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Chapter 1

Introduction

The structure from motion (SfM) problem is that of determining 3-dimensional (3D) in-

formation of a scene from sequences of 2-dimensional (2D) images [59]. This information

consists of object shape and motion and relative camera motion. In general, objects may

undergo complex non-rigid motion and may be occluded by other objects or themselves.

These aspects make the general SfM problem under-constrained and the solution subject

to missing or incomplete data.

Humans learn to solve the problem early in life. When we move, we know the motion of

our eyes (cameras) relative to the world and can discern the shape and motion of objects

around us.

Figure 1.1 shows 4 frames of an artificial image sequence. To the human eye, any one of

the four images does not provide enough data to determine much 3D information (depth,

in this case). However, when viewing a sequence of images, the result is a vivid impression

of shape and motion in all three dimensions.

1.1 Applications of SfM

Structure from motion finds application in [30, 31, 55]

• robot navigation;

• medical imaging, e.g. tomography;

• human motion capture for

– human computer interfaces;

1



CHAPTER 1. INTRODUCTION 2

– analysing and adjusting athletic performance;

– diagnosing medical conditions.

Each application brings with it its own set of assumptions and considerations. Robot

navigation normally takes place within a static environment. The 3D structure to be recon-

structed is that of a rigid scene. In other words, the observed motion is caused by camera

translation and rotation only. The same is true for medical imaging but here, we require the

reconstruction of 3D volume elements. This is different from the previous example, which

entails finding the depths of points on surfaces in 3 dimensions. Human motion reconstruc-

tion poses the problem that observed 2D motion is not caused by camera movement only. It

could also originate from movement of the observed subject. We need to model the various

types of possible motion to allow successful reconstruction.

These applications and the particular problems that they pose give rise to a natural taxon-

omy of structure from motion problems and their solutions.

1.2 Taxonomy of SfM

In this computer vision problem, we are actually trying to do better than the human visual

system. Human beings have two eyes and thus stereo vision; stereo vision allows fast

and relatively simple reconstruction of 3D data from two simultaneous 2D images. Here,

however, we are trying to reconstruct the same 3D information by using only one image.

To realise that this is feasible, one needs merely to walk around with one eye open and note

that it is still possible to perceive depth.

Apart from assuming one camera only, we make two more assumptions. The first is on the

type of camera used and the second on the type of motion that is being observed. These

are discussed in detail in Chapter 3. For now, we note that the human eye and cameras are

well approximated by the pinhole perspective camera model. In this model, objects that

are farther away appear smaller and the projections of lines parallel to the camera view axis

appear to converge at a point on the image plane.

The type of motion can often be viewed as rigid, elastic or articulated [1]. Other motion

models do exist—most notably, fluid motion—but do not concern us as far as human motion

capture is concerned. Rigid motion includes simple objects as well as static scenes. Elastic

objects may deform in any continuous manner and the elastic model describes the motion of

the human lips, face and thorax well. Articulated motion describes the movement of rigid

limbs connected by joints and describes the motion of human arms, legs and hands well.
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Figure 1.1: Frames 1, 21, 41 and 61 of an artificial image sequence

Figure 1.2: A simple model of the human skeleton
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It is with the articulated subpart of the structure from motion problem that we concern

ourselves in this thesis. The application of recording Sign Language1 is mentioned in the

title of this thesis and relies on the modelling of articulated motion. Articulated motion is

piecewise rigid motion [1] constrained by the presence of joints connecting the rigid parts.

1.3 Objectives

It is in implementing on a computer this process of forming some internal 3D representation

of objects based solely on a monocular sequence of 2D images that we are interested. Broadly

speaking, we want to improve on existing motion capture systems. From this arise two

questions—

• What are the existing motion capture systems?

• What improvements can be made to them?

Chapter 3 answers the first question and Chapter 4 attempts an answer to the second. We

present a brief overview of the first answer here.

1.3.1 Parts of the Problem

The whole process consists of 2 parts, viz. tracking and reconstruction; we treat these parts

as independent problems. There is work on integrating tracking and reconstruction for more

accurate and robust solutions [62].

We want to convert raw pixel video data to a vector representation of points in 3D space.

This goal is achieved by first extracting time-variant 2D vector data from the pixel data

and then reconstructing the 3D vector data.

It is also possible and in some applications desirable to do some post-processing on the

reconstructed model. This can include solid object reconstruction [21, 40] and object tex-

turing. We will not discuss these topics in this study.

1Sign Language is capitalised throughout this text, as it is the proper name of a language.
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Feature Tracking

The first part of the problem is known as feature tracking [75, 53, 6, 7]. This is essentially

the problem of inter-frame similarity matching of small windows around points2 in the video

sequence. Input noise and occlusion place a limit on the accuracy that can be obtained.

Noise in the video recording makes the tracking of features error prone and occlusion of

image areas makes tracking of points in those areas impossible.

Occlusion is the disappearance of features due to one object obscuring another or itself

from the view of the camera. When an object obscures parts of itself, we refer to it as

self-occlusion. Ideally, a tracker should be able to detect occlusion and disocclusion and

continue following occluded features once they reappear. This is not feasible since the

tracker acts on low-level image data only. In a system where a feature tracker and vertex

reconstructor is integrated, it could be possible to recover occluded features since the 3D

locations of vertices are known to within some error bound [61, 62].

Vertex Reconstruction

The second step is to recover 3D information of the vertices moving in 2D. With vertex re-

construction, we use the change in the 2D vertex coordinates to make conclusions regarding

the underlying 3D structure that is causing the motion.

In general this is a difficult problem. If nothing is known about the objects that caused

the observed 2D motion, the number of degrees of freedom in the motion is large. In the

worst case, each vertex can move independently in three dimensions, to give 3N degrees of

freedom.

In order to make a solution feasible, limiting assumptions are made. There are assump-

tions on the type of camera used to record the motion and on the type of motion that is

occurring. The 3D to 2D projection performed by the camera is approximated using one

of the orthographic, perspective, weak perspective or paraperspective camera models. The

motion is classified as either rigid, elastic, articulated or some combination of these.

Under different assumptions, different solutions to the SfM problem have been developed.

Early work by Ullman [63] used an iterative approach to solve under assumptions of or-

thography and near-rigid motion. The work of Tomasi and Kanade [57, 58] introduced the

matrix factorisation approach to solving the structure from motion problem under assump-

2There are other features that can be tracked. These include lines, curves [28, 29, 35] and surface patches

[51, 52].
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tions of orthography and rigidity. This approach was later extended to handle multiple

independently moving rigid objects [15, 16] and to use the more general weak perspective

[11, 32] and paraperspective [46] camera models.

The reason why matrix factorisation could be used so effectively is that the system of

equations that determine the coordinates of projected 2D coordinates is linear. In the case

of the perspective camera model, the projection equations are non-linear and the matrix

formulation does not apply. Azarbayejani and Pentland [3] present a method for performing

reconstruction in the perspective case (but still under the assumption of rigidity). They use

the extended Kalman filter (EKF), a well-known technique for recursively recovering the

state of a system with known state-equations that generate measured outputs [72].

The algorithm presented in [3] goes so far as to present a unifying model of the perspective

and orthographic cases; the orthographic case being a special, limiting case of the general

perspective case. The algorithm can also recover the camera focal length, a parameter of

the perspective model that is dependent on the physical recording equipment used.

Existing work on reconstructing non-rigid objects under the perspective camera model is

not based on the idea of factoring matrices or the Kalman filter for the linear and non-

linear cases. Here, a very general non-rigid template model is defined and the shape of the

template may be changed by adjusting certain parameters [13, 74]. Next, the shape of the

template is adjusted recursively to match that of the object under consideration by varying

the template parameters through solving some minimisation problem on the error in the

object representation.

Model-based Versus Model-free

The intended application of this study is human motion capture in the form of recording

Sign Language. Much of the existing work on human motion capture assume a known a

priori model of human motion and treats the motion capture problem as a model parameter

fitting problem [9, 10, 17, 18, 48].

This approach constrains the number of degrees of freedom to be discovered considerably.

For example, a basic model of the human skeleton (see Figure 1.2, adapted from [17]) has

12 segments or limbs and 10 joints for a maximum of 39 degrees of freedom—3 per segment

for rotation and 3 more for global translation of the skeleton. In reality there are even

fewer degrees of freedom since not all limbs can undergo unconstrained rotation around

their joints. Contrast this with 3 degrees of freedom for each tracked point on the video

sequence when general motion is allowed.
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Using an a priori kinematic model has 2 disadvantages—

• the physical dimensions—especially lengths—of the limbs are not known, these pa-

rameters typically have to be measured and adjusted for each motion capture subject;

• if the structure from motion problem is to be solved for any articulated object other

than a human, a new kinematic model must be created by hand before reconstruction

can be performed.

The latter consideration is especially limiting as the 3D kinematic model is often part of

what we want to find in the first place.

1.3.2 Research Question

From the discussion above, we phrase our research question as follows: Is accurate model-free

articulated motion capture possible?

We make no assumptions on what caused the observable motion, other than that it is artic-

ulated. Still, we will apply the methods developed to human motion capture—in particular

to the capturing of Sign Language motion.

1.4 Thesis Layout

Chapter 2 provides some background information on human motion capture. This places

into context the application for which this work is intended—Sign Language vocabulary

acquisition. Chapter 3 reviews the current literature on the structure from motion problem

and introduces the notation used in the rest of the thesis. Chapter 4 presents theoretical and

implementational advances made in solving the articulated structure from motion problem.

Chapter 5 presents experiments in the reconstruction of artificial and real data and discusses

the results. Chapter 6 concludes the thesis and suggests areas of study for future work.
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Human Motion Capture

The recording and analysis of human motion has been of interest for many years before

the advent of digital video equipment and computers. A noteworthy example is the work

of Leonardo da Vinci (1452–1519), which records the dynamics of human motion with

painstaking accuracy in the form of technical sketches and drawings [36]. With photo-

graphic equipment came what is regarded as the first movie of human movement. In 1884,

Eadweard Muybridge used a battery of still cameras to record people walking under various

conditions, e.g. carrying a boulder [9, 10]. With the introduction of computers of suffi-

cient computational power, the automatic and real-time analysis of recorded human motion

became a reality. Now, such recordings are used to construct virtual people in movies, com-

puter games and interactive environments, to diagnose sports injuries and certain diseases,

and to record and interpret human gestures and Sign Language.

2.1 Definition

A broad definition of motion capture is the recording and analysis of motion. To make this

more specific to the subject of interest here, viz. humans, and the equipment commonly

used, we consider human motion capture to be the recording of human motion using a

digital video camera and subsequent analysis of the motion on a digital computer.

2.2 Applications

Human motion capture finds many applications in industries ranging from medicine and

sport to entertainment. The generalised, abnormal or characteristic movement of a person

8
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or persons is recorded and, where relevant, used to make diagnoses or recommendations.

2.2.1 Dynamics of Human Motion

The nature of competitive sports has led to the need for various sophisticated means of

motion analysis. Early systems based on video simply recorded an athlete in motion; anal-

ysis was then performed by people—including the athletes and trainers—by using video

playback facilities.

3D motion capture allows the viewing of sports footage from any angle [68] as well as

the overlaying of an individual’s motion over model motion for the sport under considera-

tion. Thus, individual performance may be enhanced by making adjustments to movement

through training. A trained coach with full understanding of human motion for the sport

is still needed, but he is furnished with more accurate information upon which to base his

recommendations.

In a similar fashion, motion capture is also used to diagnose and correct injury. This takes

two forms: preventative training and recovery therapy. By analysing the walking motion (or

gait) of an athlete, under or over-developed muscle groups can be identified and retrained

before injury occurs. This provides the advantages of improving an athlete’s performance

while lowering the risk of injury.

Motion analysis of recovering patients brings us to the field of physiotherapy rather than

sport. Gait analysis is used to locate injured muscle groups in sports injury cases but is also

used to diagnose cerebral palsy and osteoarthrosis [67]. Motion capture is used to diagnose

patient condition, to prescribe treatment and to track patient recovery in cases of injury or

illness.

2.2.2 Human Computer Interface

In the field of human computer interfaces (HCI), the transfer of information from the

computer to the user has progressed by leaps and bounds. High-quality surround sound

audio and rendered 3D visuals through VR goggles provide an immersive environment.

The transfer of information from the user to the computer needs to progress equally fast

for properly user-oriented systems. Real-time motion capture allows a user to manipulate

objects in a virtual environment directly rather than through a traditional keyboard or

pointer-based input device. Existing systems can already perform gaze tracking and data-

glove hand tracking to provide a more intuitive and immersive environment [48, 49].
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Training, design and design testing often require people to interact with devices that require

great cost to produce and maintain. In many cases these devices can be simulated in a virtual

environment—with reproduction of the virtual devices at little or zero marginal cost. In

the case of design testing, a design can even be changed in real-time as users interact with

a prototype and design flaws are discovered.

Capturing Sign Language—one of the concerns of this project—also opens doors for non-

traditional interfaces with deaf users. Such a system may integrate manipulating gestures

with semantic gestures. Here, the recognition of semantic gestures will take the place of

voice commands in speech recognition systems.

2.2.3 Computer Graphics

In the making of film and television media, applications of motion capture abound. Amongst

these applications are

• the introduction of virtual or animated actors;

• human-like motion for characters in animated films;

• simulated stunts where there is too great a risk to stunt artists; and

• crowd scenes created by duplicating the motion of a small number of actors.

Some of these applications are simply cost and effort saving techniques while others make

viable the previously impossible.

Also in the entertainment industry, computer game creators have employed many of the

techniques used in film and other industries to improve their products. In sports simulation

games, the technology used to improve the performance of athletes is used to generate the

realistic motion of virtual athletes. 3D motion capture of anything from a golf or tennis

swing to the throw of a fishing line has been used to create interactive environments for

desktop athletes. In first person action games, the visual rendering of characters in games

has grown in detail and complexity to the point where real-time facial animation is visible—

captured facial motion is used to create realistic animations.

2.2.4 Sign Language Understanding

The motion capture applications mentioned in Section 2.2 focus mostly on what Moeslund

[43] terms body analysis. That is, studying human body movement for the purpose of HCI,
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computer graphics, etc. Two other subclasses of human motion analysis are face analysis

and gesture analysis. These are more interesting to us for application in creating automated

Sign Language understanding and translation systems. The grammar of Sign Language is

communicated in facial expressions, the shape and motion of the hands and arms, and the

orientation of the torso.

In [1], motion is separated into a number of classes, each representing a type of motion.

Three of the most important classes are rigid, elastic and articulated motion. Two of these,

namely elastic and articulated motion, find application in Sign Language motion capture.

For facial analysis, elastic motion capture provides an accurate model. The deformation

of the mouth, cheeks and eyebrows are all elastic and the work of [11, 62] has shown that

facial expressions can be recovered from low-quality video footage.

Gesture analysis is best modelled as articulated motion, i.e. the movement of rigid limbs

around joints connecting the limbs. The movements of arms, hands and fingers fit this

description.

2.3 State of the Art

Moeslund [43, 42] presents an overview and taxonomy of the methods of motion capture

described in the literature. The taxonomy is based on the elements of

• initialisation;

• tracking;

• pose estimation; and

• recognition.

The first three of these are of importance to us in solving the structure from motion problem

and the last deals with analysing the meaning behind a particular motion or sequence of

motions.

The initialisation category differentiates methods based on how much of the process is

automatic and how much requires manual user input. Initialisation is that which needs to

be done by the user before the computer software takes over. Many methods [9, 10, 17, 18,

48, 49] require a kinematic model of human motion to be defined manually. The kinematic

model also needs to be customised to the subject under consideration since parameters such

as limb lengths vary. The system of Bregler and Malik [9, 10] requires the user to click on
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joint locations in the first frame of video. From here, the initial parameters (pose angles

and limb dimensions) are estimated. DiFranco et al. [17] require the specification of joint

locations in a number of key frames.

Some kinematic models are more restrictive and take constraints on joint rotation into

account [17]. Not all limbs of the human body can undergo free 3-dimensional rotation. For

example, the femur and tibia can undergo rotation in one plane only around the knee joint.

By encoding such information into the kinematic model—and thus constraining it—more

robust motion recovery can be performed.

Methods using kinematic models can estimate motion from low-quality video data and with

significant occlusion [9, 10, 17, 48, 49]. The robustness and accuracy of these methods

stem from the large number of constraints placed on articulated motion by the specific

articulated model. The major disadvantage of these models is that, in practice, they have

to be initialised manually. There is work to either estimate the initial pose of a kinematic

model automatically or generate a model from scratch. These methods require restrictive

assumptions such as

• the availability of multiple camera views [18, 31];

• that motion is in the plane perpendicular to the camera view axis only [37, 38, 39].

Another aspect of initialisation is whether the camera or cameras need to be calibrated.

Calibration is the procedure by which the parameters of the cameras—e.g., relative positions

and orientations, focal lengths and lens characteristics—are determined. In [18, 48, 49]

calibration is performed as part of the initialisation of the system. The major disadvantage

of a setup that requires calibration is that it must be reinitialised whenever the parameters

of the cameras change. In practice, this precludes the possibility of moving cameras.

The tracking category covers the different methods and assumptions under which image

features are located and tracked. An image feature is a pixel or group of pixels that corre-

sponds to some point or region of interest on the image being observed. In the literature the

movement has been towards markerless motion capture. A marker is typically a white circle

or sphere placed on a dark suit worn by the motion capture subject. The high contrast

between the markers and the suit allows better tracking. None of the papers referenced in

this section rely on markers; in contrast, most commercial motion capture systems still use

markers or special gloves or suits. Markers have the advantages that

• they can be placed specifically on important points on the body, e.g. joints, eyebrows

and lips;
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• they allow fast and very high-accuracy tracking.

In contrast, markerless tracking is still more susceptible to noise and the occlusion of tracked

features is difficult to handle, especially in the general case—when no information about

the physical cause of the observed motion is known.

Markerless motion capture does, however, have applications that are not open to the use of

markers:

• surveillance;

• low-cost capturing in out-of-the-way places where unwieldy equipment is not feasible;

• unencumbered HCI [48, 49].

The focus in this section has, so far, been on reconstructing articulated motion. Another

aspect is the reconstruction of elastic motion, such as that of the face and the torso. Bregler

et al. [11] use a matrix factorisation technique to perform reconstruction in these cases—

basis shapes and deformation parameters that describe the motion are recovered. This will

be described in more detail in Chapter 3, along with a discussion on the reconstruction

techniques used under other assumptions.

2.4 Motion Capture and Structure From Motion

From the definitions of human motion capture and structure from motion, we see that the

first is a sub-part of the second. We are attempting to find a description in 3 dimensions of

the motion of a human subject and do so by using structure from motion methods tailored

to human-type (elastic and articulated) motion.

Because we know the type of motion being reconstructed and can often control the environ-

ment in which motion capture is done, we can make assumptions that allow more accurate

and robust solutions to the structure from motion problem.

Despite this, there are reasons for discarding these assumptions that have proven so useful.

More general motion capture solutions can build kinematic, elastic and other models rather

than requiring hand-crafted ones; and estimate and refine model parameters rather than

requiring them as input.
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2.5 Summary

Human motion capture is a field with many industry applications. We have discussed a

number of these applications and the role that developments in computer vision played

in making them feasible. It was shown that the state of the art still requires manual

initialisation or tuning of system parameters to achieve good measurements. The use of

model-based methods—where the models are based on human kinematics—are prevalent

and requires the careful construction of new models for new types of objects or motion.

In the rest of this thesis, we explore and develop model-free solutions to motion capture.

Such solutions would automate much of the manual work currently required and constitute

a step towards computer vision systems for generic motion and structure.



Chapter 3

Structure From Motion

Here, we present an overview of the theory and methods used for structure from motion

analysis found in the literature. The methods are categorised based on the type of structure

that is recovered and on the mathematical techniques used in the reconstruction process.

Section 3.1 introduces the notation used in this work and some basic theory on coordinate

systems and camera models. Section 3.2 provides an overview of the structure models

of 3-dimensional objects found in the literature. Section 3.3 discusses the reconstruction

techniques used to solve the structure from motion problem under various assumptions.

3.1 Background

When objects are observed by a camera, there are a number of coordinate systems to take

into account. There is the world coordinate system in which all objects reside. This system

has some arbitrary origin and orientation of its axes. In practice, we are interested in

relative distances and orientations only and do not refer explicitly to the world coordinate

system.

Each object has an object coordinate system. Here, the coordinate origin and the orientation

of the axes are defined relative to the object and in some intuitive manner. For example,

the origin is at the centre of mass of the object, the y-axis points up, the x-axis left and

the z-axis forward. This gives rise to a right-handed coordinate system.

Finally, there is the camera coordinate system. The camera is assumed to be located at a

point in 3D space and we define the direction in which the camera is facing as the z-axis,

up as the y-axis and left as the x-axis.

15
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We relate one coordinate system to another with a linear transformation that describes the

translation of the origin and rotation of the axes. Such a transformation is used to determine

the positions of objects—with known coordinate systems—in the camera coordinate system.

This is discussed in further detail in Section 3.1.2 below.

The purpose of the camera is to project objects in 3D space onto a 2D plane known as

the image plane. The information on the image plane is what is seen by the viewer of the

camera output. The camera records this projected image at regular discrete time intervals.

The images thus created are known as a sequence of frames. The information recorded on

the frames are 2D projections of points in 3D space.

The 3D location of a point has the form

p =











x

y

z











. (3.1)

This is a standard notation when manipulating points in three dimensions. The location of

the projection of the point on the image plane is written





u

v



 . (3.2)

The image plane is parallel to the xy-plane of the camera, the u- and v-axes are parallel to

the x- and y-axes, respectively, and the z-axis intersects the image plane at its origin.1

3.1.1 Camera Models

Here, the term camera model refers to the way in which points in the camera coordinate

system are projected onto the image plane. The perspective camera model is the most

intuitive since it conforms to human vision. In this model, straight lines converge in the

distance from the observer and objects appear smaller as they become more distant.

The mathematical model for the perspective camera is [3]





u

v



 =
f

zc





xc

yc



 (3.3)

where [xc yc zc]
T is a point in the camera coordinate system, f is the focal length of the

camera and [u v]T is the projection onto the image plane. In this formulation, the origin

1There are camera models that allow deviations from this. E.g., the image plane can be at an angle to

the xy-plane. For a discussion of these variations see [71].
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(a) (b)

(c) (d)

Figure 3.1: The four camera models: (a) perspective, (b) orthographic, (c) weak perspective,

and (d) paraperspective. The solid line in each figure represents the image plane and the

intersections of the dotted projection lines with the solid line represent the image coordinates

of the observed points.
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of the camera coordinate system is at the centre of projection (or location of the camera

lens) and the distance from the centre of projection (COP) to the image plane is f . The

coordinates [u v]T are simply the intersection of the line connecting the COP and the point

coordinate [xc yc zc]
T with the image plane at z = f . See Figure 3.1a.

Even though the perspective camera model is the most intuitive, it is non-linear. The

non-linearity is caused by the division by zc in (3.3). A class of camera models know as

the affine models attempts to approximate the perspective model as closely as possible

while maintaining linearity. This is desirable since it allows the formulation and solution of

camera projection problems using linear methods.

The orthographic camera model [15, 32, 58] is the simplest of the affine models. In the

orthographic model, points in the camera coordinate system are projected onto the image

plane using lines parallel to the plane rather than lines converging at the COP (Figure

3.1b). Here, the projection equations are




u

v



 =





xc

yc



 . (3.4)

Because the lines of projection are parallel to the image plane, the z-component of any point

is simply discarded. The orthographic model is accurate only if the objects in the view of

the camera have little depth, i.e. the difference between the smallest and largest zc-values is

small. Also, translation along the z-axis of either an object or the camera is not observable

in the projected image.

The weak perspective (also known as scaled orthographic) camera model [11, 32] addresses

some of the weaknesses of the orthographic model. Here, the projection equations are




u

v



 =
f

zc





xc

yc



 , (3.5)

where zc is the average z-coordinate of all points being projected onto the image plane.

This formulation is equivalent to

1. performing an orthographic projection onto the plane through the centroid of the

projected object and parallel to the image plane; and then

2. performing a perspective projection of the resulting coordinates onto the image plane

(Figure 3.1c).

The weak perspective camera does still not model the depth difference between points

belonging to the projected object but does model motion of the entire object (or the camera)

along the z-axis.
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The paraperspective camera model [32, 46] is related to the weak perspective model and can

also represent the scaling effect of objects moving along the z-axis. Furthermore, the model

can represent the rotational effect when an object is displaced from the centre of the image

plane. With a perspective camera, objects further from the centre of the image plane are

viewed at a different angle from the COP than those at the centre.

As with the weak perspective projection, the 3D points are first projected onto a plane

parallel to the image plane and through the centroid of the object and then projected onto

the image plane. Here, however, the projection onto the first plane is not orthographic

but along lines parallel to the line connecting the COP and the object centroid (see Figure

3.1d). Thus, the rotational effect of an object far from the centre of the image plane is

approximated.

In [3], the orthographic and perspective camera models are unified. This is accomplished

by making two representational changes to (3.3):

• the camera coordinate system has its origin on the image plane rather than at the

COP; and

• a new parameter, the inverse focal length β, is defined as β = 1/f .

The perspective projection can then be expressed as





u

v



 =
1

1 + βzc





xc

yc



 . (3.6)

This formulation effectively represents both the perspective and orthographic models. The

orthographic model can be interpreted as the limit case in which the focal length of the

perspective camera goes to infinity. Here, using the inverse focal length, the orthographic

model is obtained by substituting β = 0 in (3.6). This formulation exhibits better numerical

stability than the standard perspective model, (3.3), when the focal length becomes large.

3.1.2 Structure and Motion in 3D

When points in 3D move—rotate around the origin and translate—the motion can be ex-

pressed using matrix algebra [58],

Rfpi + tf , (3.7)

where Rf is a 3 × 3 matrix that describes the rotation and tf is a 3 × 1 column vector

that describes the translation of point pi in frame f . Like all rotation matrices, Rf is
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orthogonal—

RfR
T
f = I. (3.8)

We can rewrite (3.7) more compactly using the homogeneous representation of 3D points

[15]—

pi =















xi

yi

zi

1















. (3.9)

Note that pi still has the same 3 degrees of freedom (DOFs) as before. But now, we can

write (3.7) as

Mfpi (3.10)

where Mf is a 4 × 4 motion matrix, defined in terms of Rf and tf—

Mf =





Rf tf

01×3 1



 . (3.11)

Note that (3.7) and (3.10) are equivalent.

The structure and motion representation above is used in most structure from motion al-

gorithms based on matrix factorisation methods (Section 3.3.1). In other methods, the

representation of structure and motion is more varied. We discuss some of these represen-

tations next.

The representation in (3.1) is popular because of its simplicity but provides too many

DOFs—3 per point—for many structure from motion applications, especially those that

assume object rigidity. In [3] objects are assumed to be rigid and the camera model of (3.6)

is used. Here, 3D points are represented in terms of their image positions in the first frame











xi

yi

zi











=











ui

vi

0











+ αfi











ui β

vi β

1











. (3.12)

The inverse focal length β is constant in an image sequence and the image positions ui and

vi are measurable. This formulation allows the representation of a 3D point in any frame

with one additional parameter per frame, αfi. This reduction of the number of parameters

allows greater noise tolerance during reconstruction. One disadvantage is that the position

of a point in all frames is influenced by its image coordinates in the first frame. Thus,

noisy or inaccurate measurement of the features in the first frame will adversely influence

all further computations.
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When recovering the 3D motion of objects, the motion matrix, Mf , in (3.10) has more

parameters to estimate than there are DOFs. Particularly, in (3.11) the rotation sub-

matrix, Rf , has 9 entries but only 3 DOFs, which means that the entire motion matrix,

Mf , has 6 DOFs—3 for translation and 3 for rotation.

Two other methods of representing rotations are the axis-and-angle and unit quaternion

representations. In the former—also known as the Euler angle notation—the axis

nT = [n1 n2 n3] , (3.13)

and the scalar angle θ determine the rotation. The axis is of unit length. The rotation

consists of rotating all points through an angle of θ around the axis at the origin and

pointing in the direction of n.

This representation has intuitive appeal but has unwanted computational characteristics.

Rotations are not uniquely defined—a rotation of θ around n is equivalent to a rotation of

−θ around −n. Also, when considering change in rotation across a number of frames, the

rotational velocity is not easily defined using Euler angles.

The unit quaternion [3, 12] eliminates these problems. A quaternion is simply a length 4

column vector and, in the case of representing rotation, is related to Euler angles by

q =















q1

q2

q3

q4















=















n1 sin θ
2

n2 sin θ
2

n3 sin θ
2

cos θ
2















. (3.14)

The vector q is of unit length.

Quaternions are related to the rotation sub-matrix of (3.11) by

R =











q2
1 − q2

2 − q2
3 + q2

4 2(q1q2 + q3q4) 2(q1q3 − q2q4)

2(q1q2 − q3q4) −q2
1 + q2

2 − q2
3 + q2

4 2(q2q3 + q1q4)

2(q1q3 + q2q4) 2(q2q3 − q1q4) −q2
1 − q2

2 + q2
3 + q2

4











(3.15)

A quaternion is a compact representation of rotation. It encodes the 9 entries of a rotation

matrix in 4 parameters (still with 3 degrees of freedom).
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A motion matrix, containing rotation and translation, can be represented as a twist [9, 10]

ξ =



























v1

v2

v3

ωx

ωy

ωz



























or ξ̂ =















0 −ωz ωy v1

ωz 0 −ωx v2

−ωy ωx 0 v3

0 0 0 0















. (3.16)

Here the 6 DOFs of the motion matrix are encoded in the 6 entries of ξ. This representation

is related to the motion matrix in (3.11) by the matrix exponent,

M = eξ̂. (3.17)

This is known as the exponential map of the twist. As with quaternions, twists represent

motion compactly and allow structure from motion methods that are more robust to noise.

Using this formulation, it is also possible to incorporate velocity and rotational velocity by

differentiating (3.17). This is approximated by taking the Taylor expansion of (3.17) and

truncating the series.

3.2 Structure Models

Initially, the literature on structure from motion was concerned with recovering rigid struc-

ture from image sequences [12, 58, 63]. This was later extended to handling multiple inde-

pendently moving rigid objects [15, 16]. Currently, there are still efforts on improving the

reconstruction of rigid objects but there are growing efforts towards handling more complex

non-rigid motion.

Within non-rigid motion, the reconstruction of fluid motion and articulated and elastic

objects receive most attention [1]. The reconstruction of articulated and elastic motion

finds application in human motion capture [9, 10, 11, 17, 18, 48, 62]. Biological motion can

often be modelled as either elastic motion—e.g., a beating heart [41]—or fluid motion—e.g.,

growing plants [4].

We discuss each of the rigid, elastic and articulated models of motion.

3.2.1 Rigid Objects

There is evidence that rigid objects and the rigidity of non-rigid objects are important for

discerning 3D information in the human visual system [63]. This supports their use as a
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starting point for structure from motion.

A rigid object maintains the distances between all points in or on the object [63]. This also

implies that all angles in or on the object remain constant [1]. The rigidity assumption places

constraints on the relative motion of points and their projections onto the image plane. The

points all undergo the same rotation and translation under rigidity. The disadvantage of

the rigidity assumption is that it limits the use of structure from motion solutions. It is

very rare to have a single rigid object in practice. There is normally at least a background

present in an image sequence.

The main practical application under rigidity is the analysis of an image sequence formed

by a moving camera in a static scene [5, 22, 45, 46]. Here, the rigidity assumption holds

since all elements in the scene are stationary and the information provided by translating

and rotating the camera in the scene can be used to perform reconstruction.

3.2.2 Multiple Rigid Objects

To make the reconstruction of moving objects in a scene possible, we consider multiple rigid

objects. Here, the entire image sequence is not rigid but is assumed to consist of rigid parts.

The motions of the objects are assumed to be independent [15].

This model still has the same constraints as in the previous section, but applied to each

rigid part of the scene. This allows more general motion and increases the complexity of

solving the structure from motion problem. The additional complexity is contained mainly

in finding the rigid segmentation of the scene [15, 33]—i.e. discovering which parts of the

projected image belong to which objects.

3.2.3 Articulated Objects

Articulated objects are a degenerate case of the multiple rigid object motion described

above. An articulated object consists of a number of limbs connected by joints. Each limb

is still assumed to be rigid but the motions of the rigid limbs are now interdependent. A

relevant example is the human body. Here, methods are needed to segment the interde-

pendent motions [24, 34, 60, 65] and to recover the locations of joints in the articulated

structure formulation [56].

A single articulated object is known as an articulated tree and is assumed to have tree-like

connectivity between limbs. Each node in the tree has exactly one parent—except for one

node, which has no parent and is known as the root of the tree. It is assumed that there are
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(u, v, f)

(0, 0, f)
(0, 0, 0)

(x  , y  , z  )C C C

(u, v, 0)

(0, 0, 0)
(0, 0, -f)

(x  , y  , z  )C C C

(a) (b)

Figure 3.2: The different coordinate systems used when describing the perspective camera

model with (a) focal length f and (b) inverse focal length, β, as camera parameter. A point

at (xC , yC , zC) in the camera coordinate system is projected onto the image place at (u, v).

Note the difference in the coordinates of the COP in (a) and (b).

Left−upper−arm

Left−lower−arm

Left−thumb

Left−index−finger

Shoulders

Right−upper−arm

...

Left−hand

...

Figure 3.3: A partial representation of an articulated tree that describes the human body.

The shoulders node forms the root of the tree.
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no cycles in the graph representing the articulated connectivity. Figure 3.3 shows a partial

articulated tree describing the human body.

A collection of independent articulated trees is known as an articulated forest.

3.2.4 Elastic Objects

Elastic objects do not necessarily contain any rigid parts. Here the only constraint is some

measure of continuity [1].

In [63], the elasticity of an object is measured by the amount of non-rigidity that it displays—

i.e. how much the distances between object points change. [41] describes elastic motion as a

motion that is smooth spatially and temporally. An elastic object is described as consisting

of a linear combination of basis shapes in [11, 62, 61]. The immediate structure of the object

is a linear combination—weighted sum—of these basis shapes.

3.3 Reconstruction Techniques

The structure from motion problem is to recover the underlying 3D structure and motion

that produced an observed 2D image sequence. We have discussed the assumptions under-

lying different camera models and types of objects. These models determine the constraint

equations that can be used in a structure from motion algorithm.

We next classify structure from motion solutions based on the method used. We discuss

batch methods, sequential methods, model-based methods and direct methods.

3.3.1 Batch Methods

Batch reconstruction methods use all frames in the image sequence simultaneously to solve

the structure from motion problem. Because the number of frames may be large, such meth-

ods are not real-time but they provide greater accuracy than sequential methods (Section

3.3.2).

These methods are based on matrix factorisation as introduced in [57]. Here, it is assumed

that a number of point features are tracked through an image sequence. Each feature is

described by its position




ufi

vfi



 (3.18)
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where we use the subscripts f and i to indicate frame f and point i, with 1 ≤ f ≤ F and

1 ≤ i ≤ P . F is the number of frames in the image sequence and P the number of points

being observed. These features are used to create the observation matrix

W =



































u11 u12 · · · u1P

v11 v12 · · · v1P

u21 u22 · · · u2P

v21 v22 · · · v2P

...
...

...

uF1 uF2 · · · uFP

vF1 vF2 · · · vFP



































. (3.19)

This matrix is 2F ×P and will have rank at most min(2F, P ). The exact rank of W depends

on the type of structure that caused the motion under consideration (Section 3.2) and the

camera model used (Section 3.1.1).

In an early formulation [58], under the assumptions of

• rigidity,

• the orthographic camera model, and

• that motion consists of rotation only,

it is shown that rank(W) = 3. The latter assumption was later extended in [15] to include

translation; in this case rank(W) = 4.

In [26], it is shown that rank(W) ≤ 4 for affine camera models (orthographic, weak per-

spective, paraperspective) and rigid motion. When using the perspective camera model,

rank(W) ≤ 8. The low rank of W under various assumptions is derived next.

We start by constructing a model for the observed motion, W, under rigidity and orthog-

raphy. At each frame of the image sequence, the motion of each point on the rigid object is

modelled as in (3.10). This yields the 3D positions of the points in the camera coordinate

system. To perform orthographic projection, we write




u

v



 =





xc

yc



 (3.20)

=





1 0 0 0

0 1 0 0



















xc

yc

zc

1















(3.21)
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⇒





ufi

vfi



 =





1 0 0 0

0 1 0 0



Mfpi (3.22)

=





r
(f)
11 r

(f)
12 r

(f)
13 t

(f)
x

r
(f)
21 r

(f)
22 r

(f)
23 t

(f)
y



pi (3.23)

The final equation describes the observed location of a point on the image plane in a single

frame in terms of the first two rows of the motion matrix Mf and the 3D location of the

point. Note that the orthographic projection is encoded in the motion part of the equation.

(3.23) allows us to write

W = MS, (3.24)

where

M =

















M′

1

M′

2
...

M′

F

















and S =
[

p1 p2 · · · pP

]

. (3.25)

Here, each M′

f contains the first two rows of the motion matrix, Mf . Hence, M is 2F × 4

and S is 4 × P .

This formulation shows that the observation matrix can be factored into two matrices that

provide the solution to the structure from motion problem. M contains the 3D motion of

the object and S the 3D structure. Note that M does not yield the translation component

along the camera view axis, tz. This cannot be recovered since the orthographic camera

model discards information along the camera z-axis completely.

Since M is 2F × 4 and S is 4 × P , we concluded that the maximum rank of their product,

W, is 4.

The weak perspective camera model is described by (3.5), which can be written as





u

v



 =





l 0 0 0

0 l 0 0



















xc

yc

zc

1















, (3.26)

where l = f/zc. Combining this with (3.10) yields W = MS, with S as in (3.25) and

M =

















l1M
′

1

l2M
′

2
...

lFM′

F

















. (3.27)
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As in the orthographic case, rank(W) ≤ 4.

In contrast to the camera models just discussed, the perspective camera model is non-

linear. This means that no matrix formulation is possible. There is, however, still a rank

constraint on the observation matrix [26]—rank(W) ≤ 8. This constraint is useful to

denoise the observation matrix but does not stem from a matrix formulation that describes

how to perform reconstruction.

In [22], reconstruction under the true perspective camera model is performed by iteratively

applying a weak perspective reconstruction technique that converges towards the perspec-

tive solution. This method can reconstruct 3D motion, structure and focal length for a

single rigid 3D object.

To exploit the low-rank property of W, the singular value decomposition (SVD) is employed.

The SVD yields as output the matrices U, Σ and V such that

Am×n = (Um×r)(Σr×r)(Vn×r)
T , (3.28)

where

UTU = I, (3.29)

VTV = I, (3.30)

and Σ is a diagonal matrix with the singular values of A arranged in descending order along

its main diagonal. The subscripts indicate the dimensions of the matrices—r is the rank of

matrix A.

In general, batch reconstruction using an affine camera occurs in two stages—

1. factoring W = M̂Ŝ using the SVD; and

2. finding A such that M = M̂A and S = A−1Ŝ using the 3D motion constraints.

The first step is completed by forming M̂ = UΣ
1

2 and Ŝ = Σ
1

2 VT . This yields the shape

and motion matrices up to an affine transformation—as represented by A in the second

step. A is calculated using the constraints of rotation

RfR
T
f = I (3.31)

for each 1 ≤ f ≤ F . The detailed method for this calculation is relegated to Appendix A.

The descriptions of reconstruction thus far have all been based on reconstruction of a single

rigid object under different camera models. Next, this is extended to handle other structure

assumptions.
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In [15, 16] multiple rigid objects are discussed. It is shown that the rank of W is 4N , where

N is the number of objects being observed. The motion equations have the form W = MS

with the following block structure

M =
[

M(1) M(2) · · · M(N)
]

and S =

















S(1) 0

S(2)

. . .

0 S(N)

















. (3.32)

Here, the method of reconstructing a single rigid object can simply be applied to each pair

of sub-matrices M(j) and S(j).

The greatest obstacle is that the features in the observation matrix are unordered in the

sense that consecutive columns do not necessarily belong to the same rigid object. The

columns of the observation matrix have to be permuted such that block structure of (3.32)

holds. In [15, 16], the shape interaction matrix is defined—

Q = VVT , (3.33)

where V is obtained from the SVD (3.28). It is shown that Q has the following property.

Qij 6= 0 if feature i and feature j belong to the same object

Qij = 0 if feature i and feature j belong to different objects
(3.34)

Since this property is invariant to motion, it can be used to determine the grouping of

features into objects.

Improvements to the method in [15, 16] have been proposed. These are based on

• different criteria for determining which entries of Q are 0 under noisy measurements

[19, 23];

• employing a graph matching algorithm [19]; and

• employing subspace separation on the measured feature tracks [33].

The shape interaction matrix property in (3.34) holds only in the case of independently

moving rigid objects. These objects may be line structures, planar structures or fully

3-dimensional. An important type of motion where this formulation cannot be used is

articulated motion. In this case, the motions of rigid parts are highly interdependent and

the shape interaction matrix reflects this by not having any 0 entries.
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Next, we consider the recovery of the structure and motion of elastic objects. The formula-

tion in [11, 61] describes elastic motion as a linear combination of a number of basis shapes

S(i)—
K
∑

i=1

l(i)S(i), (3.35)

where each S(i) is a 3 × P matrix describing a rigid shape and K is the number of basis

shapes. The elasticity is modelled by allowing the weights l(i) to vary. This allows the

smooth transition from one basis shape to another.

To cast this shape model in the formulation W = MS under the weak perspective camera

model, we write

M =















l
(1)
1 R1 l

(2)
1 R1 · · · l

(K)
1 R1

l
(1)
2 R2 l

(2)
2 R2 · · · l

(K)
2 R2

· · ·

l
(1)
F RF l

(2)
F RF · · · l

(K)
F RF















and S =

















S(1)

S(2)

...

S(K)

















. (3.36)

Here, Rf is the camera rotation at frame f and l
(i)
f is the weight assigned to basis shape

S(i) at frame f . In the formulation in [11, 61], camera translation is subtracted from each

frame before performing the matrix factorisation. The projection coefficients of the weak

perspective camera model are encoded in the weights of the basis shapes. The weights in

any frame sum to the weak perspective coefficient.

Note that M is 2F × 3K since each Rf is 2 × 3, and S is 3K × P . This places an upper

bound of 3K on rank(W). A drawback of this formulation is that K has to be determined

manually. The factorisation algorithm cannot discover it automatically and is sensitive to

its choice.

No matrix formulation for or upper bound on rank(W) for articulated motion was found

in the literature. We present original work on these topics in Chapter 4.

A final comment on batch methods is that they all employ the singular value decomposition

and that the behaviour of the SVD under noisy measurements is therefore important. The

SVD is useful in that it can be used to eliminate Gaussian noise by discarding small singular

values and has a numerically stable implementation [20, 47].

In reality, the Gaussian noise assumption is violated. Most importantly, the noise is cor-

related between features and the noise of a feature is directional. That noise is directional

can be inferred from, e.g., the feature tracking work of [53]. Here, it is shown that a feature

on the corner of an object or with a high texturedness is more reliable than a unidirectional

(or almost unidirectional) feature.
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This consideration motivates the development of a SVD framework that incorporates di-

rectional uncertainty in [27]. The observation matrix WT (in [27] row vectors are used to

represent feature tracks, rather than column vectors) is transformed using its inverse co-

variance matrix. The SVD is then applied to the resulting uncorrelated observation matrix.

In this matrix, all features—at corners or unidirectional—have the same reliability.

3.3.2 Sequential Methods

Sequential reconstruction methods maintain internal variables that allow estimation of the

structure and motion and update these variables with every frame of feature data. Conver-

gence of the variables to some stable values (or near-stable values with noisy measurements)

leads to convergence of the structure and motion estimates to the true structure and motion.

An advantage of sequential methods is that they are more suited as real-time SfM imple-

mentations than batch methods. Estimates of the structure and motion is available at every

frame and new frames are used to refine the current estimates.

Note that sequential methods frequently require that the input frames are processed in

order. This is in contrast with batch methods (Section 3.3.1), where the ordering of frames

in the observation matrix has no effect on the reconstructed structure and motion at each

frame.

Early work [63] was based on iterative refinement. Here, the current internal model of the

object is projected onto the image plane and the difference between projected and observed

feature positions used to update the object structure.

There are a number of sequential reconstruction methods based on the Kalman filter or

some variant thereof [2, 3, 12, 54, 66]. The Kalman filter is a set of equations that provides

an iterative approach to the least-squares method [72]. The equations model an underlying

process that generates observable data. The algorithm iteratively updates an internal rep-

resentation of the process state variables and compares the measured data to the expected

data. Based on the error between the expected and measured values, the current estimate of

the process state is updated. The Kalman filter is a linear estimator that assumes Gaussian

process and measurement noise. The extended Kalman filter is used to perform estimation

of non-linear processes. The unscented Kalman filter [64, 69, 70] is a more recent develop-

ment which handles non-linear estimation without the restrictive assumption of Gaussian

process and measurement noise.

A method that does not use a Kalman filter is presented in [44]. This work builds on

that of [58] and allows sequential reconstruction of rigid structure and motion using the
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orthographic camera model. At each frame the length P measurement vectors uf and vf

are used to update internal variables, which allow the estimation of the shape and camera

rotation at that frame. The sequential algorithm is designed such that no internal variables

are maintained of which the size grows with the number of frames processed.

The internal variables of the method consist primarily of a P × P matrix, Zf .

Zf = Zf−1 + ufu
T
f + vfv

T
f

Z0 = 0.
(3.37)

It is shown that

Zf = WT
f Wf , (3.38)

where Wf contains all the rows of the observation matrix for frames 1 through f . This

allows that the SVD of Zf provides much of the information contained in the SVD of Wf

without requiring the storage of a matrix that grows with the number of frames.

The 3 dominant eigenvectors of Zf are computed and used to maintain a stationary basis

of the shape space, i.e. vectors that span the rows of the 3 × P rigid shape matrix. This

basis can be used at any time-step to reconstruct the camera rotation and object shape.

The method is shown to converge to the solution found by applying the batch factorisation

method of [58].

3.3.3 Model-based Methods

Model-based methods use some parametric model on which the motion of features in an

image sequence is based. This is often found in human motion capture. Here, the under-

lying kinematic model of human motion, corresponding to human skeletal structure [18],

is assumed and used to constrain the possible structure from motion solutions. In [17],

joint angle constraints are used in addition to the kinematic constraints imposed by the

kinematic model. At any joint only a limited amount of rotation is possible by the limbs

meeting at that point. This information is employed to facilitate human motion capture.

In [9, 10], twists (3.16) and exponential maps (3.17) are used to represent kinematic mo-

tion. The initial configuration of the object is defined by indicating the locations of limbs

and joints on the first frame in the image sequence used for reconstruction. This manual

initialisation of the kinematic model is common, see also [17]. As part of the initialisation,

the length or size of the limbs needs to be defined as well as the initial position of the ob-

ject or person being tracked. However, see [18] where the locations of limbs are discovered

in a coarse-to-fine approach. Firstly, the major axis of the body is found using principal

component analysis, then other limbs are found progressively.
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3.3.4 Direct Methods

Direct methods use unprocessed image information—pixel intensities—to reconstruct depth

information at every point in the image sequence. This is more ambitious than the previous

methods, which are based on extracting features from the image and recovering the depth

information for these features only [25].

Central to these methods is the brightness constancy constraint [53],

I(x, y, t + 1) = I(x − u(x, y, t), y − v(x, y, t), t), (3.39)

which states that the image intensities at the next frame (time t + 1) can be obtained by

applying image motion (u, v) to the intensities at the current frame (time t). The Taylor

expansion around (x, y) of (3.39) is linearised to obtain the constraint

Ixu + Iyv + It = 0, (3.40)

where Ix, Iy and It indicate image derivatives.

To reconstruct dense depth information, the entire image is assumed to undergo similar

motion. The type of motion is defined by a set of equations known as the motion model.

The equations of the motion model are substituted into (3.40) to obtain an over-constrained

system. These equations are solved to determine overall image motion by estimating the

parameters of the motion model. The system is over-constrained because we construct one

equation per pixel of the image.

• The translation model [24, 53],

u(x, y) = a1

v(x, y) = a2,
(3.41)

describes uniform motion across the image at any instant in time. This model has

only 2 parameters to estimate, but cannot describe a wide range of motions.

• The affine model [24, 25, 53],

u(x, y) = a1 + a2x + a3y

v(x, y) = a4 + a5x + a6y,
(3.42)

is a good approximation for image sequences of distant scenes, e.g. footage of the

ground from an aeroplane.
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• The moving planar surface model [24],

u(x, y) = a1 + a2x + a3y + a7x
2 + a8xy

v(x, y) = a4 + a5x + a6y + a7xy + a8y
2,

(3.43)

is a pseudo projective transformation of a moving plane, which is also useful for

approximating objects or areas of the image sequence with little depth variation.

• The instantaneous velocity field model [25],

u(x, y) = −xyΩX + (1 + x2)ΩY − yΩZ + (TX − TZx)/Z

v(x, y) = −(1 + y2)ΩX + xyΩY − xΩZ + (TY − TZy)/Z,
(3.44)

is a 3D motion model in that the depth of each pixel is modelled in the parameter

Z. Further, (ΩX ,ΩY ,ΩZ) describes the camera rotation and (TX , TY , TZ) the camera

translation.

The advantages of direct methods stem from the fact that they estimate the overall image

motion, which is described with a low-dimensional parameter space, using a large number

of equations or constraints—one per pixel. This allows very high, even sub-pixel, precision

in motion estimation [25].

There is a strong correlation between these direct methods and methods for feature tracking

in images. Feature tracking is achieved by applying a direct method to a small window

within the image. As long as the brightness constancy constraint (3.39) holds within this

tracking window, the direct methods can be used on the pixels in that window to recover

their velocity.



Chapter 4

Advances in Articulated Structure

From Motion

This thesis focuses on the articulated structure from motion problem and some theoretical

and practical advances were made in exploring it. In Chapter 3, it was mentioned that no

matrix formulation for the articulated structure from motion (ASfM) problem was found in

the literature. The theoretical part of the advances made in this research describes a matrix

formulation for ASfM and derives an upper bound on the rank of the observation matrix.1

The practical section discusses the implementation of and improvements to a sequential

reconstruction algorithm for ASfM.

4.1 Matrix Factorisation

In Section 3.3.1 it was shown that the observation matrix, W, has rank 4N and can be

factored into motion and shape matrices with the block structure in (3.32) when the motion

of N independently moving rigid objects is considered.

4.1.1 Rank Constraint on the Observation Matrix

Articulated tree motion can be modelled with

rank(W) = 3n + 1, (4.1)

1The material in Section 4.1 was first presented as [50].

35
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where n is the number of segments in the articulated object. We can factor W = MS such

that each 2 × (3n + 1) row pair in M has the form

M′

f = lf
[

R
(1)
f R

(2)
f · · · R

(n)
f tf

]

, (4.2)

where lf is the weak perspective constant, R
(j)
f contains the first two rows of the rotation

matrix for segment j and tf contains the translation of the root segment—the segment with

no parent—at frame f .

The shape matrix has the form

S =





























S(1) O(1,2) O(1,3) · · · O(1,n)

S(2) O(2,3) · · · O(2,n)

S(3) · · · O(3,n)

. . .
...

S(n)

1T
p1

1T
p2

1T
p3

· · · 1T
pn





























. (4.3)

Here each 3 × pj matrix S(j) contains the coordinates of the jth segment in its local coor-

dinate system. The local coordinate system of a segment has origin at the segment point

of rotation, i.e. the local motion of a segment is described as a rotation only. Each 3 × pj

matrix O(k,j) describes the relationship between segments j and k (see (4.4) below for de-

tails). The last row of the matrix consists entirely of 1s and the notation 1T
pj

represents a

row vector of 1s with length pj. Finally, pj is the number of points in segment j such that
∑

j pj = p, the total number of points in the object.

If segment j has parent segment k,

O(m,j) = O(m,k) ∀ m = 1 . . . (k − 1),

O(k,j) = o(k,j) × 1T
pj

O(m,j) = 0(3×pj) ∀ m = (k + 1) . . . (j − 1).

(4.4)

Here o(k,j) is the 3 × 1 column vector describing the point of rotation of segment j in the

local coordinate system of parent segment k. From this definition, notice that the columns

of an O(k,j) are all equal.

The structure and motion of any articulated tree can be described using shape and motion

matrices of the form described here.

4.1.2 Articulated Tree Topology

We present here a reconstruction algorithm for the articulated tree case, under the assump-

tion that observed points have been assigned correctly to their respective segments. Because
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of the known point-to-segment assignment, the observation matrix can be written as

W =
[

W(1) W(2) . . . W(n)
]

(4.5)

where the index of each segment is greater than that of its parent segment—this implies that

W(1) is the observation of the root segment. Each of these sub-matrices now represent the

motion of a single, rigid segment. Reconstruction of the articulated tree takes place segment

by segment, from left to right in the motion, see (4.2), and shape, see (4.3), matrices. We

use the method for reconstruction of a single, rigid object as originally proposed in [58].

Firstly, reconstruct the root segment. This yields R(1), t and S(1) in (4.2) and (4.3). The

translation t is reconstructed in the first step, since the root segment is the only segment

that can undergo free translation. All other segments are attached to a parent segment and

can undergo local rotation only.

Next, reconstruct each of the remaining segments. Despite the fact that each segment can

undergo rotation only, we do find that the rigid reconstruction algorithm yields a translation

component. This is due to two factors.

The first is that the rigid reconstruction algorithm chooses an arbitrary coordinate system

for the shape matrix. However, for articulated motion, we want the origin of the coordinate

system to be at the point of rotation of the segment. The rigid reconstruction algorithm

yields Ŝ(j) and we want

S(j) = Ŝ(j) + c(j) × 1T
pj

. (4.6)

Here c(j) is a 3 × 1 vector that adjusts the origin of the shape matrix.

The second factor is that the point of rotation of the segment moves in the global coordinate

system. As the parent of a segment moves, the point of rotation of the child moves with it.

This movement is described by (4.2) and (4.3). For segment j

W(j) =
j−1
∑

i=1

R(i)O(i,j) + R(j)S(j) + T, (4.7)

where O(i,j) is as defined in (4.4) and T ≡ t × 1T
pj

is a matrix with columns equal to the

global translation.

From (4.7):

W(j) −T = R(j)S(j) +
j−1
∑

i=1

R(i)O(i,j) (4.8)

Next, we perform rigid reconstruction on the left hand side to get

W(j) −T = R̂(j)Ŝ(j) + T̂(j). (4.9)
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Here R̂(j), Ŝ(j) and T̂(j) are the reconstructed rotation, shape and translation matrices for

segment j and T̂(j) ≡ t̂(j) × 1T
pj

.

The origin of Ŝ(j) is still incorrect and we write

S(j) = Ŝ(j) + C(j) (4.10)

with C(j) ≡ c(j) × 1T
pj

.

From the equality of (4.8) and (4.9)

R̂(j)Ŝ(j) + T̂(j) = R(j)S(j) +





j−1
∑

i=1

R(i)O(i,j)



 , (4.11)

and then, from (4.10),

R̂(j)S(j) + T̂(j) = R(j)S(j) +





j−1
∑

i=1

R(i)O(i,j)



+ R̂(j)C(j), (4.12)

Next, we factor O(i,j), C(j) and T̂(j) based on their definitions

R̂(j)S(j) + t̂(j) × 1T
pj

= R(j)S(j) +





j−1
∑

i=1

R(i)o(i,j) × 1T
pj



+ R̂(j)c(j) × 1T
pj

. (4.13)

It follows that

R̂(j) = R(j), (4.14)

yielding the required rotation matrix and

t̂(j) =





j−1
∑

i=1

R(i)o(i,j)



+ R̂(j)c(j), (4.15)

=
[

R(1) R(2) · · · R(j)
]























o(1,j)

o(2,j)

...

o(j−1,j)

c(j)























, (4.16)

which is an over-constrained system that allows us to solve for o(i,j) and c(j). From this

O(i,j) and S(j) are constructed. With R(j), S(j) and O(i,j), we have all the parameters for

segment j.

To summarise, the reconstruction algorithm consists of the following steps.

• Reconstruct R(1), S(1) and t.
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• For each observation sub-matrix W(j), j = 2, 3, . . . , n:

– Subtract the global translation from W(j).

– Reconstruct R(j) and Ŝ(j). R(j) contains the rotation parameters for segment j.

– Calculate o(i,j) and c(j) from the over-constrained system in (4.16). Here, o(i,j)

contains the origin of segment j in the coordinate system of its parent segment.

– Calculate S(j) = Ŝ(j)+c(j)×1T
pj

to find the find the shape parameters of segment

j.

4.1.3 Forests

The articulated tree formulation can be extended to allow articulated forests. A forest is

simply a collection of trees, i.e. a number of independently moving objects where each object

is undergoing articulated tree motion.

The motion matrix is now of the same form as in (3.32), except that each M(j) is an

articulated tree motion matrix as in (4.2) and N is the number of trees in the forest. The

shape matrix has the same form as in (3.32) but with each S(j) an articulated tree shape

matrix, as in (4.3).

Since each S(j) has 3nj + 1 rows where nj is the number of segments in tree j, the number

of rows in S (and columns in M) is r = 3
∑

j nj + N . Consequently, this is the rank of the

observation matrix W in the non-degenerate case.

Note that a rigid object is simply an articulated tree with one segment. If each articulated

tree in the forest has one segment, the observation matrix will have rank 3N + N = 4N .

This means that the articulated forest simplifies to the case of N independent objects, as

discussed in [15, 16].

Because articulated tree motion has fewer degrees of freedom than independent object

motion, the observation matrix of the former has lower rank—3n+1 as opposed to 4N , where

n is the number of articulated segments in the one case and N the number of independent

objects in the other. This shows that the articulated tree formulation is a degenerate case

of N independently moving objects. In contrast, the articulated forest formulation is a

generalisation thereof.

An algorithm for reconstructing articulated forests proceeds by combining aspects of the

reconstruction of independently moving objects and articulated trees. Since the articulated

trees within a forest are assumed to be independent, the shape interaction matrix property
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in Section 3.3.1 can be modified as follows to yield the correct point-to-tree assignment—

Qij 6= 0 if feature i and feature j belong to the same tree

Qij = 0 if feature i and feature j belong to different trees
(4.17)

After the point-to-tree assignment is known, features are grouped to yield a block structure

as in (3.32). Next, each articulated tree can be reconstructed individually.

4.1.4 Limitations

A limitation of this matrix factorisation method is that the assignment of points to segments—

both the number of points per segment and the order of the points and segments—cannot

be computed automatically. As discussed in Section 3.3.1, the assignment of points to

independent objects was computed using the shape interaction matrix Q of [15, 16]. By

reordering the rows and columns of Q such that it has a block-structure, the point-to-object

assignment is discovered. This method fails in the case of articulated motion. The deriva-

tion of the structure of Q is based on the assumption that S has the block-structure of

(3.32), which does not hold for (4.3). No analogy to the Q matrix was found for this case.

We circumvent this problem by annotating the first frame of an image sequence by hand.

This is feasible in practice since tracked features need to be grouped in one frame only, with

reconstruction being performed automatically from there.

4.2 A Sequential Reconstruction Implementation

As was mentioned in Section 3.3.2, [44] proposed a sequential factorisation approach to rigid

structure from motion under orthography. The reconstruction algorithm is described below

and improvements presented. The improvements allow

• the use of the weak perspective rather than the orthographic camera model;

• the occlusion and disocclusion of features; and

• the reconstruction of articulated segments and articulated topology.

There are two parts to the algorithm. The first computes and maintains a stationary basis

for the 3 × P shape matrix. This is done by estimating iteratively the eigenvectors of the

observation matrix W. The full observation matrix across all frames is never stored or
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required for computations. The first three steps of the algorithm are—

1) Zf := Zf−1 + ufu
T
f + vfv

T
f (Z0 := 0P×P )

2) Y := ZfQf−1 (Q0 := IP×3)

3) QfR := Y (QR-factorisation)

Here uf and vf form the observation at frame f such that

W =























uT
1

vT
1
...

uT
F

uT
F























. (4.18)

Since uf and vf are length P vectors, Zf is P × P .

It is shown in [44] that span(Qf ) converges to span(ST ), i.e. the shape space. Even though

span(Qf ) is stationary, the columns of Qf are not. To find a stationary basis for the shape

space, we compute the eigenvectors of Qf—

4) Hf := QfQ
T
f

5) Y := HfQf−1 (Q0 := IP×3)

6) QfR := Y (QR-factorisation)

Thus the columns of Qf converge to a stationary basis of the shape space.

The second part of the reconstruction maintains variables that allow the reconstruction of

Mf , the 2 × 3 rotation matrix at frame f , and S from Qf . For the orthographic camera

model, the following motion constraints hold

îTf AAT îf = 1 ∀ f = 1, 2, . . . , F (4.19)

ĵTf AAT ĵf = 1 ∀ f = 1, 2, . . . , F (4.20)

îTf AAT ĵf = 0 ∀ f = 1, 2, . . . , F (4.21)

such that

Mf =





îTf

ĵTf



A (4.22)

for some invertible 3 × 3 matrix A. If we let

B =











b1 b2 b3

b2 b4 b5

b3 b5 b6











= AAT , (4.23)



CHAPTER 4. ADVANCES IN ARTICULATED STRUCTURE FROM MOTION 42

we can rewrite (4.19)–(4.21) as

Gb = c (4.24)

where

G =


























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











gT (̂i1, î1)

gT (̂j1, ĵ1)
...
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...
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
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

























, b =




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


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








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(4.25)

and

gT (p,q) = [ p1q1 p1q2 + p2q1 p1q3 + p3q1 p2q2 p2q3 + p3q2 p3q3 ] . (4.26)

The simplest solution to this over-constrained system can by found using the pseudo-inverse

method, so that

b = (GTG)−1(GT c). (4.27)

By setting

D = GTG and e = GT c (4.28)

and computing the values of D and e at each iteration, we can compute b—and subsequently

B, A, Mf and S—at any frame. These variables are maintained using the final part of the

algorithm—

7) îTf := uT
f Qf

8) ĵTf := vT
f Qf

9) Df := Df−1 + g(̂if , îf )gT (̂if , îf ) + (D0 := 06×6)

g(̂jf , ĵf )gT (̂jf , ĵf ) +

g(̂if , ĵf )gT (̂if , ĵf )

10) ef := ef−1 + g(̂if , îf ) + g(̂jf , ĵf ) (e0 := 06×1)

4.2.1 The Weak Perspective Camera Model

For the weak perspective camera model the motion constraints of (4.19)–(4.21) change (see

(A.9) and (A.10) in Appendix A) to

(

îfAAT îTf

)

−
(

ĵfAAT ĵTf

)

= 0 ∀ f = 1, 2, . . . , F (4.29)

îfAAT ĵTf = 0 ∀ f = 1, 2, . . . , F (4.30)
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This change affects the equations underlying the second part of the sequential reconstruction

algorithm. The form in (4.24) still holds, but

G =












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






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
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





and c =






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
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













2F − 1

. (4.31)

Consequently the second part of the algorithm changes to

7) îTf := uT
f Qf

8) ĵTf := vT
f Qf

9) Df := Df−1 + (g(̂if , îf ) − g(̂jf , ĵf ))(g(̂if , îf ) − g(̂jf , ĵf ))T +

g(̂if , ĵf )gT (̂if , ĵf )

D1 := g(̂i1, î1)g
T (̂i1, î1) +

g(̂j1, ĵ1)g
T (̂j1, ĵ1) +

g(̂i1, ĵ1)g
T (̂i1, ĵ1)

10) ef := ef−1

e1 := g(̂i1, î1) + g(̂j1, ĵ1)

This alteration does not influence the shape space basis vectors, only the matrices used when

reconstructing Mf and S at any step. Because the weak perspective system of equations

is nearly homogeneous, not all frames are used to form D and e. This avoids numerical

problems that occur because the pseudo-inverse yields the trivial solution in the case of a

homogeneous system of equations.

The frames used to construct D and e are the most recent F ′. This requires that a 2F ′×P

observation history matrix is stored. This does increase the size of the internal variables

of the algorithm but does still not require the storage of any variables that increase with

the number of frames processed. Typically, F ′ is between 15 and 50—this corresponds to

approximately 1 or 2 seconds of video in practice.

4.2.2 Occlusion and Disocclusion

The feature coordinates used to perform reconstruction are supplied by a feature tracker,

which may lose features—for example when they become occluded. These occlusions leave
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holes in the observation vectors uf and vf . To continue reconstruction, the missing features

have to be discarded in reconstruction steps beyond the last frame in which they were visible.

Discarding features changes the previously stationary basis of the shape space, Q. Because

of this, two things need to be kept in mind. Firstly, the algorithm must converge to the

new shape basis so that reconstruction can continue with the remaining features. Secondly,

it must also maintain enough information about the lost features to allow reconstruction of

their 3D positions.

We achieve the first goal by truncating all vectors and matrices that form part of the

algorithm, in order to remove the dropped features. From here, the algorithm proceeds

normally. Note that truncating the algorithm variables will corrupt Q and Q in the sense

that they are no longer orthogonal matrices. However, as long as the number of features

dropped is small, the algorithm will recover quickly and converge to the new stationary

shape space basis.

We achieve the second goal by storing the matrix Qfd
, of which the columns span shape

space just before the features are dropped. In order to reconstruct the full shape matrix from

the truncated Q and the dropped features (stored in Qfd
), we determine the transformation

matrix between the old and new stationary bases. Let fd be the frame just before features

were dropped and f the frame at which reconstruction occurs. Then, we find the 4 × 4

transformation matrix T, such that





Qfd

1T
P



T =





Qf

1T
P



 . (4.32)

This coordinate transformation has the form of the motion matrix in (3.11) and describes

the rotation and translation required to move form the shape space spanned by Qfd
to that

spanned by Qf . Furthermore, T allows the description of the dropped feature points in the

new shape space and the subsequent reconstruction of their 3D positions along with the

remaining features.

As features may be dropped by the feature tracker, so new features may also be gained—

or previously dropped features regained. As with dropped features, adding new features

will change the shape space basis and the algorithm will converge to this new basis. In

order to add the new feature variables to the reconstruction algorithm, the algorithm is

reinitialised using information from the newly acquired feature tracks. Up to now, algorithm

initialisation merely set all internal variables to 0. In order to integrate the current internal

variables at any frame, with new values from the newly added features, a history of frames

processed is kept and initialisation changed to bootstrapping.
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4.2.3 Bootstrapping

In order to avoid the influence of newly acquired features on the existing shape space, they

are considered only after being visible for a required minimum number of frames. This

allows that more information on these features is available before they are first added to

the algorithm variables. Thus, their influence on the other variables can be computed more

accurately.

This argument leads to the implementation of history and bootstrapping within the algo-

rithm. We maintain a small history of feature positions to allow the initialisation of newly

acquired features. Note that one of the main advantages of the algorithm as presented in

[44] is that the algorithm maintains tracking and reconstruction information for a single

frame only. At each step of the algorithm the previous values of the internal variables are

replaced. This allows the size of the variables to be independent of the number of frames

processed.

By including the history of feature tracks, we introduce variables that are dependent on

the number of frames in the history—but not the total number of frames processed by

the algorithm. In practice, we have found that the history is typically between 15 and 50

frames in size. These values were found empirically and depend on the video data under

consideration.

The history is used to bootstrap the system. This is done by performing a small batch

reconstruction (see Section 3.3.1) using the frames in the history. This batch step allows

accurate initial values for the sequential algorithm and fast convergence.

4.3 Discovery of Articulated Structure

The sequential algorithm described in the previous section is designed to track rigid objects.

Since articulated structure consists of a number of rigid segments, these segments can be

tracked individually using the sequential method. As with the articulated reconstruction

of Section 4.1, the initial assignment of points to segments needs to be known. After the

reconstruction of the rigid segments, it remains to discover the articulated connectivity of

the rigid segments and the 3D locations of joints between segments.

Here, we design and implement an algorithm inspired by [56], where it is assumed that rigid

reconstruction of articulated segments has been performed and that the scaled prismatic

camera model is used. This camera model is essentially 2-dimensional and too restrictive

for our purposes.
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In [56] a measure of segment connectivity based on mutual information between segment

motions is described. This measure is calculated for the motions between each pair of

segments and a minimum spanning tree algorithm [14] is used to find the articulated tree

that best spans the graph with the mutual information values as edge weights.

We describe an algorithm that uses a different segment connectivity measure with the

minimum spanning tree algorithm to determine articulated topology. The joint locations

are discovered during the calculation of the segment connectivity measure.

Note that the motion of a child segment relative to its parent segment is always a pure

rotation. This follows from the definition of articulated motion. A child segment undergoes

rotation around its joint location. This joint location moves with the parent segment—but

when considering motion relative to the parent segment, the joint location is stationary.

This means that translation of a segment can be described entirely in terms of translation

of the parent segment and rotation of the joint location. That is,

tchild = tparent + Rparent ×O. (4.33)

Here, t is the translation component and R the rotation component of motion. O is the

origin, or joint location, of the child segment in the coordinate system of its parent segment.

The value of O is frame-independent, while the motion parameters are not. By rewriting

(4.33) as

Rparent ×O = tchild − tparent (4.34)

and considering all frames of motion, we have an over-constrained set of equations in the 3

unknowns of O. By solving for these unknowns, we find the joint location of a segment in

its parent’s coordinate system.

Note that we have not yet determined whether the two motions under consideration are

actually that of parent and child segments. If they were not, we would get an inaccurate

solution to (4.34) in the sense that

∥

∥

∥Rparent ×O− tchild + tparent

∥

∥

∥

2
(4.35)

is large. This provides us with a method to find the articulated topology of the motion

under consideration while computing the joint locations. We compute the joint location

between each pair of motions using (4.34) and store the norm in (4.35) in a symmetric

matrix. Let this matrix describe the edge weights of an undirected graph that indicates the

error in the assumption that the relative motions between two segments is a rotation only.

Small values indicate that two segments are closely correlated and large values that they

are not.
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We apply a minimum spanning tree algorithm to the graph thus defined to find the articu-

lated topology of the motion under consideration.

4.4 Summary

In this chapter, we described some work on articulated structure from motion recovery that

was not found in the literature. This original work included

• a derivation of an upper bound on the rank of the observation matrix for the cases of

articulated trees and articulated forests;

• modifications to the sequential reconstruction of rigid structure and motion, as de-

scribed by [44]; and

• the discovery of articulated topology once the motions of underlying rigid segments

are known.

The derivation of the rank upper bound led to a matrix formulation for articulated structure

from motion. This formulation describes how joint locations and observed motion are

related and led to the development of the articulated topology recovery algorithm. By

integrating a sequential reconstruction algorithm for rigid objects under weak perspectivity

and articulated topology recovery, a complete articulated structure from motion solution

was described.



Chapter 5

Experiments

In this chapter, we present experiments that demonstrate the performance and weaknesses

of the various algorithms discussed in previous chapters. The experiments include the

following—

• batch reconstruction of numerically generated articulated objects, with the focus on

topology reconstruction;

• sequential reconstruction of numerical rigid objects to test the accuracy of reconstruc-

tion under occlusion and disocclusion;

In the numerical experiments, controlled amounts of noise are added to the data and the

accuracy of the reconstructed objects recorded. These experiments test the feasibility of

using the reconstruction methods on real data.

5.1 Articulated Topology of Numerical Objects

In [58] it was demonstrated how batch reconstruction of rigid objects can be performed

by matrix factorisation. In this first experiment, we reconstruct rigid segments using the

method of [58] adapted for the weak perspective camera model. We then test the articu-

lated topology reconstruction of Section 4.1.2 based on these reconstructions. We test the

accuracy of the topology reconstruction under noisy conditions by adding Gaussian white

noise up to typically high levels—with a standard deviation of 1 [15, 16] to 2 [44, 46] pixels

on a 512 × 512 image.

48
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(a)

(b)

Figure 5.1: The numerical datasets approximating (a) shoulders and arms, and (b) an arm

and a hand.



CHAPTER 5. EXPERIMENTS 50

5.1.1 Data Sets

Two numerical datasets were generated—

• the first loosely approximates shoulders and arms (Figure 5.1a); and

• the second approximates an arm and a hand (Figure 5.1b).

Note that the first dataset is a linear tree, i.e. each segment has exactly two segments

connected to it, excepts for the segments at the ends, which have one segment connected

to them. The second dataset contains a branch point at the hand, which has 6 segments

connected to it.

The first dataset consists of 5 segments with 30 vertices per segment and the second of

8 segments with 24 vertices per segment. Both datasets span 150 frames. Normally dis-

tributed noise with zero mean and standard deviation ranging from 0.1% to 10% of the

image size is added to each vertex position. To smooth out the random effects of noise, the

reconstruction experiment on each of these datasets is performed 100 times for each noise

level and the results averaged.

5.1.2 Comparison Criteria

Since these datasets are wholly artificial, the structure of each limb and the topologies of

the articulated objects are known explicitly. The percentage of the runs in which topology

reconstruction is performed correctly is recorded.

5.1.3 Results

Figures 5.2a and 5.2b contain plots of the percentage of runs that are classified incorrectly

for each level of noise in the shoulders-and-arms and arm-and-hand experiments respectively.

5.1.4 Discussion

The error graph for the shoulders-and-arms experiment shows zero error up to σ = 3.59%,

indicated on Figure 5.2a. The maximum noise level of σ = 0.4%, discussed in [44, 46], is

also indicated on the plot. The topology reconstruction succeeds well beyond this noise

level. Figures 5.3a–d explain this using the segment interaction matrices (see Section 4.1.2)

for various noise levels. Note the sharp contrast between segments that interact and those
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Figure 5.2: The percentage of reconstruction runs for which the articulated tree topology is

reconstructed incorrectly as a function of the white noise variance. Figure (a) results from

the shoulders-and-arms dataset and (b) from the arm-and-hand dataset.
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Figure 5.3: Segment interaction matrices for the shoulders-and-arms dataset. The

segments—shoulders, left upper arm, left lower arm, right upper arm, right lower arm—are

labelled in order from 1 to 5. Light cells indicate a weak interaction and dark cells a strong

interaction. The interaction matrices are for σ (a) 0%, (b) 0.36%, (c) 3.59%, and (d) 10%

of the input image size.
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that do not for σ = 0%. At σ = 3.59% the contrast is less obvious to the human eye but

topology reconstruction is still performed without error. At σ = 10%, it is impossible to

distinguish interacting from non-interacting segments.

At first glance, the performance of the arm-and-hand experiment is much worse than that

of the shoulders-and-arms experiment. Analysis of which segments are classified incorrectly

shows that all of the error up to σ = 1.29% (indicated on the figure) is caused by a single

misclassification. Rather than reconstructing the tree correctly as in the figure to the left

below, it is reconstructed as in the figure to the right.

HandUpper arm Forearm

Little finger

Ring finger

Middle finger

Index finger

Thumb

HandUpper arm Forearm

Little finger

Ring finger

Middle finger

Index finger

Thumb

This indicates that the topology reconstruction algorithm finds a strong correlation between

the motions of the middle finger segment and the forearm segment.

In conclusion, the articulated topology reconstruction algorithm performs well under noisy

conditions. In particular, based on noise tolerance, the algorithm compares well with the

work in [15, 16, 44, 46].

5.2 Sequential Reconstruction of Rigid Numerical Objects

We adapted (Section 4.2) and implemented the sequential rigid reconstruction method of

[44] to allow for

• the weak perspective camera model; and

• occlusion and disocclusion of features.

We test the accuracy of this implementation under Gaussian white noise with the same

standard deviations as in the previous experiment.

The implementation has one user-defined parameter, the number of bootstrap frames, as

introduced in Section 4.2.3. This experiment adds one more parameter—the amount of oc-

clusion in the data. Occlusion and disocclusion are simulated by discarding the observation

matrix values for those vertices that are more than a certain depth from the camera centre
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of projection. This cutoff depth is between the maximum and mean depths of the object

vertices and is determined by

c avg zi + (1 − c)max zi (5.1)

with 0 ≤ c ≤ 1 as the parameter of the experiment. Experiments are performed for various

values of these two parameters in order to measure their effects.

5.2.1 Data Sets

Numerical datasets based on scanned data of a mannequin face1 are used. The scanned

data contains the 3D coordinates of 6304 points on the face but the number of points is

reduced for the purposes of the experiments—see Figure 5.4. Smooth rigid 3D motion is

generated randomly and the weak perspective camera model used to form the unoccluded

observation matrix.

All datasets span 200 frames and normally distributed noise with zero mean and standard

deviation ranging from 0.1% to 10% of the image size is added to each vertex position.

To smooth out the random effects of noise, the reconstruction experiment on each of these

datasets is performed 50 times for each noise level and the results averaged.

5.2.2 Comparison Criteria

The 3D structure of the face is known explicitly and the reconstructed object is compared

to this using the method described below. Furthermore, the errors in the occluded and

unoccluded parts of the reconstructed object are recorded separately to determine the effect

of occlusion.

Calculating the error The following algorithm is used to compute the distance between

two objects and aims to compensate for differences in origin, rotation and scale between

the objects.

1. Place the origin of each object at its centre of mass.

2. Project objects onto the unit sphere centred at the origin. This prevents points far

from the origin (i.e. position vectors with large Euclidean norm) from dominating

subsequent calculations.

1This data was digitised at the Department of Mechanical Engineering, University of Stellenbosch.
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3. Rotate and reflect one object to minimise the sum of the distances between the vertices

of the two objects.

4. The error is calculated as the mean of the Euclidean distances between the resulting

points on the two objects.

5.2.3 Results

6 experiments are performed and the bootstrap and occlusion parameters varied. The

experiments are as follows:

A. Occlusion and disocclusion, c = 0.5 (493 vertices), 50 bootstrap frames;

B. Occlusion only, c = 0.5 (419 vertices), 50 bootstrap frames;

C. Occlusion and disocclusion, c = 0.25 (491 vertices), 50 bootstrap frames;

D. Occlusion and disocclusion, c = 0.75 (491 vertices), 50 bootstrap frames;

E. Occlusion and disocclusion, c = 0.5 (493 vertices), 25 bootstrap frames;

F. Occlusion and disocclusion, c = 0.5 (493 vertices), 75 bootstrap frames;

Note that the number of vertices changes slightly with c, as some vertices are occluded in

the whole image sequence and, hence, discarded.

Figure 5.5 shows the occlusion matrices for the 6 experiments. 3 of these images are iden-

tical as they have the same occlusion parameter, c = 0.5, and model both occlusion and

disocclusion. Note that experiment B models occlusion only, so once a vertex has been

occluded, it is never recovered (see Figure 5.5b).

Figure 5.6 shows the output from the reconstruction algorithm when run on experiment A

and with no noise. This demonstrates that sequential reconstruction under occlusion and

disocclusion can be performed in principle.

Figures 5.7–5.9 show the reconstruction errors for the 6 experiments. The values used in

the plots are calculated using the method described in Section 5.2.2. Three error graphs

are plotted on each set of axes—these are the reconstruction errors in

• the vertices that are never occluded;

• the vertices that were occluded at least once; and

• the whole shape.
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5.2.4 Discussion

We compare the error plots of Figures 5.7–5.9 and discuss the behaviour of the reconstruc-

tion algorithm for various parameters. In short, the plots show that the reconstruction

algorithm handles occlusion well but that disocclusion of features degrades accuracy. Re-

construction accuracy also degrades when more vertices of the object are occluded but

improves when more bootstrap frames are used.

Occlusion only (Figure 5.7b) shows the expected error behaviour, similar to what was seen in

the previous experiment (Section 5.1). When disocclusion is introduced, the reconstruction

of vertices that were occluded at least once is worse than expected. In Figure 5.7a, we see

that the error for occluded vertices increases much faster than the error for visible vertices.

To analyse this in more detail, we plot the errors from each of 50 the iterations per noise

level of the experiments in Figures 5.10–5.11. Each horizontal line represents one iteration

and the median of these values are used to plot the error graph. For experiment A (occlusion

and disocclusion), note that the errors in the reconstruction of the occluded part (Figure

5.10a) start varying much more and much earlier than those of the visible part (Figure

5.10b). For experiment B (no disocclusion), large errors in the visible and occluded parts

appear at approximately the same noise level (Figure 5.11).

To explore further, we analyse the convergence of Q. Since Q is supposed to converge to a

basis of the shape space, we define the error in Q as the distance between the space spanned

by it and the shape space,
∥

∥

∥QQ
T
− SbasisS

T
basis

∥

∥

∥

2
.

Figure 5.12 shows the error in Q for the experiments with and without disocclusion. The

jumps in the error are caused by updates to the shape space, i.e. whenever vertices are

removed from (occlusion) or added to (disocclusion) the reconstruction. In both cases, the

error fluctuates around the same level after recovering from jumps caused by occlusion or

disocclusion. This excludes the possibility that the degraded performance under disocclusion

is caused by failure to converge to the correct basis for the shape space. It is still uncertain

what causes this behaviour.

The effects of the occlusion and bootstrap parameters are as expected. Comparing Figures

5.8a and 5.8b shows that more occlusion (larger c) causes larger errors; while comparing Fig-

ures 5.9a and 5.9b shows that using more bootstrap frames reduces the error—particularly

the error in the reconstruction of the occluded part of the object.
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Figure 5.4: The mannequin face with 1099 vertices.
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Figure 5.5: The occlusion matrices for the 6 sequential rigid reconstruction experiments.

The black areas show where vertices are occluded, with the vertical axes representing frame

and the horizontal representing vertex number.
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Figure 5.6: The output of the reconstruction algorithm for experiment A with no noise.

The bottom right image shows a 3D plot of the reconstructed object and the remaining

images, an orthographic projection thereof. The stars (∗) represent vertices that were never

occluded in the input image sequence. The dots (·) represent points that were occluded at

least once.
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Figure 5.7: The reconstruction errors for (a) experiment A with occlusion and disocclusion,

c = 0.5 and 50 bootstrap frames; and (b) experiment B with occlusion only, c = 0.5 and 50

bootstrap frames.
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Figure 5.8: The reconstruction errors for (a) experiment C with occlusion and disocclusion,

c = 0.25 and 50 bootstrap frames; and (b) experiment D with occlusion and disocclusion,

c = 0.75 and 50 bootstrap frames.
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Figure 5.9: The reconstruction errors for (a) experiment E with occlusion and disocclusion,

c = 0.5 and 25 bootstrap frames; and (b) experiment F with occlusion and disocclusion,

c = 0.5 and 75 bootstrap frames.
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Figure 5.10: The reconstruction errors for each of the 50 runs of experiment A (occlusion

and disocclusion): (a) shows the errors for vertices that were occluded at least once; and

(b) shows the errors for vertices that were visible during the entire image sequence.
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Figure 5.11: The reconstruction errors for each of the 50 runs of experiment B (occlusion

only): (a) shows the errors for vertices that were occluded at least once; and (b) shows the

errors for vertices that were visible during the entire image sequence.
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Figure 5.12: The distance between span(Q) and the shape space for (a) experiment A and

(b) experiment B. The 3 lines on each graph are for the noise levels σ = 10−3, 10−2, 10−1.



Chapter 6

Conclusion

In this thesis, we considered the question Is model-free articulated structure from motion

possible? We provided a short review of existing methods for rigid and non-rigid structure

from motion and it was shown that articulated structure from motion has focused mostly

on model-based methods.

We explored model-free approaches to articulated structure from motion and discovered

a matrix formulation under the assumption that the feature to segment assignments are

known. It was shown that the observation matrix has a rank constraint analogous to

those found for rigid, multiple independent and elastic objects. It was demonstrated that

this formulation can be used to reconstruct articulated topology once reconstruction of

individual segments has been performed.

We also integrated this approach with the sequential factorisation method of [44] for a

sequential articulated reconstruction algorithm. The adapted method was extended to

handle the occlusion and disocclusion of features using an observation matrix history and

bootstrapping. Experiments showed that the matrix formulation is theoretically sound since

all reconstruction was performed correctly under noise-free conditions. Error comparisons

showed that noise affects the reconstruction accuracy as expected, except for worse than

expected degradation when disocclusion of features occurs.

6.1 Future Work

The major disadvantage of the matrix approach to articulated structure from motion is that

it requires known vertex to segment assignments. Even though it is analogous to the vertex

to object assignment used in reconstruction of multiple independent rigid objects [15, 16], it

66



CHAPTER 6. CONCLUSION 67

cannot be computed in the same way since articulated segments do not move independently.

One idea to be explored is whether image segmentation techniques [8, 23, 24, 34, 60, 65]

can by used to perform this assignment automatically. Image segmentation attempts to

separate parts of a moving image directly from the observed 2D pixel data.

In the sequential reconstruction of rigid segments, better analysis of how disocclusion affects

reconstruction error is still needed. It was observed that the error increases faster when

disocclusion of features is modelled. It was shown that the accuracy of the shape space

basis is not greatly affected by disocclusion. It is uncertain what causes the large errors.

Finally, serious problems with tracking errors in real data make reconstruction difficult. It

has been shown that the reconstruction algorithms work in principle and on numerical data

with simulated noise. Since we are considering model-free solutions, no assumptions are

made on the type of articulated motion observed—particularly, we do not assume that it is

human motion.

Model-based tracking methods would improve the accuracy of tracked features and make

reconstruction more successful. One argument against this is that using a predefined model

of human motion to perform tracking defeats the purpose of exploring model-free recon-

struction. There are however methods that use models to perform tracking but learn these

models rather than requiring them as part of the algorithm input. The methods in [28, 29]

are particularly relevant.

6.1.1 Application

Human motion capture was considered as the main application of articulated structure

from motion. It was mentioned in Chapter 2 that motion capture of human gestures—in

particular, the articulated motion of hands and arms—plays an important role in automatic

Sign Language understanding.

One of the possible future applications of this project is the capturing for later analysis of

these human gestures without equipment such as data gloves or markers that are commonly

used in motion capture. This makes motion capture non-intrusive, inexpensive and portable,

i.e. it can be done anywhere using a digital video camera. Realising a fully automatic

reconstruction algorithm will make vocabulary acquistion for Sign Language possible.



Appendix A

Rigid Reconstruction Under Weak

Perspectivity

Given the 2F ×P observation matrix, W, with rank r = 4, we decompose using the SVD—

W = UΣVT , (A.1)

with U2F×4, Σ4×4 and VP×4. Note that, because of measurement noise and numerical

imprecision, the rank of W will in general be greater than 4. However, a property of the

SVD is that it maximises the amount of variance in the data described by the first singular

values and vectors of W. This property allows us to denoise and factorise W simultaneously

by discarding any singular values and vectors after the first 4.

Next, from

M̂ = UΣ
1

2 and Ŝ = Σ
1

2 VT . (A.2)

Note that

W = (M̂A)(A−1Ŝ) (A.3)

for any invertible 4 × 4 matrix A. Hence, M̂ and Ŝ are the required motion and shape

matrices up to an affine transformation, so that

M = M̂A and S = A−1Ŝ. (A.4)

We can solve for A by using the rotation and translation constraints on M—[15, 16, 32].
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For the weak perspective camera model,

M =

















l1M1

l2M2

...

lFMF

















with lfMf = lf [Rf | tf ] , (A.5)

where each Rf contains the first two rows of the camera rotation matrix and tf the camera

translation at frame f . From this, we note that M consists of two parts: the first 3 columns,

which contain rotation components only and the final column, which contains the translation

components. By writing

A = [AR | at ] (A.6)

where AR is the first 4 × 3 sub-matrix and at the final column of A, we obtain from (A.4)

M = M̂A =
[

M̂AR | M̂at

]

. (A.7)

From the orthogonality of rotation matrices, we have

RfR
T
f =





1 0

0 1



 . (A.8)

Combining (A.5), (A.7) and (A.8) yields

m̂T
2f−1ARAT

Rm̂2f−1 = l2f ∀ f = 1, 2, . . . , F

m̂T
2fARAT

Rm̂2f = l2f ∀ f = 1, 2, . . . , F

m̂T
2f−1ARAT

Rm̂2f = 0 ∀ f = 1, 2, . . . , F

(A.9)

where m̂T
f is row f from matrix M̂. Note that the lf are not yet known. To remove these

unknowns, we subtract the second equation in (A.9) from the first to form

m̂T
2f−1ARAT

Rm̂2f−1 − m̂T
2fARAT

Rm̂2f = 0 ∀ f = 1, 2, . . . , F. (A.10)

The over-constrained system of (A.9) and (A.10) is used to solve for the entries of the 4× 4

matrix ARAT
R. The system is homogeneous, which implies that there is either an infinite

number of solutions or the trivial solution only. To make the system non-homogeneous, we

choose l1 = 1,1 which yields one additional equation since one of the equations in (A.10) is

discarded, but two are added—one from each of the first two equations in (A.9).

1Since the ratio between the focal length and the z-coordinate of the centroid determines the constant

factor of the weak perspective projection, these two parameters are undetermined up to a constant factor.

We make the arbitrary selection l1 = 1, which is equivalent to placing the centroid of the object on the

image plane in frame 1.
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To find AR from ARAT
R, we again employ the SVD. Note that ARAT

R has rank 3 since AR

is 4 × 3. Thus

ARAT
R = UAΣAVT

A, (A.11)

where UA is 4 × 3, VA = UA since ARAT
R is symmetrical and ΣA is 3 × 3. This yields

AR = UAΣ
1

2

A. 2 (A.12)

Next, we find at. Under the weak perspective camera model, the projection of the object

centroid equals the centroid of the projected object, i.e. with S as in (3.25)

M

(

1

P

P
∑

i=1

pi

)

=
1

P

P
∑

i=1

wi (A.13)

⇔ Mp = w (A.14)

where the wi are the columns of W. Since p is a homogeneous vector, it has 3 free

parameters and since the camera coordinate system has arbitrary origin, we can choose

p = [ 0 0 0 1 ]T , (A.15)

which corresponds to centering the object around the camera origin. From (A.7), (A.14)

and (A.15) it follows that

M̂at = w. (A.16)

This is an over-constrained system from which we solve for at. This completes the compu-

tation of A and consequently M and S.

2As in (A.3), AR is defined only up to an affine transformation. However, since ARA
T
R is symmetrical,

the affine transformation is orthogonal, which implies that it has only 3 degrees of freedom. These are

exactly the freedom in choice of the initial rotation of the camera axes. We simply choose arbitrarily that

the affine transformation is given by I.
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