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Abstract 

The Namib Desert is a hyper-arid, coastal desert with limited bioavailable water and 

nutrients; characteristics which collectively impose constraints on edaphic microbial 

communities. Several studies in the Namib Desert have investigated changes in soil 

microbial communities across space. However, the temporal variation of edaphic 

bacterial community in response to seasonal microenvironmental variation in the 

Namib Desert gravel plains has never been investigated in situ.  

The edaphic bacterial community dynamics were evaluated over short (57 days) and 

long-term (1 year) sampling intervals using an extensive sampling strategy in 

combination with community fingerprinting by T-RFLP analyses and 

microenvironmental characterization. The short-term study was conducted on three 

distinct locations in the Namib Desert gravel plains. Soil bacterial communities were 

found to be more similar within habitats than between habitats, with the differences 

likely shaped by soil pH. These findings are consistent with the concept of habitat 

filtering. 

Investigation of edaphic bacterial communities over 1 year in an 8100 m2 sampling site 

revealed seasonal patterns of variation in community structure. Soil moisture, 

phosphorus, potassium and magnesium were identified as significant abiotic drivers of 

community temporal dynamics. β diversity was found to increase over time, while the 

environment remained relatively static. These findings support previous observations 

that desert communities are likely structured by stochastic and deterministic processes. 

Taken together, these findings advance understanding of temporal variation of edaphic 

communities in the Namib Desert. 
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Chapter 1: Literature Review 

Introduction 

Deserts are key biomes as they constitute the largest terrestrial ecosystems covering one-

third of the Earth’s surface (Figure 1; Collins et al., 2008). Moreover, the surface of these 

regions continues to increase annually, a process known as desertification, at a rate 5.8 

billion hectares per annum (p.a; Vernon et al., 2006). Desertification is defined as “land 

degradation in arid, semiarid and dry sub-humid areas, resulting from various factors, 

including climatic variations and anthropogenic impact” by the United Nations Convention 

to Combat Desertification (1994). Desertification has adverse impacts on the environment, 

which include, most notably, the loss of biodiversity, a reduction in plant productivity and 

decreased carbon sequestration capacity, all of which contribute towards climate change. 

Currently, it is estimated that 10 - 20% of drylands are already degraded or undergoing 

desertification (Adeel et al., 2005). 

Aridity is among the greatest stresses imposed by warm deserts on biotic life, as it 

influences the bio availability of water in these environments (Pointing & Belnap, 2012). 

Arid regions can be classified according to an aridity index (AI) that reflects the ratio of 

precipitation (P) to potential evapotranspiration (PET). Regions for which P/PET< 1, are 

classed as deserts (Pointing & Belnap, 2012). Using this definition, there are four key areas 

identified that differ substantially in general topography, climate and vegetation; sub-

humid (0.5 - < 0.65), semi-arid (0.2 -<0.5), arid (0.05 - <0.2), and hyper-arid (<0.05; Figure 

1). 
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Temperature is a key factor affecting vegetation and primary productivity in desert 

environments, as it is closely linked to aridity. Thermal extremes, in both hot and cold 

deserts, impose stresses in relation to strong seasonal and diurnal cycles (e.g., frequent 

freeze-thaw cycles). Cold deserts such as the Arctic and Antarctica generally have low 

average annual temperatures (0 ˚C to < 10 ˚C) with decreased rates of primary productivity 

in comparison to hot deserts such as the Namib and the Sahara, with average temperatures  

> 18 ˚C (Peel et al., 2007). This study will focus on the hot, hyper-arid Namib Desert. 

 

Figure 1: The global distribution of drylands on Earth. Various zones of aridity have been identified 

according to their aridity index; dry, sub-humid, semiarid, arid and hyper-arid regions (Chan et al., 

2012).  
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1. The Namib Desert 

1.1. Introduction 

The Namib Desert is considered to be the world’s most ancient desert, estimated to be 80 

million years old (Prestel et al., 2008). It extends for over 2000 km from the Carunjamba 

River in Angola (S14° 16; E12°22) to the Olifants River in South Africa (S31°42; E18°11; 

Viles, 2005). The desert is located 120-200 km from the Namibian coast, bounded inland by 

the Great Escarpment to the South (Figure 2). The Namib covers a considerable latitudinal 

range, while its width is narrow in comparison, allowing rivers to flow from semi-arid 

regions in the east to hyper-arid coastal regions, feeding into the underground water table 

in the region (Koris et al., 2009). 

 

 

 

 

 

 

 

 

 

Figure 2:  Location map of Namibia in Africa (a) and the Namib Desert in South-Western Africa (b). 

The Namib Desert stretches 120-200 km along the south-western coast of Namibia. 

a 

b 
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The regional topography of the Namib is highly variable and can be subdivided into these 

major areas: the Northern Namib, Central Namib Plains, the Namib Sand Sea, and the 

Southern Namib, which branches into the East Namib inland, and along the coast. The main 

landforms in these various regions are sand dunes, inselbergs, savanna grasslands, gravel 

plains and playas (Figure 3; Eckardt & Drake, 2011).  

 

Figure 3: Photographs of prominent Namib Desert biotopes and landforms. a: Playas (salt pans) in the 

coastal Namib;  b:  Gravel plains in the central Namib illustrating bare soil with patches of dry 

Stipagrostis sp. a common perennial grass;  c: Dunes with isolated patches of Stipagrostis sp,;  d: the 

Kuiseb river flooding in 2011 (Courtesy of Prof. D.A Cowan and the Gobabeb Research and Training 

Centre).  
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The vast plains of the Namib are interrupted by dry riverbeds, extensive drainage networks 

and ephemeral rivers (Hachfield, 2000; Viles, 2005). A series of isolated saline springs are 

also observed throughout the Namib, the most notable being the gravel plain springs in the 

central Namib (Figure 3 a).  

 

The ecology of the Namib has been studied extensively, focussing essentially on macro-

biodiversity and adaptations to desert-imposed extremes (e.g., water vapour harvesting 

Stenocara gracipiles; Seely, 1979). Due to its distinct convergence of uniquely diverse 

biotopes, hyper-aridity, unusual water sources and strong climatic gradients, the Namib 

Desert represents a unique model to study ecosystem drivers in arid environments 

(Henschel & Seely, 2000; Henschel & Lanchester, 2012). However, studies on 

microorganisms inhabiting this environment have been severely lacking. Only recently 

have studies, investigating the adaptive strategies and mechanisms regulating microbial 

community structures predominantly concentrating on hypolithic (cyano)bacterial 

communities (Makhalanyane et al., 2012; Stomeo et al., 2013) and bacteriophages and their 

hosts (Prestel et al., 2008), been reported. In a recent study by Stomeo et al. (2013), the 

microbial communities structure of hypoliths (translucent rocks that are principally 

colonized by cyanobacteria) were compared to open soil communities in a well-established 

water availability gradient determined by fog and rainfall. The aim of the study was to gain 

insight into determinist processes that regulate the microbial community assembly. The 

study found significant structural differences between open soil bacterial community and 

hypolithic community structures that were most likely differentially influenced by water 

origin; i.e., rainfall or fog. Water bioavailability is therefore a key element driving microbial 
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community composition in the Namib Desert (Warren-Rhodes et al., 2013). These studies 

demonstrate the influence of the Namib deserts’ microclimate complexity on shaping 

microbial community structures in the central Namib and highlight the need for more 

research focussing on the edaphic microbial communities and the factors that shape them.  

 

1.2. Climate and water availability 

The Namib is a coastal desert with a long history of hyper aridity, the onset of which is 

estimated to have originated 5 million years ago (Ward et al., 1983). The Namib Desert 

ranges from semi-arid in the highlands towards the central Namib Desert and onto the 

hyper-arid coast, receiving <20 mm of rainfall p.a. (Eckardt & Drake, 2011). As the Namib 

Desert is located at the interface of tropical, subtropical and temperate atmospheric and 

oceanic systems (Stone & Thomas, 2012), its regional weather patterns are influenced by 

several factors, the strongest of which are the cold Benguela current and the subtropical 

anticyclonic zone along the south-west coast of Africa. The Namib Desert is unique as it 

exhibits hyper-aridity yet also abundant and diverse, albeit highly variable, water sources 

(Schachtschneider & February, 2010). Fog, dew, rainfall and groundwater discharge 

(coastal springs and pans), constitute important sources of water in this desert. These 

include ephemeral rivers, aquifers, gravel plain springs, fresh water springs and pans 

(Schachtschneider & February, 2010; Eckardt et al., 2013).  

 

Rainfall occurs mainly during the summer months (January-April), except in the southern 

regions of the desert which generally receive small amounts of rain during winter 

(Lancaster, 2002). Extreme rainfall variability (both spatially and temporally; Mattes & 
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Mason, 1998) with high rates of evaporation (Loutit, 1990), is experienced in the central 

and northern Namib, with a strong west to east rainfall gradient (Hachfield &, 2000). 

Notably, there have been long periods (up to 10 years in the coastal Namib) with no rainfall 

recorded (Shanyengana et al., 2002). These characteristics make the Namib Desert one of 

the driest regions in the world (van Damme, 1991). Therefore, fog, as in the Atacama 

Desert (Warren-Rhodes et al., 2006), is an essential source of bioavailable water in this 

region.  

Fog is an integral aspect of the Namib Deserts’ hydrological cycle (Hamilton & Seely, 1976), 

although its significance decreases inland from the coast (Lancaster et al., 1984).  Fog in the 

Namib Desert most frequently results from the warm air from the Hadley Cell mixing with 

the cold offshore Benguela Current (Eckardt et al., 2013). It is more reliable than rainfall as 

a water source due to its decreased variability and high frequency of occurrence 

(precipitation due to fog is five times higher than precipitation resulting from rainfall; Seely 

& Henchel, 2000; Viles, 2005). The central Namib especially, is subject to frequent fog 

events, up to 200 days p.a. along the coast (Seely, 1979).  

 

The Namib Desert has highly variable and generally low precipitation events (in the form of 

rainfall and/or fog) with high daily fluctuating surface temperatures (ranging from 0 °C to 

50 °C; Eckardt et al., 2013). Therefore, all forms of life, and notably edaphic 

microorganisms, require unique adaptation strategies to survive these extreme conditions 

(Crits-Christoph et al., 2013), and to fulfil their crucial roles in biogeochemical cycling 

(Pointing & Belnap, 2012; Figure 4). 
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2. The Carbon Cycle in Terrestrial Desert Environments: A Focus on 

Microbial Communities 

 2.1. Biogeochemical Cycles in Desert Environments 

Biogeochemical cycles are defined as ‘the complex interplay between biological, geological 

and chemical processes, by which materials and energy are exchanged and reused at the 

Earth’s surface’ (Hedges, 1992). These cycles are mediated through a series of complex 

processes involving several microbial communities (Yergeau et al., 2007).  

Microorganisms are key agents in mediating biogeochemical transformations and 

constitute reservoirs of several key elements on Earth. The six major elements cycling on 

Earth include carbon (C), hydrogen (H), nitrogen (N), oxygen (O), sulphur (S), and 

phosphorus (P;  Falkowski et al., 2008). Some of these elements (for example, N, P, C and S), 

may be converted into recalcitrant organic forms and stabilized by interactions with 

inorganic soil constituents (Stevenson & Cole, 1999).  

Although cycles of individual elements are complex, certain aspects of their cycling 

processes are shared, such as immobilization (conversion of inorganic compounds to 

organic compounds by plants or microorganisms) and mineralization (decomposition or 

oxidization of chemical compounds into bioavailable forms). Elements can exist in various 

forms and move between dynamic reservoirs, where the net amount of material exchanged 

is termed the reservoir flux. The turnover of a reservoir depends on how rapidly a 

reservoir is created or consumed and is largely determined by the reservoir size 

(Stevenson & Cole, 1999). 
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Figure 4: A generalized model of the biosphere showing energy inputs and outputs driven by 

microbial biochemical processes. Abiotic transformations are represented at the top as atmospheric 

transformations, and tectonic and geothermal transformations are at the bottom. Biogeochemical 

processes driven by microbial communities are represented by the biospheric compartments and in 

sediments (the middle section in blue; Falkowski et al., 2008). 
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Desert environments are characterized by low levels of net primary productivity (NPP), 

defined as ‘the net photosynthetic accumulation of carbon by plants’ (Potter et al., 2012) 

and limited or absent vegetation cover. In arid and semi-arid regions that receive less than 

600 mm of precipitation p.a., water bioavailability is the key limiting factor of NPP. Soil 

microbial communities respond rapidly to pulse water events (Figure 5), resulting in 

increased C and N mineralization, affecting microbial available substrates, as well as the 

nutrient immobilization and mineralization balance (Stevenson & Cole, 1999). Edaphic 

microbial communities thus play essential roles in key desert ecosystem processes such as 

C, P and N cycling, soil formation and stabilization, water infiltration and nutrient 

acquisition (Cable & Huxman, 2004; van Der Heijden et al., 2008). 

The general assumption is that the C and N cycles are coupled in both marine and 

terrestrial cycles (Brookshire et al., 2005. However, this theory does not hold well in arid 

systems with pulse-patterns of rainfall, which cause cycles to be spatially heterogeneous 

(Collins et al., 2008; Gruber & Galloway, 2008). The frequency and paucity of wet-dry 

seasonal cycles in arid ecosystems determine the heterogeneous nutrient and vegetal cover 

as well as microbial mediated N and C turnover in these environments (Figure 5; Austin et 

al., 2004).  

The major regulatory elements of N immobilization and mineralization by soil microbial 

communities in deserts are the ratio of C:N in microbial organic substrates and the 

efficiency of the communities to utilize N and C as nutrient sources. Of these factors, C:N 

ratio has been demonstrated to be the most important, as it can vary greatly between 
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different substrates and therefore largely impacts the balance between N immobilization 

and mineralization. C:N ratios have also been shown to greatly affect autotrophic 

respiration (Gruber & Galloway, 2008) and soil quality. N availability is a limiting factor of 

NPP in natural ecosystems and is therefore intimately linked to the C cycle (Vitousek & 

Howarth, 1991).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5:  Schematic diagram of the C and N biogeochemical cycles in arid ecosystems under (A) dry 

conditions (yellow) and, (B) after a pulsed rainfall event (blue). Dotted arrows represent flows that 

are either low or undetectable, while the width of arrows represents the relative importance of the 

events under the two different conditions. Adapted from Austin et al. (2004). 
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N and P have been found to be major limiting factors to autotrophic growth in fresh water, 

marine and terrestrial environments (Elsar et al., 2007). In order to understand the 

mechanisms underlying P limitations, it is essential to understand the conceptual 

framework of general nutrient limitation which is more pronounced in desert systems as 

well as the complex interplay between the biogeochemical P and N cycles mediated by 

microbial communities in these extreme environments.   

Biogeochemical models have been successful in predicting the cycling of C and N under 

stable conditions. However, within the context of global change, major discrepancies in the 

predictions of future biosphere-atmosphere fluxes and ecosystem feedbacks exists (Bolker 

et al., 1998). The magnitude of the effect of increased microbial activity on the global N 

cycle is still unclear. What is apparent is the intimate coupling between the processes 

driving N availability, C fluxes and microbial activity (Billings et al., 2002). It is therefore 

essential to understand the microbial diversity and function in mediating C, N and P cycles, 

especially in environments with extreme conditions such as deserts. 

 

 

2.1.1. Phosphorus (P) cycle 

P is not cycled through the atmosphere and is thus dominated by geological factors. The 

loss of P from a system can only be replenished through primary minerals such as apatite, 

which is essentially mediated by complex microbial communities.  P cycles between the 

biosphere, hydrosphere and lithosphere (Richardson et al., 2009). 
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The lithosphere represents a crucial reservoir of P, and is therefore a major element of soil 

organic matter (SOM), where its primary source is the weathering of minerals from parent 

rock material (Vitousek, 2004). The reservoir of P in soil is dynamic and subject to 

variation in response to water, temperature and C availability (Richardson & Simpson, 

2011). In soil, P exists both in inorganic fractions and in organic forms (e.g., 

orthophosphate; PO). Inorganic P is adsorbed (attached) to the mineral surfaces, whereas 

organic P is either adsorbed or assimilated to biomass, or linked to SOM. While the bulk of 

soil P is fixed or absorbed to soil particles, a fraction of P is lost by leaching. Mineralogical 

transformations in soil cause continual sequestration of P, thereby making soil age a key 

factor in P limitation (Vitousek, 2004). Precipitated forms of P, such as calcium-phosphates 

(Ca-P), are the dominant forms of P in desert soils under alkaline conditions. Ca-Ps are 

effectively solubilized by organic microbial or plant -related cations and anions (Khan et al., 

2009). They are also effective in chelating metal ions normally linked to complex forms of 

soil P or by facilitating the adsorption of orthophosphate  (PO) or organic P via ligand 

exchange reactions (Ryan et al., 2001).  

The immobilization and solubilization, mineralization and redistribution of soil P are 

dependent on a range of physio-chemical properties including P sorption by colloidal 

surfaces, and plant and microbial P uptake (Stewart & Tiessen, 1987). These processes are 

mediated by microbial groups involving Rhizobium, Enterobacter, Bacillus, Pseudomonas, 

Azospirillum and Azobacter (Figure 6; Oberson & Joner, 2005; Khan et al., 2006; Richardson 

& Simpson, 2011). Edaphic microorganisms mediate P availability in soil through a range of 

mechanisms. Briefly, these include facilitating organic P mobility (either directly or 

indirectly) via microbial turnover and inducing metabolic processes to solubilize and 
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mineralize P from limited available forms of inorganic and organic P in soil (Seeling & 

Zasoski, 1993; Richardson et al., 2009).  

 

 

 

 

 

 

 

Figure 6: Schematic representation of the P cycle highlighting the importance of microbial 

communities to P availability in soil. Phosphorus exists as either soil P which consists of inorganic and 

organic phosphorus, or ‘bioavailable’ P which forms part of the ‘soil solution’ and includes hydrogen 

phosphate, dihydrogen phosphate and dissolved organic phosphorus Adapted from Khan et al. 

(2009). 

 

The rate of P solubilization is determined by microbial activity through the release of 

metabolites such as organic acids and mechanisms, including organic acid production and 

proton extrusion (Sagoe et al., 1998; Khan et al., 2009). Thus, P availability is largely due to 

the rate of the reactions replenishing the soluble P reservoir (Ryan et al., 2001). 

Microorganisms thus compete for the limited available P; i.e., orthophosphate (PO), with 

plants from the soil solution.  Microbial P pools therefore represent a key reservoir of 
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immobilized P, temporarily unavailable to plants (Richardson & Simpson, 2011). The 

uptake of P by edaphic microbial communities and its release and translocation, have 

major impacts on soil P availability to plants and the biogeochemical cycling of P (Seeling & 

Zasoki, 1993; Oehl et al., 2004).  

 

 

2.1.2. Nitrogen (N) cycle 

N is a key element used by organisms to form complex organic compounds including amino 

acids, nucleic acids and proteins. N thus drives key metabolic processes associated with 

growth and energy transfer (Falkowski et al., 2008; Butterbach-Bahl & Gundersen, 2011). 

Atmospheric N is highly inert with a residence time of 1 billion years and is cycled in 

various forms (both physical and biological processes) throughout all spheres (Figure 7; 

Gruber & Galloway, 2008; Falkowski et al., 2008).  

 

N cycling in terrestrial ecosystems is well studied and involves complex microbial, 

physiochemical and plant physiological processes (Butter-Bahl et al., 2011). N cycling in 

soil is characterized by numerous N transformations involving both organic (ammonium 

(NH4+)) and inorganic (nitrate (NO3-)) N species and the immobilization of N by plants and 

microorganisms. Atmospheric N exists as dinitrogen (N2) and is inaccessible to many 

organisms in this form. N2 fixation into ammonia (NH3) initiates the cycle which is 

catalyzed by nitrogenase (encoded in the nif gene; Zehr et al., 2003).   
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Under acidic conditions, NH3 is readily converted to NH4. Nitrogen fixation is a biological 

process involving the oxidation of NH4 resulting in the production of nitrite (NO2-) by 

ammonia oxidation and NO2- into nitrate (NO3; Seefeldt et al., 2009). The first step of NH4+ 

oxidation is catalyzed by the ammonia monooxygenase enzyme, encoded by the amoA gene 

(Figure 7). This gene has been extensively studied as a molecular marker for ammonia 

oxidizing bacteria (AOB) and archaea in terrestrial ecosystems (Zumft, 1997). Nitrate 

reductases (encoded by either the nar or nap genes) catalyzes the reduction of NO2- into 

NO3- (Zumft, 1997; Jia & Conrad, 2009). NO3- can be reduced further by one of three 

anaerobic pathways (Offre et al., 2013). These include denitrification, the step-wise process 

of the reduction of soluble NO3- (through NO2- and NO to gaseous nitrous oxide (N2O)) 

encoded by nirS and nirK, the formation of NH4 by dissimilary nitrate reduction (DNRA), or 

the formation of N2 by anaerobic ammonium oxidation (annamox; Mulder et al., 2006). 

DNRA is catalyzed by formate dehydrogenases encoded by the nrfA gene (Darwin et al., 

2006). 

N enters the soil and becomes part of the SOM matrix following internal N cycling through 

plants. Extracellular microbial enzymes depolymerize SOM and the resultant cleavage of 

macromolecules results in bioavailable N for plants and microorganisms. Biological N fixers 

have the capacity to convert N2 to biological N substantially at ecosystem scales. This is 

most commonly associated with symbiotic N2 fixation of the bacterium Rhizobium with 

plant root nodules, although free-living N fixers also exist (e.g., Azospirillum). N can further 

be converted into NH4+ (ammonification or N mineralization) aerobically or anaerobically 

(Butterbach-Bahl & Gundersen, 2011). 
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Figure 7. Schematic representation of the microbial mediated N cycle. The major biological 

transformation pathways and genes encoding enzymes are presented. Oxic (in blue) and anoxic (in 

red) microbial mediated N processes are shown. Adapted from Offre et al. (2013). 

 

N fixation is essential for ecosystem function and sustainability and microbial N fixers (e.g., 

N fixing cyanobacteria) are therefore key drivers of N biogeochemical cycling Galloway et 

al., 2003. In deserts with limited vegetation, microbial communities i.e., soil biological 

crusts (SBCs) and/or hypolithic communities, mediate N cycling, in particular diazotrophy; 

i.e., the processes by which N is fixed into a bioavailable form (Pointing & Belnap, 2012). 
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Hypoliths have been demonstrated to be key drivers of N fixation in both cold and hot 

deserts (Cowan et al., 2011). 

Increased N availability leads to eutrophication of terrestrial and water sources, increased 

release of greenhouse gas nitrous oxide (N2O) from soil and soil and water acidification as a 

result of reactive N (Nr) deposition (Galloway et al., 2003; Erisman et al., 2008). Because of 

these environmental threats, it remains important to understand N dynamics in desert 

ecosystems as they are more susceptible to accelerated rates of climate changes.  

 

2.1.3. Carbon (C) cycle 

Globally, there are three major reservoirs of C: the oceanic pool, the atmospheric pool and 

the terrestrial pool (Batje, 1996; Kirkby et al., 2013). Terrestrial C storage is one of the 

largest global C pools, twice the size of the atmospheric and biotic pools combined (2500 

Pg) and represents an important reservoir in the global cycling of C throughout the 

different C pools (Rayment & Jarvis, 2000;  Kirkby et al., 2013). C in soil exists in two forms: 

soil organic C (SOC) and soil inorganic C (SIC). SOC forms part of SOM, a dynamic, 

functional component in terrestrial ecosystems. Fluxes in SOM structure and composition 

have great impacts on ecosystem processes, most importantly on soil C reservoirs and 

fluxes (Figure 8; Batje, 1996). SIC is especially significant in soils in arid regions (Lal, 2004), 

where inorganic C is primarily in the form of carbonate (Wang et al., 2002). The terrestrial 

C reservoir is likely to be affected by N deposition, C mineralization, soil management 

practices, land-use change, water bioavailability and edaphic microbial communities 

(Davidson & Janssens, 2006).  
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Figure 8: Achematic representing the key  parameters influencing major soil C inputs (net primary 

productivity) and outputs  (CO2 and CH4 ; Davidson & Janssens, 2006). 

 

The C balance of terrestrial ecosystems is adversely affected by anthropogenic activity such 

as pollution, deforestation, biomass burning and land-use practices which increase the 

release of ‘greenhouse gases’ (e.g., CO2 and CH4). As levels of atmospheric CO2 and CH4 are 

predicted to increase globally at a steady rate, it is important to understand the effect of 

global warming on the activity of soil microbial communities, especially within the context 

of global biogeochemical cycling (Tabita et al., 2007). The cycling of C is essential for NPP in 

terrestrial ecosystems (Bardgett et al., 2008). C enters terrestrial ecosystems through 

photosynthesis and is emitted from soil though a variety of processes collectively termed 

as respiration (Trumbore, 2006).  

(SOM and SIC) 
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Due to increased global awareness of climate change, there is a growing focus on soil 

microbial communities, and their active role in global C cycling (Mazzarino et al., 1993). 

However knowledge gaps exist in the microbial mediation of key C sources and the 

contribution of edaphic cyanobacteria to the regional C cycle in deserts (Pointing et al., 

2012).   

 

2.2. Terrestrial Microbial-Mediated C cycle 

C is cycled through the environment via a series of fixation, decomposition and respiration 

processes (Shiveley et al., 2001) involving multiple complex microbial communities 

including bacteria, archaea, fungi (Figure 9; Nielsen et al., 2011) and viruses, representing 

the microbial loop (Kimura et al., 2008). 

There is a delicate balance between primary productivity (photosynthesis) and organic 

matter decomposition which must be maintained in order to preserve soil source/sink 

dynamics (Bardgett et al., 2008). Once C has been decomposed by both bacterial, archaeal 

and fungal- degraders, C is released into the atmosphere in the form of CO2 and CH4 gases. 

Microbial decomposition is responsible for 86% of CO2 produced worldwide (Shiveley et 

al., 2001).  

The functional diversity of microbial communities mediating N cycling in soil (e.g., N 

fixation and denitrification) has been well studied (Carreiro et al., 2000; Coleman & 

Whitman, 2005).  In contrast, the microbial contribution to the terrestrial C cycle is not well 

understood. This lack of knowledge is due to the complexity of the cycle and the great 

diversity of microorganisms and functions involved (Nielson et al., 2011).  
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In general, there are four major microbial groups involved in the C cycle (Figure 9); 

methanogens (archaea; mediate the formation of CH4 by converting either bicarbonate 

(CHO3-) or CO2 and other C-compounds including formate), Methanotrophs and 

Methylotrophs (convert CH4 into CO2), primary producers such as cyanobacteria (fix C by 

converting CO2 into carbohydrates, and heterotrophic bacteria and fungi (convert organic C 

into CO2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Simplified schematic representation of the major microbial groups and processes mediating 

C turnover in the global C cycle. A complex mixture of methanogens, fungi, 

methanotrophs/methylotrophs and heterotrophic bacteria are involved in specific aspects of the 

microbial-mediated global C cycles. Adapted from Offre et al. (2013). 
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2.2.1. Microbial C fixation: CO2  CH2O 

Plants and specialized autotrophic microbial communities (photoautotrophs e.g., 

cyanobacteria) have evolved the ability to fix and concentrate large amounts of 

atmospheric CO2 (Tabita et al., 2007). C can also be fixed anaerobically by acetogenic 

bacteria or archaea (chemolithoautotrophy) via complex microbial pathways (Yamanaka, 

2008), or through archaeal methanogenesis (Conrad, 2009). However, CO2 is removed from 

the atmosphere and translocated into terrestrial systems principally through 

photosynthesis, (Paterson et al., 2009).  

 

CO2 fixation is therefore an important step in the C-cycle and has been extensively studied 

(e.g., Shively et al., 1998; Selesi et al., 2005; Saini et al., 2011). C fixation pathways include 

the Calvin-Benson-Bassham (CBB) pathway (or Calvin cycle), Arnon-Buchanan cycle or 

reductive tricarboxylic acid (rTCA) cycle, the Acetyl-CoA pathway or Wood- Ljundahl 

pathway, the 3-Hydroxypropionate (3HP) bicycle (Fuchs- Holo bicycle). The CBB pathway 

has been reported in both plants and diverse microbial populations and is the main cycle in 

terrestrial C-fixation (Saini et al., 2011). The CBB cycle is especially important in extreme 

arid environments where soils contain limited nutrients, and this cycle is well studied in 

these regions (Bliss & Gold, 1994; Shively et al., 1998; Montaya et al., 2012). The key 

enzyme involved in this process is ribulose-1,5-biphosphate carboxylase and is present in 

plants, algae and cyanobacteria (Shively et al., 1998;  Montaya et al., 2012).  

In deserts where vegetation cover is low, organic C accumulation is heavily dependent on C 

fixation by cyanobacteria that form part of the active biological soil crusts (BSCs; Pointing 
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& Belnap, 2012) and hypolithon communities (Warren-Rhodes et al., 2006). Cyanobacteria 

are ancient photoautotrophs estimated to be about 3.5 billion years old and are thought to 

have converted the early reducing atmosphere into an oxidizing environment through 

photosynthesis (Schopf, 1996). Cyanobacteria have colonized virtually all habitats on earth, 

possibly as a result of their accumulative physiological adaptations over the period of their 

existence, and are considered the most dominant phototroph in marine and terrestrial 

ecosystems (Taton et al., 2006). In deserts, cyanobacteria constitute the main members of 

photosynthetic microbial communities in cryptic niches, the hypolithons (i.e. under quartz 

rocks; Pointing & Belnap, 2012; Makhalanyane et al., 2012). Moreover, in such extreme 

environments lacking non-vascular vegetation, they constitute key species in enabling the 

cycling, and especially the fixation, of C and N (Pointing et al., 2007; Wong et al., 2010).  

 

2.2.2. Microbial C Decomposition: CH2O  CO2; CH2O CH4 

Soil microbial communities are the major decomposers of C sources (either aerobically or 

anaerobically), as they are among the few organisms in soil that possess the necessary 

enzymes to degrade recalcitrant plant-associated compounds (Hättenschwiler et al., 2005). 

Bacteria and fungi play key roles in nutrient cycling in soil, especially C and N cycling, and 

are responsible for 90% of the total SOM decomposition (Swift et al., 1979).  

The major determinant factors influencing decomposition rates are climate, soil moisture, 

substrate chemical composition, litter quality, C:N ratios, lignin content, nutrient 

availability (Bardgett et al., 2008; McGuire & Treseder, 2010), the direct activity and the 

composition of microbial communities and their association with soil animals including 
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nematodes and earthworms (Hättenschwiler et al., 2005; Davidson & Janssens, 2006; Yuste 

et al., 2007; Nielsen et al., 2011). Temperature sensitivity of soil C is thought to increase in 

proportion to the complexity of the substrate (Bosatta & Agren, 1999; Davidson & Janssen, 

2006) and is affected by environmental constraints such as drought (arid conditions) 

which inhibit extracellular enzyme diffusion and the degradation of soluble organic-C 

substrates (Collins et al., 2008).   

 

The decomposition of plant biomass is an essential step in soil organic matter formation, C 

balance in terrestrial ecosystems and the mineralization of organic nutrients. The major 

component of biomass is lignocellulose which consists of three types of polymers namely; 

cellulose, hemicellulose and lignin (Pérez et al., 2002). The degradation of lignocellulose 

requires the co-operation of complex microbial communities and various enzymes 

(Wongwilaiwalin et al., 2010) which play important roles in the cycling of organic carbon. 

Cellulose is the most abundant source of C in soils, and its enzymatic hydrolysis is an 

important step in the C cycle (Wilson, 2011).  

 

Microbial degraders of cellulose in soil are central to the flow of energy from plants to 

other trophic levels, resulting in the release of atmospheric CO2 (el Zahar Haichar et al., 

2007). Cellulose is an essential substrate to microorganisms including bacteria (e.g., 

notably Cellulomonas and Cytophaga) and fungi (Basidiomycota and Ascomycota; 

Sukumaran et al., 2005). The products of lignocellulosic biodegradation subsequently serve 

as substrates for other microbial species unable to degrade cellulose-like compounds. This 

enables rapid cellulose decomposition rates which essentially increases fungal diversity. It 
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has been suggested that fungi, rather than bacteria, dominate decomposition of C 

substrates in arid ecosystems, predominantly as a result of their innate ability to degrade 

both polysaccharides and polyphenols in SOM (Baldrian et al., 2011). 

 

The biological production of methane (CH4), the ultimate step of the C decomposition 

process, is essential in the global C cycle and is primarily due to archaeal methanogenesis 

(Conrad, 2009). CH4 plays essential roles in the atmosphere and is a potent greenhouse gas. 

The majority of CH4 produced however, is not released into the atmosphere, but converted 

to biomass by methanotrophic bacteria (metabolize CH4 as their only source of C and 

energy; Shively et al., 2001). Three methane sinks exist, the largest being the 

photochemical oxidation of CH4 introduced by the reaction of OH radicals. The remaining 

two sinks are microbial CH4 oxidation into soil and stratosphere diffusion (Conrad, 1996). 

H2 serves as a potential substrate for methanogenic archaea. The production of CH4 mainly 

occurs under anaerobic conditions, where the decomposition of SOM or other oxidants 

including nitrate, sulphate or ferric iron (Lelieveld et al., 1998). The CH4 produced serves as 

a substrate for either aerobic or anaerobic methane oxidation (Liu & Whitman, 2008) or is 

emitted to the atmosphere Under anaerobic conditions, methanogenesis represents the 

final step of organic matter degradation (Conrad, 1999; Watanabe et al., 2009) resulting in 

the production of acetate, CO2, and H2 which is released into the atmosphere (Shively et al., 

2001).  
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Methanogens use three pathways in the production of CH4, in which the key enzyme is 

methyl-coenzyme M reductase gene (MCR): the reduction of CO2, fermentation of acetate 

and the disproportionation of methanol and methylamines (Thauer, 1998). During the final 

stage of Ch4 production, MCR catalyses the reduction of a methyl-coenzyme M forming Ch4 

(Luton et al., 2002; Inagaki et al., 2004).  

In marine environments, archaea (mainly from the order Methanosacrinales) are involved 

in methanogenesis, linked with sulfate-reducing bacteria (Inagaki et al., 2004). Sulfate-

reducing bacteria are anaerobes that utilize sulphate as the terminal electron acceptor in 

the degradation of organic compounds to produce sulphide. The reduction of sulphate 

accounts for approximately 50 % of organic C mineralization and in anoxic environments, 

the sulphur cycle is intimately linked with the C and N cycles (Muyzer & Stams, 2008). 

 

2.2.3. Microbial Respiration: CH2O  CO2 + H2O + Energy 

Respiration represents the flow of C from organic to inorganic pools. The cycling of organic 

C is mediated via the activity of heterotrophic bacterial communities and viral lysis 

(Coleman et al., 1992; Jahnke & Craven, 1995). Soil respiration (CO2 emission) produces 

approximately 80 Pg of CO2 annually (Li et al., 2005) and constitutes the predominant 

release of C into the atmosphere. The process of soil respiration is divided into an 

autotrophic (involving plant roots and their associated microorganisms, e.g., mychorrhiza 

fungi and bacteria), and heterotrophic (resulting from soil C degradation) cycle of C 

turnover. Heterotrophs convert organic C and related nutrients into carbohydrates, lipids 

and proteins photosynthesis (Schlesinger & Andrews, 200).  
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3. Investigating soil microbial communities 

Microbial diversity in soil is estimated to be extremely high (thousands of species in 1 g of 

soil, Hättenschwiler et al., 2005) with the majority of microorganisms still being 

uncharacterized (Fierer et al., 2007). Furthermore, a lack of taxonomic knowledge (Kirk et 

al., 2004) and the complexity of soil microbial communities limit the meaningful 

interpretation of microbial ecology in the context of environmental parameters (Fierer et 

al., 2009). However, the increasing interest in microbial soil ecology, especially in 

understanding the relationship between microbial community dynamics and climate 

variations, has resulted in the rapid progression of various molecular techniques that 

enable these relationships to be probed (Andrén et al., 2008; Fierer et al., 2009).   

 

3.1. Assessing the sampling strategy  

Soil is a dynamic and complex environment, influenced by a combination of 

physiochemical, biological and environmental factors (e.g., pH, temperature; Bronick & Lal, 

2005). The wide-ranging heterogeneity of soil varies across spatial (Ritz et al., 2004) and 

temporal scales (Rayment & Jarvis, 2000) and is inhabited by highly heterogenous 

microbial communities (Baker et al., 2009). 

In an attempt to obtain reliable and reproducible samples that lend themselves to 

comparisons and statistical scrutiny (Gawlik et al., 2003), soil sampling strategies should 

be informed by the dynamic relationship between soil heterogeneity and microbial 

communities (Baker et al., 2009). The spatial scale of a study site determines the degree of 

sample variation (Ettema & Wardle, 2002) and therefore requires techniques of sufficient 
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resolution to detect small scale differences (Bending et al., 2006). Frequently, differences 

between samples are assumed to be negligible and hence sample pooling is a regular 

practise among microbial ecologists. This practise grossly underestimates microbial 

diversity (Green & Bohannan, 2006) and destroys biological variability required for intra 

(within)- and inter (between) - sample comparisons (Prosser, 2010). 

 

While it is commonly accepted knowledge that microorganisms in soil possess the ability to 

detect and respond rapidly to environmental stimuli such as variations in temperature, 

water and nutrient availability (Fenchel, 2002), there is currently a lack of knowledge 

regarding the timescale required to observe shifts in microbial communities relative to 

environmental impacts (Cain et al., 1999, Andrén et al., 2008). Significant seasonal shifts in 

the microbial community structure have been observed in terrestrial ecosystems as a 

result of microclimatic influences (Schmidt et al., 2007), but high-resolution experiments 

regarding environment-specific conditions relating to community change are lacking. 

Environments with high temporal variations require the use of detailed spatial-statistical 

analyses (Cain et al., 1999) employing methods that possess the sensitivity to detect major 

as well as subtle variations (Cain et al., 1999; Andrén et al., 2008).  

 

While studies have investigated the effect of spatial and temporal variability on microbial 

community dynamics (e.g., Schmidt et al., 2007; Weisskopf et al., 2008), the use of small 

sample sets limits these studies for  extrapolation to larger geographical areas and reduces 

the meaningful interpretation of the datasets (Cao et al., 2002). An example of poor 

sampling methodology employed is demonstrated in a study by Bell & colleagues (2009). 
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Microbial community responses to temporal variations of moisture and temperature were 

investigated in the Chinuanhuan Desert.  In this study, 12 3 x 3 m plots were sampled 

biannually for a period of 3 years. The results from the study are unsubstantiated as it is 

not possible to statistically assess biological variability between samples that lack a well-

replicated sampling design. A sampling design that is truly representative of a study site 

requires a holistic examination of all testable parameters that may exert influences on the 

fluctuating biological system. This is highlighted in a study by Baker et al. (2009). Soil 

samples were collected from 40m x 45m plots using a sampling grid and a random number 

generator in an attempt to obtain unbiased sampling. They employed 2 different 

experimental designs, with a large number of independent replicates as well as pooled 

samples for comparisons. Variability introduced from DNA extractions were minimized by 

repeating the experiment in triplicate and amplifying the pooled DNA template. T-RFLP 

analysis of the PCR amplicons revealed a decrease in variability of the pooled samples, in 

comparison to individual samples (of both pH and bacterial community composition across 

spatial scales), substantiating the need for sample replicates when studying natural 

environments (Knight et al., 2012). The study of edaphic microbial communities thus 

requires robust sampling strategies, complemented by molecular fingerprinting techniques 

(Prosser, 2010; Jansson & Prosser, 2012). 

 

3.2. Community Fingerprinting Techniques 

Previous culture-based techniques characterized microorganisms on the basis of 

morphological, physiological and biochemical properties (Nocker et al., 2007). The 

isolation and cultivation of soil microorgansims only access 0.1% - 1.0 % of the total gene 
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complement and thus the majority of microorganisms in soil remain uncultured. This is 

largely due to the inability to understand and thus accurately reflect environmental 

conditions to grow microorganisms (Muyzer & Smalla, 1998) as natural soil environments 

are complex and highly heterogenous (Daniel, 2005). Culturing methods therefore, 

inaccurately reflecting true microbial composition within natural habitats (Hugenholtz, 

2002; Aguilera et al., 2006). 

The direct isolation of DNA from soil yields total microbial genomic DNA, termed the 

metagenome (Rondon et al., 1999). Metagenomics circumvent the limitations and biases 

associated with culturing techniques, and involve the extraction, amplification and analysis 

of the complete genetic complement of an environment. This allows direct access to a 

diverse range of novel genes and their products (Schmeisser et al., 2007). 

Molecular-based techniques are widely used to investigate microbial populations in natural 

ecosystems (e.g., Makhalanyane et al., 2013).  Fingerprinting techniques targeting 

molecular markers such as the 16S ribosomal RNA (bacteria; Muyser & Smalla, 1998) and 

18S rRNA genes (fungi; Fierer et al., 2007) enable the assessment of community diversity. 

The rRNA molecule contains highly conserved domains comprised of functionally 

important sequence information (Osborn et al., 2000). The polymerase chain reaction 

(PCR) amplification of the 16S rRNA gene using universal primers enables phylogenetic 

studies of complex soil microbial communities (Nocker et al., 2007). This has allowed for 

the study of microbial communities in a variety of habitats to analyse cross-biome 

metagenomics (Fierer et al., 2012). Despite these numerous advantages, metagenomic 
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techniques are subject to the limitations of variable DNA extraction and biases introduced 

by PCR (Blackwood et al., 2003). 

The increasing awareness of the fundamental importance of microorganisms in ecosystem 

processes has encouraged the investigation of microbial diversity and stability in relation 

to environmental and anthropogenic perturbations. Molecular microbial fingerprinting 

techniques enable the differentiation between sequences without the need for sequencing 

(von Wintzgerode et al., 1997),  allow the analysis of complex microbial assemblages in 

natural environments and are reproducible, affordable and provide rapid results (Brown et 

al., 2005). These techniques include denaturing gradient gel electrophoresis (DGGE; 

Muyser & Smalla, 1998), automated ribosomal intergenic spacer analysis (ARISA; Fisher & 

Triplett, 1999), and terminal restriction fragment length polymorphism (T-RFLP; Liu et al., 

1997).  

DGGE is a popular, if now old-fashioned, technique that uses sequence variation in 

ribosomal RNA to provide an overview of the community diversity profile (Kirk et al., 

2004). This technique allows for the separation of PCR amplicons migrating under a 

gradient of increasing denaturing strength (denaturants are usually urea or formamide; 

Figure 10). The DNA fragment is only partially denatured due to primers that incorporate a 

G-C clamp (30-50) nucleotide sequence consisting of guanines (G) and cytosines (C), 

allowing for the differential separation of fragments (Muyzer et al., 1993).  
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Figure 10: Community fingerprinting profile generated by DGGE analysis. DNA fragments partially 

separate along a gradient of increasing denaturing strength.  

 

Limitations of DGGE include insufficient discriminatory sensitivity, and the possibility that 

organisms may contain multiple copies of 16S rRNA genes with accumulated mutations, 

leading to overestimation of community diversity (Kirk et al., 2004). To increase the 

integrity of the diversity profiles obtained by DGGE, results can be qualitatively analysed in 

conjunction with other molecular techniques such as T-RFLP and ARISA (Boon et al., 2002; 

Kirk et al., 2004). 

 

ARISA is a method that exploits the variability of the length of the intergenic spacer (ITS) 

region between the 16S and 23S genes. This region has been found to contain various 

tRNAs that can be used to discriminate between bacterial species (Fisher and Triplett, 
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1999) and fungal species (Ranjard et al., 2001). As with T-RFLP, ARISA negates the use of 

culture-dependent methods and involves the use of fluorescently labelled PCR primers. 

However, a drawback of this method is the inability to measure OTU abundance (Ramette, 

2009). 

T-RFLP analysis is a high-throughput fingerprinting method that is frequently employed to 

detect and monitor changes in microbial community composition and structure. The gene 

of interest (e., 16S rRNA) is targeted PCR amplification, with one or both primers 

fluorescently tagged (e.g., 6’ carboxyfluorescein). The products are digested with either one 

or a combination of restriction enzymes and the relative abundance of fluorescently 

labelled T-RFs is determined by a DNA sequencer. An electrophorogram is produced which 

represents the profile of a community i.e., DNA fragments at varying lengths reflecting the 

composition and presence of dominant community members. This method distinguishes 

between sequences based on the presence or absence of specific restriction sites 

(Blackwood et al., 2003; Kirk et al., 2004).  

T-RFLP has been demonstrated to be effective at detecting variations between microbial 

populations in an assortment of environments (Tiedtjie et al., 1999; Schütte et al., 2008) 

including desert soils (Stomeo et al., 2013). Functional gene diversity can also be studied by 

T-RFLP, by targeting genes encoding for N (nifH) and C fixation (cbbL) and methane 

oxidation (pmoA), for example. Microbial community profiling techniques do not yield 

phylogenetic information to directly compare communities. T-RFLP partially overcomes 

this limitation through the use of clone libraries, from which sequences may be assigned to 

individual T-RF peaks, providing taxonomic information specific to the environmental 
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sample under study (Kirk et al., 2004). There are also various software tools available to 

allow for the assignment of T-RFs using online databases (Kent et al., 2003).  

 

3.3. Next-generation sequencing  

Recent advances in molecular biology have resulted in the emergence of next generation 

sequencing (NGS) as a powerful tool in microbial ecology, resulting in a higher degree of 

resolution with which community diversity can be studied in complex environments (Chu 

et al., 2010; Roh et al., 2010). 454 sequencing (Figure 11) is a high throughput sequencing 

platform provided by Roche/454 Life sciences for use in metagenomics (Petrosino et al., 

2009). 

Pyrosequencing has been successful in increasing the resolution at which ecologists are 

now able to study patterns and drivers of microbial biogeography (Lauber et al., 2009). For 

example, Fierer et al. (2012) recently undertook a comparative study investigating the 

functional diversity of edaphic microbial communities in hot and cold deserts, forests, 

grasslands and tundra. Evidence suggested microbial communities in desert environments 

contained a higher abundance of stress-response genes related to osmoregulation and 

dormancy. These studies highlight the importance of employing pyrosequencing in 

microbial ecology studies, with new insight into desert-adaptation strategies of microbial 

communities. Improvements of NGS technologies are constantly being developed, 

providing more robust tools to analyse microbial communities and their phylogenetic and 

functional relationships. For example, employing “barcoding” technology to 

pyrosequencing (Hamady et al., 2008), which involves multiplex sequencing of a barcode 
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sequence; i.e., a sample-specific identifier is attached to the DNA to be sequenced. The 

appropriate barcodes are detected and phylogenetically assigned to the sequence reads 

(Berry et al., 2011).  

 

Figure 11: A generalized outline depicting the pyrosequencing chemistry. The biochemical reactions 

and enzymes depicted are involved in generating light signals. Each peak in a pyrogram represents a 

pulse of light detected in the instrument (Petrosino et al., 2009). 

 

While NGS technologies have improved sequencing outputs, read length and accuracy, 

challenges have been reported in the total sequencing output in relation to the cost and 

labour. However, these technologies have revolutionized the ability to study microbial 

ecology at very high resolution, especially when used in parallel to software platforms that 
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analyse the vast sequencing output, such as MOTHUR and QIIME (Caporaso et al., 2010; 

Shokralla et al., 2012).  

4. Research objectives 

Deserts are low energy systems and constitute the most extensive terrestrial ecosystems 

on Earth (Laity, 2009). In arid regions, high temperatures in association with limited and 

sporadic rainfall impose constraints on vegetation and edaphic microbial communities. The 

increase of global levels of atmospheric CO2 is predicted to increase drought events and 

episodic floods in such environments (Adeel et al., 2005). These pulse-precipitation events 

may potentially increase temporal vegetation cover, stimulating the bioavailability of 

nutrients in generally oligotrophic soils (Austin et al., 2004). This increases edaphic 

microbial community activity and, notably, their involvement in biogeochemical cycles 

(Hättenschwiler et al., 2005). 

Bacterial communities have demonstrated rapid response to environmental events 

(Fenchel, 2000), however the temporality of their response (e.g., changes in composition 

and/or function) is not well studied in deserts. Furthermore, investigating the impact of 

seasonal vegetation on edaphic microbial communities in such regions will shed light on 

their role in ecological processes and the dynamics of nutrient turnover in this extreme 

environment. 

The central Namib Desert received 165 mm of rainfall in 2011, recorded as the wettest year 

in the last 49 years (Eckardt et al., 2013). This extreme event transformed regions of the 

central Namib into primary successional grasslands (Figure 12). This observation 
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stimulated us to consider the role of seasonal nutrient availability in shaping the edaphic 

bacterial communities in this hyper-arid and depauperate environment. 

 

 Within this framework, the specific objectives were: 

i. To investigate the variability of microenvironmental variables and edaphic bacterial 

communities in a 8100 m2 vegetation-covered site (Site A), in comparison to two 

100 m2 vegetation-free sites (Sites B and C), by designing a representative sampling 

strategy and assessing short-term dynamics across spatial and temporal scales.  

 

ii. To examine whether or not edaphic bacterial communities in the vegetation-

covered site exhibited seasonal patterns of change over a one year period, 

 

iii. And finally, to evaluate the role of the microenvironment in shaping temporal 

patterns of variation in the edaphic communities in the central Namib Desert gravel 

plains. 

 

This study utilizes a holistic approach which combines the use of T-RFLP for microbial 

community fingerprinting, fine-scale soil physio-chemical characterization and a robust 

sampling strategy. 
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Figure 12: Photographs of the gravel plains in the central Namib Desert before an extreme rainfall event in April 2010 (a), and after the 165 

mm rainfall event in April 2011 (Courtesy of Prof. D.A Cowan)
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Chapter 2: Materials and Methods  

2.1. Study site and sampling strategy  

Sampling was conducted 2 km east of the Gobabeb Training and Research Centre in the 

central Namib Desert from 01 May 2012 to 28 April 2013. The study area was divided 

into 3 sites (Figure 13) consisting of Site A (S23° 33.302', E15° 3.288) Site B 

(S23°33.235, E15°03.232) and Site C (S23°33.332, E15°03.343).  

 

 

 

Figure 13: Location map of the study area in the Namib Desert gravel plains. The study area was 

divided into three sites (A, B and C).  The distance between sites and their surface areas are 

depicted (Source: Google Earth; 6/27/2010). 

 

 

 

 



40 
 

The study area was selected where the region was generally consistent in terms of 

geology aspects (south-facing), slope (est. 5°) and the presence or absence of vegetation 

cover during May 2012 (Figures 14 and 15). Site A represented a vegetation-covered 

study site and extended over a total surface area of 8100 m2, divided into 81 (10 x 10 m) 

plots (Figure 14). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Photograph depicting Site A in the Namib Desert gravel plains. In May 2012, seasonal 

Stipagrostis sp., a common perennial grass in the region, was growing on the study site. 

 

Sites B and C, which were immediately adjacent to the Site A, were selected for the 

absence of Stipagrostis sp (representing vegetation free sampling sites) .These sites 

were divided into 4 (10 x 10 m) plots covering a total surface area of 100 m2 (Figure 

15). 
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Figure 15: Photographs of the 100 m2 Sites B and C study areas in the Namib Desert gravel plains in May 2012. These sites represented vegetation-free 

sites (Stipagrostis sp. was largely absent on the study sites) in this study and were located approximately 0.189 km apart.
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Soil samples were collected between 8 and 10 AM on days 0, 4, 12, 28, 42, 57, 88, 118, 

138, 178, 198, 238, 268, 298, 328 and 355 (from 01 May 2012 to 28 April 2013).  On 

each sampling day, surface soil (0-3 cm) samples were collected using a 1 m2 grid 

divided into 16 quadrats (Figure 16). These samples were pooled and homogenized into 

a single sample. This strategy was repeated for randomly selected 8 plots Site A and on 

3 plots for Sites B and C each (n = 14 total per sampling day).  This approach allowed us 

to assess bacterial community variability at different time periods. A random sampling 

strategy was employed which minimized biases; ensuring samples to be representative 

of the environment (Quinn & Keough, 2002; Baker et al., 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Equipment used in the sampling of desert surface soil in this study. 1 m2 wired sampling 

grid (divided in 16 individual 25 x 25 cm quadrats) and a trowel is depicted. 
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Soil samples were homogenized and separated into 2 g aliquots for FDA analysis and 

DNA extraction and 7 g for storage in RNAlaterTM (Sigma-Aldrich, USA). Soil for 

molecular analyses was stored at -20 °C, while the remaining soil (~ 70 g) was stored at 

4°C for physio-chemistry characterization. 

 

2.2. Temperature and relative humidity data 

 

Air temperature and relative humidity was obtained from the Gobabeb Land Surface 

Temperature (LST) weather station, established by the Karlsrughe Institute of 

Technology (KIT) in the central Namib Desert gravel plains (23°33’S, 15°03’E). The 

stations instruments were mounted at varying heights (e.g., 2m and 25m) measuring air 

temperature, relative humidity and wind speed at 1 minute intervals (Göttsche et al., 

2013). In chapter 4, air temperature and relative humidity (measured at 2 m) was 

represented as monthly averages to observe seasonal trends (Figure 26). 

 

2.3. Soil physio-chemical characterisation  

Soil chemistry analyses were conducted at the Soil Science Laboratory of the University 

of Pretoria, South Africa, according to standard quality control procedures (SSSA, 1996). 

All solutions and reagents used in the chemistry analyses were supplied by Merck 

Chemicals, South Africa. Soil samples were sieved (2 mm) prior to analysis, as 

recommended.  

2.3.1. Assays for inorganic N (ammonium and nitrate) 

A method for determining exchangeable ammonium (NH4+) and nitrate (NO3-) by steam 

distillation described by Bremmer & Keeney (1966) was used with minor modifications.  
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Briefly, 5 g of soil was mixed with 2M potassium chloride (KCl; 10 ml/g of soil) solution 

and shaken for 30 minutes at 220 rpm. Samples were allowed to settle for 1 minute and 

the supernatant was filtered through a 110 mm Whatman no. 2V filter paper and stored 

at 4 °C overnight. The extractant was processed where ammonia (NH3) is volatised from 

a weak alkaline solution. The addition of 0.2 g magnesium oxide (MgO) powder 

liberates ammonium (NH4) and residual nitrate (expressed as mg N g-1) and is 

determined by the reduction to nitrite (NO2) via the addition of 0.2 g of Devarda alloy 

powder (Keeney & Nielson, 1982). 

2.3.2. Total organic C 

The Walkley-Black method (Walkley, 1935) was used to determine organic C content of 

soils, with minor modifications.  To 2 g of soil, 10 ml of 1M potassium dichromate 

(K2Cr2O7) solution was mixed by swirling. Ten ml sulfuric acid (96%, H2SO4) solution 

was added and the mixture was cooled at room temperature for 30 min. Deionized 

water (150 ml) and concentrated (10 ml, 96%) orthophosphoric acid (H3PO4) were 

added and the mixture was cooled as before. One ml (2.5 mM) phenylalanine colour 

indicator was added and the mixture was titrated with iron (II) ammonium sulphate 

[(NH4)2Fe(SO4)2·6H2O] solution, until the endpoint of the reaction was reached i.e. when 

the solution changed from purple to green.  

2.3.3. Total organic P  

Determination of total organic P was performed using the P Bray method described by 

Bray & Kurtz (1945), with minor modifications. To 4 g of soil, 50 ml P Bray-1 Solution 

was added and the bottles shaken for exactly 1 min. After shaking, the solution was 

filtered through a 110 mm Whatman no. 2V filter paper. Phosphorus concentrations 
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were determined by Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-

OES; Spectro genesis, Germany).  

2.3.4. Cation exchange capacity (CEC) and Elements 

Determination of CEC was performed using a modified method described by USDA 

(1972) which uses ammonium acetate (NH4OAc) and potassium chloride (KCl) solutions 

as extractants. Four g of soil was mixed with 0.2M ammonium acetate (10 ml/g of soil) 

and shaken for 60 min. The samples were centrifuged (8800 rpm for 10 min) and the 

supernatant was filtered through a 110 mm Whatman no. 2V filter paper into a flask. 

The weight of the remaining soil and container was determined and 50 ml (2 M) 

potassium chloride solution was added prior to shaking at for 60 min. The samples were 

centrifuged at 8800 rpm for 10 min and stored at 4°C overnight. Prior to titration, 0.2 g 

magnesium oxide powder was added to the ammonium acetate and potassium chloride 

extractant solution. The CEC value was calculated as the difference between the values 

of the two extractant solutions, as determined by titration with 0.25 M iron (II) 

ammonium sulphate. Fifteen ml aliquots of the ammonium sulphate solution were used 

to determine the concentration of magnesium (Mg), sodium (Na), calcium (Ca) and 

potassium (K) by ICP-OES. These variables have previously been shown to be important 

factors shaping edaphic microbial communities (O’Donnell et al., 2007). 

2.3.5. Moisture Content (MC) 

The moisture content of soils was determined according to the standard method by 

weighing 2 g of soil into glass beakers and incubation in an oven at 100 °C for 24 hours. 

The moisture content was calculated according to: 10021% xWWMC  , where: W1= 

weight of container  and moist soil (g) and W2 = weight of dried soil and container (g).  
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2.3.6. Particle size distribution 

The particle size distributions of soil samples were determined according to the method 

by USDA (1972). Ten ml of Calgon dispersing solution was added to 30 g of soil. 

Deionized water was added to the soil up to 150 ml and shaken for 5 min at maximum 

speed. In order to separate the various sand fractions, the samples were passed through 

differently sized sieves (0.5 mm for coarse sand, 0.1 mm for fine sand and 0.05 mm for 

very fine sand),  i.e., clay, silt and sand fractions. After each sieving, the remaining soil 

fraction was transferred to a beaker and dried at 105 °C to constant mass and weighed. 

The silt and clay fractions were suspended in 1L deionized water, shook for 30 s and 

incubated at room temperature for 6 hours. The percentage for the different soil 

fractions were calculated according to the formula: 
M

Ax
sand

100
%  ;

M

Ex
clay

50
%  ;

)%(%100% claysandsilt  , where: A = mass for sand fraction, E= mass of clay 

fraction and M = mass of soil.  

2.3.7. pH. 

The slurry technique, as described by Eckert & Simms (1995), was used to measure pH 

by mixing 2 g of soil with 5 ml of deionized water and allowing it to settle for 30 min. A 

Crison Bench pH meter (Crison Instruments, Barcelona, Spain) was used to measure the 

soil pH. 
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2.4. Molecular Techniques  

2.4.1. Metagenomic DNA Extraction  

Metagenomic DNA was extracted from 0.25 g of soil using the Powersoil® DNA 

Isolation Kit (MOBIO, West Carlsbad, CA, USA) according to the manufacturer’s 

instructions.  

2.4.2. Polymerase Chain Reaction (PCR) 

To amplify the 16S rRNA gene in metagenomic DNA, the primer pair E9f/U1510r was 

used as described in Table 3. Standard 50 µl PCR reactions contained 25 ng of 

metagenomic DNA as template, 200 µM dNTPs, 0.5 µM of each primer, 0.600 U of 

DreamTaq® DNA polymerase 1X DreamTaq® buffer (Fermentas, USA). 

 

 

Table 1: Primer combinations and PCR parameters used in this study. 

Primer 

Set 
Sequence (5' to 3') Amplification Cycle Specificity Reference 

E9f GAGTTTGATCCTGGCTCAG 
95 °C/5 min                                              

30x ( 95 °C/30 s - 

52°C/30 s -72 °C/8 min)               

16S rRNA 

gene 

(Bacteria) 

Reysenbach & Pace, 

1995 

U1510r GGTTACCTTGTTACGACTT    Marchesi et al., 1998 
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2.4.3. Analytical Procedures 

2.4.3.1. Agarose Gel Electrophoresis 

Agarose gels (1%-2%) were prepared by dissolving agarose in 1X TAE buffer and 

adding 0.5 μg/ml GelRed mixed with standard loading dye to aid visualization. DNA 

fragments and PCR amplicons were separated by electrophoresis at 100 V in 1 X TAE 

buffer. Gels were visualized using ultraviolet (UV) light illumination and photographed 

with the Molecular Imager® Gel DocTM XR+ digital imaging system (Bio-Rad, South 

Africa). 

2.4.3.2. DNA Quantification 

The DNA concentrations (OD260 nm x 50 ng/μl) and purity (OD260 nm/ OD280 nm) were 

measured using the Nanodrop® ND-100 UV-Vis Spectrophotometer (Nanodrop 

Technologies, USA). The ratio of OD260 nm/ OD280 nm is acceptable in the range of 1.8–2 

(Wilfinger et al., 1997).  

 

2.5. DNA Purification  

PCR products were purified using the NucleoSpin® Gel and PCR Clean-up kit according 

to the manufacturer’s instructions (Macherey-Nagel, Duren, Germany).  

 

2.6. Terminal - Restriction Fragment Length Polymorphism (T-RFLP) 

Bacterial 16S rRNA genes were amplified using the universal primers as described in 

Section 2.1. The forward primer was fluorescently FAM-labelled (6-carboxyfluorescein) 

at the 5’ end. PCR reactions were carried out in duplicate, in a Bio-RAD T100 Thermal 

Cycler (BioRad, USA).  PCR amplicons were purified using the NucleoSpin Gel Extraction 
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Kit as described in section 2.5. Amplicon concentrations were normalized to 200 ng and 

digested with HaeIII restriction enzyme (Fermentas, USA) at 37 °C overnight. The 

digested fragments were purified and eluted in 20 µl of the elution buffer. Purified 

products were sequenced at the Stellenbosch University’s Central Analytical Facility 

(CAF: http://academic.sun.ac.za/saf/). Fluorescently labelled T-RF fragments were 

subjected to capillarity electrophoresis in a ABI3130XL sequencer (Applied Biosystems, 

USA) co-injected with the molecular size ladder GeneScan Rox 1.1 (sizes: 47, 51, 55, 82, 

85, 93, 99, 126, 136, 292, 317, 362, 439, 557, 692. 695, 946). T-RFLP profiles from 

resultant ABI files were then analysed using Peak Scanner™ (version 1.0, Applied 

Biosystems, available online: https://products.appliedbiosystems).  

 

2.7. Multivariate Statistical Analysis 

Multivariate analyses of T-RFLP and abiotic data were performed as described by 

Makhalanyane et al. (2013). Software programs Primer 6 (version 6.1.5.81; Primer E 

Ltd, Plymyth, UK) and R statistical package 2.15.1 using the vegan, gpolts and labdsv 

packages (www.r-project.org), were used to analyse the multivariate data sets.  

Specifically, multivariate analyses of data were performed on square-root transformed 

T-RFLP data (reflecting OTU abundance), and on normalized data for environmental 

variables. 

 

T- RFLP data and environmental variables sets were used to calculate Bray-Curtis 

dissimilarity matrices (Bray & Curtis, 1957) and Euclidean distance similarity matrices, 

respectively. This allowed T-RFLP profiles and environmental data to be visualized 
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using non-metric multidimensional scaling (NMDS) plots. A single point on an NMDS 

ordination represents a complex bacterial fingerprint (for each sampling day), 

consisting of numerous T-RFs (where one T-RF represents one OTU). The NMDS 

algorithm ranks distances between objects (here, samples representing bacterial 

communities) and plots them based on their ranking, nonlinearly onto a dimensional 

ordination space (Ramette, 2009). This method of ordination is popular because it 

provides a simplified representation of community relationships whilst preserving the 

rank order of sample dissimilarity and distances (Clarke, 1993). Therefore, sample-

relatedness can be determined by their position in space; i.e., the more dissimilar 

samples are, the further apart they will be positioned (and vice versa).  The quality of 

the ordination is indicated by a stress value, where the closer the value is to zero, the 

more aligned the rank orders are: Stress <0.05 constitutes an excellent representation 

with no possibility of misinterpretation; Stress <0.1 represents a good ordination with a 

low risk of false interpretation; Stress <0.2 is a usable ordination, with the potential for 

misinterpretation; Stress >0.2 represents an ordination that is close to random and 

therefore unreliable (Clarke, 1993).  

 

ANOSIM was used to test for inter-variation (between group variations) between a 

priori defined groups (Clarke, 1993). For example in chapter 3; ANOSIM was used to test 

the significance of Site A, B and C communities and in chapter 4 ANOSIM tested seasonal 

(summer 2012, winter 2012, autumn 2012, autumn 2013 and spring 2012 

communities. ANOSIM provides a p-value to test for significance of grouping (P < 0.05) 

and yields an R value (i.e., R > 0.75, groups are well separated, R > 0.5, groups overlap 
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but clearly different, R<0.25, groups are barely distinguishable (Clarke, 1993; Clarke & 

Gorley, 2001). 

Intra-variability (within-group variation) of bacterial communities was assessed using 

the function betadispers (vegan package in R; Oksanen et al., 2011). The function 

implements PERMDISP2 procedure for the analysis of multivariate homogeneity of 

group dispersions (variances; Anderson et al., 2001). In chapter 3, dispersion analysis 

was used to test within-group variation among Site A, B and C bacterial communities 

and environmental variables. The F ratio is obtained by calculating the distance-to-

centroid (dispersion) values for each group of samples. The P value is subsequently 

obtained by comparing the actual F ratio to 999 randomly generated F ratios, and P ≤ 

0.05 is considered significant (Chase, 2007).  

The non-parametric Kruskal-Wallis one-way analysis of variance (Kruskal & Wallis, 

1952) was used to test differences in environmental variables among sites (chapter 3) 

and seasons (chapter 4). Wilcoxon-Mann-Whitney post hoc tests for pairwise 

comparisons were used after ensuring that an overall Kruskal-Wallis test was 

significant (P < 0.05). Tests were Bonferroni-corrected for multiple errors (Gotteli & 

Ellison, 2012). This correction however, is often judged to be rather conservative as it 

leads to significance for fewer pairwise comparisons (Legendre & Legendre, 1998; 

Ellison & Gotelli, 2004). 

 

A Venn diagram provides a simple and visual representation of the number of unique 

and shared taxa across groups. These illustrations are based on a presence/absence 

data set in which the shared OTUs are calculated.  The circles are used to represent the 
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different communities and the shared OTUs are represented by overlaps in the circles 

(Shade & Handelsman, 2012). In chapter 4 a Venn diagram was used to depict 

comparisons of T-RFLP-derived OTUs in the bacterial communities among seasons.  

Spearman’s rank order correlations is a non-parametric version of the Pearson 

correlation test and is therefore less restrictive as a Spearman’s test does not require 

the data to have a linear relationship (Spearman, 1906). In chapter 3, Spearman’s rank 

order correlations were used to for correlations among environmental variables. 

 

Mantel tests (Mantel, 1967) were conducted in R (vegan package) to examine the 

correlations between (i) Euclidean distances of environmental variables vs. Euclidean 

distance of time (sampling days; chapters 3 and 4), (ii) Bray-Curtis dissimilarity 

distances vs. Euclidean distance of time (chapters 3 and 4) and (iii) averaged Bray-

Curtis dissimilarity distances (β diversity) vs. averaged Euclidean distances of soil 

moisture, P, K+ and Mg2+ (chapter 4). 

 

Redundancy analysis (RDA; Legendre & Legendre, 1998) was selected to test the effect 

of abiotic data in explaining bacterial community variation in R (vegan package). RDA is 

a constrained ordination method (Legendre & Gallagher, 2001) related to principal 

component analysis (PCA). The ordination sequentially seeks the combination of 

environmental variables that best explain the variation of the biotic matrix (in this 

study, T-RFLP data). The impact of the environmental variables on the matrix with 

biological data is displayed as arrows, where direction of the arrow indicates the 

direction of maximum change of that variable, and the length of the arrow is 
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proportional to the rate of change. The amount of variation explained by each axis are 

depicted with scores (eigenvalues) on the axes (Legendre and Anderson, 1999). The 

significance of the RDA models and of the selected variables was determined by 999 

Monte Carlo permutations at P < 0.05 for each group. Only the significant variables (P ≤ 

0.05) were selected from all the environmental variables tested (C, P, NO3-, NH4+, Mg2+, 

Ca2+, Na+, K+, CEC, MC and pH) and fitted to the ordination as arrows.  

In chapter 3, due to the large amount of soil required for soil structure analysis, only 

four replicates per site were measured and this variable was therefore not included in 

the redundancy analysis.  

 

 

2.8. Buffers, solutions and media 

Luria-Bertai agar (LB; Sambrook & Russell, 2001) 

Yeast extract 10g 

Tryptone 5g 

NaCl 10g 

Agar 15g 

The pH was adjusted to 7 before autoclaving and the medium was supplemented with 

100 mg/ml of ampicillin. 

TAE Buffer 

50X TAE (pH8) stock 

Tris-HCl 242.2 g 
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Glacial acetic acid 57.1 ml 

0.5M EDTA 100 ml 

The solution was made up to 1L with deionized water. 

Phosphate Buffered Saline (PBS) 

NaCl 80 g 

KCl 2.0 g 

Na2HPO4 14.4  g 

KH2PO4  2.4  g 

The pH adjusted to 7.4 before autoclaving, made up to 1L with deionized water. 

Tris (tris-hydroxyaminomethane) Buffer 

Tris-hydroxyaminomethane 60.54 g 

The pH was adjusted to 8.6 before autoclaving and made up to 1L with deionized water. 

 

P Bray Solution 

NH4F 600 ml (0.25 mg/L) 

32% HCl 50 ml 

The solution was made up to 1L with deionized water. 

 

Boric acid-indicator solution 

Bromocresol green 0.5 g 
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Methyl red 0.1 g 

p-nitrophenol 0.1 g 

Dissolved in 100 ml 95% ethanol and made up to 1L with deionized water. The pH was 

adjusted to 4.6. 

 

Calgon dispersing solution 

Sodium hexametaphosphate [(NaPO3)6] 35.7 g 

Sodium carbonate (Na2CO3) 7.94 g 

The solution was made up to 1L with deionized water. 
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Chapter 3: Short-term bacterial community dynamics and 

microenvironmental variability of Namib Desert gravel plain soils 

 

3.1 Introduction 

Research has highlighted the importance of edaphic microbial communities in 

maintaining ecosystem functioning by acting as key drivers of the essential C and N 

biogeochemical cycles (Yergeau et al., 2007; Pointing & Belnap, 2012). Therefore, 

investigating soil microbial community dynamics (i.e., their patterns of structural 

change over time) has been the focus of considerable research (Butler et al., 2003; 

Stickland et al., 2009; Lauber et al., 2013). Studies have demonstrated links between 

temporal variability of edaphic microbial communities and seasonal changes in soil 

moisture, temperature and vegetation cover (Waldrop & Firestone, 2006; Koch et al., 

2007; Horz et al., 2004; Buckley & Schmidt, 2001). Local environmental factors (e.g., pH 

and soil physiochemical characteristics), spatiality, resource factors and soil structure 

have also been reported to influence edaphic community structure (diversity and 

composition; Zhou et al., 2002; Fierer & Jackson, 2006; Rasche et al., 2010; Fierer et al., 

2012). However, in situ research focussing on identifying the drivers of spatial variation 

and temporal community dynamics across habitat types in deserts remains scant.  

 

Desert terrestrial environments are typically characterised by low levels of bioavailable 

water and nutrients, diurnal and seasonal temperature extremes, and high levels of 

ultraviolet (UV) radiation (Pointing & Belnap, 2012). Namib Desert soil ecosystems are 

among the most extreme environments on Earth, with low (< 25 mm) and variable 

rainfall and high daily fluctuating temperatures (0 °C to 50 °C; Eckardt et al., 2013).   
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Despite such challenges, microbial communities proliferate and constitute key process 

drivers in deserts, functioning as sites of primary productivity (Pointing et al., 2009; 

Tracy et al., 2010; Caruso et al., 2011; Makhalanyane et al., 2012; Stomeo et al., 2013). 

We know that desert microbial communities exhibit seasonal (Lipson, 2007; Bell et al., 

2009) and annual (de Bruyn et al., 2011) patterns of change, and generally respond 

rapidly to moisture events (Garcia-Pichel & Pringault, 2001; Fierer & Schimel, 2002).  

However, the lack of replication in temporal studies (Knight et al., 2012) decreases their 

discriminatory power to differentiate between “real” temporal changes in communities 

or differences reflecting soil spatial heterogeneity (Lauber et al., 2013), 

 

It has been suggested that external environmental drivers (e.g. pH) rather than 

biological factors (e.g. competition) are the key determinants shaping edaphic microbial 

community structures in desert environments (Fierer et al., 2012). Caruso et al. (2011), 

however, demonstrated that both stochastic and deterministic processes interact to 

structure desert microbial communities at a global scale. These contradicting studies 

highlight the need to resolve the temporal variability of edaphic communities in natural 

environments using robust sampling strategies (i.e., highly replicated; Schmidt et al., 

2007; Prosser et al., 2010; Knight et al., 2012; Lauber et al., 2013; Jansson & Prosser, 

2013), as their discriminatory power is dependent on the analytical methods and 

sampling design employed (Frostegard et al., 2011; Lombard et al., 2011).  

 

The aim of this study was therefore to investigate and compare the variability of 

bacterial communities and soil physiochemistry among different sites in the Namib 
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Desert gravel plains using (i) short-term sampling intervals, (ii) fine-scale soil 

physiochemical analyses and (iii) molecular fingerprinting through T-RFLP analyses. A 

total of 83 surface (0-3 cm) soil samples from three distinct locations were collected in 

the Namib Desert gravel plains over 57 days using a randomized sampling design.  
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3.2. Results  

3.2.1. Metagenomic DNA extraction 

An important initial step in investigating the structure of environmental microbial 

communities is the extraction of the soil metagenome. This is particularly challenging as 

the complex soil matrix contains PCR-inhibiting substances such as humic and fulvic 

acids which co-extract with DNA (Schneegurt et al., 2003). In low biomass 

environments, the extraction of high quality DNA of sufficient yields may be another 

limiting factor.  

 

 

 

 

 

 

 

 

Figure 17: Desert soil total metagenomic DNA extraction. Lane 1: DNA molecular weight marker 

(Kappa), Lanes 2-8, soil metagenomic DNA. 

 

In this study all soil samples metagenomic DNA (n = 127) were successfully extracted 

with the MoBio Powersoil® DNA Isolation Kit (Chapter 2, section 2.3.1). High molecular 

weight (~10 000 bp) DNA was consistently recovered with an A260/280 ratio between 1.6 

and 1.9 (Figure 15). 
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3.2.2. PCR amplification of bacterial 16S rRNA genes  

In order to obtain reproducible community fingerprints with T-RFLP, PCR-

amplifications must have high specificity, and PCR optimization is typically required to 

improve amplification efficiency and specificity prior to downstream analysis. The 

additions of glycerol, magnesium chloride, or formamide, as well as DNA template 

dilutions, were tested (data not shown). However, some control site soil samples 

remained recalcitrant to amplification (Figure 18 a, Lanes 2-3,5,7), or yielded multiple 

bands (Figure 18 a, Lanes 4,6,8,9). It was noted that the addition of 4% dimethyl 

sulfoxide (DMSO) and 0.4 mM bovine serum albumin (BSA) yielded highly specific 

amplifications (Figure 16 b), as previously reported (Frackman et al., 1998). 

Amplifications of the 16S rRNA gene using universal bacterial primers (E9f/U1510r; 

Table 1, Chapter 2) were successful for 82 samples, with the expected product size of 

1,500 bp (Figure 16). The negative control yielded no visible amplification (Lane 5). 16S 

rRNA gene amplification products were therefore suitable for T-RFLP analysis. 

 

 

 

 

 

 

Figure 18: 16S rRNA gene PCR amplification from metagenomic DNA before (a) and after (b) 

optimization. a: Lane 1: DNA molecular marker (Kappa), Lanes 2-9, 16S rRNA gene amplification 

result, Lane 10, negative control. b: Lane 1: DNA molecular marker (Kappa),Lanes 2-4 16S rRNA 

gene amplification result, Lane 5, negative control. 
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3.2.3. Assessing the sampling strategy 

A total of 83 soil samples were collected from the study area over 57 days, this included 

56 soil samples from Site A and 18 samples from Sites A and B, respectively (Chapter 2, 

section 2.1). In assessing the distribution of samples randomly collected on study site A 

(n = 7 x 8), it was observed that of the site was sampled over the 2 month period, 11% 

(n = 6) was sampled at least twice, while 44 % 56% (n= 31) was never sampled (n = 

36%; Figure 19). Sites A and B covered a smaller area (100 m2 each) and therefore the 

plots on the sites were sampled more frequently (sites sampled at least twice; n = 100 

%, data not shown). 

 

 

 

 

Figure 19: Schematic diagram of the sampling strategy employed in this study. The days sampled 

over 57 days and the respective plots are colour-coded, while white plots were never sampled. 

The 10 x 10m plots were identified by numbers between 1-81, which allowed the selection of 

individual plots to be sampled using a random number generator. 
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3.2.4 The variability of environmental parameters 

The three study sites (Figure 14 and 15, Chapter 2) separated in relation to their 

chemical composition on the NMDS ordination is presented in Figure 20. The clustering 

of environmental variables from Sites B and C suggests that these sites are more similar 

in their chemical composition, than Site A, as confirmed by ANOSIM pairwise 

comparisons (ANOSIM, A vs. B, R = 0.56, P = 0.001; A vs. C, R = 0.54, P = 0.001; B vs. C = 

R = 0, P = 0.9).  

Significant differences in soil chemistry intra-variability was observed (Figure 20) and 

confirmed by betadispersion analyses (betadispers, P = 0.035), with Site A showing the 

greatest variability.  

 

 

 

 

 

 

 

 

 

Figure 20:2-D NMDS plot (Euclidean distance) of normalised soil chemistry variables (soil 

moisture content, C, P NO3
-, NH4

+, K+, Ca2+, Mg2+, Na+, pH) for soil samples over 57 days. Site-specific 

grouping of bacterial communities is displayed. Site A represented the vegetation-covered study 

site, while Sites B and C were vegetation-free. 
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Soil pH, C, P, K+, NH4+, Mg2+, Moisture content and Ca2+ were significantly higher in Site 

A (Kruskal-Wallis test, P < 0.02) than in soils from Sites B and C. Contrastingly, levels of 

soil NO3- and Na+ were significantly higher in Sites B and C (Kruskal-Wallis test, P < 

0.005) compared to Site A. Indeed, pH was found to be significantly higher in Site A 

compared to Sites B and C (pairwise Wilcoxon-Mann-Whitney tests, Sites A vs. B, P = 

0.001; Sites A vs. C, P = 0.001; Sites B vs. C, P = 1), substantiating earlier observations 

that Sites B and C share a similar habitat type. Soil pH was found to be significantly 

correlated to the variables  P, NH4+, NO3-, Na, K, Mg, Ca (Spearman’s ƿ  > 0.6, P < 0.05) in 

all three sites.   

 

Environmental variables were not correlated with time (Mantel, r = 0.03, P = 0.001), 

suggesting that the composition of environmental variables remained generally static 

over the 57 day sampling period. 

 

Analyses of grain size distribution suggests that Sites B and C displayed similar soil 

structures by only representing sand and silt fractions (Figure 21) while Site A 

exclusively contained clay (4%). Based on soil chemistry and structure analyses, Site A 

represents a significantly different edaphic environment compared to soils from Sites B 

and C, which appeared to be more similar.  
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Figure 21: Histogram depicting percentage soil structure (sand/silt/clay) analysis for sites. Data 

was generated using 4 replicates per site (n = 4 x 3), to obtain a ‘global’ representation of the soil 

structure specific to individual sites. Error bars depict standard deviation. 

 

3.2.5 Bacterial community patterns 

A NMDS ordination displaying bacterial community structure (Figure 3) revealed 

community overlap between Sites B and C, while bacterial communities from Site A 

separate from Sites B and C bacterial communities. This was supported by ANOSIM 

pairwise comparisons (A vs. C: R = 0.54, P = 0.001; A vs. B: R = 0.56, P = 0.001; B vs. C: R 

= 0, P = 0.9). Furthermore, bacterial communities displayed no significant differences in 

intra-variability over time (betadispers, P = 0.1). 
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Figure 22: NMDS plot (Bray-Curtis dissimilarity) of relative abundances comparing bacterial 

community T-RFLP profiles between sites. T-RFLP data was square-root transformed prior to 

analyses. 

 

To better observe the temporal variation, communities in their respective sites were 

studied separately (Figure 23), and found to display different temporal dynamics. For 

example, shifts in bacterial community composition between D0 and D4 were larger in 

Sites A and B, than in Site C. Furthermore, larger shifts between D4 and D12 were 

observed in Sites A and C, compared to Site B. 
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Figure 23: Changes in bacterial community composition at each sampling point. NMDS showing Bray-Curtis dissimilarity of T-RF abundance averaged 

across replicates (so that one point represents a complex bacterial fingerprint of each sampling day). Connecting lines are trajectories displaying 

temporal dynamics of bacterial community composition. T-RFLP data was square-root transformed prior to analyses. 
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3.2.6 The role of the environment in shaping edaphic bacterial communities 

The effect of environmental variables  (C, P, NO3-, NH4+, MC, K+, Ca2+, Mg2+, Na+, pH) on the 

bacterial community structure among Sites A, B and C was assessed using canonical RDA 

analysis (Figure 24). Grouping of samples in the ordination plot along axis 1 demonstrated 

overlap between Site B and C communities, whereas Site A communities were separate and 

likely correlated with pH. Soil pH was the only variable found to play a role in the observed 

variation between sites, however only 11% of the measured variation could be explained 

(RDA analyses, P = 0.04).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: Redundancy analysis (RDA) biplot of bacterial abundance and microenvironmental 

parameters. Only the environmental variable that significantly explained variation of bacterial 

community structures was fitted to the ordination (arrows; P = 0.04).  
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3.3 Discussion 

Different community dynamics were observed for site-specific bacterial communities, 

however none of the measured environmental variables were significant in explaining the 

observed temporal variation. These results suggest that the observed temporal changes in 

bacterial community composition could be driven by stochastic rather than deterministic 

factors in the Namib Desert gravel plain soils. The Neutral Theory (Hubbel, 2001), in which 

the structure of communities with equal fitness is driven by stochastic drift (Rosindell et 

al., 2012), resulting in random patterns of species co-occurrence (Bell, 2005), could explain 

the observed intra-site variability.   Alternatively, environmental factors not specifically 

targeted in this study could account for the variation observed. For example, the quantity 

and quality of organic carbon accessible through root exudation and/or plant litter inputs 

have been linked to temporal changes in specific taxonomic groups (Sherman & Steinber, 

2012). Furthermore, temporal variations in soil moisture and temperature have been 

demonstrated to influence the soil microbial community composition in deserts (Bell et al., 

2009).  

 

Due to the extreme environmental characteristics and the limited bioavailability of water of 

the region, it was not surprising to observe that environmental variables remained 

relatively static over time (Eckardt et al., 2013).  Furthermore, the rate of C turnover in arid 

environments has been estimated to be in the order of decades (Warren-Rhodes et al., 

2006) and low rainfall could limit microbial nutrient availability, resulting in decreased 

microbial decomposition rates (Austin et al., 2004). The availability of other environmental 
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variables, for example soil phosphorus, is dependent on soil moisture, temperature and 

nutrient availability (Richardson & Simpson, 2011) and therefore long-term monitoring of 

the soil physiochemical characteristics of this environment is warranted. 

 

Environmental heterogeneity has been shown to play a pivotal role in shaping bacterial 

community composition (Green & Bohannan, 2006; Ranjard et al., 2013). Similarly, in this 

study significant differences between bacterial communities from distinct soil types (i.e., 

which encompasses soil texture and chemical properties) were found (Chau et al., 2011). 

While numerous ecological determinants potentially shaping desert edaphic bacterial 

community structures exists (e.g. water source; Stomeo et al., 2013), this discussion will 

focus on vegetation (Stipagrotis sp. present exclusively on Site A), soil structure (different 

in Site A vs. Sites B and C) and pH (identified as a significant factor). 

Research into the links between above and belowground communities confirms the view 

that bacterial communities will vary depending on the presence or absence of vegetation 

(Bardgett et al., 2008; Berg & Smalla, 2009). In oligotrophic desert soils, plants provide 

nutrient rich habitats representing islands of fertility (Herman et al., 1995; Schelsinger et 

al., 1998; Aguilera et al., 1999), selectively influencing the edaphic microbial community 

(Acosta-Martínez et al., 2008; el Zahar Haichar et al., 2008). The above-ground Stipagrostis 

sp. associated with Site A (absent from Sites B and C) could therefore directly influence the 

observed differences in bacterial community structure. For example, the existence of 

fungal-associated communities in the presence of plants may influence bacterial 

community composition (abundance and diversity) through resource competition (Boer et 
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al., 2005). Studies have shown the importance of plant and soil microbial community 

interactions through litter and root exudates, particularly in low nutrient environments 

(Knelman et al., 2012). While extremely low (characteristic of desert soils), Site A 

presented the highest percentage of carbon. Higher resource availability may favour fast-

growing community members, increasing their heterogeneity and abundance (Royer-

Tardif et al., 2010) and ultimately influencing their response to environmental change (de 

Vries & Shade, 2013).  

Differences in soil structure (as determined by % clay/sand/silt composition) has been 

demonstrated to correlate with soil environmental parameters (e.g., organic matter, 

moisture content) and the edaphic microbial community assemblages in arid regions 

(Pasternak et al., 2013). Soil clay has been found to provide protection of edaphic microbial 

communities against predation (Chau et al., 2011), and to influence the turnover of organic 

carbon, potentially affecting microbial community dynamics (Sagger et al., 1999). For 

example, the adsorption of minerals to clay particles has been proposed to protect proteins 

and nucleic acids against proteolysis, and thermal and pH denaturation (Nannipieri et al., 

1990, 2002). It has also been suggested that plant species and soil type cooperatively shape 

microbial community structure in soils (Berg & Smalla, 2009). Thus, it is likely that clay 

and/or vegetation play a role in structuring desert soil microbial communities. However, 

experimentation is required to define the potential role of soil clay and Stipagrotis sp. in 

shaping bacterial communities in Namib Desert gravel plain soils. 

Shifts in community structure may be related to local environmental variables (Van der 

Gught et al., 2007). Similarly, this study presents evidence that significant difference in soil 
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pH structures bacterial communities over relatively short spatial scales in the Namib 

Desert gravel plains. Soil pH has been proven to be a significant determinant of bacterial 

community composition at local (Rousk et al., 2010), regional (Chu et al., 2010; Griffiths et 

al., 2011) and continental scales (Fierer & Jackson et al., 2006; Lauber et al., 2009). The 

relationship between edaphic bacterial community composition and soil pH has been well 

established across an array of biomes, soil types, and spatial scales, independent of the 

molecular techniques employed (e.g. DNA fingerprinting; Fierer & Jackson, 2006; clone 

libraries; Lauber et al., 2008 and pyrosequencing; Lauber et al., 2009; Rousk et al., 2010). 

However, the specific mechanisms governing the observed patterns of bacterial community 

structure cannot be identified without further experimentation. Since soil pH was 

correlated with the majority of measured environmental variables in this study, it is likely a 

combination of factors shaping bacterial communities, and not soil pH alone. For example, 

nutrient availability, soil moisture, salinity and cationic metal solubility are often related to 

soil pH (Brady et al., 2010), and all these factors could independently drive the observed 

changes in community structure.  Alternatively,  bacterial communities have been shown to 

survive in a narrow yet optimal pH range (Madigan et al., 1997) and therefore minor 

deviations of in situ soil pH could lead to a population being rapidly outcompeted by 

unconstrained members (Rousk et al., 2010). The response of edaphic bacterial 

communities to changes in soil pH has been demonstrated as shifts in the relative 

abundance of community members across pH gradients (Jones et al., 2009). 

Although soil pH was the only statistically significant variable identified in explaining the 

observed differences of bacterial communities between sites, a large amount of variation 

remained unexplained (89 %). While a standard suite of soil characteristics were measured 
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in this study, it is possible that other variables could be important in explaining bacterial 

community variability. For example, cation exchange capacity (CEC) is an important 

environmental variable driving microbial community variation in natural habitats (Seghers 

et al., 2003), yet CEC is rarely measured in microbial ecology studies. It is recognised that 

due to the inherent low levels of nutrients and minerals in desert environments (Pointing & 

Belnap, 2012) the use of highly sensitive techniques could therefore increase the resolution 

of such studies. For example, GeoChip analyses have been employed to investigate edaphic 

microbial communities in various ecosystems, for example targeting specific microbial-

related N, C, S and P biogeochemical cycles (He et al., 2010). Moreover, the impact of soil 

chemistry temporal variability may rather induce variations in active community members, 

detected using RNA-based approaches (Buckley & Schmidt, 2003) and not DNA-based 

approaches as used here.  

 

Dispersal mechanisms have been suggested to play a significant role in shaping bacterial 

communities, and even more so in edaphic environments due to their heterogeneity (Ritz 

et al., 2004). However, dispersal limitation is significantly influenced by the sampling area 

size (Ranjard et al., 2013), and therefore care should be taken when interpreting results 

over varying spatial scales. Due to the close proximity of the sites (> 200 metres apart), it is 

therefore unlikely that dispersal limitation could have been a dominant factor influencing 

the observed community variation. If dispersal is not limited, the community composition 

could be dominated by environmental selection as predicted by niche-based theories 

(Leibold & McPeek, 2006). Similarly, bacterial communities in different soil types were 
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significantly different and likely shaped by variation in soil structure and physiochemical 

composition in this study.  

 

Conclusion 

Taken together, these results suggest that stochasticity and habitat filtering through soil pH 

play an important role in shaping edaphic communities in Namib Desert gravel plain soils. 

Secondly, the data suggests that soils with similar environmental characteristics support 

similar bacterial communities. Previous studies in the Namib Desert have suggested strong 

evidence for environmental filtering (Makhalanyane et al., 2012; Stomeo et al., 2012), 

however this is the first evidence for soil pH as a determinant for structuring bacterial 

communities across spatial scales in the region. 

The study of bacterial community dynamics in oligotrophic environments such as the 

Namib Desert would ideally require a temporal evolution longer than two months as 

seasonality has been demonstrated to be an important driver of microbial community 

assembly in arid regions (Cregger et al., 2012; Pasternak et al., 2013). Consequently, in the 

next chapter, the temporal variations of Site A bacterial communities and soil 

physiochemistry over a 1 year period is presented.  
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Chapter 4: Temporal variability of edaphic bacterial communities in the 

Namib Desert gravel plains 

4.1. Introduction  

Understanding community distribution and abundance across both spatial and temporal 

scales is essential in microbial ecology research, specifically the factors that shape them. 

The turnover of microbial communities in space and time (β diversity) have been shown to 

vary over environmental gradients such as productivity (Chase & Leibold, 2002; Chase & 

Ryberg, 2004; Chase, 2010), drought (Pointing et al., 2007) and salinity (Chrits-Christoph et 

al., 2013; Stomeo et al., 2013). In general, β diversity can be shaped by local environmental 

factors such as nutrient availability and/or species interactions (Langenheder et al., 2012), 

in addition to regional factors such as ecological drift (Ricklefs, 2003; Langenheder & 

Szekely, 2011). 

 

The few studies that have investigated temporal changes in soil microbial communities 

have shown that community composition can vary across different time scales. For 

example, temporal variation over days (Zhang et al., 2011), seasons (Shade et al., 2013; 

Lipson, 2007) and years (De bruyn et al., 2011) have been reported. We know that desert 

microbial communities can exhibit seasonal trends of variability (Bell et al., 2008; Cregger 

et al., 2012) and are influenced by water availability (Pointing et al., 2007), temperature 

(Cregger et al., 2012) and the geochemical properties of local soil (Cowan et al., 2011). 

However, research into the role of seasonal soil microenvironmental conditions in shaping 

temporal dynamics of desert edaphic communities is lacking.  
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Water availability, resulting from both rainfall (Warren-Rhodes et al., 2006; Pointing et al., 

2007) and fog (Azua-Bustos et al., 2011), is thought to be among the most important 

factors affecting microbial communities in desert terrestrial environments (Warren-

Rhodes et al., 2006; Pointing et al., 2007; Cary et al., 2010; Pointing & Belnap, 2012), The 

Namib Desert is arid, with scarce and highly variable rainfall events (< 25 mm p.a.), 

experiencing extended periods of drought (Eckardt et al., 2013). Fog events are a frequent 

occurrence, (65 days p.a. on average), resulting in approximately 34 mm of annual 

precipitation (Lancaster et al., 1984) and are thus thought to be a dominant and more 

predictable source of bioavailable water in the region (Shanyengana et al., 2002). The 

Namib Desert is an extreme environment, characterised by low nutrient levels, yet high salt 

content (Stomeo et al., 2013) and limited water (Eckardt et al., 2013). Previous studies 

investigating microbial communities in the region have been restricted in resolution as 

single time-point investigations (Makhalanyane et al., 2012; Stomeo et al., 2013). The major 

aim of this study was therefore to assess whether or not edaphic desert communities 

demonstrated seasonal patterns and to what extent the local environmental factors would 

drive temporal dynamics. Specifically, we investigated the temporal changes of the soil 

bacterial community in the Namib Desert gravel plains over 1 year, using T-RFLP 

fingerprinting and fine scale soil characterization. 
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4.2. Results 

4.2.1. Assessing the sampling strategy over 1 year 

A total of 127 soil samples were collected from the experimental site over 12 months 

(Chapter 2, section 2.1). 86 % (n = 70) of the site was sampled at least once, 63% (n = 51) 

was sampled at least twice, while only 14 % (n = 11%) was never sampled (Figure 25).  

 

 

 

 

Figure 25: Schematic diagram of the sampling strategy employed in this study. The days sampled over 

1 year and the respective plots are colour-coded, while white plots were never sampled. The 10 x 10m 

plots were identified by numbers between 1-81, which allowed the selection of individual plots to be 

sampled using a random number generator. 
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4.2.2. Environmental characterisation  

Air temperature and relative humidity data was collected by the Gobabeb LST weather 

station established by KIT, from January 2012 to April 2013 (Figure 26). Months were 

grouped according to the classic seasons of the Southern hemisphere, i.e., autumn (1 March 

to 31 May), winter (1 June to 31 August), spring (1 September to 1 November) and summer 

(1 December to 28 February). Air temperature and relative humidity demonstrated 

significant differences between seasons, with summer being the hottest (~ 25 °C) and 

wettest (~60 % RH) season, while winter (°C) was the coldest (~16 °C) and driest (~40% 

RH; Kruskal-Wallis, P < 0.05) season.  

 

Microenvironmental variables (C, P, NO3-, NH4+, Mg2+, Ca2+, Na, K, CEC, MC and pH) were 

measured to characterize each soil sample (n = 127; Appendix A). Sample concentrations 

were low, as expected in a desert environment (Appendix A). Some of the variables 

demonstrated significant differences between seasons (Wilcoxon-Mann-Whitney, P < 0.05). 

For example, soil P, Mg2+, NH4+ and NO3- were significantly higher in autumn 2013, while 

K+, C, CEC and soil moisture were significantly higher in autumn 2012. The majority of 

variables were lowest in winter 2012 (Wilcoxon-Mann-Whitney, P < 0.05). 
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Figure 26: Mean air relative humidity and temperature from January 2012 to May 2014. Data was 

collected at a height of 2m near the Gobabeb Research and Training Centre by KIT. Stars indicate time 

points when soil was collected for soil chemistry and bacterial community analyses across a 1 year 

sampling period. 
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4.2.3 Temporal variation of bacterial communities 

Bacterial community composition was assessed using T-RFLP analysis. A total of 214 T-

RFs were obtained from 127 processed samples, of which 110 OTUs (51.4 %) were 

unique to respective seasons (Figure 27), with Autumn 2013 and summer 2012 

containing the highest number of unique OTUs (30 and 49, respectively), while winter 

2012 contained the lowest (7). The remaining 104 OTUs (48.6 %) were shared among 

at least two seasons. A total of 15 OTUs (7 %) were shared among all seasons.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27: Venn diagram comparing the distribution of T-RFs in the bacterial community among 

seasons (summer, autumn, winter and spring). Autumn 2012 and autumn 2013 were separated as 

they represented different temporal points over the sampling period. 
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A NMDS ordination plot displaying the bacterial community structure over 1 year 

(Figure 28) revealed community separation according to seasons. The observed 

seasonal trends were significant (ANOSIM: R = 0.43, P = 0.001) and pairwise 

comparisons demonstrated significant differences in most groups (P = 0.001; Table 2).  

 

 

 

 

Figure 28: Seasonal patterns of bacterial community structure variation.  NMDS ordination plot 

(Bray-Curtis similarity) of T-RFLP profiles for all soil samples (n = 127) based on the abundance of 

T-RFs. T-RFLP data was square-root transformed prior to analyses. 
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Table 2: ANOSIM pairwise comparisons of seasonal bacterial communities. Significant groupings   

(P = 0.001) are indicated in bold. 

 

 

 

 

 

 

 

4.2.4 The role of the environment in shaping the temporal variability of edaphic 

bacterial communities 

To assess the influence of abiotic factors in shaping bacterial communities composition, 

redundancy analysis (RDA) was performed. Soil moisture, K+, Mg2+ and P were found to 

be significant in explaining the variability of the bacterial communities over 1 year 

(RDA, P = 0.001; Figure 29).  Grouping of samples in the RDA plot was similar to the 

NMDS ordination (Figure 28), which showed seasonal differences between groups. 

Communities in autumn 2012 and winter 2012 were primarily influenced by soil 

moisture and K+, while summer 2012 and spring 2012 communities were primarily 

influenced by P, whereas Mg2+ was associated with autumn 2013 communities. Overall, 

only 22% of the total variation in community composition could be explained by the 

environmental variables that were measured.  

Groups R-value P-value 

Autumn 2012, Winter 2012 0.034 1.24 

Autumn 2012, Spring 2012 0.561 0.001 

Autumn 2012, Summer 2012 0.482 0.001 

Autumn 2012, Autumn 2013 0.727 0.001 

Winter 2012, Spring 2012 0.574 0.001 

Winter 2012, Summer 2012 0.373 0.001 

Winter 2012, Autumn 2013 0.661 0.001 

Spring 2012, Summer 2012 0.044 1.28 

Spring 2012, Autumn 2013 0.377 0.001 

Summer 2012, Autumn 2013 0.415 0.001 
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Figure 29: Redundancy analysis (RDA) biplot of bacterial abundance and microenvironmental 

parameters. Only the environmental variables that significantly explained variation of bacterial 

community structures were fitted to the ordination (arrows; P = 0.001).  

 

Mantel correlations were conducted to investigate whether or not β diversity and 

environmental variables changed over time. Furthermore, mantel correlations tested 

changes in β diversity in relation to environmental distance (Figure 30). β diversity was 

found to be correlated with time (mantel r = 0.5; P = 0.001). However, environmental 

variables displayed no changes in relation with time (mantel r < 0.05; P = 0.07). 

Furthermore, changes in β diversity was not related to environmental distance of soil 

K+, P, Mg2+ and moisture content (mantel r < 0.1; P > 0.1; Figure 30).  

 

 

 

 



83 
 

 

 

Figure 30: Changes in β-diversity in relation to total soil potassium (K+) phosphorus (P), magnesium (Mg2+) and % moisture content. For each point, β-

diversity was calculated as average Bray-Curtis dissimilarity of pairwise comparisons of the total bacterial community. Values for P, Mg and K were 

calculated as the average concentration values obtained for all replicates per day. 
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4.3. Discussion 

Previous studies investigating the temporal variability of microbial communities in marine 

(Eiler et al., 2011), terrestrial (Boer et al., 2009) and desert environments (Bell et al., 2009) 

have demonstrated strong evidence of seasonality. However, such investigations have been 

restricted by the use of wide-sampling intervals and often short investigation periods. To 

overcome these limitations, we employed a replicated sampling regime over varying 

timeframes, to study the effect of seasonality and soil environmental conditions on the 

desert edaphic bacterial community over 1 year. 

We found soil water content to be important in explaining the observed temporal patterns of 

community composition. Previously, soil water and temperature have been linked to 

changes in microbial community composition over time (Shen et al., 2008; Tourna et al., 

2008). Furthermore, seasonality in deserts is reflected by variations in temperature and 

water availability , being proven regulating factors of edaphic microbial communities (Stres 

et al., 2008; Tabuchi et al., 2008; Cleveland et al., 2007; de Vries et al., 2013). The importance 

of water availability in shaping desert microbial communities has been well established 

(Bell et al., 2009; Pasternak et al., 2012; Stomeo et al., 2013). Pointing and colleagues (2007) 

similarly found water availability, rather than temperature, to be the key determinant 

structuring arid desert communities. It is important to note that water availability is a 

function of interacting temperature, rainfall and relative humidity, underscoring the 

importance of climate for edaphic communities (Pointing et al., 2007). 

Furthermore, seasonal changes in soil climate have been correlated with short to medium 

term variations in nutrient availability (Krave et al., 2002; Bell et al., 2009; Cookson et al., 
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2006). Soil nutrients (P, Mg2+, NH4+, NO3-) were found to be highest during autumn 2013, 

suggesting increased soil nutrient levels could be related to changes in bacterial community 

composition. Indeed edaphic bacterial community variability was found to be significantly 

shaped by K+, P and Mg2+ (in addition to soil moisture). P is often a limiting nutrient for 

microbial communities in terrestrial environments and has been demonstrated to increase 

(predominantly organic P) as a result of drying and rapid rewetting of the soil (Belnap, 

2011). This was positively correlated with an increase of microbial P biomass (Turner & 

Haygarth, 2001).  These findings suggest soil microbial biomass is a potential source of 

newly available P, possibly resulting from cell lysis and osmotic shock (Turner et al., 2002). 

While the role of microbial communities in mineral weathering has been well studied 

(reviewed in Uroz et al., 2009), no information regarding the mineralizing capabilities of 

bacterial communities in this environment is available. Therefore, research into the geology 

and phosphorus-solubilizing activity of microbial communities in this region is needed. 

In deserts, modest levels of soluble salts are considered important regulators of 

communities, because water activity (which determines the availability of biological water 

availability) is reduced in the presence of soluble salts (Cowan, 2009). Previously, Stomeo et 

al. (2013) demonstrated soil salinity (sodium content) to be an important factor shaping 

microbial communities in the Namib Desert. Similarly, we found K+ and Mg2+ (soil salinity) 

to be important factors. K+ and Mg2+ have been shown to affect cell physiology by 

stimulating enzyme reactions (as cofactors) in synthesizing cell materials and are 

recognized as essential cations for sustaining life (Simard et al., 1992). K+ plays an important 

role in regulating cell membrane permeability and osmotic adjustment of cells to the 

environment (Hu & Schmidhalter, 2005). Mg2+ has been implicated in playing a role in 
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haloadaptation of microorganisms, an important mechanism in extreme environment such 

as the Namib Desert, characterised by the presence of soluble salts (Mulet et al., 1999). 

Recently, a study by Crits-Christoph et al. (2013) demonstrated a significant correlation 

between soil salinity and water availability. Furthermore, relative humidity and soil salinity 

were found to be the dominant factors shaping microbial communities in the hot and hyper-

arid Atacama Desert. 

 

Fog occurs frequently along the coastal region of the Namib Desert, including the site used 

for this study. The bioavailability of water from fog has been previously shown to be an 

important factor shaping microbial communities in this environment (Stomeo et al., 2013). 

Fog is a reliable source of bioavailable water (Henschel & Seely, 2008), which can potentially 

stimulate the solubilisation of P by microbial communities and/or the lysis of microbial cells 

discharging available P into the system. The analysis of fog chemistry near the Gobabeb 

Desert Research and Training Centre has previously identified high levels of K+ and Mg2+ 

present in the fog composition (Eckardt & Schemenauer, 1998; Shanyengana et al., 2002). 

However, further investigations are required to elucidate the role of water availability and 

soluble salts in shaping the temporal patterns of bacterial community variation identified in 

this study, and whether such environmental changes are reflected in the functional 

attributes of these communities.  

 

In contrast to previous studies in arid environments, C and N were not significant in 

explaining the seasonal variation in edaphic communities. Bell et al. (2009) showed 
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increased rates of nitrogen mineralization and organic matter turnover (as a proxy for soil 

organic C) to be significantly higher during summer months, in relation to increased 

precipitation from rainfall and increased microbial biomass. Soil moisture and temperature 

were found to be the dominant factors regulating mineralization rates in this system. Appel 

(1998) and Cui & Caldwell (1997) have similarly observed increased microbial 

mineralization activity in relation to increased temperature and moisture. 

There are several possible reasons we did not observe similar trends. Firstly, the potential 

utilization of labile C sources (which do not require microbial-mediated decomposition) by 

edaphic communities was not measured in this study. Recently a study in a cold hyper-arid 

desert (Antarctica) suggested that microbial communities were efficient utilizers of 

available and easily accessible C sources (Dennis et al., 2013). We could therefore have 

missed an important regulating component of the labile soil C cycle and its potential 

influence on the edaphic communities. Secondly, as a result of limited water availability 

(required for biological decomposition of organic matter) and the fact that C in arid 

environments has a long residence time (estimated to be in the order of decades; Ewing et 

al., 2008), the rate of C turnover in this environment could therefore require a temporal 

resolution of decades. Thirdly, xeric conditions in deserts have been shown to limit the 

diffusivity of substrates and enzymes, resulting in decreased rates of C, N and P 

mineralization in soils (Nadeau et al., 2007). Further investigation into the functional 

microbial community responses in relation to the potential bioavailability of soil nutrients 

(P, N and C), is an aspect that warrants future research in the Namib Desert.  
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Environmental variables were poor predictors of temporal β diversity patterns, suggesting 

that temporal changes in soil conditions were not linked to changes in community diversity, 

i.e., community dissimilarity increased over time, while the environment remained relatively 

stable. Furthermore, while the community composition was influenced by soil moisture, K+, 

P and Mg2+, none of these variables were correlated to temporal changes in β diversity. 

Although these results are in agreement with Lauber et al., (2013), several studies have 

demonstrated a significant relationship between environmental variables and β diversity 

(Verleyen et al. 2009; Martiny et al., 2011; Zinger et al., 2011; Lindström & Langenheder, 

2012; Langenheder et al., 2012; Andrew et al., 2012).  However, studies have presented 

contradicting results.  For example, Andrew et al. (2012), found beta diversity to be 

correlated to soil carbon, although carbon was not significant in explaining patterns of 

variation in the community. Furthermore, Zinger et al. (2011) showed that different 

microbial communities may exhibit contrasting diversity patterns (e.g., among archaeal, 

fungal and bacterial communities) which may be related to diverse environmental variables 

(e.g., plant species composition, soil pH and spatial distance). These differences highlight the 

need for more studies targeting a comprehensive list of biological and environmental 

drivers of β diversity over time, as β diversity remains useful for understanding overall 

community dynamics (Green & Bohannen, 2006; Lozupone et al., 2008; Gilbert et al., 2012).  

We can think of two non-exclusive explanations for not observing a pattern between β 

diversity and environmental variables. Firstly, β diversity has been shown to vary across 

spatial scales (Martiny et al., 2011). The observed temporal variations may therefore be due 

to spatial heterogeneity (not measured in this study), particularly as a result of patchy 

vegetation cover present on the study site at the inception of this work (Figure 14). The 
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presence of vegetation has been shown to influence bacterial community dissimilarity, 

potentially through plant-mediated modification of soil properties (Yergeau et al., 2007; 

Zinger et al., 2011). Secondly, we may have missed an important abiotic or biotic factor that 

strongly influences bacterial community dissimilarity in this region (e.g., other microbial 

groups such as fungi that interact with bacterial communities).  

 

As observed in studies by Makhalanyane et al. (2012) and Stomeo et al. (2013), a large part 

of variation (78 %) could not be explained by the measured variables, suggesting that 

variations in edaphic bacterial communities in this region are caused by yet unknown 

deterministic drivers and/or stochastic events. Indeed, several studies have alluded to an 

importance of both stochastic and deterministic processes in structuring desert edaphic 

communities (Stomeo et al., 2013; Makhalanyane et al., 2013; Caruso et al., 2013). For 

example, environmental parameters such as substrate availability and niche differentiation 

(a consequence of environmental heterogeneity), and biological factors e.g., viral lysis and 

competition, may be important in shaping bacterial community dynamics in this region 

(Sander & Kalff, 1993; Epstein, 1997; Fuhrman, 1999; Cregger et al., 2012). However, 

competition has been proven to be an unlikely dominant factor affecting edaphic microbial 

community structures in deserts, due to the low abundance of identified genes associated 

with antibiotic resistance and microbe-microbe interaction (Fierer et al., 2012). Future 

research into such biological relationships could be tested by laboratory experiments. Under 

the neutral theory, stochastic processes e.g., demographic stochasticity, dispersal limitation 

and historical or evolutionary processes, are predicted to be dominant drivers of community 
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dynamics (Hubbel, 2001; Horner-Devine et al., 2007). Random patterns in species co-

occurrence are expected to dominate communities under such stochastic conditions (Bell, 

2005).  

 

Conclusion 

Taken together, we have demonstrated that the edaphic bacterial community in the Namib 

Desert gravel plains may reflect seasonal variations resulting from K+ and Mg2+ (soil 

salinity), soil moisture, P and stochastic and/or unmeasured factors. A significant difference 

between communities in the same season was identified over the year (autumn), suggesting 

that patterns of community change observed at a single time point, may not hold across 

multiple time points. These differences highlight the need for long-term monitoring of the 

Namib Desert edaphic communities. In addition, we observed a significant increase in 

community turnover (β diversity) over time, however these differences were not related to 

temporal variation in soil variables. Thus, our study clearly shows the need to move away 

from snapshot investigations that have dominated so far, to achieve a more comprehensive 

understanding of edaphic bacterial communities in desert environments. Finally, our 

findings advance understanding of hot desert edaphic communities by showing that 

temporal patterns of change, which have largely been related to climate, may also be 

influenced by microenvironmental conditions.  
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Chapter 5: Conclusions and future prospects 

The principal aim of this thesis was to investigate the temporality of the edaphic bacterial 

community in the Namib Desert gravel plain soils, notably in response to seasonal soil 

environmental conditions. T-RFLP fingerprinting and fine-scale microenvironmental 

characterization were employed to investigate the bacterial community dynamics over 1 

year. 

 

In chapter 3, we observed bacterial communities to be more similar within habitats than 

among habitats, where habitats represented environments with similar soil structure and 

microenvironmental parameters. These observations are consistent with the concept of 

habitat filtering (Van der Gught et al., 2007), which suggest that the composition of 

communities is driven by the local environmental conditions (Lagenheder & Székely, 2011). 

Habitat filtering includes selection of taxa by abiotic conditions (for example, higher 

temperatures selecting for specific communities; Garcia-Pichel et al., 2013) and interspecific 

competition (e.g., between fungal and bacterial communities). Indeed, we found 

communities to be shaped by variation in soil pH across relatively short spatial scales (< 200 

m). While this outcome is in line with the prevailing view in soil microbial ecology (Fierer & 

Jackson, 2006; Lauber et al., 2009; Rousk et al., 2010; Chu et al., 2010; Osborne et al., 2011; 

Griffiths et al., 2011), this study presents the first evidence of this occurrence across spatial 

scales in the Namib Desert. 
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In chapter 4 we showed that the edaphic communities demonstrated seasonal variations in 

bacterial community composition over 1 year. We also found the microenvironment to be 

relatively stable, whereas the community dissimilarity (β diversity) increased over time. In 

addition, soil moisture, P, Mg2+ and K+ were shown to be important factors shaping the 

temporal variability of the edaphic bacterial community, potentially regulated by fog events 

in the gravel plains.  Soil moisture has been shown to influence the physiology of edaphic 

microorganisms and to impact soil physiochemical properties (Castro et al., 2010). 

Furthermore, water availability has been demonstrated to be a dominant factor in shaping 

desert microbial communities (Pointing et al., 2007; Bell et al., 2009; Pasternak et al., 2012). 

Recent work suggests that the environmental history plays important roles in shaping the 

structures of indigenous microbial communities (Belnap et al., 2004; Martiny et al., 2006; 

Allison & Martiny, 2008). Variability in precipitation has been shown to be a dominant factor 

shaping bacterial and fungal community structure and function (Castro et al., 2010). Future 

research into microbial community structure and specific functional responses to water 

bioavailability could elucidate important mechanisms of ecosystem functioning in the Namib 

Desert. This may include RNA-based quantification of nutrient cycling genes, such as amoA, 

nifH, nirK and nifK, cbbL and mcrA (Yergeau et al., 2007) and enzyme activities such as 

aminopeptidases, phosphatases, phytases, β-glucosidases (Singsabaugh, 1994).  

 

A large amount of variation remained unexplained by the environmental variables that were 

measured. This is not uncommon for ecological studies, due to the relatively large amount of 

variation present in species abundance data (Dumbrell et al., 2001) and the fact that specific 
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microbial communities exhibit contrasting responses to environmental factors (Drakare & 

Leiss, 2010). For example, contrasting diversity patterns have been shown for edaphic 

bacterial and fungal groups, which were driven by differences in soil pH and organic matter, 

respectively (Zinger et al., 2011). Plant-associated fungal communities (not targeted in this 

study) have further been shown to respond differently to environmental stress (e.g., limited 

bioavailable water) as compared to bacterial communities (de Vries et al., 2012). Moreover, 

fungal rather than bacterial species have been suggested to be the dominant degraders of 

recalcitrant (lignocellulosic) organic C in arid environments (Cregger et al., 2012). 

Decomposition of detritus could favour fungal dominance over bacterial due to the presence 

of recalcitrant compounds (such as lignin), as fungi have the necessary degrading enzymes 

(Baldrian et al., 2011). Fungal dominance could demonstrate higher resource competition in 

this oligotrophic region, potentially playing a role in shaping the bacterial community 

structure (Hanson et al., 2008). Targeting fungal communities in the Namib Desert would 

prove a fruitful area of future work.  

 

While T-RFLP has been shown to detect only the most abundant organisms, simplifying the 

community profile (Bent & Forney, 2008; Verbruggen et al., 2012), it remains a useful tool 

for investigating microbial structure in natural environments (e.g., Fierer & Jackson, 2006; 

Besemer et al., 2012; Knight et al., 2012). While a link between community composition and 

function is often implied, DNA-based methods do not enable the measure of community 

function. The use of next-generation ultradeep sequencing, functional microarrays and/or 

soil enzyme activities measurements among others, could significantly improve our 

 

 

 

 



  

94 
 

understanding of the desert edaphic microbial communities (Makhalanyane et al., 2013). 

Functional gene markers, such as nifH for bacterial nitrogen fixation have successfully been 

employed in diverse habitats from marine to terrestrial environments (Caporaso et al., 

2011; Dias et al., 2012). Rare species have been shown to have key functional roles in 

nutrient cycling, (e.g., methonogenesis; Thauer et al., 2008) and nitrogen fixation (Farnelid 

et al., 2011). Deep sequencing enables the observation of rare species, often undetected by 

molecular fingerprinting techniques such as T-RFLP. Functional microarrays such as 

GeoChips are considered to be powerful tools to characterize microbial communities 

(composition, function and diversity; He et al., 2007). Key genes relating to essential 

ecosystem processes such as biogeochemical cycling of C, N, P and S and stress responses 

can be targeted by GeoChips (He et al., 2007; McGrath et al., 2010). Furthermore, the use of 

enzyme activity potential has been shown to be a useful tool in desert terrestrial 

environments (Bell et al., 2009). Substrate utilization assays (Biolog and Fungilog) have 

enabled the study of the relationship between microbial functional diversity and ecosystem 

functioning (Butcher & Lanyon, 2005) and have furthermore been used to investigate desert 

microbial communities’ response to environmental stress (Bell et al., 2009).  

 

Finally, deserts are inherently susceptible to climate change (Seager et al., 2007), as a result 

of increasing atmospheric CO2 levels, elevated temperatures and increased variation in 

pulse-precipitation events (Adeel et al., 2005). Changes in water availability have been 

shown to impact the composition fungal and bacterial communities, resulting in different 

functional responses of these communities (Barnard et al., 2013). Furthermore, increasing 
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temperatures have been shown to cause increased heterotrophic microbial activity, 

processing and turnover of essential nutrients (Bardgett et al., 2008). This process has been 

suggested to select for species adapted to higher temperatures, leading to the extinction of 

other essential community members (Garcia-Pichel et al., 2013). The stability of edaphic 

microbial communities in extreme environments such as the Namib Desert could have 

important effects on global ecosystem functioning, as these environments constitute 

approximately one-third of the earth’s surface (Collins et al., 2008).  

 

Taken together, the findings presented here support the use of a temporal framework when 

studying the variation of edaphic microbial communities in natural environments (Knight et 

al., 2012; Jansson & Prosser, 2013).  Overall, this study has contributed to a better 

understanding of how the structure of edaphic bacterial communities responds to seasonal 

changes in environmental conditions. 
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APPENDICES 
 

Appendix A: Microenvironmental variables measured in soil samples over 57 days in Sites A, B and C 

(vegetation-covered and vegetation-free study sites) in the Namib Desert gravel plains.  

Site 
  

Sample pH 
 C 
(%) 

P 
(mg/kg) 

NH4+ 
(mg 
N/g) 

NO3- 

(mg 
N/g) 

Ca 
(mg/kg) 

K 
(mg/kg) 

Mg 
(mg/kg) 

Na 
(mg/kg) 

A 

D
ay

 0
 

sample1 9.46 0.11 1.25 1.82 1.27 1533.66 214.94 62.14 19.54 

A sample2 8.76 0.16 1.51 2.97 0.75 1248.66 298.04 60.56 113.73 

A sample3 8.95 0.06 1.07 2.55 1.31 1108.66 191.54 59.3 18.79 

A sample4 8.7 0.1 0.97 2.38 0.99 1299.66 251.14 65.69 49.87 

A sample5 8.87 0.08 1.04 2.56 0.82 1160.66 191.74 65.73 16.63 

A sample6 7.44 0.16 1.43 2.69 1.48 1484.66 356.94 113 1364.63 

A sample7 8.7 0.1 1.23 3.3 0.78 1401.66 203.74 55.29 17.96 

A sample8 8.25 0.22 1.1 2.7 0.74 2399.66 249.24 72.32 39.37 

A 

D
ay

 4
5

 

sample9 8.98 0.04 1.45 1.8 1.19 1889.66 211.84 62.05 20.02 

A sample10 9.24 0.12 1.35 1.82 0.77 1108.66 194.14 61.41 20.78 

A sample11 9.13 0.1 1.11 1.87 0.74 1745.66 185.34 56.93 17.9 

A sample12 8.77 0.09 1.24 2.95 0.82 958.76 201.24 59 19.62 

A sample13 8.59 0.07 1.2 1.88 0.96 1214.66 186.04 57.12 16.3 

A sample14 8.43 0.09 1.16 2.44 0.91 1170.66 187.74 58.93 21.87 

A sample15 8.42 0.09 1.15 2.42 0.58 1101.66 248.34 58.8 233.23 

A 

D
ay

 1
2

 

sample16 8.06 0.11 1.23 2.81 3.27 1421.66 211.34 57.39 20.22 

A sample17 8.72 0.1 1.19 2.73 0.55 2900.66 344.14 89.45 248.83 

A sample18 8.12 0.06 0.39 2.6 2.39 1190.66 180.24 54.33 20.21 

A sample19 9.08 0.12 0.17 2.46 1.29 999.66 213.24 64.28 20.46 

A sample20 8.75 0.11 1.14 2.56 2.39 1108.66 194.94 57.78 20.16 

A sample21 8.53 0.11 1.33 2.21 0.77 1157.66 210.14 54.43 16.51 

A sample22 8.5 0.16 1.3 2.39 0.59 1368.66 166.44 52.56 14.24 

A sample23 8.5 0.07 1.15 3.13 2.61 1069.66 199.84 67.91 18.63 

A 

D
ay

 2
8

 

sample24 8.81 0.1 1.39 1.97 2.24 1335.66 190.54 61.89 18.56 

A sample25 9.4 0.11 1.25 2.37 0.52 1041.66 172.34 57.01 14.91 

A sample26 9.33 0.12 1.15 2.38 0.52 1116.66 209.94 62.83 23.19 

A sample27 7.74 0.04 1.28 2.36 6.53 3087.66 482.04 116.3 0 

A sample28 9.01 0.06 0.46 1.58 0.38 1646.66 264.04 61.11 82.07 

A sample29 8.7 0.05 1.14 2.52 0.56 1136.66 197.94 61.15 24.62 

A sample30 9.1 0.05 1.31 2.15 0.59 1155.66 214.24 68.79 18.01 

A sample31 8.6 0.1 1.21 2.51 0.78 1229.66 190.94 62.36 18.94 
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A 

D
ay

 4
2

 

sample32 8.14 0.04 1.17 2.64 1.38 1640.66 303.64 70.05 268.13 

A sample33 9.39 0 1.18 2.59 0.88 1294.66 156.24 55.67 15.02 

A sample34 9.12 0.14 1.01 1.96 0.47 1136.66 166.44 57.6 14.53 

A sample35 8.79 0.04 1.15 1.98 0.54 1229.66 177.94 55.39 17.15 

A sample36 8.38 0.05 1.08 3.33 0.82 1026.66 201.74 63.89 19.75 

A sample37 8.42 0.05 0.91 2.49 0.96 985.06 207.74 67.08 18.85 

A sample38 8.73 0.07 1.01 2.38 0.88 1228.66 195.34 56.6 19.16 

A sample39 9.05 0.02 0.95 1.78 0.75 1414.66 174.34 57.29 16.76 

A 

D
ay

 5
7

 

sample40 8.32 0.02 0.81 2.95 1.16 1157.66 185.64 57.62 20.6 

A sample41 9.14 0 0.84 0.98 0.34 1103.66 172.94 54.55 18.7 

A sample42 8.84 0.07 1.11 2.96 0.94 1178.66 212.94 72.14 21.01 

A sample43 9.16 0.02 1.09 2.59 0.46 1404.66 196.74 58.88 20.56 

A sample44 8.17 0.02 0.5 1.04 13.42 3462.66 670.14 177.6 51.07 

A sample45 9.17 0.03 1.21 2.7 1.15 1303.66 195.04 67.43 18.62 

A sample46 8.94 0.03 1.14 2.29 0.72 1178.66 197.24 60.18 19.69 

A sample47 8.94 0.01 1.25 2.56 0.44 1366.66 189.94 65.4 18.77 

B 

D
ay

 0
 sample48 7.06 0 0.4838 2.25 2.32 381.2 62.81 5.814 63.51 

B sample49 6.94 0 0.7373 1.65 2.345 340.1 56.22 5.447 40.06 

B sample50 7.02 0 1.074 1.23 10.325 511 64.02 11.46 386.2 

B 

D
ay

 4
 sample51 7.34 0.057 0.7434 1.78 3.73 523.6 64.31 8.019 144.3 

B sample52 7.46 0 0.9293 1.88 2.21 366.4 62.98 6.825 68.54 

B sample53 7.42 0 0.8876 1.865 2.315 373.7 49.54 5.197 55.83 

B 

D
ay

 1
2

 sample54 7.65 0.032 0.8043 1.355 1.32 367.5 40.49 5.271 24.2 

B sample55 7.95 0 0.4443 1.265 2.56 431.9 58.43 6.29 61.18 

B sample56 7.83 0.082 0.9923 2.275 2.05 374.1 49.35 4.857 26.93 

B 

D
ay

 2
8

 sample57 7.89 0 0.0557 1.395 1.835 404.3 64.98 8.094 51.67 

B sample58 7.68 0.007 0.0509 1.64 4.3 542.8 75.51 9.901 155.48 

B sample59 8.02 0.997 0.0265 1.5 6.88 547.4 89.65 8.576 121 

B 

D
ay

 4
2

 sample60 7.92 0 0.4985 2.34 3.19 381.2 66.65 6.451 48.19 

B sample61 7.95 0.862 0.8346 1.495 3.09 562.6 87.03 9.937 425.6 

B sample62 7.9 0 1.027 1.565 2.83 402.3 60.51 5.99 44.19 

B 

D
ay

 5
7

 sample63 8.2 0 0.9508 1.755 1.48 186.1 34.74 4.579 19.65 

B sample64 8.19 0.137 0.8549 1.625 3.915 417.4 56.56 7.613 96.1 

B sample65 8.06 0.192 0.8499 1.86 2.02 354.5 44.39 5.282 29.24 

C 

D
ay

 0
 sample66 7.18 0 0.8083 2.73 3.065 382.1 55.2 6.242 72.36 

C sample67 7.21 1.177 1.019 1.505 1.38 270.2 38.27 5.019 27.52 

C sample68 7.19 0.192 0.9075 1.24 3.75 443.2 50.9 6.571 170.84 

C 

D
ay

 4
 sample69 7.48 0 1.005 1.995 2.425 403.4 45.86 6.288 43.28 

C sample70 7.82 0 0.9707 1.685 3.2 380.5 59.36 6.911 91.84 

C sample71 7.56 0 0.9912 1.685 1.59 364.6 39.46 5.103 30.9 
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C 

D
ay

 1
2

 sample72 7.52 0 1.19 1.94 3.33 396.6 44.75 6.619 46.21 

C sample73 7.61 0 0.876 1.975 2.865 396.7 56.56 5.762 42.62 

C sample74 7.71 0 1.211 2.095 3.255 334.1 41.27 6.345 50.79 

C 

D
ay

 2
8

 sample75 8 0 0.0146 2.56 2.865 537 67.85 7.266 107.8 

C sample76 8.11 0 0.4548 1.285 2.786 402.4 69.99 8.14 87.84 

C sample77 8.2 0.617 0.3074 1.535 2.985 458.4 71.38 7.596 114.7 

C 

D
ay

 4
2

 sample78 8.01 0.447 0.0827 1.425 2.72 437.1 68.42 8.426 84.52 

C sample79 8.04 0 0.467 1.815 2.42 546.4 80.57 7.316 142.8 

C sample80 7.93 0 0.9636 1.845 2.05 404.8 45.58 5.537 36.79 

C 

D
ay

 5
7

 sample81 8.09 0.212 0.8558 1.72 4.35 399.1 55.02 7.842 53.68 

C sample82 7.85 0 1.145 1.565 3.98 464.4 58.95 8.886 253.6 

C sample83 7.92 0.347 1.155 1.765 2.43 273 35.52 5.233 52.93 

 

 

 

 

Appendix B: Microenvironmental variables measured in soil samples over 1 year (in Site A) in the 

Namib Desert gravel plains.  

  
Sample pH  C (%) 

P 
(mg/kg) 

NH4+ 
(mg 
N/g) 

NO3- 

(mg 
N/g) 

CEC 
(cmol/kg) 

Ca 
(mg/kg) 

K 
(mg/kg) 

Mg 
(mg/kg) 

Na 
(mg/kg) 

MC 
(%) 

D
ay

 0
 

sample1 9.46 0.11 1.25 1.82 1.27 39.07 1533.66 214.94 62.14 19.54 7.5 

sample2 8.76 0.16 1.51 2.97 0.75 28.8 1248.66 298.04 60.56 113.73 0.9 

sample3 8.95 0.06 1.07 2.55 1.31 25 1108.66 191.54 59.3 18.79 8.6 

sample4 8.7 0.1 0.97 2.38 0.99 6.7 1299.66 251.14 65.69 49.87 7.1 

sample5 8.87 0.08 1.04 2.56 0.82 5.82 1160.66 191.74 65.73 16.63 7.5 

sample6 7.44 0.16 1.43 2.69 1.48 9.87 1484.66 356.94 113 1364.63 4.5 

sample7 8.7 0.1 1.23 3.3 0.78 8.16 1401.66 203.74 55.29 17.96 5.9 

sample8 8.25 0.22 1.1 2.7 0.74 6.29 2399.66 249.24 72.32 39.37 7.9 

D
ay

 4
 

sample9 8.98 0.04 1.45 1.8 1.19 6.1 1889.66 211.84 62.05 20.02 7.7 

sample10 9.24 0.12 1.35 1.82 0.77 8.07 1108.66 194.14 61.41 20.78 5.2 

sample11 9.13 0.1 1.11 1.87 0.74 13.02 1745.66 185.34 56.93 17.9 9.9 

sample12 8.77 0.09 1.24 2.95 0.82 6.84 958.76 201.24 59 19.62 7.7 

sample13 8.59 0.07 1.2 1.88 0.96 9.13 1214.66 186.04 57.12 16.3 1.4 

sample14 8.43 0.09 1.16 2.44 0.91 3.68 1170.66 187.74 58.93 21.87 6.6 

sample15 8.42 0.09 1.15 2.42 0.58 5.8 1101.66 248.34 58.8 233.23 7.72 

D
ay

 1
2

 

sample16 8.06 0.11 1.23 2.81 3.27 9.29 1421.66 211.34 57.39 20.22 5.3 

sample17 8.72 0.1 1.19 2.73 0.55 3.12 2900.66 344.14 89.45 248.83 7.1 

sample18 8.12 0.06 0.39 2.6 2.39 8.8 1190.66 180.24 54.33 20.21 5.7 

sample19 9.08 0.12 0.17 2.46 1.29 7.78 999.66 213.24 64.28 20.46 6.3 

sample20 8.75 0.11 1.14 2.56 2.39 4.62 1108.66 194.94 57.78 20.16 4.2 

sample21 8.53 0.11 1.33 2.21 0.77 3.91 1157.66 210.14 54.43 16.51 4.4 

sample22 8.5 0.16 1.3 2.39 0.59 2.53 1368.66 166.44 52.56 14.24 3.3 

sample23 8.5 0.07 1.15 3.13 2.61 2.21 1069.66 199.84 67.91 18.63 6.6 

D
ay

 2
7

 

sample24 8.81 0.1 1.39 1.97 2.24 2.51 1335.66 190.54 61.89 18.56 5.6 

sample25 9.4 0.11 1.25 2.37 0.52 6.48 1041.66 172.34 57.01 14.91 0.4 

sample26 9.33 0.12 1.15 2.38 0.52 3.03 1116.66 209.94 62.83 23.19 0.3 
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sample27 7.74 0.04 1.28 2.36 6.53 0.93 3087.66 482.04 116.3 0 18.8 

sample28 9.01 0.06 0.46 1.58 0.38 1.55 1646.66 264.04 61.11 82.07 0 

sample29 8.7 0.05 1.14 2.52 0.56 2.73 1136.66 197.94 61.15 24.62 0 

sample30 9.1 0.05 1.31 2.15 0.59 3.18 1155.66 214.24 68.79 18.01 0.71 

sample31 8.6 0.1 1.21 2.51 0.78 1.66 1229.66 190.94 62.36 18.94 1 

D
ay

 4
2

 

sample32 8.14 0.04 1.17 2.64 1.38 4.06 1640.66 303.64 70.05 268.13 7.1 

sample33 9.39 0 1.18 2.59 0.88 1.32 1294.66 156.24 55.67 15.02 87.1 

sample34 9.12 0.14 1.01 1.96 0.47 3.68 1136.66 166.44 57.6 14.53 95.1 

sample35 8.79 0.04 1.15 1.98 0.54 1.34 1229.66 177.94 55.39 17.15 53.2 

sample36 8.38 0.05 1.08 3.33 0.82 1.82 1026.66 201.74 63.89 19.75 48.7 

sample37 8.42 0.05 0.91 2.49 0.96 3.88 985.06 207.74 67.08 18.85 0 

sample38 8.73 0.07 1.01 2.38 0.88 4.1 1228.66 195.34 56.6 19.16 29.9 

sample39 9.05 0.02 0.95 1.78 0.75 3.99 1414.66 174.34 57.29 16.76 0 

D
ay

 5
7

 

sample40 8.32 0.02 0.81 2.95 1.16 3.5 1157.66 185.64 57.62 20.6 0 

sample41 9.14 0 0.84 0.98 0.34 4.79 1103.66 172.94 54.55 18.7 0 

sample42 8.84 0.07 1.11 2.96 0.94 3.04 1178.66 212.94 72.14 21.01 0 

sample43 9.16 0.02 1.09 2.59 0.46 4.72 1404.66 196.74 58.88 20.56 0 

sample44 8.17 0.02 0.5 1.04 13.42 4.2 3462.66 670.14 177.6 51.07 0 

sample45 9.17 0.03 1.21 2.7 1.15 5.31 1303.66 195.04 67.43 18.62 8.4 

sample46 8.94 0.03 1.14 2.29 0.72 4.06 1178.66 197.24 60.18 19.69 0 

sample47 8.94 0.01 1.25 2.56 0.44 6.65 1366.66 189.94 65.4 18.77 31.8 

D
ay

 8
8

 

sample48 8.72 0.07 1.33 1.8 2.19 10.98 1892.66 270.34 61.51 218.53 0.7 

sample49 8.62 0.09 1.39 0.76 0.49 4.05 1526.66 349.04 66.94 123.53 2.1 

sample50 8.84 0.07 1.03 1.96 0.47 4.63 1089.66 145.04 53.69 13.43 0 

sample51 8.68 0.08 1.1 2.13 0.73 7.58 1205.66 199.14 61.51 19.54 1.3 

sample52 8.5 0.12 0.95 1.46 1.03 4.97 2384.66 225.64 67.54 21.75 0.1 

sample53 8.68 0.06 1.2 2.32 1.22 3.85 1106.66 191.14 58.78 20.35 0.6 

sample54 8.75 0.09 1.04 1.93 0.35 4.18 1505.66 244.84 54.02 346.53 0.7 

sample55 8.86 0.05 1.22 1.71 1.33 3.91 1152.66 205.74 64.32 19.77 1 

D
ay

 1
1

8
 

sample56 8.72 0.09 1.24 1.79 0.4 3.82 999.66 182.14 61.99 20.22 0.7 

sample57 8.62 0.13 1.22 2.07 0.21 4.56 1528.66 203.84 64.91 19.37 0 

sample58 8.84 0.15 1.24 1.79 0.75 2.13 1147.66 212.34 68.31 19.55 0.6 

sample59 8.68 0.18 1.2 2.09 0.79 6.46 1178.66 156.14 56.89 15.71 1.1 

sample60 8.5 0.08 1.19 1.85 0.67 4.88 1108.66 141.34 53.08 14.17 0.8 

sample61 8.68 0.36 1.28 6.97 0.61 8.79 1885.66 212.94 65.34 37.97 1.3 

sample62 8.75 0.06 1.25 2.77 0.63 5.02 1168.66 190.64 62.28 18.25 0.7 

sample63 8.86 0.01 1.07 2.6 1.14 3.14 1721.66 216.54 58.9 24.09 1.2 

D
ay

 1
4

8
 

sample64 9.01 0.06 1.43 2.88 2.94 3.78 1205.66 215.84 71.18 22.1 1 

sample65 9.2 0.08 1.3 1.89 1.67 4.36 1351.66 192.34 66.86 21.22 0.5 

sample66 9.24 0.03 0.65 2.24 5.16 1.99 3240.66 556.94 151.4 0 0.6 

sample67 8.99 0.04 1.41 2.54 5.59 1.43 1354.66 211.74 65 25.08 0.3 

sample68 9.01 0.07 1.48 1.63 2.78 3.45 1250.66 219.14 73.42 25.04 0.6 

sample69 9.43 0.01 1.29 2.7 1.52 43.17 1206.66 205.44 69.61 24.12 0.3 

sample70 8.53 0.07 1.27 1.97 1.16 3.06 2467.66 238.14 69.72 39.55 1.1 

sample71 8.53 0.06 1.33 1.96 0.88 112.95 2487.66 237.94 70.96 42.69 1.2 

D
ay

 1
7

8
 

sample72 7.84 0 1.44 2.23 1.76 6.57 1285.66 197.64 67.46 18.99 1.1 

sample73 8.32 0.04 1.27 1.96 1.1 4.12 1309.66 207.34 67.09 24.62 0.7 

sample74 7.83 0.05 1.51 2.8 1.65 3.98 1163.66 248.14 68.63 58.96 0.7 

sample75 8.8 0.03 1.42 2.5 1.59 5.39 1136.66 199.94 69.48 26.8 0.9 

sample76 9.47 0.02 1.23 1.93 1.26 3.91 1384.66 190.24 66.61 18.97 1 

sample77 9.19 0 1.64 2.89 2.48 3.79 2408.66 259.64 75.32 67.17 1 

sample78 9.02 0.04 1.25 1.29 2.46 5.73 1282.66 178.64 59.12 19 2 

sample79 8.7 0.05 1.38 2.33 1.54 7.08 1392.66 215.54 59.48 45.32 0 

D
ay

 1
9

8
 

sample80 8.53 0.06 1.27 2.31 1.71 6.4 1164.66 211.54 64.02 21.32 0.3 

sample81 8.3 0.02 1.19 2.51 1.72 7.49 1766.66 303.24 71.63 357.23 0.6 

sample82 8.11 0.07 1.33 2.51 2.17 7.9 2163.66 229.84 73.38 26.75 0.6 

sample83 8.17 0.05 1.38 3.47 2.46 4.99 1355.66 231.14 67.06 37.44 0.9 

sample84 7.97 0.05 1.46 2.72 3.29 5.43 1242.66 209.64 68.54 19.69 3.3 

sample85 7.26 0.04 1.45 2.3 2.51 3.9 1267.66 222.14 69.74 22.16 0.4 

sample86 7.64 0.04 1.44 3.16 3.08 5.71 1240.66 222.04 67.8 21.92 0.7 

sample87 7.73 0.04 1.66 2.28 1.75 6.81 1228.66 201.84 63.6 19.89 0.4 
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D
ay

 2
3

8
 

sample88 8.15 0.04 0.91 1.99 1.92 2.66 3254.66 378.34 81.56 174.03 0.3 

sample89 9.1 0.03 1.33 2.26 1.3 4.54 1163.66 195.74 67.97 34.95 0.5 

sample90 8.62 0.04 1.4 2.76 1.68 12.21 1838.66 202.14 67.49 27.42 0.6 

sample91 8.64 0.02 1.39 4.05 2.2 6.25 1201.66 187.34 64.56 24.91 0.7 

sample92 8.75 0.05 1.31 1.85 2.89 10.61 1716.66 197.14 64.36 19.93 1.2 

sample93 9.6 0.04 1.4 2.28 2.28 5.09 1129.66 208.94 70.26 26.12 0.5 

sample94 9.03 0.04 1.16 3.18 2.81 4.36 1206.66 193.84 70.79 22.02 0.4 

sample95 8.61 0 1.25 3.63 2 3.87 1265.66 198.04 63.8 18.43 0 

D
ay

 2
6

8
 

sample96 7.58 0.03 1.38 3.03 2.06 5.46 1228.66 203.14 71.15 23.57 0.5 

sample97 7.38 0.02 1.55 4.18 3.8 3.9 1355.66 203.44 70.5 20.86 0.7 

sample98 7.28 0.04 0.93 2.83 3.53 5.53 2193.66 270.84 73.07 1267.63 0.7 

sample99 9.54 0.02 1.41 3.01 3.21 2.64 1119.66 208.44 66.92 24.4 0.4 

sample100 9.3 0.04 1.39 2.21 3.78 4.28 1614.66 228.14 62.56 53.8 0.7 

sample101 9.23 0.03 1.28 4.36 2.21 3.31 1910.66 238.54 64.55 30.77 0.3 

sample102 8.29 0.41 1.5 3.29 3.64 0 1740.66 271.74 68.95 118.93 1.7 

sample103 8.45 0.03 1.42 3.58 1.61 3.59 1510.66 216.34 62.33 22.02 0.7 

D
ay

 2
9

8
 

sample104 9.38 0.01 1.32 1.49 1.68 4.69 1175.66 193.54 63.92 23.06 1 

sample105 9.12 0.05 1.19 2.01 2.49 7.63 1304.66 191.64 66.72 21.68 0.5 

sample106 9 0.06 1.41 3.08 1.84 5.1 1182.66 207.74 68.88 21.29 0.6 

sample107 8.77 0.06 1.46 3.22 1.81 6.46 1376.66 203.64 70.76 23.72 0.5 

sample108 8.6 0.04 1.59 1.11 1.63 5.99 1172.66 225.44 73.64 22.85 0.6 

sample109 8.35 0.01 0.77 1.67 2.98 5.34 2018.66 335.34 95.77 1383.63 0.5 

sample110 8.13 0 1.4 3.52 3.83 4.8 2448.66 209.64 73.66 74.48 0.6 

sample111 7.77 0.02 1.4 3.43 2.96 4 1212.66 212.84 69.49 23.07 0.4 

D
ay

 3
2

8
 

sample112 9.25 0.18 0 2.24 2.74 5.51 1183.66 208.14 71.24 22.46 0 

sample113 9.02 0.1 1.19 2.89 2.16 5.92 1172.66 206.14 69.82 25.35 0 

sample114 9.15 0.11 1.41 3.27 3.85 4.53 1145.66 225.64 71.6 21.66 0 

sample115 9 0.08 1.46 3.01 3.13 4.89 1590.66 208.24 68.24 20.84 0 

sample116 8.85 0.1 1.59 3.31 1.6 4.49 1283.66 204.34 66.2 21.99 0 

sample117 8.66 0.1 0.77 2.88 2.32 4.78 1449.66 201.04 67.38 21.01 0 

sample118 8.57 0.09 1.4 3.4 2.83 4.42 1389.66 214.74 72.75 20.04 0 

sample119 8.15 0.07 1.4 2.42 1.18 4.2 1304.66 212.54 72.25 23.06 0 

D
ay

 3
5

5
 

sample120 8.8 0.05 0.84 3.41 2.18 3.21 1605.66 373.14 120 767.53 1.3 

sample121 9.22 0.1 1.47 4.76 4.29 5.53 1259.66 235.14 77.36 156.13 0.8 

sample122 8.94 0.11 1.35 3.52 2.69 3.98 1360.66 192.84 67.82 19.14 0.4 

sample123 8.2 0.07 1.14 4.83 2.8 5.85 1854.66 192.04 55.85 17.1 1.3 

sample124 8.58 0.15 1.45 2.77 1.44 6.09 1172.66 211.64 69.73 18.9 1.3 

sample125 8.61 0.1 1.28 1.67 1.36 10.74 1407.66 217.84 68.91 21.83 0 

sample126 8.51 0.08 1.44 3.27 1.53 3.82 1468.66 205.04 67.78 20.59 14.3 

sample127 8.52 0.1 1.42 2.41 1.53 4.18 1699.66 250.44 73.25 27.98 1 
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Research outputs 

International Travel 

1. NASA-AMES-IMBM-GRTC. April 2011 and May 2012. Spaceward bound Research 

Expedition. Gobabeb Research and Training Centre, Namibia. 

Conference Outputs 

2. Alacia Armstrong*, Jean-Baptiste Ramond, Angel Valverde, Marla I. Tuffin, Don A. 

Cowan (2013). Seasonal dynamics of edaphic bacterial communities in the hyper-arid 

Namib Desert. South African Society for Microbiology Conference. Oral *Presenting author 

 

3. Alacia Armstrong, Jean-Baptiste Ramond, Angel Valverde, Marla I. Tuffin*, Don A. 

Cowan (2013).  Seasonal dynamics of edaphic bacterial communities in the hyper-arid 

Namib Desert. University of the Western Cape Research Open Day. Poster presentation 

 

 

4. Alacia Armstrong, Jean-Baptiste Ramond*, Marla I. Tuffin, Don A. Cowan (2013). 

Seasonal dynamics of edaphic bacterial communities in the hyper-arid Namib Desert. 

University of Pretoria (UP) Genomics Research Institute Colloquium Day. Oral 

 

5. Alacia Armstrong, Jean-Baptiste Ramond*, Marla I. Tuffin, Don A. Cowan (2012). The 

effect of carbon input on the evolution of the soil microbial community in the central 

hyper-arid Namib Desert. International Society for Microbial Ecology, Symposium. 

Poster presentation. 
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6. Alacia Armstrong, Jean-Baptiste Ramond*, Marla I. Tuffin, Don A. Cowan (2012). The 

effect of carbon input on the evolution of the soil microbial community in the central hyper-

arid Namib Desert. Extremophiles Meeting. Poster presentation.  

Publications 

7. Alacia Armstrong, Jean-Baptiste Ramond, Angel Valverde, Mary Seely, Marla I. Tuffin, 

Don A. Cowan. Temporal variability of edaphic bacterial communities in the hyper-arid 

Namib Desert.  International Society for Microbial Ecology. In preparation. 

 

8. Alacia Armstrong, Jean-Baptiste Ramond, Angel Valverde, Mary Seely, Marla I. Tuffin, 

Don A. Cowan.   temporal variability of hot desert edaphic bacterial communities and 

microenvironmental parameters. Applied and Environmental Microbiology. In 

preparation. 
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