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ABSTRACT 

BARLEY ANTHER CULTURE: DETERMINING THE OPTIMAL PRETREATMENT 

FOR GREEN PLANT REGENERATION. 

C. MEYER 

M.Sc thesis, Department of Biotechnology, University of the Western Cape. 

Doubled Haploid (DH) Technology is an important tool for plant breeding and 

biotechnological applications as it accelerates the breeding cycle of plants by shortening the 

time required to attain homozygosity. Anther culture has become one of the most frequent 

and well-established methods for the induction of haploid embryogenesis and regeneration in 

barley. Anther culture is easily reproduced and workable for a wide range of genotypes. The 

aim of this study was to determine the optimal pre-treatment for barley anther culture. Three 

pre-treatments, 0.3 M Mannitol, 0.7 M Mannitol and a cold treatment with a moist cloth 

(CMC), were studied. The results suggest that CMC is the optimal pre-treatment to use for 

green plant regeneration. Anthers treated with CMC showed a higher response percentage 

than that of 0.7 M Mannitol and 0.3 M Mannitol. CMC also induced a significantly higher 

callus formation and green plant regeneration frequencies than 0.7 M Mannitol and 0.3 M 

Mannitol. Further research has to be conducted to further optimize green plant yields per 

treatment as well as reduce the number of albinos regenerated through barley anther culture. 
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CHAPTER 1 

INTRODUCTION 

 

The use of doubled haploid plants in a breeding program serves as a useful tool for plant 

breeders to accelerate the production of homozygous lines of their crops (Jaquard et al., 

2009). Barley (Hordeum vulgare L.) is a member of the cereal family (Gramineae) and is 

mainly used for animal feed, human consumption and in the malting industry.  

The research was performed at the South African Barley Breeding Institute (SABBI), situated 

in Caledon, Western Cape. The institute specialises in the development of new barley 

cultivars for the malting industry in South Africa. It is important for the barley breeders to 

provide superior malting barley varieties to the malting industry as they are always looking to 

deliver better malt quality to their ultimate clients, the brewers. The barley breeders are thus 

under immense pressure to deliver barley with good quality through their breeding program. 

The institute found it necessary to incorporate new breeding techniques to reduce the time it 

takes to release a cultivar commercially. This was done through researching and 

implementing doubled haploid techniques in the Research and Development (R&D) program. 

However, it was found that there is a need to improve on the doubled haploid production 

technique to better suit the barley varieties found in the Southern Cape as well as the 

laboratory capacity. 

Traditionally, it takes the institute 16 years for a new barley cultivar to be released 

experimentally, and approximately 18 years to be produced commercially (SABBI, 2013). 

Using doubled haploid barley plants reduces the time it takes to release a new barley variety 
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commercially by 4 years. This is because barley breeders can obtain a genetically pure line in 

one year or one crossing cycle through the use of doubled haploids. By using doubled 

haploids in a breeding program, the breeders will save valuable time and money in terms of 

labour, machinery and fuel compared to conventional breeding practices. 

There are various protocols available to produce doubled haploids in crop plants. The 

protocols differ for each crop but the principle remains the same. To produce doubled 

haploids successfully certain steps has to be followed. Firstly the donor plant has to be grown 

in an optimal environment. Secondly the spikes from the donor plant have to be harvested 

and placed under stress to trigger the change of the microspore development pathway from 

gametophytic to sporophytic. Thirdly, depending on the type of tissue culture used, the 

anthers or microspores have to be placed on an induction media to induce embryogenesis. 

Thereafter, the embryos that have developed on the induction media are transferred to a 

regeneration media where roots and shoots develop. These plantlets are then transferred to a 

rooting media where it promotes vertical growth of the plantlet as well as root development. 

The final step in the process of doubled haploid production in barley is the maturing phase in 

a greenhouse. This is where the plant is grown in an optimally controlled environment within 

a greenhouse (Maluszynski et al., 2003). 

In barley, various scientists have recorded a spontaneous chromosome doubling capacity of 

70% (Wan and Widholm, 1994). This means that 70% of all surviving green plantlets grown 

in the greenhouse will be doubled haploid plants. However, in the past, the institute have 

struggled to obtain that same success rate, the highest obtained was approximately 45% 

(Meyer, unpublished data).  This success rate for a doubled haploid program that supports a 

commercial breeding program is not sufficient. Hence it became important to improve the 

technique to suit the needs of the institution. 
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The institute have experimented with various parts of the barley anther culture protocol. The 

institute have determined the optimal induction media, regeneration media as well as rooting 

media for the barley donor material. Through optimising the various medium protocols the 

institute have observed a remarkable increase in the barley doubled haploid plant numbers 

year on year. However, the institute believe that when the optimal pre-treatment for barley 

anther culture is determined that the regenerated barley doubled haploid plants would 

increase to an optimal percentage that would support the breeding program sufficiently.  

The objective of the study is to determine the most effective pre-treatment option for the 

production of double haploid barley through the use of anther culture for a breeding program. 

There are multiple parties that will benefit from obtaining homozygous barley lines in a 

shorter period of time. The breeding program will benefit as it will be able to produce the 

required amount of doubled haploid lines annually as to make the program sustainable. Also, 

the barley program would be able to produce a commercial variety in a shorter time-frame 

compared to conventional breeding methods. The commercial barley industry would benefit 

through producing superior malting quality local barley to the malting industry. Thus 

obtaining competitive market prices for their produce and making their farms lucrative. The 

malting industry would benefit through producing superior quality malt to the local 

breweries. The malting industry would be able to sell their malt at a competitive price to the 

breweries when using local barley for their malt instead of imported barley, thus rendering 

their business profitable. The breweries would in turn be able to produce superior quality beer 

at lower prices due to using locally produced malt.  

To determine the optimal pre-treatment we have researched the various stressors used by 

previous researchers (Maluszynski et al., 2003; Huang and Sunderland, 1982). The most 

common pre-treatment used is cold treatment, either used on its own or in combination with 

mannitol. We use a cold treatment (cold with humidity) as a standard, and will be testing the 
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use of mannitol in two forms (liquid 0.3 M Mannitol and solid 0.7 M Mannitol). The results 

of these would be recorded and analysed to determine the best stressor for barley anther 

culture in South Africa.  

To measure the objectives, the number of calli induced per 100 anthers cultured, the number 

of green plants, sterile plants, albino plantlets as well as doubled haploids generated per 100 

anthers cultured will be measured. As well as the number of green plants, albinos, doubled 

haploids and sterile plants generated per 100 calli cultured. The spontaneous chromosome 

doubling rate will be determined by the number of doubled haploids and sterile plants 

regenerated per 100 green plants. 

It is important for us at SABBI to understand what factors affects albinism. We function as a 

production laboratory instead of an experimental or research laboratory, and thus need to 

decrease the number of albinos generated in the process as it negatively influence the green 

plant regeneration frequency. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1. Introduction 

2.1.1. The history of doubled haploid production 

In 1921, A.D. Bergner observed the first natural sporophytic haploid whilst working with 

Jimson weed (Datura Stramonium L). This was reported in Science by Blakeslee et al., in 

1922 (Maluszynski et al., 2003 and Germaná, 2011). The importance of haploids in plant 

breeding and genetic research was immediately recognized. Since then, the number of 

spontaneous haploids in different species has steadily grown.  However the frequency of 

spontaneous haploids was too low for practical application in plant breeding (Maluszynski et 

al., 2003).  

In the early 1960’s Guha and Maheshwari (1964) discovered that it was possible through in 

vitro culture of immature anthers to change the gametophytic development stage of 

microspores into a sporophytic one. This enabled them to produce embryos and plants with a 

haploid chromosome number (Germaná, 2011). This discovery made further and extensive 

research possible for anther culture that was predominantly successful in the Solanaceae, 

Brassicaceae and Graminceae species. However, not all of the angiosperm crops of interest 

responded efficiently to embryogenesis induction. Barley (Hordeum vulgare L.), rapeseed 

(Brassica napus L.), tobacco (Nicotiana spp.) and wheat (Triticum aestivum L.) are 

considered to be the model species for use in microspore embryogenesis research due to their 

high regeneration efficiency (Forster et al., 2007). There is however other scientifically or 

economically interesting species that still remain resistant to this type of in vitro 
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morphogenesis, such as Arabidopsis (Rock cress). Rock cress is a small flowering plant that 

is related to the cabbage and mustard family, many woody plants or members of the legumes 

family (Sangwa-Norreel et al., 1986; Bajaj, 1990; Raghavan, 1990; Wenzel et al., 1995; 

Germaná, 2006, 2009, 2011).  In 1972, Thompson reported that the first doubled haploid crop 

plant, cultivar ‘Maris Haplona’ of rapeseed (Brassica napus) was released, followed by 

cultivar ‘Mingo’ in barley (Hordeum vulgare) in 1980 (Ho and Jones, 1980). 

The interest in haploids was apparent in the organization of the 1
st
 International Symposium 

“Haploids in higher plants”, which was held at Guelph, Canada, in 1974.  Riley, one of the 

presenters, provided an interesting introduction to haploidy and covered some terminology as 

well as a historical perspective for those working in that area (Kasha, 1974 b; Kasha and 

Maluszynski, 2003 a).  

Since then, extensive research has been done to establish efficient techniques for haploid and 

doubled haploid production with the purpose to increase varieties of different plant species. 

Approximately 300 new varieties of different plant species have been produced and 

Maluszynski et al., (2003) provide a list of these in their book “Doubled Haploid Production 

in Crop plants: A Manual”. A variety of methods were used to obtain these such as 

chromosome elimination subsequent to wide hybridization, the ‘Bulbosum method’ by Kasha 

and Koa (1970), pollination with irradiated pollen selection of twin seedlings, in vivo or in 

vitro pollination with pollen from triploid plant gynogenesis, and pollen embryogenesis 

through in vitro anther or isolated microspore culture (Forster and Thomas, 2005; Germaná, 

2011).  

Microspore culture provides the most efficient and uniform route to mass production of 

doubled haploids. However it is technically demanding and requires an optimally controlled 

environment for donor plant growth. It is also more expensive to set up a laboratory for 
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microspore culture than for anther culture, as more specialised equipment is needed. Also, the 

risk of contamination is fairly higher for microspore culture, and the protocol calls for 

working under strict aseptic conditions (Maluszynski et al., 2003).  

Alternatively, in vitro anther culture is labour intensive and the cost involved is relatively 

high. However, it is technically less demanding and the risk for culture contamination is 

fairly lower. Anther culture in barley remains of high interest to the R&D program of SABBI, 

as it suits the facilities, small team and production needs.  

 

2.1.2. Androgenesis  

Androgenesis (or microspore embryogenesis) is defined as the condition of an embryo that 

contains only paternal chromosomes. Thus, androgenic haploids are produced from the 

nucleus of the male gametophyte only (Pandey, 1973 and Segui-Simarro, 2010). Microspore 

embryogenesis is the most commonly used method to produce doubled haploids. Microspore 

embryogenesis is based on the ability of a single haploid cell, the microspore, to de-

differentiate and regenerate into a whole plant after it was exposed to some form of stress 

(Shariatpanahi et al., 2006).  

In 1973, Pandey stated that there may be two types of androgenesis. The first type of 

androgenesis is (1) Ovule Androgenesis. Ovule Androgenesis is where a male gamete is 

developed in the female cytoplasm, within the embryo-sac of an ovule, resulting in a paternal 

haploid. The second is (2) Anther Androgenesis. In Anther Androgenesis the female 

cytoplasm has no role in development of the paternal haploid. Furthermore Pandey suggests 

that (2) Anther Androgenesis can be classified into two forms, (2a) spore androgenesis and 

(2b) callus androgenesis. In spore androgenesis the sporophytes are initiated into embryos 

either inside or outside the anther. In callus androgenesis the sporophytes are initiated as 
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plantlets, or shoots and roots, from the callus. These are usually grown outside the anther. 

This type of androgenesis is commonly seen in barley. 

It is known that the process of androgenesis can be separated into three phases or steps. The 

first phase of androgenesis is the pre-treatment or induction phase. During this phase the 

gametophytic pathway is switched to the sporophytic embryonic pathway. The second phase 

of androgenesis is the culture phase. During this phase the microspore is developed into an 

embryo. The final phase of the androgenesis is the regeneration phase. During this phase the 

embryos are developed into haploid plants (Jacquard et al., 2003). These phases may not 

always be named the same by all the researchers, but the principle around the process of 

androgenesis remains the same. 

In a review by Islam and Tuteja (2012), the various uses of abiotic stresses and pre-treatments 

and their impact on androgenesis was discussed. It highlights the relevance of research in 

optimising the protocols for developing doubled haploid plants for certain crop species.  

Optimizing the protocols for each crop would ensure obtaining the optimal results in all 

crops, instead of using a generic broad based protocol for all crops that may deliver results 

but not in the volumes desired. In simple terms, the anther culture protocol for wheat may be 

successfully used for producing doubled haploid barley plants. However, the average number 

of doubled haploid plants for regenerated for barley may be lower than that of wheat due to 

using the same protocol for both crops. Using the optimal protocol for a crop is particularly 

important for breeding institutes where the mass production of doubled haploids is required.  

Breeding institutes may not always have the resources to research and experiment with all the 

available tissue culture techniques for their specialised crop, due to mass production 

requirements. Research institutes however, do not have the dilemma of producing mass 

volumes of doubled haploids to be used for production. Thus, research institutes have the 
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freedom to experiment with tissue culture techniques and optimising doubled haploid 

protocols.  

 

2.1.3. Anther Culture 

Anther culture is a plant culture technique in which haploid plants are obtained from isolated 

immature microspores of cultured anthers. The anthers are placed on a culture medium from 

which embryos will grow from the microspores. The embryos will differentiate into roots and 

shoots. The plantlets that are regenerated from this technique will have one set of 

chromosomes. Doubled haploid plants will be the result of spontaneous chromosome 

doubling. The technique was first reported by Guha and Maheswari in 1964.  

The process for anther culture is depicted in Figure 2.1 and Figure 2.2. Figure 2.1 illustrates 

the various phases of anther culture whereas Figure 2.2 shows the effect of anther culture on 

the chromosomal number throughout the various phases. In Figure 2.1, F1 generation plants 

are used as the donor plants for producing doubled haploids. The spikes harvested or 

collected from the donor plants will be placed on some form of pre-treatment to initiate the 

process of androgenesis. The pre-treatment can be a cold treatment, starvation of anthers, heat 

shock or a combination of these. After pre-treatment the anthers are placed on an induction 

medium. This will induce the generation of calli or embryos which in turn will regenerate 

plantlets. These can be albino plantlets, doubled haploid plantlets or haploid plantlets. 

However, the albino plantlets will be discarded and the green plants will mature and be 

harvested when the seed sets are ripe. In Figure 2.2, the genetic process of Anther culture is 

shown through highlighting the chromosomal count throughout the process. 
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Figure 2.1 Illustrates the process of anther culture from the selection of the donor plant 

material up to harvesting the doubled haploid plant material. 

 

In Figure 2.2, the genetic process of anther culture is shown through highlighting the 

chromosomal count throughout the process. The donor plant has 14 chromosomes; however 

the anther only has 7 chromosomes. The anthers undergo some form of stress during the pre-

treatment period. Where it will spontaneously double its chromosome number and give rise to 

calli. The calli will have 14 chromosomes too, and will consequently generate doubled 

haploid plantlets. 
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Figure 2.2 Illustrates the genetic process of obtaining a doubled haploid plantlet 

through anther culture (South African Barley Breeding Institute, 2010) 

 

Most researchers (Jacquard et al., 2003 and Kasha et al., 2003 b) who work on doubled 

haploids agree that the state of the donor plants that will be used is critical to the success of 

anther culture and microspore culture. Any form of stress during their growth should be 

avoided. Stresses include dehydration, broad fluctuations in temperature and daylight, 

pesticide treatment and disease. However, Jacquard et al., (2003) suggests using a 

preventative pesticide treatment at least once a week. They believed that this can be 

administered without having any significant changes in the yield.  

Another important factor to consider with regards to the donor material is the tillers that the 

material is harvested from. It is recommended that primary tillers be used for anther culture 
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and microspore culture. Even though secondary tillers can be used, it does not deliver the 

same results as that for primary tillers. It has been reported that the use of secondary tillers in 

anther culture will result in a lower green plant regeneration frequency. However, a higher 

albino regeneration frequency (Jacquard et al., 2006 and Kumari et al., 2009) will be 

observed through the use of secondary tillers in anther culture. Over the past few years it has 

been observed in the laboratory of the South African Barley Breeding Institute that the tiller 

position does play a role in the quality of the embryos produced during anther culture. It has 

been observed in the laboratory that the age of the donor plant has a direct effect on the 

regeneration capacity. Also, higher contamination percentages and albino regeneration 

frequency was observed (Meyer, unpublished data). These observations, with regards to the 

effect of secondary tillers on green plant regeneration, by SABBI support the findings of 

Jacquard et al., (2006) and Kumari et al., (2009).  

An interaction between organellar and nuclear genes controls the formation of microspores 

that are able to undergo embryogenesis (Heberle-Bors, 1985). Studies on potato (Solanum 

tuberosum) showed that the ability of microspores to undergo embryogenesis is a heritable 

recessive trait that is controlled by more than one gene (Chupeau et al., 1998; Rudolf et al., 

1999, Smykal, 2000). Asakaviciute (2008) also stated that the morphogenetic potential of 

callus and embryoids is genetically predetermined. In 1982 Foroughi-Wehr et al., identified 

four independent and differently inherited traits, namely callus induction, callus stabilization, 

plantlet regeneration and albino versus green plantlet formation. Petolino and Thompson 

demonstrated in 1987 that it is possible to improve responsiveness in maize breeding.   

In 2006, Shim et al., stated that efficient chromosome doubling is important in the production 

of haploids plants. The ideal time for chromosome doubling for the production of doubled 

haploid plants is during the first couple of cell divisions in the gametes (Kasha, 2004). The 

results obtained by Asakaviciute (2008) confirmed that the induction response in anther 
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culture, embryo formation, regeneration potential and the ratio of green regenerates to albino 

are controlled genetically. Their research showed that the shd1 gene, which is found on the 

second chromosome of barley, affected the formation of green plants from embryos by 65%. 

Thus the formation of green plants in anther culture is dependent on the genetic 

predetermination of the donor plant.   

The pollen development stage within the anther is a rather complicated factor and it greatly 

affects the success of anther culture. The developmental window of embryonic competence is 

species specific, but generally the period of sensitivity to inductive treatments is around the 

first pollen mitosis. For barley the best results is obtained when the microspores are in the 

mid- to late uninucleate stage (just before, during or after the first mitotic division). After the 

pollen grains begin to accumulate their storage reserves, they usually lose their embryonic 

capacity and follow the gametophytic developmental pathway (Pandey, 1973; Herberle-Bors, 

1989; Raghaven, 1990 and Telmer et al., 1992). This sensitivity may be due to the low 

metabolic content of microspores during the first mitotic division, as there is increased 

nuclear activity during this time. Pandey (1973) stated that it has been observed that embryos 

were unlikely to be produced by microspores in which starch accumulation has occurred after 

mitosis. Dunwell (2010) stated that the percentage of anthers producing microspore embryos 

and the number of regenerates produced per anther appear to be determined independently.   

Taking into account all factors mentioned above, namely the tiller position and the pollen 

stage, it is imperative to acknowledge the role of genotype resistance on the efficacy of anther 

culture. Not all genotypes will show the same response to anther culture. Over the past few 

years it has been observed at SABBI that certain combinations would perform better than 

another using the same protocol (Meyer, unpublished data). Factors such as growth 

conditions and pre-treatment options was eliminated as variables to poor regeneration of 

doubled haploids because the donor plant material was sourced at the same time, and  pre-
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treatment used was identical for all. The only reasonable explanation for poor performance 

was thus attributed to genotype resistance. 

 

2.2. The significance of doubled haploids in the malting barley industry 

The malting industry in South Africa greatly depends on locally grown barley in the Southern 

Cape area. Figure 2.3 illustrates the various commercial production areas for barley in South 

Africa. The Southern Cape area is the biggest production area for barley in South Africa. The 

Northern Cape region produces a small amount of barley compared to that of the Southern 

Cape region. Between the two, it produces the majority of barley needed for the malting 

industry in South Africa. The beer beverage industry is driven by brand popularity and the 

maltsters always strive for a superior blend of malt to ensure that brand superiority. It is vital 

for the brewers, maltsters and barley breeders to work together in determining what the end 

result needs to be. To have the best beer it requires using superior malt. Superior malt begins 

with superior barley. Barley breeders thus have the responsibility to constantly produce new 

varieties that contains the properties the brewers require. Unfortunately, the conventional 

method of breeding may take an average 16 years to produce a new variety. This time delay 

is very costly and prevents breeders from responding rapidly to their clients’ needs. Using 

doubled haploids in commercial breeding can overcome this because homozygosity can be 

achieved within one generation, thus reducing the time it takes to potentially release a new 

variety commercially. 
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Figure 2.3 Illustrates the barley production area in South Africa (South African Barley 

Breeding Institute, 2007) 

 

2.2.1. Conventional Breeding 

There are many drawbacks in conventional breeding,  besides the extensive time it takes to 

release a new cultivar. There is also the issue where in the early stages all the individuals are 

unique. There is a biasing effect of dominance on the phenotype during the early generations. 

Another drawback is that the non-competitive individuals are rejected by breeders and early 

selection is based on individuals grown in non-crop conditions without replication (Thomas 

et al., 2003). In conventional breeding, selection of lines cannot be made until the lines 

approach homozygosity and enough seed is available for field trails. To help with the lagging 

of homozygous development, breeders can use another method, such as Single Seed Decent 

(SSD), to help speed up the development of homozygous lines. Single seed decent is a 
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method to rapidly fix genes in breeding lines. This involves planting one seed per plant (from 

the harvested first generation plants) for each generation seed. The advantage of using SSD is 

that a genetically stable generation can be obtained in a shorter time period than through 

conventional breeding practices 

However, SSD also suffers from time delays and competitive interaction between plants 

(Thomas et al., 2003).  SSD also requires constant monitoring as the plants have to undergo 

certain stress periods and other environmental conditions.  

Another disadvantage is that the labour cost of maintaining the SSD plants in a greenhouse 

will be higher than that of maintaining the doubled haploid progeny in the glasshouse. This is 

because the SSD plants will have to be planted multiple times before a genetically pure 

generation can be obtained. However, with doubled haploid plants it can be obtained within a 

single planting cycle and the resulting seed would be planted directly into the field for trail 

evaluation as Elite 1 trials. This has been observed numerous times at the South African 

Barley Breeding Institute. 

As mentioned before, conventional breeding practices takes approximately 18 years before a 

new barley cultivar can be produced for commercial purposes. The South African Barley 

Breeding Institute (2013) shared Figure 2.4 to illustrate the timeline for the production of 

barley using the conventional barley breeding method. During the 1
st
 year and 2

nd
 year, 

crosses of the selected plants are made and the resultant F1 plants are grown in the 

greenhouse.  During the 3
rd

 to 6
th

 year the F2 – F5 generation plants are planted in the field. 

During this period single plants are selected from the different generations. Year 7 through to 

the 12
th

 year is the trial period, where the selected barley varieties are evaluated. The 

commercial evaluation period spreads over year 13 until the 16
th

 year. During the final 
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release of the new barley variety, the seeds will be multiplied during the 17
th

 year and will be 

available the following season for commercial production. 

 

 

Figure 2.4 Illustrates the time-line for a conventional barley breeding program at 

SABBI (South African Barley Breeding Institute, 2013) 
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Using doubled haploids (DH’s) in a breeding program can overcome many of the above 

mentioned problems. Homozygosity can be achieved in a single generation and it can be 

performed at any generation in a breeding program. Doubled haploid production saves the 

breeder valuable time as it is possible to cross parental lines and conduct field trials of the 

derived doubled haploid progeny within a two year period. Selection of superior doubled 

haploid progeny lines through Marker Assisted Selection prior to placing the lines in the field 

trails. Also, it is possible to conduct selections for disease resistance in the greenhouse thus 

spending resources only on the most promising lines. Since doubled haploid lines are pure, 

selection on these lines are more reliable as there are no dominance related effects (Thomas 

et al., 2003). 

 

2.2.2. Doubled haploid production vs. other methods 

In 1976 Snape compared the theoretical properties of progenies produced through doubled 

haploidy and single seed decent and concluded that there were no difference between the two 

in the absence of linkage. However, when linkage is present, SSD would have a higher 

expectancy of recombination frequency. Snape suggested that the choice of method used 

would be dependent on whether the breeder wishes to preserve the linkage blocks, which 

would be achieved through doubled haploidy, or whether to break them, which can be 

achieved through SSD and Pedigree Inbreeding (PI). Numerous comparisons of populations 

produced by the different breeding methods from a wide range of species, mostly cereals, 

have been made (Snape, 1976). All agree that doubled haploidy does not lead to any bias 

populations. It has even been found that random doubled haploids can be compared to 

selected lines produced by PI (Friedt et al., 1986). Thus there is no reason not to use doubled 

haploids in a breeding programme. 
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Another important consideration, when choosing a breeding method, is the number of lines 

per combination involved in the breeding programme. The reason for this is because the 

potential number of homozygous lines in a DH laboratory may be far too large for a breeding 

programme to handle effectively. In the case where segregating characters have high 

heritability, conventional breeding can decrease the number of potential lines in early 

generations (Thomas et al., 2003) through single plant selection. 

Many breeders rely on a mixture of these methods in their breeding programs. This is most 

evident in the commercial plant breeding sector. The South African  Breeding Institute makes 

use of both conventional breeding as well as doubled haploid technology, although there is 

sufficient evidence to prove that DH is reliable. There are many programs or institutions that 

have switched exclusively to the use of DH’s. However, the main reason for not using DH in 

a breeding program is due to the lack of resources. When setting up a DH laboratory, the 

program leader has to realise that in order for it to work, the skills of at least two technicians 

would be required whose sole purpose would be to produce doubled haploid plantlets. The 

selected genotypes require at least 100 lines per combination or alternatively 2000 lines per 

year to be beneficial to the breeding program. Thus, it is essential to follow the optimal 

protocol to produce the number of lines mentioned above. Besides the skilled labour required, 

one has to be cognitive of the financial expenditure of a doubled haploid laboratory. The 

financial expenditure would include specialised laboratory chemicals and reagents, laboratory 

equipment, laboratory consumables as well as the cost related to glasshouse maintenance. 

The doubled haploid technique requires the technician to work in aseptic conditions, which 

means that the environment, equipment and consumables have to be sterile.  

It is important to realise that the number of progeny produced by doubled haploids would not 

be the same as for the F2 population in a conventional programme. However, it has been 
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reported numerous times that the F2 single plant selection is at best random and that haploidy 

is competitive (Thomas et al., 2003). 

 

2.3. Barley Anther Culture 

2.3.1. The importance of pre-treatment in Anther Culture 

The purpose of applying pre-treatment is to create the stress necessary to change the 

development pathway of microspores from gametophytic to sporophytic. The most common 

pre-treatments used are cold treatment, where the donor material is kept at a low temperature. 

An alternative method is starvation through the use of mannitol. Some researchers have found 

that a combination of the two methods mentioned above increases the frequency of green 

plant regeneration for certain plant species (Shariatpanahi et al., 2006). 

Li and Devaux (2005) stated that the success of microspore embryogenesis is affected by the 

appropriate pollen stage. However, they also state that the pollen stage is associated with 

various pre-treatments, suggesting that each type of pre-treatment would have an appropriate 

pollen developmental stage associated to it that would enhance microspore embryogenesis. 

The authors stated that in mannitol pre-treatment it would be best to use microspores at the 

early-late  uninucleate or late uninucleate stage. Furthermore, if using a cold pre-treatment it 

would be advised to use microspores at the early to early-mid uninucleate stage.   

In 2006, Shariatpanahi et al., published a review article based on the various stresses applied 

to donor material for the re-programming of microspores toward embryogenesis. They found 

that there were multiple approaches in anther culture as well as microspore culture. Some of 

these pre-treatments included chilling, heat application, high humidity, water stress, 

anaerobic treatment, centrifugation, sucrose starvation, nitrogen starvation, microtubule 
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disruptive agents, electro-stimulation and high medium pH. They concluded that researchers 

have yet to establish exactly how stress affects pollen differentiation. However, Shariatpanahi 

et al., (2006) believed that stress seems to alter the polarity of the division at the first haploid 

mitosis. This involves the re-organization of the cytoskeleton.  

Jacquard et al., (2009) stated that stress treatment is vital to switch the developmental 

pathways. Jacquard et al  stated as well that the quality of the stress treatment  directly affect 

the success of doubled haploid production. The authors believed that there were several 

abiotic stressors, which could be used alone or in combination, to trigger microspore 

embryogenesis. These stressors could include cold shock, heat-shock, osmotic shock, pH 

variation but in barley microspore embryogenesis is mainly triggered by using a combination 

of cold- and osmotic shock. Their study showed that barley anthers are able to perceive 

abiotic stress conditions early during treatment, and respond by triggering various aspects of 

stress-related physiology. These included inducing an oxidative burst in anthers and 

stimulation of defence and stress-related gene expression. 

 

2.3.1.1. Cold Pre-treatment 

Temperature shock has been reported to be one of the most effective treatments. However the 

optimum temperature and pre-treatment vary with the genotype. Nitsch and Norreel first 

reported the use of cold pre-treatment on Datura anthers in 1973. 

In 1982 Huang and Sunderland tested different pre-treatment methods for optimal callus and 

green plant production on the barley cultivar ‘Sabarlis’. Huang and Sunderland found that 

there were greater callus yields at 4°C than 25°C, and that maximum yields were best 

produced at 4°C incubated over 3-5 weeks and 3-5 days for 25°C.  
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Huang and Sunderland (1982) also compared the effectiveness of using spikes and tillers. 

They found that spikes required a shorter pre-treatment than tillers and that spikes were more 

effective at 4°C than 20°C, and that individual spikelet were as effective as whole spikes. 

Huang and Sunderland (1982) determined in their study that green plant regeneration was 

more effective from spikes than from tillers.  Higher yields of green plants from 4°C than 

25°C from both spikes and tillers were observed. However, green plant regeneration 

treatment time exceeds those for callus production. Approximately 60% of the calli formed 

gave rise to plantlets at 4°C. Amongst the plantlets regenerated every 3 plantlets were albinos 

and every 2 were green plants. This was equivalent to 5 plants per 100 anthers or 2 spikes. 

The ratio of green plants to albinos was lower for all. 

In a review on cereal microspore culture by Jähne and Lörz (1995), they state that cold shock 

has a duel effect by providing interruption of microspore mitosis in order to produce 

embryos, as well as providing ample time for microspores to be nurtured by the anther. They 

identify that the most common cold shock protocol is 28 days at 4°C at high relative humidity 

in the dark. They emphasized that optimal pre-treatment is genotype-dependent.  

Hou et al., (1993) claimed that fresh anthers treated for 3 days in a mannitol solution was less 

effective for green plant production than a 28 day cold pre-treatment. 

In 2001, Ritala et al., published their work on barley isolated microspore culture in Finland, 

Europe. They tested 3 different cold pre-treatments, and the donor material was incubated at 

4°C for up to 4 weeks in the dark. The only difference between the pre-treatments was the 

method of incubation. The methods were as follows; (a) collected spikes, covered by the flag 

leaf sheath, were wrapped in aluminium foil and kept in water; (b) harvested spikes were kept 

in petri dishes with a water insert (authors failed to mention the volume of the water); (c) 

harvested spikes kept on water-moistened filter paper in petri dishes. The researchers 
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observed a seasonal difference in the regeneration frequency. There was an increase in 

regeneration frequency during the period of March until October, with an average of 300 

plants regenerated.  During the period of November and February the regeneration frequency 

decreased to an average of 100 plants. They also observed that the best results were obtained 

for an incubation period of 4 weeks and that results decreased dramatically for incubation 

periods above 4 weeks. They also observed that there was no difference seen in the 

regeneration capacity with the addition of copper to the culture media.  This study provided 

guidelines on choosing the optimal cold pre-treatment method for this study. 

Szarejko (2003) was able to produce green plants from donor plants that were grown in a 

greenhouse as well as from the field. The spikes were placed in a 2 compartment petri dish 

with a few drops of sterile water in one of the compartments. The plates were incubated in the 

dark at 4-5 °C for 3-4 weeks. Szarejko obtained an average of 12.2 green plants per 100 

anthers. The recalcitrant varieties only produced, on average, 2-3 green plants per 100 anthers 

where the more responsive varieties produced 50-60 green plants on average. However, 

Szarejko obtained a 70-80% spontaneous chromosome doubling for the regenerated plants. 

This particular study provides evidence on the impact of genotype dependence on green plant 

regeneration.  

An interesting type of cold treatment was reported in a study published in 2004 by Patel et 

al.,. The researchers used a 7 day pre-treatment that consisted of wheat spikes that were 

harvested at the mid-to late-uninucleate stage. It was placed in the dark at 4°C-5°C, with the 

basal end in a beaker of water. Their study was based more on the culture conditions than that 

of pre-treatment used. However, the results obtained from the study were rather impressive. 

They obtained an average of 296 microspore derived embryoids per 100 anthers and up to 71 

green plants per 100 anthers. 
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Lazaridou et al., (2005) studied the response of barley genotypes to cold pre-treatments and 

culture media. The cold pre-treatment that was used was fairly simple however the authors 

did not go into detail when describing the protocol. However, the spikes were kept at 4°C for 

14 or 28 days. A surface sterilization protocol was used before the anthers were excised and 

transferred to the induction media. They used two different induction media, FHG and N6. 

They found that in all of the genotypes studied there were more embryoids produced from 

anthers cultured on FHG medium after a 28 day cold pre-treatment compared to those that 

were on a 14 day pre-treatment. The number of embryoids formed on N6 media, regardless of 

the time period on pre-treatment was far less than that on the FHG medium. This study 

suggested that FHG medium with a cold-treatment of 28 days at 4°C was the best pre-

treatment to use for anther culture of barley. 

In 2006, Shariatpanahi et al., reviewed the effects of stress on embryogenesis. Shariatpanahi 

et al., suggested that cold treatment slowed down the degradation processes in anther tissues. 

Thus protecting the microspores from the toxic compounds released in decaying anthers and 

ensuring a greater survival percentage of embryogenic pollen grains. The pre-treatment 

increases the frequency of endo-reduplication which leads to the increase of spontaneous 

doubled haploid plants. It was suggested that an increase in free amino acid may contribute to 

the alteration of microspores. 

During cold shock two heat shock protein HSP genes, tom66 and tom111 are expressed to 

protect cells against chilling injuries. It is thought that an increase of green plant production 

may be due to the delay of plastid senescence. This is the state where the cells are aging and 

is still metabolically active, but can no longer divide (Shariatpanahi et al., 2006). The authors 

summarized the proposed mechanisms in a flow diagram (Fig 2.5).  
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Jaquard et al., (2009) stated that transcriptome changes were observed in barley microspores 

following cold/mannitol stress treatment of the anthers. Jaquard et al., stated that it was 

shown that stress treatment blocked the expression of pollen-related genes. However, the 

stress treatment would stimulate expression of genes related to sugar metabolism, stress 

response and proteolysis. The results from the study led to the identification of molecular 

markers associated with the induction of microspore embryogenesis in barley. 

 

Figure 2.5. Cold shock and it’s proposed mechanisms (Shariatpanahi et al., 2006). 

 

In general it has been shown by numerous scientists (Oleszczuk et al., 2006 and 

Shariatpanahi et al., 2006) that a cold pre-treatment is an effective stressor. However, the 

time period associated to it may vary depending on the plant species. Kruczkowska et al., 

(2002) discussed the various conflicting reports on the optimum length of cold pre-treatment. 

Cold anti-stress and stress effects. 

Proposed Mechanisms 

Slows down degradation 
process in anther tissue 

Protects microspores from 
toxicity 

Increase viability 

Slows down physiological 
processes 

Lack of nutrients 

Starvation 

totipotent microspores 

Synthesize heat shock 
proteins 

 

 

 

 



26 

 

The chilling periods reported varied from 14 days up to 42 days. Some concluded that a 

period longer than four weeks dramatically decreased the regeneration capacity. Other 

scientists state that a chilling period of 42 days had no negative effect on the regeneration 

capacity. 

 

2.3.1.2. Mannitol pre-treatment 

Jähne and Lörz (1995) states that a 0.3 M Mannitol pre-treatment for 4 days were found to be  

far superior than cold treatment. One of the reasons why it is considered to be superior is 

because mannitol creates osmotic stress which enhances callus formation (Hoekstra et al., 

1997). 

In 1995 Hu et al., published their work on isolated microspore culture of wheat. They tested 

the effects of pre-treatment, hormones and isolation methods on regeneration frequencies. 

They found that a 7 day treatment of anthers with a 0.4 M Mannitol solution with the 

macronutrients of FHG medium performed better than that of 4 days. The result was an 

increase of both microspore viability and the induction of cell division. Thus a large number 

of multicellular structures were observed. 

Cistué, et al., (1999) found that mannitol performed better than cold pre-treatment for low 

responding cultivars. It was determined that low responding cultivars or genotypes needed a 

higher concentration of mannitol. It was found that a 4 day pre-treatment of 0.3 M Mannitol 

on culture medium prior to a maltose medium was effective in regeneration of green plants. 

Also, it was found that 0.7 M Mannitol pre-treatment increased the number of dividing 

microspores as well as the ratio of green plants to albino plants. However, Cistué, et al., 

(1999) reported that a mannitol concentration higher than 0.7 M Mannitol was not always 

more effective. This suggests that 0.7 M Mannitol is the optimal pre-treatment for anther 
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culture, because it had the highest response from all cultivars. However for low responding 

cultivars such as cv. ‘Reinette’ an increase in mannitol concentration from 0.7 M Mannitol to 

1.0 M increased its percentage green plants regenerated for the cultivar. The results of their 

study show that it is possible to replace a longer pre-treatment with a mannitol pre-treatment 

with a higher concentration. Thus the study confirmed that the optimal concentration for a 

mannitol pre-treatment is genotype-dependent. 

In 2001, Kasha et al., published their research on isolated microspore culture of barley. They 

described in detail the various protocols they used for pre-treatment that they considered to be 

the most effective for isolated microspore culture. The first pre-treatment was the use of ice-

cold (4°C) 0.3 M Mannitol. For this pre-treatment, harvested spikes were placed in a large 

petri dish and partially covered with 15 ml ice-cold 0.3 M Mannitol. The plates were sealed 

and kept in the dark at 4°C for 3 to 5 days. The second pre-treatment that they believed to be 

effective was to place the harvested spikes with 0.5 ml sterile water in a petri dish at 4°C for 

3 to 4 weeks. They stated that they found the combination of cold (4°C) plus 0.3 M Mannitol 

to be very effective and results in a higher green plant regeneration than that of other pre-

treatments. 

Jacquard et al., (2006) added mannitol and copper sulphate during anther pre-treatment and 

culture, which separates their study from the rest. For the pre-treatment they placed the 

anthers of the winter barley variety ‘Igri’ in a 5 cm diameter petri dish with 10 ml media 

containing mannitol (62 g/l). This provided an osmotic pressure of 180 mosm/l. Anthers were 

incubated in the dark at 4°C, 80% relative humidity for 3-4 days. After pre-treatment the 

anthers were transferred to modified culture medium containing mannitol (36 g/l) and copper 

sulfate (2.5 g/l). It was found that the addition of the mannitol and copper sulphate to the 

modified culture medium increased the yield of doubled haploids. The use of mannitol for 4 

days seemed to remove the formation of callus during anther culture and enhance embryo 
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formation instead. The addition of copper sulphate enhanced both the quantity and quality of 

the regenerated plantlets. It was found that 72.3% of the anthers responded to the pre-

treatment. They obtained 1245 plantlets (albinos and green plants) that generated per 100 

responding anthers and 1111.1 green plantlets per 100 responding anthers. Thus they 

obtained an 89.2% green plantlet production per 100 responding anthers. The results obtained 

for the winter type barley fluctuated significantly throughout the year and they obtained 

better results during spring and early summer, even though the growth conditions were 

maintained throughout the year.  

Cistué et al., (2003) also took an alternative approach to anther culture in barley by using an 

unconventional pre-treatment method. They used mannitol as a substitute for a metabolizable 

sugar. The anthers extracted from the harvested spikes were placed in a 65 mm petri dish on a 

pre-treatment medium. The medium contained 0.7 M Mannitol, 40mM CaCl2 and 8 g/L Sea 

Plaque agarose. The researchers increased the concentration of mannitol from 0.7 M to a 1-

1.5 M for the recalcitrant or resistant genotypes. The plates were incubated at 24 °C in the 

dark for 4 days. The results obtained from using this protocol were disappointing. The 

researchers planted 26.6 green plants per 100 anthers in soil. From those planted, 10% died, 

43% were sterile and 10-20% was haploids. The researchers believed that one of the reasons 

for the poor performance was due to the difficulties they experienced controlling the 

photoperiod and temperature. They stated that 15-20% of the sterile plants they obtained were 

due to the difficulties controlling the growing conditions during the hot season. 

Kasha et al., (2003 b) compared the effects of three pre-treatments on isolated microspore 

culture. The pre-treatments that was compared was as follow; (1) harvested spikes were 

partially immersed in ice-cold 0.3 M Mannitol and incubated in the dark for 4 days at 4°C. 

The second group (2) of spikes were partially immersed in 0.3 M Mannitol and incubated at 

room temperature for 4 days; and (3) the harvested spikes were placed in a Petri dish with 0.5 
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ml of sterile water at 4°C for 3-4 weeks. The researchers observed an embryo count per plate 

that had a range of 5.5-15000. They found that the regeneration frequency of albino plantlets 

were high, however they believed that the frequency of embryos and the regeneration 

percentage was high enough that the albino percentage did not negatively influence the 

production of doubled haploids. 

Muñoz-Amatriaín et al., (2006) suggested that the optimal pre-treatment for barley is 

carbohydrate starvation with or without a combination of cold. The treatment was based on 

the incubation of anthers in a medium with a non-metabolizable carbohydrate such as 

mannitol. Thus during mannitol treatment there is a decrease of nutrient availability due to 

the lack of photosynthesis. 

In 2006, researchers Oleszczuk, Sowa and Zimny found in their study that the highest number 

of green plants was obtained on 0.3 M Mannitol at 32°C for 24 hours by microspore culture. 

The review by Shariatpanahi et al., in 2006 agrees with previous research which stated that 

carbohydrate starvation, like through mannitol, and is an effective inducer of embryogenesis 

in isolated microspores for a variety of crops. Cytoplasmic and nuclear changes have been 

observed. These changes include dedifferentiation of plastids, dilation of the generative cell 

wall appearance of the large vacuole, loss of nuclear pores in the vegetative nucleus, and 

changes in chromatin and nuclear structure. Also phospholipid composition and a decrease in 

the size of the nucleolus were observed. During treatment qualitative- and quantitative 

changes in protein kinase activity can be observed. In short they proposed three mechanisms 

to starvation; the synthesis of (HSP), change in protein kinase activity and change in the 

plasmalemma phosphoprotein composition. 

In 2008, Asakaviciute tested androgenesis in anther culture of Lithuanian spring barley and 

potato cultivars. For the pre-treatment the researcher placed 30 anthers into 5 cm diameter 
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petri dish. The dish contained 10 ml of Mannitol (62g/L). The plate was incubated at 4°C in 

the dark for 4 days at 80% relative humidity. After the pre-treatment phase the anthers were 

transferred to the induction media, without rinsing, and incubated as per protocol. 

Asakaviciute found that the resulting responding anthers ranged from 0.3-22.7%. They had 

an average of approximately 200 embryos per 100 anthers, with a high of 580 embryos per 

100 anthers and the lowest 162.5 embryos per 100 responding anthers. Asakaviciute’s 

research suggests that the anther response is predetermined by genotype.  

 

2.3.1.3. Heat pre-treatment 

The advantage to using heat pre-treatment is that the incubation period is shorter compared to 

cold pre-treatment. The heat pre-treatment incubation is usually at 26°C to 32°C for several 

hours or a few days, whereas cold treatment is carried out, on average, from 2-4 weeks 

depending on the protocol used (Shariatpanahi et al., 2006). 

Heat pre-treatment has been used to trigger embryogenesis of various crops such as rapeseed, 

wheat, tobacco, eggplant and other crops. It has been shown to initiate changes in the 

microtubule and cytoskeleton in cultured Brassica microspores. Shariatpanahi et al., (2006) 

further state that heat shock affects the appearance of pre-prophase bands and that structural 

changes occur. These structural changes include electron-dense deposits at the plasma 

membrane or cell wall interface, vesicle-like structures in the cell walls and organelle-free 

regions in the cytoplasm. Several heat shock proteins are synthesized, like HSP20 that may 

inhibit apoptosis. Figure 2.6 by Shariatpanahi et al., (2006) summarize the proposed 

mechanisms for heat shock. 
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Figure 2.6. Heat shock and it’s proposed mechanisms (Shariatpanahi et al., 2006). 

 

In 1996, Touraev et al., reported that a combination starvation and heat stress improved the 

induction of embryonic microspores in excised wheat anthers.  They claimed that using their 

method improved the production of doubled haploids in recalcitrant species which would 

eradicate genotype dependency on crops such as wheat. They stated that their method was 

simple, effective and reproducible. The highest frequencies of embryonic microspores were 

obtained after spike treatment. The spike treatment that showed the highest embryonic 

microspore frequency was where the whole spike were starved at 33°C for 4 days in a 10 cm 

petri dish. These were kept under humid conditions and to achieve that the researchers placed 

a 3 cm petri dish containing 2 ml of sterile water into the larger dish containing the spikes.   
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2.3.2. The importance of media composition in Anther Culture.  

It has been shown in previous research (Hussein et al., 2004) that the media composition for 

the induction as well as the regeneration media plays a vital role in green plant regeneration. 

Another important factor to consider is how the medium is prepared, i.e. whether it is filter 

sterilized or autoclaved.   

In 2002, Mendoza and Kaeppler published an article based on the research they performed on 

the effects of auxins and sugar on callus induction and plant regeneration on wheat (Triticum 

aestivum L). They found that the type of sugar used in the media had a significant effect on 

callus production. They stated that the replacement of sucrose with maltose increased the 

mean callus fresh weight and that it promoted callus development activity. 

Hussein et al., (2004) investigated plant regeneration on four different media compositions 

using six barley genotypes. They found that regeneration was improved separately preparing 

certain components of the culture media and using maltose as the carbon source. In their 

article they discussed the effect of genotype-dependency on cereals and how it affects the 

ability of the tissue to regenerate whole plants. They believed that certain genotypes 

negatively impact the genetic transformation of most barley cultivars, but that this could be 

overcome if media composition was optimized. They also believed that commercial barley 

was one crop that is particularly difficult to transform genetically due to the absence of 

efficient regeneration systems or culturing protocols.  

Hussein et al., (2004) also discussed previous research done on media composition. They 

stated that an increase in copper concentration, the addition of 6-Benzylaminopurine solution 

(BAP) and maltose substitution to the regeneration media enhanced the regeneration 

frequency of barley.  
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In 2008, Redha and Talaat attempted to increase their green plant regeneration in wheat 

(Triticum aestivum L) genotypes with high albino regeneration frequencies. This was done 

through supplementing the culture media with various supplements. Maltose and sucrose 

were compared to each other. The use of maltose in the media induced higher frequencies in 

producing calli than sucrose. A small percentage of anthers produced green plants but had an 

increase in yield of green plants per 100 anthers than sucrose. They found that the beneficial 

effect of maltose on calli induction may be due to the starvation effect on microspores in 

culture. They found that this was due to the slow hydrolysis of maltose and maintenance of a 

high osmolality of maltose in medium. 

 Another supplement to the induction media that was tested was colchicine (C22H25NO6) 

(Redha and Talaat, 2008). Colchicine is often used to induce polyploidy in plants. It inhibits 

microtubule polymerization or formation during cell division by binding to tubulin. 

Supplementation with Colchicine in the culture media showed fewer calli produced per 100 

anthers but an increase in frequency of green plants per 100 calli. They deduced that the 

increase in the green plants produced per 100 calli may have been due to a higher quality of 

the calli induced. Thus, the ability to regenerate green plants versus albinos is suspected to be 

dependent on the quality of the calli or embryos developed during induction and not the 

quantity thereof.  

Zamani et al., (2000) tested the effect of colchicine supplementation in wheat (Triticum 

aestivum L.) anther culture media. They treated genotypes with 0.03% colchicine for three 

days at the beginning of microspore induction. In some of the genotypes it caused a 

significant reduction in the development of embryos. Colchicine also decreased the plant 

regeneration frequency in some of the genotypes. However, a significant increase in the 

fertile plant regeneration percentage was observed in all genotypes. Thus in summary, the 
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addition of colchicine in the culture media may decrease the formation of embryos and plant 

regeneration, but it increases the number of fertile plants regeneration in wheat.  

Various reports have shown that there are differences between barley genotypes with regards 

to spontaneous chromosome doubling. It’s been reported that the addition of copper sulphate 

and zinc sulphate to anther pre-treatment increases regeneration capacity for recalcitrant 

species (Hussein et al., 2004 and Ferrie and Caswell, 2011). 

An increase in regeneration frequency was observed when modifying standard MS medium 

composition (Dahleen and Bregitzer, 2002). The scientists observed the improvement when 

they increased the concentration of H3BO3 (0.75mM) and decreased FeSO4 to (0.5mM). The 

changes to the medium increased the regeneration frequency between 4 to 40 times as much 

as the original MS medium.  

In 1998, Bregitzer et al., published their study that suggested that genotype dependency can 

be overcome by developing and using genotype-specific protocols to enhance plant 

regeneration in barley. Even though their results were ground breaking it is however difficult 

to implement in production laboratories. It would require an experimental phase to determine 

the optimal pre-treatment, induction medium composition and regeneration medium 

composition for each genotype before it can be implemented on a full scale basis. A lot of 

time would be wasted if such a system would be implemented. 

For the purpose of our research we chose to use filtered induction and regeneration media as 

it has proven to increase the frequency of green plant regeneration. 

 

 

 

 

 



35 

 

2.4. Albinism in Anther Culture 

Albinism is defined as a lack of pigmentation and it can be seen in various forms depending 

on the severity of pigment loss, as well as the nature of the missing pigments. In plants, 

albinism is characterized by a lack of chlorophyll in normally green tissue. The tissue of the 

plant will appear white in colour due to the lack of chlorophyll. Without chlorophyll, plants 

die prematurely due to rapid exhaustion of food reserves because chlorophyll is required for 

the capture of light energy for photosynthesis (Kumari et al., 2009). 

Albinism is often encountered by plant breeders when they create wide hybrids or when using 

tissue culture technology such as anther culture or isolated microspore culture. Breeders use 

wide hybridization of distant relatives to produce doubled haploid plants for rapid 

development of homozygous lines, but because albinos are so common in doubled haploid 

techniques it hampers the production on a commercial scale (Kumari et al., 2009). 

Albinism has been reported in anther culture of many plant species such as barley, wheat, 

soybean and tobacco, to name a few (Kumari et al., 2009). Jacquard et al., (2006) obtained 

albinos during their study on barley, regardless of optimizing their anther culture protocol by 

adding mannitol and copper sulphate. This suggests that barley microspores and derived 

structures are particularly sensitive to albinism.  

 

2.4.1. Factors affecting Albino plant regeneration. 

There are many factors that can influence the regeneration of albino plants. Factors include 

genotype, environment, meiotic abnormalities, hormonal imbalances and various others. 

Incompatibility between the plastid- and nuclear genome is one of the major factors 

inhibiting chlorophyll formation (Yao et al., 2000). Many researchers have reported that the 

growth conditions of the donor plant, the developmental stage of the microspores at isolation, 

 

 

 

 



36 

 

the composition of the nutrient media as well as the culture conditions play a vital role for 

regeneration capacity of green plantlets (Kumari et al., 2009). Green and albino plantlet 

regeneration depends on a number of factors that include donor plant growth conditions, 

culture temperature, cold pre-treatment, sucrose concentration in combination of growth 

hormones and the development of the microspore. In anther culture the age and size of the 

embryos or calli have an effect on regeneration capacity and it has been found that older 

embryos regenerate fewer green plantlets (Kumari et al., 2009). 

 

2.4.1.1. Environmental factors  

There are various environmental factors that influence the regeneration of albino plantlets. 

These environmental factors include, but are not limited to, temperature, light intensity and 

media composition. Previous research has shown that the ratio of green to albino plants in 

tissue culture can be altered by temperature. In 1927, Collins reported that low temperature 

(<15°C) induced albinism in oat and barley whereas Hallqvist (1923) showed that high 

temperature (>15°C) induced pigment formation in albinos of barley.  

Low light intensities have promoted albinism in certain fruits such as strawberries although it 

has also shown a decrease in frequency of albinos during the regeneration of Timothy grass 

(Phleum pratense L.) anther culture (Kumari et al., 2009).  

Culture medium composition plays a vital role in green plant regeneration as it affects 

chlorophyll formation in leaves. It is however, difficult to identify the individual effects of 

different media components. One such component is sucrose. Sucrose is essential for any 

tissue culture medium. The quantity of the sugar content affects both the amount of carbon 

available to cells as well as the osmotic environment. The type of sugar used, whether it is 

sucrose, maltose or mannitol, have an effect on metabolism and it was found that by 
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increasing the sugar requirements of in vitro plants, one can increase the chance of survival 

(Kumari et al., 2009). Cistué et al., (1994) found that there is a positive correlation between 

mannitol concentration and green plant regeneration in barley anther culture. Other research 

show that adding mannitol, glucose and indole acetic acid to the induction media promotes 

chlorophyll formation, resulting in more green plants (Kumari et al., 2009).  

Although studies show how different environmental conditions influence the recovery of 

albino and green plants, there is not enough substantial evidence to establish a specific 

relationship between media composition and the occurrence of albinism. 

 

2.4.1.2. The effect of spike and tiller position. 

In barley anther culture, the frequency of albinism is dependent on genotype as established by 

Larsen et al., (1991). The production of green- and albino plants from microspore culture is 

also affected significantly by the annual cycle of donor plants and the spike position 

(Jacquard et al., 2006). A particular hormonal balance in the spike of the second tiller 

influence plastid behaviour in microspores. Spikes on the main stem produce fewer albinos 

than that from the late tillers furthest from the main stem. This may be due to competition for 

nutrients or because some hormones are more concentrated towards the centre of the root 

zone (Kumari et al., 2009).  

 

2.4.2. The genetics of albinism. 

Considering the research done on albinos so far, research suggests that albinism is a genetic 

trait that is recessive in nature. Albinism will persist in populations at a low frequency and 

cannot be completely eradicated from a population. Researchers have found that albinism is 
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governed by one or two genes each with two alleles. Two more loci have been reported in 

banana hybrids in 1994 by Ortiz and Vuylsteke. 

When albinism occurs chlorophyll is not synthesized. This results in the plastids losing their 

internal membranes, accumulated lipids and prolamellar globules. It has been shown that 

microspore plastids are affected as early as the anther sampling stage. The normal pattern of 

plastid development is not recovered during the androgenic process (Caredda et al., 2000). 

It has been reported that albinism may be correlated to the physiological state of plastids in 

the microspore at the time of donor plant sampling. 

In 2005, Lazaridou et al., published a study based on the response of barley to cold 

treatments and culture media. They tested the response of anthers to two types of induction 

media (FHG and N6) after cold-treatments at two different time periods (14 days or 28 days). 

They found that green plant and albino regeneration was absent after induction on N6 

medium. However, high green plant and albino regeneration frequency was observed on FHG 

medium especially after the 28 day pre-treatment. The researchers believed that the high 

percentage of albino plants was genotype dependent and that the type of induction media also 

plays a role in the regeneration frequency of albino plantlets.  

 

2.4.3. Methods for decreasing the albino population. 

Albinism can be overcome, or managed on a cellular level by manipulating ploidy in hybrids 

(Kumari et al., 2009). This can be done through polyploidization of the genome following 

hybridization. Thus studies suggest that plastome-nuclear genome incompatibility can be 

overcome through manipulation.  
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Acquaah (2007) stated that the regeneration frequency of albinos can be reduced through a 

high nitrogen content of the donor plant as well as exposure to a low temperature during 

meiosis. Acquaah (2007) also believed that the above mentioned factors would enhance the 

chance of green plant regeneration in anther culture. 

The frequency of albinism can be amplified through favourable environmental conditions. 

Thus the frequency of albinism can be decreased by manipulating the in vitro culture 

conditions through appropriate application of plant nutrients and growth regulators. It can 

also be decreased through deletions in the plastid genome (Kumari et al., 2009).  

The most cost effective way of controlling the albino population and increasing the green 

plant population would be to grow the donor plants in a stress free environment and to control 

the culture temperature. During the regeneration phase it would be ideal to grow the embryos 

at a higher temperature with a preferable light intensity and discarding the older calli as they 

generate higher volumes of albinos than green plants. 
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CHAPTER 3 

METHODOLOGY 

 

Hordeum vulgare L. F1 hybrids were chosen by the barley breeders from the South African 

Barley Breeding Institute for their excellent agronomic characteristic potential, to be used as 

the doubled haploid donor plants. The cross combination for the F1 hybrids cannot be 

disclosed as it would infringe upon the intellectual property agreement between the South 

African Barley Breeding Institute and the University of the Western Cape. Therefore the F1 

hybrids were given a genotype code (CM 01-CM 05) which was used throughout the project 

and during the discussion of the results.  

The protocol used for barley anther culture is relatively easy, and a brief overview of the 

experimental design is shown in Figure 3.1. The donor plant material were harvested within 

the glasshouse and placed on a pre-treatment. Three pre-treatments were used (1) Pre-

treatment A: 0.3 M Mannitol; (2) Pre-treatment B: 0.7 M Mannitol and (3) a cold treatment 

with a moist cloth (CMC). After the respective incubation periods were complete for each of 

the pre-treatments used, the anthers were transferred to an induction medium. The induced 

calli formed on the induction medium was transferred to a regeneration medium until roots 

and shoots were formed. Albino plantlets was recorded and discarded during the selection 

process of green plants to be transferred. These small green plantlets were transferred to a 

rooting medium until the plantlets were developed well enough to be transferred to the 

glasshouse where it matured and ripened. The ripened barley plants were harvested, and each 

plant that produced seed was counted as a doubled haploid plant. The green plants that did 

not produce a seed set were counted as a sterile plant. 
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Figure 3.1. Flow diagram of experimental design. 

Pre-treatment A:  

Liquid 0.3 M Mannitol.  

Incubation Period: 7 days 

Incubation Conditions: 4°C in 

the dark 

 

Pre-treatment B:  

 Solid 0.7 M Mannitol.  

Incubation Period: 4 days 

Incubation Conditions: 4°C in 

the dark 

  

Pre-treatment C:  

Cold treatment with moist cloth (CMC) 

Incubation Period: 14 days 

Incubation Conditions: 4°C in the dark 

  

Induction: Modified MS medium (Murashige and Skoog, 1962) 

Incubation Period: 3-4 weeks 

Incubation Conditions: 25°C in the dark 

Regeneration: Modified MS medium (Murashige and Skoog, 1962) 

Incubation Period: Approximately 2-4 weeks 

Incubation Conditions: 25°C in the light 

Green Plant Transfer: Modified MS medium (Murashige and Skoog, 1962) 

Incubation Period: Approx 2-4 weeks 

Incubation Conditions: 25°C in the light 

Glasshouse Transfer: Potting Soil 

Growth Period: Approximately 4 months until harvest 

Growth Conditions: average temperature of 20°C, 16 hour photoperiod, 8 

hour night   

Donor Plant Material: Hordeum vulgare L F1 Hybrids 

Growth Period: Approximately 4-6 weeks from plantings 

Growth Conditions: average temperature of 20°C, 16 hour photoperiod, 8 hour night   

Doubled Haploid Progeny Sterile Plant 

Harvest 

Record 

and 

discard 

albino 

plantlet 

 

 

 

 



42 

 

3.1. Plant Material and Growth Conditions. 

Hordeum vulgare L. F1 were grown in the greenhouse of the research institute. The donor 

plants were grown in potting soil with a 16 hour photoperiod and an 8 hour night in a 

greenhouse kept at an average temperature of 20°C and 80% relative humidity. The donor 

plants were watered only until they reached the three-four leaf stage (±3 weeks), after which 

they were fertilized with a combination of 2 ml Polaris (2x10
-3

 ml/L) (N 8.6%, Ca 7.3%, Mg 

2.3%) per litre, 2.5 ml Orion-plus (3x10
-3

 ml/L) (N 1.0%, P 1.0%, K 10.1%, Mg 0.4%, S 

0.5%) and 5 ml Trelmix (Kompel) trace element solution (1x10
-5

 ml/L) (Fe 21.3 g/L, Cu 3.0 

g/L, Mn 3.1 g/L, Zn 2.3g/L, B 1.0 g/L, Mo 0.3 g/L, Mg 0.3 g/L). The fertilizer application 

frequency was determined by the season, thus during the spring and summer season the donor 

plants received fertigation twice a week with one application of water; and during the fall and 

winter season the donor plants received fertigation once a week with one additional 

application of water. 

The spikes were harvested when the microspores were at the mid- to late-uninucleate phase. 

This developmental phase is indicated when the distance between the flag leaf and the 

penultimate leaf is 3 to 6 cm and the awns are visible just above the flag leaf. However, using 

the former mentioned criteria is not the most accurate way to determine whether donor plant 

is in the correct development phase as each genotype of barley shows different agronomical 

properties. Figure 3.2 is an example of how developmental phase’s accuracy was ensured for 

each genotype used over the harvesting period. The initial harvested spikes were labelled by 

genotype and their size (small, medium and large) photocopied and measured Fig 3.2A). The 

phase was verified by staining the anthers of the mid florets with a 1% acetocarmine stain, 

utilizing the squash method, and looking at the microspore development phase under a 

standard microscope. The microspores on the slide were then compared to Figure 3.2B and 

Figure 3.2C (Maluszynski et al., 2003). All donor plants harvested afterwards were compared 
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to the photocopied donor plant to ensure uniformity. The spikes were kept in water after 

harvesting to prevent wilting, surface sterilized with an aerosol of 70% ethanol in a laminar 

flow bench and then placed on the various pre-treatment options. 

  

 

Figure 3.2 displays the process taken to select the donor plant material. Figure 3.2A: 

Donor plant material from the same genotype cut at different physiological stages to 

determine the correct pollen developmental stage. Figure 3.2B: Mid-late uninucleate 

microspore development stage in barley. Figure 3.2C: Late uninucleate microspore 

development stage in barley (Maluszynski et al., 2003). 
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3.2. Pre-treatment 

The spike harvesting period occurred during mid-April until mid-September. This time period 

provides the optimal growing conditions for spring type barley in the Southern Cape.  

Three pre-treatment methods were tested: Sterilized spikes (Fig 3.3A), covered partially with 

liquid 0.3 M Mannitol (54.651 g/L) in a 65 mm diameter petri dish  that was sealed with 

parafilm and incubated in the dark at 4°C for a duration of 7 days (Pre-treatment A),  excised 

anthers (Fig 3.3B) placed on a solid 0.7 M Mannitol plate (127.51 g/L; 15 g Bacteriologic 

Agar), 65 mm diameter, sealed with parafilm and incubated in the dark at 4°C for a duration 

of 4 days (Pre-treatment B) and spikes (Fig 3.3C) placed in a 90 mm diameter Petri dish with 

a sterile moist cloth (approximately 2 cm
2
 in size) sealed with parafilm and incubated in the 

dark at 4°C for a duration of 14 days (Pre-treatment C).  

Figure 3.3 provides a visual aid for the description of the various pre-treatment methods that 

were used in this study. 

The plant material used in Pre-treatment A and B were sterilised using the sterilizing method 

mentioned below before being placed on the respective pre-treatments, thus not requiring 

sterilization before it was placed on the induction medium.  

The spikes on Pre-treatment C were sterilized before the excised anthers were placed on the 

induction medium. The ears were sterilized by placing it in 70% ethanol for two minutes, 

then in a 15% sodium hypochlorite (commercial bleach) solution for 8 to 10 minutes, rinsing 

with double distilled water for 1 minute followed by rinsing in 70% ethanol. Pre-treatment C 

was used as the control for the experiment as this method has been used extensively at our 

research institution for the production of doubled haploid barley, and has proven to be a 

successful method. The performance of the other pre-treatment methods was measured 

against it.  
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Figure 3.3. Comparison of pre-treatment methods. Figure 3.3A: liquid 0.3 M Mannitol. 

Figure 3.3B: solid 0.7 M Mannitol. Figure 3.3C: Cold treatment with moist cloth (CMC)   
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3.3. Induction, Regeneration, Transfer and Harvest 

The protocol used for anther culture media was Dr. G. Daniel’s (1993)  modified MS medium 

(Murashige and Skoog, 1962) provided by the organisation Sensako (Table 3.1). The stock 

solutions for the media are listed in Table 3.2. 

After pre-treatment the excised anthers were placed on the filtered induction medium (65 mm 

diameter Petri dish, modified MS medium (Table 3.1 and Table 3.2). The culture plates were 

sealed with parafilm and incubated at 25°C in the dark for 4 weeks. During this period, 

embryo-like structures (calli) grew on the induction medium which was transferred to the 

regeneration media after the four week incubation period.  

 Table 3.1. Dr. G. Daniel’s (1993) modified MS medium (Murashige and Skoog, 1962) 

 

Induction 

Media 

Regeneration 

Media 

Rooting 

Media 

In-organic Fraction g/L 

KNO3 1.900 g 1.900 g 1.900 g 

NH4NO3 0.165 g 0.165 g 0.165 g 

KH2PO4 0.170 g 0.170 g 0.170 g 

MgSO4.7H2O 0.370 g 0.370 g 0.370 g 

CaCl2. 2H2O 0.440 g 0.440 g 0.440 g 

FeNa2.EDTA 0.040 g 0.040 g 0.040 g 

Micro Stock 1 10 ml 10 ml 10 ml 

Micro Stock 2 1 ml 1 ml 1 ml 

Organic Fraction 
 

Thiamine hydrochloride stock 1 ml 1 ml 1 ml 

α-naphthaleneacetic acid solution  1 ml - - 

6-Benzylaminopurine solution (BAP) 1 ml - - 

Maltose 63 g - - 

Sucrose - 20 g 20 g 

Myo-Inositol 0.100 g - - 

Phytagel 3 g 3 g 3 g 

KOH  pH 5.8 - pH 5.9 pH 5.8 - pH 5.9 pH 5.8 - pH 5.9 
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Table 3.2. Stock solutions 

Micro Stock 1 g/500 ml ddH2O 

MnSO4.4H2O 0.825 

ZnSO4.7H20 0.43 

H3BO4 0.31 

Micro Stock 2 g/500 ml ddH2O 

KI 0.415 

CuSO4.5H2O 0.0125 

Na2M0O4.2H2O 0.125 

Thiamine hydrochloride stock mg/500 ml ddH2O 

Thiamine HCL 80 

 

For the regeneration phase, 30 calli was placed on a solid filtered regeneration media (90 mm 

diameter Petri dish, modified MS medium) (Table 3.1), sealed with parafilm, and incubated 

under light at 25°C until shoots and or roots were formed.  

These green plantlets were then transferred to solid non-filtered rooting media (7 ml 

regeneration media in 30 ml McCartney bottles, Table 3.1) and incubated under light at 25°C 

until the green plantlets have grown to a height of 6 cm to 8 cm. From there it was transferred 

to the greenhouse and planted in soil. For the first three days after transferring the green 

plants to the greenhouse, the plantlets were covered with vented plastic bags to facilitate the 

acclimatization of the plantlets. The plantlets were fertilized with approximately 300 ml of 

kelp (Effekto Wondersol kelp, 25 ml/L) per pot for the first two weeks after transfer, after 

which the plants received the same fertilizer blend mentioned above for the donor plants. 

Plant fertility was evaluated on the basis of seed set. 

Albinos generated from the study was recorded and used for comparing the ratio between 

albinos and green plants per genotype.  
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The following parameters were monitored ; (i). The number of calli induced per treatment per 

genotype, (ii). The number of green plants and albinos generated per treatment per genotype 

and (iii) the ratio of doubled haploids to haploids. 

The software, STATISTICA version 12, was used to analyse the data. Basic statistical 

analysis as well as a t-test was performed. Data analyses were performed on the following: 

Responding anthers per treatment 

Number of calli induced per treatment 

Number of plants regenerated per treatment 

Number of albinos regenerated per treatment 

Number of green plants regenerated per treatment  

Number of doubled haploid plants regenerated per treatment 

Number of sterile plants per treatment. 

 

3.3. Media PreparationThe induction media as well as the regeneration media was prepared in 

two phases as it contains an organic fraction and an in-organic fraction. The organic fraction 

was filter sterilized and the in-organic fraction was sterilized through autoclaving (refer to 

Table 3.2) The two fractions were mixed together to make up a final volume of 1000 ml, and 

the pH adjusted between the range of 5.8 – 5.9 with potassium hydroxide (KOH) pellets. 

After pH adjustment the media were poured into 65 mm and 90 mm diameter Petri dishes, 

respectively.  
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The rooting media has the same chemical content as the regeneration media but is prepared 

differently. The organic fraction was not separated from the in-organic fraction. Both parts 

were added together and made up to a volume of 1000 ml with distilled water. The solution 

was sterilized by autoclaving for 15 minutes at 121°C. After sterilization, the media was 

allowed to cool off to 75°C before adjusting the pH. The pH was adjusted between 5.8 – 5.9 

using potassium hydroxide pellets. After adjustment the media was dispensed into 30 ml 

McCartney bottles (7 ml per bottle). The caps were replaced on the bottles and the bottles 

were sterilized again for 15 minutes at 121°C.  
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

In this study  three different pre-treatment methods (0.7 M Mannitol, 0.3 M Mannitol and 

Cold treatment with moist cloth) were explored that are used in anther culture, to determine 

which one is the optimal pre-treatment. Pre-treatment C (cold treatment with moist cloth) was 

used as the control treatment as it has been used extensively in the laboratory of SABBI. The 

mannitol pre-treatments were used as the test treatments. The performance of the test 

treatments were compared to the control. The following variables were analysed to assess 

efficiency of the pre-treatment techniques; (1) Anthers responding to the treatments (2) Calli 

per 100 anthers, (3) green plants per 100 anthers, (4) percentage of doubled haploid plants per 

total regenerated green plants. 

The amount of calli induced per treatment per genotype, the number of green plants as well 

as the number of albinos generated per treatment per genotype and the number of doubled 

haploids produced versus the number of haploids produced was compared. 

The performance of five varieties (CM 01-CM 05) of barley against the three protocols was 

compared with each other; the results were both compared between the different genotypes as 

well as within a given genotype. It is well known that anther culture is genotype specific 

(Jähne and Lörz, 1995); hence it was expected to obtain different levels of performance 

between the varieties. This is also one of the reasons why it was important to test the 

protocols on different varieties instead of just one, so as to make an informed decision.  
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4.1. Pre-treatment 

Pre-treatment A (0.3 M Mannitol) and Pre-treatment B (0.7 M Mannitol) were spread equally 

across the five barley varieties (CM 01-CM 05). Initially Pre-treatment C (CMC) which was 

the control had a higher amount of spikes on the pre-treatment, due to production 

requirements; the ratio for the division was 2:1:1. Due to contamination, the percentage 

spread was altered and the effect thereof can be seen in Figure 4.1 as it shows the actual 

average percentage spread of the plant material across the pre-treatments used.  Pre-treatment 

A had a contamination percentage of 40.0 %, Pre-treatment B 23% and Pre-treatment C was 

41%.  

 

 

Figure 4.1: Average Percentage Spread Per Pre-Treatment 

 

Reducing the contamination of the plant material, induction plates and regeneration plates is 

very important. In this study we observed yeast and bacterial contamination during the 

induction phase and the regeneration phase of the protocol. There were protocols in place to 

21% 

36% 

43% 0.3 M Man

0.7 M Man

CMC
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minimize contamination. Some of the protocols used were the surface sterilisation (70% 

ethanol aerosol) of the plant material before placing it on the pre-treatments and induction 

media, ensuring that the work place was sterile by wiping the benches with 70% ethanol and 

using sterile tools. Also, surgical masks and latex gloves were worn to prevent any bacterial 

contamination that may originate from the laboratory technician performing the tasks. 

Unfortunately these methods can only prevent further contamination from occurring after the 

spike has been harvested. Most of the contamination observed during this study was due to 

yeast and/or bacterial contamination originated from the anther. Unfortunately contamination 

originating from the anther cannot be eliminated completely as harsher protocols may destroy 

the anther which would render anther culture as inadequate. It is important to ensure that if 

there are contaminated material present that it is disposed of properly to prevent it from 

spreading to other culture plates. 

No further tests were done to identify the  cause of contamination. However, it would be 

valuable to identify the bacterial, yeast and fungal species that cause the contamination. As 

the information obtained from the results would help to eradicate and prevent future 

contamination incidences. 

 

4.2. Induction 

An average of 60 anthers was placed on the induction media per plate (Figure 4.2A). Each 

plate represented a spike. Calli formation usually occurs within 3-6 weeks of induction 

(Figure 4.2B); in some instances it may take up to 8 weeks before the genotype will respond 

to the treatment. The quality and quantity of calli induced varies from genotype to genotype 

as well as the treatment it was exposed to. It was observed that the calli induced from the 
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anthers that were treated with 0.3 M Mannitol were fewer compared to those induced from 

0.7 M Mannitol or the cold treatment with a moist cloth.  

 

 

Figure 4.2A: Excised anthers on induction media, day 1. Figure 4.2B: Calli induced on 

induction media approximately 3 – 6 weeks after incubation. 

 

The amount of anthers that formed calli from the various barley varieties (Codes CM 01-05) 

was compared and the percentage of responding and non-responding plates/spikes per 

treatment per genotype was calculated. Figure 4.3 shows how well the spikes responded to 

the various treatments it was exposed to. On average CMC and 0.7 M Mannitol had the 

highest percentage spikes responding to their treatment, with 32.5% and 31.3% respectively. 

This means that at least 31% of the spikes on CMC and 0.7 M Mannitol have induced callus 

formation, where 0.3 M Mannitol have an induction percentage of 2.4%. When investigating 

the individual pedigrees (Figure 4.3), it is noticeable that certain genotypes respond better on 

certain treatments, again confirming that the treatments are genotype dependent. For 

example, genotype combination CM 01 had a higher induction percentage in callus formation 

(62.1%) on CMC than CM 05 where only 8% of the spikes responded to the same pre-
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treatment. The highest percentage for 0.7 M Mannitol was seen in CM 02 with 46.7% and the 

lowest was seen in CM 05 with 10.5%. For 0.3 M Mannitol the highest was seen in CM 05 

with 10%, with multiple genotypes (CM 01, CM 02 and CM 04) not responding to the pre-

treatment at all. Thus suggesting that 0.3 M Mannitol was the least reliable pre-treatment 

option. The genotype CM 05 was also the genotype with the lowest responding percentage, 

showing that this genotype is the least suitable to use for doubled haploid production through 

anther culture. The results conflicted with most researchers whom believe that Mannitol pre-

treatment is superior to that of cold treatment as well as those who suggest that mannitol 

treatment used in combination with cold is better (Jähne and Lörz, 1995; Hoekstra et al., 

1997 and Cistué, Ramos and Catillo, 1999). 

In Figure 4.3, the role of genotype dependency is clear. Variety CM 05 showed to be the least 

responsive across all treatments, whereas variety CM 01 showed to be the most responsive 

even though variety CM 01 showed no response towards 0.3 M Mannitol.  
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Figure 4.3: The Percentage Of Responding Anthers Versus Non-Responding Plates Per 

Genotype. 
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Table 4.1.  Comparison Of The Responding Anthers Per Treatment. 

 

Variable 

Responding Anthers (RA) per Treatment 

Valid N 

 

Mean 

 

Std.Dev. 

 

% Responding Anthers 

 

0.3 M 

 

82 1.46341 9.31240 2.4 

0.7 M 

 

144 18.75000 27.90782 31.3 

CMC 

 

166 19.51807 28.19429 32.5 

 

On average CMC showed to have the highest percentage of anthers responding to the 

treatment, 0.7 M Mannitol had the second highest percentage and 0.3 M Mannitol had the 

lowest response to the treatment. The pre-treatment with the lowest responding mean was 0.3 

M Mannitol and the highest responding pre-treatment was CMC (Table 4.1). 

A t-test was performed on the results obtained. Significance was established at a 95% 

Confidence interval (p<0.05). There were no significant difference between the results 

obtained from 0.7 M Mannitol and that of CMC (Table 4.2.). The results suggest that the 

anthers responded equally to both pre-treatments. However, there were a significant 

difference observed between 0.3 M Mannitol and 0.7 M Mannitol as well as 0.3 M Mannitol 

and CMC. Those who showed significance are highlighted in red in Table 4.2.  

This suggests that cold treatment with a moist cloth and 0.7 M Mannitol pre-treatment is the 

optimal pre-treatment to use to induce calli formation regardless of the genotype used in 

barley anther culture. The results agrees with other researchers that suggested that cold-

treatment out performs mannitol, specifically 0.3 M Mannitol (Hou et al., 1993). Another 

researcher (Cistué, Ramos and Castillo, 1999) suggested that the higher the molarity of 

 

 

 

 



57 

 

Mannitol in the pre-treatment solution the better the results for induction. Suggesting that 0.7 

M Mannitol is better than 0.3 M Mannitol. However, in that study the researchers observed 

that the results obtained between 0.7 M Mannitol and 1.0 M Mannitol had no significance.  

 

Table 4.2. T-Test For Responding Anthers. 

 

Group 1 vs. Group 2 

T-test for Independent Samples (Responding Anthers) 

Note: Variables were treated as independent samples 

Mean 

Group 1 

 

Mean 

Group 2 

 

t-value 

 

df 

 

p 

 

F-ratio 

Variances 

 

p 

Variances 

 

0.3 M vs. 0.3 M 

 

1.46341 1.46341 0.00000 162 1.000000 1.000000 1.000000 

0.3 M vs. 0.7 M 

 

1.46341 18.75000 -5.43491 224 0.000000 8.981070 0.000000 

0.3 M vs. CMC 

 

1.46341 19.51807 -5.64365 246 0.000000 9.166396 0.000000 

0.7 M vs. 0.7 M 

 

18.75000 18.75000 0.00000 286 1.000000 1.000000 1.000000 

0.7 M vs. CMC 

 

18.75000 19.51807 -0.24035 308 0.810219 1.020635 0.902643 

CMC vs. CMC 

 

19.51807 19.51807 0.00000 330 1.000000 1.000000 1.000000 

 

We compared the number of calli induced per pre-treatment (Table 4.3.).  CMC induced the 

highest amount of calli, with a mean of 94.1 calli per spike. The pre-treatment, 0.7 M 

Mannitol, came in second (mean = 39.1 calli per spike) and 0.3 M Mannitol induced the 

lowest amount of calli per spike (mean=5.9). The results of the t-tests (Table 4.4) indicated 
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that there was a significant difference in the amount of calli formed on the induction medium 

between the pre-treatments. The results suggest that CMC will induce higher callus formation 

frequency than mannitol pre-treatment, even though the anthers have responded equally to 

the 0.7 M Mannitol and CMC pre-treatment. Thus, the quantity of calli induced on CMC is 

higher than that produced on the 0.7 M Mannitol pre-treatment.  

 

Table 4.3. Comparison Of The Number Of Calli Induced Per Treatment 

 

Variable 

Induced Calli per Treatment 

Valid N 

 

Mean 

 

Std.Dev. 

 

0.3 M 

 

82 5.85366 49.7637 

0.7 M 

 

144 39.08333 112.6447 

CMC 

 

166 94.08434 248.2780 
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Table 4.4. T-Test For Calli Induced  

 

Group 1 vs. Group 2 

T-test for Independent Samples (Calli) 

Note: Variables were treated as independent samples 

Mean 

Group 1 

 

Mean 

Group 2 

 

t-value 

 

df 

 

p 

 

F-ratio 

Variances 

 

p 

Variances 

 

0.3 M vs. 0.3 M 

 

5.85366 5.85366 0.00000 162 1.000000 1.00000 1.000000 

0.3 M vs. 0.7 M 

 

5.85366 39.08333 -2.53243 224 0.012012 5.12385 0.000000 

0.3 M vs. CMC 

 

5.85366 94.08434 -3.18347 246 0.001643 24.89153 0.000000 

0.7 M vs. 0.7 M 

 

39.08333 39.08333 0.00000 286 1.000000 1.00000 1.000000 

0.7 M vs. CMC 

 

39.08333 94.08434 -2.44835 308 0.014909 4.85797 0.000000 

CMC vs. CMC 

 

94.08434 94.08434 0.00000 330 1.000000 1.00000 1.000000 

 

Table 4.5 gives a comprehensive view of the results obtained during the induction phase of 

anther culture with regards to callus formation. On average Pre-treatment A gave the least 

amount of calli formed per anther and per plate, 0.1 and 4.9 respectively, even in the 

genotype CM 05 where it showed a higher percentage of spikes responding to it than in Pre-

treatment C (control) which had a lower percentage. Pre-treatment C had a higher amount of 

calli forming per anther for the abovementioned genotype. In some varieties (CM 04 and CM 

05) 0.7 M Mannitol outperformed the control by inducing higher calli formation in total, 

however CMC produced the highest amount of calli overall. These results support the 

 

 

 

 



60 

 

hypothesis that anther culture is genotype dependent as described by so many other 

researchers such as Bregitzer et al., (1998), Ward and Jordan (2001), Hussein et al., ( 2004 ) 

and Jaquard et al., (2009). Also, the results suggest that even though mannitol pre-treatment, 

specifically 0.7 M Mannitol pre-treatment, is an effective treatment in inducing calli, CMC 

seems to be effective across all varieties. Thus CMC can be used as a broad spectrum pre-

treatment that guarantees results irrespective of the genotype or variety involved. 

Pre-treatment B proved to be more successful than Pre-treatment A with an average of 0.7 

calli forming per anther and an average of 39.5 calli forming per plate. Pre-treatment C, 

which had the same induction percentage as Pre-treatment B, had the highest callus formation 

per anther and per plate, 1.6 and 97.6 respectively. Pre-treatment C had more than double the 

callus formation capacity per anther than Pre-treatment B.  
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Table 4.5: Comparison Of Average Callus Formation Per Treatment Per Genotype 

Genotype Pre-treatment Total number of 

Calli 

Calli per spike 

 

Calli per anther 

CM 01 

0.3 M Mannitol 0 0.0 0.0 

0.7 M Mannitol 1955 75.2 1.3 

CMC 8902 307.0 5.1 

CM 02 

0.3 M Mannitol 0 0.0 0.0 

0.7 M Mannitol 1140 38.0 0.6 

CMC 3828 95.7 1.6 

CM 03 

0.3 M Mannitol 450 21.4 0.4 

0.7 M Mannitol 1283 27.9 0.5 

CMC 2547 59.2 1.0 

CM 04 

0.3 M Mannitol 0 0.0 0.0 

0.7 M Mannitol 1034 45.0 0.7 

CMC 648 22.3 0.4 

CM 05 

0.3 M Mannitol 30 3.0 0.1 

0.7 M Mannitol 216 11.4 0.2 

CMC 93 3.7 0.1 

AVERAGE 

0.3 M Mannitol 96.0 4.9 0.1 

0.7 M Mannitol 1125.6 39.5 0.7 

CMC 3203.6 97.6 1.6 
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Figure 4.4. Calli Induced Per Responding Anther 

 

4.3. Regeneration, Transfers and Harvest 

Callus formation is an important indicator with regards to doubled haploid production as 

every single callus has the potential to become a green plantlet and develop into a doubled 

haploid plant. Thus the higher the amount of calli formed, the higher the number of doubled 

haploids that can be produced. However, it is clear that the quantity of calli formed is not the 

only factor that determines the success of green plant regeneration. The quality of the calli 

plays a vital role as well. It has been observed that calli that has been transferred to the 

regeneration medium within the first two weeks of formation has a higher likelihood of 

regenerating into a green plant compared to older calli (4 weeks and older) that is more likely 

to regenerate into an albino plant.  
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The highest plant regeneration (green plant and albino plant) was obtained from Pre-

treatment C (CMC). The second highest was obtained from Pre-treatment B (0.7 M Man) and 

the lowest regeneration frequency was obtained from 0.3 M Mannitol (Figure 4.5). The 

results obtained were 77%, 22% and 1% respectively 

 

 

Figure 4.5. Percentage Of Plants Regenerated Per Treatment 

 

The regeneration phase of barley anther culture is visualised in Figure 4.6. Figure 4.6A 

displays the embryos/calli placed on regeneration medium; Figure 4.6B shows the 

regenerated plantlets that grew on the regeneration medium. In Figure 4.6B albino plantlets 

and green plantlets can be observed. The growth phase of the green plants to be transferred to 

the rooting media can be observed in Figure 4.6B. The Rooting Media phase of anther culture 
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can be observed in Figure 4.7.  The green plants that were developed during the regeneration 

phase of the protocol were transferred to the rooting media. The green plants grew stronger 

whilst they were on the rooting media and the weaker green plants that would die off in the 

rooting media.  However, the green plants that reached the optimal size for transplanting to 

the greenhouse were moved to the greenhouse (Figure 4.8) and matured to be harvested 

(Figure 4.10A). 

 

 

Figure 4.6A: Calli/Embryos placed on Regeneration medium, day 1. Figure 4.6B: 

Green- and albino plantlets developed from calli after approximately 3 weeks. 

 

The highest green plant regeneration (Table 4.6) was observed in CMC (mean = 3.1 green 

plants per spike). 0.3 M Mannitol had the lowest green plant regeneration frequency (mean =   

0.1 green plants per spike). There was a significant difference (Table 4.7) observed between 

the results obtained between CMC and both mannitol pre-treatments. However, there was no 

significant difference between the two mannitol pre-treatments. Thus, the results suggest that 

the mannitol pre-treatments would produce similar green plant volumes even though the 

number of calli for 0.3 M Mannitol would be less. Thus suggesting that the quality/ green 
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plant regeneration frequency ability of the calli induced would be higher than that of the 0.7 

M Mannitol.  

 

Table 4.6. Comparison Of Green Plants Per Treatment 

 

Variable 

Green Plants per Treatment 

Valid N 

 

Mean 

 

Std.Dev. 

 

0.3 M 

 

82 0.146341 1.325178 

0.7 M 

 

144 1.076389 5.146905 

CMC 

 

166 3.114458 9.522804 

 

After approximately ± 3 weeks the green plants that were transferred to the Rooting Media 

(Figure 4.7) was transferred to the greenhouse (Figure 4.8). The plantlets were grown to full 

maturity before the doubled haploids were harvested and the sterile plants were recorded and 

discarded. Unfortunately, not all of the green plants survived the transfer to the greenhouse. 

The green plants that died after being transferred to the greenhouse were recorded. 

Approximately 38.53% of the green plants died within the greenhouse (Figure 4.9). Further 

research has to be done to ensure higher survival percentages after the greenhouse transfer. 
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Table 4.7. T-Test For Green Plants Regenerated. 

 

Group 1 vs. Group 2 

T-test for Independent Samples (Green Plants) 

Note: Variables were treated as independent samples 

Mean 

Group 1 

 

Mean 

Group 2 

 

t-value 

 

df 

 

p 

 

F-ratio 

Variances 

 

p 

Variances 

 

0.3 M vs. 0.3 M 

 

0.146341 0.146341 0.00000 162 1.000000 1.00000 1.000000 

0.3 M vs. 0.7 M 

 

0.146341 1.076389 -1.60489 224 0.109928 15.08494 0.000000 

0.3 M vs. CMC 

 

0.146341 3.114458 -2.80622 246 0.005414 51.63938 0.000000 

0.7 M vs. 0.7 M 

 

1.076389 1.076389 0.00000 286 1.000000 1.00000 1.000000 

0.7 M vs. CMC 

 

1.076389 3.114458 -2.29370 308 0.022481 3.42324 0.000000 

CMC vs. CMC 

 

3.114458 3.114458 0.00000 330 1.000000 1.00000 1.000000 
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Figure 4.7A: Green plantlet growing in rooting media, approximately 3 weeks after 

transfer. Figure 4.7B: Partial albinism shown in plantlet, approximately 3 weeks after 

transfer. 
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Figure 4.8: Green plantlets transferred to potting soil in the greenhouse.  

 

Figure 4.9 shows that there were a higher percentage of sterile plants for CMC than that of 

0.3 M Mannitol and 0.7 M Mannitol. However, the number of green plants obtained for 0.3 

M Mannitol (total = 7) was too low to confidently conclude that it performed better in 

generating doubled haploids than CMC.  

In Figure 4.10, the difference between a doubled haploid plant and a sterile plant can be seen. 

The doubled haploid plant (Figure 4.10A) will have a full seed set and the sterile plant 

(Figure 4.10B) will have no seed set at maturity.  
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Figure 4.9: Comparison Of Doubled Haploid Plants And Sterile Plants Per Treatment  

 

The number of doubled haploid plants that were developed through anther culture was low 

for each pre-treatment (Table 4.8). However, CMC had the highest doubled haploid mean (1) 

per anther. 0.3 M Mannitol produced the lowest number of doubled haploids per anther 

(mean = 0.1) and 0.7 M Mannitol had a mean of 0.4 doubled haploid plants per anther. The t-

test revealed that there was a significant difference between the doubled haploid plant 

regeneration frequency of CMC and 0.3 M Mannitol, and no significant difference between 

0.7 M Mannitol and 0.3 M Mannitol. The t-test also revealed a slight significance between 

0.7 M Mannitol and CMC with a p value of 0.0509. 
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Figure 4.10A: Doubled haploid barley plant. Figure 4.10B: Sterile barley plant, no seed 

set on mature spike.   

 

Table 4.8. Comparison Of Doubled Haploids Per Treatment 

 

Variable 

Doubled Haploids per Treatment 

Valid N 

 

Mean 

 

Std.Dev. 

 

% DH 

 

0.3 M 

 

82 0.073171 0.662589 50 

0.7 M 

 

144 0.444444 1.741223 41.83 

CMC 

 

166 0.963855 2.736712 31.07 
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Table 4.9. T-Test For Doubled Haploids 

 

Group 1 vs. Group 2 

T-test for Independent Samples (DH) 

Note: Variables were treated as independent samples 

Mean 

Group 1 

 

Mean 

Group 2 

 

t-value 

 

df 

 

p 

 

F-ratio 

Variances 

 

p 

Variances 

 

0.3 M vs. 0.3 M 

 

0.073171 0.073171 0.00000 162 1.000000 1.00000 1.000000 

0.3 M vs. 0.7 M 

 

0.073171 0.444444 -1.85444 224 0.064991 6.90590 0.000000 

0.3 M vs. CMC 

 

0.073171 0.963855 -2.90265 246 0.004036 17.05963 0.000000 

0.7 M vs. 0.7 M 

 

0.444444 0.444444 0.00000 286 1.000000 1.00000 1.000000 

0.7 M vs. CMC 

 

0.444444 0.963855 -1.95915 308 0.050997 2.47030 0.000000 

CMC vs. CMC 

 

0.963855 0.963855 0.00000 330 1.000000 1.00000 1.000000 

 

T-tests (Table 4.10 and Table 4.11) were performed to establish significance between the pre-

treatments based on the number of sterile plants regenerated per responding anthers. The 

results show that CMC delivered the highest number of sterile plants per anther (mean = 

1.03), 0.7 M Mannitol produced the second highest with a mean of 0.1 plant per anther and 

0.3 M Mannitol produced the least amount of sterile plants (mean = 0.01) for this experiment. 

The p-values for the comparison between 0.3 M Mannitol with 0.7 M Mannitol was 0.18 

(95% C.I) which suggest that the results obtained was not significantly different. Comparison 

between 0.3 M Mannitol and CMC was p=0.008 which also suggests significance. The 

 

 

 

 



72 

 

results obtained from comparing 0.7 M Mannitol and CM was p=0.002 suggesting a 

significant difference between the results obtained.  The results suggest that CMC have 

produced the highest number of sterile plants out of all three pre-treatments tested. 

 

Table 4.10. Comparison Of Sterile Plants Per Treatment 

 

The results for all the above mentioned (responding anthers, calli induction, regeneration, 

doubled haploid and sterile plants) suggests that CMC will produce the highest volumes for 

all the parameters tested (responding anthers, calli induction, regeneration, doubled haploid 

and sterile plants). However, in Figure 4.9 it shows that CMC produced the lowest percentage 

of doubled haploids (31%) compared to 0.3 M Mannitol (50%). The t-test performed on the 

results show that CMC produced higher doubled haploid plantlets, thus producing conflicting 

results. The different perspectives the two conflictive results were taken from has to be 

considered. Figure 4.9 were taken from the holistic perspective, from all the green plants that 

were planted that were produced from CMC, 31% were doubled haploid plants and 33% were 

sterile.  On the other hand for 0.3 M Mannitol, 50% of the green plants that were planted in 

 

Variable 

Sterile plants per Treatment 

Valid N 

 

Mean 

 

Std.Dev. 

 

% Sterile 

 

0.3 M 

 

82 0.012195 0.110432 8.33 

0.7 M 

 

144 0.111111 0.670154 10.46 

CMC 

 

166 1.030120 3.489247 33.2 
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the greenhouse were doubled haploid plants. These results suggest that 0.3 M Mannitol 

would be a better pre-treatment option as it would yield a higher percentage of doubled 

haploid plants. The results are flawed due to low population counts for 0.3 M Mannitol. The 

pre-treatment, 0.3 M Mannitol produced 12 green plants in total compared to CMC that 

produced 515 green plants in total. Clearly the number of doubled haploids and sterile plants 

produced by the pre-treatments mentioned above would not be a true reflection on the 

doubled haploid production capability of either of the pre-treatments. Further research should 

be done to determine the optimal pre-treatment for doubled haploid production.  

 

Table 4.11. T-Test For Sterile Plants 

 

Group 1 vs. Group 2 

T-test for Independent Samples (Sterile) 

Note: Variables were treated as independent samples 

Mean 

Group 1 

 

Mean 

Group 2 

 

t-value 

 

df 

 

p 

 

F-ratio 

Variances 

 

p 

Variances 

 

0.3 M vs. 0.3 M 

 

0.012195 0.012195 0.00000 162 1.000000 1.0000 1.000000 

0.3 M vs. 0.7 M 

 

0.012195 0.111111 -1.32516 224 0.186469 36.8267 0.000000 

0.3 M vs. CMC 

 

0.012195 1.030120 -2.63839 246 0.008862 998.3373 0.000000 

0.7 M vs. 0.7 M 

 

0.111111 0.111111 0.00000 286 1.000000 1.0000 1.000000 

0.7 M vs. CMC 

 

0.111111 1.030120 -3.11059 308 0.002042 27.1090 0.000000 

CMC vs. CMC 

 

1.030120 1.030120 0.00000 330 1.000000 1.0000 1.000000 
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4.4. Albinism 

As mentioned above, callus formation has a direct impact on the formation of green plant 

regeneration as well as the regeneration of albinos. Albinism in barley through anther culture 

is very common (Kumari et al., 2009) and further research has to be done to determine how 

to lower the percentage of albinos generated, or completely eradicate it.  

The percentage of green plants obtained versus that of the albinos regenerated per treatment 

is displayed by Figure 4.11. In all pre-treatments used, there was a higher percentage of 

albino plantlets regenerated than green plants (0.3 M Man: 57.1% Alb & 42.9% GP; 0.7 M 

Man: 59.8% Alb & 40.2% GP; CMC: 61.6% Alb & 38.4% GP). The results suggest that the 

albino regeneration frequency is higher than green plant regeneration frequency for all the 

pre-treatment tested. However, it also suggests that 0.3 M Mannitol has the lowest albino 

regeneration frequency. The pre-treatment, 0.3 M Mannitol is the optimal a pre-treatment for 

a low albino regeneration frequency. 

As mentioned before there are different environmental factors that influences albino 

regeneration frequency. Acquaah (2007) suggested that the regeneration frequency of albino 

plants can be reduced if there is a higher concentration of nitrogen present in the donor 

material. Thus, it would be advised to study the effects of different fertilizer components on 

the production of plants through anther culture. If the fertilizer components have an effect on 

albino and green plant regeneration frequency it would be an easy solution to implement in 

breeding programs to reduce albinism.  

Acquaah (2007) also stated that colder temperatures will reduce green plant regeneration; 

however it was unclear whether the author meant that colder temperatures were to be 

introduced during the growth period of the donor plant material or during pre-treatment of the 

anthers.  
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Figure 4.11. Green Plants VS Albinos Regenerated 

 

Table 4.12. Comparison Of Albino Plants Regenerated Per Treatment 

 

Variable 

Albinos per Treatment 

Valid N 

 

Mean 

 

Std.Dev. 

 

0.3 M 

 

82 0.195122 1.65879 

0.7 M 

 

144 1.583333 7.03786 

CMC 

 

166 4.915663 11.87481 
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Table 4.13. T-Test For Albinos Regenerated 

 

Group 1 vs. Group 2 

T-test for Independent Samples (Albino) 

Note: Variables were treated as independent samples 

Mean 

Group 1 

 

Mean 

Group 2 

 

t-value 

 

df 

 

p 

 

F-ratio 

Variances 

 

p 

Variances 

 

0.3 M vs. 0.3 M 

 

0.195122 0.195122 0.00000 162 1.000000 1.00000 1.000000 

0.3 M vs. 0.7 M 

 

0.195122 1.583333 -1.75702 224 0.080280 18.00110 0.000000 

0.3 M vs. CMC 

 

0.195122 4.915663 -3.57895 246 0.000415 51.24728 0.000000 

0.7 M vs. 0.3 M 

 

1.583333 0.195122 1.75702 224 0.080280 18.00110 0.000000 

0.7 M vs. 0.7 M 

 

1.583333 1.583333 0.00000 286 1.000000 1.00000 1.000000 

0.7 M vs. CMC 

 

1.583333 4.915663 -2.94781 308 0.003445 2.84690 0.000000 

CMC vs. 0.3 M 

 

4.915663 0.195122 3.57895 246 0.000415 51.24728 0.000000 

CMC vs. 0.7 M 

 

4.915663 1.583333 2.94781 308 0.003445 2.84690 0.000000 

CMC vs. CMC 

 

4.915663 4.915663 0.00000 330 1.000000 1.00000 1.000000 

 

Table 4.14 compares the amount of albinos and green plants regenerated per anther and per 

plate/spike per genotype and per pre-treatment. On average Pre-treatment C produced a 

higher amount of albinos and green plants compared to Pre-treatment A and B, this however 

is expected due to the higher number of calli formed per treatment as shown in Table 4.14. 
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What is most important to note here is that the average number of albinos regenerated is 

almost double that of the green plants generated across the pre-treatments used which concur 

with previous research. 

A total number of 22126 calli have developed across the different varieties and all the pre-

treatments used. From the 22126 calli, 1070 albinos and 522 green plants were developed. 

The number of albinos regenerated was almost double the amount of green plants 

regenerated. Thus there’s an average of a 2:1 ratio in the albino: green plant regeneration 

capacity throughout the different varieties. Green plants have the potential of developing into 

a doubled haploid, or alternatively a haploid. It is well known that barley has a 70% 

chromosome doubling capacity, meaning that 70% of the green plants regenerated from 

embryos have the potential of becoming a doubled haploid plant. With the 2:1 ratio 

mentioned above, in theory it would also mean that there would be twice as many albino 

plantlets generated than doubled haploids, and in some instances the number would be even 

greater.  

Very limited literature is available on effective reduction of albinism in anther culture. There 

is a unanimous concern about the general high volumes of albino plantlet regeneration in 

anther culture as well as microspore culture. Further research needs to be performed to reduce 

the number of albinos regenerated through anther culture.  
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Table 4.14: Comparison Of Albino And Green Plant Regeneration Per Pre-Treatment. 

 Genotype  Pre-treatment 

Albino per 

anther 

Albino per 

plate 

Green plant per 

anther 

Green plant 

per plate 

CM 01 

0.3 M Mannitol 0.0 0.0 0.0 0.0 

0.7 M Mannitol 1.4 8.3 0.4 2.3 

CMC 5.8 19.3 1.7 5.6 

CM 02  

0.3 M Mannitol 0.0 0.0 0.0 0.0 

0.7 M Mannitol 0.5 2.0 1.6 7.0 

CMC 4.2 17.8 5.0 21.5 

CM 03 

0.3 M Mannitol 0.3 15.0 0.2 12.0 

0.7 M Mannitol 1.2 6.4 0.4 2.4 

CMC 2.5 9.9 1.6 6.2 

CM 04 

0.3 M Mannitol 0.0 0.0 0.0 0.0 

0.7 M Mannitol 0.7 5.0 0.1 0.5 

CMC 1.3 15.8 0.2 2.6 

CM 05 

0.3 M Mannitol 0.0 1.0 0.0 0.0 

0.7 M Mannitol 0.1 3.5 0.0 0.5 

CMC 0.0 0.5 0.1 3.5 

Mean 

0.3 M Mannitol 0.1 3.2 0.0 2.4 

0.7 M Mannitol 0.8 5.0 0.5 2.5 

CMC 2.8 12.7 1.7 7.9 
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CHAPTER 5 

CONCLUSION 

 

The aim of the study was to determine the optimal pre-treatment method for green plant 

production through barley anther culture. The results showed that anthers treated with CMC 

had a higher response percentage than anthers treated with 0.3 M Mannitol. The results show 

that the cold treatment with a moist cloth (CMC) induced a higher embryo formation 

frequency per 100 anthers than mannitol starvation combined with temperature. However, 

when comparing the two mannitol variations it is shown that the mannitol pre-treatment with 

a higher molarity (0.7 M Mannitol) shows a higher embryo formation frequency per 100 

anthers than that of 0.3 M Mannitol. These findings are consistent to that of Cistué, Ramos 

and Catillo’s findings in 1999, where the authors stated that 0.7 M Mannitol pre-treatment 

induced higher callus and green plant formation than that of 0.3 M Mannitol.  

The results for green plant regeneration capacity after callus formation obtained in this study 

conclude that CMC will produce higher green plants per spike than the 0.3 M Mannitol pre-

treatment. However, 0.3 M Mannitol produced a higher percentage green plant yield  (50%) 

from the total number of calli formed. This suggests that if the total number of calli formed 

from the anthers treated with 0.3 M Mannitol were higher, then 0.3 M Mannitol could be 

considered to be a superior treatment than CMC. 

It was also seen that the success of barley anther culture is highly genotype dependent. The 

pre-treatment CMC performed well across all genotypes used as donor material where 0.3 M 

Mannitol and 0.7 M Mannitol did not induce calli formation in all of the genotypes used. 
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This leads us to conclude that the success of green plant regeneration through anther culture 

is dependent on two things. The first is the genotype of the donor plant, as recalcitrant donor 

plants will not give the desired outcome. The second is the pre-treatment used to induce 

callus formation. CMC showed to be the most effective pre-treatment option on a broad 

spectrum of genotypes. However, further research needs to be conducted, because the results 

are inconclusive. The results obtained from this study conflicts with results obtained from 

other researchers such as Kasha et al. (2003 b) and Jähne and Lörz (1995) that stated that 0.3 

M Mannitol pre-treatment is the optimal pre-treatment to use for doubled haploid production 

in barley. 

The use of anther culture for doubled haploid production, even though it is labour intensive, 

has its use for barley breeding institutions. However, there is a need to optimise the pre-

treatment methods to improve the doubled haploid success rate percentage and decrease the 

number of sterile plants as well as albinos regenerated during the process. 
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Addendum A 

 List of Materials And Suppliers  

Item Suppliers 

6-Benzylaminopurine solution Sigma-Aldrich 

Ammonium nitrate Merck 

Bacteriologic agar Merck 

Boric acid Merck 

Calcium chloride Merck 

Cloth, wipe Spar supermarket 

Copper (II) sulphate pentahydrate Merck 

D-Maltose Sigma-Aldrich 

d-Mannitol Merck 

Ethylenedinitrilotetraacetic acid iron sodium salt Merck 

Glacial acetic acid 100% Merck 

Indigo carmine solution (C.I. 73015) Merck 

Kelp (Effekto Wondersol) Overberg Agri 

Magnesium sulphate heptahydrate Merck 

Manganese (II) sulphate monohydrate Merck 

Myo-Inositol Sigma-Aldrich 

Nitrocellulose filter membrane Sigma-Aldrich 

Orion plus Yara 

Phytagel Sigma-Aldrich 

Polaris Yara 

Potassium di-hydrogen phosphate Merck 

Potassium hydroxide Sigma-Aldrich 

Potassium iodide Merck 

Potassium nitrate Merck 

Sodium hypochlorite Spar supermarket 

Sodium molybdate dehydrate Merck 

Sugar Spar supermarket 

Thiamine hydrochloride Merck 

Trelmix (Kompel trace element mix 200) Overberg Agri 

Zinc sulphate heptahydrate Merck 

α-naphthaleneacetic acid solution Sigma-Aldrich 
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