1 Preparation of spermatozoa in vitro 

This study was ethically approval by the local Institutional Review Board and 

patients and sperm donors gave informed consent. A total of 103 semen samples 

were collected after 3-5 days abstinence from patients (n=61) attending the 

infertility clinic of Tygerberg Hospital, Tygerberg, South Africa, and Vincent 

Palotti Hospital, Pinelands, South Africa, respectively, as well as fertile sperm 

donors (n=42). 

 

After liquefaction at room temperature, semen samples were diluted 1:5 with 

human tubular fluid medium (Quinn et al., 1985), supplemented with 1% bovine 

serum albumin (HTF-BSA) (280 mOsmol/kg) and centrifuged for 10 minutes at 

500xg. The supernatant was discarded and the pellet resuspended in fresh HTF-

BSA. Subsequently, sperm suspensions were incubated with CRE at different 

concentrations for 1 hour at 37
o
C (Figure 7A).  

 

Following for the second part of investigation, after washing sperm were incubated 

for two hours allowing for capacitation. Consequently, sperm suspensions were 

incubated with fractions of CRE (F1, F2, F3 and F4) at different concentrations 
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(0.05, 0.5, 5, 50, 200 µg/ml)  and incubated for 1.5 hours at 37
o
C with or without 

Progesterone (P4). Progesterone was used to stimulate acrosome reaction in vitro as 

it is similar to the response produced by ZP (Blackmore et al., 1990; Garcia and 

Meizel, 1999; Kirkman-Brown et al., 2000). To prepare, P4 was dissolved in 

dimethylsulphoxide (DMSO), stock solution of P4 was prepared by diluting the 

thawed stock solution 1:10 in DMSO and waiting 30 minute before adding to the 

sperm suspension. Sperm suspensions were treated with 20 µg/ml P4 stock solution 

according to Liu et al. (2008). (Figure 7B). 

 

2.5.2 Determination of sperm motility 

Sperm motility plays an important role in fertilization as it is a good predictive 

parameter for pregnancy (Coetzee et al., 1989; Shulman et al.,1998). Low sperm 

motility may reduce the chances of sperm fertilizing the ovum and high sperm 

motility increases that probability  (Henkel et al., 2005b). 

 

Sperm motility was measured with the Motility/Concentration module of the 

Sperm Class Analyzer version 4.1.0.1. An aliquot of 10 µl of the sperm 

suspension was put on a glass slide covered with a cover slip and the motility of at 

least 100 sperm were analysed according to WHO criteria set by the SCA system 

with a Zeiss Photomicroscope III and a 100X oil immersion objective. The 

different kinematic parameters (Maree et al., 2011) which were analyzed were: 

total motility, progressive motility, velocity curve line (VCL), velocity straight 

line (VSL), velocity average path (VAP), linearity (LIN), straightness (STR), beat 

cross frequency (BCF), and hyperactivation (Table 2). 
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Table 2: The different sperm kinematic parameters recorded with SCA 

 

Parameter Description Unit 

Total motility Non-progressive motile and progressive motile % 

Progressive motility Progressive motility % 

Concentration Number of spermatozoa ×10
6
/ml 

VCL (Curvilinear 

velocity) 

VCL is the local speed along the curvilinear 

path traced by the sperm head. 

μm/s 

VSL (Straight line 

velocity) 

Straight-line velocity along shortest path from 

start to end point 

μm/s 

VAP (Average path 

velocity) 

Average path velocity based on every 5th frame 

of VCL path 

μm/s 

LIN (Linearity) LIN is reported as a ratio of VSL to VCL, 

expressed as a percentage 

% 

STR (Straightness) Straightness, expressed as VSL/VAP % 

BCF (Beat Cross 

Frequency) 

The time-average rate at which the Curvilinear 

sperm trajectory crosses its average path 

trajectory  

Hz 

Hyperactivation 

 

Mature spermatozoa of all mammalian must 

complete a series of membrane and metabolic 

changes before they can fertilize an intact 

ovum, this process has been termed capacitation 

and is functionally associated with sperm 

acrosome reaction and acquisition of a 

distinctive type of motility called 

hyperactivation 

% 
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 2.5.3 Determination of sperm viability 

One of the most basic and essential methods used to identify dead from live sperm 

is the viability stain (Mortimer et al., 1990; Björndahl et al., 2004). 

 

The eosin-nigrosin staining technique was used to determined viability according 

to WHO (2010). The staining solution was prepared by dissolving 0.67 g of Eosin 

Y and 0.9 g of NaCl in 100 ml of distilled water with gentle heating. Thereafter, 

10 g of nigrosin was added to the eosin solution and brought to a boil. To remove 

coarse and gelatinous precipitates the solution was filtered through filter paper and 

subsequently, the filtrate was stored in a dark glass bottle at room temperature 

until use. 

 

To stain, a ratio of 1:1 was used where 50 µl of the sperm suspension were added 

to 50 µl of the Eosin-Nigrosin in an Eppendorf vial. A smear was then made on a 

glass slide and left to air dry. Slides were then viewed with a 100X oil immersion 

objective in the bright field using a light microscope. A total of 200 spermatozoa 

were counted and the percentage of live sperm was then calculated. Dead sperm 

appear pink/purple and live sperm white (Figure 11). 

 

 

Figure 11: Eosin-Nigrosin stain of human spermatozoa, A) Dead spermatozoa stained pink; B) 

live spermatozoa appear white (magnification X1000).  

 

 

2.5.4 Chlortetracycline fluorescence assay 

Capacitation is a collective term for changes that a spermatozoon undergoes 

when it leaves the seminal plasma and comes into contact with the female 

reproductive tract. These changes include reorganization of membrane proteins, 
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metabolism of membrane phospholipids, a reduction in membrane cholesterol 

levels and sperm hyperactivation (Austin, 1952; Chang, 1951; Yanagimachi, 

1994). The capacitation state of the spermatozoa was assessed using the 

chlorotetracyclin (CTC) fluorescence assay method as described previously 

(Green et al., 1996). 

 

A 100 mg/ml stock solution of Hoechst 33258 was made up in distilled water and 

stored at 4
o
C for up to 1 month. Before use, this stock solution was diluted 

1:1000 in HTF and then further 1:100 with sperm suspension in HTF-BSA. 

Thereafter, samples were incubated at room temperature for 2 minutes before 

being washed by centrifugation through 4 ml of 2% polyvinylpyrrolidone 

(PVP40) in HTF at 900xg for 5 minutes. 

 

The CTC solution was prepared on the day of use and contained 750 µM CTC, 

and a buffer of 130 mM NaCl, 5 mM cysteine in 20 mM  Tris-HCl. The pH was 

adjusted to pH 7.8. This solution was kept wrapped in foil at 4
o
C until use. 

Hoechst-treated spermatozoa (45µl) were mixed with an equal volume of the 

CTC solution and 8 µl of 12.5% w/v paraformaldehyde in 0.5 M Tris-HCl  

(pH 7.4) were added. Subsequently, 10 µl of the this suspension were placed on a 

slide and one drop of 0.22 M 1,4 diazabicyclo(2.2.2)octane (DABCO) dissolved 

in glycerol: PBS (9:1) was mixed in carefully to retard fading of the fluorescence. 

Slides were then viewed with a 100x oil immersion objective using fluorescent 

microscope (Zeiss). In each sample, 200 live cells (Hoechst-negative) cells were 

assessed for CTC staining patterns as follows: uniform fluorescence over the 

entire head (characteristic of non-capacitated), acrosome-intact cells); 

fluorescence-free band in the post-acrosomal region (characteristic of capacitated, 

acrosome-intact cells); and dull or absent fluorescence over the sperm head 

(characteristic of capacitated, acrosome-reacted cells) (Figure 12). At all three 

stages bright fluorescence on the midpiece could be seen. 
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Figure 12: Chlortetracycline staining of human spermatozoa. The following staining patterns can 

be seen; A) whole sperm head shows bright fluorescence, with or without a brighter equatorial 

band; this is indicative of uncapacitated acrosome-intact spermatozoa. B) the acrosomal region of 

the sperm head fluoresce brightly but the post-acrosomal region does not; this denotes capacitated 

acrosome-intact spermatozoa. C) the acrosomal region of the sperm head is non-fluorescent with 

or without a fluorescent, post-acrosomal region; this indicates capacitated acrosome-reacted 

spermatozoa.  

 

 

2.5.5 Determination of sperm acrosome reaction 

Acrosome reaction (AR) is a predictive fertilization parameter in vitro (Cummins 

et al., 1991; Henkel et al., 1993). The importance of acrosome reaction is in the 

penetration of the ZP as it is dependent on the release of the enzymes present 

within the sperm acrosome. Acrosome reaction was determined by using the triple 

staining technique according to Talbot and Chacon (1981) following the protocol 

of Henkel et al. (1993). The triple stain consists of Trypan blue (TB) for 

determination of dead cells, Rose Bengal (RB) for outlining the intact acrosomal 

cap and Bismarck brown Y (BB Y) for determination of live cells, whereas 

glutaraldehyde was used as fixative the solutions were prepared as follows: 

 

To prepare TB; 2% trypan blue was dissolved in cold HTF then filtered with filter 

paper to remove all undissolved granules. The solution was then stored in a dark 

glass bottle at room temperature until use (storage up to 1 month). Subsequently, 

RB was prepared by dissolving 0.8% RB and 0.1 M Tris in 250 ml of distilled 

water. The pH was adjusted to 5.6 with concentrated HCl and continuing with 2 N 

HCl as required. The solution was then stored in a dark bottle as it is light 

sensitive at room temperature (storage up to ½ week). Simultaneously, 0.8% BB 

Y; was dissolved in distilled water and the pH adjusted to 1.8 with HCl. The 

solution was then stored in a dark bottle at room temperature (storage up to  
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2 weeks). Lastly, 3 % glutaraldehyde was prepared by using HTF and stored (until 

required).  

 

Semen samples were diluted 1:5 with HTF-BSA and centrifuged for 10 minutes at 

500xg. The supernatant was discarded, the pellet resuspended with fresh HTF-

BSA and after incubation with C. capensis rhizomes extract, samples were 

aliquoted to 100 µl then incubated for 2 hours at 37°C. After incubation, 100 µl of 

2% Trypan blue were added and incubated for a further 15 min at 37°C. 

Thereafter, samples were washed with 1 ml HTF (without BSA) and centrifuged 

for 10 minutes at 300xg.  

 

The supernatant was discarded, 200 µl of 3% glutaraldehyde were used to fix the 

pellet and incubated for 20 minutes at 37°C. Afterwards, 1 ml of HTF (without 

BSA) was added to samples and centrifuged at 300xg for 10 min. Thereafter, the 

supernatant was discarded and 10 µl of the pellet was used  to prepare a smear and 

left to air dry. Following, slides were stained with 0.8% BB for 5 min in a water 

bath at 40°C and washed 3 times with distilled water.  For the counter stain, 0.8% 

RB was used and slides were immersed for 1 hour at room temperature. Slides 

were then washed 3 times with tap water and immersed in 100% ethanol and 

xylene to remove water. Finally, slides were air dried. 

 

After staining the slides were viewed with a 100X oil immersion objective using a 

light microscope. Analysis of at least 200 sperm was performed for live reacted 

(LR); live non-reacted (LNR); dead reacted (DR); and dead non-reacted (DNR) 

(Figure 13). 

 

 

 

 

 

 

Figure 13: Triple stain display in sperm acrosomal reaction A) dead reacted, B) live reacted,  

C) live non-reacted and D) dead non-reacted. 
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2.5.6 Determination of reactive oxygen species (ROS) producing sperm 

To determine ROS production using dihydroethidine (DHE) as fluorescing probe 

the protocol according to Henkel et al. (2003) was followed of DHE. A stock 

solution was prepared by using 20 µM DHE in PBS at pH 7.4. After incubation 

of sperm samples with C. capensis rhizome extract for 1hr at 37
o
C, an aliquot of 

100 µl of spermatozoa was centrifuged for 10 min at 500xg. After the supernatant 

was discarded, samples were resuspended in 100 µl PBS and 20 µl DHE stock 

and then incubated for 15 min at 37°C. 

 

Following this incubation period, 10 µl of each sample was viewed on a slide 

covered by a cover slip under oil immersion using an epifluorescence microscope 

with 488 nm excitation and 590 emission filters (Zeiss). Red fluorescing sperm, 

indicate excessive ROS production. The percentage of the sperm was calculated 

from at least 200 spermatozoa (Figure 14). 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 14: 1: Spermatozoa after staining with DHE; ROS-positive sperm (A) fluoresced 

orange/red, and 2: ROS -negative sperm (B). 

 

 

2.5.7 Determination of the sperm mitochondrial membrane potential (Δψm) 

The energy produced within spermatozoa during mitochondrial respiration is 

stored as an electrochemical gradient across the mitochondrial membrane. 

Provided that the cell is healthy, this creates a mitochondrial trans-membrane 

potential, called delta-psi (Δψm).  

 

In unhealthy cells the mitochondrial membrane potential (MMP/Δψm) induces 

depolarization of the trans-membrane potential causing the onset of apoptosis in 
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spermatozoa and loss of oxidative phosphorylation. Accordingly, calculation of 

the mitochondrial membrane potential (MMP) provides an indication of 

mitochondrial functionality (Ly et al., 2003). 

 

Intact mitochondrial membrane potential was determined by means of 5,5’6,6’-

tetrachloro-1,1’,3,3’-tetraethylbenzimidazolylcarbocyanine iodide which is a 

lipophilic cationic dye. The protocol provided by the manufacturer was modified as 

follows: The reaction buffer was diluted with distilled water 1:10 and 20 µl 

stabilizer was added per milliliter buffer with 1 µl of DePsipher dye. This solution 

was added to 500 µl prepared reaction buffer, vortexed thoroughly and 

centrifuged for 1 min at 10,000xg. The remaining supernatant was transferred into 

a test tube ready for immediate use. 

 

Subsequently, after washing 100 µl of the pellet was resuspended in 50 µl of 

DePsipher solution and incubated for 20 min at 37°C. After this incubation, 10 µl 

of each sample were viewed with 488 nm excitation and 590 emission filters with 

at X1000 magnification with an oil immersion objective using an epifluorescence 

microscope (Zeiss). 

 

Spermatozoa exhibiting a green fluorescence within their mid pieces were 

regarded as having disturbed Δψm (Figure 15), while those spermatozoa showing 

red fluorescence were regarded as having intact Δψm. The percentage of sperm 

with intact Δψm was calculated from at least 200 spermatozoa. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: DePsipher™ stain, A) sperm with disrupted Δψm had a green/yellow fluorescence and 

B) sperm with intact Δψm showed red fluorescence. 
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2.5.8 Determination of sperm DNA-fragmentation 

The DNA fragmentation of spermatozoa, according to Henkel et al. (2004) was 

determined by using the TUNEL (Terminal deoxynucleotide transferase-mediated 

dUTP nick-end labelling) assay. The suitability and reproducibility of the assay is 

accompanied by the adequate detection of single and double DNA strand breaks 

(Gorczyca et al., 1993). 

 

Spermatozoa were incubated with different concentration of C. capensis rhizome 

extract for 1 hour at 37°C. Samples of 100 µl aliquots were centrifuged for 10 min 

at 300xg, the supernatant discarded and the pellet was resuspended with 100 µl 

PBS. A smear was made on Superfrost slides and air dried. After air drying, slides 

were fixed a freshly prepared 4% methanol-free formaldehyde in PBS for 25 min 

at 4°C. Slides were then washed in PBS for 5 min at room temperature, 

permeabilized with 0.2% triton X-100 in PBS for 5 min and washed with fresh 

PBS twice for 5 min. Excess liquid was removed from the slides by gentle 

tapping. Thereafter, 100 µl of equilibrium buffer were added for 10 min at room 

temperature. Then, TdT incubation buffer was prepared which consist of 45 µl 

equilibrium buffer, 5 µl nucleotide mix and 1 µl TdT enzyme. Of this TdT buffer, 

20 µl were then added to each slide and covered with plastic cover slips and 

incubated in a dark humidified chamber for 1 hour at 37°C.  

 

To terminate the reaction, cover slips were carefully removed and slides were then 

immersed in diluted 2x SSC solution in a Coplin jar for 15 min at room 

temperature. Thereafter, slides were washed twice in distilled water for 5 min at 

room temperature and excess water was cautiously removed and slides were 

analyzed immediately. 

 

An epifluorescence microscope (Zeiss) at 400X magnification with an oil 

immersion objective was used. Spermatozoa that fluoresced brightly were counted 

as TUNEL-positive (Figure 16) indicating DNA fragmentation has occurred 

within the sperm nucleus and a percentage was calculated from at least 200 sperm. 
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Figure 16: A) Sperm with nuclear DNA damage B) TUNEL-positive sperm fluoresced bright 

green after TUNEL assay 

 

 

2.5.9 Determination of apoptosis (Annexin V-binding) 

Apoptotic sperm cells were indentified using the Annexin V-FITC Apoptosis 

Detection Kit (Sigma-Aldrich). Externalization of phosphatidylserine (PS) from 

the inner to the outer leaflet of the plasma membrane is an early step in the 

apoptotic process. Annexin V is a calcium-dependent phospholipid-binding 

protein with a very high affinity for PS (Vermes et al., 1995; Glander and 

Schaller, 1999). To differentiate apoptotic from necrotic spermatozoa, the sperm 

nuclei were stained with 4',6- diamidino-2-phenylindole dihyrochloride (DAPI). 

The procedure was conducted according to the protocol recommended by the 

manufacturer. 

 

After incubation of spermatozoa with different concentrations of C. capensis 

rhizomes extract, samples were centrifuged for 10 min at 300xg and the 

supernatant was discarded. The pellet was resuspended with binding buffer 

(10mM Hepes/NaOH, 140mM NaCl, 2.5mM CaCl2). Subsequently, 5 µl Annexin 

V-FITC were added with 195 µl of sperm suspension, mixed and incubated for  
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10 min at room temperature. After incubation, 10 µl of DAPI (5 µg/ml) were 

added. The sample was then centrifuged for 5 min at 500xg and resuspended in 

190 µl binding buffer. Thereafter, smears were made on slides and one drop of 

0.22 M 1,4diazabicyclo(2.2.2)octane (DABCO) dissolved in glycerol: PBS (9:1) 

was mixed in carefully to retard fading of the fluorescence. Slides were then 

viewed with a 100x oil immersion objective using a fluorescent microscope 

(Zeiss). A total of 200 spermatozoa were randomly assessed per slide in at least 

five fields. Spermatozoa were identified as follows: 

 

1. Annexin (-) DAPI (-); Live, non-apoptotic (No fluorescence) 

2. Annexin (+) DAPI (-); Live, apoptotic (green membrane and the nucleus not 

stained) 

3. Annexin (+) DAPI (+); Dead, apoptotic (green membrane and blue nucleus) 

4. Annexin (-) DAPI (+); Dead, non-apoptotic (only blue nucleus) (Figure 17). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Annexin V-FITC Apoptosis to externalization of phosphatidylserine (PS); 1: A) 

Annexin (-) DAPI (+), B) Annexin (+) DAPI (+), C) Annexin (+) DAPI (-) and 2: D) Annexin (-) 

DAPI (-); Live, non-apoptotic (No fluorescence). 
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2.6 Statistical analysis 

All statistical calculations were performed using the MedCalc Statistical Software 

(Version 12.3.0; MedCalc Software, Mariakerke, Belgium). After testing for 

normal distribution by means of the Kolmogorov-Smirnov test, appropriate tests 

(Spearman rank correlation, ANOVA, repeated measures analysis and 

independent t-test) were used for further analysis. Data were expressed as 

mean±SD or SEM. A P-value P<0.05 was regarded as significant. 
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Chapter 3: Results 

 

3.1 Fractionation of C. capensis crude extract: Yields 

After collection and drying C. capensis rhizomes were cut into pieces and milled 

into powder. Hereafter, an infusion was prepared, cooled and frozen for freeze 

drying. Following the freeze-drying process, the powder obtained amounted to a 

yield of 9.47%. The powder (C. capensis crude extract) was then fractionated with 

0% MeOH (F1), 30% MeOH (F2), 60% MeOH (F3) and 100% MeOH (F4) 

(Figure 18). All fractions obtained were similar to the crude extract in colour and 

no other variations were observed. The average yields as calculated from the yield 

of the crude extract obtained for all fractions were established as: F1= 25.7%,  

F2= 21.6%, F3= 24.3% and F4= 28.4%. 

 

 

Figure 18: Different fractions of C.capensis A) F1= 0% MeOH, B) F2= 30% 

MeOH, C) F3= 60% MeOH and D) F4= 100% MeOH. 

 

 

3.2 Effects of crude C. capensis rhizome extract on human spermatozoa 

 in vitro 

Treatment of ejaculated human spermatozoa from 77 semen samples (45 patients 

and 32 healthy sperm donors) with different concentrations of the C. capensis 

rhizome extract (0.05 µg/ml, 0.5 µg/ml, 5 µg/ml, 50 µg/ml and 200 µg/ml) was 

conducted for washed spermatozoa. 
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3.2.1 Effect of crude C. capensis rhizome extract on sperm motility 

Summary results of the motility parameters analyzed are shown in Table 3. 

Although total and progressive motility were not affected by increasing 

concentrations of C. capensis rhizomes extract, significant, dose-dependent effects 

on various motion parameters were obvious. 

 

While the values for VAP (Figure 19), VSL (Figure 20) and linearity (Figure 21) 

decreased with increasing concentrations of the extract, the percentage of 

hyperactivated sperm (Figure 22) and the beat cross frequency (Figure 23) 

increased significantly (Table 2). The VCL of the sperm cells and the straightness 

of the motion path remained unchanged. 

 

Table 3: Summary statistics of sperm motility parameters. While total and 

progressive motility remained unchanged, parameters that are associated with 

sperm hyperactivation changed significantly. 

VAP: velocity average path; VCL: velocity curvilinear; VSL: velocity straight 

line; H: hyperactivation; BCF: beat cross frequency; LIN: linearity; STR: 

straightness 

 Control 0.05 µg/ml 0.5 µg/ml 5 µg/ml 50 µg/ml 200 µg/ml ANOVA 

(P value) 

Total Motility 

(%) 

52.33±19.13 47.47±17.38 51.95±18.51 54.86±20.45 50.14±17.59 51.90±18.68 0.296 

Progressive 

motility (%) 

21.39±12.45 19.53±9.84 19.39±8.89 20.62±9.80 19.98±9.89 18.97±8.70 0.736 

VAP (µm/s) 62.71±20.30 59.56±19.70 58.87±19.06 58.39±17.95 56.03±19.11 50.56±14.27 0.005 

VCL (µm/s) 89.38±21.19 88.13±20.91 87.12±22.48 88.91±21.58 88.72±23.01 85.83±21.15 0.935 

VSL (µm/s) 52.07±20.15 48.13±18.36 47.71±17.70 47.69±19.02 44.90±17.96 41.35±16.05 0.002 

H (%) 1.54±0.71 1.60±0.76 1.64±0.75 1.68±0.98 1.81±0.78 2.04±0.85 0.004 

BCF (Hz) 19.27±2.36 20.10±4.02 19.81±3.46 20.38±2.93 20.62±3.06 22.00±3.12 <0.001 

LIN 55.60±10.20 54.25±11.83 53.80±11.59 53.18±11.71 50.36±11.83 46.61±8.90 <0.001 

STR 76.52±8.56 76.11±9.66 75.26±11.20 76.97±8.37 75.84±8.60 74.42±8.35 0.629 
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Figure 19: The effect of different concentrations of C. capensis extract  (0.05, 0.5, 

5, 50 and 200 µg/ml) on VAP in vitro. The orange bar  represent before incubation, 

whereas blues bar represent after 1 hour  incubation. Values shown as mean±SEM 

(n=70). 

 

 

When compared with the control before incubation, sperm incubated at a C. 

capensis concentration of 200 µg/ml showed a marginal significant decrease 

(P=0.0821) of VAP. In contrast, when compared with the control after 1hour 

incubation in 200 µg C. capensis /ml, this difference was highly significant 

(P=0.0001). Values started becoming significant (P=0.0211) from a C. capensis 

concentration of 50 µg/ml. ANOVA (P=0.005) as well as repeated measures 

analysis revealed significant (P<0.0001) trends. 
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Figure 20: The effect of different concentrations of crude C. capensis extract  

(0.05, 0.5, 5, 50 and 200 µg/ml) on straight line velocity (VSL) in vitro. The 

orange bar represents before incubation, whereas blue bars represent after 1 hour  

incubation. Values shown as mean±SEM (n=70). 

 

 

When compared with the control after  incubation, sperm incubated at a C. 

capensis concentration of 200 µg/ml showed a significant decrease (P=0.0007) as 

well as at 50 µg/ml showed a significant decrease (P=0.0280) of VCL. ANOVA 

(P=0.020) as well as repeated measures analysis revealed significant (P<0.0001) 

trends. 
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Figure 21: The effect of different concentrations of crude C. capensis extract 

(0.05, 0.5, 5, 50 and 200 µg/ml) on linearity (LIN) in vitro. The orange bar 

represents before incubation, whereas the blue bar represent after 1 hour  

incubation. Values shown as mean±SEM (n=70). 

 

 

When compared with the control before incubation, sperm incubated at a C. 

capensis concentration of 200 µg/ml showed a marginal significant decrease 

(P=0.0108) of LIN. In contrast, when compared with the control after 1hour 

incubation in 200 µg C. capensis /ml, this difference was highly significant 

(P<0.0001). Values started becoming significant (P=0.0057) from a  

C .capensis concentration of 50 µg/ml. ANOVA (P<0.001) as well as repeated 

measures analysis revealed significant (P<0.0001) trends. 
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Figure 22: The effect of different concentrations of crude C. capensis extract 

(0.05, 0.5, 5, 50 and 200 µg/ml) on hyperactivated in vitro. The orange bar 

represents before incubation, whereas the blue bars represent after 1 hour 

incubation. Values shown as mean±SEM (n=70). 

 

 

When compared with the control before incubation, sperm incubated at a C. 

capensis concentration of 50 µg/ml showed a significant increase (P=0.0311) as 

well as significant increase (P=0.0371) when compared with the control after 

1hour incubation. Also, when compared with the control before and after 1hour 

incubation (same effect) in 200 µg C. capensis /ml, a highly significant increase 

(P=0.0002). ANOVA (P=0.004) as well as repeated measures analysis revealed 

significant (P<0.0001) trends. 
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Figure 23: The effect of different concentrations of crude C. capensis extract (0.05, 

0.5, 5, 50 and 200 µg/ml) on beast cross frequency (BCF) in vitro. The orange bar 

represents before incubation, whereas blue bars represent after 1 hour incubation. 

Values shown as mean±SEM (n=70). 

 

When compared with the control before incubation, sperm incubated at a C. 

capensis concentration of 0.05 µg/ml showed a significant increase (P=0.0304), as 

well as (P=0.0092) of 0.5 µg/ml, (P=0.0015) of 5 µg/ml, (P=0.0004) of 50 µg/ml 

and (P<0.0001) of 200 µg/ml of BCF. Furthermore, when compared with the 

control after 1hour incubation in 200 µg C. capensis /ml, this was highly 

significant increase (P<0.0001), as well as (P=0.0149) of 5 µg/ml and (P=0.0041) 
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of 50 µg/ml. ANOVA (P<0.001) as well as repeated measures analysis revealed 

significant (P<0.0001) trends. 

 

In Table 4, 5 and 6, all correlations of the hyperactivation, progressive and total 

motility with other motility parameters that were investigated in the study are 

summarized.  

 

Table 4: Correlations of the hyperactivation with total and progressive motility; 

VAP: velocity average path; VCL: velocity curvilinear; VSL: velocity straight 

line 

 N r P-value 

Total Motility (%) 689 0.249 <0.0001 

Progressive motility (%) 689 0.181 <0.0001 

VAP (µm/s) 689 0.114 0.0027 

VCL (µm/s) 689 0.158 <0.0001 

VSL (µm/s) 688 0.066 0.0819 

 

Table 5: Correlations of the progressive motility with total motility; STR: 

straightness; VAP: velocity average path; VCL: velocity curvilinear; VSL: 

velocity straight line 

 N r P-value 

Total Motility (%) 690 0.577 <0.0001 

STR (%) 690 0.367 <0.0001 

VAP (µm/s) 690 0.737 <0.0001 

VCL (µm/s) 690 0.627 <0.0001 

VSL (µm/s) 689 0.683 <0.0001 

 

Table 6: Correlations of the total motility with VAP: velocity average path; 

VCL: velocity curvilinear; VSL: velocity straight line 

 N r P-value 

VAP (µm/s) 690 0.272 <0.0001 

VCL (µm/s) 690 0.207 <0.0001 

VSL (µm/s) 689 0.316 <0.0001 
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3.2.2 Effect of crude C. capensis rhizome extract on sperm viability and 

mitochondrial membrane potential 

After exposing ejaculated human spermatozoa to different concentrations of  

C. capensis rhizome extract, the results for viability as determined in the triple 

stain did not reveal any difference to the control. Although, results obtained after 

AVOVA were not significant (P=0.664), an ANOVA trend analysis after 

repeated measures analysis revealed a significant trend (P=0.0019) (Figure 24). 

 

For the mitochondrial membrane potential (Δψm), no effect of the C. capensis 

rhizome extract was found (ANOVA: P=0.864) (Figure 25). 

 

 

Figure 24: The effect of different concentrations of crude C. capensis extract  

(0.05, 0.5, 5, 50 and 200 µg/ml) on viability as determined by means of the trypan 

blue incorporation in the triple stain in vitro. Values shown as mean±SEM (n=70). 

No significant difference was found when compared concentrations with control, 

as well as the result obtained after ANOVA in not significant (P=0.664). 

However, a trend analysis after repeated measures analysis revealed a significant 

trend (P=0.0019). 
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Figure 25: The effect of different concentrations of crude C. capensis extract 

(0.05, 0.5, 5, 50 and 200 µg/ml) on sperm intact-mitochondrial membrane 

potential in vitro. Statistical difference shown as P<0.05. Values shown as 

mean±SEM (n=40). No significant difference was found when compared 

concentrations with control, as well as the result obtained after ANOVA in not 

significant (P=0.864) and a trend analysis after repeated measures (P=0.7168). No 

significance can be seen. 

 

 

3.2.3 Effect of C. capensis rhizome extract on sperm DNA fragmentation 

Increasing concentrations of the extract resulted in a dose-dependent, highly 

significant (ANOVA: P<0.001) increase in the percentage of spermatozoa with 

DNA fragmentation. Even the lowest concentration (0.05 µg/ml) used caused a 

significant (P=0.0113) increase. 

 

Both, ANOVA and ANOVA trend analysis revealed a clear (P<0.0001) dose 

dependant effect (Figure 26). 
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Figure 26: The effect of different concentrations of crude C. capensis extract  

(0.05, 0.5, 5, 50 and 200 µg/ml) on sperm DNA fragmentation in vitro. Values 

shown as mean±SEM (n=70). 

 

A significant increase in spermatozoa with DNA damage as from 0.05 µg/ml 

(P=0.0133), 0.5 µg/ml (P=0.001) and highly significant at 5, 50 and 200 µg/ml 

(P<0.0001) can be seen. Both, ANOVA and ANOVA repeated measures analysis 

revealed a significant (P<0.0001) trend. 
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3.2.4 Effect of C. capensis rhizome extract on sperm reactive oxygen species 

A significant positive trend (ANOVA: P<0.001) towards higher percentages of 

ROS-positive spermatozoa was found at higher concentrations of C. capensis 

rhizome extract (Figure 27). In direct comparison, the control differed 

significantly from the incubation with 0.5 µg/ml (P=0.0309), 5 µg/ml (P=0.0015) 

and 50 µg/ml (P=0.0001) and highly significant (P<0.0001) at 200 µg/ml. An 

ANOVA trend analysis after repeated measures analysis revealed a significant 

trend (P<0.0001). 

 

As expected, a significant negative relationship between the sperm ROS 

production (r= -0.194; P=0.0064) and the total sperm motility was observed. 

Furthermore, a significant positive correlation (r=0.263; P=0.0004) with the 

percentage of DNA-damaged spermatozoa as determined by means of the TUNEL 

assay was observed. All other parameters investigated in this study showed no 

significant relationship.  
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Figure 27: The effect of different concentrations of crude C. capensis extract 

(0.05, 0.5, 5, 50 and 200 µg/ml) on sperm ROS production in vitro. Values shown 

as mean±SEM (n=40). 

 

Effect of different concentrations of C. capensis extract on the percentage of 

ROS-positive spermatozoa. A significant, dose-dependent increase (ANOVA: 

P<0.001) towards higher percentages of ROS-positive sperm cells can be seen at 

higher concentrations of the C. capensis extract. The control differs significantly 

different from the incubation with 200 µg/ml (P<0.0001). 
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3.2.5 Effect of crude C. capensis rhizome extract on sperm apoptosis 

With regard to apoptosis is terms of the externalization of PS as determined by 

means of annexin V-binding, the treatment of spermatozoa with increasing 

concentrations of C. capensis rhizome extract did not result in any effect  

(Table 7). ANOVA analysis also did not show any significance, neither for the 

percentage of annexin V-pos spermatozoa (P=0.741) (Figure 28), nor for the 

percentage of dead sperm as determined with DAPI (P=0.986) (Figure 29). 

 

 

Table 7: Summary statistics of the sperm apoptosis parameters after incubation 

with increasing concentrations of C. capensis extract. No effect can be seen. 

 

 Control 0.05 µg/ml 0.5 µg/ml 5 µg/ml 50 µg/ml 200 µg/ml ANOVA 

(P value) 

Normal, non-

apoptotic sperm 

(Annexin V (-) / 

DAPI (-) (%) 

53.81±8.17 53.47±7.99 53.67±6.22 52.58±6.94 53.53±7.29 53.83±6.89 0.981 

Sperm in early 

apoptosis 

(Annexin V (+) / 

DAPI (-) (%) 

13.67±2.91 13.52±2.57 13.00±1.55 13.47±2.22 13.39±2.43 13.36±2.61 0.905 

Sperm in late 

apoptosis 

(Annexin V (+) / 

DAPI (+) (%) 

23.19±5.01 22.94±4.54 22.92±4.11 24.11±4.33 23.28±4.94 22.44±4.72 0.762 

Necrotic sperm 

(Annexin V (-) / 

DAPI (+) (%) 

9.39±4.16 10.00±3.60 10.44±3.70 9.92±3.10 9.81±3.66 10.19±4.20 0.909 
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Figure 28: The effect of different concentrations of crude C. capensis extract  

(0.05, 0.5, 5, 50 and 200 µg/ml) on sperm apoptosis (Annexin V-positive) in vitro. 

Values shown as mean±SEM (n=36). No significance can be seen. 
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Figure 29: The effect of different concentrations of crude C. capensis extract  

(0.05, 0.5, 5, 50 and 200 µg/ml) on sperm (viability DAPI-positive) as determined 

by means of DAPI incorporation in vitro. Values shown as mean±SEM (n=36). 

No significant difference was found at all concentrations. 

 

 

3.2.6 Effect of crude C. capensis rhizome extract on sperm capacitation and 

acrosome reaction as determined by CTC stain 

Sperm capacitation and acrosome reaction was determined by means of the CTC 

assay (Table 8). A significant negative trend (ANOVA: P<0.001) towards higher 

percentages of uncapacitated, acrosome-intact spermatozoa was found at higher 

concentrations of extract. 

 

A significant, positive trend (ANOVA: P<0.001) towards higher percentages of 

capacitated spermatozoa was found. Values higher than 5µg/ml (P=0.0001) 
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differed significantly from the control. An ANOVA trend analysis after repeated 

measures analysis revealed a significant trend (P<0.0001) (Figure 30). 

 

Furthermore, a significant positive trend (ANOVA: P<0.001) towards higher 

percentages of capacitated, acrosome intact spermatozoa was found at higher 

concentrations of extract (Figure 31). In contrast, acrosome reaction of capacitated 

spermatozoa (Figure 32) appeared to reveal only a marginal increase, while the 

difference between the control and the highest concentration (200 µg/ml) of the 

extract used is only marginally significant (P=0.0718). The result obtained after 

ANOVA is not significant (P=0.229). Yet, a trend analysis after repeated 

measures analysis reveals a significant trend (P=0.003). 

 

Highly significant strong positive relationships between the percentage of 

capacitated, acrosome-reacted sperm as determined by CTC stain and progressive 

motility (r=0.456; P=<0.0001) were observed. Obviously, the percentage of 

capacitated, acrosome-reacted sperm was highly significantly and positively 

correlated with the total motility spermatozoa (r=0.316; P<0.0001). Furthermore, 

a significant, positive correlation (r=0.170; P=0.0110) with sperm ROS 

production was found. All other parameters investigated in this study showed no 

significant relationship. 

 

 

Table 8: Summary statistics of the sperm capacitation and acrosome reaction as 

determined by CTC stain after incubation with increasing concentrations of  

C. capensis extract. 

 Control 0.05 µg/ml 0.5 µg/ml 5 µg/ml 50 µg/ml 200 µg/ml ANOVA 

(P value) 

Capacitated 

sperm (%) 

32.05±7.97 32.91±6.82 33.21±6.30 35.02±6.66 37.64±7.97 40.08±8.97 < 0.001 

Capacitated, 

acrosome-intact 

spem (%) 

22.10±5.82 22.02±5.09 22.48±5.66 23.45±5.76 25.81±7.11 28.43±8.70 < 0.001 

Capacitated, 

acrosome-reacted 

sperm(%) 

9.94±4.02 10.89±3.69 10.40±3.04 11.29±3.91 11.83±3.92 11.64±3.99 0.229 

Uncapacitated, 

acrosome-intact 

sperm (%) 

68.00±7.89 66.91±6.98 66.97±6.47 65.08±6.62 62.24±8.06 59.81±9.82 < 0.001 
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Figure 30: The effect of different concentrations of crude C. capensis extract 

(0.05, 0.5, 5, 50 and 200 µg/ml) on capacitated spermatozoa in vitro. Values 

shown as mean±SEM (n=37). 

 

When compared with the control after incubation 1houre, sperm incubated at a C. 

capensis concentration of 5 µg/ml showed a significant increase (P=0.0001) as 

well as (P=0.0035) of 200 µg/ml. ANOVA (P<0.001) as well as repeated 

measures analysis revealed significant (P<0.0001) trends. 
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Figure 31: The effect of different concentrations of crude C. capensis extract 

(0.05, 0.5, 5, 50 and 200 µg/ml) on capacitated, acrosome-intact spermatozoa in 

vitro. Values shown as mean±SEM (n=37). 

 

When compared with the control after incubation 1houre, sperm incubated at a C. 

capensis concentration of 50 µg/ml showed a significant increase (P=0.0167) as 

well as (P=0.0021) of 200 µg/ml. ANOVA (P<0.001) as well as repeated 

measures analysis revealed significant (P=0.0012) trends. 
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Figure 32: The effect of different concentrations of crude C. capensis extract 

(0.05, 0.5, 5, 50 and 200 µg/ml) on capacitated, acrosome-reacted spermatozoa in 

vitro. Values shown as mean±SEM (n=37). 

 

Increasing concentrations of C. capensis extract seem to have a marginal 

direct effect (ANOVA: P=0.229) on acrosome reaction since the control does 

not significantly (P=0.0718) differ from the incubation with 200 µg/ml. In 

contrast, a significant increase when compared with the control (P=0.0337) at 

50 µg/ml. Yet, a repeated measures analysis reveals a trend (P=0.0030). 
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3.2.7 Effect of crude C. capensis rhizome extract on sperm acrosome reaction 

as determined by triple stain 

Summary data on acrosome reaction as determined by means of the triple stain are 

shown in Table 8. Although there is a marginal (P=0.082) decline after incubation 

with 50 µg/ml of the extract as compared with the control, no effect of the extract 

on the percentage of dead, acrosome-reacted spermatozoa is obvious (ANOVA: 

P=0.121). For live, non-reacted sperm, the treatment of spermatozoa with 

increasing concentrations of C. capensis rhizomes extract also did not result in any 

effect. 

 

There was  also no difference between the control and the highest concentration 

used (P=0.9846) for live acrosome-reacted sperm (ANOVA: P=0.850) (Figure 

33). Nevertheless, a increase in the percentage of dead acrosome reacted sperm 

could be seen from the control to a concentration of 50 µg/ml (P=0.0212). Yet, a 

significant trend (ANOVA: P=0.015) could be found. 

 

 

Table 9: Summary statistics of the sperm acrosome reaction as determined by 

triple stain after incubation with increasing concentrations of crude C. capensis 

extract. live reacted (LR); live non-reacted (LNR); dead reacted (DR); and dead 

non-reacted (DNR) 

 Control 0.05 µg/ml 0.5 µg/ml 5 µg/ml 50 µg/ml 200 µg/ml ANOVA 

(P value) 

DNR (%) 28.15±7.18 29.02±12.74 25.20±9.35 26.45±8.36 23.75±7.32 27.42±9.59 0.121 

DR (%) 13.17±3.56 15.02±3.79 13.92±3.53 12.62±3.34 15.55±5.30 14.82±5.35 0.015 

LNR (%) 

 

42.15±7.14 41.07±7.81 44.20±10.43 45.15±9.60 44.32±11.24 41.05±9.16 0.200 

LR (%) 

 

16.62±6.77 16.92±7.21 16.67±8.29 15.22±5.10 17.17±8.60 17.20±7.53 0.850 
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Figure 33: The effect of different concentrations of crude C. capensis extract 

(0.005, 0.5, 50 and 200 µg/ml) on live, acrosome- reacted spermatozoa in vitro. 

Values shown as mean±SEM (n=40). 

 

Increasing concentrations of the extract do not have an effect (ANOVA: 

P=0.850) on acrosome reaction. The control does not differ (P=0.9846) from the 

incubation with 200 µg/ml. Also, no effect can be seen after a trend analysis after 

repeated measures (P=0.8117). 
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3.3 Effects fractions of C. capensis extract on human spermatozoa in vitro 

Treatment of ejaculated human spermatozoa from 26 semen samples (17 patients 

and 9 healthy sperm donors) with different concentrations of the fractions of the 

C. capensis extract (0.05 µg/ml, 0.5 µg/ml, 5 µg/ml, 50 µg/ml and 200 µg/ml) was 

conducted for washed spermatozoa. 

 

3.3.1 Effect fractions of C. capensis extract on sperm motility 

Summary results of the motility parameters analyzed for fraction 1 without 

progesterone (P4) are shown in Table 9. Although progressive motility, velocity 

curvilinear and straightness were not affected by increasing concentrations of 

fraction 1 (F1), significant, dose-dependent effects on various motion parameters 

were obvious. While values for VAP, VSL and linearity decreased with increasing 

concentrations of the F1 extract, the percentage of hyperactivated sperm and the 

beat cross frequency increased significantly (Table 10). Also, summary results of 

the motility parameters analyzed for F1 with P4 are shown in Table 11. While 

progressive motility and straightness were not affected by increasing 

concentrations of F1, the values for VAP, VSL, VCL and linearity decreased with 

increasing concentrations of the F1 extract. The percentage of hyperactivated 

sperm and the beat cross frequency increased significantly  

 

The summary result for the F2 fraction without P4 on motility parameters are 

shown in Table 12. Although total and progressive motility and straightness were 

not affected by increasing concentrations of F2, significant dose-dependent effects 

on various motion parameters were obvious. While the values for VAP, VCL, 

VSL and linearity decreased with increasing concentrations of the F2 extract, the 

percentage of hyperactivated sperm and the beat cross frequency increased 

significantly (Table 12). 

 

For the F2 fraction with P4, summary results of the motility parameters are shown 

in Table 13. Although progressive motility, VAP, VSL and linearity were not 

affected by increasing concentrations of F2, the values total motility and VCL 

decreased with increasing concentrations of the F2 extract. In contract, the 

percentage of hyperactivated sperm, the beat cross frequency and straightness 

increased significantly (Table 13). 
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Table 10: Summary statistics of sperm motility parameters (Fraction 1 without 

progesterone). While progressive motility, velocity curvilinear and straightness 

remained unchanged, total motility and parameters that are associated with sperm 

hyperactivation changed significantly. VAP: velocity average path; VCL: velocity 

curvilinear; VSL: velocity straight line; H: hyperactivation; BCF: beat cross 

frequency; LIN: linearity; STR: straightness 

 Control 0.05 µg/ml 0.5 µg/ml 5 µg/ml 50 µg/ml 200 µg/ml ANOVA 

(P value) 

Total Motility 

(%) 

44.16±5.04 45.40±4.58 45.20±4.97 46.50±3.89 48.04±3.64 49.92±2.14 <0.001 

Progressive 

motility (%) 

14.04±3.91 14.73±2.88 14.26±2.44 13.40±2.62 13.90±2.33 14.38±2.25 0.752 

VAP (µm/s) 63.05±3.30 59.10±3.64 59.74±2.79 58.50±3.74 55.69±6.42 51.09±3.07 <0.001 

VCL (µm/s) 87.93±4.39 84.38±11.03 82.94±9.66 86.89±3.74 85.79±3.84 83.73±2.77 0.154 

VSL (µm/s) 53.32±4.90 53.31±4.50 50.57±5.06 48.06±10.01 45.81±5.67 41.18±3.75 <0.001 

H (%) 1.11±0.25 1.26±0.34 1.52±0.37 1.51±0.33 1.76±0.24 1.97±0.29 <0.001 

BCF (Hz) 16.23±2.41 17.31±1.89 17.98±1.66 18.28±1.83 19.52±1.68 19.95±1.93 <0.001 

LIN 54.30±2.42 52.31±2.76 50.82±4.38 49.00±5.05 47.14±4.23 43.32±2.32 <0.001 

STR 73.77±3.17 72.33±2.80 72.58±2.38 71.05±6.16 71.97±2.54 71.52±3.85 0.272 

 

 

Table 11: Summary statistics of sperm motility parameters (Fraction 1 with 

progesterone). While progressive motility and straightness remained unchanged, 

total motility and parameters that are associated with sperm hyperactivation 

changed significantly. VAP: velocity average path; VCL: velocity curvilinear; 

VSL: velocity straight line; H: hyperactivation; BCF: beat cross frequency; LIN: 

linearity; STR: straightness 

 Control 0.05 µg/ml 0.5 µg/ml 5 µg/ml 50 µg/ml 200 µg/ml ANOVA 

(P value) 

Total Motility 

(%) 

46.68±4.20 48.33±4.25 48.37±4.37 48.72±4.11 50.28±4.59 52.58±2.67 <0.001 

Progressive 

motility (%) 

17.42±4.58 18.05±4.24 17.24±3.10 16.14±3.22 16.85±2.15 16.32±2.00 0.472 

VAP (µm/s) 64.81±3.27 61.85±2.88 60.59±4.01 59.02±2.92 59.10±3.53 53.33±2.34 <0.001 

VCL (µm/s) 92.00±2.27 91.05±2.88 89.69±3.48 90.61±3.48 90.00±4.11 85.99±3.07 <0.001 

VSL (µm/s) 54.19±7.10 52.59±6.58 51.45±6.29 49.95±6.68 47.51±6.99 42.72±3.86 <0.001 

H (%) 1.28±0.17 1.46±0.34 1.77±0.32 1.84±0.29 1.98±0.16 2.22±0.29 <0.001 

BCF (Hz) 18.10±2.12 19.09±1.92 19.71±1.46 20.53±1.37 21.30±1.34 22.10±1.89 <0.001 

LIN 57.97±1.61 55.52±2.64 52.92±3.78 51.34±4.35 49.95±2.47 47.45±4.31 <0.001 

STR 75.96±2.68 75.14±2.04 74.39±2.03 74.21±2.45 74.04±3.00 73.69±3.77 0.107 
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Table 12: Summary statistics of sperm motility parameters (Fraction 2 without 

progesterone). While total and progressive motility and straightness remained 

unchanged, the parameters that are associated with sperm hyperactivation 

changed significantly. VAP: velocity average path; VCL: velocity curvilinear; 

VSL: velocity straight line; H: hyperactivation; BCF: beat cross frequency; LIN: 

linearity; STR: straightness 

 Control 0.05 µg/ml 0.5 µg/ml 5 µg/ml 50 µg/ml 200 µg/ml ANOVA 

(P value) 

Total Motility 

(%) 

43.42±4.28 44.02±3.70 44.84±3.56 44.90±3.89 45.59±2.49 45.18±2.90 0.407 

Progressive 

motility (%) 

13.69±3.35 14.33±2.74 14.53±2.41 14.42±2.79 15.25±2.74 15.29±246 0.448 

VAP (µm/s) 62.93±2.80 58.73±3.99 58.03±3.86 56.27±3.95 55.71±3.81 56.43±3.66 <0.001 

VCL (µm/s) 87.67±4.08 85.78±3.34 84.70±2.61 83.37±2.85 83.49±1.89 84.09±2.81 <0.001 

VSL (µm/s) 52.79±5.16 49.69±4.77 48.77±4.85 46.89±4.85 47.95±4.83 46.31±4.94 0.001 

H (%) 1.08±0.17 1.36±0.33 1.43±0.36 1.52±0.27 1.44±0.22 1.42±0.22 <0.001 

BCF (Hz) 16.50±1.99 18.09±1.66 18.79±1.67 19.10±1.99 19.37±2.28 19.15±2.05 <0.001 

LIN 54.29±2.42 51.52±3.30 50.34±2.85 50.01±2.92 49.65±3.26 49.25±3.73 <0.001 

STR 74.00±2.39 73.35±2.21 72.22±1.76 71.97±2.05 71.85±2.15 72.74±1.91 0.0.19 

 

 

Table 13: Summary statistics of sperm motility parameters (Fraction 2 with 

progesterone). Sperm hyperactivation, straightness, velocity straight line and beat 

cross frequency changed significantly, while total and  progressive motility, 

linearity, velocity straight line and velocity average path remained unchanged. 

VAP: velocity average path; VCL: velocity curvilinear; VSL: velocity straight 

line; H: hyperactivation; BCF: beat cross frequency; LIN: linearity; STR: 

straightness 

 Control 0.05 µg/ml 0.5 µg/ml 5 µg/ml 50 µg/ml 200 µg/ml ANOVA 

(P value) 

Total Motility 

(%) 

46.67±4.21 45.19±3.44 43.91±3.35 44.17±3.08 43.48±3.74 43.70±3.53 0.051 

Progressive 

motility (%) 

16.32±4.11 16.07±3.33 15.86±2.93 15.79±2.91 15.09±3.08 15.66±2.73 0.888 

VAP (µm/s) 64.51±3.05 62.94±2.45 62.41±2.04 62.60±2.44 62.36±2.58 62.74±2.26 0.072 

VCL (µm/s) 92.24±2.32 90.38±1.51 90.70±2.62 91.19±1.67 91.36±1.58 91.61±1.28 0.040 

VSL (µm/s) 54.25±5.63 52.71±5.17 51.54±5.96 51.83±4.17 51.95±4.23 51.85±4..09 0.530 

H (%) 1.24±0.14 1.28±0.10 1.36±0.17 1.32±0.15 1.44±0.22 1.41±0.19 0.002 

BCF (Hz) 17.80±1.84 18.48±1.70 18.62±2.49 19.34±2.79 20.01±2.03 20.42±2.35 0.002 

LIN 57.78±1.65 58.23±2.54 58.00±3.24 57.68±3.61 58.87±6.87 59.11±6.68 0.893 

STR 76.56±2.50 79.32±1.99 80.62±1.41 79.95±1.33 78.55±5.84 80.28±2.63 <0.001 
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The summary results for the F3 fraction without P4 on motility parameters are 

shown in Table 14. While total and progressive motility and straightness were not 

affected by increasing concentrations of F3, significant dose-dependent effects on 

various motion parameters were obvious, the values for VAP, VCL, VSL and 

linearity decreased with increasing concentrations of the F3 extract, the 

percentage of hyperactivated sperm and the beat cross frequency increased 

significantly (Table 14). 

 

For the F3 fraction with P4, summary results of the motility parameters are shown 

in Table 15. Although progressive motility, VAP, VSL and linearity were not 

affected by increasing concentrations of F3, the values total motility and VCL 

decreased with increasing concentrations of the F3 extract, the percentage of 

hyperactivated sperm, the beat cross frequency and straightness increased 

significantly (Table 15). 

 

The summary results for the F4 fraction without P4 on motility parameters are 

shown in Table 16. While total and progressive motility were not affected by 

increasing concentrations of F4, significant dose-dependent effects on various 

motion parameters were obvious, the values for VAP, VCL, VSL and linearity 

decreased with increasing concentrations of the F4 extract, the percentage of 

hyperactivated sperm, the beat cross frequency and straightness increased 

significantly (Table 16). 

 

For the F4 fraction with P4, summary results of the motility parameters are shown 

in Table 17. Although progressive motility, VCL, and linearity were not affected 

by increasing concentrations of F4, the values total motility, VAP and VSL 

decreased with increasing concentrations of the F4 extract, the percentage of 

hyperactivated sperm, the beat cross frequency and straightness increased 

significantly (Table 17). 
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Table 14: Summary statistics of sperm motility parameters (Fraction 3 without 

Progesterone). While total and progressive motility and straightness remained 

unchanged, the parameters that are associated with sperm hyperactivation 

changed significantly. VAP: velocity average path; VCL: velocity curvilinear; 

VSL: velocity straight line; H: hyperactivation; BCF: beat cross frequency; LIN: 

linearity; STR: straightness 

 Control 0.05 µg/ml 0.5 µg/ml 5 µg/ml 50 µg/ml 200 µg/ml ANOVA 

(P value) 

Total Motility 

(%) 

41.27±4.22 42.05±3.65 43.77±4.06 43.55±3.75 44.32±2.51 43.29±2.30 0.064 

Progressive 

motility (%) 

12.41±3.06 13.06±2.35 13.60±1.79 12.93±1.93 13.75±2.28 13.93±1.83 0.262 

VAP (µm/s) 64.30±1.94 60.24±1.28 60.24±1.52 59.00±1.86 58.47±1.44 59.10±1.80 <0.001 

VCL (µm/s) 85.14±3.09 84.41±2.88 83.79±1.69 82.40±1.67 82.85±1.99 82.87±2.26 0.002 

VSL (µm/s) 49.93±2.32 47.24±2.72 45.71±3.23 44.13±3.55 44.39±3.27 43.49±3.57 <0.001 

H (%) 1.06±0.22 1.22±0.15 1.29±0.16 1.36±0.13 1.41±0.12 1.28±0.06 <0.001 

BCF (Hz) 17.31±1.38 17.62±1.43 17.71±2.15 17.67±3.03 18.78±2.06 19.28±2.54 0.032 

LIN 54.74±2.44 52.58±2.86 50.94±2.23 51.13±2.50 50.98±2.71 51.70±2.00 <0.001 

STR 73.38±2.32 72.23±1.86 72.19±2.16 71.68±2.25 72.31±2.41 73.41±2.18 0.080 

 

 

Table 15: Summary statistics of sperm motility parameters (Fraction 3 with 

Progesterone). While progressive motility, velocity average path, velocity straight 

line and linearity remained unchanged, the total motility and parameters that are 

associated with sperm hyperactivation changed significantly. VAP: velocity 

average path; VCL: velocity curvilinear; VSL: velocity straight line; H: 

hyperactivation; BCF: beat cross frequency; LIN: linearity; STR: straightness 

 Control 0.05 µg/ml 0.5 µg/ml 5 µg/ml 50 µg/ml 200 µg/ml ANOVA 

(P value) 

Total Motility 

(%) 

43.78±3.08 43.11±2.22 441.79±1.83 42.72±1.39 41.56±1.23 41.80±1.20 0.002 

Progressive 

motility (%) 

16.60±4.69 16.35±4.24 16.38±3.75 16.49±3.31 14.94±3.81 15.82±3.28 0.759 

VAP (µm/s) 65.08±3.10 63.38±2.40 63.04±2.56 63.47±3.08 63.83±2.74 63.31±2.54 0.227 

VCL (µm/s) 92.34±2.32 90.56±1.19 90.58±1.07 91.81±2.00 91.77±0.98 91.74±1.11 0.001 

VSL (µm/s) 51.95±6.27 50.76±5.94 50.46±7.72 51.33±5.12 51.55±5.26 51.30±4.77 0.975 

H (%) 1.22±0.17 1.26±0.12 1.32±0.13 1.32±0.14 1.51±0.28 1.46±0.22 <0.001 

BCF (Hz) 17.31±1.38 17.62±1.43 17.71±2.15 17.67±3.03 18.78±2.06 19.28±2.54 0.032 

LIN 57.28±1.68 57.35±2.93 57.60±3.85 57.29±3.61 57.00±4.33 57.12±4.26 0.9971 

STR 75.38±2.53 78.47±1.78 80.34±2.0.87 79.73±1.54 76.70±7.55 79.02±2.29 <0.001 
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Table 16: Summary statistics of sperm motility parameters (Fraction 4 without 

progesterone). While total and progressive motility remained unchanged, the 

parameters that are associated with sperm hyperactivation changed significantly. 

VAP: velocity average path; VCL: velocity curvilinear; VSL: velocity straight 

line; H: hyperactivation; BCF: beat cross frequency; LIN: linearity; STR: 

straightness 

  Control 0.05 µg/ml 0.5 µg/ml 5 µg/ml 50 µg/ml 200 µg/ml ANOVA 

(P value) 

Total Motility 

(%) 

45.57±3.02 45.99±2.34 45.91±2.53 46.26±3.53 46.86±1.63 47.08±1.99 0.417 

Progressive 

motility (%) 

14.98±3.10 15.61±2.46 15.47±2.57 15.92±2.68 16.76±2.25 16.66±2.20 0.202 

VAP (µm/s) 61.57±2.84 57.22±5.04 55.83±4.15 53.55±3.49 52.95±3.32 53.77±2.93 <0.001 

VCL (µm/s) 90.21±3.20 87.15±3.18 85.62±3.01 84.34±3.39 84.14±1.53 85.32±2.74 <0.001 

VSL (µm/s) 55.65±5.55 52.14±5.05 51.84±4.11 49.65±4.28 51.52±3.02 49.14±4.39 <0.001 

H (%) 1.11±0.10 1.40±0.30 1.38±0.31 1.61±0.25 1.47±0.29 1.55±0.21 <0.001 

BCF (Hz) 17.14±2.46 18.92±1.43 19.54±1.60 20.01±1.60 20.75±1.07 20.25±0.71 <0.001 

LIN 53.84±2.31 50.46±3.35 49.74±3.23 48.90±2.86 48.32±3.19 46.80±3.35 <0.001 

STR 74.63±2.29 72.47±2.50 72.26±1.23 72.26±1.77 71.40±1.75 72.07±1.26 <0.001 

 

 

Table 17: Summary statistics of sperm motility parameters (Fraction 4 with 

progesterone). While progressive motility, velocity curvilinear and linearity 

remained unchanged, total motility and parameters that are associated with sperm 

hyperactivation changed significantly. VAP: velocity average path; VCL: 

velocity curvilinear; VSL: velocity straight line; H: hyperactivation; BCF: beat 

cross frequency; LIN: linearity; STR: straightness 

 Control 0.05 µg/ml 0.5 µg/ml 5 µg/ml 50 µg/ml 200 µg/ml ANOVA 

(P value) 

Total Motility 

(%) 

49.57±2.88 47.28±3.10 46.03±3.10 45.62±3.56 45.41±4.33 45.61±3.98 0.002 

Progressive 

motility (%) 

16.05±3.40 15.80±2.03 15.35±1.60 15.09±2.21 15.24±2.11 15.50±2.01 0.782 

VAP (µm/s) 63.95±2.89 62.51±2.42 61.79±0.98 61.73±0.91 60.90±1.13 62.17±1.77 <0.001 

VCL (µm/s) 92.14±2.31 90.21±1.76 90.83±3.54 90.58±0.87 90.96±1.92 91.48±1.43 0.077 

VSL (µm/s) 56.55±3.61 54.67±3.17 52.63±3.00 52.33±2.84 52.35±2.78 52.41±3.16 <0.001 

H (%) 1.27±0.09 1.31±0.08 1.41±0.20 1.33±0.16 1.38±0.10 1.37±0.15 0.025 

BCF (Hz) 18.29±2.12 19.34±1.48 19.53±2.46 21.02±0.74 21.24±0.89 21.57±1.37 <0.001 

LIN 58.29±1.46 59.12±1.65 58.41±2.42 58.08±3.55 60.75±8.26 61.11±7.92 0.248 

STR 77.74±1.79 80.17±1.79 80.90±1.75 80.18±1.03 80.40±1.98 81.55±2.29 <0.001 
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Furthermore, when comparing fractions with P4 and without P4 (Figure 34A and B) 

on VAP, fraction 1 showed a significant decrease in a dose-dependent manner.  

No effect was found in the other fractions (F2-F3). For VSL when comparing 

fractions with P4 and without P4 (Figure 35A and B), fraction 1 showed a significant 

decrease in a dose-dependent manner; no effect was found in the other fractions  

(F2-F3). 

 

When comparing fractions with P4 and without P4 (Figure 36A and B) on linearity, 

fraction 1 and 4 showed a significant decrease in a dose-dependent manner; no effect 

was found in the fraction F2 and F3.  

 

Moreover, comparing fractions with P4 and without P4 (Figure 37A and B) on 

hyperactivation, fraction 1 showed a significant increase at higher concentrations; no 

effect was found in the other fractions (F2-F3). 
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Figure 34: The effect of C. capensis methanolic fractions on velocity average 

path (VAP) in vitro. The orange bar represents 0 µg/ml, blue bar 0.05 µg/ml, 

green bar 0.5 µg/ml, yellow bar 5 µg/ml, pink bar 50 µg/ml and maroon bar 200 

µg/ml.  

A) without P4; B) with P4. Values shown as mean±SEM (n=26). 
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Figure 35: The effect of C. capensis methanolic fractions on velocity straight line 

(VSL) in vitro. The orange bar represents 0 µg/ml, blue bar 0.05 µg/ml, green bar 

0.5 µg/ml, yellow bar 5 µg/ml, pink bar 50 µg/ml and maroon bar 200 µg/ml.  

A) without P4; B) with P4. Values shown as mean±SEM (n=26). 
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Figure 36: The effect of C. capensis methanolic fractions on linearity (LIN) in 

vitro. The orange bar represents 0 µg/ml, blue bar 0.05 µg/ml, green bar 0.5 

µg/ml, yellow bar 5 µg/ml, pink bar 50 µg/ml and maroon bar 200 µg/ml.  

A) without P4; B) with P4. Values shown as mean±SEM (n=26). 
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Figure 37: The effect of C. capensis methanolic fractions on hyperactivation (H) 

in vitro. The orange bar represents 0 µg/ml, blue bar 0.05 µg/ml, green bar 0.5 

µg/ml, yellow bar 5 µg/ml, pink bar 50 µg/ml and maroon bar 200 µg/ml.  

A) without P4; B) with P4. Values shown as mean±SEM (n=26). 
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3.3.2 Effect fractions of C. capensis extract on sperm reactive oxygen species 

(ROS) 

Summary results of the percentage of ROS-positive spermatozoa for the fractions 

without P4 are shown in Table 18. Although F2 and F3 remained unchanged with 

increasing concentrations of the C. capensis extract, F1 and F4 changed 

significantly with increasing concentrations of the C. capensis crude extract. 

 

Furthermore, summary results of the percentage of ROS-positive spermatozoa for 

the fractions with P4 are shown in Table 19. Although F2 and F3 remained 

unchanged with increasing concentrations of the C. capensis extract, F1 and F4 

changed significantly with increasing concentrations of the C. capensis extract. 

 

When comparing fractions with P4 and without P4 (Figure 38A and B) on  

ROS-positive spermatozoa, fraction 1 showed a significant increase in a dose-

dependent manner; no effect was found in the other fractions (F2-F3). 
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Table 18: Summary statistics of the percentage of ROS-positive spermatozoa 

after incubation with increasing concentrations of fractions 1, 2, 3 and 4 of 

C. capensis extract (without progesterone). While fractions 2 and 3 remained 

unchanged with increasing concentrations of the C. capensis extract, fractions 1 

and 4 changed significantly with increasing concentrations of the C. capensis 

crude extract. ROS: reactive oxygen species; F: fraction 

 Control 0.05 µg/ml 0.5 µg/ml 5 µg/ml 50 µg/ml 200 µg/ml ANOVA 

(P value) 

ROS-F1 (%) 40.35±4.19 42.60±4.12 43.95±4.75 53.30±4.48 50.45±3.26 53.80±2.68 <0.001 

ROS-F2 (%) 41.60±3.84 43.25±3.91 43.70±3.64 43.55±3.85 44.10±3.33 44.90±3.35 0.120 

ROS-F3 (%) 

 

43.10±4.41 45.30±4.05 45.60±3.81 45.30±4.63 45.60±3.73 46.80±3.36 0.120 

ROS-F4 (%) 

 

40.10±2.31 41.20±2.33 41.80±2.09 41.80±1.36 42.60±1.90 43.00±1.89 <0.001 

 

 

Table 19: Summary statistics of the percentage of ROS-positive spermatozoa 

after incubation with increasing concentrations of fractions 1, 2, 3 and 4 of  

C. capensis extract (with progesterone). While fractions 2 and 3 remained 

unchanged with increasing concentrations of the C. capensis crude extract, 

fractions 1 and 4 changed significantly with increasing concentrations of the  

C. capensis extract. ROS: reactive oxygen species; F: fraction 

 Control 0.05 µg/ml 0.5 µg/ml 5 µg/ml 50 µg/ml 200 µg/ml ANOVA 

(P value) 

ROS-F1 (%) 44.50±3.73 49.35±4.78 50.65±4.63 53.25±4.21 55.45±3.26 56.45±3.88 <0.001 

ROS-F2 (%) 45.60±4.34 46.70±4.13 45.95±3.66 46.70±3.81 47.95±4.29 48.65±4.22 0.156 

ROS-F3 (%) 

 

46.50±3.34 45.60±3.43 45.40±3.18 44.10±2.44 45.00±3.14 45.80±3.91 0.307 

ROS-F4 (%) 

 

44.70±4.98 47.80±4.44 46.50±4.00 49.30±2.97 50.90±2.95 51.50±1.79 <0.001 
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Figure 38: The effect of C. capensis methanolic fractions on reactive oxygen 

species (ROS) in vitro. The orange bar represents 0 µg/ml, blue bar 0.05 µg/ml, 

green bar 0.5 µg/ml, yellow bar 5 µg/ml, pink bar 50 µg/ml and maroon bar 200 

µg/ml.  

A) without P4; B) with P4. Values shown as mean±SEM (n=26). 
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3.3.3 Effect fractions of C. capensis crude extract on sperm capacitation and 

acrosome reaction as determined by CTC stain 

 

Summary results of the sperm capacitation and acrosome reaction as determined 

by means of the CTC assay, analyzed for fraction 1 without progesterone (P4) are 

shown in Table 20. A significant positive trend (ANOVA: P<0.001) towards 

higher percentages of capacitated, acrosome-intact and capacitated spermatozoa 

was found at higher concentrations. Also, summary results for fraction 1 with P4 

are shown in Table 21. A significant positive trend (ANOVA: P<0.001) towards 

higher percentages of capacitated, acrosome-intact, capacitated, acrosome-reacted 

and capacitated spermatozoa was found at higher concentrations. 

 

The summary results for the fraction 2 without P4 are shown in Table 22.  

A significant positive trend (ANOVA: P<0.001) towards higher percentages of 

capacitated, acrosome-intact and capacitated spermatozoa was found at higher 

concentrations. For the fraction 2 with P4, summary results are shown in Table 23. 

A significant positive trend (ANOVA: P<0.001) towards higher percentages of 

capacitated, acrosome-reacted and capacitated spermatozoa was found at higher 

concentrations. 

 

The summary results for the fraction 3 without P4 are shown in Table 24.  

A significant positive trend (ANOVA: P<0.001) towards higher percentages of 

capacitated, acrosome-intact and spermatozoa was found at higher concentrations. 

For the fraction 3 with P4, summary results are shown in Table 25. A significant 

positive trend (ANOVA: 0.016) towards higher percentages of capacitated 

spermatozoa was found at higher concentrations and a significant positive trend 

(ANOVA: 0.008) towards higher percentages of capacitated, acrosome-reacted 

spermatozoa was found at higher concentrations. 

 

The summary results for the fraction 4 without P4 are shown in Table 26.  

A significant positive trend (ANOVA: P<0.001) towards higher percentages of 

capacitated, acrosome-intact; reacted and capacitated spermatozoa was found at 

higher concentrations. For the fraction 4 with P4, summary results are shown in 

Table 27. A significant positive trend (ANOVA: P<0.001) towards higher 
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percentages of capacitated, acrosome-intact; reacted and capacitated spermatozoa 

was found at higher concentrations. 

 

Furthermore, when comparing fractions with and without P4 (Figure 39A and B) 

on capacitated spermatozoa, fraction 1 showed a significant increase in a dose-

dependent manner; no effect was found in the other fractions (F2-F3), 

 

When comparing fractions with P4 and without P4 (Figure 40A and B) on 

capacitated, acrosome-intact spermatozoa, fraction 1 showed a significant increase 

in a dose-dependent manner, no effect was found in the fractions (F2-F4). Also, 

when comparing fractions with P4 and without P4 (Figure 41A and B) on 

capacitated, acrosome-reacted spermatozoa, fraction 1 showed a significant 

increase in a dose-dependent manner; no effect was found in the fractions (F2-F4). 

 

Moreover, progesterone stimulation caused dose-dependent increase in the 

inducibility (induced AR - spontaneous AR) of acrosome reaction as shown for 

the percentage of capacitated, acrosome-reacted spermatozoa (∆AR) (Figure 42). 

While all concentrations for fractions 2, 3 and 4 similarly caused an initial 

increase and then a decrease, fraction 1 resulted in a constant dose-depentent 

increase, which was much bigger than for the other fractions. When comparing 

fractions on capacitated delta acrosome-reacted (Figure 42), fraction 1 showed a 

highly significant increase in a dose-dependent manner.  
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Table 20: Summary statistics of the sperm capacitation and acrosome reaction as 

determined by CTC stain after incubation with increasing concentrations of  

C. capensis crude extract for fraction 1 without progesterone. 

 

 Control 0.05 µg/ml 0.5 µg/ml 5 µg/ml 50 µg/ml 200 µg/ml ANOVA 

(P value) 

Capacitated 

sperm (%) 

18.90±2.90 21.70±2.99 24.70±2.71 26.45±4.29 28.90±4.31 34.20±5.52 < 0.001 

Capacitated, 

acrosome-intact 

spem (%) 

12.80±3.05 13.95±2.81 15.55±2.60 17.30±2.57 18.40±3.23 21.30±5.02 < 0.001 

Capacitated, 

acrosome-reacted 

sperm(%) 

7.55±1.43 8.85±1.26 9.70±1.49 10.75±1.71 12.00±1.77 10.10±3.52 0.009 

Uncapacitated, 

acrosome-intact 

sperm (%) 

81.10+±2.90 79.60±4.50 75.35±2.70 73.05±3.81 71.30±4.49 66.05±5.20 0.178 

 

 

 

Table 21: Summary statistics of the sperm capacitation and acrosome reaction as 

determined by CTC stain after incubation with increasing concentrations of  

C. capensis extract crude extract for fraction 1 with progesterone. 

 

 Control 0.05 µg/ml 0.5 µg/ml 5 µg/ml 50 µg/ml 200 µg/ml ANOVA 

(P value) 

Capacitated 

sperm (%) 

25.68±2.72 28.70±3.04 31.40±2.70 32.70±3.09 33.30±3.07 40.35±6.30 < 0.001 

Capacitated, 

acrosome-intact 

spem (%) 

14.35±2.88 14.65±2.34 18.65±2.43 18.85±2.20 20.05±2.70 25.60±6.15 < 0.001 

Capacitated, 

acrosome-reacted 

sperm(%) 

12.00±2.80 13.20±2.44 13.10±2.46 13.20±2.70 13.00±2.02 15.00±1.89 <0.001 

Uncapacitated, 

acrosome-intact 

sperm (%) 

64.45±6.70 62.15±5.62 59.60±4.61 60.85±6.04 62.60±6.24 62.15±5.87 < 0.001 
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Table 22: Summary statistics of the sperm capacitation and acrosome reaction as 

determined by CTC stain after incubation with increasing concentrations of  

C. capensis extract crude extract for fraction 2 without progesterone . 

 

 Control 0.05 µg/ml 0.5 µg/ml 5 µg/ml 50 µg/ml 200 µg/ml ANOVA 

(P value) 

Capacitated 

sperm (%) 

19.15±2.94 22.35±3.89 23.15±3.88 24.15±4.25 25.30±4.60 24.80±3.69 < 0.001 

Capacitated, 

acrosome-intact 

spem (%) 

11.90±2.31 14.50±2.76 15.20±2.91 16.30±2.86 16.65±2.75 16.40±2.64 < 0.001 

Capacitated, 

acrosome-reacted 

sperm(%) 

7.00±1.29 7.20±1.79 7.95±2.06 7.85±2.03 8.65±2.36 8.40±1.81 0.127 

Uncapacitated, 

acrosome-intact 

sperm (%) 

81.10±2.90 77.70±3.92 76.85±3.88 75.85±4.25 74.75±4.59 75.00±4.70 < 0.001 

 

 

 

Table 23: Summary statistics of the sperm capacitation and acrosome reaction as 

determined by CTC stain after incubation with increasing concentrations of  

C. capensis extract crude extract for fraction 2 with progesterone. 

 

 Control 0.05 µg/ml 0.5 µg/ml 5 µg/ml 50 µg/ml 200 µg/ml ANOVA 

(P value) 

Capacitated 

sperm (%) 

32.00±2.10 26.85±2.10 26.55±2.74 27.50±3.83 27.60±2.94 28.00±3.71 < 0.001 

Capacitated, 

acrosome-intact 

spem (%) 

13.85±2.30 15.05±1.90 15.00±2.33 15.15±2.18 15.65±2.45 16.25±2.71 0.046 

Capacitated, 

acrosome-reacted 

sperm(%) 

9.15±0.98 11.35±1.95 11.95±1.98 11.40±2.03 12.15±2.13 11.55±2.01 <0.001 

Uncapacitated, 

acrosome-intact 

sperm (%) 

65.70±5.50 73.20±2.04 73.45±2.30 72.35±2.85 72.35±2.87 72.95±4.67 < 0.001 
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Table 24: Summary statistics of the sperm capacitation and acrosome reaction as 

determined by CTC stain after incubation with increasing concentrations of  

C. capensis extract crude extract for fraction 3 without progesterone . 

 

 Control 0.05 µg/ml 0.5 µg/ml 5 µg/ml 50 µg/ml 200 µg/ml ANOVA 

(P value) 

Capacitated 

sperm (%) 

18.50±3.15 21.10±3.95 21.60±3.92 22.90±4.75 24.20±5.26 23.30±3.84 0.001 

Capacitated, 

acrosome-intact 

spem (%) 

11.70±2.05 14.10±2.35 14.50±2.21 15.60±2.89 16.30±2.67 15.30±2.15 < 0.001 

Capacitated, 

acrosome-reacted 

sperm(%) 

6.80±1.43 7.00±2.05 7.10±2.40 7.30±2.51 7.90±2.95 8.00±2.10 0.468 

Uncapacitated, 

acrosome-intact 

sperm (%) 

81.50±3.15 78.90±3.95 78.40±3.92 77.10±4.75 75.90±5.24 77.30±4.98 0.003 

 

 

 

Table 25: Summary statistics of the sperm capacitation and acrosome reaction as 

determined by CTC stain after incubation with increasing concentrations of  

C. capensis extract crude extract for fraction 3 with progesterone. 

 

 Control 0.05 µg/ml 0.5 µg/ml 5 µg/ml 50 µg/ml 200 µg/ml ANOVA 

(P value) 

Capacitated 

sperm (%) 

23.20±1.82 25.90±1.74 25.70±3.04 26.20±4.39 25.70±2.47 25.40±2.72 0.016 

Capacitated, 

acrosome-intact 

spem (%) 

14.00±2.51 14.50±2.25 14.30±2.79 14.20±2.14 14.40±2.16 15.30±2.97 0.660 

Capacitated, 

acrosome-reacted 

sperm(%) 

9.20±1.00 11.40±2.16 11.60±2.43 11.10±2.44 11.40±2.52 10.70±2.20 0.008 

Uncapacitated, 

acrosome-intact 

sperm (%) 

65.90±4.77 74.10±1.74 74.30±2.20 73.70±2.43 74.20±2.37 74.50±2.56 < 0.001 
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Table 26: Summary statistics of the sperm capacitation and acrosome reaction as 

determined by CTC stain after incubation with increasing concentrations of  

C. capensis extract crude extract for fraction 4 without progesterone. 

 

 Control 0.05 µg/ml 0.5 µg/ml 5 µg/ml 50 µg/ml 200 µg/ml ANOVA 

(P value) 

Capacitated 

sperm (%) 

19.80±2.54 23.60±3.37 24.70±3.11 25.40±3.21 26.40±3.47 26.30±3.46 < 0.001 

Capacitated, 

acrosome-intact 

spem (%) 

12.10±2.53 14.90±3.05 15.90±3.32 17.00±2.55 17.00±2.79 17.50±2.60 < 0.001 

Capacitated, 

acrosome-reacted 

sperm(%) 

7.20±1.10 8.60±0.94 8.80±1.10 8.40±1.14 9.40±1.14 8.80±1.36 <0.001 

Uncapacitated, 

acrosome-intact 

sperm (%) 

80.70±2.55 76.50±3.47 75.30±3.11 74.60±3.21 73.60±3.47 72.70±2.86 < 0.001 

 

 

 

Table 27: Summary statistics of the sperm capacitation and acrosome reaction as 

determined by CTC stain after incubation with increasing concentrations of  

C. capensis extract crude extract for fraction 4 with progesterone. 

 

 Control 0.05 µg/ml 0.5 µg/ml 5 µg/ml 50 µg/ml 200 µg/ml ANOVA 

(P value) 

Capacitated 

sperm (%) 

22.80±2.33 27.80±1.98 27.40±2.06 28.80±2.54 29.50±1.90 30.60±2.43 < 0.001 

Capacitated, 

acrosome-intact 

spem (%) 

13.70±2.05 15.60±1.23 15.70±1.45 16.10±1.74 16.90±2.02 17.20±1.98 < 0.001 

Capacitated, 

acrosome-reacted 

sperm(%) 

9.10±0.69 11.30±1.71 12.30±1.30 11.70±1.45 12.90±1.25 12.40±1.31 <0.001 

Uncapacitated, 

acrosome-intact 

sperm (%) 

65.50±6.14 72.30±1.89 72.60±2.06 71.00±2.55 70.50±1.90 71.40±5.66 < 0.001 
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Figure 39: The effect of C. capensis methanolic fractions on capacitated 

spermatozoa in vitro. The orange bar represents 0 µg/ml, blue bar 0.05 µg/ml, green 

bar 0.5 µg/ml, yellow bar 5 µg/ml, pink bar 50 µg/ml and maroon bar 200 µg/ml.  

A) without P4; B) with P4. Values shown as mean±SEM (n=26). 
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Figure 40: The effect of C. capensis methanolic fractions on capacitated, 

acrosome-intact spermatozoa in vitro. The orange bar represents 0 µg/ml, blue bar 

0.05 µg/ml, green bar 0.5 µg/ml, yellow bar 5 µg/ml, pink bar 50 µg/ml and 

maroon bar 200 µg/ml.  

A) without P4; B) with P4. Values shown as mean±SEM (n=26). 
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Figure 41: The effect of C. capensis methanolic fractions on capacitated, 

acrosome-reacted spermatozoa in vitro. The orange bar represents 0 µg/ml, blue bar 

0.05 µg/ml, green bar 0.5 µg/ml, yellow bar 5 µg/ml, pink bar 50 µg/ml and 

maroon bar 200 µg/ml.  

A) without P4; B) with P4. Values shown as mean±SEM (n=26). 
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Figure 42: The effect of C. capensis methanolic fractions on capacitated delta 

acrosome-reacted (∆AR) spermatozoa in vitro. The orange bar represents 0 µg/ml, 

blue bar 0.05 µg/ml, green bar 0.5 µg/ml, yellow bar 5 µg/ml, pink bar 50 µg/ml 

and maroon bar 200 µg/ml. Values shown as mean±SEM (n=29). 

 

When compared fraction 1 with the control at the higher concentrations showed a 

significant increase (P<0.0001). In contrast, highly significant decrease (P<0.001) 

when compared fraction 1 with fraction 2 were found at 0.05 and 200 µg/ml. 

 

Both, fraction 3 and 4 when compared with the fraction 1 only highly significant 

decrease (P<0.001) was found at 200 µg/ml. When comparing fraction 3 with 

fraction 4, a highly significant decrease (P<0.001) was found at 200 µg/ml. 
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Chapter 4: Discussion 

The use of herbal remedies to treat ailments is as old as the humankind itself. 

Several diverse lines of evidence indicate that herbal medicines assimilate the 

oldest and most widespread form of medication (Vogel, 1991). Furthermore, the 

regulation and legislation of herbal medicines and traditional healing differs from 

country to country. In South Africa, the traditional health care service is regulated 

by the Traditional Health Practitioners Act No. 22 of 2007, which provides for a 

regulatory framework and ensures the efficacy, safety and quality of the treatment. 

The high frequency of use of traditional remedies is due to the socio-cultural and 

socio-economical context in such countries. Yet, this type of medicine has barely 

been studied scientifically (Castleman, 1997; Halberstein, 2005). 

 

In spite of the great progress in modern Western medicine, plants or plant-based 

active substances are still used as a contribution in health care, even in Western 

medicine. It is estimated that an average of 25% of modern medicines originated 

directly or indirectly from medicinal plants (De Smet, 1997), sometimes even 

without the clinician knowing (Castleman, 1997). Reportedly, for anti-cancer and 

anti-infective drugs, this proportion is at over 60% (Cragg et al., 1997). Herbal 

products are widely distributed and are sold in pharmacies as well as supermarkets. 

Theses herbal products contain phytochemicals and other chemical compounds 

found in medical plants that are used to produce specific concentrations of 

pharmacological active compounds (Castleman, 1997). 

 

Since the Cissampelos capensis rhizome extract (CRE) is used by traditional 

healers to treat male reproductive problems and no studies are available that 

investigated the effects of CRE on human spermatozoa, this study is the first one 

throwing some light on the effects of this extract on ejaculated human spermatozoa 

in vitro.  
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This plant is the only endemic species in its family found in South Africa that 

grows during the winter season. The medicinal value of the rhizomes is mainly 

attributed to their alkaloid content, thus it is available throughout the year. While 

the leaves contain mainly three alkaloids namely bulbocapnine, dicentrine and 

salutaridine with anti-microbial, anti-bacterial, anti-fungal and anti-inflammatory 

activity, respectively, the rhizomes contain mainly bisbenzyltetrahydroisoquinoline 

alkaloids, with cissacapine, 12-O-methylcurine and cycleanine as main alkaloids 

with average alkaloid yields of 15.3%, 35.9% and 46.3%, respectively (De Wet et 

al., 2011). 

 

4.1 Determination of suitable in vitro incubation concentrations with an 

aqueous extract of Cissampelos capensis rhizomes extract 

4.1.1 Incubation concentrations of CRE for spermatozoa 

The concentrations of the plant extract used in this study were deduced by the 

assumption that an average male weighs 80 kg. The traditional healers ''prescribe'' 

the use of a handful of rhizomes to be used for making the concoction per day. 

From there, a standard 'normal' concentration of 50 µg/ml C. capensis rhizome 

extract (CRE) was calculated and a stock solution containing 2000 µg/ml CRE in 

HTF-BSA was prepared and mixed with sperm samples in HTF-BSA to obtain 

final concentrations 0.05, 0.5, 5, 50, 200 µg/ml CRE. HTF-BSA without the 

extract served as a control. These concentrations were used throughout the 

experiment and was deemed non-toxic and safe as the in vivo concentrations 

would be assumed to be much higher as the calculated prescribed amount per man 

per day used is 3.41 g of the extract. 

 

For the second part of this study, CRE was fractioned with methanol (F1= 0% 

MeOH, F2= 30% MeOH, F3= 60% MeOH and F4= 100% MeOH) in combination 

with 20 µg/ml progesterone to induce acrosome reaction or without this hormone, 

applying the same final concentrations of 0.05, 0.5, 5, 50, 200 µg/ml CRE. HTF-

BSA without the extract served as a control 
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4.2 Effects of CRE on functional parameters of spermatozoa 

4.2.1 Effects of CRE on spermatozoa viability 

In the current study, the assessment of viability of the spermatozoa was used as 

parameter to investigate possible cytotoxic effects of CRE on human spermatozoa 

as this parameter has not been tested before. No direct cytotoxic effect at any 

concentrations used was found when comparing each to the control. Thus, the 

compounds in the extract did not show any cytotoxic effect on spermatozoa with 

in vitro. 

 

4.2.2 Effect of CRE on sperm motility and hyperactivation 

As sperm motility plays an important role in fertilization and is a good predictive 

parameter for pregnancy (Coetzee et al., 1989; Shulman et al., 1998), low sperm 

motility may reduce the chances of sperm fertilizing the ovum and high sperm 

motility increases that probability (Henkel et al., 2005b). 

 

In the current study, treatment of sperm with CRE showed no effect on sperm total 

and progressive motility. However, a significant and dose-dependent increase in 

sperm hyperactivation was shown and indicated by all relevant parameters that 

characterize hyperactivation (decreased VAP, VSL and LIN; increased BCF) 

before and after fractionation. Thus, CRE caused a change in the motility pattern, 

at least in a small percentage of spermatozoa. Hyperactivation is one of the 

physiological changes that are associated with the process of capacitation, which 

can be regarded as a preparatory step of the male germ cell for acrosome reaction 

(Chang, 1951; Austin, 1952). The question arises whether this stimulation of 

hyperactivation is caused directly by CRE or if this event is mediated perhaps by 

reactive oxygen species (ROS) as ROS physiologically function as trigger of 

capacitation and hyperactivation (Aitken and West, 1990; De Lamirande et al., 

1997; Aitken et al., 1998; Aitken and De Iuliis, 2010). 
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After fractionation of CRE and incubation of spermatozoa with or without the 

addition of P4 to induce acrosome reaction, hyperactivation still showed an 

increase. Although the F2-, F3- and F4-fractions revealed a significant increase, 

the F1-fraction produced even higher levels and significance. However, when 

observing the results, as hyperactivation increased so too has the effect of CRE on 

ROS with no significant correlation. 

 

4.2.3 Effect of CRE on sperm ROS production 

As reported by O’Flaherty et al. (2006a), low levels of ROS are essential for 

normal sperm function in terms of the initiation of capacitation and acrosome 

reaction as well as the relevant triggering and modulation of protein tyrosine 

phosphorylation involved in these events (O’Flaherty et al., 2006b). On the other 

hand, elevated ROS levels have repeatedly been associated with male infertility 

(Aitken et al., 1998; Agarwal et al., 2003; Henkel et al., 2004) including loss of 

sperm motility and DNA damage. In the current study, dihydroethidium (DHE) 

was used to detect ROS in terms of intercellular superoxide as in previous 

investigations it has been shown to be a good detection system (Henkel et al., 

2005a; de Lamirande and O'Flaherty, 2008; Mupfiga et al., 2013) and frequently 

used for the highly sensitive detection of superoxide in mitochondria of living 

cells (Whiteman et al., 2009). 

 

In the present study, intercellular superoxide concentrations increased after 

incubation of sperm with both the crude extract of CRE and fractionated extract 

in a dose-dependent manner. Although, all fractions showed significantly 

increased values, the F1-fraction produced the highest significant increase in 

ROS. This effect can be attributed to the alkaloid content of the C. capensis 

rhizomes. Alkaloids can exhibit various effects on cells ranging from suppressing 

intracellular ROS-production (Zhao et al., 2012), antiproliferative effects 

(Slunska et al., 2010), loss of mitochondrial membrane potential with intracellular 

ROS imbalance (Chiu et al., 2012) to antioxidative effects (Jung et al., 2009). For 

ergot alkaloids, a significant inhibitory effect on calcium ionophore-induced 
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acrosome reaction was shown in vivo on stallion sperm (Fayrer-Hosken et al., 

2012). In this study, seeing that superoxide (·O2
-
) was detected and is triggered by 

CRE, one can deduce that CRE is stimulating intracellular ·O2
-
 production, which 

subsequently triggered capacitation and caused sperm DNA fragmentation 

(Henkel et.al., 2005a). Therefore, even for the increase in sperm hyperactivation 

and all the relative changes in various motility parameters, this intercellular 

increase·O2
- 
might be responsible. Nevertheless, in the light of the relatively low 

correlation coefficient between the percentage of ROS-positive spermatozoa and 

hyperactivation, other factors might have either contributed to the induction of 

hyperactivation, or prevented a more distinct relationship. In the light of both, the 

crude and fractionated extract comprise of several compounds, this idea has to be 

investigated further. 

 

4.2.4 Effect of CRE on sperm capacitation and acrosome reaction 

Capacitation is essential for normal acrosome reaction to occur (Yanagimachi, 

1981, 1994) as only acrosome-reacted spermatozoa can penetrate the zona 

pellucida (Koehler et al., 1982). The percentage of acrosome-reacted sperm as 

well as the ability of sperm to induce acrosome reaction (inducibility) can also be 

directly related to the fertility rates in males as a positive predictor in diagnostic 

and therapeutic techniques for ART (Cummins et al., 1991; Henkel et al., 1993). 

 

In the current study, the percentage of capacitated spermatozoa and capacitated 

acrosome-reacted cells (ANOVA trend analysis: P=0.0030) as determined by the 

CTC stain showed significant and dose-dependent increases (ANOVA trend 

analysis: P<0.0001) toward higher concentrations of CRE. On the other hand, the 

percentage of live-reacted spermatozoa determined by triple stain did not reveal a 

significant result (P=0.850). This apparent discrepancy would have to be 

explained by possible methodological differences in the detection of acrosome 

reaction. It would also be supported by the fact that although there was a marginal 

decline after incubation with 5µg/ml CRE, no trend could be established.  
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On the other hand, one could assume that the stimulus by CRE via an increased 

production of ·O2
- 
would not be sufficient to induce acrosome reaction and may 

need additional stimulation. This assumption could be supported by the fact that 

bisbenzyltetrahydroisoquinoline alkaloids including 12-O-methylcurine and 

cycleanine have been described as potent Ca-antagonists (Martinez et al., 1998; 

Guedes et al., 2002), thus inhibiting a Ca
2+

- influx, which has been described as a 

trigger of acrosome reaction (Storey et al., 1992). Thus, the alkaloids might have 

stimulated capacitation but inhibited the initiation of acrosome reaction. This 

inhibition of calcium channels could be the reason why acrosome reaction did not 

or only marginally stimulated although capacitation was significantly triggered in 

the present study. Yet, by the inclusion of P4 to induce acrosome reaction showed 

that this trigger is still necessary, and can then lead to acrosome reaction. 

Although an additional stimulation is required when incubated with CRE other 

mechanisms of action by the alkaloids may also play a role in the induction of 

acrosome reaction. 

 

In a recent report by Haginaka et al. (2013) it has been shown that biscoclaurine 

alkaloids including cycleanine, which is a compound of the C. capensis rhizomes, 

interacts with the middle domain of heat shock protein 90α (HSP90α) suggesting 

inhibitory functions of these alkaloids on this highly conserved molecular 

chaperone protein. HSP90α is an abundant cellular protein, which is induced 

under stress conditions (Richter and Buchner, 2001; Picard, 2002). With regard to 

the triggering of capacitation and initiation of acrosome reaction, one also has to 

consider that HSP90 plays a significant role in the signal transduction pathways 

of a variety of cellular processes including spermatogenesis (Gruppi et al., 1991). 

With regard to capacitation and acrosome reaction of spermatozoa, Hou et al. 

(2008) showed that geldonamycin a specific HSP90 inhibitor, promoted NO 

production and thereby acrosome reaction in the boar. 
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4.2.5 Effect of CRE on sperm mitochondrial membrane potential (Δψm), 

sperm DNA-fragmentation and Annexin V-binding 

The current research on CRE has no prior results on sperm functions. It is 

therefore important to analyze the cytotoxic or possible DNA damage effect that it 

may have on spermatozoa. Thus, advanced techniques such as Δψm and Annexin 

V-binding were employed as early apoptotic markers relating to the membrane of 

the cell (Vermes et al., 1995; Kroemer et al.,1997) and DNA-fragmentation 

(TUNEL assay) a late apoptotic marker. 

 

In this study, no effect on Annexin V-binding or Δψm was observed. However, an 

increase in DNA-fragmentation could be found. This may indicate that the DNA 

damage may be caused by the increase in intercellular ROS stimulated by CRE. 

Nevertheless, other apoptotic pathways such as caspase 3/6, Bax, Bcl, for 

example, still need to be investigated.  

 

In addition, it is known by research conducted in the past that healthy human 

spermatozoa are incapable of actively initiating apoptosis (Lachaud et al., 2004; 

Aitken and Koppers, 2011) as at the spermatid stage the Sertoli cells would have 

aborted damaged cells before their release. Nevertheless, some of the male germ 

cells that were earmarked for apoptosis escape the elimination process (Sakkas et 

al., 1999). This hypothesis has been called 'abortive apoptosis'. On the other hand, 

there are also topological hinderance as the mitochondria, which are essential to 

apoptosis, are located in the mid-piece of the flagellum and are only connected 

with the sperm head via the very tiny neck-piece (Aitken and Koppers, 2011). 

Apparently, this does not prevent sperm from activating key enzymes such as 

caspase 3/7 for apoptosis (Mupfiga et al., 2013). 
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4.3 Conclusion and further outlook 

In conclusion, this investigation on the effect of Cissampelos capensis rhizome 

extract shed light on the potential action of the alkaloid compounds of the extract 

on sperm function in vitro. It does not directly improve male fertility/sperm 

functions in vitro in terms of a possible treatment, but rather modulates sperm 

functional parameters as seen in vitro. Therefore, from this study, no direct 

conclusion on the in vivo effect of CRE in terms of a rational treatment of male 

fertility problems can be made. The medicinal effect of treatment with C. capensis 

possibly rather focuses on erectile dysfunction such as the extract of the bark of 

the yombi tree (Pausinystalia yohimbi), which is used to increase sexual arousal 

and dysfunction mainly due to its alkaloid Yohimbine as the active compound. 

Considering that the alkaloid content of the C. capensis rhizomes has also been 

shown to have antibacterial effects (Meyer et al., 2008), it might also be possible 

that CRE is useful in the treatment of male genital tract infections. 

 

With regard to using the extract as a treatment for male reproductive problems, 

further research is necessary to establish how this extract works. Also, the active 

compounds still need to be identified and characterized to understand the 

mechanism of action. Further studies may also elucidate the direct action of these 

alkaloids on sperm function as well as the therapeutic use and safety of this herbal 

extract for the treatment of male reproductive functions. 
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