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Abstract 

The principle aim of this work is to improve the way in which pre-equilibrium double dif­

ferential cross-sections are currently calculated [1, 2, 3, 4]. The theoretical basis for these 

calculations is the Multistep Direct Theory by Feshbach, Kerman and Koonin (FKK theory) 

[5]. This theory leads to the simplification of multistep reactions as a folding of single-step 

reactions through the implementation of the Distorted Wave Born Approximation (DWBA). 

The pre-equilibrium cross-sections are subsequently calculated with a multistep direct code. 

The primary improvement is the use of a realistic effective Nucleon-Nucleon (N-N) interac­

tion in the DWBA code. This is implemented by using DW91N, a DWBA code that is able 

to accept a more complex effective interaction. The effective interaction used is that of Amos 

et al. [6]. The multistep direct code by Bonetti et al. [7] has been modified to distinguish 

between proton and neutron excitations in the nucleus. 

Most previous calculations have used a simple Yukawa interaction of range 1 fm and variable 

interaction strength Vo [1]. The interaction strength is usually adjusted to obtain a good 

agreement between the calculation and the measured data. This approach however lacks 

physical interpretation, which limits the application of the code in terms of experimental 

predictions. 

The calculations performed are for the (p,p') reaction of 200 MeV protons on 90 zr. The 

predicted results were compared to data obtained for this reaction by Richter et al. [2]. 

Initial multistep calculations with the realistic effective interaction showed an overprediction 

of the double differential cross-sections when compared to the data. For this reason it was 

decided to consider only the first stage of the multi-step reaction. The first stage of the 

reaction normally contributes most of the cross-section at low excitation energies[2] and in 

the forward direction. 

The results for the first-step calculation show an overprediction in the cross-section with the 

implementation of the parameter-free N-N interaction. In an effort to improve the agreement 

between data and calculational prediction, the nuclear model emplo an overprediction of the 

data, but also indicate that it may be improved by considering the way in which nucleus can 

become excited. 
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Chapter 1 

Introduction 

Pre-Equilibrium reactions are of great importance to our understanding of nuclear physics. 

In this thesis a small part of this vast field is addressed. The work is mainly theoretical in 

nature. I have however attempted to make, in my opinion, important connections between 

theory and experiment. 

Chapter 1 deals with basic concepts from an experimental point of view. In chapter 2 

the main theoretical ideas involved in scattering theory are discussed. The FKK theory is 

introduced in Chapter 3 and the main expressions needed to gain insight into this theory are 

given. 

Chapter 4 outlines the computational details of the calculations and results. Chapter 5 is 

the concluding chapter which summarises final results and outlines possible further points of 

investigation. 

1 

https://etd.uwc.ac.za/



1.2. CLASSIFICATION OF REACTIONS 3 

The measured quantity in any experiment is the energy spectrum, Fig. 1.2. This data is 

then analysed to obtain the differential cross-sections, commonly referred to as the cross­

section. The cross-section can be defined as the probability for a certain reaction to occur. 

There are thus many types of cross-sections, each corresponding to a different reaction out­

come. Fig. 1.2 shows a schematic energy spectrum at an incident energy of around 50 MeV. 

It is given as a function of the energy of the scattered particle. 

~ 
0 
u 

E
0 
.. (energy of the outgoing particle) 

Figure 1.2: Measured energy spectrum. 

1.2 Classification of Reactions 

During a reaction the target nucleus may become excited as it interacts with the incident 

particle. The nucleus may be excited in various ways [12]. Fig. 1.3 illustrates the various 

ways in which the incident particle can interact with the target nucleus for medium energy 

reactions. 

Nuclear reactions are broadly classified as either compound- or direct reactions. In the 

compound nucleus reactions, the incident particle is captured by the target nucleus and 

forms a compound nuclear state. The incident particle is absorbed by the nucleus and its 

energy subsequently distributed among the other nucleons in the target. This leads to the 

https://etd.uwc.ac.za/



1.3. INFORMATION FROM EXPERIMENTS 5 

whereas for compound reactions it takes about 10-16 seconds [24]. 

1.3 Information from experiments 

One obtains information about the nucleus by employing theory and experiment. Consider 

a proton or neutron when it hits the nucleus. The most important property of the incident 

nucleon that determines the type of reaction is the incident energy. As the incident energy 

of the particle is increased, so does the nature of the reaction mechanism. The aim is thus to 

understand this in terms of a simple model from which the cross-sections for various reactions 

can be calculated. The calculated results are then compared with the experimentally obtained 

data. 

At low energies, protons and neutrons interact very differently with nuclei. This is due to 

the fact that the neutron has no charge. Protons will be scattered due to the electrostatic 

repulsion and the cross-section for this process is given by the Rutherford formula [9] 

where 

da 

dO 

ze = the charge of the projectile 

Ze= the charge of the target 

(zze2) ( 1 )
2 

4nEo 4Ta 

Ta = the kinetic energy of the projectile and 

() = the angle of emission. 

1 
(1.1) 

sin4 (£)' 

At low energy (E < 10 MeV) the proton is unlikely to enter the nucleus. Neutrons on 

the other hand are able to penetrate the nucleus at these energies and can give rise to 

compound nucleus formation [12]. As the incident neutron energy increases it results in 

various nuclear excitations. As soon as a favoured energy level is excited, the cross-section 

reaches a maximum. These kind of reactions are called resonance reactions. 

During this process the incident neutron is absorbed, excites the nucleus and is ejected. 

By observing the angular distribution of the scattered particles one can extract information 

about the excited compound nuclear state. 

https://etd.uwc.ac.za/



1.4. AIMS OF THIS STUDY 7 

To be able to calculate pre-equilibrium cross-sections are important for various reasons. 

Looking at Fig. 1.4, one sees that pre-equilibrium reactions contribute to a large portion of 

the cross section. Indirectly this says that at least half of the possible processes likely to occur 

for reactions around the 200 Me V region, are pre-equilibrium reactions. The second possible 

application of being able to calculate these cross sections accurately, is the implementation 

into radiation transport codes such as MCNP [14]. These type of codes simulate radiation 

transport and use cross-section data libraries, which form an integral part of the modelling 

process. 

1.4 Aims of this study 

The aim of this work is to improve the way pre-equilibrium reaction cross-sections are cur­

rently being calculated. More specifically, to improve the interpretation of calculated cross­

section results. The N-N interaction plays a very important role in these calculations. Current 

methods of computations use a Yukawa function as the effective interaction [34]. In order to 

obtain good fits with this force, the interaction strength (Vo) is adjusted. This approach thus 

uses a very simple interaction and the normalisation introduces a fitting procedure which 

may well hide some of the physics in the data. 

https://etd.uwc.ac.za/



2.1. INTRODUCTION 9 

After the plane waves interacted with the target (considered as a point), one would expect 

to "see" spherical waves. This treatment is analogous to the scattering of a plane water wave 

by a point object in the water. The figure below also shows the detector used to detect the 

reaction products. 

Incident plane Waves (k) 

Figure 2.1: Analysis of scattering in terms of plane and spherical waves [29] . 

https://etd.uwc.ac.za/



2.1. INTRODUCTION 11 

The first term represents the plane wave part and includes the z-co-ordinate only, since the 

z-co-ordinate is chosen to be parallel to the incident particles momentum (Fig. 2.1). The 

second term consists of the spherical wave part, ei;r, and the scattering amplitude f (0, ¢). 

The square of the scattering amplitude [13, 22] is proportional to the probability that the 

reaction particles are scattered in the direction of (0, ¢). The fact that the scattering potential 

is considered to be spherically symmetric, eliminates the </>-dependence of the scattering 

amplitude, hence it becomes f ( 0). 

The scattering amplitude is related to the differential cross-section [29] through the follow­

ing expression: 

da 
dO 

ex If (0)1 2
. (2.4} 

One thus has many types of cross-sections, each of which is related to the corresponding 

scattering amplitude. The cross-section is the most important measurable quantity for any 

experiment. The aim of scattering theory is thus to provide us with a framework for for­

mulating solutions to the scattering problem from which the desired cross-sections may be 

extracted. 

In the following section the formal developments of the scattering theory will be outlined. 

The formalism results in exact expressions, which are often incalculable. The best one can 

often do is to make some assumptions, which will allow for the simplification of the problem. 

The assumptions as well as the approximations made are largely dependent on the type of 

nuclear model employed. These assumptions and approximations will be discussed and the 

calculable expressions given. 

https://etd.uwc.ac.za/



2.2. FORMAL SCATTERING THEORY 13 

2.2.2 The Total Wavefunction 

The wavefunction describing the scattering process is thought to be a complete description, 

that is, we should in principle be able to extract any information prior to and after scattering. 

Since the exact form of the wavefunction is not known, it is perhaps appropriate to mention 

that there are two aspects that need consideration. The one is the relative (spatial) description 

of the system and the other is the internal nuclear description. Intuitively we can thus say 

that we are at least looking for a wavefunction that is separable [13] in terms of the above 

considerations. In order to do this we have to construct suitable operators. 

Let us start with the internal nuclear operators. The nucleus is to some extent well described 

by the Shell Model [9]. Hence the internal Hamiltonian for the nucleus A in the entrance 

channel a as in the previous section is [13] 

A 

HA = L)Ti + Ui) + 2= \!ij, (2.5) 
i=l 

where 

Ti = - (.J1'~J Y'[ = is the kinetic energy operator for the i'th particle, 

Ui = U(ri) = is a central potential acting on a single nucleon, 

Vii= V(ri - rj) =is a phenomenological two-body potential, and 

= the co-ordinate of the i'th particle relative to the nuclear centre. 

One may write down similar expressions for the projectile a, as well as for particles in the exit 

channel. The corresponding internal hamiltonians will carry the subscript of the appropriate 

nucleus. 

The complete internal Hamiltonian for the entrance channel a will then be 

(2.6) 

The eigenfunctions for HA and for Ha are denoted by <I> A and <I>a respectively. The complete 

internal wavefunction for the system in then given by 

(2.7) 

https://etd.uwc.ac.za/



2.2. FORMAL SCATTERING THEORY 15 

where the various operators were constructed in a similar manner as for channel a. What we 

thus obtain is 

H Ha +Ta+ Va 

Hf3 + Tf3 + Vf3· (2.17) 

The above expression represents what has been said in the introductory quote, i.e. all 

information about the system is contained in the wavefunction for the system and hence we 

only need to construct the appropriate operators to extract the required information. 

https://etd.uwc.ac.za/



2.3. THE TRANSITION AMPLITUDE 17 

which includes the plane wave solution to the relative part of the wavefunction. 

In regions where Va is not equal to zero we use the method of projection onto a channel. 

This is done by taking the inner product of <Pa with Eq.( 2.3) and integrating over all internal 

co-ordinates. 

<I>~(E - Ha - Ta)Wa 

<I>~(EWa - HaWa -TaWa) 

cI>~EWa - Ea<P~Wa - cI>~TaWa 

/ Ea(<I>~Wa) dinternal - J (cI>~TaWa) dinternal = 

(Ea -Ta) J (cI>~Wa)dinternal 
(Ea - Ta)(<Pa, Wa) = 

<I>~ VaWa 

cl>~ VaWa 

<I>~ VaWa 

J (<I>~ Va W a) dinternal 

J (<I>~ Va W a) dinternal 

( <I>a, Va W a) (2.24) 

The integration co-ordinate, dinternal , indicates integration over internal nuclear co-ordinates 

only. The notation (,) indicates this type of integration. The result from the above manipu­

lation yields a solution for the relative wavefunction 

(2.25) 

based on the fact that the relative part is independent of the internal co-ordinates. 

A solution to the above equation may be obtained by implementing Green's functions 

methods [29, 22, 17] to obtain a solution of the form 

'l/Ja(ra) = J G~(ra,r'a)(<I>a, Va<I>a)dr~, (2.26) 

with the following solution 

(
2µa) eikolr-r'I 

n,2 47rlr - r'I. (2.27) 

The above function describes the source of the potential, in this case the target nucleus. The 

co-ordinate (r~) refers to region within the nucleus. The plus sign on the Green's function 

solution and on the relative solution for the wavefunction designates that the spherically 

scattered waves are radially outgoing. Inserting the above expressions into Eq. ( 2.26) we 

obtain the following solution 

(2.28) 

https://etd.uwc.ac.za/



2.3. THE TRANSITION AMPLITUDE 19 

One may obtain the scattering amplitudes for other exit channels in a similar manner by 

projecting the complete wavefunction onto a certain channel. Consider the channel f3 for 

example. The solution of the relative wavefunction will have the following form: 

(2.35) 

The a designates the initial state of the system. In exactly the same way we obtain the 

following solution 

(2.36) 

and we identify the scattering amplitude as 

(2.37) 

The scattering amplitude in terms of the transition amplitude is 

f µ(3 T. 
af3 = - 2nn2 af3, (2.38) 

with 

(2.39) 

It can thus be seen that the information on the scattering process is contained in the T-matrix 

elements (transition amplitude). 

The asymptotic form of the complete wavefunction can then be written as follows: 

<I>+ [ eikaTa l 
= <I>a ei(ka·ra) + J aa(O)---;:;;- (2.40) Q 

eik0 1Ta 

+ L <I>a1fo. 10.((})-- (ra --7 oo) (2.41) 
a'opa ro. 

eik13r13 
(r(3 --7 oo). (2.42) + L <I>(3f(3a(O)-

(3 r(3 

Eq.( 2.40) is elastic scattering, Eq.( 2.41) is inelastic scattering and Eq.( 2.42) are other 

possible reactions. 

https://etd.uwc.ac.za/



2.4. DISTORTED WAVES 21 

where Xa now denotes a solution to the relative part of the wavefunction, since we can write 

the total wavefunction as Wa = xa<I>a. Here the <I>a as before denotes the internal portion 

of the wavefunction. A solution to the above equation may be obtained in a partial wave 

expansion in terms of the spherical harmonics to obtain [29] 

( +) _ 47r """""' ·l iat J (k )Y.m (A )Y.m* (kA ) Xa - -k- L...t i e e a r a e r a e a . 
ara e,m 

(2.46) 

Here the Coulomb interaction has been included by the insertion of the Coulomb phase shift 

eat [28]. The functions fe are the solutions to the radial Schrodinger equation and are chosen 

so that the relative wavefunction consists of outgoing spherical waves. These ft have the 

following asymptotic form [18] 

(2.47) 

This equation implies that the only effect the potential has on the radial wavefunction is that 

it can change its phase Oe. The subscript .e refers to the .e'th partial wave. These wavefunctions 

may be determined numerically. 

The general solution for x~+) is then 

(2.48) 

One can then also write down the scattering amplitude as 

f(O) =: L(2l + l)ei8
t sinoePe(cosO). 

a l 
(2.49) 

Here Pe denotes the Legendre polynomial of order £. The above form (Eq. 2.48) of the 

relative wavefunction is referred to as spherically distorted waves. 

Let us now turn to the situation in which the effective interaction is not zero and we have 

only the effective interaction present. In this case Eq. (2.44) becomes 

(2.50) 

A solution to the above equation may be obtained in a similar manner in terms of a Green's 

function such that the general solution to Eq. (2.45) has the the form 

(2.51) 

https://etd.uwc.ac.za/



2.4. DISTORTED WAVES 23 

What we have achieved up to this point is to separate the potential into two components. 

This gives rise to the spherical distorted waves which can be calculated by fitting elastic 

scattering data. These distorted waves serve as the relative solution to the total wavefunction. 

The next point that is addressed, is the approximation for the total wavefunction, since the 

above expression still contains the unknown wavefunction W0 . 

https://etd.uwc.ac.za/



2.5. THE DISTORTED WAVE BORN APPROXIMATION 

Let the transferred angular momentum be denoted as follows: 

j 

s 

j - s. 

25 

(2.61) 

(2.62) 

(2.63) 

The vector form of the relative angular momentum is denoted by 1, while the quantum number 

is denoted by £. In the above, j is the change in the total angular momentum. J B and J A 

are the total angular momentum for the particles B and A respectively. Angular momentum 

requires that 

(2.64) 

where la and I.a denote the relative angular momentum in channel a and f3 respectively. The 

matrix element dictates the transition from the initial distorted wave to the final distorted 

wave. The matrix element may be explicitly written as 

and expanded in terms of the spherical harmonics for the angular momentum transfer 

where 

Tfa,WBA = L(2j + l)~(JA]MA,Ms - MAIJsMB) 
lsj 

. l 
(2J + 1)2 

L (£sm', m~ - m/iljm - mb +ma) 
rn~·m~rn' 

(2.65) 

(2.66) 

j. I (-)* (+)· 
X dr(3. drcx Xm~mb (k,B, ka) flsj,m(k,B, ka) Xm~ma (k,13, ka), (2.67) 

with 

https://etd.uwc.ac.za/



2.5. THE DISTORTED WAVE BORN APPROXIMATION 27 

It is thus clear from this treatment that the cross-section is determined by our model for 

the nucleus and the effective interaction. The DWBA cross-sections can thus be seen to form 

a very important part in these calculations. 

https://etd.uwc.ac.za/



3.1. INTRODUCTION 29 

The reason for this is that the FKK involves simpler expressions for calculational purposes. 

The FKK theory and codes based on this formalism are utilised in this work. Details about 

these theories and their implementation can be found in [19, 23]. 

Compound Pre-equilibrium Direct 

A 

MSC MSD 
Vl -...... 
s::: 
;:::s D 
0 
u B 

c 

E.", 

s::: A B c D 
0 

~ 
..... ...... 
u 
Q) 

t/l 
Vl 
Vl 
0 
I-< 

u 

Angle Angle Angle Angle 

Figure 3.1: Classification of reaction cross-section. 

The main ideas in these theories arc that the incident projectile undergoes multiple scat­

tering in such a way that it retains a "memory" of the incident channel. Nuclear excitation 

then proceeds in such a way that the reaction does not evolve to purely compound processes 

nor is it purely direct in nature. It may be imagined that the incident particle excites the 

nucleus and is emitted long before the nucleus is fully equilibrated. 
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3.1. INTRODUCTION 31 

3.1.1 Multiple Scattering 

The first step toward constructing a suitable model for pre-equilibrium reactions is the idea 

of multiple scattering. This is not uew in any way, but what is different is the mechanism 

involving nuclear excitation [20, 32]. It is imagined that the nucleus becomes excited through 

a series of intermediate steps, which involves simple excitations of the nucleus from one step 

to the next. More complex nuclear excitations are achieved through such a series of simple 

excitations. The states of highest complexity that can be reached are compound nuclear 

states. This is illustrated in the figme below. 

Incident Particle First Stage Second Stage 

0 Holes 

• Particles 

------~------, 
·• ~ 

0 

lplh 

• 
• 

:: 

2p2h 

+- To Compound 
States 

Figure 3.2: Successive excitation in multiple scattering. 

As mentioned before, the nuclear model employed in this work is the single-particle shell 

model. That is, we will be considering the excitation of shell-model states. These states are 

employed in such a way that when a nucleon is promoted to a higher shell model orbit, it 

leaves a hole in the orbit from which it originated. The excitations are then referred to as 

particle-hole excitations as introduced by Griffin [32]. Fig. 3.2 shows the successive excitation 

of a lplh and a 2p2h state. 

Another ingredient of the above picture is that of doorway states [20]. These doorway 
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3.1. INTRODUCTION 33 

3.1.2 Classification of Reactions 

If one considers a projectile that interacts with a target nucleus, there is basically one of two 

things that can occur. The incident particle can cause excitation by becoming bound to the 

target (Fig. 3.4), or it may excite the nucleus while it is still unbound (Fig. 3.5). The latter 

is referred to as continuum scattering, which is thought to take place during MSD reactions. 

Incident particle 

Incident particle 

No particle in 
the Continuum. 

• 

2plh 

Figure 3.4: Multistep compound reaction. 

Particle remaining 
in the Continuum. 

·-. -- ... @ ••••••••••• ___ _ 

• • • 

3p2h 

··--........................... ,.. 

lplh 

Figure 3. 5: M ultistep direct reaction. 

• • 

2p2h 

-+-
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3.1. INTRODUCTION 35 

observes wavefunction interference in cross-sectional data. This effect is always present, 

since we are dealing with a quantum system. Since the various modes of excitations is 

so great, the cross-sections resulting from the P-chain for example, can be thought of as 

being independent and random. This assumption of randomness allows us to calculate 

the cross-section as a sum of the individual cross-sections without interference. 

https://etd.uwc.ac.za/



3.2. THE MSD FORMALISM 

Ka = is the kinetic energy operator in terms of the relative co-ordinates, 

Via = the potential between the projectile and the nucleus, 

Ua = the optical potential, and 

V = the residual interaction of the incident nucleon. 

The complete Hamiltonian can then be written as 

H = Ho + H1 + ha + V. 

37 

(3.6) 

The shell-model states will be treated as particle-hole states. This would mean that for the 

shell-model Hamiltonian, these states would satisfy the following relation: 

(3.7) 

where 

m denotes the class (mpmh)-states. 

µ denotes the configuration of a particular particle-hole state, and 

Emµ is the energy eigenvalue for a particular state. 

The states Imµ) are pure model statr~s. The real states, as observed experimentally, will be 

a mixture of these states and will satisfies the following: 

Ho+1ln) = Eln). (3.8) 

The state In) can be expanded in terms of the pure model states as 

In) = L a~µlmµ), (3.9) 
mµ 

where the a~µ are coefficients denoting the weight of each model state's contribution to the 

real state. This concludes the internal description of the scattering process. We now turn to 

the relative description. 

The Hamiltonian written down in Eq. (3.2) distinctly depicts expressions for the residual 

nucleus and the projectile. The clcsniption for the projectile is more important than it 

appears, since it describes the motio11 of the particle in the continuum. That is, the motion of 
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3.2. THE MSD FORMALISM 39 

3.2.1 The Transition Amplitude 

With the above tools we can now cousider what happens to a system as it passes through 

various stages of the reaction. In multiple scattering this is achieved by using the Green's 

function propagator [22]. The desired information concerning the cross-sections are contained 

in the T-matrix elements of the reactiou. Consider the system in the initial state IO) Ix(+) (ko)) 

that makes a transition to some fiual st.ate IJ)lx(-)(k)). The Born series expansion gives the 

transition amplitude as 

(x(-)(k)IUIV + VGV + VGVGV + ... IO)lx(+)(k)) (3.12) 

(3.13) 

The particle has now been propagated through the target nucleus. IVI corresponds to a 

single interaction, jVGVI to the second interaction and so on. The index in the summation 

labels the stage (each step) of the reaction. This would correspond to different energies of 

the particle in the continuum as it go(~S from one step to the next. This in turn corresponds 

to different excitations of the resid11al nucleus. The Green's function that is employed in the 

above expression is 

(3.14) 

where n labels the intermediate stages. It is important to point out that the above series refers 

to a process in which one particle remains in the continuum. If at any stage all the particles 

became bound, then we would lian~ Lo use the multistep compound reaction formalism. 

The final states If) as in Eq. ( :U3) are real states, i.e. those that are experimentally 

observed. The reason for this is that the Hamiltonian includes H1, the residual interaction. 

In the independent particle model used in the exciton model and in the FKK-theory, the 

nuclear states used for the experimental states are taken as particle-hole states, which are 

pure model states. The real nuclear states can be retrieved, by letting H1 --+ 0. In the 

independent particle model states the coefficients a~µ become a~µ = 8mn and the final and 

initial states (Eq. (3.13)) reduce t.o initial and final particle-hole states. The initial state 

now becomes IO)lx(+l(k)), corresponding to a OpOh state and the final state lpv)lx(-)(k)), 

corresponding to ppvh. The trausit.iou amplitude is now 
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3.2. THE MSD FORMALISM 41 

0 = initial state, 

pv = the final particle-hole state. 

The cross-section is usually written down in terms of excitations in a certain energy range 

rather than discrete excitations. For the real nuclear states we have 

(3.19) 

Here the delta denotes the energy range of excitation. By putting 3.13 into 3.19 we obtain 

the following expression: 

( i) 2 
L ILTJ+-01 8(EJ - Ex) 
J 

LL ITJ2-ol28(EJ - Ex)+ cross terms 
I 
d2 a(i) 

L rlfldEk +cross terms, 
I. 

(3.20) 

(3.21) 

(3.22) 

which distinguishes between one step (i = 1), multistep reactions (i > 1) and interference 

terms. In the case of the indepcwlcnt particle model we have 

= L jtpv +-- Ol 28(Epv - Ex), (3.23) 
pv 

and with the never-come-back assumption we get 

= L ltrJ +-- 01 2 
8(Epv - Ex)· (3.24) 

pv 

The first and second step reactio!l coutribution to the pre-equilibrium cross section will now 

be written down in terms of tlll~ independent particle model, since this is what our calculations 

are based on. 

For the above model we have the t-matrix element as 

(1) 
tlµt-0 

(xC-l (k) I (lµjVjO)xC+l (ko)), (3.25) 
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3.3 Statistical Averaging 

The results obtained from Koning's work can be outlined in the following diagram. 

First step 
LPS 

All 
steps 

LPS Theory 

On-shell Approx. 
(+independent 
particle limit) 

FKK 
MODEL 

Distorted Wave 
Theory 

No statistics 

First step 
IPM 

Identical 

TUL 
Model 

First step 
NWY &TUL 

On-shell 
Approx. 

Simplified 
RSS Theory 

NWY 
Model 

Figure 3.8: Relation between the various MSD theories. 
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The two types of statistics used are the leading particle statistics and residual system 

statistics. In leading particle statistics the interaction between the incident particle and the 

nucleus is modelled by V. It is also assumed that the incident particle can create many excited 

states within a certain energy interval. This in turn gives rise to matrix elements that vary 

in magnitude as well as in sign. 

In residual system statistics, the interaction within the residual nucleus is given by H1 

of the complete Hamiltonian. Here we are looking at real nuclear states and assume that 

configuration mixing has a random character. This means that the coefficients a~µ in the 

previous section assume random values. 
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3.4 The Double Differential cross-section 

3.4.1 One Step cross-section 

The main idea here is to use the energy-averaged DWBA cross-section in Eq. (3.26). With 

leading particle statistics all DWBA t-matrix elements have equal probability and the ex­

pression for the first-step becomes 

d2aU) 

dnrlEk 
Pmµ(Ex) L l(x(-)(k)I (lµIVIO)lx(+) (ko))l 2

. 

µ 

(3.28) 

The randomness approximation gives rise to the summing of individual transitions without 

interference. It is intuitively reasonable to expect that all transitions will not be equally 

likely. For example, a nucleus would rather undergo a 20 Me V excitation before it undergoes 

a 60 Me V excitation. The above expression becomes the following: 

d2a(l) 

dndEk 
= P1p1h(Ex) I (x(-) (k) I (lplhlVIO) Ix(+) (ko))l2, (3.29) 

where p(Ek) is the particle-hole level density in the residual nucleus. The level density is 

usually evaluated with the Williams formula [19]. 

For the second step, using leading particle statistics, the following expression is obtained: 

LL f dE~P1µ(E~)P1v(E~) f dk1 
/l v 

x l(x(-l(k)l(lvlVIO)lx(+l(k1)) E E' 
1 

E . 
- x - k1 + ic 

x (x(+ l (k1) I (lµIVIO) Ix(+ l (ko)) 12 . (3.30) 

Now if we use the on-shell approximation, which corresponds to the conservation of energy 

during each step of the reaction, we get the following double-differential cross-section 

rl2a('2) 

r!DdEk 
7r

2 f dk1p(k1)P1p1h(E~)P1p1h(E~) 
x -I (x-c(-c-l-(k_)_I (-lp-1 h_l_V_I o-) Ix--,(,......,+ l,---(k_1_) )-l21p

1h 

x I (x( + l (k1) I (lplhlV IO) Ix(+) (ko)) 121
p

1
h. (3.31) 
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3.5 MSD according to the FKK Theory 

The FKK expressions for the evaluation of MSD cross-sections will now be given and ex­

plained. According to the FKK, the pre-equilibrium cross-section is given by the following 

expression 

( 

d20" ) 

dUdD 
{3.32) 

This expression depicts the importance of the first-step very clearly, since the first-step often 

constitutes most of the cross-section. The FKK theory equivalent of the Koning expression 

for the first-step cross-section is 

( 
rl2rr ) 

rlUrm l 
{3.33) 

The form of this eq11atio11 explicitly indicates the manner in which the double differential 

cross-section is evaluated. The last term in angle brackets denotes the average cross-section for 

all energetically possible lplh excitations corresponding to a particular angular momentum 

transfer. The term w(U, L) is the density of particle-hole states in the residual nucleus. 

The FKK expressiou for the multistep cross-section is as follows: 

L y: I dk1 I dk2 I dkn d
2
Wmn{kr,kn) 

11. m=n-l (27r)3 {27r)3 ... {27r)3 dUdD 

x rI'Wn,n-1(kn,kn_i) ... d2W2,1{k2,k1) (d20"{ki,ki)) . 
dUndDn dU2dD2 dU dD 

1 

(3.34) 

This expression is nothing else but a folding of single transitions as in the Koning expression, 

which is a folding of two one-step transitions. The difference in these expressions is only in 

how they are calculated. 

In the above equation the transition amplitude from the {n-l)'th stage to the n'th stage is 

d2
W11..11-1 (k11, kn-1) 

rlU,,dS21, 

{3.35) 

where p{kn) is the k~vcl dcusity of the particles in the continuum, and Pn(U) is the density 

of energy states of the particle-hole states in the residual nucleus as a function of excitation 

energy. The term un,n- l is the matrix element for the transition while the particle in the 

continuum changes from momentum state kn-1 to state kn. 
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The other points which pose some difficulties are the level density and the spin distribution 

parameters. In past and current calculations the level density is taken to be the same for all 

stages during the rcactio11 aud is evaluated with the Williams formula [19] 

g(gU)n-1 
Pn(U) = 'h'( _ l)', p . . n . 

where 

p = the number of particles, 

h = the number of holes, 

n = number of partic:l<~s awl holes, 

g = density of single-particle states, and 

U = the excitation euergy. 

(3.39) 

n = 2 for the MSD treatment, since p = h = 1. The spin distribution expression used is 

2L+ 1 -(~) --3-e 2u 

./ifn2a3 
(3.40) 

2£ + 1 -( ~:1) 
3 e ' 

./if22a3 
{3.41) 

where a is the spin cut-off parameter from Gruppelaar et al. [33]. 
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fitted data at slightly higlwr energies for (p,p') and (p, n) reactions, but still not reaching the 

200 MeV region. As far as it is known, this work is the first attempt at fitting pre-equilibrium 

cross section data at 200 Mc V while distinguishing between protons and neutrons and more 

importantly using a realistic N-N interaction. 

4.1.1 The Effective Interaction 

These calculations depend heavily on the DWBA cross-sections. The importance of the 

effective interaction cau be seen directly through the DWBA T-matrix elements 

where the term of importance is (<I>B<I>blV.B - U,el<I>A<I>a)· This term written more explicitly 

is (<I> B<I>b IVeJ f I <I> A <P") and it determines the strength of the transition from the initial to the 

final nuclear state. 13y implementing the Yukawa potential, the physics behind this transition 

process is obscured by Llic simplicity of the interaction. This has the implication that even 

if one should observe any new phenomena, one would be unable to ascribe the result to any 

real physical process. 

Let us now consider the effective interaction in more detail. The Yukawa interaction does 

not take into account the effects due to spin and isospin of the interacting particles. It can 

be shown that the most general form of the effective interaction [21, 25, 29] including spin 

and isospin can be written as 

(4.2) 

The first term on tlie right-hand side is the central interaction, the second the spin-orbit­

and the third, the tensor interaction. ifi and ih are the Pauli spin operators for interacting 

particles, in this case labelled 1 and 2. 
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The isospin for a nucleon is oue-half, with projections of Tz = ~ for a proton and Tz = -~ for 

a neutron. The possible two-nucleon isospin states are thus T = 0 (isospin singlet) and T = 1 

(isospin triplet). Tlw possible projections are Tz = 1, corresponding to a proton-proton (p-p) 

system, Tz = 0, c01T('spo11di11µ; to a proton-neutron (p-n) system and Tz = -1, corresponding 

to a neutron-neutrrn1 (u-u) system. T = 0 refers exclusively to a p-n system, while T = 1, 

could be a p-p, a p-11 or au n-n system [16]. 

The possible two-nucleon systems that are allowed in accordance with the Pauli exclusion 

principle are shown in the table below. 

Table 4.1: Allowed two-nucleon states. 

Two-nudc(m Total Spin Total Isospin Allowed Angular Momentum 

Sys tern s T Value (Positive integer) 

p-p () 1 Even 

p-p 1 1 Odd 

n-n 0 1 Even 

n-u l 1 Odd 

p-n () 1 Even 

p-11 1 1 Odd 

p-11 () 0 Odd 

p-n 1 0 Even 

The central interaction is regarded as the most important part of the interaction [28]. 

The significance of the spin-orbit and the tensor interaction only becomes appreciable for 

large angular momentum transfers. In these MSD calculations the lower angular momentum 

transfers do contribute more to the overall cross-section for the first step. It is for this reason 

that the central intc'ractio11 will be considered in more detail than the spin-orbit and the 

tensor interaction. 

Writing out the expression for the central component we get 

The composition of Llw ccutral interaction for various spin and isospin possibilities can be 
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4.1.2 Differentiating between particle-hole types. 

The second aspect included in the MSD calculations in this work, considers how the (p, p') 

reaction takes place in terms of particle-hole excitations. The different ways of getting the p' 

for the reaction is shown Fig. 4.1, as well as for the (p, n) reaction which can contribute to 

(p,p') in the second step. 

Incident Particle 

Protons 

p =particle 

h =hole 
7t =protons 
v =neutrons 

Type of particle-hole 
excitation 

1tp1th 

vpvh 

Emitted particle 

Protons (p, p') 

Protons (p'p') 

'----np_v_h ________ Neutrons (p,n) 

Figure 4.1: First-step processes. 

All these output cross-sections are required in the multistep calculation. It is clear that the 

cross-section for the (p, p') is now calculated differently than before. 
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The calculation iHvolves two main processes, which are depicted by Part I and Part II 

respectively. Part I is the calculation of the associated DWBA cross sections, while Part II is 

the calculation of the pre-equilibrium cross section. Apart from a few modifications, this code 

is identical to the code sequence used by [3]. Most of the details regarding this sequence can 

be found in [3] am! other references therein. The emphasis here will be on the modifications 

made to investigate possible calculational improvements. 

MSIW.exe 

MSIW.EXE generates the possible transitions using the spherical Nilsson model [11) for the 

nucleus. Nuclear transitions are dictated by the conservation of angular momentum and 

energy. Despite this, the number of possible ways in which the nucleus may be excited is 

still large. It is for this reason that this program selects the possible excitations in terms 

of a specific excitatiou r~ucrgy and angular momentum transfer. In our case five different 

energy bins are us<~d. Th<' 111inimum excitation energy being 20 MeV and the maximum 100 

MeV, since the <'fl<'cti\'c i111r~raction is only expected to be valid at incident energies above 

100 MeV. Each biu corresponds to a specific excitation energy. Bin 1 corresponds to 20 MeV 

excitations. It contains all possible transitions in which case the excitation energy is between 

10 and 30 MeV. The details of the energy bins are given in the table below. 

Table 4.3: Energy bin details. 

Bin Numb<~r Excitation Energy Range (MeV) Excitation Energy (Me V) 

1 10 - 30 20 

2 30 - 50 40 

3 50 - 70 60 

4 70 - 90 80 

5 90 - 110 100 

In each bin the possible~ angular momentum transferred ranges from zero to a maximum of 

ten. Usually [28] Uw rnaxirnum angular momentum transfer of importance does not have to 

exceed eight. Tl!(' <J11tp1I1 o! MSIW.EXE is written to the files with the .CNF extension. A 

sample file is shmn 1 i 11 !he ;i.ppendix. 

In the work by Stcyn [3], no distinction was made between proton particle-hole and neutron 

particle-hole excitations all(! particle-hole excitations originating from the (p, n) reaction. For 
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4.3 Calculational Details and Results 

As mentioned earli(~r, the aim of this work is to use a more realistic effective interaction for 

the calculation of pre-equilibrium cross-sections. Not only does this require a model for the 

effective interactio11 (Amos interaction), but also a computer cod 

Four calculations are performed, the first of which is a comparison of computational results 

obtained from usinµ; the Yukawa function as the effective interaction, in DW91N and DWUCK 

respectively. 

The second calcnlation is the comparison of the computational results obtained from us­

ing the Amos inkraction and the measured data. The results obtained from the Yukawa 

interaction are also presented. Calculations three and four are attempts at improvin 

Calculation 1: Comparison of DW91N and DWUCK. 

The reason for performing this calculation, is that most calculations of this type have used 

the Yukawa as the effective interaction. The Yukawa is phenomenological in nature and has 

the form 

e-µr 

V(r) =Vo-, 
µr 

(4.9) 

where Vo is the dfrC"1 ive interaction strength and µ the inverse of the interaction range. The 

main input pararnct.crs in the calculation are the interaction strength, Vo, the level density 

and the spin cut-off parameter. In DW91N, the value for Vo is taken in accordance with the 

interaction strength chosen in past calculations [28]. The level density parameter is chosen 

in accordance with the prediction by Shlomo [31]. The results from using DWUCK as the 

DWBA cross-section code, are taken from the work by Steyn [3]. The parameters used in 

this work are tabulated in Table 4.4. 

Table 4.4: Level density and spin cut-off values. 

Code Vo a a 

DW91N 25 MeV 9.71 3.1 

DWUCK 15 MeV 10.68 3.6 

Since the Vo value used by Steyn differs from that used in DW91N, the results for DWUCK 
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Figure 4.3: Comparison between DW91N and DWUCK with a Yukawa interaction. E* 

denotes excitation energy. 
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Figure 4.4: The Amos interaction results compared with Yukawa interaction results from 

DW91N. 
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Figure 4.6: Individual DWBA cross-sections for the Amos interaction. 20 Me V excitation for 

J = 0,2,6 and 8 for Amos and Yukawa interactions for protons. 
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The two calculations are now presented which attempt to solve the overprediction of the 

cross-section. Both calculations are identical to calculation 2, but differ with respect to the 

allowed particle-hole excitations. 

Calculation 3: Removal of low-lying states. 

In this calculation the particle-hole excitations, where the hole is created at very low-lying 

states, are ignored. 

If one considers direct processes to occur mainly at the nuclear surface (29] and the assump­

tion that nucleons in lower shells are less likely to be at the surface, one would expect the 

N-N interaction to be primarily between the incident nucleon and the outer shell nucleons. 

This calculation tests the reduction in cross-section prediction when transitions originating 

below the lfz-shell are removed from the .CNF file. The lf 1-shell is the first shell after the 
2 2 

third shell closure. Hence the assumption here is that the the lowest three major shells are 

inert and do not contribute to pre-equilibrium scattering. A schematic picture of the 90 Zr 

shell structure is shown below. One can see that the number of nucleons which can now be 

excited are considerably less. 

Protons Neutrons 

lg.n 
2p,n lg,,, 

2p,,, 2p,n 
2p,,, 

lf,n 
If,,, 

If,,, 
If,,, 

2s112 

Id,,, 2s112 
Id,,, 

ld,n 
ldsn 

lp,n 
Ip,,, Ip,,, 

lp,n 
ls 112 

ls112 

Figure 4.8: Shell structure for 90 Zr. 
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Calculation 4: Removal of higher energy shell model states. 

In this calculation only particle-hole transitions that terminate in bound nuclear shells are 

included in the .CNF file. The bound shells were determined from a Hartree-Fock calculation 

by employing a Skyrme interaction [21]. The highest bound shell for protons are taken to be 

the 2d 3 -shell and for neutrons the lh u -shell. The results for this calculation are shown in 
2 2 

Fig. 4.10. 

Fig. 4.10 shows that this calculation results in a considerable reduction in the cross-section 

predictions. However, the cross-section for the first two bins (see Table 4.3) still overpredict 

the data at low angles, even though this is still only 

This calculation shows that the inclusion of unbound levels in the possible transitions makes 

an important difference and that an improved nuclear structure model for the target nucleus 

should be investigated further. 

The results in this chapter pose a challenge to the field of quantum mechanical descriptions 

of pre-equilibrium cross-sections using the FKK formalism. The use of a realistic effective 

interaction used in this work, which has been successfully applied in elastic and inelastic 

scattering to discrete states, overpredicts the cross-section substantially at low angles, even 

when only the first-step is included. There is some indication that an improved nuclear model 

will be required, but this needs further investigation. 
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Chapter 5 

Conclusion 

The first-step pre-equilibrium cross-section for the reaction of 200 MeV protons on 90 Zr have 

been calculated with a more realistic effective interaction (6]. The effective interaction used 

is the Amos interaction, which replaces the Yukawa potential. These calculations are based 

on the multistep direct theory of Feshbach, Kerman and Koonin (5]. Implementation of the 

theory is achieved by expressing the multistep cross-section as a folding of DWBA cross­

sections. The multistep calculation is implemented in the MSD code by Bonetti [7], which 

has also been modified to distinguish between protons and neutrons in the calculation of the 

different steps. Also new to these calculations is the implementation of DW91N by Raynal 

[30], a DWBA code similar to DWUCK [35]. The difference between these two codes is that 

DW91N can use a better effective interaction. 

The two DWBA codes were compared for purposes of consistency and a good agreement 

between the respective results were obtained. There were slight differences for the lower 

excitation energies (Fig. 4.3(a) and (b)), but these are thought to arise from the factor of 

(2j + 1), which has been omitted from the DWUCK calculation. 

The implementation of the Amos interaction generally shows an overprediction of the cross­

section. The overprediction of the cross-section arises from the overpredicted (Fig.4.6 and 

4. 7) DWBA cross-sections when compared to the Yukawa interaction. Various attempts 

have been made to explain the overprediction of the data by the first step. The subsequent 

calculations are based on changing the number and type of nuclear transitions for nuclear 

71 
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Table A.l: Sample .CNF file 

Ltr Ebin n f, 2j n' f,' 2j' Eex 

0 1 0 2 5 1 2 5 16.94 

0 2 0 0 1 2 0 1 49.50 

0 4 0 0 1 3 0 1 75.00 

1 1 0 1 3 1 2 5 26.24 

1 2 1 1 1 2 2 3 32.75 

1 3 0 0 1 2 1 3 64.39 

2 1 0 2 5 0 4 9 11.63 

2 2 0 0 1 1 2 5 48.57 

2 4 0 0 1 2 2 5 72.58 

3 1 0 1 3 0 4 9 20.94 

3 2 0 1 3 1 4 9 46.53 

3 3 0 0 1 1 3 7 53.50 

4 1 0 1 3 0 5 11 27.92 

4 2 0 0 1 0 4 9 43.27 

4 3 0 0 1 1 4 9 68.86 

5 1 0 1 3 0 4 9 20.94 

5 2 0 1 3 0 6 13 32.85 

5 3 0 0 1 0 5 11 50.25 

5 4 0 0 1 1 5 11 77.23 

6 1 0 1 3 0 5 11 27.92 

6 2 0 1 3 0 5 9 32.57 

6 3 0 0 1 0 6 13 55.18 

6 4 0 0 1 0 6 11 71.09 

7 1 0 2 5 0 5 11 18.61 

7 2 0 1 3 0 6 13 32.85 

7 3 0 0 1 0 7 15 69.79 

8 1 0 2 5 0 6 13 23.54 

8 2 0 1 3 0 7 15 47.46 

9 1 0 3 7 0 6 13 16.56 

9 1 0 3 5 0 6 13 13.31 

9 2 0 3 7 0 6 11 32.47 

10 1 0 3 5 0 7 15 27.92 
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Figure A.l: Sample .MDS91 file. 

11 5 1 7 2 13 

0 1 2 3 4 56 7 8 9 10 

100.0 120.0 140.0 160.0 180.0 

1.0 40. 1. 40. -8. -8. 

C ZR-90 200MeV proton p-h state zr-pppp1200.msd91 

FTFFFFT 

1 /ILECT=l 

200 2 1 

.08 90. 

FTFF 

90.0 39.0 1.25 1.2 0.6 0.0 

0.0 0.6 0.0 0.0 

2 /ILECT=2 

3 /ILECT=3 

18 60 40 0 6 

10.0 180. 

0 0 0 0 0 0 0 0 

F 

4 /ILECT=4 

FFFFF 

90.0 1.00 40.0 200. 0.0 

1.25 

5 /ILECT=5 

FFFFFF 

90.0 1.00 40.0 200. 0.0 

1.25 

6 /ILECT=6 

2 +1 1 

FFFFFF 

+l.0 1.0 

2 1 

7 /ILECT=7 

END 
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A.3 .DW91 input file. 

Table A.2 shows a partial input file for DW91N.EXE, containing only the 80 MeV excitation 

portion. Each /ILECT contains the information as in the previous .MSD91 file, but this 

time all the details of the calculation are included. Of particular interest is /ILECT 1, which 

shows three .CNF states along with their optical potentials. Transitions are among the list 

of about 29 transitions of this nature. /ILECT 6 contains the actual calculations performed, 

followed by /ILECT 7 to terminate each calculation. 
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3 /ilect 3 

18 60 40 0 6 

10.00000 180.00000 

0 0 0 0 0 0 0 0 

F 
4 /ilect 4 

FFFFF 
90.00000 1.00000 40.00000 200.00000 0.00000 

16.50031 1.25500 0.73700 

16.56336 1.17000 0.82000 

0.000000 1.25500 0.73700 

1.872440 1.05666 0.60000 

-2.35487 1.03831 0.62000 

1.25000 

5 /ilect 5 

FFFFFF 
90.00000 1.00000 40.00000 79.12088 0.00000 

25.25777 1.24500 0.71220 

7.939680 1.36200 0.62000 

0.000000 1.24500 0.71220 

3.483580 1.05666 0.62400 

-1.40473 1.03831 0.62000 

1.25000 

6 /ilect 6 

0 1 1 

FFFFFF 
1.00000 1.00000 0.00000 

2 1 

1.00000 0.00000 

7 /ilect 7 

C ZR-90 200MeV proton p-h state zr-pppp1200.msd91 

FTFFFFT 
6 /ilect 6 

2 1 1 
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A.4. .MUDIR FILE 

A.4 .MUDIR file 

Line 1 = Title card. 

Line 2 

90. 

200. 

7.094, 7.094 

10.6 

0.0 

20.,20. 

Line 3 

3.105 

40. 

Line 5 

= mass of the target 

= incident energy of the proton 

= binding energy of the incident and exit particle respectively 

= level density 

= pairing energy 

= width of energy bins and the size of the first excitation. 

= spin cut-off parameter 

= Z of the target 

18 = the number of angles 

11 = number of angular momentum transfers 

1 = angular momentum increment 

10 = angle increment 

0 = initial angular momentum transfer 

83 

Line 6 - 10 = the transitions according to bin and angular momentum transfer for 

neutron-particle and neutron-hole excitations. Line 6 corresponds to bin 5 

(100 Mev excitation) and line 10 to bin 1 (20 MeV excitation). 

Line 11 - 15 = the same as above, but for proton particle - proton hole excitations. 

Line 17 - 21 = same as above, but for proton particle - neutron hole excitations. 
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