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Abstract 

Indinavir is a potent and well tolerated protease inhibitor drug used as a component of the 

highly active antiretroviral therapy (HAART) of HIV/AIDS, which results in 

pharmacokinetics that may be favourable or adverse. These drugs work by maintaining a 

plasma concentration that is sufficient to inhibit viral replication and thereby suppressing a 

patient’s viral load. A number of antiretroviral drugs, including indinavir, undergo 

metabolism that is catalysed by cytochrome P450-3A4 enzyme found in the human liver 

microsomes. The rate of drug metabolism influences a patient’s response to treatment as well 

as drug interactions that may lead to life-threatening toxic conditions, such as haemolytic 

anaemia, kidney failure and liver problems. Therapeutic drug monitoring (TDM) during 

HIV/AIDS treatment has been suggested to have a potential to reduce drug toxicity and 

optimise individual therapy. A fast and reliable detection technique, such as biosensing, is 

therefore necessary for the determination of a patient’s metabolic profile for indinavir and for 

appropriate dosing of the drugs. In this study biosensors developed for the determination of 

ARV drugs comprised of cysteamine self-assembled on a gold electrode, on which was 

attached 3-mercaptopropionic acid-capped palladium telluride (3-MPA-PdTe) or thioglycolic 

acid-capped palladium telluride (TGA-PdTe) quantum dots that are cross-linked to 

cytochrome P450-3A4 (CYP3A4) in the presence of 1-ethyl-3(3-dimethylaminopropyl) 

carbodiimide hydrochloride and N-hydroxysuccinimide. The quantum dots were synthesized 

in the presence of capping agents (3-MPA or TGA) to improve their stability, solubility and 

biocompatibility. The capping of PdTe quantum dots with TGA or 3-MPA was confirmed by 

FTIR, where the SH group absorption band disappeared from the spectra of 3-MPA-PdTe and 

TGA-PdTe. The particle size of the quantum dots (< 5 nm) was estimated from high 

resolution transmission electron microscopy (HRTEM) measurements. Optical properties of 

the materials were confirmed by UV-Vis spectrophotometry which produced absorption 
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bands at ~320 nm that corresponded to energy band gap values of 3 eV (3.87 eV) for TGA-

PdTe (3-MPA-PdTe) quantum dots. The electrocatalytic properties of the quantum dots 

biosensor systems were studied by cyclic voltammetry (CV) for which the characteristic 

reduction peak at 0.75 V was used to detect the response of the biosensor to indinavir. Results 

for indinavir biosensor constructed with 3-MPA-SnSe quantum dots are also reported in this 

thesis. The three biosensors systems were very sensitive towards indinavir; and gave low 

limits of detection (LOD) values of 3.22, 4.3 and 6.2 ng/mL for 3-MPA-SnSe, 3-MPA-PdTe 

and TGA-PdTe quantum dots biosensors, respectively. The LOD values are within the 

‘maximum plasma concentration’ (Cmax) value of indinavir (5 - 15 ng/mL) normally observed 

8 h after drug intake. 
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1.0 Summary 

This chapter describes the aspects involved in the study namely; quantum dots, sensors, the 

cytochrome P450-3A4, linking agents such as L-cysteine, human immunodeficiency virus 

(HIV) infection, antiretroviral (ARV) drugs in general and model drug used in the study 

(indinavir drug) which belongs to a class called protease inhibitors. The main focus in this 

chapter is the relationship between these aspects and their contribution towards a useful and 

successful study. The chapter also included the problem statement and motivation, aim and 

objectives of the study as well as thesis outline. 

 

1.1 Background 

Human immunodeficiency virus (HIV) belongs to the class called retrovirus, which carries 

genetic information in the form of RNA. The virus destroy a type of defense cells in the body 

called a CD4 helper lymphocyte (Host cells), which plays an important role in controlling 

HIV replication (Norris and Rosenberg, 2002; Zhong and Yeh, 1999). Thus when a virus is 

attached to the CD4 cells it causes damage in the process leading to fewer functioning CD4 

cells and weakening the ability of different cells within the immune system that join forces 

together and fight off future infections. Therefore an infected patient becomes more 

susceptible to contract opportunistic infections which can be caused by whole host of 

microorganisms leading to a development of symptoms when there is no immune system for 

prevention (Weiss, 2008). There are significant impacts which the disease have on society 

based on cultural, social and economic effect to a country with large number of victims. 

According to World Health Organisation (WHO), there are an estimated number of more than 
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33.3 million people infected with HIV worldwide and nearly virus resulted in deaths of more 

than 25 million people in the past three decade (Michaud et al, 2012). 

The most critical component of replicative cycle is HIV-1 protease enzyme which is 

responsible for the generation of mature, functional viral enzymes and structural proteins 

through cleavage of viral Gag and Gag-Pol precursor polyproteins (Wensing et al., 2010; 

Kohl et al, 1988). An investigation on HIV protease structure and its substrate has led into a 

development of antiretroviral (ARV) drugs in a goal of deducing and maintaining maximum 

suppression of HIV replication and foster maximum CD4
+
 cell counts to improve the quality 

of life for people who have HIV infection (Lin, 1997). The earliest drugs developed to fight 

against HIV/AIDS were nucleosides which comprises of the following drugs: zidovudine or 

didanosine and stavudine but their therapy is limited by high toxicity levels and a rapid 

development of viral resistance (Moyle, 1995; Tomasselli and Heinrikson, 2000). Thus there 

was an urgent need for development of new class of ARV drugs that can inhibit the viral 

replication by delaying emergence of viral resistance and less toxic. These new developed 

drugs are called protease inhibitors, which were designed to mimic the transition state of 

peptide substrate and compete with them for binding the active site of the protease enzyme 

i.e.an enzyme that breaks a long chainlike molecule of proteins into shorter fragments (Foisy 

and Sommadossi, 1999). An important role played by these ARV drugs in HIV replication 

cycle is the inhibition of active site of viral enzyme to prevent the breaking by forming non-

infectious viral particles (Clavel and Hance, 2004) and they are used as a component of 

highly active antiretroviral therapy (HAART) which results in dramatic reduction changes in 

the viral load and increase the amount of CD4 count. Several other studies linking the decline 

of morbidity and mortality to (HAART) have been reported (Wlodawer and Vondrasek, 

1998) and current literature suggests that these drugs are metabolised by CYP3A4 isoform 

and being abundant forms in the liver responsible for formation of metabolites that can be 
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excreted in urine (Chiba, 1997; Zuber et al., 2002). Hence all its substrates may be able to 

compete and leads to risk of drug interactions (Dresser et al., 2000). The following figure 

shows the structure of HIV protease enzyme and protease inhibitor, Indinavir complex. 

 

Figure 1: Schematic representation of HIV protease enzyme and protease inhibitor 

(indinavir complex). 

 

1.2 Problem statement and motivation. 

Protease inhibitors have played a major role in decreasing the mortality and morbidity among 

people with HIV infection (Arts and Hazuda, 2012), however it has been shown that the 

variability in drug metabolism have substantial effect on clinical outcomes in patients due to 

impact of inter-individual responsiveness to same dose of given drug (Pokorna et al., 2009.; 

Michaud et al,2012), such effects may be caused by poor adherence, virological resistance 

and pharmacological issues (Ford et al.,2004; Cressy and Lallemant, 2007; de Requena et al., 

Indinavir complex 

HIV protease enzyme 
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2003). According to Cancer Information Support Network (CISN) metabolism of drug is 

affected by numerous factors of environment and genetic origin i.e. slow metabolizers and 

normal metabolizers. Slow metabolizer individuals tend to accumulate substantially higher 

drug concentration which increase the risk for drug related adverse events (life threatening 

toxicity such as vomiting and kidney stones) such patients may require smaller dose while 

normal metabolizers breaks down drug too quickly and require high dose. The effect of such 

factors complicates the life of diagnosed patients and need a therapy to monitor them. There 

have been several reports in relation with protease inhibitor exposure, their activity and 

toxicity in combination with wide inter-individual variability in pharmacokinetics which 

resulted in growing interest in therapeutic drug monitoring (TDM) of antiretroviral drugs as a 

tool in management of HIV infected people (van Heeswijk et al., 2002). The process of drug 

monitoring can be done by optimization of antiretroviral therapy potent to reduce toxicity and 

adequate viral suppression. Several relative simple techniques which can be used in hospital 

for measurements of protease inhibitors have been described (Frappier et al., 1998; Sarasa-

Nacenta et al., 2001). Such techniques includes highly performance liquid chromatography 

with ultra-violet detection (HPLC) and also Liquid chromatography or mass spectrometry 

(LC/MS) but the problem with these techniques is the requirement of large volume of 

samples, expensive application and maintenance and not giving results in real time. Several 

works has been reported on assays for determination of concentration of HIV protease 

inhibitor, indinavir in serum/plasma (Burger, et al., 1997). Current literature suggested that 

an assay by (Marzolini et al.,2000) can measure protease inhibitors and non-nucleoside 

reverse transcriptase that may not be sensitive enough for quantification of trough 

concentration in patients on a single protease inhibitor containing regimes, the problem has 

led into development of a device that will be fast, portable, cheap, easy to monitor and use 

small volume of analyte in order to address the issues of patients falling ill as a result of 
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inappropriate dosing and treatment. The device can be achieved by placing a sensor material 

with nanomaterial for fast responses in electrochemical biosensors. In our study a 

combination of CYP3A4 and electron mediator (quantum dots) has been used for 

electrochemical study and modelling of ARV drug metabolism therefore the status of 

metabolism of ARV drugs in patients would be evaluated by the use of biosensor consisting 

of cysteamine modified 3-MPA-PdTeQDs and TGA-PdTeQDs and samples of plasma and 

urine. 

 

1.3 Aims and objectives 

The aim of this study was to develop quantum dot modified biosensors for determination of 

indinavir drug. The biosensors developed on gold electrode using capped palladium telluride 

quantum dots, capped tin selenide quantum dots, L-cysteine or cysteamine and CYP3A4 

enzyme. Fabrication of CYP3A4 biosensor: 3-MPA-SnSeQDs/L-cyst/Au biosensor system for 

indinavir involved: 

I. Immobilisation of a gold electrode with L-cysteine, the binding formed a self-

assembled monolayers modified electrode (L-cyst/Au SAMs) by taking advantage 

of strong sulphur-gold interaction. 

II. The synthesis of aqueous route SnSe capped with 3-mercaptopropionic acid and 

immobilisation of 3-MPA-SnSeQDs onto self-assembled monolayer of L-cyst/Au 

for 2 h, which then reacted chemically with free amino group from the L-cysteine 

in the presence of cross-linking agents (EDC/NHS) via formation of a strong ester 

amide bond. 

III. Characterisation of 3-MPA-SnSeQDs/L-cyst/Au using CV, UV and SEM 
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IV. The construction of biosensor by binding the amino groups of enzyme CYP3A4 

with 3-MPA-SnSeQDs/L-cyst/Au quantum dots (carboxylic acid) to form 

biocompatible surfaces. 

V. Testing of CYP3A4/3-MPA-SnSeQDs/L-cyst/Au biosensor in the presence and 

absence of indinavir using CV, UV and SEM respectively. 

 

The following scheme representations the development of CYP3A4/3-MPA-SnSeQDs/L-

cyst/Au biosensor. 
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Figure 2.1: Schematic representations for development of CYP3A4/3-MPA-SnSeQDs/L-

cyst/Au biosensor  

 SnSe 
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Fabrication of CYP3A4 biosensor: TGA-PdTeQDs/Cyst/Au biosensor system for indinavir 

involved: 

I. Surface modification of gold electrode with cysteamine, resulting in the 

formation of self-assembled monolayer (SAM) on a gold electrode by 

taking advantage of strong sulphur-gold interaction. 

II. Further modification of cysteamine modified geld electrode with 3-

mercaptopropionic acid capped PdTe or thioglycolic acid capped PdTe 

quantum dots in the presence of carbodiimide and succinimide cross 

linking agents. 

III. Incorporation of CYP3A4 onto cysteamine and 3-mercaptopropionic acid 

or thioglycolic acid capped PdTe quantum dots modified gold electrode 

resulting in CYP3A4/TGA-PdTeQDs/Cyst/Au biosensor 

IV. Testing of CYP3A4/TGA-PdTeQDs/Cyst/Au biosensor in the presence 

and absence of indinavir using CV, UV and SEM respectively. 
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Figure 2.2: Schematic representations for the development of CYP3A4/TGA-

PdTeQDs/Cyst/Au 
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1.4 Thesis lay-out  

This thesis is presented in seven chapters 

Chapter 1: Gives brief background information on the project, problem statement and 

motivation as well as aims and objectives. 

Chapter 2: Provides a detailed literature review 

Chapter 3: Consists of reagents, procedures and instrumentations used for the success of this 

study. 

Chapter 4: Illustrates morphological, spectroscopic, electrochemical results obtained from 

L-cyst, nanomaterial (3-MPA-SnSeQDs) and developed biosensor CYP3A4/3-MPA-

SnSeQDs/L-cyst/Au  

Chapter 5: Provides spectroscopic, morphological and electrochemical results obtained from 

linker, Cyst: nanomaterial, TGA-PdTeQDs and developed biosensor and detection. 

Chapter 6: Provides spectroscopic, morphological and electrochemical results obtained from 

linker, Cyst: nanomaterial, 3-MPA-PdTeQDs and developed biosensor and detection. 

Chapter 7: Represents conclusion and recommendations 
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Chapter two 
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Literature review 

 

2.0 Summary 

This chapter covers the role of self-assembled monolayers and their applications in the field 

of sensors. Also this chapter gives an introduction of quantum dots detailing their 

composition and properties. Types of quantum dots, their functionalization and 

immobilization process applied in field of sensors are also described in this chapter. The 

family of enzyme (Cytochrome P450) and its isoform used for successful study (CYP3A4), 

electrode immobilization and brief description of indinavir drug and pharmacokinetic use. 

 

2.1 Indinavir drug 

 

Figure 3: Indinavir drug 
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Indinavir drug is a protease inhibitor manufactured by Merck in 1996, where the strategy 

began on transition-state mimetic concept (Rich et al., 1991). Amongst any other drug, 

indinavir blocks the activity of the protease enzyme, which HIV uses to break up large 

polyproteins into the smaller pieces required for assembly of new viral particles. In 

pharmacokinetic, the drug is 60% protein bound in circulation and has been investigated by 

(Steigbigel et al, 1996; Lewis II and Terriff, 1997) by using high dose of indinavir 

monotherapy for comparing the amount of increase in CD4 lymphocyte with respect to 

decrease in viral load. This investigation has led into pharmacokinetic studies which 

indicated that indinavir drug is well absorbed in healthy volunteers and patients with AIDS, 

after a single dose of 800 mg indinavir drug in fasted state where the Cmax, Tmax and AUC 

values were 10.9 µM, 12 h and 21 µM.h respectively (Lin, 1997) but showed a decrease in 

Cmax and AUC values when administered with meal high in calories fat and protein. These 

studies have been compared with combined drug administration i.e. indinavir drug (800 mg) 

with non-nucleoside reverse transcriptase (NNRTs) stavudine (40 mg) which resulted in a 

change in both indinavir AUC and stavudine AUC as compared to sole administration. 

 

2.2 Self-assembled monolayers (SAMs) 

A scientific discovery on alkanethiols performed on noble metal was done in 1980’s; such 

noble metals including gold have largely been employed in different methodologies and 

techniques for investigation of molecule, catalyst and electron transfer (Caevalhal, 2004). The 

methodologies involves the modification of electrodes via functionalization of thiol group 

which has been attractive and of prime importance in sensor technology since their 

adsorption onto gold surface can result in formation of well-organised self-assembled 

monolayers (Wirde and Gelius, 1999; Mozaffari and Shervedani, 2005; Brett et al., 2003) and 
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offers a starting place in the construction of electron transfer models (Campuzano et al., 

2006; Weng and Du, 2002). Alkanethiols such as cysteamine and L-cysteine have been 

broadly applied as linker molecules to immobilize functional organic, inorganic materials as 

well as proteins (Zhang et al., 2005) and have played a crucial role in biosensor fabrication 

and promoter in bioelectrochemistry (Karlsson et al., 1997). An investigation on application 

of self-assembled monolayers for the design of modified electrodes and biosensors was 

reviewed by Mandler. In this work cysteamine and L-cysteine have been used to form self-

assembled thiol layer on gold electrode surface for promotion of electron transfer. 

 

2.3 Quantum dots 

Quantum dot term was operated by Mark Reed at Texas Instrument and known as 

semiconductors ranging from 2-10 nm, due to their small sizes they display unique optical 

and electrical properties that differ in character to those corresponding to bulk materials 

(Khatei et al., 2011). Quantum dots were discovered and prepared at the beginning of 1980s 

by Alexei Ekimov in a glass (Bawendi et al., 1990) and by Louis E. Brus, 1984 in colloidal 

solutions. The effect of their small size causes energy levels of different bands to be 

quantized in relation to the size of the dot (Michalet et al., 2005). As the size of quantum dots 

becomes smaller, the energy bag gap becomes larger which results in more energy needed to 

excite electrons from valence band to conduction band or the band gap becomes blue shifted 

(Hambrock et al., 2001). They have wide range of applications in diverse fields ranging from 

drug delivery (Vicent et al., 2006), biosensing ( Chan and Nei, 1998), materials for solar cells 

and photovoltaics (Hunch et al., 2003) and in light emitting diodes (Coe et al., 2002). 
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2.3.1 Types of quantum dots 

2.3.1.1 Tin selenide quantum dots 

Tin selenide quantum dot belongs to (IV-VI) in periodic table. These (IV-VI) chalcogens 

present electronic and transport properties such as high dielectric constants, narrow band gaps 

and high carrier mobilities (Nimtiz et al., 1983). Fabrication of IV-VI semiconductors for 

solid state device began in 1874 with Ferdinand Braun’s report on electrical rectification 

(McCann, 2006). At present, most attention is centred on IV-VI used primarily in 

optoelectronic devices designed for detection and emission of mild-infrared electrochemical 

radiation (Pearson and llegems, 1975), laser diodes and photovoltaic cells which are used in 

different applications such as industrial process monitoring, medical diagnostics and 

atmospheric pollution control. 

 

2.3.1.2 Palladium telluride quantum dots 

Platinum group metal chalcogenides are platinum group metal containing sulphur, selenium, 

tellurium and oxygen and have attracted attention in recent years due to catalysis and material 

science relevance (Dey and Vimal, 2004) which pose extensive applications in 

electrochemical industry in multilayer ceramic capacitor (MLCCs). Due to their 

semiconductor properties they are used in low-voltage and low-energy contacts, thick-and 

thin-film circuits, thermocouples and furnace components, and electrodes (Raybaud et al., 

1997). An investigation of modified sensors based on the chemical modification of electrode 

with immobilized nanoparticles of transition metal palladium was done by (Miao et al., 

2000). 
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Several synthetic methods have been reported since the first synthesis of monodispersed 

CdTe nanocrystal (Murray et al., 1993). The development of colloidal synthesis provides the 

ability to precisely tailor the structural characteristics (e.g., size, shape, composition of 

nanoparticles) thus this method is applicable for biological application of quantum dots to 

give rise to their solubility, stability, non-toxic to biomolecules, non-agglomerate and 

biocompatibility. Publication by (Ndangili et al., 2011), the author used zinc selenide 

quantum dots functionalized with 3-mercaptopropionic acid to give rise to water soluble and 

biocompatible nanocrystals. 

 

2.3.1.3 Surface capping agents 

Surface capping agents are used to functionalize quantum dots in colloidal synthesis to inhibit 

nanoparticle overgrowth, aggregation and control the structural characteristics of formed 

nanoparticles (Niu et al., 2013) and the choices of choosing a good capping agent depends on 

solvent type, size of quantum dot and its surface chemistry (Colvin et al., 1994). The process 

of capping is utilized to promote catalytic performance of nanoparticles and interactions such 

as hydrophobic, electrostatic or chemisorption which provides a strong binding of capping 

agent to nanoparticle surface. In this study 3-mercaptopropionic acid and thioglycolic acid 

have been used in the synthesis to bind quantum dots from thiol group (-SH) and free 

carboxylic group used for attachment of biomolecules (Xing and Rao, 2008). 

e- 
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Figure 4: Schematic representation of thioglycolic acid capped PdTe quantum dots 

 

2.3.1.4 Immobilization of quantum dots on surfaces 

Quantum dots have been immobilized onto planar surfaces in the fabrication of photonic 

devices and design of various sensing platform (Gaponik et al., 2002). A famous method 

used involves covalent coupling between chemical groups present on the substrate and 

functional groups located at quantum dot surface. This method is achieved by using cross 

linking agents such as EDC which is used to couple carboxylic group to primary amines and 

have been used in wide applications such as forming amide bonds in peptide synthesis 

(Panchaud et al., 2008) and NHS, a water-soluble analog (Sulfo-NHS) often included in EDC 

coupling protocols to improve efficiency or create dry-stable (amine-reactive) intermediates 

(Sam et al., 2009). This approach involves the coupling of carboxylate functionalized 

quantum dots to terminal amine group resulting in a dense quantum dot film (Shavel et al., 

2005). 

PdTe 
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Figure 5: Immobilization of quantum dots on a substrate via covalent bonding 

 

2.4 Biosensors 

Biosensors are of interest within the field of modern analytical chemistry and pharmaceutics 

due to major demands and opportunities that appearing in clinical diagnostics, environmental 

analysis, food analysis and production monitoring (Ngoepe et al., 2013). Biosensors are 

devices that utilises biological components such as enzyme, antibody and nucleic acid to 

indicate the amount of material. The major part of biosensor is biological recognition system 

which translates information from the analyte concentration into a chemical or physical 

output signal with a defined sensitivity and its purpose is to provide the sensor with a high 

degree of selectivity for the analyte to be measured while the transducer part of the sensor 

serves to transfer the signal from the output domain of the recognition system, mostly to the 
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electrical domain because it provides bidirectional signal transfer (Thevenot et al., 2001). 

Concept of biosensor was introduced by Professor Leland C.Clark in 1962 whereby he 

described how to make electrochemical sensors more intelligent by adding enzyme 

transducer as membrane enclosed sandwich. 

Biosensors are divided into basic groups depending on their methods of signal transductions: 

these groups are optical, mass, electrochemical, magnetic, micromechanical and thermal 

sensors (Sethi, 1994). 

 

2.4.1 Enzyme based electrochemical biosensors 

Enzymes are proteins with high catalytic activity and selectivity towards substrates and have 

been used for decades to assay the concentration of diverse analytes. Their commercial 

availability at high purity levels makes them very attractive for mass production of enzyme 

sensors since they have unique properties (Corcuera and Cavelieri, 2003). Biosensors 

constituting enzymes employ a class of enzymes known as oxidoreductases since they are 

heavily involved in metabolism and catalyses reduction or oxidation reactions with direct 

electron transfer which makes them highly suitable for electrochemical sensors providing real 

time monitorization of the target biomolecules (Trojanowicz et al., 1995). Enzyme based 

electrochemical biosensors can be produced by immobilizing enzyme onto working electrode 

surface to take the advantage of redox recycling effect and faradaic currents generated by 

redox cycle is due to increased mass transport of redox active species of the enzyme thus 

enhancing sensitivity and improves the signal to noise ratio and detection limit of the 

biosensor (Chen et al., 1999; Mena et al., 2005). Electrochemical measurements of CYPs 

immobilized on bare electrode had been investigation by (Bistolas et al., 2005) and found that 

electron transfer between electrode and enzyme’s active site was poorly accomplished, 
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therefore mediators such as nanomaterials and conducting polymers were introduced to 

promote electron transfer to and from the enzyme to produce better signal (Sadik et al., 

2010). Since 1970’s attempts have concentrated on the construction and development of 

electrochemical sensors Publication by (Nxisani,2012), the author used 3-mercaptopropionic 

acid capped gallium selenide (3-MPA-Ga2Se3) quantum dots as a mediator incorporated with 

CYP3A4 enzyme to promote electron transfer to and from the enzyme. In this study 

thioglycolic acid capped palladium telluride quantum dots (TGA-PdTe), 3-mercapopropionic 

acid palladium telluride quantum dots (3-MPA-PdTe) and 3-mercaptopropionci acid capped 

tin selenide quantum dots (3-MPA-SnSe) have been used as mediators for the promotion of 

electron transfer in the system. 

 

2.5 Enzymes 

2.5.1 Cytochrome P450 

Cytochrome P450s were first discovered in 1955 in rat liver microsomes and characterized by 

an intense absorption band at 450 nm in the presence of carbon monoxide (Degtyarenko, 

1995) and being a large family of heme-enzymes used to catalyse diversity of chemicals and 

involved in metabolism of many drugs, xenobiotic which holds biactivation responsibility 

(Estabrook et al., 1996; Shumyantseva et al., 2005). CYPs and other mixed function 

monooxygenases are located on the smooth endoplasmic reticulum of cells throughout the 

body with the highest concentrations in the liver and intestines. This CYP family comprises 

of many isoforms such as (CYP1A1, 2C9, 2C19, 2D6) which are responsible for drug 

metabolism in the body (Williams et al., 2004; Schneider and Clark, 2013) with CYP3A4 

known as a major form of cytochrome P450 in the adult liver which metabolizes the greatest 

proportions of drugs thus its characteristics attracted the field of pharmacology and virology 

for study of newly developed drugs and their monitorisation (Gunaratna, 2000). Publication 
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by (Hendricks et al., 2009), the author used this type of enzyme in nanobiosensor fabrication 

for 2, 4-dichlorophenol. In this study CYP3A4 enzyme was used as a bio-component in 

developed electrochemical sensor for indinavir drug. 

 

Figure 6 below describes the binding of indinavir drug onto the active site of the enzyme 

followed by reduction of an electron and shift spin state from low spin to high spin. Mono- 

oxygen onto the active site may lead to another electron reduction and formation of by-

product 
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Figure 6: Schematic for electrocatalytic oxygenation reaction of indinavir-bound 

CYP3A4  
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Experimental 

 

3 1 Summary 

This chapter describes the procedures for the synthesis of 3-MPA-SnSeQDs, 3-MPA-

PdTeQDs and TGA-PdTeQDs using appropriate reagents and different routes. This chapter 

also includes the immobilization procedure used to attach the enzyme for the development of 

biosensor. Included here are the characterization procedures for the biosensors as well as 

other materials used towards the fabrication of the biosensors using various techniques; 

spectroscopic (UV, FTIR and PL), microscopic (HRSEM, HRTEM) and electrochemical 

(CV). 

 

3.2 Reagents 

Analytical reagent grade Tin chloride (98%), palladium chloride (99.9%) 3-

mercaptopropionic acid (MPA) (≥ 99%), thioglycolic acid (TGA) (≥ 99%), sodium hydroxide 

(≥ 99%), selenium powder (99.99%), sodium borohydrate (98%),hydrogen chloride (HCl) 

(37%), sodium dihydrogen phosphate monobasic anhydrous (H2NaPO4) (˃99%) , disodium 

hydrogen phosphate dibasic (HNa2PO4) (˃98%), sodium phosphate monobasic dehydrate 

(NaH2PO4.H2O), disodium hydrogen phosphate dibasic (Na2HPO4.H2O) 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) 

(98%), L-cysteine (≥ 98%), cysteamine (≥ 98%) and Cytochrome P450-3A4 (CYP3A4) 

human expressed in Saccharomyces cerevisiae were purchased from Sigma Aldrich. 

Indinavir drug (Crixivan) and engineered Cytochrome P450-3A4 enzyme, purified from a full 

length human CYP3A4 cDNA clone and over expressed in Escherichia coli cells were 

purchased from Merck while the Alumina micro polishing pads were obtained from Buehler, 
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LL, USA. 0.1 M phosphate buffer solution, pH 7.4 was prepared from disodium hydrogen 

phosphate dibasic and sodium dihydrogen phosphate monobasic using Milli Q water 

purification. The indinavir drug was used without any purification and dissolved in 0.1 M 

PBS pH 7.4 whereby the active ingredient was removed and undissolved components were 

removed using filtering through a Whatman polytetrafluoroethylene syringe filter (pore size 

0.3 µm). 

 

3.3 Instrumentation 

All electrochemical measurements were done using BAS100W integrated automated 

electrochemical work station from Bio Analytical Systems (BAS), Lafayette, USA and 

Princeton Applied Research Potentiostat model 273A. Ultraviolet-visible (UV-Vis) 

measurements were made using a Nicolet Evolution 100 UV-Visible spectrometer (Thermo 

Electron, UK) where the samples were placed in quartz cuvettes before analyses. All cyclic 

voltammograms were recorded with computer interfaced to BAS 100W and Princeton 273A 

electrochemical work station using a 10 mL electrochemical cell with three electrodes set up 

was used. The electrodes used in the study were (1) gold working electrode (A = 0.0201 cm
2
) 

from BAS, (2) platinum wire from Sigma Aldrich acted as counter electrode and (3) Ag/AgCl 

from BAS kept in (3 M NaCl) was the reference electrode and alumina micro polishing pads 

were obtained from Buehler, LL, USA and were used for polishing the gold electrode before 

modification. HRTEM images were taken using Tecnai G2 F20X-Twin MAT 200kV Field 

Emission Transmission Microscopy from FEI (Eindhoven, Netherlands).All FTIR spectra 

were recorded on spectrum 100 FTIR spectrometer (PerkinElmer, USA) in a region of 400 to 

4000 cm
-1

.
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3.3.1 Spectroscopic techniques 

3.3.1.1 UV-Vis spectroscopy 

Ultraviolet-visible spectroscopy (UV-Vis) is a technique used to study molecules and their 

electronic transitions, molar absorptivity (ε) which ranges from 0 to 10
5 

and transition with 

molar absorptivity less than 10
3
 (Chen,2013). The technique is used to confirm the identity of 

the substance through measured spectrum with reference spectrum (Tony, 1996) and for 

semiconductors this technique is used to offer convenient method to estimate optical band 

gaps due to electronic transitions between the valence band and conduction band. The 

transition metals arise from 3d and are quite broad and affected by ligands, solvents and 

charge transfer which occurs between the metal and ligand undergo jump from one orbital 

centred on ligand to an orbital centred on a metal. UV-Vis is a complementary technique to 

fluorescence since the transition of a molecule releases photons from excited state to ground 

state, and uses the absorption band (excitation) wavelength to detect emission of light from 

molecule. UV-Vis spectroscopy has limitations compared to other techniques because it 

shows only few broad absorbance bands and provides limited qualitative information and also 

pH, temperature may have an influence on changing the intensity and absorption maxima. 

In the study by (Priyam et al., 2005) , the author used cysteine-capped cadmium selenide 

quantum dots synthesised in aqueous solution which exhibited absorption bands at 320 nm 

and shifted to 380 nm at different refluxing time to monitor the growth of quantum dots. 

Similar results had been found in the study for 3-MPA-SnSeQDs, 3-MPA-PdTeQDs and 

TGA-PdTeQDs. 
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3.3.1.2 Fourier transforms infra-red spectroscopy (FTIR) 

Fourier transforms infra-red spectroscopy (FTIR) is a powerful tool that has strength to 

identify functional groups of molecules and (IR) portion of spectrum gives information 

regarding vibrational and rotational motion of atoms in molecules is widely used for 

qualitative analysis (Pegram, 2007). This technique allows molecules to excite to higher 

energy by absorbance of infrared radiation and the energy of absorbed IR radiation increases 

with amplitude of the vibrational motion of bonds in molecules (Griffiths et al., 2007). In this 

study FTIR had been used to study the presence of 3-mercaptopropionic acid, thioglycolic 

acid in the synthesized quantum dots. The study by (Khene et al., 2011) used TGA-CdTeQDs 

which exhibited C ═O stretch at 1542cm
-1

 due to carboxylic acid functional group of 

CdTeQDs and the absence of SH stretch from the CdTeQDs spectra which showed an 

interaction between the CdTeQDs and the TGA capping agent .Similar results were found in 

our study. 

 

3.3.2. Microscopic techniques 

3.3.2.1 High resolution scanning electron microscopy (HRSEM) 

High resolution scanning electron microscopy (HRSEM) is one of most powerful technique 

fort studying surface morphology of material (Joy, 2009). This technique has been developed 

for the observation of surface fine structures through the introduction of an electron beam 

deceleration method and HRSEM image has been used  to show not only the arrangement of  

mesopores but also fluctuations of the pore size  and shape without damage or contamination 

during cross-sectioning and the ability to filter collected signals and high-resolution low 

voltage backscatter imaging which allows observation of compositional differences as well as 
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precise location of nanoparticles within the individual pores. The study by (Poznyak et al., 

2005), indicates the use of HRSEM to determine surface morphology of TGA or 3-MPA 

capped CdTeQDs. The results obtained from study showed that the nanoparticles were 

spherical in shape and similar results were observed in our study. 

 

3.3.2.2 High resolution transmission electron microscopy (HRTEM) 

High resolution transmission microscopy is the technique that provides structural and 

distribution information at better than 0.2 nm, and the crystallographic information of particle 

of atom in materials (Smith, 1997). The technique uses phase contrast resulting from an 

interference of several beams and determines whether the particle that makes the specimen 

are dispersed or agglomerated. The technique is limited in high magnification imaging which 

requires high electron dose where by the specimen needs to be relatively insensitive (Howe et 

al., 2003). Quantum dots tend to agglomerate if no stabilizing agents are used to prevent this. 

In this study HRTEM was used to confirm the size and shape, distribution and morphology of 

synthesized quantum dots. In a study by (Hui, 2013), carboxylic-capped CdS quantum dots 

showed individual particle sizes of 2-5 nm. Similar results were observed in our study for 3-

MPA-PdTeQDs and TGA-PdTeQDs. 

 

3.3.3 Electrochemical techniques 

3.3.3.1 Cyclic voltammetry 

Cyclic voltammetry (CV) has become an important and widely used electroanalytical 

technique in many areas of chemistry. This technique is widely used for the study of redox 

processes, for understanding reaction intermediates, and for obtaining stability of reaction 

products (Mathson and Nicholas, 1938). It is also used in the measurement of kinetic rates 
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and constants, determination adsorption processes on surfaces electron transfer and reaction 

mechanisms (Bard and Faulkner, 1980). This technique is based on varying the applied 

potential (E) at a working electrode in both forward and reverse directions (at different scan 

rates) while monitoring the current (i). In many cases the applied potential is varied or the 

current is monitored over a period of time (t). Thus, all voltammetric techniques can be 

described as some function of , i, and t. They are considered active techniques (as opposed 

to passive techniques such as potentiometry) because the applied potential forces a change in 

the concentration of an electroactive species at the electrode surface by electrochemically 

reducing or oxidizing it. The limitation of this technique is based on substance which is only 

oxidizable or reducible in a range where the solvent and the electrode are electrochemically 

inert. The most important parameters in a cyclic voltammogram are the peak potentials (

papc  , ) and peak currents ( papc ii , ) of the cathodic and anodic peaks, respectively. If the 

electron transfer process is fast compared with other processes (such as diffusion), the 

reaction is said to be electrochemically reversible, and the peak separation is given by: 

 

p = papc   = 2.303 
nF

RT        (1) 

 

Thus, for a reversible redox reaction at 25 °C with n electrons p  should be nV0592.0 . 

The formal reduction potential (E
o
) for a reversible couple is given by: 

 


2

pcpa 
          (2) 

 

In a study by (Khene et al., 2011), the characterisation of TGA-CdTeQDs has been done to 

determine the electrochemical properties of CdTeQDs on a gold electrode surfaces whereby 
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two peaks located at -0.6 V and -0.9 V were attributed to reduction of Te
IV

 to Te
0
 and Te

0
 to 

Te
2-

 with one peak observed for CdTeQDs which was also observed in our study. 

 

3.4 Methodology 

3.4.1 Synthesis of selenide and telluride quantum dots 

3.4.1.1 Mercaptopropionic acid-capped tin selenide quantum dots (3-MPA-SnSeQDs) 

SnCl2.2H2O (0.06 g) and 3-mercaptopropionic acid (132.9 µL) were dissolved in 10 mL of 

deionised water in a three neck round bottomed flask, followed by adjustment of the pH to 12 

by the addition of 2 M NaOH solution and the colour changed to green. The mixture was 

stirred and bubbled with N2 gas for 30 min. Separately, another solution of NaHSe was 

prepared by mixing selenium powder 0.254 g and equamolar grams of NaBH4 in 10 mL 

deionised water. This solution was stirred continuously at room temperature for 30 min until 

the solution attained a dark yellow colour. Then 5 mL of the NaHSe solution was injected 

into the (SnCl2 and 3-MPA) solution and the colour changed to pale yellow. After that the 

reaction quenched immediately when placed in the freezer at 20 ºC. 

 

3.4.1.2 Thioglycolic acid- capped palladium telluride quantum dots (TGA-PdTeQDs) 

PdCl2 (0.332 g, 1.875 mmol) and thioglycolic acid (TGA) (392 µL, 5.625 mmol) were 

dissolved in 10 mL of deionised water in a three neck round bottomed flask, followed by 

adjustment of the pH to 11.8 by addition of 5 M NaOH solution. The mixture was stirred and 

bubbled with N2 gas for 30 min. In another container, a fresh solution of NaHTe was 

prepared by mixing tellurium powder (0.254 g, 1.25 mmol) and NaBH4 (0.151 g, 2.5 mmol) 

in 10 mL deionised water and heated to 80
0
C for 30 min until the solution attained a light 
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purple colour. The molar ratio of Pd
2+

/TGA/Te was 1.5:3:1. Thereafter, 5 mL of NaHTe 

solution was injected into the (PdCl2 and TGA) solution and a colour changed was observed 

from reddish to orange then greenish colour after some time. After injection, the solution was 

heated to 100 
º
C and the aliquots of the resultant product were collected at different time 

intervals in order to monitor the growth of TGA capped-PdTeQDs. 

 

3.4.1.3 Mercaptopropionic acid-capped palladium telluride quantum dots (3-MPA-

PdTeQDs) 

PdCl2 (0.332 g, 1.875 mmol) and 3-mercaptopropionic acid (3-MPA) (490 µL, 5.625 mmol) 

were dissolved in 10 mL of deionised water in a three neck round bottomed flask, followed 

by adjustment of the pH to 11.8 by addition of 5 M NaOH solution. The mixture was stirred 

and bubbled with N2 gas for 30 min. In a clean flask, a solution of NaHTe was prepared by 

mixing tellurium powder (0.319 g, 1.25 mmol) and NaBH4 (0.189 g, 2.5 mmol) in 10 mL 

deionised water and covered by aluminium foil at room temperature for 30 min until the 

solution attained a light purple colour. The molar ratio of Pd
2+

/TGA/Te was 1.5:3:1. Then 5 

mL of NaHTe solution was injected into the (PdCl2 and 3-MPA) solution and a colour 

changed was observed from reddish to dark orange after some time. After injection, the 

solution was heated to 100 
º
C and the aliquots of resultant product were collected at different 

time intervals in order to monitor the growth of 3-MPA capped-PdTeQDs. 
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3.4.2 Fabrication of CYP 3A4 biosensors 

3.4.2.1 Fabrication of CYP3A4 biosensor: 3-MPA-SnSeQDs/L-cyst/Au biosensor system 

for indinavir  

In the fabrication process of biosensor, a gold electrode was first polished with 1 µm, 5 min, 

0.3 µm, 10 min and 0.05 µm, 20 min alumina slurries in glassy polishing pads respectively, 

followed by ultrasonication in absolute ethanol and distilled water for 5 min each. The clean 

Au electrode was then immersed in a solution containing 0.02 M L-cysteine solution at room 

temperature for 24 h and kept in the dark in order to form a well characterised, self-

assembled monolayer on metal electrodes (Au). This was used as a strategy to immobilise 

and organise biomolecules at the interface and also give stability and provide electron 

transfer (Goncolves et al., 2007). After that the L-cyst/Au modified electrode was rinsed 

carefully with distilled water to remove unbound L-cysteine molecules. The L-cyst/Au 

modified electrode was then activated by dipping into a solution containing 1:1 of 

(EDC/NHS) for 30 min followed by drop coating of SnSe nanocrystals functionalized with 3-

mercaptopropionic acid solution for 2 h to form 3-MPA-SnSeQDs/L-cyst/Au modified gold 

electrode. A volume of 3 µL of a 4 µM CYP3A4 enzyme solution was then drop coated onto 

3-MPA-SnSeQDs/L-cyst/Au modified electrode surface and allowed to dry for 3 h at -4 ºC. 

The resulting electrode was rinsed gently with distilled water to remove any physical 

adsorbed enzyme. This fabrication process resulted into CYP3A4/3-MPA-SnSeQDs/L-

cyst/Au (biosensor) and was kept at -4 ºC in 0.1 M PBS when not in use. 
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3.4.2.2a Fabrication of CYP3A4 biosensor: TGA-PdTeQDs/Cyst/Au biosensor system for 

indinavir  

The developed biosensor used cysteamine as a linking material whereby a monolayer was 

formed on gold electrode surface due to gold-sulphur interaction. The Cyst/Au modified 

electrode was then activated by dipping into a solution containing 1:1 of (EDC/NHS) for 30 

min followed by drop coating of PdTe nanocrystals functionalized with thioglycolic acid 

solution for 2 h to form TGA-PdTeQDs/Cyst/Au modified electrode. A volume of 3 µL of 

concentrated CYP3A4 enzyme solution was then drop coated onto TGA-PdTeQDs/Cyst/Au 

modified gold electrode surface and allowed to dry for 3 h at -4 ºC. The resulting electrode 

was rinsed gently with distilled water to remove any physical adsorbed enzyme. This 

fabrication process resulted into CYP3A4/TGA-PdTeQDs/Cyst/Au (biosensor) and was kept 

at -4 ºC in 0.1 M PBS when not in use. 

 

3.4.2.2b Fabrication of CYP3A4 biosensor: 3-MPA-PdTeQDs/Cyst/Au biosensor system  

The biosensor fabrication process was similar to the description given in Section 3.4.2.2a 

except that a different capping agent (3-mercaptopropionic acid) was used. The resultant 

biosensor system, CYP3A4/3-MPA-PdTeQDs/Cyst/Au, was kept at -4 ºC in 0.1 M PBS 

when not in use. 

 

3.4.2.3 Preparation of indinavir stock solution 

A capsule of indinavir drug was placed in a 25 mL volumetric flask which was filled up to 

the mark with 0.1 M sodium phosphate buffer solution, pH 7.4. Un-dissolved components 

were removed by filtering the formed suspension through a Whatman polytetrafluoroethylene 
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syringe filter (pore size 0.3 µm) into a clean storage bottle and the concentration of prepared 

indinavir was found to be 28.08 µM. The solution was used as stock indinavir solution from 

which all the other working solutions were prepared using appropriate dilutions with 0.1 M 

sodium phosphate buffer. 
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Chapter four 
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Results and discussion 

4.0 Summary 

 

This chapter deals with characterisation of the L-cysteine, 3-MPA-SnSeQDs and CYP3A4 

used as a proof of concept for the development of the biosensor of interest. Their properties 

were investigated using techniques such as CV, SEM and UV-vis. 

 

4.1 Characterisation of 3-MPA-SnSe quantum dots 

4.1.1 UV-Vis spectrophotometry of 3-MPA-SnSeQDs 

The UV-Vis absorption spectrum of the 3-MPA-SnSe is shown in Fig 7 Herein the optical 

properties of the quantum dots are exhibited by a weak broad absorption band at 350 nm 

associated with energy band gap of 3.5 eV value (Menade et al., 2013). The broad absorption 

peak indicates inhomogeneity of the particle size distribution be due to interferences from 

carrier matrix, i.e. different reagents used during the synthesis.  
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Figure 7: UV-Vis spectra of 3-MPA-SnSe quantum dots 

 

4.2 Electrochemical characterisation of 3-MPA-SnSeQDs and L-cysteine 

4.2.1 Electrochemistry of Au/3-MPA-SnSe quantum dots 

Figure 8 depicts cyclic voltammograms of bare Au electrode and 3-MPA-SnSe quantum dots 

immobilized onto the Au electrode in 0.1 M PBS solution. For the bare electrode, three 

reduction peaks where observed attributed to gold oxide pc  = (400 mV, -200 mV and -500 

mV) and one oxidation peak attributed to the formation of gold oxide pa  = (1100 mV), CV 

showed a decrease in peak separation pc = 405 mV that was due to electrode oxygen 

reduction. The peak at -50mV corresponded to the reduction of O2 to H2O2 while the peak at -

500 mV is responsible for a further reduction of H2O2. As compared to bare Au electrode, the 

Au/3-MPA-SnSe quantum dots also exhibited three reduction peaks at 405 mV, -20 mV and -

380 mV but two oxidation peaks at 400 mV and 990 mV. The reduction peak at (405 mV) 

350 nm 

Vb 

Vc 

3.5 eV Eg 
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showed an increase in peak current than that of bare gold electrode at approximately the same 

region. Observed here is also a shift to more negative potentials as a result of the capping 

agent 3-MPA donating negative charges to the SnSe quantum dots. When the bare gold 

electrode was scanned using redox potentials in cyclic voltammetry, the formation of a 

monolayer of electrosorbed oxygen at gold electrode was shown in the following mechanism 

(Bruckensten and Shay, 1985). 

 

(a) Au-(H2O) ads → Au-OH+ H
+
 + e

-      
(3) 

 

(b) Au-OH → Au=O + H
+
 + e

-       
(4) 

and finally the placed reaction  

(c) Au=O + H2O → O=Au- (H2O) ads      (5) 
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Figure 8: Cyclic voltammograms of bare Au and Au/3-MPA-SnSeQDs in 0.1 M PBS pH 

7.4 at 50 mV/s 

 

4.2.2 Electrochemistry of Au/L-cysteine  

Figure 9 shows the cyclic voltammogram of Au/L-cysteine where two reduction peaks were 

exhibited at (476 mV and -6 mV) attributed to desorption of thiol (Hager and Brolo, 2002). A 

high peak current separation compared to the bare electrode was observed. One oxidation 

peak at (800 mV) due to adsorption of the thiol group was observed and found to be more 

enhanced that what was seem from the bare electrode. A shift to more negative potentials was 

seen meaning that the reduction process was favoured with an indication of an electron 

transfer resulting from the thiol group acting as a promoter due to its high affinity for gold 

hence their redox peaks potentials occurred at same potential (Zhao et al., 2006). 
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The adsorption process of sulphur onto gold is described by the following equation (Wierse et 

al., 1978). 

 

Au-H2O +S
2-

 ↔ Au-Sads + H2O + 2e
-       

(6) 

 

 

Figure 9: Cyclic voltammograms of bare Au and Au/L-cysteine in 0.1 M PBS pH 7.4 at 

50 mV/s  

 

4.2.3 Electrochemistry of Au/L-cyst/3-MPA-SnSeQDs/CYP3A4 biosensor modification 

Figure 10 shows a cyclic voltammogram of Au/L-cyst/3-MPA-SnSeQDs/CYP3A4 

(biosensor) without the analyte additions, the biosensor exhibited a good current response 

indicating a quasi-reversible process characterised by the presence of redox potentials with 

800 mV 

480 mV 

476 mV 

-6 mV 

-10 mV 

 

 

 

 



42 
 

reduction peaks ( pc  = 600 mV and -250 mV) and an oxidation peak ( pa  =750 mV) which 

shifted towards negative potential. this huge shift was due to the coupling between (NH2) of 

building block material (L-cysteine) and (COOH) of 3-MPA-SnSe quantum dots since 3-

MPA-SnSe acted as a mediator by shuttling electrons to and from the enzyme to speed up the 

reaction. The layer- by- layer fabrication step was necessary for speeding up the reaction. An 

investigation regarding the direct electrochemistry of CYP3A4 using layer-by-layer films in 

order to improve the direct electron transfer between the heme proteins was done (Joseph et 

al., 2003). In this study a layer-by-layer improved the electron transfer of redox couples in 

CYP3A4/3-MPA-SnSeQDs/L-cyst/Au whereby the oxidation peak shifted to 750 mV and 

reduction peak to -250 mV as compared to bare electrode.  
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Figure 10: Cyclic voltammograms of bare Au and Au/L-Cyst/MPA-SnSeQDs/CYP3A4 

in 0.1 M PBS pH 7.4 at 50 mV/s 

 

4.2.4 Electrochemistry of L-cyst, 3-MPA-SnSeQDs and biosensor 

Figure 11 shows a cyclic voltammograms of L-cyst, 3-MPA-SnSeQDs and CYP3A4/3-

MPA-SnSeQDs/L-cyst/Au modified onto gold electrode in the absence of the analyte. The 

redox potential peaks of each layer showed an increase in peak current as compared to the 

bare gold electrode. The reduction peaks are seen to be shifting towards more positive 

potentials while the oxidation peaks are seen to be shifting to more negative potentials 

indicating an electron transfer and irreversible process. 
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Figure 11: Cyclic voltammograms illustrated different films deposited onto gold 

electrode 0.1 M PBS pH 7.4 at 50 mV/s. (black line) Bare gold, (red line) , (green 

line) Au/3-MPA-SnSeQDs and (blue line) Au/L-cyst/3-MPA-SnSeQDs/CYP3A4 

 

4.3 Biosensor measurements 

The cyclic voltammetry was used to study the catalytic behaviour to successive additions of 

indinavir drug under aerobic conditions as shown in Fig 12, the aerobic conditions in the 

reaction was necessary for binding the monooxygenation and (HEME) of CYP3A4 (Fe
2+

)  in 

order to form Fe-O centre (Ignaszak et al., 2009). At 0 nM there was no catalytic signal 

observed for the CYP3A4/3-MPA-SnSeQDs/L-cyst/Au but when the analyte (indinavir) was 

added, a catalytic response was observed with a reduction peak ( pc  = -400 mV) which 

showed an increase at different additional concentrations of the analyte. Exhibited here is a 
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shift from -450 mV to -400 mV due to the presence of oxygen binding to the active site of the 

(HEME) until 0.098 nM concentration (saturation point) was reached. The electrochemical 

properties of L-cysteine and 3-MPA-SnSe quantum dots showed a decrease in peak currents 

as the analyte concentrations were added therefore an interaction only occurred between the 

active site of the enzyme and the analyte. The biosensor gave a very good response up to 

maximum concentration of 0.093 nM.  

 

Figure 12: Cyclic voltammograms of Au/L-cyst/3-MPA-SnSeQDs/CYP3A4 biosensor 

responses to successive additions of indinavir in 0.1 M PBS pH 7.4 at 20 mV/s 
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4.4. Microscopy of L-cyst, 3-MPA-SnSe quantum dots and the biosensor 

In Fig 13, the scanning electron micrographs of the various stages of electrode modification 

are shown. The SEM micrograph in Fig 13(b) shows the morphology after the 

immobilisation of L-cyst on a screen printed electrode. The morphology resembles a 

(smooth) flat flower onto the electrode surface which was due to chemisorbed L-cyst. Fig 

13(c) shows a star shaped surface whereby the flat flower shaped L-cyst disappeared due to 

the binding or the interaction of the amino group of L-cysteine and the carboxylic group of 

the quantum dots which were cross-linked using (EDC/NHS). The quantum dots exhibited a 

charging effect due to their fluorescent properties while Fig 13(d) shows small bubbles of 

different sizes and very tiny bright dots which are caused by the enzyme immobilised onto 

the Au/L-cyst/3-MPA-SnSeQDs. 

 

 

 

 

 



47 
 

 

Figure 13: Scanning electron micrographs of (a) bare Au electrode, (b) Au/L-cyst, (c) 

Au/L-cyst/3-MPA-SnSeQDs, (d) Au/L-cyst/3-MPA-SnSeQDs/CYP3A4 

  

(a) (b) 

(c) (d) 
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4.5 Electrochemical characterisation of biosensor responses for indinavir drug 

In order to ascertain the correct reduction currents for the biosensor responses, a short 

potential window (200 mV to -800 mV) was used for this evaluation. The increase in 

reduction potential and the shift in peak currents were observed for each indinavir addition. 

This CV response pattern was a characteristic of an electrocatalytic reaction of CYP 

biosensor in the presence of a substrate and an oxygen saturated solutions (Iwuoha et al., 

1998). 

 

Figure 14: Cyclic voltammograms of CYP3A4/3-MPA-SnSeQDs/L-cyst/Au biosensor 

response to successive additions of indinavir in 0.1 M PBS pH 7.4 at 20 mV/s 
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4.5.1 Calibration curve for Au/L-cyst/3MPA-SnSeQDs/CYP3A4 biosensor 

The interpretation of hyperbolic calibration curve obtained for the biosensor was explained 

using the Michaels-Menten kinetics for enzyme to substrate. 

i
][indinavirK

][indinavirimax


      (7) 

 

The value of KM
app

 obtained was 0.007.93 mM and the value of imax was 1.29 μA. The low 

value for KM
ap 

obtained for biosensor confirmed the CYP3A4 was immobilized in a 

biocompatible environment and retained its catalytic properties and high enzymatic activity 

towards indinavir. The biosensor sensitivity was determined to be 0.221 μA/nM
 
with a 

response time of 11 s and limit of detection (LOD) of 3.22 ng/mL. Therefore the biosensor 

was suitable for low measuring the low concentrations of indinavir. 

 
app 

 M 
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Figure 15: Calibration curve drawn from the linear region of the biosensor responses in 

Fig 14 
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5.1. Characterisation of TGA-PdTeQDs 

5.1.1 UV-Vis spectrophotometry of TGA-PdTeQDs 

 

Figure 16: UV-Vis of (a) TGA capping agent, (b) PdCl2, (c) TGA-PdCl2, and (d) 

NaHTe 

 

The absorbance band spectra of the precursors used in this study are shown in Fig 15(b) 

shows the absorbance bands of Palladium chloride (PdCl2) appearing at 207 nm, 235 nm, 310 

nm and 420 nm. Fig 15(c) shows the absorbance bands of palladium chloride mixed with 

thioglycolic acid during the synthesis exhibiting two absorbance bands one at 280 attributed 

to the interaction between ligand-to metal charge and the second absorbance band at 320 nm 

attributed to PdTeQDs. The absorbance band indicated in Fig 15(d) is due to NaHTe 

exhibiting a very broad peak in the range 250-320 nm. 
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Figure 17: UV-Vis of TGA-PdTeQDs 

 

The nature of interaction between the valence band and conduction band as well as the band 

gap size determines the optical properties of semiconducting materials. The absorption 

spectrum of TGA-PdTeQDs is shown in Fig 17 exhibiting a broad absorption band at 320 nm 

associated with energy band gap of 3eV. The broad absorbance band is due to PdTeQDs 

however, the absorption band appearing at 250 nm is attributed to ligand-to-metal charge 

transition of Pd(II) ions (Yonezawa et al., 2001; Nemamcha et al., 2006). The observed 
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absorption band at 420 nm appearing at lower energy indicates the presence of Pd
2+

 ions in 

the reaction mixture (Petla et al., 2011; Namini et al., 2007).  

 

Fluorescence spectroscopy is a powerful tool in biological research which relies greatly on 

the availability of sensitive fluorescent probes (Frasco and Chaniotakis, 2009). Fluorescence 

spectrum uses the excited band obtained from the UV-Vis in order to determine whether the 

material emits light. The spectra below presented the exhibition of emission peaks from 411-

421 nm which shifted to larger wavelegths because of further particle growth (Zhang et al., 

2002). The emission peak at 30 min was narrower than 40 min -60 min, indicating different 

sizes of quantum dots and also no further shift occurred between 50 min and 60 min 

indicating that the quantum dots had fully grown  
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Figure 18: Fluorescence spectra of TGA-PdTeQDs excited at 320 nm where (a) 30 min, 

(b) 40 min, (c) 50 min and (d) 60 min 

 

(a) 
(b) (c) (d) 
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5.2. Spectroscopic studies of TGA-PdTeQDs 

5.2.1 Fourier transformed infrared of TGA-PdTeQDs 

 

Figure 19: FT-IR spectra for TGA-PdTeQDs 

 

The characteristic peaks belonging to TGA are shown in Fig 19. The peak at 2550 cm
-1

 is 

attributed to the stretching vibration of the S-H bond and the peak at 1700 cm
-1

 is attributed 

to vibration of the carboxylic group (Song et al., 2007). In addition, the S-H broad band 

stretching diminished at approximately 2550 cm
-1

 indicated the formation of S-Pd bonds 

between the TGA molecule and PdTe core. The vibration of the carboxylic group shifted 
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from 1700 cm-1 to 1660 cm
-1

 implying that COOH in TGA changed its anionic form into 

neutral aqueous solution (Liu et al., 2007).  

 

5.3. Microscopic characterisation of TGA-PdTeQDs 

5.3.1. High resolution transmission electron microscopy (HRTEM) 

 

Figure 20: HRTEM of TGA-PdTeQDs 

 

HRTEM determines the shape and size of nanoparticles. In Fig 20, the nanoparticles 

observed are uniformly distributed spherical structure (Hamizi et al., 2012) with size less 

than 5 nm. This confirmed the optical properties derived from UV-Vis where the particle 
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formed were very small. Energy dispersive X-ray spectrum shown in Fig 21 revealed the 

chemical composition of as-prepared PdTeQDs interacting with thioglycolic acid. 

 

 

Figure 21: Energy dispersive X-ray (EDX) spectrum of TGA-PdTeQDs 

 

5.4. Electrochemical characterisation of TGA-PdTeQDs 

5.4.1. Electrochemistry of TGA-PdTeQDs 

The cyclic voltammogram in Fig 22(b) revealed that the tellurium precursor had an oxidation 

peak at 0.4V which was absent in the bare Au. This curve indicates the highest peak current 

separation while a reduction peak at approximately -0.1V attributed to reduction of Te. For 
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Fig 22(c) a hump was observed at 0.1 V and an oxidation peak was observed at 0.2 V which 

was associated with the interaction of sodium hydrogen and tellurium. 

 

 

Figure 22: Cyclic voltammograms of metal precursors where (a) Au electrode, (b) Te 

and (c) NaHTe performed in 0.1 M PBS at 13 mV/s 

a 
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Figure 23: Cyclic voltammogram of Au/PdCl2 in 0.1 M PBS pH 7.4 

 

Most common oxidation states of palladium are 0, +1, +2, and +4 whereas the oxidation state 

+3 is rare. Three oxidation peaks were observed for (Pd
IV

) which appeared at -0.15 V, (Pd
III

) 

at 0.7 V and Pd
II
 at 1.25 V while two reduction peaks appeared at -0.6 V attributed to the 

reduction of Pd
II
 to  (Pd

I
) and further reduction to (Pd

0
) at -1.1 V. The cyclic voltammogram 

of TGA- PdTeQDs shown in Fig 24 indicated two oxidation peaks for (Pd
IV

) and (Pd
III

) and 

the reduction peak donated as (Pd
I
). These findings indicate that these oxidation states were 

not stable enough and disappeared. 
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Figure 24: CV of Au and Au/TGA-PdTeQDs in 0.1 M phosphate buffer solution 

 

Figure 24(a) shows the CV of Au electrode in buffer solution scanned at wide window 

potential region -1.5 to 1.5 V while the Fig 24(b) shows TGA-PdTeQDs into buffer solution 

which gave rise to a number of additional peaks. The oxidation peak at 0.4 V is attributed to 

tellurium (Te
IV

 ) and  the reduction peaks associated with reduction of Te
IV

 to Te
0
 appeared at 

0V and further reduced to Te
2-

 at -0.45 V (Khene et al., 2011). Fig 24(b) showed redox peak 

potentials for TGA capping agent which appeared at (Epa = 0.6 V) and at (Epc = 0.5 V) which 

was also observed by Poznyak and co-workers. Fig 24(c) shows an oxidation peak of (Pd
II
) at 

1.2 V with c , presenting the reduction of Pd
II
 to Pd

0
 which appearing at more negative 
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potential because transition metals are more electronegative while the Fig 24(d) at -0.75 V is 

attributed to PdTeQDs Similar findings were obtained for 3-MPA-PdTeQDs as shown in the 

next chapter. 

 

Figure 25: Cyclic voltammogram of Au/Cyst modified electrode in 0.1 M PBS 

 

The heterogeneous electron transfer from gold electrode to the redox couple in buffer 

solution was influenced by the presence of activation and functionalization of cysteamine 

monolayer (Shabani et al., 2009), which resulted in a small peak potential separation and a 

slightly shifted to negative potential (Shervedani and Mozaffari, 2005). The observed 

cathodic peak (black line) at (Epc = 0.46 V) and anodic peak (Epa = 0.77 V) of cysteamine 

shifted to negative potential. When cysteamine was chemisorbed onto TGA-PdTe quantum 

dots as shown in Fig 26(b) the quantum dots on the thiol film had an influence on the 

interface property of the modified electrode and improve the electron transfer and self-
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assembly of cysteamine monolayer on TGA-PdTe quantum dots. The quantum dots replaced 

negative charges and diminished the repulses of the electrode interface to the redox probe 

which resulted in the improvement of electron transfer of the modified electrode (Zhang et 

al., 2005). The CV obtained from Au/Cyst/TGA-PdTeQDs showed a reduction peak with 

high peak current separation at (-0.8 V) which was attributed to TGA-PdTeQDs and an 

oxidation peak at 0.2 V which was not present in Au/Cyst. 

 

 

Figure 26: Cyclic voltammograms of (a) Au/Cyst and (b) Au/Cyst/TGA-PdTeQDs in 0.1 

M PBS pH 7.4 
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5.5. Biosensor measurements 

5.5.1. Electrochemistry of biosensor 

 

Figure 27: Cyclic voltammograms of (a) Au/CYP3A4 (b) Au/TGA-PdTeQDs/CYP3A4 

in aerobic conditions in 0.1 M PBS at 500 mV/s 

 

Quantum dots have been used in biochemistry to provide efficient electron transport and are 

suitable and stable matrix for enzyme incorporated onto gold electrode. In aerobic conditions 

the reduction peak at (Epc =-0.15 V) of Au/TGA-PdTeQDs /CYP3A4 increased due to the 

quantum dots acting as mediator and promoting electron transfer to and from the enzyme 

(Shumyantseva et al., 2007). The oxidation peak at (Epa = 0.48 V) shifted to more positive 

potential than Au/CYP3A4 which exhibited oxidation peak at (Epa = 0.1 V) in the absence of 

the mediator. The electron transfer reaction as indicated in Fig 28(a) occurred successfully 

between the enzyme and electrode but at a distance from the electrode surface meaning that 
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the stability of the enzyme onto gold electrode surface was not good enough to hold enzyme 

thus the direct electron transfer was very slow. 

 

 

Figure 28: Cyclic voltammograms of (a)Au, (b) Au/Cyst, (c) Au/TGA-PdTeQDs and (d) 

Au/CYP3A4 with 0.05 M of IDV and without in 0.1 M PBS at 500 mV/s  

 

A set of controlled experiments were performed to evaluate the response of platform to pin-

point the exact modifier that was responsible for biosensor response in detecting indinavir 

drug. As shown in Fig 28(a) (red line) when IDV was added on bare Au electrode there was 

no response also in (b) (blue line) Au/Cyst no reduction peak was observed thus no notable 

response. Fig 28(c) Au/TGA-PdTeQDs (pink line) showed a huge reduction peak than Fig 

28(d) Au/CYP3A4 which gave small response indicating that the response of biosensor was 

due to TGA-PdTeQDs and CYP3A4. 
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Figure 29: Cyclic voltammograms of CYP3A4/TGA-PdTeQDs/Cyst/Au biosensor 

responses to successive addition of IDV in phosphate buffer on pH 7.4 at 500 

mV/s 

 

The detection was done using lower concentration ranges from 0.0004-0.008 nM as shown in  

Fig 29. Three reduction peaks were observed at (Epc = -0.25 V), (Epc = -0.6 V) and (Epc = -0.9 

V), where the reduction peak at -0.25 V increased with increasing concentrations of analyte 

while the reduction peaks at -0.6 V and -0.9 V combined at high concentration and shifted to 

more negative potential. The observed overall reduction peak of the biosensor appeared at -

0.8 V which overlapped the reduction peak of TGA-PdTe quantum dots peak indicating that 

quantum dots enhanced the catalytic behaviour of the biosensor. The sensitivity of biosensor 
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was 0.01259 mA/nM and KM
app

 value was 0.59429 mM. The detection limit of biosensor was 

4.3 ng/mL. 

 

 

Figure 30: Calibration curve drawn from the linear region of the biosensor responses in 

Fig 29 
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Figure 31: Cyclic voltammograms of CYP3A4/TGA-PdTeQDs/Cyst/Au biosensor with 

successive additions of IDV and acetaminophen 

 

Acetaminophen is a medicine recommended for relief of mild to moderate pain and fever 

such as headaches, toothache and pain associated with colds and flu. It is metabolised 

extensively in the liver and excreted in the urine mainly as inactive glucuronide and sulphate 

conjugates. The risk of paracetamol toxicity may be increased in patients receiving other 

potentially hepatotoxic drugs or drugs that induce liver microsomal enzymes such as alcohol 

and anticonvulsant agents. 

 

 

 

 



69 
 

 
 

                                     OH

NH

O

CH3

 

Figure 32: Schematic representation of acetaminophen 

. 

The interference studies of indinavir drug and acetaminophen was performed using small 

concentrations as shown in Fig 32. Acetominophen had an effect on indinavir due to the 

increased catalytic response when small concentrations were added since indinavir drug 

competes with other drugs for CYP3A4. This indicated that indinavir drug should not be 

administered concurrently with acetaminophen because the competition for CYP3A4 by HIV 

protease inhibitors creates serious life threatening events (Lin, 1999). 
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5.5.2 Stability of biosensor 

 

Figure 33: Cyclic voltammograms of CYP3A4/TGA-PdTeQDs/Cyst/RDE in 0.1 M PBS 

at 500 mV/s 

 

The stability of a biosensor is influenced by variation of time, temperature and materials 

immobilised. In this study the stability was studied to measure the response of 0.0004 nM 

indinavir drug and results are presented in Fig 33 with an indication of the short-term 

stability of the biosensor by monitoring the time which resulted in dramatic increase in the 

stability of the sensor from 0 min to 7 h. The biosensor lost its activity after a storage of 15 h, 

this loss was due to temperature changes undergone from storage temperature to room 

temperature (Shankaran et al., 2003) .When the sensor was rotated using rotating disk 

electrode as shown in Fig 34, the speed of rotation disturbed the stability reaction because the 

substrate might be surface bound onto electrode blocking the electron transfer and caused a 

0 min 

7 h 
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decrease in the peak current after 7 h. Further stability measurements were performed by UV-

Vis spectroscopy as indicated in Fig 35(a) Herein indinavir drug is shown to  exhibit a sharp 

absorption bands at 210 nm and 260 nm while Fig 35(b) (redline) showed absorption band of 

CYP3A4 in the absence of indinavir which shifted to shorter wavelength 205 nm as 

compared to indinavir band. An extended absorption band of the enzyme at 240 nm was 

observed with an associated energy band gap of 4.7 eV and 0.05 nM of indinavir was added 

into the CYP3A4 solution to check the binding and stability by monitoring the time. The 

spectra showed a decrease in absorption peaks and a slight shift from 0 min to 1 h indicating 

the binding of indinavir onto the active site of the enzyme. 
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Figure 34: Cyclic voltammograms of CYP3A4/TGA-PdTeQDs/Cyst/RDE with and 

without rotating the electrode in 0.1 M PBS at 500 mV/s 
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Figure 35: UV-Vis of (a) indinavir drug (b) CYP3A4/IDV at 0.05 nM 
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5.6 Microscopic studies of biosensor 

5.6.1. High resolution scanning electron microscopy (HRSEM) 
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Figure 36: (A)-(D) Represents the HRSEM of Cyst, TGA-PdTeQDs, Cyst/TGA-

PdTeQDs and Cyst/TGA-PdTeQDs/CYP3A4 done on aluminum stub 
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Figure 36(A) shows some holes on the aluminum stub surface while Fig 36(B) shows 

agglomorated spherical bubbles of different sizes of PdTe quantum dots. Fig 36(C) indicates 

the association between the interaction of cysteamine amino group and carboxylic group of 

capping agent which showed big irregular shape and unreacted quantum dots while Fig 36(D) 

showed a smooth surface due to binding of activated carboxylic group from the quantum dots 

and amine group of CYP3A4 enzyme.  

 

5.7 UV-Vis spectrophotometry of biosensor 

 

Figure 37: UV-Vis spectra of (a) Cyst, (b) Cyst/TGA-PdTeQDs and (c) Cyst/TGA-

PdTeQDs/CYP3A4 biosensor in 0.1 PBS pH 7.4 
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Cysteamine exhibited a broad absorption peak at 235 nm which shifted to 245 nm (b) due to 

interaction of cysteamine and PdTe quantum dots in the presence of EDC/NHS cross linkers 

and PdTe quantum dots absorption band at 325 nm. In Fig 35(c), the absorption band at 202 

nm was attributed to CYP3A4 and the shift observed from 245 nm to 252 nm was attributed 

to the binding of free activated carboxylic group from the quantum dots and amino group of 

the enzyme that has led to a decrease in absorption peak intensity. An absorption band at 325 

nm also observed in biosensor with associated energy band gap of 3.87 eV, this indicates the 

biocompatibility of quantum dots. 

 

     

 

 

 

 

 

 

 

 

 

 



77 
 

 

 

 

 

 

 

Chapter six 
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6.1 Characterisation of 3-MPA-PdTeQDs 

6.1.1 UV-Vis spectrophotometry of 3-MPA-PdTeQDs 

 

Figure 38: UV-Vis spectrum of 3-MPA-PdTeQDs 

 

Figure 38 shows the absorbance band at 240 nm exhibited a shift to lower wavelength as 

compared to UV-Vis absorption band seen in chapter 5. The shift was attributed to ligand–to-

metal charge transfer. A new additional absorbance band at 275 nm was attributed to 

tellurium and 3-MPA capping agent which did not appear in TGA-PdTeQDs in chapter 5.The 

absence of absorption peak at 420 nm confirmed the reduction of Pd
2+

 ions into Pd
0
 and 

further growth of the nanoparticles (Luo et al., 2004) while absorption band at 320 nm was 

attributed to PdTe quantum dots with an associated band gap of 3.87 eV. The reason for 

synthesising 3-MPA capped-PdTe quantum dots was to investigate the effect of the capping 

agent on the quantum dots size and colloidal stability. Fig 39 shows the fluorescence spectra 
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of 3-MPA-PdTeQDs where a shift to lower wavelengths at different refluxing time was 

observed. This is indicative of smaller particle sizes between 510 nm and 420 nm with 

constant fluorescence intensity (Li et al., 2013) as compared to TGA-PdTeQDs indicated in 

Chapter 5. The enhancement of fluorescence intensity may be attributed to strong interaction 

between the thiol group of 3-MPA and Pd ion in PdTe particle. This interaction was further 

analysed by IR spectra of MPA and 3-MPA-PdTeQDs shown in Fig 40, a very sharp band 

was observed at 1700 cm
-1

 which also was observed in chapter 5. Similar results found in 

chapter 5 are due to same functional groups of capping agents. 

 
Figure 39: Fluorescence spectra of 3-MPA-PdTeQDs 
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Figure 40: FT-IR spectra of 3-MPA-PdTeQDs 

 

C═O 

S-H stretch 

 

 

 

 



81 
 

6.2 Electrochemical characterisation of 3-MPA-PdTeQDs 

6.2.1 Electrochemistry of 3-MPA-PdTeQDs 

 

Figure 41: A multi-scan rate studies of 3-MPA-PdTeQDs using cyclic voltammetry in 

0.1 M phosphate buffer solution 

 

A multi-scan rate study of 3-MPA-PdTe quantum dots on gold electrode was performed as 

shown in Fig 41. This was carried out to investigate electrochemistry of quantum dots in the 

potential window between -1.5 V to 1.5 V, scan rates of 5 mV/s to 21 mV/s. Anodic peak 

positions of tellurium and capping agent are shifted to positive potentials from (0.43 -0.5 V) 

with increasing scan rates while the cathodic peaks shifted negative potentials from (0-0.15 

V) indicating the slow electron transfer process between redox probe. Oxidation peak A at 
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(0.52 V) is attributed to overlapping of Te
4+

 and 3-MPA while peak B at (1.25 V) was 

associated with oxidation of Pd
II
 with a slight shift to more positive potential as compared to 

the CV for TGA-PdTe quantum dots. The reduction peak A  at (-0.5 V) was associated with 

the reduction of Te
IV

 to Te
0
 and peak A       at (0.3 V) indicates further reduction Te

0
 to Te

2-
. 

Reduction peak C at (0.15 V) is due to reduction of carboxylic acid of capping agent (3-

MPA) and reduction peak of PdTe quantum dots at D (-0.75 V) appeared at the same position 

as seen in chapter 5 while the oxidation peak at (-0.4 V) was not present. The reduction of 

Pd
II
 to Pd

0
 peak B’ was observed at (-1.1 V). The electron transfer of Au/Cyst/3-MPA-PdTe 

quantum dots was observed in Fig 42 where by reduction peaks of PdTe quantum dots shifted 

to more positive potential and  peaks crossing as the scan rates increased. 
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Figure 42: Cyclic voltammograms of Au/Cyst/3-MPA-PdTeQDs in 0.1 M phosphate 

buffer solution at different scan rates 
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6.3 Microscopic studies of 3-MPA-PdTeQDs 

6.3.1 High resolution transmission electron microscopy (HRTEM) 

 

                

Figure 43: HRTEM of MPA-PdTeQDs 

 

A diameter of about less than 5 nm was obtained for the quantum dots as observed in Fig 43 

with an existance of lattice fringes indicating that MPA-PdTe quantum dots exhibited a 

crystalline structure (Duan et al., 2009). As shown in this figure, there are some dark layers 

covering the nanoparticles due to excess capping agent on the surface of the quantum dots. 
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6.4 Biosensor measurements 

6.4.1 Electrochemistry of biosensor 

Biosensor measurements were carried using low small concentrations in the range (-1.5 to 

+1.5 V). In Fig 44, the observed biosensor reduction peaks showed an increased response 

with increasing concentrations of the analyte. Three reduction peaks appeared at (Epc = -0.25 

V), (Epc = -0.52 V) and (Epc = -0.75 V) with increasing concentration. The reduction peak at -

0.25 V was more enhanced with a slight shift to negative potential (0.25 V), the calibration 

curve in Fig.45 gave a sensitivity value of 0.01389 mA/nM with KM
app

 value of 0.05671 mA. 

The detection limit of the biosensor was 6.2 ng/mL 
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Figure 44: Cyclic voltammograms of CYP3A4/MPA-PdTeQDs/Cyst/Au in 0.1 M 

phosphate buffer solution at 500 mV/s 
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Figure 45: Calibration curve drawn from the linear region of the biosensor responses in 

Fig 44 
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6.4.2. Stability of biosensor 

 

Figure 46: Cyclic voltammograms of CYP3A4/MPA-PdTeQDs/Cyst/RDE biosensor 

stability in 0.1 M PBS 

 

In Fig 46, the measurements were carried out as a function of time for the evaluation stability 

of biosensor stability. The response was observed (redline) after the addition of 0.0004 nM 

indinavir concentration. A huge response decreased by 40 % from 3 h to 16 h indicating that 

the biosensor was not stable when kept for a long time. The decreased peak currents was due 

to the leakage of enzyme during electrochemical measurement which may be also be 

degrading with time (Lu et al., 2007). Measurements were taken when the biosensor was 
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rotated using rotating disc electrode as shown in Fig 47. The analyte was surface bound to the 

electrode and observed a shift and decrease in peak current.  

 

Figure 47: Cyclic voltammograms of CYP3A4/3-MPA-PdTe QDs/Cyst/RDE biosensor 

stability in 0.1 M PBS 
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6.5 Microscopic studies of biosensor 

6.5.1 High resolution transmission electron microscopy 

    

   

Figure 48: (A)-(D) Represents the HRSEM of Cyst, TGA-PdTeQDs, Cyst/TGA-

PdTeQDs and Cyst/TGA-PdTeQDs/CYP3A4 performed on aluminium stub 
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Figure 48 (C) gave better morphology of  uniform spherical bubbles attributed to binding of 

cysteamine onto quantum dots capped than Fig 48(B) associated with agglomorated spherical 

bubbles of different sizes and Fig 48(D) showed unbound Cyst/PdTeQDs onto CYP3A4 and 

a smooth layer on the surroundings 
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Chapter seven 
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7.0 Conclusion 

The study describes approaches to the synthesis and chemical surface functionalization of 

quantum dots with capping agents including thioglycolic acid and 3-mercaptopropionic acid. 

Functionalization of quantum dots with capping agents are important in the field of sensors, 

and their influence on quantum dots surface was investigated by spectrophotometric and 

electrochemical analysis and the sensor parameters are collected in Table 1 below. 

 

Table 1: Optical and electrochemical properties of quantum dots 

Material Size 

distribution 

(nm) 

Shape Absorption 

band (nm) 

Bandgap 

(eV) 
λmax (nm) Epc  (V) 

3-MPA-SnSeQDs 3  350 3.5  0.38 

TGA-PdTeQDs 5 Spherical 320 3 411 0.75 V 

3-MPA-PdTeQDs 5 Spherical 320 3.87 410 0.75 V 

 

The excellent electrochemical transduction characteristics of the three surface bound quantum 

dots were used as the principle for sensor development. When the quantum dots were 

immobilized on electrode together with CYP3A4, the resultant bioelectrode was shown to 

undergo monooxygenation which is a net reduction reaction. This procedure can be applied in 

heme-enzyme linked biosensor system for the determination of not only drug metabolism but 

also the detection of other analyte of clinical, environmental and nutritional importance. The 

differences in the sensitivities and detection limits (as shown in Table 2) of the biosensors 

constructed with different capping agents demonstrate one possible method of controlling the 

performance of this class of biosensor. 
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Table 2: Sensitivities and detection limits of biosensors 

Biosensor Sensitivity  

(mA/nM) 

Detection 

limit 

(ng/mL) 

CYP3A4/3-MPA-SnSeQDs/L-cyst/Au 0.221 3.22 

CYP3A4/TGA-PdTeQDs/Cyst/Au 0.01259 4.3 

CYP3A4/3-MPA-PdTeQDs/Cyst/Au 0.01389 6.2 

 

The detection limits of the three biosensors (i.e. 3.22, 4.3 and 6.2 ng/mL) fall within the range 

found in vivo studies, where the maximum plasma concentration (Cmax) 8 h after drug intake 

was ranged from 5 - 15 ng/mL (Goncalves, 2007). 
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