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Abstract 

 

Background: The development of cancer is driven by genomic alterations, which become 

more heterogeneous as the disease progresses throughout the stages. Consequently, cancer 

patients have differential levels of sensitivity to treatment. Tumor heterogeneity thus 

contributes to therapeutic failure, which ultimately leads to the generally poor prognosis and 

poor overall survival outcome associated with cancer.  

Introduction: Transcriptomic profiles can be used to track cancer progression based on gene 

expression changes that occur throughout the multi-stage process of cancer development. The 

accumulated genetic changes can be detected when gene expression levels in advanced-stage 

are less variable but show high variability in early-stage. Normalizing advanced-stage 

expression samples with early-stage and clustering of the normalized expression samples can 

reveal cancers with unique gene expression patterns based on cancer progression.  

Aims: A computational method was employed to investigate cancer progression through RNA-

Seq expression profiles across the multi-stage process of cancer development. The method was 

assessed in a subtype of the heterogeneous kidney cancer and enabled the discovery of in-depth 

cancer subtypes based on the differences in gene expression profiles. 

Methods: A preliminary study was performed by downloading RNA-sequenced gene 

expression and associated phenotypic and survival profiles of Diffuse Large B-cell Lymphoma, 

Lung cancer, Liver cancer, Cervical cancer, and Testicular cancer from the UCSC Xena 

database. Similarly, Kidney renal clear cell carcinoma (KIRC) was downloaded as a validation 

dataset. Advanced-stage samples were normalized with early-stage to consider heterogeneity 

differences in the multi-stage cancer progression. The normalized gene expression of the 

preliminary cancer datasets was subjected to weighted gene co-expression network analysis. 

Gene modules were linked to cancer-related proteins and pathways using enrichment analyses. 
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Hierarchical clustering was performed to reveal clusters (subtypes) that progress differently in 

both the preliminary and validation datasets. Identified cancer clusters were evaluated with 

analysis of variance to confirm statistically significant differences. The identified KIRC 

clusters were subjected to two feature selection analyses: (i) differential gene expression 

analysis, and (ii) Recursive Feature Elimination (RFE). The optimal features were subjected to 

Random Forest (RF) Classifier to evaluate the cluster prediction performance. The diagnostic 

capacity was evaluated using Cox regression and Kaplan-Meier. Additional enrichment 

analyses performed included Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. 

Results: Normalization with early-stage revealed the true heterogeneous gene expression that 

accumulates across the multi-stage cancer progression. The method allowed for an in-depth 

clustering based on the distinct cancer types as well as clusters (subtypes) within cancer types. 

The validation dataset revealed three clusters that progress differently, categorized based on 

patients' overall survival. A total of 231 differentially expressed genes were identified between 

all three clusters with a pairwise comparison approach, of which RFE selected a 48-gene 

subset. RF Classifier revealed a 100% cluster prediction performance. Five prognostic genes 

were identified of which the upregulation of genes SALL4 and KRT15 were associated with an 

unfavorable prognosis, and the upregulation of genes OSBPL11, SPATA18, and TAL2 

associated with a favorable prognosis. 

Conclusions: The application of the normalization method provided an increased power of 

differentiating cancer samples based on how they progressed from early to advanced-stages of 

cancer development. The enhanced accuracy of hierarchical clustering revealed cancer 

heterogeneity and stratified patient samples into potential new cancer subtypes based on 

molecular patterns that were matched to phenotypic profiles. Additional genes responsible for 

cancer progression were discovered that could be of great importance for the development of 

new targeted therapies.  
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Chapter 1  

 

 

Introduction to thesis and research statement 

 

1.1 General Introduction  

 

Cancer is typically described as a genetic disease driven by oncogenic mutations (Ramón et 

al., 2020). At a cellular level, cancer is viewed as a multistep process, involving mutation and 

the selection of cells that have progressively increasing capacities for proliferation, invasion, 

survival, and metastasis. The first step in the process, tumor initiation, may arise from a genetic 

alteration leading to the abnormal proliferation of a single cell. Thereafter, tumor progression 

continues as additional mutations occur within cells of the tumor population (Cooper, 2000). 

Numerous mechanisms based on accumulated genetic changes are thus responsible for the 

initiation and tumor progression, thereby modifying the biology of the cells. Certain clones 

may therefore be more proliferative and result in rapid clinical progression and early relapse, 

whereas others may be less proliferative and associated with late relapse (Morgan et al., 2012). 

These dynamic and continuous changes in tumor development and adaptation in response to 

external pressure are characteristics of molecular heterogeneity (Crucitta et al., 2022). 
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Malignant tumors exhibit highly diverse phenotypic and molecular characteristics both at the 

intra-tumor (within a tumor) and inter-tumor (tumor by tumor) levels (Jamal-Hanjani et al., 

2015). Intra-tumor heterogeneity describes solid tumors that may contain subpopulations of 

cells with distinct genomic alterations within the same tumor specimen (Fisher et al., 2013; 

Jamal-Hanjani et al., 2015). The latter, inter-tumor heterogeneity is a term used to describe 

tumor variations amongst patients. It is mainly characterized by distinct genetic alterations that 

arise in individual tumors originating in the same organ and enables the classification of these 

tumors into different molecular subtypes. A cancer type can thus have several subtypes with 

distinct morphological and phenotypic profiles, due to the heterogeneity of cancer. 

 

Currently, there are limited targeted therapeutic options available for multiple cancer types, in 

part because of the substantial intra- and inter-tumor heterogeneity, as well as an incomplete 

understanding of the molecular mechanisms underlying tumorigenesis (Mkrtchyan et al., 

2022). Tumor heterogeneity is one of the major factors influencing the effectiveness of patient 

treatment. Consequently, it is the primary cause of drug resistance, which further contributes 

to therapeutic failure (Crucitta et al., 2022). Tumor heterogeneity has thus presented a 

considerable challenge to match patients with suitable treatment strategies at the appropriate 

time; which poses a challenge to achieving the goals of precision medicine (McGranahan et 

al., 2015; McGranahan & Swanton, 2017). As a result, tumor heterogeneity is typically 

associated with poor prognosis and poor overall survival (OS) outcomes in cancer patients 

(Jamal-Hanjani et al., 2015; 2017; Mroz & Rocco, 2016; Lim & Ma, 2019; Tuasha & Petros, 

2020; El Khoury et al., 2023).  
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The management and treatment of cancer patients have undergone significant advances in the 

field of oncology, with the departure from the “one-size-fits-all” strategy and towards a 

personalized, alternatively, precision medicine approach based on genomic variants (Malone 

et al., 2020). Cancer precision medicine is defined as “the use of therapeutics that are expected 

to confer benefit to a subset of patients whose cancer displays specific molecular or cellular 

features (most commonly genomic changes and changes in gene or protein expression 

patterns)” (Yates et al., 2018). Therefore, it aims to identify the unique biology of an individual 

or group of cancer patients sharing certain characteristics, and treat them by targeting the 

specific oncogenic event shared by these patients (Lipinski et al., 2016; Russnes et al., 2017; 

Ozturk et al., 2018; Zhang et al., 2019). Consequently, next-generation sequencing (NGS) and 

other profiling technologies have enabled advances in tumor analysis, which has been coupled 

with precision medicine. The molecular profiling of tumors facilitates the identification of 

unique deoxyribonucleic acid (DNA) changes and gene expression patterns that are associated 

with specific phenotypes and prognoses. Therefore, proper analysis can also reveal groups of 

patients into subcategories that yield clinically relevant diagnostic, prognostic, treatment 

response, or other clinical features (Malone et al., 2020). 

 

An NGS-based approach, RNA-Sequencing (RNA-Seq), is a rapid and affordable methodology 

to track transcriptomic profiles across various cells or tissues (Wang et al., 2009). RNA 

profiling allows for the measurement and comparison of genome-wide gene expression patterns 

at an unparalleled level (Finotello & Camillo, 2015). The technique quantifies the number of 

transcripts (the basic unit of a gene), which in turn enables the analysis of multiple transcripts’ 

expression, for a specific developmental stage or in different physiological or pathological 

conditions. The measurement of thousands of gene expression profiles allows for the discovery 

of altered gene expression levels of each transcript in a single cancer type for cancer molecular 
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classification. Deciphering the transcriptome is vital for interpreting the functional elements of 

the genome, exposing the molecular components of cells and tissues, and advancing the 

knowledge of the development and the disease (Wang et al., 2009). Additionally, gene 

expression can be associated with tumors having complex phenotypes, thus having the potential 

to expand our knowledge of the relationship between the transcriptome and the phenotypic 

profiles of cancer patients. 

 

Molecular classification based on gene expression profiling from RNA-Seq is driving the 

development of precision medicine-targeted therapies. The technique allows for the sub-

classification of tumors into gene expression signatures which can be integrated into clinical 

decision-making to facilitate informed optimal clinical care of cancer patients (Bi & Davuluri, 

2020; Malone et al., 2020). Therefore, the identification of cancer subtypes aims to divide 

patients into subgroups with distinct molecular profiles with the additional potential of 

associating it with clinical phenotypes such as survival time. This can also be achieved by the 

application of hierarchical clustering of tumor samples based on gene expression profiles from 

high-throughput platforms that enable the molecular stratification of cancer patients into 

distinct tumor subtypes for numerous cancers (Gan et al., 2018; Rohani & Eslahchi, 2020; 

Puzanov, 2022; Zhang et al., 2023).  

 

For decades, molecular classification of cancer has been a major area of study as it provides a 

foundation for biological research and is directly related to the development of tailored 

therapies for distinct subtypes. A clinically relevant subtype, therefore enables the selection 

and administration of the most effective treatment, as different cancer subtypes may respond 

differently to specific treatments. Hence, the stratification of cancer patients into subtypes is 

crucial, however, has been recognized as a challenging step towards individualized therapy 

http://etd.uwc.ac.za/

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/transcriptome


 

 
 
5 

(Sun et al., 2022). In addition to guiding cancer treatment, the sub-classification of cancer 

patients has the potential to aid early cancer diagnosis, risk assessment, improved prognosis, 

predict drug response, or cancer surveillance and monitoring (Sarhadi & Armengol, 2022; Park 

et al., 2023). 

 

1.2 Research statement and rationale   

 

In recent years, progressive profiling technologies for tissue have accumulated diverse types 

of data, including gene expression profiling data of bulk tumors stored in various public 

databases (Creighton, 2018). For any major cancer type, expression data plays an important 

role in the identification of molecular subtypes, diagnosis, predicting patient outcomes, and 

identifying markers of therapeutic response. Consequently, genome-scale molecular data 

readily available in public domains serves as a resource that has revolutionized the fields of 

biology and precision medicine. Investigating the most efficient strategy to combine the 

multiple profiles of data is critical to facilitate the development of a computational tool to 

predict cancer subtypes (Zhao et al., 2023). The development of such a high-throughput 

genome analysis technique plays an important role in the clinical treatment of various cancer 

types. 

 

A computational tool that can be applied to interpret the changing molecular characteristics of 

aggressive, progressing, and therapy-resistant tumors remains challenging (El-Deiry et al., 

2017). More specifically, the establishment of novel and valuable methodologies to stratify 

patients for personalized treatment is also still under investigation (Ying et al., 2020). It has 

been recommended that patients’ survival outcomes or prognosis should be closely linked with 

patient stratification methods, revealing a potential clinical application (Ying et al., 2020). 
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Therefore, this study proposed the development of a computational method that captures the 

heterogeneity between cancerous tumors by detecting their molecular differences in 

progression from early to advanced-stages of tumor development using gene expression by 

RNA-Seq.  

 

The method examines the continuously changing cellular transcriptome, allowing for an 

efficient and comprehensive description of gene expression profiles between different 

conditions over time.  Hence, it exposes the accumulated genetic changes that occur throughout 

the multi-stage of cancer development. Tracking cancer progression can improve the 

understanding of the molecular basis of tumorigenesis and alter our clinical approach to 

multiple cancer types. The application of the normalization method and hierarchical clustering 

will result in the discovery of novel cancer subtypes (clusters) that progress differently and 

further find genes responsible for cancer progression. Hence, the method facilitates the sub-

classification of heterogeneous cancers and will also allow for the establishment of a genotype-

phenotype link to the molecularly identified clusters and thus provide insight into clinical and 

phenotypic patterns of patient samples within the same cancer. 

 

1.3 Aims and objectives of the thesis research project 

 

The aims of the project were to: 

(1) Discover cancer subtypes with the implementation of a computational method that 

normalizes late-stage cancer samples with early-stage samples to track the progression of 

tumors based on transcriptomic profiles. 

(2) Application and validation of the computational method and discovery of novel cancer 

subtypes within the kidney renal clear cell carcinoma (KIRC) subtype.  
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A phased approach was adopted for the project: In the first part of the project, a preliminary 

study was conducted using multiple cancer types. The objectives of this preliminary study were 

to:  

i. Retrieve multiple cancers RNA-Seq data from the University of California, Santa 

Cruz (UCSC) Xena database browser with corresponding phenotypic and survival 

profiles. 

ii. Implement a computational method that normalizes advanced-stage cancer RNA-

Seq expression profiles with early-stage.  

iii. Subject the unnormalized and normalized gene expression to Weighted Gene Co-

expression Network Analysis (WGCNA) to identify groups of genes with similar 

expression patterns. 

i. Subject both unnormalized and normalized gene expression profiles to hierarchical 

clustering to reveal tumors that progress differently within and between the multiple 

cancer types.  

ii. Apply a one-way analysis of variance (ANOVA) to compare and confirm 

differences in the mean gene expression profiles of the identified clusters.  

iii. Match associated phenotypic and survival profiles to the identified cancer clusters. 

iv. Perform WikiPathways, Kyoto Encyclopedia of Genes and Genome (KEGG), and 

Transcription factor (TF) enrichment analyses to link gene modules to cancer 

related proteins and pathways. 

 

The second part of the study focused on the validation of the normalization method using 

transcriptomic profiles of a subtype of heterogeneous kidney cancer.  
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The objectives of the validation study were to:  

i. Retrieve transcriptomic profiles of KIRC from the UCSC Xena database browser 

with corresponding phenotypic and survival profiles. 

ii. A modified normalization method was designed that focused on one cancer type. 

iii. Identify new cancer subtypes that are molecularly heterogeneous and progress 

differently during tumor development, from early to late-stages. 

iv. The genotype-phenotype relationship of the distinct molecular clusters was defined 

by the average OS of the KIRC patient samples. 

v. Use feature selection methods; differential gene expression (DGE) analysis and 

Recursive Feature Elimination (RFE) to select genes with the highest performance 

in sample classification.  

vi. Perform survival analysis on the key feature selection genes using Cox regression 

and Kaplan-Meier (K-M) to identify prognostic genes.  

vii. Apply machine learning (ML) techniques for sample classification using gene 

expression profiles derived from feature selection genes.  

viii. Perform Gene Ontology (GO) and KEGG pathway enrichment analyses to illustrate 

the implication of the key genes in KIRC.  

 

1.4 Thesis overview 

 

Chapter 2: Literature review. 

A literature review details the genomic and transcriptomic basis of disease, as well as the 

heterogeneous nature of cancer, the available bioinformatics resources, and a multi-omics 

approach to disease. 
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Chapter 3: Transforming RNA-Seq gene expression to track cancer progression in the 

multi-stage early to advanced-stage cancer development. 

A normalization method was established to track the progression of tumors, based on 

transcriptional profiles from early to late-stage cancer development. Thus, the method exposes 

the accumulated genetic changes that occur throughout the multi-stage of cancer development. 

This computational methodology was applied in silico to multiple cancer types. The clustering 

of the normalized gene expression allowed for in-depth segregation based on the distinct cancer 

types as well as clusters (subtypes) within the cancer types.  

 

Chapter 4: Investigating the progression of kidney renal clear cell carcinoma 

transcriptional profiles to identify cancer subtypes. 

To validate the newly developed computational method, an in silico analysis was performed 

on the heterogeneous subtype of kidney cancer, kidney renal clear cell carcinoma. A total of 

eighty-two KIRC transcriptomic profiles were subjected to the normalization method. 

Clustering of the normalized gene expression revealed three groups (subtypes) with differently 

evolving gene expression profiles. The genotype-phenotype relationship to the distinct clusters 

was defined by the average overall survival of the KIRC patient samples, categorized into short, 

intermediate, and long survival. The results of the study could lead to a more accurate 

prognosis, while the biomarkers identified could serve as targets to provide a more effective 

treatment strategy.  

 

Chapter 5: Conclusions and future prospects. 
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Chapter 2  

 

 

Literature Review 

 

2.1 Introduction to high-throughput methodologies 

 

Over the past few decades, many species' genomes have been mapped in an effort to gain a 

deeper understanding of biological processes at the molecular level. In the mid-1990’s, 

microarray technology was introduced, which measured the abundance of a set of 

predetermined sequences via their hybridisation to an array of complementary probes (Schena 

et al., 1995). This allowed for a genome-wide analysis in a single experiment. High-throughput 

methods, like microarrays, have since advanced and gained widespread use as instruments for 

the investigation of numerous biological processes. 

 

Research that focuses on genome-wide gene expression aims to identify and characterize genes 

involved in various processes. The goal of a healthcare application would be to identify the 

genes that change gene expression levels during the infection of a pathogen. This can serve as 

potential biomarkers that can be used for accurate diagnosis, risk stratification, improved 
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prognosis, an understanding of therapeutic response, or lead to a more effective therapeutic 

approach for a specific disease. Alternatively, a research-orientated application would be to 

characterize the function of the genes to build a model for a biological process.   

 

Gene expression can be investigated either by quantifying the amount of ribonucleic acid 

(RNA) or the number of proteins. High-throughput methods, such as transcriptomics and 

proteomics, are available for both methodologies. Similar analyses are also available for studies 

on metabolites (metabolomics) and research that focuses on the protein’s interaction with 

DNA. Other applications of high-throughput methodologies include the identification of 

mutations that may cause a disease or increase the risk of disease development. Deep 

sequencing (also referred to as NGS) has also been established. The development of this high-

throughput technology enabled the determination of DNA- or RNA sequencing (RNA-Seq) 

and the RNA expression on a genome level and therefore increased the volume of information 

acquired in the respective experiments (Wang et al., 2009; D’Argenio, 2018).   

 

RNA-Seq serves as key contemporary tool, that uses high-throughput sequencing to capture all 

sequences. It is a cost-effective technique that enables a comprehensive understanding of the 

transcriptome landscape (D'Agostino et al., 2022). The technique is thus the method of choice 

for examining tissue-level transcriptome changes. This powerful screening tool has improved 

transcriptome analysis in both qualitative and quantitative ways, due to its limitless dynamic 

range (D'Agostino et al., 2022). Table 2.1 below captures a comparison of the differences in 

RNA-Seq platforms with more details regarding to their features, specifications, and 

technologies.
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Table 2.1: Comparison of five principal RNA-Seq platforms and technologies. The primary application of these technologies is RNA-Seq. 

This table includes some features and details about each platform (Jazayeri et al., 2015). 

Features 454, Roche Ion Torrent Illumina ABI SOLiD Pacific Bio 

Sequencing 

chemistry 

Pyrosequencing, 

Chemiluminescence 

Ion 

semiconductor 

Polymerase-based sequence- 

by-synthesis 

Sequencing by 

ligation 

Single Molecule Real 

Time 

Sequencing 

method 

incorporation of 

normal 

nucleotides 

measuring pH 

change 

incorporation of fluorescent 

nucleotides 

fluorescent short 

linkers 

Incorporation of 

fluorescent 

Nucleotides 

Sequence yield 

per run 

0.6 -1 Gb 1 Gb 1- 60 Gb 3 Gb 0.3-0.5 Gb 

Time per run 7 hours 2 hours 1-10 days 5-14 days 10 h 

Read length 700 bp 400 bp 50 to 250 bp 50+35 or 50+50 bp 5,000 bp average; 

maximum read length 

~22,000 bases 

Input run type 

library 

SE, PE, Mx SE, PE, Mx SE, PE, MP, Mx SE, MP, Mx SE 
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The data generated by the high-throughput techniques described above are similar in nature. 

These techniques enabled genome-wide analyses, as they provide information on the full set of 

all potential variables in an individual. As a result, a vast number of variables, ranging from 

hundreds to millions, are generally investigated. Variability is often introduced into the data, 

due to the complex experimental procedures. This variation needs to be eliminated to derive 

biologically meaningful insights and conclusions. Two data analysis processes are typically 

employed. First, pre-processing which aims to remove the technical variations and, second 

downstream analysis, which includes all additional analyses carried out to address the 

biological question, such as statistical analysis.  

 

The general aim of these investigations is primarily to find the variables that are different 

between two experimental groups, such as which genes, proteins, or metabolites are different 

when comparing infected tissue with uninfected tissue, patients and healthy individuals, or 

virulent and nonvirulent bacterial strains. The direct comparison of results between 

experiments is facilitated by the principle of RNA-Seq. RNA-Seq enables the determination of 

the absolute quantity of every molecule in a cell population (Wang et al., 2009). Therefore, it 

allows researchers to measure and investigate levels of gene expression over time, to further 

assess the function of the genes, and find targeted treatment, or potential virulence factors. 

Other studies seek to categorize a disease into subtypes and find the genes that differ between 

the subtypes (Zhang et al., 2017; Chen et al., 2020; Ding et al., 2023). Generally, these studies 

would implement a hierarchical clustering algorithm to analyse the samples and variables. A 

more clinical application can be to predict diseases or strains of pathogens based on gene 

expression using classification methods. To achieve this, either expression from all genes or a 

subset of genes is employed.  
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In this investigation, changes in gene expression levels were assessed to understand the 

progression of the multi-stage cancer development using data from high-throughput RNA-Seq. 

A novel pre-processing computational method was developed and evaluated with respect to 

their performance in downstream analysis (See Chapter 3). 

 

2.2 Cancer as a disease 

 

Cancer is a broad category of genetic diseases that are currently classified by their primary site 

of origin, such as brain cancer and breast cancer (Zhao et al., 2019). Hence, the term “cancer” 

refers to over 277 different types of cancer diseases (Hassanpour & Dehghani, 2017). The 

disease is the most intractable medical and health challenge in the world, accounting for 

approximately 10 million deaths in 2020 (Ferlay et al., 2021). Therefore, cancer is a major 

problem that has an impact on the health of all human societies. The disease exhibits variability 

at the tissue level, which poses significant challenges for both specific diagnoses, followed by 

the efficacy of treatments (Meacham & Morrison, 2013; Fisher et al., 2013). In men, the highest 

percentages of cancer types occur in the prostate, lung, stomach, liver, colon, and rectum. In 

women, cancer prevalence is highest in the breast, lung, cervical, thyroid, non-melanoma skin, 

and ovary. This data indicates that the majority of cancers in men and women are prostate and 

breast cancers, respectively (Ferlay et al., 2021). For children, the most common cancers are 

blood cancer, cancers related to the brain, and central nervous system cancer (Wu et al., 2022). 

 

Researchers have discovered different stages of cancer, suggesting that numerous gene 

alterations have a role in cancer pathogenesis. Cancer thus occurs by a series of continuously 

accumulating gene mutations that alter cell activities. These gene mutations lead to abnormal 

cell proliferation (Hassanpour & Dehghani, 2017). Consequently, cancer is a dynamic and 
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complex disease, that generally becomes more heterogeneous as the disease progresses 

(Meacham & Morrison, 2013; Dagogo-Jack & Shaw, 2018). As a result, different cancers may 

present different gene expression levels at different stages of the disease that affect the 

prognostic characteristics (or survival patterns) of a patient. Thus, gene expression data have 

similar survival-related characteristics, in which some tumours may be fast-growing and can 

cause mortality soon after diagnosis, while other tumors grow gradually and slowly. 

 

2.2.1 Tumour heterogeneity 

 

Tumour heterogeneity refers to the existence of subpopulations of cells, with unique 

morphological and phenotypic profiles that may harbour diverse biological behaviours within 

a primary tumour as well as its metastases (Fisher et al., 2013). This phenomenon is also 

referred to as intra-tumour heterogeneity. This in turn can lead to inter-tumor heterogeneity. 

Heterogeneity thus describes the differences among cancer cells both within tumors (intra-

tumor heterogeneity) and between tumors (inter-tumor heterogeneity) (Figure 2.1) (Fisher et 

al., 2013; Proietto et al., 2023). Therefore, it refers to cancer cells describing variations in 

morphology, transcriptional profiles, metabolism, and metastatic potential. 
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Figure 2.1: An illustration of intra-tumor and inter-tumor heterogeneity (Venkata, 2019). 

 

One of the most challenging behaviours in cancer ecosystems is heterogeneity (Proietto et al., 

2023), which has been discovered in the majority of tumors. This includes leukemias (Eshibona 

et al., 2023), breast (Parker et al., 2009), prostate (Kaffenberger & Barbieri, 2016), kidney 

(Zhong et al., 2021), colorectal (Singh et al., 2019), brain (Friedmann-Morvinski, 2014), 

esophagus (Li et al., 2020), head and neck (Canning et al., 2019), bladder (Lavallee et al., 

2021) and gynecological carcinomas (Fujii et al., 2000). Heterogeneity promotes tumor 

resistance, more aggressive metastasis, and recurrence and is one of the major factors limiting 

the long-term efficacy of solid tumor therapy (Proietto et al., 2023). Hence, tumor 

heterogeneity thus provides the fuel for drug resistance (Dagogo-Jack & Shaw, 2018). 

However, the functional relevance of genomic heterogeneity in tumor progression and therapy 

resistance remains poorly understood (Marusyk et al., 2020). 

 

An accurate assessment and characterization of tumor heterogeneity has the potential to 

advance the understanding of the causes and progression of the disease. In turn, this could serve 
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as guidance for the development of more advanced treatment plans that recognise the 

magnitude and prevalence of intra- and inter-tumor heterogeneity to yield higher efficacy.  

 

2.2.2 Cancer Subtyping 

 

Cancers are traditionally classified four ways: (i) primary site of origin i.e lung or liver cancer; 

then by (ii) histotype, and (iii) grade according to WHO classifications; and (iv) finally by 

spread according to the Tumor Node Metastasis system. However, this only partially captures 

the true heterogenic characteristics of cancer. Therefore, the World Health Organization 

classifications began to include molecular–genetic features of tumors, starting from the third 

edition in 2000 (Carbone, 2020). Molecular subtyping of cancer, as the name suggests, is a new 

approach to group cancers according to molecular data and classification models. For example, 

breast cancer is highly heterogeneous and over the years multiple molecular subtypes have 

evolved. Currently, four subtypes of breast cancer are widely recognized: luminal A, luminal 

B, HER2-positive, and triple-negative (Orrantia-Borunda et al., 2022). Thus, patients with 

different cancer subtypes often have unique groups of genomic and clinical characteristics due 

to the high heterogeneity and complexity of malignancies (Zhao et al., 2023). Molecular 

classifications of cancer thus rely on biomarkers and classifiers, in contrast to the traditional 

histological classification (Zhao et al., 2019). Therefore, different molecular approaches access 

the potency of gene expression and defective proteins, as well as the identification of novel 

cancer biomarkers. These discoveries can be useful to treat cancers and reduce cancer 

complications. 

 

High-throughput sequencing technologies have enabled the capturing of comprehensive 

profiles of tumor samples at multiple levels and allow for deep phenotyping of patients. These 
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recent advances in technology have accelerated the increasing availability of multi-omics data 

for the purpose of cancer subtyping. The identification of cancer subtypes is crucial to facilitate 

cancer diagnosis, prognosis and selection of effective treatment. Therefore, it is vital to take 

advantage of the complimentary information from multi-omics data, and develop 

computational models that can characterize and integrate different data layers into a single 

framework (Zhao et al., 2023). 

 

2.2.3 Cancer and Representative Signaling Pathways  

 

Cancer-associated genetic abnormalities have been well documented since the early 

identification of oncogenes and tumor suppressor genes (International Human Genome 

Sequencing Consortium, 2004, ICGC/TCGA Pan-Cancer Analysis of Whole Genomes 

Consortium, 2020). Nowadays, it is widely acknowledged that signaling pathways and 

molecular networks play crucial roles in carrying out and regulating important pro-survival and 

pro-growth cellular processes. As a result, they are primarily responsible for the onset of cancer 

as well as potential treatments (Yip & Papa, 2021). 

 

Several important signaling pathways have been identified as frequently genetically altered in 

cancer, including the RTK/RAS/MAP-Kinase pathway, PI3K/Akt signaling, amongst others 

(Vogelstein & Kinzler, 2004). Members of these pathways and their interactions have been 

captured in numerous pathway databases. The genes in key pathways are not altered at equal 

frequencies, with some genes frequently altered and well-known in cancer, whereas others are 

only rarely or never altered. Also, the alteration to specific pathways, such as RTK-RAS 

signaling or the cell-cycle pathway, occur at high frequency across many different tumor types, 

while other pathways are altered in more specific subsets of malignancies (e.g., alterations in 
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the oxidative stress response pathway are strongly associated with squamous histologies). 

Identifying the relationships of inter- and intra-pathway recurrence, co-occurrence or mutual 

exclusivity in various cancer types can aid in understanding the functionally relevant processes 

of oncogenic pathway alterations that may guide therapeutic approaches (Sanchez-Vega et al., 

2018). 

 

2.3 Omics Research 

 

Advancements in technology have allowed for the collection of large quantities of molecular 

measurements within a tissue or cell. These technologies can be applied to a biological system 

of interest and reveal the underlying biology at a resolution that has never been attainable. 

Generally, the scientific fields associated with measuring such biological molecules in a high-

throughput manner are known as omics. 

 

Omic analysis includes different branches and categories of research. Examples include 

genomics (Hasin et al., 2017), epigenomics (Esteller, 2007), transcriptomics (Sager et al., 

2015), proteomic (Aslam et al., 2017), and metabolomics (Pinu et al., 2019) that corresponds 

to the global analyses of genes, methylated DNA or modified histone proteins, RNA, proteins, 

and metabolites, respectively. These studies produce a large amount of data that has enabled 

the characterization of molecular features and provided evidence of disease diagnosis in 

multiple human diseases (Subramanian et al., 2017). However, single omics research can only 

provide a limited degree of understanding and thus, a combination of these studies within a 

suitable statistical and mathematical framework can assist in solving broader queries related to 

both basic and applied fields of biology. 
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2.3.1 Multi-omics approach to diseases  

 

Multi-omics seeks to combine two or more omics strategies to aid in data analyses, 

visualization, and interpretation (Brademan et al., 2020, Krassowski et al., 2020). This method 

provides important insights into the flow of biological information at multiple levels and can 

thus reveal the mechanisms underlying the biological condition of interest (Subramanian et al., 

2020). Therefore, multi-omics efforts have revolutionized biomedical research and are now a 

standard method for carrying out biological research. These integrated approaches further hold 

significant promise for complex diseases such as cancer. The complexity of cancer research 

can thus be enhanced by multi-omics research and improve the accuracy of cancer diagnosis 

and prognosis (Iorio et al., 2016, Pettini et al., 2021).  

 

Multi-omics has the potential to find novel associations between biological entities, aid in 

biomarker discovery, and build an elaborate concept between the disease and physiology. 

Additionally, multi-omics helps in coherently matching genotype-to-phenotype relationships. 

The robust understanding of genotype-to-phenotype correlations in applied multi-omics could 

improve healthcare facilities by increasing the diagnostic yield for health, improving disease 

prognosis, and thus establishing a standard for excellence (Krassowski et al., 2020, 

Subramanian et al., 2020). Future research will be greatly aided by combining multi-omics 

resources and bioinformatics techniques to gain knowledge from existing data. 

 

2.4 Transcriptome profiling  

 

In the last decades, transcriptome profiling has been one of the most utilized approaches to 

understanding human diseases at the molecular level (Casamassimi et al., 2017). The term 
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transcriptome refers to the full range of RNA molecules expressed by a cell, tissue, or organism 

during a particular physiological condition or developmental stage (D’Agostino et al., 2022). 

Detailed knowledge of the transcriptome is essential for understanding genomic processes, and 

identifying the molecular compositions of cells, as well as the cause and progression of diseases 

(Wang B et al., 2019). The study of transcriptomics is also referred to as gene expression 

profiling.  

 

2.4.1 Gene expression profiling technique 

 

The experimental methods for obtaining gene expression profiles have rapidly advanced from 

measuring a small number of transcripts with microarrays, to a large number of transcripts with 

the more contemporary RNA-Seq technique. This approach has advantages in almost every 

field of life sciences and is currently being adopted for clinical purposes (Szalat et al., 2016; 

Blok et al., 2018; Borisov et al., 2020).    

 

RNA-Seq enables the characterization of the average expression profiles for individual samples 

(Mortazavi et al., 2008; Wang et al., 2009; Metzker, 2010). This is achieved by expression 

profiling once the sequencing of a genome is completed. Essentially, gene expression profiling 

measures the expression level of all targeted RNA transcripts. Hence, it provides a snapshot of 

the transcriptional activity in a biological sample and reveals the underlying molecular 

processes occurring (D’Agostino et al., 2022). Expression profiles from various conditions can 

thus be compared to find expression signatures to describe a condition of interest such as a 

tissue type, a disease, or a treatment response. Therefore, it facilitates the discovery of 

molecular functions linked to genes with condition-specific differential expression. 
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2.4.2 Gene quantification 

 

An RNA-Seq experiment is conducted with the extraction of a targeted RNA population from 

biological samples (Kukurba & Montgomery, 2015). These RNAs are fragmented into shorter 

sequences suitable for high-throughput sequencing platforms, transformed into cDNA, and 

finally ligated with sequencing adapters. The adapter-ligated fragments can then be read by a 

sequencer. After the fragments have been sequenced, RNA-Seq data begins to exist. These 

fragments must be assigned to the genomic features from which they originated, to assign a 

read count value per genomic feature. This process is known as quantification (Figure 2.2). 
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Figure 2.2: Quantifying transcription levels. In a typical RNA-Seq investigation, the reads 

are first aligned to a reference genome, after which the reads may be assembled into transcripts 

by either using reference transcript annotations or de novo assembly methods. The expression 

level of a single gene is determined by counting the number of reads that align to an exon or 

full-length transcript. Next, downstream analysis with RNA-Seq data can be performed 

(Adapted from Kukurba & Montgomery, 2015). 

 

The expression level of each RNA unit is based on the number of sequenced fragments mapped 

to the gene or transcript, which in turn is expected to directly correlate with its abundance level 

(Rapaport et al., 2013). Once quantified, the expression profiles from individual assays are 

merged to create a matrix X with features as rows and samples as columns. Also referred to as 

a gene-by-sample matrix. Each element of the matrix Xij represents the raw read count of 

feature i in sample j. 

 

Subsequently, changes in the gene expression profiles between samples can be established. 

Therefore, the purpose of a gene quantification investigation is to recognize the changes that 

occur under various experimental conditions, in disease states, and response to medical 

treatments. Therefore, RNA-Seq expression profiles have the potential to result in expression 

signatures that aid in the understanding of disease mechanisms and the development of 

clinically relevant biomarkers (Goossens et al., 2015; Bhowmick et al, 2019), or machine 

learning models that enhance the quality of data and medical care. 

 

2.5 Normalization 

 

Unintentional experimental errors are frequently introduced into RNA-Seq data by sequencing 

technology. To counteract this, a mathematical adjustment known as normalization is 
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standardly used to reduce the non-biologically derived variability present in transcriptome 

measurements. Therefore, normalization corrects for systemic biases introduced during sample 

processing and data generation and makes gene expressions directly comparable within and 

between samples.  

 

The method involves adjusting data from one domain to another so that the results are relatively 

normally distributed. When applied to numerical data, normalization converts the numbers to 

a common scale without distorting the underlying differences (Chawade et al., 2014). Other 

methods include min-max, z-score, TPM (transcripts per million), RPKM (reads per kilobase 

million), and quantile, among others (Bolstad et al., 2003, Baumgartner et al., 2011, Roy et al., 

2019, Quackenbush, 2002, Anders & Huber, 2010, Oshlack & Wakefield, 2009, Wagner et al., 

2012).  

 

The above normalization methods can be computed with R code, while DESeq and TMM 

(Trimmed Mean of M-values) normalization is implemented in the DESeq and edgeR 

Bioconductor packages, respectively (Robinson et al., 2010, Anders & Huber, 2010; Love et 

al., 2014). The two methods use a combination of mathematically based and biologically based 

normalizing strategies and are most frequently used for differential gene expression analysis. 

The selected method depends on the following factors: (i) the type of genomic data, (ii) the 

platform originally used to collect the data (iii) the scale of the data, and (iv) the intended 

downstream analyses. Normalization is critical to accurately interpret the results of genomic 

and transcriptomic investigations (Abrams et al., 2019). 
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2.6 RNA-sequencing: Application in cancer research  

 

The in-depth analysis of RNA-Seq and comprehension of gene expression have facilitated the 

interpretation of diseases and their genetic causes at the molecular level. Therefore, it allows 

for the identification of different cancer types as well as rare diseases. The method further 

offers a tool that can identify the genetic and epigenetic cause of cancer, and thus aid in better 

therapy by identifying resistant genes and defining gene mutations as cancer biomarkers (Hong 

et al., 2020). 

 

The method is thus important for accurate cancer diagnosis, shedding light on the development 

of more effective treatments and more specifically offering targeted therapy (Ergin et al., 

2022). Additionally, normal tissues and cells can be compared to abnormal conditions to track 

and reveal the cause of various diseases and identify metabolic abnormalities or alterations 

occurring at the molecular and cellular levels (Ergin et al., 2022). 

  

2.6.1 Transforming RNA-Seq to track cancer progression 

 

The use of RNA-Seq data for disease assessment is growing, and normalization (section 2.5) 

is generally accepted to be a necessary step in order to generate comparable samples. However, 

a study found that raw data may perform better in capturing more original transcriptome 

patterns in different pathological conditions (Han & Men, 2018). Therefore, this study 

developed a computation method to adjust or transform raw count RNA-Seq gene expression 

profiles to provide more meaningful biological information. The computational method was 

developed to track gene expression changes that occur throughout the multi-stage development 
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of cancer. The rationale of this approach can be illustrated by a bar graph of a single raw count 

gene expression profile from the same cancer type (Figure 2.3).  

  

 

Figure 2.3: Raw RNA-Seq data of advanced-stage and early-stage gene expression of gene 

x in two tumor types. Tumour 1 and tumour type 2 show a gene expression fold increase of 4 

and 1, respectively, from early to advanced-stage cancer. (Adapted from Livesey et al., 2023). 

 

For gene x, the red and blue bars represent advanced-stage and early-stage cancer gene 

expression profiles, respectively (Figure 2.3). It can be noted that gene x reveals identical 

advanced-stage expression profiles in both distinct tumour types. Therefore, these tumour types 

will group together based on transcriptional profiles (Figure 2.3A). However, when considering 

the early-stage gene expression profiles in both tumour types, it can be noted that there is a 

significant difference in the expression levels between advanced-stage and early-stage. Tumour 

type 1 illustrates a greater difference than the expression levels in tumour type 2. Therefore, a 
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computational method that corrects for genes that display less expression variability in 

advanced-stage cancer samples but display a high variability in early-stage cancer samples, and 

grouping of the normalized output will allow for the segregation of the heterogeneous tumour 

types (Figure 2.3B). 

 

The computation method in this study detects the accumulated genetic changes when gene 

expression levels in advanced-stage are less variable but display high variability in early-stage, 

by calculating the quotient of cancerous samples (dividend) and early-stage samples (divisor) 

(Livesey et al., 2023). The method produces ‘normalized’ differential RNA gene expression 

within a specific condition, therefore representing the continuously changing cellular 

transcriptome in which two distinct tumour types or subtypes can be differentiated based on 

the differences in the progression of gene expression profiles in the multi-stage cancer 

development. This enables a more efficient and comprehensive description of heterogeneous 

gene expression profiles.  

 

2.7 Hierarchical Clustering 

 

The molecular patterns can be further explored with hierarchical clustering analysis to reveal 

unique gene expression patterns. An algorithm referred to as hierarchical clustering organizes 

similar objects into groups called clusters. The sole concept of hierarchical clustering lies in the 

creation and evaluation of a dendrogram output. A dendrogram is a tree-like structure that shows 

the hierarchical relationship among all the data points. As a result, the endpoint is a set of 

clusters, where each cluster is distinct from other clusters, and the objects within each cluster 

are generally similar to each other. Numerous research studies have focused on clustering 

cancer patient samples based on gene expression profiles (Alon et al., 1999; Ma et al., 2009; 
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De Souto et al., 2008; Yu et al., 2017, Cao et al., 2021; Xing et al., 2022). Consequently, the 

application of clustering analysis has successfully been used to identify novel cancer subtypes 

based on high-dimensional RNA-sequencing data from samples taken from cancer patients 

(Vidman et al., 2019).  

 

2.8 Biomarkers  

 

The emergence of genomics and advances in molecular biology have allowed for a promising 

era of biomarker research. The Food and Drug Administration (FDA) in collaboration with the 

National Institutes of Health (NIH) Joint Leadership Council described a biomarker as “a 

defined characteristic that is measured as an indicator of normal biological processes, 

pathogenic processes or responses to an exposure or intervention” (FDA-NIH Biomarker 

Working Group, 2016). The most common experimental approach for identifying biomarkers 

is to compare diseased samples with control samples 

 

2.8.1 Transcriptional Biomarkers in Cancer 

 

A tumor may consist of a diverse collection of cells, each with its own unique molecular 

signatures, due to the high degree of genetic heterogeneity. A cancer biomarker is thus any 

quantifiable molecular indicator of cancer risk, occurrence of cancer, or patient outcome 

(Sarhadi & Armengol, 2022). This process involves the profiling of tumors to detect changes 

in DNA, RNA, proteins, or other biomolecules. Cancer biomarkers have a wide range of useful 

healthcare applications, including cancer risk assessment, screening of disease and early 

detection, cancer diagnosis, patient prognosis, the prediction of response to therapy including 

the safety and toxicity of therapeutic regimen, and cancer monitoring (Sarhadi & Armengol, 

http://etd.uwc.ac.za/



 

29 
 

2022). Their ultimate goal is to achieve precision medicine to enhance the prevention, 

screening, and treatment approaches of cancer.  

 

Biomarkers are classified into seven categories; susceptibility/risk, diagnostic, predictive, 

prognostic, monitoring, pharmacodynamic/response, and safety. A susceptibility/risk 

biomarker can indicate the potential for developing a disease in an individual who does not 

currently have clinically apparent disease, while a diagnostic biomarker detect the presence of 

a disease or identify a subtype of the disease (Califf, 2018). Predictive biomarkers provide 

information about clinical outcomes based on treatment decisions, while prognostic biomarkers 

provide information about the probable course of the disease, including its recurrence, 

progression, and patient’s OS, irrespective of the treatment (Ballman, 2015; Sarhadi & 

Armengol, 2022). A monitoring biomarker can be frequently measured to assess disease status 

or for evidence of exposure to a medical product or an environmental agent. They are thus 

useful for measuring the pharmocodynamic effects, to detect early evidence of a therapeutic 

response and detect complications of a disease or therapy. Conversely, a pharmacodynamic 

biomarkers are those whose levels alter in response to exposure to medical products or 

environmental agents. Lastly, a safety biomarker is measured before or after exposure to 

medical intervention or an environmental agent to determine the likelihood, presence, or extent 

of a toxicity as an adverse event (Califf, 2018). Therefore, biomarker discovery is advancing 

the understanding of disease pathogenesis, providing novel targets for disease characterization, 

and early diagnosis, and improving targeted therapy to facilitate personalized treatment that 

benefits a patient based on their unique profile (Novelli et al., 2008).  

 

A cancer biomarker is a characteristic that is measured as an indicator of cancer risk, cancer 

occurrence, or patient prognosis. These characteristics can be either molecular, cellular, 
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physiologic, or imaging-based. Cancer biomarkers that are frequently research include AK2 

gene mutation, which aid in the diagnosis of certain types of leukemia, whereas BRCA1 and 

BRCA2 gene mutation help in the treatment of ovarian and breast cancers. A DPD gene 

mutation helps predict the risk of a toxic reaction to 5-fluorouracil therapy in breast, colorectal 

cancer, gastric, and pancreatic cancer. Meanwhile, the HE4 biomarker helps with ovarian 

cancer therapy planning, disease progression assessment, and recurrence monitoring (Sarhadi 

& Armengol, 2022). Therefore, the identification of novel molecular biomarkers has the 

potential to improve personalized disease prevention and management, therefore, resulting in a 

more precise, safe, and cost-effective healthcare outcome, ultimately improving patient health 

outcomes. Accordingly, a new era of precision and personalized cancer therapeutics has been 

brought about as biomarker discovery has led to the development of drugs targeting tumor-

specific biomarkers in a subgroup of patients (Moore & Guinigundo, 2023). Continuous 

advances in precision oncology are needed for the development of novel cancer biomarkers with 

increased sensitivity, specificity, and positive predictive value. 

 

2.9 Multi-omic resouces 

 

Massively parallel sequencing technology has generated an increasing amount of complex 

cancer genomic data,  providing a need for large repositories and databases to store this data. 

The cancer recourse community further requires user-friendly data-centric tools for data 

visualization and interpretation. 

 

Numerous resources are available to explore for integrated multi-omics research. Most of these 

resources are publicly available and can be queried, utilized, and studied without restrictions 

for the purpose of reproducibility, discovery, and validating results (Yang et al., 2015; 
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Pavlopoulou et al., 2015). Globally, several data types are being curated in bioinformatics 

resources. These data types are stored in different file formats and can be retrieved from 

relevant cancer data repositories such as UCSC Xena browser (Goldman et al., 2020), Cancer 

Bioportal (cBioportal) (Gao et al., 2013), The Cancer Genome Atlas (TCGA), Therapeutically 

Applicable Research to Generate Effective Treatments (TARGET), and Gene Expression 

Omnibus (GEO), among others.  

 

2.9.1 UCSC Xena Browser  

 

UCSC Xena (UCSC Xena; http://xena.ucsc.edu) is a high-performance resource for visualizing 

and exploring multi-omic data from large public repositories and private datasets (Goldman et 

al., 2020). The platform comprises of two components: the front-end Xena Browser and the 

back-end Xena Hubs. The web-based Xena Browser (UCSC Xena Browser; 

https://xenabrowser.net) empowers biologists to easily explore data across multiple open-

public Xena Hubs, while Xena Hubs securely hosts genomics data from laptops, public servers, 

or the cloud (Goldman et al., 2013, 2015, 2020). 

 

Xena focuses on cancer genomics and showcases more than 1600 datasets across 50 types of 

cancer. Significant cancer genomics datasets include TCGA (Chin et al., 2011), International 

Cancer Genome Consortium (ICGC), TCGA Pan-Cancer Atlas (Hoadley et al., 2018), Pan-

Cancer Analysis of Whole Genomes (PCAWG) (The ICGC/TCGA Pan-Cancer Analysis of 

Whole Genomes Consortium, 2020), Genomic Data Commons (GDC) (Grossman et al., 2016), 

and more. The platform also hosts results from the UCSC Toil RNA-Seq Recompute 

Compendium which uniformly realign gene and transcript expression data from all TCGA, 

TARGET, and Genotype-Tissue Expression (GTEx) (GTEx Consortium, 2017) samples to 
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enable users to compare gene and transcript expression from these datasets (Vivian et al., 

2017).  

 

Additional analyses and visualization tools available through Xena Browser include dynamic 

K-M survival analysis, powerful filtering and subgrouping, box plots, scatter plots, and 

statistical tests (Goldman et al., 2020). It further supports a wide range of data types, including 

clinical data such as phenotypic and survival information (Goldman et al., 2020). Other data 

types include somatic and germline single nucleotide polymorphisms (SNPs), indels, large 

structural variants, copy-number variation, gene, transcript, exon, protein or micro RNA 

expression, DNA methylation, and ATAC-seq peak signals (Cieślik & Chinnaiyan, 2018, 

Langmead & Nellore, 2018).   

 

The many unique features, broad data type support, high performance, easy and secure view, 

and open access to public and private data differentiate Xena from other genomic tools 

(Goldman et al., 2020). Several recent bioinformatics studies have used data (Zhu et al., 2019; 

Giwa et al., 2020; Hu et al., 2021; Eshibona et al., 2022; Song et al., 2022), published data 

(Kang et al., 2020), and made visualizations from or on the Xena browser (Chen et al., 2019; 

Zheng & Fu, 2020; Zhang et al., 2020; Wang et al., 2021; Jin et al., 2021). 

 

2.9.2 The Genotype-Tissue Expression portal 

 

The GTEx (GTEx; https://gtexportal.org) project is an ongoing effort to create a comprehensive 

open-access resource for the scientific community. Building the GTEx project, the initiative 

aimed to establish a molecular and data analysis resource, and a tissue bank to study human 

gene expression and regulation, and its relationship to genetic variation. Tissue-specific 
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regulation of gene expression levels is obtained from multiple healthy reference neonatal, 

pediatric, and adolescent tissues. The data types include gene expression levels across 

numerous ‘normal’ (non-diseased) human tissues, quantitative trait loci (QTL), and histology 

images (GTEx consortium, 2015 and 2017).  

 

The GTEx database presents a sample collection from 54 non-diseased tissue across nearly 

1000 individuals, primarily from molecular assays which include Whole-Genome Sequencing 

(WGS), Whole Exome Sequencing (WES), and RNA-Seq. The platform allows controlled 

access to de-identified individual-level genotype, expression, and clinical data, and users are 

able to browse and download computed expression QTL results. The associated tissue 

repository is also a source for numerous other types of analysis. 

 

The project enables research on the relationship among genetic variation, gene expression, and 

other molecular phenotypes among a diverse set of human body tissues, many of which are not 

easily accessible (GTEx consortium, 2013, 2015). Correlations between genotype and tissue-

specific gene expression levels will aid in the identification of regions of the genome that affect 

whether and how much a gene is expressed. GTEx will also aid researchers in understanding 

the inheritance of disease susceptibility. 

 

2.9.3 The Cancer Genome Atlas  

 

The Cancer Genome Atlas (TCGA; https://cancergenome.nih.gov/) is one of the most 

significant and successful cancer genomics programs (Wang et al., 2016). The project began 

in 2006 as a collaborative effort led by the National Cancer Institute (NCI) and the National 
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Human Genome Research Institute (NHGRI), both of which are components of the National 

Institutes of Health, U.S. Department of Health and Human Services.  

 

The project aims to use large-scale genome sequencing applications to accelerate the 

understanding of the molecular characteristics of cancer. For this purpose, this initiative 

generates rich molecular and genetic profiles from primary tumor samples of various cancers 

and their subtypes (Cancer Genome Atlas Research Network et al., 2013). TCGA thus houses 

one of the largest collections of multi-omics datasets of more than 20,000 individual tumor 

samples, representing 33 types of cancers. 

 

Data from TCGA projects are organized into two tiers: open and controlled access. Controlled 

access requires an application and approval for access, while open access TCGA data is 

available through the GDC Data Portal (GDC Data Portal; https://portal.gdc.cancer.gov/). The 

data type is broadly categorized into biospecimen and clinical data, molecular analysis 

(genomic characterization) data, and analysis metadata. The platform also allows for web-

based analysis and visualization tools (Gao et al., 2019). Every data file can be classified as 

either metadata (alternatively, level 0) or one of three data levels.  Level 1 is equivalent to raw 

data, where examples include an Affymetrix CEL file. While level 2 and level 3 refer to 

processed and segmented or interpreted files, respectively. Examples of the files can be variant 

calling format (VCF) or mutation annotation format (MAF) files (Wang et al., 2016). 

 

Other TCGA data access methods include using software packages such as the R packages, 

TCGAbiolinks (Colaprico et al., 2016), TCGA2STAT (Wan et al., 2016), TCGAIntegrator, 

and xenaPython python package.  
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2.9.4. Pathway databases 

 

The interpretation of molecular signatures that are generally yielded by genome-scale 

investigations is often supported by pathway-centric techniques through which mechanistic 

insights can be gained by pointing at a collection of biological processes. WikiPathways 

(WikiPathways; https://wikipathways.org), and Kyoto Encyclopedia of Genes and Genomes 

(KEGG; https://www.kegg.jp/), among other pathway databases, present a curated resource, in 

a machine-readable form (Ogata et al., 1999; Kelder et al., 2009; Kanehisa et al., 2017; Slenter 

et al., 2018).  

 

WikiPathways is a biological pathway database, founded in 2007 (Pico et al., 2008) and 

currently consists of 242 pathways, and 9014 genes and proteins in the human pathway 

collection (Martens et al., 2021). KEGG was originally developed in 1995 as a comprehensive 

database resource for the biological interpretation of completely sequenced genomes. 

Currently, the database consists of fifteen manually curated databases (Kanehisa et al., 2017). 

These databases facilitate the biological interpretations of large-scale molecular datasets. Pre-

assembled and ready-to-use menus of pathways and networks from several open sources can 

be obtained through publicly available web-based applications. Also, software for pathway 

analysis is available in the form of desktop programs, or packages written in languages such as 

R and Python. 

 

2.10 Access publicly available RNA-sequenced datasets 

 

RNA-Seq datasets that are publicly available in repositories can be downloaded as either raw 

sequencing data (.fastq sequencing files) and/or pre-processed files. Generally, the pre-
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processed files are stored as tabular formatted files containing matrices with sequenced read 

counts after trimming and alignment to a reference genome (Sanchis et al., 2021). The gene-

by-sample matrix comprises columns that are all replicates of the same experiment, and the 

rows contain the gene names, most frequently corresponding Ensembl identifiers (also known 

as ENSG IDs). The Ensembl gene IDs are stable identifiers that serve as a method for databases 

to label features, such as genes, transcripts, exons, or proteins (Aken et al., 2016).  

 

The analysis of these large datasets can be incredibly powerful and can reveal many novel 

findings, however, requires substantial analysis to be interpreted. Thus the demand for 

bioinformatics expertise is rapidly expanding as a result of the increased popularity of RNA-

Seq. 

 

2.11 Bioinformatics 

 

The vast volume of biological data stored in the aforementioned repositories, demands analysis 

and interpretation, tasks that are being managed by the evolving science of bioinformatics 

(Bayat, 2002). Within the fields of genetics and genomics, bioinformatics is a scientific 

subdiscipline that uses computer technology to collect, store, analyse, and distribute biological 

data and information, including sequences of amino acid and DNA or annotations related to 

those sequences (Paszkiewicz & Giezen, 2011). Hence, it combines several fields of study, 

including computer sciences, molecular biology, biotechnology, and statistics. Bioinformatics 

aims to organize large volumes of molecular data, develop tools that facilitate the analysis of 

such data, and uncover vital biological information hidden in a large amount of unprocessed 

data to identify significant trends or patterns (Jiang et al., 2022). 
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Bioinformatics is currently applied in numerous fields, including microbial genome 

applications, personalized medicine, evolutionary studies, and biotechnology, among others. 

Cancer bioinformatics is focused on bioinformatics methodologies linked to disease 

specificity, proliferation, communication and signaling in cancer. While, clinical 

bioinformatics is an emerging science that combines mathematics, medical informatics, and 

clinical informatics (Beg & Parveen, 2021). Clinical bioinformatics seeks to comprehend the 

potential application of biological and medical informatics in the development of personalized 

healthcare, medication, and therapies.  

 

2.12 Bioinformatics tools and methods 

 

The interdisciplinary field of bioinformatics provides a wide range of packages, tools, and 

algorithms based on mathematical models developed in R, Python, and other programming 

languages to analyse and draw scientific findings from the vast volumes of biological data. 

 

2.12.1 Weighted gene co-expression network analysis  

 

WGCNA is an algorithm widely used in cancer research. This method addresses the drawback 

of most studies that focus on differential genes when screening for differences and ignores the 

correlations between genes. Therefore, this novel biological method is employed to identify 

highly correlated gene clusters referred to as modules and key genes based on gene expression 

data (Langfelder & Horvath, 2008; Langfelder & Horvath, 2012). WGCNA simplifies the 

interpretation of thousands of genes and builds a co-expression network based on similarities 

in expression profiles among samples (Niemira et al., 2019). Hence, the genes that are clustered 

into a module have similar expression patterns. Therefore, these genes have the potential to be 

http://etd.uwc.ac.za/



 

38 
 

involved in the same biological processes or signaling pathways (Liu et al., 2017; Kakati et al., 

2019). Additionally, these gene modules can also be associated with clinical features.      

   

2.12.2 Differential Gene Expression 

 

The most frequent use of transcriptome profiling is to compare one experimental group to 

another group (or more) to identify which genes change significantly between the conditions 

(Figure 2.4). The method applied, is known as DGE analysis. The aim of DGE analysis is to 

perform a statistical analysis that evaluates for differences or changes in the expression level 

of gene transcripts between experimental groups (Conesa et al., 2016). The genes that exhibit 

differences in expression level between conditions or in other ways are linked to specific 

predictors or responses are referred to as differentially expressed genes (DEGs), and are critical 

to advance the understanding of phenotypic variation. 

 

The number of methodologies and tools available for analysing DEGs has rapidly increased 

(Costa-Silva et al., 2017). Among the R language packages developed are limma (Ritchie et 

al., 2015), DESeq2 (Love et al., 2014), Cuffdiff (Trapnell et al., 2012), NOISeq (Tarazona et 

al., 2011), and edgeR (Robinson et al., 2010). Similar results are produced by these techniques, 

which mostly focus on the interpretation of the log2 fold change value, p-value, and p-adjusted 

value. These techniques may be applied to identify gene expression signatures in a single 

cancer type or to search for shared expression patterns across several cancer types (Kais & 

Hamdi, 2022). A DGE analysis thus results in a list of genes having significant differences in 

the gene expression levels between the comparative experimental groups.  
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Figure 2.4: Two experimental groups; group A in red and group B in blue, illustrate 

significant and non-significant differences in gene expression levels. One cluster with 

samples from both groups shows no significant difference in gene expression (below). While 

two segregated clusters composed of samples from each group, respectively (top). Hence, 

groups A and B exhibit different gene expression levels. (Adapted from: 

https://hbctraining.github.io/DGE_workshop/lessons/04_DGE_DESeq2_analysis.html).  

 

DGE analysis is widely used to find biomarkers for various cancer types. Numerous studies 

have employed meta-analysis techniques to identify DEGs between cancer patients and 

controls using gene expression profiles. Several methods could further be applied to the DGE 

analysis outputs for validation and prediction studies, as well as machine learning applications. 

 

2.12.3 Machine Learning 

 

Machine learning algorithms are mathematical model mapping techniques that are used to 

recognize or find underlying patterns and relationships between them from complex data. It 

comprises a collection of computational algorithms that can classify, adapt, predict, and learn 
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from existing data (training set) (DeGregory et al., 2018). Therefore, many ML tasks aim to 

optimize the performance of models built on independent test datasets (Zou et al., 2019). The 

three types of ML are (i) supervised learning, which implements labelled data, to develop 

predictive capabilities, (ii) unsupervised learning, which is a discovering technique, that 

involves unlabelled data to find hidden information, while (iii) semi-supervised combines both 

unsupervised and supervised learning (Sarker, 2021) (Figure 2.5).  

 

 

 
Figure 2.5: ML approaches. The main approaches of machine learning include: (i) 

Supervised, which relies on labelled input data. (ii) Unsupervised, processes unlabelled data, 

and (iii) semi-supervised uses both labelled and unlabelled data simultaneously to improve 

learning accuracy (Adapted from: Rafique et al., 2021). 

 

In recent years, some advances have been made through the collaborations between ML and 

multi-omics data analysis of cancer with the primary intent to provide a broad view of the 

complexities of the patterns involved in the cancer process (de Anda-Jáuregui & Hernández-
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Lemus, 2020). Generally, the application of ML in cancer is used to find and validate potential 

pathology-based biomarkers that may be useful for diagnosis, improved prognosis, and disease 

monitoring (Kourou et al., 2014; Yamada et al., 2019; Matek et al., 2019; Ahsan et al., 2022). 

The prediction in healthcare is vital considering 41u ekcations of delayed diagnosis and 

treatment. 

 

2.12.4 Survival analysis 

 

Survival analysis, also referred to as time-to-event analysis, is a branch of statistics that 

investigates the amount of time it takes until a specific event of interest occurs (Schober & 

Vetter, 2018). Generally, this time is also referred to as “survival time”. In numerous cancer 

studies, the time to an event of interest is the primary outcome being evaluated. In medical 

studies, an example of an event of interest is the time from diagnosis to death. However, it can 

also refer to the time ‘survived’ from complete remission to relapse or progression (Clark et 

al., 2003). A specific challenge arises if only some individuals have experienced the event of 

interest. The survival time will thus be unknown for a subset of the study group; this 

phenomenon is known as censoring (Clark et al., 2003). Censoring is presumed to be non-

informative since patients who are censored are considered to have the same probability of 

surviving as those who continue to be monitored (Clark et al., 2003). 

 

Generally, two related probabilities, survival and hazard are used to describe and model 

survival data. First, the survival probability (also referred to as the survival function) is the 

likelihood that an individual will live from the time of origin to a given time in the future. These 

statistics provide a clear description of a study cohort’s survival experience and are often 

estimated using the K-M curves. Second, the hazard probability (or hazard function) provides 
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the immediate probability of experiencing an event, given survival up to that time (Clark et al., 

2003). In short, the survivor function, focuses on not having an event, whereas the hazard 

function focuses on the event 42u eking. In summary, the hazard relates to the incident (current) 

event rate, while survival reflects the cumulative non-occurrence. 

 

2.13 Summary 

 

Remarkable efforts have been made to characterize the molecular changes underlying the 

development and progression of a broad range of complex human diseases, including cancer, 

due to the recent advancements in omics technology. As a result, multi-omics analyses have 

been proposed as the key to advancing precision medicine. Several important mechanisms in 

cancer development, treatment resistance, and recurrence risk have been revealed in the field 

of precision oncology through genomics approaches. These findings have been applied in 

clinical oncology to help guide treatment decisions. However, the lack of widespread use of 

truly integrated multi-omics analysis has limited future advancements in precision medicine. 

Additional efforts are required to develop an assessment model to accurately generate, 

evaluate, and annotate multi-omics data to facilitate precision medicine-based decision-

making. 

 

Cancer is a major malignant and heterogeneous lethal genetic disease that present significant 

challenges in both research and clinical treatment. RNA-Seq has served as an essential tool 

used in numerous aspects of cancer research and therapy, such as the identification of 

biomarkers, characterization of cancer heterogeneity and evolution, and drug resistance, among 

others. Therefore, in this study, a computational method was developed that tracks cancer 

progression through the multi-stages of cancer progression based on RNA-Seq gene expression 
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profiles. The method normalizes advanced-stage cancer samples with early-stage samples to 

consider the heterogeneity differences. Therefore subjecting heterogeneous cancer types to the 

method will allow for the detection of differences in the transcriptional profiles from early to 

advanced-stage of cancer development.  

 

New cancer clusters (subtypes) that progressed differently in gene expression patterns may be 

discovered by using hierarchical clustering to the normalized gene expression. As a result, this 

method’s application can recognize molecular heterogeneity and establish a genotype-

phenotype relationship with the molecularly identified subtypes. The study thus advances 

knowledge of the transcriptional landscape of multiple cancer patients with an emphasis on 

cancer progression. Additionally, the identification of new cancer subtypes has the potential to 

improve prognosis, identify druggable aberrations in various cancer types, and enable more 

effective therapeutic strategies. Consequently, the research output will contribute to an 

advanced understanding of cancer heterogeneity to inform strategies for improving health for 

cancer patients. 
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Chapter 3 

 

 

Transforming RNA-Seq gene expression to track cancer 

progression in the multi-stage early to advanced-stage 

cancer development 

 

This is an original manuscript of an article published in PloS ONE on April 2023, available at: 

https://doi.org/10.1371/journal.pone.0284458. 

 

3.1 Abstract 

 

Background: Cancer progression can be tracked by gene expression changes that occur 

throughout early-stage to advanced-stage cancer development. The accumulated genetic 

changes can be detected when gene expression levels in advanced-stage are less variable but 

show high variability in early-stage. Normalizing advanced-stage expression samples with 

early-stage and clustering of the normalized expression samples can reveal cancers with similar 
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or different progression and provide insight into clinical and phenotypic patterns of patient 

samples within the same cancer. 

Objective: This study aims to investigate cancer progression through RNA-Seq expression 

profiles across the multi-stage process of cancer development. 

Methods: RNA-sequenced gene expression of Diffuse Large B-cell Lymphoma, Lung cancer, 

Liver cancer, Cervical cancer, and Testicular cancer were downloaded from the UCSC Xena 

database. Advanced-stage samples were normalized with early-stage samples to consider 

heterogeneity differences in the multi-stage cancer progression. WGCNA was used to build a 

gene network and categorized normalized genes into different modules. A gene set enrichment 

analysis selected key gene modules related to cancer. The diagnostic capacity of the modules 

was evaluated after hierarchical clustering. 

Results: Unnormalized RNA-Seq gene expression failed to segregate advanced-stage samples 

based on selected cancer cohorts. Normalization with early-stage revealed the true 

heterogeneous gene expression that accumulates across the multi-stage cancer progression, this 

resulted in well segregated cancer samples. Cancer-specific pathways were enriched in the 

normalized WGCNA modules. The normalization method was further able to stratify patient 

samples based on phenotypic and clinical information. Additionally, the method allowed for 

patient survival analysis, with the Cox regression model selecting gene MAP4K1 in cervical 

cancer and K-M confirming that upregulation is favourable. 

Conclusion: The application of the normalization method further enhanced the accuracy of 

clustering of cancer samples based on how they progressed. Additionally, genes responsible 

for cancer progression were discovered. 
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3.2 Introduction 

 

Cancer is an ever-changing disease that generally becomes more heterogeneous as the disease 

progresses (Dagogo-Jack & Shaw, 2018). Different cancers progress and evolve in different 

ways. Some cancers are fast-growing and can cause mortality soon after diagnosis, while other 

cancers can be successfully treated (Natrajan et al., 2016). One way of tracking cancer 

progression is to assess gene expression differences across the multi-stage process of cancer 

development. To our knowledge, limited research has focused on the progression of cancer in 

relation to gene expression. The numerous genetic changes that accrue over the course of early-

stage to advanced-stage cancer development can be traced by RNA-Seq. 

 

RNA-Seq is a high-throughput sequencing technology with computational methods to 

determine the quantity of RNA present in a biological sample. The method examines the 

continuously changing cellular transcriptome, allowing for an efficient and comprehensive 

description of gene expression profiles between different conditions over time (Wang et al., 

2009). RNA-Seq data is often in the format of a gene-by-sample count matrix, with genes in 

rows, and samples along the columns. The elements in the matrix report for each sample, the 

number of reads that could be uniquely aligned to a particular gene. The raw read counts have 

to be adjusted or “transformed” to aid our understanding of cancer progression. 

 

To demonstrate our approach to investigating RNA-Seq cancer progression over the course of 

early-stage to advanced-stage cancer, we illustrate a bar graph of a single raw count gene 

expression profile in two cancer types (Figure 3.1). The dark blue and light blue bars represent 

advanced-stage and early-stage cancer gene expression, respectively, for gene x. In advanced-

stage, gene x shows an identical expression profile in cancer types 1 and 2. Based on the same 
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raw expression value, both cancer types will group together. However, when considering the 

early-stage gene expression profiles in both cancer types, it’s worth noting that the difference 

in expression between advanced-stage and early-stage cancer gene expression in cancer type 1 

is greater than the difference in cancer type 2. 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 3.1. Raw RNA-Seq data of advanced-stage and early-stage gene expression of gene 

x in two cancer types. Cancer type 1 and cancer type 2 show a gene expression fold increase 

of 4 and 1, respectively, from early to advanced-stage cancer. 

 

The present study aims to normalize advanced-stage with early-stage RNA-Seq data to 

investigate cancer progression in relation to gene expression. The normalization method 

corrects for genes that display less expression variability in advanced-stage cancer samples but 

display a high variability in early-stage cancer samples. As a result, more meaningful 

information is available in which the two distinct cancer types can be differentiated based on 

the differences in gene expression profiles, or cancer progression, from early-stage to 

advanced-stage cancer. The development of such high-throughput genome analysis techniques 
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for research on cancer has a significant impact on clinical treatment, as the discovery of cancers 

that differentiate in gene expression profiles (subtypes) is useful for guiding clinical treatment 

of multiple cancer (Berger & Mardis, 2018). 

 

The normalization method evaluated was performed by Frost and colleagues (Frost et al., 

2020). This method involves calculating the quotient of cancerous samples (dividend) and 

normal/non-cancerous samples (divisor), thereby producing normalized differential RNA 

expression profiles within a specific condition. However, many RNA-Seq research projects do 

not generate normal sequenced samples. Accordingly, we propose that early-stage cancer 

samples be used. We further hypothesize that using early-stage cancer samples will provide a 

more accurate genetic landscape of the multi-stage cancer progression. 

 

3.3 Materials and methods 

 

3.3.1 Data acquisition and processing 

 

Cancer progression was investigated in early-stage and advanced-stage cancer. The datasets 

examined were selected based on cancers known to have an increased survival risk among 

patients due to associated autoimmune diseases, prevalent in South Africa and in the African 

continent in general. This includes five cancers; Diffuse Large B-cell Lymphoma (DLBCL) 

(Mörth et al., 2019; de Carvalho et al., 2021), Lung Cancer (Shiels et al., 2009), Cervical cancer 

(Dugué et al., 2013), Liver cancer (Clifford et al., 2008; Lleo et al., 2019), and Testicular 

cancer (Goedert et al., 2007). 
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RNA-sequenced gene expression profiles for both early- and advanced-stage cancer were 

downloaded from the UCSC Xena database using cancer-specific data from The Cancer 

Genome Atlas cohort, from the Genomic Data Commons (GDC-TCGA) (Goldman et al., 2020) 

(Table 3.1). Each patient’s expression profile was organized in a gene-by-sample genomic 

matrix. Additional metadata includes the associated phenotypic and survival profiles of each 

patient. This data is publicly accessible from the UCSC Xena data browser 

(https://xenabrowser.net) from individual cancer cohorts. (Appendix A, Table A1, A2). 

 

Table 3.1. Cancer datasets. The cancer cohorts were limited according to clinical or tumor 

stage and the primary site involved in each cancer. Patient samples were categorized in early-

stage and advanced-stage, as well as the primary sites. 

  Number of samples 

Cancer cohort Primary site Early-

stage 

Advanced-

stage 

Diffuse Large B-cell Lymphoma Lymph Node 4 8 

Lung Adenocarcinoma Bronchus and Lung 28 28 

Cervical Cancer Cervix uteri 8 22 

Liver Cancer Liver and intrahepatic bile 

ducts 

20 6 

Testicular Cancer Testis 15 15 

 

The cancer datasets were made up of 60,483 unique Ensembl identifiers, which included 

transcript-non-specific expression data for all coding genes plus long non-coding RNA 

(lncRNA), pseudogenes, and multiple forms of non-coding transcripts (Aken et al., 2016). The 

datasets quantified gene expression as log2(x+1) with x referring to the count of reads mapped 

to a specific genetic region in the human reference genome (GRCh38.p2, gencode release 22). 
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Genes having ENSG identifiers annotated with a protein-coding biotype were extracted using 

Ensembl BioMart (GRCh38.p13, Ensembl 104, May 2021) (Smedley et al., 2015). This 

eliminated 40,927 (67,7%) non-coding entries leaving 19,556 protein-coding entries. The gene 

expression of the 19,556 protein-coding genes as log2(x+1) was converted to raw counts for 

further analysis, as it was found that raw RNA-Seq data may perform better for capturing more 

original transcriptome patterns in different disease conditions (Han & Men, 2018). 

 

3.3.2 Data normalization 

 

The normalization method involves calculating the quotient of advanced-stage gene expression 

and early-stage gene expression (GitHub code: https://github.com/3270006/trackingcancer-

progression). We followed the same calculations established by Frost et al. (2020). 

 

3.3.2.1 Gene and tissue correction  

 

The gene-by-sample matrices from each cancer cohort in Table 3.1 were used to assemble 

early-stage I and advanced-stage (A) gene expression matrices. This included: 

 

A, s x q matrix for advanced-stage gene expression and, 

E, s x r matrix for early-stage gene expression. 

 

Where q and r represent the number of advanced-stage and early-stage cancer samples, 

respectively, and s the number of protein-coding genes. Two binary primary site classification 

matrices were created for each gene expression matrix. This included: 
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PA, t x q matrix for advanced-stage cancer primary sites and, 

PE, t x r matrix for early-stage cancer primary sites. 

 

Where q and r represent the number of advanced-stage and early-stage cancer samples, 

respectively, and t the number of primary sites. The advanced-stage cancer expression vector 

of gene I in matrix A was multiplied by the binary classification vector for primary site I in 

matrix PA as shown in Eq 1, resulting in a vector of tissue-specific advanced-stage cancer gene 

expression Xi. 

 

Xi = PAI ⨀ Ai       (1) 
 

The early-stage expression vector of gene I in matrix E was multiplied by the binary 

classification vector for primary site I in matrix PE as shown in Eq 2, resulting in a vector of 

tissue-specific early-stage gene expression Yi. 

 

Yi = PEI ⨀ Ei       (2) 
 

Xi and Yi, were computed based on the series of vectors of all primary sites and all protein-

coding genes to build three-dimensional matrices for X (advanced-stage cancer) and Y (early-

stage cancer). The Xi,j,I three-dimensional matrix represents the raw count gene expression 

value for gene I in advanced-stage cancer j of primary site I. While, the three-dimensional 

matrix of Yi,k,I represents the raw count gene expression value for gene I in early-stage cancer 

k of primary site I. 

 

The initial phase of calculating for the normalized dataset (subsequently called ‘Tissue-

corrected’), involved creating a mean normalized expression Gtissue for gene I at each primary 
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site I, as given in Eq 3. To summarize, the sum of early-stage gene I within each primary site I 

was calculated. 

  

𝐺!,#$!%%&' =
(
)!
∑ 𝑌!,*,#+
*,(      (3) 

 

Where r is the number of early-stage cancer samples in primary site I. The calculation to 

determine for mI are shown in Eq 4, where the sum of a given primary site in the binary matrix 

PE were calculated for all early-stage samples. 

 

𝑚# = ∑ 𝑃*,#-+
*,(        (4) 

 

Finally, the tissue‐corrected gene expression matrix Ltissue was calculated as shown in Eq 5. 

 

𝐿!,.,#$!%%&' = 𝑙𝑛 + /",$,!
0",!
%"&&'(,         (5) 

 

3.3.3 Weighted gene co-expression network analysis 

 

Both the advanced-stage cancer gene expression as raw count (uncorrected) and the normalized 

tissue-corrected datasets were analysed. The 19,556 protein-coding genes were subjected to 

Weighted Gene Co-expression Network Analysis (v. 1.70–3) (WGCNA) R package 

(Langfelder & Horvath, 2008; Zhao et al., 2010). 

 

3.3.3.1 Data pre-processing.  

 

The uncorrected matrix was filtered of genes that had a count of less than 10 in more than 90% 

of samples as recommended by the WGCNA authors, resulting in 17,436 protein-coding genes. 
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The tissue-corrected matrix was filtered by removing all genes that had a row sum of zero, 

resulting in 19,350 protein-coding genes. 

 

3.3.3.2 Gene co-expression network construction 

 

To construct a weighted network, a correlation matrix between each pair of genes across all 

samples was calculated. A soft threshold power β was calculated to amplify the correlation 

between genes. The optimal power value was selected based on a scale-free topology criterion 

(R2 > 0.8). Based on this, an adjacency matrix was constructed, followed by the generation of 

a topological overlap matrix (TOM), and computation of the corresponding dissimilarity (1-

TOM) values (Zhang & Horvath, 2005; Yip & Horvath, 2007).  

 

To group the protein-coding genes, an average linkage hierarchical clustering based on the 

hclust function in conjunction with the dissimilarity TOM was used, resulting in a gene 

hierarchical clustering tree (tree graph). A novel dynamicTreeCut algorithm (v. 1.63–1) was 

employed to identify the clusters, in which branches of the dendrogram were sliced to 

determine the modules. Modules represent the partitioning of protein-coding genes into distinct 

groups based on expression values co-correlated and variable across the cancer cohorts. 

Modules were named using the default WGCNA settings, which assign a colour to each 

module. 

 

3.3.4 Pathways and transcription factor enrichment analyses 

 

A popular gene set enrichment analysis tool, WEB-based Gene SeT AnaLysis Toolkit 

(WebGestalt) was used to extract biological information from genes of interest (Zhang et al., 
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2005). The over representation analysis (ORA) in the WebGestaltR package (v. 0.4.4) was used 

to characterize the genes of interest that were grouped inside each module found by WGCNA 

(Wang et al., 2013; 2017; Liao et al., 2019). The ORA used all protein-coding genes as a 

reference set, the WikiPathways (Kelder et al., 2009; Slenter et al., 2018) and KEGG (Kanehisa 

et al., 2017) databases for functional annotations, and the Benjamini-Hochberg (BH) method 

for multiple testing correction (Benjamini & Hochberg, 1995). 

 

Transcription factor enrichment analysis was performed on the genes of interest that were 

grouped inside each module found by WGCNA using the ChEA3 database webserver 

application (Keenan et al., 2019). To estimate the TF-target enrichment, the ARCHS4 resource 

were selected as it uses a co-expression method to compile a list of genes that are controlled 

by each TF. 

 

3.3.5 Clustering by transcript profiling 

 

The clustering of cancer samples is the most basic and exploratory analysis to find groups of 

samples sharing similar gene expression patterns, which can lead to the discovery of new 

cancer subtypes. Therefore, gene expression profiles will be subjected to clustering analysis to 

investigate the grouping of cancer samples. Accordingly, the computation model was used to 

predict cancer clusters (subtypes) that progressed differently and/or similarly. The cosine 

distance between the expression profiles of the genes included in the modules and Ward’s 

method for agglomeration were used to create clusters of similar cancers established by 

hierarchical clustering (Ward, 1963; Jaskowiak et al., 2014). The number of clusters was 

identified using the find_k function, which estimates k using maximal average silhouette widths 
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(Rousseeuw, 1987). This function forms part of the dendextend (v. 1.15.2) R package. Finally, 

the dendrograms were split into k groups to assign samples to a cluster. 

 

3.3.6 Survival analysis 

 

The genes categorized in each module by WGCNA across the clusters were subjected to a Cox 

regression model based on the Lasso algorithm of the glmnet R package (v. 4.1–3) (Friedman 

et al., 2010; Simon et al., 2011; Tibshirani et al., 2012). The model reduces the number of 

candidate genes and selects the most significant genes for a patient’s survival, assigning a 

regression coefficient value to each gene. The product of the coefficient value and the 

corresponding gene’s expression value resulted in a prognostic risk score for each patient. The 

patient scores were used to calculate a median risk score. A status value of 1 or 0 was assigned 

to each patient based on whether the patient’s score was above or below the median risk score. 

Kaplan-Meier estimates for overall survival were generated according to the patient status 

information. The K–M curves were created using the ggsurvplot function from the survminer 

R package (v. 0.4.9). 

 

3.3.7 Statistics 

 

The statistical analysis was performed using the car (v. 3.0–11), DescTools (v. 0.99.43), and 

agricolae (v. 1.3–5) R packages. The statistics were conducted to evaluate for different gene 

expression in each module and primary sites across the clusters. 

 

The differences in the gene expression were first evaluated for normality and equal variance 

using Shapiro-Wilk test of normality (Shapiro & Wilk, 1965) and Levene’s test of homogeneity 
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(Levene et al.,1960), respectively. If the Shapiro-Wilk null hypothesis (H0) was not rejected (P 

≥ 0.05; H0: normal distribution) and Levene’s test null hypothesis were not rejected (P ≥ 0.05; 

H0: equal variance across groups), an analysis of variance (ANOVA) (Fisher, 1921) was 

employed. If the ANOVA null hypothesis of equal mean gene expression in each module and 

primary site was rejected by chance (P ≤ 0.05), a Tukey’s post-hoc test was used for pairwise 

comparisons (Tukey, 1949). 

 

In the event that Levene’s test null hypothesis was rejected (P ≤ 0.05; H1: difference in 

variances between groups) and Shapiro-Wilk test resulted in either normal (P ≥ 0.05) or not 

normal distribution (P ≤ 0.05), then the Kruskal-Wallis test (Kruskal & Wallis, 1952) was used 

to evaluate for differences in the gene expression in each module and primary site across 

clusters. If the Kruskal-Wallis was rejected, it can be concluded that equal median gene 

expression across groups was rejected, a post-hoc analysis was performed using Dunn’s test 

(Dunn, 1964). 

 

3.4 Results and Discussion 

 

Both the uncorrected and tissue-corrected matrices were evaluated to determine if the 

normalization method represents differences in the true gene expression. The normalization 

method is considered effective if the normalized gene expression has an increased power in 

differentiating samples based on cancer type and clinical and phenotypic information. 
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3.4.1 Uncorrected RNA-Seq 

 

The uncorrected protein-coding genes were inserted into WGCNA. The soft-thresholding 

power was defined as 20, with a scale-free topological index of above 0.8. This resulted in a 

gene tree and corresponding module colours. Similar modules were merged using the 

associated adjacency heatmap. The merged modules and the number of genes in each module 

was used for further analysis (Appendix A, Figure A1). 

 

A total of 3175 genes were categorized into 32 modules using WGCNA. Of those, only 10 

modules were enriched for functional pathway annotations with WikiPathways: brown, cyan, 

grey60, magenta, purple, dark green, dark grey, light cyan, light steel blue 1, and tan. The first 

five modules were enriched for tissue-specific processes (ORA, P ≤ 0.047). The latter five 

modules were enriched for cancer-relevant processes (ORA, P ≤ 0.045). 

 

It was found that the tan module had the highest total genes detected in biological pathways. It 

was also noteworthy that a repetition of the same pathway description appeared in several 

different modules. The same behaviour was noted with KEGG pathway analysis (Appendix A, 

Figure A2) This indicates that the uncorrected dataset, which did not undergo normalization, 

did not efficiently depict gene expression differences. 

 

The hierarchical clustering of cancer samples using the 3175 genes resulted in two cancer 

clusters (Figure 3.2). The primary site composition of each cluster was evaluated to determine 

if each primary site corresponded to the cluster assignment. Both clusters were primary sites 

heterogeneous. Cluster 1 was composed of samples of DLBCL (13.2%), lung (35.8%), liver 

(5.7%), cervical (22.6%), and testicular cancer (22.6%). While cluster 2 was composed of 
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DLBCL (3.8%), lung (34.6%), liver (11.5%), cervical (38.5%), and testicular cancer (11.5%). 

The uncorrected dataset failed to correctly segregate the cancer samples in different clusters 

(Figure 3.2). 

 

 

Figure 3.2. Heatmap of uncorrected RNA-Seq data illustrating module expression within 

cancer clusters. The colour bar on the left shows modules identified by WGCNA and enriched 

for functional pathway annotations. The rows are further composed of protein-coding genes 

with raw count values. Clusters of similar cancer cohorts are indicated across the top, and 

cancer cohorts are displayed by the colour bar along the top with the key on the right. *Primary 

sites abbreviations: CESC = Cervical squamous cell carcinoma; DLBCL = Diffuse Large B-

cell Lymphoma; LIHC = Liver Hepatocellular Carcinoma; LUAD = Lung Adenocarcinoma; 

TGCT = Testicular Germ Cell Tumors. 
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The statistical analysis outlined in the methods section was performed to compare each module 

across the cancer clusters. From the 10 enriched modules, seven modules; cyan, dark green, 

dark grey, grey60, light cyan, light steel blue 1, and tan were characterized by significantly 

different expressions (Kruskal-Wallis P ≤ 0.0008) across cancer clusters. While the magenta, 

purple (ANOVA, P ≥ 0.08) and brown modules (Kruskal-Wallis, P = 0.31) did not show 

differential expression across clusters. That is, WGCNA selected genes with less differential 

power, because of non-normalization, resulting in heterogeneous clusters composed of samples 

from different primary sites (Figure 3.2). 

 

The same statistical analysis was performed to compare each primary site in Cluster 1 to the 

equivalent primary site in Cluster 2 for each module. This computation was performed to 

determine if the segregation of primary sites into Clusters 1 and 2 was based on changes in the 

gene expression. The statistical test showed no significant difference between sample groups 

of the same primary sites from the two different clusters. It can be said that the clustering of 

the uncorrected dataset failed to segregate the primary sites based on different gene expression. 

Evidently, the unnormalized genes failed to show differentiation. 

 

3.4.2 Tissue-corrected RNA-Seq data 

 

The tissue-corrected protein-coding genes were inserted into WGCNA. A soft threshold 

selection of the lowest β value that leads to R2 > 0.8 was selected as 21. This resulted in a gene 

tree and corresponding module colours. Similar modules were merged using the associated 

adjacency heatmap. The merged modules and the number of genes in each module was used 

for further analysis (Appendix A, Figure A3). 
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WGCNA identified 617 genes distributed into seven modules. The module that composed the 

most and least genes was the brown and pink modules, respectively. Of the seven modules, 

KEGG analysis enriched five modules (Appendix A, Figure A4), while a total of four modules 

were found to be enriched for functional pathway annotations with WikiPathways. This 

included the black, brown, magenta, and turquoise modules (Figure 3.3), of which all four 

modules were enriched for cancer-related processes (ORA, P ≤ 0.038). The pathway 

descriptions identified in the four modules are indicated in the bar chart in Figure 3.3. Each 

colour bar represents the module colour and shows the number of genes that were enriched for 

that module. Analysing the degree of enrichment and terms further signifies the difference of 

each module. 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. WikiPathways enrichment of gene modules detected by WGCNA from the 

tissue-corrected dataset using the ORA, WebGestalt. 

 

The black module was enriched for cytoplasmic ribosomal proteins (ORA, P < 0.001). The 

brown module was enriched for NK cell, T cell or inflammatory signalling (ORA, P ≤ 0.021). 

It was also found that the brown module has the highest total genes detected in biological 
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pathways. The magenta module enriched for mRNA processing (ORA, P < 0.0001). 

Meanwhile, processes relevant to the cell cycle progression were enriched in the turquoise 

module (Figure 3.3). The turquoise module was the largest module comprising 139 genes and 

also identified pathways that were related to other cancers such as breast cancer, gastric cancer, 

and retinoblastoma. Gastric adenocarcinoma has been reported to be correlated to the 

investigated cancers including liver carcinoma and lung cancer through specific genes 

(Salarikia et al., 2022). It was noted that some genes were shared between the detected cancer 

pathways, this included the AURKA gene, which was involved in the gastric and breast cancer 

pathways. An increased gene expression of the AURKA gene has been previously identified in 

the liver and lung cancer (Miralaei et al., 2021). Gastric and the retinoblastoma pathways 

further shared the MCM4, TOP2A, and RFC4 genes, that have been reported in the studied 

cancers, where MCM4 is overexpressed in liver cancer (Zheng et al., 2021), TOP2A promotes 

lung cancer (Kou et al., 2020), and RFC4 has a high expression in liver, lung, and cervical 

cancer (Li et al., 2018a). 

 

Moreover, cancer progression and the retinoblastoma pathway are closely connected (Du & 

Searle, 2009; Marshall et al., 2019). It was found that the retinoblastoma and the breast cancer 

pathways shared the CHEK1 gene, a gene that has been reported in the development of human 

malignant tumors, such as lung and cervical cancers (Wu et al., 2019). Therefore, the enriched 

module genes detected in the studied cancers could suggest that they play a role in cancer 

development and thus could also be relevant to other cancer types. 

 

The WGCNA module genes were further subjected to TF enrichment analysis, to gain evidence 

for potential mechanistic connection of transcriptome changes to specific TFs. ChEA3 TF 

analysis revealed associations between the observed gene expression changes and involved 
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TFs. The top 5 prioritized TFs for each module are presented in Appendix A, Table A3, with 

documented information about their biological involvement in the context of cancer (Appendix 

A, Table A3). The analysis confirms, with supported literature, several TF relationships with 

the multiple cancers evaluated in this study. 

 

Hierarchical clustering of the 617 genes in WGCNA modules detected eight clusters 

characterized by distinct expression of the four enriched modules (Kruskal-Wallis Test, P < 

0.0001) (Figure 3.4). Post hoc analysis by Dunn’s Test to assess pairwise differences across 

clusters in each module showed differential expression for 21 of 28 cluster comparisons for the 

black module, 25 of 28 comparisons for the brown module, 24 of 28 comparisons for the 

magenta module, and 27 out of 28 comparisons for the turquoise module. The high proportion 

of pairwise cluster comparisons with significant differences highlights the distinctive 

expression patterns in each module across clusters. 

 

The primary site composition of each cluster was evaluated to determine if the cancer primary 

site corresponded to the cluster assignment. Cluster 1 was primary site homogenous, composed 

of only DLBCL samples, while Cluster 2 was primary site heterogeneous, composed of 

DLBCL and liver samples. Clusters 3 and 4 were primary site homogenous, however shows a 

segregation of lung samples. The same was observed in Clusters 5 and 6 with cervical samples 

and Clusters 7 and 8 composed of testicular samples (Figure 3.4). 

 

The associated metadata of the cancer samples were investigated to determine if distinct 

phenotypes could have caused similar cancer cohorts to partition into separate clusters in Figure 

3.4. The DLBCL samples present in Cluster 1 show gene profiles that are more upregulated in 

comparison to the Cluster 2 DLBCL samples. In addition, it was noted that DLBCL samples 

http://etd.uwc.ac.za/



 

63 
 

in Cluster 1 showed a higher number of extranodal sites involvement (≥ 2), while those in 

Cluster 2 showed no or low number of extranodal sites involvement (≤ 2). Common sites of 

extranodal spread are lung, liver, kidney, and bone marrow (Jamil & Mukkamalla, 2022). It 

has also been reported that DLBCL can be involved in virtually any organ (Beham-Schmid, 

2017). Therefore, the DLBCL Cluster 2 found grouped with liver samples is an interesting 

finding, given the high prevalence of secondary liver involvement by lymphoma including 

DLBCL and indicates advanced disease (Rajesh et al., 2015). 

 

 

Figure 3.4. Heatmap of tissue-corrected RNA-Seq data illustrating module expression 

within cancer clusters. The colour bar on the left shows modules identified by WGCNA and 

enriched for functional pathway annotations. The rows are further composed of protein-coding 

genes with expression values obtained after data normalization. Clusters of similar cancer 

cohorts are indicated across the top and the cancer cohort are displayed by the colour bar along 
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the top with the key on the right. *Primary sites abbreviations: CESC = Cervical squamous cell 

carcinoma; DLBCL = Diffuse Large B-cell Lymphoma; LIHC = Liver Hepatocellular 

Carcinoma; LUAD = Lung Adenocarcinoma; TGCT = Testicular Germ Cell Tumors. 

 

However, this information of secondary liver involvement in the metadata associated to 

DLBCL is unavailable, and requires further investigation to support the claim that DLBCL 

patients have liver infection, as well as the use of a higher sample number, which was not 

possible for this study since the public data was not available. The phenotypic data for lung 

samples in Clusters 4 and 5 did not provide a clear reason for the segregation of the cancer 

cohort as some clinical information on the samples were incomplete. 

 

It was discovered that the average overall survival of patients with cervical cancer represented 

in Cluster 5 were greater than the average overall survival of cervical cancer patients in Cluster 

6. This led to a survival analysis in which the Cox regression model selected MAP4K1 

(ENSG00000104814) categorized in the brown module as a prognostic gene. The upregulation 

of the MAP4K1 gene has been found to be favourable in cervical cancer (Uhlen et al., 2017; 

The human protein atlas; 2022). According to K-M results in a recent study, the high expression 

of the MAP4K1 gene was beneficial to cervical cancer patients (Kannan et al., 2021). Their 

research focussed on PDCD1, a gene that is most typically related to its expression on tumor-

infiltrating lymphocytes. Moreover, they showed that PDCD1 significantly co-expressed with 

the following 15 genes, whose high expression is beneficial for cervical cancer patients; 

MAP4K1, ACAP1, CST7, CXCR6, GPR171, GZMH, GZMK, P2RY10, RASAL3, SH2D1A, 

TBC1D10C, ZNF831, GZMM, JAKMIP1, and PSTPIP1 (Kannan et al., 2021). We compared 

their finding to the results of our normalization method and discovered the PDCD1 gene as 

well as the first 12 of the 15 genes were co-expressed within the brown module. This finding 

validates the normalization method in this study, as upregulation is observed in the brown 
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module for Cluster 5, whereas the brown module in Cluster 6 mainly illustrates downregulation 

(Figure 3.4). The normalized gene expression of MAP4K1 in cervical patient samples from 

Clusters 5 and 6 were extracted from the brown module and shown in Figure 3.5. 

 

Figure 3.5. Boxplot of gene MAP4K1 from cervical cancer samples categorized in the 

brown module by WGCNA. The red box plot, constructed with Cluster 5 samples, shows 

upregulation of gene MAP4K1, while the blue box plot, constructed with Cluster 6 samples, 

shows downregulation of MAP4K1 gene. 
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We corroborate the previous findings (Uhlen et al., 2017; The human protein atlas; 2022; 

Kannan et al., 2021) in that the upregulation of gene MAP4K1, in Cluster 5, is favourable in 

cervical cancer patients as shown by the K-M curve, in Figure 3.6. Cluster 5 presents a longer 

life expectancy than the patient samples in Cluster 6.  

 

 

Figure 3.6. Kaplan-Meier of MAP4K1 gene in cervical cancer patients. Analysis shows the 

correlation between normalized gene expression level and patient survival in days. Patients 

were divided as detected in Clusters 5 and 6 after clustering according to transcript profiling. 
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The brown module was further subjected to TF enrichment analysis using an established 

computational tool to offer a better understanding of the associations between the observed 

gene expression changes and TFs in the context of cervical cancer. The TFs that were 

associated with the MAP4K1 gene in which the TF was found to effect cervical cancer survival 

was extracted and documented (Appendix A, Table A4). Several co-expressed genes that also 

play a role in cervical cancer survival identified in (Kannan et al., 2021) were also linked to 

the TFs and highlighted (Appendix A, Table A4). 

 

Lastly, the phenotypic data of testicular cancer, divided in Clusters 7 and 8, showed that the 

primary diagnosis of the patients in Cluster 7 was seminomas, while Cluster 8 were made up 

of patient samples that were primarily diagnosed with type embryonal carcinoma testicular 

cancer, mixed germ cell tumor or Teratoma malignant.  

 

To further demonstrate the significance of late-stage cancer samples normalized with early-

stage cancer samples, an investigation was carried out with a normal tissue expression dataset 

from the GTEx Portal (GTEx Consortium, 2017). Normalized gene expression profiles using 

normal tissue samples were clustered and allowed for the segregation between distinct cancer 

types (Appendix A, Figure A5). However, it failed to provide in-depth clustering based on 

subtypes within cancer types. As a result, the variations in gene expression, such as in cervical 

cancer that was associated with survival, could not be stratified by normalizing late-stage 

cancer samples with normal tissue. The results obtained with our method by normalizing late-

stage with early-stage cancer samples demonstrate the ability of the method to cluster samples 

by cancer progression, rather than simply by cancer type as with the use of normal samples. 
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3.5 Conclusion 

 

The RNA-Seq read count before normalization showed discrepancies in comparison to 

normalized gene expression. The goal of our normalization method was achieved, since it 

shows that advanced-stage cancer gene expression data can be normalized using early-stage 

cancer gene expression data. WGCNA analysis validated the results of the tissue-corrected 

matrix as the correct relationships between normalized gene expression were presented. It was 

further illustrated that the biological information was preserved and allowed more meaningful 

comparisons of each cancer cohort, including survival analyses. 

 

The benefit of the normalization method used in the present study was twofold; (i) it was able 

to segregate tumor samples with different and similar progression, (ii) and it could cluster 

samples from distinct cancer types as well as samples within the same cancer type. A significant 

result of the latter was in the case of cervical cancer, in which gene MAP4K1 was segregated 

according to the disease prognosis. This discovery demonstrated that the normalization method 

can be used in conjunction with cancer clustering to identify areas of higher cancer risk as well 

as the cause of the increased risk. 

 

The value of this method thus aids with hypotheses that seek to explore various novel cancer 

subtypes that segregate by different gene expression profiles and further investigate the 

biological association, clinical, or prognostic features linked to the cancer subtypes (clusters). 

Additionally, hypotheses that investigate cancer progression and identify cancer subtypes with 

different progression. New users can further use this method to find new subtypes in their data 

and associate it with the clinical data that they have. 
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Chapter 4 

 

 

Assessment of the progression of kidney renal clear cell 

carcinoma using transcriptional profiles revealed new 

cancer subtypes with variable prognosis 

 

This is an original manuscript of an article published in Frontiers in Genetics on November 

2023, available at: https://doi.org/10.3389/fgene.2023.1291043. 

 

4.1 Abstract 

 

Background: Kidney renal clear cell carcinoma is the most prevalent subtype of renal cell 

carcinoma encompassing a heterogeneous group of malignancies. Accurate subtype 

identification and an understanding of the variables influencing prognosis are critical for 

personalized treatment, but currently limited. To facilitate the sub-classification of KIRC 

patients and improve prognosis, this study implemented a normalization method to track cancer 
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progression by detecting the accumulation of genetic changes that occur throughout the multi-

stage of cancer development.  

Objective: To reveal KIRC patients with different progression based on gene expression 

profiles using a normalization method. The aim is to refine molecular subtyping of KIRC 

patients associated with survival outcomes. 

Methods: RNA-sequenced gene expression of eighty-two KIRC patients were downloaded 

from UCSC Xena database. Advanced-stage samples were normalized with early-stage to 

account for differences in the multi-stage cancer progression’s heterogeneity. Hierarchical 

clustering was performed to reveal clusters that progress differently. Two techniques were 

applied to screen for significant genes within the clusters. First, DEGs were discovered by 

Limma, thereafter, an optimal gene subset was selected using RFE. The gene subset was 

subjected to Random Forest (RF) Classifier to evaluate the cluster prediction performance. 

Genes strongly associated with survival were identified utilizing Cox regression analysis. The 

model’s accuracy was assessed with K-M. Finally, a Gene ontology and Kyoto Encyclopedia 

of Genes and Genomes enrichment analyses were performed. 

Results: Three clusters were revealed and categorized based on patients’ overall survival into 

short, intermediate, and long. A total of 231 DEGs were discovered of which RFE selected 48 

genes. RF Classifier revealed a 100% cluster prediction performance of the genes. Five genes 

were identified with significant diagnostic capacity. The downregulation of genes SALL4 and 

KRT15 and upregulation of genes OSBPL11, SPATA18, and TAL2 were associated with 

favorable prognosis.  

Conclusion: The normalization method based on tumour progression from early to late stages 

of cancer development revealed the heterogeneity of KIRC and identified three potential new 

subtypes with different prognoses. This could be of great importance for the development of 

new targeted therapies for each subtype. 
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4.2 Introduction 

 

Multiple different forms of kidney tumors make up the complex disease known as kidney 

cancer (Hu et al., 2019). Renal cell carcinoma (RCC) is a heterogeneous group of kidney 

parenchyma tumors that can be further divided into histologically defined subtypes (Znaor et 

al., 2015; Casuscelli et al., 2017; Xiong et al., 2022). The different subtypes have undergone 

multiple revisions in the past two decades, due to advancements in the morphological as well 

as molecular characterization of renal tumors (Kovacs et al., 1997; Lopez-Beltran et al., 2006; 

Srigley et al., 2013; Moch et al., 2016; Udager & Mehra, 2016).  

 

The recent discoveries in renal tumor transcriptome profiling studies have had a substantial 

influence in the field of genomics as a category for “molecularly defined renal carcinomas” has 

been introduced by the World Health Organization 2022 classification of urinary and male 

genital tumors (5th edition) (Trpkov et al., 2021a; 2021b; Mohanty et al., 2023). These studies 

have significantly improved our understanding of RCC, however, effective diagnostic and 

therapeutic approaches have yet to be achieved (Caliskan et al., 2020). Additionally, these 

studies revealed the high molecular heterogeneity of these tumors, necessitating further sub-

classification. 

 

In this study, the most prevalent and aggressive subtype Kidney renal clear cell carcinoma was 

investigated as it accounts for 80%–90% of the total number of RCC patients (Wang Q. et al., 

2019). Patients with KIRC are associated with a high mortality rate and poor clinical outcomes 

(Gray & Harris, 2019; Puzanov, 2022). Also, there are limited therapeutic options available; 

surgery is the primary option since KIRC is resistant to radiotherapy and chemotherapy (Yin 

et al., 2019). The resistance to treatment may be due to the heterogeneity of these tumors. 
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Therefore, an accurate assessment of the heterogeneity of these tumors is crucial to identify 

subtypes of patients that can benefit from targeted therapy. This can be achieved by 

investigating the underlying molecular mechanisms and progression of KIRC, which are 

currently not fully understood (You et al., 2021). 

 

To track cancer progression, we implemented a recently established normalization method, 

which also has the potential to facilitate the sub-classification of KIRC (Livesey et al., 2023). 

The normalized gene expression reveals how cancer progresses by detecting the accumulated 

genetic changes that emerge from early-stages of cancer development to advanced-stages. The 

application of the normalization method and hierarchical clustering will allow for the 

identification of clusters (subtypes) that progress differently. 

 

This study aims to reveal KIRC patients with different progression (subtypes) and establish a 

genotype-phenotype link to the identified clusters. In this study, the genotype-phenotype 

relationship to the distinct clusters was defined by the average OS of the KIRC patient samples. 

Prognostic gene signatures were identified that differentiate between the different survival 

clusters and have the potential to function as prognostic biomarkers that can facilitate the 

prognosis and monitoring of KIRC. Therefore, the study advances knowledge of the 

transcriptional landscape of KIRC patients with an emphasis on cancer progression. 

 

 

 

 

 

http://etd.uwc.ac.za/



 

73 
 

4.3 Materials and methods 

 

4.3.1 Data acquisition and processing 

 

The RNA-Sequencing (RNA-Seq) gene expression profiles of KIRC were downloaded from 

the UCSC Xena database using cancer-specific data from The Cancer Genome Atlas cohort, 

from the Genomic Data Commons (GDC-TCGA) (Goldman et al., 2020). A total of eighty-

two advanced-stage cancer samples, along with a matched number of randomly selected early-

stage samples were extracted. The accompanying metadata included the corresponding patient 

phenotypic and survival profiles. The gene expression profile of each patient was organized in 

a gene-by-sample genomic matrix. The cancer datasets consisted of 60,483 unique Ensembl 

identifiers (ENSG) (Aken et al., 2016), quantified as log2(x+1), where x represents the count 

of reads mapped to a specific genomic location in the human reference genome (GRCh38.p2, 

gencode release 22). Ensembl BioMart (GRCh38.p13, Ensembl 104 May 2021) (Smedley et 

al., 2015) was utilized to retrieve a total of 19,556 ENSG identifiers that were annotated with 

a protein-coding biotype. Hence, 40,927 (67,7%) non-coding entries were eliminated. For 

further analysis, the 19,556 protein-coding gene expressions were converted to counts. The 

source code for the implementation of reproducibility of the analyses for the study is available 

in GitHub: https://github.com/LiveseyM/KIRC_Subtyping.git. 

 

4.3.2 Data normalization 

 

The normalization method that tracked cancer progression and corrected for multiple cancers 

(Livesey et al., 2023) was modified to investigate a cancer type. The normalization method 
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involves calculating the quotient of advanced-stage gene expression and early-stage gene 

expression. 

 

4.3.2.1 Tracking cancer progression 

 

A normalization method was implemented to capture the heterogeneity between cancerous 

tumors by detecting their molecular differences in progression from early to late-stages of 

tumor development using gene expression by RNA-Seq. As a result, the method exposes the 

accumulated genetic changes that occur throughout the multi-stage of cancer development. To 

track the development of cancer, the gene expression profiles of both early-stage and late-stage 

cancer samples were required. Thus, the gene-by-sample matrix of KIRC was used to create 

two distinct matrices; early-stage I and advanced-stage (A) gene expression as follows: 

 

E, s x r matrix for early-stage gene expression and, 

A, s x q matrix for advanced-stage gene expression. 

 

The early-stage and advanced-stage gene expression matrices are represented by E and A, 

respectively. Where r and q correspond to the number of cancer samples in early-stage and 

advanced-stage, and s the number of protein-coding genes represented with raw count gene 

expression value. 

 

The early-stage patient profiles do not match the same patient profiles in the late-stages. Thus, 

the initial approach to calculating the normalized dataset involves generating a mean 

normalized expression, or “mi”, for gene I in the early-stage dataset. The sum of early-stage 

gene I for all early-stage cancer k samples was calculated, as shown in Eq 1. The average early-
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stage expression vector of gene I produced by this equation offers a more accurate 

representation of the early-stage expression of a particular gene. 

 

𝑚! =
(
+
∑ 𝐸!,*+
*,(      (eq 1) 

 

𝐿! = 𝑙𝑛	 / 1
)"
0      (eq 2) 

 

Finally, the gene expression matrix that represents cancer progression, L was calculated as 

demonstrated in Eq 2. Matrix L contains normalized counts of the quotients of advanced-stage 

(dividend) and the mean gene expression of early-stage cancer samples (divisor). Therefore, 

the normalized gene expression represents the continuously changing cellular transcriptome, 

allowing for an efficient and comprehensive description of gene expression profiles.  

 

4.3.3 Hierarchical clustering 

 

The clustering of cancer samples is the most fundamental strategy to identify groups of samples 

that progressed differently in gene expression patterns. This approach may result in the 

identification of novel cancer clusters (subtypes) within a cancer type. Therefore, the 

normalized gene expression profiles of the KIRC cancer samples were subjected to hierarchical 

clustering analysis, to reveal the grouping of cancer samples. 

 

The clusters of cancer samples were created by hierarchical clustering, using the cosine 

distance between the gene expression profiles and Ward’s method for agglomeration (Ward, 

1963; Jaskowiak et al., 2014). The optimal number of clusters was determined using the find_k 

function as part of the dendextend R package (version 1.17.1), which calculates k using 
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maximal average silhouette widths (Rousseeuw, 1987). Finally, the dendrograms were split 

into k groups to assign samples to a cluster. 

 

4.3.4 Feature analysis 

 

4.3.4.1 Differential gene expression 

 

Limma package in R (version 3.54.2) (Ritchie et al., 2015) was used to screen for DEGs, by 

applying an empirical Bayesian approach to evaluate for differences in gene expression profiles 

between the identified clusters. The decideTests (Law et al., 2016) function assigned binary 

values (0: not detected, 1: upregulated, and −1: downregulated) to the genes, to identify and 

extract genes that differentiate between the altered (up or down) gene expression. Significant 

DEGs were defined as those with a BH adjusted p-value <0.05 and log2-fold change (LFC) ≥ 

0.5 or ≤ −0.5. 

 

4.3.4.2 Marker gene selection using machine learning 

 

Recursive Feature Elimination algorithm was implemented to identify key genes playing a role 

in the classification of the identified KIRC clusters (subtypes), using the Scikit-learn python 

package (Pedregosa et al., 2011). RFE with a linear kernel support vector machine (SVM) was 

utilized to find optimal genes that predict the cancer clusters. The k-fold cross-validation 

procedure, with a value of K set to 10, was repeated 3 times.  

 

The model was built with all identified DEGs and In several iterations eliminates a single gene 

deemed least important for segregating the identified clusters (Guyon et al., 2002). The model 
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is rebuilt, and the new gene subset are evaluated based on their classification performance. 

Hence, the genes are ranked according to their relevance. In this study, the final gene subset 

was selected based on the highest classification accuracy by linear SVM with C set to 5. The 

final gene subset was further subjected to principal component analysis (PCA) using the R 

packages FactoMineR (version 2.8) (Lê et al., 2008) and factoextra (version 1.0.7) 

(Kassambara & Mundt, 2020). 

 

4.3.5 Predictive and validation of marker genes 

 

The performance of the RFE selected gene subset was validated using RF classifier with a 

“test-train split ()” class to split the data into train and test sets with a ratio of 75: 25. The 

performance of the RF classifier was measured using accuracy, precision, and recall score as 

the performance metrics. All machine learning implementations were run in Anaconda 

environment based on python programming language and Scikit-learn package (Pedregosa et 

al., 2011). 

 

4.3.6 Survival analysis 

 

The gene subset selected by RFE was subjected to a Cox regression model based on the Lasso 

algorithm of the glmnet R package (version 4.1-7), to further understand the relative 

importance of the gene subset (Friedman et al., 2010; Simon et al., 2011; Tibshirani et al., 

2012). The model reduces the total number of the gene subset and identifies the genes with the 

most significant impact on a patient’s survival. This step assigned a regression coefficient value 

to the given gene that is multiplied by the corresponding gene’s expression and results in a 

prognostic risk score for each patient. The patient scores were used to calculate a median risk 
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score. Each patient was assigned a status value of 0 or 1 based on whether the patient’s score 

was higher or lower than the median risk score. The patient status information was used to 

generate K-M estimates for OS. The K–M curves were constructed using the ggsurvplot 

function from the survminer R package (version 0.4.9). 

 

4.3.7 One-way ANOVA 

 

A one-way analysis of variance (ANOVA) was performed to compare the mean gene 

expression of the prognostic genes discovered by Cox regression analysis between the 

identified clusters. Statistical analysis was conducted with the stats R package (version 4.2.2). 

Following the application of ANOVA, Tukey’s post hoc test for pairwise comparisons was 

applied (Tukey, 1949). The null hypothesis of equal mean between the clusters was rejected if 

the p-value < 0.05; H1: the cluster means are significantly different from one another. 

 

4.3.8 Enrichment 

 

The list of DEGs were subjected to functional annotations of GO (Ashburner et al., 2000), with 

an adjusted p-value < 0.05 determined as a cut-off criterion for significant enrichment. 

Additionally, the 48 RFE gene subset were subjected to KEGG pathways enrichment, with the 

threshold for significant enrichment established as p-value <0.05. The enrichment analysis was 

performed utilizing the clusterProfiler R package (version 4.6.2) (Yu et al., 2012). 

 

 

http://etd.uwc.ac.za/



 

79 
 

4.4 Results 

 

4.4.1 Cancer clusters detection with normalized expression 

 

The gene expression profiles of eighty-two advanced-stage KIRC samples were normalized 

with early-stage cancer samples to consider the heterogeneity differences that occur in the 

multistage cancer progression. 

 

In this study, all 19,556 normalized protein-coding genes were subjected to clustering. The 

clusters are visually represented in a hierarchical tree called a dendrogram. The clustering of 

all eighty-two KIRC samples revealed three unique KIRC progression patterns based on gene 

expression profiles (Figure 4.1). 

 

Three unique cancer clusters (subtypes) as Clusters 1, 2, and 3 were identified and encompass 

a total of 42, 24, and 16 KIRC patient samples, respectively. These three molecularly identified 

clusters were further correlated with the patients’ average overall survival to reflect its 

genotype-phenotype relationship. Cluster 1 showed the lowest average OS of 864.43 days, 

Cluster 2 displayed an average OS of 1076.38, and Cluster 3 had the highest average OS of 

1522.31 days. Therefore, these Clusters were categorized as Short (SS), Intermediate (IS), and 

Long Survival (LS) (Table 4.1). 

 

http://etd.uwc.ac.za/



 

80 
 

Figure 4.1. Hierarchical clustering dendrogram of KIRC patient. The 19,556 normalized 

gene expression profiles of the eighty-two KIRC cancer samples were subjected to clustering 

analysis, to reveal the grouping of cancer samples. 

 

Table 4.1: The number of patient samples stratified by hierarchical clustering. The 

average overall survival of all patients within a cluster was calculated and further categorized 

into Short, Intermediate, and Long Survival. 

Cluster Average survival (days) Survival time  Risk subcategory Samples 

1 864.43 Short  SS 42 

2 1076.38 Intermediate  IS 24 

3 1522.31 Long  LS 16 

Total 82 
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4.4.2 Differential gene expression analysis 

 

In the DGE analysis, a total of 19,556 protein-coding genes were evaluated for DEGs to 

distinguish between SS, IS, and LS. A pairwise comparison approach between the gene 

expression profiles of IS and SS, LS and SS, and LS and IS were used, and only the genes with 

an adjusted p-value <0.05 and LFC ≥ 0.5 or ≤ −0.5 between all three pairwise comparisons 

were used for further analysis. Thus, a total of 231 DEGs were discovered.  

 

Considering only the DEGs that were significant between all three pairwise comparisons, a 

total of 47 genes were identified as upregulated, when IS was compared to SS, whereas 184 

genes were found to be downregulated. While 159 genes were upregulated, and 72 genes were 

downregulated in the comparison of LS and SS. Finally, the comparison of LS and IS, 

identified 221 and 10 genes as upregulated and downregulated, respectively. 

 

4.4.3 Selection of optimal gene subset 

 

All 231 DEGs identified between SS, IS, and LS KIRC patients were screened by the RFE 

algorithm. The optimal gene subset is defined by the best combination of genes that has 

candidate characteristics of classification and prognosis. This also refers to the performance of 

the RFE and is quantified by the feature importance score. In this study, the optimal gene subset 

of 48 genes (Appendix B, Table B1) with the highest performance score of 0.963 was selected 

for further analysis (Figure 4.2A). 
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4.4.3.1 Validation of optimal RFE gene subset 

 

An RF classifier model was constructed to evaluate the classification power of the 48 RFE gene 

subset for SS, IS, and LS. A tenfold cross-validation on a forest model in the training phase 

(75% of the samples) and testing phase (25% of the samples) was computed. The RF 

classification yielded an accuracy score of 100%, a precision of 100%, and a recall of 100%. 

 

A confusion matrix that defines the performance of the classification algorithm is presented in 

Figure 4.2B. The importance of each gene for risk subcategory prediction to the RF classifier 

model is presented in Figure 4.2C. 

 

 

Figure 4.2. Supervised machine learning. (A) Recursive feature elimination selected 48 

genes with the highest performance score of 0.963. (B) Confusion matrix that defines the 

performance of RF classifier. Each row and columns represent the instances in an actual and 

predicted class, respectively. (C) The importance of each gene for RF classifier prediction. 
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A PCA model was built to determine the heterogeneity in gene expression between the SS, IS, 

and LS risk subcategories. The PCA assessed and identified the key sources of variance, 

allowing samples to be grouped based on similar and different gene expression profiles. Dim 

1 represented 29.8% of the overall variance, whereas Dim 2 represented 23.6% (Figure 4.3). A 

clear segregation between KIRC patient samples can be observed to distinguish between the 

three risk subcategories. 

 

 

Figure 4.3. Principal component analysis using the normalized gene expression profiles 

of the 48 RFE gene subset. KIRC samples were stratified according to the initial hierarchical 

clustering analysis. 

 

To further compare the initial clustering analysis of protein-coding genes to the clustering of 

the selected 48 RFE gene subset, a hierarchical clustering was performed with the normalized 
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gene expression of the 48 RFE gene subset of the eighty-two KIRC cancer samples. The 

correspondence between the two hierarchical clusters is represented by a tanglegram (Figure 

4.4). It can be observed that only four samples were assigned to a different cluster (risk 

subcategory) with the reduced gene subset (Figure 4.4). 

 

 

Figure 4.4. Tanglegram. The initial hierarchical clustering of 19,556 protein-coding genes 

(left) and clustering analysis of the 48 RFE gene subset (right). 
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4.4.4 Identification of prognostic genes 

 

Five prognostic genes were identified and linked with KIRC patient survival by univariate Cox 

regression analysis between the 48 RFE gene subset and patient survival data. The prognostic 

genes were detected utilizing the LASSO algorithm, which assigns non-zero, positive, or 

negative coefficients. Two of the five genes had positive coefficients, while three genes had 

negative coefficients (Table 4.2). 

 

Table 4.2: Five prognostic genes. The coefficient value obtained by LASSO algorithm. 

Gene name Coefficient value 

SALL4 0.06613418699953 

KRT15 0.0296694189909953 

OSBPL11 -0.121246995833747 

SPATA18 -0.0770127595245775 

TAL2 -0.18919349247905 

 

Based on patient statuses, the K-M estimations for overall survival were derived and presented 

below. The K-M curves illustrate low, intermediated, and high gene expression in blue, green, 

and red colors, respectively. The K-M curves of genes SALL4 and KRT15 with positive 

coefficient values are presented in Figure 4.5. 

 

The K-M curves for the three genes OSBPL11, SPATA18, and TAL2 with negative coefficient 

values are presented in Figure 4.6. 
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Figure 4.5. Kaplan-Meier survival curves of SALL4 and KRT15. Analysis revealed the 

survival prediction associated with high and low gene expression profiles of SALL4 and KRT15 

prognostic genes in KIRC patients. 

 

 

Figure 4.6. Kaplan-Meier survival curves of OSBPL11, SPATA18, and TAL2. Analysis 

revealed the survival prediction associated with high and low gene expression profiles of 

OSBPL11, SPATA18, and TAL2 prognostic genes in KIRC patients. 

                                                                                                                                                 

The five prognostic genes’ estimations and p-values in the Cox regression model were all 

significant, which demonstrates that the altered expression of these genes affects KIRC 

survival. 
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4.4.5 Gene expression patterns between risk subcategories 

 

One-way ANOVA was performed to assess for differences in the mean normalized gene 

expression profiles of each of the prognostic genes detected between the risk subcategories. 

This evaluation included the differences between SS and IS, IS and LS, and SS and LS. Each 

survival group consisted of a set of samples that make up that risk subcategory, from which a 

boxplot was created using the normalized gene expression profile of a specific prognostic gene 

(Figure 4.7). 

 

 

Figure 4.7. Boxplots based on risk subcategories of the five prognostic genes in KIRC 

patients. A boxplot was constructed with the normalized gene expression profile of each 

prognostic gene in all the samples that were categorized into the SS, IS, and LS categories. 
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All prognostic genes showed a statistically significant difference between SS and LS (p-value 

≤ 0.015). It is further noteworthy that ANOVA resulted in a statistical difference in the 

normalized gene expression between IS and LS (p-value ≤ 0.0032) as well as between survival 

IS and SS (p-value ≤ 0.018) (Figure 4.7). 

 

4.4.6 Enrichment analysis 

 

The GO enrichment analysis illustrated that KIRC DEGs were significantly enriched in 

biological processes (BP), including extracellular matrix (ECM) organization, extracellular 

structure organization, and external encapsulating structure organization (Figure 4.8). In terms 

of cellular component (CC), collagen-containing ECM, cell leading edge, and cell projection 

membrane, among other terms were significantly enriched in KIRC DEGs (Figure 4.8). Lastly, 

the molecular function (MF), were significantly enriched in ECM structural constituent, growth 

factor binding, and hormone binding (Figure 4.8). The KEGG analysis revealed that the 48 

gene subset significantly enriched for the p53 signaling pathway, HIF-1 signaling pathway, 

and estrogen signaling pathway (Figure 4.9). 
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Figure 4.8. Gene Ontology enrichment analysis. Top 10 functional items of KIRC DEGs 

based on clusterProfiler. *Functional databases: BP, Biological process; CC, Cellular 

component; and MF, Molecular function. 
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Figure 4.9. The results of KEGG pathways enrichment analysis of the 48 RFE gene subset 

based on clusterProfiler. 

 

4.5 Discussion 

 

The high molecular heterogeneity of RCC necessitates further sub-classification to establish a 

successful treatment strategy and medical care. Therefore, this study focussed on KIRC as it 

represents the majority of RCC diagnoses. The study aims to identify subtypes that reflect a 

genotype-phenotype relationship for KIRC patients that provide a more accurate prognosis, 

with an emphasis on cancer progression.  

 

This study implemented a normalization method in which the gene expression profiles of 

eighty-two advanced-stage KIRC samples were normalized with early-stage cancer samples to 
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consider heterogeneity differences in the multi-stage cancer progression.  The normalization 

method corrects for genes that present with high expression variability in early-stage samples 

but less expression variability in advanced-stage cancer samples. This leads to the availability 

of more meaningful information to track the cancer progression from early- to advanced-stage, 

based on the differences in the gene expression profiles.  

 

The normalized gene expression was subjected to a hierarchical clustering method, to detect 

cancer samples that progress differently in gene expression patterns. The approach allows for 

the grouping, alternatively, clustering of cancer samples to identify samples within a 

group/cluster that are similar to each other and different from samples in other groups. This 

popular method revealed three cancer clusters (subtypes) for KIRC cancer. The three 

molecularly defined clusters were correlated with the patients’ average OS. It can be noted that 

patients in Cluster 3 lived on average 657.88 days longer than patients in Cluster 1. Meanwhile 

patients in Cluster 2 and Cluster 3 live on average 211.95 days and 445.93 days longer than 

patients in Cluster 1 and Cluster 2, respectively. Thus, the obtained three clusters by the use of 

our normalization method illustrate different KIRC tumors that progressed differently from 

early-stage to late-stage cancer development (Figure 4.3). Consequently, these clusters have 

different prognoses and can be considered as different subtypes. The results of the hierarchical 

clustering analysis were subjected to a validation step using an independent GEO dataset 

(Appendix B, Table B2 & Figure B1). This test dataset includes sixty-five KIRC samples, and 

the normalization method also identified three clusters in the GEO KIRC dataset (Appendix B, 

Figure B2). 

 

The 48 genes identified through the Machine Learning analysis have the capacity to accurately 

classify and predict the KIRC subtypes to an extent similar to the use of the 19,556 protein-

http://etd.uwc.ac.za/



 

92 
 

coding genes. This demonstrates the existence of genetic heterogeneity within KIRC tumors 

and the ability of our normalization method to recognize this heterogeneity and associate it 

with prognosis and OS. The gene set contains genes that were reported to play a critical role in 

the aggressiveness of renal tumors, and our study revealed their involvement in the 

heterogeneity of the most prevalent and aggressive subtype in renal cancer, KIRC.  

 

Analysis of GO enrichment illustrates the involvement of DEGs in the biological processes 

that promote tumor aggressiveness. It has been reported that ECM regulates fundamental 

properties of tumors, such as growth and invasion. The most prevalent genetic mutations in 

KIRC inactivate the VHL gene, which plays a direct role in ECM organization. Therefore, 

therapeutic approaches to control ECM are currently being investigated and an advanced 

understanding of KIRC ECM will determine if ECM-modifying drugs are appropriate for 

KIRC (Oxburgh, 2022). An additional BP enrichment was macrophages that are highly 

enriched in RCC, and the RCC survival rate is strongly correlated with the inflammatory 

cytokines secreted by macrophages (Xie et al., 2022).  

 

In terms of the cellular component, KIRC DEGs were significantly enriched in functional 

elements such as basement membrane (BM). According to a recent study, KIRC is associated 

with unique BM gene expression patterns, and the characterization of the BM has the potential 

to guide clinical therapy (Xiong et al., 2022). Cellular component, collagen trimer has been 

similarly found in studies focused on renal cancer progression (Wang A. et al., 2019), along 

with molecular function enriched extracellular matrix structural constituent and platelet-

derived growth factor binding (Wang A. et al., 2019; van Roeyen et al., 2019). Lastly, MF is 

significantly enriched for hormone binding, and hormones plays a role in RCC etiology. 
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Hormone receptor expression in RCC cells has been demonstrated to be aberrant (Czarnecka 

et al., 2016). 

 

Analysis of KEGG pathways revealed signalling pathways that promote cancer progression 

and resistance to therapies. The SERPINE1 gene was enriched in the p53 signaling pathway, 

HIF-1 signaling pathway, and apelin signaling pathway. The interaction between P53 and HIF 

signaling can promote cancer progression (Zhang et al., 2021a). While apelin signaling has 

also been linked to the development of cancer and its progression (Liu et al., 2021). It is thus 

noteworthy, that the survival analysis of SERPINE1 expression in TCGA found a correlation 

between shorter survival, and the increased tumor grade, lymph node metastasis, and tumor 

stage (Guo et al., 2023). Therefore, SERPINE1 plays a crucial role in the progression of KIRC. 

KIRC patients categorized as SS revealed high levels of SERPINE1 gene expression, whereas 

LS displayed low levels of gene expression. Hence, the method tracked the progression of 

KIRC and further indicated the potential of SERPINE1 as a therapeutic target for KIRC 

patients. 

 

Together with SERPINE1, the PGK1 gene was also enriched for HIF-1 signaling pathway. 

HIF-1 is known to modulate a number of signaling pathways, having a significant impact on 

the cancer’s response to radiotherapy (Huang & Zhou, 2020). Therefore, a viable approach for 

sensitization of KIRC to radiotherapy is to target SERPINE1 and PGK1. Also, PGK1 has been 

linked to several roles in the development of cancer, tumor progression, and drug resistance. 

The gene is known to promote sorafenib resistance, which is a first-line treatment for KIRC 

patients as a tyrosine kinase inhibitor. However, resistance to sorafenib significantly reduces 

the effectiveness of therapy (He et al., 2022). Therefore, the large patient group (n = 42), 
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accounting for about half of the KIRC patients investigated in this study encompassed in SS, 

may be affected by this resistance to therapy. 

 

Genes KRT15 and GPER1 enriched for estrogen signaling pathways can also serve as treatment 

targets for KIRC patients. Estrogen is known to inhibit the proliferation, migration, and 

infiltration of RCC cells as well as increase RCC apoptosis (Yu et al., 2013). This study 

illustrated that the downregulation of KRT15 had favorable prognostic outcomes for KIRC 

patients for Cluster 2 and 3 (Figures 4.5, 4.7), whereas the downregulation of GPER1 was 

linked to unfavorable prognosis in Cluster 1. Therefore, the two genes may serve as valuable 

prognostic markers for KIRC and a novel developmental approach for enhancing KIRC 

therapeutics. 

 

This study further identified five prognostic genes as promising prognostic biomarkers and 

treatment targets for KIRC patients (Table 4.2). Cox regression together with K-M analyses 

confirmed the prognostic biomarkers and showed that patients with high levels of SALL4 and 

KRT15 gene expression have a poor survival outcome than patients with low levels of gene 

expression (Figure 4.5). While the high gene expression level of OSBPL11, SPATA18, and 

TAL2 has a favorable survival outcome than patients with a low level of gene expression 

(Figure 4.6). Therefore, K-M confirmed that the five genes are effective at diagnosing KIRC 

patients and predicting prognosis. 

 

The results are supported by previous research, Ih indicated that the high gene expression level 

of SALL4 has a poor survival outcome in comparison to KIRC patients with a low gene 

expression level (Che et al., 2020). Also, data from Sun et al. (2020) showed that the 

downregulation of SALL4 reduces KIRC tumor growth, metastasis, and angiogenesis. 
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Therefore, it is noteworthy that Cluster 2 with intermediate survival followed a similar trend in 

cumulative survival probabilities as Cluster 1 with short survival (Figure 4.5). Furthermore, 

the high gene expression of KRT15 has also been reported to correlate with a poor prognosis 

for RCC (Zhang et al., 2023). This study was able to detect KRT15 as a prognostic gene in the 

KIRC subtype. The levels of gene expression correspond with the SS, IS, and LS (Figure 4.7). 

Previous studies have also reported higher levels of SPATA18 gene expression associated with 

favorable OS in the KIRC subtype (Lingui et al., 2023) aswell as in RCC (The human protein 

atlas, 2023a). High expression of TAL2 has been reported with a favorable OS in RCC (The 

human protein atlas, 2023b). This is the first article to our knowledge to report OSBPL11 as a 

prognostic biomarker. A similar observation as with the SALL4 K-M curve is observed with 

the OSBPL11 gene. The K-M curve of Cluster 2 followed a similar trend in cumulative survival 

probabilities as Cluster 1 (Figure 4.6). Therefore, the upregulation of OSBPL11 could reduce 

KIRC progression. 

 

ANOVA was used to assess the heterogeneity in the prognostic genes’ mean gene expression 

profiles, to establish whether SS, IS, and LS samples’ gene expression profiles differ from one 

another. The prognostic value of the five prognostic genes found was confirmed by ANOVA, 

which also indicated a statistically significant difference in gene expression between short- and 

long-term survival. A crucial discovery was made between the gene expression profiles in the 

intermediate- and long survival as well as intermediate- and short survival. ANOVA showed 

statistically significant differences between the gene expression profiles of both IS and LS, and 

IS and SS. This further validates the finding of an intermediate-survival group. The unique 

gene expression pattern of each of the five prognostic genes were further subjected to a 

validation step using the independent GEO dataset (Appendix B, Table B2 & Figure B1). This 

test dataset verified prognostic genes OSBPL11 and TAL2 in the GEO dataset illustrated a 
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similar gene expression pattern for cluster 1 (short survival) and cluster 3 (long survival). The 

remaining three prognostic genes, SALL4, KRT15, and SPATA18 showed similar gene 

expression patterns for all three clusters (Appendix B, Figure B3). The five prognostic genes 

are therefore essential as they may enable an improved KIRC patient prognosis based on the 

gene expression level of the five genes. Hence, this discovery is important as it is directly 

correlated with survival and could aid in predicting the outcome of KIRC patients.  

 

The investigation detected molecular mechanisms that allowed for the segregation of three 

unique cancer clusters (subtypes) that progress differently in gene expression profiles and 

correlate with KIRC patient survival. Therefore, the normalization method was successfully 

implemented in this study and hierarchical clustering was able to provide an accurate 

assessment of the heterogeneity of KIRC. The cellular functions detected by GO enrichment 

along with the pathogenic genes detected by KEGG pathway analysis further confirmed the 

contribution to the progression of the disease. Additionally, the heterogeneity of KIRC served 

as a fuel for therapy resistance and emphasized the urgent need to expand the clinical subtypes 

for KIRC patients. As a result, this investigation facilitated and contributed to the current KIRC 

cancer classification with in-depth patient subtyping. The discovery of the five prognostic 

genes, combined with the biomarkers detected in pathway analysis, can provide a more 

accurate prognosis, and serve as targets to provide a more effective therapeutic approach for 

KIRC patients. 

 

4.6 Conclusion 

 

The implemented normalization method has the potential to reveal cancer patients that progress 

differently (subtypes) and establish a genotype-phenotype relationship between the identified 
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subtypes and the patient’s OS. In this study, correlations between the risk subcategories and 

gene signatures differentiated short, intermediate, and long survival in KIRC patients. The 

prognostic capacity of the prognostic genes can successfully classify and predict the prognosis 

of KIRC patients. Moreover, the prognostic genes were able to segregate patients into 

additional survival subcategories and thus provide targets that can enhance patient prognosis 

and aid in the development of individualized treatment approaches. 
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Chapter 5  

 

 

Conclusion and future recommendations  

 

5.1 Conclusion  

 

Cancer is a complex and dynamic genetic disease. During the multi-stage of cancer 

development, the disease generally becomes more heterogeneous. As a result of this 

heterogeneity, the tumor may consist of a diverse collection of cells harboring unique 

molecular signatures with differential levels of sensitivity to treatment. Consequently, this may 

be the cause of the poor overall survival associated with cancer. Therefore, this study focused 

on the discovery of cancer subtypes with the implementation and validation of a normalization 

method. In this study, the method captures the heterogeneity between cancerous tumors by 

detecting their molecular differences in progression between early- and advanced-stages of 

tumor development using gene expression by RNA-Seq. 

 

The method examines the continuously changing cellular transcriptome, allowing for an 

efficient and comprehensive description of gene expression profiles between different 

conditions over time. The method calculates the quotient of cancerous samples (dividend) and 
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early-stage samples (divisor), thereby producing normalized differential RNA expression 

profiles within a specific condition. Therefore, it corrects for genes that display less expression 

variability in advanced-stage cancer samples but display a high variability in early-stage cancer 

samples. The method exposed the accumulated genetic changes that occur throughout the 

multi-stage of cancer development. Therefore, the application of the normalization method and 

hierarchical clustering allowed for the identification of cancer subtypes (clusters) that 

progressed differently. Therefore, the method facilitated the sub-classification of 

heterogeneous diseases. 

 

Tracking of cancer progression demonstrated its potential to enhance the understanding of the 

molecular basis of carcinogenesis. The approach further demonstrated its potential to explore 

clinical relevance to the identified molecular subtypes that will enabled altered clinical 

approaches to heterogeneous diseases. Knowing the attributes of heterogeneity and their 

magnitude in carcinogenesis further allowed for the identification of biomarkers that can 

facilitate the screening and identification of individuals who are at risk of developing specific 

diseases, improve prognosis, or predict the response to treatment. The findings can further 

support the design of clinical trials for targeted therapies and stratification of heterogeneous 

cancer patients with differential therapeutic efficacy and prognosis. 

 

5.2 Study limitations 

 

The main limitation of this study was the number of cancer samples that were available to 

subject to the normalization method and downstream analyses in Chapter 3. A larger group of 

patients is recommended to validate the findings of this research. This will also render the five 

prognostic biomarkers identified in KIRC highly recommended for use in clinical applications. 
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An additional drawback was the lack of clinical information available in the phenotypic data 

for the lung samples to provide a reason for the segregation of Clusters 4 and 5 (Chapter 3). It 

would have also been of interest to validate the DEGs and RFE gene subset found in KIRC to 

the independent microarray GEO dataset (Chapter 4). However, the analysis of RNA-Seq has 

a higher sensitivity and specificity than microarray analysis. 

 

5.3 Clinical importance 

 

The discovery of cancer subtypes will have a significant impact on the field of cancer biology 

and precision medicine research. The approach outlined in this study allows for the accurate 

assessment of cancer heterogeneity and enables the tracking of cancer progression. The method 

facilitated the sub-classification of heterogeneous cancers and also allowed for the 

establishment of a genotype-phenotype link to the molecularly identified subtypes (clusters) 

and thus provided insight into clinical and phenotypic patterns of patient samples. This 

knowledge can be integrated into future clinal practices and research efforts to optimise patient 

care and clinical outcome. Additionally, the discovery of potential predictive biomarkers can 

also be implemented into clinical practices and improve the course of the disease. Therefore, 

the sub-classification of heterogeneous cancer allows for improved prognosis and the 

development of more effective targeted treatment strategies that aid in patients’ welfare. 

 

5.4 Future recommendations 

 

This novel avenue for genome-based classification of heterogeneous cancers that focuses on 

the transcriptional landscape of tumor sequencing can be applied to numerous diseases to 

investigate the progression of the disease. The method can aid hypotheses that aim to 
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investigate new cancer subtypes that segregate by different gene expression profiles and also 

find the biological relationship, clinical characteristic, or prognostic features associated with 

the molecularly defined subtype. Also, the application can contribute to a better understanding 

of molecular heterogeneity linked to cancer. 

 

The molecular biomarkers found in the study are vital for disease prognosis, treatment 

strategies, and outcome prediction. For clinical applications, it is highly recommended that the 

results obtained from the validation study be verified in a larger group of patients. The optimal 

RFE selected gene subset can further be used to accurately classify patients into subtypes with 

enhanced prognosis. The findings can further contribute to patient status monitoring and 

management to identify patients with short-, intermediate or long survival, as well as the 

development of targeted therapeutic strategies for the prognostic genes whose expression is 

associated with KIRC prognosis.  
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Appendices 
 

Appendix A 
 

Tables 
 

Table A1: Datasets used in uncorrected and tissue-corrected analysis. The RNA-Seq gene expression and curated clinical public datasets that 
have been used: Large B-cell Lymphoma (DLBC), Liver Cancer (LIHC), Lung Adenocarcinoma (LUAD), Cervical Cancer (CESC), and Testicular 
Cancer (TGCT). 

 

Cancer Name Dataset ID Dataset Phenotypes 
Large B-cell Lymphoma (DLBC) TCGA-DLBC 

 
https://gdc-hub.s3.us-east-
1.amazonaws.com/download/TCGA-
DLBC.htseq_counts.tsv.gz. 

https://gdc-hub.s3.us-east-
1.amazonaws.com/download/TCGA-
DLBC.GDC_phenotype.tsv.gz. 

Lung Adenocarcinoma (LUAD) 
 

TCGA-LUAD https://gdc-hub.s3.us-east-
1.amazonaws.com/download/TCGA-
LUAD.htseq_counts.tsv.gz. 

https://gdc-hub.s3.us-east-
1.amazonaws.com/download/TCGA-
LUAD.GDC_phenotype.tsv.gz. 

Liver Cancer (LIHC) 
 

TCGA-LIHC https://gdc-hub.s3.us-east-
1.amazonaws.com/download/TCGA-
LIHC.htseq_counts.tsv.gz. 

https://gdc-hub.s3.us-east-
1.amazonaws.com/download/TCGA-
LIHC.GDC_phenotype.tsv.gz. 

Cervical Cancer (CESC) 
 

TCGA-CESC https://gdc-hub.s3.us-east-
1.amazonaws.com/download/TCGA-
CESC.htseq_counts.tsv.gz. 

https://gdc-hub.s3.us-east-
1.amazonaws.com/download/TCGA-
CESC.GDC_phenotype.tsv.gz. 

Testicular Cancer (TGCT) 
  

TCGA-TGCT https://gdc-hub.s3.us-east-
1.amazonaws.com/download/TCGA-
TGCT.htseq_counts.tsv.gz. 

https://gdc-hub.s3.us-east-
1.amazonaws.com/download/TCGA-
TGCT.GDC_phenotype.tsv.gz. 

http://etd.uwc.ac.za/
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Table A2: Normal tissue expression dataset was obtained from the GTEx Portal. Dataset from the primary sites were extracted to match the 
individual cancer cohorts (last column). 
Primary sites Dataset ID Dataset Phenotypes Matched Cancer 
Whole Blood GTEX https://toil-xena-hub.s3.us-east-

1.amazonaws.com/download/gtex_gene_expec
ted_count.gz 

https://toil-xena-hub.s3.us-east-
1.amazonaws.com/download/GTEX_phe
notype.gz 

Large B-cell 
Lymphoma 

Lung GTEX https://toil-xena-hub.s3.us-east-
1.amazonaws.com/download/gtex_gene_expec
ted_count.gz 

https://toil-xena-hub.s3.us-east-
1.amazonaws.com/download/GTEX_phe
notype.gz 

Lung 
Adenocarcinoma 

Liver GTEX https://toil-xena-hub.s3.us-east-
1.amazonaws.com/download/gtex_gene_expec
ted_count.gz 

https://toil-xena-hub.s3.us-east-
1.amazonaws.com/download/GTEX_phe
notype.gz 

Liver Cancer 

Cervix GTEX https://toil-xena-hub.s3.us-east-
1.amazonaws.com/download/gtex_gene_expec
ted_count.gz 

https://toil-xena-hub.s3.us-east-
1.amazonaws.com/download/GTEX_phe
notype.gz 

Cervical Cancer 

Testis GTEX https://toil-xena-hub.s3.us-east-
1.amazonaws.com/download/gtex_gene_expec
ted_count.gz 

https://toil-xena-hub.s3.us-east-
1.amazonaws.com/download/GTEX_phe
notype.gz 

Testicular Cancer 
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Table A3: Top 5 TFs derived from the ChEA3 enrichment analysis of each tissue-corrected WGCNA module. The biological role indicates 
the role of the identified TF in cancer according to literature. 
Module  Biological Role TF Overlapping genes 

 
FDR 

Black FOX proteins are significantly implicated in 
cancer (Bach et al., 2018). 

FOXB1 RPL5,RPL30,RPL32,RPL31,RPL34,RPLP0,RPL9,RPL
7,RPS14,RPLP2,RPS10,RPL39,RPS13,RPL21,RPL23,
RPS3A,RPL37A,RPL36A,RPS15A,RPS3,RPL15,RPL2
3A,RPS25,RPS27,RPS29,RPS20,RPS24,RPS23 

1.61E-28 
 

Black Prognostic marker, high expression is 
unfavorable in liver cancer (The human 
protein atlas, 2023c). 
 

CHCHD3 RPL5,RPL30,RPL32,RPL31,RPL34,RPLP0,RPL10A,R
PL9,RPL7,RPS14,RPLP2,RPS10,RPL39,RPS13,RPL2
1,RPL23,RPS3A,RPL37A,RPL36A,RPS3,RPL15,RPL2
3A,RPS25,RPS27,RPS29,RPS24,RPS23 

2.14E-27 
 

Black Prognostic marker, high expression is 
unfavorable in liver cancer (The human 
protein atlas, 2023d). 
 

ZNF581 RPL5,RPL3,RPL32,RPLP0,RPL8,RPL10A,EEF1B2,R
PL7A,RPS14,RPS18,RPLP2,RPS10,RPS13,RPS8,RPS
6,RPSA,RPL27,RPL29,RPL12,RPS3,RPL14,RPL15,R
PS23 

5.41E-22 
 

Black Over expressed in various cancers, including 
hepatocellular carcinoma (de Haas et al., 
2006; Terrinoni et al., 2011) 

OTX1 RPL30,RPL31,RPL34,RPL9,RPL7,RPS14,RACK1,RP
S10,RPL39,RPL21,RPL37A,RPL36A,RPS15A,RPL13,
RPL15,RPS25,RPS27,RPS29,RPS24 

9.13E-17 
 

Black Overexpression has been associated with the 
development of pancreatic (Jensen et al., 
2000; Katoh & Katoh, 2007), breast (Farnie 
et al., 2007) and ovarian (Wang et al., 2010) 
cancers. 

HES1 RPL30,RPL31,RPL34,RPL9,RPL7,RPS14,RPL39,RPL
21,RPL23,RPL37A,RPL36A,RPL15,RPL23A,RPS27,R
PS29,RPS20,RPS24,RPS23 

1.2E-15 
 

Brown Down-regulated expression in hepatocellular 
carcinoma and gastric cancer (Shin et al., 
2010; Yamashita et al., 2010). 
 
 
  

IRF5 CD86,CD84,SPI1,CD80,LST1,ICAM3,CMKLR1,RNA
SE6,CYBB,MPEG1,OSCAR,TYROBP,BTK,CSF1R,IG
SF6,FPR3,CORO1A,PIK3R5,SLAMF7,NCKAP1L,CD
14,SLAMF1,CCR1,CD163,FAM78A,LY86,PILRA,AR
HGAP30,FERMT3,SIGLEC9,ITGAM,PLEK,ITGB2,SI
RPB2,SPN,HK3,FCGR3A,CD37,CCR5,CD53,FCER1
G,NFAM1,FGR,HCK,MS4A6A,TLR8,LCP2,LCP1,PL
EKHO2,DOCK2,SASH3,LILRA6,C1QA,WAS,LILRA2,

1.44E-67 
 

http://etd.uwc.ac.za/
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AIF1,FGD2,CYTH4,LAIR1,LRRC25,IL10RA,LAPTM5
,LILRB1,LILRB2,LILRB3,LILRB4,CD4,SIGLEC1,MY
O1F,C1QC 

Brown Abnormal BATF expression in tumors 
predicted survival times of patients (Jia et 
al., 2022). 
 
BATF expression could also predict 
immunotherapeutic and chemotherapy 
responses in cancer (Jia et al., 2022). 

BATF TRAF3IP3,CD80,SLA,IKZF1,SIT1,GPR171,TBC1D10
C,CD96,TYROBP,ACAP1,CD8A,SP140,RASAL3,COR
O1A,SAMSN1,PIK3R5,SLAMF7,LPXN,ICOS,SLAMF1
,SH2D1A,NKG7,PILRA,PTPRC,ARHGAP30,CD27,F
ERMT3,ITK,PLEK,CD3G,CD3E,CD3D,GNGT2,CD3
7,CYTIP,CCR5,MAP4K1,CD53,IL16,APBB1IP,ZAP70
,LCP2,LCP1,SASH3,CST7,CXCR3,CCL5,IL21R,TIGI
T,S1PR4,P2RY10,TRAT1,IL10RA,LAPTM5,LILRB1,LI
LRB2,LILRB4,CD2,CD4,CD6,ABI3,CD5,IL2RB,CD7,
SIGLEC1,PTPN7,CD247 

1.03E-63 
 
 
 

Brown An increased incidence of TBX21 has been 
linked to cancer development (Yu et al., 
2014; Lin et al., 2015). 
 
TBX21 has been associated with poor 
prognosis in patients with lung 
adenocarcinoma (Zhao et al., 2018). 

TBX21 TRAF3IP3,SPI1,ICAM3,IKZF1,IL18RAP,SIT1,TBC1D
10C,CD300A,DOK2,ACAP1,CD8A,RASAL3,CORO1A
,SLAMF6,FAM78A,PYHIN1,NKG7,ARHGAP25,PTPR
C,ARHGAP30,ITK,ITGAM,ITGB2,SIRPB2,ITGAL,CD
3E,FCGR3A,TAGAP,CD37,TNFAIP8L2,CYTIP,MAP4
K1,CD53,NFAM1,IL16,FGR,APBB1IP,HCK,ZAP70,T
LR8,LCP2,LCP1,DOCK2,SASH3,LILRA6,WAS,AOAH
,CST7,LILRA2,CYTH4,CCL5,S1PR4,LRRC25,P2RY13
,IL10RA,LAPTM5,LILRB3,CD2,CD6,ABI3,IL2RB,CD
7,MNDA,CD247,EVI2B,MYO1F 

1.27E-62 
 

Brown Recent studies have reported significant 
functions of Arid5a in numerous types of 
cancer, including lung cancers (Sarode et al., 
2020; Zhou et al., 2021; Parajuli et al., 2021; 
Zhang et al., 2021b) 

ARID5A CD86,SPI1,ICAM3,IKZF1,C3AR1,TBC1D10C,OSCA
R,TYROBP,ACAP1,CSF1R,RASAL3,CORO1A,SAMSN
1,PIK3R5,SLAMF7,LPXN,CD14,SLAMF1,CCR1,PILR
A,ARHGAP25,ARHGAP30,FERMT3,SIGLEC9,PLEK,
ITGB2,ITGAL,CD3E,TAGAP,CD37,CYTIP,MAP4K1,
CD53,FCER1G,IL16,FGR,APBB1IP,HCK,ZAP70,LC
P2,LCP1,PLEKHO2,DOCK2,SASH3,C1QA,WAS,CYT
H4,IL21R,FCGR1A,S1PR4,IL10RA,LAPTM5,LILRB1,

2.81E-61 
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LILRB2,LILRB3,LILRB4,CD4,CD6,CD5,IL2RB,CD7,
CD247,EVI2B,MYO1F,C1QC 

Brown Significantly associated with cervical cancer 
prognosis (Zhong et al., 2022). 

SCML4 TRAF3IP3,GPR65,ICAM3,SLA,IKZF1,SLA2,SIT1,TB
C1D10C,CD96,ACAP1,CD8A,ZNF831,RASAL3,COR
O1A,LY9,TESPA1,LPXN,SLAMF6,ICOS,CD300LF,F
AM78A,PYHIN1,SH2D1A,NKG7,ARHGAP25,PTPRC,
ARHGAP30,CD27,ITK,CD3G,ITGAL,CD3E,CD3D,T
NFSF13B,TAGAP,CD37,CYTIP,MAP4K1,CD53,IL16,
APBB1IP,ZAP70,LCP2,LCP1,SASH3,WAS,CYTH4,C
XCR3,CCL5,IL12RB1,S1PR4,P2RY10,TRAT1,IL10RA,
SNX20,CD2,CD6,CD5,IL2RB,CD7,PTPN7,CD247,EV
I2B,MYO1F 

4.09E-60 
 

Magenta Affect TGF-β signaling to promote prostate 
cancer (Kwon et al., 2021). 

ZNF507 HNRNPU,XPO1,KPNB1,DHX9,IREB2,SRSF1,LARP1,
TRA2B,NSD1,TRPM7,HNRNPA3,MGA,TJP1,HNRNP
L 

5.11E-9 
 

Magenta Prognostic marker, high expression is 
unfavorable in liver cancer (The human 
protein atlas, 2023e). 

ZNF207 TCERG1,ICE2,HNRNPU,XPO1,SRSF2,SRSF3,DHX9,
IREB2,SRSF1,TRA2B,NSD1,TRPM7,NONO,MGA 

5.11E-9 
 
 

Magenta SAFB protein levels predict poor prognosis 
of breast cancer patients (Hammerich-Hille 
et al., 2010) 

SAFB HNRNPU,RBM14,NCL,HNRNPH3,KPNB1,SF1,DHX
9,SRSF1,GANAB,LARP1,HNRNPA3,NONO,HNRNPL,
HNRNPD 

5.11E-9 
 

Magenta These proteins have critical roles in 
development, differentiation, and 
tumorigenesis (Lee & Maeda, 2012). 

ZBTB39 HNRNPU,XPO1,GEMIN5,KPNB1,SF1,DHX9,SRSF1,
LARP1,TRA2B,NSD1,HNRNPA3,NONO,HNRNPL,HN
RNPD 

5.11E-9 
 

Magenta CTCF has been identified as a putative driver 
gene in several cancer types (Marshall et al., 
2017). 

CTCF DDX46,HNRNPU,XPO1,NCL,KPNB1,SF1,DHX9,SRS
F1,LARP1,NSD1,HNRNPA3,NONO,HNRNPL,HNRN
PD 

5.11E-9 
 

Turquoise E2F8 is correlated with the progression of 
cervical cancer (Kim et al., 2020) 

E2F8 DSCC1,CCNF,HJURP,BUB1B,MKI67,CDC20,CHEK
1,NUSAP1,OIP5,GTSE1,ESCO2,CDC25C,HASPIN,W
DR76,CDC25A,SGO1,DEPDC1B,MELK,TIMELESS,
KIF20A,CDCA2,PARPBP,CDCA3,TROAP,CDCA5,N
CAPG,CDCA8,HMMR,PKMYT1,SKA3,IQGAP3,NCA

1.35E-
143 
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PH,RAD51AP1,CCNB2,CCNB1,ORC1,RACGAP1,CL
SPN,FAM83D,FANCI,PLK4,STIL,PLK1,CDC6,NDC8
0,ZWINT,ANLN,TPX2,KIF18A,KIF18B,UBE2T,KIF4
A,CDK1,TOP2A,ARHGAP11A,FEN1,NCAPG2,KIF14
,MCM10,BRCA1,KIF11,FOXM1,LMNB1,KIF15,EXO
1,NUF2,PBK,MYBL2,SPDL1,DLGAP5,CEP55,RFC4,
CKAP2L,KIF23,CIP2A,CCNA2,ASPM,ESPL1,INCEN
P,KIFC1,DEPDC1,BIRC5,MCM4,KIF2C,MCM6,MT
FR2,DTL,FAM72B,FAM72A,UHRF1,PRIM1,TTK,TY
MS,AURKB,AURKA,CDC45,E2F2,RAD54L,BUB1,E2
F7,GINS1,POLQ,CENPU,RRM2,SPAG5,SHCBP1,TI
CRR,CENPE,CENPF,CENPI,PRC1,TRIP13,CDKN3,
MAD2L1 

Turquoise Prognostic marker, high expression is 
unfavorable in liver cancer and lung (The 
human protein atlas, 2023f; 2023g) 
 

CENPA DSCC1,CCNF,HJURP,BUB1B,CDC20,CHEK1,NUSA
P1,OIP5,NEK2,KPNA2,GTSE1,CDC25C,HASPIN,KN
STRN,CDC25A,SGO1,DEPDC1B,MELK,TIMELESS,
KIF20A,PRR11,PIF1,CDCA2,PARPBP,CDCA3,TROA
P,CDCA5,NCAPG,CDCA8,HMMR,PKMYT1,SKA3,IQ
GAP3,NCAPH,RAD51AP1,CCNB2,CCNB1,RACGAP
1,FAM83D,FANCI,PLK4,STIL,UBE2C,PLK1,CDC6,N
DC80,ZWINT,ANLN,TPX2,KIF18A,KIF18B,UBE2T,K
IF4A,CDK1,TOP2A,ARHGAP11A,FEN1,NCAPG2,KI
F14,MCM10,KIF11,FOXM1,LMNB1,KIF15,EXO1,N
UF2,PBK,MYBL2,SPDL1,DLGAP5,CEP55,CKAP2L,
KIF23,CIP2A,CCNA2,ASPM,ESPL1,INCENP,KIFC1,
DEPDC1,BIRC5,MCM4,KIF2C,MTFR2,DTL,FAM72
B,FAM72A,UHRF1,TTK,TYMS,AURKB,AURKA,CDC
45,RAD54L,BUB1,GINS1,CENPU,RRM2,SPAG5,SHC
BP1,TICRR,CENPE,CENPF,RAD51,PRC1,TRIP13,C
DKN3,MAD2L1 

7.77E-
134 
 

Turquoise E2F7 promotes cell proliferation and 
metastasis in lung adenocarcinoma, liver 

E2F7 DSCC1,CCNF,HJURP,BUB1B,MKI67,CDC20,NUSA
P1,GTSE1,HASPIN,CDC25A,MELK,TIMELESS,KIF2

2.21E-
103 
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cancer and head and neck cancer (Liang et 
al., 2018; Ma et al., 2018; Saleh et al., 2019). 
 

0A,CDCA2,CDCA5,NCAPG,CDCA8,HMMR,PKMYT1
,SKA3,IQGAP3,NCAPH,RAD51AP1,CCNB1,ORC1,R
ACGAP1,CLSPN,FANCI,PLK4,STIL,PLK1,CDC6,ND
C80,ZWINT,ANLN,TPX2,KIF18B,UBE2T,KIF4A,CD
K1,TOP2A,ARHGAP11A,FEN1,NCAPG2,KIF14,MC
M10,KIF11,FOXM1,LMNB1,KIF15,EXO1,NUF2,PBK
,MYBL2,SPDL1,DLGAP5,CEP55,CKAP2L,KIF23,CI
P2A,CCNA2,ASPM,ESPL1,INCENP,KIFC1,DEPDC1,
BIRC5,MCM4,KIF2C,DTL,UHRF1,TTK,TYMS,AURK
B,AURKA,RAD54L,BUB1,GINS1,POLQ,CENPU,RR
M2,SPAG5,SHCBP1,TICRR,CENPE,CENPF,PRC1,T
RIP13,MAD2L1 

 

Turquoise E2F2 plays a significant role in tumor 
progression (Shen & Wang, 2021). 

E2F2 CCNF,HJURP,MKI67,CHEK1,NUSAP1,GTSE1,ESC
O2,HASPIN,WDR76,CDC25A,TIMELESS,TROAP,CD
CA5,NCAPG,CDCA8,PKMYT1,NCAPH,SKA1,ORC1,
CLSPN,FANCI,PLK4,STIL,CDC6,NDC80,ZWINT,KIF
18B,ARHGAP11A,FEN1,NCAPG2,KIF14,MCM10,BR
CA1,KIF11,FOXM1,LMNB1,KIF15,CHAF1B,EXO1,
MYBL2,CKAP2L,CCNA2,ASPM,ESPL1,INCENP,KIF
C1,MCM4,KIF2C,DTL,UHRF1,TYMS,CDC45,RAD54
L,GINS1,POLQ,CENPU,RRM2,SPAG5,SHCBP1,TIC
RR,PRC1,CENPK,SPC24 

2.49E-64 
 

Turquoise FOXN4 can be used as candidate prognostic 
biomarkers for lung adenocarcinoma (Yao et 
al., 2021). 

FOXN4 CCNF,HJURP,BUB1B,CDC20,NUSAP1,NEK2,KPNA
2,GTSE1,CDC25C,KNSTRN,CDC25A,SGO1,DEPDC
1B,MELK,KIF20A,PIF1,CDCA2,CDCA3,TROAP,NC
APG,CDCA8,IQGAP3,NCAPH,CCNB2,CCNB1,RAC
GAP1,PLK4,UBE2C,PLK1,NDC80,TPX2,KIF18A,UB
E2T,KIF4A,CDK1,TOP2A,KIF14,MCM10,BRCA1,KI
F11,KIF15,NUF2,PBK,DLGAP5,CKAP2L,KIF23,CIP
2A,CCNA2,ASPM,ESPL1,KIFC1,BIRC5,KIF2C,FAM
72B,TTK,AURKB,BUB1,E2F7,SPAG5,CENPE,CENP
F,PRC1,CDKN3 

2.49E-64 
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Table A4: Transcription factors enrichment analysis of tissue-corrected WGCNA brown module. A list of TFs and their corresponding rank 
according to ARCHS4 co-expression, with documented information about their biological function associated with survival in the context of 
cervical cancer. The genes in bold were previously found (Kannan et al., 2021) to play a role in cervical cancer survival.  
Survival associated with TF Rank TF Overlapping genes 

 
FDR 

Significantly associated with 
cervical cancer prognosis (Zhong 
et al., 2022). 

5 SCML4 
 

MAP4K1,TRAF3IP3,GPR65,ICAM3,SLA,IKZF1,SLA2,SIT1,TBC1D10
C,CD96,ACAP1,CD8A,ZNF831,RASAL3,CORO1A,LY9,TESPA1,LPX
N,SLAMF6,ICOS,CD300LF,FAM78A,PYHIN1,SH2D1A,NKG7,ARHGA
P25,PTPRC,ARHGAP30,CD27,ITK,CD3G,ITGAL,CD3E,CD3D,TNFSF
13B,TAGAP,CD37,CYTIP,CD53,IL16,APBB1IP,ZAP70,LCP2,LCP1,SA
SH3,WAS,CYTH4,CXCR3,CCL5,IL12RB1,S1PR4,P2RY10,TRAT1,IL10
RA,SNX20,CD2,CD6,CD5,IL2RB,CD7,PTPN7,CD247,EVI2B,MYO1F 

4.09E-60 
 

Prognostic marker, high 
expression is favorable in cervical 
cancer (The human protein atlas, 
2023h). 
 

9 SNAI3 
 

MAP4K1,TRAF3IP3,SPI1,LST1,ICAM3,TBC1D10C,CD300A,OSCAR,T
YROBP,ACAP1,IGSF6,RASAL3,CORO1A,PIK3R5,CCR1,FAM78A,PIL
RA,ARHGAP25,ARHGAP30,FERMT3,SIGLEC9,ITGAM,ITGB2,SIRPB
2,ITGAL,CD3E,HK3,FCGR3A,CD37,TNFAIP8L2,CD53,NFAM1,IL16,
FGR,APBB1IP,HCK,TLR8,LCP2,LCP1,PLEKHO2,SASH3,LILRA6,WA
S,LILRA1,AOAH,LILRA2,CYTH4,S1PR4,LRRC25,P2RY13,IL10RA,LAP
TM5,LILRB2,LILRB3,CD4,ABI3,CD7,MNDA,CD247,EVI2B,MYO1F 

3.1E-56 
 

Prognostic marker, high 
expression is favorable in cervical 
cancer (The human protein atlas, 
2023i). 
 

14 IKZF1 
 

MAP4K1,TRAF3IP3,ICAM3,GPR174,TBC1D10C,MPEG1,ACAP1,RA
SAL3,CORO1A,PIK3R5,NCKAP1L,FAM78A,ARHGAP25,PTPRC,ARH
GAP30,FERMT3,ITK,ITGB2,SIRPB2,ITGAL,CD3E,PIK3CG,SPN,TAG
AP,CD37,CYTIP,CCR2,CD53,NFAM1,IL16,FGR,APBB1IP,HCK,ZAP7
0,TLR8,LCP2,LCP1,DOCK2,SASH3,WAS,LILRA1,AOAH,CYTH4,S1PR
4,LRRC25,P2RY13,IL10RA,LAPTM5,CD4,CD6,CD5,IL2RB,CD7,MND
A,CD247,EVI2B,MYO1F 

3.13E-51 
 

Prognostic marker, high 
expression is favorable in cervical 
cancer (The human protein atlas, 
2023j). 
 

24 IKZF3 MAP4K1,TRAF3IP3,ICAM3,IKZF1,GPR174,SIT1,GPR171,TBC1D10C
,PRKCB,ACAP1,CD8A,SP140,RASAL3,CORO1A,LY9,NCKAP1L,SLA
MF6,FAM78A,PYHIN1,NKG7,ARHGAP25,PTPRC,ARHGAP30,ITK,C
D3G,ITGAL,CD3E,CD3D,SPN,TAGAP,CD37,CYTIP,CD53,FCRL3,IL1
6,APBB1IP,ZAP70,LCP2,LCP1,DOCK2,SASH3,IL21R,IL12RB1,TIGIT,

1.41E-47 
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P2RY10,IL10RA,LAPTM5,SCIMP,CD6,IL2RB,CD7,PDCD1,CD247,EV
I2B 

Prognostic marker, high 
expression is favorable in cervical 
cancer (The human protein atlas, 
2023k). 
 

34 FOXP3 
 

MAP4K1,TRAF3IP3,ICAM3,SLA,IKZF1,GPR174,SIT1,TBC1D10C,UB
ASH3A,ACAP1,SP140,RASAL3,CORO1A,LPXN,ICOS,FAM78A,ARHG
AP25,PTPRC,ARHGAP30,CD27,ITK,ITGAL,CD3E,CD3D,TAGAP,CD
37,CYTIP,CD53,IL16,APBB1IP,ZAP70,LCP2,LCP1,DOCK2,SASH3,W
AS,CYTH4,CXCR3,TIGIT,S1PR4,P2RY10,TRAT1,IL10RA,CD2,CD4,C
D6,CD5,IL2RB,CD7,CD247 

1.19E-42 
 

May serve as a tumor suppressor 
gene in cervical cancer (Li et al., 
2018b) 

49 RUNX3 
 

MAP4K1,TRAF3IP3,ICAM3,IKZF1,IL18RAP,TBC1D10C,ACAP1,RAS
AL3,CORO1A,PIK3R5,NCKAP1L,SLAMF1,FAM78A,ARHGAP25,PTP
RC,ARHGAP30,ITGB2,ITGAL,CD3E,SPN,CD37,CYTIP,CD53,IL16,FG
R,APBB1IP,ZAP70,IFNG,LCP2,LCP1,DOCK2,SASH3,WAS,CYTH4,TB
X21,IL21R,S1PR4,P2RY10,IL10RA,LAPTM5,CD6,IL2RB,CD7,CD247,
EVI2B,MYO1F 
 

8.23E-38 
 

High ETS1 levels exhibit a poorer 
prognosis than those with low 
ETS1 levels in cervical cancer 
(Xu et al., 2003, Fujimoto et al., 
2002). 

59 ETS1 
 

MAP4K1,TRAF3IP3,ICAM3,IKZF1,GPR174,TBC1D10C,ACAP1,ZNF
831,RASAL3,CORO1A,NCKAP1L,SLAMF6,FAM78A,ARHGAP25,PTP
RC,ARHGAP30,ITK,ITGB2,ITGAL,CD3E,TAGAP,CD37,CYTIP,CD53,I
L16,APBB1IP,ZAP70,LCP2,LCP1,DOCK2,SASH3,WAS,CYTH4,S1PR4,
P2RY10,IL10RA,LAPTM5,CD6,CD5,IL2RB,CD7,CD247,EVI2B 
 

2.44E-34 
 

Low expression is associated with 
poor prognosis in cervical cancer 
(Deng et al., 2021). 

136 IRF4 
 

MAP4K1,CD80,IKZF1,GPR171,SP140,RASAL3,LPXN,ICOS,SLAMF1,
ARHGAP30,ITK,SPN,CYTIP,APBB1IP,IFNG,LCP1,DOCK2,SASH3,IL
21R,P2RY10,LILRB1,SCIMP,CD6,IL2RB,CD7 

4.34E-15 
 

Prognostic marker, high 
expression is favorable in cervical 
cancer The human protein atlas, 
2023l). 

157 ZNF266 
 

MAP4K1,IKZF1,TBC1D10C,ACAP1,RASAL3,LY9,ICOS,PYHIN1,PTP
RC,CD3G,CD37,CYTIP,FCRL3,IL16,APBB1IP,ZAP70,IL12RB1,CD6,E
VI2B 

9.94E-10 
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Figures 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1: Uncorrected RNA-Seq data were inserted into WGCNA to identify gene 
modules. (A) Soft threshold power. (B) Gene clustering tree. Each colour underneath the 
dendrogram shows the module assignment, and branches above represent the genes. The 
dynamic tree cut shows the initial module detection and merged dynamic indicates the modules 
divided according to their similarity. (C1) Module eigengene dendrogram identified groups of 
correlated modules. The red line indicates the module eigengene threshold of 0.25 and (C2) 
Eigengene adjacency heatmap of different gene co-expression modules. In the heatmap, the 
blue colour represents low adjacency, while the red represents high adjacency. (D) Barplot of 
32 co-expression modules constructed after similar modules were merged with module size at 
the top of each bar.  
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Figure A2: KEGG enrichment of gene modules detected by WGCNA from the 
uncorrected RNA dataset using the ORA, WebGestalt. 
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Figure A3: Tissue-corrected dataset were inserted into WGCNA to identify gene modules. 
(A) Soft threshold power. (B) Gene clustering tree. Each colour underneath the dendrogram 
shows the module assignment, and branches above represent the genes. The dynamic tree cut 
shows the initial module detection and merged dynamic indicates the modules divided 
according to their similarity. (C1) Module eigengene dendrogram identified groups of 
correlated modules. The red line indicates the module eigengene threshold of 0.25 and (C2) 
Eigengene adjacency heatmap of different gene co-expression modules. In the heatmap, the 
blue colour represents low adjacency, while the red represents high adjacency. (D) Barplot of 
seven co-expression modules constructed after merged modules with module size at the top of 
each bar. 
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Figure A4: KEGG enrichment of gene modules detected by WGCNA from the tissue-
corrected RNA dataset using the ORA, WebGestalt. 
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Figure A5. Heatmap of tissue-corrected RNA-Seq data of late-stage cancer samples 
normalized with normal tissue samples, illustrating module expression within cancer 
clusters. Normal tissue expression dataset was obtained from the GTEx Portal. To match the 
number of male/female ratios as in the late-stage cancer samples, the same number normal 
tissue samples of male/female ratios were randomly selected, except for cervical cancer, which 
only had 10 normal tissue samples. The colour bar on the left shows modules identified by 
WGCNA and enriched for functional pathway annotations. The rows are further composed of 
protein-coding genes with expression values obtained after data normalization. Clusters of 
similar cancer cohorts are indicated across the top and the cancer cohort are displayed by the 
colour bar along the top with the key on the right. *Primary sites abbreviations: CESC = 
Cervical squamous cell carcinoma; DLBCL = Diffuse Large B-cell Lymphoma; LIHC = Liver 
Hepatocellular Carcinoma; LUAD = Lung Adenocarcinoma; TGCT = Testicular Germ Cell 
Tumors. 
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Appendix B 
 

Tables 
 

Table B1: List of 48 gene subset selected by RFE. 

Gene name 
MCUB 
CD82 
IPO11 
CPXM1 
KDELR3 
SALL4 
SEC23B 
PGK1 
PDGFRL 
SERPINE1 
GNB3 
LPCAT3 
CLINT1 
IGFBP2 
C1orf21 
TNFSF18 
NLN 
MMP19 
CANX 
HSD17B4 
NACAD 
ALPK3 
ASXL3 
FAHD2B 
OSBPL11 
PAQR6 
SPATA18 
GPER1 
DIRAS2 
COL22A1 
KRT15 
CLCN5 
NET1 
GOLGA6L2 
NECTIN3 
CPNE7 
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MCFD2 
ZBTB7C 
WT1 
TAL2 
CDHR4 
FOCAD 
SLC6A17 
ATL1 
PCDHA4 
PLXNA4 
PCDHGC3 
CCER2 

 

Table B2: GEO datasets used to verify the results obtained. An independent test dataset 
was created from three KIRC-specific GEO datasets; GSE73731, GSE53757, and GSE36895, 
which includes a total of 70 early-stage and 65 late-stage raw CEL files, which were robust 
multi-array average (RMA) normalized. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GEO datasets Early-stage Late-stage 

GSE73731 41 44 

GSE53757 24 15 

GSE36895 5 6 

 70 65 
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Figures 

 

Figure B1: PCA plots before and after batch effect removal. The three GEO datasets were 
subjected to batch effect removal using ComBat. The GEO expression dataset after batch effect 
removal were used for further analysis. 
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Figure B2: Hierarchical clustering dendrogram of KIRC patients in GEO dataset. The 
normalized gene expression of the sixty-five KIRC cancer samples were subjected to clustering 
analysis, to reveal the grouping of cancer samples. The GEO dataset verified the three KIRC 
subtypes. 
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Figure B3: Boxplots were constructed of the five prognostic genes identified by the TCGA 
dataset. The normalized gene expression profiles of the five prognostic genes in all the samples 
that were categorized into clusters was extracted from the GEO dataset. Genes OSBPL11 and 
TAL2 in the GEO dataset illustrated a similar gene expression pattern to the TCGA dataset for 
cluster 1 (short survival) and cluster 3 (long survival). The remaining three prognostic genes, 
SALL4, KRT15, and SPATA18 showed similar gene expression patterns for all three clusters in 
the TCGA and GEO datasets. 
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