

 2450° GENERALIZATION OF A THEOREM OF FITTING
 ON THE PRODUCT OF TWO NORMAL
 NILPOTENT SUBGROUPS OF A GROUP \$D BY

UNIVERSITY of the WESTERN CAPE

100 \$ RICHARD LEWELYN FRAY

Presented in partial fulfilment of the requirements for the degree of

MAGISTER SCIENTIAE
in the

DEPARTMENT OF MATHEMATICS
of the

UNIVERSITY OF THE WESTERN CAPE
DECEMBER 197

UNIVERSITY of the
To Daddy and Mummy

ACKNOWLEDGEMENT

I take this opportunity to express my sincere gratitude to Prof. I.J. Mohamed for suggesting this problem. The thesis was completed under his guidance and his advice on numerous aspects of this work, is much appreciated. His competence, willingness to help and instruct, enthusiasm and genuine interest are highly esteemed and appreciated.

I am deeply indebted to Dr. J. Vermeulen, my promoter, for his cooperation and assistance in completing the thesis in its final form.

UNIVERSITY of the
My thanks are also due to Miss S.D. Paulse for typing the thesis and to the C.S.I.R. for financial assistance received.

It is difficult to express adequately my gratitude to my parents for their encouragement, unfading interest and affection.

S UMMARY

H. Fitting proved that the product of two normal nilpotent subgroups H and K of a group, is itself nilpotent.

Several authors have proved statements of the following type:
(A) If H and K are normal subgroups of a group G and if $H \in P, K \in P$ then $H K \in P$, where P is a group theoretical property.

We have considered the question of to what extent the requirement that H and K be normal can be relaxed in (A). This is done by replacing normal by subnormal or serial.

CONTENTS

Page
ACKNOWLEDGEMENT (i)
SUMMARY (ii)
CHAPTER 1 : FITTING'S THEOREM FOR NILPOTENT SUB- GROUPS
§1.1 Introduction 1
§1.2 Notation 2
§1.3 Fitting's Theorem for normal nilpotent subgroups 5
CHAPTER 2 : GENERALIZATION OF FITTING'S THEOREM FOR NILPOTENT SUBGROUPS
CHAPTER 3 : FITTING'S THEOREM FOR LOCALLY-NIL- POTENT AND ZA-SUBGROUPS OF A GROUP
§3.1 The Hirsch-Plotkin Theorem 27
§3.2 Fitting's Theorem for normal ZA-subgroups 38
CHAPTER 4 : FITTING'S THEOREM FOR FC-NILPOTENT AND FC-HYPERCENTRAL SUBGROUPS OF A GROUP
§4.1 The product of two normal FC-nil potent subgroups of a group 42
§4.2 The product of two normal FC- hypercentral subgroups of a group 52
REFERENCES 56
ABSTRACT 58

CHAPTER 1

FITTING'S THEOREM FOR NILPOTENT SUBGROUPS

§1.1 INTRODUCTION

H. Fitting proved that if H and K are normal nilpotent subgroups of G, then so is $H K$ ([1]. Hilfssatz 10, p. 100). The question arises if this result could be generalized to other group theoretical properties.

If a group G has normal E-groups (groups with property E) H and K and if $H K$ is also an E-group then E is called a multiproperty.

Theorems of this type have been proved by a number of authors. We have the well-known Hirsch-Plotkin Theorem (See [10] and [13]) that local nilpotence is a multiproperty. P. Hall ([6]) proved hypercentrality is a multiproperty. FC nilpotency and FC - hypercentrality turn out to be multiproperties. This was shown by K.K. Hickin and J.A. Wenzel ([9]). H. Heineken and I.J. Mohamed ([8]) proved that both the normalizer condition and the subnormality condition are not multiproperties.

The question we are to consider is whether the requirement that H and K be normal in (1.1) can be relaxed. This will be done by replacing normality by subnormality or serial in some of the results mentioned above.

§1.2 NOTATION

Let H and K be subgroups of a group G.

If there exists a series

$$
H=H_{0} \triangleleft H_{1} \triangleleft H_{2} \triangleleft \ldots \triangleleft H_{n}=G
$$

we say that H is n-step subnormal in G and follow the well-known notation due to P. Hall ([7]) by writing $\mathrm{H}^{\mathrm{n}} \mathrm{G}$.

If there exists an ascending series of subgroups H_{α} linking H to G such that

$$
\mathrm{H}_{\alpha} 4 \mathrm{H}_{\alpha+1}
$$

and

$$
H_{\alpha}=\bigcup_{\gamma<\alpha} H_{\gamma} \text { for all limit ordinals } \alpha \text {, we }
$$ say that H is serial in G and following Gruenberg ([2]) write $H^{\infty} \triangleleft G$.

For $x_{1}, x_{2} \in G$ the commutator $x_{1}^{-1} x_{2}^{-1} x_{1} x_{2}$ would be denoted by [x_{1}, x_{2}] and more generally for $k>1$

$$
\left[x_{1}, \ldots, x_{k+1}\right]=\left[\left[x_{1}, \ldots, x_{k}\right], x_{k+1}\right]
$$

The convention is adopted that for $k=0,\left[x_{1}, \ldots, x_{k+1}\right]=x_{1}$.

The following well-known standard commutator identities ([4]) will often be referred to:

$$
\begin{align*}
& {[x y, z]=[x, z]^{y}[y, z]} \tag{1.2}\\
& {[x, y z]=[x, z][x, y]^{z}} \tag{1.3}\\
& {\left[x^{-1}, y\right]=[y, x]^{x^{-1}}} \tag{1.4}\\
& {\left[x, y^{-1}\right]=[y, x]^{y-1}} \tag{1.5}
\end{align*}
$$

The commutator group $[\mathrm{H}, \mathrm{K}, \mathrm{K}, \ldots, \mathrm{K}]$ with n terms K , is written $\left[\mathrm{H}, \mathrm{n}^{\mathrm{K}}\right.$] with the convention that $\left[\mathrm{H}, \mathrm{O}^{\mathrm{K}}\right]=\mathrm{H}$.

The notation $\gamma_{m}(H)$ denotes $[H, m-1 H], m \geqslant 1$, the terms of the lower central series of H.

Thus H is nilpotent of class n if $\gamma_{n+1}(H)=1 \neq \gamma_{n}(H)$.

As usual the terms of the upper central series of H shall be written $1=Z_{o}(H), Z_{1}(H), \ldots, Z_{i}(H)$ or simply Z_{i} if H is understood, where

$$
\begin{gathered}
Z_{1}=\text { the centre of } H . \\
\frac{Z_{i+1}}{Z_{i}}=\text { the centre of } \frac{H}{Z_{i}} \\
Z_{\gamma}={ }_{\alpha<\gamma} \text { if } \quad \text { is a in imit ordinal. }
\end{gathered}
$$

A group G is a $2 A-g r o u p$ if and only if its upper central chain, possibly continued transfinitely, leads to the group G.

The normal closure of H in G is the smallest normal subgroup of G which contains H and is denoted by H^{G}. Clearly $H^{G}=H[H, G]$.

A group G is locally - nilpotent if every finitely-generated subgroup of G is nilpotent.

Let G be a group:

$$
F_{o}(G)=1, \text { the unit subgroup. }
$$

$F_{1}(G)$ is the set of elements of G which posses a finite number of conjugates.
$\mathrm{F}_{\alpha+1}(\mathrm{G})$ is defined inductively to be the complete inverse image of $F_{1}\left(\frac{G}{F_{\alpha}(G)}\right)$, for all ordinals α. $F_{\alpha}(G)=U\left\{F_{\beta}(G): \beta<\alpha\right\}$, if α is a limit ordinal.

For all ordinals $\alpha, F_{\alpha}(G)$ is a characteristic subgroup of G .

A group G is called $F C$-nilpotent of class n if there exists an integer n such that $F_{n-1}(G) \neq G$ and $F_{n}(G)=G$.
G is called FC-hypercentral of class α if there exists an ordinal α such that $F_{B}(G) \neq G$ for $\beta<\alpha$ and $F_{\alpha}(G)=G$.

§1.3 FITTING'S THEOREM

Fitting's Theorem that the product $M N$ of normal nilpotent subgroups M and N of a group G is nilpotent, is well-known and easy proofs can be found in textbooks (see for example [4]).

The question, however, arises if it is possible to describe the lower central series (upper central series) of $M N$ in terms of the lower central series (upper central series) of M and the lower central series (upper central series) of N. We give an inclusion relation for the lower central series in Theorem 1.4 below. To facilitate the proof of this, we give a set of generators for $\gamma_{k}(\langle M, N\rangle)$ for subgroups M and N of a group G in Lemma 1.1 and its corollaries.

Lemma 1.1

$$
\begin{aligned}
& \text { If } M \text { and } N \text { are subgroups of the group } G \text {, then } \\
& \left.\gamma_{k}(<M, N\rangle\right)=\left\langle\left[x_{1}, \ldots, x_{k}\right]^{y}: \forall y \epsilon<M, N\right\rangle, \forall x_{i} \ni \text { either } \\
& \left.x_{i} \in M \text { or } x_{i} \in N\right\rangle .
\end{aligned}
$$

Proof:
The proof is by induction on k. Clearly for $k=1$, the lemma is trivially true by definition of commutators. Assume the result is true for $1 \leqslant r<k$. Then by the commutator identities in $\$ 1.2 \gamma_{k}(\langle M, N\rangle)$ is generated by $\left[\left[x_{1}, \ldots, x_{k-1}\right], y\right]$ and all their conjugates in $\langle M, N\rangle$ for $a l l x_{i}$ such that either $x_{i} \in M$ or $x_{i} \in N$ and $y \in\langle M, N\rangle$. By the commutator identities
$\left[x_{1}, \ldots, x_{k-1}, y\right]$ is a product of commutators $\left[x_{1}, x_{2}, \ldots, x_{k-1}, x_{k}\right.$] and their conjugates in $\langle M, N\rangle$, where either $x_{k} \in M$ or $x_{k} \in N$. This proves the lemma. \quad

The following two corollaries are but special cases of the lemma.

Coro11ary 1.2
If M and N are subgroups of G and if $N \varangle G$ then
$\gamma_{k}(M N)=\left\langle\left[x_{1}, \ldots, x_{k}\right]\right]^{y}: \forall y \in N$, either $x_{i} \in M$ or $\left.x_{i} \in N\right\rangle$.

Corollary 1.3
If $M \triangleleft G, N \triangleleft G$ then
$\gamma_{k}(M N)=\left\langle\left[x_{1}, \ldots, x_{k}\right]\right.$: $\forall x_{i} \ni$ either $x_{i} \in M$ or $\left.x_{i} \in N\right\rangle$.

These corollaries follow since conjugation is a homomorphism.a

Theorem 1.4
If M and N are normal, nilpotent subgroups of G of
nilpotency class m and n respectively, then
$\gamma_{k}(M N) \leqslant \begin{cases}\gamma_{k}(M) \gamma_{k}(N) \underset{s=1}{k-1} \gamma_{s}(M) \cap \gamma_{k-s}(N) & \text { for } k>1 \\ \gamma_{k}(M) \gamma_{k}(N) & \text { for } k=1\end{cases}$
and MN is nilpotent of class at most $m+n$.

Proof:
The proof is by induction on k. The result is trivially true for $k=1$. Suppose true for $k-1 \quad(k>1)$.

By Corollary 1.3 of Lemma 1.1, $\gamma_{k}(M N)$ is generated by the commutators $\left[x_{1}, x_{2}, \ldots x_{k}\right]$ for all x_{i} such that either $x_{i} \in M$ or $x_{i} \in N$.

Consider the generator $\left[x_{1}, \ldots, x_{k}\right]$. If none of the x_{i} is an element of M, then $\left[x_{1}, \ldots, x_{k}\right] \cdot \epsilon \gamma_{k}(N)$. On the other hand if none of the x_{i} is an element of N, then $\left[x_{1}, \ldots, x_{k}\right] \in \gamma_{k}(M)$.

Suppose now that $s,(s<k)$, be the number of x_{i} which are elements of M. Then $k-s$ of the x_{i} are elements of N and so clearly since $M \& G, N \notin G,\left[x_{1}, \ldots, x_{k}\right] \in \gamma_{S}(M) n_{\gamma_{k-S}}(N)$. Thus

$$
\gamma_{k}(N M) \leqslant \gamma_{k}(M) \gamma_{k}(N) \prod_{s=1}^{K-1} \gamma_{s}(M) \cap \gamma_{k-s}(N)
$$

If we put $k=m+n+1$ then

$$
\gamma_{m+n+1}(M N) \leqslant \underset{s=1}{\frac{m+n}{I}} \gamma_{s}(M) \cap \gamma_{m+n+1-s}(N)=1
$$

For if $s \geqslant m+1$ then $\gamma_{s}(M) \cap \gamma_{m+n+1-s}(N)=1$ since M is ni1potent of class m, while if $s<m+1$ then $m+n+1-s \geqslant n+1$ and so again $\gamma_{S}(M) \cap \gamma_{m+n+1-s}(N)=1$, since N is nilpotent of class n. Thus $M N$ is nilpotent of class $\leqslant m+n$. a

It appears unlikely that the equality holds in the inclusion relations in Theorem 1.4 for $1<k<m+n+1$ and this question will not be considered any further. However, a few simple consequences of the theorem must be noted. These give some conditions under which the bound $m+n$ for the nilpotency class of MN is not attained.

Corollary 1.5
If $\gamma_{S}(M) \cap \gamma_{k-s}(N)=1$ for $1 \leqslant s \leqslant k-1$ then $M N$ is nilpotent of class at most max (m,n).

This result is immediately clear if one notes that if $\mathrm{k}=\max (\mathrm{m}+1, \mathrm{n}+1)$ then

$$
\gamma_{k}(M N) \leqslant \prod_{s=1}^{k-1} \gamma_{s}(M) \cap \gamma_{k-s}(N)
$$

Corollary 1.6
If $\gamma_{m}(M) \cap \gamma_{n}(N)=1$, then $M N$ is nilpotent of class < m+n.

If we choose $k=m+n$ then

$$
\gamma_{m+n}(M N) \leq \gamma_{m}(M) \cap \gamma_{n}(N) \cdot \square
$$

Corollary 1.7
If $M \cap \gamma_{n}(N)=1$ and M is abelian or $\gamma_{m}(M) \quad \bar{n} N=1$ and N is abelian then MN is nilpotent of class at most n or m .

In the first case chosing $k=n+1$

$$
\gamma_{n+1}(M N) \leqslant M \cap \gamma_{n}(N)
$$

while in the second case one chooses $k=m+1$ and

$$
\gamma_{m+1}(M N) \leqslant \gamma_{m}(M) \cap N
$$

The bound obtained in Theorem 1.4 is a least upper bound. As no example of this could be found in the literature, such an example will be given here. To do this the
following result which is due to P. Hall ([5]), is needed.

Lemma 1.8 (P. Ha11. [5]).
If V is a vector space over the prime field of p elements with basis $\left(v_{n}\right), n=0, \pm 1, \pm 2, \ldots$ and ξ and η are linear transformations of V defined by

$$
v_{n} \xi=v_{n+1} \text { for all } n
$$

and

$$
v_{0} n=v_{0}+v_{1} ; v_{n} n=v_{n} \text { if } n \neq 0
$$

then the group $\widetilde{G}=\left\langle\eta_{1}, n_{2}, \ldots, \eta_{m+n}\right\rangle$ of 1inear transformations of V, where $\eta_{i}=\xi^{-i} n \xi^{i}$ and η, ξ are defined above, is nilpotent of class at least $m+n$. WESTERN CAPE

Proof:
The first step is to show that

$$
v_{i} \eta_{i}=v_{i}+v_{i+1}
$$

and

$$
v_{j} \eta_{i}=v_{j} \quad \text { if } j \neq i
$$

Now we have

$$
\begin{aligned}
v_{i} n_{i} & =v_{i}\left(\xi^{-i} n \xi^{i}\right) \\
& =v_{i-i}\left(n \xi^{i}\right) \\
& =v_{o}\left(n \xi^{i}\right) \\
& =\left(v_{o}+v_{1}\right) \xi^{i} \\
& =v_{i}+v_{i+1}
\end{aligned}
$$

and

$$
\begin{aligned}
v_{j} \eta_{i} & =v_{j-i}\left(n \xi^{i}\right) \\
& =v_{j-i}\left(\xi^{i}\right) \\
& =v_{j-i+i} \\
& =v_{j}
\end{aligned}
$$

Next one has to show that $\eta_{i}^{p}=1$, for each i. Now

$$
\begin{aligned}
v_{i} \eta_{i}^{p} & =\left(v_{i} \eta_{i}\right) \eta_{i}^{p-1} \\
& =\left(v_{i}+v_{i+1}\right) \eta_{i}^{p-1}
\end{aligned}
$$

Therefore $\eta_{i}^{p}=1$ for each i.

An easy induction shows that

$$
v_{1}\left[n_{1}, \ldots, n_{m+n}\right]=v_{1}+v_{m+n+1}
$$

It follows in the same way as above that

$$
v_{1}\left[n_{1}, \ldots, n_{m}\right]=v_{1}+v_{m+1}
$$

and

$$
v_{m+1}\left[n_{m+1}, \cdots, \eta_{m+n}\right]=v_{m+1}+v_{m+n+1}
$$

It can be shown that each η_{j} commutes with all its conjugates in \mathbb{G}.

Let Y_{i} be the subgroup generated by the conjugates of η_{i} in \widetilde{G}. Then $Y_{i} \triangleleft \widetilde{G}$ for each i, and $\widetilde{G}=Y_{1} Y_{2} \ldots Y_{m+n}$. Since each η_{i} commutes with all its conjugates in \mathbb{G}, the
Y_{i} are all abelian. By Fitting's Theorem \mathbb{G} is nilpotent of class at most $m+n$. But $\left[\eta_{1}, \ldots, \eta_{m+n}\right]$ maps v_{1} onto $v_{1}+v_{m+n+1}$ and so \widetilde{G} is of class at least $m+n$.

Let $A=Y_{1} Y_{2} \ldots Y_{m}$ and $B=Y_{m+1} \ldots Y_{m+n}$. By Fitting's Theorem, A is nilpotent of class at most m and B is nilpotent of class at most n. \quad.

Theorem 1.9
There exists a group G with normal, nilpotent subgroups M and N of classes m and n respectively such that $M N$ is nilpotent of class precisely $m+n$.

Proof:

Let G be the group generated by the elements $x_{1}, x_{2}, \ldots, x_{m+n}$ subject to the defining relations

$$
\begin{equation*}
{ }_{\mathrm{x}}^{\mathrm{i}} \mathrm{p}=1, \mathrm{i}=1,2, \ldots, \mathrm{~m}+\mathrm{n}, \mathrm{p} \text { a prime } \tag{1.6}
\end{equation*}
$$

and x_{i} commutes with all its conjugates in G for each $\mathrm{i}=1,2, \ldots, \mathrm{~m}+\mathrm{n}$.

Such a group G exists because x_{i} commutes with all its conjugates in G if and only if $\left[g, 2 x_{i}\right]=1 \forall g \in G$ and so G is the group with defining relations

$$
x_{i}^{p}=1, \quad\left[g, 2 x_{i}\right]=1 \quad \forall \quad g \in G
$$

and has factor group the elementary abelian group

$$
\bar{G}=\left\langle x_{i}: x_{i}^{p}=1=\left[x_{i}, x_{j}\right]\right\rangle
$$

Let X_{i} be the subgroup generated by the conjugates of x_{i}
in G.
Then $X_{i} \varangle G$ for each i, and $G=X_{1} X_{2} \ldots X_{m+n}$. By (1.7) the X_{i} are all abelian. Hence G is nilpotent of class at most $m+n$, by Fitting's Theorem.

Let $M=X_{1} X_{2} \ldots X_{m}$ and $N=X_{m+1} \ldots X_{m+n}$. By Fitting's Theorem M is nilpotent of class at most m and N is nilpotent of class at most n.
Let \widetilde{G}, A and B be the groups defined in Lemma 1.8.
The mapping $\phi: x_{i} \rightarrow \eta_{i} i=1,2, \ldots, m+n$ defines a homomorphism of G onto \mathbb{G}. Consequently the nilpotency class of G cannot be less than $m+n$.

The mapping $\phi_{1}: x_{i} \rightarrow \eta_{i}, i=1,2, \ldots, m$ defines a homomorphism of M onto A. But $\left[n_{1}, \ldots, n_{m}\right] \operatorname{maps} v_{1}$ onto $v_{1}+v_{m+1}$ and so A is of class at least m and consequently the class of M cannot be less than m.

Similarly the mapping $\phi_{2}: x_{i} \rightarrow \eta_{i}, i=m+1, \ldots, m+n$ defines a homomorphism of N onto B. But $\left[\eta_{m+1}, \ldots, \eta_{m+n}\right]$ maps v_{m+1} onto $v_{m+1}+v_{m+n+1}$ and so B is of class at least n. Consequently the class of N cannot be less than n . Hence we have proved that the nilpotency classes of MN, M and N are precisely $m+n, m$ and n respectively. This proves the theorem. व

00000

CHAPTER 2

GENERALIZATION OF FITTING'S THEOREM FOR NILPOTENT

GROUPS

Fitting's. Theorem cannot be generalized by replacing M\&G (or $N 4 G$) by an arbitrary nilpotent subgroup M of G (or N of G). The symmetric group on three symbols shows this clearly since it can be generated by two cyclic subgroups, one of which is a normal subgroup.

In view of this example it seems natural to enquire if the conclusion of Fitting's Theorem remains true by replacing N and M normal subgroups of G by generalizations of normal subgroups. Thus we would like to consider replacing N and M normal by N and M subnormal or even serial. Robinson ([14]) proved that if M is subnormal in r steps in G and N normal in G then the conclusion of Fitting's Theorem still holds. An alternative proof of this result is given here.

Theorem 2.1
If $N \triangleleft G, M 4{ }^{r} G, \gamma_{n+1}(N)=1=\gamma_{m+1}(M)$ then $M N$ is
nilpotent of class at most rn+m.

Proof:
The case $\mathrm{r}=1$ is Fitting's Theorem and thus provides a basis for induction on r. Assume the result is true for all groups in which M is subnormal in fewer than r steps.

Since for any two subgroups H and K of a group G, [H,K] $\langle\mathrm{H}, \mathrm{K}>$, we have that

$$
\left[N, r^{M}\right] \triangleleft\left[N, r_{r-1}^{M]} \triangleleft \ldots \triangleleft[N, M] \triangleleft<N, M>\right.
$$

and therefore

$$
\left.M=M\left[N, r^{M}\right] \triangleleft M\left[N,{ }_{r-1} M\right] \triangleleft \ldots \triangleleft M[N, M] \triangleleft<N, M\right\rangle
$$

Thus M is subnormal in at most $r-1$ steps in $M[N, M]$, while $[N, M] \triangleleft M[N, M] . \quad$ But M and $[N, M]$ are nilpotent of classes m and n at most and so by the induction hypothesis the product $M[N, M]$ is nilpotent of class $(r-1) n+m$ at most. N and $M[N, M]$ are normal nilpotent subgroups of $\langle N, M\rangle$ and so by Fitting's Theorem their product $M N$ is nilpotent of class ($\mathrm{r}-1$) $\mathrm{n}+\mathrm{m}+\mathrm{n}=\mathrm{rn+m}$ at most. \quad a

Theorem 2.1 suggests that the least upper bound of the nilpotency class of $G=M N$ with $N \varangle G, M \triangleleft^{r} G$ is an increasing function of r (as well as of n and m). Thus it appears unlikely that the condition $M \triangleleft \varangle G$ can be relaxed to MoosG. The next example shows that the condition $M \triangleleft \varangle G$ cannot be relaxed to Mos 4 .

Theorem 2.2
There exists a non-nilpotent group G with abelian subgroups H and $K, H \varangle G, K \infty \triangleleft G$ and $G=H K$.

Proof:
Let H be the free abelian group on an infinite set of generators $a_{0}, a_{1}, a_{2}, \ldots$

The map b which maps

$$
a_{j} \rightarrow a_{j} a_{j-1}, a_{0} \rightarrow a_{0} j=1,2, \ldots
$$

can be extended to a homomorphism of H. b maps the generators onto a set of generators.

Let b^{-1} denote the inverse of b then

$$
\begin{aligned}
b^{-1}: a_{j} & \rightarrow a_{j} \prod_{i=1}^{j} a_{j-i}^{(-1)^{i}}, j \geqslant 1 \\
a_{0} & \rightarrow a_{0} .
\end{aligned}
$$

Hence b defines an automorphism of H. Denote the subgroup of Aut (H) generated by b by K. Let G be the holomorph of H with respect to K and identify H and K with their images in G Then $G=H K$ and satisfies the relations

$$
\left[a_{i}, a_{j}\right]=1,\left[a_{i}, b\right]=a_{i-1},\left[a_{o}, b\right]=1
$$

Since

$$
\begin{aligned}
& K<a_{o}, a_{1}, \ldots, a_{n}>4 K<a_{0}, a_{1}, \ldots, a_{n+1}>, \\
& K \infty \triangleleft G .
\end{aligned}
$$

Thus G is a product of the normal abelian group H and the serial abelian subgroup K but is not nilpotent since $\gamma_{n}(G)=H$ for $n>1$. \quad.

Robinson's result proved in Theorem 2.1 can be stated in a more general form, namely:

Thoerem 2.3
If P is a multiproperty of groups and is also inherited
by subgroups then if $N \triangleleft G, M \triangleleft \triangleleft G$ and $N \in P, M \in P$ then $\mathrm{MN} \in \mathrm{P}$.

Proof:
Suppose M is subnormal in r steps in G. For $r=1$ the theorem is true since P is a multiproperty. Assume the result is true for all groups in which M is subnormal in fewer than r steps.

Since for any two subgroups H and K of a group G, [H,K] $4<H, K>$, we have that

$$
\left[\mathrm{N}, \mathrm{r}^{\mathrm{M}]} \varangle[\mathrm{N}, \mathrm{r}-1 \mathrm{M}] \triangleleft \ldots \triangleleft[\mathrm{N}, \mathrm{M}] \triangleleft<\mathrm{N}, \mathrm{M}\right\rangle
$$

and therefore

$$
\left.M=M\left[N, r^{M}\right] \& M[N, r-1 M] \& \ldots \Delta M[N, M] \varangle<N, M\right\rangle
$$

Thus M is subnormal in at most $r-1$ steps in $M[N, M]$, while $[N, M] \triangleleft M[N, M]$. But $M \in P$ and $[N, M] \in P$ and so by the induction hypothesis the product $M[N, M] \in P$.
$M[N, M]$ and N are normal subgroups of $\langle M, N\rangle$. Hence $M N=M[N, M] N \in P$ since P is a multiproperty. \quad (

The conclusion of Fitting's Theorem, however, does not hold if one insists that both N and M are subnormal of indices of subnormality greater than one.
D.S. Robinson ([14] section 5; page 155) defines C to be the class of all groups in which each pair of subnormal subgroups generates a subnormal subgroup. He then constructs an example of a group which is not in the class C.

Robinson attributes this kind of construction to P. Hall. This example is to be used to establish the following result.

Theorem 2.4
There exists a non-nilpotent group G with abelian subgroups P and Q such that $P \triangleleft^{2} G$ and $Q \triangleleft^{2} G$ and $G=\langle P, Q\rangle$.

Proof:
Let Z denote the set of all integers and let S be the set of all subsets X of Z such that there exists integers $\ell=\ell(X)$ and $L=L(X), \ell \leqslant L$, with the property that X contains all integers $\leqslant \&$ and no integer $>$ L. Roughly speaking, X containseallelarge negative integers but no large positive integers.

Let A and B be two elementary abelian 2 -groups with sets of basis elements respectively

$$
\left(a_{X}\right)_{X \in S} \text { and }\left(b_{X}\right)_{X \in S}
$$

For each $n \in Z$ two maps of $M=A X B, u_{n}$ and v_{n}, are defined by the rules

$$
\begin{gather*}
{\left[A, u_{n}\right]=1=\left[B, v_{n}\right]} \tag{2.1}\\
{\left[b_{X}, u_{n}\right]=a_{X+n} \text { and }\left[a_{X}, v_{n}\right]=b_{X+n}} \tag{2.2}
\end{gather*}
$$

for each XGS. Our notation here is as follows:
If $n_{1}, n_{2}, \ldots, n_{r}$ are integers, (r being finite), and
$X \in S, a_{X+n_{1}+n_{2}+\ldots+n_{r}}$ is to mean a_{Y} where $Y=X U\left(n_{1}\right) U\left(n_{2}\right) \ldots U\left(n_{r}\right)$ if the n_{i} 's are all different and none of them belong to X; otherwise $a_{X+n_{1}+n_{2}+\ldots+n_{r}}=1$.

Similar remarks apply to $b_{X+n_{1}+n_{2}+\ldots+n_{r} . \quad \text { Also }\left[b_{X}, u_{n}\right]}$ is used to denote $b_{X}^{-1} b_{X}{ }_{X}$.

The maps u_{n} and v_{n} can be extended to homomorphisms of M and they map the generators on to a set of generators.

The inverses of u_{n} and v_{n} exist
and

Thus the mappings u_{n} and v_{n} are automorphisms of M. Denote the subgroup of Aut (M) generated by the u_{n}, by H and the subgroup of $A u t(M)$ generated by the v_{n}, by K. Let G be the split extension of M by the group of automorphisms $\mathrm{J}=\langle\mathrm{H}, \mathrm{K}\rangle$.

H centralises the factors of the series

$$
I \triangleleft A \triangleleft M=A X B
$$

and so H is abelian.
K centralises the factors of the series

$$
\mathrm{I} \triangleleft \mathrm{~B} \triangleleft \mathrm{M}=\mathrm{AXB}
$$

and so K is abelian.

It is immediately clear that

$$
\mathrm{u}_{\mathrm{n}}^{2}=1=\mathrm{v}_{\mathrm{m}}^{2}
$$

Let $z_{m n}=\left[u_{m}, v_{n}\right]$. It will now be shown that

$$
\begin{aligned}
& {\left[z_{m n}, a_{X}\right]=a_{X+m+n} \text { and }\left[z_{m n}, b_{X}\right]=b_{X+m+n}} \\
& {\left[z_{m n}, a_{X}\right]=\left[u_{m}^{-1} v_{n}^{-1} u_{m} v_{n}, a_{X}\right]} \\
& =\left[u_{m}^{-1}, a_{X}\right]^{v_{n}^{-1} u_{m} v_{n}}\left[v_{n}^{-1}, a_{X}\right]^{u_{m} v_{n}}\left[u_{m}, a_{X}\right]^{v_{n}}\left[v_{n}, a_{X}\right] \\
& =\left[a_{X}, u_{m}\right]^{z_{m n}}\left[a_{X}, v_{n}\right]^{v_{n}^{-1} u_{m} v_{n}}\left[u_{m}, a_{X}\right]^{v_{n}}\left[v_{n}, a_{X}\right] \\
& =1 \cdot b_{X+n}^{v_{n}^{-1} u_{m} v_{n}} \cdot 1 \cdot b_{X+n} \\
& =\left(b_{X+n} a_{X+m+n}\right)^{v_{n}} \cdot b_{X+n} \\
& =b_{X+n}^{2} a_{X+m+n} \\
& =\mathrm{a}_{\mathrm{X}+\mathrm{m}+\mathrm{n}} \text {. } \\
& \text { Similarly }\left[z_{m n}, b_{X}\right]=b_{X+m+n} .
\end{aligned}
$$

Furthermore $z_{m n}^{2}=1$ since:

$$
\begin{aligned}
a_{X}^{z_{m n}} & =a_{X} a_{X+m+n} \\
a_{X}^{z_{m n}^{2}} & =\left(a_{X}{ }^{2}{ }^{2}\right)^{z_{m n}} \\
& =\left(a_{X} a_{X+m+n}\right)^{z_{m n}} \\
& =a_{X} a_{X+m+n}^{2} \\
& =a_{X}
\end{aligned}
$$

and

$$
b_{X}^{z_{m n}^{2}}=\left(b_{X} b_{X+m+n}\right)^{z_{m n}}
$$

$$
\begin{aligned}
& =b_{X} b_{X+m+n}^{2} \\
& =b_{X} .
\end{aligned}
$$

Therefore $z_{m n}^{2}=1$.

The next step is to show that

$$
\left[\mathrm{z}_{\mathrm{mn}}, \mathrm{u}_{\ell}\right]=1=\left[\mathrm{z}_{\mathrm{mn}}, \mathrm{v}_{\ell}\right] .
$$

It is immediately clear that since $z_{m n}$ maps $A \rightarrow A$ and u_{ℓ} acts as an identity on $A,\left[z_{m n}, u_{\ell}\right]$ acts $1 i k e$ an identity on A.
So we need only consider $b_{X}\left[z_{m n}, u_{l}\right]$.
Now

$$
\begin{aligned}
& \frac{z_{m n}^{-1} u_{\ell}^{-1} z_{m n}^{u}{ }_{l}^{u^{\prime}}}{\text { UVVERSITY of the }} \\
& \left.=\left(b_{X}{ }^{b} X+m+n\right)\right)^{u_{\ell}^{-1} z_{m n}}{ }_{\ell} \\
& =\left(b_{X}{ }^{a} X+\ell{ }^{b_{X+m+n}}{ }^{a_{X+m+n+\ell}}\right)^{{ }^{2} m n^{u}{ }_{\ell}} \\
& =\left(b_{X} b_{X+m+n}{ }^{a} X_{+\ell}{ }^{a} X+m+n+\ell{ }^{b} X_{X+m+n}{ }^{a} X+m+n+\ell\right)^{u_{\ell}} \\
& =\left(b_{X} a_{X+\ell}\right)^{u_{\ell}} \\
& =b_{X} a_{X+\ell}^{2} \\
& =b_{X} \text {. }
\end{aligned}
$$

Thus $\left[z_{\mathrm{mn}}, \mathrm{u}_{\ell}\right]=1$.
Similarly for $\left[z_{m n}, v_{\ell}\right]$.
Let $P=\left\langle a_{X}, u_{n}: X \in S, n \in Z>\right.$
and

$$
Q=\left\langle b_{X}, v_{m}: X \in S, m \in Z\right.
$$

By the rules (2.1) and (2.2) P and Q are abelian. It will be shown that $\mathrm{P} \triangleleft^{2} \mathrm{G}$ and $\mathrm{Q} \triangleleft^{2} \mathrm{G}$.

The normal closure of P in G is $P_{1}=P[P, G]$.
$[P, G]$ is generated by $\left[a_{X}, v_{n}\right],\left[b_{X}, u_{n}\right],\left[u_{m}, v_{n}\right]$ and
all their conjugates in G.
So p_{1} is generated by $a_{X}, u_{n},\left[a_{X}, v_{n}\right],\left[b_{X}, u_{n}\right]^{g}, z_{m n}^{g}$ where $\mathrm{g} \in \mathrm{G}$.

Thus P_{1} is $\underset{P_{1}}{\text { generated by }} a_{X}, u_{n}, z_{m n}^{g}, b_{X+n}^{g}, a_{X+n}^{g}$ Define $P_{2}=P^{P_{1}}=P\left[P, P_{1}\right]$.

Since $M \triangleleft G$ it follows that $b_{X+n}^{g}, a_{X+n}^{g} \in M$ and hence $\left[P, P_{1}\right]$ is generated by

$$
\left[a_{X}, z_{m n}^{g}\right],\left[u_{n}, z_{m n}^{g}\right],\left[u_{n}, b_{X+m}^{g}\right],\left[u_{n}, a_{X+m}^{g}\right]
$$

and all their conjugates in P_{1}.

So P_{2} is generated by
$a_{X}, u_{n},\left[{ }_{X X}, z_{m n}^{g} g_{1},\left[u_{n}, z_{m n}^{g}\right]^{g_{1}},\left[u_{n}, b_{X+m}^{g}\right]_{1}^{g_{1}},\left[{ }_{n}, a_{X+m}^{g} g_{1}\right.\right.$
$\forall g \in G, \forall g_{1} \in P_{1}$.

Now let $g \in G$ then $g=x y$ where $x \in M$ and $y \in J$.
x is a word in the $\left(a_{X}\right)_{X \in S}$ and $\left(b_{Y}\right)_{Y \in S}$
and

$$
y=u_{q_{1}}^{\sigma_{1}}{ }_{v_{\omega_{1}}^{\varepsilon_{1}}} \ldots u_{q_{\mathrm{q}}}^{\sigma_{\mathrm{r}}}{ }_{\mathrm{v}^{v_{\mathrm{r}}}}^{\varepsilon_{\mathrm{r}}}
$$

where

$$
\sigma_{i}=0 \text { or } 1, \quad \varepsilon_{i}=0 \text { or } 1
$$

A1so

$$
\begin{aligned}
z_{m n}^{g} & =z_{m n}\left[z_{m n}, g\right] \\
& =z_{m n}\left[z_{m n}, x y\right] \\
& =z_{m n}\left[z_{m n}, y\right]\left[z_{m n}, x\right]
\end{aligned}
$$

It was proved that $z_{m n}$ commutes with all u_{ℓ} and v_{ℓ} and since y is a word in u_{ℓ} and $v_{\ell},\left[z_{m n}, y\right]=1$.
Also by (2.3), and since x is a word in $\left(a_{X}\right) X \in S$ and $\left(b_{Y}\right)_{Y \in S},\left[z_{m n}, x\right] \in M$ and since $M \triangleleft G,\left[z_{m n}, x\right]^{Y} \in M$.

From what has just been proved it follows that
$\left[a_{X}, z_{m n}^{g}\right],\left[u_{n}, z_{m n}^{g}\right],\left[u_{n}, b_{X+m}^{g}\right],\left[u_{n}, a_{X+n}^{g}\right]$ all lie in $A \leqslant P$.

It is thus sufficient to show that

$$
\mathrm{x}_{1}^{\mathrm{x}_{1}} \in \mathrm{P} \quad \forall \quad \mathrm{x}_{1} \in \mathrm{~A}
$$

where x_{1} is a word in the $a_{X}(X \in S), \quad \forall g_{1} \in P_{1}$.

Let $g_{1}=x_{i_{1}} x_{i_{2}} \ldots x_{i} \quad$ where $x_{i}, j=1,2, \ldots, s$ is any one of the above generators of P_{1} and these x_{i} are their own inverses.

Now

$$
\begin{aligned}
{ }^{a_{X}{ }_{i}{ }_{r}} & =a_{X} \in A \text { if } x_{i_{r}}=a_{Y}(Y \in S) \\
& =a_{X} \in A \text { if } x_{i_{r}}=u_{m} \\
& =a_{X} \quad \text { if } x_{i_{r}}=b_{X+m}^{g} \text { or } a_{X+m}^{g}
\end{aligned}
$$

$$
=a_{X X} \mathrm{a}_{\mathrm{X}+\mathrm{m}+\mathrm{n}} \text { if } \quad \mathrm{x}_{\mathrm{i}_{\mathrm{r}}}=\mathrm{z}_{\mathrm{mn}}\left[\mathrm{z}_{\mathrm{mn}}, \mathrm{~g}\right]
$$

since $\left[z_{m n}, g\right] \in M$ and M is abelian.

So one can conclude that $P_{2} \leqslant P$ and thus $P \triangleleft^{2} G$.
By applying the same argument as above to Q, it can be shown that $Q \triangleleft^{2} G$.

To see that G is not nilpotent one need only note that for any integer $n>0$

$$
1 \neq\left[a_{X}, x_{s_{2}}, x_{s_{3}}, \ldots, x_{s_{n+1}}\right] \in r_{n}(G)
$$

where $s_{i} \in Z, i=2,3, \ldots, n+1$ are all different and none of them belong to the set X and furthermore

$$
x_{s_{i}}=v_{s_{i}} \text { if if is even }
$$

and

$$
x_{s_{i}}=u_{s_{i}} \text { if i is odd. o }
$$

Let G be a group generated by subnormal subgroups H and K. If a and b are non-negative integers then Roseblade ([15]) proved that there is an integer c such that

$$
G^{(c)} \leqslant H^{(a)} K^{(b)}
$$

where $G(c)$ is the $c-t h$ term of the derived series of G. No such relation exists between the terms of the lower central series of G, H and K. This is shown by theorem 2.4 , since $Q \triangleleft^{2} G, P \triangleleft^{2} G$,

$$
\gamma_{2}(Q)=1=\gamma_{2}(P) \text { but } \gamma_{3}(G)=\gamma_{\omega}(G)=M \neq 1
$$

and $\quad G=\langle P, Q\rangle$.

However, there are circumstances under which such a reration exists. This is shown by the next theorem which is due to S.E. Stonehewer.

Theorem 2.5 (S.E. Stonehewer [16])

Suppose that the subgroups H, K are subnormal in their join G and that $G=H K$. Then given any positive integers c_{1}, c_{2}, there exists an integer d such that \qquad

Proof:

Let $H \triangleleft^{m} G$ and proceed by induction on m. Thus suppose $m=1$, so that $H \varangle G$. Then $\gamma_{C_{1}}(H) \triangleleft G$ and hence without loss of generality, we may assume that $\gamma_{c_{1}}(H)=1$.

Let

$$
G=K_{0} \geqslant K_{1} \geqslant \ldots \geqslant K_{n}=K
$$

be the normal closure series of K in G that is, $K_{i+1}=K^{K}$ for $0 \leqslant i \leqslant n-1$.

Suppose that for some $i, 1 \leqslant i \leqslant n-1$ there is an integer d_{i+1} such that

$$
\gamma_{d_{i+1}}\left(K_{i+1}\right) \leqslant \gamma_{c_{2}}(K)
$$

For example this is the case if $i=n-1$.

Let $Y=\gamma_{d_{i+1}}\left(K_{i+1}\right) . \quad$ Then $Y \triangleleft K_{i}$.

Also since $G=H K_{i+1}$, we have

$$
K_{i}=\left(H \cap K_{i}\right) K_{i+1}
$$

with both factors normal in K_{i}. Moreover $H_{i} K_{i}$, as a subgroup of H, is nilpotent; and $\frac{K_{i+1}}{Y}$ is nilpotent. Thus by Fitting's Theorem $\frac{K_{i}}{Y}$ is nilpotent. Therefore there is an integer d_{i} such that

$$
\gamma_{d}\left(K_{i}\right) \leqslant Y \leqslant \gamma_{c_{2}}(K) .
$$

It follows, by induction on i decreasing, that there is an integer $d\left(=d_{0}\right.$ such that

$$
\gamma_{d}(G) \leqslant \gamma_{c_{2}}(K) \text { as required. }
$$

Now suppose that $m \geqslant 2$ and that the theorem is true for smaller values of m.

Let $H_{1}=H^{G}$ so that $H \triangleleft^{m-1} H_{1}$ and $H_{1}=H\left(H_{1} \cap K\right)$. Then by induction on m, there is an integer c_{3} such that

$$
\gamma_{c_{3}}\left(H_{1}\right) \leqslant \gamma_{c_{1}}(H) \quad \gamma_{c_{2}}\left(H_{1} \cap K\right) .
$$

But $G=H_{1} K$ and hence by the case $m=1$, with H_{1} replacing H, there is an integer d such that

$$
\gamma_{d}(G) \leqslant \gamma_{C_{3}}\left(H_{1}\right) \quad \gamma_{C_{2}}(K) \leqslant \gamma_{C_{1}}(H) \quad \gamma_{C_{2}}(K) \cdot \quad
$$

In conclusion it can be mentioned that D.S. Robinson ([14]) proved that if H and K are two subnormal subgroups of a group G and if $J=\langle H, K\rangle$ can be finitely generated then J is nilpotent. This result has also been proved by P. Hall ([5]).

It shall be shown in chapter 3 that this result is in fact an easy consequence of the Hirsch-Plotkin Theorem.

UNIVERSITY of the
WESTERN CAPE

FITTING'S THEOREM FOR LOCALLY-NILPOTENT SUBGROUPS AND
 ZA-SUBGROUPS

§3.1 THE HIRSCH-PLOTKIN THEOREM

The Hirsch-Plotkin theorem states that the product $M N$ of normal locally-nilpotent subgroups M and N of a group G is itself locally-nilpotent. The theorem was proved independently by K.A. Hirsch ([10]) and B. Plotkin ([13]) and is well-known. In this section the proof of K.A. Hirsch will be given. It is then shown that the theorem can be generalized by replacing normal by subnormal and even serial.

Theorem 3.1 (K.A. Hirsch [10]).
The group generated by two locally-nilpotent normal subgroups A and B of an arbitrary group $G, i s$ itself locally-nilpotent.

Proof:
Let

$$
a_{1} b^{(1)}, a_{2} b^{(2)}, \ldots, a_{n} b^{(n)}
$$

be any arbitrary finite system of elements in $\langle A, B\rangle$. The group

$$
\bar{G}=\left\langle a_{1} b^{(1)}, a_{2} b^{(2)}, \ldots, a_{n} b^{(n)}\right\rangle
$$

will be nilpotent if one can embed it in a nilpotent
subgroup of $\langle A, B\rangle$.
Let

$$
A_{o}=\left\langle a_{1}, \ldots a_{n}\right\rangle
$$

and

$$
\mathrm{B}^{*}=\left\langle\mathrm{b}^{(1)}, \ldots, \mathrm{b}^{(\mathrm{n})}\right\rangle
$$

Since B^{*} is a finitely generated subgroup of B, it is nilpotent and therefore satisfies the maximal condition for subgroups.
Therefore B^{*} has a principal series

$$
\begin{equation*}
1=B_{o}<B_{1}<B_{2}<\ldots<B_{k}=B^{*} \tag{3.1}
\end{equation*}
$$

where the groups $B_{i}(i=1,2, \ldots k)$ are all normal subgroups of B^{*} and the factor groups $\frac{B_{i+1}}{B_{i}}$ are cyclic (of finite or infinite order).
Let b_{j} be a generating element of $\frac{B_{j}}{B_{j-1}}, j=1,2, \ldots, k$, so that in particular

$$
B_{j}=\left\langle b_{1}, b_{2}, \ldots, b_{j}\right\rangle
$$

For each $j(j=1,2 \ldots, k)$ construct a group A_{j} which satisfies the following conditions:
(1) A_{j} is a finitely-generated subgroup of A which contains A_{o}
(2) In the ascending chain
$\left.\left.\left.A_{j} \triangleleft<A_{j}, B_{1}\right\rangle \triangleleft<A_{j}, B_{2}\right\rangle \triangleleft \ldots \triangleleft<A_{j}, B_{j}\right\rangle$
all members are nilpotent.

Begin by putting $\mathrm{j}=1$.
Form repeated commutators of b_{1} with all the generating elements of A_{o}.

We get

$$
\begin{aligned}
& a_{1}, a_{1}^{(1)}, a_{1}^{(2)}, \ldots ; \\
& a_{2}, a_{2}^{(1)}, a_{2}^{(2)}, \ldots ;
\end{aligned}
$$

where

$$
\begin{align*}
a_{j}^{(i)} & =\left[a_{j}^{\left.(i-1), b_{1}\right]}{ }_{j=1,2, \ldots, n}\right. \\
a_{j}^{o} & =a_{j} \text { UNIVERSITY of the } \tag{3.3}
\end{align*}
$$

There are only finitely many elements

$$
a_{i}, a_{i}^{(1)}, a_{i}^{(2)}, \ldots, a_{i}^{(k)}, i=1,2, \ldots, n
$$

since $a_{i}^{(N)}=1$ for some $N=N(i)$.
This is so since $B \triangleleft G$ and B is locally-nilpotent.
Let A_{1} be the group generated by

$$
a_{i}, a_{i}^{(1)}, a_{i}^{(2)}, \ldots, a_{i}^{(k)}, \ldots \quad i=1,2, \ldots, n
$$

Furthermore $A_{1} \varangle\left\langle A_{1}, B_{1}\right\rangle$ since for each element $a_{m}, m=1,2, \ldots, n$ we have

$$
\begin{equation*}
b_{1}^{-1} a_{m}^{(j)} b_{1}=a_{m}^{(j)} a_{m}^{(j+1)} \in A_{1} \tag{3.4}
\end{equation*}
$$

One now has to show that $\left\langle A_{1}, B_{1}\right\rangle$ is nilpotent. Since A_{1} is nilpotent, it has a non-trivial centre, $Z\left(A_{1}\right)$. If $1 \neq z \in Z\left(A_{1}\right)$ then as above, form repeated commutators of b_{1} with $z, \operatorname{giving} z, z^{(1)}, z^{(2)}, \ldots$ and after a finite number of steps one obtains

$$
z^{(n)}=\left[z^{(n-1)}, b_{1}\right]=1
$$

Thus $z^{(n-1)} \in Z\left(\left\langle A_{1}, B_{1}\right\rangle\right)$
Assume that
then

$$
z^{(n-i-1)} \in Z_{i+1}\left(\left\langle A_{1}, B_{1}\right\rangle\right)
$$

$$
\begin{gathered}
{\left[z^{(n-i-1)}, b_{1}\right]=z^{(n-i)} \in z_{i}\left(\left\langle A_{1}, B_{1}\right\rangle\right)} \\
\text { UNIVERSITY of the } \\
z^{(0)}=z \cdot N \text { CAPE }
\end{gathered}
$$

Therefore

$$
z \in Z_{n}\left(\left\langle A_{1}, B_{1}\right\rangle\right)
$$

and hence

$$
Z\left(A_{1}\right) \leqslant Z_{n}\left(\left\langle A_{1}, B_{1}\right\rangle\right) \text {, since } Z\left(A_{1}\right) \text { is }
$$

finitely generated.

Let

$$
\mathrm{Q}=\left\langle\mathrm{A}_{1}, \mathrm{~B}_{1}\right\rangle=\mathrm{A}_{1} \mathrm{~B}_{1}
$$

and assume that

$$
z_{i}\left(A_{1}\right) \leqslant z_{m_{1}}(Q)
$$

Letting bars denote cosets modulo $Z_{i}\left(A_{1}\right)$ (which is normal in Q), we have by the argument above that $Z\left(\bar{A}_{1}\right) \leqslant Z_{n_{2}}(\bar{Q})$ for some integer n_{2}. Then by the induction hypothesis

$$
\begin{gathered}
Z_{n_{2}}(\bar{Q}) \subseteq Z_{n_{2}}\left(\frac{Q}{Z_{m_{2}}(Q)}\right) \\
\text { so } Z_{i+1}\left(A_{1}\right) \subseteq Z_{n_{2}+m_{1}}(Q)=Z_{m_{2}}(Q) \text { say. }
\end{gathered}
$$

Since A_{1} is nilpotent, it follows by induction that

$$
A_{1} \leqslant Z_{m_{r}}(Q)
$$

Therefore

But $\frac{Q}{A_{1}}$ is cyclic and so $Z\left(\frac{Q}{A_{1}}\right)$ of $\frac{Q}{A_{1}}$ and $A_{1} \leq Z_{m_{r}}(Q)$. It follows that

$$
\mathrm{Z}_{\mathrm{m}_{\mathrm{r}}}+\mathrm{Q}(\mathrm{Q})=\mathrm{Q}
$$

Hence Q is nilpotent.
In the general case A_{i} is taken to be the group generated by the $a_{m}(m=1,2, \ldots, n)$ and all commutators of the form

$$
\begin{equation*}
\mathrm{a}=\left[\mathrm{a}_{\mathrm{m}}, \mathrm{~b}_{\alpha_{1}}, \mathrm{~b}_{\alpha_{2}}, \ldots, \mathrm{~b}_{\alpha_{\mathrm{s}}}\right] \tag{3.5}
\end{equation*}
$$

where $\quad i \geqslant \alpha_{1} \geqslant \alpha_{2} \geqslant \ldots \geqslant \alpha_{s} \geqslant 1$.

There are in fact finitely many different commutators of this type so that condition (1) is satisfied for A_{i}.

In exactly the same way as above it can be shown that A_{i} is normal in $\left\langle A_{i}, B_{1}\right\rangle$ and that $\left\langle A_{i}, B_{1}\right\rangle$ is nilpotent. Assume that condition (2) in the chain (3.2) is satisfied up to $\left\langle A_{i}, B_{j-1}\right\rangle$. One has to prove that

$$
\left\langle A_{i}, B_{j-1}\right\rangle \triangleleft\left\langle A_{i}, B_{j}\right\rangle=\left\langle A_{i}, B_{j-1}, b_{j}\right\rangle
$$

Since $B_{j-1} \triangleleft B_{j}$, it will be sufficient to prove that for each commutator (3.5)

$$
\begin{equation*}
b_{j}^{-1} a b_{j} \in\left\langle A_{i}, B_{j-1}\right\rangle . \tag{3.6}
\end{equation*}
$$

Choose r such that $\alpha_{r} \geqslant j>\alpha_{r+1}$.
Put

$$
\left[a_{\mathrm{m}}, \mathrm{~b}_{\alpha_{1}}, R \cdots, \mathrm{~b}_{\alpha_{r}}\right]_{\mathrm{E}}=\overline{\mathrm{a}}
$$

where \bar{a} is a generating element of A_{i}.

Thus

$$
\begin{aligned}
b_{j}^{-1} a b_{j} & =b_{j}^{-1}\left[\bar{a}, b_{\alpha_{r+1}}, \ldots, b_{\alpha_{s}}\right] b_{j} \\
& =\left[b_{j}^{-1} \bar{a} b_{j}, b_{j}^{-1} b_{\alpha_{r+1}} b j, \ldots, b_{j}^{-1} b_{\alpha_{s}} b_{j}\right]
\end{aligned}
$$

Here $b_{j}^{-1} \bar{a} b_{j}=\bar{a}\left[\bar{a}, b_{j}\right]$ is a product of two generators of A_{i} and all other elements, that is, $b_{j}^{-1} b_{\alpha_{i}} b_{j}(i=r+1, \ldots, s)$ are in B_{j-1} since $\alpha_{r+1} \leqslant j-1$ and $B_{j-1} \triangleleft B_{j}$ and this proves (3.6).

In a similar way it follows that $\left\langle A_{i}, B_{j}\right\rangle$ is nilpotent.

Thus a nilpotent group $\left\langle A_{k}, B_{k}\right\rangle=\left\langle A_{k}, B^{*}\right\rangle$ has been found which contains the subgroup $\left\langle A_{o}, B^{*}\right\rangle$ and hence $<\mathrm{a}_{1} \mathrm{~b}^{(1)}, \mathrm{a}_{2} \mathrm{~b}^{(2)}, \ldots, \mathrm{a}_{\mathrm{n}} \mathrm{b}^{(\mathrm{n})}>$. This proves the theorem. a Corollary 3.2

In any group G, the join of all normal locally-nilpotent subgroups of G is itself locally-nilpotent.

The question arises whether the Hirsch-Plotkin Theorem remains true by replacing M and N normal subgroups of G by generalizations of normal subgroups. One way would be to consider replacing M and N normal by M and N subnormal or even serial. The conclusion of the Hirsch-Plotkin Theorem remains true if one replaces $M \triangleleft G$ by $M \triangleleft \varangle G$. This is what the next theorem states:

Theorem 3.3
If M and N are locally-nilpotent subgroups of a group G and if $N \triangleleft G, M \triangleleft \triangleleft G$, then $M N$ is locally-nilpotent.

Proof:
The theorem follows from the Hirsch-Plotkin Theorem and Theorem 2.3. 口
P. Ha11 ([5]) proved that the conclusion of the HirschPlotkin Theorem holds if one insists that both M and N are
subnormal of indices of subnormality greater than one. The condition $M \triangleleft \triangleleft G$ and $N \triangleleft \triangleleft G$ can be relaxed even further to $M \infty \triangleleft G$ and $N \infty \triangleleft G$. The proof of this result will be a consequence of Lemma 3.5 which is due to K.W. Gruenberg ([2]). Before proceding with the proof of Lemma 3.5 the definition of a σ-local property is needed.

Definition 3.4

If P is a given group property and G has a local system all of whose members have property P, then G iscalled locally P. If it should happen that all the subgroups of the local system are also serial in G, then G is said to be $\sigma-1$ ocally P. The property P is called σ-local if σ Plocally P is the same as P.

Lemma 3.5 (K.W. Gruenberg [2]).
If P is a multi - and a o-local property and K is a serial subgroup of G possessing P, then \bar{K}, the normal closure of K in G, also possesses P.

Proof:
Let

$$
K=K_{o} \triangleleft K_{1} \triangleleft \ldots \triangleleft K_{\alpha}=G
$$

be a series from K to G and for each λ define H_{λ} to be the
normal closure of K in K_{λ}, that is, $H_{\lambda}=K^{K}=K\left[K, K_{\lambda}\right]$. Thus

$$
\begin{aligned}
& H_{0}=K^{K_{0}}=K^{K}=K \\
& H_{1}=K^{K_{1}}=K\left[K, K_{1}\right]=K \\
& H_{\alpha}=K^{K}=K[K, G]=K^{G}=\bar{K} .
\end{aligned}
$$

We show that $\mathrm{H}_{\lambda} \triangleleft \mathrm{H}_{\lambda+1}$:

Let
and

Then

$$
\begin{aligned}
\left(k_{\lambda+1}^{-1}\right. & \left.k_{1} k_{\lambda+1}\right)^{-1}\left(k_{\lambda}^{-1} k_{2} k_{\lambda}\right)\left(k_{\lambda+1}^{-1} k_{1} k_{\lambda+1}\right) \\
& =\left(k_{\lambda}^{\prime}\right)^{-1}\left(k_{\lambda}^{-1} k_{2} k_{\lambda}\right)\left(k_{\lambda}^{\prime}\right) \\
& =\left(k_{\lambda} k_{\lambda}^{\prime}\right)^{-1} k_{2}\left(k_{\lambda} k_{\lambda}^{\prime}\right) \\
& =k_{2} k_{\lambda} k_{\lambda}^{\prime} \in K^{K}{ }_{\lambda}=H_{\lambda} .
\end{aligned}
$$

Hence it follows that $H_{\lambda} \triangleleft H_{\lambda+1}$. For each limit ordinal $\lambda, \quad H_{\lambda}=\underset{\mu<\lambda}{J} H \mu$.

Hence

$$
K=H_{1} \leqslant H_{2} \leqslant \ldots \leqslant H_{\alpha}=\bar{K} \triangleleft G
$$

is a series, and so H_{λ} is serial in G. The lemma is proved by induction on λ. Suppose that H_{μ} has property P for all $\mu<\lambda$.

If λ is a limit ordinal then the set of all H_{μ} with $\mu<\lambda$ provides a σ-local system of H_{λ} all of whose members have P. Thus H_{λ} is σ-locally P and hence is P. If however, λ is not a limit ordinal then it is clear that

$$
x^{-1} H_{\lambda-1} x \triangleleft K_{\lambda-1} \quad \forall x \in K_{\lambda} .
$$

Since
and

$$
K^{x} \leqslant H_{\lambda-1}^{x}
$$

WESTERN CAPE
it follows that

$$
H_{\lambda}=\left\langle K^{x}: \forall x \in K_{\lambda}\right\rangle \leqslant\left\langle H_{\lambda-1}^{x}: \forall x \in K_{\lambda}\right\rangle .
$$

Conversely

$$
H_{\lambda-1} \leqslant H_{\lambda}
$$

and so

$$
\left(K^{K}{ }_{\lambda-1}\right)^{x} \leqslant\left(K^{K}\right)^{x}=K^{K_{\lambda}}
$$

Therefore

$$
H_{\lambda}=\left\langle H_{\lambda-1}^{x}: \forall x \in K_{\lambda}\right\rangle=\prod_{x \in K_{\lambda}} H_{\lambda-1}^{x}
$$

The product of any finite number of conjugates of $H_{\lambda-1}$
by elements in K_{λ} again has P since P is a multi-property
and also of course, is a normal subgroup of H_{λ}. Thus the set of all such products is a o-local system of H_{λ} whose elements all have P, and so H_{λ} is $\sigma-1$ ocally P. Thus, whatever the nature of λ, H_{λ} is P, and the induction is complete. \quad a

The following corollaries are consequences of Lemma 3.5 and the Hirsch-Plotkin Theorem.

Corollary 3.6
If $M \infty \triangleleft G, N \infty \triangleleft G, M$ and N are both locally-nilpotent subgroups of G, then $\langle M, N\rangle$ is also locally-nilpotent.

Proof:
UNIVERSITY of the
WESTERN CAPE
The corollary is an immediate consequence of Lemma 3.5 and the Hirsch-Plotkin Theorem since $\langle M, N\rangle \leq \bar{M} \bar{N}$ and the normal closures \bar{M} and \bar{N} of M and N respectively are locally-nilpotent. \quad -

Corollary 3.7
Let H and K be two subnormal nilpotent subgroups of a group G and suppose $J=\langle H, K\rangle$ can be finitely generated. Then J is nilpotent.

Proof:

Since J is finitely generated, it can be generated by two finitely generated subgroups, one contained in H and
the other in K. Now any subgroup of H or K is subnormal in G and nilpotent, so one may assume that H and K are finitely generated. By Lemma 3.5 the normal closure of K in G is locally-nilpotent. Similarly the normal closure of H in G is locally nilpotent. Hence $\overline{\mathrm{H}} \overline{\mathrm{K}} \geqslant\langle\mathrm{H}, \mathrm{K}\rangle$ is locally nilpotent by the HirschPlotkin Theorem, where \bar{H} is the normal closure of H in G and \bar{K} is the normal closure of K in G. But $J=\langle H, K\rangle$ is finitely generated. Hence J is nilpotent and this completes the proof. a

§3.2 FITTING'S THEOREM FOR ZA-SUBGROUPS

The question arises if Fitting's Theorem could be generalized to other group theoretical properties. P. Hall ([6]) proved that hypercentrality is a property E which satisfies (1.1). The proof of his result is given here.

Theorem 3.8 (P. Ha11 [6])
If $H \triangleleft G, K \triangleleft G$ and H and K are both ZA-groups, then $H K$ is a $Z A-g r o u p$.

Proof:
We may suppose $H \neq 1$, then $Z(H) \neq 1$ where $Z(H)$ denotes the centre of H and $Z(H) \triangleleft G$.

If

$$
Z(H) \cap K=1
$$

then

$$
[Z(H), K] \leqslant Z(H) \cap K=1 .
$$

Therefore

$$
Z(H) \leqslant Z(H K)
$$

However if

$$
Z(H) \cap K \neq 1
$$

then there exists a first term Y_{μ} such that $Z(H) \cap Y_{\mu} \neq 1$. Then μ is not a limit ordinal number, say $\mu=\lambda+1$, and

since $\lambda<\mu$ and hence the centre of $H K$ contains $Z(H) \cap Y_{\mu}$ and is therefore non-trivial.

Let

$$
1 \leqslant Z_{1} \leqslant \ldots \leqslant z_{\alpha} \leqslant \ldots \leqslant L
$$

be the upper central chain of. HK.

Then

$$
\mathrm{L}=\bigcup_{\alpha>1} Z_{\alpha}
$$

As a homomorphic image of HK , the group

$$
\frac{H K}{\mathrm{~L}}=\frac{\mathrm{LH}}{\mathrm{~L}} \cdot \frac{\mathrm{LK}}{\mathrm{~L}},
$$

which iṣ a product of two normal ZA-groups, the images of H and K .

By the above $\frac{H K}{\mathrm{~L}}$ has a non-trivial centre, but $\frac{\mathrm{L}}{\mathrm{L}}$, the centre of $\frac{H K}{L}$, by definition, is trivial. This is a contradiction and it follows that $H K=L$. Thus $H K$ is a ZA-group. a

The symmetric group on three symbols shows that the above theorem cannot be generalized by replacing $H \triangleleft G(K \triangleleft G)$ by an arbitrary $Z A-s u b g r o u p h$ of G (or K of G) since it can be generated by two cyclic subgroups one of which is a normal subgroup.

The question then arises whether the conclusion of P. Hall's Theorem remains true if we replace K normal in G by K subnormal in G. The next theorem shows that this is indeed the case.

Theorem 3.9
If H and K are ZA-subgroups of a group G and if $H \triangleleft G$, $K \triangleleft \triangleleft G$, then $H K$ is a ZA-group.

Proof:

The theorem follows from P. Hall's Theorem and Theorem 2.3. \quad

The conclusion of Theorem 3.8 does not hold if one insists that both H and K are subnormal of indices of subnormality greater than one. The next theorem shows this.

Theorem 3.10

There exists a group G which is not hypercentral with hypercentral subgroups P and Q and $P \triangleleft^{2} G$, $Q \triangleleft^{2} G$ and $G=\langle P, Q\rangle$.

Proof:

The example used in Theorem 2.4 is also used to prove Theorem 3.10. It should only be noted that $Z(G)=1 . \quad$.

UNIVERSITY of the
WESTERN CAPE

CHAPTER 4

FITTING'S THEOREM FOR FC-NILPOTENT AND FC-HYPERCENTRAL

GROUPS,

§4.1 THE PRODUCT OF TWO NORMAL FC-NILPOTENT SUBGROUPS OF A GROUP.

Fitting's Theorem can be generalized to FC-nilpotence. In a paper by K.K. Hickin and J.A. Wenzel ([9]) the authors prove that the product of two normal FC-nilpotent subgroups of a group, is itself FC-nilpotent. It should be observed that for finite groups FC-nilpotence and nilpotence means the same thing. To establish the above mentioned result due to K.K. Hickin and J.A. Wenzel, some preliminary results are stated as lemmas. The proof of Lemma 4.1, which is due to F. Haimo ([3]), will not be given here.

Lemma 4.1 (F. Haimo [3]).

Let N be a normal subgroup of a group G such that
(a) $N \subset F_{m}(G)$ and
(b) there exists a positive integer k for which $\frac{\mathrm{G}}{\mathrm{N}}$ is FC-nilpotent of $\mathrm{FC}-\mathrm{class} \mathrm{k}$.
Then G is $F C-$ nilpotent of $F C-c 1 a s s \leq m+k$.

Lemma 4.2 (K.K. Hickin and J.A. Wenzel [9]).
Let $L \triangleleft G, M \triangleleft G$. Suppose $L \subseteq M$ and $L \subseteq F_{\dot{\gamma}}(G)$, some
ordinal γ. Then $M \subseteq F_{\gamma+1}(G)$ if $\frac{M}{L} \subseteq F_{1}\left(\frac{G}{L}\right)$.

Proof:
If $\frac{M}{L} \subseteq F_{1}\left(\frac{G}{L}\right)$, then for $m \in M$ the index of the centralizer of $m L$ in $\frac{\mathrm{G}}{\mathrm{L}}$ is finite.
Now since $\frac{F_{\gamma}(G)}{L} \triangleleft \frac{G}{L}$ there exists a homomorphism τ such that

$$
\tau: \frac{G}{\mathrm{~L}} \rightarrow \frac{\frac{\mathrm{G}}{\mathrm{~L}}}{\frac{\mathrm{~F}_{\gamma}(\mathrm{G})}{\mathrm{L}}} \simeq \frac{\mathrm{G}}{\mathrm{~F}_{\gamma}(\mathrm{G})}
$$

So the centralizer of $\mathrm{mF}_{\gamma}(\mathrm{G})$ has finite index in $\frac{\mathrm{G}}{\mathrm{F}_{\gamma}(\mathrm{G})}$.
So $m F_{\gamma}(G) \in F_{1}\left(\frac{G \pi}{F_{\gamma}(G)}\right)=\frac{F_{\gamma+1}(G)}{F_{\gamma}(G)}$.
Therefore $\mathrm{M} \subseteq \mathrm{F}_{\gamma+1}(\mathrm{G}) \cdot \mathrm{Q}$ SITY of the
WESTERN CAPE
Lemma 4.3 (K.K. Hickin and J.A. Wenze1 [9]).
Let H and K be normal subgroups of a group G. For any pair of non-negative integers (i,j) define a subgroup by

$$
G(i, j)=F_{i}(H) \cap F_{j}(K)
$$

Then

$$
G(i, j) \subseteq F_{i+j-1}(H K)
$$

Proof:

Let $F(k)$ denote $F_{k}(H K)$. Since $F_{i}(H)$ is a characteristic subgroup H and $H \triangleleft G, F_{i}(H) \triangleleft G$.

Similarly $F_{j}(K) \triangleleft G$ so $G(i, j) \triangleleft G . \quad$ Put $s=i+j$. The result is proved by induction on s. If $s=1$, the result is clear. Assume the statement is true for all $\mathrm{s} \leqslant \mathrm{t}$.

If $\mathbf{i}=0$, then $G(0, j)=1$.
If $j=0$, then $G(i, 0)=1$.
Thus it is assumed that $i \neq 0 \neq j$.
and

$$
G(i-1, j) \subseteq F_{i+j-2}(H K)
$$

UNIVERSITY of the
by the induction hypothesis.
Let

$$
L=G(i-1, j) G(i, j-1) \subseteq F_{i+j-2}(H K)
$$

and $1 e t$

$$
x \in G(i, j)
$$

The number of conjugates $\left(x F_{i-1}(H)\right)^{h}, h \in H$, is finite. Thus x has a finite number of conjugates mod $F_{i-1}(H)$. Hence x has a finite number of conjugates $\bmod F_{i-1}(H) \cap F_{j}(K)$ and so x has a finite number of conjugates mod L.

Let

$$
\operatorname{Con}(x, H)=\left\{x^{h}: h \in H\right\},
$$

then $C o n(x, H)$ has a finite number of members mod L. Similarly, the number of conjugates $\left(x F_{j-1}(K)\right)^{k}$, $\mathrm{k} \in \mathrm{K}$, is finite.

Thus x has a finite number of conjugates mod $F_{j-1}(K)$. Hence x has a finite number of conjugates $\bmod F_{i}(H) \cap F_{j-1}(K)$ and so x has a finite number of conjugates mod L.

Let

$$
\operatorname{Con}(x, K)=\left\{x^{k}: k \in K\right\},
$$

then $C o n(x, K)$ has a finite number of members mod L. Therefore Con (Con $(x, H), K$) has a finite number of members $\bmod L$ and so

$$
x L \in F_{1}\left(\frac{H K}{L}\right)
$$

Hence

$$
\frac{G(i, j)}{L} \subseteq F_{1}\left(\frac{H K}{L}\right)
$$

By Lemma 4.2

$$
G(i, j) \subseteq F_{i+j-1}(H K)
$$

and this completes the induction. व

Theorem 4.4 (K.K. Hickin and J.A. Wenzel [9]). If H and K are normal subgroups of G and if H and K are $F C-$ nilpotent of $F C-c l a s s i n$ and m respectively, with $n \geqslant m$, then $H K$ is FC-nilpotent of FCclass at most $2 \mathrm{n}+\mathrm{m}-1$.

Proof:
Lemma 4.3 shows that

$$
H \cap K=G(n, m) \subseteq F_{n+m-1}(H K) .
$$

As the FC-class of $\frac{H K}{H \cap K} \leqslant n$, the $F C-c 1 a s s$ of
$H K$ is $\leqslant n+(n+m-1)=2 n+m-1$ by Lemma 4.1. a

The next theorem proves that this last result still holds if K normal in G is replaced by K subnormal in G.

Theorem 4.5
If $H \triangleleft G, K \triangleleft \triangleleft G$ and if H and K are both $F C-n i l p o t e n t$ then $H K$ is FC-nilpotent.

Proof:
The theorem follows from Theorem 4.4 and Theorem 2.3. a

The question arises whether the conclusion of Theorem 4.4 remains true if it required that $K \infty \Delta G$. This means
that one would like to know whether the condition $K \triangleleft \triangleleft G$ can be relaxed to $K \infty \triangleleft G$. The next theorem shows that this cannot be done.

Theorem 4.6

There exists a non-FC-nilpotent group G with $F C-$ nilpotent subgroups H and $K, H \triangleleft G, K \infty \triangleleft G$ such that $\mathrm{G}=\mathrm{HK}$.

Proof:

Let G be the group defined in Theorem 2.2.
Thus G is a product of the normal FC-nilpotent sub-
 only remains to show that G is non-FC-nilpotent.

It is clear that $a_{0} \in F_{1}(G)$. We want to show that $F_{1}(G)=\left\langle a_{0}\right\rangle$.

Let

$$
1 \neq x \in G,
$$

then

$$
x=a_{r_{1}}^{n_{1}} a_{r_{2}}^{n_{2}} \ldots a_{r_{m}}^{n_{m}} b^{k}
$$

and it is assumed that none of the $a_{r_{i}}=a_{o}$ and $k \neq 0$. We show that the element x does not have a finite number of conjugates.

Now

$$
\begin{aligned}
& a_{\ell}^{-1}\left(a_{r_{1}}^{n_{1}} \ldots a_{r_{m}}^{n_{m}} b^{k}\right) a_{\ell} \\
= & a_{r_{1}}^{n_{1}} \ldots a_{r_{m}}^{n_{m}} a_{\ell}^{-1} b^{k} a_{\ell} \\
= & a_{r_{1}}^{n_{1}} \ldots a_{r_{m}}^{n_{m}}\left(a_{\ell}^{-1} b a_{\ell}\right) \\
= & a_{r_{1}}^{n_{1}} \ldots a_{r_{m}}^{n_{m}}\left(b a_{\ell-1}^{-1}\right)^{k} .
\end{aligned}
$$

We show by induction on k that

$$
\begin{align*}
& a_{r_{1}}^{n_{1}} \ldots a_{r_{m}}^{n_{m}}\left(b a_{\ell-1}^{-1}\right)^{k} \\
& =b^{k} \xlongequal[i=1]{\prod_{\Pi}^{m} a_{r_{i}} n_{i} a_{r_{i}-1}^{\binom{k}{1} n_{i}} \ldots} \ldots a_{r_{i}-k}^{\binom{k}{k} n_{i}} a_{\ell-1}^{-\binom{k}{1}} \ldots a_{\ell-k}^{-\binom{k}{k}}, \\
& \text { WESTERN CAPE } \tag{4.1}
\end{align*}
$$

where $\binom{k}{r}=\frac{k!}{r!(k-r)!}$.
This statement is true for $k=1$ since

$$
\begin{align*}
& a_{r_{1}}^{n_{1}} \ldots a_{r_{m}}^{n_{m}} \text { ba }_{\ell-1}^{-1} \\
& =b b^{-1} a_{r_{1}}^{n_{1}} \quad \ldots b b^{-1} a_{r_{m}}^{n_{m}} b_{l-1}^{-1} \tag{4.2}\\
& =b a_{r_{1}}^{n_{1}}{ }^{n_{r_{1}-1}} \quad \cdots \quad a_{r_{m}}^{n_{m}}{ }_{a}^{n_{m}}{ }_{r_{m}-1} a_{\ell-1}^{-1} \\
& =b \underset{\prod_{i=1}}{\frac{m}{n}} a_{r_{i}}^{n_{i}}{ }_{a_{r_{i}-1}}^{n_{i}} a_{\ell-1}^{-1} .
\end{align*}
$$

Now

$$
a_{r_{1}}^{n_{1}} \ldots a_{r_{m}}^{n_{m}}\left(b a_{\ell-1}^{-1}\right)^{k+1}
$$

$$
\begin{aligned}
& =a_{r_{1}}^{n_{1}} \ldots a_{r_{m}}^{n_{m}}\left(b a_{\ell-1}^{-1}\right)^{k} \text { ba }_{\ell-1}^{-1} \\
& =b^{k} \prod_{i=1}^{m} a_{r_{i}}^{n_{i}} a_{r_{i}-1}^{\binom{k}{l} n_{i}} \ldots a_{r_{i}-k}^{\binom{k}{k} n_{i}} \begin{array}{l}
-\binom{k}{1} \\
a_{\ell-1}
\end{array} \cdots a_{\ell-k} \quad-\binom{k}{k} \quad b_{\ell-1}^{-1} .
\end{aligned}
$$

As in (4.2) and by applying the identity

$$
\binom{\mathrm{k}}{\mathrm{r}-1}+\binom{\mathrm{k}}{\mathrm{r}}=\binom{\mathrm{k}+1}{\mathrm{r}}
$$

we get

$$
\begin{aligned}
& a_{\ell}^{-1}\left(a_{r_{1}}^{n_{1}} \cdots \frac{n_{m}}{a_{m}} b^{k+1}\right) a_{\ell}
\end{aligned}
$$

UNIVERSITY of the
and our assertion is proved by induction. E
Also

$$
\begin{aligned}
& a_{\ell} a_{r_{1}}^{n_{1}} \ldots a_{r_{m}}^{n_{m}} b^{k} a_{\ell}^{-1} \\
= & a_{r_{1}}^{n_{1}} \ldots \cdot a_{r_{m}} a_{\ell} b^{k} a_{\ell}^{-1} \\
= & a_{r_{1}}^{n_{1}} \ldots a_{r_{m}}^{n_{m}}\left(a_{\ell} b a_{\ell}^{-1}\right)^{k} \\
= & a_{r_{1}}^{n_{1}} \ldots a_{r_{m}}^{n_{m}}\left(b a_{\ell-1}\right)^{k}
\end{aligned}
$$

and by repeating the above argument we arrive at

$$
a_{r_{1}}^{n_{1}} \ldots a_{r_{m}}^{n_{m}}\left(b a_{\ell-1}\right)^{k}
$$

$$
\begin{equation*}
=b^{k} \underset{\prod_{i=1}^{m}}{m} a_{r_{i}}^{n_{i}} a_{r_{i}-1}^{\binom{k}{1} n_{i}} \ldots a_{r_{i}-k}^{\binom{k}{k} n_{i}} a_{\ell-1}^{\binom{k}{1}} \ldots a_{\ell-k}^{\binom{k}{k}} . \tag{4.3}
\end{equation*}
$$

Next we consider the case where $k=0$. We show by induction on t that

$$
\begin{align*}
& b^{-t} a_{r_{1}}^{n_{1}} \ldots a_{r_{m}}^{n_{m}} b^{t} \\
= & \left.\prod_{i=1}^{m} a_{r_{i}}^{n_{i}}{ }^{\binom{t}{1} n_{i}-1} \ldots a_{r_{i}-t}^{t}\right) n_{i} . \tag{4.4}
\end{align*}
$$

This is true for

$$
\begin{align*}
& =b^{1} a_{r_{1}}^{n_{1}} b b^{-1} a_{r_{2}}^{n_{2}} b E b^{-1} a_{r_{m}}^{n_{m}} \tag{4.5}\\
& =a_{r_{1}}^{n_{1}} a_{r_{1}-1}^{n_{1}} \cdots a_{r_{m}}^{n_{m}} a_{r_{m}-1}^{n_{m}} \\
& =\prod_{i=1}^{m} a_{r_{i}}^{n_{i}} a_{r_{i}-1}^{n_{i}} .
\end{align*}
$$

Then

$$
\begin{aligned}
& b^{-(t+1)} a_{r_{1}}^{n_{1}} \ldots a_{r_{m}}^{n_{m}} b^{t+1} \\
& =b^{-1}\left(b^{-t} a_{r_{1}}^{n_{1}} \ldots a_{r_{m}}^{n_{m}} b^{t}\right) b
\end{aligned}
$$

As in (4.5) and by applying the identity

$$
\binom{t}{r-1}+\binom{t}{r}=\binom{t+1}{r}
$$

we get

$$
\begin{aligned}
& b^{-(t+1)}{ }^{a_{r_{1}}} \ldots a_{r_{m}}^{n_{m}} b^{t+1} \\
= & \prod_{i=1}^{m}{ }^{n}{ }^{n_{i}} r_{i}\left(\begin{array} { c }
{ (\begin{array} { l }
{ t + 1 } \\
{ r _ { i } - 1 }
\end{array}) n _ { i } }
\end{array} \ldots \left(\begin{array}{l}
\binom{t+1}{r_{i}-t-1} n_{i}
\end{array}\right.\right.
\end{aligned}
$$

and our assertion is proved by induction. By (4.1), (4.3) and (4.4) it is clear that $x=a_{r_{1}}^{n_{1}} \ldots a_{r_{m}}^{n_{m}} b^{k} \in G$ does not have a finite number of conjugates. Hence we conclude that $F_{1}(G)=<a_{o}>$.

Let

$$
\alpha: G \rightarrow \frac{G}{\left\langle a_{0}\right\rangle}
$$

be a mapping defined by

$$
\begin{aligned}
& \alpha: a_{0} \rightarrow a_{1}<a_{0}> \\
& a_{1} \rightarrow a_{2}<a_{0}> \\
& \vdots \\
& a_{i} \rightarrow a_{i+1}<a_{0}> \\
& \vdots \\
& b \rightarrow b<a_{0}>
\end{aligned}
$$

The mapping α can be extended to a homomorphism of G. The element $\left(a_{r_{1}}^{n_{1}} \ldots a_{r_{m}}^{n_{m}} b^{k}\right)<a_{o}>$ is the image of $a_{r_{1}-1}^{n_{1}} a_{r_{2}-1}^{n_{2}} \cdots a_{r_{m}-1}^{n_{m}} b^{k}$ under α.

Furthermore $\quad a_{r_{1}}^{n_{1}} \ldots a_{r_{m}}^{n_{m}} b^{k} \in \operatorname{ker} \alpha$

$$
\Leftrightarrow \quad\left(a_{r_{1}}^{n_{1}} \cdots a_{r_{m}}^{n_{m}} b^{k}\right)^{\alpha}=\left\langle a_{o}\right\rangle
$$

$$
\left.\Leftrightarrow \quad a_{r_{1}+1}^{n_{1}} \cdots a_{r_{m}+1}^{n_{m}} b^{k}<a_{o}\right\rangle=\left\langle a_{o}\right\rangle
$$

$$
\Leftrightarrow \quad a_{r_{1}+1}^{n_{1}} \ldots a_{r_{m}}^{n_{m}} b^{k} \epsilon<a_{o}>
$$

$$
\Leftrightarrow \quad \mathrm{n}_{1}=\mathrm{n}_{2}=\ldots=\mathrm{n}_{\mathrm{m}}=\mathrm{k}=0 .
$$

So α is an isomorphism.

Since

it follows that

UNIVERSITY of the

$$
F_{1}\left(\frac{G}{\left\langle a_{0}\right\rangle}\right)=\frac{\left\langle a_{1}\right\rangle\left\langle a_{0}\right\rangle}{\left\langle a_{0}\right\rangle}
$$

and so

$$
\mathrm{F}_{2}(\mathrm{G})=\left\langle\mathrm{a}_{0}, \mathrm{a}_{1}\right\rangle
$$

and in general

$$
F_{n}(G)=\left\langle a_{0}, a_{1}, \ldots, a_{n}\right\rangle
$$

Therefore G is not $F C$-nilpotent. \square
§4.2 THE PRODUCT OF TWO NORMAL FC-HYPERCENTRAL

SUBGROUPS OF A GROUP

Fitting's Theorem can be generalized to FC-hypercentrality. K.K. Hickin and J.A. Wenzel ([9]) proved that the product
of two normal FC-hypercentral subgroups of a group, is itself FC-hypercentral. Results which are required to establish this, are stated as lemmas. The proof of Lemma 4.7, which is due to J.H. Hoelzer ([11]), is not given here.

Lemma 4.7 (J.H. Hoelzer [11])
If H is a non-trivial normal subgroup of an $F C$-hypercentral group G, then $H \cap F_{1}(G) \neq E$. \quad

Lemma 4.8 (K.K. Hickin and J.A. Wenzel [9]).
If H and K are normal subgroups of a group G and if H and K are $F C$-hypercentral groups and $H K \neq E$, then, $\mathrm{F}_{1}(\mathrm{HK}) \neq$ E. IVERSITY of the

WESTERN CAPE

Proof:
If $H \cap K=E$, then $H K=H X K$
and

$$
F_{1}(H X K)=F_{1}(H) \times F_{1}(K) \neq E .
$$

If $H \cap K \neq E$, then $H \cap K$ is a non-trivial normal subgroup of H. By Lemma 4.7

$$
L=(H \cap K) \cap F_{1}(H) \neq E
$$

and $L \triangleleft G$ since $F_{1}(H)$ is a characteristic subgroup of H and H 4 G .

Now
$L \cap F_{1}(K) \neq E$
since L is a non-trivial normal subgroup of K.

But

$$
\begin{aligned}
L \cap F_{1}(K) & =\left[(H \cap K) \cap F_{1}(H)\right] \cap F_{1}(K) \\
& =F_{1}(H) \cap F_{1}(K) \\
& =M
\end{aligned}
$$

which is normal in G.
Let $x \in M-E . \quad$ Consider the set

$$
A=\left\{x^{h k}: h \in H \text { and } k \in K\right\} .
$$

Then A is a subset of M. As h ranges over H, x^{h} takes on a finite number of values, say $x_{1}, x_{2}, \ldots, x_{n}$, all of which lie in M. As $x_{i} \in F_{1}(K), x_{i}^{k}$ takes on a finite number of values as k ranges over K for $1 \leqslant i \leqslant n$. Thus $x \in F_{1}(H K)$, and so $F_{1}(H K) \neq E$.

WESTERN CAPE
Theorem 4.9 (K.K. Hickin and J.A. Wenze1 [9]).

Let H and K be non-trivial normal subgroups of a group G such that $G=H K$. If H and K are $F C$-hypercentral, then G is $F C$-hypercentral.

Proof:
Suppose the theorem is not true. By Lemma 4.8, $\mathrm{F}_{1}(\mathrm{HK}) \neq \mathrm{E}$. Suppose that there exists an ordinal α such that $\mathrm{F}_{\alpha}(\mathrm{G})=\mathrm{F}_{\alpha+1}(\mathrm{G}) \neq \mathrm{G}$.
Then

$$
\overline{\mathrm{G}}=\frac{\mathrm{G}}{\mathrm{~F}_{\alpha}(\mathrm{G})}=\frac{\left[\mathrm{HF}_{\alpha}(\mathrm{G})\right]}{\mathrm{F}_{\alpha}[\mathrm{G})} \cdot \frac{\left[\mathrm{KF}_{\alpha}(\mathrm{G})\right]}{\mathrm{F}_{\alpha}(\mathrm{G})} .
$$

Now \bar{G} is a product of two normal FC -hypercentral groups
and $\bar{G} \neq E . \quad$ By Lemma $4.8 F_{1}(\bar{G}) \neq E$. Therefore $F_{\alpha+1}(G)$, which is the complete inverse image of $F_{1}(\bar{G})$, is strictly greater than $\mathrm{F}_{\alpha}(\mathrm{G})$. This is a contradiction. a

The conclusion of Theorem 4.9 still holds if K normal in G is replaced by K subnormal in G. This is shown by the next theorem.

Theorem 4.10
If $H \varangle G, K \varangle \varangle G$ and H is $F C$-hypercentral and K is FC-hypercentral, then $H K$ is $F C$-hypercentral.

Proof:
The theorem follows from Theorem 4.9 and Theorem 2.3. a

00000

REFERENCES

[1] FITTING, H.
: Beiträge Zur Theorie der Gruppen von Endlicher Ordnung, Jber. Deutsch Math. Verin., 48 (1938): 77-141.
[2] GRUENBERG, K.W. : The Engel elements of a soluble group, Illinois J. Math. $\underline{3}$ (1959): 151-168.
[3] HAIMO, F. : The FC-chain of a group, Canadian J. Math. $\underline{5}$ (1953): 498-511.
[4] HALL, M. : The Theory of groups, Macmi11an New York (1961).
[5] HALL, P.
Some sufficient conditions for a group to be nilpotent, Illinois J. Math. 2 (1958): 787-801.
[6] HALL, P.
The Frattini subgroups of finitely generated subgroups, Proc. London Math. Soc.11 3 (1961): 327-352.
[7] HALL, P.
WES: On non-strictly simple groups, Proc. Cambridge Phil. Soc. 59 (1963): 531-553.
[8] HEINEKEN, H. AND : A group with trivial centre satisI.J. MOHAMED
[9] HICKIN, K.K. AND J.A. WENZEL
[10] HIRSCH, K.A.
[11] HOELZER, J.H.
[12] KUROSH, A.G. : The Theory of groups, 2 New York (1955, 1956)
[13] PLOTKIN, B.I. : On some criteria of locally nilpotent groups, Uspehi Mat. Nauk (N.S) 9, No. 3 (61) (1954): 181-186.
[14] ROBINSON, D.S. : Joins of subnormal subgroups, Illinois J. Math. $\underline{9}$ (1965): 144-168.
[15] ROSEBLADE, J.E. : The derived series of a join of subnormal subgroups, Math. Z. 117 (1970): 57-69.
[16] STONEHEWER, S.E. : Nilpotent Residuals of subnormal subgroups, Math. Z. 139 (1974): 45-54.

UNIVERSITY of the WESTERN CAPE

ABSTRACT

H. Fitting proved that the product of two normal nilpotent subgroups H and K of a group, is itself nilpotent.

Several authors have proved statements of the following type:
(A) If H and K are normal subgroups of a group G and if $H \in P, K \in P$ then $H K \in P$, where P is a group theoretical property.

We have considered the question of to what extent the requirement that H and K be normal can be relaxed in (A). This is done by replacing normal by subnormal or serial.

In Chapter I Fitting's Theorem is proved and a few simple consequences of the theorem are stated as corollaries. The bound attained in Fitting's Theorem for the nilpotency class of the product of two normal nilpotent subgroups of a group, turns out to be a least upper bound.

In Chapter 2 we are concerned with the generalization of Fitting's Theorem in the case of nilpotent subgroups H and K. If we replace K normal in G by K subnormal in G, the conclusion of Fitting's Theorem still holds. However this is not the case if we replace K normal in G by K serial in G. This is shown by an example. If we insist that the indices of subnormality of both H and K are greater than one, then Fitting's Theorem does not remain true.

Chapter 3 deals with the Hirsch-Plotkin Theorem. It is shown that the conclusion of the Hirsch-Plotkin Theorem still holds if H and K are serial in G.
K.K. Hickin and J.A. Wenzel proved that the product of two normal $F C-$ nilpotent subgroups H and K of a group G, is itself FC-nilpotent. They also proved that the product of two normal FC-hypercentral subgroups H and K of a group G, is itself $F C$-hypercentral. In Chapter 4 it is shown that the result remains true if $K \varangle G$ is replaced by $K \varangle \varangle G$. An example is produced to show that $K \varangle \varangle G$ cannot be relaxed to $K \infty \triangleleft G$ in the case of FC-nilpotence.

UNIVERSITY of the
WESTERN CAPE

