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ABSTRACT 

 

Functional analysis of the mouse RBBP6 gene using interference RNA 

 

A. Pretorius 

 

PhD thesis, Department of Biotechnology, Faculty of Science, University of the Western 

Cape 

 

A novel hamster gene homologous to the human cDNA clone 21C4 was identified in a 

genetic screen to identify new genes involved in the MHC class I antigen processing and 

presentation pathway. The identified gene however showed no significant matches to 

sequences in the Genbank Database and was subsequently named the Domain Without 

No name (DWNN). The corresponding human gene was found to be located on 

chromosome 16p12.2, upstream of the previously identified RBBP6/PACT/P2P-R gene. 

Analysis of cDNA sequences showed that the sequence coded for the previously 

unidentified N-terminus of the RBBP6 protein (Dlamini et al, in prep), which was named 

the DWNN domain. 

 

RBBP6 is one of the few proteins identified that has been shown to interact with both p53 

and Rb, suggesting a possible model for the integration of the regulation of transcription, 

cell cycle control and apoptosis. Over-expression of the mouse homolog P2P-R has been 

shown to lead to cell cycle arrest and apoptosis. The conserved mechanisms of 
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programmed cell death play a fundamentally important role in tissue homeostasis, 

embryogenesis and cellular defense and had only recently been subjected to molecular 

analysis. 

 

The aim of this thesis was to investigate the cellular role of the mouse RBBP6 gene using 

the interference RNA (RNAi) gene targeting technology and also to understand the 

relevance of two promoters for the RBBP6 gene. 

 

Genetic analysis showed the presence of two promoters for RBBP6 namely Promoter 0 

(P0) and Promoter 1 (P1) both being responsible for the different RBBP6 transcripts. The 

Enhanced Green Fluorescent Protein (EGFP) and the Red Fluorescent Protein (DsRed1) 

were both placed under the transcriptional control of P0 and P1. Promoter activities were 

measured using FACS and Real-Time qRT-PCR. The results showed P0 to have a higher 

level of transcriptional activity than P1 before and after camptothecin-induced apoptosis. 

 

RNAi was used to target the expression of the RBBP6 gene. Several small interference 

RNA (siRNA) constructs were designed that would result in the expression of two 

distinct siRNA oligonucleotides designated DWNN-A and DWNN-B targeting different 

regions of the gene. Two stable siRNA-expressing cell lines were established, namely 

RU6A and GU6B expressing DWNN-A and DWNN-B respectively. Fluorescence 

microscopy and Real-Time qRT-PCR analysis were used to evaluate the effect on 

RBBP6 expression following (i) transient transfections of the siRNA constructs into the 

parental cell line NIH 3T3 cell line (ii) as well as expression in the stable cell lines RU6A 

 

 

 

 



 III 

and GU6B. The silencing effect of the DWNN-A oligonucleotide appeared to be more 

potent than that exerted by DWNN-B. 

 

Both stable lines were used in assays to determine the effect of RBBP6 silencing on 

apoptosis. The stable cell lines proved to be significantly more resistant to apoptosis 

induced by camptothecin compared to the parental NIH 3T3 cell line. Furthermore 

complementing the stable cell lines with the full-length DWNN-200 cDNA, restored 

sensitivity to camptothecin and the degree of cell death observed in the parental cell line. 

In addition, over-expression of the RBBP6 protein showed an increase in the apoptotic 

population following camptothecin-induced apoptosis. Apoptosis mediated through 

RBBP6 was shown to be dependent on p53 expression and possibly follows an intrinsic 

pathway. Finally, the siRNA stable expressing cell lines RU6A and GU6B were also 

shown to be restricted in the G1 phase of the cell cycle implicating the RBBP6 gene in 

cell cycle progression. 

 

From the study the RBBP6 Promoters showed an increase in transcriptional activity 

following the induction of apoptosis. Furthermore the involvement of the RBBP6 was 

implicated in the processes of apoptosis and the cell cycle although the exact mechanisms 

have not been fully elucidated. 
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CHAPTER 1: LITERATURE REVIEW 

1.1 Introduction 

 

The advent of gene targeting has paved the way for determining the functions of 

many previously identified genes. With the completion of the human genome project 

many new genes have been sequenced, but no function(s) could be ascribed to them. To 

meet this demand, gene target technology has grown rapidly, with new advances and 

technologies being introduced frequently. This thesis will outline the use of the RNA 

interference (RNAi) technology to determine the physiological role of the mouse RBBP6 

gene.  

 

This chapter will firstly give an overview of the immune system. The DWNN gene was 

identified in a genetic screen to identify novel components of the antigen processing and 

presentation pathway via the major histocompatibility class I (MHC class I) molecules. 

Over 100 cytotoxic T lymphocyte (CTL) resistant cell lines were generated using a 

promoter trap mutagenesis approach (George, 1995). The system of retrovirus promoter 

trap mutagenesis involves the insertion of a promoter-less selectable marker gene, 

hygromycin, into the U3 region of the Long Terminal Repeat (LTR) of the Moloney 

murine leukaemia virus (MoMLV). Sequences adjacent to the site of integration were 

identified using a combination of PCR and sequencing. It was expected that identified 

genes would play a role in the expression, processing or presentation of antigens by MHC 

class I molecules or in the recognition, adhesion or lytic mechanism of CTLs. Based on 
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the genes identification from this genetic screen it suggests a potential role for RBBP6 in 

the immune system.  

 

The mechanisms of apoptosis and CTL are closely linked. Two molecular mechanisms of 

T-cell mediated cytotoxicity have been demonstrated: (i) killing mediated by the 

formation of pores in the target cell plasma membrane and (ii) receptor mediated 

apoptosis (Kupfer et al., 1986). Also, caspases has been shown to be molecular mediators 

of both CTL killing (Chinnaiyan et al., 1995) and apoptosis (Sarin et al., 1998). Recent 

studies by several groups had implicated RBBP6 involvement in apoptosis (Gao and 

Scott, 2003) and the cell cycle (Gao and Scott, 2002). The overview of the immune 

system will thus be followed on a review of apoptosis, proteins regulating apoptosis and 

the cell cycle as both systems are closely linked and tightly controlled by the same 

proteins. Furthermore, RBBP6 is one of the few proteins identified that has been shown 

to interact with both p53 and Rb (Sakai et al., 1995) with both proteins having 

demonstrated roles in apoptosis and cell cycle regulation. 

 

This chapter will also review the isolation of the RBBP6 gene, domain organization and 

interaction with other proteins such as p53 and pRB.  Lastly, this chapter will review the 

different gene targeting strategies with emphasis on the interference RNA (RNAi) 

technology used in this work to further elucidate the physiological role of the gene. 
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1.2  The immune system 

 

Different challenges are presented to the immune system by intracellular and 

extracellular pathogens, both in terms of recognition and the appropriate response. To 

meet these challenges parallel systems have evolved.  

 

Innate immunity is the first generalised defence against all kinds of pathogens. It provides 

an immediate, non-specific and rapid protection against the invading pathogen (reviewed 

by Abbas et al., 1997). The cells of the innate immune system include dendritic cells, 

macrophages, neutrophils and natural killer cells. 

 

A second response, adaptive immunity, provides a specific defence against pathogens. 

Adaptive immunity can recognise previously encountered pathogens and reacts faster and 

more efficiently (reviewed by Abbas et al., 1997). The adaptive immune cells include B 

and T lymphocytes. There are two types of adaptive immune responses: the humoral and 

the cell mediated responses. 

 

The humoral response is based on the production of antibodies by the immune system for 

the recognition and the destruction of the extracellular antigen. This provides protection 

against bacteria, fungi, parasites and toxins. This type of immune response is mediated by 

the B lymphocytes. 
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The cell-mediated response is based on the recognition of an intracellular antigen by T 

lymphocytes. This immune response destroys cells that are infected with viruses or 

mutated cells. The next section will focus only on T lymphocytes and their role in cell 

mediated immune responses. 

 

1.2.1 Classes of T lymphocytes 

 

There are two major subpopulations of T cells that develop. Cell surface markers in the 

thymus can trace the development of both populations. T cells that leave the bone 

marrow are immature. In the thymus, they mature and are positively or negatively 

selected depending on the affinity of their T cell receptors (TcRs) for self major 

histocompatibility (MHC) antigens (Krammer, 2000). MHC antigens are molecules that 

bind with peptide fragments from foreign and self-protein and present them to the T cells. 

Every cell produces thousands of MHC molecules. The process of negative or positive 

selection ensures that T cells with high affinity for self-MHC molecules and peptides are 

eliminated. The elimination of the self-MHC molecules ensures tolerance to normal 

tissues and to prevent autoimmunity. T cells develop their specific T cell markers, 

including TcR, CD3, CD4 or CD8 and CD2, during development and maturation.  

 

There are two types of MHC molecules: the class I and class II molecules. T cells that 

interact with MHC class II molecules develop into cells expressing CD4+ molecules on 

their surface (Pieters, 1997), and those interacting with MHC class I molecules turn into 

T lymphocytes that express CD8+ antigens (Benoist and Mathis, 1999). Only mature T 
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cells that produce a functional TcR leave the thymus and enter the secondary lymphoid 

organs. Mature CD4+ T cells function as helper T cells and secrete cytokines that regulate 

either cellular immune responses or antibody responses. Mature CD8+ T cells function as 

cytotoxic (killer) cells. 

 

The least mature T cells have a T cell receptor (TcR) associated with CD3. In the thymus, 

the cells express both the CD4 and CD8 markers. These cells are referred to as double 

positive (CD4+CD8+). Eventually the cells lose either CD4 or CD8 to become one of the 

functional subsets. The CD4+CD8- cells are called helper T cells (Th cells) whilst the 

CD4-CD8+ cells are referred to as the cytotoxic T lymphocytes (CTL). Th cells and CTL 

both have a TcR, but they perform different functions in the immune system (Clancy, 

1998). 

1.2.1.1 Helper T cells (Th cells) 

 

The generation of an immune response, both humoral (by B lymphocytes) and cell-

mediated by (CTLs), depends on the activation of Th cells. The importance of Th cells 

has become apparent because of their involvement in AIDS (Clancy, 1998). There are 

two subsets of Th cells, Th1 and Th2. Th1 and Th2 are similar and have the same T cell 

markers and receptors. However, they differ in the cytokines that they secrete upon 

activation. In addition, the Th1 subset produces the cytokines interleukin-2 (IL-2) and 

interferon-! (IFN !), which are important in cell-mediated immunity. The Th2 subset B 

cells assist by secreting IL-4, -5 and 6. The cytokines produced by the two subsets are 
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said to have a cross-regulatory role, meaning that Th1 cytokines down regulate the Th2 

responses, and vice versa. 

 

1.2.1.2 Cytotoxic T lymphocytes (CTLs) 

 

CTLs are derived from a lymphocyte stem cell matured in the thymus. These cells are 

characterised by the presence of a CD8 marker on their surface, and an antigen-specific 

TcR, which recognises antigens in the context of MHC class I molecules. 

 

The major role of CTL is to kill other cells, especially virus-infected and tumour cells. 

The cytotoxic T cells must be activated in order to be able to kill. The activation of CTL 

requires firstly, that the TcR on the CD8+ cell interact with an antigen-MHC class I on the 

surface of a target cell. Secondly, the CD8+ T cell must be stimulated by cytokines. Once 

activated, the CTLs are effective in killing target cells. The killing happens in three steps: 

(1) conjugate formation between the CTL and the target cell, (2) attack on the membrane 

of the target cell, and (3) dissociation of the two cells and ultimately death of the target 

cell. 

 

Major histocompatibility complex (MHC) class 1 molecules generally present peptides 

derived from intracellular pathogens to CD8+ T cells resulting in a cellular response, 

whilst those antigens derived from extracellular pathogens are presented to CD4+ T cells 

by MHC class II molecules resulting in a humoral response. 
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1.2.2 MHC class 1 presentation pathway 

 

MHC class 1 molecules present peptides derived from cytosolic proteins for recognition 

by CD8+ CTL. Evidence for the cytosolic source of class 1 associated peptides initially 

came from the identification of CTL that recognise fragments of viral nuclear and 

cytosolic proteins in association with MHC class 1 (Townsend et al., 1985). 

 

Further studies showed that synthetic peptides will directly prime cells for lysis by CTLs, 

presumably by binding surface MHC class 1 molecules directly, however priming by 

native antigens requires their introduction into the cytoplasm before doing so (Morrison 

et al., 1986). It is well documented that antigens derived from influenza viral 

nucleoprotein that are apparently excluded from the secretory pathway are efficiently 

presented to CTLs, suggesting that processing of the antigen occurs in the cytoplasm, 

rather than in the exocytic pathway (Whitton and Oldstone, 1989, Braciale et al. 1987).  

 

Yewdell et al., (1988) showed that mini-genes encoding peptides containing specific 

CTL epitopes, upon transfection could sensitise cells for lysis by the appropriate CTLs. 

As these peptides are produced on free ribosomes in the cytoplasm, the intact native 

antigen is not required for transport of the CTL epitope into the exocytic pathway.  

 

Similarly, transfection of a truncated influenza haemaglutinin gene lacking an amino 

terminal signal sequence can sensitise cells to lysis by haemaglutinin specific CTL 

(Yewdell and Bennick, 1989). An important observation noted from this study was that 
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no core glycosylation of haemaglutinin was detected, showing that the complete molecule 

does not gain entry into the endoplasmic reticulum (ER). 

 

The basic mechanism of MHC class I presentation is firmly established (see figure 1.1). 

CTLs recognize small peptides (of between 8 and 11 amino acids in length) from foreign 

proteins that have been broken down in the cytoplasm of infected or tumour cells. The   

degradation is mediated in the cytoplasm by the proteases of the proteasome complex. 

Peptide fragments are transported across the membrane of the endoplasmic reticulum 

(ER) by the transporters associated with antigen-processing (TAP) proteins. In human 

cells, newly synthesised MHC class I heavy chains interacts with calnexin, a 

Ca2+dependant chaperone, which is later displaced by the association of "2-microglobulin 

("2m). Following the dissociation of calnexin, class I-"2m heterodimers are stably 

associated with another ER resident protein, calreticulin (Lehner et al., 2000). 

 

Another protein, tapasin, a member of the immunoglobulin (Ig) super family, which is 

associated with TAP and with MHC class I-calreticulin complexes, acts as a bridge 

facilitating peptide binding to class I molecules. The class I molecule complexes are 

released and exported to the cell surface upon stable loading of peptide. Peptides are 

loaded onto the newly synthesized class 1 molecules in a groove formed by the alpha 

helices of the #1 and #2 domains (Elliott et al., 1991). Human HLA molecules are highly 

polymorphic and most of the polymorphism occurs in the peptide-binding groove. 
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Figure 1.1 Representation of the MHC class 1 antigen processing and presentation 

pathway (taken from Lehner et al., 2000). 

 

Consequently, different HLA molecules bind different kinds of peptides (Rotzschke and 

Falk, 1991). Peptides associated with MHC class I molecules are transported to the cell 

surface and recognized by CTL, leading to the destruction of the infected cell (Monaco, 

1992). 
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1.3 CTL killing 

 

Two molecular mechanisms of T-cell mediated cytotoxicity have been demonstrated: (i) 

a membranolytic mechanism initiated by the formation of pores in the target cell plasma 

membrane by the secretion of molecules of lymphocytic origin such as perforin and 

granzymes and (ii) receptor mediated apoptosis through the engagement of the target cell 

surface molecules (Kupfer et al., 1986).  

. 

 

 

Figure 1.2 Diagrammatic representation of the two pathways by which CTLs kill their 

target cells: the CD95 (yellow)/CD95L (red) mediated killing and perforin/Granzymes B 

(GRb) mediated killing (taken from Krammer, 2000). 

 

Binding of the CTL to target cells that results in conjugate formation is one of the first 

events in lymphocytotoxicity. This binding involves the interaction between the TCR and 
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MHC class 1 molecules bound to peptide as well as auxiliary cell adhesion molecules 

(e.g. LFA-1), which increase the avidity of the interaction (see figure 1.2).  

 

1.3.1 Granule mediated exocytic killing 

 

Granule mediated target cell lysis is triggered by compromising the integrity of the 

plasma membrane due to pore formation from the release of perforin. Extracellular 

calcium has been found to be necessary for the secretion, binding and polymerisation of 

perforin (Ishiura et al., 1990). Perforin, which shows homology to complement 

component C9, is contained in cytoplasmic organelles, which have properties of both 

secretory granules and lysosomes. The content of the granules is secreted into the contact 

zone formed by the engagement of the CTL and target cell (see figure 1.2). When 

cytolytic cells engage their targets there is a change in their shape. This is brought about 

by the translocation of the Golgi apparatus and the microtubules towards the killer/target 

interface and is followed by granule content exocytosis (Kupfer et al., 1986).  

 

The perforin-based mechanism was confirmed by the low cytotoxic activity of an 

activated lymphoid cell population from perforin homozygous -/- mice. These mice did 

not generate a virus specific CTL response to an in vivo challenge with lymphocytic 

choriomeningitis virus, and failed to clear the virus normally, although significant killing 

activity was demonstrated using perforin-free CTLs, utilizing in vitro assays (Walsh et 

al., 1994). 
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Dupuis et al. (1993) proposed that an additional granule protein called calreticulin 

regulates the process of cell lysis. Using lysosomal secretory granules, isolated from 

human Lymphokine Activated Killer (LAK) cells and mouse CTL, the co-localization of 

perforin and calreticulin was demonstrated. Also, when the release of granule-associated 

proteins was triggered by TcR complex stimulation, calreticulin was released along with 

granzymes A and D. Since perforin is activated and becomes lytic in the presence of 

calcium, a proposed role of calreticulin is to prevent organelle autolysis due to its calcium 

chelator capacity. 

 

The role of other granule harboured molecules in the process of cytolysis is not clear, as 

purified granzymes, a group of serine proteases, are not lytic, despite the fact that various 

protease inhibitors suppress CTL-mediated cytolysis. However, granzymes A and B 

appears to be involved in the induction of degradation of the nuclear DNA of the target 

cell, which is observed during CTL attack parallel to the damage of the cytoplasmic 

membrane (Hayes et al., 1989, Shi et al., 1992).  

 

The first substrate to be identified for granzyme B was caspase 3, which is a member of a 

family of cysteine proteases involved in inducing apoptosis (Darmon et al., 1995). 

Multiple caspases have been identified as substrates for granzyme B in vitro (Darmon et 

al., 1995) and this suggests that granzyme B induces apoptosis by triggering the 

activation of multiple caspases within intact cells. 
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1.3.2 Receptor mediated CTL killing (see figure 1.2) 

 

Several observations implicated the Fas protein in Ca2+ independent target cell lysis, 

through receptor mediated activation. Firstly, Fas was shown to be a member of a family 

of membrane proteins that determine the choice of many cell types to grow or die (Itoh, 

1991). Other members of this family include the tumour necrosis factor (TNF) receptors.  

 

Secondly, a lupus-like systemic autoimmune disease in mice called lymphoproliferative 

disorder (lpr) was shown to result from a retrotransposon insertion into the fas locus 

leading to abnormal transcription and a greatly reduced expression of Fas (Watanabe-

Fukunaga et al. 1992). This discovery led to the identification of the Fas ligand (FasL), 

which showed great homology to TNF#, a member of the TNF family of membrane and 

secreted proteins. Like other TNF family members, FasL is a homodimeric molecule 

found in a trimeric complex. The crystal structure of lymphotoxin in complex with 

TNFR1 suggests that each FasL trimer binds three Fas molecules (Crowe et al., 1994).  A 

second autoimmune disease of mice called general lymphoproliferative disorder (gld) 

were shown to be caused by a point mutation in the FasL gene, rendering the protein non-

functional (Takahashi et al., 1994, Ramsdell et al., 1994)). 

 

Direct evidence for Fas in receptor mediated CTL lysis was shown using the rat-mouse T 

cell hybridoma, d10S (Rouvier et al., 1993). This study showed thymocytes from normal 

MRL-mice were sensitive to killing by d10S T cells but thymocytes derived from MRL-

lpr donors were resistant to lysis with d10S T cells as there was no expression of Fas on 
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these cells. Similar results were shown for gld mouse mutants using thymocytes (Rouvier 

et al., 1993).  

 

In contrast to the widespread distribution of Fas, its ligand has a more restricted pattern of 

expression. The expression of FasL is induced on mature CD4+ and CD8+ T lymphocytes 

after their activation (Van Parijs and Abbas, 1996). 

 

When target cells from Fas deficient lpr mice and perforin-free CTL were used results 

showed that killing is completely abolished when both pathways are inhibited. This 

showed that the two pathways are complementary mechanisms of killing utilised by 

CTLs (Lowin et al., 1994). 

 

1.3.3 The role of Caspases in CTL killing 

 

Various studies have shown that both effector pathways utilised by cytotoxic 

lymphocytes activates caspases. Chinnaiyan et al., (1995) showed that cross-linking of 

target cell Fas by FasL on CTL membranes leads to the activation of caspase 8, which 

transactivates caspase 3 and possibly caspase 10 via the Fas associated death domain 

(FADD). These caspases will process and activate downstream caspases that, in turn, 

trigger cell destruction (see figure 1.2).  

 

Furthermore, rapid target cell lysis and apoptotic nuclear damage by this CTL effector 

pathway have been shown to be blocked by two classes of caspase inhibitors, confirming 
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the predicted functional importance of caspases in this effector pathways. In a study by 

Sarin et al., (1997), fluoromethyl ketone caspase inhibitors and baculovirus p35 blocked 

apoptotic nuclear damage and target cell lysis by the CTL-mediated Fas-Fas ligand 

pathway. The peptide caspase inhibitors also blocked drug-induced apoptotic cell death in 

tumour cells. In contrast, the caspase inhibitors blocked CTL granule exocytosis-induced 

target apoptotic nuclear damage, but did not inhibit target lysis. These results are 

consistent with those observed by Regner and Mullbacher, (2004) that granzyme B can 

activate caspases leading to apoptotic nuclear damage, which in turn confirms that target 

cell lysis by CTL granule exocytosis occurs by a caspase-independent pathway.  

 

For the granule exocytosis pathway, the requirement for caspases in target cell death is 

less clear. Caspase activation via the granule exocytosis pathway is predicted because the 

granule serine protease granzyme B recognizes a sequence motif compatible with caspase 

activation (Thornberry, 1997) and has been shown to initiate processing and activation of 

several caspases (Talanian et al., 1997). CTL targets undergo rapid caspase-3 processing 

as shown by in vitro experiments (Darmon et al., 1995), thus providing an explanation 

for apoptotic nuclear damage induced by granzyme B in the presence of sublytic doses of 

perforin (Shi et al., 1992). However, while CTL from mice lacking granzyme B induce 

target nuclear damage somewhat more slowly, their potency and rate of target lysis via 

the granule exocytosis pathway are unaffected by the loss of granzyme B (Shresta et al., 

1995). Since no other granule proteases are known to activate caspases directly, these 

data suggest that target lysis via CTL granule exocytosis might be independent of 

caspases. 
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One model to explain these results proposes that granzyme B mediates nuclear damage 

via caspase activation, but that target lysis occurs as a result of granzyme-induced 

cleavage of downstream cytoplasmic protein substrates, which are also cleaved by 

caspases and lead to apoptotic cell destruction. This model predicts that other CTL 

granule exocytosis-induced cytoplasmic apoptotic damage might be caspase independent 

if it is part of the postcaspase death pathway. This proposed model was confirmed by 

Sarin et al, (1998) who showed that granzymes activates a postcaspase apoptotic damage 

pathway that results in mitochondrial potential loss, phosphatidylserine (PS) surface 

exposure, membrane blebbing, and lysis. 

 

1.4 Apoptosis 

1.4.1 Introduction 

 

Apoptosis is a mode of cell death believed to account for most or all of the programmed 

cell death responsible for tissue modelling in vertebrate development (Ormerod et al. 

1994). Equally as important as cell division and cell migration, apoptosis allows an 

organism to tightly control cell numbers and tissue size, and to protect itself from cells 

that threaten homeostasis. The morphologically observable changes of apoptosis are 

distinct from the features observed in cells undergoing pathological necrotic cell death. 

Necrosis refers to the morphology most often seen when cells die from severe and sudden 

injury, such as ischemia, sustained hyperthermia and physical or chemical trauma. In 

necrosis there are early changes in mitochondrial shape and function. The cell also 

rapidly becomes unable to maintain homeostasis, leading to an influx of water and 
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extracellular ions. Intracellular organelles, including the mitochondria, and the entire cell 

swell and rupture (Kroemer et al., 1995). Ultimately, the plasma membrane breaks down 

and the cytoplasmic contents are released into the extracellular fluid. In vivo, necrosis is 

associated with tissue damage resulting in an inflammatory response. 

 

1.4.2 Characteristics of Apoptosis 

 

In contrast to necrosis, there is no marked inflammatory reaction and organelle swelling 

in apoptotic cells. Several morphological changes are characteristic of this process, like 

the aggregation of chromatin, nuclear and cytoplasmic condensation and the inclusion of 

the cytoplasm and nucleus in membrane bound vesicles known as apoptotic bodies 

(Wyllie, 1997) (see figure 1.3). The engulfment of apoptotic bodies is triggered by 

changes in the membrane of the apoptotic cells. These changes involve the 

externalisation of a phospholipid, phosphatidylserine, through the activation of an 

enzyme called flippase (Williamson et al., 2002). The biochemical markers of apoptosis 

include DNA fragmentation into nucleosomal fragments (Wyllie, 1997), activation of 

caspases, a group of aspartate specific cysteine proteases, (Schlegel et al., 1996) and 

cleavage of various caspase substrates e.g. pre-interleukin-1b, PARP and lamins. 
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Figure 1.3. Diagrammatically represents the morphological changes associated with 

apoptosis (modified from www.nih.gov/sigs/aboutapo.html, 3 April 2008). 

 

Apoptosis and necrosis have been regarded as separate modes of cell death, however 

increasing evidence is now emerging that both represents only the extreme ends of a wide 

range of possible morphological and biochemical deaths. Kanduc et al., (2002) have 

shown that the two types of death can occur simultaneously in tissues or cell cultures 

exposed to the same stimuli and that often the intensity of the initial insult determines if 

death is apoptotic or necrotic. 

 

Apoptosis has been shown to be an important component of some developmental 

abnormalities and human diseases. Disorders associated with insufficient apoptosis or 

failure of apoptosis usually leads to the development of autoimmune diseases and cancer. 

Excessive apoptosis on the other hand might play a crucial role in the development of 

many other diseases such as stroke and neuro-degenerative disorders like Parkinson’s 

(Ashkenazi and Dixit, 1998). Suppression of apoptosis may therefore help restore the 

functionality of the affected tissue. Tomei and Umansky (2001) showed that AIDS is 
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another example of a disease that has been linked to increased apoptosis in 

cardiomyocytes. 

 

1.4.3 Components of the Apoptotic pathway 

 

Studies in the nematode worm Caenorhabditis elegans first shed light on the involvement 

of three crucial components of the cell death pathway namely the cell death defective 

(CED) genes. CED-3, CED-4 and CED-9 were implicated as having important roles in 

the regulation of cell death in C. elegans (Hengartner and Horvitz, 1994). The interaction 

of these gene products is believed to control apoptosis in C. elegans. CED-3 and CED-9 

are both able to form complexes with CED-4, whilst the association of CED-3 and CED-

4 leads to induction of apoptosis. Xue and Horvitz (1997) showed that in unstressed cells 

CED-4 is unable to form a complex with CED-3, as it is already associated with CED-9 

at the mitochondrial membrane. This inhibitory effect of CED-9 is neutralized by another 

protein, EGL-1 (external germinal layer-1) during apoptosis by promoting the 

dissociation of CED-4/CED-3 complexes from CED-9 (del Peso et al., 1998). 

 

Homologues of the C. elegans death genes have also been identified in vertebrates. The 

mammalian homologue of CED-9 and EGL-1 is the Bcl-2 protein family (Adams and 

Cory, 1998) while CED-4 is homologous to Apaf-1 (Zou et al., 1997) and CED-3 is 

homologous to caspases (Peter et al., 1997). 
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CED-3 was found to be very similar to a protease involved in the processing of pro-IL-1" 

converting enzyme (ICE). Upon its discovery, ICE defined a new class of cysteinyl 

proteases because it was distinguishable from other cysteinyl proteases. This distinction 

was made on structural organisation as compared to other families and the absolute 

requirement for an aspartic residue at the P1 position in the active site (Thornberry et al., 

1992) hence the name caspase-1 or cysteine aspartic acid-specific protease-1 (Alnemri et 

al., 1996). Caspases play a central role in the mechanisms of apoptosis and are also 

responsible for the many morphological changes observed in apoptotic cells. 

 

1.4.3.1 Caspases 

 

Caspases, which are members of an aspartate specific cysteine protease family, are 

central molecular mediators of apoptotic cell death (Sarin et al. 1998). There are 

currently 15 identified human caspases which are expressed in an inactive precursor form 

in many cells and have the hallmark specificity of cleaving protein substrates with 

aspartic residues at the P1 position (Siegel, 2006). 

 

 Caspases share a number of common structural motifs (Wolf and Green, 1999). They 

consist of a N-terminal pro-domain, a large subunit and a small subunit (Nicholson, 

1999) An Aspartate residue between the pro-domain and the large subunit and an 

interdomain containing 1 or 2 aspartate residues between the large and small subunit (see 

figure 1.4).  
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Figure 1.4 A diagrammatical representation of the general structure of procaspase 

 

Activation of caspases is a result of proteolytic processing of procaspases at aspartic 

residues, so that caspases can auto activate and process each other in an activation 

cascade (Thornberry and Lazebnik, 1998). Activation of pro-caspase is accompanied by 

proteolysis of the interdomain and results in the removal of the pro-domain. The active 

site is composed of residues from both the small and large subunits. The residues that 

constitute the active site are conserved for all caspases. 

 

Caspases were first implicated in apoptosis with the discovery of the C. elegans pro-

apoptotic gene, CED-3. The connection between caspases and apoptosis was further 

strengthened with the discovery that there is an extensive similarity between CED-3 and 

ICE (Miura et al., 1993). Caspases can be categorised into three subfamilies (a) the ICE 

subfamily of cytokine processors; these include caspases -1, -5. –11, -12, -13, -14 and –

15, (b) the CED-3/CPP32 subfamily of apoptosis executioners, including caspases –3, -6 

and –7, and (c) the ICH-1/Nedd-2 subfamily of apoptosis initiators, including caspases –

2, -8, -9 and –10 (Nicholson, 1999). The active site for all caspases resides in a 

pentapeptide with the general structure: QACXG, where X is R, Q or G. 

 Asp 
Active site, Cys 

containing 
Interdomain containing  

1 or 2 Asp 

Pro-domain Large subunit Small 
subunit 
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1.4.4 The Apoptotic pathways 

 

Apoptosis is signalled via three major biochemical routes in mammalian cells. Firstly, 

there is the intrinsic route that responds to most pro-apoptotic signals, which emanates 

largely from the mitochondrion. This involves the release of caspase activators like 

cytochrome c, changes in electron transport and loss of mitochondrial transmembrane 

potential (Green and Reed, 1998 and Green and Kroemer, 1998). Secondly, there is the 

extrinsic route that enables mammals to direct individual cells to self-destruct. This form 

of instructive apoptosis is triggered by the ligation of so called “death” receptors 

(Ashkenazi and Dixit, 1998). These receptors can activate the apoptosis program within 

seconds of ligand binding, leading to the removal of affected cells from the system within 

hours. 

 

Thirdly, an ER stress pathway has recently been described.  Two mechanisms for the ER 

pathway had been proposed: firstly, a mechanism involving p73 via its two protein 

isoforms (Dobbelstein et al., 2005) and secondly, a mechanism via homocysteine 

(Sharma, et al., 2006).  

 

1.4.4.1 The intrinsic pathway 

 

One of the most important regulators of this pathway is the Bcl-2 family of proteins. The 

Bcl-2 family are key regulators of apoptosis and are over-expressed in many 

malignancies even without the presence of tumour formation (Reed, 1997). The Bcl-2 
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family includes pro-apoptotic members such as Bax, Bak, Bad, Bcl-Xs, Bid, Bik, Bim, 

and Hrk, and anti-apoptotic members such Bcl-2, Bcl-XL, Bcl-W, Bfl-1, and Mcl-1.18.  

 

Anti-apoptotic Bcl-2 members act as repressors of apoptosis by blocking the release of 

cytochrome-c, whereas pro-apoptotic members act as promoters of apoptosis. These 

effects are more dependent on the balance between Bcl-2 and Bax than on Bcl-2 quantity 

alone (Zha and Reed, 1997). Following a death signal, pro-apoptotic proteins undergo 

post-translational modifications that include dephosphorylation and cleavage resulting in 

their activation and translocation to the mitochondria leading to apoptosis (Scorrano and 

Korsmeyer, 2003).  

 

All BH3-only molecules require multi-domain BH3 proteins (Bax, Bak) to exert their 

intrinsic pro-apoptotic activity (Korsmeyer, 1995). In response to apoptotic stimuli, the 

outer mitochondrial membrane becomes permeable, leading to the release of cytochrome-

c and a second mitochondrial-derived activator of caspases called direct IAP-binding 

protein with low pI. Cytochrome c, once released in the cytosol, interacts with Apaf-1, 

leading to the activation of caspase-9 pro-enzymes. Active caspase-9 then activates 

caspase-3, which subsequently activates the rest of the caspase cascade and leads to 

apoptosis. Activated caspases lead to the cleavage of nuclear lamin and breakdown of the 

nucleus through caspase-3 (Thornberry and Lazebnik, 1998) (see figure 1.5). 
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1.4.4.2 The extrinsic pathway 

 

The second apoptotic pathway is through the Fas molecule (see figure 1.5). Fas contain a 

death domain (DD), which is essential for transmitting apoptotic signals (Nagata, 1997) 

since there is a tendency for DDs to associate with each other. The assembly of the Fas 

receptor death-inducing signalling complex (DISC) occurs in a hierarchical manner: the 

death domain of CD95 binds to the corresponding domain in the adapter molecule Fas-

associated death domain (FADD) (Chinnaiyan et al., 1995). The adapter protein FADD 

also contains a death effector domain (DED), which binds to caspase-8 and caspase 10 

(Fernandes-Alnemri et al., 1996). Both caspase-8 and 10 contain two DEDs and a 

caspase activation domain.  

 

When incorporated into the death inducing signalling complex, caspase-8 is 

proteolytically activated, possibly in the form of a dimeric complex as observed in 

caspase-1. Caspase-8 oligomerization drives its activation through self-cleavage 

(Ashkenazi and Dixit, 1998) and subsequent cleavage of downstream caspases and target 

proteins such as caspase-9, 3, 6 and 7 and initiates mitochondrial damage. 
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Figure 1.5 Diagrammatically represents two mechanisms by which apoptosis occur 

(www.nih.gov/sigs/aboutapo.html, 3 April 2008). 

 

It has also been demonstrated that BID, a death agonist member of the Bcl-2 family, is a 

specific proximal substrate of caspase-8 in the Fas signalling pathway (Li et al., 1998). 

Cleavage of BID by caspase-8 leads to the release of cytochrome c from the 

mitochondria. The release of cytochrome c results in the inactivation of the electron 

transfer chain and triggers caspase-3 activation through Apaf 1 (Krippner et al., 1996), 

which will induce mitochondrial damage (see figure 1.5). Expression of Bcl inhibits all 

the apoptotic phenotypes induced by truncated BID, whereas caspase inhibitors inhibit 

the loss of mitochondrial membrane potential, cell shrinkage, and nuclear condensation, 

but not cytochrome c release. 
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The death domain of CD95 and TNFR1 can interact with a second protein called the 

receptor interacting protein (RIP) (Stanger et al., 1995). This protein is required for the 

CD95/TNF-induced activation of the transcription factor NF-$B and hence promotes 

anti-apoptotic signals (Martinon et al., 2000). As a result, activation of NF-$B is 

prevented by cleavage of RIP by activated caspase-8 during the process of apoptosis. 

Following the recruitment of RIP by either CD95 or TNFR1, RIP interacts with a death 

adaptor protein called RAIDD (RIP associated ICH/CED-3 homologous protein with a 

death domain. 

 

A third CD95 binding protein, Daxx has been identified to bind to Fas DD (Kataoka et 

al., 1998). Although Daxx is able to bind CD95 it lacks a death domain. However, the 

over-expression of Daxx has been shown to activate JNK (c Jun-N-terminal kinase), 

which initiates CD95 induced apoptosis (Yang et al., 1997 and Wajant, 2002). 

 

1.4.4.3 The ER stress pathway 

1.4.4.3.1 p73 

 

Recently a third apoptotic pathway had been proposed via an ER stress mechanism 

involving p73. P73, one of two homologues of the tumour suppressor p53, is expressed in 

different isoforms, as a result of differential promoter usage and alternative splicing (Lee 

and La Thanque, 1999). Like p53, p73 has long been known to induce programmed cell 

death (Jost et al., 1997). However, in contrast with p53, the p73 gene has two distinct 

promoters coding for two protein isoforms with opposite effects. These isoforms contain 
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a transactivation domain at their amino terminal ends and they are collectively termed 

TAp73, while the transactivation proficient TAp73 shows pro-apoptotic effects, the 

amino-terminal-deleted DeltaNp73 has an anti-apoptotic function. Indeed, the relative 

expression of these two proteins is related to the prognosis of several cancers 

(Dobbelstein et al., 2005). 

 

The expression of TAp73 is activated by E2F-1 (or the E2F-1 activators adenovirus-E1A 

and c-MYC), and this appears to be required for E2F-1-induced apoptosis at least in some 

assay systems (Lissy et al, 2000, Irwin et al., 2000). First, TAp73 induces ER stress via 

the direct transactivation of Scotin. Second, TAp73 induces the mitochondrial pathway 

by directly transactivating both Bax and the BH3 only protein PUMA promoters. While 

the first transactivation is weak, and not sufficient to trigger apoptosis, the induction of 

PUMA is strong and lethal. Secondly, the promoter of the death receptor CD95 contains a 

p53 responsive element and preliminary experiments suggest that TAp73 also activates 

the death receptor pathway through this response element (Dobbelstein et al., 2005). 

Furthermore, TAp73 is able to transactivate its own second promoter, thus inducing the 

expression of the anti-apoptotic DeltaNp73 isoform. Therefore, the balance between 

TAp73 and DeltaNp73 finely regulates cellular sensitivity to death (Dobbelstein et al., 

2005). 
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1.4.4.3.2 Homocysteine 

 

Homocysteine is an independent risk factor for cardiovascular diseases and is also 

associated with a variety of complex disorders (Eikelboom et al., 1999). Homocysteine-

induced modulation of gene expression, through alteration of methylation status or by 

hitherto unknown mechanisms, is predicted to lead to several pathological conditions 

either directly or indirectly, including Alzheimer's disease (Clarke et al., 1998), 

schizophrenia (Applebaum et al., 2004), and non insulin-dependent diabetes (Rudy et al., 

2005).  

 

Homocysteine, a thiol containing amino acid, is formed during methionine metabolism in 

the cell. It is a key branch-point intermediate in the ubiquitous methionine cycle, the 

function of which is to generate one-carbon methyl groups for transmethylation reactions 

that are essential for several biological processes. 

 

The major process linking levels of homocysteine with apoptosis and the inflammatory 

pathway is the ER stress and c-myc mediated signalling. The ER is the destination for 

secretory and extracellular proteins. It also serves as a site of calcium storage, calcium 

signalling, and biosynthesis of steroids, cholesterol and other lipids. Increased levels of 

homocysteine have been shown to alter the cellular redox state resulting in ER stress 

(Outinen et al., 1998). 
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Exposure to excess ER stress results in apoptotic cell death. ER stress activates JNKs (c-

Jun N-terminal Kinases) that regulate gene expression via phosphorylation and activation 

of transcription factors such as c-Jun. The activation of JNK is mediated by TNF 

receptor-associated factor-2 (TRAF2), which transduce signals from ER-resident trans-

membrane protein kinases (IREs) that act as stress sensors and initiates the unfolded 

protein response (UPR) (Yoneda et al., 2001). TRAF2 activates the apoptosis-signalling 

kinase (ASK1) or MAPKKK (mitogen activated protein kinase kinase kinase). Activation 

of MAPKKK leads to activation of JNK protein kinase that in turn causes apoptosis 

(Zhang et al., 2001). TRAF1 binds to the TRADD (TNFR-Associated Death Domain), 

which recruits the activated caspase-8 initiating a proteolytic cascade subsequently 

resulting in apoptosis. Furthermore, caspase-8 also leads to release of pro-apoptotic factor 

cytochrome c (Gross et al., 1999). 

 

Mercie et al., 2000, showed that homocysteine induced apoptosis in endothelial cells in a 

dose dependant manner. Three parameters were used to measure apoptosis, mitochondrial 

membrane potential, PS exposure and DEVDase activation. They concluded that 

homocysteine induced apoptosis was independent of caspase-3. 

 

1.4.5 Regulation of the Apoptotic Proteins 

 

Regulators of the apoptotic pathways include transcription factors such as NF$B and 

activating protein 1 that regulate the FasL gene, because it is a transcriptionally inactive 

gene (Wajant, 2002). Other inhibitors of the pathway include FAP-1, Fas-associated-
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death-domain-protein like interleukin-1-converting enzyme-like inhibitory protein, and 

the soluble decoy receptors such as DcR3, TRAIL R-3/DcR1, and TRAIL R-4/ DcR2. 

These decoy receptors antagonize the stimulation of Fas by FasL though competition 

with the ligand (Pan et al., 1997, Krueger et al., 2001). Other regulators include the 

ubiquitin proteasome pathway and the tumour suppressor genes p53 and retinoblastoma 

(Rb). 

 

1.5 The p53 gene 

 

The p53 protein was originally identified by the observation that antibodies against the 

large T antigen from animals bearing tumours produced by SV40 transformed cells co-

immunoprecipitates a protein of apparent molecular mass 53 kD, called p53. From these 

observations it was concluded that p53 interacts with SV40 large T antigen (Chang et al.,  

1979). Independently, p53 was also identified by its high expression in chemically 

induced tumours (DeLeo et al., 1979).  

 

Initially classified as an oncogene, p53 is regarded as a “master tumour suppressor” 

which ensures the integrity of the cell genome by protecting it from the adverse affects of 

DNA damage. One way in which p53 is thought to potentiate genomic stability, and 

consequently inhibit tumorigenesis, is by initiating cell cycle arrest, thus allowing repair 

of damaged DNA prior to DNA synthesis or segregation of the genome (see figure 1.6). 
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1.5.1 Functions of the p53 gene 

 

Up-regulation and transcriptional activation of p53 leads to an elevation of cell cycle 

inhibitors, such as p21WAF1, blocking the progression of the cell cycle (el-Deiry et al., 

1993, el-Deiry et al., 1994). The induction of a cell cycle block at G1 and G2 by p53 

provides the necessary time for the cell to repair genomic damage before entering the 

critical stages of DNA synthesis and mitosis. However, in tissues where the stressors 

generate severe and irreparable damage, p53 can initiate apoptosis, thereby, eliminating 

damaged cells (Haupt et al., 2003). A number of pro-apoptotic factors such as bax, 

caspase-9, APAF-1, PUMA, NOXA or p53AIP-1 have been shown to be under the 

transcriptional control of the wt p53 protein (Haupt et al., 2003). Therefore, depending on 

the cell type and kind of stressors, wt p53 may initiate apoptosis or promote and 

accelerate the execution of apoptosis at different stages. 

 

In addition, the fact that p53 induction can initiate prolonged cell-cycle arrest suggests 

that it also provides a prolonged mechanism for permanently removing damaged, and 

potentially mutated cells from the dividing cell population (Lakin and Jackson, 1999). 

The ability of p53 to induce arrest within the G1 phase of the cell cycle in response to 

DNA damage is understood in most detail (Levine, 1997). This arrest is brought about by 

p53 stimulating transcription of the gene for the cyclin dependant kinase (CdK) inhibitory 

protein p21WAF. p21WAF is a cyclin-dependant kinase inhibitor that associates with a class 

of CDKs and inhibits their kinase activities, leading to cell cycle arrest and the 
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dephosphorylation of pRb.  The p21 protein is a p53 inducible protein that inactivates the 

cyclin/CDK complexes, blocking the cell cycle progression in the G1-S transition. 

 

 

 

Figure 1.6 Represents a diagrammatical representation of the regulation of the cell cycle 

by p53. 

 

Furthermore, p53 has been implicated in triggering cell-cycle arrest within the G2 phase 

of the cell cycle, and evidence suggests that it is achieved, at least in part, by p53 

inducing the expression of the protein 14-3-3 sigma (Hermeking et al., 1997). Another 

way in which p53 activation can result in the removal of damaged cells is through the 
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triggering of apoptosis via transcriptional activation of genes that encode pro-apoptotic 

factors such as Bax (see figure 1.6). 

 

1.5.2 p53-activating pathways 

 

There are three independent pathways that play a role in activating the p53 network. The 

first pathway is triggered by DNA damage, e.g. ionising radiation. The activation of this 

pathway depends on two protein kinases: ataxia telangiectasia mutated (ATM) and 

checkpoint kinase 2 (Chk2) (Carr, 2000). ATM is activated by double stranded breaks in 

DNA, and in turn stimulates Chk2. 

 

The second pathway is stimulated by aberrant growth signals, resulting from the 

expression of the oncogenes Ras and Myc. In humans, the activation of the p53 network 

depends on p14ARF (alternative reading frame) tumour suppressor protein (Lowe and Lin, 

2000).  

 

A wide range of chemotherapeutic drugs, UV light and protein kinase inhibitors triggers 

the third pathway. It involves kinases like ataxia telangiectasia related (ATR) and casein 

kinase II (Meek, 1999). 

 

All three pathways inhibit the degradation of p53 protein and therefore stabilize p53 at 

high concentrations. Increased p53 concentrations allow it to bind to particular DNA 
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sequences and activate transcription of adjacent genes. It is these genes that ultimately 

lead to cell death or the inhibition of cell division. 

 

1.5.3 Control of p53 

 

At the protein level the regulation of p53 is complex and involves interdependent control 

by protein-protein association. In normal unstressed cells, the wild type (wt) p53 protein 

is maintained at low levels primarily due to the action of mouse or human double minute-

2 (Mdm-2 or Hdm-2) protein, its downstream transcriptional target (Haupt et al., 1997, 

Kubbutat et al., 1997). Mdm-2 controls p53 function in two different ways: (i) via the 

regulation of p53 transcriptional activity and (ii) via the intracellular p53 level (see figure 

1.7). 

 

 

 

 

 

 

 

Figure 1.7 The p53-Mdm-2 negative feedback loop (taken from Oren, 1999). 

 

Central to the regulation of p53 is its interaction with Mdm-2 protein which blocks p53’s 

transactivation function by binding to a region of the transactivation domain (Meek, 
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1999)) and mediates rapid turnover of p53 by targeting it to the 26S proteasome through 

a mechanism involving Mdm-2 mediated ubiquitination of p53 (Haupt et al., 1997). 

 

In addition to this dual role in regulating p53, the Mdm-2 gene is itself stimulated by p53 

transactivation (Zauberman et al., 1995). As a consequence Mdm-2 participates in a 

negative regulatory loop, which keeps p53 under tight control under normal conditions of 

cell maintenance, making Mdm-2 pivotal to the regulation of p53 function (Wu et al., 

1993) (see figure 1.7). Thus, p53 induces the expression of its own antagonist.  

 

The ability of Mdm-2 to inhibit the activity of p53 has been demonstrated in a study 

using mdm-2 “knock-out” mice. The mdm-2 double “knock-out” mice are embryonic 

lethal but p53 and mdm-2 double “knock-out” mice develop to term (Chavez-Reyes et 

al., 2003). Since one of the most important functions of p53 is its ability to induce 

apoptosis in response to DNA damage, it is likely that one of the critical roles of mdm-2 

would be to inhibit p53-induced apoptosis (Yap et al., 1999).  

 

The Mdm-2 mediated negative regulation of p53 can be abrogated by human alternative 

reading frame p14 protein (p14ARF) (Kamijo et al., 1997). p14ARF, the product of the 

INK4a gene generated by alternative splicing, binds to mdm-2, and through this 

interaction prevents mdm-2 mediated degradation of p53 (Quelle et al., 1997). 

 

Li et al., 2007, suggested that the p53-associated cellular protein-testis derived (PACT) is 

a negative regulator of p53 mediated by Hdm-2, possibly acting as an E4 ubiquitin ligase. 
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In their study PACT inhibited the accumulation of p53 by promoting its degradation 

mediated by Hdm-2 repressing p53-dependant transactivation leading to both apoptosis 

and cell growth retardation. 

 

1.6 Retinoblastoma (Rb) gene 

 

The retinoblastoma (Rb) gene is one of the best-characterized tumour suppressor genes, 

and serves as a prototype for genes in this category (Weinberg, 1991). Loss of Rb 

function plays an essential, rate-limiting role in the development of both familial and 

sporadic retinoblastoma (Benedict et al., 1988). In familial retinoblastoma multiple 

tumours occur in the retina of both eyes in the first week of infancy, while in sporadic 

retinoblastoma a single tumour occurs in one eye. On the basis of statistical analysis of 

such families, it was suggested that these individuals inherited one defective autosomal 

allele through the germline and that the wild-type allele is lost during retinal development 

causing retinoblastoma (Knudson, 1971). Retinoblastoma thus arise through mutations in 

the retinoblastoma gene, which is located on human chromosome 13q, an area on the 

human chromosome that is frequently lost in this sporadic form of cancer (Lee et al., 

1988). 

 

The earliest indication that the retinoblastoma gene fulfils a role in suppressing cellular 

proliferation came from studies using DNA tumour viruses. Studies of SV40 large 

tumour antigen (Tag) (DeCaprio et al., 1988) adenovirus EIA (Whyte et al., 1988), and 

the human papilloma virus (HPV) E7 protein (Dyson et al., 1989) have uncovered the 
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molecular mechanisms underlying cellular transformation. All of these oncoproteins have 

the capacity to bind to and interfere with the growth suppressing properties of pRb and its 

family members p107 and p130. The molecular basis for their transforming capacity of 

cells is in part related to the direct binding of these oncoproteins to the pRb family. 

 

The retinoblastoma tumour suppressor gene (Rb) encodes the nuclear phosphoprotein 

pRb (p105), which have been found mutated or deleted in several types of human cancers 

including breast cancer (Lee et al., 1988). The Rb protein 105 and other pRb family 

members p107 and p130 regulate the activity of the E2F transcription factors (Dyson et 

al., 1994). Complexes consisting of E2F and hyperphosphorylated p105RB repress the 

transcription of genes that are required for cell cycle progression, and repression is 

relieved by CDK-mediated phosphorylation of p105Rb (Salcedo et al., 2002). The pRb 

protein is subject to regulation by many factors including E2F and cyclin D1. The 

hyperphosphorylated pRb, complexed with a transcription factor, serves as a 

transcriptional activator of cyclin D1 by binding to its promoter. On the other hand, 

inactivation of pRb by phosphorylation via the cyclin D/CDK complex in the late G1 

phase would not only unleash E2F transcription factors, but would also decrease cyclin 

D1 expression (Muller et al., 1994). 

 

1.6.1 RB function in the cell cycle 

 

The retinoblastoma gene product, pRb, plays a central role in the decision process of a 

cell to enter or to exit the cell cycle (Grana et al., 1998). The regulation of the G1 phase 
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of the cell cycle requires the binding of pRb to a number of cellular proteins, many of 

which are transcription factors. The best-studied transcription factor is the E2F family. 

pRb binds to E2F through its large pocket domain and negatively regulates its activity 

(Weinberg, 1995).  

 

 

Figure 1.8 Represents the Retinoblastoma pathway of cell proliferation control (taken 

from Livingston and Shivdasani, 2001). 

 

Progression of a cell through the G1 and S phase requires inactivation of pRb by 

phosphorylation. Phosphorylation of pRb by cyclin D-dependent kinases (CDKs) and 

their cyclin partners (such as cyclin D, Cdk4 or Cdk6 and cyclin E) results in the release 

of pRb from E2F, leading to progression through the cell cycle (Lundberg and Weinberg, 
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1998) (see figure 1.8). The Rb protein is present throughout the cell cycle, but its 

phosphorylation state changes in a cell cycle-dependent manner. Quiescent (G0) cells 

have un- or hypo-phosphorylated pRb. 

 

When cells are stimulated to divide they transverse quiescence and pRb becomes 

progressively phosphorylated, permitting cells to enter S phase. This phosphorylation is 

mediated by G1-cyclins and their associated cyclin d dependent kinases (CdKs), cyclin 

D-CDK4/6 and cyclin E/A-CDK, and is thought to inactivate pRb function (Kato et al., 

1993). 

 

Evidence indicates that the phosphorylation of pRb leads to its loss of function as cells 

progress through the G1 and S phase (Harbour et al., 1999). Loss of Rb gene function 

results in creating a selective pressure for the tumour to inactivate p53, which serves to 

eliminate cells with mutations in the Rb pathway (Harbour and Dean, 2000). Therefore, 

many tumours have mutations that inactivate both the Rb and p53 genes.  

 

1.6.2 Function of Rb in apoptosis 

 

Rb is inactivated either by a mutation in the gene or by the phosphorylation of the pRb 

protein in almost all tumours. Loss of Rb gene function triggers the p53 apoptotic 

pathway (Morgenbesser et al., 1994). This link between the Rb and p53 pathways can be 

explained by the fact that loss of Rb function leads to the release of E2F, which in turn 
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triggers apoptosis by activating the tumour suppressor protein ARF expression, which is 

encoded by the INK4A locus (Pomerantz et al., 1998).  

 

1.7  The DWNN gene family 

1.7.1  Identification of the DWNN domain 

 

The Domain With No Name gene (DWNN) was isolated in a genetic screen aimed at 

identifying novel components of the MHC class I antigen processing and presentation 

pathway. Several mutant cell lines were generated using a promoter trap mutagenesis 

strategy (von Melchner and Ruley, 1989). The mutant cell lines were analysed for 

sensitivity to the CTL specific clones HA8 and HA11 using the Lactate dehydrogenase 

(LDH) release assay (George, 1995). Analysis of these cell lines showed three lines to be 

100 % resistant to killing by the CTL specific clones, HA8 and HA11. One of these lines, 

the hygromycin B/CTL resistant cell line Mut 7(3xHA8) 3.5hrs, was analysed further to 

obtain the 5’ sequence adjacent to the site of retroviral integration. Sequence analysis of 

the cell line identified a full-length cDNA clone EST 21C4 (accession number T25012) 

that showed no significant matches to the Genbank Database. This gene was 

subsequently named DWNN (domain with no name).   

 

Sequence analysis of the 21C4 clone showed that the mRNA is 1.1 kb long and contains 

118 amino acids, encoding a 13 kD protein. Further analysis showed that the sequence 

encodes a highly conserved region of 80 amino acids and a hydrophobic tail. The DWNN 

domain (an 80 amino acid region) showed high conservation throughout species, this 

 

 

 

 



Figure 1.9 Sequence alignment of DWNN homologues from a range of eukaryotic genomes. 

The alignment was performed using Clustal X (Jeanmougin et al., 1998)
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includes humans, worms, flies, plants, algae and yeast (see figure 1.9).  The evolutionary 

relationship for the DWNN domain in the different taxa is represented by means of a 

neighbour joining tree in figure 1.10. The corresponding gene was found to be located on 

human chromosome 16p12.2, upstream of the previously identified RBBP6/PACT/P2P-R 

gene. Analysis of cDNA sequences showed that the sequence coded for the previously 

unidentified N-terminus of the RBBP6 protein (Dlamini et al, in prep), which we have 

named the DWNN domain. 

 

A number of screens have been undertaken to identify proteins that interact with the 

tumor suppressor proteins p53 and pRb. RBBP6 is one of the few proteins identified that 

has been shown to interact with both p53 and Rb. Three partial cDNAs from the full 

length RBBP6 transcript were originally cloned and sequenced in different studies. RBQ-

1 (Sakai et al., 1995), corresponding to residues 150–1146 of the human protein, and 

PACT (p53 associated cellular protein, testis derived) (Simons et al., 1997) 

corresponding to residues 207–1792, were cloned on the basis of their ability to bind Rb 

and p53 in both human and mouse cells. P2P-R (Witte and Scott, 1997) corresponding to 

residues 199–1792, was cloned based on its recognition by two antibodies specific for 

heterogeneous nuclear ribonucleoproteins (hnRNPs). An alternatively spliced form 

omitting residues 651–685, corresponding to exon 16 of the full-length gene, has also 

been reported (Sakai et al., 1995). The Human Gene Mapping Workshop (HGMW)-

approved name Retinoblastoma binding protein 6 (RBBP6) will be used for the complete 

protein and DWNN for the domain in subsequent text (see figure 1.11 for the 

nomenclature used for the different RBBP6 partial cDNAs).  

 

 

 

 



Figure 1.10 Shows the neighbour joining tree of the DWNN gene from different taxa.

The tree was drawn using Clustal X (Jeanmougin et al., 1998)
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Figure 1.11 Diagrammatic representation of the RBBP6 partial cDNAs, including the full-length RBBP6 protein
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Analysis of the RBBP6 locus suggests that three major transcripts of 6.1, 6.0 and 1.1 kb 

occur, by a combination of alternative splicing and alternative poly-adenylation. These 

transcripts encode proteins of 1792, 1758 and 118 amino acids, which have been 

designated RBBP6 isoforms 1, 2 and 3 respectively (Genbank:NP008841, 

Genbank:NP061173, Genbank:NP116015). Sequence analysis showed that this gene 

contains 18 exons and consists of several domains.  The gene organization is as follows 

(see figure 1.12).  

 

 

Figure 1.12 The domain structure of the RBBP6 family of proteins. RBBP6 homoloques 

containing a DWNN domain, a zinc knuckle and a RING finger are found in all complete 

eukaryotic genomes analyzed to date (taken from Pugh et al., 2006). 
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The conserved DWNN domain spanning exons 1 to 3, a CCHC zinc finger domain 

spanning exons 5 and 6 and a C3HC4 type of RING finger domain located in exons 7 to 

10. CCHC zinc finger domains are known to interact with single stranded RNA or DNA 

(Fairall, et al., 1993), while the C3HC4 RING finger domain has been shown to have 

ubiquitin ligase activity (Joazeiro and Weissman, 2000). They are often found in E3 

ubiquitin ligases. There is also a SR domain and an Rb-binding domain. Furthermore it 

contains a p53 binding domain in exon 18 and a proline rich region spanning exons 10 to 

15. 

1.7.2  Structure of DWNN 

 

Pugh et al., 2006 expressed residues 1–81 of the human RBBP6 gene, corresponding to 

the DWNN domain, and determined the structure using heteronuclear NMR. Comparison 

of the representative DWNN structure against the entire Protein Data Base using the Dali 

server (Holm and Sander, 1993) revealed that the DWNN domain are most similar to 

human ubiquitin (PDB:1UBI), and the N-terminal ubiquitin-like domain of Isg15 

(PDB:1Z2M), with Z-scores of 7.5 and 7.6 respectively. The amino acid sequences of 

ubiquitin and DWNN are only 18 % identical.  

 
The secondary structure of the protein consists of the elements !1- !2- !3-"-!4- !5- !6- 

!7, with the "-helix packing against a five-stranded !-sheet made up of strands !1, !2, 

!4, !5 and !7 in a ubiquitin-like !-grasp topology (see Figure 1.13B). Unlike ubiquitin, 

DWNN contains an additional short section of anti-parallel !-sheet immediately prior to 

the "-helix (sheets !3 and !6, residues 23–25 and 63–65 respectively). This additional !-

sheet has not been seen in other ubiquitin-like proteins. The 310 helix immediately 
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preceding the last !-strand found in many ubiquitin-like proteins is absent from DWNN. 

Figure 1.13 shows that the residues corresponding to this helix (ubiquitin: 57–61, 

underlined in Figure1.11D) are entirely absent in DWNN.  

 

In addition, Pugh et al., 2006, also confirmed the presence of a second 310 helix at the C-

terminal end of the "-helix that is found in many ubiquitin-like proteins; however the 

loop preceding strand !4 is two residues longer than the corresponding loop in ubiquitin, 

so that there is no longer a requirement for a tight helical turn at this position.  

 

Figure 1.13 Shows the three-dimensional structure of the DWNN domain (taken from 

Pugh et al., 2006). (A) superposition of the 25 lowest energy conformers, (B) cartoon 

representation of the overall fold and secondary structure, (C) superposition of the 

backbone traces of the DWNN domain (in blue) and ubiquitin (1UBI, in yellow) and (D) 

structural alignment of the primary sequences of DWNN and ubiquitin, determined using 

the Dali server.  
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The high level of conservation of G21 (see figure 1.9) may be the consequence of the 

presence of the extra strand !3, which requires the backbone to make a sharp kink at that 

position. Hydrophobic residues F8, L29, I33, L39, L46, I64, V70, V72 and P76 make up 

the core of the protein, accounting for their high degree of conservation. The high level of 

conservation of non-hydrophobic residues Y6, K7, K30, Y57 and R74 suggests a possible 

functional role for these residues. 

 

In recent years a superfamily of ubiquitin-like domains has been identified (Hochstrasser, 

2000 and Hochstrasser, 2000). This superfamily can be divided into the ubiquitin-like 

proteins (UBL's), which consist solely of the ubiquitin-like domain, and ubiquitin domain 

proteins (UDP's), which are larger proteins containing one or more ubiquitin-like 

domains. DWNN are most likely the first example of an ubiquitin-like domain that is 

alternatively expressed both as a UBL and as a UDP. The role of ubiquitin is discussed in 

section 1.9. 

 

1.7.3 DWNN/RBBP6 homologues 

 

With the completion of the human genome sequence Sakai et al. (1995) the DWNN-200 

gene has been officially named RBBP6 (accession number NP 008841). The NCBI 

BLAST database has (since 1995 to date) revealed a wide range of species containing the 

RBBP6 gene. Figure 1.12 shows the domain arrangement of the RBBP6 gene in various 

species. In humans, worms and flies the RBBP6 gene contains the DWNN domain, 

CCHC zinc motif, C4HC Ring finger domain, as well as the pRb- and p53- binding 
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domains. In fungi, plants, protists and microsporidia, the RBBP6 domain structure is 

similar. The RBBP6 gene in these species contains the DWNN domain, CCHC zinc motif 

and C4HC Ring finger domain only. 

 

1.7.4 Homo sapiens RBBP6 

 

The RBBP6 human gene has been completely sequenced. This gene encodes a protein 

that binds the underphosphorylated pRb protein (Sakai et al., 1995). Sequence analysis of 

this gene using AceView indicated that it contains 13 alternatively spliced transcript 

variants that encode 13 different isoforms. The RBBP6 gene showed high levels of 

expression in the placenta and various other tissues. The genes expression in oesophageal 

cancer tissues has also been shown (Yoshitake et al., 2004). When Sakai et al., 1995, 

described the gene, the full-length sequence of the gene was not known then and they 

described a partial cDNA and named it RBQ-1. 

 

1.7.4.1 RBQ-1 (RBBP6) protein 

 

RBQ-1 (also known as RBBP6) was identified from a human small cell carcinoma 

(H69c) library as a novel protein of 140 kD and was shown to bind to the Rb gene 

product. It also showed high homology to the p53 associated cellular protein-testis 

derived  (PACT) protein (Sakai et al., 1995). Two other proteins designated RBQ-2 and 

RBQ-3 was also identified from that study.  All three proteins bind to the 

underphosphorylated form of pRb. Although all three proteins were identified in the same 
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study RBQ-1 and RBQ-3 showed no significant homology to each other (Saijo et al., 

1995). 

 

RBQ-1 is shorter than that of the mouse PACT protein, 948 amino acids compared to 

1583 amino acids of mouse PACT. The overall amino acid homology between mouse 

PACT and human RBQ-1 is 94 % suggesting that the two proteins are highly conserved 

(Simons et al., 1997). 

 

The nucleotide sequence of RBQ-1 cDNA was shown to be 3011 bp in length and 

contains an open reading frame (ORF) that encodes 948 amino acids, with multiple 

repetitive motifs. The gene was mapped to chromosome location 16p12.2. 

 

1.7.5 Mus musculus RBBP6 (NM 011247) 

 

Recent data from Ensembl Gene revealed that the mouse contains two transcripts of the 

RBBP6 gene. The first transcript (Stable ID: ENSMUST00000033043) contains 18 exons 

and encodes a 1783 residue protein. The second transcript (Stable ID: 

ENSMUSP00000071519) contains 18 exons but encodes a 1591 residue protein. BLAST 

analysis has mapped the gene on chromosome 7. According to Mouse Genome Database 

(MGD), February 2004, the nucleic acid sequence of the mouse RBBP6 shows 82.6 % 

identity to that of humans.   
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Two research groups have previously identified the partial cDNAs of the mouse RBBP6 

gene and had named them PACT (Simons et al., 1997) and P2P-R (Witte and Scott 

1997).  

1.7.5.1 PACT 

 

Elucidation of p53 and pRb protein-protein interactions with both viral and cellular 

proteins has shed light on various functions of these proteins. Binding of p53 and pRb to 

transforming proteins from several tumour viruses can cause functional inactivation of 

these tumour suppressor proteins (Lane and Crawford, 1979 and DeCaprio et al., 1988). 

 

Since protein-protein interactions appear to be central in p53 cellular activities Simons et 

al. (1997) set out to identify cellular proteins that may interact with p53. In their study, 

purified wild type (wt) p53 protein was used as a probe on a mouse testis expression 

library. From this study a cDNA encoding a novel nuclear protein was isolated, the 

protein was designated PACT.  

 

Sequence analysis of PACT showed that the cDNA is 5177 bp long coding for 1583 

amino acids and contains a 437 bp 3’ non-coding region with a polyA signal and tail. 

This protein contains a serine/arginine (SR) rich region and a very basic lysine rich C -

terminus. The SR domain has been shown to be a site in which serines are 

phosphorylated by specific kinases Gui et al., 1994, whilst the lysine-rich domain has 

been suggested to play a role in in vivo modification. Recombinant PACT protein binds 

p53 in the wt conformation, but not the mutated forms, and can compete for p53 specific 
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DNA binding. Gui et al. (1994) also showed that the 250 kD PACT protein interacts with 

both cellular p53 and pRb. 

 

The interaction between PACT and these two tumour suppressor proteins is quite similar 

in nature to that of the viral oncoproteins. The viral proteins that bind p53 do not bind 

most mutated forms of p53. In addition, large T antigen binds exclusively to the under-

phosphorylated form of pRb. Sakai et al., (1995) showed that RBQ1 also preferentially 

binds to the under-phosphorylated form of pRb and that EIA can disrupt this interaction. 

Recently Li et al., 2007, used homologous recombination to “knock-out” PACT. From 

this study it was shown that endogenous PACT interacted with Hdm-2 and enhance 

Hdm-2-mediated ubiquitination and degradation of p53 as a result of an increase of the 

p53-Hdm-2 affinity, thus identifying PACT as a member of negative regulators of p53. 

 

1.7.5.2  Proliferation potential protein related (P2P-R) protein 

 

P2P-R (proliferation potential-related protein), a murine protein highly homologous to 

PACT, was shown to associate with heterogeneous nuclear ribonucleoprotein (hnRNP) 

particles (Witte and Scott, 1997). Further analysis indicated that P2P-R is the 

alternatively spliced form of PACT, lacking the 34 amino acid exon previously described 

by Saijo et al., 1995, and that P2P-R appears to be the dominant product expressed in 

multiple murine cell lines (Scott et al., 2003).  
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A P2P-R fusion protein derived from a region of the P2P-R cDNA coding for hnRNP 

association is able to bind single-stranded DNA with P2P-R expression markedly 

repressed during terminal differentiation (Witte and Scott, 1997). In addition, their study 

confirmed that P2P-R binds pRb by precipitating pRb from cellular extracts using GST-

P2P-R fusion protein. This binding was blocked by E1A protein confirming that P2P-R 

binds to the pRb pocket domain (Witte and Scott, 1997).  

 

Several lines of evidence place P2P-R at various cellular processes. Scott et al. (2003) 

identified P2P-R as one of many proteins that contribute to genome stability. A role for 

PACT/P2P-R in RNA metabolism has also been proposed. Evidence showed that P2P-R 

localises primarily to the nucleoli of interphase murine and human cell lines, (Gao et al., 

2002).  P2P-R immunoreactivity increases more than ten fold in mitotic cells compared to 

G0 cells, without an increase in P2P-R mRNA expression. In these mitotic cells, P2P-R 

localises to the periphery of chromosomes (Gao et al., 2002). 

 

P2P-R promotes apoptosis in a p53- and pRb-independent manner. Transfection and 

over-expression of near-full length P2P-R restricts cell cycle progression at prometaphase 

and promotes mitotic apoptosis in Soas2 cells (Gao and Scott, 2002), since Saos2 cells 

lack p53 and have a non-functional pRb (Masuda et al, 1987 and Shew et al, 1989). 

Furthermore, a possible pro-apoptotic region exists within P2P-R spanning from amino 

acid 1156-1314 (Gao and Scott, 2003). Over-expression of this region in MCF-7 cells 

promotes camptothecin-induced apoptosis. The potential pro-apoptotic region overlaps 
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with the region of P2P-R that is responsible for p53 and single stranded DNA binding 

(amino acids 1204-1314).  

 

 The SR region of P2P-R can be phosphorylated by the mitotic Cdc2 kinase (Scott et al., 

2003), which might explain the earlier observation by Gao et al., 2002, that P2P-R 

immunoreactivity increases significantly during mitosis. SRPK1a in the SR region also 

phosphorylates P2P-R. The SR region of P2P-R can bind two factors that associate with 

matrix associated regions (MARs) of DNA, namely SAF-B and nucleolin (Scott et al., 

2003). SAF-B is a MARs binding factor (Renz and Fackelmayer, 1996), which has been 

reported to couple transcription and pre-RNA splicing and localises to nuclear speckles 

(Nayler et al., 1998). MARs regions of DNA and associated factors are believed to 

regulate transcription and other nuclear functions (Glazko et al., 2003).  

 

1.7.6 Saccharomyces cerevisiae RBBP6 (NP 012864) 

1.7.6.1 Mpe-1 protein 

In eukaryotic cells, 3’-end cleavage and polyadenylation are essential steps in the 

synthesis of functional mRNAs. These processes are involved in transcription termination 

(Hirose and Manley, 2000) and the export of mature mRNAs from the nucleus (Huang 

and Carmichael, 1996). In the yeast Saccharomyces cerevisiae, two complexes, CFI 

(cleavage factor I) and CPF (cleavage and polyadenylation factor) and Pab1p are 

responsible for the specific cleavage and polyadenylation of pre-mRNA. Vo et al., 2001, 

characterized a novel essential gene, MPE1 (YKL059c), which interacts genetically with 

the PCFII gene encoding a subunit of CFI.  
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A search for known protein motifs in Mpe1p revealed a zinc knuckle (CX2CX4HX4C) 

between amino acids 182 and 195. This motif has been implicated in the interactions 

between proteins and single-stranded nucleic acids (Shi and Berg, 1996). A homology 

search based on the zinc knuckle identified several other genes. These included 

Saccharomyces pombe, Arabidopsis thaliana and Drosophila melanogaster in which the 

Mpe1p domain between amino acids 176 and 216 is conserved.  

 

When these protein sequences were aligned with the Mpe1p sequence, two more regions, 

A and B, were found to contain similarities.  The A region consists of amino acids 5 to 78 

of Mpe1p and does not contain any known motifs. The B domain extends from amino 

acids 284 to 343 of Mpe1p and was shown to be cysteine-rich and presents some of the 

characteristics of a RING finger. RING fingers are often implicated in protein-protein 

interactions, notably in the ubiquitination pathway (Aravind and Koonin, 2000). 

 

These three conserved domains were also found in non-overlapping human cDNAs, 

which all mapped to the same region on chromosome 16.  One of these cDNAs contains a 

domain conserved in Mpe1p that codes for the Rppb6 protein. Rppb6 protein has been 

shown to interact with pRb1 (Sakai et al., 1995). The pRb1 protein is involved in cell 

differentiation and is localized to centres of mRNA processing in the nucleus (Durfee et 

al., 1994). This supports the idea that the human Mpe1p homolog could participate in 3’ 

end processing. 
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1.7.7 Other RBBP6 homologues 

 

The UniGene and GeneCard databases show evidence for the presence of other RBBP6 

homologues, including Arabidopsis thaliana (accession number NM124114), Drosophila 

melanogaster (accession number CG3231), Danio rerio (BG 737479), Xenopus laevis 

(BJ614254), Rattus norvegicus (XP219296), Pan troglodytes (XM001164058), Bos 

taurus (XM001254138), Macaca mulatta (XM001097526), Canis lupus familiaris 

(XM536929), Arabidopsis thaliana (emb|Z97343) and Encephalitozoon cuniliculi 

(NC003238). No work has been undertaken in these organisms, as compared to the 

human, mouse and yeast RBBP6 genes. 

 

1.8 Zinc fingers 

 

The zinc finger (ZnF) is probably the most versatile intracellular protein domain and is 

certainly a commonly used one. ZnF-containing proteins form one of the most prevalent 

structural families in eukaryotes, comprising, for example, ~2 % of the proteins encoded 

by the human genome (reviewed by Matthews and Sunde, 2002).  

 

The term zinc finger was first used to describe a 30-residue, repeated sequence motif 

found in an unusually abundant Xenopus transcription factor TFIIIA (Zang et al., 1995). 

It was proposed that each motif is folded around a central zinc ion to form an independent 

minidomain and that adjacent zinc fingers are combined as modules to make up a DNA-

binding domain with the modules “gripping” the DNA (hence the term finger). 
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Different classes of ZnFs differ largely by function, as well as the identity and spacing of 

their zinc-binding domains. There are 14 different well-characterized classes known 

(reviewed by Matthews and Sunde, 2002). These classes have a variety of different roles 

within the cell, but they share a common feature of being able to mediate the interaction 

of proteins with other biomolecules, including DNA, RNA other proteins, or lipids. 

 

TFIIIA contains classical or C2H2 ZnFs, which ligate zinc via pairs of cysteine and 

histidine residues. Many proteins that contain classical ZnFs are involved in the 

regulation of gene expression, with the ZnF often interacting with specific DNA 

sequences in the promoter or enhancer regions of target genes. Basic and hydrophobic 

residues that are found in the "-helix of these !!" structures appear to be the primary 

determinants of DNA-binding, making specific interactions with 2-4 bases in the major 

groove of the DNA helix (Choo and Klug, 1997). 

 

1.9 Role of RING fingers in ubiquitin pathway 

1.9.1 DWNN ubiquitin homology 

 

RING fingers are typically found in E3-ubiquitin ligases and have been shown to play an 

essential role in the conjugation of ubiquitin and ubiquitin-like moieties to protein 

substrates (Joazeiro and Weissman, 2000). The RBBP6 RING domains have a C-X2-C-

X11-C-C-X- [NS]-X2-C-X2-C-X12-C-X2-C rather than the classical C3HC4 consensus, 

which means they are either C4C4 or C3NC4-type RING fingers, depending on which 

residues are involved in coordinating the two zinc ions. C4C4 RING-like domains have 
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been found in the transcription-associated proteins CNOT4 (Albert et al., 2000) and p44 

(Fribourg et al., 2000) and despite its non-typical consensus CNOT4 has also been shown 

to have ubiquitin-ligase activity (Albert et al., 2002).  

 

In addition to the conserved cysteines, RBBP6 RING domains share the wider set of 

conserved hydrophobic residues characteristic of U-box domains (Aravind and Koonin, 

2000). These are even stronger predictors of ubiquitin-conjugating function than the 

metal-chelating residues, since they are shared by a wider set of domains that adopt the 

same fold and participate in ubiquitination even in the absence of zinc ions. 

 

1.9.2 Ubiquitin 

 

Ubiquitin is a highly conserved 76 residue protein found in all eukaryotes either free or 

covalently attached to cellular proteins (reviewed by Liakopoulos et al., 1998). When a 

protein is covalently linked to ubiquitin, the process is referred to as ubiquitination. 

During this process an isopeptide bond between the C-terminal glycine residue of 

ubiquitin and the amino group of a lysine residue of the target protein is formed. 

Ubiquitinated proteins are subsequently targeted for degradation by the 26S proteasome, 

a major protease of the cytosol and the nucleus of eukaryotes, with ubiquitin being 

recycled. The 26S proteasome degrades the tagged proteins into small peptides, 

Ubiquitination can also target certain cell surface proteins to lysosomal degradation via 

the endocytic route (Jentsch and Pyrowolakis, 2000). Conjugated ubiquitin can act as a 

substrate for further ubiquitination reactions to form polyubiquitin. 
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1.9.3 The ubiquitin pathway 

 

The ubiquitin pathway occurs via two steps: (1) the covalent attachment of multiple 

ubiquitin molecules to the target protein and (2) the degradation of the tagged protein by 

the 26S proteasome (Fig 1.14). Conjugation of ubiquitin to the target protein occurs via 

three steps involving ubiquitin activating enzyme (E1), ubiquitin-conjugating enzyme 

(E2) and ubiquitin-protein ligases (E3) (Huibregste et al., 1995). E1 activates ubiquitin in 

an ATP-dependent manner, forming a thiol ester linkage (Haas and Siepmann, 1997). E2 

then transfers the activated ubiquitin from E1 to a target protein that is specifically bound 

to E3 via a thiol ester linkage.  

 

Figure 1.14 Diagrammatical representation of the ubiquitination pathway (taken from 

www.hgu.mrc.ac.uk/ Research/Gordon/anre.jpg, 3 April 2008) 
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There are different classes of E3 enzymes. For the HECT (homologous to the E6-AP 

COOH terminus) domain E3s, the activated ubiquitin is transferred to E3, generating a 

third thiol ester intermediate, before being transferred to an E3-bound substrate. 

 

RING finger-containing E3s catalyse the direct transfer of the activated ubiquitin to the 

E3-bound substrate. E3 is then responsible for the covalent attachment of ubiquitin to the 

substrate. The ubiquitin molecule is generally transferred an amino group of an internal 

lysine residue in the substrate to generate an isopeptide bond. This resultant 

monoubiquitin substrate is usually not targeted for degradation by the 26S proteasome. 

However, in other cases, ubiquitin is conjugated to the N-terminal residue of the substrate 

(Breitschopf et al., 1998). In successive reactions, the polyubiquitin chain is synthesised 

by the transfer of additional ubiquitin to the Lys 48 of the previously conjugated 

molecule. The polyubiquitin chain serves as a recognition marker for the 26S proteasome 

complex. The proteasome degrades the ubiquitin-tagged substrate into short peptides, 

which are released, as well as ubiquitin, which is recycled (Fig 1.14). 

 

1.9.4 Functional relationship between DWNN and the RING finger 

 

Ubiquitin-like proteins typically share the C-terminal GG motif, which acts as a 

recognition motif for a protease that cleaves between the two glycines, initiating the 

process of conjugation. Pugh et al., 2006, using NMR to determine the structure of 

DWNN showed the occurrence of the GG motif in the structurally identical position in 

human and mouse DWNN domains (highlighted in pink in Figure 1.13D) suggests that 

the domain may be involved in a similar process of conjugation, which can possibly be 
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referred to as "DWNNylation". The GG lies outside of the structured region as in the case 

of ubiquitin (see figure 1.13). The absence of the GG in lower organisms is more difficult 

to rationalize. Preliminary EST analysis however suggests that organisms, in which the 

GG motif is absent, also do not contain the UBL form of the DWNN domain 

(unpublished data). This raises the possibility that the DWNN domain does not act as a 

covalent modifier in lower organisms. In the yeast protein Hub1, which has also been 

shown to be involved in pre-mRNA splicing (Wilkinson et al., 2004), the role of the di-

glycine motif is taken by an YY motif (Ramelot et al., 2003). The structurally equivalent 

position in DWNN is taken by a highly conserved RR motif (see Figure 1.9), which may 

therefore act as the activation signal. A number of lines of evidence suggest a role for 

RBBP6 in both mRNA processing and ubiquitin-like protein modification. The close 

association between domains involved in RNA metabolism and ubiquitination has 

previously been pointed out in a number of proteins, including MDM2 (Anantharaman et 

al., 2002). In yeast, the RBBP6 homologue Mpe1p (discussed in section 1.76) has been 

shown to be a component of the CPF complex (Vo et al., 2001).  

 

Mammalian RBBP6 has been identified as an SR protein on the basis of an SR domain 

(residues 477–570) (Simons et al., 1997), the CCHC RNA binding domain, its 

localisation within nuclear speckles (Scott et al., 2003) and its association with 

heterogeneous nuclear ribonucleoproteins (hnRNPs) (Witte and Scott, 1997). SR proteins 

are involved in splicing, whereas hnRNPs are thought to play a central role in organizing 

the polyadenylation, splicing and export of mRNA transcripts (Reed and Magni, 2001). A 

number of SR proteins are known to interact directly with the C-terminal domain of the 
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RNA Polymerase II complex. A role for RBBP6 in mRNA processing therefore seems 

highly probable.  

 

The presence of a RING finger domain in all eukaryotes, combined with the ubiquitin-

like structure of the DWNN domain, makes it highly probable that RBBP6 also has 

ubiquitin-ligase activity, possibly involving modification of hnRNPs with an ubiquitin-

like moiety. Several hnRNPs have recently been shown to be SUMOylated (Li et al., 

2004), which resulted in a decreased affinity of the hnRNP for mRNA. 

 

Furthermore, since p53 and Rb have both been shown to bind to mammalian RBBP6, it is 

possible that RBBP6 plays a role in the regulation of these two proteins similar to that 

played by MDM2 (Hsieh et al., 1999), suggesting a possible model for the integration of 

the regulation of transcription, cell cycle control and apoptosis. Given the fact that the 

DWNN domain can be independently expressed in vertebrates, an interesting possibility 

is that the function of RBBP6 is to DWNNylate other proteins. Furthermore Li et al. 

(2007) showed that PACT/RBBP6 promotes ubiquitination of p53 mediated by Hdm-2.  

 

1.10 Gene targeting 

 

Genes were first identified through the description of their mutant phenotype. These 

mutant phenotypes gave a clue to the function of the gene. With the advent of large-scale 

genome sequencing, literally thousands of genes have been identified. Reverse genetics is 

now the most effective way to assess the function of a gene. With a human gene sequence 
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in hand, it is possible, by gene targeting, to generate a mutation in the homologous mouse 

gene and thus determine the physiological consequences of this mutation. Since many 

human diseases have a genetic basis, mouse models generated using a gene targeting 

strategy should greatly enhance our understanding of the pathophysiology of diseases and 

consequently lead to the design of new therapies. 

 

1.10.1 Homologous recombination 

 

Foreign DNA are integrated into mammalian cells by either a process of non-homologous 

or homologous recombination. The ability of mammalian cells to mediate recombination 

between homologous sequences is the basis for gene targeting technology (Volarevic et 

al., 1999). The entire genome can be potentially manipulated, such that intron sequences 

or gene promoters or enhancers are equally effective and useful targets as exon 

sequences.  

 

The first experimental evidence for the occurrence of gene targeting was observed in a 

fibroblast cell line with a selectable artificial locus by Lin et al. (1985) and was 

subsequently demonstrated to occur at the endogenous !-globin gene by Smithies et al., 

(1985) in Erythroleukemia cells. In mammalian cells, non-homologous recombination is 

orders of magnitude more frequent than homologous recombination. The low frequency 

of homologous recombination can be related to, at least in part, a competing pathway. 

This pathway effects the efficient integration of the transfected DNA into random 

chromosomal sites. 

 

 

 

 

 



 61 

1.10.2  Embryonic Stem (ES) cells 

 

The introduction of DNA by viral transduction or transfection into embryonic stem  (ES) 

cells by Bradley and Robertson, (1986) opened the door to countless possibilities in 

studying gene function as these cells are able to contribute to the germ line when 

integrated into the host blastocysts (Jaenisch, 1988). Murine embryonic stem cells are 

permanent cell lines, established from blastocysts of the inner cell mass of 

preimplantation mouse embryos. The pluripotent state of ES cells can be maintained in 

vitro by culturing in medium supplemented with a soluble factor called Leukaemia 

inhibitory factor or differentiation inhibiting factor, or by co-culturing with mitotically 

inactivated feeder cells, such as embryonic fibroblasts or the fibroblastic STO cell line 

(Amano et al., 2006). When ES cells are returned to the embryonic environment, they can 

resume normal development and contribute to all cell lineages including the germ line 

and the resulting chimeric mice. All the existing ES cell lines are derived from male 

embryos because the XY karyotype appears to be more stable in culture then the XX 

karyotype. Also, male mice are hemizygous for X- or Y- chromosome linked genes and 

only a single copy of these genes needs to be inactivated for phenotype analysis (Fung-

Leung and Mak, 1992). 

 

1.10.3 Designing of HR vectors 

 

The first step in the targeting strategy begins by generating a targeting vector, containing 

the desired gene mutation and homologous flanking sequences. The targeting vector is 

 

 

 

 



 62 

subsequently introduced into ES cells by electroporation. In most cells the targeting 

vector inserts randomly into the embryonic stem cell genome. However, in a few cells 

homologous DNA sequences in the targeting vector pair with homologous sequences in 

the embryonic stem cell chromosomal DNA and recombine, introducing the mutation 

into the genome. After introduction into ES cells, rare integration events are selected for 

and enriched to form a homogenous population. The selected cells are subsequently 

injected into a blastocyst and implanted into a foster mother. The offspring is screened 

for the desired gene followed by the crossing of homologous F1 generation. This leads to 

the germline transmission of the ES cell genome containing the desired gene modification 

(see figure 1.15). 

 

Since both the transfection efficiency and targeting frequency of such a vector can be 

low, it is desirable to include other components in such a vector, such as positive and 

negative selection markers that provide strong selection for the targeted recombination 

product. The positive selection marker may serve a dual function. Firstly, its primary 

purpose is a selection marker to isolate rare transfected cells that have stably integrated 

DNA, which occurs at a frequency of about one in every 104 cells. Secondly, to serve as a 

mutagen, disrupting a gene sequence if it is inserted into the coding exon of a gene or 

replacing a coding exon.  

 

Apart from targeting frequency and targeting efficiency, fidelity of targeted 

recombination raises several concerns. In contrast to intrachromosomal recombination, 

which seems very accurate in mammalian cells (Stachelek and Liskay, 1988) several 
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lines of evidence suggested that targeted recombination may induce additional mutations 

with high frequency (Thomas and Capecchi, 1987 and Doetschman et al., 1987).  

 

Zheng et al. (1991) tested the accuracy of gene targeting by analysing 44 independent 

targeted recombinants at the hypoxanthine phosphorybosyl transferase (HPRT) locus in a 

human fibroblast cell line and in mouse embryonic stem cells. They surveyed 80 

kilobases around the sites of recombination by using chemical cleavage of mismatches 

and found only 2 mutations, one in each cell type. Thus, gene targeting in mammalian 

cells can be extremely accurate.  

 

Different types of vectors can be designed for targeting in mammalian cells. These vector 

types are configured differently so that after homologous recombination they yield 

different integration products. 

 

1.10.3.1. Replacements vectors 

 

 

The principal consideration in the design of a replacement vector is the type of mutation 

generated. Secondary, yet importantly, considerations relating to the selection and 

screening techniques to isolate recombinant clones. The recombinant alleles generated by 

a replacement vectors typically have a selection cassette inserted into a coding exon or 

replacing part of the locus. Exon interruption and small deletions will not necessarily 

ablate the function of the target gene to generate a null allele. Consequently, it is 

necessary to confirm that the allele, which has been generated, is null by RNA and/or 

protein analysis. 
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Disruption or deletion of the coding sequences by the positive selection marker will in 

most instances ablate a gene’s function. However, in some situations a truncated protein 

may result which retains some biological activity. Null alleles are more likely to be 

generated by deleting or recombining a selection cassette into more 5’ exons rather than 

exons that encode the C-terminus of the protein, since under these circumstances minimal 

portions of the wild-type polypeptide would be made.  

 

A consideration when a selection marker is to be inserted into an exon is that the length 

of an exon can influence RNA splicing (Robberson et al., 1990). An artificially large 

exon created by the insertion of a selectable marker may not be recognized by the 

splicing machinery and could be skipped. Thus, transcripts initiated from the endogenous 

promoter may delete the mutated exon from the mRNA species or even additional exons. 

If a skipped exon is a coding exon whose nucleotide length is not a multiple of three 

(codon) the net result will be both a deletion and a frame-shift mutation of the gene, 

which will often generate a null allele. However, if spliced out, this would result in a 

protein with a small in-frame deletion, which may retain partial or complete function. For 

most purposes it is advisable to delete portions or the entire target gene so that the genetic 

consequences are not ambiguous. 

 

1.10.3.1.1 Screening for targeted events 

 

One common screening tool for targeted clones is based on the Polymerase Chain 

Reaction (PCR), which can be designed to detect the juxtaposition of the vector and the 

target locus (Joyner et al., 1989). This is accomplished by using one primer, which 
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anneals to the positive selection marker in the targeting vector and a second primer, 

which primes from the target chromosomal sequences just beyond the homologous 

sequences used in the vector. The efficiency of such a PCR reaction is related to the 

distance between the unique primer site in the vector (usually in the positive selection 

marker) and the sequences external to the homologous elements of the vector as well as 

the specific composition of the DNA sequence to be amplified. The amplified product 

should be in the 0.5 to 2.0 kb range. Thus replacement vectors configured for screens by 

PCR require the positive selection marker to be inserted at an asymmetric location near 

one end of the homologous sequence while still leaving sufficient homology for the 

formation of a crossover. This will give vectors with one long arm and one short arm of 

homologous sequences (Joyner et al., 1989).  

 

Another common screen for clones targeted with gene replacement vectors is by Southern 

blot analysis. It is important to design the vector and identify unique probes flanking the 

homologous sequences in the vector and restriction sites so that the analysis is both 

unambiguous and can discriminate the various categories of recombinant clones. Since a 

replacement vector should be linearized before transfection into the cells at a site outside 

the homologous sequences, the cloning steps must incorporate at least one unique site 

outside the homologous sequences. 

 

1.10.3.2. Insertion Vectors 

 

The basic elements of an insertion vector are the same as those in a replacement vector. 

The major difference between the two vector types is that the linearization of an insertion 
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vector is made in the homologous sequences. An insertion vector undergoes single 

reciprocal recombination, vector insertion with its homologous chromosomal target, 

which is stimulated by double-strand break or gap in the vector. The repair of DNA 

double-strand breaks (DSBs) is necessary for the maintenance of genomic integrity in all 

organisms. In S. cerevisiae, repair of DSBs occurs primarily by homologous 

recombination and requires members of the Rad52 epistasis family (Smith and Rothstein, 

1995) and in E. coli the RecBCD enzyme (Smith et al., 1995). Studies by Smith et al., 

1995, in mammalian cells utilizing the I-Sce 1 endonucleases have demonstrated that in 

some immortalized cell lines DSBs in chromosomal DNA are recombinogenic. They also 

found that a DSB introduced by I-Sce 1 stimulates gene targeting at a selectable neo 

locus at least 50-fold. The enhanced level of targeting is achieved by transient expression 

of the I-Sce 1 endonuclease. 

 

Since the entire insertion vector is integrated into the target site, including the 

homologous sequences of the vector, the recombinant allele generated by such a vector 

becomes a duplication of the target homology separated by the heterologous sequences in 

the vector backbone. Since insertion vectors duplicate the homologous sequences in the 

vector, the position of the selectable cassette may not play a critical role in mutating the 

gene. However, if the selection cassette is cloned into the only exon of the gene, after 

vector insertion the targeted allele will contain one normal and one artificially large exon. 

Skipping of this exon may result in normal transcripts being generated from such a 

recombinant locus at a low frequency (Moens et al., 1992). 
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1.10.3.3. ‘Knock-in” targeting vectors 

 

“Knock-in” has been defined by the use of gene targeting to replace an endogenous gene 

with another, such as a homologue or a marker for gene expression (Hanks et al., 1995). 

In mouse ES cells, “knock-in” experiments are used to place a transgene (cDNA) 

contained in a targeting vector, under the transcriptional control of an endogenous gene. 

When the endogenous gene is replaced with a homologue, it can be used to assess 

whether members of the same gene family have an identical biological function when 

expressed in the same spatial and temporal pattern. This can be achieved with the use of 

reporter genes, such as Lac Z or GFP (Stacey et al., 1994). 

 

The effect of a “knocking-in” reporter or homologue typically results in the loss-of-

function of the endogenous gene. The ultimate goal of a “knock-in” targeting experiment 

is to place the gene of interest under the transcriptional control of the endogenous locus. 

Optimally knock-in constructs should be designed so that no endogenous sequences are 

deleted so that regulatory sequences associated with positive selectable markers can be 

deleted after the targeting event. Subsequently “knock-in” experiments have been 

performed using conventional gene targeting approaches, usually in combination with 

Cre-loxP system to remove the selectable cassette (Hanks et al., 1995). 

 

1.10.4 The use of site-specific recombinases 

 

A number of bacterial and yeast elements encode recombinase enzymes that cleave DNA 

at specific target sequences, and then cleave it to DNA of a second site. This simple but 
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elegant reaction results in a precisely defined recombination between two appropriate 

target sequences. Three principal site-specific recombinases have been used to 

manipulate DNA in heterologous environments, Cre, FLP and R. Cre, FLP and R all 

belong to the ! integrase family of recombinases and show striking similarities, not only 

in the types of reaction they can carry out, but also in their target sites and mechanism of 

recombination. 

 

The use of site-specific recombinase systems has revolutionized our ability to genetically 

manipulate ES cells and mice. Recent advances using the Cre-LoxP and FLP-FRT 

systems have now made it possible to generate ‘clean” germline mutations following a 

single gene targeting event, as well as to activate or inactivate genes in a conditional 

manner in the living mouse (Feil, 2007). Not only can target gene mutations be induced 

in a spatially and temporally restricted fashion, but also lineage tracers can be activated in 

a specific progenitor population to chart cell fate directly in the wild type and mutant 

mouse (Joyner and Zervas, 2006). 

 

1.10.5 Applications of gene targeting 

 

Animal models are required for an effective drug development program, evaluation of the 

gene therapy approach, studying the molecular basis of inherited and acquired diseases 

and understanding the functions of genes during development. Such models can be 

developed by standard transgenic techniques in which a cloned DNA fragment is injected 

into a fertilized mouse egg. This standard technique is limited to gain-of-function only 
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and has two drawbacks: (i) random integration of the injected DNA and (ii) variability in 

copy numbers. These drawbacks may result either in poor, or no expression or over-

expression of a transgene and hence the interpretation of the experiments may become 

difficult. On the other hand, the gene targeting technology in mice by homologous 

recombination results in generation of loss-of-function of genes in a pre-selected locus. 

 

In general, mice with single locus disruption show a wide range of phenotypes ranging 

from normal or less severe to phenotypes lethal for embryonic development. It was 

surprising that cyclin D1 which is essential for G1 progression when inactivated did not 

arrest most cells, since these mice are able to produce viable offspring (Baldin et al., 

1993). The unexpected result, however, was that they showed severe retinopathy, 

malformation of the jaw and impaired mammary gland development. Although cyclin D1 

is predominantly expressed in kidney and salivary glands this suggests that cyclin D1 is 

not essential for their development. 

 

Several knockout mice carrying a single disrupted gene produced a minimal phenotype 

even though the gene in question is abundantly expressed or found to be essential. To 

explain this unexpected result, a gene function redundancy theory was proposed. The 

theory is now amply supported by double or triple knockout experiments. For instance, 

the abnormalities resulting from knocking out either p130 or p137 protein alone (which 

are expressed in a wide variety of cell types and inhibit cell proliferation) were 

surprisingly limited. However the compound mice lacking p130 and p107 exhibited 

severe abnormalities in bone and limb development and neonatal lethality (Cobrinik et 
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al., 1996). Similarly, either retinoblastoma gene or p107 genes produced more 

pronounced effects in the central nervous system and the liver  (Lee et al., 1996). 

 

Similar to any other field of science, there are many more questions than answers in gene 

disruption techniques. Of course the differences between man and mouse cannot be 

ignored. For instance, some Xeroderma pigmentosum patients show progressive 

neurological degeneration (XPA), whilst in mice carrying the disrupted gene no sign of 

the disease was visible (Marchetto et al., 2006). Recently, there have been also some 

concerns or criticisms raised about the validity and interpretations of the null mutation 

experiments, particularly in some complex biological processes such as memory and 

learning.  

 

Since it is well known that a single gene alteration affects the expression of many other 

genes, it is possible that a simple gene “knock-out” may alter the entire developmental 

program of an organism. The “knock-out” mice do not reveal which of these genes are 

affected and hence the interpretation could be misleading. Although some of these 

questions cannot be answered, it is clear that more modified methods and additional 

experiments are required to address complex biological processes.  

 

Whatever the limitations could be, “knock-out” mice are a useful tool which eventually 

give us new insights into immunology, cancer, development, aging, psychiatric disorders 

and the complex central nervous system. Further modification of the conditional or tissue 
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specific knockout technique may provide a better opportunity for the gene therapy 

approach to correct genetic as well as sporadic human disorders. 

 

1.11 Antisense RNAs 

 

The first natural antisense RNAs were discovered in 1981 independently in two different 

laboratories. Tomizawa and Nordstrom both found that small plasmid-encoded RNA 

regulators control the copy number of the E. coli plasmids ColEI and RI respectively 

(Tomizawa et al., 1981 and Stougaard et al., 1981). Antisense RNAs are small, 

diffusible, highly structured RNAs that act via sequence complementarity on target RNAs 

called sense RNAs. In eukaryotes, some processes like splicing or editing also make use 

of complementary small RNAs, however, these RNAs are not independent regulators, 

and are therefore not regarded as bona fide antisense RNAs. In the classical sense, 

antisense RNAs are encoded in cis, i.e. they are transcribed from a promoter located on 

the opposite strand of the same DNA molecule, and are therefore fully complementary to 

their target RNAs (reviewed in Werner, 2005).  

 

Over the past years a number of antisense RNAs were detected that are encoded in trans. 

These molecules reveal only partial complementarity to their target RNA and have more 

than one target. The sense RNAs is mostly mRNAs encoding proteins of 

important/essential functions. In the majority of cases, antisense RNA action entails post-

transcriptional inhibition of the target RNA function.  
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Naturally occurring antisense RNAs are between 35 and 150 nt long and comprise 

between one and four stem loops. Efficient antisense RNAs have 5-8 nt GC-rich loops. 

Stems that are important for metabolic stability are often interrupted by bulges that 

prevent dsRNase degradation and facilitate melting upon antisense/sense RNA 

interaction (Hjalt and Wagner, 1992). Recognition loops of the antisense RNA or 

complementary sense RNA often contain a YUNR motif forming a U-turn structure; a 

sharp bent in the RNA phosphate backbone, thus providing a scaffold for the rapid 

interaction with the complementary RNA (Franch et al., 1999). Some antisense RNAs 

(those involved in plasmid copy number control and post-segregational killing) are 

unstable, whilst others (most chromosomally encoded and a few phage and transposon 

antisense RNAs) are stable.  

 

 

1.12 Interference RNA (RNAi) 

 

The term RNA interference (RNAi) was originally used to describe antisense RNA 

inhibition of gene expression. RNAi assumed a more specialized definition when it was 

shown that dsRNA molecules are potent homology-dependent inhibitors of gene 

expression (Fire et al., 1998). 

 

RNAi (RNA interference) refers to the introduction of homologous double stranded RNA 

(dsRNA) to specifically target a gene’s product, resulting in a null or hypomorphic 

phenotype. Introduction of dsRNA has recently been showed to produce specific 

phenocopies of null mutations in such phylogenetically diverse organisms as plants 
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(Hamilton & Baulcombe, 1999), nematodes (Bosher et al., 1999), Drosophila 

(Kennerdell and Carthew, 2000) trypanosomes (Ngo et al., 1998) and mice (Wianny & 

Zernicka-Goetz, 2000). The discovery of RNAi was followed by studies of its 

mechanisms.  

 

Work in C. elegans indicated that RNAi involved at least two important steps. The first 

step involved the generation of a sequence specific silencing agent. A strong candidate 

for this agent was a special class of short RNAs that was originally reported by 

Baulcombe, 1999. They found that Arabidopsis plants that are undergoing transgene- or 

virus induced post-transcriptional gene silencing (PTGS) contained 21-25-nucleotide (nt) 

long RNAs that were complementary to both strands of the silenced gene and that have 

been processed from a long dsRNA precursor. Other investigators revealed that small 21-

23-nt dsRNA were associated with silencing in C. elegans (Bosher et al., 1999) and 

Drosophila (Kennerdell and Carthew, 2000). 

 

The cloning and sequencing of these RNAs revealed that they had a very specific 

structure: 21-23-nt dsRNA duplexes with symmetric 2-3-nt 3’-end overhangs and 5’-

phosphate and 3’-hydroxyl groups (Elbashir et al., 2001). This structure is reminiscent of 

an RNase like enzymatic cleavage pattern, which led to the identification of the highly 

conserved Dicer family of RNase III enzymes as the mediators of the dsRNA cleavage.  

 

The evidence that these short RNAs determined RNAi specificity came from studies in 

Drosophila, in which small RNAs that were isolated from cells undergoing silencing 
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were shown to be efficient to induce specific silencing in naïve Drosophila Schneider-2 

(S2) cells (Ishizuka et al., 2006). In addition, when synthetic 21- and 23-nt RNA 

duplexes were added to the lysate they were able to guide efficient sequence-specific 

mRNA degradation. These RNAs were named short interfering RNAs (siRNAs). When 

RNAi was first discovered in the worm, researchers immediately began using the 

technology to analyse the function of genes. A similarly rapid adoption of siRNA 

technology followed the definition of the structure of the siRNAs and their ability to 

silence genes in mammalian cells. 

 

1.12.1 Mechanism of RNAi 

 

Several studies have indicated that this process is restricted to the cytoplasm (Agrawal et 

al., 2003, Dudley and Goldstein, 2003). In this multi step process, Dicer cleaved long 

dsRNA to produce siRNAs. These siRNAs are incorporated into a multiprotein RNA 

inducing silencing complex (RISC) (Nykanen et al., 2001). There is a strict requirement 

for the siRNAs to be 5’ phosphorylated to enter into RISC, whilst siRNAs that lack a 5’ 

phosphate are rapidly phosphorylated by an endogenous kinase. The duplex siRNA is 

unwound, leaving the antisense strand to guide RISC to its homologous target mRNA for 

endonucleolytic cleavage. The target mRNA is cleaved at a single site in the centre of the 

duplex region between the guide and the target mRNA, 10 nt from the 5’ end of the 

siRNA (see figure 1.16). Endogenously expressed siRNAs have not been found in 

mammals. However, the related micro (mi) RNAs have been cloned from various 

organisms and different cell types (Pasquinelli, 2002). These short RNA species (22 nt) 
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are produced by Dicer cleavage of longer (70 nt) endogenous precursors with imperfect 

hairpin RNA structures.  

 

Figure 1.16 Represents a working model of the RNA interference mechanism (taken 

from Dykxhoorn et al., 2003). 

 

The miRNA are believed to bind to sites that have partial sequence complementarity in 

the 3’ untranslated region (UTR) of their target mRNA, causing repression of translation 
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and inhibition of protein synthesis (Pasquinelli, 2002). In addition to Dicer, other 

PAZ/PIWI Domain Proteins (PPD) is likely to function in both pathways (Grishok et al., 

2001). 

 

1.12.2 Dicer 

 

From the similarity between the siRNA and the products of RNase III, which cleaves 

double-stranded RNA into discrete sizes, Bass, (2000), predicted that an RNase III 

enzyme were involved in the generation of siRNAs. Such an enzyme was indeed found to 

have a role in the generation of siRNAs in Drosophila named Dicer Bernstein et al., 

2001).  

 

Dicer may be most accurately regarded as a RNA maturation nuclease rather than a 

degradative nuclease. In its first role, Dicer carries out the maturation of small regulatory 

RNAs, secondly, Dicer cleaves virtually any dsRNA to provide a small, precisely sized 

duplexes that are incorporated into a complex that is responsible for homology-dependent 

RNA degradation.  

 

Dicer is also an important participant in developmental processes through its processing 

of precursors to small regulatory RNAs. An initial indication of Dicer involvement in 

development was provided by the affect of a mutation (Caf) in one of the A. thaliana 

Dicer genes, which causes defects in flower development and unregulated proliferation of 
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floral meristem tissue (Jacobsen et al., 1999). Other studies established an essential role 

for Dicer in germ-line development in C. elegans (Grishok et al., 2001). 

 

Dicer is similar to bacterial RNase III in that it can cleave dsRNA in an apparent non-

specific manner. The siRNA products possess two nucleotide 3’ overhangs, with 5’ 

phosphate, 3’-hydroxyl termini. On the basis of common domain features, the type of 

product termini, and the divalent metal ion requirement, it is expected that the chemistry 

of the phosphodiester hydrolysis is the same as that used by bacterial RNase III (Carmell 

and Hannon, 2004). The sequence non-specificity would be a requirement of the RNAi 

pathway to allow recognition and cleavage of virtually any dsRNA. The 21 bp size of the 

siRNA is sufficient to provide the requisite specificity for a unique target sequence within 

the eukaryotic cytoplasm. 

 

The structure of the Dicer polypeptide suggests specific functional behaviours. The 

existence of two catalytic domains, coupled with the observation that the dimer interface 

of the bacterial holoenzyme involves extensive catalytic domain contacts, predicts a 

dimeric structure for the holoenzyme. A double-stranded ribonuclease purified from 

Dictyostelium, which is likely to be Dicer, exhibits a native gel electrophoretic mobility 

of about 450 kD (Novotny et al., 2001). Assuming the absence of unusual structural 

features and/ or associated polypeptides, the size is consistent with a homodimeric 

structure. However, another scenario is possible, where intramolecular association of the 

two catalytic domains would provide a dsRNA-binding cleft, thus obviating the need for 

intermolecular association. 
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Crystallographic data and molecular modelling suggest how two bacterial RNase III 

catalytic domain homodimers, bound to adjacent positions on a dsRNA, can provide 

precisely sized products (Blaszczyk et al., 2001). It has been proposed that one of the two 

catalytic domains in ~Dicer is disabled through mutation of a conserved residue 

(Blaszczyk et al., 2001). If so, then it can be argued that the selective inactivation would 

allow production of 21 bp dsRNA instead of approximately 11 bp species. As mentioned 

earlier, the longer product size ensures that the siRNA containing RISC complex would 

have the requisite specificity for the RNA targets. 

 

The biochemical properties of purified recombinant human Dicer have been studied. 

Human dicer requires a divalent metal ion (Mg2+, Mn2+, or Co2+) for activity, with 

cleavage of dsRNA directly providing the mature approximately 21-23 bp siRNA species 

(Provost et al., 2002). Prior treatment with proteases enhances Dicer catalytic activity for 

reasons that are not clear at this point (Zhang et al., 2002). Similar to other RNase III 

orthologs, Dicer can bind dsRNA without concomitant cleavage in the absence of 

divalent metal ion, or alternatively, at lowered temperature or elevated salt concentrations 

(Provost et al., 2002, Zhang et al., 2002). Human Dicer does not require ATP to cleave 

dsRNA (Provost et al., 2002), which is consistent with the ATP independence of E. coli 

RNase III, which nonetheless can bind ATP (Chen et al., 1990). 

 

Immunofluorescence analysis has localized Dicer to the endoplasmic reticulum (ER), 

with no evident nuclear staining (Provost et al., 2002). The ER location would place 

Dicer in proximity to the RISC complex (see figure 1.17), which is associated with the 

 

 

 

 



Figure 1.17 Represent the interaction of Dicer and RISC (RNA-induced silencing

complex (a) RNAi is initiated by the Dicer enzyme which processes double-stranded

RNA into 22-nucleotide small interfering RNAs. The siRNAs are incorporated into a

multi-component nuclease, RISC (green). RISC then uses the unwound siRNA as a

guide to substrate selection (b) Diagrammatic representation of Dicer binding and

cleaving dsRNA (taken from Dykxhoorn et al., 2003).
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translational machinery (Hammond et al., 2000). The apparent lack of nuclear 

localization suggests that the microRNA precursors may be processed in the cytoplasm. 

 

In addition to having two RNase III domains, Dicer has a helicase domain and a PAZ 

domain. The function of the amino-terminal helicase domain of Dicer has not yet been 

defined. Purified human Dicer lacks a demonstrable ATPase activity characteristic of 

helicases (Zhang et al., 2002). The introduction of a K70A mutation in the conserved 

loop of the ATPase/ helicase domain of human Dicer, which is expected to inactivate 

nucleotide binding, has no effect on dsRNA cleavage (Zhang et al., 2002). 

 

1.12.3 Role of RNA pol III 

 

Plasmid based expression systems using RNA polymerase III (pol III) promoters that 

produce short RNA species and that do not trigger significant interferon responses have 

been developed by several groups (Wadhwa et al., 2004, Amarzguioui et al., 2005, 

Timmons, 2006). Two pol III promoters have been used predominantly, the U6 promoter 

and the H1 promoter. Both of these promoters belong to the type III class of pol III 

promoters.  

 

Most RNA pol III promoters have sequences downstream of the transcription start site 

that are essential for transcription (class I and class II), Several class III promoters lack 

downstream transcription elements. Paule and White. (2000), showed that the deletion of 

the sequences downstream of the +1 transcription start site in the mouse and the human 
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U6 promoters has no affect on the level of transcription. Although the U6 and H1 

promoters contain the same set of cis-acting elements (octamer motif, Staf-binding site, 

proximal sequence element (PSE) and TATA motif), the H1 promoter has a more 

compact organization. The U6 promoter has a requirement for a guanosine in the +1 

position, whereas the H1 promoter is much more permissive. In addition, RNA pol III 

recognizes a simple cluster of four or more T residues as a termination site in the absence 

of other factors (Dykxhoorn et al., 2003). 

 

Typically, the objective of using siRNAs is to silence a specific gene in a mammalian 

cell, therefore the base-pairing region for a siRNA must be selected carefully to avoid 

chance complementarity to an unrelated mRNA (Svoboda, 2007). BLAST sequence 

analysis programs should be used to screen candidate siRNA sequences for specificity, 

although this recommendation is based on the assumption that the sequence database is 

complete. To a certain degree RNAi can tolerate siRNA-mRNA mismatches with 1- and 

2-bp mismatches that only partially reduce the rate and extent of cleavage, particularly if 

the mismatches occur near the end of the duplex. It has been suggested that the first 50-

100 nt of a cDNA sequence downstream of the translation start site should be used to 

target a gene, and that 5’ or 3’ UTRs, as well as the region around the start site should be 

avoided, as they might be to rich in protein binding sites (Qiu et al., 2005). However, it is 

not yet known if any mRNA region is most optimal for siRNA targeting.  

 

 McManus and Sharp, 2002, summarized in table form a list of genes that have been 

successfully targeted by RNAi in regions that are distributed throughout the mRNA, 
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including the 3’UTR. However, targeting different regions of a given mRNA might give 

different results. Holen et al., 2002, carried out limited tiling of different siRNA across a 

region of the human coagulation trigger factor gene (TF). This study indicated positional 

effect at the level of codon resolution; that is, shifting the siRNA target site by only three 

nucleotides at a time resulted in different degrees of silencing. This study indicated that 

mRNA structure might govern accessibility to the siRNA. Alternatively, the sequence 

composition of siRNA could influence its activity in vivo. 

 

Conventional methods of gene targeting like homologous recombination and antisense 

oligonucleotides are fast making way for siRNAs Bertrand et al., 2002, compared the 

efficiency of a nuclease resistant antisense oligonucleotide and of siRNA both being 

targeted against the Green Fluorescent Protein (GFP) in cell culture and in vivo. Using 

Cytofectin GSV to deliver both inhibitors, the siRNAs appear to be quantitatively more 

efficient and its effect longer lasting in cell culture. In mice only activity of siRNA was 

observed but not of antisense oligonucleotides. The absence of efficiency of antisense 

oligonucleotides was probably due to their lower resistance to nuclease degradation. 

 

The most interesting aspects of RNAi are the following; dsRNA, rather than single-

stranded antisense RNA, is the interfering agent, it is highly specific and remarkably 

potent. Only a few dsRNA molecules per cell are required for effective interference and 

also the interfering activity (and presumably the dsRNA) can cause interference in cells 

and tissues far removed from the site of introduction. 
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1.12.4 Applications of RNAi 

 

Many viruses have a genetic blueprint made from RNA, rather than DNA. Upon infection 

of a cell, they make double-stranded copies of their genetic material. In response the 

RNAi pathway strikes back. An enzyme known as Dicer first degrades the double-

stranded viral RNA into small segments, each around 22 bases long. These segments 

known as small interfering RNAs or siRNAs then separate into single strands and some 

bind to intact stretches of single-stranded viral RNA. Finally, proteins target this tagged 

viral RNA and destroy it (Silva et al., 2002). As a result, RNAi shuts off the key viral 

genes, potentially stopping infection. Biologists are exploiting RNAi as an experimental 

tool to find out what genes do. When a gene is activated, its sequence is read to produce 

messenger RNA (mRNA), which contains the information necessary to manufacture a 

particular protein. So by using siRNA or double-stranded RNAs that correspond to a 

specific mRNA sequence, researchers can “trick” a cell into destroying this mRNA and 

silencing the gene in question. 

 

In theory, RNAi could be used to treat any disease–forms of cancer, for instance cancers 

that is linked to an overactive gene or genes. At present, most of the clinical interest lies 

in applying RNAi in its natural role, as a means of combating pathogenic viruses by 

disabling their RNA. One of the obvious targets is HIV, a virus for which there is no cure 

and no vaccine. Coburn and Cullen, 2002, introduced siRNAs against two HIV genes into 

the human immune cells that are destroyed by the virus. The siRNAs allowed these cells 

to resist viral replication better than those that had not been triggered to undergo RNAi. 
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Meanwhile, other researchers have shown that, in culture of human cells, RNAi can 

similarly combat viruses as diverse as respiratory syncitial virus (Bitko and Barik, 2001) 

and those that cause influenza  (Ge et al., 2003) and polio (Gitlin et al., 2002). 

 

Kapadia et al., (2003) generated multiple siRNAs targeting various regions of the 

hepatitis C virus (HCV) subgenomic replicon sequence. These siRNAs were transfected 

into a Huh-7 cell line that stably expressed the HCV RNA replicon. Two of these siRNAs 

showed the greatest specific inhibition of HCV RNA replication. These two were further 

tested for there ability to suppress HCV RNA and protein expression. HCV protein 

expression level was shown to be significantly reduced whilst similar results were seen at 

the mRNA level Viral replication was also inhibited. These results suggest that RNAi 

might represent a new approach for the treatment of HCV infection. In the current study 

the RNAi technology will be used to target the expression of the RBBP6 gene using a 

plasmid based system. Following the identification of suitable siRNAs to silence the 

expression of RBBP6, the effect on RBBP6 expression will be investigated using primary 

cell lines. Once it has been established that the expression of the gene has been silenced, 

the physiological outcome of this silencing will be investigated in terms of apoptosis and 

the cell cycle. 

 

1.13 AIMS 

 

The DWNN gene was isolated from a genetic screen to identify novel components of the 

antigen processing and presentation pathway via MHC class I using a promoter-trap 
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strategy and was later found to be located on human chromosome 16p12.2, upstream of 

the previously identified RBBP6/PACT/P2P-R gene.  Previous work showed that the 

CHO cell line 16(3xHA8)3.5hr, from which DWNN was identified, to be resistant to 

staurosporine induced apoptosis (Pretorius, 2000, MSc thesis). Recent work done by Gao 

and Scott, 2002, showed that over-expression of P2P-R results in cell cycle arrest at 

prometaphase and similarly promotes camptothecin-induced apoptosis in a p53 

independent manner Gao and Scott, 2003. Li et al., 2007, showed that by ablating 

expression of the PACT gene, increased apoptosis in mice and similarly increased 

ubiquitination of p53 mediated by Hdm-2. 

 

Genetic analysis also identified two promoters for the RBBP6 gene, Promoter 0 (P0) and 

Promoter 1 (P1). From RT-PCR and expressed sequence tags (EST) data both the P0 and 

P1 promoters are responsible for the different transcripts of RBBP6. This thesis will 

investigate the presence of two promoters for the RBBP6 gene and study the effect on 

apoptosis induced by camptothecin and the cell cycle following the silencing of RBBP6 

using RNAi. 

 

The aims of this thesis are as follows 

- To investigate the activity of the RBBP6 promoters in vivo before and after    

  camptothecin-induced apoptosis. 

- To construct several siRNA vectors targeting the RBBP6 gene 

- Investigate the effect on RBBP6 expression as mediated by the siRNA vectors. 

- Investigate the physiological role of RBBP6 in apoptosis and the cell cycle.  
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CHAPTER 2: MATERIALS AND METHODS 

 

2.1 Materials and suppliers 

 

40 % 19:1 Acrylamide: bis-acrylamide   Biorad 

Agarose       Promega 

Alexa Fluor 488 goat anti-rabbit IgG antibody  Molecular Probes 

Alexa Fluor 594 goat anti-rabbit IgG antibody  Molecular Probes 

Ammonium acetate      Merck 

Ampicillin       Roche 

AMPS (Ammonium persulphate)    Merck 

Annexin V-PE apoptosis detection kit   BD Biosciences 

APOPercentageTM assay kit     Bicolor Ltd 

APO-Direct/TUNEL assay kit    BD Biosciences 

Bacteriological agar      Merck 

Big Dye v3.1 sequencing kit     Applied Biosystems 

Boric acid       Merck 

BSA (Bovine serum albumin)     Roche 

Bromophenol blue      Sigma 

Buffer saturated phenol     Invitrogen 

Camptothecin       Sigma 

Cell culture media and reagents    Gibco Life Technologies 

Caesium chloride      Roche Diagnostics 

Calcium chloride      Merck 
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Chloroform       BDH 

DAPI (4’, 6’ –diamidino-2-phenylindole)   Sigma 

DEPC (Diethyl Pyrocarbonate)    Sigma 

DMSO (Dimethyl Sulphoxide)    Sigma 

EDTA (Ethylene diamine tetra acetic acid)   Merck 

Ethanol       BDH 

Ethidium bromide      Sigma 

First strand cDNA synthesis kit (AMV)   Roche 

G418 (Neomycin sulphate)     Roche 

GFX DNA purification kit     Promega 

Glacial acetic acid      Merck 

Glucose       Merck 

Glycerol       BDH 

Hydrochloric acid      Merck 

Isoamyl alcohol      BDH 

Kanamycin mono-phosphate     Roche Diagnostics 

LightCycler FastStart DNA Master PLUS SYBR Green 1 Roche Applied Science 

Lipofectamine 2000 transfection reagent   Invitrogen 

Magnesium chloride      Merck 

Manganese chloride      Sigma 

Metafectene™ transfection reagent    Biontex 

MOPS (4-Morpholine propanesulphonic acid)  Roche 

pCR®-XL-TOPO® cloning kit     Invitrogen 
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pGEM®-T Easy cloning kit     Promega 

Paraformaldehyde      Sigma 

Potassium acetate      Merck 

Potassium chloride      Merck 

Propan-2-ol       Merck 

Propidium iodide      Sigma 

Proteinase K       Roche 

Restriction enzymes      Inqaba Biotechnologies 

RNase A       Roche 

SDS (Sodium dodecyl sulphate)    Promega 

Shrimp alkaline phosphatase (SAP)    Roche 

Sodium acetate      Merck 

Sodium chloride      Merck 

Sodium hydroxide      Merck 

T4 ligase       Inqaba Biotechnologies 

TEMED (N, N, N’, N’-Tetra methylethylene-diamine) Promega 

Tris [hydroxymethyl] aminomethane    BDH 

TRIzol reagent      Gibco Life Technologies 

Tryptone       Merck 

Urea        Amersham Pharmacia 

Vectorshield Hard Set mounting medium   Vectorshield 

Xylene cyanol       BDH 

Yeast extract       Merck 
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The chemicals used were all of AnalaR or equivalent grade.  

  

2.2 General stock solutions and buffers 

 

AMPS:   10 % ammonium persulphate. 

10x TBE: 0.9 M Tris (pH 8.3), 0.89 M boric acid and 25 mM EDTA. 

This stock solution was diluted 10 fold for the running of 

agarose and polyacrylamide gels.  

40 % acrylamide mix:  (19:1 acrylamide: bis-acrylamide) obtained from Biorad. 

10x MOPS:  0.2 M Na-MOPS, 50 mM Na-Acetate, 10 mM EDTA (pH 

7.0) adjusted with acetic acid. This stock solution was 

diluted 10 fold for the running of agarose gels to resolve 

RNA. 

10x Ligase Buffer: 660 mM Tris-Cl, 50 mM MgCl2, 10 mM DTT, 10 mM 

ATP and 10 % polyethylene glycol (pH 7.5). 

10x PCR Buffer: 100 mM Tric-Cl, 500 mM KCl and 0.1 % gelatin (pH 8.3). 

5x Sequencing Buffer:  1 M Tris-Cl and 25 mM MgCl2. This buffer was stored at –

20 oC and used at a 2.5x concentrate. 

Ampicillin:  A 100 mg/ml stock solution was prepared in deionised 

water and stored at –20 oC. 

Digestion buffer: 100 mM NaCl, 10 mM Tris-Cl (pH 8.0), 25 mM EDTA, 

(pH 8.0), and 0.5 % SDS. Proteinase K (to a final 

concentration of 0.1 mg/ml) was added just before use. 
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FACS buffer: 1 % foetal calf serum in PBS 

Glycerol BPB:  30 % glycerol (v/v), 15 mM EDTA (pH 8.0) and 0.5 % 

bromophenol blue (w/v). 

GTE Buffer: 10 mM EDTA, 50 mM glucose, 25 mM Tris-Cl (pH 8.0) 

stored at 4 oC, a 0.2 M stock solution of glucose was 

prepared and filter sterilized before addition of the rest of 

the chemicals. 

Kanamycin mono-phosphate: A 50 mg/ml stock was prepared in deionised water and 

stored at -20 oC. 

L-agar; 1 % tryptone, 0.5 % yeast extract, 0.5 % NaCl, 0.2 % 

glucose and 1.2 % bacteriological agar, antibiotic as 

required. 

L Broth: 1 % tryptone, 0.5 % yeast extract, 0.5 % NaCl and 0.2 % 

glucose. 

Lysis Solution:  200 mM NaOH, and 1 % SDS (w/v). 

Neutralisation Solution: 3 M potassium acetate (pH 5.0). 

Paraformaldehyde Fixative:  16 g paraformaldehyde was dissolved in 80 ml of deionised 

water by stirring at 70 oC in a fume cupboard. One drop of 

2 M NaOH was added. The solution was cooled down 

slowly to room temperature and the volume adjusted to 100 

ml with deionised water. The solution was filter sterilised 

through a 0.45-micron filter and a 100 ml of 2x PBS added. 
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The paraformaldehyde solution was stored at 4 oC wrapped 

in foil. 

Phenol/chloroform:  25 parts buffer saturated phenol and 24 parts chloroform. 

RNase A (DNase free): A 20 mg/ml stock solution was prepared in a buffer 

containing 0.1 M sodium acetate and 0.3 mM EDTA (pH 

adjusted to 4.8 with acetic acid). This solution was boiled 

for 15 min and cooled quickly by placing it in ice water and 

stored at –20 oC. 

TE Buffer:    10 mM Tris, 1 mM EDTA adjusted to pH 7.4 with HCl. 

Transformation buffer 1 30 mM KOAc, 50 mM MnCl2, 0.1 M KCl, 10 mM CaCl2  

(Tbf1):    and 15 % glycerol (v/v). 

Transformation buffer 2 9 mM Na-MOPS, 50 mM CaCl2, 10 mM KCl and 15 % 

(Tfb2): glycerol (v/v). 

TYM: 20 % tryptone, 0.5 % yeast extract, 0.1 m NaCl, 0.2 % 

glucose and 10 mM MgCl2. 

 

All solutions were made using deionised water unless otherwise stated. 
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2.3 Bacterial culture 

2.3.1 Bacterial strains 

 

Escherichia coli strain MC1061 (Casadaban & Cohen, 1980).  

F—araD139 ! (ara-leu) 7696-galE15 galK16 ! (lac) X17 rpsL (Strr) hsdR2 (rK
-

mK
+) mcrA mcrB1 was used to produce plasmid DNA.  

. 

2.3.2 Selection 

 

For experiments with E. coli containing ampicillin or kanamycin resistant plasmids, 

transformed cells were plated on L-agar with ampicillin at 100 µg/ml-1 and kanamycin at 

25 µg/ml-1. Selection was maintained during growth in liquid culture by the inclusion of 

the appropriate antibiotic at the same concentration. 

 

2.3.3 Storage of bacterial strains and clones 

 

Overnight cultures were diluted by the addition of an equal volume of sterile glycerol and 

stored at  –70 oC. 
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2.4 Cloning vectors 

2.4.1    pGEM® –T Easy Vector (Promega) 

 

The pGEM®-T Easy vector is used for the cloning of PCR products. The vector which is 

3.0 kb in size is designed by digestion with the restriction enzyme Eco RV and the 

addition of 3’ terminal thymidine to both digested ends. The single 3’-T overhangs at the 

insertion site improves the efficiency of ligation of a PCR product (which has an extra dA 

residues added to the PCR product by Taq polymerase). The high copy number vector 

contain T7 and SP6 RNA polymerase promoters flanking a multiple cloning site (MCS) 

within the !-peptide coding region of the enzyme "-galactosidase allowing for selection 

of recombinant clones by colour screening on indicator plates. The vector also contains 

the origin of replication of the filamentous phage f1 for the preparation of single-stranded 

DNA and allows for selection with ampicillin in prokaryotes. 

         

 

  

Fig 2.1 Represents the circular map of pGEM®-T Easy cloning vector indicating unique 

restriction recognition sequences in the multiple cloning site (MCS). 
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2.4.2   pCR®-XL-TOPO® Cloning Vector (Invitrogen) 

 

The pCR®-XL-TOPO® cloning vector provides a highly efficient, 5 minute; one-step 

cloning strategy for the cloning of long PCR products (3-10 kb). The 3.5 kb linearized 

vector supplied in the kit has single overhanging 3’ deoxythymidine residues. This allows 

PCR inserts to ligate efficiently with the vector. The vector contains the ccdB gene fused 

to the C-terminus of the LacZ! fragment. Ligation of a long PCR product disrupts the 

expression of the LacZ!-ccdB gene fusion permitting growth of only positive 

recombinants upon transformation. Cells that contain non-recombinant vector are killed 

upon plating. The vector confers Kanamycin resistance in prokaryotic cells and Zeocin 

resistance in eukaryotic cells. 

 

 

 

 

 

 

 

 

 

 

Fig 2.2 Shows the sequence surrounding the TA cloning site and the diagrammatic 

representation of the pCR®-XL-TOPO® cloning vector map. 
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2.4.3 pEGFP-C1 (Clontech)  

 

This vector was used to construct fusions to the C-terminus of the green fluorescent 

protein (GFP). If a fusion construct retains the fluorescent properties of the native 

protein, its expression and localization in vivo van be monitored by fluorescence 

microscopy or flow cytometry. pEGFP-C1 encodes a red-shifted variant of wild-type 

GFP, which has been optimised for brighter fluorescence and higher expression in 

mammalian cells (excitation maximum = 498 nm; emission maximum = 509 nm). 

Sequences flanking EGFP have been converted to a Kozak consensus translation 

initiation site to further increase the translation efficiency in eukaryotic cells. The vector 

backbone contains an SV40 origin of replication in mammalian cells expression the SV40 

T antigen. A neomycin resistance cassette (Neor) consisting of the SV40 early promoter, 

the neomycin/kanamycin resistance genes of Tn5, and polyadenylation signals from the 

herpes simplex virus thymidine kinase (HSV TK) gene, allows a stably transfected 

eukaryotic cells to be selected using G418.  

  

Fig 2.3 Represents the circular map and MCS of the pEGFP-C1 vector. 

 

 

 

 

 

 



 95 

2.4.4  pDsRed1-C1 vector (Clontech) 

 

The pDsRed1-C1 vector encodes a novel red fluorescent protein (DsRed1) that has been 

optimized for expression in mammalian cells (excitation maximum = 558 nm; emission 

maximum = 583 nm). DsRed 1’s coding sequences contain 144 silent base pair changes, 

which correspond to human codon-usage preference for high expression in mammalian 

cells. A nucleotide sequence upstream of DsRed has been converted to a Kozak 

consensus translation initiation site to further increase the translation efficiency in 

eukaryotic cells. The vector backbone contains an SV40 origin of replication in 

mammalian cells expression the SV40 T antigen. A neomycin resistance cassette 

consisting of the SV40 early promoter, the neomycin/kanamycin resistance genes of Tn5, 

and polyadenylation signals from the herpes simplex virus thymidine kinase (HSV TK) 

gene, allows a stably transfected eukaryotic cells to be selected using G418.  

 

   

Fig 2.4 Represents the circular map of the pDsRed1-C1 vector and the MCS. 
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2.5 Preparation of competent E. coli cells for transformation 

 

The desired bacterial strain was streaked out on a L.B agar plate that contained 10 mM 

MgCl2 or MgSO4 and incubated overnight at 37 oC. Following incubation a single colony 

of the strain was taken and inoculated into 20 ml of TYM broth and grown with vigorous 

shaking at 37 oC until the optical density (OD) at 550 nm reached 0.2. The cells were 

transferred to 100 ml of TYM broth and grown at 37 oC until the optical density at 550 

nm reached 0.2. To this culture 400 ml of fresh TYM broth was added and the cells 

grown under the same conditions until optical density at 550 nm was between 0.4-0.6. 

The cells were rapidly chilled in ice water, with swirling, transferred to a 250 ml tube and 

pelleted by centrifugation at 6000 g for 10 min in a pre-cooled Beckman J2-14 rotor. 

After removing the supernatant the cells were re-suspended in 250 ml ice cold Tfb1 and 

allowed to incubate at 0 oC for 30 min. The cells were recovered by centrifugation at 

6000 g for 8 min. The supernatant was removed and the pellet was resuspended in 50 ml 

of ice cold Tfb2. Cells were frozen in liquid nitrogen as 300 µl aliquots and stored at – 80 

oC. 

 

2.6 Bacterial transformations (Cohen et al., 1972) 

 

For DNA transformations competent cells (prepared as described in the section 2.5) were 

thawed on ice and 100 µl were added to 20 µl (1.0 – 10 ng) of the plasmid DNA solution, 

gently mixed and incubated for 30 min at O oC. The mixture was heat shocked by transfer 

to a 42 oC water bath for 45 sec, after which 500 µl of pre-warmed L.B was added and the 
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mixture incubated at 37 oC for an hour to allow for the expression of the antibiotic 

resistance marker. The transformed cells (100-200 µl) were then plated onto pre-warmed 

nutrient agar plates containing the appropriate antibiotic and the plates incubated at 37 oC 

for 16 hrs. 

 

 2.7 Preparation of plasmid DNA 

 

The preparation of plasmid DNA on both a small and large scale was based on an 

alkaline lysis procedure (Birnboim and Doly, 1979). 

 

2.7.1 Small-scale plasmid preparation (minipreps) 

 

In the preparation of plasmid DNA a single colony of transformed E. coli was inoculated 

into 5 ml of LB containing the appropriate antibiotic. The inoculated broth was incubated 

at 37 oC with vigorous shaking for 16 hrs after which 1 ml of this saturated culture was 

transferred to a 1.5 ml eppendorf tube and the cells pelleted by centrifugation at 5000 g 

for 5 min in a Beckman bench top centrifuge with a fixed angle rotor. The supernatant 

was aspirated off and the pellet completely resuspended in 200 µl of ice cold GTE 

followed by incubation at room temperature for 5 min. The cells were lysed by the 

addition of 400 µl of a 0.2 M NaOH and 1 % SDS (w/v) solution. The solution was 

gently mixed by inversion 4-5 times and incubated on ice for an additional 5 min, after 

which 300 µl of ice cold 3.5 M KOAc (pH 5.5) was added to neutralize the alkali. This 

solution was further incubated on ice for 5 min. The cell debris was pelleted at 14 000 g 
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for 10 min and the plasmid containing supernatant transferred to a clean eppendorf 

containing 0.6 volumes of propan-2-ol. Plasmid DNA was left at -20 0C for 30 min to 

precipitate and pelleted at 14 000 g for 15 min. The resulting pellet was washed with 500 

µl of 70 % EtOH, briefly dried and resuspended in 500 µl of TE. RNA was removed from 

the solution by the addition of 100 µg/ml RNase A solution followed by incubation at 37 

oC for an hour. The RNase treated DNA was extracted with phenol/chloroform and the 

upper aqueous phase recovered. The DNA from the recovered phase was precipitated by 

the addition of 0.3 M sodium acetate and 2.5 volumes of ethanol and incubated at -20 oC 

for 30 min. The precipitate was centrifuged at 10 000 g for 10 min, washed with 70 % 

ethanol and redissolved in 100 µl TE. 

 

2.7.2 Large-scale preparation of plasmid DNA 

 

The plasmid containing bacteria were inoculated in 500 ml of LB containing the 

appropriate antibiotic and grown overnight. The cells were harvested by centrifugation at 

5 000 g for 10 min in a Beckmann JA14 rotor. The supernatant was discarded and the 

pellet resuspended in 15 ml of GTE buffer and incubated on ice for 10 min. To the cell 

suspension 15 ml of 0.2 M NaOH, 0.1 % SDS was added to lyse the cells. This solution 

was gently mixed by inversion 6-8 times and incubated on ice for 5 min. Subsequent to 

this incubation period 15 ml of 3.5 M KOAc (pH 5.5) was added to neutralize the alkali, 

and the mixture incubated on ice for an additional 10 min. The precipitate of cell debris, 

chromosomal DNA and SDS was removed by centrifugation at 10 000 g for 30 min at 4 

oC. The resulting supernatant was removed and filtered through glass wool to remove 
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particulate material and the nucleic acid precipitated by the addition of 0.6 volumes of 

propan-2-ol. The DNA solution was incubated at -20 oC for 30 min and recovered by 

centrifugation at 10 000 g for 10 min. Plasmid DNA was separated from RNA by double 

CsCl/ethidium bromide fractionation (section 2.7.3). 

 

2.7.3 Double CsCl/ethidium bromide fractionation 

 

This method was used to produce high quality plasmid DNA for transfection of 

eukaryotic cell lines. 

 

A total of 5.75 g caesium chloride was weighted out and added to the propan-2-ol pellet 

solution prepared in section 2.7.2 in addition to 400 µl of ethidium bromide [10 mg/ml]. 

This solution was thoroughly mixed and centrifuged at 10 000 g for 10 min. The 

supernatant was filtered through glass wool and the density adjusted to 1.61 gml-1 using a 

caesium chloride saturated TE solution. This solution was transferred to a Beckman 

Quickseal tube and centrifuged at 55 000 g for 16 hrs at 20 oC in a Beckman L7-80 

ultracentrifuge using an NVi 65 rotor. Following centrifugation the different DNA 

conformations were visualized using a handheld UV lamp and the desired band extracted 

using a 14-gauge 5 ml syringe.  

 

For double caesium chloride gradients the extracted DNA was made up to 5 ml with TE 

to which 5.75 g of caesium chloride and 400 µl of ethidium bromide was added followed 

by centrifugation at 10 000 g for 10 min. The supernatant was filtered through glass wool 
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and the density adjusted to 1.61 gml-1 with a caesium chloride saturated TE solution. The 

solution was subjected to centrifugation at 55 000 g overnight in a Beckman L7-80 

ultracentrifuge. After removing the desired band the solution was extracted three times 

with a NaCl saturated iso-propan-2-ol solution to remove the ethidium bromide. Two 

volumes of water and three volumes of propan-2-ol was added, mixed and incubated at – 

20 oC for 30 min. The DNA was pelleted by centrifugation at 10 000 g for 10 min and the 

resulting pellet washed twice with 500 µl of 70 % ethanol. The final pellet was air-dried 

and re-suspended in 500 µl of TE and the concentration determined by taking an 

absorbance reading at #260 nm.  

 

2.8 Manipulation of plasmid DNA  

2,8,1 Ethanol precipitation 

 

DNA in solution was precipitated by the addition of 0.3 M NaOAc, pH 7.4, followed by 

the addition of 2-3 volumes of absolute ethanol. The solution was mixed well and 

incubated at –20 oC for 30 min. DNA was recovered as a pellet by centrifugation at 12 

000 g for 10 min. The resulting pellet was washed twice with 500 µl of 70 % ethanol and 

air-dried for 5 min at room temperature. The pellet was re-suspended in 100 µl of TE and 

stored at 4 oC (short term) and -20 oC (long term). 
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2.8.2 Phenol/chloroform extraction 

 

This method was generally used to remove proteins from DNA solutions such as 

restriction enzymes. Generally, 200 µl of DNA was vortexed with an equal volume of 

buffered phenol and centrifuged at 12 000 g for 5 min. The supernatant was recovered 

and re-extracted with an equal volume of phenol. After centrifugation the supernatant 

was removed and extracted with an equal volume of chloroform. This resulting 

supernatant was ethanol precipitated as described in section 2.8.1 to recover the DNA and 

to remove trace amounts of organic solvents. 

 

2.8.3 Restriction enzyme digests 

 

Restriction enzymes were used according to the manufacturers instructions with the 

supplied 10x reaction buffer. Generally, 0.5 µg of plasmid DNA was digested with 10 

units of the desired restriction enzyme Digestion volumes ranged from 0.5-1.0 ml to 

ensure complete digestion. Reactions were incubated at the appropriate temperature for 2 

hours. The reaction was inactivated by incubation at 65 oC for 20 min or extraction with 

phenol/chloroform followed by ethanol precipitation as described in section 2.8.1. Where 

multiple digests were performed, the buffer conditions were selected to be compatible 

with both enzymes. When this was not possible, after the completion of the first digest, 

the enzyme was removed by phenol/chloroform extraction and the DNA recovered by 

ethanol precipitation, the buffer conditions adjusted accordingly and the second digest 

performed. 
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2.8.4 Ligation of DNA 

 

Vectors used for cloning were prepared using the large-scale plasmid preparation as 

described in section 2.7.2. The plasmid DNA was digested with the appropriate 

restriction endonuclease as described in section 2.8.3. If vectors were digested with a 

single enzyme that left compatible ends, the vectors were subsequently treated with SAP 

(Shrimp Alkaline Phosphatase) to remove the 5’ phosphates. When vectors were digested 

with different enzymes leaving non-compatible ends, the vectors were used directly in a 

ligation reaction. All cloning vectors were used at a concentration of 10 ng/µl. Both the 

cloning vector and insert were purified as described in section 2.9.2. Ligations were set 

up in a 20 µl reaction volume containing 2.0 µl of the 10x buffer and 1.0 Weiss unit of 

T4 ligase. Cloning kits were used as per the manufacturers instructions. 

 

2.9 Agarose gel electrophoresis of DNA 

 

DNA was size fractionated by agarose gel electrophoresis on 1 or 2 % gels containing 0.5 

µg/ml ethidium bromide and electrophoresed in 1x TBE buffer. Generally, 1/10th of the 

DNA sample to be resolved was mixed with glycerol BPB before loading onto the gel. 

DNA size markers were loaded alongside the samples to estimate the size of DNA 

fragments.  Two gel sizes were used: “mini” gels (6.5 x10 x 1 cm, 8 wells) and “slab” 

gels (18 x 20 x 1 cm, 2 x 25 wells). After electrophoresis the DNA was visualised with 

short wave UV light on a transilluminator and photographed using the Sony UVP Image 

Store 5000 photographic system. When DNA was to be recovered from the gel, a hand-
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held long wavelength lamp was used to avoid damage to the DNA and a sterile blade 

used to excise the desired band. DNA was purified from agarose gels as described in 

section 2.9.2. 

 

2.9.1. DNA molecular weight markers  

 

Two DNA molecular weight markers were used pTZ and pKG 2. pTZ was used to 

estimate DNA sizes of 1.2 kb and less, whilst pKG 2 was used to estimate DNA sizes of 

between 6.0 kb and 1.6 kb. pTZ marker was made by digesting pTZ 18R vector with Hinf 

1 and pKG 2 was made by digesting pKG-IX with Bam HI and Hind III at 37 oC for an 

hour.                

 

 

 

 

 

 

Fig 2.5 Agarose gel showing the sizes of the molecular weight markers pTZ and pKG 2. 
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2.9.2 Purification of DNA fragments using the GFX- purification kit 

 

This protocol was used to purify both PCR fragments and digested cloning vectors. The 

DNA sample to be purified was electrophoresed on an agarose gel as described in section 

2.9. The fragments were viewed with a long wave hand held UV lamp and excised using 

a sterile blade. The agarose embedded fragment was weighed and 100 µl of capture 

buffer was added for every 10 mg of agarose and vigorously mixed. The tube was placed 

at 60 oC for 5-15 min to melt the agarose. After incubation the sample was transferred to 

a GFX column within a collection tube and centrifuged for 30 sec at 13 000 g. The flow 

through was discarded and the column placed back in the collection tube. 500 µl of wash 

buffer was added to the column and the tube centrifuged for 1 min at 13 000 g. The 

collection tube was removed and placed in a 1.5 ml eppendorf. 20 µl of elution buffer 

was placed directly on the matrix of the column and allowed to incubate at room 

temperature for 1 min. The tube was centrifuged for 1 min at 13 000 g to collect the 

DNA. 

 

2.10 Polymerase Chain Reaction (PCR) amplification 

2.10.1 Standard PCR 

 

The standard PCR was used to amplify genomic DNA. The reaction consisted of 50-100 

ng genomic DNA, 1x PCR buffer, 50 µM of each dNTP, 1 U Taq DNA polymerase and 

0.5 pmol of reverse and forward gene specific oligonucleotides in a final volume of 50 µl. 
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In amplification with Taq DNA polymerase the reaction contained titrated amounts of 

MgCl2. 

The reaction mixture was cycled through the following parameters: 

95 
o
C for 2 minutes (Initial denaturation) 

95 oC for 1 min (Denaturation) 

(Tm -5 oC) for 1 min (Annealing) 

72 oC for 2 min (Extension) 

72 oC for 5 min (Final extension) 

PCR reactions were analysed by electrophoresis in 1 % agarose run with 1x TBE as 

described in section 2.9. 

 

2.10.2. PCR amplification of plasmid DNA 

  

50 ng of plasmid DNA was used as template in a PCR amplification reaction and was 

prepared as follows, 1x PCR buffer, 50 µM dNTPs, 1 U Taq DNA polymerase and 1.0 

pmol of reverse and forward gene specific oligonucleotides in a final volume of 50 µl. In 

amplification with Taq DNA polymerase the reaction contained titrated amounts of 

MgCl2. The reaction was cycled through the parameters as described for the standard 

PCR See section 2.10.1). 

 

 

 

 

35 cycles 
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2.10.3 Colony PCR 

 

This technique was routinely used to screen bacterial cells for recombinant clones. 

Following transformations a single colony was removed from an L-agar plate and re-

suspended in 20 µl of sterile deionised water with 1 µl of this solution serving as template 

in a PCR with a 25 µl final volume. PCR reactions were carried out as described in 

section 2.10.1 using the M13 forward and reverse oligonucleotides at a concentration of 

10 pmol. A negative control, substituting 1 µl of deionised water for the bacterial 

suspension was also performed. The cycling PCR conditions were as follows: 95 oC - 2 

min, followed by 94 oC – 30 sec, 62 oC – 30 sec, 72 oC – 1 min repeated for 35 cycles, 

followed by 72 oC – 10 min. The products of the PCR were analysed by agarose gel 

electrophoresis as described in section 2.9. 

 

2.11 Sequencing of double stranded DNA 

 

DNA sequencing using the ABI 310 DNA Sequencer was employed. The BigDye 

Terminator Ready Reaction Kit version 3.0 (ABI) was used and this kit includes 

AmpliTaq DNA Polymerase, the BigDye terminators and all the required components for 

the sequencing reaction. Sequencing reaction consisted of the following: 
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REAGENT QUANTITY 

Terminator Ready Reaction Mix 2 µl 

Double-stranded DNA 200-500 ng 

Primer 3.2 pmol 

Deionised water To a final volume of 10 µl 

Table 2.1 The sequencing reaction protocol. 

 

The sequencing reactions were placed in a GeneAmp 9700 thermal cycler and cycled 

through the following parameters: 

STEP ACTION 

1 96°C for 10 sec.  

Repeat for 25 cycles: 

 

60°C for 4 min. 

2 Hold at 4°C 

Table 2.2 PCR cycles for sequencing. 

 

Precipitation of extension products: 

The contents of each extension reaction were transferred to a 1.5 ml eppendorf tube to 

which 8 µl deionised water and 32 µl of 95 % ethanol were added. The tubes were 

vortexed briefly and incubated at room temperature for 30 min. Tubes were centrifuged 

for 20 min at 15 000 g. Supernatants were carefully aspirated. 250 µl of 70 % ethanol was 

added to the tubes and vortexed briefly. Tubes were centrifuged at 15 000 g for 20 min. 

This step was repeated twice and the pellets were dried and either stored at –20°C or 

loaded immediately onto the ABI 310 Genetic Analyser. 12.5 µl of Template Suppressor 

Reagent (TSR) was added and tubes were vortexed briefly. The samples were denatured 

at 95°C for 2 min and tubes were placed on ice immediately. The samples were loaded 

onto the ABI 310 PRISMTM Genetic Analyser (Applied Biosystems) and the data 

 

 

 

 



 108 

collected using the ABI 310 PRISMTM Collection Software and analysed using the 

Sequencing Analysis 3.4.1 Software. 

 

Subsequent constructs were sequenced at the Inqaba Biotech core sequencing facility. 

Clones to be sequenced were plated on LB agar with the appropriate antibiotic and 

submitted to Inqaba Biotech core sequencing facility for analysis. 

 

2.12 Isolation of genomic DNA from cultured cells  

 

Cells were cultured until confluent as described in section 2.13.3. The cells were washed 

with 10 ml of ice cold PBS and dissociated from the flask by scraping with a Falcon 3085 

cell scraper. The dissociated cells were resuspended in 1 ml digestion buffer and shaken 

for 16 hrs at 55 oC. The samples were extracted with an equal volume of 

phenol/chloroform/isoamyl alcohol and centrifuged at 3000 g for 10 min in a Beckman 

fix angle bench top centrifuge. The top (aqueous) layer was then transferred to a clean 

tube and the DNA precipitated as described in section 2.8.1. The DNA was recovered by 

centrifugation at 3000 g for 10 min and the pellet washed with 500 µl of 70 % ethanol 

and air-dried. The pellet was resuspended in 50 µl of TE and incubated at 65 oC for 4 

hours to facilitate solubilization. The isolated DNA was resolved on 0.8 % agarose as 

described in section 2.9 to determine the integrity of the DNA isolated. The DNA 

concentration was determined at 260 nm, given that 40 mg DNA/ml has an absorbance of 

1.0 at 260 nm. 
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2.13 Cell Culture 

2.13.1 Cell lines 

 

The following adherent cell lines were used in this project. 

(i) NIH 3T3 

Fibroblast line established from a NIH Swiss mouse embryo. NIH 3T3 cells are non-

tumourigenic and are highly contact inhibited. NIH 3T3 cells are also sensitive to 

sarcoma virus focus formation and leukaemia virus propagation. NIH 3T3 were cultured 

in DMEM containing 10 % FCS.  

 

(ii) 293T (Hek 293T) 

This line was established from a human primary embryonal kidney transformed by an 

type 5 adenovirus. Hek 293T cells are an adherent fibroblastoid line growing as a 

monolayer. Cells were cultured in RPMI containing 10 % FCS. 

 

2.13.2 Tissue culture media  

 

The following tissue culture media and supplements were supplied by Gibco BRL; 

DMEM and RPMI 1640 with Glutamax-L, 100x penicillin-streptomycin (P/S), foetal calf 

serum (FCS) and phosphate buffered saline (PBS) (pH 7.0). Working solutions of 0.125 

% trypsin and 10x P/S were prepared using sterile PBS. 
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The following antibiotic was prepared for selection of stable cell lines: 

Geneticin (G418): A 100 mg/ml stock solution was prepared in PBS containing 0.5 mM 

EDTA. The solution was filtered through a 0.45 micron filter and stored at –20  oC. 

 

2.13.3 Propagation and storage of cell lines 

 

Cells were grown in complete media, 1x P/S and 10 % (v/v) FCS and were maintained at 

subconfluent levels in a 37 oC incubator in 5 % CO2 atmosphere and passaged when 

confluency was reached. Cells were removed for passage using sterile trypsin pre-

equilibrated to 37 oC. Freezing of cells was carried out when they reached confluency. 

Cells were treated with trypsin and pelleted by centrifugation at 300 g for 3 min. The 

pellet was re-suspended in 90 % FCS and 10 % DMSO. Resuspended cells were 

aliqouted into 1 ml fractions and stored at -150  oC. 

 

2.13.4 Transfection of cell lines 

2.13.4.1. Transient transfection of cell lines 

 

Plasmid DNA prepared by double CsCl/ethidium bromide fractionation as described in 

section 2.7.2 and the ultra pure yield midi plasmid extraction kit (Qiagen) was used for 

all transfections. The transfection reagent was TransFectin™ Lipid Reagent (Biorad) and 

Metafectene™ (Biontex), used according to the manufacturers instructions. Confluent 

cell were passaged one or two days prior to transfection, to allow cells to grow to 70 % 

confluence on the day of the experiment. DNA was mixed gently with the transfection 

reagent at a ratio determined by the experiment to give the maximum number of 
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transfectants. For 6 well plates 1 µg of DNA was mixed with 250 µl of serum free media 

and 5 µl of the transfection reagent was mixed with 250 µl of serum free media. The two 

solutions were mixed and incubated at room temperature for 20 min to allow the 

DNA/lipid complexes to form. The mixed solution were added directly to the cells in the 

6 well plates and mixed gently to distribute the DNA/lipid complexes. Cells were further 

treated depending on the specific analysis to be carried out. 

 

2.13.4.2 Stable transfection of cell lines 

 

Stable transfections were carried out in 25 cm3 tissue culture flasks. For 25 cm3 flasks 4 

µg of DNA was mixed with 1 ml of serum free media and 20 µl of the transfection 

reagent was mixed with 1 ml of serum free media. The two solutions were mixed and 

incubated at room temperature for 20 min to allow the DNA/lipid complexes to form. 

The mixed solution were added directly to the cells in the 25 cm3 flask and mixed gently 

to distribute the DNA/lipid complexes. After 24 hours, the cells were passaged at a 1:10 

dilution with fresh growth medium containing the appropriate antibiotic. For selections 

with G418, 800 µg/ml was used for 3 to 4 weeks until resistant colonies were visible, 

after which cells were maintained in 500 µg/ml of the antibiotic. 
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2.14 Immunofluorescence 

2.14.1 Fixation and permeabilization of cells 

 

Cells grown on coverslips were removed from 6 well plates and washed twice in cold 

PBS followed by fixation in 4 % paraformaldehyde in PBS at room temperature for 5 

min, Following fixation cells were permeabilized by incubation with permeabilization 

buffer for an additional 5 min. The cells were washed twice for 5 min in PBS containing 

0.05 % BSA. 

 

2.14.2 Immunostaining of cells 

 

Fixed and permeabilized cells on coverslips were incubated at room temperature for 1 h 

in primary antibody diluted in PBS containing 0.05 % BSA. The cells were washed with 

PBS containing 0.05 % BSA and subsequently incubated in diluted dye conjugated 

secondary antibody for I h and washed again. For nuclei staining, cell were incubated 

with DAPI for 30 min and washed with PBS. At this point cells were either prepared to 

be FACS analyzed or mounted on microscope slides. Cover slips were placed on 

microscope slides containing a drop of VECTASHIELD hard set™ mounting medium. 

Cells were viewed using a Zeiss fluorescent microscope. 
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2.15. FACS analysis 

 

Cells that were FACS analysed were trypsinized as described in section 2.13.3 and 

resuspended in 1 ml of ice-cold FACS buffer. Cells were FACS analysed using a three 

colour FACScan (Becton Dickinson). A minimum of 10 000 cells per sample were 

acquired using the Becton FACScan and the data analyzed using the CELLQuest PRO 

software (BD Biosciences). 

 

2.16 Apoptosis Assays 

2.16.1 The screening of camptothecin as an inducer of apoptosis 

 

NIH 3T3 cells were cultured in complete DMEM and Hek 293T cells in complete RPMI 

1640 as described in section 2.13.3. The cells were removed by trypsinization and plated 

in 6 well plates at a cell density of 2.5 x 104 cells per well. After 24 hrs the media was 

removed and the cells washed with PBS, and fresh media containing camptothecin was 

added. The final concentration of camptothecin varied between 0 and 25 µg/ml. The cells 

were exposed for 24 hrs during which time the cells were monitored for morphological 

changes. After the incubation period the cells were harvested and assayed using different 

apoptosis assays. 
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2.16.2 APOPercentageTM Apoptosis Assay 

 

The APOPercentageTM assay is a detection and measurement system to monitor the 

occurrence of apoptosis in mammalian cells. Cells were grown in six well plates until 

confluent. Cells were treated with a concentration of camptothecin determined for each 

cell line as the optimum concentration to cause maximum apoptosis (see section 2.16.1). 

The treated cells were washed twice with PBS and 1 ml of the APOPercentageTM dye 

was added to each well and incubated at 37 oC for an hr. The dye was removed and the 

cells were washed twice with PBS. The PBS was removed from each well and 0.5 ml of 

trypsin was added to each well allowing cells to round up (and not detach) before the 

trypsin was removed. The cells were then gently resuspended in 2 ml of complete culture 

media and analysed by FACS (see section 2.15). 

 

2.16.3 Annexin V-PE assay 

 

The assay was performed using the Annexin V-PE Apoptosis Detection Kit (BD 

Pharmingen™. The cells were plated in 6 well plates at a cell density of 2.4 x 104 and 

incubated for 24 hrs. Following the incubation period cells were treated with 

camptothecin for 24 hour and subsequently removed by trypsinization and re-suspended 

in 1x binding buffer at a concentration of 1 x 106 cells. From this cell suspension 100 µl 

was removed to a 5 ml Falcon tube and 5 µl of both Annexin V-PE and 7-AAD (7-

amino-actinomycin D) was added to each sample. The cells were gently vortexed and 

incubated at room temperature for 15 min in the dark. After incubation 400 µl of 1x 
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binding buffer was added to each tube and the samples analyzed by FACS (see section 

2.15).  

 

2.16.4 APO-Direct/TUNEL assay 

 

This assay was performed using the APO-Direct™ Kit from BD Biosciences. The cells 

were plated in 6 well plates at a cell density of 2.4 x 104. The cells were treated with 

camptothecin at the concentrations determined to induce maximum apoptosis and further 

incubated for 48 hrs to allow DNA fragmentation. Following the induction period cells 

were harvested by trypsinization and washed in 2 ml of PBS. The cells were re-

suspended in 1 % (w/v) paraformaldehyde in PBS (pH 7.4) and incubated for 30 min on 

ice. The cells were washed twice with 5 ml of PBS and subsequently re-suspended in the 

residual PBS to which 4 ml of 70 % ethanol was slowly added with regular mixing. The 

cells were incubated at -20 oC for at least 48 hrs. Following this incubation period the 

cells were harvested by centrifugation for 10 min at 4000 g and washed twice with 1 ml 

of wash buffer. After removal of the wash buffer the pellet was re-suspended in 50 µl of 

DNA labelling solution and incubated at 37 oC for an hour with regular shaking. 

Following this incubation period the cells were rinsed twice in rinsing buffer and pelleted 

by centrifugation. The final cell pellet was re-suspended in 0.5 ml of Propidium iodide 

(PI)/RNase A solution and incubated for 30 min in the dark. The cell were subsequently 

analysed by FACS (see section 2.15). 
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2.17 Cell cycle analysis 

 

NIH 3T3 cells to be analysed for the cell cycle was cultured in 25 cm3 flasks till 

confluent. The cells were trypsinized and re-plated in 6 well plates at a density of 2 x 103 

cells per well. The cells were incubated at 37 oC and harvested at the following time 

intervals 12 hrs, 18 hrs, 24 hrs, 48 hrs and 72 hrs. Cells were removed by trypsinization 

and pelleted by centrifugation at 2000 g for 2 min. The cells were washed with PBS and 

resuspended in 200 µl of PBS. 4 ml of 70 % ethanol was added to the cells drop wise and 

thoroughly mixed to prevent the cells from clumping. The cells were incubated at -20 oC 

for 48 hrs to fix the cells. After fixing the cells it was harvested by centrifugation at 4000 

g for 2 min. The cells were washed twice in 2 ml PBS and recovered by centrifugation at 

4000 g for 2 min. A 1 ml PI solution was added to each sample to be analyzed. The PI 

solution was prepared at a stock concentration of 3 mg/ml in sodium acetate. The 

working PI solution was prepared by diluting 400 µl of the PI stock solution in 9.5 ml of 

PBS and 100 µl of RNase A [10 mg/ml}. 1 ml of the working PI solution was used to 

resuspend the cells before assaying the cells on a FACScan (Becton Dickinson) (see 

section 2.15).  

 

2.18 RNA isolation 

 

Total RNA was isolated from cultured cells using the TRIzol LS protocol from Gibco life 

technologies. Cells grown in monolayer were homogenised by the addition of 0.3-0.4 ml 

per 10 cm3 culture flask TRIzol LS reagent. The homogenate was transferred to a 15 ml 
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falcon conical tube and 0.2 ml of chloroform per 0.75 ml of TRIzol LS reagent was 

added. The solution was vigorously shaken for 15 sec and allowed to incubate at room 

temperature for 10 min. The sample was centrifuged for 30 min at 3000 g at 4 oC to allow 

phase separation. The top aqueous phase was transferred to a fresh conical tube and 

mixed with 0.5 ml of propan-2-ol per 0.75 ml of TRIzol LS reagent to allow for RNA 

precipitation. The sample was incubated at room temperature for 15 min and centrifuged 

for 30 min at 3000 g at 4 oC. The resulting pellet was washed with 1 ml of 70 % ethanol 

per 0.75 ml of TRIzol LS reagent. The pellet was allowed to dry at room temperature and 

resuspended in 100 µl DEPC treated water. The isolated RNA was stored as 20 µl 

aliquots at -80 oC. 

 

2.19 Agarose gel electrophoresis of RNA 

 

Total RNA was size fractionated by electrophoresis in 1.2 % agarose gel containing 1.27 

% formamide and 0.5 µg/ml Ethidium Bromide and electrophoresed with 1x MOPS. The 

RNA sample to be electrophoresed was mixed with formamide buffer before loading onto 

the gel. ”Mini” gels were used for the electrophoresis of RNA.  RNA was visualised with 

short wave UV light on a transilluminator and photographed using the Sony UVP Image 

Store 5000 photographic system. 
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2.20. cDNA synthesis 

 

For first strand cDNA synthesis the AMV kit for reverse transcription (Roche Applied 

Science) was used. The reaction for the first strand cDNA synthesis consisted of the 

following reagents: 

 

REAGENT VOLUME/ 1 SAMPLE FINAL 

CONCENTRATION 

10x reaction buffer 2 µl 1x 

25 mM MgCl2 4 µl 5 mM 

10 mM dNTPs 2 µl 1 mM 

Primer Variable 0.75-1.0 µM 

RNase inhibitor 1 µl 50 units 

AMV reverse transcriptase 0.8 µl 20 units 

Sterile water To final volume of 20 µl  

RNA 1 µg  

 

Table 2.3 Represents the reagents used for the first strand cDNA synthesis reaction. 

 

The mixture was vortexed and centrifuged briefly. The reaction was incubated at 25 oC 

for 10 minutes and then at 42 oC for 60 minutes. Following the 42 oC incubation, the 

AMV reverse transcriptase was denatured by incubating at 99 oC for 5 minutes and then 

cooled to 4  oC for 5 minutes and the resultant first strand cDNA preparation was stored at 

–20 oC. The cDNA synthesised was used for amplification using the standard PCR 

protocol (section 2.10.1). 
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2.21 Real-Time Quantitative RT-PCR 

 

A standard PCR mix contained 4 µl of LightCycler FastStart DNA MasterPLUS SYBR 

Green Reaction Mix (Roche Applied Science) 200 ng of the pre synthesized cDNA was 

used as template and 0.5 µM of each primer in a final volume of 20 µl. A negative 

control was included which contained the same mix with the cDNA replaced by water. 

The PCR mixed was subsequently transferred to capillary tube in a pre-cooled adapter 

block and centrifuged at 700 g for 5 sec. The capillaries were placed into the LightCycler 

instrument and cycled through the following parameters 

 

Program Step Temp. Time Temperature 

Transition Rate 

Fluorescence 

acquisition 

Pre-incubation  950C 10 min 200C/sec None 

Amplification Denaturation 950C 10 sec 200C/sec None 

Amplification Annealing Primer 

dependant 

10 sec 200C/sec None 

Amplification Extension 720C 5 sec 200C/sec Single 

Melting curve Denaturation 950C 0 200C/sec None 

Melting curve Annealing 650C 10 sec 200C/sec None  

Melting curve Melting 950C 0 0.10C/sec Continuous 

cooling  400C 30 sec 200C/sec None 

 

Table: 2.4 Represents the PCR conditions used in Real-Time Quantitative PCR 
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2.22 Quantitation of Real-Time qRT-PCR results 

2.22.1 The standard curve 

 

The default (fit point/arithmetic) method of Real-Time Quantitative Software version 3 

was used to determine the relative starting copy numbers of target in each reaction. The 

Real-Time Quantitative Software generates a standard curve by plotting the logarithm of 

fluorescence versus the cycle number for each serial dilution of the standard template and 

then identifies the crossing point (cycle number) where the fluorescent signal emerges 

from background and enters the log-linear phase. Each crossing point is then plotted 

against the user-defined concentration of that standard to produce a standard curve. The 

relative gene expression is expressed as a ratio of the target gene concentration to the 

housekeeping gene concentration. 

 

PCR amplifications for hprt and gapdh housekeeping genes were performed, using 

published data from PrimerDB, producing fragments of 260 and 280 bp, respectively. 

Quantification of the molecular concentration of template cDNA was performed with the 

standard curve method for relative quantification. The template concentrations were 

given arbitrary values of 1 (for 10 fold-dilution of synthesized cDNA), 0.1 (for 100 fold 

dilution) and 0.01 (for 1000 fold dilution).  

 

Data on expression levels for the housekeeping genes (HKG) were obtained in the form of 

crossing points/cycle threshold (CP/ CT) (Larionov et al., 2005). The data acquisition was 

done employing the ‘second derivative maximum’ method as computed by the LightCycler 

Software 3.5 (Roche Diagnostics).  
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  GAPDH HPRT 

n 10 10 

GM [CP] 21.68 25.20 

AM [CP] 21.68 25.20 

Min [CP] 21.40 25.00 

Max [CP] 22.00 25.60 

SD [± CP] 0.18 0.20 

CV [% CP] 0.83 0.79 

SE [CP] ±0.19 ±0.254 

p-value 0.120 0.431 

Power [x-fold] 1.12 1.08 

Table 2.5 Descriptive statistics of two candidate housekeeping genes (HKG) based on their 

crossing point (CP/ CT) values.  

N: number of samples; GM [CP]: the geometric mean of CP; AM [CP]: the arithmetic mean of 

CP; Min [CP] and Max [CP]: the extreme values of CP; SD [± CP]: the standard deviation of the 

CP; CV [% CP]: the coefficient of variance expressed as a percentage on the CP level; SE [CP]; 

standard error of the CP; Power [x-fold]: the extreme values of expression levels expressed as an 

absolute x-fold over- or under-regulation coefficient.  

 

The Real-Time PCR efficiencies (E) were calculated from the resulting slopes provided 

by the Real-Time Quantitative PCR software and was calculated according to the 

equation. 

      (E target)$CP

target
(control-sample) 

  R= 

        (E ref) $CP
ref

(control-reference) (Pfaffl, 2001) 

 

The expression levels of all genes were determined relative to hprt and gapdh using the 

geNORM excel spreadsheet (Vandesompele et al., 2002).  
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2.23 Annealing of siRNA oligonucleotides 

 

Equimolar quantities of sense and antisense siRNA oligonucleotides were mixed in the 

annealing buffer (10mM Tris pH7.4, 0.1mM EDTA) at a concentration of 1.0 µM. The 

mixture was heated at 95 0C for 10 min and allowed to cool down to room temperature to 

allow for the formation of double-stranded DNAs. 
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CHAPTER 3: EXPRESSION ANALYSIS OF THE RBBP6 PROMOTERS IN 

MAMMALIAN CELL CULTURE 

 

3.1 Introduction 

 

To turn a gene into a protein at least two general steps are required. Firstly, the gene is 

transcribed, spliced and processed to form mRNA and secondly, the mRNA is translated 

into a polypeptide. Transcription is a controlled process. Whilst multiple DNA regions 

are involved, the promoter is the main determinant for the initiation of transcription and 

modulation of levels and timing of gene expression. The promoter region is the key cis-

acting regulatory region that controls the transcription of adjacent coding region(s) into 

mRNA, which is then directly translated into proteins. Higher eukaryotes generally 

utilize extensive promoter/enhancer/locus control regions spanning many kilobases of 

DNA, and encompass multiple discrete binding sites for transcription factors that 

combinatorially encode specificity of gene transcription. 

 

The ability of each cell to program its genome and determine which genes are to be 

expressed at a given time and under specific stimuli is central to tissue differentiation, 

organogenesis, organismal development, and disease. The problem is that the same 

genetic information is contained within every cell, and many proteins that regulate gene 

activity can function non-discriminately on DNA elements that control gene expression. 

Fortunately, a number of diverse mechanisms have evolved to ensure that the expression 

of our genome is a highly regulated process. A wealth of studies have shown that 

 

 

 

 



P0 P1

 0            1             2                       3               4              5            6

Gene 

From cDNA clone 1.1 kb Promoter 1

From RT-PCR 6.1 kb Promoter 1

From RT-PCR 1.1 kb Promoter 0

From EST 6.1 kb Promoter 0

Figure 3.1. Diagrammatically represents the different RBBP6 transcripts resulting from the activity of Promoter 0 (P0)

and  Promoter 1 (P1) using EST data and RT-PCR analysis.
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transcriptional activation occurs in discrete and controlled stages, from the packaging of a 

gene into chromatin and its localization within the nucleus to the recruitment of 

multiprotein complexes whose conformation and activity results from specific protein-

protein or protein-DNA interactions to genes with complex (dual) promoters (reviewed in 

Emerson, 2002). 

 

Genetic analysis of the RBBP6 gene showed the activity of two promoters for the gene, 

Promoter 0 (P0) and Promoter 1 (P1). RT-PCR analysis and EST data showed the activity 

of both promoters to be responsible for the 1.1 kb and the 6.1 kb transcripts of RBBP6 

(see figure 3.1) (Dlamini, unpublished). Why two promoters? 

 

Previously published reports of genes functioning within the immune system with 

multiple promoters illustrated that the presence of two promoters is not unique (Wildin et 

al., 1995, Gessner et al., 1996). Indeed, the usage of dual promoters has been described 

for several of the Ly-49 genes. The Ly49A NK cell receptor interacts with MHC class I 

molecules on target cells and negatively regulates NK cell-mediated target cell lysis. The 

distal promoter of some Ly-49 genes was shown to have promoter activity in fetal cells 

and in bone marrow cells, possibly linking its usage to the initiation of Ly-49 expression 

in NK cells (Saleh et al., 2002). In addition, the mouse NKR-P1C gene has also recently 

been shown to have a novel upstream non-coding exon that is differentially used during 

NK cell development, as well as a DNase I HSS (hypersensitive site) upstream of the 

gene (Ljutic et al., 2003). 
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Studies have also indicated that in dual promoter systems the activity of the one promoter 

can control the activity of the other one during preferential promoter usage (Wilhelm et 

al., 2003).  Thus the presence of two promoters for RBBP6 can possibly be an indication 

of various functions for the gene with differential usage of its promoters under different 

cellular conditions. 

 

The aims of this chapter were as follows: 

- The construction of promoter vectors placing the reporter genes EGFP (Enhanced 

Green Fluorescent Protein) and DsRed1 (Red Fluorescent Protein) under the 

transcriptional control of RBBP6 promoters P0 and P1 using the CMV promoter 

as control. 

- To evaluate the expression of the reporter genes using fluorescence microscopy, 

FACS analysis and Real-Time qRT-PCR. 

- To evaluate the expression of the reporter genes after the induction of apoptosis 

using the aforementioned techniques. 

 

3.2  Cloning of P0 and P1 into pGEM®-T Easy 

3.2.1  PCR amplification of promoters 

 3.2.1.1 Primer design 

 

Gene specific oligonucleotides were designed for the amplification of P0 and P1 (see 

table 3.1 for sequences). The oligonucleotides were engineered to include a recognition 

site for the restriction endonucleases Ase I at the 5’ end and Nhe I at the 3’end. The 

 

 

 

 



  PRIMER NAME PRIMER SEQUENCE POSITION 

P0F1 5' GCGATTAATCAGAGCAAGACCCGGACTCC 3 264-283 

P0R1 5' CTAGCTAGCGCTGCCAGGTCCTCTTCAGG 3' 1247-66 

P1F1 5' GCGATTAATGATCCAACCCAGACAACGTGG 3' 263-283 

P1F2 5' GCGATTAATTTACAGCCAAGGAGACCCAGG 3' 320-340 

P1R1 5' CTAGCTAGCCGGGGTCAGGGGTCCATAGC 3' 1587-606 

P
C

R
 

P1R3 5’CTAGCTAGCCACTCAAAGACACCGAAGGACC 3’ 1870-1891 

M13F 

pGEM-T Easy 

5’ GTTTTCCCAGTCACGACGTTGTA 3’ 2949-2957 

M13R 

pGEM-T Easy 

5’ TTGTGAGCGGATAACAATTTC 3’ 176-192 

M13F 

pCR®-XL-TOPO® 

5’ CTGGCCGTCGTTTTAC 3’ 433-448 

M13R 

pCR®-XL-TOPO® 

5’ CAGGAAACAGCTATGA 205-222 

P0Seq 5’ CTCATTCCGACTTCCTGAGC 3’ 342-361 

P1Seq 5’AAATCTAGAGCCCCCACAGC 3’ 296-315 

Forward common 

(Fc) 

5’ ACTACTACGTGGACTCCAAGC 3’ 1190-1211 

GFP-R 5’ TAGGTGGCATCGCCCTCG 3’ 501-517 

C
lo

n
in

g
 a

n
d

 S
eq

u
en

ci
n

g
 

RFP-R 5’ TCGTAGGGGCGGCCCTC 3’ 501-517 

LC-RFP-F1 5’ CCCAGTTCCAGTACGG 3’ 1217-1232 

LC-RFP-R1 5’ GGTCTTCTTCTGCATTACG 3’ 1017-1035 

LC-GFP-F1 5’ ACGTCTATATCATGGCCG 3’ 1061-1078 

LC-GFP-R1 5’ TGTGATCGCGCTTCTT 3’ 1260-1276 

hGAPDH F 5'ACCCACTCCTCCACCTTTG 3' 970-988 

R
ea

l-
T

im
e 

q
R

T
-P

C
R

 

hGAPDH R 5'CTCTTGTGCTCTTGCTGGG 3' 1129-1147 

 

 

 

 



Table 3.1 Oligonucleotides used in this chapter. The Ase I restriction sequence 

shown in red, and the Nhe I restriction sequence shown in blue1 
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incorporation of these restriction sites into the resulting PCR fragments would allow for 

the directional cloning of the two promoters into pEGFP-C1 and pDsRed-C1 

respectively. A 1.3 kb nucleotide sequence was used for the design of oligonucleotides to 

amplify P0 (see figure 3.2) and a 2.0 kb nucleotide sequence to amplify P1 (see figure 

3.3). For the amplification of P1 two sets of oligonucleotide pairs were designed to 

amplify different sized fragments of the promoter. Oligonucleotides were positioned to 

include all possible predicted transcription start sites as determined using TRANSFAC  

(Schug and Overton, 1997) and the Promoter 2.0 software (Knudsen, 1999).  

 

3.2.1.2 PCR amplification of promoters 

 

The human BAC clone CIT DM210 was used as template in a 50 µl standard PCR 

reaction as described in chapter 2.10.1. Long-range, high fidelity Taq (Southern Cross 

Biotechnologies) was used to amplify P0 and P1 resulting in specific PCR products of the 

expected size. 

  

PCR products for P0 and P1 were resolved on a 1 % agarose gel as described in section 

2.9. From figure 3.4 PCR results showed the expected fragment of 1.0 kb for P0 

compared to the size marker pTZ. Figure 3.5 shows several PCR fragments for P1 with 

sizes ranging from 1.0 to 1.6 kb. However smaller fragments than the expected sizes are 

also observed in lanes 6 and 8. These are probably PCR artefacts caused by mispriming.  

Furthermore, amplicons for P1 resulting from P1F1/P1R1 seems to differ in size. This 

can be a consequence of overloading of the sample in lanes 4 and 6 causing slower 

 

 

 

 



1

GGACCAGGCACAAGCTCAGTCCTGTAACCCCAGCACTTTGGGAGGCC

AAGGCGGGAGGACTGCTTGAGGCCGTGAGTTTGAGACCAGGGTGGG

TAGCATAGTGAGGCTCTGACACTACTGAAAAAACTAAAAATTAGCTG

AGCATGTTGGCACAAGCCTATAGTCCCAGCTACTCAGGAGCCTGAAG

CAGGAGGATTACTTGATCCCAGGAGTTCAAAGTTACAGTGAACTGTG

ATTGCACCACTGCACTCCAGCCTGGGTGA

P0F1

CAGAGCAAGACCCGGACTCCAAAATAATACTACTAATAATTAAACA

AACAAAAAGAGAACAGCCTCCATGAAATAGATCTCATTCCGACTTCC

TGAGCTTGAGTAGTTCACTACAGACAGCAGGCAGGCAGAGCTCCTTG

GATCTCCCAATTCCGCTTGCTGGAACTGAATTTTGACATAAGAAAAT

AAGTTAAGGGGTTTACTAACTGTCTATGGTCAATGGTATGAGGCTAT

ACTGGGTTTGAGAATGACAAAGGTTTGAAATCCTGGGACATGGGAG

CTCCAGAATTGTTACATTATGAGAAGCTTAGACAGGAATGCTTCATT

CACTGTAGGATAGTACAAAAGGCTTTTTCAGGGCTTACAAAAATATT

GGTAGGGAGAGAAGCGTCAGGGAGACCAGCTCCATATTACCCAAAG

AAAACGGCAAAATTTACAATTCAGCTCACTGAAGAAAAAAGAAAAT

AAAAAGTTTTTTTTTTAAAAAAAGAAAACTGCAAAATGAAGATTAGT

AAAGGAATTCAGTGAAATGGACCAAATGTAGCATTGTGTCAATTAGT

CAGGCAACTCAAGTCATAGGCTTATTGCAGGTGGTGAATGCATTTTG

ACCTGTTTGATGTGATATGAAGTGAGGCCTCTGTAAGTGAGAATATC

AAGGTTGAACAAAGTTTTTGGCAGATGAGAACGGTTGGACCAATAG

ACAACATTCTTTCCAAGGACATCCCCCCCTGCAGATTAGGTTATGAT

CCACTCTGTCATATCCTGAGGGTGTGGCCCACTTTGAGATCCCATGA

TGCACCACGCTGATTAAATTAGGCATTCAGTATATAAAGGGGTCGGC

CACAGACGGGCAAAAGGAACAGATTCACCGCTTCGGAGTGAATTCC

ATGACGGCTTGCAATTTTCTCGTCGAGTTTTTCTTTCACTAGAGATAG

CCCTCGCCCTTTCATTCACACAGAGGCTTTTAAGAAAAAAGCAACCA

      P0R1

ACCTGAAGAGGACCTGGCAGCAATAAGTTTTTGGTGAAATAACAAA

GAGGTAAAA

               1320 bp

Figure 3.2 Nucleotide sequence for the human RBBP6 Promoter 0 gene.

The position of the P0F1 (forward primer) are shown in blue and the P0R1

(reverse primer) are shown in red.

 

 

 

 



1

CGGGACCCTGCCACTGAGCAGGCATCCCCTTCTGCAAATTCAGAAAGTACATGATTGC

TAGCTTCAGTTCCATCATCTATAAATCGGAAATAATGTCATGTTGACCACGTAGGGTTT

TTGTTGTTAAATTGACATTTATTGAGCTACAGCTATTAATATTTCGGTGCATTGAGCCA

CGTCAATGCACCGGCATGGTCTTAGACTATGGATTTATGTGCATTTATTTAATCCAAGT

        P1F2

AAACCAAGTACTATTTTTAATGGCATTTTACAGCCAAGGAGACCCAGGCACAGAGGG

 P1F1

GATAAATCTAGAGCCCCCACAGCCAGGGATCCAACCCAGACAACGTGGCTGCTGAG

CCTGGCAATGTTGTTATGCGATCAGCCCTGTGCCTAGCACATAGTAAGAGCTCAATAA

ATCTGTATGGTGCTGGTGGCTGTTATCAGTTCTTGGCAGCGGCTGCTCCACGATTTCCA

CTTGTCAAGAGTATAGGGTAGCCAGTTTATTGGAAGCAGCAGCTAGGGAGCGCTTGCA

TAGCAACCATAGTTTTCTGCGTAGCAACCATAATGCTCACTTAAATTGGGAGGCTTAG

AGGAGCTGACGGGGCCTGTGGGGAAGGGGGAGTTAGCCGGCCACCCCTAGGCAAGCC

ACTTTGCAGTGGAAACTGCACGCAGCCCCTGCAAGGCGAGCTCTCCCCACCGAGCCTC

CCTGTGAGCCGGTCCTCCTGACGCGCAACCCCCCTCCCTTTTGAAGCAGATGGTTCTTC

CCGTTGTCCCTGCTCTTTCAGTTTCCGCGCTTTGGAGTCACAAAGCGCGGGGTCACGTG

GGCGGGCCGTGCGCTTTGTGACGTCAGCCGCCCCGCCTCTCGGCCCGCCTATCCGCGC

ACGCCAGCCCCGCCTCGCGCGCGCCGCCCGTGCAATCCCTGCTTAAGAGACCCCGCAG

TGGGGCGCTCGTCCGAAGCCAGGCCGCGTCCGCCATAGTACCTGGCTTGGAGGTGTCG

CCGCCGCTCGGTGAGAGCCCCCGAGCGGCAGGGGGCCAACACAAAAAGGGAGCCGGA

GAAGCCCTAGCCGCTGCCCAGCAGCTTGCGGGCGTGTTCTCGCGGTTCCGGGCCTCAA

GGCGACGGAAACGAAAGGCGAGCGAAGCGCGGAGGATCCGGCGAGAAGAAGCGTCA

GGGAGCCTCGGCGGTGTCCCCGGGGTCCGCCGAAGCCACCCGGCCGCCGGCTGGGGC

CCGGGGTGGTGAGGAAGTGCTCCGAGGCCTCGCCGAGGCCTAGCGCCGGCTTTGTGTC

CGAGGCGGCGGCGGCGGCGGGGGGAGGCGGAGCCGGGGGCGGCCTGCGGGAAGGCC

TCTCCTCCGCCGACCGCGCGTTTTCGGCCTAGGCCGTGGGGCCGCTCGTGGCCTCCGGG

GAGCAGGCGCCAGGGGTTTGTGTGCGGTGGGGGCCTGGGCCTGGGCCTGGGGAAGCT

GACGCCGGTCGTCCGGAAGCCAGGAGGAGGCGTGAGGCCGCTCGTGGACTCCGGGCC

TAGGCCCTCTCCCCTCAACCTTCTCCCGGGGCCTGGGTCACCCCAATCCACGGAGAGA

                                           P1R1

GAGACCCGCCGGGAGGTGCGGCCGCGCTATGGACCCCTGACCCCGTGGGGTCGCTC

GGACTCTTAACGTGTGGACTGACCGCTACTGACTGCACCGCCAATCCCCCCGTCTCTGC

CGGCCCCTTAGCATGAGCGAGGGGGACCCAGCCGGGTGACATTGTGCCCGTTGGCGGA

TTCTCGATTTCCCCTCTTCCCCGTCCTCGTCCTCCTCCTCCCCCATGAAGTGATTCTGAG

TATCGGGGGGTCTCTGGATTATTGTTCTGACGAACCCCTGCTTGTGGTTGGGGGGTATT

             P1R3

TAATCTGAGGCCTTAGGGTCCTTCGGTGTCTTTGAGTGTTTTGTGTGTACATATTTTG

CTCTTAAAGTTTATAAATATACGTATATTGAGAGTGTCC

       1900 bp

Figure 3.3 Nucleotide sequence for the human RBBP6 Promoter 1 gene.

The position of P1F1 is shown in red and the P1F2 is shown in green. The P1R1

primer is shown in blue and the P1R3 primer in bold text.
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migration of the sample through the agarose gel. The expected size fragments for P0 and 

P1 resulting from PCR was calculated based on the position of the forward and reverse 

oligonucleotides. 

 

3.2.2.Cloning of P0 and P1 PCR products 

3.2.2.1 Purification and cloning of PCR products 

 

All PCR fragments were purified using the GFX-purification kit as described in section 

2.9.1. PCR fragments were first cloned using the pGEM®-T Easy cloning vector (see 

figure 2.1 for map of pGEM®-T Easy) for the P0 fragment and the pCR®-XL-TOPO® 

cloning system (see figure 2.2 for map of pCR®-XL-TOPO®) for the P1 fragments as per 

the manufacturers instructions. This first cloning step would ensure sufficient digestion of 

the promoters before cloning into the pEGFP-C1 and pDsRed1 vectors. 

 

3.2.2.2 Screening for recombinants 

 

Colonies were screened for recombinant clones using the M13 universal oligonucleotides 

in a colony PCR as described in section 2.10.3 (see table 3.1 for primer sequences).  

Amplicons resulting from the colony PCR reactions were resolved on a 1 % agarose gel 

as described in chapter 2.9. Figure 3.6 shows the PCR result for the identification of 

pGEM®-T Easy P0 recombinant. The expected size fragment of 1.2 kb is observed in 

lanes 6 and 7.  Since the positions of the M13 universal oligonucleotides are 100 bp 

 

 

 

 



Figure 3.4 PCR amplification of the human RBBP6 Promoter 0 (P0) gene.

P0 was PCR amplified with P0F1 and P0R1 using the BAC clone CIT DM210 as

template. Lane M. represents the marker pTZ Lane 1. the water blank, Lane 2. 1 in

10 dilution of the template DNA, Lane 3. a 1 in 100 dilution of the template DNA

and Lane 4. a 1 in 1000 dilution of the template DNA The expected size of the

amplicon equals 1.0 kb. PCR fragments were resolved on a 1 % agarose gel.

M  1   2   3   4

1.2 kb

0.5 kb

0.2 kb
0.3 kb

 

 

 

 



Figure 3.5  PCR amplification of the human RBBP6 Promoter 1 (P1) gene.

Different oligonucleotide sets were designed to amplify P1 using PCR. The BAC

clone CIT DM210 was used in a standard PCR. Lane M. represents the size marker

pTZ, Lanes 1, 3 and 5 represent primer pair P1F2 and P1R3 (1.6 kb), Lanes 2 and 4

represent primer set P1F1 and P1R1 (1.2 kb). PCR fragments were resolved on a 1 %

agarose gel.

1.2 kb

0.5 kb

  M      1     2       3      4     5    

0.3 kb
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upstream and 100 bp downstream from the cloning site, the initial cloned PCR product 

will be increased by an additional 200 bp following colony PCR. 

 

From figure 3.7 several fragments are observed. The expected sizes for P1 and pCR®-XL-

TOPO® recombinant clones range from 1.6 kb to 1.8 kb. The M13 oligonucleotides are 

similarly positioned on this cloning vector as with the pGEM®-T Easy vector, thus PCR 

fragments increased by an additional 200 bp. Several low molecular weight fragments are 

also observed. This can possibly be explained as the PCR artefacts that were cloned 

alongside the expected fragments since the entire P1 PCR reaction was purified and 

cloned without selection for fragments of specific size. For further analysis only the full-

length P0 and P1 promoter constructs will be used. This will ensure that the sequences 

include the transcription start site and all possible transcription factors that can determine 

promoter activity. 

 

3.2.2.3. Isolation of plasmid DNA 

 

Presumptive positive recombinant clones identified by colony PCR were cultured using 

the appropriate antibiotic and subjected to small-scale plasmid DNA isolation using the 

alkaline lysis procedure as described in chapter 2.7.1. The extracted plasmid DNA was 

electrophoresed on a 1 % agarose gel as described in chapter 2.9 to determine the quality 

of the DNA and the concentrations determined by taking an absorbance reading at 260 

nm. 
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Figure 3.6 PCR based screening method to identify P0 pGEM®-T Easy

recombinants.

(a) Diagrammatical representation of the PCR strategy used to i d e n t i f y

pGEM®-T Easy Promoter 0 recombinant clones indicating the

position of the M13 forward and reverse oligonucleotides.

(b) Represents the PCR results obtained for pGEM®-T Easy-P0

recombinants clones. M. pTZ size marker with the 1.2 kb fragment

indicated. B. the water blank. Lanes 1 to 6. background colonies

Lane 7 and 8. represents pGEM®-T Easy/P0 recombinants with the

expected size of 1.2 kb indicated. PCR fragments were resolved on a 1

% agarose gel.
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3.2.2.4  Sequencing of recombinants 

 

A number of clones representing pGEM®-T Easy/P0 and pCR®-XL-TOPO®/P1 

recombinants were selected for sequencing analysis. Sequencing reactions using the Big 

Dye v3.0 cycle sequencing kit were carried out as described in section 2.11. Both the 

M13 universal and gene specific oligonucleotides designed for sequencing were used in 

sequencing reactions (see table 3.1 for sequences). The sequence data obtained were 

compared to the human genome sequence using BLASTn (Altschul et al., 1990) and also 

aligned with the known sequences for P0 (figure 3.2) and P1 (figure 3.3) using BLAST 

(bl2seq) (Tatiana et al., 1999) The results showed complete matches with the human 

BAC clone CTD-2450M10 on chromosome 16 and complete alignment to the known 

sequences for P0 and P1 (data not shown). 

 

3.3 Preparation of pEGFP-C1 and pDsRedC1 promoter constructs 

3.3.1. Preparing pEGFP-C1 and pDsRed-C1 cloning vectors 

 

The next step in preparation of the promoter constructs was to place EGFP and DsRed1 

under the transcriptional control of P0 and P1 respectively. The CMV promoter in both 

vectors had to be replaced. This would be achieved by digesting the pEGFP-C1 and 

pDsRed-C1 vectors with the Ase I and Nhe I restriction endonucleases that flank the 

CMV promoter, thus releasing it. 

 

The equivalent volume of 1 µg representing pEGFP-C1 and pDsRed-C1 respectively 

were digested with Ase 1 and Nhe 1 as described in section 2.8.3 to release the CMV 
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Figure 3.7  PCR based screening method to identify P1 pCR!-XL-TOPO!

recombinants.

(a) Diagrammatical representation of the PCR strategy used to i d e n t i f y

pCR!-XL-TOPO! Promoter 1 recombinant clones indicating the

position of the M13 forward and reverse oligonucleotides.

(b) Represents the PCR results obtained for the pCR!-XL-TOPO!

P1 recombinants clones. All PCR fragments representing P1 was cloned

using the pCR!-XL-TOPO! cloning system and recombinant clones

screened using colony PCR M. pTZ size marker with the 1.2 kb

fragment indicated Lanes 1 to 15. represent pCR!-XL-TOPO!/P1

recombinants. PCR fragments were resolved on a 1 % agarose gel.
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promoter.  Reactions volumes were reduced to 50 µl using a Savant SC100 SpeedVac 

and resolved on a 1 % agarose gel as described in section 2.9. Figure 3.8 shows the 

digestion of pEGFP-C1 with Ase I and Nhe I. From figure 3.8, lane 1 represents a single 

digest with Ase I and lane 2, a single digest with Nhe I. Lane 3 represents the double 

digestion of the vector showing the release of the CMV promoter, bottom band. The top 

band corresponding to pEGFP-C1 was excised using a sterile blade under long wave UV 

light and purified using the GFX-purification protocol as described in section 2.9.2. The 

same were done for the pDsRed-C1 vector (data not shown). 

 

3.3.2 Digestion and purification of inserts 

 

Sequence confirmed P0 and P1 recombinant clones were digested with Ase I and Nhe I 

as described in chapter 2.8.3 to release P0 and P1 respectively. Reaction volumes were 

reduced using a Savant SC100 SpeedVac to a final volume of 50 µl and resolved on a 1 

% agarose gel as described in chapter 2.9 and the fragments excised using a sterile blade 

under long wave UV light and purified using the GFX-purification protocol as described 

in section 2.9.2.  

 

3.3.3. Cloning of P0 and P1 into pEGFP-C1 and pDsRed-C1 

3.3.3.1 Cloning and screening  

Purified fragments corresponding to P0 and P1 were ligated into pEGFP-C1 and pDsRed-

C1 (prepared in section 3.3.1) respectively. Cloning reactions were set up at a vector to 

insert ratio of 1:3 as described in section 2.8.4.  A forward common oligonucleotide (Fc) 

 

 

 

 



(a)

(b)

M          1        2           3

1.2 kb

0.5 kb
0.589 kb

CMV promoter

4.111 kb

pEGFP-C1

0.3 kb

0.2 kb

 

 

 

 



Figure 3.8 Restriction digestion of the pEGFP-C1 vector deleting the

CMV promoter.

(a) Represents the graphical map of pEGFP-C1. The position of the

Ase I and Nhe I restriction endonucleases. flanking the CMV

promoter, are indicated.

(b) Shows restriction analysis of the pEGFP-C1 vector with Ase I and

Nhe I. Lane M. represents the size marker pTZ, lane 1. represents

the pEGFP-C1 vector digested with Ase I lane 2. represents the

pEGFP-C1 vector digested with Nhe I and lane 3. represents the

pEGFP-C1 vector digested with both Ase I and Nhe I with the

release of the CMV promoter. The results from the restriction

analysis were resolved on a 1 % agarose gel.

 

 

 

 



 131 

complementary to the pUC region of both vectors was designed situated a 100 bp 

upstream of the Ase I recognition site. A reverse oligonucleotide was designed in the 5’ 

region of EGFP (GFP-R) and DsRed1 (RFP-R) respectively, located 100 bp downstream 

of the Nhe I recognition site (see table 3.1 for sequences).  

 

Recombinant clones were identified by colony PCR as described in chapter 2.10.3. PCR 

reactions were resolved on a 1 % agarose with the appropriate size markers. See figure 

3.9 for the screening of pEGFP-C1-P0 recombinant clones.  The results show PCR 

products of the expected size of 1.2 kb. Recombinant clones were also identified for 

pEGFP-C1-P1, pDsRed-C1-P0 and pDsRed-C1-P1 using colony PCR. Amplicons 

resulting from colony PCR for pDsRed-C1-P0 recombinant clones were the same as 

those observed for pEGFP-C1-P0 recombinant clones as observed in figure 3.9. The 

expected size of 1.8 kb were observed for pEGFP-C1-P1 and pDsRed-C1-P1 

recombinant clones. 

 

3.3.3.2. Isolation of plasmid DNA using double CsCl2
 gradients 

 

Recombinant clones were cultured and overnight cultures were subjected to large-scale 

plasmid DNA isolation using the alkaline lysis method. Double CsCl2 gradients were 

performed as described in chapter 2.7.2 to isolate transfection quality plasmid DNA.  
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Figure 3.9 PCR identification of the P0-pEGFP-C1 recombinant clones.

(a) Diagrammatical representation of the PCR strategy used to identify

P0-pEGFP-C1 recombinant clones indicating the position of Fc

(common forward primer) and the GFP primer (EGFP specific

reverse primer.

(b) Identification of the P0-pEGFP-C1 recombinants clones using PCR.

 Lane M. represents the pTZ size marker, Lanes 1 to 11 represents

the recombinant clones. PCR fragments were resolved on a 1 %

agarose gel.
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3.3.3.3 Restriction analysis of recombinant clones 

 

Plasmid DNA corresponding to the respective recombinant clones was used in a 

restriction analysis reaction with Ase I and Nhe I as described in section 2.8.3. From 

figure 3.10 the digestion of the pEGFP-C1-P0 clone did not show the release of the 

insert. However, a shift in mobility when compared to pEGFP-C1-P0 singly digested 

with Ase I was observed, indicating the presence of an insert. Single restriction analysis 

of the recombinant clone indicated that the Nhe I recognition site was lost. This might 

have been caused by methylation of the site. Restriction analysis of the pEGFP-C1-P1 

recombinant clone showed the release of an insert corresponding to the expected size of 

1.6 kb. 

3.3.3.4 Sequencing analysis of recombinant clones 

 

Recombinant clones were sequenced at the Inqaba Biotech core sequencing facility. 

Sequence data obtained for the different clones were compared to the non-redundant 

database using BLASTn (Altschul et al., 1990). From figure 3.11 the BLAST results for 

P0 showed a significant match to the Homo sapiens BAC clone CTD-2540M10 on 

chromosome 16. The sequence obtained for P1, when matched to the non-redundant 

database showed a significant match to the same BAC clone (see figure 3.12). Also 

significant matches were shown to the Pan troglodytes, Homo sapiens and the Mus 

musculus retinoblastoma binding protein 6.  

 

 

 

 

 

 



Figure 3.10  Restriction analysis  of the pEGFP-C1 promoter constructs.

Lane M represents the size marker pTZ, lane l represents pEGFP-C1 digested

with Ase 1 and Nhe 1 lane 2 represents the digestion of pEGFP-C1 with Ase 1,

lane 3 represents the digestion of pEGFP-C1-P0 with Ase I and Nhe I and lane 4

represents the digestion of pEGFP-C1-P1 with both Ase 1 and Nhe 1.
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Sequence data obtained were also aligned with the sequences used to design the PCR 

oligonucleotides to amplify P0 and P1 using BLAST (bl2seq) (Tatiana et al., 1999). 

Sequence data were obtained from different sets of oligonucleotides since the 

recombinant clones were sequenced with the M13 universal oligonucleotides as well as 

gene specific oligonucleotides for each promoter. The sequence data for each promoter 

was aligned and the resulting consensus sequences used for BLAST analysis. 

 

Figure 3.13 shows the alignment of P0 sequence to that in figure 3.2 and figure 3.14 

shows the alignment of P1 to that in figure 3.3. Both query sequences showed complete 

match to the subject sequences. The sequence results for P0 showed two mismatches at 

the beginning of the sequence and can possibly be attributed to the efficiency of the 

sequencing reactions. The sequence traces for P0 showed some level of background 

(noise) causing two nucleotides to be unresolved. From the sequence data it was 

concluded that the correct sequences corresponding to the RBBP6 P0 and P1 promoters 

were successfully amplified and cloned. Table 3.2 shows the list of constructs sequenced 

and the nomenclature that will be used in subsequent sections of this chapter to describe 

the different constructs. 
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Figure 3.11 BLAST search results for the pEGFP-C1 P0 construct.

(a) Shows the alignment of the P0 gene sequence with the non-

redundant (nr) database using BLASTn.

(b) the best matches

(c) the sequence for the best match Homo sapiens chromosome

16 clone CTD-2540M10.
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Figure 3.12 BLAST search results for the pDsRed-C1 P1 construct.

(a) Shows the alignment of the P1 gene sequence with the non-

redundant (nr) database using BLASTn.

(b) the best matches

(c) the sequence for the best match Homo sapiens chromosome

16 clone CTD-2540M10.
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Construct EGFP 

Enhanced 

green 

fluorescent 

protein 

DsRed1 

(Red 

fluorescent 

protein) 

CMV 

Cytomegalovirus 

Promoter 

P0 

RBBP6 

Promoter 0 

P1 

RBBP6 

Promoter 1 

EGFP-

CMV 

!  !   

EGFP-

P0 

!   !  

EGFP-

P1 

!    ! 

DsRed-

CMV 

 ! !   

DsRed-

P0 

 !  !  

DsRed-

P1 

 !   ! 

Table 3.2 List of promoter constructs with the nomenclature used in the subsequent     

sections of this chapter.  

 

3.4 Evaluation of the expression of EGFP and DsRed1 in vivo 

3.4.1. Transfection of constructs 

 

The normal human embryonic kidney cell line (Hek 293T) was cultured as described in 

section 2.13.3 till confluent. Having reached confluency cells were re-plated at a density 

of 2.5x104 on coverslips in 6 well plates and re-cultured to 80 % confluency. The cells 

were subsequently transiently transfected with 1 µg of DNA representing the different 

constructs (see table 3.2 for list of constructs) using the TransFectin™ lipid reagent as 

described in section 2.13.4.1. EGFP and DsRed1 under the transcriptional control of the 

CMV promoter were used as reference constructs.  
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Figure 3.13 Sequence alignment of pEGFP-C1 P0.

(a) Shows the sequence of P0 compared to the human

 RBBP6 gene sequence as shown in figure 3.2

using BLAST (bl2seq).

 

 

 

 



 

 

 

 



Figure 3.14 Sequence alignment of pDsRed-C1 P1.

(a) Shows the sequence of P1 compared to the human

 RBBP6 gene sequence as shown in figure 3.3 using 

BLAST (bl2seq).
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However prior to transfection a standard PCR was first set up using the different 

constructs as template. This was done to ensure that equal concentration of plasmid DNA 

representing each construct would be transfected. A 100 ng of plasmid DNA representing 

the different promoter constructs, as measured on a NanoDrop ND1000 

spectrophotometer, was used in a 50 µl PCR reaction using the gene specific 

oligonucleotides designed for qRT-PCR against EGFP and DsRed1 as described in 

section 2.10.2 were carried out. The PCR products were analyzed on a 1 % agarose gel as 

described in section 2.9 alongside the size marker pTZ. The results indicated amplicons 

of the expected size of 200 bp as compared to the size marker. The intensities of the 

amplicons, as stained with ethidium bromide, were similar for all of the different lanes 

representing each construct. This result showed that the DNA readings using the 

spectrophotometer falls within the same range ensuring that equal concentration of each 

construct would be transfected. Subsequent results can thus be seen as comparable. 

 

3.4.2 Fluorescence microscopy 

 

Coverslips were removed 48 hours post-transfection and the cells fixed in 4 % 

paraformaldehyde as described in chapter 2.14. Nuclei were stained using DAPI. The 

cells were then viewed using a Zeiss fluorescence microscope and photographed. Figure 

3.15(i) shows the results of the expression of EGFP driven by the CMV promoter 

compared to expression driven by P0 and P1 in the Hek 293T cells. The intensity of 

fluorescence appears to be magnitudes higher in the nucleus compared to the cytoplasm, 

a result that correlates well with previous observations (Gao et al., 2002). The fluorescent 
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Figure 3.15(i) Fluorescence microscopy analysis of EGFP expression in

Hek 293T cells.

The Hek 293T cells were transfected with the different promoter

constructs and the expression of EGFP evaluated using a Zeiss

fluorescence microscope.

(a) Hek 293T cells transfected with EGFP-CMV

(b) Hek 293T cells transfected with EGFP-CMV counterstained

with DAPI

(c) Hek 293T cells transfected with EGFP-P0

(d) Hek 293T cells transfected with EGFP-P0 counterstained with

DAPI

(e) Hek 293T cells transfected with EGFP-P1

(f) Hek 293T cells transfected with EGFP-P1 counterstained with

DAPI.
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intensity observed for CMV driven expression of EGFP was higher compared to that 

driven by P0 and P1. The expression of EGFP from the P0 promoter appears stronger 

than that of P1. 

 

Figure 3.15(ii) compares the expression of DsRed1 driven by CMV with that driven by 

P0 and P1. It is however not clear from the data which of the promoters show stronger 

activity when related to the fluorescent intensities of DsRed1 under the transcriptional 

control of the different promoters. It is clear from the fluorescence results that no clear 

conclusions can be drawn and additional quantitative analysis is needed to determine 

promoter activity since fluorescence microscopy can be considered to be more 

qualitative. 

 

3.4.2. Quantification of fluorescence 

3.4.2.1. FACS analysis 

 

The Hek 293T cell line were transiently transfected as described in section 2.13.4.1 with 

the different promoter constructs. Cells were FACS analyzed as described in section 2.15. 

Green and red fluorescence was read using the FL-1 channel on a FACS instrument. 

From figure 3.16(i), 84 % of cells were positive for EGFP expression driven off the CMV 

promoter compared to 17 % of cells positive for EGFP driven off P0. Figure 3.16(ii) 

compares the result obtained for DsRed1 driven off the CMV and P1 promoters. From 

the results 77 % of cells were positive for DsRed1 expression driven by CMV compared 

to 9.8 % of cells expressing DsRed1 driven off P1 
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Figure 3.15(ii) Fluorescence microscopy analysis of DsRed1 expression in

Hek 293T cells.

The Hek 293T cells were transfected with the different promoter

constructs and the expression of DsRed1 evaluated using a Zeiss

fluorescence microscope.

(a) Hek 293T cells transfected with DsRed1-CMV

(b) Hek 293T cells transfected with DsRed1-CMV counterstained

with DAPI

(c) Hek 293T cells transfected with DsRed1-P0

(d) Hek 293T cells transfected with DsRed1-P0 counterstained with

DAPI

(e) Hek 293T cells transfected with DsRed1-P1

(f) Hek 293T cells transfected with DsRed1-P1 counterstained with

DAPI.
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3.4.2.2. Real-Time qRT-PCR 

 

Hek 293T cells were transiently transfected as described in section 2.13.4.1 with the 

different promoter constructs. Total RNA using the TRIzol reagent was isolated as 

described in section 2.18 and cDNA synthesized as described in section 2.20. Gene 

specific oligonucleotides designed against EGFP and DsRed1 (see table 3.1 for 

sequences) were used in a Real-Time qRT-PCR reaction as described in chapter 2.21.  

 

Figure 3.18(i) shows the results obtained following Real-Time qRT-PCR analysis of the 

expression of EGFP-CMV compared to EGFP-P0 and the expression of DsRed1-CMV 

compared to DsRed1-P1. The CP or CT (crossing point threshold) values were used to 

compare each reaction. Threshold fluorescence is defined as the point at which the 

fluorescence rises appreciably above the background fluorescence.  

 

There is an approximate 8-cycle difference between the qRT-PCR curve observed for 

EGFP-CMV (CP = 23.89) and EGFP-P0 (CP = 31.56). This indicates a higher mRNA 

copy level of EGFP in cells transfected with EGFP-CMV. This difference is significantly 

greater between DsRed1-CMV (CP = 23.89) and DsRed1-P1 (CP = 37.65) similarly 

indicating a higher mRNA copy level in cells transfected with CMV-DsRed1, thus the 

more copies of the target there are at the beginning of the assay, the fewer cycles of 

amplification are required to generate the number of amplicons that can be detected 

reliably. Consequently, fewer amplification cycles are required for the fluorescence to 
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Figure 3.16(i) FACS analysis of EGFP expression in the Hek 293T

cells.

Hek 293T cells were transfected with the different

promoter constructs and the EGFP fluorescence measured

using the FL-1channel on a FACS instrument.

(a)  Hek 293T cells only (negative control)

(b)  EGFP- CMV

(c)  EGFP- P0.
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Figure 3.16(ii) FACS analysis of DsRed1 expression in Hek 293T

cells.

Hek 293T cells were transfected with the different

promoter constructs and the DsRed1fluorescence

measured using the FL-1 channel on a FACS instrument.

(a)  Hek 293T cells only (negative control)

(b)  DsRed1- CMV

(c)  DsRed1- P1
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reach the threshold level of detection (CP or a CT value calculated by a mathematical 

algorithm). 

 

The Real-Time PCR efficiencies (E) were calculated from the resulting slopes provided 

by the Real-Time Quantitative PCR software and was calculated according to the 

equation formulated by Pfaffl (2001) as described in section 2.22. A standard curve using 

the gapdh housekeeping gene data was drawn (see figure 3.17) and the expression of 

EGFP and DsRed1 calculated relative to gapdh expression. The expression of EGFP and 

DsRed1 driven off CMV was calculated as 100 % and the expression of EGFP and 

DsRed1 driven off P0 and P1 calculated relative to it and represented as the mean ± SD. 

From figure 3.18(ii) P0 shows a calculated expression level of 15 % and P1 a calculated 

expression level of 5 % relative to CMV expression. From the data it can be concluded 

that the activity of CMV is approximately 7x higher than that of P0 and 20x higher than 

of P1 with P0 being 3x higher than P1. 

 

3.5 The effect of Apoptosis on promoter activity 

 

The DWNN/RBBP6 gene was isolated in a genetic screen to identify novel components 

of the MHC class 1 processing and presentation pathway (George, 1995). Further 

analysis showed the same CTL resistant cell lines, from which it was identified, to be 

resistant to apoptosis induced by staurosporine as well (Pretorius, 2000).  Gao and Scott, 

2003, showed that the over-expression of the P2P-R protein promotes camptothecin- 
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Figure 3.17 Represents the gapdh standard curve.

(a) represents the Real-Time qRT-PCR data using

different dilutions of cDNA

(b) represents the resulting standard curve
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induced apoptosis in the human cell line MCF -7. This section will investigate the effect 

of apoptosis on the expression activity of the human RBBP6 promoters.  

 

3.5.1 Induction of Apoptosis 

 

In this section the optimum concentration of camptothecin needed to yield maximum 

killing of the Hek 293T cells was determined. Hek 293T cells were cultured as described 

in chapter 2.13.3 and treated with increasing concentrations of camptothecin ranging 

from 0 to 15 µg/ml and the percentage cell death determined using the Annexin V-PE 

assay as described in section 2.16.3. A concentration of 10 µg/ml camptothecin over a 

period of 24 hours was determined to be most effective in inducing maximum cell death 

in the Hek 293T cell line. 

 

3.5.2 The effect of apoptosis on promoter activity 

3.5.2.1 FACS 

 

Hek 293T cells were cultured in 6 well plates as described in section 2.13.3 and 

transfected with 1 µg of DNA corresponding to the different promoter constructs. After 

24 hrs the transfected cells were treated with 10 µg/ml camptothecin and incubated for an 

additional 24 hrs. Following the induction period cells were FACS analyzed as described 

in section 2.15. From figure 3.19 an increase in EGFP expression driven off P0 from 17 

% to 44 % and a marginal change in DsRed1-P1 expression from 8 to 10 % were 

observed following camptothecin-induced apoptosis. The FACS results observed 
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Figure 3.18(i)  Expression analysis of EGFP and DsRed1 in Hek

293T cells using Real-Time qRT-PCR.

(a) represents the Real-Time qRT-PCR data for EGFP-

CMV compared to EGFP-P0

(b) represents the Real-Time qRT-PCR data for DsRed1-

CMV compared to DsRed1-P1.

 

 

 

 



A B

 

 

 

 



Figure 3.18((ii) Expression analysis of EGFP and DsRed1.using Real-

Time qRT-PCR.

The Real-Time qRT-PCR data obtained (see figure 3.17)

was analyzed and  presented in the graph as the relative

expression of EGFP  and DsRed1 as  the mean ± SD.

Panel A compares the expression level of EGFP driven of CMV

and P0 respectively.

Panel B compares the expression level of DsRed1 driven of CMV

and  P1 respectively.
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following the induction of apoptosis were compared to that of the two promoters before 

the induction of apoptosis Both EGFP and DsRed1 driven of CMV showed no increase in 

expression following treatment with camptothecin (data not shown). 

 

3.5.2.2 Real-Time qRT-PCR 

 

Following induction of apoptosis total RNA was isolated using the TRIzol protocol as 

described in section 2.18 and cDNA synthesized as described in section 2.20. Real-Time 

qRT-PCR was performed as described in section 2.21. Figure 3.20(i) shows the data 

obtained using Real-Time qRT-PCR for the expression of EGFP and DsRed1. Figure 

3.20i(a) shows the results of EGFP-CMV and EGFP-P0. There is an upward shift in the 

qRT-PCR curve representing EGFP-P0 (CP = 26.95) following the induction of apoptosis 

compared to that observed before the induction of apoptosis (CP = 31.56) showing an 

increase in the mRNA level of EGFP. Thus the expression activity of the P0 promoter 

increases following camptothecin-induced apoptosis. An increase in expression activity is 

also observed for DsRed1-P1 as seen in figure 3.20i(b) with a calculated CP value = 

36.42 after induction of apoptosis compared to a CP value = 37.65 before the induction of 

apoptosis.  

 

The Real-Time PCR efficiencies (E) were calculated from the resulting slopes provided 

by the Real-Time Quantitative PCR software and was calculated according to the 

equation formulated by Pfaffl (2001) as described in section 2.22. The expression of 

EGFP and DsRed1 calculated relative to gapdh expression using the standard curve. The 
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Figure 3.19 FACS analysis of EGFP and DsRed1 expression in Hek 

293T cells following the induction of apoptosis.

(a) EGFP expression driven by  P0 before the induction of 

apoptosis

(b) following the induction of apoptosis using camptothecin.

(c) DsRed1 expression driven by P1 before the induction of 

apoptosis

(d) following the induction of apoptosis using camptothecin.
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expression of EGFP and DsRed1 driven off CMV was calculated as 100 % and the 

expression of EGFP and DsRed1 driven off P0 and P1 calculated relative to it and 

represented as the mean ± SD of independent repeats of the experiment (see figure 3.21). 

The results show a 2.0 fold increase in the expression of EGFP driven off P0. The 

increase in DsRed1 expression driven by P1 was calculated as a 1.4 fold increase. 

 

3.6 Summary 

 

Genetic analysis of the RBBP6 gene showed the presence of two promoters designated 

Promoter 0 (P0) and Promoter P1 (P1). Studies by (Dlamini in prep.) showed that activity 

of both promoters are responsible for the different transcripts of the human RBB6 gene. 

To better understand the significance of the two promoters for RBBP6, several promoter 

constructs were designed and tested in cell culture. 

 

The enhanced green fluorescent protein (EGFP) and the red fluorescent protein (DsRed1) 

were placed under the transcriptional control of P0 and P1 respectively. A PCR based 

method was used to achieve this. Oligonucleotides were engineered to include an Ase I 

recognition sequence at the 5’ end of both forward oligonucleotides and a Nhe I 

recognition sequence at the 3’ end. Promoters were amplified and cloned into pEGFP-C1 

and pDsRed-C1 vectors replacing the CMV promoter. Sequence analysis of the 

constructs showed complete and correct matches for both promoters when compared to 

the human genome sequence and existing sequences. EGFP and DsRed1 under the 

transcriptional control of the CMV promoter were used as reference constructs. 
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Figure 3.20 Expression analysis of EGFP and DsRed1 after

camptothecin (cpt)-induced apoptosis using Real-

Time qRT-PCR.

(a) compares the qRT-PCR data obtained for EGFP-CMV

to that for EGFP-P0

(b) compares the qRT-PCR data obtained for DsRed1-CMV

to that for DsRed1-P1.
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The transcriptional activity of P0 and P1 were evaluated using different methods. Firstly, 

fluorescence microscopy was used to evaluate the activity of each promoter. EGFP and 

DsRed1 intensities were evaluated qualitatively following the transfection of the 

constructs into the Hek 293T cell line using a Zeiss fluorescence microscope. From the 

data obtained it was shown that the expression of EGFP driven by CMV showed a higher 

fluorescent intensity when compared to EGFP under the transcriptional control of P0 and 

P1with P0 activity higher than that of P1. The result for DsRed1 expression however 

appeared similar for CMV, P0 and P1 promoters.  

 

A second approach in the evaluation of the activity of the different promoters was FACS 

analysis. For EGFP expression driven by CMV 84 % of Hek 293T cells showed 

fluorescence compared with 17 % for EGFP driven by P0. For DsRed1 expression driven 

by CMV 77 % of Hek 293T cells showed fluorescence compared to 8 % for DsRed 

driven by P1. However the transfection efficiency of the reagent used should be 

considered in the Hek 293T cell line. The fluorescence observed are considered to a 

consequence of the activity of the individual promoters, but if the transfection 

efficiencies varies amongst the respective constructs, fluorescent intensity becomes a 

measure of the number of expressing cells and not level of expression. The results thus 

cannot be taken at face value and should be considered in combination with those 

observed for Real-Time qRT-PCR. 

 

A third method was Real-Time qRT-PCR. The results were similar as for those obtained 

for FACS analysis. The activity of the CMV promoter was calculated to be 
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Figure 3.21  Expression analysis of EGFP and DsRed1 following

the induction of apoptosis.

The Real-Time qRT-PCR data (see figure 3.20(i) was

analyzed and presented in the graph as the relative

expression of EGFP and DsRed1 following the induction

of apoptosis using camptothecin as the mean ± SD.

Panel A compares the expression level of EGFP driven of CMV

and P0 respectively.

Panel B compares the expression level of DsRed1 driven of CMV

and  P1 respectively.
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approximately 20x higher than that of P1 and 7x higher than that of P0 whilst P0 activity 

was calculated to be 3x higher than that of P1. The Real-Time qRT-PCT technique can be 

considered an accurate method to measure the concentration of any transcript in the cell. 

Experimental differences between samples can be accommodated by normalization of 

qRT-PCR data. A common method for the normalization of qRT-PCR data is the 

simultaneous amplification of an endogenous reference, or a housekeeping gene 

(Vandesompele et al., 2002). Maubach et al., (2006) showed that the activity of the 

hGFAP promoter could be effectively measured by quantification of the expression of the 

LacZ reporter gene using qRT-PCR. A drawback of this study was using the CMV 

promoter as reference to compare the relative activity of P0 and P1 since the activity of 

the CMV promoter has been shown to be strong in many cell lines (Muller et al., 1990) 

including Hek 293T cells (Chung et al., 2002). 

 

Next the effect of camptothecin-induced apoptosis on the activity of the promoters was 

investigated. The optimal concentration of camptothecin needed to induce 100 % killing 

of the Hek 293T cells was firstly determined using the Annexin V-PE apoptosis assay, 

The Hek 293T cell line were transfected with the different promoter constructs and 

apoptosis induced using the concentration of camptothecin previously determined. FACS 

and qRT-PCR analysis were used to evaluate the activity of the promoters following 

camptothecin-induced apoptosis. No effect was observed on the activity of the CMV 

promoter following the induction of apoptosis. The activity of P0 showed a 2-fold 

increase and that of P1 a 1.4 fold increase following the induction of apoptosis. The 

increase in promoter activity can be considered a significant increase bearing in mind that 
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these are relative to the activity of CMV. As earlier stated CMV activity has been shown 

to be strong in many cell lines. A possible solution to this would be to replace CMV with 

a well-understood and characterized cellular promoter making the results more 

comparable. From the results it can thus be concluded that the RBBP6 gene plays a 

possible role in camptothecin-induced apoptosis since there is an increase in the activities 

of its promoters. 
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CHAPTER 4: INTERFERENCE RNA – CONSTRUCTION OF MOUSE RBBP6 

siRNA VECTORS 

 

4.1 Introduction 

 

The ultimate goal of current genome projects is to identify the biological function of 

every gene in the genome. Whole genomes of several organisms (including Arabidopsis) 

have been completely sequenced. The functions of some of the genes have been 

identified directly by the appropriate assay, or have been inferred by homology to genes 

of known function in other organisms. Loss-of-function mutants, from insertional 

mutagenesis or transposable elements, have also been very informative about the role of 

some of these genes (Martienssen, 1998), particularly in the large-scale analysis of the 

yeast genome. However, the functions of a large proportion of genes remain unknown. 

 

Injection or ingestion of dsRNA into nematodes can trigger specific RNA degradation, in 

a process known as RNA interference (Fire et al., 1998). This process facilitates targeted 

post-transcriptional gene silencing (PTGS) and has recently been harnessed to study the 

function of over 4000 genes on chromosome III and I in Caenorhabditis elegans (Frazer 

et al., 2000, Gonczy et al., 2000). 

 

The applicability of injecting dsRNA is limited in mammals, because the introduction of 

dsRNA longer than 30 nt induces a sequence non-specific interferon response (Elbashir et 

al., 2001). Interferon triggers the degradation of mRNA by inducing 3’- 5’ oligoadenylate 
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synthase, which in turns activates RNase I. In addition, interferon, activates the protein 

kinase PKB, which phosphorylates the translation initiation factor eIF2a leading to a 

global inhibition of mRNA translation (Stark et al., 1998). To overcome this, Tuschl et 

al., 1998, introduced chemically synthesized siRNA into mammalian cells. However, 

unlike plants, fungi and worms, which can replicate siRNAs, there is no evidence of 

siRNA replication in mammals (Caplen et al., 2002, Wianny and Zernicka-Goetz, 2000). 

Therefore, siRNA directed silencing by transfection is limited in Drosophila and 

mammals by its transient nature. To overcome the shortcomings of the transfection of 

chemically synthesized siRNA into cells, several groups have developed DNA vector 

mediated mechanisms to express substrates that can be converted into siRNA in vivo 

(Kawasaki and Taira, 2003, Miyagishi and Taira, 2002, Yu et al, 2002).  

 

In organisms and cell types with weak or absent interferon responses, constructs that 

express long hairpins have been used. These constructs make use of RNA Polymerase II 

(Pol II) promoters that drive the expression of long hairpin RNA that can be cleaved by 

Dicer into siRNAs. These long hairpin-expression systems have effectively silenced 

target-gene expression in several different organisms, including mouse oocytes and 

preimplantation embryos (Wianny and Zernicka-Goetz, 2000). 

 

Plasmid based expression systems using RNA Polymerase III (Pol III) promoters that 

produce short RNA species and do not trigger a significant interferon response have been 

developed by several groups (Kawasaki and Taira, 2003, Yu et al, 2002). Two Pol III 

promoters have been used predominantly, the U6 and the H1 promoters. Both of these 

promoters are members of the type III class of Pol III family of RNA promoters 

 

 

 

 



Table 4.1. List of oligonucleotides used in construction of siRNA vectors. The Ase I 

recognition sequence are indicated in bold text, Hind III in blue text and Bgl II in red 

text. 

 

  PRIMER 

NAME 

PRIMER SEQUENCE POSITION 

DWNN-A F 5’ GATCCC TTATTGCCAGCTGCCGCCC 

TTCAAGAGA GGGCGGCAGCTGGCAATAA 

TTTTTGGAAA GCTT 3’ 

850-868 

DWNN-A R 5' AGCTTTTCCAAAAA TTATTGCCAGCTGCCGCCC 

    TCTCTTGAA GGGCGGCAGCTGGCAATAA GGG 3' 

868-850 

DWNN-B F 5' GATCCC TGCAGGGGATCGTCAGGGATT  

    TTCAAGAGA AATCCCTGACGATCCCCTGCA     

     TTTTTGGAAA GCTT 3' 

2329-2349 

si
R

N
A

 o
li

g
o
n

u
cl

eo
ti

d
es

 

DWNN-B R 5’AGCTTTTCCAAAAA TGCAGGGGATCGTCAGGG 

ATT  TCTCTTGAA AATCCCTGACGATCCCCTGCA 

GGG 3' 

2349-2329 

U6 F 5' AC ATTAAT CCA TGG AAT TCA TCC GAC GCC 

     GCC ATC TCT AG 3' 

2-22 

U6 R 5’ AC ATTAAT CGC AAGCTT GCGCCT AGATCT  

     CAC AAA CAA GGC TTT TCC TTG G 3' 

333-352 

H1 F 5’ ATTAAT CCA TGG AAT TCG AAC GCT GAC GTC 

3’ 

141-164 

P
ro

m
o
te

r 

o
li

g
o
n

u
cl

eo
ti

d
es

 

H1 R 5’ ATTAAT CGC AAG CTT CGC CTT AGATCT GTG 

GTC TCA TAC AGA AC 3’ 

350-366 

Fc 5’ ACT ACT ACG TGG ACT CCA AGC 3’ 1190-1211 

Rc 5 ' ATT ATG ATC AGT TAT CTA GAT CC 3' 1399-1421 

M13F 

pGEM-T 

Easy 

5’ GTT TTC CCA GTC ACG ACG TTG TA 3’  2949-2957 

C
lo

n
in

g
 a

n
d

 s
eq

u
en

ci
n

g
 

o
li

g
o
n

u
cl

eo
ti

d
es

 

M13R 

pGEM-T 

Easy 

5’ TTG TGA GCG GAT AAC AAT TTC 3’ 176-192 
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(Miyagishi and Taira, 2002). With the advent of vector based siRNA delivery systems it 

is now possible to make transgenic animals that can silence gene expression stably. This 

can be achieved by either standard transgene technology, Gordon, 1994, or by the 

infection of hematopoietic embryonic stem cells (HSC) (Onodera, 2004) or blastocysts 

with viral based vectors (Kamihira et al., 2005). 

 

Aims of this chapter: 

- To identify siRNA oligonucleotides against the mouse RBBP6 gene. 

- To construct plasmid based siRNA expression vectors using the RNA Polymerase 

III (Pol III) promoters H1 and U6. 

 

4.2 Amplification of the RNA Pol III promoters 

 

H1 (human) and U6 (mouse) RNA Pol III promoters were PCR amplified using gene 

specific oligonucleotides (see table 4.1 for sequences) as described in section 2.10.1. 

Gene specific oligonucleotides were designed to include an Ase I site at the 5’ end and 

Hind III, Bgl II and Ase I sites at the 3’ end. An additional six bases was placed between 

the Hind III and the Bgl II recognition sequences (see figure 4.1).  The incorporation of 

Hind III and Bgl II was performed to facilitate the cloning of the siRNA oligonucleotides 

into the 3’ ends of the respective promoters. 

 

Figure 4.1a diagrammatically represents the PCR strategy used to amplify the U6 and H1 

promoters and figure 4.1b the results. From figure 4.1b the expected size fragment of 268 
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Figure 4.1 PCR amplification of the RNA Pol III U6 and H1 promoters.

(a) A diagrammatical representation of the PCR strategy used to

amplify the human H1 and mouse U6 RNA Pol III promoters

with the engineered restriction sites indicated.

(b) Represents the PCR amplification of the human H1 and mouse

U6 promoters. PCR products were resolved on a 1.5 % agarose

gel. Lane M. represents the size marker pTZ,, lane 1. the PCR

fragment representing the amplified H1 promoter, lane 2. The U6

promoter and lane B. the water blank
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bp representing the human H1 promoter and the expected size fragment of 380 bp 

representing the mouse U6 promoter was observed. PCR fragments corresponding to both 

promoters were cloned into the pGEM®-T Easy cloning vector as per the manufacturers 

instructions. Recombinant clones corresponding to both promoters were sequenced using 

the Big Dye v.3.0 cycle sequencing protocol as described in section 2.11 with the M13 

forward and reverse oligonucleotides. The obtained sequencing data were compared to 

the non-redundant database using BLASTn (Altschul et al., 1990). The results showed 

complete matches to the database for both promoters (results not shown). 

 

4.3 Cloning of H1 and U6 promoters 

4.3.1 Deletion of the MCS from pEGFP-C1 and pDsRed-C1 vectors 

 

In addition to the pGEM®-T Easy vector, both pEGFP-C1 and pDsRed-C1 were used to 

clone promoter U6 and H1. This would allow for localization of the constructs in cells 

using fluorescence microscopy.  

 

Firstly the multiple cloning sites (MCS) of pEGFP-C1 and pDsRed-C1 had to be deleted. 

PCR amplification of U6 and H1 resulted in the addition of a Hind III and Bgl II 

recognition sequence at the 3’ end of both promoters allowing for the subsequent cloning 

of the siRNA oligonucleotides. Thus with the cloning of U6 and H1 into pEGFP-C1 and 

pDsRed-C1, an additional recognition site will be created for both restriction 

endonucleases, with one site already existing in the MCS of both vectors. 

 

 

 

 

 



(c)

M     U     C      1      2      3     4      5      6      7     8       9    10   11

1.2 kb

0.5 kb

Bam HI

pR-MCS

(a) (b)

Ase 1

M

C

S

Bgl II

Hind III

Ase 1
 

 

 

 



Figure 4.2 A diagrammatical representation of the deletion of the MCS

(Multiple Cloning Site) from pDsRed-C1 cloning vector.

(a) Represent the graphical map of pDsRed1 and the recognition sites

of the endonucleases flanking the MCS.

(b) the religated pDsRed1 cloning vector with the MCS deleted.

(c) Screening for MCS deleted pDsRed-C1 vectors using restriction

analysis. M. represents the size marker pTZ, U. uncut pDsRed-C1

plasmid DNA, C. control pDsRed-C1 DNA digested with Ase I and

Bgl II and lanes 2 and 6 vectors where the MCS have been deleted.

Restriction products were resolved on a 0.8 % agarose gel.
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used to construct restriction maps for both vectors. The maps showed the absence of all 

restriction recognition sequences found within the MCS (data not shown).  

 

4.3.2 Preparing pG-MCS and pR-MCS as cloning vectors 

 

pG-MCS and pR-MCS were cultured overnight and plasmid DNA isolated using the 

Caesium Chloride/Ethidium bromide fractionation protocol as described in section 2.7.3. 

Plasmid DNA representing both vectors was digested with Ase I as described in section 

2.8.3. Completely digested vectors were diluted to 100 ng and the phosphates removed as 

described in section 2.8.4. Vectors were used at a concentration of 10 ng/µl in ligation 

reactions. 

 

4.3.3 Cloning of the U6 and H1 promoters  

 

The pGEM®-T Easy U6 and H1 recombinant clones were digested with Ase 1 as 

described in section 2.8.3 to release the promoters. However, digestion with Ase I 

produced more than the two expected fragments thus indicating another recognition site 

for Ase I on the pGEM®-T Easy vector. Analysis of the pGEM®-T Easy vector nucleotide 

sequence showed an isoschizomer for Ase I, namely Vsp I. To overcome this the 

pGEM®-T Easy recombinant clones were used as template in a PCR using the M13 

universal oligonucleotides as described in section 2.10.2. The resulting U6 and H1 PCR 

products were digested with Ase I as described in section 2.8.3 and the digested 

fragments purified using the GFX purification protocol as described in section 2.9.2. The 
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purified U6 and H1 fragments were serially diluted and used in a ligation reaction with 

the Ase I digested pG-MCS and pR-MCS vectors respectively as described in section 

2.8.4 at a vector to insert ratio of 1:5. Reactions were transformed as described in section 

2.6. 

 

4.3.4 Screening for recombinant clones 

 

To identify pG-MCS U6/H1 and pR-MCS U6/H1 recombinant clones several colonies 

were picked from plates representing the different cloning reactions and used as template 

in colony PCR analysis as described in section 2.10.3. A common forward primer (Fc) 

was designed 100 bp upstream of the Ase 1 recognition site within the pUC region and a 

common reverse primer (Rc) was designed 100 bp downstream of the Ase I restriction 

site within the CMV region for both pEGFP-C1 and pDsRed-C1 (see table 4.1). Colonies 

that were positive for PCR were cultured and subjected to large-scale plasmid isolation 

using the alkaline lysis procedure as described in section 2.7.2. Plasmid DNA was 

digested with Ase I to confirm the presence of the insert as described in section 2.8.4.   

 

U6 and H1 cloned into pGEM®-T Easy, pG-MCS and pR-MCS were sequenced using the 

Big Dye v.3.0 cycle sequencing kit as described in section 2.11. Sequence data obtained 

was compared to the non-redundant database using BLASTn (Altschul et al., 1990). No 

mismatches were observed for U6 (see figure 4.3) and H1 (H1 data not shown). Vectors 

were subsequently called GU6 and GH1 (pG-MCS), RU6 and RH1 (pR-MCS) and pU6 

and pH1 (pGEM®-T Easy) and shall be referred to as such in the subsequent text. 
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Figure 4.3 Sequence data and BLAST results for the RNA Pol III 

mouse U6 promoter.

(a) Shows the sequence traces for the mouse U6 promoter.

(b) the sequence alignment of the U6 promoter against the

non-redundant database using BLASTn.
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4.4 Cloning of siRNA oligonucleotides 

4.4.1 Identifying siRNA oligonucleotides  

 

siRNA oligonucleotides were identified using the iRNAi version 1.0 oligonucleotide 

prediction software (http://mekentosj.com/irnai/). The full-length annotated mouse 

RBBP6 nucleotide sequence was used as input data. The sequence included the 5’ to 3’ 

untranslated region (UTRs) and the different splice variants. Oligonucleotides were 

designed using set criteria (see table 4.2). The set criteria will select for oligonucleotides 

with a Hind III site at the 5’ end and a Bgl II site at the 3’ end as determined by the 

iRNAi software. The oligonucleotides were chemically synthesized at Inqaba Biotech at a 

final concentration of 100 µM. Two sets of oligonucleotides were designed which were 

designated DWNN-A and B respectively (see table 4.1 for sequences). 

 

 Search Sequence for: 

Begin: AA                                               End: TT                                     n: 19 

Search pattern: AA-[N]19-TT                                                               GC content 50% 

Forward Primer                                                                                        Reverse Primer   

5’ Prefix:  GATCCC 5’ Prefix: AGCTTTTCCAAAAA 

Loop:       TTCAAGAGA Loop:      TCTCTTGAA 

3’ Suffix: TTTTTGGAAA 3’ Suffix: GGG 

Table 4.2 Settings used for the design of siRNA oligonucleotides using the iRNAi v1.0 

software. 
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4.4.2 Annealing of siRNA oligonucleotides  

 

Sense and antisense siRNA oligonucleotides were annealed as described in section 2.22. 

The formation of DNA duplexes was confirmed by electrophoresis on a 12 % 

polyacrylamide gel (data not shown). For each dsDNA, the mobility on the gel was 

shifted compared to the ssDNA. Annealing of the forward and the reverse 

oligonucleotide resulted in the formation of the 5’ Hind III and 3’ Bgl II restriction sites. 

 

4.4.3 Cloning of siRNA oligonucleotides 

 

All the vectors containing U6 and H1 described in section 4.3.4 were digested with Hind 

III and Bgl II as described in section 2.8.3. Annealed siRNA oligonucleotides from 

section 4.4.2 were ligated into the digested vectors as described in section 2.8.4. Colony 

PCR was used to identify recombinant clones as described in section 2.10.3.  The 

common forward (Fc) and the common reverse (Rc) oligonucleotides were used to 

identify GU6/H1 and RU6/H1 recombinant clones, whilst pU6/H1 recombinant clones 

were identified using the M13 universal oligonucleotides. 

 

Figure 4.4 shows the identification of GU6 DWNN-A recombinant clone (GU6A for 

short). Lane 1 shows the amplification of the U6 promoter using U6 F and U6 R resulting 

in the expected fragment size of 380 bp. Lane 3 shows the amplification of the U6 

promoter using Fc and Rc, thus resulting in a fragment with an additional 200 bp. This 

increase in product size can be contributed to the position of the oligonucleotides in 
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Figure 4.4 The PCR strategy used to identify GU6A recombinant clones.

(a) Schematic representation of the PCR strategy used to identify

GU6 siRNA recombinant clones.

(b) PCR of GU6 siRNA recombinants. clones. Recombinant siRNA

clones were identified using colony PCR M. represents the size

marker pTZ, lane 2. represents the PCR amplification of the U6

promoter using the U6 GSPs, lane B. represents the water blank

 and lane 4. the PCR amplification of the U6 promoter using Fc

and Rc lanes 5 to 9. represents the recombinant clones. PCR

products were resolved on a 2 % agarose gel.
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respect to the Ase I recognition sequence (see figure 4.4a).  Lane 4 to 9 represents the 

recombinant clones. The shift in size of the recombinant clones is marginal which can be 

contributed to the relatively small size of the siRNA oligonucleotide (64 bp). A higher 

percentage agarose gel and an extended electrophoresis period should increase the 

resolution of the PCR fragments. 

 

Figure 4.5 shows the identification of RH1B recombinant clones. Lane 1 shows the 

amplification product of H1 using Fc and Rc, whilst lanes 2 to 11 represents the 

recombinant clones. Figure 4.5 shows the identification of pU6 recombinant clones with 

4.6a showing the pU6A recombinant clones and 4.6b the pU6B recombinant clones. 

 

4.4.4 Sequencing of recombinant siRNA clones 

 

All clones representing the different siRNA constructs were sequencing at the Inqaba 

Biotech core sequencing facility. GU6/H1 and RU6/H1 siRNA recombinant constructs 

were sequenced using Fc and Rc oligonucleotides. The pU6/H1 siRNA constructs were 

sequenced using the M13 universal forward and reverse oligonucleotides. BLASTn 

(Altschul et al., 1990) were used to compare the sequencing results against the non-

redundant database. From the results (see figure 4.7) a complete match was found for 

DWNN-A against the database (DWNN-B data not shown). Sequencing data also showed 

the presence of the 5’ prefix, loop and 3’ suffix sequences. Table 4.3 shows the complete 

list of sequenced siRNA constructs. Figure 4.8 shows a graphical map of the GU6B 

vector. 
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Figure 4.5 The PCR strategy used to identify RH1B  recombinant 

clones.

(a) Schematic representation of the PCR method used to identify

RH1 siRNA recombinants.

(b) The PCR results for he RH1 siRNA recombinants. Lane M.

represents the size marker pTZ, lane B. represents the water

blank, lane 1. represents the amplification of the H1 promoter

using Fc and Rc and Lanes 2 to 11. the siRNA recombinant

clones. PCR products were resolved on a 2 % agrose gel.
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 Cloning vectors RNA pol III 

promoters 

siRNA 

oligonucleotides 

Construct pEGFP-

C1 

DsRed-

C1 

pGEM® -

T-Easy 

HI 

promoter 

U6 

promoter 

DWNN 

A 

DWNN  

B 

pU6A   !  ! !  

pU6B   !  !  ! 

pH1A   ! !  !  

pH1B   ! !   ! 

RU6A  !   ! !  

RU6B  !   !  ! 

RH1A  !  !  !  

RH1B  !  !   ! 

GU6A !    ! !  

GU6B !    !  ! 

GH1A !   !  !  

GH1B !   !   ! 

Table 4.3.  List of siRNA constructs generated and the nomenclature used in the   

        subsequent chapters. 

 

4.5 Summary 

 

The aim of this chapter was to design several plasmid-based siRNA vectors that would 

target and ablate the expression of the mouse RBBP6 gene. Plasmid-based RNAi vectors 

predominantly make use of the RNA pol III type promoters U6 and H1 (Kawasaki and 

Taira, 2003, Miyagishi and Taira, 2002).  The U6 and the H1 promoters were amplified 

using PCR and cloned into the pGEM®-T Easy, pEGFP-C1 and pDsRed-C1 vectors 

respectively. Oligonucleotides used in the amplification of the promoters were 

engineered to include an Ase I recognition sequence at both ends allowing for the cloning 

of the promoters into the Ase I recognition sequence of pEGFP-C1 and pDsRed-C1. 

Cloning into the pEGFP-C1 and pDsRed-C1 vectors would allow for localization of the 

target oligonucleotides in cells using fluorescence microscopy. Furthermore, a Hind III 
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Figure 4.6 The PCR strategy used to identify pU6 siRNA recombinant

clones.

(a) Schematic representation of the PCR strategy used to identify

 pGEM-T Easy siRNA recombinants.

(b) Shows the PCR results of the pU6A recombinant clones

Lane M. represents the size marker pTZ, lane 1. represents

the positive U6 control and lanes 2 to 10. represents the siRNA

recombinant clones.

(c) Shows the PCR results of the pU6B recombinant clones

Lane M. represents the size marker pTZ, lane 1. represents

the positive U6 control and lanes 2 to 11.. represents the siRNA

recombinant clones. PCR products were resolved on a 2 %

  agarose gel.
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and Bgl II recognition sequence were placed at the 3’ end of the reverse oligonucleotides 

for both U6 and H1 preceding Ase I, allowing for the ligation of the siRNA 

oligonucleotides at the 3’ end of the U6 and H1 promoters.  

 

The full-length annotated mouse RBBP6 DNA sequence served as input data and siRNA 

target sequences were identified using the iRNAi version 1.0 oligonucleotide prediction 

software. Oligonucleotides were designed based on the criteria listed in table 4.1. The 

criteria allowed for the incorporation of a Hind III recognition sequence at the 5’ end of 

the siRNA oligonucleotide and a Bgl II at the 3’ end. Two targeting oligonucleotides 

were identified designated DWNN-A and DWNN-B.  

 

Annealed siRNA oligonucleotides were cloned into the U6 and H1 containing vectors. 

Sequence analysis confirmed the presence of siRNAs in the respective cloning vectors. 

 

 

 

 

 



 

GATCCCCTTATTGCCAGCTGCCGCCCTTCAAGAGAGGGCGGCAGCTGGCAATAATTTTTGGAAAAGCTT

5’ PREFIX        TARGET (SENSE)              LOOP           TARGET (ANTI-SENSE)              3’ SUFFIX

(a)

(b)

 

 

 

 



Figure 4.7 Sequence and BLAST results of the DWNN-A siRNA

 oligonucleotide.

(a) Shows the sequence traces for the DWNN-A siRNA oligonucleotide.

(b) The sequence alignment of the DWNN-A siRNA oligonucleotide

against the  non-redundant database using BLASTn.

 

 

 

 



U6 promoter
TATACTAGTTACATCCCTCCGTACGCCGCCATCTCTAGGCCCGCGCCGGCCCCCTCGCAGACT

TGTGGGAGAAGCTCGGCTACTCCCCTGCCCCGGTTAATTTGCATATAATATTTCCTAGTAACT

ATAGAGGCTTAATGTGCGATAAAAGACAGATAATCTGTTCTTTTTAATACTAGCTACACTTTA

CATGATAGGCTTGGATTTCTATAAGAGATACAAATACTAAATTATTATTTTAAAAAACAGCAC

AAAAGGAAACTCACCCTAACTGTAAAGTAATTGTGTGTTTTGAGACTATAAATATCCCTTGGA

GAAAAGCCTTGTTTGTGCTCGCTTCGGCAGA

DWNN-B siRNA
GATCCC  TGCAGGGGATCGTCAGGGATT TTCAAGAGA   AATCCCTGACGATCCCCTGCA

TTTTTGGAAA GCTT

CMV early promoter
GCGATTAATAACTAATGCATGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGC

AGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCG

TTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTC

AAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGA

AGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTT

TCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGG

GGAAGGCCGT

(a)

(b)

 

 

 

 



Figure 4.8 Represents the map for the siRNA construct GU6B.

(a) A graphic representation of the map of GU6B

(b) The nucleotide of the DWNN-B siRNA, U6 promoter and 

the CMV early promoter cloned into pEGFP-C1
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CHAPTER 5: INTERFERENCE RNA – EVALUATING THE EFFECT OF THE 

siRNA CONSTRUCTS ON THE EXPRESSION OF RBBP6 

 

5.1 Introduction 

 

Reverse genetics, in which a gene is disrupted so that the effect of its loss on an organism 

can be observed, is a simple way to investigate gene function. Gene targeting by 

homologous recombination is commonly used to determine gene function in mammals, 

but it is both costly and time consuming, whilst many organisms are not amenable to such 

gene targeting methods. The function of targeted genes might not be determined by this 

approach owing to lethal or redundant phenotypes. The advent of interference RNA 

(RNAi) directed ‘knockdown’ has sparked a revolution in somatic cell genetics allowing 

the inexpensive and rapid analysis of gene function in mammals. 

 

Biologists are exploiting RNAi as an experimental tool to find out what genes do. When a 

gene is activated, its sequence is read to produce messenger RNA (mRNA), which 

contains the information necessary to manufacture a particular protein. So by using 

siRNA or double-stranded RNAs that correspond to a specific mRNA sequence, 

researchers can trick a cell into destroying this mRNA and silencing the gene in question. 

 

In theory, RNAi could be used to treat any disease – forms of cancer, for instance, that 

are linked to an overactive gene or genes. At present, most of the clinical interest lies in 

applying RNAi in its natural role as a means of combating pathogenic viruses by 

 

 

 

 



disabling their RNA. Naturally HIV would be an obvious candidate since to date there is 

no cure or vaccine against the virus. 

 

Aims of this chapter: 

-Transiently transfect the different siRNA constructs into NIH 3T3 cells and 

determine the effect on the expression of the RBBP6 gene. 

-To generate stable cell lines expressing the DWNN-A and DWNN-B siRNA 

oligonucleotides. 

 

5.2 Transient transfections of cells 

5.2.1. Transfection of mouse NIH 3T3 cells with siRNA constructs 

 

Mouse NIH 3T3 cells were cultured in 6 well plates on cover slips as described in section 

2.13.3. At a confluency of 70 % cells were transfected with the different RBPP6 siRNA 

constructs using the Metafectene™ transfection reagent as described in section 2.14.1. A 

concentration of 100 ng of DNA per well was used of the respective constructs. Cells 

were incubated an additional 48 hours post-transfection. The following control 

experiments were also set up: cells only and cells transfected with pDsRed-C1 and RU6 

(vector not containing the siRNA oligonucleotide).  

 

 

 

 

 

 

 

 



5.2.2 Fluorescence microscopy 

 

Cover slips were removed 48 hours post-transfection and placed into new 6 well plates. 

Cells were fixed as described in section 2.15.1 and stained with the anti-DWNN domain 

specific primary antibody and the Alexa Fluor 488 (Green) or 594 (Red) goat anti-rabbit 

IgG secondary antibodies as described in chapter 2.14.2. The Alexa Fluor 488 secondary 

antibody was used for cells transfected with pDsRed-C1 siRNA constructs and the Alexa 

Fluor 594 used where cells were transfected with the pEGFP-C1 siRNA constructs and 

either of the secondary antibodies if cells were transfected with the pGEM®-T Easy 

siRNA constructs.  

 

Figure 5.1 shows the fluorescence microscopy results of the analysis of localization of the 

RBBP6 protein resulting from the staining of NIH 3T3 cell line transiently transfected 

with the siRNA construct RH1B. Figure 5.1(a) shows the parental cell line NIH 3T3 

counterstained with DAPI whilst 5.1(b) shows the cell line stained with the anti-DWNN 

polyclonal antibody and the Alexa Fluor 488 secondary antibody. Figure 5.1(c) shows the 

NIH 3T3 cell line transiently transfected with the siRNA construct RH1B and 5.1(d) 

shows the NIH 3T3 cell line transiently transfected with the siRNA construct RH1B 

stained with the anti-DWNN antibody and the Alexa Fluor 488 secondary antibody. From 

these results the nucleus appears to be predominantly stained compared to the 

surrounding cytoplasm. The fluorescent intensity resulting from the staining of the NIH 

3T3 cells, transiently transfected with RH1B appears to be less than that of the NIH 3T3 

un-transfected cell line.  
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Figure 5.1 Fluorescence microscopy analysis of the localization of the

RBBP6 protein in the NIH 3T3 cells transiently transfected

with the siRNA construct RH1B.

(a) NIH 3T3 cells counterstained with DAPI.

(b) NIH 3T3 cells stained with polyclonal anti-DWNN primary

antibody and the goat anti-rabbit Alexa Fluor 488 secondary

antibody.

(c) NIH 3T3 cells transiently transfected with RH1B and counter-

stained with DAPI.

(d) NIH 3T3 cells transiently transfected with RH1B stained with

the polyclonal anti-DWNN primary antibody and goat anti- rabbit

Alexa Fluor 488 secondary antibody.
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Figure 5.2 shows the localization of the RBBP6 protein in the NIH 3T3 cells transiently 

transfected with the siRNA construct RU6A. Figure 5.2(a) shows the parental cell line 

counterstained with DAPI and (b) shows the parental cell line stained with the anti-

DWNN antibody and the Alexa Fluor 488 secondary antibody. Figure 5.2 (c) shows the 

parental cell line transiently transfected with the siRNA construct RU6A counterstained 

with DAPI and figure 5.2 (d) shows the NIH 3T3 cell line transiently transfected with the 

siRNA construct RU6A stained with the anti-DWNN antibody and the Alexa Fluor 488 

secondary antibody. The difference in fluorescence intensities can be clearly observed.  A 

marked decrease in fluorescence intensity is observed in the cells transfected with the 

siRNA construct as seen in figure 5.2(d). 

 

Figure 5.3 shows the localization of the RBBP6 protein in the NIH 3T3 cells transiently 

transfected with the siRNA construct GU6A. Figure 5.3(a) shows the parental cell line 

counterstained with DAPI and figure 5.3(b) shows the parental cell line stained with the 

anti-DWNN antibody and the Alexa Fluor 594 secondary antibody. Figure 5.3(c) shows 

the parental cell line transiently transfected with the siRNA construct GU6A 

counterstained with DAPI and figure 5.3(d) shows the NIH 3T3 cell line transiently 

transfected with the siRNA construct GU6A stained with the anti-DWNN antibody and 

the Alexa Fluor 594 secondary antibody. The fluorescence is clearly more intense 

emanating from the parental cell line compared to that in the siRNA expressing cell lines. 

No observable differences were seen between the parental cell line and those transfected 

with the control constructs, pDsRed-C1 (cloning vector) and RU6 (U6 promoter cloned 

into vector only) (data not shown). It can thus be concluded that the effect on RBBP6 
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Figure 5.2 Fluorescence microscopy analysis of the localization of the

RBBP6 protein in the NIH 3T3 cells transiently transfected

with the siRNA construct RU6A.

(a) NIH 3T3 cells counterstained with DAPI.

(b) NIH 3T3 cells stained with polyclonal anti-DWNN primary

antibody and the goat anti-rabbit Alexa Fluor 488 secondary

antibody.

(c) NIH 3T3 cells transiently transfected with RU6A and counter-

stained with DAPI.

(d) NIH 3T3 cells transiently transfected with RU6A stained with

the polyclonal anti-DWNN primary antibody and goat anti- r a b b i t

Alexa Fluor 488 secondary antibody.
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Figure 5.3 Fluorescence microscopy analysis of the localization of the

RBBP6 protein in the NIH 3T3 cells transiently transfected

with the siRNA construct GU6A.

(a) NIH 3T3 cells counterstained with DAPI.

(b) NIH 3T3 cells stained with polyclonal anti-DWNN primary

antibody and the goat anti-rabbit Alexa Fluor 594 secondary

antibody.

(c) NIH 3T3 cells transiently transfected with GU6A and counter-

stained with DAPI.

(d) NIH 3T3 cells transiently transfected with GU6A stained with

the polyclonal anti-DWNN primary antibody and goat anti-

rabbit Alexa Fluor 594 secondary antibody.

 

 

 

 



 161 

expression as observed using fluorescence microscopy is a consequence of the cloned 

siRNA oligonucleotides. 

 

5.2.3 Real-Time qRT-PCR 

 

Total RNA was isolated from NIH 3T3 cells transfected with the different siRNA 

constructs as well as the parental cell line as described in chapter 2.18 and the RNA 

resolved on an agarose gel as described in section 2.19 (see figure 5.4). Figure 5.4 shows 

RNA of high quality with no visible degradation and the 23S and 18S subunits clearly 

distinguishable. The isolated RNA was used in a cDNA synthesis reaction as described in 

section 2.20 All cDNA samples were standardized to a concentration of 50 ng and used 

directly in a Real-Time qRT-PCR as described in section 2.21 using gene specific 

oligonucleotides against the RBBP gene (see table 4.1). 

 

Figure 5.5 shows the Real-Time qRT-PCR data obtained for the expression of RBBP6 in 

the NIH 3T3 cell line transiently transfected with the different siRNA vectors with the CP 

values given for each reaction. From figure 5.5 the expression level of RBBP6 in the NIH 

3T3 un-transfected cells were similar to the expression of RBBP6 in the NIH 3T3 cells 

transfected with the control constructs RU6 and pDsRed-C1. The results shows that the 

effect on the expression of RBBP6 was unaffected by the cloning vector or the RNA Pol 

III promoter U6. The siRNA transfected NIH 3T3 cells showed lower CP values 

compared to the un-transfected NIH 3T3 cell line as well as the NIH 3T3 cell line 

 

 

 

 



Figure 5.4 Isolation of total RNA from cultured NIH 3T3 cells.

Total RNA was isolated using the TRIzol protocol, resuspended in DEPC

treated water and resolved on a 1.2 % agarose gel containing formamide.

Lane 1. Represents RNA isolated from the parental cell line NIH 3T3,

lane 2. RNA isolated from the NIH 3T3 cell line transfected with

pDsRed1, lane 3 GU6 and lanes 4, 5 and 6 represents RNA isolated from

the NIH 3T3 cells transfected with siRNA constructs GU6B, RH1A and

RU6A respectively.
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transfected with the control constructs. The siRNA transfected cell lines thus have a 

lower mRNA copy number of the RBBP6 gene as indicated by the higher CP values. 

 

The Real-Time PCR efficiencies (E) were calculated from the resulting slopes provided 

by the Real-Time Quantitative PCR software and was calculated according to the 

equation formulated by Pfaffl (2001) as described in section 2.22. The gapdh standard 

curve was used to calculate the expression level of RBBP6.The expression of RBBP6 

was calculated as 100 % in the un-transfected NIH 3T3 cell line and the expression of the 

gene in the siRNA cell lines calculated relative to it and represented as the mean ± SD.  

 

Figure 5.6 shows the analyzed data for the expression of the RBBP6 gene in the parental 

cell line compared to the parental cell line transiently transfected with the RU6A, RH1A 

and GU6B siRNA constructs and also the parental cell line transfected with the GU6 

control construct. The DWNN-A oligonucleotides resulted in an approximate 65 % 

decrease compared to 62 % resulting from the DWNN-B oligonucleotide.  

 

5.3 Generating the stable siRNA expressing cell lines RU6A and GU6 B 

5.3.1 Cell culture 

 

The parental cell line NIH 3T3 was cultured in a 25 cm3 flask until 80 % confluent as 

described in section 2.13.3. The cell were transfected with 100 ng of the RNAi constructs 

RU6A and GU6B using Metafectene™ as described in section 2.14.1. Stable cell lines 

 

 

 

 



pDsRed1 only control               32.84

GAPDH housekeeping gene                                         25.86

Cells only control               30.90

RU6 only control               31.04

GU6B               32.08

GH1A               35.48

RU6A               35.20

Blank

Threshold(CP) value

Figure 5.5 Expression analysis of the RBBP6 gene using Real-Time

qRT-PCR.

NIH 3T3 cells were transiently transfected with different siRNA constructs.

Total RNA was isolated from the cells and cDNA synthesized. The level of

expression of the RBBP6 gene was determined in the different cells using

Real-Time qRT-PCR analysis.

 

 

 

 



Figure 5.6 The expression level of the RBBP6 gene in cells transiently

transfected with different siRNA constructs.

The Real-Time qRT-PCR data (see figure 5.5) was analyzed and presented as a

bar graph showing the relative expression level of the RBBP6 gene following

the transient transfection of the different siRNA constructs into the NIH 3T3

cell line as the mean ± SD as independent repeats of the experiment. The GU6

vector were used as a control.
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were generated as described in section 2.14.2 using G418. Cells were frozen down and 

stored at – 150 0C.  

 

5.3.2 Fluorescence microscopy 

 

Fluorescent microscopy was used to evaluate the expression of the RBBP6 gene in the 

stable siRNA cell lines RU6A and GU6B. The parental cell line, as well as the stable 

lines were cultured in 6 well plates in DMEM on cover slips as described in section 

2.13.3. Cover slips were removed and the cells fixed as described in section 2.15.1 and 

stained with the anti-DWNN antibody as described in section 2.15.2. Fluorescence was 

evaluated using a Zeiss fluorescence microscope and the cells photographed. 

 

Figure 5.7 shows the localization of the RBBP6 protein in the NIH 3T3 parental cells 

compared to the stable cell line RU6A. Figure 5.7(a) shows the parental cell line 

counterstained with DAPI and figure 5.7(b) shows the parental cell line stained with the 

anti-DWNN antibody and the Alexa Fluor 488 secondary antibody. Figure 5.7(c) shows 

the stable cell line RU6A counterstained with DAPI and figure 5.7(d) shows the stable 

cell line RU6A stained with the anti-DWNN antibody and the Alexa Fluor 488 secondary 

antibody. The fluorescence intensity emanating from the parental cell line was 

significantly higher than that emanating from the stable cell line. The same was observed 

for the GU6B cell line (data not shown). However there is clear nuclear staining in the 

parental cell line compared to the stable cell line RU6A. The fluorescence observed in the 

stable cell line can be considered cytoplasmic background. This background might be a 
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Figure 5.7 Fluorescence microscopy analysis of the localization of the

RBBP6 protein in the stable siRNA expressing RU6A cell line.

(a) NIH 3T3 cells counterstained with DAPI.

(b) NIH 3T3 cells stained with polyclonal anti-DWNN primary

antibody and the goat anti-rabbit Alexa Fluor 488 secondary

antibody.

(c) RU6A counterstained with DAPI.

(d) RU6A stained with the polyclonal anti-DWNN primary antibody

and the goat anti-rabbit Alexa Fluor 488 secondary antibody.
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consequence of the non-specificity of the anti-DWNN antibody since this antibody is 

polyclonal thus showing cross-reactivity to other proteins in the cell. 

 

5.3.3 Real-Time qRT-PCR 

 

Quantitative RT-PCR was used to determine the level of expression of the RBBP6 gene 

in the stable cell lines RU6A and GU6B. Stable cell lines and the parental cell line were 

cultured in DMEM as described in section 2.13.3. Total RNA was extracted using the 

TRIzol protocol as described in section 2.19 (figure 5.8) and cDNA synthesized as 

described in section 2.20. The concentrations of the different cDNA synthesized were 

standardized and 50 ng representing the different samples were used in a Real-Time qRT-

PCR using a LightCycler instrument as described in section 2.21 using the RBBP6 

forward and reverse oligonucleotides (see table 4.1). 

 

Figure 5.9 shows the Real-Time qRT-PCR data obtained for the expression of RBBP6 in 

the stable siRNA expressing cell lines RU6A and GU6B with the CP values given for 

each reaction. The threshold values are significantly lower for the parental cell line and 

the gapdh housekeeping gene compared to the values for GU6B and RU6A. The 

expression level of the RBBP6 gene is thus significantly lower in the stable cell line 

compared to the parental cell line NIH 3T3. 

 

The Real-Time PCR efficiencies (E) were calculated from the resulting slopes provided 

by the Real-Time Quantitative PCR software and was calculated according to the 
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Figure 5.8 Isolation of total RNA from cultured NIH 3T3 cells.

Total RNA was isolated from the RU6A and GU6B stable siRNA expressing

cell lines using the TRIzol protocol. RNA was resuspended in DEPC treated

water and resolved on a 1.2 % agarose gel containing formamide. Lane 1.

represents RNA isolated from RU6A and lane 2. RNA isolated from GU6B.
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equation formulated by Pfaffl (2001) as described in section 2.22. The gapdh standard 

curve was used to calculate the expression level of RBBP6.The expression of RBBP6 

was calculated as 100 % in the un-transfected NIH 3T3 cell line and the expression of the 

gene in the siRNA stable cell lines calculated relative to it and represented as the mean ± 

SD as independent repeats of the experiment.  

 

The expression of RBBP6 was calculated to be 95 % lower in the RU6A stable cell line 

and 85 % lower in GU6B compared to the expression of RBBP6 in the parental cell line 

NIH 3T3. These results compare well with those observed for transient transfections 

indicating a slightly higher silencing potency for the DWNN-A oligonucleotide.  

 

5.4 Summary 

 

In this chapter the effect of the siRNA vectors were tested on the expression of the 

DWNN protein. Several constructs were designed as described in chapter 4. NIH 3T3 

cells were transiently transfected with the different siRNA constructs and stained with the 

anti-DWNN domain antibody. The results showed a decrease in expression of RBBP6 as 

observed by fluorescent microscopy. For transiently transfected cells a decrease in 

fluorescence was observed when compared to the parental cell line. As discussed earlier 

the anti-DWNN antibody was of a polyclonal nature, which could explain the 

cytoplasmic background observed. 

 

 

 

 

 



NIH 3T3 GADH 29.56

RU6A 34.82

GU6B stable cell line  37.89

RU6A stable cell line  39.80

Blank

NIH 3T3 RBBP6  31.02

Threshold (CP) value

Figure 5.9 Expression level of the RBBP6 gene as determined using

Real-Time qRT-PCR analysis.

The stable siRNA expressing cell lines RU6A and GU6B and the NIH 3T3

cell line transiently transfected with RU6A were cultured and total RNA

isolated. cDNA was synthesized and analyzed for the expression level of the

RBBP6 gene using Real-Time qRT-PCR. The expression level of RBBP6 in

the parental cell line NIH 3T3 and the housekeeping gene gapdh were used

as controls.
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Furthermore Real-Time qRT-PCR was used to determine RBBP6 expression following 

transient transfection of the parental NIH 3T3 cell line with the siRNA constructs. The 

results showed an average reduction in RBBP6 expression of 63.5 %. Also a slightly 

higher reduction in RBBP6 expression was observed resulting from the DWNN-A 

oligonucleotide. 

 

The RU6A and GU6B siRNA constructs were also used to establish stable cell lines. The 

intensity in fluorescence in the stable cell lines were significantly reduced compared to 

the parental cell line following immune fluorescence staining for the DWNN domain. 

This observation was confirmed with Real-Time qRT-PCR data with the reduction of 

RBBP6 expression calculated at an average of 90 % in the stable siRNA expressing cell 

lines. The DWNN-A oligonucleotide also resulted in a higher silencing potency as earlier 

observed in the transient transfection experiments.  From these results it can thus be 

concluded that the expression of the targeted gene RBBP6 was successfully reduced 

using the RNAi technology. 

 

 

 

 

 



Figure 5.10 The level of expression of the RBBP6 gene.

The Real-Time qRT-PCR data (see figure 5.9) was analyzed and presented

as a bar graph showing the relative expression level of the RBBP6 gene in

the different cell lines. The graph compares the expression level of the

RBBP6 gene in the parental NIH 3T3 cell line to that of the parental cell line

transiently transfected with RU6A to the expression of RBBP6 in the stable

cell lines RU6A and GU6B. Data are presented as the mean ± SD as

independent repeats of the experiment.

 

 

 

 



CHAPTER 6: THE EFFECT OF RBBP6 SILENCING ON APOPTOSIS 

 

6.1 INTRODUCTION 

6.2       DETERMINING THE OPTIMUM CONCENTRATION OF CAMPTOTHECIN 

   7.2.1  The Annexin V-PE assay 

     6.3      THE EFFECT OF DWNN SILENCING ON APOPTOSIS 

   6.3.1  The Annexin V-PE assay 

    6.3.2  The APOPercentage™ assay 

    6.3.3   Complementing stable cell lines with a full-length Rbbp6 cDNA 

6.4 OVER-EXPRESSING THE RBBP6 PROTEIN AND THE EFFECT ON APOPTOSIS 

              6.4.1 The effect of increased concentration of the RBBP6 on apoptosis 

 

6.5 THE EFFECT ON P53 EXPRESSION- 

6.6 INVESTIGATION OF THE RBBP6 APOPTOTIC PATHWAY 

    6.7     SUMMARY 

 

 

 

 

 



 167 

CHAPTER 6: THE EFFECT OF RBBP6 SILENCING ON APOPTOSIS 

 

6.1 Introduction 

 

Apoptosis is a normal physiological process, which occurs during embryonic 

development as well as in maintenance of tissue homeostasis. Certain morphological 

features characterize the apoptosis program. This includes loss of plasma membrane 

asymmetry and attachment, condensation of the cytoplasm and nucleus and inter-

nucleosomal cleavage of DNA (Casciola-Rosen et al., 1996). 

 

Apoptosis can be induced by a number of stimuli. Inducers of apoptosis include 

physiological factors such as the Fas-ligand, neurotransmitters, growth factor withdrawal, 

loss of matrix attachment, damage related inducers such as heat shock, viral infection, 

bacterial toxins, therapy-associated agents such as cisplatin, vincristine, bleomycin, 

doxorubixin, staurosporine and toxins such as ethanol (Thompson, 1995). 

 

Camptothecin is described in the literature as a chemical compound that will induce 

apoptosis in cultured cells.  Camptothecin, a compound isolated from the plant 

Camptotheca acuminata, has shown significant activity against a broad range of tumours 

(Liu et al., 2000). The anti-tumour activity of camptothecin can be attributed to its ability 

to bind the enzyme DNA topoisomerase I. DNA topoisomerase I catalyses the relaxation 

of super coiled DNA through the cleavage of double stranded DNA and the formation of 

a phosphotyrosyl bond between the cleaved DNA and the active site tyrosine of the 
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Figure 6.1a LDH release assay of the three hygromycin B/CTL

resistant clones 16(3 xHA8)3.5hr, 8(3 x HA8)3.5hr and 7(3 x HA8)3.5hr

compared to the Y10 parental cell line, on exposure to the HA-specific

Kk restricted CTL clones HA8 and HA11 (George, 1995).

Figure 6.1b LDH release assay of the hygromycin B/CTL resistant

clones Mut16(3 xHA8)3.5hr compared to the Y10 parental cell line Y10

on exposure to different concentrations of staurosporine.(Pretorius,

2000).
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enzyme (Fiorani and Bjornsti, 2000). The activity of topoisomerase I is inhibited by 

camptothecin by blocking the re-ligation of the DNA strands after cleavage. 

Camptothecin reversibly stabilizes the covalent topoisomerase I/DNA complexes and 

advancing replication forks during the S-phase of the cell cycle contributing to the 

toxicity of camptothecin by increasing DNA damage, which activates stress-associated 

signaling pathways that may ultimately induce apoptosis. 

 

DWNN/RBBP6/P2P-R gene was isolated in a genetic screen aimed at identifying novel 

components of the MHC class I antigen processing and presentation pathways (George, 

1995). Several mutant cell lines were generated using a promoter trap mutagenesis 

strategy in the genetic screen. The mutant cell lines were analyzed for sensitivity to the 

CTL specific clones HA8 and HA11 using the lactate dehydrogenase (LDH) release 

assay (George, 1995). Of these cell lines analyzed three showed 100 % resistance to 

killing by the CTL specific clones, HA8 and HA11 (see figure 6.1a). Further analysis 

showed that the Mut 16(3xHA8) 3.5hrs cell line, from which the gene was identified, to 

be resistant to staurosporine-induced apoptosis (Pretorius, 2000) (see figure 6.1b).  

 

P2P-R deficiency, by antisense treatment, restricts cell cycle progression from G1 

through S to mitosis in a microtubule-dependent manner and P2P-R deficiency represses 

UV irradiation-induced apoptosis (Scott and Gao, 2002). Furthermore, Gao and Scott, 

(2002) showed that P2P-R protein over-expression restricts mitotic progression at 

prometaphase and promotes mitotic apoptosis. Over-expression of this potential pro-

apoptotic region in MCF-7 cells promoted camptothecin-induced apoptosis. The potential 
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pro-apoptotic region overlaps with the region of P2P-R that is responsible for p53 and 

single stranded DNA binding (amino acids 1204-1314). (Gao and Scott, 2003).  

 

Recently Li et al., 2007, showed by knocking out the p53-binding domain of the RBBP6 

gene using homologous recombination, that the PACT-p53 interaction plays a critical 

role in embryonic development and tumorigenesis and identify PACT as a member of 

negative regulators of p53. 

 

A range of biochemical assays were used to detect and quantify the induction of 

apoptosis in RU6A and GU6B compared to the normal NIH 3T3 cell line. The activation 

of a particular pathway is dependant on the reagent used to activate apoptosis, its 

concentration and to some extent the cell type. Due to these considerations different 

assays that detect different biochemical changes in cells during apoptosis were used to 

examine the effect of RBBP6 silencing, using RNAi, on apoptosis.  

 

Aims of this chapter: 

-  Investigate the role of RBBP6 in camptothecin –induced apoptosis, using the stable  

   siRNA expressing cell lines RU6A and GU6B. 

-  Investigate the effect on p53 expression following the induction of apoptosis. 

-  Investigate the possible route of apoptosis as mediated by the RBBP6 gene. 
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6.2 Determining the optimum concentration of camptothecin 

6.2.1 The Annexin V-PE assay 

 

This section will deal with determining the optimum concentration of camptothecin 

needed to cause maximum cell death in the parental NIH 3T3 cell line using the Annexin 

V-PE assay. 

 

Loss of plasma membrane asymmetry is one of the earliest features characterizing 

apoptosis. In the apoptotic cells, the membrane phosholipid phosphatidylserine (PS) is 

translocated from the inner to the outer leaflet of the plasma membrane, thereby exposing 

PS to the external cellular environment. Annexin V is a 35-36 kDa Ca2+ dependant 

phospholipid-binding protein that has a high affinity for PS and binds to the cells with 

exposed PS. Since externalization of PS occurs in the earlier stages of apoptosis, Annexin 

V can identify apoptosis at an earlier stage than assays based on nuclear changes such as 

DNA fragmentation. Annexin V-PE staining precedes the loss of membrane integrity, 

which accompanies the latter stages of cell death resulting from either apoptotic or 

necrotic processes. Therefore staining with Annexin V-PE is typically used in 

conjunction with a vital dye such as 7-Amino-actinomycin (7-AAD) to allow the 

identification of early apoptotic cells. 

 

The parental cell line NIH 3T3 was cultured in 6 well plates at a density of 2.4x104 cells 

per well. After culturing the cells for 24 hrs in DMEM as described in section 2.13.3, the 

cells were treated with different concentrations of camptothecin ranging from 0 to 25 
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µg/ml for an additional 24 hrs. Following this induction period cells were harvested and 

assayed using the Annexin V-PE protocol as described in section 2.16.3.  

 

Figure 6.2(i) shows the Annexin V-PE results obtained following the induction of 

apoptosis in the NIH 3T3 cell line with different concentrations of camptothecin after a 

24 hr period. The different quadrants are as follows; UL - necrotic cell population, LL - 

normal cell population, LR - early apoptotic population and UR - late apoptotic 

population. From the results a linear increase in the amount of apoptotic cells in parallel 

with an increase in camptothecin concentration is observed. The combination of the UR 

and LR quadrants showed 73 % of the parental NIH 3T3 cells to be apoptotic at a 

concentration of 25 µg/ml camptothecin after 24 hrs. The results were analyzed and 

presented as a bar graph plotting the mean ± SD (see figure 6.2(ii)). The data were 

analyzed for independent repeats of the experiment. A concentration of 25 µg/ml 

camptothecin induced for 24 hrs was used for all subsequent experiments unless 

otherwise stated. 

 

6.3 The effect of RBBP6 silencing on apoptosis 

6.3.1 Annexin V-PE assay 

 

The stable siRNA expressing cell lines, RU6A and GU6B, were cultured in 6 well plates 

as described in section 2.13.3 alongside the parental cell line NIH 3T3. Following 

incubation the cells were treated with 15, 20 and 25 µg/ml camptothecin respectively for 

24 hrs. Apoptosis was measured using the Annexin V-PE assay as described in section 
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Figure 6.2(i) Apoptosis analysis of the parental NIH 3T3 cell line 

using the Annexin V-PE assay following treatment with 

camptothecin.

The NIH 3T3 cell line was treated with increasing concentrations of

camptothecin ranging from 0 to 25 µg/ml for 24 hours and the percentage

apoptosis determined using the Annexin V-PE assay on a FACS

instrument.

UL - Necrotic cell population

LL - Normal cell population

LR - Early apoptotic population

UR - Late apoptotic population
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2.16.3 Quadrant statistics were performed on the results and presented as a bar graph (see 

figure 6.2(iii). Figure 6.2(iii-a) compares the results obtained for the parental cell line to 

that for RU6A. From the results less than 5 % of the RU6A cell population were 

apoptotic compared to 73 % of the parental cell line at any given concentration of 

camptothecin. Figure 6.2(iii-b) compares the results obtained for the parental cell line to 

that for GU6B. The results indicates an apoptotic population of less than 10 % for the 

GU6B cell line compared to the 73 % of the parental cell line at any given concentration 

of camptothecin. Both RU6A and GU6B showed a significantly lower percentage of 

apoptotic cells when compared to the parental cell line. These results clearly indicate that 

the silencing of RBBP6 leads to cells becoming resistant to apoptosis as induced by 

camptothecin and complements the observation made by Gao and Scott, 2003, that over-

expressing a pro-apoptotic region in P2P-R promotes camptothecin-induced apoptosis. 

 

6.3.2 APOPercentageTM assay 

 

This assay works by the accumulation of the APOPercentageTM dye within all cells that 

are at the mid-phase stage of apoptosis. This stage corresponds with the translocation of 

phosphatidylserine to the outer surface of the cell membrane (Fadok et al., 1992). In 

other words, all cells undergoing ‘mid-phase apoptosis’ will be stained fluorescent pink 

with the APOPercentageTM dye and the percentage of apoptotic cells measured by FACS 

analysis. 

 

 

 

 

 



Figure 6.2(ii) Flow cytometric data for the NIH 3T3 cell line following

the induction of apoptosis.

The FACS data (see figure 6.2(i) was analyzed and plotted as the mean ± SD

presenting the percentage cell death versus the camptothecin concentration

for the different stages of apoptosis as measured by the Annexin V-PE assay.

The data were analyzed for independent repeats of the experiment.
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NIH 3T3 and the siRNA expressing stable cell lines were propagated in six well plates as 

described in section 2.13.3 and treated with 25 µg/ml camptothecin for 24 hours. In order 

to measure the occurrence of apoptosis the APOPercentageTM assay was used as 

described in section 2.16.2.  

 

Figure 6.3(A) compares the results obtained for the NIH 3T3 cell line with that obtained 

for RU6A and GU6B using the APOPercentageTM assay and 6.3(B) the results analyzed 

and presented as a bar graph. From figure 6.3(A-ii) 37 % of the parental cell line are 

undergoing apoptosis compared to 5 % RU6A (figure 6.3A-iii) and 8 % in GU6A (figure 

6.3A-v) respectively. Although the stable siRNA expressing cell lines appear to be more 

resistant, there is however a small difference noted in the results obtained using the 

Annexin V-PE assay with those obtained using the APOPercentageTM assay. Both assays 

measure apoptosis but at a different stage of the process and this can be considered a 

contributing factor to the difference noted in the results. Notwithstanding this difference, 

the results showed a 5-7 fold decrease in sensitivity to apoptosis in GU6B and RU6A 

respectively.   

 

6.3.3 Complementing stable cell lines with a full-length RBBP6 cDNA 

 

To investigate the role of RBBP6 in apoptosis further, a full-length cDNA (DWNN-200, 

supplied by Dr A Skepu) was transfected back into stable cell lines. The equivalent of 1 

µg representing the cDNA construct was transfected back into RU6A and GU6B using 

Metafectene™ as described in section 2.14.1. The expression level of the RBBP6 protein 
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Figure 6.2(iii) Flow cytometric data for the NIH 3T3, RU6A and GU6B

cell lines following the induction of apoptosis.

The NIH 3T3, RU6A and GU6B cell lines were treated with camptothecin

ranging from 15 to 25  µg/ml. Apoptosis was measured using the Annexin

V-PE assay on a FACS instrument. The FACS data was analyzed and

plotted as the mean ± SD presenting the percentage cell death versus  the

camptothecin concentration for the different stages of apoptosis. The data

were analyzed for independent repeats of the experiment.

(a) Compares the results obtained for the NIH 3T3 cell line

(Panel A) to the results obtained for RU6A (Panel B).

(b) Compares the results obtained for the NIH 3T3 cell line

(Panel A) to that obtained for GU6B (Panel B).
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in RU6A and GU6B, following transfection, was measured using Real-Time qRT-PCR 

and compared to the expression level of the protein in the “knock down” cell lines as well 

as in the parental cell line (data not shown). The cDNA complemented cell lines were 

treated with 25 µg/ml camptothecin for 24 hrs and apoptosis measured using the 

APOPercentage™ assay as described in section 2.16.2.  

 

Figure 6.3(A) shows the APOPercentage™ assay results obtained for RU6A and GU6B 

complemented with the full-length RBBP6 cDNA following camptothecin-induced 

apoptosis and 6.3(B) the data presented as a bar graph plotting the mean ± SD. The data 

were analyzed for independent repeats of the experiment. From figure 6.3A-iv RU6A 

sensitivity to apoptosis was restored to the same level as that measured in the parental 

cell line following transfection of the full-length cDNA. However, the GU6B (see figure 

6.3A-vi) cell line showed an apoptotic population of 51 % a 1.4 fold increase compared 

to the parental cell line. From the results it appears that following transfection of the full-

length RBBP6 cDNA construct, the parental NIH 3T3 phenotype (sensitivity to 

camptothecin) is rescued in the RBBP6 negative cell lines, RU6A and GU6B. 

 

6.4 Over-expressing the RBBP6 protein and the effect on Apoptosis 

 

Gao and Scott (2003) showed that in over-expressing a putative pro-apoptotic region of 

P2P-R in human MCF-7 cells, camptothecin-induced apoptosis were promoted.  
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Figure 6.3 APOPercentageTM assay demonstrating the percentage cell

death in different cell lines following camptothecin-induced

apoptosis.

The cell lines were treated with 25 µg/ml camptothecin (cpt) for 24 hours and

the percentage apoptosis measured using the APOPercentageTM assay on a

FACS instrument.

Panel A(i) NIH 3T3 (untreated)

             (ii) NIH 3T3 (cpt treated)

             (iii) RU6A (cpt treated)

             (iv) RU6A complimented with RBBP6 cDNA (cpt treated)

              (v) GU6B (cpt treated)

             (vi) GU6B complimented with RBBP6 cDNA (cpt treated)

Panel B The analyzed FACS data presented as a bar graph as the mean

± SD. The data were analyzed for independent repeats of the

experiment.
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This section will look at the over-expression of the full-length DWNN-200 protein in 

NIH 3T3 cells and the effect it has on apoptosis induced by camptothecin. NIH 3T3 cells 

were cultured in 6 well plates as described in section 2.13.3. Cell were transfected with 1 

µg of the DWNN-200 cDNA construct using the Metafectene™ reagent as described in 

section 2.14.1. The expression level of RBBP6 was calculated at 50 % more in the 

RBBP6 cDNA transfected NIH 3T3 cell line compared to the un-transfected one as 

measured using Real-Time qRT-PCR (data not shown). 

 

Apoptosis was induced 48 hrs post-transfection with 25 µg/ml of camptothecin. Cells 

were harvested after 48 hrs to ensure that cells undergoing apoptosis were in the late 

stage and evaluated for apoptosis using the APO-Direct/TUNEL assay as described in 

section 2.16.4. Extensive DNA degradation is a characteristic event, which occurs in the 

late stages of apoptosis. Cleavage of the DNA may yield double-stranded, low molecular 

weight DNA fragments (mono- and oligonucleosomes) as well as single strand breaks 

(“nicks”) in high molecular weight DNA. These DNA strand breaks can be detected by 

enzymatic labeling of the free 3’-OH termini with modified nucleotides (X-dUTP, X = 

biotin, DIG or fluorescein). Suitable labeling enzymes include DNA polymerase (nick 

translation) and terminal deoxynucleotidyl transferase (end labeling) which are utilized 

by the TUNEL assay or alternatively known as TdT-mediated X-dUTP nick end labeling 

(Heatwole, 1999). 

 

Figure 6.4(A) shows the TUNEL results obtained for the NIH 3T3 cell line following the 

induction of apoptosis using camptothecin and 6.4(B) the results analyzed and presented 
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Figure 6.4 TUNEL assay measuring apoptosis in the NIH 3T3 cell line

NIH 3T3 cells were complimented with the full-length RBBP6 cDNA

construct followed by treatment with 25 µg/ml camptothecin for 48 hrs.

Apoptosis were measured before and after the transfection of the RBBP6

cDNA using the TUNEL assay on a FACS instrument.

Panel A(i)  NIH 3T3 cells (untreated)

             (ii) NIH 3T3 cells (treated)

            (iii) NIH 3T3 complimented with cDNA (untreated)

            (iv) NIH 3T3 complimented with cDNA (treated)

Panel B The analyzed FACS data presented as a bar graph as the 

mean ± SD. The data were analyzed for independent repeats of

the experiment.
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as a bar graph. From figure 6.4(Ai-ii) the NIH 3T3 cell line show an apoptotic population 

of 24 % following induction of apoptosis compared to 2 % in the un-induced cell 

population. 

 

Figure 6.4 (Aiii-iv) compares the NIH 3T3 cell transfected with the full-length cDNA 

(un-induced) to that transfected with the full-length cDNA followed by treatment with 

camptothecin. Experiment 6.4(Ai) served as control to compensate for the effect over-

expression alone might have on the NIH 3T3 cells. From the data it is clear that the effect 

of over-expression was negligible. In the NIH 3T3 cells over-expressing the RBBP6 

protein followed by treatment with camptothecin the apoptotic population doubled (44.56 

% compared to 23.62 %). These results indicate that over-expression of the RBBP6 

protein promotes apoptosis in the NIH 3T3 cell line following treatment with 

camptothecin. 

 

6.4.1 The effect of increased concentration of RBBP6 on Apoptosis 

 

Previously 1 µg of the full-length RBBP6 cDNA was transfected into NIH 3T3 cells and 

the cells treated with camptothecin. Using the TUNEL assay the amount of apoptosis was 

measured. This section will examine the effect on apoptosis as the concentration of the 

full-length RBBP6 cDNA is increased in NIH 3T3 cells.  

 

NIH 3T3 cells were cultured in 6 well plates till 70 % confluent as described in section 

2.13.3. Different concentrations of the cDNA was transfected using Metafectene™ as 
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Figure 6.5 APOPercentageTM assay demonstrating the percentage cell

death in the NIH 3T3 cell line.

The NIH cell line were transfected with the RBBP6 cDNA with concentrations

ranging from 0.5 to 3.0 µg/ml. The transfected cells were treated with 25 µg/ml

camptothecin for 24 hours and the percentage apoptosis measured using the

APOPercentageTM assay on a FACS instrument.

Panel A(i)  NIH 3T3  un-transfected

             (ii)  NIH 3T3 - 0.5 µg/ml

            (iii)  NIH 3T3 - 1.0 µg/ml

            (iv)  NIH 3T3 - 2.0 µg/ml

             (v)  NIH 3T3 - 3.0 µg/ml

 Panel B The analyzed FACS data presented as a bar graph as the mean ±

SD. The data were analyzed for independent repeats of the 

experiment.
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described in section 2.14.1. Following transfection of the cDNA construct, cells were 

treated with camptothecin for 24 hrs. The apoptotic population was measured using the 

Annexin V-PE assay as described in section 2.16.3. This assay was used to clearly 

distinguish between an apoptotic and a necrotic population.  

 

Figure 6.5(A) shows the Annexin V-PE (necrotic population excluded so that only true 

apoptotic cells are measured) results for the NIH 3T3 cell line transfected with increased 

concentrations of the full-length RBBP6 cDNA and treated with camptothecin and 6.5(B) 

the results analyzed and presented as a bar graph plotting the mean ± SD. The data were 

analyzed for independent repeats of the experiment. From the results there is a linear 

increase in the apoptotic population in parallel with an increase in the RBBP6 protein 

expression. The necrotic cell population remained the same (data not shown). Thus there 

seems to be no toxic effect on the NIH 3T3 cells resulting from the over-expression of the 

RBBP6 protein. 

 

6.5 The effect on p53 expression 

 

Many forms of apoptosis are mediated by p53 dependant mechanisms (Haupt et al., 1997, 

Moll and Zaika, 2001). Mechanisms that can also be directly influenced by the action of 

Rb1 (Bates and Vousden, 1999). Gao and Scott (2002) showed that apoptosis mediated 

through P2P-R was independent of both p53 and Rb as Soas2 cells lack p53 and 

functional Rb1. However Li et al. (2007) showed that knockdown of endogenous PACT 
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using homologous recombination resulted in p53 accumulation in vivo and induced 

apoptosis and cell cycle growth retardation in a p53 dependant manner. 

 

This section will aim to evaluate the effect on p53 expression in the RBBP6 negative cell 

line, RU6A and the parental cell line, NIH 3T3 on various levels. Firstly, p53 expression 

in the un-induced wild type NIH 3T3 cells will be compared to the same line following 

induction of apoptosis via camptothecin. These experiments in turn will be compared to 

p53 expression in the NIH 3T3 cell line over-expressing the RBBP6 protein. Secondly, 

p53 expression will be evaluated in the RU6A cell line before and after camptothecin-

induced apoptosis. 

 

All cell lines in this section were cultured in DMEM as described in section 2.13.3. Cells 

were plated in duplicate in 6 well plates, one set of cells were left untreated and served as 

control whilst the second set of cells, were treated with 25 µg/ml camptothecin for 24 hrs. 

Total RNA was isolated from all the cells using the TRIzol method as described in 

section 2.19 and cDNA synthesized as described in section 2.20. The synthesized cDNAs 

were standardized and subjected to Real-Time qRT-PCR analysis as described in section 

2.21. Mouse p53 specific oligonucleotides were used (see table 6.1 for sequences) and the 

gapdh housekeeping gene used as reference gene to quantify the relative p53 expression.  

 

Figure 6.6(A) shows the Real-Time qRT-PCR data obtained for the expression of p53 

with the CP values given for each reaction. The Real-Time PCR efficiencies (E) were 

calculated from the resulting slopes provided by the Real-Time Quantitative PCR 

 

 

 

 



3T3 p53                        33.62 
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3T3                        35.90
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Figure 6.6 Expression analysis of the  p53 gene using Real-Time

qRT-PCR.

The NIH 3T3 cell line was transfected with the full-length RBBP6 cDNA.

Following transfection the cell line were treated with 25 µg/ml

camptothecin for 24 hrs. The expression level of p53 was determined in

the cDNA complimented cell line and compared to the expression of p53

in the un-induced as well as the camptothecin- induced NIH 3T3 cell line.

Furthermore the expression level of p53 was also determined in the

RU6A cell line before and after camptothecin-induced apoptosis.

)a) Represents the Real-Time qRT-PCR data using a

LightCycler instrument.

(b) The analyzed FACS data presented as a bar graph as the

mean ± SD. The data were analyzed for independent

repeats of the experiment.
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software and was calculated according to the equation formulated by Pfaffl (2001) as 

described in section 2.22. The gapdh standard curve was used to calculate the relative 

expression level of p53 and the data represented as the mean ± SD in figure 6.6(B).  

 

From figure 6.6(B) no differences were observed in the expression of p53 in the NIH 3T3 

cell line before and after camptothecin-induced apoptosis. Similarly no difference was 

observed in p53 expression in the NIH 3T3 cell line following transfection of the full-

length RBBP6 cDNA and subsequent induction of apoptosis. The results suggest that 

camptothecin-induced apoptosis in the NIH 3T3 cell line are independent of observable 

changes in p53 expression. 

 

However, the results for RU6A are different compared to those observed for the parental 

NIH 3T3 cells. In the RU6A cell line (data not shown in figure 6.6(A) the expression of 

p53 is higher than that observed for the parental NIH 3T3 cell line. There is an 

approximate 2-fold higher p53 expression in the RU6A cell line compared to the NIH 

3T3 cell line. Following the induction of apoptosis however, there is a decrease in the 

expression of p53 in the RU6A cell line of approximately 4-fold.  

 

From the results the following observations can be made. Firstly, there are no change in 

the expression of p53 in the NIH 3T3 cell line expressing endogenous RBBP6 before and 

after the induction of apoptosis as well as in the NIH 3T3 cell line over-expressing the 

RBBP6 protein treated with camptothecin. Secondly, p53 expression appears to increase 
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in the RBBP6 negative cell line, RU6A and subsequently decreases after treatment with 

camptothecin. 

 

6.6 Investigation of the RBBP6 apoptotic pathway 

 

Apoptosis is signalled via three major biochemical routes in mammalian cells. In the 

study by Gao and Scott, 2002, they showed P2P-R localization to the mitochondria 

indicating a possible intrinsic mechanism. The intrinsic route responds to most pro-

apoptotic signals, which emanates largely from the mitochondrion. However, they also 

showed localization of P2P-R in apoptotic cell surface blebs, suggesting that P2P-R over-

expression might promote apoptosis by activation of an apoptotic pathway that originates 

from the cell surface.  

 

The Bcl-2 family of proteins regulates apoptosis via the intrinsic pathway. Bcl-2 family 

members are key regulators of apoptosis and are over expressed in many malignancies 

even without the presence of the tumour (Reed, 1997). The Bcl-2 family includes pro-

apoptotic members such as Bax, and anti-apoptotic members such Bcl-2. 

 

Anti-apoptotic Bcl-2 members act as repressors of apoptosis by blocking the release of 

cytochrome-c, whereas pro-apoptotic members act as promoters. These effects are more 

dependent on the balance between Bcl-2 and Bax than on Bcl-2 quantity alone (Reed, 

1997). This section will investigate a possible intrinsic route of apoptosis mediated by 

RBBP6 by looking at the expression of Bcl-2 and Bax in the NIH 3T3 cell line and 
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compare it to expression of Bcl-2 and Bax in the RU6A cell line. 

 

The NIH 3T3 and RU6A cell lines were cultured in DMEM as described in section 

2.13.3. Cells were plated in duplicate with one set of the cells treated with camptothecin 

and the other set left untreated. Total RNA was isolated from all the cells using the 

TRIzol method as described in section 2.19.and cDNA synthesized as described in 

section 2.20. The synthesized cDNA was standardized and analyzed in a qRT-PCR as 

described in section 2.21 using gene specific oligonucleotides against Bax and Bcl-2. The 

Real-Time PCR efficiencies (E) were calculated from the resulting slopes provided by the 

Real-Time Quantitative PCR software and was calculated according to the equation 

formulated by Pfaffl (2001) as described in section 2.22. The gapdh standard curve was 

used to calculate the relative expression level of Bax and Bcl-2 and the data represented 

as the mean ± SD in figure 6.7.  

 

Figure 6.7 compares the relative expression ratio of Bcl-2 in the NIH 3T3 cell line 

compared to the RU6A cell line before and after the induction of apoptosis using 

camptothecin. The expression ratio of Bcl-2 was calculated as 1.0 in the un-treated NIH 

3T3 cell line whilst Bcl-2 expression in the RU6A cell line was 8-fold higher than its 

expression in the parental cell line. 

 

Following camptothecin-induced apoptosis in the NIH 3T3 cell line the relative 

expression of Bcl-2 increased 2-fold compared to its expression in the un-induced NIH 

3T3 control cell line. The expression of Bcl-2 in the RU6A cell line following the 

 

 

 

 



Figure 6.7 Shows the relative expression ratios of the pro-

apoptotic Bax versus the anti-apoptotic Bcl-2 gene.

The relative expression ratios of Bcl-2 and Bax were determined in the

NIH 3T3 and RU6A cell lines before and after treatment with

camptothecin (cpt). The expression of the pro-apoptotic gene Bax and

the anti-apoptotic gene Bcl-2 was determined using Real-Time qRT-

PCR. The data was analyzed and presented as the mean ± SD. The data

were analyzed for independent repeats of the experiment.
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Bax   pro-apoptotic
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induction of apoptosis showed an approximate 1.3-fold increase compared to its 

expression in the untreated RU6A cell line and a 10-fold increase compared to its 

expression in the parental NIH 3T3 cell line. 

 

Figure 6.7 compares the relative expression ratio of Bax in the NIH 3T3 and RU6A cell 

lines before and after the induction of apoptosis. From the results the expression of Bax 

are given as 1.0 in the NIH 3T3 cell line. The expression of Bax in the RU6A cell line 

was calculated at 5-fold higher compared to its expression in the NIH 3T3 cell line.  

 

Following the induction of apoptosis in the NIH 3T3 cell line using camptothecin, Bax 

showed a 1.5-fold increase in expression relative to its expression in the untreated NIH 

3T3 cell line and showed a 2-fold decrease in the RU6A cell line following induction of 

apoptosis compared to its expression in the untreated RU6A cell line. 

 

6.8 Summary 

 

Several lines of evidence implicated RBBP6 in the process of apoptosis. Gao and Scott, 

2003, showed that over-expressing the P2P-R protein promotes apoptosis induced by 

camptothecin whilst Li et al., 2007, showed targeting the PACT protein using 

homologous recombination also promotes apoptosis. This chapter focused on the role of 

the RBBP6 in apoptosis using the RNA interference (RNAi) technique of gene targeting. 

Two cell lines, RU6A and GU6B, were established which stably express siRNA 

oligonucleotides targeting different regions of the RBBP6 gene. 

 

 

 

 



 183 

Primer Sequence Position 

m-p53F 5’ TGA AAC GCC GAC CTA TCC TTA 3’ 829-849 

m-p53R 5’ GGC ACA AAC ACG AAC CTC AA 3’ 901-920 

mGAPDH F 5’ GGT GGC AGA GGC CTT TG 3’ 798-814 

mGAPDH R 5’TGC CGA TTT AGC ATC TCC TT 3’ 847-866 

Bax F 5'GCC CTT TTG CTT CAG GGT TT 3' 139-158 

Bax R 5’ TCC AAT GTC CAG CCC ATG AT 3' 220-240 

Bcl-2 F 5' GACAGAAGATCATGCCGTCC 3' 871-890 

Bcl-2 R 5’ GGTACCAATGGCACTTCAAG 3' 1156-1175 

Table 6.1 List of oligonucleotides used in this chapter. 

 

After determining the optimum concentration of camptothecin needed to induce 100 % 

killing in the parental NIH 3T3 cell line, the stable cell lines RU6A and GU6B were 

treated with the same concentration of camptothecin and different apoptosis assays used 

to determine the extent of induction of cell death. The use of different assay systems 

would allow for the evaluation of apoptosis at different stages of the process.   

 

The Annexin V-PE assay system allow for the evaluation of cells in early apoptosis as 

well as to discriminate between cells undergoing necrosis from those undergoing 

apoptosis. From the results obtained both stable cell lines were significantly more 

resistant to apoptosis induced by camptothecin, with the RU6A cell line being more 

resistant than the GU6B cell line.  At a concentration of 25 µg/ml camptothecin over a 24 
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hr period of induction, 73 % of the parental cells were in the early stage of apoptosis 

compared to 1 % of the RU6A cell population and 5 % of the GU6 cell population. 

 

The APOPercentage™ assay was used to assay apoptosis at the mid-phase stage of 

apoptosis. The results obtained using this assay confirm those observed with the Annexin 

V-PE assay. The stable cell lines were resistant to camptothecin-induced apoptosis 

compared to the NIH 3T3 cell line. The APOPercentage™ assay showed 5 % of the 

RU6A and 8 % of the GU6B cell populations to be apoptotic. However, the percentage 

apoptosis measured in the un-induced NIH 3T3 cell population using the Annexin V-PE 

assay was higher than the percentage apoptosis measured in the same cell line using the 

APOPercentage™ assay. This difference can possibly be explained by the fact that both 

assays look at different stages of the apoptosis process. Notwithstanding this difference, 

the stable siRNA expressing cell lines showed significant resistance to apoptosis induced 

by camptothecin and it can thus be concluded that targeting the expression of RBBP6 in 

vivo, causes cells to become resistant to apoptosis placing the RBBP6 gene in the 

category of pro-apoptotic genes. 

 

To further examine the role of RBBP6 in apoptosis, the stable cell lines were 

complemented with a full-length cDNA corresponding to the complete protein, DWNN-

200, followed by treatment with camptothecin. Following transfection of the full-length 

cDNA DWNN-200 into the RU6A cell line, sensitivity to camptothecin was restored to 

the same level as that observed in the parental cell line NIH 3T3. However, the GU6B 

cell line showed an apoptotic population higher than the NIH 3T3 cell line following the 
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transfection of DWNN-200. From the qRT-PCR data, silencing of the RBBP6 gene, 

using the DWNN-A siRNA oligonucleotide compared to the DWNN-B siRNA 

oligonucleotide, was more effective and showed that this difference lends support to the 

observations made by Holen et al., 2002, who showed that targeting different regions of a 

given mRNA gave different results. They carried out limited tiling of different siRNA 

across a region of the human coagulation trigger factor gene (TF) shifting the siRNA 

target site by only three nucleotides at a time resulted in different degrees of silencing. 

 

Next the effect of over-expressing DWNN-200 on apoptosis was evaluated. The DWNN-

200 cDNA was transfected into the NIH 3T3 cell line and subsequently treated with 

camptothecin. Utilizing the TUNEL apoptosis assay, the results showed a two-fold 

increase in the NIH 3T3 cell population (45 %) following transfection of DWNN-200 

compared to the NIH 3T3 cells (23,62 %) expressing endogenous RBBP6. The NIH 3T3 

cell line transfected with DWNN-200 without camptothecin treatment showed an 

apoptotic population of only 2 %, suggesting that the RBBP6 protein alone does not have 

any apoptotic effect on the NIH 3T3 cells. The results clearly implicate and strengthen 

RBBP6 involvement in camptothecin-induced apoptosis. Furthermore the NIH 3T3 cell 

line were transfected with increasing concentrations of the DWNN-200 cDNA construct. 

The cells showed a linear increase in the apoptotic population with an increase in the 

cDNA concentration. It was concluded from this study that over-expression of the 

RBBP6 protein had no toxic effect on the cell. 
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The study by Gao and Scott, 2002 that showed P2P-R protein over-expression restricts 

mitotic progression at prometaphase and promotes mitotic apoptosis, was done using 

Saos2 cells lacking p53 and a functional Rb1. They concluded that apoptosis induced by 

camptothecin was independent of p53. Li et al., 2007, however, shown that the targeting 

of PACT leads to increased apoptosis in a p53 dependant manner. In this chapter the 

expression of p53 was measured in the parental cell line NIH 3T3 and compared to the 

expression of p53 following camptothecin-induced apoptosis in the same cell line. Since 

the RU6A cell lines showed a higher resistance to apoptosis, both the p53 and Bax/Bcl-2 

experiments were only carried out using this cell line. The results showed no change in 

expression of p53 using Real-Time qRT-PCR analysis. In addition the NIH 3T3 cell line 

were transfected with the DWNN-200 cDNA constructs and apoptosis was induced. The 

results were similar than observed before, no measurable differences were observed in 

the expression of p53. However, in the RU6A cell line, the expression of p53 was slightly 

higher than its expression in the NIH 3T3 cell line treated with camptothecin, whilst the 

expression of p53 decreased in the RU6A cell line following camptothecin-induced 

apoptosis.  

 

This chapter also dealt with the possible route of apoptosis that RBBP6 might be 

involved in by looking at the expression of Bcl-2 and Bax. The anti-apoptotic gene Bcl-2 

and the pro-apoptotic gene Bax had been implicated in the intrinsic route of apoptosis.  In 

this study the expression of both genes were studied before and after the induction of 

apoptosis in the NIH 3T3 cell line and compared to the their expression in the RU6A cell 

line.  

 

 

 

 



 187 

In the NIH 3T3 cell line before induction of apoptosis the expression of both genes were 

at what can be considered basal level. As proposed by the “rheostat” model, (Kroemer, 

1997) the relative ratio of expression between Bax and Bcl-2 regulates apoptosis. From 

the results the ratio of Bcl-2/bax in the NIH 3T3 cell following induction of apoptosis 

showed a slightly higher expression of Bcl-2 than Bax. The RU6A cell line showed an 

approximate 5 fold higher expression level of Bcl-2 compared to Bax following 

camptothecin-induced apoptosis keeping in mind that the RU6A cell were almost 

completely resistant to apoptosis. The ratio of Bcl-2/bax in the untreated NIH 3T3 cell 

line were also similar  (1:1) whilst in the untreated RU6A cell line the expression of Bcl-

2 was higher than Bax yet not at the same level as observed in the cell line following 

induction of apoptosis. Although the results do not clearly implicate RBBP6 in the 

intrinsic route of apoptosis it strongly suggests a role for Bcl-2 and Bax in apoptosis in 

conjunction with RBBP6.  Li et al., 2007, showed the transcription levels of p21 and Bax 

increased in the PACT -/- embryos and concluded that PACT can inhibit the expression 

of p53 and thus the expression of p53 target genes. 

 

 

 

 

 



CHAPTER 7:  THE EFFECT OF SILENCING OF THE RBBP6 GENE ON 

THE CELL CYCLE. 

 

7.1 INTRODUCTION 

7.2 CELL CYCLE ANALYSIS OF RU6A AND GU6B 

7.3 THE EFFECT OF APOPTOSIS ON THE CELL CYCLE 

7.4 SUMMARY 

 

 

 

 

 



 188 

CHAPTER 7: THE EFFECT OF SILENCING OF THE RBBP6 GENE ON THE 

CELL CYCLE 

 

7.1 Introduction 

 

The objective of the cell cycle in most cases is to produce two daughter cells that are 

accurate copies of the parent. The cell cycle integrates a continuous growth cycle, an 

increase in cell mass, with a discontinuous division or chromosome cycle, the replication 

and partitioning of the genome into two daughter cells. Successful cellular replication 

requires the cell to integrate both stages. Not all cells proceed through the stages of the 

cell cycle at the same rate. Embryonic cells divide very rapidly, while mature cells might 

divide rarely, or in response to signals such as wounding, or not at all (Evan and 

Vousden, 2001). 

 

There are four cell cycle phases with the cell starting out at the completion of mitosis (M 

phase) whilst the chromosomal DNA is replicated during the S phase (synthetic phase). 

The remaining phases are gaps between mitosis and the S phase. G1 (first gap phase) is 

the interval between mitosis and DNA replication. The G2 phase (second gap phase) is 

the interval between the completion of DNA replication and mitosis. Transitions out of 

gap phases (G1, G2) are regulated by cyclins and cyclin dependent kinases (CDKs) 

Cyclins are only present at certain times during the cell cycle. MPF (Maturation 

Promoting Factor) includes the CDK and cyclins that triggers progression through the 

cell cycle (see fig. 7.1). 
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Both p53 and pRb, known regulators of the cell cycle, are regulated by CDKs. pRb is 

subjected to regulation by many factors, including E2F and cyclin D1. The hypo-

phosphorylated pRb, complexes with E2F, which serves as a transcriptional activator of 

cyclin D1 by binding to its promoter. Inactivation of pRb phosphorylation via the cyclin 

D/CDK complex in late G1 would not only release E2F transcription factors, but would 

also decrease cyclin D1 expression (Ekholm and Reed, 2000). Interestingly, E2F release 

from pRb is associated with cell proliferation; however, above a certain threshold E2F 

has the potential to trigger apoptosis (Seville et al., 2005). 

 

 

Figure 7.1 Represents a schematic representation of the cell cycle and proteins that 

regulate the different checkpoints. (www.reactome.org/figures/CellCycle) 

 

The p21WAF/CIP1 protein is a cyclin dependant kinase inhibitor that associates with a class 

of CDKs and inhibits their kinase activities leading to cell cycle arrest and the 
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dephosphorylation of pRb. Furthermore the p21WAF/CIP1 protein is a p53 inducible protein 

that inactivates the cyclin CDK complexes, blocking the cell cycle progression in the G1-

S transition and is also highly expressed in cells undergoing either G1 arrest or apoptosis 

by either p53-dependent or p53-independent mechanisms (el-Deiry et al., 1994, Michieli 

et al., 1994). 

 

p53 acts as a tumour suppressor gene and control entry into the S phase of the cell cycle 

and plays many important roles in cell proliferation. Mutations of the p53 gene inactivate 

its suppressor activity and its role in tumour progression (Oka et al., 2000). The p53 

tumour suppressor gene encodes a transcriptional factor central in the regulation of cell 

growth, DNA repair and apoptosis induction. Its activity requires the induction of several 

target genes, including MDM2 and p21WAF1 (Trocone et al., 1998). 

 

p53 (Simons et al., 1995) and Rb (Sakai et al., 1995) have both been shown to bind to 

mammalian RBBP6, suggesting a possible role for RBBP6 in the regulation of these two 

proteins similar to that played by MDM2 (Hsieh et al., 1999), and thus it is possible to 

propose a model for the integration of the regulation of transcription, cell cycle control 

and apoptosis. Given the fact that the DWNN domain can be independently expressed in 

vertebrates, an interesting possibility is that the function of RBBP6 is to DWNNylate 

other proteins like p53 and Rb in a fashion similar to ubiquitin and ubiquitin-like 

proteins. 
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Several studies have implicated RBBP6 involvement in the cell cycle. Gao and Scott, 

2002, showed that P2P-R over-expression promotes both prometaphase arrest in mitosis 

and mitotic apoptosis. In their study mitotic cells showed a tenfold increase in 

immunoreactive P2P-R protein. During mitosis, the distribution of P2P-R protein also 

changed from a primary nucleolar localization in interphase cells to the periphery of 

chromosomes in mitotic cells (Gao et al., 2002). These findings suggest that P2P-R might 

serve a functional role in mitosis. 

 

Furthermore, P2P-R deficiency, using anti-sense technology, restricts cell cycle 

progression from G1 through S to mitosis in a microtubule-dependent manner and 

represses UV irradiation-induced apoptosis (Scott and Gao, 2002). Recently Li et al., 

2007, showed that the growth of the cell line U20S were significantly retarded compared 

H1299, a p53 null cell line, following silencing of PACT using shRNA, suggesting that 

PACT is essential for cell growth in a p53 dependant manner. 

 

Aim of this chapter; 

- To study the effect on the cell cycle following the silencing of the RBBP6 gene in NIH  

  3T3 cells. 

 

7.2  Cell cycle analysis of RU6A and GU6B 

 

Both stable siRNA expressing cell lines, RU6A and GU6B, as well as the parental cell 

line NIH 3T3 were cultured in 6 well plates for 12, 18, 24 and 48 hrs as described in 
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section 2.13.3. At the indicated time points, cells were removed from the wells and 

prepared for cell cycle analysis as described in section 2.17. The cells were analyzed 

using a FACS instrument as described in section 2.15. The data was analyzed with the 

FlowJo v8.5.3 software using the Dean/Jett/Fox statistical program (Tree Star Inc.) and 

represented as the percentage of cells within each phase.  

 

Figure 7.2 shows the FACS results of the cell cycle analysis of the NIH 3T3, RU6A and 

GU6B cell lines at the 12-hour time point. Figure 7.2(a) shows the FACS data and 7.2(b) 

the data analyzed and represented as a bar graph plotting the mean ± SD. From the results 

there are a higher proportion of cells in the G1 phase in the RU6A (81 %) and GU6B (78 

%) cell lines compared to the same phase in the NIH 3T3 (60 %) cell line. There are 

approximately 20 % more cells in the G1 phase for RU6A and GU6B compared to the 

NIH 3T3 cell line. 

 

Figure 7.3 shows the FACS results of the cell cycle analysis of the NIH 3T3, RU6A and 

GU6B cell lines at the 18-hour time point. Figure 7.3(a) shows the FACS data and 7.3(b) 

the data analyzed and represented as a bar graph plotting the mean ± SD. At the 18 hour 

time point the distribution of the NIH 3T3 cells are more or less equal in the G1 and 

G2/M phase with a slightly higher proportion of cells in the G2/M phase and a clearly 

defined S phase. Both RU6A (65 %) and GU6B (49 %) showed a higher proportion of 

the cell population in G1 compared to the NIH 3T3 cells (38 %). However, the proportion 

of cells in the G1 phase, are 16 % lower in the GU6B population compared to RU6A. 
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Figure 7.2 FACS results of the cell cycle analysis of the NIH 3T3, 

RU6Aand GU6B cell lines at the 12 hour time-point.

The NIH 3T3, RU6A  and GU6Bcell lines were cultured and at the 12 hour

time-point the cells were analyzed for the different stages of the cell cycle

using Propidium iodide staining on a FACS instrument.

(a) Shows the cell cycle results of the NIH 3T3 cell line 

compared to RU6A and GU6B.

(b) Represent the analyzed data for the cell cycle results 

 as the mean ± SD. The data were analyzed for independent

repeats of the experiment.
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Figure 7.3 FACS results of the cell cycle analysis of the NIH 3T3, 

RU6Aand GU6B cell lines at the 18 hour time-point.

The NIH 3T3, RU6A  and GU6Bcell lines were cultured and at the 18 hour

time-point the cells were analyzed for the different stages of the cell cycle

using Propidium iodide staining on a FACS instrument.

(a) Shows the cell cycle results of the NIH 3T3 cell line 

compared to RU6A and GU6B

(b) Represent the analyzed data for the cell cycle results 

 as the mean ± SD. The data were analyzed for independent

repeats of the experiment.
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Figure 7.4(a) shows the FACS results of the cell cycle analysis of the NIH 3T3, RU6A 

and GU6B cell lines at the 24 hour point and figure 7.4(b) the analyzed data at the 24 

hour time point presented as bar graph plotting the mean ± SD. The results show that the 

population of cells in G1 are still higher in RU6A (68 %) and GU6B (65 %) compared to 

the NIH 3T3  (45 %) cell population.  Significantly at this time point though, is that G1 

for both RU6A and GU6B are showing an almost equal proportion of cells compared to 

the 16  % difference observed at the 24-hour time point. 

 

At the 48 hr analysis time point (see figure 7.5) the percentage of cells found in G1 for 

RU6A and GU6B is still higher compared to the parental cell line. NIH 3T3. However, 

the distribution of cells in the different phases of the cell cycle appears to be similar for 

RU6A and GU6B.  

 

From the results it is clear that cells deficient in the expression of RBBP6 are restricted at 

the G1 phase of the cell cycle. There also seems to be distinct differences in the 

distribution of the RU6A cell population compared to the GU6B population between G1 

and G2/M at the 18 and 24-hour time points. Generally, more cells seemed to be 

restricted in the G1 phase of the cell cycle for the RU6A cell population. This result is 

consistent with those observed for apoptosis analysis and qRT-PCR, that the silencing 

effect exerted by DWNN-A compared to that exerted by DWNN-B is more potent. 
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Figure 7.4 FACS results of the cell cycle analysis of the NIH 3T3, 

RU6Aand GU6B cell lines at the 24 hour time-point.

The NIH 3T3, RU6A  and GU6Bcell lines were cultured and at the 24 hour

time-point the cells were analyzed for the different stages of the cell cycle

using Propidium iodide staining on a FACS instrument.

(a) Shows the cell cycle results of the NIH 3T3 cell line 

compared to RU6A and GU6B

(b) Represent the analyzed data for the cell cycle results 

 as the mean ± SD. The data were analyzed for independent

repeats of the experiment.
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Figure 7.5 FACS results of the cell cycle analysis of the NIH 3T3, 

RU6Aand GU6B cell lines at the 48 hour time-point.

The NIH 3T3, RU6A  and GU6Bcell lines were cultured and at the 48 hour

time-point the cells were analyzed for the different stages of the cell cycle

using Propidium iodide staining on a FACS instrument.

(a) Shows the cell cycle results of the NIH 3T3 cell line 

compared to RU6A and GU6B

(b) Represent the analyzed data for the cell cycle results 

as the mean ± SD. The data were analyzed for independent 

repeats of the experiment.
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7.2 The effect of apoptosis on the cell cycle 

 

This section will investigate the effect of camptothecin-induced apoptosis on the cell 

cycle. The 24 hour time point will be used, as this period was shown to be optimal for 

maximum apoptosis to occur in the parental cell line as described in section 6.2.  

 

Both the stable siRNA expressing cell lines, RU6A and GU6B, as well as the parental 

cell line NIH 3T3 were cultured in 6 well plates as described in section 2.13.3. The cells 

were treated with 25 µg/ml camptothecin for 24 hours. At the indicated time point, cells 

were removed from the wells and prepared for cell cycle analysis as described in section 

2.17 using the PI solution. The cells were analyzed using FACS analysis as described in 

section 2.15. The collected data was analyzed using the FlowJo v8.5.3 software (Tree 

Star Inc.).   

 

Figure 7.6 shows the FACS result for the NIH 3T3 cell line compared to that for RU6A 

and GU6B before and after the induction of apoptosis. The FACS data was analyzed and 

presented as a bar graph plotting the mean ± SD. From figure 7.6 the parental NIH 3T3 

cell line shows a pronounced sub G1 apoptotic population of approximately 60 %. The 

existence of a clearly defined G1 and G2/M phases are absent with less than 50 % of the 

cells distributed between the phases. Cells exiting the S phase appear to undergo 

apoptosis since there is almost a complete lack of the G2/M phase. 

 

 

 

 

 



Figure. 7.6  Represent the cell cycle results measured on a FACS

instrument following camptothecin-induced apoptosis.

The NIH 3T3, RU6A  and GU6B cell lines were cultured and apoptosis

induced with 25 µg/ml camptothecin and at the 24 hour time point, the

cells were analyzed for the different stages of the cell cycle using the

Propidium iodide solution on a FACS instrument. The data was analyzed

and represented as the mean ± SD. The data were analyzed for

independent repeats of the experiment.
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The GU6B cell line shows an apoptotic population similar to that of the parental cell, yet 

there is a distinguishable G1 and G2/M phase with a higher proportion of cells in the G1 

phase. The RU6A cells, shows a significantly lower apoptotic population with the G1 

phase still showing a higher concentration of cells. A higher proportion of the RU6A cell 

population remains restricted in the G1 phase with fewer cells undergoing apoptosis 

compared to the parental cell line as well as RU6B. These observations are consistent 

with those made in the previous chapter, that RU6A cells are more resistant to apoptosis 

induced by camptothecin than GU6B.  

 

7.3 Summary 

 

In this chapter the effect of RBBP6 silencing on the cell cycle was investigated. The 

stable cell lines RU6A and GU6B as well as the parental cell line NIH 3T3 were cultured 

and at selected time points analyzed for the different phases of the cell cycle. Cells were 

analyzed following Propidium iodide staining on a FACS instrument. 

 

At the 12-hour time point the G1 population in RU6A and GU6B were significantly 

higher than the same population in the NIH 3T3 cells. An approximate difference of 20 % 

was calculated between the RBBP6 negative cell lines and the NIH 3T3 cell line.  At the 

18-hour time point, RU6A and GU6B still had higher proportion of cells in the G1 phase 

compared to the NIH 3T3 cell line, however the G1 phase of RU6A had a 16 % higher 

proportion of cells compared to the same phase in GU6B. However at the 24 and 48-hour 

time points the difference was absent. The G1 population for RU6A and GU6B showed 
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an equal proportion of cells, which is still higher than that for the NIH 3T3 cells. The 

difference between RU6A and GU6B might be contributed to the efficacy of the different 

siRNA oligonucleotides. From chapter 5.3.3 the expression of RBBP6 in the RU6A cell 

line was shown to be lower than its expression in GU6B using qRT-PCR. 

 

The different cell lines were also treated with camptothecin for 24 hours, after which they 

were analyzed for the different phases of the cell cycle. The highest population of 

apoptotic cells was observed in the NIH 3T3 cells. The GU6B cell line showed an 

apoptotic population similar to that of the parental cell line. However, the GU6B cell line 

showed distinct distribution of cells throughout the different phases of the cell cycle with 

a high proportion of cells in G1. The NIH 3T3 cells showed no discernable phases with 

most of the cells in the sub G1 (apoptotic) population. RU6A showed a relatively small 

apoptotic population compared to both NIH 3T3 and GU6B. The G1 phase is still very 

pronounced in this cell line. The results from this chapter shows deficiency in RBBP6 

results in cells being restricted in the G1 phase of the cell cycle and are consistent with 

observations by Gao and Scott, 2002, Li et al., 2007. 
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CHAPTER 8: GENERAL DISCUSSION 

 

8.1 Introduction 

 

An investigation using promoter-trapping technology led to the identification of a novel 

hamster gene homologous to the human cDNA 21c4 (Genbank:T25012) (Frigerio et al., 

1995). This cDNA was completely sequenced and shown to be a 0.9 kb cDNA clone 

encoding a 118 amino acid protein (Rees et al, unpublished). The corresponding gene 

was found to be located on human chromosome 16p12.2, upstream of the previously 

identified RBBP6/PACT/P2P-R gene. Analysis of cDNA sequences showed that the 

sequence coded for the previously unidentified N-terminus of the RBBP6 protein 

(Dlamini et al, in prep), which were named the DWNN domain.  

 

RBBP6 has been shown to suppress the binding of p53 to DNA, (Sakai et al., 1995) and 

to block the binding of the adenovirus E1A protein to Rb (Witte and Scott, 1997, Simons 

et al., 1997) suggesting that the interactions with both tumour suppressor proteins are 

biologically relevant. RBBP6 strongly localizes to chromosomes during mitosis and to 

nuclear speckles, which are believed to be the main sites of activity for pre-mRNA 

splicing and processing, during interphase (Gao et al., 2002, Yoshitake et al., 2004). 

Over-expression of P2P-R has been shown to lead to cell cycle arrest and apoptosis (Gao 

and Scott, 2002, Gao and Scott, 2003). The yeast homologue, Mpe1p, forms part of the 

Yeast Cleavage and Polyadenylation Factor and is essential for the specific cleavage and 

polyadenylation of pre-mRNA (Vo et al., 2001). 
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Yoshitake et al. (2004) reported that RBBP6 is strongly up regulated in oesophageal 

cancer cells, and high levels of expression correlate with higher rates of proliferation in 

cultured oesophageal cancer cell and low survival rates in cancer patients. Cytotoxic T 

cells specific for RBBP6-derived peptides were able to lyse oesophageal cancer cells in 

culture, and to produce regression of oesophageal tumours in mice xenograft models. 

 

Furthermore, since p53 and Rb have both been shown to bind to mammalian RBBP6, it is 

possible that RBBP6 plays a role in the regulation of these two proteins similar to that 

played by MDM2 (Hsieh et al., 1999) suggesting a possible model for the integration of 

the regulation of transcription, cell cycle control and apoptosis. Given the fact that the 

DWNN domain can be independently expressed in vertebrates, an interesting possibility 

is that the function of RBBP6 is to DWNNylate other proteins. 

 

Pugh et al. (2006), using NMR structural analysis showed that DWNN is a novel 

ubiquitin-like domain found only at the N-terminus of the RBBP6 family of splicing-

associated proteins. They proposed that the ubiquitin-like structure of the domain greatly 

increases the likelihood that RBBP6 functions through some form of ubiquitin-like 

modification. Furthermore, the fact that the DWNN domain is independently expressed in 

higher vertebrates implies that the domain may itself function as a novel ubiquitin-like 

modifier of other proteins. 

 

Li et al. (2007), demonstrated that the disruption of PACT in mice leads to early 

embryonic lethality before embryonic day 7.5 (E7.5), accompanied by an accumulation 
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of p53 and widespread apoptosis. This lethality can be partially rescued by p53-null and 

thus prolonged survival to E11.5.  They also showed that endogenous PACT could 

interact with Hdm2 and enhance Hdm2-mediated ubiquitination and degradation of p53 

as a result of the increase of the p53-Hdm2 affinity. Consequently, PACT represses p53-

dependent gene transcription. Knockdown of PACT significantly attenuates the p53-

Hdm2 interaction, reduces p53 poly-ubiquitination, and enhances p53 accumulation, 

leading to both apoptosis and cell growth retardation. Taken together, their data 

demonstrate that the PACT-p53 interaction plays a critical role in embryonic 

development and tumorigenesis and identifies PACT as a member of negative regulators 

of p53. 

 

The aim of this thesis was investigate the effect of RBBP6 silencing on apoptosis and the 

cell cycle using RNAi technology and to better understand the existence of two 

promoters for the RBBP6 gene. 

 
8.2 Expression analysis of the RBBP6 promoters in cell culture (Chapter three) 

 

Genetic analysis of the RBBP6 gene showed the presence of two promoters responsible 

for the expression of the different transcripts of the gene. The promoters were designated 

Promoter 0 (P0) and Promoter P1 (P1). To better understand the existence of two 

promoters for the RBBP6 gene the Enhanced Green Fluorescent Protein (EGFP) and the 

Red Fluorescent Protein (DsRed1) were placed under the transcriptional control of P0 

and P1 respectively. Using a combination of fluorescence microscopy, FACS analysis 

and Real-Time qRT-PCR, the activity of P0 appeared to be higher than that of P1 in the 
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Hek 293T cell line. However, following the induction of apoptosis using camptothecin, 

the transcriptional activity of both promoters increased. The increase in P1 activity was 

marginal compared to the increase in P0 activity. From the results it can thus be 

suggested that the activity of the two promoters can be increased under certain cellular 

conditions.  

 

The presence of two promoters for one gene is not unique. The differential usage of dual 

promoters has been described for several of the Ly-49 genes (Saleh et al., 2002). The 

Ly49A NK cell receptor interacts with MHC class I molecules on target cells and 

negatively regulates NK cell-mediated target cell lysis. The distal promoter of some Ly-

49 genes was shown to have promoter activity in fetal cells and in bone marrow cells, 

possibly linking its usage to the initiation of Ly-49 expression in NK cells (Saleh et al., 

2002). In addition, the mouse NKR-P1C gene has also recently been shown to have a 

novel upstream non-coding exon that is differentially used during NK cell development, 

as well as a DNase I HSS (hypersensitive site) upstream of the gene (Ljutic et al., 2003). 

 

Studies have also indicated that in dual promoter systems the activity of the one promoter 

can control the activity of the other one during preferential promoter usage (Wilhelm et 

al., 2003, Dobbelstein et al., 2005). The p73 protein is one of two homologues of the 

tumour suppressor p53, it is expressed in different isoforms as a result of differential 

promoter usage and alternative splicing (Yang and McKeon, 2000). Like p53, p73 has 

been implicated in apoptosis (Jost et al., 1997). In contrast with p53 however, the p73 

gene has two distinct promoters coding for two protein isoforms with opposite effects. 
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These isoforms contain a transactivation domain at their amino terminal ends and they 

are collectively termed TAp73, while the transactivation proficient TAp73 shows pro-

apoptotic effects, the amino-terminal-deleted DeltaNp73 has an anti-apoptotic function. 

Indeed, the relative expression of these two proteins is related to the prognosis of several 

cancers (Dobbelstein et al., 2005). 

 

TAp73 is able to transactivate its own second promoter, thus inducing the expression of 

the anti-apoptotic DeltaNp73 isoform. Therefore, the balance between TAp73 and 

DeltaNp73 finely regulates cellular sensitivity to death (Dobbelstein et al., 2005). 

 

Thus the presence of two promoters for RBBP6 can possibly be an indication of various 

functions for the gene, with differential usage of its promoters under different cellular 

conditions. 

 

8.3 Interference RNA – Construction of mouse RBBP6 siRNA vectors. (Chapter 

four) 

 

The aim of this chapter was to construct several siRNA vectors to target the DWNN 

gene. The U6 and H1 promoters were used to drive the expression of the silencing 

siRNAs. Both RNA Polymerase III promoters U6 and H1 were PCR amplified and 

cloned into pGEM®–T Easy as well as into pEGFP-C1 and pDsRed-C1. However, the 

multiple cloning site region of pEGFP-C1 and pDsred-C1 was deleted, as its presence 

will interfere with the cloning of the siRNA oligonucleotides downstream of U6 and H1. 
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Two siRNA oligonucleotides were identified with the iRNAi version 1.0 oligonucleotide 

prediction software (http://mekentosj.com/irnai) using the full-length annotated mouse 

RBBP6 nucleotide sequence as input data. Two distinct siRNA oligonucleotides were 

identified targeting different regions of the mouse RBBP6 gene, which were designated 

DWNN-A and DWNN-B respectively. The identified siRNA oligonucleotides were 

subsequently cloned in the different U6 and H1 vectors with sequence analysis revealing 

the correct nucleotide sequences for all the siRNA vectors constructed. 

 

8.4 Interference RNA – Testing the effect of the siRNA constructs on the expression 

of RBBP6 (Chapter five) 

 

In this chapter the effect on RBBP6 expression was investigated following the 

transfection of the previously constructed siRNA vectors. Firstly NIH 3T3 cells were 

transiently transfected with the different siRNA constructs. Fluorescence microscopy and 

Real-Time qRT-PCR were used to evaluate the effect on RBBP6 expression. 

 

From the fluorescence microscopy data differences were observed resulting from the 

effect of the different siRNA constructs. The DWNN-A siRNA appeared to be slightly 

more effective than the DWNN-B siRNA. This observation was consistent with the data 

obtained for Real-Time qRT-PCR. The difference was slight, approximately 3 %, and can 

possibly not be considered significant.  
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It is important to consider that transfection rates in culture vary considerably and can be 

quite low, particularly with primary cells. For example, if the transfection efficiency is 

only 50 %, then the maximum effect one could detect with a highly efficient siRNA 

could be ! 2x. Therefore knowledge about the transformation efficiency of a particular 

cell type is paramount if the data is to be interpretable.  For this reason different 

transfection reagents were tested to achieve the highest efficiency in the NIH 3T3 cell 

line. The Metafectene™ transfection reagent showed the highest efficiency in the NIH 

3T3 cell line using the pEGFP-C1 vector as control. 

 

Another approach to validating the effectiveness of a siRNAs is to quantify the level of 

the target protein. For this reason Real-Time qRT-PCR was used, to determine the level 

of RBBP6 expression. Because siRNAs target mRNAs, and not proteins, the maximal 

effect on the level of protein expression will occur after the preexisting pool of protein 

has undergone its normal decay. Transfection of dividing cells with siRNAs exerts only a 

transient effect, with maximal mRNA knockdown occurring somewhere between days 1-

4 after transfection, depending on the cell type, and then gradually attenuating (Cullen, 

2006). Therefore, long-lived proteins may show only a modest knockdown using 

methods like Western blots even if the RNAi effect at the mRNA level is readily 

detectable. Since the protein turnover of RBBP6 at this point is not known, Real-Time 

qRT-PCR was seen as the most effective method in quantifying the level of knockdown. 

 

Two stable cell lines, 3T3 GU6B and RU6A were also established. Both cell lines 

showed significant decreases in expression of RBBP6 as measured by fluorescence 
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microscopy and Real-Time qRT-PCR. However, a greater decrease was observed in the 

RU6A cell line suggested a more potent silencing effect exerted by the DWNN-A siRNA. 

 

8.5 The effect of RBBP6 silencing on Apoptosis. (Chapter six) 

 

In this chapter the effect of RBBP6 silencing was investigated using the stable cell lines 

RU6A and GU6B. Camptothecin was used to induce apoptosis over a 24-hour period and 

the percentage cell death measured using different assays that evaluate the process at its 

various stages.  

 

Both the Annexin V-PE and APOPercentage™ assays showed that the stable cell lines 

were significantly resistant to apoptosis compared to the parental NIH 3T3 cell line. The 

RU6A cell line showed a slightly higher resistance to apoptosis compared to GU6B and 

this can possibly relate to the difference observed in the silencing potency mediated by 

the different siRNA oligonucleotides. Furthermore, the RBBP6 cDNA construct, 

DWNN-200, was transfected back into the stable cell lines, restoring their sensitivity to 

camptothecin-induced apoptosis. 

 

The DWNN-200 construct was also over-expressed in the NIH 3T3 cell line and this 

caused an increase in apoptosis as assayed with the TUNEL assay. A linear increase in 

the cDNA construct concentration transfected showed an increase in apoptosis in the NIH 

3T3 cell line.  
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Next, the effect on p53 expression was investigated. In the parental NIH 3T3 cell line, no 

effect was observed on p53 expression before and after camptothecin-induced apoptosis. 

This results was also observed following RBBP6 over-expression and induction of 

apoptosis mediated by camptothecin. However, in the RU6A cell line, an increase was 

observed in p53 expression before the induction of apoptosis whilst the expression 

decreased following induction of apoptosis. 

 

Finally, a possible intrinsic route of apoptosis was investigated involving RBBP6 by 

evaluating the expression of Bax (pro-apoptotic)/Bcl-2 (anti-apoptotic). The expression 

ratio of both genes had been implicated in the intrinsic route of apoptosis (Reed, 1997). 

In the resting (un-induced) NIH 3T3 cell line the expression ratio of Bax/Bcl-2 was 

equal. This observation was consistent with the “rheostat” model, that the relative ratio of 

expression between Bcl-2/Bax is responsible for regulation of apoptosis (Kroemer, 1997). 

This ratio however changes following camptothecin-induced apoptosis. In the NIH 3T3 

cell line, following apoptosis, the expression level of Bax is slightly lower than that of 

Bcl-2. In the RU6A cell line the expression of Bcl-2 is much higher than Bax, whereas 

both genes shows an increased expression in the RBBP6 negative line, RU6A, compared 

to the NIH 3T3 cell line. This difference increases further following induction of 

apoptosis. These observations are consistent with the apoptosis resistant phenotype of the 

RU6A cell line. Also the study by Li et al. (2007) showed an increase in Bax expression 

in PACT-/- embryos. 
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How does the current study compare to results observed by other groups? RBBP6 is 

clearly implicated in apoptosis. Gao and Scott, 2003, showed that over-expression of the 

p53-binding domain, promotes camptothecin-induced apoptosis, whilst Li et al., 2007, 

showed by targeting the same domain using homologous recombination that apoptosis is 

promoted. The current study showed targeting RBBP6 using RNAi technology results in 

cells, which show increased resistance to apoptosis induced by camptothecin. 

 

The inconsistencies between the different studies can be a consequence of the different 

methods used to study RBBP6 function. In the Gao and Scott (2003) study the expressed 

protein lacked residues 1 to 199, which includes the DWNN domain (residues 1-118) (see 

figure 1.11). The results observed might be a consequence of the absence of these 

residues, since protein function are dependent on its proper folding of all participating 

domains. The absence of these amino acids could result in improper folding and a 

truncated protein.  

 

Li et al. (2007) targeted exons 12 and 13 of the PACT gene, replacing it with a neomycin 

resistance cassette. Although not indicated by their study, other domains might have 

retained their functionality since null alleles are more likely to be generated by deleting 

or recombining a selection cassette into more 5’ exons rather than exons that encode the 

C-terminus of the protein, since under these circumstances minimal portions of the wild-

type polypeptide would be made. 
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In the current study RNAi was used to target the expression of RBBP6. This method is 

not without its drawbacks. Protein expression is not completely suppressed that it can be 

considered a null mutation. Since the results showed an average “knock-down” of 95 % 

in the stable cell lines, there is still residual protein present in the cell. Thus the results 

from each study should be interpreted on the merits of the different techniques used. 

Notwithstanding these discrepancies the involvement of RBBP6 in apoptosis cannot be 

denied. 

 

What is the possible mechanism of RBBP6 involvement in apoptosis? Many forms of 

apoptosis are mediated by transcription-dependant mechanisms (Haupt et al., 1997, Ding 

et al., 2000). Over-expression of P2P-R promoted mitotic apoptosis (Gao and Scott, 

2002), which had to be independent of transcription because essentially all transcriptional 

activity is suppressed in mitotic cells (Salem et al., 1998). However, p53 and other 

factors might influence mitotic apoptosis by other mechanisms. From the study of Li et 

al., PACT inhibits the transcriptional activity of p53. Knockdown of PACT in U206 cells 

increased p53 transcriptional activity, indicating that endogenous PACT negatively 

regulates p53. Furthermore, a slight increase in p53 expression was observed in PACT-/- 

embryos using RT-PCR, which is consistent with the observation that PACT affects the 

rate and/or stabilizes the p53 protein. A similar increase in p53 expression was observed 

in the current study in the RU6A (RBBP6 negative) cell line. Also an increase in p21 and 

Bax was observed in PACT-/- embryos (Li et al., 2007), demonstrating that PACT can 

inhibit the transcriptional activity of p53 and p53 targeted genes. A similar increase in 

Bax expression was seen in the current study. 
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Which route of apoptosis is possible affected by the activity of RBBP6? Since cellular 

apoptosis seems to ultimately target the mitochondria (Finkel, 2001) the possibility exists 

that the RBBP6 protein might localize in the mitochondria to facilitate apoptosis with the 

association of p53, since p53 can also show mitochondrial localization (Marchenko et al., 

2000). In this regard, small P2P-R spots were observed in the cytoplasm in mitotic cells 

that could represents mitochondria (Gao and Scott, 2002). In the current study further 

evidence was provided for a possible intrinsic route of apoptosis. The expression ratio of 

bcl-2 and bax showed an increase in the RU6A (RBBP6 negative cell line), which 

showed an additional increase following the induction of apoptosis. The activation and 

increased expression of both genes had been linked to the intrinsic pathway of apoptosis 

(Reed, 1994). 

 

Gao and Scott, 2002, also showed the localization of P2P-R in apoptotic cell surface 

blebs, suggesting that RBBP6 promotes apoptosis by the activation of the apoptotic 

pathway that originates from the cell surface (extrinsic pathway) and might influence the 

sub-plasmalemmal aggregation of the Fas death receptors that leads to the activation of 

the associated caspases (Strasser et al., 2000).  

 

8.6 The effect of RBBP6 silencing on the cell cycle. (Chapter seven) 

 

In this chapter it was observed that RBBP6 deficient cells are restricted in the G1 phase 

with a higher proportion of the RU6A cells in G1 compared to GU6B. In this study the 

full-length mouse RBBP6 gene was targeted using the RNAi gene targeting technology. 
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RBBP6 binds to both the p53 and Rb tumour suppressors (Witte and Scott, 2002, Simons 

et al., 1997). Since both p53 and Rb are key regulators of the cell cycle, the possibility 

exist that in a RBBP6 negative cell regulatory control of the cell cycle will be absent 

causing the cell to be restricted in the cell cycle. The observation that p53 activity is 

controlled by RBBP6 (Li et al., 2007), raises the possibility that this regulatory control 

also extents to Rb. From this study it was similarly shown that the targeting of RBBP6 in 

the U203 cell line, resulting in cell growth suppression in a p53 dependant manner. In the 

H1266 (p53 negative cell line) RBBP6 deficiency showed no suppression of cell growth.   

 

What possible mechanisms might influence cell cycle control mediated by RBBP6? Gao 

and Scott (2002) suggested that adequate levels of the RBBP6 protein must be present in 

cells to progress from G1 through S to mitosis efficiently via the induction of AP1-and 

JNK-dependant pathways. RBBP6 could have one or more roles in the AP1 and JNK-

dependant signaling pathways. The protein could be required to facilitate the expression 

of AP1 factors and/or JNKs via effects on RNA metabolism. This mechanism could 

possibly be based on evidence that the RBBP6 protein is an RNA binding protein (Witte 

and Scott, 1997) furthermore it localizes to the nucleolus in interphase mammalian cells 

(Gao et al., 2002).  

 

RBBP6 might also influence the stability and localization of AP1 factors. This is 

plausible since the protein shares characteristics with type A hnRNP proteins ((Minoo et 

al., 1989) which are known to function as chaperones and nuclear transport proteins 

(Shahied et al., 2001). The protein might similarly be involved in AP1 signaling via 
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effects on the serum response factor and its interactions with the serum response element. 

This possibility is implicated by the fact that terminally differentiated and senescent cells 

that are deficient in RBBP6 show repression in the inducible expression of some AP1 

factors because of the nuclear exclusion of the serum response factors that prevents its 

binding to and activation of the serum response element (Ding et al., 2001). Terminally 

differentiated and senescent cells, that has loss the ability to induce AP1 factors and that 

shows a deficiency in expression of P2P-R, lacks the ability to progress through the cell 

cycle (Witte and Scott, 1997, Scott and Witte, 1992).  

 

Finally, RBBP6 could be a functional component of the JNK activation system. Chen and 

Tan, 2000, showed that JNKs regulate the expression of multiple transcription factors, 

whilst other studies showed that JNKs modifies the phosphorylation of c-Jun and other 

proteins (Catani et al., 2001, Turchi et al., 2000).. 
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8.7 Conclusion 

 

In this study the RNAi gene targeting strategy was used to explore the physiological 

function of the DWNN protein. Furthermore the existence of two promoters for the gene 

was also investigated. 

 

In an attempt to investigate the role played by the RBBP6 gene, several experiments have 

been undertaken and the following conclusions were drawn: 

  (a) The activity of P0 appears to be stronger than that of P1, also the activity of P0  

      is increased following the induction of apoptosis as induced by camptothecin. 

(b) Gene targeting by interference RNA (RNAi) proved to be fast and  

      efficient method in producing RBBP6 ‘knock out’ cell lines. 

(c) Using different siRNA oligonucleotides to target the same gene can have 

different silencing effects on a gene. As was shown in this study the DWNN   

A-siRNA had a more potent silencing effect compared to the DWNN B-

siRNA. 

 (d) Silencing the RBBP6 using RNAi renders cells resistant to apoptosis   

      induced by camptothecin. Also over-expression of RBBP6 promotes  

      camptothecin-induced apoptosis. 

 (e) The induction of apoptosis as mediated by RBBP6 is dependent of p53. 

 (f) Apoptosis mediated by RBBP6 follows a possible intrinsic route suggested 

     by the change in expression of Bcl-2 and Bax in the RU6A cell line. 

 (g) Finally, silencing of the RBBP6 gene causes G1 arrest suggesting a possible  
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      role in the cell cycle. 

 

8.8 Future work 

 

The presence of two promoters for one gene is not uncommon in any genome yet it is not 

the norm. To investigate this phenomenon further, the existing constructs can be used to 

study the effect of other physiological stresses like DNA damage induced by UV light. 

This would shed more light on the selective promoter activity under different cellular 

conditions. Since this thesis showed the efficiency of RNAi, siRNA oligonucleotides can 

be designed to target both promoters further proving selective activity of each promoter. 

Once it has been established which of the promoters are more active under different 

cellular conditions, site-directed mutagenesis can be carried out on specific residues to 

establish the crucial regulatory regions within the promoters responsible for its activity. 

 

In terms of RBBP6 involvement in apoptosis new biological systems need to be 

developed wherein cells can be induced to over-express full-length RBBP6 under the 

control of a promoter that can be regulated or induced. This would make it possible to 

better define the kinetics and mechanisms by which native RBBP6 influences apoptosis 

and mitosis. The possibility that RBBP6 interacts with other mitotic regulatory factors 

needs to be evaluated by immunoprecipitation and confocal co-localization studies.  

 

Also the role of RBBP6 in the cell cycle needs to be fully established. Interaction 

between the protein and regulators of the cell cycle should be established and the role of 
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RBBP6 in the AP1 and JNK pathways proven. Finally, correlations need to be 

established between human carcinogenesis and the molecular characteristics of RBBP6.  
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