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(ii)

SUMMARY

Several authors have proved statements of the following
type:

(A) If H and K are normal subgroups of a group G and

if H€P, K€P then HK€P, where P is a group theoretical
property.

H. Fitting proved that
potent subgroups H and
potent.

We have considered the
requirement that H and
(A). This is done by
serial.

the product of two normal nil-
K of a group, is itself ni1-

question of to what extent the
K be normal can be relaxed in
replacing normal by subnormal or
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CHAPTER 1

F I TT I NG, S THEOREM FOR N I LPOTENT SUBGROUPS

5 1 .1 INTRODUCTION

H. Fitting proved that if H and K are normal nilpotent

subgroups of G, then so is HK (t1 l'Hilfssatz 10, p. 100).

The question arises if this result could be generalized

to other group theoretical properties.

If a group G has normal E-groups (groups with property E)

H and K and if HK is also an E-group then E is called a

mw(LLytnopetuttl. (1 . t )

Theorems of this t),p-e have been proved by a number of authors.

We have the well-knorvn Hirsch-Plotkin Theorem (See t10l and

t 1 3 I ) that locaI ni lpotence is a multiproperty. P. Ha1 1

(t 6 l) proved hypercentrality is a multiproperty. FC

nilpotency and FC - hypercentrality turn out to be multipro-

perties. This was shown by K.K. Hickin and J.A. lVenzel

(t 9 l). H. Heineken and I.J. lVohamed (t 8 l) proved that

both the normalizer condition and the subnormality condition

are not multiproperties.

The question we are to consider is whether the requirement

that H and K be normal in (1.1) can be relaxed. This will

be done by replacing normality by subnormality or serial in

some of the results mentioned above.

http://etd.uwc.ac.za/
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91.Z NOTATION

Let H and K be subgroups of a group G

If there exists a series

H Ho oHr, G

we say that H is n-ttep
well-known notation due

fol1ow the

by writing HcnG

d ub no nmal-

to P. Hall

in G and

(lt l)

If there exists an

H to G such that

0+1

and

H
0,

say that H is 6erLio.t- in G and

write H-<G.

For x1 ,x2€G the eommuta.ton

Ixr,xz] and more generally

lxrr...rx111J =

The convention is adopted

ascending series of subgroupr H,, linking

H
o

UH,
Y<0'

for all limit ordinals 0,we

following Gruenberg (t 2 l)

xltxi'*r*rwould be denoted by

for k>1

[[x1,...,xk], *k*11.

that for k=0, [xr,...,x1a1J X1.

The following well-known standard commutator

(t 4 l) will often be referred to:

lxY,z) = lx,z1Y ly,z)
lx,yz) = lx,zllx ry jz

Ix-r ,y)= [y,*]*-'
Ix,y-r 1= [y,11Y-1

identi t ies

(r .2)

(1.3)

(1.4)

(1.s)

http://etd.uwc.ac.za/
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The corvnutfion grloup [HrKrKr. . ., K] with n terms K, is

written [HrnK] with the convention that [Hrot<1 - H.

The notation y*(H) denotes lHrm-1H1, fl)1, the tenmd od

tl+e Lowen centnal- Se,LieA of H.

Thus H is nlLpotent. of class n if Yn+l (H)

z t*l-=--
lJ.

1

I f Yn(H).

As usual the tenma od the ufrpetL centnal Ae,LLe6 of H shall

be written ]. = zo(H), Zr (H),..., zi(H) or simply zi if H

is understood, where

Z1 = the centre of H.

Z
Y

= the centre of H

1

UZa if y is a limit ordinal.
0<Y

1,

A group G is a ZA-gnouyt if and only if its upper central

chain, possibly continued transfinitely, leads to the group

G.

The nonmal elotuno of H in G is the smallest normal subgroup

of G which contains H and is denoted by HG. Clearly

HG = HlH,Gl.

A group G is t-oca,LLq - niX-ytotent if every finitely-generated

subgroup of G is nilpotent.

Let G be a group;

Fo (G) the unit subgroup.

http://etd.uwc.ac.za/
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Fr (G) is the set of elenents of G which posses

a finite number of conjugates.

Fo*1(G) is defined inductively to be the complete

inverse image of F1
G

FrcTc['
( ) for all ordinals 0.

F.,(G) = u{FB(c) :

For all ordinals 0,, Fo

of G.

Bco), if o is a linit ordinal.

(G) is a characteristic subgroup

A group G is called FC-nilpotent of class n if there

exists an integer n such that Fn_l(G)lG and Frr(G)=G.

G is called FC-hqpencentnal of class s if there exists

an ordinal o such that FB(G) I G for B<o and Fo(G) = $.

http://etd.uwc.ac.za/
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51.3 FITTING'S THEOREM

that the product MN of normal nilpotent
of a gror-rp G is nilpotent,is well-knownN

Fitting's
subgroups

and easy

t4l).

Theorem

M and

proofs can be found in textbooks (see for example

The question, however, arises if it is possible to describe

the lower central series (upper central series) of MN in
terms of the lower central series (upper central series)
of M and the lower central series (upper central series) of
N. we give an inclusion relation for the lower central
series in Theorem L.4 below. To facilitate the proof of
this,we give a set of generators for yk(<M,N>) for subgroups

M and N of a group G in Lemma 1.1 and its corollaries.

Lemma 1.1

If M and N are subgroups of the group

Yk(<M,N>) = <[x11...,*k]Y : Vy€<M,N>,

x. €M or xr€N>.

G, then

Yx, ) either

Proof:

The proof is by induction on k. clearry for k=1, the lemma

is triviaLLy true by definition of commutators. Assume

the result is true for l<r<k. Then by the commutator iden-
tities in gI.2 y1(<M,N>) is generated by [ [x1,...,xk_rl,lJ
and all their conjugates in <M,N> for all *i such that either
xt€M or xt€N and y€<M,N>. By the commutator identities

http://etd.uwc.ac.za/
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[xrr . . . ,xk-1,YJ is a product of commutators

IXr ,Xz ,. . . , *k_1,*k] and their conjugates in <MrN>,

where either xU€M or xn€N. This proves the lemma.o

The following two corollaries are but sp.ecial cases of

the lemma.

Corollary L.2

IfMandNare subgroups of G and if N<G then

Yk(MN) - <[Xl ,.. . ,*k]Y : Vy€N, either xr€M or xr€N> '

Corollary 1.3

If M<G, N<G then

Yk(MN) = <[xr,...,xnJ : Y *i ) either xr€M or xt€N>.

These corollaries follow since conjugation is a homomor-

phisn. o

Theorem 1.4

If M and N are normal, nilpotent subgroups of G of

nilpotency class m and espectively, then

Ys (M)nYt-s (N) f or k>1

for k=l

nr
k-1
I

s=1
Yk (l,lN) ( Yk (M) Yk (N)

Yk(M)Yk(N)t

and MN is nilpotent of class at most m+n.

Proof:

The proof is by induction on k. The result is trivially
true for k=1. Suppose true for k-l (k>1).

http://etd.uwc.ac.za/
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By Corollary 1.3 of Lemma

commutators Ix1 rxrr.. .xk]

x.€M or x.€N.11

Consider the

is an element

hand if none

[xr r... rxnJ €

generator [xr ,. . . ,*k]. If none of the x

of M, then [xr,...,xk]'€ yk(N). On the

of the x: is an element of N, then
1

Yk (M) .

that s, (s<k) , be the number of x, which are

Then k-s of the x, are elements of N and

M<G, N<G, [xr,...,xk, a ys(M)nyn-r(N).

M.

1.1, Yk (MN)

for all x

is generated by the

such that either
1

].

other

Suppose now

elements of

so clearly
Thus

Yk (NM)

For if
potent

again

of class

Ys(M) n y

Yk (M) Yk (N)
s 

(M) n yk_s (N) .

s ]-nce

k-1
Iy

s=1

If we put k m+n+1 then

Ys (M) o Y6+n+r-, (N)m+n
iI

s=1
1

s7m+1 then ys (M) n Y**n*f-, (N) - 1 since M is nil-

if s<m+l then m+n+l-s>n+l and so

= 1, since N is nilpotent of class

of class (m+n. trn. Thus MN is

m, while

m+n+f-, (N)

ni lpotent

It appears unlikely that the equality holds in the inclusion

relations in Theorem L.4 for l<kcm+n+1 and this question

will not be considered any further. However, a few simple

consequences of the theorem must be noted. These give some

conditions under which the bound m+n for the nilpotency class

of MN is not attained.

http://etd.uwc.ac.za/
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Corollary 1.5

If "yr(M) n Yk_s(N)

nilpotent of class

If y*(M) n yn(N)

= 1 for 1<s<k-1 then MN is

at most max (mrn).

This result is immediately clear if one notes that if

k = max (m+1, n+1) then
k-1

5-r

Corollary 1.6

then MN is nilpotent of class1

< m+n.

If we choose k = m+n then

Ym*n(MN) < Ym(M) n Yn(N). tr

Corollary L.7

If M n yn(N) ='l and M is abelian or Ym(M) h N = 1

and N is abelian then MN is nilpotent of class at

most n or m.

In the first case chosing k=n+1

Yn11(MN) lMnYn(N)

while in the second case one chooses k = m+l and

Y6* 1 
(MN) ( v* (M) n N. tr

The bound obtained in Theorem 1.4 is a least upper bound.

As no example of this could be found in the literature,

such an example will be given here- To do this the

http://etd.uwc.ac.za/
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following result which is due to P. Hall (t 5 l),

needed.

Lemma 1.8 (P. Hal1.

IfVisavector

elements with

n are linear

t s l).
space over the prime field

bas is (vrr) , r=0,

transformations of V defined by

!2,"'11,

1S

ofp

and E and

and

then the group

trans format ions

defined above,

Now we have

,,,E = ,n*t for all n

= 'o*'';
if nf 0V nvnnVNo

+nG

vr(E-'nEt)

)

(rlrrflzr...,

V, where ni

nilpotent of

,i-i(nEi)

= vo (nE i

(vo*vr)E1

of

= v.+v. -1 1+r

n* of

class at

1 inear

and rt ,E are

least m+n.

E-inEi

1S

Proof:

The first step is to show that

and

vini=ri*ri*1

)
V if jli.

V
1 1

nv

n

1 J

http://etd.uwc.ac.za/



and v.n.
J '1

10

,j-i(nt1)

vr -1(E 
i)

p for each i.

=v j -1+i

=v j

Next one has to show that n

Now
1

v n
p

= v.
].

for each i

(vin i l rl-'
(v i+vi+, ) nl-'
,i*Pri*1

1
1

An easy induction shows that

vr [It r... rnm+n] vr+v,1+n+1'

It follows in the same way as above that

Therefore nPi

and

It can

j ugates

Let Y.I

ln b.

v1[lr r... rl*J v, *vm* 
1

vm+1 [n*+1,..., nm*rr] = r**l*vm*n*l.

be shown that each 11. commutes with all its con-

in G.

be the subgroup generated

Then Y: < G for each i,
1

by the conjugates of ni
and G = YrYz...Y**.r.

its conjugates in G, theSince each n 1
commutes with all

1 ,

http://etd.uwc.ac.za/
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Yi are all abelian. By

of class at most m+n.

vr+vJJ1+n+, and so G is of

Let [ = YrYz... Y, and B

Theorem, A is nilpotent of

potent of class at most n

Fittingts Theorem G is nilpotent

But Inr ,.. . rnm+,,] maps vl onto

class at least m+n.

= Ym*l . . . Y**r,. BY Fitting's

class at most m and B is niI-

.tr

Theorem 1.9

There exists a group G with normal, nilpotent sub-

groups M and N of classes m and n respectively such

that MN is nilpotent of class precisely m+n.

Proof:

Let G be the group generated by the elements xt,x2r...rXm+n

subject to the defining relations

x 1, i = L12r...rm+n, p a prime
p

i
and x, commutes with

1

i = L12r...rm+n.

Such a group G exists

conjugates in G if and

so G is the group with

all its conjugates in G

(1.6)

for each

(1.7)

all its
g€G and

because *i commutes

only if Ig, ,*i] =

defining relations

1V

g€G

abelian group

w ith

*l = 1, [g,zxiJ - 1 v

and has factor group the elementary

G =<x xp 1 lx,xrJ>.I 1

Let X' be the subgroup generated by the conjugates of x,

http://etd.uwc.ac.za/
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in G.

Then XioG for each i, and G = XrXz...X**rr.

By (1.7) the Xi are all abelian. Hence G is nilpotent

of class at most tn+rrr by Fittingrs Theorem.

Let M = XrXz...Xn and N = X**l ... X**r. By Fitting's

Theorem M is nilpotent of class at most rn and N is nil-

potent of class at most n.

tet G, A and B be the groups defined in Lemma 1.8.

The mapping Q: xi * ni i=L,2r...,m+n def ines a homomor-

phisn of G onto G. Consequently the nilpotency class

of G cannot be less than m+n.

The mapping 0r: *i * ni, i=L12r... rfl defines a homomor-

phism of M onto A. But [nr r..,nr] maps v1 onto vr*vm*l

and so A is of class at least m and consequently the class

of M cannot be less than m.

Similarly the mapping Qz : xi + Ii r i=m+l, . .. ,m+n def ines

a homomorphism of N onto B. But [n*+1,...,tm+n] maps

vm*l onto vm+1 + vm+n+t and so B is of class at least n.

Consequently the class of N cannot be less than n.

Hence we have proved that the nilpotency classes of MN, M

and N are precisely m*Dr m and n respectively. This

proves the theorem. o

ooooo
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CHAPTER 2

GENERALIZATION OF FTTTING,S THEOREM FOR NILPOTENT

GROUPS

Fitting's Theorem cannot be generalized by replacing

M{G (or N<G) by an arbitrary nilpotent subgroup M of

G (or N of G). The symmetric group on three symbols

shows this clearly since it can be generated by two

cyclic subgroups, one of which is a normal subgroup.

In view of this example it seems natural to enquire if

the conclusion of Fitting's Theorem remains true by re-

placing N and M normal subgroups of G by generalizations

of normal subgroups. Thus we would like to consider

replacing N and M normal by N and M subnormal or even

serial. Robinson (tl41) proved that if M is subnormal

in r steps in G and N normal in G then the conclusion of

FittingIs Theorem still holds. : An al.ternative proof of

this result is given here.

Theorem 2.I
If N<G, Mo'G, yn*1(N) = I = Ypal(M) then MN is

nilpotent of class at nost rn+m.

Proof:

The case r=1 is Fitting's Theorem and thus provides a

basis for induction on r. Assume the result is true

for all groups in which M is subnormal in fewer than r

steps.

http://etd.uwc.ac.za/
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Since for arly two subgroups H

[HrK] < <HrK> r w€ have that

and K of a group G,

.N,M>

and therefore

M

a

and

MIN,rM] < MlN,r-r { M[N,M] { <N rM>

Thus M is subnormal in at most r-1 steps in M[N,M], while

lN,Ml < MlN,Ml . But M and [N,M] are nilpotent of classes

m and n at most and so by the induction hypothesis the

product M[N,M] is nilpotent of class (r-1)n+m at most.

N and M[N,M] are normal nilpotent subgroups of <N,M> and

so by Fitting's Theorem their product MN is nilpotent of

class (r-1)n+m+n-rn+m at most. o

Theorem 2.1 suggests that the least upper bound of the nil-

potency class of G = MN with N<G, M<rG is an increasing

function of r (as well as of n and m). Thus it appears

unlikely that the condition M <<G can be relaxed to M-<G.

The next example shows that the condition M < < G cannot be

relaxed to M*<G.

Theorem 2.2

There exists

subgroups H

non-ni lpotent

K, H<G, K-<G

G with abelian

= HK.

group

and G

Proof:

Let H be the free abelian group on an infinite set of

generators 3o, zt s &2 t

http://etd.uwc.ac.za/
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+
'j^j- L' o

can be extended to a homomorphism of H

generators onto a set of generators.

Let b-l denote the inverse of b then
i --i

b-r , ^j + ^i rlr.rt-ij,

Hence b defines

group of Aut(H)

norph of H with

their images in

tions

Since

The map b which maps

a.
)

Thus G is a product of

serial abelian subgroup

vrr(G) - H for n>1. tr

+a j=1r2r...

j>1

a
o

b maps the

ao.+oo

IarrarJ

an automorphisrn of H. Denote the sub-

generated by b by K. Let G be the holo-

respect to K and identify H and K with

G. Then G = HK and satisfies the rela-

1, IarrbJ = ai_1, Iao,bJ 1

Ka"o rdt , .. . ,ra, Karo ,d1 ,. . . , 3n*1, ,

K-<G.

the

K

3

normal abelian group H and the

but is not nilpotent since

Robinsonrs result proved in Theorem ?.1 can be stated in

a more general form, namely:

Thoerem 2

If P is a multiproperty of groups and is also inherited

http://etd.uwc.ac.za/
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by subgroups then if N<G, M << G and N€P, M€P then

MN€P.

Proof:

Suppose M is subnormal in r steps in G. For r=1 the

theorem is true since P is a multiproperty. Assume the

result is true for all groups in which M is subnormal in

fewer than r steps.

Since for any two subgroups H and K of a group G,

IH,K] < <HrK>rwe have that

and therefore

Thus M is subnormal in at most r-1 steps in M[N,M],

lN,Ml < MlN,Ml . But M€P and [N,M]€P and so by the

duction hypothesis the product MIN,M]€P.

M[N,M] and N are normal subgroups of <M,Nr. Hence

MN = MlN,MIN€P since P is a multiproperty. tr

whi le

in-

The conclusion of Fitting's Theorem, however, does not

hold if one insists that both N and M are subnormal of

indices of subnormality greater than one.

D.S. Robinson (tt+1 section 5; page 155) defines C to be

the class of al1 groups in which each pair of subnormal

subgroups generates a subnormal subgroup. He then con-

structs an example of a group which is not in the class C.

http://etd.uwc.ac.za/
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Robinson attributes this kind of construction to P. Hal1.

This example is to be used to establish the following

result.

Theorem 2.4

There exists a non-nilpotent group G with abelian

subgroups P and Q such that P<2G and Q<2G and

G = <PrQ>.

Proof:

Let Z denote the set of all integers and let S be the

set of all subsets X of Z such that there exists integers

9. - [(X) and L = L(X), ,. SL, with the property that X con-

tains all integers S L and no integer > L. Roughly

speaking, X contains all large negative integers but no

large positive integers.

Let A and B be two elementary abelian 2-groups with sets

of basis elements respectively

(tx)xes and (bx)xes.

For each n€Z two maps of M = A X B, ,n and vrr, are defined

by the rules

[ArurrJ = 1 - [Brvrr] (2.1)

Ib*,urrJ ux*., and I a* , v, J bx (2 .2)+n

L

Ifor each X€S. Our notation here is as Sowfo1

If nt rrl2 r ..., tr, are integers, (r being f inite), and

http://etd.uwc.ac.za/
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x€s, aX+nr+nrt...*rr r
is to mean ay where Y=Xt,l(nr)u(nz) ...u(nr)

if the ri't are all different and none of them belong to

x; otherwise 
"x*nl +nz+. . . *a, = |.

S imi 1ar

is used

The maps

and they

remarks apply

to denote bi'b

,n and

map the

tob
,n
x

generators on to

X+nr +nz +. . . +n. 'r
Also Ib*,unJ

extended to homomorphisms of M

a set of generators.

vn can be

The inverses of u,

and

and vn exis t

2

-lun

-lv

"xt = ,xbx*.,

Thus the mappings un and v, are automorphisms of M.

Denote the subgroup of Aut(M) generated by the urr, by H

and thesubgroup of Aut(M) generated by the vr, by K.

Let G be the split extension of M by the group of auto-

morphisms J = <H,K).

H centralises the factors of the series

I<A<M=AXB
and so H is abelian.
K centralises the factors of the series

I<B<M=AXB
and so K is abelian.

b x bxtx*r,

It is immediately clear that

u2 = ]. =n V
m

http://etd.uwc.ac.za/
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It will now be shown that

I z*n, a*J 'x***r, and ['r.,'bx] = b
X+m+n

(? .s)

I -lIz*rr'a*J

-tu
m

Ia*ru*l

u
m n u

m
V

Iv -l
n

t 'r'"x]
Vn

-lV UVn mn
, rx]

u
m

V,,

I ur, a*J,"x] Ivrr,a*J

V UV Vn mn ntrxrr.rJ tumraxl LVnroxJ

1b

z
mn

-1VU
X+n

vmn 1 b X+n

X+n

mn = 8x8x*r*r,

,n
(bx*r, ax*6*n) b

2

X+nb ux***r,

a--x+m+n

Similarly [ ,rr,,bX X+m+n'b

2

mn
Furthermore z 1 since:

z
ax

a
z2

mn
x

q

(ax
z z

mn mn
)

Z
mn(aXaX*,n*rr)

2= 
'xux*rn *r,

ax

mn = (bXbX+**n)

2and

b x

a
mn
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b*b'****r,

b x

2

mnTherefore z 1

The next step is to show that

Iz*rr'uuJ -1-I Iz*rr'vr1

It is

acts

on A.

So we

inmediately clear that since zmn maps A + A and uU

as an identity on A, Iz*r,uuJ acts like an identity

['*rr'u] .need only consider b x

Now -l

b ax X+.q,

b x

Thus lz u 1mn' 9"

Similarly for Izmn,

b
zu^zu^mn Ja mn v"

x

zu^mn y,

(bxtx*lbx+m+n
X+m+n+ l,

a

(bx ux*.q,)
u,q,

(bxbx*p*n 
"X*g ax*p*n*.Q, bx*n*n k*m*n*1,)

u"
(bxbx*p*n) k

? u
mn 9"

)

u,Q,

2

'[]

Let P .rX, un : X€S, n€Z>
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and

a = <bx,vm : X€S, m€Z>.

By the rules (2.1) and (2.2) P and Q

It will be shown that P<2G and q<2G.

The normal closure of P in G is Pr =

IP,G] is generated by Ia*,vrrJ , Ib*,u

are abelian.

PlP,Gl.

,1, Iu*,v I andn

all their conjugates in G.

So Pr is generated by uX, un, Ia*rvrrJg, Ib*rurrJg, z

where g€G.
ob
mn'

ob
X+n'

g
X+n

e
mn

I 
un'e

Thus Pr is generated by uX, un,
pr

Define Pz - P = P[P,Pr].

z b a

Since M<G it

is generated

t a*, zfi,rl

follows that b

by
"i*rraM 

and hence IP,Pr]

, Iurr,z

ob
X+n'

lurr,b
ob
X+m

ob
mn t l +m

-oLurr,aft

and all their conjugates in Pr.

So P2 is generated by

oX, un, IaX, ,Hr]g' ob
mnlu zn'

then g=xy where

8t gr g 8t
X+mlI un,

ob
X+mb l

V B€G, V gr€Pr.

Now let g€G

x is a word

and

in the ("X)XaS

x€M and y€J.

and (by) yeg

or rc

y=u
O1 t1

(l)1
uqr

I
q V V

u)r

l
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where o.
1

o or 1 e 0or1
1

A1 so

It was

since y

Also by

(by) v.s'

ob
mn

z Z Iz*r,'8Jmn

= 'rnr, I 
zr, ' xv I

v

proved that

is a word

(2.3), and

Ir*.,rx]€M

'rn, Iz*rr'YJ Iz*rr'xl

zmn commutes with all

in u* and vn, lz^rryJ =

since x is a word in (aX

and since M<G, Irrrr,x]I

,f, and vU and

1

) x€s

M.

and

€

From what

I a*, zfirrl ,

ASP.

It is thus

proved

,r'bfi**1 '

€P V xr€A

it follows

['r, , ufl*r, J

that

all lie in

ob
X+m

has

lu

just been

l, [unrZ
g
mn

sufficient to show that
8t

X1

where X1 is a word in the ax (X€S), v gr€pr.

Let gr = *ir*

is any one of

are their own

Now

i2 x where j=1r2r,..rsXi.,
Js

1

the above generators of Pr and these *i
invers es .

= a*€A if xi "y (Y€S)
T

= a*€A if u
m

r

x.
1 rax

= 'x if

x.
1 r

x.
1 r

bfl+m ora
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and M is abelian.

x.1,

s ].nce ['*rrrg]€M

So one can

By applying

shown that

To see that

for any integer

conclude that Pz(P

the same argument

Q<,G.

Gis

P<2G.

to Q, it can be

and thus

as above

not nilpotent one need only note that

n>0

tl I txr*r, ,Xs, , x
sn+ 

1
I e yn(G)

where s r€2,
them belong

i=2 r3,

to the

,n+1 are all different and none of

set X and furthermore

if i is even

and
if i is odd. tr

1

Let G be a group generated by subnormal subgroups H and

K. If a and b are non-negative integers then Roseblade

(t1Sl) proved that there is an integer c such that

.(c) s H(a) K(b)

where a(c) is the c-th term of the derived series of G.

xsi

x
S

Vs.
1

u
S.

1

No such

central

relat ion

series of

exists between

G, H and K.

Po'G ,

the terms of the

This is shown by

l ower

theorem

2.4, since Q<2G,

Yo (G)vz (Q) 1 yz (P) but ya (G) Ml1
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and G <P,Q>'

However, there

lation exists.

is due to S. E.

24

are circumstances under which such a re-

This is shown by the next theorem which

Stonehewer.

Theorem 2.5 (S.E. Stonehewer t1 6 I )

Suppose that the subgroups H,

their join G and that G = HK.

positive integers ct tc2 s there

d such that

K are

Then

exists an

subnormal in

g]-ven any

integer

Proof:

Let H<mG and proceed

fl=l, so that H<G.

of generality,we may

Let

Yd(G) < Ycr

by

Then

(H) Y (K)
C2

induct ion

(H) <G

that

on m. Thus suppose

and hence without loss

Ycl(H) - 1.as s ume

Kn

K.
be the normal closure series of K in G that is, Ki*l - K 1

for 0SiSn-1.

Suppose that for some i, lSi5n-I there is an integer di*l
such that

d
(K1*1) <

i+1

Y.,

K

Yc2 (K) .Y

For example this is the case if i=n-I.
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Also since G HKi*l, we have

K I (HnK
1

K i+1

25

(Ki*r). Then YoKi.Let Y Yd

with both factors

subgroup of H, is

Thus by

there is

)

normal in K Moreover HnKi, 3s a
IKi*1

-T- :-r nrlpotent.
i'
andnilpotent;

K.
Fitting's Theorem f tt
an integer di such that

nilpotent. Therefore

Yd.(Ki) S Y ( y.2(K).

It fo11ows, by induction on i decreasing, that there is
an integer d(=do) such that

Yd(G) S Yc2(K) as required.

Now suppose that m72 and that the theorem is true for
smaller values of m.

Let H

Then

G m-1 Hr and H1r=H so that H<

by induction on m, there is an

= H(Hr0K).

integer c3 such that

Yc r 
(H)Y.r(Hr) ,., (nrnK).

But G = HrK and hence by the case fl=1, with Hr replacing
H, there is an integer d such that

\<v^ (K)
L2Y4 (G) -< v., (Hr ) Y C1

(H) Y C2
(K).

http://etd.uwc.ac.za/



?6

In conclusion it can be mentioned that D.S. Robinson

(t1+l) proved that if H and K are two subnormal sub-

groups of a group G and if J = (H,K) can be finitely
generated then J is nilpotent. This result has also

been proved by P. Hal1 (t 5 l).

It sha11 be shown in chapter 3 that this result is in
fact an easy consequence of the Hirsch-Plotkin Theorem.

ooOoo
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CHAPTER 3

FITTING,S THEOREM FOR LOCALLY.NILPOTENT SUBGROUPS AND

ZA-SUBGROUPS

53.1 THE HIRSCH-PLOTKIN THEOREM

The Hirsch-Plotkin theorem states that the product MN of

normal locally-nilpotent subgroups M and N of a group G

is itself 1oca11y-nilpotent. The theorem was proved

independently by K.A. Hirsch (t101) and B. Plotkin

(t131) and is well-known. In this section the proof of

K.A. Hirsch will be given. It is then shown that the

theorem can be general Lzed by replacing normal by sub-

normal and even serial.

Theorem 3.1 (K.A. Hirsch tlOl).

The group generated by two 1oca11y-nilpotent normal

subgroups A and B of an arbitraty group Gris itself

1oca1ly-nilpotent.

Proof:

Let
(1) (?)

anb 
(n)

,arb , i3zb

be any arbitrary finite system of elements in <A,B>.

The group

G = (a1b (1) (2)
azb

"rrb 
(^) 

'
will be nilpotent if one can embed it in a nilpotent
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Lt\

subgroup of <ArB>.

Let

and

*
Since B is

potent and

subgroups .

Therefore B

1a.r t...arr,

B* = <b(r),...,b(n)>.

a finitely generated subgroup of B, it is nil-
therefore satisfies the maximal condition for

has a principal series

A
o

*

1

B.
)

j (j=1,2.

f ol lowing

rt
Bt=l

) are all

are cyclic

(3.1)

normal subgroups

(of finite or

B
o

where the groups Bi_ (i = 1,2,. . .k
of B and the factor groups-3,

infinite order).

Let Oj be a generating element of

that in particular

B.,+
l-I

For each

fies the

= (btrbzr...rbjr.

.,k) construct a group A

conditions:

j=1r2r... rk, so

j which satis-

(1) Ojisa

c ont a ins

(?) In the ascending chain

A <Ai ,Br >

finitely-generated subgroup of A which

A
o

<Ar Bz > <Aj 
'Bj>)

all members are nilpotent.

(3 .2)
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Begin by putting j=1.

Form repeated commutators of b1 with all the generating

elements of Ao.

We get

- (1) ^(2)4tt 4r' ', ai ' ,...i

42'

4n'

"j') , ^t')

1)a(n ^ (z)
CL n

brl j=1r2,...,a

where

i,

la

1

^ (i)cL.
)

(i-1)
j

oa.
J

a

"!t) . ^12)l.'1 i=I ,2r...rn

(3.3)j

There are only finitely many elements

a

,a

"r(u),

1

slnce a
(N) 1 for some N N(i).i

Let A1 be the group generated by

(1) (2) (k) i=Lr2r...rn
^i, a I ,a

Furthermore Ar { (ArrBr> since for each element am, m=l ,2r...rn
we have

b;l a(j) br = ulj) r(j*r) € Ar (s.4)

,""
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One now has to show that <Ar,Br> is nilpotent. Since

A1 is nilpotent, it has a non-trivial centre, Z(h).
If Llzez (Ar ) then as above, form repeated commutators of

br with z, giving z, ,(L), ,(z), and after a finite
number of steps one obtains

,(n)
(n-1)

Thus z € Z(<Ar,Br>)

Assume that

a
(n-i-1)

then

-(o) -

lz (n- 1) br l 1

€ Zi*L (<Ar ,Br >)

, (n-i) .

z

ArBr

b(n- t-t) , O, , Z1(<Ar,Br>)

Therefore

z€ (<Ar ,Br >)

and hence

Z(Ar) ( Zrr(<Ar,Br>), since Z(Ar) is

finitely generated.

Let a <Ar rBr>

and assume that

Z n

< zm, (Q) .z1(Ar )

http://etd.uwc.ac.za/
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Letting bars denote cosets modulo Zt (Ar ) (which is

normaf in Q), we have by the argument above that

duction hypothesis

zn' (Q) e zn' (t-:t)

so zt*L (Ar) - znr*p, (Q) = Z*, (Q) sar.

Since Ar is nilpotent, it follows by induction that

A1 SZmr
(a) .

There fore

z^ *1(Q)r
Ar

a = [a bm' o

There are

this type

- ,(Q \- " \A-il 
.

But aI 1S cyclic and so ,(h) = h and Ar ( z*r(Q).

It follows that

zp *1(Q) = Q'r
Hence a is nilpotent.
In the general case A, is taken to be the group generated

by the B* (m = L,2,...,n) and all commutators of the form

(3.s)b
I c)(, 2

bol
S

0 >1
S

in fact finitely many different connutators of

so that condition (1) is satisfied for At-

t...,
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In exactly the same way as above

Ai is normal in <Ai,Br> and that

Assume that condition (Z) in the

up to .Ai, ,j_rr. One has to prove that

it can be shown that

<Ai rBr > is nilpotent.

chain (3.2) is satisfied

b.>.
J

prove that for- ).I J

each commutator

, it will be sufficient to

(3.s)

<Ai, B

_ -1b. ab

Choose r such that 0 r >- j > 0r*1.

€ <A.,Bj_1, (3.6)
) J

Put

Ia*, bo, , l

where e is a generating element of A,

Thus

b ab 0r*1'

a, b,,
r

I
J J

b=to;tabj,

bbeb os

b
)

b lj J

bi,...,b bj

two generators of

b b., (i=r+lr...rs)
0i J t

( B., and this proves
)

t5 l0r+ 
1

os j

Here b.
)

.=e
)
other

s ince

ta,bj I is

elements,

0r*1 (

aU a product of

A and alli
are in B j-1

that is,
j-l and B

)
b

j-1

B

(3.6).

)
In a similar way it follows that .Ai, > is nilpotent.

t
,
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*
Thus a nilpotent group <Ak,Bk>

which contains the subgroup .Ao

.arb(1), ara(Z),..., 
"rrb(n)r.

CorolLary 3.?

In any

potent

> has been found

hence

proves the theorem. o

- <Ak B

*
,B > and

This

group G, the join of all normal Iocally-ni1-

subgroups of G is itself 1oca1ly-nilpotent.

The question arises whether the Hirsch-Plotkin Theorem re-

mains true by replacing M and N normal subgroups of G by gene-

ralizations of normal subgroups. One way would be to con-

sider replacing M and N normal by M and N subnormal or

even serial. The conclusion of the Hirsch-Plotkin Theorem

remains true if one replaces M<G by M<<G. This is what

the next theorem states:

Theorem 3.3

IfMandNare 1oca1ly-nilpotent subgroups of a group

M<<G, then MN is 1oca11y-nilpotent.G and if N<G,

Proof:

The theorem follows from the Hirsch-Plotkin Theorem and

Theorem 2.3. tr

P. Ha11

P1 otk in

(t S 1) proved

Theorem holds

that the conclusion of the

both M

Hirs ch-

and N areif one insists that

i
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subnormal of indices of subnormality greater than one.

The condition M<<G and N<<G can be relaxed even further

to M-<G and N-<G. The proof of this result will be a

consequence of Lemma 3.5 which is due to K.W. Gruenberg

( t 2 I ) . Before proceding with the proof of Lemma 3. 5

the definition of a o-local property is needed.

Definition 3 .4

If P is a given group property and G has a local

system all of whose members have property P, then

G iscalled locally P. If it should happen that all
the subgroups of the local system are also serial
in G, then G is said to be o-1oca11y P. The proper-

ty P is called o-local if o-localIy P is the same as

P.

Lemma 3.5 (K.W. Gruenberg I 2 l) .

IfPisamulti
serial subgroup

closure of K in

- and a o-local property and K

of G possessing P, then R, the

G, also possesses P.

isa

norma 1

Proof:

Let

K G
0

K
o

Ibe a series from K to G and for each tr define H to be the
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normal closure of K in K^, that is, Hf

Thus

Ko
K

K K K

Kr
H1 K KlK,Krl K

K
G

H
CX

K
0 KlK,Gl K

We show that H <H
T tr+1'

Let
k

),+1k1 €H ).+1

and

Then

KKI KlK,KLl.

Ho

R

k.
k,A€H..-A

(k I kr ktr+l (k;' kz kr, ) (kl+1

€ I HK I

I tr+1'

K

r _r I(kr) '(kl' k, kr) (kL)

(krkr)-r k2 (kr n^l

krk )
).+1

For each limit ordinal

)
-l
tr+1

K
ul^ 

ni

I

Hence it

H

follows that H

U Hu.
u<),

=R<G

Hence

T

cx

I
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is a series, and so Hl is serial in G. The lemma is

proved by induction on I. Suppose that H, has property

P for all u<),.

If I is a limit ordinal then the set of all ,u iuith u<),

provides a o-local systen of H^ all of whose members have

P. Thus Hl is o-localIy P and hence is P. If however,

), is not a limit ordinal then it is clear that

x-1 H x<K V x€Kr-1 r-1

S ince

K<H t-1

and

it follows that

H =<KX:Vx€K

I

K. K,
(Kn)*-K^

1x s Hi-r

l

t-1 Hl

'HI- r V x€K II

Convers e 1y

and so

Therefore

H .<

Kr-1 x
(K )

H I ,i-,
I

The product of any finite number of conjugates of H.l_f

by elements in K^ again has P since P is a multi-property

=tHf-ttVx€K^> I
x€K
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and also of course, is a normal subgroup of H

Thus the set of all such products is a o-local

of H^ whose elements all have P, and so Hl is

P. Thus, whatever the nature of tr, Hl is P,

duction is complete. tr

I
sys tem

o-1oca1ly

and the in-

The

and

following corollaries are consequences of Lemma 3.5

the Hirsch-Plotkin Theorem.

Corollary 3.6

If M-<G, No{G, M and N are

subgroups of G, then <MrN>

both 1oca1ly-nilpotent

is also 1oca1ly-nilpotent.

Proof:

The corolTary is an immediate consequence of Lemma 3.5 and

the Hirsch-Plotkin Theorem since <M,N> ( MN and the normal

closures M and N of M and N respectively are locally-niI-
potent. tr

Corollary 3.7

Proof:

Since J is finitely generated, it

two finitely generated subgroups,

Let H and K be two subnormal nilpotent

a group G and suppose J = <H,K> can be

generated. Then J is nilpotent.

subgroups of

fini te 1y

can be generated by

on e contained in H and
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the other in K. Now any subgroup of H or K is sub-

normal in G and nilpotent, So one may assume that H and

K are finitely generated. By Lemma 3.5 the normal

closure of K in G is 1ocally-nilpotent. Similarly

the normal closure of H in G is locally nilpotent.

Plotkin Theorem, where H is the normal closure of H

in G and R is the normal closure of K in G.

But J = <HrK> is finitely generated. Hence J is nil-

potent and this conpletes the proof. tr

93.? FITTING'S THEOREM FOR ZA-SUBGROUPS

The question arises if Fitting's Theorem could be genera-

Ltzed to other group theoretical properties. P. Hal1

(t 6 l) proved that hypercentrality is a property E- which

satisfies (1.1). The proof of his result is given here.

Theorem 3.8 (P. Ha1l t 6 l)

If H<G, K{G and H and K are both ZA-groups, then HK

is a ZA-group.

Proof:

We may suppose H I L, then Z(H) l l where Z(H) denotes

the centre of H and Z (H) <G.

If

Z(H) 0 K = |
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then

tZ(H),Kl ( z(H) n K = l.

Therefore

z(H) < z(HK).

However if

z(H) n K l1

then there exists a first term Yu such that Z (H) n Yu f 1.

Then r is not a limit ordinal number, say u = ),+1,

and

tz(H) n Yu,Kl s Z(H) n IYu,K]

s z(H) o Yl - 1

since tr<p and hence the centre of HK contains Z (H) n Yu

and is therefore non-trivia1.
Let

Z <...<L0

be the upper central chain of.HK.

Then

L=!
o)l

Z
0

As a homomorphic image of HK, the group

HK-LH LKf,--r- r,
rvhich is a

of H and K.

product of two normal ZA-groupS, the images
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centre of H,
contradi ct i on

40

has a non-trivial centre,

definition, is trivial.
it follows that HK = l.

HK
f,-
by

and

uut f,
This

Thus

the

isa
HK is

a ZA-group.

The symmetric group on three symbols shows that the above

theorem cannot be generalrzed by replacing H<G (K<G) by

an arbitrary ZA-subgroup H of G (or K of G) since it can

be generated by two cyclic subgroups one of which is a

normal subgroup.

The question then arises whether the conclusion of

HaI1's Theorem remains true if we replace K normal

by K subnormal in G. The next theorem shows that
is indeed the case.

P.

inG

this

Theorem 3.9

If H and K are ZA-subgroups

K<<G, then HK is a ZA-group.

of a group G and if H<G,

Proof:

The theorem follows from P. Hal1rs Theorem and Theorem

2.5. tr

The conclusion of

that both H and K

greater than one.

Theorem 3.8 does not hold if one insists

are subnormal of indices of subnormality

The next theorem shows this.
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Theorem 3.10

There exists a group G which is not hypercentral

with hypercentral subgroups P and Q and Po'G,

Q<'GandG=<P,Q>.

Proof:

The example used in Theorem 2.4 is also

Theorem 3.10. It should only be noted

oo0oo

us ed

that

to prove

Z(G) = |
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CHAPTER 4

FITTING,S THEOREM FOR FC-NILPOTENT AND FC-HYPERCENTRAL

GROUPS.

54.1 THE PRODUCT OF TWO NORMAL FC-NILPOTENT

SUBGROUPS OF A GROUP.

Fitting's Theorem can be genera1-ized to FC-nilpotence.

In a paper by K.K. Hickin and J.A. Wenzet (t 9 l) the

authors prove that the product of two normal FC-nil-
potent subgroups of a group, is itself FC-nilpotent.

It should be observed that for finite groups FC-nilpotence

and nilpotence means the same thing. To establish the

above mentioned result due to K.K. Hickin and J.A. Wenzel,

some preliminary results are stated as lemmas. The proof

of Lemma 4.7, which is due to F. Haimo (tS l), will not be

given here.

Lemma 4.I (F. Haimo t 3l).

Let N be a normal subgroup of a group G such that

(a) NcF-(G) andm'
(b) there exists a positive integer k for which

$ tr FC-nilpotent of FC-c1ass k.

Then G is FC-nilpotent of FC-class < m+k. o

Lemma 4 .2 (K.K. Hickin and J. A. Wenz el t 9 I ) .

Let L<G, M<G. SupposeL=MandLc FY (G) ,

/c\\r/'tffEFrordinal y. Then tul ! Fv*1(G)

some
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l, then for m€M the index of the centraLizer

is finite.
FY (G)--r-

,fYsFr
of mL in

(c
\r
Gt

Now since

So mF (G) € Fr
(c
\E;.G-i

there exists a homornorphism tG

f,

such that

T

So the central izer of nF (G)I
F

has finite index in
(G)

G

Gr
F_TGTY'---r-

G .>
L

\_
)-

F_TGI-
Y-

G

{ro
Y+1

Y F (G)
Y

Therefore M 
= 

Fy*1 (G) .

Lemma 4.3 (K.K. Hickin and J.A. Wenzel t g I ).

Let H and K be normal subgroups of a group G. For

any pair of non-negative integers (i,j) define a

subgroup by

G(i,j) = Fi(H) NF (K).
J

Then

c(i,j) 
= 

Fi*j_1(HK).

Proof:

Let F(k) denote Fk(HK). Since F1(H) is a characteristic
subgroup H and H<G, Fi(H)<G.
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Similarly F.; (K) <G so G(i, j ) <C. Put s = i+ j .
J

result is proved by induction on s. If s = 1,

result is clear. Assume the statement is true

s s t.

If i = 0, then G(O,j) = 1.

If j = 0, then G(i,Q) = 1.

Thus it is assumed that i I 0 I j.

G(i-1,j) 
= 

Fi+j-2(HK)

and

c(i,j-1) S Fi+j_z(HK)

by the induction hypothesis.

Let

L = G(i-1,j) c(i,j-1) 
= 

Fi+j-z(HK)

and 1et

The

the

for all

x € G(i,j).

The number of conjugates

Thus x has a finite number of conjugates mod Fi_1(H).

Hence x has a finite number of conjugates

mod Fr_l(H)nFj(K) and so x has a finite number of con-

jugates mod L.

(*tr-l(H))| n € H, is rinite.
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Let

Con(x,H) = {xh : h € H}'

then Con(x,H) has a finite number of members mod L.

Similarly, the number of conjugates (. ,j-t(*))k,

k € K, is finite.

Thus x has a finite number of conjugates mod Fj-1(K).

Hence x has a finite number of conjugates

mod Fi(H)naj-1(K) and so x has a finite number of con-

j ugates mod L.

Let

Con (x, K) k{x k € K),

then Con(x,K)

Therefore Con

mod L and so

has a finite number of members mod L.

xL € Fr -r)

/\
(Con(x,H),xf has a finite number of members

HK(

Hence
G(i S Fr HK

T-
) ( )

By Lemma 4.2

G(i,j) 
= 

Fi*3_1(HK)

and this completes the induction.
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Theorem 4.4 (K.K. Hickin and J.A. WenzeI t9l).

If H and K are normal subgroups of G and if H

and K are FC-nilpotent of FC-class n and n respec-

tively, with n ) r, then HK is FC-nilpotent of FC-

class at most 2n+m-1.

Proof:

Lemma 4.3 shows that

HNK G(n,m) n+m- 1
(HK) .

HK
ENKAs the FC-class of ( tr, the FC-class of

HK is < n+(n+n-l) 2n+m-1 by Lemma 4.L. o

The next theorem proves

holds if K normal in G is replaced

Theorem 4.5

If H<G, K{<G and if H and K are both FC-nilpotent

then HK i. s FC -ni lpotent .

Proo f:

The theorem follows from Theorem 4.4 and Theorem 2.3. tr

=F

that this last result stil1

by K subnormal in G.

The question arises whether the

remains true if it required

conclusion

that K-(G.

of Theorem

This means4.4
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K<<G

that

one would like

can be relaxed

this cannot be

-47

to know whether the

to K-<G. The next

done.

condition

theorem shows

G with FC-

such that

Theorem 4.6

There exists a non-FC-nilpotent group

ni lpotent

G = HK.

subgroups H and K, H<G, K-<G

Proo f :

Let G

Thus G

group

only

be the

isa
H and

rema]-ns

group defined in Theorem 2.2.

product of the normal FC-nilpotent sub-

the serial FC-nilpotent subgroup K. It
to show that G is non-FC-nilpotent.

It is clear that € Fr(G). We want to show that

Fr (c)
o

Let

L I x € G,

then
11 1 tL2

x=a a r
m

f1 T2

andkl0

ao

bk
n

m
a

and it is assumed that none

We show that the element x

of conjugates.

of the a r
1

a
o

does not have a finite number
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Now

where (

rr1

I1
b )atau'ta k

a

(ua-f _, )

n
ma

a
.k, AL

rn

9"
-cL

NI

I1

n
m

r
m

r
n

m

rt1
arr

rlr
aTr

a
rI 1

T1

a

n
m

k

m

n
m

r
m

n
m

1au'uau ) 
k

a

a

m

m
r

We show by induction on k that

k
r

a
i=1 i

(ba!, 
- t

m

ni tfl"i

a

a

-1 a

a p,-r
- rlr
n-k '

k k
ImI

(
k

r. -k
1

-1
9"-L

)ni ( )
bk aar. -r

1
r

k
r )

k:
il--rk=frr'

(4.1)

(4 .2)

This statement is true for k 1 s ince

flr

Tr

nm,
DAr 9"-I

I
a

m

bb-ra
rl 1

Tr b
n

mbb-Ia ba -1
9"-I

rIr
ba a

Il 1

rr -1

r

n
m

r
m

a a

Ir
1

I1

m
I

1

n. n.11 -t
^r. -l 

ag-1'
1

b

rl 1

I1

n
m

a luau l, )

Now

a

a

r
m

k+1
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n

m

r
m

qua* 1, )
k ba

tfln,
ar. -k

1

a 9.-t

n.
1

ar.
1

,m
bK II

i=1

rf )ri
ar. -I

1
-l
9"-L'

-cb -rlr
an-L '" 'g-k 

ba

As in (4.2) and by applying the identity

k k

we get

r 1

aut (a

(

+ r

rI 1

Ir

( ) ( ) (n;')

n
m k + 1

)ap"r

)ni rllil",
... a ari-K-r

- rkilr - rlllr
e.-l a

t -k-1

ba
m

n
1m

k+1
I

, k+l
D ar arI

ard our assertion is proved by induction.

Also

IIr n"r 'h,k -l
^Lur,,"' ar o uL

'm

I .-1
111

'k -r
^g. 

o ag.

rI1

ar

rl1
a

T1

D1

aIr

.\,
ar

m

n
^md.r

m

n
m

ar
m

k(aU bau )

and by repeating the above argument we arrive at

(brs-r) k

n
m

rlt
T1 )

m

d a
T

(ba t -1
k
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1

)
k
t

i

(

r
n k

k
( )ni )( k

I clr
[-k'b

k i
a a

I

consider the case where k

t that

(4.3)

0 . lVe show by i nduc -

t )n
a

t
-t (4.4)

n
m

1
r

n

r
m

fl
i=1

1
a -k !,-1a ...4

Next we

tion on

-tb a
Dr

Ir a
n

m t
b

b bb-
Tz

n n
mm

r -1
m m

r
m

cl)ni
a r.-I

11

n

rI1

m

n

=

1
(

r
I

a
1

This is true for t I s ince

b 1a

a

a
Ilr

I1

m

I

n
m

a br

n2

IlI

Tr

Ilr
Ir

m

b abb-ra

ad

a

a

b (4.s)r
m

flr

"r, -, r

n. n
a

b
- (t+1)

a

b-'rb-t a

I1
a. r. -1

1
r

1 1 1

Then

Dr

Tr

I1 1

11.

n
m t+1

br
m

n
m t

r b )b

)
t
I

i

(

r

n

a

n."1
a ri

z III

b-,{ n\i=1

m

i (l)"i.
'r. -. )bt'-1
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As in (4.5) and by applying the identity

c,l rl
t+ )

t+1
r( ( )

t+1

a

,t+ 1.(1.'1J ni
rr-t-1

r

we get

- (t+r)
b

rIr

T1
a b

n
m

m

a
T

1-
ra

n.
1

ar.
]-

m
I

i=1

( t+1

1

)niI

and our assertion is proved by induction.
rIr

(4.3) and (4.4) it is clear that x = "rr..
does not have a finite number of conjugates.

conclude that Fr(G) = (zto).

Let

o:G + G
<a

o

be a mapping defined by

to * 31

41+42

a. + a.1 1+l

By (4.1),
nm,KaDerm

Hence we

G

tto'0

o

o

t'o''b'>b

The mapping o can be extended to a homomorphism of G.
rl 1

The element (.r,
flt flz

a-aarr-r rz-L

> is the image of
n

ambr
m

k
) arO

n
m

r
m

-1 bk under 0.
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Furthermore a b € ker cr

rIr

I1

5Z

n
m k

ra
m

<+ (a
fIr

Tr

n
m

a uk)o <a
o

kb <a >=<a
o

r

€-t a
rI 1

rt+1

m

n
m

r +1a o
m

rl1
trr*1

n
m k<+ a b €<ar +1 o
m

<+ fI1 flz trm k o

So o is an isomorphism.

Since

G AI
G

t 
"o"

it follows that

Fr G
<3t )ar.,

and so

Fz (G) (€lorE[r>

and in general

F (G) aaor31r..., 
"rr'.n

Therefore G is not FC-nilPotent. o

94.Z THE PRODUCT OF TWO NORMAL FC.HYPERCENTRAL

SUBGROUPS OF A GROUP

Fittingrs Theorem can be generaLized to FC-hypercentrality.

)=
(
\ '"o'o

K.K. Hickin and J.A. Wenzel (t 9 l) proved that the product
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of two normal FC-hypercentral subgroups of a group, is

itself FC-hypercentral. Results which ale required to

establish this, are stated as lemmas. The proof of Lemma

4.7, which is due to J.H. Hoelzer (t111), is not given here.

Lemma 4 .7 (J. H. Hoe Lzer t 1 1 I )

.If H is a non-trivial normal subgroup of an Fc-hyper-

central group G, then H n Fr (G) I E. tr

Lemma 4.8 (K.K. Hickin and J.A. Wenzel t 9 l).

If H and K are normal subgroups of a group G and

if H and K are FC-hypercentral groups and HK I E,

then, i;r (l{K) I E.

Proof:

IfHnK=E,thenHK=HXK

and

Fr (HXK) = Fr (H) x Fr (K) I E.

If H n K I E, then H n K is a non-trivial normal subgroup

of H. By Lemma 4.7

L - (HnK) n Fr(H) I E

and L<G since Fr (H) is a characteristic subgroup of H and

H<G.

Now

L n Fr(K) I E

since L is a non-trivial normal subgroup of K.

http://etd.uwc.ac.za/



- 54

But

L n Fr(K) = [(HnK) n Fr(H)] n Fr(K)

= Fr (H) n Fr (K)

= M,

which is normal in G.

Let x € M-E. Consider the set

{ = {*hk : h € H and k € K}.

Then A is a subset of M. As h ranges over H, x

on a finite number of values , sdY Xr ,xz , ..., xn , aJ.1- of

which lie in M. As xi € Fr (K), *f takes on a finite number

of values as k ranges over K for 1 < i < n. Thus x € Fr(HK),

and so Fr (HK) I E. tr

Theorem 4.9 (K.K. Hickin and J.A. Wenze1 t 9 l).

Let H and K be non-trivial normal subgroups of a group

G such that G = HK. If H and K are FC-hypercentral,

then G is FC-hypercentral.

Proof:

Suppose the theorem is not true. By Lemma 4.8, Fr(HK) I E.

Suppose that there exists an ordinal o such that

Fcx(G) = F0+1(G) I G.

Then

h takes

G
G _ tHF0(G) l

q-cCI- - -F-0T6r
tKF (G) l

cx

F rcl
0,

Now G is a product of two normal Fc-hypercentral groups
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and G I E. By Lemma 4.8 Fr (G) I E. Therefore Fo*1(G) ,

which is the complete inverse image of Fr (G), is strictly

greater than Fo(G). This is a contradiction. o

The conclusion of Theorem 4.9 sti1l holds if K normal in

G is replaced by K subnormal in G. This is shown by the

next theorem.

Theorem 4.10

If H<G, K<<G and H is FC-hypercentral and K is

FC-hypercentral, then HK is FC-hypercentral.

Proof:

The theorem follows from Theorem 4.9 and Theorem 2.3. tr

ooOoo
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ABSTRACT

H. Fitting proved that
potent subgroups H and

potent.

We have considered the
requirement that H and

(A). This is done by

serial.

the product of two normal nil-
K of a group, is itself nil-

question of to what extent the
K be normal can be relaxed in
replacing normal by subnormal or

Several authors have proved statements of the following
type:

(A) If H and K are normal subgroups of a group G and

if H€P, K€P then HK€P, where P is a group theoretical
property.

In Chapter I Fitting's Theorem is proved and a few
simple consequences of the theorem are stated as corol-
laries. The bound attained in Fitting's Theorem for
the nilpotency class of the product of two normal nil-
potent subgroups of a group, turns out to be a least
upper bound.

In Chapter 2 we are concerned with the generalization
of Fitting's Theorem in the case of nilpotent subgroups
H and K. If we replace K normal in G by K subnormal
in G, the conclusion of Fitting's Theorem sti11 holds.
However this is not the case if we replace K normal in
G by K serial in G. This is shown by an example. If
we insist that the indices of subnormality of both H

and K are greater than one, then Fittingrs Theorem does

not remain true.
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Chapter 3 deals with the Hirsch-Plotkin Theorem. It
is shown that the conclusion of the Hirsch-Plotkin
Theorem stil1 holds if H and K are serial in G.

K.K. Hickin and J.A. Wenzel proved that the product
of two normal FC-nilpotent subgroups H and K of a

group G, is itself FC-nilpotent. They also proved
that the product of two normal FC-hypercentral sub-
groups H and K of a group G, is itself FC-hypercentral.
In Chapter 4 it is shown that the result remains true
if K<G is replaced by K<<G. An exanple is produced
to show that Kc<G cannot be relaxed to K-<G in the
case of FC-nilpotence.
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