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ABSTRACT

Fitted Numerical Methods for Delay Differential Equations

Arising in Biology

E.B.M. Bashier

PhD thesis, Department of Mathematics and Applied Mathematics,

Faculty of Natural Sciences, University of the Western Cape.

This thesis deals with the design and analysis of fitted numerical methods

for some delay differential models that arise in biology. Very often such

differential equations are very complex in nature and hence the well-known

standard numerical methods seldom produce reliable numerical solutions

to these problems. Inefficiencies of these methods are mostly accumulated

due to their dependence on crude step sizes and unrealistic stability con-

ditions. This usually happens because standard numerical methods are

initially designed to solve a class of general problems without considering

the structure of any individual problems. In this thesis, issues like these

are resolved for a set of delay differential equations. Though the developed

approaches are very simplistic in nature, they could solve very complex

problems as is shown in different chapters.

The underlying idea behind the construction of most of the numerical

methods in this thesis is to incorporate some of the qualitative features of

the solution of the problems into the discrete models. Resulting methods

are termed as fitted numerical methods. These methods have high stability
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properties, acceptable (better in many cases) orders of convergence, less

computational complexities and they provide reliable solutions with less

CPU times as compared to most of the other conventional solvers. The

results obtained by these methods are comparable to those found in the

literature. The other salient feature of the proposed fitted methods is that

they are unconditionally stable for most of the problems under considera-

tion.

We have compared the performances of our fitted numerical methods

with well-known software packages, for example, the classical fourth-order

Runge-Kutta method, standard finite difference methods, dde23 (a MAT-

LAB routine) and found that our methods perform much better.

Finally, wherever appropriate, we have indicated possible extensions of

our approaches to cater for other classes of problems.

May 2009.
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Chapter 1

General Introduction

1.1 Introduction

Delay differential equations (DDEs) have a wide range of application in modelling prob-

lems in biology. Dynamics of viruses, blood cells populations, predator-prey models,

competitive and co-operative species, etc, are just to mention a few. In a model that

describes the dynamics of a virus, a delay may represent the latent period of the virus

[57]. In a model that describes the dynamics of the blood cells population, a time delay

may represent the time taken by the bone marrow to reproduce new cells to replenish

cells that have been cleared in the past [91]. A little differently in a predator-prey

model, delay can be used to represent the densities of the predator and prey at a

previous time [47].

In addition to the time, when another independent variable is considered in a DDE

model, then the resulting model is termed a delay partial differential equation (DPDE).

Like DDEs, these DPDEs also model a wide range of applications in the world of

mathematical biology. The position of the species [25], the level of maturation [123],

the age, etc, are some of the instances when it is worth considering DPDEs instead of

DDEs. Many biological models describe the diffusion of some species through DPDEs.

It is possible that the diffusion parameter is very small and hence the resulting model

1

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION 2

is almost a singularly perturbed delay parabolic partial differential equation. Such

examples of small diffusions can be found in Murray [110].

The DDEs arising in biology have different levels of difficulties. Some of them

have small delays [84] while others have large delays; some of them are nonlinear [29];

some of them are non-stiff while others are very stiff [65, 137, 138, 144]; some of them

are highly singularly perturbed [84, 85], and so on. In many of the above cases, the

resulting DDEs are discontinuous in nature and hence pose challenging problems when

one solves these DDEs either analytically or numerically.

Some problems with constant time delays constitute an important class of the DDE

models. On their dde23 tutorial [129], Shampine and Thompson wrote about this class

of DDEs that “Although DDEs with delay of more general form are important, this is

a large and useful class of DDEs. Indeed, Baker, Paul and Wille’ write that the lag

functions that arise most frequently in the modelling literature are constants....”.

In many of the DDE models, the time delay parameter acts as a bifurcation param-

eter. As the delay parameter passes through some critical value, a couple of complex

conjugating eigenvalues of the system cross the imaginary axis at some pure imaginary

points and stable periodic Hopf bifurcating solutions occur. Then, when the delay

parameter crosses its critical value, the real parts of these eigenvalues cross to the

positive real axis causing an equilibrium to loose its stability. However, to the best

of our knowledge to date, the issue of determining whether and when a bifurcation

occurs is not completely resolved till date. Some bifurcation analysis tools based on

novel programming tools are designed but it seems that no concrete analytical tools

are currently available.

Due to the complex nature of the governing equations, analytical investigations have

become very difficult and therefore one has to rely mostly on some numerical methods.

Many of these numerical methods for solving DDEs are based on step-by-step methods

for solving initial value problems (IVPs). Examples to these are Runge-Kutta methods

[7, 39, 130, 139], multi-step methods [60, 68] and pseudospectral methods [98].

The general deficiencies of the standard finite difference methods in solving problems

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION 3

with complex structures such as nonlinearity, stiffness, singular perturbations and high

oscillations are well-known in the literature. While explicit methods can solve such

differential equations with low computational cost, they have the drawback that their

stability regions are very small and hence severe restrictions on the time and space

step-sizes will be required in order to achieve satisfactory results. On the other-hand,

the implicit methods do have wider stability regions but the associated computational

complexities are very high, and furthermore, they cannot achieve more than one order

as compared to explicit methods that use the same number of stages [20]. However, due

to some inherent errors in the models, it becomes very expensive to retrieve the true

information because most of the numerical methods available so far fail in providing

reliable results. This is mostly due to the fact that essential qualitative features of the

solutions have not been embedded into the numerical schemes.

Our main goal in this thesis is therefore to design numerical methods which can

inherit some of the qualitative features of the solution with the hope of obtaining

results which are which are consistent to the desired dynamics as possible. Particular

problems we are focusing on include a number of delay and partial delay differential

equation models from biology, few of which are mentioned below.

1.2 Some delay differential equations (DDEs) aris-

ing in biology

In this section, we survey some DDE models that arise in biology.

Hutchinson [62] proposed a logistic delay population model of the form

Ṅ(t) = rN(t)

(
1− N(t− τ)

K

)
, (1.2.1)

where r is the growth rate, K is the carrying capacity, N(t) is the size of population

at time t. The delay τ in this model represents a maturation time (The model was

proposed originally to describe the dynamics of Daphnia population and the time delay
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represents the time taken from the eggs formation until those eggs hatch).

The Hutchinson’s model has another form that can be obtained by substituting

N(t) instead of −1 +N(t)/K in model (1.2.1). This leads to

Ṅ(t) = rN(t− τ)(1 +N(t)). (1.2.2)

Mackey and Glass [91] proposed two possible models to describe the change of

density of Hematopoietic cells in the blood that is circulating in the human body.

They assumed that the cells are lost at a rate proportional to their concentration.

After the reduction of cells, the bone marrow requires six days to release new mature

cells to replenish the deficiency. Denoting by P (t) the density of the Hematopoietic

cells at time t, their two models are given by

Ṗ (t) =
β0θ

n

θn + P n(t− τ)
− γP (t), (1.2.3a)

and

Ṗ (t) =
β0θ

nP (t− τ)

θn + P n(t− τ)
− γP (t), (1.2.3b)

where β0, θ, n and γ are constants and the delay τ is the time taken from the reduction

of the cells until the release of the new mature cells.

Gurney et al. [53] proposed a DDE to describe the Nicolson’s blowflies model. This

model takes the form

Ṅ(t) = aN(t− τ)e−bN(t−τ) − dN(t), (1.2.4)

where N(t) denotes the size of the population at time t, a is the maximum per capita

rate of producing eggs per day, d is the death rate in the adult population, and τ is

time taken from the birth of a member until it becomes mature.

Cooke and van den Driessche [29] proposed a model to describe the growth of a
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single species model. The model is of the form

Ṅ(t) = B(N(t− τ))N(t− τ)e−d1τ − dN(t), (1.2.5)

where N(t) denotes the population of the mature individuals of the species and d1 ≥ 0

and d > 0 are the death rates of the immature and mature populations, respectively.

The time delay τ > 0 is the maturation time. The function B(N(t − τ)) is termed

as the birth function and gives the rates by which new individuals of the species are

produced by a mature individual.

Gopalsamy et al. [48] proposed a delayed model to describe the growth of a popu-

lation with limited food source. For this model, it is assumed that the growth rate of

the population is proportional to the rate of the food supply. The model is given by

Ṅ(t) = rN(t)

(
K −N(t− τ)

K + rcN(t− τ)

)
, (1.2.6)

where N(t) is the size of population at time t, r is the intrinsic growth rate of the

population, K is the carrying capacity and c > 0 is a constant.

Mackey et al. [93] developed a DDE model describing the periodic oscillations of

blood cells in people infected by chronic myelogenous leukemia. Their model is a stem

cell model of the form

Ṗ (t) = −γP (t) + β(N(t))N(t)− e−γτβ(N(t− τ))N(t− τ), (1.2.7a)

Ṅ(t) = −(β(N(t)) + δ)N(t) + 2e−γτβ(N(t− τ))N(t− τ), (1.2.7b)

where P (t) is the population of the proliferating cells and N(t) is the population of

the resting G0 cells. The parameters γ > 0 and δ > 0 are the deaths rates of the

proliferating and resting cells. The birth function β(N(t)) is given by the formula

β(N(t)) =
β0θ

n

θn +Nn(t)
,
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where β0 and θ are constants.

Villasana and Radunskaya [142] presented a model describing the competition be-

tween the tumor cells and the immune system. The model consists of four DDEs.

In this model, three populations and a cycle-phase-specific drug are considered. The

three populations are the immune system, the tumor cells during the interphase and

the tumor cells during mitosis. The model is given by

ṪI = 2a4TM − (c1I + d2)TI − a1TI(t− τ), (1.2.8a)

ṪM = a1TI(t− τ)− d3TM − a4TM − c3TMI − k1(1− e−k2u)TM , (1.2.8b)

İ = k +
ρI(TI + TM)n

α + (TI + TM)n
− c2ITI − c4TMI − d1I − k3(1− e−k4u)I, (1.2.8c)

u̇ = −γu, (1.2.8d)

with the initial data

TI(θ) = φ1(θ), θ ∈ [−τ, 0]

TM(θ) = φ2(θ), θ ∈ [−τ, 0]

I(θ) = φ3(θ), θ ∈ [−τ, 0]

u(0) = u0,

where TI(t) denotes the population of tumor cells during interphase at time t, TM(t) is

the population of tumor cells during mitosis at time t, I(t) is the population of immune

system cells at time t and u(t) is the amount of drug present at time t. The delay τ is the

maturation time of the cell. The constant a4 denotes the cell reproduction rate whereas

the constant a1 denotes the rate at which the cells cycle. The constants c1 and c2 denote

the rate by which immune cells are lost by interaction with tumors cells. The constants

d1, d2 and d3 denote the natural death rates of the immune, immature and mature

tumor cells, respectively. The Michaelis-Menten term ρI(TI + TM)n/(α+ (TI + TM)n)

represents the nonlinear growth of the immune population due to stimulus by the tumor

cells, where the parameters ρ, α, and n depend on the type of tumor being considered
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and the status of the immune system. Tumor chemotherapy causes tumor cells not to

continue their cycles, hence, they die naturally during the mitosis.

Berreta and Kuang [14] developed a DDE model to describe the viral infection of

bacteria, to replicate themselves. The model consists of three compartments represent-

ing the susceptible and infected bacteria and the virus with densities S(t), I(t) and

P (t), respectively. In the absence of viruses, it has been assumed that the bacterial

population density grows according to a logistic equation with carrying capacity C

and a constant intrinsic growth rate α. In the presence of viruses, the total bacterial

population has been divided into two subclasses: the susceptible bacteria S(t) and the

virus infected bacteria I(t). The rate of infection per unit time is given by kS(t)P (t)

where k denotes the effective per bacteria phage absorption constant rate. The infected

bacteria which are under the genetic control of virulent phages, replicate phages inside

themselves up to the death by lysis after a latency time τ . On the lysis death of an

infected bacteria (τ time units from the infection), b copies (on average) of assembled

phages are released in the solution. The constant b is termed the virus replication

factor. The death rate of the infected bacteria (which might be different to the lysis

death) is given by a constant µi. The death rate of the virus is given by a constant

µP . Using these notations and terminology, the model is given by

Ṡ(t) = αS(t)
S(t) + I(t)

C
− kS(t)P (t), (1.2.9a)

İ(t) = −µiI(t) + kS(t)I(t)− e−µiτS(t− τ)P (t− τ), (1.2.9b)

Ṗ (t) = β − µPP (t)− kS(t)I(t) + be−µiτS(t− τ)P (t− τ). (1.2.9c)

In [148], Yoshida and Hara formulated an SIR model with density dependant birth
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and death rates in a population governed by logistic growth. The model is given by

Ṡ(t) = −βS(t)I(t− τ)

N(t− τ)
−
(
d+ (1− a)

rN(t)

K

)
S(t)

+

(
b− arN(t)

K

)
N(t), (1.2.10a)

İ(t) =
βS(t)I(t− τ)

N(t− τ)
−
(
d+ (1− a)

rN(t)

K

)
I(t)− λI(t), (1.2.10b)

Ṙ(t) = λI(t)−
(
d+ (1− a)

rN(t)

K

)
R(t), (1.2.10c)

where β is the effective per capita contact rate constant of infective individuals, a ∈

[0, 1] is a convex combination constant, b and d are the natural growth and death

rates, r = b − d > 0 is the intrinsic growth rate, K > 0 is the carrying capacity of

the population, the delay parameter τ is the latent period of the virus and λ is the

recovery rate on the infected population.

Yan and Liu [147] considered an SEIR model with a constant time delay. The model

is given by

Ṡ(t) = bS(t) + bE(t) + bR(t)− µS(t)− γS(t)I(t)

N(t)
, (1.2.11a)

Ė(t) = γ
S(t)I(t)

N(t)
− γS(t− τ)I(t− τ)

N(t− τ)
e−µτ − µE(t), (1.2.11b)

İ(t) = −µI(t) + γ
S(t− τ)I(t− τ)

N(t− τ)
e−µτ − αI(t), (1.2.11c)

Ṙ(t) = −µR(t) + fαI(t), (1.2.11d)

where N(t) = S(t) +E(t) + I(t) +R(t) is the total population, S(t) is the susceptible

population, E(t) is the exposed population, I(t) is the infectious population and R(t)

is the recovered population. The delay τ represents the latent period, the constants b

and µ are the birth and natural death rates, respectively; γ is the expected number of

contacts per unit multiplied by the probability of transmission given contact and α is

the removal rate. The probability that an individual survive the whole latent period is

eµτ . The delayed term γS(t− τ)I(t− τ)e−µτ/N(t− τ) gives the number of individuals
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who survive the latent period τ and become infectious at time t.

Zhang et al. [150] formulated an SIR epidemic model with incubation time and

saturated incidence rate. In their model, they assumed that susceptibles satisfy a

logistic equation and the incidence term is of saturated form with the susceptible.

They determined the threshold value R0 and showed that the dynamics of the model

is determined by this value together with the delay which represents the incubation

time length. Their model is given by

Ṡ(t) = r

(
1− S(t)

K

)
− β S(t)

1 + αS(t)
I(t− τ), (1.2.12a)

İ(t) = β
S(t)

1 + αS(t)
I(t− τ)− (µ1 + γ)I(t), (1.2.12b)

Ṙ(t) = γI(t)− µ2R(t), (1.2.12c)

where r > 0 is the intrinsic growth rate, K is the carrying capacity of the population,

α is the parameter that measures the inhibitory effect, γ is the natural recovery rate of

the infective individuals and µ1 and µ2 represent the per capita death rates of infectious

and recovered, respectively.

Busenberg and Huang [19] studied a delayed Hutchinson population model with

diffusion. The model is given by

∂u

∂t
= c

∂2u

∂x2
+ ku(t, x) (1− u(t− τ, x)) , (1.2.13)

with initial data

u(θ, x) = ϕ(θ, x), θ ∈ [−τ, 0]

and homogeneous Dirichlet boundary conditions

u(t, 0) = u(t, π) = 0,
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where c > 0 and k > 0 are constants.

So et al. [133] studied a delay diffusive version of the Nicolson’s blowflies model.

The model is given by

∂u

∂t
= c

∂2u

∂x2
− au(t, x) + bu(t− 1, x)e−u(t−1,x), (1.2.14)

with initial data

u(θ, x) = ϕ(θ, x), θ ∈ [−1, 0]

and homogeneous Dirichlet boundary conditions

u(t, 0) = u(t, π) = 0,

where c > 0, k > 0, a > 0 and b > 0 are constants.

Zhou et al. [151] considered a system of two delayed diffusive partial differential

equations to describe the competition of two species u(t, x) and v(t, x) living in the

same environment. The model is given by

∂u

∂t
(t, x) =

∂2u

∂x2
(t, x) + κu(t, x) (1− a1u(t− τ, x)− b1v(t− τ, x)) , (1.2.15a)

∂v

∂t
(t, x) =

∂2v

∂x2
(t, x) + κv(t, x) (1− a2u(t− τ, x)− b2v(t− τ, x)) , (1.2.15b)

where 0 < x < π and t > 0, subject to the initial data

u(t, x) = u0(t, x), v(t, x) = v0(t, x), t ∈ [−τ, 0], (1.2.16)

and Dirichlet boundary conditions

u(t, 0) = u(t, π) = v(t, 0) = v(t, π) = 0, t ≥ 0. (1.2.17)
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On the other hand, Li et al. [86] considered also a system of two delayed diffusive

partial differential equations to describe the dynamics (densities) of two cooperative

species living in the same community, where the existence of each one enhances the

growth of the other. Their model is given by

∂u

∂t
(t, x) = λ1

∂2u

∂x2
(t, x) + u(t, x) (r1 − a1u(t− τ, x)− b1v(t− τ, x)) , (1.2.18a)

∂v

∂t
(t, x) = λ2

∂2v

∂x2
(t, x) + v(t, x) (r2 − a2u(t− τ, x)− b2v(t− τ, x)) , (1.2.18b)

where 0 < x < π and t > 0, subject to the initial data

u(t, x) = u0(t, x), v(t, x) = v0(t, x), t ∈ [−τ, 0] (1.2.19)

and Dirichlet boundary conditions

u(t, 0) = u(t, π) = v(t, 0) = v(t, π) = 0, t ≥ 0. (1.2.20)

The constants λ1 > 0 and λ2 > 0 represent the diffusivity of the two species whereas

r1 > 0 and r2 > 0 are the intrinsic growth rates of the two species.

Some other relevant models can be found in [2, 76, 110].

1.3 Literature review on some analytical and semi-

numerical methods for solving DDEs

In this section we describe some of the well-known methods (analytical as well as semi

numerical) for solving the delay differential equations.
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Method of steps:

Consider a DDE of the form

ẏ(t) = f(t, y(t), y(t− τ)), t ∈ [0, T ], (1.3.1)

y(θ) = ϕ0(θ), θ ∈ [−τ, 0]. (1.3.2)

The basic idea behind the method of steps [9] is to transform the DDE model (1.3.1)-

(1.3.2) to a sequence of a finite number of ODEs through dividing the domain of the

DDE into sub-domains, in each of which the DDE is transformed into ODE. Then to

solve these ODEs starting from the first sub-domain using the given history function

(1.3.2). The solution in the first domain is used as a history for the next sub-domain,

and this process is repeated until the domain of the DDE is covered.

We will assume that T = Kτ for some positive integer K. Then the space [0, T ] =

[0, Kτ ] can be written as

[0, T ] = ∪Km=1 [(m− 1)τ,mτ ] .

In the sub-domain [0, τ ], the DDE is transformed into an IVP of the form

ẏ(t) = f(t, y(t), ϕ0(t− τ)), t ∈ [0, τ ] (1.3.3)

y(0) = ϕ0(0). (1.3.4)

Let ϕ1(t) be the solution of the IVP (1.3.3)-(1.3.4). Then in the domain [τ, 2τ ] the

DDE model (1.3.1)-(1.3.2) is transformed into the IVP

ẏ(t) = f(t, y(t), ϕ1(t− τ)), t ∈ [τ, 2τ ], (1.3.5)

y(τ) = ϕ1(τ), (1.3.6)

which has a solution ϕ2(t).
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Generally, in the sub-domain [mτ, (m+ 1)τ ] the DDE (1.3.1)-(1.3.2) is transformed

into the IVP

ẏ(t) = f(t, y(t), ϕm−1(t− τ)), t ∈ [mτ, (m+ 1)τ ], (1.3.7)

y(mτ) = ϕm−1(mτ), (1.3.8)

which has solution ϕm(t).

The final solution y(t) will be the union of the solutions ϕm(t) for m = 1, . . . , K−1.

Method of reduction:

The method of reduction leads to two types of problems. These are

• Reduction of DDE into PDE, and

• Reduction of DDE into a system of ODEs.

Below we describe each of these methods.

Reduction of DDE into PDE:

Consider a DDE of the form

ẋ(t) = f(x(t), x(t− τ)), t ∈ [0, T ], (1.3.9)

x(θ) = ϕ0(θ), θ ∈ [−τ, 0]. (1.3.10)

Define a function u : [0, T ]× [−τ, 0]→ R as

u(t, θ) = x(t+ θ), t ∈ [0, T ], θ ∈ [−τ, 0].

Due to the symmetry of x(t+ θ), it is clear that

∂u

∂t
=
∂u

∂θ
.
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The function u(t, θ) satisfies

u(0, θ) = x(θ) = ϕ0(θ), θ ∈ [−τ, 0]

and
∂u

∂θ
(t, 0) =

∂u

∂t
(t, 0) = ẋ(t) = f(x(t), ϕ0(−τ)), t ∈ [0, T ].

Thus solving the delay differential equation (1.3.9) with its initial data (1.3.10) is

equivalent to solving the partial differential equation

∂u

∂t
=

∂u

∂θ
, t ∈ [0, T ], θ ∈ [−τ, 0],

u(0, θ) = ϕ0(θ), θ ∈ [−τ, 0],

∂u

∂θ
(t, 0) = f(x(t), ϕ0(−τ)), t ∈ [0, T ].

Reduction of DDE into a system of ODEs:

Consider the delay differential equation

ẋ(t) = f(t, x(t), x(t− τ), t ∈ [0, T ], (1.3.11)

x(θ) = ϕ0(θ), θ ∈ [−τ, 0]. (1.3.12)

Let N be a positive integer and δ = τ/N .

Define new variables xm(t), m = 0, . . . , N by

xm(t) = x(t−mδ),

then x0(t) = x(t) and xN(t) = x(t− τ).

Then

ẋm(t) ≈ xm(t+ δ)− xm(t)

δ
= N

(
xm−1(t)− xm(t)

τ

)
.
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This leads to the following system of ordinary differential equations

ẋ0(t) = f(t, x0(t), xN(t)), t ∈ [0, T ]

ẋm(t) = N

(
xm−1(t)− xm(t)

τ

)
, t ∈ [mδ, T ]

xm(0) = ϕ0(−mδ), m = 0, . . . , N.

By solving the above system, we obtain the solution of (1.3.11)-(1.3.12).

Method using Lambert W functions:

The Lambert W function ([30, 101]) (also referred as product log function) is the

solution of the algebraic equation

wew = z, (1.3.13)

where w and z are two complex numbers. The Lambert W function has an infinite

number of branches Wm(z); m = 0,±1,±2, . . ., where W0(z) is called the main branch,

and hence, the algebraic equation (1.3.13) has an infinite number of solutions Wm(z).

This function has the property that it is symmetric with respect to the real axis. If

z = x is a real number, then the domain of the definition of W (x) is restricted to

[−e−1,∞), with W (−e−1) = −1, W (0) = 0 and W (e) = 1. Nowadays, this function

is even available as an in-built function in many programming languages like Maple

and Mathematica. In fact, Jarlebring stated in [70] that “Because of its availability

in software and the fair amount of applications, some argue that this (Lambert W)

function should be added to the set of elementary mathematical functions”.

The Lambert W function is related to a system of linear delay differential equations

via its characteristic equation. The spectrum of a linear delay differential equation can

be found through inverting the Lambert W function that gives the solution and then

determine the stability of the system. Many authors used the Lambert functions for

solving a system of linear delay differential equations [3, 4, 69].
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To describe the procedure, let us consider the linear DDE

ẏ(t) = Ay(t) +By(t− τ), t ∈ [0, T ], (1.3.14)

y(θ) = ϕ0(θ), θ ∈ [−τ, 0], (1.3.15)

where A and B are constants, and τ > 0 is the delay parameter.

Plugging the solution

y(t) = eλt

in equation (1.3.14), we obtain the algebraic equation

e−λτ =
1

B
(λ− A) , (1.3.16)

which has the solution

λm = A+
Wm

(
Bτe−Aτ

)
τ

, m = 0,±1,±2, . . . ,

where Wm(x) are the branches of the Lambert W function.

The solution of (1.3.14) with the initial data (1.3.15) is given by

y(t) =
∞∑

m=−∞

cm exp

((
A+

Wm(Bτe−Aτ )

τ

)
t

)
, (1.3.17)

where the coefficients cm, m = 0,±1, . . . are to be computed in such a way that the

function y(t) is identical to the initial data ϕ0(t) on [−τ, 0].

Method of Laplace transformations:

The Laplace transform method ([10, 127]) provides an explicit expression of the solu-

tion and is a useful tool to study the spectral properties of a linear delay differential

equation. It transforms the delay differential equation into an algebraic equation. The

solution of the DDE is obtained by inverting the solution of the algebraic problem
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using the inverse Laplace transformation ([36]). This approach for (1.3.14)-(1.3.15) is

described as follows:

Taking the Laplace transformation on both sides of (1.3.14), we obtain

Y (s) =
ϕ0(0)esτ +B

∫ 0

−1
ϕ0(t)e−stdt

(s− A)esτ −B
.

The poles of the function Y (s) are given by

sm = A+
Wm(Bτe−Aτ )

τ
, m = 0,±1,±2, . . . ,

where the Wm’s are the branches of the Lambert function.

The solution of the problem (1.3.14)-(1.3.15) is obtained by inverting the transfor-

mation using the poles of Y (s). This gives

y(t) =
∞∑

m=−∞

cme
smt.

1.4 Some numerical methods and softwares for solv-

ing DDEs

Solutions of delay differential equations using Runge-Kutta methods ([21]) covers a

larger class of numerical methods that are developed for solving DDEs. Such works

include [9, 54, 64, 65, 75, 138].

Let us consider the following DDE

ẋ(t) = f (t, x(t), x(t− τ)) ,∀t ∈ [0, T ],

x(θ) = ϕ0(θ), θ ∈ [−τ, 0],
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where T ∈ R+, x ∈ R and τ is the delay parameter. The functions

f : R3 → R

and

ϕ0 : [−τ, 0)→ R

are continuous.

If the time space [0, T ] is partitioned into N subintervals through the points

t0 = 0 < t1 < . . . < tN = T,

with hn+1 = tn+1− tn, n = 0, . . . , N−1, then a general s-stage continuous Runge-Kutta

method for solving the above problem is given by ([9])

η(tn + θhn+1) = xn + hn+1

s∑
m=1

bm(θ)f
(
tn+1, X

m
n+1, η

(
tmn+1 − τ

))
, θ ∈ [0, 1], (1.4.1)

where

Xm
n+1 = xn + hn+1

s∑
`=1

am,`f
(
t`n+1, X

`
n+1, η

(
t`n+1 − τ

))
, m = 1, . . . , s. (1.4.2)

If the step-size hn+1 is less than τ , then η(tmn+1 − τ) is known for all m = 1, . . . , s.

Gugleilmi et al. [51] implemented RADAR5 which is based on Radau IIA ([55]) for

solving stiff delay differential equations. They considered the problem

Mẏ(t) = f(t, y(t), y(t− α1(t, y(t))), . . . , y(t− αm(t, y(t)))),

y(t0) = y0, y(t) = g(t), t < t0,

where M ∈ Rd×d, y(t) ∈ Rd and αm(t, y(t)) < t for all m = 1, . . . , d.

The application of the method based on Radau IIA leads to the approximation
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yn ≈ y(tn) by solving the linear system

M
(
Y (n)
m − yn

)
= hn

s∑
`=1

am,`f
(
Y

(n)
` , Z

(n)
`

)
, yn+1 = Y (n)

s ,

where Z
(n)
m , that approximates y

(
α

(n)
m

)
= y

(
α
(
tn + cmhn, Y

(n)
m

))
, is given by

Z(n)
m =


g(α

(n)
m ), α

(n)
m < t0

ϕk(α
(n)
m ), α

(n)
m ∈ [tk, tk+1].

In the above, ϕk(t) is a polynomial approximation of the solution y(t) in [tk, tk+1]. It is

a polynomial of degree s, that passes through the values yk and Y
(k)
` for all ` = 1, . . . , s.

Explicit continuous Runge-Kutta methods can be obtained by replacing equation

(1.4.2) by the equation

Xm
n+1 = xn + hn+1

m−1∑
`=1

am,`f
(
t`n+1, X

`
n+1, η

(
t`n+1 − τ

))
, m = 1, . . . , s. (1.4.3)

Explicit Runge-Kutta methods have been used by several authors for solving delay

differential equations. Some of the works in which the explicit continuous Runge-Kutta

methods are used for delay differential equations include Shampine and Thompson

[130, 131] and Paul [120].

In [130], Shampine and Thompson described the implementation of a delay differen-

tial equations solver using s-stages explicit Runge-Kutta triplet given by the equations

xn+1 = xn + hn+1

s∑
m=1

bmf (tn +mhn, X
m
n , ϕ (tn + cmhn − τ)), θ ∈ [0, 1],

where

Xm
n = xn + hn+1

s∑
`=1

am,`f
(
tn + c`hn, X

`
n, ϕ (tn + c`hn − τ)

)
, m = 1, . . . , s,
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and

xn+σ = xn + hn+1

s∑
m=1

bm(σ)f(tn +mhn, X
m
n , ϕ(tn + cmhn − τ)), θ ∈ [0, 1],

which approximates y(tn + σhn), σ ∈ [0, 1].

In [95], Mahmoud studied the existence, uniqueness, stability and convergence of a

class of C2-spline collocation methods for solving delay differential equations.

On the other hand, linear multi-step methods have also been used for solving delay

differential equations.

Gan et al. [46] discussed error analysis of linear multistep methods and Runge-

Kutta methods applied to the following classes of one-parameter stiff singularly per-

turbed problems with delays. The problem they considered is given by

ẋ(t) = f(t, x(t), x(t− τ), y(t), y(t− τ)),

εẏ(t) = g(t, x(t), x(t− τ), y(t), y(t− τ)).

Huang [60] studied the stability of the linear multistep method for the nonlinear

delay differential equations:

ẋ(t) = f(t, x(t), x(t− τ)), t > 0

x(t) = ϕ(t), t ∈ [−τ, 0].

Verhyden et al. [141] considered the following system of linear DDEs with multiple

time delays

ẏ(t) = A0y(t) +
m∑
j=1

Ajy(t− τj), y(t) ∈ Rn,

where A0, Aj ∈ Rn×n and τj > 0 for j = 1, . . . ,m. Their aim was to find an efficient

computational technique for the roots of the characteristic equation of the system, so
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that the stability of the system could be determined. Their approach was based on the

discretization of the integration operator by a linear multi-step method.

The characteristic equation of the linear system above is given by

det(λI − A0 −
m∑
j=1

Aje
−λτj) = 0.

Based on the fact that only a finite number of roots of the above characteristic equation

lie on the right half of the complex plane, their problem was reduced to compute the

rightmost root.

Letting h denote the length of one time step, ym denote the value y(mh), Lj = dτ/he

(where dxe means the ceil number of x) and εj = Lj − τ/h, they approximated the

delayed terms y(t− τj) at t = ti using Lagrange interpolating polynomials as

y(ti − τj) ≈
s2∑

`=−s1

ψ`(εj)yi+`−Lj ,

where

ψ`(εj) ≡
s2∑

σ=−s1

εj − σ
`− σ

.

Then their multi-step method is given by

k∑
i=0

αiyi = h
k∑
i=0

βi

(
A0yi +

m∑
j=1

Aj

s2∑
`=−s1

ψ`(εj)yi+`−Lj

)
,

where αi and βi are the coefficients of the linear multi-step method, s2 is an integer

such that h ≤ τmin/s2 and s1 is such that s1 ≤ s2 ≤ s1 + 2.

Hu et al. [59] used A-stable multi-step method for computing the numerical solution

of the following neutral delay differential equation:

ẏ(t) = f(t, y(t), y(t− τ), ẏ(t− τ)), t > 0

y(θ) = ϕ(θ), θ ∈ [−τ, 0).
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Ito et al. [66], constructed a spectral method to solve a linear system of delay

differential equations:

ẋ(t) = A0x(t) + A1x(t− τ) + f(t), t > 0

x(0) = η, x(θ) = ϕ0(θ), θ ∈ [−τ, 0).

Their idea was to expand the solution in each delay interval [(m − 1)τ,mτ ] using a

truncated Legendre series. Similarly, the functions ϕ0(t) and f(t) are expanded using

the truncated Legendre series. A last condition to complete the set of conditions

required for a unique solution is borrowed from the τ -method ([45]).

Mead and Zubik-Kowal [98] used pseudospectral methods ([45]) based on Chebyshev

pseudospectral spatial discretization and Jacobi waveform relaxation methods for time

integration for solving a delay parabolic partial differential equation

∂u

∂t
= ε

∂2u

∂x2
+ c

∂u

∂x
+ g(x, u(x,t)),

u(x, t) = f0(x, t), t ∈ [−τ, 0],−L ≤ x ≤ L,

where ε ≥ 0, c ∈ R, τ0 ≥ 0, L > 0 and T > 0. The function u(x,t) is given by

u(x,t)(τ) = u(x, t+ τ), τ ∈ [−τ0, 0].

When ε > 0, the problem becomes parabolic and in this case the boundary conditions

are given by

u(±L, t) = f±(t), t ∈ [0, T ],

whereas when ε = 0 and c 6= 0, we have a hyperbolic problem and the boundary

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION 23

conditions in this case are given by

u(L, t) = f+ (if c > 0),

u(−L, t) = f− (if c < 0),

where f0, f± are given.

In [67], Jackiwicz and Zubik-Kowal considered the use of Chebyshev spectral collo-

cation and waveform relaxation methods for nonlinear delay partial differential equa-

tions:

∂u

∂t
= ε

∂2u

∂x2
+ u(x, t)(1− u(x, t− τ)) + f(x, t), L ≤ x ≤ R, t ≥ 0,

u(x, t) = g(x, t), t ∈ [−τ, 0], L ≤ x ≤ R,

u(−1, t) = α(t), t ≥ 0,

u(1, t) = β(t), t ≥ 0.

Ansari et al. [1] developed a fitted mesh finite difference method for solving a sin-

gularly perturbed parabolic partial differential equation. The method uses a Shishkin

mesh on the spatial space, whereas it uses a uniform mesh for the temporal space. The

problem they considered is given by:

∂u(t, x)

∂t
− ε∂

2u(t, x)

∂x2
+ a(t, x)u(t, x) = f(t, x)− b(x)u(t− τ, x),

(t, x) ∈ Ω ≡ [0, T ]× [0, 1],

with the initial data

u(t, x) = u0(t, x), (t, x) ∈ [−τ, 0]× [0, 1],
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and boundary conditions

u(t, x) = gL(t), (t, x) ∈ [0, T ]× {0},

and

u(t, x) = gR(t), (t, x) ∈ [0, T ]× {1}.

Besides the above-mentioned numerical methods, many of the existing software

for solving delay differential equations are based on Runge-Kutta methods, see for

example Corwin et al. [27], Paul [120], Shampine and Thompson [130], Shampine [131]

and Thompson and Shampine [139].

Some of the other software packages for solving delay differential equations are the

following:

Corwin et al. [27] developed the FORTRAN code DKLAG6 which is based on

embedded continuously fifth- and sixth-order Runge-Kutta methods.

The FORTRAN code Archi was developed by Paul [120] and is based on the fifth-

order Dormand and Prince explicit Runge-Kutta method with a fifth-order Hermite

interpolant.

Later on, Shampine and Thompson [130] developed the MATLAB routine dde23

which is used for solving DDEs with fixed time delays. It uses the explicit Runge-Kutta

method with Hermite interpolants.

Guglielmi et al. [51] developed the FORTRAN code RADAR5 for solving stiff

delay differential equations with a set of state dependent delays. The code is based on

a Radau IIA method.

In 2005, Shampine [131] developed the MATLAB routine ddesd which is used for

solving DDEs with variable time delays. This also uses the explicit Runge-Kutta

methods with variable step-sizes and cubic Hermite interpolation.

Subsequent to this, Thompson and Shampine [139] developed the FORTRAN 90

code dde solver. It is based on one of the earlier FORTRAN 77 codes developed

by Thompson and his co-workers and is as convenient as the MATLAB dde23/ddesd
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routines are.

Some other relevant softwares to solve DDEs can be found in Bocharov and Ro-

manyukha [17], Enright and Hayashi [39], Karoui and Vaillancourt [75] and Paul [121].

Other works that may be useful for further studies in this area are [6, 8, 12, 16, 22, 26,

28, 37, 38, 40, 42, 44, 49, 50, 56, 71, 80, 89, 90, 92, 100, 109, 119, 126, 134, 135].

1.5 Summary of the thesis

We have organized the rest of this thesis as follows.

In Chapter 2, we develop fitted numerical methods for solving a single delay dif-

ferential equation and a system of two delay differential equations. These methods

preserve the positivity of the solution components, are convergent of first-order and

are stable. Some numerical examples are considered to show the performance of these

methods. Comparative numerical results show that our methods perform better than

the classical fourth-order Runge-Kutta method.

In Chapter 3, we design and analyze fitted numerical method for solving a two-point

BVP for a class of singularly perturbed second-order delay differential equations with a

small time delay. Numerical results obtained by this method are compared with those

found in literature.

Singularly perturbed delay parabolic partial differential equation (SPDPPDE) are

considered in Chapter 4. Based on the method of steps, we derive formulas for the

bounds on the solution and its partial derivatives. Then, we develop two fitted numer-

ical methods for solving the SPDPPDE. The first one is a fitted mesh finite difference

method, whereas the second one is a fitted operator finite difference method. We prove

that the two methods are convergent and unconditionally stable. Numerical results are

shown to confirm the theoretical estimates.

Ideas developed in Chapter 4 are extended in Chapter 5 where we develop a fit-

ted numerical method for solving a system of two delay parabolic partial differential

equations, describing the dynamics of two co-operative species. The proposed method
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is convergent and unconditionally stable. Test examples are used to show the perfor-

mance of the method and the results are compared with others found in the literature.

A system of two delay parabolic partial differential equations, describing the dynamics

of two competitive species is solved in Chapter 6.

Finally, in Chapter 7, we provide some concluding remarks and discuss the scope

for the future research.

 

 

 

 



Chapter 2

Fitted Numerical Methods for a

System of First Order Delay

Differential Equations

In this chapter, we design some positivity preserving methods (PPMs) to solve two

delay differential equation models. We prove the stability of these methods and also

show that they are convergent with order one. Three test examples have been used

to confirm the efficiency of the method. Comparisons are also made with the classical

fourth-order Runge-Kutta method and we found that our methods perform better than

it.

2.1 Introduction

Systems of first-order delay differential equations have been used to describe many

biological systems. In this chapter, our goal is to consider some population models

that fall under this category. There are some analytical investigations available in the

literature about these models, however, due to the fact that the state variables (such

variables usually describe densities, concentrations, populations sizes, etc.) must be

non-negative functions, many of the numerical methods, in particular, the standard fi-

27
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nite difference methods are found to be inappropriate. The reason being the occurrence

of erroneous solutions in the transient states. This has motivated us to construct the

fitted numerical methods that preserve the positivity of the solutions of such biological

systems.

Positivity preserving methods (PPMs) have been used by many authors for the

solutions of ordinary or systems of ordinary differential equations that are modelling

biological systems (see, e.g., [52, 103, 104, 105]). These PPMs are based on the con-

cept of non-local discrete representations of nonlinear terms ([102]), and can give high

stability properties. However, for the biological systems described by delay differential

equations, such PPMs are not yet exploited. Hence, our purpose in this chapter is to

design PPMs with high stability properties that can solve delay differential equation

models describing the dynamics of some biological systems.

We consider two models whose dynamics are described by a single delay differential

equation and a system of two delay differential equations, respectively. The first system

is due to Cooke et al. [29] and describes the dynamics of a mature population, whereas

the second model is due to Pujo-Menjouet et al. [99] and describes the dynamics of

periodic chronic myelogenous leukemia (PCML). Further details on these two models

are provided in subsequent sections.

The rest of this chapter is organized as follows. In Section 2.2, we state the two

models and give their biological interpretations. In Section 2.3, we discuss the quali-

tative behaviour of the solutions of these models. Then, we describe the construction

of the fitted methods in Section 2.4 and analyze them for convergence in Section 2.5.

In Section 2.6, we show the performance of these methods. These results are further

discussed in Section 2.7.

2.2 The DDE models

In this section, we consider two delay differential equation models. The first model

is a single delay differential equation model considered by Cooke et al. in [29]. In
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this model, it is assumed that the total population is divided into two groups: mature

and immature sub-populations. The model describes the dynamics of the mature

population only. The second model is a system of two delay differential equations

considered by Pujo-Menjouet and Mackey in [99]. It describes the dynamics of periodic

chronic myelogenous leukemia (PCML).

2.2.1 Population model with maturation delay and nonlinear

birth

Cooke et al. [29] considered a population in which an individual follows m life stages

Sj : j = 1, . . . ,m after its birth before it becomes mature. The length of each life stage

Sj is τj; hence, an individual spends a life time τ = τ1 + . . . + τm before it becomes

mature and able to produce new members. The death rate in each stage Sj before

maturation is dj. They assumed that the individuals in the different stages before

the maturation are dying with equal death rate, that is dj = d1 for j = 2, . . . ,m.

Therefore, d1 gives the death rate in the immature population. The death rate in the

mature population was considered as d. They also assumed that the birth rate in the

population is proportional to the number of the mature individuals and the individuals

in the population become mature with a rate of B(N(t − τ)), where the function B

is termed as the birth rate function and is assumed to be nonlinear in the size of the

mature population N(t− τ). Then, the model that they considered is

Ṅ(t) = B(N(t− τ))N(t− τ)e−d1τ − dN(t), t ∈ [0, T ], (2.2.1a)

with initial data

N(t) = ϕ0(t), for t ≤ 0. (2.2.1b)

Equation (2.2.1a) governs the growth of the adult population. The first term

B(N(t − τ))N(t − τ) in equation (2.2.1a) gives the number of newly born individ-

uals in the population whereas the second term dN(t) gives the ratio of the mature
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population individuals from which dies every day.

The birth rate function B(N(t)) is assumed to satisfy the following conditions

B(N) > 0, (2.2.2)

B(N) is continuously differentiable with Ḃ(N) < 0 and (2.2.3)

B(0+) > d > B(∞). (2.2.4)

The conditions (2.2.3) and (2.2.4) guarantee the existence of B−1(t) for all B(∞) <

t < B(0+).

Cooke et al. [29] considered three different formulas for the birth function B(N(t))

B(N(t)) = B1(N(t)) = be−aN(t) (2.2.5)

B(N(t)) = B2(N(t)) =
p

q +Nn(t)
, p, q with n > 0, and

p

q
> d, (2.2.6)

B(N(t)) = B3(N(t)) =
A

N(t)
+ c, with A > 0 and d > c > 0. (2.2.7)

It should be noted that the model (2.2.1) with B(N(t)) = B1(N(t)) has been

considered in [33, 72, 112].

2.2.2 Periodic chronic myelogenous leukemia (PCML)

Chronic myelogenous leukemia (CML) is a cancer of the blood cells in which too many

white blood cells are made in the bone marrow. CML is characterized by the existence

of what is known as Philadelphia chromosome. The Philadelphia chromosome contains

the abnormal fused gene BCR-ABL which causes the production of abnormal bcr-abl

tyrosine kinase [31] that transforms the bone marrow cells into abnormal leukemic cells.

The BCR-ABL fusion gene is found in over 95% of patients with CML [63]. According

to Mackey et al. ([93]) and Menjouet and Mackey ([99]), it has been noticed that (in

rare cases) chronic myelogenous leukemia behaves in periodic fashion. That is, white

blood cells, platelets and erythrocytes all oscillate with the same period. They referred
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to this case as the periodic chronic myelogenous leukemia (PCML).

To study the regulation of dynamics of the PCML, Pujo-Menjouet and Mackey

considered a stem cell model

Ṗ (t) = −γP (t) + β(N(t))N(t)− e−γτβ(N(t− τ))N(t− τ), (2.2.8a)

Ṅ(t) = −(β(N(t)) + δ)N(t) + 2e−γτβ(N(t− τ))N(t− τ), (2.2.8b)

subject to the initial data

N(t) = ϑ0(t), (2.2.8c)

and the initial condition

P (0) = P0. (2.2.8d)

In the above model, the cells are partitioned according to their functions into one

of two phases: the proliferating phase (called Mitosis) and the resting phase G0 (called

interphase) ([41]). A cell in the proliferating phase undergoes cell division, giving two

daughter cells. The newly born cells immediately enter the resting phase, in which

they cannot divide but undergo their functions and prepare themselves for mitosis.

As far as the notations and individual terms used in the above model are concerned,

the densities of the proliferating and resting cells are denoted by P (t) and N(t), respec-

tively. Cells entering the proliferating phase either die with a rate γ or divide at time

τ after the entry. The fraction of surviving cells about to leave the proliferating phase

at a time τ earlier are given by the term e−γτβ(Nτ )Nτ in equation (2.2.8a), whereas

the daughter cells which enter the resting phase are given by the term 2e−γτβ(Nτ )Nτ

in equation (2.2.8b). The function β(N) = β0θ
n/(θn + Nn(t)) represents the mitotic

re-entry rate from the resting phase into the proliferation phase with a maximal rate

β0 and θ is the size of the population of resting cells at which the rate of cell movement

from the resting phase G0 into the proliferation phase is half of its maximal value β0.
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The parameter n is a positive real number that controls the sensitivity of the mitotic

re-entry rate (denoted by β) to changes in the size of G0.

In the next section, we discuss qualitative behaviours of the above two models.

2.3 Some qualitative properties

2.3.1 Qualitative properties for the population model with

maturation delay and nonlinear birth

Model (2.2.1) has a unique positive equilibrium N∗ = B−1(ded1τ ).

By considering

B(0+) > ded1τ > B(∞), (2.3.1)

instead of (2.2.4), Cooke et al. [29] showed that this positive equilibrium is asymptot-

ically stable if the conditions (2.2.2) and (2.2.3)

dB(N)N

dt
> 0, (2.3.2)

hold.

For the particular case when B(N) = B2(N) = p/(q + Nn) with p/q > ded1τ ,

0 ≤ n ≤ 1 or B(N) = B3(N) = A/N + c with c ≤ de−d1τ and positive initial functions,

the unique positive equilibrium N∗ = B−1(ded1τ ) is globally asymptotically stable for

all τ ≥ 0. They showed that if B(N) satisfies the conditions (2.2.2), (2.2.3) and (2.3.1)

but not the condition (2.3.2), then the dynamics of (2.2.1) is different from the one

obtained by letting τ = 0.

On the other hand, in the case when B(N) = B1(N)
(
= be−aN

)
satisfies the condi-

tions (2.2.2), (2.2.3) and (2.3.1) together with the conditions a > 0, b > ded1τ and if

the initial data are positive, then it the following has been proved.

1. If b/d < ek
∗+1, then the unique positive equilibrium N∗ = (1/a) ln b/(ded1τ ) is
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locally asymptotically stable independent of τ , where k∗ is the solution of the

system

sinw = − cosw

(
d1

d
w cosw + k∗ sinw

)
,

sinw − w cosw

w − sinw cosw
= 2

wd1 cosw

d sinw
+ k∗.

2. If b/d > ek
∗+1, then there exists 0 < τ ∗ < τ ∗∗ such that N∗ loses its stability

when τ increases to pass through τ ∗, and stabilizes when τ increases further and

pass through τ ∗∗.

The critical delays τ ∗ and τ ∗∗ are defined by

τ ∗ =
x1

d
and τ ∗∗ =

x2

d
,

where x1 and x2 with x1 < x2 are the two positive solutions of the equations x = − v
tan v

,

v
sin v

= x
(
ln b

de
− d1

d
x
)
.

3. For small 0 ≤ τ < τ0 where τ0 = min
{

1
d1

ln b
d
, τ ′, τ ′′

}
, the equilibrium N∗ is

globally asymptotically stable, where τ ′ and τ ′′ are defined by

τ ′ = max
{
τ ≥ 0 : τe(d−d1)τ ≤ e

b

}
τ ′′ =

 ∞, if b
d
< ek

∗+1,

τ ∗, if b
d
< ek

∗+1.

4. If d+ b/e2 < d1, then N∗ is globally asymptotically stable for all

τ < min

{(
1

d1

)
ln

(
b

d

)
, τ ′′
}
.
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For the special case when d1 = 0 with a > 0 and b > d and initial values are positive,

it has been proven that

1. If b/d ≤ e2, then N∗ = (1/a) ln(b/d) is locally asymptotically stable, independent

of τ .

2. If b/d > e2, then there exists a τ̃ > 0 such that Hopf bifurcation occurs when τ

increases through τ̃ .

3. For small 0 ≤ τ < τ0 = min{τ ′, τ ′′}, the equilibrium N∗ is globally asymptotically

stable.

2.3.2 Qualitative properties for the PCML model

The steady-state solution for the PCML model satisfies

N∗ = 0,

or

N∗ = β−1

(
δ

2e−γτ − 1

)
= θ

(
β0

β∗
− 1

)1/n

,

where β∗ = δ/(2e−γτ − 1), and the steady-state re-entry rate can be positive only if

the delay τ satisfies the inequality 0 ≤ τ ≤ (1/γ) ln 2.

The non-trivial steady-state exists if τ ≥ 0 satisfies

β0

β∗
≥ 1⇒ τ ≤ −1

γ
ln

(
δ + β0

2β0

)
= τmax,

with δ < β0.

To determine the stability of the model, Pujo-Menjouet and Mackey ([99]) used the

normalized variable x = N/θ, and transformed the equation (2.2.8b) to

ẋ(t) = −(β(x) + δ)x+ κβ(xτ )xτ (2.3.3)
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which has the steady-state solutions

x∗ = 0

and

x∗ = (β0/β
∗ − 1)1/n.

Linearizing equation (2.3.3) around x∗, letting z = x − x∗ and B = B∗ + B∗′x∗, one

obtains the linear delay differential equation

ż(t) = −(B + δ)z(t) + κBz(t− τ). (2.3.4)

The characteristic equation corresponding to the above DDE is obtained by substitut-

ing z = eλτ into 2.3.4. This gives the eigenvalue problem

λ+ (δ +B) = κBe−λτ . (2.3.5)

In summary:

1. if n ∈ [0, 1], then the solution is locally stable for 0 ≤ τ ≤ τmax,

2. if n > 1, then there are two subcases

(a) if nδ/(n− 1) ≥ β0, then the solutions are locally stable for τ ∈ [0, τmax],

(b) if 0 ≤ nδ/(n− 1) < β0 and let

τn = −(1/γ) ln ((δ/β0)(1 + 1/(n− 1)) + 1)/2,

then,

i. the solution is stable iff

−1 ≤ δ +B

κB
≤ 1
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and

τ < τcrit =
cos−1( δ+B

κB
)√

(κB)2 − (δ +B)2
,

provided that τ ∈ [0, τmax], and

ii. if 0 ≤ nδ/(n − 1) < β0, then the solutions are locally stable for τ ∈

[τn, τmax].

Some of these properties will be verified by the numerical methods developed in the

next section.

2.4 Construction of the numerical method

In this section we construct the numerical methods for solving the models described

in Section 2.2. There are various ways to go towards designing the fitted methods

for these models. However our goal is to design some positivity preserving numerical

methods and therefore we put more emphasis on how to tackle the nonlinear terms

in the individual models rather than looking at the particular denominator functions.

We will use the nonlocal approximation (see, [102] and [52, 114] for details) for certain

terms in these differential models.

To begin with, let M be a positive integer and partition the interval [0, T ] through

the points

t0 = 0 < t1 < . . . < tM ,

where tj+1 − tj = k = T/M ; j = 0, . . . ,M − 1.

2.4.1 Numerical method for the population model with mat-

uration delay and nonlinear birth

We approximate the model given by (2.2.1) with the difference method

N j+1 −N j

k
= −dN j+1 +B(N(tj − τ))N(tj − τ). (2.4.1)
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The difference scheme (2.4.1) can be further simplified to

N j+1 =
N j + kB(N(tj − τ))N(tj − τ)

1 + kd
, j = 0, . . . ,M − 1. (2.4.2)

Let s = τ/k, be a positive integer.

For j = 0, . . . , s, the history term N(tj − τ) can be evaluated from the expression

N(tj − τ) = ϕ0(tj − τ), for j ≤ s,

and the difference scheme (2.4.2) becomes

N j+1 =
N j + kB(ϕ0(tj − τ))ϕ0(tj − τ)

1 + kd
, j = 0, . . . , s. (2.4.3)

Now, the data

(t0, N
0), . . . , (ts, N

s)

are interpolated with a cubic Hermite spline function ([128]) ϕs(t).

For j = s+ 1, . . . ,M − 1, when we move from tj to tj+1, the history term N(tj − τ)

is evaluated from the relation

N(tj − τ) = ϕj(tj − τ), for j ≤ s+ 1, . . . ,M − 1

and we evolve the solution to the point tj+1 using the difference scheme

N j+1 =
N j + kB(ϕj(tj − τ))ϕj(tj − τ)

1 + kd
, j = s+ 1, . . . ,M − 1 (2.4.4)

and then we extend the definition of ϕj(t) to the interval [tj, tj+1] leading to a cubic

Hermite spline ϕj+1(t) that interpolates the data

(t0, N
0), . . . , (tj+1, N

j+1).
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Our finite difference method for the population model with nonlinear birth and

maturation delay is then consisting of equations (2.4.3) and (2.4.4) together with the

initial data (2.2.1b).

2.4.2 Numerical method for the PCML model

We approximate equations (2.2.8a) and (2.2.8b) with the difference method

P j+1 − P j

k
= −γP j+1 + β(N j)N j − e−γτβ(N(tj − τ))N(tj − τ), (2.4.5)

N j+1 −N j

k
= −(β(N j) + δ)N j+1 + 2e−γτβ(N(tj − τ))N(tj − τ). (2.4.6)

Simplifying the above, we obtain,

P j+1 =
P j + k(β(N j)N j − e−γτβ(N(tj − τ))N(tj − τ))

1 + kγ
,

N j+1 =
N j + k(2e−γτβ(N(tj − τ))N(tj − τ))

1 + k(β(N j) + δ)
.

On the interval [0, τ ] the history term N(tj − τ) can be evaluated from the history

function ϑ0(t) as

N(tj − τ) = ϑ0(tj − τ),

and therefore, the difference method becomes

P j+1 =
P j + k(β(N j)N j − e−γτβ(ϑ0(tj − τ))ϑ0(tj − τ))

1 + kγ
, (2.4.7)

N j+1 =
N j + k(2e−γτβ(ϑ0(tj − τ))ϑ0(tj − τ))

1 + k(β(N j) + δ)
, (2.4.8)

for j = 0, . . . , s.

Let ϑs(t) be the cubic Hermite spline that interpolates the data

(t0, N
0), . . . , (ts, N

s).
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For j = s + 1, . . . ,M − 1, when we move from tj to tj+1, we approximate the delayed

term N(tj−τ) using the cubic Hermite polynomial ϑj(t); that is N(tj−τ) = ϑj(tj−τ).

Then, P j+1 and N j+1 can respectively be approximated using

P j+1 =
P j + k(β(N j)N j − e−γτβ(ϑj(tj − τ))ϑj(tj − τ))

1 + kγ
, (2.4.9)

and

N j+1 =
N j + k(2e−γτβ(ϑj(tj − τ))ϑj(tj − τ))

1 + k(β(N j) + δ)
, (2.4.10)

for j = s + 1, . . . ,M−1, and we extend the definition of ϑj(t) to the interval [tj, tj+1]

and obtain ϑj+1(t).

2.5 Analysis of the numerical methods

In this section we prove the convergence and the stability of the numerical methods

developed in the previous section.

Convergence:

Using the Taylor expansion, we have

N(tj+1)−N(tj)

k
− (−dN(tj) +B(N(tj − τ))N(tj − τ)) = Ck +O(k2). (2.5.1)

where C is a constant.

The local truncation error for the method (2.4.1) is given by

LTE =
N(tj+1)−N(tj)

k
− (−dN(tj + k) +B(N(tj − τ))N(tj − τ)),
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which implies that

|LTE| =

∣∣∣∣N(tj+1)−N(tj)

k
− (−dN(tj + k) +B(N(tj − τ))N(tj − τ))

∣∣∣∣
≤

∣∣∣∣N(tj+1)−N(tj)

k
− (−d(N(tj) + kṄ(ξ)) +B(N(tj − τ))N(tj − τ))

∣∣∣∣
≤

∣∣∣∣N(tj+1)−N(tj)

k
− (−dN(tj + k) +B(N(tj − τ))N(tj − τ))

∣∣∣∣
+k |dN(ξ)|

≤ Ck +O(k2) + k |dN(ξ)| = O(k)→ 0 as k → 0.

Stability:

Let ϕ(t) be the spline function which approximates the history terms N(tj − τ) at

t = tj − τ . Then equation (2.4.2) can be written as

N j+1 =
1

1 + kd
N j +

k

1 + kd
B(ϕ(tj − τ))ϕ(tj − τ), j = 0, . . . ,M − 1. (2.5.2)

Substituting the exact solution N(tj) instead of N j in equation (2.5.2), we obtain

N(tj+1) =
1

1 + kd
N(tj) +

k

1 + kd
B(ϕ(tj − τ))ϕ(tj − τ), j = 0, . . . ,M − 1.

Subtracting the above equation from (2.5.2), taking the absolute values on both

two sides and applying the triangle inequality, we obtain

|ej+1| ≤
(

1

1 + kd

)
|ej|+

(
k

1 + kd

) ∣∣B(ϕ(tj − τ))ϕ(tj − τ)−B(N(tj − τ))N(tj − τ)
∣∣,

(2.5.3)

where ej = N j −N(tj) denotes the error at t = tj.
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We would like to determine how ej behaves as j →∞.

For j = 0, . . . , s, the history terms are ϕ(tj − τ) = N(tj − τ) and hence, equation

(2.5.3) reduces to

|ej+1| ≤
1

1 + kd
|ej| =

(
1

1 + kd

)j
|e1|.

For j = s + 1, . . . , N − 1, we first linearize the nonlinear function B(ϕ(tj − τ))

around N(tj − τ) as

B(ϕ(tj− τ)) = B(N(tj− τ)) + (ϕ(tj− τ)−N(tj− τ))Ḃ(ξ) = B(N(tj− τ)) + ej−sḂ(ξ),

where ξ ∈ [tj−s, tj+1−s].

Substituting the above equation in (2.5.3) and simplifying, we obtain

|ej+1| ≤
1

1 + kd
|ej|+

k

1 + kd

∣∣∣(B(N(tj − τ)) + Ḃ(N(ξ))
)∣∣∣ |ej−s| . (2.5.4)

Equation (2.5.4) can be expressed as

|ej+1| ≤
(

1

1 + kd

)j
|e1|+

(
k

1 + kd

) ∣∣∣(B(N(tj − τ)) + Ḃ(N(ξ))
)∣∣∣ ( 1

1 + kd

)j−s
.

We note in the above inequality that both d and k are positive and the two terms on

right hand side go to zero, and hence ej → 0, j →∞.

This proves that the method is unconditionally stable.

Remark 2.5.1 For the PCML model (2.4.7), (2.4.8), (2.4.9), (2.4.10), we see that

|LTEP | ≤ Ck +O(k2) + k |γP (ξ)| = O(k)→ 0 as k → 0,

|LTEN | ≤ Ck +O(k2) + k |(β(N(ζ)) + δ)N(ζ)| = O(k)→ 0 as k → 0,

where ξ and ζ are in [tj, tj + k]. Moreover, the method is unconditionally stable.
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2.6 Numerical results

In this section we provide numerical results for the models described by equations

(2.2.1) and (2.2.8).

Example 2.6.1 Consider (2.2.1) with B(N(t)) = B1(N(t)). Then the model takes

the form

Ṅ(t) = be−aN(t−τ)N(t− τ)ed1τ − dN(t)

with the initial data N(t) = ϑ0(t) = 3.5.

We solve the model for a = d = 1 and (a) d1 = 1, b = 80, (b) d1 = 1, b = 20, (c)

d1 = 0, b = 80, (d) d1 = 0, b = 20.

Results for different values of the delay parameter τ and the other parameters are

presented in Figure 2.6.1.

The comparative solutions with Runge-Kutta method are presented in Figure 2.6.2.

Example 2.6.2 By setting B(c(t)) = B2(c(t)), d1 = 0, where the function c(t) is the

concentration of the blood cells (per mm3), one can obtain the Mackey-Glass model

([91])

ċ(t) =
pc(t− τ)

q + cn(t− τ)
− dc(t),

with the initial data c(t) = ϑ0(t) = 0.5 for t ∈ [−τ, 0].

We solve this model for p = 0.2, q = 1, n = 10 and d = 0.1.

Results for different values of the delay parameter τ and the other parameters are

presented in Figure 2.6.3.

Example 2.6.3 Consider model (2.2.8) with θ = 1.98 × 108, δ = 0.05, β0 = 1.77,

P0 = 0.71× 108, ϑ0(t) = 6.43× 108 for t ∈ [−τ, 0] and n = 3.

Results for different values of the delay parameter τ and the other parameters are

presented in Figure 2.6.5.

In Figure 2.6.1 we plot the solutions for the parameters values taken from [29]. In

that work, Cooke et al. used a = d = 1 and (a) d1 = 1, b = 80, (b) d1 = 1, b = 20,
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Figure 2.6.1: Solution for Example 2.6.1, with B = B1, for a = d = 1 and (a)
d1 = 1, b = 80, (b) d1 = 1, b = 20, (c) d1 = 0, b = 80, (d) d1 = 0, b = 20.

(c) d1 = 0, b = 80, (d) d1 = 0, b = 20. We see from Figure 2.6.1 (a) that the solution

is stable for all the values of the delay parameter τ ∈ {0.2, 1.0, 2.4}. Figure 2.6.1 (b)

shows that the solution is stable for the delay parameters τ = 0.2 and τ = 2.4 whereas

it is unstable for τ = 1. This tells us that the solution looses its stability as τ passes

through some critical value τ1 ∈ (0.2, 1) and restores itself as the delay passes through

another critical value τ2 ∈ (1, 2.4). In Figure 2.6.1 (c), we see that the solution is

stable for the delay parameters τ = 0.2 and τ = 1.0 whereas it is unstable for τ = 2.4.

This tells that the solution looses its stability as τ passes through some critical value

τ1 ∈ (1, 2.4). Finally, Figure 2.6.1 (d) shows that the solution is stable for the delay

parameter τ = 0.2 whereas it is unstable for τ = 1.0 and τ = 2.4. This means that the
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solution looses its stability as τ passes through some critical value τ1 ∈ (0.2, 1).

Figure 2.6.2: Solutions for Example 2.6.1, using the classical fourth-order Runge-Kutta
method and the PPM (2.4.1), with B = B1 and step-size k = 2 and for parameter values
a = d = 1, b = 20 and d1 = 0.

In Figure 2.6.2, we compare the performances of the classical fourth-order Runge-

Kutta method and the proposed PPM (2.4.1) for a step-size k = 2 with τ = 2.5 in

[0, 50]. The fourth-order Runge-Kutta method failed to solve the problem for this step-

size, whereas PPM could solve the problem and maintained the non-negative profile of

the solution.

Figure 2.6.3 shows the dynamics of the concentration of the blood cells for different

values of the delay τ . The solution is stable for τ = 1 and periodic for τ = 5 and

τ = 10. This means that there is a critical time delay τ ∗1 ∈ (1, 5) such that the solution

loses its asymptotic stability when it passes through the critical delay τ ∗1 . For τ = 15

the solution is chaotic which indicates that there is another critical value τ ∗2 ∈ (10, 15)

for which the solution loses its stability.

In Figure 2.6.4 we compare the performance of the fourth-order Runge-Kutta

method with the proposed PPM (2.4.1). The comparison is made by taking τ = 60 and

step-size k = 24 in [0, 1200]. The chosen parameter values of the model are p = 0.2,

q = 1, n = 10 and d = 0.1. The solution profile given by the fourth-order Runge-Kutta

method contains negative values for the blood concentration, whereas the one given by
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Figure 2.6.3: Solution for Example 2.6.2 in [0, 400] for different values of the time delay
τ , for p = 0.2, q = 1, n = 10 and d = 0.1.

our PPM is non-negative on the whole solution domain.

From Figure 2.6.5 we see that the solution of the model is stable for τ = 1.8, 2.1

and τ = 5, whereas it is periodic for τ = 2.4. This indicates that the solution loses its

asymptotic stability when the delay τ passes through some critical value τ ∗1 ∈ (2.1, 2.4)

and restores it when the delay τ passes through another critical value τ ∗2 ∈ (2.4, 5).

In Figure 2.6.6, we compare the performance of the classical fourth-order Runge-

Kutta method with the PPM (2.4.5)-(2.4.6). We fixed both the time delay τ and

the step-size k to the value 10. We can see that the solution profile obtained by the

Runge-Kutta method has negative values whereas the solution profile obtained by the

proposed PPM is always nonnegative.
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Figure 2.6.4: Solutions for Example 2.6.2 using the fourth-order Runge-Kutta method
and the PPM (2.4.1), for τ = 60 and step-size k = 24 in [0, 1200] where the parameters
of the model take the values p = 0.2, q = 1, n = 10 and d = 0.1.

2.7 Discussion

In this chapter, we designed positivity preserving methods (PPMs) for solving two

different biological models described by delay differential equations. These methods

are unconditionally stable and are first-order accurate.

To monitor the performance of the proposed PPMs, we chose two different routes:

Firstly, we fixed the step-size and varied the delay parameter to monitor the changes

in the qualitative behaviour of the solution, so that we could compare the results

obtained by these methods with the theoretical and other results found in the literature.

Figures 2.6.1, 2.6.3 and 2.6.5 show that the numerical results obtained by the PPMs

affirms the above statement.

Secondly, we have used moderately large step-sizes in the simulations for the three

test problems and compared the performances of the classical fourth-order Runge-

Kutta method to the proposed PPMs. In the first test example the fourth-order Runge-

Kutta method could not converge, and in the next two test examples it failed to give

non-negative solution profiles. On the other hand, the PPMs could solve the three test

problems and give non-negative solution profiles for these test problems. In fact, the

PPMs have been tested for many large time delays with large step-sizes maintaining

 

 

 

 



CHAPTER 2. FITTED NUMERICAL METHODS FOR A SYSTEM OF FIRST
ORDER DELAY DIFFERENTIAL EQUATIONS 47

Figure 2.6.5: Solution for Example 2.6.3, for θ = 1.98 × 108, δ = 0.05, β0 = 1.77,
P0 = 0.71× 108, ϑ0(t) = 6.43× 108 for t ∈ [−τ, 0] and n = 3.
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Figure 2.6.6: Solutions for Example 2.6.3 using the classical fourth-order Runge-Kutta
method and the PPM (2.4.5)-(2.4.6) on [0, 100] with a delay and a step-size τ = k = 10,
for θ = 1.98×108, δ = 0.05, β0 = 1.77, P0 = 0.71×108, ϑ0(t) = 6.43×108 for t ∈ [−τ, 0],
τ = 2.5 and n = 3.

the step-sizes to be bounded by the time delay τ . The PPMs have passed all these

tests giving non-negative bounded solutions. From these tests we can conclude that

the PPMs outperform the fourth-order Runge-Kutta method for large step-sizes and

large delays.

 

 

 

 



Chapter 3

An Efficient Fitted Operator

Method to Solve Delayed

Singularly Perturbed Differential

Difference Equation

In this chapter, we develop a fitted numerical method for solving a singularly perturbed

boundary-value problem for a second-order delay differential-difference equation. The

delay appears in the first-order derivative term. The proposed method is first-order

accurate. The results obtained are comparable with some of those available in the

literature.

3.1 Introduction

Boundary-value second-order delay differential-difference equations model many bio-

logical systems. According to Lange and Miura ([81]), BVPs involving a DDE are

satisfied by the moments of the time of first exit ([140]) of temporally homogeneous

Markov processes ([96]) governing such phenomena as the time between impulses of a

49
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nerve cell and the persistence times of populations with large random fluctuations.

Lange and Miura ([84]) stated that the determination of the expected time for the

generation of action potentials in nerve cells (see, e.g., [5, 149]) by random synaptic

inputs in the dendrites can be modelled as a first-exit time problem. They stated that

under particular circumstances the problem for the expected first exit-time y, given the

initial membrane potential x ∈ [x1, x2], can be formulated as a general boundary-value

problem for a second-order differential-difference equation of the form

σ2

2

d2y

dx2
+ (µ− x)

dy

dx
+ λEy(x+ aE) + λIy(x− aI)− (λE + λI)y(x) = −1, (3.1.1)

where the values x = x1 and x = x2 correspond to the inhibitory reversal potential

and to the threshold value of the membrane potential for action potential genera-

tion, respectively. The first-order term −xy′ corresponds to exponential decay between

synaptic inputs whereas the undifferentiated terms correspond to excitatory and in-

hibitory synaptic inputs modelled as Poisson processes ([79]) with mean rates λE and

λI , respectively, and produce jumps in the membrane potential of amounts aE and

−aI , which are small quantities and could depend on voltage.

The above general singularly perturbed second-order boundary value problem is

considered by Lange and Miura in [84] and studied further by Kadalbajoo et al. in [73]

and some of the references listed in [73]. Other relevant works include [81, 82, 83, 85].

The biological model stated by Lange and Miura in [84] leads us to consider a BVP

for a singularly perturbed second-order differential-difference equation ([84])

ε
d2y

dx2
+ a(x)y(x− δ) + b(x)y(x) = f(x), x ∈ [0, 1], (3.1.2)

y(θ) = ϕ(θ), θ ∈ [−δ, 0], (3.1.3)

y(1) = γ, (3.1.4)

where γ is a real constant, 0 < ε ≤ 1 is the singular perturbation parameter, the

functions a(x), b(x) and f(x) are sufficiently smooth and the initial function ϕ(x) is
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continuous.

If the shift parameter δ in (3.1.2) is taken to be zero (i.e., the case of no shift),

then the solution of the resulting non-delayed problem can exhibit either a left or a

right boundary layer depending on whether the function a(x) is positive or negative

in the interval [0, 1]. For very small values of the shift δ > 0, the solution profile can

still maintain the existing boundary layer. Once the shift parameter starts increasing,

small oscillations start appearing in the boundary layer region. After some stage when

these oscillations grow, the boundary layer is completely destroyed and oscillations

dominate throughout the region. This particular feature makes this problem more

interesting because such change in the overall dynamics cannot be resolved by many

fitted mesh methods. We overcome this difficulty by using a fitted operator method

instead.

Lange and Miura [84] reduced the DDE (3.1.2) into a system of ODEs of the form

εy′′n(x) + a(x)y′n(x) + b(x)yn(x) = f(x) + a(x)(y′n−1(x)− y′n−1(x− δ))

and used an iterative algorithm to solve the resulting problem. Their simulations show

both boundary layer behaviour (for small shifts) and oscillatory dynamics (for large

shifts).

Patidar and Sharma ([117]) considered problem (3.1.2) with small shifts. They used

a two term Taylor expansion to approximate problem (3.1.2) through a non-delayed

singularly perturbed second-order differential equation. They separated the cases of

left and right boundary layers and constructed ε-uniformly convergent fitted operator

finite difference methods for solving the approximate problem.

Rather than solving an approximate problem (the one obtained by using Taylor

expansions) as in Patidar and Sharma ([117]), we develop a numerical method that

can solve the problem (3.1.2)-(3.1.4) directly.

The rest of this chapter is organized as follows. In Section 3.2, we discuss some of

the qualitative properties of the solution of (3.1.2)-(3.1.4). The fitted operator finite
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difference method is constructed in Section 3.3. In Section 3.4, we analyze this method.

Numerical examples are presented in Section 3.5. Finally, in Section 3.6, we discuss

these numerical results.

3.2 Qualitative behaviour of the solution

In this section we review the qualitative behaviour of the solution of (3.1.2)-(3.1.4)

based on the work found in [84].

If the shift δ is taken to be zero in (3.1.2)-(3.1.4), then the resulting ordinary

differential equation will have either a boundary layer at the left side (x = 0) or a

boundary layer at the right side (x = 1), depending on whether a(x) > 0 or a(x) < 0,

respectively.

Letting the delay parameter δ taking very small values will not affect the boundary

layer initially. Then increasing the value of δ leads to the appearance of oscillations

within the boundary layer without destroying its structure. Increasing the value of δ

further, oscillations (starting from the layer side) begin to dominate until the boundary

layer is destroyed completely and they simultaneously move towards the other end.

These features have been shown via some figures in [84]. Their simulations indicate

significant effects of the delay on the first-order derivative.

Some notable observations from [84] are as follows:

1. In the case of no delay (i.e., when δ = 0) with a(x) > 0, there is a boundary layer

at x = 0, and the outer solution is given by

y(x) = γe
∫ 1
x b(t)/a(t)dt +O(ε).

The analytical solution in this case is then given by

y(x) = Γ + (φ(0)− Γ)e−a(0)x/ε +O(ε),
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where Γ = γe
∫ 1
x b(t)/a(t)dt.

2. For δ = τε where τ is a positive parameter of O(1), they assumed an outer

solution of the form

y(x) =
∞∑
j=0

yj(x)εj,

as ε→ 0, where y0 satisfies the reduced problem obtained by setting ε = 0, with

boundary condition y0(1) = γ, whereas the functions yj(x), j = 1, 2, . . . satisfy

equations of the form

εy′′j (x) + a(x)y′(x− δ) + b(x)y(x) = a(x)

j∑
k=1

(−1)k
τ k

k!
y

(k+1)
j−k (x)− y′′(x),

with boundary conditions

yj(1) = 0.

Using the change in the variables x̃ = x/ε and ỹ(x̃) = y(εx), the solution of the

transformed problem

ỹ′′ + a(εx̃)ỹ′(x̃− τ) + εb(εx̃)ỹ(x̃) = 0, 0 ≤ x̃ ≤ ∞,

can be written as

ỹ(x̃) =
∞∑
j=1

ỹj(x̃)εj,

where the smooth component ỹ0(x̃) satisfies the problem

ỹ0
′′(x̃) + ỹ0

′(x̃− τ) = 0, ỹ0(x̃) = 1 on [−τ, 0].

Integrating the above with respect to x, we obtain

ỹ′(x̃) + ỹ(x̃− τ) = ỹ′(0) + 1 = Γ,

assuming that a(0) = 1.
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The solution of the above problem is obtained by first applying the Laplace

transform, which yields

Ỹ0(s) =
1

s
+

Γ− 1

s(s+ e−τs)

and then one uses the inverse Laplace transform.

The transformed problem has infinite number of poles. One of the poles is s = 0

and the other poles are obtained by determining the roots of

P (s, τ) = s+ e−sτ = 0.

The results about the poles of P (s, τ) are summarized as follows:

(a) For τ ∈ (0, e−1), there are two distinct real roots s0 ∈ (−∞,−e) and s1 ∈

(−e,−1). When τ → 0+, then s0 → −∞ and s1 → −1, whereas when

τ > 0, all the other roots occur in complex conjugate pairs with Re(sn) ≈

(1/τ) ln (2τ/(4n− 3)π) as n→∞.

(b) For τ = e−1, the two negative roots coalesce at s1 = −e.

(c) For τ > e−1, the roots split into complex conjugate pairs, and at τ = π/2,

Re(s1) = 0.

(d) For τ > π/2, s1 and s̄1 cross the imaginary axis to the right half plane.

Then the solution obtained by the inversion of Ỹ0(s) is given by

ỹ0(x̃) = Γ + c0e
s0x̃ + c1e

s1x̃ +
∞∑
n=2

(cne
snx̃ + c̄ne

snx̃),

where

cn =
Γ− 1

sn(1 + τsn)
, n = 0, 1, . . . .

From the natures of the poles of the transformed problem, Lange and Miura [84]

concluded that

 

 

 

 



CHAPTER 3. AN EFFICIENT FITTED OPERATOR METHOD TO SOLVE
DELAYED SINGULARLY PERTURBED DIFFERENTIAL DIFFERENCE
EQUATION 55

(a) for τ ∈ (0, e−1), the roots s0 and s1 are real and distinct, and

ỹ0(x̃) ≈ Γ + c0e
s0x̃ + c1e

s1x̃, x̃→∞, ε→ 0,

is an accurate numerical approximation for the boundary layer solution ỹ(x̃).

(b) for τ > e−1, s0 and s1 are complex conjugates, and c0 and s0 are replaced

by c̄1 and s̄1.

(c) the leading order layer solution neither depends on the function b(x) nor on

the function f(x), except through Γ.

The qualitative information described above will be useful for verification of the nu-

merical results that we obtain by the fitted method presented in next section.

3.3 Construction of the numerical method

In this section we design a fitted numerical method to solve the problem (3.1.2)-(3.1.4).

To begin with, we partition the interval [0, 1] through the points

x0 = 0 < x1 < . . . < xN = 1,

where N is a positive integer and xm+1 − xm = h = 1/N for m = 0, . . . , N − 1.

The value of N is chosen in such a way that δ = sh for some positive integer s. This

will make it possible for the shift parameter δ to coincide with the grid point xs. This

in line with most of the works seen in the literature (see, e.g., [29, 32, 133]) for this

kind of problem where either the length of the interval is considered as the multiple of

the delay parameter or both the interval length and the delay are integer multiples of

the step-size h.

Using the theory of difference equations (see, e.g., [87, 116]), the appropriate de-
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nominator function (φ2
m) in the discretization of (3.1.2)-(3.1.4) can be considered as

φ2
m =



hε
am

(
e
ham
ε − 1

)
, if am < 0,

hε
am

(
1− e−hamε

)
, if am > 0,

4
ρ2m

sinh2 ρmh
2
, if am = 0 and bm > 0,

4
ρ2m

sin2 ρmh
2
, if am = 0 and bm < 0,

(3.3.1)

where

ρm =

√
bm
ε
.

At the grid points xm, the second-order derivative term in equation (3.1.2) is ap-

proximated as
d2y

dx2

∣∣∣∣
x=xm

≈ ym+1 − 2ym + ym−1

φ2
m

.

Similarly, the first-order term involving delay is approximated at xm − δ as

dy

dx

∣∣∣∣
x=xm−δ

≈ y(xm+1 − δ)− y(xm − δ)
h

.

Using the above approximations, we obtain the following difference method for

(3.1.2):

ε
ym+1 − 2ym + ym−1

φ2
m

+ am
y(xm+1 − δ)− y(xm − δ)

h
+ bmym = fm, (3.3.2)

m = 1, . . . , N − 1.

Equation (3.3.2) can be further simplified to

ε

φ2
m

ym−1 −
2ε

φ2
m

ym +
ε

φ2
m

ym+1 +
am
h
y(xm+1 − xs)−

am
h
y(xm − xs) = fm, (3.3.3)
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m = 1, . . . , N−1

For m ≤ s, the delayed term y(xm − δ) is evaluated from the history function as

y(xm − δ) = ϕ(xm − δ) = ϕ(xm − xs),

and therefore, equation (3.3.3) becomes

ε

φ2
m

ym−1 −
2ε

φ2
m

ym +
ε

φ2
m

ym+1 = fm −
am
h
ϕ(xm+1 − xs)−

am
h
ϕ(xm − xs), (3.3.4)

when m < s, whereas when m = s, we have

ε

φ2
s

ys−1 −
2ε

φ2
s

ys +
ε

φ2
s

ys+1 +
as+1

h
y1 = fs −

as
h
ϕ(0). (3.3.5)

For m = s+ 1, . . . , N − 1, equation (3.3.3) takes the form

ε

φ2
m

ym−1 −
2ε

φ2
m

ym +
ε

φ2
m

ym+1 +
am
h
y(xm+1−s)−

am
h
y(xm−s) = f(xm). (3.3.6)

Our fitted operator finite difference method consists of equation (3.3.3) along with

the initial data (3.1.3) and the boundary condition (3.1.4).

Combining (3.3.4), (3.3.5) and (3.3.6), we obtain a linear system

AY = F,
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where A is the (N − 1)× (N − 1) matrix

Aj,k =



− 2ε
φ2
m

+ bm, if j = k = m, m = 1, . . . , N − 1

ε
φ2
m−1

if j = m− 1, k = m, m = 2, . . . , N − 1

ε
φ2
m
, if j = m, k = m− 1, m = 2, . . . , N − 1

as
h
, if j = s and k = 1

−am
h
, if j = m− s, k = m, m > s

am
h
, if j = m− s+ 1, k = m, m > s

0, otherwise.

The N − 1 entries of the right hand side vector F are given by

Fm =



f(x1)− ε
φ2

1
y(x0)− a1

h
(ϕ(x2 − δ)− ϕ(x1 − δ)), if m = 1,

fm − am
h

(ϕ(xm+1 − δ)− ϕ(xm − δ)) if 1 < m < s,

fs + as
h
y0, if m = s,

fm, if s < m < N − 1,

fN−1 − ε
φ2
N−1

γ, if m = N − 1,

and Y denotes the vector [y1, . . . , yN−1]T of unknowns.

 

 

 

 



CHAPTER 3. AN EFFICIENT FITTED OPERATOR METHOD TO SOLVE
DELAYED SINGULARLY PERTURBED DIFFERENTIAL DIFFERENCE
EQUATION 59

3.4 Analysis of the numerical method

In this section we analyze the proposed fitted method. We will consider the case of large

delays that are sufficient to destroy the boundary layer. In this case, highly oscillatory

solutions will be obtained. Therefore, we assume that the solution function y(x) and

its derivatives up to order three are bounded by a constant C, which is independent

of ε. On the other hand, the cases of the small delays have already been analyzed by

other researchers in the past, see, e.g., [73], where due to the smallness of the delay,

the differential equation (obtained via Taylor approximations) was still a very good

approximation to the problem (3.1.2)-(3.1.4).

Convergence of the method:

The local truncation error of the method at x = xm is given by

LTE = ε

(
y′′(xm)− y(xm+1)− 2y(xm) + y(xm−1)

φ2
m

)
+am

(
y′(xm − δ)−

y(xm+1 − δ)− y(xm − δ)
h

)
, (3.4.1)

which implies that

|LTE| ≤ ε

∣∣∣∣y′′(xm)− y(xm + h)− 2y(xm) + y(xm − h)

φ2
m

∣∣∣∣
+|am|

∣∣∣∣y′(xm − δ)− y(xm+1 − δ)− y(xm − δ)
h

∣∣∣∣ . (3.4.2)

The first term on the right hand side of the inequality (3.4.2) can be replaced by

ε

(
y′′(xm)− y(xm+1)− 2y(xm) + y(xm−1)

h2

)
+ε

(
y(xm+1)− 2y(xm) + y(xm−1)

h2
− y(xm+1)− 2y(xm) + y(xm−1)

φ2
m

)
. (3.4.3)
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This gives

ε

∣∣∣∣y′′(xm)− y(xm+1)− 2y(xm) + y(xm−1)

h2

∣∣∣∣ = O(h2)→ 0 as h→ 0

Moreover, by expanding φ2
m, we see that

ε

∣∣∣∣y(xm+1)− 2y(xm) + y(xm−1)

h2
− y(xm+1)− 2y(xm) + y(xm−1)

φ2
m

∣∣∣∣
≤

εO(h
ε
)

1 +O(h
ε
)
→ 0 as h→ 0,

provided that h ≤ Cδ, where C ∈ (0, 1] is a constant.

The second term on the right hand side of the inequality (3.4.2) satisfies

|am|
∣∣∣∣y′(xm − δ)− y(xm+1 − δ)− y(xm − δ)

h

∣∣∣∣ ≤ |am|O(h)→ 0 as h→ 0.

Hence, the LTE is O(h) and it tends to zero as h → 0 and h ≤ Cδ, which proves

that the method is convergent of order 1.

Remark 3.4.1 In order to accommodate all the delays, it is reasonable to choose the

step-size to be of the magnitude of δ. Hence, the condition h ≤ Cδ for the convergence

is logically very appropriate.

Stability of the method:

The stability of the fitted method depends on the eigenvalues of the matrix A denoted

by λm, m = 1, . . . , N − 1. If for all m = 1, . . . , N − 1, the eigenvalues of A−1 denoted

by λ−1
m satisfy

|λ−1
m | < 1,

then the method will be stable. We would like to determine the conditions on the

step-size h, under which the proposed fitted method is stable.

To do so, we make use of the Gershgorin’s disk theorem ([61]), which states that
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each eigenvalue λm of the matrix A should lie in a Gershgorin’s disk (denoted by Dm),

which is centered at bm − 2ε/φ2
m and has a radius equals to the magnitude of the

summation of the non-diagonal elements in row m. Our strategy here is to consider

each Gershgorin’s disk Dm, and let the whole disk lies in (−∞,−1) one time and lies

in (1,∞) another time and for each of the two cases we determine the range for the

step-size h which allow the disk to lie in the corresponding region. This is done by

allowing both the left and right bounds of the disk to lie together either in (−∞,−1)

or in (1,∞).

For m = 1, . . . , s − 1, each Gershgorin’s disk is centered at bm − 2ε/φ2
m and has a

radius 2ε/φ2
m, that is

Dm =

[
bm −

4ε

φ2
m

, bm

]
.

Then, |λ−1
m | < 1 if |λm| > 1 and this will happen only if both the limits of Dm are

below −1 or both are above 1.

If we solve the two inequalities

bm < −1

and

bm −
4ε

φ2
m

< −1,

we obtain

h <
ε

am
W

(
4a2

m

bm + 1

)
, for am > 0

and

h <
2a2

m

bm + 1
, for am < 0,

where W (x) denotes the Lambert W function evaluated at x.
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On the other hand, if we solve the two inequalities

bm > 1

and

bm −
4ε

φ2
m

> 1,

we obtain

h <
ε

am
W

(
4a2

m

bm − 1

)
, for am > 0

and

h <
2a2

m

bm − 1
, for am < 0.

The Gershgorin’s disk Ds is given by

Ds =

[
bs −

4ε

φ2
m

− as+1

h
, bm +

as+1

h

]

and again |λs| > 1 only if both the limits of Ds are below −1 or both are above 1.

The solution of the inequalities

bs −
4ε

φ2
m

− as+1

h
< −1

and

bm +
as+1

h
< −1,
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leads to

h <
ε

as
W

(
4a2

s

bs + 1

)
, for as > 0

and

h <
2a2

s

bs + 1
, for as < 0,

whereas the solution of the inequalities

bs −
4ε

φ2
m

− as+1

h
> 1

and

bm +
as+1

h
> 1,

leads to

h <
ε

as
W

(
4a2

s

bs − 1

)
, for as > 0

and

h <
2a2

s

bs − 1
, for as < 0.

Similarly, for m = s+ 1, . . . , N − 1, the Gershgorin’s disks are given by

Dm =

[
bm −

4ε

φ2
m

−
(am+1

h
− am

h

)
, bm +

(am+1

h
− am

h

)]
,

and the eigenvalues λm in this case satisfy |λm| > 1 only if both the limits of Dm are

below −1 or both are above 1.
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By solving the inequalities

bm −
4ε

φ2
m

−
(am+1

h
− am

h

)
< −1

and

bm +
(am+1

h
− am

h

)
< −1,

we obtain

h <
ε

am
W

(
4a2

m

bm + 1

)
, for am > 0

and

h <
2a2

m

bm + 1
, for am < 0.

On the other hand, if we solve the two inequalities

bm −
4ε

φ2
m

−
(am+1

h
− am

h

)
> 1

and

bm +
(am+1

h
− am

h

)
> 1,

we obtain

h <
ε

am
W

(
4a2

m

bm − 1

)
, for am > 0

and

h <
2a2

m

bm − 1
, for am < 0.
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The above condition on h guarantee the stability of the method. It should be noted

that due to the nature of the coefficients, none of the above conditions seem to be

severe.

3.5 Numerical results

Example 3.5.1 [84] We consider (3.1.2)-(3.1.4) with a(x) = b(x) = ϕ(x) = γ = 1,

f(x) = 0. and ε = 0.01.

Example 3.5.2 [84] We consider (3.1.2)-(3.1.4) with ϕ(x) = 1, a(x) = b(x) = γ = −1

and f(x) = 0.

In Figure 3.5.1 we plot the solutions for Example 3.5.1 corresponding to different

values of the delay. These plots show different dynamics: left boundary layers, oscilla-

tions on the layer side and movement of the oscillations to the other side. In Figure

3.5.2 we plot the solutions for Example 3.5.2 for different values of δ. These plots also

show different behaviour for the solution of the system, including smooth and oscilla-

tory behaviour. These numerical results confirm the observations made earlier about

the qualitative behaviour of the solution.

3.6 Discussion

In this chapter, we have developed a fitted numerical method for solving a second-order

delay differential equation with a delay involved in the first-order derivative term. The

method is shown to be stable and convergent of order 1.

By applying the fitted method to Example 3.5.1 we noticed that for very small

values of the delay δ (up to δ = 0.5ε), the left boundary layer is maintained. When the

delay is more than 0.5ε but remains below δ = 1.1ε, oscillations within the boundary

layer are seen while the layer structure is still being maintained. For delays that are

greater than 1.1ε, oscillations begin to dominate in the boundary layer region and
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Figure 3.5.1: Solution for Example 3.5.1, with a(x) = b(x) = ϕ(x) = γ = 1 and
f(x) = 0.
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Figure 3.5.2: Solution for Example 3.5.2, ϕ(x) = 1, a(x) = b(x) = γ = −1 and
f(x) = 0.
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the shape of the boundary layer is completely destroyed when the value of the delay

parameter reaches 1.5ε. At around δ = 1.6ε oscillations profile is the same on the left

and right sides. After that the oscillations become weaker on the left side compared to

the right side, their magnitudes on the right side grow rapidly by increasing the value

of the delay. The profile remains like that for the rest of the values of the delay. It

should be noted that the results which we obtain by our fitted numerical method for

this example agree with those found in [84].

The solutions for Example 3.5.2 are explained in Figure 3.5.2. Again we see the

movement from very smooth profiles corresponding to very small delays to oscillatory

profiles with small oscillations to oscillatory dynamics.

The condition that the step-size must be below the singular perturbation parameter

looks very severe, but the fact that the delay and the singular perturbation parameter

are of similar order shows that this condition is reasonable. This is not surprising since

even the MATLAB dde23 solver has been designed to include the time delay δ, 2δ and

3δ on the mesh in order for dde23 to not avoid step-sizes smaller than or equal to δ.

 

 

 

 



Chapter 4

Fitted Methods for Singularly

Perturbed Delay Parabolic Partial

Differential Equations

In this chapter, we develop reliable numerical methods for solving a class of singularly

perturbed delay parabolic partial differential equation (SPDPPDE). We consider both

fitted mesh and fitted operator numerical methods for solving these problems.

4.1 Introduction

We consider a singularly perturbed delay parabolic partial differential equation (SPDP-

PDE) of the form

∂u(t, x)

∂t
− ε∂

2u(t, x)

∂x2
+ a(t, x)u(t, x) = f(t, x)− b(x)u(t− τ, x), (4.1.1)

(t, x) ∈ Ω ≡ [0, T ]× [0, 1],

with the initial data

u(t, x) = u0(t, x), (t, x) ∈ [−τ, 0]× (0, 1) (4.1.2)
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and boundary conditions

u(t, x) = ΓL(t), (t, x) ∈ ΠL (4.1.3)

and

u(t, x) = ΓR(t), (t, x) ∈ ΠR, (4.1.4)

where 0 < ε ≤ 1 is the singular perturbation parameter and τ > 0 is the delay

parameter. The functions a(t, x) ≥ 0, b(t, x) ≥ β ≥ 0, f(t, x), u0(t, x), ΓL(t) and ΓR(t)

are bounded and sufficiently smooth functions and ΠL and ΠR denote [0, T ] × {0}

and [0, T ]× {1}, respectively, are the left and right boundaries of the domain Ω. The

terminal time T > 0 is assumed to satisfy T = Kτ where K is a positive integer,

whereas the initial function u0(t, x) is assumed to satisfy the compatibility conditions

[122]:

u0(0, 0) = ΓL(0),

u0(0, 1) = ΓR(0),

∂u0(0, 0)

∂t
= ε

∂2u0(0, 0)

∂x2
− b(0)u(−τ, 0) + f(0, 0),

and

∂u0(0, 1)

∂t
= ε

∂2u0(0, 1)

∂x2
− b(1)u(−τ, 1) + f(0, 1).

Under the above assumptions and conditions, problem (4.1.1) with the initial data

(4.1.2) and the boundary conditions (4.1.3) and (4.1.4) has a unique solution [1].

Singularly perturbed parabolic partial differential equations (SPPPDEs) model a

wide range of real life phenomena. In biology many singularly perturbed diffusive

models have been established to describe the dynamics of some biological systems.

The smallness of the diffusion parameter is found in many real life applications, see, for

example, Murray [110], in which he pointed out that in blood, haemoglobin molecules

have a diffusion coefficient of the order of 10−7cm2sec−1 while that for oxygen in blood

is of the order of 10−5cm2sec−1. As indicated in [1], the dynamics of the solutions of

these SPPPDEs are far different than those of the solutions of the SPDPPDEs. A lot
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of work exists regarding singularly perturbed partial differential equations (SPPDEs),

see, e.g., Cheng and Jia-qi [25], Burie et al. [18], Murray [110], Roos et al. [124] and the

references therein. However, to the best of our knowledge, except the work of Ansari

et al. [1] not much work has been done to solve SPDPPDE.

Nowadays, both fitted operator finite difference methods (FOFDMs) and fitted

mesh finite difference methods (FMFDMs) are widely being used for singularly per-

turbed problems.

The basic idea behind the FOFDMs is to replace the denominator functions of the

classical derivatives with positive functions derived in such a way that they capture

some notable properties of the governing differential equation and hence provide reliable

numerical results [116]. FOFDMs thus obtained are very stable for all the finite values

of step-sizes [114].

While FOFDMs can provide a difference operator that reflects the dynamics of

the solution on a uniform mesh, they sometimes suffer from the drawback that their

construction is not always straightforward. In fact not many FOFDMs which are

constructed for singularly perturbed two-point boundary value problems can easily be

extended for singularly perturbed PDEs. The FMFDMs on the other hand are getting

popularity because of their ease in the construction for multi-dimensional problems.

Therefore, in this chapter, we design and analyze a FMFDM for a SPDPPDE described

in (4.1.1)-(4.1.4). This problem has been solved earlier by Ansari et al. in [1]. Unlike

the work in [1], the proposed approach has better convergence properties. Moreover,

by adding some novel proofs for the a priori estimates, we strengthen the mathematical

theory related to such problems.

The rest of the chapter is organized as follows. In Section 4.2, we derive estimates

for the bounds on the solution u(t, x) and its derivatives. Section 4.3 deals with the

construction and analysis of the FMFDM whereas the same for the FOFDM is given

in Section 4.4. In Section 4.5, we illustrate the performance of these methods through

a test example. These results are discussed in Section 4.6 where we also provide some

concluding remarks and scope for future work.
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4.2 Qualitative properties of the solution

In this section we find estimates for the bounds on the solution u(t, x) and its partial

derivatives using the method of steps [9].

Let us assume that the function u(t, x) ∈ C3+α,4+β(Ω) where 0 < α, β < 1.

Let T` = [(`− 1)τ, `τ ] and let Ω` = T`× (0, 1) for ` = 0, . . . , K. Also, let u`(t, x) be

the restriction of u(t, x) on Ω`, that is,

u`(t, x) = u(t, x)|(t,x)∈Ω`
, ` = 1, . . . , K.

Let (ΠL)` and (ΠR)` be the sets T` × {0} and T` × {1}, respectively, and let ∂Ω` =

{(`− 1)τ} × [0, 1].

In Ω` problem (4.1.1)-(4.1.4) is transformed to a sequence of K singularly-perturbed

parabolic partial differential equations given by

∂u`(t, x)

∂t
− ε∂

2u`(t, x)

∂x2
+ a`(t, x)u`(t, x) = f`(t, x)− b(x)uτ,`(t, x), (t, x) ∈ Ω`, (4.2.1)

with the initial condition

u`((`− 1)τ, x) = u`−1((`− 1)τ, x), x ∈ [0, 1] (4.2.2)

and boundary conditions

u`(t, 0) = ΓL(t), t ∈ T` (4.2.3)

and

u`(t, 1) = ΓR(t), t ∈ T`, (4.2.4)

for ` = 1, . . . , K.

The function uτ,`(t, x) is given by

uτ,`(t, x) = u`−1(t− τ, x), for (t, x) ∈ Ω`.
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In the presentation below, C` and C will denote positive constants that are always

independent of ε (and the mesh step sizes used in the later sections).

The following lemma presents bounds on the solution function u(t, x):

Lemma 4.2.1 If the initial function u0(t, x) is bounded by a constant at t = 0, then

there exists a positive constant C such that |u(t, x)| ≤ C for all (t, x) ∈ Ω.

Proof. The solution function u(t, x) satisfies the compatibility conditions at the two

corners (0, 0) and (0, 1), so does the function u1(t, x). This guarantees that

|u1(t, x)− u0(0, x)| ≤M1t,

where M1 is a positive constant that is independent of ε. Hence,

|u1(t, x)| − |u0(0, x)| ≤ |u1(t, x)− u0(0, x)| ≤M1t ≤M1τ ⇒ |u1(t, x)| ≤ C1,

where C1 is a constant. This proves that u1(t, x) is bounded by C1 in Ω1.

In Ω`, ` = 2, . . . , K, the continuity of u(t, x) implies that

u`((`− 1)τ, x) = u`−1((`− 1)τ, x), x ∈ [0, 1].

Then by using a similar argument as the above, we have

|u`(t, x)| ≤ C`, ` = 1, . . . , K.

Let C = max
`
{C`}, ` = 1, . . . , K, then

|u(t, x)| ≤ C,

which completes the proof.

�

 

 

 

 



CHAPTER 4. FITTED METHODS FOR SINGULARLY PERTURBED DELAY
PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS 74

Now, we prove that problem (4.1.1)-(4.1.4) satisfies a continuous maximum principle.

Lemma 4.2.2 (Continuous Maximum principle) Let Φ(t, x) be a sufficiently smooth

function satisfying Φ(t, x) ≥ 0 on ∂Ω, then LεΦ(t, x) ≥ 0 in Ω implies Φ(t, x) ≥ 0 for

all (t, x) ∈ Ω.

Proof. To begin with, let us define the differential operator Lε in (4.1.1) by

Lε ≡
∂

∂t
− ε ∂

2

∂x2
+ a(t, x).

First we prove that the lemma is satisfied in Ω1 and then we generalize the proof for

Ω`.

In Ω1, we assume that the function Φ(t, x) takes its minimum value at a point

(t∗1, x
∗
1) and this minimum is negative, i.e.,

Φ(t∗1, x
∗
1) = min

(t,x)∈Ω1

Φ(t, x) < 0,

then
∂Φ(t∗1, x

∗
1)

∂t
=
∂Φ(t∗1, x

∗
1)

∂x
= 0 and

∂2Φ(t∗1, x
∗
1)

∂x2
> 0.

Hence,

LεΦ(t∗1, x
∗
1) = −εΦxx(t

∗
1, x
∗
1) + a(t∗1, x

∗
1)Φ(t∗1, x

∗
1) < 0,

which is a contradiction and therefore,

Φ(t, x) ≥ 0 for all (t, x) ∈ Ω1.

This implies that Φ(τ, x) ≥ 0.

Similarly, by using the result Φ(τ, x) ≥ 0 along with Φ(t, 0) ≥ 0, Φ(t, 1) ≥ 0, t ∈ T2

and LεΦ(t, x) ≥ 0 ∈ Ω2 we obtain

Φ(t, x) ≥ 0 for all (t, x) ∈ Ω2,
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and in general, given that Φ((`− 1)τ, x) ≥ 0 along with Φ(t, 0) ≥ 0, Φ(t, 1) ≥ 0, t ∈ T`
and LεΦ(t, x) ≥ 0 in Ω` gives the result that

Φ(t, x) ≥ 0 for all (t, x) ∈ Ω`.

Proceeding in this manner, finally we get that

Φ(t, x) ≥ 0 for all (t, x) ∈ ∪K`=1Ω` = Ω.

�

The following theorem gives the bounds on the derivatives of the solution.

Theorem 4.2.1 Let b(x) ∈ C4+β([0, 1]), f(t, x) ∈ C3+α,4+β(Ω), u0(t, x) ∈ C3+α,4+β(Ω),

ΓL, ΓR ∈ C3+α([0, T ]) and u(t, x) ∈ C3,4(Ω), where α, β ∈ (0, 1). Then, we have∣∣∣∣∂i+ju(t, x)

∂ti∂xj

∣∣∣∣ ≤ C
(

1 + ε1−j/2 + ε−j/2
(
e−x/

√
ε + e−(1−x)/

√
ε
))

, (4.2.5)

for all the integers i and j such that 0 ≤ 2i+ j ≤ 6.

Proof. To find estimates for the bounds on the solution function u(t, x) and its partial

derivatives, we consider the stretched variable x̃ = x/
√
ε which transforms problem

(4.1.1)-(4.1.4) into the following delayed parabolic partial differential equation

∂ũ

∂t
− ∂ũ

∂x̃2
+ ã(t, x̃)ũ = f̃ − b̃(x̃)ũ(t− τ, x̃) (4.2.6)

(t, x̃) ∈ Ω̃ = [0, T ]× [0, 1/
√
ε],

with the initial data

ũ(t, x̃) = u0(t, x̃), (t, x̃) ∈ [−τ, 0]×
[
0,

1√
ε

]
(4.2.7)

and boundary conditions

ũ(t, 0) = ΓL(t) (4.2.8)
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and

ũ

(
t,

1√
ε

)
= ΓR(t) (4.2.9)

which by the method of steps can be transformed to a sequence of K parabolic partial

differential equations of the form

∂ũ`
∂t
− ∂ũ`
∂x̃2

+ ã(t, x̃)ũ` = f̃` − b̃(x̃)ũ`(t− τ, x̃) (4.2.10)

(t, x̃) ∈ Ω̃` ≡ T` ×
[
0,

1√
ε

]
,

with the initial data

ũ`(t− τ, x̃) = ũ`−1(t− τ, x̃), (t, x̃) ∈ T` ×
[
0,

1√
ε

]
(4.2.11)

and boundary conditions

ũ`(t, 0) = ΓL(t), t ∈ T` (4.2.12)

and

ũ`

(
t,

1√
ε

)
= ΓR(t), t ∈ T`, (4.2.13)

for ` = 1, . . . , K.

As is mentioned in [107] that problem (4.2.10)-(4.2.13) defined on Ω̃` is independent

of ε, hence, the solution ũ`(t, x̃) and its partial derivatives with respect to both t and

x̃ must satisfy ∣∣∣∣∂i+jũ`(t, x̃)

∂ti∂x̃j

∣∣∣∣ ≤ C̃`, (4.2.14)

for all the non-negative integers i and j such that 2i+j ≤ 6. In terms of the upstretched

variable, (4.2.14) is reduced to∣∣∣∣∂i+ju`(t, x)

∂ti∂xj

∣∣∣∣ ≤ C`ε
−j/2, 0 ≤ 2i+ j ≤ 6. (4.2.15)
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This implies that ∣∣∣∣∂i+ju(t, x̃)

∂ti∂xj

∣∣∣∣ ≤ Cε−j/2,

for all the non-negative integers i and j such that 2i+ j ≤ 6.

The above bounds do not show the explicit dependence on the boundary layer solu-

tions. Therefore, to obtain stronger estimates for the bounds on the solution function

u(t, x) and its partial derivatives, we use the standard approaches, e.g., those given in

[106, 107] for singular perturbation problems.

We decompose the solution u(t, x) into its smooth and singular components v(t, x)

and w(t, x) respectively, that is,

u(t, x) = v(t, x) + w(t, x),

where the function v(t, x) satisfies

∂v(t, x)

∂t
− ε

∂2v(t, x)

∂x2
= f(t, x)− b(x)v(t− τ, x), (t, x) ∈ Ω, (4.2.16)

v(0, x) = u0(0, x), x ∈ (0, 1), (4.2.17)

and the values of the function v(t, x) at x = 0 and x = 1 are to be specified later

such that the bounds on the first two partial derivatives of v with respect to x are

independent of ε. The two terms asymptotic expansion for the smooth component

v(t, x) is

v(t, x) = v0(t, x) + εv1(t, x),

where the function v0(t, x) satisfies the reduced problem

∂v0(t, x)

∂t
= f(t, x)− b(x)v0(t− τ, x), (t, x) ∈ Ω, (4.2.18)

v0(0, x) = u0(0, x), x ∈ (0, 1), (4.2.19)
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whereas the function v1(t, x) satisfies

∂v1(t, x)

∂t
− ε

∂2v1(t, x)

∂x2
= −b(x)v1(t− τ, x) +

∂2v0(t, x)

∂x2
, (t, x) ∈ Ω

v1(t, x) = 0, for (t, x) ∈ ∂Ω.

On the other hand, the singular component w(t, x) solves the problem

∂w(t, x)

∂t
− ε

∂2w(t, x)

∂x2
= −b(x)w(t− τ, x), (t, x) ∈ Ω (4.2.20)

w(0, x) = 0, (4.2.21)

w(t, 0) = u(t, 0)− v(t, 0), (4.2.22)

w(t, 1) = u(t, 1)− v(t, 1) (4.2.23)

and is further decomposed into the left boundary layer solution wL(t, x) and the right

boundary layer solution wR(t, x) respectively. The component wL satisfies

∂wL(t, x)

∂t
− ε

∂2wL(t, x)

∂x2
= −b(x)wL(t− τ, x), (t, x) ∈ Ω, (4.2.24)

wL(t, x) = 0, for (t, x) ∈ [−τ, 0]× [0, 1], (4.2.25)

wL(t, 0) = ΓL(t)− v0(t, 0), for (t, x) ∈ [0, T ]× {0}, (4.2.26)

wL(t, 1) = 0, for t ∈ ([0, T ] (4.2.27)

and the component wR satisfies

∂wR(t, x)

∂t
− ε

∂2wR(t, x)

∂x2
= −b(x)wR(t− τ, x), (t, x) ∈ Ω, (4.2.28)

wR(t, x) = 0, for (t, x) ∈ [−τ, 0]× [0, 1], (4.2.29)

wR(t, 0) = 0, for (t, x) ∈ ([0, T ], (4.2.30)

wR(t, 1) = ΓR(t)− v0(t, 1), for (t, x) ∈ [0, T ]× {1}. (4.2.31)

We find estimates for each component that belongs to either the smooth component

v or the singular component w.
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The method of steps applied in this case, suggests that the function v0(t, x) should

be written as a union of functions (v0)`(t, x) each defined on Ω` and satisfies a problem

of the form

∂(v0)`(t, x)

∂t
= f`(t, x)− b(x)(v0)`(t− τ, x), (v0)0(0, x) = u0(0, x), (t, x) ∈ Ω`.

Since each function (v0)` is independent of ε, then for some constant C` the following

estimate is satisfied ∣∣∣∣∂i+j(v0)`
∂ti∂xj

∣∣∣∣ ≤ C`.

By taking C = max
`
{C`}, ` = 1, . . . , K, the following estimates for the bounds on

v0(t, x) and its partial derivatives are obtained∣∣∣∣∂i+jv0

∂ti∂xj

∣∣∣∣ ≤ C, (4.2.32)

for all the integers i and j such that 0 ≤ 2i+ j ≤ 6.

Using the above procedure and the fact that the equation in v1(t, x) has the same

form as that for u(t, x), we obtain ∣∣∣∣∂i+jv1

∂ti∂xj

∣∣∣∣ ≤ Cε−
j
2 . (4.2.33)

By using the estimates (4.2.32) and (4.2.33), we prove the following lemma.

Lemma 4.2.3 The partial derivatives of v(t, x) satisfy∣∣∣∣ ∂i+jv∂ti∂xj

∣∣∣∣ ≤ C
(

1 + ε1− j
2

)
. (4.2.34)

for all the integers i and j such that 0 ≤ 2i+ j ≤ 6.

In the following two lemmas we give bounds on wL(t, x) and wR(t, x). Proof of

which follows the barrier function approach described in [13] and [77].
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�

Lemma 4.2.4 The partial derivatives of wL(t, x) satisfy∣∣∣∣∂i+jwL∂ti∂xj

∣∣∣∣ ≤ Cε−
j
2 e
− x√

ε , (t, x) ∈ Ω. (4.2.35)

for all the integers i and j such that 0 ≤ 2i+ j ≤ 6.

Proof. We transform problem (4.2.24)-(4.2.27) to a sequence ofK singularly perturbed

parabolic partial differential equations of the form

∂(wL)`(t, x)

∂t
− ε

∂2(wL)`(t, x)

∂x2
= −b(x)(wL)`(t− τ, x), (t, x) ∈ Ω`, (4.2.36)

(wL)`(t, 0) = ΓL(t)− (v0)`(t, 0), for (t, x) ∈ T` × {0}, (4.2.37)

(wL)`(t, x) = 0, for (t, x) ∈ (T` × {1}) ∪ ({0} × [0, 1]). (4.2.38)

In each Ω` we define a barrier function

Φ±` (t, x) = C`e
− x√

ε ± (wL)`(t, x).

It is clear that Φ±` (t, x) ≥ 0 for all (t, x) ∈ ∂Ω` and is satisfying

LεΦ
±
` (t, x) ≥ 0,

for all (t, x) ∈ Ω`. Then by Lemma 4.2.2, we have

Φ±` (t, x) ≥ 0, for all (t, x) ∈ Ω`,

which implies that

|(wL)`(t, x)| ≤ C`e
− x√

ε , (t, x) ∈ Ω`.
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By taking C = max
`
{C`}, ` = 1, . . . , K we obtain the estimates

|wL(t, x)| ≤ Ce
− x√

ε , (t, x) ∈ Ω. (4.2.39)

Now the problem in wL also satisfies a continuous maximum principle and therefore,

by using the transformation x̃ = x/
√
ε for problem (4.2.36)-(4.2.38) and the same

technique that was used for finding bounds on the transformed problem (4.2.6)-(4.2.9),

we obtain ∣∣∣∣∂i+jwL∂ti∂xj

∣∣∣∣ ≤ C |wL(t, x)| ≤ Cε−
j
2 e
− x√

ε . (4.2.40)

�

Lemma 4.2.5 The partial derivatives of wL(t, x) satisfy∣∣∣∣∂i+jwR∂ti∂xj

∣∣∣∣ ≤ Cε−
j
2 e
− 1−x√

ε , (t, x) ∈ Ω, (4.2.41)

for all the integers i and j such that 0 ≤ 2i+ j ≤ 6.

Proof. Analogous to the proof of Lemma 4.2.4.

From the two lemmas 4.2.4 and 4.2.5 we see that

Lemma 4.2.6 The partial derivatives of w(t, x) satisfy∣∣∣∣ ∂i+jw∂ti∂xj

∣∣∣∣ ≤ Cε−
j
2

(
e
− x√

ε + e
− 1−x√

ε

)
, (t, x) ∈ Ω. (4.2.42)

for all the integers i and j such that 0 ≤ 2i+ j ≤ 6.

Proof. The proof is accomplished by using the decomposition w = wL + wR and the

estimates (4.2.35) and (4.2.41).

Finally, the proof of the theorem is completed by using the estimates in Lemma

4.2.3 and 4.2.6.

�
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The above bounds on the solution will be used later in the analysis of the numerical

method.

4.3 A fitted mesh finite difference method

In this section we develop a numerical method for solving a singularly perturbed de-

lay parabolic partial differential equation. The proposed method consists of Crank-

Nicolson finite difference method constructed on a mesh of Shishkin type and hence

referred to as a fitted mesh finite difference method. We analyse the method for sta-

bility and convergence and found that it is unconditionally stable and converges with

order O
(
N−2
t +N−2

x ln2Nx

)
where Nt and Nx are the numbers of subintervals in the t

and x directions, respectively.

4.3.1 Construction of the method

Let Nx be a positive integer and let

σ = min{0.25, 2
√
ε lnNx}

be the transition point. Let Nσ
x = Nx/4. To generate the Shishkin mesh we divide

each of the subintervals [0, σ] and [1 − σ, 1] into Nσ
x subintervals through the points

x0, . . . , xNσ
x

and x3Nσ
x
, . . . , xNx , respectively, whereas the subinterval [σ, 1−σ] is divided

into 2Nσ
x subintervals through the points xNσ

x
, . . . , x3Nσ

x
. The associated step-size hm =

xm+1 − xm is then given by

hm =



4σ/Nx, if m ∈ {0, . . . , Nσ
x − 1}

2(1− 2σ)/Nx, if m ∈ {Nσ
x , . . . , 3N

σ
x }

4σ/Nx, if m ∈ {3Nσ
x + 1, . . . , Nx}.
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Let Nt be any positive integer and k = T/Nt. We divide the interval [0, T ] into Nt

subintervals through the points t0 = 0, . . . , tNt = T where tn+1 = tn + k. We assume

that T = Kτ for some positive integer K and that Nt is chosen in such a way that

τ = ts = sk for some positive integer s.

Let ΩNt denote {tn : n = 0, . . . , Nt}, ΩNx
σ denote {xm : m = 0, . . . , Nx}, where

Nx ≥ 4 and N denotes (Nt, Nx), then the fitted piecewise uniform mesh ΩN
σ is given

by the following tensor product grid

ΩN
σ = ΩNt × ΩNx

σ .

Let Un
m be the numerical approximation of u(tn, xm), D+

x U
n
m, D−x U

n
m and δ2

x be the

forward, backward and central difference operators defined as

D+
x U

n
m =

Un
m+1 − Un

m

xm+1 − xm
,

D−x U
n
m =

Un
m − Un

m−1

xm − xm−1

and

δ2
xU

n
m =

(D+
x −D−x )Un

m

xm+1 − xm−1

.

Furthermore, the approximations of the functions a(t, x) and f(t, x) at a local grid

point (tn, xm) are denoted by anm and fnm, respectively, whereas the value of the function

b(x) at xm is denoted by bm.

Our fitted mesh finite difference method (FMFDM) then consists of the Crank-

Nicolson discretization for problem (4.1.1)-(4.1.4) on the Shishkin mesh (described

above) and reads as

D+
t U

n
m −

ε

2

(
δ2
xU

n
m + δ2

xU
n+1
m

)
+

1

2
(anmU

n
m + an+1

m Un+1
m ) =

1

2

(
fnm + fn+1

m

)
−1

2

(
bmH

n
m + bmH

n+1
m

)
, (4.3.1)
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along with the initial data

U0
m = u0(0, xm) (4.3.2)

and boundary conditions

Un
0 = ΓL(tn, 0) (4.3.3)

and

Un
Nx = ΓR(tn, 1). (4.3.4)

The term Hn
m in (4.3.1) is called the history term and is given by

Hn
m =


u0(tn − τ, xm), if tn < τ,

Un−s
m , if tn ≥ τ.

(4.3.5)

Expanding (4.3.1), we obtain

Un+1
m − Un

m

k
− ε

2

Un+1
m+1−U

n+1
m

hm
− Un+1

m −Un+1
m−1

hm−1
+

Unm+1−Unm
hm

− Unm−Unm−1

hm−1

hm+hm−1

2

+
1

2

(
anmU

n
m + an+1

m Un+1
m

)
=

1

2

(
(fnm + fn+1

m )− bm(Hn
m +Hn+1

m )
)

m = 1, . . . , Nx−1; n = 0, . . . , Nt−1,

which can be simplified to

− ε

hm−1(hm + hm−1)
Un+1
m−1 +

(
1

k
+

ε

hmhm−1

+
an+1
m

2

)
Un+1
m − ε

hm(hm + hm−1)
Un+1
m+1

=
ε

hm−1(hm + hm−1)
Un
m−1 +

(
1

k
− ε

hmhm−1

− anm
2

)
Un
m +

ε

hm(hm + hm−1)
Un
m+1

+
1

2

((
fnm + fn+1

m

)
− bm

(
Hn
m +Hn+1

m

))
. (4.3.6)
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Equation (4.3.6) can further be written as a linear system of the form

TLU
n+1 = TRU

n +
1

2

((
fn + fn+1

)
− b ?

(
Hn +Hn+1

)
+
(
gn + gn+1

))
, (4.3.7)

for n = 1, . . . , Nt−1, where ? denotes the componentwise multiplication of the two

vectors and TL and TR are two tridiagonal matrices given by

TL = Tri

(
− ε

hm−1(hm + hm−1)
,

1

k
+

ε

hmhm−1

+
an+1
m

2
,− ε

hm(hm + hm−1)

)
,

and

TR = Tri

(
ε

hm−1(hm + hm−1)
,

1

k
− ε

hmhm−1

− anm
2
,

ε

hm(hm + hm−1)

)
m = 1, . . . , Nx.

Furthermore, the vector gn is given by

gn =

[
ε(Un

0 + Un+1
0 )

h0(h1 + h0)
, 0, . . . , 0,

ε(Un
Nx

+ Un+1
Nx

)

hNx−1(hNx−2 + hNx−1)

]T
∈ RNx−1.

The numerical solution is obtained by solving equation (4.3.7) along with equations

(4.3.2)-(4.3.5).

4.3.2 Convergence of the method

The convergence analysis presented in this section is based on some of the approaches

used in [107].

Let Φn
m be any mesh function on ΩN

σ and from (4.3.1) we define the discrete operator

LNε at (tn, xm) as

LNε Φn
m ≡ D+Φn

m −
ε

2

(
δ2
xΦ

n
m + δ2

xΦ
n+1
m

)
+

1

2

(
anmΦn

m + an+1
m Φn+1

m

)
.

We show that the following discrete maximum principle is satisfied.
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Lemma 4.3.1 Assume that Φn
m ≥ 0 on the boundaries of ΩN

σ . Then LNε Φn
m ≥ 0 on

ΩN
σ implies that Φn

m ≥ 0 on ΩN
σ .

Proof. Assume that Φn
m < 0 for some n, m, and its minimum denoted by Φ∗ is

achieved at a point (tn∗ , xm∗). Then D+Φ∗ = 0 and δ2
xΦ
∗ > 0.

Now we can choose Nt big enough in order to have either Φn∗+1
m∗ < 0 or

∣∣Φn∗
m∗

∣∣ >∣∣Φn∗+1
m∗

∣∣ and δ2
xΦ

n∗+1
m∗ ≥ 0. Then

LNε Φn∗

m∗ < 0,

which is a contradiction. Thus Φn
m ≥ 0 at any mesh point (tn, xm).

We also note that the above mesh function satisfies the stability estimate provided

in the following lemma.

Lemma 4.3.2 Let Φ be any mesh function satisfying Φn
m = 0 on ∂ΩN

σ and ā =

min
m,n
{anm}, m = 0, . . . , Nx and n = 0, . . . , Nt. Then


|Φn

m| ≤ (1 + T ) max
∣∣LNε Φn

m

∣∣ , if ā = 0

|Φn
m| ≤ 1+T

ā
max

∣∣LNε Φn
m

∣∣ , if ā > 0

Proof. Let M̃ denotes max
m,n

∣∣LNε Φn
m

∣∣. We define a barrier function (Ψn
m)± as

(Ψn
m)± =


(1 + t)M̃ ± Φn

m, if ā = 0

1+T
ā
M̃ ± Φn

m, if ā > 0

Since Φn
m = 0 on ∂ΩN

σ and M̃ > 0 on ∂ΩN
σ , then on ∂ΩN

σ we have

(Ψn
m)± =


(1 + t)M̃, if ā = 0

1+T
ā
M̃, if ā > 0

≥


M̃, if ā = 0

1+T
ā
M̃, if ā > 0

≥ 0.
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Now,

LNε (Ψn
m)± =


M̃ ± LNε Φn

m, if ā = 0

(1+T )
2ā

M̃ (anm + an+1
m )± LNε Φn

m ≥ (1 + T )M̃ ± LεΦn
m if ā > 0

≥ 0

on ΩN
σ .

Using the discrete maximum principle, we have (Ψn
m)± ≥ 0 on ΩN

σ . The proof is

then completed by noticing that 0 ≤ t ≤ T .

Now, we find an error estimate in approximating the exact solution u(tn, xm) by

the numerical solution Un
m using the FMFDM. To simplify the notations, we denote

the quantity f(tn, xm) − bmH
n
m by Gn

m and the values of a mesh function Φ at the

boundaries of Ω by Φ(∂ΩN
σ ). That is,

Φ(∂ΩN
σ ) = Φ(tn, xm), (tn, xm) ∈ ∂ΩN

σ .

We decompose the numerical solution U into its smooth and singular components

V and W respectively, that is,

U = V +W,

where the smooth component V satisfies

LεV
n
m =

1

2

(
Gn
m +Gn+1

m

)
, V

(
∂ΩN

σ

)
= v

(
∂ΩN

σ

)
and the singular component W satisfies

LεW
n
m = 0, W

(
∂ΩN

σ

)
= u

(
∂ΩN

σ

)
− v

(
∂ΩN

σ

)
.
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The error at the point (tn, xm) is then given by

u(tn, xm)− Un
m = v(tn, xm)− V n

m + w(tn, xm)−W n
m,

which by the triangle inequality implies that

|u(tn, xm)− Un
m| = |v(tn, xm)− V n

m|+ |w(tn, xm)−W n
m| . (4.3.8)

Thus,

LNε (V n
m − v(tn, xm))

= LNε V
n
m − LNε v(tn, xm)

=
1

2

(
Gn
m +Gn+1

m

)
− LNε (v(tn, xm))

=
1

2

(
Gn
m +Gn+1

m

)
−
(
D+ − ∂

∂t

)
v(tn, xm)

+ε

(
δ2
xv(tn, xm) + δ2

xv(tn+1, xm)

2
− ∂2

∂x2
v(tn, xm)

)
=

1

2

(
Gn
m +Gn+1

m

)
− N−2

t

12
(εvxxttt(ξ, xm) + (av)ttt(ξ, xm) + fttt(ξ, xm))

+


εhm+1−hm

3
vxxx(tn, ζ), if xm = σ or xm = 1− σ

−εh
2
m+1−hmhm+1+h2

m

12
vxxxx(tn, ζ), otherwise
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which implies that

|LNε (V n
m − v(tn, xm))| (4.3.9)

≤ N−2
t

12
(ε |vxxttt|+ |attt| |v|+ |a(tn, xm)| |vttt|+ |fttt|) (ξ, xm)

+


ε
∣∣∣hm−hm−1

3

∣∣∣ |vxxx(tn, ζ)| , if xm = σ or xm = 1− σ

ε
∣∣∣h2

m−hmhm+1+h2
m+1

12

∣∣∣ |vxxxx(tn, ζ)| otherwise,

≤


ε
∣∣∣hm−hm−1

3

∣∣∣ |vxxx(tn, ζ)| , if xm = σ or xm = 1− σ

ε
∣∣∣h2

m−hmhm+1+h2
m+1

12

∣∣∣ |vxxxx(tn, ζ)| otherwise,

≤


C
(
N−2
t +N−1

x lnNx

)
, if xm = σ or xm = 1− σ

C
(
N−2
t +N−2

x

)
, otherwise.

(4.3.10)

Defining a barrier function

φ(tn, xm) = C
(σ
ε
N−2
x θ(xm) + (1 + tn)N−2

x + tnN
−2
t

)
where

θ(x) =



x
σ
, if 0 ≤ x ≤ σ

1, if σ ≤ x ≤ 1− σ

1−x
σ
, if 1− σ ≤ x ≤ 1

and applying the discrete maximum principle (Lemma 4.3.2), we have

|V n
m − v(tn, xm)| ≤


C
(
N−2
t +N−2

x ln2Nx

)
, if xm = σ or xm = 1− σ

C
(
N−2
t +N−2

x

)
, otherwise.

(4.3.11)
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On the otherhand, the singular component W is decomposed into its left boundary

solution WL and right boundary solution WR, that is,

W = WL +WR

and hence the error can be written as

W n
m − w(tn, xm) = (WL)nm − wL(tn, xm) + (WR)nm − wR(tn, xm).

We estimate the errors (WL)nm − wL(tn, xm) and (WR)nm − wR(tn, xm), separately. We

have

LNε ((WL)nm − wL(tn, xm))

= −LNε (wL(tn, xm))

≤ −
(
D+ − ∂

∂t

)
wL(tn, xm)

+ε

(
δ2
xwL(tn, xm) + δ2

xwL(tn+1, xm)

2
− ∂2

∂x2
wL(tn, xm)

)
=

N−2
t

12
((wL)xxttt + (awL)ttt) (ξ, xm)

−


εhm+1−hm

3
(wL)xxx(tn, ζ), if xm = σ or xm = 1− σ

−εh
2
m+1−hmhm+1+h2

m

12
(wL)xxxx(tn, ζ), otherwise.

By taking the absolute values of the two sides, applying the triangle inequality,

using the estimates of the bounds on wL from Lemma 4.2.4 and simplifying further,

we obtain

∣∣LNε ((WL)nm − wL(tn, xm))
∣∣ ≤ C

(
N−2
t +

(
N−1
x lnNx

)2
)
.
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Finally, applying Lemma 4.3.2, we obtain

|(WL)nm − wL(tn, xm)| ≤ C
(
N−2
t +

(
N−1
x lnNx

)2
)
. (4.3.12)

Similarly, we can prove that

|(WR)nm − wR(tn, xm)| ≤ C
(
N−2
t +

(
N−1
x lnNx

)2
)
. (4.3.13)

Combining equation (4.3.8) and equations (4.3.11)-(4.3.13), we have the following

theorem.

Theorem 4.3.1 The FMFDM (4.3.1)-(4.3.4) is convergent with the order O(N−2
t +

N−2
x ln2Nx) in the sense that

sup
0<ε≤1

max
1≤m,n≤N−1

|u(tn, xm)− Un
m| ≤ C(N−2

t +N−2
x ln2Nx).

where U is the numerical solution obtained by the FMFDM (4.3.1)-(4.3.4) and N is

the total number of subintervals taken in either directions.

In the next section we develop a fitted operator finite difference method for solving

the problem under consideration.

4.4 A fitted operator finite difference method

This method is constructed by replacing the classical differential operator with a fitted

operator based on Crank-Nicolson’s discretization. The proposed method is analyzed

for stability and convergence and it is found that this method is unconditionally stable

and is convergent with order O(k2 + h2), where k and h are respectively the time and

space step-sizes.
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4.4.1 Construction of method

We partition the domain Ω = [0, T ] × [0, 1] through the grid points (tn, xm) where

tn = n∆t, xm = m∆x; ∆t = k = T/Nt, ∆x = h = 1/Nx, n = 0, . . . , Nt, m = 0, . . . , Nx

and Nt and Nx are the total number of subintervals in time and spatial directions

respectively. Assume that Nt has been chosen such that τ = s∆t = sk where s is any

positive integer.

We discretize the SPDPPDE (4.1.1)-(4.1.4) by the fitted Crank-Nicolson’s scheme

which reads as

Un+1
m − Un

m

k
− ε

2

Un+1
m−1 − 2Un+1

m + Un+1
m+1 + Un

m−1 − 2Un
m + Un

m+1

φ2
m

=

1

2
(f(tn, xm) + f(tn+1, xm))− b(xm)e−τ

2

(
Hn
m +Hn+1

m

)
,

(4.4.1)

where

Un
0 = ΓL(tn), n = 0, . . . , Nt, (4.4.2)

Un
Nx−1 = ΓR(tn), n = 0, . . . , Nt, (4.4.3)

and Hn
m denotes the delayed term u(tn − τ) which is evaluated as

Hn
m =


θ(tn − τ, xm), if tn < τ, m = 0, . . . , Nx

Un−s
m , if tn ≥ τ, m = 0, . . . , Nx.

(4.4.4)

The function φ2
m in (4.4.1) above is called the denominator function ([102]) and it

replaces the classical denominator h2 with a function of h and ε. A suitable expression

for this function for the problem under consideration is

φm(h) =
2

ρm
sinh

ρmh

2
(4.4.5)

where ρm =
√
b(xm)e−τ/ε : m = 0, . . . , Nx.
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Method (4.4.1)-(4.4.3) can be written as a linear system of the form

TLv
n+1 = TRv

n +
1

2

(
F n + F n+1

)
+

1

2

(
gn + gn+1

)
, (4.4.6)

where v` = [U `
1, . . . , U

`
Nx−1]T and TL and TR are tri-diagonal matrices whose entries are

given by

TL(n,m) =



− ε
2φ2
m+1

, if n = m− 1

1
k

+ ε
φ2
m
, if n = m

− ε
2φ2
m
, if n = m+ 1

0, otherwise,

(4.4.7)

and

TR(n,m) =



ε
2φ2
m+1

, if n = m− 1

1
k
− ε

φ2
m
, if n = m

ε
2φ2
m
, if n = m+ 1

0, otherwise,

(4.4.8)

for all m = 1, . . . , Nx−1.
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The entries of the vectors g` and F ` are given by

g`m =



ε
2φ2

1
U `

0, if m = 0

0, if 1 ≤ m ≤ Nx−3

ε
2φ2
Nx−1

U `
Nx
, if m = Nx−2

and

F ` =
[
f `1 − b ? H`

1, . . . , f
`
Nx−1 − b ? H`

Nx−1

]T
,

where ? denotes the componentwise multiplication of the components of vectors b and

Hn+1
Nx−1.

Method consisting of (4.4.1)-(4.4.4) is termed as the fitted operator finite differ-

ence method (FOFDM). The numerical solution with this method is then obtained by

solving the linear system (4.4.6) for all the levels n = 1, 2, . . . , Nt.

4.4.2 Analysis of the numerical method

In this section we discuss the consistency and stability of the proposed method which

will then imply the convergence through the equivalence theorem of Lax [108, 125].

Consistency

The local truncation error (LTE) at the grid point (tn, xm) is given by

LTE = −εk
2

12
utttxx(ξ, xm) +

εk2

12
fttt(ξ, xm)− εh

2

12
uxxxx(tn, ζ)

+
ε

2

(
1

h2
− 1

φ2
m

)(
Un
m+1 − 2Un

m + Un
m−1 + Un+1

m+1 − 2Un+1
m + Un+1

m−1

)
, (4.4.9)

where ξ ∈ [tn, tn + k] and ζ ∈ [xm − h, xm + h].

 

 

 

 



CHAPTER 4. FITTED METHODS FOR SINGULARLY PERTURBED DELAY
PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS 95

From (4.2.5) we have

|utttxx(t, x)| ≤ C
(

1 + ε+ ε2−1 + ε−1
(
e−x/

√
ε + e(1−x)/

√
ε
))

.

Thus the first term on the right hand side of (4.4.9) satisfies∣∣∣∣−εk2

12
utttxx(ξ, xm)

∣∣∣∣ ≤ k2C

12

(
ε+ 2ε2 +

(
e−x/

√
ε + e(1−x)/

√
ε
))

≤ Ck2 → 0 as k → 0. (4.4.10)

Since the function f(t, x) and its partial derivatives with respect to both t and x

are assumed to be continuous, ∂i+jf/∂tixj is bounded by a constant M̃ for all i ≥ 0

and j ≥ 0. Therefore, the second term on the right hand side of (4.4.9) satisfies

∣∣∣∣εk2

12
fttt(ξ, xm)

∣∣∣∣ ≤ εk2M̃

12
≤ M̃k2 → 0 as k → 0. (4.4.11)

Also, from (4.2.5), we have

|uxxxx(t, x)| ≤ C
(

1 + ε+ ε0 + ε−2
(
e−x/

√
ε + e(1−x)/

√
ε
))

yielding that the second term on the right hand side of (4.4.9) is bounded by∣∣∣∣εh2

12
uxxxx(tn, ζ)

∣∣∣∣ ≤ C
h2

12

(
2ε+ ε2 + ε−1

(
e−x/

√
ε + e(1−x)/

√
ε
))

.

Then, using Lemma 4.2 of [115] on the exponential behaviour of the solution, we

have ∣∣∣∣εh2

12
uxxxx(t, ζ)

∣∣∣∣ ≤ Ch2

12

(
2ε+ ε2

)
≤ Ch2 → 0 as h→ 0. (4.4.12)

Furthermore, we have

φ2
m =

4

ρ2
m

sinh2 ρmh

2
= h2

(
1 +

(
ρmh

2

)2

+ . . .

)
= h2

(
1 +O

(
h2

ε

))
,
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we find

ε

(
1

h2
− 1

φ2
m

)
=

εO(h4/ε)

h2(1 + (ρmh/2)2 + . . .)
=

O(h2)

(1 + (ρmh/2)2 + . . .)
(4.4.13)

and we conclude that the fourth term on the right hand side of (4.4.9) tends to 0 as

h→ 0.

Combining all the above information, we conclude that |LTE| → 0 as k → 0 and h→

0 which proves the consistency of the method.

Stability

We use the matrix method [132] to analyze the stability of our method.

We rewrite the linear system (4.4.6) as

TLU
n+1 = TRU

n +
1

2

(
fn + fn+1 −

(
bn ? Hn + bn+1 ? Hn+1

))
+
(
gn + gn+1

)
= TRU

n +
1

2

(
F n + F n+1

)
, (4.4.14)

where F n = fn − bn ? Hn + gn.

Let vn = [u(tn, x1), . . . , u(tn, xNx−1)]T and let en = Un−vn be the difference between

the approximate and exact solutions at level n.

If we insert the exact solution instead of the numerical solution in equation (4.4.6),

we obtain an equation of the form

TLv
n+1 = TRv

n +
1

2

(
F n + F n+1

)
. (4.4.15)

Multiplying both equations (4.4.14) and (4.4.15) by k and subtracting the latter

from the former, we obtain the linear system

T ′Le
n+1 = T ′Re

n − k

2

(
Gn +Gn+1

)
, (4.4.16)

where T ′L = kTL, T ′R = kTR and Gn = −bn ? Hn + gn.
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Since the two matrices T ′L and T ′R are strictly diagonally dominant matrices, there-

fore, by Levy-Desplanques theorem [61, 145], they are nonsingular. By Gershgorin’s

disk theorem ([61]), each eigenvalue λm of the matrix T ′L should lie in one of the Ger-

shgorin’s disks Dφm
L

(
1 + 2kε

φ2
m
, 2kε
φ2
m

)
. Hence, all the eigenvalues of the matrix T ′L lie in⋃Nx−1

m=1 D
φm
L , yielding that λm > 1 for all m = 1, 2, . . . , Nx−1.

We rearrange all the eigenvalues of T ′L such that

0 < λ1 ≤ . . . ≤ λNx−1.

Similarly, we find that all the eigenvalues µm; m = 1, . . . , µNx−1 of T ′R lie in the

union of the Gershgorin disks

Nx−1⋃
m=1

Dφm
R

(
1− 2kε

φ2
m

,
2kε

φ2
m

)
.

It is obvious that each eigenvalue µm of T ′R satisfies 0 < µm ≤ 1. If we rearrange

the eigenvalues of T ′R such that µj ≤ µm for j < m, then, the eigenvalues of the two

matrices T ′L and T ′R satisfy the relation

0 < µ1 ≤ . . . ≤ µNx−1 ≤ 1 ≤ λ1 ≤ . . . ≤ λNx−1.

Let B = T ′L
−1 and A = BT ′R, then the solution of system (4.4.16) can be written as

en+1 = A

(
en +

k

2

(
bn ? (Hn − vnτ ) + bn+1 ?

(
Hn+1 − vn+1

τ

)))
,

= Aen +
k

2
B
(
bn ? (Hn − vnτ ) + bn+1 ?

(
Hn+1 − vn+1

τ

))
. (4.4.17)

We would like to show that the defect vector e which propagates over time, does

not increase indefinitely. To this end, we note that the eigenvalues of A which are given

by γm = µm/λm satisfy 0 < γm < 1 while the eigenvalues of B = T ′−1 (which are given

by νm = 1/λm)) also satisfy the relation 0 < νm < 1 for all m = 1, . . . , Nx−1.

 

 

 

 



CHAPTER 4. FITTED METHODS FOR SINGULARLY PERTURBED DELAY
PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS 98

Since A is nonsingular (as neither of its eigenvalues γm is zero), it has a complete

set of linearly independent eigenvectors ϕm corresponding to the eigenvalues γm, m =

1, . . . , Nx−1. Then, the set ωm is a basis for RNx−1. Also, B has a complete set of linearly

independent eigenvectors ϑm, m = 1, . . . , Nx−1 corresponding to the eigenvalues νm

which form a basis for RNx−1.

Using the two different bases ϕm and ϑm, the vector e0 can have two different

representations of the forms

e0 =
Nx−1∑
m=1

ωmϕm =
Nx−1∑
m=1

δmϑm, (4.4.18)

where ωm and δm are constants, m = 1, . . . , Nx−1.

We consider (4.4.16) in two separate intervals, namely [0, τ ] and (τ, T ]. In [0, τ ]

where n ≤ s, the history terms Hn are evaluated exactly from the given history function

θ(t, x). Therefore, the difference Hn+1 − vn+1
τ vanishes and hence (4.4.17) reduces to

en = Aen−1. (4.4.19)

Iterations on equation (4.4.19) imply

en = Ane0 =
Nx−1∑
m=1

ωmγ
nϕm. (4.4.20)

On the other hand, in (τ, T ], where n is strictly greater than s, the history term

Hn is equal to Un−s and equation (4.4.16) takes the form

en = Aen−1 +
k

2
B
(
bn ? en−s + bn+1 ? en+1−s) , (4.4.21)

Using (4.4.17) and (4.4.20) we can prove by mathematical induction that equation
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(4.4.21) can be expressed as

en = Ane0 +
k

2

n−s∑
j=1

(
An−s−jB

(
bs+j ? Bj−1e0 + bs+j+1 ? Bje0

))
. (4.4.22)

Further simplifications to equation (4.4.22) lead to

en =
Nx−1∑
m=1

(ωmγ
nϕm)

+
k

2

n−s∑
j=1

An−s−jB

(
Nx−1∑
m=1

δm (νm)j−1 (bs+j ? ϑm + (νm) bs+j+1 ? ϑm
))

and finally we obtain

en =
Nx−1∑
m=1

(
ωmγ

n +

(
k

2

n−s∑
j=1

(
α̃m + β̃mγm

)
(νm)j γn−s−j

))
ϕm, (4.4.23)

where α̃m and β̃m are constants. It should be noted that in equation (4.4.23), each

basis vector ϑm is written as a linear combination of the basis vectors ϕm.

Now, since 0 < γm < 1 and 0 < νm < 1, we have γnm → 0, m = 1, . . . , Nx−1 as

n→∞, and νjmγ
n−s−j → 0, m = 1, . . . , Nx−1 as n→∞.

Hence, we conclude that

en → 0 as n→∞.

This proves that the proposed FOFDM is unconditionally stable.

Using (4.4.10)-(4.4.13) and the Lax equivalence theorem [108, 125], we have the

following main result:

Theorem 4.4.1 The FOFDM (4.4.1)-(4.4.4) is convergent of order O(k2 +h2) in the

sense that

sup
0<ε≤1

max
1≤m,n≤N−1

|u(tn, xm)− Un
m| ≤ C(k2 + h2),

where U is the numerical solution obtained by this method and N is the total number

of subintervals taken in either direction.
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4.5 Numerical results

In this section we provide numerical results obtained by the fitted mesh and the fitted

operator methods. We also compare these results with those obtained by applying

the Crank-Nicolson’s method on a uniform mesh throughout the region. The latter is

referred to as a standard finite difference method (SFDM).

Example 4.5.1 Consider

∂u(t, x)

∂t
− ε∂

2u(t, x)

∂x2
=

1

2

((
2x
√
ε− ε

)
e−(t+x/

√
ε) −

(
2x
√
ε+ ε

)
e−(t+(1−x)/

√
ε)
)

−2e−1u(t− 1, x), (t, x) ∈ [0, 2]× [0, 1],

with the initial data

u(t, x) = (2 + x2)(e−(t+x/
√
ε) + e−(t+(1−x)/

√
ε)), (t, x) ∈ [−τ, 0]× [0, 1],

and boundary conditions

u(t, 0) = e−t + e−t−1/
√
ε, t ∈ [0, 2]

and

u(t, 1) =
3

2
(e−t + e−t−1/

√
ε), t ∈ [0, 2].

The exact solution of the above problem is

u(t, x) =
(
2 + x2

) (
e−(t+x/

√
ε) + e−(t+(1−x)/

√
ε)
)
.

By taking Nt =Nx =N , the maximum errors (denoted by EN,ε) at all grid points are

evaluated using the formula

EN,ε := max
0≤m,n≤N

|u(tn, xm)− Un
m|.
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We tabulate the errors

EN = max
0<ε≤1

EN,ε.

The errors obtained by applying the SFDM, FMFDM and FOFDM are presented in

tables 4.5.1, 4.5.2 and 4.5.4. The acronym SFDM in the caption of Table 4.5.1 stands

for the standard finite difference method which is defined by (4.3.1)-(4.3.4) by setting

σ = 0.25 or by replacing φ2
m in (4.4.1) with h2.

The numerical rates of convergence are computed using the formula [35]:

ri ≡ ri,ε := log2 (ENi,ε/E2Ni,ε) , i = 1, 2, · · ·

whereas those of uniform convergence are computed using

RN := log2 (EN/E2N) .

These convergence rates of the FMFDM and FOFDM are presented in tables 4.5.3 and

4.5.5, respectively.

 

 

 

 



CHAPTER 4. FITTED METHODS FOR SINGULARLY PERTURBED DELAY
PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS 102

Table 4.5.1: Maximum Errors obtained by SFDM for Example 4.5.1 using Nx = Nt = N

ε N = 64 N = 128 N = 256 N = 512 N = 1024 N = 2048
1 6.64E-06 1.66E-06 4.15E-07 1.04E-07 2.59E-08 6.40E-09

10−2 4.64E-04 1.16E-04 2.91E-05 7.26E-06 1.82E-06 4.54E-07
10−4 3.09E-02 9.10E-03 2.48E-03 6.25E-04 1.57E-04 3.93E-05
10−6 4.28E-03 1.63E-02 4.05E-02 3.83E-02 1.42E-02 3.76E-03
10−8 4.31E-05 1.72E-04 6.89E-04 2.76E-03 1.08E-02 3.30E-02
10−10 4.31E-07 1.72E-06 6.90E-06 2.76E-05 1.10E-04 4.41E-04
10−12 4.31E-09 1.72E-08 6.90E-08 2.76E-07 1.10E-06 4.42E-06
10−14 4.31E-11 1.72E-10 6.90E-10 2.76E-09 1.10E-08 4.42E-08
10−16 4.31E-12 1.72E-11 6.90E-11 2.76E-10 1.10E-09 4.42E-10

Table 4.5.2: Maximum Errors obtained by FMFDM for Example 4.5.1 using Nx = Nt = N

ε N = 64 N = 128 N = 256 N = 512 N = 1024 N = 2048
1 6.64e-06 1.66e-06 4.15e-07 1.04e-07 2.59e-08 6.44e-09

10−1 7.00e-05 1.75e-05 4.38e-06 1.09e-06 2.74e-07 6.84e-08
10−3 4.08e-03 1.04e-03 2.61e-04 6.53e-05 1.63e-05 4.08e-06
10−4 4.34e-03 1.49e-03 4.92e-04 1.56e-04 4.82e-05 1.46e-05
10−5 4.28e-03 1.47e-03 4.85e-04 1.54e-04 4.76e-05 1.44e-05
10−6 4.26e-03 1.47e-03 4.83e-04 1.53e-04 4.74e-05 1.43e-05
10−7 4.25e-03 1.47e-03 4.82e-04 1.53e-04 4.73e-05 1.43e-05
10−8 4.25e-03 1.46e-03 4.82e-04 1.53e-04 4.73e-05 1.43e-05
10−12 4.25e-03 1.46e-03 4.82e-04 1.53e-04 4.73e-05 1.43e-05
10−13 4.25e-03 1.46e-03 4.82e-04 1.53e-04 4.73e-05 1.43e-05
10−16 4.25e-03 1.46e-03 4.82e-04 1.53e-04 4.73e-05 1.43e-05
EN 4.25e-03 1.46e-03 4.82e-04 1.53e-04 4.73e-05 1.43e-05

Table 4.5.3: Rates of Convergence obtained by FMFDM for Example 4.5.1 using Nx = Nt = N =
2i, i = 6(1)10

ε r1 r2 r3 r4 r5

1 2.00 2.00 2.00 2.00 2.01
10−1 2.00 2.00 2.00 2.00 2.00
10−3 1.98 1.99 2.00 2.00 2.00
10−4 1.54 1.60 1.66 1.69 1.72
10−5 1.54 1.60 1.66 1.69 1.72
10−6 1.54 1.60 1.66 1.69 1.73
10−7 1.54 1.60 1.66 1.69 1.73
10−8 1.54 1.60 1.66 1.69 1.73
10−12 1.54 1.60 1.66 1.69 1.73
10−13 1.54 1.60 1.66 1.69 1.73
10−16 1.54 1.60 1.66 1.69 1.73
RN 1.54 1.60 1.66 1.69 1.73
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Table 4.5.4: Maximum Errors obtained by FOFDM for Example 4.5.1 using Nx = Nt = N

ε N = 8 N = 16 N = 32 N = 64 N = 128 N = 256
1 1.02e-03 8.85e-05 1.33e-05 2.81e-06 6.73e-07 1.66e-07

10−1 9.14e-03 8.52e-04 1.25e-04 2.57e-05 6.08e-06 1.50e-06
10−2 5.82e-02 5.50e-03 8.12e-04 1.68e-04 3.98e-05 9.82e-06
10−3 1.58e-01 3.41e-02 6.33e-03 1.31e-03 3.10e-04 7.67e-05
10−4 1.63e-01 4.23e-02 1.77e-02 9.18e-03 2.56e-03 6.82e-04
10−5 1.63e-01 4.11e-02 1.04e-02 6.28e-03 1.05e-02 5.77e-03
10−7 1.63e-01 4.11e-02 1.03e-02 2.57e-03 6.42e-04 1.75e-04
10−8 1.63e-01 4.11e-02 1.03e-02 2.57e-03 6.42e-04 1.61e-04
10−10 1.63e-01 4.11e-02 1.03e-02 2.57e-03 6.42e-04 1.61e-04
10−12 1.63e-01 4.11e-02 1.03e-02 2.57e-03 6.42e-04 1.61e-04
10−13 1.63e-01 4.11e-02 1.03e-02 2.57e-03 6.42e-04 1.61e-04
10−14 1.63e-01 4.11e-02 1.03e-02 2.57e-03 6.42e-04 1.61e-04
10−15 1.63e-01 4.11e-02 1.03e-02 2.57e-03 6.42e-04 1.61e-04
EN 1.63e-01 4.11e-02 1.03e-02 2.57e-03 6.42e-04 1.61e-04

Table 4.5.5: Rates of Convergence obtained by FOFDM for Example 4.5.1 using Nx = Nt = N =
2i, i = 3(1)8

ε r1 r2 r3 r4 r5

1 3.52 2.74 2.24 2.06 2.02
10−1 3.42 2.77 2.28 2.08 2.02
10−2 3.40 2.76 2.27 2.08 2.02
10−3 2.21 2.43 2.28 2.08 2.01
10−4 1.94 1.26 0.95 1.84 1.91
10−5 1.99 1.98 0.73 -0.74 0.86
10−7 1.99 2.00 2.00 2.00 1.87
10−8 1.99 2.00 2.00 2.00 2.00
10−10 1.99 2.00 2.00 2.00 2.00
10−12 1.99 2.00 2.00 2.00 2.00
10−13 1.99 2.00 2.00 2.00 2.00
10−14 1.99 2.00 2.00 2.00 2.00
10−15 1.99 2.00 2.00 2.00 2.00
RN 1.99 2.00 2.00 2.00 2.00
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4.6 Discussion

In this chapter we constructed two fitted numerical methods, namely, fitted mesh and

fitted operator finite difference methods, for solving a class of singularly perturbed

delay parabolic partial differential equations. Both of these methods are based on

the Crank-Nicolson’s discretization. These methods are analyzed for stability and

convergence.

The FMFDM is unconditionally stable and converges with orderO(N−2
t +N−2

x ln2Nx)

and which is an improvement over the estimate presented in Ansari et al. [1] for the

very same problem. These improved results can be seen from the results presented in

tables 4.5.2-4.5.3. For the sake of comparison, the results obtained by the corresponding

standard finite difference method (the Crank-Nicolson’s method on a uniform mesh)

are presented in Table 4.5.1.

The FOFDM converges appropriately, is unconditionally stable and is converging

with the order O(N−2
t + N−2

x ). The method is robust with respect to the singular

perturbation parameter (see Table 4.5.4). Moreover, the numerical results presented

in Table 4.5.5 justify the theoretical estimates given in Theorem 4.4.1.

 

 

 

 



Chapter 5

A Fitted Numerical Method for a

Delayed Model of Two

Co-operating Species

In this chapter we consider a system of two coupled partial delay differential equations

(PDDEs) describing the dynamics of two co-operative species. The original system

is reduced to a system of ordinary delay differential equations (DDEs) obtained by

applying the method of lines. Then we construct a fitted operator finite difference

method (FOFDM) to solve this resulting system. The model considered in this chapter

is very sensitive to small changes in the parameters associated with it. Depending on

the values of these parameters, the solution can be stable, periodic and/or aperiodic.

Such behaviour of the solution is exploited via the proposed FOFDM. This FOFDM is

analyzed for convergence and it is seen that this method is unconditionally stable and

has accuracy of O(k+h2), where k and h denote time and space step-sizes, respectively.

Some numerical results confirming theoretical observations are also presented. These

results are comparable with those obtained in the literature.
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5.1 Introduction

We consider the following system of two coupled PDDEs describing the dynamics of

two co-operative species with densities u(t, x) and v(t, x):

∂u

∂t
(t, x) = λ1

∂2u

∂x2
(t, x) + κu(t, x) (r1 − a11u(t− τ, x) + a12v(t− τ, x)) (5.1.1)

∂v

∂t
(t, x) = λ2

∂2v

∂x2
(t, x) + κv(t, x) (r2 + a21u(t− τ, x)− a22v(t− τ, x)) (5.1.2)

where 0 < x < π and t > 0, subject to the initial data

u(t, x) = u0(t, x), v(t, x) = v0(t, x), t ∈ [−τ, 0], (5.1.3)

and Dirichlet boundary conditions

u(t, 0) = u(t, π) = v(t, 0) = v(t, π) = 0, t ≥ 0. (5.1.4)

The constants λ1 > 0 and λ2 > 0 in the above represent the diffusivity of the two

species whereas the constants r1 > 0 and r2 > 0 are the growth rates of these species.

The coefficients a11, a12, a21, a22 and κ are positive constants. Finally, τ (> 0) is a time

delay parameter.

Many biological phenomena can be described by diffusion equations such as the

system above. Some examples include the dynamics of a single species in time and

space [151], the spread of an advantageous gene in a population [110], the competition

between the gray and red squirrels in Britain which led to the decline and subsequent

disappearance of the red squirrels [111], the spread of powdery mildew disease caused

by the fungus Uncinula necator over the grapevines [34], the modified Lotka-Volterra

system with logistic growth of the prey and with both predator and prey dispersing by

diffusion [111].

The literature on the use of diffusive delay differential equations for modelling

biological systems is very rich, see for example [94, 113, 142] and the references therein.
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When a time delay is involved, it indicates the non-immediate effect of some factor that

inhibits the dynamics of the model, for instance, in a predator-prey model, the density

of the prey is affected by hunting mature prey members that happened some time in

the past. Also, in a model that describes the spread of an epidemic disease, a virus or

a bacterium takes some time before it becomes mature and will be able to attack some

organism. In a biological system, delay models are more realistic for describing the

dynamics of the various parts of the system than the ordinary differential equations.

Under the assumption that the two species have the same diffusivity (i.e., λ1 =

λ2 = λ) and same growth rates (i.e., r1 = r2 = r), Li et. al [86] used a transformation

of variables to reduce the system (5.1.1)-(5.1.2) to the form

∂u

∂t
(t, x) = λ

∂2u

∂x2
(t, x) + κu(t, x) (1− u(t− τ, x) + a12v(t− τ, x)) , (5.1.5)

∂v

∂t
(t, x) = λ

∂2v

∂x2
(t, x) + κv(t, x) (1 + a21u(t− τ, x)− v(t− τ, x)) , (5.1.6)

with t > 0, 0 < x < π and subject to the initial data (5.1.3) and the boundary

conditions (5.1.4).

In this chapter, we design a new fitted operator finite difference method (FOFDM)

which is constructed for a system of DDEs obtained by applying the method of lines

[58, 97] to the system of PDDEs. These FOFDMs, which are based on the philosophy

of non-standard finite difference methods of Mickens [105, 114], are widely used for

singularly perturbed two-point boundary value problems. See for instance [116, 117,

118]. However, their extensions for coupled PDEs whose solutions possess oscillatory

dynamics, have not been seen in the literature.

The rest of this chapter is organized as follows. In Section 5.2, we discuss the

existence and stability of equilibria for the model under consideration. Section 5.3

deals with the construction of the fitted operator finite difference method which is

analyzed for convergence in Section 5.4. Illustrative numerical results are presented in

Section 5.5. Finally, we discuss these results in Section 5.6.
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5.2 Existence and stability of equilibria

In many of the delay differential equation models, the time delay τ acts as a bifurcation

parameter. As the delay τ passes through some critical value τ ?, a couple of complex

conjugating eigenvalues of the system cross the imaginary axis at some pure imaginary

points and stable periodic Hopf bifurcating solutions occur. Then when τ > τ ?, the

real parts of these eigenvalues cross to the positive real axis causing the solution to lose

its stability. We look at these features of the solution via the existence and stability of

a positive equilibrium following the works in [19, 86, 151].

Any equilibrium solution for problem (5.1.5)-(5.1.6) must solve the system

d2u

dx2
+ κ̃u(x)(1− u(x) + a12v(x)) = 0,

(5.2.1)

d2v

dx2
+ κ̃v(x)(1 + a21u(x)− v(x)) = 0,

with

u(0) = u(π) = v(0) = v(π) = 0, (5.2.2)

where the parameter κ̃ corresponds to the ratio κ/λ.

It is obvious that the trivial solution (0, 0) satisfies (5.2.1)-(5.2.2) and it also satisfies

(5.1.5)-(5.1.6). If κ̃ < 1, the trivial solution (0, 0) is asymptotically stable and it is the

only global attractor for all non-negative solutions. Therefore, the increase in the time

delay τ do not have an effect on the stability of the trivial equilibria. On the other

hand, when κ̃ > 1 the trivial solution is unstable. The question arising at this stage

is what will happen if κ̃ becomes greater than 1 while the time delay τ is strictly

positive. In the following two subsections we show that when κ̃ > 1 while τ > 0, a

positive equilibrium (Uκ̃(x), Vκ̃(x)) will bifurcate from the trivial solution at κ̃ = 1.
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Existence of equilibria

Let D2 denote the differential operator d2

dx2 , and N (D2 + 1) and R(D2 + 1) denote the

null and range spaces of the differential operator D2 + 1 respectively, then

L2[0, π] = N (D2 + 1)⊕R(D2 + 1),

where

N (D2 + 1) = span{sinx}

and

R(D2 + 1) = {y(x) ∈ L2[0, π] : <sinx, y(x)>=

∫ π

0

(sinx)y(x)dx = 0}.

Assume that the pair of functions (Uκ̃(x), Vκ̃(x)) is an equilibrium solution of the

system (5.1.3)-(5.1.5) and that they can be expressed as

Uκ̃(x) = ακ̃(κ̃− 1) (sinx+ (κ̃− 1)ξκ̃) (5.2.3)

and

Vκ̃(x) = βκ̃(κ̃− 1) (sinx+ (κ̃− 1)ηκ̃) , (5.2.4)

where ξκ̃, ηκ̃ ∈ R(D2 + 1) and ακ̃ and βκ̃ are real numbers.

Using (5.2.1) along with equations (5.2.3)-(5.2.4), we obtain

(D2 + 1)ξκ̃ + sinx+ (κ̃− 1)ξκ̃ − κ̃
(
(ακ̃ sinx+ (κ̃− 1)ξκ̃)

2

−a12βκ̃(sinx+ (κ̃− 1)ξκ̃)(sinx+ (κ̃− 1)ηκ̃)) = 0 (5.2.5)
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and

(D2 + 1)ηκ̃ + sinx+ (κ̃− 1)ηκ̃ − κ̃ (−a21ακ̃(sinx+ (κ̃− 1)ξκ̃)

(sinx+ (κ̃− 1)ηκ̃)− βκ̃(sinx+ (κ̃− 1)η)2
)

= 0. (5.2.6)

For κ̃ = 1, we get

α1 = α?
1 + a12

1− a12a21

and β1 = α?
1 + a21

1− a12a21

,

provided that a12a21 < 1 where

α? =

∫ π
0

sin2 xdx∫ π
0

sin3 xdx
=

3

8

and hence, according to Li et al. [86] the unique solution of system (5.2.5)-(5.2.6) is

then given by

ξ1 = η1 =
1

2
sinx+

(
x

2
− 2α?

3

)
cosx+

α?0
6

cos 2x+
α?0
2
. (5.2.7)

For the general κ̃ ≥ 1, the following theorem is proved in [151]:

Theorem 5.2.1 There is a constant κ̃? and a continuously differentiable mapping

κ̃→ (ξκ̃, βκ̃, ακ̃, βκ̃)

from [1, κ̃?] → H2 × H2 × R × R such that equations (5.2.5) and (5.2.6) hold and

<sinx, ξκ̃> =<sinx, ηκ̃> = 0.

Finally, the existence of the positive equilibrium (Uκ̃, Vκ̃) follows from the existence

and uniqueness of the couple (ξκ̃, ηκ̃) in the interval (1, κ̃?].
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Stability of the equilibria

To study the stability of the positive equilibrium (Uκ̃, Vκ̃), let 0 < κ̃ ≤ κ̃? and consider

the linearized version of the system (5.1.5)-(5.1.6) around this equilibrium, i.e.,

d

dt

u(t)

v(t)

 = (D2 + κ̃)I2

u(t)

v(t)

+ κ̃

−Uκ̃ a12Uκ̃

a21Vκ̃ −Vκ̃

u(t− τ)

v(t− τ)

 , (5.2.8)

u(t)

v(t)

 =

u0(t, ·)

v0(t, ·)

 , t ∈ [−τ, 0],

where u(t) = u(t, ·) and v(t) = v(t, ·).

By writing

Y (t) = [u(t), v(t)]T , Y0(t) = [u0(t, ·), v0(t, ·)]T ,

A(κ̃) = (D2 + κ̃)I2

and

B(κ̃) =

−Uκ̃ a12Uκ̃

a21Vκ̃ −Vκ̃

 ,

the stability of (Uκ̃, Vκ̃) is determined through solving the eigenvalue problem

[
A(κ̃) + κ̃B(κ̃)e−λτ − λI2

]
Y = 0. (5.2.9)

An infinitesimal generator Aτ (κ̃) of the semi-group ([136]) induced by the solutions

of the linearized system (5.2.8) is defined by

Aτ (κ̃)Y0(t) = dY0(t)/dt, t ∈ [−τ, 0],

with

D(Aτ (κ̃)) = {v0 ∈ C :
dv0

dt
∈ C, v0(0) ∈ H2,

dv0

dt
= Aτ (κ̃)v0(0) + κ̃B(κ̃)v0(−τ)}.
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When κ̃ > 1 the stability of the equilibrium (Uκ̃, Vκ̃) is determined by the eigenvalues

of Aτ (κ̃) which depend continuously on τ . For τ = 0 all the eigenvalues of Aτ have

negative real parts. By increasing the time delay τ , the eigenvalues of Aτ (κ̃) may

move towards the positive real part of the complex plane and the problem is then to

find whether there exists a delay τ ? for which Aτ?(κ̃) has a pure imaginary eigenvalue

λ = iν. However, λ = iν is a pure imaginary eigenvalue of Aτ (κ̃) if and only if the

equation [
A(κ̃) + κ̃B(κ̃)e−iθ − iνI2

]
Y = 0, (5.2.10)

is solvable for the pair ν > 0 and θ ∈ [0, 2π]. Then equation (5.2.10) is satisfied for all

τn = (θ + 2nπ)/ν, n = 0, 1, . . .

It has been proved in [19] that if the triplet (ν, θ, Y ) solves the eigenvalue problem

(5.2.9) with Y 6= 0 and κ̃ ∈ (1, κ̃?], then % = ν/(κ̃− 1) is uniformly bounded and

Y = [sinx+ (κ̃− 1)γ(x), (a+ ib) sinx+ (κ̃− 1)δ(x)]T ,

where γ(x) and δ(x) are two smooth functions such that < sinx, γ(x) > = 0 and

<sinx, δ(x)> = 0.

Zhou et al. [151] proved that solving the eigenvalue problem (5.2.9) is equivalent
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to solve the following system of equations:

g1(γ, δ, %, θ, a, b) = (D2 + 1)γ + (1− i%)[sinx+ (κ̃− 1)γ] + κ̃(−ακ̃(sinx+ (κ̃− 1)ξκ̃)

+a12βκ̃(sinx+ (κ̃− 1)ηκ̃))(sinx+ (κ̃− 1)γ)

+κ̃e−iθακ̃[sinx+ (κ̃− 1)ξκ̃](−(sinx+ (κ̃− 1)γ)

+a12((a+ ib) sinx+ (κ̃− 1)δ)),

g2(γ, δ, %, θ, a, b) = (D2 + 1)δ + (1− i%)[(a+ ib) sinx+ (κ̃− 1)δ]

+κ̃(a21ακ̃(sinx+ (κ̃− 1)ξκ̃)− βκ̃(sinx+ (κ̃− 1)ηκ̃))

((a+ ib) sinx+ (κ̃− 1)δ) + κ̃e−iθβκ̃[sinx+ (κ̃− 1)ηκ̃]

(a21(sinx+ (κ̃− 1)γ)− ((a+ ib) sinx+ (κ̃− 1)δ)), (5.2.11)

g3(γ, δ, %, θ, a, b) = Re <sinx, γ>= 0,

g4(γ, δ, %, θ, a, b) = Im <sinx, γ>= 0,

g5(γ, δ, %, θ, a, b) = Re <sinx, δ>= 0,

g6(γ, δ, %, θ, a, b) = Im <sinx, δ>= 0.

We state the following result from [86], proved in [151]:

Theorem 5.2.2 If 0 < κ̃?−1� 1, then there is a continuously differentiable mapping

κ̃ → (γκ̃, δκ̃, %κ̃, θκ̃, aκ̃, bκ̃) from [1, κ̃?] to (H2)2 × (R)4 such that γ1 = (1 − i)ξ1, δ1 =

(1−i)a1ξ1, θ1 = π/2, a1 = (1+a12)/(1+a21), b1 = 0 and %1 = 1 and (γκ̃, δκ̃, %κ̃, θκ̃, aκ̃, bκ̃)

solves problem (5.2.11) for κ̃ ∈ [1, κ̃?] with ξ1 being the unique solution of the system

(5.2.5)-(5.2.6) given by equation (5.2.7).

Li et al. [86] concluded that the positive equilibrium (Uκ̃, Vκ̃) is asymptotically

stable for τ < τκ̃0 and unstable for τ > τκ̃0 . Moreover, the bifurcating solutions which

occur from the Hopf bifurcation point τ = τκ̃0 are stable while those occurring from

the Hopf bifurcation points τ = τκ̃n , n = 1, 2, . . . are unstable.

In summary,

• If κ̃ ≤ 1, then the zero solution is stable and is the only global attractor of all
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non-negative solutions.

• If κ̃ > 1, a unique positive equilibrium (Uκ̃, Vκ̃) bifurcates from κ̃ = 1 and (u, v) =

(0, 0) while the zero solution is unstable.

• For each fixed 0 < κ̃ − 1 � 1 there exists a sequence {τκ̃n}∞n=0 such that the

positive equilibrium (Uκ̃, Vκ̃) is asymptotically stable if 0 ≤ τ < τκ̃0 and unstable

if τ > τκ̃0 .

• A Hopf bifurcation will occur as the delay τ increasingly passes through each

point τκ̃n , n = 1, 2, . . ..

5.3 Construction of the numerical method

In this section, we describe the construction of the fitted numerical method for solving

the system (5.1.5)-(5.1.6) with the initial data (5.1.3) and boundary conditions (5.1.4)

respectively. Following the method of lines, we find an approximation to the derivatives

of the functions u(t, x) and v(t, x) with respect to the spatial variable x by algebraic

quantities in order to transform the two PDDEs into a system of DDEs.

Because of the similarities between the two PDEs in u(t, x) and v(t, x) we will

describe the method for the equation in u(t, x). The equation in v(t, x) is dealt with

similarly.

Let Nx be a positive integer and discretize the interval [0, π] by the points

x0 = 0 < x1 < x2 < . . . < xNx = π,

where h = xm+1 − xm = π/Nx; m = 0, 1, . . . , Nx. Let Um(t) ≈ u(t, xm).

We approximate the second order spatial derivative by

∂2u

∂x2
(t, xm) ≈ Um+1 − 2Um + Um−1

φ2
m

, (5.3.1)
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where

φm = φm(κ, λ, h) =
2

ρm
sin

ρmh

2

and

ρm =
√
κ/λ.

It is obvious that φm → h as h → 0. The function φ2
m in equation (5.3.1) is conven-

tionally termed as a denominator function [102]. It can be constructed by using the

theory of difference equations.

Equation (5.1.5) with the initial data (5.1.3) and boundary conditions (5.1.4) then

take the form

U0(t) = 0 = UNx(t), (5.3.2)

dUm(t)

dt
= λ

Um+1 − 2Um + Um−1

φ2(h)

+κUm(t) (1− um(t− τ) + a12vm(t− τ)) , m=1, . . . , Nx−1, (5.3.3)

with the initial data

um(θ) = u0(θ, xm), θ ∈ [−τ, 0]; m = 1, . . . , Nx−1, (5.3.4)

where um(t) is the exact value u(t, xm).

Now let Nt be a positive integer and k = T/Nt where 0 < t < T .

Discretizing the time interval [0, T ] through the points

0 = t0 < t1 < . . . < tNt = T,

where

tn+1 − tn = k, n = 0, 1, . . . , (Nt−1).
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We approximate the time derivative at tn by

dUm(tn)

dt
≈ Un+1

m − Un
m

ψ(k)
, (5.3.5)

where ψ(k) = (exp(κk)− 1)/κ. Again we see that ψ(k)→ k as k → 0.

Combining (5.3.2), (5.3.3) and (5.3.5), we obtain

Un+1
m − Un

m

ψ(k)
= λ

Un+1
m+1 − 2Un+1

m + Un+1
m−1

φ2
m(h)

− κUn
m(1− (Hu)

n
m + a12(Hv)

n
m) (5.3.6)

where

(Hu)
n
m ≈ u(tn − τ, xm)

and

(Hv)
n
m ≈ v(tn − τ, xm),

m = 1, . . . , Nx−1, n = 0, . . . , Nt − 1 are the history functions corresponding to the

equations in u and v.

Equation (5.3.6) can further be simplified as

− λ

φ2
m

Un+1
m−1 +

(
1

ψ
+

2λ

φ2
m

)
Un+1
m − λ

φ2
m

Un+1
m+1 =

(
1

ψ
+ κ (1− (Hu)

n
m + a12(Hv)

n
m)

)
Un
m.

(5.3.7)

Equation (5.3.7) can be written as a tridiagonal system

TLU
n+1 =

1

ψ
Un
m + κUn

m(1− (Hu)
n
m + a12(Hv)

n
m), (5.3.8)

where m = 1, . . . , Nx−1, n = 0, . . . , Nt − 1 and

TL = Tri

(
− λ

φ2
m

,
1

ψ
+

2λ

φ2
m

,− λ

φ2
m

)
.

On the interval [0, τ ] the delayed arguments tn − τ belong to [−τ, 0], and therefore
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the delayed variable

(Hu)
n
m ≈ um(tn − τ)

is evaluated directly from the history functions u0(t, x) as

(Hu)
n
m = u0(tn − τ, xm), (5.3.9)

and equation (5.3.8) takes the form

TLU
n+1 =

1

ψ
Un
m + κUn

m(1− u0(tn − τ, xm) + a12v
0(tn − τ, xm)). (5.3.10)

Let s be the largest integer such that ts ≤ τ . By using equation (5.3.10) we can

compute Un
m for 1 ≤ n ≤ s. At this stage, we interpolate the data

(t0, U
0
m), (t1, U

1
m), . . . , (ts, U

s
m),

using an interpolating cubic Hermite spline ϕm(t). Then Un
m = ϕ(tn, xm) for all n =

0, 1, . . . , s and m = 1, 2, . . . , Nx−1.

For n = s+ 1, s+ 2, . . . , Nt−1, when we move from level n to level n+ 1 we extend

the definitions of the cubic Hermite spline ϕm(t) to the point (tn + k, Un+1
m ). Then the

history terms (Hu)
n
m can be approximated by the functions ϕm(tn − τ) for n ≥ s, that

is,

(Hu)
n
m ≈ ϕm(tn − τ),

and equation (5.3.8) becomes of the form

TLU
n+1 =

1

ψ
Un
m + κUn

m(1− ϕ(tn − τ) + a12ϑ(tn − τ)), (5.3.11)

where

ϕ(tn − τ) = [(Hu)
n
1 , . . . , (Hu)

n
Nx−1]T
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and ϑ is the set of cubic Hermite splines that interpolates the data (tn, V
n
m).

Proceeding in a similar manner for the equation in v, we have

TLV
n+1 =

1

ψ
V n
m + κV n

m(1 + a21(Hu)
n
m − (Hv)

n
m), (5.3.12)

where

(Hv)
n
m =


v0(tn − τ, xm) tn ≤ τ

ϑm(tn − τ) tn > τ

along with

V0(t) = 0 = VNx+1. (5.3.13)

Our FOFDM is then consists of equations (5.3.8)-(5.3.12) along with (5.3.2) and

(5.3.13).

This method is analyzed for convergence in next section whereas the corresponding

numerical results are presented in Section 5.5.

5.4 Analysis of convergence

As usual with most of the classical convergence finite difference methods, the conver-

gence for the proposed FOFDM is proved via consistency and stability.

Consistency of the numerical method

We assume that the function u(t, x) and its partial derivatives with respect to both t

and x are smooth and satisfy∣∣∣∣∂i+ju(t, x)

∂tixj

∣∣∣∣ ≤ C; ∀i, j ≥ 0, (5.4.1)

where C is a constant that is independent of the time and space step-sizes.

The local truncation error (LTE) for the discrete equations in u in the FOFDM
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(5.3.10) and (5.3.11) is given by

(LTE)u =

(
ut(tn, xm)− un+1

m − unm
ψ

)
− λ

(
uxx −

un+1
m−1 − 2un+1

m + un+1
m+1

φ2
m

)
. (5.4.2)

The first term on the right hand side of equation (5.4.2) satisfies∣∣∣∣ut(tn, xm)− un+1
m − unm

ψ

∣∣∣∣
=

∣∣∣∣ut(tn, xm)− un+1
m − unm

k
+
un+1
m − unm

k
− un+1

m − unm
ψ

∣∣∣∣
≤
∣∣∣∣ut(tn, xm)− un+1

m − unm
k

∣∣∣∣+

∣∣∣∣un+1
m − unm

k
− un+1

m − unm
ψ

∣∣∣∣
≤ k

2
|utt(ξ, xm)|+

κk(1
2

+ κk
6

+ . . .)

1 + κk
2

+ . . .
(un+1

m − unm), ξ ∈ [tn, tn+1]

≤ k

2
C +

κk(1
2

+ κk
6

+ . . .)

1 + κk
2

+ . . .
(un+1

m − unm) (using (5.4.1))

→ 0 as k → 0. (5.4.3)

The second term on the right-hand side of equation (5.4.2) satisfies∣∣∣∣uxx(tn, xm)−
(
uxx −

un+1
m−1 − 2un+1

m + un+1
m+1

φ2

)∣∣∣∣
≤
∣∣∣∣uxx(tn, xm)−

(
unm−1 − 2unm + unm+1

h2

)∣∣∣∣
+

∣∣∣∣(unm−1 − 2unm + unm+1

h2
−
un+1
m−1 − 2un+1

m + un+1
m+1

φ2

)∣∣∣∣
≤ h2

12
|uxxxx(tn, ζ)|+

∣∣∣∣(ρh/2)2/3− (ρh/2)4/60 + . . .

1− (ρh/2)2/6 + . . .

∣∣∣∣+ k |uxxt(ξ, xm)| ,

≤ h2

12
C + h2

(∣∣∣∣(ρ/2)2/3− h2(ρ/2)4/60 + . . .

1− (ρh/2)2/6 + . . .

∣∣∣∣)+ kC (using (5.4.1)),

→ 0 as h→ 0 and k → 0, (5.4.4)

where xm−1 < ζ < xm+1 in the third last inequality above.

The results that we obtained in equations (5.4.3) and (5.4.4) prove that LTE → 0

as k → 0 and h → 0. Similarly, we can see that the LTE for the equation in v tends
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to 0, as h→ 0 and k → 0. This proves the consistency of our FOFDM.

Stability of the numerical method

In this section we apply the von Neumann analysis to prove the stability of our method.

Plugging the solution

Un
m = wne

imh,

where i =
√
−1 in equation (5.3.8), we obtain

((
1

ψ
+

2λ

φ2

)
− 1

ψ

(
eimh + e−imh

))
wn+1 =

(
1

ψ
+ κ

(
1− Un

τ,m + a21V
n
τ,m

))
wn (5.4.5)

From equation (5.4.5), the amplification factor ς is given by

ς =

1
ψ

+ κ(1− (Hu)
n
m + a21(Hv)

n
m

1
ψ

+ 4λ
φ2
m

sin2 mh
2

. (5.4.6)

We notice that both the quantities in the numerator and denominator in the right-hand

side of equation (5.4.6) are positive, hence the amplification factor ς satisfies

|ς| ≤ 1,

if
1

ψ
+ κ (1− (Hu)

n
m + a21(Hv)

n
m) ≤ 1

ψ
+

4λ

φ2
m

sin2 mh

2
. (5.4.7)

Simplifying the inequality (5.4.7) we obtain

κ

λ
(1− (Hu)

n
m + a12(Hv)

n
m) ≤ 4

φ2
m

sin2 mh

2
≤ 4

φ2
m

. (5.4.8)

From the discussion in Section 2, we see that the ratio κ̃ = κ
λ

can not exceed κ∗ which

is always less than 2. This implies that the left hand side of inequality (5.4.8) is always

less than 2. On the other hand, we see that the right hand side of inequality (5.4.8) is

4
φ2
m

which is much greater than 2. Hence, the amplification factor ς is always less than
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1 and therefore, the proposed FOFDM is unconditionally stable.

Using the Lax-Richtmyer theory [108, 125], we have the following theorem

Theorem 5.4.1 The FOFDM given by (5.3.11)-(5.3.12) along with (5.3.2) and (5.3.13)

is convergent of order O(k + h2) in the sense that

max

{
max

1≤m,n≤N−1
{|u(tn, xm)− Un

m|} , max
1≤m,n≤N−1

{|v(tn, xm)− V n
m|}
}
≤ C(k + h2),

where U and V are the numerical solutions obtained by this FOFDM and N is the total

number of subintervals taken in either directions.

5.5 Numerical results

To see the performance of the proposed FOFDM, we consider the following example.

Example 5.5.1 [86] Consider problem (5.1.5)-(5.1.6) with a12 = 0.5, a21 = 0.8, λ

takes values in [0.0085, 0.0105] ∪ [0.999, 1.0105], κ ∈ {0.01, 1.01}, τ ∈ {1, 20, 100, 170}

and T ∈ {100, 800, 2500, 4500}. The initial data is taken as

u(θ, x) = v(θ, x) = 0.1

(
1 +

θ

τ

)
sinx, θ ∈ [−τ, 0], 0 ≤ x ≤ π, t ≥ 0
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Figure 5.5.1: Profile of u(t, x) for λ =
0.0085, κ = 0.01, τ = 1 and T = 100

Figure 5.5.2: Profile of v(t, x) for λ =
0.0085, κ = 0.01, τ = 1 and T = 100

Figure 5.5.3: Profile of u(t, x) for λ =
0.0087, κ = 0.01, τ = 1 and T = 100

Figure 5.5.4: Profile of v(t, x) for λ =
0.0087, κ = 0.01, τ = 1 and T = 100

Figure 5.5.5: Profile of u(t, x) for λ =
0.0105, κ = 0.01, τ = 1 and T = 100

Figure 5.5.6: Profile of v(t, x) for λ =
0.0105, κ = 0.01, τ = 1 and T = 100
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Figure 5.5.7: Profile of u(t, x) for λ =
0.0097, κ = 0.01, τ = 20 and T = 800

Figure 5.5.8: Profile of v(t, x) for λ =
0.0097, κ = 0.01, τ = 20 and T = 800

Figure 5.5.9: Profile of u(t, x) for λ =
0.0098, κ = 0.01, τ = 20 and T = 800

Figure 5.5.10: . Profile of v(t, x) for λ =
0.0098, κ = 0.01, τ = 20 and T = 800

Figure 5.5.11: . Profile of u(t, x) for λ =
0.0099, κ = 0.01, τ = 20 and T = 800

Figure 5.5.12: . Profile of v(t, x) for λ =
0.0099, κ = 0.01, τ = 20 and T = 800
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Figure 5.5.13: . Profile of u(t, x) for λ =
0.0105, κ = 0.01, τ = 20 and T = 800

Figure 5.5.14: . Profile of v(t, x) for λ =
0.0105, κ = 0.01, τ = 20 and T = 800

Figure 5.5.15: . Profile of u(t, x) for λ =
0.999, κ = 1.01, τ = 100 and T = 2500

Figure 5.5.16: . Profile of v(t, x) for λ =
0.999, κ = 1.01, τ = 100 and T = 2500

Figure 5.5.17: . Profile of u(t, x) for λ =
1.000, κ = 1.01, τ = 100 and T = 2500

Figure 5.5.18: . Profile of v(t, x) for λ =
1.000, κ = 1.01, τ = 100 and T = 2500
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Figure 5.5.19: . Profile of u(t, x) for λ =
1.005, κ = 1.01, τ = 100 and T = 2500

Figure 5.5.20: . Profile of v(t, x) for λ =
1.005, κ = 1.01, τ = 100 and T = 2500

Figure 5.5.21: . Profile of u(t, x) for λ =
1.0105, κ = 1.01, τ = 100 and T = 2500

Figure 5.5.22: . Profile of v(t, x) for λ =
1.0105, κ = 1.01, τ = 100 and T = 2500

Figure 5.5.23: . Profile of u(t, x) for λ =
1.003, κ = 1.01, τ = 170 and T = 4500

Figure 5.5.24: . Profile of v(t, x) for λ =
1.003, κ = 1.01, τ = 170 and T = 4500
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Figure 5.5.25: . Profile of u(t, x) for λ =
1.005, κ = 1.01, τ = 170 and T = 4500

Figure 5.5.26: . Profile of v(t, x) for λ =
1.005, κ = 1.01, τ = 170 and T = 4500

Figure 5.5.27: . Profile of u(t, x) for λ =
1.007, κ = 1.01, τ = 170 and T = 4500

Figure 5.5.28: . Profile of v(t, x) for λ =
1.007, κ = 1.01, τ = 170 and T = 4500

Figure 5.5.29: . Profile of u(t, x) for λ =
1.0105, κ = 1.01, τ = 170 and T = 4500

Figure 5.5.30: . Profile of v(t, x) for λ =
1.0105, κ = 1.01, τ = 170 and T = 4500
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5.6 Discussion

In this chapter we have designed and analyzed a fitted operator finite difference method

(FOFDM) for a coupled system of two partial delay differential equations. Using the

method of lines, this problem is transformed into a system of ordinary delay differential

equations which are then solved with the proposed FOFDM. This FOFDM is analyzed

for convergence and we found that this method is of order 1 with respect to time- and

is of order 2 with respect to space-discretizations.

In our test example, we considered many scenarios for the selection of the param-

eters κ and λ such that the ratio κ/λ remains close to one. The results are presented

in figures 5.5.1-5.5.30. We have noticed that when κ/λ < 1, the solutions do always

tend to the unique stable trivial attractor (0, 0) (See figures 5.5.5, 5.5.6, 5.5.13, 5.5.14,

5.5.21, 5.5.22, 5.5.29 and 5.5.30). When the ratio κ/λ passes unity, a stable or a sta-

ble periodic solution bifurcates from κ/λ = 1 (See figures 5.5.3, 5.5.4, 5.5.11, 5.5.12,

5.5.19, 5.5.20, 5.5.25, 5.5.26, 5.5.27 and 5.5.28). When we continue increasing the ratio

κ/λ unstable periodic solutions bifurcate from κ/λ = 1 as seen in figures 5.5.9, 5.5.10,

5.5.17 and 5.5.18. Finally, by increasing the ratio κ/λ, unstable aperiodic solutions

appear as seen in figures 5.5.1,5.5.2 5.5.7, 5.5.8, 5.5.15, 5.5.16, 5.5.23 and 5.5.24. This

confirms the theoretical results.

The results which we have obtained by fixing the value of the time delay τ = 100

show that the model is very sensitive to change in values of the parameters. Changes

in the ratio κ/λ from 0.99951 passing by 1.01 and 1.005 to 1.01101 have shown four

different scenarios about the behaviour of the positive equilibrium. A similar situation

is seen for τ = 170, where changes in the ratio κ/λ from 0.99951 to 1.007 have shown

four different stability scenarios for the positive equailibrium. These scenarios are the

trivial equilibrium (0, 0), a stable positive equilibrium, a periodic positive equilibrium

and aperiodic positive equilibrium. This again confirms the theoretical results.

In summary, from the results that we have obtained by our simulations, we conclude

that for a fixed τ > τκ0 > 0 if

 

 

 

 



CHAPTER 5. A FITTED NUMERICAL METHOD FOR A DELAYED MODEL
OF TWO CO-OPERATING SPECIES 128

• the ratio κ/λ is less than or equal to 1 then the solution tends to the trivial

attractor (0, 0) and the solution is stable and no positive equilibrium exists.

• the ratio κ/λ is greater than 1 then there is a positive equilibrium and a positive

real number κ1 ∈ (1, κ?) such that if 1 < κ/λ ≤ κ1 then the positive equilibrium

solution is stable, and if κ/λ ∈ (κ1, κ
?] then it is unstable, periodic or aperiodic.

Hence, these results that we have obtained by our FOFDM confirm the theory for

the existence and stability of the positive equilibrium when τ > 0 and κ/λ > 1.

Moreover, our results are comparable to those obtained in [86] in which the authors

solved problem (5.1.5)-(5.1.6) using the method of steps (where one transforms the

DPDE into a system of ordinary PDEs) and the MATLAB PDE toolbox for τ = 20, 100

and 170 and T = 200, 2500 and 4500. Their simulations show that the solution is stable

for κ/λ = 0.98 and tends to the trivial attractor (0, 0), when they took κ/λ as 1.01 and

τ = 100, a bifurcating periodic stable solution is noticed and finally when they took

τ = 170 and κ/λ = 1.01 they obtained an unstable Hopf bifurcating solution.

Another remarkable fact is that we have tested the MATLAB dde23 solver for

solving the transformed system of DDEs and the dde23 could solve the problem for the

delay τ = 20 and T = 800 but it failed to solve the system for τ = 100 and τ = 170 on

the domains [0, T ] with T = 2500 and T = 4500. The dde23 solved the problem using

12371 grid points and took 70.02 seconds to compute the solution. On the other-hand,

our FOFDM solved the same problem using 3000 grid points and took 2.95 seconds to

compute the solution. It is worth mentioning here that basically our method is able

to produce a reliable solution to the problem with fewer grid points and in fairly less

CPU time compared to other in-built solvers.

 

 

 

 



Chapter 6

A Fitted Numerical Method for a

Delayed Model of Two Competitive

Species

In the previous chapter, we considered a delayed model of two co-operative species. In

this chapter, we consider such a model for two competitive species. It is given by a

system of two coupled partial delay differential equations (PDDEs). We construct a

fitted operator finite difference method (FOFDM) to solve this system. This FOFDM

is analyzed for convergence and it is seen that this method is unconditionally stable and

has the accuracy of O(k+h2), where k and h denote time and space step-sizes, respec-

tively. Some numerical results confirming theoretical observations are also presented.

These results are comparable with those obtained in the literature.

6.1 Introduction

Competition between two or more species is a natural phenomenon which appears

widely in biological and ecological systems. As per Vries et al. [143], populations are

influenced by changes in the weather, a limited food supply, competition for resources

such as nutrients and space, territoriality, predation, diseases, etc. Some examples

129
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include: the competition between the immune system and tumor cells, in which the

immune system responds to the tumor cells through the macrophages which absorb

and destroy the tumor cells and send signals to activate the helper T cells, whereas

those helper T cells mark the tumor cells and send signals to the killer T cells [11];

the competition between two species on a common pool of resources, in which each

one of the two species produces a toxic substance against the existing other species

[23]; the competition between the grey and red squirrels in Britain where it had been

noticed that the release of the American grey squirrels from various sites in Britain

led to the disappearance of the red squirrels after a few years [111]; the competition

between two predators on one prey [74], etc. Such phenomena are modelled by partial

delay differential equations (PDDEs), in which the delay might be the time until some

action is taken by one species against the other or the non-immediate effect of that

action on the other species.

Many mathematical models were established to describe the competition between

two or more species, (see for example [15, 24, 78, 111, 146], [151]). Some of these

models consider the spatial spread of the species whereas others do not.

In this chapter, we consider a system of two coupled PDDEs describing the dynamics

of two competitive species [151] having densities u(t, x) and v(t, x) given by

∂u

∂t
(t, x) =

∂2u

∂x2
(t, x) + κu(t, x) (1− a1u(t− τ, x)− b1v(t− τ, x)) , (6.1.1)

∂v

∂t
(t, x) =

∂2v

∂x2
(t, x) + κv(t, x) (1− a2u(t− τ, x)− b2v(t− τ, x)) , (6.1.2)

where 0 < x < π and t > 0, subject to the initial data

u(t, x) = u0(t, x), v(t, x) = v0(t, x), t ∈ [−τ, 0], (6.1.3)

and Dirichlet boundary conditions

u(t, 0) = u(t, π) = v(t, 0) = v(t, π) = 0, t ≥ 0. (6.1.4)
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The coefficients a1, b1, a2, b2 and κ are positive constants. Finally, the positive

parameter τ represents delay in the maturation time.

In this chapter, we design a fitted operator finite difference method (FOFDM) to

solve the above system of PDDEs.

The rest of this chapter is organized as follows. In Section 6.2, we discuss the

existence and stability of equilibria for the model under consideration. Section 6.3

deals with the construction of the fitted operator finite difference method which is

analyzed for convergence in Section 6.4. Illustrative numerical results are presented in

Section 6.5. Finally, we discuss these results and draw some conclusions in Section 6.6.

6.2 Existence and stability of equilibria

In this section we retrieve some of the results about the existence and Hopf bifurcation

of a positive equilibrium, following the work in [151].

The trivial solution (0, 0) satisfies (6.1.1)-(6.1.2). For κ < 1 this trivial solution is

asymptotically stable and it is the only global attractor for all non-negative solutions.

The question arises about the qualitative behaviour of the model for κ > 1. Hence,

the main consideration of Zhou et al. in [151] was to study the existence and stability

of non-trivial steady state spatial solutions (Uκ(x), Vκ(x)) 6= (0, 0) and to determine

whether increases in the time delay τ can destabilize the steady state and lead to the

occurrence of periodic solutions. To discuss this further, we note that an equilibrium

solution for problem (6.1.1)-(6.1.2) should solve the system

d2u

dx2
+ κu(x)(1− a1u(x)− b1v(x)) = 0,

(6.2.1)

d2v

dx2
+ κv(x)(1− a2u(x)− b2v(x)) = 0,

with

u(0) = u(π) = v(0) = v(π) = 0, (6.2.2)
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where κ is restricted to some neighbourhood of 1.

Existence of equilibria

Let D2 denote the differential operator d2

dx2 , and N (D2 + 1) and R(D2 + 1) denote the

null and range spaces of the differential operator D2 + 1 respectively, then

L2[0, π] = N (D2 + 1)⊕R(D2 + 1),

where

N (D2 + 1) = span{sinx}

and

R(D2 + 1) = {y(x) ∈ L2[0, π] : <sinx, y(x)>=

∫ π

0

(sinx)y(x)dx = 0}.

The domain of the operator D2 + 1 denoted by D(D2 + 1) is given by

D(D2 + 1) =
{
y ∈ L2(0, π) : y(0) = y(π) = 0

}
.

Assume that the pair of functions (Uκ(x), Vκ(x)) is an equilibrium solution of the

system (6.1.1)-(6.1.3) with

Uκ(x) = α(κ− 1) (sinx+ (κ− 1)ξ) (6.2.3)

and

Vκ(x) = β(κ− 1) (sinx+ (κ− 1)η) , (6.2.4)

where ξ, η ∈ R(D2 + 1) and α and β are real numbers.
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Using (6.2.1) along with equations (6.2.3)-(6.2.4), one obtains

(D2 + 1)ξ + sinx+ (κ− 1)ξ − κ
(
a1(α sinx+ (κ− 1)ξ)2

+b2β(sinx+ (κ− 1)ξ)(sinx+ (κ− 1)η)) = 0 (6.2.5)

and

(D2 + 1)η + sinx+ (κ− 1)η − κ (a2α(sinx+ (κ− 1)ξ)

(sinx+ (κ− 1)η) + b2β(sinx+ (κ− 1)η)2
)

= 0. (6.2.6)

For κ = 1, we get

α1 = α?
b2 − b1

a1b2 − a2b1

and β1 = α?
a1 − a2

a1b2 − a2b1

,

provided that a1b2 − a2b1 6= 0 where

α? =

∫ π
0

sin2 xdx∫ π
0

sin3 xdx
=

3

8

and hence, ξ1 = η1 are the solutions to the boundary value problem

(D2 + 1)y + sinx− α∗ sin2 x = 0, 0 < x < π, y(0) = y(π) = 0, (6.2.7)

with < y, sinx >= 0.

For the general case κ ≥ 1 (which also includes the above case κ = 1 also), it has been

proven in [151] that there is a constant κ? and a continuously differentiable mapping

κ → (ξκ, βκ, ακ, βκ) from [1, κ?] → H2 × H2 × R × R such that equations (6.2.5) and

(6.2.6) hold and

<sinx, ξκ> =<sinx, ηκ> = 0.

The existence of the positive equilibrium (Uκ, Vκ) then follows from the existence

and uniqueness of the couple (ξκ, ηκ) in the interval (1, κ?].
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Stability of the equilibria

To study the stability of the positive equilibrium (Uκ, Vκ), let 1 < κ ≤ κ? and consider

the linearized version of the system (6.1.1)-(6.1.2) around this equilibrium, i.e.,

∂

∂t

u(t, x)

v(t, x)

 =

(
∂2

∂x2
+ κ

)
I2

u(t, x)

v(t, x)


+κ

−a1Uκ −b1Uκ

−a2Vκ −b2Vκ

u(t− τ, x)

v(t− τ, x)

 , (6.2.8)

u(θ, x)

v(θ, x)

 =

u0(θ, x)

v0(θ, x)

 , θ ∈ [−τ, 0] (6.2.9)

u(t, 0)

v(t, 0)

 =

u(t, π)

v(t, π)

 = 0 (6.2.10)

where I2 is the 2× 2 identity matrix.

By writing u(t) = u(t, ·), v(t) = v(t, ·) and letting

Y (t) = [u(t), v(t)]T , Y0(t) = [u0(t, ·), v0(t, ·)]T ,

A(κ) = (D2 + κ)I2

and

B(κ) =

−Uκ a12Uκ

a21Vκ −Vκ

 ,

the stability of (Uκ, Vκ) is determined through solving the eigenvalue problem

[
A(κ) + κB(κ)e−λτ − λI2

]
Y = 0. (6.2.11)

An infinitesimal generator Aτ (κ) of a compact semi-group ([136]) and the stability

of the equilibrium (Uκ, Vκ) is determined by the eigenvalues of Aτ (κ) which depend

continuously on τ . For τ = 0 all the eigenvalues of Aτ have negative real parts. By
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increasing the time delay τ the eigenvalues of Aτ (κ) may move towards the positive

real part of the complex plane and the problem is then to determine whether there

exists a delay τ ? for which Aτ?(κ) has a pure imaginary eigenvalue λ = iν. However,

λ = iν is a pure imaginary eigenvalue of Aτ (κ) if and only if the equation

[
A(κ) + κB(κ)e−iθ − iνI2

]
Y = 0, (6.2.12)

is solvable for the pair ν > 0 and θ ∈ [0, 2π]. Then, (6.2.12) is satisfied for all

τn =
θ + 2nπ

ν
, n = 0, 1, . . . .

It has been proved in [151] that if the triplet (ν, θ, Y ) solves the eigenvalue problem

(6.2.11) with Y 6= 0 and κ ∈ (1, κ?], then % = ν/(κ− 1) is uniformly bounded and

Y = [sinx+ (κ− 1)γ(x), (a+ ib) sinx+ (κ− 1)δ(x)]T ,

where γ(x) and δ(x) are two smooth functions such that

<sinx, γ(x)> = 0

and

<sinx, δ(x)> = 0.

Zhou et al. [151] proved that solving the eigenvalue problem (6.2.11) is equivalent
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to solve the following system of equations:

g1(γ, δ, %, θ, a, b) = (D2 + 1)γ + (1− i%)[sinx+ (κ− 1)γ] + κ(−a1ακ(sinx+ (κ− 1)ξκ)

+b1βκ(sinx+ (κ− 1)ηκ))(sinx+ (κ− 1)γ)

+κe−iθακ[sinx+ (κ− 1)ξκ](a1(sinx+ (κ− 1)γ)

+b1((a+ ib) sinx+ (κ− 1)δ)),

g2(γ, δ, %, θ, a, b) = (D2 + 1)δ + (1− i%)[(a+ ib) sinx+ (κ− 1)δ]

−κ(a2ακ(sinx+ (κ− 1)ξκ) + b2βκ(sinx+ (κ− 1)ηκ))

((a+ ib) sinx+ (κ− 1)δ)− κe−iθβκ[sinx+ (κ− 1)ηκ]

(a2(sinx+ (κ− 1)γ) + b2((a+ ib) sinx+ (κ− 1)δ)), (6.2.13)

g3(γ, δ, %, θ, a, b) = Re <sinx, γ>= 0,

g4(γ, δ, %, θ, a, b) = Im <sinx, γ>= 0,

g5(γ, δ, %, θ, a, b) = Re <sinx, δ>= 0,

g6(γ, δ, %, θ, a, b) = Im <sinx, δ>= 0.

Finally, the authors in [151] proved that for each κ ∈ (1, κ?], Hopf bifurcation occurs

as the delay increasingly passes through τk0 and there exists a δ0 > 0 such that for

each τ ∈ (τk0 , τk0 + δ0] system (6.1.1)-(6.1.2) has a periodic solution (U τ
κ (x), V τ

κ (x))

near (Uκ(x), Vκ(x)) with a period 2π/νκ.

In summary,

• If κ ≤ 1, then the zero solution is stable and is the only global attractor of all

non-negative solutions.

• If κ > 1, a unique positive equilibrium (Uκ, Vκ) bifurcates from κ = 1 and (u, v) =

(0, 0) while the zero solution is unstable.

• For each fixed 0 < κ − 1 � 1 there exists a sequence {τκn}∞n=0 such that the

positive equilibrium (Uκ, Vκ) is asymptotically stable if 0 ≤ τ < τκ0 and periodic

if τ > τκ0 .
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• A Hopf bifurcation will occur as the delay τ increasingly passes through each

point τκn , n = 1, 2, . . ..

The above information will be useful in designing a dynamically consistent numerical

method in the next section.

6.3 Construction of the numerical method

In this section, we describe the construction of the fitted numerical method for solving

the system (6.1.1)-(6.1.2) with the initial data (6.1.3) and boundary conditions (6.1.4).

Following the method of lines, we determine an approximation to the derivatives of

the functions u(t, x) and v(t, x) with respect to the spatial variable x. By doing so, we

transform the two PDDEs into a system of DDEs.

Because of the similarities between the two PDEs in u(t, x) and v(t, x) we will

describe the method for the equation in u(t, x). The equation in v(t, x) is dealt with

similarity.

Let Nx be a positive integer. Discretize the interval [0, π] through the points

x0 = 0 < x1 < x2 < . . . < xNx = π,

where h = xm+1 − xm = π/Nx; m = 0, 1, . . . , Nx.

Let Um(t) be used to denote u(t, xm).

We approximate the second order spatial derivative by

∂2u

∂x2
(t, xm) ≈ Um+1 − 2Um + Um−1

φ2
m

, (6.3.1)

where

φm = φm(κ, λ, h) =
2

ρm
sin

ρmh

2

and

ρm =
√
κ.

 

 

 

 



CHAPTER 6. A FITTED NUMERICAL METHOD FOR A DELAYED MODEL
OF TWO COMPETITIVE SPECIES 138

It is obvious that φm → h as h → 0. The function φ2
m in equation (6.3.1) is conven-

tionally termed as a denominator function ([102]). It can be constructed by using the

theory of difference equations (See, e.g., [88, 102, 114]).

Let Nt be a positive integer and k = T/Nt where 0 < t < T . Discretizing the time

interval [0, T ] through the points

0 = t0 < t1 < . . . < tNt = T

where

tn+1 − tn = k, n = 0, 1, . . . , (Nt−1).

We approximate the time derivative at tn by

dUm(tn)

dt
≈ Un+1

m − Un
m

ψ
, (6.3.2)

where

ψ = ψ(k) = (exp(κk)− 1)/κ.

Again we see that ψ(k)→ k as k → 0.

Combining the formulae for the spatial and time derivatives, we obtain

Un+1
m − Un

m

ψ(k)
= λ

Un+1
m+1 − 2Un+1

m + Un+1
m−1

φ2
m(h)

−κUn
m(1− a1(Hu)

n
m − b1(Hv)

n
m) (6.3.3)

Un
0 = 0 = Un

Nx (6.3.4)

where

(Hu)
n
m ≈ u(tn − τ, xm)

and

(Hv)
n
m ≈ v(tn − τ, xm),

m = 1, . . . , Nx−1, n = 0, . . . , Nt − 1 are the history functions corresponding to the
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equations in u and v.

Equation (6.3.3) can further be simplified as

− λ

φ2
m

Un+1
m−1 +

(
1

ψ
+

2λ

φ2
m

)
Un+1
m − λ

φ2
m

Un+1
m+1 =

(
1

ψ
+ κ (1− a1(Hu)

n
m − b1(Hv)

n
m)

)
Un
m.

(6.3.5)

Equation (6.3.5) can be written as a tridiagonal system given by

TLU
n+1 =

1

ψ
Un
m + κUn

m(1− a1(Hu)
n
m − b1(Hv)

n
m), (6.3.6)

where m = 1, . . . , Nx−1, n = 0, . . . , Nt − 1 and

TL = Tri

(
− λ

φ2
m

,
1

ψ
+

2λ

φ2
m

,− λ

φ2
m

)
.

On the interval [0, τ ] the delayed arguments tn − τ belong to [−τ, 0], and therefore

the delayed variable

(Hu)
n
m ≈ um(tn − τ)

is evaluated directly from the history functions u0(t, x) as

(Hu)
n
m = u0(tn − τ, xm), (6.3.7)

and equation (6.3.6) becomes

TLU
n+1 =

1

ψ
Un + κUn(1− a1u

0(tn − τ, xm)− b1v
0(tn − τ, xm)). (6.3.8)

Let s be the largest integer such that ts ≤ τ . By using equation (6.3.8) we can

compute Un
m for 1 ≤ n ≤ s. Up to this stage, we interpolate the data

(t0, U
0
m), (t1, U

1
m), . . . , (ts, U

s
m)

using an interpolating cubic Hermite spline ϕm(t). Then Un
m = ϕ(tn, xm) for all n =
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0, 1, . . . , s and m = 1, 2, . . . , Nx−1.

For n = s+ 1, s+ 2, . . . , Nt−1, when we move from level n to level n+ 1 we extend

the definitions of the cubic Hermite spline ϕm(t) to the point (tn + k, Un+1
m ). Then the

history terms (Hu)
n
m can be approximated by the functions ϕm(tn− τ) for n ≥ s. That

is,

(Hu)
n
m ≈ ϕm(tn − τ),

and equation (6.3.6) becomes

TLU
n+1 =

1

ψ
Un + κUn(1− a1ϕ(tn − τ)− b1ϑ(tn − τ)), (6.3.9)

where

ϕ(tn − τ) = [(Hu)
n
1 , . . . , (Hu)

n
Nx−1]T

and ϑ is the set of cubic Hermite splines that interpolate the data (tn, V
n
m).

Proceeding in the similar manner for the equation in v, we have

TLV
n+1 =

1

ψ
V n + κV n(1− a2(Hu)

n − b2(Hv)
n), (6.3.10)

where

(Hv)
n =


v0(tn − τ) tn ≤ τ

ϑ(tn − τ) tn > τ

along with

V0(t) = 0 = VNx . (6.3.11)

Our FOFDM is then consists of equations (6.3.6)-(6.3.10) along with (6.3.4) and

(6.3.11).

This method is analyzed for convergence in next section and the corresponding

numerical results are presented in Section 6.5.
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6.4 Analysis of convergence

The convergence for the proposed FOFDM is proved via consistency and stability.

Consistency of the numerical method

We assume that the function u(t, x) and its partial derivatives with respect to both t

and x are smooth and satisfy∣∣∣∣∂i+ju(t, x)

∂tixj

∣∣∣∣ ≤ C; ∀ i, j ≥ 0, (6.4.1)

where C is a constant that is independent of the time and space step-sizes.

The local truncation error (LTE) for the discrete equations in u in the FOFDM

(6.3.8) and (6.3.9) is given by

(LTE)u =

(
ut(tn, xm)− un+1

m − unm
ψ

)
−
(
uxx −

un+1
m−1 − 2un+1

m + un+1
m+1

φ2
m

)
. (6.4.2)

The first term on the right hand side of equation (6.4.2) satisfies∣∣∣∣ut(tn, xm)− un+1
m − unm

ψ

∣∣∣∣
=

∣∣∣∣ut(tn, xm)− un+1
m − unm

k
+
un+1
m − unm

k
− un+1

m − unm
ψ

∣∣∣∣
≤
∣∣∣∣ut(tn, xm)− un+1

m − unm
k

∣∣∣∣+

∣∣∣∣un+1
m − unm

k
− un+1

m − unm
ψ

∣∣∣∣
≤ k

2
|utt(ξ, xm)|+

κk(1
2

+ κk
6

+ . . .)

1 + κk
2

+ . . .
(un+1

m − unm), ξ ∈ [tn, tn+1]

≤ k

2
C +

κk(1
2

+ κk
6

+ . . .)

1 + κk
2

+ . . .
(un+1

m − unm) (using (6.4.1))

→ 0 as k → 0. (6.4.3)
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The second term on the right-hand side of equation (6.4.2) satisfies∣∣∣∣uxx(tn, xm)−
(
uxx −

un+1
m−1 − 2un+1

m + un+1
m+1

φ2

)∣∣∣∣
≤
∣∣∣∣uxx(tn, xm)−

(
unm−1 − 2unm + unm+1

h2

)∣∣∣∣
+

∣∣∣∣(unm−1 − 2unm + unm+1

h2
−
un+1
m−1 − 2un+1

m + un+1
m+1

φ2

)∣∣∣∣
≤ h2

12
|uxxxx(tn, ζ)|+

∣∣∣∣(ρh/2)2/3− (ρh/2)4/60 + . . .

1− (ρh/2)2/6 + . . .

∣∣∣∣+ k |uxxt(ξ, xm)| ,

≤ h2

12
C + h2

(∣∣∣∣(ρ/2)2/3− h2(ρ/2)4/60 + . . .

1− (ρh/2)2/6 + . . .

∣∣∣∣)+ kC (using (6.4.1)),

→ 0 as h→ 0 and k → 0, (6.4.4)

where xm−1 < ζ < xm+1 in the third last inequality above.

The results that we obtained in equations (6.4.3) and (6.4.4) prove that LTE → 0

as k → 0 and h → 0. Similarly, the LTE for the equation in v tends to 0, as h → 0

and k → 0. This proves the consistency of our FOFDM.

Stability of the numerical method

In this section we apply the von Neumann stability analysis to prove the stability of

our method.

Plugging

Un
m = wne

imh,

in equation (6.3.6) where i =
√
−1, we obtain

((
1

ψ
+

2λ

φ2

)
− 1

ψ

(
eimh + e−imh

))
wn+1 =

(
1

ψ
+ κ

(
1− a1U

n
τ,m − b1V

n
τ,m

))
wn

(6.4.5)

From equation (6.4.5), the amplification factor ς is given by

ς =

1
ψ

+ κ(1− a1(Hu)
n
mb1(Hv)

n
m

1
ψ

+ 4λ
φ2
m

sin2 mh
2

. (6.4.6)
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We notice that both the quantities in the numerator and denominator in the right-hand

side of equation (6.4.6) are positive. Hence the amplification factor ς satisfies

|ς| ≤ 1

if
1

ψ
+ κ (1− a1(Hu)

n
m − b1(Hv)

n
m) ≤ 1

ψ
+

4

φ2
m

sin2 mh

2
. (6.4.7)

Simplifying the inequality (6.4.7) we obtain

κ (1− a1(Hu)
n
m − b1(Hv)

n
m) ≤ 4

φ2
m

sin2 mh

2
≤ 4

φ2
m

. (6.4.8)

From the discussion in Section 6.2, we see that κ can not exceed κ∗ which is always

less than 2. This implies that the left hand side of the inequality (6.4.8) is always less

than 2. On the other hand, we see that the right hand side of the inequality (6.4.8)

is 4/φ2
m which is much greater than 2. Hence, the amplification factor ς is always less

than 1 and therefore, the proposed FOFDM is unconditionally stable.

Hence, using the Lax-Richtmyer theory [108, 125], we have the following theorem.

Theorem 6.4.1 The FOFDM given by (6.3.9)-(6.3.10) along with (6.3.4) and (6.3.11)

is convergent of order O(k + h2) in the sense that

max

{
max

1≤m,n≤N−1
{|u(tn, xm)− Un

m|} , max
1≤m,n≤N−1

{|v(tn, xm)− V n
m|}
}
≤ C(k + h2),

where U and V are the numerical solutions obtained by this FOFDM and N is the total

number of subintervals taken in either directions.

6.5 Numerical results

To see the performance of the proposed FOFDM, we consider the following example.
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Example 6.5.1 Consider problem (6.1.1)-(6.1.2) with a1 = 1, b1 = 0.5, a2 = 0.8,

b2 = 1, κ ∈ [0.95, 1.9], τ ∈ {10, 20, 50} and T = 500. The initial data is taken as

u(θ, x) = v(θ, x) = 0.1

(
1 +

θ

τ

)
sinx, θ ∈ [−τ, 0], 0 ≤ x ≤ π, t ≥ 0.
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Figure 6.5.1: Profile of u(t, x) for κ =
1.25 and τ = 10

Figure 6.5.2: Profile of v(t, x) for κ =
1.25 and τ = 10

Figure 6.5.3: Profile of u(t, x) for κ =
1.15 and τ = 10

Figure 6.5.4: Profile of v(t, x) for κ =
1.15 and τ = 10

Figure 6.5.5: Profile of u(t, x) for κ =
1.05 and τ = 10

Figure 6.5.6: Profile of v(t, x) for κ =
1.05 and τ = 10
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Figure 6.5.7: Profile of u(t, x) for κ =
0.95 and τ = 10

Figure 6.5.8: Profile of v(t, x) for κ =
0.95 and τ = 10

Figure 6.5.9: Profile of u(t, x) for κ =
1.1 and τ = 20

Figure 6.5.10: . Profile of v(t, x) for κ =
1.1 and τ = 20

Figure 6.5.11: . Profile of u(t, x) for κ =
1.075 and τ = 20

Figure 6.5.12: . Profile of v(t, x) for κ =
1.075 and τ = 20
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Figure 6.5.13: . Profile of u(t, x) for κ =
1.05 and τ = 20

Figure 6.5.14: . Profile of v(t, x) for κ =
1.05 and τ = 20

Figure 6.5.15: . Profile of u(t, x) for κ =
1.0 and τ = 20

Figure 6.5.16: . Profile of v(t, x) for κ =
1.0 and τ = 20

Figure 6.5.17: . Profile of u(t, x) for κ =
1.06 and τ = 50

Figure 6.5.18: . Profile of v(t, x) for κ =
1.06 and τ = 50
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Figure 6.5.19: . Profile of u(t, x) for κ =
1.04 and τ = 50

Figure 6.5.20: . Profile of v(t, x) for κ =
1.04 and τ = 50

Figure 6.5.21: . Profile of u(t, x) for κ =
1.02 and τ = 50

Figure 6.5.22: . Profile of v(t, x) for κ =
1.02 and τ = 50

Figure 6.5.23: . Profile of u(t, x) for κ =
1.0 and τ = 50

Figure 6.5.24: . Profile of v(t, x) for κ =
1.0 and τ = 50

 

 

 

 



CHAPTER 6. A FITTED NUMERICAL METHOD FOR A DELAYED MODEL
OF TWO COMPETITIVE SPECIES 149

6.6 Discussion

In this chapter, we have designed a fitted operator finite difference method (FOFDM)

for a competition model that is described by a system of two coupled partial delay

differential equations. This FOFDM is analyzed for convergence and we found that

this method is of order O(k + h2) where k and h are the step-sizes in the time and

space directions, respectively.

In our test example, we considered many scenarios for the selection of the parameter

κ such that it remains close to unity. The results are presented in figures 6.5.1-6.5.24.

By taking κ = 0.95 and 1.0, only the trivial solution is obtained as t increases (both

the two species will extinct). This can be viewed in figures 6.5.7, 6.5.8, 6.5.15, 6.5.16,

6.5.23 and 6.5.24. By increasing κ slightly to values above 1.0 (κ = 1.02 and 1.05),

we have noticed the appearance of stable positive equilibrium (both the two species

will exist). This can be seen in figures 6.5.5, 6.5.6, 6.5.3, 6.5.4, 6.5.13, 6.5.14, 6.5.11,

6.5.12, 6.5.21 and 6.5.22. By increasing the value of κ (κ = 1.25, 1.1, 1.04 and 1.06), we

obtained periodic solutions as can be seen in figures 6.5.1, 6.5.2, 6.5.9, 6.5.10, 6.5.19,

6.5.20, 6.5.17 and 6.5.18.

We found that our results do agree with the theory about the existence of a positive

equilibrium for τ > 0 and κ > 1, where different behaviour of the system, ranging

from the trivial zero attractor, passing a stable positive equilibrium and ending with a

periodic equilibrium are obtained.

From the results that we have obtained with our simulations, we conclude that for

a fixed τ > τκ0 > 0, if

• κ is less than or equal to 1 then the solution tends to the trivial attractor (0, 0)

and the solution is stable and no positive equilibrium exists.

• κ is greater than 1 then there is a positive equilibrium and a positive real number

κ1 ∈ (1, κ?) such that if 1 < κ ≤ κ1 then the positive equilibrium solution is

stable, and if κ ∈ (κ1, κ
?] then the positive equilibrium is periodic.
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Hence, the results that we have obtained confirm the theory about the existence and

stability of the positive equilibrium.

The clear difference between the qualitative behaviour of the solutions of the com-

petition model under consideration and the co-operative model by Li et al. [86] is that

in the co-operative model, chaotic behaviour of the solution can be obtained for some

values of the parameter κ, whereas no aperiodic behaviour can be obtained for the

competition model. The theories about the qualitative behaviour for the two models

confirm these results. By looking at the simulations in [86] and our simulations here,

one can notice the agreement between our numerical simulations and the theoretical

results for the two different models.

 

 

 

 



Chapter 7

Concluding Remarks and Future

Directions

In this thesis, we considered different classes of delay differential equation (DDE) mod-

els having biological applications. These biological models include a single delay dif-

ferential equation model, a system of delay differential equations, a boundary value

problem of a singularly perturbed second-order delay differential equation, a singularly

perturbed delay parabolic partial differential equation and a system of delay parabolic

partial differential equations. For each class of these DDEs, we have designed and

analyzed fitted numerical methods. To the best of our knowledge we have not seen any

numerical methods in the literature for some of the models considered in this thesis,

and therefore, our quantitative work is a new contribution to the numerical world for

these problems. Moreover, these numerical methods are very robust.

In Chapter 2, we considered two systems of delay differential equations modelling

the dynamics of a mature population and the periodic chronic myelogenous leukemia.

The fitted numerical methods (PPMs) that we have designed are of relatively low order,

but that is the best that one could do at this stage. Currently, we are busy investigating

how we can improve the order of convergence of these PPMs. Our future plans for these

problems include the construction of direct higher order numerical methods.
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In Chapter 3, we developed a fitted numerical method for solving a singularly

perturbed second-order delay differential equation. The numerical method developed

in that chapter discretizes the original problem without using Taylor expansions as is

done in the literature in the past. In this way, we could say that this was the direct

method to solve original problems. The proposed approach is very simplistic in nature

and hence we can easily extend it to solve higher order problems in this class.

Chapter 4 dealt with singularly perturbed delay parabolic partial differential equa-

tions. While the theoretical estimates that we have designed add the mathematical

theory about these problems, the numerical methods designed there were extremely

robust and easily adaptable to more complex problems. To the best of our knowledge,

the order of convergence which we achieved by applying the fitted mesh and fitted

operator finite difference methods for the singularly perturbed delay parabolic partial

differential equations in that chapter has not been achieved by anyone in the literature

to date. A further improvement on our own results obtained by the fitted mesh method

can be made if we use the proposed method on a mesh of Bakhvalov type rather than

a mesh of Shishkin type. We are currently investigating this aspect.

The problems considered in chapters 5 and 6 describe the dynamics of two co-

operative and competitive species have oscillatory solutions. The theories about the

qualitative behaviour of the solutions of the two models are different. In the co-

operative model stable, periodic and chaotic behaviour can be seen for the solution,

while only stable and periodic solutions can be obtained for the competitive model. (It

is to be noted that in Chapter 5, we have considered the case when both diffusion coeffi-

cients λ1 and λ2 are the same. However, our approach can be extended for the general

cases (for instance problem (5.1.1)-(5.1.2)) where λ1 6= λ2 with necessary modifica-

tions.) Due to the oscillatory nature of the solutions, the fitted mesh methods cannot

be designed for such problems and hence we have developed only the fitted operator

numerical methods there. These numerical methods are already very competitive but

we are still planning to improve them further in near future.
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Finally, it should be noted that almost all the numerical methods that we have

developed for different problems in this thesis are comparable with (and in some cases

better than) the well-known DDE solvers, like MATLAB dde23. Moreover, some of

these methods developed in this thesis can be extended to solve other classes of prob-

lems, for instance, delay problems in higher dimensions, multiple state-dependent delay

problems, etc.
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