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ABSTRACT 

New therapeutic strategies are needed for a diverse array of poorly understood neurological impairments. 

These include neurodegenerative disorders such as Parkinson’s disease and Alzheimer’s disease, and the 

psychiatric disorders such as depression, anxiety and drug dependence. Popular neuropharmacotherapies 

have focused on dopamine (DA), serotonin (5HT), γ-aminobutric acid (GABA) and glutamate systems 

(Jupp & Lawrence, 2010). However recent research points to the sigma receptor (σR) as a possible 

neuromodulatory system. Due to its multi-receptor action, the σR can trigger several significant biological 

pathways. This indicates its ideal potential as a drug target to effectively minimise drug dosage and 

potential side effects.  

Currently there are a limited number of σR ligands available and few possess the selectivity to 

significantly show σR’s role in neurological processes. Polycyclic amines have shown notable sigma 

activity and provide an advantageous scaffold for drug design that can improve pharmacodynamic and 

pharmacokinetic properties (Banister et al., 2010; Geldenhuys et al., 2005). Aryl-heterocycle amine 

groups were also shown to improve σR activity (Piergentili et al., 2009). 

A series of pentacycloundecane compounds were synthesised which aimed at evaluating the inclusion of a 

amine containing aryl group in the design compared to previous pentacycloundecane structures containing 

only two lipophilic regions. These synthesises followed mostly bimolecular nucleophilic substitution and 

nucleophilic addition mechanisms. From this study we were able to gain a better understanding into 

synthesises involving pentacycloundecanes and devised new general methods for expanding consecutive 

series of these promising structures. Their affinity for the σ1R was evaluated using the radioligand [
3
H] 

(+)-pentazocine on Sprague-Dawley rat liver membranes. The difference between the oxa-and aza 

derivatives and piperidine versus piperazine moieties were compared. 

The compound N-[2-(4-benzylpiperazin-1-yl) ethyl]-4-azahexacyclo [5.4.1.0
2,6

.0
3,1

0.0
5,9

.0
8,11

] dodecan-3-

ol had the best affinity and suggests that the aza compounds are more favourable for σ1R binding than 

their oxa counterparts. The addition of an amine containing aryl group remained inconclusive as these 

compounds fell within a similar range of affinities compared to other structures with two lipophilic 

binding regions. The synthesised compounds do not possess affinity for the σ1R to the extent that most 

commercially available σ1R ligands do. 

Selectivity for the different σRs and affinity for other receptors need to be further explored to fully 

evaluate the potential neuroprotective effects of these structures. Additional biological activity assays are 

also necessary to determine their pharmacological properties and blood brain permeability.
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I. INTRODUCTION & AIMS OF THESIS 

1. Introduction 

Polycyclic amines have shown to be valuable lead compounds in the development of central nervous 

system (CNS) acting drugs (Geldenhuys et al., 2005). These polycyclic compounds possess their own 

neuromodulatory activity on important receptor classes which have been implicated in CNS disease states 

such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, schizophrenia, stroke and disease 

states as intricate as drug addiction (Nguyen et al., 1996; Oliver et al., 1991; van der Schyf et al., 1986; 

Geldenhuys et al., 2005). They act as NMDA receptor antagonists (Geldenhuys et al., 2003), are able to 

spontaneously increase dopamine release (Geldenhuys et al., 2009) and block L-type voltage gated 

calcium channels (van der Schyf et al., 1986). They also have the ability to greatly improve the 

lipophilicity of their conjugates, which is helpful in increasing blood brain barrier permeability leading to 

increased concentration of CNS acting drugs in the brain, decreasing dosage and ultimately minimising 

peripheral side effects (Brookes et al., 1992; Zah et al., 2003). 

Several published pentacycloundecane series have shown that both pentacycloundecane containing 

compounds and the amantadine structure may present with sigma receptor activity (Kassiou et al., 1996; 

Marrazzo et al., 2001; Kornhuber et al., 1993). The sigma receptor itself has been suggested as a drug 

target for CNS conditions such as drug addiction (Maurice et al., 2002), cognition (van Waarde et al., 

2011), pain (Cendán et al., 2005) and depression (Urani et al, 2001). It also shows promise as a future 

cancer target (Crawford & Bowen, 2002; Wei et al., 2006).  

The sigma receptor, which was originally thought to be an opioid receptor, is divided into two subtypes; 

the sigma 1 specific receptor (σ1R) and the sigma 2 specific receptor (σ2R), which are now classified as 

distinct receptors (Martin et al., 1976; Quiron et al., 1987) and do not share homology with any other 

known mammalian enzyme or receptor (Hellewell & Bowen, 1990; Quirion et al., 1992; Hanner et al., 

1996). The σ1R has been cloned and is implicated in intracellular signalling, synaptic transmission and is 

able to mediate effects on calcium conductance, NMDA activity, potassium channel activity, protein 

kinases and  modulation of inositol phosphatases (Aydar et al., 2002; Hayashi & Su, 2007). The σ2R has 

been implicated in calcium channel modulation, apoptosis and motor activity but with a lack of truly 

specific σ2R ligands available its exact mechanism is unknown. Both receptors are located on the 

endoplasmic reticulum and it is likely that the σ1R mediates its response via translocation from the 

endoplasmic reticulum to other cellular compartments. The σ2R is richly expressed in lipid rafts and it is 

these lipid rafts that are probably responsible for σ2R activity on cellular membranes (Hanner et al., 1996; 

Su et al., 2009). However, the exact mechanism behind sigma receptor action remains poorly understood 
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and there is a limited amount of sigma ligands with desirable specificity available (Jupp et al., 2010). 

There is thus a need for novel sigma receptor ligands showing enhanced affinity and selectivity to better 

establish the role of the sigma receptor and to validate its potential as a drug target for new therapeutic 

agents involving brain and behaviour disorders. 

2. Aims of thesis 

The aims of the current study are as follows: 

1. Investigate the pharmacophore of the sigma receptor using extensive literature on current 

sigma receptor ligands to examine trends in sigma receptor binding. 

Glennon, Ablordeppey, Younes, Cobos and Zampieri have done extensive studies to investigate the 

pharmacophore of the sigma receptor (Ablordeppey et al., 1998, 2000, 2002; Glennon et al., 1994, 

Glennon, 2005; Younes et al., 2000; Cobos et al., 2008; Zampieri et al., 2009). Their efforts have 

provided a basic template for sigma receptor binding and the diagram shown in figure 1 illustrates the 

requirements for σ1R receptor specific binding. This template suggests that binding is dependent on 

compounds presenting two lipophilic moieties joined by a basic amine that can be contained as a 

secondary or tertiary amine and can be present in a cyclic structure. An interesting challenge present 

in studies undertaken to synthesise new sigma receptor ligands is that the sigma receptor 

pharmacophore is relatively unspecific to various compounds and a substantial number of compounds 

with diverse applications bind to the sigma receptor proving its structural requirements are accessible. 

This is a unique limitation in drug design when considering ligand specificity in designing 

compounds that will strictly bind to the sigma receptor alone (Chapter II). 

 

Figure 1. Illustration of optimum binding for σR affinity (Adapted and redrawn from 

phramacaphores proposed by Glennon et al., 1994, 2005) 

The compounds investigated by Ablordeppey, Cobos, and Zampieri show that the addition of an aryl 

piperazine benzyl structure is advantageous to sigma receptor binding. It was therefore decided that 

the limited amount of polycyclic amines evaluated for sigma receptor activity provided the 

opportunity to develop a series that would bind to the basic pharmacophore while expanding into the 
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use of a similar aryl amine benzyl group. Table 1a shows two such compounds and their respective 

affinities. (Please see extended Table 1b in Chapter II for full list of compounds evaluated). 

Table 1a: Compounds showing sigma receptor activity 

2° binding 

site 

2° linking 

chain 

Basic 

Amine 
1° linking chain 

1° binding 

site 
Binding Affinity 

A BN
 

Ki (nM) 

σR σ1R σ2R 

 
-CH2- N

 
-CH2(CH2)3CH2- 

 
 0.4 - 

 
-CH2- NN

 
-CH2(CH2)3CH2- 

 
 0.6 2.8 

 

2. Design novel pentacycloundecane derivatives based on the sigma pharmacophore that could 

show improved activity or provide better insight into receptor binding and point to future 

potential specific binding areas valuable to the current sigma receptor pharmacophore. 

We proposed the following compounds as potential sigma receptor binding substrates: 

Table 2: Idealised series of polycyclic structures with sigma receptor binding potential.              

A

N
R =

Series A Series B Series C Series D

(  )m

ON
R

N

OH

R

O
NHR

N O

O

R

Series E

(  )n

NH

R

 

 n m A 

1* 1 1, 2, 3 N/C 

2* 2 1, 2, 3 N/C 

3* 3 1,2,3 N/C 
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The basic skeleton of the proposed structures stay within the guidelines initially proposed by Glennon 

et al., (1994, 2005) while including a benzyl piperazine or benzyl piperidine group that should 

provide a possible shift from the amine contained in the cage structure. This inclusion should help 

expand on our current knowledge of the sigma receptor pharmacophore (Chapter III). 

3. Develop routes of synthesises and synthesise the selected series of compounds. 

Investigation into the synthesis of pentacycloundecane, benzyl piperazine and benzyl piperidine 

offers the opportunity for novel synthetic pathways that can expand not only on the potential series 

for sigma receptor binding, but other targeted neurodegeneration receptors such as; the NMDA 

receptors, dopamine receptors and GABA channels. Popular synthesis routes involving amine 

containing aryl groups involve nucleophilic addition and synthetic routes of pentacycloundecane 

derivatives often utilise nucleophilic addition. This study provides the option of expanding on 

synthetic strategies for polycyclic and amine containing structure conjugation (Chapter III). 

4. Evaluate the synthesised novel ligands for sigma receptor affinity. 

Standardised sigma receptor binding is evaluated by radioligand markers. Dual sigma receptor 

binding is evaluated by [
3
H] DTG, a dual σ1R and σ2R ligand with similar affinity for both receptors. 

Compound affinity for σ1R binding is evaluated with σ1R specific ligand [
3
H] (+)-pentazocine. Many 

research groups are actively pursuing specific σ2R radioligands, but none are commercially available 

at present. Instead σ1R antagonist, dextrallorphan is used to block σ1Rs and then [
3
H] DTG is used to 

evaluate the number of unoccupied σ2R receptors. For this study σ1R radioligand binding with [
3
H] 

(+)-pentazocine should be sufficient to evaluate the proposed structures’ prospects as future sigma 

receptor ligands and validate the inclusion of pentacycloundecane moieties for improving sigma 

receptor binding (Chapter IV). 

3. Conclusion 

Several groups are pursuing the synthesis of more potent and specific sigma receptor ligands from 

previous “hit” compounds. We however, realise the lack of significant sigma ligands as the foundation to 

build on diversified compounds to possibly obtain new hit molecules that can be optimised at a later 

stage. The results of this study will help expand literature of the sigma receptor ligands and improve our 

ideas of how to approach this enigmatic receptor. 
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II. LITERATURE REVIEW 

1. Sigma receptor  

The sigma receptor (σR) and confusion surrounding its function and properties have come to be known as 

"The Sigma Enigma." Although the exact mechanism and biological pathways that the sigma receptor 

may be involved in are currently still unknown, the receptor has been suggested as a drug target for 

several diseases involved in brain and behaviour disorders and peripheral disease states such as cancer 

and decreasing HIV replication in drug abusers (Chavkin, 1990; Jupp & Lawrence, 2010). 

1.1 History 

The σR was originally discovered in 1976, but mistakenly classified. N-allylnormetazocine (SKF-10,047) 

binding to the receptor was thought to be antagonized by the universal opioid antagonist naloxone. It was 

therefore mislabelled as an opioid receptor. Martin et al. (1976) proposed that this sigma/opioid receptor 

provided the psychomimetic effects seen with the benzmorphans, N-allylnormetazocine and its analogues. 

Su (1982) demonstrated that the sigma/opioid receptor was able to identify a binding site for the receptor 

ligand SKF-10,047, however naloxone exhibits no affinity for this receptor. In reality this sigma/opioid 

receptor of Su (1982) was not the sigma/opioid receptor proposed by Martin et al. (1976) as the latter is in 

fact sensitive to naloxone. Later the mistaken sigma/opioid receptor of Su (1982) was renamed by Martin 

to sigma receptor to differentiate it from the opioid class (Su et al., 1988). Unfortunately the σR was still 

misinterpreted, this time confounded with the phencyclidine (PCP) receptor which acts on the N-methyl-

d-aspartic acid (NMDA) calcium regulated channel due to sigma ligands used at the time possessing high 

PCP binding affinities (Parsons et al., 1999). This was later rectified with more specific σR ligands and 

σRs were reclassified as unique entities unlike any other neurotransmitter or hormone binding receptor 

(Quirion et al., 1987).   

Two subclasses of σR’s have been classified, namely the sigma 1 receptor (σ1R) and the sigma 2 receptor 

(σ2R), based on pharmacological profile, function and molecular size (Hellewell & Bowen, 1990; Quirion 

et al., 1992). Both receptor subtypes show high to moderate affinity for most neuroleptics with especially 

haloperidol (see Table 3) showing high affinity for both subtypes. The (+)-benzmorphans such as (+)-

pentazocine and (+)-SKF 10,047 show greater affinity for the σ1R subclass while (-)-benzmorphans 

generally do not exhibit selectivity between the two subtypes. Photo affinity labelling showed a molecular 

weight of 25-30 kDa for the σ1R and 18-21 kDa for σ2R (Hellewell & Bowen 1990; Hellewell et al., 

1994).  
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The σ1R has been cloned in humans, mice, rats and guinea pigs and is a novel protein with 90% species 

homology. It is unrelated to any other known receptor and has a homology with the D8,7-isomerase 

enzyme of fungal sterol biosynthesis (Hanner et al., 1996). This and the fact that its suggested natural 

ligands are neurosteroids, specifically progesterone, pregnelone sulphate and dehydroepiandrostrerone 

(DHEAS) were compelling to point to a role in the neurosteroid synthesis pathway (Moebius et al., 1997). 

This has later been discredited due to no homology with mammalian sterol synthesis enzymes or any 

other mammalian enzyme or receptor (Maurice et al., 2002). 

Both receptors are found in central and peripheral tissues. They are expressed highly in the liver and 

moderately in the intestines, kidney, white pulp of the spleen, adrenal gland, brain, placenta, the lung and 

reproductive organs (Seth et al., 1998; Seth et al. 2001; Zamanillo et al., 2000; Wolfe & De Souza, 1993; 

Vilner et al., 1995). Both σRs have been found in very high density in tumour cells obtained from various 

tissues. These include neuroblastomas, glioma, melanoma, and carcinoma cell lines of breast, prostate and 

lung tissue (Vilner et al., 1995). In the brain σR distribution is wide and discrete (Vilner et al., 1995; Seth 

et al., 2001; Zamanillo et al., 2000). Its highest levels are found in hippocampal and limbic areas (Walker 

et al., 1990; Debonnel & De Montigny, 1996). 

1.2 Function  

The σR is found on the endoplasmic reticulum (ER), yet its action is elicited through cellular membrane 

ion channel responses. G-protein coupling and cytosolic factors have been rejected as the mechanism by 

which the sigma receptor is able to provide a considerable response away from its location. Recent 

research speculates that σR agonists in high concentrations cause translocation of the receptor to sub-

plasma membrane proteins (Su et al., 2009; see figure 2 part A). What is particularly compelling is the 

σR’s modulation ability, which helps explain why σRs are usually devoid of any effect under control 

conditions but have considerable effects when normal homeostasis is disturbed (Van Waarde et al., 2011). 

The σ1R acts via protein-protein interactions and modulates the activity of ion channels, G-coupled 

receptors and signalling molecules such as inositol phosphates, protein kinases and calcium (Aydar et al., 

2002; Hayashi & Su, 2007). As mentioned, this is thought to be mediated via chaperone-like 

characteristics with the σR translocating to different cellular compartments (Hayashi & Su, 2007). It is 

also associated with a number of proteins such as ankyrin B, heat shock conjugate protein 70 (hsp70), and 

glucose-regulated protein (GRP78/BiP) (Hayashi & Su 2001). This suggests that σ1R’s function more 

like growth factor receptors or receptor tyrosine kinases than classic neurotransmitter receptors 

(Matsumoto et al., 2003). The σ2R is enriched in lipid rafts and seems to be involved in calcium signalling 

via sphingolipid products and cell cycle function (Crawford et al., 2002). 
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Dual ligands with σ1R/σ2R activity and σ1R specific ligands are available but currently commercially 

available σ2R ligands show cross reactivity on other receptor systems. Our knowledge surrounding the σR 

is therefore mostly σ1R specific with little information on the σ2R (Bowen, 2000; Maurice et al, 2002; 

Maurice & Su 2009; Matsumoto et al., 2003, 2008). 

ION CHANNEL ACTIVITY 

Intracellularly, σRs potentiate calcium release from the ER via inositol triphosphate (IP3) action and 

specifically type 3 IP3 receptors that regulate calcium signalling from the ER to mitochondria (figure 2 

part B). They do not seem to have this effect on type 1 IP3 receptors so they should not affect regular ER 

networks (Hayashi & Su 2007). The σR ligands inhibit all calcium channels on the plasma membrane 

including N-, L-, P/Q- and R-types. In previous studies, σ1R agonists potentiated NMDA induced calcium 

release and this action was blocked by σ1R antagonists. Ischemic induced [Ca
2+

]i release was blocked by 

σ1R agonists and this was reversed by σ1R antagonists (Katnik et al., 2006). The σ1R agonists further 

blocked acid sensing ion channels that are activated by H
+
 during ischemia and resulted in increased 

[Ca
2+

] release. The σ2R is not implicated in this process (Herrera et al, 2008). 

 

Figure 2. Sigma 1 receptor’s function in cell signalling. Part A: The σ1R is able to move from the 

endoplasmic reticulum (ER) to ion channels in the cellular membrane. Part B: The σ1R is associated with 

ankyrin and the IP3 receptor. The σ1R agonists cause translocation of ankyrin and the σ1R that causes an 
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increase of calcium out of the ER. The σ1R antagonists cause dissociation of the σ1R from ankyrin and 

even though it does not decrease calcium from the ER, it does impede the increase of calcium by σR 

agonist from the ER. Adapted and redrawn from van Waarde et al., 2011. 

The σ1R agonists inhibited K
+
 channels without G-coupled protein participation or cytosolic second 

messengers (Soriani et al., 1999; Wilke et al., 1999). It was shown that σ1R agonists inhibit persistent Na
+
 

currents probably via σ1R-Gi-protein-protein kinase signalling pathways in cortical neurons (Cheng et al., 

2008). 

Previous research has also shown that the σ1R receptor is able to inhibit volume-regulated Cl
-
 channels, 

required for the regulation of electrical activity, cell volume, intracellular pH, immunological responses, 

cell proliferation and differentiation; and that σ1R agonists further activate the channel inhibiting activity 

of the σ1R (Renaudo et al., 2007). 

In addition, the σR plays a significant role in NMDA signalling. Initially, it was thought that NMDA-

induced neuronal firing in CA3 hippocampal neurons was potentiated by σ1R agonists and was then 

blocked by σ1R antagonists (Monnet et al., 1990). Later research pointed to σ1R’s and their associated 

ligands regulating NMDA receptors and long term potentiation (LTP), especially important in learning 

and memory by blocking the small conductance calcium  activated channel (SK channel) (Chen et al., 

2006). However more recent research has shown that the slow developing LTP was independent of the 

NMDA receptor but was dependent on L-type voltage-gated calcium  channels and the σ1R. More 

research is however necessary to understand the σR-Ca
2+

 response on the NMDA receptor (Sabeti et al., 

2007). 

NEUROTRANSMITTER MODULATION 

The σR ligands show modulation of synthesis and release of monaminergic neurotransmitters especially 

dopamine (DA), serotonin (5HT) and to a lesser extent norepinephrine (NE) (Booth & Baldessarini, 1991; 

Patrick et al., 1993; Massamiri & Duckles, 1991), acetylcholine (Matsuno et al., 1995), NMDA-type 

glutamate receptor electrophysiology (Monnet et al., 1990), NMDA-stimulated neurotransmitter release 

(Gonzalez-Alvear & Werling, 1995), muscarinic receptor-stimulated phosphoinositide turnover  and 

GABA (Mtchedlishvili & Kapur, 2003). Especially important in drug addiction is the σ1R effect on the 

DA mesocorticolimbic pathway. The nigrostriatal DA pathway is also affected which has application to 

neurodegeneration as shown in figure 3.  

Unfortunately marked inconsistencies in research due to the different selectivity of drugs used, different 

administration procedures and a lack of high potency receptor specific σ2R ligands have led to variable 

results. 

 

 

 

 



CHAPTER II: LITERATURE REVIEW 

9 

 

 

Figure 3. Dopaminergic pathways in the brain. The mesocorticolimbic pathway shown in red projects 

from the ventral tegmental area (VTA) to the prefrontal cortex (PFC) and passes through the amygdala 

(Amyg), nucleus accumbens (Nacc) and orbitofrontal cortex (OFC). The nigrostriatal pathway shown in 

dark blue projects from the substantia nigra to the striatum. 

Research showed that σ1R's do have a significant effect on DA electric activity probably via opposing 

actions on nigrostriatal and mesolimbic DA pathways, both important pathways involved in drug 

addiction and neurodegeneration. Systemic administration of a σ1R agonist reduced DA in the striatum 

(Kanzaki et al., 1992) while in vivo microdialysis showed that σ1R agonists caused an increase of DA 

release (Patrick et al., 1993; Guldelsky 1995). The firing rate of DA neurons were increased by some σ1R 

agonists ((+)-pentazocine and (+)-SKF-10,047) and decreased by other agonists (DTG or (+)-3-PPP), 

putatively acting as inverse agonists (Clark et al 1985, French & Cici, 1990; Steinfels & Tam, 1989). 

Many σR agonists had no effect on the number of spontaneous actions of DA neurons in nigrostriatal or 

mesolimbic pathways, but SA4503 decreased the number of nigrostriatal active neurons and increased the 

number of mesolimbic active neurons (Minabe et al., 1999). More research is necessary to understand σR 

activity on dopaminergic systems but compelling evidence points to the theory that these DA changes 

could be directly or indirectly NMDA regulated. Research showed a slight increase in NMDA-induced 

neuronal activation of dopaminergic neurons in the nigrostriatal and mesolimbic regions after σ1R agonist 

administration. Administration of igmesine, (+)-pentazocine or 1,3-di-o-tolylguanadine (DTG) (σR 

agonists) produced a significant increase of NMDA-induced neuronal activation in the Nacc. These drugs 

also increased the suppressant effect of DA on NMDA and kainite (KA)-induced activation of accumbens 

neurons (Gronier & Debonnel, 1999). See Table 3, for σR ligands and their properties. 
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ROLE IN CELL SURVIVAL AND CELL DEATH 

Both σ1 and σ2R’s are involved in cell survival but seem to have opposing effects. To date the consensus 

is that σ1R agonist promote cell survival (Yang et al., 2007; Tchedre & Yorio, 2008), σ1R antagonist lead 

to cell death (Yang et al. 2007) and that σ2R agonists promote apoptosis (Wei et al., 2006). The exact 

mechanisms behind these are still under investigation. 

1.3 Pharmacological application 

The σR has been implicated as a useful target in a diverse range of physiological disease such as the 

following: 

COGNITION 

Systemic administration of σ1R agonists have anti-amnesic efficacy in several animal models of cognitive 

impairment (both pharmacological and pathological). These include; 

a.) Cholinergic deficits (either induced by muscarinic antagonists or by lesions of the forebrain or the 

nucleus basalis resulting in a selective loss of cholinergic neurons), 

b.) Pathology induced by direct administration of β-amyloid peptide to rodent CNS, an animal model 

of Alzheimer’s disease, 

c.) Age-induced losses of memory function, both in normal mice and senescent-accelerated mice 

(SAM), 

d.) Neurodegeneration caused by exposure of animals to neurotoxic models such as carbon monoxide 

gas (results in neuronal death of CA1 area of the hippocampus), or to trimethyltin (damage to 

selective neural populations of the limbic system), 

e.) Prenatal stress (restraint, or exposure to cocaine) and, 

f.) Glutamergic, serotonergic or calcium channel deficits induced by various drugs (van Waarde et 

al., 2011). 

The selective 5HT reuptake inhibitor (SSRI) fluvoxamine which possesses σ1R activity in contrast to the 

SSRI paroxetine which has no σ1R activity has been able to improve cognitive impairments in animal 

models of schizophrenia (Hashimoto et al., 2007). Fluvoxamine, but not paroxetine, was also shown to 

improve conditions such as lack of concentration, poor memory, slowness of mind, and poor executive 

function in a patient with schizophrenia (Iyo et al., 2008). Fluvoxamine binds to the σ1R 50 times better 

than paroxetine does (Narita et al., 1996) and high occupancy of the σ1R is observed after a single dose of 

200 mg fluvoxamine (Ishikawa et al., 2007). This suggests that σ1R agonists may be candidates for 

treating cognitive impairment in schizophrenia (van Waarde et al., 2011). 
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Donepezil (acetylcholine (Ach) esterase inhibitor) also acts as a σ1R agonist. Normal therapeutic doses of 

donepezil result in considerable σ1R occupancy in the human brain (Ishikawa et al., 2007). The σ1R 

agonists could be valuable in the treatment of Alzheimer’s disease as it has been proven that they are 

capable of alleviating cognitive deficits in animal models of cognitive impairments and provide 

neuroprotection, in in vitro cortical neurons (Marrazzo et al., 2005) and in vivo rodent studies (Meunier et 

al., 2006; Villard et al., 2009) and against amyloid activity (Maurice, 2002). The σ1R agonists further 

powerfully suppress microglial activation (Hall et al., 2009) and may therefore attenuate the 

inflammatory component in neurodegenerative diseases. Another important application to consider for 

σRs is conditions such as retinal neural damage which follow similar pathways to cognitive impairment 

and neurodegeneration (Ola et al., 2001). 

PAIN 

Antagonists of the σR are able to attenuate formalin induced pain, indicating that they are able to decrease 

neuropathic pain (Cendán et al., 2005). The σR was found to participate in pain mediated by the mu, 

kappa and delta receptors. It was also shown that σR agonists’ attenuate opioid analgesia and that 

haloperidol a σR antagonist aids in the analgesic effects of opioids. Down regulation of σRs also 

potentiate opioid analgesia. This shows the existence of a sigma anti-opioid system in the brain (Mei & 

Pasternak, 2002). The exact mechanism behind this modulation of opioid induced pain and neuropathic 

pain still remains unclear. 

DEPRESSION 

The σR also plays a role in depression and research showed that: 

a.) Antagonist potentiate NMDA or cholinergic activity in a variety of amnesia models; 

b.) Some antidepressants possess σR activity (Table 3).  This suggests that the σR might have a role 

in the action of these drugs (Narita et al., 1996); 

c.) Antidepressants such as the SSRI sertraline and the monoamine oxidase inhibitor (MAOI) 

clorgyline selectively potentiated the effect of NMDA in a haloperidol-sensitive manner on 

pyramidal neurons in the CA3 region of the rat dorsal hippocampus, an area largely implicated in 

depression (Bergeron et al., 1993). 

The σR agonists have been demonstrated to be effective in depression animal models such as the forced 

swimming, tail suspension and conditioning fear stress test. These effects were also blocked by σ1R 

antagonists (Urani et al, 2001; Skuza & Rogos, 2002, 2003). 
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HIV AND IMMUNITY 

Cocaine causes enhanced human immunodeficiency virus (HIV) replication and also binds to the σ1R. 

This is of great importance in understanding the mechanism of HIV as clinical studies have shown that 

HIV positive drug abusers experience a more rapidly progressive illness, higher viral loads, increased 

immune suppression and increased cognitive impairment. Opiates, cocaine and methamphetamine 

increase HIV replication and enhance/synergise with HIV proteins to cause glial cell activation, 

neurotoxicity and blood brain barrier breakdown. These findings have been confirmed in vivo using rat 

models, however clinical trials using HIV positive drug users have not been examined as such trials pose 

extreme limitations (Nath, 2010). 

The σ1R’s role in HIV was examined in several studies. Research showed that the increase in HIV 

replication caused by cocaine was indeed blocked by σ1R antagonists (Gekker et al., 2006). It is not clear 

what the σR’s exact involvement in HIV replication is but these results point to a potential new role for 

σR ligands. 

CANCER 

The σR provides an interesting possibility for cancer research. They are richly expressed in some cancer 

cells and they could be useful in combination with radio imaging and chemotherapeutic drugs to 

selectively target cancer cells. Their role in cell growth and cell death could also be utilised. 

The σ2R is currently the main focus in cancer research and has been found to mediate a novel caspase-

independent apoptotic pathway involving ceramide, a proapoptotic molecule, in several breast tumour cell 

lines (Crawford & Bowen, 2002). Haloperidol in high doses was also found to cause cell death in cancer 

cells via the σ2R pathway (Wei et al., 2006). The exact mechanistic difference between σ1R and σ2R in 

cancer cells and novel selective σ2R ligands still need further research to yield conclusive results. 

PSYCHOSTIMULANT ADDICTION 

Recent research has demonstrated that the σR plays an important role in the plasticity underlying 

reinforcing and addictive processes (Maurice et al., 2002). Several of the drug addiction studies focus on 

cocaine and methamphetamine due to their specific binding to σRs. Studies show σR antagonism to 

inhibit addiction behaviour by downstream signalling of dopaminergic neurotransmission in the 

conditioned place preference model, a model used to predict all types of addiction (Romieu et al., 2002). 

This theoretically makes it applicable to any addictive drug even if the drug itself does not have affinity 

for the σR.  
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Studies show that σR antagonists are able to attenuate cocaine induced convulsions, lethality, locomotor 

activity and conditioned place preference (Matsumoto et al., 2001, Romieu 2000, 2002). With regards to 

methamphetamine, studies show that σRs are involved in the stimulant action of methamphetamine. The 

σR antagonists block the development and expression of methamphetamine-induced sensitisation 

(Takahashi et al., 2000; Ujike et al., 1992) and attenuate acute locomotor stimulatory activity, possibly 

via σ1R and σ2R action (Nguyen et al., 2005). Administration of methamphetamine produces an increase 

of σ1R expression in the midbrain of rats (Stefanski et al., 2004). What is particularly promising for the 

σR-methamphetamine relationship is the possible block of neurotoxic effects caused by 

methamphetamine. σ2Rs are implicated in cytotoxic effects and cell death processes and the neurotoxic 

effects of methamphetamine have been attenuated by σR antagonists (Matsumoto et al., 2008). Without 

specific σ2R antagonists the exact mechanism surrounding this attenuation however remains unclear. 

The effects of σR’s on psychostimulant actions are thought to be via the following processes (Matsumoto 

et al., 2003, 2008). See figure 4 for schematic representation:  

a. Direct interference at the receptors, which are localized in key organ systems involved in 

cocaine and methamphetamine action.  

The σRs are located in brain areas associated with drug addiction such as the nucleus 

accumbens (Nacc) and also show importance in the mesocorticolimbic pathway. The σ1R 

but not the σ2R is expressed in the heart and this is of special importance to cocaine 

overdose, which causes extreme effects on the cardiac system. 

b. Modulation of downstream neurotransmitter systems that are involved in the action of 

cocaine and methamphetamine 

The σR has a modulatory effect on DA, 5HT, NE, NMDA and GABA, all of which have 

been shown to be involved in drug addiction. These could account for promising studies 

regarding attenuation of psychostimulant behaviours, but the exact mechanism of these 

processes still remain unclear. 

c. Alteration in gene expressions that are associated with long term consequences of cocaine. 

Studies show that σR antagonists prevent cocaine induced changes in gene expression. 

These and the σR’s involvement in growth factors show that σR’s could be responsible 

for the long term effects of psychostimulants. 

 

 

 

 



CHAPTER II: LITERATURE REVIEW 

14 

 

 

Figure 4. Schematic representation of the mechanism of action of cocaine on the dopaminergic neuron of the 

mesolimbic pathway and the possible involvement of the σ1R. Glutamergic and GABAergic pathways modulate the 

mesocorticolimbic pathway at the ventral tegmental area (VTA) and also influence dopamine (DA) release in the 

nucleus accumbens (Nacc), prefrontal cortex (PFC) and amygdala (Amyg). NMDA and AMPA receptors are 

responsible for the mediation of cocaine-induced long term potentiation (LTP) and long-term depression (LTD). 

Cocaine blocks the dopamine transporter (DAT) and therefore increases DA which effect post synaptic DA receptor 

(D1-3 mainly). These act via g-coupled proteins to increase cyclic adenosine monophosphate (cAMP) or IP3. IP3 

causes mobilisation of intracellular ER calcium pools. cAMP and this increase of cytosolic calcium cause the 

activation of transcription factors responsible for short and long term effects of cocaine. The sigma 1 receptor (σ1R) 

is present in the VTA, Nacc, PFC and Amyg. Cocaine can increase activation of the σ1R either via direct or indirect 

actions increasing calcium influx, resulting in increased DA transmission. After activation the σ1R translocates and 

has modulatory effect on NMDA causing NMDA stimulated DA release. This process could also occur within the 

presynaptic terminals in the Nacc. Within the post-synaptic neuron σ1R could also have a modulatory role on 
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calcium release, NMDA activity and might have a role to play in gene expression. (Adapted and redrawn from 

Maurice et al., 2002). 

 NEURODEGENERATION 

Neurodegeneration is the term used for any loss of progressive structure or function of neurons, including 

death of neurons. Diseases such as Parkinson’s, Alzheimer’s and Huntington’s occur as a result of 

neurodegeneration. It’s been discovered that these diseases have similarities on a sub-cellular level, which 

is promising for drug design research as the correct drug could successfully treat many neurodegenerative 

diseases. An important target that had emerged involves programmed cell death which includes the 

apoptosis process (Stoka et al., 2006). 

Apoptosis is a normal function of homeostasis and is important in the management of cell growth and cell 

removal and the health of individual neurons is dependent on apoptotic pathways to promote the survival 

and growth of nerve cells (Barde, 1989; Mattson & Lindvall, 1997). However in certain disease states 

hyper apoptosis occurs and an abnormal amount of neurons are triggered to die. It is also triggered within 

specific pathways leading to detrimental effects such as loss of fine motor function controlled by the 

nigrostriatal pathway in Parkinson’s disease. 

As speculated by Bowen (2000) and confirmed by Wei (2006), σ2R’s are part of an apoptotic pathway 

which could play a role in regulation of cell proliferation or cell development. The σ2R antagonists may 

be useful agents to lessen tardive dyskinesia which can result from chronic treatment of psychoses with 

typical antipsychotic drugs such as haloperidol and σ2R agonists may be useful as anti-neoplastic agents 

because they induced apoptosis in breast tumour cell lines which were resistant to the common DNA-

damaging anti-neoplastics (Bowen et al., 2000; Wei et al., 2006). 

Research has shown that activation of the transglutaminase (TG-2) apoptotic pathway is related to σ2R 

agonists (Prezzavento et al. 2007).  An increase in calcium ion influx activates several calcium-dependant 

proteins of which TG-2 is one. This isoform of a family of transglutaminases catalyses the formation of ε-

(γ-glutamyl)lysine cross-links between polypeptide chains which results in polymerisation, the cross-

linking of dissimilar proteins and the incorporation of diamines and polyamines into proteins (Lesort et 

al., 2000). It is also part of cell processes such as cell differentiation, signal transduction, cell survival and 

wound healing. Furthermore, TG-2 has a modulatory effect on apoptosis and cell response stressors, 

depending on the type of stimuli provoking an increase in transamidation activity (Tucholski & Johnson, 

2002). The TG-2 protein is also expressed in the brain and is part of a variety of processes of the central 

and peripheral nervous systems (Lesort et al., 2000). There are several lines of evidence suggesting that 

TG-2 activity may contribute to neurodegenerative diseases such Huntington’s, Alzheimer’s and 
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Parkinson’s disease (Gentile & Cooper, 2004). However, there is also evidence that under certain 

circumstances TG-2 can show protective properties against apoptosis. Results further suggest that 

selective sigma ligands modulate intracellular calcium levels and eventually the up-regulation of TG-2 

that is typical of several neurodegenerative diseases (Prezzavento et al., 2007). 

1.4 Ligand structure activity relationship 

Glennon (1994) initially presented an illustration for optimal σR binding in 1994 (figure 5). With the 

cloning of the σ1R and an ever increasing number of σR ligands being the focus of many research groups, 

Glennon (2005) revisited past and present research and updated their initial illustration for σ1R specific 

affinity (figure 6). Some of the structures utilised for these studies are included in Table 1b. 

 

Figure 5. Optimum dual σ1R/ σ2R affinity (Glennon et al., 1994) 

 

Figure 6. Optimum binding for σ1R specific affinity (Glennon, 2005) 

Table 1b serves to illustrate chemical compounds previously investigated and provide a clear idea of the 

Glennon et al., (1994, 2005) pharmacophore profile consisting of a basic amine, two hydrophobic binding 

regions and the effect of chain length and halogen substitution on the primary binding region. 
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Table 1b: Summary of compounds studied for sigma recetor binding 

## 
2° binding 

site 

2° linking 

chain 

Basic 

Amine 
1° linking chain 

1° binding 

site 
Binding Affinity 

 A BN
 

Ki (nM) 

σR σ1R σ2R 

Basic Amine; (compounds 1- 12) (Ablordeppey et al., 2000; 2002) 

1* 
 

-CH2- N

 
-CH2(CH2)3CH2- 

 
 0.4 - 

2 
 

-CH2- NN

 
-CH2(CH2)3CH2- 

 
 0.6 2.8 

3   N
 

-CH2(CH2)3CH2- 
 

 0.48 50 

4   N

 
-CH2(CH2)3CH2- 

 
 1.0 - 

5   N
 

-CH2(CH2)3CH2- 
 

 0.76 70 

6   N

 
-CH2(CH2)3CH2- 

 
 6.0 89 

7   N
 

-CH2(CH2)3CH2- 
 

 0.25 - 

8   NH
 -CH2(CH2)3CH2- 

 
 418 7920 

9   N

 
-CH2(CH2)3CH2- 

 
 14.0 965 

10   N  
-CH2(CH2)3CH2- 

 
 0.25 5 

11 
 

-CH2- NH  -CH2(CH2)3CH2- 
 

 0.17 34 

12 
 

-CH2- N  
-CH2(CH2)3CH2- 

 
 0.19 13 

Primary and Secondary binding sites; (13, 14) (Ablordeppey et al., 2002); (15 -22) (Younes et al., 

2000) 

13 
 

-CH2- N  
-CH2(CH2)3CH2- 

 
 0.19 13 
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14 

 

 N  
-CH2(CH2)3CH2- 

 
 0.60 170 

15 
 

-CH2- NH  -CH2- 

 

3   

16 
 

-CH2- NH  

 

-CH2- 
O

O

O

 

1   

17 
 

-CH2- NH  -CH2- 

 

3   

18 
 

-CH2- NH  -CH2- 

O

O

 

3   

19 
 

-CH2- NH  -CH2- 
N  

1   

20 
 

-CH2- NH  -CH2- 
O  

0.4   

21 
 

-CH2- NH  -CH2(CH2)3CH2- 
 

0.58   

22 
 

-CH2- NH  -CH2(CH2)3CH2- 
 

0.8   

Chain Length, Secondary Chain Length; (23-26) (Ablordeppey et al., 2002) 

23 
 

-CH2- NH  -CH2(CH2)3CH2- 
 

 0.17 34 

24 
 

-CH2CH2- NH  -CH2(CH2)3CH2- 
 

 0.17 15 

25 
 

-CH2CH2CH2- NH  -CH2(CH2)3CH2- 
 

 0.28 9.8 

26 
 

-CH2(CH2)2CH2- NH  -CH2(CH2)3CH2- 
 

 0.48 68 

Chain Length, Primary Chain Length; (27-30) (Ablordeppey et al., 1998) 

27 
 

-CH2CH2- NH  -CH2CH2CH2- 
 

11.0   
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28 
 

-CH2CH2- NH  -CH2(CH2)2CH2- 
 

2.6   

29 
 

-CH2CH2- NH  -CH2(CH2)3CH2- 
 

0.17 0.17 15 

30 
 

-CH2CH2- NH  -CH2(CH2)5CH2- 
 

1.5   

Substitution of binding sites; (31-40) (Zampieri et al., 2009); (41-44) (Glennon, 2005) 

31 
 

-CH2- N

 
-CH2- 

O
N

O

 

 3.6 246 

32 

Cl

 

-CH2- N

 
-CH2- 

O
N

O

 

 61 299 

33 Cl

 
-CH2- N

 
-CH2- 

O
N

O

 

 0.1 427 

34 Cl

Cl

 

-CH2- N

 
-CH2- 

O
N

O

 

 258 382 

35 

F

 

-CH2- N

 
-CH2- 

O
N

O

 

 23 213 

36 F

 
-CH2- N

 
-CH2- 

O
N

O

 

 3.9 170 

37 

 

-CH2- N

 
-CH2- 

O
N

O

 

 33 338 

38 
 

-CH2- N

 
-CH2- 

O
N

O

 

 2.9 116 
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39 

 

-CH2- N
 

-CH2- 
O

N

O

 

 30 187 

40 

 

-CH2- N
 

-CH2- 
O

N

O

 

 6230 2881 

41 
 

 N
  

 
 0.15  

42 
 

 N
 

O

  
 0.12  

43   N

  O

O

 

 0.86 554 

44   N
  O

O

 

 0.32 63 

BASIC AMINE 

From figure 5 and 6 it can be seen that a basic amine is needed for optimum activity on non-specific σR 

and σ1R specific ligands. This amine can be secondary or tertiary and can also be present in a cyclic 

structure such as pyridine, piperazine, pyrrolidine etc., as seen in compounds 1-12 (Ablordeppey et al., 

2000, 2002; Glennon, 2005).  

PRIMARY AND SECONDARY BINDING REGION 

There are two binding regions on either side of the basic amine with varying optimum distances between 

them and the amine site. The primary binding site is further away from the amine than the secondary 

binding site and research shows that a vast array of lipophilic structure binding is possible in either region 

(13-22). A phenyl group at position B is not absolutely necessary for affinity but can improve affinity (1 

and 3) (Ablordeppey et al., 2002; Younes et al., 2000). 

CHAIN LENGTH 

The distance between the amine and the binding regions are 6-10 Ǻ and 2.5-3.9 Ǻ to the primary and 

secondary binding region, respectively (for non-specific σR ligands and σ1R ligands). The exact chain 

length is dependent on each unique structure due to the conformational changes that the structure can 

undergo. Generally an aliphatic chain of 2 carbons between the amine and secondary binding site (23-26) 
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and an aliphatic chain in the range of 3-5 carbons between the amine and primary binding site seem to 

show optimum binding, (27-30) (Ablordeppey et al., 1998, 2000; Glennon, 2005). 

SUBSTITUTION OF BINDING SITES 

Halogenation of the B phenyl group generally increases activity (probably due to increased lipophilicity) 

but data on optimum halogen and position thereof differ between structures (31-40). This again could be 

due to conformational changes that the structure can undergo, however if a clear structure is decided on, 

halogen substitution can remarkably increase affinity and a definitive trend can be seen based on 

individual halogen substitutes and position on the phenyl group. An unsaturated alkyl chain seems to be 

tolerated for σ1R activity but decreases for σ2R activity is observed (43 and 44) (Ablordeppey et al., 

2000). Carbonyl substitution here seems to make no contribution to σ1R binding (41 and 42) (Glennon, 

2005). 

Table 3 lists substances that elicit σR activity. Some of these are commercially available for specific 

disorders that may or may not depend on the structure’s inherent σR activity. Note where appropriate the 

structural adherence of the compounds with regard to a basic amine and the various lipophilic groups that 

could potentially add to σR affinity. 

Table 3: Pharmacology of sigma receptor ligands (Reviewed by Cobos et al., 2008) 

Compound Structure σ1/σ2 Affinity σR Function Other activities 

Benzmorphans 

(+)-pentazocine N
OH

 

σ1 +++ Agonist - 

(-)-pentazocine N
OH

 

σ1/σ2 ++ Agonist 

κ1 agonist, μ1, μ2, 

ligand, low affinity 

δ, and κ3 opioid 

ligand 

(+)-SKF-10,047 
OH

Me

Me

N

 

σ1 +++ Agonist 
NMDA receptor 

ligand 
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Antipsychotics 

Chlorpromazine N

S

N

Cl

 

σ1/σ2 ++ ? 
Dopamine D2 

antagonist 

Haloperidol N

O

F

OH

Cl

 

σ1/σ2 +++ Agonist 

Dopamine D2 and 

D3 antagonist, σ2 

agonist 

Nemonapride 

NH
N

O

NH

Cl

O

 

σ1/σ2 +++ ? 
Dopamine D2 

antagonist 

Antidepressants 

Clorgyline 
O N

Cl

Cl  

σ1 +++ Agonist? 

Irreversible 

monoamine 

oxidase (MAO) A 

inhibitor 

Fluoxetine 

ONH

F
F

F

 

σ1 + Agonist 

Selective 5HT 

reuptake inhibitor 

(SSRI) 

Fluvoxamine 
N

O

O

NH2

F

F

F

 

σ1 +++ Agonist SSRI 

Imipramine 
N

N

 

σ1 ++ Agonist 
Monoamine 

reuptake inhibitor 

Sertraline 

NH

Cl

Cl

H

H

 

σ1 ++ Agonist SSRI 
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Antitussives 

Carbetapentane 
O

O
N

O

 

σ1/σ2 +++ Agonist 
Muscarinic 

antagonist 

Dextromethorphan 
O

H

N

 

σ1 ++ Agonist 

NMDA receptor 

allosteric 

antagonist 

Dimemorphan 
H

N

 

σ1/σ2 ++ Agonist ? 

Parkinson's and/or Alzheimer’s disease 

Amantadine 

NH2

 

? + Agonist? 

NMDA 

antagonist, 

antiviral 

properties 

Donepezil 

N

O

O

O

H

 

σ1/σ2? +++ Agonist 
Cholinesterase 

inhibitor 

Memantine 

NH2

 

? + Agonist? 

NMDA 

antagonist, 

antiviral 

properties 

Drugs of abuse 

Cocaine 
N

O

O

O

O

 

σ1/σ2 + Agonist 

Monoamine 

transporters 

inhibitor, among 

other actions 

MDMA 
O

O

NH

 
σ1/σ2 + ? 

Preferential SERT 

inhibitor, among 

other actions 
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Methamphetamine 
NH

 
σ1/σ2 + ? 

Preferential DA 

transporter 

inhibitor, among 

other actions 

Putative endogenous ligands (neurosteroids) 

DHEAS 
H

O
S

O

O
OH H H

O

 

σ1 + Agonist 
GABAA negative 

modulator 

Pregnelone 

sulphate 

H

O
S

O

O
OH H H

O

 

σ1 + Agonist 

NMDA 

positive/GABAA 

negative 

modulator 

Progesterone H

O

H H

O

 

σ1 + Antagonist 

NMDA 

negative/GABAA 

positive 

modulator 

Anticonvulsants 

Phenytoin 

N
H

NH

O

O

 

σ1 
not 

applicable 

Allosteric 

Modulator 

Delayed rectifier K
+
 

channel blocker, 

T-type calcium 

current inhibitor, 

Na
+
 current inhibitor 

Ropizine NNHNN

 

σ1 
not 

applicable 

Allosteric 

Modulator 
? 

Other σR drugs 

BD 737 NCl

Cl

N

 

σ1/σ2 +++ Agonist - 
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BD 1008 
N

N

Cl

Cl

 

σ1/σ2 +++ Antagonist σ2 agonist? 

BD 1047 
N

Cl

Cl
N

 

σ1 +++ Antagonist 
β adrenoceptor 

ligand 

BD 1063 
N

N

Cl

Cl  

σ1 +++ Antagonist - 

BMY 14802 

N

N

NN

OH

F

F

 

σ1/σ2 ++ Antagonist 5HT1A agonist 

DTG 
NH NH

NH

 

σ1/σ2 +++ ? σ2 agonist 

Dup 734 
N

F

O  

σ1 +++ Antagonist 5HT2 antagonist 

Eliprodil N
F

OH

Cl 

σ1/σ2 ++ ? 

NMDA 

antagonist, σ1 

adrenoceptor 

ligand 

E-5842 
N

N

N

N

F

 

σ1 +++ Antagonist 

Low to moderate 

affinity for DA, 

5HT and 

glutamate 

receptors 

Haloperidol 

Metabolite I 
NH Cl

OH  
σ1 ++ Antagonist - 

Haloperidol 

Metabolite II N Cl

F

OH

OH

 

σ1/σ2 +++ 
Irreversible 

Antagonist 

Dopamine D2 and 

D3 ligand 
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4-IBP NH

N O

I 

σ1/σ2 +++ Agonist 
Dopamine D2 

ligand 

JO-1784 

(Igmesine) N

 

σ1 +++ Agonist - 

Metaphit 
N

S

N

 

σ1/σ2 ++ 
Irreversible 

antagonist 

Acylator of PCP 

and σ2 binding 

sites 

(+)-MR 200 
N

OH

Cl

O

O

 

σ1/σ2 +++ Antagonist - 

MS-377 
N

N

N O

O

Cl

 

σ1 +++ Antagonist - 

NE-100 
N

O

O

 

σ1 +++ Antagonist - 

OPC-14523 

N

O

O

N N

S

O

O

OH

 

σ1/σ2 +++ Agonist 

Agonist of pre- 

and post-synaptic 

5HT1A receptors, 

serotonin 

transporter 

(SERT) inhibitor 

Panamesine 
O

N
O

N

OH

O

O

O  

σ1/σ2 +++? Antagonist 

Metabolite is a 

dopaminergic 

antagonist 

(+)-3-PPP 
N

OH

 

σ1/σ2 ++ Agonist 

σ2 agonist, NMDA 

receptor ligand, 

dopaminergic 
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agonist 

PRE 084 O
N

OO
 

σ1 +++ Antagonist - 

Rimcazole 
N

N

NH

 

σ1/σ2 + Agonist 
DA transporter 

inhibitor 

SA4503 

N

N

O

O

 

σ1 +++ Agonist - 

SR 31742A 
Cl

 

? +++ ? 

High affinity for 

C8-C7 sterol 

isomerase 

2. Polycyclic amines 

The Cookson diketone has shown to be a valuable compound for the design of novel therapeutic agents. It 

has the ability to act as a scaffold that can improve pharmacokinetic properties and possesses an unique 

array of diverse receptor site interaction, ranging from neurological application in the management of 

Alzheimer’s disease and Parkinson’s disease to peripheral conditions including antiviral and potential 

anti-inflammatory application (Kassiou et al., 1996; Nguyen et al., 1996, 2005; Banister et al., 2010; Liu 

et al., 2001, 2005, 2007; Schwab et al., 1972; Oliver et al., 1991;  Van der Schyf et al., 1986). 

2.1 Background 

Initial polycyclic amine cage research was prompted by the adamantine derivatives; see Table 4 for 

analogues in use. This led to further investigation into structures such as pentacycloundecane analogues 

derived from Cookson’s diketone (Table 5). Adamantine compounds have shown promise in many fields 

including antiviral application, their initial clinical use; and treatment of Parkinson’s disease. They’re 

coveted for their modulation of diverse receptor classes and their advantageous ability to improve the 

pharmacokinetic properties of their analogues. They therefore have potential as novel ligands and in 

numerous prodrug formulations. Pentacycloundecane analogues have shown the same ability to transfer 

these desirable properties (Brookes et al., 1992; Zah et al., 2003). 
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Table 4: Clinically available adamantane derivatives 

Compound Structure Indication 

45 Amantadine 

NH2

 

Viral infections including Influenza 

virus A, Parkinson’s disease 

46 Memantine 

NH2

 

Alzheimer’s disease 

47 Rimantadine 

NH2

 

Viral infection including Influenza A, 

Parkinson’s disease 

48 Tromantadine 
N

O
N

O

 

Viral infections including herpes 

simplex virus 

49 Vildagliptin 
NH

OH

NO

N

H

 

Anti-hyperglycaemic in maintaining 

diabetes 

 

Amantadine, memantine and some pentacycloundecane analogues show affinity for the σR. They also 

directly modulate key receptors involved in other neurological conditions such as neurodegeneration, 

cognitive impairments and drug addiction. Their action is thought to stem from their NMDA antagonism, 

but their σR interaction should not be ruled out. Pentacycloundecane derivatives show significant σR 

affinity and serve as compelling prospect for elucidating the σ2R (Kornhuber et al., 1993). 

Table 5: Pentacycloundecane derivatives 

Compound Structure 
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50 Cookson’s diketone 
OO  

51 Ketal derivative 
N O

O

R  

52 Imine derivative 
ON

R  

53 Azapentacycloundecane 
N

OH

R  

54 Oxapentacycloundecane 
O

NHR  

55 Trishomocubane 
 

 

2.2. Bioactivity of pentacycloundecane derivatives 

Neurological disorders pose the challenge of correcting small imbalances within the brain while 

simultaneously not disrupting other neurological processes. Multifunctional drugs could be advantageous 

by working on the principle of an additive effect and administration at low doses could coordinate action 

on multiple implicated sites while not influencing neurochemistry to the detriment of the patient. In 

addition to their affinity for the σR, pentacycloundecanes have activity on multiple sites involved in 

neurological disorders. 

DA ACTIVITY 

Geldenhuys et al. (2009) set out to evaluate the pentacycloundecane analogues effect on DA after it was 

postulated that compounds such as NGP 1-01 possess neuroprotective capabilities. It was demonstrated 

that the phenyl ethylamine derivative inhibits DA uptake in striatal tissue (figure 7), an advantageous 

property with regards to treating Parkinson’s disease that stems from a deficit of DA neurons in the 

nigrostriatal pathway. This mechanism is opposite to brain addiction pathology. Geldenhuys and co-

workers then further investigated this compound's action on the DAT transport and it was found that it 

was able to: 

 

 

 

 



CHAPTER II: LITERATURE REVIEW 

30 

 

a.) Significantly increase spontaneous DA; 

b.) Significantly decrease methamphetamine-stimulated DA; 

c.) Significantly increase DA when co-infused with 30 mM KCl; 

d.) Lost the stimulatory effect of KCl-evoked DA release when calcium free buffer was used and 

exhibited moderate voltage-gated calcium channel blocking activity with an IC50 of 22 μM 

These results show that the extracellular efflux of DA by the phenyl ethylamine derivative is not via the 

DAT and is primarily through interactions preventing DA uptake via calcium-dependent mechanisms. Its 

effect on reducing methamphetamine-evoked DA suggests that it either binds to the methamphetamine 

binding site thereby blocking methamphetamines action, or it allosterically interacts with the DAT 

inducing significant conformational changes to the DAT and decreasing methamphetamine DAT affinity. 

These findings suggest that this compound can act as possible lead for therapeutics designed to treat drug 

addiction and can also be utilized to prevent neurotoxicity associated with drug toxins that elicit their 

action through the DAT (Geldenhuys et al., 2009). 

NH

O

NGP 1-01
                  

NH

O

Phenylethyl derivative
 

Figure 7. Compounds used in the neuroprotective study from Geldenhuys et al., (2009). 

NMDA RECEPTOR/ION CHANNEL 

Considering memantine’s NMDA antagonism, Geldenhuys et al. (2005) investigated 

pentacycloundecane’s function on the NMDA calcium channel. The study included a small series of 

pentacycloundecane derivatives and it was found that pentacycloundecane derivatives do block calcium 

influx into murine synaptoneurosomes by non-competitive NMDA receptor channel antagonism. NGP1-

01 showed the best potency with an IC50 of 2.98 μM comparable to the reference compound memantine 

that had an IC50 of 3.05 μM in the assay employed (Geldenhuys et al., 2003). Memantine and adamantine 

interact with the PCP/TCP/MK-801/ketamine binding site inside the NMDA channel pore (Bresink et al., 

1995). It was however demonstrated that structurally similar pentacycloundecanes (including NGP1-01) 

do not interact with this binding site and therefore bind to a unique and novel site on the NMDA receptor 

channel (Geldenhuys et al., 2003). The NMDA receptor’s significant involvement in mesocorticolimbic 

dopaminergic pathways and pentacycloundecane derivatives possessing memantine’s ability of NMDA 

antagonism could prove valuable in treating neurodegeneration and drug addiction. 

CALCIUM CHANNEL ANTAGONISM 
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NGP1-01 was first characterised and patented as a calcium channel antagonist in the late 1980’s (Van der 

Schyf et al., 1986). It was extensively researched as a potential cardiovascular drug that could be utilised 

in supraventricular tachycardias and cardiac arrhythmias as it was later discovered that they also inhibit 

K
+
 channels. Further research showed that NGP1-01 was a lipophilic L-type channel blocker (van der 

Schyf et al., 1986). This is particularly important in the process of apoptosis (programmed cell death) and 

their action on calcium channels, DA and NMDA receptors make them ideal candidates for 

neuroprotective application. In drug addiction, calcium channel antagonism could prove useful 

considering NMDA and σR involvement in brain addiction processes and their immediate link to the 

calcium system. 

SIGMA RECEPTOR BINDING 

Amantadine interacts with the σR binding site with a Ki of 20.25 μM (Kornhuber et al., 1993) and 

pentacycloundecane analogues were evaluated for σR potential based on their similar structure to 

adamantine analogues. Table 6 shows results from various studies that examined pentacycloundecane 

activity on the σR. Compounds 55-80, and 85-88 were also examined for dopaminergic, muscarinic, 

serotonergic, and PCP binding. These compounds showed high affinity for the σR but no cross reactivity 

to other sites tested (Kassiou et al., 1996; Marrazzo et al., 2001). Compounds 81-84 were also tested for 

DAT and adrenergic activity (Banister et al., 2010). Compounds 81, 83 and 84 showed no cross reactivity 

to these sites but compound 39 showed significant affinity for the adrenergic receptor and moderate 

activity on the DAT (Banister et al., 2010). 

Table 6: Pentacycloundecanes possessing sigma reactivity. 

Compound 

R =

Series 1 Series 2 Series 4

(  )n

ON
R

N

OH

R
N O

O

R

m

po

O
NHR

Series 3

 

     Affinity Ki (nM) 

 n o m p σ1R σ2R 
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Series 1 (Ketal derivatives) (55-59) 

55 1 H H H 67 864 

56 1 H Br H 17 208 

57 1 H I H 124 285 

58 1 I H H 72 246 

59 2 H H H 15 608 

Series 2 (Aza derivatives) (60-82) 

60 1 H H H 103 51 

61 1 Br H H 86 176 

62 1 H Br H 208 40 

63 1 I H H 81 246 

64 1 H I H 169 54 

65 1 F H H 107 250 

66 1 H F H 152 20 

67 1 H H F 182 230 

68 1 F F H 198 239 

69 1 OCH3 H H 103 136 

70 1 H CF3 H 270 135 

71 1 H NO2 H 1100 242 

72 1 H CH3 H 97 108 

73 1 H Cl H 186 30 

74 2 H H H 20 307 

75 2 Br H H 10 166 

76 2 H Cl H 21 153 

77 2 Cl Cl H 10 233 

78 2 H F H 10 370 

79 3 H H H 21 238 
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80 4 H H H 9 171 

81 1 H F H 153 31 

82 2 H F H 12 48 

Series 3 (Oxo derivatives) 

83 1 H F H 2280 1642 

84 2 H F H 149 363 

Series 4 (Imine derivatives) 

85 0 H H H >10000 >10000 

86 0 F H H >10000 >10000 

87 0 H F H >10000 >10000 

88 0 H H H >10000 >10000 

 

N

H

H

H

H

                  

N

N

OH

 

Figure 8. Additional compounds 89 and 90 

Sigma receptor affinity was consistently improved by a ketal group present and showed preferential 

selectivity for the σ1R. Compounds 56 and 59 showed significant σ1R selectivity with Ki of 17 and 15 

respectively. The azapentacycloundecanes generally had better affinity than the oxapentacycloundecanes. 

Chain lengthening improved σR binding at both receptor subtypes and best activity was observed for 

compound 80 that had the longest chain length of 4 carbon atoms. Compounds 60, 62, 64, 66, 72, 73 

showed the highest σ2R binding. From these results it appears that meta substitution is favourable for σ2R 

binding. Highest to lowest affinity by nature of substitution appears to be F>Cl>Br>I>H>CH3. Fluoro 

substitution on ortho and para positions did not show σ2R specificity. CF3 (70) and NO3 (71) on the meta 

position retained σ2R selectivity even though affinity for the receptor diminished. The σ2R selectivity was 

lost when the alkyl chain was increased with a meta fluorine present. This could lead to the conclusion 

that meta substitution is necessary for σ2R selectivity, but substitution on the benzyl group should be 

considered inconclusive. Different chain lengths change the entire orientation of the benzyl group (see 

figure 9, Chapter III). This does however promote the theory that if an optimal chain length is established, 

89 90 
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halogen substitution could be useful for obtaining σ2R selectivity. The imino-ketal groups showed no 

affinity for the σR (Liu et al., 2001). 

Compounds 66, 77, 78 and 80 were further examined for their role in amphetamine stimulated DA release 

and these compounds were also tested for DAT and SERT binding. Compound 89 was the only 

compound that had affinity for the DAT and it also showed low σR affinity with (Ki = 3000 nM for σ1R 

and Ki > 10 000 nM for σ2R). Compounds 66, 77, 78 and 80 exhibited enhanced DA release when 

compared to amphetamine release in a range of 30 – 45%. The most potent DA releaser was compound 

66 with an IC50 < 100 nM. In the presence of σ2R selective antagonist their action on DA release was 

diminished suggesting that they are σ2R agonists. Compound 89 diminished the action of 78, suggesting 

this compound could be a σ2R agonist (Liu et al., 2001). 

The study of Liu et al., (2005) study also included compound 90 that showed Ki of 9.0 nM for σ1R and 

223 for σ2R. This shows interesting variation in possibly shifting the basic amine binding from the 

pentacycloundecane to a basic nitrogen contained in a piperidine ring. It showed good binding 

characteristics, but due to its low lipophilicity log P7.4 =2.00, it is predicted by the authors that it would be 

unable to cross the blood brain barrier. 

BLOOD-BRAIN BARRIER PERMEABILITY 

Polycyclic amines are valuable in enhancing the pharmacokinetic and pharmacodynamic properties of 

drugs by increasing lipophilicity. This not only elevates their distribution to lipophilic areas (important 

with regards to crossing the blood brain barrier) but also promotes lipophilic receptor binding. Polycyclic 

amines can also improve patient compliance by providing metabolic stability that prolongs 

pharmacological action and decreases dosage frequency (Brookes et al., 1992). 

3. Discussion 

The σR is widely implicated in an array of neurological disorders. Its specific functions and mechanisms 

are still inconclusive due to the small number of σR ligands available and the lack of specificity of these 

ligands. The σR shows potential application in neuromodulatory mechanisms and from the literature it is 

evident that pentacycloundecane derivatives could serve as potential σR ligands. They can assist in 

neuropharmacological processes not only by influencing the σR but also through their advantageous 

attributes on other receptor classes including NMDA receptor inhibition and, calcium channel and DAT 

modulation. The pentacycloundecanes’ additional potential to enhance pharmacokinetic characteristics 

makes these structures valuable scaffolds for σR ligand design and could add value to the limited σR 

ligand library. 
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III. CHEMISTRY & SYNTHESIS  

Designing and synthesising pharmacological active ligands require several considerations such as existing 

knowledge on the receptor’s structure activity to provide a receptor binding model, and evaluation of 

viable synthesis routes. Factors to take into account when designing suitable synthetic pathways include 

time, cost of starting materials, reproducibility, purification, yield and simplicity. Various synthetic routes 

should be evaluated to produce the most efficient general reaction that provides a large selection of 

potential compounds. Three key features are critical to evaluating the final reaction: 

1. The success of the reaction 

2. The purification of the reaction 

3. The yield of the reaction 

If a reaction fails on one of these factors, adaptability is necessary to examine new potential routes. 

1. Compound design and validation 

1.1 Proposed structures and validation 

Glennon et al., (1994) devised a general template for σR activity (see figure 5, Chapter I) that was 

adhered to in the design of the proposed structures regarding chain length and rotation. In addition to 

using polycyclic amines the objectives were also to investigate other polycyclic structures, different chain 

lengths and the incorporation of multiple amine binding sites. From the literature it was decided to 

investigate benzyl piperazine moieties that have shown to be valuable pharmacological ligands as 

discussed in Chapter 1 section 2.1.4. (Ablordeppey et al., 1998, 2000, 2002; Glennon et al., 1994, 2005; 

Cobos et al., 2008; Zampieri et al., 2009). 

Originally it was envisioned that these compounds could assist in pharmacophore identification of sigma 

receptor 1 and 2 specific binding. But by incorporating benzyl piperazine moieties a hierarchy of 

objectives was necessary. This design would therefore serve as preliminary study into the potential of 

shifting the basic amine involved in σ1R binding from the polycyclic amine structure to the basic amines 

contained in the piperazine ring. For this reason no halogen substitution on the benzyl ring was 

incorporated as it would detract from the goal of the initial design evaluation. We however postulate that 

if a more sophisticated design for the polycyclic-amine-piperazine-phenyl model can be proposed after 

evaluation of these pilot compounds, halogen substitution would afford specificity between receptor 

classes. 
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1. 2 Originally proposed chemical structures 

Table 7: Pentacycloundecane and amine containing aryl structures for sigma receptor binding.             

Compound 

A

N
R =

Series A Series B Series C Series D

(  )m

ON
R

N

OH

R

O
NHR

N O

O

R

Series E

(  )n

NH

R

 

 n m A 

1* 1 1, 2, 3 N 

2* 2 1, 2, 3 N 

3* 1 1 C 

4* 2 1 C 

 

The compound chain lengths are all within the range of the pharmacophore originally proposed by 

Glennon et al. 1996. By using the piperazine ring that contains two basic amines, the molecule can flip or 

shift and bind to the σR in its favoured position shown in figure 9 using  

aza-pentacyclo[5.4.0.0
2,6

.0
3,10

.0
5,9

]undecane-8,11-2-(N-[2-(4-benzylpiperazin-1-yl)ethyl]) as an example. 

A pyridine containing analogue has been included to help predict which nitrogen the amine site binds to 

by comparing the affinity of the piperazine moiety compared to the pyridine moiety; and assuming that if 

the pyridine compounds shows improved affinity over its piperazine counterpart, the position of the 

pyridine’s nitrogen shows preferential binding to the σR. These alternative interactions can ultimately be 

detrimental to affinity values by detracting from maximum binding, but provide the opportunity to further 

investigate σR binding which is the aim of this study. 
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Figure 9. Alternative alignment possibilities 

2. Chemical synthesis 

2.1 Synthesis of pentacycloundecane analogues with potential sigma 

receptor affinity. 

SYNTHESIS OF COOKSON’S DIKETONE 

The synthesis of Cookson’s diketone is well documented and was effectively standardised in 1958 

(Cookson et al., 1958). Please see figure 10 for the complete reaction. 
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Figure 10. Synthesis of Cookson’s diketone (Cookson et al., 1958). 

Cookson’s diketone is synthesised from para-benzoquinone (p-benzoquinone) and cyclopentadiene in an 

established Diels-Alder reaction. The adduct of these two compounds undergo photo cyclisation to 

produce Cookson’s diketone. The reagent p-benzoquinone is commercially available but can rearrange in 

humid conditions to produce hydroquinone. Prior to use, it is advisable to oxidise p-benzoquinone to 

obtain a pure yield and increase its reactivity. Cyclopentadiene exists as its dimer dicyclopentadiene at 

room temperature and when heated to 150 °C divides into its monomer. Dicyclopentadiene and 

cyclopentadiene’s boiling points are 170 °C and 47 °C respectively.  Fractional distillation is used to 

separate the monomer from its dimer. A Vigreux condenser is used to slow the rate at which the hot 

vapours rise, giving a better separation between the different components in the distillate. 

Cyclopentadiene is collected and immediately used to avoid reversion of the separation. The addition of 

cyclopentadiene to p-benzoquinone is performed drop wise and on ice to promote the formation of the 

endo-adduct over the exo-adduct and further prevents cyclopentadiene reverting to its dimer and forming 
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the di-adduct. The reaction is traditionally performed in benzene but was also attempted in a 5:1 mixture 

of hexane-ethyl acetate (Hex, EtOAc) solvent system (Ito et al., 2007). The endo-adduct is insoluble in 

the latter solvent system and precipitates once synthesised preventing further formation of the di-adduct. 

It is also considered a safer solvent system than benzene but the solubility of p-benzoquinone is extremely 

low so a much larger volume of this solvent system is needed for the same reaction. 

The Diel’s Alder reaction is closely monitored by thin layer chromatography (TLC) and when complete 

the endo-adduct can be purified by crystallisation or immediately used in the next step where it is further 

reacted in a photochemical reactor. UV light generates radicals on the double bonds present and the endo-

adduct undergoes intramolecular cyclisation. This process is physically impossible for the exo-adduct as 

the reactive pi bonds are not orientated in an adjacent position compared to the endo-adduct as shown in 

figure 11. 

 

Figure 11: Spatial arrangement of p-orbitals in endo and exo-adduct 

Radical cyclisation is usually dependant on the rate of reaction to favour intramolecular reactions over 

intermolecular bonding. This is not of concern for this particular reaction as the pi-bonds of the respective 

double bonds are perfectly situated in the molecule to promote cyclisation and immediately associate with 

the opposite double bond once the radicals are generated.  A COSY NMR of the endo-adduct illustrates 

nuclear Overhauzer effect (NOE) between the relevant electrons, seen in figure 12. The NOE is seen in 

two dimensional NMR spectroscopy and is useful for 3D visualisation. The NOE differs from the 

application of spin-spin coupling in that the NOE occurs through space, not through chemical bonds. The 

NOE seen in this cosy shows a strong cross relaxation between the relevant atoms reflecting their close 

proximity to each other. 

The final product is easily purified by Soxhlet extraction using cyclohexane as solvent. Cookson’s 

diketone is more soluble in cyclohexane than the impurities present. In a saturated solution the Cookson’s 

diketone will preferentially dissolve first and is syphoned away from its impurities and collected. The 

extraction is dependent on time with the most pure fractions collecting first and then followed by the 

impurities as its concentration in cyclohexane decreases. It is therefore advisable to collect the fractions at 
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set time intervals of approximately two hours to prevent contamination of the pure product with its 

impurities. 

 

Figure 12: COSY NMR of adduct before cyclisation 

PENTACYCLOUNDEACANE CONJUGATION 

A popular method of synthesising Cookson’s Diketone amine derivatives is by nucleophilic addition. For 

the resulting link to be an imine bond, a reactive amine functional group must be included in the 

intermediate design. To obtain the oxa and aza cage analogues a reduction step is necessary. Many 

 

 

 

 



CHAPTER III: CHEMISTRY SYNTHESIS 

41 

 

functional groups are sensitive to reductions and can be altered during the reduction step. The 

intermediate reacted with pentacycloundecane must therefore be as stable as possible. As illustrated in 

figure 13. 

 

Figure 13: Primary amines react through an unstable hemiaminal intermediate which then splits of water 

The reaction proceeds as the nucleophilic amine attacks the carbonyl giving a hemiaminal -C(OH)(NHR)- 

intermediate, followed by elimination of water to yield the imine also known as the Schiff base. The 

carbonyl group is open to attack by strong nucleophiles. Depending on the nucleophilicity of the 

intermediate introduced the reaction could require acid catalysis. Acidic conditions shown in figure 13 

part B cause the carbonyl to activate and form a carbocation that is prepared to share electrons with the 

attacking nucleophile. Amines in addition to their nucleophilicity are also basic and will form an 

ammonium ion if the conditions are too acidic. For imine synthesis the equilibrium in the reaction usually 

favours the carbonyl compound so dehydration is necessary to push the reaction to the desired compound. 

OXA, AZA AND KETAL PENTACYCLOUNDECANE DERIVATIVES SYNTHESIS 

 

 

 

 



CHAPTER III: CHEMISTRY SYNTHESIS 

42 

 

Evaluation of the effect of different pentacycloundecane moieties on σR binding is an objective of this 

study. The reaction mechanisms of the various pentacycloundecane structures are shown in figure 14.The 

oxa and aza pentacycloundecane structures are the most stable of the suggested structures. 

 

Figure 14: General reaction and mechanisms of different pentacycloundecane derivatives 
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To synthesise the protective ketal pentacycloundecane derivative acetalisation is necessary. The steps in 

nucleophilic acyl reactions are reversible and as a result the synthesis exists in equilibrium. It follows the 

same mechanism as imine formation by nucleophilic addition and in this case the attacking nucleophile is 

a hydroxyl group rather than an amine. The equilibrium favours the product containing the best 

nucleophile so a suitable leaving group is necessary. The reversible reaction is driven to completion by 

removal of water by azeotropic distillation or alternatively molecular sieves that can be placed in a 

Soxhlet extractor. The reaction is performed in toluene using a Dean Stark apparatus to remove water and 

the final product is then easily purified by crystallisation out of either methanol or diethyl ether. The ketal 

pentacycloundecane compound is further reacted with the selected intermediate and follows the same 

mechanism shown in figure 13. More extreme reaction conditions are necessary as shown by Bannister 

and colleagues who used a sealed vessel and ethanol as solvent to increase the pressure and boiling point 

of the reaction. This suggests that the ketal group does have an impact on its adjacent carbonyl making 

nucleophilic attack more difficult (Banister et al., 2010). The ketal group could possibly affect the 

carbocation by inductive effects or steric hindrance. 

To obtain the oxa and aza pentacycloundecane structures reduction is necessary. Sodium borohydride is a 

relatively strong reducing agent while sodium cyanoborohydride is comparably weak. Sodium 

borohydride shows selectivity towards reducing the carbonyl group and sodium cyanoborohydride is 

known for preferential reduction of imine groups over carbonyls. The reactive nitrogen and oxygen atoms 

are then capable of attacking their adjacent carbonyls forming the respective aza or oxa bridge. 

Alternatively the carbonyl can be protected by a ketal group, reacted with the intermediate amine and 

reduced by sodium borohydride which will in this case only be able to reduce the imine. 

2.2 Synthesis of benzyl piperazine derivatives 

An important feature of the proposed compounds is the number of amines present (see figure 5 and 9; and 

Table 7). These functional groups are easy to target when designing a synthesis due to their 

nucleophilicity, but due to multiple amines an attentive process is needed to target specific amines and 

prevent polymerisation. In deciding on a final approach, we considered the most convenient from the 

point of view of easily accessible starting materials and synthetic pathways. 

NITRILE PROTECTIVE GROUP 

Benzyl piperazine analogues are very popular pharmacological functional groups. They are commercially 

available and initial synthesis designs attempted to add a linker to benzylpiperazine analogues, see figure 

15. To prevent polymerisation the terminal amine was protected as a nitrile group. This group was then to 

be reduced by LiAlH4 to a primary amine able to react with pentacycloundecane.  Unfortunately these 
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attempts were unsuccessful in the current study, possibly due to polymerisation to form unknown 

impurities or the quality of the LiAlH4 used which didn’t allow the reaction to proceed to completion. See 

Table 8 for variants of benzylpiperazine and linkers attempted. 

 

Figure 15: Failed nitrile protective group reaction 

BIMOLECULAR NUCLEOPHILIC SUBSTITUTION KINETICS 

Further methods to obtain the intermediates were investigated as indicated in Table 8. The most 

successful synthesis was achieved by taking advantage of the selectivity between primary and secondary 

amines in bimolecular nucleophilic substitution (Sn2) reactions. Using simple kinetic adjustments the 

reaction was optimised and proved more efficient in terms of yield, simplicity and cost than the initial 

investigated reaction (figure 16). 

 

Figure 16: Sn2 reaction of amino ethylpiperazine and benzyl chloride 

The Sn2 reaction is a nucleophilic substitution reaction where a nucleophile attacks an electrophilic 

centre, binds to it and expels another group known as the leaving group. In this reaction benzyl chloride 

was used, but benzyl bromide would in theory proceed faster as bromine is a better leaving group than 
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chlorine. The secondary amine contained in the piperazine ring attacks the electrophilic carbon centre 

bounded to chlorine at a rate higher than the primary amine on the ethyl carbon chain. The reasons for this 

are as follows; 

1. A secondary amine is more basic than a primary amine due to increased alkyl inductive effects 

giving the secondary amine a more negative charge, 

2. A secondary amine is more nucleophilic than a primary amine due to increased electron donors 

promoting attack and sharing of electrons, 

3. The resulting product is more stable due to the rate of transient state to final product 

transformation occurring faster due to the secondary amines stronger push influence on the 

leaving group. 

The Sn2 reaction follows second order kinetics making the concentration of both reagents rate limiting 

factors. To optimise preferential binding the benzyl chloride was added drop wise over 24 hours and 1-(2-

aminoethyl)piperazine was used at a molar excess of 4:1. This slowed the rate of reaction considerably, 

allowing the reaction to proceed to the formation of a more stable product namely 2-(4-benzylpiperazin-1-

yl)ethanamine over N-benzyl-2-(piperazin-1-yl)ethanamine. The molar ratio of 1-(2-

aminoethyl)piperazine  also prevented benzyl chloride to react with the primary amine of the formed 

product, as 1-(2-aminoethyl)piperazine’s higher concentration lead to increase collision rate with the 

latter. Attempts to cool the reaction were also made but the reagents did not react at cold temperatures, 

making drop wise addition obsolete and the reaction was therefore carried out at room temperature.  

Due to the rate of the reaction depending on the concentration of benzyl chloride, the reaction rate would 

decrease exponentially as the benzyl chloride present decreased after reacting. This meant that the 

formation of product would be highest in the first two days and then became insignificant after this time. 

After allowing the reaction to proceed for two weeks, there was still unreacted benzyl chloride present. 

The slightly acidic benzyl chloride could easily be removed from the reaction mixture by an acid/base 

extraction. The reaction was therefor only allowed to run for 72 hrs. as a longer time became inefficient 

with regard to the amount of product obtained. The final reaction mixture, in order of highest 

concentration, contained unreacted amino-ethyl piperazine, the desired product 2-(4-benzylpiperazin-1-

yl)ethanamine, N-benzyl-2-(piperazin-1-yl)ethanamine, N-benzyl-2-(4-benzylpiperazin-1-yl)ethanamine 

and unreacted benzyl chloride. The reagent 1-(2-aminoethyl) piperazine is water soluble and was removed 

by a water/chloroform extraction. A base extraction followed to remove unreacted benzyl chloride. The 

N-benzyl-2-(4-benzylpiperazin-1-yl)ethanamine and N-benzyl-2-(piperazin-1-yl)ethanamine impurities 

were present in extremely low concentration.  
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The reaction mixture was then further purified by column chromatography which proved difficult due to 

the basicity of the desired product and impurities. A stationary phase of basic alumina or triethyl amine 

treated silica managed to purify the reaction mixture but poor resolution and significantly large volumes 

of solvents made it an inefficient purification method. Better results were obtained with flash 

chromatography using pure ethanol as mobile phase. The N-benzyl-2-(4-benzylpiperazin-1-yl)ethanamine  

impurity was stable and only possessed tertiary amines unlikely to react in further steps with 

pentacycloundecane.  The N-benzyl-2-(piperazin-1-yl)ethanamine impurity possessed significant steric 

hindrance on its reactive secondary amine which would have to attack the carbonyl present on 

pentacycloundecane from behind. Its concentration was also very low. Comparing the NMR’s of the 

completely purified 2-(4-benzylpiperazin-1-yl)ethanamine to the reaction mixture before column 

purification suggested that for its role as an intermediates subsequent column purification would be 

unnecessary due to the amount of product lost during the procedure. It was noticed that 2-(4-

benzylpiperazin-1-yl)ethanamine would discolour to yellow if not protected from air and  TLC of the 

product showed a new impurity of lower polarity forming. This was observed in completely purified and 

unpurified samples. The final product was stored at -5 °C, in the dark and under N2 and used in 

subsequent reactions immediately after purification. 

2.3 Conjugation of benzyl piperazine intermediate with polycyclic amines 

DIRECT CONJUGATION 

The next step was to react the intermediate 2-(4-benzylpiperazin-1-yl)ethanamine with the cage structure 

but traditional reaction conditions as depicted in figure 3 were unsuccessful. Alternative reaction 

conditions were attempted including pH adjustments, solvent changes, temperature changes and finally 

microwave irradiation. The tertiary amine in the piperazine ring is electron withdrawing and could limit 

the nucleophilicity and electron donating capabilities of the primary amine. Possibly steric hindrance 

could also be a factor making attack from behind the carbonyl group difficult, but compounds such as 

benzyl amine are able to react making this unlikely. Reaction using both unpurified and purified 2-(4-

benzylpiperazin-1-yl)ethanamine products were attempted, so it can be assumed that the failure of the 

reaction was not due to interactions from impurities.  

METHANESULFONYL CONJUGATION 

Assembly from the pentacycloundecane structure was also attempted; see Table 8 for all attempted 

pentacycloundecane reactions. The reaction that proved successful involved adding a 2-aminoethyl linker 

to pentacycloundecane and conjugating this to a better leaving group namely methanesulfonyl chloride 

(MeSCl) to react with the benzylpiperazines, see figure 17. Alcohols are not good leaving groups and are 
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themselves nucleophilic. They can however be reacted with chlorides, bromides, and tosylate or mesylate 

groups which are excellent leaving groups in nucleophilic substitution reactions. The addition of the 

mesylate causes resonance delocalization of the developing negative charge on the original hydroxyl 

oxygen.  

 

Figure 17: Protective methanesulfonyl conjugation 

The reaction for conjugation with the mesylate was performed drop wise under cold condition and the 

solvent system that proved most successful was a triethyl amine; dichloromethane (Et3N:DCM) 

combination. Tosylate and mesylate compounds selectively bind to amine groups rather than hydroxyl 

groups and there was concern that the mesylate would react with the secondary amine rather than 

hydroxyl group, but NMR confirmed that the expected final product was obtained. It can be assumed that 

steric hindrance from the pentacycloundecane structure had an influence on the hydroxyl selectivity. 4-
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Toluenesulfonyl chloride (TSCl) was originally used but did not react, again possibly due to steric 

hindrance. Ideally a Dean-Stark  reaction would then be performed and further reduction would yield the 

imine, aza and oxa cages, but when Prins and colleagues (2008) performed the step of dehydration on 

pentacycloundecane reacted with amino propanol, the linker reacted with the opposite hydroxyl group. 

This was confirmed by crystallography shown in the figure 17. To avoid a similar reaction the hydroxyl 

linker was immediately reduced to obtain the oxapentacycloundecane, removing the opportunity to obtain 

the imine and aza derivatives via this reaction scheme. The benzyl piperidine is then capable of reacting 

by Sn2 reaction (complete mechanism as described in figure 15) to displace the methanesulfonyl group 

and obtain the final structure. 

AZA PENTACYCLOUNDECANE PIPERAZINE PHENYL SYNTHESIS 

To obtain the aza derivative the pentacycloundecane was protected by a ketal group discussed in Section 

3.1 of this chapter. Joining the intermediate with ketal pentacycloundecane was successful under 

microwave conditions. The reaction proceeded for 3 hours at a 150 W setting and maximum temperature 

of 100°C. (pressure 120 psi). The imine was then reduced by NaBH4 in ethanol (EtOH) to obtain the 

endo-amine and the ketal was hydrolysed by aqueous HCl in acetone as explained in Section 3.1 to obtain 

the aza pentacycloundecane compound. Originally the ketal structure was to be included but due to a 

limited amount of reagents and time constraints, the total yield of the ketal derivative was reduced 

(Banister et al., 2010). 

 

 Figure 18: Ketal pentacyclundecane and intermediate reaction 

AMANTADINE CONJUGATION 

The research protocol postulated synthesis of a complete benzyl piperazine intermediate which was then 

to be reacted with different polycyclic amines. Bromoadamantane is commercially available and it was 

proposed that this compound could react with intermediates containing a primary amine via the Sn2 

 

 

 

 



CHAPTER III: CHEMISTRY SYNTHESIS 

49 

 

mechanism. Unfortunately steric hindrance on the tertiary carbon greatly limits attack from the 

nucleophile. Extreme conditions were necessary to allow the primary amine to position itself behind the 

bromide leaving group. Unfortunately the intermediate turned out to be unstable at these high 

temperatures and pressures and degraded before nucleophilic attack could be facilitated. The adamantine 

series was therefore excluded from this study.  

 

Figure 19: Failed adamantane conjugation. 

3. Experimental 

3.1. Summary of reactions attempted.  

The following chemical reactions were attempted to obtain the suggested compounds. 

Table 8: Attempted reactions 

# Reaction Scheme 
C

o
n

d
it

io
n

s 

A
tt

em
p

te
d

 

P
ro

ce
e

d
ed

 

su
cc

es
sf

u
lly

 

P
u

ri
fi

ca
ti

o
n

 

%
 Y

ie
ld

 

Cookson Cage Synthesis 

1. 

O

O

O

O

+
O

O

a b

 

a.1. Benzene, 

        4 °C, 5 h 

a.2. Hex:EtOAc 

       (5:1), 4 °C, 5 h 

b.1.UV irradiation 

b.2.UV irradiation 

 

 

 

 

 

 

 

 

 

 

 

 

86.0%1 

 

96.7%1 

 

53.3% 

70.1% 

Benzyl Piperazine Synthesis 

2.1.a. 

NH + N

Cl

N

N

 

Toluene, K2CO3, 

 RT, 5 h 

  78.2% 
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2.1.b. 

N

N NH2N

 

THF, LiAlH4 

Et2O, LiAlH4 

THF, NaBH4 

? 

? 

? 

 

 

 

? 

? 

? 

2.2.a. 

NH + Cl
N

N
N

 

Toluene, K2CO3, 

RT, 5 h 

  63.7% 

2.2.b. 
N

N
NH2

N

 
THF, LiAlH4 ?  ? 

2.3.a. +

Cl
N

N NH
N

N

N

 

Toluene, K2CO3, 

 RT, 5 h 

  53.0% 

2.3.b. 

N

N

N
N

NH2

N

 

THF, LiAlH4 ?  ? 

2.4.a. +

N NH
Cl

N

N

N

N

 

Toluene, K2CO3, 

 RT, 8 h 

  57.2% 

2.4.b. 

N

N

N N

NH2

N

 

THF, LiAlH4 ?  ? 

3.1. 
NH

NH

Cl+

N

NH
 

Acetonitrile, 

4 °Creflux,7 h 

  64.4%1 

3.2. +

Cl

NH

NH N

NH  

Acetonitrile,  

4 °Creflux, 24 h 

  ? 

4. 
N NH NH.HBr

Br+
NH.HBr

NN

 

ACN, K2CO3, 

reflux, 72 h 

EtOH, K2CO3, 

reflux, 120 h 

 

 

 

 

 

 

 

 

 

5. 
N NH NH2Br+

NH2

NN

 

ACN, K2CO3, 4 °C, 

2 h 

?  ? 

6.1. 

N

NH

NH2

Cl

+
N

N
NH2 

ACN, K2CO3, RT, 

72 h 

  
92%1 

44.1% 
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6.2. 

Cl

N

NH

NH2
+

N

N

NH2 

ACN, K2CO3, 

reflux, 120 h 
  42.3%1 

Polycyclic amine conjugation synthesis 

7. 

+
OO

HBr.NH
Br

NO
Br

 

THF, reflux, 72 h 

MeOH, reflux, 120 

h 

ACN, K2CO3, reflux, 

72 h 

µλ, 150 W, 30 m, 

180 °C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8. 

+
OO

NH2
Br

NO
Br

 

THF, 0 °C, 4 h ?  ? 

9. 

OO

N

NH

NH2

+
NO

N

NH

 

THF, 4 °Creflux, 

48 h 

MeOH, 4°Creflux, 

48 h 

µλ, 250 W, 250 °C, 

30 m, 210 psi2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10. 

+
OO

NO

OHNH

 

THF, 4 °Creflux, 

24 h2 

MeOH, 4°Creflux, 

72 h2 µλ, 250 W, 

250 °C, 30 m, 210 

psi2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11. 

+
OO

N

N
NH2 NO

N

N

 

THF, 4 °Creflux, 

120 h2 

MOH,4°Creflux, 

120 h2  

µλ, 250 W, 250 °C, 

30 m, 210 psi2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12. 

OO

+ NH2 OH

O

NH
OH

 

THF, NaBH4,  

4 °CRT, 24 h 

  32.2% 
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13.a. 

+
O

NH
OH

S OCl

O

CH3

S

O
O

O

CH3

O

NH

 

DCM, Et3N,  

0 °CRT, 36 h 

DCM, Et3N,  

0 °Creflux, 36 h 

 

 

 

 

 

 

 

 

 

13.b. 

+
O

NH
OH

S O

CH3

O

Cl S
O

CH3

O
O

O

NH

 

Et2O:DCM:Et3N 

(5:1:4), 0 °CRT, 24 

h 

  20.0%1 

13.c. 

+S
O

CH3

O
O

O

NH
NH

N

O

NH

 

µλ, 100 W, 120 °C, 

10 min, 90 psi 
  9.3% 

14.1. 

Br
+ N

NH

NH2 NH
N

NH

 

µλ, 250 W, 250 °C, 

30 min, 210 psi2 
   

14.2. 

Br

NH

+ N

 

µλ, 250 W, 250 °C, 

30 min, 210 psi2 
   

14.3. 

+Br NNH N N

 

µλ, 250 W, 250 °C, 

30 min, 210 psi2 
   

14.4. 

NNH
Br + N N

 

µλ, 250 W, 250 °C, 

60 min, 210 psi2 
   

14.5. +

Br NHNH N NH

 

µλ, 250 W, 250 °C, 

45 min, 210 psi2 
   

14.6 

+
N

N
NH2

Br NH

N

N

 

EtOH, DMF etc. 

µλ, 250 W, 250 °C, 

15 min, 210 psi2 

   

14.7 
+ NH.HBr

Br
NH2

NH.HBr
NH  

µλ, 250 W, 250 °C, 

30 min, 210 psi2 
   

15.a 

+
OO

OH

OH O

O

O  

Toluene, TsOH, 

reflux, 5 h 
  40.1% 
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15.b 

O
NHO

N

N

N

N
NH2

+
O

OO

 

µλ, 150 W, 100 °C, 

3 h, 100 psi 
  ?1 

15.c 

O
NHO

N

N
NOH

N

N

 

EtOH, NaBH4, RT, 

18 h 

aq 4M HCl, acetone 

  41.0% 

1Yield inaccurate. Product not purified and still contained impurities and or solvent.  

2 Several microwave conditions were attempted and reacted at 15 minute intervals for a total of no more than 90 min if no 

difference was observed by TLC and the reaction was terminated early if it was clear that one of the reactants were degraded. 

These conditions alternated power output between 50, 100 and 150 watts, temperatures between 70 °C and 250 °C, different 

solvent systems including solid state reactions and finally pH adjustments with glacial acetic acid or triethylamine. 

3.2. Materials and methods 

PENTACYCLO[5.4.0.0
2,6

.0
3.1

0.0
5,9

]UNDECANE-8-11-DIONE 

 O O
 

p-Benzoquinone (10 g, 92.51 mmol) was dissolved in dried benzene (100 ml) and oxidised with MnO2 

(50 mg) by refluxing the mixture for 60 minutes. The reaction mixture was protected from light by means 

of aluminium foil. Activated charcoal was added to remove impurities and the mixture was allowed to 

reflux for a further 5 minutes. The mixture was vacuum-filtered through Celite

 to produce a clear yellow 

solution. This solution was cooled down to 5 °C by placing it on an external ice bath before slowly adding 

the freshly monomerised cyclopentadiene (12.23 g, 92.51 mmol). The reaction was monitored by means 

of TLC and addition of cyclopentadiene was discontinued when the di-adduct spot started to form on the 

TLC.  The solution was protected from light and stirred for 1 hour at room temperature to ensure the 

reaction proceeded to completion. Activated charcoal was added and the mixture stirred at room 

temperature for a further 30 minutes. Removal of the activated charcoal, followed by in vacuo 

evaporation of benzene resulted in the formation of intensely coloured amber oil. Excess solvent was 

allowed to fully evaporate in a dark cupboard to afford the yellow Diels-Alder adduct crystals. (This 

entire process can alternatively be done in a hexane: ethyl acetate solution (5:1) to avoid toxic benzene as 

solvent.) The crystals were dissolved in ethyl acetate (4 g per 100 ml) and irradiated with UV light for 72 

hours, using a photochemical reactor. Normally decolouration of the solution indicated that cyclisation of 

 

 

 

 



CHAPTER III: CHEMISTRY SYNTHESIS 

54 

 

the adduct was complete, but after 72 hours it was decided that TLC monitoring was suitable as 

decolourisation was not observed. Evaporation of the solution afforded a light yellow residue, which was 

purified by Soxhlet extraction in cyclohexane to produce the cage compound as fine light beige crystals 

(8.589 g, 53.3%). A solvent system of EtOAc and hexane was also evaluated. In this reaction 8 g of p-

benzoquinone (74.01 mmol) was dissolved in approximately 450 ml of the solvent system. The reaction 

steps were followed exactly as described above. In this instance the addition of cyclopentadiene was 

discontinued when p-benzoquinone was no longer visible on the TLC. The reaction afforded an improved 

yield of Cookson’s diketone but used approximately 5 times more solvent than benzene. The final crystals 

produced were lighter but TLC of the two compounds did not show any differences and infra-red spectra 

(IR) and melting points were comparable (9.037 g, 70.1%). (Cookson et al., 1958; Ito et al., 2007). 

3-(4-BENZYLPIPERIDIN-1-YL)PROPANENITRILE 

N

N

 

A stirred suspension of 4-benzylpiperidine (5.000 g, 28.52 mmol) 3-chloropropanenitrile (3.830 g, 42.79 

mmol, 1.5 equiv.) and potassium carbonate (3.230 g, 42.79 mmol, 1.5 equiv.) in toluene (125 ml, 1 g per 

25 ml) was refluxed for 5 h. Potassium carbonate was added to neutralise HCl produced by the reaction. 

After cooling, the mixture was poured into 50 ml of water and extracted with 3 x 25 ml dichloromethane 

to remove unreacted potassium carbonate and potassium salts produced by the reaction. The collected 

organic phases were washed with 75 ml of water and were then dried overnight with anhydrous MgSO4. 

The MgSO4 was removed by vacuum filtration and the solvent evaporated in vacuo to produce viscous 

yellow oil. The crude residue was further purified by column chromatography using a 70% ethyl acetate: 

chloroform mobile phase to yield the intermediate nitrile compound as a bright yellow oil (5.094 g, 

78.2%). 

Physical data: 
1
H NMR (200 MHz, CDCl3): δH: 7.39 – 7. 15 (m, 5H, H- 12, 13, 14, 15, 16, 17), 2.96 – 

2.83 (d, 2H, H- 11), 2.78 – 2.65 (t, 2H, H- 7), 2.59 – 2.44 (t, 4H, H- 2, 6), 2.12- 2.96 (t, 1H, H- 4), 1.87 – 

1.60 (d, 2H, H- 8), 1.43 – 1.23 (m, 4H, H- 3, 5) 

13
C NMR (50 MHz, CDCl3): δc: 138.789, 128.916, 128.711, 126.663, 116.578, 53.610, 52.677, 41.962, 

36.381, 28.980, 13.776 
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1-BENZYLPIPERAZINE 

N

NH
 

Benzyl chloride (2.351 g, 18.57mmol) was added drop wise to a stirred suspension of piperazine (8.000 g, 

92.87 mmol, 5.00 equiv.) and potassium carbonate (2.804 g, 2.00 equiv.) in acetonitrile on ice over the 

course of 2 hours. The reaction was allowed to react for an additional 5 hours under reflux conditions. 

The acetonitrile was removed by in vacuo evaporation and 50 ml of dichloromethane was added. The 

unreacted piperazine, potassium carbonate and the produced potassium salts were removed by washing 

the organic layer with 5 x 50 ml of water. The organic layer was dried with MgSO4 overnight, which was 

then filter off. The final mixture was evaporated in vacuo and yielded a yellow oil which contained one 

impurity visible under UV on TLC using ethyl acetate as mobile phase. The impurity was assumed to be 

1,4-dibenzylpiperazine from its concentration and position on TLC. The yellow oil’s infrared spectra 

compared to the National Institute of Standards and Technology database of the 1-benzyl piperazine 

compound confirmed that it was the desired 1-benzylpiperazine compound and that it was pure enough to 

be used in subsequent reactions (2.108 g, 64.4%).  (Stein, 2013).  

2-(4-BENZYLPIPERAZIN-1-YL)ETHANAMINE 

N

N
NH2 

Benzyl chloride (2.000g, 15.47 mmol) in 10 ml acetonitrile was added drop wise to a suspension of neat 

2-(piperazin-1-yl)ethanamine (10.030 g, 77.39 mmol, 5.00 equiv.) and potassium carbonate (1.752 g, 

23.21 mmol, 1.5 equiv.) over the course of 6 hours at room temperature. The reaction was allowed to 

proceed for a further 72 hours. The mixture was concentrated in vacuo to remove acetonitrile. The 

suspension was added to 50 ml of chloroform and the unreacted amino ethylpiperazine, potassium 

carbonate; and potassium salts were removed by 2 x 25 ml water extractions. The organic phase was then 

washed with 2 x 50 ml 0.01 M sodium hydroxide solution to remove unreacted benzyl chloride from the 

mixture. The organic solution was dried over MgSO4 overnight, which was then filtered off and the final 

solution was evaporated in vacuo to afford a clear oil with low viscosity. At this stage there were three 

compounds visible on TLC using a 95% MeOH: NH4OH mobile phase. The two impurities present had 

negligible concentrations relative to the desired compound. This final mixture weighed 3.372g and 

estimating the impurities present were estimated at no more than 5% the theoretical yield was 
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approximately 92%. The compound was further purified by column chromatography using a versa flash 

system and absolute ethanol as mobile phase. The elution of the compounds was extremely slow and 

inefficient and much of the product was lost during this process (1.528 g, 44.1%). Alternatively the 

compound could be crystallised out of THF, but the crystallisation was inconsistent and showed very poor 

yield (0.277 g, 8.0%). 

Physical data: 
1
H NMR (200 MHz, CDCl3): δH: 7.36 – 7.22 (m, 5H, H- 12, 13, 14, 15,16), 3.78 – 3.65 (s, 

2H, H- 10) 2.83 – 2.73 (t, 2H, H- 7), 2.59 – 2.36 (s, 4H, H- 3, 5), 1.92 – 1.80 (t, 2H, H- 8), 1.30 – 1.18 (s, 

4H, H- 6, 2). 

IR (υmax): 2937.52, 2807.48, 1454.64, 1138.59, 1008.94 

8- AMINOETHANOL-8,11- OXAPENTACYCLO[5.4.0.0 
2,6 

.0 
3.1

 0.0 
5,9

 ]UNDECANE  

O

NH
OH

 

2-Aminoethanol (1.774 g, 28.70 mmol) in 6 ml of THF was added drop wise to a mixture of 

pentacyclo[5.4.0.0
2,6

.0
3.1

0.0
5,9

]undecane-8-11-dione (5.000 g, 28.70 mmol. 1.00 equiv.) dissolved in 30 ml 

of THF over the course of 30 min on an external ice bath. The carbinolamine precipitated after 10 minutes 

but the reaction was allowed to react for 4 hours at room temperature until completed as monitored by 

TLC. Sodium borohydride (1.465 g, 38.75 mmol, 1.35 equiv.) was added to the reaction mixture and it 

was stirred for 8 hours to reduce the product to the oxa bridged pentacycloundecane compound. The THF 

solvent was removed in vacuo and the product was dissolved in 25 ml dichloromethane and washed with 

3 x 10 ml brine water to remove the unreacted sodium borohydride and reacted sodium salts. The product 

was then purified using 50% ethyl acetate; hexane as mobile phase to yield a beige coloured solid (2.033 

g, 32.3%). The compound was confirmed by comparison to previous NMR confirmed reference 

compound by TLC and IR (Lemmer et al., 2012). 

8- AMINOMETHANE SULFONYLETHANE-8,11-OXAPENTACYCLO[5.4.0.0 
2,6 

.0 
3.1

 0.0 
5,9

 

]UNDECANE 

S
O

CH3

OO

O

NH
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Methanesulfonyl chloride (261 mg, 2.28 mmol) dissolved in 10 ml of a 50:40:10 diethyl ether: 

dichloromethane: triethylamine solvent system was added drop wise to a stirred solution of ethanol-

amino-4-oxapentacyclo[5.4.1.0
2,6

.0
3,1

0.0
5,9

.0
8,11

]dodecane (500 mg, 2.28 mmol, 1.00 equiv.) in 20 ml of 

the same solvent system placed under nitrogen gas on an external ice bath consisting of ice, acetone and 

sodium chloride which cooled the reaction mixture to approximately -8 °C. At the moment of addition 

extreme fizzing took place and the pressure increased in the reaction vessel as a large amount of gas was 

expelled and the reaction vessel’s temperature increased despite the external ice bath. The reaction was 

allowed to stir overnight at room temperature. The mixture was evaporated in vacuo at relatively high 

temperature to remove the solvent system containing triethylamine. The mixture was dissolved in 10 ml 

of dichloromethane and washed with 2 x 10 ml of brine to remove unreacted methanesulfonyl chloride. 

The organic fraction was dried over MgSO4 for 6 hours, filtered and evaporated in vacuo to produce a 

dark yellow oil. From TLC the product was confirmed to be pure enough for subsequent reactions and IR 

showed a methanesulfonate functional group present in the compound (193 mg, approximately 20%). 

Physical data: 
1
H NMR (200 MHz, CDCl3): δH: 4.68 – 4.53 (m, 2H, H-15 ), 3.61 – 3.53 (t, 2H, H- 14), 

3.17 – 2.94 (t, 2H, H- 20), 2.90 – 2.32 (m, 9H, H- 1, 2, 3, 5, 6, 7, 8, 9, 10, 11), 1.95 – 1.46 (AB-q, 2H, H- 

4a, 4b). 

IR (υmax): 3390.54, 2964.25, 2863.24, 1172.50, 1042.43 cm
-1

 

8- AMINO- N-2-(4-BENZYLPIPERIDIN-1-YL)- -8,11- OXAPENTACYCLO[5.4.0.0 
2,6 

.0 
3.1

 

0.0 
5,9

 ]UNDECANE 

N

O

NH

 

Methanesulfonylethane-amino-4-oxapentacyclo[5.4.1.0
2,6

.0
3,1

0.0
5,9

.0
8,11

]dodecane (193 mg, 0.65 mmol) 

was reacted with 4-benzylpiperidine (114 mg, 0.65 mmol, 1.00 equiv.). The reactants were dissolved in 

approximately 7 ml of acetonitrile and a spatula point of potassium carbonate was added. It was then 

reacted in a microwave reactor for 10 min at a maximum temperature of 120 °C, a pressure which 

fluctuated around 90 psi and power output between 50 and 100 W. The reaction mixture was then 

dissolved in 10 ml of dichloromethane and washed with 2 x 5 ml of water to remove the potassium salts. 

Further purification by column chromatography was done starting with pure hexane as mobile phase and 

gradually incorporating ethyl acetate into the mobile phase at increments of 10%. The product eluded at 

50% ethyl acetate:hexane, but still contained impurities. The eluded compound was dissolved in 10 ml of 
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DCM and extracted with 3 x 10 ml 0.01M HCl solution. The acidic phases were collected and made basic 

with a 0.1M NaOH solution. The compound was then extracted with 3 x 30 ml of DCM. The organic 

fractions were collected, dried with MgSO4 overnight, filtered and dried in vacuo to yield viscous yellow-

orange oil (23 mg, 9.3%) 

Physical data:
 1

H NMR (200 MHz, CDCl3): δH: 7.38 – 7.19 (m, 5H, H- 23, 24, 25, 26, 27), 4.64 – 4.59 (t, 

2H, H- 11), 3.17 – 3.13 (d, 2H, H- 22), 2.79 – 2.40 (m, 21H, H- 1, 2, 3, 5, 6, 7, 8, 9, 10, 14, 15, 18, 19, 20, 

21, 22), 1.90 – 1.48 (AB-q, 2H, H- 4a, 4b). 

13
C NMR (50 MHz, CDCl3): δc: 136.79, 128.50, 127.46, 126.28, 126.20, 82.64, 60.95, 55.05, 53.16, 

51.96, 47.86, 47.59, 44.74, 44.53, 43.64, 43.40, 41.99, 41.71, 41.57, 41.29, 29.64  

IR (υmax): 2961.45, 2861.88, 1739.92, 1341.79, 1008.16 cm
-1 

MS (ESI, 15 eV): 378.2174 (M
+
 +2), 362.2292 (100%, [M-16]

+
)  

PENTACYCLO[5.4.0.0
2,6

.0
3,1

0.0
5,9

]UNDECANE-8,11-DIONE ETHYLENE ACETAL 

O

O

O
 

A mixture of pentacyclo[5.4.0.0
2,6

.0
3,10

.0
5,9

.0
8,11

]undecane-8,11-dione (5.000 g, 28.66 mmol), ethylene 

glycol (1.60 ml, 28.66 mmol, 1.0 equiv.) and acidic catalyst p-toluenesulfonic acid monohydrate (54 mg, 

0.28 mmol, 0.01 equiv.) in toluene (100 mL) was refluxed under Dean-Stark conditions for 5 h.  The 

reaction mixture was neutralised with 25 ml of a saturated aqueous NaHCO3 solution.  The layers were 

separated and the aqueous layer was extracted with 3 x 25 ml dichloromethane.  The combined organic 

layers were dried overnight with MgSO4, filtered and concentrated in vacuo.  The crude material was 

recrystallised from methanol as a white precipitate (2.332 g, 40.1%). The compound was compared to a 

previously NMR confirmed reference compound (Banister et al., 2010) by TLC and IR and discovered to 

be correct and pure enough for subsequent reactions. 

N-[2-(4-BENZYLPIPERAZIN-1-YL)ETHYL]-4-

PENTACYCLO[5.4.0.0
2,6

.0
3,1

0.0
5,9

]UNDECANE-11-ETHYLENE ACETAL  

O
NO

N

N
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Pentacyclo[5.4.0.0
2,6

.0
3,1

0.0
5,9

.0
8,11

]undecane-8,11-dione ethylene acetal ( 200 mg, 0.917 mmol) and 1-

benzylpiperazine (200 mg, 0.913 mmol, 1.00 equiv.) was reacted under microwave conditions. The 

reactants were dissolved in 7 ml of ethanol at a maximum temperature of 100 °C, power setting of 150 W 

and pressure of 100 psi for three hours. The reaction mixture was allowed to cool and directly used in the 

next step. 

N-[2-(4-BENZYLPIPERAZIN-1-YL)ETHYL]-4-AZAHEXACYCLO 

[5.4.1.0
2,6

.0
3,1

0.0
5,9

.0
8,11

]DODECAN-3-OL 

NOH

N

N
 

The cooled solution of N-[2-(4-benzylpiperazin-1-yl)ethyl]-4-Pentacyclo[5.4.0.0
2,6

.0
3,1

0.0
5,9

]undecane-11-

ethylene acetal and added NaBH4 (159 mg, 4.20 mmol, 1.4 equiv.), was stirred at r.t. for 8 h. EtOH was 

evaporated under reduced pressure water (10 ml) was added and the mixture was extracted with DCM (3 

× 10 ml). The combined organic extracts were washed with brine (10 mL), dried (Na2SO4), and 

concentrated in vacuo. To this crude material, acetone (25 ml) and 4 M aq. HCl (15 ml) were added. After 

stirring at r.t. for 12 h, the mixture was diluted with H2O (200 ml), basified to pH 14 with 1 M aq. NaOH, 

and extracted with DCM (3 × 15 ml). The combined organic extracts were dried (Na2SO4) and 

concentrated in vacuo. The crude product was purified by recrystallization from ethanol to yield the 

desired compound, as white crystals (157.86 mg, 41.0%). 

Physical data: 
1
H NMR (200 MHz, CDCl3) δH: 7.26 – 7.16 (m, 5H, H- 23, 24, 25, 26, 27), 3.43 (s, 2H, H- 

21), 3.56 – 3.30 (t, 2H, H- 13), 2.96 – 2.30 (m, 19H, H- 1, 2, 3, 4, 5, 6, 7 ,8, 9, 10, 11, 14, 16, 17, 19, 20), 

1.791 – 1.412 (AB-q, 2H, H- 4a, 4b). 

13
C NMR (50 MHz, CDCl3) δc: 137.98, 129.12, 128.21, 127.05, 70.79, 62.75, 58.66, 56.90, 52.75, 53.42, 

51.53, 46.62, 45.68, 45.40, 43.32, 43.25, 42.15, 41.88, 41.69 

IR (υmax): 3242.86, 2949.29, 2812.87, 1319.78, 1284.36 cm
-1 

MS (ESI, 15 eV): 378.2546 (100%,[M+1]
+
) 
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4. Final compounds and discussion 

4.1 Final compounds 

Three final compounds were obtained as shown in Table 9. All three adhered to Glennon’s proposed 

pharmacophore and two of the compounds incorporate pentacycloundecane. The included intermediate, 

by comparison, will help confirm whether pentacycloundecane structure improves σR activity and should 

be further investigated. 

Table 9: Synthesis Structures 

 

4.2 Discussion 

It was originally planned to evaluate structures that would investigate the effect of chain length, multiple 

amine binding sites and different polycyclic amine structures effect on σR binding. The final synthesised 

compounds included an oxa and aza derivative, a piperazine and piperidine derivative to be compared but 

unfortunately we were unable to obtain compounds that would evaluate chain length, ketal, imine and 

amantadine polycyclic structures.  

Reactions involving a two carbon chain between the benzyl and piperazine group (reactions 3.2 and 6.2 in 

Table 8) required higher temperatures than the one carbon chain reactions which would push the reaction 

to the formation of the di-ethylphenyl product. The reaction mixture also contained more unknown 

impurities at the higher temperature and could therefore not be used directly in subsequent reaction. The 

piperazine compounds were notoriously difficult to purify, but highly polar mobile phases and either 
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triethylamine treated silica or basic alumina as stationary phase were able to resolve some of the 

compounds, but they were never fully eluded and much of the final compound would be lost. It was for 

this reason that we decided to focus on the one carbon chain length moieties. 

 

Figure 20: General reaction scheme to obtain future pentacycloundecane piperazine phenyl moieties. 

These preliminary syntheses did however lead to a general reaction shown in figure 20 that can be utilised 

to not only obtain various chain lengths but also easily incorporate halogen substitution on the benzyl 

ring. This general reaction can also be used to obtain the ketal structure and points to a promising reaction 

to obtain the adamantane analogues. If an efficient method to obtain a hydroxyl linker with the 

adamantane structure is obtained the use of the methanesulfonyl protective group can be incorporated.  

The imine pentacycloundecane derivative remains elusive, but possibly further investigation into 

microwave conditions similar to the ketal reaction could be promising as the latter used a higher power 

output at lower temperatures for a longer duration compared to previously used high output, high 

temperatures for short duration. 
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IV. BIOLOGICAL EVALUATION 

1. Introduction 

To evaluate the compounds’ affinity for the sigma receptor (σR), competition radioligand binding assays 

are required. A radioligand is a radioactive labelled compound with known affinity to a receptor, enzyme 

or transporter of interest. The radioligand is first administered to a tissue sample to saturate available 

binding sites. The tissue sample is washed of residual radioligand that remains unbound and the 

compound being tested is then administered. The amount of radioligand displaced by the compound can 

be measured by gamma counting. A compound with higher affinity will be capable of displacing a larger 

proportion of radioligand. This number is used together with a nonspecific binding control that is capable 

of displacing a large excess of radioligand to plot the specific binding as a percentage of total binding 

(%B/100-%B, where %B is the percentage of bound radioligand in the absence of a competitor), against 

the log concentration of the competing ligand (log [L]). Non-linear regression of this graph can then be 

used to determine the half maximal inhibitory concentration (IC50) value, which is then used to calculate 

the compounds’ dissociation constant (Ki) values using the Cheng–Prusoff equation ( [L] = concentration 

of the competing ligand, KD = dissociation constant of the radioligand for the tested receptor). 

Ki =         IC50 

1 + ( [L] / KD ) 

Radioligand assays used to determine σR binding are standardised and can evaluate dual σR affinity, 

sigma 1 specific receptor (σ1R) affinity and sigma 2 specific receptor (σ2R) affinities. The source of σRs 

tested include human cell cultures such as neuroblastomas, but animal sources such as rat liver or brain 

tissue is overwhelmingly more common. Previous reports show that rat brain and rat liver homogenates 

yield similar binding affinities for σ1R, while rat liver is has been established as the preferred tissue for 

σ2R binding assays. For dual σR, the radioligand [
3
H] DTG is used. It possesses similar affinities for both 

the σ1R and σ2R, which makes it ideal for dual σR binding evaluation (Weber et al., 1986). The σ1R 

agonist and radioligand [
3
H] (+)-pentazocine is used for σ1R specific assays (de Costa et al., 1989). 

Currently σ2R ligands with the necessary specificity to be used as radioligands remain elusive. Instead the 

σ1R agonist dextrallorphan is incubated with cell membranes before further incubation with the dual σR 

radioligand [
3
H] DTG. Dextrallorphan is able to occupy the available σ1Rs and the then administered [

3
H] 

DTG binds to unoccupied σ2R, which can be used to assess σ2R specific receptor binding (Hellewell et 

al., 1994). To ascertain the feasibility of the synthesised structures, only σ1R specific radioligand binding 

was necessary to validate pentacycloundecane structures for future development of σR ligands. 
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2. Sigma-1 specific receptor binding assays 

To ensure comparable results, previously standardised procedures were used of which the most popular in 

recent publications is the method proposed by Matsumoto et al., (1995). In the following experiments rat 

liver membranes were used as the source of σRs, [
3
H] (+)-pentazocine was used as radioligand and all 

stock solutions and procedures including data processing were strictly adhered to as described by 

Matsumoto et al., (1995). The final results were expressed as IC50 and Ki values and further compared to 

known σR ligands. 

2.1 Materials 

ANIMALS  

Male Sprague-Dawley rat livers (250-300 g) from the Comparative Medicine Unit at Northeast Ohio 

Medical University (NEOMED) were used in the study. The Institutional Animal Care and Use 

Committee (IACUC) approved the assay protocols.  

RAT LIVER MEMBRANES  

Membranes were prepared from the livers of male Sprague-Dawley rats (250-300 g) according to the 

methods described by Matsumoto et al., (1995). Animals were sacrificed by decapitation, and the livers 

were removed and minced before homogenisation. The liver tissue was homogenised in 10 volumes of 

ice-cold 0.32 M sucrose. The crude homogenate was centrifuged at 1000 g for 10 min at 4 °C. The 

supernatant was further centrifuged at 20,000 x g for 15 min at 4 °C. The pellet was resuspended in 3 

volumes of ice cold 50 mM Tris-HCI / 0.32 M sucrose (pH 7.8) by vortexing and left to incubate for 30 

min at 25 °C. The suspension was recentrifuged at 20,000 x g for 15 min at 4 °C and the pellet was 

resuspended in a final volume of 1.53 ml/g ice-cold 50 mM Tris- HCl / 0.32 M sucrose (pH 7.8). 

2.2 Methods 

BINDING ASSAY 

Binding assays utilised optimized buffer and incubation conditions that were consistent with those 

reported in the literature. The compounds were prepared as 10 mM stock solutions in 100 % DMSO and 

diluted with Tris- HCI buffer on the day of the experiment. The final DMSO concentration in the 

incubation tubes was maintained at 0.1 %. 

The processed rat liver membranes (20 µg of membrane protein/tube) were first incubated with 8 nM [
3
H] 

(+)-pentazocine for 60 min at 37 °C.  One of the four concentrations (40, 4, 0.4 and 0.004 µM)) of the 
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desired compound being tested in a total volume of 0.25 ml of 50 mM Tris-HCl, pH 8 was added to 

saturated [
3
H] (+)-pentazocine membrane proteins and incubated for a further 60 min at 37 °C. Non-

specific binding was determined separately in the presence of 10 mM unlabelled TC-1 (Tocris, USA). 

Assays were terminated by dilution with 2 ml ice-cold 10 mM Tris-HCl, pH 8.0, and vacuum filtered 

through glass fibre filters (Whatman GF/C) that were soaked in 0.3% polyethylemeimine for at least 30 

min prior to use to reduce non-specific binding. The filters were rapidly washed with 2 ml ice-cold 10 

mM Tris-HCL, pH 8.0, repeating the washing process three times. Following washing, the filters were 

transferred to scintillation vials and 3 ml scintillation cocktail was added to each sample. Filters were 

allowed to soak in cocktail for a minimum of 15 minutes prior to counting. The vials now containing the 

displaced [
3
H] (+)-pentazocine were measured by Beckman scintillation counter.  All assays, including 

control, non-specific binding and compounds at their various concentrations were repeated in triplicate. 

DATA ANALYSIS 

The competition binding data were analysed with Prism 5 (GraphPad). A plot of specific binding as a 

percentage of total binding against the log concentration of the competing compound was analysed using 

a one-site nonlinear sigmoidal regression model to determine the concentration of ligand that inhibits 50% 

of the specific binding of the radioligand (IC50 value). Ki values were calculated from the IC50 using the 

Cheng–Prusoff equation. 

3. Results and discussion 

Final calculations were made from a graph of fraction [
3
H] (+)-pentazocine bound against log drug 

concentration (figure 21). 
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Figure 21: Fraction radioligand bound versus log concentration of final compounds (1,2 & 3) screened. 

Four concentrations were tested for each test compound. The graph shows how increasing concentration 

of the synthesised compounds decreased radioligand binding i.e. increased their occupation of the σ1R 

receptor. The graph was used to calculate the respective compounds IC50 values which indicated the 

compounds’ effectiveness in binding to the σ1R. In this case the term IC50 is used with discretion as IC50 

values are used to determine the efficacy of inhibitory properties of the tested compound. No 

pharmacological tests to obtain activity were done and therefor it is unknown whether the compounds 

inhibit or potentiate the σ1R. In this case it is there only to show the compounds’ potential potency on the 

σ1R. 

Table 10: Affinity values of final compounds 

Final Compounds Ki (nM) IC50 (µM) 

1 N

N
NH2  

1132.26 2.34 

2 

NOH

N

N

 

67.26 0.139 

3 

N

O

NH

 

132.10 0.273 

Pentacycloundecane containing compounds 2 and 3 had Ki results of 67.26 nM and 132.10 nM 

respectively, and pentacycloundecane absent compound 1 had a Ki constant of only 1132.26 nM. The 

pentacycloundecane addition increased ligand binding more than 10 fold for both the aza and oxa 

structures compared to compound 1. This directly shows that the polycyclic cage structure has a 

favourable effect on σ1R binding. This helps confirm that pentacycloundecane as a secondary lipophilic 

binding area is more favourable for binding than the nucleophilic primary amine present in the 

intermediate. 

It could also be suggested that the aza compound 2 had a two fold increase in affinity compared to the oxa 

compound 3, but the aza compound had a piperazine heterocycle rather than a piperidine structure as seen 

in the oxa compound. In Chapter II, Section 1.1 it was discussed that a decrease in affinity would be 

expected when comparing piperazine and piperidine structures, as the additional amine reduces optimum 

alignment. It could therefore be inferred that the increase in affinity had to be due to an overwhelming 

effect of the aza bridge, but these remarks are speculative and can only be confirmed with a new series of 

compounds that are exact in structure and only differ by an oxa or aza bridge. 
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The results of the new compounds compared favourably to previous studies of pentacycloundecane 

moieties evaluated for σR affinity that averaged within the range of 5 – 250 nM, see Table 6, Chapter I. 

In previous studies, the pentacycloundecane structures contain only the addition of one cyclic structure, 

usually in the form a benzyl ring that may or may not contain halogen substitution. Unfortunately our 

theory of increasing affinity by shifting the basic amine to a third cyclic structure remains unproven from 

the results obtained. The most comparable structure compound 59 that contains an unsubstituted benzyl 

group separated by a two carbon chain length had a Ki value of 15 nM, Table 6, Chapter I. This does not 

prove whether the addition of a third cyclic structure is advantageous, but it also doesn’t discredit the 

hypothesis as a majority of pentacycloundecane compounds in Table 6 show an Ki value similar to 

compounds 2 and 3. 

A previous series of compounds synthesised by our research group which followed a similar three linear 

cyclic system was tested for σ1R binding alongside the compounds from this study. The results from these 

compounds are included for comparison and are presented in Table 11. Compounds 2 and 3 showed 

improved affinity compared to compounds 4 – 8 and suggest that the pentacycloundecane followed by an 

amine containing aryl ring benzyl sequence is preferable for σ1R affinity and supports the pharmacophore 

suggested by Glennon et al., (1994, 2005). It is also important to notice that intermediate compound 5, 

despite the lack of a second lipophilic binding area, was still able to have significant σ1R binding. The aza 

compound 5 compared to oxa compounds 6 similar to compounds 1 and 2 showed increased σR binding. 

The difference was a significant increase in affinity from 11854.84 nM to 215.32 nM which strongly 

suggests that the aza compound is preferable for σ1R binding which is similar to the results of compounds 

1 and 2 from this present study. Intermediate compound 4 has an unexpectedly high affinity and it does 

not possess the necessary prescribed features of the pharmacophore including basic amine and two 

adjacent lipophilic regions as proposed by Glennon et al., (1994, 2005) and remains an anomaly within 

these results. Finally compound 8 which consists of the aza pentacycloundecane and a piperidine ring 

separated by a two carbon linker when compared to compound 2 indicates the addition of a benzyl group 

opposite the piperidine amine is favourable for σ1R affinity. 

Table 11: Affinity values of previous series 

Compounds Ki (nM) IC50 (µM) 

4 

 

OH

 
349.84 0.723 

5 

NH2 O  
250.65 0.518 
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6 

ONOH  

215.32 0.445 

7 

 

O

O

NH

 

11854.84 24.5 

8 

NOH
N

 

469.84 0.971 

4. Conclusion 

The compounds synthesised in this study still require significant improvement of their affinities when 

compared to commercially available σ1R ligands that have affinities ranging between 0.1 and 1.0 nM. The 

compounds presented in Table 1b, Chapter I, show that the pentacycloundecane structure unfortunately 

falls short to other lipophilic structures such as the benzyl groups. There were no structures that had the 

exact chain lengths of our final compounds so final conclusions regarding pentacycloundecanes ability to 

increase or decrease σ1R binding when compared to their benzyl counterparts can’t accurately be made. 

They do however compete strongly with other pentacycloundecane moieties tested for σR activity and 

considering the increased effect of halogen substitution and optimised chain length on compound affinity, 

these pilot compounds still have appreciable potential for further studies. The results encourage further 

testing of the final compounds to obtain a clearer σR binding profile.  
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V. SUMMARY & CONCLUSIONS 

1. Introduction 

Currently there are a limited number of sigma receptor (σR) ligands available and few possess the 

selectivity to accurately show the σR’s role in biological processes. These receptors have been implicated 

to have a neuromodulatory effect on the dopamine, serotonin, norepinephrine and acetylcholine pathways 

while also having an effect on GABA and glutamate neurotransmitters. They are promising as potential 

therapeutic targets for the management of drug addiction, neurodegeneration and cancer therapies (Jupp 

& Lawrence, 2010). Polycyclic amines have shown notable σR activity and provide an advantageous 

scaffold for drug design that can improve pharmacodynamic and pharmacokinetic properties (Kassiou et 

al., 1996; Marrazzo et al., 2001). This study focused on new potential pentacycloundecane structures for 

σR activity with the aim to expand knowledge of the sigma receptor binding site and its interaction with 

pentacycloundecane derivatives and conjugates. The pentacycloundecane structure is itself a promising 

structure for disease states including neurodegeneration and psychiatric conditions and has proven to 

greatly improve blood brain permeability (Brookes et al., 1992; Zah et al., 2003). The objectives of the 

study were thus to investigate, design, synthesise and evaluate novel chemical compounds for sigma 

receptor activity using polycyclic amine structures as scaffold. 

2. Methodology 

Investigation into the pharmacophore of the σR provided a basic template for σR activity. It was decided 

that the limited amount of polycyclic amines synthesised and evaluated for sigma receptor affinity 

provided the opportunity to develop a series that would adhere to the basic pharmacophore while 

expanding into the use of an aryl piperazine group. Benzyl piperazine and benzyl piperidine moieties 

were synthesised with the aim of conjugating these structures with pentacycloundecane derivatives. These 

synthesised structures were then analysed for σ1R specific affinity by using a standardised radioligand 

binding assay. 

3. Chemistry 

3.1 Original proposed chemical structures        

The originally proposed structures were designed to investigate different polycyclic amine structures, aryl 

amine structures and alternative chain lengths which could further analyse the role of polycyclic amines 

as prospective σR ligands and to expand the σR pharmacophore. 
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3.2 Final compounds and general reaction 

Conjugation of the polycyclic amines with benzyl piperazine moieties proved difficult, possibly due to 

steric hindrance and the multiple amines’ effect on the process of nucleophilic addition. The basicity of 

the compounds impeded purification and limited the amount of final compounds synthesised. The 

obtained compounds are shown in Table 12. Two of the structures contained an aza and oxa derivative 

and piperazine and piperidine respectively. It was originally envisioned to compare the imine, ketal, aza 

and oxa structures, but due to limited chemical reagents and synthesised compounds, only the aza and oxa 

intermediates were obtained. The extensive synthetic routes developed did however produce a general 

reaction scheme that could be easily employed in future studies using cage derived heterocycle-

benzylamine structures.  

Table 12: Final compounds and their respective yields 

Final Compounds Yield 

1 
N

N
NH2  

44.1% 

2 

NOH

N

N

 

41.0% 

3 

N

O

NH

 

9.3% 

 

The newly designed reaction scheme should be able to efficiently produce the original proposed structures 

and provides the opportunity to investigate halogen substitution and various chain lengths. The reaction 

utilises microwave radiation in vital steps, which we believe greatly improve reaction conditions and final 

yield. The majority of steps should also be easy to purify by acid/base extractions which will also 

contribute to improved time, yield and productivity. See figure 20 for the general reaction scheme and 

Table 13 for a proposed series to contribute to further development of polycyclic amines for σR activity 

and selectivity. 
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Figure 20: General reaction scheme to obtain future pentacycloundecane piperazine phenyl moieties. 

Table 13: Future compounds to be synthesised 

Prospective compounds 

N

N
R =

Series A Series B Series C Series D

(  )m

ON

R

N

OH

R

O
NHR

N O

O

R

NH

R

Series E

(  )n

X
X = F, Cl, Br

       (o, m, p)

 

 n m 

1* 1 1, 2, 3 

2* 2 1, 2, 3 

3* 3 1, 2, 3 
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4. Biological evaluation & results 

The test compounds’ affinity for the σ1R was determined by a radioligand binding study on Sprague-

Dawley rat liver membranes using [
3
H] (+)-pentazocine as marker. The compounds’ different structural 

properties were compared. The synthesised structures’ affinity fell between the ranges of 50 nM and 150 

nM which validate the use of pentacycloundecanes to optimise σR binding. However, considering the 

differences between the oxa and aza structure, it was difficult to draw concrete conclusions on their 

structure activity relationships and a larger series would have to be developed to fully understand the 

polycyclic amines’ effect on σ1R binding. When comparing the test compounds designed in this study to 

previous σ1R ligands, it confirmed that the aza structures in general have a higher affinity for the σ1R than 

the oxa structures. The affinities were comparable when compared to previously published 

pentacycloundecane structures tested for σ1R affinity (Kassiou et al., 1996; Marrazzo et al., 2001, Liu et 

al., 2001, 2005; Bannister et al., 2010). The addition of an aryl amine to improve affinity remains 

inconclusive and it would require a series of various chain lengths and a benzyl group with alternative 

halogen substitutions to prove our theory. Further comparison of the structures to commercially available 

σ1R ligands shows that the affinity of the pentacycloundecane structures would have to undergo 

additional optimisation before being able to compete against available σR ligands. 

Table 10: Affinity values of final compounds 

Final Compounds Ki (nM) IC50 (µM) 

1 
N

N
NH2  

1132.26 2.34 

2 

NOH

N

N

 

67.26 0.139 

3 

N

O

NH

 

132.10 0.273 

5. Final remarks & future outlook 

An important consideration when comparing the pentacycloundecane’s affinity to other available σR 

ligands is their favourable effect on blood brain barrier permeability and other receptor and channel 

activities that were not evaluated in this present study. Pentacycloundecane compounds could show better 

specificity compared to their benzyl counterparts or interact favourably with other receptor targets 

implicated in different CNS disease states. The σR ligands are being supported as potential 

neuromodulatory agents and it is known that pentacycloundecane structures have increased central 
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concentrations compared to their polycyclic amine absent counterparts. Currently the focus of new σR 

ligand studies is aimed at obtaining σ2R specific ligands. This was not one of our aims as we focused on 

the justification of using pentacycloundecane structures for σR ligand development. Further biological 

screening for dual σR activity and σ2R specific activity should be conducted as these compounds could 

prove useful for σ2R specificity. If these results are promising, further biological assays to evaluate not 

only their affinity for different receptor classes, but also their pharmacological activity on other relevant 

biological targets should be explored. The test compounds’ calcium channel activity could assist in 

evaluating the test compounds’ functionality regarding potential neuroprotective properties and determine 

agonist or antagonist action. Using fluorescent imaging and the fluorescent calcium channel indicator 

FURA2/AM in a comparative series of experiments that utilise NMDA antagonists, voltage gated calcium 

channel antagonist and sigma receptor agonist and antagonist, a pharmacological profile of the 

compounds can be established, see (Annexure 2). This protocol was devised at the start of this study, but 

could not be used due to time constraints. It should also prove valuable in adding to our understanding of 

the biological processes involved in activating the σR and its effect in cellular calcium. Towards the end 

of this study an article that described the crystallography of the σ1R was published (Laurini et al., 2011). 

This is a very exciting prospect for σR ligand design as a receptor based approach using computerized 

molecular modelling software can now be followed to obtain σR binding in addition to the ligand based 

approach used in this study. 
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ANNEXURE A – SPECTRAL DATA 
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ANNEXURE B – FLUORESCENT IMAGING PROTOCOL 

Calcium measurement with FURA-2/AM using SK-N-SH neuroblastoma cells 

The objectives of the following assay are to evaluate novel test compounds effect on voltage gated 

calcium channels and N-Methyl-D-aspartic acid receptor channels. The test compounds were designed to 

show sigma receptor activity and calcium flux effects will be valuable to determine if the compounds are 

sigma agonists or antagonists. 

Two subclasses of sigma receptors have been classified; sigma 1 and sigma 2. The sigma 1 receptor 

agonists increase intracellular calcium by increasing the efflux of endoplasmic reticulum calcium, 

specifically via IP3 that regulate calcium signalling from the endoplasmic reticulum to mitochondria. This 

calcium release has been shown to be from thapsigargin-sensitive intracellular calcium stores and is 

mediated by the sigma 2 receptor. Sigma 1 receptor agonists increase N-Methyl-D-aspartic acid (NMDA) 

receptor channel mediated calcium influx (Hayashi & Su 2007). This increase is inhibited by sigma 1 

receptor antagonist.  Sigma receptor ligands also inhibit voltage gated calcium channels (VGCC), which 

seems to be mediated by the sigma 2 receptor (Monnet et al., 1990). Sigma 1 and sigma 2 receptor agonist 

cause a substantial rise in transient [Ca
2+

]i (intracellular calcium concentrations) in neuroblastoma SK-N-

SH cells. Prolonged exposure of cells to sigma receptor ligands was shown to result in latent and 

sustained rise in [Ca
2+

]i with a pharmacological profile identical to the transient rise (Vilner & Bohen, 

2000).  

The test compounds are also structurally similar to the calcium channel inhibitor NGP1 – 01. Both 

contain pentacycloundecane and a benzyl group. NGP1 – 01 was first characterized and patented as a 

calcium channel antagonist in 1986 (Van der Schyf et al., 1986). Further research has shown that NGP1 – 

01 is a lipophilic L-type channel blocker (Geldenhuys et al., 2005). 

Fura-2-acetoxymethyl ester, often abbreviated Fura-2AM, is a membrane-permeable derivative of the 

ratiometric calcium indicator Fura-2. It is extensively used in biochemistry to measure cellular calcium 

concentrations by fluorescence. When added to cells, Fura-2AM crosses cell membranes and once inside 

the cell, the acetoxymethyl groups are removed by cellular esterases. Removal of the acetoxymethyl 

esters gives Fura-2, the pentacarboxylate calcium indicator. Fura-2 when bound to calcium undergoes a 

shift in absorption from 335 and 363 nm to 340 and 380 nm. Measurement of Ca
2+

-induced fluorescence 

at both 340 nm and 380 nm allows for calculation of calcium concentrations based 340/380 ratios. The 

use of the ratio automatically cancels out certain variables such as local differences in Fura-2 

concentration or cell thickness that would otherwise lead to artefacts when attempting to image calcium 

concentrations in cells (Grynkiewicz et al., 1985). 
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Human SK-N-SH neuroblastoma cells express sigma 1 and sigma 2 receptors with similar 

pharmacological profiles to those of rodent–derived tissue, although sigma 2 receptors exhibit some 

affinity differences that might suggest heterogeneity or species difference (Vilner & Bowen et al., 2000). 

It is well established that SK-N-SH cell cultures consist of two different cell types, neuron-like and 

epithelium-like cells. The two cell types are easily distinguishable using phase contrast microscopy on the 

basis of size and shape (Ross et al., 1983). 

Novel compounds will be evaluated for calcium channel modulation through VGCC and/or NMDAR 

calcium channels. The compounds’ effect on intracellular calcium in the presence of sigma agonists and 

antagonist will also be evaluated. 

Adapted methods described by Vilner & Bowen, 2000 and Larsson et al., 2002 will be performed. 

Materials 

CELL CULTURE 

SK-N-SH: Neuroblastomas from neural tissue 

Fura-2/AM: 2.5 µg/mL in DBPS 

Dulbecco’s Modified Eagle’s Medium (DMEM) enriched with 10% foetal bovine serum 

1% Penicillin/Streptomycin: (Pen/Strep) 10 000 units in 100 mL stock 

0.1% Fungizone: 2.5 µg/mL units stock 

BUFFER SOLUTIONS 

Dulbecco’s phosphate buffered saline (DPBS; 136.9 mM NaCl, 2.68 mM KCl, 0.49 mM MgCl2, 8.10 mM 

Na2HPO4, 1.47 mM KH2PO4, 0.904 mM CaCl2, 5.55 sulphate, pH 7.2) 

Cell Dissociation Solution Non-enzymatic 1x: Prepared in phosphate buffered saline without calcium and 

magnesium. 

DEPOLARISATION SOLUTIONS 

KCl depolarising solution in (mM): 55 mM KCl in normal DPBS 

NMDA and glycine: 0.1 M stock solution. When needed dissolve 1 µL of stock solution in 1 mL DPBS 

solution to produce 100 µM. 

STOCK SOLUTIONS 
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Cadmium Chloride (VGCC blocker): 100 µM, 50 µM, 10µM, 1 µM and 0.1 µM stock solutions in 

DMSO 

MK – 801 (NMDAR channel antagonist): 100 µM, 50 µM, 10µM, 1 µM and 0.1 µM stock solutions in 

DMSO 

BD 1047 (Selective sigma 1 antagonist): 100 µM, 50 µM, 10µM, 1 µM and 0.1 µM stock solutions in 

DMSO 

PRE – 084 (Selective sigma 1 agonist): 100 µM, 50 µM, 10µM, 1 µM and 0.1 µM stock solutions in 

DMSO 

PB 28 (Selective sigma 2 agonist): 100 µM, 30 µM, 50 µM, 10µM, 1 µM and 0.1 µM stock solutions in 

DMSO 

Test Compounds: 100 µM, 50 µM, 10µM, 1 µM and 0.1 µM stock solutions in DMSO 

Methods 

THE SK-N-SH CELL CULTURE 

The SK-N-SH line is cultivated in Dulbecco’s Modified Eagle’s Medium (DMEM) enriched with 10% 

foetal bovine serum (FBS), 1% penicillin/streptomycin (Pen/Strep) (10 000 units/100 mL stock) and 0.1% 

Fungizone (FZ) (2.5 μg/mL units stock). The cells are incubated at 37 °C in a 5% CO2 and 95% O2 

humidified atmosphere. Once it forms a confluent monolayer, it is washed in Dulbecco’s phosphate buffer 

solution (DPBS) and dispersed with cell dissociation solution. Cells are harvested by centrifuging and 

resuspending in DMEM/10% FBS at a density of 50 000 to 100 000 cells/ml.  

The SK-N-SH cells are developed to be 90% enriched in the neuron-like cell type. To achieve this, mixed 

cells are cultured to 60 – 70% confluence. After decanting the medium, the culture is washed twice with 

DBPS. Non-enzymatic cell dissociation solution is added to the culture for 3 – 5 min. Because neuron-

like cells lie on the epithelial-like cells, they detach more easily and earlier. The detached cells are 

collected and centrifuged (2000 rpm, 5 – 7 min), and the cell pellet is resuspended and replated in fresh 

medium. The cells are again allowed to grow to 60 – 70% confluence, and the procedure is repeated. 

Cells are frozen in 90% medium/10% DMSO. After reculturing, the cells can be used for experiments. 

Cultures prepared in this way should consist of 90 – 95% neuron-like cells (Vilner & Bowen, 2000). 

 

MEASUREMENT OF INTRACELLULAR FREE CALCIUM CONCENTRATION 
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Calcium indicator Fura - 2 is used to measure changes in [Ca
2+

]i at 24 °C on cells grown to 70 – 80% 

confluence (Grynkiewicz et al. 1985). Cells are incubated with 2.5 μM Fura – 2/AM in DPBS for 30 – 40 

min, and then washed twice in DBPS and kept for an additional 10 min to ensure complete hydrolysis of 

Fura - 2/AM to the ratiometric indicator Fura - 2. DPBS is renewed for a final time and [Ca
2+

]i imaging or 

spectrometry can be performed. Background or auto-fluorescence is measured by cells not labelled with 

Fura – 2 but with 0.1% DMSO present to replicate test conditions (Larson et al., 2002). The baseline 

reading of this measurement is auto-fluorescence and is repeated before each assay. Compounds that are 

to be incubated with the cell line are co-incubated with the Fura - 2 at this stage. 

INCUBATING SK-N-SH WITH TEST COMPOUNDS 

Prepare 0.1 M, 0.05 M, 0.01 M, 0.001, 0.0001 M stock solutions of relevant test compounds in solvent 

DMSO. When needed dissolve 1 µL of stock solution in 1 mL DPBS solution to produce 100 µM, 50 

µM, 10µM, 1 µM and 0.1 µM solutions of test compounds respectively in a 0.1% DMSO final 

concentration. 

RECORDING PARAMETERS 

Fura – 2/AM 

Excitation 340/380 nm 

Emission 510 nm 

Temperature 24 °C 

ASSAYS TO BE PERFORMED 

Voltage gated calcium channel (VGCC) inhibition assays and NMDAR calcium channel inhibition assays 

are well established (Joubert et al., 2011).  

Standard radioligand binding studies can show affinity for the sigma receptor but cannot show the test 

compounds’ activity or potency on a specified system. Assays to evaluate sigma 1 and 2 specific agonist 

alone and in combination with sigma antagonist will be used to evaluate the calcium altering properties of 

the sigma receptor in SK-N-SH. This will provide a pharmacological profile for sigma agonist or 

antagonist, which can then be compared to the properties of the test compounds. This will help determine 

if the test compounds are more sigma agonist or antagonist like i.e. point to their activity and possibly 

show whether they are sigma 1 or 2 receptor specific.  

Various concentrations of test compounds and reference compounds will be tested. The IC50 values of the 

test compound can therefore be evaluated i.e. pointing to their potency when compared to known 
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reference standards. Affinity could be calculated by applying the Cheng-Prusoff equation to IC50 values to 

obtain apparent Ki values but preferably these results should be compared to a more accurate radioligand 

binding studies, considering the test compounds could bind to multiple sites. 

It would be ideal to measure the same transient and latent increase in intracellular calcium observed by 

Vilner & Bohen, 2000.  A time dependant recording of transient calcium increase will require the relevant 

compounds to be administered at approximately 10 seconds into a continuous recording lasting 5 – 10 

min. After 10 min a [Ca
2+

]i measurement every 10 min for up to 70 min can be determined. Alternatively 

a non-time dependant study can be done. This will involve incubating the test compounds with the 

respective compounds being evaluated for 30 – 40 min, which will provide a representation of the latent 

[Ca
2+

] i increase. 

Accurate comparison is difficult as most commercially available sigma receptor ligands show activity on 

multiple sites and as there are significant differences in binding affinity between these ligands. Sigma 1 

and 2 agonists PRE-084 and PB 28 will be used as reference standards.  Sigma receptor antagonism will 

be evaluated with BD 1047, which is a sigma 1 specific antagonist. At high concentrations BD 1047 is 

also able to antagonise the sigma 2 receptor sites, but to a lesser extent than sigma 1 receptor antagonism. 

PRE – 084 hydrochloride is a high affinity, selective sigma 1 agonist. Its Ki values are 2.2 and 13091 nM 

for sigma 1 and sigma 2 receptors respectively. It is selective over PCP receptors (IC50 > 100000 nM) and 

several other receptor systems (Su et al., 1991).  

BD 1047 dihydrobromide is a selective, putative sigma receptor antagonist. BD-1047 has >50-fold 

selectivity at sigma 1 over sigma 2 and also >100-fold selectivity over opiate, phencyclidine, muscarinic, 

dopamine, α1- & α2-adrenoceptor, 5-HT1, and 5-HT2 (Matsumoto et al., 1995).  

PB 28 dihydrochloride is a high affinity sigma 2 receptor agonist with Ki values of 0.8 and 15.2 nM for 

sigma 2 and sigma 1 receptors respectively and displays minimal affinity at other receptors (Berardi et al., 

1996).  

The assays will be divided into Reference, Control, Comparison and Experimental. 

The reference assays will evaluate reference compounds at various concentrations to obtain their IC50 

values in this test system to be compared to the test compounds. 

The control assays will evaluate the cell cultures’ normal functioning in resting and depolarised state. 

The comparison assays will be used to evaluate similarities and differences between known reference 

compounds and test compounds to help classify the test compounds.  
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The experimental assays will specifically look at the test compounds’ activity in the presence of various 

agonists and antagonists to determine its cellular properties. 

Table 14: Assays to be performed for calcium fluorescent protocol 

 Compound Function Time added Assay Description 

1 Fura – 2 absent Control: Auto-fluorescence and DMSO effect 

on fluorescence (Base line reading **)  0.1% DMSO Solvent Incubated for 

30 – 40 min 

2 Test Compound* Unknown 10 s into 

recording 

Experiment: Inherent calcium activity 

in the absence of other compounds 

 VGCC specific assay  

3 MK – 801 

[100 µM] 

NMDAR calcium 

channel antagonist 

Incubated for 

30 – 40 min 

Control: Measure maximum calcium influx 

via VGCC. Fluorescence measured is taken to 

be 100%. MK – 801 ensures selective 

evaluation of VGCC’s by antagonising 

NMDAR 

 KCl depolarising 

reagent 

Depolarise cells and 

activate calcium 

influx 

Incubated for 

10 s into 

recording 

4 Cadmium 

Chloride* 

VGCC blocker Incubated for 

30 – 40 min 

Reference: VGCC inhibition 

 MK – 801 

 [100 µM] 

NMDAR calcium 

channel antagonist 

Incubated for 

30 – 40 min 

 KCl depolarising 

reagent 

Depolarise cells and 

activate calcium 

influx 

10 s into 

recording 

5 Test Compound* Unknown Incubated for 

30 – 40 min 

Experiment: VGCC inhibitory effect, 

expressed as percentage compared to 100% 

KCl depolarisation of control.  MK – 801 

 [100 µM] 

NMDAR calcium 

channel antagonist 

Incubated for 

30 – 40 min 

 KCl depolarising 

reagent 

Depolarise cells and 

activate calcium 

influx 

10 s into 

recording 

 NMDAR specific assay 

6 Cadmium Chloride 

[100 µM] 

VGCC blocker Incubated for 

30 – 40 min 

Control: Measure maximum calcium influx 

via NMDAR. Fluorescence measured is taken 

to be 100%. Cadmium Chloride ensures 

selective evaluation of NMDAR by blocking 

 NMDA/Glycine Activate NMDAR 

calcium influx 

10 s into 

recording 
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all VGCC’s. 

7 MK – 801* NMDAR calcium 

channel antagonist 

Incubated for 

30 – 40 min 

Reference: NMDAR calcium influx inhibition 

 Cadmium Chloride 

[100 µM] 

VGCC blocker Incubated for 

30 – 40 min 

 NMDA/Glycine Activate NMDAR 

calcium influx 

10 s into 

recording 

8 Test Compound* Unknown Incubated for 

30 – 40 min 

Experiment: NMDAR calcium influx 

inhibitory effect, expressed as percentage 

compared to 100% NMDA and glycine 

depolarisation of control. 

 Cadmium Chloride 

[100 µM] 

VGCC blocker Incubated for 

30 – 40 min 

 NMDA/Glycine Activate NMDAR 

calcium influx 

10 s into 

recording 

 Selective sigma 1 receptor  agonist assay 

9 PRE – 084* Selective sigma 1 

agonist 

10 s into 

recording 

Reference: Sigma 1 receptor effect on 

intracellular calcium 

10 Test Compound* Unknown Incubated for 

30 – 40 min 

Experiment: Evaluate if test compound 

reverses effect of PRE-084 in a similar way 

to sigma receptor antagonist BD 1047.  PRE – 084  

[10 µM] 

Selective sigma 1 

agonist 

10 s into 

recording 

11 Cadmium Chloride 

[100 µM] 

VGCC blocker Incubated for 

30 – 40 min  

Comparison: Selective sigma 1 receptor 

effect on intracellular calcium if VGCC effect 

is cancelled  PRE – 084 

 [10 µM] 

Selective sigma 1 

agonist 

10 s into 

recording 

12 Cadmium Chloride 

[100 µM] 

VGCC blocker Incubated for 

30 – 40 min  

Experiment: Evaluate if test compound 

reverses effect of PRE-084 in a similar way 

to sigma receptor antagonist BD 1047.  Test Compound* Unknown 10 s into 

recording 

 PRE – 084  

[10 µM] 

Selective sigma 1 

agonist 

10 s into 

recording 

13 MK – 801 

 [100 µM] 

NMDAR calcium 

channel antagonist 

Incubated for 

30 – 40 min 

Comparison: Selective sigma 1 receptor 

effect on intracellular calcium if NMDAR 

effect is cancelled 

 PRE – 084 

 [10 µM] 

Selective sigma 1 

agonist 

10 s into 

recording 
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14 MK – 801  

[100 µM] 

NMDAR calcium 

channel antagonist 

Incubated for 

30 – 40 min 

Experiment: Evaluate if test compound 

reverses effect of PRE-084 in a similar way 

to sigma receptor antagonist BD 1047.  Test Compound* Unknown 10 s into 

recording 

 PRE – 084  

[10 µM] 

Selective sigma 1 

agonist 

10 s into 

recording 

15 Cadmium Chloride 

[100 µM] 

VGCC blocker Incubated for 

30 – 40 min 

Comparison: Selective sigma 1 receptor 

effect on intracellular calcium if VGCC and 

NMDAR effect is cancelled  MK 801 [100 µM] NMDAR calcium 

channel antagonist 

Incubated for 

30 – 40 min 

 PRE – 084 

 [10 µM] 

Selective sigma 1 

agonist 

10 s into 

recording 

16 Cadmium Chloride 

[100 µM] 

VGCC blocker Incubated for 

30 – 40 min 

Experiment: Evaluate if test compound 

reverses effect of PRE-084 in a similar way 

to sigma receptor antagonist BD 1047.  MK 801 [100 µM] NMDAR calcium 

channel antagonist 

Incubated for 

30 – 40 min 

 Test Compound* Unknown 10 s into 

recording 

 PRE – 084  

[10 µM] 

Selective sigma 1 

antagonist 

10 s into 

recording 

 Selective sigma 2 receptor  agonist assay 

17 PB 28* Selective sigma 2 

agonist 

10 s into 

recording 

Reference: Sigma 2 receptor effect on 

intracellular calcium 

18 Test Compound* Unknown Incubated for 

30 – 40 min 

Experiment: Evaluate if test compound 

reverses effect of PB 28  

in a similar way to sigma receptor antagonist 

BD 1047. 

 PB 28  

[30 µM] 

Selective sigma 2 

agonist 

10 s into 

recording 

19 Cadmium Chloride 

[100 µM] 

VGCC blocker Incubated for 

30 – 40 min  

Comparison: Selective sigma 2 receptor 

effect on intracellular calcium if VGCC effect 

is cancelled  PB 28  

[30 µM] 

Selective sigma 2 

agonist 

10 s into 

recording 

20 Cadmium Chloride 

[100 µM] 

VGCC blocker Incubated for 

30 – 40 min  

Experiment: Evaluate if test compound 

reverses effect of PB 28  

in a similar way to sigma receptor antagonist 

BD 1047. 

 Test Compound* Unknown 10 s into 

recording 
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 PB 28  

[30 µM] 

Selective sigma 2 

agonist 

10 s into 

recording 

21 MK – 801 

 [100 µM] 

NMDAR calcium 

channel antagonist 

Incubated for 

30 – 40 min 

Comparison: Selective sigma 2 receptor 

effect on intracellular calcium if NMDAR 

effect is cancelled  PB 28  

[30 µM] 

Selective sigma 2 

agonist 

10 s into 

recording 

22 MK – 801  

[100 µM] 

NMDAR calcium 

channel antagonist 

Incubated for 

30 – 40 min 

Experiment: Evaluate if test compound 

reverses effect of PB 28  

in a similar way to sigma receptor antagonist 

BD 1047. 

 Test Compound* Unknown 10 s into 

recording 

 PB 28  

[30 µM] 

Selective sigma 2 

agonist 

10 s into 

recording 

23 Cadmium Chloride 

[100 µM] 

VGCC blocker Incubated for 

30 – 40 min 

Comparison: Selective sigma 2 receptor 

effect on intracellular calcium if VGCC and 

NMDAR effect is cancelled  MK 801  

[100 µM] 

NMDAR calcium 

channel antagonist 

Incubated for 

30 – 40 min 

 PB 28  

[30 µM] 

Selective sigma 2 

agonist 

10 s into 

recording 

24 Cadmium Chloride 

[100 µM] 

VGCC blocker Incubated for 

30 – 40 min 

Experiment: Evaluate if test compound 

reverses effect of PB 28  

in a similar way to sigma receptor antagonist 

BD 1047. 

 MK 801 [100 µM] NMDAR calcium 

channel antagonist 

Incubated for 

30 – 40 min 

 Test Compound* Unknown 10 s into 

recording 

 PB 28  

[30 µM] 

Selective sigma 2 

agonist 

10 s into 

recording 

           Sigma antagonist receptor  assay 

25 BD 1047* Selective sigma 1 

antagonist 

10 s into 

recording 

Reference: Sigma 1 receptor antagonist 

effect on intracellular calcium 

26 BD 1047  

[100 µM] 

Selective sigma 1 

antagonist 

Incubated for 

30 – 40 min 

Experiment: Evaluate if BD 1047 reverses 

effect of test compound similar to PRE – 

084.  Test Compound* Unknown 10 s into 

recording 

27 Cadmium Chloride 

[100 µM] 

VGCC blocker Incubated for 

30 – 40 min  

Comparison: Selective sigma 1 receptor  

antagonist effect on intracellular calcium if 
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 BD 1047  

[100 µM] 

Selective sigma 1 

antagonist 

10 s into 

recording 

VGCC effect is cancelled 

28 Cadmium Chloride 

[100 µM] 

VGCC blocker Incubated for 

30 – 40 min 

Experiment: Evaluate if BD 1047 reverses 

effect of test compound similar to PRE – 

084.  BD 1047  

[100 µM] 

Selective sigma 1 

antagonist 

10 s into 

recording 

 Test Compound* Unknown 10 s into 

recording 

29 MK – 801  

[100 µM] 

NMDAR calcium 

channel antagonist 

Incubated for 

30 – 40 min 

Comparison: Selective sigma 1 receptor 

antagonist effect on intracellular calcium if 

NMDAR effect is cancelled  BD 1047  

[100 µM] 

Selective sigma 1 

antagonist 

10 s into 

recording 

30 MK – 801  

[100 µM] 

NMDAR calcium 

channel antagonist 

Incubated for 

30 – 40 min 

Experiment: Evaluate if BD 1047 reverses 

effect of test compound similar to PRE – 

084.  BD 1047  

[100 µM] 

Selective sigma 1 

antagonist 

10 s into 

recording 

 Test Compound* Unknown 10 s into 

recording 

31 Cadmium Chloride 

[100 µM] 

VGCC blocker Incubated for 

30 – 40 min 

Comparison: Selective sigma 1 receptor 

antagonist effect on intracellular calcium if 

VGCC and NMDAR effect is cancelled  MK 801  

[100 µM] 

NMDAR calcium 

channel antagonist 

Incubated for 

30 – 40 min 

 BD 1047  

[100 µM] 

Selective sigma 1 

antagonist 

10 s into 

recording 

32 Cadmium Chloride 

[100 µM] 

VGCC blocker Incubated for 

30 – 40 min 

Experiment: Evaluate if BD 1047 reverses 

effect of test compound similar to PRE – 

084.  MK 801  

[100 µM] 

NMDAR calcium 

channel antagonist 

Incubated for 

30 – 40 min 

 BD 1047  

[100 µM] 

Selective sigma 1 

antagonist 

10 s into 

recording 

 Test Compound* Unknown 10 s into 

recording 

 Sigma receptor antagonist and sigma 1 selective agonist assay (Optional) 

33 BD 1047  

[100 µM] 

Selective sigma 1 

antagonist 

10 s into 

recording 

Comparison: Antagonist reversal of sigma 1 

receptor effect on intracellular calcium. 
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 PRE – 084 

 [10 µM] 

Selective sigma 1 

agonist 

10 s into 

recording 

34 Cadmium Chloride 

[100 µM] 

VGCC blocker Incubated for 

30 – 40 min 

Comparison: Antagonist reversal of selective 

sigma 1 receptor effect on intracellular 

calcium if VGCC effect is cancelled  BD 1047  

[100 µM] 

Selective sigma 1 

antagonist 

10 s into 

recording 

 PRE – 084  

[10 µM] 

Selective sigma 1 

agonist 

10 s into 

recording 

35 MK – 801  

[100 µM] 

NMDAR calcium 

channel antagonist 

Incubated for 

30 – 40 min 

Comparison: Selective sigma 1 receptor 

effect on intracellular calcium if NMDAR 

effect is cancelled  BD 1047  

[100 µM] 

Selective sigma 1 

antagonist 

10 s into 

recording 

 PRE – 084 

[10 µM] 

Selective sigma 1 

agonist 

10 s into 

recording 

36 Cadmium Chloride 

[100 µM] 

VGCC blocker Incubated for 

30 – 40 min 

Comparison: Antagonist reversal of selective 

sigma 1 receptor effect on intracellular 

calcium if VGCC contribution and NMDAR 

effect is cancelled 

 MK 801  

[100 µM] 

NMDAR calcium 

channel antagonist 

Incubated for 

30 – 40 min 

 BD 1047  

[100 µM] 

Selective sigma 1 

antagonist 

10 s into 

recording 

 PRE – 084  

[10 µM] 

Selective sigma 1 

agonist 

10 s into 

recording 

 Sigma receptor antagonist and sigma 2 selective agonist assay (Optional) 

37 BD 1047  

[100 µM] 

Selective sigma 1 

antagonist 

Incubated for 

30 – 40 min 

Comparison: Antagonist reversal of sigma 2 

receptor effect on intracellular calcium. 

 PB 28  

[30 µM] 

Selective sigma 2 

agonist 

10 s into 

recording 

38 Cadmium Chloride 

[100 µM] 

VGCC blocker Incubated for 

30 – 40 min 

Comparison: Antagonist reversal of selective 

sigma 2 receptor effect on intracellular 

calcium if VGCC effect is cancelled  BD 1047  

[100 µM] 

Selective sigma 1 

antagonist 

10 s into 

recording 

 PB 28  

[30 µM] 

Selective sigma 2 

agonist 

10 s into 

recording 

39 MK – 801  NMDAR calcium Incubated for Comparison: Selective sigma 2 receptor 
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[100 µM] channel antagonist 30 – 40 min effect on intracellular calcium if NMDAR 

effect is cancelled  BD 1047  

[100 µM] 

Selective sigma 1 

antagonist 

10 s into 

recording 

 PB 28  

[30 µM] 

Selective sigma 2 

agonist 

10 s into 

recording 

40 Cadmium Chloride 

[100 µM] 

VGCC blocker Incubated for 

30 – 40 min 

Comparison: Antagonist reversal of selective 

sigma 2 receptor effect on intracellular 

calcium if VGCC contribution and NMDAR 

effect is cancelled 

 MK 801  

[100 µM] 

NMDAR calcium 

channel antagonist 

Incubated for 

30 – 40 min 

 BD 1047  

[100 µM] 

Selective sigma 1 

antagonist 

10 s into 

recording 

 PB 28  

[30 µM] 

Selective sigma 2 

agonist 

10 s into 

recording 

* Done at various concentrations [100 µM] [50 µM] [10µM] [0.1 µM] [0.01 µM] to determine dose 

response curves, in a log-scale, using Prism 4.0. 

** A baseline reading is performed before each replicate procedure of compound to be screened. 

Treatments are repeated three times on different cell preparations with three determinations in 

each replicate. 
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