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ABSTRACT

  
 
One of the most critical aspects of successful crown and bridgework is 

temporary restorations. Failure of temporary restorations often affects the 

patient’s confidence and may result in unscheduled appointments for repair. 

This study compared the fracture toughness of two materials commonly used 

to fabricate provisional restorations, namely Coldpac®, a polymethyl 

methacrylate and Protemp 3 Garant®, a bis-acryl composite. It also 

compared the fracture toughness of the two materials when reinforced with 

stainless steel wire, glass fibers (everStick C&B fiber®) and polyethylene 

fibers (Construct® reinforcing braid). 

Two Groups (52 samples/group) were prepared from Protemp 3 Garant® 

(3M/ ESPE, Seefeld, Germany) and Coldpac® (MOTLOID, The Motloid 

company, Chicago, Illinois, USA) for a three-point bending test 

conforming to the British Standard 5447. Each group was divided into 

four subgroups of thirteen specimens each to make provision for the 

three different types of reinforcement and one control group without any 

reinforcement. They were stored in distilled water at 37 0C for 24 hours and 

tested in three-point bending using a Zwick Universal Testing Machine for 

peak load to fracture. Specimen deflection was recorded and fracture 

toughness (KIC) calculated. Medians of the values for the two different resins 

(controls) and the three reinforcements of each resin were compared (pair 

wise and otherwise) by means of non-parametric analysis of variance. The 
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results were compared for statistical significant differences using the Kruskal-

Wallis test. 

 

The results of this study showed that: 

1. Coldpac® has less fracture toughness than Protemp 3 Garant® 

(p<0.01). 

2. All three reinforcements increased the fracture toughness of Protemp 

3 Garant® significantly more than for Coldpac® (glass fiber - p<0.005; 

polyethylene fiber - p<0.001; steel wire - p<0.005). 

3. The glass fibers significantly increased the fracture toughness of both 

types of provisional materials (p<0.005 for Coldpac® and p<0.0001 for 

Protemp 3 Garant®). The stainless steel wire also significantly 

increased the fracture toughness of both provisional materials 

(p<0.0001 for Coldpac® and p<0.0001  for Protemp 3 Garant®). 

However, it was found that the polyethylene fibers did not increase the 

fracture toughness of the two provisional materials significantly 

(p>0.10 for Coldpac® and p>0.10 for Protemp 3 Garant®). 

4. For Coldpac® the stainless steel wire increased the fracture toughness 

significantly more than the reinforcement with polyethylene fibers 

(p<0.0001), but not significantly more than reinforcement with glass 

fiber (p>0.10). Glass fiber increased the fracture toughness of the 

Coldpac® significantly more than the polyethylene fibers (p<0.0001). 

Polyethylene fibers weakened the Coldpac® material, although not 

significantly (p>0.10). 
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5. For Protemp 3 Garant® the stainless steel wire increased the fracture 

toughness significantly more than reinforcement with polyethylene 

fibers (p<0.0001), but again not significantly more than glass fiber 

(p>0.10). Glass fibers increased the fracture toughness of Protemp 3 

Garant® significantly more than polyethylene fibers (p<0.005). 
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Chapter 1   

Literature Review 

1.1 Problem statement 

One of the most critical aspects of successful crown and bridgework is 

provisional restorations.  It is the importance of this stage, perhaps more 

than any other, which is often underestimated.  Failure of provisional 

restorations may affect the patient’s confidence and also result in 

unscheduled appointments for repair.  Furthermore, if teeth move during this 

critical period due to failed provisional restorations, the final restoration may 

also need to be adjusted or remade.  

 

1.2 Introduction 

Auto-polymerising polymethyl methacrylate resins, and more recently bis-

acryl composite materials, are most commonly used for indirectly or directly 

made provisional restorations (Hamza et al. 2004).  Although the use of 

pressure during curing increases the fractural strength of polymethyl 

methacrylate resins, fractures frequently occur in long span provisional 

restorations (Solnit 1991). Compared with polymethyl methacrylate 

materials, composite based provisional materials are reported to have a 

higher flexural strength (>60 MPa) and flexural modulus (>1800 Mpa), 

however, they also tend to break under clinical loading situations (Lang et al. 

2003). 

Improved physical properties of the provisional materials are required for 

long span fixed partial dentures (FPDs), for high stress areas, for long-term 
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provisional restorations or for patients with parafunctional habits.   In the 

past, these properties have been improved by reinforcing the material with 

wire, wire mesh or fiber mesh. Although several methods to improve bonding 

of the metal to the resin, such as sandblasting, silanization and metal 

adhesives were proposed, none of these proved sufficient (Vallittu 1993). 

Even though this study used denture base acrylic, it is also a polymethyl 

methacrylate resin.  It was then necessary to use the resin material in bulk in 

order to cover the strengthening material, and failure commonly occurred at 

the resin/strengthener interface, providing only limited success (Chung et al. 

1998).  Fiber reinforcement has helped to overcome some of these 

problems, largely by creating a chemical bond between the strengthening 

fiber and the resin, thus preventing crack propagation (Vallittu 1998).  

Although carbon and Kevlar fibers were initially used, these have largely 

been superseded with fibers made of high-density polyethylene, glass or 

polypropylene in bundles of 10-20 microns, because their appearance is 

superior (Aydin et al. 2002; Hamza et al. 2004).  The bundles are usually 

white. However, when wet with the resin they become transparent within the 

restoration. They are available either as loose, twisted or woven fibers.  

Woven fibers have a thickness of 0.25-0.50mm and, owing to their 

multidirectional reinforcement of the resin, provide better strengthening 

characteristics (Vallittu 1999).  According to Kim and Watts (2004) the 

strength of the resulting reinforced structure is dependent on the volume of 

the fibers embedded in the resin matrix and the degree of adhesion between 

the fibers and the polymer. The higher the number of fibers and the better 

the adhesion, the better the strength characteristics of the material. (Kim and 

Watts 2004) 
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In a SEM study done by Kolbeck et al (2002) they found that the median of 

the reinforcing effect of glass fibers was higher than that of polyethylene 

fibers although not significantly. They attributed this to the difficulty of 

obtaining good adhesion between the polyethylene fibers and the resin 

matrix.  However, two years later Hamza et al (2004) reported no significant 

difference in the reinforcing effect between polyethylene and glass fibers.  

This improved performance may have been due to pre-treatment of the 

polyethylene fibers with silane and plasma (Hamza et al. 2004). 

 

1.3 Provisional restorative materials  

A provisional restoration should provide both pulpal and periodontal 

protection, have good aesthetics, sufficient durability to withstand forces of 

mastication and have good marginal integrity (Hamza et al. 2004).  A 

material is chosen for its structural and aesthetic properties, biocompatibility 

and ease of use.  The most commonly used groups of materials to fabricate 

provisional restorations are the polymethyl methacrylate resins and the bis-

acryl composites (Young et al. 2001).  

 

1.3.1 Auto-polymerising polymethyl methacrylate resin 

This material has been used for many years for provisional crowns and 

FPDs. Its physical properties include relatively high strength and excellent 

aesthetics and polish ability (Chung et al. 1998).  However, according to 

Gough (1995) it has the following major drawbacks: 
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1. The polymerisation reaction is highly exothermic. The vital tooth pulp is 

vulnerable to temperature increases of as little as 5°C and direct fabrication 

of provisional restorations may cause irreversible damage to it. 

2. There is some concern regarding the monomer's direct chemical effect on 

the pulp. 

3. High polymerisation shrinkage causing marginal discrepancies  

Lang et al. (2003) also reported low mechanical fracture behaviour of these 

materials. Problems are associated primarily when the direct method of 

fabrication is used.  The indirect method has been associated with superior 

fit and pulp protection, but it is time-consuming and dependent on the 

availability of a laboratory (Monday and Blais 1985). 

Haselton et al (2002) reported that these resins are low-molecular weight, 

linear molecules that exhibit decreased strength and rigidity and also is not 

capable of cross-linking with other monomer chains as the bis-acryl resin 

composites do. Without polymerisation under pressure, air entrapment may 

occur and result in lower strength values (Solnit 1991). 

 

1.3.2 Bis-acryl resin composite 

Gough (1995) reported that bis-acryl resin composites are based on multiple 

functional methacrylic acid esters similar to the resins used in composites. 

He also stated that it has a low exothermic polymerisation reaction, a low 

pulpal irritancy and that the contraction during polymerisation is less than for 

polymethyl methacrylates. However, this material is less easily added to than 

methacrylate resins when correcting any marginal defect (Gough 1995).   

According to the manufacturer, Protemp Garant® (3M/ ESPE, Seefeld, 

Germany) was one of the first bis-acryl resin composites used. It has 
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recently been modified and is now marketed as Protemp 3 Garant®. The 

modifications include a newly developed monomer system, not with the rigid 

intermediate chain characteristic of some bis-acryl homologues, but with a 

somewhat flexible chain in comparison to other synthetic resins (3M ESPE 

Technical Manual 2004).  

This attribute allows a balance between high mechanical strength and 

limited elasticity of the composite material. According to the manufacturer, 

the result is a material that can withstand high stresses until fracture and 

tolerate brief deformation.  A study done by Haselton et al (2002) confirmed 

a significant increase in the flexural strength of Protemp 3 Garant® compared 

to its predecessor. The same study stated that in contrast to polymethyl 

methacrylate materials, the mixing procedure of composites occurs within 

the cartridge and may result in more constant material properties. The base 

pastes of bis-acrylic composite materials consist of bifunctional 

methacrylates to provide cross-linking for increased mechanical strength and 

also the application of a cross-linked, highly viscous, bulky monomer 

improves mechanical properties in restorative and veneering composites 

(Haselton et al. 2002). 
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1.3.3 Glass fibers 

Silanized glass fibers are promising new materials because of their good 

adhesion to the polymer matrix, high aesthetic quality, and increased 

strength of the resulting composite (Hamza et al. 2004).  Researchers have 

found that the position, quantity, and direction of the fibers and the degree of 

adhesion between the fibers and the polymer affect the degree of 

reinforcement (Nohrstrom et al. 2000; Saygili et al. 2003).  Continuous 

unidirectional fibers give the highest strength and stiffness to the composite, 

but only in one direction, namely, in the direction of the fibers. Therefore, the 

reinforcing effect of unidirectional fibers is anisotropic in contrast to woven 

fibers, which reinforce the polymer in two directions and the composite has 

orthotropic mechanical properties (Kim and Watts 2004).  If the fibers are 

orientated randomly as in a fiber mat, the mechanical properties are the 

same in all directions and the mechanical properties are isotropic (Kanie et 

al. 2000).  Woven glass fiber has a suitable form as a reinforcing material for 

the so-called partial fiber reinforcement, because the woven glass fiber is a 

tape with various widths (Kanie et al. 2000).  Furthermore, glass fiber is easy 

to cut with scissors but fray when bent excessively (Kanie et al. 2000).  

Polymer pre-impregnation eliminates this problem, but improper 

impregnation of the polymer matrix into the fiber bundle causes reduction in 

transverse strength of the polymer with glass fiber (Kanie et al. 2000). A lack 

of absorbed monomer liquid in the fiber bundle before polymerisation, can 

cause voids inside the test specimens (Kanie et al. 2000). The polymer pre-

impregnated reinforcing glass fibers may considerably enhance flexural 

properties of the multiphase polymers, which is due to proper impregnation 
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of fibers with the polymer matrix (Hamza et al. 2004). Silanization of glass 

fibers also enhances the adhesion between the fibers and the polymer 

matrix, with increased fracture resistance and transverse strength of the 

polymers (Aydin et al. 2002).  

 

1.3.4 Polyethylene fibers 

Polyethylene, a naturally crystalline polymer, is drawn at temperatures below 

its melting point to produce a material of enhanced modulus in the axial 

direction (Braden et al. 1988).  The Young’s modulus (the index of the 

rigidity of the material) depends on the draw ratio, and moduli up to 60 GPa 

can readily be achieved for a draw ratio of 30 (Braden et al. 1988).  To put 

these figures in perspective, polymethyl methacrylate is 3 GPa, which is 

considerably lower than the values possible with carbon fibres (250 GPa), 

but the polyethylene fibres are ductile and not as brittle (Braden et al. 1988).  

Their neutral colour, low density and known biological compatibility make 

them candidates for investigation as a reinforcing material for provisional 

restorative materials (Braden et al. 1988). They are drawn as monofilament 

fibres, but can also be woven into fabrics (Braden et al. 1988).  Construct® 

(Kerr Corp, Orange, California, USA) consists of impregnated silanized 

plasma treated polyethylene fibers (Braden et al. 1988). 

 

1.3.5 Metal wire reinforcement 

The available literature on provisional restorative materials reinforced with 

metal wire is limited.  Polyzois et al (1995) examined the strength of heat-

polymerized acrylic resin strips alone or in combination with metal wires.  
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Their results indicated that metal wires might considerably enhance the 

strength of repaired denture acrylic resins.  

Minami et al (2005) showed that specimens reinforced with 1.2 mm diameter 

stainless steel wires or Co-Cr-Ni wires resulted in significantly higher loads 

to fracture as compared to specimens without reinforcement. Reinforcement 

with glass fiber or round wire led to improved strength but a decrease in 

deflection at fracture, which in turn resulted in low toughness values 

(indicative of a weak material) (Minami et al. 2005). Despite these low 

toughness values, a more flexible and resilient product may withstand 

stresses more successfully without breaking, which is of clinical importance. 

Specimens reinforced with braided wire plate exhibited reduced strength 

when compared with specimens repaired with round wire as well as control 

specimens (Minami et al. 2005).  This was attributed to the irregular shape of 

the braided wire, which may have inhibited proper penetration and complete 

wetting by the resin slurry and may have created weak points in areas of 

stress concentration (Minami et al. 2005). 

 

1.3.6 Test methods 

Researchers believe that fracture toughness is the best mechanical property 

measured to predict the wear and the fracture resistance of a restorative 

material (Higg et al. 2001).  Different fracture toughness tests have been 

used to quantify the failure of dental materials.  One such a test is the 

“Single-edge notch (SEN) three-point bending test”.  This test determines 

critical values of stress intensity (KIC) where pre-cracked specimens of 

standard geometry are loaded until they break and the loads are used to 

calculate the toughness (Uctasli et al. 1995).  
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Haselton et al (2002) stated : “It is important to note that three-point flexural 

strength is only one of many behaviours in response to a particular stress 

and that strength is just one property of provisional crown materials.  A 

strong material may possess other, less desirable characteristics such as 

tendency to stain, lack of polish ability, difficult manipulation or poor 

aesthetics.  A provisional crown placed on a single anterior tooth will have 

different clinical requirements than a long-span provisional FPD.  The 

clinician must be aware of all attributes of various materials and choose the 

provisional material and reinforcement method appropriate for each 

application”.  

 

From the literature study, it follows that a number of different techniques for 

reinforcement of provisional restorations are available, of which glass fiber 

and polyethylene fibers currently appear to be the most promising. As fiber 

reinforcement is likely to play an increasingly important role in the fabrication 

of provisional restorations, further investigations into the influence of fiber 

reinforcement on the fracture toughness of provisional materials are needed.  

Studies to determine the fractural strength of resins reinforced with steel 

wire, polyethylene fiber, or glass fiber, were previously carried out.  

However, none of them have compared all three of these strengtheners in a 

single study.  
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 Research objectives 

 
The objective of this study was: 

To compare the fracture toughness of two provisional restorative materials 

without reinforcement, to their fracture toughness when reinforced with (a) 

steel wire, (b) polyethylene fiber and (c) glass fiber. 

 

The null hypotheses tested were: 

1. Without reinforcement, the two provisional restorative materials do not 

differ in fracture toughness. 

2. Reinforcement with steel wire, polyethylene fiber, or glass fiber do not 

significantly alter the fracture toughness of the two provisional 

restorative materials. 
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Chapter 2 
 

Materials and Methods 

The method described in this chapter as a whole was based on a method 

described by Kim and Watts (2004). Two sample groups (52 

samples/group) were prepared from the bis-acryl resin composite 

Protemp 3 Garant® and the polymethyl methacrylate resin, Coldpac® 

(MOTLOID, The Motloid Company, Chicago, Illinois, USA) for a three-

point bending test conforming to the British Standard 5447 (1977).  Each 

group was divided into four subgroups of thirteen specimens each to 

make provision for the three different types of reinforcement and one 

control group without any reinforcement (n=13) (Table 1). 

 

Table 1: This table illustrates the two groups of provisional materials and the three types of 
reinforcement used (total sample size=104)  
   

    Reinforce- 
          ment 

 
Material 

 
None 

 
Glass  
fiber 

 
Polyethylene 

fiber 

 
Stainless 
steel wire 

 
Coldpac® 

 
13 

 
13 

 
13 

 
13 

 
Protemp 3 
Garant® 

 
13 

 
13 

 
13 

 
13 

 

 

As in Kim and Watts (2004), the overall external dimensions of the 

specimens were 3mm x 6mm x 25mm, excluding the positioning stops for 

the reinforcement materials.  
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A sharp central notch (3mm in length) was produced by inserting a straight-

edged scalpel blade into a slot at mid-height in the mould; the slot extended 

down half the height to give A/W= 0.5 (Figure 1) (Kim and Watts 2004).  The 

blade had a straight cutting edge honed on both sides, with a blade edge 

radius of less than 0.3μm (Solingen, England), forming a crack plane 

perpendicular to the specimen length. The mould used in this study could be 

split so that no force was required to remove the set specimens (Figure 2) 

from the mould (Figure 3). 

The control groups (without any reinforcement) were fabricated according to 

the following procedure: 

Protemp 3 Garant® was mixed using the auto mix gun system provided by 

the manufacturer. For Coldpac® a 0,58g powder to 0,25 ml liquid ratio was 

accurately measured and mixed, using a OHAUS precision standard scale 

(Model TS 400 D, Serial no 3630, OHAUS corporation, Florham Park, N.J, 

USA00) and a pipette (Pipetman, L 116956, Gilson, France) (Figure 4). 

This mix resulted in a runny consistency so that the material could more 

easily be flowed into the mould, minimising air bubbles in the samples 

produced. After mixing, the materials were immediately transferred to the 

mould.  The mould was slightly overfilled and the surface covered with a 

plastic matrix strip and a thick glass plate. Even though not described in the 

study by Kim and Watts (2004), a glass plate was pressed for 30 seconds 

until firm contact was established with the top surface of the template. 

This could be visualized through the glass plate. This was done in order 

to squeeze out the excess material, in an effort to minimize air bubbles 

and to produce samples of more uniform size.  Specimens were left to 

polymerize at 23 ± 1°C as follows: 
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Coldpac® samples were left to polymerize for 20 min in the mould and then 

left an additional 10 min to bench cure (20 min was double the 

manufacturer’s prescribed time needed for the material to set).  Protemp 3 

Garant® samples were left to polymerize for 10 min in the mould before 

removal and then left an additional 5 minutes to bench cure. Again, 10 min 

was double the time needed for the material to set according to 

manufacturer’s instructions.  

 

 

Figure 1: Image of the notched specimen used in this study: A=depth of the notch, B=width, 
W=height, X=length of the specimen and L=the distance between the rests of the three- 
point bending apparatus (Image modified from the one used by Kim and Watts 2004.) 
 

 

The mould was then disassembled and the specimen removed.  The blade 

was carefully removed and the specimens examined with a 

stereomicroscope (10X magnification) for the inclusion of voids or air 

bubbles. Those containing flaws were discarded.   After removal from the 

mould, the edges of the specimens were finished with 1000 grit carbide 
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paper and specimen dimensions (width, height, and length) measured and 

recorded at three different points (Kim and Watts 2004).  

For the reinforced test groups, all procedures were exactly the same as for 

the two un-reinforced resins, except for the insertion of the reinforcement 

material in the specimens.  For the first group, everStick C&B fiber® (Stick 

Tech, Turku, Finland) was removed from the package and cut with sharp-

edged scissors into 27mm-long pieces (Figure 5).  The mould was filled up 

to level C (Figure 2) with one of the resins and the light cured fibers placed 

parallel to the long axis of the specimen, into the un-cured material. The 

fibers were polymerised by irradiating three different areas (centre, left and 

right) with a light-curing unit (Megalux CS, Megadenta, Radeberg, Germany) 

for 40 seconds each. The two lateral stops in the mould (Figure 3) ensured 

that the different reinforcing materials were inserted at the same position in 

all specimens.  Resin was then added to fill the mould as described before.  

For the second group Construct® reinforcing braid was used (Figure 6).  It 

was cut into strips of 27mm and impregnated with resin (according to the 

manufacturer’s instructions), cured and placed in the mould exactly as 

described for the everStick C&B fiber®.  The third group was similarly 

reinforced, but instead of using fibers, a 27mm long orthodontic stainless 

steel wire (1mm in diameter) (KC Smith & Co., Monmouth, United Kingdom) 

was imbedded into the unset resin before the mould was filled. 

The specimens were stored in distilled water at 37 0C in an oven (Memmert, 

854, Schwabach, West Germany) for 24 hours before testing. Thereafter, 

they were tested in three-point bending using a Zwick Universal Testing 

Machine (Model 1446, Zwick, Ulm, Germany).  The specimens were placed 

on the supports of the three-point bending apparatus with a fixed span width 
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of 20mm (Figure 7).  Mechanical loading was applied on the centre of each 

specimen at 90 degrees to the specimen axis through a stainless steel rod 

attached to the Zwick Universal Testing Machine.  A load was applied using 

a 0.5Kg loading cell at a crosshead speed of 1 mm/s until the specimen 

fractured. The fracture lines were also inspected with a stereomicroscope 

(10X magnification) for the inclusion of air bubbles and voids. The results of 

the ones containing flaws were ignored and a replacement sample was 

used. Peak load to fracture, and specimen deflection (recorded as 

load/deflection curves) were recorded and fracture toughness (KIC measured 

in MNm-1.5) was calculated using the following equation: 

    (KIC) = (3PL/BW 3/2)Y 

where P=peak load at fracture; L=length; B=width; W=height; and 

Y=calibration function (1,93 {A/W}1/2 – 3,07 {A/W}3/2 + 14,53 {A/W}5/2 – 25,11 

{A/W}7/2  + 25,80 {A/W}9/2). 

The two different resins (controls) and the three reinforcements of each resin 

(six test groups) resulted in eight different combinations of resins and 

reinforcements. The mean and standard deviations for each test group 

were calculated. The medians of the values for these eight different 

combinations of materials containing two controls of un-reinforced 

(polymethyl methacrylate and bis-acryl) resin were compared (pair wise and 

otherwise) by means of non-parametric analysis of variance (p<0.05).  The 

results were then compared for statistical significant differences (Kruskal-

Wallis) and summarized taking into account the Bonferroni adaptation for 

multiple comparisons. 
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 Figure 2: Specimen (a) showing the central groove (b) and the position of  
the reinforcement (c) 
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Figure 3: Stainless steel mold, used to fabricate the samples, showing the notches 
(a) where the reinforcement was placed 
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Figure 4: OHAUS precision standard scale Model TS 400 D (a) and a pipette (b) 

 

 

 

b 

a

 

 

 

 



 19

 

 

 

Figure 5: everStick fiber® glass braid 
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Figure 6: Construct® fiber braid 
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Figure 7: Showing specimen (a) on the three-point bending apparatus (b) 
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Chapter 3 

Results 

The results from this experiment reflect: 

1) Fracture toughness of the two provisional resins Protemp 3 Garant® 

and Coldpac® (controls). 

2) Fracture toughness of the same two resins reinforced with three 

different reinforcing materials (steel wire, glass fibers and 

polyethylene fibers). 

 

The variability and descriptive statistics for the fracture toughness values 

(KIC) calculated for the different measurements are illustrated by means of 

box plots (Figures 8-13) and a supplementary violin plot (Figure14).  

The relationship between the calculated measurement, fracture toughness, 

and a categorical variable, the material used, is best visualized by side-by-

side (parallel) Box-and-Whisker plots.  Box plots have the advantage over 

the other types of plots that they highlight outliers (unusual measurements 

that lie well away from the central points on the plot). 

The bottom boundary of the yellow box is the 25th percentile of the sample, 

the middle line the median (50th percentile) and the top boundary of the 

yellow box the 75th percentile.  The yellow box contains 50% of the 

particular sample's observations. Unusual values (or outliers) in the sample 

are displayed by means of coloured green or red dots.  These values are 

unusual with respect to the distance from the median (measured in terms of 

the inter-quartile range).  
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The violin plot, in which a "density trace" is fitted to the points, estimates the 

underlying distribution function of the values.  In a violin plot, both the 

density trace and its mirror reflection are shown in the plot. 

 

 

In the section below, control Coldpac® and control Protemp 3 Garant® are 

compared and thereafter the fracture toughness of these two materials are 

compared with wire, polyethylene fiber and glass fiber added to both. 

 

 

Table 2: Table of descriptive statistics listing fracture toughness (KIC measured in MNm-1.5) 
of the control materials Coldpac® and Protemp 3 Garant®, with a sample size of 13 in each 
case 
 

Data Control 
Coldpac®

Control 
Protemp 

3 Garant® 
      

Minimum 25.89 30.86 
      

Median 27.89 31.17 

Average of 
Stress  

29.07 35.32 

      
Standard
Deviation 2.63 2.38 

Interquartile
Range 5.25 1.91 

      
Maximum 33.79 40.72 

 

In the Table above both averages were higher than the medians, indicating 

that there was some skewness towards the higher values.  The median of 

Protemp 3 Garant® was higher than that of Coldpac® and this is confirmed by 

a Kruskal-Wallis test (p<0.01).  It could be observed that the two standard 
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deviations are approximately equal, but that the interquartile range of 

Protemp 3 Garant® (1.91) was much smaller than that of Coldpac® (5.25).  

 

 

 
Figure 8: Side-by-side Box-and-Whisker Plot of fracture toughness (KIC measured in MNm-

1.5) comparing control Coldpac® to control Protemp 3 Garant® 
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Table 3: Table of descriptive statistics listing fracture toughness (KIC measured in MNm-1.5) 
of Coldpac® and Protemp 3 Garant® reinforced with wire, with a sample size of 13 in each 
case 
 

Data 
Coldpac®  

& wire 

Protemp 3 
Garant® & 

wire 
   
Minimum 32.47 40.93 
   
Median 39.00 44.02 
Average of 
Stress  42.74 45.97 

   
Standard
Deviation 5.02 3.21 

Interquartile
Range 5.85 3.74 

   
Maximum 50.79 53.11 

 

The standard deviation of Coldpac® and wire was somewhat larger than the 

SD of Protemp 3 Garant® and wire, but it was not significantly different.  The 

same was true for the interquartile range.  The median of Protemp 3 Garant® 

 was larger than that of Coldpac® and this is confirmed by a Kruskal-Wallis 

test (p<0.005). 

 

 
Figure 9: Side-by-side Box-and-Whisker Plot demonstrating the difference in fracture  
toughness (KIC measured in MNm-1.5) comparing Coldpac® to Protemp 3 Garant®, reinforced  
with wire 
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Table 4: Table of descriptive statistics listing fracture toughness (KIC measured in MNm-1.5) 
of Coldpac® and Protemp 3 Garant® reinforced with polyethylene fiber, with a sample size of 
13 in each case 
 

Data 
Coldpac®& 

poly- 
ethylene 

fiber 

Protemp 
3 Garant®

& poly-
ethylene

fiber 
      
Minimum 24.59 22.60
  
Median 25.82 33.10 
Average of 
Stress  29.79 35.77 

      
Standard 
Deviation 3.87 4.46 

Interquartile 
Range 2.75 3.56 

      
Maximum 38.22 41.41 

 

 

The stress measurements of the two materials reinforced with polyethylene 

fiber were skewed towards the higher values as is evident from comparing 

the average and the medians.  The level of the fracture toughness median of 

Coldpac® reinforced with polyethylene fiber was higher than the median level 

of Protemp 3 Garant® reinforced with polyethylene fiber (p<0.001).  
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Figure 10: Side-by-side Box-and-Whisker Plot demonstrating the difference in fracture 
toughness (KICmeasured in MNm-1.5) of Coldpac® and Protemp 3 Garant® reinforced with 
polyethylene fibers 
 
 
 
Table 5: Table of descriptive statistics listing fracture toughness (KIC measured in MNm-1.5) 
of Coldpac® and Protemp 3 Garant® reinforced with glass fiber with a sample size of 13 in 
each case 
 

Data Coldpac® & glass 
fiber 

Protemp 3 Garant® & 
glass fiber 

     
Minimum 33.27 40.43 
     
Median 34.44 42.31 
Average of 
Stress  

40.01 46.75 

     
Standard 
Deviation 8.85 3.88 

Interquartile
Range 5.94 3.31 

     
Maximum 62.76 52.41 
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The standard deviation and interquartile range of Coldpac® were larger than 

that of Protemp 3 Garant®, but not significantly different.  The medians of 

Coldpac® and Protemp 3 Garant®, both reinforced with glass fiber, were 

different (p<0.01).  

 

Figure 11: Side-by-side Box-and-Whisker Plot demonstrating the difference in fracture 
toughness (KIC measured in MNm-1.5)  of Coldpac® and Protemp 3 Garant ® reinforced with 
glass fiber 
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Table 6: Table of descriptive statistics listing fracture toughness (KIC measured in MNm-1.5) 
of  Coldpac® reinforced with wire, polyethylene fiber and glass fiber, respectively, with a 
sample size of 13 in each case 
 
 

Data Control 
Coldpac® 

Coldpac® & 
wire 

Coldpac® & 
polyethylene

fiber 

Coldpac® & 
glass fiber 

     
Minimum 25.89 32.47 24.59 33.27 
     
Median 27.89 39.00 25.82 34.44 
Average of 
Stress  

29.07 42.74 29.79 40.01 

     
Standard 
Deviation 2.63 5.02 3.87 8.85 

Interquartile 
Range 5.25 5.85 2.75 5.94 

     
Maximum 33.79 50.79 38.22 62.76 

 

Coldpac® and glass fiber displayed the largest standard deviation and 

interquartile range of all four material combinations.  The differences 

between the standard deviation’s of the four materials were not statistically 

significantly different (p>0.05).  The highest and lowest fracture toughness 

medians were highly significantly different (p<0.000001), with Coldpac® 

reinforced with wire exhibiting the highest median and Coldpac® reinforced 

with polyethylene fiber, the lowest median. 
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Figure 12: Combined box  plots demonstrating the difference in fracture toughness (KIC 
measured in MNm-1.5) of Coldpac® on its own and reinforced with the three different 
reinforcement materials 
 

The side-by-side box plot above shows a high outlier value for the 

measurements (KIC) of Coldpac® reinforced with glass fiber.  Another outlier 

value occurred for Coldpac® reinforced with polyethylene fiber. 
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Table 7: Table of descriptive statistics listing fracture toughness (KIC measured in MNm-1.5) 
of Protemp 3 Garant® reinforced with wire, polyethylene fiber and glass fiber, respectively, 
with a sample size of 13 in each case 
 

Data 
Control Protemp 

3 Garant® 

Protemp 
3 Garant® 

& wire 

Protemp 
3 Garant® & 
polyethylene 

fiber 

Protemp 
3 Garant® 

& glass fiber 

     
Minimum 30.86 40.93 22.60 40.43 
        
Median 31.17 44.02 33.10 42.31 
Average of 
Stress 35.32 45.97 35.77 46.75 

        
Standard 
Deviation 2.38 3.21 4.46 3.88 

Interquartile 
Range 1.91 3.74 3.56 3.31 

        
Maximum 40.72 53.11 41.41 52.41 
 

Protemp 3 Garant® and polyethylene fiber reinforcement displayed the 

largest standard deviation of all four material combinations containing 

Protemp 3 Garant®.  The differences between the standard deviations of the 

four materials were not statistically significantly different (p>0.05).  The 

samples containing only Protemp 3 Garant® displayed the smallest standard 

deviation and interquartile range.  However, the highest and lowest fracture 

toughness medians were highly significantly different (p<0.000001), with 

Protemp 3 Garant® reinforced with wire exhibiting the highest median and 

Protemp 3 Garant® reinforced with glass fiber, the highest average.  The 

fracture toughness as measured by the medians and averages, differs 

slightly for these two materials, Protemp 3 Garant® reinforced with wire and 

Protemp 3 Garant® reinforced with glass fiber.  
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Figure 13: Combined box plots demonstrating the difference in fracture toughness (KIC 
measured in MNm-1.5) of Protemp 3 Garant® resin on its own and reinforced with the three 
different reinforcement materials 
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Table 8: Descriptive statistics listing fracture toughness (KIC measured in MNm-1.5) of the 
eight groups, with a sample size of 13 in each case 
 

 
Coldpac® Protemp 3 Garant® all 

KIC 
valuescontrol  wire PE glass control  

wire PE glass 

                
Min 25.89 32.47 24.59 33.27 30.86 40.93 22.60 40.43 22.60
                
Med 27.89 39.00 25.82 34.44 31.17 44.02 33.10 42.31   

Av  
29.07 42.74 29.79 40.01 35.32 45.97 35.77 46.75 38.18

                
SD 2.63 5.02 3.87 8.85 2.38 3.21 4.46 3.88 7.85 
IR 5.25 5.85 2.75 5.94 1.91 3.74 3.56 3.31   
                
Max 33.79 50.79 38.22 62.76 40.72 53.11 41.41 52.41 62.76
 
PE = polyethylene fiber, glass = glass fiber, Min = minimum, Med = median, Av = average of 
stress, SD = standard deviation, IR = interquartile range, Max = maximum. 
 

Protemp 3 Garant® reinforced with wire exhibited the largest median (44.02), 

Protemp 3 Garant® reinforced with glass fiber the second largest (42.31), 

and Coldpac® reinforced with wire (39.00) the third largest.  The same three 

material combinations make up the three largest averages, namely Protemp 

3 Garant® reinforced with wire (45.97; second highest), Protemp 3 Garant® 

reinforced with glass fiber (46.75; highest), and Coldpac® reinforced with 

wire (42.74; third highest).  It is important to note that Coldpac® reinforced 

with polyethylene fiber resulted in the lowest median fracture toughness 

(25.82) and it is even weaker than control Coldpac® (27.89; the second 

smallest). 
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Figure 14: Combined Side-by-side Violin plot demonstrating the difference in fracture 
toughness (KIC measured in MNm-1.5) of the two resins, without reinforcement and with the 
three different reinforcement materials 
 
 
Legend: 

1 Coldpac® as control 5 Protemp 3 Garant® as control 
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stainless 
 steel wire 

3 Coldpac® + polyethylene fibers 7 Protemp 3 Garant®+ polyethylene 
fibers 

4 Coldpac® + glass fibers 8 Protemp 3 Garant® + glass fibers 
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Chapter 4 

Discussion 

Provisional crowns and FPDs are essential components of prosthodontic 

treatment.  Provisional restorations must satisfy biologic and aesthetic needs 

as well as mechanical requirements such as resistance to functional loads, 

resistance to removal forces and maintenance of abutment alignment.  The 

fracture toughness and flexural strength of provisional materials is important, 

particularly when the patient must use the provisional restoration for an 

extended period, when the patient exhibits parafunctional habits, or when a 

long-span prosthesis is planned.  

This study compared the fracture toughness of two materials commonly 

used to fabricate provisional restorations namely Coldpac®, a polymethyl 

methacrylate and Protemp 3 Garant®, a bis-acryl composite.  It also 

compared the fracture toughness of the two materials when reinforced with 

1mm stainless steel wire, glass fibers (everStick C&B fiber®) and 

polyethylene fibers (Construct® reinforcing braid).  

The null hypotheses tested were that the two provisional restorative 

materials don’t differ in fracture toughness and that reinforcement with steel 

wire, polyethylene fiber, or glass fiber do not raise the fracture toughness of 

the two provisional restorative materials.  

The method that was used to determine the fracture toughness of the 

specimens was a three-point bending test based on a method described by 

Kim and Watts (2004). The mould was specially adapted to ensure that the 
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reinforcement materials were placed in the same position in all the 

specimens.  To do this, a 1.5mm deep notch was included on each side of 

the mould (a in Figure 3).  This is important, as the position of the 

reinforcement material in the specimen will have an effect on the fracture 

toughness of the material being tested (Lassila and Vallittu 2004; Nohrstrom 

et al. 2000).  Although laboratory fracture toughness values under static 

loading may not reflect intra-oral conditions, these values are nevertheless 

helpful in comparing materials under controlled situations, and may be useful 

in predicting the clinical performance of the materials tested.  

Usually, during fabrication of the specimens, it is very difficult to eliminate all 

flaws within the specimens.  These flaws may have a direct effect on flexural 

strength values and therefore, researchers believe that fracture toughness is 

the best mechanical property to measure for materials used to fabricate 

provisional FPDs (Hamza et al. 2004; Higg et al. 2001). 

Within the limits of this experiment, the results indicated that the polymethyl 

methacrylate provisional material, Coldpac®, has a significantly (p<0.01) 

lower median fracture toughness (KIC) (27.89 MNm-1.5) when compared to 

the bis-acryl composite, Protemp 3 Garant® (31.17 MNm-1.5) (Figure 13).  

This finding is in agreement with the results of Lang et al (2003) who 

reported the highest strength values for Protemp 3 Garant® compared to 

polymethyl methacrylate materials when interim FPDs were constructed from 

these materials, artificially aged and tested for fracture resistance.  Higher 

flexural strengths for bis-acryl composite resins compared to polymethyl 

methacrylates were also reported by Haselton et al (2002).  However, 

Koumjian and Nimmo (1990) as well as Osman and Owen (1993) reported 

higher flexural strength values for polymethyl methacrylate materials 
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compared to bis-acryl composite resins. A possible explanation for these 

findings could be that, since then, Protemp® has been modified and 

marketed as Protemp 3 Garant® and used in this experiment.   The 

modifications include a newly developed monomer system, not with the rigid 

intermediate chain characteristic of some bis-acryl homologues, but with a 

somewhat flexible chain in comparison to other synthetic resins.  According 

to the manufacturer, this attribute allows a balance between high mechanical 

strength and limited elasticity of the composite material.  This was confirmed 

by a study done in 2002 by Haselton et al who reported a significant 

increase in the flexural strength of Protemp 3 Garant® compared to its 

predecessor. 

Another reason for the lower fracture toughness values for Coldpac® in this 

study could be attributed to the fact that the material was not mixed 

according to the manufacturer’s instructions as this would have resulted in a 

very stiff consistency.  Instead, Coldpac® was mixed 0,58g powder to 0,25 

ml liquid ratio.  This mix resulted in a runny consistency so that the material 

could more easily be flowed into the mould, minimising air bubbles in the 

samples produced.  It is possible that this action could have weakened the 

material. However, this is not important for the consideration of hypothesis 2 

as care was taken that the mix was the same for all the Coldpac® samples 

used to fabricate the reinforced specimens.  

Many investigators have confirmed the reinforcing effect of fibers and steel 

wire on different polymer types (Aydin et al. 2002; Dyer et al. 2005; Hamza 

et al. 2004; Kim and Watts 2004; Van Ramos et al. 1996; Samadzadeh et al. 

1997; Stiesch-Scholz et al. 2005; Vallittu 1998).  In this study it was found 

that the glass fibers significantly increased the fracture toughness of both 
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types of provisional materials, (p<0.01 for Coldpac® and p<0.001 for 

Protemp 3 Garant®). The stainless steel wire significantly increased the 

fracture toughness of both provisional FPD materials, (p<0.001 for Coldpac® 

and p<0.0001  for Protemp 3 Garant®).  However, polyethylene fibers did not 

increase the fracture toughness of the two materials significantly, (p>0.05 for 

Coldpac® and p>0.10 for Protemp 3 Garant®).  Hypothesis 2, stating that 

reinforcements with steel wire, polyethylene fiber, or glass fiber do not raise 

the fracture toughness of the two provisional restorative materials was 

therefore only partially rejected for the stainless steel wire and for the glass 

fibers (these two reinforcements strengthened fracture toughness), but 

accepted for polyethylene fibers (did not improve fracture toughness).  

The reinforcing ability of glass fibers and polyethylene fibers was explained 

by Nohrstrom and co-workers (2000).  They stated that transfer of stress 

takes place from the weaker polymer matrix to the fibers with a higher tensile 

strength.  This means that the better the adhesion between the fibers and 

the matrix of the resin, the greater the strengthening effect.  

The surprising finding that polyethylene fibers did in fact lower the fracture 

toughness of the Coldpac® material could possibly be explained by the fact 

that Coldpac® was not mixed according to the manufacturer’s instructions.  

Protemp 3 Garant® was mixed using the auto mix gun system provided by 

the manufacturer, but Coldpac® was mixed 0,58g powder to 0,25 ml liquid 

ratio, resulting in a mixture of lower viscosity.  Although a reduced viscosity 

should theoretically improve impregnation of fibers into the resin, it was 

shown by Vallittu (1999) that a higher proportion of monomer liquid in the 

mixture would increase the polymerisation shrinkage of the resin applied to 

the fiber bundle. This higher polymerisation shrinkage will cause a slit 
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between the fibers and the polymer matrix.  This improper degree of 

impregnation will also increase the water sorption that might lead to a 

detrimental hydrolytic effect and a resulting decrease in mechanical 

properties of the reinforced resin (Vallittu 1999).  In contrast to this finding 

Van Ramos, et al (1996) reported a significant increase in the fracture 

strength of polymethyl methacrylate reinforced with plasma-treated 

polyethylene fiber (Ribbond®).  Noteworthy of their experiment is the fact that 

the polymethyl methacrylate was mixed at a 2.5:1 polymer-to-monomer ratio, 

whereas the ratio of the mix in the current study was 2.32:1. 

This experiment also determined the reinforcement capability of the three 

different reinforcement materials and was statistically evaluated, comparing 

their ability to reinforce the two different resins.  It was found that all three 

reinforcements increased the fracture toughness of Protemp 3 Garant® 

significantly more than for Coldpac® (glass fiber p<0.005; polyethylene fiber 

p< 0.005; wire p<0.005).  This finding is supported by Hamza et al (2004) 

who reported that Fibrestick® as well as Construct® increased the fracture 

toughness of FPDs compared to the un-reinforced controls.  Samadzadeh et 

al, (1997) using Coldpac® (polymethyl methacrylate) and Provipoint DC® (bis-

acryl) also reported a higher increase of load to fracture of the bis-acryl 

(65.59 kg) compared to the polymethyl methacrylate (53.46 kg), although 

Provipoint DC® had a lower fracture strength (46.59 kg) compared to 

Coldpac® (49.86 kg) when un-reinforced.  

Combined reports for Coldpac® and Protemp 3 Garant® reinforced with the 

different reinforcing materials were also compiled.  The results in Chapter 3 

show that the 1mm stainless steel wire increased the fracture toughness of 

Coldpac® significantly more than reinforcement with polyethylene 
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(p<0.0001), but not significantly more than reinforcement with glass fiber 

(p>0.10).  This finding is supported by the results reported by Vallitu, et al 

(1995) although they used a heat-cured polymethyl methacrylate, (ProBase 

Hot®) and measured impact strength.  

 

Glass fiber increased the fracture toughness of Coldpac® significantly more 

than polyethylene (p<0.0001).  This is in agreement with other authors 

(Hamza et al. 2004; Kim and Watts 2004; Vallittu 1999). Although the 

polyethylene fibers reduced the fracture toughness of the Coldpac® control, it 

was not significant (p>0.10).  

 

From Chapter 3 it is clear that the 1mm stainless steel wire increased the 

fracture toughness of Protemp 3 Garant® significantly more than when 

reinforcement with polyethylene fiber (p<0.0001), but again not significantly 

more than glass fiber (p>0.10).  Glass fiber increased the fracture toughness 

of Protemp 3 Garant® significantly more than polyethylene fiber (p<0.005). 

This finding is supported by Hamza et al (2004) using Ribbond® and 

Fibrestick® with Jet® as the polymethyl methacrylate and Temphase® as the 

bis-acryl. 

Unlike the negative effect on the fracture toughness of Coldpac® control, 

polyethylene fibers did reinforce Protemp 3 Garant® control, but not 

significantly (p>0.10).  Kolbeck et al (2002) also reported that the reinforcing 

effect of glass fibers was more effective than that of polyethylene fibers.  

They attribute this to the difficulty of obtaining good adhesion between the 

polyethylene fibers and the resin matrix.  
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Very few, if any, studies were done that include all three of these 

reinforcement materials.  Thus, it was not possible to compare the results of 

the wire reinforcement with glass fiber and polyethylene fibers 

comprehensively.  

 

Limitations of the study: 

1. Coldpac® mixture: 

A possible limitation of this study is the powder and liquid ratio of the 

mixture that was used.  This has been fully discussed on page 38 and 

39. A pilot study could have been of value to determine the optimum 

powder/liquid ratio in order to minimize the inclusion of air bubbles 

while obtaining the maximum physical properties. 

2. Water storage: 

In this experiment, it was decided not to store the specimens in water 

for periods longer than 24 hours before testing for fracture toughness 

(see Materials and Methods section).  This decision was based on the 

results of a study done by Kim and Watts in 2004 where they 

evaluated the effect of water storage (1, 7, 30 and 60 days) on un-

reinforced as well as reinforced (with glass fiber) polymethyl 

methacrylate and bis-acryl materials. They could demonstrate no 

significant decrease in KlC values of the reinforced materials after 2 

months of water storage compared with the values at day 1 (Kim and 

Watts 2004). 

3. The use of 1mm stainless steel wire: 

The inclusion of the wire in this experiment may not be of clinical 

relevance as the wire was covered by at least 1mm of resin on all 
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sides (this was done in order to standardize the samples with those of 

the other reinforcement materials). This scenario may not always be 

possible in the clinical situation. However, it serves an important 

purpose as a standard for measuring the other reinforcement 

materials  and provides the clinician with an additional and cheaper 

option in posterior areas of the mouth where aesthetics is not 

important and enough space is available.  

 

Possible Further Studies 

1. Investigators reported extensively on the reinforcement value of 

stainless steel (1mm) on bis-acryl resins used to fabricate partial and 

full denture bases (Vallittu 1996; Vallittu 1993; Vallittu and Lassila 

1992).  However, apart from this one, no single study was found that 

compared the fracture toughness of provisional FPDs reinforced with 

stainless steel wire, glass fibers or polyethylene fibers.  

Comparing fracture toughness using different diameters of stainless 

steel wire that is placed in different positions in samples that represent 

provisional FPDs, clinically, would result in valuable information. 

2. Further studies on the polymethyl methacrylate powder to liquid ratio, 

using a specific reinforcement material, will also supply valuable 

information to clinicians on the flexural-, tensile-, and impact strengths 

as well as the fracture toughness of the polymethyl methacrylate 

resins and may influence their decision on the choice of materials that 

can be used in the fabrication of provisional FPDs. 
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Chapter 5 

Conclusions and recommendations 

 

Within the limitations of this study, it was concluded that: 

1. Coldpac® control has less fracture toughness than Protemp 3 Garant® 

control (p<0.01). 

2. All three reinforcements increased the fracture toughness of Protemp 

3 Garant® significantly more than for Coldpac® (glass fiber - p<0.005; 

polyethylene fiber - p<0.001; steel wire - p<0.005). 

3. The glass fibers significantly increased the fracture toughness of both 

types of provisional materials (p<0.005 for Coldpac® and p<0.0001 for 

Protemp 3 Garant®). The stainless steel wire also significantly 

increased the fracture toughness of both provisional materials 

(p<0.0001 for Coldpac® and p<0.0001 for Protemp 3 Garant®).  

However, it was found that the polyethylene fibers did not increase 

the fracture toughness of the two provisional materials significantly, 

(p>0.10 for Coldpac®and p>0.10 for Protemp 3 Garant®). 

4. For Coldpac® the 1mm stainless steel wire increased the fracture 

toughness significantly more than the reinforcement with polyethylene 

fiber (p<0.0001), but not significantly more than reinforcement with 

glass fiber (p>0.10).  Glass fiber reinforcement increased the fracture 

toughness of Coldpac® significantly more than that of polyethylene 

fibers (p<0.0001), but polyethylene fibers weakened the polymethyl 

methacrylate material, although not significantly (p>0.10). 
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5. For Protemp 3 Garant® the 1mm stainless steel wire increased the 

fracture toughness significantly more than reinforcement with 

polyethylene fiber (p<0.0001), but again not significantly more than 

glass fiber (p>0.10). Glass fiber increased the fracture toughness of 

Protemp 3 Garant® significantly more than polyethylene fiber 

(p<0.005). 

 

 

To summarise: 

1. Coldpac® has less fracture toughness than Protemp 3 Garant®. 

2. A 1 mm stainless steel wire and everStick C&B fiber® increases 

the fracture toughness of Protemp 3 Garant® and Coldpac®, while 

Construct® reinforcing braid does not. 

3. Reinforcement of both types of resins with stainless steel wire, 

provides the highest fracture strength to the clinician, but 

aesthetics and availability of space may restrict its use. 

4. Where aesthetics is of concern, everStick C&B fibers® seems to 

be the most successful when reinforcing Protemp 3 Garant® as 

well as Coldpac®. 

5. The mixing ratio of polymethyl methacrylate materials may be of 

critical importance in the manufacturing of provisional fixed partial 

dentures. 
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