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Abstract

Hand gestures are a natural and intuitive way of human to human communication.
Motivated by the achievements made towards automatic speech recognition, and by the
ease with which people sign, many researchers started working on sign language
recognition systems. Besides, technologies used to build gesture recognition systems
pose as an alternative to the cumbersome and the failure prone mechanical devices that
are currently used as human-machine interface devices. Most of the available gesture
recognition systems represent each sign language gesture with an individual gesture
model. Such systems can only recognize a limited number of dynamic sign language
gestures. It is cumbersome to build and maintain a gesture recognition system that uses
thousands and thousands of individual gesture models. Sign language linguists argue
that all sign language gestures are derived from small sets of reusable components, the
cheremes. However, computer vision is such an ill-posed problem to the extent that it
very difficult to sufficiently deteet-the=basic-gestuit-eomponents from image data
during image processing. In most.cases important gesture information is lost as a result
of occlusion, image noise or during|the process of transforming 3D world views into
2D projections. Gesture recognition systems that| recognizé a large vocabulary of sign
language gestures can only be-built-i-we-devise-image-processing algorithms that
achieve high quality hand segmentation and tracking: This, research presents a multi-
cue based segmentation method that helps to improve the extraction of the hand-shape
chereme. A Support Vector Machine (SVM) is then used for verifying the hand-shapes
that are associated with each input gesture. Hand segmentation results directly affect
the extraction of the hand position and hand movement cheremes. The hand movement
patterns are learnt and recognized through the Hidden Markov Model (HMM). A
sequence of cheremes that represent each gesture is used to build an online gesture
dictionary that helps the gesture recognition module to classify the input gestures. In
this research, video footages of signing people are used as input gestures. Since the
meaning of a gesture differs from society to society, in this project we only focuses on

dynamic gestures from the South African Sign Language (SASL). The technologies
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used in this project will find many applications in various fields of Human Computer

Interaction (HCI).
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Chapter 1
Introduction to a chereme based dynamic South African sign

language gesture recognition system

1.1 Introduction

Gestures are a natural and an intuitive way of communication [32][15]. Most hearing-
impaired people use sign language as their only mode of communication. However,
some non-signers do not understand sign language; and hence often there is
communication break down between the hearing-impaired people and the non-signers.
If automatic gesture recognition systems could be developed, then such systems would
lay a firm foundation upon which comprehensive sign language recognition systems
would be built. Sign language recognition-syst€ms-would help to eradicate the current
communication barriers that arg frequently encountered/ by the hearing-impaired people
[10]. Besides benefiting the deafjcommunifies. technologies used in automatic gesture
recognition system can also be|adapted for use in a|wide|tange of applications in the
field of Human Computer Interaction(HChH-—The-possible-areas of application range
from building surveillance systems for, secured establishments; processing of medical
images; remote controlling of home electronics and remote controlling of mechanical
devices that are used at construction sites. Gesture recognition technologies can also be
adopted for enhancing human-machine interface devices especially those that are used

in the field of robotics and in other gesture driven applications [36].

Most of the available gesture recognition systems can only recognize a limited number
of gestures under controlled operational environments [33][19][8][5]. Each sign
language is made up of thousands and thousands of individual gestures. This makes it
practically impossible to build a gesture recognition system that stores several
individual gesture models. In any case, such a system would consume a significantly

large portion of the computer memory. Besides, the gesture modeling and searching
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processes would drastically affect the application’s run-time. Previous efforts to build
gesture recognition systems that could recognize a large number of dynamic gestures
have not yielded much success [5][8][23]. However, achievements made by researchers
in the field of automatic speech recognition have fueled more research activities aimed

at producing automatic gesture recognition systems [ 15][25][32].

A vision-based gesture recognition system that interprets sign language gestures in a
similar way to how human beings interpret those gestures would help to enhance the
manner in which dynamic gestures are interpreted by machines. However, computer
vision is riddled with many problems that relate to the segmentation and tracking of the
gesturing hands. Under natural conditions, perfect segmentation and efficient tracking
of a gesturing hand are difficult to achieve. This research explores ways of enhancing
the hand segmentation and tracking processes. Improving the segmentation results
allows us to preserve important gesture-ififormation..Identifying the hand shapes, the
hand positions and/or the type of-meton-exhibited by -gesturing hands are viewed as the
basic steps towards recognizing Sign language gestures—[7]. However, some sign
language linguists’ argue that| the |gesture tecognition  process must incorporate
information about the direction of motion assumed by a gesturing hand [11]. According
to sign language linguists, the basic components of a gesture are often called cheremes
[16]. All gestures that constitute each sign language are-drawn from a limited number
of reusable cheremes [23]. Sigh'language chéremes dré historical-cultural in nature; and

hence different sign languages often use different sets of cheremes.

In an attempt to recognize large numbers of dynamic South African Sign Language
(SASL) gestures, it is envisaged that machines should first be trained to recognize a
small set of cheremes that constitute the SASL gestures. It is also envisaged that a
machine which is trained to recognize all sign language cheremes, can easily be
reconfigured to recognize any arbitrarily chosen dynamic SASL gestures. In attempt to
teach machines to identify SASL cheremes, we designed a system that processes video

footages of signing people and outputs a statistical description of the hand shapes, hand
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positions and the hand trajectories that are associated with each gesture. In this study
we analyze both the simultaneous and sequential combinations of cheremes [103] that
constitute each gesture. The gesture recognition technologies used in this research can
also be extended for recognizing gestures that are used in other HCI applications. Since
the meaning of each gesture differ from society to society [S53][11], this project is
restricted to recognizing dynamic gestures from SASL. SASL cheremes are extracted
from a collection of video footages of people who repeatedly performed the same set of
gestures. Video images are first broken down into a sequence of image frames. In
practice a consecutive sequence of image frames which are extracted from a particular
gesture often contain slightly varying descriptions of hand shapes, signing positions
and motion trajectories [23]. During the training stage, specific combinations of
cheremes that describe each gesture, and any other information that describe the
dynamics of the gesturing hand, are fed into the system’s gesture dictionary where they
are used to represent the gesture in_questionAf-inpul gesture is deemed recognized
only if the probability that a cémbination-of cheremes-obtained from the input gesture
matches one of the gestures “iiv the- System’sgestui€ dictionary is higher than a

predefined threshold value.
1.2 Overview of the existing gesture recognition systems

Early works on automatic gesture recognition systems mainly focused on developing
gesture-driven interfaces for operating and controlling electronic devices [4][10]. Most
of the available gesture-driven interfaces are vision-based devices which are mainly
used in the remote controlling of electronic and mechanical devices [20][12][48].
Kunii’s [6] computer-based three-dimensional (3D) models of gesturing hands, though
not totally vision-based, represents some of the early attempts by computer vision
researchers aimed at producing vision-based gesture recognition systems. Though 3D
models provide comprehensive gesture information, they are however, computationally
expensive to implement hence they are rarely used in applications which require real-

time gesture processing [49][50]. The computationally heavy parameter estimations
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processes that are associated with 3D modeling often slow down the gesture
recognition process. Nowadays most vision-based gesture recognition systems
implement appearance based models. Appearance based models exploit the two-
dimensional (2D) representations of objects. Two-dimensional representations are
relatively easy to compute but they often provide insufficient information about the
object of interest. In order to identify specific objects, some algorithms that use
appearance based models fuses the object’s geometrical information with some low
level image cues [23]. In practice 2D models are often negatively affected by the
unreliable parameter estimations that are associated with the mapping of 3D real-world
views into 2D projections. Yilmaz, Javed and Shah argue that it is extremely difficult to
accurately model 3D objects using 2D models since some important gesture
information is often lost while transforming 3D real-world views into 2D projections

[S51].

Thad’s research [19] produced one of -the most-suecessful vision-based gesture
recognition systems. In his first-experimental system: Thad tracked a signer’s hands
using coloured gloves. He lateri demonstrated that skin-colour information can also be
used to identify and track a signing person’s hands [60]. Thad’s works, just like most of
the available vision-based gesture recognition systems, neither address the creation of a
person independent full lexicon system nor the spatial’aspect of sign languages. In
particular, Thad overlooked the fmportance”of fingertip information and the need to
extract specific hand-shape information. Nonetheless, Thad’s work demonstrated that
the Hidden Markov Model (HMM) [40], a mathematical tool that was originally
designed for the speech recognition problem, can also be adapted for recognizing

continuous sets of sign language gestures.

Although vision-based input devices are an attractive alterative for most HCI
applications, computer-vision itself is an ill-posed problem [33]. Rigorous image
processing algorithms that mitigate the effects of occlusion, and/or jagged boundaries

must be designed [23]. Jagged boundaries are either caused by abrupt camera motion,
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fluctuating lighting conditions, blurred image regions or by the processing algorithms.
These problems negatively impact on the quality of the hand segmentation process. The
segmentation process is even worsened by the fact that in practical situations, some
background objects may possess similar colours and/or other visual attributes as the

object of interest.

Apart from vision-based gesture recognition systems, Hirohiko and Takeuchi
[8](5][43] implemented mechanical glove based gesture recognition systems. These
systems mainly exploit dynamic matching techniques that compare the output of a
wired glove with some predefined models of some particular gesture components.
However mechanical gloves often take away the naturalness with which people sign
[15][4]. Besides, if mechanical gloves are deployed in electro-magnetically charged
environments, their highly sensitivity nature will drastically affect the quality of the

output data. Some people cite health reasons-+for-iot-using data gloves [4].

Many research activities that atiempied to-address the problem of locating gesturing
hands from a sequence of video/ images eithér used the coloured glove approach or they
restricted the background environment. However, other systems fuse multiple image
cues in order to reduce the impact of background noises on the gesture recognition
process [26][52][47]. Zieren et al. [33] incorporated an algorithm for tracking and
predicting the features of an rmage th an"attémpt to-incréase the chances of correctly
localizing the gesturing hand. Besides, Zieren et al. also applied probabilistic inference
methods in order to determine the trajectory assumed by a gesturing hand. Zieren’s

approach, to some extend, addressed the hand overlap problem.

Various approaches to the hand segmentation problem have been proposed. For
instance, Akyol and Pablo [26] segmented the gesturing hand by combining pixel level
skin colour and coarse motion information. It is argued that this approach helped them
to achieve fast detection of the gesturing hand [26]. On the other hand, Gerhard

[28][31] assumed a stationary background before computing the difference in intensity

(@]
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between corresponding pairs of image pixels that were arbitrarily taken from any two
successive image frames. In Gerhard’s work, the difference image is assumed to
represent the gesturing hand. Although Gerhard’s system achieved 92.7% recognition
rate for individual gestures, his work does not address the fluctuating lighting
conditions and/or any other unexpected changes in the background conditions. One of
the major limitations of Gerhard’s work is that it recognizes sequences of continuous
gestures as if they were single indivisible entities. Such a system would require too
many individual gesture models if it is used for building a comprehensive gesture
recognition system. Other interesting approaches to building vision-based gesture
recognition systems were separately presented at MIT Media laboratory [34],

University of Udine [54] and at the Carnegie Mellon University [10].

The setbacks evidenced in the available gesture recognition systems demonstrate the
complexities involved in building gesturetéeognition-systems. In most of the available
systems, each gesture is represenied by.-an—individual-medel. However, each sign
language is composed of large-numbers-of gestures’ and hence it is tedious, time
consuming and memory wasting to build and| storg large numbers of autonomous
gesture models that should bellused by allgesture récognition system. From a sign
language linguist’s perspective [7][11][53], each sign language gesture is derived from
a small set of atomic gesture components, the cheremes.-Stokoe [7], in his work which
led to the publication of the first~American “Sign-Language (ASL) sign language
dictionary, identified the tab, the dez and the sig cheremes. The tab chereme describes
the start and end positions of a gesture. The dez chereme describes the shape assumed
by the gesturing hand while the sig chereme describes the type of motion exhibited by a
gesturing hand. According to Adam [39] the tab, the dez and sig cheremes later become
known as the location, the handshape and movement cheremes respectively. Battison,
cited in [11], argued that besides the above mentioned cheremes, knowledge of the
orientation of a gesturing hand is required in order to successfully recognize a hand
gesture. He proposed that palm orientation should constitute the fourth chereme which

he named the ori chereme.
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If vision-based gesture recognition systems could use cheremes to recognize dynamic
gestures then a small number of models would sufficiently represent all sign language
gestures. A successful chereme based gesture recognition system is capable of
recognizing large numbers of dynamic gestures without need for building numerous
autonomous gesture models. However, for such a system to succeed, firstly there is
need to improve the hand segmentation and tracking processes. Perfect hand
segmentation enhances hand tracking, and in some cases tracking improves the

segmentation process by reducing the probable regions of interest [54][52].

In this research we present a framework for building a vision-based gesture recognition
system that recognizes dynamic gestures by first recognizing the basic components of
each gesture, the cheremes. The proposed system, hereafter referred to as the Chereme
based Recognition of Dynamic Sign LAngtage-Gestures (CRD SLAG), first estimates
the hand configuration, the moyemenis-thai-are-executed by a gesturing hand and the
relative hand positions associatéd-with-éach, gestiiie. Ajthough it is trivial for the human
eye to depict the above mentioned factors, under| real life situations it is almost
impossible for machines to lcorrectly identify different hand shapes from 2D
projections. Human hands are non-rigid objects which can spontaneously change their
visible configurations in accordance to the' task at hand. The segmentation and tracking
problems are further compounded by’ the exfstente of farge variations within the same
or different gesture classes. Different people, and in some cases the same individual,
perform the same gesture in a slightly different manner. The speed with which the hand
moves, the trajectory assumed, and sometimes the position at which a gesture is
executed often varies from person to person. According to Sturman and Zeltzer [36],
machines often disregard the exact hand configurations; hence they consider all similar

looking gestures as if they are different representations of the same gesture.

In this project the CRD SLAG’s gesture recognition modules will only be trained to

recognize dynamic gestures from the SASL. Knowledge of the structure of some SASL
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gestures will be used to achieve gesture recognition. Here gesture recognition is only
deemed successful if the system first identifies the components of each input gesture
and then finds a gesture, from some of the gestures represented in the system’s gesture
dictionary, that more or less has the same number and the same order of gesture

components as those identified from the input gesture.

CRD SLAG is composed of four main modules; the hand localization and
segmentation module, the feature extraction module, the hand-shape identification and
tracking module, and the gesture recognition module. In this research, localization of
the hand is achieved by fusing skin color, motion and the crude object boundary
information. Once a gesturing hand has been localized and segmented from the rest of
the image data, a minimum set of features that best describes the configurations, the
motion, and the position of the gesturing hand is extracted. The displacement vectors
that characterize object motion, together.with-other-features that statistically describe an
object of interest, are then used to-train—the SUpport-Vector™achine (SVM) and the
Hidden Markov Models (HMMs)whichylateron,are respectively used for classifying

the hand-shape cheremes and the: motion that are associated with each dynamic gesture.
1.3 Research problem

Most of the available gesture' recognition systems cah only recognize small sets of
specific sign language gestures. These gesture recognition systems mainly represent
and recognize gestures in their entirety. The available systems are not designed to
recognize gestures from their sub-components. Since each sign language is composed
of large numbers of individual gestures, it is very difficult to build gesture recognition
systems that are capable of modeling and recognizing large numbers of gestures. From
a linguist’s point of view, each sign language gesture can be broken into its basic
components. If we can build a gesture recognition system that recognizes gestures from
their basic components, then it would be possible to build gesture recognition systems

that recognize large numbers of dynamic gestures. It is important to note that the hand-
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shape chereme represents a broad range of possible hand shapes that are of significance

in each sign language.

In Section 1.1 of this chapter we outlined some of the factors that make it difficult to
achieve perfect hand segmentation. Such problems inherently affect the hand-shape
detection process. What then should be done in order to improve the hand-shape
detection process and/or the hand segmentation process in general? A successful hand
detection and modeling process is a fundamental step towards attaining a chereme
based gesture recognition system. However, just like in the automatic speech
recognition problem, it is not easy to decompose a gesture into its basic components
[35]. The detected position of a gesturing hand is largely dependant on the hand
detection process. The position chereme is herein expressed as the relative position of
the detected hand blob in relation to the nearest major section of the human body. The
centre of mass of each probable hand-regien-is=mainly used when determining the
position chereme. The movemeni-chereme. - which-deseiibe-the trajectories assumed by
gesturing hands, can be recognized by impiementing-a Hidden Markov Model or any
other time series data analysis model| IDuring the training stage, all gesture components
that describe each gesture are enteréd! into a system dictiohary, and this information

will in turn be used for identifying each gesture during the gesture recognition phase.
1.4 Objectives

The main goal of this research is to develop a framework for building a gesture
recognition system that is capable of recognizing a large vocabulary of dynamic
gestures from the SASL. Gesture recognition systems that recognize individual
gestures from their basic components can presumably recognize large numbers of
arbitrarily chosen dynamic gestures. A component-based gesture recognition system
proposed in Yanghee er al. [32] identifies hand movement patterns as the only primary

attribute of a gesture. Yanghee er al. also pointed out that automatic recognition of
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hand movement patterns is not a trivial task. In our endeavour to build a comprehensive

gesture recognition system, we proposed the following sub-objectives:

o Isolate SASL cheremes.

o Design a segmentation algorithm that reduces the side effects of image blurring.

o Localize and segment hand and head regions from input image data.

o Extract features that describe each hand-shape and the respective hand positions.

o Develop a machine learning system to assess the possibilities of recognizing hand
configuration.

o Validate the hand segmentation and the hand shapes recognition processes.

o Identify hand movement patterns.

o Implement a chereme-based gesture dictionary where different gestures are
represented by sequences of their constituent gesture components.

o Review the feasibility of building a comprehensive chereme-based gesture

recognition system.

The above mentioned sub-objectives in -some-way-explain how a framework for
recognizing a large vocabulary|of dynamic |SASL gestures would be designed. In the

following section we discuss th¢liypotheses presented for this thesis.
1.5 Research hypotheses

Sign language linguists argue that each gesture is made up of specific combinations of
particular gesture components. From a biological point of view, hand movements
patterns are determined by the ability and the extent to which the hand joints and
muscles can flex [36][6]. Sign language linguists also observed that different hand
gestures are sometimes made up of similar hand configurations, related hand
movements or are sometimes executed from the same body positions. As such, all
gestures that constitute each sign language are derived from a small pool of a cheremes
which is peculiar to each sign language. We assume that it is possible to use computer

vision algorithms to break down SASL gestures into their constituent gesture
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components. Once all the components of a particular gesture are identified, then a
definition for each respective gesture, in terms of the identified gesture components,
can be entered into the system dictionary. It is also assumed that each gesture would be
uniquely identified by a particular combination of gesture components, and hence the
chereme-based gesture recognition system would recognize large numbers of SASL
gestures. This hypothesis is derived from a linguistic’s perception of a sign language
[7]1[39]. In short, our two hypotheses are summarized as follows:

o We can automatically recognize hand-shape, position and the movement patterns

(the cheremes) that are associated with each SASL gesture.
o We can recognize a large number of SASL gestures by first recognizing their

gesture components.
1.6 Premises and assumptions

The dynamic gesture and the]automatic |Spcech reé¢ognition problems share many
common attributes. For instancg; both speech and dynami¢ gestures are continuous in
nature [7] and they are interpreted according to their $pacio-temporal contexts [15]. As
a consequence of these similarities,—researchers—working-on the dynamic gesture
recognition problem found that somg {oals that were,originally designed for automatic
speech recognition can also be applied to the dynamic gesture recognition problem. For
instance, the HTK, a toolkit that implements the Hidden Markov Model [3], which was
originally designed for automatic speech recognition researches, can also be applied for
solving the automatic gesture recognition problem [32][19][28]. It has been observed
that the HMMs can successfully model the spacio-temporal aspects of dynamic
gestures [19][45]. To a greater extent, the presented chereme-based gesture recognition
system is designed in a similar manner to some of the presented automatic speech
recognition systems [7][35]. In a chereme-based gesture recognition system, it is
important to break down gestures into cheremes just like Oscar et al. [35] indicated that
spoken words are also first broken down into morphemes in the automatic speech

recognition problem.
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Apart from benefiting from automatic speech recognition research, the continually
improving computing and imaging technologies [25] significantly contribute to the
successes recorded by some automatic gesture recognition researchers. Nowadays,
large quantities of cheap and powerful video cameras, sophisticated computers and
other accessories that are required for building successful vision-based gesture
recognition systems are increasingly available on the market [25]. Most personal
computers (PCs) and workstations have very high processing speeds, multiprocessing
capabilities and very large data storage capacities; which are some of the prerequisites
for implementing vision-based gesture recognition systems. On the other hand, some
computers have inbuilt frame grabbers, high speed firewire ports and/or other digital
signal processing chips that are useful for streaming or processing image data. This
development has significantly reduced the costs of acquiring extra hardware that are
required by vision based gesture receghitton—systems [4]. High speed and high

resolution digital cameras are ificieasiinghy.becoming more-affordable.

The design of the proposed||dynamic | gestire |récognition system takes into
consideration the achievements made by the previous gesture recognition systems, and
attempts to overcome the ]imit'z}tjons exposed by some of :the available systems [15].
This research draws many parallels with the gesture 'ri-;ec'o'gn:ilion systems in which
gestures were first subdividedr int-o:-'geéture"Compdn:ents i5]“[8][23][24][25][43], and
those systems in which vision-based tracking of hands was implemented
[19][4][12][14][28][32]. According to Kjeldsen [4], researchers working on vision-
based recognition systems have designed fast and computationally efficient vision

algorithms.
In this research, single-handed gestures are captured by a single view digital video
camera. The captured gestures are used as input data. It is assumed that all significantly

large blobs of moving skin coloured pixels that are detected in the image data, either

represent the gesturing hand or the signing person’s face. Hand tracking is significantly
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enhanced if a signer wears non-skin coloured clothing. A maximum likelihood
approach is used for matching the candidate hand regions during the hand detection and
tracking process. However, just like in many other probability based processes, a
misclassification of a hand region may trigger tracking and/or recognition failures. In
this research it is also assumed that the head region can easily be detected by analyzing
the contours that circumscribe the skin coloured blobs. We assume that the head region
is represented by the largest elliptical shaped blob, which is mostly found at the top

section of each image frame.
1.7 System design

In a computer system, image data is represented by sets of binary numbers that
correspond to specific lighting intensities. Given this background, how then does a
computer identify moving hands and/ertiow-does-d-cemputer detect hand motions? In
some vision-based gesture recognition systerns;; the problem of tracking gesturing
hands is simplified by using coloured| gloves under controlled backgrounds [19][37].
Although Thad argues that skin ¢olour information can be used for tracking the moving
hands [60], other researchers say-that skin-celotir-atone-ednnot unambiguously isolate
an object of interest [26][79]. In particular, Akyol [26] explains that skin-colour
information on its own does not guarantee perfect hand segmentation and tracking. The
assumption that skin-colour would only appear on the hand and face regions, and not
on other background objects, is not always true. Those researchers who only used
motion or colour information to segment an object of interest, in most cases produced

partially reliable hand segmentation results [26][52].

In this research, dynamic gesture information is extracted from sequences of video
image frames. The hand segmentation algorithm first isolates the moving skin-coloured
pixels basing on particular combinations of motion, skin colour and edge information.
We search for the occurrence of certain YCrCb colour [81][29] values in each input

image. Chai [47] discovered useful ranges of the Cr and Cb values that can be used for
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locating the probable skin regions. All non-skin coloured regions are discarded
immediately after they are detected since no further processing is required for such
regions. We obtain coarse hand motion information by subtracting the grayscale values
of the previous image frame from those of the current image frame. Grayscale values
are represented by the Y component of the YCrCb colour space. Coarse object
boundary information is extracted by implementing an improved boundary tracing
algorithm. Unlike in Liu and Lovell’s work [24] where object boundaries are merely
estimated by implementing the Canny edge detector, the boundary tracing algorithm
presented in this research traces all the possible outer boundaries of a moving skin-
coloured blob. Depending on whether a dead end is met before all boundary pixels are
traced, our boundary tracing algorithm can reorient itself for tracing object boundaries
in either clockwise or anticlockwise direction. Our boundary tracing algorithm is also
designed to overcome the difficulties that are often encountered when tracing jagged or
blurred boundaries which are either indueed"by-image n,oise?. image processing modules

or blurring effects that are caused by fast moving objects.

While trying to isolate the probable skin-voloured régions, firstly we fuse the image
edge data with both the skin-colour and motion information. The Sobel edge detector is
used for computing the imageiégiges. Large skin-coloured Blobs are either classified as
face or hand regions depending oOn the “total” strface! drdd, the shape and/or the
magnitude of motion exhibited Ey‘ an -imége blob."Fi gu}-e 1 $hows some the important

stages of the proposed gesture recognition system.
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Figure 1.1: Fundamental stages of achérenie/based gesture recognition system

Our system represents object motion using displacenient vectors along the x and the y
directions respectively. The magnitude of motion is obtained by computing the distance
between any two centres of mass that are extracted from two consecutive contextually
similar blobs. The motion vector is one of the features used in the system for
determining the type of movement exhibited by a gesturing hand. We also estimate the
shape of the gesturing hand by calculating the approximated ratio of the area covered
by the hand region to the area of the minimum bounding rectangle. The system
computes the standard deviations and the co-variance matrix which describes the
distribution of the skin-coloured pixels along the x, y, and xy directions. Information

about the statistical distribution of the skin-coloured pixels is then used to determine
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the sizes of the major and minor axes of the best-fit ellipse that bounds the hand region,
and/or the angle of inclination of the bounding ellipse. Instead of using the major and
minor axes as individual features, we chose to use the ratio of the magnitude of the
major axis to the minor axis as this ratio helps to avoid the possible information

distortion that would be brought about by the different hand sizes.

We use symbolic notation to represent different cheremes in the system dictionary. For
instance, in the system dictionary the three basic cheremes, namely hand shapes,
position, and movement types, are represented by different letters of the alphabet.
Cheremes that fall within the same class can be distinguished by appending a numerical
value to the alphabetical character that represents the chereme class name. These
symbols are then used to provide a gesture spelling in a chereme-based gesture
dictionary. The new symbols are automatically generated by the system whenever a
new chereme is identified. During the gestiire-reCognition stage, the input gestures are
first broken down into cheremes:—The-system then-determines the matching set of
cheremes that describe one ofthe gestures which are represented in the system’s
gesture dictionary. If the level of similarityl betwieen the best matching gesture models
is above a specific threshold value, then gesture irecognition'is deemed successful. On
the other hand, if the level of similarity is below a specific threshold value, one of the
following possible explanations is proffered: either the gesture is not yet represented in
the system’s gesture dictionary or the 'gestire recognition'module has failed to correctly

identify the components of the input gesture.

Incorrect identification of gesture components is normally occasioned by noisy data
and/or because the training data samples do not adequately represent all the possible

gesture variations.
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1.8 Accrued benefits

Besides ensuring effective communication between the hearing-impaired people and
those who use spoken languages; technologies used in chereme-based gesture
recognition systems can also be adapted for improving the interface devices and the
processing modules of some HCI based applications. Technologies used in gesture
recognition systems can also be adapted for enhancing tele-robots’ perception of their
environment, building surveillance systems for securing households against criminal
activities and for use in other high security establishments. Many vision-based image
processing algorithms, especially those used in the field of medical imaging will
greatly benefit from the proposed gesture technologies. Elimination of irrelevant data
helps to reduce the amount of information processed by the gesture recognition
modules. So far it has proved very difficult to build telephone systems for the deaf
because of the large volumes of yisual data‘thatshowld-be-transmitted from one point to
another [27]. The real-time transmission of|comprehensive image data from one point
to another requires dedicated; high' [bandwidth channels! Such channels are too
expensive to maintain. Only a|few|mich|people can|afford the costs of dedicated
communication channels. However, —deat—people—are—generally poor and often
marginalized; and hence they ¢annot afford expensive communication devices. If only
a small portion of image data, which is just sufficient for recognizing an executed
gesture, is transmitted from one point to another through the ordinary
telecommunication network, then the amount of bandwidth required for building
telephone systems for the deaf would be minimized. Virtual reality based training
platforms will also benefit from impressive gesture recognition technologies. Hand
based remote controlling of household electronic devices and the remote controlling of
heavy machinery used at construction sites may also be enhanced by incorporating
gesture recognition technologies. We also propose that gesture recognition technologies
should be deployed as human substitutes of air traffic controllers at airports. In short,
automatic gesture recognition technologies can be adapted for improving almost all

HCI related applications.
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1.9 Novel characteristics

In this research, a new approach to the hand segmentation and tracking problem is
proposed. The approach involves fusing motion, skin-colour and edge information in
such a way that almost all real boundaries of skin coloured regions are preserved. In
most cases, when a segmentation algorithm combines motion with any other visual
cues, object boundary information is often lost especially in situations where object
motion is too insignificant. Our image segmentation module implements a boundary
tracing algorithm which has been designed in such a way that it can trace boundaries of
blurred image regions and those of overlapping skin-coloured regions. By combining
the skin-colour cues with course motion information [26][28], our segmentation
algorithm is able to detect all moving skin-coloured regions without need for human
intervention. Some vision-based _gesture-recognition-systems implement histogram
based colour models which are pbrained by implementingioffline skin-colour detection
modules. The offline skin-colotr deteetion )modnles are often trained using manually
segmented skin coloured and nn-skin colpured training samples. The major limitation
of the histogram approach is that'in-reat-tife-situations mest-users do not have time to
train the system on how to isglate skin colours. The following items summarize some

of the new features that were incorporated in CRD SLAG.

o Improved boundary tracing algorithm
The new boundary tracing algorithm is designed to trace object boundaries in both
clockwise and anticlockwise directions. The new algorithm can easily reorient itself
in the event that a dead end is encountered before all boundary pixels are traced.
Dead ends are often encountered when the image projection go beyond the image
frame boundary. Other forms of dead ends are encountered whenever the algorithm
traces thin non-continuous lines that are either caused by image noise or that are

induced by some of the image processing modules. Our boundary tracing algorithm
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also implements a quasi-deformed model approach for identifying and tracing the

outlines of the head region in a cluttered environment.

A rigorous multi-cue fusion techniques

A two-tier threshold method for detecting object boundaries using motion, edges
and skin colour cues is implemented. The above mentioned two-tier threshold
method is a condition-based method of fusing image cues that was devised in order
to minimize loss of boundary information especially when object motion is very

insignificant.

A diversified feature set used for isolating and tracking hand regions

Whereas most researchers are tempted to use the principal and minor axes of the
best fit ellipse that bounds the image blob as two separate feature values, we find it
more convenient to use the ratio.of-these twe.parameters as it helps to avoid
unnecessary distortions thai arise-wheneveithe. systeim - processes different hand
sizes. Besides, we found it iecessary 0 deseribe the-object outlines using the
number of points of intersection between|the objedt’s boundary line and each one of
the horizontal and vertical lines that sub-divide the current image blob into equally
spaced sub-regions. The central co-ordinate system of all these sub-regions must
coincide with that of the centre of mass of the current blob. This approach helps us
to learn the object shape without Hecessarity'studying the correlation between every
adjacent pair of object boundary pixels. Many statistical features that are commonly
used for describing the region of interest in various computer vision publications

[28][42] are also used in this research.

Rigorous candidate hand matching algorithm

The candidate hand matching process is designed to eliminate all image blobs that
fail to match with any other blob within a specific interval of frame sequences. The
acceptable inter-frame distance is conditional based. Besides, the candidate hand

matching process is designed to ensure that the best matching candidates are
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identified basing on the level of similarity between the neighbourhood patterns
exhibited by the corresponding image blobs [24]. The blob matching process is

robust to changing focal views, finger occlusion, or other inter-frame variations.

Vision-based extraction of SASL handshape cheremes

Most gesture recognition systems overlook the importance of hand-shape
information in the whole gesture recognition process. Besides, most image
segmentation algorithms are not designed to cope with a myriad of factors that
negatively affect the quality of the segmentation results. In a chereme-based gesture
recognition system, the quality of the segmentation results largely affects the

adequacy of the extracted features, and the gesture recognition process per se.

Automatic Chereme detection

The hand-shape and position cheremes-are-atutomatically isolated by our system. In
order to verify the correctiiess—ot-each detected-hand-shape, we implemented a
support vector machine (SV:M) based systeni-module that accurately distinguishes
between several characteristics of 2D appeatance models. Historically SVMs have

been used for an identifying object'from'groups of Similarly looking objects.

Chereme-based gesture spelling
Particular combinations of 1étters-6f the-alphabet and some numeric values are used
to represent individual cheremes. A chronologically defined sequence of symbolic

cheremes serves as a spelling for each gesture in the system’s gesture dictionary.

Chereme-based sign language database (dictionary)

The sign language dictionary will be used for translating sign language gestures
into English texts. However, these translations can be extended to include
translations from English words into sign language gestures and/or translations
from one sign language gesture into a corresponding gesture in a different sign

language. The automatic translation of gestures from one sign language into
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another sign language is important for facilitating communication between deaf

people who use different sign languages.

o Vision and chereme-based sign language recognition system
If machines acquire the ability to recognize gestures, then it is possible that if these
machines acquire the rules of grammar of each sign language they would also be
able to interpret sign languages. We propose that rules of grammar of each sign

language should be encoded into the gesture recognition modules.
1.10 Research presentation

This thesis is presented in six chapters. The first chapter gives a general overview of
the research. It highlights all the aspects that are covered in the thesis. Chapter 1 also
briefly discusses some of the methodologies—that-are-used for solving the gesture
recognition problem. Chapter [ZFexXplorés/ithél[f€asons why many researchers are
interested in the gesture recogiition problém. We al§o explore the available gesture
recognition systems. Besides, chapter 2 als¢ presents the limitations of the available
gesture recognition systems. We-also=define=the=key-termy, “gesture”, from a sign
language linguist’s perspective, social, perspective.and in the context of a specific
gesture driven application system. Chapter 2 also reviews the different gesture
taxonomies. Knowledge of the different gesture taxonomies helps us to enhance our

understanding of the usage and/or interpretation of different gestures.

Chapter 3 reviews the various approaches to the image segmentation problem. This
process helps us to borrow ideas from other researchers. Such an exposure helps us to
suggest viable solutions to some of the problems that were encountered by other
researchers. Chapter 3 also reviews the various segmentation methods, highlighting the
strengths and weaknesses of each segmentation method. We also discuss the various
ways of identifying connected image blobs. A detailed review of the different

approaches to the dynamic gesture recognition problem is also given. The review
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covers the commonly used object tracking methods and the relationship between the

object tracking and object segmentation processes.

Chapter 4 describes the design of the new chereme-based dynamic SASL gesture
recognition system. A prototype system was implemented in order to verify the
proposed system design. As part of the first phase of the system design process, we
explored how robust hand segmentation can be achieved. Here it was found out that
robust hand segmentation can be achieved by devising efficient ways of integrating
specific low-level image cues. The chapter also discusses how high-level knowledge of
an object is encoded into each resultant bitmap image. Irrelevant bitmap regions are
discarded as soon as they are discovered. Features that describe the remaining blobs are
extracted; and the extracted features are in turn fed into the tracking and the recognition
modules. A probabilistic feature tracking module, which produces one or more lists of
similarly textured blobs, is used for alignifig-related-image blob. The validity of each
list of aligned blobs is further tesied by passing their eopstituent features into the SVM.
Alternatively the produced feature lists are also-fed into the HMMs, which are in turn
trained to recognize the gesture |sequences. However, the HMM based learning module

is not yet implemented.

Chapter 5 presents an evaluation of the results produced-by our system prototype. The
chapter discusses how specifi¢ parameter ‘valtes affect'the quality of the segmentation
results, and how parameter values that optimize the system performance were chosen.
Although we could not compare all our results with the results produced by other
systems, we still confirmed the commonly held notion regarding the effects that
increasing (decreasing) specific threshold values have on the segmentation results.
Vision researchers argue that it is difficult to compare the output of different gesture
recognition systems [93][34][104] since different systems are trained on different data
samples. Any slight variations in the imaging environment normally affect the output
of the used data samples and the overall performance of the image processing

algorithm. It can be argued that different systems are always bound to produce different
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results since it is almost impossible to create a homogeneous imaging environment for
all systems. Hence there is no firm premise upon which an effective comparison of the
output of our image segmentation and tracking algorithm against the outputs of other
vision-based segmentation and tracking algorithms can be done. Chapter 5 also
analyzes the performance and consistency of our object tracking algorithm. The SVM
test results for each sequence of aligned blobs gives a relative measure of the

consistency of the hand shape recognition process.
Chapter 6 presents the achievements and the shortfalls of this research. In this chapter
we also highlight pending issues and recommend future research activities that would

enhance the chances of building a successful chereme-based gesture recognition

system.
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Chapter 2

Gesture and sign language recognition processes

2.1 Background

This chapter explores the gesture notion from different perspectives. We also explain
what constitutes a sign language. The chapter also explores how communicative
symbols are derived and used in different application and/or social domains. A
thorough analysis of the different gesture components and a review of the sign
language structure help us to determine the most viable approach to the gesture

recognition problem.

Before the nineteenth century, non-signers-regaided sign language as an incomplete
language. Klima and Bellugi, Eited-m{104+;-say-that-people-regarded sign language as
a mere collection of vague and leosely.defined piciorial. gestures that were not bound
by any rules of grammar. Klima and Bellugi|als¢ say that non-signers believed that the
depictive nature of sign language gestures inhibited peopléls thinking capacity. These
misconceptions about sign language eventually saw deaf people being discouraged
from using signs. Instead, they were foreed 6 learn lip-reading. Depriving the deaf
people of the only language’theysknew. lof, “negatively’ affected their ability to

communicate and their aptitude to learn from other people [16].

Although linguists and sociolinguists now acknowledge that sign is a full-blown
language, which has its own lexicon and rules of grammar [16][7], many people do not
understand sign language. Deaf communities are still marginalized since the lack of a
common language between the hearing impaired and the speech using peoples is acting
as a social barrier that hinders the deaf from fully integrating with the non-signers. A
comprehensive sign language recognition system would enable the hearing impaired

people to easily communicate with non-signers even in the absence of human
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interpreters. A comprehensive sign language recognition system should be able to
translate grammatically correct sequences of sign language gestures into text or speech,
and/or vice-versa [13]. Since sign languages differ from community to community, it is
imperative to build gesture recognition systems that translate between different sign
languages as such systems will also enable different communities of deaf people to

communicate with each other.

Gesture recognition technologies that reduce the amount of visual data that are
processed by the gesture recognition modules at each moment in time can also be
adapted for building a cheap telephone system for the deaf [27]. Generally, a large
bandwidth is required for transmitting image data from one point to another. Using the
available data communication equipment, the process of transmitting large chunks of
image data from one point to another through a digital communication network slows
down or even jams the communication-ehafinel-altegether. On the other hand, gesture
recognition technologies should exiractonly-a-minimuin-sei-of image data that makes a
gesture apparent. Such informagion normatly represents a-very small fraction of the
overall image data. If adequately designed gesture recognition technologies are adapted
for building the telephone system for the deaf, then a'significant saving in terms of the
bandwidth that is required to transmit gesture information would be achieved. In a deaf
telephone system, animation models would be used at each receiving terminal in order

to enable the deaf people to visualize the transmitted message.

Inspired by the ease with which people sign, many research activities aimed at
producing gesture controlled mechanical and/or electronic devices were undertaken
[4][12][15][20]. Xiaojin ar el. [94] designed a “finger-menu” selection paradigm for a
wearable computer. In Xiaojin’s system, a command menu is activated by moving an
opened hand in front of a head-mounted camera. Each of the hand’s five fingers
represents a menu option, and each menu option is activated by flexing the finger that
corresponds to it. The command menu is deactivated by moving the hand out of view

of the head-mounted camera.
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Automatic gesture recognition technologies can also be adapted for a wide range of
HCI based applications. Since hand gestures are executed using the human body as the
central coordinate system, no extra cognitive effort is required for ensuring that the
body-space, control-space and task-space mappings are effectively handled [36].
Secondly, hand gesture driven control systems allow users to quickly switch between
different control functions. The ability to quickly switch between control functions is of
paramount importance in situations where emergency responses are a requirement.
However, system developers must always ensure that quick responses do not adversely

affect the reliability of the system.

Most of the available human-machine interface devices consist of simple mechanical
devices such as the mouse, keyboards and joysticks. These devices often limit the
speed and the naturalness with which=humains=sateract with computers [10][25].
Nowadays CPUs and memory, ¢hips-are-beconing incieasingly smaller and more
powerful. In the near future, it is-envisaged-that-all miachiiies would be equipped with
several highly specialized CPU4. The improving computing technologies would further
expose the limitations of the currently available himan-machine interface devices.
Most of the available 2D user interfaces do not scale well with the ever increasing
processing powers of machines [104]. Tnevitably, new- human-machine interactions
methods should be designed. Unfortunately, ‘conservative users who normally detest
being forced to change the way they interact with other people, would find it difficult to
adapt to new ways of interacting with machines. However, since gestures are an easy
and natural way of interacting, gestures present themselves as the most viable option
for enhancing human-machine interaction which system users would not dare to resist.
No special skills are required in order to use gestures. Besides, the highly flexible
nature of human hands enables the hand to easily assume different spacio-temporal
appearances. The different spacio-temporal appearances can be treated as a powerful
domain from which complex sets of control instructions may be derived. Gesture

driven interface devices can be used as 3D input devices. Although properly designed
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gesture driven interfaces are posed to bridge the communication bottlenecks that are
inherently associated with the current mechanical interface devices [15], the
complexity and efficiency of the information transfer process will largely dependant on
the prevailing operational circumstances. In the case of virtual environments, the
interface device is sometimes overly obtrusive, awkward or constraining; and this

severely degrades the system performance [2].

Before building an automatic gesture recognition system, the researchers must first
study how gestures are interpreted or used. The available gesture recognition systems
must be reviewed in order to exploit their strengths. Some researchers may also devise
ways of overcoming the shortfalls of the current systems. A review of each available
system must particularly focus on how information is captured and processed by
different gesture recognition systems. It is important to choose the gesture recognition
methodologies that best meet the scope-eftheproposed.application. Coarse information
about the hand dynamics, whichylargely-contam some-of the'salient features that best
describes each gesture, is often ‘exploited for-augmenting the hand segmentation and/or
the gesture recognition processes [97]i Thel dynamics| of |a gesturing hand are often

explained from an analysis of the'hand'movement patterms.

In this research we devise a framework for building a-dynamic gesture recognition
system that recognizes a large number of South African Sign Language gestures.
Knowledge of the structure of the specific sign language gestures would be encoded
into the system in order to improve the gesture recognition process. Subsection 2.2
gives different definitions for the term gesture; and it also presents some of the most
popular gesture taxonomies. In particular, subsection 2.2.1 defines the term gesture,

while subsection 2.2.2 highlights some the commonly used gesture taxonomies.
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2.2 Linguistic and social views about gestures

Gestures are interpreted in the context of their application domain. From a social
perspective, groups of people who share a common history and a common culture often
develop their own form of sign language. Thus it is obvious that we have different
types of gestures, some of which might have the same meaning across different
societies. The next two subsections present different gesture definitions and the popular

gesture taxonomies.
2.2.1 Gesture definitions

Communication is a way of passing information about, or from the environment around
us. Most people communicate through speech, while a small percentage of people
communicate through consciously—exceuted—body=moyements, the gestures [16].
According to the Merriam-Webgster onling dictionary: [ 1713 & gesture is a movement of
the body parts or limbs that expresses or emphasizes an idea. sentiment, or attitude.
Matthew Turk defines a gesturd ds a[synchronized body movement that is intended to
convey information or to interact-with the environment{2}. Generally gestures are a
natural and intuitive way of non:verbal interaction.among people. Almost all people
use gestures in one way or another. For instance, befor¢ human infants learn how to
speak, they mainly communicate through gestures [7][4]. The hearing persons use
gestures to explain situations which words alone cannot sufficiently describe, or when
they are operating under noisy conditions or in under water environments where it is

not possible use speech [4][16].

The above given gesture definitions show that gestures are mainly designed to facilitate
human to human communications. However, computer vision researchers have now
devised a wide range of gesture driven applications. In all these applications, gestures
are defined according to their application domain. The increasing numbers of gesture-

driven HCI applications have resulted in increasing numbers of gesture taxonomies.
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Even within the human to human communication domain, different gesture taxonomies
~ have been proffered [104][20]. In practice new gestures are acquired as people interact
with the objects in their environment. Stokoe [16] says that people learn more about the
world by manipulating the objects around them. In fact people from different spheres of
life often develop gestures as a way of modeling their perception of reality and their
societal needs; and hence gestures are mainly iconic in nature and societal based.
Gestures used by traders in a market place are different from those used by musicians.
Gestures used in military establishments are different from gestures used in sign

languages.

In cases where knowledge of the semantics of a gesture can easily be learnt from its
syntax, it is recommended to study gestures in the context of a specific sign language.
Sign language is a highly structured visual language. In the field of HCI, similarly
looking gestures may have different-inteipretations—-depending on their application
domains. Andrew [4] says that itps-very difficult-to-define a-gesture without specifying
its application domain. In this résearch we are, mainly interested in exploring the
automatic interpretation of dynanic gestures arbitrarily chosen from the South African

Sign Language.
2.2.2 Popular gesture taxonomies

In Cohen [20], the term gesticulation refers to all gestures that accompany another
language, especially those that accompany spoken languages. In Cohen’s work, all
gestures that occur independently of speech are called autonomous gestures. Cohen
further sub-classifies autonomous gestures into four dichotomies: the acts-symbol;
opacity-transparency; semiotic-multisemiotic; and centrifugal-centripetal dichotomies.
The act-symbol dichotomy represents some pure action gestures that mimics or
symbolizes the behaviour of the described object. Whereas the interpretation of actions
that characterize an act gesture is obvious even to non-signers, the meaning of a

symbolic gesture is often inferred from the associated actions or is learnt through
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exposure to the associated actions. For instances, when someone starts smoking while
being questioned by some detectives, such an action is usually presumed to imply that

that person is trying to hide something.

The opacity-transparency dichotomy refers to the easy with which gestures are
interpreted. Some gestures are clearly understood across cultures while others are not
easy to interpret. In most cases the same gesture may assume different meanings in
different cultures. Even within the same culture, non-signers may require additional
clues in order for them to interpret certain gestures. Opacity refers to gestures that do
not have an obvious meaning. Transparent gestures are easy to interpret, and often they
are cross-cultural in nature. However, gestures that have similar meanings across
different cultures are not very common since most gestures are opaque in nature.
Autonomous semiotic gestures are mainly used in conjunction with sign languages.
Multisemiotic gestures are those gestures-which-accompany other languages, especially
oral languages. Centrifugal gestures-are-designed-to-invoke-a teaction or attention of a
specific object, while centripetdl-gestures are observed and interpreted as moods which

are usually not directed at any particulag subject [20][96).

In spite of the presence of numerous_gesture taxonomies, we find Quek’s taxonomy
[97] useful for our purposes. Quek’s taxonomy also gained wide acceptance from other
HCI researchers [15][95][98]. Figure 2.1 présents‘a modified version of Quek’s gesture
taxonomy. Although this figure just focuses on dynamic gestures, hand gestures are
broadly classified into static and dynamic gestures. According to figure 2.1, dynamic
hand gestures are described as intentionally executed hand movements which either
have a manipulative or a communicative role. Manipulative gestures are predominantly
those gestures which are used for controlling mechanical or electronic devices. A tight
relationship between hand movements and hand shape is exploited for building gesture
controlled mechanical or electronic devices [96][99]. In gesture recognition systems, it
is important to observe and track all symbolic movements [41]. The inadequacies of

computer vision algorithms affect the effectiveness with which object tracking is done.
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In most cases the salient features that are associated with each gesturing hand are often
lost during tracking [41]. As a result, gestures used in gesture driven human-machine
interfaces are not always correctly understood by machines. In order to enhance the
performance of gesture driven interfaces, feedback/control loops that monitor whether
a manipulative gesture is properly executed and interpreted, are always used in gesture
controlled devices. In its simplest form, the feedback loop only consists of the human
eye. The human eye verifies the machine’s response to an executed gesture, and based
on the observed response, the operator decides on whether the gesture was properly

understood by the machine or whether the gesture must be repeated.

Hand/arm movement
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Manipulative Comthunic¢ative
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Figure 2.1: Classification of dynamic gestures
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Communicative gestures are those gestures whose intention to convey information is
paramount, manifest and openly acknowledged [20]. Gesture communication is
deemed successful only if one object transmits information which in turn is observed,
interpreted and responded to by the other object. Communicative gestures are further
subdivided into acts and symbols. Quek [97] says that acts are communicative gestures
in which the body movements are directly linked to how a gesture is interpreted. In
Quek’s works, acts and symbols are defined in a similar way to how they are defined
by Cohen [20]. Mimetic gestures are classified under acts, and these often transcend
across cultural barriers. For example, in all sign languages the flip flop motion of
stretched hands often symbolizes flying. Acts also include the pointing gestures, which
are often referred to as deictics. However, some gesture taxonomies classify pointing

gestures under the manipulative gesture category.

Deictics allow the natural language speakers-to easily deseribe objects which words
alone cannot sufficiently explain/[16]. Deictics-are fiequently used to identify the
object(s) that are discussed in a gonversatioh [13]. Mimeti¢| gestures are role-playing
actions that depict the behaviout or characteristics ofl the referenced object or activity
[13]. Mimetic gestures are mainly used in pantomimes. The difference between
pantomimes and symbolic gestures is easily noticed when non-signers and native
signers of a particular sign fahguage “are’ asked to-'peérform the same sign [101].
Pantomimes usually last much longer than the corresponding symbolic gesture. For
instance, the symbolic gesture for wheel motion is often represented by moving a
stretched forefinger in small circular motions within the chest region. However, in
pantomime the same sign can be performed by moving the whole arm in bigger and
overly continuous circles. In essence, symbolic gestures are characterized by short and
precise movements whereas pantomimes are random in nature. Quek [96] defines a
symbol as some kind of motion shorthand. According Nespoulous et al. [100], acts
eventually evolve into symbolic gestures once unique and generally accepted ways of

performing particular mimetic gestures are adapted. Even though symbolic gestures are
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not always easily understood by non-signers, they however, have an important
linguistic role [15]. The next subsection discusses how sign language linguists view
hand gestures. We are particularly interested in analyzing the gesture composition and

the relationship between a gesture and a sign language.

2.3 Languages, gestures and sign language gestures

In everyday life, human infants, animals and insects use innate signals to demonstrate
their desires and to convey their perceptions of the world. These rudimentary ways of
communicating do not constitute a language [7]. A language is a highly structured
mode of communication which is characterized by clearly defined rules of grammar
and a well structured lexicon. Although speech is the default mode of communication
for most people, sign language is the only mode of communication for the deaf people.
According to Pearl [7], non-signers-tised-to-t¢ gard-specch-as._the major constituent of
any language. Any other form of communication.which.was not based on speech was
not considered a language [ 18]. This miscon¢eption about sign language, together with
the then prevalent belief that a language invokes thoughts, led to strong stigmatization
of the deaf people [101]. NonZsigners-also-believed-that-deaf people could not think
properly since they had ‘no language’[7{; However,+t is now clearly understood that
communication is a physical way. of.expressing a mental concept. This implies that
thoughts precede the ability to express. Thus it can be argued that a language does not
necessarily invoke thinking. Besides, sociolinguists and sign language linguists have

since found out that sign language is a full-blown language [101][18].

Sign language is a highly structured visual language which is mainly used as the basic
mode of communication by the hearing impaired people. Signing people mainly
communicate through hands, head or other coordinated body movements. We have
already pointed out that not all forms of communication constitute a language. In order
for communication to be deemed a language, firstly reality must be identified using

finite reusable segments. These segments are often meaningless on their own, yet they
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form the basic building blocks of any language. A continuum of experience can be
conveyed in a symbolic manner by merely combining the various components of a
language according to the rules of that language. For instance, in spoken languages,
words are mere variations of amplitudes and frequencies of sound waves that are
mainly produced by the vocal chords. Even though sound waves are continuous in
nature, some artificial pauses are incorporated in speech in order to allow the listener to
distinguish between the spoken words. Linguists even argue that each spoken word is
made up of several basic units of sound, the phonemes, which are meaningless on their
own [35]. However, different phonemes are combined in various ways, in order to
produce various spoken words [7][101]. Just like in speech, Stokoe says that individual
gestures are composed of simultaneous combinations of cheremes [16][101]. In Section
1.2, we pointed out that Stokoe identified the hand-shape, the hand position and the
hand motion as the basic units that constitute every sign language gesture. In fact all
gestures that constitute each particularsign-langnage-aie built from a small finite set of
cheremes, hence it can be arguedythat-eachrsrenrlanguagerhas its own set of reusable
cheremes. In each sign langudge, the reusable set of cheremes is very small when
compared to the number of gestures that océur in the sign language per se. A gesturing
hand can assume many different postures: and' thus' creating different hand-shape

cheremes that can be used to create a variety of gestures [23].

Early studies on the phonological variations of sign [anguage gestures concentrated on
identifying the simultaneous combinations of cheremes rather than analyzing the
manner in which the cheremes combine. However, in Bayley at el. [103], sign language
gestures are regarded as sequential combinations of different units. Bayley argue that
phonological variations in sign language gestures are not necessarily explained from

the identity of the simultaneously combined units.

In each sign language, a signer consciously uses hands or other body parts to convey as
much information as would be achieved by speech [7]. Sign language sentences are

sequences of grammatically connected communicative gestures whose impact on a
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native signer are much similar to that achieved by a similar English sentence on an
English speaking person. Each sign language has its own rules of grammar and its own
vocabulary which, in most instances, is a total inverse of the English grammar. Rules of
grammar are the conventionally accepted ways of combining the individual units of a
language such that the resultant propositions are always meaningful. The dissimilarity
between sign language sentences and English language sentences can also be traced
back to the dissimilarity between English words and sign language gestures. In most
cases there are no one-to-one mappings between English words and sign language
gestures. Every sign language is usually composed of thousands and thousands of
gestures. In Chapter 1 we explained that gesture recognition systems that maintain
thousands and thousands of individual gesture modules are difficult to build. This
phenomenon is caused by the inability of sign language recognition systems to clearly
distinguish between minimal pairs of signs which are composed of slightly different

hand-shapes [23].

2.4 Gesture recognition systems

Most of the available gesturesrecognition—systems=focus-on, learning the sequential
combinations of the salient features, that are. extracted . from the gesturing hands.
However, such an approach is best suited for building small vocabulary and/or person-
dependant gesture recognition systems. We envisage that to achieve comprehensive
gesture recognition, the gesture recognition process must analyze both the sequential
and the simultaneous combinations of the basic gesture units. The major limitation of
the existing gesture recognition systems lies in their inability to sufficiently identify the
basic gesture units. This research addresses this problem. The HMM has been
successfully adapted for solving the sequential gesture recognition problem

[40][3][19][32][45].

A gesture recognition system that interprets complete sign language sentences must

incorporate high level knowledge of the syntax of the corresponding sign language
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since lexical meaning alone is not enough to interpret sign language sentences [13].
Comprehensive interpretation of sign language is very difficult to achieve. Besides the
mere fact that it’s not easy to incorporate the rules of grammar into a sign language
recognition system, we have also seen that the image segmentation, tracking and the
feature extraction processes are too complex to achieve. Software alone hardly achieves
real-time processing of images, yet the success of a gesture recognition system largely
depends on the efficiency of these gesture processing tasks. Most image processing
algorithms fail to preserve the salient features that characterize gesturing hands. In fact,
some of the features are lost as the image is transformed from a 3D world view into a
2D model. In practice, the gesture recognition process involves some substantial
analysis, and understanding of human actions and behaviours. Human actions and
behaviours are influenced by a complex set of variables that include one’s cultural
background, linguistic capabilities, the conditions under which a gesture is executed

and one’s level of knowledge about nature:

Even though computing and irmaging-technologies aie rapidly improving, computer
vision is still one of the biggest challenges ffor the gesture recognition problem
[49][13]. Computer vision algorithms must be designed to model a myriad of variables;
each of which needs close monitoring. As a result, it is almost impossible for vision
researchers to produce comprehensive sign language gesture recognition systems. Most
researchers tend to investigate a' féw'factors ata time:' This research explores ways of
enhancing the extraction of cheremes that constitute the South African Sign Language
gestures. The extracted cheremes are used for recognizing arbitrarily chosen dynamic

SASL gestures.

In this research 2D appearance-based models are used. Using appearance-based
models, coarse information about hand dynamics is deduced from an analysis of the
centres of mass of the consecutive hand blobs. Special attention is given to slight
changes in hand configurations and hand positions. A review of the available gesture

recognition systems shows that motion estimation and object tracking are difficult to
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achieve since the composition of the tracked features change from time to time as a

result of occlusion [41].

Despite the fact that sign language linguists have shown that gestures can be
recognized from their basic components, most of the available gesture recognition
systems recognize gestures as whole entities. Such gesture recognition systems are
incapable of recognizing a large number of gestures. However Quek [97], believe that
machine vision technology promises to make substantial gesture recognition a practical
reality. The next subsection presents some of the SASL cheremes that were identified

in this research.
2.5 SASL cheremes

Although gesture cheremes differ from-one-sign-faignage to another, all cheremes are
derived based on the same prineipalsy Tnyeachysion;language, a set of hand-shape
cheremes is a union of all possible hand shapes that has linguistic significance in that
particular sign language. In this research, finger configurations help to distinguish
between different hand-shape cheremes-Each-signianghageis associated with specific
hand movement patterns. For. instapce, Table, 2.1 presents brief descriptions, some

pictorially, of a few SASL cheremes.

https://etd.uwc.ac.za/



Table 2.1: Examples of dynamic SASL gesture cheremes

Cheveme Class | Symbalic Desaipticn
Namne
Hand Shape Hl Flat palm, all four fingers stretched and
extended thumb

Hand Shape H2 all fingers in a clenched fist postion

Hand Shape H3 Fore-finger bend imward at 90" angle; and

other fingers clenched

Hand Shape H4 All fingers loosely bend mwards at about
a0

Position Pl Chest position

Position P2 Head-regionjust-shovethe ear

Position P3 Head region; forehead

Ivlovement M1 cirgular motion 'e. g sbout the chest

DR eDee® Vi,

Iovement M2 Side to side (do not know signy

This chapter reviewed how gestures are constructed and how different groups of people
use gestures. In the next chapter we discuss how visual information is captured and
processed by a computer. Different segmentation and image tracking methods are
chapter also reviewed in Chapter 3. The chapter also reviews some of the available

vision-based gesture recognition systems.
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Chapter 3

Image segmentation and tracking

3.1 Brief Overview

This chapter presents a wide collection of the commonly used image segmentation
methods. The strengths and weaknesses of these segmentation methods are discussed.
These discussions help us to verify the applicability of the presented methods to the
hand segmentation problem. It is well known that the quality of the segmentation
results largely affect the accuracy of the associated object tracking algorithm. Perfect
hand segmentation is difficult to achieve since it is almost practically impossible to
devise real-time models that perfectly model all the changes suffered by a gesturing
hand. This chapter also presents some.of=thé-typical solutions to the hand gesture
recognition problem. The KL Tefeatufe tracker-and-other-altemative approaches to the

object tracking problem are presented:in:Section 3.4«

3.2 Introduction

In the field of digital image processing, computing devices are expected to classify
image data into perceptually or contextually similar regions. In order to successfully
recognize an object of interest, vision algorithms must first locate the object and then
monitor and track its physical properties and/or its behavior over a specific time-frame.
A chereme-based hand gesture recognition system should be designed to monitor the
hand-shape, the hand position and the hand movement patterns. The task of locating
and tracking gesturing hands in video sequences is effortless for the human eye to
perform, but it is far more complex for computer vision machines to achieve. In fact, it
is even very difficult for machines to correctly identify the outlines of some of the
objects contained in video images. Object outlines helps to delineate an object of

interest from the rest of the image data. An adequately delineated object is easier to
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track. On the other hand, if the object tracking algorithm is based on predictions of
future object positions, then the tracking process indirectly enhances the segmentation
algorithm by reducing the search space that is operated on by the segmentation
algorithm. A small search space minimizes the number of computations that are
realized during image segmentation. As a result, the segmentation process would run
faster. According to Cullen [75], image segmentation is one of the most difficult
problems that computer vision researchers have to address. The quantity of the
segmentation results directly affects the robustness of a gesture recognition system.
Perfect segmentation is difficult to achieve because of the following reasons:
= important information is often lost while transforming 3D world views into 2D
images,
= some objects are too flexible to the extent that it is difficult for researchers to
incorporate information about object shape into the image segmentation
algorithm,
= 2D views hardly addressythe-occiusion-probiemy;
= complex object shapes dre-diffioult ro model,
= sporadic changes in illumination patterns jor camera motions often induce false
object information,
= the presence of perceptually or contextually similar objects make it difficult to
correctly identify a region of interest,
» gradually changing object” illumination patterns make it very difficult to

correctly identify suitable segmentation threshold values.

Since perfect image segmentation is hard to achieve, most segmentation algorithms are
specifically designed to meet the requirements of particular application systems. In
general, the available vision-based hand segmentation algorithms are largely
inefficient, imprecise and insufficient for the gesture recognition problem. This chapter
reviews some of the underlying issues that affect the quality of the segmentation
results. The surveyed literature show that various segmentation and tracking algorithms

have been developed [55][1][38]. For each method reviewed in this chapter, we also
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highlight the strengths and weaknesses of that particular method. The chapter also

reviews how object segmentation and object tracking processes compliment each other.

3.3 Image segmentation

3.3.1 Overview of concept

Segmentation is the process of delineating the object of interest from complex
background scenes. In most cases the delineation process is based on perceptual
similarity between neighboring pixels [S1] and/or knowledge of the structure of the
object. Every segmentation algorithm must decide on an effective partitioning criteria
and a method for achieving efficient partitioning [64]. Segmentation algorithms that are
solely based on perceptual grouping of low-level cues hardly produce acceptable
results. It is practically impossible-to-fimd-a-sélcction-cri€rion.that effectively separates
all objects of interests from backgreund-ebjecis. Segmentation algorithms that depend
on exploring the distributions |of Tow-leyel Tmage cues|mainly assume that good
partitioning criteria are always easy to| find., In [practice the |foreground is not always
sufficiently perceptually different—from—the—background, [86], hence perfect
segmentation is difficult to achieve ysince ivis; difficult to find threshold values that
clearly separate the object of interest, If the segmentation progess is entirely dependant
on factors such as similarity, proximity and good continuation [65], then the probability
that the segmentation algorithm will create too many partitions is very high [64]. How

then does the image processing algorithm identify the most probable region of interest?

In order to increase the chances of correctly identifying a region of interest, high-level
knowledge about the object of interest is often incorporated into the preliminary
segmentation results [64]. Shi and Malik [64] argue that the process of partitioning an
image should be done from the bigger picture going downwards, just like a painter first
marks out the outlines of an object before filling in the details. In the field of computer

vision, image boundaries provide useful object information. In fact computer vision
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researchers argue that objects can be recognized from their crude outlines [55][56].
However, in real life situations, image processing algorithms and/or background noises
often distort the object’s boundary information. For instance morphological filters,
which are mainly designed to mitigate the impact of background noises on the
segmented images [24], often produce jagged and/or non-continuous image boundaries
[47]. Non-continuous boundaries are difficult if not impossible to trace [86]. Most
vision-based applications are designed based on specific assumptions which often
oversimplify the segmentation problem. Most of these assumptions are intended to
overlook the challenges that are contributed by some of the factors that were mentioned

in Section 3.1. The next subsection reviews the different segmentation methods.
3.3.2 Segmentation methods

Segmentation algorithms are mainly.efassified—ito_region growing techniques,
threshold based segmentation and/or-edge based segimentation methods [1]. Region
growing techniques and thresholdibased segmentation-methods isolate image objects
by grouping together regions with similar jor slightly varying visual or contextual
features [55]. In region growinglbased!segmentation methods, especially the split-and-
merge approach, the computational costs of splitting and merging the image into
similar regions are often too Targe [87] such that this‘approach is hardly used in
applications that require real-time'procéssing.“In"the-Seeded Region Growing (SRG)
technique, the number of connected components obtainable from each input image is
determined by the number of initial seeds used. An initial seed is a predetermined
image value to which all image regions with similar characteristics are connected
during the image segmentation process. The SRG technique assumes that each
connected area meet exactly one seed. Just like the split-and-merge segmentation
method, the SRG technique is hardly used in real-time applications since it is not easy
to predetermine the quantity and the quality of the initial seeds that guarantees adequate
representation and separation of image objects. Despite all this, region growing

techniques are very useful for computing the perceptual similarity, the proximity and
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the continuation of low-level image cues in image data. Other segmentation methods
that also classify image objects according to the homogeneity of low-level cues are the
threshold based segmentation methods. Threshold based segmentation methods are

discussed in the next sub-section.
3.3.2.1 Threshold-based segmentation methods

Threshold-based segmentation methods are mainly used in applications where high
processing speeds and automatic processing are a requirement. In the case of dynamic
gesture recognition systems, it has been noted that skin colour is a fast and a fairly
robust way of segmenting gesturing hands even when the imaging conditions are not
quite favourable [79][105]. For instance, skin colour is robust against partial occlusion,
changing camera resolutions and/or fluctuating lighting conditions [75][79][47][57]. It
was observed that skin colours of peeple-et-diffeient ethnic origins are narrowly
distributed over certain ranges-of-the-chrominance eoloutSpace [41][47][58]. This
observation implies that skin colours of peopie of different etimic origins have the same
chromatic colour properties, and the| [percgived |skin |colour differences are mainly
attributed to intensity variations! [30J[41].! In"an éffort' to standardize the image
processing problem, computer vision researchers have established various chromatic
colour spaces [81][29]. The most commonly used colourspaces are the YCrCb, HSV,
RGB and the normalized RGB '{47][29] The *"HSV" ¢olour space achieves better
isolation of skin coloured objects from non-skin coloured objects than both the YCrCb
and the normalized RGB colour spaces [47][49]. However, it was demonstrated that in
the H-S colour plane, skin colour peaks are not always fixed at specific positions [94].
This implies that, in the HSV colour space, it is not possible to build a static skin-
colour model for all images. Besides most video data are available in YCrCb format
and the process of transforming these videos into other colour spaces is time
consuming [47]. The YCrCb colour space is recommended for applications where real-
time detection of skin coloured regions is required. However, it has been observed that

segmentation results obtained exclusively from skin colour maps cannot adequately
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identify an object of interest [79]. Skin colour alone fails to locate hand regions when

the imaging background contains other skin-coloured objects.

Some vision-based gesture recognition systems use motion for segmenting gesturing
hands [28]. In [28] motion maps are obtained by thresholding the differences in
intensity values between corresponding pixels that are arbitrarily taken from any two

consecutive image frames as shown in the equation below.

O:ID 1 (x,y.t)‘<S
D(x,y;t) =
l:‘Dl(x.y,t)\ZS
The above equation says that the motion, D, occurring around a pixel P(x,y) at a
time 7, is O if the absolute difference in the intensity between any two corresponding
pixels, P(x,y) and Pl(x, y), that are arbitrarily taken from any two consecutive frames, is
less than (<) a given threshold, S. Otherwise the motion is 1 if the difference in
intensity is greater than or equal-to={=)-S-HereHitr.ry-represents the difference in
intensity between any two cprresponding pixets. The‘tesultant motion map is
sometimes called the difference iimage or the Motion History Images (MHI) [28]. MHI
represent motion as a scalar quantity! Figure 3.1/shows a typical 3D representation of

motion maps.

Optical flow methods compute both the;magnitude and the direction of motion at each
pixel. In general optical flow methods are more computationally expensive to
implement than the MHI method. Although it is much easier to compute pixel motion
using MHI approach, the resultant motion maps do not necessarily represent object
motion. Fluctuating lighting conditions, moving background objects, and/or small
camera jerks also contribute to some of the detected motion values. Segmentation
results which solely depend on coarse motion detection methods are largely flawed,

and hence they significantly compromise the object recognition process [28].
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Figure 3.1: A 3D Representation of the difference image: Adapted from Gerhard [28]

The seeded region growing, the split-and-merge and some threshold based
segmentation algorithms are examples=of simildrity-—based-segmentation methods.
Similarity based segmentation methods ctassify objects accarding to some predefined
criteria [76]. These methods use some predetermined partition criteria which are mostly
derived from specific low-level /image cues.. The commonly used image cues include
object colour, lighting intensities,—motion—and —texture.—In natural images, the
concentration of low-level image cues oftenldeeréase or incrgase gradually from region
to region. This makes it very difficultytoyclearly - distinguish the boundaries of
overlapping and those of similarly looking objects. More robust segmentation results
are obtained by fusing different visual cues [22][26][49][52][75]1[92]. Birchfield [22]
argues that in a multi-cue based segmentation, the chosen image cues must complement
each other as much as possible as this reduces possible loss of object information. Suat
[26] demonstrated that in multi-cue based segmentation methods, the segmentation
process is faster if skin colour and motion information are simultaneously processed
than when they are processed sequentially. Suat implemented the Bayesian decision
theory in order to determine whether an image pixel is skin coloured or not. A better

approximation of the pixel colour is obtained by computing the pixel’s a-priori colour
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value as an average value of its 8-nearest neighbourhood pixels. However, the need for
computing and averaging several neighbourhood a priori values at each pixel; and the
use of the watershed algorithm for determining the object boundaries increases the
computational complexity of Suat’s algorithm. Besides, the watershed algorithm often

produces over-segmented regions that often require further processing.

Suat used the watershed algorithm to label connected components of an image. Once
all the connected components are identified, prior knowledge about the object can be
applied in order to screen the candidate hand regions. Besides the watershed algorithm,
computer vision researchers devised many other algorithms for isolating connected
image components. Edge based segmentation methods identify some contour-based
edges that most probably represent object outlines, and these are in turn used for
isolating the connected blobs in an output image. However, image edges do not always
form continuous lines which conform.te-objeci-boundaries. In order to successfully
extract object boundary informatien:-there-is,a-need-to-devise methods that extract and
trace all the weak and the strong -¢dges.of ai-objects Edge-based segmentation methods
are discussed in Section 3.3.2.2 Section 33.2.3 presents Rosenfield’s algorithm for

labeling connected components.
3.3.2.2 Edge-based segmentation methods

Contour-based segmentation methods are largely invariant to changes in lighting
conditions or object colour [89]. In addition, contours efficiently represent objects with
large spatial dimensions. Object contours are closely related to object boundaries, and
thus information about the global features of an object, which is often inscribed within
the boundaries of each object, can be extracted only after identifying all the contours
that are contained in each image [55]. Object contours are mainly extracted by edge-
detection operators [76][82]. Image edges provide significant information that assists in
peripheral vision and the object recognition process in general [85]. However, as has

been explained before, some boundary information is often lost during image
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processing and hence the quality of the output image often deteriorates visually [90].

Convectional contour tracing algorithms isolate one image region at a time.

According to Kim ez al. [88], contour tracing methods are classified into parameterized
and non-parameterized methods. The Kalman snake [66] and the adaptive snake
models [67] are examples of parameterized contour tracing methods. Parameterized
contour tracing methods are mainly used for segmenting non-rigid objects. These
methods mainly estimate and represent object features in parametric form. A Kalman
snake model is an active contour model in which optical flow methods are used for
determining the energy potentials along each contour. Optical flow methods are robust
to image clutter. The adaptive snake model automatically adjusts the parameters of the
snake model according to the characteristics of the image. The Kalman snake and the
adaptive snake models are computer generated curves that are designed to trace the
boundaries of non-rigid objects. Their=3D=versions..are sometimes simply called
deformable models or active ‘surfaces:—Detormablermodels are frequently used in
medical imaging where it is ‘often very difficult to; apply classical segmentation
techniques such as edge detection| and|thresholding methods, which are very sensitive
to image noise and the sampling artifacts that are'associated'with medical images [77].
Deformable models are used when the basic information about the object can perfectly
be encoded using a small number of parameters. In essence, parameterized contour
tracing methods use compact object'data representations and they are ideal for fast real-
time applications. However, parametric models cannot adequately segment highly

flexible objects which are characterized by frequently changing appearances.

Geometric models are often used for representing object shape. The parameters of a
geometrical model can only be computed once the process of deforming an image has
been completed. It is, thus very difficult to compute suitable geometrical models for an
object which is characterized by continuously changing 2D views. The curves that
define a deformable model are obtained by minimizing the total energy required by the

internal smoothness forces and the external image forces [78][77]. External forces are
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mainly generated from edges, gradient vectors, or texture information derived from
image data. Internal forces hold the curves that define the deformable model together,
keeping them from bending too much. According to Kass er al. [cited in 74], a function

that minimizes the sum of internal and external energies is represented as follows:

E=E, +E, = [ (£06)+&, (0@

where &

. (#(7)) and &, (g(r))are the internal and the external forces respectively.
Although deformable models often produce quality segmentation, the process of
computing and matching parameters is time consuming. The computational complexity
of a deformable model template increases drastically if the image data contain largely

varied texture patterns.

In non-parameterized contour tracing methods, object contours are traced and
represented as sets of connected pixel boundasies, Various algorithms for identifying
connected components in outpli-Ihages have-becii-reported [68][69][70](71]. Edge
based segmentation is one of the_garliest segmentation approaches used by computer
vision researchers. Edges typically characterize object boundaries but edge information
alone cannot sufficiently differentiatg hetween image objects. Image edges do not all
always conform to the contours that are apparent to human eye [85]; they merely
represent regions of sharp lighting discontinuitiés [72]. [Apparently not all edges
represent image boundaries. Some ‘edgés aré peneraled Bylnoisy conditions in the
image data [71]. On the other hand, if two or more similarly coloured regions overlap,
sometimes no edges are detected in the region of overlap even if true edges exist in that
region. In order to extract meaningful image boundaries, additional constraints are
often required. In some cases, prior knowledge about object shape, colour, and/or
texture information are often blended with edge data in order to extract meaningful
object boundaries. Object boundary information is useful to algorithms that implement
deformable template models [73][74] or statistical pattern recognition methods
[42][28]. The major limitation of the edge-based boundary detection methods is that

they are not very useful where blurred edges, roof edges or low contrast regions [85]
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are involved. In addition, Russel and Marina [85] further argue that edge detection
algorithms cannot effectively partition an image into regions of interest or clusters of
information that fit with a specific semantic. The task of tracing object contours is
somewhat a more difficult problem to solve [56][73]. Various edge detection

algorithms are discussed in the following sections.
3.3.2.2.1 Edge detection operators

The Sobel, Robert’s Crossing, Prewitt and the Laplacian operators are the most popular
gradient based edge detectors [82][76][83]. Gradient based edge detection methods
assume that every sharp change in image brightness represents an image edge.
Accordingly, most edge detectors identify edges as local maxima of first-order

derivatives of a pixel-wise brightness function, f{x,y).

In practice the input image iSyrepresentedyas aysei-of-discrete pixels, so the first
derivative of the brightness funétion, Af(x; »), is often-approximated by a convolution
of the grayscale image with one jor more lingar masks| In general, the first derivative of
the image brightness function, #xy); at-a pixel'P-which-is Surrounded by a group of
pixels, p, is approximated as shown in the equation below:
Af(x,y) =0, f(x, y)+0 , %) 5 APIZI ilK(j,k)p(x— J,y=k)

2o
where K(j,k) is the convolution mask (sometimes referred to as the kernel) and
p(x-j,y-k) are the neighbourhood pixels of any arbitrary chosen pixel, P(x,y). In
simplest terms, the first derivate of the intensity function at any given pixel is
approximated by a dot product of a group of grayscale image pixels, p, and a linear
matrix. Equations 3.1 and 3.2 presents the two convolution masks that are used in the
Robert’s Cross operator to approximate the gradient of the image brightness function

along the x and y directions respectively.

gx =0 9 (3.1)
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gﬁ[—? H (3.2)

The Robert’s Cross operator has the simplest convolution mask but is very sensitive to
noise. A Prewitt detector uses a pair of 3x3 convolution masks to approximate the x
and y derivatives of the image brightness function. The Prewitt masks for detecting

vertical and horizontal edges are shown in equations 3.3 and 3.4.

-1 0 1
g,=|—-1 0 1 (3.3)
-1 0 1
11 1
gy = 0 0 O (3.4)
| —=1=1~—1
The Sobel edge detector is rather mor the Prewitt edge detector. The

-1 0
g . =[-2 0 (3.5)
-1 0
121
gy _ 0 0 0 '}':11 E;RhII‘i -!'_'{!II the (3.6)

-1-2-1WESTERN CAPE

Once the horizontal and the vertical components of the edge are obtained, the

magnitude of the edge is computed as shown in equation 3.7.

2 2
B=ql8, + 8, (3.7)

In order to reduce the computational complexity of equation 3.7, the magnitude of an
edge is often approximated by summing the absolute values of the horizontal and the

vertical components of each edge (see equation 3.8).

=’gxl+ 8y (3.8)
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For instance, using the Sobel operators, the difference in intensity, G, between an
arbitrarily chosen image pixel Ps, and one or more of its Moore neighbourhood pixels
Pi; Pi; Po; P3; Py; Ps; P7; Pg or P is computed as follows:

G=|(B+2*P,+ P )—(P, +2* B+ R |+|(B,+2*F+ R )—(B +2* P, + P, )

The sensitivity of an edge detector often depends on the size of the convolution mask
and the threshold values used [82]. A large sized mask is less sensitive to noise but it
also suppresses the weak edges. A small sized mask can detect almost all edges but is
very sensitive to noise. Often an edge detector must make a trade-off between the
sensitivity and the accuracy. The problem of image noise is sometimes mitigated by
smoothening the image data with a Gaussian filter just before the whole image
processing is initiated. Edge detectors which use masks that combine the image
smoothening and edge detection functions are best suited for detecting weak edges
under noisy background conditions. For instance, the Laplacian operator implements a
composite edge detection functien——this—operator-uses-.a_single 5x5 mask that
approximates the second derivative of-the_image brightness function. Laplacian
operators are useful for extracting edges that arg represented by a sudden increase or
decrease in intensity (see Figurg 3.2). [The ffidct that the [Laplacian operator uses only a
single 5x5 mask makes it less expensive-foimplement—However, its major limitation is

that it is very sensitive to noisey

| L N

Figure 3.2: A sudden rise in f(x) value Adapted from Srikanth [106]
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The Canny operator is based on a very similar kernel to that used in the Sobel detector.
However, the Canny kernel incorporates an image smoothening mask. Although the
Canny detector is more computationally expensive than the Sobel detector, it however,
produces high quality edges. A Canny detector controls the thickness of the detected
edge; while its smoothening module helps to discard some of the image noise. The
Canny edge detector implements a hysteresis based thresholding approach that

suppresses some of the irrelevant edges.

3.3.2.3 Rosenfield algorithm for identifying connected components

In Section 3.2.2.1 we mentioned that object-boundary information and/or connected
component labeling techniques help to improve the object segmentation process. In
vision based dynamic gesture recognition systems, low-level image cues are
traditionally used for segmenting gesturing-hands:=Subsection 3.2.2.1 also explained
that it is not always easy to find-a-suitable-partition-entepron-that effectively isolates the
objects in an image. Often high ievel knowledge aboui the object is blended with low
level image cues. This section reviews various versions lof the Rosenfield algorithm for

labeling the connected image blobs.

According to the Rosenfield algorithm [70], an image is scanned twice in order to
identify the connected pixels. In'the’ first pass, the algotithm determines whether any of
the four neighbourhood pixels; Pyy.;y), Pix-1,y-1)» Prxy-1) and Pyyiyy.1) , see Figure 4.2a, of a
newly found coloured pixel, Py, is labeled. If some of P(,,,’s neighbours are labeled,
Py, is assigned the smallest label, v;, which is carried by one of P(,,’s neighbours.
However, if none of its neighbouring pixels is labeled, P, is given a new label, v, ;.
In the second pass, the algorithm reassigns a single label value to all neighbouring
pixels that were otherwise assigned different values in the first pass. Rosenfield’s
method requires two arrays, one for storing different labels, v; v2 v, where v; is a
positive integer, and the other one for storing labeled pixels, Py;j, /<isin and /<j<i;

where m and n respectively represent the x and y coordinates of each of the image
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pixels that carry the same label values. According to the Floyd-Warshall’s (F-W)
algorithm [70], if an image region has K labels, most of which are equivalent, the
worst-case complexity for the second pass of the Rosenfield algorithm will be at most
0(K3). In this case, large values of K would slow down the run-time of the Rosenfield
algorithm. Park er al. [68] used a divide and conquer method for resolving the
equivalence matrix described in Rosenfield’s algorithm [70]. This approach greatly
improved the performance of the Rosenfield algorithm. In Park’s method, an image is
first partitioned into many sub-images. The coloured pixels from each sub-image are
then labeled using a similar method to that used for assigning labels in the first pass of
the Rosenfield algorithm. The resolution of the equivalence matrix is faster if smaller
sub-image sizes are used. After resolving the equivalences in each partition, the
connectivity between partitions is established by analyzing the labels of partition
boundary pixels. If the label of a partition boundary pixel is greater than zero, then the
adjoining partitions are deemed connectéd-and-are-reassigned a common label value.
Experimental results showed that the; iime| required 1o resolve equivalence labels in
image data is inversely proportional to theynumber of partitions used [68]. However,
the process of splitting an image int¢, @ number of quadtregs and later on re-merging

similar subregions from each quadiree is-both-cothplex'dnd time-consuming.
3.3.3 A review of hand gesture recognition methods

Despite, the crucial role that hand gestures may render to HCI applications, it is not
easy for vision machines to extract meaningful information about hand gestures.
Automatic gesture recognition can only be achieved if machines are taught how to
measure and interpret the dynamic and/or static configurations of the hand or other
human body parts [15]. The manner in which image data is gathered has a direct
bearing on the manner in which that data is processed. Basically gesture recognition
systems either exploit vision or mechanical glove-based methods of capturing gestures.
Mechanical-gloves are glove-like devices that are fitted with sensors that measure the

joints” angles of inflexion, the spatial position and the direction of motion assumed by a
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gesturing hand. In glove-based devices, each sensor is connected to a computer via a
network of cables or tubes [5][8][25]. For instance, Figure 3.3 is a schematic
representation of a cyber-glove-based Japanese Sign Language recognition system
[5][43]. In this system, a separate recognition module was created for recognizing each
chereme. A list of the probable cheremes that are detected by the chereme recognition
modules are then compared with the sign language morphemes that are kept in a
system morpheme dictionary. Once the best matching morphemes are found, an
optimum sequence of sign language morphemes is generated, and this sequence is in

turn used to interpret the executed Japanese sign.

Clereme
Recogmition part
Recognition
ﬁ of fipire
[ 1 n!,.-;a":l:f-rx__:"‘ﬂn
(ﬁduwmﬂ” L . ! Ourput
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Figure 3.3: Glove-based Japanese Sign language recognition system: Adapted from Sagawa [5]

Different types of electro-magnetic gloves have been invented. A “Sayre” glove [25] is
fitted with flexible tubes which are connected to a light source at one end, and a
photocell at the other end. Just like the “Sayre” glove, the VPL Data-Glove [25]
consists of optical fibre based sensors which are planted along the back of each finger.
A measure of the amount of light energy transmitted through the tube at each instant of
time is used as a measure of the amount of flexion suffered by a particular finger and/or

hand joint. The VPL Data-Glove was one of the most successful gloves [25].
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In most instances, glove-based gesture recognition systems are very sensitive to both
finger motion and image noise. Sensor gloves can easily detect and quantify even very
small fingertip motions. Their highly sensitive nature makes them ideal for use in
virtual reality environments. However, glove-based devices are generally cumbersome
to wear [25][15]. The discomfort that these devices bring into the human hand
negatively affects the naturalness with which people sign [15][4]. Besides, glove based
devices are too sensitive to electromagnetic noises to the extent that their performance
is severely degraded when deployed in electromagnetically charged environments.

Furthermore some users simply detest using wired gloves for health reasons [4].

Vision-based gesture recognition systems theoretically possess several advantages over
glove-based systems. First and foremost, vision-based gesture recognition methods do
not necessarily impel a signing person to wear the obtrusive gloves which, in most
cases, hinder the naturalness with which-people-sign--Driven by the need to fully adapt
the naturalness with which péople-sigi. imany compuiei-yision researchers started
exploring the possibilities of building-vision-based gesture tecognition systems and/or
gesture driven HCI interface devices. Howeyver, as| mentioned in Section 2.3.1,
computer vision remains the madjor obstacle to' achieving successful vision based

gesture recognition systems.

In order to extract gesture information, hand régions must be properly segmented from
background objects. In practice, it is extremely difficult to achieve meaningful hand
segmentation [54][87]. Several factors contribute to the complexity of the hand
segmentation problem. Firstly, the highly flexible nature of the human hand gives rise
to a diverse range of hand configurations [91][37]. Each hand configuration may be
used to compose different hand gestures. It is very difficult to create an individual
model of each sign language gesture. Secondly, while performing a gesture, the
gesturing hand may assume different spacio-temporal appearances. Changes in hand
appearances make it very difficult to track consecutive hand-blobs. Somehow, hand

tracking simplifies the hand segmentation process by drastically reducing the object
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w

https://etd.uwc.ac.za/



search space [52]. Thirdly, occlusion of the gesturing hands and/or the speed with
which a gesture is executed makes it difficult to clearly identify the boundaries of the
hand region [102]. Fourthly, important information about hand configuration is often
lost during the transformation of a 3D hand views into a 2D views [51]. 2D projections
of moving hand are often ambiguous [53]. They do not give enough hand-shape
information. Other low-level visual cues also fail to unambiguously locate the gesturing
hand in the image. However, motion detection methods, especially the background
subtraction approach often help produce a relatively short list of candidate hand regions

[54].

It should be noted that the solution of most of the above mentioned problems are still
beyond the reach of the available computer vision algorithms. Despite the recent
advances in computing and imaging technology, computer vision has not yet advanced
enough to allow perfect hand segmentatiofizaid=tiacking [49]. In fact no pervasive
segmentation or tracking algorithms-have been picsented. However, a sizable number
of domain specific algorithms ‘thatwork well under-constrained environments have

been produced.

In order to avoid some of the difficulties that are associated with the colour based hand
segmentation algorithms, early visioh-based hand detection’ Systems used distinctively
coloured gloves. For instance Thad | 9] built ‘@ Hiddew Markov Model based American
Sign Language (ASL) recognition system which used coloured gloves for locating and
tracking hand regions. In Thad’s system, the gesturer wore a yellow glove on the right
hand and an orange glove on the left hand and sat on a chair facing the camera. While
searching for a hand region, the system scanned the image until it finds a yellow or
orange pixel. The newly found yellow or orange pixel is then used as a seed to which
similarly coloured neighbourhood pixels are aggregated. Different sets of connected
yellow and/or orange pixels are assumed to represent the two gesturing hands. The
centroid, and other features that describe each coloured bitmap region are calculated

and passed into the HMM. Similarly Hienz er al. [91] detected a gesturing hand using a
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colour coded glove and some coloured markers which were strapped around the elbow
and shoulder regions. Each finger had its own colour, and the palm and the back of the
hand were also marked with different colours. The hand detection process proceeded in
the same way as in Thad’s work [19]. Although coloured gloves simplify the hand
detection process, it would be unnatural to expect people to always wear coloured

gloves before they sign.

Most hand gesture recognition systems use low level image cues to locate and estimate
hand poses [49][52][54][87]. In Yuanxin et al. [49], skin colour and coarse image
motion are used for detecting and segmenting the gesturing hands. The skin coloured
pixels that are contained in the input image are sampled out by implementing a
histogram based look-up table. Yuanxin er al. say that they managed to track
continuous hand gestures in real-time using a single camera under uncontrolled
background conditions and/or irregular-lightening-eonditions. High level hand-shape
information was blended intojthe—image ymotion—mapsin-order to achieve better
segmentation results. Awad ér-al. {52] segmented gesturing hands by logically
combining skin colour, motion [and position information. In their work, Awad et al.
identified skin coloured image pixels using'a Support Vector Machine based colour
distance metric that somehow incorporated some prior knowledge of the previously
segmented object. Motion is computed basing on the -intensity difference between
successive pairs of corresponding skin-Coloured image ‘pixels:’ Awad et al. assumed a
very small inter-pixel displacement, and as such, the centres of mass of successive hand

blobs were estimated using Kalman filters [44].

Jonathan er al. [54] segmented gesturing hands using a combination of motion and skin
colour information extracted from successive image frames. At first a generic skin-
colour histogram is used to locate a person’s face. Once the face is localized, an
adaptive skin-colour model is then used for identifying the most probable skin regions.
The motion detector exploits the successive differences in lighting intensities between

corresponding image pixels. A large intensity difference is assumed to represent a
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moving object or a moving point, while a small intensity difference is assumed to
represent the image background. In binary images, motion thresholding techniques
often assigns a value of 1 to all motion values which are greater than or equal to a given
threshold, while those values which are smaller than the given threshold are assigned a
value of 0. A skin coloured pixel is either discarded or kept for further analysis
depending on the magnitude of motion it experienced. All moving skin-coloured blobs
are segmented in this way. All those skin-coloured blobs that are distributed over a
significantly small surface area are eliminated. The remaining image blobs constitute
the candidate hand regions. In Jonathan et al. [54], blob tracking is achieved by
matching each candidate hand region to one of the aligned sequences of image blobs

that are drawn from the previous image frames.

In Section 3.3.2.1 we briefly described how Suat [26] segmented gesturing hands using
skin colour and motion cues. It is impertahi-to-nete-that Suat improved the quality of
the hand segmentation results-by—fusing tow sfevelinformation with the boundary
information that was obtained"through the watershed algorithm. Aditya er al. [92]
located and tracked hand regions jusing a Kalman filter based contour tracing method
which works in a similar way to the one developed by Isard and Blake [93]. The hand
outlines are represented in the form_of B-splines. B-splines ensure continuity and

compactness of the represented curves.

Several vision based hand segmentation methods have been reported in literature
[28][23][24][94]. However, most of the hand segmentation approaches described by
these reports are slight variations of the approaches that were reviewed in this section.
Sometimes the choice of a particular segmentation method largely depends on the
tracking method used in the application. The next section reviews some of the

frequently used hand tracking methods.
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3.4 Tracking

When tracking objects, the tracking algorithm must first determine the location of the
object in each image frame. A comprehensive object search is either done in each of the
consecutive frames or in some cases it is only carried out for the first frame. If the
object position in the previous frame is known, the current object position can be
estimated from the intensity differences between the two frames [51]. In most cases,
the difference image is used for computing the probable changes in object positions
after which pairs of perceptually similar regions are aligned. In some way, the aligned
sequences of perceptually similar regions represent the object tracking process. The
acceptability of a segmentation method depends primarily on the application for which
it is designed. According to Awad et al. [52], accurate segmentation enhances object
tracking, and in cases where the tracking system is based on prediction of movement
dynamics, tracking reduces the.-ebjcet-Search -space..and hence simplifies the
segmentation process. In an attempt 0 Simply thelotherwise impossible task of tracking
objects from videos, most tracking algorithms impose specific constraints on object
motion or on the general imaging environment. [The gbject/models and the feature sets
used during object tracking largely-depend-on-the-objectives-that should be achieved by
each application [51]. The commonly used Qbjectmodels. are point tracking [38][92],
geometrical shape fitting [ 19] and appearance based models [97][26][98]. Appearance
based models are a broad classification of models which also include statistical models
[42](28]. In practice, researchers often combine different models in order to enhance

the performance of a tracking or a segmentation algorithm [57].

The KLT feature tracker [38] was developed on the assumption that the inter-frame
displacements are small enough to allow image motion to be modeled using linear
transformations. In this case a translation vector would be used to model image motion
instead of using the complex affine model. In the KLT feature tracker, it is important to
identify image features which are good for tracking. Using optical flow based methods,

all image pixels that are characterized by a high standard deviation of the spatial
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intensity, Laplacian edges or those pixels that are corner based [96] are often regarded
as interesting to track. However, it is difficult to individually track each interesting
pixel since pixel values are often abruptly changed by image noise, and hence each
image pixel can easily be confused with any one of its neighbourhood pixels. Instead,
small sized windows that enclose many interesting pixels are used for tracking object
through a series of image frames [95]. The KLT feature tracker also implement a
residue monitoring technique that helps to minimize the chances of aligning unrelated
tracking windows. A more robust tracking algorithm often utilizes both the affine
model and the linear translation vectors as this combination ensures effective
representation of all image pixels that probably move at different velocities. During
tracking, the feature tracker identifies new features that may be used to substitute lost
features in the tracked window. The KLT algorithm is robust against occlusion and is
useful for tracking rigid 3D object, but it is not best suited for tracking rapidly changing

hand configurations [51].

Many tracking algorithms are "deSigned to-track rigid objects [75]. However, these
algorithms dismally fail to track highly [flexible objects such as the human hand, whose
motion patterns and 3D appearances are also_quite unpredictable. The gesturing hand
often assumes different spacio-temporal appearances [49][57]. Some boundary
information of a gesturing hand is often Tost due to the blurring effects or background
noise, hence it is sometimes ‘difficult to "Correctly “identity an object’s contours

[87]1[90][98].

Most object tracking algorithms implement appearance based models [57][54][98]. 3D
models are not suitable for the tracking problem since they are computationally
expensive to implement, and therefore they are not suitable for applications which
require real-time processing. Besides, 3D models often fail to timeously update model
parameters, and this greatly compromises the object tracking process [49]. In
appearance based models, all 3D real world views are projected onto 2D planes [98].

However, 2D images cannot sufficiently capture non-linear motion hence hand-shape
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information is often lost [53]. Loss of important object information negatively impact
on the object segmentation process. According to Jonathan ef al. [54] tracking typically
fails in the absence of a perfect segmentation. Inadequate segmentation results give rise
to inconsistent image statistics. In algorithms that implement probabilistic blob
matching approaches [87][54], inconsistent object information often lead to the
establishment of incorrect matches and thus greatly compromising the quality of the

tracking results.
3.5 Conclusion

Despite the fact that image segmentation and tracking are widely researched domains,
perfect segmentation is difficult to achieve. Available hand gesture recognition systems
mainly implement multi-cue based threshold methods. Even the multi-cue approach
often fails to adequately segment the-hand-regrons-and-hence hand-shape information is
sometimes approximated using [¢0ar§é imodels) On the ofhér hand, the success of a
chereme-based gesture recognifion Systeni| largély depends on the quality of the
segmentation results. In Chapter 4 we explain the design dnd implementation of an
improved segmentation algorith-that enables-the-extraction-of cheremes from SASL

gestures.
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Chapter 4

Segmenting and tracking gesturing hand regions

4.1 Introduction

Perfect hand segmentation helps to preserve important hand-shape information. In
Chapter 3 it was pointed out that good segmentation results enhances the hand tracking
process. However, the task of locating and segmenting the hand from the rest of the
image data is very difficult and sometimes impossible to accomplish. In an attempt to
simplify the segmentation problem, some of the available vision based gesture
recognition systems were designed to work under controlled background conditions.
Some gesture recognition systems assume a stationary background and distinctive
foreground colours, while others entirely ignorethe.significance of detailed hand-shape
information to the gesture “reCognitton—process— {194 —In" such instances, hand
configurations are often roughly-approximated-using-coarse: gceometrical models. For
instance, Thad [19] describes|la hand region by |using |the best fit ellipse that

circumscribes the region.

In this chapter, we present our-hand"se¢gmentation-and trackmg algorithm. In order to
improve the robustness of ourt segméntation algorithm to 'rapidly changing speeds of
the gesturing hand, we implement a two-tier thresholding method that helps to
determine permissible values of moving skin-coloured regions. In our algorithm
motion, edges and skin colour cues are fused in such a way that boundaries of slow
moving skin coloured objects are always preserved. The chosen threshold values must
ensure that the impact of background noises on the overall segmentation results is
minimized. If the object boundaries are preserved, it is possible to trace the crude
object outlines using a boundary tracing algorithm. Computer vision researchers argue
that objects can be recognized from their crude outlines [55][56]. Besides, boundary

information helps to confine the space from which a statistical feature set that describes
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a segmented region would be extracted. During the hand tracking process, the feature
set is used for aligning the candidate hand regions from the current image frame to the

candidate hand regions from the previous sets of image frames.

Figure 4.1 explains how cheremes that describe each dynamic gesture are extracted.
This diagram also depicts how the hand segmentation and tracking processes are
designed in this research. Section 4.2 explains how skin-colour, edges and motion

information are used for isolating candidate hand regions.
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Figure 4.1: Extracting cheremes from visual images

4.2 Integrating motion, skin-colour and edge information

Image edges are useful for identifying the probable object outlines. A review of edge
detection algorithms was given in Section 3.3.2.2.1. Although the Canny algorithm is

considered the most optimal edge detector, its computational complexity is much
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higher than that of the Sobel edge detector. On the other hand, the Sobel edge detector
is too sensitive to the background noises. The Sobel detector frequently highlights
background noises as if they were an important component of the image. Despite the
above mentioned limitations, the Sobel detector is implemented in this research as a
preliminary step towards determining object boundaries. Using the Sobel detector, the
magnitude of an image edge at each pixel is computed as shown in equation 3.9. A
morphological filter is then used for regularizing image edges. The edge regularization
process involves deleting all the weak isolated edges which are mainly caused by
image noise. As part of the regularization process, an image is first subdivided into 3x3
pixel sub-regions. The algorithm then determines the total number of edge-based pixels
in each sub-region. The strength of the edge that passes through each sub-region is
determined by the number of edge-based pixels that are contained in that particular
sub-region. A detailed explanation about how our morphological filter is implemented

is given Section 4.3.

The Sobel edge detector normally produces’ a mixture of weak and strong edges. In
most cases the detected edges do not/conform to continuotls curves that characterize
object boundaries. Although it i8'casier for'thel human eyeito tell the object outlines
from the extracted image edges; it is far more complex for machines to achieve the
same level of perception. In vision-based systems, edge data 1s often blended with other
low-level image cues in order ‘to“successfully determine™object boundaries. For
instance, in this research we combine motion, skin-colour and edge information in
order to identify the most probable hand and head regions. The intensity difference

between successive image frame pairs is used as a coarse estimate of motion values.

Various methods of detecting and extracting skin-coloured regions have been reported
in literature [81][105][29]. However, despite the fact that it has been established that
the HSV colour space is more distinctive and less sensitive to colour changes than both
the YCrCb and the normalized RGB colour spaces [105][81][59] [29], the YCrCb

colour space is chosen for this research for the following reasons: Firstly, most videos
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are available in the YCrCb format and the process of converting videos from the
YCrCb format into any other format is computationally expensive [47]. Secondly,
specific ranges of the chrominance component of the YCrCb colour space are capable
of effectively isolating skin-colours of people of different ethnicity [47]. In this
research, Cr values ranging from 128 to 173 and Cb values ranging from 77 to 132 are
used for segmenting the skin-coloured regions of the input images (see Section 5.3).
Gesture recognition systems which implement unsupervised hand detection and
segmentation techniques are better suited for the automatic gesture recognition problem

than those which depends on manual selection of specific image parameter values.

The difference in intensity between corresponding image pixels that are respectively
extracted from the current and the previous image frames is used to estimate object

motion. Generally coarse motion values are computed as shown in equation 4.1.

Oz‘ll(,\.)'.1)*/2\():.)‘,[' )I<T
l:|ll(x.\'./)-[z(,\,)'.l')tzT

D(x,y,t)={ (4.1

In the above equation, D(x,y,7) represents coarse pixel motion values, which are
computed as the absolute value of| the |intensity | |diffetence between any two
corresponding pixels P(x,,7) and Pex v, )-arbitratily-selécted from any two consecutive
frames I; and I,. The variables ¢ and 7', respectively represent the different times at
which the image frames /; and /> were observed. Different points on the same image
often move at different speeds; hence the intensity differences, D'(x,y1), is a set of
discrete integer values, Z that ranges between -254 to +254.
Dl e Z:7Z =[-254,254]

The permissible set of pixel motion values, D(x,y,?), are given as the absolute value of
D' (x,,t), which ranges from O to 254. In order to decide on which motion values are
considered significant, this research implements a two-tier decision boundary as shown
in equation 4.2. According to this equation, the amount of motion suffered by a skin-
coloured pixel is 1 if the conditions specified for threshold 7; or 7> are met, otherwise
the motion is 0. In equation 4.1, the two conditional thresholds values 7; and 7> are

represented by a single value, 7.
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0:[S¢(x, y,0) = 01U [|D(x, y.0)| = 0] (4.2)
F(x, y,t) = c - i T, s
(%, ¥, 1) {I:Sc(x,y,tbOﬂ[(lD(x. y. D> Ty NEd(x, y,0)>0)U(Ed(x, y.)=0N|D(x. y. O[> T2)] L= 2

The above equation illustrates how the two-tier decision boundaries, 7; and 7>, are used
for determining whether a skin-coloured pixel forms part of an interesting region or

not. Firstly, all non-skin-coloured regions, S.(x,y,r)=0, are discarded. 7; is then used
for thresholding the absolute motion values, |D(x,y.1)|, at any of the remaining edge-
based pixels, Ed(x,y,t)>0. T> is used for verifying whether the amount of motion

suffered by any other skin-coloured pixel is of any significance or not. All edge based
pixels whose motion values are lower than 7, are discarded. Low values of 7 are
chosen in order to preserve object outlines. Large values of 7; will erode the boundaries
of all slow moving objects. If the edges that constitute parts of the object boundary
lines are lost, then it will be very difficult to confine the computations of the feature set
to within a region of interest. If a region of interest is not properly defined, the
computed feature set may not at all represenit=the-object of interest. Besides, loss of
boundary information often leads=fo_loss_of important. gesture information. For
instance, hand-shape, fingertip motion; and-other features-that describe the object of
interest would be wrongly defined. The fa¢t that the human hand can easily assume
different spatio-temporal appearances fmakes it difficult for machines to recognize
gesturing hands by merely analyzing the objects” outlines. In practice, coarse hand
information and some prior knowtedge of*the' permissible” hand-shapes are often
combined and used for identifying candidate'hand régions! In'spite of the presence or
not of image noise; a combination of image edges, motion, skin-colour cues, and other
features that characterize the detected image blobs are used to identify the most

probable hand regions.

We have just said that low motion threshold values help to preserve image boundaries.
However, low motion threshold values also amplify the impact of noise and this
consequently distorts the quality of the segmentation results. Poor segmentation results
make it difficult for machines to identify the most probable hand and head regions. If

some image blobs are not properly modeled, both the hand tracking and the gesture
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recognition processes are bound to fail. It has been established that object recognition
largely depend on both segmentation and tracking results, however, object
segmentation and object tracking also largely depend on each other [54][52]. Despite

the use of two threshold values, perfect segmentation is still difficult to achieve.

The following two subsections discuss how the morphological filter was implemented

in this research.
4.3 Morphological filter

A morphological filter that eliminates isolated edges and/or moving skin-coloured
regions was implemented in our experiments. The subroutine that implements this filter
automatically adjusts the sizes of the sampling sub-regions. Initially, an image is
subdivided into 3x3 pixel sub-regions-The-foutiie-then-determines the total number of
moving skin-coloured pixels in gach Sub-region. Whenever, @ 3x3 sub-region with less
than 5 skin-coloured pixels is encountered] such a sub-region is set to zero, and thus
discarded. At the same time, all |sub-regions with exa¢tly 5 skin-coloured pixels, which
are totally surrounded by sub-regions-with-tess-than-S=skin=coloured pixels are also
eliminated. The elimination of sub-gegions,which contain a few skin-coloured pixels
helps to remove all isolated skin-coloured pixels. Only significantly large clusters of
skin-coloured pixels are maintained. However, the morphological filter presented in
this work does not remove the thin, elongated skin-coloured sub-regions. This is a
deliberate attempt to avoid deleting possible finger projections at this stage. If all
finger-like projections were to be eliminated soon after they are discovered, then all
fingertip information would be lost. Some of the finger-like projections are deleted
during the boundary tracing process only if it has been established that the magnitude
of each of those projections is much larger than the expected size of a finger projection.
It must also be noted that all non-skin-coloured pixels are discarded once they are
discovered, and hence all edge based pixels that are contained in non-skin regions are

also discarded.
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In order to further refine the filtration process, the sizes of the sub-regions are increased
in multiples of 3. In this research, 6x6 and 24x24 pixel sub-regions were used. In a 6x6
sub-region, all sub-regions which contained less than 7 skin-coloured pixels were
deleted, while in a 24x24 sub-region, all sub-regions with less than 40 skin-coloured
pixels are also deleted. As the size of the sub-region is increased, the minimum number
of skin-coloured pixels that each sub-region should contain was drastically reduced.
This was done in order to minimize the chances of deleting useful object data. We
incremented the sub-regions by multiples of 3 in order to ensure that the process of
computing the total number of skin-coloured pixels in progressively larger sub-regions
is merely reduced to adding the subtotals of each of the smaller sub-regions which are
totally contained within the bigger sub-region. This way we reduce the number of run-
time operations that are executed by our morphological filter; and hence reduce the

complexity of our algorithm.
4.4 The border tracing algorithms

In an effort to identify the hand-regions-our-algerthm-first-isolates the head region.
The head region is usually represepted by-a big elliptical shaped region, which is
mostly situated within the top section of an image. Computer vision researchers often
identify the head region basing on its geometric features. Consequently this research
implements two different boundary tracing algorithms, one of which is specifically
designed to isolate the head region, while the other is designed to identify the outlines
of any other connected region. These two algorithms are explained in subsections 4.4.1

and 4.4.2 respectively.
4.4.1 Head tracing algorithm

Since the human head is a rigid object that assumes a well-known geometric shape, a

deformed model based boundary tracing method should be implemented for identifying
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and tracing the head regions in a noisy environment. This section presents a method of
tracing head outlines basing on the density of the connected edge-based pixels and the
tracing direction assumed by the last detected pair of boundary pixels. The head tracing
algorithm is designed to trace only the edge-based pixels which describe elliptical

shaped curvatures.

When searching for the most probable head region, the image is first subdivided into
6x6 sub-regions. The sub-regions are then scanned from left to right and from top to
bottom. Whenever a new edge-based sub-region, P (x,y), is encountered, the
algorithm identifies another edge-based sub-region, P(x'.y), such that if x" is the
highest edge-based coordinate value of the current scan-line and P (x', y) is directly or
indirectly connected to P (x, y) . Besides, each of the sub-regions P(x', y)and P(x.y)
must also be directly connected to one or mose.edge based sub-regions from the next
scan-line. If more than one rstib=r&giof_{rom (hé=proceeding scan-line is directly
connected to P (x, y) or to P(x)then-the algonthm_searches for a set of edge-
based sub-regions that produce$ the |best ellipti¢al shaped curvature. Usually a sub-
region that contains the highest number jof edge-based|pixels; which also approximately
falls directly below the current maxima (minima), is often designated as the subsequent
maxima (minima). The cross-sectional ‘distance -between 'each subsequent pair of
minimum and maximum boundary based sublregions'is tsed as an additional constraint
for screening the possible boundary pixels. We implement a sub-function that verifies
whether the magnitudes of the first five consecutive cross-sectional distances are
comparatively greater than their predecessors. An edge-based sub-region P (x,y) is
part of the head region only if we can find a set of edge-based sub-regions, C, whose
elements are directly or indirectly connected to P (x, y) such that all elements of C

define an elliptical-shaped curvature that spreads over a significantly large surface area.

Once it is established that each of the first five or so cross-sectional distances is

increasingly greater than its predecessor, the algorithm then searches for the largest
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cross-sectional distance. Under normal circumstances, whereby the head outlines are
not distorted by the head dressings, the largest cross-sectional distance is normally
associated with the transversal distance between the ear regions. Moving downwards
from the point where the largest cross-sectional distance is encountered, the distance
between the extreme boundary-pixels gradually becomes smaller and smaller. Finally,
the smallest cross-sectional distance is found around the neck-chin region. In order to
verify whether the smallest cross-sectional distance was not incidentally generated by
distorted image data, we check for any dramatic and a non-systematic changes in the
gradients of the boundary lines. Images boundaries which are not heavily distorted by
noise often give rise to steadily increasing or decreasing cross-sectional distances.
Starting from the neck-chin region, the cross-sectional distance remains almost
constant for sometime before it starts to steadily increase again. A steadily increasing
cross-sectional distance, which eventually surpasses the highest recorded cross-
sectional distance, represents the shoulder=egions-of-the human body. The search for
the head region is deemed suceessful-oncerthe shoulder-reggons have been identified.

However, the neck-chin region is considered;the cut-off point for the head region.

The next subsection explains whyL it is important' for our gesture recognition system to

locate the head region.
4.4.1.1 Significance of the head position

The rigid nature of human head makes it easier to locate the human head than the
human hand. Once the location of the head region is identified, it is then used by our
system as a reference point from which the location of other body regions can be
inferred. Since all the pictures used in this research stretch from the waist region to the
head region, then it is easy to determine a 2D coordinate system that approximates the
location of the chest, the stomach, and/or the shoulder regions in a human image. Such
a co-ordinate system normally varies from person to person depending on how the

image was shot. However, it is very important for a chereme-based gesture recognition
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system to determine the position of a gesturing hand in terms of the body regions. In

our system, the above mentioned positions are approximated as shown in Table 4.1.

Table 4.1: Determination of the Hand Position chereme

Head region
Width= C,, £3x24x24 pixels
Height: Cm x (Cm - CNR )

Chin Region (Cng)

Centre of end of head region (Hgr) (Hgr is located using software)

Neck Region

Longitudinal distance between head and shoulder regions (shoulder is located using software)

Chest Regions (Cg)

C > C"l _B('
i 2

Stomach Region (Sg)
£ 5, |

= é(—?—x

—Waist Regionm |
Centre of the Mot Bottom Section 0f an Image, B,

Used Symbols:
C,, is the centre of mass of the head-region
Cxr is the centre of the chin—region—which—also—approximated—as’ the centre of the line that
demarcates the head region from the neck region.(Hgg)
Cg the chest region
Sk the stomach region
B, centre of the most bottom litie of the image frame

The next subsection explains how the boundaries of candidate hand regions are traced.
4.4.2 Tracing the boundaries of irregularly shaped objects

Zhu [49] defined hand segmentation as a process of delineating the moving hand from
the complex background. In Section 3.3.2 we explained the different approaches to the

segmentation problem. In most cases the outlines of the segmented regions consist of

intertwined curves which are difficult to classify using geometrical model fitting
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techniques. In this subsection we explain the design of a boundary tracing algorithm
that identifies the connected boundary pixels of any cluster of moving skin-coloured
pixels. The curvatures that surround of each bitmap region help to identify a set of
connected sub-regions that define a particular region of interest. Connected image
components literally represent the objects contained in the input image. Once the
boundaries of an image blob are identified, it is easier to confine the feature detection

process to a particular region of interest.

The problem of finding connected components of image objects has been extensively
researched. However, this problem is still far from being solved [71][21][90]. In
particular, the choice of the threshold values that are used during segmentation directly
impact on the level of interlace between the otherwise different output regions. It
should be noted that it is very difficult to find a single threshold value that effectively
isolates all regions of interest (ROIs) [44-~B&sides-the-impact of threshold values, image
noise and image filtering al gorithms-efien give rise-tojagged object boundaries which
are very difficult to trace. In nmiost cases, object contours ate¢ not always defined by a
continuous string of clearly identifiablé curyes,|and hence| contours cannot accurately
identify image boundaries. Traditional' boundary tracing algorithms loop through the
object’s outer boundary pixels in either clockwise or anticlockwise direction until the
first and the second pixels visited at the start of the tracidg process are revisited in the
same order in which they "were firstenc¢ouhtered {21]}1][71]. However, such
approaches may either result in premature exits or endless loops, especially in regions
where the object outlines are corrupted by noise. Our boundary tracing algorithm scans
each input image from left to right, starting from the top left corner going downwards.
In each scan-line, the algorithm searches for consecutive skin-coloured sub-regions.
Whenever such a pattern is found, the algorithm assigns a value of 4 as the relative
direction, dir, of the last visited non-skin-coloured pixel. The algorithm then
determines if the current sub-region, P(x,y), lies on the boundaries of a connected
region. In order to achieve this, the algorithm verifies whether P(x,y) is connected to

any one of its 8-neighbourhood pixels (see Figure 4.2). In this section the words sub-
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region and pixel are often used interchangeably since all analysis done at sub-region
actually mimic the analysis that should be done at pixel-level. However, pixel-level
analysis would present too many variations since there are often too many loose image

pixels.

Definition 1: A skin-colored pixel, P(x,y), is said to be connected to one or more of its
neighbours, P(i,j), if P(i,j) is also skin-coloured and P(i,j)e { P(x+1,y+1), P(x,y+1),
P(x-1,y+1), P(x-1,y), P(x-1,y-1), P(x,y-1), P(x+1,y-1), P(x+1,y)}.

Definition 2: A connected skin-coloured pixel, P(x,y), forms part of the outer boundary
of object X if one of the last visited neighbourhood pixels, P(ij); where
P(i,j)e {P(x+1,y+1), P(x,y+1), P(x-1,y+1), P(x-1,y), P(x-1,y-1), P(x,y-1), P(x+1,y-1),
P(x+1,y)}; is non-skin-coloured.

— =

The order in which the m-trf-m;_ pixelstaré Visil h[ﬁ'lﬁi y depends on whether a

| — R | 110 L
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Figure 4.2: Neighbour pixels and tracing direction

Some of the fundamental steps of our boundary tracing algorithm are outlined in
Algorithm 4.1.
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Algorithm 4.1: Improved Boundary Tracing Algorithm:

1. Setdir «4.

2. Scan image pixels from top to bottom, left to right until a skin-coloured pixel P(x,y) is
found

3. Set P(x,y)to white and assign a negative value to it; check whether P(x+1,y) is also skin-
coloured

a. 1If P(x+1,y) is skin-coloured, set M«-5 else M<0;
b. Push into the clockwise stack, the point P(x,y) and dir=1;
4. REPEAT UNTIL all anticlockwise boundary pixels are visited
a. dir=[(dir+1) MOD 8]
b. if current pixel, P(i,j), is black
i. set P(i,j)to white and assign a negative value to it;
ii. Analyze image pattern and determine dir2
e If pattern € { 12 pattern set }then
o Push P(i,j) and dir2 into either clockwise or anticlockwise stack
iii. If diris odd then dir=[(dir+5) MOD 8] else dir=[(dir+6) MOD 8]
c. If P(ij) is negative, POP UP anticlockwise stack; else if anticlockwise stack is empty
CALL clockwise tracing module; else exit trace boundary if all stacks are empty
5. Clockwise Module
e REPEAT UNTIL clockwise stack is empty.
a. dir =[(dir-1)MOD 8]
o If dir == -1 then dir's=7
b. Repeat STEP 4. b. i. apd.4._b..ii, above
a.if dir is odd then dirz[(dir+3)y MOD 8] else du=[(dir+2) MOD 8]
c. [If P(ij) is negative, Popjup the lclockwisg stack; else if lanticlockwise stack is
empty Return to anticlo¢kwise tracing module

The boundary tracing algorithm described above scans and marks each boundary sub-
region once, and stops scanning only ‘if alt “the conrected boundary sub-regions are
visited. In order to ensure that*all Boundary pikels-are: visited during the boundary
tracing process, this algorithm tracks boundaries in both clockwise and anticlockwise
directions. In each tracing step, the algorithm keeps a record of the following
parameters:

o the last visited boundary pixel;

o the direction from which the current pixel was entered;

o a flag that indicates whether the previous outer boundary pixel width is greater

than 1;
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o two stacks, one for stacking all active branching points that are encountered
during clockwise trace and the other one for stacking all the active branching

points that are encountered during the anticlockwise trace.

In the event that a dead end is reached before all boundary pixels are traced, boundary
tracing is continued from the last encountered branching point of each respective

tracing direction.

In an attempt to determine which neighbouring sub-region is searched next during the
anticlockwise trace, the algorithm adds 1 to the current tracing direction, dir. In actual
fact, the new value for dir is computed as shown in the equation below.

dir=[(dir+1) MOD 8]
The algorithm then checks whether the image pixel pointed to by the new dir value is
skin-coloured or not. At each stage.ef-the=seaith-process, the newly found outer
boundary pixel, P(x,y), is always-used-as-the-new-teference point. Whenever a new
border pixel is found, that pixel-is first:-marked after which-if is designated as the new
reference point. Besides designating the new| reference point, the algorithm also checks
for any branching points before it backtracks-onto-the last yisited non-skin-coloured
pixels. The new tracing direction, dir, of the last visited non-skin-coloured pixel is now
given in terms of the newly assigned reference point. Its direction is computed using
one of the two equations shown betow:

dir=[(dir+6) MOD 8] (4.3)

dir=[(dir+5) MOD 8] (4.4)
Equation 4.3 is used only when the current direction is represented by an even number,
i.e. 0, 2, 4 or 6; while equation 4.4 is used when the current tracing direction is odd.
The anticlockwise tracing module repeatedly executes the above mentioned steps until
all linked object boundaries that can be visited from an anticlockwise direction are
traced. When all the connected anticlockwise outer boundary pixels are traced, the

algorithm then calls the clockwise tracing module.
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The clockwise tracing module is implemented in a similar way to the anticlockwise
module except that the next pixel to be visited, dir, is computed through a modulus
division of dir-1 by 8. The expression dir-1 represents the previous tracing direction
minus 1. However, in cases where -1 is obtained as the new dir, dir is reassigned a
value of 7. Again after designating a new reference point, the algorithm checks for any
branching point before it backtracks to one of the previously visited positions. In the

clockwise tracing module, the backtracking algorithm utilizes one of the following pair

of equations.
dir=[(dir+2) MOD 8] (4.5)
dir=[(dir+3) MOD §] (4.6)

If the current tracing direction is represented by an even number and if a new boundary
pixel has been found, equation 4.5 describes how the backtracking is achieved in a
clockwise tracing module. On the other hand equation 4.6 shows how backtracking is
accomplished if the current tracing direetioi-1srepresented by an odd number. Just like
in anticlockwise tracing, all newly discovered-cloeckwise-and anticlockwise branch-off
points are passed into the respective stacks:iMeanwhile; all-clockwise branching points
which were entered into the sta¢k| are poppéd out whenever{the current tracing route is
exhausted. Eventually the function call is'retumed to the'anticlockwise module. The
anticlockwise module will terminate the boundary tracing process once both the

clockwise and the anticlockwise stacks are empty.

Both the anticlockwise and the clockwise modules use a similar methodology for
identifying the branching points. In fact in both modules, branching points mostly
occur at the point of intersection of a one pixel thick segment and a multi-pixel thick
segment. Other branching points are found where an external boundary borders with an
image hole. Although the process of identifying the branching points sounds trivial, we
found that the branching points are best described using at least 12 unique blob
patterns. The co-ordinates of each newly found branching point, together with the
tracing direction that should be assumed whenever a branching point is revisited, are

both pushed into a stack. The choice of a future tracing direction for each branching
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point mainly depends on whether the current tracing direction is clockwise or
anticlockwise based; the structure of the branching point; and whether the new tracing

direction would be clockwise or anticlockwise based.

The boundary tracing algorithm presented in this section possesses several advantages
over the traditional tracing algorithms [21][1][71]. Firstly, the above given algorithm
terminates the boundary tracing process only if all the connected outer boundary pixels
are visited. The new boundary tracing algorithm does not use the first and second
pixels discovered at the start of the tracing process as its terminal conditions. This
situation ensures that neither premature exits nor endless tracing loops are encountered
during the boundary tracing process. Secondly, our algorithm ensures that the outer
boundary pixels are traced within the least possible number of steps. In fact most of the
boundary pixels are visited only once. Somehow, this reduces the computational
complexity of our boundary tracing algerithm:Thirdhy..the improved boundary tracing
algorithm helps to detect fingertips and fmgertipymotion information. Fingertip
information is vital for the hand gesture recognition process; The following subsection

explains the statistical feature extraction process.
4.5 Extracting the statistical feature set

After extracting all connected outer boundary pixels of a region, a statistical
distribution of the image pixels that lie within the outlined region is computed. In order
to ensure that pixels fall within a region of interest, we first determine the start and the
end boundary pixels for each scan-line of a current image blob. The difference between
the start and the end boundary pixels of each scan-line is used as an estimate of the
number of skin-coloured pixels that are contained in each row of the image blob. The
total number of pixels enclosed in the image blob gives a rough estimate of the relative
size of the image blob. A blob with a relatively small surface area is assumed to have
been generated by image noise and is thus discarded. If a skin-coloured blob is

relatively large, its shape is approximated using the statistical distribution of the
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enclosed skin-coloured pixels. The correlation matrix of the skin-coloured pixels given
by 8., 8y, and &,, (see equations 4.10, 4.11and 4.12) respectively, gives a measure of
the dispensation of blob pixels along the x, the y and xy directions. According to
equations 4.7, 4.8 and 4.9 the centre of mass is the average position of a blob’s pixels,
from which the dispersion of skin-coloured pixels along both the x direction and the y
direction is measured. The number of skin-coloured pixels |D(x,~,y)|from the current
image blob, which fall along the line x=x;; where x;e{~o ..., -2, -1, 0, 1, 2, . . ., +00},
must be computed. The sum of the products of | D(x,»,y)| and the corresponding x; value
must also be computed. The sum of the products is then divided by the total number of
skin-coloured pixels that are projected at each position. The result of the above process
gives an estimated average position along the x direction, m,, of all skin-coloured pixels
that are contained within an object of interest. The average position of all skin-coloured

pixels along the y direction, m,. is also calculated in a similar manner.

x:|D(x;,y
oy TPl @.7)
’ >, ID(X,',A\')|
X5y
5 ¥i|D (%, ¥;)| (4.8)
m e b e T
' > |D(x,y;)]
X,y
Mg =My, my) (4.9)

The dispersion of skin-coloured pixels 'from the*centre ‘of mass of an image blob is
described by the covariance matrix, X,
8 e O
Y = [ xx XY J
Oxy Oyy

Equations 4.10, 4.11 and 4.12 show how the elements of X are computed.

T D wlxp = my)?
X0y (4.10)

T x|
XLy

X |D(x.y,)|(y,- -m ).)2
5%, =4, =2l 4.11)
T [Dxy)
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4.12
|D(x;. y) el

In statistics, variance gives a measure of the dispersion of some sampled observations
about the mean. If a very large sample size is used in a survey, the distribution of
sample data would assume a normal distribution curve. Variance is calculated as the
average of the square of deviations of all possible observations from the population
mean [61][62]. On the other hand, standard deviation is a statistic that uses the same
unit of measurement as the sampled data, and it is used describe the spread of data
about the mean. Standard deviation is computed as the square root of the variance.
Where two or more variables were sampled, covariance is used as a measure of the
joint variability between those variables. Joint variability describes the degree of
association between variables which is induced by an operation or transformation that
has been performed on those variables:“Fer-instanee, joint variability (correlation)
between variables x and y is expressed in termsof 0. o and 0., Statisticians often use
the term variance to describe how a variable correlates with itself. On the other hand,

4., describes the degree of assocjation betweeén variables x and y.

Besides describing shapes in_terms_of their statistical mean, variance and standard
deviations, eccentricity is also often used to describe how image pixels are distributed
about the centre of mass. Eccentricity is the ratio of the principal axis to the minor axis
of an ellipse that bounds a given image blob. According to [61][57], elements of the
covariance matrix, X, can be used to calculate the parameters of an ellipse that
circumscribes a candidate hand region. These parameters are the principal axis, ¢, the

minor axis, £, and the angle of orientation, €.

A= ‘/(5” ~5,)7 +45,, (4.13)

LAl R (4.14)
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(4.15)

(4.16)

Equations 4.13 to 4.16 show how the elements of X are used to calculate ¢, £, and 6. In

this research, eccentricity is used as one of the object features.

The x and y standard deviations of the skin-coloured pixels that constitute each image
blob are calculated as shown in equations 4.17 and 4.18.

D (xiyNx = m )
;o (4.17)
z.|D(xl-,y)|

X;

2 |D(x,-,_v)( y-m ).)|
§ = 2 (4.18)
VZ‘ID(.X,.._\')I

In this research, the ratio of the totatsurfacearearof arskinzcoloured blob to the area of
the best fit bounding rectangle isused as one of the important object features. This ratio
is often referred to as the rectangularity |of an|object. Re¢tangularity measures the
amount of space of a minimal bounding box that is-covered by a silhouette of an object.

It is a coarse estimate of how object pixels are distributed in an image.

Besides the features explained above, two small lists, 5, and b, , are extracted from the

x and the y coordinate values of the image boundary curves in such a way that the

distance between any two elements of b, isy, and the distance between any two
elements of b, is ;. The two lists, b, and b, , are incorporated into the feature vector in
order to augment its capacity to distinguish between closely similar shapes. A list of
flags, {f, ..., fs}, that indicate the presence of one or more fingerlike projections in
object data is also included in the feature list. Unfortunately, no information that

distinguishes between the different fingers is provided since this is quite a cumbersome

task to achieve. Firstly, we are not really sure whether all fingerlike projections
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represent true fingers. Secondly, it is difficult to figure out the position and the identity
of an extended finger as finger configurations are in most cases always affected by

occlusion.

All of the above mentioned features are either used for tracking candidate hand regions
or for classifying object shapes. Tracking moving hands can be accomplished through a
small list of features that enable a rough classification of image blobs. In this research
we track candidate hand regions using the features outlined in equation 4.19.

Flo =By aea 8008, 84y m? —mS|+m —m]} (4.19)

where by, is the total surface area of the image blob, & and & are the standard

deviations in the x and in the y directions respectively; d,, indicates how variable x and

y co-vary against each other, and Im«‘," -mS

- ‘m\’.’ - m§i| is the distance between the centre

of mass of the current image blob, (m &g and-the-previous image blob, im? .m 7).

We used the feature set shown inequation 4,20 for classifying hand-shapes.

S, =16..6,.6,.6% %, 1. £t fa\ {6 L 5 W, olLb.. 415, B b, b, b, by, by, } 4.20)

where R, and R, represent eccentricity and rectangularity respectively. The Support
Vector Machine [14][63] was implemented in order to classify hand-shapes. Section
4.7 briefly discusses how the SVM is implemented 1n this research and Section 5.5.3
presents the SVM based classification results for aligned sequences of candidate hand

blobs.

In the following subsection, we explain how the improved boundary tracing algorithm

isolates fingertip motion.
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4.5.1 Extracting fingertip motion

Besides clearly demarcating different bitmap regions, the boundary tracing algorithm is
also used for marking out the probable fingerlike projections that are associated with
each bitmap region. Fingerlike projections help to isolate fingertips and to quantify
fingertip motion. Except in experiments where artificial colouring techniques are
applied, the available gesture recognition systems mainly ignore fingertip information.
In fact, fingertip motion is often ignored because of the difficulties that surround the
process of isolating and tracking finger motion under natural conditions. Fingertip
motion only constitutes an insignificant proportion of the overall hand motion. In the
field of computer vision, a slight shift in the position of the centre of mass or the
standard deviations of an object are often attributed to jaggy camera and/or hand

motions, or other forms of noise that are associated with image capture.

Depending on the size of the thin-elongated-projection-mapped out by the boundary
tracing algorithm, these projections are €ither classified as a probable finger region or
they are discarded. In Section|4.3.1| lwe|mentioned| that |a fingerlike projection is
discarded only if its magnitude'is_much ‘greater' than' a_prescribed length, x, which
corresponds to an average sized finger projection. But how does a boundary tracing
algorithm determine the length of a fingerlike projection? In the first paragraph of
Section 4.5 we explained how the'surface area of ‘each skin-coloured blob is extracted.
It was explained that for each scan line, a physical count of the total number of skin-
coloured pixels that are confined within the boundaries of an image blob is carried out.
If the number of skin-coloured pixels that are enclosed at a particular section of a scan-
line that falls within the ROI is smaller than a specific threshold value, then the cross-
sectional width of the ROI is considered too small to constitute the wrist region of a
hand. If an image blob with a small cross-sectional width is directly connected to an
image blob with a larger cross-sectional width, then the thin cross-sectional area is
presumed to represent a finger projection of a hand region. However, a further analysis

of the whole image blob should be done. The approximate magnitude of a probable
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finger projection is determined by simply counting the number of connected outer
boundary pixels that outline the thin cross-sectional area of the image blob. In this
research, if a thin connected region is more than 360 pixels long, then such a region is
discarded since our manual verifications have shown that most finger projections of the
images that we worked with were less than or equal 360 pixels long. All fingerlike
projections which are more than 360 pixels long are assumed to represent the boundary
regions of moving non-skin coloured objects, which were filmed against a skin-
coloured background. In order to determine whether the fingerlike projection is moving
or not, the centre of mass of each fingerlike projection is determined. If the fingerlike
projection persists from frame to frame, the centres of mass and the standard deviations

of consecutive image frames are compared with each other.

A fingerlike projection is regarded as representing a moving finger if its centre of mass
or one of the two standard deviations changes-bétween successive image frames. The
type of finger motion can be learnt-by implementing the-HIMM. Firstly, the statistical
data that describes the configurations;of each fingerlike projection are extracted and
passed into the HMM. In this research, the lvarious transitional states that characterize
each HMM are represented by'the!changing ‘parameterValues for the x and/or y
standard deviations, centres of mass, orientation, rectangularity, and eccentricity of the
fingerlike projection. Although recurrent neural networks achieve better recognition
rates than HMMs, HMM can be'sufficiently trainéd from'a'few training samples within
a short time interval. Each finger motion is learnt and recognized as a separate entity,
and hence, each training dataset that is passed into the HMM represents particular

finger motions.

After the HMM is sufficiently trained on how to recognize particular finger motions,
the recognition module of the HMM is called in order to classify finger motion. In this
research finger motions constitute one broad class of the sign language cheremes which
we call the finger-motion chereme. The finger-motion chereme is herein represented by

the capital letter F. Within the finger-motion chereme, each individual finger motion is
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represented by a positive whole number that precedes the capital letter F. For instance,
individual cheremes may be uniquely represented by one of the following symbols; F/,
F2, F3..., Fn-1, Fn. Once finger motion is recognized, a symbol that represents that
finger motion is passed to the gesture recognition module as one of the components of
the gesture being investigated. Other cheremes such as the hand-shape, the hand
motion, the relative position of the gesturing hand are also fed into the gesture
recognition module. Our system can identify major changes in hand orientation but it is
not easy to determine the minor changes in the orientation of a gesturing hand.

Consequently the ori chereme [11] is not used in this research.
4.6 Tracking candidate hand regions

After successfully locating the head region, our algorithm then searches for the
probable hand regions. In an image;-the most-probable hand regions are mainly
represented by elongated ellipticalishaped blobsywhichieitherjhave a steadily increasing
or a steadily decreasing cross-sectional distance. |In some cases. finger-like projections
are found attached to the probable hand regions! The ratio 0f the major axis #o to the
minor axis 7; of the best fit ellipse-that-circumseribe'the-hand region is usually much
smaller than that of an ellipse that bounds the head region. However, in the case of the

hand region, this ratio largely depends on whether the fingers are stretched or clinched.

Frame 1 Frae? Frame3 Frame 4

’ Bff"h---ﬂ’.‘r}“m
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)
By oin) ]§

Bo={vayeeota}

i B4={Vds weoVin}

Figure 4.3: Probabilistic matching of image blobs
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In order to identify the blobs that most probably represent gesturing hand, similarly
textured image blobs from different image frames are aligned to each other as shown in

Figure 4.3. The following pseudo-code shows how different image blobs are matched.

Algorithm 4.2: Determining the Best Matching Blobs
if BestMatchList is empty;
BestMatchList = present list of image blobs;
if BestMatchList is not NULL

{
For BlobList=1 to n

{
LX:

For BestMatchList=1 to m

{
if (FeatureListMatch)

Store in temporary BestMatch array

}

Determine the best of the best matches
If any of the remaining BlobList is a better match than current best match THEN GOTO LX:
Else store best in BestMatchList queue

}
}

The level of similarity between'two image blobs; that belong to different image frames
is determined based on the following set of paraimeters: namely the total surface area,
distance between the two blobs’ centres-of mass.) and ‘thelstandard deviations of skin
coloured pixels along the x and the y directions respectively. The algorithm first
compares the surface areas and the two standard deviations of any unmatched pair of
candidate hand regions. If the "two "blobs™ standard deviations and surface areas are
within the range of some prescribed threshold values, and if no other blobs have
comparatively similar differences, then the two blobs are considered matching each
other. On the other hand, if two or more candidate hand regions from either the current
frame or the previous frame are comparatively similar, then the best match is decided
based on the probable motion vectors. However, if the two blobs’ surfaces areas differ
by a small magnitude, irrespective of which blob has the bigger surface area, a blob
with the smallest difference for both the x and y standard deviations is considered the
best match. If all the above mentioned conditions fail to clearly decide the best match,

then one of the blobs from the previous frames whose centre of mass is the closest to

https://etd.uwc.ac.za/



the current blob is considered the best match. Such a match is considered to represent

slow moving or stationary objects.

Each candidate region can only be aligned to one or none of the candidate regions from
the other frames. A blob from one of the previous frames that does not match any other
blob from any of the proceeding 6 frames is discarded. Such a blob could have been

generated by noisy data.

A candidate hand is considered successfully tracked only if the total number of aligned
blobs is greater than half the total number of input frames. The set of parameters which
are used for matching candidate hands is considered adequate for hand tracking
purposes only if we can always extract at least one complete set of aligned blobs which
represents every input image. A successfully aligned sequence of image blobs is one in
which a single blob from a current image-frame-that.contains an object of interest is
always correctly matched to a'sequence-of previously maiched image blobs that also

contain the object of interest.

When processing a single handed gesture. sometimes ‘more than one candidate hand
regions are successfully tracked through a sequence of image frames. Out of all the
successfully tracked candidate hand regions, only one $et of aligned blobs actually
represents the gesturing hand! "How-'thendo*wé determine"the correct sequence of
aligned blobs? This problem is solved by implementing the SVM or any other object
classifier. In this research, we use the SVM for classifying the matched candidate hand

blobs. The following subsection explains how hand classification is achieved.
4.7 Classifying sets of candidate hand regions

In order to classify candidate hand configurations we implement a Support Vector
Machine with a linear kernel [63]. Firstly, the SVM is trained using positive and

negative training samples. A positive training sample consists of a set of original data
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samples which are somehow intentionally polluted by aggregating a few noise signals.
On the other hand, the negative training samples were mainly composed of data
samples that represent other hand shapes. Some of the negative training samples were
derived from the original data samples which were intentionally subjected to noise
signals. In our experiment, the amount of noise used for polluting data samples ranged
between 1% and 5% of each the original feature values. Since the testing samples
always contain non-polluted data samples, it implicitly means that the training and the

testing samples are always are different.

The training samples are used to train the SVM system. Various parameters and
different types of kernels are used when training the SVM system (see Table 5.9 for a
list of some of these parameters). A trained SVM system is used for evaluating the
performance of each test sample against each of the trained samples. The performance
results for each test set against cach-tfam=set-are-given in terms of specificity,
sensitivity and positive predictiye-valuesywmehyarernormally expressed as decimal

fractions or percentages.

Our train and test data samples 'were extracted froni seven dynamic SASL gestures.
Five people were asked to repeatedly perform seven SASL gestures. On average each
dynamic gesture exhibited 35 person-dependant variations of a single hand-shape. Thus
for each gesture, an average of 175 person-independént hand-shape variations were
studied. The negative train data samples for each gesture consists of a consortium of
hand-shapes collected from different gesture classes and those hand-shapes which were
distorted by image noise. On the other hand, manually verified sequences of correctly
aligned hand blobs are used as positive train samples. Negative test samples are
selected in a similar manner to how negative train samples are extracted. We used the
SVM-light source code [63] to test how sequences of candidate hand regions relate to
known hand-shape sequences. We observed the hand-shape recognition rates for both
the person independent and the person-dependant situations (see details in Section

5.5.2). However, this work is based on the assumption that the hand configuration does
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not change much during the execution of a gesture, and hence a set of successfully

matched blobs is considered to represent the same hand configuration.
4.8 Summary

This chapter explains how a ROl is identified and processed by our gesture recognition
system. Specific image attributes, such as skin-colour, edges and motion cues were
integrated in such a way that all possible boundary information of all moving objects
was preserved. Preservation of boundary information was achieved by implementing a
two-tier thresholding technique. The two-tier threshold method was also designed to
mitigate the impact of background noise on the output image. A morphological filter
which also further minimizes the impact of noise was also implemented. Our algorithm
also traces the boundaries of each isolated bitmap region. The presented boundary
tracing algorithm also helps to_distnguish=betweeii the.different components of an
image, and hence confine the space from which features thaf describe each image blob
are extracted. Once the best minimal features| that  describe each image blob are
extracted, a dynamic matching algorithm i$ then used to align the best matching blobs
from different image frames. Phe blob-matching process-is-also viewed as part of the
image tracking process. The aligned image blobs are immediately classified using the

SVM. The classification results are presented and discussed in Section 5.5.2.
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Chapter 5

An evaluation of system performance

5.1 Introduction

Chapter 4 explains how different image segmentation algorithms isolate the region of
interest. Once the objects that constitute an image are isolated from each other,
computer vision algorithms extract features that best describe each image object. This
chapter presents an evaluation of the different image processing modules that were
implemented in this research. Section 5.3 discusses factors that determine the choice of
a threshold value. A KLT based hand tracking method, which theoretically sounds a
good alternative to the approach used in this thesis, is discussed in Section 5.2. In that
section we assessed the applicability=of-the-~KEF-feature tracker to the gesture
recognition problem. Section 3#jcompares the resuitsrofsmgle-cue and multiple-cue

based segmentation methods.
5.2 KLT based hand tracking

In [38][92] optical flow based methods of tracking object through a sequence of video
images are presented. The KLT feature tracker, implements the sliding window
principle. Features which are interesting to track are often identified by small sized
windows whose contents are carefully monitored during tracking [46]. Monitoring of
the feature windows helps to optimize the feature tracking process. While bigger sized
windows would be associated with more features, smaller sized windows make it
possible to treat all points contained in a tracking window as if they constitute a single

point. As such, those points are often viewed as if they move at the same speed.

From the KLT based tracking results shown in Figure 5.1, the red dots indicate the

successfully tracked regions. It can be seen that in human images, most features which
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are considered good for tracking are found around the head region. Only a limited
number of good features are found around the hand regions. This is mainly because the
hand often moves too fast, sometimes it frequently changes its 2D orientation as it
moves. Fast moving hands are often associated with large inter-frame distances, while
rapidly changing hand appearances are associated with the occlusion problem. Because
of the above mentioned constraints, the KLT feature tracker often fails to track fast
moving hand regions. In order to minimize the loss of tracking information, either the
signing hand must move very slowly; or very fast image capturing and processing
devices must be used. However, in the spirit of retaining the naturalness with which
people sign, no one should be compelled to perform gestures in slow motion. Besides,
very high processing speeds are difficult to achieve, and consequently both conditions

cannot always be guaranteed.

Figure 5.1: Tracking the moving objects using the KL T tracker
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Most of the features that are considered good for tracking cannot sufficiently describe
an object of interest. These features hardly provide information about object shape or
its 2D projection, yet such information is vital when building automated object
detection and tracking systems. The KLT feature tracker achieves commendable
tracking results for slow moving, highly textured objects such as the human head, but it
is not designed to recognize any object. Computer vision researchers say that objects
can be recognized from their crude outlines [55][56], but using the KLT algorithm, the
good features to track are not always associated with object outlines. Some researchers
still claim that the KLT feature tracker can sufficiently track moving hands [92], but
our sample tracking results demonstrate otherwise. In fact, our sample results
demonstrate that the KLT feature tracker often fails to track gesturing hands in a highly
textured background environment. In this research we track an object of interest based
on a probabilistic blob matching technique. The probability of correctly aligning the
image blobs is increased if the segmentation-results-adequately identify the object of
interest. Using skin-colour or meotion based segmentationy some segmentation results
are often misclassified [94]. However; the classification error can be minimized but
using optimum threshold values. The|next| subsection discusses how the choice of

threshold values affects the segmentation process.
5.3 Choice of threshold values

The effectiveness of a threshold value, TH, can be inferred from the magnitude of false
detections and false dismissals that it produces. Hualu and Shih-Fu [9], demonstrated
that extremely low skin-colour threshold values stimulate high rates of false detections
and low rates of false rejections. This observation is also supported by Zhu, Yang and
Waibel [94]. As the threshold values increase, the number of false detections decreases.
Conversely, the rate of false dismissals increases as the threshold value is increased.
Figure 5.2 is a graphical illustration of the effects of increasing skin-colour thresholds,
TH, on the rates of false dismissals and false rejections. Generally it is very difficult to

find a threshold value that simultaneously eliminates false dismissals and false
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detections. As a result, most segmentation algorithms never achieve perfect

segmentation.
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Figure 5.2: Performance of skin colour threshold values: Adapted from Hualu and Shih-Fu [9]
Chai and Ngan [47] say that in the YCrCb colour space, Cr values ranging from 133 to
173 and Cb values ranging from 77 to 127 are| suitable for isolating skin-colours of
people of different ethnicity. However, in this research we found that Cr values ranging
from 128.5 to 173 and Cb values-ranging from-77-to-133-are more appropriate for
isolating skin-colours. A pictograph of; the resuits we-obtained using different threshold
values for Cr is given in Figure 5.3 (a), In_this figure, all the non-skin coloured regions
which were falsely classified as skin-coloured regions are enclosed by a blue dotted
lines and the red line outlines the falsely dismissed regions. A closer look at the given
output image sequences shows how some sections of an extended thumb were

gradually discarded as the threshold values of Cr was increased.
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Figure 5.3 (b): Effects of increasing (decreasing) edge threshold values on the segmentation results

93

https://etd.uwc.ac.za/



Motion>3 Motienz6 MotionZ 15

Key

“.. MFalse detection

": % False Dismissal
wat

Motion=20

Figure 5.3 (c): Effects of increasing (decreasing) motion threshold values on the segmentation

results

It is not easy to accurately quantify the falsely detected and falsely dismissed regions as

some blobs are composed of many small chains of interconnected sub-regions.

However, the total surface area, A, covered by each misclassified region, can be

approximated as shown in equation 5.1.

X

b n
A= [f(x)dx = > h
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where n represents the number of equally spaced sub-intervals that falls within the

interval x;ex: a< x;<b. The number of 6x6 or 24x24 misclassified sub-regions, s, ., is
=L

obtained by manually counting the number of misclassified sub-regions that are

contained in each sub-interval. The sum of n subtotals of 4, is used as the estimate of
ik

the area covered by falsely detected skin-colour regions. We use 24x24 sub-regions
when the area covered by the misclassified regions is too big and when the density of
misclassified skin-coloured pixels in each sub-region is very high. Figure 5.4 illustrates
how the image is broken down into sub-regions. The area covered by each
misclassified region is used for calculating the rate of false detections and the rate of
false rejections that are associated with each threshold value. Data that describes the

effects of different Cr threshold values is shown in Tables 5.1 (a) and (b).
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Figure 5.4: Determining the area covered by false skin regions for Cr>128
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Table 5.1: Relationship between Cr values and the sizes of falsely detected or falsely rejected
skin-coloured regions

(a) The Effects of Cr values on the magnitude (b) The effects Cr values on the magnitude of

of false skin-coloured detections false rejections of skin-coloured regions
Cr Estimated quantity of Cr Estimated size of
Threshold false skin colour Threshold falsely rejected skin
Values regions (No: of 24x24 Values colour regions (No: of
sub-regions) 06x6 sub-regions)
Cr2127 224 Cr2127 0
Cr2127.8 140 Cr2128 0
Cr2128.1 65 Cr2128.1 3
Cr=128.2 15 Cr2128.2 6
Cr=128.3 4 Cr2128.3 7
Cr=128.4 1 Cr2128.4 11
Cr=2128.5 0.4 Cr=2128.5 26
Cr2129 0 Cr2129 320
350 T e e
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Figure 5.5: Relationship between Cr threshold values and rates of false detections and false
dismissals

The effects of increasing (decreasing) Cr value on the rate of false detection and/or
false dismissal is implicitly explained by Figure 5.5. In this figure, the blue line shows
how the area covered by false skin-coloured regions decreases as the Cr value
increases. The red line illustrates how the rate of false rejection increases with the
increasing values of Cr. For the data sample represented in Figure 5.5, the rate of false
detection and the rate of false dismissal are extremely low for Cr values ranging from
128.2 to 128.5. However, in general we found that Cr values which are greater than or
equal to 128.5 are suitable for isolating skin-colours of people of different ethnicity. In
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Figure 5.3 (a), the increasing rates of false dismissals are represented by the
diminishing surface area of the extended thumb and/or the diminishing size of the hand
projection. When the Cr value is increased, some segments of the hand and/or the head

projections are gradually lost and eventually the whole region disappears altogether.

We investigated how different motion threshold values affect the rate of false motion
detections and the rate of false rejections of true motion values. If an object is moving
slowly, the current and the previous object position may overlap. Bearing in mind the
fact that the brightness function for different image pixels that belong to a smooth

surfaced object often assumes a uniform distribution, D(x, y,t) = a, it is obviously not

easy to implement the difference image for isolating the moving object.

In general it is easy to identify false movements since they are mainly identified outside
context of an object, but the process-of-identifying-falsely dismissed moving regions is
a bit complex. Although somepoflthe ffalsely idismissed| motion values are often
contained within the region of interest. such regions are largely ignored in this work.
We use object boundary information to delimit the desirable region, but it is not easy to

identify a misclassified region which-falis-within-the-boundaries of an accepted region.
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Table 5.2: Relationship between motion values and the sizes of falsely detected or falsely rejected
moving regions

(a) The Effects of Motion thresholds on the  (b) Effects of Motion thresholds on the magnitude

magnitude of false motion detections of false rejections of true motion values
Motion Estimated quantity of Motion Threshold | Estimated quantity of
Threshold false motion regions Values false motion regions
Values (24x24 sub-regions) (24x24 sub-regions)
Motion>3 104 Motion=5 0
Modon=>3.5 03 Motion=10 10
Motion=>3.7 & Motion=15 24
Motion=>4 32 Motion=20 37
Motion=4.5 11 Motion225 52
Motion=5 1 Motion=30 75
Motion=6 0 Motion=35 118

Motion threshold values for false rejections

1 1‘0 1|5 Q Z? JIO :EIZO

80

608

40

No: of 6x6 pixel subregions covered by false rejections

‘\,\\\m '
o AR S 1 - —

No: of 24x24 pixel subregions covered by false detections

'l 1.5
Motion threshold values for false detections

Figure 5.6: Relationship between motion threshold values and rates of false detections and false
dismissals
Tables 5.2 (a) and (b) respectively show how different motion threshold values affect
the rate of false motion detection and the probability of rejecting true motion values.
The relationships between motion threshold values and the probability of rejecting true
motion values and the relationship between motion threshold values and the rate of
false motion detections are summarized in Figure 5.6. Unlike in the case of Cr values,

there is no obvious range of motion values that simultaneously minimizes the rates of
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false detections and false dismissals. However, Figure 5.6 clearly shows that low
motion values induce high rates of false motion detections and low rates of true motion
dismissals. In this research we chose motion threshold values that minimize

background clutter and also reduce rate of false rejections of true motion values.

Table 5.3: Relationship between edge threshold value and the quantity of falsely detected or
falsely rejected edges

(a) The effects of edge threshold values on (b) The effects of edge threshold values on
the quantity of falsely detected edges the quantity of falsely rejected edges
Edges Approx. no: of false edges Edges Falsely dismissed edges

Threshold | (no: of 24x24 sub-regions Threshold (no: of 24x24 sub-
Values covered ) Values regions covered )
Edge=20 107 Edge=30 0
Edge=222 93 Edge=35 3
Edge=>25 54 Edge=40 19
Edge=26 17 Edge=50 53
Edge>27 7 Edge>55 75
Edge>28 3 Edge=60 96
Edge>29 & =65 117
FEdge>30 i AT 127

Edge threshold values for falsely rejectad edge:
ol i

1202 5 o 131

80 -

60 -

40+
40

L
20 e

No: of 24x24 pixel subregions covered by false edges

L . | I =
20 2 2 23 2l 25 26 7 28 2 30

Edge threshold values for false detections

No: of 6x6 pixel subregions covered by falsely dismissed edges

Figure 5.7: Relationship between edge threshold values and rates of false detections and false
dismissals
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Tables 5.3 (a) and (b) illustrate how different edge threshold values affect the rate at
which false edges are generated or the rate at which true edges are discarded. It is
important to remember that there are no surrogates of truth for all segmentation results
[93]. That is the reason why it is very difficult to distinguish between true and false
edges. In this research, we mainly review the edges that lie along the boundaries of an
object. We neither reject nor accept any edges that are found within a region of interest.
However, all those edges that generated outside the confines of any known rough
textured object are regarded as false edges. Many of such edges are generated by low
edge threshold values (see Figure 5.3 (b)). Rapidly changing colour values also give
rise to image edges, and although such edges do not constitute object boundaries, they
are not necessarily false edges. The number of falsely detected edges is estimated by
manually counting the number of sub-regions that contain false edges. Although the
density of edge based pixels varies from sub-region to sub-region, all edge based sub-
regions are assumed to contain the same-niimber-of-edge-based pixels. As a result, the
numbers of falsely detected edge-based. pixels-given-inTable 5.3 (a) may be an
overestimation of the true edge’values; However; we aié mainly interested in observing
how different threshold values jaffect|the rate of /false detections and the rate of false
dismissals. The number of falsely!'dismissed edges is approXimated using the number of

boundary based pixels that were discarded from the image data.

Increasingly higher edge detection threshotd Vahies dre‘assoctated with increasing rates
of false dismissals and decreasing rates of false detections. These trends are similar to
those illustrated in Figure 5.2. In this research, moderately low motion and edges
threshold values are used for segmenting image objects. Low threshold values are
preferred since they minimize the rate of false dismissals. False dismissals might cause
loss of important object information, which often lead to total failure of the object

recognition process.
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5.4 Segmentation results

In Section 3.2.2.1, we mentioned that single-cue based segmentation results are too
coarse for gesture recognition systems. The single-cue based segmentation results
shown in Figures 5.8, 5.9 and 5.10 further confirm this assertion. In these figures, the
input image is given in the first row, while sample results for skin-colour, edge and
motion based segmentation are given, in the same order, in each middle row. The
bottom row shows the output of a multi-cue based segmentation process. In these
diagrams all regions that are shaded in white represent the segmented image blobs and
all rejected regions are shaded in black. Skin-colour based segmentation results clearly
show that many non-skin objects are often classified as skin-coloured regions. In
practice, not all skin-coloured objects actually represent true skin-regions. This
observation also supports the postulation that under complex imaging conditions skin-

colour alone cannot unambiguously-idehify-the-Gbjectofinterest [54].

The motion history images represent’ the differénce iy inténsity between consecutive
pairs of image frames. Motion [history| images are represented in the extreme right of
each middle row of Figures 5,8.:-5:9-and-5.10-A"careful-analysis of the motion maps
shown in these figures reveals that MHIs cannot reliably identify an object of interest.
In fact, MHIs merely represent disparities in lighting intensities between each pair of
corresponding image pixels, and hence the so-called ‘motion maps’ do not always
represent the object motion. For instance, MHIs often represent fluctuating lighting
conditions or other moving background scenes as if they constitute object motion. In
Figures 5.8 (d) and 5.9 (d), the white pixels found around the chest regions are
probably generated from the movement of some loosely fitting garments worn by the
signer. Loose fitting garments are prone to shake under windy conditions or in response
to body movements. In all motion based segmentation results, these irrelevant
movements constitute image noise, which sometimes is often misconstrued for object
motion. Depending on the chosen motion threshold values, the effects of image noise

are sometimes very devastating. In order to alleviate the impact of image noise, a
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filtering technique that eliminates all small isolated image blobs is implemented in this
research. Even in situation where image noise is significantly low, MHIs always
represent the current and the previous object positions. If the current and the previous
object positions overlap, MHIs represent the two positions with one big silhouette
which sometimes have a faint or even a wide crack along the region of overlap. Such a
representation does not actually represent the underlying object’s 2D appearance.
General knowledge of object shape is crucial for gesture recognition applications.
Nonetheless, MHIs still provide important though crude, information about object
motion. For instance, in Figures 5.8 (d), 5.9 (d) and 5.10 (d), the magnitude of motion
exhibited by each object can be approximated by either estimating the area of overlap,
which in some way represents the translation vector that transforms an image blob from

its previous position to its current position.

In Figures 5.8, 5.9 and 5.10, the central-ifhagesrepresents the detected image edges. In
Section 4.2 we mentioned that-1mageyedgesidormotyalways conform to object
boundaries. The magnitude Of-an image: edge largely-depends on the intensity
difference between a pixel and some of its|neighbourhood pixels. Occlusion and object
speed are some of the factors_that affect the continuity of the edge. In regions where
non-continuous or overlapping edges _are concentrated, object boundaries are difficult
or almost impossible to trace. Most edge detectors are’not designed to control edge
thickness. In our case, very thick édges aré obtained around the face region wherever
low threshold values are used. Thick edges that are found over the head region are
presumably caused by the numerous wrinkles or other depressions that are commonly

found on human faces.

Our multi-cue based segmentation approach first assumes that all moving skin-
coloured pixels constitute the interesting regions. Considering the fact that low
threshold values were recommended in Section 5.3 the multi-cue approach may sound
as if it ignores image noise. However, logical ANDing of edges, motion and skin-

colour information help to eliminate some of the unnecessary regions. It can be seen
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from Figures 5.8, 5.9 and 5.10 that the results of a multi-cue based segmentation
method basically contain less noise and few background objects in comparison with
either motion or colour based segmentation results. Although the edge based
segmentation results look comparatively similar to those obtained from a multi-cue
segmentation, it must be remembered that edges alone cannot sufficiently segment
image objects since edges do not always conform to continuous curves that characterize
object boundaries. Besides, edges are often found in non-skin coloured regions yet it is
absurd to assume that such an edge belongs to a face or a hand region. Logical ANDing
of edge information with skin-colour cues help to eliminate some of undesired edges.
Object motion is incorporated into skin colour information in order to discard some of
the stationary skin-coloured regions. Stationary skin-coloured regions do not
constitutes a dynamic gesture; hence no further processing will be required for such

regions.

b)
Colony
Based

A) Frame 1 B) Frame 2

Figure 5.8: Segmentation results for frames 1 and 2
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Figure 5.10: Segmentation results for frames 1 and 2
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5.5 An assessment of the segmentation results

Section 5.4 presents samples of the segmentation results that are produced by our
system. However, it is not possible to tell whether these results are adequate for a
chereme based gesture recognition system. Although sign language linguistics have
shown that hand-shapes information, hand positions and hand movement patterns can
reliably identify individual sign language gestures [11][15][53], adequacy of the hand
segmentation process can only be confirmed using qualitative methods. According to
Jayaram et al. [93], any analysis of the performance of any segmentation algorithm
must take into account the application domain for which it is designed to serve and the
accuracy of the low-level process of delineating the object boundaries. Each application
domain is defined in terms of the task to be performed, A; the relevant 3D space over
which the application draws meaning, B; and the imaging approaches implemented by
the application, /. An evaluation of-the“performianec-of-a.segmentation algorithm must
qualify both the low-level process of delineating objectiboundaries and the higher level
process of recognizing the tasksjat hand [93]. Jayarani er al. further argue that whereas
machines outperform humans in such tasks ds delineating object boundaries, the human
eye’s aptitude to recognize images=is-much-higher-than-thav.of machines. In the next
two subsections, we present a-qualitatiye -evaluation .of the performance of the low-

level segmentation and the hand-shape recognition processes.
5.5.1 Evaluating the low-level hand segmentation process

Generally, no surrogates of truth exist for low level segmentation results [93], and
hence no universally acceptable yardsticks for quantifying the delineation process are
available. Irrespective of the absence of universally acceptable yardsticks, this research
qualifies the performance of the presented low level segmentation algorithm basing on
the following attributes: the smoothness of the delineated boundaries; the amount of
manual intervention required; and the volumes of falsely dismissed and falsely detected

regions that are associated with each output image. In the contexts of this research, the
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segmentation results are considered smooth only if the delineated boundaries are not

very rough and/or discontinuous. Erosion and/or dilation are some of the processes that

contribute to rough boundaries. Table 5.4 describes the five categories that are used to

classify object boundaries, magnitude of falsely detected regions and the rate of false

dismissals. The number of sub-regions that are covered by the misclassified regions

and/or the number of candidate hand regions that are obtained after processing one
handed input gestures are also used as a measure of the effect of each of the two
parameters on the overall segmentation results.
Table 5.4: Describing categories used to classify segmentation results

Very High High Moderate | Low | Negligible
False Detections (No: of candidates) 12-20 9-11 6-8 3-5 0-2
Broken boundaries (No: of 6x6 pixel ) 16-25 12-15 8-11 4-7 0-3
Jagged boundaries (No: of 6x6 pixel ) 24-50 18-23 12-17 6-11 0-5
False Dismissals (No: of 6x6 pixel) 16-50 12-15 8-11 4-7 0-3

The other parameters are classified based on the criteriiay des¢tibed below.

The level of manual intervention s dongidefed:

o negligible if the segmentagion: progess can proceed,en its own once the process

is initiated;
o low if only one parameter must be adjusted whenever a new input
processed;
o moderate if 2 or 3 parameters must be adjusted whenever a new image
o high if between 4 to 10 parameters must be adjusted for each new input

o very high if at least one parameter is adjusted at every processing stage.

The overall segmentation result is of:

o very high quality if

https://etd.uwc.ac.za/
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= all the boundaries of the output image are smooth;
= there are no falsely dismissed regions;
= the amount of image noise is negligible;
= there is no manual intervention required
o high quality if
= the rate of false detections, the rate of false dismissals, the nature of
produced image boundaries and the level of manual intervention are
either low or negligible.
o moderate quality if
= either the amount of false detections or the amount of false dismissals
are moderate
= the number of jagged object boundaries is moderate
o low quality if

or.the amount of false dismissals

are high T
* the number of ja boundaries is hig
o negligible quality if [l
= if at least one of the observed characteristics is very high

UNIVERSITY of the ,
Table 5.5 presents our assessment of the quality of the sample of segmentation results
. WESTERN ‘b ‘} tit? E,
shown in Figure 5.11. A]thougﬁ some information about the éxtended finger has been
lost, we are convinced that high quality segmentation is produced. The loss of some
fingertip information is not brought about by any flaws in the segmentation algorithm,

but is precipitated by the blurring effects suffered by the moving hand.
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Table 5.5: Observed characteristics of a multi-cue segmentation result shown in Figure 5.12

Very High High Moderate Low Negligible
False Detections v
Broken boundaries v
Jagged boundaries v
Manual Intervention v
False Dismissals 4
Segmentation Result v

Figure 5.11: Segmentation results for a blurred input image

The images used in this research were extracted against a skin-coloured background. In
this case, the skin-coloured background amplifies the boundaries of every moving
object irrespective of whether the object is skin-coloured or not. However, some of the
irrelevant boundaries are later discarded by the boundary tracing algorithm, and hence
they do not affect the quality of the segmentation results. Coarse information that
describes the possible hand configurations is incorporated into the segmentation
algorithm in order to eliminate some of the moving background objects. The yellow

dotted-lines, shown in Figure 5.11, outline some of the candidate hand regions. All
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image blobs that are characterized by non-persistent features and those which are

almost stationary are eliminated.

A generalized notion of the accuracy of our low-level hand segmentation process can
be obtained by scrutinizing the output results for at least 20 output samples that are
extracted from images of 5 people. Here a small sample size is used since we realized
that there is little variability between the different output samples. The observed

parameter values for all the samples are summarized in Table 5.6.

Table 5.6: Observed attributes of a samples of 20 output images

Number of images in each category
Very High High Moderate Low Negligible

False Detections 2 15 3

Broken boundaries 1 19

Jagged boundaries 1 13

Manual Intervention 20

False Dismissals | 7 12
Segmentation Result 18 2

A weighted average of false;detections; Ayy,s fo5-# output samples is calculated as

follows:

(aM,, +bM, +cM, +dM, +eM,)
Av, = -

n
where a, b, ¢, d and e are the total numbers of data samples that contain very high, high,
moderate, low and negligible numbers of falsely classified blobs respectively. The
symbols, Myy; My; My; M; and My represent the median values for each range of
values that are described in table 5.4. For instance, for the 20 output samples described

in Table 5.6, the average class for all falsely detected regions is:
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(0x16+0x10+2x7 +15x4+3x1)

Avg =
fd 20

=3.85

=4 (rounded up to the next whole number)

According to the category descriptions given in Table 5.4, the weighted average for
falsely detected blobs lies within the ‘low class’ category. These findings coincide with
the modal class for the false detections shown in Table 5.6. The weighted class for
falsely dismissed regions, broken boundaries and/or the weighted class for jagged
boundaries are computed in a similar way. In general, the weighted average category
for manual interventions or for the overall quality of the segmentation results is

considered to be equal to the modal class of each respective parameter.

5.5.2 Analyzing the hand tracking-and re

The consistency of the segmentation algori an be inferred from the performance of

the tracking and the hand-shape re

image blobs, we determine the—number—ot—correeﬁy—ah«ﬂed—ﬂobs and the number of
falsely tracked blobs. In the casé f onie handed Eeltlites;jja hand blob is falsely tracked

only if a non-hand region is aligiéd te ajhand tegions | A " |
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Table 5.7: Analysis of blob matching results

Processed | Tracked Lost Falsely Tracking | Consistency
Frames (P) | Frames | Frames Tracked Rate [] B ) %100 %
(L) (L) Frames (F) _T_>< 100 % T
P
Gesture 1 40 39 1 0 97.5 100
Person 1 Gesture 2 63 60 3 0 952 100
Gesture 3 53 45 8 1 84.9 97.8
Gesture | 25 25 0 0 100 100
Person 2 Gesture 2 56 54 2 0 96.4 100
Gesture 3 44 44 0 0 100 100
Gesture | 43 43 0 0 100 100
Person 3 Gesture 2 4] 41 0 0 100 100
Gesture 3 33 33 0 0 100 100
Gesture 1 21 21 0 0 100 100
Person 4 Gesture 2 48 48 0 0 100 100
Gesture 3 31 et 0 0 100 100

Table 5.7 presents an analysis of the hand tracking results. Table 5.8 explains how blob

matching results for person 4 gesturel |1, shown |in Table 5.7, were obtained from the

feature values shown in Appendix-B-

https://etd.uwc.ac.za/
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Table 5.8: Automatic blob matching process for data shown in appendix B

Image Frame Number

Stack Number

-5
105 . 40

2
3
4
5
6

Symbols:
-~ Continue from the last given value contained in similarly shaded squares
-x-  Next frame is the termination point if the current blob sequence does not

find a match

In Table 5.8, the surface arearof each candidate hand megion is represented by a
numerical value that corresponds to a partic¢ular|stackl numbegr that is produced by each
image frame. The red coloured. Sequence-is'the-only-one-in-which one blob from every
image frame is successfully matched to all other, correctly aligned blobs from the
previous frame sequences. Manual verification of the red coloured sequence shows that
only true hand blobs are successfully matched i this sequence, hence the blob
matching and the blob tracking processes are 100% consistent for this particular output
sample. In Table 5.8, unsuccessfully matched blob sequences are marked with -x- at
one end. All blob sequences that have non-persistent features are eliminated from the
stack list. Whenever a blob sequence with a higher sub-index value of a stack list
identifier, X/i], is discarded, the algorithm reduces by 1 all the sub-index values of all
stack list identifiers which are greater than the sub-index of the eliminated stack list
identifier. Besides, whenever a new non-matching blob is added to the stack list, the
sub-index of the last stack list identifier increases by 1. Spontaneous increases and/or

decreases in sub-index values explain the irregular patterns shown in Table 5.8.
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Irrespective of whether the same hand-shape is maintained during the execution of a
gesture, the surface area covered by each of the aligned image blobs often changes
from frame to frame. For instance, the surface area of the image blobs that constitutes
the red coloured sequence (shown in Table 5.8) ranges from 129 to 174 pixels. In
dynamic gestures, changes in blob surface areas simply reflect the different hand
projections that are either caused by the changing camera viewpoints or by the presence

of image noise at a particular imaging position.
5.5.3 Verifying the hand-shape recognition processes

As a way of verifying the identity of hand-shapes that constitute each aligned sequence
of candidate hand regions, feature sets that describe each of the aligned image blobs are
fed into the SVM. The training and.thetestmg-datd-samples are extracted as explained
in Section 4.7. Blob classification s achieyed by tmplementing a SVM with a linear
kernel [14]. The SVM kernel is often fine tuned in order to make the best trade-offs
between the function that describes the shape of|the separating surface and the function
that determines the smoothness of-the-ebjéet surface. Table 5.9 shows the different
recognition rates that were achieved for either .the person-dependent or person-
independent situations. According to Table 5.9, out of four different gestures, the SVM
based system achieved the lowest accuracy represented by a sensitivity (SE) of 0.8204
and a specificity (SP) of 0.7604. This low classification rate was observed for gesture 2
only. For other gestures the SE and SP values are much higher. This demonstrates that
the SVM system is capable of accurately recognizing the hand gestures that were
processed by our system. The performance of the system which is presented in this

thesis can be further improved by improving the feature selection process.

People do not always perform the same gesture in the same manner, hence the reason
why person-independent recognition rates are a bit lower than the person-dependent
rates. Lower person-independent hand-shape recognition results make it very difficult
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to build person-independent gesture recognition systems. In most situations the same

person often execute the same gesture in a slightly different manner, though the amount

of gesture variability is often quite low.

Table 5.9: Person dependant and person independent SVM based hand-shape recognition rates

Crecture 1:

Percom 2:
Persom 3
Percom T:
Percon 8:
Person 9:

Crestime 2:

Persom 2:
Percom 3:
Persom 7:
Percon &:
Persom 9:

(rechare 3:

Percon 2:
Person 3.
Persom 7:
Percon 8:
Person 9:

Crestime 4:

Percon 2:
Person 3:
Person 7:
Person 8:
Persom 9

All Persons:

A1 Percons:

A1 Persoms:

All Percons:

Pars2 Pam3  SE

0 1.1 1.0000
0 1.1 1.0000
0 1.1 09524
0 1.1 1.0000
0 1.1 1.0000
0 1.1 1.0000
arad  Pam3  SE

13

0.8333
0.9167
1.0000
1.0000
0.8667
0.9067

PRV

0.9744
09231
1.0000
1.0000
0.9120
0.9573

P
38
24
40
45
21
157

TP
58
54

38

SI2-41
AT,

oe93- 001

Pard Bams |$E ||| S pp

0 11 0000, 1.0900

0 1y

0 1.1 1.0000 1.0000

0 11 ; 4

RS EARA /4 B o i

0 Lol o 049204 08519 09518
Pars? Pas3 SE  SP PPV
0 1.1 09130 1.0000 1.0000
0 1.1 09459 1.0000 1.0000
0 1.1 10000 08571 0.9697
0 1.1 09744 09444 09744
0 1.1 09259 1.0000 1.0000
0 1.1 09493 08717 0.9698
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38
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The column values shown in Table 5.9 are explained as follows:

1) Paral: represents parameter r of SVM light [63]. This parameter represents the type

of kernel, and in particular O represents a linear kernel.
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2)
3)

4)
5)
6)
7)
8)
9)

Para2: represents parameter g or gamma of the RBF kernel of the SVM light.
Para3: represents parameter j of SVM light that gives a measure by which training
errors on positive examples outweigh negative examples.

SE = sensitivity

SP = specificity

PPV = positive predictive value

TP = true positive

FN = false negative

TN = true negative

10) FP = false positive

5.6 An assessment of the segmentation results

In this chapter a qualitative assessment-of-the-segiiientation results produced by our

protype system is given. The|given assessment Shows that inspite of the fact that

perfect segmentation results could not be achicved, the produced results adequately

describe the sampled gestures. The |adeaguiacy of the| segmentation and the tracking

processes was tested by passing-the-atigned-blob=sequences into a SVM. The high

recognition rates achieved by,the SVM confirmed the adeaquacy of our segmentation

results for gesture recognition purposes.
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Chapter 6

Discussion and Conclusion

6.1 Background

In an endeavour to build a gesture recognition system that recognizes a large number of
dynamic SASL gestures, we developed a prototype system that isolates the SASL
cheremes. A chereme based dynamic gesture recognition system is designed based on
the linguist notion of a sign language gesture. Sign language linguists argue that every
sign language gesture is derived from a small set of cheremes that are peculiar to each
sign language. The hand-shape, the hand movement patterns, and the hand positions are
the major components of each hand gesture. However, computer vision algorithms
have not yet matured enough to support compiehensive segmentation of moving hands.
Besides, 2D projections are adversely-affected-by-thé“octlusion problem to such an
extent that 2D views hardly ‘provide-sufficient-informatton that distinguishes the
characteristics of various objects [14]. Cons¢quently, most available vision-based
gesture recognition systems often usel ¢crude estimates of hand-shape information. The
use of crude prime gesture information seriously compromises the gesture recognition
process. This thesis presented an ‘improved-'method “of ‘ extracting the hand-shape
chereme. This thesis also describes.how the hand+position cheremes are extracted using
our prototype system. Though the hand movement patterns were not automatically
classified in this work, nonetheless the HMM which effectively represents the
relationship between consecutive segments of an object of interest [45] can be used to
achieve this. Section 6.2 compares the features of the old and the new gesture

recognition systems.
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6.2 Characteristics of the new gesture recognition systems

The characteristics of the new gesture recognition system are better understood by
comparing them to those of other gesture recognition systems. Table 6.1 summarizes

how the new and the old systems handle the common gesture recognition problems.

Table 6.1: Comparing the new system with other vision-based gesture recognition systems

New System Other Systems
Segmentation and component | Highly precise, efficient and | Efficient but computationally
Labeling cheap to implement expensive
Hand-shape recognition Precise location (SVM based) Coarse  (Geometric  model
fitting)
& | Blob Matching Efficient Efficient
=]
% | Gesture Recognition Partially addressed. Gestures are | Addressed. Each gesture
g identified from their basic | identified as a whole
o components; :
=) Object Occlusion Notsolved in 2Dviciys Not solved in 2D views
o
R
g} Gesture Recognition Both spatral-and temporatgesture | Mostly  exploit  temporal
w information is exploited 1 variations
Real-time Processing Not addressed | Addressed in some systems
Overlap problem Partially addressed Depends on used approach
6.3 Accomplished tasks

We manually isolated a number of hand-shape cheremes and some of these cheremes
are given in Table 2.1. Manual identification of hand-shapes is based on a 3D world
view of a gesturing hand. In SASL fingertip information is used to identify the different
hand configurations. Each finger of a gesturing hand is either stretched, partially bent,
totally clenched. Although it is easy to manually identify hand-shape cheremes, it is
difficult to establish one to one mappings between 3D views and the 2D projections.
Besides, 2D hand projections often fail to unambiguously identify the different object

views. For instance the difference between cheremes H2 and H3, shown in Table 2.1, is
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not so apparent to the human eye. Since the perceptual ability of the human eye is
much higher than that of machines [93], it is obviously more difficult for a computer to
distinguish between these two cheremes. The ambiguities associated with 2D views
hinder the successful implementation of a chereme based gesture recognition system
since hand-shapes can only be classified after observing and comparing long sequences
of consecutive 2D hand views. These are some of the challenges that computer vision
algorithms must address, and hence the inherent limitations of most vision based
gesture recognition systems. However, the hand segmentation algorithm presented in

this study helps to improve the segmentation and tracking of candidate hand regions.

The following list summarizes some of the good features of the presented hand

segmentation algorithm.

®  Robust method of combining and-extracting-tow=tevel image cues
Skin—colour, motion and edge information are combined in such a way that the
weak edge-based boundaries and the moving skin-coloured pixels are preserved.

Such a design helps to minifize 10ss ofl important hand+shape information.

e Enhanced boundary tracing algorithin
Unlike in other boundary tracing algorithms [71][21][1], the algorithm presented in
this research does not use the start pixel to determine its exit point. Irrespective of
whether image boundaries were corrupted by image noise and/or other processing
modules, the new boundary tracing algorithm always successfully traces all
external boundary pixels of a region. Besides, it requires far much less
computations than most of its predecessors. For instance, the new algorithm traces
the boundaries of most blurred surfaces, although in some cases minor hitches are

encountered.
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®  Robust blob matching and tracking methods
The blob matching and tracking modules always aligns the best matching blobs. All
blob sequences that do not match any other blob are discarded after particular frame

intervals.

In general, this study managed to successfully segment the head and the hand regions.
The location of the head and/or the neck region is used for building a relative body
coordinate system from which the positions of each image blob that is obtained from
each input image is approximated. Besides the centre of mass, other features such as:
standard deviation; covariance matrices; the best fit ellipse; rectangularity; and some
other geometrical information, are used to describe different image blobs. On average,
the performance of the new hand segmentation and tracking algorithms is remarkably
good. This argument is supported by-the-high-reedgnition and tracking rates that were

achieved by the algorithm (see Section|5:5:2):
6.4 Limitations of the stucly

One of the major limitations of the new;algorithm-includes, its inability to detect or to
trace occluded regions. Since each image is taken from a single viewpoint, it is difficult
to capture all the information that fully describes a three-dimensional object. The other
problem associated with the new algorithm is its inability to isolate overlapping skin-
coloured regions. These problems make it very difficult for the algorithm to effectively
identify the candidate hand regions especially in situations where the hand overlaps the
face and/or the neck regions. However, this problem can be solved by designing a
boundary tracing algorithm that takes into account the gradual decrease (increase) in
the magnitude of consecutive edge-based pixels when determining the most probable
tracing direction. The envisaged boundary tracing algorithm must also take into
account the tracing direction assumed by the last traced boundary pixels. This proposed

boundary tracing algorithm would be based on a deformed model approach (see
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Section 3.2.2.2). In the algorithm, gradually increasing (decreasing) values for edge-
based pixels would be used to represent the internal forces, &, (¢(r)); and the tracing
direction assumed by last tracked boundary pixels would be used to enforce the

external constraints, &,,(¢(r)). The proposed boundary tracing algorithm would

identify the most probable boundaries of each output image irrespective of whether

there is an overlap or not in the region of interest.

Another limitation of the presented hand segmentation algorithm lies in its dependence
on the successful location of the head region. If the background is cluttered, there is no
guarantee that this algorithm would always locate a person’s head region. Similarly, if
an image includes many individual views of different people, there is no guarantee that
each isolated head region would be correctly associated with other blobs that describe

the same object.

The SVM is an excellent tool for classifying fobjects. Although this research
implements the SVM code that compares an unclassified dataset with only one of the
known class at a time, other r¢searchers implemented multi-class-based classification
methods. For instance, in [ 14 }-the-unclassified-dataset is-sequentially tested against all
known classes. The unclassified dataset;is;given the same label as that of a class that
best matches it. The multi-class_approach is very important for the purposes of this
research since it automatically identifies the most probable hand-shape chereme for any

given sequence of candidate hand regions.
6.5 Future activities

One of the objectives of this research was to identify the different cheremes. Although
the hand-shape and position cheremes were successfully identified, the hand movement
chereme was not explored. The hand movement patterns can be identified by

implementing a HMM based learning and recognition module. In fact, most researchers
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have used the HMM to predict gesture patterns [19][32]. In essence all we need is to
verify whether the features extracted in this research can sufficiently predict the hand
movement patterns. Unlike the features used by other researchers [28][32], the feature

set used in this research is more precise and hence more robust results were expected.

Although it was demonstrated that dynamic SASL gesture cheremes can be
automatically isolated from video images of gesturing people, there is a need to ensure
that the process of extracting cheremes would run in real-time. This can be achieved by
either implementing hardware-based processing modules or by improving the
efficiency of the image processing algorithm. A meaningful gesture dictionary can be
written once all cheremes that constitute each gesture are extracted, and once the
combination sequences of those cheremes have been identified. It is recommended that
any extensions to this work should also further verify the applicability of the isolated

cheremes to the automatic gesture recognition-problem.

6.6 Concluding remarks

Adequately segmented hand-regions—provide sufficient sinformation that enables
extraction of some basic components, of a,gesture.. However, computer vision has not
yet matured enough to guarantee this. Despite this glaring setback, this research
demonstrated that important gesture information can be extracted from hand blobs once
the segmentation algorithm is designed to preserve the object boundaries. However,
more work still need to be done in order to overcome the occlusion and overlap
problems. Real-time chereme detection is vital for any chereme-based gesture

recognition, and hence this is one of the challenges that need to be addressed in future.
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