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(i)
Abstract

This thesis deals with Jacobson type radicals and ideals, which
are antiradical in the sense that they are direct sums of minimal left
ideals and annihilate the quasi-radical, Q(N). Of central importance
are the s-radicel denoted by Jg(N) and an antiradical called the socle-
ideal, denoted by Soi(N).

In addition to basic definitions and results, Chapter 1 gives a
historical account of some aspects of radical and antiradical theories
in near-rings.

In Chapter 2 we generalise the notion of s-primitivity, first in-
troduced in [10]. Some of the remaining problems from [10] are settled
here. We prove, for example, that if N is a near-ring satisfying the
descending chain condition for left ideals, (DCCL), then J4(N) is the
smallest two-sided ideal which contains Q(N). We conclude this chapter
with examples and some of the typical radical-like properties satisfied
by Jg(N).

Soi(N), which is a generalisation of the Laxton-Machin critical
ideal [18], is defined in Chapter 3. If N satisfies the descending
chain condition for N-subgroups of N* (DCCN), then Soi(N) is uniquely
maximal amongst all ideals whose intersection with Q(N) is zero. In
the DCCL case, JS(N) is uniquely minimal amongst all ideals A such that
Soi(N/A) = N/A. We also prove that So0i(N) is contained in the crux of
N, first defined by S.D. Scott [27]. If N has DCCN, then Soi(N) and
the crux of N coincide.

Cgapter L is devoted to the development of a representation theory
for antiradicals. We construct the antiradicals C(Q) using only the
faithful N-group Q. In the DCCN case C(Q) = Soi(N) for any faithful
N-group Q.

In Chapter 5 we consider nil-rigid and other radical-antiradical

series in an attempt to find a measure for the non-nilpotence of Jg(N).
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It turns out that J4(N/C) is non-zero and nilpotent for some member C
of the nil-rigid series for N. This enables us to give the following
decomposition theorem for JS(N). Let N be a near-ring with identity

and satisfying the DCCN, If
Ly = Jo(N) = {0yc=C,cL,cC, =N
is the nil-rigid series for N, then

Js(N) = WeQ(N),

where

W= Jg(N)NSoi(N) = J (N) N(the crux of N).

Some future problems connected with the work in this thesis are

discussed in Chapter 6.



CHAPTER 1

Preliminaries

1. Basic definitions and results

Definition A rizht near-ring is a non-empty set N with two binary

operations, addition (+) and multiplication (+) such that

(i) N is a group under +. We denote this group, which is not

in general commutative, by N*,
ii is a semi-group under multiplication.
() N i i a el it
(iii) (x+y) ez = xez+y.z for all x,y,z eN.

(iv) N is zero symmetric, that is X:0w= 0 for all xeN, where O

is the identity of N*,

Similarly one defines a left near-ring in which the left distributive

property holds and such that Oe«x = O for all x ¢N. Near-rings throughout
this thesis will be right near-rings, and we write xy instead of‘xoy.

Examples of near-rings can be found in (23],

Definition An element s of a near-ring N is said to be distributive if
s(x+y) = sx+sy for all x,y eN. If N* is generated by a set of distri-
butive elements, then N is said to be a distributively generated (d.g.)

near-ring.
Definition Let Q be a group and N a near-ring. Q is called an N-group if
there is a mapping (n,w) = nw of NxQ into Q such that
(1) (x+y)w = xw+yw 2and
(ii) (xy)w = x(yw) for all x,y ¢N and all w ¢ Q.

If N has a multiplicative identity 1, then we add the condition that
1w = w for all we (i.e. Q is a unitary N-group). One verifies easily
that N* is an N-group.

Definition Let S be a subset of the near-ring N and let A be a subset of

the N-group 1o Then we define
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Sa = {ss|s €S, 5 e€a}.

In particular A may be a subset of the N-group N*. More generally, let
(Si} y 1 = 1,000,k be a collection of subsets of N; then S; Sz.....5, de-
notes the set of all elements of the form Sy Szeces.5y, With s{ €S for
1 = 1,...,1(- If S1 = SZ = eee = Sk = S, then we denote S1 Sz.oooosk by Sk'
Definition The subgroups A of the N=group Q such that NAS A are called

N-subgroups of Q.

The definitions of near-ring homomorphisms, endomorphisms and iso-

morphisms can be found in [23].

Definition A homomorphism ¢ of an N-group Q4 into an N-group Q, is called

an N-homomorvhism if ¢(nw) = né(w) for all neN and all we Q,.

Definition The kernel of an N-homomorphism will be called an N-kernel.

It is easily shown [25] that a normal subgroup A of an N-group Q is an

N-kernel of Q if and only if

n{w+s) =nw e A for 2all neN, weQ and § € A.

The N-kernels of ( are the "ideals" of ( in the terminology of Pilz (23].

Remark: If Q is an N-group and A an N-kernel of ), then the factor group

Q- A may be regarded as an N-group under N x(0-a) = Q-4 given by
n(w+d) = nw+ A, neN, weQ.

Definition The N-kernels of N* are called left ideals of N. A normal sub-
group R of N is called a right ideal of N if RNC R and the ideals of N are

precisely the left ideals which are also right ideals of N.

Definition A left ideal L of N is said to be modular if there exists an
e €N such that ne-n €L for all neN, If N has a right multiplicative

identity, then, of course, every left ideal of N is modular.

Definition Let (AL} te] be a family of N-subgroups of the N-group ; then

Z_ A{ denotes the N-subgroup of Q generated by 'LLeJI S
L€l



Ve state the following results without proof (25 1.

Provosition 1.1 (a) If fa;}, i eI, is a family of N-kernels of the

N-group Q, then_).‘.I Ai is an N-kernel of Q.
L€

(v) If Ay is an N-kernel and A, an N-subgroup of Q, then

the set {81«{-82 | 5, €Ay, 82 €Ax} is the N-subgroup of Q gererated by A,U Az.

(¢) If A, is an N-kernel and A, an N-subgroup of Q, then
the factor N-groups (A.+Ap) - A, and A, -(A;NA,) are N-isomorphic.

Definition Let Q be an N-group and {A-L}, i eI, be a family of N-kernels of

2 such that

(i) Q = iZGI Ay

(i1) Ay N 'ZI A {O) fOr each k ¢ I,
ie

N

<A1

then we say that Q is a direct sum of the Aj. We write Q = '@I Ay ifQ is a
3 BB e
direct sum of the N-kernels A;. One can show that each element of Q has a

unique expression as a finite sum of elements from different Ai'se.

The following result, due to D.W. Blackett [5], will be used frequently

throughout this thesis:

Lemma 1.2 (left distribution over N-kernels) Let Q = @I A; be a direct sum
- e

of the N-kernels A;. Then n( 8k1+ o s +8k’) = nsk1 + o0 +n8ks, for all neN

and Sk‘. from different Akj'

Definition An N-group Q1 possesses a cyclic generator weQ if Nw = Q. We

say Q is a cyclic N=-group.
Definition [2] A non-zero N-group Q is said to be
(i) minimal if Q contains only the trivial N-subgroups {O} and Q;
(ii) of type-2 if O is minimal and NQ £ {0};
(iii) irreducible if Q has no proper, non-zero N-kernels;

(iv) of type-1 if Q is irreducible, NO £ {0} and for each weQ,
Nu = {0} or Nw-= O

(v) of type-0 if Q is irreducible and possesses a cyclic generator.



Definition Let A, and A, be subsets of an N-group 0; then (A,:4,) denotes

the set of all elements of N which map A; into A,, that is
(8y: 82 = {neN:naca,}.

Clearly, the set (0: Ap) is actually a left ideal of N. In particular,
(O:w) is a left ideal for each weQ (here we have replaced {w} by w). It

is called the annihilating left ideal of w. If A, is an N-kernel and A, an

N-group, then (A, : Ap) is an ideal. In particular (O: A,) is called the
annihilating ideal of the N-group A,. If weQ is a cyclic generator of Q,
then (O : w) is a modular left ideal of N, and if in addition Q is of type-0,

(0: w) is a modular maximal left ideal of N.

Definition

(i) A near-ring N is called v-primitive if it has a faithful N-group

of type-v, v = 0,1,2.

(ii) An ideal A of a near-ring N is v-primitive if A = (0: (), where Q
is of type-v, v = 0,1,2, Equivalently, A is v-primitive if the

factor near-ring N/A)[Z}] is y-primitive.

(iii) J (N) is the intersection of all v-primitive ideals of N, v = 0,1,2.
If N has no v-primitive ideals, then we define J,(N) to be N itself.
Jo(N) is called the radical of N. In the ring case
Jo(N) = J,(N) = J,(N)

is just the Jacobson radical of N.
(iv) The quasi-radical Q(N) is the intersection of all modular, maximal

left ideals of N. Again, if N has no modular, maximal lef't ideels,
then we define Q(N) to te N.

Clearly, 2-primitive = 1-primitive = O-primitive and we have
J2(N) 2 J4(N) 2 () 2 Jo(N).

If N has a aultiplicative identity, then J,(N) = J,(N).

Definition An element z ¢N is called left cuasi regular (l.q.r.) if, and

only if, the minimal left ideal of N containing all elements of the form



x-xz, X €N, coincides with N, A subset of N is called left quasi regular
if each element contained in it is l.g.r.. Q(N) is a l.q.r. left ideal of
N containing all l.q.r. left ideals of N; see [23, 2u].

The definitions of various chain conditions satisfied by near-rings
can be found in Pilz [23]. Throughout this thesis "N has DCCI(DCCL,DCCN)"
will mean that N satisfies the descending chain condition for ideals (res-
pectively left ideals, N-subgroups of N*). Similarly, ACCI(ACCL,ACCN) will
mean that the ascending chain condition holds for ideals (respectively lef't

ideals, N-subgroups of N%).

Definition A subset X of a near-ring N is said to be nilpotent if 2 = 0
for some positive integer k. X will be called nil if every single element
subset of X is nilpotent. Clearly, nilpotency implies nilness.

If N has DCCN, then Q(N) is a nilpotent left ideal containing all nil-
potent left ideals of N. In this case Jo(N) is a nilpotent ideal of N con-
taining all nilpotent ideals of N. Proofs of the latter statements can be

found in [15,2&].

2. Three important lemmas

The following lemmas are essential for much of the work in this thesis
and for this reason we discuss them in a separate section. The first ard
third are well known [10,16]); the second is a generalisation of the ring

theoretic result [L].

Lemna 1.3 Let N be a near-ring with DCCL, N 4 Q(N). Then

k
N=-Q(N) = @ ay
1=1

where each N-kernel A; is of type-O. Furthermore, any N-group of type-O is
N-isomorphic to one of the Aj appeafing in this decomposition.

The proof of lemma 1.3 was first given for a d.g. near-ring with iden-
tity and DCCN [16]. Proof of the above generalisation goes over almost

verbatim.
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Lemma 1.4 Let QO = @I Qi be an N-group where each N-kernel Qi is of type-O.
e L€

Then any non-trivial N-kernel A of Q is a direct summand of Q and each of

1- A and A is N-isomorphic to a direct sum of some of the Qi's.

Proof Let G be the collection of all N-subgroups [ of Q which are of the

form

r= Ae(t@ Qt> ‘

eT<T

Partially order € by

i “(tz@;l Qt) e m<c§?sx nt>

if, and only if, T, & T, Any chain

r1(.[—2<ooo<rk< see

in € is bounded above by

Urk = AQ(@ Qt> e €l

k teUTy
Since A+Qj ¢ 6for some i, € £ @ and so, by Zorn's lemma, ¢ has a maximal
element L"‘_: Ae(uj?ﬂ Q,), say. If ™ 4 q, then there exists Qi, i eI,

such that N Qi = {0} vecause Qy is of type-0. But then we would have

i Ae(fBU %)OQL €6,

contradicting the maximality of ['*, Thus " = Q.

Definition An N-group [" is said to be a subfactor of the N-group (1 if there
exist N-subgroups A, and A, of 2, with A, an N-kernel of A, such that [" is
N-isomorphic to the factor N-group A, - Az. We write [ « Q if [ is a sub-

factor of Q.

Lemma 1.5 Let N be a finite near-ring with identity and Q a faithful N-
group. If A is an N-group of type-O, then A « Q.

The proof of lemma 1.5 is identical with the one given in [16] for
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d.g. near-rings. In {16], 1 was assumed to te of type-O, but this was not

stfictly necessarye.

3., Radical and antiradical theories in near-rings

It is well known that, unlike in rings, the radical J,(N) of a near-
ring N with DCCN need not be nilpotent [3]. Various studies have been made
of this oddity, and one objective has been to try to find a measure of
Jé(N)’s non-nilpotence; roughly, something that will tell us how far the
radical is from being nilpotent. An attempt to this end was made in (10],
where the properties of the quasi-radical Q(N) were more closely examined.
Not surprisingly, there are many parallels between the internal characteris-
ations of Q(N) and the Jacobson radical in rings. The drawback is that Q(N)
is not, in general, a two-sided ideal, and in this connection the following
croblem was posed in [16]: can Q(N) be a two-sided ideal without being equal
to the radical JQ(N)? The affirmative answer to this was given in (10] and
in the process the notion of s=-primitivity and a further Jacobson-type radi-
cal, J4(N), were introduced. Jg(N) is an ideal which contains Q(N) and is
contained in J,(N). If N has DCCN, then Q(N) is a two-sided ideal if, and
only if, Jg(N) = Q(N) = JO(N)’ [10]. Moreover, if J (N) = {0}, where N is a
near-ring with DCCN, then N is a direct sum of minimal left ideals and we
have the simplest class of near-ring structures af'ter the class of seni-
simple ones. JSeveral outstanding questions remain in connection with the
s-radical, JS(N), and some of these will be answered in the next chapter.
For example, we prove that for a large class of near-rings, JS(N) is the
smallest two-sided ideal which contains Q(N). In addition, we generalise
the notion of s=-primitivity to include all near-rings, with or without a
multiplicative identity, and we show that J,(N) 2 J,(N) 2 J(N) 2Q(N) in
the general case as well. Examples of near-rings with multiplicative iden-
tity exist for which Jo(N) £ J4 (W), (11]. However, there are classes of
near-rings, for example certain types of finite Neumann d.g. near-rings [19L
for which J,(N) = Jg(N) £ Q(N). In this case J,(N) is nilpotent if, and

only if, Q(N) if a two-sided ideal. Because it is in some sense dual to one



of the antiradicals introduced in Chapter L, a discussion of the s-radical
JS(N) merits a place in this thesis.

The antiradical or socle of a ring plays a prominent part in the theory
of rings. In the last decade fruitful results were obtained by studying
socles in ring modules. For example, it can be shown that a ring module is
Artinian if and only if the socles of its factor modules are essential and
finitely generated (1] (a submodule S of a module M is called essential if
whenever K is a submodule of M such that KNS = {O}, then K = {O}). For the
important classical applications of the socle in rings one needs to go back
to the o0ld masters and indeed part of this thesis could well have been in=
spired by Reinhold Baer's paper [ 4]. As it is, the antiradicals discussed
here arose through purely near-ring theoretic considerations. Baer used an

antiradical series to establish a necessary and sufficient condition for the

existence of his radical. This antiradical series was defined as follows:

(i) M, = M(R), the antiradical of R. That is, M, is the sum of all
the minimal left ideals of R.

(ii) M,., i3 a uniquely determined ideal in R such that ¥ ,C Mv+1 and

M(R/M,) = MV+1/MV.
(iii) If v is a limit ordinal, MU is the union of all ideals Mu for u ¢ v.
(iv) There exists a smallest ordinal m = m(R) such that Mm = Mm+s.

Baer proved that if R = Mm for some ordinal m, then the radical of R
exists. Furthermore, R is Artinian and hence the Baer radical is nilpotent
in this case,

In this thesis we shall use a similarly defined radical-antiradical
seriés in near-rings in an attempt to find a measure for the non-nilpotence
of Jacobson-type radicals which contain Q(N). This radical-antiradical
series is a special case of a more general series first defined by S.D. Scott
[(27]. Scott called hnis series, which is properly ascending, the nil-rizid
series, and he showed that it is finite if the near-ring N has DCCN. If the
near-ring N has an identity and satisfies the DCCN, then we prove that

J4(N/C) is nilpotent, where C is a certain element in the nil-rigid series
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for N. But let us start at the beginning.

Antiradical ideals have appeared on the near-ring scene fairly recently
[18,19]. Unlike rings, the sum of all minimal left ideals of a near-ring
is only a left ideal and not in general a two-sided ideal. We shall call
this left ideal the socle of the near-ring. Heatherly [12] considered
socle-like structures in near-rings which are not zero-symmetric. In the
zero-symmetric case, S.D. Scott [27] studied the sccles of tame near-rings.,
Since, in general, the socle of a near-ring is only a left ideal it seems

aore profitable to consider two—sided ideals which are antiradicals in the

sense that they (a) have socle-like structures and (b) annihilate one or
more of the radicals in a near-ring. We note that (b) is a strong con-
dition, and even the socle of a ring is not necessarily antiradical in the
above sense. We will give an example to this effect in Chapter 3. However,
there are examples of ideals in near-rings which satisfy (a) and (b). One

of the best-known amongst these is the critical ideal, Cirst studied by

A. Machin [19]. He considered the intersection of all non-zero ideals in a
Neumann d.g. near-ring defined on a reduced free group, whose laws were pre-
cisely the universal laws of a critical group (21]. Machin discovered this
intersection of ideals to be a non-zero ideal and a direct sum of left
ideals, each of which was an N-group of type-O. Moreover, this non-zero
ideal, which he called the critical ideal, turned out to be a direct summand
of the near-ring N and this enabled him to find examples in which the radical
Jo(N) split as J,(N) = C®Q(N), where C = C? is the critical ideal and
C.Q(N) = [O}. In these examples the defining group was minimal simple, and
Machin regarded the ideal C to be the "obstruction" to JZ(N) being nil-
potent. Indeed, by factoring out C he obtained a Neumann d.g. near-ring
with a nilpotent radical in this case. All this is as far as it goes. Later
the notion of the critical idezl was extended to more general d.g. near-
rings with identity and satisfying the DCCN and ACCN (18]. This Laxton-
Machin critical ideal was defined via a faithful representation on an N=-

group and the Jordan-Hblder theory played an important rdle in its const-

ruction. Again, this more general critical ideal has the antiradical
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oroperty of being a direct sum of minimal left ideals and annihilating Q(N),
In addition it is a direct summand of the near-ring N and hence the radical
Jo(N) splits as J,(N) = D@L, where D2 = D is an ideal contained in the
critical ideal and L is a left ideal containing Q(N). It was thought that
by successively factoring out critical ideals in the manner of Baer, one
would, after a finite number of steps, arrive at a factor near-ring with a.
nilpotent radical. Thus, if it had worked, the number of successive criti-
cal ideals in the chain before a nilpotent radical was obtained wculd have
been some sort of measure for the non-nilp%tence of JZ(N). However, the
factor near-ring of a near-ring by its critical ideal has szero critical
ideal, and near-rings with zero critical ideal and non-nilpotent radical
are known to exist [19]. Tﬁus this idea for a measure of the radical's non-
nilpotence failed.

Closely connected with antiradicals is the crux of a rear-ring N, de-
noted by Crux(N), first defined by S.D. Scott (27]. The crux has a strong
"nil avoidance" property and it annihilates the nilradical (27] of a near-
ring. However, it is not an antiradical in our sense as it does not, in
general, have a socle-like structure. Scott proved that the crux of
N/€rux(N) is zero. Furthermore, if N has DCCI and Crux(N) /£ N, then the
nilradical of N/Crux(N) # {O}. Also, if the nilradical nil(N) of N is not
equal to N, then the crux of N/nil(N) is not zero in the DCCI case. The
last two statements were proved by Scott and they led to the construction
of his nil-rigid series. Roughly speaking, the nil-rigid series of a near-
ring is a properly ascending sequence of ideals which arises through alter-
nately factoring out the nilradical and crux of successive factor near-rings
of the near-ring. We shall zive the formal definition in Chapter 5, where
we will consider connections between the nilpotence of JS(N) and the nil-
rigid series for N. Later [28] Scott put his ideas in a more abstract set-
ting and developed a theory for formation radicals. In this setting his
crux emerged as the complementary radical of the Baer lower radical.

#We will construct an antiradical which we call the soclew-ideal and de-
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note by Soi(N) in Chapter 3. This antiradical, which is a generalisation

of the Laxton-Machin critical ideal, has the properties of being a direct

sum of minimal left ideals and annihilating Q(N). Furthermore, the socle-
jdeal is contained in the crux and if the near-ring N satisfies the DCCN,

then these two ideals ccincide.

In addition we extend the Laxton-Machin [18] representation theory to
construct, for the near-ring N satisfying the DCCL, the ideals c(Q), where
Q is a faithful N-group. The ideals C(Q) are antiradical in the sense that
they have socle-like structures and C(Q).Q(N) = {0} for each faithful Q. Of
these ideals C(N) is the most important. However, if N has DCCN, then we
will show that the choice of the faithful N-group Q is actually irrelevant.
This is a generalisation of the Laxton-Machin result and it follows from
the fact that So0i(N) = C(Q) for any faithful N-group.

In connection with the nilpotence of the s-radical we show that there
exists an element L in the nil-rigzid series for a near-ring N, with identity
and satisfying the DCCN, such that J (F) = T@Q(N), where § = N/L and W is
contained in the socle-ideal of N. This is a general form of the Laxton-
Machin decomposition of Jé(N) for certain types of Neumann d.g. near-rings.
If L is zero, then, of course, J4(N) = W@ Q(N). Whether or not L is zero
depends pertly on the length of the nil-rigid series of N. We therefore
consider it not unreasonable to use the length of nil-rigid series in order
to find a measure for the non-nilpotence of the s-radical. How the radical
fits into this scheme of things if it is not the s-radical, we have been un-
able to establish. Indeed, there are many other outstanding questions re-

maining, and we regard this work as exploratory only.



CHAFTER 2

s=Primitivity

In this chapter we generalise the notion of s-primitivity and, unlike
in E10], our near-rings are not assumed to have a multiplicative identity.
OQur near-rings are by definition zero-symmetric and we will make no attempt
to discuss s-primitivity in a more general setting. We reiterate that
throughout this thesis our direct sums are direct sums of N-kernels, and

Q= GEE Qi will always mean that Qi is an N-kernel of Q for each 1¢I.
LE

Definition Let Q be an N-group and w,w’e Q. We say that w is eguivalent to

w’, written w ~ w’, if
(i) Nw = Nu’ and (ii) (0:w) = (0 :aw’).

It is clear that "~" is an equivalence relation on Q. Also, if N has a

right identity e, then ew ~ w for all weQ.

Definition An N-group Q of type-O is said %o be of type-s if for all weQ

for which Nw 4 {0} we have
(i) Nw = FE% Qi, where Qi is of type-O for each i eI;
i€
(ii) there exists an w’ € Nw such that w ~ w’.

We note that the index set I above varies with w. By a previous remark,
(ii) is superfluous if N has a right identity. Moreover, w’ in (ii) has a
unique expression of the form w’ = “i1‘*“i2'*°"'*“i,’ with Wi in dif-
ferent Qii' By the left distribution over the N-kernels Qij’ it follows

that I is a finite set because Nw’= Nw. Clearly, type-2 > type-1 2 type-s

= type-0.

Definition A rear-ring N will be called s-primitive if it has a faithful
N-zroup of type-s. An ideal A of N will be called s-orimitive if the factor
near-ring N/A is s-orimitive. An ideal A is thus s-primitive if, and only

if, A = (0:Q), where Q is of type-s.
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Definition The intersection of all s-primitive ideals of N is called the
s-radical of N ard we denote it by Jg(N). If N has no s-priritive ideals,
then we define JS(N) to be N,

From the definition of J(N) it is clear that J, (1) 2 J4(N) 2 50(N),
but its connection with Q(N) is not quite so immediate. We prove that Jg(I)
contains the quasi-radical and will in the process arrive at another char-
acterisaticn of the former. We note that if Q is of type-s and A is an N-

group of type-O contained in Q, then A is of type-s.

Definition [23] A left ideal L of N is said to be v-modular, v €{0,1,s,2}

if L is modular and N-L is of type-v.

We see that the O-modular left ideals of N are precisely the modular,

maximal left ideals of N,

Theorem 2.1 If A is an s-primitive ideal of N, then A is an intersection of

s-modular lef't ideals of N.

g’

Proof There exists an N-group Q of type=s such that A = (Os@). I
k

Nw / {O}, w €, then for some k/Nw = @ Qi where each Qi is of type-O and
=1
there exists an w’e Nw such that w ~ w’. Now @' = wy+.ee+w, ¥ith

wi €Qi. Also Nwj = Qj, i = 1,..s,k by the left distribution over the N-

kernels Q;, and because Nw = Nw’. We have

4 _
(0:0) = [ (0:wy)
i=1

and so (O :w’) is an intersection of C-modular left ideals., By a remark
preceding the theorem, Qi is actually of type-s so that (0:w;) is s-modular
for i = 1,ee.,ke Thus (0:w) = (0:w’) is an intersection of s-modular laff

ideals. Consequently,

A=(0:Q) = ﬂ (0:w = ﬂ (0: w)
weQ weq

Nuwf (O}

is an intersection of s-modular left ideals of N,

Corollary J¢(N) 2Q(N) 2 Jo(N).
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Fe can now give the following characterisation of J4(N).

Theorem 2,2 JS(N) is the intersection of all s-modular left ideals of N.

7

cof If J (N) = N, then we are through. So suppose J_\N N. Theorem 2.1
3 ’ S S

[

tells us that JS(N) certainly contains the above intersection. On the other

o

hand, if L is an s-modular left ideal of N i.e. N-L is of type-s and L is

medular by e, say, then putting € = e +L we have

J(N) = (0:8) = {neN:neel}

1}

{neN:nel}

L.

Whether, in general, an C-primitive ideal which is an intersection of
O-modular left ideals is s-primitive, is not known. We will prove it true
for the class of all near-rings satisfying the DCCL. For this purpose we

need the following lemma, due to Betsch £2l.

Lemma 2.3 If L is an O-modular left ideal and M is 2 modular left ideal of

N, then LNM is modular.

Lemma 2.4 If N is a near-ring satisfying the DCCL, then Q(N) is a modular

left ideal of N.
Proof Follows from lemma 2.3 and the definition of Q(N).

Theorem 2.5 Let N be a near-ring satisfying the DCCL. If P is an O-primi-
tive ideal of N which is an intersection of O-modular left ideals, then P

is s=-primitive.

Proof If Q(N) = N, then the theorexz is trivially true, so we may suppose

that Q(N) £ NN. We note that since G(N) is modular and P 2 Q(N), P itself
is modular, so that the factor near-ring N/P has a right multiplicative
identity. By lenma 1.3 we have

k

N-QN) = D a:

=

-

where each A; is of type-O. Since P-G(N) is an N-kernel of N -G(N), lemma

1.L tells us that the factor near-ring N/P is of the form
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then

q' = q'e = q'lj +eeatg'ly € MmN @ Ly {0}
jed

and we are done,

Ne note that lemma 2.6 need not be true if N does not have a right

identity. We zive as an example the following Clay "small" near-rinz [(51].

Example 2.1 Consider the near-ring N = (V4,+,%), where (V,,+) = {O,a,b,c}
is the four-group with 22 = 2b = 2¢ and the multiplication * is given in

the following table:

*x O 8 D) c
O Ol O
a O b c
bl O o) § §C
c O a b ¢

N is a distributive near-ring and

=
I

= {0,¢ @ {0,0}
(O,a} ) {O,c}
{O,b} Y {O,a}.

]

We see that {0} £ {0,5) = J (M) = ¢(N) for v = 0,1,2,s.

Lemma 2.7 Let N be a near-ring satisfying the DCCL. Then any O-primitive

ideal P of N which contains Q(N) is s-primitive.

Proof If Q(N) = N, then the lemma is vacuously true since an O-primitive
ideal P cannot be equal to N. So we may assume Q(N) £ N. By theorem 2.5
we need only show that P is an intersection of C-modular left ideals. From
the decomposition of N-—Q(N) as a direct sum of N-groups of type-0 and the
fact that P-Q(N) is an N-kernel of N-G(N) we again see that the factor
near-ring N/P can be written as N/P = g%% it’ for some finite index set T.
Since Q(N) is a modular left ideal and P 2 ¢(N), N/P has a right identity.
Hence by lemma 2.6 Q(N/P) is the zero ideal. Taking inverse images back in

N we see that P is an intersection of O-modular left ideals of N
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Theorem 2.8 If N is a near-ring satisfying the DCCL, then any ideal A of N,

A £ N, which contains Q(N) is an intersectiocn of s-primitive ideals.

Proof By lemma 1.4 and the decomposition of N=-Q(N) as a direct sum of N-
groups of type-0, we may write N/A = S%% it, where each it is an N/A-group
of type-O. Since A 2 Q(N), N/A has a right identity and is thus a faithful
N/A-group. Thus A = é?r (0 :it) where, of course, each Et is also an N-
group of type-O. Hence each (0 :ft) is an C-primitive ideal of N containing

Q(N) and it follows from lemma 2.7 that A is an intersection of s=-primitive

ideals.

Corollary 1 The s-radical Jg(N) is the smallest ideal of N containing Q(N).
Corollary 2 BEvery ideal A AN containing Q(N) is an intersection of s-
modular left ideals.

Now Jo(N) is a l.qer. ideal of N which contains all the l.q.r. ideals
of N. Hence if Q(N) is a two-sided ideal, then Jo(N) = Q(N). Corollary 1

of the last theorem shows
Theorem 2.9 Let N be a rear-ring satisfying the DCCL. Then Q(N) is a two-
sided ideal if, and only if, Jo(N) = Q(N) = J4(N).
Let M be the set of all ideals of a near-ring N and define the sets 3§
and ¥ as follows:
A = {A €A : N/A has no non-zero, l.gq.r. left ideals};
¥-= {A €M : N/A has no non-zero, nilpotent left ideals}.

Ne have

Theorem 2,10

I
-
2

(i) If N is a rear-ring satisfying the DCCL, then J4(IN)

D
8

(ii) If N is a near-ring satisfying the DCCN, then Jg(N)

Proof

(i) We may assume N £ Q(N). Since G(N/J5(¥)) = {0} it follows that
Jg(N) €48. On the other hand, if A ¢ &, then Q(N/A) = {0} so that A
is an intersection of O-modular left ideals. Thus A 2 Q(N) and so

by corollary 1 of theorem 2.8 we have A 2 Jg(N).



(ii) The proof of (ii) is as above and uses the fact that the quasi-
radical is nilpotent in this case.
Our next objective is to find a necessary and sufficient condition for
a left ideal to be in J (N) similar to the one given in (17] for J,(N) in
the d.g. near-ring case. For this purpose we need the following, which

follows immediately from thecrem 2.2 and the proof of lemma 1.3.

k
Lezma 2.11 If N is a near-ring with DCCL and Jg(X) = 0, then N = B Ly,

i=1

where each left ideal L; is an N-group of type-s.

Lexma 2.12 If N is a near-ring which satisfies the DCCL, then J4(N) - Q(N)

is zero or a finite direct sum of N-groups of type-0 which are not of type-s.

k
Proof If N/J (N) is not zero, then by lemma 2.11 § = N/J () = & Iy,
=1
where EL is an N-group of type-s. The Jordan-HBlder theorem now tells us
that any O-modular left ideal containing JS(N) must be s-modular. If L is

an O-modular left ideal which is not s-modular, then N = L-+JS(N) so that

n=

N-L & (L+J(N) -L)

J{W)/Is(mN L.

IR

Thus J4(N)/J(M)NL is a type-O N-group which is not of type-s. Since
d

QUN) = JS(N){)( () L)), for somed, where L; is O-modular but not s-modular
i=1

the decomposition claimed will follow.

Theorem 2.13 Let N be a near-ring satisfying the DCCL. Then the left

ideal L is contained in J4(N) if, and only if, L-LNQ(N) is zero or a

direct sum of N-groups of type-O which are not of type-s.

Proof If L& J,(N), then (L +Q(N)) -Q(N) is an N-kernel of Jg(N) -Q(N) and

so by lemma 1.4 is a zero or a direct sum of N=-groups of type-O which are

=

not of type-s. From the isomorphism (L +Q(N)) -Q(N) £ L-LNQ(N) it follows

that L=LNQ(N) is zero or a direct sum of N-groups of type-0 which are not
of type-s.
Conversely, suppose L=LNQ(N) is a direct sum of N-groups of type-0 which

are not of type-s. Since Jg(N)NL-LNQ(N) is an N-kernel of L-LNQ(N),



lemma 1.4 tells us that (L-LNQN)) - (Jg()NL-LNGN)) is a direct
sun of N-zroups of type-0 which are not of type-s. Thus L-Jg(N)NL is
such a direct sum and consequently (L +Jg(N)) -Jg(N) = L-Jg(MNL is a
direct sum of N-groups of type-O which are not of type-s. But
(L-+JS(N))-JS(N) is an N-kernel of N=-Jg(N), which is a direct sum of
N-groups of type-s by lemma 2.11. Again by lemma 1.4 it follows that
L+Jg(N) = Jg(N) and so L & Jg(N).

Ve note that if N satisfies the DCCN, then we have a Laxton-type
criterion [17] for a left ideal L to be in Jg(N), namely, that L is an
extension of a nilpotent left ideal by a direct sum of N-groups of type-0,
which are not of type-s. Of course, in the more general DCCL case, we

cannot assume that LNG(N) is nilpotent.

We recall that in the ring case, a necessary and sufficient con-
dition for Baer's upper radical to be equal to his lower radical is for
the ring to be right (or left) Artinian. In this case both the upper and
lower radicals coincide with the classical radical. Cne may similarly
define "radical ideals" such that, with suitable chain conditions, JS(N)'
is "upper" and Jo(N) "lower", or J,(N) "upper" and Js(N) "lower", as

follows:

Definition A subset A of the near-ring N will be called Jp-radical

if
(i) A is an ideal of Nj;

(ii) A-ANQ(N) is zero or a direct sum of N-groups of type-O

which are not of type-s;
(iii) N/A has no non-zero nilpotent ideals.

If N satisfies the DCCN, then Jg(N) is the sum of all ideals of N
satisfying (i) and (ii), and Jo(N) is the intersection of all ideals
satisfying (i) and (iii). It is clear that Jo(N) and Jg(N) are both

Jo=radicals in the DCCN case.



Definition A subset A of the near-ring N is called Js-radical
if
(i) A is an ideal of N;
(ii) A-ANQN) = {0} or a direct sum of N-zroups of type-O which

are not of type-2;
(iii) N/A has no non-zero nilpotent left ideals.

If N satisfies the DCCN, then J,(N) is the sum of all ideals satis-
fying (i) and (ii), whilst Jg(N) is the intersection of all ideals
satisfying (i) and (iii). Also, Jp(IN) and Jg(N) are both Jg-radical

ideals of N.

It is not our intention to pursue the above observations any fur-
ther. Suffice it to say that they again point to the highly non-Abtelian
nature of the near-ring. Furthermcre, we will not embark upon a de-
tailed study of the s-radical and s-primitive near-rings. As we pvointed
out tefore, the importance of the s-radical in this thesis is simply be-
cause of .its connection with one of the antiradicals which we will define
in the next chapter. BExamples of s-primitive near-rings which are not
2-primitive are easy to construct in the general near-ring case (101].
Examples of non-trivial s-primitive d.g. near-rings are harder to ccome
by, almost certainly because such near-rings are more ring-like in struc-
ture. We first give an example of a class of d.g. near-rings (which are
not rings) for which

J2(N) = Jg(M) £ Jo(N).

The details of the theory on which this example is based can be found in

(19]¢ In addition, we need the following:

Fact 2.1 Let G be a finite, simple group such that every subgroup of G

is a direct sum of simple groups. Then G is Abelian of prime order (App. 1).

Example 2.2 Let G be an additively written finite grcup and V a reduced



free group (again written additively) on n generators whose laws are pre=
cisely the universal laws of G. We assume that n 2 lGl-—1. Let N be the
Neumann d.g. near-ring asscciated with V (19]. N is finite with an identity
element. Furthermore, N has a faithful N-group , all of whose N-subgroups
are cyclic and there is a one-to-one lattice correspondence between the sub-
groups of G and the N-subgroups of Q. Under this correspondence, normal N-
subgroups of Q correspond to normal subgroups of G and subfactors of Q cor-
respond to subfactors of G, It is clear that every subfactor of (1 is a cyc-
lic N-group. By lemma 1.5 every N-group of type-O is a subfactor of Q. Let
A be an N-group of type-s. Then A « Q so that there exist N-subgroups [
and ['; of Q such that A g r,-rC,. By the lattice correspondence there exists
a subfactor B of G corresponding to [y -[,. Since [ -[3 is of type-0 it
follows that H is simple. If X is a subgroup of ﬁ, then K corresponds to an
N-subgroup L of L,-C,. Now [ is cyclic and since A is of type-s Fis a
direct sum of N-groups of type-O. Consequently, X is a direct sum of simple
groups. By fact 2.1 this is possible only if H is cyclic of prime order.

Hence I', - [, is of type-2 and we have Jg(N) = J3L20)..o.

We now give an example of a class of d.g. near-rings in which
To(N) £ Jg(N) A Jo(N). This is a generalisation of an example of a non-
triviel s-primitive d.g. near-ring given in (11]. Another generalisation of
the example in (11] was given by J. Hall [9]. Hall constructed an s=-primi-
tive d.g. near-ring N with An, n > 6 as a faithful N-group of type-s and in

which Ap-4 is the only proper, non-zero N-subgroup of An.

Example 2.3 Consider the alternating group Agas+q, @ > 1, n 25 0n the set
of symbols X = {1,2,...,an,an+1}. Ne use the additive notation for the group

operation in Ayn+4e Define the subsets X{ of X by
X; = {n(i-1)+1,n(i-1)+2,...,1n)

for i = 1,2,..¢,as We note that an+1)(XL for any i. Let Sp; (Ani) denote

the symmetric (respectively, ternating) group on X;. For each i and xeSni
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define a map ¢;:Axn+qs > Axnsy DY $::a > x+a-x for all a € Axn+1. Let &
denote the set of all these mappings. Clearly, % is a set of autcmorphisms
of Axn+1 Which induce automorphisms on Ap,; for each i = 1,...,02 We note
that ¢, as defined above is the identity map on AnJ- ol il }l j« Let N be the
d.Z. near-ring generated by &. We show that N is C-primitive #with Axn4

a faithful N-group of type-0 and J,(N) £ Jg(N). For this purpose we charac-
terise the N-subgroups of Axn+qe

a) Let H £ fO} be an N-subgroup of Axn+4. Then H contains An.L for some

A = Wgrereinsy Xs 3

Proof Let heH, h £ 0 and write h = hy+hyo+ ..o +hm as a sum of disjoint
cycles. Write hm = (ay...2,) and suppose that a, € X;. We will show that
H24Ap;, Put h’/ =n +;..+hm~.1 so that h = h’ +hm. Let b £ a. be any
fixed element of X;. Then x(2,b) +h+(a,b) -h ¢H. We have the following
three cases to consider:

Case 1 b deoes not appear in any of the cycles hq,...,Ame In this case,

from %k above,
(arbd) +(aye0eay) +(aed) +h’ =h’ + (2, 20-ye.02y) €H.
Thus
oy de el
If ceX{, ¢c £ bor ar or a.-4, then

(apbe) +(arar-qb) +(arch) = (arcar-y) cH.

Hence H contains the alternating group on X;U {a,.-&.

Case 2 b appears in some hj, Jj A me
Without loss of generality we can suppose that b appears in hm-1e
fArite

1,

h = h" +hm-1 "‘hm,
#where h" = hy+.e.+hm-z and hm-y = (b;...btb). From % we have

(a.,.b) +(a1...a,.) +(b,...btb) #{a-b8) + 1" =R +(a,....a,) #1% bt...b1)

= (a,b) + (btar=1) € H.



If c €eX{ and ¢ is not equal to any one of ap,b,bt,ar-, (this is possible be-

cause n 2 5)
(arbe) + (apb) + (btap—yq) + (apch) + (arb) + (brap-4) € H;

that is (apcb) ¢ H, and so as in case 1 H2Ap,.

Case 3 b appears in hg.

Suppose b = a; for some i = 1,...,r=-1. Then by *
(ap82i) +{aqeesaiescan) +(ap2i) +h'=-h'+ (2 0ectieesay) € H,

If a; and a, are adjacent, then an easy calculation shows that we have the
situation as in case 1. Hence we may assume that i A1 orr-1. In this

case (a,a;) + (aj-yap=-4) € H and we have the result as in case 2.

b) Let H be an N-subgroup of Axn+y and suppose H contains an element h in-
volving the symbol an+ 1. Then H contains the alternating group on the set

of symtols XLU{an-M} for some il = 1,sb0,a

Proof Write h = hy+ ...+hmas a sum of disjoint cycles. Let
hm = (a,...a,. an+1) and suppose that a, €X{ for some i. Again let o £ a, be

a fixed element of X;. Then
-1'-(&1‘0) +h+(a;b)-heH

and we have the following three cases:

Case 1 b does not appear in any of the cycles hy,«.s,hm . Using ¥ above we
see that (a,an+1 b) e H., As in case 1 of a) we see that H contains the al-

ternating group on the symbols X;U {an + 1} "

Case 2 Db appears in hy, k £ m.

Without loss of generality we may suppose that k = m=-1. Write
h=h"+hmq+hm where h" = h, + ... +hm-p and hm-y =(by...btb). From$
we have (a,b) + (an+1bt) € H. Suppose bt € X; for some j. We do not assume

that X; is different from X;. Choose 4 € X such that d £ by, d £ a,, d £ b.

Such a 4 exists tecause n 2 5, We have



(btd) + (a40) + (an+1 bg) + (bgd) + (2,48) + (an+1 by) € He

That is, (btan+1d) e ¥, and it follows that H contairs the alternating group

on XJU(an+1} .

Case 3 b appears in hg.

Suppose b = a; for some i = 2,...,r. Using ¥ we see that
(a,ai) + (an+1 ai-q) € H.

If i = 2, then we proceed as in case 1 of b). Otherwise we proceed as in
case 2 of b).

From a) it is clear that the Ani are N-groups of type-2. The alter-
nating group K{ on the set of symbols XLl)(an-+1} is a cyclic N-group with
generator (ab an+l) where a,b € X;» In fact, K; is an N-group of type-s with
Ap, as its only proper non-zero N-suobgroup. Consequently, Jo(N) £ Jg(N).
Finally, we find a cyclic generator for Axn+ie Let H be an N-subgroup of

k

Axn+4 such that H contains the alternating group on the set .L) Xie IfH
t=1

contains a three cycle (a,b,c) with a2,b ¢ 'L) X;: and ¢ €Xk+1, then H con-
k+1 —

tains the alternating group on U X;.« It is now easy to see that
=1

Nw = Axn+1 Where

w=(12n+1) +(n+2n+32n+1) + voe + ((2-2) 042 (a=2)re3 nla=1)+1)+

+(n(a=1)+2 nla=1)+3 an+l).

Now Axn+4, @ > 1 is not of type-s since the N-subgroup generated by
(1 2)-&(n+1 n+2) contains both An1 and An2 as N-=-kernels so that it is not of
type-0 and not expressible as a direct sum of N-groups of type-O. Thus for
the neer-rinz N we have J () £ Jg(M) £ (M) £ Jo(N) = (O},

We remark that in his construction Hall [S] considered only the case
a =1 with nz¢,

In conclusion, and for the sake of completeness, we discuss some of the
typical radical-like properties which hold for JS(N). First of all we need

the following defirition from universal algebra (23]:
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Definition A map f which assigns to each near-ring N an ideal £(N) of N is
called a radical map if for every pair of near-rings N,N’ we have

(1) e(W/e(W) = {o};

(ii) if h eHom(N,N’), then n(£(N)) € £(h(N)).

r

Definition Let f be a radical map. The rear-ring N is called

(a) f-semisimole if, and onmly if, £(N) = {0};

(b) f-radical if, and only if, £(X¥) = N.
The proofs of the following are identical with those given in Pilz (23] for

J,(N), v =0,1,2.

Provosition 2.14 N - Jg(N) is a radical map.

Corollary If A is an ideal of N, then Jg(N/A) 2 (J4(N) +4)/A.

Provosition 2,15 If the ideal A is a direct summand of the near-ring N, then

Js(N) =2 Jg(M) N A.

Proposition 2.16 If N = @I A; of ideals A, then
L s

Is(M) 2 D JTs(A4).
iel

Now, there is a theorem [23] which states that Jy(A) < Ju(N)MNA if A is
an ideal of N and N satisfies the DCCL for v = 1,2. The proof of this
theorem utilises the fact that every iieal'of a J,(N)-semisimple rear-ring
is J,(N)-semisimple, and this in turn follows from the fact that 1-primitive
ideals are maximal. It is easy to see that s-primitive ideals are not, in
general, maximal ideals and one suspects that things will now start to go
wrong. However, we are unable to construct an example of a near-ring in

which J3(A) = Jg(N)N A does not hold.
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CHAPTER 3

An antiradical for near-rings

The main aim in this chapter is to construct an antiradical for near-
rings which we call the socle-ideal. In general, the crux (27] of a near-
ring contains the socle-ideal, but it is not an antiradical as it lacks a
socle-like structure. We nevertheless discuss it here because of its con-
nections with the socle-ideal. For example, we show that if N is a near-

ring with DCCN, then the above two ideals coincide.

1. The Sccle-ideal

Definition Let ¢ be the collection of all ideals A of the near-ring N which

are of the form A = @ Ne-L,‘ e; eNe; for each i eI such that
L€

(i) each Ne; is an N-group of type-0 and a left ideal of N;

(ii) e? = e; for all i €I and e; = 0 if i > j for some ordering on I.

if A = % Ne; and the Nei and ej, i €I are as above, then we say that
i€

% Ne; is an ¥-decomposition of A.

Lemma 3.1 Let A,Be¢ ¥ and suppose that A = @1’. Ne; and B = @I Nf; are %-
L& L€
decompositions for A and B respectively. If A< B, then there exists an

index set T such that I= T and B = t?r Net is an ¥-decomposition for B.

Proof By lemma 1.4 A is a direct summand of B, so we may write

B = A@<§?/ ij> &7, Nel@\@ NE 5

iel jed’

o

for some J' = J. Consequently, A.Nf; = {0} and so ey.fp = O for all kel
and red’% Put T =IUJ’ and order T as follows. The orderings on I and J’
are as in the above ¥-decompositions for A and B and i > j for 2all i¢I and
jed’s It is now clear that B = er Ney is an F-decomposition for B with

= ft for all t ed’,

Theorenm 3.2 (a) If A,Be¥, then A+B 5

(b) If ¥ is not empty, then there exists a unique maximal

element in 7.
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1]

@D Nf; are two ‘$-decompositions of
je

{0} or Nf; = A since the Nf; are of

Proof (a) Suppose A = @& Nei and B
- e

A and B respectively. We have ANNf;

type-0. By dropping those Nf ;< A, if any, we may write

a+3 =D Nei+\/@ ij>= A+l
iel \jed!

where J/ is some subset of J and L = Q%l Nf; is a left ideal. It is
L€

straightforward tc show that ANL = {0} so that

£
4+3 = Aol = D Ne; 0/ D ij\,
iel Njed! 7/
a direct sum. Now eLf'J- cAL = {O} for all i €I and jeJ’ and so by extending

the orderings of I and J/ to IUJ’ (with i > j

v

for i €I, jeJ’) we have
A+Be*h

(0) Partially order °f by A < B if and only if A < B. Consider a
chain A; ¢ A2 € «os < Ag < vee in %, We first prove that the ideal A = LSJAS
is an element of ¥. By lemma 3.1 we have a chain of ordered sets
I,CI,C oo T g Tgeylavoo-with-Ag-= @ Ne;j an “§-decomposition for Ag.
Furthermore, for each s and r, s > r, the ;:dsering in Ig induces that in I,
in the sense that for j eIA\Ig, keIg, k > j. These orderings induce an
ordering in I = LSJ I« Thus A = % Neyp is an %-decomposition for A and hence
A is an upper bound for the chain. By Zorn's lemma, *f has a maximal element
M, say. If Be ™, then by (a) B+M €¥ so that B < M because M is a maximal

element of ¥, Consequently, M is the unique maximal element of ¥.

Definition The unique maximal element of theorem 3.2 is called the gocle-
ideal of the near-ring N and we denote it by Soi(N). If ¢ is empty, then we
define Soi(N) to be the zero ideal.

We note that if Soi(N) = '?I Ne; is an F-decomposition of Soi(N), then

(O:e;) is an O-modular left ideal for each i €I. Hence Q(N) & q (0:ey)e
. L€

Lemma 3.3 Q(N)N Soi(N) = {0}. In particular, if N = Sci(N), then
¢(y) = {o}.



e

Proof If xeQ(N)NSoi(N) < ,ﬂI (0:e1) NG Ve, then
L€ (5

X =nj €3 +eee+Di €., iel,

where we assume that i, < i, < +es < ipe e have O = xej =D ej, SO that

X = DNi, €+ eee+Nj_ €5 o By induction we obtain x = 0.

The above lemma implies that Soi(N)+Q(N) = Soi(N)+Jo(N) = {0} so that

Soi(N) is an antiradical in the sense of Chapter 1.

Theorem 3.. If N has DCCL, then Soi(N) is a direct summand of N.

Prcof The DCCL implies that Soi(N) has an “$-decomposition which is a finite
K

direct sum Soi(N) = €D Ne;. Since (0:e;) is a maximal left ideal, Nej is
t=1

of type-O and e% = e;, We have N = (O:e;)@Ne; for i = 1,...,k. Suppose we

have shown that

1-1 =1
N=@Nei® (O:ei),
i=1 i=1

1=1
for k > 1 > 2. Now Ne,& q (O:ey) as e1ey = 0 for i = 1,.0.,%=1. Thus
fi==
2 1=1
Ny @ () (0o ﬂ1 (0:ey).
1= =

1=1
If x¢ _ﬂ1 (O:e;), then X = x, +xp Where x, = ney eNe; and xp € (0:eq).
L=
Hence for each i = 1,...,1-1 we have O = xXe; = Xy€{ +Xp€{ = (nel)e-”-xze;, —

' 1-1
= x,ei. Thus x, ¢ 101 (0O:e;) and so x, € (L] (0O:e;). Consequently,

i=1
1 1=1
Ne, @ [) (O:eg) = [ (0:ey)
i:1 i=1

and it follows that

N

"
=
(1)
'-l
@D
=2
(0]
r)
D
—~
O
(1]
'..J
Nt
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k
By induction we have shown that N = Sci(N) @L, where L = ﬂ1 (0:ey).
b=
#e note that Soi(N).L = {O}. Also, thus far we needed to exercise ex-
treme care not to violate the notion of one-sided orthogonality for the cyc-

lic gererators of the type-0 summands in Soi(N) o For certain classes of

near-rinzgs this caution is not necessary.

Theorem 3.5 If S0i(N) has an ‘¥-decomposition which is a finite direct sum
K

k
Soi(N) = @ Ne;, then Soi(N) = @1 Nf;, where Nf;

i=

Ne, f?,_ = f; and

Pif; =0if i £ jfor i,§ = 1,000 ke

Proof We first show that Soi(N) = Soi(N)e where e

€q+ees +€, . By left
distribution over the N-kernels Ne; we see that for nelN,

ney = ney(e, + «oo +€y) because eye; = O for 1 € i < k and ek = ex. Conse-
quently Nejp & Soi(N)e. Suppose we have shown that Ne ;S Sci(N)e for all i

such that k 2 i > 1, then again by left distribution over N-kernels we have

for any n eN
neq = neq(eq+ ce.+ey) —nELEL ~NEY LK) = soe ~NELE 4.

Now neqj(eq + +ee +ey) € Soi(N)e and nejej ¢ Soi(N)e for j = 1+1,...,k by as=

k
sumption. Thus Ne;< Soi(N)e and by induction we obtain Soi(N) = B Ne;

t=1

C Soi(N)e and so Soi(N) = Soi(N)e. WNext we show that the mapping

4t Soi(N) -» Soi(N)e given by ¢: n -+ ne for all n €Soi(N) is an N-automorphism.
By the above it is certainly an N-epimorphism. Suppose #(n) = O where

N =N,€4+eee+npey; then using left and right distributions over l-kernels

we have

0 = ¢(n) (n1e1+...+nkek)(e1+...+ek)

ngede;+eeereg)rnzesleg +oeetep)s ene b OBl 8y + ...+ek)

(njey+nye e+ eeat+nye ep) +(noe+no€nesteee+meser)+. s

cee +(nkek)

because eje; = 0 if i > j. Now nye, is the only term on the right hand side

which is in Ne, and because #{n) = O it follows that n,e, = O. Hence also

nqey ¢ =0 for jJ = 2,.es,ks Thus we have
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w(n) = (nzezi'ooo*'n2325k>+ ooo+(nkek) = Oo

- & e

By induction we deduce that n = O, DNow e sSoi(K) = SCl\d)& and so there

exists an f €Soi(ll) such that 4(f) = e. For any x €Soi(N) we have

Hxf) = xg(£) = xe = y(x)

and hence xf = x for all x €Soi(N). Put £ = £, +f5+ .. + ), where £; € le;g

for i = 1,sss,Kk; then

D
=
®
'—J
|
W
(o]
"
D
=
~
i
:‘%
1}
i
=
L)
.
.

[ — -

It is now easy to see that £{ = £ and fi:} =0 if i £ j.
k

Corollary If N satisfies the DCCL, then Soi(N) = ¢

Nf ;, where {fL} is an
L

1

orthogonal set of idempotents.

We now give a characterisation of Soi(N) for near-rings which satisfy
he DCCN. For this purpose we need a generalisation of lemma 1.3 due to
S.D. Scott [28].
Lemma 3.5 Let N te a near-ring satisfying the DCCN and L a left ideal

such that L & Q(M)« Then L-(LNQ(N)) is a direct sum
L-(LNQ(N) =L, =(LNQ(N))@+e. ®Lx - (LNGN)),

where the L; are left ideals such that L;-LAQ(N) is of type-0, i = 1,...,k.
Furthermore, there exists a set {ei-+Lf\Q(N)} of cyclic generators of the
L; -(LNQ(N)) such that eiej eLNGQ(N) if 1 £ j a.ncie%-e-L e LNG(N) for
iy = 1,500,k
Using the above lemma we immediately have
Theorem 3.7 Let N be a near-ring with DCCN and A an ideal of N. Then
ANQ(N) = {0} if, and only if, AS Soi(N).
Corollary Soi(N) is the unique maximel ideal with zero intersection with

the quasi-radical Q(X).
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As we have seen, Soi(N).Q(N) = {0} because Soi(N) N ¢(N) = {0} for eny
near-ring N. However, example 2.1 shows that S0i(N) is not maximal with respect
to annihilating Q(N) even in the finite case. The following is a further

connection between the socle-ideal and the quasi-radical:

Theorem 3.8 Let N be a near-ring with DCCL and A an ideal of N. Then

Soi(N/A) = N/A if, and only if, Q(N) < A.

Proof If Soi(N%): N/A, then by theorem 3.5 N/A has an ¥-decomposition of

Nei, where &,,...,6x is an orthogonal set of idem-

1]
-

PDr

the form N/A =
L

potents. It is clear that €, + ... +8 is a right identity of N/A. Hence

by lemma 2.6 Q(N/A) = {0} so that A 2Q(N). Conversely, if A 2 Q(N), then

by corollary 2 of theorem 2.8, A is an intersection of s-modular left ideals

so that Q(N/A) = {0}. By lemma 1.3

N/A = é L,
1=
where L is an N/A-group of type-O0, i = 1,...,k. Since A 2 Q(N) and Q(N) is
a modular left ideal it follows that N/A has a right identity. The decom-
position of this right identity as a sum &, + oo +8, &{ € fi, i = Ageempk
yields an orthogonal set of idempotents generating the ﬁl. By the maximality
of the Socle-ideal we have Soi(N/A) = N/A.

From the fact that J5(N) is the smallest ideal of N which contains Q(N)

we immediately have

Corollary JS(N) is the unique smallest ideal amongst all ideals A of N such

that Soi(N/A) = N/A.

Example 3.1 Consider the ring Z, of integers modulo n. Write
n=p

x x
p22 see prr

as a product of powers of distinct primes. If mln, then the isomorphic copy

of the cyclic group of order m contained in Z, will be denoted by Zm. Thus
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xXp®

Z --Z s 00 Z
n = ®eee®%

Now ZD.®L'1 is nilpotent and the unique maximal ideal of Z, contained in the
FL

ideal ZDL“L’ i =1,eee,r. Hence if a{ > 1 for each i = 1,..s,r, then

Soi(N) = {0}. Otherwise, if a, = @5 = ess = @g = 1 for s < r and ay > 1 for

i=8+1,e¢0s,r, then

SOl(Zn) = Zp1 Doeee @Zp’ »

We note that if

Zn = Zp1u1@OOQ®Zp"zr’

ay > 1 for 1 = 1, st hen

R

zn/zm%.1 X Zy, ezpz%e...@zo L.

=y

so that

oi( -1\ .
S \zn/zp1x1 )7 (0}

Indeed, if we factor out the nilpotent component in any direct sum of the

Zpo“i we obtain a ring with non-zero §ocle-ideal.
L

Example 3.2 Consider the near-ring N on the four-group V4 = (O,a,b,c} of

example 2.1. As we pointed out, N is a direct sum of left ideals
N = fO,a} Q(O,c}, with a? = a, 6% = g«

From the multiplication table for N one sees that ac £0 and ca £0 and
clearly an orthogonal set of idempotents, the elements of which are cyclic
generators of the summands in N, does not exist. Furthermore, neither {O,a}
nor (O,c} is a two-sided ideal and since b2 = O we are forced to conclude

that Soi(N) = {0}. As we have seen J,(N) = Q(N) = {O,b}, v = 0,1,2,s.

Example 3.3 [5] Consider the near-ring N =(Zg,+,%) where + is addition

modulo 6 and X is given in the following table:
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* 1 Q) 112{3F) &} 5
0|0 O |lajlal Of O
110|400 4]0
2|0|2|0j0]2}|0O0
310 0] 0 0|0} O
L {O| 4| OO 4| O
8 |9 219 10| 2 0

First of all, 4 = {O,Z,A} is an ideal of N. In order to verify this, one
needs to consider all elements of the form n’(n+x) -n’x with n,n’e¢ N, xe€A.
Since the difference of any two products in a row is in A this follows tri-
vially. Thet it is a right ideel is equally obvious. Moreover, 4 is an
idempotent gererator of the irreducible N-group A and hence A& Soi(N). We
now verify that {O,}} is an ideal of N. It certainly is a two-sided N-sub-
group of N*. Consider all elements of the form n’(n+x) -n’n, where n’,neN,
x e{O,}}. All these are of the form O, * n’L3n’1,+n’535n’2,%n’3 which
are all zero. In fact [O,}} = J,(N), v =0,1,2,s because 3% = O. Thus

A = S0i(N) and N decomposes as N = Soi(N) @J,(N), v = 0,1,2,s.

Remarks The near-ring in example 3.2 is in fact a ring in which the left

socle (SocL(N)) the sum of all minimal left ideals of N = N and the right

socle (SocR(N)) the sum of all minimal right ideals of N = {O}. Baer's

1]

antiradical [4] is the right socle, SocR(N) of the ring N and he proves that
Socg(l) ., (N)

Jo(N) .Socg(N)

"

{O} for any N with DCCL. It is not in general true that

[O} even if N is finite as example 3.2 shows. Similarly,

J 2(N) .Soc,(N) {O} though Socy,(N).J, (N) £ {O} in general even in the finite
case, Our Socle-ideal is more special in that we insist on an idempotent
set of generators, which are orthogonal under some ordering. Certainly we
have that J,(N).Soi(N) = (o}, because Soill) & Socr(N). Cn the other hand,
if N is a ring, then Soi(N).J,(N) = Soi(N).Q(N) = {0}. Of course, if
Socg(N) = Socp(N) for the ring N, then either would annihilate Jo(N) from

the left and from the right. Even in this case, however, they need not co-

incide with Soi(N) as the following example shows.
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Example 3.4 Consider the Clay "small" near-ring [5], N = (V4,+,%) where V,
is the four-group {O,a,b,c} written additively and the multiplication % is

given in the following table.

x 0 a b c
0 0 0 0 Q
a 0] a Q a
o) 0 0 o] 0
c 0 a 0 a

2

N is a commutative ring and we see éasily that

SocR(N) = SocL(N) = N whereas Soi(N) = (O,a} £ N.

2. The crux of a near-ring

The crux of a near-ring N was first defired by S.D. Scott [27]. The
main aim in this section is to establish relationships between the crux and

the Socle-ideal. We begin by giving the definitions due to Scott.

Definition The nil-radical of a near-ring N is the sum of all nil ideals
of N. We denote the nil-radical of N by nil(N).

We note that nil(N) is itself a nil ideal of N.

Definition An ideal A of N is said to be rigid if whenever D is an ideal of

N contained in A, then A/DN nil(N/D) = {0}.
Definition The sum of all rigid ideals of N is called the crux of N. We
denote the crux of N by Crux(N).

In [27] Scott proved that Crux(N) is itself a rigid ideal. Because of
its rather strong nil "avoidance" property, Crux(N) annihilates the nil
radical of N. We will show that Soi(N) is a rigid ideal. We first orove

the following:

Lemma 3.9 Let L = % Ne; be a left ideal of N, where for each i, Nej is a
L

left ideal of N and of type-O and e is an N-generator of Ne;. Suppose
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further that for all i,j €I, e% = et and eje;j = 0 if 1 > j for some ordering
onI. If B/ [0} is an ideal of N contained in L, then B €%, Moreover,

B = €D Ne; for some J< I.
ted

Proof By lemma 1.4 B is a direct summand of L and we may write
, ) BQ( N’ej)=@ﬂei_=1.,
jed! iel
for some J'< I. Let keJ = INJ*, the complement of J’ in I; then

ey = 'n-;n;,1 eJ'+...+nJ,ej‘,

beB, j.eJ’ forr = 1,...,8. Without loss of generality we may assume

j' < jz < see < j.. If k < j" then

€x = exeyx bek"‘njiejfk*"-’nj‘ej‘ = bey,

since ej.ek =0 for r = 1,..,,s. Hence ey = bex ¢B in this case. If k > jy,
then v

0= exej, = bej1+nj1eji+...+nj,ej,ej'

= bej'q-njiej‘.

Consequently, -bej’ = 531331 €BN Nej, = {0} and so

e, = b+njzejz+... +nj:ejs.

Now say Jy < Ja < +ey,< k& < Je+1 € ese <« joo By induction and the above

process we see that ey = b+njt”ejt+1+...+nj’ejs. Hence
= e2 = be, €B
ek = ek-— ekf .

Finally say Jj; < «es < jg < ke By the above process we deduce that
ey = beB. Thus e e B for all k€J and hence B = lég Nei;. It follows

easily that B = @I Ne{ and so Bef.
3

Theoren 3.10 For any near-ring N, Soi(N) & Crux(N).
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Froof Let Soi(N) = S?} Ne; be an “f-decomposition of Soi(N). If A is an
ideal contaired in Soi(N), consider the ideal (Soi(N)/A)N nil(N/A) = B/A,
say, where B is an ideal of N such that Soi(N) 2 B 2A. If A = B, then we
are through, so suppose B £ A. Then B £ {0} and hence by lemma 3.9, B has
an expression of the form B = S@% Ne; for some index set J& I. For any
j €J we have ej+4A enil(N/A), so there exists a positive integer m, depen-
ding on j, such that (eJ-+A)m = er§+A = A. Thus ey = e? €A and so Nej< A
for all jeJ. Hence A = B, which is a contradiction. Thus A = B and the
result is proved.

In (28] Scott proved that if N has DCCN, then Crux(N)N Q(¥) = {0}. In
his proof, which involves Zorn's lemma, he uses the fact that for such near-
rings‘N

QN/T) = (Q(N)+T)/T

for any ideal T,

Hence by theorem 3.7 we have

Theorem 3.11 If N is a near-ring with DCCN, then Soi(N) = Crux(N) .

Whether the equality Soi(N) = Crux(N) holds in the more general DCCL

case is not known. One suspects not, for Soi(N) is strongly rigzid in the

following sense:

Definition An ideal A of N is said to be stronzly rigid if whenever B is

an ideal of N contained in A, then
A/BN 5 (/B) = {0].

Since nil(N) < Jo(N) for any near-ring N it follows that every strongly
rigid ideal is rigid. The proof of the fact that S0i(N) is strongly rigid
is similar to the proof of theorem 3.10 and will be omitted. In the proof
one uses the fact that an idempotent cannot be left quasi regular. In the
following example we show that Crux(N) and Soi(N) are in gereral not the

sSame.
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Bxamole 3.5 The Sasiada simple, radical ring 16},L7]

Ne begin by outlining the construction of this well-known ring. Let x and
y be two non-commutating indeterminates and let T be the set of all formal
power series in x and y with coefficients in Z,. Let SC T be the set of
all elements in T with zero constant term. S is an ideal of T and each ele-
ment of S is a non-unit of T. Furthermore, every element of T not in S is

a unit, and it follows that S is the Jacobscn radical of T. Now consider S
itself as a ring. It can be proved that x is not contained in the ideal
generated by x+yx% [6]. Using Zorn's lemma select an ideal M of S maximal
with respect to exclusion of x and inclusion of x+yx?y. Then the inter-
section M of all non-zero ideals of S/M is not zero since each contains
x+M. DNow S is a radical ring and hence M is radical. Since x+MeM it
follows that yx+M.xy+M = yx3y + M eﬁ, so that x+M e M? because

x+yx%y = x-yx?y €M, Thus M2 = M.

Ir D £ fO} is an ideal of ﬁ, then the ideal of S/M generated by Dis M
itself, as M is the minimal ideal of S/M. I% follows that M3< D. Hence
M3 =f<Dci. Consequently, M is a simple, radical ring. It follows that
M dces not have any ﬁ-groups of type-0, so that Soi(Y¥) = (O}o Now the nil

radical of M is zero for x = yx2y 40 and one can show by induction that

x = (yx)"xy" for all n 2> 1. If the nil radical of ¥ equals ﬁ, then in par-

=1
ticular yxis nilpotent modulo M and so ﬁ =0 for some x. In this case we
would have x = O which is a contradiction. It now follows that M is rigid

and hence Crux(M) = ¥ £ Soi(¥).

As we mentioned bvefore, Scott (27] proved that Crux(N/Crux) = {O} for
any near-ring with DCCI. We will prove a similar result for the Socle-ideal

in the case of a near-ring with DCCL,

Theorem 3.12 Let N be a near-ring satisfying the DCCL and let A be any

ideal contained in Sci(N). Write N = Soi(N) ®@L, Soi(N) = A@L’ and consider

the left ideal M = L@L’ as a near-ring. Then Soi(M) = L’.

Proof It is easy to show that every left ideal of M is also a left ideal of
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N. Furthermore, L’ is a two-sided ideal of M. This follows from the fact
that L'L = {0}, It is now clear that Soi(M) = L’. Consider the left ideal
Soi(¥) @A of N. We show that Soi(M) @A is a two-sided ideal of N. If

neSoi(M) @A and x eN, then n = m+a, meSoi(M), a€d and x = n’ +a) o’ €M,

a’e A. We have
nx = (m+a)(m’+a’) = on’ +oa’ +an’ +aa’ = mm’ +ma’ +aa’,

by left distribution over a direct sum of N-kernels and the fact that

am’ = O, Thus we see that nx €Soi(M) ®A, so that it is an ideal of N. Now
Soi(M) has an ¥-decomposition with respect to M. By the above, and the fact
that A annihilates M, it follows that Soi(M) @ A has an ‘¥-decomposition with
respect to N, But Soi(N) = L’@A < Soi(M) ®A so that Soi(N) = Soi(M) @ A by

the maximality of Soi(N). Consequently, Soi(M) = L’.

Ve note that if y: N -» N’ is an isomorphism from the near-ring N onto
the near-ring N/, then #(Soi(X)) = Sci(N’). Thus we have
Corollary 1 Soi(N/A) = Soi(N)/A for any ideal A contained in Soi(N).
Proof Any x €N has a unique expression of the form x = a+m, a €A, 1 €M,
Hence there is an isomorphism ¢: N/A > M given by y(x+A) = m. It is an easy
matter to show that ¢{Soi(N)/A) = Soi(M) = L’. By the above remark we ob-

tain Soi(N/A) = Soi(N)/A.

Corollary 2 Soi(N/Soi(N)) = {0}.
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CHAPTER L

A representation thneory for antiradicals

Throughout this chapter our near-ring N is assumed to have a multipli-
cative identity and to satisfy the DCCL. OQur aim is to construct anti-
radicals by means of faithful N-groups. The representaticn theory developed
here is based on the Laxton-Machin one [18], in which the main feature is
the splitting up of irreducible N-groups into two disjoint classes. Our
splitting up of the irreducible N-groups is quite different from the one in
[18], but will yield the same antiradical if N satisfies both the ACCN and
DCCN. We recall that the N-group A is said to be a subfactor of the N-grour
Q, written A « Q; if A is N-isomorphic to a factor group of an N-subgroup of
e We note that if A « Q and Q « 7, then A « s+ As before, all our direct

sums are direct sums of N-kernels.

1« The antiradicals C(Q)

Definition Let O be a faithful N-group and let € be the collection of all

N-groups A such that A « Q. Define # as follows:
K = (A €G: A does not have an N-group of type-O as a direct summand}.

Clearly,{z is not empty as (O} e #. Observe that every non-cyclic,
irreducible N-group which is a subfactor of Q is Ini#s Furthermore, K does

not contain any N-group of type-0.

Lemma 4.1 Any cyclic N-group A such that A « Q, A£ K can be written in the

m
form A = @1 A{@®A’, where each A; is of type-0 and A’e .
[—

The proof of the above lemma, which uses the fact that A satisfies the
descending chain condition on N-kernels, is straightforward and will be

omitted.

Definition Let U be the collection of all cyclic N-subgroups of the faith-

ful N-group Q. Further, let & be given by



<l
@ = {Ae€: A irreducible and A « [eU}.
Define the subsets G_ and B_ of & as follows:

Q Q

{AeW: A is of type-O and A is not a subfactor of any a’e #Nuj;

G
Q

B = {Ae@: afcq) =W\,

It is clear that if Ae® and A is not cyclic, then A €By. That is, BQ con=-
sists of non-cyclic irreducible N-groups and type-O N-groups A such that

A «kNU.

Definition The subsets 4§, and £ are given by
Zeiinition 0 Q g
QQ ={A€u= A= Q;I Ay, Where A; EG—Q for each ieI};
L

Pq = {Aeu: AeXor A= @_ Ai@®A’, where Ay €3, for each jed and A’ef}.

L€y

Since N has DCCL and all the N-groups in Gq and ﬁQ are cyclic, all the
index sets I and J are finite. When the faithful N-group Q does not need
specific mentioning, then we will denote the above classes by G, B, & and B,

respectively. TFrom lemma 4.1 we have

Froverty I Any cyclic N-subgroup of Q is either in ﬁQ or a direct sum of an
element from }Q and an elexent from QQ. The summands are, of course, N-

kernels of the cyclic N-subgroup.
Property I is assumption B of [18].

Lemma L.2 If A is an N=group of type-0 and A & Q% Ay, then A « A; for some
i€

iel.

Proof If we write, as we may, A = N§, then § is uniquely expressible in the
form & = 8i, + «es + 83, Where 8 €44;, 13eXs Using lemma 1.2 we see that

(0:8)

g

.01 (0: Sij), an intersection of left ideals. But (0:8) is a
J=
maximal left ideal because A is of type-O and so (0:5) = (O: Sij) 3 Top

someé j = 1,+.0,r« The result follows.
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Let A ¢ B and suppose A’ is a cyclic N-subgroup of A. We will show
that A’e B. If A’e K, then A’c¢ B by definition, so suppose A’ = @ AL @A",
i€
where each A; is of type-0O and A" €&, We must show that each A; is an ele-

ment of B. Now A is an element $ so it is expressible in the form

@ Cer’,

jeJ *

A

wWhere L"j €B and ["e¢& Since A, < A lemma 4.2 tells us that A; « [' or

Al <« ["j for some j. In either case A; €¢B. Thus we have established
Proverty II Every cyclic N-subgroup of an element in B is again in B.
Property II is assumption A in [18].

Definition Let  be a faithful N-group and £ and q classes of cyclic N=-
subgroups of Q as defined previously. Now define
c(q) = \ﬂ (0:Naw), i) = (] (0:4).

Nwep weN
Nweg

Thus C(Q) is an ideal of N whilst the left ideal L(Q) is an intersection

of maximal left ideals. Hence Q(N)< L(Q).

Lemma 4.3 C(A)NL(a) = {o].
The proof uses the property I and is identical with the one given in

(18], lemma 3.

Lemma L.k N-L(Q) is a direct sum of elements froum G.
The proof follows from the definition of L(Q). From lemma 4.3 and the

fact that Q(N) £ L(n) we immediately have

Lemma L.5 (i) C(Q)NQ(N) = {O};
(ii) c(a).q(n) = {o)

Lemma L.6 C(Q) is a direct sum of elements from G.

Proof (C(n)eL(Q))-L(Q) is an N-kernel of N-L(Q) and hence, by lemma 1.L,

c(n) T (c(n)el(Q))-L(Q) is a direct sum of elements from G.
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Lemmas 4.5 and 4.6 imply that C(Q) is antiradical in the sense of Chapter 1.

e now fix cur attention on the faithful N-group N*.
Theorem L.7 C(N) is contained in Soi(N) and is a direct summand of N,

Proof If N e#, then N ¢fy so that C(N) = {0} in this case. Thus we may

assume that N 4 A, By lemma 4.1 N can be written in the form

k

N = @ A1 @A,
1=1

where the left ideals Ay are of type-O for each i and A e#. The identity 1
of N has a unique expression of the form 1 = £+ ¢ee +f+ T, where £ €44,
i=1,..0,k and £ €A, It is clear that Nfj = As, i = 1,.00,k, and {3} is
an orthogonal set of idempotents. Thus the left ideal L:1 it satisfies the
conditions of lemma 3.9 and we need only show that c(N) < éi% Ai. The maxi-
mality of Soi(N) will then imply that C(N) & Soi(N). Any n eC(N) can be
written as n = n(fy+ 0o +fp +f) = nf y + eeu +nf +0f = nfg + ... + 0fy because

k
A €Py (and hence C(N).a = {0}). Thus C(N) < €@ A and we have our result.
- L=1

Corollary C(N) is a direct sum of minimal left ideals each of which is an
element of Gy.

Whether C(Q) is contained in Soi(N) for any faithful Q in the DCCL case
is not known. C(Q) may well depend on Q and it is only in the case of near-
rings which satisfy the DCCN that we are able to show that the choice of Q
is immaterial as long as it is faithful. This generalises the Laxton-Machin
result which was proved for d.z. near-rings with both DCCN and ACCN. We
rote further that theorem 4.7 need not be true if N does not have an iden-

tity. The following example demonstrates this.

Examole L.1 Consider the near-ring N = (V,+,%) of example 2.1. We have seen

that N = {O,a}-+{0,c) = {O,a}-r{b,b}. de have

By = ¢, Gy = ({O,a},{o,b},{O,C}} .
8
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Eence C(N) = N whereas Soi(N) = {O}. Note that here, when no identity is

present, C(N) contains a nilpotent left ideal.

Theorem L.8 Each elezent in Gy has an isomorphic copy as a direct summand

of Soi(N).

Proof By theorem 3.4, N = Sci(N)@L, L a left ideal and since 1 €N, L is

cyclic. Hence by lemma L.1 we can write
N = SOi()I) @L.' @ e s e QLJ QLd+1 D oses GLS QLI-

We may assume, without loss of gererality, that Lj s,bl, Por J = 1 0eeyd,
Ly €%y for k = d+1,...,s and L’¢ #. We are going to show that d = s i.e.
there are no type-O terms from Gy in Ly, ®... ®Lg (of course, this latter
may be empty). Since L and so also L’ is an intersection of maximal left
ideals, Q(N)< L’ and hence N-¢(N) < Soi(N)@L,®...@Ls@Ll’~ Q(N). By
lemma 1.3 any N-group of type-O, in particular an element in Gy, is N-iso-
morphic to a summand of Soi(N) or N-iscmorphic to Lj FOF S0me J = 1300098
This is because an elerxent from Gy cannot be a subfactor of L'eX. We show
that Soi(N) +L y41+ eoe +L5 is an ideal of N with an ’f—decomposi‘cio.n. The
maximality of Soi(N) will then give the required result. Clearly,

A = Soi(N) @Ld+1® ... ®Lg is a left ideal of N. If n eN, then
n=a+ly+eae+lg+l,

where a €A, l5eLj, j=1,.0.,d, 1/e L', Also any a’e A has an expression
of the form a’ = x+ ld+1+ «ss + lg Where x ¢ Soi(N), Ly el for i = d#l;,.e0e,8

We show that a’ne A. By left and right distribution over N-kernels we obtain
a’'n = x( a+2.,+e..+7.d+7.’) +( ld+1tecetlg)a + Td+1ly + Ld+ql! + eee + Lgl7

The first two terms on the right-hand side are in A since Soi(N) is an ideal.
If 111 £0 for i = d+1,e00,8, j = 1,400,d, then L;1; £ {O}. Consequently,
the mapping L -» LJZJ)IJ €Lj given by y - ylj for all y eL{ is a monomorphisnm
from L{ into L; so that L; « L;, contradicting property II. Similarly, we

see that 11/ ={O} for i = d+1,.44,8. Thus a’neA. That A has an
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4 -decomposition follows from the fact that A is a direct summand of N and N
has an identity.

Now by theorems L.7 and 4.8 we may write N as

=
[}

Soi(N) @ L

C(N) Ly @ eo. ®Lr®Llr+19... 8Lt DL,

where Lj ¢Gy for 1 = 1,...,r and L €By for j = r+l,...,t. Gy or By may,
of course, be empty. One shows as in theorem L.8 that M = C(N) 8L,;®...9Lp

is a two-sided ideal of N. Let A be any element of ’DN and xeM; then
X=C+ly+eee+ln,
for ¢ eC(N), 1;€L;, i =1,...,r. Hence for any § €A We have
X8 = CO+ 138+ cee+18 = 138+ 000+ 1p9,

since ¢ = 0. If 1;5 # 0, then L8 £ {O} and so the mapping Li{ » L3 given
by x » x5 for all xeL; is a monomorphism of L into A. Property II tells
us that this is impossible. Hence x38 = O and we have

g = ﬂ (0:a)
Aed

ol .

Thus we have proved

Theorem L.9 C(N) is precisely the direct sum of all elements of Gy appearing

as summands in Soi(N).
Corollary GC(N) contains copies of all elements of Gy in its “4-decomposition.
The following is immediate from the proof of theorenm L o812

Theorem L.10 If N

Soi(N) ®L, then L By .

Theorem L.11 C(N)

1]

N if, and only if, every N-group of type-0 is in Gy

Proof If C(N) = N, then by lemma 2.6, Q(N) = {O}. Hence by lemma 1.3 every

N-group of type-O has an isomorphic copy as a summand in C(N). Theorem 4.9
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implies that every N-group of type-O is in Gy. Conversely, suppose that

every N-group of type-0 is in Gy. Write N as N = C(N) @L; then
N-Q(N) T c(N)@L -¢(N)

vecause Q(N) € L (an intersection of maximal left ideals). Now as in the
proof of theorem 4.9 we see that L eﬁ. Since every N-group of type-0 is in
GN, By = ¢ so that L -Q(N) cannot be expressed as a direct sum of N-groups
of type=O. The only possibility is L = Q(N) = {0} so that Soi(N) = N. By
theorem 4.9 C(N) = Soi(N) = N.

It is an open question whether or not Soi(N) = ¢(Q) generally. Fur-
thermore, we have not been able to establish any connection between c(q) and
C(N) for general faithful N-groups Q in the DCCL case. We have also not
been able to construct an example of a near-ring in which C(Q) £ C(N) for
some faithful N-group Q. We do, however, have the following, which follows

immediately from lemma 4.5 and theorez 3.7:

Theorem L.12 Let N be a near-ring satisfying the DCCN and Q a faithful N-

group. Then C(Q) & Soi(N) and is a direct summand of N.

As in theorem 4.3, We can now prove

Theorem L.13 If N is a near-ring which satisfies the DCCN ard Q is a faith-

ful N-group, then C(Q) is precisely the direct sum of all elexments of GQ

which appear as summands of Soi(N).

Theorem 4.14 If N is an O-primitive near-ring with DCCN, then Soi(N) £ {O}.

Proof The faithful N-group Q of type-O is in Gy and so appears as a summand

of C(Q) S Soi(N). Thus Soi(N) £ {o}.

Let N be a near-ring with DCCN and Q a faithful N-group. By theorem
Le13 we may write

N = C(Q) 0L1@-0-®LteL,

where Soi(N) = C(Q) ®L,®...®Lt. Let C(Q) = L{@...®LL: and

Soi(N) = L{@... OL.®L,®...9Ls be $-decompositions of C(Q) and Soi(lN)
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respectively. #We will snow that Soi(N) = C(Q). For this purpose we need
the following:
Lemma L.15 No L is a subfactor of L for i = 1,...,%t,

Proof Suppose L; « L; then there exists an N-subgroup A of L and an N-kernel
1
A’ of A such that L; £ A-A’. Now there exists an e eL; such that Ne; = Ly,

2
e; = e; for édach 1 = 1,¢00,ts If ¢t ey > Sy +A?, 8{ €A; then

wei) = fel) = eler) = es+a
3

so that
Si-eideAl.
But e;5 €Soi(N)NL = {0}. Hence 8 €A’ and this implies that A = A’, which
is a contradiction.
Lemma L.16 L; is not a subfactor of Lw for any weQ and any i = 1,.e04,t.

Proof We assume Luw £ {O}. The mapping L 4 Lw given by 1 > lw for all 1le¢L
is an N-homomorphism of L onto Lw so that L-Ker# = Lw. Since L cannot be

a subfactor of L by lemma L4.15, the result follows.

Lemma k.17 Let A ¢# be a cyclic N-subgroup of Q. Then A = L§ for some 5 €A.

Proof Let § be a cyclic N-generator of A; then

N§

(L;Qo.-eLfeL«‘ elo-@LteL)s

anﬁ'o.. +L£-5+L15+ e e +Lt8+L5.

If Lis A {0}, then L T L{5 so that L} is a subfactor of Ae#. But then

L';.,éGQ, which contradicts theorem Le13. Thus we have N§ = L 3+ ...+ L8 + L3,

If Lis £ {O}, then Li5 is of type-O for i = 1,...,t, so we may write

NS = @ Lis+Ls

iel

for scme Igﬁ,...,t}. Now 6? Li{8NLs is an N-kernel of @ L{d and so by
3 i€

lemma 1.4 it is a direct sum of N-isomorphic copies of some of the Lis. But
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this implies that L; £ L5 is a subfactor of L&, contradicting lemma L s16s

Hence @[ L{8NLs = {O} and we have
i€
A=Ns = D Ljse@ls.
iel

Now A €# so it cannot have N-groups of type-O as direct summands. Conse-

quently, Li8 = O for each i €I and we have A = L&, as required.

Theorem L.18 Let N be a near-ring with DCCN and Q any faithful N-group;

then Soi(N) = ¢(Q).

Proof As previously, we may write
N = C(Q) QL1eooo QLtQL,

where Soi(N) = C(Q)®L,® ... @Lt. Lemmas L.16 and 4.17 imply that for each
i, L{ cannot be a subfactor of any cyclic N-subgroup A eff of Q. If Liw = {O}
for all weQ, then L = {O} because Q is faithful. Hence there exists weQ
such that Liw £ {0} and so Ly ¥ L{w is a subfactor of Q. From the defini-
tion of G it follows that Li €Gne

Theorem L4.13 now tells us that Li S C(Q) for i = 1,...,t and the result
follows.

As we pointed out, theorem 4.18 is a generalisation of the result in
[18]. This gereralisation is possible partly because our class ﬁQ is de-
fined differently from the one in (18]. In the more general DCCL case we

can prove the following in a manner similer to theorem L4.18.

Theoren L.19 If N is a near-ring satisfying the DCCL, then Soi(N) = C(N).

Thecrem 4,20 If N is a near-ring with DCCN and Q a faithful N-group, then

c(q) = N implies that every N-group of type-0 is in GQ.
The proof of the above theorem is as in theoren 4,11, Whether the
converse is true in this case we do not xnow. It would certainly be true

if we could establish that Go &= Gye

We point out that if N satisfies the DCCN and the Laxton-Machin critical
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ideal [18] exists, then it coincides with our C(Q) . In their construction
of the critical ideal they assumed that GQ was the maximal class of N-
groups of type-0 such that properties I and II were valid. We have made
no such assumpticn, and indeed it is not clear whether, in gereral, our
particular construction zives the above maximal class. Cf central impor-
tance in the construction of C(Q) is the set UN# = {AQ Q: A does not have

an N-group of type-0 as a direct su:nmand}. We see this in the following:

Theorem L.21 If N is a near-ring with DCCN and Q a faithful N-grcup, then

cln) = AEgl)u(o $A).

Proof Since KNU< B we certainly have

m (0:a) 2 ﬂ (0:a%).

AsHNU A¥ep

On the other hand, if A® B, aA¥ 4 &, then

e
A* @ As @A,
=
where A; is of type-O for each i = 1,...,k and A'¢ ANU, Since A; €B

there exist [} ¢ #/NU such that Ay « [i, 1 = 1,+4.,k. Hence

ﬂ (0:N(0: )< (0:a%)
i=1

and we see that

ﬂ (0:a) S ﬂ {os 4%}

AekNU s¥ep

Examole L.2 Let N be the O-primitive d.g. rear-ring in example 2.3 with

a = 2 so that Q = Agn+1 is a faithful N-group of type-C. Let An1+, be the
alternating group on the symbols 1,2,...,n,2n+1, and An,+1 the alternating
group on the symbols n+1,...,2n,2n+1. The li-subgroup A cyclically gererated
by (1 2) +(n+1,2n+1) contains An1 a.nd.‘Anz..., as N-kernels. However, it is

not a direct sum of these. In fact, A is in KNW, Similarly, one shows
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that there is an N-subgroup in #NU containing An2 and An1+1. Thus

(D)

q = {f2nd2nm}s  Bg = {An1,Anz,An1+1,An2+1}L}{all other irreducibles}.

Example 4.3 Let n = ¢ x32 and consider the group Q = Zn of integers
modulo n. As before, if m divides n, then we denote the cyclic subgroup
of order m by Zm. Let N be the zero symmetric rear-ring of all mappings

of Zn » Zn which will take each one of the following groups into itself:
Zn=29,29,2Zn=232,233521652146~23,23,24-22, 22,23,

Zg and Zj, are N-kernels of Z, so that Zn = Z9®Z3,. Zn is of course a

faithful N-group and we have

G

[29: Z32: ZS, Zﬂ-ZQy Zﬂ-zlz}’
B
4 {Z9a Z323 250235, i3, Zxczsz}a
B= {216, Zs, 24, 25, {0}}.

() = (0:246) = Soi(N).

{Z1s'ze, Zg, L4=Lo, Zz}:

Ne see that C(Q)N J (N) = a direct sum of copies of Z3, £ C(Q).

2. Near-rings with DCCN and ACCN

All rear-rings in this section are assumed to satisfy the ACCN and

DCCN. We begin by giving the Laxton-Machin construction of the critical

ideal [18].

Definition Let A be an N-group and
A=AODA1:>000 DAk'—'{O}

be a series of N-subgroups of A such that A is an N-kernel of Ai{-1 for
i=1,..0,ke Such a series is called a normal series for A. If each sub-

factor Ai{-1=A; is irreducible, then we say that the above series is com=-

plete.
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Definition (18] Let Q be a faithful N-group and U the set of all cyclic
N-subgroups of Q. Further, let ¢ be the collection of all irreducible N-

groups which appear as subfactors of Q. Then

LG = {Ae€: A is of type-0},

LB =¢\LG,
Ly = {A eW: A= @I A; and A €LG for each i},
i€
Lp = {A €U A= 80D 481 Deee D = (O} is a complete series

with A{-q - 4; €LBJ.

We assume that properties I and II hold for the classes LE and LB.

We note that LG contains only cyclic N-groups.

Fact L.1 (18] Let L§,,LP, and L¢,,LPB, te two pairs of classes of elements
of % which satisfy properties I and II. Then L§,U L€, and LB, NLB, also

satisfy properties I and II.

We shall assume that LG is the maximal class of N-groups of type-0
such that properties I and II are valid. Let #, B, G, and § be the
classes of N-groups as defined at the beginning of this chapter. Then

LG 26G, LB B, L{E24 and LB B.

Lemma 4.22 If Q is a faithful N-group and A a cyclic N-subgroup of Q, then
A€ ®if and only if A has a complete series all of whose irreducible sub-

factors are in B.

Proof Since A is a cyclic N-group it satisfies both the ACC and DCC for
k

N-subgroups. If Ae€P, then A = @ Ai@®A’ where A;€B, i = 1,.¢s,k and
=1

A’e XNU. Thus A has a complete series of form

k=1

A = 1@ A; @' 216_91 B AF 55 wxe DA = &L Disen Tl = {o}.

By definition the subfactors of such a series are in B. Conversely, let
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=

A= A DAgoy Deee DAg = {O} be a complete series for A such that each
m ’ /
Ai=-Ai=-1 €Be If Aeﬁ’, then we are done. SO suppose A = L@ AL @A, A of

type=0, i = 1,.00,m and A" e#., Then

o m=1
x
A= 691 Ai@A"D@ Mea” DDA = 85Dt D ... D4 = {0}
i= 1=

is ancther complete series for A. By the Jordan-H8lder theorem the factors
of this series are isomorphic to factors in the above series under some

pairing. Thus A} €B for each i = 1,...,n and consequently A €B.

Lemma L.23 If Ae#NU then AeLP, where A is an N-subgroup of the faith-
ful N-group, Q.
The proof of the lemma is immediate from the definition of the ele-

ments in ff. It is now clear that
poLp2ANU

The critical ideal, Crit(N), is defired as Crit(N) = _\Qg (0 4).
A€

The following follows from the definition of c(Q) and theorem 4.21:

Theorem L.2L If N is a near-ring which satisfies the DCCN and ACCN, then

c(Q) = Crit(N) = Soi(N).

We now seek a necessary and sufficient condition for C(Q) to be non-
zero. We will define a certain type of N-group Q1 such that c(q) £ {O} if

Q is faithful. For this purpose we need

Definition An N-group of type-O is called maximal type-O if it is not a

proper subfactor of any other N-group of type-O.

We note that if Q is an N-group and A an N-group of type-O such that
A=(0:0c (0:4), then Q is a faithful N/A-group and A an N/A-group of
type-0. In the finite case lemma 1.5 tells us that A « Q. Also, if VN is
finite, then any prime ideal (24] P of N is O-primitive, that is, P = (0:4)

with A an N-group of type-O. Thus P is a minimal orime ideal if, and only




if, A is maximal type-O if N is finite.

t
Definition A faithful cyclic N-group Q = Qi@ with Q’e f will be

i=1

called critically faithful if for each i = 1,ee0,t
b ¥

(i) Qi is maximal type-0,

(ii) Qi is not a subfactor of Q’.

+
If  is critically faithful, then we say Q = € 0, @0’ is a critical
Lt=1

decomposition of Q if Q' and the Qi, i = 1,.s0,t satisfy (i) and (ii) above.

t
If Q= 63 Qi ®Q’ is a critical decomposition of Q, then Qi = Q; implies
=1

é 0’

=0

i=
1£]

that

is critically faithful. Thus, without loss of generality, we will assume

that Qi Z Q; 1|8 # j, throughout our discussion.

Lemma 4L.25 Let Q be a critically faithful N-group with a critical decom-
+

position Q = ffB!?Le(V. Further, let A be an N-subgroup of Q such that
i=1

Qg is a subfactor of a complete series for A, for some s = 1,...,t. If N

is a finite near-ring, then Qg is a direct summand of A.

Proof Put Ag = Q', An=0:8...90019Q' and An = ANAp for n = 1,.00,%;

then
Q=Ag DAy D... DA, D4y =0 D {0}

and

A= ApD Agey D eee DAy D a0 = 2N 4 50}
are normal series for Q and A respectively. Thus

An=0An=1 T An-ANAnp~,

= An=AnNAn=1

n

(An+An=y) =An=y

€S An=-Ang-¢ T Qn,

for n = 1,.es,t. By the Jordan-H8lder theorem, Qg is N-isomorphic to a
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factor of the second series (after ref‘inement). Since g is not a sub-

factor of Q’, this factor can only come from a refinement of
A = At Dooc DA1 D.lo = AnQ'.

Thus by the above

Qs « An=An=-1 « Qn

for some n = 1,...,t. Since the Q; are maximal type-O and Qi }.‘ Q; if
i A j it follows that the only possibility is n = s and we have equality
in the above equation. Hence (AS+AS_1) -Ag., = Ag-As., and we have

Ag = Ag+Ag_,. lNow let wsbe an N-generator of Qg; then
ws = 8+U1+-QQ+OJS-1+(D',
where wi €Q{, i = 1,¢00,8=1, § ¢Ag and w’ €Q’. Thus

=8 = Wyteeo tWgay+w =uwge
Put
Qs - '{5‘ Pjnpl’
3éa
where Pj = (O:Qj) for j = 1,eee,t and P’ = (0:Q’). Then the ideal

Qsjé?s. For otherwise
P1 es e Ps—1 PS+1 es e Pt P'g QS—C__.PS.

Since Pg is a prime ideal this implies that Pjg Pg or P’ < Pg for some
i® Tsesnsty J& 3¢ But Py is a minimal prime ideal by a previous remark,
so that P’< Py is the only possibility. However, P'< P5 if, and only
if, Q3 « Q’. Since Qg is not a subfactor of Q’ it follows that P’ QPS,

and so we have verified the above claim that QSQPS. Now

Qs<-8) = QS(W1 + o0 +CIJS-1 +w,- ws)

= Qs(d1 + oo +sts-1 *st, +QS<—wS)’ = QS(_wS)
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by left definition over a direct sum of N-kernels and the definition of
the Q's. Consequently, Cguwg = Qg5 < Ag = AgNA. Now Qsws is an N-kernel
of Nug = Qg so that Qgug = Qg or Qgug = (O}, because Qg is of type-O.

Qgwg = (O} is, of course, not possible as ng Pg = (0:Qg) and hence

Qg = Qqug & AgN A g A. Putting Q = Qge [, where

ct

= Qi@ﬂ',

1
'£5

e

we see by the modular law that A = Qg @['NA.

Theorem L.26 Let N be a finite near-ring. Then Soi(N) 4 {O} if and only

if N has a representation on a critically faithful group.

Proof Let Q be a critically faithful N-group with critical decomposition
Q= é Qi@0’', Q'eX. We will show that the N-kernels Qi €Gq for each
i=1,.ee,m« Suppose Q; €Bn; then Qi is a subfactor of some A’€ ANY.
Hence there exists an N-subgroup [ of A’ and an N-kernel [ of [ such
that Qy ¥ -['. The normal series [ > [’ D {0} can be refined to a com-
plete series so that Qi is a direct summand of [ by lemma 4.25. But then
the N-kernel Q; C A’ and so we have a normal series A’ > Qi D{O} for A’.
This normal series can be refined to a complete series with Q; as a (last)
subfactor so that by lemma 4.25 again (O; is a direct summand of A’. Since
A'e¢ £ we have a contradiction. Conversely, if Soi(N) £ {0}, then

+ t
N = Soi(N) oL = @ L ®L, where @ L; is an %¥-decomposition for Soi(N).
Using lemmas 4.1 and L.15 it is an easy matter to obtain a critically

faithful N-group froa N*,

Example L,L If Jo(N) = {O}, then N has a faithful N-group Q which is a
direct sum of N-groups of type-O. Take Q = N=-G(N) and drop from this
direct sum those type-O N-groups which are not maximal. Then we obtain a

critically faithful N-group with zero /{-component.

Example L.5 Let Zpa, P a prime, be a faithful cyclic N-group. If Zpa con=-
tains a proper, non-zero N—ke.rnel, then Soi(N) = {O}. Otherwise Zpa is of

type-0, so that Soi(N) £ {c}.



CHAPTER 5

Radical-antiradical series for near-rings

1. Nil-rigid series

As we pointed out in Chapter 1, the series discussed here are just
special cases of Scott's more general nil-rigid series [27]. We begin
by giving a description of Scott's idea.

Let L,(N) = nil(N) and C,(N) be the ideal of N containing L,(N)

such that

C1(N)/L1(N) = Crux(N/L,(N)).
Further, let Ll(N) be the ideal of N containing C, such that
LAN)/Cy(N) = nil(N/C4(N)).

If a is a non-limit ordinal, define Lg(N) to be the ideal of N such that
LofN)/Cq=1(N) = nil(N /Cq-4(N))
and C4 to be the ideal of N such that
Co{N)/LolN) = Crux(N/LN)).

If ais a limit ordinal, define

cu™) = [J catm)
p<a

and

L) = (J 1gm).
B<a

Scott [27] shows that if N is a near-ring with DCCI, then the transfinite

series

(O},L1(N):C1(N),LZ(N))C2(N)""

is ascending and only fails to be properly ascending at limit ordinals.
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In the case of a near-ring with DCCI, Scott calls this series the nil-
rigid series for N. One can similarly define the Jy-socle-ideal series
in the case of a near-ring with DCCL. In such a series nil(N) is rep-
laced by Jo(N) and Crux(N) is replaced by Soi(N). However, it is not

clear that a Jg-socle-ideal series is properly ascending at non-limit
ordinals. In any event, we will assume that the near-ring N satisfies

at least the DCCN. In this case nil(N) = Jo(N) and Soi(N) = Crux(N) so

that the Jo-socle-ideal series for N is just its nil-rigid series. In

[27] scott proved that if N has DCCN and a right identity, then the nil-

rigid series for N is finite and there exists a positive integer a such

that Cy(N) = N. Using this fact we prove

Theorem 5.1 Let N be a near-ring with DCCN and a right identity. If in
the nil-rigid series for N we have Ly(N) < Co(N) = N, a > 1, then

JS(N/CQ_1(N)) is a non-zero, nilpotent ideal of N/Cg-,(N).

Proof C(N) = N implies that Soi(l/L(N)) = N/LN) so that N/LN) is a
direct sum of left ideals of N/Ly(N) each of which is an N/Lg(N)-group of
type-0. By lemma 2.6 Q(N/L(N)) is zero, so that Ly(N) is an intersec-
tion of maximal left ideals of N and hence L{N)/Cy-4(N) is an inter-

section of maximal left ideals of N/Cg-4(N). Thus

N/ Cy=14(N)) & L(N)/C o=y (N)

nil(N/Cy-4(N))

Jo (N/Cqmy(N))

and theorem 2.9 implies that Jg(N/Cy-,(N)) is nilpotent. By the strict
ascendency of nil-rigid series Ly(N) £ Cy-,(N). Consequently,
I5(W/Ca-4(N)) £ {O}.

We remark that if in the nil-rigid series for N, a = 1, then Jg(N)

is nilpotent. In fact we have

Theorem 5.2 Let L,(N),C,(N),...,La(N),CoN) = N be the nil-rigid series
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for No Then a = 1 if, and only if, JS(N) is nilpotent.

In the above theorem, Jg(N) may, of course, be zero - as indeed is
the case in s-primitive near-rings. If a > 1, then Cg-; does not contain
the quasi-radical, for otherwise it would contain J5(N) by corollary 1
of theorem 2.8. In this case we would have J4(N/C . (N)) = {0}, contra-
dicting theorem 5.1. In view of the above, it would seem reasonable to
define the "nilpotence level" of the s-radical to be a-1 if Cx = N. In
the special case where a = 1 and Jg(N) itself is nilpotent, the s-radical
will then have "nilpotence level" zero. However, this needs further
scrutiny for Jg(N/Cg-1(N)) may well coincide with J,(/Cy-4(N)) even
though Jo(N) £ Js(N). In this case we need to decide what a -1 really
measures. Also, as is so often the case in near-rings, there are ex-
treme situations. Take for example the zero symmetric near-ring N of
all mappings of 2, into itself, which takes Z, into Zz. N is s-grimitive
with Z, a faithful N-group of type-s. The radical JZ(N) is a direct sum
of copies of Z, and (J,(N))2 = J,(N). Indeed, no proper ideal A of N
exists such that JZ(N/A) is nilpotent. One may take the "nilpotence
level" of the radical to be infinite in this case. Clearly,
J2(N/Cx=q(N)) is nilpotent if, and only if, it coincides with
J3(N/Cy=y(N)), where Co = N, a > 1. We give another necessary and suf-

ficient condition for the nilpotence of J,(N/Cqu=q(N)):

Theorem 5.3 Let N be a near-ring with DCCN and a right identity. If in
the nil-rigid series for N we have C«N) = N, a > 1, then Jo(N/Cq=4(N))

is nilpotent if, and only if, Soi(N/Lg(N))N J,(/L(N)) = {0}.
Proof Since Co(N) = N, Soi(N/LoN)) = N/LLN), so that
J2 (N/L(N)) N Soi(N/La(N)) = Jo(N/La(N)).

If Jo(N/Cx=-4(N)) is nilpotent, then Lu(N)/Cu=yq(N) = Jo(N/Cq-4(N)), so
N/LN) is semi-simple. Hence J,(N/LN)) = {0}. Conversely, suppose
Soi(N/Lo(N)) N 3o (N/L(N)) = {0} i.e. Jo(0/L(N)) = {0}. Then
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Lo(N) D Jo(N) so that Lg(N) is an intersection of 2-modular left ideals.
Hence Lo(N)/Cux=q(N) = Jo(N/Cx=4(N)), and so Jo(N/Cx=4(N)) is nilpotent.

From the above we see that Soi(N/L4(N)) is in some sense the ob-
struction to Jp(N/Cx-4(N)) being nilpotent. In view of this we define
the following radical-antiradical series:

Let L; = Jo(N) and let U, be the ideal of N containing Lj such that
U,/Ly = Soi(W/Li)) Jo(N/L}). Further, let L, be the ideal containing U,
such that Ly/U, = Jo(N/U;). If a is a non-limit ordinal, let L& be the
ideal of N containing Uy., such that L&/Ua.1 = Jo(N/Ugey) and Uy the

ideal of N containing L; such that
Uo/La = Soi(N/LYN I, (V/Ly) .

If ais a limit ordinal, define Uy = |J Ug and Lg = - L3. Thus we
B<a a>f

obtain an ascending sequence of ideals
L4080, 02, 000,L0,0d0 .. -

Definition If N is a near-ring with right identity and DCCN, then we

call the above sequence the J,-U sequence of N.

Similarly we define the following sequence of ideals., Let LY = L(N)

and let W, be the ideal of N containing L} such that
W,/LY = Soi(N/L})N Jg(N/LY).

Further, let L; be the ideal containing W, such that L;/W, = Jo(N/W,).
In the non-limit ordinal case we have Ly/Wo_y = Jo(N/Wg=y) and
Wo/La = Soi(N/LE) N Jg(N/LE) . The limit ordinal cases are as in the Jo~-U

sequence and we have the following ascending sequence of ideals

*
L3sWi,L2s 000,00, Wppees o

Definition If N is a near-ring with right identity and DCCN, then we

call the above sequence the J,-W sequence of N.
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Before giving examples of radical-antiradical series we note that

if J,(N) is nilpotent, then J,(N)N Soi(N)={O}. The converse is not true,

- as the following example shows. (We use the representation theory of

Chapter 4 in our examples.)

BExample 5.1 Let G be a direct sum of Sp, n > 5 and a group of order p,
p a prime which does not divide n! . Let V be a reduced free group on m
generators whose laws are precisely the universal laws of G. We assume
that m is at least as great as the minimum number of generators of G.
Let N be the Neumann d.g. near-ring [19,22] associated with V; then
Q=N*-1 is a faithful N-group where the left ideal 1 is defined by

V/ =Vl and V-V’ ¥ G (see ref. [18] p.227). Now the N-groups of type-0
which appear as summands of Soi(N) correspond to the subgroup of order p
in G so that these are all of type-2. Thus J,(N)N Soi(N) = {O}. How-
ever, the N-subgroup of Q corresponding to the alternating group Ap is

of type-O but not of type-2. Thus the radical is not nilpotent.

We note that in the above example every N-subgroup of Q is cyclic
(181]. Also, the N=-subgroup of Q corresponding to Sp is in.ﬁQ. Since p
does not divide n!, the cyclic group of order p is not a subfactor of Sp.

We now give the promised example in which we consider the three

radical-antiradical series defined so far.

Bxample 5.2 Consider the group Q = Zg +Zg4. Let N be the zero symmetric

near-ring of all mappings of 1 into itself which will take each one of

the following into itself:
Q=29, Q=Zsay Zo, Zeays 23, 232 =246, Z1g, Za =24, Z4, Zz.

Zy and Zg, are N-kernels of Q. Also, Zg is of type-s and Ze4 of type-0
but not of type-s.

(a) The nil-rigid series for N:

{0} =L,=Cy =(0:255) = L, = (0:(Z32-215) @Z16) < Co

= (O : ZB)C: L:s = (0.3 (Za-Z4) OZ4)C C, = N.
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In this case a = 3 and we see that Jg(N/C,) is non-zero and nilpotent.
Jo(N/C,) is not nilpotent since Z, is of type-s but not of type-2. In

fact, J,(N/C,) is a direct sum of copies of Z,.
(b) The Jo-U series for N:
{0} =Lic Uy = (0:2;0252) C L = (0: Zs@ln - 24s8216) © U
= (0:Z; @25, -2,6828) C L3 = (0:25023,-215@%s -~ 2,@24) Us

=(0:2;025,~216 025 ~Z,@Z5) = Lis

We note that J,(N/Us) is zero and J,(N/U,) is not nilpotent.
(¢) The Jo-W series for N:
{0} =LTC W, = (0:2s@2;5,) LY = (0:25@235 -Z1s @215 Wy

= (O:Zstsz‘Zw&Zs)C L’; = (03Z96232'215628'Z4CZ4) = Ws.

We see that Jg(N/W,) is non-zero and nilpotent.

Remarks There is no subgroup A of Q such that J,(N/A) is non-zero and

nilpotent, where A = (0:A). Also,
/ §
S Aty T Wi, U Cy for i,j = 1,2,3.

These inclusions are no accidents and later we will prove that they al-
ways hold for finite near-rings.
Putting U(N) = J,(N)M Soi(N) and W(N) = J4(N)Soi(N) we have the

following from theorem 3.12:

Lemma 5.4 If N is a near-ring with DCCN, then
(a) u(v/u(N)) = (o},
(v) WOv/W(N)) = {o}.

In what follows D(N) will denote either U(N) or W(N) so that
LD QLS eee & D C Lty & oo« will denote either a Jo=U or a Jo-W

sequence,



A L A A S S 8. i

e e

SRR —

-61-

Theorem 5.5 If N is a near-ring with DCCN, then

(a) Dx

(b) Le

La¢1 implies La+1 = Dm+1

Da implies La+1 = Day

Proof (a) By lemma 5.4 we have
801((N/Le)/(Da/Led ) N I, ( (/1) /(Do/Led) = {0},

where Dy = Wy if v = 8, Dy = Uy if v = 2. Since (N/Lo)/(Dy/Le) = N/Dgy
we have
Do+ 1/Lort = S0i(N/Law1) N T (N/Lgsr)
Soi(N/D) N J, (N/Dg)
{o}.
(8)  Jo((/Dg=1)/(Les/Dx=1)) = Jo((¥/Dx=1)/ Jo(2/D=4)) = {OF.
Since (N/Dg=1)/(LofDx=1) & N/Lg it follows that Jo(N/Dg) = Jo(N/Lx) = {0}

Thus Le++/Io = Lasy/Da = Jo(N/Da) = {0}.

We note that if a is a limit ordinal and B8 is an ordinal less than
@, then f+1 < a. Since Lﬁg_:_ DB_C_:LﬁH we have Ly = ﬁ% Lg = ﬁ% D@ = Dqge
Hence the Jo-W and Jo-U sequences are properly ascending only at non-
limit ordinals. Our aim is to show that these sequences are always
finite in the case of near-rings with DCCN. If a is an ordinal and Dy £ L«

(so a is a non-limit ordinal), then
De/La = L1/Le® +-» ®Lt/La;,

where L'i/L“ is an N/Lg~group of type-0, i = 1,...,t and possesses a cyc-
lic generator, e;+Lg, with e% ~ei €Ly, Similarly, for any ordinal y > a

with Dy £ L, we have

D/Ly =L,/Ly@...0Ly/L,,

where again Lj/L, is of type-O with an idempotent generator, j = 1,.ee,86
’
Suppose ¢ Li/La -> L.')/Lr is an N-isomorphism of L;_/La onto Lj/Lx for some

i and some j. Further, let y(ei+Ly) = y+L,, y ¢ Lj. Then y£L, because
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e{+Lg is a cyclic generator of L{/Lg. But Ly = eiy+L,, because

et €De CL,, ¥ > a. Hence L, = e;_(y+Lx) = ejlei+ly) = Wei+ly = y+Ly,
which is a contradiction. Thus if Dg £ DX’ then the N-groups of type-0
appearing as summands in Dy/Ly cannot be N-isomorphic to those which
appear as summands in Dy/Ly. If N satisfies the DCCN, then N has, up to
isomorphism, only a finite number of distinct N-groups of type-O. In
this case there exists a finite ordinal S such that D3 = D@41+ Theorem

55 implies that Dg = Lgyy = Dgyy = Lgyp, = oo o Thus we have

Theorem 5.6 The Jo-ll and Jo-W sequences of a near-ring are both finite.
In example 5.2 we have seen that the Jy-U sequence for N terminates
at Uy whereas the Jo-W series for N terminates at L§. In the next sec-
tion we will show that a Jo-W sequence always terminates at L; for some
@ if N is finite. It may happen that a Jo-U sequence terminates at Lg

for some a, as the following example shows:

Example 5.3 Let G = Z25 9Z37 and let N be the zero symmetric near-ring
of all mappings of G into G which takes each one of the following groups
into itself:
G"ZZSs G’Z57’ 2261 z25-Z2" zzu ZS-ZL.’ ZA’ Z2, Z37’ zjs‘zjfn zj.'n
s =Ls2n Bgga B =Eyp dys
(a) The nil-rigid series for N:

L, = {o}cc1 = (o:zzseaz}‘.;)c:L2 = (0 (Z25-324)03240<Z3G-Z35)0335)

cC

2 = (0: 250250 C Ly = (0:(Zg-3) ®2, @ (254~ 253) ®Z53)

CC3

(o:z9)c L, = (0: (z9-z3)oz3)c:cLL = N.
(b) The Jo-U series for N:

L= {O}CU1 = (0: ZZS‘ZBG) cL)=(0: (225‘224) 02240(235'235) @ZBS)

n
=}
I

= (O : (z25_zzl) 0286(256-235) 0234)

= (O : (225-224) Q(ze'zz‘_) QZA_O(Z}e-Z}s) 6(234-233) QZ27)

N
|
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(Y U} = (O : (Z25—224) Q(ZS-ZL) QZ2Q(ZBS-Z35) 9(z34_253) 629)
CL)_: = (O : (Z25-224)Q(ZB-ZA)QZZQ(ZBS-Z35)@(234_Z33)6(Z32-Z5)@zj)
= Ul;

(¢) The Jo-W series for N:
L‘1" = {o}cw1 = (0: zzsazje) = L; = (0:(2,5-2,4) 92249(235-Z3s) 3235)
[ w2 = (O : (z25-Z24) GZBQ(ZBG-st) °Z34)

< w} = (O : (’Zzs-z2 4) Q(ZS-ZL) QZAQ(ZBS-Zji) 6(25 4-233) ozg)
= LZ = (0:(2y572,4) @(2g-2,) @2, @(2567255) @ (254-253) @(2g-25) @Zs)
= WL‘\ ceee o

We write the three series together in order to compare

N;

(a) L, ={o}cc,cL,cc,c L,cC;c L cC,

' - 4 ! Y M—— - .
(0) 1f ={o}CU,cLicU,cLicU;CL/ =T =...;

x * * x _
(e) L] ={o}cw1c g chch L, =W, =....

We see that the Jo-U and Jo-W series both terminate at an L. Moreover,
J2(N/C;5) = Jg(N/Cs) is nilpotent ard non-zero. Also, Jg(N/W;) is non-
zero and nilpotent, Jg(N/W;) £ J,(N/Ws), Wy C5. PFurthermore,

J2(N/Us) # (0} is nilpotent and J,(N/Us) = Jg(N/Us).

2. Finite near-rings with identity
Throughout this section our near-rings are assumed to be finite

and to have a multiplicative identity.

Theorem 5.7 If J (N/W(N)) = {0}, then Jg(N) = W(N) = {0}, where
W(N) = Soi(N)NJg(N).

Proof Write N as N = Wel,®... ®L@L, where Soi(N) = W@L,;®...®Ly W= Ww)
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with each L an N-group of type-O. Since Jg(N) annihilates Li,i = 1,...,k,
each L is in fact an N-group of type-s. We have N/W« N'=L,@... 8L, el
and Jo(N’) = {0}. By theorem 3.12 Soi(N’) = L, @ ces®Ly. Also the Ly
are N'-groups of type-s. Since Jo(N’) = {03, N’ has a faithful repre-
sentation on a direct sum of N-groups of type-0. We may assume that
these are maximal type-O N-groups. By theorems 4.13, 4.18 and 4.26,
these maximal type-O N-groups have isomorphic copies appearing as sum-
mands of Soi(N’). That is, N’ has a faithful representation on a direct
sum of N’-groups of type-s, so that Jq(N’) = {_O}. Thus N’ is a direct
sum of N’-groups of type-s and hence L is a direct sum of N’-groups of
type-s. Since W annihilates L it follows that L is a direct sum of N-
groups of type-s. Conseziuently, N itself is a direct sum of N-groups

of type-O. By lemma 2.6 we have Jg(N) = Q(N) = {0}.

corollaz! Let L1C w1c LZC oocCLa—1CWG—1CLaCoocCLﬁ = Wﬁ = see

be the Jo-W sequence for N. If a > 1 and Wg-q = Ly, then Lg—y = Wg—qe

Proof We have N/Wg=1 ¥ (W/Lg-1)/(Wa-1/La=1) and Jo(N/We-y) = LafMa=1 ={0}.
Since Wy—/Lg=1 = S0i(N/Lg-y)\Jg(N/Lg-4) it follows from the theorem
that Js(N/Lg-4) = {0}, Hence Wy=y = Lg=y.

Theorem 5.8 Let N be a finite near-ring with identity and let

LiCWiC oo Wgepg &L=y = W=y = vee , Wyep £ Lg—y be the Jo-W series
for N. Then Jg(N/Wy-,) is non-zero and nilpotent.

Proof By the above Q(N/Lg-4) = {0} and thus Lg-,/Wy-, is an intersec-

tion of maximal left ideals of N/Wy-,. Thus
Jo(N/Wx-2) = Lam1/Wa-2 2 QN/We=2) .

But Jo(N/Wy-,) < Q(N/Wy-,) always, and so we have equality. But then by
theorem 2.9 Jg(N/Wy-;) = Q(N/Wy-,) and so is nilpotent. If
Is(V/Wyep) = {0}, then Jo(N/Wy-p) = {0} i.ee Lymy/Waep = {O}, contrary

to our assumption.



Let LjcD,cl;C...cDaCC L4+1 = Dg+1 o+ again denote either
the Jo-U or the Jo-W series of N. Suppose further that
L,cC,cL,C «eoc Cp = N is the nil-rigid series for N. For a finite

near-ring with identity we have

Theorem 5.9 (i) If for some k 2 1 Dy Ck, then AR ol SO

(ii) if for some k 3 1 Ly Ly, then D& Cye

Proof (i) We have Ly+1/Dx = Jo(N/Dy) so that (L]"_H)xg Dy for some
positive integer y. Since Dy Cy it follows that (Lis +C ¥ Ccy and

hence (Lf+y+Ck)/Ck is a nilpotent ideal of N/Cx. That is,

(Lks1 +Ci)/Ck S Jo(N/Cy) = Lic+4/Ck

and so

Li+1< Liga1e

(ii) There exists a faithful N/L}"-group Q' which contains an N/Lf:-
isomorphic copy of a faithful N/Lk—group Q. For Q' we may take, for
example, the Cartesian product of N/Lk by N/Ll'c on which N/Lf;-action is
defined component-wise. Furthermore, if A is an N/Lé-group such that

Ae€Py, then AeByr as an N/L“-group. Using the fact that
c(Q) = Soi(N) = Crux(N)
we have
Cy = AC;Q (0:A), A an N/Lg-group;
=2 AC)W (0:4A’), A’ an N/L{~group;
= M, where M/L§ = Soi(N/LY) .

Since D/Ly, & M/L{, it follows that C, 2 Dy.

Corollary With notation as in the theorem we have Dy < Cx and

Lk+1 S Lk+y for all k 2 1.

Proof L, = Jo(N) = L), and the result follows by induction.
Pl 1
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Theorem 5,10 Let L, < .ee Ly ©Cyx = N be the nil-rigid series and

L{CSW, S ceocLj=Wg = ... be the Jo-W series for N, Wg-, £ L3. Then

g 2 a.

Proof If S £ a, then by the corollary to theorem 5.9 Llég_:L‘BC Lg. By

theorem 5.8 Jg(N/Wg-4) = Q(N/Wg-,) = Lz/Wg-1 so that Lg is an intersec-

tion of maximal left ideals. Hence by theorem 2.8 Lg is an intersection

of maximal left ideals. Thus
N/Lﬁ = SOi(N/Lﬁ) = cﬁ/Lﬁ

and so N = Cp, contradicting the strict ascendency of the nil-rigid

series for N.

In our examples so far we have seen that a = 3. We strongly sus-
pect that this is always the case for finite near-rings, but we have

been unable to prove this.

3. Nilpotent-idempotent sequences for finite near-rings

In what follows we generalise the notion of nil-rigid series in
the case of finite near-rings with identity. For this purpose we need
the following result due to S.D. Scott. Scott proved this result for
more general near-rings with DCCI in terms of the Crux and nil-radical

of N,

Fact 5.1 If N is a near-ring with DCCN and right identity, then

S0i(N/Jo(N)) £ {03 and Jo (N/Soi(N)) £ {0} if Soi(N) £ N.

We now define a sequence of ideals for the finite near-ring N as

follows: A, is an ideal contained in Jo(N) with 4, = {O} only if

Jo(N) = {0}. Let E, be an ideal containing A, such that E,/A, & Soi(N/A,)
with B, = A, only if Soi(N/A,) = {0}. Further, let A, be an ideal con-
taining B, such that A /B, S Jo(N/E,) with A, = B, only if J(¥E,) ={0ok
For a > 2, Ay is an ideal containing Eg-; such that Ag/Bg-q & Jo(N/Eg-)

with Ay = By~ only if Jo(N/Eg-,) = {0} and Eo/Ax & Soi(N/Ay) with
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Ba = Ag only if Soi(N/Ay) = {O}. In this way we obtain a sequence
A CE B Qi A1 CSEr-1 R A S B S v
of ideals. 3Since N is finite, there exists a k such that
Ay =By = Ay = eee o

The following lemma tells us that the above series actually terminates

at N:

Lemna 5,11 (i) If Ag~yq = BEgeq £ N, then Eqey £ Ag, a > 1;

(1d) If Rpmy

Ay £ N, then Ag £ Eq, a > 1.

Proof We only prove (i). By definition, if Eq-y/Aq=-4 = {0}, then
Soi(N/Aq-,) = {0}. Thus if Jo(N/Ag-,) = {O}, also, we would contra-
dict Fact 5.1. Hence Jo(N/Ag-,) £ {0}, so that Jo(N/Eg-,) £ {0}.

Consequently, we have Ay/Eq-, £ {O} by the definition.

Definition We call the sequence AJ/CE;Q ¢ee © eee = N a nilpotent-

idempotent sequence (N-I sequence for short) of N.

We note that the nil-rigid series for N is a particular N-I se-
quence for N if N is finite. Furthermore, if Eg-, & Ag = Eq = N,
then Eg-y = Ay = N because N has an identity. Thus an N-I sequence
terminates at an Ex. In what follows we adopt the following notation

for the sake of convenience:
Notation: A €Ppn(N) means that A < Q, A €fBq as an N-group.

As we have seen before, if Q is a faithful N/A-group, then there
exists a faithful N-group Q/ which contains an N-isomorphic copy of

every N/A-subgroup of Q. Furthermore, we have
N
Fact 5.2 If Ae€Bn(N/A), then A’e¢ Bq/(N) where A’ ¥ A,

It is well known that the nature of the N-groups of type-O deter-

mines whether or not J,(N), v = 3,2, is nilpotent. One might consider
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the relative sizes of the classes B and G as a crude measure for the
non-nilpotence of JV(N) , v = 8,2. For example, A ¢G may well contain a
large number of elements from B. In the ring case this is of course
not possible. However, the relative sizes of B and G remain at most a
crude measure of non-nilpotency since G may well be empty even though
J,(N) is nilpotent. We will now explore this question using the repre-

sentation theory.

Theorem 5,12 Let A, CE,C ... € AL B, = N be an N-I sequence for N.

If A is an N-group of type-O, then A e4(N) or A e4(N/A;) for some

i = 1,00.,1‘.

Proof If A e€4(N) or Ae§(N/A,), then there is nothing to prove. Now

A is an N/A,-group of type-O because A, € Jo(N). Suppose A e B(N/A,);

then B,/A, = C(Q) = Soi(N/A,) for some faithful N/Aj-group 0 (cf. theorem
4.18). Thus E, = (0: A) and hence & is an N/E,-group of type-O. Conse-
quently, A,/E, & Jo(N/E,) annihilates A and, as above, we see that A is
an N/A,-group of type-O. In general, if A e)D(N/Ak) for some k < r, then
we can show that A is an N/Ayg4,-group of type-O. In particular, if
A e (N/A) for all k < r, then A is an N/Ap-group of type-O. In this
case A €g(N/A.) since B(N/Ay) =({O}} :

We note that in the above theorem we have used lemma 1.5. Since
the faithful N/A(-group is immaterial in this case, we have not men-

tioned it specially. The following theorem is immediate from Fact 5.2:

Theorem 5,13 If A is an N/Aj-group of type-O and A c,@(N/Aj), then

AeB(N/Ay) for all 0 < k € j, j = 1,¢00,Te

Theorem 5.&}3 Let A1C E1C AQC oo CEr—«‘C Arc Er = N be the n.il‘

rigid series for N and let A be an N-group of type-0; then A eg(N/A;,)
for exactly one i,
Proof By theorems 5.12 and 5.13 there exists an i such that

A e §(N/A;) and A f,b(N/Aj) if j < ie If A is an N/Ay-group for some
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k > i, then A is an N/By-,-group since Ay > EBy-,. But then A e XN/E._,)
because Soi(N/Ek_1)={O} by corollary 2 of theorem 3.12 (see also Scott
(27], lemma 1.4, Chapter 3). Fact 5.2 now tells us that A eB(N/44),
contradicting our choice of i. Thus A is not an N/Ak-group for any

k> i.

Definition Let Ay,C B, C ... CArCE,. = N be the nil-rigid series for

N and A an N-group of type-O. The unique integer i such that A €§(1/A)

is called the level of A. We denote the level of A by 1ev$ A)

Let L, C,C seecc LgcCyx = N be the nil-rigid series of N and
A, By, oo Ar< Ep = N any N-I sequence of N. One can show the

following as in theorem 5.9:
Lemma 5,15 Aj< Ly and E4& C4 for i = 1,...,rs Furthermore, r > a.

Theorem 5.16 Let A be an N-group of type-O and suppose A eQ(N/Ai) in

some N-I sequence; then i > lev(a).

Proof If i < lev(A) = j, say, then A ¢8(N/Li) by theorem 5.14. By lemma

5.15, A1 = Lj, so that by Fact 5.2 A€ PB(N/A;), which is a contradiction.

We give the following examples of levels for various types of N-

groups of type-0.

Example 5.4 In each example A is of type-O.
(a) If N is a ring, then lev(A) = 1 for any N-group of type-0;
(b) if Afﬁ\‘*., then IQV(A) = 13

(e) 1if AtPN... and A is maximal type-0O, then lev(a) = 1.

We state the following somewhat obvious results:

Theorem 5.17 If Q is of type-s and A is an N-subgroup of Q, then
lev(Q) = lev(Aa). Conversely, if Q is of type-O and for each N-subgroup

A of Q we have that lev(Q) = lev(A), then Q is of type-s.

Theorem 5.18 If A,,A, are N-groups of type-O and Ay « Az (i.0 Ay is a

subfactor of Aj), then lev(a,) > lev(a,).
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Proof Suppose lev(Ap) = j, i.€. As e@KN/Aj); then A, is an N/Aj-group
of type-0. If A, e"g(N/AJ-), then lev(A,) = j by theorem 5.14, so sup-
pose A, cﬁKN/Aj). We have A, ¢B(N/A) for all O < k s j by theorem 5.13

so that lev(a,) > j.

In general, given a faithful N-group Q one can always construct a
faithful N-group [, containing an isomorphic copy of Q and such that
every N-group of type-0 is a subfactor of [ Why is it so important to
know whether or not a faithful N-group has every N-group of type-0 as a
subfactor? Well, in our examples we constructed nil-rigid series using
a finite faithful N-group Q. The first term in each series is Jo(N),
the intersection of the annihilating ideals of all cyclic irreducible
subfactors of Q. If not every N-group of type-O appeared as a subfactor
of Q, then this intersection may not be Jo(N). Indeed, at each stage we
would get ideals distinct from the Li of a nil-rigid series. Since we
assume N to be finite, lemma 1.5 ensures that an N-group of type-0 is a
subfactor of any faithful N-group.

Let Q be a faithful N-group and define T as follows:

T = {A: A of type-0, A « Q}.
Let
LEV ={i:i = lev(A), AGT}.
Since LEV is a finite set there exists a maximal element m in LEV.

Theorem 5.19 If lev(A) is maximal, then A is of type-s.

Proof For any subgroup [ of A we have lev(r) > lev(A) by theorem 5.18.
By the maximality of lev(A) we have lev(a) = lev([") and so by theorem

5.17 A is of type-s.

Theorem 5.20 Let Ly< C,< ... < Lpc Cpr = N be the nil-rigid series

for N. If lev(A) = m is maximal, then m = r. The proof is straight-

forward and will be omitted.
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We note that if lev(A) = w is maximal, then Jg(N/Cy-,) is non-

zero and nilpotent. Accordingly, we have the following:

Definition Let lev(A) = m be maximal; then we define the nilpotency

level of JS(N) to be m-1,

If N is a ring then lev(A) = 1 for every N-group of type-0, so
that the nilpotency level of Jg(N) = J,(N) is zero. In our examples it
was an easy matter to construct the nil-rigid series for N. Indeed, one
can always find the nilpotency level of JS(N) fairly quickly in this
manner, provided that the N-group is sufficiently small. However, we
have not given an answer to the following question. Given the faithful
N-group Q, is it possible to discover the nilpotency level of JS(N)
without constructing the nil-rigid series for N? That is, can one find
the nilpotency level of JS(N) by simply looking at the irreducible sub-
factors of 1? We suggest that the following procedure can be adopted:

Again let T be defined as follows:
T = {A « Q: A is of type=Q}.

That is, T consists of all N-groups of type-O. Partially order T by
Ay § Az if and only if A, is a subfactor of Az. Let A €T be maximal

type-0 and consider the following chain in T:
A=An > An—1 D ee0e > A1Q

We may assume that Aj > Q> Aj-4, Q€T, j =2,...,n, implies that 4; = Q.
That is, it is not possible to "refine" this chain any further. There
may of course be several such chains starting with the given A. In
each chain we discover whether or not there exists a Q; ¢ f(i.e. an 0
which does not have an N-group of type-O as a direct summand) such that
Aj > Qj > Aj-1. Where these exist, we insert them in the chain and ob-

tain, for example,
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A=An>An-1>-00>A'j>QJ>AJ-1>00.>A‘_>QL>A1—1>...>A1O

Among all maximal type-O N-groups A we consider a chain with the largest
number of Qi is inserted. This number will give us the length of the
nil-rigid series for N. If Q is large this procedure may be just as
tedious as constructing the nil-rigid series for N. At any rate, either

method uses only the faithful N-group Q.

L. A decomposition theorem for the s-radical

In conclusion, we give a decomposition theorem for the s-radical.

For this purpose we need the following:

Lemma 5.21 Let N be a near-ring with DCCN and multiplicative identity.

Write N = Soi(N) @L. Then Jg(N).L £ Q(N) if, and only if, Js(N)AL = Q(N).

Proof Jg(N)NL = Q(N) obviously implies J4(N).L & Q(N). On the other
hand, if Jg(N).L < Q(N), then Jg(N)N L is nilpotent and hence contained
in Q(N). Since Q(N) € Jg(N) NL we have equality.

We note that J4(N) decomposes as Jg(N) = W@ Jg(N)N L, where

W = Jg(N)N Soi(N) and N = Soi(N) @L.

Lemma 5,22 Let N be a near-ring with DCCN and a multiplicative identity
and W = S0i(NM)N Jg(N). Then J (N/¥) is nilpotent if, and only if,

Js(N) = WQQ(N) .

Proof If Jq(N) = W@Q(N), then by the remark following lemma 5.21
J¢(MAL = Q(N), so that Jg(N).L < Q(N) also by the lemma. Write N as
N =We@L’®@L, where WoL’ = Soi(N). Since every left ideal of L'@ L
is also a left ideal of N and Q(N) = L, it follows that Q(N) = Q(L’eL).
Now Q(N)(L‘@L) & Jg(N)(L'8L) < J4(N).L < Q(N) because Jg(N)L’ = {0}.
Hence Q(N) is a two-sided ideal of L’@L and so by theorem 2.9.
Jg(L'@L) = Q(L’@L). From the isomorphism N/W 2 L’@® L we see that
Jg(N/W) is nilpotent.. Conversely, suppose that Jg(N/W) is nilpotent.
Then Q(N) is a two-sided ideal of L’@® L so that Q(N) is a two-sided

ideal of L. That is, Q(N) = Jg(L) and thus L-Q(N) is a direct sum of
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L-groups of type-s by lemma 2.11. Since W@L’ = Soi(N) annihilates L
it follows that L -Q(N) is a direct sum of N-groups of type-s. Conse-
quently, Jg(N) annihilates L - Q(N) and we have Jg(N).L € Q(N). By

lemma 5.21 Jg(N)NL = Q(N), and we have the required decomposition for

I4(N)

Lemma 5.23 Let N = Soi(N) ®L be a near-ring with a multiplicative iden-
tity and satisfying the DCCN. Put W = Soi(N)N Jg(N). If Jg(N/Soi(N))

is nilpotent, then J4(N/W) is nilpotent.

Proof Write N as N = W@L’® L with Soi(N) = W@L’. We need only show
that Q(N) is a two-sided ideal of L’'¢ L. The result will then follow
from the isomorphism N/W ¥ L’@L. Certainly Q(N)L < Q(N) because Q(N)
is a two-sided ideal of L. Also, Q(N).L’c Jg(N).L’ ={O} and so

(M) (L'aL) = Q(N).

Theorem 5.24 Let N be a near-ring with identity and satisfying the

DCCN. Further, let Ly,cC, < .eo.cLgcCxg =N, a > 1, be the nil-rigid
series for N. Then Jg(N/Lg-;) = W@Q(N/Lg-4), Where

W = S0i(N/Lg=yq) N Jg(N/Le=y) «

Proof By theorem 5.1, Jg(N/Cg-,) is nilpotent and hence by lemma 5.23

Jg((N/Ly=q)/®) is nilpotent. The result now follows from lemma 5.22.

Corollary If a = 2 and Jo(N) = {0}, then Jg(N) = #@Q(N), where

W = Soi(N)N J4(N).

Example 5.5 [18,19] Let V be a reduced free group on m generators whose
laws are precisely the universal laws of Ap, n > 5. Take m at least as
great as the minimum number of generators for Ap. Let N be the Neumann
d.g. near-ring associated with V; N is finite with an identity. Now
V-K ¥ Ay for some normal subgroup K of V and so there is a left ideal
L such that N-L is a faithful N-group. Moreover, every N-subgroup of
N-L is cyclic and there is a one-to-one lattice correspondence between

the subgroups of A, and the N-subgroups of N-L. Under this correspondence
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the N-kernels of N-L correspond to the normael subgroups of An. Con-
sequently, N is O-primitive with N-L a faithful N-group of type-0.
Using Fact 2.1, we again see that J,(N) = Jg(N) £ Q(N). We will obtain

decompositions of J,(N) for specific values of n.

(a) n=05. Since every proper subgroup of As is soluble, N-L is, to
within an isomorphism, the only non-minimal N-group of type-O. Now
every group of prime order which appears as a subfactor of As is a sub-
factor of a subgroup which does not have a simple group as a direct sum-
mand. Hence by the one-to-one lattice correspondence Soi(N) is a direct
sum of copies of N-L. Thus the only N/Soi(N)-groups of type-O are of
type-2, and so J,(N/Soi(N)) is nilpotent. The nil-rigid series for N
is {0} = Jo(N) = L,=C, = Soi(N) = L, = (0 % A;) S C, = N, where A;
ranges over copies of the proper N-subgroups of N-L. The corollary to
theorem 5.24 tells us that J, (N) = Soi(N)@®Q(N). We remark that Machin
(19] o‘btained the above decomposition for any Neumann near-ring N as-
sociated with a minimal simple group. Since As is minimal simple, the

stated decomposition for J,(N) follows straight from the Machin theory.

(b) n = 6. Ag is not minimal simple, so that the Machin theory does
not apply. The copies of As contained in Ag are all maximal subgroups
of Ag, so that Soi(N) contains direct sums of copies of Ag and As. All
other simple groups which appear as. subfactors of Ag are Abelian of
prime order. Bach 3- and 2 x2 - cycle is contained in a copy of S4.
Furthermore, every 5-cycle is contained in a subgroup of order 10, which
does not have a simple group as a direct summand. Also, each } x 3-cycle
is contained in a direct sum of copies of Aj;. Thus Soi(N) is precisely
a direct sum of copies of Ag and Ag. It is now clear that the only
N/Soi(N)-groups of type-O are the minimal ones, and hence

J2(N/S0i(N)) = Jo(N/Soi(N)). The nil-rigid series for N is

{0} = Jo(N) = Soi(N) = C, = L,cC, = N. Again we see that

Jo(N) = Soi(N) @Q(N).
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CHAPTER 6

Some future problems

In Chapter 2 we have shown that the s-radical is the "closest" to
being nilpotent amongst all Jacobson-type radicals which contain the
quasi-radical. It seems natural therefore to study the non-nilpotence
of the radical via this ideal. However, very little is known about the
connections between the radical and the s-radical. For example, if N
satisfies the DCCN, then J,(N) contains all nilpotent N-subgroups of N*
(2], 1s it possible for JS(N) to contain all nilpotent N-subgroups of
N* and yet not be equal to Jo(N) 2

A further problem concerns a density theorem for s-primitive near-
rings. Of course, there is a density theorem for more general O-primi-
tive near-rings due to G. Betsch, but it is hoped that in the s-primi-
tive case such a theorem will take on a particularly nice form.

In view of the corollary to theorem 2.8 we have that if N is a
d.g. near-ring with identity and DCCL, then JS(N) consists of all ele-
ments of the form %-—xl-rq;rl-rxi for xi,ri €N and q; €Q(N). The ques-
tion that arises here is whether one can use the above result to gener-
elise the notion of left quasi-regularity.

A, Machin [19]‘first studied a right representation theory for
Neumann d.g. near-rings. More recently these results have been ex-
tended by R.R. Laxton and M.H. Rahbari to general d.g. near-rings with
identity. For example, they have shown that a finite d.g. near-ring
with identity is left simple if and only if it is right simple. A
right radical theory for d.g. near-rings is still in its infancy, and
it is hoped that it will shed some light on the problems remaining
from the left representation theory.

It appears that the socle-ideal has not been studied in the ring

case at all. It would be of some interest to know whether a Baer-type
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antiradical series involving the socle-ideal will yield results similar
to the ones in [4]. In the ring ca;e one can, of course, develop the
notion of a right socle-ideal using right ideals. The natural question
to ask here is whether this right socle-ideal coincides with our (left)
socle-ideal. The study of the right socle-ideal can perhaps be extended
to include d.g. near-rings and developed alongside the right radical
theory mentioned before.

The representation theory of Chapter 4 needs further scrutiny,
particularly in the Neumann d.g. near-ring case. For example, if the
socle-ideal of a finite Neumann d.g. near-ring N is non-zero, then we
know that it has a critically faithful N-group. One should like an in-
terpretation of this in terms of variety theory. That is, can one de-
termine whether or not Soi(N) is zero by only considering the associated
reduced free group V or the defining group G?

The theory concerning "nilpotency level" that we attempted to de-
velop in Chapter 5 is in many respects inconclusive. For example, we
have not been able to find answers to the questions concerning the nil-
potency level of J,(N). Perhaps this problem should be investigated
using a different type of radical-antiradical series. Also, it would
be of interest to know whether, in the DCCN case, the nil-rigid series
for the near-ring N is the shortest nilpotent-idempotent series in N.
Recently C.G. Lyons and J.D.P. Meldrun™® linked the nilpotence of radi-
cals containing Jo(N) with certain series (called N-series) defined on
a faithful N-group Q. They specifically linked the nilpotency class of
such a radical J with the length of a special type of N-series on Q.

Define &J as follows:

Ly: Q = Lo; L;+1 is the N-kernel of L; generated by JLi.

il 3 - Lyons and J.D.P. Meldrum, N-series and tame near-rings (submitted)
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Of course, there is no guarantee that Ly is finite i.e. that Lj is an
N-series, in general. In # it is proved that J is nilpotent of class
at most n if Ly is an N-series of length n. It follows trivially that
af JS(N) = J and Ly is an N-series, then the nil-rigid series for N is
L, = JS(N) c C, = N in the DCCN case. Although N-series are defined on
N-groups whereas the nil-rigid series for N is constructed in the near-
ring, we nevertheless feel that connections between these two notions
are worth investigating.

Finally, a further problem is connected with nil-rigid series in
Neumann d.g. near-rings. Cean one make a study of nil-rigid series for
Neumann d.g. near-rings N by considering the defining group G only? The
main obstacle appears to be the following. Let V be a reduced free
group and G a finite group whose laws are precisely the universal laws
of V. Consider the ideal A in the Neumann d.g. near-ring N, associated
with V. Then N/A is a Neumann d.g. near-ring associated with the re-
duced free group V-W, where W is a fully invariant subgroup of V cor-
responding to A (19, page 21]. It is not clear how one would obtain a
new defining group G from G such that V-W and G have the same universal

laws. This may well prove to be a hard problem in variety theory.
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Appendix 1

Fact 2.1, page 20. Let G be a finite, simple group every one of whose
subgroups is a direct sum of simple groups; then G is Abelian of prime
order.

Proof [D.L. Johnson]. Let X be the class of all finite, non-Abelian
simple groups such * that K € X implies that every subgroup of
K is a direct sum o.f simple groups. Let G be an element of & such that
lGI is minimal and H a proper subgroup of G. Then H = ié Hi{ where H;
is simple for each i. Now every subgroup of H; is a direct sum of
simple groups (inherited from G). Since lGI is minimal H{ X for each
i. Consequently H; is Abelian of prime order, so that H is Abelian.

If P is a p-Sylow subgroup of G, then the normaliser N(P) of P is a
proper subgroup of G because G is simple. Hence, by the above, N(P) is
Abelian so that N(P) = C(P), where C(P) is the centraliser of P in G.
The Burnside normal complement theorem [29, page 137] now tells us that

P has a normal complement in G. This contradicts the simplicity of G.
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